

Graph Theory
and Applications

with Exercises and Problems

Jean-Claude Fournier

dcd-wg
315.jpg

This page intentionally left blank

Graph Theory and Applications

This page intentionally left blank

Graph Theory
and Applications

with Exercises and Problems

Jean-Claude Fournier

First published in France in 2006 by Hermes Science/Lavoisier entitled Théorie des graphes et
applications, avec exercices et problèmes © LAVOISIER, 2006
First published in Great Britain and the United States in 2009 by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA.
Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd, 2009

The rights of Jean-Claude Fournier to be identified as the author of this work have been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Fournier, Jean-Claude.
 [Théorie des graphes et applications, avec exercices et problèmes. English]
 Graph theory and applications with exercises and problems / Jean-Claude Fournier.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-84821-070-7
 1. Graph theory. 2. Graph theory--Problems, exercises, etc. I. Title.
 QA166.F68513 2009
 511'.5--dc22

2008043204

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-070-7

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne.

http://www.wiley.com

To Hugo, Eliott, Mathieu,
Elise, Aurélie, Antonin, Ethan

and those to come . . .

This page intentionally left blank

Table of Contents

Introduction 17

Chapter 1. Basic Concepts 21

1.1 The origin of the graph concept 21

1.2 Definition of graphs . 24

1.2.1 Notation . 24

1.2.2 Representation . 25

1.2.3 Terminology . 25

1.2.4 Isomorphism and unlabeled graphs 26

1.2.5 Planar graphs . 27

1.2.6 Complete graphs . 28

1.3 Subgraphs . 28

1.3.1 Customary notation 29

1.4 Paths and cycles . 29

1.4.1 Paths . 29

1.4.2 Cycles . 31

1.4.3 Paths and cycles as graphs 33

1.5 Degrees . 33

1.5.1 Regular graphs . 34

1.6 Connectedness . 35

7

8 Graph Theory and Applications

1.7 Bipartite graphs . 36

1.7.1 Characterization . 37

1.8 Algorithmic aspects . 37

1.8.1 Representations of graphs inside a machine 38

1.8.2 Weighted graphs . 41

1.9 Exercises . 41

Chapter 2. Trees 45

2.1 Definitions and properties . 45

2.1.1 First properties of trees 46

2.1.2 Forests . 47

2.1.3 Bridges . 47

2.1.4 Tree characterizations 48

2.2 Spanning trees . 49

2.2.1 An interesting illustration of trees 52

2.2.2 Spanning trees in a weighted graph 53

2.3 Application: minimum spanning tree problem 54

2.3.1 The problem . 54

2.3.2 Kruskal’s algorithm 55

2.3.3 Justification . 57

2.3.4 Implementation . 58

2.3.5 Complexity . 59

2.4 Connectivity . 59

2.4.1 Block decomposition 60

2.4.2 k-connectivity . 61

2.4.3 k-connected graphs . 62

2.4.4 Menger’s theorem . 63

2.4.5 Edge connectivity . 63

Table of Contents 9

2.4.6 k-edge-connected graphs 64

2.4.7 Application to networks 65

2.4.8 Hypercube . 65

2.5 Exercises . 66

Chapter 3. Colorings 71

3.1 Coloring problems . 71

3.2 Edge coloring . 71

3.2.1 Basic results . 72

3.3 Algorithmic aspects . 73

3.4 The timetabling problem . 75

3.4.1 Room constraints . 76

3.4.2 An example . 78

3.4.3 Conclusion . 81

3.5 Exercises . 81

Chapter 4. Directed Graphs 83

4.1 Definitions and basic concepts 83

4.1.1 Notation . 83

4.1.2 Terminology . 83

4.1.3 Representation . 84

4.1.4 Underlying graph . 85

4.1.5 “Directed” concepts 85

4.1.6 Indegrees and outdegrees 86

4.1.7 Strongly connected components 87

4.1.8 Representations of digraphs inside a machine 88

4.2 Acyclic digraphs . 90

4.2.1 Acyclic numbering . 90

10 Graph Theory and Applications

4.2.2 Characterization . 91

4.2.3 Practical aspects . 92

4.3 Arborescences . 92

4.3.1 Drawings . 92

4.3.2 Terminology . 93

4.3.3 Characterization of arborescences 94

4.3.4 Subarborescences . 95

4.3.5 Ordered arborescences 95

4.3.6 Directed forests . 95

4.4 Exercises . 95

Chapter 5. Search Algorithms 97

5.1 Depth-first search of an arborescence 97

5.1.1 Iterative form . 98

5.1.2 Visits to the vertices 100

5.1.3 Justification . 102

5.1.4 Complexity . 102

5.2 Optimization of a sequence of decisions 103

5.2.1 The eight queens problem 103

5.2.2 Application to game theory: finding a winning strategy 105

5.2.3 Associated arborescence 105

5.2.4 Example . 106

5.2.5 The minimax algorithm 106

5.2.6 Implementation . 107

5.2.7 In concrete terms . 108

5.2.8 Pruning . 108

5.3 Depth-first search of a digraph 109

5.3.1 Comments . 110

Table of Contents 11

5.3.2 Justification . 112

5.3.3 Complexity . 113

5.3.4 Extended depth-first search 113

5.3.5 Justification . 114

5.3.6 Complexity . 115

5.3.7 Application to acyclic numbering 115

5.3.8 Acyclic numbering algorithms 116

5.3.9 Practical implementation 117

5.4 Exercises . 117

Chapter 6. Optimal Paths 119

6.1 Distances and shortest paths problems 119

6.1.1 A few definitions . 119

6.1.2 Types of problems . 120

6.2 Case of non-weighted digraphs: breadth-first search 120

6.2.1 Application to calculation of distances 122

6.2.2 Justification and complexity 123

6.2.3 Determining the shortest paths 124

6.3 Digraphs without circuits . 125

6.3.1 Shortest paths . 127

6.3.2 Longest paths . 127

6.3.3 Formulas . 127

6.4 Application to scheduling . 128

6.4.1 Potential task graph 128

6.4.2 Earliest starting times 129

6.4.3 Latest starting times 130

6.4.4 Total slacks and critical tasks 131

6.4.5 Free slacks . 131

12 Graph Theory and Applications

6.4.6 More general constraints 133

6.4.7 Practical implementation 133

6.5 Positive lengths . 134

6.5.1 Justification . 135

6.5.2 Associated shortest paths 138

6.5.3 Implementation and complexity 140

6.5.4 Undirected graphs . 140

6.6 Other cases . 142

6.6.1 Floyd’s algorithm . 142

6.7 Exercises . 143

Chapter 7. Matchings 149

7.1 Matchings and alternating paths 149

7.1.1 A few definitions . 149

7.1.2 Concept of alternating paths and Berge’s theorem . . 151

7.2 Matchings in bipartite graphs 152

7.2.1 Matchings and transversals 154

7.3 Assignment problem . 156

7.3.1 The Hungarian method 156

7.3.2 Justification . 158

7.3.3 Concept of alternating trees 159

7.3.4 Complexity . 159

7.3.5 Maximum matching algorithm 160

7.3.6 Justification . 161

7.3.7 Complexity . 161

7.4 Optimal assignment problem 164

7.4.1 Kuhn-Munkres algorithm 165

7.4.2 Justification . 168

Table of Contents 13

7.4.3 Complexity . 169

7.5 Exercises . 171

Chapter 8. Flows 173

8.1 Flows in transportation networks 173

8.1.1 Interpretation . 175

8.1.2 Single-source single-sink networks 176

8.2 The max-flow min-cut theorem 177

8.2.1 Concept of unsaturated paths 178

8.3 Maximum flow algorithm . 180

8.3.1 Justification . 182

8.3.2 Complexity . 187

8.4 Flow with stocks and demands 188

8.5 Revisiting theorems . 191

8.5.1 Menger’s theorem . 191

8.5.2 Hall’s theorem . 193

8.5.3 König’s theorem . 193

8.6 Exercises . 194

Chapter 9. Euler Tours 197

9.1 Euler trails and tours . 197

9.1.1 Principal result . 199

9.2 Algorithms . 201

9.2.1 Example . 202

9.2.2 Complexity . 204

9.2.3 Elimination of recursion 204

9.2.4 The Rosenstiehl algorithm 204

9.3 The Chinese postman problem 207

14 Graph Theory and Applications

9.3.1 The Edmonds-Johnson algorithm 209

9.3.2 Complexity . 210

9.3.3 Example . 210

9.4 Exercises . 212

Chapter 10. Hamilton Cycles 215

10.1 Hamilton cycles . 215

10.1.1 A few simple properties 216

10.2 The traveling salesman problem 218

10.2.1 Complexity of the problem 219

10.2.2 Applications . 219

10.3 Approximation of a difficult problem 220

10.3.1 Concept of approximate algorithms 221

10.4 Approximation of the metric TSP 223

10.4.1 An approximate algorithm 223

10.4.2 Justification and evaluation 224

10.4.3 Amelioration . 226

10.4.4 Christofides’ algorithm 227

10.4.5 Justification and evaluation 227

10.4.6 Another approach . 230

10.4.7 Upper and lower bounds for the optimal value 231

10.5 Exercises . 234

Chapter 11. Planar Representations 237

11.1 Planar graphs . 237

11.1.1 Euler’s relation . 238

11.1.2 Characterization of planar graphs 240

11.1.3 Algorithmic aspect . 242

Table of Contents 15

11.1.4 Other properties of planar graphs 242

11.2 Other graph representations 242

11.2.1 Minimum crossing number 243

11.2.2 Thickness . 243

11.3 Exercises . 244

Chapter 12. Problems with Comments 247

12.1 Problem 1: A proof of k-connectivity 247

12.1.1 Problem . 247

12.1.2 Comments . 248

12.2 Problem 2: An application to compiler theory 249

12.2.1 Problem . 249

12.2.2 Comments . 249

12.3 Problem 3: Kernel of a digraph 251

12.3.1 Problem . 251

12.3.2 Comments . 253

12.4 Problem 4: Perfect matching in a regular bipartite graph . . . 253

12.4.1 Problem . 253

12.4.2 Comments . 254

12.5 Problem 5: Birkhoff-Von Neumann’s theorem 254

12.5.1 Problem . 254

12.5.2 Comments . 255

12.6 Problem 6: Matchings and tilings 256

12.6.1 Problem . 256

12.6.2 Comments . 257

12.7 Problem 7: Strip mining . 258

12.7.1 Problem . 258

12.7.2 Comments . 259

16 Graph Theory and Applications

Appendix A. Expression of Algorithms 261

A.1 Algorithm . 262

A.2 Explanations and commentaries 262

A.3 Other algorithms . 265

A.4 Comments . 265

Appendix B. Bases of Complexity Theory 267

B.1 The concept of complexity . 267

B.2 Class P . 269

B.3 Class NP . 272

B.4 NP-complete problems . 273

B.5 Classification of problems . 274

B.6 Other approaches to difficult problems 276

Bibliography 277

Index 279

Introduction

The concept of a graph is relatively recent since it only formally
appeared during the 20th century. Today it has become essential in many
fields, in particular in applied and fundamental computer science, in
optimization, and in algorithmic complexity. The study of graphs and their
applications therefore provides an opportunity to deal with very diverse
questions with numerous applications. It can be used, for example, to
develop task scheduling methods from optimal paths in graphs, or properties
of communication networks in relation to the connectedness of graphs.
Historically, graphs were considered long before the theory was developed,
with famous problems such as the Königsberg bridge problem (presented in
Chapter 9).

This work studies the principal aspects of graph theory with special
emphasis on major applications. Its content is aimed at advanced
undergraduate and students beginning post-graduate studies in mathematics
and computer science. It calls for very few pre-requisites, essentially a
familiarity with basic vocabulary and mathematical reasoning. In return,
the study of this new subject will be a great opportunity for students to
test and improve their personal logic. Graph theory is indeed a new subject,
which is very different from the traditional mathematics taught, but which
requires the same intellectual rigor. The great novelty of this subject may
throw even the best students in mathematics, which shows how beneficial
studying this subject can be!

This book, conceived as a textbook, is the result of long experience
teaching bachelor and masters level students (notably as part of the French
master in applied information technology: “MIAGE”). It also contains many
exercises and problems classified in five levels of increasing difficulty:

18 Graph Theory and Applications

1. Certain points and quite easy proofs are left to the reader’s initiative.
They are indicated in the margin by a †.

2. Among the exercises given at the end of each chapter, some are marked
with a +, indicating a useful complement to the chapter, which may
also be used elsewhere in the text.

3. The exercises which are not marked are of normal difficulty. They are
standard exercises, among which you will find the most classic in the
field.

4. The exercises marked with a * are more difficult. They go into a subject
in more depth than the chapter does.

5. A last level with a few problems is given at the end, with commentaries
and sometimes hints for their resolution (Chapter 12).

Here is some information on how this book is organized. Except for the
two chapters on definitions and basic concepts, which are Chapter 1 for
undirected graphs and Chapter 4 for directed graphs, each chapter presents
a specific subject with a major application, and is therefore relatively
independent from the other chapters. It is therefore possible to make choices
when organizing a course. Statements are presented according to their role
and their importance in the theory, using the classic terminology: theorems,
propositions, corollaries and lemmas. This terminology can be defined as
follows: a theorem is an important result which is significant for the theory,
a proposition is less prominent, a corollary is a result which can be deduced
directly from a major result, a lemma is a result with a certain technical
nature, which usually is used to prove another result. The end of the proof
of a statement is marked by the symbol �.

Graphs, as already mentioned, are used a lot in applications. Many
problems are thereby solved in a constructive manner, which leads to writing
algorithms, which may then be written in an appropriate programming
language. Some of these algorithms are not simple, so it is important to
express them in the best structured way possible, which will make the
process of writing them in a program easier. In this work we wanted not
to neglect, and even to make explicit, this algorithmic aspect, and that
is why we cover in detail in Appendix A the method used to express
algorithms. Similarly, in Appendix B, we give the bases of what it has become
essential to know today for any scientific development, that is the theory of
algorithmic complexity. It is impossible to discuss an algorithm without

Introduction 19

discussing its complexity! However, this assumes at least a good knowledge
of the basic classes of the theory of complexity, which are therefore presented
in Appendix B. Experience shows that it is still difficult to count on what
should normally have been learned elsewhere.

There is today an important body of literature on graphs and their
applications. We give only some bibliographic references here, and the
reader will find more complete bibliographies within the works cited in the
references. Some are relatively old references but they are works that are
still interesting today and which have fed our own thoughts in their time
and to which we are indebted. We want to recommend in particular Berge
[2], a work which, with some others by the same author, is still today a
principal reference in graph theory. Some more specific references are also
given in the course of the text.

We wish to thank Nicolas Thiant for his very useful contribution to
the ultimate verification of the French manuscript. Thanks also to Anne
Picard-Pieter and Amit Pieter for undertaking the difficult and delicate
task of translating the original French version. In addition, we thank Rebecca
Edge for meticulously performing the final proofreading. Finally, we are very
grateful to Guillaume and Julie Fournier who have so kindly contributed to
finalizing the French and English manuscripts.

Jean-Claude Fournier

This page intentionally left blank

Chapter 1

Basic Concepts

After an introduction to the origin of graph conceptualization, this first
chapter presents the definitions and basic properties of graph theory. This
will be continued a bit later (Chapter 4) with directed graphs. Since graphs
are used in many areas, in particular in computer science, the definitions and
sometimes the terminology may vary in the literature. In a sense, graphs are
victims of their own success! The definitions and terminology chosen here are
what seem the most appropriate and the most in line with theory tradition
(specifically references [1] and [2]). However, the reader is warned that he
may find some differences. We have to know this even if it has no real
practical consequences because the concepts remain, of course, the same.

1.1 The origin of the graph concept

Dots and lines linking some dots on a plane: such is the “näıve” view of
a “graph”. This is already enough to imagine almost everything that this
concept can represent in various areas. One example that first comes to mind
is a communication network: dots representing the centers or nodes of the
network, lines representing the links. Many questions can be asked with this
network “model”, for example: does this network make it possible for all
centers to communicate with one another? In other words, is it possible
to reach any given center from another one, directly or going through
intermediate centers? Again, given two centers, find the paths linking them,
and in particular the “shortest path”, that is, the one with the lowest number
of intermediary links. This last question may be widened when a numerical
value is associated with the link showing a distance between points, or a
time, a cost, etc. The length of a path will then consist of the sum of the

22 Graph Theory and Applications

values of the lines composing it. The shortest path will then be the shortest
length path among those linking the two dots being considered. This gives
an image of what is called a “weighted graph”.

This first example of modeling a communication network with a graph is
an application that is particularly obvious. There are other problems which
can be modeled with a graph but in a less obvious way. For example, let
us consider this rather amusing little problem: a ferryman has to take a
wolf, a goat and a cabbage across a river. He can only take one of them
across at a time and cannot leave the wolf and the goat alone on one bank
of the river (for obvious reasons), nor the goat and the cabbage. How can
he proceed to take all of them across? Is there more than one way to solve
the problem? Is there one way which is faster than the others? Since there
are only a few possibilities, it is quite easy to answer these questions, but it
might be interesting to think about similar but more serious problems and
try to apply a general and systematic research method. This will be based on
modeling the problem with a graph, which is not really difficult but requires
a little more imagination than with the communication network (this model
is proposed as an exercise at the end of this chapter).

As we go further through this study, there are many practical cases
which can be modeled with graphs. It is from some of these cases that
“graph theory” emerged and was developed. An 18th century problem,
the well-known Königsberg bridge problem (presented in Chapter 9),
which was solved by the mathematician Euler, is often mentioned.
However, historically, the problem which was the main impetus for the
conceptualization and theoretical development of the idea of graphs was the
famous “four-color problem”. It dates back to the mid-19th century when
an English student named Guthrie noticed that it was possible to color a
map of his country with only four colors, while respecting the condition
that two neighboring regions, that is regions sharing a border (not reduced
to isolated vertices), be given two different colors. He wondered if this was a
general property, that is, if any geographical map could be colored with only
four colors in such a way that two adjacent regions are of different colors.
It is quite easy to see that four colors are necessary with the theoretical
map shown on the left part of Figure 1.1, which has four regions, pairwise
neighboring.1

1It might be thought that a map with five regions pairwise neighboring would require
five colors. In fact such a map does not exist because one region would be enclosed by
three others and could not border the fifth one. However, this does not solve the four-color
problem!

Basic Concepts 23

1

2

3 4

Figure 1.1. On the left: a map in which the four regions 1, 2, 3, 4 are
pairwise neighboring. On the right: the associated graph (in bold)

This problem, which is really more curious than practical (cartographers
have more constraints than giving different colors to neighboring regions
and in addition are not limited to four colors), had a fabulous destiny.
At the end of the 19th century an amateur mathematician, Kempe, gave
what he thought to be a proof and which was acknowledged as such ...
until a few years later when another mathematician, Heawood, showed
that Kempe’s “proof” was false, but that nevertheless we could conclude
from it that five colors were always enough! At the time, reasoning with
geographical maps in general was not a practical method, and Heawood
had to build a map with about 30 regions to show that Kempe was wrong.
The error made by Kempe was relatively subtle and the example given by
Heawood contradicted Kempe’s reasoning but not what was already called
the “four-color theorem”, which is in fact true as shown in 1976. The manner
in which a graph is associated with this problem is simple: a dot in each
region and a line linking those dots when the corresponding regions are
neighbors, this line goes once through the border line (see the right part
of Figure 1.1). First, this graph is “planar”, which means that it can be
drawn in the plane without two lines intersecting, except for the dots they
are linking. Then, the problem of coloring the map is equivalent to giving
colors to the various dots of the graph, so that two dots linked by a line are
given different colors. The four-color theorem states that any planar graph
may have its vertices “colored” in that fashion with no more than four
colors. Stated as a graph problem, it was more suitable for the increasingly
complex reasoning that was developing. This is how graph language imposed

24 Graph Theory and Applications

itself during the 20th century. This theorem was only proven in 1976. It was
significant news at the time because part of the demonstration was based
on the verification of around 2,000 configurations. This verification could
only be made on very large computers available at that time and at the
cost of more than 1,000 hours of calculation. Since then, the time has been
reduced but not enough to do all this work by hand. This was, and still is,
a striking, although not unique, example of a mathematical demonstration
which called for the use of computers.2

We are now going to formalize the concept of a graph; the dots are
going to be called “vertices” and the lines “edges”. This first concept will
be completed later (Chapter 4) with “directed graphs”, where the edges are
given a direction. In fact, there are many applications which are related to
the directed graph model. For instance, in some communication networks
the links may only be used in a predefined direction, such as in a town map
with one way streets. Another particularly interesting example, to be dealt
with later on, is the modeling of the scheduling of a project composed of
tasks depending on one another through time, represented in what is called
the potential task graph (see Chapter 6, section 6.4).

1.2 Definition of graphs

An (undirected) graph G is defined by two finite sets:3 a non-void set X
of elements called vertices, a set E (which can be empty) of elements called
edges, with for each edge e two associated vertices, x and y, distinct or not,
called the endvertices of e.

1.2.1 Notation

We write G = (X, E). The sets X and E can be denoted by X(G) and
E(G). The cardinality of X, that is the number of vertices, is usually denoted
by n or nG. The cardinality of E, that is, the number of edges, is denoted
2Readers interested in the four-color theorem and its history should consult in particular:
The Four-color Problem, Assaults and Conquest by T. Saaty and P. Kaimen, McGraw-Hill
(1977). A special issue of the Revue du Palais de la Découverte (n◦12, January 1978, Paris)
also deals with this subject and includes the transcript of a conference given at the time
by the author of the present work.
3Graphs considered in this book are finite.

Basic Concepts 25

by m or mG. The pair of endvertices of an edge e is simply denoted by xy
(or yx) instead of the customary mathematical notation {x, y} when x �= y.

1.2.2 Representation

It is both usual and practical to draw a graph in a plane in the following
manner: the vertices are represented by dots and the edges by simple
lines (which can be mathematically defined with precision) connecting two
endvertices (see Figure 1.2).

There are, of course, many possible representations for a particular graph
because of the different ways there are to place the vertices dots and to
trace the edge lines in the plane. For certain applications it is important
to find a drawing which shows the structure of the graph, or some of its
properties, in relation to the application studied. One example of this is the
representation on a screen of the potential task graph in scheduling tasks
(discussed in Chapter 6).

e

X = {x, y, z}, E = {a, b, c, d, e}

a d

yc

b

z

x

Figure 1.2. A graph and its representation. Edge a is associated with the
endvertices x and z. Edge b is also associated x and z. Edge c is associated
with x and y. Edge d is associated with z and y. Finally, edge e is associated
twice with the vertex y (this is the case for a loop)

1.2.3 Terminology

When x and y are the endvertices of an edge e, we say that the vertices
x and y are joined by e, vertices x and y are adjacent, or neighbors, edge e
is incident to vertex x and to vertex y. It is possible to have x = y; in such
a case the edge e is called a loop. Two edges e and e′, or more, may have

26 Graph Theory and Applications

the same endvertices x and y; they are said to be parallel or that there is a
multiple edge (double, triple, etc., depending on the number of edges) joining
x and y.

A graph is said to be simple if it has no loops or multiple edges. In this
case, which often occurs, each edge is identified by its pair of endvertices,
which are different, and is denoted for example by e = xy. A simple graph
may be defined in a simpler way than graphs in the general way previously
described as a couple of finite sets (X, E), where X is not empty and E is a
set of two subsets of X.

A non-simple graph G is sometimes associated with what is called the
underlying simple graph, defined as follows: it has the same set of vertices
as G and two vertices are joined by an edge if and only if they are different
and joined by at least one edge in G.

1.2.4 Isomorphism and unlabeled graphs

We define an isomorphism of a graph G = (X, E) to a graph H = (Y, F)
by two bijections: φ from X on to Y and ψ from E on to F , so that for
e ∈ E and x, y ∈ X, the edge ψ(e) has for endvertices φ(x) and φ(y) in H
if and only if the edge e has x and y as endvertices in G. This means that
these mappings preserve the incidence relation of the edges to the vertices.
The graphs G and H are said to be isomorphic (see an example of this in
Figure 1.3).

s3 a5a1 a4

a3

a2

s2

s1

Figure 1.3. A graph isomorphic to the one in Figure 1.2. The bijections
defining the isomorphism between these two graphs can be easily found:
vertex s3 is necessarily associated with vertex y of the previous graph because
of the loop a4, which has to be associated with e in the previous graph. The
pair of vertices s1, s2 has to be associated with the pair x, z, for example s1

with x and s2 with z (a mapping on the edges can be deduced from this)

Basic Concepts 27

Two isomorphic graphs are in fact identical in their graph structure.
They have exactly the same properties. They can only be distinguished
by the sets of their elements, vertices and edges, in more concrete terms,
by the names or labels given to these elements. When focusing solely on
the properties of graphs as such, it is natural to consider two isomorphic
graphs as similar. This is what we do here, always considering the graphs
as unlabeled. In other words, in algebraic terms, an unlabeled graph is an
equivalence class following the equivalence relation defined on the set of
graphs by the isomorphism relation.

1.2.5 Planar graphs

A special and remarkable type of graph is one where it is possible to
impose on a plane representation of the graph the condition that two edge
lines do not cross each other, except in their common endvertices (in the
case of edges having a common endpoint).

This defines planar graphs, which play an important role in the theory
because of their remarkable properties. We will come back to this point in
a later chapter (Chapter 11). Figure 1.4 gives an example.

Figure 1.4. A planar graph not represented in a planar way, since in this
representation some edges cross not just at their endvertices. It is easy to
find an appropriate representation

Planar graphs have played a key role for the theory in the famous
four-color theorem mentioned above. In graph terms, the theorem states
that any planar graph may have its vertices colored with four different colors
in such a way that two vertices joined by an edge are of different colors.

28 Graph Theory and Applications

1.2.6 Complete graphs

Complete graphs are simple graphs such that any two vertices are joined
by an edge. As an unlabeled graph, a complete graph is simply determined
by the number n of its vertices. It is generally denoted by Kn (see Figure 1.5
for the case n = 5). The number of edges m of Kn is equal to the binomial
coefficient

(n
2

)
, that is:

m =
n(n − 1)

2

Figure 1.5. The complete graph K5

Note. More generally, we can write for any simple graph with n vertices
and m edges (indicate why):†

m ≤ n(n − 1)
2

1.3 Subgraphs

Take the graph G = (X, E). A subgraph of G is a graph of the form
H = (Y, F), where Y ⊆ X and F ⊆ E are such that any edge of F has its
endvertices in Y . Note that the fact that subgraph H = (Y, F) is a graph
implies the property that all edges of F have their endvertices in Y .

A subgraph H of G is said to be induced, and we can specify by a set of
vertices Y ⊆ X, if it is a graph of the form H = (Y, F), where F is the set
of the edges of E whose endvertices are in Y . This subgraph is denoted by
GY . In particular GX = G.

Basic Concepts 29

A subgraph H = (Y, F) of G is called a spanning subgraph if Y = X. It
can be specified that it is a spanning subgraph induced by F. It is the graph
(X, F) and is denoted by G(F).

Figure 1.6 gives examples of subgraphs.

1.3.1 Customary notation

• G − Y , where Y ⊂ X: subgraph of G induced by X \ Y (subgraph
obtained by removing from G the vertices of Y with their incident
edges).

• G − F , where F ⊆ E: spanning subgraph of G induced by E \ F
(spanning subgraph of G obtained by removing the edges of F).

• In particular, we will write: G − x in place of G − {x} for x ∈ X and
G − e in place of G − {e} for e ∈ E.

Expanding from the last case, we sometimes denote by G + e the graph
obtained by adding to G a new edge e (mentioning of course its endvertices
in G).

1.4 Paths and cycles

1.4.1 Paths

A walk of a graph G = (X, E) is a sequence of the form:(
x0, e1, x1, . . . , ek, xk

)
where k is an integer ≥ 0, xi are vertices of G, and ei are edges of G such that
for i = 0, . . . , k − 1, xi and xi+1 are the endvertices of ei+1. The vertices x0

and xk are the ends of the walk, and we say that they are linked by the walk.
The integer k is the length of the walk. A walk may have zero length. It is
then reduced to a sequence containing only one vertex. When G is a simple
graph, a walk may be simply defined by the sequence (x0, x1, . . . , xk) of its
vertices. A subwalk of a walk is a walk defined as a subsequence between two
vertices of the sequence defining the walk being considered.

A walk is called a trail if its edges ei, for i = 1, . . . , k are all distinct. We
say that the walk does not go twice through the same edge.

30 Graph Theory and Applications

f

G

x y

v

w

a

d

e

f

g

u

zi

c

b

h

v

x y

w

a

d

e

f

g

u

zi

c

b

h

d

e

f

g

u

zi

c

b

h

x y

v

w

a

d

e

f

g

u

zi

c

b

h

x y

v

w

a

d

e

g

u

zi

c

b

h

x y

v

w

a

d

e

f

g

u

zi

c

b

h

x y

v

w

a

(y, a, x, d, w, g, u, b, x, e, z)

closed trail:
(x, e, z, i, w, g, u, b, x)(x, e, z, i, w, d, x, b, u, c, x)

(y, a, x, d, w, g, u)

cycle:

walk:

trail: path:

(y, a, x, d, w, g, u, b, x, d, w, i, z)

Figure 1.6. Examples of subgraphs

Basic Concepts 31

A walk is called a path if its vertices xi, for i = 0, 1, . . . , k are pairwise
distinct. It should be noted that a path is necessarily a trail.

The following result is often useful for reasonings where walks are
concerned.

Lemma 1.1. In a graph, if two vertices are connected by a walk then they
are connected by a path.

Proof. Given a walk linking the vertices x and x′ of a graph G and in which
one vertex appears twice:

(
x = x0, e1, x1, . . . , xi, ei+1, . . . , xj , . . . , ek, xk = x′)

where xi = xj with 0 ≤ i < j ≤ k. The walk can be shortened by removing
the subsequence (subwalk) between xi and xj , which gives a new walk still
linking x and x′:

(
x = x0, e1, x1, . . . , xi = xj , . . . , ek, xk = x′)

By repeating this shortening process as long as there is a vertex that can be
found twice in the walk, that is as long as the walk is not a path, we end up
obtaining a path linking the vertices x and x′.

1.4.2 Cycles

A walk, a trail or a path (x0, e1, x1, . . . , ek, xk) is said to be closed if its
ends x0 and xk coincide.

A cycle is a closed path of length ≥ 1, that is a path of the form:
(
x0, e1, x1, . . . , ek, x0

)

where k ≥ 1, and vertices xi, for i = 0, . . . , k − 1, are all distinct. Integer
k is the length of the cycle. Unlike a walk, and a trail, a cycle cannot have
zero length. The minimum length it can be is 1. In this case, it is made up
of one vertex with a loop. When G is a simple graph, a cycle may be defined
by the sequence (x0, x1, . . . , x0) of its vertices. In this case the length is the
number of vertices of the cycle (except the last one). A cycle is called even
or odd, depending on whether its length is even or odd.

Figure 1.7 gives some examples of walks, trails, paths and cycles.

32 Graph Theory and Applications

f

G

x y

v

w

a

d

e

f

g

u

zi

c

b

h

v

x y

w

a

d

e

f

g

u

zi

c

b

h

d

e

f

g

u

zi

c

b

h

x y

v

w

a

d

e

f

g

u

zi

c

b

h

x y

v

w

a

d

e

g

u

zi

c

b

h

x y

v

w

a

d

e

f

g

u

zi

c

b

h

x y

v

w

a

(y, a, x, d, w, g, u, b, x, e, z)

closed trail:
(x, e, z, i, w, g, u, b, x)(x, e, z, i, w, d, x, b, u, c, x)

(y, a, x, d, w, g, u)

cycle:

walk:

trail: path:

(y, a, x, d, w, g, u, b, x, d, w, i, z)

Figure 1.7. Examples of walks, trails, paths, and cycles

Basic Concepts 33

Note. No distinction is made between cycles that only differ in the cyclic
sequences of vertices which define them. For example, in a simple graph, the
three following cycles are considered as one unique cycle:

(
x0, x1, x2, x3, x4, x0

)
(
x3, x4, x0, x1, x2, x3

)
(
x0, x4, x3, x2, x1, x0

)

In fact, in the graph, it is the same cycle described differently.

1.4.3 Paths and cycles as graphs

By extension of the preceding definitions, a path is also a graph G =
(X, E) where X = {x0, x1, . . . , xk} and E = {e1, . . . , ek} so that:

(
x0, e1, x1, . . . , ek, xk

)

is a path of G. It is in this sense that we will say that a path is a tree (see
next chapter).

In the same way, we can call a cycle a graph which can be described like
a cycle. Taking into account what has been said above and the fact that we
are dealing here with unlabeled graphs, such a cycle is unique as long as its
length is fixed. That is why we can say the cycle of length 5.

1.5 Degrees

The degree of a vertex x in a graph G is the number of edges in G incident
to x, that is edges with x as an endvertex, loops being counted twice. This
integer is denoted by d(x) or dG(x). For example, for the graph in Figure 1.2:
d(x) = 3, d(y) = 4, d(z) = 3.

A vertex is isolated if its degree equals zero. Dealing with degrees is an
opportunity to state the following proposition.

Proposition 1.1. In any graph G, we have:
∑
x∈X

dG(x) = 2m.

34 Graph Theory and Applications

Proof. When adding up the vertex degrees of G, each edge is counted twice,
once for each end (this is particularly true with loops since each loop counts
twice in the degree). The result is thus twice the number of edges of the
graph.

The method for this proof is a little like counting a herd of sheep: let
us count the legs and divide the result by four (although for sheep there
is always the question of five-legged sheep!). The following corollary, when
applied in a different context from graphs, may appear far from self-evident.

Corollary 1.1. In a graph the number of vertices with odd degrees is even.

Proof. The sum of the degrees being even, since it is equal to twice the
number of edges, can only include an even number of odd terms. Therefore,
there is an even number of odd degrees in the graph.

Here is an amusing application of this corollary. Let us imagine a group
of nine friends who either shake hands or give each other hugs as a greeting
in the morning. Each one of them shakes the hand of three of his friends and
hugs the other five. This is in fact impossible! Let us model the situation
of these friends by a graph which could be called “the hugging graph”: the
vertices are the friends and two vertices are linked by an edge if and only
if the related friends greet each other with a hug (this is a simple graph, in
particular because no friend is assumed to greet himself). Any vertex is of
degree 5 and there are nine vertices. This contradicts the preceding corollary.

The minimum degree of a graph G is the smallest degree of its vertices
and is denoted by δG or simply δ. It should be observed that δG is the degree
of at least one of the vertices of the graph. Likewise the maximum degree
of G is the largest degree of its vertices and is denoted by ΔG or simply Δ.
This is also the degree on at least one of the vertices of the graph.

Note. The following inequalities result from proposition 1.1:

nδG ≤ 2m ≤ nΔG

1.5.1 Regular graphs

A graph G is said to be regular when the degrees of its vertices are all
equal. The common degree, say k, may be specified by calling it a k-regular

Basic Concepts 35

graph. A 3-regular graph is said to be cubic. Cubic graphs have many
properties and have played a key role in the four-color theorem.

Note. We have in a k-regular graph G with n vertices and m edges:

nk = 2m

This useful formula can be directly deduced from proposition 1.1.

1.6 Connectedness

A G graph is said to be connected if any two vertices of this graph are
linked by a path in G. Otherwise, the graph is a disconnected graph.

The connected components of a graph G are the maximal connected
induced subgraphs of G. Maximal means here that the subgraph mentioned
is not itself a proper subgraph, that is with strictly fewer vertices, of a
connected subgraph of G. Obviously, a graph is connected if and only if it
has only one connected component.

We verify that the connected components of a graph are subgraphs
pairwise disjoint, that is having pairwise no common vertices and no common
edges. It defines the decomposition into connected components of the graph
(see Figure 1.8 for an example). This decomposition is unique.

(C3)(C1)

(C2)

Figure 1.8. A disconnected graph and its three connected components: C1,
C2, C3

It is also possible to define in algebraic language the connected
components of a graph G = (X, E) as the subgraphs induced by equivalence
classes over X, defined by the relation: the vertices x and y are linked by

36 Graph Theory and Applications

a path. This binary relation is in fact an equivalence relation on the set X
(reflexive, symmetric and transitive).

To finish connectedness, let us just mention the following proposition:
If a graph possesses a spanning subgraph which is connected, it is itself
connected. This proposition is one of many small propositions which are
often not proved or even stated. Nevertheless it is useful for a beginner in
graph theory to practice by proving them rigorously at least once. If we can†
do this easily, then all is well, at least so far into the theory. If we do not
succeed, we should go back over the preceding pages or maybe rethink our
personal logic.

1.7 Bipartite graphs

A graph G is bipartite if the set of its vertices can be divided into two
disjoint subsets such that each edge has an endvertex in each subset. We
denote a bipartite graph by G = (X, Y, E), where X and Y are the two
subsets of vertices (and so X ∪ Y is the set of all vertices) and E is the set
of edges.

Notes. 1) It is important to note that one of the sets X or Y can be empty.
As a result, the couple (X, Y) is not mathematically, strictly speaking, a
partition (the sets of a partition should not be empty). Nevertheless the
terms “bipartition” and “classes” are often used. It should be noted that
with this definition a graph reduced to one vertex, and no edge, is bipartite.

2) A bipartition which defines a graph as bipartite is generally not
unique.

3) A bipartite graph has no loops. Indeed a loop would contradict the
hypothesis that an edge has its endvertices in different sets. However, a
bipartite graph may have multiple edges.

A bipartite graph G = (X, Y, E) is complete if it is simple and the set
of its edges is E = {xy | x ∈ X, y ∈ Y }, that is any pair of a vertex of X
and of a vertex of Y is an edge of G. It is denoted by Kp,q, where p is the
cardinality of X and q the cardinality of Y (see Figure 1.9 for an example).

Bipartite graphs are important in graph theory and for certain
applications (for example matchings, dealt with in Chapter 7). They are
also interesting as they can be easily characterized by a property of cycles
as in the following classic result.

Basic Concepts 37

Figure 1.9. Two ways of representing the complete bipartite graph K3,3

1.7.1 Characterization

Theorem 1.1. A graph is bipartite if and only if it contains no odd cycle.

Proof (outline). The proof of the necessary condition is easy when reasoning †
by the absurd and, in relation to the classes of the bipartition, following in
order the vertices of an odd cycle. The proof of the sufficient condition is
less simple but can be done in a constructive way, that is by producing
the adequate bipartition. The principle is as follows: mark a first arbitrarily
chosen vertex 0, then mark its neighbors 1, then take each of the newly
marked vertices and mark their not-yet-marked neighbors 0, and so on until
all vertices reached are marked 0 or 1. The crucial point is that if during this
marking process two neighboring vertices happen to receive the same mark
(twice 0 or twice 1) then there is an odd cycle in the graph. This can be seen
by considering the paths defined by the succession of marked vertices which
come to these two vertices and the edge joining them. With the hypothesis
of the sufficient condition, this circumstance of two neighboring vertices
bearing the same mark will not occur. The marks given to the vertices will
define a bipartition in compliance with the definition of bipartite graphs.
Any vertex will be marked as soon as the graph is connected, otherwise we
should proceed independently with each connected component.

1.8 Algorithmic aspects

Graph theory is a field of great relevance to algorithmic studies. Many
applications involve algorithms of graphs and the graphs being considered
must be represented for the computer. Furthermore, the efficiency of the
algorithms must be evaluated. This question is related to complexity theory

38 Graph Theory and Applications

(see Appendix B), the bases of which are assumed to be known to the reader.
Let us consider a few problems:

• To find out if two graphs are isomorphic: this problem, though basic,
does not yet have any clear answer. It is in class NP, but not known
as NP-complete neither does it belong to class P.

• To find out if a graph is connected: this problem is solved linearly.
Classical searches of graphs such as the depth-first search described in
Chapter 5 address this question.

• To find out if a graph is planar: this problem is solved linearly. It was
recognized early on as a class P problem. However, its solution by a
linear algorithm was much more difficult to obtain (this was achieved
in the 1970s).

• To find out if a graph is bipartite: this problem is solved linearly. The
proof of the sufficient condition of theorem 1.1 outlined above describes
a process which leads to a linear algorithm for recognizing a bipartite
graph. This algorithm is based on a breadth-first search (described in
Chapter 6).

1.8.1 Representations of graphs inside a machine

There is no unique answer to the implementation of graphs in computers.
On the one hand it is possible to imagine many models a priori but, on the
other hand, the implementation of a graph depends on the way in which
it will be used. The choice of a model may have a direct influence on the
efficiency of the algorithm in terms of complexity. In order to classify the
various computer models of graphs, the three following principles can be
distinguished:

1. Give the possibility of finding out if two given vertices are neighbors,
that is joined by an edge in the graph. Furthermore, in the case of a
non-simple graph, give the number of edges joining the vertices under
consideration. The natural way to do this for a graph G = (X, E) is
the adjacency matrix defined as follows: setting X = {x1, . . . , xn}, this
is the square matrix of order n, M = (mij), where mij is the number
of edges having xi and xj for endvertices in G. Such implementation
of a graph takes memory space of the order n2, where n is the number
of vertices of the graph. Taking into account that processing the graph

Basic Concepts 39

takes at least the time needed to read its data, this means that any
algorithm over graphs modeled after an adjacency matrix will require
a time complexity of at least O(n2). Nevertheless, as we will see
later, for some algorithms the processing in itself has a complexity
of lesser order, for example O(n), therefore this model is not always
appropriate.

2. A second principle for implementing a graph is to give for each vertex
its “neighborhood”: the vertices which are its neighbors or its incident
edges or even both, that is its incident edges and their endvertices. This
last method will be particularly useful when there are multiple edges.
Implementing this can be done in various ways, the most classic, from
a programming point of view, is to give, for example, the neighbors
in a list called an adjacency list or list of neighbors. If we want to
modify the graph during its processing, it is best to implement these
lists under the classic form of linked lists. Data in lists of neighbors
makes it possible to search one after the other for the neighbors of
each vertex, which is a classic situation for algorithms of graphs (for
example in Chapter 5 for a depth-first search of a graph). Sometimes
it is possible to take a less structured processing approach and give
simply the set of the neighbors N(x) for each vertex x (for instance
in Chapter 7 to research matchings). The memory space necessary for
this type of implementation is of the order n + m, where n is the
number of vertices and m the number of edges of the graph. Such a
model is coherent with linear processing.

3. If in an algorithm the entry to the graph is done by the edges and not
directly by the vertices, as in the above models, a third implementation
principle consists of giving a list of edges with, for each of them,
its endvertices (see such an example in Chapter 2 with Kruskal’s
algorithm). Such a list may be linked, which makes it possible to
modify the graph being processed. The memory space necessary for
this type of model is minimal since it is of the order of the number of
edges m of the graph (note that the isolated vertices do not appear
in this implementation, since they are not endvertices of an edge, by
definition).

Figure 1.10 shows, for a simple graph, these models in some specific cases
of the three principles above. Adjacency matrices and list of edges, as arrays,
can be understood easily. Lists of neighbors are drawn as linked lists. The
principle of a linked list, a classic structure in algorithms and programming,

40 Graph Theory and Applications

(1)

3

3 4

1

2

1 3

4

5

(2)

(3)

(4)
1

4
1

0

adjacency matrix

1

lists of neighbours

edges

list of edges

421
0 1 1 0 0
1 0 1 1 0

1 0 0 0
0 1 0 0
0 0 0 0 0

53

2
3

5

1

2

3

4

5

2

2

2 2

endvertices

21
2
3
4

1
3 1
2 3

4

graph

Figure 1.10. Various representations of a simple graph inside a machine

is that each item of the list is associated with the address of the next item,
an address which is called a pointer. Each item of the list is represented by
a rectangle with two boxes: in the first one the neighbor is given and in the
other the pointer to the following item. The pointer is represented by a circle
with an arrow (pointing towards the next item). A circle without an arrow
indicates the end of a list or an empty list since there is no following item.
For example, we read that the neighbors of vertex 1 are: 2, 3, or that vertex
5 has no neighbor (empty list). Note that in this representation of lists of
neighbors, the arrows have nothing to do with the edges of the graph.

These principles are basic and in specific cases more precise information
may be necessary. In addition to the above descriptions, more specific models
may be defined for some applications.

Basic Concepts 41

1.8.2 Weighted graphs

In graph applications, in particular in optimization, weighted graphs are
often considered, that is graphs with values, integer or real, positive or not,
associated with the edges. Formally, we have a graph G = (X, Y) with a
mapping v : E → R.

When a weighted graph is a simple graph, which is often the case, its
computer model is generally a matrix, such as the adjacency matrix, but
with entries being the values of the edges under consideration. We choose
a special number, for example ∞, when there are no edges joining the
vertices associated with this entry of the matrix. Specifically, using the above
notation, it is the matrix M = (v(xixj)), where 1 ≤ i, j ≤ n, with mapping
v extended by stating: v(xixj) = ∞ when i �= j and xixj /∈ E, v(xixj) = 0
when i = j. This matrix is symmetric.

It is also possible to use the list of edges to represent weighted graphs,
by adding for each edge xixj the data of its value v(xixj). In practice, it is
possible to define an array indexed on the “edge” type of the graph. This
type is defined as an interval of integers by numbering the edges from 1 to
m, and by associating with each edge a record containing three fields: two
for the endvertices of the edge and one for its value.

The list of neighbors is a priori less adapted to represent weighted graphs.
Nevertheless, it is possible in the case of simple weighted graphs to add for
each neighbor the data of the value of the corresponding edge.

1.9 Exercises

1.1. Find two simple connected graphs with the same number of edges and
the same number of vertices which are not isomorphic.

1.2. Find all non-isomorphic simple graphs having respectively one, two,
three and four vertices (for four vertices there are 11 such graphs).

+1.3. Show that in a graph G, which is not assumed to be connected, for
each vertex x of odd degree there is a vertex y �= x of odd degree such
that x and y are linked by a path. Deduce from this that if G has
exactly two vertices of odd degree, then these are linked by a path.

+1.4. Show that any closed trail in a graph can be decomposed into
edge-disjoint cycles.

42 Graph Theory and Applications

1.5. G is a simple graph with n vertices (n > 1). Note that since it is a
simple graph, the degree of every vertex of G is strictly less than n.

a) Show that it is impossible to have a vertex of degree 0 and a vertex
of degree n − 1 at the same time in G.

b) Deduce from this that there are at least two vertices of the same
degree.

(A direct application of this result is to be able to say that in any set
of at least two people there are necessarily two of them who have the
same number of friends in that set.)

1.6. Show that a graph is connected if and only if there is no bipartition
of the set of its vertices such that no edge has an endvertex in each
subset of this bipartition.

*1.7. a) Show that if a simple graph G verifies the following inequality

m >
1
2
(n − 1)(n − 2)

then it is a connected graph.

b) Find, for all n ≥ 2, a simple disconnected graph G such that:

m =
1
2
(n − 1)(n − 2)

*1.8. In a simple graph G, a triangle is a triplet of distinct vertices x, y,
and z such that xy, yz, and xz are edges of G. G = (X, E) is a simple
graph, n the number of its vertices and m the number of its edges. Let
us suppose that G contains no triangles.

a) Show that for two distinct neighbor vertices x and y, the number nx

of vertices of X \{x, y} neighbors of x and the number ny of X \{x, y}
neighbors of y satisfy this inequality:

nx + ny ≤ n − 2

b) Deduce from this, by induction on n, the inequality:

m ≤ n2

4

c) Find an infinite family of simple graphs without triangles for which:

m =
n2

4

Basic Concepts 43

+1.9. Show that if a bipartite graph G = (X, Y, E) is k-regular then this
graph is balanced, that is |X| = |Y | (|X| represents the number of
elements of X and similarly for |Y |).

1.10. (About planar graphs)

a) Show that complete graph K4 is planar. Draw it with straight line
segments as edges.

b) Is complete graph K5 a planar graph? (The answer is no. How can
this be justified?)

1.11. Given M the adjacency matrix of a graph G whose set of vertices is
X = {x1, x2, . . . , xn}, show that the term (i, j) of Mk, the kth power
of matrix M , where k is an integer ≥ 1, is the number of walks which
link the vertices xi and xj in G.

1.12. (Going from one computer representation to another)

Write algorithms of passage between the different representations of
a graph: adjacency matrice, lists of neighbors, lists of edges. It is
particularly interesting to consider going from a representation by list
of edges to one by lists of neighbors. Try to minimize the reading of
the list of edges. Analyze the complexity of the algorithm built.

*1.13. Try to build an algorithm to determine the connected components of
a graph. Analyze its complexity.

1.14. Let G = (X, E) be a simple graph. The complement G of G is the
simple graph whose vertex set is X and whose edges are the pairs of
non-adjacent vertices of G. Show that G or G (or both) is connected.

This page intentionally left blank

Chapter 2

Trees

In this chapter we will define and study a set of graphs, known as trees,
which play a major role in graph theory as well as in its applications. This
study will be completed with the study of arborescences in Chapter 4.

2.1 Definitions and properties

A tree is a connected acyclic graph, where acyclic means without a cycle.
A tree is a simple graph (a loop or a double edge would define a cycle).

A path is in particular a tree (see Figure 2.1).

Except when explicitly noted otherwise, as with graphs in general, n
denotes the number of vertices of a tree and m the number of edges.

Figure 2.1. Three examples of trees

46 Graph Theory and Applications

2.1.1 First properties of trees

Proposition 2.1. A tree such that n ≥ 2 has at least two vertices of degree
one.

Proof. Consider in a given tree a maximal path, that is, a path not contained
in a strictly longer path. Let (x0, e1, x1, . . . , ek, xk) be this path. Since n ≥ 2,
we have necessarily k ≥ 1. Let us show that the ends of this path, x0

and xk, which are distinct, are vertices of degree one in the tree. Suppose
that vertex x0, for example, is not of degree one and thus has an incident
edge f �= e1, and let y be the endvertex of f other than x0. If vertex y
is one of the vertices of the path, given xj , then there is in the graph
a cycle, (xj = y, f, x0, e1, . . . , xj), which contradicts the hypothesis that
this graph is a tree. If vertex y is not one of the vertices of the path,
then this path is not maximal, because it is strictly included in the path
(y, f, x0, e1, x1, . . . , ek, xk). In both cases, there is a contradiction.

