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Preface

This book is a revised version of my 2005 thesis [71] for the degree of Doctor
of Philosophy at the Royal Institute of Technology (KTH) in Stockholm. The
whole idea of writing a monograph about graph complexes is due to Professor
Anders Björner, my scientific advisor. I am deeply grateful for all his com-
ments, remarks, and suggestions during the writing of the thesis and for his
very careful reading of the manuscript.

I spent the first years of my academic career at the Department of Mathe-
matics at Stockholm University with Professor Svante Linusson as my advisor.
He is the one to get credit for introducing me to the field of graph complexes
and also for explaining the fundamentals of discrete Morse theory, the most
important tool in this book. Most of the work presented in Chapters 17 and
20 was carried out under the inspiring supervision of Linusson.

The opponent (critical examiner) of my thesis defense was Professor John
Shareshian; the examination committee consisted of Professor Boris Shapiro,
Professor Richard Stanley, and Professor Michelle Wachs. I am grateful for
their valuable feedback that was of great help to me when working on this
revision.

The work of transforming the thesis into a book took place at the Tech-
nische Universität Berlin and the Massachusetts Institute of Technology. I
thank Björner and Professor Günter Ziegler for encouraging me to submit the
manuscript to Springer.

Some chapters in this book appear in revised form as journal papers:
Chapters 4, 17, and 20 are revised versions of a paper published in the Jour-
nal of Combinatorial Theory, Series A [67]. Chapter 5 is a revised version of a
paper published in the Electronic Journal of Combinatorics [70]. Chapter 26
is a revised version of a paper published in the SIAM Journal of Discrete
Mathematics [72]. I am grateful to several anonymous referees and editors
representing these journals, and also to anonymous referees representing the
FPSAC conference, who all provided helpful comments and suggestions.

In addition, I thank two anonymous reviewers for this series for provid-
ing several useful comments on the manuscript and the editors at Springer
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for showing patience and being of great help during the preparation of the
manuscript.

Finally, and most importantly, I thank family and friends for endless sup-
port.

For the reader’s convenience, let me list the major revisions compared to the
thesis version of 2005:

• Chapter 1 has been extended with a more thorough discussion about ap-
plications of graph complexes to problems in other areas of mathematics.

• Recent results about the matching complex Mn and the chessboard com-
plex Mm,n have been incorporated into Sections 11.2.3 and 11.3.2.

• Section 15.4 has been updated with a more precise statement about the
Euler characteristic of the complex DGrn,p of digraphs that are graded
modulo p and a shorter proof of a formula for the Euler characteristic of
DGrn = DGrn,n+1.

• Section 16.3 has been updated with a proof that the complex NXMn of
noncrossing matchings is semi-nonevasive.

• Section 18.5 is new and contains a brief discussion about the complex of
disconnected hypergraphs.

• Section 19.4 is new and contains a generalization of the complex NC2
n of

not 2-connected graphs along with yet another method for computing the
homotopy type of NC2

n. The theory in this section is applied in Section 22.2,
which is also new and contains a discussion about the complex DNSC2

n of
not strongly 2-connected digraphs.

• At the end of Section 23.3, we discuss a recent observation due to
Shareshian and Wachs [121] about a connection between the complex
NECp

kp+1 of not p-edge-connected graphs on kp + 1 vertices and the poset
Π1 mod p

kp+1 of set partitions on kp+1 elements in which the size of each part
is congruent to 1 modulo p.

Cambridge, MA, Jakob Jonsson
March 2007



Preface VII

Summary. Let G be a finite graph with vertex set V and edge set E. A graph com-
plex on G is an abstract simplicial complex consisting of subsets of E. In particular,
we may interpret such a complex as a family of subgraphs of G. The subject of this
book is the topology of graph complexes, the emphasis being placed on homology,
homotopy type, connectivity degree, Cohen-Macaulayness, and Euler characteristic.

We are particularly interested in the case that G is the complete graph on
V . Monotone graph properties are complexes on such a graph satisfying the addi-
tional condition that they are invariant under permutations of V . Some well-studied
monotone graph properties that we discuss in this book are complexes of match-
ings, forests, bipartite graphs, disconnected graphs, and not 2-connected graphs.
We present new results about several other monotone graph properties, including
complexes of not 3-connected graphs and graphs not coverable by p vertices.

Imagining the vertices as the corners of a regular polygon, we obtain another
important class consisting of those graph complexes that are invariant under the
natural action of the dihedral group on this polygon. The most famous example
is the associahedron, whose faces are graphs without crossings inside the polygon.
Restricting to matchings, forests, or bipartite graphs, we obtain other interesting
complexes of noncrossing graphs. We also examine a certain “dihedral” variant of
connectivity.

The third class to be examined is the class of digraph complexes. Some well-
studied examples are complexes of acyclic digraphs and not strongly connected di-
graphs. We present new results about a few other digraph complexes, including
complexes of graded digraphs and non-spanning digraphs.

Many of our proofs are based on Robin Forman’s discrete version of Morse theory.
As a byproduct, this book provides a loosely defined toolbox for attacking problems
in topological combinatorics via discrete Morse theory. In terms of simplicity and
power, arguably the most efficient tool is Forman’s divide and conquer approach via
decision trees, which we successfully apply to a large number of graph and digraph
complexes.
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1

Introduction and Overview

This book focuses on families of graphs on a fixed vertex set. We are partic-
ularly interested in graph complexes, which are graph families closed under
deletion of edges. Equivalently, a graph complex ∆ has the property that if
G ∈ ∆ and e is an edge in G, then the graph obtained from G by removing e is
also in ∆. Since the vertex set is fixed, we may identify each graph in ∆ with
its edge set and hence interpret ∆ as a simplicial complex. In particular, we
may realize ∆ as a geometric object and hence analyze its topology. Indeed,
this is the main purpose of the book.

Fig. 1.1. ∆ contains all graphs isomorphic to one of the four illustrated graphs.

As an example, consider the simplicial complex ∆ of graphs G on the
vertex set {1, 2, 3, 4} with the property that some vertex is contained in all
edges in G. This means that G is isomorphic to one of the graphs in Figure 1.1.
Denoting the edge between i and j as ij, we obtain that

∆ = {∅, {12}, {13}, {14}, {23}, {24}, {34}, {12, 13}, {12, 14}, {13, 14},
{12, 23}, {12, 24}, {23, 24}, {13, 23}, {13, 34}, {23, 34}, {14, 24},
{14, 34}, {24, 34}, {12, 13, 14}, {12, 23, 24}, {13, 23, 34}, {14, 24, 34}}.

See Figure 1.2 for a geometric realization of ∆. It is easy to see that ∆ is
homotopy equivalent to a one-point wedge of three circles.

Monotone Graph Properties

In the above example, note that a given graph G belongs to ∆ if and only if
all graphs isomorphic to G belong to ∆. Equivalently, ∆ is invariant under the
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Fig. 1.2. Geometric realization of the complex ∆.

action of the symmetric group on the underlying vertex set. A family of graphs
satisfying this condition is a graph property. We will be mainly concerned with
graph properties that are also graph complexes, hence closed under deletion
of edges. We refer to such graph properties as monotone graph properties.

In this book, we discuss and analyze the topology of several monotone
graph properties, some examples being matchings, forests, bipartite graphs,
non-Hamiltonian graphs, and not k-connected graphs; see Chapter 7 for a
summary. Some results are our own, whereas others are due to other authors.
We restrict our attention to topological and enumerative properties of the
complexes and do not consider representation-theoretic aspects of the theory.

Remark. Some authors define monotone graph properties to be graph prop-
erties closed under addition of edges. While such graph properties are not
simplicial complexes, they are quotient complexes of simplicial complexes and
hence realizable as geometric objects; see Sections 3.2 and 3.5.

Other Graph Complexes

Monotone graph properties are not the only interesting graph complexes. For
example, for any monotone graph property ∆ and any graph G, one may
consider the subcomplex ∆(G) consisting of all graphs in ∆ that are also
subgraphs of G; this is the induced subcomplex of ∆ on G. In some situations,
∆(G) is interesting in its own right; we would claim that this is the case for
complexes of matchings, forests, and disconnected graphs. In other situations,
∆(G) is of use in the analysis of the larger complex ∆; one example is the
complex of bipartite graphs.

With graph properties being invariant under the action of the symmetric
group, a natural generalization would be to replace the symmetric group with
a smaller group. In this book, we concentrate on the dihedral group Dn. This
group acts in a natural manner on the family of graphs on the vertex set
{1, . . . , n}: Represent the vertices as points evenly distributed in a clockwise
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manner around a unit circle and identify a given edge with the line segment
between the two points representing the endpoints of the edge. We refer to
this representation of a graph as the polygon representation; the vertices are
the corners in a regular polygon. The action of the dihedral group consists
of rotations and reflections, and combinations thereof, of this polygon. The
associahedron is probably the most well-studied graph complex with a nat-
ural dihedral action. Some other interesting “dihedral” graph complexes are
complexes of noncrossing matchings, noncrossing forests, and graphs with a
disconnected polygon representation. See Chapter 8 for more information.

Finally, we mention complexes of directed graphs; we refer to such com-
plexes as digraph complexes. Some important examples are complexes of di-
rected forests and acyclic digraphs. We also discuss some directed variants of
the property of being bipartite and the property of being disconnected. See
Chapter 9 for an overview.

Remark. As is obvious from the discussion in this section, our graph complexes
are completely unrelated to Kontsevich’s graph complexes [83, 85].

Discrete Morse Theory

The most important tool in our analysis is Robin Forman’s discrete version
of Morse theory [48, 49]. As we describe in more detail in Chapter 4, one may
view discrete Morse theory as a generalization of the concept of collapsibility.
A complex ∆ is collapsible to a smaller complex Σ if we can transform ∆
into Σ via a sequence of elementary collapses. An elementary collapse is a
homotopy-preserving operation in which we remove a maximal face τ along
with a codimension one subface σ such that the resulting complex remains a
simplicial complex (i.e., closed under deletion of elements).

To better understand the generalization, we first interpret a collapse as
a giant one-step operation in which we perform all elementary collapses at
once, rather than one by one. This way, a collapse from a complex ∆ to a
subcomplex Σ boils down to a partial matching on ∆ such that Σ is exactly
the family of unmatched faces. Dropping the condition that the unmatched
faces must form a simplicial complex, we obtain discrete Morse theory.

More precisely, under certain conditions on a given matching – similar
to the ones that we would need on a matching corresponding to an ordi-
nary collapse – Forman demonstrated how to build a cell complex homotopy
equivalent to ∆ using the unmatched faces as building blocks. Indeed, this
very construction is the main result of discrete Morse theory. As an immedi-
ate corollary of Forman’s construction, we obtain upper bounds on the Betti
numbers.

Remark. We should mention that some aspects of the above interpretation
of discrete Morse theory are due to Chari [32]. In addition, while we discuss



6 1 Introduction and Overview

only simplicial complexes, Forman considered a much more general class of
cell complexes.

Divide and Conquer

One of the more typical ways of applying discrete Morse theory in practice is
to partition the complex under consideration into smaller subfamilies and then
define a matching on each subfamily. Babson et al. [3, Lemma 3.6] provided
a very early application of this divide and conquer approach in their proof
that a certain complex related to the complex of not 2-connected graphs is
collapsible.1 For arguably the very first full-fledged application of discrete
Morse theory, we refer to Shareshian [118], another paper about complexes
of not 2-connected graphs. See Chapter 19 for more discussion. Finally, we
mention Forman’s divide and conquer approach via decision trees [50], which
we discuss in detail in Chapter 5.

1.1 Motivation and Background

Many graph complexes are beautiful objects with a rich topological structure
and may hence be considered as interesting in their own right. Nevertheless,
some background seems to be in place, particularly since this area of research
to some extent emerged from developments in other fields. In this section, we
provide a random selection of prominent examples, referring the reader to the
literature and later chapters of this book for details.

1.1.1 Quillen Complexes

Let G be a finite group and let p be a prime. Brown [22, 23] and Quillen
[110] studied topological properties of two complexes known as the Brown
complex and the Quillen complex. The Brown complex is the order complex
∆(Sp(G)) of the poset Sp(G) of nontrivial p-subgroups of a finite group G.
The Quillen complex ∆(Ap(G)) is the order complex of the subposet Ap(G)
of Sp(G) consisting of all nontrivial elementary abelian p-subgroups of G.
Quillen demonstrated that ∆(Sp(G)) and ∆(Ap(G)) have the same homotopy
type.

For G = Sn and p = 2, it turns out that one may deduce information about
the Quillen complex by examining the matching complex Mn; see Chapter 11.
Specifically, one may identify the barycentric subdivision of Mn with the or-
der complex of the poset of nontrivial abelian subgroups of Sn generated
by transpositions. Examining the natural inclusion map from this complex
to ∆(Ap(G)) and using the fact that Mn is simply connected for n ≥ 8 (see

1 The paper [3] was published in 1999, but the authors announced their results
already two years earlier.
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Corollary 11.2), Ksontini [88, 89] was able to deduce that ∆(A2(Sn)) is simply
connected for n ≥ 8. Some further detailed analysis yielded simple connec-
tivity also for n = 7. Bouc [21] initiated the study of Mn motivated by the
Quillen complex.

For odd primes p, there is a similar connection between a relative of the
complex HMp

n of p-hypergraph matchings (see Chapter 11) and ∆(Ap(Sn)).
This relative differs from HMp

n in that we have (p− 1)! disjoint copies of each
hyperedge in the complete p-hypergraph. Specifically, one may identify the
face poset of this complex with the poset Tp(Sn) of nontrivial elementary
abelian p-subgroups of Sn generated by p-cycles. Using properties of Tp(Sn),
Ksontini [88, 89] demonstrated that ∆(Ap(Sn)) is simply connected if and
only if 3p + 2 ≤ n < p2 or n ≥ p2 + p. Shareshian [119] built on this work,
providing a concrete description of the homotopy type of ∆(Ap(Sn)) in terms
of that of ∆(Tp(Sn)) whenever p2 + p ≤ n < 2p2. Using a computer calcu-
lation of the homology of HM3

13 carried out by J.-G. Dumas, Shareshian also
demonstrated that H̃2(∆(A3(S13)); Z) contains 2-torsion, thereby providing
the first known example of a Quillen complex with nonfree integral homology.

1.1.2 Minimal Free Resolutions of Certain Semigroup Algebras

An interesting connection between ring theory and topological combinatorics
is given by a well-known correspondence between semigroup algebras over
semigroup rings and certain associated simplicial complexes. This correspon-
dence was exploited by Reiner and Roberts [111], and subsequently by Dong
[36], who were led to study complexes of graphs with a bounded vertex degree;
see Chapter 12.

To explain the correspondence, let n ≥ 1. For a sequence λ = (λ1, . . . , λn)
of nonnegative integers, let BD

λ

n be the simplicial complex of simple graphs
with loops allowed on the vertex set {1, . . . , n} such that the degree of the
vertex i is at most λi for 1 ≤ i ≤ n; see Chapter 12 for the exact definition.
If all λi are equal to one, then we obtain the matching complex Mn; see
Chapter 11.

Let F be a field and consider the polynomial rings A = F[{zij : 1 ≤ i ≤
j ≤ n}] and F[x] = F[x1, . . . , xn]. Defining φ(zij) = xixj , we obtain an A-
algebra structure on F[x]. The second Veronese subalgebra Ver(n, 2, 0) is the
subalgebra φ(A) of F[x].

By a well-known theorem (e.g., see Stanley [132, Th. 7.9] and Reiner and
Roberts [111, Prop. 3.2]), we have that

dimF TorA
i (Ver(n, 2, 0), F) =

∑
λ

dimF H̃i−1(BD
λ

n; F),

where the sum is over all sequences λ = (λ1, . . . , λn) such that
∑n

i=1 λi is

even. One easily checks that BD
λ

n has vanishing reduced homology for all but
finitely many λ; hence the sum makes sense.
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There is also a bipartite variant of this construction involving the so-called
Segre algebra. In this case, a chessboard variant of BD

λ

n is of importance; see
Reiner and Roberts [111] for details.

1.1.3 Lie Algebras

Complexes of graphs of bounded degree also appear in the analysis of the
homology of the free two-step nilpotent Lie algebra. See Józefiak and Weyman
[77] and Sigg [123] for details and for information about the representation-
theoretic aspects of the theory.

Let n ≥ 1 and let {e1, . . . , en} denote the standard basis of complex n-
space Cn. Define L(n) = Cn ⊕ (Cn ∧ Cn); this is the free two-step nilpotent
complex Lie algebra of rank n, where the Lie bracket is defined on basis ele-
ments by [ei, ej ] = ei ∧ ej and zero otherwise. Identifying ei with the vertex i
and ei ∧ ej = −ej ∧ ei with the edge ij for i < j, we obtain that a basis for
L(n) is given by the union of the set of vertices and the set of edges of the
complete graph Kn.

The homology of a Lie algebra A with trivial coefficients is defined to be
the homology of the exterior algebra complex (Λ∗A, δ), where

δ(x1 ∧ · · · ∧ xp) =
∑
i<j

(−1)i+j+1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp;

x̂i denotes deletion. It is easy to see that (Λ∗L(n), δ) splits into many small
pieces. Specifically, for a basis element x = a1b1 ∧ a2b2 ∧ · · · ∧ arbr ∧ c1 ∧
c2 ∧ · · · ∧ cs, we define the weight γ(x) to be the vector (γ1, . . . , γn) with the
property that γi is the number of occurrences of the vertex i in x. For example,
γ(13∧ 26∧ 1∧ 2∧ 4) = (2, 2, 1, 1, 0, 1). The boundary operator δ preserves the
weight, which implies that we obtain a natural decomposition

(Λ∗L(n), δ) ∼=
⊕

γ

((Λ∗L(n))γ , δ),

where (Λ∗L(n))γ is generated by all basis elements with weight γ.
Let Σγ

n be the quotient complex of loop-free graphs on n vertices with
the property that the degree of the vertex i is either γi − 1 or γi for each
i. The complex homology, and hence cohomology, of Σγ

n coincides with the
homology of the complex BD

γ

n (see previous section for definition). An easy
way to prove this is to use the construction in the proof of Proposition 12.16
and apply Lemma 3.16.

Now, we may define a homomorphism ϕ from
(
ΛiL(n)

)
γ

to the cochain

group C̃m−i−1(Σγ
n; C) by mapping a1b1 ∧ a2b2 ∧ · · · ∧ arbr ∧ c1 ∧ c2 ∧ · · · ∧ cs

to a1b1 ∧ a2b2 ∧ · · · ∧ arbr; m = 2r + s and i = r + s. While ϕ is a group iso-
morphism, it is not the case that δ(ϕ(x)) = ϕ(δ(x)). Still, as Dong and Wachs
demonstrated [37, Sec. 4], the homology group of degree i of ((Λ∗L(n))γ , δ)
is indeed isomorphic to the cohomology group of degree m− i− 1 of BD

γ

n.
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For the special case γ = (1, . . . , 1), meaning that BD
γ

n = Mn, we may
tweak ϕ by defining

ϕ(a1b1 ∧ a2b2 ∧ · · · ∧ arbr ∧ c1 ∧ c2 ∧ · · · ∧ cs) = sgn(π) · a1b1 ∧ a2b2 ∧ · · · ∧ arbr,

where π is the permutation
(

1 2 3 4 · · · 2r − 1 2r 2r + 1 2r + 2 · · · n
a1 b1 a2 b2 · · · ar br c1 c2 · · · cs

)
;

2r+s = n. It is easy to check that ϕ does satisfy δ(ϕ(x)) = ϕ(δ(x)) this time.
For the general case, we refer to Dong and Wachs [37, Prop. 4.4].

1.1.4 Disconnected k-hypergraphs and Subspace Arrangements

The complex HNCn,k of disconnected k-hypergraphs (see Section 18.5) is
closely related to the lattice of set partitions in which each set either is a
singleton set or has size at least k. Björner and Welker [16] studied this lattice
to derive information about certain subspace arrangements. Note that k = 2
yields the complex NCn of disconnected graphs discussed in Section 18.1.

Let 2 ≤ k ≤ n. For any indices 1 ≤ i1 < i2 < · · · < ik ≤ n, let Hi1,...,ik
be

the subspace of Rn consisting of all points (x1, . . . , xn) satisfying xi1 = · · · =
xik

. Define AR
n,k as the arrangement in Rn consisting of all such subspaces.

Moreover, define
V R

n,k =
⋃

i1,...,ik

Hi1,...,ik

and MR
n,k = Rn \ V R

n,k.
The intersection lattice LA of a subspace arrangement A is the set of all

intersections K1 ∩ · · · ∩Kr of subspaces K1, . . . , Kr ∈ A ordered by reverse
inclusion. The minimal element 0̂ in LA is the full space Rn corresponding to
the “void” intersection (i.e., r = 0). Write ΠR

n,k = LAR

n,k
. By a theorem due

to Goresky and McPherson [54], we have that

H̃i(MR
n,k; Z) ∼=

⊕
U∈ΠR

n,k\0̂

H̃n−dim(U)−i−2(∆(ΠR
n,k(0̂,U)); Z),

where ΠR
n,k(0̂,U) is the subposet consisting of all elements U ′ such that 0̂ <

U ′ < U and ∆(P ) is the face poset of P ; see Section 2.3.8.
It is easy to see that the elements of ΠR

n,k are in bijection with partitions
of [n] such that each set either is a singleton set or has size at least k. As
a consequence, ∆(ΠR

n,k(0̂, 1̂)) has the same homotopy type as the complex
HNCn,k of disconnected k-hypergraphs. This follows from the fact that we
may define a closure operator on the face poset of HNCn,k by mapping any
given hypergraph H to the hypergraph obtained by adding all hyperedges
that do not reduce the number of connected components in H. The image of
this map turns out to be isomorphic to ΠR

n,k(0̂, 1̂), which implies that the two
complexes are homotopy equivalent; apply Lemma 6.1. A similar examination
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yields that the suspension of ∆(ΠR
n,k(0̂,U)) is homotopy equivalent to a join

consisting of one copy of HCm,k for each set in U of size m, where HCm,k is
the quotient complex of connected k-hypergraphs on m vertices.

Björner and Welker [16] proved that each ∆(ΠR
n,k), and hence each HNCn,k

and HCn,k, is homotopy equivalent to a wedge of spheres in various dimen-
sions. In particular, all homology is free, and we may hence easily deduce the
cohomology of MR

n,k from the homology of HNCm,k for 1 ≤ m ≤ n.

1.1.5 Cohomology of Spaces of Knots

Complexes of connected and 2-connected graphs appear in Vassiliev’s analysis
of the cohomology groups of certain spaces of knots [141, 142, 143]. Below, we
provide a heuristic and simplified description of the construction; for a more
accurate and detailed description, we refer to Vassiliev’s work.

Let n ≥ 3 and let K be the space of all smooth maps φ from the real line
R into Rn such that φ coincides with the natural embedding x 	→ (x, 0, 0) for
sufficiently large |x|. φ ∈ K is a (non-compact) knot if φ is an embedding,
meaning that φ is injective and has no local singularities φ′(x) = 0. The dis-
criminant of K is the subset Σ of all non-knots of K. Two knots are considered
equivalent if they lie in the same connected component of K \Σ.

Define
Ψ = {(x, y) ∈ R2 : x ≤ y}.

The resolution σ of Σ is defined roughly in the following manner; we refer to
Vassiliev [141] for details. Let I be a “generic” embedding of Ψ in RN , where
N is extremely large but finite. For a map φ ∈ Σ, we say that φ respects a
point (x, y) ∈ Ψ if either x �= y and φ(x) = φ(y) (an intersection) or x = y
and φ′(x) = 0 (a cusp). φ respects a set X ⊂ Ψ if φ respects each point in X.
Let ∆(X) be the convex hull of I(X) and define ∆(φ) = ∆(Xφ), where Xφ is
the set of all points (x, y) respected by φ. Using certain approximations, one
may assume that Xφ is finite and that ∆(φ) is a finite-dimensional simplex
whose vertex set coincides with the point set I(Xφ).

Define
σ =

⋃
φ∈Σ

{φ} ×∆(φ) ⊆ K × RN .

Vassiliev [141] proved that the Borel-Moore homology of Σ coincides with the
homology of σ and that a duality argument yields a correspondence between
this homology and the cohomology of K \Σ.

For any finite set X ⊂ Ψ , the family of maps φ respecting X forms an
affine subspace of K of codimension a multiple cn of n for some integer c. The
value c is the complexity ξ(X) of X. To compute the homology of σ, Vassiliev
[143] forms a filtration

σ1 ⊂ σ2 ⊂ σ3 ⊂ · · · ,
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where σi consists of all {φ}×∆(X) such that ξ(X) ≤ i. By a theorem due to
Kontsevich [84], the spectral sequence associated with this filtration degener-
ates already at the first term.

For a finite set X ⊆ Ψ , form a graph GX with one vertex for each x
appearing in X and with an edge between x and y whenever (x, y) ∈ Ψ ; if
(x, x) ∈ Ψ , then we add a loop at x. The complexity of X satisfies the identity
ξ(X) = v(GX)+ �(GX)− c(GX), where v(GX), �(GX), and c(GX) denote the
number of vertices, the number of loops, and the number of connected compo-
nents, respectively, of GX . Let Y be a set such that the graph obtained from
GY by removing all loops has the property that each connected component
is a clique. Define Γ (Y ) = {X ⊆ Y : ξ(X) = ξ(Y )}. It is straightforward to
check that Γ (Y ) is a join of quotient complexes of the form Cr, where Cr is the
quotient complex of connected graphs on a vertex set of size r; see Chapter 18.
This observation is of use in the analysis of σi \ σi−1, where i = ξ(Y ).

To proceed further, Vassiliev considers yet another filtration

Φi
1 ⊂ Φi

2 ⊂ · · · ⊂ Φi
i−1

of the relevant term σi \ σi−1 from the first filtration for each i. Define
α(X) = v(GX)− c(GX)− b(GX), where b(GX) is the number of 2-connected
components in the graph obtained from GX by removing all loops. We de-
fine Φj to be the union of all {φ} × ∆(X) ⊂ σ such that α(X) ≤ j. Write
Φi

j = Φj ∩ (σi \ σi−1).
We say that X is block-closed if each 2-connected component of GX is a

clique. For a set X, we let X be the block-closed set obtained from X by
adding (x, y) whenever x and y belong to the same 2-connected component
of GX . For a block-closed set Y and a subset X of Y , it is easy to see that
ξ(X) = ξ(Y ) and α(X) = α(Y ) if and only if X = Y . This implies that
{X ⊆ Y : ξ(X) = ξ(Y ) = i, α(X) = α(Y ) = j} is a join of quotient complexes
of the form C2

r, where C2
r is the quotient complex of 2-connected graphs on a

vertex set of size r; see Chapter 19. Using this fact and properties of C2
r, one

may obtain useful information about the homology of Φi
j \ Φi

j−1.
As a side note, we observe that ξ(X)+α(X) = 2v(GX)+�(GX)−2c(GX)−

b(GX). Whenever GX is block-closed and loop-free, this is the rank of GX in
the lattice Πn,2 of block-closed graphs; see Theorem 19.2.

1.1.6 Determinantal Ideals

The famous theory of Hochster, Reisner, and Stanley provides a fundamental
link between ring theory and topology of simplicial complexes [63, 113, 132].
Specifically, there is a natural correspondence between simplicial complexes
and ideals generated by square-free monomials, and several of the most fun-
damental ring-theoretic concepts turn out to admit elegant interpretations
in terms of simplicial topology. Dimension, multiplicity, depth, and Cohen-
Macaulayness are a few examples; see Section 3.8 for some more information.
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For a particularly fruitful application of this interaction, let us discuss de-
terminantal ideals; see Bruns and Conca [25] for a survey. In such ideals, each
variable is indexed by a position in a certain matrix, which means that we
may interpret each variable as an edge in a bipartite graph (or a directed edge
in a digraph). Herzog and Trung [62] showed how to transform determinan-
tal ideals into ideals generated by square-free monomials and analyzed the
corresponding simplicial complexes, which are effectively graph complexes, to
establish results about the multiplicity and Cohen-Macaulayness of the origi-
nal determinantal ideals.

To describe the construction, we let M = (Xij : 1 ≤ i ≤ r, 1 ≤ j ≤
s) be a generic r × s matrix. Let F be a field and let k ≥ 2. We define
Dr,s,k to be the ideal in F[{Xij : 1 ≤ i ≤ r, 1 ≤ j ≤ s}] generated by
all k × k minors of M . Pick any total order ≥ on the set of variables such
that Xij ≥ Xkl whenever i ≤ k and j ≤ l and extend this order to a total
order of all monomials using lexicographic order, arranging the variables in
each monomial in decreasing order. For example, X11X

2
21 = X11X21X21 ≥

X11X21X22, because the monomials coincide on the first two positions, and
the variable on the third position in the first monomial is X21, which is greater
than the variable X22 on the third position in the second monomial.

For any given element p in Dr,s,k, the leading monomial in p is the largest
monomial with a nonzero coefficient in p. The initial ideal Ir,s,k of Dr,s,k is
the ideal generated by all leading monomials of elements in Dr,s,k. Herzog and
Trung [62] demonstrated that Ir,s,k is the ideal generated by all monomials of
the form Xi1j1 · · ·Xikjk

, where i1 < · · · < ik and j1 < · · · < jk. In particular,
Ir,s,k is the Stanley-Reisner ideal of the simplicial complex on the vertex set
[1, r]× [1, s] such that

{{i1j1, . . . , ikjk} : i1 < · · · < ik and j1 < · · · < jk}

is the family of minimal nonfaces. By a theorem due to Björner [7], this
complex is shellable. For k = 2, the complex is of importance in our analysis
of the homology of complexes of (not) 3-connected graphs; see Section 20.3.

1.1.7 Other Examples

Chessboard complexes, i.e., matching complexes on complete bipartite graphs,
first appeared in Garst’s analysis of Tits coset complexes [53]. Let G be a group
and let G1, . . . , Gm be subgroups of G. The maximal faces of the Tits coset
complex ∆(G;G1, . . . , Gm) are sets of the form

{gG1, gG2, . . . , gGm},

where g ∈ G. Choosing G = Sn and Gi = {σ : σ(i) = i}, we obtain a complex
isomorphic to the chessboard complex Mm,n.

Chessboard complexes also appeared in the analysis of halving hyperplanes
in a paper by Živaljević and Vrećica [153]. Given a finite point set S ⊂ Rd
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in general position, such a hyperplane is the affine hull of d of the points
and divides the set of remaining points into two sets of equal cardinality. The
chessboard complex comes into play in the authors’ solution to the problem
of finding the maximum number of halving hyperplanes, where the maximum
is taken over all point sets S in Rd with a given cardinality for a fixed d.

In their analysis of certain graph coloring problems, Babson and Kozlov
encountered a spherical cell complex [5, §4.2]. The face poset of this complex
turns out to be closely related to the complex of bipartite digraphs; such
digraphs have the property that each vertex has either zero out-degree or zero
in-degree (see Section 15.3).

Björner and Welker [17] discovered an intriguing relationship between the
poset of all posets on a fixed vertex set and certain complexes of acyclic
digraphs (see Section 15.2) and not strongly connected digraphs (see Section
22.1). There are many other examples of natural interactions between graph
complexes and posets. For example, Sundaram [137] examined the lattice of
set partitions in which each set has size at most k; this lattice corresponds to
the complex of graphs in which each connected component contains at most k
vertices (see Section 18.2). In Section 1.1.4, we discussed the correspondence
between another lattice and the complex of disconnected k-hypergraphs.

1.1.8 Links to Graph Theory

Not surprisingly, a successful analysis of the topology of a monotone graph
property often relies on applying the appropriate graph-theoretical results
about the given property. Maybe the most prominent example appears in
the work of Linusson, Shareshian, and Welker [95], who applied the Gallai-
Edmonds structure theorem (see Lovász and Plummer [97]) in their analysis
of complexes of graphs with bounded matching size. See Chapter 24 for more
information about their work.

Another example appears in Chapter 26, where we apply results of Hajnal
[58] and Berge [6] to analyze the homotopy type of complexes of graphs ad-
mitting a small vertex cover; a vertex cover of a graph is a vertex set such
that every edge in the graph contains some vertex from the set.

For yet another example, we may mention our work on non-Hamiltonian
graphs in Chapter 17. Using the fact that the Petersen graph is cubical, 3-
connected, and edge-maximal among non-Hamiltonian graphs, we obtain a
nontrivial upper bound on the connectivity degree of the complex of non-
Hamiltonian graphs on ten vertices. The discovery of a larger class of graphs
with this property would be a big leap forward in the analysis of complexes
of non-Hamiltonian graphs.

Alas, we know very little about the existence of results in the other direc-
tion, i.e., proofs of nontrivial graph-theoretical theorems based on topologi-
cal properties of certain graph complexes. On a more general level however,
topology surely has proved to be a fundamental tool in graph theory and
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combinatorics; see Björner [9] for a survey of some of the most celebrated
examples and Babson and Kozlov [5] for a very recent application of topology
to graph coloring problems.

1.1.9 Complexity Theory and Evasiveness

Several of the monotone graph properties discussed in the book – the prop-
erties of having a bounded covering number, not containing a Hamiltonian
cycle, and being t-colorable for t ≥ 3 – correspond in a natural manner to
NP-complete problems; see Section 26.8 for some discussion. A potentially
interesting area of research would be to examine whether information about
the homology of a monotone graph property can tell us anything useful about
the corresponding decision problem.

One of the most fundamental classes of simplicial complexes is the class
of contractible simplicial complexes. Two important subclasses are the ones
consisting of collapsible complexes and nonevasive complexes, respectively. A
complex is collapsible if it is collapsible to a single point. Nonevasive com-
plexes are collapsible complexes with additional structure and are of some
importance in the complexity theory of decision trees. See Section 3.4 and
Chapter 5 for details.

Karp’s famous evasiveness conjecture states that there are no nonevasive
monotone graph properties except for the void complex and the full simplex.
Kahn, Saks, and Sturtevant [78] settled Karp’s conjecture in the case that the
underlying vertex set is of cardinality a prime power. The proof of Kahn et al.
relied on the observation that nonevasive complexes are contractible and hence
Z-acyclic. Specifically, they demonstrated that a (nontrivial) monotone graph
property cannot be Z-acyclic if the cardinality of the underlying vertex set is
a prime power. For other cardinalities exceeding six, it is not known whether
there are Z-acyclic monotone graph properties. See Chakrabarti, Khot, and
Shi [28] for some recent progress on Karp’s conjecture and Yao [149] for the
case of monotone bipartite graph properties.

In this context, it is worth mentioning that there are indeed plenty of
Z-acyclic and contractible simplicial complexes with a vertex-transitive au-
tomorphism group; see the work of Lutz [98]. Moreover, there exists at least
one nontrivial Q-acyclic monotone graph property; see Section 5.5. In fact, we
would not be surprised if a Z-acyclic or contractible monotone graph property
turned out to exist. Note however that it may well be the case that such a
complex is not nonevasive or even collapsible and hence does not provide a
counterexample to Karp’s conjecture.

1.2 Overview

This book is divided into seven parts. The first part consists of this introduc-
tion and two chapters listing the basic concepts to be used in the book. In
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the second part, we present our main proof techniques, most notably discrete
Morse theory and decision trees. The third part provides an overview of the
complexes to be examined in the last four parts. These complexes appear in
parts IV, V, VI, or VII depending on whether they are defined in terms of
vertex degree, cycles and crossings, connectivity, or cliques and stable sets,
respectively.

Below, we present a rough summary of the book.

Part I – Introduction and Basic Concepts

We give an introduction to the subject and introduce basic and fundamental
concepts in graph theory and topology.

Chapter 1 – Introduction and Overview. This is the present chapter and
contains an overview of the book.

Chapter 2 – Abstract Graphs and Set Systems. We introduce basic concepts
and definitions about graphs, posets, simplicial complexes, and matroids.

Chapter 3 – Simplicial Topology. We provide a summary of the most impor-
tant concepts and results about the homology and homotopy type of simplicial
complexes. We also discuss some important classes of simplicial complexes, in-
cluding contractible and shellable complexes.

Part II – Tools

We describe the different techniques that we use in later parts to examine the
topology and Euler characteristic of different simplicial complexes.

Chapter 4 – Discrete Morse Theory. We present a simplicial variant of
Forman’s discrete Morse theory [49]. The greater part of this chapter is a
revised version of two sections in a published paper [67].

Chapter 5 – Decision Trees. We consider topological aspects of decision
trees on simplicial complexes, concentrating on how to use decision trees as
a tool in topological combinatorics. This chapter relies heavily on work by
Forman [49, 50] and Welker [146] and is a revised version of a published paper
[70].

Chapter 6 – Miscellaneous Results. We present miscellaneous results about
posets, depth, vertex-decomposability, and enumeration.

Part III – Overview of Results

We give an overview of the complexes to be analyzed in the last four parts.
We also present a very sketchy summary of the main theorems about these
complexes.

Chapter 7 – Graph Properties. We discuss monotone graph properties.
Chapter 8 – Dihedral Graph Properties. We discuss monotone dihedral

graph properties.
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Chapter 9 – Digraph Properties. We discuss monotone digraph properties.
Chapter 10 – Main Goals and Proof Techniques. We discuss our main goals

– homotopy type, homology, connectivity degree, depth, and Euler character-
istic – and give some hints about the most important proof techniques.

Part IV – Vertex Degree

We consider complexes defined in terms of vertex degree.
Chapter 11 – Matchings. We examine complexes of matchings; a matching

is a graph in which each vertex has degree at most one. We list some of the
main results in the area, focusing on achievements by Bouc [21] and Shareshian
and Wachs [122].

Chapter 12 – Graphs of Bounded Degree. We deal with complexes defined
in terms of more general bounds on the vertex degree, discussing both graphs
without loops and graphs with loops. The latter case is particularly well-
studied, and we provide a summary of results from the literature, emphasizing
on the work of Dong [36].

Part V – Cycles and Crossings

We consider complexes of graphs and digraphs avoiding cycles or crossings
and some variants and combinations thereof.

Chapter 13 – Forests and Matroids. We look at the complex of forests (i.e.,
cycle-free graphs) in a matroid-theoretic setting and generalize the indepen-
dence complex of a matroid to a larger class of well-behaved complexes.

Chapter 14 – Bipartite Graphs. We discuss complexes of bipartite graphs,
reviewing results due to Chari [31] and Linusson and Shareshian [94]. The
greater part of the chapter is devoted to graphs that admit an “unbalanced”
bipartition.

Chapter 15 – Directed Variants of Forests and Bipartite Graphs. We ex-
amine some directed variants of the properties of being a forest, acyclic, or
bipartite. The most important examples are directed forests and acyclic di-
graphs studied by Kozlov [86] and by Björner and Welker [17] and Hultman
[64], respectively.

Chapter 16 – Noncrossing Graphs. This chapter deals with dihedral graph
complexes defined in terms of avoiding crossing edges. The most important
example is the associahedron, which we discuss in the context of the work of
Lee [90]. The remainder of the chapter is devoted to complexes of noncrossing
matchings, forests, and bipartite graphs.

Chapter 17 – Non-Hamiltonian Graphs. We consider the complex of non-
Hamiltonian graphs. The chapter is a revised version of two sections in a
published paper [67].
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Part VI – Connectivity

We consider graph and digraph complexes defined in terms of connectivity.
Chapter 18 – Disconnected Graphs. We examine the property of being

disconnected. We also examine some related properties defined in terms of
restrictions on the size of the connected components. One important example,
studied by Sundaram [137], is the complex of graphs in which each component
has at most k vertices. Section 18.3 is a revised and extended version of a
section in a published paper [70].

Chapter 19 – Not 2-connected Graphs. The emphasis is on the important
complex of not 2-connected graphs. We summarize the main results of Babson,
Björner, Linusson, Shareshian, and Welker [3], Turchin [139], and Shareshian
[118, 117].

Chapter 20 – Not 3-connected Graphs and Beyond. The greater part of
this chapter is devoted to the complex of not 3-connected graphs. Not much
is known about general k-connected graphs, but we give a short summary of
some results at the end of the chapter. The first two sections in the chapter
constitute a revised version of two sections in a published paper [67].

Chapter 21 – Dihedral Variants of k-connected Graphs. We present some
dihedral variants of connectivity.

Chapter 22 – Directed Variants of Connected Graphs. We proceed with
a few directed variants of connectivity, most importantly strongly connected
graphs, summarizing results due to Björner and Welker [17] and Hultman [64].

Chapter 23 – Not 2-edge-connected Graphs. We consider edge connectivity,
focusing on the complex of not 2-edge-connected graphs. We also review some
results about complexes of factor-critical graphs due to Linusson, Shareshian,
and Welker [95].

Part VII – Cliques and Stable Sets

We focus on complexes defined in terms of cliques and stable stets.
Chapter 24 – Graphs Avoiding k-matchings. We discuss complexes of

graphs that do not contain a matching (i.e., a union of two-cliques) of a
specified size, summarizing the results of Linusson, Shareshian, and Welker
[95].

Chapter 25 – t-colorable Graphs. We proceed with complexes of graphs
admitting a vertex coloring with a specified number of colors (i.e., a partition
of the vertex set into a specified number of stable sets). The results of this
chapter are due to Linusson and Shareshian [94].

Chapter 26 – Graphs and Hypergraphs with Bounded Covering Number. We
elaborate on complexes of graphs admitting a vertex cover of a specified size.
For certain parameter choices, we obtain the Alexander dual of the complex
of triangle-free graphs. This chapter is a revised version of a published paper
[72].
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Abstract Graphs and Set Systems

We introduce basic concepts and notation related to graphs, posets, abstract
simplicial complexes, and matroids. In Section 2.1, we discuss graphs, di-
graphs, and hypergraphs. Section 2.2 is devoted to posets and lattices. We
proceed with abstract simplicial complexes in Section 2.3 and conclude the
chapter with some matroid theory in Section 2.4 and a few words about integer
partitions in Section 2.5.

Basic Notation

In the below definitions, n and k are nonnegative integers, x is a real number,
and S is a finite set.
|x| is the absolute value of x; |x| = x if x ≥ 0 and |x| = −x if x < 0.

�x� is the largest integer less than or equal to x, whereas �x� is the smallest
integer greater than or equal to x. For n ≥ 1 and every integer a, a mod n is
the unique integer b in the set {0, . . . , n− 1} such that (b− a)/n is a integer.

Q and R are the fields of rational and real numbers, respectively, whereas
Z is the ring of integers. Define Zn = Z/nZ; this is the ring of integers modulo
n. If n is a prime, then Zn is a field.

We denote the empty set by ∅. 2S is the family of all subsets of the set
S, including S itself and ∅. |S| is the cardinality (size) of the set S. Let

(
S
k

)
be the family of all subsets T of S satisfying |T | = k; clearly, |

(
S
k

)
| =

(|S|
k

)
.

SS denotes the symmetric group on the set S, i.e., the group of permutations
(bijections) π : S → S. Multiplication is defined by (ππ′)(x) = π(π′(x)).
Finally, we define [k, n] = {m ∈ Z : k ≤ m ≤ n} and [n] = [1, n] = {1, . . . , n}.

2.1 Graphs, Hypergraphs, and Digraphs

We present standard graph-theoretic concepts.
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2.1.1 Graphs

A (simple) graph G = (V,E) consists of a finite set V of vertices and a family
E of subsets of V of size two called edges; E ⊆

(
V
2

)
. An edge should be thought

of as a line connecting the two vertices in it. A graph being simple means that
there is at most one edge between any two vertices; E is not a multiset. The
edge between the two vertices a and b is denoted as ab or {a, b}. Two vertices
a and b are adjacent in G if ab ∈ E.

1
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Fig. 2.1. The graph G = ([6], {16, 23, 25, 26, 34, 35, 45, 56}) to the left, the induced
subgraph G([5]) in the middle, and the complement of G to the right. We have
that NG(6) = {1, 2, 5} and degG(6) = 3. The vertex set {1, 2, 4} is a stable set in
G, whereas {2, 3, 5} is a clique. The edge set {16, 25, 34} forms a perfect matching
contained in G. We obtain a proper 3-coloring γ : [6] → [3] of G by defining γ−1(1) =
{1, 2, 4}, γ−1(2) = {3, 6}, and γ−1(3) = {5}.

For v ∈ V , the neighborhood of v is the set NG(v) = {w ∈ V \ {v} : vw ∈
E}. The degree of v is degG(v) = |NG(v)|. For W ⊆ V , define the induced
subgraph G(W ) of G on the vertex set W as the pair (W,E ∩

(
W
2

)
).

A matching on a vertex set V is a graph G = (V,E) such that each vertex
v ∈ V is adjacent to at most one other vertex in G. A matching is perfect if
each vertex is adjacent to exactly one other vertex.

A vertex set U in G is stable if no edge in G is a subset of U ; no two
vertices in U are adjacent. Some authors refer to stable sets as independent. A
vertex set W is a clique in G if

(
W
2

)
⊆ E; every two vertices in W are adjacent.

The complement of a graph G = (V,E) is the graph Ḡ = (V,
(
V
2

)
\ E). Note

that U is a clique in G if and only if U is an stable set in Ḡ.
A t-coloring of a graph G = (V, e) is a function γ : V → [t]. A coloring γ

is proper if γ(v) �= γ(w) whenever vw ∈ E. A graph G = (V,E) is t-colorable
if there is a proper t-coloring of G.

For n ≥ 1, Kn denotes the complete graph on n vertices containing all
(
n
2

)
possible edges. 2Kn is the family of all graphs on n vertices.

Some of the concepts introduced in this section are illustrated in Figure 2.1.

2.1.2 Paths, Components and Cycles

A path in a graph G = (V,E) is a sequence (ρ1, . . . , ρr) of not necessarily
distinct vertices from V such that ρiρi+1 ∈ E for 1 ≤ i ≤ r − 1. If ρ1, . . . , ρr



2.1 Graphs, Hypergraphs, and Digraphs 21

are all distinct, then the path is simple. We obtain an equivalence relation
on V by letting v and w be equivalent if and only if there is a (simple) path
(ρ1, . . . , ρr) in G with ρ1 = v and ρr = w. The equivalence classes under
this relation are the connected components of G. We will typically identify
the connected components W1, . . . , Wk with the corresponding induced sub-
graphs G(W1), . . . , G(Wk). A graph G is disconnected if G contains at least
two connected components; otherwise, G is connected. A vertex v is isolated
in G if the connected component containing v equals {v}.

A vertex set W in a graph G = (V,E) is a cut set if G(V \W ) is discon-
nected. If W = {w}, then w is a cut point. For 1 ≤ k ≤ |V |, we say that G is
k-connected if G does not contain any cut set of size less than k. For example,
G being 1-connected means that G is connected.

A path (ρ1, . . . , ρr) in a graph G is a cycle if ρrρ1 ∈ G. The cycle is simple
if it is simple as a path. G contains a cycle if and only if G contains a simple
cycle. A forest is a cycle-free graph. A tree is a forest such that all non-isolated
vertices belong to the same connected component. A spanning tree is a tree
with one single connected component.

A simple path containing all vertices in a graph is a Hamiltonian path; a
simple cycle containing all vertices is a Hamiltonian cycle. A graph is Hamil-
tonian if it contains at least one Hamiltonian cycle and non-Hamiltonian
otherwise.

2.1.3 Bipartite Graphs

A graph G is bipartite if G is 2-colorable. Equivalently, the vertex set of G
is the disjoint union of two stable vertex sets U and W ; we say that (U,W )
is a bipartition of G and refer to U and W as the blocks of G. Note that
the blocks are not uniquely determined unless G is connected. For m,n ≥ 1,
Km,n denotes the complete bipartite graph on a vertex set U ∪W such that
U ∩W = ∅, |U | = m, and |W | = n; this graph contains all mn possible edges
uw such that u ∈ U and w ∈W .

2.1.4 Digraphs

A (simple and loopless) digraph D = (V,A) consists of a finite set V of vertices
and a set A of ordered pairs vw = (v, w) such that v �= w; A ⊆ V ×V \{(v, v) :
v ∈ V }. the elements in A are called directed edges. The edge vw is directed
from v to w; v is the tail and w is the head. For n ≥ 1, K→

n denotes the
complete digraph on n vertices containing all n(n− 1) possible edges.

2.1.5 Directed Paths and Cycles

A directed path in a digraph D is a sequence (ρ1, . . . , ρr) of not necessarily
distinct vertices in V such that ρiρi+1 ∈ A for 1 ≤ i ≤ r− 1. A directed path
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(ρ1, . . . , ρr) is a directed cycle if ρrρ1 ∈ A. In a simple directed path or cycle,
we require all vertices to be distinct. A directed Hamiltonian path is a simple
directed path containing all vertices; directed Hamiltonian cycles are defined
analogously. A digraph D is acyclic if D does not contain any directed cycles.
A digraph is Hamiltonian if it contains at least one directed Hamiltonian cycle
and non-Hamiltonian otherwise. A digraph D is strongly connected if every
pair of vertices in D are contained in a directed cycle; the cycle need not be
simple.

D is a directed forest if D is acyclic and each vertex is the head of at
most one edge.1 A directed tree is a directed forest such that all non-isolated
vertices belong to the same connected component. A spanning directed tree is
a directed tree with one single connected component. In such a tree, there is
a unique element – the root – that is not the head of any edge.

2.1.6 Hypergraphs

A (simple) hypergraph H = (V,E) consists of a finite set V of vertices and
a family E of nonempty subsets of V called edges. We denote the edge
{a1, a2, . . . , ar} as a1a2 . . . ar. For a set S of positive integers, H is an S-
hypergraph if |e| ∈ S for every e ∈ E. If H is an {r}-hypergraph (i.e., all edges
have the same size r), then H is r-uniform. For example, ordinary graphs are
2-uniform. For W ⊆ V , define the induced subhypergraph G(W ) of G with
respect to the vertex set W as the pair (W,E ∩ 2W ); only edges contained in
W remain.

2.1.7 General Terminology

Let G = (V,E) be a graph, hypergraph, or digraph. G is empty if E = ∅ and
nonempty otherwise. A vertex is covered in G if the vertex is contained in some
edge in G and uncovered otherwise. For hypergraphs, the terms “uncovered”
and “isolated” (see Section 2.1.2) are not equivalent. Specifically, if the only
edge in G containing a given vertex v is the singleton edge {v}, then v is
isolated but not uncovered. Whenever the underlying vertex set V is fixed, we
identify G with its set of edges; e ∈ G means that e ∈ E. For an edge e, we
will write G − e = (V,E \ {e}) and G + e = (V,E ∪ {e}). We let |G| denote
the size of the edge set of G. Whenever we refer to “the family of all graphs
on n vertices with a given property P”, we mean to first fix a vertex set V of
size n and then consider the family of all graphs G on the vertex set V with
property P .
1 Some authors prefer to define directed forests in terms of the dual requirement

that each vertex is the tail of at most one edge.
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2.2 Posets and Lattices

A finite partially ordered set or poset is a pair P = (X,≤), where X is a finite
set and ≤ is a binary relation on X satisfying the following conditions for all
x, y, z ∈ X:

• x ≤ x.
• If x ≤ y and y ≤ x, then x = y.
• If x ≤ y and y ≤ z, then x ≤ z.

An element x is an atom in P if y �≤ x whenever y �= x. Two elements x and y
form a covering relation in P if x < y (i.e., x ≤ y and x �= y) and no element
z in X satisfies x < z < y. The direct product of two posets P = (X,≤P ) and
Q = (Y,≤Q) is the poset P ×Q = (X × Y,≤P×Q), where (x, y) ≤P×Q (x′, y′)
if and only if x ≤P x′ and y ≤Q y′. An (order-preserving) poset map between
two posets P = (X,≤P ) and Q = (Y,≤Q) is a function f : X → Y such that
f(x) ≤Q f(y) whenever x ≤P y. We will often write f : P → Q.

A chain is a set {x1, . . . , xr} of elements in X such that x1 < x2 < · · · < xr.
A poset is ranked of rank d if every maximal chain has size d. The rank of an
element x is the size of a largest chain in which x is the maximal element. It
is often useful to introduce a minimal element 0̂ with rank 0 and a maximal
element 1̂ of rank d + 1. 0̂ is smaller and 1̂ is larger than all elements in X.

A finite lattice is a finite poset L = (X,≤L) such that the following hold:

• There are elements 0̂, 1̂ ∈ X such that 0̂ ≤L x and x ≤L 1̂ for all x ∈ X.
• Any two elements x, y ∈ X have a unique greatest lower bound. Thus

there exists an element z ≤L x, y such that w ≤L z whenever w ≤L x, y.

These conditions imply that any two elements have a unique least upper
bound. The proper part of a lattice L, denoted L, is the poset obtained by
removing the top element 1̂ and the bottom element 0̂ from L.

A partition of a finite set V is a family {U1, . . . , Uk} of nonempty sets such
that V is the disjoint union of U1, . . . , Uk. The partition lattice ΠV is the poset
of partitions of V ordered under refinement; {W1, . . . , Wm} is a refinement of
– and hence smaller than – {U1, . . . , Uk} if every Wi is a subset of some Uj .
The partition lattice is indeed a lattice [133]. We write Πn = Π[n].

Unless otherwise specified, whenever a family ∆ of subsets of a set X is
referred to as a poset, the underlying order ≤ is given by set inclusion;

A ≤ B ⇐⇒ A ⊆ B.

2.3 Abstract Simplicial Complexes

We introduce set-theoretic concepts and notation related to abstract simplicial
complexes. Throughout the section, all sets and families are finite. Whenever
appropriate, we extend our definitions to arbitrary families of sets rather than
restricting to the special case of simplicial complexes.
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2.3.1 Basic Definitions

An (abstract) simplicial complex ∆ on a finite set X is a family of subsets
of X closed under deletion of elements. We refer to the singleton sets {x}
in ∆ as 0-cells or vertices. We do not require that {x} ∈ ∆ for all x ∈ X.
For the purposes of this book, we adopt the convention that the void complex
∅ is a simplicial complex. For geometric reasons, many authors refer to the
complex {∅}, which is different from the void complex, as the empty complex.
To avoid any confusion, we will consistently refer to any empty family ∅ as
“void” rather than “empty”. Members of a simplicial complex ∆ are called
faces. For a face σ and an element x ∈ X, we write σ − x = σ \ {x} and
σ + x = σ ∪ {x}. For two simplicial complexes ∆1 and ∆2, ∆1

∼= ∆2 means
that ∆1 and ∆2 are combinatorially equivalent. Assuming that X and Y are
the vertex sets of ∆1 and ∆2, respectively, this means that there exists a
bijection ϕ : X → Y such that σ ∈ ∆1 if and only if ϕ(σ) ∈ ∆2 for each set
σ ⊆ X. Note that the same symbol ∼= also denotes homeomorphism between
topological spaces. Whenever we use the symbol, it will be clear from context
how to interpret it. The simplicial complex generated by a family M of sets
is the complex of all subsets of sets in M, including M itself.

2.3.2 Dimension

Define the dimension of a set σ as |σ| − 1. One sometimes refers to a set of
dimension d as a d-face or d-cell. The dimension of a nonvoid family ∆ is the
maximum dimension among faces of ∆. The (reduced) Euler characteristic of
∆ is defined as the integer

χ̃(∆) =
∑
σ∈∆

(−1)dim σ.

For d ≥ −1, the d-skeleton of a family is the family of all sets of dimension at
most d. A family is pure if all maximal faces (with respect to inclusion) have
the same dimension. For a set σ, we refer to the family 2σ as the full simplex
on σ. Writing d = dimσ = |σ|−1, we say that 2σ is a d-simplex. Note that the
(−1)-simplex contains the empty set and nothing else. We sometimes refer to
the 0-simplex as a point. We obtain the boundary ∂2σ of the d-simplex 2σ by
removing the maximal face σ.

2.3.3 Collapses

A simplicial complex ∆ is obtained from another simplicial complex ∆′ via
an elementary collapse if ∆′ \ ∆ = {σ, τ} and σ � τ . This means that τ is
the only face in ∆′ properly containing σ. If ∆ can be obtained from ∆′ via a
sequence of elementary collapses, then ∆′ can be collapsed to ∆. If ∆′ is void
or can be collapsed to a 0-simplex {∅, {v}}, then ∆′ is collapsible (to a point).
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2.3.4 Joins, Cones, Suspensions, and Wedges

The join of two families ∆ and Γ (assumed to be defined on disjoint ground
sets) is the family ∆ ∗ Γ = {σ ∪ τ : σ ∈ ∆, τ ∈ Γ}. Note that ∆ ∗ ∅ = ∅ and
∆ ∗ {∅} = ∆. Let x be a 0-cell not in ∆. The cone Cone(∆) = Conex(∆) over
∆ with cone point x is the join of ∆ with the 0-simplex {∅, {x}}. Cones over
simplicial complexes are collapsible. Let y be another 0-cell not in ∆. The
suspension Susp(∆) = Suspx,y(∆) of ∆ with respect to the pair {x, y} is the
join of ∆ with {∅, {x}, {y}}. Note that Suspx,y(∆) = Conex(∆) ∪ Coney(∆).
We obtain the (one-point) wedge ∆∨ Γ of two simplicial complexes ∆ and Γ
with respect to 0-cells x ∈ ∆, y ∈ Γ by taking the disjoint union of ∆ and Γ
and then identifying x and y.

2.3.5 Alexander Duals

For a simplicial complex ∆ on a set X, the Alexander dual of ∆ with respect
to X is the simplicial complex ∆∗

X = {σ ⊆ X : X \ σ /∈ ∆}. If there is no
reference to any underlying set X, it is assumed that X is the set of 0-cells in
∆.

2.3.6 Links and Deletions

For a family ∆ of sets and a set σ, the link lk∆(σ) is the family of all τ ∈ ∆
such that τ ∩ σ = ∅ and τ ∪ σ ∈ ∆. The deletion del∆(σ) is the family of
all τ ∈ ∆ such that τ ∩ σ = ∅. We define the face-deletion fdel∆(σ) as the
family of all τ ∈ ∆ such that σ �⊆ τ . The link, deletion, and face-deletion of a
simplicial complex are all simplicial complexes.

2.3.7 Lifted Complexes

For the purposes of this book, a family Σ of sets is a lifted complex over a
set σ if Σ is of the form ∆ ∗ {σ}, where ∆ is a simplicial complex and σ is
a finite set disjoint from all sets in ∆. Any simplicial complex is also a lifted
complex; σ may be the empty set.

Given a lifted complex Σ and disjoint sets I and E, define

Σ(I, E) = {I} ∗ lkdelΣ(E)(I) = {τ ∈ Σ : I ⊆ τ, E ∩ τ = ∅}.

If Σ is a lifted complex over σ, then Σ(I, E) is a lifted complex over σ ∪ I.
Note that Σ(∅, E) = delΣ(E).

2.3.8 Order Complexes and Face Posets

The order complex ∆(P ) of a poset P = (X,≤) is the simplicial complex of all
chains in P ; a set A ⊆ X belongs to ∆(P ) if and only if a ≤ b or b ≤ a for all
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a, b ∈ A. Whenever we say that a poset P has a certain topological property
(e.g., a certain homotopy type), we mean that ∆(P ) has the property. The
face poset P (∆) of a simplicial complex ∆ is the poset of nonempty faces of ∆
ordered by inclusion. sd(∆) = ∆(P (∆)) is the (first) barycentric subdivision
of ∆.

2.3.9 Graph, Digraph, and Hypergraph Complexes and Properties

A graph complex on a finite vertex set V is a family Σ of simple graphs on
the vertex set V such that Σ is closed under deletion of edges; if G ∈ Σ and
e ∈ G, then G − e ∈ Σ. Identifying G = (V,E) ∈ Σ with the edge set E, we
may interpret Σ as a simplicial complex. Analogously, a digraph complex on
V is a family of simple and loopless digraphs on V closed under deletion of
edges, whereas a hypergraph complex on V is a family of simple hypergraphs
on V , again closed under deletion of edges. The restriction to simple graphs,
digraphs, and hypergraphs is for the purposes of this book.

For a graph complex Σ on a vertex set V and a graph G = (V,E), define
Σ(G) as the graph complex consisting of all graphs H in Σ such that H is
a subgraph of G. We refer to Σ(G) as the induced (graph) subcomplex of Σ.
We adopt the same terminology for digraph and hypergraph complexes.

We refer to a digraph complex ∆̂ as the trivial extension of a graph complex
∆ if the following holds:

• A digraph D is a maximal face of ∆̂ if and only if D equals {ab, ba : ab ∈ G}
for some maximal face G of ∆.

For example, the property of being a disconnected digraph is the trivial ex-
tension of the property of being a disconnected undirected graph.

A graph property is a family Σ of simple graphs on a finite vertex set
V such that Σ is closed under permutations of the vertex set V ; if σ :=
{a1b1, . . . , arbr} ∈ Σ and π ∈ SV , then

π(σ) := {π(a1)π(b1), . . . , π(ar)π(br)} ∈ Σ.

We refer to this action as the natural action of SV on ∆.
A digraph property is a family Σ of simple and loopless digraphs on a

finite vertex set V such that Σ is closed under permutations of the vertex set
V . Analogously, a hypergraph property is a family of hypergraphs, again on a
fixed vertex set, that is closed under permutations of the underlying vertex
set.

A graph, digraph, or hypergraph property Σ is monotone if Σ is closed
under deletion of edges. Equivalently, Σ is a simplicial complex.

2.4 Matroids

A finite matroid M is a pair (E,F), where E is a finite set and F = F(M) ⊆ 2E

is a nonvoid simplicial complex satisfying the following property:
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• If σ, τ ∈ F and |σ| < |τ |, then there is an element x ∈ τ \ σ such that
σ + x ∈ F.

F(M) is the independence complex or matroid complex of M. The sets in F(M)
are the independent sets in M. Note that F is a pure complex; all maximal
faces have the same size. Define the rank of M as this size. A basis is a maximal
independent set. A circuit is a minimal dependent set, i.e., a minimal nonface
of F(M).

For a subset τ of E, let M(τ) denote the pair (τ,F∩2τ ). This is a matroid,
and we refer to it as the induced submatroid of M on the set τ . Define the
rank ρM(τ) of τ as the rank of the matroid M(τ). A set τ is a flat in M if the
rank of τ + x exceeds the rank of τ for each x in E \ τ . If a flat τ has rank
ρ(E)− 1, then τ is a cocircuit in M.

For e ∈ E, M − e is the pair (E − e,delF(e)); M − e is the deletion of M
with respect to e. M/e is the pair (E − e, lkF(e)); M/e is the contraction of
M with respect to e. The rank function of M/e satisfies the identity

ρM/e(σ) = ρM(σ + e)− ρM({e}).

The dual of M is the matroid M∗ on the same ground set E with the
property that the rank function ρ∗ satisfies

ρ∗(σ) = |σ|+ ρ(E \ σ)− ρ(E). (2.1)

Equivalently, σ is a basis of M∗ if and only if E \ σ is a basis of M.
We refer the reader to Oxley [105] or Welsh [147] for more information

about matroids.

2.4.1 Graphic Matroids

For a graph G = ([n], E), define Mn(G) to be the pair (E,Fn(G)), where
Fn(G) is the complex of forests contained in G. This is well-known to be a
matroid, and the rank function is given by ρ(H) = n − c(H), where c(H) is
the number of connected components in H. We refer to Mn(G) as the graphic
matroid on G. Write Mn = Mn(Kn).

Another matroid that we may associate to G is the (one-step) truncation
of Mn(G) obtained by redefining the rank function as ρ(H) = min{ρ(H), n−
2} = n−max{2, c(H)}. The independent sets in this matroid are exactly all
disconnected forests in G. One may pursue this construction further, consid-
ering the “k-step” truncation with rank function ρ(H) = n −max{k, c(H)},
but we will confine ourselves to the one-step construction.

For a digraph D, let Mn(D) be the matroid with the property that a set
of edges is independent if and only if there are no multiple edges or cycles
in the underlying undirected graph. The former condition means exactly that
{ij, ji} is not independent. We refer to Mn(D) as the digraphic matroid on
D. Write M→

n = Mn(K→
n ).
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2.5 Integer Partitions

For a sequence λ = (λ1, . . . , λr), define |λ| =
∑r

i=1 λi. Say that λ is a partition
of n if λ1 ≥ · · · ≥ λr ≥ 1 and |λ| = n; we write this as λ � n. By convention,
we set λi equal to 0 whenever i > r. One may interpret λ as the set {(i, j) :
1 ≤ j ≤ λi} of lattice points, where (i, j) is the lattice point in the ith row
and jth column. Write Dλ = {(i, i) : λi ≥ i}; this is the diagonal of λ. Points
(i, j) such that i < j are above the diagonal, whereas points (i, j) such that
i > j are below the diagonal.

Given two partitions λ and µ of n, we say that λ dominates µ if

k∑
i=1

λi ≥
k∑

i=1

µi

for all i ≥ 1. The conjugate λT of a partition λ = (λ1, . . . , λr) is the sequence
(µ1, . . . , µλ1) with the property that µj is the largest m such that λm ≥ j.
Equivalently, the length of the jth row in λT equals the length of the jth

column in λ for each j. λ is self-conjugate if λ = λT .
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Simplicial Topology

We present a brief overview of the theory of homology and homotopy for
simplicial complexes and quotients of simplicial complexes. We also list some
of the most important classes of simplicial complexes such as contractible and
shellable complexes.

In Section 3.1, we consider simplicial homology theory, stating the main
definitions and presenting the important Mayer-Vietoris exact sequence. In
Section 3.2, we proceed with relative homology and present the long exact se-
quence for pairs of simplicial complexes. We also state the main result about
Alexander duality. Section 3.3 provides the basic definitions from simplicial
homotopy theory. In Section 3.4, we discuss acyclic, contractible, collapsi-
ble, and nonevasive complexes. We will need some results about quotient
complexes, most notably the Contractible Subcomplex Lemma; we present
these results in Section 3.5. Section 3.6 is devoted to Cohen-Macaulay, con-
structible, shellable, and vertex-decomposable complexes. We proceed with
balls and spheres in Section 3.7 and conclude the chapter in Section 3.8 with
a few comments about the well-known Stanley-Reisner correspondence be-
tween simplicial complexes and monomial rings and ideals.

3.1 Simplicial Homology

We review the basic concepts of simplicial homology. Simplicial homology is
well-known to coincide with the restriction of singular or cellular homology to
simplicial complexes; see Munkres [101, §34, §39].

Throughout this section, let F be a field or Z, the ring of integers.

Chain Groups

Let ∆ be a simplicial complex. For d ≥ −1, let C̃d(∆; F) be the free F-module
with one basis element, denoted as [s1] ∧ · · · ∧ [sd+1], for each d-dimensional
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face {s1, . . . , sd+1} of ∆. This means that the rank of C̃d(∆; F) equals the
number of faces of ∆ of dimension d. By convention, we set C̃d(∆; F) equal
to 0 for d < −1 and for d > dim∆. For any permutation π ∈ S[d+1] and any
face σ = {s1, . . . , sd+1}, we define

[sπ(1)] ∧ [sπ(2)] ∧ · · · ∧ [sπ(d+1)] = sgn(π) · [s1] ∧ [s2] ∧ · · · ∧ [sd+1]. (3.1)

We will find it convenient to write [σ] = [s1] ∧ [s2] ∧ . . . ∧ [sd+1], implicitly
assuming that we have a fixed linear order on the 0-cells in ∆. Whenever σ
and τ are disjoint faces such that σ ∪ τ ∈ ∆, we define [σ]∧ [τ ] in the natural
manner. Note that [∅] ∧ z = z for all z.

Boundary Map

The boundary map ∂d : C̃d(∆; F)→ C̃d−1(∆; F) is the homomorphism defined
by

∂d([s1] ∧ . . . ∧ [sd+1]) =
d+1∑
i=1

(−1)i−1[s1] ∧ . . . ∧ [si−1] ∧ [si+1] ∧ . . . ∧ [sd+1].

One easily checks that this definition is consistent with (3.1). Combining all
∂d, we obtain an operator ∂ on the direct sum C̃(∆; F) of all C̃d(∆; F). It is
well-known and easy to see that ∂2 = 0. This means that the pair (C̃(∆; F), ∂)
forms a (graded) chain complex.

Let ∆1 and ∆2 be complexes on disjoint sets of 0-cells. Given any elements
c1 ∈ C̃d1(∆1; F) and c2 ∈ C̃d2(∆2; F), the element c1 ∧ c2 ∈ C̃d1+d2+1(∆1 ∗
∆2; F) satisfies the following identity:

∂(c1 ∧ c2) = ∂(c1) ∧ c2 + (−1)d1+1c1 ∧ ∂(c2). (3.2)

Homology

For the chain complex (C̃(∆; F), ∂) on the simplicial complex ∆, we refer to
elements in ∂−1({0}) as cycles and elements in ∂(C̃(∆; F)) as boundaries.
Define the dth reduced homology group of ∆ with coefficients in F as the
quotient F-module

H̃d(∆; F) := ∂−1
d ({0})/∂d+1(C̃d+1(∆; F)) = ker ∂d/im ∂d+1.

Defining C̃−1(∆; F) to be zero, we obtain unreduced homology groups, denoted
Hd(∆; F) (“H” instead of “H̃”). We will be mainly concerned with reduced
homology.

Just to give a simple example, we note that H̃d(∆; F) = 0 for all d whenever
∆ = Conex(Σ) for some Σ. Namely, we may write any element c in C̃(∆; F)
as c = [x] ∧ c1 + c2, where c1 and c2 are elements in C̃(Σ; F). If c is a cycle,
then ∂(c2) = −c1, which implies that ∂([x] ∧ c2) = c; hence every cycle is a
boundary.
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Theorem 3.1 (see Munkres [101, Th. 25.1]). For any pair of simplicial
complexes ∆ and Γ , we have the Mayer-Vietoris long exact sequence

· · · −→ H̃d+1(∆; F)⊕ H̃d+1(Γ ; F) −→ H̃d+1(∆ ∪ Γ ; F)

−→ H̃d(∆ ∩ Γ ; F) −→ H̃d(∆; F)⊕ H̃d(Γ ; F) −→ H̃d(∆ ∪ Γ ; F)

−→ H̃d−1(∆ ∩ Γ ; F) −→ H̃d−1(∆; F)⊕ H̃d−1(Γ ; F) −→ · · ·

�

Corollary 3.2. Let ∆ and Γ be simplicial complexes. Then the wedge ∆ ∨ Γ
with respect to any identified 0-cells x ∈ ∆ and y ∈ Γ satisfies

H̃d(∆ ∨ Γ ; F) ∼= H̃d(∆; F)⊕ H̃d(Γ ; F).

for all d ≥ −1.

Proof. We have that ∆∩Γ = {∅, x}, which implies that H̃d(∆∩Γ ; F) = 0 for
all d. By the Mayer-Vietoris sequence (Theorem 3.1), we are done. �

Remark. Throughout this book, whenever we discuss the homology of a sim-
plicial complex, we are referring to the reduced Z-homology unless otherwise
specified.

3.2 Relative Homology

Let ∆ ⊂ Γ be two simplicial complexes. We refer to the family Γ \ ∆ as a
quotient complex and denote it as Γ/∆. We define the relative chain complex
of Γ/∆ in the following manner: Define the dth chain group C̃d(Γ/∆; F) as
the quotient group C̃d(Γ ; F)/C̃d(∆; F). This means that C̃d(Γ/∆; F) is a free
F-module with one generator [σ] for each face σ ∈ Γ \∆ of dimension d. Since
the boundary map on C̃d(Γ ; F) maps elements in C̃d(∆; F) to elements in
C̃d−1(∆; F), this boundary map induces a boundary map ∂d : C̃d(Γ/∆; F) →
C̃d−1(Γ/∆; F). If ∆ is the void complex, then we obtain the ordinary chain
complex of Γ .

Define the dth relative homology group of ∆ with coefficients in F as the
quotient F-module

H̃d(Γ/∆; F) := ∂−1
d ({0})/∂d+1(C̃d(∆/Γ ; F)) = ker ∂d/im ∂d+1.

It is clear that this definition depends only on Γ \ ∆. Specifically, we may
replace Γ and ∆ with any Γ ′ and ∆′ such that Γ ′ \ ∆′ = Γ \ ∆ without
affecting the chain complex structure.

Note that the traditional notation is H̃d(Γ,∆; F) rather than the more
streamlined H̃d(Γ/∆; F) that we have chosen.
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Theorem 3.3 (see Munkres [101, Th. 23.3]). For any pair of simplicial
complexes ∆ ⊂ Γ , we have the following long exact sequence for the pair
(Γ,∆):

· · · −−−−→ H̃d+1(Γ ; F) −−−−→ H̃d+1(Γ/∆; F)
f−−−−→ H̃d(∆; F) −−−−→ H̃d(Γ ; F) −−−−→ H̃d(Γ/∆; F)
f−−−−→ H̃d−1(∆; F) −−−−→ H̃d−1(Γ ; F) −−−−→ · · ·

(3.3)

The map f is induced by the boundary operator ∂ in the chain complex of Γ .
The other maps are defined in the natural manner. �

A simple observation is that the relative homology of the pair (Γ,∆) coincides
with the simplicial homology of Γ ∪Cone(∆); consider the long exact sequence
for the pair (Γ ∪ Cone(∆),Cone(∆)) and observe that Cone(∆) has vanishing
reduced homology in all dimensions.

Let σ ∈ Γ and write ∆ = fdelΓ (σ). It is immediate from the definition
that

H̃d(Γ/∆; F) ∼= H̃d−|σ|(lkΓ (σ); F).

By Theorem 3.3, we thus have a long exact sequence relating Γ and the link
and face deletion of Γ with respect to σ. We will use this fact in Section 5.2.1
when we examine semi-nonevasive and semi-collapsible complexes.

In situations where there is no torsion, the homology of the Alexander
dual of a complex is easy to compute via relative homology:

Theorem 3.4. Let F be a field or Z and let ∆ be a simplicial complex on a
nonempty set X with F-free homology. Then

H̃d(∆; F) ∼= H̃|X|−d−3(∆∗
X ; F). (3.4)

Proof. By Theorem 3.3, H̃d(∆; F) ∼= H̃d+1(2X/∆; F) for all d. Almost by defin-
ition, we have that H̃d+1(2X/∆; F) ∼= H̃ |X|−d−3(∆∗

X ; F), where H̃i(∆∗
X ; F) de-

notes the ith cohomology group; see Munkres [101]. Applying duality between
homology and cohomology for complexes with free homology (see Munkres
[101, Th. 45.8]), we obtain the desired result. �

We cannot drop the condition that the homology be free; see Munkres [101].

3.3 Homotopy Theory

A pointed space is a topological space X together with a base point x0 ∈ X.
Let X and Y be pointed spaces with base points x0 ∈ X and y0 ∈ Y . A
(pointed) map from X to Y is a continuous function f : X → Y such that
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f(x0) = y0. Let I be the interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. For maps
f, g : X → Y , a homotopy from f to g is a continuous function F : I×X → Y
such that Ft(x0) := F (t, x0) = y0 for all t ∈ I and such that F0(x) = f(x)
and F1(x) = g(x) for all x ∈ X. We say that f and g are homotopic if such a
homotopy exists.

X and Y are homotopy equivalent, denoted X � Y , if there exist maps
f : X → Y and h : Y → X such that h ◦ f : X → X is homotopic to the
identity map on X and f ◦ h : Y → Y is homotopic to the identity map on
Y . We will sometimes express this as saying that X has the homotopy type
of Y . The choice of base point makes a difference only if the space is not
path-connected. As almost all our spaces turn out to be path-connected, we
will suppress the notion of base point from now on.

Lemma 3.5. Let Y be a topological space and let X be a subspace. Suppose
that there is a homotopy F : I × Y → Y such that F0 is the identity, the
restriction of F1 to X is the identity, and F1(Y ) = X. Then X and Y are
homotopy equivalent.

Proof. Define f : Y → X by f(y) = F1(y) and g : X → Y by g(x) = F0(x) =
x. We obtain that f ◦ g is the identity on X and that g ◦ f = F1. Since F1 is
homotopic to the identity F0 on Y , we are done. �

Let ∆ be a nonvoid abstract simplicial complex on a set X, say X = [n].
By some abuse of notation, we define the topological realization of ∆ as any
topological space homeomorphic to the following space ‖∆‖: Let e1, . . . , en be
an orthonormal basis for Euclidean space Rn. For a face σ, let ‖σ‖ denote the
set {∑

x∈σ

λxex :
∑
x∈σ

λx = 1, λx > 0 for all x ∈ σ

}
. (3.5)

Define ‖∆‖ as the union
⋃

σ∈∆ ‖σ‖; this is a disjoint union. Note that ‖2σ‖ =⋃
τ⊆σ ‖τ‖; this is the convex hull of the set {ex : x ∈ σ}. Also note that

‖{x}‖ = {ex}. We refer to ‖∆‖ as the canonical realization of ∆
Let ∆ and Γ be defined on two disjoint vertex sets X and Y . One easily

checks that the canonical realization of the join ∆ ∗ Γ is the set

{λx + (1− λ)y : x ∈ ‖∆‖, y ∈ ‖Γ‖, λ ∈ [0, 1]}.

The join operation preserves homeomorphisms and homotopies:

Lemma 3.6. If ‖∆1‖ ∼= ‖∆2‖ and ‖Γ1‖ ∼= ‖Γ2‖, then ‖∆1 ∗Γ1‖ ∼= ‖∆2 ∗Γ2‖.
If ‖∆1‖ � ‖∆2‖ and ‖Γ1‖ � ‖Γ2‖, then ‖∆1 ∗ Γ1‖ � ‖∆2 ∗ Γ2‖.

Proof. Given homeomorphisms f : ‖∆1‖ → ‖∆2‖ and g : ‖Γ1‖ → ‖Γ2‖, a
homeomorphism h : ‖∆1 ∗ Γ1‖ → ‖∆2 ∗ Γ2‖ is given by h(λx + (1 − λ)y) =
λf(x) + (1 − λ)g(y) for each x ∈ ‖∆1‖, y ∈ ‖Γ1‖, and λ ∈ [0, 1]. This is
well-defined, because we may extract λx from λx + (1− λ)y by restricting to
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the coordinates corresponding to the elements in X, and we may extract λ
from λx by summing the coordinates of λx.

In the same manner, one easily establishes the statement about homotopy
equivalence. �

We say that an abstract simplicial complex ∆ is homotopy equivalent to a
pointed space X if the topological realization of ∆ is homotopy equivalent to
X. More generally, whenever we discuss topological properties of an abstract
simplicial complex ∆, we are referring to its topological realization.

The void complex ∅ is by convention homotopy equivalent to a point (i.e.,
a 0-simplex).

We will frequently use the following well-known facts without reference;
see Munkres [101] for details.

• Two simplicial complexes with the same homotopy type have the same
homology (the converse is not true in general).

• The homotopy type of a wedge of two simplicial complexes ∆ and Γ with
respect to given identified 0-cells x ∈ ∆ and y ∈ Γ does not depend on
the choice of x and y as long as each of ∆ and Γ is connected.

• Any simplicial complex is homeomorphic to its first barycentric subdivi-
sion.

Occasionally, we will need to consider cell complexes. For a vector x =
(x1, . . . , xn), write ‖x‖ =

√
x2

1 + . . . + x2
n. The unit n-ball Bn is the set

{x = (x1, . . . , xn) : ‖x‖ ≤ 1} in Rn. The unit (n − 1)-sphere Sn−1 is the
boundary {x = (x1, . . . , xn) : ‖x‖ = 1} of Bn. By convention, B0 is a point
and S−1 is the empty set. Int Bn = Bn \ Sn−1 is the unit open n-ball. A
topological space D is an open n-cell if D is homeomorphic to an open n-ball.

A Hausdorff topological space X is a finite cell complex if the following
conditions are satisfied [101, §38]:

• X is the disjoint union of a finite number of open cells {Di : i ∈ I}.
• For each open cell Di, there is a continuous map

ϕi : Bni → X

(ni = dimDi) such that the restriction of ϕi to Int Bni defines a homeo-
morphism to Di and such that ϕi(Sni−1) is contained in the (ni − 1)-
skeleton of X (the union of all open cells Dj of dimension at most ni− 1).

• A set C is closed in X if and only if C ∩Di is closed in Di for each cell
Di, where Di = ϕi(Bni).

The topological realization of a nonvoid simplicial complex ∆ is a cell
complex; for every face σ of ∆ of dimension d ≥ 0, the set ‖σ‖ is homeo-
morphic to an open d-cell and the boundary of ‖σ‖ is contained in the (d−1)-
skeleton of ‖∆‖. A simplicial complex is a regular cell complex, meaning that
each map ϕi defines a homeomorphism to its image and ϕi(Sni−1) is equal to
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a union of smaller cells. We refer to Hatcher [59] or Munkres [101] for a more
detailed exposition on cell complexes.

Some results in this book about simplicial complexes generalize to larger
classes of cell complexes, but we will not state these generalizations unless we
really need them.

We obtain a wedge of topological spaces Y1, . . . , Yr by taking the dis-
joint union of the spaces, choosing points yi ∈ Yi, and identifying the points
y1, . . . , yr. We may interpret a wedge X of spheres as a cell complex; the iden-
tified point y is a 0-cell and the space X \{y} is a disconnected space in which
each component is a cell in X. Many simplicial complexes in this book are
homotopy equivalent to such wedges of spheres.

3.4 Contractible Complexes and Their Relatives

We define the classes of acyclic, contractible, collapsible, and nonevasive com-
plexes. In this book, we are particularly interested in the latter two classes,
which we will generalize in Chapter 5.

3.4.1 Acyclic and k-acyclic Complexes

Let F be a field or Z. A simplicial complex ∆ is acyclic over F or F-acyclic
if ∆ has no reduced homology over F. By the universal coefficient theorem
[59, Th. 3A.3], a complex ∆ is Z-acyclic if and only if ∆ is F-acyclic for each
field F. However, for any field F, there exist F-acyclic complexes that are not
Z-acyclic. For example, any triangulation of the real projective plane (e.g.,
the one in Figure 5.3 in Section 5.2.1) is F-acyclic whenever F is a field of odd
or zero characteristic but not Z2-acyclic or Z-acyclic.

A complex ∆ is k-acyclic over F if the homology group H̃d(∆; F) vanishes
for d ≤ k. If a complex ∆ is k-acyclic over Z, then ∆ is k-acyclic over F for
every field, but the converse is again false for k ≥ 1.

Proposition 3.7. Let d1, d2 ≥ 0. If ∆ is (d1 − 1)-acyclic over F and Γ is
(d2 − 1)-acyclic over F, then ∆ ∗ Γ is (d1 + d2)-acyclic over F.

Proof. Throughout this proof, ci and ĉi denote elements in C̃i(∆; F) and c′j
denotes an element in C̃j(Γ ; F). Let a ≤ d1 + d2 and let z be a nonzero cycle
in C̃a(∆ ∗ Γ ; F). We can write

z =
s∑

i=r

ci ∧ c′a−i−1 (3.6)

for some r ≤ s, where the first term and the last term are both nonzero. It is
clear that cr and c′a−s−1 are cycles. Since a ≤ d1 + d2 and s ≥ r, we cannot
simultaneously have that r ≥ d1 and a − s − 1 ≥ d2. By symmetry, we may
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assume that r ≤ d1−1; hence there is an element ĉr+1 such that ∂(ĉr+1) = cr.
Consider the element ẑ = ∂(ĉr+1 ∧ c′a−r−1) = cr ∧ c′a−r−1 ± ĉr+1 ∧ ∂(c′a−r−1).
If r = s, then ẑ = z; hence z is a boundary. Otherwise, z − ẑ is a sum as in
(3.6) but from r + 1 to s. By induction on s − r, z − ẑ is a boundary, which
concludes the proof. �

3.4.2 Contractible and k-connected Complexes

A simplicial complex ∆ is contractible if ∆ is homotopy equivalent to a single
point. A contractible complex ∆ is acyclic over Z, but the converse is not
necessarily true unless ∆ is simply connected; the famous Poincaré homology
3-sphere [106] is one example. For k ≥ 0, a topological space X is k-connected
if the following holds for all d ∈ [0, k]:

• Every continuous map f : Sd → X has a continuous extension g : Bd+1 →
X.

By convention, X is (−1)-connected if and only if X is nonempty. Note that
X is 0-connected if and only if X is path-connected. One typically refers to
1-connected complexes as simply connected. The connectivity degree of X is
the largest integer k such that X is k-connected (+∞ if X is k-connected
for all k). Increasing the connectivity degree by one, we obtain the shifted
connectivity degree; this value is the smallest integer k such that X is not k-
connected. In many situations, the shifted connectivity degree coincides with
the smallest integer d such that the homology in dimension d is nonvanishing:

Theorem 3.8 (see Hatcher [59, Th. 4.32]). For k ≥ 1, a simplicial com-
plex ∆ is k-connected if and only if ∆ is k-acyclic over Z and simply connected.
∆ is contractible if and only if ∆ is acyclic over Z and simply connected. For
k ∈ {−1, 0}, a complex ∆ is k-connected if and only if ∆ is k-acyclic. �

Corollary 3.9. For k ≥ 0, if ∆1 and ∆2 are k-connected and ∆1 ∩ ∆2 is
(k − 1)-connected, then ∆1 ∪∆2 is k-connected.

Proof. The corollary is clear if k = 0. Assume that k ≥ 1. By the Mayer-
Vietoris exact sequence (Theorem 3.1), ∆1 ∪∆2 has no homology below di-
mension k. Now, ∆1 and ∆2 are simply connected, whereas ∆1 ∩∆2 is path-
connected. As a consequence, ∆1∪∆2 is simply connected by the van Kampen
theorem (see Hatcher [59, Th. 1.20]). Thus we are done by Theorem 3.8. �

Corollary 3.10. If ∆ is a k-connected subcomplex of Γ and the dimension of
each face of Γ \∆ is at least k + 1, then Γ is k-connected.

Proof. We are done if ∆ = Γ . Otherwise, let σ be a maximal face of Γ \∆;
by assumption, dimσ > k. By induction, Γ \ {σ} is k-connected. Now, 2σ is
k-connected, whereas ∂2σ is (k − 1)-connected. Since Γ = (Γ \ {σ}) ∪ 2σ and
∂2σ = (Γ \ {σ}) ∩ 2σ, Corollary 3.9 yields that Γ is k-connected. �
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Theorem 3.11. If ∆ is connected and dimΓ ≥ 0 (i.e., Γ is (−1)-connected),
then ∆ ∗ Γ is simply connected.

Proof. If Γ = {∅, {x}}, then ∆∗Γ is a cone and hence simply connected. Oth-
erwise, let x be a 0-cell in Γ and write Γ1 = delΓ (x) and Γ2 = Conex(lkΓ (x)).
It is clear that Γ = Γ1∪Γ2 and that ∆∗ (Γ1∩Γ2) is connected. By induction,
∆ ∗Γ1 and ∆ ∗Γ2 are simply connected; each of Γ1 and Γ2 is (−1)-connected.
By Corollary 3.9, it follows that ∆ ∗ Γ is simply connected. �

Corollary 3.12. Let d1, d2 ≥ 0. If ∆ is (d1 − 1)-acyclic over Z and Γ is
(d2 − 1)-acyclic over Z, then ∆ ∗ Γ is (d1 + d2)-connected.

Proof. The corollary is clearly true for d1 = d2 = 0. Assume that d1 + d2 ≥ 1.
By Proposition 3.7, ∆ ∗Γ is (d1 +d2)-acyclic. Theorem 3.11 yields that ∆ ∗Γ
is simply connected; hence we are done by Theorem 3.8. �

Theorem 3.13. Let d ≥ 0. If ∆ is (d− 1)-connected and dim∆ ≤ d, then ∆
is homotopy equivalent to a wedge of spheres of dimension d.

Proof. The theorem is trivial for d = 0. If d = 1, then ∆ is a connected graph,
which is homotopy equivalent to a wedge of circles. Otherwise, ∆ is simply
connected and (d−1)-acyclic by Theorem 3.8. As a consequence, all homology
of ∆ is concentrated in dimension d. Since dim ∆ ≤ d, this homology must be
torsion-free and hence of the form Zr for some r ≥ 0. By the homology version
of Whitehead’s theorem (see Hatcher [59, Prop. 4C.1]), this implies that ∆
is homotopy equivalent to a cell complex consisting of r cells of dimension d
and one 0-cell, hence a wedge of r spheres of dimension d. �

3.4.3 Collapsible Complexes

Recall that a complex is collapsible if the complex is void or can be collapsed
to a point {∅, {v}}. Collapsible complexes are contractible, but not all con-
tractible complexes are collapsible; the dunce hat [150] is one example. One
may characterize collapsible complexes in the following manner:

Definition 3.14. We define the class of collapsible simplicial complexes re-
cursively as follows:

(i) The void complex ∅ and any 0-simplex {∅, {v}} are collapsible.
(ii) If ∆ contains a nonempty face σ such that the face-deletion fdel∆(σ) and

the link lk∆(σ) are collapsible, then ∆ is collapsible.

We discuss further properties of collapsible complexes in Section 5.4.
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3.4.4 Nonevasive Complexes

To obtain the class of nonevasive complexes, we use Definition 3.14 with the
restriction that the face σ in (ii) must be a 0-cell:

Definition 3.15. We define the class of nonevasive simplicial complexes re-
cursively as follows:

(i) The void complex ∅ and any 0-simplex {∅, {v}} are nonevasive.
(ii) If ∆ contains a 0-cell x such that del∆(x) and lk∆(x) are nonevasive,

then ∆ is nonevasive.

For example, cones are nonevasive. A complex is evasive if it is not nonevasive.
We explain this terminology in Chapter 5. As Kahn, Saks, and Sturtevant
[78] observed, nonevasive complexes are collapsible. The converse is not true
in general; in Proposition 5.13, we present a counterexample due to Björner.
We discuss further properties of nonevasive complexes in Section 5.4.

3.5 Quotient Complexes

Let X ⊆ Y be two topological spaces such that X is nonempty. Let p be
an isolated point not in Y . One defines the quotient space Y/X as the set
(Y \ X) ∪ {p} equipped with the topology induced by the map α : Y →
(Y \X) ∪ {p} defined by

α(x) =
{

x if x ∈ Y \X;
p if x ∈ X.

That is, M is open in Y/X if and only if α−1(M) is open in Y . By convention,
we set Y/∅ equal to the union of Y and a discrete point {p} not in Y .

Let ∆ ⊆ Γ be simplicial complexes such that ∆ is nonvoid. We define the
topological realization of the quotient complex Γ/∆ to be any space homeo-
morphic to ‖Γ‖/‖∆‖. One easily checks directly from the definition that
‖Γ‖/‖∆‖ is homeomorphic to ‖Γ ′‖/‖∆′‖ whenever Γ \ ∆ = Γ ′ \ ∆′. Note
that ‖Γ‖/‖{∅}‖ = ‖Γ‖ ∪ {p}, because ‖{∅}‖ = ∅.

One may interpret the space ‖Γ‖/‖∆‖ as a cell complex. Specifically, we
have one cell ‖σ‖ for each face σ ∈ Γ \ ∆ plus one additional 0-cell {p}
corresponding to ∆. The boundary of ‖2σ‖ is the same as in ‖Γ‖ except that
we identify all points in ‖∂2σ‖ ∩ ‖∆‖ with p.

Whenever we talk about the topology of Γ/∆, we are referring to the
space ‖Γ‖/‖∆‖. The following lemma is known as the Contractible Subcomplex
Lemma.

Lemma 3.16 (see Hatcher [59, Prop. 0.17]). Let Γ and ∆ be simplicial
complexes such that ∆ is a contractible subcomplex of Γ . Then Γ/∆ and Γ
are homotopy equivalent.
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Proof. Let E be the set of 0-cells in Γ . It is well-known and easy to prove that
there is a homeomorphism from ‖Γ‖ to ‖sd(Γ )‖ such that restriction to ‖∆‖ is
a homeomorphism to ‖sd(∆)‖. In particular, ‖Γ‖/‖∆‖ and ‖sd(Γ )‖/‖sd(∆)‖
are homeomorphic. As a consequence, we may assume without loss of gener-
ality that ∆ coincides with the induced subcomplex of Γ on some set E0 ⊂ E
of 0-cells; thus ∆ = Γ ∩ 2E0 . Let ∆⊥ be the induced subcomplex on the set
E \ E0.

Let F : I × ‖∆‖ → ‖∆‖ be a homotopy from the identity to a constant
function; F0(x) = x and F1(x) = y for some y ∈ ‖∆‖. Each element x in ‖Γ‖
has a unique representation x = λq +(1−λ)r, where q ∈ ‖∆‖, r ∈ ‖∆⊥‖, and
λ ∈ I. Define G : I × ‖Γ‖ → ‖Γ‖ to be the homotopy given by

Gt(λq + (1− λ)r) =
{

(1 + t)λq + (1− (1 + t)λ)r if λ ≤ 1/(1 + t);
F(t+1)λ−1(q) if λ ≥ 1/(1 + t)

for all relevant q ∈ ‖∆‖ and r ∈ ‖∆⊥‖. This is indeed a homotopy, because
λ = 1/(t + 1) yields the same result q in both formulas.