Proposition 2.2. If G is a tree then m = n − 1.

Proof. Apply inductive reasoning to n. For n = 1, we have m = 0 since an
edge could only be a loop, i.e. a cycle, which is impossible for a tree. Assume
n > 1. According to proposition 2.1 above, there is in G a vertex of degree
one, given x. The subgraph G − x is connected since suppressing a vertex
of degree one in a connected graph does not suppress the connectedness
property, as is easily verified. In addition, G−x is acyclic because a cycle in
G − x would also be a cycle of G, while G, as a tree, is itself acyclic. Thus
G′ = G − x is a tree and it is possible to apply the induction hypothesis,
which gives: mG′ = nG′ − 1. As mG′ = mG − 1 and nG′ = nG − 1, we can
deduce the desired equality: mG = nG − 1.

Proposition 2.3. In a tree any two vertices are connected by a unique path.

Proof. The existence of a path linking two vertices of the graph is direct
according to the hypothesis of connectedness. To show that it is unique,
suppose the existence of two distinct paths linking two vertices x and y. If
x = y then one of these two closed paths is of length ≥ 1 and so is a cycle,
which contradicts the hypothesis of the tree being acyclic. If x �= y, the
concatenation of the two paths linking x and y is a closed walk. This closed
walk is not necessarily a cycle. This is due to the fact that the two paths

Trees 47

may share one or more edges (not all of them, since those paths are distinct
according to the hypothesis). A small technical work, left to the reader,
shows that it is always possible to extract a cycle from the concatenation of
the two paths, again a contradiction.

2.1.2 Forests

A forest is an acyclic graph. The connected components of a forest are
therefore trees, which explains the use (very natural!) of the terminology.
Forests generalize trees.

Proposition 2.4. In a forest G, we have m ≤ n − 1, with equality if and
only if G is a tree.

Proof. Given C1, C2, . . . , Cp the connected components of G, apply
proposition 2.2 to each of these components, denoting respectively ni and
mi the number of vertices and the number of edges of Ci. By adding all
these equalities, for i = 1, 2, . . . , p, we then have:

p∑
i=1

mi =
p∑

i=1

(
ni − 1

)
=

p∑
i=1

ni −
p∑

i=1

1

Thus:

m = n − p

and since p ≥ 1 (p is the number of connected components of G):

m ≤ n − 1

Equality occurs if and only if p = 1, that is if and only if G is connected.
Since G is by hypothesis acyclic, this means if and only if G is a tree.

2.1.3 Bridges

A bridge of a graph G is an edge e such that G−e has one more connected
component than G. This is a way of saying that in G− e, the endvertices x
and y of e are no longer linked by a path. We could also say that the edge
e separates the vertices x and y. When G is connected, a bridge is an edge
e so that G − e is disconnected.

48 Graph Theory and Applications

Lemma 2.1. An edge of a graph G is a bridge if and only if it does not belong
to a cycle of G.

Proof. It is sufficient to consider the case where the graph G is connected.
e is an edge of G, and x and y its endvertices. If e is not a bridge, there is
in G − e a path linking x and y. This path constitutes with the edge e a
cycle of G. This cycle contains the edge e, which demonstrates the sufficient
condition. Assume now that the edge e belongs to a cycle:

C =
(
x0, e1, x1, e2, . . . , xk−1, ek, x0

)

with, for example, e = e1 (which can always be assumed). Let us show that
G− e is connected, which means that the edge e is not a bridge of G. u and
v are any two vertices of G− e. These vertices are linked in G, a connected
graph by hypothesis, by a path:

D =
(
u = y0, f1, y1, . . . , fk, yk = v

)

If this path does not pass through the edge e, it is also a path of G − e.
Otherwise, e = fi for an i ∈ {1, . . . , k} with, for example, for the endvertices:
x0 = yi−1 and x1 = yi. Substitute in path D edge fi, which has yi−1 and yi

as endvertices, the following path extracted from path C (it corresponds to
the path C deprived of the edge e1 and read in the reverse direction):

(
yi−1 = x0, ek, xk−1, . . . , e2, x1 = yi

)

The walk D′ thus obtained links the vertices u and v in G − e. Thus
(lemma 1.1), there is a path which connects the vertices u and v in G − e,
which ends the proof of the necessary condition and of the lemma.

Bridges are involved in tree properties through the following result.

Proposition 2.5. In a tree, any edge is a bridge.

Proof. This is a direct consequence of the definition of trees and of lemma 2.1
above.

2.1.4 Tree characterizations

Theorem 2.1. The following conditions for a graph G are equivalent:

Trees 49

(1) G is a tree.

(2) G is connected and m = n − 1.

(3) G is acyclic and m = n − 1.

(4) G is connected and every edge is a bridge.

(5) In G any two given vertices are linked by a unique path.

Proof. The implications (1)⇒(2), (1)⇒(3), (1)⇒(4), (1)⇒(5), (3)⇒(1)
result directly from the above propositions. Implication (4)⇒(1) is
straightforward with lemma 2.1. Implication (5)⇒(1) is easy: if there was a
cycle in G, one of its vertices would be joined to itself on the one hand by
the cycle, considered as a (closed) path, and on the other hand by the path
with of zero length that this vertex defines. This contradicts the hypothesis
of the uniqueness of a path linking any two vertices. To end the proof,
that is to verify that these implications are sufficient, we must demonstrate
implication (2)⇒(1). Consider a graph G verifying (2). Remove, as long it
is possible, an edge which is not a bridge (first in graph G, and then in the
current graph obtained). The spanning subgraph G′ obtained is connected,
like G, because each of the edges removed was not a bridge. It is also an
acyclic graph since it now has nothing but bridges and thus cannot have any
cycle (lemma 2.1). This graph G′ is therefore a tree, spanning a subgraph
of G. Let m′ be the number of edges of G′. We have m′ = n− 1 = m. Thus,
G′ having the same number of edges as G, G′ = G and G is therefore a
tree.

Note. The method of proving equivalences between some conditions, which
is used here to prove this theorem, is classic. It consists of demonstrating
a set of implications which implies all the others. This corresponds to the
concept of “transitive closure” of a binary relation, closure which must here
be “complete” in the sense that it contains all pairs. This concept can be
expressed in terms of directed graphs (see later definition and exercise 4.3
in Chapter 4).

2.2 Spanning trees

A spanning tree of a graph G is a spanning subgraph of G which is a tree
(see example in Figure 2.2).

50 Graph Theory and Applications

Figure 2.2. A spanning tree of a graph (in bold)

Proposition 2.6. A connected graph G has (at least) one spanning tree.

Proof. Remove from G, if possible, an edge which is not a bridge. On the
one hand, the spanning subgraph obtained is always connected since only
non-bridge edges were removed from the current graph. On the other hand,
this subgraph has no cycle since it no longer has any bridge. Therefore, it is
a tree. By construction, it is also a spanning subgraph of G.

Corollary 2.1. If G is connected then m ≥ n − 1, with m = n − 1 if and
only if G is a tree.

Proof. Since G is connected, it contains, as a spanning subgraph, a tree T .
We have mG ≥ mT = nT − 1 = nG − 1. Since T is a spanning subgraph of
G, the equality is possible only if G = T , that is if G is itself a tree.

The two following results will be useful in particular for the application
dealt with later on.

Proposition 2.7. A spanning subgraph of a connected graph G is a spanning
tree of G if and only if it is connected and edge-minimal.

Proof. The necessary condition results from proposition 2.5. In order to
prove the sufficient condition, let T be a spanning subgraph of G which
is connected and minimal. Then for any edge e of T , T − e is no longer
connected, that is, e is a bridge of T . Condition (4) of theorem 2.1, applied
to T , allows us to conclude.

Proposition 2.8. A spanning subgraph of a connected graph G is a spanning
tree of G if and only if it is acyclic and edge-maximal.

Proof. T is a spanning tree of G. If such an edge exists, let e be one which
does not belong to T . The endvertices of e are linked in T by a path (since

Trees 51

T is connected). This path with edge e defines a cycle of T + e. Thus, T
is really acyclic and maximal, which proves the necessary condition. Now,
given T a spanning subgraph of G which is acyclic and maximal, to show
that T is a spanning tree, and to justify the sufficient condition, we only
need to show that T is connected. Let x and y be any two vertices of T and
let us show that they are linked by a path of T . Since G is connected, there
is a path D of G linking x and y. If this path has all of its edges in T , we
are done. If not, let e be an edge of D which is not in T . By hypothesis on
T , T + e has a cycle, C. This cycle contains the edge e, and according to
lemma 2.1 this edge is not a bridge of T + e, and therefore there is in T a
path linking the endvertices u and v of e. By substituting in D edge e by
this path, we define a walk linking x and y which has one less edge which is
not in T . By repeating this substitution process, as long as there is an edge
which is not in T in the walk under consideration linking x and y, we obtain
in the end a walk, and so a path (lemma 1.1), of T linking x and y, which
ends the proof.

Consider two more useful results (trees have many useful properties!).

Proposition 2.9. Given a spanning tree T of G and an edge e of G which
does not belong to T , the spanning subgraph T + e contains only one cycle.

Proof. First of all, T + e contains a cycle, according to proposition 2.8. If
the edge e belonged to two distinct cycles, we could deduce in T two distinct
paths linking its endvertices x and y, considering these cycles deprived of
the edge e. This would contradict proposition 2.3.

Lemma 2.2 (Exchange lemma). Given a spanning tree T of G, an edge e
of G which does not belong to T and an edge f of the cycle of T + e, then
T + e − f is a spanning tree of G.

Proof. In applying condition (2) of theorem 2.1, on the one hand T + e− f
is connected because the edge f is not a bridge of T + e since it belongs
to a cycle, while on the other hand we have mT+e−f = mT = nT − 1 =
nT+e−f − 1.

This last result gives an idea of the different spanning trees which exist
in a (connected) graph, obtained by exchanging edges (Figure 2.3). It allows
the generation of other spanning trees from one of them.

52 Graph Theory and Applications

f
e e

f

Figure 2.3. Two spanning trees of a graph (in bold); the second one is
obtained from the first one by exchanging the two edges e and f

The following lemma, which is stronger, will be very helpful later on.
The notation T ′ \ T designates here the set of the edges of T ′ which are not
in T . We can likewise define T \ T ′.

Lemma 2.3 (Strong exchange lemma). Given two spanning trees T and T ′

of G, and an edge e ∈ T ′ \ T , there exists an edge f ∈ T \ T ′ such that
T + e − f and T ′ + f − e are spanning trees of G.

Proof. By choosing edge f in the cycle of T + e and not belonging to T ′,
which is always possible since T ′ does not contain any cycles, we will have
truly that T +e−f is a spanning tree (according to lemma 2.2). Nevertheless,
this will not necessarily mean that T ′ +f − e is also a spanning tree. Edge f
must be well chosen. Graph T ′ − e has two connected components, C1 and
C2. There is necessarily in the cycle of T + e an edge, other than e, whose
endvertices are one in C1 and the other in C2 (why?). Let this edge be f .
This edge is thus not in T ′. Edge e is necessarily an edge of the cycle of
T ′ + f (because e and f are the only edges of T ′ + f joining C1 and C2),
and so T ′ + f − e is a spanning tree by application of lemma 2.2. Thus we
have found an edge f ∈ T \T ′ so that T + e− f and T ′ + f − e are spanning
trees of G.

Figure 2.4 illustrates the proof. Observe in particular that of the three
edges of the cycle of T + e which are not in T ′, there is only one which is
suitable (the one denoted by f in the figure).

2.2.1 An interesting illustration of trees

If we think of the theory of vector spaces, it is impossible to fail to observe
the analogy of the properties of spanning trees with the bases of vector
spaces. In particular, propositions 2.7 and 2.8, and especially lemma 2.2,

Trees 53

(a) (b)

e

ff

e(T) (T ′)

Figure 2.4. In bold: (a) the spanning tree T , (b) the spanning tree T ′

bring to mind the classic exchange property between the bases of vector
spaces. This proximity is not fortuitous and can be clarified in the following
way. Let G = (X, E) be a connected graph. It is possible to define a vector
space on the set E in which a set of edges F ⊆ E is linearly independent
if, by definition, the induced spanning subgraph G(F) is acyclic, and F is
a spanning subset if G(F) is connected. A basis of this vector space is thus
a subset F which is linearly independent and which spans E, that is, such
that the spanning subgraph G(F) is both acyclic and connected, that is a
spanning tree of G. The sets of edges of the spanning trees of G are therefore
the bases of this vector space. With propositions 2.7 and 2.8 we recognize the
classic characterization of the basis of a vector space: a minimal spanning
subset or a maximal linearly independent subset. We find directly the finite
dimension of this vector space: it is the number of edges common to all
spanning trees, that is n−1, where n is the number of vertices of the graph.

This algebraic aspect of the graphs is the starting point of a very
important and interesting theory, the theory of matroids.

2.2.2 Spanning trees in a weighted graph

Let G = (X, E) be a graph weighted by a mapping v : E → R
∗+ (real

positive numbers). Let us call TG the set of the spanning trees of G. Two
spanning trees T and T ′ are called neighbors in TG if there are two edges e
and f such that T ′ = T +e−f and T = T ′ +f −e. For each T ∈ TG, denote
v(T) the sum of the values by v of the edges of T : v(T) =

∑
e∈A v(e), where

A is the set of edges of T . The elements of TG are ordered by their values
v(T). We have in this ordered set the interesting following property.

54 Graph Theory and Applications

Lemma 2.4. In TG, a local minimum is an absolute minimum.

Proof. First let us explain the meaning of local minimum and absolute
minimum of the ordered set TG. An element T ∈ TG is an absolute minimum
if for any T ′ ∈ TG we have v(T ′) ≥ v(T). It is a local minimum if for any
T ′ ∈ TG neighbor of T, we have v(T ′) ≥ v(T). So, let T be a local minimum
of TG and let us show that T is also an absolute minimum. Reason by
contradiction, supposing that T is not an absolute minimum. Let Tm be a
spanning tree which is an absolute minimum, chosen so that the number of
edges of Tm which are not in T is as small as possible. This number of edges
is > 0 since Tm �= T because of the hypothesis on T . We have an edge e
of Tm which is not in T and with v(e) minimum. Let f be the edge of T
given by application of lemma 2.3 to T , Tm and e, that is an edge f so that
T + e− f and Tm + f − e are spanning trees of G. We have v(e) = v(f). On
the one hand v(T) ≤ v(T + e − f) because T is a local minimum, so, since
v(T + e− f) = v(T) + v(e)− v(f) we have v(e) ≥ v(f). On the other hand,
v(Tm) ≤ v(Tm + f − e) = v(Tm) + v(f) − v(e) because Tm is an absolute
minimum, thus v(f) ≥ v(e). Consider spanning tree T ′

m = Tm + f − e: we
have v(T ′

m) = v(Tm), according to the preceding equality, and thus T ′
m is

also an absolute minimum in TG. Nevertheless, T ′
m has one more edge in

common with T than Tm (edge f). This contradicts the hypothesis that Tm

has a minimum of edges not in T .

2.3 Application: minimum spanning tree problem

2.3.1 The problem

This problem is, in a simplified version, a communication network
problem. For example, given the costs of the links between pairs of centers,
we want to find a network at the lowest possible total cost. In terms of
graphs, the general problem can be formulated in the following way:

Input: a simple connected graph G = (X, E) weighted by application v
with values in the strictly positive real numbers, which can represent costs,
distances, time spans, etc.

Output: a spanning subgraph of G, T = (X, A), where A ⊆ E, which is
connected and such that v(T) =

∑
e∈A v(e) is minimum.

Trees 55

It is easy to see at first that a solution T is necessarily a spanning tree
of G. Otherwise, when applying proposition 2.7, there would be an edge
e of T such that T − e would always be connected. Thus, we would have
v(T − e) = v(T) − v(e) < v(T) (because v(e) > 0), which would contradict
the fact that v(T) was minimum. What we are then looking for is a minimum
spanning tree of G. It is an absolute minimum in the ordered set TG defined
above (section 2.2.2).

2.3.2 Kruskal’s algorithm

An exhaustive research of a solution, that is research which examines
all possible cases, is generally intractable. For example, for G a graph
with 20 vertices, and at a rate of examining one billion spanning trees per
second (which is quite a respectable speed), it would take more than 83,125
centuries to examine all of them! The solution might be found just a little
too late. . . This is typically an optimization problem. We have to find in
a set of a very large number of elements, an element which is optimum,
minimum or maximum, according to certain values. This is not a theoretical
problem since we know a priori that (at least one) such element exists.
It is essentially a practical problem because it is impossible on a human
time scale, even with powerful computers, to find such an element by trying
to look at all of them. We have to imagine a different method. For some
problems, it has been possible to find a method which gives a result within
a reasonable time frame, at least within certain limits. This is the case for
the problem of the minimum spanning tree with the following algorithm,
in which F is the set of edges which have been considered and A the set of
edges selected. This classic algorithm is called greedy because it takes at each
stage what is most advantageous, here an edge with the lowest value possible.
This operating method does not lead in general to an optimal solution for
optimization problems. Indeed, it often happens that a choice appearing
advantageous at one moment has to be paid for later by a forced choice
which is less advantageous and which takes away more than the advantage
gained earlier. The problem of the minimum spanning tree is a particular
case for which the greedy algorithm always works. We will see why later
on. For the construction of a spanning tree, this algorithm relies on the
property stated in proposition 2.8 by adding one by one, as long as possible,
an edge which does not create a cycle with those already selected. In fact,
this construction can be stopped as soon as the required number of edges for

56 Graph Theory and Applications

a tree has been reached, that is the number of vertices of the graph minus
one (remember that the graph is supposed to be connected).

procedure Kruskal(G,v);
begin
F:= E; A:= ∅;
while |A| < n-1 loop
find e ∈ F such that v(e) is minimum;
F:= F - {e};
if G(A ∪ {e}) acyclic then
A:= A ∪ {e};

end if;
end loop;
-- G(A) is a minimum spanning tree

end Kruskal;

Figure 2.5 gives an example of an application of this algorithm.

Bor-

222

583 932
804

490

857

451

623

bourg
Stras-

deaux

Brest

Paris

Lille

Bor-

476 Perpi-
gnan

Nice

596
222

583

490

476451

bourg
Stras-

deaux

Brest

Paris

Lille

Perpi-
gnan

Nice

725 522

596

(a) (b)

Figure 2.5. (a)A weighted graph (representing French cities and their
distances in kilometers); (b)a minimum spanning tree (communication
network between these cities with the minimum total length) obtained by
Kruskal’s algorithm

Trees 57

2.3.3 Justification

1) For any data, an algorithm must stop after a finite number of
operations, that is within a finite time. The justification of an algorithm
must, in particular, prove this. This is the proof of finiteness. This proof
is easy here because the execution stops, in the worst case, when all edges
of the graph have been considered. This case may happen when graph G is
itself a tree. Note that here the hypothesis of the connectedness of the graph
is essential: indeed we reach the exit condition of the while loop formula,
|A| = n− 1, only because there really is a spanning tree in G (otherwise we
would end with F = ∅ and |A| < n− 1, making it impossible to find e ∈ F).

2) Let us show that at the end of the execution of the algorithm, spanning
subgraph T = G(A), induced by set A of edges, is a minimum spanning tree.
First, it is a spanning tree of G by construction, since it is acyclic and verifies
the relation m = n − 1 which comes from the exit condition of the while
loop, |A| = n − 1. We still have to show that it is minimum. According to
lemma 2.4, it is sufficient to show that T is a local minimum of the set TG

defined above (see section 2.2.2). Suppose that there is in TG a neighbor
T ′ = T + e − f of T , where e /∈ T and f ∈ T , such that v(T ′) < v(T).
Then v(e) < v(f) and when we chose edge f in the algorithm, we should
have chosen e which is of lower value and which also verified the condition
G(A ∪ {e}) acyclic (since T + e − f is acyclic). This neighbor T ′ of T thus
cannot exist.

We can imagine the problem of the minimum spanning tree in G as a
sort of “in the field” research. The points of this field are the elements of
TG, two of them being neighbors in that field if the corresponding trees are
neighbors in the sense defined above. Each of these points has a “height”
proportional to the value of the tree which it represents, that is v(T) for the
tree T . A solution to this problem corresponds to a point of lowest height,
that is a “hole” of largest depth possible in this field. Lemma 2.4 shows that
this field has only holes of one depth, a hole also being without landings
on its slopes. A solution is then easy to find: from any point in this field,
by walking along from neighbor to neighbor toward a lower point, we end
up necessarily at a solution point. That is indeed why the greedy algorithm
works. In addition, we can also specify that this field has in fact only one
hole (see exercise 2.19).

Other optimization problems have a more distressed “field” and their
solution is therefore much less simple.

58 Graph Theory and Applications

2.3.4 Implementation

In order to make this expression explicit in algorithm pseudocode and
to move toward a computer program, several points must be specified and
developed.

First, we must specify how the graph dealt with is supposed to be
represented: the entry in the graph being done through the edges, the correct
representation of G here is clearly by a list of weighted edges (see Chapter 1).
Remember that in such a computer implementation of a weighted graph, we
have the list of edges and for each edge its endvertices and its value.

Concerning the algorithm itself, two points need to be explained (the
rest of the algorithm is direct to code):

– find e ∈ F such that v(e) is minimum

This operation can be done easily by sorting the edges of G in increasing
order of their values. It is then sufficient to consider the edges successively in
that order. It is the easy way out, but it is efficient considering the existence
of good classic sorting algorithms. On the other hand, it has the practical
inconvenience of spending time sorting out edges which may not even be
considered later, since it is possible to have obtained a tree before having
considered all edges of the graph.

– the test G(A ∪ {e}) acyclic

This point requires more work. What we are dealing with is the
management of the connected components of graph G(A) as edges are added
progressively in A. Indeed we see that G(A ∪ {e}) is acyclic if and only†
if the endvertices of e belong to different connected components of G(A).
Algorithmically, an efficient way of proceeding is to regroup by lists the
vertices of the connected components of G(A). At the beginning, when G(A)
is empty of edges, each list contains one vertex. During execution, when an
edge is added in A, two components, that is two lists, must be merged. In
order to merge lists, it is practical to implement them as linked lists, these
fusions then being done by simple assignments of pointers. It is necessary
to know for each vertex the list in which this vertex lies in order to apply
the preceding criteria. This last point makes it necessary, when merging two
lists, to go through one of them, the one going into the other, to update the
list number of its vertices (the lists being assumed to be numbered). Since

Trees 59

we must go through one of the two lists, it is advantageous, for complexity,
to choose to go through the shorter of the two lists.

2.3.5 Complexity

It is necessary to evaluate the main time-consuming actions, which are
the preliminary sorting of edges and the management of the connected
components of G(A). With regard to sorting, a classic quick sort of m
edges gives a complexity O(m log m). For the management of the connected
components of G(A), it is slightly more complicated. Taking into account
all we have developed before, as long as we know the connected components
in which each vertex is located, the test G(A ∪ {e}) acyclic can be done
in constant time. All it takes is to verify that the endvertices of e belong
to two distinct connected components. However, the most time-consuming
operation in the management of connected components is the fusion of two
components when an edge e is added in A. With an implementation by
linked lists, as described earlier, and with the choice for each fusion to
include the shortest list in the largest one, as suggested above, we can obtain
a fairly good complexity, O(m log n). Some more sophisticated algorithmic
techniques give better results with a complexity O(mα(n)), where α is such
a slowly increasing function that its value remains practically ≤ 4 (for those
with the knowledge, let us add that α is the inverse of the Ackermann
function). Except for the part dealing with the sorting of edges, we thus
have a complexity which is practically linear.

We can now remember that if the edges of the given graph are already
sorted, Kruskal’s algorithm is practically linear.

2.4 Connectivity

The graphs under consideration in this section are assumed to be simple.

In the preceding application to a communication network, we left aside
a quite important practical aspect: the vulnerability of the network, that is
its capacity to withstand the failure of some of its links or centers.

In terms of graphs, we consider, for example for a connected graph, the
largest number of edges it is possible to remove without the graph losing its
property of connectedness. With the idea of bridges we have seen this type
of property earlier in this chapter. The equivalent exists for vertices.

60 Graph Theory and Applications

A cut vertex of a graph G is a vertex x such that G− x has at least one
more connected component than G. This idea leads to a classic and useful
decomposition of graphs.

2.4.1 Block decomposition

A block of a graph G is a maximal induced connected subgraph without
a cut vertex (of itself as a graph).

We verify the following properties of blocks (do these verifications as†
exercises):

– the blocks define a partition of the set of the edges of G;

– two blocks may share at the most only one vertex of G, that vertex is
then a cut vertex of G. Conversely, a cut vertex of G is a vertex shared
by at least two blocks of G.

The set of blocks of G constitutes the block decomposition of G. It is
unique and it is a finer decomposition of the graph than the one defined
by the connected components. Many properties or graph processings can be
brought back to these blocks. There are some good algorithms (with linear
complexity) which determine the blocks of a graph.

Figure 2.6 gives an example of block decomposition of a graph.

Figure 2.6. A graph and its blocks (the cutvertices of the graph are in bold)

Trees 61

2.4.2 k-connectivity

To understand the motivation of what will follow, consider the three
connected graphs in Figure 2.7. The first one can be disconnected by the
deletion of a vertex, x, which is a cut vertex of the graph.

G2 G3G1

xx

y

Figure 2.7. Three examples of graphs and their connectivity: κ(G1) = 1,
κ(G2) = 2, κ(G3) = 3, κ′(G1) = 1, κ′(G2) = 2, κ′(G3) = 3

This is not the case with the second graph, which nevertheless can
be disconnected by the deletion of two vertices, x and y. As to the third
graph, it has no set of vertices by which deletion would disconnect it. In
fact, this graph is complete and the only thing that can be done to it by
deleting some vertices is to reduce it to a single vertex (remember that
a graph has by definition at least one vertex). Looking at edges instead
of vertices leads to similar observations concerning the smallest number of
edges of the graph by which deletion would disconnect the graph. However,
if the graph has at least two vertices, it is always possible to disconnect
it by deleting some edges (we do not have the equivalent of the preceding
third case for vertices). If we see these graphs as models of communication
networks, we understand the importance of these considerations concerning
the vulnerability to breakdowns. We introduce a parameter of a graph which
measures these properties. The connectivity κ(G) of a graph G is defined as
the smallest number of vertices by which deletion in G yields a disconnected
graph or a graph reduced to one vertex.

Let us formalize this definition. If there is in graph G a set of vertices
A, which may be empty, such that G − A is disconnected, then:

κ(G) = min
(
|A| | G − A disconnected

)
otherwise:

κ(G) = n − 1

(where n is the number of vertices of G).

62 Graph Theory and Applications

The case κ(G) = n − 1 is characterized by the fact that in graph G any
two vertices are joined by an edge. In other words G is a complete graph
(remember that G is simple). If that is the case, there is no set A of vertices
such that G − A is disconnected. If it is not the case, there are in G two
vertices not joined by an edge, x and y, and A = X \ {x, y} then has the
property that G − A is disconnected. Since |A| ≤ n − 2, we can deduce the
inequality κ(G) ≤ n − 2.

Thus k(G) is bounded by:

0 ≤ κ(G) ≤ n − 1

The case κ(G) = 0 corresponds to G disconnected or n = 1.

The other following inequality, to be verified, is based on the fact that†
if A is the set of neighbors of a vertex, then G−A is either disconnected or
reduced to a single vertex. Considering a vertex of minimum degree δG, we
deduce:

κ(G) ≤ δG

2.4.3 k-connected graphs

The following idea is easier to comprehend practically, unlike the
connectivity of G which is not always easy to determine.

A graph G is k-connected if κ(G) ≥ k.

We can characterize the non-trivial cases (for k > 0): 1-connected graphs
are connected graphs such that n ≥ 2, and 2-connected graphs are connected
graphs with no cut vertex and such that n ≥ 3.

Notes. 1) If k′ ≥ k then k′-connected implies k-connected.

2) In a graph, the blocks which have at least three vertices may be seen as
2-connected components of this graph (components in the sense of induced
subgraph maximal according to the property considered).

Going back over and comparing the two ideas which we have just defined,
the connectivity of G and the property of k-connectivity, we can state
(integer k is assumed to be ≥ 0):

Trees 63

1) A graph G verifies κ(G) = k if and only if n ≥ k + 1, G − A is
connected for any A ⊆ X such that |A| < k and there exists A ⊆ X such
that |A| = k and G − A is disconnected or reduced to one vertex.

2) A graph G is k-connected if and only if n ≥ k + 1 and G − A is
connected for any A ⊆ X such that |A| < k.

2.4.4 Menger’s theorem

Theorem 2.2 (Menger, vertex statement). A simple graph G such that n ≥
k+1 is k-connected if and only if any two distinct vertices of G are connected
by k internally vertex-disjoint paths (that is pairwise with no other common
vertices than their ends).

This is one of the major theorems in graph theory. Its proof is easy in
one direction: the sufficient condition, since the existence of k vertex-disjoint
paths between any two given vertices prevents the existence of fewer than k
vertices by which removal would disconnect the graph. Indeed, the removal
of less than k vertices in the graph cannot delete k paths linking two given
vertices x and y, since these paths have no common vertices other than
their ends x and y (the vertices removed are distinct from x and y). The
necessary condition is less evident; a proof of this is given in Chapter 8 as
an application of the theory of flows. In the meantime, as an exercise, it is
interesting to try to prove it for the case k = 2. †

2.4.5 Edge connectivity

We are going to define for edges, concepts equivalent to the one
mentioned above. The edge connectivity κ′(G) of a graph G, with more than
one vertex, is the smallest number of edges by which removal disconnects
the graph. In particular, it is 0 if the graph is disconnected. The edge
connectivity is considered equal to 0 if the graph has only one vertex.

We can formalize the definition in this way. If the graph G has at least
two vertices, it has a set of edges B, possibly empty, such that G − B is
disconnected, and we put in that case:

κ′(G) = min
(
|B| | G − B disconnected

)

64 Graph Theory and Applications

The set of edges B is what we call an (edge) cut of G. If G has only one
vertex, we put:

κ′(G) = 0

There is an inequality relation between connectivity and edge
connectivity, given in the following proposition.

Proposition 2.10. For any simple graph G, we have:

κ(G) ≤ κ′(G) ≤ δG

The second inequality is easy, the first can be shown directly but also
results easily from Menger’s theorem (see later). These inequalities may be
strict (find an example).†

2.4.6 k-edge-connected graphs

The following concept corresponds to the k-connected concept defined
above.

A graph G is k-edge-connected if κ′(G) ≥ k.

We have an “edge” version of Menger’s theorem, which we equally accept:

Theorem 2.3 (Menger, edge statement). A simple graph G is
k-edge-connected if and only if any two distinct vertices are connected by
k edge-disjoint paths (that is pairwise without common edges).

Note. The first inequality of proposition 2.10, κ(G) ≤ κ′(G), is easily
deduced from both statements of Menger’s theorem. Put k = κ(G) and
consider any two given vertices of G, x and y. There are k vertex-disjoint
paths linking x and y according to Menger’s vertex statement. Therefore
there is at least the same number of edge-disjoint paths linking x and y, since
the vertex-disjoint property for paths implies the edge-disjoint property. This
leads to G k-edge-connected and the inequality κ′(G) ≥ k = κ(G), from
Menger’s edge statement. This inequality κ(G) ≤ κ′(G) is in fact natural if
we observe that the removal of a vertex in a graph causes the removal of all
incident edges and thus generally has a greater impact on the connectivity
of the graph than the removal of a single edge.

Trees 65

2.4.7 Application to networks

A direct application of what has been seen above concerns the
vulnerability of a communication network, that is either from the failure
of the nodes (vertices) or of the links (edges). For example, the problem of
minimum costs dealt with earlier can be further developed with an additional
constraint of minimum resistance to failure of centers or links. Consider the
following general problem:

Input: a simple connected graph G and an integer k ≥ 1.

Output: a subgraph H of G k-connected and for which the sum of the
values of the edges is minimum.

With k = 1, we find again, as a particular case, the problem of the
minimum spanning tree, described above. For k > 1, the problem is known
to be “difficult”, to be more specific, to be NP-complete in the sense of
the theory of complexity (when this problem is put as a decision problem,
refer to Appendix B). Remember that this means that there are no known
polynomial algorithmic solutions to this, and that this problem is equal in
algorithmic difficulty to many unsolved problems, some of which we will
encounter later.

A solution can be given in some particular cases as in the following: G
is a complete graph with a value equal to 1 on each edge (see exercise 2.18).

2.4.8 Hypercube

The k-cube, where k is an integer ≥ 1, is a simple graph defined in the
following manner: the vertices are k-tuples of 0 and 1, the edges are the pairs
of k-tuples which differ by one coordinate.

Such a structure is used in parallel architecture for processor
interconnection networks, in particular because of some of the following
properties (see more specifically exercise 2.20): †

– The number of vertices of the k-cube is 2k, the number of edges is
k2k−1, each vertex is of degree k (the k-cube is k-regular).

– The k-cube is k-connected, more specifically its connectivity number is
equal to k.

– Any two given vertices of the k-cube are connected by a path of length
≤ k, and this upper bound is tight.

66 Graph Theory and Applications

100

00 10

01 11
111

101

000

010 110

001

011
10

k = 1 k = 2 k = 3

Figure 2.8. The k-cube for k = 1, 2, 3

The last property concerns what is called the diameter of a graph: the
maximum of the distances between two vertices (the distance between two
vertices being the shortest length, length meaning the number of edges, of
the paths linking them). This parameter is important for a network since it
corresponds to the maximum of the time required to communicate between
two elements of this network, for example the transmission time of a message
from one processor to another in a processor interconnection network. The
k-cube has thus a diameter equal to k, a quantity which is expressed in
relation to the number of vertices by log2 n since n = 2k, which means that
the diameter of the k-cube does not increase too rapidly when the number of
vertices increases. On the other hand, the k-cube has the inconvenience of a
vertices degree which is rather high, and requires in practice a high number
of input-output for each element of the network, which is not always feasible.

2.5 Exercises

2.1. Find all the trees which have six vertices (there are six).

2.2. Show that a tree which has exactly two vertices of degree one is a path.

2.3. Show that a tree has at least Δ vertices of degree one (Δ being the
maximum degree).

+2.4. Show that a graph G is a tree if and only if two out the three following
conditions are fulfilled:

(1) G is connected,

Trees 67

(2) G is acyclic,

(3) We have m = n − 1.

2.5. An automorphism of a simple graph G = (X, E) can be defined as a
bijection f from the set X to itself, such that if the vertices x, y ∈ X
are neighbors in G, then f(x) and f(y) are also neighbors; in other
words, if xy ∈ E then f(x)f(y) ∈ E. Show that for any automorphism
f of a tree T = (X, E), there exists x ∈ X such that f(x) = x or there
exists xy ∈ E such that f(x) = y and f(y) = x (“fixed point property”:
fixed the vertex or fixed edge by isomorphism f).

2.6. Show that the set of the subtrees of a tree T verifies the Helly property:
if a set of subtrees of T has the property that any two of these subtrees
have a common non-empty intersection, then the intersection of all the
subtrees of this set is not empty (reminder: a subtree of a tree T is a
subgraph of T which is a tree; here the intersection of subtrees concerns
the vertices).

2.7. Show that an edge e of a connected graph G belongs to any spanning
tree of G if and only if e is a bridge of G. Show that e does not belong
to any spanning tree if and only if e is a loop of G.

+2.8. Let G = (X, E) be a connected graph. The distance between two
vertices x and y of G is the shortest length of the paths linking x and
y. This distance is denoted by d(x, y). We call the center of the graph
any vertex x such that the quantity maxy∈X d(x, y) is the smallest
possible. Show that if G is a tree then G has either one center or two
centers which are then neighbors.

+2.9. In applying Kruskal’s algorithm, consider the case where some of the
edges have equal values and see that several solutions can then be
obtained.

2.10. Does an edge of the smallest possible value in a weighted connected
graph G always belong to a minimum spanning tree of G? Discuss this
for a number of cases.

*2.11. (About the implementation of Kruskal’s algorithm)

Design a management by lists of the connected components of G(A).
Analyze the effect on the complexity.

68 Graph Theory and Applications

*2.12. (Another justification of Kruskal’s algorithm)

a) G = (X, E) a simple connected graph weighted by v : E → R
∗+

(real numbers > 0). F is a spanning forest of G, U a set of
connected components of F , e an edge of G linking a vertex of
U and one of X \ U and such that the value v(e) is minimum
among all the edges joining U and X \U . Show that if the forest
F is included, as a subgraph, in a minimum spanning tree of G,
then F + e also has the property of being included in a minimum
spanning tree of G.

b) Apply the preceding result to justify Kruskal’s algorithm. Show
that after each iteration of the main loop of the algorithm, the
spanning subgraph G(A) is a spanning forest of G included in a
minimum spanning tree of G.

*2.13. (Jarńık-Prim’s algorithm)

Another algorithm solves the problem of the minimum spanning tree.
It is still the “greedy” idea that is applied, but the approach is different
from that of Kruskal: it is local and therefore may be more natural.

G = (X, E) a simple connected graph, weighted by v : E → R
∗+

(real numbers > 0). We build a sequence X0 ⊆ X1 · · · ⊆ X of sets of
vertices and a sequence E0 ⊆ E1 · · · ⊆ E of sets of edges according to
the following conditions:

• E0 = ∅, X0 = {x}, where x is a vertex chosen arbitrarily.

• Supposing Xi−1 and Ei−1 already built, we look for an edge ei =
xiyi such that xi ∈ Xi−1 and yi ∈ X \Xi−1, with v(ei) minimum.
If such an edge ei is found, we put Xi = Xi−1 ∪ {yi} and Ei =
Ei−1 ∪ {ei}. If there is none, we stop.

Write this algorithm in a structured algorithmic form, justify it and
analyze its complexity.

N.B. The justification of the result given by the algorithm is easy with
the result of the first question of exercise 2.12 above.

*2.14. Show that a graph is planar if and only if each of its blocks is planar.

2.15. Let G be a 2-connected graph such that n ≥ 3, x and y are two
vertices of G, μ1 is path linking x and y. Show that a path μ2 linking
x and y and vertex-disjoint of μ1 does not always exist. (Compare with
Menger’s theorem for k = 2; this exercise is pure logic.)

Trees 69

2.16. Show, without using Menger’s theorem, the following result: if a graph
G is k-connected (k ≥ 1), then for each edge e of G, G − e is
(k − 1)-connected.

(We will use this property later on to demonstrate Menger’s theorem.)

*2.17. Show that if G is simple, with a minimum degree δ such that:

δ ≥ n + k − 2
2

then G is k-connected.

*2.18. Given integers n and k such that 0 < k < n and k being even, the
simple graph Hk,n is defined as follows:

• X = {0, 1, . . . , n − 1} is the set of the vertices,

• for i, j ∈ X, ij is an edge of Hk,n if and only if there is an integer
r such that 1 ≤ r ≤ k

2 and j = i± r, the operation ± being taken
modulo n. For example, with n = 8 and k = 4 we have in the
graph H4,8 the edge joining the vertices 0 and 7 because 7 + 1 is
equal to 0 modulo 8.

a) Represent H4,8.
b) Using Menger’s theorem, show that H4,8 is 4-connected and

4-edge-connected.
c) Try to generalize to Hk,n (see Chapter 12, problem 1).

2.19. Let us go back over the definition and study of the ordered set TG of
the spanning trees of a weighted graph G (see section 2.2.2). Given two
minimum spanning trees Tm and T ′

m of G, using the strong exchange
lemma, show that there is a sequence of minimum spanning trees of
G, (Tm = T1, T2, . . . , Tk = T ′

m), such that two consecutive trees are
neighbors. Deduce from this that the “field” under consideration in
the proof of Kruskal’s algorithm (section 2.3.3) has only one “hole”.

2.20. a) Show that the k-cube, for k > 1 may be defined as an assembly,
which is to specify, of two (k − 1)-cubes.

b) Use what you have seen above to show by induction on k that the
k-cube is k-connected.

This page intentionally left blank

Chapter 3

Colorings

Without investigating in depth the numerous and important matters
related to coloring in graphs, we will give the theoretical results necessary
for solving a nice application to a timetabling problem.

3.1 Coloring problems

Historically, with the four-color theorem mentioned in Chapter 1, it is a
coloring problem which is at the origin of graph theory. This concerned the
problem of coloring the vertices of a planar graph. The general issue is to find
the chromatic number of a graph, planar or not. This is the lowest number
of colors needed to color the vertices so that no two adjacent vertices have
the same color. There are a few known applications of this type of graph
coloring. However, coloring of edges is also considered, and we are going to
study this here because it presents an interesting application to a timetabling
problem, and because it also relates to another important matter in graph
theory: matchings (studied in Chapter 7).

3.2 Edge coloring

The graphs studied are assumed to be without loops but may have
multiple edges. The “simple” hypothesis thus will mean that the graph is
without multiple edges. Given a graph G and an integer k, k-edge-coloring
of G is a mapping from the set of the edges of G to a set of k elements called

72 Graph Theory and Applications

α

γ
β

β

α

γ

δ

Figure 3.1. A k-edge-coloring of a graph (set of colors: {α, β, γ, δ})

colors so that two edges sharing an endpoint are associated in the mapping
with different colors.

Given a k-coloring, an edge is said to be of a given color or to have a
given color, if in the coloring considered this color is associated with it.

The edge chromatic number of a graph G is the lowest integer k such that
a k-coloring of G exists. This integer is denoted by q(G). For example, the
chromatic index of the graph shown in Figure 3.1 is 4 (check that for this†
graph there is no edge coloring with less than four colors). The important
point of the concept of edge-coloring of a graph is the following property: for
each color, the set of the edges having the same color forms what is called
a matching, that is a set of edges of the graph such that no two edges share
a common endpoint. A k-edge-coloring of a graph G can be seen, more or
less a permutation of the colors, as an edge partition of G into matchings.
The chromatic index is then the lowest number of classes of such a partition.
This point of view will become useful later.

3.2.1 Basic results

It is easy to verify that the chromatic index is bounded as follows:

Δ ≤ q(G) ≤ m

where m is the number of edges of the graph and Δ its maximum degree. If
it is easy to see that the lower bound is often reached (find some examples),†
the upper bound m is on the other hand often too large. The following
remarkable result shows that in the case of simple graphs Δ + 1 is a much
better upper bound.

Colorings 73

Theorem 3.1 (Vizing). If G is a simple graph, then q(G) is equal to Δ or
Δ + 1.

The case of bipartite graphs is even more remarkable and has the
following basic result, for which the proof is given as an exercise at the
end of this chapter.

Theorem 3.2. If G is bipartite, simple or not, then q(G) = Δ.

This second result will be useful later on in solving our timetabling
problem.

3.3 Algorithmic aspects

The problem of the chromatic index of a simple graph is a remarkable
example of an NP-complete problem (even when the NP-completeness has
been found much later than for other graph problems). Indeed, deciding if
the chromatic index of a simple graph is Δ or Δ + 1 is an NP-complete
problem.

Nevertheless, the problem of finding in a simple graph a maximum
matching, that is one having the largest number of edges possible, can be
solved by a polynomial algorithm. Indeed, it is with this problem that the
concept of polynomial complexity was introduced. It is then possible to think
of the following algorithm to find the chromatic index of a graph, this index
being seen here as the lowest number of classes of a partition of edges into
matchings: consider a maximum matching C1 of G, and then a maximum
matching C2 of G − C1, the graph obtained by removing the edges of C1,
and so on until the removal of all edges of G. The matchings successively
obtained, C1, C2, . . . of G, construct an edge partition into matchings of
the graph. We have tried to minimize the number of these matchings by
considering each time a matching with a maximum number of edges in what
was left. This way of proceeding means giving a first color as often as possible
to some edges of the graph, while respecting the condition of never giving
the same color to two edges sharing the same endvertex. We then give a
second color to a maximum number of edges not yet colored, and so forth
until all edges of the graph are colored. Unfortunately, this greedy algorithm
(see Chapter 2) in general does not yield an optimal result, that is, a coloring
with the lowest possible number of colors, as shown in Figure 3.2.

74 Graph Theory and Applications

Figure 3.2. By giving a first color to the edges of the maximum matching
shown in bold, it will not be possible to have a Δ-coloring of this bipartite
graph of maximum degree 3 (because of the degree 3 vertex on the upper left).
Nevertheless such a coloring exists (according to theorem 3.2)

It is always possible to try every way of giving colors to the edges to find a
coloring. There is a general classic method called backtracking. It equates to
a depth–first search of an arborescence (an algorithm studied in Chapter 5).
In fact it is a very good anticipation exercise to try to implement this search†
for the chromatic index of the graph, called the Petersen graph, shown in
Figure 3.3. This graph does not have a Δ-coloring; its chromatic index is
not 3 but 4 (as was already the case in Figure 3.1).

Figure 3.3. Petersen’s graph (chromatic index = 4)

In fact, there is no other real general method known at present to
verify that there is no Δ-coloring. However, the number of cases increases
exponentially with the size of the graph, showing all too well the difficulty
of an NP-complete problem.

Colorings 75

The case of bipartite graphs is algorithmically more accessible. It is
possible to find with a polynomial algorithm a Δ-coloring of any bipartite
graph (simple or not). This is particularly interesting in relation to the
timetabling problem. The study of such an algorithm is proposed as an
exercise at the end of this chapter.

3.4 The timetabling problem

The simplest version of this problem (more complex ones will be studied
later) is as follows: some professors have to teach courses to classes every
week. These courses are defined by the number of hours given by each
professor to each class. The week is assumed to be divided into time slots in
which the courses have to be timetabled. The goal is to establish a weekly
timetable taking into account that: a professor cannot teach two classes at
the same time and two classes are not taught by two professors at the same
time (that would be terrible, guess for whom . . .).

The modeling of this problem in graph terms is easy: G = (X, Y, E)
is a bipartite graph where X is the set of the professors, Y the set of the
classes and E the set of the courses, where an edge joining x ∈ X and y ∈ Y
corresponds to a one-hour course by professor x to class y. We observe that,
under the constraints of this problem, the courses located in a given time
slot make up a matching in the graph (according to the definition given
above). Thus, a timetable corresponds to an edge partition into matchings
of the graph, a partition which can be assimilated in an edge-coloring of the
graph.

First, we will address a particular question: what is the lowest number of
hours necessary to establish a timetable for all the courses to be given? In the
associated graph G this equates to finding the lowest number of matchings in
which to partition the edges of the graph. This shows how the timetabling
problem can be brought back to an edge-coloring problem in a bipartite
graph: each time slot corresponds to a color and a timetable corresponds
to a coloring. As a consequence, the answer to the question of the lowest
number of hours is clear: the lowest number of hours in which it is possible to
establish a timetable is simply the chromatic index of the graph G associated
with the problem. Graph G being bipartite, the lowest number of hours is
equal to the maximum degree Δ of G, according to theorem 3.2. A timetable
with this lowest number of hours is defined by a Δ-coloring of G. It is thus

76 Graph Theory and Applications

very interesting to obtain such a coloring in polynomial time. Interpreted
using the data of the problem, Δ is the maximum of the maximum hours
due by a teacher and of the maximum course hours for a class.

3.4.1 Room constraints

In real life there is hardly any timetabling problem which is not
constrained by room availability. So, in order to be more realistic, we will now
introduce such a constraint. Specifically, we will suppose that the number
of rooms available is r (with r ≥ 1). Let m be the total number of course
hours to be given, i.e. m = |E|. Note k the lowest number of hours in
which it is possible to establish a timetable. We can first observe, through
overall calculation, that k ≥ m

r � (specify why). With no room availability†
constraint, we saw that k = Δ, but with this constraint, we have a priori
only k ≥ Δ. Taking all this into account, we have:1

k ≥ max
(

Δ,

⌈
m

r

⌉)

In fact, we have an equality, as the following lemma will show.

Lemma 3.1. Let G = (X, Y, E) be a bipartite graph and k an integer ≥ Δ.
There is a partition of E into k matchings with the same number of elements
for one unit.

For colorings, such a partition corresponds to a coloring in which each
color appears the same number of times on the edges, for one unit.

Proof. The proof can be given in a constructive way, which is important
here for its application to the timetabling problem. Go from any k-coloring
of G. It is always possible to obtain algorithmically such coloring with a
Δ-coloring (see section 3.3) considered as a k-coloring of which k−Δ colors
are unused when k > Δ. The next step consists of balancing the colors among
themselves. Reason in the equivalent language of matchings in considering
the coloring as a matchings family (C1, C2, . . . , Ck). Consider a matching Ci

of lowest cardinality and a matching Cj of highest cardinality, and suppose
that |Cj | > |Ci| + 1. Spanning subgraph G(Ci ∪ Cj) induced by Ci ∪ Cj

(disjoint union since Ci and Cj are disjoint), is constituted of connected

1For a number x, we denote �x� the least integer ≥ x and �x� the greatest integer ≤ x.

Colorings 77

components, each being an isolated vertex, a path, or a cycle. These last two
types of connected components alternate in Ci and Cj , that is have their
edges alternately in Ci and Cj . This implies that the cycles are necessarily
even and have the same number of edges belonging respectively to Ci and
Cj . The global difference of the number of elements between Ci and Cj thus
can only be found in a component which is a path, to be more specific in
an alternated path with respect to Ci and Cj starting and finishing with an
edge of Cj , matching with the most edges. An exchange of the edges of Ci

and Cj along such a path, without any other modifications, yields two new
matchings C ′

i and C ′
j verifying:

0 ≤
∣∣∣∣C ′

j

∣∣ − ∣∣C ′
i

∣∣∣∣ <
∣∣∣∣Cj

∣∣ − ∣∣Ci

∣∣∣∣
Indeed, the number of elements of Ci increases by 1 in C ′

i, while it decreases
by 1 in C ′

j with respect to Cj . Continuing this balancing process between the
two matchings under consideration, we obtain in the end an equal cardinality
to plus or minus one unit. The repetition of this process to all matchings,
as long as there are two which differ by more than one cardinal unit, leads
to the result given in the lemma.

Note. The k matchings resulting from the lemma each have a number of
elements which can only be �m

k � or m
k �, these two quantities being equal

when k divides m.

This lemma allows us to state the following proposition:

Proposition 3.1. Given an instance of the timetabling problem with a
number of rooms equal to r, the lowest possible number of hours for which a
timetable is feasible is:

max
(

Δ,

⌈
m

r

⌉)

where m is the total number of hours to be given and Δ the maximum of the
maximum hours due by a professor and of the maximum course hours for a
class.

Proof. Apply lemma 3.1 to bipartite graph G associated with this
timetabling problem, with k = max(Δ, m

r �) (note that we effectively have
k ≥ Δ). According to the preceding comment, each of the k matchings
given by the lemma has a number of edges less than or equal to m

k �. Since

78 Graph Theory and Applications

m
r � ≤ k, by definition of integer k, we also have m

k � ≤ r. Thus, each
matching of this partition has a number of elements less than or equal to r.
As a result, in the timetable where the courses given in time slots are defined
by the preceding matchings, in each time slot the number of courses taught
simultaneously never exceeds the number r of rooms. This is the constraint
we wanted to satisfy.

It is interesting to see how the room constraint is satisfied with
lemma 3.1: logically, but not trivially, by spreading as uniformly as possible
the courses over the time slots. This is the right way to minimize the number
of rooms used.

Notes. 1) It is in fact possible to obtain a timetable respecting the room
availability constraint in k hours for any integer k greater than or equal to
max(Δ, m

r �). This may be useful in order to take into account additional
constraints.

2) It is possible to use inversely the formula giving the lowest number of
hours according to the number of rooms, that is by wondering what is the
minimum number of rooms which is necessary to build a timetable in a given
number of hours (look for the lowest r so that the maximum expression is
less than or equal to this number of hours).

3.4.2 An example

Suppose the following data, keeping the general preceding notations: four
teachers x1, x2, x3, x4, five classes y1, y2, y3, y4, y5, and the courses to be given
defined in Table 3.1 below.

y1 y2 y3 y4 y5

x1 1 2 0 0 0

x2 1 1 1 0 0

x3 0 1 1 1 1

x4 0 0 0 1 2

Table 3.1. Data

Colorings 79

Always in keeping with the general notation, we have here: m = 13,
Δ = 4. Thus, without a room availability constraint, a timetable in four
hours is possible. This would mean at least m

4 � = 4 rooms available, as
shown by an overall calculation (as calculated above with the number of
rooms r). However, suppose there are only three rooms available, that is
r = 3. The general result above then sets the lowest number of hours for a
timetable equal to:

max
(

Δ,

⌈
m

r

⌉)
= max(4, 5) = 5

Therefore there is a timetable in five hours with three rooms (but not
in four hours). In order to build such a timetable we will apply the general
preceding process which can be followed in Figure 3.4. We are building a
bipartite graph G associated with this problem. We then define, directly here
because it is a simple case, a partition in Δ = 4 matchings, C1, C2, C3, C4.
We consider this partition as being in 5 matchings, the last one C5 having
no edges at present. The cardinalities of these matchings are respectively:
4 for C1, 4 for C2, 3 for C3, 2 for C1, and 0 for C5. We will then balance
three times: twice between C1 and C5, and once between C2 and C4 (note
that an exchange can be made on a single edge when the alternating path
is reduced to one edge as is the case for the first two exchanges). In the end
we obtain an edge partition of G into matchings with the same number of
elements to one unit, that is 2 and 3. Associating matchings and hours, this
partition defines a timetable in five hours with three rooms: C1 to the first
hour, C2 to the second, and so forth (see Table 3.2: the teachers are in rows,
the hours in columns). Observe that there are never more than three courses
in parallel during the same time slot, which shows that the room availability
constraint is indeed satisfied.

Hours 1 2 3 4 5

x1 — — y2 y2 y1

x2 — y3 y1 — y2

x3 y3 y2 y5 y4 —

x4 y4 y5 — y5 —

Table 3.2. Timetable given for professors (for instance, professor x1 teaches
class y2 in hour 3)

80 Graph Theory and Applications

5 balanced matchings

y4

x1

x2

x3

x4

C5

matchings:

G(C2ΔC4)

C1 and C5

G(C1ΔC5)

y1

y2

y3

y4

y5

y2

y3

y4

y5

x2

x4

x1

y1

y2

y3

y5

x4

x3

x2

x1

y1

y2

y3

y5

x1

x2

x3

x4

y1

y2

y3

y4

y5

x1

x2

x3

x4

y1

y2

y3

y4

y5

x1

x2

x3

x4

C2

C3

C1

C4

graph G

two exchanges between

x3

y1

y4

after exchanges between

C2 and C4, we have

(empty)

Figure 3.4. Solving the example

Colorings 81

Note. The association of matchings and time slots is arbitrary a priori. It
is possible to play on that factor to take into account additional constraints,
for example regrouping the teaching load of x2 in three consecutive hours
by exchanging hours 4 and 5.

3.4.3 Conclusion

Real time timetabling problems are much more complicated because of
the many diverse constraints which may not be so easy to formalize as the
one above. For example, the rooms may not all be ordinary, some may be labs
or sport rooms which are not exchangeable. There may also be constraints
over certain time slots for the classes or the teachers. However, the greatest
difficulty arises when classes are split and regrouped differently for options,
for example. Nevertheless the preceding theory is a good initial frame of
reference to start formalizing and implementing solutions. Note that on a
theoretical level, the timetabling problem with constraints on the times of
classes and the loads of teachers becomes NP-complete.

3.5 Exercises

3.1. Show that if a simple and connected graph G has an odd number of
vertices n, then q(G) = Δ+1 (the solution is very simple). Apply this
result to complete graph Kn.

3.2. Consider the following timetable in six hours, with four professors
p1, . . . , p6 and five classes c1, . . . , c5.

Hours 1 2 3 4 5 6

p1 c1 c3 c5 — c4 c5

p2 c2 c1 c1 c3 — —
p3 — c4 — c2 — c1

p4 c4 c5 c2 c1 c3 c3

a) How many rooms are necessary for this timetable?
b) Show, without redoing this timetable for the time being, that it

is possible to establish another timetable for the same number of
classes, still in six hours but with one room less.

c) Build a timetable answering the preceding question, with the
additional constraint that professor p2 must be free during the
last two hours (5 and 6).

82 Graph Theory and Applications

d) With the same number of classes, how many hours would be
necessary to build a timetable with a room less than in question
c? (You are not asked to build the timetable.)

N.B. The small size of the problem makes it possible to find solutions
by hand through trial and error without using the methods described
above. Such a method cannot be generalized and is therefore of no
interest.

*3.3. (Proof of q(G) = Δ for a bipartite graph)

We will consider pseudocolorings, that is, simple mappings from an
edge set of a graph to a set of colors (two incident edges to the same
vertex may have the same color). Let G be a bipartite graph and C
a Δ-pseudocoloring of the edges of G (one pseudocoloring is easy to
obtain, for example by associating the same color with all the edges).
Note α, β, . . . the Δ colors. Consider the case where a vertex x of G
has at least two incident edges of the same color, say α, in C.

a) Show that there is a color, say β, which appears on none of the
incident edges of x.

b) We will try to “ameliorate” the pseudocoloring C by having color
β appear on an incident edge of x, in place of color α. Examine
the consequences of an exchange of colors α and β on one of the
edges e with color α incident to x. Observe, in particular, that
then α may disappear from the set of the incident colors of the
other endpoint y of e. We are then led to another exchange at
vertex y to bring back α. Show that this exchange process of α
and β can only fail for an odd cycle with edges alternatively of
color α and β, except in vertex x where both incident edges are
of color α and these edges are the only two incident edges of x
with that color. Conclude.

c) Show that by repeating the preceding process often enough it is
possible to turn the initial pseudocoloring into a true coloration,
that is such that two incident edges of a vertex are of different
colors, hence the equality q(G) = Δ. (This method, using
recolorings, leads to a polynomial algorithm.2)

2A general method is given in the following reference: Méthode et théorème général de
coloration des arêtes d’un multigraphe, J.C. Fournier, Journal de Mathématiques pures et
appliquées, Vol. 56 (1977), 437–453.

Chapter 4

Directed Graphs

Many applications are modeled by graphs with edges which are
oriented, the endvertices of the edge not playing a symmetric role. They
are called directed graphs. Among them, two classes are particularly
important: directed graphs without circuits and arborescences, the latter
being commonly called “trees” in, for example, computer science.

4.1 Definitions and basic concepts

A directed graph, abbreviated to digraph, G, is defined by two finite sets:
a non-empty set X of vertices and a set A of arcs, or directed edges, with
an ordered pair (x, y) of vertices which are the endvertices of a, associated
with each arc. Vertex y is called the head and vertex x is called the tail.

4.1.1 Notation

We write G = (X, A). Sets X and A may also be denoted by X(G) and
A(G). We keep, as in the undirected case, the notations nG or n for the
number of vertices and mG or m for the number of arcs.

4.1.2 Terminology

When (x, y) is the ordered pair of endvertices associated with arc a, we
say that arc a joins vertex x to vertex y, that arc a is incident to vertices
x and y, or more specifically that arc a comes out of vertex x and that it
enters into vertex y. Vertex y is called a successor of x and vertex x is called

84 Graph Theory and Applications

a predecessor of y. As with graphs, we have a loop in the case of equality
x = y, and a multiple arc in the cases of arcs having an identical ordered pair
(x, y) associated with them. It is possible to specify, according to the number
of arcs involved: double arc, triple arc, etc. Two arcs of which the associated
ordered pairs are respectively (x, y) and (y, x) are said to be opposed.

A digraph is said to be strict if it has no loops and no multiple arcs (it
may have opposed arcs). In this case, often encountered, each arc is identified
by the ordered pair of its endvertices, which are then distinct, and we write,
for example, a = (x, y). For a strict digraph G = (X, A), we can define the
set of the arcs A directly as a subset of the Cartesian product X × X.

A strict digraph is symmetric if for any arc (x, y) there is also the opposed
arc (y, x). This concept is very close to that of a graph.

c

d

x

z

x

z

y

(a) (b)

y e

b

X = {x, y, z}, A = {a, b, c, d, e}

a

Figure 4.1. (a) A digraph: the arc a is associated with the ordered pair
(x, z), b with the ordered pair (z, x), c with the ordered pair (x, y), d with
the ordered pair (z, y), and e with the ordered pair (y, y); (b) the underlying
graph

4.1.3 Representation

As we saw in Figure 4.1(a), digraphs are drawn in a plane as graphs,
with simply an arrow indicating its orientation on each arc line, the arrow
going from x to y if the ordered pair (x, y) is associated with it.

Finally, to complete the definition of digraphs, it should be noted that
the digraphs under consideration are unlabeled digraphs, that is, considered

Directed Graphs 85

up to isomorphism. We will not go back over this concept which can be
defined with graphs and does not pose any practical problem.

4.1.4 Underlying graph

Given a digraph G we consider the underlying graph, obviously defined
by “forgetting” the orientation of the arcs of G, that is that each arc with
which the ordered pair (x, y) is associated is replaced by an edge of which
the associated pair of endvertices is xy (see Figure 4.1(b)).

Note. Given a graph G there are 2m digraphs for which the underlying
graph is G (m being the number of edges of G).

All concepts defined for graphs also apply to digraphs by means of
the underlying graph: degree of a vertex, connectedness and connected
components, walk, trail, path, etc. For example, we say that a digraph is
connected if its underlying graph is connected. These concepts are therefore
independent from the orientation of the arcs. There are also other concepts
which take into account the orientation of the arcs and which we are now
going to define.

4.1.5 “Directed” concepts

Some concepts can be transposed directly from the undirected to
the directed case by replacing the word edge by the word arc. These
are: subdigraphs, induced subdigraphs, spanning subdigraphs, directed walks,
directed trails, directed paths and directed cycles, which we also call circuits.
For example, a directed walk is a sequence of elements, alternately vertices
and arcs beginning and ending with a vertex, and such that each arc has for
its tail the preceding vertex in the sequence and for its head the following
vertex. The first and the last vertices are the ends. A directed cycle, or
circuit, is a closed directed path of length ≥ 1 (its ends coincide). We say
that a directed walk or a directed cycle goes through an arc or a vertex if it
contains this arc or vertex. The length of a directed walk or a directed cycle
is the number of its arcs. As with graphs, a directed walk in a digraph may
have zero length but a cycle must have a length ≥ 1.

86 Graph Theory and Applications

i
h

e f

c

g

d

z

u

v

yax

b

i
h

e f

c

g

d

z

u

v

yax

b

(a) (b)

w w

Figure 4.2. A strict directed graph, with, in bold: (a) a directed closed trail
(x, c, w, e, z, g, u, h, w, f, v, d, y, a, x); (b) a circuit (x, b, z, g, u, h, w, f, v, d, y,
a, x)

The following concepts have a definition specific to the directed case.

4.1.6 Indegrees and outdegrees

The indegree of a vertex x of a digraph G is the number of arcs entering
into x. The outdegree of x is the number of arcs exiting from x. These are
denoted by d−G(x), or d−(x), and d+

G(x), or d+(x), and are integers.

It is easily seen that:†
∑
x∈X

d−G(x) =
∑
x∈X

d+
G(x) = m

Loops are not often considered in digraphs, nevertheless this formula
correctly accounts for them, knowing that each loop in a digraph counts
for one unit of outdegree and one unit of indegree of the vertex under
consideration. We again find the formula for the sum of the degrees given
in Chapter 1, in observing that for each vertex x we have: dG(x) = d−G(x) +
d+

G(x), so:
∑
x∈X

dG(x) =
∑
x∈X

(
d−G(x) + d+

G(x)
)

=
∑
x∈X

d−G(x) +
∑
x∈X

d+
G(x) = 2m

Directed Graphs 87

4.1.7 Strongly connected components

A digraph G is strongly connected if for any two distinct vertices x and
y there is a directed path going from x to y. Note that as this definition is
symmetric in x and y, there is also a directed path from y to x.

A strongly connected component of G is a maximal strongly connected
induced subdigraph of G. Maximal means that there is no strongly connected
induced subdigraph containing strictly (for the vertices) this subdigraph.
These components may also be defined as being the subdigraphs induced
by the classes of the following equivalence relation on the vertices: there
is a directed path from x to y and a directed path from y to x. These
components define a partition of the set of the vertices (but not of the arcs)
and constitute decomposition into strongly connected components of G. This
decomposition is unique.

The strongly connected components are less simple to determine than
the connected components, but there are nevertheless good algorithms (of
linear complexity) for finding them.

(b)(a)

Figure 4.3. (a) A digraph which is not strongly connected; (b) its three
strongly connected components (note that one of them is reduced to a vertex)

Note. Vertices belonging to the same circuit belong to the same strongly
connected component (justify). †

88 Graph Theory and Applications

4.1.8 Representations of digraphs inside a machine

The same principle used to represent a (undirected) graph inside a
machine can be applied to digraphs, with a few additional specifications
because of orientation.

1. The adjacency matrix M = (mij) of a digraph G = (X, A), with
X = {x1, . . . , xn}, is defined by putting mij equal to the number of
arcs of which the associated ordered pair is (xi, xj). Contrary to the
undirected case, this square matrix is not usually symmetric (but it is
the case with a symmetric digraph).

2. The data for the neighborhood of each vertex can be given by lists of
successors: each list associated with a vertex contains the successors of
that vertex. Classically, it is possible to implement these lists as linked
lists. In concrete terms, a table indexed on the vertex type contains
for each vertex an access pointer to its list of successors. For some
applications (for example for the potential task graph in Chapter 6)
the digraph is more naturally represented by lists of predecessors. Each
vertex is associated with the list of its predecessors. It is not very
hard to go from one to the other, that is from successors’ lists to
predecessors’ lists and vice versa (write the corresponding algorithms).†
Another way to model a digraph using the neighborhoods of its vertices
(which we will use in Chapter 8 for flows) is to give for each vertex
the set of arcs exiting from this vertex and the set of arcs entering this
vertex.

3. The list of arcs constitutes the third principle of the implementation
of digraphs. In concrete terms, it is also possible to have an array
indexed on the type arc, the arcs being numbered from 1 to m, with
the ordered pair of its endvertices associated with each arc. These data
can be given in a record composed of two fields, in the order: the tail
of the arc, then its head.

The advantages and inconveniences of these various representations, in
particular the memory space required, can be analyzed as in the case of
graphs.

Figure 4.4 illustrates these representation principles.

Directed Graphs 89

of endvertices

(4,3)

(2,3)
(1,3)

ordered pairs
arcs

1
2
3
4

(3)

adjacency matrix

(4)

(5)

3

4

1

2

lists of successors lists of predecessors

list of arcs (array)

3

1 4

1
01 0 1

4321

2
3 0 0 0
4

4

2

1

3 1 2 4

21

2

3

4

0 01

0 1
0

1

0
0

(1)

(2)

3 2

3

digraph

(2,1)

5
(2,4)

Figure 4.4. Different representations of a (strict) digraph

90 Graph Theory and Applications

We also consider weighted digraphs: G = (X, A) with a mapping v : A →
R. The implementing of these digraphs by an adjacency matrix, when they
are strict, is generally well suited: each entry of the matrix is the value of
the corresponding arc. The implementing by list of arcs can also be adapted
but in practice the choice is made depending on the entry in the digraph
required by the algorithm.

4.2 Acyclic digraphs

Digraphs without circuits, or acyclic digraphs, have important
applications, notably in scheduling with the potential task graph (defined
in Chapter 6). We will give below one very useful characteristic property of
these digraphs.

In general, a source of a digraph is a vertex with a zero indegree, that
is a vertex without entering arcs. Likewise, a sink is a vertex with a zero
outdegree, that is a vertex without exiting arcs.

Lemma 4.1. In a digraph without circuits, there are a source and a sink.

Proof. Consider any vertex x1, then, if it exists, a predecessor x2 of x1

and a predecessor x3 of x2, and so on as long as a predecessor to the vertex
under consideration can be found. This construction of a sequence of vertices
necessarily stops after a finite number of vertices. Indeed, the digraph being
finite and having by hypothesis no circuit, it is not possible to encounter
a vertex seen previously again. When this construction stops, we have a
vertex which by construction has no predecessor, that is we obtain a source
of the digraph, the existence of which is thus proven. It is possible to proceed
likewise for a sink (or to consider the converse, that is, the digraph obtained
by reversing the direction of the arcs: a source vertex of one is a sink vertex
of the other).

4.2.1 Acyclic numbering

An acyclic numbering of the vertices of a digraph G = (X, A) is a
bijection f from X onto the interval of integers from 1 to n (n is the number
of vertices of G), such that if the ordered pair (x, y) is associated with an
arc of G, then f(x) < f(y). The digraph is considered to be connected
(underlying graph) and strict.

Directed Graphs 91

4.2.2 Characterization

Proposition 4.1. A digraph G is without circuits if and only if it allows an
acyclic numbering of its vertices.

Proof. The sufficient condition is easy to verify. Indeed, if there were a circuit
defined by the sequence of its vertices (x0, x1, . . . , x0), we would have f(x0) <
f(x1) < · · · < f(x0) and therefore a contradiction since then f(x0) < f(x0).
For the necessary condition we can consider a source vertex x1 of G (which
we know exists from lemma 4.1) and put f(x1) = 1, then continue with
digraph G1 = G − x1 in place of G, that is consider a source vertex x2 of
G1 for which we put f(x2) = 2. We remove x2 from G1 and start again with
G2 = G1−x2 in place of G1, and so on, while there is at least one vertex left
in the current digraph. Note that each of the graphs successively considered,
G1, G2, . . ., is really without circuits, as it is a subdigraph of G. It is easy
to verify that, by construction, the application f thus defined is an acyclic
numbering of the vertices of G.

Note. The algorithmic aspect of the construction of acyclic numbering is in
practice very important. The preceding proof does give an algorithm but one
which is not very good from an implementation and complexity viewpoint.
Indeed, the removal of the vertex in the digraph complicates things. We will
see a much better algorithm later, using a depth-first search of the digraph
(see Chapter 5).

4 6

1

3 5

8 9

2

7

Figure 4.5. A digraph without circuits with its vertices numbered according
to an acyclic numbering. The vertices 1 and 2 are source, the vertices 8 and
9 are sink

92 Graph Theory and Applications

4.2.3 Practical aspects

In practice, we use a concept close to acyclic numbering of vertices,
which is a classification of the vertices by levels. The important property is
then that at each level a vertex has only predecessors at lower levels (see
Chapter 6, exercise 6.6). We have a similar property to acyclic numbering,
but the acyclic numbering is more directly usable since we always end up
looking at the vertices in a certain order. Let us therefore remember what
is most essential here, which is how we will apply it all later on: when we
consider the vertices of a digraph in the order of an acyclic numbering, at
the time when a given vertex is considered, all its predecessors have been
considered. Thus, if we have to apply a certain treatment on each vertex of
a digraph without circuits, and this treatment uses the result of this same
treatment on the predecessors of the vertex under consideration, then this
treatment done in the order of an acyclic numbering will be possible on all
the vertices of the digraph.

4.3 Arborescences

The root of a digraph G is a vertex r such that there is for any vertex x
of G a directed path from r to x.

An arborescence is a digraph which has a root and of which the
underlying graph is a tree. In the literature, the term tree is often used
instead of arborescence.

Note. An arborescence has only one root (but generally speaking, a digraph
may have several roots).

4.3.1 Drawings

We usually draw an arborescence with the root at the top (which would
make us say that here the trees have their roots up in the air!), and the other
vertices arranged horizontally by levels of equal distances from the root. The
arrows indicating the orientation of the arcs are occasionally omitted as they
are implicitly defined as going from top to bottom (see Figure 4.6).

Directed Graphs 93

r

r r

d

g

c

b

a b

g

h

e

e

b

gf

h

ed

a
cc

fd

f

a

h

Figure 4.6. Different drawings of an arborescence

Note. An arborescence is identified by a (undirected) tree with a
distinguished vertex called the root. The orientation of the arcs may be
found by following the direction of the increasing distance from this root
on each edge. (Note that this direction is uniquely defined because of the
uniqueness of the directed path from the root to a vertex in an arborescence,
according to a property given later on.) That is why arborescences are often
called rooted trees in the literature, or simply trees.

4.3.2 Terminology

An arborescence, as for any digraph without circuits, has at least one
sink and usually there are many. Such a vertex is called a leaf. In general
the vertices of an arborescence are called nodes.

The depth of a vertex is its distance from the root (“distance” here
means the shortest length of the directed paths). This term refers to the
usual drawing of arborescences, in which, as we saw, the vertices with the
same depth are placed on what is called a same depth level.

The depth of an arborescence is the greatest depth of its vertex.

94 Graph Theory and Applications

Terminology inspired by that of genealogical trees can also be used. A
child of a vertex is any successor to that vertex. A vertex without a child is
a leaf. If vertex y is a child of vertex x, x is then naturally called the parent
of y. Any vertex of an arborescence has a unique parent except for the root,
which has none. Vertices which share the same parent are then also very
naturally called siblings. This terminology – parent, child, sibling – is useful
for “surfing” in an arborescence as we will see in the following chapter. More
generally, a descendant of a vertex x of an arborescence is the name given
to any vertex y such that there is in the arborescence a directed path going
from x to y. In other words, y is a successor or, in a repeated fashion, a
successor of a successor of x.

4.3.3 Characterization of arborescences

Theorem 4.1. For a digraph G, the following conditions are equivalent:

(1) G is an arborescence.

(2) G has a root and its underlying graph is acyclic.

(3) G has a root and m = n − 1.

(4) There is a vertex r such that for any vertex x of G there is a unique
directed path going from r to x.

(5) G is connected and d−(x) = 1 for any vertex x except for one vertex,
r, for which d−(r) = 0. (This last condition will be referred to below
as the “indegrees condition”.)

(6) The underlying graph of G is acyclic and we have the property of the
indegrees condition.

(7) G has no circuits and we have the indegrees condition.

Proof (sketch). Let us give a “complete” set of implications, complete in the
sense that any other implication may be deduced from it by transitivity (we
apply here a concept of “transitive closure”, see exercise 4.3).

The implications to verify, chosen for their ease, are:†
– equivalence of conditions (1), (2), and (3);

– equivalence of (6) and (7);

– (1)⇒(4), (4)⇒(5), (5)⇒(6), (6)⇒(1).

Directed Graphs 95

Note. In condition (4), the unique directed path from vertex r to itself is
the directed path with of zero length and unique vertex r.

4.3.4 Subarborescences

Given an arborescence T and one of its vertices s, the subarborescence
of root s is the subdigraph of T induced by s and all its descendants in T .
This subdigraph is an arborescence, with vertex s for its root.

4.3.5 Ordered arborescences

It is frequent in applications to consider what can be called an ordered
arborescence, that is an arborescence in which an (total) order is given to the
set of the children of each vertex. In general, this is the case in practice since
an arborescence is often defined for each vertex by the data of its children
in a list, that is with a certain order. In the case of an ordered arborescence,
it is possible to speak of the first child or of the following sibling of a vertex
(as we will do, for example, in the following chapter).

Looking at the arborescence in Figure 4.6, and more specifically the
bottom drawings representing an ordered arborescence (from left to right
for the children of each vertex), we see for example that: d is the first child
of b, e is the following sibling of d, e has no following sibling.

4.3.6 Directed forests

A directed forest is a digraph in which each connected component is an
arborescence. The underlying graph is of course a forest, and a directed
forest can be identified with a forest in which each connected component
has a distinct vertex which is its root. The properties of directed forests can
be deduced from those of the arborescences applied to its components.

4.4 Exercises

+4.1. Go over exercise 1.4 in Chapter 1, adapting it to digraphs.

+4.2. Go over exercise 1.11 in Chapter 1, adapting it to digraphs.

4.3. The transitive closure of a strict digraph G = (X, A) is the digraph
G = (X, A) such that (x, y) ∈ A if and only if x �= y and there is a

96 Graph Theory and Applications

directed path from x to y in G. Show that G is strongly connected if
and only if G is the symmetric complete digraph, that is such that for
any two distinct vertices x and y, (x, y) is an arc.

*4.4. Show that a digraph G is strongly connected if and only if it is
connected and each of its blocks is strongly connected.

*4.5. (Problem of one way streets in a town)

Let G be a connected graph. Show that there is an orientation of
G which gives a strongly connected digraph if and only if G is
2-edge-connected.

4.6. Show that a digraph is without circuits if and only if all its directed
walks are directed paths.

*4.7. Show that a digraph G has no circuit if and only if its adjacency matrix
M is nilpotent, that is, such that there is an integer k ≥ 1 for which
Mk = 0.

4.8. The reduced digraph of a digraph G is the strict digraph in which the
vertices are the strongly connected components C1, . . . , Cp of G and
the arcs are the ordered pairs (Ci, Cj) such that there is an arc from
a vertex of Ci to a vertex of Cj . Show that the reduced digraph is
without circuits.

4.9. Show that a digraph is an arborescence if and only if it has a root and
is minimal for this property concerning the removal of arcs.

Chapter 5

Search Algorithms

From a general point of view, a search of a graph, or a digraph, is an
algorithm which makes it possible to search the arcs of the graph and to visit
its vertices with a special purpose in mind. This chapter presents one of the
most classic of these searches, called a depth-first search (often abbreviated
dfs). This type of tree-search will be completed in Chapter 6 by another
classic tree-search, the breadth-first search.

In applications which are modeled by an arborescence, this search
technique is called backtracking, and can be used to solve a wide variety
of problems in operations research and artificial intelligence.

5.1 Depth-first search of an arborescence

From an algorithmic viewpoint, the recursive form is the most natural
and most efficient to express this search. The following procedure expresses
the depth-first search of the subarborescence of arborescence T , of root v.
We designate as children(v) the set of the children of vertex parameter v.

procedure dfs arbo recu(T,v);
begin

for u in children(v) loop
dfs arbo recu(T,u); -- recursive call

end loop;
end dfs arbo recu;

98 Graph Theory and Applications

The complete arborescence is searched by a call of this recursive
procedure on the root r of the arborescence T , that is, the call:
dfs arbo recu(T,r).

In practice, as in the applications we will see later, an arborescence
is usually given by what may be called “navigation primitives”, meaning
subprograms which allow a child or a sibling of a given vertex to be reached.
In order to be more specific, the children of the vertex are usually given in
a particular order defined by a list. Remember that it is then an ordered
arborescence, and that we can refer to the first child of a vertex when
this vertex is not a leaf, and to the following sibling of a vertex if it has
one. We express the preceding search with the following primitives in which
the names indicate what they are for: exists sibling(v) is a Boolean
function which returns true or false depending on whether the vertex
parameter v has or has not a child in the arborescence; first child(v)
returns the first sibling, when it exists. We similarly define the primitive
exists following sibling(v), which returns true or false depending on
whether or not there is a following sibling of the vertex parameter v, and
following sibling(v) which returns the first following sibling (the one
just following), when it exists.

procedure dfs arbo recu(T,v);
begin

if exists child(v) then
u:= first child(v);
dfs arbo recu(T,u); -- recursive call
while exists following sibling(t) loop
u:= following sibling(u);
dfs arbo recu(T,u); -- recursive call

end loop;
end if;

end dfs arbo recu;

5.1.1 Iterative form

It is interesting to eliminate the recursion in the preceding algorithm to
follow the search strategy step by step. One of the possible iterative forms is
given below. We could have used a “parent” primitive of the arborescence,
which would have made it possible to avoid having to use a stack. In
fact, in practice it is easier to do without this primitive by using a stack.

Search Algorithms 99

In addition, this stack recalls the stack used by the computer system for
the management of recursive calls and recursive returns during execution.
The stack primitives used here are classic. Let us specify that pop(S)
removes the element which is at the top of stack S, without returning it, and
top stack(S) returns the element which is at the top of stack S, without
removing it from S. Variable vertex v is local. It represents the current vertex
of the search. Parameter r represents the root of arborescence T, also passed
as a parameter of the procedure. Remember that the instruction exit causes
exit from the current loop.

procedure dfs arbo ite(T,r);
begin
push(S,r);
v:= r;
loop

while exits child(v) loop
v:= first child(v);
push(S,v);

end loop;
-- exits child(v) false
while v �= r and then not exists following sibling(v) loop
pop(S);
v:= top stack(S);

end loop;
-- v = r or exists following sibling(v) true
exit when v = r;
pop(S);
v:= following sibling(v);
push(S,v);

end loop;
pop(S);

end dfs arbo ite;

Notes. 1) As formulated, with the and then (the second condition is tested
only if the first is verified), the exit condition of the second while loop
ensures that primitive exists following sibling will not be called on root
r, which makes it possible to avoid having to plan this particular case for
this primitive. This case is in fact useless since the root of an arborescence
never has a sibling.

100 Graph Theory and Applications

2) Stack S is initially assumed to be empty. It is then also empty at the
end of the execution. Indeed, the last pop, after the main loop, exits vertex
r, which is the first and last vertex in the stack.

The strategy of this search may be described in natural language by
following the moves of the current vertex v (moves defined by the successive
assignment of the variable v in the algorithm). Initially, v is in r. Then at
each step of the search the current vertex v goes: to the first child of v if
v has a child, to the following sibling of v if v has no child or v no longer
has any child left unconsidered but has a following sibling, and finally, v
goes to the parent of v if v no longer has any child or following sibling left
unconsidered but has a parent, that is if v �= r. The search ends when v is
back to r. This description reveals the priority for vertex v to move first to a
child, what can be called the “depth-first descent”, and explains the source
of the terminology “depth-first search”. The given algorithmic expression
shows this strategy through the layout of the loops. The first interior loop
(while) corresponds to the onward search, the second interior loop (while)
corresponds to returning to the parent. The exterior loop (loop) corresponds
to a move toward the following sibling, between the onward and upward
searches expressed by the two preceding loops.

5.1.2 Visits to the vertices

As we will see, the use of the search is made through some timely
appropriate actions while visiting the various vertices of the arborescence.
It is possible to specify these visits in terms of previsits or postvisits, and
equally to spot the visits through the leaves of the arborescence, which
are often important. This is done as commentaries of the following version
of procedure dfs arbo ite, which completes the iterative version given
earlier. These visits are easy to spot in the recursive version (procedure
dfs arbo recu), because each previsit corresponds to a push and each
postvisit corresponds to a pop. So, there is a previsit of the current vertex
before a recursive call on this vertex and there is a postvisit at the time of
the recursive return. This corresponds to the iterative version since, in the
management of the recursion, pushes correspond to recursive calls and pops
to recursive returns (except for the root).

Search Algorithms 101

procedure dfs arbo ite(T,r);

begin
-- previsit of r

push(P,r);

v:= r;

loop
while exists child(v) loop
v:= first child(v);

-- previsit of v

push(S,v);

end loop;
-- v is a leaf
while v �= r and then not exists following sibling(v) loop
pop(S);

-- postvisit of v

v:= top stack(S);

end loop;
-- v = r or exists following sibling(v) true

exit when v = r;

pop(S);

-- postvisit of v

s:= following sibling(v);

-- previsit of v

push(S,v);

end loop;
pop(S);

-- postvisit of v

end dfs arbo ite;

The numbering defined by the previsits is classically called the preorder
numbering of the vertices of the arborescence, and the numbering defined
by the postvisits the postorder numbering. Figure 5.1 gives an example
of a depth-first search of an arborescence, with preorder and postorder
numbering of the vertices.

102 Graph Theory and Applications

9

8564

3 2

r
1

2
a

b

c
7

f
8 7

9 6

d

4 1
g

e
5 3

h

Figure 5.1. To the left of each vertex is given its preorder number and to
the right, in bold type, its postorder number

5.1.3 Justification

It is easy to be convinced that this algorithm, under any of the versions
presented, really performs a search of the arborescence in the sense given
above. Indeed, through systematic consideration for each vertex of all its
children, each arc is considered and each vertex is visited.

5.1.4 Complexity

Time complexity for this search, as a function of the number of vertices
of the arborescence, is linear. Effectively, for each vertex its children are
considered only once as children of this vertex. The total number of
elementary operations is thus of the order of the sum of the outdegrees of the
vertices, that is of the order of the number, m, of arcs of the arborescence.
Since m = n − 1, where n is the number of vertices, the complexity is
O(n). However, if we measure the size of the arborescence by its depth
d (the greatest length of a path from the root to a leaf), rather than
by the number of vertices, which is much more relevant in applications,
the search complexity becomes exponential. For example, the complexity
becomes O(kd) for an arborescence for which any non-leaf vertex has k
children and any leaf is of depth d. This complexity is in fact proportional
to the number of vertices visited. We will see later the concrete consequences
of this exponential complexity.

Search Algorithms 103

5.2 Optimization of a sequence of decisions

Let us consider the problem of having to choose one decision among
several possibilities at each step of a process. Some states of the process,
called terminal, no longer require a decision and can be assessed with a gain
that is an integer or real number, which may be positive, negative or zero.
The problem, then, is to find a decision sequence which leads from a given
initial state to a terminal state with the greatest possible gain.

Modeling this problem by an arborescence is easy: each vertex represents
a state, the root represents the initial state, each arc corresponds to a
possible decision leading from one state to another. The leaves are the final
states and they are assigned to values corresponding to the gains. We have
to determine in this arborescence a path from the root to a leaf which has
the greatest possible gain value.

As formulated, and with what has been developed above, there is a
direct solution to this problem: a depth-first search of the arborescence,
recording the values of leaves as they are visited, should bring about a
solution. In practice, things are less simple. On the one hand, searching
a whole arborescence may be costly in time and frequently even impossible
to complete within a reasonable human time scale. On the other hand, the
arborescence associated with the problem is not fully known from the start
and has to be built, which is not crippling but requires some technical work.
Let us illustrate this with a classic algorithmic problem.

5.2.1 The eight queens problem

This is an old puzzle, already known in the 19th century. The aim is
to put eight queens on a chessboard so that none of them is able to take
another, according to chess rules. Recall that the queen attacks any piece
that is in the same row, column or diagonal. It is clear that it is impossible
to place more than eight queens. The question therefore is how to find out
if it is possible with eight queens.

It is necessary to define the arborescence associated with the problem
because several possibilities are conceivable. Since there must not be more
than one queen per row, one natural way to proceed is to put one queen
per row, row after row, starting from row one (supposing that the rows are
numbered from 1 to 8, for example from bottom to top). The root of the

104 Graph Theory and Applications

Figure 5.2. A solution to the eight queens problem

arborescence is the empty chessboard. The children of the root correspond
to the eight ways to place a queen on the first row. The children of the
children correspond to the ways of placing a queen on the second row out
of reach of the preceding queen, and so on for all the following rows. A leaf
of the arborescence corresponds to a state of the chessboard where some
queens are already placed on a number of first rows in such a way that it is
impossible to add another one on the following row, either because there is
in fact no following row or because all the squares of the following row are
under the threat of the previously placed queens. The gain associated with
an arborescence leaf is the number of queens placed on the board, a number
which corresponds to the depth of the leaf in the arborescence. A solution
is reached when eight queens are placed, that is for a leaf of depth 8, which
is the greatest possible gain.

For the search application to this arborescence, the real work is
in defining the arborescence primitives, exits child, first child,
exists following sibling, following sibling. For example, the
function exits child must return true or false, depending on whether
there is or is not in the row following the current one a free square where
a queen can be placed, taking into account the ones already placed. The
function first child, in the case where exits child has returned true for
the vertex under consideration, must return the first following free square,
deciding, for example, to go from left to right on the squares of each row.
The complete algorithmic resolution of this problem is proposed as an
exercise at the end of this chapter.

Search Algorithms 105

5.2.2 Application to game theory: finding a winning strategy

The games under consideration here are two-player games, with complete
information (each player has complete knowledge of the entire game),
hazardless (no throwing dice or drawing cards for example) and with zero
sum (the sum of the gains of the two players is zero). Chess is a typical
example. The player who starts is denoted by A and the other one by B.
Let us consider only simple gains, that is: 1 if A wins (then B loses), -1 if
A loses (and B wins), 0 if the game is tied. For this type of game, there is
always what is called a winning strategy, that is a way of playing for one
of the players which, regardless of the moves of the opponent, ensures that
he or she does not lose. This means A has a gain ≥ 0 (if A has a winning
strategy), B has a gain ≤ 0 (if B has a winning strategy). It is possible to
prove that there is always a winning strategy, but it is not possible to say a
priori which of the players has it. It depends on the game, and both cases
really happen.

5.2.3 Associated arborescence

We are going to show how a winning strategy can be found
algorithmically, which will constitute a constructive proof of its existence.
To do this, let us associate an arborescence with the game in order to apply
a search to it. Its root is of course the initial state of the game. Its children
are all the states of games obtained after the first move of player A, the
children of the children all the states obtained after the move then made by
B, and so on, alternating moves by A and B. The leaves are states of the
game obtained by a sequence of moves, which then represent a match, and
after which there are no more moves, the game being over. For each leaf, the
gain is assessed as defined above: 1 if A wins, −1 if B wins and 0 for a tie.

Note. A given state of the game may appear several times as a vertex
of the arborescence. This is inherent to this model of the game, since a
given situation in a game can generally be obtained by different sequences
of moves.

106 Graph Theory and Applications

5.2.4 Example

The arborescence of a game is soon enormous (the preceding remarks
contribute to that effect)! To present a case which remains accessible, we
are going to consider the game of Nim. In its classic form (popularized
by a French film in the 1960s), there are four piles of matches containing
respectively one, three, five, and seven matches. In turn, each player removes
as many matches (but at least one) as he or she wishes, from only one pile.
The player removing the last match has lost. We will limit ourselves to a
reduced version of this game with only two piles of one and three matches.
Its arborescence is fully represented in Figure 5.3. Each state of the game
is coded by the data of the number of matches in each pile separated by
a hyphen, 1-3 for the initial state for example. Note that despite the great
simplicity of this game, its arborescence is already a bit complicated.

1

0 − 3

0 − 0

0 − 0

0 − 1 0 − 0

1 − 1

1 − 00 − 1

0 − 20 − 2 0 − 1

0 − 0

0 − 0

0 − 1

0 − 0 0 − 0

0 − 0

1 − 3

1

1

1

1−1 −1
1

1

−1

1

−1−1

1 1

−1 −1 −1

1 − 2

0 − 0

0 − 0

−1 1

1

−1

1 − 0

1 − 1

1 − 0

0 − 1

0 − 0

0 − 0

1 − 0

1

−1−1

1

−1

1

B

A

B

A

Figure 5.3. The arborescence of the 1-3 Nim game, gains brought back by
application of the minimax algorithm: winning strategy (bold arcs), prunings
(bold lines)

5.2.5 The minimax algorithm

Finding a winning strategy is harder than the simple optimization of a
sequence of decisions as described above. Indeed, there is an antagonistic
pursuit between the players: the one who starts is looking for a maximum
gain, since it is directly his gain. The other is trying to minimize the final gain
since his/her gain is the opposite. The essential principle of the algorithm
is that of the mounting of the gains of the leaves, values which are known,
towards the root, where the returned value will indicate which of the players

Search Algorithms 107

is benefiting from a winning strategy. In general, the gain returned for a
vertex of the arborescence will equal 1 if it is a winning position for player
A, -1 if it is a losing position for A (and therefore winning for B), 0 if it is not
a winning position for either of the players. This last situation is that of a
tied game, possible for each of the two players if no “mistake” is made, that
is the case when each player avoids, as is possible, making a move leading to
a winning situation for his opponent. In this particular case, we can say that
each player has a winning strategy in the sense defined above (a strategy
which would be better called a “non-losing” strategy).

The principle described indicates by itself how to return the gains. Let
us take for example the case of a state of the game where it is A’s turn,
and let us suppose that the gains of all the children of this vertex in the
arborescence have already been determined. Then the rule to apply is that
the gain returned to the vertex under consideration is the maximum of the
gains of its children. That will also define what is the “best move” for A to
make at this moment. A similar formula applies in the case where it is B’s
turn to play, with minimum instead of maximum. Thus, from bottom to top,
that is, from leaves to the root, it is possible to find the values of the gains
returned for each vertex of the arborescence and finally for the root. This
technique of alternately returning a minimum and a maximum explains the
name minimax given to this algorithm.

5.2.6 Implementation

A depth-first search of the arborescence of a game is perfectly adapted
to the implementation of this technique of gain return. At each postvisit
of a vertex the value of its parent is updated by max or min depending on
whether it is a move by A or B which is returned. Indeed, at this point all
the children of the vertex under consideration have known gain values.

In order to avoid singling out the postvisit case of the first child of a
vertex, a point at which the parent does not yet have a returned value, from
the case of the following children, that is to be able to apply one single
formula, we initialize in previsit the value of each vertex in the following
manner: -1 if it is A’s turn, +1 if it is B’s turn. These values are chosen in
such a way that the value returned the first time will be taken automatically.
For example, at the first return of the child of a vertex representing a game
situation where A is about to play, the maximum will be taken between -1
and a gain g returned equal to -1, +1 or 0. Therefore, the taken gain will

108 Graph Theory and Applications

necessarily be g. The same result can be obtained for B with a minimum
between +1 and a gain equal to -1, +1 or 0.

5.2.7 In concrete terms

To effectively find a winning strategy, it is necessary to keep a record of
the arc which gave the best return gain so far for each vertex throughout the
search. Figure 5.3 illustrates this method. In concrete terms, the application
of this minimax algorithm to a realistic game is impossible to do within a
reasonable time period, so enormous is the arborescence to be searched. For
example, it is impossible to search the entire chess game arborescence (the
number of leaves of its arborescence can be evaluated to be 2050). Even if
it was possible, the storage of the information for a winning strategy would
create problems. Such a strategy must give the right answers for all the
possible moves of the opponent. We are facing the “combinatorial explosion”
phenomenon, in this case the exponential growth of cases to contemplate.

5.2.8 Pruning

In order to calculate the gain returned to the root, it is possible to reduce
the search by pruning, that is to “prune” the arborescence. This technique
does not modify the exponential nature of the search. Figure 5.3 shows
pruning cases which can be understood on their own. For example, when
value 1 is returned to vertex 0-2, which is at depth 2 at the bottom left,
from vertex 0-1, it is useless to explore the other branch leading to vertex
0-0 since the returned value 1 is the best possible for player A, whose turn
it is in this situation. Indeed, whatever the value returned from vertex 0-0,
it will not modify the value previously returned in vertex 0-1.

Even though the minimax algorithm does not allow a global exhaustive
search, it is nevertheless useful for a local search, that is a search which
does not necessarily continue until the end of the game but limits itself,
for example, to a 10-move exploration depth from the situation analyzed.
Finding the best move possible is then done on the basis of evaluation
functions which quantitatively assess game situations at the limit of the
exploration, situations which are not yet end game and thus without known
gains a priori. This technique is used by chess game software; their high
level of performance is well known and is due essentially to the quality of
these evaluation functions which contain in fact all the human “expertise”
in this matter.

Search Algorithms 109

5.3 Depth-first search of a digraph

The digraph G searched here is assumed to be strict (there are no parallel
arcs, no loops, and any arc is identified by the ordered pair of its ends). The
digraph is also supposed to be given by linked lists of successors, and in the
following algorithmic expressions suc(v) designates a pointer to an element
of the list of vertex v, initially to the first element of this list. Each of these
elements is a record1 which contains: suc(v).vertex the next successor of v
to be examined, suc(v).next a pointer to the following element of the list,
equal to null if there are no more elements in it. When a successor has been
read, suc(v) must be incremented, that is moved to point to the following
element of the list of successors. This is what is produced by the assignment
suc(s):= suc(s).next. The array visited, indexed on the vertices of the
digraph, is supposed initialized to the value false for each vertex.

In a recursive form, we first have the following procedure, with parameter
G as the digraph to be searched and v as the initial vertex of the search:

procedure dfs recu(G,v);
begin
visited(v):= true;
while suc(v) �= null loop

u:= suc(v).vertex; suc(v):= suc(v).next;
if not visited(u) then
-- previsit of u
dfs recu(G,u); -- recursive call
-- postvisit of u

else
-- revisit of u
null;

end if;
end loop;

end dfs recu;

The main procedure for a search starting at a given vertex r of G, which
is the vertex origin of the search and which is passed as a parameter, is
written as follows:
1record in Ada, struct in C.

110 Graph Theory and Applications

procedure dfs(G,r);
begin
-- previsit of r
dfs recu(G,r);
-- postvisit of r

end dfs;

5.3.1 Comments

We have first given the recursive form, which is more concise. It is
useful to locate all the different types of visits at the vertices in this
algorithm, because it will be of the greatest use in the application of
this search. The previsits and the postvisits, which correspond, as for the
above arborescence, respectively to recursive calls and recursive returns, are
mentioned as comments. The case of the revisit of a vertex is new, compared
with the case of the arborescence. It corresponds to the case of a vertex which
has already been visited and is encountered again as successor to the current
vertex (a case which may not happen for an arborescence since there is only
one path from one vertex to another). This case appears in the else of the if
and since there is then nothing to do, this is made explicit by the instruction
null.2

The following second form of the depth search is iterative and
corresponds to recursion elimination of the preceding one. It is therefore
the same search strategy. It is instructive to follow the evolution of the
stack in this search, in particular for previsits and postvisits which, as in the
arborescence case, correspond respectively to pushes and pops. The array
visited is still assumed to be initialized to the value false for each vertex
of the digraph.

procedure dfs ite(G,r);
begin
-- previsit of r
visited(r):= true;
push(S,r); v:= r;
loop

while suc(v) �= null loop

2Be sure to distinguish the statement null, as here, and the value null of a pointer which
points to nothing, as seen above.

Search Algorithms 111

u:= suc(v).vertex; suc(v):= suc(v).next;
if not visited(u) then

-- previsit of u
visited(u):= true;
push(S,u); v:= u;

else
-- revisit of u
null;

end if;
end loop;
pop(S);
exit when empty stack(S);
-- postvisit of v
v:= top(S);

end loop;
-- postvisit of r

end dfs ite;

Figure 5.4 gives an example of an application.

2

4

5

r = 1

3

10

9

8
76

Figure 5.4. Beginning of a depth-first search of a digraph starting at vertex
r = 1. The visits are: previsits of 1, 3, 9, 10, 7, revisit of 1, previsit of 8,
revisits of 1, 3, 9, 10, postvisit of 8, etc. The arcs in bold are those of previsits
(for the complete search). They define in the digraph an arborescence of root
r = 1, called Trémaux’s arborescence. Note that vertex 4 will not be visited
by the search

The sequence of vertices which are in a stack at a given time defines a
path in the digraph, called the current (directed) path of the search, the last
vertex being the current vertex, the one where the search is at that time.

112 Graph Theory and Applications

5.3.2 Justification

Proposition 5.1. During a depth-first search of a strict digraph, any vertex
accessible by a path from the initial vertex origin r of the search is visited,
with a previsit, then a postvisit, and eventually also a revisit.

Proof. This is easy to justify by reasoning step by step along the vertices
from a path of r to the vertex under consideration.

Note that the vertices which are unreachable by a path from r are not
visited at all. We will remedy this later with an extended version of the
search.

There is an amusing illustration of this algorithm in the study of mazes,
the different ways to go through them and, above all, to come out of them! It
is in this context that this algorithm has been known for a long time under
the name of Trémaux’s algorithm, named after the author of studies on this
subject in the 19th century, long before the theory of the algorithmic graph.
Let us imagine that the digraph represents a maze. The vertices represent the
crossroads and the arcs the corridors (assumed to be one way). The preceding
search defines a systematic exploration strategy: after the entrance, we take
a new corridor as long as there is one to take and it leads to a crossroads
not yet visited. If no such corridor is available, and if we are back at the
entrance to the maze, we stop; if not, we go back to the crossroad where we
were before we arrived for the first time where we are now. Of course, to
apply this strategy we have to mark one by one every corridor and crossroads
followed. There is a famous precedent in Greek mythology with Theseus, who
had to find the Minotaur in the labyrinth, to kill him, and then rediscover
the entrance to the labyrinth! Ariane was waiting at this entrance with a
ball of thread which Theseus unwound during his search. This “Ariane’s
thread” allowed him to identify the locations previously visited, and, more
importantly, to recover the entrance to the labyrinth at the end of his
mission. It is interesting to note that the thread corresponds to the state
of the stack of the preceding algorithm. More specifically, at each time, the
sequence of the crossroads crossed by the thread corresponds, in the digraph,
to the sequence of the vertices in the stack (supposing that Theseus was
rewinding the thread when he was retracing his steps in a corridor he had
already searched).