We have that Gt induces a homotopy G̃t : ‖Γ‖/‖∆‖ → ‖Γ‖/‖∆‖. More-
over, G1 induces a continuous map Ĝ1 : ‖Γ‖/‖∆‖ → ‖Γ‖; G1 maps the
entirety of ‖∆‖ to F1(‖∆‖) = {y}. Define α : ‖Γ‖ → ‖Γ‖/‖∆‖ to be the
projection map. Now, Ĝ1 ◦ α = G1, which is homotopic to the identity G0.
Moreover, α ◦ Ĝ1 = G̃1, which is homotopic to the identity G̃0; hence we are
done. �

Corollary 3.17. Let Γ be a simplicial complex and let ∆ be a subcomplex of
Γ . Let Σ be a complex on a 0-cell set disjoint from the 0-cell set of Γ such
that Σ ∗∆ is contractible. Then Γ/∆ is homotopy equivalent to Γ ∪ (Σ ∗∆).

Proof. Since Γ/∆ = (Γ ∪ (Σ ∗ ∆))/(Σ ∗ ∆), the Contractible Subcomplex
Lemma 3.16 implies the desired result. �

Lemma 3.18. Let Γ be a contractible simplicial complex and let ∆ be a sub-
complex of Γ . Then Γ/∆ is homotopy equivalent to the suspension of ∆. More-
over, H̃i+1(Γ/∆; F) = H̃i(∆; F) for i ≥ −1.

Proof. Let x and y be two 0-cells not in Γ . By Corollary 3.17, Γ/∆ is
homotopy equivalent to Γ ∪ Conex(∆). Since Γ is contractible, the Con-
tractible Subcomplex Lemma 3.16 implies that Γ ∪ Conex(∆) is homotopy
equivalent to (Γ ∪ Conex(∆))/Γ and hence to Conex(∆)/∆. Another appli-
cation of Corollary 3.17 yields that Conex(∆)/∆ is homotopy equivalent to
Conex(∆) ∪ Coney(∆) = Suspx,y(∆), which concludes the proof. For the last
claim, use the long exact sequence in Theorem 3.3. �

In this context, it might be worth stating the following fact about suspensions.

Lemma 3.19 (Björner and Welker [16, Lemma 2.5]). If ∆ � ∨
i∈I Sdi ,

then Susp(∆) �
∨

i∈I Sdi+1. �
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The converse is not true. For example, the suspension of a d-dimensional
complex with homology only in top dimension d ≥ 1 is simply connected
by Theorem 3.11 and hence homotopy equivalent to a wedge of spheres by
Theorem 3.13.

The following lemma is a special case of a much more general result about
homotopy type being preserved under join.

Lemma 3.20. Let ∆ be a simplicial complex and let Γ and Γ ′ be quotient
complexes. If Γ � Γ ′, then ∆ ∗ Γ � ∆ ∗ Γ ′.

Proof. Write Γ = Γ1/Γ0, where Γ1 and Γ0 are simplicial complexes. By Corol-
lary 3.17,

∆ ∗ Γ =
∆ ∗ Γ1

∆ ∗ Γ0
� (∆ ∗ Γ1) ∪ Conex(∆ ∗ Γ0) = ∆ ∗ (Γ1 ∪ Conex(Γ0)).

By Corollary 3.17 and Lemma 3.6, we obtain that the homotopy type of
∆ ∗ Γ is uniquely determined by the homotopy type of each of ∆ and Γ ,
which concludes the proof. �

3.6 Shellable Complexes and Their Relatives

We define the classes of Cohen-Macaulay, constructible, shellable, and vertex-
decomposable complexes along with nonpure versions. In Section 3.6.5, we
present some basic topological results about these complexes. For our pur-
poses, the class of vertex-decomposable complexes is by far the most impor-
tant. See Section 6.3 for some specific results related to this class.

3.6.1 Cohen-Macaulay Complexes

Definition 3.21. Let ∆ be a pure simplicial complex. ∆ is homotopically
Cohen-Macaulay (CM) if lk∆(σ) is (dim lk∆(σ)− 1)-connected for each σ in
∆. Let F be a field or Z. ∆ is Cohen-Macaulay over F (denoted as CM/F) if
lk∆(σ) is (dim lk∆(σ)− 1)-acyclic for each σ in ∆.

By Theorem 3.13, lk∆(σ) is (dim lk∆(σ)− 1)-connected if and only if lk∆(σ)
is homotopy equivalent to a wedge of spheres of dimension dim lk∆(σ). See
Section 3.8 for the ring-theoretic motivation of Definition 3.21.

Define the homotopical depth of a complex ∆ as the largest integer k such
that the k-skeleton of ∆ is homotopically CM . Define the depth over F of ∆
as the largest integer k such that the k-skeleton of ∆ is CM/F. Equivalently,
the depth over F equals

min{m : H̃m−|σ|(lk∆(σ), F) �= 0 for some σ ∈ ∆}.
This is closely related to the ring-theoretic concept of depth; see Section 3.8.

Define the pure d-skeleton ∆[d] of ∆ as the subcomplex of ∆ generated
by all d-dimensional faces of ∆. Stanley [132] extended the concept of Cohen-
Macaulayness to nonpure complexes:



3.6 Shellable Complexes and Their Relatives 41

Definition 3.22. A simplicial complex ∆ is sequentially homotopy-CM if the
pure d-skeleton ∆[d] is homotopically CM for every d ≥ 0. Let F be a field
or Z. ∆ is sequentially CM/F if the pure d-skeleton ∆[d] is CM/F for every
d ≥ 0.

3.6.2 Constructible Complexes

Definition 3.23. We define the class of constructible simplicial complexes
recursively as follows:

(i) Every simplex (including ∅ and {∅}) is constructible.
(ii) If ∆1 and ∆2 are constructible complexes of dimension d and ∆1 ∩∆2 is

a constructible complex of dimension d−1, then ∆1∪∆2 is constructible.

Hochster [63] introduced constructible complexes.
Let us extend the concept of constructibility to nonpure complexes. For a

simplicial complex ∆, define F(∆) to be the family of maximal faces of ∆.

Definition 3.24. We define the class of semipure constructible simplicial
complexes recursively as follows:

(i) Every simplex (including ∅ and {∅}) is semipure constructible.
(ii) Suppose that ∆1, ∆2, and Γ = ∆1 ∩ ∆2 are semipure constructible

complexes such that the following conditions are satisfied:
(a) F(∆1 ∪∆2) is the disjoint union of F(∆1) and F(∆2).
(b) Every member of F(Γ ) is a maximal face of either ∆1 \ F(∆1) or

∆2 \ F(∆2) (possibly of both).
Then ∆1 ∪∆2 is semipure constructible.

Expressed in terms of pure skeletons, condition (b) is equivalent to the identity

∆1
[d] ∩∆2

[d] = Γ [d−1] ∪ Γ [d]

for each d.
One may refer to semipure constructible complexes that are not pure as

nonpure constructible.

3.6.3 Shellable Complexes

The class of shellable complexes is arguably the most well-studied class of
Cohen-Macaulay complexes. Indeed, proving shellability is in many situations
the most efficient way of establishing Cohen-Macaulayness; see Björner and
Wachs [12] for just one of many examples. In this respect, this book con-
stitutes an exception, as our proofs of Cohen-Macaulayness typically go via
vertex-decomposability (see Section 3.6.4). Therefore, we confine ourselves to
presenting basic definitions and refer the interested reader to Björner [9] for
more information and further references.
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Definition 3.25. We define the class of shellable simplicial complexes recur-
sively as follows:

(i) Every simplex (including ∅ and {∅}) is shellable.
(ii) If ∆ is pure and contains a nonempty face σ – a shedding face – such

that fdel∆(σ) and lk∆(σ) are shellable, then ∆ is also shellable.

This way of defining shellability is easily seen to be equivalent to more con-
ventional approaches; see Provan and Billera [108].

We say that a lifted complex Σ = ∆∗{ρ} (see Section 2.3.7) is shellable if
the underlying simplicial complex ∆ is shellable. A sequence (Σ1, . . . , Σr = Σ)
is a shelling of Σ if each Σi is a pure lifted complex over ρ of dimension dimΣ
such that Σi \Σi−1 has a unique maximal face τi and a unique minimal face
σi for each i ∈ [1, r]; Σ0 = ∅. The ith shelling pair is the pair (σi, τi). Note
that σ1 = ρ.

Let ∆ be a lifted complex over ρ. The recursive procedure in (ii) of Defi-
nition 3.25 gives rise to a shelling of ∆. Specifically, assume inductively that
we have shellings (∆1, . . . , ∆q) of fdel∆(σ) and (∆q+1, . . . , ∆r) of ∆(σ, ∅) (we
lift the link lk∆(σ)). If ∆ = lk∆(σ) ∗ 2σ, then (∆q+1 ∗ 2σ, . . . , ∆r ∗ 2σ) is a
shelling of ∆. Otherwise, (∆1, . . . , ∆q,∆q+1, . . . ,∆r) is a shelling of ∆; the
unique minimal element in ∆q+1 \∆q is σ.

Conversely, it is easy to prove that ∆ admits a shelling if and only if ∆ is
shellable in terms of Definition 3.25; use the last minimal face σr as the first
shedding face.

Björner and Wachs [13] extended shellability to complexes that are not
necessarily pure:

Definition 3.26. We define the class of semipure shellable simplicial com-
plexes recursively as follows:

(i) Every simplex (including ∅ and {∅}) is semipure shellable.
(ii) If ∆ contains a nonempty face σ – a shedding face – such that fdel∆(σ)

and lk∆(σ) are semipure shellable and such that every maximal face of
fdel∆(σ) is a maximal face of ∆, then ∆ is also semipure shellable.

To see that Definition 3.26 is equivalent to the original definition [13, Def.
2.1], adapt the proof of Björner and Wachs [14, Th. 11.3]. One may refer to
semipure shellable complexes that are not pure as nonpure shellable.

3.6.4 Vertex-Decomposable Complexes

Definition 3.27. We define the class of vertex-decomposable (V D) simplicial
complexes recursively as follows:

(i) Every simplex (including ∅ and {∅}) is V D.
(ii) If ∆ is pure and contains a 0-cell x – a shedding vertex – such that

del∆(x) and lk∆(x) are V D, then ∆ is also V D.
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Vertex-decomposable complexes were introduced by Provan and Billera [108].
As for shellability, one readily extends vertex-decomposability to lifted

complexes. An alternative approach to vertex-decomposability including lifted
complexes is as follows:

Definition 3.28. We define the class of V D lifted complexes recursively as
follows.

(i) Every simplex (including ∅ and {∅}) is V D.
(ii) If ∆ contains a 0-cell v such that ∆(v, ∅) and ∆(∅, v) are V D of the same

dimension, then ∆ is also V D.
(iii) If ∆ is a cone over a V D complex ∆′, then ∆ is also V D.
(iv) If ∆ = Σ ∗ {σ} and Σ is V D, then ∆ is also V D.

The restriction of this definition to simplicial complexes is easily seen to be
equivalent to the original Definition 3.27.

Just as for shellability, Björner and Wachs [13] extended the concept of
vertex-decomposability to nonpure complexes:

Definition 3.29. We define the class of semipure V D simplicial complexes
recursively as follows:

(i) Every simplex (including ∅ and {∅}) is semipure V D.
(ii) If ∆ contains a 0-cell x – a shedding vertex – such that del∆(x) and

lk∆(x) are semipure V D and such that every maximal face of del∆(x) is
a maximal face of ∆, then ∆ is also semipure V D.

One may refer to semipure V D complexes that are not pure as nonpure V D.

3.6.5 Topological Properties and Relations Between Different
Classes

Theorem 3.30. The properties of being CM , sequentially CM , constructible,
semipure constructible, shellable, semipure shellable, V D, and semipure V D
are all closed under taking link and join.

Proof. The properties being closed under taking link is straightforward to
prove in all cases. The CM/F and sequentially CM/F properties are closed
under taking join, because the join of a (d1−1)-acyclic complex and a (d2−1)-
acyclic complex is (d1 +d2)-acyclic by Proposition 3.7. By Corollary 3.12, the
homotopically CM and sequentially homotopy-CM properties are also closed
under taking join.

For the remaining properties, use a simple induction argument, decompos-
ing with respect to the first complex in the join and keeping the other complex
fixed. In each case, the base case is a join of two simplices, which is again a
simplex.
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For example, suppose that ∆ = ∆1∪∆2 and ∆′ are semipure constructible
and that ∆1 and ∆2 satisfy the properties in (ii) in Definition 3.24. By in-
duction, ∆1 ∗∆′, ∆2 ∗∆′, and (∆1 ∩∆2) ∗∆′ are all semipure constructible.
Moreover, one easily checks that conditions (a) and (b) in Definition 3.24
hold for ∆1 ∗∆′ and ∆2 ∗∆′. It hence follows that (∆1 ∪∆2) ∗∆′ is semipure
constructible as desired.

The treatment of the other properties is equally straightforward. �

Proposition 3.31. The following properties hold for any pure simplicial com-
plex ∆:

(i) ∆ is sequentially CM if and only if ∆ is CM in the sense of Defini-
tion 3.21.

(ii) ∆ is semipure constructible if and only if ∆ is constructible in the sense
of Definition 3.23.

(iii) ∆ is semipure shellable if and only if ∆ is shellable in the sense of Defi-
nition 3.25.

(iv) ∆ is semipure V D if and only if ∆ is V D in the sense of Definition 3.27.

Proof. (i) This is obvious.
(ii) Constructible complexes are easily seen to be semipure constructible.

The other direction is obvious if ∆ satisfies (i) in Definition 3.24. Suppose that
∆ = ∆1∪∆2 and that the conditions in (ii) are satisfied. Condition (a) yields
that ∆1 and ∆2 are pure, whereas condition (b) yields that their intersection
is pure of dimension one less than ∆1 and ∆2. By induction, all these three
complexes are constructible, which implies that the same is true for ∆.

(iii) It is clear that ∆ is shellable if ∆ is semipure shellable. The other direc-
tion is immediate, except that we need to check the case that we have a shed-
ding face σ in Definition 3.25 such that the dimension of fdel∆(σ) is strictly
smaller than that of ∆. This implies that ∆ = 2σ ∗ lk∆(σ). Namely, ∆ is gen-
erated by the maximal faces of the lifted complex ∆(σ, ∅). By Theorem 3.30,
semipure shellability is preserved under join, which implies that ∆ is semipure
shellable as desired.

(iv) This is proved in exactly the same manner as (iii). �

Lemma 3.32. Let ∆1 and ∆2 be homotopically CM of dimension d such
that the (d− 1)-skeleton of ∆1 ∩∆2 is homotopically CM . Then ∆1 ∪∆2 is
homotopically CM .

Proof. Note that lk∆1∪∆2(σ) = lk∆1(σ)∪lk∆2(σ) and analogously for the inter-
section. As a consequence, the lemma follows immediately from Corollary 3.9.
�

Theorem 3.33. We have the following implications:

V D =⇒ Shellable =⇒ Constructible =⇒ Homotopically CM.

The analogous implications hold for the semipure variants.
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Proof. By Proposition 3.31, it suffices to prove that the implications hold for
the semipure variants.

Semipure V D =⇒ Semipure shellable. Trivial.
Semipure shellable =⇒ Semipure constructible. The theorem is obvious if

∆ is a simplex. Otherwise, let σ be a shedding face as in (ii) in Definition 3.26.
Write ∆1 = fdel∆(σ) and ∆2 = 2σ ∗ lk∆(σ); it is clear that ∆ = ∆1 ∪ ∆2.
Now, ∆1 is semipure shellable by assumption. Moreover, by Theorem 3.30,
∆2 = 2σ ∗ lk∆(σ) is semipure shellable. Finally, the intersection ∆1 ∩ ∆2

equals ∂2σ ∗ lk∆(σ). The boundary of a simplex is well-known to be shellable
and hence semipure shellable; hence ∆1 ∩∆2 is semipure shellable. Induction
yields that all these complexes are semipure constructible.

It remains to prove that conditions (a) and (b) in Definition 3.24 are sat-
isfied. Condition (a) follows immediately from Definition 3.26. To prove con-
dition (b), consider a maximal face (σ−x)∪τ of ∂2σ ∗ lk∆(σ); τ ∈ F(lk∆(σ)).
One easily checks that the only maximal face of ∆2 = 2σ ∗ lk∆(σ) containing
this face is σ ∪ τ ; thus we are done.

Semipure constructible =⇒ Sequentially homotopy-CM . This is obvious if
∆ satisfies (i) in Definition 3.24. Suppose that ∆ = ∆1 ∪ ∆2 and that the
conditions in (ii) are satisfied. We need to prove that the pure d-skeleton ∆[d]

is CM for every d ≥ 0.
By induction, each of ∆1

[d] and ∆2
[d] is CM . Moreover, by construction,

∆1
[d]∩∆2

[d] = Γ [d−1]∪Γ [d], where Γ = ∆1∪∆2. By induction, each of Γ [d−1]

and Γ [d] is CM . Their intersection equals the (d − 1)-skeleton of Γ [d] and is
hence CM . As a consequence, Lemma 3.32 yields that the (d − 1)-skeleton
of ∆1

[d] ∩ ∆2
[d] is CM . Another application of the same lemma yields that

∆[d] = ∆1
[d] ∪∆2

[d] is CM , which concludes the proof. �

All implications in Theorem 3.33 turn out to be strict; see Proposition 5.13,
Proposition 5.14, and Björner [9, §11.10]. We also have the following implica-
tions for any field F:

homotopically CM =⇒ CM/Z =⇒ CM/F.

These implications are valid also for sequentially CM complexes. Again, all
implications are strict.

Corollary 3.34. Let ∆ be a pure complex of dimension d. If ∆ is V D,
shellable, constructible, or homotopically CM , then the homotopical depth of
∆ is equal to d. �
By the following result due to Björner, Wachs, and Welker, sequentially CM
complexes have a nice topological structure.

Theorem 3.35 (Björner et al. [15]). If ∆ is sequentially homotopy-CM ,
then ∆ is homotopy equivalent to a wedge of spheres. Moreover, there is no
sphere of dimension d in this wedge unless there are maximal faces of ∆ of
dimension d. �
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Björner and Wachs [13, Th. 4.1] earlier proved Theorem 3.35 in the special
case that ∆ is semipure shellable.

Let us prove the homology version of Theorem 3.35.

Proposition 3.36 (Wachs [144]). Assume that ∆ is sequentially CM/Z.
Then the homology of ∆ is torsion-free. Moreover, there is no homology in
dimension d unless there are maximal faces of ∆ of dimension d. Indeed, the
homomorphism ι∗ : H̃d(∆ \ F(∆); Z) → H̃d(∆; Z) induced by the inclusion
map is zero for all d.

Proof. We can write ι∗ as a composition

H̃d(∆ \ F(∆); Z)→ H̃d(∆[d+1]; Z)→ H̃d(∆; Z)

of maps induced by inclusion maps; every d-dimensional face of ∆ \ F(∆) is
contained in a (d + 1)-dimensional face of ∆. Since ∆[d+1] is CM/Z, we have
that H̃d(∆[d+1]; Z) = 0 and hence that ι∗ = 0 as desired. By the long exact
sequence for the pair (∆,∆ \ F(∆)), it follows that the homology of ∆ is
torsion-free. �

3.7 Balls and Spheres

We summarize some well-known properties of balls and spheres. Such objects
do not play a central part in this book, but they are of some interest in the
analysis of the homology of certain complexes. Specifically, in some situations,
one may interpret the homology in terms of fundamental cycles of spheres;
see Chapters 19 and 20 for the most notable examples.

A simplicial complex ∆ is a d-ball if there is a homeomorphism ‖∆‖ → Bd.
∆ is a d-sphere if there is a homeomorphism ‖∆‖ → Sd. For example, the full
d-simplex is a d-ball, whereas the boundary of a d-simplex is a (d− 1)-sphere.
We define the boundary ∂∆ of a d-ball ∆ as the pure (d − 1)-dimensional
complex with the property that σ is a maximal face of ∂∆ if and only if σ is
contained in exactly one maximal face of ∆.

In general, balls and spheres are not as nice as one may suspect. For
example, they are not necessarily homotopically CM ; see Björner [9, §11.10].
However, the balls and spheres to be considered in this book are indeed nice.

If a simplicial complex ∆ is homeomorphic to a d-dimensional sphere, then
H̃d(∆; Z) is generated by a cycle z that is unique up to sign. We refer to z as
the fundamental cycle of ∆.

A set P ⊂ Rn is a convex polytope if P is the convex hull of a finite
set P0 of points in convex position; no point p in P0 is in the convex hull
of P0 \ {p}. P is homeomorphic to a d-ball for some d ≤ n; hence P has
a well-defined boundary ∂P , which is homeomorphic to a (d − 1)-sphere. A
simplicial complex ∆ with 0-cell set ∆0 is the boundary complex of P if there
is a bijection ϕ : ∆0 → P0 such that a point

∑
i∈∆0

λiϕ(i) (
∑

i λi = 1, λi ≥ 0)
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belongs to ∂P if and only if {i : λi > 0} is a face of ∆. We refer to such a
complex ∆ as polytopal. If ∆ is the boundary complex of a polytope, then ∆
is a shellable sphere; see Bruggesser and Mani [24].

3.8 Stanley-Reisner Rings

We conclude this chapter with a few words about Stanley-Reisner rings. We
will only occasionally discuss such rings and include this section merely for
completeness.

Let ∆ be a simplicial complex on the set Y and let F be a field. Let R
denote the commutative polynomial ring F[xi : i ∈ Y ]. For each set σ ⊆ Y ,
identify σ with the monomial xσ =

∏
i∈σ xi. Define I(∆) to be the monomial

ideal in R generated by the (minimal) nonfaces of ∆. This means that a
monomial m belongs to I(∆) if and only if xσ divides m for some σ /∈ ∆. The
Stanley-Reisner ring or face ring of ∆ is R(∆) = R/I(∆).

Let ∆ be a (d−1)-dimensional simplicial complex with depth p−1 over F.
Some well-known properties of the Stanley-Reisner ring R(∆) are as follows;
see a textbook on commutative algebra [26, 43] for ring-theoretic definitions.

• The Krull dimension of R(∆) is equal to d.
• The depth of R(∆) is equal to p.
• R(∆) is a Cohen-Macaulay ring if and only if ∆ is CM/F.
• The multiplicity of R(∆) is equal to the number of d-dimensional faces of

∆.

We refer the reader to Section 6.2, Reisner [113], and Stanley [132] for details
and further references.

Note that this correspondence provides some motivation for examining the
topology of simplicial complexes; the problems of counting faces of maximal
dimension and examining Cohen-Macaulay properties of a simplicial com-
plex indeed have very natural ring-theoretic counterparts. Moreover, under
favorable circumstances, it is possible to combine the theory of Stanley and
Reisner with Gröbner basis theory to obtain important information about
rings that are not necessarily Stanley-Reisner rings. One example is the work
on determinantal ideals by Herzog and Trung [62]; see Section 1.1.6 for more
information.
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Discrete Morse Theory

1 Robin Forman’s discrete Morse theory [49] is instrumental in the analysis
of many of the complexes in this book. Though ostensibly simple, this theory
has proven to be a powerful tool for analyzing the topology of a wide range of
different complexes [4, 32, 36, 60, 94, 95, 118]. For an interesting application
of discrete Morse theory to geometry, see Crowley [34].

In this book, we confine ourselves to discrete Morse theory for simplicial
complexes. For the more general theory, see Forman’s original paper [49] and
the combinatorial interpretations due to Chari [32] and Shareshian [118].

To facilitate analysis of the homology of certain complexes, we develop
a very elementary algebraic version of discrete Morse theory; see Sköldberg
[126] and Jöllenbeck and Welker [66] for a more thorough treatment. A discrete
Morse matching on a simplicial complex gives rise to a discrete gradient vector;
see Forman [49]. One may use this gradient vector to determine a basis for the
resulting Morse chain complex in terms of the canonical basis for the original
chain complex. Our main object is to provide shortcuts for deriving this basis
(or parts thereof) without having to examine the explicit gradient vector. Our
methods are mainly useful in situations where it is possible to guess the basis.

In Section 4.2, we provide the combinatorial background. The main topo-
logical results appear in Section 4.3, whereas Section 4.4 contains our simpli-
fied algebraic Morse theory.

4.1 Informal Discussion

Before proceeding, let us give an informal overview of the basic ideas of dis-
crete Morse theory.

Let ∆ be a simplicial complex. One may view discrete Morse theory as
a generalization of the theory of simplicial collapses (see Section 2.3.3). Let

1 This chapter is a revised and extended version of Sections 3 and 6 in a paper [67]
published in Journal of Combinatorial Theory, Series A.



52 4 Discrete Morse Theory

{σ, τ} be a pair of faces of ∆ such that σ ⊂ τ and dimσ = dim τ − 1. For this
pair to induce an ordinary elementary collapse, recall that we require τ to be
a maximal face and the only face of ∆ containing σ; we refer to this as saying
that {σ, τ} is free in ∆. Dropping this condition, we obtain what we refer to
as a generalized elementary collapse; this terminology is only for the purposes
of this section.

Geometrically, we obtain a generalized elementary collapse with respect
to σ and τ by first removing the open set ‖τ‖ from ‖∆‖ and then identifying
‖2σ‖ with ‖∂2τ \ σ‖ such that the common boundary of the two balls ‖2σ‖
and ‖∂2τ \ σ‖ remains the same. Specifically, assuming that τ is a regular
simplex (all edge lengths are the same), we identify a point in ‖∂2τ \ σ‖
with its orthogonal projection on ‖2σ‖. See Figure 4.1 for an example. This
identification corresponds to “contracting” the whole of ‖2τ‖ onto ‖∂2τ \ σ‖.
In particular, a generalized elementary collapse does not affect the homotopy
type. Note that the resulting complex is not necessarily a simplicial complex
but rather a more general cell complex.

σ
τ

π

x

y

z

w

� � πx

y

z

w

σ
τ

π
x

y

z

w

Fig. 4.1. Generalized elementary collapse with respect to σ and τ in the simplicial
complex with maximal faces τ = wxz and π = xyz. Note that the resulting complex
is not simplicial; the new face π has four boundary edges.

Just as we may combine many elementary collapses to form a larger col-
lapse without affecting the homotopy type, we may combine many generalized
elementary collapses to form a larger generalized collapse, again without af-
fecting the homotopy type. This is indeed the main principle of discrete Morse
theory.

We thus have a number of pairs {σ1, τ1}, . . . , {σr, τr} to be collapsed, in
this order. One may view the set of all such pairs as a matching on ∆. Ac-
cordingly, we refer to faces contained in some pair as matched and other faces
as unmatched.

Let ∆i−1 be the resulting cell complex after the first i − 1 generalized
elementary collapses. Recall that the rule for the pairs to form a sequence of
ordinary elementary collapses is that each new pair {σi, τi} should be free in
∆i−1. For generalized elementary collapses, we adopt the same rule, except
that we restrict our attention to the family of matched faces. More precisely,
we do not require {σi, τi} to be free in ∆i−1, but τi must be the only matched
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face of ∆i−1 containing σi. Equivalently, for each i, we should have that σi

is not contained in τi+1, . . . , τr. We refer to a matching on ∆ admitting an
ordering with this property as acyclic. This terminology is for reasons that we
explain in more detail in Section 4.2.

The main theorem of discrete Morse theory states that an acyclic matching
induces a homotopy equivalence between ∆ and the cell complex ∆r resulting
from the corresponding generalized collapse. As an immediate corollary, ∆ is
homotopy equivalent to a cell complex with just as many cells of dimension
d as there are unmatched faces of ∆ of dimension d. In particular, we obtain
upper bounds on the ranks of the homology groups of ∆.

If we want more exact results about the homotopy type and homology of
∆, we typically have to examine the acyclic matching – and the corresponding
generalized elementary collapses – in much greater detail. However, in certain
special cases, information about the number of cells in each dimension is
sufficient to unambiguously determine ∆r and hence the homotopy type of ∆.
For example, this is the case if all unmatched cells are of the same dimension
d; in this case, ∆r is a wedge of d-dimensional spheres. In this book, this
situation is not at all uncommon.

1 2 3

4 5 6

�

2

35

Fig. 4.2. ∆ is homotopy equivalent to a circle. Arrows indicate faces to be matched.

Example. Consider the simplicial complex ∆ on the set {1, 2, 3, 4, 5, 6} consisting

of all subsets of 124, 245, 23, 35, and 36; 124 denotes the set {1, 2, 4} and so on. In

Figure 4.2, a geometric realization of ∆ is illustrated. The figure illustrates an acyclic

matching on ∆ with the property that 35 is the only critical face; an arrow from the

face σ to the face τ means that σ and τ are matched. We may also match 2 and the

empty set. However, since the empty set has no obvious geometric interpretation, it

is convenient to consider 2 as a critical point in the geometric realization. Note that

∆ is homotopy equivalent to a cell complex consisting of a 1-cell corresponding to

35 and a 0-cell corresponding to 2.

4.2 Acyclic Matchings

We start our exposition by examining acyclic matchings on families of sets.
This section is purely combinatorial and does not contain any topology.
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Let X be a set and let ∆ be a finite family of finite subsets of X. A
matching on ∆ is a family M of pairs {σ, τ} with σ, τ ∈ ∆ such that no set is
contained in more than one pair in M. A set σ in ∆ is critical or unmatched
with respect to M if σ is not contained in any pair in M.

We say that a matching M on ∆ is an element matching if every pair in
M is of the form {σ − x, σ + x} for some x ∈ X and σ ⊆ X. All matchings
considered in this chapter are element matchings.

Consider an element matching M on a family ∆. Let D = D(∆,M) be
the digraph with vertex set ∆ and with a directed edge from σ to τ if and
only if either of the following holds:

1. {σ, τ} ∈ M and τ = σ + x for some x /∈ σ.
2. {σ, τ} /∈M and σ = τ + x for some x /∈ τ .

Thus every edge in D corresponds to an edge in the Hasse diagram of ∆
ordered by set inclusion; edges corresponding to pairs of matched sets are
directed from the smaller set to the larger set, whereas the other edges are
directed the other way around. We write σ −→ τ if there is a directed path
from σ to τ in D. For families V and W, we write V −→ W if there are
V ∈ V and W ∈ W such that V −→ W . The symbol �−→ is used to denote
the non-existence of such a directed path.

An element matching M is an acyclic matching if D is acyclic, that is,
σ −→ τ and τ −→ σ implies that σ = τ . One easily proves that any cy-
cle in a digraph D corresponding to an element matching is of the form
(σ0, τ0, σ1, τ1, . . . , σr−1, τr−1) with r > 1 such that

σi, σ(i+1) mod r ⊂ τi and {σi, τi} ∈ M; (4.1)

for details, see Shareshian [118]. See Figure 4.3 for an illustration. The fol-
lowing two lemmas provide simple but useful methods for dividing a family
of sets into smaller subfamilies such that any set of acyclic matchings on the
separate subfamilies can be combined to form one single acyclic matching on
the original family.

τ0 τ1 τ2 τ3 · · · τr−2 τr−1

σ0 σ1 σ2 σ3 · · · σr−2 σr−1

Fig. 4.3. Cycle in a digraph corresponding to a non-acyclic matching.

Lemma 4.1. Let ∆ ⊆ 2X and x ∈ X. Define
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Mx = {{σ − x, σ + x} : σ − x, σ + x ∈ ∆};
∆x = {σ : σ − x, σ + x ∈ ∆}.

Let M′ be an acyclic matching on ∆′ := ∆ \∆x. Then M :=Mx ∪M′ is an
acyclic matching on ∆.

Proof. Assume that (σ0, τ0, . . . , σr−1, τr−1) is a cycle in D(∆,M) satisfying
(4.1). SinceM′ is an acyclic matching on ∆′, there must be some pair {σi, τi}
that is included inMx rather than inM′; by construction, we then have that
τi = σi + x. For simplicity, assume that i = 0. Since τr−1 is not matched with
σ0, we must have that x /∈ τr−1. This means that there is some j ∈ [1, r − 1]
such that x ∈ τj−1 and x /∈ τj . However, this implies that τj−1 = σj + x,
which is a contradiction, because we would then have that (σj , τj−1) ∈ Mx

by construction. �

Lemma 4.2. (Cluster Lemma) Let ∆ ⊆ 2X and let f : ∆ → Q be a poset
map, where Q is an arbitrary poset. For q ∈ Q, let Mq be an acyclic matching
on f−1(q). Let

M =
⋃
q∈Q

Mq.

Then M is an acyclic matching on ∆.

Remark. Hersh [60] discovered Lemma 4.2 independently of our work. Björner
(personal communication) suggested the formulation in terms of poset maps.

Proof. Let (σ0, τ0, . . . , σr−1, τr−1) be a cycle in D(∆,M) satisfying (4.1).
Let q0, . . . , qr−1 be such that σk, τk ∈ f−1(qk) for 0 ≤ k ≤ r − 1. Since
σ(k+1) mod r ⊂ τk, it is clear that q(k+1) mod r = f(σ(k+1) mod r) ≤ f(σk) = qk.
Via a simple induction argument, this implies that qk′ ≤ qk for any pair k, k′.
Swapping k and k′, we obtain qk ≤ qk′ , which implies that qk = qk′ ; Q is a
poset. Hence all sets in the cycle are contained in one single family f−1(q),
which is a contradiction. �

The following result is an almost trivial special case of Lemma 4.2.

Lemma 4.3. Let ∆0 and ∆1 be disjoint families of subsets of a finite set such
that τ �⊂ σ if σ ∈ ∆0 and τ ∈ ∆1. If Mi is an acyclic matching on ∆i for
i = 0, 1, then M0 ∪M1 is an acyclic matching on ∆0 ∪∆1. �

4.3 Simplicial Morse Theory

Throughout this section, ∆ is a simplicial complex containing at least one
0-cell and M is an acyclic matching on M. We may assume without loss of
generality that the empty set is contained in some pair in M. Namely, if all
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0-faces are matched with larger faces, then there is a cycle in the digraph
D(∆,M).

Forman’s original discrete Morse theory [49] applies to a much larger class
of cell complexes than just the class of simplicial complexes. For this reason,
we refer to the theory in the present section as simplicial Morse theory.

We begin with some special cases and postpone the most general result
until the end of the section.

Theorem 4.4 (Forman [49]). Suppose that ∆0 is a subcomplex of ∆ such
that ∆0 �−→ ∆ \ ∆0 and such that all critical faces belong to ∆0. Then it is
possible to collapse ∆ to ∆0. In particular, ∆ and ∆0 are homotopy equivalent.
Hence ∆ has no homology in dimensions strictly greater than dim∆0.

Proof. By assumption, the restriction of the acyclic matching to ∆ \∆0 is a
perfect matching. Namely, if τ ∈ ∆ \∆0 is matched with σ ∈ ∆0, then σ ⊂ τ ,
which implies that σ −→ τ , a contradiction. We use induction over |∆ \∆0|
to prove the lemma. If ∆ = ∆0, then we are done. Otherwise, let σ be a face
of ∆ \∆0 such that no edge in the digraph D corresponding to the matching
ends in σ; such a face exists by acyclicity of D and by the assumption that
∆0 �−→ ∆ \ ∆0. It is clear that σ is matched with a larger face τ and that
σ is not contained in any other face. In particular, we can collapse ∆ to the
subcomplex ∆\{σ, τ}. By induction, we may collapse ∆\{σ, τ} to ∆0, which
concludes the proof. �

Let us give a very simple example to illustrate the technique.

Proposition 4.5. Let ∆ be a simplicial complex and let x be a 0-cell in ∆.
Let y be a new 0-cell and define ∆′ to be the complex obtained from ∆ by
adding σ+y and σ+x+y whenever σ+x ∈ ∆. Then ∆ and ∆′ are homotopy
equivalent. In particular, if ∆ is a graph complex and ∆̂ is the trivial extension
of ∆ (see Section 2.3.9), then ∆ and ∆̂ are homotopy equivalent.

Proof. Note that ∆′ is the disjoint union of ∆(∅, y) = ∆ and ∆(y, ∅) = {{y}}∗
∆(x, ∅). By Lemma 4.3, any acyclic matchings on these two families yield an
acyclic matching on ∆′. Now, define a matching on ∆(y, ∅) by pairing σ − x
with σ + x. This is clearly a perfect acyclic matching, which yields an acyclic
matching on ∆′ such that a face is critical if and only if the face belongs to ∆.
As a consequence, Theorem 4.4 yields a collapse from ∆′ to ∆. By a simple
induction argument, the last claim in the proposition follows. �

Corollary 4.6. If ∆ does not contain any critical faces, then ∆ is collapsible
and hence contractible to a point. �

Theorem 4.7 (Forman [49]). If all critical faces of ∆ have dimension at
least d, then ∆ is (d− 1)-connected.

Proof. Let ∆0 be the subcomplex of ∆ consisting of all faces of dimension less
than d plus all faces of dimension d that are matched with smaller faces. Since
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the acyclic matching restricts to a perfect matching on ∆0, ∆0 is contractible
and hence (d− 1)-connected. Since ∆0 contains the entire (d− 1)-skeleton of
∆, we are done by Corollary 3.10. �

Theorem 4.8 (Forman [49]). If all critical faces of ∆ are of the same di-
mension d, then ∆ is homotopy equivalent to a wedge of spheres of dimension
d.

Proof. Let C be the family of critical faces. Let ∆0 be as in the proof of
Theorem 4.7; ∆0 contains all faces of dimension less than d plus all faces of
dimension d that are matched with smaller faces. Note that the given acyclic
matching restricts to a perfect matching on ∆0 and also on ∆ \ (∆0 ∪ C).
By Theorem 4.4, we can collapse ∆ to ∆0 ∪ C. Moreover, Corollary 4.6 and
the Contractible Subcomplex Lemma 3.16 imply that ∆0 ∪ C is homotopy
equivalent to (∆0∪C)/∆0 = C and hence to a wedge of |C| spheres of dimension
d. �

Before proceeding, let us apply discrete Morse theory to a situation where we
already know the homotopy type.

Proposition 4.9. Let X be a nonempty finite set. Then sd(∂2X) admits an
acyclic matching with one unmatched face of dimension |X| − 2. As a con-
sequence, sd(∂2X) is homotopy equivalent to a sphere of dimension |X| − 2.

Remark. One may view this proposition as a special case of the more general
Theorem 5.31. The proposition also follows from the fact that sd(∂2X) is
shellable [12]; apply Proposition 5.11.

Proof. Pick an element x ∈ X. For each S ⊆ X \ {x}, let G(S) be the family
of faces τ of sd(∂2X) with the property that S is maximal in τ among sets
not containing x. Let Q be the poset of all subsets of X \ {x} ordered by
set inclusion. Define f : P (sd(∂2X)) → Q by f−1(S) = G(S). This is clearly
a poset map, which implies that the Cluster Lemma 4.2 applies. For S �=
X \ {x}, we obtain a perfect matching on G(S) by pairing σ − (S ∪ {x})
and σ + (S ∪ {x}). The remaining family is G(X \ {x}), which clearly equals
{X \ {x}} ∗ sd(∂2X\{x}). By an induction argument, sd(∂2X\{x}) admits an
acyclic matching with one critical face of dimension |X| − 3. Applying the
Cluster Lemma 4.2, we obtain an acyclic matching on sd(∂2X) with desired
properties. The last statement is a consequence of Theorem 4.8. �

For an acyclic matching M on a simplicial complex ∆, let U(∆,M) be the
family of critical faces of ∆ with respect to M. For a (possibly void) family
V ⊆ U(∆,M), let

∆V = {σ ∈ ∆ : V −→ σ} ∪ {∅, {x}}, (4.2)
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where {x} is the 0-face matched with the empty set in M. If V is nonvoid,
then ∆V = {σ ∈ ∆ : V −→ σ}.
Lemma 4.10. ∆V is a simplicial complex. That is, if {σ, τ} ∈ M with σ ⊂ τ
and τ ∈ ∆V , then σ ∈ ∆V . In particular,

U(∆V ,MV) = ∆V ∩ U(∆,M),

where MV is the restriction of M to ∆V .

Proof. Assume the opposite and let σ be a largest face such that σ /∈ ∆V and
such that there is an element y ∈ X with the property that σ + y ∈ ∆V .
Since there is a V ∈ V such that V −→ σ + y, we have that {σ, σ + y} ∈ M;
otherwise (σ + y, σ) would be an edge in D. In particular, σ + y /∈ U(∆,M).
This implies that there must be an edge (τ, σ + y) in D such that τ ∈ ∆V .
Clearly σ + y ⊂ τ ; thus there is a z �= y such that τ = σ ∪ {y, z}. Since σ is
maximal among sets right below ∆V , we must have that σ+z ∈ ∆V . However,
(σ + z, σ) is an edge in D, which gives a contradiction. �

We now state and prove a simple result that is indispensable for several proofs
in this book. In words, it says the following: Suppose that the family of critical
faces with respect to an acyclic matching on a simplicial complex can be
divided into two subfamilies such that there are no directed paths between
the two subfamilies in the underlying digraph. Then the complex is homotopy
equivalent to a wedge of two separate complexes generated as in (4.2) from
the two subfamilies.

Theorem 4.11. Suppose that V ⊆ U = U(∆,M) has the property that U \
V �−→ V and V �−→ U \ V. Then ∆ is homotopy equivalent to ∆V ∨∆U\V . In
particular, ∆ is homotopy equivalent to ∆U .

Proof. By Theorem 4.4 and Lemma 4.10, ∆ is homotopy equivalent to ∆U ;
thus we may assume that ∆ = ∆U = ∆V ∪ ∆U\V . Let Σ = ∆V ∩ ∆U\V .
By assumption, Σ contains no critical faces and is nonvoid (∅, {x} ∈ Σ). By
Lemma 4.10 applied to each of ∆V and ∆U\V , the restriction of M to Σ
is a perfect matching. By Corollary 4.6, this implies that Σ is contractible
to a point. By the Contractible Subcomplex Lemma 3.16, ∆ is homotopy
equivalent to the quotient complex ∆/Σ. By the same lemma, ∆V ∨∆U\V is
homotopy equivalent to (∆V/Σ) ∨ (∆U\V/Σ). Since clearly

∆/Σ ∼= (∆V/Σ) ∨ (∆U\V/Σ),

the proof is finished. �

Via a simple induction argument, Theorem 4.11 yields the following result:

Corollary 4.12. If U is the disjoint union of families V1, . . . ,Vr with the
property that Vi �−→ Vj if i �= j, then ∆ is homotopy equivalent to

∨r
i=1 ∆Vi

.
�
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The following is an important special case; use Theorem 4.8.

Corollary 4.13. Let V ⊆ U = U(∆,M) be such that U \ {V } �−→ V and
V �−→ U \ {V } for every V ∈ V. Then ∆ is homotopy equivalent to( ∨

V ∈V
S|V |−1

)
∨∆U\V . �

Many results of this section are special cases of the following general the-
orem, which one may refer to as the “Fundamental Theorem of Simplicial
Morse Theory”:

Theorem 4.14 (Forman [49]). Let ∆ be a simplicial complex and let M be
an acyclic matching on ∆ such that the empty set is not critical. Then ∆ is
homotopy equivalent to a cell complex with one cell of dimension p ≥ 0 for
each critical face of ∆ of dimension p plus one additional 0-cell. �

For a proof sketch of Theorem 4.14, see the informal discussion in Section 4.1,
where we outline the transformation of ∆ into a cell complex with desired
properties. Forman [49] provides a much more detailed description of this
transformation. The resulting cell complex is the discrete Morse complex of
∆ with respect to M.

Finally, we present the “weak Morse inequalities”; they are an immediate
consequence of Theorem 4.14 and the existence of a natural isomorphism
between simplicial and cellular homology [101, §39]. One may also deduce the
inequalities from the theory developed in Section 4.4; see Theorem 4.16.

Theorem 4.15 (Forman [49]). Let F be a field, let ∆ be a simplicial com-
plex, and let M be an acyclic matching on ∆. Then the number of critical
faces of dimension d is at least dim H̃d(∆; F) for each d ≥ −1. �

4.4 Discrete Morse Theory on Complexes of Groups

We give an algebraic generalization of Forman’s discrete Morse complex [49].
We develop the theory in preparation for Sections 17.2 and 20.2, where we
determine linearly independent elements in the homology of the quotient com-
plexes of Hamiltonian graphs and 3-connected graphs, respectively. Sköldberg
[126] and Jöllenbeck and Welker [66] developed similar but more general and
powerful algebraic interpretations of discrete Morse theory.

Let

C : · · · ∂n+2−−−−→ Cn+1
∂n+1−−−−→ Cn

∂n−−−−→ Cn−1
∂n−1−−−−→ · · · (4.3)

be a complex of abelian groups; ∂n−1 ◦ ∂n = 0. Let
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C =
⊕

n

Cn and ∂ =
⊕

n

∂n.

Suppose that there are groups A =
⊕

n An, B =
⊕

n Bn, and U =
⊕

n Un

such that
Cn = An ⊕Bn ⊕ Un

and such that the function f : B → A defined as

f = α ◦ ∂

is an isomorphism, where α(a + b + u) = a for a ∈ A, b ∈ B, u ∈ U . We say
that the pair (A,B) is removable.

As an example, consider an element matching on a simplicial complex. Let
A be the free group generated by faces matched with larger faces, let B be the
free group generated by faces matched with smaller faces, and let U be the free
group generated by unmatched faces. We claim that if the matching is acyclic,
then (A,B) is a removable pair. Namely, since the digraph D corresponding
to the acyclic matching is acyclic, we may assume that the matched pairs
{σ1, τ1}, . . . , {σr, τr} with σk ⊂ τk for 1 ≤ k ≤ r have the property that the
boundary of τk does not contain any of the faces σ1, . . . , σk−1 for 2 ≤ k ≤ r.
This means that we can write

f(τi) =
∑

j

µijσj , (4.4)

where µij = 0 if j < i and µii = ±1.
Return to the general case. We want to define a complex U corresponding

to Forman’s discrete Morse complex [49]. Let β : C → B be defined as

β = f−1 ◦ α ◦ ∂.

Moreover, let
Â = ∂(B) and Û = (Id− β)(U). (4.5)

Theorem 4.16. With notation as above, the sequence

U : · · · ∂n+2−−−−→ Ûn+1
∂n+1−−−−→ Ûn

∂n−−−−→ Ûn−1
∂n−1−−−−→ · · · (4.6)

is a complex with the same homology as the original complex C in (4.3); the
boundary operators are the restrictions of the original boundary operators.

Proof. Our first claim is that

C ∼= Â⊕B ⊕ Û . (4.7)

To prove (4.7), we first show that

Â⊕B ⊕ Û ∼= A⊕B ⊕ Û . (4.8)
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Now, (4.8) is an immediate consequence of the fact that f = α ◦ ∂ : B → A is
an isomorphism. Namely, this implies that α : ∂(B) → A is an isomorphism,
which in turn implies that α∗ : Â⊕B⊕Û → A⊕B⊕Û defined by α∗(â, b, û) =
(α(â), b, û) is an isomorphism. Next, we show that

A⊕B ⊕ Û ∼= A⊕B ⊕ U. (4.9)

This is done by observing that u 	→ u− β(u) is an isomorphism U → Û ; the
inverse is the canonical projection function A ⊕ B ⊕ U → U restricted to Û .
Combining (4.8) and (4.9), we obtain (4.7).

We proceed with a proof of the claim that

∂(Û) ⊂ Û . (4.10)

Let û = u − β(u) ∈ Û and write ∂(û) = a + b + v̂, where a ∈ A, b ∈ B, and
v̂ = v − β(v) ∈ Û . Since

α ◦ ∂(û) = α ◦ ∂(u)− α ◦ ∂ ◦ β(u)
= α ◦ ∂(u)− f ◦ f−1 ◦ α ◦ ∂(u) = 0,

we must have a = 0. Moreover,

0 = f−1 ◦ α ◦ ∂2(û) = β(b + v̂) = β(b) + β(v)− β2(v) = b.

Hence ∂(û) = v̂ ∈ Û , and the claim (4.10) follows.
Now, by (4.7) and (4.10), we have that ∂(C) ∼= Â ⊕ ∂(Û) and ker ∂ ∼=

Â⊕ (ker ∂ ∩ Û), which implies that

ker ∂n/∂n+1(Cn) ∼= (ker ∂n ∩ Ûn)/∂(Ûn+1);

hence we are done. �

4.4.1 Independent Sets in the Homology of a Complex

We now turn our attention to the more specific problem of finding a full or
partial basis for the resulting complex U in Theorem 4.16. For the remainder
of this chapter, F is an integral domain. While it would be possible to gen-
eralize many of our results to larger classes of commutative rings with unity,
we restrict our attention to rings without zero divisors; this is to keep the
complexity of proofs at a minimum.

Let An, Bn, and Un be F-modules. In Section 20.2, we use the following
result to determine a basis for the homology of the complex of 3-connected
graphs.

Corollary 4.17. For every u ∈ U , there is a unique b ∈ B such that u− b ∈
Û . As a consequence, if Un is a free F-module and {u1, . . . , uk} is an F-
basis for Un, then there are unique elements b1, . . . , bk ∈ Bn such that {u1 −
b1, . . . , uk − bk} forms an F-basis for Ûn. If ∂n+1(Ûn+1) = ∂n(Ûn) = 0, then
this basis forms a basis for Hn(C) as well, and bi is unique in Bn such that
∂n(ui − bi) = 0.
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Proof. The claims are consequences of the discussion in the previous section;
β(u) is the unique element b such that u− b ∈ Û . �

In Section 17.2, we show that a certain basis for the homology of the complex
of 2-connected graphs remains an independent set in the homology of the com-
plex of Hamiltonian graphs. This requires a stronger version of Corollary 4.17;
the situation is as in Corollary 4.13 with U \ V nonvoid.

We restrict our attention to the special case that C,A,B, and U are free
F-modules. We assume that An and Bn are finitely generated for each n, but
we put no restrictions on Un. Moreover, A and B may well be of infinite rank
if Cn is nonzero for infinitely many n.

Let C be a graded basis for C such that

C = A ∪ B ∪ U ,

where A,B, and U are bases for A, B, and U , respectively. For any c1, c2 ∈ C,
define 〈c1, c2〉 to be 1 if c1 = c2 and 0 otherwise. Extend 〈·, ·〉 to an inner
product C × C → F.

For a basis element c ∈ C and an arbitrary element x ∈ C, say that c ≺ x if
〈c, ∂(x)〉 �= 0; the relation ≺ does not depend on whether 〈c, ∂(x)〉 is a unit or
not. LetM be a perfect matching between A and B such that a ≺ b whenever
a ∈ A and b ∈ B are matched. Such a perfect matching exists, because the
determinant associated with f is nonzero. However, the matching need not
be unique in general unless f is upper triangular as in (4.4). Let D be the
digraph with vertex set C such that (c1, c2) is an edge in D if and only if

({c1, c2} ∈ M, c1 ∈ A, and c2 ∈ B) or ({c1, c2} /∈M and c2 ≺ c1) .

Note that D is not necessarily acyclic. As in Section 4.3, we let c1 −→ c2

mean that there is a directed path from c1 to c2 in D.
One may view the following lemma as an algebraic version of Lemma 4.10.

Lemma 4.18. Let v be an element in U . Let A+ be the set of all a ∈ A such
that v −→ a, and let B+ be the set of all b ∈ B such that v −→ b. Then b ∈ B+

if and only if the element a matched with b is in A+.

Proof. Assume the opposite and let n be maximal with the property that
A\A+ contains an element a from An such that the element b matched with
a is contained in B+. Since v −→ b, there must be an x such that v −→ x
and b ≺ x. Since ∂2(x) = 0 and a ≺ b, there is a c �= b such that a ≺ c ≺ x;
here we use the fact that F is an integral domain. If {c, x} ∈ M, then x ∈ B+;
the maximality of a implies that c ∈ A+. However, this is a contradiction,
since v −→ c −→ a. If {c, x} /∈ M, then v −→ x −→ c −→ a, and another
contradiction is obtained. �

Theorem 4.19. Let V be a subset of U . Suppose that U \ V �−→ V and V �−→
U \V. Let V =

⊕
n Vn be the submodule generated by V, and let W =

⊕
n Wn
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be the submodule generated by W = U \ V. Let V̂n = (Id− β)(Vn) and Ŵn =
(Id− β)(Wn). Then the complex U in (4.6) splits into two complexes

V : · · · ∂n+2−−−−→ V̂n+1
∂n+1−−−−→ V̂n

∂n−−−−→ V̂n−1
∂n−1−−−−→ · · · ;

W : · · · ∂n+2−−−−→ Ŵn+1
∂n+1−−−−→ Ŵn

∂n−−−−→ Ŵn−1
∂n−1−−−−→ · · · .

This implies that
H∗(U) = H∗(V)⊕H∗(W).

In particular, if V ⊆ Un for some n, then {v − β(v) : v ∈ V} is an F-
independent set in Hn(U).

Proof. To prove that ∂(V̂ ) ⊂ V̂ , it suffices to show that if v ∈ V and w ∈ W,
then w �≺ v̂, where v̂ = v− β(v). In fact, since w �≺ v by assumption, we need
only prove that w �≺ β(v).

Consider a basis element v ∈ V; let k be such that v ∈ Vk. Let A+ be
the set of all a ∈ A such that v −→ a, and let B+ be the set of all b ∈ B
such that v −→ b. Note that b ∈ Bm for some m ≤ k. In particular, the set
{m : Bm ∩B+ �= ∅} has an upper bound. Let A− = A\A+ and B− = B \B+.

Define
µab = 〈a, ∂(b)〉 = 〈a, f(b)〉

for a ∈ A and b ∈ B. This means that

f(b) =
∑
a∈A

µab · a.

Note that µab = 0 if b ∈ B+ and a ∈ A−. Namely, Lemma 4.18 implies that
{a, b} /∈M. Since f : Bn → An−1 is an isomorphism, we therefore obtain that
the matrix

(µab)a∈An−1∩A−,b∈Bn∩B− (4.11)

is invertible; the matrix is a square matrix by Lemma 4.18. In particular,
for any nontrivial linear combination y of elements from Bn ∩ B−, there is
some a ∈ An−1 ∩ A− such that the coefficient of a in ∂(y) is nonzero. Since
α ◦ ∂(v̂) = 0 and a �≺ v if a ∈ A−, the element β(v) is a linear combination of
elements in B+. Hence if w ≺ β(v), then v −→ w, which is not true.

By symmetry, we obtain that ∂(Ŵ ) ⊂ Ŵ , which concludes the proof. �

Remark. We emphasize that the conclusion in Theorem 4.19 might be false
without the requirement that An and Bn be finitely generated. The problem
is that we might have a nontrivial linear combination x of elements in B−

such that α ◦ ∂(x) is a linear combination of elements in A+. Namely, the
matrix (4.11) does not have to be invertible if its size is infinite. In particular,
it might be the case that w ≺ β(v) even if v �−→ w and w �−→ v.

To illustrate the problem, suppose that C1 = B ⊕ (v · F) and C0 = A ⊕ (w · F) with
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B generated by {bi : i ∈ Z} and A generated by {ai : i ∈ Z}. Let Ci = 0 for i �= 0, 1.
Define ∂ by

∂(b2k) = a2k−1 + a2k + a2k+1 + δk0 · w;

∂(b2k−1) = a2k−1 + a2k;

∂(v) = a1

(δij = 1 if i = j and 0 otherwise). f : B → A is easily seen to be bijective.

Moreover, with bi matched with ai for all i, we have that v �−→ w and w �−→
v. However, w ≺ β(v); namely, β(v) = b0 − b−1 and ∂(b0 − b−1) = a1 + w. In

fact, ∂ : C1 → C0 is a bijection, which implies that the homology vanishes. If the

statement in Theorem 4.19 were true for this particular case, then we would have

had H1(C) = H0(C) = F.

4.4.2 Simple Applications

We conclude this chapter with two applications of algebraic Morse theory.
First, we examine the tensor product of two chain complexes. As a byprod-
uct, we derive well-known results about the join of two simplicial complexes.
Second, we present the well-known correspondence between the homology of
a simplicial complex and that of its barycentric subdivision. We stress that
the main purpose of the section is merely to illustrate the technique.

Let F be a principal ideal domain. With notation as before, consider a chain
complex C with corresponding F-modules A, B, and U . Let C′ be another chain
complex of F-modules. Throughout this section, ⊗ denotes tensor product
with respect to F; λ(c1 ⊗ c2) = c1 ⊗ (λc2) = (λc1)⊗ c2 whenever λ ∈ F.

For a given constant integer κ, consider the chain complex (C⊗, ∂⊗) defined
by

C⊗
n+κ =

⊕
r+s=n

Cr ⊗ C ′
s; (4.12)

∂⊗(c⊗ c′) = ∂(c)⊗ c′ + (−1)r+1(c⊗ ∂′(c′)) (4.13)

for c ∈ Cr and c′ ∈ C ′
s. Write

B⊗
n+κ =

⊕
r+s=n

Br ⊗ C ′
s,

and define A⊗
n+κ and U⊗

n+κ analogously. It is clear that C⊗
n = A⊗

n ⊕B⊗
n ⊕U⊗

n .
Also, f⊗ = α⊗ ◦ ∂⊗ is an isomorphism B⊗ → A⊗, where α⊗(a + b + u) = a
for a ∈ A⊗, b ∈ B⊗, u ∈ U⊗. Namely, for b ∈ B and c′ ∈ C ′, we have that

f⊗(b⊗ c′) = α⊗ ◦ ∂⊗(b⊗ c′) = α⊗(∂(b)⊗ c′ ± b⊗ ∂′(c′))
= α⊗(∂(b)⊗ c′) = (α ◦ ∂(b))⊗ c′ = f(b)⊗ c′.

Since β⊗(u ⊗ c′) = β(u) ⊗ c′, it follows that Theorem 4.16 applies to the
complex with chain groups Û⊗

n+κ =
⊕

r+s=n Ûr⊗C ′
s. Specifically, we have the

following result.
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Theorem 4.20. With notation as above, if Ur
∼= Hr(C) for all r, then

Hn+κ(C⊗) ∼=
⊕

r+s=n

Hr(C)⊗Hs(C′).

Proof. With û ∈ Ûr and c′ ∈ C ′, we have that ∂⊗(û⊗c′) = (−1)r+1(û⊗∂′(c′)).
As a consequence, the homology splits;

Hn+κ(C⊗) ∼=
⊕

r+s=n

(Ûr ⊗ ker ∂′
s)/(Ûr ⊗ ∂′

s+1(C
′
s+1))

∼=
⊕

r+s=n

Ûr ⊗ (ker ∂′
s/∂′

s+1(C
′
s+1)) ∼= Ûr ⊗Hs(C′). �

Proposition 4.21. Assume that F is a principal ideal domain. If all homology
of C is free, then we may write C = A⊕B⊕U such that (A,B) is a removable
pair and such that Hd(C) ∼= Ud for all d.

Proof. Since F is a principal ideal domain, torsion-free modules and submod-
ules of free modules are free; see Isaacs [65, Th. 16.28]. Write Zd = ∂−1

d ({0});
this is a free F-module. Let Bd ⊆ Cd be such that Cd = Zd ⊕ Bd; such a Bd

exists, because Cd/Zd is torsion-free and hence free. Define Ad = ∂(Bd+1);
this is again a free F-module. Let Ud ⊆ Zd be such that Zd = Ad⊕Ud; such a
Ud exists, because Hd(C) = Zd/∂(Cd+1) = Zd/Ad is free by assumption. The
desired result follows. �

Corollary 4.22. With notation as above, if C is a chain complex of free F-
modules with F-free homology, then

Hn+κ(C⊗) ∼=
⊕

r+s=n

Hr(C)⊗Hs(C′).

Proof. By Proposition 4.21, we may write C = A ⊕ B ⊕ U such that (A,B)
is a removable pair and such that Ur

∼= Hr(C) for all r. Hence we have the
situation in Theorem 4.20. �

For simplicial (or quotient) complexes ∆ and Γ , the reduced chain complex of
the join ∆ ∗Γ is clearly of the form (4.12) with κ = 1 and with the boundary
operator given by (4.13); compare to (3.2). The same holds for the unreduced
chain complex of the cell complex ‖∆‖ × ‖Γ‖ but with κ = 0; see Munkres
[101, Th. 57.1].

Corollary 4.23. Let ∆ and Γ be simplicial complexes and let F be a field or
Z. If H̃n(∆; F) is free for all n (this is of course always true for fields), then
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H̃n+1(∆ ∗ Γ ; F) ∼=
n+1⊕

r=−1

H̃r(∆; F)⊗ H̃n−r(Γ ; F);

Hn(‖∆‖ × ‖Γ‖; F) ∼=
n⊕

r=0

Hr(∆; F)⊗Hn−r(Γ ; F). �

The formula for join remains true if ∆ or Γ are quotient complexes. The
situation is more complicated if F = Z and there is torsion in the homology
of both complexes; see Munkres [101, Sec. 59].

Proposition 4.24. Let ∆ be a simplicial complex. For each σ ∈ ∆, let z(σ)
be the fundamental cycle of sd(∂2σ), appropriately signed. Then the map σ 	→
[{σ}] ∧ z(σ) induces an isomorphism from H̃d(∆; F) to H̃d(sd(∆); F).

Proof. For σ ∈ ∆, let F(σ) be the family of chains in P (∆) with maximal
element σ. It is clear that the families F(σ) satisfy the Cluster Lemma 4.2.
Now, each F(σ) is of the form {σ} ∗ sd(∂2σ). By Proposition 4.9, sd(∂2σ)
admits an acyclic matching with one unmatched face of dimension dimσ− 1.
This acyclic matching must have the property that the resulting chain complex
in Theorem 4.16 is generated by the fundamental cycle z(σ). Namely, this is
up to a constant the only cycle of maximum dimension dimσ− 1 in the chain
complex of sd(∂2σ).

Combining the acyclic matchings on the families F(σ), we obtain an acyclic
matching on sd(∆) with exactly one chain of length |σ| with top element σ
for each face σ ∈ ∆. By the above discussion, the corresponding element ûσ in
the chain complex U in Theorem 4.16 coincides (up to sign) with [{σ}]∧ z(σ).

Let us examine z(σ) in greater detail. Take any total order on the set
of 0-cells of ∆ and arrange the elements in σ ∈ ∆ in increasing order as
σ = {a1, . . . , ar}. For a permutation π ∈ Sσ, define

[π] = [π({a1})] ∧ [π({a1, a2})] ∧ · · · ∧ [π({a1, a2, . . . , ar−1})].

It is a straightforward exercise to check that, up to sign, z(σ) =
∑

π∈Sσ
sgn(π)·

[π]. With this choice of orientation, one easily checks that

z(σ) =
|σ|∑
i=1

(−1)i−1 · [{σ − ai}] ∧ z(σ − ai) =
|σ|∑
i=1

(−1)i−1 · ûσ−ai
. (4.14)

Since ∂(ûσ) = ∂([{σ}]∧z(σ)) = z(σ), it follows that the operator ∂ is isomor-
phic to the ordinary boundary operator for simplicial complexes. In particular,
the complex U is isomorphic to the chain complex of ∆, which concludes the
proof. �



5

Decision Trees

1 We examine topological properties of decision trees on simplicial complexes,
the emphasis being on how one may apply decision trees to problems in topo-
logical combinatorics. Our work is to a great extent based on Forman’s seminal
papers [49, 50].

Let ∆ be a simplicial complex on the set E. One may view a decision tree
on the pair (∆,E) as a deterministic algorithm A that on input a secret set
σ ⊆ E asks repeated questions of the form “Is the element x contained in
σ?” until all questions but one have been asked. A is allowed to be adaptive,
meaning that each question may depend on responses to earlier questions. Let
xσ be the one element that A never queries. σ is nonevasive (and A successful)
if σ − xσ and σ + xσ are either both in ∆ or both outside ∆. Otherwise, σ is
evasive.

In this book, we adopt an “intrinsic” approach, meaning that we restrict
our attention to the faces of ∆; whether or not a given subset of E outside
∆ is evasive is of no interest to us. We may thus interpret A as an algorithm
that takes as input a secret face σ ∈ ∆ and tries to save a query xσ with the
property that σ − xσ and σ + xσ are both in ∆. Clearly, a face σ is evasive if
and only if σ + xσ /∈ ∆. Aligning with this intrinsic approach, we will always
assume that the underlying set E is exactly the set of 0-cells in ∆.

Given a simplicial complex ∆, a natural goal is to find a decision tree
with as few evasive faces as possible. In general, there is no decision tree such
that all faces are nonevasive. Specifically, if ∆ is not contractible, then such
a decision tree cannot exist; Kahn, Saks, and Sturtevant [78] were the first to
observe this. More generally, Forman [50] has demonstrated that a decision
tree on ∆ gives rise to an acyclic matching on ∆ (see Chapter 4) such that a
face is unmatched if and only if the face is evasive. One defines the matching
by pairing σ − xσ with σ + xσ for each nonevasive face σ, where xσ is the
element not queried for σ. As a consequence of discrete Morse theory, there
1 This chapter is a revised and extended version of a paper [70] published in The

Electronic Journal of Combinatorics.
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are at least dim H̃i(∆; F) evasive faces of ∆ of dimension i for any given field
F.

The goal of this chapter is two-fold:

• The first goal is to develop some elementary theory about “optimal” deci-
sion trees. For a given field F, a decision tree on a complex ∆ is F-optimal
if the number of evasive faces of dimension i is equal to the Betti num-
ber dim H̃i(∆; F) for each i. We give a recursive definition of the class
of semi-nonevasive simplicial complexes that admit an F-optimal decision
tree. We also generalize the concept of decision trees to allow questions of
the form “Is the set τ a subset of σ?” This turns out to yield an alterna-
tive characterization of simplicial Morse theory. As a consequence, we may
characterize F-optimal acyclic matchings – defined in the natural manner –
in terms of generalized decision trees. We will refer to complexes admitting
F-optimal acyclic matchings as semi-collapsible complexes, aligning with
the fact that collapsible complexes are those admitting a perfect acyclic
matching. Vertex-decomposable and shellable complexes constitute impor-
tant examples of semi-nonevasive and semi-collapsible complexes, respec-
tively.

• The second goal is to investigate under what conditions the properties
of being semi-nonevasive and semi-collapsible are preserved under stan-
dard operations such as taking the join of two complexes or forming the
barycentric subdivision or Alexander dual of a complex. The results and
proofs are similar in nature to those Welker [146] provided for nonevasive
and collapsible complexes.

Optimal decision trees appear in the work of Forman [50] and Soll [129];
Charalambous [30] considered related techniques. Recently, Hersh [60] devel-
oped powerful techniques for optimizing acyclic matchings; see Hersh and
Welker [61] for an application. The complexity-theoretic aspect of optimiza-
tion appears in the work of Lewiner, Lopes, and Tavares [93, 91, 92]. For more
information about the connection between evasiveness and topology, there are
several papers [114, 115, 82, 78, 28] and surveys [9, 19] to consult.

All topological and homological concepts and results in this chapter are
defined and stated in terms of simplicial complexes. There are potential gen-
eralizations of these concepts and results, either in a topological direction –
allowing for a more general class of CW complexes – or in a homological di-
rection – allowing for a more general class of chain complexes. For simplicity
and clarity, and in alignment with the main goals of this book, we restrict our
attention to simplicial complexes.

For basic definitions and results about decision trees, see Section 5.1. Basic
results about optimal decision trees appear in Section 5.2; see Section 5.4 for
some operations that preserve optimality. In Section 5.3, we present some
useful constructions that we will use throughout the book. We round up the
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chapter in Section 5.5 with a potential generalization of the concept of semi-
collapsibility.

5.1 Basic Properties of Decision Trees

We discuss elementary properties of decision trees and introduce the gener-
alized concept of set-decision trees, the generalization being that arbitrary
sets rather than single elements are queried. To distinguish between the two
notions, we will refer to ordinary decision trees as “element-decision trees”.

5.1.1 Element-Decision Trees

First, we give a recursive definition, suitable for our purposes, of element-
decision trees. We are mainly interested in trees on simplicial complexes, but
it is convenient to have the concept defined for arbitrary families of sets.
Below, the terms “elements” and “sets” always refer to elements and finite
subsets of some fixed ground set such as the set of integers.

Definition 5.1. The class of element-decision trees, each associated to a finite
family of finite sets, is defined recursively as follows:

(i) T = Win is an element-decision tree on ∅ and on any 0-simplex {∅, {v}}.
(ii) T = Lose is an element-decision tree on {∅} and on any singleton set
{{v}}.

(iii) If ∆ is a family of sets, if x is an element, if T0 is an element-decision
tree on del∆(x), and if T1 is an element-decision tree on lk∆(x), then the
triple (x, T0, T1) is an element-decision tree on ∆.

1

2

3 4

Win(4) Win(4) Win(3) Lose

Win(2)

no yes

n y

n y n y

1

2

34

∆ =

Fig. 5.1. The tree (1, (2, (3, Win, Win), (4, Win, Lose)), Win) on the complex ∆.
“Win(v)” means that the complex corresponding to the given leaf is {∅, {v}}; “Lose”
means that the complex is {∅}.

Return to the discussion in the introduction. One may interpret the triple
(x, T0, T1) as follows for a given set σ to be examined: The element being
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queried is x. If x /∈ σ, then proceed with del∆(x), the family of sets not
containing x. Otherwise, proceed with lk∆(x), the family with one set τ − x
for each set τ containing x. Proceeding recursively, we finally arrive at a leaf,
either Win or Lose. The underlying family being a 0-simplex {∅, {v}} means
that σ + v ∈ ∆ and σ − v ∈ ∆; we win, as v remains to be queried. The
family being {∅} or {{v}} means that we cannot tell whether σ ∈ ∆ without
querying all elements; we lose.

Note that we allow for the “stupid” decision tree (v, Lose, Lose) on {∅, {v}};
this tree queries the element v while it should not. Also, we allow the element
x in (iii) to have the property that no set in ∆ contains x, which means that
lk∆(x) = ∅, or that all sets in ∆ contain x, which means that del∆(x) = ∅.

A set τ ∈ ∆ is nonevasive with respect to an element-decision tree T on
∆ if either of the following holds:

1. T = Win.
2. T = (x, T0, T1) for some x not in τ and τ is nonevasive with respect to T0.
3. T = (x, T0, T1) for some x in τ and τ −x is nonevasive with respect to T1.

This means that T – viewed as an algorithm – ends up on a Win leaf on input τ ;
use induction. If a set τ ∈ ∆ is not nonevasive, then τ is evasive. For example,
the edge 24 is the only evasive face with respect to the element-decision tree
in Figure 5.1. The following simple but powerful theorem is a generalization
by Forman [50] of an observation by Kahn, Saks, and Sturtevant [78].

Theorem 5.2 (Forman [50]). Let ∆ be a finite family of finite sets and let
T be an element-decision tree on ∆. Then there is an acyclic matching on ∆
such that the critical sets are precisely the evasive sets in ∆ with respect to T .
In particular, if ∆ is a simplicial complex, then ∆ is homotopy equivalent to
a CW complex with exactly one cell of dimension p for each evasive set in ∆
of dimension p and one addition 0-cell.

Proof. Use induction on the size of T . It is easy to check that the theorem
holds if T = Win or T = Lose; match ∅ and v if ∆ = {∅, v} and T = Win.
Suppose that T = (x, T0, T1). By induction, there is an acyclic matching on
del∆(x) with critical sets exactly those σ in del∆(x) that are evasive with
respect to T0. Also, there is an acyclic matching on lk∆(x) with critical sets
exactly those τ in lk∆(x) that are evasive with respect to T1. Combining these
two matchings in the obvious manner, we have a matching with critical sets
exactly the evasive sets with respect to T ; by Lemma 4.3, the matching is
acyclic. �

5.1.2 Set-Decision Trees

We provide a natural generalization of the concept of element-decision trees.

Definition 5.3. The class of set-decision trees, each associated to a finite
family of finite sets, is defined recursively as follows:
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(i) T = Win is a set-decision tree on ∅ and on any 0-simplex {∅, {v}}.
(ii) T = Lose is a set-decision tree on {∅} and on any singleton set {{v}}.
(iii) If ∆ is a family of sets, if σ is a nonempty set, if T0 is a set-decision tree

on fdel∆(σ), and if T1 is a set-decision tree on lk∆(σ), then the triple
(σ, T0, T1) is a set-decision tree on ∆.

234
34

3

112
2

4

Win(1) Win(1)
Win(4)

Win(4) Win(2) Win(2)

Win(1)

Lose

no yes

n y

n y

n y
n y

n y

n y

Fig. 5.2. A set-decision tree on the simplicial complex with maximal faces
123, 124, 134, 234.

A simple example is provided in Figure 5.2. A set τ ∈ ∆ is nonevasive with
respect to a set-decision tree T on ∆ if either of the following holds:

1. T = Win.
2. T = (σ, T0, T1) for some σ �⊆ τ and τ is nonevasive with respect to T0.
3. T = (σ, T0, T1) for some σ ⊆ τ and τ \ σ is nonevasive with respect to T1.

If a set τ ∈ ∆ is not nonevasive, then τ is evasive.

Theorem 5.4. Let ∆ be a finite family of finite sets and let T be a set-decision
tree on ∆. Then there is an acyclic matching on ∆ such that the critical sets
are precisely the evasive sets in ∆ with respect to T . Conversely, given an
acyclic matching M on ∆, there is a set-decision tree T on ∆ such that the
evasive sets are precisely the critical sets with respect to M.

Proof. For the first part, the proof is identical to the proof of Theorem 5.2. For
the second part, first consider the case that ∆ is a complex as in (i) or (ii) in
Definition 5.3. If ∆ = ∅, then T = Win is a set-decision tree with the desired
properties, whereas T = Lose is the desired tree if ∆ = {∅} or ∆ = {{v}}.
For ∆ = {∅, {v}}, T = Win does the trick if ∅ and {v} are matched, whereas
T = (v, Lose, Lose) is the tree we are looking for if ∅ and {v} are not matched.

Now, assume that ∆ is some other family. Pick an arbitrary set ρ ∈ ∆ of
maximum size and go backwards in the digraph D of the matching M until a
source σ in D is found; σ being a source means that there are no edges directed
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to σ. Such a σ exists, as D is acyclic. It is obvious that |ρ| − 1 ≤ |σ| ≤ |ρ|;
in any directed path in D, a step up is always followed by and preceded by a
step down (unless the step is the first or the last in the path). In particular,
σ is adjacent in D to any set τ containing σ. Since σ is matched with at most
one such τ and since σ is a source in D, there is at most one set containing σ.

First, suppose that σ is contained in a set τ and hence matched with τ
in M. By induction, there is a set-decision tree T0 on fdel∆(σ) = ∆ \ {σ, τ}
with evasive sets exactly the critical sets with respect to the restriction of M
to fdel∆(σ). Moreover, lk∆(σ) = {∅, τ \ σ}. Since T1 = Win is a set-decision
tree on lk∆(σ) with no evasive sets, it follows that (σ, T0, T1) is a tree with
the desired properties.

Next, suppose that σ is maximal in ∆ and hence critical. By induction,
there is a set-decision tree T0 on fdel∆(σ) = ∆ \ {σ} with evasive sets exactly
the critical sets with respect to the restriction of M to fdel∆(σ). Moreover,
lk∆(σ) = {∅}; since T1 = Lose is a set-decision tree on lk∆(σ) with one evasive
set, (σ, T0, T1) is a tree with the desired properties. �

5.2 Hierarchy of Almost Nonevasive Complexes

The purpose of this section is to introduce two families of complexes related
to the concept of decision trees:

• Semi-nonevasive complexes admit an element-decision tree with evasive
faces enumerated by the reduced Betti numbers over a given field.

• Semi-collapsible complexes admit a set-decision tree with evasive faces enu-
merated by the reduced Betti numbers over a given field. Equivalently,
such complexes admit an acyclic matching with critical faces enumerated
by reduced Betti numbers.

One may view these families as generalizations of the well-known families of
nonevasive and collapsible complexes defined in Section 3.4:

• Nonevasive complexes admit an element-decision tree with no evasive
faces.

• Collapsible complexes admit a set-decision tree with no evasive faces.
Equivalently, such complexes admit a perfect acyclic matching.

In Section 5.2.2, we discuss how all these classes relate to well-known prop-
erties such as being shellable and vertex-decomposable. The main conclusion
is that the families of semi-nonevasive and semi-collapsible complexes contain
the families of vertex-decomposable and shellable complexes, respectively.

Remark. One may characterize semi-collapsible complexes as follows. Given
an acyclic matching on a simplicial complex ∆, we may order the critical faces
as σ1, . . . , σn and form a sequence ∅ = ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆n−1 ⊂ ∆n ⊆ ∆
of simplicial complexes such that the following is achieved: ∆ is collapsible to
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∆n, σi is a maximal face of ∆i, and ∆i \{σi} is collapsible to ∆i−1 for i ∈ [n];
compare to the induction proof of Theorem 5.4 (see also Forman [49, Th. 3.3-
3.4]). A matching being optimal means that σi is contained in a nonvanishing
cycle in the homology of ∆i for each i ∈ [n]; otherwise the removal of σi

would introduce new homology, rather than kill existing homology. With an
“elementary semi-collapse” defined either as an ordinary elementary collapse
or as the removal of a maximal face contained in a cycle, semi-collapsible
complexes are exactly those complexes that can be transformed into the void
complex via a sequence of elementary semi-collapses.

5.2.1 Semi-nonevasive and Semi-collapsible Complexes

Let F be a field or Z. A set-decision tree (equivalently, an acyclic matching) on
a simplicial complex ∆ is F-optimal if, for each integer i, dim H̃i(∆; F) is the
number of evasive (critical) faces of dimension i; dim H̃i(∆; Z) is the rank of
the torsion-free part of H̃i(∆; Z). We define F-optimal element-decision trees
analogously. In this section, we define the classes of simplicial complexes that
admit F-optimal element-decision or set-decision trees. See Forman [50] and
Soll [129] for more discussion on optimal decision trees.

Definition 5.5. We define the class of semi-nonevasive simplicial complexes
over F recursively as follows:

(i) The void complex ∅, the (−1)-simplex {∅}, and any 0-simplex {∅, {v}}
are semi-nonevasive over F.

(ii) Suppose ∆ contains a 0-cell x – a shedding vertex – such that del∆(x)
and lk∆(x) are semi-nonevasive over F and such that

H̃d(∆; F) ∼= H̃d(del∆(x); F)⊕ H̃d−1(lk∆(x); F) (5.1)

for each d. Then ∆ is semi-nonevasive over F.

Definition 5.6. We define the class of semi-collapsible simplicial complexes
over F recursively as follows:

(i) The void complex ∅, the (−1)-simplex {∅}, and any 0-simplex {∅, {v}}
are semi-collapsible over F.

(ii) Suppose that ∆ contains a nonempty face σ – a shedding face – such
that fdel∆(σ) and lk∆(σ) are semi-collapsible over F and such that

H̃d(∆; F) ∼= H̃d(fdel∆(σ); F)⊕ H̃d−|σ|(lk∆(σ); F) (5.2)

for each d. Then ∆ is semi-collapsible over F.

Clearly, a semi-nonevasive complex over F is also semi-collapsible over F.

Remark. Let us discuss the identity (5.2); the discussion also applies to
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the special case (5.1). Let ∆0 = fdel∆(σ). Note that the homology group
H̃d(∆/∆0) = H̃d(∆/∆0; F) is isomorphic to H̃d−|σ|(lk∆(σ)) for each d. As-
sume that F is a field. By the long exact sequence

· · · −→ H̃d(∆0) −→ H̃d(∆) −→ H̃d(∆/∆0) −→ H̃d−1(∆0) −→ · · · (5.3)

for the pair (∆,∆0) (use Theorem 3.3), (5.2) is equivalent to the induced map
∂∗

d : H̃d(∆/∆0) −→ H̃d−1(∆0) being zero for each d, where ∂d(z) is computed
in C̃(∆). This is the case if and only if, for every cycle z ∈ C̃(∆/∆0), there is
a c ∈ C̃(∆0) with the same boundary as z in C̃(∆). As an important special
case, we have the following observation:

Proposition 5.7. If H̃d(fdel∆(σ); F) = 0 whenever H̃d−|σ|+1(lk∆(σ); F) �= 0,
then (5.2) holds. Hence if H̃d(del∆(x); F) = 0 whenever H̃d(lk∆(x); F) �= 0,
then (5.1) holds. �
The main result of this section is as follows; we postpone the case F = Z until
the end of the section.

Theorem 5.8. Let F be a field. A complex ∆ is semi-collapsible over F if and
only if ∆ admits an F-optimal set-decision tree (equivalently, an F-optimal
acyclic matching). ∆ is semi-nonevasive over F if and only if ∆ admits an
F-optimal element-decision tree.

Proof. First, we show that every semi-collapsible complex ∆ over F admits
an F-optimal set-decision tree. This is clear if ∆ is as in (i) in Definition 5.6.
Use induction and consider a complex derived as in (ii) in Definition 5.6. By
induction, fdel∆(σ) and lk∆(σ) admit F-optimal set-decision trees T0 and
T1, respectively. Combining these two trees, we obtain a set-decision tree
T = (σ, T0, T1) on ∆. (5.2) immediately yields that the evasive faces of ∆
are enumerated by the Betti numbers of ∆, and we are done.

Next, suppose that we have an F-optimal set-decision tree T = (σ, T0, T1);
T0 is a tree on fdel∆(σ), whereas T1 is a tree on lk∆(σ). We have that
dim H̃d(∆) = ed, where ed is the number of evasive faces of dimension d
with respect to T . Let ad and bd be the number of evasive faces of dimen-
sion d with respect to the set-decision trees T0 and T1, respectively; clearly,
ed = ad + bd−|σ|. By Theorem 4.15, we must have ad ≥ dim H̃d(fdel∆(σ)) and
bd−|σ| ≥ dim H̃d−|σ|(lk∆(σ)). We want to prove that equality holds for both
ad and bd−|σ|. Namely, this will imply (5.2) and yield that T0 and T1 are F-
optimal set-decision trees; by induction, we will obtain that each of fdel∆(σ)
and lk∆(σ) is semi-collapsible and hence that ∆ is semi-collapsible. Now, the
long exact sequence (5.3) immediately yields that

ed = dim H̃d(∆) ≤ dim H̃d(fdel∆(σ)) + dim H̃d−|σ|(lk∆(σ)).

Since the right-hand side is bounded by ad + bd−|σ| = ed, the inequality must
be an equality; thus (5.2) holds, and we are done.

The last statement in the theorem is proved in the same manner. �
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Proposition 5.9. If a simplicial complex ∆ is semi-collapsible over Q, then
the Z-homology of ∆ is torsion-free; hence H̃d(∆; Z) = Zβd , where βd =
dim H̃d(∆; Q). It follows that semi-nonevasive complexes over Q have torsion-
free Z-homology.

Proof. This is obvious if (i) in Definition 5.6 holds. Suppose (ii) holds. By
induction, the proposition is true for fdel∆(σ) and lk∆(σ). By the remark
after Definition 5.6, for every cycle z ∈ C̃(∆/fdel∆(σ); Q), there is a c ∈
C̃(fdel∆(σ); Q) with the same boundary as z in C̃(∆; Q). As a consequence,
for every cycle z ∈ C̃(∆/fdel∆(σ); Z), there is a c ∈ C̃(fdel∆(σ); Z) and an
integer λ such that ∂(c) = λ∂(z) (computed in C̃(∆; Z)). However, since
H̃(fdel∆(σ); Z) is torsion-free, λ∂(z) is a boundary in C̃(fdel∆(σ); Z) if and
only if ∂(z) is a boundary, which implies that there exists a c′ ∈ C̃(fdel∆(σ); Z)
such that ∂(c′) = ∂(z). As a consequence, ∂∗

d : H̃d(∆/fdel∆(σ); Z) −→
H̃d−1(fdel∆(σ); Z) is the zero map. Hence (5.2) holds for F = Z, and we
are done. �
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Fig. 5.3. An acyclic matching on a triangulated projective plane with critical faces
23 and 456; 1 is matched with ∅. This matching is Z2-optimal but not Q-optimal.

Corollary 5.10. A complex ∆ is semi-collapsible (semi-nonevasive) over Q
if and only if ∆ is semi-collapsible (semi-nonevasive) over Z. If this is the
case, then ∆ is semi-collapsible (semi-nonevasive) over every field. �

Remark. While the universal coefficient theorem implies that Proposition 5.9
is true for any field of characteristic 0, the proposition does not remain true
for coefficient fields of nonzero characteristic. For example, the triangulated
projective plane RP2 in Figure 5.3 is not semi-collapsible over Q, as the
homology has torsion. However, the given acyclic matching is Z2-optimal;
H̃1(RP2; Z2) = H̃2(RP2; Z2) = Z2. In fact, the acyclic matching corresponds
to a Z2-optimal element-decision tree in which we first use 4, 5, and 6 as shed-
ding vertices; thus the complex is semi-nonevasive over Z2. A semi-nonevasive
complex over Z3 with 3-torsion is provided in Theorem 11.27.
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5.2.2 Relations Between Some Important Classes of Complexes

We show how semi-collapsible and semi-nonevasive complexes over Z relate
to vertex-decomposable (V D), shellable, and constructible complexes; see
Section 3.6 for definitions. Throughout this section, whenever we refer to a
complex as semi-nonevasive or semi-collapsible, we mean over Z unless other-
wise stated.

Chari [32] proved that shellable complexes are semi-collapsible. Let us
extend his result to semipure shellable complexes.

Proposition 5.11. Let ∆ be a semipure shellable complex. Then ∆ admits
an acyclic matching in which all unmatched faces are maximal faces of ∆. In
particular, any semipure shellable complex is semi-collapsible.

Proof. The proposition is clearly true if (i) in Definition 3.26 is satisfied. Sup-
pose (ii) is satisfied. By induction, fdel∆(σ) and lk∆(σ) admit acyclic match-
ings such that all unmatched faces are maximal faces. Combining these match-
ings, we obtain an acyclic matching on ∆. Since maximal faces of fdel∆(σ)
are maximal faces of ∆, the desired result follows.

To prove that ∆ is semi-collapsible, use the fact that we cannot have
a directed path between two critical faces that are both maximal. Applying
Corollary 4.13, we obtain that ∆ is homotopy equivalent to a wedge of spheres
with one sphere for each critical face; thus we are done. �

Soll [129] proved the following result in the pure case.

Proposition 5.12. Semipure V D complexes are semi-nonevasive.

Proof. Use exactly the same approach as in the proof of Proposition 5.11. �

Proposition 5.13. Not all shellable complexes are semi-nonevasive.

Proof. The complex with maximal faces 012, 023, 034, 045, 051, 123, 234, 345,
451, and 512 is well-known to be shellable and collapsible but not nonevasive
or V D. This complex is originally due to Björner (personal communication);
see Moriyama and Takeuchi [100, Ex. V6F10-6] and Soll [129, Ex. 5.5.5]. �

Proposition 5.14. Not all constructible complexes are semi-collapsible. Yet,
there exist constructible complexes that are nonevasive but not shellable.

Proof. For the first statement, Hachimori [56] has found a two-dimensional
contractible and constructible complex without boundary; a complex with
no boundary cannot be collapsible. For the second statement, a cone over a
constructible complex is constructible and nonevasive but not shellable unless
the original complex is shellable. �

Let us introduce two classes of complexes closely related to the class of con-
structible complexes. For the purposes of this section, we refer to them as
“buildable” and “semi-buildable”, but there might be better terms.
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Definition 5.15. We define the class of buildable simplicial complexes recur-
sively as follows:

(i) The void complex ∅ and any d-simplex such that d ≥ 0 are buildable.
(ii) Suppose that ∆1, ∆2, and Γ = ∆1 ∩∆2 are buildable complexes. Then

∆1 ∪∆2 is buildable.

Definition 5.16. We define the class of semi-buildable simplicial complexes
over F recursively as follows:

(i) Any simplex (including ∅ and {∅}) is semi-buildable over F.
(ii) Suppose that ∆1, ∆2, and Γ = ∆1 ∩ ∆2 are semi-buildable complexes

over F and that

H̃d(∆1 ∪∆2; F) ∼= H̃d(∆1; F)⊕ H̃d(∆2; F)⊕ H̃d−1(∆1 ∩∆2; F) (5.4)

for each d.

Then ∆1 ∪∆2 is semi-buildable.

Proposition 5.17. Collapsible complexes are buildable and buildable com-
plexes are contractible.

Proof. Suppose that ∆ is a collapsible complex. If ∆ is a simplex, then we are
done. Otherwise, let σ be a face such that fdel∆(σ) and lk∆(σ) are collapsible.
Write ∆1 = fdel∆(σ) and ∆2 = 2σ ∗ lk∆(σ). We have that ∆1 ∩∆2 = ∂2σ ∗
lk∆(σ) and ∆1 ∪∆2 = ∆. By induction, we obtain that ∆1,∆2, and ∆1 ∩∆2

are buildable, which implies by definition that ∆1 ∪∆2 is buildable.
Next, suppose that ∆ is a buildable complex. ∆ is clearly contractible if

∆ is a simplex. Otherwise, suppose that ∆ = ∆1 ∪ ∆2, where ∆1,∆2, and
∆1 ∩∆2 are buildable and hence contractible by induction. By Corollary 3.9,
we obtain that ∆ is k-connected for every k; hence Theorem 3.8 implies that
∆ is contractible as desired. �

Proposition 5.18. Semi-collapsible complexes over F are semi-buildable over
F. Moreover, semi-buildable complexes over Z have torsion-free homology.

Proof. Let ∆ be a semi-collapsible complex. If ∆ is a simplex, then we are
done. Otherwise, suppose that σ is a shedding face of ∆. Write ∆1 = fdel∆(σ)
and ∆2 = 2σ ∗ lk∆(σ). Since ∆1 ∩ ∆2 = ∂2σ ∗ lk∆(σ), (5.2) is equivalent
to (5.4); ∆2 is contractible and H̃d−1(∆1 ∩ ∆2; F) = H̃d−|σ|(lk∆(σ); F) by
Corollary 4.23.

The second statement is immediate from (5.4). �

Proposition 5.19. Semipure constructible complexes are semi-buildable over
Z.
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Proof. Let ∆ be semipure constructible. If ∆ is a simplex, then we are done.
Otherwise, suppose that ∆ = ∆1∪∆2, where ∆1, ∆2, and ∆1∩∆2 are semipure
constructible complexes satisfying the conditions in (ii) in Definition 3.24. We
need to prove that (5.4) holds.

By Theorem 3.33 and Proposition 3.36, we know that the homology of any
semipure constructible complex is torsion-free. Hence it suffices to prove that
the homomorphism

ι∗i : H̃d(∆1 ∩∆2; Z)→ H̃d(∆i; Z)

induced by the inclusion map is zero for i ∈ {1, 2}; apply the Mayer-Vietoris
sequence (Theorem 3.1). Now, by construction, ∆1 ∩∆2 ⊆ ∆i \F(∆i), where
F(∆i) is the family of maximal faces of ∆i. Hence we can write ι∗i as a
composition

H̃d(∆1 ∩∆2; Z)→ H̃d(∆i \ F(∆i); Z)→ H̃d(∆i; Z)

of maps induced by inclusion maps. As a consequence, Theorem 3.33 and
Proposition 3.36 yield that ι∗i is indeed zero. �

Semi-buildable complexes are well-behaved in the following sense:

Proposition 5.20. Let ∆ be a semi-buildable complex over Z. Then ∆ is
k-acyclic over Z if and only if ∆ is k-connected.

Proof. By Theorem 3.8, it suffices to prove that ∆ is simply connected when-
ever ∆ is 1-acyclic. This is clear if ∆ is a simplex. Otherwise, we have that
∆ = ∆1∪∆2 and that ∆1,∆2, and ∆1∩∆2 are semi-buildable complexes sat-
isfying (5.4). Since ∆ is 1-acyclic, (5.4) implies that ∆1 and ∆2 are 1-acyclic
and that ∆1∩∆2 is 0-acyclic and hence 0-connected. Induction yields that ∆1

and ∆2 are simply connected. As a consequence, ∆1∪∆2 is simply connected
by Corollary 3.9. �

The results in this section combined with earlier results (see Section 3.6.5 and
Björner [9]) yield the diagram of implications in Figure 5.4; “torsion-free”
refers to the Z-homology. We conjecture that all implications are strict; this
is known to be true in all but two cases:

Problem 5.21. Are there contractible complexes that are not buildable? Are
there homotopically Cohen-Macaulay complexes that are not semi-buildable?

We conjecture that any triangulation of the dunce hat [150] is non-buildable;
this complex is known to be contractible, non-collapsible, Cohen-Macaulay,
and non-constructible.

Ignoring buildable and semi-buildable complexes, two properties are in-
comparable in the diagram if and only if neither of the properties implies the
other. We list the nontrivial cases:
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Z-acyclic =⇒ Torsion-free ⇐=
Sequentially

CM/Z
⇐= CM/Z

⇑ ⇑ ⇑
Contractible ⇑ Sequentially

homotopy-CM
⇐= Homotopy-CM

⇑ ⇑ ⇑
Buildable =⇒ Semi-

buildable
⇐=

Semipure
constructible

⇐= Constructible

⇑ ⇑ ⇑ ⇑
Collapsible =⇒ Semi-

collapsible
⇐=

Semipure
shellable

⇐= Shellable

⇑ ⇑ ⇑ ⇑
Nonevasive =⇒ Semi-

nonevasive
⇐=

Semipure
V D

⇐= V D

Fig. 5.4. Implications between different classes of simplicial complexes.

• Collapsible or shellable complexes are not always semi-nonevasive. This is
Proposition 5.13.

• Contractible or constructible complexes are not always semi-collapsible.
This is Proposition 5.14.

5.3 Some Useful Constructions

Before proceeding, let us introduce some simple but useful constructions that
will be used frequently in later sections. For a family ∆ of sets, write ∆ ∼∑

i≥−1 ait
i if there is an element-decision tree on ∆ with exactly ai evasive

sets of dimension i for each i ≥ −1. This notation has the following basic
properties; recall from Section 2.3 that ∆(I, E) = {I} ∗ lkdel∆(E)(I).