Search Algorithms 113

5.3.3 Complexity

Let us refer to the second iterative version of the algorithm. The main
loop is executed, for each vertex v considered, a number of times equal to the
outdegree of v, that is d+

G(v). Each vertex of the digraph is thus considered
once. The total number of elementary operations is thus proportional to the
sum of the outdegrees of the vertices visited, a sum which is less than or
equal to the number m of arcs of the digraph. The complexity of the search
itself is thus O(m). To this must be added the complexity required by the
initialization of the array visited, that is O(n). In total, the complexity is
thus O(max(n, m)). The depth-first search algorithm is linear.

We can be even more specific by saying that the search requires a time
proportional to the size of what it is visiting (which is not necessarily all of
the digraph).

5.3.4 Extended depth-first search

As we have seen, the preceding search only visits the vertices which can
be reached by a path from the initial vertex origin r. When we want to
visit all the vertices of the digraph, we have to start a new search from a
vertex not yet visited, as long as one exists. This search, called an extended
search, ends when all vertices of the digraph have been visited. This is what
is done by the following algorithm, in which it is important to note that
the array visited, still supposed initialized to false for each vertex, is global
with respect to the different search procedures started. This means that it
is not reinitialized between successive searches. A vertex is marked visited
only once, by one of the searches. In the following expression of the extended
depth-first search, the vertices are supposed numbered from 1 to n.

procedure dfs ext(G);
begin
r:= 1;
loop
dfs ite(G,r);
-- looking for a non visited vertex
while r < n and visited(r) loop
r:= r + 1;

end loop
-- r = n or visited(r) false

114 Graph Theory and Applications

exit when visited(r);
end loop;

end dfs ext;

G

search 1

search 2

search 4

search 3

Figure 5.5. Schema of the successive searches of an extended search

Note. This procedure calls upon the procedure dfs ite but the recursive
procedure dfs recu would work just as well.

5.3.5 Justification

Proposition 5.2. During an extended depth-first search of a strict digraph,
each vertex is visited, in a previsit, then a postvisit, eventually also in a
revisit.

Proof. This can be easily justified by observing that any vertex ends up
being visited because of the conception of the algorithm itself.

We can complete the preceding proposition by saying that if the digraph
being searched is strict, any arc (u, v) is considered during the search: either
during the previsit of v from u, (u, v) is then called a previsit arc, or during
a revisit of v from u, (v, u) is then called a revisit arc. Any arc of the digraph
is either a previsit arc or a revisit arc. Note that if (u, v) is a revisit arc, v
may have already been visited in a search previous to the one during which
u is visited.

Search Algorithms 115

5.3.6 Complexity

The various simple searches which constitute the extended one do not
overlap, in the sense that a vertex previsited in one of them will not be
previsited again in another (let us remember that the array visited is
global), it can only possibly be revisited. Each search is finite and there is
a finite number of searches (at the most equal to the number of vertices, in
the case of a digraph without arcs). In addition, as above, each successor
of a vertex is considered only once, even when it is a vertex visited in one
of the searches with a successor visited in another search. In fact, as we
already noted, each search only requires a time proportional to the size of
what it is searching, and the total is proportional to the size of the digraph,
max(n, m), thus yielding a linear complexity.

An essential point of the depth-first search, extended or not, is that when
a vertex is postvisited all its successors have been visited, that is previsited
from that vertex or revisited (and so previously previsited from another
vertex). This can be clearly seen in particular with the recursive form of
the simple (not extended) search. We can also specify that when a vertex
is revisited, it has necessarily been previsited (since it is a revisit), but it
may or may not be postvisited, that is popped or not from the stack of
the iterative expression. This point will be useful for recognizing digraphs
without circuits.

5.3.7 Application to acyclic numbering

Proposition 5.3. (1) A strict digraph G is without a circuit if and only
if during an extended depth-first search of this digraph, when a vertex is
revisited, it has already been postvisited.

(2) If digraph G is without a circuit, the postorder of the vertices in an
extended depth-first search of this digraph is the reverse of that of an acyclic
numbering.

Proof. Let us suppose that during an extended depth-first search of digraph
G, there is a vertex u which is the successor of current vertex v and which
is revisited but not yet postvisited. Vertex u is thus in the stack at that
moment, with v, which is at the top of it, and the sequence of the vertices
from u to v in the stack is a directed path (directed subpath of the current
path of the search). With the arc from v to u, this directed path defines
a circuit of G. This proves, by contradiction, the necessary condition of
part (1).

116 Graph Theory and Applications

Let us now suppose that the preceding circumstances do not happen
during a depth-first search of the digraph. So, when a vertex is revisited
it is then postvisited. Let us suppose that the vertices are numbered in the
reverse postorder, that is during the postvisits, from n to 1. At the time when
a vertex v is postvisited, all its successors have been visited, previsited or
revisited, according to a general property of the search noted earlier on. Let
us show that they are also all postvisited. Those of the successors of v which
have been previsited from v are then necessarily postvisited, because they
were in the stack above v and thus necessarily popped before v. The other
successors of v have been revisited from v. They were then postvisited at
the time of their revisit (by hypothesis). Thus, the successors of v were all
numbered before v, and since the numbering is done decreasingly from n to
1, they have received a higher number than the one received by v during its
postvisit. That is the property which defines an acyclic numbering. It should
also be noted that this property is compatible with the extended nature of
the search (the numbering is global). The existence of an acyclic numbering
under the hypothesis that when a vertex is revisited it is then postvisited,
which results itself from the hypothesis without circuits, proves part (2) of
the proposition. It also proves the sufficient condition of part (1), because
a digraph which admits an acyclic numbering has no circuit, according to
proposition 4.1 of Chapter 4.

5.3.8 Acyclic numbering algorithms

An acyclic numbering algorithm will consist of launching a depth-first
search of the given digraph with the following operation while going through
the vertices:

• on postvisit of v: mark v postvisited and number it decreasing from n
to 1.

• on revisit of u: if u is not postvisited, stop because there is a circuit in
the digraph.

On previsit we do nothing.

As an application, we can again take the digraph in Figure 4.5 in†
Chapter 4, which is without a circuit, and apply this algorithm to it. (The
acyclic numbering obtained may not be identical to the one given on this
figure. It can depend on the search followed.)

Search Algorithms 117

This acyclic numbering algorithm is, as for the depth-first search, of
linear complexity.

5.3.9 Practical implementation

In practice (as we will see later on, in scheduling with the potential task
graph), it is not sufficient to detect the presence of a circuit and to stop,
because then the digraph has no acyclic numbering. In fact this circumstance
corresponds to an error in the datum of the digraph, one arc too many
somewhere, creating a circuit. To correct such an error, it is necessary to
have a circuit in order to verify its arcs and to detect one that should not
be present. The justification of proposition 5.3 makes it possible to exhibit
a detected circuit and to do this work, provided that we have access to the
search stack. This is direct with the iterative form but is not directly possible
with the recursive form, since the stack is managed by the system and
therefore hidden. A solution is then to manage an auxiliary stack provided
for that effect, pushing and popping respectively on previsits and postvisits
as with the stack of the iterative version of the search.

5.4 Exercises

+5.1. Write two programs (in your preferred language) solving the eight
queens problem, in the iterative form as well as the recursive,
inspiring yourself from the arborescence searches given. Test them (you
should find 92 solutions) and compare their time performances. What
conclusion can you draw?

5.2. Give an example of a game in which it is the second player who has a
winning strategy.

5.3. Consider the following game:3 two players called A and B choose
alternately the digit 1 or 2. A starts. When four digits have been
chosen, the game is over and the greatest prime divisor of the number
formed by the four chosen digits, written in the order of their choice
from left to right, is then what B wins (and what A loses). Explain
what may be an optimal strategy for a player and determine this
strategy for B, specifying the minimum gain it ensures.

3From Boussard-Mahl, Programmation avancée, Eyrolles (1983).

118 Graph Theory and Applications

N.B. Prime divisor (between parentheses): 1111 (101), 1112 (139), 1121
(59), 1122 (17), 1211 (173), 1212 (101), 1221 (37), 1222 (47), 2111
(2111), 2112 (11), 2121 (101), 2122 (1061), 2211 (67), 2212 (79), 2221
(2221), 2222 (101).

*5.4. (Digraph kernel and winning strategy)

Let us go back to the game of Nim 1-3 dealt with as an example,
but with a different representation of the game from that of
the arborescence associated with it and described in this chapter
(Figure 5.3).

a) Find all possible states of the game (there are eight). Build the
digraph of which the vertices are these states, with an arc from
one vertex to another when it is possible to go from one to the
other with one move allowed by the game.

b) Find in this digraph a set N of vertices, called the kernel, which
has the following properties: for any vertex x /∈ N , there is an
arc joining x to a vertex y ∈ N , arc entering into N , and any
arc exiting from a vertex of N has its head outside N . Hint: you
will take in N the vertex representing the final state (0-0) of the
game.

c) Use the kernel to define a winning strategy (always play by going
into the kernel).

d) Try to generalize the preceding idea for a winning strategy of
any game represented by a digraph which admits a kernel. You
will first define the way to play on the given digraph by inspiring
yourself from the preceding particular case.

+5.5. a) Show that the previsit arcs of an extended depth-first search of a
strict digraph G define a directed forest in G.

b) Try to list the different cases of arcs of revisit which can be found,
in particular for the preceding forest (there are three different cases).

Chapter 6

Optimal Paths

Problems of optimal paths, shortest paths or longest paths in graphs or
digraphs are diverse and have important applications.

6.1 Distances and shortest paths problems

Here we are considering weighted graphs, most of the time directed.
These graphs will be supposed strict when they are directed, simple when
they are undirected. Graphs which are not weighted are also dealt with
in this chapter, by considering the case when the value of each edge or arc
equals 1. The cases of undirected graphs can be brought back to the directed
one, simply by replacing each edge by two opposite arcs, each having the
same value. In this chapter, directed paths, or walks, in a digraph are simply
called paths or walks.

6.1.1 A few definitions

Let G = (X, A), a digraph which is weighted by a mapping l from A,
the set of arcs of G, to real numbers for example. These values represent
the lengths of the arcs, but in some applications we will see that they can
represent many other things: durations, costs, etc.

The length of a path, or a walk,1 of G is defined as the sum of the lengths
of its arcs. In the case of a (non-weighted) digraph, with the convention of
1Except in section 6.6, in this chapter we always consider paths.

120 Graph Theory and Applications

an associated value of 1 for each arc, we again find the length of a path
defined as the number of its arcs.

The distance from a vertex s to a vertex t in digraph G is naturally
defined as the shortest length of the paths from s to t in G. A shortest path
from a vertex s to a vertex t is of course a path from s to t of the shortest
length possible, that is of length equal to the distance from s to t.

6.1.2 Types of problems

The following problems are formulated for distances. They can be
extended for finding corresponding shortest paths as well.

1. Two vertices problem: given two vertices s and t, determine their
distance.

2. Single source problem: given a vertex r, determine the distance from r
to each vertex of the digraph.

3. All ordered pairs problem: determine the distance from s to t for all
ordered pairs (s, t) of vertices.

These problems are not independent. In fact, from problem 1 to
problem 3 we encounter problems which are more and more general. Problem
2 is central since it makes it possible to solve problem 3 in a reasonable
manner, by repetition from each vertex. It also solves problem 1 in a natural
way. Indeed, a direct resolution of problem 1 is not easy. It is simpler to look
for the distances one after the other from s, that is implementing a solution
of problem 2 with s = r, and stopping as soon as vertex t is reached.

In what follows, we will mostly consider problem 2 in specific classic
cases.

6.2 Case of non-weighted digraphs: breadth-first
search

The length of a path here is simply the number of arcs. Considering
problem 2, we want to determine the distances d(r, s). We have d(r, r) = 0,
the zero length path from r to itself. From there, the calculation principle is

Optimal Paths 121

the following: if the distances sought after are already determined for all the
vertices at a distance ≤ k, and if a vertex t is of a distance not yet known
(therefore > k) and successor of a vertex s of which the distance is k, then
the distance of t is equal to that of s incremented by 1, that is k + 1. This
principle is easy to verify. †

This calls for a search strategy of the vertices of the digraph by successive
waves of vertices. Each wave corresponds to a given distance. The important
point of this search is to explore all successors of the vertices of a wave before
continuing the exploration from a vertex of the following wave. This is the
principle of another classic search of graphs, different from the one seen in
the preceding chapter, called a breadth-first search (abbreviated to bfs), and
described below.

The digraph is always given by lists of successors. Array visited,
indexed on the vertices, is assumed to be initialized to the value false for
each vertex. This algorithm is copied from the one in the preceding chapter,
dfs ite, with the important difference that instead of a stack S, we use a
queue Q. Remember that a queue works under the “First In, First Out”
(FIFO) principle (where for the stack the principle is “Last In, First Out”,
LIFO). The queue primitives used here, enqueue, dequeue, front, is empty
are classic. So, enqueue(Q,t) puts vertex t in queue Q, at the rear, front(Q)
returns the vertex which is at the front of queue Q (without removing it from
the queue), dequeue(Q,t) removes the vertex which is at the front of queue
Q (without returning it), and is empty(Q) is a function which returns true
or false depending on whether queue Q is empty or not. The use of a queue
rather than a stack completely changes the search strategy: a vertex which
has just been visited is not then immediately used to visit other ones as in
dfs ite (Chapter 5), but waits for its turn, stored in the queue. Note that
in the expression of the algorithm, the current vertex is not changed when a
new visited vertex is added to the queue. This means that there is no need
for the assignment s:= t after enqueue(Q,t) as in the iterative expression
of the depth-first search after push(S,t) (see Chapter 5).

In addition, it is not necessary, as in the depth-first search, to make a
distinction between previsits and postvisits. The nature of the visits to the
vertices is specified as commentaries: a first visit, simply called visit, and
revisit in the case of vertices previously visited and met again in the search,
as successors of the current vertex.

122 Graph Theory and Applications

procedure bfs(G,r);
begin
-- visit of r
visited(r):= true;
enqueue(Q,r); s:= r;
loop

while suc(s) �= null loop
t:= suc(s).som; suc(s):= suc(s).suiv;
if not visited(t) then

-- visit of t
visited(t):= true;
enqueue(Q,t);

else
-- revisit of t
null;

end if;
end loop;
deqeue(Q);
exit when is empty(Q);
s:= front(Q);

end loop;
end bfs;

As with the depth-first search, the breadth-first search visits any vertex
reachable from r. This is based on the fact that once a vertex has been
visited, all its successors are then visited. Thus, along a path from r to a
vertex s, each vertex will be visited, in particular s itself.

The complexity of this algorithm is linear. Indeed, the number of
elementary operations itself is kept to a constant by the sum of the
outdegrees of the vertices, that is the number of arcs m of the digraph.
We must also count the initialization of the array visited with value false
for each vertex, initialization which requires a time proportional to the
number of vertices n, that is O(n). On the whole, the complexity is thus
O(max(n, m)).

6.2.1 Application to calculation of distances

The principle of calculating distances d(r, s) in G is based entirely on
this search. Specifically, and by application of the principle stated above,

Optimal Paths 123

any vertex newly visited is at a distance r equal to that of the current
vertex of which it is a successor, incremented by 1.

Thus, the distances may be calculated step by step. The calculation
algorithm consists simply of rewriting the preceding algorithm with instead
of:

-- visit of t

the statement:

d(r,t):= d(r,s) + 1;

and, at the beginning, instead of:

-- visit of t

the statement:

d(r,r):= 0;

and nothing when revisiting a vertex, that is in place of:

-- revisit of t.

6.2.2 Justification and complexity

Let Dk, for integer k ≥ 0, be the set of the vertices of G at a distance
k from r, and let Mk be the set of the vertices marked at a distance k
from r by the algorithm. We need to show that Mk = Dk for any k from
0 to the last considered value of k. Note that the sets Mk are pairwise
disjoint as well as the sets Dk. Let us reason by induction on integer k.
For k = 0, the property is clear since both sets D0 and M0 are reduced to
singleton {r}. Let us therefore suppose that this property is true for any
integer ≤ k, k being ≥ 0. Let t ∈ Mk+1. The vertex t is at a distance > k
by the induction hypothesis: otherwise, we would have t ∈ Ml for l ≤ k.
In addition, according to the way the algorithm works, vertex t has been
marked k + 1 as a successor of a vertex s itself marked k, that is we have
s ∈ Mk. Let us consider a shortest path from r to s, of length k augmented
by arc (s, t): this is a path from r to t of length k + 1. This proves that t is
at a distance ≤ k + 1. We therefore have t ∈ Dk+1, and finally the inclusion
Mk+1 ⊆ Dk+1, since t is any vertex of Mk+1.

Conversely, let t ∈ Dk+1. Vertex t being at a distance k +1 from r, there
is a path from r to t of length k+1. Let us consider such a path, and let s be

124 Graph Theory and Applications

the vertex which just precedes t in it. The distance from r to s is k, since on
the one hand the subpath from r to s is of length k, therefore this distance
is less than or equal to k, and on the other hand, if it was strictly less than
k, the distance of t would be strictly less than k+1, which is contrary to the
hypothesis. Thus, s ∈ Dk, and since by the induction hypothesis Dk = Mk,
we have s ∈ Mk, that is, vertex s is marked k. As a successor of s, vertex
t will be marked k + 1, unless it had been previously marked with a value
< k. However, this is again impossible due to the induction hypothesis, since
then we would have t ∈ Ml with l ≤ k and therefore t ∈ Dl, which would
contradict t ∈ Dk+1. This completes the justification of the algorithm.

As for the complexity, it is of course the complexity of the search, that
is O(max(n, m)), also taking into account a possible initialization of the
distances. This initialization is useful because it makes it possible to spot
the vertices which have not been reached by the search and which may be
considered to be at an infinite distance from r. It is also possible to give
initially, for each vertex s, the value ∞ to d(r, s), a value which will remain
as such for any vertex not reached by the search.

6.2.3 Determining the shortest paths

It is generally interesting to consider with the distances all or some of
the shortest corresponding paths. For this, all that is needed is to record
for each vertex t, which has just been marked in the algorithm, vertex s to
which it succeeds and by which it has been marked, a vertex which we will
call its parent for the marking of vertices.

5r = 1 7
[0]

9
[1] [3]10

[6]
8[4][2]6[1]

[1]2 [2]3

[5]4

Figure 6.1. The distances from vertex r are indicated between brackets. The
arcs in bold define a shortest path arborescence

Optimal Paths 125

In concrete terms, this can be done with the algorithm previously
expressed by associating with the assignment:

d(r,t):= d(r,s) + 1;

the statement:

parent(t):= s;

where parent is an array indexed on the vertices.

Note that vertex r has no parent in that sense. We will have a shortest
path from r to any vertex s of the digraph by ascending from s from parent to
parent until r. The shortest path thus obtained will be described by following
the sequence of its vertices in the reverse order. The set of the shortest paths
thus determined defines in the digraph a shortest paths arborescence, of root
r. In it, the unique path from the root to any vertex s is a shortest path
from r to s in the digraph. Figure 6.1 gives an example.

Note. The breadth-first search is not unique and neither is the method of
marking the distances. If the distances obtained are, of course, unique, the
paths will not be and what is determined here are some shortest paths, not
all the shortest paths in general. Indeed, we must mention that there can
be several shortest paths from one vertex to another in a digraph, and this
is not rare in applications. For example in the case in Figure 6.1 there are
three shortest paths from vertex 1 to vertex 6.

6.3 Digraphs without circuits

We now consider a strict digraph G = (X, A) weighted on its arcs by
a mapping l : A → R, which defines what we call the lengths of the arcs.
Even though they are interpreted as lengths, the values of the arcs may be
negative, which will be useful later on. We will suppose in addition that G has
no circuit. Let us note in passing that the absence of circuits makes it possible
to avoid some potential difficulties of definition of distances. Indeed, if there
is a circuit in a weighted digraph for which the sum of the lengths of the arcs
is strictly negative, then the distance from one vertex to another is no longer
clearly defined. It is enough to consider, for example, the distance from a
vertex of the circuit to itself: this distance is strictly negative, considering the
circuit as a path from this vertex to itself, but, furthermore, this distance can

126 Graph Theory and Applications

be made as small as we want by searching the circuit an arbitrary number
of times.

Digraphs without circuits have a characteristic property (given in
Chapter 5), which is very useful here, namely the acyclic numbering of
vertices. Let us recall that acyclic numbering of the vertices is such that
if there is an arc from a vertex s to a vertex t, then the number of s is less
than that of t. Therefore, when considering the vertices of a digraph in the
order of an acyclic numbering, we have the property that when a vertex is
considered, all its predecessors have already been previously considered. It
is this property which allows the calculation step by step of distances from
a given vertex r chosen as the source of distances.

Let us suppose that the vertices of G are indexed in the order of an acyclic
numbering, s0, s1, . . . , sn−1, with s0 = r. Note that we suppose implicitly
that vertex r is a source vertex of the digraph, which we can assume without
losing generality since only the vertices accessible by a path from r will be
considered for this distance calculation. We have the following formulae:

d
(
s0, s0

)
= 0

which results from the fact that the digraph is without circuits, and, for
i = 1, . . . , n − 1:

d
(
s0, si

)
= min

(sj ,si)∈A

(
d
(
s0, sj

)
+ l

(
sj , si

))

where l(sj , si) designates the value (length) of the arc (sj , si).2 Note that we
necessarily have j < i because of the indexing of the vertices following an
acyclic numbering. This is what makes this calculation possible, since when
we calculate d(s0, si) we know the d(s0, sj) (with then j < i) which appear
in the expression of d(s0, si).

It is easy to transform these formulas into algorithmic form. The
algorithm obtained, which we will not formalize further, with a preliminary
acyclic numbering algorithm (see Chapter 5), is linear in complexity
and efficient practically. Its justification is based on the justification of
the preceding formulas. This justification is based in turn on the trivial
observation that any shortest path from s0 to si, for i > 0, contains as
the second last vertex a predecessor of si. It is enough then, reasoning by
induction on i, to give to this predecessor the role of sj in the preceding
general formula.
2Formally, we should write l((sj , si)).

Optimal Paths 127

6.3.1 Shortest paths

It is possible to obtain some shortest paths corresponding to distances
by recording, as with unweighted digraphs, the parent of each vertex in
determining its distance. It is in fact a vertex sj for which the min of the
preceding formula has been reached. A shortest path is then obtained by
going back from si from parent to parent until vertex s0.

6.3.2 Longest paths

Shortest paths have numerous applications including relatively
unexpected questions a priori, such as optimal stock management. However
the application chosen in this chapter, particularly important in practice,
pertains, in an even more unexpected way, to longest paths in weighted
digraphs without circuits. A longest path from a vertex s to a vertex t is
obviously a path of maximum length linking s to t, called here the greatest
distance or, rather, greatest length3 from s to t, the maximum of the lengths
of the paths from s to t, a quantity denoted here by D(s, t). Note that this
concept is correctly defined because there are no circuits in the digraph
(especially here, no circuit with positive length).

A simple change of the valuation mapping of the digraph into its
opposite, −l instead of l, takes us from the distances to the greatest
lengths (up to the positive and negative sign, following the principle that
max(a, b) = −min(−a,−b)), and from the shortest paths to the longest.
This change is possible under the express condition that the values of the
arcs may be positive, negative or zero. This is true here since no hypothesis
has been made above concerning the values taken by l.

6.3.3 Formulas

All that is needed is to replace “min” by “max” in the formulas which
express the distances d above, which gives:

D
(
s0, s0

)
= 0

3The term length is to be preferred because distance contains the idea of minimum rather
than maximum.

128 Graph Theory and Applications

and, for i = 1, . . . , n − 1:

D
(
s0, si

)
= max

(sj ,si)∈A

(
D

(
s0, sj

)
+ l

(
sj , si

))

Determining the longest paths corresponding to these greatest lengths
is obtained as in the preceding case by recording the vertices for which the
max are reached.

The application to scheduling which we are now going to deal with will
give some practical examples.

6.4 Application to scheduling

Let a project be broken down into n elementary tasks, numbered 1 to n.
For convenience, in the following we will identify a task and its number. A
duration is given for each task (in a time unit which may be very different
depending on the nature of the project, from the split second to the day),
and the previous tasks, that is the ones which must have ended before this
one can begin. The first question, pompously called the “central scheduling
question”, is that of the minimum time for completion of the project. The
more general problem is that of the planning in time of the different tasks,
which we call a scheduling. We are going to model the problem with a digraph
in which we will apply what we have just seen. The classic method presented
here is called the Critical Path Method.

6.4.1 Potential task graph

The potential task graph is defined as follows. The vertices of this digraph,
s0, s1, . . . , sn, sn+1, correspond:

– for i = 1, . . . , n, to the given tasks, si corresponding to the task i,

– for i = 0 and i = n+1, respectively to two fictitious tasks traditionally
denoted by α and ω, with duration equal to zero and respectively
representing the beginning and the end of the project.

The arcs of the potential task graph are:

– the ordered pairs (si, sj) such that i, j ∈ {1, . . . , n} and such that the
task corresponding to si is a previous task of the one corresponding to
sj ,

Optimal Paths 129

– the ordered pairs (s0, si) for any si corresponding to a task without a
previous task in the project, and the ordered pairs (si, sn+1) for any
si corresponding to a task which is not a previous task of any task.

Finally this digraph is weighted by associating with each arc (si, sj)
the duration of the task corresponding to si, which is denoted by di. In
particular, we have d0 = 0, as the duration of task α.

6.4.2 Earliest starting times

The earliest starting time of a task is the earliest time at which this
task may begin, the origin of the times being defined by the (instantaneous)
completion of fictive task α. In particular, the earliest starting time of ω
is the minimum duration for completion of the project. The determining of
the minimum time for completion is therefore a simple particular case of
determining the earliest starting times.

Let us denote by ti the earliest starting time of task i, for i = 0, . . . , n+1.
We have, by definition, t0 = 0. To simplify, we will write from now on j ≺ i
to indicate that task j is a previous task of task i, a case which corresponds
to an arc (sj , si) in the potential task graph. The constraints of the problem
are expressed in the following manner, for i = 1, . . . , n + 1:

ti ≥ tj + dj for all j ≺ i

from which we obtain:

ti ≥ max
j≺i

(
tj + dj

)

It is essential to note that the potential task graph is without a circuit.
Indeed, a circuit in this digraph would correspond to a sequence of tasks for
which each of them, except for the first one, would have to wait to begin for
the preceding one to be over, and the first one would have to wait for the last
one to be over. It is obvious that the completion of these tasks is impossible.
The potential task graph being without circuits, it allows acyclic numbering.
We are supposing from now on that the tasks are numbered, and the vertices
of the potential task graph are indexed, following an acyclic numbering. As
the unique “source” task, α is necessarily task 0 and, likewise, as the unique
“sink” task, ω is necessarily task n + 1. We have the general implication:
j ≺ i ⇒ j < i. The expression maxj≺i(tj + dj) of the preceding inequality

130 Graph Theory and Applications

can then be calculated step by step for i from 0 to n + 1, thanks to the
acyclic numbering. Then, ti being by definition a minimum, it leads to the
equality:

ti = max
j≺i

(
tj + dj

)

This expression is in fact the one which gives the greatest length from s0

to si in the potential task graph, following the general formula given above
(see section 6.3.3). In particular, the minimum duration for completing the
project is equal to the greatest length from s0 to sn+1, that is from α to
ω, identifying these tasks and their vertices in the potential task graph.
Therefore, the minimum duration for completion of the project is equal to
D(α, ω).

6.4.3 Latest starting times

The latest starting time of a task is the latest time at which this task must
begin for the minimum duration of the project completion to be respected.
Let us denote by Ti, for i = 0, . . . , n + 1, the latest starting time of task i.
The constraint on the minimum duration for the completion of the project
is expressed by the equality:

Tn+1 = tn+1

The latest starting times of the other tasks can be calculated by a countdown†
from Tn+1, which leads us to write for i = n, n − 1, . . . , 1, 0, in this order:

Ti = min
j�i

(
Tj − di

)

The expression min can be calculated step by step in the inverse order of the
acyclic numbering, that is for i from n to 0. In addition this expression can,
as the one for the earliest starting time, be interpreted as a greatest path
length. More specifically, we have the following equality (its justification is
proposed as an exercise at the end of this chapter), for i = n + 1, n, . . . , 1, 0:

Ti = D(α, ω) − D
(
si, ω

)

Optimal Paths 131

6.4.4 Total slacks and critical tasks

The quantity mi = Ti − ti is called the total slack of the task i. It
is the period of time during which we must choose to start a task without
pushing back completion of the project, that is by keeping it to its minimum
duration. For obvious reasons, a very important practical role is played by
critical tasks, those for which mi = 0, that is for which the earliest starting
time equals the latest starting time. It results from what we saw above, that
these tasks correspond in the potential task graph to the vertices which are
on a longest path from α to ω, such a path being called for this reason
a critical path. The proof of the equivalence of these two concepts (total
slack zero and belonging to a critical path) is not completely direct (this is
proposed as an exercise at the end of the chapter).

6.4.5 Free slacks

The total slack of a task presents the serious practical drawback that
if it is used then some later tasks can become critical. To avoid this, we
have to consider a smaller slack. Let us first set out the following expression
of a latest starting time calculated not relative to the latest starting time
of the following tasks, but relative to the earliest starting time, so for i =
n, n − 1, . . . , 1, 0:

T ′
i = min

j�i

(
tj − di

)

What is called the free slack of the task i, is then defined by:

m′
i = T ′

i − ti

This slack does not have the drawback mentioned for total slack, and is much
more useful in practice. In fact, this slack can be used without consequences
for the following tasks in the project, that is without delaying them in any
way.

Note. Generally for any i, we have:

0 ≤ m′
i ≤ mi

and these inequalities can be strict.

Figure 6.2 gives an example of an application of what we have seen. The
potential task graph is given directly here for a project with tasks named

132 Graph Theory and Applications

0

0

0 0 0

1

8 1 9

0

0 1313 0

0 2020

5

0 6 6
3

5
A 8

0 0 0

0

0

0 0 0

0

8 0 8 0

1616 0

0

5 50

0

10010

Timi

G

H

E F

ω

K

[10]

m
′
i

ti

8

0

0 C D

B

α
[7]

[8]

[9]
[6]

[3]

[0]
[2]

[1]
[4]

3

5

5

5

3

4

5

5

10

[5]

5

4

Figure 6.2. An application of the Critical Path Method

A, B, C, D, E, F, G, H, K. Acyclic numbering of the vertices is given between
brackets. This numbering results from the application of a depth-first search
of the digraph starting from α. There are two critical paths, in bold in the
figure. Task C has a free slack strictly contained between 0 and its total
slack.

Note that in general, depending on the data of a scheduling problem, the
potential task graph is defined by lists of predecessors. In the application
of the depth-first search and the determining of the acyclic numbering, we
can either convert the list of predecessors into lists of successors or directly
proceed in the converse digraph (obtained by reversing the direction of the
arcs) starting from vertex ω.

Optimal Paths 133

6.4.6 More general constraints

In practice, it is possible to meet constraints such as: task B can only
begin after the completion of at least half of task A. Admitting that the
degree of completion of a task is proportional to time spent completing it,
it is simple to represent such a constraint in the potential task graph by
weighting arc (A, B) by half the duration of A. Another fraction of task A,
a third for example, would be dealt with in the same way.

Another example: task B must wait a certain time t after the end of task
A, the time needed, for example, for paint to dry. All it takes is to weight
arc (A, B) by dA + t, where dA is the duration of A. Thus, in particular,
concerning fictive task α, we have the case of a task B which can only start
after a given time d, the condition of which is interpreted in the potential
task graph by an arc from α to B with value d.

More generally, the potential task graph, and the calculation of the
starting times and of the slacks, can take into account any constraints by
defining a waiting period between two tasks, which can be different from the
duration of the first task as we initially defined.

6.4.7 Practical implementation

Before applying the preceding method, a lot of work has to be done
analyzing the project: breaking it down into elementary tasks, determining
the duration of each task and the anteriority constraints. The quality of this
initial work will strongly influence what will come after. Once this analysis
has been done, first schedulings can be calculated, which will lead to the
revision of certain data, for example correcting the anteriority constraints
which create a circuit in the potential task graph, making the project
impossible to complete.

Today, software exists for all types of computers for the calculations and
recalculations necessary for this process and the follow up of the completion
afterwards. It is possible to edit real dashboards of the project, for example
the Gantt chart. In this chart, each task is represented by a line segment
placed horizontally where the task in question can be executed following a
horizontal temporal axis (in abscissa). The chart is said to be “slanted to
the left” when each segment representing a task has its left endpoint placed

134 Graph Theory and Applications

on the earliest date of this task, and a planning “slanted to the right” when
each segment is placed at the latest starting time. This scheduling model
makes it possible for the project manager to visualize the progression of
the project through time. The critical tasks are indicated on the chart in a
specific visible way, to ensure a specific treatment and avoid a delay in any
one of them, which would, as we saw, lead to a delay for the entire project.

If we add to the project some constraints with regard to resources
necessary for completion of the tasks, and with quantities which are
necessarily limited, the problem becomes algorithmically more difficult. The
preceding method is not enough because at a given time the tasks which are
being executed may require one of the resources in a quantity greater than
that available for this resource at that time. For this general problem, we
have as data the resource constraints: for each task and each resource, the
quantity of this resource which is necessary for completion of one unit of the
task. This problem is difficult (NP-complete) and its practical importance
(resource constraints are present in almost any project) has led to seeking
approximate solutions which are as good as possible.

6.5 Positive lengths

Let G = (X, A) be a strict digraph weighted by the mapping l : (s, t) ∈
A → l(s, t) ∈ R

+, that is weighted with positive or zero real numbers which
here represent lengths. Let s0 be a vertex of G, a vertex from which we will
seek the distances and shortest paths. We are still dealing here with the
so-called single source problem (problem 2 of 6.1.2). Let us put n = |X|.

The classic Dijkstra’s algorithm, given below, considers the vertices in
an order which depends on values on these vertices calculated step by step
as work progresses. These values, called labels, are defined by the mapping
λ : X → R

+ ∪ {∞}, and will be the distances sought at the end. The value
∞ represents an infinite distance, which means that a vertex is inaccessible.
For computing, it may be represented by a numeric value greater than any
value considered. At the beginning, labels are initialized to a value ∞ and are
later revised downward step by step. In what follows t and t0 are variables
of the vertex type and S represents an auxiliary set of vertices.

Optimal Paths 135

procedure Dijkstra1(G,s0);
begin
-- initialization
for s ∈ X loop λ(s):= ∞; end loop;
λ(s0):= 0; S:= {s0}; t0:= s0;
-- treatment
while |S| < n loop

-- revision of labels
for t ∈ X \ S such that (t0,t) ∈ A loop

λ(t):= min(λ(t), λ(t0) + l(t0,t));
end loop;
-- choice of a minimum label vertex
t0:= a vertex of X \ S such that λ(t0) is minimum;
S:= S ∪ {t0};

end loop;
end Dijkstra1;

6.5.1 Justification

This algorithm ends after a finite number of operations, to be specific
after n − 1 iterations of the main while loop (remember that n is the
number of vertices of the digraph). Indeed, at each iteration the auxiliary
set S increases by one element and ends up equal to X. In addition, each
iteration of the main while loop clearly only requires a finite number of
operations. This number of operations is upper bounded for the for loop of
labels revision by the outdegree of the arc exiting out of vertex t0 previously
added to S.

Let us then show that at the end of the execution the values of λ are
the distances sought after, that is the d(s0, t) for t ∈ X. Specifically, we are
going to show that the equality λ(t) = d(s0, t) for t ∈ S is initially true and
remains such throughout the iterations of the main loop of the algorithm
(this property is what is called the invariant of the loop while). Initially we
have S = {s0} and λ(s0) = 0 thus, with d(s0, s0) = 0, trivially the equality
to be proved. Let us then show this equality for vertex t0 introduced in
S during a current iteration, supposing the equality true on S before the
introduction of t0. Thus, we will have the equality λ(t) = d(s0, t) for any
t ∈ S ∪ {t0}, and, step by step, finally for any t ∈ X.

136 Graph Theory and Applications

Let μ be any path from s0 to t0 in G (see Figure 6.3), and tμ be the
first vertex of μ met, while going from s0 to t0, which is not in S. (Note
that tμ exists because s0 is in μ while t0 is not.) Let sμ be the predecessor
of tμ in μ (sμ = s0 is possible). Also let ν be the subpath μ from vertex s0

to vertex sμ. We denote by l(μ) the length of path μ, length defined as the
sum of the lengths of its arcs, and likewise for l(ν). We have the sequence
of inequalities:

l(μ) ≥ l(ν) + l
(
sμ, tμ

)
≥ λ

(
sμ

)
+ l

(
sμ, tμ

)
≥ λ

(
tμ

)
≥ λ

(
t0

)

The first inequality is immediate since the path constituted of v
augmented by arc (sμ, tμ) is a subpath of μ and since the lengths of the
arcs are positive or zero. The second inequality results from the fact that
the value λ(sμ) is, by hypothesis on set S, the distance from s0 to sμ and
therefore less than or equal to the length of path ν. The third inequality
results from the determining of λ(tμ) in the algorithm (value minimized as
work progresses). The last inequality results from the choice of vertex t0,
with a minimum label. From l(μ) ≥ λ(t0) it results that d(s0, t0) ≥ λ(t0).
In addition the quantity λ(t0) is the length of a path from s0 to t0. Indeed,
depending on the determining of λ in the algorithm, there is a vertex sμ0 ∈ S
such that:

λ
(
t0

)
= λ

(
sμ0

)
+ l

(
sμ0 , t0

)
Let μ0 be a shortest path from s0 to s0. Then λ(t0) is the length of path μ0

augmented by arc (sμ0 , t0). Thus, the quantity λ(t0) is equal to the distance
from s0 to t0. This completes the justification of the algorithm.

(μ)

s0

t0

tμ

sμ

(μ0)

(S)
sμ0

(ν)

Figure 6.3. Proof of Dijkstra’s algorithm

Optimal Paths 137

2 6

8

1

1 2

9

1 6

3

9

2

9

5

s0

[2] [13] [15]

[17]

[12][21]

[8]

[13]

8

4

[15][0]

1 7

3

13

7

[9]

Figure 6.4. Application of Dijkstra’s algorithm (between brackets: the
distances obtained, labels in the algorithm; in bold: a shortest paths
arborescence)

An example of an application of Dijkstra’s algorithm is given in
Figure 6.4.

Notes. 1) The labels λ help to clarify understanding of the algorithm. With
each iteration of the main loop, λ represents for any vertex t the distance
from s0 to t in the subdigraph of G induced by S ∪ {t}, that is to say the
distance from s0 to t obtained by considering paths which are only going
through vertices of set S. At the end, when S = X, we find we are back at
the concept of distance defined in G. This makes it possible to understand
the role of S during the execution of the algorithm: as the labels of S are
definitive, that is they are no longer revised, which means they no longer
decrease during the execution of the algorithm, we have λ(t) = d(s0, t) for
all t ∈ S.

2) When the next minimum label found is infinite, that is when λ(t0) =
∞, it is useless to continue since then vertex t0 will not improve any other
label and in addition all the other vertices of X \ S are also in a similar
situation (since λ(t0) is a minimum). It is possible therefore to modify the
algorithm by adding the instruction:

exit when λ(t0) = ∞;

138 Graph Theory and Applications

at the end of the main loop while, just after the choice of vertex t0 which
has a minimum label.

6.5.2 Associated shortest paths

The general problem considered here requires determining with distances
all, or some, of the corresponding shortest paths. It is easy to complete the
previous algorithm to obtain these paths. It suffices while revising the labels
to record the vertex which makes it possible to attain the minimum of the
labels. We call this vertex the parent. Parents are stored in an array parent
(indexed on the vertices). To find these parents, we modify the for revision
loop of the labels as indicated in the following procedure Dijkstra2. We
have to modify the calculation of the minimum to separate the cases of
modification and non-modification of the label. In this second version we
also take into account the previous second note concerning the exit of the
main loop as soon as a label is infinite.

procedure Dijkstra2(G,s0);

begin
-- initialization

for s ∈ X loop λ(s):= ∞; end loop;
λ(s0):= 0; S:= {s0}; t0:= s0;

-- treatment

while |S| < n loop
-- revision of labels

for t ∈ X \ S such that (t0,t) ∈ A loop
if λ(t) > λ(t0) + l(t0,t) then

λ(t):= λ(t0) + l(t0,t);

parent(t):= t0;

end if;
end loop;
-- choice of a minimum label vertex

t0:= a vertex of X \ S such that λ(t0) is minimum;

exit when λ(t0) = ∞;

S:= S ∪ {t0};
end loop;

end Dijkstra2;

Optimal Paths 139

By construction, the vertices which will have at the end of the algorithm
a non-zero finite label will have a parent (vertices of S, except s0). Let t �= s0

be such that λ(t) < ∞. Considering the parent of t, then the parent of this
new vertex and so on until, necessarily, ending up in the source vertex s0,
we describe, in reverse order, a path from s0 to t which is a shortest path.
Indeed, it suffices to verify that the length of this path is equal to λ(t). If †
λ(t) = ∞, there is no path from s0 to t and so no shortest path (parent of t
is not defined).

The shortest paths thus constructed define in G an arborescence with
root s0, an arborescence which is called the shortest paths arborescence of
source s0. This arborescence is defined by the primitive parent determined
in the preceding algorithm. It covers the set of vertices which are at a finite
distance from s0. It is not unique since there may be several shortest paths
from one vertex to another. That is why it is said to be an arborescence of
shortest paths and not an arborescence of the shortest paths.

Note. It is often practical to extend to X ×X the mapping l which defines
the lengths of the arcs of the digraph under consideration, by putting:
l(s, t) = ∞ if (s, t) /∈ A and s �= t, and l(s, s) = 0 for all s ∈ X. In
practice, it is convenient to give ourselves the weighted digraph G = (X, A)
as a square matrix of order n = |X| with the extended lengths as entries.
This is coherent with the initial values given to the labels λ in the algorithm,
and with the natural convention on distances that d(s, t) = ∞ if there is no
path in G from vertex s to vertex t. With these conventions, the for loop of
revision of labels in the algorithm can be slightly simplified, becoming:

for t ∈ X \ S loop
if λ(t) > λ(t0) + l(t0,t) then

λ(t):= λ(t0) + l(t0,t);
parent(t):= t0;

end if;
end loop;

Indeed, in the case (t0, t) /∈ A, the instruction applies correctly to λ(t),
without changing its value since, as l(t0, t) = ∞, we have λ(t0)+ l(t0, t) = ∞
and the condition of the if loop cannot be fulfilled.

140 Graph Theory and Applications

6.5.3 Implementation and complexity

In terms of complexity, Dijkstra’s algorithm can first be analyzed in the
following way (n still being the number of vertices and m the number of
arcs):

– initialization of labels: O(n),

– revisions of labels: O(m), since there are at the most and in total a
number of operations proportional to the outdegree of the arc exiting
from each vertex (at the time when this vertex is added to the auxiliary
set S),

– choice of a vertex with a minimum label: this part of the algorithm
requires specifications regarding its implementation. First, and
without looking for any refinement regarding the number of operations,
it is possible to look for a minimum label by searching all the vertices
of X \ S and by keeping the smallest label met. The total number of
operations is then of the order of the sum of the numbers of the labels
considered in each case of a minimum label sought after, that is:

(n − 1) + (n − 2) + · · · + 2 + 1 = O
(
n2

)

In the end, the complexity of Dijkstra’s algorithm, as we analyzed it, is
therefore:

O(n) + O(m) + O
(
n2

)
= O

(
n2

)

(the digraph being strict, the number m of arcs is O(n2)).

This result can be improved, in particular by improving the method for
finding a minimum label. Indeed there are classic algorithmic techniques for
that (for example, by placing the elements on the nodes of an arborescence
called a priority queue). Other possible improvements depend on the fact
that the digraph is or is not dense, that is if the number of its arcs m is of
the order n2 or of a lower order.

6.5.4 Undirected graphs

As we already mentioned in general for problems concerning shortest
paths, it is always possible to bring the case of an undirected graph back
to that of a directed graph by considering the digraph obtained from the

Optimal Paths 141

undirected graph after replacing each edge st by two opposite arcs (s, t)
and (t, s) having the same value. In practice, we observe that an edge st
considered in the revision loop of the labels in the sense of vertex s to vertex
t (which corresponds to arc (s, t) in the associated digraph) never has to be
considered in the other direction, from t to s. Indeed, with arc (s, t), vertex
s plays the role of t0 in the algorithm. It is therefore in set S, and its label
is no longer revizable from t, which means that arc (t, s) will play no role in
the revision of labels. Because of this, the previous algorithm can be applied
directly to an undirected graph G = (X, E) with only the modification of
considering an edge t0t instead of an arc (t0, t) in the for loop of the revision
of labels (version Dijkstra2), as follows:

for t ∈ X \ S such that t0t ∈ E loop

if λ(t) > λ(t0) + l(t0,t) then

λ(t):= λ(t0) + l(t0,t);

parent(t):= t0;

end if;

end loop;

An example is given in Figure 6.5.

[3]

2 6

7

1

1 2

9

1 6

3 4

9

2

9

1

5

[0]

s0

[2] [5]

[13]

[10][9][1]

[7] [6]8 [11]

8
3

3 7

1

Figure 6.5. Application of Dijkstra’s algorithm to an undirected graph
(between brackets: the distances obtained, in bold: a shortest paths tree)

142 Graph Theory and Applications

6.6 Other cases

Dijkstra’s algorithm supposes that the lengths of the arcs are positive
or zero. This hypothesis is necessary in general, as the example given in
Figure 6.6 shows.

[0]
s0

[3]

[1]

11

3 -2

[2]

Figure 6.6. Application of Dijkstra’s algorithm to a weighted digraph with
a negative arc length. Label 2 found on the vertex on the right is not the
distance of this vertex from s0. There is indeed a path of length 1 going
through the bottom vertex

To escape from this hypothesis is not easy, first of all, as we have observed
before, because of the definition itself of distance. Indeed, if in the weighted
digraph under consideration there is a circuit with a total negative length,
a walk which would meet that circuit could circle it for an indeterminate
number of times and would have an arbitrarily small length. We may want
to impose a shortest walk to be a path which would prevent it from having
to search a negative circuit several times, but it is not easy algorithmically.
What must be done in fact, is to preventively detect a negative circuit. For
the unique origin problem, there are algorithms which solve this general case,
algorithms which are slightly more complicated than Dijkstra’s algorithm.

6.6.1 Floyd’s algorithm

Still looking at the general case of lengths of arcs which are positive,
negative or zero, there is a remarkably simple algorithm for the problem of
all ordered pairs of vertices (problem 3 of section 6.1.2). Let G = (X, A) be
a strict digraph weighted by the mapping l : (s, t) ∈ A → l(s, t) ∈ R. Let us
put X = {s1, s2, . . . , sn} and let us suppose weighted digraph G to be given

Optimal Paths 143

by the square matrix of order n, M = (lij), defined by:

lij =

⎧⎪⎪⎨
⎪⎪⎩

l
(
si, sj

)
if

(
si, sj

)
∈ A

∞ if
(
si, sj

)
/∈ A and i �= j

0 if i = j

In the following algorithm, M represents the adjacency matrix of the
digraph and N an array variable n×n, which represents the matrix of values
calculated step by step through the execution, and which will be at the
end, if there are no negative circuits, the distances sought after. Value ∞ is
operated classically (for example ∞+∞ = ∞). A negative circuit in digraph
G is detected by the appearance during the execution of a value N(i,i) < 0.
If there is no such circuit, at the end of the execution the values obtained
N(i,j) < ∞ are the distances sought after: (N(i,j) is the distance from
vertex si to vertex sj in G).

procedure Floyd(G);
begin
N:= M;
for k in 1..n loop

for i in 1..n loop
for j in 1..n loop

if N(i,j) > N(i,k) + N(k,j) then
N(i,j):= N(i,k) + N(k,j);

end if;
end loop;

end loop;
end loop;

end Floyd;

The justification and the study of this algorithm are proposed in
exercise 6.8.

6.7 Exercises

+6.1. Let us go back over the example in section 6.2 (Figure 6.1). Find all
the shortest paths from r = 1 to the vertex numbered 8 (which is at a
distance 6 from r).

144 Graph Theory and Applications

+6.2. Let us go back over the example in section 6.4 (Figure 6.2).

a) What happens if we add task G as a previous task to C?
b) Re-evaluate the duration of task E from five to six time units.

Show everything that then changes (starting times, slacks).

6.3. A project is broken down into tasks A, B, . . . , J . The following array
(at the end of the exercise) gives for each of these tasks its duration
and the previous tasks.

a) Draw the potential task graph associated with this project.
b) Calculate the earliest starting times and the latest starting times

of the tasks, the total slacks and the free slacks.
c) If task E starts at its latest starting time, are there other tasks

which then become critical? If that is the case, say which ones.
Repeat the question with tasks A.

d) The constraint that task D cannot begin before starting time 2 is
added to the project. Model this constraint in the potential task
graph. What does it modify in the preceding results?

Tasks Durations Previous tasks
A 13 G

B 9 A, E, I

C 5 B

D 9 —
E 10 D, G, H

F 14 A, E, I

G 5 —
H 6 —
I 14 G, H

J 15 A, D, I

*6.4. Prove the following general expression of the latest starting time Ti,
for i = n + 1, n, . . . , 1, 0:

Ti = D(α, ω) − D
(
si, ω

)

*6.5. Show generally that a task is critical, that is has a zero total slacks, if
and only if it belongs to a critical path (that is a longest path from α
to ω in the potential task graph).

Optimal Paths 145

+6.6. (Sort by levels the vertices of a digraph without circuits.)

Let G be a digraph without circuits with a unique source vertex r.
Observe that any vertex of G is accessible by a path from r. We will call
any set which contains the vertices which are at a same greatest (path)
length from r the level of vertices in G. In particular, vertex r is at a
level corresponding to the greatest length 0. Then, for each greatest
possible length, 1, 2, . . . (until the largest value k for which there is
in G a vertex with a greatest length k from r), there corresponds a
level of vertices in G. The levels, which are so defined and which are
not empty, define a partition of the set of the vertices of G, called
sort by levels. The levels are ordered in the order of the values of their
corresponding greatest lengths.

a) Show that two vertices of the same level are never joined by an
arc.

b) Show that each arc of G goes from a level to a higher level.

c) Show that by numbering the vertices of G in the increasing order
of levels, and randomly within the same level, we obtain an acyclic
numbering.

d) Find out the sorting by levels of the vertices of the following
digraph:

r

e) Find in this digraph an acyclic numbering which cannot be
obtained from a sorting by level obtained as indicated in
question c.

6.7. Apply Dijkstra’s algorithm to the undirected graph in Figure 6.7
below, taking vertex s0 as the origin of the distances. Deduce a shortest
path from vertex s0 to vertex s2.

*6.8. (Study of Floyd’s algorithm)

Let us consider Floyd’s algorithm as it is described in section 6.6.1.
Let us put, for k = 0, 1, . . . , n, dk(si, sj) the shortest length of the

146 Graph Theory and Applications

12

4 1

1

11

1

8

s1

s8

s7

s5

s2

8

5

142

s62

139

2

s0

s3

4s4

s9

9 3

13

5 3

Figure 6.7. Exercise 6.7

walks of G going from si to sj and whose internal vertices belong to
the set {s1, . . . , sk}. We call such a walk a k-walk. For k = 0, the set
of possible internal vertices is empty and the 0-walks correspond to
the arcs. Let us denote by Nk, for k = 1, . . . , n, the array N of the
algorithm at the end of the execution of the kth iteration of the loop
for k in 1 . . . n (first for loop). At the beginning, N0 is the adjacency
matrix M of the digraph and Nn is the final N of the algorithm.

a) Show by induction on k that if Nk(i, j) < ∞ then Nk(i, j) is the
length of a k-walk from vertex si to vertex sj , this result being
true even in the case i = j.

b) Deduce from the question above that if there is a Nk(i, i) < 0
then there is a negative circuit in G (circuit with a length < 0).

Optimal Paths 147

c) Show by induction on k that whatever i, j, k are, Nk(i, j) is less
than or equal to the length of any k-path from si to sj (path
which is a circuit in the case i = j).

d) Deduce from the previous question that if there is a negative
circuit in G, then there is a Nk(i, i) < 0.

e) It follows from the preceding questions that digraph G will have
a negative circuit if and only if a N(i,i) < 0 appears during
the execution of the algorithm. We suppose that digraph G has
no negative circuits. Show that if Nk(i, j) < ∞ then Nk(i, j) =
dk(si, sj). Deduce from this, that at the end of the algorithm any
value N(i,j) < ∞ is the distance from si to sj in G.

f) Show how we can recover shortest paths corresponding to the
distances found.

g) Study the complexity of Floyd’s algorithm. Try to compare, from
a complexity point of view, Floyd’s algorithm and Dijkstra’s
algorithm applied to each of the vertices of the digraph taken
as source (which will also give the distances for all ordered pairs
of the vertices).

*6.9. (To reflect on)

Let G = (X, A) be a strict digraph weighted by integers > 0, that is
with a mapping l : A → N

∗. We associate with G the digraph H =
(Y, B) obtained by replacing in G each arc a = (s, t) by a path of length
l(a) going from s to t. All these paths are in H pairwise disjoint for their
internal vertices. Let us call main vertices of H those vertices coming
from G (the ones which are not main vertices of H are the internal
vertices of the preceding paths). We identify the main vertices of H and
the corresponding vertices of G. Digraph H is not weighted and the
application to this digraph of the distances calculation algorithm from
a main given vertex s0 (section 6.2) gives in particular the distances
from s0 to each of the main vertices of H. These distances correspond,
by construction of H, to the distances from s0 in G. Try to rediscover
Dijkstra’s algorithm applied to G from the preceding algorithm applied
to H.(Observe the order in which the main vertices in H are dealt with.
You will find once again the idea of Dijkstra’s algorithm of dealing with
the vertices in the order following the minimum labels).

This page intentionally left blank

Chapter 7

Matchings

The concept of matching is one of the major concepts of graph theory. It
is of theoretical interest because of its development and its links with other
concepts, especially the concept of flow studied in the following chapter. It
is also interesting for its applications, in particular for the classic optimal
assignment problem dealt with in this chapter.

7.1 Matchings and alternating paths

7.1.1 A few definitions

A matching of a graph G is a set M of edges such that no two edges
share a same endvertex. A vertex of the graph is said to be saturated by a
matching M , or M -saturated, if it is an endvertex of an edge of M . Otherwise
it is said to be unsaturated by M , or M -unsaturated. If every vertex of G is
M -saturated, then matching M is said to be perfect. A matching is said to
be maximal if it is impossible to add an edge to it. A matching M is said to
be maximum if it has the greatest possible number of edges.1

Notes. 1) If a graph has an odd number of vertices, it, of course, cannot
have a perfect matching. (This is the case for the graph in Figure 1(b)).
1Note the difference between “maximal” and “maximum”. Generally speaking, maximal

is used when for a certain case nothing can be added to make it bigger, while maximum is
used when there are no other cases bigger than the maximum. There is the same distinction
between “minimal” and “minimum”.

150 Graph Theory and Applications

(a) maximal matching

(c) maximum matching

(b) maximum matching

(d) perfect matching

Figure 7.1. Matchings examples (edges in bold lines). Example (a) shows
the case of a matching which is maximal but not maximum

2) If a graph is bipartite, of the form G = (X, Y, E), it can have a perfect
matching only if |X| = |Y |. This condition is necessary but not sufficient.
(Find a counter-example with a connected bipartite graph.)†

Application of the second note enables us to solve very simply the
problem of using dominoes to tile a “truncated chessboard”. A chessboard
(8 × 8 squares) has had its right bottom corner square and its upper left
corner square removed. The point is to show that it is impossible to cover
it exactly with dominoes: a domino covers two squares with a common
side, horizontally or vertically. Covering exactly means without leaving any
square uncovered and without overlapping dominoes. Such a covering is
called a domino tiling.2 The solution is easy if we look at the colors of the
squares: each domino necessarily covers a white square and a black one.
In the truncated chessboard there are two more black squares than white
ones (deciding by convention that the squares removed, necessarily of the
same color, are white), which is incompatible with the preceding property.
We apply the previous note to the graph associated with the chessboard in
2A problem on the study of domino tiling is proposed in Chapter 12.

Matchings 151

the following manner: the vertices are the squares of the chessboard, the
edges are pairs of squares sharing a common side. It is easy to see that
this graph is bipartite (vertices associated with white squares on the one
hand, vertices associated with black squares on the other). A matching of
the graph corresponds to a tiling of the chessboard. Since the two classes of
the bipartition do not have the same number of vertices, there is no perfect
matching in the graph and therefore no tiling of the chessboard.

7.1.2 Concept of alternating paths and Berge’s theorem

Given a graph G = (X, E) and a matching M of G, an alternating path
relative to M , or an M -alternating path, is a path for which the edges are
alternately in M and in E \ M . An M -alternating path is said to be an
augmenting path for M , or an M -augmenting path, if its endvertices are
M -unsaturated.

The following theorem is the foundation of the whole theory.

Theorem 7.1 (Berge). A matching M of a graph G is maximum if and only
if there is no M -augmenting path.

Proof. Let us first consider the case of the existence of an M -augmenting
path, C. Let x and y be the ends of C, M -unsaturated vertices by hypothesis.
Let us define a new matching M ′ of G as follows: any edge of path C which
is not in M is taken in M ′, as well as any edge of M which is not in C. We
say that M ′ is obtained by exchanging the edges of M along path C. It is
easy to verify that M ′ is effectively a matching of G. This matching M ′ has
one edge more than M (compare the number of edges of M and M ′ in path
C). Thus, if an M -augmenting path exists, it can define a matching M ′ such
that |M ′| > |M |. Matching M is not maximum, which proves the necessary
condition of the theorem.

Conversely, let us suppose that matching M is not maximum and let M ′

be a matching such that |M ′| > |M |. Let us consider the spanning subgraph
of G induced by the edges of G which are in M or in M ′ but not in both.
Each vertex of H is of degree ≤ 2 (in H). It is an easy exercise to show that †
the connected components of such a graph are one of the following: (1) an
isolated vertex; (2) a cycle, necessarily even (an alternating cycle, its edges
are alternately in M and in M ′); (3) an alternating path (relative to M and
M ′). In cases (1) and (2) the number of edges of each of the two matchings

152 Graph Theory and Applications

in the component is the same. Only in case (3) can there be a different
number of edges in M and in M ′. Since there are more edges in total in M ′

than in M , this must be also be found in one of the components of H, and
therefore it must be one of the components which is in case (3). We thus
have shown the existence of a path in which the edges are alternately in M
and in M ′, with one edge more in M ′ than in M . It is easy to see that the
ends of such a path are M ′-saturated, therefore M -unsaturated. Thus this
path is M -augmenting. The existence of this path shows, by the absurd, the
sufficient condition of this theorem.

Going back over the example in Figure 7.1(a), it is easy to find an
augmenting path which makes it possible to define, by exchange of edges, a
matching having one edge more (for example the matching in case (b)). On
the other hand in case (c), for example, there is no augmenting path; this
matching is truly maximum.

7.2 Matchings in bipartite graphs

The theory of matchings is general but here we will restrict it to the case
of bipartite graphs, which is already interesting and which is enough for the
important assignment problem which we will study later on.

Given a bipartite graph G = (X, Y, E) and a matching M of G, we will
use the following definitions.

If xy ∈ M , the vertices x and y are said to be matched under M , or
M -matched, or vertex x is said to be matched or M -matched to vertex y.

The sets U ⊆ X and V ⊆ Y are said to be matched under M , or
M -matched, if any vertex of U is M -matched to a vertex of V and vice
versa.

The set U ⊆ X, or V ⊆ Y , is said to be M -saturated if all its vertices
are M -saturated. It is also said that M saturates U or is a U -saturating
matching.

In what follows, given S ⊆ X, N(S) designates the set of the neighbors
of the vertices of S in G. We have N(S) ⊆ Y .

We are now going to establish a necessary and sufficient existence
condition for a matching in a bipartite graph, a result which is fundamental
for what is to come. The following lemma will make the proof very simple.

Matchings 153

Lemma 7.1. Let G = (X, Y, E) be a bipartite graph and let M be a maximum
matching of G. Let us put: S0 the set of the vertices of X which are
M -unsaturated, Z the set of the vertices of G which are joined to at least
one vertex of S0 by an M -alternating path, S = Z ∩X and T = Z ∩Y (note
that we have S0 ⊆ S). Then: 1) N(S) = T , 2) S \S0 and T are M-matched.

This very technical lemma will be demonstrated by an exercise (in †
considering an example, it is easy to see the way to follow).

Theorem 7.2 (Hall). A bipartite graph G=(X, Y, E) allows an X-saturating
matching if and only if for any S ⊆ X we have |N(S)| ≥ |S|.

Proof. Let us show the sufficient condition. Let M be a maximum matching
of G. Using the notations and the results of lemma 7.1, we have, if S0 �= ∅:

|N(S)| = |T | = |S \ S0| = |S| − |S0| < |S|

which contradicts the hypothesis |N(S)| ≥ |S|. Thus S0 = ∅ and therefore
matching M saturates X. Conversely, let S ⊆ X be such that |N(S)| < |S|.
Then an X-saturating matching should match the vertices of S to a set of
vertices of N(S) of cardinality at least equal to the cardinality of S, but
that is not possible since |N(S)| < |S|. Therefore such a matching cannot
exist.

The following corollary is a classic result in algebra.

Corollary 7.1 (Marriage lemma). If G = (X, Y, E) is a k-regular bipartite
graph, with k > 0, then G has a perfect matching.

Proof. We have |E| = k|X| = k|Y |, and thus |X| = |Y |. An X-saturating
matching is therefore perfect. Let S be any subset of X and let us put F1

the set of the edges incident to a vertex of S, F2 the set of the edges incident
to a vertex of N(S). The number of edges of F1 is k|S| and the number of
edges of F2 is k|N(S)|. As F1 ⊆ F2, since any edge incident to a vertex of
S is also incident to a vertex of N(S), we have k|S| ≤ k|N(S)|. This gives
|N(S)| ≥ |S|, which proves the existence of an X-saturating matching by
application of theorem 7.2.

This corollary takes it name “Marriage lemma” from the fact that it
solves the following problem: an equal number of boys and girls are to be

154 Graph Theory and Applications

wed and it is supposed that each boy and each girl agrees to marry someone
of the opposite sex among k of them selected by everyone a priori. The
relation is symmetric (if x selects y, y selects z) and this number k is the
same for every boy and every girl. We need to show that it is possible for
everyone to marry, each person with one of the persons belonging to his or
her selection. The answer, far from obvious, is positive according to corollary
7.1. The problem is modeled using a bipartite graph G = (X, Y, E), where
X is the set of boys, Y the set of girls, and E the set of boy–girl pairs which
have selected each other for a possible marriage. A perfect matching answers
this question.

7.2.1 Matchings and transversals

Matchings are closely linked to the concept of transversal, which is dual
in some way. First let us give some definitions concerning general graphs,
assumed not to be bipartite.

A transversal set, or simply a transversal, of a graph G is a set of vertices
of this graph such that any edge of G has at least one endvertex in this set.

A minimum transversal is a transversal which has the lowest possible
number of vertices.

(a) minimum transversal(a) transversal

Figure 7.2. Examples of transversals (vertices in bold)

The transversal number of a graph G is defined as the lowest number
of vertices of a transversal of G, that is the cardinality of a minimum
transversal. This number is denoted by τ(G).

The matching number of a graph G is defined as the largest number of
edges in a matching of G, that is the cardinality of a maximum matching.
This number is denoted by ν(G).

Matchings 155

It is easy to see that in a graph the cardinality of any matching is less
than or equal to the cardinality of any transversal. Indeed, any edge has at
least one endvertex in the transversal, and two edges of the matching have
no common endvertex. Thus, in general we have:

ν(G) ≤ τ(G)

However, we do not always have the equality, as the example of the graph in
Figure 7.2 shows, a graph for which ν(G) = 3 and τ(G) = 4. It is remarkable
that for bipartite graphs, on the other hand, we always have this equality
as we will see. The following result is at the basis of the demonstration of
this equality and it is also easy to prove.

Lemma 7.2. Let G be any graph, M a matching of G, and L a transversal
of G. If |M | = |L| then M is a maximum matching and L a minimum
transversal of G.

Proof. Any matching having a number of elements less than or equal to
that of any transversal, if the cardinality of a matching is equal to that
of a transversal, the number of elements of the matching is necessarily a
maximum and the number of elements of the transversal a minimum.

Lemma 7.3. Let G = (X, Y, E) be a bipartite graph, M a matching of G, S0

the set of the vertices of X which are M -unsaturated. Let S ⊆ X and T ⊆ Y
be sets such that S0 ⊆ S, N(S) = T and S \S0 and T are M -matched. Then
(X \ S) ∪ T is a transversal of G which has the same cardinality as M .

Proof. The proof of this lemma is easy. First it is simple to verify that
L = (X \ S) ∪ T is a transversal of G, since N(S) = T . Then we have,
because of the hypotheses on sets S and T :

|L| = |X| − |S| + |T | = |X| − |S| +
(
|S| −

∣∣S0

∣∣)
= |X| −

∣∣S0

∣∣ =
∣∣X \ S0

∣∣ = |M |

The second following theorem is the other major basic result of matching
theory in bipartite graphs. It is in addition equivalent to theorem 7.2.

Theorem 7.3 (König). If graph G is bipartite, then ν(G) = τ(G).

156 Graph Theory and Applications

Proof. Consider a maximum matching of G and sets S and T as defined in
lemma 7.1. Note that the hypotheses of lemma 7.3 on sets S and T are the
conclusions of lemma 7.1. The linking of lemmas 7.1 and 7.3, with lemma 7.2,
justifies the theorem.

7.3 Assignment problem

In a company, employees must be assigned to positions. The positions
he or she may take are given for each employee. The question is to find out
whether it is possible to assign all employees, with one employee to each
position and vice versa, and, if so, to give such an assignment.

The problem can be modeled using a bipartite graph G = (X, Y, E),
where X is the set of employees, Y the set of positions, E the set of
employee-position pairs such that the employee can occupy the position
considered. Assignment of employees, possibly not all of them, corresponds
in graph G to a matching, and assignment of all employees corresponds to
a matching of G which saturates X. Theorem 7.2 (Hall) provides an answer
to this question. The solution exists if and only if for any set S of employees
the number of positions which can be occupied by at least one employee of
S is greater than or equal to the number of employees of S.

We are going to look here at a practical algorithmic method for answering
this question and give a solution when there is one.

7.3.1 The Hungarian method

Given a matching M which does not saturate X (and which may be
initially empty), we look for an augmenting path. This search is made from
an unsaturated vertex r of X by a systematic exploration of the alternating
paths which start from r, until another unsaturated vertex is found, thus
bringing to light an M -augmenting path which makes it possible to augment
the matching. We start again with the matching augmented by the preceding
path, as long as there is an unsaturated vertex in set X. Let us specify all
this in the following algorithm, known under the name of the Hungarian
method. Graph G is assumed to be given by what we can call a neighborhood
function N such that for each S ⊆ X, N(S) is the set of the neighbors of
the vertices of S (it is more convenient here to consider the neighbors of a
vertex in a set rather than in a list).

Matchings 157

In what follows, I represents the set of the vertices of X which are
unsaturated by the current matching M, and the Boolean variable found is
used to signal the discovery of an augmenting path.

procedure matching saturating X(G);
begin
M:= ∅; I:= X;
loop

exit when I = ∅;
r:= a vertex of I;
look for augmenting path(M,r);
if found then
augment matching(M,r);

else
exit;

end if;
I:= I \ {r};

end loop;
-- if I = ∅, M is a matching which saturates X
-- if I �= ∅, there is no matching which saturates X

end matching saturating X;

Some of the preceding instructions are really pseudo-instructions which
have to be made explicit. Sets S and T (variables S and T) considered in
what follows are auxiliary sets of vertices, respectively of X and of Y .

look for augmenting path(M,r):

S:= {r}; T:= ∅;
s:= r;
loop

if N(S) = T then
found:= false;
exit;

end if;
t:= a vertex of N(S) \ T;
parent(t):= a vertex of S ∩ N({t});
if t M-insatured then
found:= true;
exit;

158 Graph Theory and Applications

end if;
s:= the vertex M-matched to t;
parent(s):= t;
S:= S ∪ {s}; T:= T ∪ {t};

end loop;

augment matching(M,r):

s:= parent(t); M:= M ∪ {st};
while s �= r loop
t:= parent(s); M:= M \ {st};
s:= parent(t); M:= M ∪ {st};

end loop;

Considering the look for augmenting path the search for a vertex t in
N(S)\T and then for a vertex in S∩N({t}), put as a parent of t, note that
this can be done in practice in the same movement: vertex t is found as a
neighbor of a vertex s of S and this vertex s can then be put as a parent of
t in the array variable parent of look for augmenting path.

Note in addition that augment matching only applies when
look for augmenting path has been called previously and has given
found = true. Vertex t, initially considered in augment matching, is the
one considered last in look for augmenting path. The array parent has
been filled for the concerned vertices in look for augmenting path and it
makes it possible, immediately after in augment matching, to follow the
found augmenting path to increase the current matching.

7.3.2 Justification

The algorithm ends in both cases of the exit instruction of the
procedure: I = ∅ and N(S) = T . This second case corresponds to found =
false in look for augmenting path. One of these two cases ends up
happening after a finite number of operations. Indeed, on the one hand
in look for augmenting path sets S and T increase at each iteration, S in
X and T in Y . If there is not at any point N(S) = T , we end up finding an
unsaturated vertex t, which makes it possible to augment the matching. At
the other end, each iteration of the loop loop of the procedure decreases set
I of the unsaturated vertices. This set will therefore end up being empty for
lack, meanwhile, of an exit in the other case, N(S) = T .

Matchings 159

Let us verify the result obtained. The case of the instruction exit with
I = ∅ is clear: the current matching M saturates X. Let us consider the
case N(S) = T . At each step of the construction of sets S and T , in
look for augmenting path, we have |T | = |S| − 1: it is true initially, with
S = {r} and T = ∅, and this remains true with each iteration of the interior
loop, since sets S and T are always increased together, each with one element.
When N(S) = T , we therefore have |N(S)| = |T | = |S| − 1 < |S|. Thus the
set S found contradicts the necessary condition of theorem 7.2 (Hall), which
shows that there is no X-saturating matching.

Note. Set S given by the algorithm in the case of non-existence of an
X-saturating matching is important: it makes it possible to “certify” the
answer. It is enough in fact to see that |N(S)| < |S| to be sure of the
non-existence of such a matching. We find the concept of a “certificate” in
complexity theory (see Appendix B). It is important also from a practical
point of view, because in the negative case it matters to be able to verify
the answer of the algorithm and possibly to see what brought out this
negative answer. Note that the positive answer is certified by the datum of
an X-saturating matching. Overall, the existence property of X-saturating
matching is said to be “well characterized”.

7.3.3 Concept of alternating trees

Let us consider the subgraph of G induced by sets S and T and the
edges which, in look for augmenting path, define the array parent. This
subgraph is an arborescence of root r which has the property that the path
from r to any vertex of the arborescence is M -alternating. It is called an
alternating tree. In the case N(S) = T , it is called a Hungarian tree. As
we saw in the preceding justification, we then have |T | = |S| − 1. Another
property of the Hungarian case is that S \ {r} and T are M -matched. The
existence of a Hungarian tree having an M -unsaturated vertex r means that
there is no M -augmenting path having this vertex as its end.

7.3.4 Complexity

Let us put n = |X|. The loop loop of the procedure
matching saturating X is searched a maximum of n times. Indeed, each
iteration of this loop either saturates a vertex of X, and therefore decreases
the set of the unsaturated vertices I by a unit, or is the last iteration and is
in the exit case with the variable found equal to false.

160 Graph Theory and Applications

For a given unsaturated vertex r, the interior loop of
look for augmenting path is searched at the most n − 1 times, the
maximum of elements which it is possible to add in S. Likewise, the loop
in augment matching does not require more than n iterations. Finally the
initialization of M and of I does not require more than a time O(n). In
the end, this algorithm is polynomial, and has a complexity which may
first be evaluated in O(n4), and then in O(n3). The polynomial nature of
this algorithm is an interesting result in itself. Non-trivial improvements
make it possible to obtain much better, in terms of complexity, O(m

√
n) in

particular.

Note. In practice it is possible to reduce the number of main iterations
by starting from a non-empty matching. Indeed, this algorithm works from
any matching by initially taking for I the set of the vertices of X which
are unsaturated for this matching. By hand, this makes it possible to avoid
some first trivial iterations such as an alternating path reduced to one edge
and its endvertices.

7.3.5 Maximum matching algorithm

It is easy to extend the previous algorithm in order to get a maximum
matching of the graph. It is enough not to stop when condition N(S) = T is
reached. All the vertices of X are considered for the search of an augmenting
path. Set I is now the set of the vertices of X remaining to be considered.

procedure maximum matching(G);
begin
M:= ∅; I:= X;
loop

exit when I = ∅;
r:= a vertex of I;
look for augmenting path(M,r);
if found then
augment matching(M,r);

end if;
I:= I \ {r};

end loop;
-- matching M is maximum

end maximum matching;

Matchings 161

The two pseudo-instructions look for augmenting path and
augment matching are not modified with regard to the previous algorithm.

7.3.6 Justification

When we have a Hungarian tree with the current unsaturated vertex
r (where N(S) = T) as its root, we restart the main loop from another
vertex of I, if there is still one. Thus, at the end, we have for each
vertex r of I: either r is saturated by the matching M obtained, or r is
unsaturated and then is the root of a Hungarian tree. Let r1, r2, . . . , rq be
the vertices of X unsaturated at the end of the execution, S1, S2, . . . , Sq and
T1, T2, . . . , Tq sets S and T successively built in the algorithm and which
define the Hungarian trees having for respective roots r1, r2, . . . , rq. Let us
put S0 = {r1, r2, . . . , rq}, S =

⋃q
i=1 Si and T =

⋃q
i=1 Ti. Since N(Si) = Ti

for i = 1, 2, . . . , q, we have N(S) = T . Since, on the other hand, Si \ {ri}
and Ti are M -matched for each i, S \S0 and T are M -matched. Lemma 7.3,
applied to the sets S0, S, T (in place of S0, S, T), and lemma 7.2 make it
possible to conclude that M is a maximum matching.

7.3.7 Complexity

This algorithm is polynomial as is the previous one of which it is an
extension. The problem of the maximum matching in a graph, in particular
in a bipartite graph, led to the introduction in the 1960s of the concept of
a “good algorithm”, that is a polynomial algorithm, the starting point of
complexity theory.

Figures 7.3 and 7.4 give an example of the application of the two previous
algorithms. The edges of the current matching are in bold. The Hungarian
tree with x3 as its root, found after two augmentations of the matching,
enables us, by application of the procedure matching saturating X, to see
that the bipartite graph considered has no matching saturating X =
{x1, . . . , x6}, because set {x1, x2, x3} cannot be matched with set {y2, y3}.
By continuing with the procedure maximum matching we obtain, after three
more augmentations, a maximum matching.

162 Graph Theory and Applications

x1

x2

x3

x4

x5

x6

y1

y3

y4

y5

y6

y7

y2

y1

x1

x2

x3

x4

x5

x6

y3

y4

y5

y6

y7

y2

x1

x2

x3

x4

x5

x6

y1

y3

y4

y5

y6

y7

y2

x1

y2

x2

y2

x1

y3

x3

x1x2

y3y2

x5

y1

x4

y5

x4

y1

x1

x2

x3

x5

x6

y1

y3

y4

y5

y6

y7

y2

x4

T= {y2, y3}
S={x1, x2, x3},
Hungarian tree

graph G

augmenting path

augmenting path

augmenting path

augmenting path

Figure 7.3. An example of the application of the Hungarian method and of
the maximum matching algorithm (continued in Figure 7.4)

Matchings 163

x6

y3 y5

x1

x2

x3

x4

x5

x6

y1

y3

y4

y5

y6

y7

y2

x1

x2

x3

x4

x5

x6

y1

y3

y4

y5

y6

y7

y2

x4

y1

x5

y4

x2

y2

x1

alternating tree with

maximum matching

augmenting path

Figure 7.4. (continuation of Figure 7.3)

164 Graph Theory and Applications

7.4 Optimal assignment problem

Let us again imagine employees to be assigned to positions, but this
time instead of only knowing if such employees can or cannot occupy such
positions, as in the previous problem, we have for each employee–position
pair a value representing the interest that there is in assigning this employee
to this position. This value measures, for example, his or her profitability
for the position considered. The problem is now to assign each employee,
still with one employee per position and one position per employee, so that
the sum of the values of the employee-position pairs chosen would be the
greatest possible. In other words, looking at it from a profitability point of
view, this means finding an assignment for employees which maximizes the
total profitability, the sum of the specific profitability of each employee in
his or her position.

Note that a priori any assignment of the employees is possible. What we
are looking for here is an assignment which brings the greatest profitability.
The general difficulty is therefore to find an optimal element following a
certain measure, an element which we know exists but within a set having
such a large number of elements that it is not possible to consider them all
within a reasonable timespan. Indeed, observe that if there are n employees
and an equal number of positions, the number of possible assignments is n!,
a quantity which rapidly makes the exhaustive method of looking at each
case impractical.

The problem is modeled using a complete bipartite graph defined in
the same manner as for the assignment problem in the previous section,
but by in addition weighting the edges with the values associated with the
employee-position pairs. Therefore, we have a bipartite graph G = (X, Y, E),
where X is the set of the employees, Y the set of the positions, with |X| =
|Y |, and the edges are weighted by the mapping v : E → R, where v(xy) is
the value associated with the employee-position pair xy ∈ E. The problem
is therefore to find a perfect matching of G of which the sum of the values
of its edges is the greatest possible. Such a matching is said to be optimal.
The result which we will now give is the key to the algorithmic solution to
this problem.

Let a mapping be f : X ∪ Y → R, verifying for any x ∈ X and y ∈ Y
the condition:

f(x) + f(y) ≥ v(xy)(*)

Matchings 165

and let us define the spanning subgraph H of G induced by the set of the
edges xy which verify the equality in (*), that is f(x) + f(y) = v(xy).

Lemma 7.4. Any perfect matching of H is an optimal matching of G.

Proof. For any perfect matching M of G, we have, by applying the condition
(*) at each edge of M and by making the sum:

v(M) ≤ f(X ∪ Y)

where v(M) =
∑

e∈M v(e) and f(X ∪ Y) =
∑

z∈X∪Y f(z). Therefore, let M
be a matching for which we have the equality:

v(M) = f(X ∪ Y)

This matching is necessarily optimal, because it is of the greatest possible
value. Also, when M is a perfect matching of H, therefore also a perfect
matching of G, it precisely verifies this equality since it verifies it on each of
its edges, by definition of H.

7.4.1 Kuhn-Munkres algorithm

With lemma 7.4 the path is traced. We have to find a graph such as H,
having a perfect matching, that is, an X-saturating matching (since with
the hypothesis |X| = |Y |, any matching which saturates X also saturates
Y). To find such a matching we have what we need with the Hungarian
method seen above. However, a graph H remains to be found. Function f
is called a potential function (since it is defined on the vertices), graph H
associated with the equality graph associated with function f . The graph H
that fits will only be found at the end of the research process. To start, a
first potential function is necessary. We can always put, for example:

f(z) =

⎧⎨
⎩

max
y∈Y

v(zy) if z ∈ X

0 if z ∈ Y

Indeed, it is easy to verify condition (*) for this function. However,
there is obviously no reason for the equality graph associated with this
function to have in general a perfect matching. Therefore, we have to modify
function f , and therefore graph H, until this condition is fulfilled. These
modifications will be done every time we come across the non-existence case

166 Graph Theory and Applications

of an X-saturating matching in H, that is the case of a Hungarian tree.
The precise description of these modifications of f is given in the following
algorithm which is, in a way, an extension of the matching saturating X
procedure of section 7.3. Let us specify that graph H is here defined by the
neighborhood function denoted by NH, as G was defined above by N , that
is NH(S) is the set of the neighbors of the vertices S in H.

The main part of the algorithm, the maximum val matching procedure,
calls on pseudo-instructions which are made explicit later on.

procedure maximum val matching(G,v);
begin
initialize potential function(f);
determine equality graph(f,H);
M:= ∅; I:= X;
while I �= ∅ loop

r:= a vertex of I;
look for augmenting path(M,r);
augment matching(M,r);
I:= I \ {r};

end loop;
end maximum val matching;

initialize potential function(f):

for x ∈ X loop
f(x):= max(v(xy) | y ∈ Y);

end loop;
for y ∈ Y loop
f(y):= 0;

end loop;

determine equality graph(f,H):

for x ∈ X loop NH({x}):= ∅; end loop;
for y ∈ Y loop NH({y}):= ∅; end loop;
for x ∈ X loop

for y ∈ Y loop
if f(x) + f(y) = v(xy) then
NH({x}):= NH({x}) ∪ {y};

Matchings 167

NH({y}):= NH({y}) ∪ {x};
end if;

end loop;
end loop;

modify potential function(f)
(used by look for augmenting path(M,r)):

m:= min(f(x)+f(y)-v(xy) | x ∈ S, y ∈ Y \ T);
for x ∈ S loop
f(x):= f(x) - m;

end loop;
for y ∈ T loop
f(y):= f(y) + m;

end loop;

look for augmenting path(M,r):

S:= {r}; T:= ∅;
s:= r;
loop

if NH(S) = T then
modify potential function(f);
determine equality graph(H);

end if;
t:= a vertex of NH(S) \ T;
parent(t):= a vertex of S ∩ NH({t});
exit when t M-insatured;
-- t is M-saturated
s:= the vertex M-matched to t;
parent(s):= t;
S:= S ∪ {s}; T:= T ∪ {t};

end loop;

augment matching(M,r):

s:= parent(t); M:= M ∪ {st};
while s �= r loop
t:= parent(s); M:= M \ {st};
s:= parent(t); M:= M ∪ {st};

end loop;

168 Graph Theory and Applications

Note that the pseudo-instruction augment matching is identical to the
one given earlier for the maximum matching algorithm. Vertex t is initially
the one stemming from the application of look for augmenting path.

7.4.2 Justification

We are going to show that the main loop of the maximum val matching
procedure ends after a finite number of iterations with I = ∅, that is with a
matching M of H which saturates X. This matching is a perfect matching
of an equality graph, therefore, according to lemma 7.4, it is an optimal
matching of G.

Let us consider the case of a vertex r ∈ I from which no augmenting path
may be found. We have then in the current equality graph H a Hungarian
tree with root r and with sets of vertices S and T such that NH(S) = T .
Observe that minimum m, calculated in modify potential function, is >
0; indeed, an edge xy such that x ∈ S and y ∈ Y \ T is not in equality
graph H (otherwise we would have y ∈ NH(S) \ T and thus NH(S) �= T).
Therefore we have:

f(x) + f(y) > v(xy)

Let x0 ∈ S and y0 ∈ Y \ T for which minimum m is attained, that is,
such that:

f
(
x0

)
+ f

(
y0

)
− v

(
x0y0

)
= m

Let us specify that since this is a Hungarian case, we have |T | = |S| − 1,
and since |Y | = |X|, set Y \ T is not empty. Let us put f1 = f , the current
function f at that point and f2 the function modified after (as indicated
in modify potential function). We have (thanks to the previous equality
applied to f1):

f2

(
x0

)
+ f2

(
y0

)
− v

(
x0y0

)
= f1

(
x0

)
− m + f1

(
y0

)
− v

(
x0y0

)
= 0

Let us denote by H1 the previous equality graph H, associated with f1,
and by H2 the new one, associated with f2. The previous equalities indicate
that edge x0y0, which does not belong to H1, belongs to H2. It is easy to
verify (modifications are made for that) that graph H2 contains, as H1, the
alternating tree built. However, this time this tree is no longer a Hungarian
case, since, because of the presence of the new edge x0y0, there is no longer

Matchings 169

the equality NH(S) = T . This makes it possible to continue looking for an
alternating path. Thus each iteration of the while loop of the procedure
exits from a possible Hungarian case and ends up saturating an extra vertex
of X.

This algorithm works because it is always possible to exit from a
Hungarian case by modifying the equality graph with the potential function.

Note. Function f may be used as a “certificate” to validate the optimal
matching found. Apart from the calculation done to find the matching, it is
enough to verify the equality v(M) = f(X ∪ Y) to be sure that matching
M is optimal according to the reasoning held to prove lemma 7.4.

7.4.3 Complexity

As in the Hungarian method, this algorithm has a polynomial complexity
which can be evaluated first in O(n4), where n is the common cardinality
of sets X and Y . Indeed, the new operations with regard to the algorithm
searching for an X-saturating matching concern the potential function and
the equality graph, and are easy to analyze in at worst O(n2). (Observe that
these operations appear in the loops.)

Figure 7.5 gives an example of an application of this algorithm. As it
is most often the case in practice, the complete weighted bipartite graph is
given by a square matrix n× n of which the entry (i, j) is the value of edge
xiyj . In the figure we have the succession of potential functions f0, f1, f2

of the corresponding equality graphs H0, H1, H2, and the alternating trees
built in each case with, when it happens (case of a Hungarian tree), the
calculation of minimum m.

Notes. 1) As was seen in the previous example, this algorithm means finding
in a square table n×n what we call a diagonal, that is n elements such that
there is only one per line and only one per column. It is said to be a maximal
diagonal when the sum of its elements is the greatest possible. It is easy to
see that such a diagonal corresponds to an optimal matching of the complete
bipartite graph represented by the matrix.

In the example given in Figure 7.5 such a diagonal is found with the
entries (1, 2), (2, 5), (3, 4), (4, 3), (5, 1).

170 Graph Theory and Applications

Hungarian tree

y1

y3

y4

y5

y2

x1

x2

x3

x4

x5

y1

y3

y4

y5

y2

x1

x2

x3

x4

x5

y1

y3

y4

y5

y2

x1

x2

x3

x4

x5

y3 y4

3

3

2

1

3

5

1

1

y2 y5

x2

x5

y1

y3

y4

y5

y2

x1

x2

x3

x4

x5

x2

x3

y5

y1

y4

x5

x2

y1

x3

y5

y3

x4

x5

y1

x2

x5

1

2

-1

1

2

2

-1

1

-2

-1

-1

0

-1

1

1

0

-1

2

-1

-3

0

1

3

0

1

y4y2 y3 y5y1

x1

x2

x3

x4

x5

f0

f1

f2

f0 f1

0

1

2

0 0 0 0

0 0 0 0

0 01 1

2

2

1

2

3

2

1

3

1

1

2

0

2

0

0

f2

H1

H2 optimal matching

y2 y4

m2 = 1

m1 = 1H0

2
x3

x4

x5

x2

1
2

4

2

2

3
2

Hungarian tree

alternating path

Figure 7.5. An example of application of the optimal matching algorithm

Matchings 171

2) Looking for a minimal diagonal can be done with the same algorithm,
which only needs to be applied to the opposite matrix (all entries multiplied
by −1). We thus solve the problem of the optimal matching in the sense of
minimum matching.

7.5 Exercises

7.1. Show that the k-cube (defined in Chapter 2) has a perfect matching.

+7.2. a) Show that Hall’s theorem (theorem 7.2) can be expressed in the
following more general manner: given a bipartite graph G = (X, Y, E),
we have ν(G) = |X| −def(X), where def(X) = maxS⊆X(|S| − |N(S)|)
(“def” for deficiency). Note that def(X) is an integer ≥ 0 because in
particular def(∅) = 0.

b) Show the equivalence of the three theorems: Hall, generalized Hall
(established in the previous question) and König (theorem 7.3), by
showing that generalized Hall implies König which implies Hall.

7.3. Show that a tree T has at most one perfect matching, and that it
actually has one if and only if it verifies pi(T − x) = 1 for any vertex
x of T , where pi(T − x) is the number of connected components of
T − x which have an odd number of vertices (the necessary condition
is easy).

7.4. A famous theorem on matchings, Tutte’s theorem, states that a graph
G = (X, E) has a perfect matching if and only if it verifies pi(G−U) ≤
|U | for any U ⊂ X, where pi(G − U) is the number of connected
components of G − U having an odd number of vertices. Show the
necessary condition (the sufficient condition is harder to demonstrate).

7.5. Find a minimal diagonal in the matrix in Figure 7.5.

*7.6. Five houses, M1, . . . , M5, are for sale. The price asked for house Mi is
pi (i = 1, . . . , 5). These prices are given in ten thousands of euros in
the following table:

Houses M1 M2 M3 M4 M5

Prices 7 12 10 15 9

There are five potential buyers, designated by A1, . . . , A5. Buyer Ai

estimates the price of house Mi to be qij . The qij are given in ten
thousands of euros in the following table:

172 Graph Theory and Applications

M1 M2 M3 M4 M5

A1 8 14 9 15 7
A2 9 11 10 14 8
A3 6 13 9 17 10
A4 8 10 11 14 7
A5 9 11 11 12 8

a) Show that it is impossible for the five houses be sold to the five
buyers, one house per buyer in such a manner that the buyer buys a
house for which the asking price is lower or equal to the price which
he had estimated for it (that is if Ai buys Mj , we must have pj ≤ qij).
Show that this becomes possible if the asking price for house M5 is
brought down from 9 to 7.

b) We keep for this question the new price of M5, that is 7, the other
prices remaining the same. Let us call the estimated gain of a buyer
Ai who buys house Mj the difference between his estimate and the
asking price (which he pays), that is the quantity qij − pj . Find how
to assign the purchase of the five houses to the buyers so that the sum
of the estimated gains by the buyers will be the greatest possible.

Chapter 8

Flows

The concept of flow is, like that of matching, another of the major
concepts of graph theory. It has an interesting algebraic aspect and has
many major applications, such as transportation problems.

8.1 Flows in transportation networks

A transportation network R is defined as: a strict connected digraph
G = (X, A) with two disjoint sets, S ⊆ X, the set of the sources and T ⊆ X,
the set of the sinks, and a weighting of the arcs, c : A → N (natural numbers),
called the capacity. We will also allow the (positive) value ∞ as the capacity
of an arc.

Let us specify a few points of terminology and notation. For a ∈ A, c(a)
is the capacity of arc a. The vertices of X \ (S ∪ T) are called intermediate
vertices. For Z ⊆ X we denote as ω+(Z) the set of the arcs of G of the form
(x, y) with x ∈ Z and y /∈ Z, and ω−(Z) the set of the arcs of the form
(x, y) with x /∈ Z and y ∈ Z. The arcs of ω+(Z) are the arcs exiting from Z
and those of ω−(Z) are the arcs entering into Z. When Z = {x}, we talk of
arcs entering into x and exiting from x.

A flow in a transportation network R is a mapping f : A → N verifying:

1) 0 ≤ f(a) ≤ c(a) for any a ∈ A,

2)
∑

a∈ω+({x}) f(a) =
∑

a∈ω−({x}) f(a) for any x ∈ X \ (S ∪ T).

174 Graph Theory and Applications

This second condition is called the law of flow conservation for each
intermediate vertex, also known in electricity as Kirchhoff’s law.

For the general case Z ⊆ X, f+(Z) =
∑

a∈ω+(Z) f(a) and f−(Z) =∑
a∈ω−(Z) f(a). Let us specify that if ω+(Z) = ∅ then f+(Z) = 0, likewise

for ω−(Z) and f−(Z). Furthermore, in the case Z = {x} we will write f+(x)
instead of f+({x}), and likewise for f−(x). Condition 2 can also be written
as:

2’) f+(x) = f−(x) for any x ∈ X \ (S ∪ T).

We add the following condition which assigns the vertices of S as
“sources” and the vertices of T as “sinks” with regard to the flow:

3) f+(s)− f−(s) ≥ 0 for any s ∈ S and f−(t)− f+(t) ≥ 0 for any t ∈ T .

Figure 8.1 gives an example of a flow in a transportation network.

1 [2]

t16 [6]

1 [1]

4 [5]

1 [2]
1 [5]

2 [3]

6 [7]

1 [1]

3 [3] 2 [2]
2 [2]

2 [2]

1 [2]
4 [4]

t2

s2

s3

s1

u3 u4

u2u1

1 [8]

1 [2]

Figure 8.1. In this representation of a transportation network, the
capacities of the arcs are given between brackets. We have here S =
{s1, s2, s3} and T = {t1, t2}. A flow is given by the values indicated to the
left of the capacities of each arc. These representation conventions also apply
to the figures which follow

Note. In any network, there is always what is called the zero flow, meaning
the flow taking value 0 on each arc.

Flows 175

8.1.1 Interpretation

A network such as the one in Figure 8.1 can be interpreted as, for
example, a network for transporting goods or a water transportation system.
Sources s1, s2, and s3 are then production or supply centres, from which the
flow starts (and to which it may return). Sinks t1 and t2 are centers where
some flow is consumed (it may also start again from there).

The following result, very intuitive but not completely self-evident to
prove, introduces the concept of the value of flow transiting in the network.

Lemma 8.1. We have, using the previous notations:

f+(S) − f−(S) = f−(T) − f+(T)

Proof. We can write successively:

0 =
∑
x∈X

(
f+(x) − f−(x)

)

=
∑
x∈S

(
f+(x) − f−(x)

)
+

∑
x∈X\(S∪T)

(
f+(x) − f−(x)

)

+
∑
x∈T

(
f+(x) − f−(x)

)

=
∑
x∈S

(
f+(x) − f−(x)

)
+

∑
x∈T

(
f+(x) − f−(x)

)

=
(
f+(S) − f−(S)

)
+

(
f+(T) − f−(T)

)

The sum over X \ (S ∪ T) is zero according to condition 2’ of the definition
of flows. The equality

∑
x∈S(f+(x)−f−(x)) = f+(S)−f−(S) of course has †

to be verified (which is easy) as well as the equivalent one for T .

We can verify in the example in Figure 8.1 that we really have this
equality.

Let us call net flow out of Z ⊂ X the quantity f+(Z) − f−(Z), and net
flow into Z the quantity f−(Z)−f+(Z). Lemma 8.1 states that the net flow
out of S is equal to the net flow into T . This result is obviously based on
the property of conservation of the flow at the intermediate vertices. This
common value f+(S) − f−(S) = f−(T) − f+(T) is called the value of flow
f , and denoted as v(f). The problem dealt with in this chapter is that of

176 Graph Theory and Applications

maximum flow, that is, of finding in a network a flow with the greatest
possible value.

8.1.2 Single-source single-sink networks

Assume that |S| = |T | = 1. We will denote by s the single source and by
t the single sink of the network. In fact, we can, without losing generality,
always suppose that this is the case. In addition, it is also possible to impose
the condition that there are no arcs entering into s, nor exiting from t, so
that s is a single source vertex and t a single sink vertex in the digraph of
the network. Let us justify this.

Let R be a network such as that defined above. Let us put S =
{s1, s2, . . . , sp} and T = {t1, t2, . . . , tq}. Let us add to this network a vertex
s with an arc (s, si) of capacity ∞ for each of the vertices si (i = 1, 2, . . . , p),
and a vertex t with an arc (tj , t) of capacity ∞ for each of the vertices tj
(j = 1, 2, . . . , q). Let us denote by R′ the network thus obtained with sets of
sources and of sinks S′ = {s} and T ′ = {t}. Therefore it is a single-source
single-sink network. It is possible to verify that any flow of R corresponds
to a flow of R′ of the same value and vice versa. Indeed, if f is a flow of R,
let us define f ′ in the following way:

f ′((s, si

))
= f+

(
si

)
− f−(

si

)
for i = 1, 2, . . . , p

and

f ′((tj , t)) = f−(
tj

)
− f+

(
tj

)
for j = 1, 2, . . . , q

Thus, the vertices of S and T in R become in R′ intermediate vertices, where
the flow conservation law is respected. For all the other arcs of R′ the value
of f ′ is taken to be equal to that of f . It is easy to verify that a flow f ′ of
R′ is thus truly defined, and that this flow has an equal value to that of f .
Note in particular that the values of f ′ are really ≥ 0 on the arcs added to
R as a result of condition 3 of the definition of flows.

Conversely, given a flow R′, we can directly deduce from it a flow in R,
of the same value, by considering its restriction to the arcs of R.

In the case of a flow in a network with a single source s and a single sink
t, the value of flow f is v(f) = f+(s) = f−(t) because, since there are no
arcs entering into s nor exiting from t, we have f−(s) = 0 and f+(t) = 0.

Flows 177

ts

0 [∞]

7 [∞]

3 [∞]

3 [∞]
1 [2]

t16 [6]4 [5]

1 [2]
1 [5]

2 [3]

6 [7]

3 [3] 2 [2]
2 [2]

2 [2]

1 [2]
4 [4]

t2

s3

s1

u3 u4

u2u1

1 [8]

1 [2]
s27 [∞]

1 [1]

1 [1]

Figure 8.2. Network of Figure 8.1 modified to become a single-source
single-sink network

Figure 8.2 gives network R′ corresponding to network R of Figure 8.1.

Note. By adding to the network an arc (t, s), of capacity ∞, we obtain a
network in which the law of conservation of the flow applies at any vertex.

8.2 The max-flow min-cut theorem

We now suppose that the networks considered are single-source,
single-sink networks. The concept of cut, dual to that of flow, is, as we
will see, essential in this study. A cut of network R is a set of arcs of the
network of the form K = ω+(Z), where Z ⊂ X such that s ∈ Z and t /∈ Z.
The capacity of a cut K is the sum of the capacities of its arcs, that is
c(K) =

∑
a∈K c(a). The following simple proposition plays an essential role.

Proposition 8.1. For any flow f and any cut K, we have:

v(f) ≤ c(K)

Proof. We have successively:

c(K) ≥ f+(Z) ≥ f+(Z) − f−(Z) =
∑
x∈Z

(f+(x) − f−(x)) = f+(s) = v(f)

(Note that f−(Z) ≥ 0, which justifies the second inequality.)

A minimum cut is a cut of the lowest possible capacity.

178 Graph Theory and Applications

The following fundamental property results directly from the previous
proposition (as for maximum matching and minimum transversal in
Chapter 7):

Corollary 8.1. Given a flow f and a cut K, if v(f) = c(K) then f is a
maximum flow and K a minimum cut.

It is this last result which will allow us to recognize that a flow is
maximum.

Note. If we allow the possibility of arcs with infinite capacities, as we have
done above to go back to the case of single-source, single-sink networks, there
can be cuts with infinite capacities. If all the cuts of a network are in that
condition, we have in the network flows with arbitrarily great values, as in
the (trivial) example in Figure 8.3. Then, there is, as it were, no maximum
flow. When applying the previous corollary, we will suppose implicitly that
there is a cut with a finite capacity.

s
[∞]

t

Figure 8.3. An “unbounded” network

8.2.1 Concept of unsaturated paths

Let us remember that a path in a digraph G is a path of the undirected
graph associated with G. This path is defined by a sequence of arcs of the
graph which are not necessarily directed in the same direction (which makes
it a path and not a directed path). Let μ be a path in a network R with a flow
f , the path joining source s of the network to a vertex u, and presumed to
have a length which is not zero. Let us denote by (a1, . . . , ak) the sequence
of its arcs (k ≥ 1), and let us put:

τ(μ) = min
i=1,...,k

τ(ai)

where τ(ai) = c(ai) − f(ai) if arc ai is directed from s to u in path μ, and
τ(ai) = f(ai) if arc ai is directed from u to s in μ. The path is said to be
unsaturated, for f , if τ(μ) > 0.

Lemma 8.2. If there is for flow f an unsaturated path joining s to t, then
there is a flow f ′ such that v(f ′) > v(f).

Flows 179

Proof. Let μ be an unsaturated path joining s to t. We identify by notation
μ with the set of the arcs of this path, and we put μ+ for the set of arcs of
path μ which are directed from s to t, and μ− for those directed from t to
s. Let us define f ′ as:

f ′(a) =

⎧⎪⎪⎨
⎪⎪⎩

f(a) + τ(μ) if a ∈ μ+

f(a) − τ(μ) if a ∈ μ−

f(a) if a /∈ μ

It is easy to verify that f ′ is really a flow of R and that we have the
equality v(f ′) = v(f) + τ(μ). Since τ(μ) > 0, we have v(f ′) > v(f).