Lemma 5.22. Let ∆ be a finite family of finite sets. Then the following hold:

(1) ∆ is nonevasive if and only if ∆ ∼ 0.
(2) Assume that ∆ is a simplicial complex and let F be a field. Then ∆ is semi-

nonevasive over F if and only if ∆ ∼∑
i≥−1 dim H̃i(∆; F)ti. Moreover, ∆

is semi-nonevasive over Z if and only if ∆ ∼∑
i≥−1 dim H̃i(∆; Q)ti.

(3) Let v be a 0-cell. If del∆(v) ∼ f∅(t) and lk∆(v) ∼ fv(t), then ∆ ∼ f∅(t) +
fv(t)t.

(4) Let B be a set of 0-cells. If ∆(A,B \ A) ∼ fA(t) (hence lkdel∆(B\A)(A) ∼
fA(t)/t|A|) for each A ⊆ B, then ∆ ∼∑

A⊆B fA(t).
(5) Assume that ∆ is a simplicial complex such that ∆ ∼ ctd. Then ∆ is semi-

nonevasive and homotopy equivalent to a wedge of c spheres of dimension
d.

(6) Assume that ∆ is a simplicial complex such that ∆ ∼ f(t)td for some
polynomial f(t). Then ∆ is (d− 1)-connected.
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Proof. (1) is obvious. To prove (2), use Theorem 5.8 and Corollary 5.10.
(3) is obvious, whereas (4) follows from (3) by induction on |B|. Finally, by
Theorem 5.4, (5) and (6) are consequences of Theorem 4.8 and Theorem 4.7,
respectively. �

One may give analogous definitions and results for semi-collapsible complexes,
but we will not need them.

In Chapter 14, we need the following result.

Lemma 5.23. Let ∆ be a simplicial complex on a set E. If ∆ ∼ f(t), then
the Alexander dual ∆∗

E with respect to E satisfies ∆∗
E ∼ t|E|−3f(1/t).

Proof. Use induction on the size of E; note that del∆∗
E
(x) = (lk∆(x))∗E−x and

lk∆∗(E)(x) = (del∆(x))∗E−x. �

Definition 5.24. Let ∆ be a finite family of finite sets. Let W = (w1, . . . , wm)
be a sequence of distinct elements. The first-hit decomposition of ∆ with
respect to W is the sequence consisting of the families ∆(wj , {w1, . . . , wj−1})
for j ∈ [m] and the family ∆(∅, {w1, . . . , wm}).

The term “first-hit” refers to the natural interpretation of the concept in terms
of decision trees; for a given set to be checked, query elements in the sequence
until some element from the set is found (a first hit).

Lemma 5.25. Let ∆ be a finite family of finite sets and consider the first-hit
decomposition of ∆ with respect to a given sequence (w1, . . . , wm) of elements.
Suppose that

∆(wj , {w1, . . . , wj−1}) ∼ fj(t) (j ∈ [m]);
∆(∅, {w1, . . . , wm}) ∼ g(t).

Then ∆ ∼ g(t) +
m∑

j=1

fj(t).

Remark. One may view Lemma 5.25 as a decision-tree version of a result about
vertex-decomposability due to Athanasiadis [2, Lemma 2.2].

Proof. We claim that ∆(∅, {w1, . . . , wi}) ∼ g(t) +
∑m

j=i+1 fj(t) for 0 ≤ i ≤ m;
for i = 0, we obtain the lemma. The claim is obvious for i = m. For i < m,
we may assume by induction that ∆(∅, {w1, . . . , wi+1}) ∼ g(t)+

∑m
j=i+2 fj(t).

Since ∆(wi+1, {w1, . . . , wi}) ∼ fi+1(t), the claim follows by Lemma 5.22. �

We conclude this section with a very simple example, just as an illustration.

Proposition 5.26. Let G = (V,E) be a simple connected graph with e edges
and n vertices. Then G ∼ (e− n + 1)t.
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Proof. G is clearly nonevasive if G has one vertex. Suppose that G has at
least two vertices. Let v be a vertex such that the induced subgraph G′ =
G(V \{v}) = delG(v) obtained by removing v is connected (let v be a leaf in a
spanning tree). By induction, we obtain that delG(v) ∼ (e−|Nv|−(n−1)+1)t.
Moreover, lkG(v) consists of the empty set and the vertices in Nv = {w : vw ∈
G}; clearly, lkG(v) ∼ (|Nv|−1). By Lemma 5.22, G ∼ (|Nv|−1)t+(e−|Nv|−
n + 2)t = (e− n + 1)t as desired. �

5.4 Further Properties of Almost Nonevasive Complexes

We examine to what extent semi-nonevasiveness and semi-collapsibility are
preserved under join, barycentric subdivision, direct product, and Alexander
duality. The results are either generalizations of results due to Welker [146] or
generalizations of weaker results. Open problems are listed at the end of the
section.

Theorem 5.27 (Welker [146]). If at least one of ∆ and Γ is collapsible
(nonevasive), then the join ∆ ∗ Γ is collapsible (nonevasive). If ∆ ∗ Γ is
nonevasive, then at least one of ∆ and Γ is nonevasive. �

Theorem 5.28. If ∆ and Γ are both semi-collapsible (semi-nonevasive) over
F, then the join ∆∗Γ is semi-collapsible (semi-nonevasive) over F. If ∆∗Γ is
semi-nonevasive over F and evasive, then each of ∆ and Γ is semi-nonevasive
over F and evasive.

Proof. First, consider semi-collapsibility. If ∆ satisfies (i) in Definition 5.6,
then ∆ ∗ Γ is either ∅, Γ , or a cone over Γ . Each of these complexes is
semi-collapsible by assumption. Suppose ∆ satisfies (ii) in Definition 5.6
with shedding face σ. By assumption, fdel∆(σ) and lk∆(σ) are both semi-
collapsible, which implies by induction that fdel∆∗Γ (σ) = fdel∆(σ) ∗ Γ
and lk∆∗Γ (σ) = lk∆(σ) ∗ Γ are semi-collapsible. For any complex Σ, let
β̃Σ(t) =

∑
i≥−1 dim H̃i(Σ, F)ti. By Corollary 4.23, we have that

β̃∆∗Γ (t)/t = β̃∆(t)β̃Γ (t) = (β̃fdel∆(σ)(t) + t|σ|β̃lk∆(σ)(t))β̃Γ (t)

= (β̃fdel∆(σ)∗Γ (t) + t|σ|β̃lk∆(σ)∗Γ (t))/t,

where the second identity follows from the fact that (5.2) holds for ∆ and σ.
Thus (5.2) holds for ∆ ∗ Γ and σ, and we are done with the first statement.
Join preserving semi-nonevasiveness is proved in exactly the same manner.

For the second statement, suppose that ∆ ∗Γ is semi-nonevasive and eva-
sive. If ∆ ∗ Γ = {∅}, then we are done. Otherwise, let x be the first shedding
vertex; we may assume that {x} ∈ ∆. Since ∆∗Γ is evasive, either the link or
the deletion (or both) with respect to x is evasive. By induction, if del∆(x)∗Γ
is semi-nonevasive and evasive, then the same holds for both del∆(x) and Γ .
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If instead del∆(x) ∗ Γ is nonevasive, then del∆(x) must be nonevasive by
Theorem 5.27; Γ is evasive by assumption. Hence del∆(x) is semi-nonevasive.
A similar argument yields that lk∆(x) is also semi-nonevasive. Since ∆ ∗ Γ
and x satisfy (5.1), we obtain that

tβ̃∆(t)β̃Γ (t) = β̃∆∗Γ (t) = β̃del∆(x)∗Γ (t) + tβ̃lk∆(x)∗Γ (t)

= t(β̃del∆(x)(t) + tβ̃lk∆(x)(t))β̃Γ (t).

Γ being semi-nonevasive and evasive implies that β̃Γ (t) is nonzero and
hence cancels out in this equation. As a consequence, β̃∆(t) = β̃del∆(x)(t) +
tβ̃lk∆(x)(t), which means exactly that (5.1) holds for ∆ and x. We are thus
done by induction. �

Using exactly the same technique as in the proof of Theorem 5.28, one obtains
the following more general result.

Theorem 5.29. Let ∆ and Γ be any families of sets on disjoint ground sets.
With notation as in Section 5.3, if ∆ ∼ f(t) and Γ ∼ g(t), then ∆ ∗ Γ ∼
tg(t)f(t). Moreover, suppose that T∆ and TΓ are decision trees on ∆ and Γ ,
respectively. Then there is a decision tree T∆∗Γ on ∆∗Γ such that σ ∈ ∆ and
τ ∈ Γ are evasive with respect to T∆ and TΓ , respectively, if and only σ ∪ τ
is evasive with respect to T∆∗Γ . The analogous property holds for set-decision
trees (i.e., acyclic matchings). �

Theorem 5.30 (Welker [146]). If ∆ is a collapsible simplicial complex, then
the barycentric subdivision sd(∆) of ∆ is nonevasive. �

Theorem 5.31. If ∆ is semi-collapsible over F, then the barycentric subdivi-
sion sd(∆) of ∆ is semi-nonevasive over F.

Remark. Theorems 5.30 and 5.31 are closely related to a theorem of Provan
and Billera [108, Cor. 3.3.2] stating that sd(∆) is vertex-decomposable when-
ever ∆ is shellable.

Proof. Throughout this proof, we will freely use the fact that homology is
preserved under barycentric subdivision; this is Proposition 4.24. Write Σ =
sd(∆). If ∆ satisfies (i) in Definition 5.6, then Σ satisfies (i) in Definition 5.5.
Suppose that ∆ satisfies (ii) in Definition 5.6 with σ as the shedding face.
Note that

lkΣ(σ) ∼= sd(∂2σ) ∗ sd(lk∆(σ)).

Namely, each chain in lkΣ(σ) consists of nonempty faces that are either proper
subsets of σ (i.e., contained in ∂2σ \ {∅}) or proper supersets of σ (i.e., of the
form σ ∪ τ for some τ ∈ lk∆(σ) \ {∅}). Since ∂2σ and lk∆(σ) are both semi-
collapsible, the corresponding barycentric subdivisions are semi-nonevasive
by induction on the size of ∆. By Theorem 5.28, this implies that lkΣ(σ) is
semi-nonevasive. By Corollary 4.23, we have that
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H̃i(lkΣ(σ)) ∼=
⊕

a+b=i−1

H̃a(∂2σ)⊗ H̃b(lk∆(σ)) ∼= H̃i+1−|σ|(lk∆(σ)). (5.5)

For the deletion delΣ(σ), let τ1, . . . , τr be the faces of ∆ that properly
contain σ, arranged in increasing order (|τi| < |τj | ⇒ i < j). Consider the first-
hit decomposition of delΣ(σ) with respect to (τ1, . . . , τr); see Definition 5.24.

We have that

Σ(τi, {σ, τ1, . . . , τi−1}) ∼= sd(fdel2τi (σ)) ∗ {τi} ∗ sd(lk∆(τi)).

Namely, all faces ρ such that σ ⊂ ρ ⊂ τi are among the faces τ1, . . . , τi−1

and hence deleted, whereas all faces ρ such that τi ⊂ ρ are among the faces
τi+1, . . . , τr and hence not yet deleted. It is clear that any element in τi \ σ
is a cone point in fdel2τi (σ), which implies by induction that the correspond-
ing barycentric subdivision is nonevasive. By Theorem 5.27, it follows that
Σ(τi, {σ, τ1, . . . , τi−1}) is nonevasive.

Finally, Σ(∅, {σ, τ1, . . . , τr}) = sd(fdel∆(σ)), which is semi-nonevasive by
induction. By Lemma 5.25 (and Proposition 5.7), delΣ(σ) is semi-nonevasive
with the same homology as fdel∆(σ). By assumption, (5.2) holds for ∆ and
σ, which implies by (5.5) that (5.1) holds for Σ and σ, and we are done. �

Before proceeding with direct products, we prove a lemma that may also be
of some use in other situations. Let ∆ and Γ be families of sets. Say that a
map ϕ : Γ → ∆ is order-preserving if γ1 ⊆ γ2 implies that ϕ(γ1) ⊆ ϕ(γ2). For
σ ∈ ∆, let Γσ = ϕ−1(σ).
Lemma 5.32. For nonvoid finite families ∆ and Γ of finite sets, let M∆ be
an acyclic matching on ∆ and let ϕ : Γ → ∆ be an order-preserving map.
For each critical set ρ with respect to M∆, let Mρ be an acyclic matching on
Γρ. For each matched pair {σ, τ} with respect to M∆, let Mσ,τ be an acyclic
matching on Γσ ∪ Γτ . Then the union MΓ of all matchings Mρ and Mσ,τ is
an acyclic matching on Γ .
Remark. WhenM∆ is empty, Lemma 5.32 reduces to the Cluster Lemma 4.2.

Proof. Consider a set-decision tree T corresponding toM∆; use Theorem 5.4.
If ∆ = {∅} or ∆ = {∅, {v}} with ∅ and {v} matched, then the lemma is
trivial since we consider the union of one single matching. Otherwise, suppose
that T = (σ, T0, T1). Let ΓD =

⋃
τ∈fdel∆(σ) Γτ and ΓL =

⋃
τ∈lk∆(σ) Γσ∪τ . By

induction, the union of all matchings Mρ and Mσ,τ for ρ, σ, τ ∈ fdel∆(σ) is
an acyclic matching on ΓD; the analogous property also holds for ΓL. Now,
there are no edges directed from ΓD to ΓL in the digraph ofMΓ . Namely, that
would imply either that some γ0 ∈ ΓD is matched with some γ1 ∈ ΓL (which
is impossible) or that some γ0 ∈ ΓD contains some γ1 ∈ ΓL (which contradicts
the fact that ϕ is order-preserving). As a consequence, MΓ is acyclic. �
Theorem 5.33 (Welker [146]). If P and Q are posets such that ∆(P ) and
∆(Q) are both collapsible (nonevasive), then ∆(P ×Q) is collapsible (noneva-
sive). The converse is false for collapsible complexes. �
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Remark. One easily adapts Welker’s proof of Theorem 5.33 to a proof that
∆(P ×Q) is semi-nonevasive whenever ∆(P ) is nonevasive and ∆(Q) is semi-
nonevasive.

Theorem 5.34. If P and Q are posets such that ∆(P ) and ∆(Q) are both
semi-collapsible over F, then ∆(P×Q) is semi-collapsible over F. The converse
is false.

Proof. Our goal is to construct an optimal acyclic matching on Γ = ∆(P ×Q)
given optimal acyclic matchings MP and MQ on ∆(P ) and ∆(Q), re-
spectively. For technical reasons, we leave the empty set unmatched in
both matchings (hence the matchings are only almost optimal). For any
complex Σ, let βΣ(t) =

∑
i≥0 dimHi(Σ, F)ti (unreduced homology). Since

Γ � ‖∆(P )‖ × ‖∆(Q)‖ (see Björner [9, (9.6)]), Corollary 4.23 implies that
βΓ (t) = β∆(P )(t)β∆(Q)(t). In particular, we want to find an acyclic matching
with one critical face of size i + j − 1 for each pair of nonempty critical faces
σ ∈ ∆(P ) and τ ∈ ∆(Q) of size i and j, respectively.

Let ΠP : ∆(P × Q) → ∆(P ) be the projection map; ΠP ({(xi, yi) : i ∈
I}) = {xi : i ∈ I}. For σ ∈ ∆(P ), let Γσ = Π−1

P (σ). It is clear that ΠP is
order-preserving. As a consequence, given an acyclic matching on Γσ1 ∪ Γσ2

for each pair {σ1, σ2} ∈ MP and an acyclic matching on Γρ for each critical
face ρ with respect to MP , Lemma 5.32 yields that the union of all these
matchings is an acyclic matching on Γ .

First, let us use a construction from Welker’s proof [146] of Theorem 5.33
to obtain a perfect matching on Γσ1∪Γσ2 for each {σ1, σ2} ∈ MP ; σ2 = σ1+x.
Since σ2 contains at least two elements, x is either not maximal or not minimal
in σ2; by symmetry, we may assume that x is not maximal. Let x′ be the
smallest element in σ2 that is larger than x. For a given element γ in Γσ1 ∪Γσ2

let bγ be minimal such that (x′, bγ) ∈ Γ . We obtain a perfect matching by
matching γ− (x, bγ) with γ +(x, bγ). Namely, adding or removing (x, bγ) does
not affect bγ , and adding (x, bγ) leads to a new chain due to the minimality
of bγ . The matching is acyclic, as it corresponds to an element-decision tree
in which we first query all elements (a, b) such that a �= x and then query all
remaining elements except (x, bγ) (which only depends on elements queried
in the first round).

Next, we want to find a matching on Γρ for each critical face ρ of ∆(P ).
Consider the order-preserving projection map ΠQ : Γρ → ∆(Q) and let Γρ,τ =
Π−1

Q (τ). By Lemma 5.32, given acyclic matchings on Γρ,τ1∪Γρ,τ2 for {τ1, τ2} ∈
MQ and acyclic matchings on Γρ,τ for τ critical, the union of all matchings
is an acyclic matching on Γρ. We easily obtain a perfect acyclic matching on
Γρ,τ1∪Γρ,τ2 in exactly the same manner as we obtained the matching on Γσ1∪
Γσ2 above. What remains is the family Γρ,τ for each pair of nonempty critical
faces ρ ∈ ∆(P ) and τ ∈ ∆(Q). Write ρ = x1x2 · · ·xk and τ = y1y2 · · · yr;
xi < xi+1 and yj < yj+1. It is clear that every face of Γρ,τ contains (x1, y1).
We use induction on k = |ρ| to show that there is an element-decision tree
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on Γρ,τ with exactly one critical face of size |ρ| + |τ | − 1; this will yield the
theorem.

For |ρ| = 1, Γρ,τ consists of one single face of size |τ | = |ρ| + |τ | − 1. For
|ρ| > 1, note that the deletion Γρ,τ (∅, (x1, y1)) is void; (x1, y1) is present in
every face of Γρ,τ . Write Λ = Γρ,τ ((x1, y1), ∅) and proceed with the first-
hit decomposition of Λ with respect to ((x2, y1), (x2, y2), . . . , (x2, yk)); see
Definition 5.24. We have that

Λ((x2, y1), ∅) = {{(x1, y1)}} ∗ Γρ−x1,τ ((x2, y1), ∅).

By induction, Γρ−x1,τ ((x2, y1), ∅) admits an element-decision tree with one
critical face of size |ρ|−1+ |τ |−1. Adding (x1, y1) yields a face of the desired
size |ρ|+ |τ | − 1. In Λi = Λ((x2, yi), {(x2, yj) : j < i}), (x1, yi) is a cone point.
Namely, we may add the element without destroying the chain structure, and
we may delete it, because x1 and yi are already contained in (x1, y1) and
(x2, yi), respectively. Thus Λi is nonevasive, and we are done by Lemma 5.25.

The final statement is an immediate consequence of Theorem 5.33. �

Proposition 5.35 (Welker [146]). A simplicial complex ∆ on a set X is
nonevasive if and only if the Alexander dual ∆∗

X is nonevasive. However, the
Alexander dual of a collapsible complex is not necessarily collapsible. �

Proposition 5.36. A simplicial complex ∆ on a set X is semi-nonevasive
over F if and only if the Alexander dual ∆∗

X is semi-nonevasive over F. How-
ever, the Alexander dual of a semi-collapsible complex is not necessarily semi-
collapsible.

Proof. Use induction on the size of X; del∆∗
X

(x) = (lk∆(x))∗X−x and lk∆∗
X

(x) =
(del∆(x))∗X−x. By (3.4), (5.1) holds for ∆∗

X if and only if it holds for ∆. In the
base case, we have the Alexander dual of ∅, {∅}, or {∅, {v}}; all three duals are
easily seen to be semi-nonevasive over any field. For the final statement, a con-
tractible complex is collapsible if and only if the complex is semi-collapsible.
This implies by Proposition 5.35 that the Alexander dual of a semi-collapsible
complex is not necessarily semi-collapsible. �

Finally, we present a few important open problems; some of them are due to
Welker [146].

Problem 5.37. If ∆ ∗Γ is collapsible, is it true that at least one of ∆ and Γ
is collapsible?

Problem 5.38. If ∆ ∗Γ is semi-collapsible but not collapsible, is it true that
each of ∆ and Γ is semi-collapsible?

Problem 5.39. If the barycentric subdivision of ∆ is nonevasive, is it true
that ∆ is collapsible? More generally, if the barycentric subdivision of ∆ is
semi-nonevasive, is it true that ∆ is semi-collapsible?
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Problem 5.40. If the barycentric subdivision of ∆ is collapsible, is it true
that this subdivision is in fact nonevasive? More generally, if the barycentric
subdivision of ∆ is semi-collapsible, is it true that this subdivision is in fact
semi-nonevasive?

Problem 5.41. If ∆(P ×Q) is nonevasive, is it true that ∆(P ) and ∆(Q) are
both nonevasive?

Problem 5.42. If ∆(P ) and ∆(Q) are semi-nonevasive and evasive, is it true
that ∆(P ×Q) is semi-nonevasive?

Many of these problems are likely to be very difficult.

5.5 A Potential Generalization

The following is a potential generalization of the concept of semi-collapsibility:

Definition 5.43. Let C be a family of simplicial complexes. We define the
class of C-collapsible simplicial complexes over the field F recursively as fol-
lows:

(i) The void complex ∅ and any complex isomorphic to a complex in C are
C-collapsible over F.

(ii) If ∆ contains a nonempty face σ such that lk∆(σ) and fdel∆(σ) are both
C-collapsible over F and such that

H̃d(∆; F) ∼= H̃d(fdel∆(σ); F)⊕ H̃d−|σ|(lk∆(σ); F)

for each d, then ∆ is C-collapsible over F.

C-nonevasive complexes are defined analogously. Note that if C consists of
{∅, {v}}, then we obtain the collapsible complexes, whereas the family con-
sisting of {∅} and {∅, {v}} yields the semi-collapsible complexes. We do not
know whether the given generalization leads to anything useful.
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Miscellaneous Results

We present some results, mainly from the literature, that will be of some use
in later sections. Section 6.1 is devoted to the topology of posets. Section 6.2
contains a discussion about the concept of depth, whereas Section 6.3 deals
with the related concept of vertex-decomposability. In Section 6.4 at the end
of the chapter, we present a few simple enumerative results.

6.1 Posets

Let P and Q be posets. A poset map f : P → Q is a function with the
property that f(x) ≤ f(y) whenever x ≤ y. A poset map f : P → P is a
closure operator if f(x) ≥ x and f(f(x)) = f(x).

Lemma 6.1 (Closure Lemma; see Björner [9]). Let P be a poset and let
f : P → P be a closure operator on P . Then ∆(P ) and ∆(f(P )) are homotopy
equivalent, and f induces an isomorphism between the homology of ∆(P ) and
∆(f(P )).

Proof. Write Σ1 = ∆(P ) and Σ0 = ∆(f(P )). For a face σ of Σ1 \ Σ0, let
x = x(σ) be maximal in σ such that x /∈ f(P ). For each x ∈ P \ f(P ),
define G(x) to be the family of faces σ of Σ1 \ Σ0 such that x(σ) = x. One
readily verifies that the families G(x) satisfy the Cluster Lemma 4.2. Now, if
σ ∈ G(x), then σ + f(x) ∈ G(x). Namely, consider an element y ∈ σ. If y ≤ x,
then clearly y ≤ f(x), because x < f(x). If x ≤ y, then f(x) ≤ y, because
y = f(y) by the maximality of x. As a consequence, σ + f(x) remains a chain
and is therefore an element in G(x). In particular, we obtain a perfect acyclic
matching on G(x) by pairing σ − f(x) and σ + f(x). Hence Σ1 is collapsible
to Σ0 by Theorem 4.4.

For the final statement, with ι being the natural inclusion map ∆(f(P ))→
∆(P ), we have that f ◦ ι is the identity on ∆(f(P )) and hence induces the
identity map on the homology of ∆(f(P )). By the long exact sequence for the
pair (∆(P ),∆(f(P ))) (see Theorem 3.3), ι induces an isomorphism between
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the homology of ∆(f(P )) and the homology of ∆(P ). As a consequence, f
also induces an isomorphism. �

At a few occasions, we will need the following special case of the Nerve The-
orem (see Björner [9]):

Theorem 6.2. For a given simplicial complex Γ , let the nerve N(Γ ) of Γ be
the simplicial complex with one 0-cell for each maximal face of Γ and with
{σi : i ∈ I} a face of N(Γ ) if and only if the intersection

⋂
i∈I σi is nonempty.

Then Γ and N(Γ ) are homotopy equivalent.

Proof. We obtain a closure operator f on P (Γ ) by defining f(σ) as the face
σ′ obtained from σ by adding all elements x that are cone points in lkΓ (σ).
The resulting poset Q has the property that σ belongs to Q if and only if
lkΓ (σ) contains no cone points. By Lemma 6.1, Γ and ∆(Q) are homotopy
equivalent.

For a face X of N(Γ ), write ∩X =
⋂

τ∈X τ . We obtain a closure operator
g on P (N(Γ )) by defining g(X ) as the face X ′ obtained from X by adding all
maximal faces of Γ containing ∩X . In the resulting poset Q′, we may identify
a given element X with the face σ(X ) = ∩X ∈ Γ . Namely, if two elements
X and X ′ in Q′ yield the same face σ, then ∩(X ∪ X ′) = σ, which implies
that we must have X = X ′. Note that X is smaller than Y in Q′ if and only
if σ(Y) is contained in σ(X ). By Lemma 6.1, N(Γ ) and ∆(Q′) are homotopy
equivalent.

It remains to prove that a face σ is an element in Q if and only if σ is
an element in Q′; this will imply that Q and Q′ coincide (except that all
order relations are reversed in Q′). Now, σ belongs to Q if and only if lkΓ (σ)
contains no cone points. Equivalently, for every x /∈ σ, there is some maximal
face of Γ containing σ but not x. This means exactly that σ = ∩X for some
family X of maximal faces of Γ . Hence σ ∈ Q if and only if σ ∈ Q′, which
concludes the proof. �

6.2 Depth

We discuss the concept of depth, a parameter that we will frequently consider
throughout this book. The main objective of the section is to show that we
may define the depth over a field or Z of a complex in terms of deletions
rather than in terms of links. This is a well-known fact among ring theorists
[128], but we include a complete proof for reference. At the end of the section,
we discuss the situation for homotopical depth, which is considerably more
complicated.

Let F be a field or Z and let ∆ be a simplicial complex on the 0-cell set
E. Recall that the depth over F of ∆ is defined by

depthF(∆) = min{m : H̃m−|σ|(lk∆(σ); F) �= 0 for some σ ⊆ E}.
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Define the deletion-depth over F by

deldepthF(∆) = min{m : H̃m−|σ|(del∆(σ); F) �= 0 for some σ ⊆ E}.

Theorem 6.3 (Auslander-Buchsbaum Theorem). For any complex ∆
on the 0-cell set E, depthF(∆) = deldepthF(∆).

Remark. For ring-theoretic background and rationale for attributing the theo-
rem to Auslander and Buchsbaum, see later in this section; we refer to Smith
[128] for details.

Proof. Let m be minimal such that there is a set σ with the property that

H̃m−|σ|(∆(∅, σ)) �= 0;

we suppress F from notation. We want to show that there is a face τ ∈ ∆ and
an integer a ≥ 0 such that H̃m−a(∆(τ, ∅)) �= 0. This will imply that depthF(∆)
is less than or equal to m− a and hence at most equal to deldepthF(∆).

If σ = ∅, then we are done, as we may choose τ = ∅ and a = 0. Otherwise,
let x ∈ σ. We have the exact sequence

H̃m+1−|σ|(∆(x, σ − x)) −→ H̃m−|σ|(∆(∅, σ)) −→ H̃m−|σ|(∆(∅, σ − x)),

where the group in the middle is nonzero by assumption. Since m − |σ| =
m − 1 − |σ − x|, the group to the right is zero by minimality of m, which
implies that the group to the left is nonzero. Now,

H̃m+1−|σ|(∆(x, σ − x)) = H̃m−1−|σ−x|((lk∆(x))(∅, σ − x)).

Since this group is nonzero, we have by induction on the size of ∆ that there
exists a τ ′ and an integer a ≥ 0 such that H̃m−1−a((lk∆(x))(τ ′, ∅)) �= 0. Since

H̃m−1−a((lk∆(x))(τ ′, ∅)) = H̃m−a(∆(τ ′ + x, ∅)),

the claim follows.
Next, let m be the depth of ∆ over F and let τ be minimal such that

H̃m(∆(τ, ∅)) �= 0.

This time, we want to show that there is a set σ and an integer a ≥ 0 such
that H̃m−|σ|−a(∆(∅, σ)) �= 0. This will imply that deldepthF(∆) is less than
or equal to m− a and hence at most equal to depthF(∆).

If τ = ∅, then we are done, as we may choose σ = ∅ and a = 0. Otherwise,
let x ∈ τ . We have the exact sequence

H̃m(∆(τ − x, ∅)) −−−−→ H̃m(∆(τ, ∅)) −−−−→ H̃m−1(∆(τ − x, x)),

where the group in the middle is nonzero by assumption. By minimality of
τ , the group to the left is zero, which implies that the group to the right is
nonzero. Now,
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H̃m−1(∆(τ − x, x)) = H̃m−1((del∆(x))(τ − x, ∅)).

Since this group is nonzero, we have by induction on the size of ∆ that there
exists a σ′ and an integer a ≥ 0 such that H̃m−1−|σ′|−a((del∆(x))(∅, σ′)) �= 0.
Since

H̃m−1−|σ′|−a((del∆(x))(∅, σ′)) = H̃m−|σ′+x|−a(∆(∅, σ′ + x)),

the claim follows. This concludes the proof. �

Corollary 6.4 (Hochster [63]). Let ∆ be a simplicial complex. Then ∆
is CM/F if and only if H̃i−|σ|(del∆(σ); F) = 0 whenever i < dim∆ for all
σ ⊆ E. More generally, let m be an integer. Then the m-skeleton of ∆ is
CM/F if and only if H̃i−|σ|(del∆(σ); F) = 0 whenever i < m for all σ. �

As promised, we now give some ring-theoretic background, roughly following
Smith [128]. Let R(∆) be the Stanley-Reisner ring of ∆; see Section 3.8 for
definitions and a textbook on commutative algebra [26, 43] for ring-theoretic
definitions. Assume that ∆ is (d−1)-dimensional and that depthF(∆) = p−1.
As mentioned in Section 3.8, this means that the Krull dimension of R(∆) is
d and the depth is p. Let n be the size of the vertex set E of ∆. By a theorem
of Hochster [63], the homological dimension hd(R(∆)) of R(∆) satisfies

hd(R(∆)) = max{i : H̃n−|σ|−i−1(del∆(σ)) �= 0 for some σ}.

The Auslander-Buchsbaum theorem [43, Th. 19.9] states that

depth(R(∆)) + hd(R(∆)) = n,

which immediately implies that

depth(R(∆)) = min{n− i : H̃n−|σ|−i−1(del∆(σ)) �= 0 for some σ}.

Replacing n − i with m and using the identity depthF(∆) = depth(R(∆)) −
1, we obtain Theorem 6.3. In particular, modulo Hochster’s theorem, the
Auslander-Buchsbaum Theorem [43, Th. 19.9] is the ring-theoretic counter-
part to Theorem 6.3.

Let F be a field and let E be the vertex set of ∆. By Alexander duality,
we have that

H̃i(del∆(σ); F) = H̃|E|−i−|σ|−3(lk∆∗
E
(σ); F);

H̃i(lk∆(σ); F) = H̃|E|−i−|σ|−3(del∆∗
E
(σ); F).

As a consequence, we have the following result:

Corollary 6.5. Let ∆ be a simplicial complex on the vertex set E; write n =
|E|. Then
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depthF(∆∗
E) = min{i : H̃n−i−3(del∆(σ); F) �= 0 for some σ}

= min{i : H̃n−i−3(lk∆(σ); F) �= 0 for some σ}.

In particular, if H̃j(lk∆(σ); F) = 0 whenever j > m, then the (n − m − 3)-
skeleton of ∆∗

E is CM/F. �

Define the dual depth over F of ∆ by

depth∗
F(∆) = max{i : H̃i(lk∆(σ); F) �= 0 for some σ}.

By Corollary 6.5, depth∗
F(∆) + depthF(∆∗

E) = |E| − 3.

Corollary 6.6. Let ∆ be a simplicial complex. Then

depth∗
F(∆) = max{i : H̃i(del∆(σ); F) �= 0 for some σ}. �

A simplicial complex with dual depth at most d− 1 is sometimes referred to
as a d-Leray complex. We proceed with a minor result that will be of some
use in Chapter 19.

Proposition 6.7. Let ∆ be a simplicial complex with dual depth c and let σ
be a nonempty set. If H̃c(del∆(τ); F) = 0 for some τ ⊆ σ and the dual depth
of lk∆(y) is less than c for all y ∈ σ \ τ , then H̃c(del∆(σ); F) = 0.

Proof. If σ = τ , then we are done. Otherwise, let y ∈ σ \ τ and assume that
H̃c(∆(∅, σ)) is nonzero. By the exact sequence

H̃c+1(∆(y, σ − y)) −−−−→ H̃c(∆(∅, σ)) −−−−→ H̃c(∆(∅, σ − y)),

this implies that H̃c+1(∆(y, σ−y)) is nonzero; the group to the right is zero by
induction on the size of σ. Since H̃c+1(∆(y, σ − y)) = H̃c((lk∆(y))(∅, σ − y)),
the dual depth of lk∆(y) is at least c by Corollary 6.6, a contradiction. �

By the following theorem, the homotopical depth of a complex ∆ on the 0-cell
set E is not always equal to the homotopical deletion-depth (defined in the
natural manner).

Theorem 6.8. Suppose that ∆ is a simplicial complex on the 0-cell set E such
that the depth d over Z of ∆ is strictly greater than the homotopical depth of
∆. For a set Y of 0-cells disjoint from E, let ΣY be the 0-dimensional complex
with 0-cell set Y . If |Y | ≥ d, then the homotopical depth of Γ = ∆ ∗ ΣY is
strictly smaller than d + 1, whereas the homotopical deletion-depth is equal to
d + 1.

Proof. For any y ∈ Y , lkΓ (y) coincides with ∆, for which the homotopical
depth is strictly smaller than d. It follows that the homotopical depth of Γ is
strictly smaller than d + 1.
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It remains to prove that delΓ (σ) is (d−|σ|)-connected for every σ ⊆ E∪Y
By properties of join (apply Proposition 3.7), the depth over Z of Γ is d + 1.
By Theorems 3.8 and 6.3, it suffices to prove that delΓ (σ) is simply connected
whenever d− |σ| ≥ 1. Write σ = A∪X, where A ⊆ E and X ⊆ Y . We obtain
that

delΓ (σ) = del∆(A) ∗ delΣY
(X) = del∆(A) ∗ΣY \X .

Since |σ| ≤ d − 1, we have that |A| ≤ d − 1 and |X| ≤ d − 1. In particular,
del∆(A) is 0-acyclic and hence 0-connected, whereas ΣY \X is (−1)-connected.
As a consequence, delΓ (σ) is simply connected by Theorem 3.11. �

6.3 Vertex-Decomposability

The concept of vertex-decomposability (V D) will be an important tool for
us in the analysis of the depth of certain simplicial complexes. This section
presents some useful auxiliary lemmas related to the concept.

Let us say that a lifted complex is V D(d) if the d-skeleton is V D. Refer to
the complex as V D+(d) if the complex is V D(d) and admits a decision tree
with all evasive sets of dimension d. Note that a V D(d) simplicial complex
has homotopical depth at least d and that a V D+(d) complex is homotopy
equivalent to a wedge of spheres of dimension d; use Theorem 5.2 and The-
orem 4.8. By convention, the void complex is V D(d) and V D+(d) for every
d.

Lemma 6.9. Let ∆ be a lifted complex and let v be a vertex. If lk∆(v) is
V D(d− 1) and del∆(v) is V D(d), then ∆ is V D(d). If lk∆(v) is V D+(d− 1)
and del∆(v) is V D+(d), then ∆ is V D+(d).

Proof. The claims are immediate from Definitions 3.27 and 5.1. �

Lemma 6.10. Let ∆ be a lifted complex and let B be a vertex set. If ∆(A,B \
A) is V D of dimension d for each A ⊆ B, then ∆ is V D of dimension d. If
∆(A,B \ A) is V D(d) for each A ⊆ B, then ∆ is V D(d). If ∆(A,B \ A) is
V D+(d) for each A ⊆ B, then ∆ is V D+(d).

Proof. This is immediate by induction on the size of B; use Definition 3.28
and Lemma 6.9. �

The following simple lemma is sometimes useful.

Lemma 6.11. Let ∆1, . . . ,∆k be simplicial complexes and let d1, . . . , dk be
integers such that ∆i is V D(di) for each i; di ≥ −1. Then the join ∆1∗. . .∗∆k

is V D(
∑

i di +k−1). The join is V D+(
∑

i di +k−1) if each ∆i is V D+(di).

Proof. Use induction on the size of ∆1 ∗ · · · ∗ ∆k and d =
∑

i di + k − 1. If
d = −1, then we are done. Otherwise, let i be such that di ≥ 0; say that i = k.
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Let v be a shedding vertex for the dk-skeleton Σk of ∆k; lkΣk
(v) and delΣk

(v)
are V D. Write ∆ = ∆1 ∗ . . . ∗∆k−1.

If v is a cone point in Σk, then Σk = ∆k; hence the (d − 1)-skeleton of
del∆k

(v) = lk∆k
(v) coincides with delΣk

(v) = lkΣk
(v). By induction, ∆ ∗

lk∆k
(v) is V D(d− 1). ∆ ∗∆k is the cone over this complex and hence V D(d).

If v is not a cone point in Σk, then del∆k
(v) is V D(d) and lk∆k

(v) is
V D(d − 1). By induction, ∆ ∗ del∆k

(v) is V D(d), whereas ∆ ∗ lk∆k
(v) is

V D(d− 1). By Lemma 6.9, we obtain that ∆ is V D(d), and we are done.
For the last statement in the lemma, use the above proof and apply The-

orem 5.28 and Corollary 4.23. �

By the discussion in Section 3.6.3, a decomposition as in Definition 3.27 (or
Definition 3.28) induces a shelling of a complex ∆. We refer to such a shelling
as a V D-shelling ; each shedding face is a vertex.

Lemma 6.12. Let ∆ be a shellable simplicial complex on the set E with
shelling pairs (σ1, τ1), . . . , (σr, τr) and let Σ be a subcomplex of ∆. Let d be a
fixed integer.

(i) If Σ(σi, E \ τi) is shellable of dimension d for each shelling pair (σi, τi),
then so is Σ.

(ii) Assume that ∆ is V D. If Σ(σi, E \ τi) is V D of dimension d for each
V D-shelling pair (σi, τi), then so is Σ. If Σ(σi, E \ τi) is V D(d) for each
shelling pair (σi, τi), then so is Σ.

(iii) If Σ(σi, E \ τi) admits an acyclic matching with all critical faces of di-
mension d for each shelling pair (σi, τi), then so does Σ.

(iv) Assume that ∆ is V D. If Σ(σi, E \ τi) admits a decision tree with all
evasive faces of dimension d for each V D-shelling pair (σi, τi), then so
does Σ.

Proof. (i) If there is only one shelling pair, then we are done. Otherwise,
consider the first shedding face σ of ∆ in Definition 3.25 (ii). Decomposing
with respect to σ, we obtain a partition of the family of shelling pairs into
two subfamilies. The first subfamily constitutes a shelling of fdel∆(σ) and the
other subfamily constitutes a shelling of ∆(σ, ∅). By an induction argument,
we obtain a shelling of each of fdelΣ(σ) and Σ(σ, ∅), which concludes the
proof.

The proofs of (ii)-(iv) are almost identical to that of (i); decompose with
respect to the first shedding face or shedding vertex and use induction. �

6.4 Enumeration

We will apply the following simple polynomial formula when examining com-
plexes of bipartite graphs and graphs admitting a p-cover.
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Proposition 6.13 (Folklore). Let d ≥ 0 and let f be a polynomial of degree
at most d. Then, for any integer s and complex number x,

f(x) =
d+s∑
k=s

(−1)d+s−k

(
x− s

k − s

)(
x− 1− k

d + s− k

)
f(k);

the binomial coefficients are interpreted as polynomials in the natural manner.

Proof. One easily checks that the left-hand and right-hand sides coincide for
x = s, 1+s, . . . , d+s. Since the values on any d+1 points uniquely determine
a polynomial of degree at most d, the proposition follows. �

Proposition 6.14 (see Stanley [133]). Let P be the set of positive integers.
For a function f : P → Z and a partition U = {U1, . . . , Uk} of a finite subset
of P, define

f(U) = f(|U1|) · · · f(|Uk|).
Let t be a real number. For n ≥ 1, define

ht(n) =
∑

U∈Πn

f(U)t|U|, (6.1)

where Πn is the partition lattice on the set [n] and |U| is the number of
sets in the partition U. Then the exponential generating functions F (x) =∑

n≥1 f(n)xn/n! and Ht(x) =
∑

n≥1 ht(n)xn/n! satisfy

Ht(x) = etF (x) − 1.

Proof. For a subset T of [n − 1], let Πn(T ) be the family of partitions of [n]
containing the set T + n. It is clear that

ht(n)
(n− 1)!

− tf(n)
(n− 1)!

=
∑

T�[n−1]

∑
U∈Πn(T+n)

f(U)t|U|

(n− 1)!

=
∑

T�[n−1]

tf(|T |+ 1)ht(n− 1− |T |)
(n− 1)!

=
n−1∑
i=1

(
n− 1
i− 1

)
tf(i)ht(n− i)

(n− 1)!
=

n−1∑
i=1

tf(i)
(i− 1)!

ht(n− i)
(n− i)!

.

Thus H ′
t(x)− tF ′(x) = tF ′(x)Ht(x). Clearly, Ht(x) = etF (x)− 1 is the unique

solution to this equation that satisfies Ht(0) = 0. �

Let |G| be the number of edges in the graph G. We interpret Proposition 6.14
in terms of graph properties in the following way.
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Corollary 6.15. For each n ≥ 1, let ∆n be a graph property on n vertices
such that all graphs in ∆n are connected (thus ∆n is not monotone unless
n = 1). Let Σn be the family of graphs G on n vertices with the property
that G(U) is isomorphic to a graph in ∆|U | for each connected component
U in G. Let t be a real number. Then the exponential generating functions
F (x) =

∑
n≥1 χ̃(∆n)xn/n! and Ht(x) =

∑
n≥1

∑
G∈Σn

(−1)|G|−1tc(G)xn/n!
satisfy

Ht(x) = 1− e−tF (x).

In particular,
Ht(x) = 1− (1−H1(x))t;

note that H1(x) =
∑

n≥1 χ̃(Σn)xn/n!. The analogous result holds for hyper-
graph properties and digraph properties.

Proof. Define f(n) = −χ̃(∆n) and ht(n) = −∑G∈Σn
(−1)|G|−1tc(G). It is easy

to see that f and ht satisfy the equation (6.1) in Proposition 6.14, which
implies that −Ht(x) = e−tF (x) − 1 (note the change of sign compared to the
proposition). �

Corollary 6.16. Let s ≥ 1. With notation and assumptions as in Corollary
6.15, let Σs

n be the subfamily of Σn consisting of all graphs with at least s
connected components. Then

∑
n≥1

∑
G∈Σs

n

(−1)|G|−1tc(G)xn/n! =
s−1∑
r=0

(−tF (x))r

r!
− e−tF (x).

Proof. This is an immediate consequence of Corollary 6.15. �
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Graph Properties

Recall from Chapter 1 that a monotone graph property is a simplicial complex
of graphs – on a fixed vertex set V – that is invariant under the natural
action of the symmetric group on V . Roughly speaking, the monotone graph
properties to be examined in this book are of four kinds:

• Properties defined in terms of vertex degree. The most important example
is the property of being a matching, meaning that the degree of each vertex
is at most one. The degree being at most two means that every connected
component is either a path or a cycle.

• Properties defined in terms of forbidden cycles. For example, the property
of being a forest means avoiding all cycles, whereas the property of being
bipartite means avoiding all cycles of odd length. Restricting avoidance to
cycles of a fixed length, we obtain other interesting properties such as the
property of being non-Hamiltonian.

• Properties defined in terms of connectivity. One example is the property of
being disconnected. This generalizes to the two properties of being not k-
connected and being not k-edge-connected. The first property means that
it is possible to disconnect the given graph by removing k−1 vertices. The
second property is defined analogously in terms of edges.

• Properties defined in terms of cliques and stable sets. This class includes
the property of containing a large stable set, the property of being colorable
with a certain number of colors, and the property of not containing a
matching of a certain size. The second property is about partitioning the
vertex set into a small number of stable subsets, whereas the third property
is about avoiding partitions of the vertex set into small cliques.

There are certainly many other interesting monotone graph properties that
do not fit into any of these four categories. Some examples are the properties
of being planar, not containing a certain graph as a minor, or being t-edge-
colorable. The reason for not considering these properties is simply that we
do not have anything of interest to present about their topology.
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In Section 7.1, we present basic definitions. We provide illustrations of the
various monotone graph properties in Section 7.2.

Table 7.1. Some monotone graph properties. fp(n) and gk(n) are polynomials in
n. See Table 10.2 for a formula for χ̃(Bn).

§ Name Description Homotopy type Sec.

§1 Mn Matching Q-homology known 11.2

§2 BDd
n No vertex of degree > d Not known in general 12.1

§3 Fn Forest
∨

Sn−2 13.1

§4 Bn Bipartite
∨

Sn−2 14.1

§5 Bn,p Bipartite, balance number ≤ p
∨

fp(n)

S2p−1 14.3

§6 NHamn Non-Hamiltonian Only partially known 17

§7 NCn Disconnected
∨

(n−1)!

Sn−3 18.1

§8 NLCn,k ≤ k vertices in each component Wedge of spheres for 18.2

n ≤ 2k + 2 and n = 3k + 2

§9 SSCk,s
n s components of size ≤ k

∨
Sn−s−2 18.3

§10 NCn,p Some p-indivisible component
∨

Sn−3 18.4

§11 NC2
n Not 2-connected

∨
(n−2)!

S2n−5 19

§12 NC3
n Not 3-connected

∨
(n−3)

(n−2)!
2

S2n−4 20

§13 NEC2
n Not 2-edge-connected Only partially known 23

§14 NFC2k−1 Not factor-critical
∨

(2k−3)!!

S3k−5 23.3

§15 NMn,k No k-matching
∨

gk(n)

S3k−4 24

§16 Coltn t-colorable Known for t = 2, t ≥ n − 3 25

§17 Covn,p p-coverable Homology known for p ≤ 3 26

§18 �n Triangle-free Only partially known 26.7

7.1 List of Complexes

Below, we present the main monotone graph properties to be examined in
this book. See Section 7.2 for illustrations and Table 7.1 for a summary of the
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main results. Many of these results are due to other authors; see the relevant
sections for details.

Properties Defined in Terms of Vertex Degree

§1 Matchings. Define Mn to be the complex of matchings on n vertices. In
Section 11.2, we discuss the matching complex.

§2 Bounded-degree graphs. Let n ≥ 1 and d ≥ 1. Define BDd
n as the complex of

graphs G on n vertices such that the degree of each vertex in G is at most
d. We devote Section 12.1 to BDd

n. In Section 12.2, we discuss a variant of
BDd

n in which we allow loops. A loop is an edge with both endpoints in the
same vertex, which means that the addition of a loop to a vertex increases
the degree of the vertex by two. This variant has certain applications to
algebra (see Sections 1.1.2 and 1.1.3) and is for this reason much more
well-studied than BDd

n.

Properties Defined in Terms of Forbidden Cycles

§3 Forests. Let Fn denote the simplicial complex of forests on n vertices; the
maximal faces of Fn are spanning trees. Being the independence complex of
a matroid, Fn has a very attractive topological structure; see Section 13.1
for details.

§4 Bipartite graphs. Define Bn as the simplicial complex of bipartite graphs
on n vertices. In Section 14.1, we examine Bn.

β = 2 β = 3 β = 1 β = 2

Fig. 7.1. The balance number of some bipartite graphs on six vertices. In each case,
a smallest possible set in a bipartition is indicated with circles.

§5 Unbalanced bipartite graphs. Define the balance number β(G) of a bipartite
graph on n vertices as the smallest integer r such that there is a bipartition
(U,W ) of G with the property that one of U and W has size r. This means
that G is a subgraph of a copy of the complete bipartite graph Kr,n−r.
See Figure 7.1 for some examples. To justify this terminology, recall that a
bipartition (U,W ) is typically referred to as balanced if |U | = |W |. Let Bn,p

be the subcomplex of Bn consisting of all bipartite graphs on n vertices
with balance number at most p. We analyze Bn,p in Section 14.3.

§6 Non-Hamiltonian graphs. Let NHamn be the complex of graphs on n ver-
tices without Hamiltonian cycles. We examine NHamn in Chapter 17.
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Properties Defined in Terms of Connectivity

§7 Disconnected graphs. Let NCn be the complex of disconnected graphs on
n vertices. We discuss NCn in Section 18.1.

§8 Graphs with no large components. Let NLCn,k be the complex of graphs
on n vertices with all connected components of size at most k; “NLC”
stands for “No Large Components.” For example, NLCn,2 is the match-
ing complex Mn, whereas NLCn,n−1 equals NCn. We examine NLCn,k in
Section 18.2.

§9 Graphs with some small components. Instead of putting restrictions on
all components, one may require just a few of them to be small. Let
n ≥ 2 and k, s ≥ 1. Define SSCk,s

n (“Some Small Components”) to be the
simplicial complex of graphs G on n vertices such that at least s connected
components in G contain k or fewer vertices. Note that SSCn−1,1

n is the
complex NCn of disconnected graphs; see §7. Moreover, SSC1,s

n is the
complex of graphs with at least s isolated vertices. We discuss the complex
SSCk,s

n in Section 18.3.
§10 Graphs with some p-indivisible component. For p ∈ [n] such that p divides

n, let NCn,p be the complex of graphs on n vertices such that some
connected component has a vertex set of size not divisible by p. See
Sections 13.4.1 and 18.4 for a treatment of this complex.

For 1 ≤ k ≤ n − 1, let NCk
n be the complex of not k-connected graphs on n

vertices. Note that NC1
n = NCn, which we considered in §7.

§11 Not 2-connected graphs. One of the most important objects in this book is
the complex NC2

n of not 2-connected graphs on n vertices; see Chapter 19
for an overview.

§12 Not k-connected graphs for k ≥ 3. In Chapter 20, we examine the complex
NC3

n of not 3-connected graphs on n vertices and also NCk
n for larger k.

§13 Not k-edge-connected graphs. For a graph G = (V,E), define the edge
connectivity of G as the size of a smallest subset S of E such that G −
S = (V,E \ S) is disconnected. G is k-edge-connected if G has edge
connectivity at least k. Let NECk

n be the simplicial complex of not k-edge-
connected graphs on n vertices. For k = 1, we obtain the complex NCn

of disconnected graphs. In Chapter 23, we discuss NECk
n, concentrating

almost entirely on NEC2
n.

§14 Not factor-critical graphs. For n odd, a graph G on n vertices is factor-
critical if G([n] \ {v}) contains a perfect matching for each v ∈ [n]. For
k ≥ 1, let NFC2k−1 be the simplicial complex of not factor-critical graphs
on 2k − 1 vertices. NFC2k−1 is closely related to the complex NM2k,k of
graphs on 2k vertices not admitting a perfect matching; see §15. However,
the complex appears already in the analysis of NEC2

n in Section 23.3.
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Properties Defined in Terms of Cliques and Stable Sets

§15 Graphs with bounded matching size. Let NMn,k be the complex of graphs
on n vertices that do not contain a k-matching (i.e., k pairwise disjoint
edges). We summarize known results about this complex in Chapter 24.

§16 t-colorable graphs. For 1 ≤ t ≤ n−1, let Coltn be the complex of t-colorable
graphs on n vertices. For t = 2, we obtain the complex Bn of bipartite
graphs; see §4. A clique partition of a graph G is a partition {U1, . . . , Ut}
of the vertex set of G such that G(Ui) is a complete graph for each
i ∈ [t]. Let NQPn,t (“No cliQue Partition”) be the complex of graphs on
n vertices not admitting any clique partition with t sets. For t ≤ 0, it
turns out to be convenient to define NQPn,t as the full simplex on the
set

(
[n]
2

)
. Note that NQPn,t is the Alexander dual of Coltn. In Chapter 25,

we provide an overview of known results about Coltn and NQPn,t.
§17 p-coverable graphs. The covering number of a graph G is the size of a

smallest vertex set W such that each edge in G contains some vertex from
W . For 1 ≤ p ≤ n − 1, let Covn,p be the simplicial complex of graphs
on n vertices with covering number at most p. We devote Chapter 26 to
Covn,p.

§18 Triangle-free graphs. Let �n be the complex of triangle-free graphs on
n vertices; graphs in �n do not contain any cliques of size three. See
Section 26.7 for a brief discussion about �n.

Table 7.2. Some interesting Alexander duals of monotone graph properties studied
in this book.

§ Property Alexander dual

§1 Mn NCn−2
n

§2 BDd
n Some vertex of degree ≤ n − d − 2

§4 Bn NQPn,2

§7 NCn No complete bipartite subgraph

§16 Coltn NQPn,t

§17 Covn,p No clique of size n − p

§18 �n Covn,n−3

Remarks

Some of the listed properties have interesting Alexander duals; see Table 7.2.
There is some further duality worth noting between some of the complexes.

Specifically, the maximal faces of the complex Fn of forests are exactly the
minimal nonfaces of the complex NCn of disconnected graphs. Moreover, the
maximal faces of NCn coincide with the complements of the maximal faces
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of the complex Bn of bipartite graphs. Analogously, the maximal faces of the
complex SSCp,1

n of graphs with some connected component of size at most
p coincide with the complements of the maximal faces of the complex Bn,p

of graphs with balance number p. These dualities are not of Alexander type
and hence do not necessarily provide a topological connection between the
complexes.

7.2 Illustrations

§1 The 15 maximal graphs in M6 (and the minimal graphs not in NM6,3)
are all isomorphic to the following perfect matching.

§2 Each of the 187 maximal graphs in BD2
6 is isomorphic to one of the

following graphs with vertex degree at most two.

§3 Each of the 1296 maximal graphs in F6 (and each minimal graph not in
NC6) is isomorphic to one of the following spanning trees.

§4 Each of the 31 maximal graphs in B6 is isomorphic to one of the follow-
ing complete bipartite graphs. The two graphs to the left yield the 21
maximal faces of the subcomplex B6,2 of graphs with balance number at
most two.

§5 For an illustration of B6,2, see §4.
§6 Each of the 45 maximal graphs in NHam5 is isomorphic to one of the fol-

lowing non-Hamiltonian graphs. The leftmost graph yields the ten maxi-
mal faces of the complex Cov5,2 of graphs covered by two vertices, whereas
the two leftmost graphs yield the 30 maximal faces of the complex NFC5

of not factor-critical graphs.
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§7 Each of the 31 maximal graphs in NC6 is isomorphic to one of the fol-
lowing disconnected graphs with two components. The two graphs to the
left yield the 21 maximal faces of the subcomplex SSC2,1

6 of graphs with
at least one component of size at most two. The two graphs to the right
yield the 16 maximal faces of the subcomplex NC6,2 of graphs with some
component of odd size.

§8 Each of the 25 maximal graphs in NLC6,3 is isomorphic to one of the
following graphs with at most three vertices in each component.

§9 For an illustration of SSC2,1
6 , see §7.

§10 For an illustration of NC6,2, see §7.
§11 Each of the 504 maximal graphs in NC2

8 is isomorphic to one of the
following not 2-connected graphs.

§12 Each of the 868 maximal graphs in NC3
8 is isomorphic to one of the fol-

lowing not 3-connected graphs. The bold edges represent sets separating
the graphs.

§13 Each of the 1456 maximal graphs in NEC2
8 is isomorphic to one of the

following not 2-edge-connected graphs.
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§14 For an illustration of NFC5, see §6.
§15 Each of the 91 maximal graphs in NM6,3 is isomorphic to one of the

following graphs without a perfect matching.

§16 Each of the 75 maximal graphs in Col36 is isomorphic to one of the follow-
ing 3-colorable graphs; we have colored the vertices with the colors A, B,
and C.

A

BB

C

C C

A

AB

B

C C

§17 For an illustration of Cov5,2, see §6.
§18 Each of the 27 maximal graphs in �5 is isomorphic to one of the following

triangle-free graphs.
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Dihedral Graph Properties

We discuss monotone dihedral graph properties, which are graph complexes
on [n] that are invariant under the natural action of the dihedral group Dn.
More precisely, identify the corners of a regular n-gon with the vertices 1, . . . , n
arranged in clockwise direction. Representing a given edge ij with the open
line segment between the points representing i and j, we obtain the polygon
representation of a graph. The natural action of Dn on this graph is simply
the action induced by the natural action of Dn on the n-gon.

With this geometric representation in mind, we may divide the monotone
dihedral graph properties to be examined into two groups:

• Properties defined in terms of forbidden crossings. Two edges cross if their
representations as open line segments within the n-gon cross. The most
important example of a monotone dihedral graph property avoiding cross-
ings is the associahedron, in which each maximal face is a triangulation of
the n-gon. We obtain further examples by combining the property of avoid-
ing crossings with a monotone graph property. For example, we consider
complexes of noncrossing matchings, forests, and bipartite graphs.

• Properties defined in terms of connectivity. In this case, we again look at
the polygon representation of a given graph and examine whether it is dis-
connected or separable as a topological space, the restriction in the latter
case being that we only consider cut points that correspond to vertices in
the graph. We also consider the property of having a two-separable poly-
gon representation, meaning that we can cut the representation along a
line segment into two pieces without crossing any other line segment.

Except for the complex of noncrossing matchings, all dihedral properties in
this book have the homotopy type of a wedge of spheres in a fixed dimension.

As it turns out, we may exploit properties of the associahedron in our
analysis of other monotone dihedral graph properties. Moreover, as Shareshian
and Wachs observed [118], the associahedron plays an important role in
the analysis of the monotone graph property of being not 2-connected; see
Chapter 19.
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8.1 Basic Definitions

A dihedral graph property is a family of graphs on the vertex set [n] such that
the family is closed under the natural action of the dihedral group on [n]; this
action has as generators the rotation map i 	→ (i+1) mod n and the reflection
map i 	→ n + 1− i. If the dihedral graph property Σ is a graph complex (i.e.,
closed under deletion of edges), then Σ is a monotone dihedral graph property.

7

1
2

3

4

5
6

Fig. 8.1. The polygon representation of the graph with vertex set [7] and edge set
{12, 23, 26, 35, 37, 56, 57, 67} along with a dashed unit circle.

When examining dihedral graph properties, we illustrate a graph in the
plane by representing the vertices as points around the unit circle arranged
evenly spaced in clockwise direction. More precisely, given that the vertex set
is [n], we identify the vertex k with the point (cos(2πk/n), sin(−2πk/n)) and
the edge ij with the line segment between the points representing the vertices
i and j. Note that one may view the points representing the vertices as the
corners of a regular n-gon. For this reason, we refer to this representation of
a graph as the polygon representation; see Figure 8.1 for an example.

We may view the polygon representation of a graph G as a subset of R2

consisting of the points identifying the vertices in G along with the line seg-
ments identifying the edges in G. In particular, we may interpret the polygon
representation as a topological space.

Write {
Bdn = {12, 23, . . . , (n− 1)n, 1n};
Intn =

(
[n]
2

)
\ Bdn.

We refer to edges in Bdn as boundary edges and edges in Intn as interior edges
(some authors would perhaps refer to interior edges as chords or diagonals).

Two edges ac and bd cross if the corresponding open line segments in-
tersect. With a < c, a ≤ b, and b < d, this means that a < b < c < d with
strict inequalities. We refer to a graph without crossing edges as a noncrossing
graph.

A closed interval is a vertex set of the form

[a, b] =
{
{c : a ≤ c ≤ b} if 1 ≤ a ≤ b ≤ n;
{c : a ≤ c ≤ n} ∪ {c : 1 ≤ c ≤ b} if 1 ≤ b ≤ a ≤ n.
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Thus [a, b] consists of those vertices passed – endpoints included – when walk-
ing from a to b in clockwise direction. We define the open interval (a, b) as
the set obtained from [a, b] by removing the endpoints a and b. The half-open
intervals [a, b) and (a, b] are defined in the natural manner.

Table 8.1. List of monotone dihedral graph properties studied in this book. Cn is
the Catalan number 1

n+1

(
2n
n

)
, whereas Fn is the Fine number recursively defined by

Fn = (Cn−1 − Fn−1)/2 with F1 = 1.

§ Name Description Homotopy type Sec.

§1 NXn Noncrossing n-fold cone over An 16.2

An As above without cone points Sn−4

§2 NXMn Noncrossing matching Only partially known 16.3

§3 NXFn Noncrossing and cycle-free
∨

Sn−2 16.4

§4 NXBn Noncrossing and bipartite
∨
Fn

Sn−2 16.5

§5 NCR0,0
n Disconnected polygon representation

∨
Cn−1

Sn−3 21.2

” ∩NXn As above and noncrossing

§6 NCR1,0
n Separable polygon representation S2n−5 21.3

” ∩NXn As above and noncrossing

§7 NCR1,1
n Two-separable polygon representation n-fold cone over NCR

1,1
n 21.4

NCR
1,1
n As above without cone points Sn−4

8.2 List of Complexes

Definitions of the various monotone dihedral graph properties to be examined
are as follows; see Section 8.3 for illustrations. Table 8.1 provides a short sum-
mary of the main known results. Table 8.2 lists the dihedral graph properties
along with related monotone graph properties. See the relevant sections for
more details about the results and whom to attribute them to.

Properties Defined in Terms of Forbidden Crossings

§1 Noncrossing graphs. We define the associahedron An as the complex of all
graphs on n vertices with no crossing edges and with no boundary edges
(that is, no edges from Bdn). Let NXn be the n-fold cone over An with
respect to the boundary edge set Bdn. We may add any edge in Bdn to a
graph in An without introducing crossings; thus NXn is the complex of all
noncrossing graphs on [n]. We discuss NXn and An in Sections 16.1 and
16.2.
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Table 8.2. Comparison between some important monotone dihedral graph proper-
ties (MDGPs) and monotone graph properties (MGPs).

§ MDGP Homotopy type
Related
MGP

Description Homotopy type Sec.

§2 NXMn
Only partially
known

Mn Matching
Q-homology
known

11.2

§3 NXFn

∨
Sn−2 Fn Forest

∨
Sn−2 13.1

§4 NXBn

∨
Fn

Sn−2 Bn Bipartite
∨

Sn−2 14.1

§5 NCR0,0
n

∨
Cn−1

Sn−3 NCn Disconnected
∨

(n−1)!

Sn−3 18.1

§6 NCR1,0
n S2n−5 NC2

n Not 2-connected
∨

(n−2)!

S2n−5 19

§7 NCR1,1
n “Conen(Sn−4)” NC3

n Not 3-connected
∨

(n−3)
(n−2)!

2

S2n−4 20

§2 Noncrossing matchings. Define NXMn as the complex of noncrossing
matchings on n vertices; NXMn = Mn ∩NXn. In Section 16.3, we examine
NXMn.

§3 Noncrossing forests. Let NXFn be the complex of noncrossing forests on n
vertices; NXFn = Fn ∩ NXn. We discuss NXFn in Section 16.4.

§4 Noncrossing bipartite graphs. We define NXBn to be the complex of non-
crossing bipartite graphs on n vertices; NXBn = Bn ∩NXn. This is exactly
the complex of noncrossing graphs with the property that the boundary
of each region in the polygon representation contains an even number of
edges. Namely, since the vertices are in convex position, this is equivalent
to each cycle containing an even number of edges.

Properties Defined in Terms of Connectivity

For nonnegative integers n, k, l such that 0 ≤ k + l ≤ n− 2, let NCRk,l
n be the

complex of graphs on n vertices with the following property:
There exist two disjoint half-open intervals (a−k, a] and (b− l, b] of size k

and l, respectively, dividing the remaining vertex set into two nonempty pieces
(a, b − l] and (b, a − k] with the property that there are no edges between the
two pieces (a, b− l] and (b, a− k]; a− k and b− l are computed modulo n.

At first sight, this construction may appear as a bit artificial. However, for
small values of k and l, there are very natural interpretations:

§5 Graphs with a disconnected polygon representation. We may interpret
NCR0,0

n as the complex of graphs on n vertices with a disconnected polygon
representation. Indeed, NCR is short for “Not Connected Representation”.
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Namely, the condition for a graph to be in NCR0,0
n is that there exist

a, b such that there are no edges between (a, b] and (b, a] and such that
these two intervals are nonempty (thus a �= b). We consider NCR0,0

n in
Section 21.2.

§6 Graphs with a separable polygon representation. For (k, l) = (1, 0), we
obtain the complex NCR1,0

n of graphs on n vertices with a separable polygon
representation. A graph G has this property if there exist a, b such that
there is no edge between (a, b] and (b, a− 1] in G and such that these two
intervals are nonempty (thus a �= b, b + 1). We refer to a as a cut point
in G; if we remove the point representing the vertex a from the polygon
representation of G, then the result is disconnected. We devote Section 21.3
to NCR1,0

n .
§7 Graphs with a 2-separable polygon representation. For (k, l) = (1, 1), the

resulting complex NCR1,1
n consists of all graphs on n vertices with a two-

separable polygon representation. A graph G has this property if there
exist a, b such that there is no edge between (a, b − 1] and (b, a − 1] in G
and such that these two intervals are nonempty (thus a �= b− 1, b, b + 1).
We refer to {a, b} as a cut set in G; if we remove the points representing
the vertices a and b from the polygon representation of G − ab, then the
result is disconnected. All boundary edges turn out to be cone points in
NCR1,1

n ; we denote by NCR
1,1

n the complex obtained by removing all these
cone points. Section 21.3 deals with NCR1,1

n and NCR
1,1

n .

8.3 Illustrations

§1 We obtain the 42 maximal graphs in NX7 via rotation and reflection of the
following four graphs. We get the maximal graphs in A7 by removing the
seven boundary edges.

§2 We obtain the 20 maximal faces of NXM6 via rotation and reflection of the
following four noncrossing matchings.

§3 We obtain the 55 maximal faces of NXF5 via rotation and reflection of the
following seven noncrossing spanning trees.
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§4 We obtain the 30 maximal faces of NXB5 via rotation and reflection of the
following four noncrossing bipartite graphs.

§5 We obtain the 28 maximal faces of NCR0,0
8 via rotation of the following

four graphs. In each graph, [a + 1, b]× [b + 1, a] is empty.

a

b

a

b

a

b

ab

§6 We obtain the 48 maximal faces of NCR1,0
8 via rotation and reflection of

the following four graphs. In each graph, [a + 1, b]× [b + 1, a− 1] is empty.

a

b

a

b

a

b

§7 We obtain the 20 maximal faces of NCR1,1
8 via rotation of the following

three graphs. In each graph, [a+1, b− 1]× [b+1, a− 1] is empty, meaning
that there is no edge crossing the bold edge ab.

a

b

a

b

ab
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Digraph Properties

We proceed with digraph complexes, which are complexes in which each 0-cell
is an ordered – as opposed to unordered – pair. We still denote a pair (i, j)
as ij, but now ij and ji are different elements. We may divide the monotone
digraph properties to be examined into two groups:

• Directed variants of forests and bipartite graphs. We may define directed
variants of Fn in several ways. One way is to define the maximal faces as
spanning directed trees. Another way is to define the minimal nonfaces as
directed cycles. Similarly, there are a variety of ways of defining directed
analogues of bipartite graphs, one way being to forbid directed cycles of
odd length.

• Directed variants of disconnected graphs. Two ways of characterizing con-
nectivity easily adapts to directed variants. The first characterization is
that there must be a path between any two vertices; this translates into
requiring a directed path from any vertex to any other vertex. The other
characterization is that there must be a spanning tree; this translates into
requiring the existence of a spanning directed tree.

All digraph properties studied in this book have the homotopy type of a wedge
of spheres in a fixed dimension.

9.1 List of Complexes

We define the monotone digraph properties to be examined. Table 9.1 provides
a summary of known topological results. Again, only a few of the results are
our own; we refer the reader to the relevant section for details.

Directed Variants of Forests and Bipartite Graphs

§1 Directed forests. Let DFn be the complex of directed forests on n vertices.
We present the main results about DFn in Section 15.1.
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Table 9.1. Some monotone digraph properties. The Euler characteristic of DNOCyn

equals −|χ̃(Bn)|.
§ Name Description Homotopy type Sec.

§1 DFn Directed forest
∨

(n−1)n−1

Sn−2 15.1

§2 DAcyn Acyclic Sn−2 15.2

§3 DBn Directed bipartite Sn−2 15.3

DAcyn,k

Acyclic, no directed path
of edge length k + 1

Sn−2

§4 DGrn,p Graded modulo p
∨

Sn−2 15.4

§5 DOACn Without non-alternating circuits
∨

Sn−2 15.5

§6 DNOCyn Without odd directed cycles
∨

S2n−3 15.6

§7 DNSCn Not strongly connected
∨

(n−1)!

S2n−4 22.1

DNSCn,k P (D) has > k elements
∨

S2n−k−3

§8 DNSpn Non-spanning
∨

(n−2)!

S2n−5 22.3

DNSpn,k P (D) has > k atoms
∨

S2n−2k−3

§2 Acyclic digraphs. Recall that D is acyclic if D contains no directed cycles.
Let DAcyn be the complex of acyclic digraphs on n vertices. In Section 15.2,
we list the main results about DAcyn.

§3 Bipartite digraphs. A digraph D is bipartite if there is a bipartition (U,W )
of the vertex set of D such that the edge set is contained in U × W .
Equivalently, for each vertex, either the indegree or the outdegree is zero.
Let DBn be the complex of bipartite digraphs on n vertices. We discuss
DBn in Section 15.3.

Remark. An alternate approach would be to accept edges in both directions
between U and W . This would yield the trivial extension of the complex Bn

of bipartite graphs and is therefore of limited interest by Proposition 4.5.

§4 Graded digraphs. We say that a digraph D with vertex set V is graded
if there is a function f : V → Z such that f(b) − f(a) = 1 whenever
ab is an edge in D. A graded digraph is necessarily acyclic. For p ≥ 2,
D is graded modulo p if there is a function f : V → [0, p − 1] such that
(f(b) − f(a)) mod p = 1 whenever ab is an edge in D. Let DGrn be the
complex of graded digraphs on n vertices and let DGrn,p be the larger
complex of digraphs that are graded modulo p. Note that DGrn = DGrn,p

if p > n. Clearly, DGrn,2 is the trivial extension of Bn. Yet, for p ≥ 3,
DGrn,p is not trivial. We discuss DGrn and DGrn,p in Section 15.4.
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§5 Digraphs without non-alternating circuits. For a directed edge ij, define
+ij = (+1)(ij) = ij and −ij = (−1)(ij) = ji. A circuit

π = {s1(v1v2), s2(v2v3), . . . , sr−1(vr−1vr), sr(vrv1)}

in the digraphic matroid M→
n = Mn(K→

n ) is alternating if r is even and
the signs si form an alternating sequence; si+1 = −si for i ∈ [r − 1] and
s1 = −sr. Let DOACn be the complex of digraphs on n vertices with no
non-alternating circuits (“Only Alternating Circuits”); thus all circuits are
alternating. See Section 15.5 for an analysis of DOACn.

§6 Digraphs without odd directed cycles. We obtain yet another directed vari-
ant of Bn by considering digraphs without directed cycles of odd length.
Define DNOCyn to be the complex of such digraphs on n vertices. In this
case, there is no underlying bipartition in general. See Section 15.6 for an
analysis of DNOCyn.

Directed Variants of Disconnected Graphs

§7 Not strongly connected digraphs. Recall that a digraph D is strongly con-
nected if every pair of vertices in D is contained in a directed cycle. Let
DNSCn be the complex of not strongly connected digraphs on n vertices.
See Section 22.1 for a summary of known results about DNSCn. A digraph
D on n vertices is strongly 2-connected if D is strongly connected and
D([n] \ {x}) is strongly connected for each x ∈ [n]. Hence for every triple
of distinct vertices x, y, z, there is a directed path from y to z not using the
vertex x. Let DNSC2

n be the simplicial complex of not strongly 2-connected
digraphs on n vertices. We discuss this complex in Section 22.1.

§8 Non-spanning digraphs. Let us say that a digraph D is spanning if D
contains a spanning directed tree. Let DNSpn be the complex of non-
spanning digraphs on n vertices. Since the minimal nonfaces of DNSpn are
spanning directed trees, this complex is a natural directed analogue of the
complex NCn of disconnected graphs in which undirected spanning trees
are minimal nonfaces. Topologically however, DNSpn has more in common
with the complex NC2

n of not 2-connected graphs; see Section 22.3.

Interpretations in Terms of Posets

For a digraph D on a vertex set V , define an equivalence relation on V by the
rule that v and w are equivalent if and only if there is a directed cycle in D
containing both v and w. Equivalently, there is a directed path from v to w
and a directed path from w to v. Let A1, . . . , Ar be the induced equivalence
classes. The poset P (D) associated to D is the poset with one element for
each equivalence class such that Ai ≤ Aj if and only if there is a directed
path from some element in Ai to some element in Aj . Equivalently, there is a
directed path from any element in Ai to any element in Aj .
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One may interpret some of our digraph properties in terms of associated
posets:

§2 D ∈ DAcyn if and only if P (D) has n elements. That is, no two vertices
in D are equivalent.

§3 D ∈ DBn if and only if P (D) has n elements and no chain in P (D) has
length three. Namely, D belongs to DBn if and only if D does not contain
any directed path of edge length two.

§7 D ∈ DNSCn if and only if P (D) has at least two elements.
§8 D ∈ DNSpn if and only if P (D) has at least two atoms.

These interpretations suggest three generalizations:

• For 1 ≤ k ≤ n−1, define DAcyn,k as the complex of acyclic digraphs D on
n vertices with no directed path of edge length k + 1 (i.e., vertex length
k + 2). k = 1 yields DBn, whereas k = n− 1 yields DAcyn.

• For 1 ≤ k ≤ n − 1, define DNSCn,k as the complex of digraphs D on n
vertices such that P (D) has at least k + 1 elements. k = 1 yields DNSCn,
whereas k = n− 1 yields DAcyn.

• For 1 ≤ k ≤ n − 1, define DNSpn,k as the complex of digraphs D on n
vertices such that P (D) has at least k + 1 atoms. This means that every
directed forest contained in D has at least k + 1 connected components.
k = 1 yields DNSpn, whereas k = n− 1 yields the (−1)-simplex {φ}.

We discuss the first generalization along with the analysis of DBn in Section
15.3. We deal with the other two generalizations when we examine DNSCn

and DNSpn in Chapter 22.

Matrix-Theoretic Remark

We may identify a digraph D on the vertex set [n] with the n×n matrix MD

defined by {
(MD)i,j = 1 if ij ∈ D;
(MD)i,j = 0 otherwise.

The way we have defined digraphs, not allowing loops ii, the elements on the
diagonal of MD are always zero. Note that the element on position (i, j) in
Mk

D equals the number of directed paths in D from i to j of edge length k.
For a digraph complex ∆, let us write MD ∈ ∆ if D ∈ ∆. We may

interpret some of our digraph properties in terms of matrices as follows; all
matrix operations are carried out over Z.

§1 M ∈ DFn if and only if Mn = 0 and each column in M contains at most
one nonzero element.

§2 M ∈ DAcyn if and only if Mn = 0.
§3 M ∈ DBn if and only if M2 = 0.
§4 M ∈ DGrn,p if and only if there is a function f : V → [0, p− 1] such that

(f(b)− f(a)) mod p = 1 whenever Ma,b = 1.
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§6 M ∈ DNOCyn if and only if the diagonal of Md is zero whenever d is odd.
§7 M ∈ DNSCn if and only if there are indices i and j such that (Md)i,j = 0

for all d ≥ 1.
§8 M ∈ DNSpn if and only if for each i there exists a j �= i such that (Md)i,j =

0 for all d ≥ 1.

9.2 Illustrations

§1 Each of the 64 maximal digraphs in DF4 (and the minimal digraphs not
in DNSp4) is isomorphic to one of the following spanning directed trees.

§2 The 24 maximal digraphs in DAcy4 are all isomorphic to the following
acyclic digraph.

§3 For an illustration of DB4, see §4 (ii).
§4 (i) Each of the 74 maximal digraphs in DGr4 is isomorphic to one of the

following graded digraphs. Excluding the leftmost digraph, we obtain the
62 maximal digraphs in the subcomplex DOAC4 of digraphs with no non-
alternating cycle.

(ii) Each of the 26 maximal digraphs in DGr4,3 is isomorphic to one of the
following digraphs, all graded modulo 3. The three digraphs to the left
yield the 14 maximal faces of the subcomplex DB4 of bipartite digraphs.

§5 For an illustration of DOAC4, see §4 (i).



118 9 Digraph Properties

§6 Each of the 49 maximal digraphs in DNOCy4 is isomorphic to one of the
following digraphs without directed cycles of odd length.

§7 Each of the 14 maximal digraphs in DNSC4 is isomorphic to one of the
following not strongly connected digraphs.

§8 Each of the 25 maximal digraphs in DNSp4 is isomorphic to one of the
following non-spanning digraphs.
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Main Goals and Proof Techniques

For the complexes introduced in the three preceding chapters, there are five
parameters that we are particularly interested in: (1) homology, (2) homotopy
type, (3) depth, (4) connectivity degree, and (5) Euler characteristic. In some
cases, our analysis leads to more specific information about the complexes such
as a large vertex-decomposable skeleton or an optimal decision tree. Still, our
focus remains on the five listed parameters.

10.1 Homology

For obvious reasons, homology is a central topic of this book. Our approach
to the subject is somewhat simplistic in the sense that we do not take into
account group actions such as the natural action of the symmetric group on
a given monotone graph property. Instead, we refer the interested reader to
the literature [3, 21, 95, 122, 137, 145] for information and further references
about this important aspect of the theory.

Almost all homology computations in this book take place in the setting
of discrete Morse theory; see Chapter 4. In the vast majority of cases, we use
the decision tree variant of the theory discussed in Chapter 5. Indeed, the few
exceptions are exactly the cases where we have failed with the decision tree
method or where this method would be significantly more cumbersome. Some
monotone graph properties for which we apply “raw” discrete Morse theory
are NHamn, NC3

n, and NEC2
n.

Many of our decision tree proofs are quite similar to each other; an in-
teresting question is whether one may merge some of the proofs into a more
general proof. In at least one case, this is indeed possible. Specifically, the
theory developed in Sections 13.2-13.4 applies to Fn, Bn, DGrn,2, DOACn,
NCn, and NCn,p. Most of the time however, each individual complex seems to
require its own special treatment.

Occasionally, we will spend some time on examining the inner structure
of the homology of a complex. The most important example is probably the
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homology of the quotient complex 2Kn/NC2
n, for which Shareshian [118] was

able to present an explicit basis in terms of the fundamental cycle of the
associahedron An; see Section 19.1. We mimic Shareshian’s approach in our
analysis of the homology of 2Kn/NHamn and 2Kn/NC3

n; see Sections 17.2 and
20.2. In Section 21.1, the fundamental cycle of An appears once again, this
time within the homology of 2Kn/NCR1,0

n and NCR1,1
n . Finally, in Section 23.3,

we expose a surprising connection between NEC2
n and NFCn.

One intriguing observation in this book is that the Betti numbers of Bn,p

and Covn,p are polynomials in n for each fixed p; see Sections 14.3 and 26.4.
Add to that the result of Linusson et al. [95] that the same is true for NMn,k

for each fixed k; see Chapter 24. One interesting question is whether this
holds for more general classes of monotone graph properties. Unfortunately,
we have not been able to prove anything in this direction, but in a separate
manuscript [73], we prove some general results about the Euler characteristic
being a polynomial under certain conditions; see Chapter 25 for some details.

10.2 Homotopy Type

Being more fine-tuned than homology, homotopy type is often much harder to
compute. However, thanks to discrete Morse theory, many homological results
in this book are straightforward to translate into the language of homotopy
theory. For example, this is the case whenever we can use discrete Morse
theory to prove that all reduced homology is concentrated in one dimension;
the homotopy type is then that of a wedge of spheres. Via Theorem 4.11, we
may also apply discrete Morse theory to more complicated complexes such
as NHamn and Covn,p, again concluding that the homotopy type is that of a
wedge. This time however, some of the components in the wedge are no longer
spheres.

10.3 Connectivity Degree

In situations where it is hard to compute the homology and homotopy type
of a complex, one may instead head for the presumably easier problem of
estimating the connectivity degree. Our main tool for attacking this problem
is again discrete Morse theory, the goal being to find an acyclic matching such
that the dimension of the smallest unmatched faces is as large as possible. We
apply this technique to a number of complexes, including BDd

n and NLCn,k.
See Table 10.1 for a summary of known results.

10.4 Depth

There is an obvious upper bound on the depth of a simplicial complex given
by the shifted connectivity degree. Intriguingly, this bound is sharp for many
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Table 10.1. Homotopical depth and shifted connectivity degree of some graph,
dihedral graph, and digraph properties. For the properties to the left, the shifted
connectivity degree coincides with the depth, possible exceptions being complexes
where we only have a lower bound on the depth (and, of course, contractible com-
plexes). For the properties to the right, we typically do not have any nontrivial lower
bound on the depth.

§ Complex Depth Sec.

§7.1 Mn 
n−4
3

� 11.2

§7.3 Fn n − 2 (V D) 13.1

§7.4 Bn n − 2 14.1

§7.5 Bn,p 2p − 1 14.3

§7.7 NCn n − 3 18.1

§7.8 NLCn,k ≥ (k−1)(n−1)
k+1

− 1 18.2

§7.9 SSCk,s
n n − s − 2 18.3

§7.10 NCn,p n − 3 18.4

§7.11 NC2
n 2n − 5 19

§7.17 Covn,p ≥ 2p − 1 26

§7.18 �n n − 2 26.7

§8.1 NXn 2n − 4 (V D) 16.2

An n − 4 (V D)

§8.2 NXMn 
n−4
3

� 16.3

§8.3 NXFn n − 2 (V D) 16.4

§8.4 NXBn n − 2 16.5

§8.5 NCR0,0
n n − 3 21.2

§8.6 NCR1,0
n 2n − 5 21.3

§9.1 DFn n − 2 (V D) 15.1

§9.2 DAcyn n − 2 15.2

§9.3 DBn n − 2 15.3

§9.4 DGrn,p n − 2 15.4

§9.5 DOACn n − 2 15.5

§9.7 DNSCn 2n − 4 22.1

§ Complex
Shifted connec-
tivity degree

Sec.

§7.2 BD2
n ≥ 7n−13

9
12.1

BD3
n ≥ 11n−13

9

BD4
n ≥ 27n−25

16

§7.6 NHamn ≥ 3n−4
2

(n ≥ 6) 17

§7.12 NC3
n 2n − 4 20

§7.13 NEC2
2k ≥ 3k − 3 23

NEC2
2k−1 3k − 5

§7.14 NFC2k−1 3k − 5 23.3

§7.15 NMn,k 3k − 4 24

§7.16 Coltn ≥ (t−1)(n−1)
2

− 1 25

§8.7 NCR
1,1
n n − 4 21.4

§9.6 DNOCyn 2n − 3 15.6

§9.8 DNSpn 2n − 5 22.3

graph complexes. Moreover, the relevant skeleton is often not only Cohen-
Macaulay but also vertex-decomposable. For example, this holds for Mn, Fn,
Bn, Bn,p, NCn, and �n. Our proof techniques are typically very similar to
those used to determine homology and homotopy type. Keeping in mind that
a proof of vertex-decomposability is basically all about defining a decision
tree, this is perhaps not so surprising.
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In situations where a vertex decomposition is difficult to find, one may
instead adapt the technique that Shareshian used in his analysis of NC2

n [117],
establishing Cohen-Macaulayness via a separate treatment of each individual
link. We take this approach in our analysis of NLCn,k and DNSCn.

Complexes in this book with a known depth – or a known nontrivial lower
bound on the depth – are listed to the left in Table 10.1. For the complexes
to the right in the same table, we know very little about the depth.

Table 10.2. Reduced Euler characteristic of some graph, dihedral graph, and di-
graph properties. “Polyk(n)” denotes a polynomial of degree at most k. The func-
tions in the table to the right are exponential generating functions (plus or minus
some leading terms), except for dihedral properties, in which case they are ordinary
generating functions.

§ Complex
Euler char.
(up to sign)

Sec.

§7.5 Bn,p Poly2p(n) 14.3

§7.7 NCn (n − 1)! 18.1

§7.9 SSC1,s
n n

(
n−2
s−1

)− (
n−1
s−1

)
18.3

§7.11 NC2
n (n − 2)! 19

§7.12 NC3
n (n − 3) (n−2)!

2
20

§7.14 NFC2k−1 ((2k − 3)!!)2 23.3

§7.15 NMn,k Poly3k−3(n) 24

§7.16 (Coln−r
n )∗ Poly(n) 25

§7.17 Covn,p Poly2p(n) 26

§8.1 NXn 0 16.2

An 1

§8.5 NCR0,0
n

1
n

(
2n−2
n−1

)
21.2

§8.6 NCR1,0
n 1 21.3

§8.7 NCR
1,1
n 1 21.4

§9.1 DFn (n − 1)n−1 15.1

§9.2 DAcyn 1 15.2

§9.3 DBn 1 15.3

§9.7 DNSCn (n − 1)! 22.1

§9.8 DNSpn (n − 2)! 22.3

§ Complex Gen. function Sec.

§7.1 Mn −e−x+x2/2 11.2

§7.2 BD2
n − exp( x

2+2x
+x)

exp( x2
4 )

√
1+x

12.3

(BDn−3
n )∗ e−x2/2(x + e−x)

§7.3 Fn See Th. 13.3 13.1

§7.4 Bn −√
2ex − 1 14.1

§7.4 Bn \ NCn − 1
2

ln(2ex − 1) 14.2

§7.6 NHamn Not known 17

§7.8 NLCn,k See Prop. 18.9 18.2

§7.9 SSCk,s
n See Th. 18.19 18.3

§7.10 NCn,p (1 − (−x)p)1/p 18.4

§7.12 (NCn−3
n )∗ EGF(BD2

n)

exp(x4/8)
20.4

§7.13 NEC2
n See Th. 23.2 23

§7.18 �n Not known 26.7

§8.2 NXMn
1−x−

√
1−2x+5x2

2x2 16.3

§8.3 NXFn See Th. 16.13 16.4

§8.4 NXBn
1−2x−√

1+4x
4−2x

16.5

§9.4 DGrn − 1
2

√
4ex − 3 15.4

DGrn,3 −(3ex − 2)1/3

DGrn,4 −(2e2x − 1)1/4

§9.5 DOACn Not known 15.5

§9.6 DNOCyn −√
2e−x − 1 15.6
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10.5 Euler Characteristic

For several complexes in this book, the Euler characteristic admits a closed
expression, either explicitly or via a generating function. For the matching
complex Mn and the complex NCn of disconnected graphs, the existence of
such a nice formula is an immediate consequence of Corollary 6.15, but in
general we need to work a bit harder. In some instances, we can deduce the
Euler characteristic directly from an explicit description of the critical faces
with respect to a given acyclic matching or decision tree. In other cases, the
procedure goes via generating functions, and the most frequently used ap-
proach in this book is to search for a nice recursive identity of the form
χ̃(∆n) = Fn(χ̃(∆1), . . . , χ̃(∆n−1)). In favorable instances, we may extract
from this identity a closed expression – explicit or implicit – for the (expo-
nential) generating function for χ̃(∆n). For a fairly straightforward example,
see Theorem 16.12. We present formulas for the Euler characteristic of some
complexes in Table 10.2.

10.6 Remarks on Nonevasiveness and Related Properties

In Section 1.1.9, we discussed the evasiveness conjecture. Let us say that a
simplicial complex Σ is nearly nonevasive if the deletion of Σ with respect to
some vertex is nonevasive. For example, vertex-decomposable combinatorial
spheres are nearly nonevasive. Clearly, any nonevasive complex, the 0-simplex
excluded, is also nearly nonevasive.

For complexes with a vertex-transitive automorphism group, a particular
vertex deletion is nonevasive if and only if all vertex deletions are nonevasive.
In particular, monotone graph and digraph properties satisfy this condition.
An interesting research project would be to characterize the family of nearly
nonevasive monotone graph and digraph properties. While a complete char-
acterization is probably very hard to achieve, we believe that any example is
likely to have a rich and beautiful structure, thanks to the vertex-transitive
structure.

So far, we have discovered the following nearly nonevasive monotone graph
and digraph properties:

• The graph property of not being the complete graph on n vertices.
• The digraph property of not being the complete digraph on n vertices.
• The graph property NM4,2 of not containing a perfect matching on four

vertices. To see that NM4,2 is nearly nonevasive, note that the deletion
with respect to the edge 12 is a cone with cone point 34. In fact, NM4,2 is
isomorphic to the octahedron.

• The digraph property of not containing a cycle (ij, ji) of length 2. Namely,
the deletion with respect to 12 is a cone with cone point 21.

• The Alexander dual of he digraph property DAcyn of being acyclic on n
vertices; use the proof of Theorem 15.3.
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• The digraph property DBn of being directed bipartite on n vertices; use
the proof of Theorem 15.7.

• The graph property NC2
n of being not 2-connected on n vertices; use the

proof of Theorem 19.9.

Another question related to the evasiveness conjecture is whether there
are collapsible monotone graph properties that are not nonevasive. More gen-
erally, one may ask whether there are semi-collapsible monotone graph prop-
erties that are not semi-nonevasive. Not surprisingly, the answer to the second
question is yes:

Let ∆ be the complex of all graphs on the vertex set {1, 2, 3, 4, 5} that
are contained in a copy of {12, 34, 35}. This complex is collapsible to the
matching complex M5 on five vertices (see Chapter 11); collapse all pairs
({cd, ce}, {ab, cd, ce}). Since M5 is semi-collapsible by Theorem 11.27, the
same is true for ∆. However, ∆ is not semi-nonevasive. Namely, the three
1-cells {34, 35}, {34, 45}, {35, 45} form a cycle in lk∆(12), which implies that
lk∆(12) has nonvanishing homology in its top dimension; by symmetry, the
same is true for lk∆(x) for any x. Since ∆ has no homology in its top dimen-
sion, it follows that ∆ cannot be semi-nonevasive.

1 2 3 4
5
6

Fig. 10.1. The graph {12, 23, 34, 45, 46}.

It may also be worth mentioning that there exists a Q-acyclic monotone
graph property that is not Z-acyclic: Let ∆ be the complex of all bipar-
tite graphs on the vertex set {1, 2, 3, 4, 5, 6} that do not contain a sub-
graph isomorphic to the graph in Figure 10.1. Using the computer program
homology [42], one may conclude that the only nonzero homology group is
H̃3(∆; Z) ∼= Z16

2 ⊕ Z4
3 ⊕ Z9. We have not found a simple proof of this fact.
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Matchings

We discuss simplicial complexes of matchings. Recall that a matching is a
graph in which each vertex is adjacent to at most one other vertex.

For any graph G on n vertices, let M(G) = Mn(G) be the simplicial com-
plex of matchings contained in G. Arguably the most important special case
is the full complex Mn = M(Kn) of all matchings on the vertex set [n]. For an
excellent survey of results on Mn, see Wachs [145]. In Section 11.2, we give a
summary of some of these results:

• Bouc [21] derived a formula for the rational homology of Mn; see also the
work of Karaguezian [80] and Reiner and Roberts [111]. A consequence of
the formula is that H̃d(Mn; Q) is nonzero if and only if

⌈
n−�√n�−2

2

⌉
≤ d ≤⌊

n−3
2

⌋
.

• Shareshian and Wachs [122] provided a shelling of the νn-skeleton of Mn,
where νn = �n−4

3 �, thereby giving a new proof of a result of Björner,
Lovász, Vrećica, and Živaljević about the connectivity degree of Mn.
Athanasiadis [2] proved that the νn-skeleton is vertex-decomposable.

• Bouc [21] proved that Mn has nonvanishing homology in dimension νn for
all n �= 2;1 hence the shifted connectivity degree of Mn is νn. Combining
results of Bouc with new ideas, Shareshian and Wachs [122] were able to
deduce that the group H̃νn

(Mn; Z) is a finite group of exponent three if
n ∈ {7, 10, 12, 13} or n ≥ 15.

We present a proof of the important result about the connectivity degree of
Mn, basically following the approach of Shareshian and Wachs [122]. Moreover,
using the 3-torsion result of Shareshian and Wachs, we show that H̃d(Mn; Z)
contains 3-torsion whenever νn ≤ d ≤ n−6

2 . In Section 11.1, we generalize
Athanasiadis’ result to general graphs, proving that Mn(G) is V D(n−t

2 − 1)
whenever the vertex set of G admits a partition into t cliques of size at most
three.
1 Bouc did not explicitly mention the case n mod 3 = 2; see Shareshian and Wachs

[122].