Lemma 8.3. If there is no unsaturated path joining s to t for flow f , then
there is a cut K such that c(K) = v(f).

Proof. Let Z be the set of vertex s and the vertices x such that there is
an unsaturated path from s to x. We have by hypothesis s ∈ Z and t /∈ Z.
For any arc a = (x, y) such that x ∈ Z and y /∈ Z (that is a ∈ ω+(Z)) we
have f(a) = c(a), otherwise we could extend an unsaturated path from s to
x with arc a, which would contradict y /∈ Z. For any arc a = (y, x) such
that x ∈ Z and y /∈ Z (that is a ∈ ω−(Z)), we have f(a) = 0, otherwise
we would have an unsaturated path from s to y contrary to the hypothesis
that y /∈ Z. We can write the following successive equalities (partly as seen
above for proving lemma 8.1, note that here f−(Z) = 0):

c(K) = f+(Z) = f+(Z) − f−(Z)

=
∑
x∈Z

(
f+(x) − f−(x)

)
= f+(s) = v(f)

In consideration of these results, we call any unsaturated path joining s
to t an incrementing path for flow f . We have:

Proposition 8.2. A flow is maximum if and only if there is no incrementing
path for this flow.

Proof. Directly from lemmas 8.2 and 8.3, and corollary 8.1.

Theorem 8.1 (Ford-Fulkerson). In any network, the value of a maximum
flow is equal to the capacity of a minimum cut.

180 Graph Theory and Applications

Proof. Directly from proposition 8.2 and lemma 8.3.

The diagram at the bottom of Figure 8.6 in the following section will
give an example of what we have seen above.

8.3 Maximum flow algorithm

After giving the criterion for a flow to be maximum, it is now important,
as in any optimization problem, to be able to really give a maximum flow.
This is what the classic Ford-Fulkerson’s algorithm, given below, does. It is
based on the previous theoretical development. Given a network R and a
flow f (it is always possible initially to consider the zero-flow), the crucial
point is finding an incrementing path. We know that if such a path does
not exist, the flow considered is maximum (proposition 8.2). The algorithm
defines, in look for incrementing path, how to proceed for such a search.
When an incrementing path is found, the statement augment flow applies
what is defined in the proof of lemma 8.2. Let us specify some other points.

The digraph of the network is given in the algorithm by the sets
of arcs ω+({x}) and ω−({x}) defined above (ω+({x}) is the set of
arcs exiting from x and ω−({x}) the set of arcs entering into x).
In look for incrementing path, a labeling process of the vertices is
implemented with mapping l defined on the vertices and with values in
N ∪ {∞}, which makes it possible to spot the vertices y linked by an
unsaturated path μ from vertex s.

Thanks to the calculation of minima on l, the label of the vertex
under consideration, l(y), is the quantity τ(μ) defined above. Thus when
an incrementing path is found, a path from s to t, the “incrementation”
value τ(μ) is the l(t) of the algorithm. It is this value which is used again
in augment flow to modify the current flow, as in the proof of lemma 8.2.
Set L is the set of vertices said to be “labeled”, that is those on which
mapping l is defined. Set Z is that of the labeled and “explored” vertices,
that is those considered for possibly labeling their neighbors in turn (loop
for in look for incrementing path). We still have Z ⊆ L. Array pred
defines the unsaturated path built in look for incrementing path in the
following manner: for a vertex y of the path, different from s, we have
pred(y) = (x, a, ε) where x is the predecessor of y in the unsaturated
path, a is the arc joining x and y, from x to y or from y to x depending
on the cases, and ε is the integer +1 or -1 following respectively the two

Flows 181

preceding cases (pred(y) can be seen in a program as a record having those
three components). The integer ε makes it possible to know if quantity l(t)
given by the incrementing path has to be added to or taken out of flow
on arc a in augment flow. Finally, the Boolean found indicates whether an
incrementing path has been found or not.

procedure maximum flow(R);
begin
-- initialization
for a ∈ A loop
f(a):= 0;

end loop;
-- treatment
loop
look for incrementing path(f);
if found then
augment flow(f);

else
exit;

end if;
end loop;

end maximum flow;

The two pseudo-instructions look for incrementing path and
augment flow are made explicit in what follows, where L and Z are
auxiliary sets of vertices.

augment flow(f):

y:= t;
loop
(x,a,ε):= pred(y);
f(a):= f(a) + ε.l(t);
exit when x = s;
y:= x;

end loop;

look for incrementing path(f):

l(s):= ∞; L:= {s}; Z:= ∅;

182 Graph Theory and Applications

loop
x:= a vertice of L \ Z;
Z:= Z ∪ {x};
for a = (x,y) ∈ ω+({x}) loop

if y /∈ L and f(a) < c(a) then
l(y):= min(l(x),c(a)-f(a));
L:= L ∪ {y};
pred(y):= (x,a,+1);

end if;
end loop;
for a = (y,x) ∈ ω−({x}) loop

if y /∈ L and f(a) > 0 then
l(y):= min(l(x),f(a));
L:= L ∪ {y};
pred(y):= (x,a,-1);

end if;
end loop;
if t ∈ L then
found:= true;
exit;

end if
if L \ Z = ∅ then
found:= false;
exit;

end if;
end loop;

8.3.1 Justification

There is no real need to justify this algorithm which works just as in the
preceding theoretical development: augmentation of the flow as long as an
incrementing path may be found, that is, as long as one exists. When there
are no more incrementing paths, the flow is maximum (proposition 8.2). We
can verify this by application of lemma 8.3 and cut K of which the capacity
is equal to the value of the flow.

Notes. 1) The search for an augmenting path is done by an unsaturated tree
growth process from vertex s, just as with alternating trees in the Hungarian
method for matchings (Chapter 7).

Flows 183

2) We exit this search when sink t of the network is reached. Indeed, it is
useless to continue the search further since we have, in the unsaturated
tree, a path from s to t. In the algorithm, to be more specific in
look for incrementing path, we can exit as early as possible by exiting
from the first interior for loop as soon as condition y = t is realized (be
careful: it is an exit from two loops). With the hypothesis given above that
vertex t only has entering arcs, it is really the first for loop because the only
possibility for reaching t is then a = (x, y) ∈ ω+({x}). (We will have in this
case y = t.)

3) Set Z makes it possible to “certify” that the flow is maximum by
simply verifying the equality v(f) = c(K), where K is the cut defined by
Z. This equality can also be verified by the fact, here characteristic of the
optimum, that any arc exiting from Z is saturated for f , that is, verifies
f(a) = c(a), and any arc entering into Z has a zero-flow, that is, verifies
f(a) = 0.

4) In practice, it is possible to reduce the number of iterations of the
main loop of the procedure by starting from a non zero-flow. Indeed, the
algorithm works from any flow (including a maximum flow, in which case
we will stop with the first iteration of the main loop of the procedure).

An example of an application of this algorithm is given in Figures 8.4,
8.5 and 8.6. The vertices labels are given on each vertex concerned in a
square, following the progression of the algorithm. This defines the vertices
of set L. The vertices of Z are indicated in bold. The arcs of the unsaturated
tree built are in bold and those defining an incrementing path are bolder.
The first diagram represents the network with zero-flow. The following four
diagrams give the details of the first search for an augmenting path leading
to the first non zero-flow, with a value equal to 2 (sixth diagram). The next
iterations of the search are not detailed: a new augmenting path gives a flow
with a value equal to 5, then another gives a flow with a value of 8. This
last flow is maximum as is shown by the set of vertices Z, which defines
a cut of capacity equal to 8, which is therefore equal to the value of the
maximum flow (last diagram). The arcs of the minimum cut are given as
dotted lines. Observe that any exiting arc is saturated and any entering arc
has a zero-flow, which illustrates the third note made above.

184 Graph Theory and Applications

∞

6

6

∞

6

6

6

∞

6

6

6

s

t

z

f

r

w

0 [6]

v

q

0 [6]

0 [6]

0 [6]

0 [6]

0 [3]

0 [2]
0 [6]

0 [7]

0 [2]

0 [7]

0 [3]

0 [2]

0 [4]

0 [6]

u

yx

0 [3]

t

z

r

0 [6]

v

0 [6]

0 [6]

0 [6]

0 [3]

0 [2]
0 [6]

0 [7]

0 [2]

0 [7]

0 [3]

0 [2]

0 [4]

0 [6]

u

0 [3]

s

t

z

f

r

w

0 [6]

v

q

0 [6]

0 [6]

0 [6]

0 [6]

0 [3]

0 [2]
0 [6]

0 [7]

0 [2]

0 [7]

0 [3]

0 [2]

0 [4]

0 [6]

u

x

0 [3]

3

s

t

z

f

r

0 [6]

v

q

0 [6]

0 [6]
0 [3]

0 [2]
0 [6]

0 [2]

0 [7]

0 [3]

0 [2]

0 [4]

0 [6]

u

yx

0 [3]

3

w

0 [6]

0 [6]
0 [7]

3

4

2

x

qw

f

0 [6]

s

y

y

Figure 8.4. An example of an application of the maximum flow algorithm
(to be continued in Figures 8.5 and 8.6)

Flows 185

∞

6

6

6

2

2

2

∞

6

t

z

f

r

w

5 [6]

v

q

0 [6]

0 [6]

5 [6]

3 [6]

0 [3]

0 [2]
3 [6]

3 [7]

0 [2]

2 [7]

0 [3]

2 [2]

0 [4]

0 [6]

u

y

3 [3]

x

(flow of value 5)

s

t

z

f

r

0 [6]

v
0 [6]

0 [6]

0 [6]

0 [6]

0 [3]

0 [2]
0 [6]

0 [7]

0 [2]

0 [7]

0 [3]

0 [2]

0 [4]

0 [6] yx

0 [3]

3

w q3

4

u

s z

f

r

w

2 [6]

v

q

0 [6]

0 [6]

2 [6]

0 [6]

0 [3]

0 [2]
0 [6]

0 [7]

0 [2]

2 [7]

0 [3]

2 [2]

0 [4]

0 [6]

u

yx

0 [3]

t

s
t

z

f

r

w

2 [6]

v
0 [6]

0 [6]

2 [6]

0 [6]

0 [2]
0 [6]

0 [7]

0 [2]

2 [7]

0 [3]

2 [2]

0 [4]

0 [6]

u

yx

0 [3]

4

3

3 3

3

3

4

4

0 [3]

s

q

(flow of value 2)

Figure 8.5. (continuation of Figure 8.4)

186 Graph Theory and Applications

∞

6

∞

s
t

f

r

w

5 [6]

q

0 [6]

0 [6]

5 [6]

3 [6]

0 [3]

0 [2]

3 [7]

0 [2]

2 [7]

0 [3]

2 [2]

0 [4]

0 [6]

u

yx

3 [3]

3

6 3

3

3

1

3

z

v

s
t

z

f

r

w

5 [6]

v

q

3 [6]

3 [6]

5 [6]

3 [6]

0 [3]

0 [2]
6 [6]

0 [2]

2 [7]

3 [3]

2 [2]

3 [4]

0 [6]

u

yx

0 [3]

3 [7]

(flow of value 8)

s
t

z

f

r

w

5 [6]

v
3 [6]

3 [6]

5 [6]

3 [6]

0 [3]

0 [2]

3 [7]

0 [2]

2 [7]

3 [3]

2 [2]

3 [4]

0 [6]

u

yx

0 [3]

1

3

1

3

1

1

3

3

6 [6]

q

s z

f

r

w

5 [6]

v

q

3 [6]

5 [6]

3 [6]

0 [3]

0 [2]
6 [6]

3 [7]

0 [2]

2 [7]

3 [3]

2 [2]

3 [4]

0 [6]

u

yx

0 [3]

(cut of capacity 8)

3 [6]

t

3 [6]

Figure 8.6. (continuation of Figure 8.5)

Flows 187

8.3.2 Complexity

Unexpectedly, this algorithm, as it is, is not of polynomial complexity.
Indeed, consider the network in Figure 8.7, in which capacity q is an integer
> 0. Let us suppose that we apply the algorithm, starting with the zero-flow,
by increasing the flow first by the augmenting path (s, x, y, v, w, t), then by
the augmenting path (s, u, v, y, z, t), and so on, alternating between these
two paths. Each augmentation is only of 1 (since the capacity of arc (y, v)
equals 1), and so at least 2q iterations of the main loop of the algorithm will
be necessary to reach the maximum flow, which is easy to find and which †
has a value equal to 2q.

t

x

v w

y z

u [q]

[q]

[q]

[1]s

[q] [q]

[q]

[q]

[q]

Figure 8.7. A case of non-polynomial complexity

The general problem which is seen through this example is that the
number of iterations of the main loop of the algorithm may not be bounded
with regard to the size of the network defined by vertices number n and arcs
number m of the digraph. Indeed, this number of iterations may be increased
following the value of the capacities of the arcs, values which are independent
from n and m. However, there is a simple remedy to this problem. If we look
closely at the previous example, we will see that the cause of the number
of iterations which is of the order of integer q results from the fact that we
have gone back over labeled vertices to explore them in an order which was
not the one in which they had been labeled, which is not forbidden (let us
remember that a vertex is said to have been “explored” when its neighbors
have been considered to be possibly labeled in turn). Respecting the rule:
explore the vertices in the order in which they have been labeled, we see in
the previous example that we reach a maximum flow in only two iterations!
This remedy is general and makes it possible to show that, thus completed,
the maximum flow algorithm is polynomial and with a complexity which
may already be evaluated as O(mn).

188 Graph Theory and Applications

The practical implementation in the algorithm of this rule, which
may be summed up as “first labeled, first explored”, is done in
look for incrementing path by storing the vertices of L \Z in a queue: a
vertex x taken from L\Z is then removed from the queue (at the front) and
a vertex y inserted in L is inserted into the queue (at the rear). This method
corresponds to searching for an incrementing path with a breadth-first search
(see Chapter 6) of the network digraph. This means searching for augmenting
paths with the shortest possible lengths (length meaning here the number
of arcs).

8.4 Flow with stocks and demands

Let us come back to a general network with sets of sources and sinks S
and T which are of cardinality ≥ 1. We are given the following additional
data: a mapping σ : S → N which defines what we call stocks at the sources
of the network, and a mapping τ : T → N which defines what we call the
demands at the sinks of the network.

In such a network, a flow is called feasible if it satisfies the following
conditions:

f+(s) − f−(s) ≤ σ(s) for any s ∈ S

f−(t) − f+(t) ≥ τ(t) for any t ∈ T

The interpretation of these inequalities in terms of stocks and demands,
following the terminology, is clear: a feasible flow must carry through the
network a flow which does not exceed the stocks available at the sources and
which covers the demands at the sinks.

There is no reason why a feasible flow should always exist. For example
there is none when the sum of the demands at the sinks, τ(T) =

∑
t∈T τ(t),

exceeds the sum of the stocks at the entries, σ(S) =
∑

s∈S σ(s). A necessary
condition of existence for a feasible flow is therefore σ(S) ≥ τ(T). The
following classic result gives a general necessary and sufficient condition for
the existence of a feasible flow.

Theorem 8.2 (Gale). A network R, of which X is the set of vertices, with
stocks for S defined by σ and with demands on T defined by τ , allows a
feasible flow if and only if we have for any U ⊆ X:

c
(
ω−(U)

)
≥ τ(T ∩ U) − σ(S ∩ U)

Flows 189

Proof. This condition naturally expresses that for U ⊆ X, the entry capacity
in U is greater than or equal to the demand in U minus the stock in U . It
can be verified directly that this condition is necessary for a flow f :

c
(
ω−(U)

)
≥ f−(U) ≥ f−(U) − f+(U)

=
∑
x∈U

(
f−(x) − f+(x)

)

=
∑

x∈S∩U

(
f−(x) − f+(x)

)
+

∑
x∈T∩U

(
f−(x) − f+(x)

)

≥ −σ
(
S ∩ U

)
+ τ

(
T ∩ U

)

because on the one hand:
∑

x∈S∩U

(
f+(x) − f−(x)

)
≤

∑
x∈S∩U

σ(x) = σ(S ∩ U)

and on the other:
∑

x∈T∩U

(
f−(x) − f+(x)

)
≥

∑
x∈T∩U

τ(x) = τ(T ∩ U)

(the calculations made here are in part analogous to those made for the
proof of lemma 8.1).

To show the sufficient condition, let us associate with network R network
R′ with a single source s and a single sink t built from R as indicated
in section 8.1.2, except for the capacities of the added arcs. Let us put
for network R, S = {s1, s2, . . . , sp} and T = {t1, t2, . . . , tq}. For each arc
(s, si) of R′, let us put its capacity c′(s, si) equal to σ(si) (i = 1, 2, . . . , p),
and for each arc (tj , t) of R′, let us put its capacity c′(tj , t) equal to τ(tj)
(j = 1, 2, . . . , q). It is easy to see that there is a feasible flow in R as soon
as there is a flow in R′ which saturates the “sink” arcs (tj , t) (flow equal to
the capacity of these arcs). However, according to theorem 8.1 applied to
R′, such a flow exists if any cut of R′ has a capacity greater than or equal to∑q

j=1 τ(ti) = τ(T), because a maximum flow will then have a value ≥ τ(T)
(in fact equal to τ(T)). Let K ′ be a cut of R′ defined by the set of vertices
Z ′, with s ∈ Z ′ and t /∈ Z ′. Let us put U = X \ Z ′. We have the following,
observing in particular that t /∈ U since t /∈ X (here ω− relates to R):

c′(K ′) = σ(S ∩ U) + c
(
ω−(U)

)
+ τ(T ∩ Z ′)

190 Graph Theory and Applications

and the condition c′(K ′) ≥ τ(T) then becomes:

σ(S ∩ U) + c
(
ω−(U)

)
+ τ(T ∩ Z ′) ≥ τ(T)

that is, taking into account τ(T) − τ(T ∩ Z ′) = τ(T ∩ U):

c
(
ω−(U)

)
≥ τ(T ∩ U) − σ(S ∩ U)

which is precisely the condition of the theorem.

Notes. 1) With U = X, we have the necessary condition previously
described, σ(S) ≥ τ(T).

2) Another intuitive condition of the existence of a feasible flow is that, in
a network considered without stocks and demands, the value of a maximum
flow must not be less than the total demand. Let us consider a single-source,
single-sink network R′′ obtained from network R following the construction
given in 8.1.2 (R′′ is defined as network R′ in the proof of the previous
theorem except for the added arcs (s, si) and (tj , t), which have here an
infinite capacity). A cut K ′′ = ω+(Z ′′) in R′′ has an infinite capacity as
soon as it contains one of the added arcs. The cuts with finite capacities are
those defined by a set Z ′′ such that Z ′′ ⊇ S and Z ′′ ∩ T = ∅ (in addition
s ∈ Z ′′ and t /∈ Z ′′). Let us suppose that Z ′′ defines a minimum cut and
let us put U = X \ Z ′′, with then U ∩ S = ∅ and U ⊇ T . The condition of
theorem 8.2 makes it possible to write:

c(K ′′) = c
(
ω−(U)

)
≥ τ(T ∩ U) − σ(S ∩ U) = τ(T)

which gives, with the equality v(f) = c(K ′′) when f is a maximum flow,
the indicated condition, that is, that the value of a maximum flow must be
greater than or equal to the total demand.

3) It is also interesting to consider the case U = {tj} which gives:

c
(
ω−({

tj
}))

≥ τ
({

tj
})

− σ(∅) = τ
({

tj
})

and shows that the capacity entering into vertex tj must be at least equal
to the demand in tj , which is clear. It is again interesting to consider the
case U = X \ {si} which gives:

c
(
ω+

({
si

}))
≥ τ(T) − σ

(
S \

{
si

})

Flows 191

thus:
σ
(
si

)
− c

(
ω+

({
si

}))
≤ σ(S) − τ(T)

a condition which the reader is left to interpret. †

8.5 Revisiting theorems

The theory of flows in a network, of which we have just developed the
bases, is very powerful. It makes it possible, for example, to prove some
important theorems as we are going to see with three examples.

8.5.1 Menger’s theorem

Let us recall this theorem in its “vertex statement” (Chapter 2,
theorem 2.2): A (undirected) graph G such that n ≥ k + 1 is k-connected
if and only if any two distinct vertices of G are joined by k internally
vertex-disjoint paths (that is pairwise with no other common vertices other
than their ends).

The part which is the least easy to prove is the necessary condition. It
will easily result from the following lemma which expresses the equality of
the value of a maximum flow and of the capacity of a minimum cut in a
particular network. This result is in fact the original version of the theorem
given by Menger, sometimes called the “local” version of the theorem.

Lemma 8.4. Let G be a simple graph and let x and y be two non-neighboring
vertices of G. The greatest number of pairwise vertex-disjoint paths linking
x and y in G is equal to the lowest number of elements of a set of vertices A
which separates x and y, that is such that x and y are in different connected
components of G − A.

Proof. Let us build a network from graph G in the following way: each edge
of G is first replaced by two opposite arcs, giving a digraph, denoted by G′,
which has the same set of vertices as G. Then, each vertex z �= x, y of G′ is
split into two vertices z′ and z′′ with an arc (z′, z′′) of capacity 1. Any arc
entering into z is replaced by an arc entering into z′ with a capacity ∞. Any
arc exiting from z is replaced by an arc exiting from z′′, also with a capacity
∞. Vertices x and y respectively play the role of source and sink in the
network thus defined, which we denote by R (see an example in Figure 8.8).
It is not difficult to verify what follows:

– A flow of R defines a set of pairwise vertex-disjoint paths of G (the
arcs of the form (z′, z′′) for which the flow takes the value 1 define the
corresponding vertices of the paths of G).

192 Graph Theory and Applications

– A finite cut of R defines in G a set of vertices A such that x and y
are in different connected components of G − A. Indeed, a finite cut
of R is necessarily composed of arcs of the form (z′, z′′), which are the
only arcs with finite capacities and which correspond to vertices of G.
Ford-Fulkerson’s theorem applied to network R then gives the result
directly.

y y

graph G associated network R

v′′

x

v

u u′ u′′

[∞]

[∞]
[∞]

[∞]

[1]

[∞]

[∞]

[∞]

[1]

[∞]

[∞]

[∞]

x

v′

Figure 8.8. Proof of lemma 8.4

Let us apply lemma 8.4 to a proof of the necessary condition of Menger’s
theorem. Let G be a k-connected graph, let x and y be two vertices of G.
(We may suppose k ≥ 1, the case k = 0 being trivial.) If x and y are
not neighbors in G, lemma 8.4 gives the result directly. Indeed, the lowest
number of elements of a set A, as stated in lemma 8.4, is greater than or
equal to the connectedness number of G, κ(G), and G being k-connected we
have κ(G) ≥ k. Thus there are a number of vertex-disjoint paths joining x
and y at least equal to k. If x and y are neighbors in G, endvertices of an edge
e, we can consider graph G− e, which we know to be (k− 1)-connected (see
Chapter 2, exercise 2.16). The application of lemma 8.4 then gives (k − 1)
paths joining x and y, which, with the path defined by edge xy and its
endvertices, constitute the required number of k paths.

Let us note that we can similarly prove the “edge” version of Menger’s
theorem.

Flows 193

8.5.2 Hall’s theorem

Let us recall this classic maximum matching theorem in a bipartite graph
(Chapter 7, theorem 7.2): a bipartite graph G = (X, Y, E) allows a matching
which saturates X if and only if for any S ⊆ X we have |N(S)| ≥ |S|,
where N(S) designates the set of the neighbors of the vertices of S. The
part which is not obvious, the sufficient condition, is an easy consequence of
theorem 8.2. We call the necessary and sufficient condition given in theorem
8.2 Gale’s condition.

Let us associate with bipartite graph G = (X, Y, E) the transportation
network R with stocks and demands, built in the following way. Each edge
of G is directed from Y to X and receives a capacity ∞. Set Y is defined
as set S of the sources of R, and X as set T of the sinks of R. We define
a stock equal to 1 for each source and a demand equal to 1 on each sink.
It is easy to see that a feasible flow of R corresponds to a matching which
saturates X. The matching is defined by the arcs of R with a flow equal to
1, and, since the demand is satisfied, each vertex of G is in fact saturated
by this matching.

It is enough therefore to verify that Hall’s condition in G leads to Gale’s
condition in R (a figure may be useful for following the reasoning below).
Let there be U ⊆ X ∪ Y (note that the set of the vertices of the graph
here is X ∪ Y , and not simply X as in Gale’s theorem). If we don’t have
N(U ∩ X) ⊆ U ∩ Y , then ω−(U) �= ∅, c(ω−(U)) = ∞, and Gale’s condition
is trivially verified. If N(U ∩ X) ⊆ U ∩ Y , we have ω−(U) = ∅, and so
c(ω−(U)) = 0, and Gale’s condition can be written:

0 ≥ |U ∩ X| − |U ∩ Y |

and this condition is really fulfilled since we have:

|U ∩ Y | ≥
∣∣N(U ∩ X)

∣∣ ≥ |U ∩ X|

the second inequality being given by Hall’s condition.

8.5.3 König’s theorem

Let us recall this other classic matching theorem (Chapter 7,
theorem 7.3): if a graph is bipartite, then ν(G) = τ(G), where ν(G) is the
maximum of edges of a matching and τ(G) is the minimum of vertices of a
transversal of G.

194 Graph Theory and Applications

This result is also an equality expression between the value of a maximum
flow and the capacity of a minimum cut in a network. Let us build the
following network R from bipartite graph G = (X, Y, E). Each edge of G is
directed from X to Y and receives capacity ∞. On the one hand we add a
vertex s, which will be the single source of the network, and an arc (s, x)
with capacity 1 for each x ∈ X. On the other hand, we add a vertex t, which
will be the single sink of the network, and an arc (y, t) with capacity 1 for
each y ∈ Y . It is not very difficult to verify what follows:

– A flow of R defines a matching of G and the value of the flow is equal
to the number of edges of the matching (consider the arcs of flow equal
to 1).

– A finite cut of R defines a transversal of G and the capacity of the cut
is equal to the number of vertices of the transversal. Specifically, if the
cut of R is defined by the set Z, the transversal of G is (X\Z)∪(Y ∩Z).

Thus, the value of a maximum flow of R is equal to the number of
matching ν(G) and the capacity of a minimum cut of R is equal to the
minimum transversal τ(G). Ford-Fulkerson’s theorem then directly gives
the equality ν(G) = τ(G) of König’s theorem.

The theory of flows in transportation networks presents a remarkable
algebraic extension with the concept of tension, dual to that of flow, defined
by a potential function, as in electricity.

8.6 Exercises

+8.1. Show that in a network with a source s and a sink t, and for which all
arcs have a capacity > 0, there is no other flow than the zero flow if
and only if there is no path from s to t in the network digraph.

8.2. Find a maximum flow in the network in Figure 8.1. (Deal first with
the network in Figure 8.2.)

8.3. Re-apply the maximum flow algorithm to the network in Figure 8.4,
using the vertex rule: “first labeled, first explored”. Compare the
number of iterations.

+8.4. Let R be a given network defined on a digraph G with a flow f . We
consider the unsaturating digraph, weighted digraph H defined in the

Flows 195

following way: it has the same set of vertices as R and there is in H
an arc b from vertex x to vertex y if and only if there is in G an arc
a directed either from x to y with f(a) < c(a), or from y to x with
f(a) > 0. In the first case, arc b is weighted by c(a) − f(a) and in the
second case by f(a). Using this digraph, reformulate the algorithmic
search for an unsaturated path. Interpret the application of the “first
labeled, first explored” rule and its consequences for the unsaturated
paths obtained.

8.5. In the network in Figure 8.1, justify the answer for the existence of
a feasible flow with the stocks and demands given in the table below
(for some cases use the result of exercise 8.2):

σ(s1) σ(s2) σ(s3) τ(t1) τ(t2) Answer

3 5 2 8 3 no
3 8 2 8 5 no
5 5 2 8 4 no
5 5 2 10 2 no
3 9 0 8 4 yes

This page intentionally left blank

Chapter 9

Euler Tours

Organizing a “tour”, going through each street of a city to distribute
the mail or to collect garbage, is a classic problem. The easiest way a priori
would be to try to go through each street only once, but this is not always
possible, as we will see.

The graphs under consideration in this chapter are undirected and are
not supposed to be simple (loops and multiple edges are allowed). It is
possible to extend what follows to digraphs.

9.1 Euler trails and tours

A Euler trail of a graph G is a trail containing all the edges of G, that
is which goes exactly once through each edge of G. A Euler tour of G is
a closed Euler trail. A graph is called a Eulerian graph if it has a Euler
tour. The origin of this concept dates back to the 18th century with the
famous “Königsberg bridge problem”, well before graph theory existed as
such. In this town, today called Kaliningrad, a Russian enclave in the Baltic
countries, there are seven bridges built on the river, as shown in Figure 9.1.
At that time a citizen wondered if it was possible to cross all of those bridges
once each in the course of a single walk bringing them back to their starting
point. The mathematician Euler, interested in this problem, made explicit
the condition proving it was not possible (the word “Eulerian” used today
comes from his name of course). Modeling this problem with a graph is
easy (see Figure 9.1). A vertex is associated with each neighborhood of the
town and an edge is associated with each bridge, joining the two vertices

198 Graph Theory and Applications

associated with the neighborhood linked by this bridge. Touring the bridges,
as a Königsberg citizen wanted to do, amounts to the existence of a Euler
tour in the associated graph.

associated graph

D

BA

Königsberg bridges

C

D

A B

C

Figure 9.1. Königsberg bridge problem and its graph model

Euler Tours 199

A different version of this problem is known to the many pupils who have
been asked if it is possible to draw various small shapes with a single line
(with no repetition of the line). Two examples are given in Figure 9.2 (to
be verified). Modeling using a graph is obvious and this time the problem †
does not need a return to the starting point. This answer is linked to the
existence of a Euler trail in the graph.

Figure 9.2. Two forms that can be drawn using a single line

9.1.1 Principal result

Theorem 9.1 (Euler). A connected graph G is Eulerian if and only if every
vertex has an even degree.

Proof. Let m be the number of edges of G. The case m = 0 being trivial, we
can suppose m ≥ 1. The necessary condition is almost immediate. Indeed,
in following a Euler tour, which we suppose to exist, we necessarily visit
each vertex of the graph an even number of times since each time we reach a
vertex, we then leave it by a different edge, by definition. The sufficient
condition is less simple but the proof that we will give will prefigure a
recursive search algorithm of a Euler tour in a graph. We can reason by
induction on m. The property is true for m = 1: because of the hypothesis
on the degrees, the graph is reduced to one vertex with a loop which defines
a Euler tour. Let us suppose m > 1 and the property true for any graph
with a number of edges < m. The minimum degree δ of G is ≥ 2, because
the graph is connected, not reduced to an isolated vertex, and each vertex
has a non-zero even degree. We deduce the existence of a closed trail in
a constructive manner: we start from any vertex and go each time to a
neighbor of the last vertex visited without returning to the one just under

200 Graph Theory and Applications

consideration previously. This is always possible since δ ≥ 2. We continue
until we find a vertex which has been previously visited, which closes a trail
C of G (in fact, a cycle). If this trail is not a Euler tour, we consider the
connected components which are not reduced to an isolated vertex of graph
G − E(C) (E(C) designating the set of the edges of C). Because of the
hypothesis that C is not a Euler tour, there is at least one such component.
Let H1, . . . , Hk be these components. By the induction hypothesis, each Hi,
i = 1, . . . , k is a Eulerian graph. Thus, let Ci be a Euler tour of Hi, for each
i = 1, . . . , k. Since graph G is connected, trail C meets each Ci, that is has
at least one common vertex with each Ci. Let xi be one of these vertices. It
is then possible to define a Euler tour of G by inserting Ci into C at vertex
xi for each i = 1, . . . , k. To be more specific, and in a constructive manner,
this trail may be defined by searching C and, when meeting xi, leaving C
in order to fully search Ci, returning then to xi to continue searching trail
C where it was left.

Corollary 9.1. A connected graph has a Euler trail if and only if the
number of its vertices of odd degree is ≤ 2.

Proof. Remember that any graph has an even number of vertices of odd
degree. If the graph considered has no odd degree vertices, it is Eulerian
and has a Euler tour which is also a (closed) Euler trail. If graph G has two
vertices of odd degree, let them be x and y; consider graph G′ obtained by
adding to G an edge joining x to y. Graph G′ verifies the hypotheses of the
theorem, therefore it allows a Euler tour. This tour reduced to G, that is
minus the edge added to G, yields a Euler trail with endvertices x and y.
Finally, if the considered graph has more than two vertices of odd degree, it
cannot have a Euler trail: indeed such a trail, if it is not closed, has for ends
vertices which are the only vertices of odd degree, therefore there cannot be
more than two in the graph.

Notes. 1) In a graph with two vertices of odd degree, any Euler trail
necessarily has these two vertices for ends. Thus, the examples in Figure 9.2
have to be drawn with a line starting at one of the two vertex “nodes” of
odd degree and ending at the other.

2) The connectedness hypothesis in theorem 9.1 and its corollary are not
necessary. Indeed, a graph may have isolated vertices while being Eulerian.
The correct hypothesis instead of connectedness is that the graph has at

Euler Tours 201

most one connected component which is not an isolated vertex (but generally
we are not interested in components reduced to one vertex).

9.2 Algorithms

The proof of theorem 9.1 directly inspires the following recursive
function, which, given a graph G, returns a Euler tour of that graph. The
graph considered must be connected and Eulerian. Note that it is simple to
first verify that the graph is truly Eulerian by checking that the degrees of
its vertices are all even, in accordance with theorem 9.1. The algorithm is
expressed in the form of a recursive function. The graph is given by lists
of incident edges at each vertex, with for each edge the datum of its other
endvertex. A connected component of G−E(C) is here called “non-trivial”
if it is not reduced to an isolated vertex. These are the only components of
G − E(C) worth considering in the recursive calls (following the proof of
theorem 9.1).

function Euler1(G) return closed trail;
begin
construct closed trail(C,G);
if E(G)\E(C) = ∅ then return C; end if;
determinate components(H1, . . . ,Hk);
for i in 1..k loop
Ci:= Euler1(Hi);

end loop;
insert(C,C1, . . . ,Ck);
return C;

end Euler1;

Some of the statements are made explicit as follows:

construct closed trail(C,G):

Choose (any) vertex x0 of G, if dG(x) �= 0 then consider an edge incident
to x0, take its other endvertex x1 (x0 = x1 is possible, there can be a loop
in x0), then start again with x1, considering an edge incident to x1 different
from the previous one. Continue in this manner, always considering an edge
which has not been previously considered. Stop when a vertex previously
encountered is visited again. A closed trail is then defined by the sequence

202 Graph Theory and Applications

of the edges considered. Note that it is also possible to continue as long
as there is an edge not yet considered incident to the current vertex. The
process will then necessarily stop at the initial vertex x0 (with the hypothesis
that the vertices of the graph are all of even degree).

determinate components(H1, . . . ,Hk):

This determines the non-trivial connected components H1, . . . , Hk of G−
E(C): the connected components of G − E(C) can be determined by a
standard algorithm of connectedness (for example by a search of the graph).
We must then eliminate those reduced to an isolated vertex. This statement
is only executed in the case E(G) \ E(C) �= ∅, a hypothesis which insures
the existence of at least one component which is not reduced to an isolated
vertex. The case E(G)\E(C) = ∅ defines the exit condition of the recursive
calls.

insert(C,C1, . . . ,Ck):

This operation for inserting trails Ci in C is explained in the proof of
theorem 9.1. It assumes knowledge of a common vertex of C and of the cycle
to be inserted. In a concrete manner, for each i, such a vertex xi common
to Ci and C is found while searching C. It is enough then to locate on this
vertex the sequence defining trail Ci, and then to continue searching trail C
after xi. At the level of programming, it is best to represent C and Ci by
linked lists. This will make the insertion operation, which amounts simply
to assignments of pointers, easy.

9.2.1 Example

See Figure 9.3. At the top is the Eulerian graph considered, with
vertices numbered from 1 to 12 and edges labeled from a to x. In the
following the trails considered are simply described by the sequences of
their edges. The closed trail considered first, C = (a, b, c, d, e, f, g, h, i),
is shown in bold. At the bottom is the graph G − E(C). It has two
non-trivial connected components, H1 and H2, respectively induced by the
sets of vertices {2, 4, 6, 8, 10, 11, 12} and {3, 5, 7, 9}. Euler tours for these
components are, for H1:

C1 = (o, u, v, r, p, q, x, t, s, w, n)

Euler Tours 203

o

1

1211

2

3

4

5

6

7

j

p

r s

w

q

t
u

v

k

m

1

9

1211

e

2

3

4

6

7
8

i j

p

r s
q

t
u

a

b

d

h

k

c

o

m

9

g

n

5
v

w l

f

(H1)

8

(H2)

l

10

10

x

x

n

Figure 9.3. An application of function Euler1

204 Graph Theory and Applications

and for H2:
C2 = (k, l, m, j)

Trail C2 is obtained directly (no new recursive call). Closed trail C1 is
obtained recursively by inserting, at vertex 10, closed trail (u, v, r) in closed
trail (o, p, q, x, t, s, w, n) (in bold in the subfigure at the bottom). Finally, by
inserting C1 in C at vertex 2 and C2 at vertex 3, we obtain the Euler tour:

(a, o, u, v, r, p, q, x, t, s, w, n, b, k, l, m, j, c, d, e, f, g, h, i)

9.2.2 Complexity

With appropriate implementation, this algorithm has a linear
complexity, O(m), where m is the number of edges of the graph considered.

9.2.3 Elimination of recursion

Some observations, made from the previous recursive algorithm, lead, by
elimination of recursion, to an iterative algorithm. The crucial observation
is that it is possible to insert in C the intermediary closed trails found along
the way as they are built. This saves having to do this work during the
returns of the recursive calls. The initial closed trail C is thus augmented
as work progresses and ends (before any recursive return) as a Euler tour
when all the edges of the graph have been considered. This of course requires
more technical specifications but it gives the general idea and leads to an
algorithm which is apparently very different, which we will now give and
which has been found by another method (within the frame of the study of
different types of searches of a graph).

9.2.4 The Rosenstiehl algorithm

The graph under consideration is still supposed Eulerian and is given by
lists of incident edges at each vertex. In the function Euler2 given below,
C represents a sequence which defines a trail of the graph and which will
be at the end a Euler tour. Initially this sequence is empty. When a vertex
or a vertex and an edge are added to C, it is just after what has already
been placed, and in that order (the vertex then the edge). In what follows,
variable z represents the current vertex and variable e an edge. A stack S is
used which can stock ordered pairs of the form (e,y), where e represents an
edge of the graph and y a vertex, which is an endvertex of the edge. Initially
the stack is assumed to be empty. Let us recall a technical point: the pop

Euler Tours 205

procedure only amounts to removing the element which is at that moment
at the top of the stack (without returning it). An edge is said to be free if
it has not yet been considered. Initially any edge is free. A vertex is said to
be open if it has at least one free incident edge. The addition at the end of
the running of vertex r in C closes this trail (which having started at vertex
r can only close at that same vertex).

The expression of this algorithm may seem complicated, but its running
is remarkably simple: we push as long as there is a free incident edge at the
current vertex, otherwise we pop until it is the case again or until the stack
is empty. The edges leave the stack in the order of a Euler tour of the graph.
In addition, this algorithm clearly has a linear complexity, O(m).

function Euler2(G) return closed trail;
begin
r:= a vertex of G;
z:= r;
loop

while z is open loop
e:= a free edge incident to z;
mark e not free;
y:= the other endvertex of e;
push(S,(e,y));
z:= y;

end loop;
add z,e in C;
pop(S);
exit when is empty(S);
(e,z):= stack top(S);

end loop;
add r in C;
return C;

end Euler2;

Let us go over the example in Figure 9.3 once more, in Figure 9.4.
Only the edges are indicated in the stack (the corresponding endvertices
are directly visible in the figure). The removals of the stack correspond,
in that order, to the edges of the Euler tour obtained, different from the
previous one and which is:

(i, m, l, k, j, h, s, t, x, u, r, v, q, p, o, n, w, g, f, e, d, c, b, a)

206 Graph Theory and Applications

removals of the stack:

1

9

10

1211

2

3

7
8 f

i j

p

s

w

u

v

b

h

ko

n

m

g

c
4

q

t

6

x

r

a

l
e

5

d

stack:

abcdefghjklm

abcdefgh

abcdefg

abcdefgwnopqxts

abcdefgwnopq

abcdefgwnopqvru

∅

abcdefghi

u, r, v, q, p, o, n, w, g, f, e, d, c, b, a

s, t, x

m, l, k, j, h

i

Figure 9.4. An application of function Euler2. The stack is represented
with only the edges concerned (the corresponding endvertices are seen directly
on the graph). The vertex initially chosen is 1

Euler Tours 207

9.3 The Chinese postman problem

The so-called Chinese postman problem (thus called because of the
nationality of the first person to be interested by it) is typically an optimal
tour problem. It means, for example, touring all streets of a town while
minimizing the total distance covered.

In graph terms, the general problem is as follows: given a graph G with
edges weighted with values ≥ 0, we have to find a closed walk of G going at
least once through each edge of G, and for which the sum of the values of its
edges is as small a possible. Let us specify that in general this closed walk is
not a closed trail, which means that an edge of the graph may appear in it
several times. Thus, the minimum total value can be greater than the sum of
the values of all the edges of the graph because of the edges covered several
times. In the particular case of a Euler tour, we have equality, since a Euler
tour is then a solution to the problem. When the graph is not Eulerian,
while still supposed connected, a closed walk solution must necessarily go
more than once through at least one edge of the graph. It is all a matter of
choosing these multiple edges in such a way as to minimize the sum of their
values. Let us make this more specific. In what follows we will write CPP
for “Chinese Postman Problem”.

Let G = (X, E) be a connected graph weighted by v : E → R
+. Let us

put Y the set of the odd (degree) vertices of G, supposed non-empty. We
first have:

– A closed walk of G corresponds to a set F of edges defined on X, which
is disjoint from E and which verifies the two following properties:

1) any edge of F is parallel to an edge of E,

2) graph H = (X, F) has the same set, Y , of odd vertices as G.

Given a closed walk D of G, consider the set F composed in the following
manner: for any edge e of G appearing m(e) > 1 times in D, put in F
m(e) − 1 edges parallel to e. It is easy to verify that this set F verifies the
two preceding properties. In particular the second one is linked to the fact
that graph G + F = (X, E ∪ F) is Eulerian: it is indeed possible to define
a Euler tour of G + F by searching walk D and by doubling each edge of
G met a second time, which comes back to construct G + F . The vertices
of G + F are therefore of even degree, which implies that graphs G and H
have the same odd-degree vertices (an odd vertex in one set is also odd in

208 Graph Theory and Applications

the other because the sum of these degrees is even). Conversely, given a set
F verifying the preceding properties, graph G + F is Eulerian because it is
connected and its vertices are even-degree vertices, and a Euler tour of this
graph defines, in an obvious manner, a closed walk of G (by repeating in G
the edges doubled in G + F).

Let us now suppose that the edges of set F are weighted, each with the
same value as the edge of G to which it is parallel. We add the third following
property:

3) the value v(F) =
∑

e∈F v(e) is minimal.

This property is equivalent to the next one, which defines an optimal
solution of the CPP in G, where D is the closed walk associated with set F
as previously:

3’) the value v(D) =
∑

e∈D v(e) is minimal.

Let us specify that the sum which defines v(D) is taken on the sequence
of the edges of walk D, that is, an edge is counted as many times as it
appears in this walk. This equivalence between properties 3 and 3’ comes
directly from the equality v(D) = v(E) + v(F) and from the fact that the
value v(E) =

∑
e∈E v(e) is constant.

We can reformulate what has been described above by saying that a
solution D of the CPP in G corresponds to a set F of edges which verifies
the preceding properties 1, 2 and 3. We are going to characterize set F in
a manner which will show how to obtain it. Let us make d the distance
function in (weighted) graph G, that is, d(x, y) is the distance between the
vertices x and y. Let KY be the complete graph defined on the vertices set
Y (odd vertices of G), weighted on the edges by d, which means that edge
xy of KY has the value d(x, y). We have:

– Set F verifies the preceding properties 1, 2, and 3 if and only if it
corresponds to a minimum matching of KY .

Let us further explain this correspondence between F and a matching of
KY . Let us suppose that F verifies properties 1, 2, and 3. Let us consider
in H = (X, F) a vertex x1 of odd degree. According to an easy result
(proposed as an exercise in Chapter 1, exercise 1.3), there is another vertex
of odd degree in H; let it be x′

1, linked to x1 by a walk μ1, which we can
suppose to be a path. Let us put H1 = H − F (μ1), where F (μ1) designates

Euler Tours 209

the set of the edges of μ1. In H1, vertices x1 and x′
1 are even-degree vertices.

If H1 still has an odd-degree vertex, then we start again with this graph,
by defining a path μ2 which links two odd-degree vertices x2 and x′

2. We
continue until at last graph Hk is reduced to two odd vertices xk and x′

k

linked by a path μk. We thus have k paths of H (Hi are spanning subgraphs
of H) which are pairwise disjoint for the edges, and which “match” the
odd-degree vertices of H; these are also those of G since they are the same
vertices according to property 2 (remember that a graph always has an even
number of odd vertices). It easily follows from the minimality of v(F) that
each path μi must be a shortest path between the vertices xi and x′

i which it
is linking (otherwise it would suffice to replace this path by a shorter one).
It is therefore possible to associate with each path μi the edge xix

′
i of KY ,

with its value d(xi, x
′
i). This thus defines a matching M of KY associated

with the set of the preceding paths. We have l(μi), the length of path μi:

v(F) ≥
∑

i=1,...,k

l
(
μi

)
=

∑
i=1,...,k

d
(
xi, x

′
i

)
= v(M)

Conversely, given a matching M of KY , it is easy to associate with it a
set F verifying the above properties 1 and 2 by considering some parallel
edges for all the edges of the paths which correspond in G to the edges
of M . With this set F associated with a matching M of KY , we have the
equality v(F) = v(M). Thus the value of v(F) is minimal, that is it verifies
property 3, if and only if set F is associated with a minimum matching M .

We thus see how to obtain a set F of edges corresponding to a solution
of the CPP in G from a minimum matching of KY . All this leads us to the
following algorithm.

9.3.1 The Edmonds-Johnson algorithm

Let us describe this algorithm step by step.

Step 1: Find for each pair of vertices of odd degree of G a shortest path
(in the sense of the weighting of G) which links these vertices.

Step 2: Build a complete weighted graph K of which the vertices are
the odd vertices of G, and of which each edge is weighted by the length of
the shortest path linking its ends found in step 1. Determine a minimum
matching M of K.

210 Graph Theory and Applications

Step 3: Build a weighted graph Ĝ by adding in G for each edge of M
the edges of the shortest corresponding path (found in step 1). Each added
edge is added independently of those already existing. The parallel edges
thus created are given the same value by v as those of G.

Step 4: Find a Euler tour of Ĝ.

Graph Ĝ corresponds to graph G + F seen above. The Euler tour of Ĝ
defines, as we have already seen, a solution of the CPP in G. Let us comment
on these different steps. Step 1 can be accomplished by repeatedly using
Dijkstra’s algorithm (Chapter 6). To find a matching of minimal value in K
during step 2, there is a general algorithm not dealt with in this book and
more general than the one given in Chapter 7 which is limited to bipartite
graphs. Step 3 is direct. Finally, step 4 is solved by the algorithm previously
given in this chapter.

9.3.2 Complexity

From a complexity point of view, it is possible to verify that this
algorithm is, as a whole, polynomial since that is the case for each of its
steps. Thus, the Chinese postman problem is solved by a “good” algorithm.

9.3.3 Example

The number of examples we can give is limited here by the fact that
we have not given any general algorithm for finding a matching of minimal
value in K during step 2. Nevertheless it is possible to deal with the case
where there are few vertices of odd degree. In this case, it is possible to find
such a matching directly by considering all possible matchings, which are
not numerous (for example, 1 for 2 vertices, 3 for 4 vertices).

In the example given in Figure 9.5, there are only two vertices of odd
degree. Its treatment is therefore trivial (see in exercise 9.4 another case
with four vertices of odd degree). At the top of Figure 9.5, see graph G
with, in bold, a shortest path joining the two vertices of odd degree x0 and
x2. This path was obtained using Dijkstra’s algorithm applied from vertex
x0. At the bottom, observe graph Ĝ obtained by doubling in G the edges
of the previous path. All the vertices of this graph are even, therefore it is
Eulerian. It remains to find a Euler tour of Ĝ with one of the algorithms
given above. This tour defines a solution to the Chinese postman problem
in G (a solution tour goes twice through each of the edges of G in bold).

Euler Tours 211

x8

33

28

13

3

4

x7

8

11

5

14

x7

x5

x2

8

142

12
x6

9

2

x0

x3

x1

4x4

x9

3

13

5 3

1

1

11

1

8

2

13

9

x8

5

4

x2

x5

5 12
x62

139

x0

x3

x1

x4

x9

9

4 1

1

1
2

2

42

1

3

Figure 9.5. An example of a solution to the Chinese postman problem

212 Graph Theory and Applications

9.4 Exercises

9.1. Show that if a graph G is Eulerian then each of its blocks is Eulerian.
Is the converse true?

9.2. Show that if a graph G has no vertices of odd degree, then the set
of its edges can be partitioned into classes, each being the set of the
edges of a cycle.

*9.3. (Fleury’s algorithm)

Given a connected graph G, let us consider the following construction
of a trail. We randomly choose a first vertex x0. Let us suppose the
walk (x0, e1, x1, . . . , ek, xk), with k ≥ 0, is already built. Let ek+1 =
xkxk+1 (if it exists) be an incident edge to xk not yet taken, and
which, except if it is impossible to do otherwise, is not a cut edge of
graph Gk = G− {e1, . . . , ek} (spanning subgraph of G induced by the
edges which are not yet taken). We start again with the new walk
(x0, e1, x1, . . . , ek, xk, ek+1, xk+1).

a) Show that, with the hypothesis that G is Eulerian, it is always
possible to build this trail and that it always ends back at the
starting vertex x0.

b) Show that a Euler tour of G has thus been constructed.

c) Reflect on how to give an algorithmic representation of this
construction (in particular recognition of cut edges) and on its
complexity (polynomial?).

9.4. Apply the algorithm solving the Chinese postman problem to the
graph in Figure 9.6.

Euler Tours 213

x10 x8

2

1

2 3

7

8

1

14

x39

3

2
5

3 8
1

x12

3

3
2

12

x13

25

x11

x4

x1 x2

4

3

3 11

x5

1 x6

x7

x9

4 8

Figure 9.6. Exercise 9.4

This page intentionally left blank

Chapter 10

Hamilton Cycles

After the Euler tours studied in Chapter 9, the problem now under
consideration is, for example, to go once and only once through all the cities
of a given set, returning to the starting point at the end of the tour. In graph
terms this means looking for Hamilton cycles. This represents a theoretical
and algorithmic difficulty significantly greater than the Euler tours studied
in the preceding chapter. In a weighted graph, we also take into account
the values of the edges followed going from one vertex to another. By trying
to minimize the sum of these values, we will define what is probably the
most famous problem in combinatorial optimization, the “traveling salesman
problem”, which we will study in this chapter.

10.1 Hamilton cycles

The graphs considered in this chapter are undirected and are supposed
simple. A Hamilton cycle of a graph G is a cycle going through all the vertices
of the graph. Because it is a cycle, it will only go through each vertex once
(counting only once the first and last vertex, which is the same vertex since
it is a cycle). A graph G is a Hamiltonian graph if it has a Hamilton cycle.

This concept and its name historically come from a “world tour” problem
considered by the mathematician Hamilton in the 19th century. This
problem consisted of finding a Hamilton cycle in the graph in Figure 10.1.

We also define the concept of a Hamilton path: a path going through all
the vertices of a graph. From a “tour” point of view there is no longer the
constraint of having to return at the end to the starting point. A classic

216 Graph Theory and Applications

Figure 10.1. A Hamilton cycle (bold lines) in the “world tour” graph
considered by Hamilton, in the form of a regular dodecahedron (the vertices
represent large cities of the world)

example of this problem is the “knight’s move” on the chessboard: can the
knight cross every possible chessboard square only once (using the habitual
movements for a knight)? There are multiple solutions for this problem.

10.1.1 A few simple properties

The following properties are easy to verify:

1) A complete graph Kn is Hamiltonian for any n ≥ 3. This is in general
the case with many different cycles, meaning (n−1)!

2 (remember that two†
cycles are not considered different if they only differ by their cyclic sequences
of vertices which define them).

2) The problem of the existence of a Hamilton path in a graph G can
come down to the existence of a Hamilton cycle in G′, where G′ is the graph
obtained by adding to G a vertex u joined by an edge to each of the vertices
of G.

3) A bipartite graph G = (X, Y, E) can only be Hamiltonian if |X| = |Y |.
In particular if |X ∪ Y | is odd, G is not Hamiltonian.

4) A Hamiltonian graph is necessarily 2-connected as is easy to see.
However, that is not enough as is shown by the graph in Figure 10.2,

Hamilton Cycles 217

x

v

z

y
u

Figure 10.2. A non-Hamiltonian 2-connected graph

a complete bipartite graph K2,3, which is not Hamiltonian in keeping with
the preceding property.

The following proposition gives a necessary condition for existence of a
Hamilton cycle which may be useful.

Proposition 10.1. If graph G = (X, E) is Hamiltonian then for any S ⊆ X
such that S �= ∅ and S �= X, we have, noting p(G − S) the number of
connected components of subgraph G − S:

p(G − S) ≤ |S|

Proof. A Hamilton cycle of G shares the set of the vertices of G − S in
at most |S| non-empty subsets corresponding respectively to the pieces of
the cycle cut by the vertices of S. Each of these subsets is in a connected
component of G−S and each connected component contains one or more of
these subsets. The number of these subsets therefore must be at least equal
to the number of connected components.

This necessary condition for existence of a Hamilton cycle is not sufficient
as is shown in the case of a Petersen graph (Figure 10.3) which is not
Hamiltonian. In fact, there is no simple necessary and sufficient condition
for a graph to be Hamiltonian. However, we have many sufficient conditions,
in particular based on degrees conditions. The following theorem is a typical
example.

Theorem 10.1 (Ore). A simple graph G = (X, E), with n ≥ 3 vertices,
is Hamiltonian if d(x) + d(y) ≥ n for any two non-neighboring vertices
x, y ∈ X.

218 Graph Theory and Applications

Figure 10.3. Petersen graph

The problem of the existence of a Hamilton cycle is therefore not easy
from a theoretical point of view. Nor is it simple from a practical algorithmic
one, since it is NP-complete. This difficulty will be found again in the more
general frame of an optimization problem.

10.2 The traveling salesman problem

The traveling salesman problem encompasses the problem of the
existence of a Hamilton cycle in a graph. In a practical form, the problem
is that of a traveling salesman who has to tour a certain number of cities,
leaving from one of them, going exactly once through the others, to return at
the end to the city from which he departed. This traveler wants to minimize
the total distance covered.

In graph terms, the problem is set in its most general form in the
following manner. Let Kn be a complete graph, G = (X, E), weighted by the
mapping v : E → R

+ (real numbers ≥ 0). The question is to find a Hamilton
cycle of G of which the total value, defined as the sum of the values by v of
its edges and denoted by v(C), is as small as possible. In the case of “the
traveling salesman”, the weighting v corresponds to the distances between
the cities. Our frame here, in terms of graphs, is more general and v is
random; in particular it does not verify the triangular inequality specific
to distances. However, we will still consider this interesting particular case
later.

Hamilton Cycles 219

10.2.1 Complexity of the problem

As for any optimization problem, the goal here is to find an element
which is an extremum following a certain measure, in a set which has in
general so many elements that it is impossible in practice to consider them
all. A search which would consider all cases is impracticable. For example, in
a complete graph with n vertices there are (n−1)!

2 distinct Hamilton cycles.
It is easy to understand that as soon as integer n is large, considering all
the cycles in order to find one that is less than or equal to all the others is
not possible even using the most powerful machine. To define the difficulty
of the traveling salesman problem, let us show how it contains the problem
of the existence of a Hamilton cycle in a graph, a problem which we already
mentioned as NP-complete.

Let H = (X, F) be a graph with n vertices. Let us associate with this
graph the complete graph G = (X, E) with the same set of vertices and
weighted by putting: v(xy) = 1 if xy ∈ F and v(xy) = 2 if xy ∈ E \ F . It is
easy to verify that a Hamilton cycle of H corresponds in G to a Hamilton
cycle of total value n, and conversely. So the existence of a Hamilton cycle
in H corresponds to the existence of a Hamilton cycle in G with a total
value ≤ n (in fact equal to n). Thus, an algorithm which solves the traveling
salesman problem in G also solves at one blow the problem of the Hamilton
cycle in H. In what we just did, which is called the reduction of a problem
to another (see Appendix B), we have used the decision problem associated
with the traveling salesman problem, which can be put as follows (and which
is, in fact, of an equivalent algorithmic difficulty): given a complete weighted
graph G and an integer k, is there in G a Hamilton cycle with a total
value ≤ k? This problem, which contains the problem of the existence of a
Hamilton cycle, is therefore NP-complete.

10.2.2 Applications

We can wonder what the practical interest of the traveling salesman
problem is. Indeed, there are probably very few traveling salesmen who
organize their tours in such simple terms. They usually have a lot more
constraints to take into account such as, for example, the need to be in
a certain city on a certain date to meet someone. The constraint of the
shortest distance covered is therefore not always the most pertinent in
practice. However, we can cite real applications of the traveling salesman
problem. The first one, which is quite obvious, concerns the programming

220 Graph Theory and Applications

of the articulate arm of a robot which needs to cover certain points of a
sheet for welding. For speed, and possibly in order to economize and limit
the wear out of machine tools, we might want to minimize the total distance
covered by the extremity of the arm of this robot. Modeling this problem
into a “traveling salesman problem” is direct.

The other application considered here is less direct. In a paint workshop,
a number of blends have to be prepared each day. A mixer prepares the
blends but going from one mixing to another requires adjusting the mixer
depending on the blends to be made. We know the time necessary to adjust
the machine to go from one mixing of a pair of colors to another. This time
is assumed to be symmetric with regard to the order of the two blends. The
problem is to define the order of passage of the blends in the mixer in order
to minimize the total time spent in adjusting it. If we want to finish with
the machine set for the first mixing, and if each mixing is only done once,
the problem can once again be modeled as a traveling salesman problem by
considering the graph of which the vertices are the blends to be prepared,
each edge being weighted by the time necessary to go from one mixing to
another. A Hamilton cycle with a minimal total value answers the question.

10.3 Approximation of a difficult problem

We will from now on write TSP for “traveling salesman problem”. The
TSP is therefore NP-complete. What can be done with an NP-complete
problem? The hope of finding a good algorithm, that is a polynomial one,
is low since it would be proof that P = NP. On the other hand, if P �= NP
such an algorithm does not exist at all.

When motivated by the needs of an application, a natural course is to
try to obtain at least an approximate solution, that is one that may not be
optimal in general but which is not too far from an optimal solution. This
objective may already be ambitious. For example, a “greedy” strategy, which
works well for the problem of the minimum spanning tree (Chapter 2), fails
completely here. This strategy for the TSP consists of choosing to go each
time to the nearest city not yet visited. We can give infinite families of cases
for which the result obtained is far from an optimal solution. Other ideas
may be tried but we will see that the TSP shows a particular difficulty from
this point of view.

Hamilton Cycles 221

10.3.1 Concept of approximate algorithms

We are going to define this concept for the case of the TSP, but it can
be defined in the same terms in a more general frame for any optimization
problem. We call an instance of the TSP one case of this problem, that is
the datum of a complete graph G weighted at the edges by mapping v with
values in R

+. Given an instance of the TSP, we call a feasible solution of
this instance any Hamilton cycle C of G. An optimal solution is a Hamilton
cycle C of G for which the total value v(C) is minimal. Let us designate
I an instance of the TSP and R(I) the set of all feasible solutions for this
instance. We put:

v∗(I) = min
C∈R(I)

v(C)

This quantity is the optimal value of instance I. If C∗ is an optimal solution
of instance I, we have v∗(I) = v(C∗).

An ε-approximate algorithm for the TSP where ε is a real number > 0,
is an algorithm which, given an instance I of the problem, returns a feasible
solution C which satisfies the following inequality:

v(C) − v∗(I) ≤ εv(C)

which can also be written by supposing v∗(I) > 0, which avoids a trivial
case, and ε < 1:

v(C)
v∗(I)

≤ 1
1 − ε

(note that the hypothesis ε < 1 is not problematic since, as v∗(I) > 0, we
always have v(C) − v∗(I) < v(C)).

This inequality expresses that the feasible solution C is not further, in
relative precision, than ε from the optimal value.

Of course, an ε-approximate algorithm is only interesting if it is
polynomial. We still have to determine for which ε such a polynomial
algorithm exists. If an algorithm fits the definition for a given ε, then it
also fits any ε′ ≥ ε. This leads us to define the approximation threshold of an
optimization problem such as the TSP as the greatest lower bound of the
ε > 0 for which there exists a polynomial ε-approximate algorithm. With
regard to what has been noted above concerning ε (ε can be assumed to be
< 1), this approximation threshold is ≤ 1. Only the case of an approximation

222 Graph Theory and Applications

threshold < 1 teaches us something concerning this problem. A threshold
equal to 1 does not teach us anything, and it is the case for the TSP if P �=
NP, as we are now going to show.

Proposition 10.2. Except if P = NP, the approximation threshold of the
TSP is equal to 1.

Proof. Let us suppose the existence for TSP of a polynomial algorithm, A,
which is ε-approximate with ε < 1. Let us show that such an algorithm would
make it possible to solve the problem of the existence of a Hamilton cycle in
any graph, a problem which we know is NP-complete. So, let H = (X, F)
be any graph. Let I be the instance of the TSP defined by the complete
graph G = (X, E) considered with the same set X of vertices as H and
weighted in the following manner: v(xy) = 1 if xy ∈ F , and v(xy) = n

1−ε if
xy /∈ F , where n = |X|. Observe that a Hamilton cycle of H corresponds in
G to a Hamilton cycle of value n, and, conversely, a Hamilton cycle of value
n in G corresponds to a Hamilton cycle of H. Indeed, any edge of G which
is not in H has a value n

1−ε > n (in G), and its presence in a cycle of G
automatically makes its value greater than n. The problem of the existence
in H of a Hamilton cycle therefore can be reduced to that of the existence
in G of a Hamilton cycle with a value ≤ n (and then in fact equal to n). The
application of algorithm A to G will give a Hamilton cycle C in relation to
the optimal value v∗(I) of the instance considered as follows, as it results
from the definition of an ε-approximate algorithm:

v∗(I) ≥ v(C)(1 − ε)

If C contains an edge which is not in H, we have v(C) > n
1−ε , from which

we deduce, with the preceding inequality, v∗(I) > n. There is therefore no
Hamilton cycle with the value n in G. Otherwise, C is a Hamilton cycle
of H. We thus see that cycle C given by algorithm A makes it possible to
answer the question of the existence of a Hamilton cycle in H, depending
on whether this cycle contains, or does not contain, an edge which is not
in H.

This proposition testifies to the particular difficulty of the TSP, not
only in finding an exact solution, as for any NP-complete problem, but
also in finding an approximate one. Indeed, except if P = NP, there is no
approximate polynomial algorithm useful for the TSP. (Let us recall that an
approximation threshold equal to 1 does not yield anything.) This is not the

Hamilton Cycles 223

case with all NP-complete problems. Indeed, some have an approximation
threshold < 1. We are going to see an example with a restriction to the TSP
(we will find another example in the exercises).

10.4 Approximation of the metric TSP

The metric TSP is defined as the general TSP but with the hypothesis
that the values of the edges verify the triangular inequality, as is the case
with distances in metric spaces. Certain natural applications of the TSP are
in this category, such as the one of the robot arm mentioned above. Given
an instance I of the metric TSP, defined by a complete graph G = (X, E)
weighted by v, we therefore have for any x, y, z ∈ X:

v(xz) ≤ v(xy) + v(yz)

This problem is a particular case of the TSP, but that does not prevent it
from also being NP-complete. There again a simple strategy like the greedy
strategy fails. Nevertheless, this problem is no longer comparable to the
case of proposition 10.2. We will indeed give a polynomial ε-approximate
algorithm with ε < 1.

10.4.1 An approximate algorithm

Let us describe step by step a first algorithm. Each of these steps is in
itself an algorithm, either already known or described in the usual terms.

Step 1: Construct a minimum spanning tree T of G weighted by v. This
step can be achieved with Kruskal’s algorithm (Chapter 2).

Step 2: Double each edge of T . The graph thus obtained, U , is Eulerian
(Chapter 9). Find a Euler tour D of U , defined by the sequence of its vertices
written from any first vertex.

Step 3: “Shorten” the preceding sequence by searching it once again
and suppressing any vertex previously visited (except the first when found
at the end).

Figures 10.4 and 10.5 give an example of an application of this algorithm.

224 Graph Theory and Applications

12

5

14

16

16

a

c

d

e

f

11
13

7

13

15

25

14

9

16

b

24

Figure 10.4. An instance of the metric traveling salesman problem (the
values at the edges verify triangular inequality)

10.4.2 Justification and evaluation

The sequence obtained in step 3 defines a Hamilton cycle of G since
each vertex, except the first, appears in it exactly once. Let C be this cycle.
What can be said about its total value v(C)? A first observation is that any
Hamilton cycle of G has a total value greater than or equal to the value
v(T) of spanning tree T , because such a cycle deprived of an edge is itself
a spanning tree of G, and T is a minimum spanning tree. Thus, denoting I
the instance considered of the TSP and v∗(I) its optimal value as above, we
have:

v(T) ≤ v∗(I)

In addition, the total value v(D) of Euler tour D of U is equal to twice the
sum of the values of the edges of T since graph U was obtained by doubling

Hamilton Cycles 225

D = (a, f, d, f, a, e, a, c, a, b, a)

d

b

c

a

13

e

7

5

9

f

7

(3)

(2)

C = (a, f, d, e, c, b, a)

11

(1)

d

bf

c

a

e

d

bf

c

a

11

5

25

16

e
14

T U

Figure 10.5. Application of the approximate algorithm to the graph in
Figure 10.4. Successively: (1) minimum spanning tree T ; (2) graph U
obtained by doubling the edges, and Euler tour D (cycle defined on the graph
by the arrows of a search); (3) shortening of the preceding sequence and
Hamilton cycle C obtained, of value 78

226 Graph Theory and Applications

the edges of T . Therefore, we have:

v(D) = 2v(T)

The crucial point now is to observe that cycle C, obtained at step 3, has
a total value less than or equal to that of D. Indeed, any “shortening” at
step 3 comes to replacing in D a subtrail of the form (x1, x2, . . . , xk) by edge
x1xk (an edge which necessarily exists in G since G is a complete graph).
However, thanks to the triangular inequality (possibly repeated), we can
write:

v
(
x1xk

)
≤

k−1∑
i=1

v
(
xixi+1

)

Thus we have:

v(C) ≤ v(D) = 2v(T)

With the inequality given above for v(T), we obtain:

v(C) ≤ 2v∗(I)

which can also be written:

v(C)
v∗(I)

≤ 1
1 − 1/2

This last inequality justifies algorithm A as being 1
2 -approximate for the

metric TSP. In addition, we see that this algorithm is of polynomial
complexity by verifying that it is the case for each step.

Thus, we have already shown that the approximation threshold for the
metric TSP is ≤ 1/2.

10.4.3 Amelioration

Let us consider subgraph H of G induced by the vertices of minimum
spanning tree T which are, in T , of odd degree. This subgraph is complete,
weighted, and has an even number of vertices, since the number of vertices
of odd degree of graph T is even. Therefore, it has a perfect matching. Let
M be a minimum perfect matching of H, that is such that its value v(M) is
minimal. Let us then consider graph T augmented by the edges of M , which

Hamilton Cycles 227

we call U . By construction, U is connected and has all its vertices of even
degree because to each vertex of odd degree of T we have added an edge of
matching M . Thus, graph U is Eulerian. Let us then consider a Euler tour
D of U defined by the sequence of its vertices, a sequence written from any
first vertex. Let us apply to D the same shortening technique as in step 3 of
the preceding algorithm. We obtain a sequence of the vertices of U , therefore
of G, which defines a Hamilton cycle of G, which we call C. Let us sum up
as follows the various steps of this second algorithm.1

10.4.4 Christofides’ algorithm

Let us describe this algorithm step by step.

Step 1: Construct a minimum spanning tree T of G.

Step 2: Find a minimum perfect matching M in subgraph H of G
induced by the vertices which are of odd degree in T .

Step 3: Find a Euler tour D of graph U obtained by adding to T the
edges of M , defined by the sequence of its vertices written from any first
vertex.

Step 4: “Shorten” sequence D as in step 3 of the preceding algorithm.

Figure 10.6 shows the application of this algorithm to the case in
Figure 10.4. We see that a better result is obtained, with a value equal
to 66 in place of 78 obtained with the preceding algorithm.

10.4.5 Justification and evaluation

As in the preceding algorithm, C is a Hamilton cycle. Let us try to
evaluate v(C). Since C is the shortening of a Euler tour D of U , itself
composed of T augmented by M , we have with the triangular inequality:

v(C) ≤ v(D) = v(U) = v(T) + v(M)

Let us now consider C∗, a minimum cycle of G, that is an optimal solution to
instance I of the TSP considered with graph G. Let us consider on cycle C∗

the succession of the odd degree vertices of T . By associating them by pairs
of consecutive vertices on C∗, with the two possible ways following the first
1Presentation of this algorithm, and the preceding one, follows the book: The Traveling
Salesman Problem, Lawler, Lenstra, Rinnooy Kan, Shmoys; Wiley (1985).

228 Graph Theory and Applications

b

d

bf

ce

a

11 7

13

5

9

(1)

14

16

25

16

(2)

d

bf

ce

a

(3)

d

f

ce

a

5 15

14

14

11 7

(4)

shortened cycle C = (a, f, d, c, e, b, a)

d

b

ce

15

T

U = T + M and Euler tour

14

D = (a, f, d, c, a, e, b, a)

H and M (in bold)

Figure 10.6. Application of Christofides’ algorithm to the graph in
Figure 10.4. Successively: (1) minimum spanning tree T ; (2) subgraph H
induced in the graph by the odd degree vertices of the preceding tree, minimum
matching M of this subgraph (in bold lines); (3) graph U and Euler tour D
of U defined by the sequence of its vertices from a; (4) shortening of the
preceding sequence and Hamilton cycle C obtained, of value 66

Hamilton Cycles 229

(C∗)

odd degree vertices of T

edges of M1

edges of M2

Figure 10.7. Justification of Christofides’ algorithm

vertex visited, we obtain two matchings M1 and M2 of G (see Figure 10.7).
The triangular inequality allows us to write:

v(M1) + v(M2) ≤ v(C∗)

From this inequality it results that one of the two matchings M1 or M2 has
a value ≤ 1

2v(C∗). If for example it is M1, we have v(M) ≤ v(M1) ≤ 1
2v(C∗)

since M is a minimum matching. In addition we still have the inequality
v(T) ≤ v∗(I) = v(C∗) (as we have already seen earlier on). Thus:

v(C) ≤ v(T) + v(M) ≤ v
(
C∗) +

1
2
v
(
C∗) =

3
2
v
(
C∗)

thus:

v(C) ≤ 3
2
v∗(I)

which can also be written:

v(C)
v∗(I)

≤ 1
1 − 1/3

This last inequality justifies the algorithm as being 1
3 -approximate.

230 Graph Theory and Applications

In addition, this algorithm has a polynomial complexity. We have already
seen this for steps 1 and 4, and for step 3, solved polynomially with the
algorithms described in Chapter 9. Concerning step 2, we saw in Chapter 7
a polynomial algorithm giving a minimum matching in a weighted bipartite
graph. In fact such a polynomial algorithm also exists for any non-bipartite
graph, which solves polynomially step 2. Since we have not given this more
general algorithm, we will only apply this step to some simple cases with
four odd vertices at the most, which makes it easier to search a minimum
matching directly (in the case of four vertices there are only three matchings
to compare, as in the example shown in Figure 10.6).

In the end, we can state: the approximation threshold of the metric TSP
is ≤ 1/3.

10.4.6 Another approach

We are now going to develop a very different approach, called “heuristic”
because it proceeds by local improvements. The principle is to start from
a feasible solution, obtained by any appropriate method, here a Hamilton
cycle C of complete weighted graph G, and try to improve this solution by
modifying C in order to obtain a cycle C ′ with a strictly lower value.

It is possible to imagine diverse modifications of the cycle. One of the
most natural is to replace some of its edges by others such that: 1) we still
have a Hamilton cycle, 2) we gain on the values with the exchange of the
chosen edges. Let us consider a simple case of such a transformation, which
consists of replacing two edges of the cycle by diagonals.

To be specific (see Figure 10.8), taking (x1, . . . , xn, x1), the sequence of
the vertices of C, we replace edges xixi+1 and xjxj+1 of C, where 1 ≤ i <
i + 1 < j < j + 1 ≤ n, with the diagonals xixj and xi+1xj+1. Cycle C
becomes cycle C ′ defined by the sequence:

(
x1, . . . , xi, xj , xj−1, . . . , xi+1, xj+1, xj+2, . . . , xn, x1

)

and if:

v
(
xixj

)
+ v

(
xi+1xj+1

)
< v

(
xixi+1

)
+ v

(
xjxj+1

)

then we truly have v(C ′) < v(C). We repeat this modification as long as it
is possible.

Hamilton Cycles 231

xj+1

xi

xn

xi+1

xj−1
xjxj+2

x1

(C)

Figure 10.8. Modification of a Hamilton cycle by a pair of diagonals (the
arrows show the search of the modified cycle)

Figure 10.9 goes back over the example dealt with previously. The
Hamilton cycle obtained, by application for as long as possible of this
improvement process, has the same value, 66, as the one obtained by
Christofides’ algorithm (it is in fact the same cycle).

10.4.7 Upper and lower bounds for the optimal value

In practice, it is interesting to repeat this modification process starting
from different Hamilton cycles, if possible constructing them in very different
ways. However, the question remains of the quality of the solution obtained
which, of course, in general has no reason to be optimal. With Christofides’
algorithm, for example, we had a “relative error” which, even if it is very
large, gives an indication. Generally, an approximate result without precision
has no practical value.

In fact, what we need to find is lower and upper bounds for the optimal
value v∗(I), where I is the instance considered. For an upper bound, any
feasible solution found yields one automatically: for any Hamilton cycle C
we indeed have v∗(I) ≤ v(C). A lower bound is harder to find. We already
saw above such an indication with the consideration of a minimum spanning
tree T of G. Indeed, we have: v(T) ≤ v∗(I) (remember: cycle C deprived of
an edge is itself a spanning tree). We can refine this result by adding to this
bound the lowest edge value in the graph (which is less than or equal to the
value of the edge removed from C). Let E designate the set of edges of G,

232 Graph Theory and Applications

a

f

ce

711

16

25

14

5

(1) value 97

a

b

14

d

24

bf

cd

a

711

25

5

14

15

(2) value 78

16

14

e

c

bf

ed

711

15

1414

5

(3) value 66

Figure 10.9. Application to the graph in Figure 10.4 of the improvement
by pairs of diagonals. The Hamilton cycle initially considered is the cycle
(a, b, c, d, e, f, a), which has the value 97. We choose each time the pair of
diagonals which yields the greatest reduction in the value of the cycle. After
two modifications (the pair of diagonals considered is indicated each time),
we obtain a Hamilton cycle, of value 66, which can no longer be improved
by this method

Hamilton Cycles 233

so we have:

v∗(I) ≥ v(T) + min
(
v(e) | e ∈ E

)
In the instance already dealt with (Figure 10.4), this gives v∗(I) ≥ 45 +
5 = 50.

This technique may be extended to obtain a lower bound greater than
or equal to the preceding one, and therefore more interesting. We consider
a spanning tree of graph G− x obtained by removing any vertex x from G.
Let Tx be such a tree. If C∗ is a Hamilton cycle of G, C∗ − x is a spanning
tree of G − x, which implies the inequality v(C∗ − x) ≥ v(Tx). Let e1 and
e2 be the edges of C∗ incident to x. Let Ex be the set of the edges of G
incident to vertex x and let us put the quantity:

mx = min
(
v
(
f1

)
+ v

(
f2

)
| f1, f2 ∈ Ex, f1 �= f2

)
We then have:

v
(
e1

)
+ v

(
e2

)
≥ mx

We deduce from it:

v
(
C∗) = v

(
C∗ − x

)
+ v

(
e1

)
+ v

(
e2

)
≥ v

(
Tx

)
+ mx

Therefore, finally:

v∗(I) ≥ v
(
Tx

)
+ mx

If we want to exploit this technique for lower bounding the optimal value
to the maximum, it is possible to apply it to all the vertices x of G and to keep
the greatest lower bound thus obtained. For the example in Figure 10.4, we
show the results in the following table (using the notation used previously).

x v(Tx) mx Lower bound

a 46 7 + 9 62
b 38 7 + 13 58
c 36 9 + 14 59
d 40 5 + 12 57
e 32 13 + 14 59
f 41 5 + 11 57

234 Graph Theory and Applications

The largest lower bound obtained is 62. Considering the best solution found
earlier on, 66, it finally appears that for this instance of the TSP the optimal
value is bounded as follows:

62 ≤ v∗(I) ≤ 66

In fact, we have v∗(I) = 66 (see exercise 10.4).

10.5 Exercises

10.1. Show that it is not possible to go on a chessboard from the square
in the lowest right hand corner to the square in the upper left hand
corner by following adjacent squares and visiting all squares at least
exactly once (use the colors of the squares).

10.2. (Dirac theorem)

Let G be a simple graph such that n ≥ 3 and δ ≥ n
2 (δ being

the minimum degree of G). We propose to show that this graph is
Hamiltonian.

a) Show that there is a cycle in G.
b) Let us consider a cycle C of G with a maximum number of

vertices. Suppose that C is not a Hamilton cycle of G and consider
then a vertex x of G which is not in C. Show, using the hypothesis
on G, that x is necessarily the neighbor of two vertices of C,
themselves neighbors in the cycle. Deduce from this the existence
of a cycle containing the vertices of C and vertex x. Conclude.

c) Show that this theorem is a corollary of theorem 10.1 stated
(without proof) in this chapter.

+10.3. We consider the greedy algorithm for the TSP. This algorithm consists
of doing the following: choose a city of departure, go each time to the
nearest city not yet visited, then at the end return to the initial city.
Apply this algorithm to the example in Figure 10.4, considering the
six possible cases of start vertices. Compare the results obtained.

+10.4. Let us go over the instance of the TSP seen in this chapter
(Figure 10.4). Using a backtracking (see Chapter 5), give an algorithm
to explore all the Hamilton cycles of this graph. Write a program (in
the language of your choice) which implements this algorithm. Find,
using this program, the optimal value of this instance of the TSP.

Hamilton Cycles 235

10.5. Apply to the metric instance of the TSP on six cites A, B, C, D, E, F ,
defined by the following table of distances, all approximate resolution
methods seen in this chapter. At the end give upper and lower bounds
to the optimal solution.

A B C D E F

A — 5,0 12,5 16,5 25,0 14,0
B 5,0 — 11,5 13,5 24,5 16,0
C 12,5 11,5 — 7,0 13,0 9,5
D 16,5 13,5 7,0 — 15,5 16,5
E 25,0 24,5 13,0 15,5 — 14,0
F 14,0 16,0 9,5 16,5 14,0 —

*10.6. (An NP-complete problem with an approximation threshold < 1)

We are considering the problem of finding in a simple graph G =
(X, E) a minimum transversal. Let us recall (Chapter 7) that a
transversal L of a graph G is a set of vertices such that any edge
of G has at least one endvertex in L. A transversal is called minimum
if its cardinality is minimal. Let us recall that any transversal has a
cardinality greater than or equal to that of any matching, and that if
ν(G) is the matching number of G (greatest cardinality of a matching),
then for any transversal L we have |L| ≥ ν(G). This problem of finding
a minimum transversal in a graph (expressed as a decision problem) is,
as is the TSP, NP-complete. Given the following algorithm, in which
H is a graph, E(H) designating the set of its edges, L is an auxiliary set
of vertices, x and y are vertices:

procedure approx transv(G);
begin
H:= G; L:= ∅;
while E(H) �= ∅ loop

take xy ∈ E(H);
L:= L ∪ {x,y}; H:= H - {x,y};

end loop;
end approx transv;

a) Show that the set L obtained is a transversal of G.

b) Show that L is of cardinality ≤ 2ν(G).

236 Graph Theory and Applications

c) Deduce from the above that the procedure approx transv is a
1/2-approximate algorithm for the minimum transversal problem.

d) Verify that this algorithm is polynomial (the approximation
threshold of the minimum transversal problem is therefore ≤ 1/2).

Chapter 11

Planar Representations

The graphs considered in this chapter are undirected, but in fact directed
graphs are covered, since the direction of the edges plays no role in what
follows. Likewise, the graphs can be assumed to be simple since loops and
multiple edges usually also play no role. The representation of graphs in a
plane has been frequently studied, particularly for applications, for example
the representation of graphs on a computer screen or the conception of
printed circuit boards.

11.1 Planar graphs

Since the study of graphs began, they have been represented in concrete
terms by drawing in a plane with points for vertices and lines for edges.
The lines used are considered to contain all the mathematical continuity
and simplicity properties required (“Jordan curves”). Diverse constraints
may be set for this representation. The most natural one is that the lines
representing the edges do not intersect except at their endpoints, which
defines planar graphs (previously defined in Chapter 1). Graphs are not all
planar, for example it is quickly realized that the complete graph K5 is not.

We should make a distinction between a graph G, which is an abstract
concept, and its representation on a plane, as defined previously, called
planar embedding. A planar graph is a graph which allows a planar
embedding. There are usually many planar embeddings of a given graph (for
example by continuous deformations in the plane of the lines representing
the edges).

238 Graph Theory and Applications

The connected components (according to the sense of the plane topology)
outlined by this representation in the plane are called faces of a planar
embedding. One of these faces is unbounded; it is called the unbounded or
exterior face. Each face is delimited in the plane by lines which correspond
to a closed walk in G. This closed walk is not always a closed trail as we see
in Figure 11.1 for one of the faces which is in particular delimited on two
sides by a common edge. (Which one? Observe the presence of an isthmus†
in the graph and see exercise 11.1.)

Figure 11.1. A planar representation of a graph

11.1.1 Euler’s relation

Proposition 11.1. Given the planar embedding of a connected planar graph
G, f the number of faces of this embedding, n the number of vertices, and
m the number of edges of G, we have:

n − m + f = 2

This relation has in fact been known for a long time, well before graphs,
for regular polyhedra (which may be regarded as planar graphs). It can
easily be proved by applying inductive reasoning to the number of faces f .
An interesting consequence of this relation is that the number of faces f
does not depend on the planar embedding under consideration of the graph,
since indeed f = 2−n+m. It has many more consequences and we will give
a few of them below.

Note. Let us recall that we always have n ≥ 1 for a graph G. Here we
also have f ≥ 1. The particular case f = 1 corresponds to the case where
connected graph G is a tree. Indeed, since any edge of a tree is an isthmus, in

Planar Representations 239

any representation of a tree there is only one face, the unbounded face (it is
the same face which is delimited on both sides of each edge; see exercise 11.1).
Euler’s relation then again gives the relation already known for trees: m =
n − 1.

Corollary 11.1. If G is a simple planar graph such that n ≥ 3, then we
have:

m ≤ 3n − 6

Proof. It is enough to prove this equality in the case of a connected graph.
Consider a planar embedding of graph G and observe that any face is
delimited by a closed walk of G with a length ≥ 3. Indeed, a length equal to
1 or 2 for a face, including the unbounded face, would imply the existence of
a loop or a double edge in the graph, which is excluded by hypothesis since
the graph is simple. Thus, each face is bounded by at least three edges. Since
each edge lines two faces at the most, we deduce the inequality 3f ≤ 2m. By
eliminating f between this inequality and Euler’s relation, we finally deduce
the inequality first stated.

Notes. 1) This property of a planar graph is interesting as it is independent
from its representations (f is no longer involved).

2) This inequality makes it possible to prove easily that complete graph
K5 is not planar: indeed, we have n = 5 and m = 10 and thus m > 3n − 6,
which contradicts the inequality.

3) It should be noted that this inequality is only a necessary condition
for any planar graph; it is not a sufficient condition. To verify this, consider
bipartite complete graph K3,3: we have n = 6 and m = 9, and therefore
m ≤ 3n − 6, nevertheless it is not a planar graph (see exercise 11.3).

4) The case of the equality m = 3n− 6 corresponds to what is called the
triangulations of the plane, that is the planar embeddings in which any face is
delimited by a triangle (cycle of length 3). Simple graphs thus represented are
maximal planar graphs, meaning that any edge added cancels the property
of planarity.

The following corollary has played a fundamental role in the proof of the
famous four-color theorem.

240 Graph Theory and Applications

Corollary 11.2. If graph G is simple and planar, then it has a vertex of
degree ≤ 5.

Proof. For n = 1 or n = 2 this property is trivially true. Let us therefore
suppose that n ≥ 3 and let us make δG the minimum degree of graph G
considered. We have to show that δG ≤ 5. We have, by lower bounding each
term of the sum of the degree of the graph by δG:

nδG ≤
∑
x∈X

dG(x) = 2m

and thus, with the inequality from corollary 11.1:

nδG ≤ 2 × (3n − 6) = 6n − 12

and finally:

δG ≤ 6 − 12
n

< 6

which gives the inequality desired.

11.1.2 Characterization of planar graphs

There are several well-known necessary and sufficient conditions for a
graph to be planar. The following one is one of the first to have been given
(in the 1930s) and has a great impact on the theory. It is the condition of
excluded configurations.

Theorem 11.1 (Kuratowski). A graph is planar if and only if it does not
contain, as a subgraph, a subdivision of K5 or of K3,3.

We call subdivisions of a graph H any graph obtained by replacing some
edges of G by paths with lengths ≥ 2, these paths having no common
intermediary vertices. In concrete terms, it is as if we added to some of
the edges of H one or more vertices of degree 2 (see Figure 11.2). With
regard to this theorem, graphs K5 and K3,3 play a particular role: these
are (to more or less one operation of subdivision) the configurations whose
presence makes a graph non-planar. Conversely, their non-presence implies
that the graph is planar.

It is quite easy to show the necessary condition of Kuratowski’s theorem,
knowing that K5 and K3,3 are not planar. Let us first observe the following
point, which is easy to verify:†

Planar Representations 241

K5

K3,3

Figure 11.2. At the top: K5 and one of its subdivisions, at the bottom: K3,3

and one of its subdivisions

– If a graph is planar, all its subgraphs are planar.

– If a graph is not planar, none of its subdivisions is planar.

Therefore, if a graph contains as a subgraph a subdivision of K5 or of K3,3,
it cannot be planar since it contains a non-planar subgraph.

The sufficient condition of Kuratowski’s theorem is harder to show and
we will accept it.

242 Graph Theory and Applications

11.1.3 Algorithmic aspect

Planar graphs have interesting applications, for example for the
conception of printed circuit boards in electronics. People were therefore
interested in their algorithmic recognition from a very early stage. The
algorithm belongs to the complexity class P, which means it can be solved
by a polynomial algorithm, as was proven in the 1960s. On the other hand,
it was more difficult to find a linear complexity algorithm. There are several
such algorithms today, but none is truly simple.

The planarity property typically illustrates the concept of a
well-characterized property in the sense used in complexity theory (see
Appendix B). Indeed, when the question is to know if a given graph G
is planar, the answer can be certified for both possible answers: if it is yes,
by giving a planar embedding of G, if it is no, by giving a subgraph of G
which is a subdivision of K5 or K3,3 (following Kuratowski’s theorem).

11.1.4 Other properties of planar graphs

There are many other properties of planar graphs. The subject was
studied in depth from the origin of graph theory, in particular because
of the four-color theorem. Let us quote Fary’s theorem as an example: a
planar graph can be embedded in the plane such that all edges are straight-line
segments (which do not intersect outside of their endpoints). Also, Tutte’s
theorem: a 4-connected planar graph is Hamiltonian. The question of planar
graphs has also been extended to other surfaces of the plane, for example
the torus (orientable surface with a hole), for which we have the equivalent
of the four-color theorem with seven colors. The general problem has now
been completely resolved.

11.2 Other graph representations

For want of being able to represent a graph with no crossing of edges,
other representations were sought in order to avoid the constraint of a
representation in a plane with no crossing of edges.

Planar Representations 243

11.2.1 Minimum crossing number

The first idea, naturally, is to reduce to a minimum the number of
crossings of edges (outside of the endvertices). The planar case corresponds
to the case of a representation without crossings. Let cr(G) be the minimum
number of edges crossing in a planar embedding of a graph G. The
determining of this parameter is algorithmically difficult; to be more specific,
it is an NP-complete problem (in the form of a decision problem, that is,
given an integer k, do we have cr(G) ≤ k?). Thus, there is little hope for a
good general algorithmic solution. Nevertheless, we have this result for the
complete graph:1

cr
(
Kn

)
≤ 1

4

⌊
n

2

⌋⌊
n − 1

2

⌋⌊
n − 2

2

⌋⌊
n − 3

2

⌋

Example. For n = 5, we have:

cr
(
K5

)
≤ 1

4
× 2 × 2 × 1 × 1 = 1

Since K5 is not planar, we have cr(K5) > 0 and therefore cr(K5) = 1.

11.2.2 Thickness

Another way of doing this is to decompose a graph into planar subgraphs.
It is interesting, for example, to decompose an electronic circuit into
subcircuits, each printable on a plate. We want to limit the number of plates,
that is the number of subgraphs entering into the decomposition. Since each
edge must be in one of the subgraphs and isolated vertices play no role in
the planarity, the subgraphs may be defined as spanning subgraphs.

We thus define the thickness t(G) of a graph G = (X, E) as the
lowest integer k for which there exists a partition of set E; let this be
(E1, E2, . . . , Ek), such that Gi = (X, Ei) is planar for i = 1, 2, . . . , k.
The determination of the thickness is again an NP-complete problem.
Nevertheless, we have the following specific case.
1Let us recall the notation: �x� to designate the greatest integer ≤ x and �x� to designate

the least integer ≥ x.

244 Graph Theory and Applications

Proposition 11.2. The thickness t(G) of a graph G such that n ≥ 3 verifies
the inequality:

t(G) ≥
⌈

m

3n − 6

⌉

Proof. Use the definition of thickness. By applying the inequality in
corollary 11.1 to each Gi, putting mi = |Ei|, we have for i = 1, 2, . . . , k:

mi ≤ 3n − 6

and by performing the sum:

m =
k∑

i=1

mi ≤ k(3n − 6)

thus:

k ≥
⌈

m

3n − 6

⌉

which implies the stated inequality.

In particular, it is interesting to apply this inequality to complete graph
Kn (see exercise 11.5).

11.3 Exercises

+11.1. a) Given a planar embedding of a connected graph G, show, by the
absurd, that if an edge e is an isthmus then it will delimit the same
face on both sides.

b) By applying the preceding property, show that in any planar
embedding of a tree there is only one face.

*11.2. Show that any graph can be represented in three-dimensional
Euclidian space by points for the vertices and lines for the edges in
such a way that two lines do not intersect outside their endpoints (in
other words, the equivalent in space of the planar embedding problem
is trivial).

Planar Representations 245

+11.3. a) Show by applying Euler’s relation that if a simple connected graph
G such that n ≥ 3 is planar and without triangles (without length 3
cycles), then it verifies the inequality:

m ≤ 2n − 4

(reason as for the proof of corollary 11.1).

b) Deduce from the preceding a proof that complete bipartite graph
K3,3 is not planar.

11.4. Let us consider the following graph (well known by the name of
Petersen’s graph):

a) Find in this (non-planar) graph a subdivision of K3,3.

b) Why is there no subdivision of K5 in this graph?

*11.5. a) Applying to the complete graph Kn the inequality on thickness
shown in this chapter, prove the inequality:

t
(
Kn

)
≥

⌈
n(n − 1)
6n − 12

⌉
=

⌊
n + 7

6

⌋

b) Show that we have the equality until n = 8 (in particular we will
have to show that t(K8) ≤ 2, that is find a decomposition of K8 into
two planar spanning subgraphs, which can be done directly).

This page intentionally left blank

Chapter 12

Problems with Comments

12.1 Problem 1: A proof of k-connectivity

12.1.1 Problem

Given two integers n and k such that 0 < k < n and k is even, the simple
(undirected) graph Hk,n is defined in the following way:

• X = {0, 1, . . . , n − 1} is the set of vertices,

• for i, j ∈ X, ij is an edge of Hk,n if and only if we have j = i ± r,
where 1 ≤ r ≤ k

2 with the operation ± taken modulo n. For instance,
with n = 8, 7+1 is equal to 0, 7+2 is equal to 1, or even 0-1 is equal
to 7, etc.

1) What is the number of edges of Hk,n?

2) Verify that the graph Hk,n is connected.

3) A is a set of vertices of Hk,n such that the subgraph Hk,n − A is not
connected. We intend to show that |A| ≥ k. Reasoning by contradiction,
suppose we have |A| < k. Then, let i and j be two vertices which belong to
different connected components of Hk,n − A. We set:

S =
{
i, i + 1, . . . , j − 1, j

}
and:

T =
{
j, j + 1, . . . , i − 1, i

}

248 Graph Theory and Applications

In these expressions of S and T , the indicated operations are always to
be considered modulo n. As |A| < k and as the sets A ∩ S and A ∩ T are
disjoint, we have |A ∩ S| or |A ∩ T | < k

2 . Suppose |A ∩ S| < k
2 .

a) Show that there is a sequence of vertices from i to j in S \A such
that the difference of two consecutive sequences is at most equal
to k

2 .

b) Deduce from the preceding that the graph Hk,n is k-connected.

4) Given two integers as above, we define as f(n, k) the least number of
edges that can have a simple graph on n vertices which is k-connected.

a) Show that we have in a general way, whether integer k is even or
odd:

f(k, n) ≥
⌈

kn

2

⌉

(x� denotes the least integer ≥ x)

b) Show that we have equality when integer k is even.

5) Consider the same problem with k-edge-connected in place of
k-connected.

12.1.2 Comments

In this problem, we determine the minimum edges of a simple
k-connected graph on n vertices, in the case where n is even. It is a solution
to the general problem of communication networks, defined in Chapter 2,
in the particular case of a complete graph with a value equal to 1 on each
edge.

We define a family of graphs achieving this minimum, equal to kn
2 �.

The only point which is a little difficult is proof of the k-connectivity. The
method proposed in exercise 2.18 (Chapter 2), for the case n = 8, k = 4, by
applying Menger’s theorem, does not lead directly to a generalization.

It is interesting to note that this minimum of edges is the same with the
hypothesis k-edge-connected instead of k-connected (question 5).

The case where k is odd can be handled in the same way; the considered
graph Hk,n is similar, but a little more complicated to define.

Problems with Comments 249

12.2 Problem 2: An application to compiler theory

12.2.1 Problem

Let G = (X, A) be a strict digraph which has a root r, which means that
for each vertex v of G there is a path from r to v. Given two vertices v and
u of G, we say that vertex v dominates vertex u, or that v is a dominator
of u, if each path from r to u goes through v. In particular, each vertex is a
dominator of itself. For each vertex u of G, D(u) is the set of the dominators
of u. We say that an arc (v, u) of G is a return arc if vertex u dominates
vertex v. R is the set of return arcs of G. The digraph G is called reducible
if the spanning subdigraph H = (X, A \R), induced by the non-return arcs,
is without circuits.

To illustrate this problem, we will consider the digraph in Figure 12.1.

1) Show the following equality for each u ∈ X:

D(u) = {u} ∪

⎛
⎝ ⋂

(v,u)∈A\R
D(v)

⎞
⎠

2) Determine the return arcs of the digraph in Figure 12.1. Is this digraph
reducible?

3) We return to a general digraph G, assumed to be reducible. Suppose
that you know an acyclic numbering of H = (X, A \ R), and show that it
is possible to determine, step by step following the acyclic numbering, the
sets D(u) for u ∈ X.

4) We consider a depth-first search of G starting at vertex r. Show that
the numbering in postvisit of the vertices of G, in decreasing order from n
to 1 (where n = |X|), is an acyclic numbering of H.

5) Applying the two preceding questions, determine the sets D(u) of the
digraph in Figure 12.1.

12.2.2 Comments

This problem is extracted from an application to the compiler theory,
which concerns analysis of loops of a program in the code optimization
phase.1

1This application is described completely in the book Principles of Compiler Design, from
A. V. Aho, J. D. Ullman, Addison-Wesley (1977).

250 Graph Theory and Applications

h

r

a

b

d

f

g

c

i

e

Figure 12.1. Problem 2

The proof of the equality in question 1 is not straightforward. Be aware
of the case u = r, where D(r) = {r} because vertex r has no other dominator
than itself.

What follows in the problem describes the elements of an algorithm for
determining the domination sets of a reducible digraph. The solutions are
not trivial, but there is no particular difficulty. Note in question 4 that the
depth-first search is made on digraph G, while the acyclic numbering is
obtained for spanning subdigraph H.

To enable verification of the results obtained, we give below the
domination sets of the vertices of the given digraph (which is reducible),
sets which are asked for in question 5.

Problems with Comments 251

u D(u)

r {r}
a {r, a}
b {r, b}
c {r, b, c}
d {r, b, c, d}
e {r, b, c, e}
f {r, b, c, f}
g {r, b, c, f, g}
h {r, b, c, f, g, h}
i {r, b, c, f, g, i}

12.3 Problem 3: Kernel of a digraph

12.3.1 Problem

Let G = (X, A) be a strict digraph. The kernel of G is a set of vertices
N of G which verifies the two following properties:

1. N is a stable set, that is there is no arc (x, y) of G with x, y ∈ N ,

2. N is dominating, that is for each vertex x /∈ N there exists an arc
(x, y) of G with y ∈ N .

We suppose that digraph G is without odd circuits (an odd circuit is a
circuit of odd length), and we intend to show the existence of a kernel in G.

1) Suppose first that digraph G is strongly connected.

a) Given any fixed vertex x0 of G, show that for each vertex y of
G the paths from x0 to y have lengths which are all of the same
parity (that is all even or all odd). We can accept the following
technical result: in a digraph, we can extract an odd circuit from
any closed directed walk which is of odd length.

b) Show that the vertices of G which are ends of even directed walks
beginning at x0 constitute a kernel of G (this property is also true
for the vertices which are ends of odd directed walks).

252 Graph Theory and Applications

2) We now return to any digraph G.

a) Show that in G there is a strongly connected component, called
a sink, which has no exiting arcs (each arc whose tail is in this
component has its head in this component). We can consider the
digraph of the strongly connected components; remember that
this digraph is without circuits (see exercise 4.8 in Chapter 4).

b) Let C1 be a sink strongly connected component of G. We know,
from the first question, that C1 has a kernel, say N1. We consider
the subdigraph G2 of G which is obtained by removing C1 of G
and also the vertices of G which are the tail of an arc whose head
is in N1. Suppose that G2 has a kernel, say N2. Show that N1∪N2

is a kernel of G.

c) Show, by induction on its number of vertices, that if G has no
odd circuits then it has a kernel.

3) Apply the preceding to the digraph in Figure 12.2.

9

1614

17

15

10

8

12 13

18 19 20

11

5 6

7

3

1

4

2

Figure 12.2. Problem 3

Problems with Comments 253

12.3.2 Comments

The concept of the kernel of a digraph is linked to the search for a
winning strategy for a two-player game. We saw in Chapter 5 the example
of Nim’s game, and exercise 5.4 proposes the determination of a winning
strategy for this game using a kernel of some associated digraph.

Our problem here studies a class of digraphs for which there is a kernel.
We can deduce from this an algorithm for constructing a kernel in a
digraph without odd circuits. This construction needs an algorithm for the
determination of the strongly connected components. There are indeed good
algorithms for this (not developed in this book).