128 11 Matchings

Another very important and well-studied special case is the chessboard
complex Mm,n = M(Km,n), where Km,n is the complete bipartite graph with
block sizes m and n. Again, the rational homology is given by a beautiful
formula; see Friedman and Hanlon [52]. In Section 11.3, we list some important
results due to Björner et al. [11], Ziegler [151], and Shareshian and Wachs
[122], the main conclusion being that the depth and the shifted connectivity
degree of Mm,n are equal to min{m−1,

⌈
m+n−4

3

⌉
}. Using results of Shareshian

and Wachs and our own result about 3-torsion in H̃d(Mn; Z), we prove that
H̃d(Mm,n; Z) contains 3-torsion whenever m+n−4

3 ≤ d ≤ m− 4 and whenever
d = m− 3 and m + 1 ≤ n ≤ 2m− 5.

In Section 11.4, we proceed with some results due to Kozlov [86] about
matching complexes on paths and cycles; we will need these results in later
sections. There are many other potentially interesting matching complexes,
e.g., on rectangular grids, honeycomb graphs, and Kneser graphs, but the
analysis of such complexes falls outside the scope of this book. See a separate
manuscript [69] for a treatment of grids.

Occasionally, we will say a few words about matching complexes on hy-
pergraphs. The most important example is the matching complex HMk

n of all
k-hypergraphs on [n] with mutually disjoint edges.

The matching complex and its relatives have found applications in several
areas of mathematics; see Sections 1.1.1, 1.1.2, 1.1.3, and 1.1.7 for discussion.

11.1 Some General Results

We consider a general graph G and present some lower bounds on the depth
of M(G).

Theorem 11.1. Let G be a graph on the vertex set V . Suppose that there is a
partition {U1, . . . , Ut} of V such that |Ui| ≤ 3 for each i and such that G(Ui) is
isomorphic to either K1,K2,K3, or Pa3 = ([3], {12, 23}). Suppose further that
whenever G(Ui) is of the form ({a, b, c}, {ab, bc}) (thus isomorphic to Pa3),
the vertex b is not adjacent in G to any other vertices than a and c. Then
M(G) is V D(ν), where

ν =
⌈ |V | − t

2

⌉
− 1.

In particular, this holds whenever {U1, . . . , Ut} is a clique partition of G such
that each Ui has size at most three.

Proof. Let σ be the union of the sets of edges within the induced subgraphs
G(Ui) for i ∈ [1, k]. If the edge set of G is σ, then

M(G) = M(G(U1)) ∗ · · · ∗M(G(Ut)),

which is V D(ν) by Lemma 6.11; M(H) is V D(0) if H ∈ {K2,K3,Pa3} and
V D(−1) if H = K1. Otherwise, let e be any edge in G − σ. By induction
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on the number of edges in G, delM(G)(e) = M(G − e) is V D(ν). Moreover,
lkM(G)(e) equals M(G(V \ e)), where V is the vertex set of G; we remove all
edges containing either of the two vertices in e. Removing the endpoints of e
from the appropriate sets Ui in the partition, we obtain a partition of V \ e
with at most t sets. Moreover, each of the corresponding induced subgraphs
is either a complete graph or isomorphic to Pa3; if one of the endpoints of e
lies in an induced subgraph G(Ui) isomorphic to Pa3, then G(Ui \ e) must be
isomorphic to K2 by assumption. By induction, G(V \ e) is hence V D(ν′),
where

ν′ =
⌈ |V | − 2− t

2

⌉
− 1 = ν − 1.

By Lemma 6.10, we are done. �

As an immediate consequence, we obtain the following result:

Corollary 11.2. Let G be a graph on the vertex set [n]. Suppose that there is
a clique partition of G into t = �n

3 � parts, each of size at most three. Then
M(G) is V D(νn), where νn = �n−4

3 �. In particular, this is true for G = Kn.

Remark. Athanasiadis was the first to prove that Mn = M(Kn) is V D(νn);
see Section 11.2 for more information.

Proof. Let k be such that n = 3k − r and r ∈ {0, 1, 2}. We obtain that⌈
n− �n/3�

2

⌉
=
⌈

3k − r − k

2

⌉
=
⌈
k − r

2

⌉
=
⌈
k − r + 1

3

⌉
=
⌈

n− 1
3

⌉
.

Thus we are done by Theorem 11.1. �

The following corollary to Theorem 11.1 is less significant but still somewhat
interesting.

Corollary 11.3. Let G be a graph on n vertices admitting a perfect matching.
Then M(G) is V D(�n

4 � − 1). �
The dimension �n

4 � − 1 in Corollary 11.3 is best possible. Namely, suppose
that G is a graph with n = 4m vertices and with m connected components,
all isomorphic to Pa4 = ([4], {12, 23, 34}). Then G admits a perfect matching
of size 2m = n

2 . However, since M(Pa4) ∼ t0 (use Proposition 11.42 below),
we have that M(G) = M(Pa4) ∗ · · · ∗M(Pa4) ∼ tm−1 by Theorem 5.29; this
implies that the shifted connectivity degree of M(G) is m− 1 = n

4 − 1.
Nevertheless, in many special cases, the value in Corollary 11.3 is way

below the actual depth. This is true not only for graphs admitting a parti-
tion with many triangles, such as the graphs in Corollary 11.2, but also for
several triangle-free graphs such as the complete bipartite graph discussed in
Section 11.3.

The following powerful result is worth mentioning for its use in the work
of Athanasiadis [2]. We will apply it in Section 11.3.
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Theorem 11.4 (Athanasiadis [2, Th. 4.1]). Let G be a graph on the vertex
set V , let d ≥ 0, and let e = ab be an edge in G. Suppose that M(G(V \ S))
is V D(d − 1) whenever S = {a, x} for some x such that ax ∈ G (including
x = b) or S = {a, b, y} for some y such that by ∈ G. Then G is V D(d). �
The proof idea is to decompose M(G) with respect to the edge set {ax : ax ∈
G, x �= b} and then decompose the resulting deletion with respect to the set
{yb : yb ∈ G, y �= a}. The deletion with respect to all these edges is the join of
{∅, ab} and M(G(V \{a, b})), whereas each link in the decomposition coincides
with some of the other induced subcomplexes mentioned in the theorem.

11.2 Complete Graphs

We consider the full matching complex Mn = M(Kn).

11.2.1 Rational Homology

The rational homology of Mn is given by a surprisingly beautiful formula. A
standard Young tableau T on a partition λ � n (see Section 2.5) is a bijection
from the set λ to [n] such that T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d.
Thus T increases along each row and each column in λ. The hook of an element
(a, b) in λ is the set

Hλ(a, b) = {(a, b′) ∈ λ : b′ ≥ b} ∪ {(a′, b) ∈ λ : a′ ≥ a}.

The number fλ of standard Young tableaux on λ is given by the celebrated
hook length formula [51]:

fλ =
|λ|!∏

(a,b)∈λ |Hλ(a, b)| . (11.1)

Recall that Dλ is the set {(i, i) : λi ≥ i} of diagonal elements in λ.

Theorem 11.5 (Bouc [21]). Let notation be as in Section 2.5. For n ≥ 1
and d ≥ 0,

dim H̃d−1(Mn; Q) =
∑

λ

fλ,

where the sum is over all self-conjugate partitions λ � n such that |Dλ| =
n− 2d (i.e., d = n−|Dλ|

2 ) and fλ is the number of standard Young tableaux on
λ (use equation (11.1)). In particular, Mn has homology over Q in dimension
d if and only if

αn =
⌈

n− �√n� − 2
2

⌉
≤ d ≤

⌊
n− 3

2

⌋
.

As a consequence, the depth of Mn over Q equals αn. �
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For the last statement in Theorem 11.5, use the fact that αn−2k ≥ αn − k
for all n, k such that n > 2k. Theorem 11.5 was rediscovered by Karaguezian
[80] and by Reiner and Roberts [111]. Dong and Wachs [37] gave an elegant
proof in terms of the combinatorial Laplacian. See Wachs’ survey [145] for
more information about the rational homology of Mn.

11.2.2 Homotopical Depth and Bottom Nonvanishing Homology

Let νn = �n−4
3 �. Björner, Lovász, Vrećica, and Živaljević proved the first

significant result about the homotopical depth of Mn, which turns out to be
significantly smaller than the depth over Q:

Theorem 11.6 (Björner et al. [11]). For n ≥ 1, the νn-skeleton of Mn is
homotopically CM . Moreover, Mn has no homology above dimension �n−3

2 �.
�
As we will see, νn is indeed equal to the depth and the shifted connectivity
degree of Mn.

Shareshian and Wachs [120, 122] strengthened Theorem 11.6, showing that
the νn-skeleton of Mn is shellable. Athanasiadis [2] extended this result to
hypergraphs:

Theorem 11.7 (Athanasiadis [2]). Let n ≥ k ≥ 2. Then HMk
n is V D(νn,k),

where νn,k =
⌈

n−2k
k+1

⌉
. �

The special case k = 2 is a consequence of Corollary 11.2. Another approach
to proving this special case would be to apply Theorem 11.4. Specifically,
with notation and assumptions as in Theorem 11.4, one readily verifies that
the graph Kn(V \ S) is a complete graph on either n− 3 or n− 2 vertices. A
simple induction argument yields the desired result. For k ≥ 3 and n ≥ 3k+2,
Theorem 11.7 provides a significant and surprising improvement to the bound
�n−k−2

2k−1 � of Ksontini [88] on the shifted connectivity degree of HMk
n. One

easily checks by hand that HM3
n is homotopy equivalent to a nonempty wedge

of spheres of dimension νn,3 for n ∈ [4, 9]. Moreover, a computer calculation
yields that H̃1(HM3

10; Z) ∼= Z42. and H̃2(HM3
10; Z) ∼= Z861.

Define

Pn
d =

n⊕
i=2

H̃d−1(M[2,n]\{i}; Z) · pi;

Qn
d =

⊕
i�=j∈[3,n]

H̃d−2(M[3,n]\{i,j}; Z) · qi,j ;

Rn
d =

2⊕
a=1

n⊕
i=3

H̃d−1(M[3,n]\{i}; Z) · ra,i.

Here, pi, qi,j , and ra,i are formal variables and MX is the matching complex
on the complete graph with vertex set X. Let ∆n be the subcomplex of Mn
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consisting of all matchings G such that at least one of the vertices 1 and
2 is isolated in G − 12. Thus Mn/∆n consists of all matchings G such that
1i, 2j ∈ G for some distinct i, j ∈ [3, n].

Lemma 11.8 (see Bouc [21]). We have isomorphisms

f : Pn
d → H̃d(Mn/M[2,n]; Z);

g : Qn
d → H̃d(Mn/∆n; Z);

h : Rn
d → H̃d(∆n; Z)

given coefficient-wise by f(z · pi) = [1i] ∧ z, g(z · qi,j) = [1i] ∧ [2j] ∧ z, and
h(z · ra,i) = ([ai]− [12]) ∧ z.

Proof. First, consider Mn/M[2,n]. We have that

Mn/M[2,n] =
⋃

i∈[2,n]

{{1i}} ∗M[2,n]\{i}.

Since the families in the union form an antichain with respect to inclusion,
we immediately obtain that f defines an isomorphism.

Next, note that

Mn/∆n =
⋃

i�=j∈[3,n]

{{1i, 2j}} ∗M[3,n]\{i,j}.

Again, we have an antichain, which implies that g defines an isomorphism.
Finally, consider ∆n. We have that ∆n is homotopy equivalent to the quo-

tient complex ∆̃n = ∆n/({∅, {12}} ∗M[3,n]) by the Contractible Subcomplex
Lemma 3.16. It is clear that

∆̃n =
2⋃

a=1

⋃
i∈[3,n]

{{ai}} ∗M[3,n]\{i}.

As a consequence, we have an isomorphism h̃ from Rn
d to ∆̃n given by h̃(z ·

ra,i) = [ai] ∧ z. Now, observe that we obtain ∆̃n from ∆n via the acyclic
matching defined by pairing σ+12 with σ−12 whenever possible. Applying the
theory in Section 4.4 to this matching, one readily verifies that an isomorphism
from H̃d(∆̃n; Z) to H̃d(∆n; Z) is given by the map [ai] ∧ z 	→ ([ai]− [12]) ∧ z.
Composing this map with h̃, we obtain h, which concludes the proof. �

For a cycle z in C̃d(Mn; Z) and a sequence (e1, . . . , er) of edges, we define
ze1,...,er

as the unique cycle in C̃d(M[n]\⋃i ei
; Z) such that

z − [e1] ∧ · · · ∧ [er] ∧ ze1,...,er
∈ C̃d(fdelMn

({e1, . . . , er}); Z).
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Corollary 11.9. For each n and d, we have an exact sequence

H̃d(M[2,n]; Z) −−−−→ H̃d(Mn; Z) ω−−−−→ Pn
d

−−−−→ H̃d−1(M[2,n]; Z) −−−−→ H̃d−1(Mn; Z),

where ω(z) =
∑

z1i · pi. Moreover, we have an exact sequence

Rn
d

ϕ−−−−→ H̃d(Mn; Z) κ−−−−→ Qn
d

ψ−−−−→ Rn
d−1 −−−−→ H̃d−1(Mn; Z),

where ψ(z · qi,j) = z · r2,j − z · r1,i, ϕ(z · ra,i) = ([ai] − [12]) ∧ z, and κ(z) =∑
i,j z1i,2j · qi,j.

Proof. This is an immediate consequence of Lemma 11.8 and the long exact
sequences for the pairs (Mn,M[2,n]) and (Mn,∆n); see Theorem 3.3. �

For N mod 3 = 0, define

γN = ([12]− [23]) ∧ ([45]− [56]) ∧ ([78]− [89]) (11.2)
∧ · · · ∧ ([(N − 2)(N − 1)]− [(N − 1)N ]);

this is a cycle in C̃νN
(MN ; Z).

Lemma 11.10 (Shareshian and Wachs [122]). Write N = 3�n
3 �. For

n mod 3 ∈ {0, 1}, H̃νn
(Mn; Z) is generated by {π(γN ) : π ∈ S[n]}, the action

of S[n] on H̃νn
(Mn; Z) being the one induced by the natural action on Mn.

Proof. One easily checks the statement for n = 3, 4. By Corollary 11.9, we
have an exact sequence

Rn
νn

ϕ−−−−→ H̃νn
(Mn; Z) −−−−→ Qn

νn
,

where ϕ(z ·ra,i) = ([ai]−[12])∧z. Now, since νn−4 = νn−1 if n mod 3 ∈ {0, 1},
we have that H̃νn−2(Mn−4; Z) = 0 and hence that Qn

νn
= 0, which implies that

ϕ is surjective. The desired claim easily follows by induction. �

Theorem 11.11 (Bouc [21]). For n ≥ 7 and n mod 3 = 1, H̃νn
(Mn; Z) ∼=

Z3.

Proof. A computer calculation yields the statement for n = 7. Assume that
n ≥ 10. By Corollary 11.9, we have an exact sequence

Qn
νn+1

ψ−−−−→ Rn
νn
−−−−→ H̃νn

(Mn; Z) −−−−→ 0, (11.3)

where ψ(z · qi,j) = z · r2,j − z · r1,i. The rightmost group being zero is a
consequence of Lemma 11.8 and the fact that νn − 2 < νn−4.

Now, induction on n yields that H̃νn−1(M[3,n−1]; Z) ∼= Z3; νn − 1 = νn−3.
Consider the cycle
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γ
(2)
n−4 = ([34]− [45]) ∧ ([67]− [78]) ∧ · · · ∧ ([(n− 4)(n− 3)]− [(n− 3)(n− 2)]);

this is an element in H̃νn−1(M[3,n−1]; Z).2 By Lemma 11.10 and symmetry,
we must have that π(γ(2)

n−4) is nonzero in H̃νn−1(M[3,n−1]; Z) for every per-
mutation π ∈ S[3,n−1]. In particular, π(γ(2)

n−4) = ±γ
(2)
n−4. Transposing π(3)

and π(5) in π(γ(2)
n−4), we obtain −π(γ(2)

n−4), which implies that S[3,n−1] acts
on H̃νn−1(M[3,n−1]; Z) by π(z) = sgn(π) · z.

Let εi be the permutation (i, i + 1, . . . , n− 1, n) in S[3,n]; r is mapped to
r+1 for r ∈ [i, n−1] and n is mapped to i. By symmetry, it is immediate that
the map ε̂i : H̃νn−1(M[3,n−1]; Z) → H̃νn−1(M[3,n]\{i}; Z) defined by ε̂i(z) =
(−1)n−iεi(z) is an isomorphism.

Now, let i, j ∈ [3, n] and consider an element z ·qi,j in Qn
νn+1; any element

in Qn
νn+1 is a linear combination of such elements. We may write z = π(ẑ),

where ẑ is an element in H̃νn−3(M[3,n−2]; Z) and π is a permutation in S[3,n]

such that π(n− 1) = i and π(n) = j. Note that we may view εi ◦ π−1 ◦ (i, j)
as a permutation in S[3,n]\{i} and εj ◦ π−1 as a permutation in S[3,n]\{j}.
Moreover, (i, j) ◦ π(ẑ) = π(ẑ) = z. As consequence, we obtain that

ψ(z · qi,j) = z · r2,j − z · r1,i = π(ẑ) · r2,j − (i, j) ◦ π(ẑ) · r1,i

= sgn(εj ◦ π−1)εj(ẑ) · r2,j − sgn(εi ◦ π−1 ◦ (i, j))εi(ẑ) · r1,i

= sgn(π)
(
(−1)n−jεj(ẑ) · r2,j − (−1)n−i−1εi(ẑ) · r1,i

)
= sgn(π) (ε̂j(ẑ) · r2,j + ε̂i(ẑ) · r1,i) .

Note that γ
(2)
n−4 is a generator of H̃νn−1(M[3,n−1]; Z). We define ea,i =

ε̂i(γ
(2)
n−4) · ra,i. Observe that the image under ψ is generated by {e1,i + e2,j :

i, j ∈ [3, n], i �= j}. It remains to prove that this image has codimension one
when viewed as a vector space over Z3; by the exactness of the sequence in
(11.3), this will imply that H̃νn

(Mn; Z) ∼= Z3. Now,

e1,3 + e2,3 = (e1,3 + e2,5) + (e1,4 + e2,3)− (e1,4 + e2,5)
e1,3 − e1,j = (e1,3 + e2,3)− (e1,j + e2,3)

for any j ∈ [4, n], which yields that the image has codimension at most
one. Moreover, define η : Rn

νn
→ H̃νn−1(M[3,n−1]; Z) by η(ea,i) = (−1)aγ

(2)
n−4.

Clearly, η is nonzero, whereas η ◦ ψ = 0, which implies that ψ is not onto. It
follows that the codimension is at least one and hence exactly one. �
Theorem 11.12 (Bouc [21], Shareshian and Wachs [122]). For n = 1
and n ≥ 3, the homology group H̃νn

(Mn; Z) is nonzero.

Proof. One easily checks n ≤ 4 by hand; thus assume that n ≥ 5. We estab-
lished the case n mod 3 = 1 in Theorem 11.11. For the case n mod 3 = 0,
consider the exact sequence
2 The number 2 in the exponent of γ

(2)
n−4 indicates a two-step “shift”; we replace

[ij] with [(i + 2)(j + 2)]. Compare to Theorem 11.20.
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H̃νn
(M[2,n+1]; Z) −−−−→ H̃νn

(Mn+1; Z) −−−−→ Pn+1
νn

;

apply Corollary 11.9. The group Pn+1
νn

is a direct sum of groups isomorphic
to the group H̃νn−1(Mn−1; Z). This group is zero, because νn − 1 = νn−1 − 1.
As a consequence, the map H̃νn

(M[2,n+1]; Z) → H̃νn
(Mn+1; Z) is onto. Since

the image is nonzero by Theorem 11.11, it follows that H̃νn
(M[2,n+1]; Z) is

nonzero.
For the case n mod 3 = 2, consider the exact sequence

H̃νn
(Mn; Z) −−−−→ Qn

νn
−−−−→ Rn

νn−1.

Now, Qn
νn

is a nonempty direct sum of groups isomorphic to H̃νn−2(Mn−4; Z)
and hence nonzero since νn − 2 = νn−4. Moreover, Rn

νn−1 is a direct sum
of groups isomorphic to H̃νn−2(Mn−3; Z) and hence zero. It follows that
H̃νn

(Mn; Z) is nonzero. �

Corollary 11.13. For n ≥ 3, the shifted connectivity degree and the homo-
topical depth of Mn are both equal to νn. �

Corollary 11.14 (Shareshian and Wachs [122]). For n mod 3 ∈ {0, 1},
the cycle γN in (11.3) is a nonzero element in H̃νn

(Mn; Z); N = 3�n
3 �.

Proof. By symmetry, H̃νn
(Mn; Z) is nonzero if and only if every generator in

Lemma 11.10 is nonzero. By Theorem 11.12, we are done. �

Corollary 11.15. Let G be a graph on a vertex set V of size n such that
n mod 3 ∈ {0, 1}. Suppose that there is a partition {U1, . . . , Ut} of V such
that |Ui| = 3 for each i < t and |Ut| = n mod 3 and such that G(Ui) is
isomorphic to either K3 or Pa3 = ([3], {12, 23}) for each i < t. Then M(G)
has nonvanishing homology in dimension νn.

Proof. We may assume that Ui = {3i− 2, 3i− 1, 3i} and that (3i− 2)(3i− 1)
and (3i− 1)(3i) belong to G for i < t. This means that the cycle γN defined
in (11.3) is a cycle in the chain complex of M(G). Since γN is not a boundary
in Mn, the same holds in M(G); hence we are done. �

Shareshian and Wachs [122] have an even more precise description of the
bottom nonvanishing homology group of Mn:

Theorem 11.16 (Shareshian & Wachs [122]). For n ∈ {7, 10, 12, 13} and
for n ≥ 15, H̃νn

(Mn; Z) is of the form (Z3)en for some en ≥ 1. For n = 14,
H̃νn

(Mn; Z) is a finite group with nonvanishing 3-torsion. �

Somewhat surprisingly, it turns out that H̃4(M14; Z) contains 5-torsion:

Theorem 11.17 (Jonsson [75]). H̃4(M14; Z) is a finite group of exponent a
multiple of 15.
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Let us give a brief outline of the proof [75] of Theorem 11.17. Recall that
BD

2

n is the complex of graphs on n vertices (loops allowed) such that the
degree of each vertex is at most two. The main ingredient in the proof is a
result due to Andersen [1] stating that H̃4(BD2

7; Z) ∼= Z5; see Theorem 12.19
in Section 12.2. One may relate Andersen’s result to the homology of M14 via
a map π from H̃4(M14; Z) to H̃4(BD2

7; Z); this map is induced by the natural
action on M14 by the Young group (S2)7. Using a standard representation-
theoretic argument, one may construct an “inverse” ϕ of π with the property
that π ◦ ϕ(z) = |(S2)7| · z for all z ∈ H̃4(BD2

7; Z). To conclude the proof, one
observes that ϕ(z) is nonzero unless the order of z divides the order of (S2)7.
Since the latter order is 128, the image under ϕ of any nonzero element of
order five is again a nonzero element of order five.

Table 11.1. The homology of Mn for n ≤ 14. T1 and T2 are nontrivial finite
groups of exponent a multiple of 3 and 15, respectively; see Proposition 11.22 and
Theorem 11.17.

H̃i(Mn; Z) i = 0 1 2 3 4 5

n = 3 Z2 - - - - -

4 Z2 - - - - -

5 - Z6 - - - -

6 - Z16 - - - -

7 - Z3 Z20 - - -

8 - - Z132 - - -

9 - - Z8
3 ⊕ Z42 Z70 - - -

10 - - Z3 Z1216 - - -

11 - - - Z45
3 ⊕ Z1188 Z252 -

12 - - - Z56
3 Z12440 -

13 - - - Z3 T1 ⊕ Z24596 Z924

14 - - - - T2 Z138048

By Theorem 11.11, en = 1 whenever n mod 3 = 1 and n ≥ 7. Table 11.1
lists the homology of Mn for n ≤ 14; see Wachs [145] for more information.

11.2.3 Torsion in Higher-Degree Homology Groups

We apply the theory in the preceding section to detect 3-torsion in higher-
degree homology groups.

First, let us state an elementary but useful result; the proof is straightfor-
ward.
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Lemma 11.18. Let k ≥ 1 and let G be a graph on 2k vertices. Then M(G)
admits a collapse to a complex of dimension at most k − 2. �

Let k0 ≥ 0 and let G = {Gk : k ≥ k0} be a family of graphs such that the
following conditions hold:

• For each k ≥ k0, the vertex set of Gk is [2k + 1].
• For each k > k0 and for each vertex s such that 1s is an edge in Gk, the

induced subgraph Gk([2k + 1] \ {1, s}) is isomorphic to Gk−1.

We say that such a family is compatible.

Proposition 11.19. In each of the following three cases, G = {Gk : k ≥ k0}
is a compatible family:

(1)Gk = K2k+1 for all k.
(2)Gk = Kk+1,k for all k, where Kk+1,k is the complete bipartite graph with

blocks [k + 1] and [k + 2, 2k + 1].
(3)Gk = K2k+1 \ {23, 45, 67, . . . , 2k(2k + 1)} for all k.

Proof. It suffices to prove that Gk([2k + 1] \ {1, s}) is isomorphic to Gk−1

whenever 1s is an edge in Gk and k > k0. This is immediate in all three cases.
�

Now, fix k0, n, d ≥ 0. Let G = {Gk : k ≥ k0} be a family of compatible graphs
and let γ be an element in H̃d−1(Mn; Z). For each k ≥ k0, define a map{

θk : H̃k−1(M(Gk); Z)→ H̃k−1+d(M2k+1+n; Z)
θk(z) = z ∧ γ(2k+1),

where we obtain γ(2k+1) from γ by replacing each occurrence of the vertex
i with i + 2k + 1 for every i ∈ [n]. Note that H̃k−1(M(Gk); Z) is the top
homology group of M(Gk) (provided Gk contains matchings of size k). For
any prime p, we have that θk induces a homomorphism

θk ⊗Z ιp : H̃k−1(M(Gk); Z)⊗Z Zp → H̃k−1+d(M2k+1+n; Z)⊗Z Zp,

where ιp : Zp → Zp is the identity.

Theorem 11.20. With notation and assumptions as above, if θk0 ⊗Z ιp is a
monomorphism, then θk ⊗Z ιp is a monomorphism for each k ≥ k0. If, in ad-
dition, the exponent of γ in H̃d−1(Mn; Z) is p, then we have a monomorphism

{
θ̂k : H̃k−1(M(Gk); Z)⊗Z Zp → H̃k−1+d(M2k+1+n; Z)
θ̂k(z ⊗Z λ) = θk(λz) = λz ∧ γ(2k+1)

for each k ≥ k0. In particular, the group H̃k−1+d(M2k+1+n; Z) contains p-
torsion of rank at least the rank of H̃k−1(M(Gk); Z).
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Proof. To prove the first part of the theorem, we use induction on k; the base
case k = k0 is true by assumption. Assume that k > k0 and consider the
head end of the long exact sequence for the pair (M(Gk),M(Gk \{1})), where
Gk \ {1} = Gk([2k + 1] \ {1}):

0 −−−−→ H̃k−1(M(Gk \ {1}); Z)

−→ H̃k−1(M(Gk); Z) ω̂−−−−→ Pk−2(Gk) −−−−→ H̃k−2(M(Gk \ {1}); Z).

Here,
Pk−2(Gk) =

⊕
s:1s∈Gk

1s⊗ H̃k−2(M(Gk \ {1, s}); Z)

and ω̂ is defined in the natural manner.
Now, the group H̃k−1(M(Gk \ {1}); Z) is zero by Lemma 11.18. As a con-

sequence, ω̂ is a monomorphism. Moreover, all groups in the second row of
the above sequence are torsion-free. Namely, the dimensions of M(Gk) and
M(Gk \ {1, s}) are at most k − 1 and k − 2, respectively, and Lemma 11.18
yields that M(Gk \ {1}) is homotopy equivalent to a complex of dimension at
most k − 2. It follows that the induced homomorphism

ω̂ ⊗ ιp : H̃k−1(M(Gk); Z)⊗ Zp → Pk−2(Gk)⊗ Zp

remains a monomorphism.
Now, consider the following diagram:

H̃k−1(M(Gk); Z)⊗ Zp
ω̂⊗ιp−−−−→ Pk−2(Gk)⊗ Zp

θk⊗ιp

⏐⏐ θ⊕
k−1⊗ιp

⏐⏐ 
H̃k−1+d(M2k+1+n; Z)⊗ Zp

ω⊗ιp−−−−→ P 2k−1+n
k−2+d ⊗ Zp.

Here,

P 2k−1+n
k−2+d =

2k+1+n⊕
s=2

1s⊗ H̃k−2+d(M[2,2k+1+n]\{s}; Z),

ω is defined as in Corollary 11.9, and θ⊕k−1 is defined by

θ⊕k−1(1s⊗ z) = [1s]⊗ z ∧ γ(2k+1).

One easily checks that the diagram commutes; going to the right and then
down or going down and then to the right both give the same map

(c1 +
∑

s:1s∈Gk

[1s] ∧ z1s)⊗ 1 	→
∑

s:1s∈Gk

([1s]⊗ z1s ∧ γ(2k+1))⊗ 1,

where c1 is a sum of oriented simplices from M(Gk \ {1}) and each z1s is
a sum of oriented simplices from M(Gk \ {1, s}) satisfying ∂(z1s) = 0 and
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∂(c1) +
∑

s z1s = 0. Moreover, θ⊕k−1 ⊗ ιp is a monomorphism, because the
restriction to each summand is a monomorphism by induction on k. Namely,
since G is compatible, Gk \ {1, s} is isomorphic to Gk−1 for each s such that
1s ∈ Gk. As a consequence, (θ⊕k−1 ◦ ω̂)⊗ ιp is a monomorphism, which implies
that θk ⊗ ιp is a monomorphism.

For the very last statement, it suffices to prove that θ̂k is a well-defined
homomorphism, which is true if and only if θk(pz) = 0 for each z ∈
H̃k−1(M(Gk); Z). Now, let c ∈ C̃d(Mn; Z) be such that ∂(c) = pγ; such a
c exists by assumption. We obtain that

∂(z ∧ c(2k+1)) = ±z ∧ (pγ(2k+1)) = ±(pz) ∧ γ(2k+1);

hence θk(pz) = 0 as desired. �

We will find the following transformation very useful:{
k = 3d− n + 4
r = n− 2d− 3 ⇐⇒

{
n = 2k + 1 + 3r
d = k − 1 + r.

(11.4)

Theorem 11.21. For k ≥ 0 and r ≥ 4, there is 3-torsion of rank at least(
2k
k

)
in H̃k−1+r(M2k+1+3r; Z). Moreover, for k ≥ 0, there is 3-torsion of rank

at least
(

k+1
�(k+1)/2�

)
in H̃k+2(M2k+10; Z). To summarize, H̃k−1+r(M2k+1+3r; Z)

contains nonvanishing 3-torsion whenever k ≥ 0 and r ≥ 3.

Proof. For the first statement, consider the compatible family {K2k+1 : k ≥ 0}
and the cycle γ3r ∈ H̃r−1(M3r; Z) defined as in (11.3). By Theorem 11.11 and
Lemma 11.10,

θ0 ⊗ ι3 : H̃−1(M1; Z)⊗Z Z3
∼= Z⊗Z Z3 → H̃r−1(M3r+1; Z)⊗Z Z3

defines an isomorphism, where θ0(λ) = λγ
(1)
3r . By Lemma 11.10 and Theorem

11.16, γ3r has exponent 3 in H̃r−1(M3r; Z); hence Theorem 11.20 yields that
the group H̃k−1+r(M2k+1+3r; Z) contains 3-torsion of rank at least the rank
of the group H̃k−1(M2k+1; Z). By Theorem 11.5, this rank equals

(
2k
k

)
.

For the second statement, consider the compatible family {Gk = K2k+1 \
{23, 45, 67, . . . , 2k(2k + 1)} : k ≥ 1} and the cycle γ6 = ([12]− [23]) ∧ ([45]−
[56]) ∈ H̃1(M7; Z). For k = 1, we obtain that G1 is the graph P3 on three
vertices with edge set {12, 13}; clearly, H̃0(M(P3); Z) ∼= Z. As a consequence,

θ1 ⊗ ι3 : H̃0(M(P3); Z)⊗Z Z3 → H̃2(M10; Z)⊗Z Z3

is an isomorphism; apply Theorem 11.11. Proceeding as in the first case
and using the fact that γ6 has exponent 3 in H̃1(M7; Z), we conclude that
H̃k+1(M2k+8; Z) contains 3-torsion of rank at least the rank of H̃k−1(M(Gk); Z)
for each k ≥ 1.

It remains to show that the rank of H̃k−1(M(Gk); Z) is at least
(

k
�k/2�

)
.

Let A be any subset of the removed edge set
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E = {23, 45, . . . , 2k(2k + 1)}

such that |A| = �k/2�; write B = E \ A. Consider the complete bipartite
graph GA

k with one block equal to {1} ∪⋃e∈A e and the other block equal to⋃
e∈B e. For even k, the size of the “A” block is k + 1; for odd k, the size of

the “A” block is k. It is clear that GA
k is a subgraph of Gk.

Label the vertices in [2, 2k +1] as s1, t1, s2, t2, . . . , sk, tk such that siti ∈ A
for even i and siti ∈ B for odd i. Consider the matching

σA = {1s1, t1s2, t2s3, . . . , tk−1sk}.

One easily checks that σA ∈ M(GA′
k ) if and only if A = A′. Now, as observed by

Shareshian and Wachs [122, (6.2)], M(GA
k ) is an orientable pseudomanifold.

Defining zA to be the fundamental cycle of M(GA
k ), we obtain that {zA :

A ⊂ E, |A| = �k/2�} forms an independent set in H̃k−1(M(Gk); Z), which
concludes the proof. �

Let Gk = K2k+1 \{23, 45, 67, . . . , 2k(2k+1)} be the graph in the above proof.
Based on computer calculations for k ≤ 5, we conjecture that the rank rk of
H̃k−1(M(Gk); Z) equals the coefficient of xk in (1 + x + x2)k; this is sequence
A002426 in Sloane’s Encyclopedia [127]. Equivalently,∑

k≥0

rkxk =
1√

1− 2x− 3x2
.

Proposition 11.22 (Jonsson [75]). We have that H̃4(M13; Z) ∼= T⊕Z24596,
where T is a finite group containing Z10

3 as a subgroup. �

Corollary 11.23. For n ≥ 1, there is nonvanishing 3-torsion in the homology
group H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) whenever⌈

n− 4
3

⌉
≤ d ≤

⌊
n− 6

2

⌋
⇐⇒

{
k ≥ 0
r ≥ 3

or r = 2 and k ∈ {0, 1, 2, 3}. Moreover, H̃d(Mn; Z) is nonzero if and only if⌈
n− 4

3

⌉
≤ d ≤

⌊
n− 3

2

⌋
⇐⇒

{
k ≥ 0
r ≥ 0.

Proof. The first statement is a consequence of Theorem 11.21, Proposition
11.22, and Table 11.1. For the second statement, Theorem 11.5 yields that
the group H̃k−1+r(M2k+1+3r; Z) is infinite if and only if r ≥ 0 and k ≥

(
r
2

)
.

In particular, the group is infinite for all k ≥ 0 and 0 ≤ r ≤ 2 except (k, r) =
(0, 2). Since H̃k−1+r(M2k+1+3r; Z) ∼= Z3 when k = 0 and r = 2, we are done
by Theorem 11.6 and Lemma 11.18. �

Corollary 11.23 suggests the following conjecture:
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Conjecture 11.24. The group H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) contains
3-torsion if and only if⌈

n− 4
3

⌉
≤ d ≤

⌊
n− 5

2

⌋
⇐⇒

{
k ≥ 0
r ≥ 2.

By Corollary 11.23, the conjecture remains unsettled if and only if r = 2 and
k ≥ 4; for the cases r = 0 and r = 1, one easily checks that the homology is
free. The conjecture would follow if we were able to solve Problem 11.28 in
Section 11.2.4 to the affirmative.

For sufficiently small d, the group H̃d(Mn; Z) is a 3-group:

Theorem 11.25 (Jonsson [74]). If⌈
n− 4

3

⌉
≤ d ≤

⌊
2n− 9

5

⌋
⇐⇒ 0 ≤ k ≤ r − 2,

then H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) is a nontrivial 3-group.

Define k and r as in (11.4). Let βn
d = dimZ3 H̃d(Mn; Z3) and write β̂k,r = βn

d .
The following theorem provides polynomial bounds on βn

d ; these bounds are
not sharp.

Theorem 11.26 (Jonsson [74]). For each k ≥ 0, there is a polynomial
fk(r) of degree 3k with dominating term 3k

k! r
3k such that β̂k,r ≤ fk(r) for

all r ≥ k + 2. Equivalently, βn
d ≤ f3d−n+4(n − 2d − 3) for all n ≥ 7 and

�n−4
3 � ≤ d ≤ � 2n−9

5 �.
For k ≤ 2, this provides upper bounds on the dimension of the bottom non-
vanishing homology group. For k = 1 and r ≥ 4, we have the precise bound

β3r+3
r ≤ 6r3 + 9r2 + 5r

2
− 73

[74]. Again, this bound is not sharp.

11.2.4 Further Properties

As promised in Section 5.2.1, we now present a Z3-optimal decision tree on a
complex with 3-torsion in its homology.

Theorem 11.27. M7 is semi-nonevasive over Z3, but not over Z.

Proof. We have that H̃1(M7; Z) ∼= Z3, H̃2(M7; Z) ∼= Z20, and H̃i(M7, Z) = 0 if
i �= 1, 2; see Table 11.1. This means that

H̃1(M7; Z3) ∼= Z3;
H̃2(M7; Z3) ∼= Z21

3 .
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We want to find an element-decision tree with 1+21 evasive faces. For this,
consider the first-hit decomposition with respect to the sequence

(13, 14, 35, 46, 56, 12, 57, 67, 23, 24, 37, 47, 16, 25, 17, 27, 34, 36, 45, 15);

all edges but the edge 26 appear in the sequence. Let bi be the ith edge in the
sequence and let Bk = {bi : i ≤ k}. It is easy to check that M7(bi, Bi−1) ∼ cit

2

for 1 ≤ i ≤ 6, where c1 = c2 = 6, c3 = 4, c4 = c5 = 2, and c6 = 1; the
corresponding links are connected graphs, so optimal element-decision trees
exist by Proposition 5.26. Moreover, M7(b18, B17) ∼ t, whereas M7(∅, B20) ∼ 0
and M7(bi, Bi−1) ∼ 0 for i ∈ {7, . . . , 17}∪{19, 20}. Applying Lemma 5.25, we
obtain that M7 ∼ t + 21t2 as desired. �

Since there is 5-torsion in the homology of M14, not all matching complexes
are semi-nonevasive over Z3.

In this context, the following problem might be worth mentioning:

Problem 11.28. For each n and d, is it true that

H̃d(Mn; Z) ∼= H̃d(delMn
(e); Z)⊕ H̃d−1(Mn−2; Z), (11.5)

where e is any edge in Kn?

Note that we consider homology over Z. If (11.5) were true for all n, then
H̃d(Mn; Z) would contain p-torsion whenever H̃d−1(Mn−2; Z) contains p-
torsion. In particular, H̃d(M2d+5; Z) would contain 3-torsion for all d ≥ 1,
which would settle Conjecture 11.24. Moreover, H̃d(M2d+6) would contain 5-
torsion for all d ≥ 4; use Theorem 11.17. We have verified (11.5) for n ≤ 11.

For completeness, we mention the following very simple and well-known
result about the Euler characteristic of Mn.

Proposition 11.29. Let fn,i be the number of faces of Mn of dimension i−1
and define fn(t) =

∑
i fn,it

i. Then

∑
n≥1

fn(t)
xn

n!
= ex+tx2/2 − 1.

In particular, the reduced Euler characteristic of Mn satisfies

∑
n≥1

χ̃(Mn)
xn

n!
= 1− ex−x2/2.

Proof. Apply Corollary 6.15. �
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11.3 Chessboards

We examine the chessboard complex Mm,n, which is the matching complex on
the complete bipartite graph Km,n. Aligning with the notation of Shareshian
and Wachs [122], we identify the two parts of Km,n with the sets [m] =
{1, 2, . . . , m} and [n] = {1, 2, . . . , n}; the latter set should be interpreted as
a disjoint copy of [n]. Hence each edge is of the form ij, where i ∈ [m] and
j ∈ [n]. Sometimes, it will be useful to view Mm,n as a subcomplex of the
matching complex Mm+n on the complete graph Km+n. In such situations,
we identify the vertex j in Km,n with the vertex m + j in Km+n for each
j ∈ [n].

11.3.1 Bottom Nonvanishing Homology

For 1 ≤ m ≤ n, define

νm,n = min{m− 1, �m+n−4
3 �} =

{
�m+n−4

3 � if m ≤ n ≤ 2m− 2;
m− 1 if n > 2m− 2.

(11.6)

Theorem 11.30 (Ziegler [151]). Let 1 ≤ m ≤ n. Then Mm,n is V D(νm,n).
In particular, Mm,n is V D whenever n ≥ 2m− 1.

Proof. We apply Athanasiadis’ Theorem 11.4. The case m = 1 is trivially true,
as νm,n = 0. Assume that m > 1 and consider the edge mn.

First, we need to prove that M(Km,n(([m]∪ [n]) \S)) is V D(νm,n− 1) for
each S = {x, n} such that xn ∈ Km,n. By symmetry, it suffices to consider
the case x = m. Now, M(Km,n(([m] ∪ [n]) \ S)) = Mm−1,n−1. Since

νm−1,n−1 + 1 = min{m− 2, �m+n−6
3 �}+ 1 ≥ νm,n,

the claim follows by induction.
Second, we need to prove that M(Km,n(([m]∪ [n])\S)) is V D(νm,n−1) for

each S = {m, y, n} such that my ∈ Km,n. By symmetry, it suffices to consider
the case y = n − 1. Now, M(Km,n(([m] ∪ [n]) \ S)) = Mm−1,n−2. If n > m,
note that

νm−1,n−2 + 1 = min{m− 2, �m+n−7
3 �}+ 1 = νm,n.

If n = m, note that νm−2,m−1 + 1 = � 2m−7
3 � + 1 = νm,m. Again, the claim

follows by induction, and we are done. �

Björner, Lovász, Vrećica, and Živaljević [11] earlier proved that the connec-
tivity degree of Mm,n is at least νm,n.

Ziegler [151] proved a generalization of Theorem 11.30, extending to cer-
tain subgraphs of Km,n. One example is the subgraph of Kn,n obtained by
removing the diagonal elements ii, i ∈ [n]. Note that one may identify the
matching complex on this graph with the complex of digraphs such that
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each vertex has in- and outdegree at most one. See Björner and Welker [17]
and Shareshian and Wachs [122] for more information about this complex.
Athanasiadis [2] generalized Theorem 11.30 to k-hypergraph matchings on
k-dimensional chessboards.

Friedman and Hanlon [52] proved a chessboard analogue of Bouc’s Theorem
11.5; see Wachs [145] for an overview. For our purposes, the most important
consequence is the following result:

Theorem 11.31 (Friedman and Hanlon [52]). For 1 ≤ m ≤ n, we have
that H̃d(Mm,n; Z) is infinite if and only if (m − d − 1)(n − d − 1) ≤ d + 1,
m ≥ d + 1, and n ≥ d + 2. In particular, H̃νm,n

(Mm,n; Z) is finite if and only
if n ≤ 2m− 5 and (m,n) /∈ {(6, 6), (7, 7), (8, 9)}.

By Theorems 11.30 and 11.31, the shifted connectivity degree of Mm,n is
exactly νm,n whenever n ≥ 2m−4 or (m,n) ∈ {(6, 6), (7, 7), (8, 9)}. Shareshian
and Wachs [122] extended this to all (m,n) �= (1, 1):

Theorem 11.32 (Shareshian & Wachs [122]). If m ≤ n ≤ 2m − 5 and
(m,n) �= (8, 9), then there is nonvanishing 3-torsion in H̃νm,n

(Mm,n; Z). If in
addition (m + n) mod 3 = 1, then H̃νm,n

(Mm,n; Z) ∼= Z3. �

By Theorem 11.37 in Section 11.3.2, there is nonvanshing 3-torsion also in
H̃ν8,9(M8,9; Z); in that theorem, choose (k, a, b) = (2, 1, 2).

Conjecture 11.33 (Shareshian & Wachs [122]). Let 1 ≤ m ≤ n. The
group H̃νm,n

(Mm,n; Z) is torsion-free if and only if n ≥ 2m− 4.

The conjecture is known to be true in all cases but n = 2m−4 and n = 2m−3;
Shareshian and Wachs [122] settled the case n = 2m− 2 and verified the two
special cases (m,n) ∈ {(6, 6), (7, 7)} using computer.

Corollary 11.34 (Shareshian & Wachs [122]). For all (m,n) except
(m,n) = (1, 1), H̃νm,n

(Mm,n; Z) is nonzero. In particular, the shifted con-
nectivity degree and the homotopical depth of Mm,n are both equal to νm,n. �

Assume that (m + n) mod 3 = 0 and m ≤ n ≤ 2m. Define the cycle γm,n

in H̃νm,n
(Mm,n; Z) recursively as follows, the base case being γ1,2 = [11]− [12]:

γm,n =
{

γm−1,n−2 ∧ ([m(n− 1)]− [mn]) if m < n;
γm−2,n−1 ∧ ([(m− 1)n]− [mn]) if m = n.

(11.7)

For n > m, we define γn,m by replacing ij with ji in γm,n for each i ∈ [m]
and j ∈ [n].

Shareshian and Wachs [122] provided more detailed information about the
structure of the group H̃νm,n

(Mm,n; Z). For example, the following is true:
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Theorem 11.35 (Shareshian & Wachs [122]). Assume that (m+n) mod
3 ∈ {0, 1} and m ≤ n ≤ 2m+1. We define (M,N) = (m, 3�n

3 �) unless m = n
and (m + n) mod 3 = 1 , in which case we define (M,N) = (m− 1,m). Then
γM,N is a nonzero element in H̃νm,n

(Mm,n; Z). Moreover, if H̃νm,n
(Mm,n; Z)

is finite, then the exponent of γM,N in H̃νm,n
(Mm,n; Z) is divisible by three.

Proof. We may view γM,N as an element in H̃νm+n
(Mm+n; Z); νm+n = νm,n.

Since γM,N is nonzero in this group by Corollary 11.14, the same must be true
in H̃νm,n

(Mm,n; Z); apply Corollary 11.15. For the second statement, the expo-
nent of γM,N is nonzero by the first statement and finite by assumption. Now,
γM,N has exponent three in H̃νm+n

(Mm+n; Z). Namely, since m ≤ n ≤ 2m−5
by Theorem 11.31, we have that m+n ≥ 10; hence the claim is a consequence
of Theorem 11.16. Since the exponent of γM,N in H̃νm+n

(Mm+n; Z) divides
the exponent of γM,N in H̃νm,n

(Mm,n; Z), we are done. �

11.3.2 Torsion in Higher-Degree Homology Groups

As already mentioned in the proof of Theorem 11.21 in Section 11.2.3, we
have that Mk,k+1 is an orientable pseudomanifold of dimension k − 1; hence
H̃k−1(Mk,k+1; Z) ∼= Z. Shareshian and Wachs [122] observed that this group
is generated by the cycle

zk,k+1 =
∑

π∈S[k+1]

sgn(π) · 1π(1) ∧ · · · ∧ kπ(k).

Note that the sum is over all permutations on k + 1 elements. Theorem 11.20
implies the following result.

Corollary 11.36. With notation and assumptions as in Theorem 11.20, defin-
ing Gk = Kk,k+1, if (zk0,k0+1 ∧ γ(2k0+1)) ⊗ 1 is nonzero in the group
H̃k0−1+d(M2k0+1+n; Z) ⊗ Zp, then (zk,k+1 ∧ γ(2k+1)) ⊗ 1 is nonzero in the
group H̃k−1+d(M2k+1+n; Z)⊗ Zp for all k ≥ k0. �

Define ⎧⎨
⎩

k=−m−n+3d+4
a=−m+n
b = m − d−1

⇔

⎧⎨
⎩

m=k+ a+3b−1
n =k+2a+3b−1
d =k+ a+2b−2.

(11.8)

Recall that νm,n = m+n−4
3 whenever m ≤ n ≤ 2m− 2.

Theorem 11.37. There is 3-torsion in H̃d(Mm,n; Z) whenever⎧⎨
⎩

m + 1 ≤ n ≤ 2m− 5

⌈
m+n−4

3

⌉
≤ d ≤ m− 3

⇐⇒

⎧⎨
⎩

k ≥ 0
a ≥ 1
b ≥ 2,

where k, a, and b are defined as in (11.8). Moreover, there is 3-torsion in
H̃d(Mm,m; Z) whenever
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⌈
2m− 4

3

⌉
≤ d ≤ m− 4⇐⇒

⎧⎨
⎩

k ≥ 0
a = 0
b ≥ 3.

Proof. Assume that k ≥ 0, a ≥ 1, and b ≥ 2. Writing m0 = a + 3b − 2 and
n0 = 2a + 3b− 3, we have the inequalities

a + 3b− 2 ≤ 2a + 3b− 3 ≤ 2a + 6b− 9⇐⇒ m0 ≤ n0 ≤ 2m0 − 5. (11.9)

Note that m0 + n0 = 3a + 6b− 5 ≡ 1 (mod 3). Define

wk+1 = zk+1,k+2 ∧ γ
(k+1,k+2)
m0,n0−1 ,

where we obtain γ
(k+1,k+2)
m0,n0−1 from the cycle γm0,n0−1 defined in (11.7) by re-

placing ij with (i + k + 1)(j + k + 2). View γm0,n0−1 as an element in the
homology of Mm0,n0 . Since zk+1,k+2 ∈ H̃k(Mk+1,k+2; Z) and γm0,n0−1 ∈
H̃a+2b−3(Ma+3b−2,2a+3b−3; Z), we obtain that

wk+1 ∈ H̃k+a+2b−3+1(Mk+1+a+3b−2,k+2+2a+3b−3; Z) = H̃d(Mm,n; Z).

Choosing k = 0, we obtain that

w1 = z1,2 ∧ γ
(1,2)
m0,n0−1

∼= γm0+1,n0+1.

Since m0, n0 ≥ 5, we have that γm0+1,n0+1 has exponent three when viewed
as an element in H̃m0+n0−1

3
(Mm0+n0+3; Z) = H̃a+2b−2(M3a+6b−2; Z); apply

Lemma 11.10 and Theorem 11.11 and note that γm0+1,n0+1 is isomorphic to
the cycle γm0+n0+2 defined in (11.3).

Applying Corollary 11.36, we conclude that wk+1⊗ 1 is a nonzero element
in the group H̃k+a+2b−2(M2k+3a+6b−2; Z)⊗Z3 = H̃d(Mm+n; Z)⊗Z3 for every
k ≥ 0. As a consequence, wk+1 ⊗ 1 is nonzero also in

H̃k+a+2b−2(Mk+a+3b−1,k+2a+3b−1; Z)⊗ Z3 = H̃d(Mm,n; Z)⊗ Z3

for every k ≥ 1. Since H̃a+b−3(Mm0,n0 ; Z) is an elementary 3-group by
Theorem 11.32 and (11.9), the exponent of γm0,n0−1 in H̃r(Mm0,n0 ; Z) is three.
It follows that the exponent of wk+1 in H̃d(Mm,n; Z) is three as well.

The remaining case is m = n, in which case the upper bound on d is m−4
rather than m− 3. Since a = 0, we get{

k=−2m+3d+4
b= m− d−1 ⇔

{
m=k+3b− 1
d=k+2b−2.

Clearly, k ≥ 0 and b ≥ 3.
Consider the cycle wk+1 = zk+1,k+2 ∧ γ

(k+1,k+2)
3b−2,3b−4 . By Corollary 11.36,

wk+1 ⊗ 1 is nonzero in H̃k+2b−2(M2k+6b−2; Z) ⊗ Z3. Namely, w1 is isomor-
phic to γ6b−3 in (11.3), which is a nonzero element with exponent three in
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H̃2b−2(M6b−2; Z) by Lemma 11.10 and Theorem 11.11; b ≥ 3. We conclude
that wk+1 ⊗ 1 is a nonzero element in H̃k+2b−2(Mk+3b−1,k+3b−1; Z) ⊗ Z3 =
H̃d(Mm,m; Z)⊗Z3. Since 3b−3 ≥ 6, we have that γ3b−2,3b−4 must have expo-
nent three in H̃2b−3(M3b−2,3b−3; Z); apply Theorem 11.32. This implies that
the same must be true for wk+1 in H̃d(Mm,m; Z). �

Corollary 11.38. The group H̃5(M8,9; Z) = H̃ν8,9(M8,9; Z) contains non-
vanishing 3-torsion. As a consequence, there is nonvanishing 3-torsion in
H̃νm,n

(Mm,n; Z) whenever m ≤ n ≤ 2m− 5.

Proof. The first statement is a consequence, of Theorem 11.37; choose k = 2,
a = 1, and b = 2. For the second statement, apply Theorem 11.32.

Theorem 11.39. For 1 ≤ m ≤ n, the group H̃d(Mm,n; Z) is nonzero if and
only if either ⌈

m + n− 4
3

⌉
≤ d ≤ m− 2⇐⇒

⎧⎨
⎩

k ≥ 0
a ≥ 0
b ≥ 1

or ⎧⎨
⎩

m ≥ 1
n ≥ m + 1
d = m− 1

⇐⇒

⎧⎨
⎩

k ≥ 2− a
a ≥ 1
b = 0,

where k, a, and b are defined as in (11.8).

Proof. For homology to exist, we certainly must have that b ≥ 0, and we
restrict to a ≥ 0 by assumption. Moreover, b = 0 means that d = m − 1, in
which case there is homology only if m ≤ n−1, hence a ≥ 1 and k+a ≥ 2; for
the latter inequality, recall that we restrict our attention to m ≥ 1. Finally,
k < 0 reduces to the case b = 0, because we then have homology only if
n ≥ 2m + 2 and d = m− 1; apply Theorem 11.30.

For the other direction, Theorem 11.37 yields that we only need to consider
the following cases:
• k ≥ 0, a = 0, and b = 2. By Theorem 11.31, we have infinite homology

for a = 0 and b = 2 if and only if k ≥ (b−1)(a+b−1) = 1. The remaining case
is (k, a, b) = (0, 0, 2) ⇐⇒ (m,n, d) = (5, 5, 2), in which case we have nonzero
homology by Theorem 11.32.
• k ≥ 0, a ≥ 0, and b = 1. This time, Theorem 11.31 yields infinite

homology for a ≥ 0 and b = 1 as soon as k ≥ 0.
• k ≥ 2−a, a ≥ 1, and b = 0. By yet another application of Theorem 11.31,

we have infinite homology for b = 0 whenever a ≥ 1, k ≥ 1−a, and k +a ≥ 2.
Since the third inequality implies the second, we are done. �

Conjecture 11.40 (Shareshian & Wachs [122]). For all m,n ≥ 1, the
group H̃d(Mm,n; Z) contains 3-torsion if and only if
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⎩

m ≤ n ≤ 2m− 5

⌈
m+n−4

3

⌉
≤ d ≤ m− 3

⇐⇒

⎧⎨
⎩

k ≥ 0
a ≥ 0
b ≥ 2;

k, a, and b are defined as in (11.8).

Note that Conjecture 11.40 implies Conjecture 11.33. Conjecture 11.40 re-
mains unsettled in the following cases:

• d = m−2: 9 ≤ m+2 ≤ n ≤ 2m−3. Equivalently, k ≥ 1, a ≥ 2, and b = 1.
Conjecture: There is no 3-torsion.

• d = m− 3: 8 ≤ m = n. Equivalently, k ≥ 3, a = 0, and b = 2.
Conjecture: There is 3-torsion.

The conjecture is fully settled for n = m + 1 and n ≥ 2m− 2; see Shareshian
and Wachs [122] for the case n = 2m − 2 and use Theorem 11.30 for the
case n ≥ 2m − 1. For the case n = m + 1, we have that H̃m−2(Mm,m+1; Z)
is torsion-free, because Mm,m+1 is an orientable pseudomanifold; see Spanier
[130, Ex. 4.E.2].

Let
βm,n

d = dimZ3 H̃d(Mm,n; Z3)

and write β̂a,b
k = βm,n

d , where k, a, and b are defined as in (11.8). The following
theorem provides a chessboard analogue of Theorem 11.26.

Theorem 11.41 (Jonsson [76]). For each k ≥ 0, there is a polynomial
fk(a, b) of degree 3k such that β̂a,b

k ≤ fk(a, b) whenever a ≥ 0 and b ≥ k + 2
and such that

fk(a, b) =
1

3kk!
(
(a + 3b)3 − 9b3

)k
+ εk(a, b)

for some polynomial εk(a, b) of degree at most 3k − 1. Equivalently,

βm,n
d ≤ f3d−m−n+4(n−m,m− d− 1)

for m ≤ n ≤ 2m− 5 and m+n−4
3 ≤ d ≤ 2m+n−7

4 .

11.4 Paths and Cycles

We consider matching complexes on paths and cycles. These complexes have
an extremely simple structure, but they are still worth discussing, as they
appear naturally in many situations. For some examples, see Section 16.3 and
Kozlov [86].

For n ≥ 0, define Pan to be the graph with edge set {i(i+1) : i ∈ [n− 1]};
we define Pan as the empty graph if n ∈ {0, 1}. M(Pan) is isomorphic to
the complex of stable sets in Pan−1; Kozlov [86, Prop. 4.6] determined the
homotopy type of this complex.
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Proposition 11.42. Let n ≥ 0 and νn = �n−4
3 �. Then M(Pan) is V D(νn)

and

M(Pan) �
{

point if n mod 3 = 2;
Sνn if n mod 3 �= 2. (11.10)

Proof. One readily verifies the proposition for n ≤ 3. Assume that n ≥ 4. To
prove vertex-decomposability, decompose with respect to the second edge 23.
Clearly, 12 is a cone point in delM(Pan)(23), and the underlying complex is
isomorphic to M(Pan−2);

delM(Pan)(23) ∼= {∅, {12}} ∗M(Pan−2).

By induction on n, this implies that delM(Pan)(23) is V D(νn−2 +1) and hence
V D(νn); νn ≤ νn−2 + 1. Moreover, lkM(Pan)(23) is isomorphic to M(Pan−3),
which implies that lkM(Pan)(23) is V D(νn − 1); νn = νn−3 + 1. It follows
that M(Pan) is V D(νn). To prove (11.10), note that M(Pan) is homotopy
equivalent to the suspension of M(Pan−3) for n ≥ 3; apply Lemma 3.18 and
use the facts that delM(Pan)(23) is collapsible and lkM(Pan)(23) � M(Pan−3).
Indeed, the procedure just described is easily extended to a decision tree on
M(Pan) with at most one evasive set (of dimension νn if present). �

For n ≥ 3, define Cyn as the graph with edge set {1n}∪{i(i+1) : i ∈ [n−1]}.
M(Cyn) is isomorphic to the complex of stable sets in Cyn; Kozlov [86, Prop.
5.2] determined the homotopy type of this complex.

Proposition 11.43. Let n ≥ 3 and νn = �n−4
3 �. Then M(Cyn) is V D(νn)

and

M(Cyn) �
{

Sνn ∨ Sνn if n mod 3 = 0;
Sνn if n mod 3 �= 0. (11.11)

Proof. Decompose with respect to the edge 1n. lk(Cyn)(1n) is easily seen
to be isomorphic to M(Pan−2). Moreover, delM(Cyn)(1n) equals M(Pan). By
Proposition 11.42, M(Pan) is V D(νn) and M(Pan−2) is V D(νn−2), which im-
plies that M(Cyn) is V D(νn); we have that νn−2 ≥ νn − 1. To prove formula
(11.11), we have optimal decision trees on M(Pan) and M(Pan−2) by the proof
of Proposition 11.42; combining these decision trees, we obtain a decision tree
on M(Cyn) with one or two evasive sets of dimension νn. �
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Graphs of Bounded Degree

We consider the complex BDd
n of graphs G on n vertices such that the de-

gree of each vertex in G is at most d. Note that BD1
n coincides with the

matching complex Mn. A natural generalization of BDd
n is as follows. Let

λ = (λ1, . . . , λn) be an arbitrary sequence of integers. Define BDλ
n as the com-

plex of graphs G on n vertices such that degG(i) ≤ λi for each i ∈ [n]. Clearly,
BD(d,...,d)

n = BDd
n. We discuss the connectivity degree of BDλ

n in Section 12.1.
The main result is that the shifted connectivity degrees of BD2

n and BD3
n are

at least 7n−13
9 and 11n−13

9 , respectively. For general BDd
n, we obtain the lower

bound (d−1)n
2 + 3n

2(d+4) − ε, where ε is a small term; note that this bound is
strictly weaker than those just given for d ∈ {2, 3}. In addition, we demon-
strate that the depth of BD2

n is at least 3n−7
4 .

Let us define an L-graph to be a pair G = (V,E) such that E is a subset
of
(
V
1

)
∪
(
V
2

)
. Thus an L-graph is simply a [2]-hypergraph. We refer to the

elements in
(
V
1

)
as loops and denote the loop {i} as ii. For an L-graph G, let

G− be the simple graph obtained by removing all loops from G. Define the
degree of a vertex i in G as follows:

degG(i) =
{

degG−(i) if ii /∈ G;
degG−(i) + 2 if ii ∈ G.

Hence a loop increases the degree by two. For a sequence λ = (λ1, . . . , λn)
of nonnegative integers, define BD

λ

n as the complex of L-graphs G such that
degG(i) ≤ λi for each i ∈ [n]. In Section 12.2, we review the most important
known results about the homology and homotopy type of BD

λ

n:

• Reiner and Roberts [111] computed the rational homology of BD
λ

n, thereby
generalizing Bouc’s Theorem 11.5 about the matching complex Mn.

• Dong [36] characterized all partitions λ such that BD
λ

n is collapsible. Dong
also demonstrated that the Alexander dual of BD

λ

n is homotopy equivalent
to the (n− 1)-fold suspension of BD

nn−λ

n ; nn − λ = (n− λ1, . . . , n− λn).
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In addition, we show that our bounds on the connectivity degree of the smaller
complex BDλ

n remain valid for BD
λ

n.
In Section 12.3, we derive formulas for the reduced Euler characteristic of

BDd
n for d ∈ {1, 2, n − 3, n − 2} and of BD

d

n for d ∈ {1, 2, n − 2, n − 1, n}. In
the latter case, we apply Dong’s Alexander duality result.

For a few applications of the variant BD
λ

n admitting loops, see Sections 1.1.2
and 1.1.3.

12.1 Bounded-Degree Graphs Without Loops

For a real number ν, say that a family ∆ is AM(ν) if ∆ admits an acyclic
matching such that all unmatched sets are of dimension at least �ν�. For
a sequence λ = (λ1, . . . , λn), define |λ| =

∑n
i=1 λi. For a statement P , let

χ(P ) = 1 if P is true and χ(P ) = 0 otherwise. Our first result is similar in
nature to Athanasiadis’ Theorem 11.4.

Lemma 12.1. Let α be an integer and let (λ1, . . . , λn) be a sequence of non-
negative integers such that λ1, λ2 > 0. Suppose that the following hold:

(i) For each set U ⊆ [3, n] such that |U | = λ1, BDλ′
n−1 is AM( |λ

′|−α+1
2 − 1),

where
λ′ = (λ2 − 1, λ3 − χ(3 ∈ U), . . . , λn − χ(n ∈ U)).

(ii) For each set U ⊆ [3, n] such that |U | = λ2, BDλ′
n−1 is AM( |λ

′|−α
2 − 1),

where
λ′ = (λ1, λ3 − χ(3 ∈ U), . . . , λn − χ(n ∈ U)).

Then BDλ
n is AM( |λ|−α

2 − 1).

Proof. Define an acyclic matching on BDλ
n by pairing G − 12 and G + 12

whenever both graphs belong to the complex. The remaining family C consists
of all graphs G such that 12 /∈ G and such that either degG(1) = λ1 or
degG(2) = λ2.

Let A be the subfamily of C consisting of all graphs G such that degG(1) =
λ1 and degG(2) < λ2. Let B = C \A; the graphs G in B satisfy degG(2) = λ2.
It is clear that the Cluster Lemma 4.2 applies to A and B.

First, consider A. For each set U ⊆ [3, n] such that |U | = λ1, let AU be
the family of graphs G in A such that NG(1) = U . The families AU form
an antichain with respect to inclusion; hence the Cluster Lemma 4.2 applies.
Define

λ′ = (λ2 − 1, λ3 − χ(3 ∈ U), . . . , λn − χ(n ∈ U)).

Note that
∑

i χ(i ∈ U) = λ1. By assumption, BDλ′
n−1 is AM( |λ

′|−α+1
2 − 1).

One readily verifies that

AU = {iu : u ∈ U ∪ {2}} ∗ BDλ′
n−1;
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thus it follows that AU is AM(r), where

r = λ1 +
|λ′| − α + 1

2
− 1 =

|λ′| − α + 2λ1 + 1
2

− 1 =
|λ| − α

2
− 1;

the last equality is because |λ| − |λ′| = 2λ1 + 1.
Next, consider B. This time, for each U ⊆ [3, n] such that |U | = λ2, let

BU be the family of graphs G in B such that NG(2) = U . As in the previous
case, the Cluster Lemma 4.2 applies. Define

λ′ = (λ1, λ3 − χ(3 ∈ U), . . . , λn − χ(n ∈ U));

note that
∑

i χ(i ∈ U) = λ2. By assumption, BDλ′
n−1 is AM( |λ

′|−α
2 − 1). One

readily verifies that
BU = {iu : u ∈ U} ∗ BDλ′

n−1;

thus it follows that BU is AM(r), where

r = λ2 +
|λ′| − α

2
− 1 =

|λ′| − α + 2λ2

2
− 1 =

|λ| − α

2
− 1;

the last equality is because |λ| − |λ′| = 2λ2. Combining all acyclic match-
ings, we obtain an acyclic matching on C such that all unmatched faces have
dimension at least |λ|−α

2 − 1. �

12.1.1 The Case d = 2

Using Lemma 12.1, one may easily compute lower bounds on the connectivity
degree of BDλ

n for small λ. Specifically, let us consider sequences λ of the form
2a1b, i.e., λi = 2 for i ∈ [a] and λa+j = 1 for j ∈ [b].

Theorem 12.2. For a ≥ 0 and b ≥ 0 such that (a, b) �= (1, 0), we have that
BD2a1b

a+b is AM(βa,b), where

βa,b =
7a + 3b− 12− εa,b

9
;

εa,b = 1 if b = 0 or if (a, b) ∈ {(4, 1), (1, 2)}; εa,b = 0 otherwise. In particular,
BD2

n is AM( 7n−13
9 ) for n �= 1.

Remark. See Table 12.1 for bounds on the shifted connectivity degree for
a ≤ 16 and b ≤ 8.

Proof. We use induction on |λ|. The case a = 0 follows by Theorem 11.1. One
easily checks the statement by hand for a + b ≤ 3 and also for a + b = 4, at
least when b ≥ 1. Moreover, it is a straightforward task to check that BD2213

5

is collapsible; apply Lemma 12.1 with λ1 = λ2 = 2.
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Table 12.1. Lower bound βa,b on the shifted connectivity degree of BD2a1b

a+b for
a ≤ 16 and b ≤ 8. “−” means that the complex under consideration is contractible.

βa,b a = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b = 0 −1 −1 − − 2 3 4 4 5 6 7 8 8 9 10 11 11

1 −1 − − − 2 3 4 5 6 6 7 8 9 10 10 11 12

2 − 0 1 2 3 4 4 5 6 7 8 8 9 10 11 11 12

3 0 1 − 2 3 4 5 6 6 7 8 9 9 10 11 12 13

4 0 1 2 3 4 4 5 6 7 7 8 9 10 11 11 12 13

5 1 2 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13

6 1 2 3 3 4 5 6 7 7 8 9 10 10 11 12 13 14

7 1 2 3 4 5 5 6 7 8 8 9 10 11 12 12 13 14

8 2 3 3 4 5 6 6 7 8 9 10 10 11 12 13 13 14

First, assume that a ≥ 1 and b ≥ 1 and that a + b ≥ 5 and (a, b) �= (2, 3).
Arrange the elements in λ such that λ1 = 2 and λ2 = 1. In (i) in Lemma 12.1,
each sequence λ′ is of the form 2a′

1b′ , where (a′, b′) = (a − r, b − 5 + 2r) for
some r ∈ {1, 2, 3}. One easily checks that we cannot have (a′, b′) = (1, 0).

Thus by induction, BD2a′
1b′

a′+b′ is AM(µ), where

µ =
7a′ + 3b′ − 12− εa′,b′

9
=

7a + 3b− r − 9− εa′,b′

9
− 2.

If r < 3 or εa′,b′ = 0, then µ ≥ βa,b − 2. If r = 3 and εa′,b′ = 1, then we must
have that (a′, b′) ∈ {(4, 1), (1, 2)}; hence (a, b) ∈ {(7, 0), (4, 1)}. Since εa,b = 1
for these values, it follows that µ ≥ βa,b − 2 in all cases.

In Lemma 12.1 (ii), each sequence λ′ is of the form 2a′
1b′ , where (a′, b′) =

(a− r, b−2+2r) for some r ∈ {0, 1}. By induction, BD2a′
1b′

a′+b′ is AM(µ), where

µ =
7a′ + 3b′ − 12− εa′,b′

9
=

7a + 3b− r − 9− εa′,b′

9
− 1 ≥ βa,b − 1.

Lemma 12.1 yields that BD2a1b

a+b is AM(βa,b).
It remains to consider the case b = 0 and a ≥ 4. In Lemma 12.1 (i), each

sequence λ′ is of the form 2a−413. By induction, BD2a−413

a−1 is AM(µ), where

µ =
7(a− 4) + 3 · 3− 12− εa−4,3

9
=

7a− 13
9

− 2 = βa,0 − 2.

In Lemma 12.1 (ii), each sequence λ′ is of the form 2a−312. One easily checks
that BD2a−312

a−1 is AM(βa,0 − 2); hence Lemma 12.1 yields that BD2a1b

a+b is
AM(βa,b). �
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Table 12.2. The homology of BD2
n for n ≤ 8.

H̃i(BD2
n, Z) i = 1 2 3 4 5 6 7

n = 4 - Z3 - - - - -

5 - - Z9 - - - -

6 - - - Z36 - - -

7 - - - Z Z181 - -

8 - - - - Z2 ⊕ Z125 Z890 -

We have some hope that the bound in Theorem 12.2 is best possible:

Conjecture 12.3. The shifted connectivity degree of BD2
n equals � 7n−13

9 �.

The conjecture is true for small values of n; see Table 12.2. Note by the way
that there is 2-torsion in the homology of BD2

8.

12.1.2 The General Case

We now consider general λ. Let µ = (µ1, . . . , µn) be a sequence. Let Λ(n, µ)
be the set of all nonnegative sequences (λ1, . . . , λn) such that λi ≤ µi for all
i. For n ≥ 1 and µ = (µ1, . . . , µn), define

α(n, µ) = min{α : BDλ
n is AM( |λ|−α

2 − 1)}, (12.1)

where the minimum is taken over all sequences λ ∈ Λ(n, µ). In particular,
BDλ

n is ( |λ|−α(n,µ)
2 − 2)-connected for each λ such that λi ≤ µi for all i. It

follows that there is no homology below dimension |λ|−α(n,µ)
2 − 1.

Write Λ(n, d) = Λ(n, (d, . . . , d)) and α(n, d) = α(n, (d, . . . , d)). It is im-
mediate that α(n′, d′) ≤ α(n, d) whenever n′ ≤ n and d′ ≤ d, because if
(λ1, . . . , λn′) belongs to Λ(n′, d′), then (λ1, . . . , λn′ , 0n−n′

) belongs to Λ(n, d).

Corollary 12.4. For n ≥ 1, we have that α(n, 1) = �n+2
3 �. For n ≥ 3, we

have that α(n, 2) ≤ � 4n+8
9 �.

Proof. Let λ = 2a1b0c and n = a + b + c. If a = 1 and b = 0, then BDλ
n is

only AM( |λ|−2
2 − 1); hence α(n, 2) ≥ 2, which explains the bound n ≥ 3 in

the second statement. Otherwise, Theorem 12.2 yields that BDλ
n is AM(βa,b),

where

βa,b =
7a + 3b− 12− εa,b

9
=

2a + b

2
− 1

2
· 4a + 3b + 6 + 2εa,b

9
− 1

=
|λ|
2
− 1

2
· 4n− b− 4c + 6 + 2εa,b

9
− 1.
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Now, 4n−b−4c+6+2εa,b

9 is at most 4n+8
9 in the general case and at most 3n+6

9 if
a = 0 (ε0,b = 0). Observing that the latter bound is sharp by Theorem 11.12,
we are done. �

Our main goal is to estimate α(n, d) for small n and use this result to esti-
mate the connectivity degree of general complexes BDλ

n. We stress that our
estimates are unlikely to be sharp.

For a sequence λ = (λ1, . . . , λn) and a set U ⊆ [n], let λU be the sub-
sequence of λ consisting of all λu such that u ∈ U . The following result
generalizes parts of Theorem 11.1.

Theorem 12.5. Let G be a graph on the vertex set V . Let {U1, . . . , Ut} be
a clique partition of G and let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be
sequences of nonnegative integers such that λi ≤ µi for all i. Then BDλ

n(G) is
AM(ν), where

ν =
|λ|
2
− 1

2

t∑
j=1

α(|Uj |, µUj
)− 1.

In particular, α(n, d) ≤
∑t

j=1 α(nj , d) for every d ≥ 1 and every sequence
(n1, . . . , nt) of positive integers summing to n.

Proof. Let σ be the union of the sets of edges within the induced subgraphs
G(Ui) for i ∈ [1, k]. If the edge set of G is σ, then

BDλ
n(G) = BD

λU1
|U1|(G(U1)) ∗ · · · ∗ BD

λUt

|Ut|(G(Ut)),

which satisfies the theorem; use Theorem 5.29 and the fact that BD
λUj

|Uj |(G(Uj))

is AM(
|λUj

|−α(|Uj |,µUj
)

2 − 1).
Otherwise, let e = ab be any edge in G−σ. By induction on the number of

edges in G, delBDλ
n(G) = BDλ

n(G− e) is AM(ν). Moreover, lkBDλ
n(G)(e) equals

BDλ′
n (G − e), where we obtain λ′ from λ by subtracting one from each of λa

and λb. By induction on λ, BDλ′
n (G− e) is AM(ν′), where

ν′ =
|λ′|
2
−

t∑
j=1

α(|Uj |, µUj
)

2
− 1 = ν − 1.

This implies that BDλ
n(G) is AM(ν), and we are done. �

Lemma 12.6. Let d ≥ 1 and 1 ≤ n ≤ d + 2. Then α(n, d) = d.

Proof. If λ = (d, 0, . . . , 0), then obviously BDλ
n = {φ}, which implies that

α(n, d) ≥ d; we must have that |λ|−α(n,d)
2 ≤ 0 in this case.

It remains to prove that α(n, d) ≤ d. We use double induction on d and n,
proving that BDλ

n is AM( |λ|−d
2 − 1) whenever λ ∈ Λ(n, d). The case d = 1 is

clear by Corollary 12.4. The case n = 1 is obvious.
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Let d ≥ 2 and let (λ1, . . . , λn) be a sequence such that d ≥ λ1 ≥ . . . ≥ λn.
Without loss of generality, we may assume that all elements in the sequence
are positive; otherwise, just remove all vertices i such that λi = 0.

We want to apply Lemma 12.1 with α = d. First, we verify that (i) in the
lemma holds. Consider BDλ′

n−1, where

λ′ = (λ2 − 1, λ3 − χ(3 ∈ U), . . . , λn − χ(n ∈ U)),

U ⊆ [3, n], and |U | = λ1. We have that λ′ ∈ Λ(n− 1, d− 1). Namely, if λ1 = d,
then χi = 1 for all i ∈ [3, n], because n− 2 ≤ d. As a consequence, BDλ′

n−1 is
AM( |λ

′|−d+1
2 − 1) by induction on d.

Next, we verify that (ii) in the lemma holds. Consider BDλ′
n−1, where

λ′ = (λ1, λ3 − χ(3 ∈ U), . . . , λn − χ(n ∈ U)),

U ⊆ [3, n], and |U | = λ2. This time, BDλ′
n−1 is AM( |λ

′|−d
2 − 1) by induction

on n.
As a consequence, we are done by Lemma 12.1. �

Lemma 12.7. Let d ≥ 0 and let (λ1, . . . , λd+4) be a weakly decreasing se-
quence of integers such that λ1 ≤ d + 1 and λ3 ≤ d. Then BDλ

d+4 is
AM( |λ|−d−1

2 − 1). In particular, α(d + 3, d) ≤ α(d + 4, d) ≤ d + 1.

Proof. The lemma is obvious if d = 0; thus assume that d ≥ 1. Moreover, the
lemma is obvious if λ2 = 0, because λ1 ≤ d + 1; thus assume that λ2 ≥ 1.

As in the previous proof, we want to apply Lemma 12.1, this time with
α = d+1. First, consider (i) in the lemma. We are interested in BDλ′

d+3, where

λ′ = (λ2 − 1, λ3 − χ(3 ∈ U), . . . , λd+4 − χ(d + 4 ∈ U)),

U ⊆ [3, d+4], and |U | = λ1. If we can prove that at most two elements in the
sequence λ′ are equal to d and that no elements are larger than d, then it will
follow by induction that BDλ′

d+3 is AM( |λ
′|−d
2 − 1) as desired. Now, the given

condition on λ′ trivially holds if λ1 ≤ d − 1. If λ1 = d, then we subtract one
from λ2 and from all but two elements in the sequence (λ3, . . . , λd+4). Since
each of these elements is at most d, it follows that λ′

i = d for at most two i.
If λ1 = d + 1, then we subtract one from λ2 and from all but one element in
(λ3, . . . , λd+4). Again, it follows that at most two elements λ′

i equal d.
Next, consider (ii) in the lemma. This time, we are interested in BDλ′

d+3,
where

λ′ = (λ1, λ3 − χ(3 ∈ U), . . . , λd+4 − χ(d + 4 ∈ U)),

U ⊆ [3, d + 4], and |U | = λ2. Now, BDλ′
d+3 = BDλ′′

d+4, where we obtain λ′′ by
adding a zero at the end of λ′. By induction on |λ|, it follows that BDλ′

d+3 is
AM( |λ|−d−1

2 − 1). Thus we are done by Lemma 12.1. �

Define max λ = max{λi : i ∈ [n]}.
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Theorem 12.8. Let d ≥ 2 and n ≥ d + 1 and let λ = (λ1, . . . , λn) be a
sequence of nonnegative integers such that max λ ≤ d. Write n = (d+4)k+r,
where d + 1 ≤ r ≤ 2d + 4. Then BDλ

n is AM(ν), where

ν =
|λ|
2
− (d + 1)n

2(d + 4)
− εd(r)

2
− 1

and

εd(r) =
3r

d + 4
−

⎧⎪⎪⎨
⎪⎪⎩

1 if r = d + 1;
2 if d + 2 ≤ r ≤ d + 3;
3 if d + 4 ≤ r ≤ 2d + 3;
4 if r = 2d + 4.

In particular, BDd
n is AM(νd

n), where

νd
n =

(d2 + 3d− 1)n
2(d + 4)

− εd(r)
2
− 1.

Remark. One easily checks that the “error term” εd(r) satisfies 0 ≤ εd(r) ≤
3(d− 1)/(d + 4); the maximum is obtained for r = 2d + 3. As a consequence,

νd
n ≥

(d2 + 3d− 1)n− 5(d + 1)
2(d + 4)

. (12.2)

Proof. Divide [n] into k sets of size d+4 and one set of size r. By Lemma 12.6,
α(r, d) = d for r ≤ d+2. Moreover, Lemma 12.7 implies that α(d+3, d), α(d+
4, d) ≤ d+1. Using Lemma 12.1, one easily checks that α(n, d) ≤ α(n−1, d)+1
for n ≥ 2, which implies that

α(r, d) ≤ α(d + 4, d) + r − d− 4 ≤ r − 3

for r ≥ d + 4. Finally, α(2d + 4, d) ≤ 2α(d + 2, d) = 2d by Theorem 12.5. As
a consequence,

α(r, d) ≤ εd(r) +
(d + 1)r
d + 4

for d + 1 ≤ r ≤ 2d + 4. By Theorem 12.5, it follows that

α(n, d) ≤ k(d + 1) + εd(r) +
(d + 1)r
d + 4

=
n− r

d + 4
(d + 1) + εd(r) +

(d + 1)r
d + 4

=
(d + 1)n

d + 4
+ εd(r),

which concludes the proof. �

As already indicated, we do not believe that the derived bound is actually
equal to the shifted connectivity degree. Indeed, for d = 2, we obtain ν2

n =
3n−5

4 , which is substantially smaller than the bound 7n−13
9 in Theorem 12.2.

We now show how to improve on Theorem 12.8 for d = 3.
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Lemma 12.9. We have that α(9, 3) ≤ 5.

Proof. Throughout this proof, we assume that λ is weakly decreasing. In the
proof, we repeatedly apply Lemma 12.1 to prove that BDλ

n is AM
(

|λ|−α
2 − 1

)
for a given α whenever n and λ are bounded by certain values. For each such
application, it will be obvious by induction on |λ| that (ii) in the lemma is
satisfied; hence we suppress this step in the below discussion.

First, we note that BDλ
6 is AM

(
|λ|−2

2 − 1
)

whenever |λ| ≤ 7 and λi ≤ 2
for all i; apply Theorem 12.2 or consult Table 12.1.

Second, we prove that BDλ
7 is AM

(
|λ|−3

2 − 1
)

whenever |λ| ≤ 12, λ1 ≤ 3,
and λ3 ≤ 2. This is clear if λi ≤ 1 for all i. Otherwise, use Lemma 12.1. Each
resulting sequence λ′ in (i) has the property that |λ′| ≤ 7; λ1 ≥ 2. Moreover,
each element in λ′ is at most two; we remove λ1 and subtract one from λ2.
As a consequence, the claim follows by the first claim.

The third step is to prove that BDλ
8 is AM

(
|λ|−4

2 − 1
)

whenever |λ| ≤ 19,
λ1 ≤ 3, and λ5 ≤ 2. Since α(8, 2) ≤ 4 by Corollary 12.4, we may assume that
λ1 = 3. Each resulting sequence λ′ in Lemma 12.1 (i) has the property that
|λ′| ≤ 12 and has at most two elements equal to 3. As a consequence, the
second result yields the claim.

Finally, we prove that BDλ
9 is AM

(
|λ|−5

2 − 1
)

whenever |λ| ≤ 26 and
max λ ≤ 3. Since α(9, 2), α(8, 3) ≤ 5, we may assume that λ1 = 3 and λ9 �= 0.
Each resulting sequence λ′ in Lemma 12.1 (i) has the property that |λ′| ≤ 19
and has at most four elements equal to 3, because we remove λ1 and subtract
one from four of the remaining λi. As a consequence, the third result yields
the claim.

It remains to consider BD3
9. By Theorem 12.8, BD3

9 is AM
(

|λ|−6
2 − 1

)
=

AM(9.5), which clearly implies that the complex is AM
(

|λ|−5
2 − 1

)
=

AM(10). The lemma follows. �

Theorem 12.10. Let n ≥ 4 and let λ = (λ1, . . . , λn) be a sequence of non-
negative integers such that max λ ≤ 3. Then BDλ

n is AM(ν), where

ν =
9|λ| − 5n− 26

18
.

In particular, BD3
n is AM

(
11n−13

9

)
.

Remark. For d = 3, the bound in (12.2) equals (17n− 20)/14.

Proof. By previous lemmas, we know that α(4, 3) = α(5, 3) = 3, α(7, 3) ≤ 4,
and α(9, 3) ≤ 5. Moreover, Theorem 12.5 implies that α(10, 3) ≤ 2α(5, 3) = 6
and α(12, 3) ≤ α(5, 3) + α(7, 3) ≤ 7. To summarize,

α(r, 3) ≤ 5r + 8
9



160 12 Graphs of Bounded Degree

for 4 ≤ r ≤ 12. Write n = 9k + r, where 4 ≤ r ≤ 12. By Theorem 12.5, it
follows that

α(n, 3) ≤ kα(9, 3) + α(r, 3) ≤ 5k +
5r + 8

9
=

5n + 8
9

,

which immediately implies the desired result. �

Table 12.3. Lower bounds on the shifted connectivity degree of BDd
n for small d.

d Best known bound Reference

1
n − 4

3
Th. 11.6

2
7n − 13

9
Th. 12.2

3
11n − 13

9
Th. 12.10

d Best known bound Reference

4
27n − 25

16
Th. 12.8

5
13n − 10

6
”

6
53n − 35

20
”

See Table 12.3 for a summary of our results on the shifted connectivity degree
of BDd

n. In many cases, this value is strictly larger than the depth. Specifi-
cally, assume that d ≥ 7. By Theorem 12.8, the shifted connectivity degree
of BDd

2d+4 is at least d2 + d − 1. Now, let G be a graph on 2d + 4 vertices
consisting of two connected components. The first component is a clique of
vertex size four, whereas the second component is a graph on 2d vertices in
which every vertex has degree d. It is clear that G is maximal in BDd

n, because
all vertices of degree less than d are already adjacent to each other. However,
the number of edges in G is

d · (2d)
2

+ 6 = d2 + 6 < d2 + d,

which implies that the depth of BDd
2d+4 is strictly less than d2 + d− 1.

For the special case d = 2, we have been able to prove the following about
the depth:

Proposition 12.11. For n ≥ 3, BD2
n is V D(� 3n−7

4 �). In particular, the depth
of BD2

n is at least � 3n−7
4 �.

Proof. Write n = 4(k − 1) + r such that r ∈ [1, 4]. Divide [n] into k − 1 sets
U1, . . . , Uk−1 of size 4 and one set Uk of size r. Let Y be the set of edges
between different sets Ui and Uj . For each A ⊆ Y , we have that

BD2
n(A, Y \A) = {A} ∗ BDλ1

4 ∗ . . . ∗ BDλk−1

4 ∗ BDλk

r ,
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where the coefficient in λi corresponding to a given vertex u ∈ Ui is two minus
the number of edges in A that are adjacent to u. Adding zeros at the end of
λk, we may identify BDλk

r with a complex of the form BDλ′
4 .

It suffices to prove that BDλi

4 is V D(�|λi|/2� − 2) for each i < k and that
the same is true for BDλk

r = BDλ′
4 . Namely, this will imply that BD2

n(A, Y \A)
is V D(�α�), where

α = |A|+
k∑

i=1

(|λi|/2− 1)− 1 = n− k − 1 =
⌈

3n− 7
4

⌉
.

Thus let λ = (λ1, . . . , λ4) be a sequence such that max λ ≤ 2 and λ1 ≥
λ2 ≥ λ3 ≥ λ4. We want to prove that BDλ

4 is V D(�|λ|/2� − 2). If some λi is
negative, then BDλ

4 = ∅. Otherwise, we have the following four cases:

• |λ| ≤ 2. Then we are done, as BDλ
4 is obviously V D(−1).

• 3 ≤ |λ| ≤ 4. Then λ1 and λ2 are both nonzero, which implies that BDλ
4

contains the 0-cell {12}. As a consequence, BDλ
4 is V D(0).

• 5 ≤ |λ| ≤ 6. Then λ1 = 2. Decompose with respect to the edge set Z =
{23, 24, 34}. Let B ⊆ Z. If |B| ≥ 2, then BDλ

4 (B,Z \B) is clearly V D(1).
If B = {e} for some e, then some vertex i > 1 has the property that i is
incident to less than λi edges in B; λ2 + λ3 + λ4 ≥ 3. As a consequence,
{e, 1i} belongs to BDλ

4 ({e}, Z\{e}), which implies that BDλ
4 ({e}, Z\{e}) is

V D(1). Finally, consider B = ∅. Since λ2, λ3 ≥ 1, we have that BDλ
4 (∅, Z)

is either 2{12,13} or 2{12,13,14}, which are both V D(1).
• |λ| ≥ 7. In this case, λ1 = λ2 = λ3 = 2. Decompose with respect to the

edge set Z = {14, 24, 34}. Let B ⊆ Z. If |B| > λ4, then BDλ
4 (B,Z \ B) is

void. Otherwise, BDλ
4 (B,Z \B) is isomorphic to {B}∗BDλ′

3 , where λ′
i = 2

if i ≤ 3 − |B| and λ′
i = 1 if i > 3 − |B|. Now, BD

(2,2,2)
3 = 2{12,13,23}

and BD
(2,2,1)
3 = 2{12} ∗ {∅, {13}, {23}}; hence these complexes are V D(2)

and V D(1), respectively. Moreover, BD
(2,1,1)
3 contains 0-cells and is hence

V D(0). It follows that BDλ
4 (B,Z \ B) is V D(2) in all cases; as a conse-

quence, BDλ
4 is V D(2) as desired.

The desired result follows. �
Problem 12.12. Determine the connectivity degree and the homotopical
depth of BDd

n for general d.

12.2 Bounded-Degree Graphs with Loops

We proceed with the complex BD
λ

n of L-graphs H such that degH(i) ≤ λi for
each i ∈ [n]. Reiner and Roberts generalized Bouc’s Theorem 11.5 about the
homology of Mn to BD

λ

n. We confine ourselves to presenting an immediate
consequence of their result:
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Theorem 12.13 (Reiner and Roberts [111]). Let notation be as in Section
2.5. For n ≥ 1, BD

λ

n has homology over Q in dimension d − 1 if and only if
there is a self-conjugate partition µ � |λ| such that |Dµ| = |λ| − 2d and such
that µ dominates λ. �

Regarding the homotopy type, very little is known. Dong gave a complete
characterization of all partitions λ such that BD

λ

n is collapsible:

Theorem 12.14 (Dong [36]). Let n ≥ 1 and let λ1 ≥ λ2 ≥ · · · ≥ λn ≥
1. The complex BD

λ

n is collapsible if and only if there is no self-conjugate
partition µ � |λ| such that µ dominates λ. As a consequence, BD

λ

n is collapsible
if and only if BD

λ

n is Q-acyclic. �

We refer to a partition λ as diagonal-balanced if∑
i

max{λi − i, 0} =
∑

i

min{i− 1, λi}.

This means that there are just as many elements above the diagonal as below
the diagonal. Dong [36] uses the term “balanced” to denote diagonal-balanced
partitions.

Theorem 12.15 (Dong [36]). Let n ≥ 1 and let λ be a diagonal-balanced
partition. Then BD

λ

n is semi-collapsible and has the homotopy type of a wedge
of spheres of dimension |λ|+|Dλ|

2 − 1. �

There is a simple lower bound on the connectivity degree of a general complex
BD

λ

n. In most cases, this bound is far from sharp:

Proposition 12.16. Let n ≥ 1 and let G be an L-graph on [n] such that
ii ∈ G for each i ∈ [n]. Let λ = (λ1, . . . , λn) be such that λi ≥ 1. Then
BD

λ

n(G) is AM( |λ|−n
2 − 1).

Proof. For an L-graph H, let H− be the simple graph obtained by removing
all loops from H. For each I ⊆ [n], let BD

λ

n(G, I) be the subfamily of BD
λ

n(G)
consisting of all L-graphs H such that

degH−(i)
{
≤ λi − 2 if i ∈ I;
≥ λi − 1 if i ∈ [n] \ I.

This partition of BD
λ

n(G) clearly satisfies the Cluster Lemma 4.2. For I �= φ,
let i = min I. We obtain a perfect matching on BD

λ

n(G, I) by pairing H − ii
and H + ii. Namely, by assumption, the degree of i with the loop ii excluded
is at most λi − 2. The remaining family is BDλ

n(G,φ). In an L-graph in this
family, the degree of vertex i is at least λi − 1, which implies that the total
number of edges is at least
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n∑
i=1

λi − 1
2

=
|λ| − n

2
. �

Using results from the preceding section, we may obtain better bounds in
certain cases:

Theorem 12.17. Let Λ(n, µ) and α(n, µ) be defined as in (12.1) in Section
12.1.2. If λ ∈ Λ(n, µ), then BD

λ

n is AM
(

|λ|−α(n,µ)
2 − 1

)
. In particular, The-

orems 12.2 (for n ≥ 3; cf. Corollary 12.4), 12.8, and 12.10 all apply to BD
λ

n.

Proof. Let W be the set of loops; W = {ii : i ∈ [n]}. For each A ⊆ W ,
consider the family ΣA = BD

λ

n(A,W \A). It is clear that ΣA is isomorphic to
{A} ∗ BDλA

n , where

λA = (λ1 − 2 · χ(1 ∈ A), . . . , λn − 2 · χ(n ∈ A)).

Now, λA either contains negative elements (which yields that BDλA

n is void) or
belongs to Λ(n, µ). It follows that BDλA

n is AM
(

|λA|−α(n,µ)
2 − 1

)
and hence

that ΣA is AM
(

|λ|−α(n,µ)
2 − 1

)
; |λ| = |λA| + 2|A|. Combining appropriate

acyclic matchings on the families ΣA, we obtain an acyclic matching on BD
λ

n

with all unmatched faces of dimension at least |λ|−α(n,µ)
2 − 1; this concludes

the proof. �

Proposition 12.18. For n ≥ 3, BD
2

n is V D(� 3n−7
4 �). In particular, the depth

of BD
2

n is at least � 3n−7
4 �.

Proof. Apply the proof of Proposition 12.11; the only modification is that we
add all loops to the edge set Y . �

Table 12.4. The homology of BD
2
n for n ≤ 7.

H̃i(BD
2
n, Z) i = 0 1 2 3 4 5 6

n = 2 Z - - - - - -

3 - Z2 - - - - -

4 - - Z6 - - - -

5 - - - Z28 - - -

6 - - - - Z140 - -

7 - - - - Z5 Z732 -
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In Table 12.4, we provide the homology groups of BD
2

n for n ≤ 7. Note that
there is 5-torsion in the homology of BD

2

7; this result is due to Andersen:

Theorem 12.19 (Andersen [1]). We have that

H̃i(BD2
7; Z) ∼=

⎧⎨
⎩

Z5 if i = 4;
Z732 if i = 5;
0 otherwise.

Table 12.4 and Theorem 12.2 suggest the following conjecture:

Conjecture 12.20. The shifted connectivity degree of BD
2

n equals � 7n−13
9 �.

Problem 12.21. Determine the connectivity degree and the homotopical
depth of BD

d

n for general d.

For k ∈ [n], define PBD
λ;k

n (“Partially Bounded Degree”) to be the complex
of L-graphs H with the property that there is a vertex set I of size at least k
such that degH v ≤ λv for all v ∈ I. We define PBDλ;k

n analogously in terms
of simple graphs; thus PBDλ;k

n is the induced subcomplex of PBD
λ;k

n on the
set

(
[n]
2

)
. Clearly, PBD

λ;n

n = BD
λ

n. Moreover, PBD
λ;1

n is the Alexander dual of

BD
nn−λ

n with respect to the set
(
[n]
1

)
∪
(
[n]
2

)
and PBDλ;1

n is the Alexander dual
of BD(n−2)n−λ

n with respect to the set
(
[n]
2

)
; kn − λ = (k − λ1, . . . , k − λn).

Theorem 12.22 (Dong [36]). Let n ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and k ∈ [n].
For a simplicial complex Σ and an integer p, let Σ(p) denote the p-skeleton of
Σ. Then PBD

λ;k

n �
(
2[n]

)(n−k−1) ∗ BD
λ

n. In particular,

H̃i(PBD
λ;k

n ; Z) ∼=
⊕
(n−1

k−1)
H̃i+k−n(BD

λ

n; Z)

for all i.

Remark. If k = 1, then
(
2[n]

)(n−k−1)
is an (n− 2)-sphere.

Proof. Write Ln =
(
[n]
1

)
. First, note that we may collapse PBD

λ;k

n to PBD
λ;k

n ∩
(2Ln ∗ BDλ

n); for a given L-graph H in the difference, match with the
smallest ii such that degH−(i) > λi. Moreover, the subcomplex PBD

λ;k

n ∩(
2Ln ∗ (BDλ

n ∩ PBDλ−2n;1
n )

)
is collapsible; given an L-graph H in the sub-

complex, match with the smallest ii such that degH−(i) ≤ λi − 2. By the
Contractible Subcomplex Lemma 3.16, the conclusion is that PBD

λ;k

n is ho-
motopy equivalent to the quotient complex
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PBD
λ;k

n ∩ (2Ln ∗ BDλ
n)

PBD
λ;k

n ∩
(
2Ln ∗ (BDλ

n ∩ PBDλ−2n;1
n )

) =
(
2Ln

)(n−k−1) ∗ Γλ
n ,

where Γλ
n is the quotient complex of all simple graphs G such that degG(i) ∈

{λi − 1, λi} for all i ∈ [n]. Inserting k = n, we obtain that BD
λ

n � Γλ
n , which

concludes the proof of the first statement in the theorem.
The second statement in the theorem is an immediate consequence of

Corollary 4.23 and the fact that
(
2[n]

)(n−k−1)
is homotopy equivalent to a

wedge of
(
n−1
k−1

)
spheres of dimension n− k − 1. �

12.3 Euler Characteristic

We discuss the Euler characteristic of BDd
n for d ≤ 2 and d ≥ n − 3 and the

Euler characteristic of BD
d

n for d ≤ 2 and d ≥ n− 2. For intermediate values
of d, we do not have any results of interest to present.

For d = 1, we obtain Mn; in this case, the exponential generating function
equals 1− ex−x2/2 by Proposition 11.29. For d = 2, the situation is as follows:

Theorem 12.23 (Babson et al. [3]). We have that

∑
n≥1

χ̃(BD2
n)

xn

n!
= 1−

exp( x
2+2x + x− x2

4 )
√

1 + x
;

∑
n≥1

χ̃(BD
2

n)
xn

n!
= 1−

exp( x
2+2x − x2

4 )
√

1 + x
.

Proof. Let ∆n be the family of connected graphs in BD2
n. It is clear that

χ̃(∆1) = −1 and χ̃(∆2) = 1. For n ≥ 3, ∆n contains all (n−1)!/2 Hamiltonian
cycles and all n!/2 Hamiltonian paths. As a consequence,

χ̃(∆n) = (−1)n (n!/2− (n− 1)!/2) .

We obtain that

∑
n≥1

χ(∆n)
xn

n!
= −x +

x2

2
+
∑
n≥3

(−1)n

(
1
2
− 1

2n

)
xn

= −x +
x2

4
+
∑
n≥1

(−x)n

(
1
2
− 1

2n

)

= −x +
x2

4
− x

2 + 2x
+

ln(1 + x)
2

.
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The desired result for BD2
n now follows immediately from Corollary 6.15. For

BD
2

n, the families ∆n are the same as for BD2
n, except that ∆1 now contains

not only the empty graph but also the L-graph with edge set {11}. Hence
χ̃(∆1) equals 0 instead of −1, which yields the desired result. �

We now proceed with large values of d, starting with BDd
n and postponing

BD
d

n until later. As it turns out, it is easier to analyze the Alexander dual
PBDr;1

n = (BDn−2−r
n )∗. For r = 0, we obtain the complex SSC1

n of graphs with
at least one isolated vertex. We analyze this complex (which is very simple)
in Corollary 18.20. For r = 1, the complex under consideration is the complex
in which at least one vertex has degree at most one.

Theorem 12.24. We have that∑
n≥1

χ̃(PBD1;1
n )

xn

n!
= −1− x + e−x2/2

(
x + e−x

)
.

Proof. Let Σn be the quotient complex 2Kn/PBD1;1
n . Thus Σn contains all

graphs in which each vertex has degree at least two. Write an = χ̃(Σn). It is
clear that a1 = a2 = 0. We want to prove that

∑
n≥1

an
xn

n!
= 1− e−x2/2

(
x + e−x

)
.

Assume that n ≥ 3. For any set S ⊆ [n − 1], let ΣS
n be the subfamily of Σn

consisting of all graphs G such that S is the set of vertices with degree one in
the induced subgraph G([n − 1]); all other vertices have degree at least two.
Note that any G ∈ ΣS

n must have the property that sn ∈ G for all s ∈ S; the
degree of s in G is at least two.

First, consider S = ∅. For any given graph H ∈ Σn−1, a graph G such
that G([n − 1]) = H belongs to Σ∅

n if and only if the degree of n in G is at
least 2. Thus

χ̃(Σ∅
n) = (n− 2)χ̃(Σn−1) = (n− 2)an−1. (12.3)

Next, consider the case that 2 ≤ |S| ≤ n − 2. Since n is adjacent in G to
all vertices in S whenever G ∈ ΣS

n , we obtain a perfect matching on ΣS
n by

pairing G− xn and G + xn for any x ∈ [n− 1] \ S. In particular,

χ̃(ΣS
n ) = 0. (12.4)

The third case is that S = [n − 1]. If G ∈ Σ
[n−1]
n , then all vertices in

G([n− 1]) have degree one, which means that G([n− 1]) constitutes a perfect
matching. Moreover, all edges sn such that s ∈ [n− 1] belong to G. It follows
that

χ̃(Σ[n−1]
n ) =

{
0 if n is even;
(−1)k−1 (2k)!

k!2k if n = 2k + 1 and k ≥ 1.
(12.5)
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The remaining case is that |S| = 1. For any vertices p, q ∈ [n], let Γ p,q
n be

the family of graphs G such that q is the only neighbor of p and such that the
degree of all vertices but p is at least two. Define bn = χ̃(Γ p,q

n ); this definition
does not depend on the choice of p and q. Write Γ p

n =
⋃

q∈[n]\{p} Γ p,q
n ; by

symmetry, χ̃(Γ p
n) = (n − 1)bn. It is clear that G belongs to Σ

{p}
n if and only

if G([n − 1]) belongs to Γ p
n−1 and n is adjacent to p and at least one other

vertex. As a consequence,

χ̃(Σ{p}
n ) =

∑
q∈[n−1]\{p}

χ̃(Γ p,q
n−1) = χ̃(Γ p

n−1) = (n− 2)bn. (12.6)

Summing over all sets S and using (12.3)-(12.6), we obtain that

an = (n− 2)an−1 + χ̃(Σ[n−1]
n ) + (n− 1)(n− 2)bn−1.

Thus
A′(x) = xA′(x)−A(x) + 1− e−x2/2 + B′′(x)x2, (12.7)

where A(x) =
∑

n≥1 anxn/n! and B(x) =
∑

n≥1 bnxn/n!. Note that ex2/2 is
the exponential generating function for the number of perfect matchings on
n vertices.

Now, we may write Γn,q
n as the disjoint union of {nq} ∗Σn−1 and {nq} ∗

Γ q
n−1. As a consequence, bn = −an−1 − (n− 2)bn−1, which implies that

B′′(x) = −A′(x)−B′′(x)x⇐⇒ B′′(x) =
−A′(x)
1 + x

.

Substituting for B′′(x) in (12.7), we obtain that

A′(x) = xA′(x)−A(x) + 1− e−x2/2 +
−A′(x)x2

1 + x

⇐⇒ A′(x)
1 + x

= −A(x) + 1− e−x2/2

⇐⇒ d

dx

(
Aex2/2+x

)
= (1 + x)(ex2/2+x − ex).

The desired result now easily follows. �

Finally, we examine BD
d

n for large values of d. Again, we consider the
Alexander dual.

Theorem 12.25. We have that

PBD
0;1

n � Sn−2;∑
n≥1

χ̃(PBD
1;1

n )
xn

n!
= e−x2/2−x − 1;

∑
n≥1

χ̃(PBD
2;1

n )
xn

n!
=

exp( x
2x−2 − x2

4 )
√

1− x
− 1.
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Proof. By Theorem 12.22, the first statement is obvious, because BD
0

n = {∅}.
The same theorem yields the two other statements; use Proposition 11.29 and
Theorem 12.23. �
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Forests and Matroids

Let M be a matroid on a finite set E with rank function ρ. The independence
complex F(M) is well-known to have attractive topological properties. More
precisely, F(M) is known to be shellable – in fact even vertex-decomposable –
of dimension ρ(E)− 1; see Provan and Billera [108, 107] and Björner [8]. We
give a summary in Section 13.1.

One of the main goals of this chapter is to extend this result to a larger
class of simplicial complexes. Specifically, we define a complex ∆ to be a
pseudo-independence or PI complex over M by the property that if τ is a
face of ∆ and e is an element such that ρ(τ + e) > ρ(τ), then τ + e is also
a face of ∆. In Section 13.2, we show that every PI complex over M has a
vertex-decomposable skeleton of dimension ρ(E)− 1.

What distinguishes an arbitrary PI complex from the independence com-
plex F(M) is that the latter complex satisfies the following property: If τ is a
face and e is an element not in τ such that ρ(τ + e) = ρ(τ), then τ + e is not
a face. We may relax this condition a bit, requiring that either τ + e /∈ ∆ or
the element e is a cone point in lk∆(τ). We refer to a PI complex with this
property as a strong PI or SPI complex. As we will see in Section 13.3, such a
complex has the homotopy type of a wedge of spheres in dimension ρ(E)− 1.
As a consequence, from a homotopical point of view, SPI complexes are very
similar to the independence complex.

An attractive property of the families of PI and SPI complexes is that they
are closed under deletion and contraction of an element in the matroid; the
latter operation corresponds to taking the link of the complex with respect to
the contracted element. Indeed, this is the crucial property that allows us to
derive the mentioned topological results.

We also consider PI ∗ and SPI ∗ complexes, which are Alexander duals of PI
and SPI complexes, respectively. In terms of the dual M∗ (with rank function
ρ∗) of the underlying matroid M, a PI ∗ complex has the property that each
maximal face τ is a flat; the rank of τ+x exceeds the rank of τ for each x not in
τ . As a fairly immediate consequence, a PI ∗ complex is homotopy equivalent
to the order complex of a certain order ideal in the lattice of flats in M∗. In
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particular, all homology is concentrated in dimensions below ρ∗(E) − 1. An
SPI ∗ complex ∆ satisfies the additional condition that if τ is a nonface of ∆
and e is an element such that ρ∗(τ + e) > ρ∗(τ), then e is a cone point in
the induced subcomplex of ∆ on the set τ + e. In Section 13.4, we show that
every SPI ∗ complex has a vertex-decomposable (ρ∗(E) − 2)-skeleton. Note
that this is not an immediate consequence of the corresponding result for SPI
complexes.

The independence complex over the graphic matroid Mn = Mn(Kn) co-
incides with the complex Fn of forests on n vertices. Chari [31] and later
Linusson and Shareshian [94] examined the larger complex Bn of bipartite
graphs on n vertices. It is easy to see that Bn is an SPI complex, which im-
plies the result of Chari [31] that Bn is homotopy equivalent to a wedge of
spheres of dimension n− 2; see Section 14.1 for more information about Bn.

A graph is bipartite if and only if the graph does not contain an odd cycle.
More generally, for a matroid M on a set E, one may consider the complex BM

of subsets of E that do not contain any circuits of odd cardinality. In Section
13.3.1, we show that BM is SPI whenever M admits a representation over
the field with two elements. We generalize this observation to representations
over arbitrary fields, but the resulting complex is no longer equal to BM in
general.

The generic example of an SPI ∗ complex is the complex NCn of discon-
nected graphs on n vertices. For each p dividing n, another SPI ∗ complex is
the complex of graphs such that the number of vertices in some connected
component is not divisible by p; see Section 13.4.1.

13.1 Independence Complexes

We give a brief overview of some basic properties of the independence complex
of a matroid. From our perspective, the most important fact is the following
result, which implies that independence complexes are shellable.

Theorem 13.1 (Provan and Billera [107, 108]). Let M be a matroid of
rank r. Then F(M) is V D and hence homotopy equivalent to a wedge of spheres
of dimension r − 1. �

For the graphic matroid and its one-step truncation (see Section 2.4.1), we
have the following well-known consequences:

Corollary 13.2. For any graph G on n vertices, the following hold:

• Fn(G) is V D of dimension n − c(G) − 1. More generally, for any graph
H ⊆ G, lkFn(G)(H) is V D of dimension c(H)− c(G)− 1.

• Fn(G) ∩ NCn is V D of dimension n−max{c(G), 2} − 1.
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Table 13.1. The reduced Euler characteristic of Fn for small values on n.

n 1 2 3 4 5 6 7 8 9 10

χ̃(Fn) −1 0 −1 6 −51 560 −7575 122052 −2285353 48803904

For each positive integer t, one may easily extend the second statement in
the corollary to the complex of forests with at least t connected components;
replace max{c(G), 2} with max{c(G), t}.

The reduced Euler characteristic of Fn is complicated and is perhaps best
expressed in terms of the Hermite polynomial Hn(t), which is defined by the
equation ∑

n≥0

Hn(t)
xn

n!
= etx+x2/2.

Note that Hn+1(t) = tHn(t)+nHn−1(t) for n ≥ 1 and that Hn(t) = tnf(1/t2),
where f(t) is the polynomial in Proposition 11.29. Equivalently, the coefficient
of tn−2k in Hn(t) equals the number of k-matchings on n vertices.

Theorem 13.3 (Novik et al. [103, Th. 5.8]). For n ≥ 3, we have that
χ̃(Fn) = (−1)n(n− 2)Hn−3(n− 1). �
We present χ̃(Fn) for small n in Table 13.1.

The following immediate consequence of Theorem 13.1 and Proposition
5.12 might be worth mentioning.

Corollary 13.4. Let M be a matroid of rank r. Then F(M) is semi-nonevasive
with all evasive faces of dimension r − 1. Moreover, the complex NC(M) of
all sets of rank at most r − 1 is semi-nonevasive with all evasive faces of
dimension r − 2. �
For the second statement in the corollary, use Proposition 5.36 and the fact
that NC(M) is the Alexander dual of F(M∗), where M∗ is the dual matroid
of M. In Section 13.4, we show that the (r − 2)-skeleton of NC(M) is V D.

Remark. For a connected graph G on n vertices, the complex NC(Mn(G)) in
Corollary 13.4 coincides with the complex NCn(G) of disconnected subgraphs
of G. See Section 18.1 for more information about this complex.

13.2 Pseudo-Independence Complexes

We introduce the concept of a pseudo-independence complex over a matroid
and show that a certain skeleton of such a complex is V D.

Let M = (E,F) be a matroid with rank function ρM . Say that a simplicial
complex ∆ of subsets of M is a pseudo-independence complex over M if the
following holds:
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• If τ ∈ ∆, x ∈ E \ τ , and ρM(τ + x) > ρM(τ), then τ + x ∈ ∆.

The rationale for this terminology is that a nonvoid pseudo-independence
complex over M contains the independence complex F of M. To simplify
notation, we say that a pseudo-independence complex over M is PI over M.
By convention, we consider the void complex to be a PI complex over any
matroid.

For any subset τ of E, let ∆(τ) be the induced subcomplex of ∆ on the
vertex set τ . It is clear that ∆(τ) is PI over M(τ) whenever ∆ is PI over M.
In particular, del∆(e) is PI over M − e for any e ∈ E. Also, lk∆(e) is PI over
M/e. Namely, ρM/e(τ + x) > ρM/e(τ) is equivalent to

ρM(τ + e + x)− ρM(e) > ρM(τ + e)− ρM(e)⇐⇒ ρM(τ + e + x) > ρM(τ + e).

Theorem 13.5. Let ∆ be a PI simplicial complex over a matroid M = (E,F).
Then, for any subset τ of E, ∆(τ) is V D(ρM(τ)− 1).

Proof. It is clear that the (ρM(τ)− 1)-skeleton of ∆(τ) is pure; ∆(τ) being PI
implies that all maximal faces of ∆(τ) have full rank ρM(τ). We are done if
ρM(τ) = 0. Suppose ρM(τ) > 0, and let e ∈ τ be such that ρM(e) = 1. There
are two cases:

• ρM(τ) = ρM(τ − e) + 1. As ∆(τ) is PI, this implies that e is a cone point
in ∆(τ). By induction, lk∆(τ)(e) = del∆(τ)(e) = ∆(τ − e) is V D(ρM(τ −
e)− 1) = V D(ρM(τ)− 2), and we are done.

• ρM(τ) = ρM(τ−e). By induction, del∆(τ)(e) = ∆(τ−e) is V D(ρM(τ)−1)
and lk∆(τ)(e) is V D(ρM/e(τ) − 1) = V D(ρM(τ) − 2), the latter com-
plex being PI over M(τ)/e. By Lemma 6.9, this implies that ∆(τ) is
V D(ρM(τ)− 1), and we are done. �

A set S in a matroid M is isthmus-free if no element in the induced submatroid
M(S) is an isthmus; ρM(S) = ρM(S − e) for all e ∈ S.

Theorem 13.6. Let M = (E,F) be a matroid and let ∆ ⊆ 2E be a simplicial
complex. Then ∆ is PI if and only if all minimal nonfaces of ∆ are isthmus-
free. In particular, such a complex has the property that ∆(τ) is V D(ρ(τ)−1)
for each τ ⊆ E.

Proof. Suppose that all minimal nonfaces of ∆ are isthmus-free. We want to
show that ∆ is PI. Suppose τ ∈ ∆ and e ∈ E \ τ have the property that
ρM(τ + e) = ρM(τ) + 1. We have to show that τ + e ∈ ∆. Assume the
opposite and let σ be a minimal nonface of ∆ contained in τ + e. Since e is an
isthmus in τ + e, e cannot be contained in σ; σ is isthmus-free by assumption.
However, this means that σ is contained in τ , and we have a contradiction to
the assumption that τ ∈ ∆. Thus ∆ is PI.

Next, suppose that some minimal nonface σ is not isthmus-free. Let e be
an isthmus in σ; since σ is a minimal nonface, σ − e ∈ ∆. However, ρ(σ) =
ρ(σ − e) + 1, which implies that ∆ is not PI. �
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Proposition 13.7. Let M = (E,F) be a matroid and assume that Σ and ∆
are PI complexes over M. Then the intersection Σ∩∆ and the union Σ∪∆ are
also PI over M. As a consequence, the set of PI complexes over M ordered by
inclusion is a lattice with union and intersection as join and meet operators,
respectively.

Proof. Let σ be a minimal nonface of Σ ∩∆; assume that σ /∈ ∆. Then σ is a
minimal nonface of ∆ and hence isthmus-free. By Theorem 13.6, this implies
that Σ ∩∆ is a PI complex.

Now, let σ be a minimal nonface of Σ ∪∆. Suppose that σ is not isthmus-
free and let e be an isthmus in σ. Since σ−e is not a minimal nonface of Σ∪∆,
σ− e belongs to at least one of Σ and ∆, say ∆. However, since ∆ is PI, this
implies that σ belongs to ∆; ρ(σ − e) < ρ(σ). This a contradiction; thus σ
must be isthmus-free and Σ ∪∆ is hence a PI complex by Theorem 13.6. �

13.2.1 PI Graph Complexes

We consider the special case of graphic matroids. A graph (or digraph)
G is isthmus-free if each connected component in G is 2-edge-connected.
Equivalently, c(G) = c(G − e) for each edge e ∈ G. This means exactly
that the graphic (or digraphic) matroid on G with rank function ρ(H) =
n− c(H) is isthmus-free. The following result is an immediate consequence of
Theorem 13.6.

Corollary 13.8. Let ∆ be a complex of graphs on n vertices such that all
minimal nonfaces are isthmus-free, let G be a graph on n vertices, and let
H ∈ ∆(G). Then lk∆(G)(H) is V D(c(H)− c(G)− 1). In particular, ∆(G) is
V D(n− c(G)− 1). The analogous property holds whenever ∆ is a complex of
digraphs on n vertices such that all minimal nonfaces are isthmus-free. �

While the depth and the shifted connectivity degree of many PI complexes
over Mn are way above the bound n− 2 given in Corollary 13.8, the following
theorem shows that there are also plenty of complexes for which the bound is
tight:

Theorem 13.9. Let n ≥ 3 and let ∆ be a nonvoid complex of graphs on n
vertices. If ∆ is PI over Mn and ∆ does not contain any triangles {ab, ac, bc},
then the shifted connectivity degree and homotopical depth of ∆ is n− 2.

Proof. ∆ being nonvoid and PI implies that ∆ contains the complex Fn of
forests. Let Gn be the graph with edge set {in : i ∈ [n− 1]}. This graph is a
maximal face of ∆. Namely, Gn is a spanning tree, and Gn + ij is not in ∆
for any i, j ∈ [n−1]; Gn + ij contains the triangle {ij, in, jn}. Thus it suffices
to prove that there is a cycle in the chain group C̃n−2(∆, Z) such that the
coefficient of [Gn] is nonzero. Since ∆ contains Fn, we may instead consider
C̃n−2(Fn, Z).
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To obtain the desired property, we define an optimal decision tree on Fn

such that Gn is evasive. Since all evasive faces have the same dimension,
Corollary 4.17 will then yield that [Gn] is indeed contained in a cycle. First,
decompose with respect to 1n. By Corollary 13.2, ∆(∅, 1n) ∼ ctn−2, where
c ≥ 0. Decompose ∆(1n, ∅) with respect to the set Y , where Y = {in :
i ∈ [2, n − 1]}. For each A ⊆ Y , we have that ∆(A + 1n, Y \ A) ∼ cAtn−2,
where cA ≥ 0, again by Corollary 13.2. This yields a decision tree with desired
properties. Namely, Gn is evasive, as there are no other members of the family
∆(Y + 1n, ∅). �

13.3 Strong Pseudo-Independence Complexes

We say that a PI complex ∆ over a matroid M = (E,F) is a strong PI complex
if, for each σ ∈ ∆ and each element e ∈ E \ σ such that ρ(σ + e) = ρ(σ), the
element e is either a cone point in lk∆(σ) or not contained at all in lk∆(σ).
We use the abbreviation SPI to denote a strong PI complex.

For any subset τ ⊆ E, it is clear that ∆(τ) is SPI over M(τ) whenever
∆ is SPI over M. In particular, del∆(e) is SPI over M − e for any e ∈ E.
Similarly, it is clear that lk∆(e) is SPI over M/e; ρM/e(τ + x) = ρM/e(τ) if
and only if ρM(τ + e + x) = ρM(τ + e).

Theorem 13.10. Let ∆ be an SPI complex over a matroid M = (E,F). Then,
for any subset τ of E, ∆(τ) is V D+(ρ(τ)−1). In particular, ∆(τ) is homotopy
equivalent to a wedge of spheres of dimension ρ(τ)− 1.

Proof. By Theorem 13.5, we already know that ∆(τ) is V D(ρ(τ)− 1). Hence
it suffices to prove that ∆(τ) ∼ ctρ(τ)−1 for some integer c; recall that this
means that there is a decision tree on ∆(τ) with c evasive sets of dimension
ρ(τ)− 1.

For any set σ ⊆ τ , we will show that

lk∆(τ)(σ) ∼ ctρ(τ)−ρ(σ)−1

for some integer c. If ρ(τ) = ρ(σ), then all elements in the link are cone points;
∆ is SPI. Hence lk∆(τ)(σ) is either the (−1)-simplex or nonevasive as desired.
Suppose ρ(τ) > ρ(σ), and let e ∈ τ \σ be such that ρ(σ+e) = ρ(σ)+1. There
are two cases:

• ρ(τ) = ρ(τ − e) + 1. As ∆ is PI, this implies that e is a cone point in
lk∆(τ)(σ), and we are done.

• ρ(τ) = ρ(τ − e). Let Σ = lk∆(τ)(σ). By induction, there are integers c∅
and ce such that

delΣ(e) = lk∆(τ−e)(σ) ∼ c∅t
ρ(τ−e)−ρ(σ)−1 = c∅t

ρ(τ)−ρ(σ)−1;

lkΣ(e) = lk∆(τ)(σ + e) ∼ cet
ρ(τ)−ρ(σ+e)−1 = cet

ρ(τ)−ρ(σ)−2.

Lemma 5.22 implies that Σ ∼ (c∅ + ce)tρ(τ)−ρ(σ)−1 as desired.
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The final statement is a consequence of Lemma 5.22. �

We have no general formula for the Euler characteristic of an SPI complex.
However, using the following lemma, it is possible to give a simple criterion
for when an SPI complex is nonevasive.

Lemma 13.11. Let ∆ be a simplicial complex with at least one 0-cell. If ∆ is
not a cone, then there is a 0-cell x such that del∆(x) and lk∆(x) are not both
cones.

Remark. Note that there is nothing to prove if ∆ has only one 0-cell.

Proof. For x, y ∈ ∆, define x ∼ y if, for each maximal face σ, x ∈ σ if and only
if y ∈ σ. Let E1, . . . , Er be the equivalence classes with respect to ∼. Define
a partial order on {E1, . . . , Er} by Ei ≤ Ej if and only if every maximal face
containing Ei also contains Ej . Let Ej be maximal with respect to this partial
order.

First, assume that Ej contains one single element x. Then lk∆(x) is not
a cone by construction; for each y �= x, there is some maximal face σ of ∆
containing x but not y.

Second, assume that Ej contains at least two elements; let x and y be
distinct elements in Ej . We claim that del∆(x) is not a cone. Namely, suppose
that z is a cone point in del∆(x). If z ∈ Ej , then z is a cone point in lk∆(x) and
hence in ∆, a contradiction. Thus assume that z /∈ Ej . Let σ be a maximal
face of ∆. If x /∈ σ, then z ∈ σ by assumption. If x ∈ σ, then (σ − x) + z is a
face of ∆; z is a cone point in del∆(x). Now, y ∈ σ, because y is a cone point in
lk∆(x). Since x is a cone point in lk∆(y), we deduce that ((σ−x)+z)+x = σ+z
is a face of ∆. However, σ is maximal, which implies that z ∈ σ. Since σ was
arbitrary, z is a cone point in ∆, another contradiction. �

Theorem 13.12. Let ∆ be an SPI complex over a matroid M = (E,F). Then
∆ is nonevasive if and only if ∆ is a cone. In particular, the homology of ∆
is nonzero whenever ∆ is not a cone.

Proof. By Theorem 13.10, we have that ∆ ∼ ctρ(E)−1 for some c ≥ 0. If ∆
is a cone, then clearly c = 0, which means that ∆ is nonevasive. Suppose
that ∆ is not a cone. By Lemma 13.11, there is an element e such that either
lk∆(e) or del∆(e) is not a cone. Now, M is isthmus-free, because any isthmus
would be a cone point in ∆. In particular, ρ(E − e) = ρ(E). By the proof of
Theorem 13.10, there are integers c∅ and ce such that c = c∅ + ce and such
that del∆(e) ∼ c∅t

ρ(E)−1 and lk∆(e) ∼ cet
ρ(E)−2. By induction on the size of

∆, either lk∆(e) or del∆(e) is evasive, which implies that c = c∅ + ce > 0;
hence ∆ is evasive. �

Theorem 13.13. Let M = (E,F) be a matroid and let ∆ and Σ be simplicial
complexes on E. Assume that ∆ is V D and that each maximal face of ∆ has
full rank ρ(E). If Σ is PI, then ∆ ∩Σ is V D(ρ(E)− 1). Assume in addition
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that ∆ admits a V D-shelling (see Section 6.3) in which each minimal face in
the shelling belongs to F. If Σ is SPI, then ∆ ∩Σ is V D+(ρ(E)− 1).

Proof. By Lemma 6.12, it suffices to prove that the desired property holds for
(∆ ∩Σ)(σ,E \ τ) for each shelling pair (σ, τ). Since τ ∈ ∆, we have that

(∆ ∩Σ)(σ,E \ τ) = Σ(σ,E \ τ).

If Σ is PI over M, then Σ(τ) is V D(ρ(τ) − 1) over the induced submatroid
M(τ); use Theorem 13.5. By assumption, ρ(τ) = ρ(E), which implies that
Σ(σ,E \ τ) is V D(ρ(E)− 1); use Theorem 3.30.

For the second claim, if Σ is SPI over M, then Σ(τ) is SPI over M(τ).
Since ρ(σ) = |σ| and ρ(τ) = ρ(E), Theorem 13.10 (or rather its proof) yields
that lkΣ(τ)(σ) ∼ ctρ(E)−|σ|−1 for some c. This is equivalent to Σ(σ,E \ τ) ∼
ctρ(E)−1, which concludes the proof. �

For a matroid M = (E,F), let B(M) be the family of bases (maximal indepen-
dent sets) in M. Let ∆ be a nonvoid SPI complex over M. By construction,
each basis σ is contained in a unique maximal face of ∆; each element not in
σ is either a cone point or not present in lk∆(σ). Among PI complexes, this
property characterizes SPI complexes:

Theorem 13.14. Let M = (E,F) be a matroid and let ∆ be a nonvoid PI
complex over M. Then ∆ is SPI over M if and only if every basis is contained
in a unique maximal face of ∆.

Proof. By the above discussion, it suffices to prove that ∆ is SPI whenever
every basis is contained in a unique maximal face. Thus assume that the latter
holds. It is clear that every face of ∆ of maximal rank ρ(E) is contained in a
unique maximal face.

Let σ be a face of ∆ and assume that x is an element such that ρ(σ +x) =
ρ(σ) and σ + x ∈ ∆. We need to prove that σ′ + x ∈ ∆ whenever σ′ ∈ ∆ and
σ ⊆ σ′. Use induction in decreasing order on the rank of σ. If ρ(σ) = ρ(E),
then we are done, because σ is contained in a unique maximal face.

Suppose that ρ(σ) < ρ(E). First, assume that σ′ \σ contains an element y
such that ρ(σ + y) > ρ(σ). Since ∆ is PI, (σ +x)+ y ∈ ∆. Thus by induction,
σ′ + x belongs to ∆. Next, assume that ρ(σ′) = ρ(σ). Pick an element y from
E such that ρ(σ + y) > ρ(σ). Since ∆ is PI, σ + y, σ ∪ {x, y}, and σ′ + y all
belong to ∆. Thus by induction, σ′ ∪{x, y} belongs to ∆, and we are done. �

The following simple observation is often useful.

Proposition 13.15. Let M = (E,F) be a matroid and let ∆ be a nonvoid
SPI complex over M. Let σ be a circuit of M contained in ∆ and let x be an
element in σ. Then x is a cone point in lk∆(σ − x). Equivalently, whenever
τ ⊆ E is a set containing σ, we have that τ − x belongs to ∆ if and only if τ
belongs to ∆.
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Proof. We have that ρ(σ − x) = ρ(σ), because σ is a circuit. Since ∆ is SPI
and since σ ∈ ∆, the desired claim follows. �

In Theorem 13.6, we proved that all minimal nonfaces of a PI complex are
isthmus-free. The minimal nonfaces of an SPI complex have an even more
specific structure:

Proposition 13.16. Let M = (E,F) be a matroid and let ∆ ⊆ 2E be a
nonvoid SPI complex. Then every minimal nonface of ∆ is a circuit of M.

Proof. Let τ be a minimal nonface of ∆ and let σ be a circuit contained in τ .
Pick some x ∈ σ. By the minimality assumption on τ , we have that τ−x ∈ ∆.
As a consequence, σ /∈ ∆ by Proposition 13.15. Since τ is a minimal nonface,
the only possibility is that σ = τ , which concludes the proof. �

Remark. A complex is not necessarily SPI just because all minimal nonfaces
are circuits. For example, the complex of triangle-free graphs is not SPI; see
Theorem 13.24.

We say that two SPI complexes ∆ and Γ are nearly identical, written as
∆ ≈ Γ , if all faces of ∆\Γ and Γ \∆ are circuits. This is clearly an equivalence
relation. Note that each circuit in the difference is necessarily a maximal face
of one of the complexes and hence has full rank ρ(E) and size ρ(E) + 1.
Namely, proper subsets of circuits are not circuits. Identifying nearly identical
complexes is a way of simplifying classification problems; see Section 13.3.2.

Lemma 13.17. Let M = (E,F) be a matroid and let ∆ be an SPI complex
over M. Assume that there exists a maximal face σ of ∆ such that σ is a
circuit of M. Then ∆ \ {σ} is also an SPI complex over M.

Proof. ∆\{σ} is obviously PI. To prove that ∆\{σ} is SPI, it suffices to prove
that each basis is contained in a unique maximal face; use Theorem 13.14.
Since ∆ is SPI, the only bases we need to check are the ones contained in σ.
However, they are themselves maximal faces of ∆ \ {σ}, which concludes the
proof. �

Let M be a matroid with rank function ρ and let ∆ be a nonvoid SPI complex
over M. As we have already indicated, for each face σ ∈ ∆, there is a unique
face f(σ) such that f(σ) is maximal among all faces τ of ∆ containing σ and
satisfying ρ(τ) = ρ(σ). We claim that f defines a poset map and hence a
closure operator on the face poset P (∆) of ∆. Namely, let τ be a face of ∆
containing σ. By construction, every element in f(σ) \ σ is a cone point in
lk∆(σ). As a consequence, every element in f(σ) \ τ is a cone point in lk∆(τ),
which implies that f(τ) contains f(σ) as desired.

Theorem 13.18. Let M = (E,F) be a matroid and let ∆ be a nonvoid SPI
complex over M. Let f be defined as above. Then Q = f(P (∆)) coincides
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with the proper part of a lattice with meet operation being set intersection.
Moreover, Q is Cohen-Macaulay of dimension ρ(E)− 1.

Proof. Let σ and τ be elements in Q such that σ ∩ τ �= ∅. We have that
f(σ∩τ) = σ∩τ , because f(σ∩τ) is contained in each of σ and τ and contains
σ ∩ τ . Hence σ ∩ τ ∈ Q, which shows that Q is the proper part of a lattice
with meet operation being intersection.

It remains to prove that Q is Cohen-Macaulay. It suffices to prove that
the order complex of each interval Q>σ,<τ = {π ∈ Q : σ � π � τ} is
(ρ(τ)−ρ(σ)−3)-connected and that the order complex of each interval Q>σ =
{π ∈ Q : σ � π} (including Q = Q>{∅}) is (ρ(E) − ρ(σ) − 2)-connected.
Namely, each link in the order complex of Q is a join of such complexes, and
if Γi is (di−1)-connected for i ∈ [s], then Γ1 ∗ · · · ∗Γs is (d1 + . . .+ds +s−2)-
connected by Corollary 3.12.

First, consider an interval Q>σ. The order complex of this interval has the
same homotopy type as lk∆(σ); the restriction of f to P ({σ} ∗ lk∆(σ)) is a
closure operator with image Q>σ. Hence the order complex is (ρ(E)−ρ(σ)−2)-
connected by Theorem 13.10.

Next, consider an interval Q>σ,<τ ; σ � τ . Let Σ be the subcomplex of
lk∆(τ)(σ) consisting of all faces π such that ρ(σ∪π) < ρ(τ). It is clear that Σ
contains the (ρ(τ)−ρ(σ)−2)-skeleton of lk∆(τ)(σ), because if π contains σ and
has rank ρ(τ), then |π|−|σ| ≥ ρ(τ)−ρ(σ). Since lk∆(τ)(σ) is (ρ(τ)−ρ(σ)−2)-
connected by Theorem 13.10, it follows that Σ is (ρ(τ)−ρ(σ)− 3)-connected.
Now, the restriction of f to P ({σ} ∗ Σ) is a closure operator with image
Q>σ,<τ . Hence the order complex of Q>σ,<τ is (ρ(τ)− ρ(σ)− 3)-connected as
desired. �

Proposition 13.19. Let M = (E,F) be a matroid and assume that ∆ and
Γ are SPI complexes over M. Then the intersection ∆ ∩ Γ is also SPI over
M. As a consequence, the set of nonvoid SPI complexes over M ordered by
inclusion is a lattice with intersection as the meet operator.

Proof. By Proposition 13.7 and Theorem 13.14, it suffices to prove that every
basis σ is contained in a unique maximal face of ∆ ∩ Γ . However, each of
lk∆(σ) and lkΓ (σ) is a simplex, which immediately implies that the same is
true for the intersection lk∆∩Γ (σ); hence the claim follows. �

Proposition 13.20. Let M = (E,F) be a matroid. For a given family C of
circuits, define ∆C to be the simplicial complex with minimal nonfaces all
circuits of M that are not in C. Then ∆ is an atom in the lattice of SPI
complexes over M if and only if ∆ = ∆{σ} for some circuit σ.

Proof. First, we prove that ∆{σ} is an SPI complex whenever σ is a circuit.
∆{σ} is clearly a PI complex. Let τ be a basis in M. If τ ∩ σ is of the form
σ − x for some x in σ, then τ + x is the unique maximal face containing τ .
Otherwise, τ is itself a maximal face. By Theorem 13.14, it follows that ∆{σ}
is SPI.
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Next, Proposition 13.16 yields that every SPI complex over M is of the
form ∆C for some family C of circuits. Since ∆C is a proper subfamily of ∆C′

whenever C is a proper subfamily of C′, it follows that the atoms of the lattice
are exactly the complexes ∆{σ}. �

13.3.1 Sets in Matroids Avoiding Odd Cycles

The purpose of this section is to introduce a certain family of complexes
defined in terms of linear representations of matroids and show that all com-
plexes in this family are SPI. As a special case, we have the complex of bipar-
tite subgraphs of a graph.

A linear representation over a field F of a matroid M = (E,F) is a map
ϕ : E → Fk with k ≥ 1 such that a set τ is independent in M if and only if
the set ϕ(τ) is linearly independent. For example, if G = ([n], E) is a graph,
then we obtain a representation over F2 of Mn(G) by defining ϕ(ab) = ea +eb,
where ei denotes the ith unit vector in (F2)n. Note that not every matroid
admits a linear representation.

Let ϕ : E → Fk be a linear representation of the matroid M. Let ψ : E →
Fm be an arbitrary function; m ≥ 0. We say that a set τ ⊆ E contains an odd
cycle with respect to the pair (ϕ,ψ) if there are scalars {λx : x ∈ τ} in F such
that ∑

x∈τ

λxϕ(x) = 0 and
∑
x∈τ

λxψ(x) �= 0.

Define BM,ϕ,ψ as the complex of subsets τ of E such that τ does not contain
any odd cycle with respect to (ϕ,ψ). For example, for the representation of
Mn(G) specified above and with ψ(e) = 1 ∈ Z2 for all edges e, we obtain
the complex Bn(G) of bipartite subgraphs of G examined in Chapter 14. For
another example, see Section 15.5.

Theorem 13.21. Let M = (E,F) be a matroid, let ϕ : E → Fk be a lin-
ear representation of M, and let ψ : E → Fm be an arbitrary function.
Then the complex BM,ϕ,ψ is SPI. In particular, for any τ ⊆ E, BM,ϕ,ψ(τ)
is V D+(ρ(τ)− 1).

Proof. First, we prove that BM,ϕ,ψ is PI. Let τ be a nonface of BM,ϕ,ψ con-
taining an isthmus e. This means that e is independent of all other elements in
τ . In particular, every linear combination

∑
x∈τ λxϕ(x) = 0 has the property

that λe = 0. As a consequence, if τ contains an odd cycle, then so does τ − e,
which implies that τ is not a minimal nonface.

Next, we prove that BM,ϕ,ψ is SPI. Let σ ∈ BM,ϕ,ψ and let e ∈ E \ σ be
such that σ + e ∈ BM,ϕ,ψ and ρ(σ) = ρ(σ + e). This means that there are
scalars λx such that

ϕ(e) =
∑
x∈σ

λxϕ(x) (13.1)
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and such that ψ(e) =
∑

x∈σ λxψ(x); σ+e contains no odd cycle by assumption.
We need to prove that e is a cone point in the link of BM,ϕ,ψ with respect to
σ.

Suppose that τ is a face of BM,ϕ,ψ containing σ such that τ + e contains
an odd cycle. Since τ does not contain any odd cycle, this means that there
are scalars µy such that

ϕ(e) =
∑
y∈τ

µyϕ(y) (13.2)

and such that ψ(e) �= ∑
y∈τ µyψ(y). Combining (13.1) and (13.2), we obtain

the linear combination ∑
x∈σ

λxϕ(x) =
∑
y∈τ

µyϕ(y).

Since ∑
x∈σ

λxψ(x) = ψ(e) �=
∑
y∈τ

µyψ(y),

this implies that τ contains an odd cycle, which is a contradiction to the
assumption that τ belongs to BM,ϕ,ψ. Thus e is a cone point, and we are
done. �

To demonstrate that a complex coincides with BM,ϕ,ψ, it suffices to prove that
the minimal nonfaces are exactly those circuits that contain odd cycles:

Corollary 13.22. Let M = (E,F) be a matroid, let ϕ : E → Fk be a linear
representation of M, and let ψ : E → Fm be an arbitrary function. Then the
minimal nonfaces of BM,ϕ,ψ are the circuits of M that contain odd cycles.

Proof. This is an immediate consequence of Proposition 13.16 and
Theorem 13.21. �

13.3.2 SPI Graph Complexes

First, let us state an immediate consequence of Theorem 13.10.

Corollary 13.23. Let G be a graph on n vertices and let ∆ be an SPI complex
over the graphic matroid on G. Let H ∈ ∆. Then lk∆(H) is V D+(c(H) −
c(G)− 1). In particular, ∆ is V D+(n− c(G)− 1). �
For the remainder of the section, we concentrate on SPI monotone graph
properties, proving that there are only four of them on each fixed vertex set.
We stress that we consider only graph properties; there are plenty of SPI
graph complexes that are not invariant under permutations of the underlying
vertex set.

Theorem 13.24. Let ∆ be a nonvoid monotone graph property on n vertices.
Then ∆ is SPI over the graphic matroid Mn if and only if ∆ is either of the
following complexes:
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(1) The complex Fn of forests.
(2) The complex FHn of forests and full (Hamiltonian) cycles.
(3) The complex Bn of bipartite graphs.
(4) The full simplex.

Proof. First, let us show that the four listed complexes are all SPI monotone
graph properties. They are clearly PI. To prove strength, we show that every
spanning tree is contained in a unique maximal face. This is trivially true
for Fn and the full simplex and obvious for FHn. For Bn, any spanning tree
T admits a unique bipartition (U,W ), which immediately implies that the
complete bipartite graph with blocks U and W is the unique maximal face of
Bn containing T . Applying Theorem 13.14, the desired claim follows.

Next, we show that any SPI monotone graph property ∆ coincides with
one of the four listed complexes. If ∆ does not contain any r-cycles such that
r ∈ [3, n − 1], then ∆ must be either Fn or FHn. Thus assume that ∆ does
contain all r-cycles for some r ∈ [3, n− 1]. We want to show that ∆ is either
the complex of all bipartite graphs or the full simplex.

To start with, let us show that ∆ contains all 4-cycles. Since ∆ contains
everything in Fn, ∆ contains the Hamiltonian path π with edges i(i + 1) for
1 ≤ i ≤ n− 1. By Proposition 13.15, each of π + 1r and π + 2(r + 1) belongs
to ∆. Since ∆ is SPI, this implies that π′ = π ∪ {1r, 2(r + 1)} belongs to ∆.
Since π′ contains the 4-cycle γ4 = {12, 2(r + 1), r(r + 1), 1r}, we obtain that
γ4 ∈ ∆ as desired.

As a consequence, π + 14 belongs to ∆ by Proposition 13.15. We show by
induction on k that π∪{14, 16, . . . , 1k} belongs to ∆ whenever k ≤ n and k is
even. By induction hypothesis, π ∪ {14, 16, . . . , 1(k− 2)} belongs to ∆. Hence
since {1(k − 2), (k − 2)(k − 1), (k − 1)k, 1k} ∈ ∆, we immediately obtain the
desired claim, again by Proposition 13.15. The conclusion is that ∆ contains
all cycles of even length. Since ∆ is SPI, this is equivalent to saying that ∆
contains Bn.

It remains to show that if ∆ contains an odd cycle of length 2s + 1, then
∆ contains all cycles and is hence the full simplex. Again, consider the Hamil-
tonian path π. We obtain that 1(2s) and 1(2s + 1) are both cone points in
lk∆(π), which implies that the triangle {1(2s), 1(2s + 1), (2s)(2s + 1)}, and
hence any triangle, is contained in ∆. Thus for any 5 ≤ 2r + 1 ≤ n, we have
that 1(2r) and (2r − 1)(2r + 1) are cone points in lk∆(π). This implies that
the (2r + 1)-cycle is contained in ∆, which concludes the proof. �

Note that Fn ≈ FHn (see Lemma 13.17). In particular, modulo the equivalence
relation ≈, the only nontrivial SPI monotone graph properties are Fn and Bn.

Remark. In a separate manuscript [68], we classify all SPI monotone digraph
properties over the digraphic matroid M→

n modulo the equivalence relation
≈. It turns out that we have the following properties:

(1) The complex F(M→
n ) of digraphs without circuits.
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(2) The complex DOACn of digraphs without non-alternating circuits.
(3) The complex DGrn,p of digraphs that are graded modulo p for some integer

p ≥ 1.
(4) The trivial extensions of Fn, FHn, Bn, and the full simplex.

See Sections 15.4 and 15.5 for more information about DGrn,p and DOACn,
respectively.

13.4 Alexander Duals of SPI Complexes

Let M = (E,F) be a matroid. We say that a complex ∆ is PI ∗ over M if the
Alexander dual ∆∗ = ∆∗

E is PI over the dual matroid M∗ with rank function
as in (2.1). We say that ∆ is SPI ∗ over M if ∆∗ is SPI over M∗. For example,
the complex NC(M) of all sets of rank at most r − 1 is SPI ∗, where r is the
rank of M. Note that

ρ(τ) < ρ(τ + x)⇐⇒ ρ∗(E \ τ) = ρ∗(E \ (τ + x)).

A complex ∆ is PI ∗ if and only if the first of the following two properties
holds. ∆ is SPI ∗ if and only if both properties hold.

(i) If τ ∈ ∆ and ρ(τ) = ρ(τ + x), then τ + x ∈ ∆.
(ii) If τ /∈ ∆ and ρ(τ) < ρ(τ + x), then x is a cone point in the induced

subcomplex ∆(τ + x) = del∆(E \ (τ + x)).

To see that the second property holds when ∆ is SPI ∗, use the fact that
(∆(τ + x))∗τ+x = lk∆∗(E \ (τ + x)).

An important special case is NCn(G), the complex of disconnected sub-
graphs of a graph G. We will examine this complex in Section 18.1.

Theorem 13.25. Let ∆ be an SPI ∗ complex over a matroid M = (E,F).
Then, for any subset τ of E, ∆(τ) is V D+(ρ(τ) − 2). In particular, ∆(τ) is
homotopy equivalent to a wedge of spheres of dimension ρ(τ)− 2.

Proof. For any set σ ⊂ τ such that ρ(σ) < ρ(τ), we will show that lk∆(τ)(σ)
is V D+(ρ(τ)− ρ(σ)− 2). Write ρ(σ, τ) = ρ(τ)− ρ(σ).

If ρ(σ, τ) = 1 and ρ(σ, σ + x) = 1 for each x ∈ τ \ σ, then lk∆(τ)(σ) is a
simplex; if σ ∪ A0 and σ ∪ A1 belong to ∆, then so does σ ∪ (A0 ∪ A1) by
condition (i). As a consequence, lk∆(τ)(σ) is V D+(ρ(σ, τ)− 2) = V D+(−1).

If there is an x ∈ τ \ σ such that ρ(σ) = ρ(σ + x), then this x is a cone
point in lk∆(τ)(σ). By induction on |τ |−|σ|, lk∆(τ)(σ+x) is V D+(ρ(σ, τ)−2);
hence the same is true for lk∆(τ)(σ).

Finally, suppose that ρ(σ, τ) ≥ 2 and ρ(σ, σ + x) = 1 for each x ∈ τ \ σ. If
there is an x ∈ τ \σ such that ρ(τ −x, τ) = 0, then, by induction on |τ | − |σ|,
lk∆(τ)(σ + x) is V D+(ρ(σ, τ)− 3) and lk∆(τ−x)(σ) is V D+(ρ(σ, τ)− 2). This
implies that lk∆(τ)(σ) is V D+(ρ(σ, τ)−2). If ρ(τ−x, τ) = 1 for each x ∈ τ \σ,
then ρ(σ, τ) = |τ | − |σ|. We have two cases:
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• If τ −x ∈ ∆(τ) for each x ∈ τ \σ, then lk∆(τ)(σ) is either a (|τ |− |σ|− 1)-
simplex or the boundary of such a simplex and is hence V D+(ρ(τ, σ)−2).

• If there is an x ∈ τ \ σ such that τ − x /∈ ∆(τ), then x is a cone point in
∆(τ) by property (ii) and hence a cone point in lk∆(τ)(σ). By induction
on |τ |−|σ|, lk∆(τ)(σ+x) is V D+(ρ(σ, τ)−3), which implies that lk∆(τ)(σ)
is V D+(ρ(σ, τ)− 2). �

Remark. lk∆(τ)(σ) being homotopy equivalent to a wedge of spheres of dimen-
sion ρ(τ) − ρ(σ) − 2 is an immediate consequence of Alexander duality and
Theorem 13.10. Namely, the Alexander dual of lk∆(τ)(σ) with respect to τ \σ
equals (∆(τ))∗τ (τ \ σ), which admits a decision tree with all evasive sets of
dimension ρ∗(τ \σ)− 1. By Lemma 5.23, this implies that lk∆(τ)(σ) admits a
decision tree with all evasive sets of dimension

|τ | − |σ| − ρ∗(τ \ σ)− 2 = ρ(τ)− ρ(σ)− 2;

use (2.1). Also, since this exceeds ρ(τ)− |σ| − 2, we have that the (ρ(τ)− 2)-
skeleton of ∆(τ) is homotopically Cohen-Macaulay.

Corollary 13.26. For any matroid M of rank r, the complex NC(M) of all
sets of rank at most r − 1 is V D+(r − 2). �

Let us translate some of the results in Section 13.3 to the language of SPI ∗

complexes.

Theorem 13.27. Let ∆ be an SPI ∗ complex over a matroid M = (E,F).
Then ∆ is nonevasive if and only if ∆ is a cone. In particular, the homology
of ∆ is nonzero whenever ∆ is not a cone.

Proof. This is an immediate consequence of Theorem 13.12 and Alexander
duality. �

Theorem 13.28. Let M = (E,F) be a matroid and let ∆ be a PI ∗ complex
over M different from 2E. Then ∆ is SPI ∗ over M if and only if every basis
contains a unique minimal nonface of ∆.

Proof. This is an immediate consequence of Theorem 13.14 and Alexander
duality. �

Proposition 13.29. Let M = (E,F) be a matroid and let ∆ ⊆ 2E be an SPI ∗

complex different from 2E. Then every maximal face of ∆ is a cocircuit of M.

Proof. This is an immediate consequence of Proposition 13.16 and Alexander
duality; the complement of a circuit in a matroid is a cocircuit in the dual
matroid and vice versa. �



186 13 Forests and Matroids

Proposition 13.30. Let M = (E,F) be a matroid and assume that Σ and ∆
are SPI ∗ complexes over M. Then the union Σ ∪∆ is also SPI ∗ over M. As
a consequence, the set of SPI ∗ complexes over M ordered by inclusion is a
lattice with union as the join operator.

Proof. This is an immediate consequence of Proposition 13.19. �

Similarly to the way we excluded the void complex from the lattice of SPI
complexes, we exclude the full simplex 2E from the lattice of SPI ∗ complexes.
Instead, the complex NC(M) of sets of rank at most ρ(E)− 1 is the maximal
element in the lattice.

Proposition 13.31. Let M = (E,F) be a matroid. For a given family F
of cocircuits, define ∆F to be the simplicial complex with maximal faces all
cocircuits of M that are not in F . Then ∆ is a coatom in the lattice of SPI ∗

complexes over M if and only if ∆ = ∆{σ} for some cocircuit σ.

Proof. This is an immediate consequence of Proposition 13.20. �

13.4.1 SPI ∗ Monotone Graph Properties

Let us proceed with the classification of all monotone graph properties that are
SPI ∗ over the graphic matroid Mn. The Alexander duals of these complexes
are exactly all monotone graph properties that are SPI over the dual of Mn.
For p ∈ [1, n] such that p divides n, recall that NCn,p is the complex of graphs
with some component of size not divisible by p.

Theorem 13.32. Let ∆ be a monotone graph property on n vertices. Then
∆ is SPI ∗ over Mn if and only if ∆ is the full simplex or equal to NCn,p for
some p dividing n.

Proof. Let ∆ be an SPI ∗ monotone graph property. Say that a graph is closed
if each connected component is a clique. First, note that any maximal graph
in ∆ is closed. Namely, by property (i) in Section 13.4, we may add edges
not decreasing the number of components in a graph in ∆ without ending up
outside ∆. Moreover, by the proof of Theorem 13.25, we have that lk∆(H) is
V D+(c(H)− 3) for each graph H ∈ ∆. In particular, since a maximal graph
H in ∆ is not V D(0), a maximal graph cannot have more than two connected
components.

If there is a connected graph in ∆, then Kn belongs to ∆, which means
that ∆ is the full simplex. The remaining case is that all maximal graphs in
∆ have exactly two connected components. If all such graphs appear in ∆,
then we obtain NCn = NCn,n, whereas the other extreme with no such graphs
means that we obtain the void complex NCn,1. Assume that some but not all
graphs with two connected components belong to ∆.

For a multiset A = {a1, . . . , ak} of positive integers summing to n, say
that a graph G has type A if we may order the vertex sets of the connected
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components of G as U1, . . . , Uk such that |Ui| = ai. For example, a graph with
two components of size a and n−a has type {a, n−a}. Since ∆ is a monotone
graph property and since every maximal graph in ∆ is closed, we have that
a given graph G belongs to ∆ if and only if every graph with the same type
as G belongs to ∆. For simplicity, say that a given type belongs to ∆ if every
graph of this type belongs to ∆.

Let A = {a1, . . . , ak} be a type not belonging to ∆ and assume that ai < aj

for some i, j. Then the multiset

A′ = {a1, . . . , aj−1, aj − ai, ai, aj+1, . . . , ak}

does not belong to ∆. Namely, let G be a closed graph of type A and let e
be an edge joining two components Ui and Uj of size ai and aj , respectively.
By property (ii) in Section 13.4, we have that e is a cone point in the induced
subcomplex ∆(G + e). Construct a graph H of type A′ from G by splitting
the component Uj into one component U ′

j of size aj − ai and one component
U ′′

j of size ai; make sure the edge e has one endpoint in the component U ′
j of

size aj − ai. If H belongs to ∆, then so does H + e. However, H + e has the
same type A as G; |Ui|+ |U ′

j | = aj . This is a contradiction; hence H /∈ ∆.
For p dividing n, let Ap be the type consisting of n/p copies of the integer p.

By induction, we obtain that if A = {a1, . . . , ak} does not belong to ∆, then
the type Ad does not belong to ∆ either, where d is the greatest common
divisor of a1, . . . , ak. As a consequence, each minimal nonface of ∆ is of type
Ad for some integer d.

To prove that ∆ = NCn,p for some p, it suffices to demonstrate that all
minimal nonfaces of ∆ are of the very same type Ap. Let x be minimal such
that Ax does not belong to ∆. Suppose that there is a y such that Ay does not
belong to ∆ and such that y is not divisible by x. Let y be minimal with this
property. Note that the types {x, n−x} and {y, n−y} do not belong to ∆. We
claim that {y, x, n− y − x} does not belong to ∆. Namely, let G be a closed
graph of type {y, n − y} and let H be a subgraph of type {y − x, x, n − y}.
Let e be an edge joining the components of size y− x and n− y. Since H + e
is of type {x, n− x} and since e is a cone point in ∆(G + e) by property (ii),
we obtain that H does not belong to ∆. However, this implies that the type
{y−x, n−y +x} does not belong to ∆. Since y is not divisible by x, the same
is true for y − x. Yet, since y − x < y, this contradicts the minimality of y.

It remains to prove that NCn,p is an SPI ∗ complex whenever p divides n.
One readily verifies that property (i) in Section 13.4 holds. To prove property
(ii), suppose that G is a graph not contained in NCn,p and that e is an edge
joining two connected components in G. Suppose that H is a subgraph of G
such that the size of each connected component in H + e is divisible by p.
Then H has the same property. Namely, let U and W be the components in G
containing the endpoints of e. By assumption, |U | and |W | are both divisible
by p. Let U1, . . . , Ur be the components in H that are contained in U ; let
U1 be the component containing one endpoint of e. By assumption, |Ui| is
divisible by p for i > 1, but this clearly implies that |U1| is also divisible by
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p; |U1| = |U | −
∑

i>1 |Ui|. By symmetry, the same holds for all components in
H that are contained in W . As a consequence, H is not contained in NCn,p,
which implies that e is a cone point as desired. This concludes the proof. �

We provide an implicit formula for the Euler characteristic of NCn,p in
Section 18.4.

Remark. One may also examine when a monotone digraph property is SPI ∗

over M→
n . One readily verifies that the classification of such properties reduces

to the classification of monotone graph properties that are SPI ∗ over Mn.
Specifically, a monotone digraph property ∆ is SPI ∗ if and only if ∆ is the
trivial extension of an SPI ∗ monotone graph property.



14

Bipartite Graphs

We examine complexes of graphs with the important property of being bipar-
tite. Recall that a graph G is bipartite if G contains no cycles of odd length.
Equivalently, G admits a bipartition (U,W ), meaning that the vertex set V
can be partitioned into two stable subsets U and W .

In Section 14.1, we discuss the complex Bn of all bipartite graphs on n
vertices. For any graph G on n vertices, Chari [31] showed that the complex
Bn(G) consisting of all bipartite subgraphs of G is homotopy equivalent to
a wedge of spheres of dimension n − c(G) − 1, where c(G) is the number of
connected components in G. In particular, Bn is homotopy equivalent to a
wedge of spheres of dimension n − 2; Linusson and Shareshian [94] gave an
alternative proof of this result. Using the theory developed in Chapter 13
about strong pseudo-independence complexes over matroids, we give a new
proof of Chari’s result. We also show that the (n − c(G) − 1)-skeleton of
Bn(G) is vertex-decomposable and present a formula due to Stanley [134] for
the Euler characteristic of Bn.

In Section 14.2, we obtain similar results for the complex NCBn(G) =
Bn(G) ∩ NCn of disconnected bipartite subgraphs of G. Again, we use tech-
niques from Chapter 13. Moreover, we apply Stanley’s formula to compute the
Euler characteristic of the full complex NCBn. Intriguingly, the well-studied
ordered Bell number (see Gross [55] and Wilf [148, p. 175]) shows up as the
absolute value of the Euler characteristic of the quotient complex CBn of con-
nected bipartite graphs. Based on this observation, we present a family of
labeled trees counted by this number.

Recall that Bn,p is the subcomplex of Bn consisting of all graphs with bal-
ance number at most p. For G connected and 2p < n, we show in Section 14.3
that Bn,p(G) is homotopy equivalent to a wedge of spheres of dimension 2p−1
and that the (2p − 1)-skeleton of Bn,p(G) is vertex-decomposable. Moreover,
the reduced Euler characteristic χ̃(Bn,p) = χ̃(Bn,p(Kn)) is a polynomial fp(n)
in n of degree at most 2p for each fixed p and n > 2p. Somewhat surprisingly,
fp(k) = χ̃(Bk+1) for 0 ≤ k ≤ p. Section 14.3 also contains a fairly shallow
discussion on hypergraph analogues.
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14.1 Bipartite Graphs Without Restrictions

The following two theorems summarize known properties of the complex
Bn(G) of bipartite subgraphs of a given graph G on n vertices.

Theorem 14.1 (Chari [31]). Let G be a graph on n vertices. Then Bn(G)
is homotopy equivalent to a wedge of spheres of dimension n− c(G)− 1. �
Linusson and Shareshian [94] gave an alternate proof of Theorem 14.1 based on
discrete Morse theory and provided an explicit description of the unmatched
graphs with respect to their acyclic matching.

Theorem 14.2 (Stanley [134, Exercise 5.5]). The reduced Euler charac-
teristic of Bn = Bn(Kn) satisfies

B(x) :=
∑
n≥1

χ̃(Bn)
xn

n!
= −

√
2ex − 1 + 1. �

Proof. Consider the sum

H2(x) =
∑
n≥1

xn

n!

∑
f :[n]→{0,1}

∑
G∼f

(−1)|G|+1; (14.1)

G ∼ f means that f(u) �= f(v) whenever uv ∈ e and |G| is the number
of edges in G. If there are vertices x and y such that f(x) �= f(y), then
(G + xy) ∼ f if and only if (G− xy) ∼ f . As a consequence,

∑
G∼f (−1)|G|+1

equals zero in this case. If f(x) = f(y) for all x and y, then G ∼ f if and only
if G is empty, which implies that

∑
G∼f (−1)|G|+1 = −1. We conclude that

H2(x) = −2ex + 2.
Now, a bipartite graph G with c connected components appears exactly 2c

times in the sum (14.1). Namely, there are two possibilities for the restriction
of f to each component. It follows that

H2(x) =
∑
n≥1

xn

n!

∑
G∈Bn

(−1)|G|+12c(G) = 1− (1−B(x))2,

where the last equality is a consequence of Corollary 6.15. �

Table 14.1. The reduced Euler characteristic of Bn for small values on n.

n 1 2 3 4 5 6 7 8 9 10

χ̃(Bn) −1 0 −1 3 −16 105 −841 7938 −86311 1062435

See Table 14.1 for the first few terms in this series. For a generalization of
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Theorem 14.2 and its proof, see Theorem 15.10, in which we consider the
complex DGrn,p of graded digraphs modulo p. Bn and the trivial extension
DGrn,2 of Bn are homotopy equivalent by Proposition 4.5.

Proposition 14.3. Let {cn : n ≥ 0} be the unique integers satisfying c0 = 0,
c1 = 1, c2 = 0, and

cn =
n−1∑
b=2

(
n− 2
b− 2

)
(cb + cb−1) (14.2)

for n ≥ 3. Then ∑
n≥1

cn
xn

n!
= −

√
2e−x − 1 + 1.

Proof. Writing F (x) =
∑

n≥1 cnxn/n!, one readily verifies from (14.2) that

F ′′(x) = (ex − 1)(F ′′(x) + F ′(x)).

Via a straightforward calculation, one checks that F (x) = −
√

2e−x − 1 + 1
is a solution to this equation. The first two terms in the expansion of this
function are 0 = c0 and x = c1x, which immediately yields the proposition. �

The recursive identity (14.2) shows up in the analysis of the digraph property
DNOCyn of avoiding odd directed cycles; see Section 15.6.

We want to give a new proof of Chari’s result and prove that the
(n − c(G) − 1)-skeleton of Bn(G) is V D. However, by Theorem 13.21 (or
Theorem 13.24), we know that Bn is a strong pseudo-independence (SPI)
complex; see Section 13.3. As an immediate consequence of Theorem 13.10,
we thus have the following result.

Corollary 14.4. Let G be a graph on n vertices. For any H ∈ Bn(G), we have
that lkBn(G)(H) is V D+(c(H)− c(G)− 1). In particular, Bn(G) is V D+(n−
c(G)− 1) and hence homotopy equivalent to a wedge of spheres of dimension
n− c(G)− 1. �

Finally, we apply Corollary 13.26 to Bn(G).

Corollary 14.5. For a graph G on n vertices, let B∗
n(G) be the complex of

subgraphs H of G such that G\H is not in Bn. Then B∗
n(G) is V D+(|G|−n+

c(G)− 2). In particular, B∗
n(G) is homotopy equivalent to a wedge of spheres

of dimension |G| − n + c(G)− 2. �

Note that B∗
n = B∗

n(Kn) is the complex of graphs that do not contain two
disjoint cliques (complete graphs) of total size n.
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14.2 Disconnected Bipartite Graphs

We consider the complex NCBn = Bn ∩NCn of disconnected bipartite graphs.

Theorem 14.6. For n ≥ 2 and any graph G on n vertices, the complex
NCBn(G) is V D+(n−max{c(G), 2}−1). In particular, NCBn is V D+(n−3).

Proof. One easily checks that NCBn is SPI over the one-step truncation of the
graphic matroid Mn; thus we are done by Theorem 13.10. �

Theorem 14.7. The reduced Euler characteristic of NCBn satisfies

G(x) :=
∑
n≥2

χ̃(NCBn)
xn

n!
= −

√
2ex − 1 + 1 +

ln(2ex − 1)
2

.

Note that this equals H(x) + ln(1−H(x)), where H(x) =
∑

n≥1 χ̃(Bn)xn

n! .

Proof. Let f(n) be the reduced Euler characteristic of CBn = Bn/NCBn; this is
the quotient complex of connected bipartite graphs on n vertices. Let h(n) be
the Euler characteristic of Bn. It is clear that f and h satisfy Corollary 6.15,
which immediately implies that G(x)−H(x) = ln(1−H(x)). Applying The-
orem 14.2, we are done. �

Theorems 14.2 and 14.7 imply that− 1
2 ln(2ex−1) is the exponential generating

function for the Euler characteristic of the quotient complex CBn = Bn/NCBn

of connected bipartite graphs. As a consequence, this Euler characteristic is up
to sign an ordered Bell number (sequence A000670 in Sloane’s Encyclopedia
[127]); see Gross [55] and Wilf [148, p. 175] for some information.

Theorem 14.8. For n ≥ 1, let rn be the number of spanning trees T on the
vertex set [n] with the property that each simple path (1 = a1, a2, . . . , ak) in
T starting at the vertex 1 has the property that ai < ai+2 for 1 ≤ i ≤ k − 2.
Then ∑

n≥1

rn
xn

n!
= −1

2
ln(2e−x − 1).

Proof. We will define a matching on CBn such that the unmatched graphs are
exactly all spanning trees with properties as in the theorem. Since each pair
in the matching turns out to be of the form (G− e,G + e), the theorem will
be a consequence of Theorem 14.7. n = 1 is obvious; thus assume that n ≥ 2.

Consider a partition (U,W ) of the vertex set [n] such that 1 ∈ U and
W �= ∅. Let w be minimal in W . Let FU,W be the family of all graphs G in
CBn with bipartition (U,W ). Form a matching on FU,W by pairing G − 1w
with G+1w whenever possible. A graph G in FU,W is unmatched with respect
to this matching if and only if 1w ∈ G and G− 1w is disconnected.
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For any subsets U1 ⊆ U and W1 ⊆ W such that 1 ∈ U1 and w ∈ W1, let
FU,W (U1,W1) be the subfamily of FU,W consisting of all unmatched graphs G
such that the two connected components in G−1w have bipartitions (U1,W \
W1) and (W1, U \ U1), respectively. FU,W (U1,W1) can be identified with the
join of FU1,W\W1 and FW1,U\U1 , except that we have to add the edge 1w to
each graph in the join.

By induction on n, FU1,W\W1 admits a matching such that the unmatched
graphs are exactly those spanning trees on the vertex set [U1,W \W1] with
properties as in the theorem. The similar property holds for FW1,U\U1 , except
that we have to relabel the smallest vertex w in the first block as 1. Combining
these two matchings, the resulting unmatched graphs in FU,W (U1,W1) are
exactly the graphs satisfying the properties in the theorem. �

An alternative approach to proving Theorem 14.8 would be to observe the
position of the vertex n in a spanning tree as in the theorem. For 1 ≤ k ≤ n−1,
let rn,k be the number of such trees such that n has exactly k − 1 children
with respect to the root 1. Note that all these children must be leaves, as we
would otherwise have a vertex two steps away from n and smaller than n. It is
a fairly straightforward exercise to prove that rn,k = rn−k

(
n−1

k

)
, which yields

the identity

rn =
n−1∑
k=1

rn−k

(
n− 1

k

)

for n ≥ 2. This is the well-known recurrence formula for ordered Bell numbers;
see Gross [55, Eq. 9].

Yet another possible approach goes via ordered partitions (or preferential
arrangements) of the set [n− 1]. Such a partition is defined to be an ordered
sequence (U1, . . . , Uk) of nonempty sets such that [n−1] is the disjoint union of
U1, . . . , Uk. With sn equal to the number of ordered partitions of [n−1] (note
the shift), we have that

∑
n≥1 snxn = − 1

2 ln(2e−x−1); see Wilf [148, p. 175]. In
particular, rn = sn, where rn is defined as above. Note that there is a natural
bijection between ordered partitions of [n − 1] and faces of the barycentric
subdivision of ∂2[n−1]; identify (U1, . . . , Uk) with {⋃r

i=1 Ui : i ∈ [k − 1]}.

Problem 14.9. Define a bijection between the family of spanning trees on n
vertices with properties as in Theorem 14.8 and the family of ordered parti-
tions of the set [n− 1].

14.3 Unbalanced Bipartite Graphs

For a bipartite graph H on n vertices, recall that the balance number β(H) is
the smallest number r such that H is contained in a copy of Kr,n−r. For p ≥ 0
and a graph G on n vertices, we consider the simplicial complex Bn,p(G)
of bipartite subgraphs H of G with balance number at most p. Note that
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Bn,0(G) is the (−1)-simplex. Also, Bn,p(G) = Bn(G) for n ≤ 2p + 1; this case
was handled in Section 14.1. From now on, we will assume that n ≥ 2p + 1
unless otherwise stated.

14.3.1 Depth

We consider the depth of Bn,p. The two blocks of a connected bipartite graph
H are the two (unique) maximal vertex sets U and W with the property that
each edge in H has one endpoint in U and the other endpoint in W . For
a ≤ b, let us say that a connected bipartite graph H has type (a, b) if the two
blocks of H have size a and b, respectively. We include the case (a, b) = (0, 1)
corresponding to the graph with a single vertex.

Theorem 14.10. Let 0 ≤ p < n/2. Let G be a graph on n vertices and let Σ
be a PI complex over the graphic matroid on G (see Section 13.2). Let H be
a graph in Σ ∩ Bn,p(G). Then lkΣ∩Bn,p(G)(H) is V D(c(H)− c(G) + 2p− n).
In particular, Σ ∩ Bn,p(G) is V D(2p− c(G)).

Proof. We use induction on n and p. We may assume that p ≥ 1; the case
p = 0 is trivial. Write ∆ = lkΣ∩Bn,p(G)(H). If c(G) = c(H), then we are done;
c(H) − c(G) + 2p − n ≤ −1. Thus assume that c(G) < c(H). If n = 2p + 1,
then Proposition 13.7 and Corollary 13.8 yield the desired result; thus assume
that n ≥ 2p + 2.

First, suppose that there is an edge e ∈ G \H such that c(G− e) = c(G).
Induction on c(H) − c(G) yields that del∆(e) is V D(c(H) − c(G) + 2p − n)
and that lk∆(e) is V D(c(H + e)− c(G) + 2p− n). Since c(H + e) ≥ c(H)− 1,
we obtain that lk∆(e) is V D(c(H)− 1− c(G) + 2p− n) and hence that ∆ is
V D(c(H)− c(G) + 2p− n). Note that lk∆(e) is void if H + e /∈ Σ ∩ Bn,p(G).

It remains to consider the case that c(G−e) = c(G)+1 for every edge e in
G \H. Let H1, . . . , Ht be the connected components of H. It is clear that we
obtain a forest structure on G; view H1, . . . , Ht as the vertices and the edges
in G \H as the edges. Let Hk be a “leaf” in this forest structure and let e be
the edge in G separating Hk from the other connected components in H. By
induction, we obtain that lk∆(e) is V D(c(H)− 1− c(G) + 2p− n).

For the deletion, we need to work harder. If Hk is of type (c, c), then e
is a cone point. Namely, any graph in {H} ∗ ∆ remains bipartite when e is
added, and the balance number stays the same, as the two blocks of Hk have
the same size. Moreover, Σ is PI and hence closed under addition of edges
joining connected components. By Lemma 6.11 and induction, we obtain that
del∆(e) is V D(c(H)− c(G) + 2p− n).

Suppose Hk is of type (a, b) for some a < b. Define H0 and G0 as the
graphs obtained from H and G by removing the vertex set of Hk, which we
may assume is equal to [n− a− b + 1, n]. Write n′ = n− a− b and p′ = p− a.
We have that

del∆(e) = lkΣ∩Bn,p(G−e)(H) = lkΣ∩Bn′,p′ (G0)(H0);
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β(H) = β(H0) + a. Note that c(H0) = c(H) − 1 and c(G0) = c(G − e) −
1 = c(G). If n′ ≥ 2p′ + 1, then induction yields that lkΣ∩Bn′,p′ (G0)(H0) is
V D(c(H0)− c(G0) + 2p′ − n′). We are done in this case, as

c(H0)− c(G0) + 2p′ − n′ = c(H)− 1− c(G) + 2p− 2a− n + a + b

= b− a− 1 + (c(H)− c(G) + 2p− n) ≥ c(H)− c(G) + 2p− n.

If n′ ≤ 2p′, then Σ ∩ Bn′,p′(G0) = Σ ∩ Bn′(G0), which is a PI complex over
the graphic matroid on G0 by Proposition 13.7. Hence Corollary 13.8 implies
that lkΣ∩Bn′,p′ (G0)(H0) is V D(c(H0)− c(G0)− 1). This time,

c(H0)− c(G0)− 1 = c(H)− 1− c(G)− 1
= n− 2p− 2 + (c(H)− c(G) + 2p− n) ≥ c(H)− c(G) + 2p− n,

and we are again done. �

Corollary 14.11. Let 0 ≤ p < n/2. Let G be a graph on n vertices. Then
Bn,p(G) is V D(2p− c(G)). The same is true for the subcomplex Fn ∩Bn,p(G)
of “unbalanced” forests. �

G =
a

b
c

d

e
f B6,1(G) = c

a

b

d

e

f

Fig. 14.1. The graph G has the property that the corresponding complex B6,1(G)
has nonvanishing homology in two dimensions.

14.3.2 Homotopy Type

Next, we consider the homotopy type of the link lkBn,p(G)(H). Note that this
complex is not always homotopy equivalent to a wedge of spheres of dimension
c(H)−c(G)+2p−n, the quantity in Theorem 14.10. For example, if we add an
isolated vertex to each of H and G, then c(H), c(G), and n all increase by one;
hence c(H)− c(G)+ 2p−n decreases by one. Yet, the corresponding complex
is isomorphic to lkBn,p(G)(H). For a less trivial example, see Figure 14.1.

These examples suggest that we may not be able to find a general formula
for the homotopy type of lkBn,p(G)(H). Indeed, in our main result in this
section, we restrict our attention to connected graphs G and to subgraphs H
with a very special structure:
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Theorem 14.12. Let 0 ≤ p < n/2. Let G be a connected graph on n ver-
tices. Let H be a graph in Bn,p(G) such that each connected component is
of type (a, b) for some a, b satisfying a ≤ b ≤ a + 1. Then lkBn,p(G)(H) ∼
dtc(H)+2p−1−n for some d ≥ 0. Hence lkBn,p(G)(H) is homotopy equivalent to
a wedge of spheres of dimension c(H) + 2p− 1− n. In particular, Bn,p(G) is
homotopy equivalent to a wedge of spheres of dimension 2p− 1.

Remark. Inspired by Theorem 14.10, one may ask whether Theorem 14.12
would remain true for the intersection of Bn,p with an arbitrary SPI complex
(see Section 13.3). This is not the case; F6∩B6,2 has homology in two different
dimensions.

Proof. Quite a few arguments from the proof of Theorem 14.10 will appear
once again, but for clarity we keep the proofs separated. We use induction on
n and p. We may assume that p ≥ 1 and n ≥ 2p + 2; apply Corollary 14.4 for
the case n = 2p + 1.

Let B1, . . . , Br, C1, . . . , Cs be the connected components of H; we assume
that each Bi has type (bi, bi + 1) for some bi ≥ 0 and that each Cj has type
(cj , cj) for some cj ≥ 1.

Divide the vertex set of H (and G) into three sets X, Y , and Z in the
following manner: Z consists of all vertices in the connected components
C1, . . . , Cs. X consists of all vertices that are contained in the smaller block
of size bi of some Bi, whereas Y contains all vertices that are contained in
the larger block of size bi + 1 of some Bi. Note that all isolated vertices are
contained in Y . Refer to edges vw ∈ G \H such that v ∈ X and w ∈ Y (or
vice versa) as bad edges and to the other edges in G \H as good edges.

Clearly, any edge in G \ H contained in some connected component Bi

or Cj is either a cone point in ∆ = lkBn,p(G)(H) or not at all in ∆. We may
hence assume that there are no such edges. We divide into a number of cases.

Case 1. There is a good edge e = vw ∈ G \ H such that G − e remains
connected. When added to H, e connects two connected components. Note
that this implies that c(H + e) = c(H)−1. If v, w ∈ X, v, w ∈ Y , or v, w ∈ Z,
then the resulting connected component D is of type (c, c) for some c. If
v ∈ X ∪ Y and w ∈ Z, then D is of type (b, b + 1) for some b. By induction,
we obtain that

del∆(e) = lkBn,p(G−e)(H) ∼ d∅t
c(H)+2p−1−n;

lk∆(e) = lkBn,p(G)(H + e) ∼ det
c(H+e)+2p−1−n = det

c(H)+2p−2−n;

d∅, de ≥ 0. Note that lk∆(e) is void if H + e /∈ Bn,p. As a consequence, the
theorem follows in this case; use Lemma 5.22.

Case 2. There are no good edges at all in G\H. Then there is no connected
component C in H of type (c, c) for any c > 0. Namely, C cannot be the only
connected component in H; c ≤ β(H) ≤ p < n/2. Also, since G is connected,
there would be some edge in G \H connecting C with some other connected
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component, and this edge would be good by definition. As a consequence, the
connected components in H are B1, . . . , Br with properties as in the theorem.
It is clear that β(H) =

∑
i bi = |X|; (X,Y ) is the most “unbalanced” biparti-

tion of H. Since each edge in G\H goes from X to Y (all edges are bad), each
such edge is a cone point in ∆. As a consequence, ∆ is collapsible. Namely,
no cone points would mean that H were connected of type (b, b + 1) for some
b ≤ p; since 2b + 1 ≤ 2p + 1 < n, we have a contradiction. This, by the way,
is the step where a proof for Fn ∩ Bn,p would fail.

Case 3. There are good edges but each good edge e is critical in the sense
that G− e is disconnected. Let F be the set of good edges and let G1, . . . , Gt

be the connected components in G \F . It is clear that G has a tree structure;
view the connected components in G\F as the vertices and F as the edge set.
Let Gk be a “leaf” in this tree structure and let e ∈ F be the edge separating
Gk from the other connected components in G \ F .

Let Hk be the induced subgraph of H on the vertex set of Gk. Since all
edges in Gk\Hk are bad, Hk consists either of one single connected component
Cj or of one or several connected components Bi.

Case 3.1. Hk consists of one single connected component Cj ; this implies
that Hk = Gk. We claim that e is a cone point in ∆. Namely, the addition of
e to any graph H ′ such that H ⊆ H ′ ⊂ G cannot create an odd cycle, as e
separates G. Also, the addition of e does not increase the balance number.

Case 3.2. Hk consists of one or several connected components Bi. As be-
fore, we obtain by induction that

lk∆(e) = lkBn,p(G)(H + e) ∼ det
c(H)+2p−2−n (14.3)

for some de ≥ 0. The situation for the deletion is slightly more complicated.
We divide into two cases depending on the number of components in Hk.

Case 3.2.1. If Hk contains more than one connected component Bi, then
each edge in Gk \Hk is a cone point in del∆(e); the discussion in Case 2 above
applies.

Case 3.2.2. If Hk contains one single connected component Bi, then Gk =
Hk = Bi and β(Gk) = bi. Let G0 and H0 be the induced subgraphs of G and H
obtained by removing the vertex set of Gk = Bi; let W be the vertex set of G0

and H0. It is clear that G0 is connected, c(H0) = c(H)−1, and |W | = n−2bi−
1. For simplicity, assume that W = [n− 2bi − 1]. For any graph G′ such that
H ⊆ G′ ⊆ G−e, we have that β(G′) = β(Bi)+β(G′(W )) = bi+β(G′(W )). As
a consequence, G′ ∈ Bn,p if and only if G′(W ) ∈ B|W |,p−β(Bi) = Bn−2bi−1,p−bi

.
Let n′ = n − 2bi − 1 and p′ = p − bi. Since β(H) ≤ p and hence bi ≤ p, it is
clear that p′ ≥ 0. Also, since 2p ≤ n− 2,

n′ = n− 2bi − 1 ≥ 2p− 2bi + 1 = 2p′ + 1.

As a consequence, n′ and p′ satisfy the conditions in the theorem, which
implies by induction that
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del∆(e) = lkBn,p(G−e)(H) = lkBn′,p′ (G0)(H0) ∼ d∅t
c(H0)+2p′−1−n′

= d∅t
c(H)−1+2(p−bi)−1−(n−2bi−1) = d∅t

c(H)+2p−1−n

for some d∅ ≥ 0. Combining this with (14.3), we are done by Lemma 5.22. �

14.3.3 Euler Characteristic

In this section, we restrict our attention to G = Kn; write Bn,p = Bn,p(Kn).
By Theorem 14.12, Bn,p is homotopy equivalent to a wedge of spheres of
dimension 2p − 1 for n ≥ 2p + 1. Yet, the proof of Theorem 14.12 does not
give much information about the number of spheres in the wedge. The purpose
of this section is to demonstrate that this number – which clearly coincides
with minus the reduced Euler characteristic – is a polynomial in n for each p.

Let BP,Q
n,p be the simplicial complex defined as follows. The set of 0-cells is

the union of the usual set
(
[n]
2

)
of edges and two copies [n]P and [n]Q of [n].

We denote elements i in the first copy [n]P as iP and elements j in the second
copy [n]Q as jQ; we write IP = {iP : i ∈ I} and IQ = {iQ : i ∈ I}. For a
graph G and subsets I ⊆ [n] and J ⊆ [n], the set G + IP + JQ = G∪ IP ∪ JQ

is a face of BP,Q
n,p if and only if the following hold:

• G ∈ Bn,p.
• G admits a bipartition (U,W ) such that |U | ≤ p and such that I ⊆ U and

J ⊆W .

In particular, |I| ≤ p and I ∩ J = ∅. Note that the definition of BP,Q
n,p makes

sense for p = 0.

Lemma 14.13. Let n ≥ 1 and p ≥ 0. Let G be a graph on n vertices and let
H ∈ BP,Q

n,p be a subgraph of G. Then lkBP,Q
n,p (G+[n]P +[n]Q)(H) ∼ stc(H)−1 for

some s ≥ 0, where c(H) is the number of connected components in H; s = 0
if n > 2p. In particular, BP,Q

n,p ∼ stn−1 for some s ≥ 0; s = 0 if n > 2p.

Proof. If p = 0, then all elements in [n]Q are cone points. Moreover, BP,Q
1,p =

{∅, {1P }, {1Q}} whenever p ≥ 1. Hence we may assume that n ≥ 2 and p ≥ 1.
Write Σ = lkBP,Q

n,p (G+[n]P +[n]Q)(H).
First, suppose that G \ H contains some edge e. If e joins two vertices

from one and the same connected component of H, then e is either a cone
point in Σ or not at all present in Σ. Suppose that e joins vertices from
two different components. By induction on G \ H, lkΣ(e) ∼ set

c(H+e)−1 =
set

c(H)−2 and delΣ(e) ∼ s∅t
c(H)−1 for some integers s∅, se, which implies that

Σ ∼ (se +s∅)tc(H)−1. For n > 2p, induction yields that s∅ = se = 0 and hence
that Σ is nonevasive.

It remains to consider the base case G = H. Suppose that G has an isolated
vertex i, say i = n. We have that lkΣ(nP ) coincides with

Σ′ = lkBP,Q
n−1,p−1(G([n−1])+[n−1]P +[n−1]Q)(G([n− 1])).
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By induction, Σ′ admits a decision tree with all evasive faces of dimension
c(G)−2. If n > 2p, then n−1 > 2(p−1), which yields, again by induction, that
Σ′ is nonevasive. Moreover, delΣ(nP ) is a cone with cone point nQ. Namely,
if (U,W ) is a bipartition of a face of delΣ(nP ) such that n ∈ U and |U | ≤ p,
then (U \ {n},W ∪ {n}) is another bipartition with the same properties. The
desired result follows.

Suppose that G has no isolated vertices. Let V1, . . . , Vr be the vertex sets
of the connected components in G and let (Ui,Wi) be the unique bipartition
of G(Vi) for each i; |Ui| ≤ |Wi|. For each i ∈ [r], choose ai ∈ Ui arbitrarily.
Write A = {ai : i ∈ [r]} and let

Y = ([n] \A)P ∪ ([n] \A)Q.

It is clear that Σ(C, Y \ C) is a cone whenever C �= ∅. Namely, if xP ∈ C
for some x ∈ Ui \ {ai} or xQ ∈ C for some x ∈ Wi, then aP

i is a cone point,
whereas aQ

i is a cone point if xQ ∈ C for some x ∈ Ui \ {ai} or xP ∈ C for
some x ∈Wi.

The remaining complex is ∆ = Σ(∅, Y ). Consider ∆(MQ, AQ \MQ) for
each M ⊆ A. If ai /∈ M , then aP

i is a cone point in ∆(MQ, AQ \ MQ).
Namely, suppose that I ⊆ A \ M is a set such that IP + MQ belongs to
∆(MQ, AQ \MQ). Let (U,W ) be a bipartition of G such that I ⊆ U and
M ⊆ W and such that |U | ≤ p. Clearly, if Wi ⊆ U and Ui ⊆ W , then
(U ′, V ′) = ((U \Wi)∪Ui, (W \Ui)∪Wi) is another bipartition of G such that
I ⊆ U ′ and M ⊆ W ′. Since |Ui| ≤ |Wi|, it follows that |U ′| ≤ |U | ≤ p, which
implies that aP

i is a cone point as desired.
Thus ∆(MQ, AQ \MQ) is nonevasive unless M = A. Now, ∆(AQ, ∅) is

either {AQ} or void, because each element aP collides with the already present
element aQ. Since |A| = c(G), it follows that ∆(AQ, ∅) ∼ rtc(G)−1, where
r ∈ {0, 1}; hence Σ ∼ rtc(G)−1.

If n > 2p, then consider the unique bipartition (W,U) = (
⋃

i Wi,
⋃

i Ui) of
G such that A ⊆ U . Since |Wi| ≥ |Ui|, it follows that |W | ≥ |U | = n − |W |.
Since n > 2p, we have that |W | > p, which implies that ∆(AQ, ∅) = ∅; thus
Σ ∼ 0. �

Let BP
n,p be the subcomplex of BP,Q

n,p consisting of all elements of the form
G + IP ; this is the induced subcomplex on the set

(
[n]
2

)
∪ [n]P . Analogously,

let BQ
n,p be the subcomplex of BP,Q

n,p consisting of elements of the form G+ IQ;
this is the induced subcomplex on the set

(
[n]
2

)
∪ [n]Q.

Proposition 14.14. The following hold:

(i) For 0 ≤ k ≤ p, BP
k,p and Bk+1 are isomorphic.

(ii) For n, p ≥ 0, χ̃(BP
n,p) = χ̃(Bn,p) + χ̃(BP,Q

n,p )− χ̃(BQ
n,p).

(iii) For 0 ≤ 2p ≤ n, χ̃(BP
n,p) = χ̃(Bn,p).

(iv) For n, p ≥ 0,
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χ̃(BP,Q
n,p ) =

n∑
i=0

(
n

i

)
(−1)n−iχ̃(BP

i,p).

Equivalently, χ̃(BP
n,p) =

2p∑
i=0

(
n

i

)
χ̃(BP,Q

i,p ).

Proof. (i) We obtain an isomorphism ϕ : BP
k,p → Bk+1 by defining ϕ(G+ I) =

G + {i(k + 1) : i ∈ I}. Namely, G + I belongs to BP
k,p if and only if G admits

a bipartition (U,W ) such that I ⊆ U and |U | ≤ p. Since the latter is always
true whenever p ≥ k, this means exactly that G is bipartite and I is a stable
set in G, which is equivalent to ϕ(G + I) being bipartite.

(ii) For a face G + IP + JQ ∈ BP,Q
n,p \ (BP

n,p ∪ BQ
n,p), let i = min I and

j = min J . We obtain a perfect element matching by pairing (G+ij)+IP +JQ

and (G− ij) + IP + JQ. As a consequence,

χ̃(BP,Q
n,p ) = χ̃(BP

n,p ∪ BQ
n,p).

Since Bn,p = BP
n,p ∩ BQ

n,p, the claim follows.
(iii) By (ii), it suffices to prove that χ̃(BP,Q

n,p ) = χ̃(BQ
n,p) whenever n ≥ 2p.

Use induction on p; the result is trivial for p = 0. Assume that p > 0 and
consider a face σ = G + IP + JQ ∈ BP,Q

n,p such that some i ∈ I is not isolated
in G. Let x = x(σ) be minimal such that ix ∈ G. Then σ + xQ ∈ BP,Q

n,p and
x(σ + xQ) = x(σ). In particular, we may define an element matching on BP,Q

n,p

such that a face σ = G + IP + JQ is unmatched if and only if all elements
in I are isolated in G. For each I ⊆ [n] such that |I| ≤ p, let BP,Q

n,p (I) be the
family of such elements σ = G + IP + JQ.

Clearly, BP,Q
n,p (∅) = BQ

n,p. Moreover, for each I such that 1 ≤ |I| ≤ p,
BP,Q

n,p (I) is isomorphic to {IP }∗BQ
n−|I|,p−|I|. Since n−|I| > 2(p−|I|), induction

yields that χ̃(BQ
n−|I|,p−|I|) = χ̃(BP,Q

n−|I|,p−|I|). By Lemma 14.13, this equals
zero, which implies that χ̃(BP,Q

n,p (I)) = 0; thus we are done.
(iv) We proceed in a manner similar to the proof of claim (iii), except that

we swap P and Q. Specifically, we match away all faces σ = G+IP +JQ ∈ BP,Q
n,p

such that some j ∈ J is not isolated in G. For each J ⊆ [n], let BP,Q
n,p (J)

be the family of elements σ = G + IP + JQ such that all elements in J are
isolated. Clearly, BP,Q

n,p (∅) = BP
n,p. Moreover, for each J , BP,Q

n,p (J) is isomorphic
to {JQ} ∗ BP

n−|J|,p. Summing over all J , we obtain the desired result.
The last claim is just a matrix inversion combined with the fact that

χ̃(BP,Q
i,p ) = 0 for i > 2p; use Lemma 14.13. �

Theorem 14.15. For p ≥ 1 and n ≥ 2p,

χ̃(Bn,p) =
2p∑

k=0

(−1)k

(
n

k

)(
n− 1− k

2p− k

)
χ̃(BP

k,p). (14.4)
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In particular, χ̃(Bn,p) is a polynomial fp in n of degree at most 2p such that
fp(0) = −1 and fp(1) = 0.