12.4 Problem 4: Perfect matching in a regular
bipartite graph

12.4.1 Problem

Let G = (X, Y, E), where X = {x1, . . . , x2} and Y = {y1, . . . , y2}, be a
(undirected) connected bipartite graph which is k-regular (k ≥ 2). Graph
G may have multiple edges. Suppose a point z to be moving in G and
transforming G according to the following rules:

(i) First located at vertex x1, point z moves along any edge with
endvertices x1 and yj to yj , this edge then being removed.

(ii) If z is at yj , coming from xi, then it moves to the first vertex xl �= xi

(according to the order of the indices), which is a neighbor of yj , along
an edge with endvertices xl and yj , this edge then being doubled (that is
replaced by two edges with endvertices xl and yj).

(iii) If z is at xi, coming from yj , then it moves over to the first vertex
yh �= yj which is a neighbor of xi (according to the order of the indices),
along an edge with endvertices xi and yh, this edge then being removed.

1) Show that this sequence of moves necessarily terminates when point
z comes back to vertex x1, and x1 is joined to one of the vertices yj by k
parallel edges.

2) Show that the condition described in the preceding question
necessarily occurs after a finite number of moves of z.

254 Graph Theory and Applications

3) Deduce, from the preceding, an algorithm for finding a perfect
matching in a connected bipartite graph which is k-regular.

12.4.2 Comments

We know that a regular bipartite graph accepts a perfect matching (see
the “Marriage lemma” in Chapter 7). This problem describes an interesting
method for finding such a matching, using only the operations of deletion
and joining of edges, as we could do on a blackboard with an erazer and a
piece of chalk.2

Question 2, which establishes the finiteness of the algorithm, is a little
more difficult. Reasoning by contradiction, that is by supposing that the
sequence of moves does not terminate, consider the edges of G which are
parallel to edges which are searched an infinite number of times. We can
show that a vertex of G cannot have more than two such incident edges,
and we deduce the existence in G of a cycle which is composed of these
edges. This fact implies that some edges must be searched infinitely often
in the same direction, which is not possible.

12.5 Problem 5: Birkhoff-Von Neumann’s
theorem

12.5.1 Problem

A square matrix whose entries are real numbers ≥ 0 is said to be
bistochastic if for each row and each column the sum of the terms is equal to
1. A permutation matrix is a square matrix whose terms are 0 or 1 and which
has exactly one 1 in each row and one 1 in each column. It is a particular
bistochastic matrix. Remember that a diagonal of a square matrix, of order
n, is a set of n terms of the matrix such that there is one term per row and
one term per column.

Let A = (aij), where 1 ≤ i, j ≤ n, be a square matrix of order n which
is bistochastic.

1) We associate with matrix A the bipartite graph G = (X, Y, E) defined
as follows: X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and xiyj ∈ E if an only if

2This problem is taken from Lovász [9].

Problems with Comments 255

aij > 0. By applying Hall’s theorem (theorem 7.2 in Chapter 7), show that
there is a diagonal in A which is formed of non-zero terms of A.

2) Using the preceding diagonal, show that there exists a permutation
matrix P1 and a real number λ1 > 0 such that the matrix A1 = A − λ1P1

is bistochastic, up to a positive coefficient (that is there is a real number
μ > 0 such that matrix μA1 is bistochastic).

3) Continue the preceding process in order to show that each bistochastic
matrix A is of the form:

A = λ1P1 + · · · + λkPk

where Pi, for i = 1, . . . , k, are permutation matrices, and λi are real numbers
> 0 such that

∑k
i=1 λi = 1. In other words, a bistochastic matrix is a

barycenter of permutation matrices.

4) Application: in a society, an equal number n of men, m1, . . . , mn,
and of women, w1, . . . , wn, spend their lives as couples. For each couple
(mi, wj) the proportion of life spent together is defined by aij , with 0 ≤
aij ≤ 1 (it is supposed that all have the same life expectancy). Therefore,
we must have for each i,

∑n
j=1 aij = 1 and for each j,

∑n
i=1 aij = 1. Thus,

the square matrix of order n, A = (aij) is bistochastic. In addition, we
give for each couple (mi, wj) a “satisfaction coefficient”, cij , of their life in
common, which when multiplied by their proportion of life in common gives
the “life satisfaction”. Thus, a couple (mi, wj) has a satisfaction with their
life in common equal to cijaij . We are trying to make the total satisfaction
maximum. More specifically, we are looking for some aij , that is couples
lasting, so that

∑
ij cijaij is maximum. Show that this maximum will be

reached in the case of couples stable all their life, that is such that for each
i there is a j such that aij = 1.

12.5.2 Comments

The simplicity of the proof of Birkhoff-Von Neumann’s theorem proposed
in this problem comes from the use of Hall’s theorem. It is a nice example
of a simple proof of a mathematical theorem thanks to combinatorics.3

Question 4 proposes an amusing application of this theorem. The result
may appear unpleasant for some . . . , but, remember, we can equally observe
3From Berge [1], see also: Lawler, Combinatorial Optimization, Holt, Rinehart, Winston

(1976).

256 Graph Theory and Applications

that a minimum is also attained in the same condition for couples which are
stable all their life!

12.6 Problem 6: Matchings and tilings

12.6.1 Problem

We consider bounded regions of a plane consisting of unit squares.
These regions, called polyominoes, are supposed connected and even simply
connected, that is their boundary is a simple closed polygonal line. We study
tilings of such regions by non-overlapping dominoes, which are 2 × 1 or
1× 2 rectangles. A polyomino which accepts such tiling is said to be tilable.
We suppose that the squares of the plane are colored black and white,
like a chessboard. Figure 12.3(a) gives an example of a tilable polyomino
(dominoes of the tiling are surrounded in bold).

1) Show that if a polyomino is tilable then it contains an equal number
of white squares and of black squares. We will call a polyomino with this
property balanced.

2) Given a polyomino P , we associate the (undirected) graph, simple and
connected, defined in the following way: to each square of P is associated
a vertex of G, and the edges of G correspond to the pairs of squares of P
which are adjacent (horizontally or vertically).

a) Show that G is a bipartite graph.

b) Show that polyomino P is tilable if and only if graph G has a
perfect matching.

c) Consider the polyomino in Figure 12.3(b). It is balanced, but
show that it is not tilable by applying Hall’s theorem (theorem 7.2
in Chapter 7) to its associated graph.

3) A polyomino is said to be trapezoidal if it is made up of a stack of
dominoes in lines which are decreasing in length from bottom to top. An
example is given in Figure 12.3(c).

a) Show that a trapezoidal polyomino is tilable if and only if it
is balanced. Reason by induction on the number of squares
of the polyomino (a number which is necessarily even). Show,
in particular, that if a polyomino does not have a pair of

Problems with Comments 257

(c)

(a) (b)

Figure 12.3. Problem 6

adjacent squares that we can remove, and the polyomino remains
trapezoidal, then the polyomino has the form of a “double
staircase”, which means that it is not balanced.

b) Deduce, from the preceding reasoning, an algorithm for finding a
tiling of a trapezoidal polyomino. What is its complexity?

12.6.2 Comments

Tilings studied in this problem are limited to domino tilings of
polyominoes. Tiling problems are much more general, but this particular case
is already rich, and, moreover, is in fact relevant to matchings in bipartite
graphs, which is our motivation here.4

4The reader who wants a deeper study of this subject can consult the following reference:
J.C. Fournier, “Pavage des figures planes sans trous par des dominos: Fondement graphique
de l’algorithme de Thurston, parallélisation, unicité et décomposition”, Theoretical
Computer Science, vol. 159, 1996, 105–128.

258 Graph Theory and Applications

12.7 Problem 7: Strip mining

12.7.1 Problem

A strip mine is being exploited by block excavations. These are set as
indicated in Figure 12.4, which is the case study in this problem. Each block
bears a number (between parentheses at the top to the left). The excavation
of a block is only possible if the blocks (even partially) located just above
this block are also excavated (for example block number 1 must be removed
for number 6 to be removed). This condition is repeated from one row to
another and we call it the “excavation constraint”. For each extracted block
there is a profit indicated by an integer in the middle of each block (for
example block number 1 yields a profit equal to 2). This negative or positive
value depends essentially on the cost of excavating the block and the value
of its ore.

We want to define a set of excavating blocks which respects the
excavating constraint and such that the sum of profits obtained by
excavating these blocks is the greatest possible. Such a set is said to be
optimum.

Given a block b, we denote by p(b) the profit obtained by excavation of
b. We denote by A the set of blocks b such that p(b) > 0 and by B the set
of blocks b such that p(b) < 0. We model the problem by associating with
it the transportation network R which is defined as follows:

• its vertices are the blocks, plus two vertices s (source) and t (sink),

• if b and b′ are two blocks such that block b′ lies in the mine at the level
just above that of b, and b′ overlaps b, totally or partially, there is in
R an arc a = (b, b′), with capacity ∞,

• there is an arc (s, b) of capacity p(b) for each block b ∈ A, and an arc
(b, t) with capacity −p(b) for each block b ∈ B.

1) Draw the network which is associated with Figure 12.4.

2) Show that a set C of blocks respects the excavating constraint if and
only if in the network R the capacity of the cut K = ω+(C ∪ {s}) is finite.

Problems with Comments 259

(11)

(13) (14) (15)

2 3 -3 -4

-5

-5 10 1

(1) (2) (3) (4)

(5) (6) (7) (8) (9)

(12)
4

-2

2
(10)

2 -2-2 -1

Figure 12.4. Problem 7

3) Show that we have, in the case of the preceding question, the following
expression for the capacity of the considered cut:

c(K) =
∑

b∈A\C
p(b) −

∑
b∈B∩C

p(b)

Deduce:
c(K) =

∑
b∈A

p(b) −
∑
b∈C

p(b)

4) Show that a set C of blocks is optimum if and only if the preceding
cut K is minimum.

5) Find such an optimum set of blocks by applying the max-flow min-cut
algorithm to network R.

6) Determine for block 14 a profit (> 10) from which this block can
belong to a set of blocks which is optimum. Determine then such a set of
blocks.

12.7.2 Comments

The application developed in this problem presents the particular
interest that it uses the Ford-Fulkerson theorem and algorithm for a
minimum cut instead of for a maximum flow, as is most frequently the
case.5

There is no particular difficulty in this problem.
5The reader can find a general presentation of this application in the book: Linear
Programming, V. Chvátal, Freeman (1983).

This page intentionally left blank

Appendix A

Expression of Algorithms

The formal expression of algorithms is a delicate question and the
solutions given in the abundant literature on algorithms are diverse and, it
should be said, not always appropriate. There are in fact opposing objectives:
the wish to remain close to the natural human language and the relative
necessity of being able to translate into a real programming language, in
order to validate the algorithm expressed. It is of course possible to limit
ourselves, in certain cases, to an expression in natural language. This renders
the principle of the algorithm rather than the algorithm itself. A more
in-depth study requires a more formalized expression, in particular in order
to analyze complexity (see Appendix B).

It is necessary to apply the model of “structured programming”, much
used today by most commonly used languages such as C for example. In fact
the ADA language is a much better reference for programming algorithms;
it is cleaner, more conceptual, but unfortunately has not (yet?) met with
the favor of the public. The algorithmic pseudocode used in this book is
inspired by this language. However, it is not, of course, assumed that the
reader knows this language, and we give in this appendix exactly what is
necessary to understand the algorithmic expressions used here. It is only
assumed that the reader has a minimum of familiarity with programming in
general.

We are going to give the basic explanation first using a significant
example of an algorithm borrowed from Chapter 5 (backtracking), which
expresses the iterative version of the depth-first search algorithm of an
arborescence. The explanations given do not require the reader to have

262 Graph Theory and Applications

previously studied this algorithm. They are simply dealing with the
expression of the algorithm.

A.1 Algorithm

procedure dfs arbo ite(T,r);
begin
push(S,r);
v:= r;
loop

while exits child(v) loop
v:= first child(v);
push(S,v);

end loop;
-- exits child(v) false
while v �= r and then not exists following sibling(v) loop
pop(S);
v:= top stack(S);

end loop;
-- v = r or exists following sibling(v) true
exit when v = r;
pop(S);
v:= following sibling(v);
push(S,v);

end loop;
pop(S);

end dfs arbo ite;

A.2 Explanations and commentaries

• The words in bold, such as procedure, begin, loop, while, end,
and, then, not, etc., are the reserved words of the language, forbidden
for any other use than those, generally classic, uses for which they are
defined.

• An algorithm will often, as is the case here, be given in the form
of a procedure, that is a subprogram which has an action on data
passed into parameters. However, there are also subprogram functions
which return a value, introduced by the reserved word function
instead of procedure. When there is only one procedure, as here,

Appendix A 263

it is automatically the main procedure, that is the one by which the
running is launched. More generally, a program is made of several
subprograms, procedures, and functions, one of them playing the role
of the main subprogram.1

• The control structures used in this algorithm are classic:

– The conditional if . . . then . . . else . . . end if. Let us indicate
that it is possible, more generally, to add before else as many elsif
as necessary to consider additional cases. Let us note in passing
how the structure is bracketed by if at the beginning and end
if at the end. This form is general for all control structures. We
find the same method of bracketing for the program itself with
begin at the beginning and end at the end, followed, for ease of
reading, by the name of the program.

– The loop while . . . loop . . . end loop, is a well-known
structure. However, here we also use a more general loop structure
which is better for certain algorithmic constructions: loop . . .
end loop with exit. This is the case for the main loop of the
procedure. There may be only one exit, as here, but there can
also be several, as many as needed depending on the required
conditions. Let us note that loop while is the particular case
of a loop with a single exit under a condition tested at the
beginning. Each exit of a generalized loop may be commanded
by the statement:
exit when (condition);

as in the previous algorithm, a form which has the advantage
of highlighting the exit condition. However, an exit may also be
commanded by the statement exit in the conditional if.

• In our presentation, the whole environment of the algorithm is
supposed to be defined by the context. There are many things
here. First, the parameters passed into the procedure dfs arbo ite,
an arborescence T and its root r. Then, a proper variable
of the procedure, s, called a local variable, here of the type
vertex of the graph. Of course, if we wanted to continue to the
programming of this algorithm, we would have to have properly
declare this variable and its type. Finally, still concerning the
environment of the algorithms, we observe the calls, to what can

1This is the main function in C for example.

264 Graph Theory and Applications

be called the primitives, that is, subprograms which are assumed
to have been given elsewhere and which define the arborescence
(here: exists child, first child, exists following sibling,
following sibling). Their interpretation is explained in Chapter 5;
once again we are interested here solely in the formal algorithmic
aspect. We can imagine these primitives gathered in a package (in
ADA for example) which the program would call upon. There are
other primitives which we will now explain.

• This algorithm uses the classic data structure stack. This well-known
data structure is handled by subprograms that should be considered
as given elsewhere, in a package the use of which will be declared by
the program. Since we often use this stack structure (we also use the
queue structure which can be similarly defined), let us give the formal
specifications for these subprograms:

– push(S,s) is a procedure which puts at the top of stack S the
vertex of the graph contained in variable s.

– pop(S) is a procedure which removes from stack S the vertex of
the graph which is at the top of the stack. In this procedure,
and in the previous one, we must consider parameter S as being
in input–output mode since stack S is modified by the action of
this procedure (mode in out in ADA). Let us specify that this
procedure does not return the removed vertex.

– top stack(S) is a function which returns the vertex of the graph
which is at the top of stack S. In this subprogram, parameter
S needs only to be in mode input (in in ADA, default mode),
since the stack is simply read (in general, a function parameter
must always be in mode in). In particular, this function does not
remove the top of the stack.

– The Boolean function is empty(S), unused here, returns true or
false depending on whether or not stack S is empty.

We will always additionally suppose that a stack (or a queue) when
used has been previously initialized to the empty state.

Let us specify that the data structure stack is general with regard
to the elements pushed, here the vertices of the graphs. A generic
structure may be written in ADA, usable after instantiation on the
vertex type defined with the type graph.

Let us end these explanations with the following general points:

Appendix A 265

• Each statement ends with ‘;’, this includes the heading of the
program which may considered as a declaration statement of the
program and which is called its specification.

• Each comment is preceded by a double hyphen -- and runs to the end
of the current line (that way it is not necessary to close a comment).

• The assignment operator := and the equality operator =, as others
used occasionally, are well known and will not be detailed here.

• It is almost unnecessary to recall the importance of indentation in the
presentation of a program. It is useful in helping to understand the
organization while sustaining visually each control structure.

A.3 Other algorithms

procedure dfs arbo recu(T,v);
begin

if exists child(v) then
u:= first child(v);
dfs arbo recu(T,u); -- recursive call
while exists following sibling(t) loop
u:= following sibling(u);
dfs arbo recu(T,u); -- recursive call

end loop;
end if;

end dfs arbo recu;

A.4 Comments

From the point of view of algorithmic expressions, there is no novelty
here compared to the previous example. The novelty lies in the recursion
apparent here by the calls in the procedure to itself. These calls are signalled
by comments. This algorithm is in fact the recursive version of the previous
one, called by opposition an iterative algorithm. It must be called by a main
procedure, as we saw in Chapter 5.

It is not necessary to insist on the importance of recursion in algorithmic
expressions and programming! It is a fundamental concept from a practical
and theoretical viewpoint (in particular in systems), and this example shows
the conciseness of expression allowed by recursion.

This page intentionally left blank

Appendix B

Bases of Complexity Theory

B.1 The concept of complexity

In concrete terms, the concept of time complexity corresponds to the time
required to run a program. It is an essential practical parameter in numerous
applications. This running time depends on many different factors, first of
all on the size of the data to be processed. It is obvious that it will not take
the same time to process a graph with 100 vertices as one with 1000. The
running time has to be considered in relation to the size of the case dealt
with. We talk of the complexity function.

Another equally essential factor is the power of the computer used for
processing. Again, differences may be great, therefore a reference machine
has to be specified as we will see. There are other factors, less obvious but
as important, such as the manner in which the data are represented. This
representation may be more or less efficient with regard to processing.

To speak of complexity means to speak of concepts which at first may
seem clear intuitively but which in fact need to be specified and formalized.
Let us start with the concept of an algorithm. A complete formalization
of this concept requires the definition of a machine in the sense of a
model capable of an automatic process. The model which is the principal
reference is the Turing machine, which bears the name of its inventor in the
1930s. This theoretical “machine” is, as a machine, reduced to its simplest
expression, and that is precisely what makes it useful from a theoretical
point of view. Also, despite its extreme simplicity, it seems to contain all the
calculation possibilities of the most evolved computers. We will not develop

268 Graph Theory and Applications

this theoretical model here; it is enough to know that it exists and makes it
possible to formalize the concept of algorithms.

A machine, no matter which one, processes data which have to be
presented to it in a certain manner. For example, graphs may be modeled
in different ways. We speak of data encoding, which is also a concept which
has to be specified because it has a direct influence on the complexity of
the processing. Let us consider a simple case with the classic algorithm used
to decide if a given integer n is a prime number, meaning that it has no
other divisor than 1 and itself. A classic method is to try as divisors all
the integers less than or equal to

√
n. The number k of divisions to be

done, equal to the integral part of
√

n, is a measure of the complexity of
this test since it is clear that the time necessary will be proportional to
this number, while considering, nevertheless, the division as an elementary
operation of constant time. We may consider a priori that this complexity is
reasonable since it is simply proportional to the square root of the integer.
In fact the value of k is exponential in relation to an usual encoding of
integer n. Indeed, in any number system, decimal or binary for example,
n is represented by a number of digits proportional to log n (log being
in the base considered), and

√
n is expressed exponentially in function of

log n. In base 10, for example,
√

n = 10
1
2
t, where t = log10 n is the size of

the representation of integer n. To take n as the reference size of the data
n corresponds to what is called the unary representation, encoding which
consists of using only one digit (a “stick”, for example, as in primary school),
and in which each integer is written by repeating this digit as often as the
value of the number. This manner of proceeding is not adequate in relation
to complexity. This encoding is therefore considered “unreasonable”. We will
suppose implicitly that, in the development which will follow, the encodings
used are “reasonable”, which is necessary for a realistic complexity concept.

From a general algorithmic perspective, running time is measured by the
number of operations which are said to be elementary. But this concept of
elementary operation depends on the operating level from which we operate,
and, above all, on the nature of the problem and the calculation. This can be
arithmetic operations, for a sorting algorithm it will involve comparisons and
exchanges of elements, and for the processing of graphs visits and specific
operations on the vertices. We introduce the general concept of elementary
operations pertinent for the problem under consideration. These are the
operations which are directly involved in seeking the result.

Appendix B 269

Size of Complexity function
problem n n2 2n

10 0.01 μs 0.1 μs 1.024 μs
20 0.02 μs 0.4 μs 1.049 ms
30 0.03 μs 0.9 μs 1.074 s
40 0.04 μs 1.6 μs 18.3 minutes
50 0.05 μs 2.5 μs 13.0 days
60 0.06 μs 3.6 μs 36.6 years
70 0.07 μs 4.9 μs 374 centuries

Table B.1. Comparison of complexity functions

However, we may then worry about the possibly arbitrary nature of this
concept, and, even more, about the imprecision which results from neglecting
other more elementary operations, or even at the lowest level, “machine
operations”. In fact, this has no impact on the complexity classes which are
defined. Indeed, it is always possible to consider that an operation at a higher
level is equivalent to a bounded number of lower level machine operations.

B.2 Class P

After all these specifications, we come to what is at the heart of the
complexity theory, that is the polynomiality criterion. When the size n of the
datum increases, there is a great difference theoretically, but also practically
in most cases, between the growth of a complexity function which would
be of the order of a polynomial function and an exponential growth. Let us
consider for example Table B.1, which gives the running time requested for
a datum of size n = 10, 20, . . . , 70, with the number of operations expressed
by different complexity functions. Here the hypothesis is of a machine which
runs 109 operations per second, that is, a billion operations per second,
which is already a respectable speed (abbreviations used: s for second, ms
for 10−3 second and μs for 10−6 second; the other time units are spelled
out). We see in this table that the running time remains reasonable with
polynomial functions n and n2. However, they no longer remain reasonable
with an exponential function such an 2n as soon as the size n becomes a little
large (although still very modest in practice; here we will stop at n = 70:
the time obtained, 374 centuries, is sufficient explanation!). Asymptotically,

270 Graph Theory and Applications

it is well known that an exponential function (with a positive base) has a
faster growth than any power function.

There is another way to look at things, maybe more explicit. Given a
computation time available on a first machine, and an equal time on a second
machine 10 times faster, how much bigger is the datum we can process with
the second machine relative to the first one? Specifically, let n be the size
of the problem which can be processed by the first machine in the given
time, and let n′ be the size of the problem which can be processed on the
second machine for the same available time. Starting first with a complexity
function equal to n2, we have:

n′2 = 10n2

and we deduce:

n′ =
√

10n � 3, 16n

Thus, with the machine which is 10 times faster we can in the same
given time process problems which are three times larger in size, which
is interesting. As we are going to see, the situation is quite different with an
exponential complexity, for example 2n. We then have:

2n′
= 10 × 2n

which gives:

n′ = n + log2 10 � n + 3, 3

A machine which is 10 times more powerful can only process data of a few
additional size units. For an initial datum of size 1000 for example, the gain
is not significant.

This polynomial growth criterion of the complexity function was
therefore introduced, in particular by J. Edmonds in 1965. This criterion
quickly turns out to be pertinent, not just because of its asymptotic nature
which we mentioned. There is also the stability of this criterion relative to
the composition of algorithms, because of the fact that the composition of
polynomial functions is itself a polynomial function. In addition, there is
the fact, previously mentioned, that reasonable data encodings only differ
from one another polynomially, meaning that any encoding may be upper
bounded in size by a polynomial in function of another encoding.

Appendix B 271

We are used to expressing the complexity of an algorithm with the
classic notation of Landau: an algorithm is of complexity O(f(n)) when
the number of elementary operations in relation to the size n of the data is
upper bounded by f(n) multiplied by a constant, as soon as the integer n
is greater than a certain value. If function f is polynomial, the algorithm is
called polynomial and the problem dealt with by this algorithm is also called
polynomial. These problems define the complexity class denoted P. Since a
polynomial function behaves like its terms of higher degree, and taking into
account the constant involved in O, we replace f(n) by an expression of
the form O(nk). Thus we commonly write a complexity in the form O(nk).
The particular case k = 1 is in principle the best possible a priori, since we
need to count at least the time to read the data. This is the case of linear
algorithms.

Concerning other cases, practice shows that we rarely go over small
values of exponent k: 2, 3, 4 This fact reinforces once again the interest
of the polynomial criterion: indeed we did mention that an algorithm which
was polynomial but with a very high exponent k, for example 1050, would be
without practical interest, which is obvious. On the other hand, an algorithm
of exponential complexity but with a very low coefficient in front of the
exponent, for example 210−50n, would not be so bad. We must also say
that what is under consideration here is what we call complexity in the
worst case. This means that we upper bound all data cases uniformly. Yet,
it may happen a priori that most cases only require a reasonable time,
contrary to a few cases which are rare or artificial and are sometimes called
“pathological”. For such a case, and in general, it seems more natural to
evaluate what is called the complexity in the expected case, which takes into
account appearance rates of each data case, that is the probability with
which each possible instance is likely to occur as an input. However, such a
measure of complexity is often delicate to calculate, if only because of the
fact that it means knowing the input distribution.

A finer analysis of complexity leads us to consider mathematical
functions with intermediary growth between the integer-power functions.
Thus we often consider function nq, where q is a real number (not necessarily
an integer), logk n, where k is an integer. (We do not specify the base of this
logarithm but we can always consider it to be base 2. It will not change
the result expressed asymptotically in O because, as we know, all systems
of logarithms are proportional.) To give an example, which does not come
from graph algorithms but is sometimes useful, the best sorting algorithms
are of complexity O(n log n), which is better, for example, than O(n2).

272 Graph Theory and Applications

B.3 Class NP

When a problem is recognized as class P, it is therefore considered as
satisfactorily solved algorithmically. This is the case for numerous basic
graph problems such as the search for connected components. However, other
problems, apparently simple, at least to set, cannot be solved polynomially.

This is the case with the problem of graph isomorphism. Given two
simple graphs G and H, is there an isomorphism of G to H, that is a
bijection from vertex set of G onto vertex set of H preserving the neighboring
relationship defined by the edge? Let us specify that such a problem with
a “yes” or “no” answer is called a decision problem and that here we are
only considering this type of problem. One way, of course non-polynomial in
complexity, is to try the n! possible bijections, n being the common number
of vertices of the graphs considered, until finding one which respects the
condition. If all bijections have been considered and none is appropriate,
then it is possible to answer “no”. Let us note an important fact here: given
a bijection on the vertices, it is possible to verify polynomially that it does
(or does not) define an isomorphism, a complexity O(n) algorithm being
easy to imagine for this check. If we have such a bijection, we can say that
we can verify polynomially the answer “yes”, and the bijection plays the
role of a “certificate” for this answer, in the sense that we can be assured of
a positive response. If, on the other hand, the answer is negative, then such
a certificate does not exist.

We have here, therefore, a problem for which we can verify polynomially,
thanks to the certificate, a positive answer, even when this certificate itself
cannot be found polynomially. This is the idea which presides over the
definition of class NP: problems for which it is possible to check a positive
answer polynomially without necessarily being able to find polynomially
this answer. The acronym NP does not mean “non-polynomial” but
“non-deterministic polynomial”: the non-determinism here represents our
incapacity (which may be temporary) to find directly, that is without the
help of a certificate, the right answer. This idea, a bit disconcerting for
beginners, is clearly formalized by the non-deterministic Turing machine,
but that goes beyond this simple introduction to complexity.

The concept of a certificate, more intuitive than the non-deterministic
one, gives a good overview of the concept of class NP provided it is
formalized. In the following case, we will call an instance of a problem a
data case for that problem, for example a pair (G, H) of graphs for the

Appendix B 273

isomorphism problem of two graphs. Therefore it is said that a decision
problem Π is in class NP if there is a polynomial algorithm A and a
polynomial p such that for any instance x of A the answer is “yes” if and
only if there is a datum y such that |y| ≤ p(|x|) and algorithm A applied
to x associated with y gives the answer “yes” (|x| designates the size of
x, likewise for |y|). The algorithm A is the checking-algorithm and y is a
certificate, for instance x of Π. Let us note the obligation for the certificate
to be of polynomial size in relation to the size of the instance; this is an
indispensable condition for a polynomial time check. The certificate is said
to be succinct.

We can immediately verify the inclusion of class P into class NP: a
polynomial algorithm is also a checking algorithm of a class P problem, with
an empty certificate. On the contrary, one may think that this inclusion is
strict, that is that P �= NP, taking into account the lower requirement that
represents the simple checking of a certificate compared to that of finding
a certificate. It is possible, nevertheless, as no one so far has been able to
prove or disprove it.1

B.4 NP-complete problems

Naturally, from the perspective of the question P �= NP, research has
been conducted to better understand class NP, in particular to spot the
most difficult problems of this class in order to attempt to “capture” what
creates the intrinsic difficulty of problems of this class.

The comparison tool here is the polynomial reduction. A problem π1 can
be polynomially reduced to a problem π2 if there is a polynomial algorithm,
called a reduction-algorithm from π1 to π2, which calculates for each instance
x1 of π1, an instance x2 of π2 such that the answer for x1 is “yes” if and
only if the answer for x2 is “yes” (x1 and x2 have the same answer). Thus, if
we have a polynomial algorithm solving π2, we can deduce a polynomial
algorithm solving π1, by composing the reduction-algorithm form π1 to
π2 and the solving-algorithm for π2 (note the advantage of being able to
compose polynomial algorithms). In other words, if π2 is in class P, so is π1.
Again, π2 is at least as difficult as π1 and is thus possibly more representative
of the difficulty of class NP. The final interest of all of this is to put in
evidence a problem at least as difficult as all the others in class NP, that is
1There is a one million dollar reward offered by an American patron for whoever solves

the problem. Go for it!

274 Graph Theory and Applications

a problem to which all others can be reduced polynomially. A “universal”
problem, in a way, for class NP is called NP-complete. Such a problem
can be formally put in evidence with the non-deterministic Turing machine
mentioned above. However, it is more interesting to know that there are
such problems which can be put naturally. The first found, at the beginning
of the 1970s, is a problem of logic, called a satisfiability problem (denoted
SAT) which we will now describe.

The data are: n Boolean variables x1, . . . , xn taking the value true or
false, m Boolean expressions C1, . . . , Cm called clauses and expressed in a
disjunctive form, that is:

Cj = y1 ∨ · · · ∨ ykj

where each yi is equal to xl or ¬xl, where l ∈ {1, . . . , n} (remember the
classic logic operators: or denoted ∨, no denoted ¬). The question then is:
is their an assignment of values to variable xi such that each clause Cj takes
the value true (that is it has at least one yi which has the value true)? Let us
note that this problem is clearly in class NP: such an assignment is in fact
an appropriate certificate. Cook–Levin’s theorem states that this problem
is NP-complete. Historically, SAT has been the first natural problem found
in class NP, but there have been numerous others found since, in particular
concerning graphs.

B.5 Classification of problems

It is impossible to speak of the bases of complexity theory without
mentioning the class coNP and the concept of a “well-characterized”
property. The definition of this class is based on the dissymmetry which
exists between the answers “yes” and “no” in the problems of class NP.
This dissymmetry does not appear in class P: the answer “no” is automatic
if it is not the answer “yes”. For a problem of class NP, the answer “no”
may not have an obvious succinct certificate. For example, for the problem of
graph isomorphism, what can be a certificate for the answer “no”? Another
example: for the problem of the existence of a Hamilton cycle in a graph,
if it is easy to see how to “certify” the answer “yes”, simply by giving a
Hamilton cycle, we do not see directly how to certify the answer “no”.

Class coNP is therefore defined as the class of decision problems for
which the “complement” problem, that is the problem set in order to
invert the answers “yes” and “no”, is in NP. We do not know if NP =
coNP and, in the hypothesis of an inequality, the intersection of these

Appendix B 275

two classes is interesting to consider: it represents the problems based on
a well-characterized property in the sense that the answer “yes” as well as
the answer “no” can be certified by a succinct certificate. This is a typical
case, for example, with the problem of recognition of planar graphs: the
answer “yes” can be certified by a planar embedding of the graph, while the
answer “no” can be certified by the presence in the graph of an excluded
configuration (by application of Kuratowski’s theorem, see Chapter 11).
However, the problem of the recognition of planar graphs is in fact in P; it
is therefore not surprising that it belongs to this intersection since we have
in general P ⊆ NP ∩ coNP. Another basic question of complexity theory is
to know if we have equality in this inclusion. Very few problems are known
in this intersection without also being known in P.

On the whole, we have a possible configuration of the previous classes as
shown in the diagram in Figure B.1. Some people think this is probable. If
it is not like this, then things are very different from what they are thought
to be today

coNP

NP-complete

NP

P

coNP ∩ NP

Figure B.1. Classes of complexity

Let us specify, finally, that an optimization problem is different from a
decision problem. Let us take for example the traveling salesman problem
(Chapter 10), which can be stated as follows: find in a weighted graph
a Hamilton cycle minimum for the sum of the values of its edges. We
associate it with the following decision problem: given an integer k, is there
a Hamilton cycle of length ≤ k? Obviously a solution to the optimization
problem gives a solution to the decision problem, simply by comparing the
value of a minimum cycle with k. However, what is more interesting is
that the converse is true. It is less obvious; it can be seen by bounding
by successive dichotomies the value of a minimum cycle. A problem for
which the associated decision problem is NP-complete is sometimes called
NP-difficult rather than NP-complete.

276 Graph Theory and Applications

We again find in an interesting way the idea of a well-characterized
property in certain optimization problems, typically the maximum flow
problem in a transportation network and that of the minimum cut
(Chapter 8). At the optimum, we have an equality which certifies one as
maximum and the other as minimum.

B.6 Other approaches to difficult problems

Once it has been admitted that some problems can probably not be
practically solved in a reasonable manner, that is by a polynomial algorithm
(in the hypothesis P �= NP), other approaches to NP-complete problems
have to be contemplated.

A first, natural, approach is to try to obtain in polynomial time an
approximate solution with a precision which has to be given. Problems are
not all equal when it comes to this. For some it is possible to find good
approximations, others are resistant to any reasonable results, such as, for
example, the traveling salesman problem for which one shows that, except if
P = NP, there is no satisfactory approximate polynomial algorithm to solve
it (see Chapter 10). There are many more approaches, not studied here, and
we refer the reader to the specialized literature on this subject.2

2For example: C.H. Papadimitriou, Computational Complexity, Addison-Wesley (1994);
J. Stern, Fondements mathématiques de l’informatique, McGraw-Hill (1990); M.R. Garey
and D.S. Johnson, Computers and Intractability, Freeman (1979), a great classic reference
in the field.

Bibliography

[1] Berge C., Graphs and Hypergraphs, North-Holland Mathematical
Library, vol. 6, North-Holland, 1973.

[2] Berge C., Graphs, North-Holland Mathematical Library, vol. 6,
North-Holland, 1985 (Second revised edition of part 1 of the 1973
English version).

[3] Bang-Jensen J. and Gutin G., Digraphs Theory, Algorithms and
Applications, Springer, 2001.

[4] Bondy J.A. and Murty U.S.R., Graph Theory, Graduate Texts in
Mathematics, vol. 244, Springer, 2008.

[5] Diestel R., Graph Theory, 3rd ed., Graduate Texts in Mathematics,
vol. 173, Springer, 2005.

[6] Gondran M. and Minoux M., Graphes et algorithmes, Collection de
la Direction des Études et Recherches d’Électricité de France, vol. 37,
Eyrolles, Paris, 1979.

[7] Graham R.L., Grötschel M. and Lovász L. (Eds.), Handbook of
Combinatorics, vol. 1, 2, Elsevier, 1995.

[8] Jungnickel D., Graphs, Networks and Algorithms, Algorithms and
Computation in Mathematics, vol. 5, Springer, 1999.

[9] Lovász L., Combinatorial Problems and Exercises, 2nd ed.,
North-Holland, 1993.

[10] Lovász L. and Plummer M.D., Matching Theory, Annals of Discrete
Mathematics, vol. 29, North-Holland, 1986.

278 Graph Theory and Applications

[11] Mohar B. and Thomassen C., Graphs on Surfaces, Johns Hopkins
Studies in the Mathematical Sciences, The Johns Hopkins University
Press, 2001.

[12] Prins C., Algorithmes de graphes, 2nd ed., Eyrolles, Paris, 2003.

[13] Van Leeuwen J., “Graph Algorithms”, Chapter 10 in Handbook of
Theoretical Computer Science, vol. A, Algorithms and Complexity,
edited by J. van Leeuwen, Elsevier, 1990.

Index

acyclic
digraph, 90
graph, 45
numbering of digraph, 90

adjacency list, 39
adjacency matrix

of digraph, 88
of graph, 38

adjacent (vertices), 25
algorithm

acyclic numbering, 116
approximate, 221, 235
backtracking, 97
breadth-first search, 121
Christofides, 227
depth-first search, 97

extended, 113
Dijkstra, 134
Edmonds-Johnson, 209
Euler tour, 201
Fleury, 212
Floyd, 142
greedy, 55, 234
Hungarian, 156
Jarńık-Prim, 68
Kruskal, 55
Kuhn-Munkres, 165
linear, 271
maximum flow, 180
minimax, 106
polynomial, 271
Rosenstiehl, 204

Trémaux, see depth-first
search

arborescence, 92
ordered, 95

arc (digraph), 83
double, 84
multiple, 84
triple, 84

bfs, see breadth-first search
bipartite graph, 36

complete, 36
block of graph, 60
breadth-first search, see

algorithm
bridge, 47

capacity
of arc, 173
of cut, 177

center of graph, 67
child of vertex (in arborescence),

94
first child, 95

chromatic number, 71
circuit, see directed cycle
color, 71
coloring

k-edge-coloring, 71
of edges, 71

complete graph, 28
component

connected, 35

279

280 Index

strongly connected, 87
connected

k-connected, 62
k-edge-connected, 64
graph, 35

connectivity, 61
k-cube, 65
cut of network, 177

minimum, 177
cut vertex, 60
cycle, 31

as graph, 33
directed, 85
even, 31
Hamilton, 215
odd, 31

decomposition
into blocks, 60
into connected components,

35
into strongly connected

components, 87
degree, 33

maximum, 34
minimum, 34

depth
of arborescence, 93
of vertex in arborescence, 93

depth-first search, see algorithm
descendant of vertex, 94
dfs, see depth-first search
diameter of graph, 66
digraph, see directed graph
directed edge, see arc
directed graph, 83
disconnected

graph, 35
distance in weighted graph, 120

edge (graph), 24
double, 26
multiple, 26
triple, 26

edge chromatic number, 72
edge connectivity, 63
edge cut, 64
end

of directed walk, 85
of walk, 29

endvertex
of arc, 83
of edge, 24

Euler tour, 197
Eulerian graph, 197

face
exterior, 238
of planar embedding, 238

flow, 173
feasible, 188
maximum, 175
zero, 174

forest, 47
directed, 95

graph
undirected, 24

Hamiltonian graph, 215
head of arc, 83
Helly property, 67

incident (edge to vertex), 25
indegree, 86
isomorphic

digraph, 85
graphs, 26

joined (endvertices of edge), 25

Index 281

kernel of digraph, 118

leaf of arborescence, 93
length

of arc, 119
of cycle, 31
of directed walk, 85
of path in weighted graph,

119
of walk, 29

linked (ends of a walk), 29
list

of arcs, 88
of edges, 39
of neighbors, see adjacency

lists
of predecessors, 88
of successors, 88

loop
of digraph, 84
of graph, 25

matching, 149
maximal, 149
maximum, 149
number, 154
optimal, 164
perfect, 149

maximal vs. maximum, 149
minimal vs. minimum, 149

neighbors (vertices), 25
network transportation, 173
node of arborescence, 93

outdegree, 86

parallel edges, 26
parent of vertex, 94
path, 31

alternating, 151

as graph, 33
augmenting, 151
closed, 31
directed, 85
Hamilton, 215
incrementing, 179
unsaturated, 178

Petersen’s graph, 74
planar graph, 27, 237
postorder numbering, 101
postvisit in dfs, 110
postvisit of vertex, 100
potential task graph, 128
predecessor of vertex, 84
preorder numbering, 101
previsit in dfs, 110
previsit of vertex, 100
problem

assignment, 156
Chinese postman, 207
distances and shortest paths,

120
eight queens, 103
Euler tour, 198
four-color, 22
graph isomorphism, 38
maximum flow, 175
maximum matching, 160
minimum spanning tree, 54
optimal assignment, 164
reliable communication

networks, 65
scheduling, 128
timetabling, 75
traveling salesman, 218

pruning, 108

reduced digraph, 96
regular graph, 34

k-regular, 34

282 Index

cubic, 35
revisit

in bfs, 121
in dfs, 110

root
of arborescence, 92
of digraph, 92

rooted tree, see arborescence

saturated edge, 149
search of graph or digraph, 97
separating edge, 47
sibling of vertex (in

arborescence), 94
following sibling, 95

simple graph, 26
sink

of digraph, 90
of network, 173

source
of digraph, 90
of network, 173

strict digraph, 84
subarborescence, 95
subdigraph, 85

induced, 85
spanning, 85

subdivision of graph, 240
subgraph, 28

induced, 28
spanning, 29

subwalk, 29
successor of vertex, 83
symmetric digraph, 84

tail of arc, 83
thickness, 243
trail, 29

closed, 31
directed, 85

Euler, 197
transitive closure, 95
transversal, 154

minimum, 154
number, 154

tree, 45
alternating, 159
Hungarian, 159
spanning, 49

underlying
digraph, 85
simple graph, 26

unlabeled
digraph, 84
graph, 27

unsaturated edge, 149

value of flow, 175
vertex

isolated, 33
of digraph, 83
of graph, 24

visit in bfs, 121
visit in dfs, 100

walk, 29
closed, 31
directed, 85

weighted
digraph, 90
graph, 41

	Table of Contents
	Introduction
	Chapter 1. Basic Concepts
	1.1 The origin of the graph concept
	1.2 Definition of graphs
	1.2.1 Notation
	1.2.2 Representation
	1.2.3 Terminology
	1.2.4 Isomorphism and unlabeled graphs
	1.2.5 Planar graphs
	1.2.6 Complete graphs

	1.3 Subgraphs
	1.3.1 Customary notation

	1.4 Paths and cycles
	1.4.1 Paths
	1.4.2 Cycles
	1.4.3 Paths and cycles as graphs

	1.5 Degrees
	1.5.1 Regular graphs

	1.6 Connectedness
	1.7 Bipartite graphs
	1.7.1 Characterization

	1.8 Algorithmic aspects
	1.8.1 Representations of graphs inside amachine
	1.8.2 Weighted graphs

	1.9 Exercises

	Chapter 2. Trees
	2.1 Definitions and properties
	2.1.1 First properties of trees
	2.1.2 Forests
	2.1.3 Bridges
	2.1.4 Tree characterizations

	2.2 Spanning trees
	2.2.1 An interesting illustration of trees
	2.2.2 Spanning trees in a weighted graph

	2.3 Application: minimum spanning tree problem
	2.3.1 The problem
	2.3.2 Kruskal’s algorithm
	2.3.3 Justification
	2.3.4 Implementation
	2.3.5 Complexity

	2.4 Connectivity
	2.4.1 Block decomposition
	2.4.2 k-connectivity
	2.4.3 k-connected graphs
	2.4.4 Menger’s theorem
	2.4.5 Edge connectivity
	2.4.6 k-edge-connected graphs
	2.4.7 Application to networks
	2.4.8 Hypercube

	2.5 Exercises

	Chapter 3. Colorings
	3.1 Coloring problems
	3.2 Edge coloring
	3.2.1 Basic results

	3.3 Algorithmic aspects
	3.4 The timetabling problem
	3.4.1 Roomconstraints
	3.4.2 An example
	3.4.3 Conclusion

	3.5 Exercises

	Chapter 4. Directed Graphs
	4.1 Definitions and basic concepts
	4.1.1 Notation
	4.1.2 Terminology
	4.1.3 Representation
	4.1.4 Underlying graph
	4.1.5 “Directed” concepts
	4.1.6 Indegrees and outdegrees
	4.1.7 Strongly connected components
	4.1.8 Representations of digraphs inside a machine

	4.2 Acyclic digraphs
	4.2.1 Acyclic numbering
	4.2.2 Characterization
	4.2.3 Practical aspects

	4.3 Arborescences
	4.3.1 Drawings
	4.3.2 Terminology
	4.3.3 Characterization of arborescences
	4.3.4 Subarborescences
	4.3.5 Ordered arborescences
	4.3.6 Directed forests

	4.4 Exercises

	Chapter 5. Search Algorithms
	5.1 Depth-first search of an arborescence
	5.1.1 Iterative form
	5.1.2 Visits to the vertices
	5.1.3 Justification
	5.1.4 Complexity

	5.2 Optimization of a sequence of decisions
	5.2.1 The eight queens problem
	5.2.2 Application to game theory:finding a winning strategy
	5.2.3 Associated arborescence
	5.2.4 Example
	5.2.5 The minimax algorithm
	5.2.6 Implementation
	5.2.7 In concrete terms
	5.2.8 Pruning

	5.3 Depth-first search of a digraph
	5.3.1 Comments
	5.3.2 Justification
	5.3.3 Complexity
	5.3.4 Extended depth-first search
	5.3.5 Justification
	5.3.6 Complexity
	5.3.7 Application to acyclic numbering
	5.3.8 Acyclic numbering algorithms
	5.3.9 Practical implementation

	5.4 Exercises

	Chapter 6. Optimal Paths
	6.1 Distances and shortest paths problems
	6.1.1 A few definitions
	6.1.2 Types of problems

	6.2 Case of non-weighted digraphs: breadth-first search
	6.2.1 Application to calculation of distances
	6.2.2 Justification and complexity
	6.2.3 Determining the shortest paths

	6.3 Digraphs without circuits
	6.3.1 Shortest paths
	6.3.2 Longest paths
	6.3.3 Formulas

	6.4 Application to scheduling
	6.4.1 Potential task graph
	6.4.2 Earliest starting times
	6.4.3 Latest starting times
	6.4.4 Total slacks and critical tasks
	6.4.5 Free slacks
	6.4.6 More general constraints
	6.4.7 Practical implementation

	6.5 Positive lengths
	6.5.1 Justification
	6.5.2 Associated shortest paths
	6.5.3 Implementation and complexity
	6.5.4 Undirected graphs

	6.6 Other cases
	6.6.1 Floyd’s algorithm

	6.7 Exercises

	Chapter 7. Matchings
	7.1 Matchings and alternating paths
	7.1.1 A few definitions
	7.1.2 Concept of alternating paths and Berge’s theorem

	7.2 Matchings in bipartite graphs
	7.2.1 Matchings and transversals

	7.3 Assignment problem
	7.3.1 The Hungarian method
	7.3.2 Justification
	7.3.3 Concept of alternating trees
	7.3.4 Complexity
	7.3.5 Maximum matching algorithm
	7.3.6 Justification
	7.3.7 Complexity

	7.4 Optimal assignment problem
	7.4.1 Kuhn-Munkres algorithm
	7.4.2 Justification
	7.4.3 Complexity

	7.5 Exercises

	Chapter 8. Flows
	8.1 Flows in transportation networks
	8.1.1 Interpretation
	8.1.2 Single-source single-sink networks

	8.2 The max-flow min-cut theorem
	8.2.1 Concept of unsaturated paths

	8.3 Maximum flow algorithm
	8.3.1 Justification
	8.3.2 Complexity

	8.4 Flow with stocks and demands
	8.5 Revisiting theorems
	8.5.1 Menger’s theorem
	8.5.2 Hall’s theorem
	8.5.3 König’s theorem

	8.6 Exercises

	Chapter 9. Euler Tours
	9.1 Euler trails and tours
	9.1.1 Principal result

	9.2 Algorithms
	9.2.1 Example
	9.2.2 Complexity
	9.2.3 Elimination of recursion
	9.2.4 The Rosenstiehl algorithm

	9.3 The Chinese postman problem
	9.3.1 The Edmonds-Johnson algorithm
	9.3.2 Complexity
	9.3.3 Example

	9.4 Exercises

	Chapter 10. Hamilton Cycles
	10.1 Hamilton cycles
	10.1.1 A few simple properties

	10.2 The traveling salesman problem
	10.2.1 Complexity of the problem
	10.2.2 Applications

	10.3 Approximation of a difficult problem
	10.3.1 Concept of approximate algorithms

	10.4 Approximation of the metric TSP
	10.4.1 An approximate algorithm
	10.4.2 Justification and evaluation
	10.4.3 Amelioration
	10.4.4 Christofides’ algorithm
	10.4.5 Justification and evaluation
	10.4.6 Another approach
	10.4.7 Upper and lower bounds for the optimal value

	10.5 Exercises

	Chapter 11. Planar Representations
	11.1 Planar graphs
	11.1.1 Euler’s relation
	11.1.2 Characterization of planar graphs
	11.1.3 Algorithmic aspect
	11.1.4 Other properties of planar graphs

	11.2 Other graph representations
	11.2.1 Minimum crossing number
	11.2.2 Thickness

	11.3 Exercises

	Chapter 12. Problems with Comments
	12.1 Problem 1: A proof of k-connectivity
	12.1.1 Problem
	12.1.2 Comments

	12.2 Problem 2: An application to compiler theory
	12.2.1 Problem
	12.2.2 Comments

	12.3 Problem 3: Kernel of a digraph
	12.3.1 Problem
	12.3.2 Comments

	12.4 Problem 4: Perfect matching in a regular bipartite graph
	12.4.1 Problem
	12.4.2 Comments

	12.5 Problem 5: Birkhoff-Von Neumann’s theorem
	12.5.1 Problem
	12.5.2 Comments

	12.6 Problem 6: Matchings and tilings
	12.6.1 Problem
	12.6.2 Comments

	12.7 Problem 7: Strip mining
	12.7.1 Problem
	12.7.2 Comments

	Appendix A. Expression of Algorithms
	A.1 Algorithm
	A.2 Explanations and commentaries
	A.3 Other algorithms
	A.4 Comments

	Appendix B. Bases of Complexity Theory
	B.1 The concept of complexity
	B.2 Class P
	B.3 Class NP
	B.4 NP-complete problems
	B.5 Classification of problems
	B.6 Other approaches to difficult problems

	Bibliography
	Index