Remark. The right-hand side of (14.4) defines a polynomial fp such that
fp(k) = χ̃(Bk+1) for 0 ≤ k ≤ p; use Propositions 6.13 and 14.14 (i).

Proof. Let fp(n) be the unique polynomial of degree at most 2p with the
property that fp(k) = χ̃(BP

k,p) for 0 ≤ k ≤ 2p. Then fp(n) = χ̃(BP
n,p) for all

n ≥ 0. Namely, Lemma 14.13 and Proposition 14.14 (iv) imply that

n∑
i=0

(
n

i

)
(−1)n−iχ̃(BP

i,p) = 0 (14.5)

whenever n ≥ 2p + 1. Hence

0 =
n∑

i=0

(
n

i

)
(−1)n−iχ̃(BP

i,p)

= χ̃(BP
n,p)− fp(n) +

n∑
i=0

(
n

i

)
(−1)n−ifp(i) = χ̃(BP

n,p)− fp(n).

The first equality is (14.5). The second equality is by induction on n starting
with n = 2p + 1. The third equality is true for any polynomial of degree at
most n−1. Applying Propositions 6.13 and 14.14 (iii), we obtain (14.4), which
concludes the proof. �

In a separate manuscript [73], we generalize a weaker version of Theorem 14.15
to a larger class of monotone graph properties.

Let us examine the polynomial fp defined by fp(n) = χ̃(Bn,p) for n ≥
2p + 1. First, consider the case p = 1. We refer to graphs in Bn,1 as star
graphs. Theorems 14.12 and 14.15 combined with a direct inspection of B2,1

and B3,1 yield the following result.

Proposition 14.16. For n ≥ 3, we have that Bn,1 is homotopy equivalent to
a wedge of

(
n−1

2

)
spheres of dimension one. In particular, f1(n) = −

(
n−1

2

)
. �

The situation is much more complicated for p ≥ 2, but we have enough
data to determine f2 and f3, and a simple computer calculation yields f4:

Proposition 14.17. We have that

f2(x) =
−x(x− 1)(x− 3)(x− 4) + 2x− 2

2
;

f3(x) =
−23x6 + 393x5 − 2486x4 + 7203x3 − 9425x2 + 4374x− 36

36
;
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f4(x) = −1061x8

1152
+

7997x7

288
− 65351x6

192
+

314935x5

144

−1011181x4

128
+

4576049x3

288
− 4681687x2

288
+

51153x

8
− 1.

Proof. Using Theorem 14.2 (see Table 14.1), and Theorem 14.15, we obtain
that f2(0) = −1, f2(1) = 0, f2(2) = −1, f2(4) = 3, and f2(5) = −16.
There is only one polynomial of degree at most 2p = 4 with this property.
Similarly, we obtain that f3(k) = f2(k) for k ≤ 2, f3(3) = 3, f3(6) = 105, and
f3(7) = −841. Moreover, since BP

p+1,p
∼= Bp+2 \ {K[p+1],{p+2}}, we have that

χ̃(BP
p+1,p) = χ̃(Bp+2)− (−1)p, which implies that f3(4) = −χ̃(B5)− (−1)3 =

−15. We now have seven known values of f3, and these values determine a
unique polynomial of degree at most 2p = 6. For p = 4, proceed in the same
manner; we know f4(k) for k ∈ {0, 1, 2, 3, 4, 5, 8, 9} and may easily compute
f4(6) = χ̃(BP

6,4) = 675 using the computer program homology [42]. Since we
have nine known values of f4, we have a unique polynomial of degree at most
eight. In all three cases, we are done by Theorem 14.15. �

Table 14.2. fp(n) for small values on n and p. We obtained f4(6) via a computer
calculation; all other values are consequences of results in this chapter.

fp(n) n = 0 1 2 3 4 5 6 7 8 9 10

p = 1 −1 0 0 −1 −3 −6 −10 −15 −21 −28 −36

2 −1 0 −1 2 3 −16 −85 −246 −553 −1072 −1881

3 −1 0 −1 3 −15 44 105 −841 −5957 −22240 −62661

4 −1 0 −1 3 −16 104 −675 2379 7938 −86311 −763116

5 −1 0 −1 3 −16 105 −840 ? ? ? 1062435

Table 14.3. The absolute value of χ̃(BP,Q
r,p ) for p ≤ 4 and for p = 5 and r ≤ 6. By

Lemma 14.13, χ̃(BP,Q
r,p ) is negative only if r is even and positive only if r is odd.

|χ̃(BP,Q
r,p )| r = 0 1 2 3 4 5 6 7 8 9 10

p = 1 1 1 1 − − − − − − − −
2 1 1 2 6 12 − − − − − −
3 1 1 2 7 34 160 460 − − − −
4 1 1 2 7 35 225 1615 9975 37135 − −
5 1 1 2 7 35 226 1786 ? ? ? ?
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See Table 14.2 for a table with fp(n) for small n and p. In Table 14.3, we
present χ̃(BP,Q

r,p ); recall from Proposition 14.14 (iv) that fp(n) is equal to the
sum =

∑2p
r=0

(
n
r

)
χ̃(BP,Q

r,p ).
We have the following intriguing consequences of the results in this section.

Corollary 14.18. For p ≥ 1, the coefficients of fp alternate in sign;

fp(n) =
2p∑

r=0

(−1)r+1arn
r,

where ar ≥ 0.

Proof. Since fp(n) =
∑2p

r=0

(
n
r

)
χ̃(BP,Q

r,p ) by Proposition 14.14 (iv), it suffices
to prove that (−1)r+1χ̃(BP,Q

r,p ) ≥ 0. However, by Lemma 14.13, this is indeed
true since all homology is concentrated in dimension r − 1. �

Corollary 14.19. For p ≥ 2, fp(x) has at least two roots, counted with mul-
tiplicity, in the interval (0, 2) and at least one root in each of the intervals
(k, k + 1) for 2 ≤ k ≤ p and (2p, 2p + 1).

Proof. We have that fp(0) = −1, fp(1) = 0, and fp(2) = −1 for p ≥ 2; hence
there are at least two roots in (0, 2). Moreover, for 2 ≤ k ≤ p, fp(k) = χ̃(Bk+1)
is larger than 0 if k is odd and smaller than 0 if k is even; the inequalities
being strict follows from Proposition 14.3. In the same manner, we obtain that
fp(2p+1) < 0 < fp(2p). Finally, we concluded in the proof of Proposition 14.17
that fp(p + 1) = χ̃(Bp+2) − (−1)p. Since |χ̃(Bp+2)| > 1 for p ≥ 2, it follows
that fp(p + 1) > 0 if p is even and fp(p + 1) < 0 if p is odd. �

Conjecture 14.20. For p ≥ 1, fp is a polynomial of degree exactly 2p with
only real and positive roots.

The conjecture clearly holds for 1 ≤ p ≤ 4. It would hold for general p
if we could prove that fp(k) alternates in sign all the way from k = 2 to
k = 2p−1; by Corollary 14.19, this would imply that we have 2p real roots and
hence a polynomial of degree exactly 2p with only real roots. One approach
to establishing this would be to demonstrate that BP

k,p is homotopy equivalent
to a nonempty wedge of spheres of dimension k − 1 for p + 1 ≤ k ≤ 2p − 1;
we know that this is true for 2 ≤ k ≤ p.

14.3.4 Generalization to Hypergraphs

Given Proposition 14.14 (iii), it is tempting to conjecture that Bn,p and BP
n,p

are homotopy equivalent for n ≥ 2p. In particular, since BP
n,p aligns perfectly

with the polynomial fp(n), one may argue that BP
n,p is a more natural object

to study than Bn,p.
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Now, we may interpret BP
n,p as a complex of hypergraphs with edges of

size one and two. It is clear that a hypergraph H belongs to BP
n,p if and only if

there is a set T of size at most p such that the intersection of T with each edge
in H has size exactly one; note that x must belong to T whenever the singleton
edge {x} belongs to H. This observation suggests the following generalization:

A hypergraph H = (V, E) admits an exact r-transversal if there is a set T
of size r such that |T ∩ e| = 1 for each e ∈ E . The balance number β(H) of
a hypergraph H is the size of a smallest exact transversal of H. Note that an
ordinary graph G is contained in Bn,p and hence has balance number at most
p if and only if G admits an exact r-transversal for some r ≤ p; T being a
transversal of G is equivalent to (T, [n] \ T ) being a bipartition of G.

For any n, p, t ≥ 1, define HBn,p,t as the family of [t]-hypergraphs H such
that β(H) ≤ p, meaning that H admits an exact r-transversal for some r ≤ p.
HBn,p,2 is exactly the complex BP

n,p. While we have not been able to prove
very much about HBn,p,t for general t, at least we have the following intriguing
observation:

Proposition 14.21. For any n, p, t ≥ 1, we have that HBn,p,t � HBn,t,p.

Proof. Assume that p ≥ 1 and t ≥ 2 and consider the nerve complex Nn,p,t =
N(HBn,p,t) of HBn,p,t; see Section 6.1. We may identify the vertices in Nn,p,t

with subsets of [n] of size at most p. Namely, for a given set U of size at most
p, let HU be the hypergraph containing all edges e of size at most t such that
|e ∩ U | = 1. Note that HU contains the singleton set {u} and the edge uv
for each u ∈ U and v ∈ [n] \ U , which implies that HU is indeed maximal in
HBn,p,t; U is the only exact transversal of HU . Conversely, it is easy to see
that any maximal hypergraph in HBn,p,t is exactly of this form for some U of
size at most p.

Now, a family W of vertices in Nn,p,t forms a face of Nn,p,t if and only if
the intersection

⋂
W∈W HW is nonempty. This means that there is a set S of

size at most t such that |W ∩S| = 1 for each W ∈ W. However, this is exactly
the condition that there is an exact r-transversal of the hypergraph ([n],W)
for some r ≤ t. As a consequence, we may identify Nn,p,t with HBn,t,p. Hence
we are done by the Nerve Theorem 6.2, the one remaining case t = p = 1
being trivially true. �

For t = 1, the situation is very simple:

Corollary 14.22. For n, p ≥ 1 and t = 1, HBn,p,1 � HBn,1,p �
∨

(n−1
p )

Sp−1.

Proof. HBn,p,1 coincides with the (p− 1)-skeleton of an (n− 1)-simplex. �

Based on Theorem 14.12 and Corollary 14.22, it is tempting to conjecture that
HBn,p,t is homotopy equivalent to a wedge of spheres of dimension pt−1 when-
ever n ≥ pt + 1. However, we do not have any evidence for such a conjecture
when p, t ≥ 3; the real truth might be substantially more complicated.
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Directed Variants of Forests and Bipartite
Graphs

We consider complexes of directed variants of forests and bipartite graphs and
some relatives thereof.

In Section 15.1, we consider the complex DFn of directed forests. This is
perhaps the most natural variant of the complex Fn of undirected forests. We
review the main results about DFn; these results are due to Kozlov [86]. Most
notably, DFn is vertex-decomposable of dimension n− 2.

Another variant is the complex DAcyn of acyclic digraphs. In Section 15.2,
we list some important results about DAcyn due to Björner and Welker [17]
and Hultman [64]. The main result is that DAcyn is homotopy equivalent to
a sphere of dimension n − 2. Using the theory developed in Section 13.2, we
show that DAcyn has a vertex-decomposable (n− 2)-skeleton.

In Section 15.3, we show that the complex DBn of bipartite digraphs on
n vertices is homotopy equivalent to an (n− 2)-dimensional sphere and has a
vertex-decomposable (n− 2)-skeleton. In addition, we give a direct proof that
DBn is homotopy equivalent to DAcyn.

In Section 15.4, we proceed with the complex DGrn,p of digraphs on n
vertices that are graded modulo p, the most important special case being
DGrn = DGrn,n+1. One may view the two special cases DGrn and DGrn,2 as
directed variants of the complex Bn of bipartite graphs. We show that DGrn,p

is SPI over the digraphic matroid (see Section 13.3), which implies that the
complex is homotopy equivalent to a wedge of spheres of dimension n− 2 and
has a vertex-decomposable (n− 2)-skeleton. Moreover, fixing p, we determine
the exponential generating function for the reduced Euler characteristic of
DGrn,p. We also compute the exponential generating function for χ̃(DGrn).

One of the SPI monotone digraph properties listed at the end of Sec-
tion 13.3.2 was the complex DOACn of digraphs on n vertices with no non-
alternating circuits. In Section 15.5, we show that this complex is indeed SPI.

Finally, in Section 15.6, we show that the complex DNOCyn of digraphs on
n vertices without directed cycles of odd length is homotopy equivalent to a
wedge of spheres of dimension 2n− 3. The Euler characteristic is, up to sign,
the same as for Bn.
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15.1 Directed Forests

The following result is a slight generalization of a result due to Kozlov [86]
about the complex DFn of directed forests on n vertices.

Theorem 15.1. Let D be a digraph on the vertex set [n]. Assume that U is
a vertex set with the property that, for each v ∈ [n] \U , there is a u ∈ U such
that uv ∈ D. Then DFn(D) is V D(n− 1− |U |).
Proof. Write W = [n] \ U . Let Y be the set of edges ab ∈ D with the
property that ab /∈ U × W . For each A ⊆ Y , we want to show that
ΣA = (DFn(D))(A, Y \ A) is V D(n − 1 − |U |). This is clear if ΣA = ∅;
thus assume that ΣA is nonvoid.

Let H be the digraph with edge set A and let F1, . . . , Fk be the connected
components of H that do not contain any element from U . If k = 0, then
H consists of at most |U | components and hence has at least n − |U | edges,
which implies that ΣA is V D(n − 1 − |U |). Otherwise, let ri be the root of
the component Fi for each i. By assumption, for each i, some ui ∈ U has the
property that uiri ∈ D. Define

Z = D ∩ (U ×W ) \ {uiri : i ∈ [1, k]}.
For each B ⊆ Z, let us examine ΣA(B,Z \ B); assume that the complex is
nonvoid. Let H ′ be the digraph with edge set A ∪ B and let {Ft : t ∈ T} be
the set of connected components in H ′ that do not contain any element from
U ; T ⊆ [1, k]. Now, every set in ΣA(B,Z \B) is of the form A∪B ∪X, where
X is a subset of C = {utrt : t ∈ T}; if i /∈ T , then uri ∈ B for some u ∈ U .
One readily verifies that each utrt is a cone point in ΣA(B,Z \ B), which
implies that ΣA(B,Z \ B) is V D(|A| + |B| + |C| − 1). Since each connected
component in the digraph with edge set A ∪ B ∪ C contains some element
from U , it follows that ΣA(B,Z \B) is V D(n− |U | − 1). Hence we are done
by Lemma 6.10. �
Corollary 15.2 (Kozlov [86]). Let D be a digraph with vertex set [n]. Sup-
pose that 1i ∈ D for i ∈ [2, n]. Then DFn(D) is V D of dimension n − 2. �

With assumptions as in the corollary, Kozlov observed that the Euler char-
acteristic of DFn(D) equals (up to sign) the number of directed trees T in D
with the property that there are no edges of the form 1i in T . We may easily
deduce this fact from the proof of Theorem 15.1. As an important special
case, Kozlov deduced that the Euler characteristic of DFn is −(1− n)n−1.

15.2 Acyclic Digraphs

Björner and Welker [17] determined the homotopy type of the complex DAcyn

of acyclic digraphs on n vertices. We give an alternative proof in terms of
decision trees.
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Theorem 15.3. For n ≥ 1, DAcyn admits a decision tree with one evasive
face of dimension n− 2. Hence DAcyn is homotopy equivalent to a sphere of
dimension n− 2.

Proof. We use induction on n. For n = 1, we have that DAcy1 = {∅}; assume
that n > 1. Consider the first-hit decomposition of DAcyn with respect to
(1n, 2n, . . . , (n−1)n); see Definition 5.24. For r ∈ [n−1], let Ar = {in : i ∈ [r]}.
Let Σr = DAcyn({rn}, Ar−1) and Σn = DAcyn(∅, An−1). We want to show
that Σr is nonevasive for r �= n − 1 and that Σn−1 ∼ tn−2. By Lemma 5.25,
it then follows that DAcyn ∼ tn−2.

Clearly, ni is a cone point in Σn for any i; if no edges are directed to n,
then n cannot be contained in a cycle. In the proof of Theorem 15.4 below,
we will need the fact that we may choose n(n− 1) as the cone point.

For r ≤ n − 1, let B = {ni : i ∈ [n − 1]}. For each Z ⊆ B, consider the
complex Σr,Z = Σr(Z,B \Z). If nr ∈ Z, then Σr,Z is void; (nr, rn) is a cycle.
If ni ∈ Z for some i �= r, then ri is a cone point in Σr,Z ; we already have a
directed path from r to i via n.

It remains to consider Z = ∅. If r �= n − 1, then (r + 1)n is a cone point
in Σr,∅; n cannot be contained in a cycle since there are no edges directed
from n. As a consequence, Σr ∼ 0 if r �= n− 1 by Lemma 5.22; Σr,Z ∼ 0 for
all Z. For r = n − 1, we have that Σn−1,∅ = {(n − 1)n} ∗ DAcyn−1. Namely,
a digraph D containing (n − 1)n but no other edges incident to n is clearly
acyclic if and only if the digraph obtained from D by removing the vertex n
along with the edge (n− 1)n is acyclic. By induction, DAcyn−1 ∼ tn−3, which
implies that Σn−1 ∼ tn−2; Σn−1,Z ∼ 0 if Z �= ∅. Hence we are done. �

Theorem 15.4. For n ≥ 1, H̃n−2(DAcyn; Z) is generated by the fundamental
cycle of the sphere

∆n = {∅, 12, 21} ∗ {∅, 23, 32} ∗ . . . {∅, (n− 1)n, n(n− 1)}.

Proof. We apply Corollary 4.17 to the decision tree defined in the proof of
Theorem 15.3. Let D be a digraph with n− 1 edges e1, . . . , en−1 such that ei

is either i(i + 1) or (i + 1)i. This implies that D is a maximal face of ∆n. By
Corollary 4.17, it suffices to prove that D is matched with a smaller digraph in
the acyclic matching induced by the decision tree unless D is the unmatched
digraph Dn with edge set {i(i + 1) : i ∈ [n− 1]}.

First, assume that en−1 = n(n − 1). With notation as in the proof of
Theorem 15.3, D belongs to Σn. In this lifted complex, n(n − 1) is a cone
point, which means that we may define a perfect matching on Σn by adding
and deleting n(n− 1). In particular, with this matching chosen, D is matched
with a smaller digraph.

Second, assume that en−1 = (n− 1)n. Then D belongs to Σn−1,∅ = {(n−
1)n} ∗ DAcyn−1. By an induction argument, D − (n− 1)n is matched with a
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smaller digraph in DAcyn−1 unless D− (n− 1)n = Dn−1 (i.e., D = Dn). As a
consequence, the same is true for D in Σn−1,∅, which concludes the proof. �

Hultman generalized Theorem 15.3 to induced subcomplexes of DAcyn:

Theorem 15.5 (Hultman [64]). Let D be a digraph. If every connected
component in D is strongly connected (or an isolated vertex), then DAcyn(D)
is homotopy equivalent to a sphere of dimension n− c(D)− 1, where c(D) is
the number of connected components in D. Otherwise, DAcyn(D) is a cone.
�
Since each minimal nonface of DAcyn is a directed cycle, which is clearly
isthmus-free, DAcyn is PI. In particular, Corollary 13.8 applies:

Corollary 15.6. For each digraph D on n vertices, DAcyn(D) is V D(n −
c(D)− 1). �
We obtain a closure operator f on P (DAcyn) by adding the edge ij whenever
there is a directed path from i to j. Björner and Welker [17] examined intervals
in the resulting poset f(P (DAcyn)); this poset is isomorphic to the poset of
all posets on n elements, the antichain excluded.

15.3 Bipartite Digraphs

Recall that DBn is the complex of digraphs on n vertices with the property
that each vertex has either zero outdegree or zero indegree; if ij belongs to a
given digraph in DBn, then the digraph contains no edge jk starting in j and
no edge ki ending in i.

Theorem 15.7. For n ≥ 1, DBn is V D+(n− 2) and homotopy equivalent to
a sphere of dimension n− 2.

Proof. Let Y = {ni : i ∈ [1, n − 1]}. For each A ⊆ Y , we consider the family
ΣA = DBn(A, Y \ A). First, note that ΣY = {Y }. Namely, by construction,
a digraph in ΣY must not contain any edge starting in a vertex in [1, n− 1],
and all remaining edges have this property.

It remains to prove that ΣA is V D(n−2) and nonevasive whenever A � Y .
First, consider the case A = ∅. Let Z be the set of all edges not containing the
vertex n. For each B ⊆ Z, we want to examine Σ∅(B,Z \B). Let U be the set
of vertices u such that B contains no edge of the form vu. Note that the edge
un is a cone point whenever u ∈ U ; the indegree of u and the outdegree of n
remain zero if un is added. Each connected component of the digraph D on
[1, n−1] with edge set B has at least one element in U ; thus Σ∅(B,Z \B) has
at least c(D) cone points. Since |B| ≥ n−1−c(D), it follows that Σ∅(B,Z\B)
is V D(n− 2) and nonevasive.

Next, assume that A �= ∅. Let T be the set of vertices t such that nt ∈ A
and let Z be the set of edges not containing the vertex n or any vertex from
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T . Let B ⊆ Z and consider ΣA(B,Z \ B). Let W be the set of vertices w
such that B contains no edge of the form vw. Note that the edge wt is a cone
point whenever t ∈ T and w ∈ W ; the indegree of w and the outdegree of t
remain zero if wt is added. Each connected component of the digraph D on
[1, n−1]\T with edge set B has at least one element in W ; thus ΣA(B,Z \B)
has at least |T | ·c(D) cone points. Since |A| = |T | and |B| ≥ n−1−|T |−c(D),
we have that

|A|+ |B|+ |T | · c(D) ≥ n− 1− c(D) + |T | · c(D) ≥ n− 1.

As a consequence, ΣA(B,Z \B) is V D(n− 2), which concludes the proof. �

Theorems 15.3 and 15.7 imply that DBn is homotopy equivalent to the com-
plex DAcyn of acyclic digraphs on n vertices. This is no coincidence. Specifi-
cally, we obtain a collapse from DAcyn to DBn in the following manner. For
each poset P on the set [n], define F(P ) as the family of digraphs D ∈ DAcyn

such that the associated poset P (D) coincides with P ; thus x ≤ y in P if and
only if there is a directed path from x to y in D. It is easy to see that the
Cluster Lemma 4.2 applies. Let P be a poset such that there exists a chain
x < y < z. Then xz is a cone point in F(P ). Hence DAcyn is collapsible to the
union of all F(P ) such that P does not have any chain x < y < z. However,
this union is exactly DBn, and we are done. Restricting to posets with no
chain of edge length above k, one proves the following result in exactly the
same manner.

Theorem 15.8. For n ≥ 1 and 1 ≤ k ≤ n−1, the complex DAcyn,k of acyclic
digraphs with no directed path of edge length k + 1 (i.e., vertex length k + 2)
is homotopy equivalent to a sphere of dimension n− 2. �

Consider the face poset P (DBn). We obtain a closure operator f on
P (DBn) by defining

f(D) = {xy : xz ∈ D for some z and wy ∈ D for some w}.
By Closure Lemma 6.1, the order complex of the resulting poset Qn =
f(P (DBn)) has the same homotopy type as DBn. We may identify a digraph
D in Qn with the pair (X,Y ), where X is the set of vertices in D with at
least one outgoing edge and Y is the set of vertices with at least one ingoing
edge. As it turns out, Qn is the face poset of a certain cell complex. This
complex appears in the work of Babson and Kozlov, who demonstrated that
the complex coincides with the boundary complex of a convex polytope [5,
§4.2]. Note that this yields yet another proof that DBn is homotopy equivalent
to a sphere.

15.4 Graded Digraphs

We consider the complex DGrn,p of digraphs on n vertices that are graded
modulo p.
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Theorem 15.9. For each n ≥ 1 and p ≥ 2, the complex DGrn,p is SPI over
the digraphic matroid M→

n . In particular, DGrn,p is V D+(n − 2) and hence
homotopy equivalent to a wedge of spheres of dimension n− 2.

Remark. Note that DGrn,n+1 = DGrn.

Proof. To prove that DGrn,p is PI, let D be a disconnected digraph in DGrn,p

and let e = uw /∈ D be an edge joining two connected components in D; let
U and W be the vertex sets of these components; u ∈ U and w ∈ W . Let
f : [n]→ [0, p− 1] be a p-grading of D, meaning that (f(b)− f(a)) mod p = 1
whenever ab ∈ D. Since no edges in D have one endpoint in W and another
endpoint in [n] \W , we have, for each integer i, that fi is a p-grading of D,
where

fi(v) =
{

f(v) if v /∈W ;
(f(v) + i) mod p if v ∈W.

In particular, fx is a p-grading of D, where x = 1 + f(u)− f(w). Since

fx(w)− fx(u) ≡ (f(w) + 1 + f(u)− f(w))− f(u) ≡ 1 (mod p),

it follows that D + e ∈ DGrn,p and hence that DGrn,p is PI.
To prove that DGrn,p is SPI, let D ∈ DGrn,p and let e = uw /∈ D be an

edge such that c(D) = c(D + e). Let W be the vertex set of the connected
component containing e. Let f be a p-grading of D. One readily verifies that
if g is another p-grading of D, then (g(x)− f(x)) mod p is constant on W . As
a consequence, e is a cone point in lkDGrn,p(D) if (f(w)−f(u)) mod p = 1 and
not present in lkDGrn,p

(D) if (f(w) − f(u)) mod p �= 1. Thus DGrn,p is SPI,
which concludes the proof. �

Say that a subset X of [p] is sparse modulo p if, whenever x belongs to X, the
two elements (x− 1) mod p and (x + 1) mod p do not belong to X.

Theorem 15.10. For n ≥ 1 and p ≥ 2, let an,p be the number of functions
f : [n]→ [0, p− 1] such that f([n]) is sparse modulo p. Then

Bp(x) :=
∑
n≥1

χ̃(DGrn,p)
xn

n!
= 1− (1 + Ap(x))1/p,

where Ap(x) =
∑

n≥1 an,px
n/n!.

Proof. Consider the sum

Hp(x) =
∑
n≥1

xn

n!

∑
f :[n]→[0,p−1]

∑
D∼f

(−1)|D|+1; (15.1)

D ∼ f means that f is a p-grading of D and |D| is the number of edges
in D. If f is not sparse, then there are vertices x and y satisfying f(y) ≡
f(x) + 1 (mod p). In particular, (D + xy) ∼ f if and only if (D − xy) ∼
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f . As a consequence,
∑

D∼f (−1)|D|+1 equals zero in this case. If f([n]) is
sparse modulo p, then D ∼ f if and only if D is empty, which implies that∑

D∼f (−1)|D|+1 = −1. We conclude that Hp(x) = −Ap(x).
Now, a digraph D ∈ DGrn,p with c connected components appears exactly

pc times in the sum (15.1). Namely, let U be a vertex set of size c with one
element from each component in D. Then the restriction of f to U uniquely
determines the entire function f . Conversely, we may extend any function
U → [0, p− 1] to a p-grading of D. It follows that

−Ap(x) = Hp(x) =
∑
n≥1

xn

n!

∑
D∈DGrn,p

(−1)|D|+1pc(D) = 1− (1−Bp(x))p,

where the last equality is a consequence of Corollary 6.15. �

Theorem 15.11. With notation as in Theorem 15.10, we have that

∑
p≥2

Ap(x)yp =
y + 2(ex − 1)y2

1− y − (ex − 1)y2
− y

1− y
.

As a consequence,

Ap(x) =
(2(ex − 1) + β)βp−1 − (2(ex − 1) + α)αp−1

√
4ex − 3

− 1, (15.2)

where α = 1−
√

4ex−3
2 and β = 1+

√
4ex−3
2 are the two roots of the quadratic

polynomial u2 − u = ex − 1.

Remark. Equivalently, we have that

∑
p≥2

Ap(x)
ex − 1

· yp =
y2(2− y)

(1− y − (ex − 1)y2)(1− y)
. (15.3)

Proof. By a simple inclusion-exclusion argument, we obtain that the number
an,p satisfies the identity

an,p =
∑
X

|X|∑
i=0

(−1)i

(|X|
i

)
(|X| − i)n =

p∑
k=0

cp,k

k∑
i=0

(−1)i

(
k

i

)
(k − i)n,

where the first sum is over all sparse subsets X ⊆ [0, p − 1] and cp,k is the
number of such subsets of size k. We obtain that

Ap(x) =
p∑

k=0

cp,k

k∑
i=0

(−1)i

(
k

i

)
(e(k−i)x − 1)

= −1 +
p∑

k=0

cp,k(ex − 1)k = −1 + Cp(ex − 1), (15.4)
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where Cp(t) =
∑p

k=0 cp,ktk. It is easy to prove that cp,k = cp−1,k +cp−2,k−1 for
p ≥ 3. As a consequence, defining C = C(t, y) =

∑
p≥1 Cp(y)tp, we conclude

that

C − y − y2(1 + 2t) = (C − y)y + Cty2 ⇐⇒ C =
y + 2ty2

1− y − ty2
.

Combining this with (15.4), we obtain the first statement of the theorem.
The second statement of the theorem is a straightforward consequence of

the first. �

Table 15.1. The function Ap(x)/(ex − 1) in (15.3) for small values on p.

p Ap(x)/(ex − 1)

2 2

3 3

4 2ex + 2

5 5ex

6 2e2x + 5ex − 1

7 7e2x

8 2e3x + 10e2x − 6ex + 2

9 9e3x + 3e2x − 6ex + 3

10 2e4x + 17e3x − 13e2x + 2ex + 2

In Table 15.1, we provide a closed formula for Ap(x)/(ex − 1) for p ≤ 10.
We now proceed with the problem of determining the Euler characteristic

of DGrn.

Theorem 15.12. We have that H(x) :=
∑
n≥1

χ̃(DGrn)
xn

n!
=

1−
√

4ex − 3
2

.

Proof. Since DGrn = DGrn,p whenever p > n, it is clear that

H(x) = lim
p→∞

Bp(x)

coefficient-wise, where Bp(x) is defined as in Theorem 15.10. Let notation be
as in Theorem 15.11. A close examination of (15.2) yields that we may find a
neighborhood U of the origin such that (1+Ap(x))1/p converges uniformly to
β = 1+

√
4ex−3
2 for all x ∈ U . Namely, choosing the neighborhood sufficiently

small, we have that |α/β| < δ for some fixed δ < 1 for all x in this region. Since
the convergence is uniform, the MacLaurin expansion of the limit coincides
with the coefficient-wise limit; hence Theorem 15.10 implies that H(x) is equal
to 1− β = α = 1−

√
4ex−3
2 . �
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For a different proof of Theorem 15.12, see the author’s thesis [71].

Remark. |χ̃(DGrn)| is the number of semiorders on n elements with a connected
incomparability graph; see sequence A048287 in Sloane’s Encyclopedia [127].

15.5 Digraphs with No Non-alternating Circuits

We proceed with the complex DOACn of digraphs on n vertices with no non-
alternating circuits.

Theorem 15.13. For each n ≥ 1, the complex DOACn is SPI over the di-
graphic matroid M→

n . In particular, DOACn is V D+(n− 2) and hence homo-
topy equivalent to a wedge of spheres of dimension n− 2.

Proof. Let Ωn be the set of edges in the complete digraph K→
n . Define ϕ :

Ωn → Zn
2 by ϕ(pq) = ep + eq; ep is the pth unit vector in Zn

2 . This is clearly a
representation of the matroid M→

n . Define ψ : Ωn → Z2n
2 by ψ(pq) = ep+eq+n.

With notation as in Section 13.3.1, we want to prove that DOACn = BM→
n ,ϕ,ψ;

by Theorem 13.21, this will yield the desired result. By Corollary 13.22, we
need only prove that the alternating circuits are exactly those circuits that
belong to BM→

n ,ϕ,ψ. Now, every vertex incident to some edge in a circuit is
incident to exactly two edges. This means that a circuit {a1, . . . , ar} satisfies∑

ψ(ai) = 0 if and only if each relevant vertex is either the tail of two edges
or the head of two edges in the circuit. This means exactly that the circuit is
alternating. �

Problem 15.14. Compute the Euler characteristic of DOACn.

15.6 Digraphs Without Odd Directed Cycles

We examine the complex DNOCyn of digraphs on n vertices without directed
cycles of odd length. One readily verifies that if a digraph contains a directed
cycle of odd length, then there is a simple directed cycle of odd length. We
may hence define DNOCyn as the complex of digraphs avoiding simple directed
cycles of odd length.

Theorem 15.15. For n ≥ 1, DNOCyn ∼ cnt2n−3, where cn = |χ̃(Bn)|. In
particular, DNOCyn is homotopy equivalent to a wedge of cn spheres of di-
mension 2n− 3, and

∑
n≥1

cn
xn

n!
= −

√
2e−x − 1 + 1.
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Proof. One easily checks the theorem for n ∈ {1, 2}; thus assume that n ≥ 3.
Let Y = {in, ni : i ∈ [2, n − 1]}. For each A ⊆ Y , we consider the family
ΣA = DNOCyn(A, Y \ A). Let A+ be the set of vertices i such that ni ∈ A
and in /∈ A. Let A− be the set of vertices i such that in ∈ A and ni /∈ A. Let
A± be the set of vertices i such that in, ni ∈ A.

We have a number of cases:

• A = ∅. We have that 1n and n1 are cone points in Σ∅; n has no other
neighbors than 1, which means that 1n and n1 cannot be contained in any
simple directed cycle of odd length.

• A− = A± = ∅ and A+ �= ∅. Decompose ΣA with respect to 1n.
– We have that n1 is a cone point in ΣA(∅, 1n); no directed cycles contain

the vertex n, as there are no edges ending in n.
– Consider ΣA(1n, ∅) and let i be a vertex in A+; thus ni ∈ A. Let

Z = {ij : j ∈ [n− 1] \ {i}}. For B ⊆ Z such that B �= ∅, let j be such
that ij ∈ B. If i1 ∈ B, then ΣA(B + 1n,Z \ B) is void; (1, n, i) forms
an odd directed cycle. In particular, we may assume that j �= 1. We
claim that 1j is a cone point in ΣA(B +1n,Z \B). Namely, if the path
(1, j) is part of an odd directed cycle, then so is the path (1, n, i, j). We
refer to this property as the 4-vertex property : Given a directed graph
in DNOCyn containing a simple directed path (a, b, c, d), we may add
the edge ad without introducing odd directed cycles.
The remaining case is B = ∅. Digraphs in ΣA(1n,Z) have the property
that there are no edges starting in i. In particular, no cycles contain i,
which immediately implies that 1i is a cone point.

• A+ = A± = ∅ and A− �= ∅. By symmetry, this case is analogous to the
previous case.

• A+ �= ∅ and A− ∪A± �= ∅. Let i ∈ A+ and let Z = {ij : j ∈ [n− 1] \ {i}}.
Let j be a vertex such that jn ∈ A. For B ⊆ Z such that B �= ∅, we have
that ΣA(B,Z \ B) is a cone by the 4-vertex property. Namely, we obtain
the path (j, n, i, r), where ir ∈ B. For B = ∅, there are no edges starting
in i, which implies that 1i is a cone point in ΣA(∅, Z).

• A− �= ∅ and A+ ∪ A± �= ∅. Again by symmetry, this case is analogous to
the previous case.

• A± �= ∅ and A− = A+ = ∅. Pick some j ∈ A± and let Z be the set of
edges containing some vertex in A± \{j}, already checked edges excluded.
If B �= ∅, then ΣA(B,Z \ B) is void or a cone by the 4-vertex property.
Namely, suppose that ir ∈ B for some i ∈ A± and r �= i, j, n. Then
(j, n, i, r) is a directed path, and jr remains to be checked. Analogously,
if ri ∈ B, then (r, i, n, j) is a directed path.
The remaining case is B = ∅. The edges remaining to be checked are
exactly all edges between vertices in [n − 1] \ (A± \ {j}) and the two
edges 1n and n1. Decompose with respect to 1n and n1. There are four
subfamilies of ΣA(∅, Z) to consider:



15.6 Digraphs Without Odd Directed Cycles 215

– ΣA(1n,Z +n1). Let W be the set of edges ending in 1, already checked
edges excluded. For C ⊆ W such that C �= ∅, we have that ΣA(C +
1n, (Z +n1)∪ (W \C)) is a cone by the 4-vertex property; rj is a cone
point whenever r satisfies r1 ∈ C. For C = ∅, there are no edges ending
in 1, which implies that 1j is a cone point in ΣA(1n, (Z + n1) ∪W ).

– ΣA(n1, Z + 1n). By symmetry, this case is analogous to the previous
case.

– ΣA(∅, Z ∪ {1n, n1}). We have that j is a cut point separating (A± \
{j}) ∪ {n} from [n − 1] \ A±. Moreover, the edges remaining to be
checked are exactly all edges between vertices in [n−1]\ (A± \{j}). As
a consequence, ΣA(∅, Z ∪ {1n, n1}) is isomorphic to {A} ∗DNOCyn−a,
where a = |A|/2 = |A±|. By induction on n, we obtain that

ΣA(∅, Z ∪ {1n, n1}) ∼ cn−at|A|+2(n−a)−3 = cn−at2n−3,

where ck = |χ̃(Bk)|.
– ΣA({1n, n1}, Z). Let W be the set of edges starting or ending in 1,

already checked edges excluded. If C ⊆W is nonempty, then the family
ΣA({1n, n1} ∪ C,Z ∪ (W \ C)) is a cone. For example, if C contains
an edge 1r such that j �= r, then jr is a cone point by the 4-vertex
property; (j, n, 1, r) is a simple path. The remaining case is C = ∅.
We have that j is a cut point in every digraph in ΣA({1n, n1}, Z ∪W )
separating (A±\{j})∪{1, n} from [2, n−1]\A±. The conclusion is that
ΣA({1n, n1}, Z ∪W ) is isomorphic to {A} ∗ {1n, n1} ∗ DNOCyn−a−1,
where again a = |A|/2 = |A±|. By induction on n, we obtain that

ΣA({1n, n1}, Z ∪W ) ∼ cn−a−1t
|A|+2+2(n−a−1)−3 = cn−a−1t

2n−3.

Note that there are
(
n−2

a

)
sets A± ⊆ [2, n−1] such that |A±| = a. Applying

Lemma 5.22, we thus obtain that DNOCyn ∼ c′nt2n−3, where

c′n =
n−2∑
a=1

(
n− 2

a

)
(cn−a + cn−a−1) =

n−1∑
b=2

(
n− 2
b− 2

)
(cb + cb−1).

This is exactly (14.2), which implies that c′n = cn by Proposition 14.3. �

Conjecture 15.16. DNOCyn is V D(2n−3) or at least has a Cohen-Macaulay
(2n− 3)-skeleton.
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Noncrossing Graphs

Recall that the associahedron An is the complex of graphs on the vertex set
[n] without crossings and boundary edges. The associahedron was introduced
by Stasheff [136]. We discuss the associahedron and some related dihedral
properties, all defined in terms of crossing avoidance.

13 35

14 25

24
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46

1335

1425

24

15

Fig. 16.1. Geometric realization of the two-dimensional sphere A6 with the front
of the sphere to the left and the back of the sphere to the right.

In Section 16.1, we provide an overview of the basic topological properties
of An, the main property being that An is the boundary complex of a convex
polytope of dimension n − 3; see Haiman [57] or Lee [90]. In particular, An

is a shellable sphere. See Figure 16.1 for the case n = 6. We also provide a
simple argument that An is semi-nonevasive.

In Section 16.2, we consider a certain well-known shelling of the n-fold
cone NXn over An with respect to Bdn = {12, 23, . . . , (n − 1)n, 1n}. This
shelling has the attractive property that every minimal face of the shelling
is a forest. We use this shelling to compute the homotopy type of certain
dihedral subcomplexes of NXn. The most important example is the complex
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NXFn of noncrossing forests discussed below. We also show how to collapse
certain dihedral complexes to their subcomplexes of noncrossing graphs. The
crucial condition to be satisfied is that if a face contains a 2-crossing {ac, bd},
then we may add the edges ab, bc, cd, and da and remain inside the complex.
We use this result in Chapter 21 to compute the homotopy type of the com-
plexes NCR0,0

n and NCR1,0
n of graphs with a disconnected or separable polygon

representation.
In Section 16.3, we analyze the complex NXMn = Mn∩NXn of noncrossing

matchings. We show that NXMn is V D(
⌈

n−4
3

⌉
) and that this bound on the

depth is sharp. In fact, NXMn is semi-nonevasive and has homology in dimen-
sion d if and only if

⌈
n−4

3

⌉
≤ d ≤

⌊
2n−5

5

⌉
. As a consequence, the depth of

NXMn coincides with that of the full matching complex Mn; see Section 11.2.
We also give a formula for the Euler characteristic.

In Section 16.4, we examine the complex NXFn = Fn∩NXn of noncrossing
forests on the vertex set [n]. NXFn inherits all nice topological properties from
the full complex Fn of forests (see Section 13.1), except that NXFn is not a
matroid complex.

In Section 16.5, we consider the complex NXBn = Bn ∩ NXn of noncross-
ing bipartite graphs. Using properties of the associahedron established in Sec-
tion 16.2, we prove that NXBn is homotopy equivalent to a wedge of spheres
of dimension n−2 and has a vertex-decomposable (n−2)-skeleton. The Euler
characteristic of NXBn turns out to be the nth Fine number [44]. We also show
that the subcomplex Bn,p ∩NXn of noncrossing bipartite graphs with balance
number at most p has a vertex-decomposable (2p− 1)-skeleton.

16.1 The Associahedron

We may identify the maximal faces of the associahedron An with triangula-
tions of the n-gon (the boundary edges excluded). The number of such trian-
gulations equals Cn−2, where

Cm =
1

m + 1

(
2m

m

)
; (16.1)

Cm is the mth Catalan number. For a few different proofs of this fact, see
Lovász [96, Ex. 1.38-40]. For an extensive list of other objects counted by
Catalan numbers, see Stanley [134, 135].

The most important topological result about An is as follows.

Theorem 16.1 (Haiman [57], Lee [90]). For n ≥ 3, the associahedron An

coincides with the boundary complex of an (n − 3)-dimensional polytope and
is hence shellable and homeomorphic to a sphere of dimension n− 4. �
See Haiman [57], Lee [90], and Ziegler [152, Ex. 0.10 and 9.11] for further
discussion and references.

Proving that An is homotopy equivalent to a sphere is not difficult:
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Proposition 16.2. For n ≥ 3, An ∼ tn−4. In particular, An has the homotopy
type of a sphere of dimension n− 4.

Proof. Let E1 = {1i : i ∈ [3, n − 1]} and consider the family An(Y,E1 \ Y )
for each Y ⊆ E1. First, assume that Y �= E1. Let x1 ≥ 2 be minimal such
that 1(x1 + 1) /∈ Y . Such an x1 ≤ n − 2 exists, as Y �= E1. Let x2 ≥ x1 + 2
be minimal such that 1x2 ∈ Y or x2 = n. Then x1x2 is a cone point in
An(Y,E1 \ Y ). Namely, x1x2 ∈ Intn, because 2 ≤ x2 − x1 ≤ n− 2. Moreover,
any edge crossing x1x2 contains the vertex 1 or crosses either 1x1 or 1x2. The
remaining family is An(E1, ∅), which contains the single graph with edge set
E1; every edge in Intn − E1 crosses some edge in E1. Since |E1| = n − 3, we
are done by Lemma 5.22. �

There are many proposed generalizations and variants of the associahedron
in the literature:

• Kapranov’s permutoassociahedron [79]; see also Reiner and Ziegler [112].
• The cyclohedron and its relatives; see Bott and Taubes [20], Simion [125],

Markl [99], and Fomin et al. [47, 29].
• Complexes of “p-divisble” polygon dissections; see Przytycki and Sikora

[109] and Tzanaki [140].
• Complexes of graphs avoiding (k + 1)-sets of mutually crossing edges; see

Capoyleas and Pach [27], Nakamigawa [102], and Dress et al. [38, 39, 40]

16.2 A Shelling of the Associahedron

To facilitate analysis of many of the dihedral complexes to be studied in this
paper, we will make use of a specific shelling of An due to Lee [90]. This
shelling turns out to be a V D-shelling (see Section 6.3) with certain quite
nice properties. Recall that NXn is the complex of all noncrossing graphs on
[n]; NXn is the n-fold cone over An with respect to Bdn.

Theorem 16.3. For each n ≥ 3, An admits a V D-shelling such that each
minimal face G in the shelling has the property that G is a forest and hence
cycle-free. Equivalently, the n-fold cone NXn over An has the same property.

Proof. Given a triangulation T of the n-gon, every interior edge e is a diagonal
in the quadrilateral obtained by removing e from T ; let e′ be the other diagonal
in the same quadrilateral. Aligning with Lee [90], refer to an interior edge e
in T as red if e is smaller than e′, the edges ordered lexicographically; refer
to e as green if e is larger than e′.1 All boundary edges are referred to as
green. For a given triangulation T , let R(T ) be the set of red edges in T . We
want to present a vertex decomposition such that the corresponding shelling
(∅ = ∆0, . . . , ∆r = An) has the following property:

1 Actually, Lee labeled the edges the other way around.
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(i) For each i ∈ [1, r], we obtain the minimal face σi of ∆i \∆i−1 from the
maximal face τi of ∆i \∆i−1 by removing all green edges (including the
boundary edges); thus σi = R(τi).

First, we prove that such a shelling has the desired property. Consider a cycle
C in a maximal face τi, and let e be the edge joining the two largest vertices
v and w in C. The edge e is either a boundary edge or a diagonal in a certain
quadrilateral Q in τi. In the former case, e is clearly not part of σi; hence
assume the latter case. Since τi is crossing-free, one of the two vertices joined
by the other diagonal e′ in Q belongs to C. However, this endpoint must
then be strictly smaller than v and w, which implies that e′ is smaller than
e and hence that e is green in τi. It follows that C is not contained in the
corresponding minimal nonface σi.

For i ∈ [3, n− 1], define

Σi = An(1i, {1j : j ∈ [3, i− 1]}).

In addition, let Σn = ∆(∅, {1j : j ∈ [3, n − 1]}). In any triangulation, edges
with one endpoint in 1 will always be red; hence the given decomposition does
not violate the desired condition (i).

First, consider Σn. It is clear that 2n is a cone point, as no edges except the
removed ones cross this edge. Also, in any triangulation in Σn, 2n is a green
edge, as the other diagonal in the corresponding quadrilateral must contain the
vertex 1. For any set S ⊆ [n], define NXS as the induced subcomplex of NXS

on the set
(
S
2

)
; define AS as the induced subcomplex obtained from NXS by

removing the boundary edges in the convex polygon spanned by the vertices in
S. Study the (n−1)-gon with vertex set [2, n] and the corresponding complex
A[2,n]. By induction on n, there is a vertex decomposition of A[2,n] satisfying
(i). Since Σn is a cone over A[2,n] with cone point 2n, we easily translate the
given decomposition of A[2,n] into a decomposition of Σn satisfying (i).

Next, consider Σi for i ≤ n − 1. Note that 2i is a cone point in Σi and
clearly green in any triangulation in Σi. This time, we are interested in the
two polygons on the vertex sets [2, i] and [i, 1] = {1} ∪ [i, n], respectively. By
induction, each of A[2,i] and A[i,1] admits a vertex decomposition satisfying
(i). Now, we have that Σi is a cone over the join {1i} ∗A[2,i] ∗A[i,1] with cone
point 2i for i �= 3 and that Σ3 = {13} ∗ A[3,1]. In particular, we obtain a
decomposition of Σi satisfying (i) by first applying the given decomposition
of A[2,i] and then applying the given decomposition of A[i,1]. �

Corollary 16.4. Let Σ be a subcomplex of NXn. Let d be a fixed integer.

(i) If Σ(σ, Intn\τ) is void or shellable (V D-shellable) of dimension d for each
cycle-free and noncrossing set σ of interior edges and each triangulation
τ of the n-gon containing σ, then so is Σ. Analogously, if Σ(σ, Intn \ τ)
is V D(d) for each σ and τ as above, then so is Σ.
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(ii) If Σ(σ, Intn \ τ) admits an acyclic matching (decision tree) with all crit-
ical (evasive) sets of the same dimension d for each cycle-free and non-
crossing set σ of interior edges and each triangulation τ of the n-gon
containing σ, then so does Σ.

Proof. The shelling pairs (σ, τ) with respect to the V D-shelling in Theorem
16.3 satisfy the conditions in the corollary. Thus the corollary follows from
Lemma 6.12. �

Corollary 16.5. Let M be a matroid on the edge set of Kn such that each
triangulation of the n-gon has full rank r. If ∆ is a PI complex over M (see
Section 13.2), then ∆ ∩ NXn is VD(r − 1). If ∆ is an SPI complex over M
(see Section 13.3), then ∆ ∩ NXn is VD+(r − 1).

Proof. For each cycle-free and noncrossing set σ of interior edges and each
triangulation τ of the n-gon containing σ, we have that (∆∩NXn)(σ, Intn\τ) =
∆(σ, Intn \ τ). Using Theorem 13.5 and the fact that pseudo-independence
is closed under taking links and deletions, we obtain that ∆(σ, Intn \ τ) is
VD(r− 1). By Corollary 16.4 (i), it follows that ∆∩NXn is VD(r− 1). If ∆ is
an SPI complex, then Theorem 13.10 implies that ∆(σ, Intn\τ) is VD+(r−1).
As a consequence, ∆ ∩ NXn is VD+(r − 1) by Corollary 16.4 (i)-(ii). �

Given that certain conditions are satisfied, we may collapse a complex con-
taining graphs with crossing edges to its subcomplex of noncrossing graphs:

Theorem 16.6. Let Σ be a simplicial complex on [n]. Suppose that whenever
a face σ ∈ Σ contains two crossing edges ac and bd, the face σ∪{ab, bc, cd, ad}
belongs to Σ. Then Σ admits a collapse to Σ ∩ NXn.

Proof. We define a perfect acyclic matching on Σ \ NXn as follows. Define a
linear order ≤L on the edges in

(
[n]
2

)
in the following manner: An edge ij such

that i < j is smaller than an edge kl such that k < l if j < l or if j = l and
i > k. For a given graph G ∈ Σ \NXn, let e(G) = uv be maximal with respect
to this order such that there are crossing edges xu and vy in G satisfying
x < y < u < v. For e ∈

(
[n]
2

)
, let F(e) be the family of graphs G ∈ Σ \ NXn

such that e(G) = e. We obtain a poset map Σ \NXn → (
(
[n]
2

)
,≤L) by sending

a graph in F(e) to the edge e. Namely, if we add edges to a graph G, then e(G)
cannot decrease. As a consequence, we may apply the Cluster Lemma 4.2 to
the families F(e).

Let e = uv with u < v and let G ∈ F(e). Let x and y be such that
xu, yv ∈ G and x < y < u < v. We claim that e(G + uv) = uv. Namely,
otherwise we must have an edge rs ∈ G with r < s such that rs and uv cross
and such that sv >L uv. If r < u < s < v, then sv <L uv. If u < r < v < s,
then yv and rs cross, which implies that e(G) ≥L vs >L uv. In both cases,
we obtain a contradiction. As a consequence, it follows that e(G + uv) = uv.
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Now, by assumption, we have that G + e(G) ∈ Σ whenever G ∈ Σ. In
addition, we have just demonstrated that e(G) = e(G+e(G)). In particular, e
is a cone point in the family F(e). By the Cluster Lemma 4.2, it follows that
Σ \NXn admits a perfect acyclic matching and hence that we have a collapse
from Σ to Σ ∩ NXn. �

The generic example of a complex as in Theorem 16.6 is the complex of
graphs with a separable polygon representation; see Section 21.3. Another
example is the complex of graphs with a disconnected polygon representation;
see Section 21.2.

16.3 Noncrossing Matchings

We discuss the complex NXMn of noncrossing matchings on n vertices. It is
well-known [134] that the number of perfect noncrossing matchings on 2m
vertices is equal to the Catalan number Cm = 1

m+1

(
2m
m

)
.

First, we consider the homology and depth of NXMn. By convention, we
define NXM0 = {∅}. For 0 ≤ k ≤ n, define NXMn,k = delNXMn

(Int∗k), where
Int∗k is the set of edges ij such that i ≥ 1 and i + 2 ≤ j ≤ k; Int∗k = ∅ for
k ≤ 2 and Int∗k = Intk + 1k for k ≥ 3. Note that NXMn,k = NXMn whenever
0 ≤ k ≤ 2.

Theorem 16.7. For 0 ≤ k ≤ n, we have that NXMn,k is VD(νn), where
νn =

⌈
n−4

3

⌉
.

Proof. We use double induction on n and n − k. The case n ≤ 3 is easy to
check by hand. Assume that n ≥ 4.

The base case is that k = n; we have that NXMn,n is the induced subcom-
plex on the set {i(i + 1) : i ∈ [n − 1]}. This is the edge set of the graph Pan

discussed in Section 11.4; hence NXMn,n coincides with M(Pan). By Proposi-
tion 11.42, NXMn,n is V D(νn).

Now, assume that k < n. Decompose NXMn,k with respect to the 0-cells
that are contained in NXMn,k but not in NXMn,k+1; these 0-cells are the edges
i(k + 1) for i ∈ [k − 1]. Since at most one of these edges can be present in a
matching, the order in which we decompose NXMn,k is irrelevant. Note that
the deletion of NXMn,k with respect to {i(k + 1) : i ∈ [k − 1]} is exactly
NXMn,k+1, which is V D(νn) by induction on n− k.

It remains to consider the link with respect to i(k + 1) for each i ∈ [k −
1]. The edge i(k + 1) divides the vertex set into the two intervals [i + 1, k]
and [k + 2, i − 1]. Since there are no edges between those two intervals in
a noncrossing matching containing i(k + 1), we have that lkNXMn,k

(i(k + 1))
is a join of two complexes. The first complex is isomorphic to M(Pak−i) =
NXMk−i,k−i. Namely, the only remaining edges in [i + 1, k] are the boundary
edges. The second complex is isomorphic to NXMn−k+i−2,i−1. Namely, all
edges in [k+2, i−1] remain to be checked except for the ones between vertices
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in [i − 1] on distance at least two. By induction, lkNXMn,k
(i(k + 1)) is hence

V D(γ), where

γ = νk−i + νn−k+i−2 ≥
k − i− 4

3
+

n− k + i− 6
3

+ 1

=
n− 4

3
− 1. (16.2)

Since the last expression rounded up is equal to νn− 1, the conclusion is that
lkNXMn,k

(i(k + 1)) is V D(νn − 1).
By induction, we obtain that NXMn,k is V D(νn). �

One may view Theorem 16.7 as a dihedral analogue of Athanasiadis’ Theo-
rem 11.7. Indeed, the vertex decomposition of NXMn in the proof is inspired
by Athanasiadis’ decomposition [2] of HMk

n.

Theorem 16.8. For 0 ≤ k < n, we have that NXMn,k is semi-nonevasive. In
fact, H̃d(NXMn,k; Z) is isomorphic to the group

H̃d(NXMn,k+1; Z)⊕
⊕

i

H̃d−νi−2(NXMn−i−2,k−i−1; Z),

where the direct sum is over all i ∈ [1, k − 1] such that i mod 3 ∈ {0, 1}.

Proof. By Corollary 5.10, it suffices to prove that NXMn,k is semi-nonevasive
over Q. First note that NXMn,n = M(Pan) is semi-nonevasive by Propo-
sition 11.42. For k < n, observe that the vertex decomposition in the
proof of Theorem 16.7 partitions NXMn,k into the subfamilies NXMn,k+1 and
{i(k + 1)} ∗ lkNXMn,k

(i(k + 1)) for 1 ≤ i ≤ k + 1. By the same proof,

lkNXMn,k
(i(k + 1)) = M(Pa[i+1,k]) ∗ Λn,k,i,

where Pa[i+1,k] is the graph with edge set {j(j + 1) : j ∈ [i + 1, k − 1]}
and Λn,k,i

∼= NXMn−k+i−2,i−1 is a graph complex defined on the vertex set
[1, i− 1] ∪ [k + 2, n]. Note that

H̃d(NXMn,k/NXMn,k+1; Q) (16.3)

∼=
k−1⊕
i=1

[i(k + 1)]⊗ H̃νk−i
(M(Pa[i+1,k]); Q)⊗ H̃d−νk−i−2(Λn,k,i; Q);

apply Corollary 4.23 and use the fact that M(Par) has homology only in
dimension νr.

To settle semi-nonevasiveness over Q, it suffices to show that the natural
map fi : H̃νk−i

(M(Pa[i+1,k]); Q)⊗H̃d−νk−i−2(Λn,k,i; Q)→ H̃d−1(NXMn,k+1; Q)
is zero for each i. Namely, this will imply that the exact sequence over Q for
the pair (NXMn,k,NXMn,k+1) has the property that the natural map
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f : H̃d(NXMn,k/NXMn,k+1; Q)→ H̃d−1(NXMn,k+1; Q)

is zero. By (16.3), an induction argument yields the desired result.
Noting that the complex M(Pa[i,k+1]) ∗ Λn,k,i is contained in NXMn,k+1

and contains M(Pa[i+1,k]) ∗ Λn,k,i, we may decompose fi as

H̃νk−i
(M(Pa[i+1,k]); Q)⊗ H̃d−νk−i−2(Λn,k,i; Q)⏐⏐ 

H̃νk−i
(M(Pa[i,k+1]); Q)⊗ H̃d−νk−i−2(Λn,k,i; Q)⏐⏐ 

H̃d−1(NXMn,k+1; Q).

Since H̃νk−i
(M(Pa[i,k+1]); Q) ∼= H̃νk−i

(M(Pak−i+2); Q) = 0 for all k − i by
Proposition 11.42, it follows that f is indeed zero.

The final statement in the theorem is an immediate consequence of (16.3),
Proposition 11.42, and Corollary 5.10. �

Theorem 16.9. For n ≥ 1, NXMn has homology in dimension d if and only
if ⌈

n− 4
3

⌉
≤ d ≤

⌊
2n− 5

5

⌋
⇐⇒

⌈
5d + 5

2

⌉
≤ n ≤ 3d + 4.

Remark. Note that the upper bound
⌊

2n−5
5

⌋
is significantly less than the nearly

trivial upper bound
⌊

n−3
2

⌋
for Mn (which is best possible by Theorem 11.12).

Proof. First, we show that there is indeed homology in the given dimen-
sions. This is clear if n ≤ 4; thus assume that n ≥ 5. Iterating the ho-
mology formula in Theorem 16.8 for increasing values of k, starting with
k = 2, we deduce that H̃d(NXMn; Z) = H̃d(NXMn,2; Z) is nonzero whenever
H̃d−νi−2(NXMn−i−2,k−i−1; Z) is nonzero for some 1 ≤ i < k < n such that
i mod 3 ∈ {0, 1}. We may hence conclude the following:

• For i = 1 and k = 2, we obtain d − νi − 2 = d − 1 and (n − i − 2, k −
i− 1) = (n − 3, 0). By induction, H̃d−1(NXMn−3; Z) is nonzero whenever
5(d−1)+5

2 ≤ n−3 ≤ 3(d−1)+4, which implies that H̃d(NXMn; Z) is nonzero
whenever 5d+6

2 ≤ n ≤ 3d + 4.
• For i = 3 and k = 4, we obtain d − νi − 2 = d − 2 and (n − i − 2, k −

i− 1) = (n − 5, 0). By induction, H̃d−2(NXMn−5; Z) is nonzero whenever
5(d−2)+5

2 ≤ n−5 ≤ 3(d−2)+4, which implies that H̃d(NXMn; Z) is nonzero
whenever 5d+5

2 ≤ n ≤ 3d + 3.

It remains to prove that there is no homology in NXMn above dimension
βn =

⌊
2n−5

5

⌋
. We show that this is true for NXMn,k for all k. To achieve this,
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we again use the homology formula in Theorem 16.8 combined with induction
on n and n− k.

For k = n, we obtain M(Pan), which has homology only in dimension νn

by Proposition 11.42. One easily checks that νn ≤ βn for all n except n = 2,
in which case M(Pan) is collapsible.

For k < n, we need to show that 2n ≥ 5d+5 whenever the homology group
H̃d−νi−2(NXMn−i−2,k−i−1; Z) is nonzero and i mod 3 ∈ {0, 1}. By induction,
2(n− i− 2) ≥ 5(d− νi − 2) + 5. This yields that

0 ≤ 2(n− i− 2)− 5((d− νi − 2) + 1) = 2n− 5(d + 1) + 5νi − 2i + 6.

Defining ε = i mod 3, we obtain that

5νi − 2i + 6 =
5(i− 3− ε)

3
− 2i + 6 =

−i + 3− 5ε

3
≤ 0

for all relevant i, which concludes the proof. �

Corollary 16.10. For n ≥ 1, the homotopical depth of NXMn is
⌈

n−4
3

⌉
. �

Computational evidence suggests the following conjecture:

Conjecture 16.11. For each k ≥ 0, we have that the rank of the homology
group H̃k−1(NXM3k+1; Z) is 1

k+1

(
4k+2

k

)
= 1

3k+2

(
4k+2
k+1

)
.

Table 16.1. Euler characteristic of NXMn for small n.

n = 1 2 3 4 5 6 7 8 9 10 11 12

χ̃(NXMn) −1 0 2 3 −1 −11 −15 13 77 86 −144 −595

Finally, we compute the exponential generating function for the Euler
characteristic of NXMn; see Table 16.1 for the first few values.

Theorem 16.12. Adopting the convention that NXM0 = {∅}, the Euler char-
acteristic of NXMn satisfies

F (x) :=
∑
n≥0

χ̃(NXMn)xn =
1− x−

√
1− 2x + 5x2

2x2
.

Proof. It is easy to see that

NXMn = NXMn−1 ∪
n−1⋃
i=1

NXMn({in}, ∅); (16.4)
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for any G ∈ NXMn, the vertex n is adjacent to at most one other vertex.
Moreover, the edge in divides the vertex set into the two intervals [1, i − 1]
and [i + 1, n− 1]. In particular,

lkNXMn
(in) ∼= NXMi−1 ∗ NXMn−i−1.

With ak = χ̃(NXMk), this implies that

χ̃(lkNXMn(in)) = −ai−1an−i−1. (16.5)

Combining (16.4) and (16.5), we obtain that

an = an−1 +
n−1∑
i=1

ai−1an−i−1;

here, we use the fact that χ̃(NXMn({in}, ∅)) = −χ̃(lkNXMn
(in)). Summing

over n, we get

F (x) + 1 =
∑
n≥1

anxn =
∑
n≥1

an−1x
n +

∑
n≥1

n−1∑
i=1

ai−1an−i−1x
n

= xF (x) + x2F 2(x),

and we are done. �

16.4 Noncrossing Forests

We discuss the complex NXFn of noncrossing forests on the vertex set [n].
The number of noncrossing spanning trees is known to be 1

2n−1

(
3(n−1)

n−1

)
[41,

45, 104].

Table 16.2. Absolute value of the Euler characteristic of NXFn for small n.

n = 1 2 3 4 5 6 7 8 9 10 11

|χ̃(NXFn)| 1 0 1 3 11 43 176 745 3235 14331 64516

Before stating our main result about NXFn, we introduce some notation.
A noncrossing cycle is interior if all edges in the cycle belong to Intn and
non-interior otherwise. In a subdivision of the n-gon into regions, a region is
interior if the cycle forming its boundary is interior and non-interior other-
wise.

Theorem 16.13. For n ≥ 1, NXFn is V D and has the homotopy type of
a wedge of τn spheres of dimension n − 2, where τn is the number of dis-
sections of the n-gon without any interior regions (equivalently, the num-
ber of noncrossing forests using only interior edges). The generating function
F (x) =

∑
n≥1 τnxn satisfies the equation
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F 3(x) + (x2 + x)F 2(x)− (2x2 + x)F (x) + x2 = 0;

note that the inverse of F (x) is equal to G(y) =
y(1 +

√
1− 4y)

2(1− y)
.

Remark. In Table 16.2, we present the Euler characteristic of NXFn for small
values on n.

Proof. Since NXFn = NXn ∩ Fn and Fn is the independence complex of Mn

and hence SPI of dimension n − 2, Corollary 16.5 immediately implies that
NXFn is V D of dimension n− 2.

To compute χ̃(NXFn), we prove that the Euler characteristic of ΛY =
{Y } ∗ NXFn(Y, Intn \ Y ) equals (−1)n−2 for each edge set Y ⊂ Intn forming
a noncrossing forest. This will imply that χ̃(NXFn) = (−1)n−2τn as desired.

Now, all subgraphs of Y ∪Bdn are noncrossing. In particular, ΛY coincides
with {Y } ∗ lkFn(Y ∪Bdn)(Y ), where Fn(Y ∪ Bdn) is the independence complex
of the graphic matroid on the edge set Y ∪Bdn. Since the rank of this matroid
is n− 1, it follows that ΛY has homology only in top dimension n− 2.

It remains to prove that |χ̃(ΛY )| = 1. Let R1, . . . , Rk be the regions in the
graph with edge set Y ∪ Bdn. For i ∈ [k], let Ei be the set of edges in Bdn

that are on the boundary of Ri. Since all regions Ri are non-interior, each Ei

has size at least 1. We obtain that

ΛY = {Y } ∗ ∂2E1 ∗ · · · ∗ ∂2Ek .

Namely, a graph G such that Y ⊆ G ⊆ Y ∪ Bdn contains a cycle if and only
if G contains the entire set Ei for some i ∈ [k]. Hence |χ̃(ΛY )| = 1 as desired.

Now, we examine the Euler characteristic an = χ̃(NXFn) in greater detail.
For a given graph G on [n], let v(G) be the smallest integer v such that 1v ∈ G;
if no such v exists, we define v(G) = n + 1. Let F(v) be the family of graphs
G ∈ NXFn such that v(G) = v. It is clear that χ̃(F(n + 1)) = χ̃(NXFn−1) =
an−1.

For v ≤ n, we have that the edge 1v divides the n-gon into the two parts
[2, v] and [v, 1]; we exclude the vertex 1 from the first part, as there are no
edges from 1 to (1, v). A graph G with v(G) = v belongs to F(v) if and only
if the induced subgraphs on [2, v] and [v, 1] both are noncrossing forests and
1v ∈ G. Now, the family of noncrossing forests on [2, v] is NXF[2,v], whereas
the family of noncrossing forests on [v, 1] is NXF[v,1]. In the latter case, we
should consider the subfamily NXF[v,1](1v, ∅), because the edge 1v is always
present. Hence

F(v) = NXF[2,v] ∗ NXF[v,1](1v, ∅).
Observing that one may identify NXF[v,1](1v, ∅) with NXFn−v+2(12, ∅), we
obtain that

χ̃(F(v)) = −av−1bn−v+2,

where bi = χ̃(NXFi(12, ∅)).
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Summing, we obtain that

A(x) =
∑
n≥1

anxn = a1x +
∑
n≥2

an−1x
n −

∑
n≥2

n∑
v=2

av−1bn−v+2x
n

= −x + xA(x)−A(x)B(x)/x, (16.6)

where B(x) =
∑

n≥2 bnxn.
For a graph G containing 12, let w = w(G) ≥ 3 be minimal such that

1w ∈ G; we define w(G) = n + 1 if no such w exists. Let G(w) be the family
of graphs G in NXFn(12, ∅) such that w(G) = w. We observe that χ̃(G(n +
1)) = −χ̃(NXFn−1) = −an−1; a graph such that 1 is adjacent only to 2 is a
noncrossing forest if and only if this is true for the induced subgraph on [2, n].

For w ≤ n, 1w divides the n-gon into the two parts [1, w] and [w, 1]; as
we will see, this time we cannot exclude 1 from the first interval. A graph G
with w(G) = w belongs to G(w) if and only if the induced subgraphs G1 on
[w, 1] and G2 on [1, w] both are noncrossing forests. This is true if and only if
G1 ∈ NXF[w,1](1w, ∅) and G2 ∈ NXFw({12, 1w}, 1× (2, w)); hence

G(w) = lkNXF[w,1](1w) ∗ NXFw({12, 1w}, 1× (2, w)).

However, G2 ∈ NXFw({12, 1w}, 1 × (2, w)) if and only if the graph ob-
tained from G2 by removing the vertex 1 and adding the edge 2w belongs
to NXF[2,w](2w, ∅). Thus

G(w) ∼= lkNXFn−w+2(12) ∗ lkNXFw−1(12) ∗ {12, 1w}.

The conclusion is that

χ̃(G(w)) = −bn−w+2bw−1.

Summing, we obtain that

B(x) =
∑
n≥2

bnxn = −
∑
n≥2

an−1x
n −

∑
n≥2

n∑
w=3

bw−1bn−w+2x
n

= −xA(x)−B2(x)/x. (16.7)

From (16.6), we derive that B(x)/x = x−1−x/A(x). Inserting this in (16.7),
we obtain with A = A(x) that

x− 1− x

A
= −A−

(
x− 1− x

A

)2

⇐⇒ A3 + (x2 − x)A2 − (2x2 − x)A + x2 = 0.

Since F (x) = A(−x), we are done. �
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Table 16.3. Absolute value of the Euler characteristic of NXBn for small n. This
value equals the Fine number Fn.

n = 1 2 3 4 5 6 7 8 9 10 11 12

|χ̃(NXBn)| 1 0 1 2 6 18 57 186 622 2120 7338 25724

16.5 Noncrossing Bipartite Graphs

Recall that NXBn is the complex of noncrossing bipartite graphs on [n].

Theorem 16.14. For n ≥ 1, NXBn is V D+(n− 2) and homotopy equivalent
to a wedge of Fn spheres of dimension n−2, where Fn is the nth Fine number
defined by ∑

n≥1

Fnxn =
1 + 2x−

√
1− 4x

4 + 2x
=

xC(x) + x

2 + x
.

Here, C(x) =
∑

n≥0 Cnxn, where Cn is the Catalan number 1
n+1

(
2n
n

)
.

Remark. The Fine number Fn satisfies 2Fn + Fn−1 = Cn−1 for n ≥ 2. See
Fine [44] and Deutsch [35, App. C] for more information about Fine numbers
and Table 16.3 for the first few values.

Proof. Since NXBn = NXn∩Bn and Bn is an SPI complex over Mn, Corollary
16.5 immediately implies that NXBn is V D+(n− 2).

It remains to determine the Euler characteristic an = χ̃(NXBn). The pro-
cedure is very similar to that in the proof of Theorem 16.13: For a given
graph G on [n], let v(G) be the smallest integer v such that 1v ∈ G; if no
such v exists, we define v(G) = n + 1. Let F(v) be the family of graphs
G ∈ NXBn such that v(G) = v. As in the proof of Theorem 16.13, we obtain
that χ̃(F(n + 1)) = χ̃(NXBn−1) = an−1 and that

χ̃(F(v)) = −av−1bn−v+2,

where bi = χ̃(NXBi(12, ∅)).
Summing as in (16.6), we obtain that

A(x) = −x + xA(x)−A(x)B(x)/x, (16.8)

where B(x) =
∑

n≥2 bnxn.
Again as in the proof of Theorem 16.13, for a graph G containing 12, let

w = w(G) ≥ 3 be minimal such that 1w ∈ G; we define w(G) = n + 1 if no
such w exists. Let G(w) be the family of graphs G ∈ NXBn(12, ∅) such that
w(G) = w. We observe that χ̃(G(n + 1)) = −χ̃(NXBn−1) = −an−1; a graph
such that 1 is adjacent only to 2 is bipartite and noncrossing if and only if
this is true for the induced subgraph on [2, n].
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For w ≤ n, 1w divides the n-gon into the two parts [1, w] and [w, 1]. A
graph G with w(G) = w belongs to G(w) if and only if the induced subgraphs
G1 on [w, 1] and G2 on [1, w] are both noncrossing and bipartite. This is true if
and only if G1 ∈ NXB[w,1](1w, ∅) and G2 ∈ NXBw({12, 1w}, 1× (2, w)); hence

G(w) = lkNXB[w,1](1w) ∗ NXBw({12, 1w}, 1× (2, w)).

We now arrive at a point where the proof no longer aligns with the proof of
Theorem 16.13; the family Bw = NXBw({12, 1w}, 1 × (2, w)) does not easily
reduce to a family in NXB[2,w]. Instead, we claim that χ̃(Bw) = χ̃(NXBw−2).

To prove this claim, proceed as follows. For a graph G in Bw, let x =
x(G) ≥ 3 be minimal such that xw ∈ G. If no such x exists, define x(G) = w.
Define H(x) as the family of graphs G in Bw satisfying x(G) = x. Now, if
x ≤ w − 1 and G ∈ H(x), then the graph H obtained by adding 2x to G
remains in H(x). Namely, H remains bipartite, as 2 and x belong to different
blocks in any bipartition of G; xw, 1w, and 12 are present edges. Also, no edges
cross 2x, as there are no edges from 1 to (2, w) ⊃ (2, x) and no edges from
w to (2, x). As a consequence, we have a perfect matching on H(x) given by
pairing G− 2x with G + 2x; hence χ̃(H(x)) = 0. The remaining set H(w) has
the property that a graph G belongs to it if and only if the induced subgraph
on [2, w − 1] is bipartite; hence χ̃(H(w)) = χ̃(NXBw−2). We conclude that

χ̃(G(w)) = bn−w+2 · χ̃(NXBw({12, 1w}, 1× (2, w))) = aw−2bn−w+2.

Summing, we obtain that

B(x) =
∑
n≥2

bnxn = −
∑
n≥2

an−1x
n +

∑
n≥2

n∑
w=3

aw−2bn−w+2

= −xA(x) + A(x)B(x). (16.9)

From this equation, we conclude that B(x) = −xA(x)/(1 − A(x)). Inserting
this in (16.8), we obtain with A = A(x) that

A + x = xA +
A2

1−A
⇐⇒ A =

1− 2x−
√

1 + 4x
4− 2x

.

Since F (x) = A(−x), we are done. �

For p ≥ 1, recall that Bn,p is the subcomplex of Bn consisting of those bipartite
graphs that admit a bipartition (U,W ) such that one of U and W has size at
most p.

Theorem 16.15. For p ≥ 1 and n ≥ 2p+1, NXBn,p = Bn,p∩NXn is V D(2p−
1).

Proof. Let σ and τ be as in Corollary 16.4; τ is a maximal face of NXn and σ
is a cycle-free subset of τ ∩ Intn. By Corollary 16.4, it suffices to prove that
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Σσ,τ = NXBn(σ, Intn \ τ) is V D(2p − 1). Since T = τ ∪ Bdn is noncrossing,
Σσ,τ = NXBn,p(σ, Intn \τ) coincides with Bn,p(σ, Intn \τ). By Theorem 14.10,
Bn,p(σ, Intn \ τ) is V D(r), where

r = c(σ)− c(τ) + 2p− n + |σ|.

However, σ is a forest, which implies that c(σ) − n + |σ| = 0. Moreover, τ is
connected; hence c(τ) = 1. It follows that r = 2p− 1 as desired. �



17

Non-Hamiltonian Graphs

1 Using discrete Morse theory, we obtain some information about NHamn, the
simplicial complex of non-Hamiltonian graphs on n vertices. More precisely,
in Section 17.1, we show that NHamn is homotopy equivalent to∨

(n−2)!

S2n−5 ∨Σn, (17.1)

where Σn is a certain subcomplex of NHamn.
For small values of n (at least for n ≤ 7), the homology of Σn vanishes.

However, this nice property does not seem to hold in general. Specifically,
we show that H̃14(Σ10, Z) contains a free subgroup of rank 8!/2. It seems
reasonable to conjecture that the homology of Σn is always nontrivial when
n is at least ten.

In Section 17.2, we examine the homology of the quotient complex Hamn =
2Kn/NHamn. The above result implies that the group H̃2n−4(Hamn, Z) con-
tains a free subgroup of rank at least (n−2)!. We show that this subgroup has a
basis with the property that each element coincides with a simple transforma-
tion of the fundamental cycle of the associahedron An (see Sections 16.1-16.2).
In Section 19.1, we will see that this basis coincides with Shareshian’s basis
[118] for the homology of C2

n, where C2
n is the quotient complex of 2-connected

graphs.
In Section 17.3, we consider a directed variant of NHamn. Specifically,

define DNHamn as the complex of non-Hamiltonian digraphs on n vertices.
We prove that the shifted connectivity degree of DNHamn is at least 2n− 3;
this bound is likely to be far from sharp.
1 This chapter is a revised and extended version of Sections 5 and 8 in a paper [67]

published in Journal of Combinatorial Theory, Series A.
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1 2 3 4 5 6 7 8

Fig. 17.1. A graph of the first kind when n = 8.

17.1 Homotopy Type

We provide an acyclic matching on the complex NHamn of non-Hamiltonian
graphs on the vertex set [n]. The matching has the property that the un-
matched graphs are of two kinds:

1. Graphs with edge set

{1ρ2, ρ2ρ3, . . . , ρn−2ρn−1, ρn−1n, ρ2n, ρ3n, . . . , ρn−2n},

where {ρ2, . . . , ρn−1} = {2, . . . , n− 1}; see Figure 17.1 for an example.
2. Graphs G with a Hamiltonian path from 1 to n such that G + 1n is

3-connected.

We denote the family of graphs of the first kind as V and the family
of graphs of the second kind as W. As it turns out, all graphs in V satisfy
the conditions in Corollary 4.13. In particular, (17.1) holds, where Σn is the
complex (NHamn)W defined as in (4.2) with respect to the matching yet to
be defined.

We divide the description of the acyclic matching into several steps.

Step 1: Matching with the edge 1n to obtain the family NHam′
n.

Match with 1n whenever possible, meaning that we pair G− 1n and G + 1n
whenever G + 1n is non-Hamiltonian. Let NHam′

n be the family of critical
graphs with respect to this matching. Note that NHam′

n consists of all non-
Hamiltonian graphs with a Hamiltonian path from 1 to n. By Lemma 4.1, any
acyclic matching on NHam′

n together with the matching just defined yields an
acyclic matching on NHamn.

Step 2: Defining the set HPG and partitioning NHam′
n into subfamilies

NHam′
n(H).

For any graph G, let HPG be the set of Hamiltonian paths from 1 to n in G.
For H ⊆ HPKn

, let

NHam′
n(H) = {G :∈ NHam′

n : HPG = H}.
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It is clear that the family {NHam′
n(H) : H ⊆ HPKn

} satisfies the conditions
in the Cluster Lemma 4.2; thus it suffices to find an acyclic matching on
NHam′

n(H) for each H such that NHam′
n(H) is nonvoid.

Step 3: Defining the family X(G) and the critical family W.

Let H ⊆ HPKn
be fixed. Consider the smallest Hamiltonian path

(1, ρ2, ρ3, . . . , ρn−1, n)

in H with respect to lexicographic order (from left to right). Define ρ1 = 1
and ρn = n.

For G ∈ NHam′
n(H), let X(G) be the family of 2-sets {a, b} of vertices such

that G([n] \ {a, b}) + 1n is disconnected. If an edge ab ∈ X(G) is added to or
deleted from G, then the family of Hamiltonian paths from 1 to n remains the
same. Note that the pairs 1n, 1ρ2, ρ2ρ3, . . . , ρn−2ρn−1, ρn−1n do not belong to
X(G). LetW(H) ⊆ NHam′

n(H) be the family of graphs G such that HPG = H
and X(G) = ∅; let

W =
⋃
H
W(H).

X(G) = ∅ means that G + 1n is 3-connected; hence the graphs in W are
exactly the graphs of the second kind as defined at the beginning of this
section. We leave them unmatched and concentrate on the graphs G with
nonempty X(G); let

F(H) = NHam′
n(H) \W(H).

1 ρi ρj ρk ρl n 1 ρ2 ρ3 n

Fig. 17.2. The case ρjρl = SG �= ρiρk = SG−ρjρl in Step 4; the situation turns out
to be as in the picture to the right with i = ρi = 1, j = 2, k = 3, and l = ρl = n.

Step 4: Proceeding with the family F(H) and defining the pair SG.

For a graph G ∈ F(H), we obtain a total order ≺ on pairs ρrρs in X(G) such
that r < s by defining

ρiρj ≺ ρkρl ⇐⇒ (j < l) or (j = l and i < k);
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this is lexicographic order from right to left. Let the closed interval [ρi, ρj ] be
the set of all elements ρk such that i ≤ k ≤ j. The half-open interval (ρi, ρj ]
is obtained from [ρi, ρj ] by removing ρi, while the open interval (ρi, ρj) is
obtained by removing both endpoints ρi and ρj .

Let SG be the smallest member of X(G) with respect to ≺; assume that
SG = ρjρl, j < l. If ρjρl /∈ G, then it is clear that SG+ρjρl

= SG. Suppose
that ρjρl ∈ G and that

SG−ρjρl
= ρiρk ≺ ρjρl;

i < k. We claim that this implies that i = 1, j = 2, k = 3, and l = n. Namely,
one readily verifies that

i < j < k < l;

the other possibilities would imply that ρiρk ∈ SG. Also, since ρjρl ∈ SG,
we must have that ρiρk /∈ G. Since (G + 1n)([n] \ {ρj , ρl}) is disconnected,
there are no edges in G between the open interval (ρj , ρl) and the union
[1, ρj) ∪ (ρl, n] of half-open intervals. Similarly, there are no edges besides
xjxl between (ρi, ρk) and [1, ρi) ∪ (ρk, n]. As a conclusion, there are no edges
between (ρi, ρl) and [1, ρi) ∪ (ρl, n]. Since ρiρl is smaller than ρjρl with
respect to ≺, we must have i = 1 and l = n, because otherwise SG would
not be equal to ρjρl. In the same manner, one shows that j = 2 and k = 3;
otherwise either ρiρj or ρjρk (both smaller than ρjρl) would be in X(G). The
situation is illustrated in Figure 17.2.

Step 5: Partitioning F(H) into subfamilies Fij(H).

For i < j, let
Fij(H) = {G ∈ F(H) : SG = ρiρj}.

It is clear that the family {Fij(H) : i < j} satisfies the conditions in the
Cluster Lemma 4.2, which implies that it suffices to find an acyclic matching
on each Fij(H). For (i, j) �= (2, n), the discussion in Step 4 yields that we
obtain a complete acyclic matching on Fij(H) by pairing G−ρiρj and G+ρiρj

for all G. Namely, adding ρiρj to G ∈ Fij(H) does not introduce any new
Hamiltonian paths from 1 to n and removing the same edge does not eliminate
any such paths, which means that G− ρiρj and G + ρiρj belong to the same
set Fij(H).

1 ρ2 ρ3 ρk−1 ρk n

Fig. 17.3. The situation in Step 6; k = kG.
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Step 6: Defining an optimal acyclic matching on F2n(H).

It remains to study F2n(H). For G ∈ F2n(H), let

kG = max{k : ρ2n, . . . , ρkn ∈ X(G)};

clearly, 2 ≤ kG ≤ n−2. Note that ρjn ∈ G for 2 ≤ j < kG; otherwise, we would
have ρj−1ρj+1 ∈ X(G), contradicting the minimality of 2n in X(G). Moreover,
if kG < n− 2, then there is an m such that kG + 2 ≤ m < n and ρkG

ρm ∈ G.
Namely, otherwise ρkG+1n ∈ X(G), which would contradict the maximality
of kG. In particular, with e = ρkG

n we have that kG = kG−e = kG+e. See
Figure 17.3 for an illustration.

Let
Fk

2n(H) = {G ∈ F2n(H) : kG = k}
for 2 ≤ k ≤ n− 2. Another application of the Cluster Lemma 4.2 yields that
it suffices to find an acyclic matching on each of the families Fk

2n(H). By the
above discussion, the matching defined by pairing G− ρkn with G + ρkn for
all G is a complete acyclic matching on Fk

2n(H) when k < n−2. If kG = n−2,
then G is a graph of the first kind as defined at the beginning of this section,
which implies that V is exactly the union of all Fn−2

2n (H). As a consequence,
taking the union of all matchings mentioned in the construction, we obtain
an acyclic matching M on NHamn whose critical graphs are the graphs in
V ∪W.

Step 7: Examining paths in the digraph associated to the given acyclic match-
ing.

By Corollary 4.13, (17.1) is a consequence of the following lemma.

Lemma 17.1. If G and H are critical graphs in NHamn with respect to the
provided matching, then H −→ G if and only if G ⊆ H and G,H ∈ W.

Proof. By the maximality of W in NHamn and the fact that all graphs in V
have the same size, we need only show that

H ∈ W, G ∈ V =⇒ H �−→ G.

Assume that the Hamiltonian path from 1 to n in G is

P = (1, ρ2, ρ3, . . . , ρn−1, n).

Suppose that
(G1, G2, . . . , Gr−1, Gr = G)

is a directed path of graphs in the directed graph D corresponding to our
acyclic matching. By a simple induction argument it follows immediately that
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P ∈ HPGi
for 1 ≤ i ≤ r. Namely, our matching has the property that two

graphs G,H ∈ NHam′
n cannot be matched unless the corresponding sets HPG

and HPH are the same. When we go from Gr and backwards, we only add
edges distinct from 1n; hence all graphs are in NHam′

n. Moreover, we remove
only edges that are used in the matching on NHam′

n; thus HPGi
grows (weakly)

as i decreases.
We claim the following:

(i) For each k ∈ [2, n − 2] and each i ∈ [1, r], there is an m ≥ k + 2 such
that ρkρm ∈ Gi.

(ii) For each k ≥ 3, if (i) holds for a graph G containing the Hamiltonian
path P , then there is a Hamiltonian path in G from 1 to ρk containing
1ρ2.

Before proving the claims, we note that (ii) implies that 1ρk /∈ Gi for
k > 2; thus ρ2n ∈ X(Gi). This implies that Gi /∈ W as desired.

Proof of claim (i). Use induction: Assume that Gi+1 satisfies (i). If Gi+1 ⊂
Gi, then Gi trivially satisfies (i). Otherwise, Gi and Gi+1 are matched. In
particular, X(Gi) �= ∅. If l+2 ≤ j < n, then ρlρj /∈ X(Gi+1), because there is
an edge from ρj−1 to some vertex ρm, m > j. Hence we must have SGi+1 = ρ2n
and Gi+1 = Gi + ρkn for some k ≥ 2. Whatever the minimal Hamiltonian
path P ′ from 1 to n in Gi looks like, the first k elements in P ′ must be
{1, ρ2, . . . , ρk} with ρk on position k. Namely, by construction, ρkn ∈ X(Gi).
Since P ∈ HPGi

, this implies that there are no edges from {1, ρ2, . . . , ρk−1}
to {ρk+1, . . . , ρn−1}. If ρk is not followed by ρk+1 in P ′ in Gi, then there is
trivially an edge ρkρm ∈ Gi such that k + 2 ≤ m < n. By the discussion in
Step 6 above, this is also true if ρk is followed by ρk+1 in P ′.

Proof of claim (ii). To simplify notation, assume that ρj = j for all j. We
use induction on n, n ≥ 3. For n = 3, the statement is trivial. Assume that
n ≥ 4. By assumption, there is an edge (k− 1)m such that k + 1 ≤ m ≤ n. If
k = n− 1, then we are finished; thus assume that k ≤ n− 2.

First, assume that m > k + 1. Then, by induction hypothesis, there is a
Hamiltonian path

(m1 = k,m2 = k + 1,m3, . . . , mn−k+1 = m)

from k to m in G([k, n]). Hence

(1, . . . , k − 1,mn−k+1 = m,mn−k, . . . , m1 = k)

is a Hamiltonian path in G.
Next, assume that m = k+1. Let m′ ≥ k+2 be such that km′ ∈ G. Again

by induction hypothesis, there is a Hamiltonian path

(m1 = k,m2 = k + 1,m3, . . . , mn−k+1 = m′)
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from k to m′ in G([k, n]). This time,

(1, . . . , k − 1,m2 = k + 1,m3, . . . , mn−k+1 = m′, k)

is a Hamiltonian path in G, which concludes the proof of claim (ii).

Conclusion.

We have proved the following:

Theorem 17.2. The complex NHamn is homotopy equivalent to∨
(n−2)!

S2n−5 ∨ (NHamn)W ,

where (NHamn)W is defined as in (4.2) with respect to the matching given in
Steps 1-6. �

Corollary 17.3. For n ≥ 6, NHamn has shifted connectivity degree at least
� 3n

2 � − 2.

Proof. Each graph G inW has the property that G+1n is 3-connected, which
implies that G contains at least 3n/2 − 1 edges. Since 3n/2 − 1 is at most
2n− 4 for n ≥ 6, we are done by Theorem 4.7. �

12

34

5123

45 35

24

13 52

41

Fig. 17.4. The Petersen graph.

Corollary 17.4. NHam10 is homotopy equivalent to a wedge of some simpli-
cial complex and ∨

8!/2

S14 ∨
∨
8!

S15. (17.2)

The spheres of dimension 14 correspond to Petersen graphs (see Figure 17.4)
in which {1, 10} is not an edge, while the spheres of dimension 15 correspond
to the graphs in V.
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Proof. It is a straightforward exercise to check that the Petersen graph is non-
Hamiltonian and 3-connected. By Corollary 4.13 and Lemma 17.1, we need
only show that any critical Petersen graph P is isolated among the critical
graphs in W. Since P is 3-regular, X(G) is nonempty whenever G = P − e
for some e ∈ P . Moreover, between any pair of nonadjacent vertices ab, bc in
the Petersen graph, there are several Hamiltonian paths, one example being

(ab, cd, ea, bd, ce, da, eb, ac, de, bc)

(notation as in Figure 17.4; {a, b, c, d, e} = {1, 2, 3, 4, 5}). Thus P is a maximal
non-Hamiltonian graph, which concludes the proof. �

While we have obtained partial information about the homotopy type of
NHamn, we have failed in our attempts to provide a more complete description
of the complex. In particular, the following problem remains open:

Question 1. What is the homotopy type of (NHamn)W in Theorem 17.2?

17.2 Homology

Unfortunately, we have not been able to give a complete description of the
homology of NHamn; this open problem is probably very difficult to solve.
However, at least we know that H̃2n−5(NHamn) contains a free subgroup
of rank (n − 2)!. As a consequence, the homology in dimension 2n − 4 of
the quotient complex Hamn = 2Kn/NHamn contains a free subgroup of rank
(n− 2)!.

For n ≥ 4, one easily transforms our acyclic matching on NHamn into an
acyclic matching on Hamn. Namely, if G ⊂ H are matched in NHamn, then
either H = G+1n or the two graphs G+1n and H+1n are both Hamiltonian.
As a consequence, we obtain an acyclic matching on Hamn by pairing G and
H if either H is equal to G+1n or G−1n and H−1n are matched in NHamn.

The critical graphs of the matching are the graphs obtained by adding
the edge 1n to each of the graphs in the families V and W described at
the beginning of Section 17.1. Therefore, modify these families by adding 1n
to every graph in the families. This means that V contains graphs G(ρ) =
G(1, ρ2, . . . , ρn−1, n) with edge sets

{1ρ2, ρ2ρ3, . . . , ρn−2ρn−1, ρn−1n, ρ2n, ρ3n, . . . , ρn−2n} ∪ {1n},

where {ρ2, . . . , ρn−1} = {2, . . . , n− 1}.
It is of great importance for us that Lemma 17.1 remains true for Hamn.

One readily verifies that no path starting and ending in V ∪W contains any
graph matched using 1n. This implies that the only thing we have to show is
again that H �−→ G if H ∈ W and G ∈ V. However, following the proof of
Lemma 17.1, we easily obtain the desired result.
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In particular, we may apply Theorem 4.19 to conclude that there is a
bG ∈ B for every G ∈ V such that {G− bG : G ∈ V} is a basis for H2n−4(V),
where B is the group generated by all graphs matched with smaller graphs
and V is defined as in Theorem 4.19. We will show that the elements G− bG

are “lifted” fundamental cycles in the associahedron An. As we will describe in
Section 19.1, Shareshian [118] earlier proved that these elements also generate
the homology of the quotient complex C2

n = 2Kn/NC2
n of 2-connected graphs.

We will need the following lemma.

Lemma 17.5. With notation as in Section 16.1, let G ∈ NXn. Then G is
Hamiltonian if and only if all edges in Bdn belong to G.

Proof. It suffices to prove that the only Hamiltonian cycle in a triangulated n-
gon is the n-gon itself. However, this is obvious, because a graph in NXn that
does not contain the entirety of Bdn cannot be 2-connected; see Shareshian
[118, Lemma 4.1] for details. �

For a given permutation ρ = [ρ1, ρ2, . . . , ρn−1, ρn] of [n], write

ρ(Bdn) = {ρ1ρ2, ρ2ρ3, . . . , ρn−1ρn, ρnρ1} = {ρ(i)ρ(j) : ij ∈ Bdn}.

Let π be the fundamental cycle of An and let ρ(π) be the cycle obtained from
π by relabeling the vertex i as ρi. Define

ρ(π∗) = ρ(π) ∧ [ρ(Bdn)]; (17.3)

we obtain ρ(π∗) from ρ(π) by replacing each summand [σ] with [σ]∧ [ρ(Bdn)].
It is clear that ρ(π∗) is an element in the chain complex of Hamn.

Theorem 17.6. With notation as above, the set {ρ(π∗) : ρ ∈ S[n], ρ1 =
1, ρn = n} is linearly independent in H̃2n−4(Hamn).

Proof. As an immediate consequence of Lemma 17.5, the boundary of ρ(π∗)
in the chain complex of Hamn equals ∂(ρ(π)) ∧ [ρ(Bdn)], which is zero.

Let [T ] be a summand in ρ(π∗); T = ρ(T ′) for some triangulation T ′ of
the n-gon. It remains to show that T is matched with a smaller graph unless
T = G(ρ). Consider the family X(T ) of all pairs {a, b} separating T as defined
in Step 3 in Section 17.1, and let ST be as in Step 4 in the same section. Note
that there is a unique Hamiltonian path from 1 to n in T − 1n. Suppose that
ST is not an edge in T . Since T is a triangulation, this means that ST crosses
some edge if ST is drawn in the interior of the Hamiltonian cycle. That is, if
ST = ρiρj with i < j, then there is a k between i and j such that that there
is an edge ρkρl with l > j or l < i. In particular, ρiρj /∈ X(T ), which is a
contradiction. Thus ST ∈ T .

If ST �= ρ2n, then Step 5 shows that T is matched with a smaller graph.
If ST = ρ2n, then turn to Step 6 and consider the element kT . The same
argument as above shows that kT n is contained in T . Thus again T is matched
with a smaller graph unless T = G(ρ∗). �
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17.3 Directed Variant

Finally, we consider the complex DNHamn of directed non-Hamiltonian graphs.
Our only result is the following simple bound on the connectivity degree:

Proposition 17.7. For n ≥ 3, the shifted connectivity degree of DNHamn is
at least 2n− 3.

Proof. For a given digraph D in DNHamn, let X(D) be the set of vertices x such
that there is a directed Hamiltonian path from x to n. Define DNHamn(X)
to be the family of digraphs D in DNHamn such that X(D) = X. One easily
checks that the families DNHamn(X) satisfy the Cluster Lemma 4.2.

If X � [n − 1], then let x be minimal in [n − 1] \ X. It is clear that we
can add or delete nx to or from a digraph in DNHamn(X) without ending up
outside DNHamn(X). It follows that DNHamn(X) is a cone.

The remaining case is that X = [n − 1]. Let D ∈ DNHamn([n − 1]). We
claim that every vertex x in [n − 1] has two outgoing edges. This will imply
that every digraph in DNHamn([n− 1]) contains at least 2n− 2 edges, which
in turn will imply the proposition by Theorem 4.7.

Now, x has at least one outgoing edge xy for some y ∈ [n−1]\{x}, because
there is a directed Hamiltonian path starting in x and ending in n. However,
there is also a directed Hamiltonian path starting in y and ending in n. In
this path, the edge with tail x cannot be xy, which concludes the proof. �

Table 17.1. The homology of DNHamn for n ≤ 5.

H̃i(DNHamn, Z) i = 0 1 2 3 4 5 6 7 8 9 10

n = 2 Z - - - - - - - - - -

3 - - - Z - - - - - - -

4 - - - - - - Z2 - - - -

5 - - - - - - - - - Z6 -

Computer calculations give some indications that the actual bound on the
shifted connectivity degree of DNHamn might be as large as 3(n − 2); see
Table 17.1. By the table, DNHamn has the homology of a wedge of (n − 2)!
spheres of dimension 3(n−2) for n ≤ 5. Given the situation in the undirected
case, such a nice formula is not likely to hold in general. However, one may
suspect that H̃3(n−2)(DNHamn, Z) does contain a free subgroup isomorphic
to Z(n−2)! for all n ≥ 2.
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Disconnected Graphs

We examine the complex NCn of disconnected graphs on n vertices. We also
consider subcomplexes consisting of graphs with certain restrictions on the
vertex size of the connected components.

Due to its interpretation in terms of matroid theory, NCn has a very sim-
ple topological structure; recall Corollary 13.4. Specifically, NCn is homotopy
equivalent to a wedge of spheres of dimension n− 3. Intriguingly, the number
of spheres equals (n− 1)!. We discuss NCn along with induced subcomplexes
in Section 18.1.

In Section 18.2, we consider the complex NLCn,k of graphs with the prop-
erty that each connected component contains at most k vertices. For k = 2,
we obtain the matching complex Mn, whereas k = n−1 yields NCn. Sundaram
[137] proved the somewhat surprising result that NLCn,k is homotopy equiva-
lent to NCn−1 for 3 ≤ k + 2 ≤ n ≤ 2k + 1. For general n and k, the situation
is much more complicated, but we have been able to prove that the shifted
connectivity degree and the depth of NLCn,k are at least (k−1)(n−1+r/k)

k+1 − 1,
where r = (n−1) mod (k+1). For k = 3 and n ≥ 4, we prove that this bound
is sharp; there is homology in the given dimension. The homology is finite for
n = 4t+1 whenever t ≥ 2 and infinite otherwise; in the finite case, we have an
elementary 2-group. For general n and k, we do not know whether our bound
on the connectivity degree is sharp.

In Section 18.3, we proceed with the complex SSCk,s
n of graphs with at

least s connected components of vertex size at most k. Generalizing to a
larger family of complexes, we show that SSCk,s

n is homotopy equivalent to a
wedge of spheres of dimension n − s − 2 and that the (n − s − 2)-skeleton is
vertex-decomposable whenever n > ks. We also show that the nice topologi-
cal properties of SSCk,s

n are preserved under intersection with strong pseudo-
independence complexes (see Section 13.3).

In Section 18.4, we summarize our results for the complex NCn,p of
graphs such that the size of some connected component is not divisible by p.
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Specifically, this complex is homotopy equivalent to a wedge of spheres of
dimension n− 3 and has a vertex-decomposable (n− 3)-skeleton.

Finally, in Section 18.5, we provide an overview of known properties of the
complex HNCn,k of disconnected k-hypergraphs.

The complexes considered in this chapter are closely related to certain sub-
lattices of the partition lattice Πn. More precisely, NCn is homotopy equivalent
to the order complex of the proper part of the full lattice, whereas NLCn,k

corresponds to the sublattice consisting of all partitions in which all sets have
size at most k. In the same manner, SSCk,s

n corresponds to partitions with at
least s parts of size at most k, while NCn,p corresponds to partitions with at
least one set of size not divisible by p. Restricting to partitions in which all
sets have size one or at least k, we obtain the lattice Π1,≥k

n corresponding to
HNCn,k. Björner and Welker [16] studied Π1,≥k

n in the context of subspace
arrangements; see Section 1.1.4 for some details.

18.1 Disconnected Graphs Without Restrictions

We devote this section to the complex NCn. This complex is well-known to
have very attractive topological properties:

Proposition 18.1. For n ≥ 2 and any graph G on n vertices with at most
two components, NCn(G) is VD+(n− 3) and homotopy equivalent to a wedge
of spheres of dimension n−3. For the full complex NCn, the number of spheres
in the wedge equals (n− 1)!.

Proof. If G consists of two components, then NCn(G) is a cone of dimen-
sion at least n − 3. If G is connected, then the first part of the proposi-
tion is an immediate consequence of Theorem 13.25; NCn(G) is SPI ∗ over
the graphic matroid on G. Define Cn as the quotient complex of connected
graphs on n vertices. The nonzero Betti number being (n − 1)! is a conse-
quence of Corollary 6.15. Namely, with notation as in the corollary and with
f(n) = χ̃(Cn) and h(n) = χ̃(2Kn), we obtain that H(x) = −x = 1 − e−F (x);
thus −F (x) = ln(1 + x). �

See Babson et al. [3] for more information and references. There are at least
two natural explanations for the simplicity of the topology of NCn:

The first explanation is the one used in the above proof; a graph is dis-
connected if and only if the graph does not have full rank with respect to the
graphic matroid on the complete graph. In particular, NCn and its induced
subcomplexes are all Alexander duals of independence complexes.

The second explanation is that there is a simple homotopy equivalence
between NCn and the the proper part Πn of the partition lattice Πn on the
set [n]. Namely, we may define a closure operator on the face poset of NCn

with image Πn by mapping a graph with connected components V1, . . . , Vk

to the partition {V1, . . . , Vk}. Applying Lemma 6.1, we obtain the desired
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homotopy equivalence. Now, Πn is a geometric lattice of rank (n − 1) with
Möbius function (−1)n−1 · (n−1)!; see Rota [116] or Stanley [131]. By a result
of Björner [7] about geometric lattices (see also Folkman [46]), this implies
the following:

Theorem 18.2. The order complex of Πn is shellable and homotopy equiva-
lent to a wedge of (n− 1)! spheres of dimension n− 3. �

Let us give an explicit decision tree on NCn; note that we already know that
such a tree exists by Proposition 18.1.

Proposition 18.3. For n ≥ 2, NCn ∼ (n− 1)! · tn−3.

Proof. If n = 2, then NCn is the (−1)-simplex. Assume that n ≥ 3. Let
A = {in : i ∈ [n− 1]} and consider the complex ΣY = NCn(Y,A \ Y ) for each
Y ⊆ A. If Y contains two edges in and jn, then ij is a cone point in ΣY ; i
and j are contained in the same component. Hence ΣY ∼ 0. If Y = ∅, then
ΣY is the full simplex on

(
[n−1]

2

)
and hence nonevasive. The case remaining

is Σ{kn} for each k ∈ [n − 1]. It is clear that a graph G belongs to Σ{kn}
if and only if G([n − 1]) belongs to NCn−1. This yields by induction that
Σ{kn} ∼ (n− 2)! · tn−3. Using Lemma 5.22, we obtain that

NCn ∼
n−1∑
k=1

(n− 2)! · tn−3 = (n− 1)! · tn−3. �

Corollary 18.4. The quotient complex Cn admits a decision tree such that a
graph is unmatched if and only if its edge set is of the form

σρ := {ρiρi+1 : i ∈ [n− 1]}

for some permutation ρ = ρ1 . . . ρn in S[n] such that ρ1 = 1.

Proof. This is an immediate consequence of the proof of Proposition 18.3. �

Corollary 18.5. For n ≥ 2, the set {[σρ] : ρ ∈ S[n], ρ1 = 1} forms a basis for
H̃n−2(Cn; Z). As a consequence, the set {∂([σρ]) : ρ ∈ S[n], ρ1 = 1} forms a
basis for H̃n−3(NCn; Z).

Proof. For the first statement, use Theorem 5.2 and Corollary 4.17. The second
statement is an immediate consequence of Theorem 3.3. �

18.2 Graphs with No Large Components

We discuss the complex NLCn,k of graphs on n vertices with all connected
components of vertex size at most k. The reader may want to keep in mind
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that NLCn,2 is the matching complex Mn discussed in Section 11.2. One easily
checks that NLCn,k has the same homotopy type as the lattice Π≤k

n of parti-
tions in which all sets have size at most k; compare to the discussion in the
previous section. As a consequence, for any result about the homotopy type
or the homology of NLCn,k, we have an equivalent result about the topology
of the order complex of the proper part of Π≤k

n .

18.2.1 Homotopy Type and Depth

In the language of partition lattices, Sundaram [137] proved the following; we
give a new proof in terms of discrete Morse theory.

Theorem 18.6 (Sundaram [137]). For 3 ≤ k + 2 ≤ n ≤ 2k + 1, NLCn,k is
homotopy equivalent to NCn−1 and hence has the homotopy type of a wedge
of (n− 2)! spheres of dimension n− 4.

Proof. First, we use discrete Morse theory to prove that NLCn,k is homotopy
equivalent to NLCn,n−2 for n−1

2 ≤ k < n−2. For any set W of size at least k+1
and at most n−2, define F(W ) as the family of graphs in NLCn,n−2 containing
a connected component with vertex set W . It is clear that each graph G in
NLCn,n−2 \ NLCn,k belongs to exactly one family F(W ); |W | ≥ k + 1 ≥ n+1

2 ,
so there is no other component in G with a vertex set of size at least k + 1.
In particular, the families F(W ) satisfy the Cluster Lemma 4.2. Now, any
edge between two vertices in the set [n] \W is a cone point in F(W ), which
yields a perfect acyclic matching on F(W ). Using the Cluster Lemma 4.2,
we obtain a perfect acyclic matching on NLCn,n−2 \ NLCn,k; hence we may
collapse NLCn,n−2 to NLCn,k.

It remains to compute the homotopy type of NLCn,n−2. Again, we use
discrete Morse theory. For each set X ⊆ [n − 1], let H(X) be the family
of graphs such that X ∪ {n} is the vertex set of the connected component
containing n. By construction, H(X) is void if X is of size at least n − 2,
which implies that [n − 1] \X has size at least two – and hence contains an
edge – whenever H(X) is nonvoid. Moreover, H(∅) coincides with NCn−1. It
is clear that the families H(X) satisfy the Cluster Lemma 4.2. Now, if X is
nonempty, then any edge between two vertices in the set [n− 1] \X is a cone
point in H(X); the largest component we may achieve by adding such an edge
has size n− 2, which is allowed. Hence NLCn,n−2 admits an acyclic matching
that is perfect outside H(∅) = NCn−1, which implies that we may collapse
NLCn,n−2 to NCn−1. �

Theorem 18.7. Let k, n ≥ 1. Write r = (n − 1) mod (k + 1). Then NLCn,k

has homology in dimension d only if

αn,k :=
(k − 1)(n− 1 + r/k)

k + 1
− 1 ≤ d ≤ (k − 1)(n− 1)

k
− 1 =: βn,k.

Moreover, NLCn,k is (�αn,k� − 1)-connected.
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Table 18.1. The bound 
αn,k� in Theorem 18.7 on the shifted connectivity degree
of NLCn,k for n ≤ 19 and k ≤ 8. For entries in bold, NLCn,k has the homotopy type
of a wedge of spheres in the given dimension.


αn,k� n = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k = 2 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6

3 − 1 1 2 3 3 3 4 5 5 5 6 7 7 7 8 9 9

4 − − 2 2 3 4 5 5 5 6 7 8 8 8 9 10 11 11

5 − − − 3 3 4 5 6 7 7 7 8 9 10 11 11 11 12

6 − − − − 4 4 5 6 7 8 9 9 9 10 11 12 13 14

7 − − − − − 5 5 6 7 8 9 10 11 11 11 12 13 14

8 − − − − − − 6 6 7 8 9 10 11 12 13 13 13 14

Remark. The upper bound appears in the work of Sundaram [137], as does
the lower bound for n ≤ 3k + 4. See Table 18.1 for the value of �αn,k� for
small n and k.

Proof. The cases k = 1 and n = 1 are trivial; thus assume that k, n ≥ 2. We
use discrete Morse theory and induction on n; our goal is to find an acyclic
matching such that the dimension of each unmatched graph is in the desired
interval. We have three base cases:

• 2 ≤ n ≤ k. In this case, NLCn,k is collapsible; all graphs belong to NLCn,k,
as the size of the largest component is at most n ≤ k. Indeed, αn,k =
βn,k = (n−1)(k−1)

k − 1, and this is not an integer unless k divides n− 1.
• n = k + 1. Then NLCn,k = NCk+1, which has all homology in dimension

k − 2 by Proposition 18.1; note that αk+1,k = βk+1,k = k − 2.
• k + 2 ≤ n ≤ 2k + 1. Note that n = k + r + 2. By Theorem 18.6, NLCn,k is

homotopy equivalent to NCn−1, which has all its homology concentrated
in dimension n− 4 = k + r − 2. This yields that

αn,k =
(k − 1)(k + 1 + r + r/k)

k + 1
− 1 = k − 2 +

(k − 1)r
k

;

βn,k =
(k − 1)(k + 1 + r)

k
− 1 = k − 2 +

(k − 1)(r + 1)
k

.

Since

r − 1 <
(k − 1)r

k
≤ r ≤ (k − 1)(r + 1)

k
< r + 1

whenever 0 ≤ r ≤ k − 1, the theorem follows for this case.

We now proceed by induction on n. Assume that n ≥ 2k + 2. Match with the
edge 12 whenever possible. A graph G is unmatched if and only if 1 and 2
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belong to different components U1 and U2 in G and the number of vertices in
U1∪U2 is at least k +1. By Lemma 4.1, it suffices to find an acyclic matching
on the family F of unmatched graphs.

For any two disjoint sets U1 and U2 of size at most k such that 1 ∈ U1

and 2 ∈ U2 and such that |U1 ∪ U2| > k, let F(U1, U2) be the family of
graphs G ∈ NLCn,k such that Ui is the vertex set of the connected component
containing i for i = 1, 2. It is clear that the families F(U1, U2) satisfy the
conditions in the Cluster Lemma 4.2.

Write ui = |Ui|. Note that F(U1, U2) is isomorphic to the join of the
complexes NLCn−u1−u2,k, Cu1

, and Cu2
, where Cu is the quotient complex of

connected graphs on u vertices. By Proposition 18.3 (and Proposition 5.36),
Cui

admits a decision tree with all evasive sets of dimension ui − 2; this deci-
sion tree can be translated into an acyclic matching via Theorem 5.2. Using
Theorem 5.29, we conclude that the join of Cu1

and Cu2
admits an acyclic

matching such that all unmatched sets have dimension u1 + u2 − 3. This
implies that F(U1, U2) admits an acyclic matching such that the family of un-
matched sets is the disjoint union of families of the form {G}∗NLCn−u1−u2,k,
where G is a graph with u1 + u2 − 2 edges. These families clearly satisfy the
conditions in the Cluster Lemma 4.2, as they form an antichain.

Write u1 + u2 = t; note that k + 1 ≤ t ≤ 2k and that n− t ≥ 2k + 2− t ≥
2. By induction, NLCn−t,k admits an acyclic matching such that a graph is
unmatched only if its dimension d satisfies

αn−t,k ≤ d ≤ βn−t,k.

As a consequence, {G} ∗ NLCn−t,k admits an acyclic matching such that a
graph is unmatched only if its dimension d satisfies

αn−t,k + t− 2 ≤ d ≤ βn−t,k + t− 2.

Now,

βn,k − βn−t,k =
(k − 1)t

k
= t− t

k
≥ t− 2;

the last inequality is because t ≤ 2k. This proves the upper bound in the
theorem. For the lower bound, write r0 = (n− t− 1) mod (k + 1). Note that
(r − r0) mod (k + 1) = t. Since k + 1 ≤ t ≤ 2k and since r − r0 ≤ k, we have
that

r − r0 ≤ t− k − 1.

Thus

αn,k − αn−t,k =
(k − 1)(t + (r − r0)/k)

k + 1

≤ (k − 1)(t + (t− k − 1)/k)
k + 1

=
(k − 1)(t− 1)

k

= t− 1− t− 1
k

≤ t− 2;
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the last inequality is because t ≥ k + 1. This proves the lower bound in the
theorem, and we are done. �

Corollary 18.8 (Sundaram [137]). For k ≥ 1, we have that NLC2k+2,k is
homotopy equivalent to a wedge of (2k)!k

k+1 spheres of dimension 2k−3, whereas
NLC3k+2,k is homotopy equivalent to a wedge of spheres of dimension 3k− 4.

Proof. With n = 2k + 2, we obtain that r = k and hence that

α2k+2 =
(k − 1)(2k + 2)

k + 1
− 1 = 2k − 3;

β2k+2 =
(k − 1)(2k + 1)

k + 1
− 1 = 2k − 3 +

k − 1
k

.

With n = 3k + 2, we obtain that r = k − 1 and hence that

α3k+2 =
(k − 1)(3k + 1 + (k − 1)/k)

k + 1
− 1 = 3k − 4− k − 1

k
;

β3k+2 =
(k − 1)(3k + 1)

k + 1
− 1 = 3k − 4 +

k − 1
k

.

It follows that all homology is contained in one dimension. By Theorem 4.8,
the complexes are hence wedges of spheres. For the nonvanishing Betti number
of NLC2k+2,k, see Sundaram [137] or apply Corollary 18.10 below. �

Proposition 18.9. Let k ≥ 1. Then the reduced Euler characteristic hk(n) =
χ̃(NLCn,k) satisfies

Hk(x) :=
∑
n≥1

hk(n)
n!

xn = 1− exp

(
−

k∑
r=1

(−x)r

r

)
.

Proof. We apply Corollary 6.15. Define fk(n) = 0 for n > k and fk(n) =
(−1)n · (n − 1)! for 1 ≤ n ≤ k; the latter is the Euler characteristic of Cn.
Then fk and hk satisfy the conditions in Corollary 6.15, which immediately
implies the proposition. �

Corollary 18.10. Let 2k + 2 ≤ n ≤ 3k + 2. Then the reduced Euler charac-
teristic hk(n) = χ̃(NLCn,k) satisfies

(−1)n+1hk(n)
n!

=
1
n
− 1

n− 1
+

n−k−1∑
i=k+1

1
2i(n− i)

−
n−k−2∑
i=k+1

1
2i(n− i− 1)

. (18.1)

In particular, for each t ≥ 2, (−1)t+1 hk(2k+t)
(2k+t)! is a rational function in k for

k ≥ t− 2.
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Proof. Write θ(x) =
∑n

r=k+1
(−x)r

r . By Proposition 18.9, we have that

Hk(x) = 1− exp
(
ln(1 + x) + θ(x) + xn+1R(x)

)
= 1− (1 + x) exp

(
θ(x) + xn+1R(x)

)
for some polynomial R(x). If 3(k + 1) > n, then this equals

1− (1 + x)(1 + θ(x) +
θ2(x)

2
) + xn+1Q(x)

for some polynomial Q(x). This is easily seen to imply (18.1). For the last
claim, simply note that the two sums in the right-hand side of (18.1) contain
exactly t−1 and t−2 terms, respectively, each of which is a rational function
in k. �

By the next result, αn,k is a lower bound on the depth.

Theorem 18.11. Let k, n ≥ 1 and let σ be an edge set. Then the lifted com-
plex NLCn,k(σ, ∅) is (�αn,k� − 1)-connected. In particular, the �αn,k�-skeleton
of NLCn,k is Cohen-Macaulay; hence the depth of NLCn,k is at least �αn,k�.
Proof. Defining NLC0,k = {∅}, we may extend the theorem to n = 0; note that
α0,k = −1. The cases k = 1 and n ≤ 1 are trivial; thus assume that k, n ≥ 2.
As in the proof of Theorem 18.7, we will define an acyclic matching such that
the dimension of each unmatched graph is in the desired interval. This time,
our base case is 2 ≤ n ≤ k. Since NLCn,k is the full simplex, it follows that
NLCn,k(σ, ∅) is collapsible unless σ is the full edge set

(
[n]
2

)
. Now, |

(
[n]
2

)
| =

(
n
2

)
is at least αn,k + 1 = (k−1)(n−1)

k ; thus we are done with the base case.
Now, assume that n ≥ k + 1. NLCn,k(σ, ∅) is void if σ =

(
[n]
2

)
; thus we

may assume that some edge ab, say 12, is not in σ. Match with the edge 12
whenever possible. As in the proof of Theorem 18.7, a graph G is unmatched
if and only if 1 and 2 belong to different components U1 and U2 in G and
the number of vertices in U1 ∪U2 is at least k + 1. Define F(U1, U2) as in the
proof of Theorem 18.7, except that we restrict to graphs in NLCn,k(σ, ∅). As
before, the Cluster Lemma 4.2 applies.

For i ∈ {1, 2}, define σi to be the restriction of σ to the set Ui. Define σ0

to be the restriction of σ to σ \ (U1 ∪ U2). The family F(U1, U2) is nonvoid
only if σ = σ0 ∪ σ1 ∪ σ2.

Write ui = |Ui| and t = u1 + u2. We have that F(U1, U2) is isomorphic to
the join of NLCn−t,k(σ0, ∅), Cu1

(σ1, ∅), and Cu2
(σ2, ∅). Now, every graph in

Cui
(σi, ∅) has size at least ui−1. Moreover, by induction on n, NLCn−t,k(σ0, ∅)

admits an acyclic matching such that all critical faces have dimension at least
αn−t,k. This implies that F(U1, U2) admits an acyclic matching such that a
graph is unmatched only if its dimension d satisfies

d ≥ αn−t,k + t− 2.

As in the proof of Theorem 18.7, we obtain that αn,k ≤ αn−t,k + t− 2, which
concludes the proof. �
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18.2.2 Bottom Nonvanishing Homology Group

The main object of this section is to examine the homology of NLCn,3; we gen-
eralize to larger odd k whenever reasonably straightforward. Unfortunately,
we have no results in the case when k is even and at least four. We remind
the reader that all results in this section apply to the order complex of the
proper part of the lattice Π≤k

n .

Table 18.2. The homology of NLCn,3 for n ≤ 9 and n = 11.

H̃i(NLCn,3; Z) i = 0 1 2 3 4 5 6

n = 4 - Z6 - - - - -

5 - Z6 - - - - -

6 - - Z24 - - - -

7 - - - Z120 - - -

8 - - - Z540 - - -

9 - - - Z2
2 Z1764 - - -

10 - - - - ? ? -

11 - - - - - Z68256 -

Recall from Section 11.2 that the bottom nonvanishing homology group
of Mn = NLCn,2 is finite for almost all n. Using computer, we have been
able to verify that the bottom nonvanishing homology group of NLC9,3 is
also finite; see Table 18.2. This might suggest that the general situation for
k = 2 generalizes to k = 3. Indeed, in Theorem 18.14 below, we show that the
relevant homology group is an elementary 2-group whenever n = 4t + 1 for
some t ≥ 2. Nevertheless, for all other values of n ≥ 4, it turns out that the
group is infinite. In our first theorem, we consider two thirds of these cases,
postponing the case n mod 4 = 3 until later.

Theorem 18.12. For m ≥ 1 and t ≥ 2, let n = mt and k = 2m − 1. Then
H̃�αn,k�(NLCn,k; Z) is infinite; note that �αn,k� = t(m− 1)− 1.

Remark. For k = 3, this specializes to n = 2t and �αn,k� = t− 1.

Proof. For j ∈ [t], let Sj = [(j − 1)m + 1, jm]; we have that {S1, . . . , St} is
a partition of the vertex set [n] = [mt] and |Sj | = m = k+1

2 . Let Γn,k be
the family of graphs G in NLCn,k such that the vertex sets of the connected
components in G are exactly S1, . . . , St. It is clear that

Γn,k = CS1
∗ · · · ∗ CSt

,
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where CSj
is the quotient complex of connected graphs on the vertex set Sj .

By Corollary 18.4, CSj
admits a decision tree such that a graph is evasive if

and only if its edge set equals {ρiρi+1 : i ∈ [m− 1]}, where {ρ1, . . . , ρm} = Sj

and ρ1 = (j− 1)m + 1. Applying Theorem 5.29, we obtain that Γn,k admits a
decision tree such that a graph is evasive if and only if its edge set is a union
of sets {ρiρi+1 : i ∈ [m− 1]} with properties as above.

Let Cn,k be the family of of evasive graphs and write

Σn,k = NLCn,k \ (Γn,k \ Cn,k).

This is a simplicial complex, because each graph in Cn,k is minimal in Γn,k

and no graph in NLCn,k \ Γn,k contains any graph in Γn,k. By Theorem 4.4,
NLCn,k and Σn,k are homotopy equivalent.

For integers a, b such that a < b, define

πa,b = [a(a + 1)] ∧ [(a + 1)(a + 2)] ∧ · · · ∧ [(b− 2)(b− 1)] ∧ [(b− 1)b].

Define ωm,k = π1,m and, recursively,

ωmt,k = ωm(t−1),k ∧ πm(t−1)+1,mt. (18.2)

For all t ≥ 0 except t = 1, we claim that there is a cycle zmt,k in
C̃�αmt,k�(Σmt,k; Z) such that the coefficient of ωmt,k in zmt,k is nonzero. Since
ωmt,k is a maximal face of Σmt,k, this will imply that H̃�αmt,k�(Σmt,k; Z) is
infinite.

To prove the claim, we use induction on t. As it turns out, the base step
consists of the cases t = 0 and t = 3. The case t = 0 is trivially true.
We postpone the case t = 3 until later and consider the induction step;
assume that t ≥ 2 and t �= 3. By induction, we have a cycle zm(t−2),k in
C̃�αm(t−2),k�(Σm(t−2),k; Z) with desired properties. Now, define

zmt,k = zm(t−2),k ∧ ∂(πm(t−2)+1,mt). (18.3)

Since πm(t−2)+1,mt is a tree on 2m = k + 1 vertices, its boundary is a sum of
graphs in which all components have size at most k. Moreover, the only way
to split πm(t−2)+1,mt into two components of size m is to remove the edge in
the middle, which yields the face πm(t−2)+1,m(t−1)∧πm(t−1)+1,mt. Joining this
face to any face of Cm(t−2),k, we clearly obtain a face of Cmt,k. In particular,
by properties of zm(t−2),k, every face of zmt,k belongs to Σmt,k. In addition,
it is clear that the coefficient of ωmt,k is nonzero.

It remains to consider the case t = 3. Define

x = ∂(π1,2m) ∧ ∂(π2m,3m).

While x is not an element in C̃�α3m,k�(Σ3m,k; Z), x admits a unique de-
composition x = x0 + x1 such that x0 ∈ C̃�α3m,k�(Σ3m,k; Z) and x1 ∈
C̃�α3m,k�(2

K3m/Σ3m,k; Z). Define
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z = x0 + [1(3m)] ∧ ∂(x1).

This is a cycle, because ∂(x0) + ∂(x1) = 0. Moreover, the coefficient of ω3m,k

in z is nonzero.
It remains to prove that z ∈ C̃�α3m,k�(Σ3m,k; Z). Since z = x0 + [1(3m)] ∧

∂(x1), any element [σ] with nonzero coefficient in ∂(x1) has the property that
σ belongs to Σ3m,k. Let τ be such that σ ⊂ τ and τ appears in x1 with
nonzero coefficient. This means that we obtain [τ ] from π1,3m by removing
one element [a(a + 1)] such that a ∈ [1, 2m − 1] and one element [(b − 1)b]
such that b ∈ [2m + 1, 3m]; hence

[τ ] = π1,a ∧ πa+1,b−1 ∧ πb,3m.

Moreover, one of the three resulting components must contain at least 2m =
k+1 vertices. This is possible only for the component πa+1,b−1, which implies
that the two other components contain a total of at most 3m− (b− a− 1) ≤
m ≤ k elements. In particular, the component in τ + 1(3m) containing 1
and 3m has size at most k. Since σ ∈ Σ3m,k and σ ⊂ τ , it follows that
σ + 1(3m) ∈ Σ3m,k as desired. �

We now restrict our attention to the cases k ∈ {3, 7}; we do not know whether
the following result generalizes to other values of k.

Theorem 18.13. For t ≥ 0, the following hold:

(i) H̃2t−1(NLC4t+1,3; Z2) is nonzero.
(ii) H̃6t−1(NLC8t+1,7; Z2) is nonzero.

Proof. (i) Define a homomorphism ϕ : C̃2t−1(NLC4t+1,3; Z2)→ Z2 by ϕ([σ]) =
1 if and only if σ is a matching. It is clear that ϕ(z4t,3) = 1, where z4t,3 is
defined as in (18.3); the unique element appearing in z4t,3 that corresponds to
a matching is ω4t,3 defined in (18.2). We want to show that ϕ(∂([τ ])) = 0 for
every face τ of NLC4t+1,3 of dimension 2t; this will imply that z4t,3 is nonzero
in H̃2t−1(NLC4t+1,3; Z2). Now, since there is not room for a matching of size
2t + 1 on 4t + 1 vertices, the boundary of a face τ contains a matching of size
2t if and only if the face consists of 2t − 1 components of size two and one
component of size three (with two edges). Since the boundary of such a face
contains exactly two matchings, the claim follows.

(ii) Define a homomorphism ϕ : C̃6t−1(NLC8t+1,7; Z2)→ Z2 by ϕ([σ]) = 1
if and only if every connected component but one in σ is a graph isomorphic
to the four-path P4 = ([4], {12, 23, 34}); the remaining component is then
necessarily an isolated vertex. We observe that ϕ(z8t,7) = 1. It suffices to
prove that ϕ(∂([τ ])) = 0 for every τ of dimension 6t in NLC8t+1,7. This is
trivially true unless τ has the property that there are 2t − 1 components
isomorphic to P4 in τ . Let H be the graph on the remaining five vertices. We
need only prove that H contains an even number of subgraphs isomorphic to
P4 plus an isolated vertex. There are four possibilities for H:
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• H consists of a square graph and an isolated vertex.
• H is isomorphic to the graph ([5], {12, 13, 23, 34}).
• H is a path of vertex length five.
• H is isomorphic to the graph ([5], {12, 23, 34, 35}).
In each case, we have an even number of subgraphs of the desired shape, which
concludes the proof. �

Theorem 18.14. For t ≥ 2, H̃2t−1(NLC4t+1,3; Z) ∼= Zet
2 for some et ≥ 1.

Moreover, for all t ≥ 1, H̃2t+1(NLC4t+3,3; Z) is infinite.

Proof. For t = 2, we are done by the computation in Table 18.2. To prove the
general case, we consider two exact sequences.

For n ≥ 5, let NLC2
n,3 be the subcomplex of NLCn,3 consisting of all graphs

such that the component containing the vertex 1 has size at most two and
also all graphs such that 1 and 2 belong to the same component. One easily
checks that

NLCn,3/NLC2
n,3
∼=
∨
U

CU ∗ NLC[n]\U,3,

where the wedge is over all U such that 1 ∈ U , 2 /∈ U , and |U | = 3; NLC[n]\U,3 is
defined in the obvious manner. In particular, since CU is homotopy equivalent
to a nonempty wedge of spheres of dimension one, we have that

H̃i(NLCn,3/NLC2
n,3; Z) ∼=

⊕
H̃i−2(NLCn−3,3; Z);

apply Corollary 4.23. This yields our first exact sequence:

H̃i(NLC2
n,3) −→ H̃i(NLCn,3) −→

⊕
H̃i−2(NLCn−3,3) −→ H̃i−1(NLC2

n,3).

Next, let NLC2,4
n,3 be the subcomplex of NLC2

n,3 consisting of all graphs such
that the union of the components containing the vertices 1 and 2 has vertex
size at most four. One easily checks that

NLC2
n,3/NLC2,4

n,3
∼=

∨
U1,U2

CU1
∗ CU2

∗ NLC[n]\(U1∪U2),3,

where the wedge is over all disjoint U1 and U2 such that i ∈ Ui, |U1| = 2, and
|U2| = 3. In particular, we have that

H̃i(NLC2
n,3/NLC2,4

n,3; Z) ∼=
⊕

H̃i−3(NLCn−5,3; Z).

Finally, let NLC2,3
n,3 be the subcomplex of NLC2,4

n,3 consisting of all graphs
such that the union of the components containing the vertices 1 and 2 has
vertex size at most three. This means that NLC2,3

n,3 is a cone with cone point
12. In particular, NLC2,4

n,3 � NLC2,4
n,3/NLC2,3

n,3. One easily checks that
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NLC2,4
n,3/NLC2,3

n,3
∼=

∨
U1,U2

CU1
∗ CU2

∗ NLC[n]\(U1∪U2),3,

where the wedge is over all disjoint U1 and U2 such that i ∈ Ui, |U1|+|U2| = 4,
and |U1| ≤ 2. As a consequence, we have that

H̃i(NLC2,4
n,3; Z) ∼= H̃i(NLC2,4

n,3/NLC2,3
n,3; Z) ∼=

⊕
H̃i−2(NLCn−4,3; Z).

We obtain our second exact sequence:⊕
H̃i−2(NLCn−4,3) −→ H̃i(NLC2

n,3) −→
⊕

H̃i−3(NLCn−5,3)

−→
⊕

H̃i−3(NLCn−4,3).

First, consider n = 4t+1 for t ≥ 3. We have that α4t−4,3 = α4t−3,3 = 2t−3.
In particular, the tail end of our second exact sequence becomes⊕

H̃2t−3(NLC4t−3,3) −→ H̃2t−1(NLC2
4t+1,3) −→ 0.

Moreover, α4t−2,3 = 2t−2. In particular, the tail end of our first exact sequence
becomes

H̃2t−1(NLC2
4t+1,3) −→ H̃2t−1(NLC4t+1,3) −→ 0.

By induction on t, H̃2t−3(NLC4t+1,3) is an elementary 2-group. Combining
the above two tail ends, we obtain that the same is true for H̃2t−1(NLC2

4t+1,3)
and H̃2t−1(NLC4t+1,3). The group H̃2t−1(NLC4t+1,3) being nonzero is a con-
sequence of Theorem 18.13.

Next, consider n = 4t + 3 for t ≥ 1. We have that α4t−2,3 = 2t − 2 and
α4t−1,3 = 2t − 1. In particular, the tail end of our second exact sequence
becomes

H̃2t+1(NLC2
4t+3,3) −→

⊕
H̃2t−2(NLC4t−2,3) −→ 0.

Most importantly, H̃2t(NLC2
4t+3,3) = 0. Since α4t,3 = 2t − 1, the tail end of

our first exact sequence becomes

H̃2t+1(NLC4t+3,3) −→
⊕

H̃2t−1(NLC4t,3) −→ 0.

Since H̃2t−1(NLC4t,3) is infinite by Theorem 18.12, H̃2t+1(NLC4t+3,3) is also
infinite, which concludes the proof. �

Remark. The pair of sequences in the above proof is similar, but not exactly the
same, as a certain pair of sequences appearing in the work of Sundaram [137].
Specifically, while we relate NLC2

n,3 to NLCn−4,3 and NLCn−5,3 in our second
sequence, Sundaram relates NLC2

n,3 to NLCn−1,3 and NLCn−2,3 (or rather their
partition lattice counterparts). One easily generalizes our construction of exact
sequences to any k; compare to Sundaram’s general construction [137].
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Corollary 18.15. For n ≥ 4, the shifted connectivity degree and the depth
of NLCn,3 are equal to �αn,3�. Moreover, the bottom nonvanishing homology
group is finite if and only if n mod 4 = 1 and n ≥ 9. In this case, the group
is an elementary 2-group. �
We have collected some evidence for the following conjecture:

Conjecture 18.16. For n ≥ k + 1 ≥ 2, the shifted connectivity degree of
NLCn,k is equal to �αn,k�.
By Corollaries 11.13 and 18.15, the conjecture is true for k ∈ {2, 3}. Moreover,
by the results of this section, the conjecture holds for n ∈ [k+2, 2k+2]∪{3k+2}
for all k and also for n = t(k+1)

2 whenever t ≥ 2 and k is odd.

18.3 Graphs with Some Small Components

Let µ = (µ1, . . . , µm) be a weakly increasing sequence of positive integers.
Define SSCµ

n as the simplicial complex of graphs G on n vertices such that G
has at least m connected components and such that the ith smallest connected
component (with respect to vertex size) has at most µi vertices for i ∈ [1,m].
Note that SSCks

n = SSCk,...,k
n coincides with the complex SSCk,s

n introduced
in Section 7.1. In this section, we show that SSCµ

n inherits many of the nice
properties of NCn.

To facilitate analysis, we generalize the definition of SSCµ
n further, in-

troducing weights on the vertices. For weakly increasing sequences λ =
(λ1, . . . , λl) and µ = (µ1, . . . , µm), say that λ ≤ µ if l ≥ m and λi ≤ µi

for 1 ≤ i ≤ m. Let ω = (ω1, . . . , ωn) be a sequence of positive integers; for
S ⊆ [n], let

ωS =
∑
s∈S

ωs.

For a graph G on the vertex set [n] consisting of k connected components, let
the corresponding vertex sets V1, . . . , Vk be ordered such that ωV1 ≤ . . . ≤ ωVk

.
Define

ω(G) = (ωV1 , . . . , ωVk
).

Let µ = (µ1, . . . , µm) be a (not necessarily nonempty) weakly increasing se-
quence of positive integers such that

∑
i µi <

∑
j ωj ; we say that (µ, ω) is

a permitted pair on n vertices if this condition is satisfied. Let SSCµ
ω be the

simplicial complex of graphs G on the vertex set [n] satisfying ω(G) ≤ µ. Let
L(µ) be the length of the sequence µ; L(µ1, . . . , µm) = m.

Theorem 18.17. Let Σ be an SPI complex over the graphic matroid on Kn

(see Section 13.3) and let (µ, ω) be a permitted pair on n vertices. Write Λ =
Σ ∩SSCµ

ω. Let H ⊆ G be graphs such that every two connected components in
H are joined by at least one edge from G\H. Then lkΛ(G)(H) is V D+(c(H)−
2− L(µ)). In particular, Λ is V D+(n− 2− L(µ)).
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Proof. We use induction on G \H. Write d(H) = c(H)− 2−L(µ). If H = G,
then lkΛ(G)(H) is void if µ �= ∅ and equal to the (−1)-simplex if µ = ∅.

Suppose that G \ H contains an edge e that joins two vertices from the
same connected component in H. Then e is either not present at all or a cone
point in lkΛ(G)(H). Namely, this holds for lkΣ(G)(H) since Σ is SPI, and e
is obviously a cone point in lkSSCµ

ω(G)(H). It follows that lkΛ(G)(H) is a cone
over or equal to lkΛ(G−e)(H); by induction, lkΛ(G−e)(H) is V D+(d(H)), which
implies that the same is true for lkΛ(G)(H).

Next, suppose that all edges in G\H join vertices from different connected
components in H. Suppose that there are edges e, e′ joining the same pair of
components. By induction, lkΛ(G)(H + e) is V D+(c(H + e) − 2 − L(µ)) =
V D+(d(H) − 1) and lkΛ(G−e)(H) is V D+(d(H)). By definition, we obtain
that lkΛ(G)(H) is V D+(d(H)).

The remaining case is that every two connected components in H are
joined by exactly one edge in G. Let V1, . . . , Vk be the connected components
ordered such that ωV1 ≤ ωVj

for j ∈ [2, k]. If ωV1 > µ1, then lkΛ(G)(H) is
void. Thus assume that ωV1 ≤ µ1. For j ∈ [2, k], let ej be the edge joining V1

and Vj . Write E1 = {ej : j ∈ [2, k]} and Γ = lkΛ(G)(H). Consider the lifted
complex ΓY = Γ (Y,E1 \ Y ) for each Y ⊆ E1. We need to prove that each ΓY

is V D+(d(H)).
First, consider the case Y �= ∅. Then ΓY = {Y } ∗ lkΛ(G−(E1\Y ))(H + Y ),

which by induction is V D+(r), where

r = |Y |+ c(H + Y )− 2− L(µ) = c(H)− 2− L(µ) = d(H);

here we use the fact that c(H + Y ) = c(H)− |Y |.
Next, consider the case Y = ∅. For simplicity, assume that V1 = [n′ + 1, n]

for some n′ ≥ 1. We have that Γ∅ = lkΛ(G−E1)(H). In G − E1, we have two
connected components, one with vertex set [n′] and the other with vertex
set V1 = [n′ + 1, n]. A set Z such that H ⊆ H + Z ⊆ G − E1 belongs to
lkΛ(G−E1)(H) if and only if H([n′]) + Z belongs to Λ′ := Σ(Kn′) ∩ SSCµ′

ω′ ,
where µ′ = (µ2, . . . , µm) and ω′ = (ω1, . . . , ωn′); m = L(µ). Note that (µ′, ω′)
is a permitted pair on n′ vertices. Namely,

ω[n′] = ω[n] − ωV1 >

m∑
i=1

µi − µ1 =
m∑

i=2

µi.

Now, induced subcomplexes of SPI complexes remain SPI over the correspond-
ing induced matroid; in particular, Σ(Kn′) is SPI. Moreover, lkΛ(G−E1)(H)
coincides with lkΛ′(G′)(H ′), where G′ = G([n′]) and H ′ = H([n′]). G′ and H ′

satisfy the conditions in the theorem; we have exactly one edge in G′ \ H ′

between any two connected components Vi and Vj in H ′. By induction,
lkΛ′(G′)(H ′) is hence V D+(r), where

r = c(H ′)− 2− L(µ′) = c(H)− 1− 2− L(µ) + 1 = d(H).
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This concludes the proof. �

By Theorem 13.24, the full simplex, the complex Fn of forests, and the complex
Bn of bipartite graphs on n vertices are all SPI. As a consequence, we have
the following corollary.

Corollary 18.18. Let (µ, ω) be a permitted pair on n vertices. Then the com-
plexes SSCµ

ω, Fn ∩ SSCµ
ω, and Bn ∩ SSCµ

ω are V D+(n− 2− L(µ)). �

Remark. This yields a new proof that Fn∩NCn and Bn∩NCn are V D+(n−3);
see Corollary 13.2 and Theorem 14.6.

Let us consider the special case SSCk,s
n ; recall that this is the complex of

graphs on n vertices with at least s connected components of vertex size at
most k.

Theorem 18.19. Let k, s ≥ 1. For each n > ks, we have that SSCk,s
n is

V D+(n − 2 − s). Moreover, write Fk(x) =
∑k

r=1(−1)r xr

r . Then Hk,s(x) =∑
n≥1 χ̃(SSCk,s

n )xn

n! satisfies

Hk,s(x) = (1 + x)

(
eFk(x) ·

s−1∑
r=0

(−Fk(x))r

r!
− 1

)
.

Proof. The first claim is an immediate consequence of Theorem 18.17. For
the second claim, recall that Cn is the family of all connected graphs on n
vertices; we know by Proposition 18.1 that χ̃(Cn) = (−1)n(n− 1)!. Let Σk

n be
the family of graphs in which each component has size at least k + 1; define
Σk

0 = {∅}. By Corollary 6.15, we have that

∑
n≥0

χ̃(Σk
n) = − exp

(
−
∑
r>k

(−1)r xr

r

)
= − exp (ln(1 + x) + Fk(x))

= −(1 + x)eFk(x).

Next, let Γ k,s
n be the family of graphs with at least s components such

that each component has size at most k. By Corollary 6.16,

∑
n≥0

χ̃(Γ k,s
n ) =

s−1∑
r=0

(−Fk(x))r

r!
− e−Fk(x).

For any graph G in SSCk,s
n , let G>k be the induced subgraph consisting

of all components of size at least k + 1 and let G≤k be the induced subgraph
consisting of all components of size at most k. It is clear that G>k is isomorphic
to some graph in Σk

r for some r ∈ [0, n] (in fact, r ≤ n − s) and that G≤k is
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isomorphic to some graph in Γ k,s
n−r. Indeed, this property defines SSCk,s

n . As a
consequence,

−χ̃(SSCk,s
n ) =

n∑
r=0

(
n

r

)
χ̃(Σk

r )χ̃(Γ k,s
n−r).

It follows that

Hk,s(x) = (1 + x)eFk(x) ·
(

s−1∑
r=0

(−Fk(x))r

r!
− e−Fk(x)

)
,

which concludes the proof. �

Corollary 18.20. For 1 ≤ s ≤ n− 1, we have that

|χ̃(SSC1,s
n )| = n

(
n− 2
s− 1

)
−
(

n− 1
s− 1

)
.

Proof. By Theorem 18.19, we have that

H1,s(x) = (1 + x)

(
e−x ·

s−1∑
r=0

xr

r!
− 1

)
.

For n ≥ s + 1, the coefficient of xn

n! is

s−1∑
r=0

(−1)n−r

((
n

r

)
− n

(
n− 1

r

))
= (−1)n+s−1

((
n− 1
s− 1

)
− n

(
n− 2
s− 1

))
,

which concludes the proof. �

A weaker variant of Theorem 18.17 is the following result:

Theorem 18.21. Let Σ be a PI complex over the graphic matroid on Kn

(see Section 13.2) and let (µ, ω) be a permitted pair on n vertices. Write
Λ = Σ∩SSCµ

ω. Let H ⊆ G be graphs such that every two connected components
in H are joined by at least one edge from G\H. Then lkΛ(G)(H) is V D(c(H)−
2− L(µ)). In particular, Λ is V D(n− 2− L(µ)).

Proof. The proof is identical to the proof of Theorem 18.17, except for the case
that G\H contains an edge e that joins two vertices from the same connected
component in H. In this case, e may be present in lkΛ(G)(H) without being
a cone point if Σ is not SPI. However, it is still true then that we may use
induction to conclude that lkΛ(G)(H + e) is V D(c(H)− 2− L(µ)) and hence
V D(c(H)− 3− L(µ)). Since lkΛ(G−e)(H) is V D(c(H)− 2− L(µ)), it follows
that lkΛ(G)(H) is V D(c(H)− 2− L(µ)) as desired.

For the final case in the proof of Theorem 18.17, we need the fact that
induced subcomplexes of PI complexes remain PI over the corresponding in-
duced matroid, but this is obvious by Theorem 13.6. �
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18.4 Graphs with Some Component of Size
Not Divisible by p

Let n and p be positive integers such that p divides n. Recall that NCn,p is
the complex of graphs such that some component has a vertex set of size not
divisible by p.

Corollary 18.22. For any graph G on n vertices, NCn,p(G) is V D+(n −
c(G)−2), where c(G) is the number of connected components in G. Moreover,
for p > 1, the Euler characteristic of NCn,p satisfies

H(x) =
∑
k≥1

χ̃(NCkp,p)
xkp

(kp)!
= (1− (−x)p)1/p − 1.

Proof. The first claim is a consequence of Theorem 13.25 and the fact that
NCn,p is a SPI ∗ complex; use Theorem 13.32. For the second claim, we know
by Proposition 18.1 that χ̃(Cn) = (−1)n(n− 1)!. Hence by Corollary 6.15, we
have that

−H(x) = 1− exp

⎛
⎝∑

k≥1

(−x)kp

kp

⎞
⎠ = 1− exp

(
1
p

ln(1− (−x)p)
)

= 1− (1− (−x)p)1/p,

which concludes the proof. �

18.5 Disconnected Hypergraphs

The k-equal partition lattice Π1,≥k
n is the sublattice of Πn consisting of all

partitions in which each set has either size one or size at least k. Analogously
to the correspondence between Πn and NCn described earlier in this section,
one easily proves that the order complex of the proper part of Π1,≥k

n has
the same homotopy type as the complex HNCn,k of disconnected k-uniform
hypergraphs. By a result of Björner and Welker about Π1,≥k

n , this yields the
following theorem:

Theorem 1 (Björner and Welker [16]). HNCn,k is homotopy equivalent
to a wedge of spheres in various dimensions; there is homology in dimension d
if and only if d = n− 3− t(k− 2) for some integer t ∈ [1, �n

k �]. For k ≥ 3, the
rank of the top nonvanishing homology group H̃n−k−1(HNCn,k; Z) is

(
n−1
k−1

)
.

Indeed, the rank of H̃d(HNCn,k; Z) is a multiple of
(
n−1
k−1

)
for all d.

Björner and Wachs [13] proved that Π1,≥k
n is nonpure shellable. See Sundaram

and Wachs [138] for detailed information about the homology of Π1,≥k
n .
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Not 2-connected Graphs

We examine the complex NC2
n of not 2-connected graphs on n vertices. One

of the most well-known and celebrated results in the field of graph com-
plex topology is the theorem that NC2

n is homotopy equivalent to a wedge of
(n− 2)! spheres of dimension 2n− 5; Babson, Björner, Linusson, Shareshian,
and Welker [3] and, independently, Turchin [139] proved this theorem. In
Section 19.1, we outline a third proof due to Shareshian [118] and present
some consequences and related results. We also discuss the important lat-
tice of block-closed graphs introduced by Babson et al. [3]. This lattice is
Cohen-Macaulay [117] and its proper part is homotopy equivalent to NC2

n. In
Section 19.2, we proceed with a result by Shareshian about a concrete basis for
the homology of the quotient complex C2

n = 2Kn/NC2
n of 2-connected graphs.

In Section 19.3, we show that NC2
n is semi-nonevasive and derive from that

a new proof of Shareshian’s homology basis result. The chapter is concluded
in Section 19.4 with a generalization of NC2

n defined in terms of a sequence
A = (A1, . . . , Ar) of subsets of [n]. A graph G belongs to this generalized
complex if and only if each Ai contains a vertex a with the property that
G([n] \ {a}) is disconnected.

The complex C2
n appears in Vassiliev’s analysis of the homology and coho-

mology of certain spaces of knots [143]; see Section 1.1.5 for some discussion.

19.1 Homotopy Type

Babson, Björner, Linusson, Shareshian, and Welker [3] and, independently,
Turchin [139] proved the following about NC2

n:

Theorem 19.1. NC2
n is homotopy equivalent to a wedge of (n − 2)! spheres

of dimension 2n− 5. �
Babson et al. [3] also introduced the lattice of block-closed graphs. A graph
G is block-closed if the edge vw belongs to G for any vertices v and w that
are contained in one and the same simple cycle in G. The maximal cliques
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in a block-closed graph G are exactly the “2-connected components” in G;
see Babson et al. [3] and Shareshian [118] for more information. A block in
a block-closed graph G is a maximal clique containing at least two vertices;
define b(G) as the number of blocks in G. Define Πn,2 as the poset of block-
closed graphs.

Theorem 19.2 (Babson et al. [3]). Πn,2 is a lattice with rank function
ρ(G) = 2n − 2c(G) − b(G). In particular, a block-closed graph G contains at
least 2n− 2c(G)− b(G) edges. �

Define the operator f : P (NC2
n)→ P (NC2

n) by mapping a graph G to the graph
obtained from G by adding all edges vw such that v and w are contained in
one and the same cycle. We refer to f(G) as the block closure of G. It is easy
to see that f is a closure operator with image the proper part of Πn,2. This
implies the following:

Theorem 19.3 (Babson et al. [3]). For n ≥ 2, the proper part of Πn,2 is
homotopy equivalent to NC2

n and hence has the homotopy type of a wedge of
(n− 2)! spheres of dimension 2n− 5. �

We now outline a proof of a generalization of Theorem 19.1 based on
discrete Morse theory. This alternate proof is, in all essence, due to Shareshian
[118], who exploited a matching on NC2

n used by Rodica Simion to determine
the Euler characteristic of NC2

n. Shareshian’s proof is to our knowledge the
first example of a specific problem in topological combinatorics that was solved
using discrete Morse theory in its full strength.

Theorem 19.4 (Shareshian [118, 117]). If H is a block-closed graph on n
vertices, then the lifted complex NC2

n(H, ∅) is homotopy equivalent to a wedge
of spheres of dimension δ(H) := |H| + 2c(H) + b(H) − 5. If H is not block-
closed, then NC2

n(H, ∅) is a cone. As a consequence, the (2n − 5)-skeleton of
NC2

n is Cohen-Macaulay. Moreover, NC2
n is homotopy equivalent to a wedge

of (n− 2)! spheres of dimension 2n− 5.

Proof. We want to prove that NC2
n(H, ∅) admits an acyclic matching such that

all unmatched graphs contain |H| + 2c(H) + b(H) − 4 edges. First, assume
that H is not block-closed. Let v and w be any nonadjacent vertices contained
in a simple cycle in H. It is clear that vw is a cone point in NC2

n(H, ∅),
because there is no way to separate v from w by removing a vertex in a graph
containing H.

From now on, assume that H is block-closed. If H is the complete graph,
then the theorem is trivial. Moreover, the case n = 2 is easy to check. Thus
assume that H is not complete and that n ≥ 3. We define an acyclic matching
on the quotient complex C2

n(H, ∅) of 2-connected graphs containing H such
that all unmatched graphs contain δ(H) + 2 edges. The matching turns out
to be straightforward to translate into an acyclic matching on NC2

n(H, ∅);
compare to the discussion at the beginning of Section 17.1.
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Let a and b be any nonadjacent vertices in H; we may assume that a = 1
and b = n. Define a matching on C2

n(H, ∅) by pairing G + 1n with G − 1n
whenever possible. Let ∆ be the family of unmatched graphs. By Lemma 4.1,
we obtain an acyclic matching on C2

n(H, ∅) by combining any acyclic matching
on ∆ with the matching just defined.

∆ consists of all 2-connected graphs G containing H such that G − 1n is
not 2-connected. Let G be a graph in ∆ and let Ĝ be the block closure of
G − 1n. We have that the vertex 1 is contained in a unique block in Ĝ; let
MG be the vertex set of this block. To prove uniqueness, note that if 1 were
contained in more than one block, then 1 would be a cut point in Ĝ and hence
in G; this is a contradiction. Note that MG is the set of neighbors of 1 in Ĝ
and that MG does not contain the vertex n.

We claim that MG contains a unique vertex xG �= 1 such that xG is a cut
point in Ĝ.

For existence, let x be a vertex in MG such that xy ∈ Ĝ for some y not in
MG. There must be some x with this property, because otherwise there would
be no path from 1 to n in Ĝ. If x were not a cut point in Ĝ, then there would
be a path from 1 to y in Ĝ([n] \ {x}). Since 1x, xy ∈ Ĝ, this would imply that
there is a simple cycle in Ĝ containing 1 and y. However, Ĝ is block-closed,
which yields that 1y ∈ Ĝ and hence that y ∈MG, a contradiction.

For uniqueness, suppose that x′ is another vertex such that x′z ∈ Ĝ for
some z not in MG; by symmetry, we obtain that x′ is a cut point in Ĝ sep-
arating 1 and z. Now, since x′ is not a cut point in Ĝ + 1n, there must be a
path from z to n in Ĝ([n] \ {x′}). This path cannot use any vertex in MG, as
this would yield a path from z to 1 in Ĝ([n] \ {x′}). By symmetry, there is a
path from y to n in G([n] \MG). As a consequence, there is a path from z to
y in G([n] \MG). However, this is a contradiction, as we can extend this to a
path from z to 1 in Ĝ([n] \ {x′}); yx and x1 are both present in this graph.

Let ∆(M,x) be the family of graphs G in ∆ such that M = MG and
x = xG. Since MG can only increase if we add edges to G, it is clear that
the poset map sending ∆(M,x) to (M,x) satisfies the Cluster Lemma 4.2; we
consider (M,x) as smaller than (M ′, x′) if M � M ′. It remains to prove that
each ∆(M,x) admits an acyclic matching such that each unmatched graph
contains δ(H) + 2 edges. If ∆(M,x) is void, then we are done. From now on,
assume that ∆(M,x) is nonvoid. In particular, there are no edges in H from
M \ {x} to [n] \ (M \ {x}).

We divide into two cases depending on whether or not xn belongs to H.
First, assume that xn /∈ H. Define a matching on ∆(M,x) by pairing G− xn
and G + xn whenever possible. Let Σ(M,x) be the family of unmatched
graphs. We claim that a graph G in ∆(M,x) belongs to Σ(M,x) if and only
if G([n − 1]) is 2-connected and the neighborhood of n in G is {1, x}. In
particular, Σ(M,x) is void unless M = [n− 1].

To prove the above statement, we first note that one direction is obvious.
For the other direction, assume that G ∈ Σ(M,x); this means that G and
G(M) are 2-connected, whereas G−1n and G−xn are not. The only possible



266 19 Not 2-connected Graphs

cut point in G − xn is 1, because any cut point in G − xn must separate x
and n, and 1 cannot be separated from either of these vertices. Moreover, by
construction, x separates 1 from n in G−1n. As a consequence, n cannot be in
the same connected component as 1 and x in G\{1n, xn}. Since n is not a cut
point in G, it follows that n is isolated in G \ {1n, xn} as desired. Moreover,
again by construction, 1 and x belong to the same 2-connected component in
G− 1n, which implies that we must have that M = [n− 1].

The conclusion is that Σ(M,x) is void unless M = [n−1] and n is isolated
in H, in which case we have that

Σ([n− 1], x) = {{1n, xn}} ∗ C2
n−1(H([n− 1]), ∅).

By induction, C2
n−1(H([n − 1]), ∅) admits an acyclic matching such that all

unmatched graphs contain exactly

δ(H[n− 1]) + 2 = |H|+ b(H([n− 1])) + 2c(H([n− 1]))− 3
= |H|+ b(H) + 2c(H)− 5 = δ(H)

edges. It follows that Σ([n − 1], x) admits an acyclic matching such that all
unmatched graphs contain δ(H) + 2 edges.

At this point, note that if H is the empty graph, then there are n−2 choices
for x; thus an induction argument yields that the reduced Euler characteristic
of C2

n is (n− 2) · χ̃(C2
n−1) = (n− 2)! as desired.

Next, suppose that xn ∈ H. We claim that a graph G containing H belongs
to ∆(M,x) if and only if the two induced subgraphs on M and P = ([n] \
M)∪{x} are 2-connected. One direction is immediate. For the other direction,
suppose that G belongs to ∆(M,x) but that the induced subgraph G(P ) is
not 2-connected. Then there is a cut point y in G(P ) separating x from some
vertex z. We cannot have that y = n, because then n would separate M from
z in G. Moreover, since xn ∈ G(P ), we obtain that n belongs to the same
connected component as x in G(P \ {y}). Since 1n is the only edge between
M \ {x} and P \ {x} in G, it follows that y separates the whole of M from z
in G. Hence y is a cut point in G, which is a contradiction.

As a consequence,

∆(M,x) = {{1n}} ∗ C2
M (H(M), ∅) ∗ C2

P (H(P ), ∅);

C2
X is the quotient complex of 2-connected graphs on the vertex set X. Induc-

tion yields that C2
M (H(M), ∅) and C2

P (H(P ), ∅) admit acyclic matchings such
that all unmatched graphs contain δ(H(M))+2 and δ(H(P ))+2 edges, respec-
tively. This yields an acyclic matching on ∆(M,x) such that all unmatched
graphs have

1 + δ(H(M)) + 2 + δ(H(P )) + 2
= |H|+ b(H(M)) + b(H(P )) + 2c(H(M)) + 2c(H(P ))− 5
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edges. One readily verifies that b(H(M)) + b(H(P )) = b(H) and c(H(M)) +
c(H(P )) = c(H) + 1; hence

|H|+ b(H(M)) + b(H(P )) + 2c(H(M)) + 2c(H(P ))− 5
= |H|+ b(H) + 2c(H)− 3 = δ(H) + 2

as desired.
To prove that the (2n − 5)-skeleton of NC2

n is Cohen-Macaulay, use
Theorem 19.2 to conclude that lkNC2

n
(H) is (2n− 6− |H|)-connected;

δ(H) = |H|+ 2c(H) + b(H)− 5 ≥ 2n− 5. �

As an immediate consequence of the proof of Theorem 19.4, we have the
following result:

Corollary 19.5. For n ≥ 2, NC2
n admits an acyclic matching with (n − 2)!

critical faces of dimension 2n−5. In particular, NC2
n is semi-collapsible. More-

over, C2
n admits an acyclic matching with (n− 2)! critical faces of dimension

2n− 4. �
Using Theorem 19.4, Shareshian [117] established the following result

about the lattice Πn,2:

Theorem 19.6 (Shareshian [117]). For n ≥ 2, Πn,2 is Cohen-Macaulay.

Proof. Recall from Theorem 19.2 that the rank function on Πn,2 is given by
ρ(G) = 2n− 2c(G)− b(G). For each interval (H,G), we prove that the order
complex ∆(H,G) is homotopy equivalent to a wedge of spheres of dimension
ρ(G) − ρ(H) − 2. By Theorem 5.29, this is sufficient to prove the theorem;
every link in the order complex of a poset is a join of intervals.

First, assume that G = Kn. By the Closure Lemma 6.1, we have that
∆(H,Kn) is homotopy equivalent to lkNC2

n
(H). By Theorem 19.4, this link is

homotopy equivalent to a wedge of spheres of dimension 2c(H) + b(H)− 5 =
ρ(Kn)− ρ(H)− 2 as desired.

Suppose that G �= Kn and let V1, . . . , Vr be the blocks in G. Write Gi =
G(Vi) and Hi = H(Vi). Let ΣG,H be the lifted complex consisting of all graphs
G′ such that H ⊆ G′ ⊆ G and such that G′(Vi) is not 2-connected for at least
one i. By the Closure Lemma 6.1, it is clear that lkΣG,H

(H) is homotopy
equivalent to (H,G). Define an acyclic matching on ΣG,H in the following
manner:

We may assume that Gi �= Hi for some i, say i = r. Let ab be an edge in
Gr \Hr. Let Σ0

G,H be the subfamily of ΣG,H consisting of all graphs G′ such
that G′(Vj) ∈ NC2

Vj
for some j < r; NC2

Vj
is the complex of not 2-connected

graphs on the vertex set Vj . It is clear that ab is a cone point in Σ0
G,H .

Let Σ1
G,H be the remaining family; Σ1

G,H is the join of the families
C2

V1
(H1, ∅), . . ., C2

Vr−1
(Hr−1, ∅), and NC2

Vr
(Hr, ∅). By Theorems 5.29 and 19.4,

Σ1
G,H admits an acyclic matching such that all unmatched graphs contain
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r∑
i=1

(|Hi|+ b(Hi) + 2c(Hi)− 3)− 1

edges. One readily verifies that b(H) =
∑

i b(Hi) and b(G) = r. Moreover, it
is easy to check that

c(H) =
r∑

i=1

c(Hi) + n−
r∑

i=1

|Vi|

and c(G) = r + n−∑i |Vi|. For any unmatched graph G0, it follows that the
number of edges in G0 \H equals

b(H) + 2c(H)− 2n + 2
∑

i

|Vi| − 3r − 1 = 2
∑

i

|Vi| − 3r − 1− ρ(H).

Now,
ρ(G) = 2n− r − 2r − 2n + 2

∑
i

|Vi| = 2
∑

i

|Vi| − 3r.

As a consequence, the number of edges in G0 \H is ρ(G)− ρ(H)− 1, which
implies that lkΣG,H

(H) is homotopy equivalent to a wedge of spheres of di-
mension ρ(G)− ρ(H)− 2. �

Finally, let us say a few words about the complex HNC2
n,t of not 2-connected

t-uniform hypergraphs. A t-uniform hypergraph H on a vertex set V is k-
connected if the induced subhypergraph H(V \W ) is connected for each set
W ⊂ V of size less than k. Analyzing the lattice Πn,2 in greater detail,
Shareshian [117] was able to prove that HNC2

n,3 is homotopy equivalent to a
wedge of spheres of dimension n−4. In addition, he computed the exponential
generating function for χ̃(HNC2

n,3). For t ≥ 4, the homotopy type of HNC2
n,t

remains an open problem except in trivial cases.

19.2 Homology

Shareshian [118] computed an explicit basis for the homology of the quotient
complex C2

n = 2Kn/NC2
n in terms of the fundamental cycle of the associahe-

dron:

Theorem 19.7 (Shareshian [118]). Let n ≥ 3. Define ρ(π∗) as in (17.3) in
Section 17.2; we have that ρ(π∗) = ρ(π)∧ [ρ(Bdn)]. Then the set {ρ(π∗) : ρ ∈
S[n], ρ1 = 1, ρn = n} is a basis for the homology of C2

n. �

Note that the set in Theorem 19.7 coincides with that in Theorem 17.6. As a
consequence, there is a natural embedding of H̃2n−4(C2

n) into H̃2n−4(Hamn).
In Section 19.3, we give a new proof of Theorem 19.7.
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The observation that one may express Shareshian’s basis in terms of the
fundamental cycle of the associahedron is due to Shareshian and Wachs [118].

Define
ρ(π̂∗) = ρ(π) ∧ ∂([ρ(Bdn)]). (19.1)

Note that π̂∗ is the fundamental cycle of the sphere obtained by taking the
join of the associahedron An and the boundary complex of the simplex on the
set Bdn. This sphere is of importance in the analysis of the complex NCR1,0

n

of graphs with a separable polygon representation; see Section 21.3.

Corollary 19.8. The set {ρ(π̂∗) : ρ ∈ S[n], ρ1 = 1, ρn = n} is a basis for the
homology of NC2

n.

Proof. This is an immediate consequence of Theorem 19.7 and the long exact
sequence for the pair (2Kn ,NC2

n); see Theorem 3.3. �

19.3 A Decision Tree

We show that NC2
n is semi-nonevasive, thereby strengthening Shareshian’s

result in Corollary 19.5 that NC2
n is semi-collapsible. Moreover, we show how

to use this result to reestablish Theorem 19.7.

Theorem 19.9. For n ≥ 3, NC2
n ∼ (n − 2)! · t2n−5. In particular, NC2

n is
semi-nonevasive.

Proof. Let En = {in : i ∈ [n−1]} and consider the family ΣY = NC2
n(Y,En\Y )

for each Y ⊆ En. |Y | ≤ 1 means that the degree of the vertex n is at most
one. In particular, any edge ij such that i, j �= n is a cone point in ΣY , which
implies that ΣY is nonevasive.

From now on, assume that |Y | ≥ 2. First, we claim that ΣEn
coincides

with {En} ∗ NCn−1, where NCn−1 is the complex of disconnected graphs on
n − 1 vertices. Namely, since n is adjacent to all other vertices in a graph G
containing En, n is the only possible cut point. Clearly, n is a cut point if and
only if G([n−1]) is disconnected. By Proposition 18.1, NCn−1 ∼ (n−2)! ·tn−4.
As a consequence, if we can prove that ΣY is nonevasive whenever Y � En,
then it follows that NC2

n ∼ (n−2)!·t|En| ·tn−4 = (n−2)!·t2n−5 by Lemma 5.22.
Now, for a given set Y � En such that |Y | ≥ 2, define ε(Y ) = {i : in ∈ Y }

and BY =
(
[n−1]

2

)
\
(
ε(Y )

2

)
. Consider the family ΣY,Z = ΣY (Z,BY \ Z) for

each possible edge set Z ⊆ BY . ΣY,Z consists of graphs containing the edge
set E′ = Y ∪ Z but not any edges from En \ Y or BY \ Z. There are three
possibilities for the graph G = ([n], E′).

• G is disconnected. Since any two vertices w1, w2 ∈ ε(Y ) already belong to
the same component in G, w1w2 is a cone point in ΣY,Z .

• G is connected, and some cycle contains the vertex n. Let w1, w2 ∈ ε(Y )
be the neighbors of n in this cycle. It is clear that adding or deleting
w1w2 to or from a face of ΣY,Z does not affect the 2-connectivity of the
corresponding graph; thus w1w2 is a cone point.
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• G is connected, and no cycle contains the vertex n. Let w1 ∈ ε(Y ) be such
that n is not the only neighbor of w1 in G; such a w1 exists since G is
connected and fewer than n − 1 vertices are adjacent to n. Let v �= n
be a neighbor of w1 in G. We claim that w1 is a cut point separating v
from {n} ∪ (ε(Y ) \ {w1}) in G, and hence also in G +

(
ε(Y )

2

)
. Namely, if

there were a path from v to n not using w1, then this path would form
a cycle together with w1. In particular, w1w2 is a cone point in ΣY,Z for
any w2 ∈ ε(Y ) \ {w1}.

As a consequence, ΣY,Z is always nonevasive, which by Lemma 5.22 implies
that ΣY is nonevasive; thus we are done. �

Corollary 19.10. Let G �= Kn be a graph on n vertices. Then the induced
subcomplex NC2

n(G) has no homology above dimension 2n− 6.

Proof. By Theorem 19.4, for any nonempty graph H, lkNC2
n
(H) has no ho-

mology above dimension 2c(H) + b(H) − 5. This is at most 2n − 6; the
block-closure of H has rank at least one in the lattice Πn,2, meaning that
2n− 2c(H)− b(H) ≥ 1 by Theorem 19.2. As we just concluded, delNC2

n
(e) is

nonevasive for every e; hence we are done by Proposition 6.7. �

Remark. Corollary 19.10 implies the well-known and easily proved result that
every minimal 2-connected graph on n ≥ 4 vertices has at most 2n− 4 edges.
Namely, if G = ([n], E) is a minimal nonface of NC2

n, then NC2
n(G) coincides

with the boundary of the full simplex on E.

New proof of Theorem 19.7. We may view the decision tree just given as a
decision tree on C2

n = 2Kn/NC2
n with (n − 2)! evasive graphs of dimension

2n − 4. First, we claim that we can define the decision tree such that each
evasive graph is of the form

Tρ = En ∪ {ρiρi+1 : i ∈ [1, n− 2]},

where En = {in : i ∈ [n−1]} and {ρ1, . . . , ρn−1, ρn} = [n]; ρ1 = 1 and ρn = n.
Namely, by the proof of Theorem 19.9, given any optimal decision tree on
Cn−1 = 2Kn−1/NCn−1, we obtain an optimal decision tree on C2

n = 2Kn/NC2
n

with one evasive set En ∪ σ for each evasive set σ in Cn−1. By the proof
of Proposition 18.3, we may define an optimal decision tree on Cn−1 such
that the evasive faces are exactly of the form {ρiρi+1 : i ∈ [1, n − 2]} with
{ρ1, . . . , ρn−1} = [n− 1] and ρ1 = 1.

It remains to show that we can define the decision tree such that the
underlying acyclic matching has the property that all graphs appearing in the
cycle π∗

ρ except Tρ are matched with smaller graphs. By Corollary 4.17 and
the fact that π∗

ρ is a cycle in the chain complex of C2
n, it then follows that the

(n − 2)! cycles π∗
ρ are exactly the homology cycles generated by the acyclic

matching.
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Let T be a triangulated n-gon with boundary edges ρ1ρ2, ρ2ρ3, . . . , ρnρ1;
ρ1 = 1 and ρn = n; assume that T �= Tρ. With notation as in the proof of
Theorem 19.9, T belongs to a family ΣY,Z for some Y � En containing 1n
and ρn−1n and some Z ⊂ BY =

(
[n−1]

2

)
\
(
ε(Y )

2

)
.

As in the proof of Theorem 19.9, let G be the graph with edge set Y ∪Z.
Now, we have to be careful, because different T and ρ may give rise to the
same G. Specifically, we need to find a cone point in ΣY,Z such that this cone
point is present in any triangulated n-gon T in ΣY,Z ; it is not sufficient to
find a cone point that is present in a given fixed T .

Let x be minimal such that xn ∈ Y and x is contained in a cycle in G
containing n. Such an x exists: we obtain G from T by removing all ρiρi+1

such that ρin, ρi+1n ∈ Y . Since Y �= En and 1n, ρn−1n ∈ Y , there must exist
some a, b with b − a ≥ 2 such that ρan, ρbn ∈ Y and ρcn /∈ Y if a < c < b;
compare to the situation in the proof of Proposition 16.2. Let y be arbitrarily
chosen such that x and y are contained in a minimal cycle in G containing n
and such that yn ∈ G.

By the proof of Theorem 19.9 (the second of the three possibilities for G),
xy is a cone point in ΣY,Z . Since x and y are defined without reference to T
or ρ, it suffices to prove that xy ∈ T ; by symmetry, this will then hold for all
other relevant triangulated n-gons in ΣY,Z . We have that x = ρi and y = ρj

for some i, j; j − i ≥ 2 (or i − j ≥ 2). Since xn, yn ∈ T , it is clear that xy
does not cross any edge in T with both endpoints in [n − 1]. Namely, such
an edge would cross either xn or yn. Suppose that xy crosses some edge ρkn;
i < k < j. Since x and y are part of the same minimal cycle in G, we have
vertices

i = i0 < i1 < . . . < ir−1 < ir = j

such that ρis
ρis+1 ∈ G for all s and such that the cycle

(n, ρi, ρi1 , . . . , ρir−1 , ρj , n)

is minimal. If some is equals k, then we have a contradiction to the minimality
of the cycle. Hence is < k < is+1 for some s, but then ρkn and ρis

ρis+1 cross
in T , another contradiction. Thus we are done. �

19.4 Generalization and Yet Another Proof

Finally, we present a generalization of NC2
n that yields another approach to

proving Theorem 19.1. Let ∆n−1 be a monotone graph property on n − 1
vertices. For any vertex set V of size n−1, we define ∆V as the monotone graph
property on V naturally isomorphic to ∆n−1. For a sequence A = (A1, . . . , Ar)
of subsets of [n], let ∆2

n(A) be the complex of graphs G on n vertices such
that the following holds:

• For each i ∈ [r], there is an a ∈ Ai such that G([n] \ {a}) belongs to
∆[n]\{a}.
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For example, if ∆n−1 = NCn−1, then ∆2
n([n]) = NC2

n.
Define ∆2

n(a1, . . . , ar) = ∆2
n({a1}, . . . , {ar}).

Lemma 19.11. Suppose that ∆2
n(1, . . . , r) is contractible whenever r ≤ n−1.

Let A = (A1, . . . , Ar) be a sequence of pairwise disjoint and nonempty subsets
of [n]. Then

∆2
n(A) �

{
Suspn−r(∆2

n(1, . . . , n)) if
∑

i |Ai| = n;
point otherwise.

Moreover, if ∆2
n(1, . . . , r) is buildable for r ≤ n− 1 and ∆2

n(1, . . . , n) is semi-
buildable, then ∆2

n(A) is semi-buildable.

Proof. We use induction on the number r of components in A. If each Ai has
size one, then we are done by assumption and symmetry. Otherwise, assume
that |Ar| ≥ 2 and write Ar as a disjoint union of two nonempty sets Ar,1 and
Ar,2. Write A′ = (A1, . . . , Ar−1); hence A = (A′, Ar). One easily checks that

∆2
n(A′, Ar,1) ∪∆2

n(A′, Ar,2) = ∆2
n(A′, Ar);

∆2
n(A′, Ar,1) ∩∆2

n(A′, Ar,2) = ∆2
n(A′, Ar,1, Ar,2).

By induction, ∆2
n(A′, Ar,1) and ∆2

n(A′, Ar,2) are both contractible. We hence
obtain that

∆2
n(A′, Ar) �

∆2
n(A′, Ar)

∆2
n(A′, Ar,1)

=
∆2

n(A′, Ar,2)
∆2

n(A′, Ar,1, Ar,2)
� Susp(∆2

n(A′, Ar,1, Ar,2));

use the Contractible Subcomplex Lemma 3.16 for the first homotopy equiva-
lence and Lemma 3.18 for the second. Since

∑r
i=1 |Ai| =

∑r−1
i=1 |Ai|+ |Ar,1|+

|Ar,2|, we are done. �

For A = (A1, . . . , Ar), we have that NC2
n(A) is the complex of graphs G

such that each Ai contains a vertex a with the property that G([n] \ {a})
is disconnected. Note that this definition does not take into account whether
G itself is connected. For n ≥ 3, NC2

n([n]) coincides with NC2
n.

Theorem 19.12. Let n ≥ 3 and let A = (A1, . . . , Ar) be a sequence of pair-
wise disjoint and nonempty subsets of [n]. Then

NC2
n(A) �

{∨
(n−2)! S

2n−r−4 if
∑

i |Ai| = n;
point otherwise.

Proof. We prove that NC2
n(1, . . . , r) ∼ 0 whenever 0 ≤ r ≤ n − 1 and n ≥ 3

and that NC2
n(1, . . . , n) ∼ (n − 2)! · tn−4. By Lemma 19.11, this implies the

theorem.
First, consider Σn,r = NC2

n(1, . . . , r) for 0 ≤ r ≤ n − 1. This complex is
trivially nonevasive if n = 3; thus assume that n ≥ 4. If r ≤ 1, then the edge
1n is a cone point; thus assume that r ≥ 2.
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Let En be the set of edges incident to the vertex n. If B contains two edges
an and bn, then ab is a cone point in Σn,r(B,En \B). If B is empty, then any
edge in Kn−1 is a cone point. The remaining case is that B = {kn} for some
k ∈ [n − 1]. One readily verifies that Σn,r({kn}, En \ {kn}) coincides with
{{kn}}∗Σn−1,r if k > r and with {{kn}}∗NC2

n−1(1, . . . , k−1, k +1, . . . , r) ∼=
{{kn}} ∗Σn−1,r−1 if k ≤ r. By induction, we obtain the desired statement.

It remains to consider Σn,n. In a connected graph, not all vertices are
cut points; take a leaf in a spanning tree. In particular, Σn,n is exactly the
complex of disconnected graphs, except that Σn,n does not contain graphs
with an isolated vertex and a connected component of size n − 1. Again,
consider the set En. As before, ab is a cone point in Σn,n(B,En \B) whenever
an, bn ∈ B. Moreover, Σn,n({kn}, En \ {kn}) coincides with

{{kn}} ∗ NC2
n−1(1, . . . , k − 1, k + 1, . . . , n− 1) ∼= {{kn}} ∗Σn−1,n−2 ∼ 0.

The remaining case is B = ∅. Since Σn,n(∅, En) = NCn−1, Proposition 18.3
implies that Σn,n ∼ Σn,n(∅, En) ∼ tn−4 as desired. �

Remark. Lemma 19.11 and the above proof imply that NC2
n is buildable, a

strictly weaker property than the semi-nonevasiveness established in
Theorem 19.9.
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Not 3-connected Graphs and Beyond

1 We verify a conjecture due to Babson, Björner, Linusson, Shareshian, and
Welker [3] about the complex NC3

n of not 3-connected graphs on n vertices:

NC3
n �

∨
(n−3) (n−2)!

2

S2n−4. (20.1)

We obtain this result via a certain acyclic matching on NC3
n such that exactly

(n− 3) · (n− 2)!/2 graphs, each containing 2n− 3 edges, remain unmatched.
See Section 20.1 for details.

While NC3
n is hence semi-collapsible, we have not been able to establish

semi-nonevasiveness. By Proposition 18.3 and Theorem 19.9, both NCn and
NC2

n are semi-nonevasive.
In Section 20.2, we use the given acyclic matching to determine a basis

for the homology of the quotient complex C3
n = 2Kn/NC3

n. In Section 20.3,
we analyze the elements in this basis in greater detail. As it turns out, the
corresponding elements in the homology of NC3

n coincide with the fundamental
cycles of certain spheres with the property that maximal faces correspond to
“disconnected” lattice paths.

In Section 20.4, we give an overview of known results and some open
problems related to the complex NCk

n of not k-connected graphs for k > 3.
The main result is a formula for the Euler characteristic of NCn−3

n due to
Babson et al. [3].

20.1 Homotopy Type

We establish the homotopy equivalence (20.1), thereby verifying the conjec-
ture of Babson et al. [3]. Our proof involves an acyclic matching on NC3

n such

1 This chapter is a revised and extended version of Sections 4 and 7 in a paper [67]
published in Journal of Combinatorial Theory, Series A.
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ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9

Fig. 20.1. G(ρ1, ρ2, ρ3, ρ4, ρ5|ρ6, ρ7, ρ8, ρ9).

that there are (n − 3) · (n − 2)!/2 critical graphs, each of which has 2n − 3
edges. The graphs are easy to describe: For 2 ≤ k ≤ n− 2 and a permutation
ρ = ρ1ρ2 . . . ρn ∈ S[n], let G(ρ1, . . . , ρk|ρk+1, . . . , ρn) be the graph with edge
set

{ρ1ρ2, ρ2ρ3, . . . , ρk−1ρk} ∪ {ρk+1ρk+2, ρk+2ρk+3, . . . , ρn−1ρn} ∪
{ρ1ρk+1, ρ2ρk+1, . . . , ρkρk+1, ρkρk+2, ρkρk+3, . . . , ρkρn}.

The graph G(ρ1, . . . , ρk|ρk+1, . . . , ρn) consists of two “walls” with ρ1, . . . , ρk

forming a path on the left-hand side and ρk+1, . . . , ρn forming a path on the
right-hand side. All vertices on the left wall are connected to ρk+1, whereas all
vertices on the right wall are connected to ρk. See Figure 20.1 for an example.

Let

Uk = {G(ρ1, ρ2, . . . , ρk|ρk+1, ρk+2, . . . , ρn) : ρ1 = 1, ρn = n, ρ2 < ρk+1}.

The family of critical graphs in the acyclic matching is

U =
n−2⋃
k=2

Uk.

For each of the n − 3 choices of k, we have (n − 2)!/2 valid permutations ρ,
which implies that |U| = (n − 3) · (n − 2)!/2. Since all graphs in U have the
same number 2n− 3 of edges, (20.1) is a consequence of Theorem 4.8.

Before proceeding, we give a brief description of the acyclic matching to
be defined: First, we match with respect to the edge 1n whenever possible;
the remaining graphs are those with the property that 1n cannot be added
without creating a 3-connected graph. Second, for any remaining graph G,
we show that there are two unique vertices x, y separating G such that the
connected component in G([n] \ {x, y}) containing 1 is minimal. Matching
with the edge xy, we get rid of all graphs but those of the kind illustrated in
Figure 20.2.

In the final step, we proceed by induction on n to obtain a matching with
the desired properties. This step is technical in nature; roughly speaking,
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a

bc

1

X

Fig. 20.2. A graph in Λ′
n({1}, x, y); {a, b} = {x, y} and n ∈ X.

we consider the graph in NC3
n−1 obtained from the graph in Figure 20.2 by

removing the vertex 1 and the edges 1a and 1b.
We divide the description of the acyclic matching into several steps.

Step 1: Matching with the edge 1n to obtain the family Λn.

Match with 1n whenever possible, meaning that we pair G− 1n and G + 1n
whenever G + 1n is not 3-connected. Let Λn be the family of critical graphs
with respect to this matching. By Lemma 4.1, any acyclic matching on Λn

together with the matching just defined yields an acyclic matching on NC3
n.

One readily verifies that Λ4 consists of the graph K4 − 14 = G(1, 2|3, 4) and
nothing more. Hence from now on we may assume that n ≥ 5.

Step 2: Defining the set X(G).

For any graph G (3-connected or not), let X(G) be the set of pairs {x, y} such
that G([n] \ {x, y}) is disconnected. Let G ∈ Λn. Since G + 1n is 3-connected,
the set X(G + 1n) is empty. This implies that any {x, y} ∈ X(G) separates 1
and n in G. In particular, if {x, y} ∈ X(G), then x, y ∈ [2, n− 1].

Step 3: Defining the pair SG.

For any G ∈ Λn and S = {a, b} ∈ X(G), note that the induced subgraph
G([n] \ S) consists of exactly two connected components

M1(S,G) and Mn(S,G),

where 1 ∈M1(S,G) and n ∈Mn(S,G). Namely, since G + 1n is 3-connected,
G([n] \ S) + 1n is connected. By the following lemma, there is a unique set
S = SG in X(G) such that M1(S,G) is minimal.

Lemma 20.1. Let G ∈ Λn. Then there is a set SG ∈ X(G) such that

M1(SG, G) � M1(S,G)

for all S ∈ X(G) \ {SG}.
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Proof. Let G ∈ Λn. First, for any S = {a, b} ∈ X(G), we claim that there
is a simple path from 1 to each x ∈ M1(S) ∪ {a, b} (M1(S) = M1(S,G))
such that the path does not contain any element in Mn(S) ∪ {a, b}, except
that the endpoint might be equal to a or b. This is true by definition for all
x ∈ M1(S). Thus consider x = a and remove the vertex b from G. The new
graph is connected (otherwise G+1n would not be 3-connected), which implies
that it contains a path from 1 to a. A minimal such path cannot contain any
element from Mn(S), as this would imply that there is a path not containing
either of a and b from 1 to this element. By symmetry, the same property
holds for b when a is removed, and the claim follows.

As a consequence, if Sab = {a, b} and Scd = {c, d} are distinct but not
necessarily disjoint sets in X(G) such that Scd ⊂Mn(Sab) ∪ Sab, then

M1(Scd) ⊇M1(Sab) ∪ (Sab \ Scd) � M1(Sab).

Note that this implies that

M1(Scd) ∪ Scd � M1(Scd) ∪ (Sab ∩ Scd) ⊇M1(Sab) ∪ Sab.

In particular, by symmetry (swap 1 and n), if Scd ⊂M1(Sab) ∪ Sab, then

M1(Scd) � M1(Sab).

It remains to consider the case a ∈ M1(Scd), b ∈ Mn(Scd), c ∈ M1(Sab), and
d ∈ Mn(Sab). Since there are no edges between M ′

1 = M1(Sab) ∩ M1(Scd)
and M ′

n = Mn(Sab) ∪Mn(Scd) = [n] \ (M ′
1 ∪ {a, c}), it is clear that Sac =

{a, c} ∈ X(G) and that M1(Sac) = M ′
1 and Mn(Sac) = M ′

n. M1(Sac) is
properly included in M1(Sab) (which contains c) and M1(Scd) (which contains
c), which concludes the proof. �

Step 4: Partitioning Λn into subfamilies Λn(M,x, y).

For any M ⊂ [n− 1] and x, y /∈M , let

Λn(M,x, y) = {G ∈ Λn : SG = {x, y},M = M1(SG, G)}.

This yields a partition of Λn into smaller families. Consider the map f :
P (Λn) → P (2[n−1]) defined by f(G) = M whenever G ∈ Λn(M,x, y). We
want to show that the Cluster Lemma 4.2 applies, meaning that f is a poset
map. Now, if G ⊆ H, then

M1(SG, G) ⊆M1(SH , G) = M1(SH ,H)

with equality if and only if SG = SH by Lemma 20.1. In particular, the family

{Λn(M,x, y) : M ⊂ [n], x < y}

does satisfy the conditions in the Cluster Lemma 4.2. The condition x < y is
necessary for avoiding double-counting; Λn(M,x, y) = Λn(M,y, x).
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Step 5: Matching with the edge xy in Λn(M,x, y) to obtain the family
Λ′

n(M,x, y).

In Λn(M,x, y), match with xy whenever possible. Let Λ′
n(M,x, y) be the

family of critical graphs in Λn(M,x, y) with respect to this matching. The
following lemma implies that we need only consider M = {1}.

Lemma 20.2. Λ′
n(M,x, y) is nonvoid if and only if M = {1}. A graph G is

in Λ′
n({1}, x, y) if and only if the following conditions are satisfied.

(i) G + 1n is 3-connected, whereas G is not.
(ii) One of the elements x and y, denoted a, has degree 3.
(iii) Let b be the element in {x, y} \ {a}. The neighborhood NG(a) of a equals

{1, b, c} for some c ∈ [n] \ {1, a, b, n}, whereas NG(b) contains 1 and a.

Remark. By the lemma, graphs in Λ′
n({1}, x, y) are of the form illustrated in

Figure 20.2.

Proof. One easily checks that a graph satisfying conditions (i)-(iii) belongs to
Λ′

n({1}, x, y). For the other direction, first note that Λ′
n(M,x, y) is the family

of all graphs G in Λn(M,x, y) containing the edge xy and having the property
that (G−xy) + 1n is not 3-connected. Namely, suppose that (G−xy) + 1n is
3-connected. We need to show that SG = SG−xy = {x, y}. Suppose not; hence
there is a set S in X(G− xy) such that

M1(S,G− xy) � M1(SG, G− xy).

This means that x and y are not contained in M1(S,G− xy); hence they are
both contained in Mn(S,G − xy) ∪ S. However, this means that S ∈ X(G)
and M1(S,G) � M1(SG, G), which is a contradiction to the minimality of
M1(SG, G).

Na & a

b ∈ NbMn & c

d ∈M1

Mn ∩Na M1 ∩Nb

M1 ∩Na

Mn ∩Nb

Fig. 20.3. A graph in Λ′
n(M, x, y); ab = xy and 1, n ∈ Nb ∪ {c, d}.

For a graph G ∈ Λ′
n(M,x, y), let
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M1 = M1({x, y}, G) & 1;
Mn = Mn({x, y}, G) & n.

Consider a pair {c, d} ∈ X((G − xy) + 1n), and let Na and Nb be the two
components in G′ = (G+1n)([n]\{c, d})−xy. We have that {c, d}∩{x, y} = ∅
for any {c, d} ∈ X((G−xy)+1n), because G+1n is 3-connected. Since 1 and
n are adjacent in (G− xy) + 1n, they must be in the same component in G′

unless one of them is contained in {c, d}; assume that

1, n ∈ Nb ∪ {c, d}.

Furthermore, assume that d ∈M1 and c ∈Mn. Let a, b be such that {a, b} =
{x, y}, a ∈ Na, and b ∈ Nb. The situation for G is as in Figure 20.3; there are
no edges between M1 and Mn, and the only edge between Na and Nb is ab.

Since there is no edge between M1 ∩Na and Mn ∪Nb in G + 1n and since

(M1 ∩Na) ∪Mn ∪Nb = (M1 ∪Mn ∪Nb) ∩ (Mn ∪Na ∪Nb) = [n] \ {a, d},

{a, d} separates G + 1n unless M1 ∩ Na = ∅ (recall that 1, n /∈ Na). Since
G + 1n is 3-connected, we must indeed have that M1 ∩Na = ∅. By the same
argument, Mn ∩Na = ∅. Note that if 1 ∈M1 ∩Nb, then

M1({b, d}, G) = M1 ∩Na � M1,

which is a contradiction to the fact that SG = {a, b}; hence d = 1. More-
over, since {1, b} /∈ X(G), we must have that M1 ∩ Nb = ∅. In particular,
M1(SG, G) = {1}.

To conclude the proof, note that we have just demonstrated that the neigh-
borhood of a is {1, b, c}. If c = n, then we have Mn ∩Nb = ∅, which implies
that n = 4. This is a contradiction; hence c �= n, and we are done. �

Step 6: Partitioning the family Λ′
n({1}, x, y) into subfamilies Fn

i (x, y, z).

It remains to find a nice acyclic matching on Λ′
n({1}, x, y). Before proceeding,

we note that the vertex a in Lemma 20.2 is not always uniquely determined;
if both x and y have degree 3, then either of x and y might be chosen as a.
For this reason, we divide the problem into two asymmetric (as opposed to
symmetric) cases:

1. x may be defined as b (meaning that deg y = 3).
2. x must be defined as a (meaning that deg y > 3 and deg x = 3).

For the first case, introduce the family

Fn
1 (x, y, z) = {G : NG(y) = {1, x, z}} ∩ Λ′

n({1}, x, y)

for each z ∈ [n] \ {1, x, y, n}. For the second case, introduce the family
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Fn
2 (x, y, z) = {G : deg y > 3, NG(x) = {1, y, z}} ∩ Λ′

n({1}, x, y)

for each z ∈ [n] \ {1, x, y, n}. The partition

{Fn
1 (x, y, z),Fn

2 (x, y, z) : z ∈ [n] \ {1, x, y, n}}

of Λ′
n({1}, x, y) satisfies the conditions in the Cluster Lemma 4.2; the inclusion

relation between two graphs in Λ′
n({1}, x, y) not in the same family Fn

i can
hold only if the smaller set is contained in some Fn

1 and the larger set is
contained in some Fn

2 .

Step 7: Defining optimal acyclic matchings on Fn
i (x, y, z).

The final step is the following Lemma, which implies (20.1).

Lemma 20.3.

(i) There is an acyclic matching on Fn
1 (x, y, z) with critical graphs

G(1, x|y, z, ρ5, . . . , ρn−1, n),

where {x, y, z, ρ5, . . . , ρn−1} = {2, . . . , n− 1}.
(ii) There is an acyclic matching on Fn

2 (x, y, z) with critical graphs

G(1, x, z, ρ4, . . . , ρk|y, ρk+2, . . . , ρn−1, n), 3 ≤ k ≤ n− 2,

where {x, z, ρ4, . . . , ρk, y, ρk+2, . . . , ρn−1} = {2, . . . , n− 1}.

Proof of (i). Consider a graph G ∈ Fn
1 (x, y, z). One readily verifies that there

is a unique maximal simple path

PG = (v1, v2, . . . , vt)

with v1 = 1, v2 = y, and v3 = z such that

NG(vk) = {vk−1, vk+1, x}

for all k ∈ {2, . . . , t−1}. Specifically, add one vertex vk at a time and continue
as long as NG(vk) is of the form {vk−1, w, x} for some w /∈ {v1, . . . , vk}. For
example, with 1 = ρ1, x = ρ6, y = ρ2, and z = ρ3 in Figure 20.1, we have
PG = (ρ1, ρ2, ρ3, ρ4, ρ5). Note that if k < t, then vk �= n, because otherwise
{x, n} would separate G + 1n.

If vt = n, then (for the same reason) all vertices in [n] \ {x} are contained
in the path, which implies that t = n − 1. By construction, n is adjacent to
vn−2 in G but not to vi for any i < n−2. This implies that n must be adjacent
to x in G; G + 1n is 3-connected. As a consequence, we have that

G = G(1, x|y, z, v4, . . . , vn−2, n).
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For t < n− 1, denote by

Fn
1 (x, y, z, v4, . . . , vt)

those graphs G in Fn
1 (x, y, z) with PG = (1, y, z, v4, . . . , vt). Since vt �= n and

G+1n is 3-connected, the degree of vt in G must be at least three. In fact, by
the maximality of PG, if vt is adjacent to x, then vt is adjacent to a total of
at least four vertices. In particular, the families Fn

1 (x, y, z, v4, . . . , vt) satisfy
the conditions in the Cluster Lemma 4.2; t cannot increase if we add an edge.

Let G ∈ Fn
1 (x, y, z, v4, . . . , vt) be a graph containing the edge xvt. Suppose

that G−xvt is not contained in Fn
1 (x, y, z, v4, . . . , vt). Then K = (G+1n)−xvt

is not 3-connected, which implies that there are p, q ∈ [n] with the property
that K ′ = K([n]\{p, q}) is disconnected. Since K ′+xvt is connected, vt and x
belong to different components in K ′. This means that (say) p = vt−1, because
x and vt are both adjacent to vt−1. We concluded above that deg vt > 3 in G,
which implies that deg vt ≥ 3 in K. Hence the component in K ′ containing vt

must contain something more than vt, and it does not contain x or vt−2, the
other neighbors of p = vt−1. Therefore, K([n]\{vt, q}) = (G+1n)([n]\{vt, q})
is disconnected, which is a contradiction to the fact that G+1n is 3-connected.
It follows that G− xvt ∈ Fn

1 (x, y, z, v4, . . . , vt).
As a consequence, we may use the edge xvt to obtain a complete matching

on the family Fn
1 (x, y, z, v4, . . . , vt). Namely, if a graph G not containing xvt

belongs to Fn
1 (x, y, z, v4, . . . , vt), then the same is certainly true for G + xvt.

Proof of (ii). We use induction on n. This requires a base step, but we already
provided an acyclic matching on NC3

4. For n > 4, let Λ̂n−1(x, z, y) be the family
of graphs H on the vertex set [2, n] such that

H + xn is 3-connected and NG(x) = {y, z}.

Obviously Λ̂n−1(x, z, y) = Λ̂n−1(x, y, z), but we prefer having z before y for
reasons that will be explained later. We want to prove that

Fn
2 (x, y, z) = {{1x, 1y}} ∗ Λ̂n−1(x, z, y). (20.2)

Before proving (20.2), we show how it implies the second part of Lemma 20.3.
After some relabeling (such as replacing x with 1), we easily see that
Λ̂n−1(x, z, y) can be identified with the family Λn−1({1}, z, y) introduced in
step 4 above. In particular, by induction on n, we may apply steps 4-7 on
Λ̂n−1(x, z, y) to obtain an acyclic matching such that the unmatched graphs
are

G(x, z, ρ4, . . . , ρk|y, ρk+2, . . . , ρn−1, n)

with 2 ≤ k ≤ n − 3 and {x, z, ρ4, . . . , ρk, y, ρk+2, . . . , ρn−1} = {2, . . . , n − 1}.
Note that if we add 1, 1x, and 1y to G(x, z, ρ4, . . . , ρk|y, ρk+2, . . . , ρn−1, n),
then we obtain the graph

G(1, x, z, ρ4, . . . , ρk|y, ρk+2, . . . , ρn−1, n);



20.2 Homology 283

this is the reason why we wanted to have z before y. Thus choosing the acyclic
matching on Fn

2 (x, y, z) corresponding in the natural way to the chosen acyclic
matching on Λ̂n−1(x, z, y), we obtain Lemma 20.3.

To obtain (20.2), let H ∈ Λ̂n−1(x, z, y) and let G be the graph obtained
from H by adding the vertex 1 and the edges 1x and 1y. Clearly, (ii) and
(iii) in Lemma 20.2 hold with (a, b, c) = (x, y, z), and the degree of y in G
is at least 4. To prove that G ∈ Fn

2 (x, y, z), it remains to show that (i) in
Lemma 20.2 holds. It is clear that G is not 3-connected; {x, y} is a cut point
in G. Moreover, we claim that G+1n is 3-connected. To prove this, note that
the 3-connected graph H + xn is obtained from G + 1n by contracting the
edge 1x. Thus any S ∈ X(G + 1n) contains either 1 or x. Now, the former
is impossible, as H = (G + 1n)([2, n]) is 2-connected. For the latter, suppose
that S = {x, q} separates G + 1n. Since 1 is adjacent to y and n, 1 is not
isolated in K = (G + 1n)([n] \ {x, q}). However, this implies that the graph
(H +xn)([2, n]\{x, q}) obtained from K by removing 1 is disconnected, which
is a contradiction to H + xn being 3-connected. It follows that G + 1n is 3-
connected and hence that G ∈ Fn

2 (x, y, z).
Conversely, let G ∈ Fn

2 (x, y, z) and write H = G([2, n]). Clearly, the neigh-
borhood of x in H is {y, z}. It remains to verify that H + xn is 3-connected.
Suppose that S = {p, q} separates H + xn. If x /∈ S, then S also separates
G + 1n; n and y belong to the same connected component as x in the sepa-
rated graph. As this is a contradiction, we must have that S = {x, q} for some
q. Now, the two components A and B in H([2, n] \ {x, q}) have the property
that y and n belong to different components, say y ∈ A and n ∈ B. Namely,
otherwise, {x, q} would separate G + 1n. Also, z is in B; otherwise, q would
be a cut point in H separating B from {x, y, z} and hence a cut point in G.
Now, A contains something more than just y; the degree of y is at least four
in G and hence at least three in H. However, this means that A \ {y} is a
nonempty connected component of (G + 1n)([n] \ {y, q}). Namely, there are
no edges from A \ {y} to B ∪ {1, x} in G + 1n, because z, n ∈ B. This is a
contradiction; hence (20.2) follows.

Conclusion.

Let us summarize the main achievement of this section:

Theorem 20.4. NC3
n is homotopy equivalent to a wedge of (n−3) · (n−2)!/2

spheres of dimension 2n− 4. �

20.2 Homology

Translate the acyclic matching given in Section 20.1 into an acyclic matching
on the quotient complex C3

n = 2Kn/NC3
n; follow the procedure described at

the beginning of Section 17.2. Clearly, the homology of C3
n vanishes except in

dimension 2n− 3, and H̃2n−3(C3
n; Z) is free of rank (n− 3) · (n− 2)!/2.
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W1 = {ρ2, ρ3, ρ4, ρ5}

W2 = {τ6, τ7, τ8}

1

ρ2

ρ3

ρ4

ρ5

τ6

τ7

τ8

9

Fig. 20.4. R(1, ρ2, ρ3, ρ4, ρ5|τ6, τ7, τ8, 9) and the walls W1 and W2.

Our goal is to find a basis for H̃2n−3(C3
n; Z). With notation as in Section

4.4.1, it suffices to find an element bG ∈ B with the same boundary as G for
each critical graph G. Namely, then {[G]− bG : G is critical} will form a basis
for H̃2n−3(C3

n; Z) by Corollary 4.17.
The critical graphs are of the form

G(1, ρ2, . . . , ρk|τk+1, τk+2, . . . , τn−1, n) + 1n,

where ρ2 < τk+1, {ρ2, . . . , ρk, τk+1, τk+2, . . . , τn−1} = {2, . . . , n− 1}, and 2 ≤
k ≤ n − 2. Note that we use two different symbols ρ∗ and τ∗ to denote the
vertices, as opposed to the previous single symbol ρ∗; this is to make it easier
to distinguish between the two kinds of vertices. To simplify notation, write

ρ∗ = (1, ρ2, . . . , ρk−1, ρk);
τ∗ = (τk+1, . . . , τn−1, n);

G(ρ∗|τ∗) = G(1, ρ2, . . . , ρk|τk+1, . . . , τn−1, n).

Consider the graph R(ρ∗|τ∗) obtained from G(ρ∗|τ∗) + 1n by removing the
edge set

{ρiτk+1 : i = 2, . . . , k} ∪ {ρkτk+i : i = 2, . . . , n− k − 1}.

The graph R(ρ∗|τ∗) − 1n is the unique Hamiltonian cycle in G(ρ∗|τ∗) (see
Figure 20.4). In R(ρ∗|τ∗)− 1n, there are exactly two simple paths (1, ρ2, . . . ,
ρk, n) and (1, τk+1, . . . , τn−1, n) from 1 and n. The sets W1 = {ρ2, . . . , ρk} and
W2 = {τk+1, . . . , τn−1} are the two walls of R(ρ∗|τ∗). We say that ρm (τm) is
above ρl (τl) if m > l and that z is between x and y if y is above z and z is
above x.

Let S(ρ∗|τ∗) be the family of edge sets S = {ρim
τjm

: 1 ≤ m ≤ n − 3}
satisfying ⎧⎨

⎩
2 = i1 ≤ i2 ≤ . . . ≤ in−3 = k;

k + 1 = j1 ≤ j2 ≤ . . . ≤ jn−3 = n− 1;
im + jm = m + k + 2, 1 ≤ m ≤ n− 3.

(20.3)
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Condition (20.3) means that S is a triangulation of the n-gon R(ρ∗|τ∗)− 1n
with the property that every interior edge contains one element from each
wall. In particular, every v �= 1, n is contained in at least one edge in S,
whereas no edge in S contains 1 or n.

Let T (ρ∗|τ∗) be the family of graphs R(ρ∗|τ∗)∪S such that S ∈ S(ρ∗|τ∗).
Note that G(ρ∗|τ∗)+1n is contained in T (ρ∗|τ∗). Each of the group elements
[G] − bG discussed at the beginning of this section turns out to be a linear
combination of elements from some T (ρ∗|τ∗).

1

um

ρim

wm

τjm

n

1

um

ρim wm

τjm

n

Fig. 20.5. The two possibilities for wm given that um ∈ W1; em = ρimτjm .

Lemma 20.5. Every graph in T (ρ∗|τ∗) is 3-connected. Let um be the vertex
in the set em−1 \ em and let wm be the vertex in the set em+1 \ em for 2 ≤
m ≤ n − 4; see Figure 20.5. Then T − em is 3-connected if and only if the
vertices um and wm belong to different walls. Finally, T −e is not 3-connected
whenever e ∈ R(ρ∗|τ∗) ∪ {e1, en−3}.

Proof. Consider T ∈ T (ρ∗|τ∗). First, note that if we remove 1 or n from T , then
the remaining graph is 2-connected. Namely, e1 = ρ2τk+1 and en−3 = ρkτn−1,
which implies that each of T ([2, n]) and T ([n − 1]) contains a Hamiltonian
cycle. In particular, any pair separating T must be contained in W1 ∪W2.

For the vertex τk+i ∈ W2, let em be an edge containing τk+i; this means
that em = ρm+2−iτk+i. There are three disjoint simple paths from 1 to τk+i:

(1, τk+1, . . . , τk+i), (1, n, τn−1, . . . , τk+i+1, τk+i), (1, ρ2, . . . , ρm+2−i, τk+i).

By symmetry, there are also three disjoint simple paths from 1 to each ρi ∈
W1. Thus for any pair {v, w} of elements from W1∪W2, all remaining vertices
in T ([n] \ {v, w}) must be contained in the same connected component as 1.
As a consequence, T is 3-connected.

For the second statement in the lemma, consider the graph T − em. We
still have three disjoint paths from 1 to any element x ∈ W1 ∪W2 with the
property that x is contained in some em′ �= em. In particular, T − em is 3-
connected if and only if each of the two vertices contained in em is contained
in some other edge em′ (if not, then one of the vertices would have degree two
in T −em). This is exactly the property that one of the vertices is contained in
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em+1 and the other is contained in em−1, which is equivalent to the condition
that um and wm as defined in the lemma are on different walls.

If e1 is removed from T , then one of the vertices ρ2 and τk+1 has degree
two, which implies that T−e1 is not 3-connected. For similar reasons, T−en−3

is not 3-connected. For the remaining part of the last statement in the lemma,
see Shareshian [118, Lemma 4.1]; compare to the proof of Lemma 17.5. �

We need to define an orientation of each graph T = S ∪R(ρ∗|τ∗) ∈ T (ρ∗|τ∗),
which amounts to defining an order of the edges in T . Let the edges in R(ρ∗|τ∗)
be the first edges in T (ordered in the same manner for all graphs in T (ρ∗|τ∗)).
Order the other edges in T by defining ρil

τjl
≤ ρim

τjm
if l ≤ m (notation as

in (20.3)); this can be extended to a linear order consistent with all graphs in
T (ρ∗|τ∗). Let

V0(ρ∗|τ∗) = {ρ2, ρ4, . . . , ρ2�k/2�}.

Theorem 20.6. With notation as above, the set

{σ(1, ρ2, . . . , ρk|τk+1, . . . , τn−1, n) : 2 ≤ k ≤ n− 2, ρ2 < τk+1}

is a basis for H̃2n−3(C3
n; Z), where

σ(ρ∗|τ∗) =
∑

T∈T (ρ∗|τ∗)

sgn(T )T

and
sgn(T ) =

∏
v∈V0(ρ∗|τ∗)

(−1)degT (v);

degT (v) is the number of neighbors of v in T .

Proof. The theorem is obvious for n = 4; assume n > 4. By Corollary 4.17,
we have to prove two things:

(i) The element σ(ρ∗|τ∗) is a cycle.
(ii) Every T ∈ T (ρ∗|τ∗) \ {G(ρ∗|τ∗) + 1n} is matched with a smaller graph.

Proof of (i). Consider a graph T ∈ T (ρ∗|τ∗); T = R(ρ∗|τ∗) ∪ {em = ρim
τjm

:
1 ≤ m ≤ n − 3}, where e1 < . . . < en−3. By Lemma 20.5, U = T − em is 3-
connected if and only if m ∈ [2, n−4], im+1 = im−1 +1, and jm+1 = jm−1 +1.
In this case, there are exactly two graphs in T (ρ∗|τ∗) containing U ; the graphs
are T1 = U+ρim−1τjm+1 and T2 = U+ρim+1τjm−1 . With the given orientations
of T1 and T2, it follows that

〈∂(T1), U〉 = 〈∂(T2), U〉, (20.4)

where 〈·, ·〉 is the standard inner product (see Section 4.4). Exactly one of the
indices im−1 and im+1 is even, which implies that sgn(T1) = −sgn(T2); hence
(i) is a consequence of (20.4).
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Proof of (ii). Our acyclic matching might appear as somewhat implicitly
defined, as we used induction in the proof of Theorem 20.4. However, using
the very same induction again, we may succeed anyway. Let T ∈ T (ρ∗|τ∗). In
T , either ρ2 is adjacent to τk+2 or τk+1 is adjacent to ρ3. In either case, one
of ρ2 and τk+1 has degree three in T , while the other has degree at least four.

If deg τk+1 = 3, then T − 1n ∈ Fn
1 (ρ2, τk+1, τk+2) (notation as in Step 6 in

Section 20.1). Let v1, . . . , vt be defined as in the proof of (i) in Lemma 20.3
for G = T − 1n; v1 = 1, v2 = τk+1, and v3 = τk+2. We have to show that
ρ2vt ∈ T ; this is the edge used in the matching unless t = n − 2, in which
case T is equal to G(1, ρ2|τ∗) + 1n and hence critical. Clearly vj = τk+j−1 for
2 ≤ j ≤ t, which implies that either ρ2vt ∈ T or ρ3vt−1 ∈ T ; recall (20.3).
However, the only neighbors of vt−1 are vt−2, vt, and ρ2; hence ρ2vt ∈ T .

Next, consider the case deg τk+1 > 3 and deg ρ2 = 3. This means that
T − 1n belongs to the set Fn

2 (ρ2, τk+1, ρ3) defined in Step 6 in Section 20.1.
Removing the vertex 1 as in the proof of (ii) in Lemma 20.3 and adding the
edge ρ2n, we obtain a graph contained in

T (ρ2, ρ3, . . . , ρk|τ∗) ⊂ {G + ρ2n : G ∈ Λ̂n−1(ρ2, ρ3, τk+1)}.

An induction argument concludes the proof. �

We obtain a basis for H̃2n−4(NC3
n; Z) by applying the boundary operator in the

chain complex of 2Kn to each basis element σ(ρ∗|τ∗) in H̃2n−3(C3
n; Z); compare

to Corollary 19.8. We have that the coefficient of a graph G in ∂(σ(ρ∗|τ∗)) is
±1 if one of the following two conditions holds and zero otherwise.

• G + e ∈ T (ρ∗|τ∗) for some e ∈ R(ρ∗|τ∗).
• G + e ∈ T (ρ∗|τ∗) for some e = ρiτj such that either degG(ρi) = 2 or

degG(τj) = 2.

To see this, use Lemma 20.5.

20.3 A Related Polytopal Sphere

The purpose of this section is to analyze the cycle σ(ρ∗|τ∗) in greater detail
for each relevant ρ∗ and τ∗. Specifically, we consider the family S(ρ∗|τ∗). To
facilitate analysis, write ρ∗ = (1, ρ1, . . . , ρr) and τ∗ = (τ1, . . . , τs, n); r + s =
n − 2. If we identify the edge ρiτj with the pair (i, j), we may identify a set
S ∈ S(ρ∗|τ∗) with a subset of Ir,s = [1, r]× [1, s]. We view Ir,s as a chessboard
and use matrix notation; (i, j) is the element in the ith row and the jth column.
List the edges in S in increasing order as

S = {ρi1τi1 , ρi2τi2 , . . . , ρin−3τin−3}.

This means that (im+1 − im, jm+1 − jm) ∈ {(1, 0), (0, 1)}. As a consequence,
S forms a path from (1, 1) to (r, s) with the property that each step is either
one step down or one step to the right.
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Fig. 20.6. To the left an edge set in S(ρ∗|τ∗). The underlying set R(ρ∗|τ∗) is dashed
with dots. To the right the corresponding face σ of L6,5. The removal of any element
marked with a star yields a maximal face of the complex NCL6,5.

Let Lr,s be the simplicial complex of all sets σ such that σ is contained in
such a path. Equivalently, if (a, b), (c, d) ∈ σ, then either we have that a ≤ c
and b ≤ d or we have that a ≥ c and b ≥ d. See Figure 20.6 for an example. We
refer to (a, b) and (c, d) as inconsistent if a > c and b < d (or vice versa); this
means that {(a, b), (c, d)} /∈ Lr,s. Obviously, Lr,s is pure of dimension r+s−2,
and each maximal face of Lr,s contains exactly one element (a, b) such that
a + b = k for each k ∈ [2, r + s]. As a side note, we mention that Lr,s appears
in the analysis of ideals of 2× 2 determinants [62, 25]; see Section 1.1.6.

Recall the definition of R(ρ∗|τ∗) from the previous section; R(ρ∗|τ∗) con-
sists of a Hamiltonian cycle plus the edge 1n. Let π be a face of Lr,s and let π̂
be the corresponding edge set {ρaτb : (a, b) ∈ π}. By the proof of Lemma 20.5,
a face π ∈ Lr,s has the property that π̂ ∪ R(ρ∗|τ∗) is 3-connected if and only
if each vertex except 1 and n is contained in at least one edge in π̂. This
means exactly that each row and each column in Ir,s contains at least one
element from π. Let NCLr,s be the subcomplex of Lr,s consisting of all sets π
such that some row or some column does not contain any element from π. See
Figure 20.6 for an illustration.

Theorem 20.7. Let r, s ≥ 1. Then NCLr,s is a polytopal sphere of dimension
r + s− 3. Indeed, NCLr,s coincides with ∂Lr,s.

Proof. We obtain a poset structure L on the 0-cell set of Lr,s by defining (a, b)
to be smaller than (c, d) whenever a ≤ c and b ≤ d. One easily checks that L
is a distributive lattice [133] and that Lr,s coincides with the order complex
of L. As a consequence, Lr,s is a shellable ball and the boundary of Lr,s is
polytopal; see Björner [7] or Provan [107] for a proof of the former fact and
Björner and Farley [10] for a proof outline of the latter fact.

It remains to prove that NCLr,s coincides with the boundary of Lr,s. First,
we prove that NCLr,s is pure of dimension r + s−3. Let π be a face of NCLr,s.
By construction, some row or column, say row a, is empty in π. Forgetting
about row a and relabeling rows a + 1 through r in the natural manner, we
may view π as a face π′ of Lr−1,s. Extending π′ to a maximal face of Lr−1,s
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and adding back row a again, we obtain a face of NCLr,s of dimension r+s−3
as desired.

Now, let π be a face of Lr,s of codimension one (i.e., dimension r + s− 3).
We need to prove that π is contained in one single maximal face of Lr,s if and
only if π is a maximal face of NCLr,s. We have a number of cases:

• (1, 1) does not belong to π. Then the only maximal face containing π is
π + (1, 1). It is clear that either row 1 or column 1 is empty in π.

• (r, s) does not belong to π. This case is analogous to the previous case.
• (a − 1, b) and (a + 1, b) belong to π, whereas (a, b) does not belong to π.

Then π does not contain any element from row a, because such an element
would be inconsistent with either (a − 1, b) or (a + 1, b). It is clear that
π + (a, b) is the only maximal face of Lr,s containing π.

• (a, b − 1) and (a, b + 1) belong to π, whereas (a, b) does not belong to π.
This case is analogous to the previous case.

• (a, b) and (a + 1, b + 1) belong to π, whereas (a, b + 1) and (a + 1, b) do
not belong to π. In this case, π + (a, b + 1) and π + (a + 1, b) are both
maximal faces of Lr,s containing π. Clearly, all rows and columns in π are
nonempty.

This concludes the proof. �

Define CLr,s = Lr,s/NCLr,s. Since Lr,s is contractible, CLr,s is homotopy equiv-
alent to the suspension of NCLr,s; use Lemma 3.18. By Lemma 3.19 and
Theorem 20.7, it follows that CLr,s is homotopy equivalent to a sphere of di-
mension r + s− 2. In fact, since ∂Lr,s coincides with NCLr,s, ‖CLr,s‖ is home-
omorphic to a sphere. It is clear that the fundamental cycle z of this sphere,
viewed as an element in H̃r+s−2(CLr,s; Z), has the property that z∧ [R(ρ∗|τ∗)]
is isomorphic to the cycle σ(1, ρ1, . . . , ρr|τ1, . . . , τs, n) in H̃n(C3

n; Z).

20.4 Not k-connected Graphs for k > 3

We have seen that the complex NCk
n of not k-connected graphs on n vertices

has a nice structure for 1 ≤ k ≤ 3. A natural question to ask is whether any
of this structure is preserved for larger k. Unfortunately, the answer is likely
to be negative. For example, it is not always the case that NCk

n is homotopy
equivalent to a wedge of spheres. One counterexample is (n, k) = (7, 5), and
there are infinitely many other counterexamples of the form (n, n− 2).

To see this, note that NCn−2
n is the Alexander dual of the matching complex

with respect to the ground set
(
[n]
2

)
; this observation is due to Babson et al.

[3]. Namely, a graph is (n−2)-connected if and only if every induced subgraph
on three vertices is connected, which is equivalent to every induced subgraph
on three vertices of the complement graph being empty or consisting of a
single edge. Equivalently, the complement graph is a matching. As described
in Section 11.2, the work of Bouc [21] and Shareshian and Wachs [122] implies
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that there is 3-torsion in the homology of Mn for infinitely many n. As a
consequence, the same is true for the Alexander dual NCn−2

n ; use Theorem 3.4.
Applying Theorem 11.6, Alexander duality, and Theorem 3.8, one easily

proves that the shifted connectivity degree of NCn−2
n is

⌈
(n+1)(n−3)

2

⌉
for n ≥ 3.

Table 20.1. The homology of (NCn−3
n )∗ for n ≤ 7.

H̃i((NCn−3
n )∗, Z) i = 1 2 3 4 5 6 7

n = 4 - Z6 - - - - -

5 - Z6 - - - - -

6 - - - Z36 - - -

7 - - - Z Z181 - -

Let us proceed with the case k = n − 3. The Alexander dual of NCn−3
n

nearly coincides with the complex BD2
n of graphs on n vertices such that

the degree of each vertex is at most 2. The only difference is that (NCn−3
n )∗

does not contain squares {ab, bc, cd, ad}; the complement of such a square is
not (n− 3)-connected. See Table 20.1 for information about the homology of
(NCn−3

n )∗ for small n; the homology for general n remains unsettled.

Theorem 20.8 (Babson et al. [3]). We have that

∑
n≥4

χ̃((NCn−3
n )∗)

xn

n!
= 1 + x−

exp( x
2+2x + x− x2

4 − x4

8 )
√

1 + x
.

Proof. There are exactly three squares on four vertices; hence we are done by
Corollary 6.15 and Theorem 12.23. �

While it seems difficult to adapt this proof to NCn−k
n when k > 3, an inter-

esting question is whether it is at least possible to establish the existence of
a “nice” closed formula for the series∑

n≥k+1

χ̃((NCn−k
n )∗)

xn

n!
.

One may also examine the series∑
n≥k+1

χ̃(NCk
n)

xn

n!
.

For k ≤ 3, this series is of the form p(x) ln(1±x)+ q(x) for some polynomials
p(x) and q(x); use Proposition 18.1 and Theorems 19.1 and 20.4. Such a nice
result is very unlikely to hold in general, but again even a proof of existence
of a closed formula for k ≥ 4 would be of interest.
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Dihedral Variants of k-connected Graphs

We examine dihedral variants of the concept of k-connectivity. More precisely,
we consider graphs with a disconnected, separable, or two-separable represen-
tation.

NCR0,0
n is the complex of all graphs on the vertex set [n] with a discon-

nected polygon representation. As we saw in Chapter 18, the monotone graph
property NCn of being disconnected as an abstract graph is homotopy equiv-
alent to a wedge of (n − 1)! spheres of dimension n − 3. In Section 21.2, we
establish a similar result, demonstrating that NCR0,0

n is homotopy equivalent
to a wedge of a Catalan number of spheres of the same dimension n−3. We also
make the observation that NCR0,0

n is not an entirely new object. Specifically,
the complex relates to the well-studied lattice of noncrossing partitions on [n]
analogously to the way NCn relates to the full partition lattice as outlined in
Chapter 18. As a consequence, we are able to deduce that the (n−3)-skeleton
of NCR0,0

n is Cohen-Macaulay.
NCR1,0

n is the complex of graphs with a separable polygon representation.
In Section 21.3, we show that NCR1,0

n is homotopy equivalent to a sphere of
dimension 2n − 5. One may compare this to the result that the monotone
graph property NC2

n of being not 2-connected is homotopy equivalent to a
wedge of (n− 2)! spheres of the same dimension 2n− 5; see Theorem 19.1. In
fact, we obtain a generator for the homology of the quotient complex CR1,0

n =
2Kn/NCR1,0

n by picking a certain member of the basis for the homology of
C2

n = 2Kn/NC2
n in Theorem 19.7. In addition, we introduce the lattice NXΠn,2

of graphs with a “block-closed” representation; this is a dihedral analogue of
the lattice Πn,2 of block-closed graphs discussed in Section 19.1. NXΠn,2 turns
out to be Gorenstein∗ and homotopy equivalent to NCR1,0

n .
NCR1,1

n is the complex of graphs with a two-separable polygon representa-
tion. In Section 21.4, we show that NCR1,1

n is an n-fold cone over a complex
NCR

1,1

n , which is homotopy equivalent to a sphere of dimension n− 4. In fact,
NCR

1,1

n is collapsible to the associahedron An. This time, the related monotone
graph property is the complex NC3

n of not 3-connected graphs, which is
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homotopy equivalent to a wedge of (n − 3) · (n − 2)!/2 spheres of dimension
n + n− 4 = 2n− 4; see Chapter 20.

As the above discussion indicates, it makes sense to think about these
complexes as “light-weight” versions of NCk

n for 1 ≤ k ≤ 3.

21.1 A General Observation

Recall the definition of NCRk,l
n from Section 8.1. Before proceeding, we make

the following crucial observation for the cases (k, l) = (0, 0), (1, 0), (1, 1):

Lemma 21.1. (i) Let k, l ∈ {0, 1}. Let G be a graph in NCRk,l
n containing

two crossing edges rt and su; r < s < t < u. Then the graph obtained by
adding the edges rs, st, tu, ru to G is contained in NCRk,l

n .
(ii) Let G be a graph in NCR0,0

n containing two edges rt and ru with a com-
mon endpoint r. Then the graph obtained by adding the edge tu to G is
contained in NCR0,0

n .

Remark. The lemma does not remain true if either k or l is at least two.

Proof. (i) We show that rs can be added to G; the other three cases are
analogous. Let a and b be such that (a, b − l] and (b, a − k] are nonempty
intervals with no edges from G between them. If G+ rs is not in NCRk,l

n , then
we must have that r ∈ (a, b− l] and s ∈ (b, a−k] (or vice versa). Since rt ∈ G,
we have that t /∈ (b, a − k] and hence that t ∈ (a − k, b]. Since t ∈ (s, r), this
implies that

t ∈ (s, r) ∩ (a− k, b] = ((s, a− k] ∪ (a− k, r)) ∩ (a− k, b] = (a− k, r).

Since u ∈ (t, r), this implies that

u ⊆ (a− k + 1, r) ⊆ (a, b− l),

which is a contradiction, as su would then be an edge between (b, a− k] and
(a, b− l].

(ii) Let a and b be such that (a, b] and (b, a] are nonempty intervals with no
edges from G between them. Suppose that G + tu is not in NCR0,0

n . Without
loss of generality, we may assume that t ∈ (a, b] and u ∈ (b, a]. Now, r is
contained in either (b, a] or (a, b], which implies that either rt or ru violates
the assumption on a and b. This is a contradiction; hence we are done. �

As a consequence of (i), Theorem 16.6 applies to NCRk,l
n for k, l ∈ {0, 1}.

21.2 Graphs with a Disconnected Polygon
Representation

We consider the complex NCR0,0
n of graphs on the vertex set [n] with a dis-

connected polygon representation.
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Theorem 21.2. Let n ≥ 3. Then

NCR0,0
n � NCR0,0

n ∩ NXn �
∨

Cn−1

Sn−3,

where Cn−1 is the Catalan number 1
n

(
2n−2
n−1

)
.

Proof. Write CR0,0
n = 2Kn/NCR0,0

n ; we adopt the convention that CR0,0
1 = {∅}.

We want to form a decision tree on CR0,0
n with Cn−1 evasive faces of dimension

n−2. For n = 1, 2, we have that CR0,0
n consists of one single face of dimension

n− 2. For n ≥ 3, check all edges in the set A = {1i : i ∈ [2, n]} and consider
the family ΣY = CR0,0

n (Y,A \ Y ) for Y ⊆ A. If Y = ∅, then ΣY is void. If
|Y | ≥ 2, let r and s be any vertices such that 1r, 1s ∈ Y . By Lemma 21.1 (ii),
rs is a cone point in ΣY , which implies that ΣY is nonevasive.

The remaining case is that |Y | = 1; let Y = {1r} and write Σr = ΣY .
Check all edges in the set Br = {ij : i ∈ (1, r), j ∈ (r, 1)}; this is the set
of edges crossing the edge 1r. If Z ⊆ Br is nonempty, then Σr(Z,Br \ Z) is
nonevasive. Namely, if ij ∈ Z, then ir and jr are cone points in Σr(Z,Br \Z)
by Lemma 21.1 (i); ij and 1k cross.

It remains to consider the case Z = ∅; write Γr = Σr(∅, Br). The set of
edges remaining to be checked is the union of the complete set of edges on
[2, r] and the complete set of edges on [r, n]. It is clear that G belongs to Γr if
and only if the induced subgraph G([2, r]) belongs to CR0,0

[2,r] and the induced

subgraph G([r, n]) belongs to CR0,0
[r,n], where CR0,0

[a,b] is defined in the natural
manner. As a consequence,

Γr
∼= {1r} ∗ CR0,0

r−1 ∗ CR0,0
n−r+1.

We want to prove that CR0,0
n ∼ Cn−1t

n−2. By induction on n, CR0,0
r−1 ∼

Cr−2t
r−3 and CR0,0

n−r+1 ∼ Cn−rt
n−r−1. By Theorem 5.29, this implies that

Γr ∼ t · (Cr−2t
r−3) · (Cn−rt

n−r−1) · t = Cr−2Cn−rt
n−2.

The conclusion is that

CR0,0
n ∼

n∑
r=2

Cr−2Cn−rt
n−2 =

n−2∑
i=0

CiCn−i−2t
n−2 = Cn−1t

n−2,

and we are done.
To prove that NCR0,0

n � NCR0,0
n ∩NXn, we simply note that NCR0,0

n satisfies
the conditions in Theorem 16.6 by Lemma 21.1. �

It is easy to see that each evasive graph with respect to the given decision
tree is a noncrossing spanning tree. In particular, each proper subgraph is
contained in NCR0,0

n . As a consequence, we may describe the homology of
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NCR0,0
n and CR0,0

n in exactly the same manner as we described the homology
of NCn and Cn in Corollary 18.5.

A partition of the set [n] is noncrossing if, for every two edges ei ⊆ Bi

and ej ⊆ Bj such that i �= j, we have that ei and ej are noncrossing. The set
of noncrossing partitions of [n] forms a lattice NXΠn with elements ordered
by refinement. Kreweras [87] introduced this lattice, which has appeared in a
variety of settings; see Simion [124] for a nice survey.

Björner [7] showed that the proper part NXΠn of NXΠn is shellable and
that ∆(NXΠn) is homotopy equivalent to a wedge of Cn−1 spheres of dimen-
sion n − 3. We obtain a poset map ϕ from P (NCR0,0

n ) to NXΠn by defining
ϕ(G) as the family of connected components in the polygon representation of
G; each component is identified with its underlying vertex set. It is easy to see
that this map preserves homotopy type. Indeed, we may identify a noncross-
ing partition with the graph obtained by replacing each set in the partition
with the complete graph on this set. Hence, by Closure Lemma 6.1, Björner’s
result implies Theorem 21.2.

In fact, we may deduce more information about NCR0,0
n from Björner’s

result. Namely, consider a graph G in NCR0,0
n . The link of NCR0,0

n with respect
to G is either collapsible or homotopy equivalent to the order complex of the
poset of all partitions strictly above ϕ(G) in NXΠn. The latter case occurs
precisely when all connected components in the polygon representation of G
are complete graphs. Since NXΠn is Cohen-Macaulay of dimension n − 3, it
follows that lkNCR0,0

n
(G) is (n−4−ρ(ϕ(G)))-connected, where ρ(G) is the rank

of G in NXΠn. Obviously, ρ(G) cannot exceed the size |G| of the edge set of G,
which implies that lkNCR0,0

n
(G) is (n− 4− |G|)-connected. As a consequence,

we have the following result.

Theorem 21.3. The (n− 3)-skeleton of NCR0,0
n is Cohen-Macaulay. �

We conjecture that this skeleton is also vertex-decomposable.

21.3 Graphs with a Separable Polygon Representation

We consider the complex NCR1,0
n of graphs with a separable polygon repre-

sentation.

Theorem 21.4. Let n ≥ 3. Then

NCR1,0
n � NCR1,0

n ∩ NXn � S2n−5.

Moreover, NCR1,0
n ∩NXn is the join of the associahedron An and the boundary

of an (n− 1)-simplex.

Proof. By Lemma 21.1 (i), NCR1,0
n satisfies the conditions in Theorem 16.6,

which implies that NCR1,0
n is collapsible to NCR1,0

n ∩ NXn.
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We claim that G ∈ NCR1,0
n ∩ NXn if and only if G is noncrossing and

does not contain the full polygon Bdn = {12, 23, . . . , (n− 1)n, 1n}. The “only
if” statement is clear; Bdn is not in NCR1,0

n ∩ NXn. For the “if” statement,
suppose that G is noncrossing and does not contain all boundary edges, say
12 /∈ G. Let j > 2 be minimal such that 1j does not cross any edge in G. Such
a j exists, as 1n does not cross any edge. Now, there is no edge from (1, j) to
(j, 1) in G, as such an edge would cross 1j. Moreover, by assumption, there is
no edge from 1 to [2, j − 1]. The conclusion is that j is a cut point in G, and
it follows that G ∈ NCR1,0

n ∩ NXn (see also Shareshian [118, Lemma 4.1]).
As a consequence, NCR1,0

n ∩ NXn = An ∗ ∂2Bdn , and we are done. �

Define π∗
n as in (17.3) in Section 17.2; π∗

n = πn ∧ [Bdn], where πn is the
fundamental cycle of An. By Theorem 19.7, π∗

n is a cycle in the chain group
C̃2n−4(C2

n), where C2
n is the quotient complex of 2-connected graphs on n

vertices. Define π̂∗
n as in (19.1); π̂∗

n = πn ∧ ∂([Bdn]).

Theorem 21.5. Let n ≥ 3. Then the cycle π∗
n generates the homology of

CR1,0
n = 2Kn/NCR1,0

n and CR1,0
n ∩NXn = NXn/(NCR1,0

n ∩NXn). Moreover, π̂∗
n

generates the homology of NCR1,0
n and NCR1,0

n ∩ NXn.

Proof. By Theorem 21.4, π̂∗
n is the fundamental cycle of NCR1,0

n ∩ NXn.
Theorem 16.6 yields that there exists a perfect acyclic matching on NCR1,0

n \
NXn, which implies that π̂∗

n also generates the homology of NCR1,0
n .

To prove that π∗
n generates the homology of the corresponding quotient

complexes, observe that ∂(π∗
n) = ±π̂∗

n and apply the long exact sequences for
the pairs (NXn,NCR1,0

n ∩ NXn) and (2Kn ,NCR(1,0)
n ); see Theorem 3.3. �

Our next goal is to analyze links in NCR1,0
n , the overall goal being to prove

that the (2n−5)-skeleton of NCR1,0
n is Cohen-Macaulay. Before proceeding, we

need to introduce some concepts. First, let us extend the definition of NCR1,0
n

to n = 2; we set NCR1,0
2 equal to {∅} and hence consider the graph with

two vertices and one edge as having a non-separable polygon representation.
We say that a graph G has a block-closed representation if V is a clique
whenever the induced subgraph G(V ) has a non-separable representation. If
G has a block-closed representation, then G is block-closed in the sense of
Section 19.1. Let b(G) be defined as in Section 19.1; b(G) is the number of
blocks in G. We now prove an analogue of Shareshian’s Theorem 19.4.

Theorem 21.6. Let n ≥ 2. If H �= Kn is a graph on n vertices with a block-
closed representation, then the lifted complex NCR1,0

n (H, ∅) is homotopy equiv-
alent to a sphere of dimension δ(H) := |H|+2c(H)+ b(H)− 5. If H does not
have a block-closed representation, then NCR1,0

n (H, ∅) is a cone. As a conse-
quence, the (2n− 5)-skeleton of NCR1,0

n is Cohen-Macaulay.

Proof. We want to prove that NCR1,0
n (H, ∅) admits an acyclic matching such

that there is either one unmatched graph with |H|+ 2c(H) + b(H)− 4 edges
or no unmatched graph at all.
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First, assume that H does not have a block-closed representation. Let V
be a vertex set such that H(V ) is non-separable and such that V is not a
clique in H. Let v and w be nonadjacent vertices in V . Then vw is a cone
point in NCR1,0

2 (H, ∅). Namely, let a be a cut point in the representation of
a graph G in NCR1,0

2 (H, ∅) and let b be such that a separates G into the two
vertex sets [a+1, b] and [b+1, a−1]. We must have that V is a subset of either
[a, b] or [b + 1, a]. Namely, otherwise either G(V ) would have a disconnected
representation or a would be a cut point in G(V ). As a consequence, a remains
a cut point in G + vw, which proves that vw is indeed a cone point.

Next, assume that H does have a block-closed representation. The case
n = 2 is easy to check; thus assume that n ≥ 3. We will define an acyclic
matching on the quotient complex CR1,0

n (H, ∅) of graphs with a non-separable
representation. As we will see, there will be exactly one unmatched graph,
and the number of edges in this graph is δ(H) + 2 edges. Note that this
remains true if H is the complete graph Kn. The matching turns out to be
straightforward to translate into an acyclic matching on NCR1,0

n (H, ∅).
As before, assume that H �= Kn. Let e be an edge in Bdn \ H. Such

an edge exists, because otherwise the full set Bdn of exterior edges would
be contained in H, which would imply that H is the complete graph. By
symmetry, we may assume that e = 1n. Define a matching on CR1,0

n (H, ∅)
by pairing G + 1n with G − 1n whenever possible. Let ∆ be the family of
unmatched graphs. Lemma 4.1 yields that it suffices to define an appropriate
acyclic matching on ∆.

A graph G containing H belongs to ∆ if and only if G, but not G − 1n,
has a non-separable representation. Let G be a graph in ∆ and let x = xG be
minimal such that the vertex x separates the representation of G − 1n. It is
clear that xG ∈ [2, n− 1]. Moreover, if we remove xG from the representation
of G− 1n, then the resulting topological space XG consists of two connected
components. One of the components contains all vertices in the set [1, xG− 1]
and the other contains the remaining vertices in the set [xG + 1, n]. Namely,
if we add the edge 1n, the resulting representation is connected.

Let ∆(x) be the family of graphs G in ∆ such that x = xG; obviously,
the families ∆(x) satisfy the Cluster Lemma 4.2. Let y be minimal such that
yn ∈ H. If no such y exists, we define y = n − 1. It is clear that y ≥ xG,
because n and y belong to the same component in XG unless y = xG.

Let us examine ∆(x). First, assume that x < y. We are done if ∆(x) is
void. Otherwise, match with the edge xn; pair G− xn with G + xn whenever
possible. This is possible, because xn /∈ H by assumption. We claim that this
is a perfect matching. Namely, xG remains the same if we add xGn to G,
because this edge does not cross any edges in G by the properties of the space
XG. Conversely, suppose that G− xn is not in ∆(x); this means that G− xn
is separable. In particular, there is a cut point z somewhere in the interval
[x + 1, n− 1] separating x and n. However, this means that z separates 1 and
x. Since there are no edges from [xG +1, n− 1] to [1, xG− 1], it follows that n
also separates 1 and x in G−xn and hence also in G, which is a contradiction.
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Next, we consider ∆(x) in the case that x = y. We claim that a graph G
containing H belongs to ∆(x) if and only if the induced subgraphs G([1, x])
and G([x, n]) have non-separable representations and 1n is the only edge in
G from [1, x− 1]× [x + 1, n]. The last claim is obvious, as x is a cut point in
G− 1n separating 1 and n.

First, we prove that G([1, x]) has a non-separable representation. Assume
the opposite and let z be a cut point in G([1, x]). Consider the space X
obtained from the representation of G([1, x]) by removing z. For i ∈ {1, x},
let Wi be a connected component in X that does not contain the vertex i.
Note that we may have that W1 = Wx. Suppose that z < x. Since there are
no edges from Wx to [x + 1, n], we obtain that z is a cut point in G − 1n,
which is a contradiction to the minimality of x. Suppose instead that z = x.
Then x separates W1 from ([n] \ {x}) \W1 in G, another contradiction.

Next, we prove that G([x, n]) has a non-separable representation. Assume
the opposite and let z be a cut point in G([x, n]). Let X be the space obtained
from the representation of G([x, n]) by removing z. Let W be a connected
component in X that does not contain the vertices x and n; these vertices are
adjacent, which implies that such a component does exist. However, then z
separates W from ([n] \ {z}) \W in G, which is a contradiction.

For the converse, assume that G([1, x]) and G([x, n]) have non-separable
representations and that 1n is the only other edge in G. One readily verifies
that G does not have any cut points. We obtain that

∆(x) = {{1n}} ∗ CR1,0
[1,x](H([1, x]), ∅) ∗ CR1,0

[x,n](H([x, n]), ∅),

where CR1,0
U is the quotient complex of graphs on the vertex set U with a non-

separable representation. By induction, we obtain that CR1,0
[1,x](H([1, x]), ∅)

and CR1,0
[x,n](H([x, n]), ∅) admit acyclic matchings with exactly one unmatched

graph containing δ(H([1, x]))+2 and δ(H([x, n]))+2 edges, respectively. Using
exactly the same approach as in the proof of Theorem 19.4, we obtain the
desired result about ∆(x).

To prove that the (2n − 5)-skeleton of NCR1,0
n is Cohen-Macaulay, again

apply the proof of Theorem 19.4. �

Just as for NCR0,0
n , there is a potentially interesting lattice NXΠn,2 closely

related to NCR1,0
n . Specifically, recall the definition of the lattice Πn,2 of block-

closed graphs discussed in Section 19.1; by Theorem 19.6, NXΠn,2 is Cohen-
Macaulay. Restricting to graphs with a block-closed representation, we obtain
a sublattice, which we denote by NXΠn,2. There is an obvious closure map
from the face poset of NCR1,0

n to NXΠn,2. Namely, map a graph G to the
graph obtained by adding the edge ab whenever there is a set V containing a
and b such that G(V ) is non-separable. This implies the following result.

Corollary 21.7. For n ≥ 3, ∆(NXΠn,2) is homotopy equivalent to a sphere
of dimension 2n− 5. �
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We want to prove a stronger result. A ranked poset P with rank function ρ
is homotopically Gorenstein∗ if ∆(I) is homotopy equivalent to a sphere of
dimension ρ(G)− ρ(H)− 2 for each nonempty interval I = (x, y) = {z : x <
z < y} such that x, y ∈ P ∪ {0̂, 1̂}. Since every link in the order complex of a
poset is a join of order complexes of intervals, every link in a homotopically
Gorenstein∗ poset is homotopy equivalent to a sphere in top dimension; apply
Lemma 3.6. As a consequence, Gorenstein∗ posets are Cohen-Macaulay.

Theorem 21.8. For n ≥ 3, NXΠn,2 is homotopically Gorenstein∗ with rank
function ρ(G) = 2n− 2c(G)− b(G).

Proof. The proof is very similar to the proof of Theorem 19.6. Consider an
interval (H,G) in the lattice. For G = Kn, we have that ∆(H,Kn) is homotopy
equivalent to lkNCR1,0

n
(H). By Theorem 21.6, this link is homotopy equivalent

to a sphere of dimension 2c(H) + b(H)− 5 = ρ(Kn)− ρ(H)− 2 as desired.
Suppose that G �= Kn and let V1, . . . , Vr be the blocks in G. Write

Gi = G(Vi) and Hi = H(Vi). Let ΣG,H be the lifted complex consisting
of all graphs G′ such that H ⊆ G′ ⊂ G and such that G′(Vi) has a separable
representation for at least one i. By the Closure Lemma 6.1, we have that
lkΣG,H

(H) is homotopy equivalent to the order complex of (H,G). Using ex-
actly the same approach as in the proof of Theorem 19.6, we obtain an acyclic
matching on ΣG,H such that the remaining family is the join of CR1,0

V1
(H1),

. . ., CR1,0
Vr−1

(Hr−1), and NCR1,0
Vr

(Hr). Since each of these families admits an
acyclic matching with one single unmatched graph, the same is true for their
join and hence for ΣG,H . The remainder of the proof is identical to the proof
of Theorem 19.6. �

21.4 Graphs with a Two-separable Polygon
Representation

We consider the complex NCR1,1
n of graphs with a two-separable polygon rep-

resentation.

Theorem 21.9. Let n ≥ 4. Then the complex NCR
1,1

n obtained from NCR1,1
n

by removing the n cone points i(i + 1) for i ∈ [n] satisfies

NCR
1,1

n � Sn−4.

Proof. While NCR1,1
n satisfies the conditions in Theorem 16.6, this is not true

for the smaller complex NCR
1,1

n that we are interested in. In fact, the proof of
Theorem 16.6 does not apply, as the edge e defining the perfect matching on
the complex Σ(e) is not necessarily contained in Intn =

(
[n]
2

)
\Bdn. To prove

that NCR
1,1

n is indeed homotopy equivalent to NCR
1,1

n ∩NXn = NCR
1,1

n ∩An, we
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have to work a bit more. Note that we are done as soon as such a homotopy
equivalence is established. Namely, An ⊂ NCR

1,1

n , because all noncrossing
graphs are two-separable.

For a given graph G, define X(G) as the family of cut sets {i, j} in G∪Bdn;
i and j separate the representation of G − ij. Define Cl(G) as the maximal
graph K containing Bdn with the property that X(K) = X(G). K is easily
seen to be unique, because the union G ∪ H of two graphs G and H with
X(G) = X(H) is readily seen to satisfy X(G ∪H) = X(G).

Define a linear order ≤L on the family of subsets of [n] in the following
manner. A set S is smaller than a set T if |S| < |T | or if |S| = |T | and
S is smaller than T with respect to a given fixed linear order. For a graph
G ∈ NCR

1,1

n \An, let Q = Q(G) be maximal with respect to the order ≤L such
that Q is a clique in Cl(G). By the properties of ≤L, it follows that Q is a
maximal clique in Cl(G). For Q ⊂ [1, n], define F(Q) as the family of graphs
G ∈ NCR

1,1

n \ An such that Q(G) = Q. The families F(Q) satisfy the Cluster
Lemma 4.2; if we add an edge to G, then Q cannot decrease.

Let G ∈ F(Q). Since G contains crossings, Q has size at least four; the
four vertices in a crossing form a clique in Cl(G). Since X(G) is nonempty,
we have that Q � [n]. In particular, there are vertices i, j ∈ Q such that
ij ∈ Intn and such that Q ∩ (i, j) = ∅; this means that i and j are adjacent
on the polygon with vertex set Q but not on the big n-gon. Choose (i, j) with
this property such that i is minimal and i < j.

We claim that
Q(G− ij) = Q(G + ij). (21.1)

If we can prove this, we obtain that ij is a cone point in F(Q), which concludes
the proof.

(21.1) obviously holds if ij /∈ G, because ij ∈ Cl(G); Q is a clique in
Cl(G). Suppose that ij ∈ G. First, we show that ij does not cross any edge
in Cl(G). Assume the opposite; there are a ∈ (i, j) and b ∈ (j, i) such that
ab ∈ Cl(G). Note that a /∈ Q. By a straightforward adaptation of the proof of
Lemma 21.1, we have, for any graph H, that X(H + rs) = X(H) if rt and su
are crossing edges in H; by the proof, every cut set in H remains a cut set in
H + rs. In particular, ai, aj ∈ Cl(G), as ab and ij cross in Cl(G). Moreover,
if r ∈ Q \ {i, j, b}, then ar ∈ Cl(G) as ab crosses either ir or rj. However, this
means that a is adjacent to all vertices in Q, which contradicts the fact that
Q is a maximal clique in Cl(G).

If (21.1) does not hold, then X(G− ij) �= X(G). Let {a, b} ∈ X(G− ij) \
X(G); we must have that a ∈ (i, j) and b ∈ (j, i) (or vice versa). Observe
that each of {b, i} and {b, j} is either a cut set in Cl(G) or a boundary edge.
Namely, we learned above that {i, j} is a cut set in Cl(G) separating (j, b) and
(b, i) from (i, j), whereas {a, b} is a cut set in Cl(G− ij) separating (j, b) from
(b, a) and (b, i) from (a, b). Since (i, j)∪(b, a) = (b, j) and (i, j)∪(a, b) = (i, b),
the claim follows.
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Now, since Q has size at least four, the set Q∩ ((j, b)∪ (b, i)) = Q\{b, i, j}
is nonempty. The conclusion is that at least one of {b, j} and {b, i}, say {b, i},
is indeed a cut set in G ∪ Bdn and hence in Cl(G), separating some element
q ∈ Q\{i, j} from j. However, Cl(G) contains the edge qj, which implies that
{b, i} is not a cut set in Cl(G). This is a contradiction; hence X(G − ij) =
X(G), and we are done. �

Corollary 21.10. The homology of NCR
1,1

n is generated by the fundamental
cycle of the associahedron An.

Proof. By the above proof, NCR
1,1

n is collapsible to An; hence the corollary
follows immediately. �
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Directed Variants of Connected Graphs

We devote this chapter to some directed variants of connectivity.
In Section 22.1, we review some known results about the complex DNSCn

of not strongly connected digraphs, the main result being that DNSCn is
homotopy equivalent to a wedge of (n − 1)! spheres of dimension 2n − 4.
This result is due to Björner and Welker [17]; Hultman [64] generalized it to
certain induced subcomplexes of DNSCn. In addition, we prove that DNSCn

has a Cohen-Macaulay (2n−4)-skeleton; the proof is inspired by Shareshian’s
proof of the corresponding result for NC2

n (see Theorem 19.1).
In Section 22.2, we proceed with complexes of not strongly 2-connected

digraphs, for which very little is known.
In Section 22.3, we consider the complex DNSpn of non-spanning digraphs

on n vertices and show that the homotopy type coincides with that of NC2
n,

thus a wedge of (n− 2)! spheres of dimension 2n− 5.

22.1 Not Strongly Connected Digraphs

Björner and Welker [17] determined the homotopy type of the complex DNSCn

of not strongly connected digraphs on n vertices. We generalize their result
to the complex DNSCn,k of digraphs D such that the associated poset P (D)
has at least k + 1 elements.

Theorem 22.1. For 1 ≤ k ≤ n− 1, DNSCn,k ∼ cn,k · t2n−k−3, where

Pn(x) :=
n−1∑
k=1

cn,kxk = x(2 + x)(3 + x) · · · (n− 1 + x) = x ·
n−1∏
i=2

(i + x).

In particular, DNSCn is homotopy equivalent to a wedge of (n− 1)! spheres of
dimension 2n− 4.

Proof. We use induction on n. First, note that DNSCn,n−1 = DAcyn ∼ tn−2

by Theorem 15.3. Thus we may assume that 1 ≤ k ≤ n − 2; in particu-
lar, n ≥ 3. Consider the first-hit decomposition of DNSCn,k with respect to
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(1n, 2n, . . . , (n−1)n); see Definition 5.24. For r ∈ [n−1], let Ar = {in : i ∈ [r]}.
Let Σr = DNSCn,k({rn}, Ar−1) and Σn = DNSCn,k(∅, An−1). We want to
show that

Σr ∼

⎧⎨
⎩

cn−1,k · t2n−k−3 if r ∈ [n− 2];
(cn−1,k−1 + cn−1,k) · t2n−k−3 if r = n− 1;
0 if r = n.

(22.1)

Lemma 5.25 will then yield that

DNSCn,k ∼ (cn−1,k−1 + (n− 1)cn−1,k) · t2n−k−3.

Since this implies that

n−1∑
k=1

|χ̃(DNSCn,k)| · xk = Pn−1(x) · ((n− 1) + x) = Pn(x),

the theorem will follow.
Clearly, ni is a cone point in Σn for any i; if no edges are directed to n,

then n cannot be contained in a cycle, which means that n forms an element
on its own in P (D) whenever D ∈ Σn.

Consider Σr for r ≤ n − 1. Let B = {ni : i ∈ [n − 1]}. For each Z ⊆ B,
consider the complex Σr,Z = Σr(Z,B \ Z). Note that An−1 \Ar is the set of
edges incident to n that remain to be checked. There are three cases:

• ni ∈ Z for some i �= r. Then ri is a cone point in Σr,Z ; we already have a
directed path from r to i via n.

• Z = {nr}. For each Y ⊆ An−1 \ Ar, consider the complex Σr,{nr},Y =
Σr,{nr}(Y, (An−1 \Ar) \ Y ). If Y �= ∅, then yr is a cone point in Σr,{nr},Y

for each y ∈ Y ; we already have a directed path from y to r via n.
The remaining case is Y = ∅. Now, a digraph D on n − 1 vertices be-
longs to DNSCn−1,k if and only if D′ belongs to Σr,{nr},∅, where D′ is
the digraph obtained by adding the vertex n and the edges rn and nr
to D. By induction, DNSCn−1,k ∼ cn−1,k · t2n−k−5, which implies that
Σr,{nr},∅ ∼ cn−1,k · t2n−k−3. It follows that

Σr,{nr} ∼ cn−1,k · t2n−k−3.

• Z = ∅. This means that no edge begins in n, which implies that n is not
contained in any cycle. If r < n− 1, then (n− 1)n is hence a cone point in
Σr,∅; thus Σr,∅ ∼ 0. The remaining case is r = n−1. Now, a digraph D on
n−1 vertices belongs to DNSCn−1,k−1 if and only if D′ belongs to Σn−1,∅,
where D′ is the digraph obtained by adding the vertex n and the edge
(n − 1)n to D. By induction, DNSCn−1,k−1 ∼ cn−1,k−1 · t2n−k−4, which
implies that

Σn−1,∅ ∼ cn−1,k−1 · t2n−k−3.
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As a consequence, (22.1) follows. �

For the remainder of the section, we confine ourselves to DNSCn = DNSCn,1.
Let DSCn be the quotient complex of strongly connected digraphs on n ver-
tices. As an immediate consequence of the above proof, we have a decision
tree on DSCn such that D is evasive if and only if D is the digraph Dµ with
edge set

σµ := {µjj, jµj : j ∈ [2, n]}
for some (µ2, . . . , µn) such that 1 ≤ µj < j for all j. One readily verifies that
every proper subdigraph of Dµ belongs to DNSCn. As a consequence, we may
conclude the following; apply Corollary 4.17.

Corollary 22.2. For n ≥ 2, {[σµ] : 1 ≤ µj < j for j ∈ [2, n]} is a basis for
H̃2n−3(DSCn; Z). As a consequence, {∂([σµ]) : 1 ≤ µj < j for all j} is a basis
for H̃2n−4(DNSCn; Z). �

Note that ∂([σµ]) is the fundamental cycle of the sphere ∂2σµ .
A digraph D is 2-dense if every directed cycle in D contains two vertices

u and v such that (u, v) forms a 2-cycle in D; (u, v), (v, u) ∈ D. Define D̂ as
the ordinary undirected graph on the same vertex set as D and with one edge
for each 2-cycle in D. Hultman generalized the result of Björner and Welker
in the following manner:

Theorem 22.3 (Hultman [64]). Let D be a digraph on n vertices. If D is
2-dense and strongly connected, then DNSCn(D) is homotopy equivalent to a
wedge of (2n − 4)-dimensional spheres. The number of spheres in the wedge
equals |χ′

D̂
(0)|, where χD̂(t) is the chromatic polynomial of D̂. �

Finally, we show that the (2n−4)-skeleton of DNSCn is Cohen-Macaulay. For
a digraph D, we define b(D) as the number of elements in the associated poset
P (D). Thus if A1, A2, . . . , Ab are the elements in P (D), then b(D) = b. We
refer to the sets Ai as the blocks of D. For vertices x and y in a digraph D, let
x

D−→ y mean that there is a directed path from x to y in D; if the underlying
digraph is clear from context, we simply write x −→ y. D is block-closed if
xy ∈ D whenever x

D−→ y.

Theorem 22.4. If H is a block-closed digraph on n vertices, then the lifted
complex DNSCn(H, ∅) is homotopy equivalent to a wedge of spheres of di-
mension δ(H) := |H| + b(H) + c(H) − 4. If H is not block-closed, then
DNSCn(H, ∅) is a cone. As a consequence, the (2n − 4)-skeleton of DNSCn

is Cohen-Macaulay.

Proof. We want to prove that DNSCn(H, ∅) admits an acyclic matching such
that all unmatched digraphs contain δ(H) + 1 edges. First, assume that H is
not block-closed. Let v and w be such that vw /∈ H and v

H−→ w. It is clear
that vw is a cone point in DNSCn(H, ∅).
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From now on, assume that H is block-closed. If H is the complete digraph,
then the theorem is trivial. Moreover, the cases n = 1 and n = 2 are easy to
check. Thus assume that H is not complete and that n ≥ 3. We will define an
acyclic matching on the quotient complex DSCn(H, ∅) of strongly connected
digraphs containing H such that all unmatched digraphs contain δ(H) + 2
edges. The matching turns out to be straightforward to translate into an
acyclic matching on DNSCn(H, ∅).

First, assume that there are vertices v and w in H such that neither vw nor
wv belongs to H; we may assume that v = 1 and w = n. Define a matching on
DSCn(H, ∅) by pairing D + n1 with D − n1 whenever possible. Let ∆ be the
family of unmatched digraphs. By Lemma 4.1, we obtain an acyclic matching
on DSCn(H, ∅) by combining any acyclic matching on ∆ with the matching
just defined.

∆ consists of all strongly connected digraphs D containing H such that
D − n1 is not strongly connected. Equivalently, for all x ∈ [n], we have that
1 −→ x and x −→ n in both D and D− n1, whereas n −→ 1 in D but not in
D−n1. Now, define a matching on ∆ by pairing D+1n with D−1n whenever
possible. Let Σ be the family of unmatched digraphs. It is clear that a digraph
D in ∆ belongs to Σ if and only if 1�−→n in D − 1n.

For a digraph D in Σ, write D̂ = D\{1n, n1}. Let XD be the set of vertices

x such that 1 D̂−→ x; note that 1 ∈ XD and n /∈ XD. For each set X ⊆ [n− 1],
let Σ(X) be the family of digraphs D such that XD = X. Write YD = [n]\XD.
We claim that D̂ is the disjoint union of the two induced subdigraphs D(XD)
and D(YD) and that these subdigraphs are strongly connected.

To see this, first note that x�−→y in D̂ if x ∈ XD and y ∈ YD. Namely,

otherwise we would have that 1 D̂−→ y. Moreover, x
D̂−→ 1, because x

D−→ 1,
whereas x�−→n in D̂. It follows that there are no edges from XD to YD in D̂
and that D(XD) is strongly connected.

Next, note that n
D̂−→ y if y ∈ YD. Namely, n −→ y in D and hence in

D − 1n. Since 1�−→y in D̂, no directed path from n to y in D − 1n contains
the edge n1, and the claim follows. As a consequence, we have that y �−→1 in

D̂, because n�−→1 in D̂. Finally, we have that y
D̂−→ n, because y −→ n in

D̂ + 1n and y �−→1 in D̂. It follows that there are no edges from YD to XD

and that D(YD) is strongly connected.
As an immediate consequence, we have that the families Σ(X) satisfy

the Cluster Lemma 4.2; they form an antichain with respect to inclusion.
Moreover, with Y = [n] \X, we have that

Σ(X) = {{1n, n1}} ∗ DSCX(H(X), ∅) ∗ DSCY (H(Y ), ∅);

DSCX is the quotient complex of strongly connected digraphs on the ver-
tex set X. Induction yields that DSCX(H(X), ∅) and DSCY (H(Y ), ∅) admit
acyclic matchings such that all unmatched digraphs contain δ(H(X))+2 and
δ(H(Y )) + 2 edges, respectively. This yields an acyclic matching on Σ(X)
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with

2 + δ(H(X)) + 2 + δ(H(Y )) + 2
= |H|+ b(H(X)) + b(H(Y )) + c(H(X)) + c(H(Y ))− 2

edges. One readily verifies that b(H(X)) + b(H(Y )) = b(H) and c(H(X)) +
c(H(Y )) = c(H); hence

|H|+ b(H(X)) + b(H(Y )) + c(H(X)) + c(H(Y ))− 2
= |H|+ b(H) + c(H)− 2 = δ(H) + 2

as desired.
It remains to consider the case that vw ∈ H or wv ∈ H for all vertices

v and w in H. Then the associated poset P (H) is a linear order. If P (H)
consists of one single element, then H is the complete digraph; thus assume
that P (H) consists of at least two elements. Let A1, . . . , Ab be the blocks of
H and assume that Ai is smaller than Aj in P (H) if and only if i < j. Since
H is block-closed, this means that xy ∈ H if and only if x ∈ Ai and y ∈ Aj

for some i ≤ j. Pick an element a1 from A1 and some element a2 ∈ A2; we
may assume that a1 = 1 and a2 = n.

We obtain a matching on DSCn(H, ∅) by pairing D + n1 with D − n1
whenever possible. D remains unmatched if and only if D is strongly connected
and D − n1 is not. Write A = A1 and B = [n] \A1.

Let D be unmatched. First, we claim that there is no edge xy in D − n1
such that x ∈ B and y ∈ A. Namely, either n = x or nx ∈ H; similarly, either
y = 1 or y1 ∈ H. In particular, n −→ 1 in D − n1, a contradiction. Next, we
claim that the induced subdigraph of D on B is strongly connected. Namely,
x

D−→ n for all x ∈ B, and since the only edge from B to A in D is n1, it
follows that x −→ n in D(B).

As a consequence,

DSCn(H, ∅) = {K→
A ∪ (A×B)} ∗ {n1} ∗ DSCB(H(B), ∅);

K→
A is (the edge set of) the complete digraph on the set A. By induction,

we have that DSCB(H(B), ∅) admits an acyclic matching such that all un-
matched digraphs contain δ(H(B))+2 edges. This yields an acyclic matching
on DSCn(H, ∅) with

|K→
A ∪ (A×B)|+ 1 + δ(H(B)) + 2 = |H|+ b(H(B)) + c(H(B))− 1

edges. It is clear that c(H(B)) = 1 = c(H) and b(H(B)) = b(H)− 1; we lose
the poset element A = A1. Hence

|H|+ b(H(B)) + c(H(B))− 1 = |H|+ b(H) + c(H)− 2 = δ(H) + 2

as desired.
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Finally, we have to prove that the (2n − 4)-skeleton of DNSCn is Cohen-
Macaulay. It suffices to prove that

|H| ≥ 2n− b(H)− c(H).

Namely, this will yield the desired inequality δ(H) ≥ 2n− 4.
Now, let A1, . . . , Ab be the blocks in H. Since H is block-closed, H(Ai) is a

complete digraph for each Ai. In particular, H(Ai) contains at least 2(|Ai|−1)
edges; we have equality for |Ai| ≤ 2. Moreover, since the poset P (H) contains
c(H) components and b(H) elements, there are at least b(H)− c(H) covering
relations in P (H). For each covering relation Ai < Aj in P (H), H contains
the set Ai×Aj , which has size at least 1; thus there are at least b(H)− c(H)
edges in H between different blocks. As a consequence, H contains at least

b(H)∑
i=1

2(|Ai| − 1) + b(H)− c(H) = 2n− 2b(H) + b(H)− c(H)

edges, which concludes the proof. �

22.2 Not Strongly 2-connected Digraphs

Recall that DNSC2
n is the simplicial complex of not strongly 2-connected di-

graphs on n vertices. Not much is known about DNSC2
n. In particular, the

following conjecture due to Björner and Welker [17] remains unsettled:

Conjecture 22.5. For n ≥ 3, DNSC2
n is homotopy equivalent to a wedge of

(n− 2) · (n− 2)! spheres of dimension 3n− 5.

Computer calculations yield the conjecture for n ≤ 5 [17]. In addition, using
computer, we have been able to verify that the reduced Euler characteristic
of DNSC2

6 equals the conjectured value −96.
While we have not made any further progress on Conjecture 22.5, we

have discovered a rather unexpected correspondence between DNSC2
n and the

complex of digraphs D such that D([n]\{x}) is not strongly connected for any
x ∈ [n]. Specifically, for any sequence A = (A1, . . . , Ar) of subsets of [n], let
DNSC2

n(A) be the complex of digraphs D such that each Ai contains a vertex
a such that D([n] \ {a}) is not strongly connected. For n ≥ 3, DNSC2

n([n])
coincides with DNSC2

n.

Theorem 22.6. Let n ≥ 3 and let A = (A1, . . . , Ar) be a sequence of pairwise
disjoint and nonempty subsets of [n]. Then

DNSC2
n(A) �

{
Suspn−r(DNSC2

n(1, . . . , n)) if
∑

i |Ai| = n;
point otherwise.

Moreover, if DNSC2
n(1, . . . , n) is semi-buildable, then DNSC2

n(A) is semi-
buildable.
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Proof. We show that Σn,r = DNSC2
n(1, . . . , r) is nonevasive whenever 0 ≤ r <

n. By Lemma 19.11, this will imply the desired result.
Σn,r is trivially nonevasive if n = 3; thus assume that n ≥ 4. If r ≤ 1,

then the edge 1n is a cone point; thus assume that r ≥ 2.
Let En be the set of edges incident to the vertex n. If B contains two edges

an and nb and hence a path from a to b, then ab is a cone point in Σn,r(B,En\
B). If B contains no edges ending in n or no edges starting in n, then any edge
in Kn−1 is a cone point. The remaining case is that B = {kn, nk} for some
k ∈ [n − 1]. One readily verifies that Σn,r({kn, nk}, En \ {kn, nk}) coincides
with {{kn, nk}} ∗Σn−1,r if k > r and with {{kn, nk}} ∗DNSC2

n−1(1, . . . , k −
1, k + 1, . . . , r) ∼= {{kn, nk}} ∗Σn−1,r−1 if k ≤ r. By induction, we are done.
�

Theorem 22.6 suggests the following conjecture, which implies Conjecture 22.5.

Conjecture 22.7. For n ≥ 3, DNSC2
n(1, . . . , n) is homotopy equivalent to a

wedge of (n− 2) · (n− 2)! spheres of dimension 2n− 4.

22.3 Non-spanning Digraphs

Another variant is DNSpn, the complex of non-spanning digraphs on n ver-
tices. We consider the generalized complex DNSpn,k of digraphs D such that
P (D) has at least k + 1 atoms. Let us refer to a directed forest with k con-
nected components as a k-spanning directed forest. DNSpn,k is exactly the
complex of digraphs that do not contain a k-spanning directed forest.

Theorem 22.8. For 1 ≤ k ≤ n− 1, DNSpn,k ∼ dn,k · t2n−2k−3, where

Qn(x) :=
n−1∑
k=1

dn,kxk = x(1 + x)(2 + x) · · · (n− 2 + x) =
n−2∏
i=0

(i + x).

In particular, DNSpn is homotopy equivalent to a wedge of (n− 2)! spheres of
dimension 2n− 5.

Proof. We use induction on n. First, note that DNSpn,n−1 = {∅}. Thus we
may assume that 1 ≤ k ≤ n− 2; in particular, n ≥ 3. Throughout the proof,
we will frequently apply the fact that if a digraph D contains two edges ab
and bc such that a, b, c are all different, then D + ac ∈ DNSpn,k if and only if
D − ac ∈ DNSpn,k.

Let Y = {in, ni : i ∈ [2, n − 1]} and consider the family ΣA =
DNSpn,k(A, Y \A) for each A ⊆ Y . We identify four cases:

• A contains edges in and nj such that i �= j. Then ij is a cone point in ΣA.
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• A contains at least one edge in ending in n but no edge starting in
n. Decompose with respect to n1. We have that i1 is a cone point in
ΣA(n1, ∅). Moreover, 1n is a cone point in ΣA(∅, n1). Namely, suppose
that D ∈ ΣA(∅, n1) and that D + 1n contains a k-spanning directed for-
est F ; obviously, 1n ∈ F . We obtain a new k-spanning directed forest
by replacing 1n with in. Since this forest is contained in D, we have a
contradiction; D ∈ DNSpn,k.

• A does not contain any edge ending in n. Decompose with respect to
1n. We have that n1 is a cone point in ΣA(1n, ∅). Namely, suppose that
D ∈ ΣA(1n, ∅) and that D + n1 contains a k-spanning directed forest F ;
obviously, n1 ∈ F . Removing n1 from F and adding 1n, we obtain another
k-spanning directed forest contained in D − n1; this is a contradiction.
It remains to consider ΣA(∅, 1n); digraphs in this family have the property
that no edges end in n. Decompose ΣA(∅, 1n) with respect to n1. We claim
that 21 is a cone point in ΣA(n1, 1n). Namely, if D ∈ ΣA(n1, 1n) and F
is a k-spanning forest contained in D + 21, then (F − 21) + n1 is another
k-spanning forest contained in D, a contradiction. The remaining family
is ΣA(∅, {1n, n1}). If A contains some edge ni, then 1i is a cone point by
the same argument as before. For A = ∅, we have that n is isolated in
every digraph in Σ∅(∅, {1n, n1}). As a consequence, this complex equals
DNSpn−1,k−1. By induction, DNSpn−1,k−1 ∼ dn−1,k−1 · t2n−2k−3.
To summarize, we have that ΣA ∼ 0 if A �= ∅ and Σ∅ ∼ dn−1,k−1 ·t2n−2k−3.

• A = {in, ni} for some i ∈ [2, n − 1]. Decompose with respect to 1n and
n1. For any nonempty I ⊆ {1n, n1}, we have that Σ{in,ni}(I, {1n, n1} \ I)
is a cone. Namely, 1i is a cone point if 1n ∈ I and i1 is a cone point
if n1 ∈ I. The remaining case is Σ{in,ni}(∅, {1n, n1}). However, a di-
graph D containing {in, ni} but no other edges incident to n belongs to
Σ{in,ni}(∅, {1n, n1}) if and only if the induced subdigraph D([n− 1]) be-
longs to DNSpn−1,k. Namely, we can extend a k-spanning directed forest
contained in D([n− 1]) to a k-spanning directed forest contained in D by
adding the edge in. Conversely, if D([n−1]) does not contain a k-spanning
directed forest, then neither does D: If n were a root of such a forest, then
there would be a k-spanning directed forest in D([n − 1]) with i among
its roots, whereas a k-spanning directed forest such that n is not a root
(i.e., the forest contains in) would obviously yield a k-spanning directed
forest in D([n − 1]). By induction, DNSpn−1,k ∼ dn−1,k · t2n−2k−5. Thus
Σ{1n,n1} ∼ dn−1,k · t2n−2k−3.

We conclude that DNSpn,k ∼ (dn−1,k−1 + (n− 2)dn−1,k) · t2n−2k−3. As in the
proof of Theorem 22.1, this implies by induction on n that

∑n−1
k=1 |χ̃(DNSpn,k)|·

xk = Qn(x). �
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Not 2-edge-connected Graphs

We consider the complex NECk
n of not k-edge-connected graphs on n vertices.

Such graphs have the property that we can make them disconnected by re-
moving an edge set of size at most k − 1. For example, G ∈ NEC2

n if and
only if G is disconnected or G− e is disconnected for some edge e ∈ G. Note
that NEC1

n = NCn, which has a very attractive structure by the results in
Chapter 18; all homology appears in dimension n− 3. Moreover, NEC2

n is ex-
actly the complex obtained from NEC1

n by adding G + e for each G ∈ NEC1
n

and e ∈
(
[n]
2

)
. While this suggests that the two complexes are combinatori-

ally closely related, it does not at all indicate that they should have anything
to do with each other topologically. Specifically, when adding the faces of
NEC2

n \ NEC1
n to NEC1

n, we kill all existing homology in NEC1
n.

Indeed, in Section 23.1, we show that the homology of NEC2
n is nonvan-

ishing below dimension � 3n−7
2 �, a bound way above the depth n− 3 of NCn.

Moreover, while there is homology in dimension � 5n−11
3 � (see Section 23.4),

there is no homology above this dimension. This rules out any deeper connec-
tion to the homology of NC2

n, which is concentrated in dimension 2n− 5; see
Chapter 19.

However, there is an interesting connection between NEC2
2k−1 and the com-

plex NFC2k−1 of not factor-critical graphs. By a result of Linusson, Shareshian,
and Welker [95], NFC2k−1 is homotopy equivalent to a wedge of ((2k − 3)!!)2

spheres of dimension 3k−5. In Section 23.3, we show that H̃3k−5(NEC2
2k−1; Z)

is isomorphic to H̃3k−5(NFC2k−1; Z), thereby establishing that the shifted con-
nectivity degree of NEC2

2k−1 equals 3k−5. We have not been able to compute
the shifted connectivity degree of NEC2

n for even n, but we conjecture it to be
� 3n−7

2 � = 3n
2 − 3.

As usual, we use discrete Morse theory in our analysis. Similarly to the
analysis of NC3

n in Chapter 20, our acyclic matching is explicit rather than
defined in terms of a decision tree. In fact, the decision tree method does not
appear to be useful in this case. Specifically, while NEC2

5 is semi-collapsible
and admits an acyclic matching with nine critical graphs of dimension four,
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the complex is not semi-nonevasive; the link of NEC2
5 with respect to any

element has homology in two dimensions.

Table 23.1. The integral homology of the complex NEC2
n of not 2-edge-connected

graphs for 3 ≤ n ≤ 9.

H̃i(NEC2
n) i = 0 1 2 3 4 5 6 7 8 9 10 11

n = 3 − Z − − − − − − − − − −
4 − − − Z2 − − − − − − − −
5 − − − − Z9 − − − − − − −
6 − − − − − − Z96 − − − − −
7 − − − − − − − Z225 Z280 − − −
8 − − − − − − − − − Z6768 − −
9 − − − − − − − − − − Z11025 Z66528

In Table 23.1, we present the homology of NEC2
n for n ≤ 9. All values are

consequences of results in this chapter. Our acyclic matching is optimal for
n ≤ 9 and for n = 11. For n ≤ 6 and n = 8, this is immediate from the fact
that all critical graphs are of the same dimension. The situation is much less
obvious for n ∈ {7, 9, 11}, because then we have critical graphs of two different
adjacent dimensions. Still, the correspondence between NEC1

2k−1 and NFC2k−1

makes it possible to settle the desired optimality. We do not know whether
our matching is optimal for n = 10 and n ≥ 12. Moreover, the homotopy type
of NEC2

n remains an open problem for all n ≥ 7 except n = 8.
The acyclic matching gives rise to an upper bound on the Betti numbers;

we present an implicit formula for this bound in Section 23.2. Moreover, we
obtain an implicit formula for the reduced Euler characteristic of NEC2

n.

23.1 An Acyclic Matching

We prove that the quotient complex EC2
n = 2Kn/NEC2

n admits an acyclic
matching such that the dimension i of each critical graph is in the range⌈

3n− 5
2

⌉
≤ i ≤

⌊
5n− 8

3

⌋
. (23.1)

Our acyclic matching turns out to be straightforward to translate into an
acyclic matching on NEC2

n; compare to the discussion at the beginning of
Section 17.1.

While probably a coincidence, it might be worth noting that the size of the
interval in (23.1) is exactly the same as the size of the corresponding interval
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for the matching complex; see Theorem 11.6 and Corollary 11.23. Specifically,
the inequalities in (23.1) are equivalent to⌈

n− 4
3

⌉
≤ 2n− i− 4 ≤

⌊
n− 3

2

⌋
.

To prove (23.1), first note that EC2
1 = {∅} (by convention) and that EC2

2 =
∅. Moreover, by Corollary 19.5, EC2

3 = C2
3 admits an acyclic matching with

one critical face of dimension 2, whereas EC2
4 = C2

4 admits an acyclic matching
with two critical faces of dimension 4.

Assume that n ≥ 5. We proceed in steps as follows.

xG− 1n = 1Mx(G)

Fig. 23.1. The set Mx(G) introduced in Step 1; the two bounded regions represent
connected induced subgraphs.

Step 1: Defining the set Mx(G) and partitioning EC2
n into subfamilies EC2

n,A.

Our starting point is the edge between 1 and n. Before proceeding, we divide
EC2

n into smaller families as follows. For any x ∈ [2, n] and G ∈ EC2
n, let

Mx(G) be the set of vertices v such that every path from 1 to v in G − 1n
contains the vertex x; see Figure 23.1. We obtain Mx(G) from [n] by removing
the vertices in the connected component containing 1 in (G− 1n)([n] \ {x}).
Note that x ∈ Mx(G). For each A ⊂ [2, n] such that n ∈ A, let EC2

n,A be
the family of graphs G ∈ EC2

n such that A = Mn(G). Clearly, the families
EC2

n,A satisfy the Cluster Lemma 4.2; the set Mn(G) can only increase when
we remove edges from G.

Step 2: Matching with the edge 1n to obtain the family Λn(A).

In EC2
n,A, match with 1n whenever possible, meaning that we pair G − 1n

and G + 1n whenever G− 1n is contained in EC2
n,A. Let Λn(A) be the family

of critical graphs with respect to this matching. By Lemma 4.1, any acyclic
matching on Λn(A) together with the matching just defined yields an acyclic
matching on EC2

n,A. Let Λn be the union of all Λn(A).

Step 3: Defining the set X(G) and the edge e(G) = a(G)b(G).

For any graph G, let X(G) be the set of edges e ∈ G such that G − e is
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n
G =

1
a be

Fig. 23.2. The vertices a = a(G) and b = b(G) and the edge e = e(G) in Step
3; the shaded region represents a 2-edge-connected graph, whereas the white region
represents a connected graph such that any edge separating it separates a from n.

disconnected. Let G ∈ Λn. Since G is 2-edge-connected, the set X(G) is
empty. This implies that any e ∈ X(G− 1n) separates 1 and n in G. For any
G ∈ Λn(A) and e1, en ∈ X(G− 1n), since each of e1 and en separates G− 1n,
the subgraph G−{1n, e1, en} consists of exactly three connected components
C0, C1, Cn, where 1 ∈ C1 and n ∈ Cn. Moreover, since neither of the two edges
separates G, we must have that one edge, say e1, joins C0 and C1, whereas
the other edge, say en, joins C0 and Cn. In particular, the component in
G−{1n, e1} containing 1, which is C1, is a proper subset of the component in
G−{1n, en} containing 1, which is C0∪C1. As a consequence, there is a unique
edge e = e(G) such that the component in G − {1n, e(G)} containing 1 is
minimal. Write e(G) = a(G)b(G), where a(G) belongs to the same component
as n and b(G) belongs to the same component as 1 in G − {1n, e(G)}. Note
that we might have a = n or b = 1 (but not both). See Figure 23.2.

Step 4: Partitioning Λn(A) into subfamilies Λn(A,M, a, b), Πn(A,M, x), and
Π ′

n(A,M, x).

We have the following possibilities for a graph G in Λn:

a(G) �= n :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G− a(G)n ∈ Λn. This is case A.

G− a(G)n /∈ Λn :

⎧⎨
⎩

b(G) �= 1. This is case B1.

b(G) = 1. This is case C.

a(G) = n. This is case B2.

Let A ⊂ [2, n] be such that n ∈ A. We divide Λn(A) into subfamilies according
to the three cases A, B = B1+B2, and C:

Step 4A: Defining the subfamilies Λn(A,M, a, b).

We consider all case A graphs. Let M ⊂ [n] be a set containing A but not 1.
For any e = ab such that a ∈M \A and b ∈ [n− 1] \M , define

Λn(A,M, a, b) = {G : G− an ∈ Λn(A), a = a(G), b = b(G),M = Ma(G)}.
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n
1

a

b
A

M \A

Fig. 23.3. A graph in Λn(A, M, a, b) in Step 4A. The shaded regions represent 2-
edge-connected graphs, whereas the white region represents a connected graph such
that any edge separating it separates a from all vertices adjacent to n in G. There
is at least one edge from n to M \ A in G − an (in the figure, there are three such
edges). G may or may not contain the edge an.

n
1

x

y �= 1
A

M \A

n 1

x

A

M \A

[n] \M

Fig. 23.4. The two kinds of graphs, B1 on the left and B2 on the right, in
Πn(A, M, x) in Step 4B; the shaded regions represent 2-edge-connected graphs. In
a graph G of the kind illustrated on the right, there are at least two edges from x
to [n] \ M , and the induced subgraph G([n] \ A) is 2-edge-connected. Note that G
may contain the edge 1x.

See Figure 23.3. Note that a �= n, because n ∈ A.

Step 4B: Defining the subfamilies Πn(A,M, x).

We consider all case B graphs. Let M be a set as in Step 4A. For any x ∈M\A,
define

Πn(A,M, x) = Λn(A) ∩ ({G : x = a(G), xn = e(G + 1x),M = Mx(G)}
∪{G : n = a(G), x = b(G),M = Mx(G)}).

See Figure 23.4. Note that the condition xn = e(G + 1x) means exactly that
G− xn /∈ Λn and 1 �= b(G).

Step 4C: Defining the subfamilies Π ′
n(A,M, x).

We consider all case C graphs. For each M containing A but not 1 and each
x ∈ M \ A, define Π ′

n(A,M, x) as the family of graphs G ∈ Λn(A) such that
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nG = 1

x

A

M \A

Fig. 23.5. A graph in Π ′
n(A, M, x) in Step 4C; the shaded regions represent 2-edge-

connected graphs.

Mx(G) = M , such that 1x, xn, 1n ∈ G, and such that G−{1x, xn, 1n} consists
of three connected components, each 2-edge-connected. See Figure 23.5.

Step 5: Demonstrating that the Cluster Lemma applies.

We want to show that the Cluster Lemma 4.2 applies to the given partition.
To simplify notation, we suppress the set A from notation in what follows; we
already know that the Cluster Lemma 4.2 applies to the partition {Λn(A)}
of Λn. First, note that if we remove an edge from a graph in Π ′

n(M,x), then
we either obtain another graph in Π ′

n(M,x) or a not 2-edge-connected graph.
Thus we may concentrate on Λn(M,a, b) and Πn(M,x). For M � M ′, we con-
sider each of Λn(M,a, b) and Πn(M,x) as being above each of Λn(M ′, a′, b′)
and Πn(M ′, x′) (note the direction) for every a, b, a′, b′, x, x′. Moreover, we
consider Λn(M,a, b) as being above Πn(M,x) for every M,a, b, x. Let G be a
graph and let f be an edge in G. We want to show that G belongs to a class
either above or equal to the class of G− f .

• G ∈ Λn(M,a, b) and G− f ∈ Πn(N,x). The only possibility is that x = a
and that e((G − f) + 1a) = an; hence M = N . In particular, Λn(M,a, b)
is above Πn(N,x).

• G ∈ Λn(M,a, b) and G − f ∈ Λn(M ′, a′, b′). If a = a′, then clearly b = b′

and M = M ′. If a �= a′, then a′ /∈M = Ma(G) and hence M � M ′. Thus
Λn(M,a, b) is above or equal to Λn(M ′, a′, b′).

• G ∈ Πn(N,x) and G−f ∈ Λn(M,a, b). By construction, (G−f)−an ∈ Λn,
which implies that a �= x. In particular, a /∈ N = Mx(G) and hence
N � M ; thus Πn(N,x) is above Λn(M,a, b).

• G ∈ Πn(N,x) and G − f ∈ Πn(N ′, x′). Then we must have x = x′ and
N ⊆ N ′; hence Πn(N,x) is equal to Πn(N ′, x′).

As a consequence, the Cluster Lemma 4.2 applies.

Step 6: Getting rid of Λn(A,M, a, b) and defining a matching on Π ′
n(A,M, x).

First, let us conclude that Λn(A,M, a, b) admits a perfect acyclic matching.
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Namely, we may pair G−an and G+an; e(G+an) = e(G) and Ma(G+an) =
Ma(G).

Next, consider Π ′
n(A,M, x). With A1 = [n]\M , Ax = M \A, and An = A,

Π ′
n(A,M, x) equals

{{1x, 1n, xn}} ∗ EC2
A1
∗ EC2

Ax
∗ EC2

An
,

where EC2
Ai

is the quotient complex of 2-edge-connected graphs on the set Ai.
By induction on n, for k < n, EC2

k admits an acyclic matching such that all
unmatched graphs G satisfy⌈

3k − 3
2

⌉
≤ |G| ≤

⌊
5k − 5

3

⌋
. (23.2)

By Theorem 5.29, this implies that Π ′
n(A,M, x) admits an acyclic matching

with all unmatched graphs G satisfying

|G| ≥ 3 +
3|A1| − 3

2
+

3|Ax| − 3
2

+
3|An| − 3

2
=

3n− 3
2

;

|G| ≤ 3 +
5|A1| − 5

3
+

5|Ax| − 5
3

+
5|An| − 5

3
=

5n− 6
2

<
5n− 5

2
.

n 1

k

A

Â = N \A

[k] \ Â

Fig. 23.6. A graph in Qn(A, N, k) in Step 7; the shaded regions represent 2-edge-
connected graphs. The induced subgraph H = G([k]) is 2-edge-connected, whereas
H − 1k is not. Moreover, a(H) �= k.

Step 7: Reducing Πn(A,N, k) to the family Qn(A,N, k) and partitioning into
the families Λk(Â, M̂ , a, b), Π̂k(Â, M̂ , y), and Π ′

k(Â, M̂ , y).

It remains to consider Πn(A,N, x). For simplicity, assume that A = [k +
1, n] and x = k. In Πn(A,N, k), match with 1k whenever possible and let
Qn(A,N, k) be the family of unmatched graphs. It is clear that we can always
add the edge 1k without ending up outside Πn(A,N, k); see Figure 23.4. When
removing the edge 1k from a graph G in Πn(A,N, k), we will end up inside
Πn(A,N, k) if and only if either of the following is true:
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• G − 1k is a case B1 graph. This is equivalent to the induced subgraph
G([k]) being a case B2 graph.

• G− 1k is a case B2 graph. This is equivalent to G([k])− 1k being 2-edge-
connected.

The conclusion is that we end up outside Πn(A,N, k) if and only if G([k])−1k
is a case A, case B1, or case C graph. Write Â = N \ A. Let Λ̂k(Â) be the
subfamily of Λk(Â) obtained by removing all case B2 graphs. We obtain that
Qn(A,N, k) equals

{{1n, kn}} ∗ EC2
A ∗ Λ̂k(Â).

The situation is illustrated in Figure 23.6. By induction on k, we have an
acyclic matching on EC2

A such that the unmatched graphs G satisfy (23.2)
for k = |A|. For Λ̂k(Â), take the same partition as in Step 4, the obvious
exception being that we need to replace Πk(Â, M̂ , y) with

Π̂k(Â, M̂ , y) = Λ̂k(Â) ∩ {G : y = a(G), yk = e(G + 1y), M̂ = My(G)}.

The other families Λk(Â, M̂ , a, b) and Π ′
k(Â, M̂ , y) are defined as before. Mim-

icking the procedure in Step 5, we obtain that this partition of Λ̂k(Â) satisfies
the Cluster Lemma 4.2.

n

k

1

y

A

Ak

A1

Ay

Fig. 23.7. A graph G in Qn(A, Ak ∪ A, k) in Step 8 such that G([k]) belongs to
Π ′

k(Ak, Ay, y); the shaded regions represent 2-edge-connected graphs.

Step 8: Getting rid of Λk(Â, M̂ , a, b) and defining a matching on Π ′
k(Â, M̂ , y).

As in Step 6, we obtain that Λk(Â, M̂ , a, b) admits a perfect acyclic matching
and that Π ′

k(Â, M̂ , y) equals

{{1y, 1k, yk}} ∗ EC2
A1
∗ EC2

Ay
∗ EC2

Ak
,

where A1 = [k] \ M̂ , Ay = M̂ \ Â, and Ak = Â. As a consequence, Σ =
{{1n, kn}} ∗ EC2

A ∗Π ′
k(Â, M̂ , x) equals

{{1y, 1k, ky, 1n, kn}} ∗ EC2
A ∗ EC2

A1
∗ EC2

Ay
∗ EC2

Ak
.
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See Figure 23.7 for an illustration. Applying Theorem 5.29, (23.2), and in-
duction on n, this implies that Σ admits an acyclic matching such that all
unmatched graphs G satisfy

|G| ≥ 5 +
3|A| − 3

2
+

3|A1| − 3
2

+
3|Ay| − 3

2
+

3|Ak| − 3
2

>
3n− 3

2
;

|G| ≤ 5 +
5|A| − 5

5
+

5|A1| − 5
3

+
5|Ax| − 5

3
+

5|Ak| − 5
3

=
5n− 5

3
.

n

k

1

y

z
A

Ak

A1

Ay

Fig. 23.8. A graph G in Qn(A, Ak ∪ A, k) in Step 9 such that G([k]) belongs to
Π̂k(Ak, Ay, y); the shaded regions represent 2-edge-connected graphs.

Step 9: Defining a matching on Π̂k(Â, M̂ , y).

The one remaining family is Π̂k(Â, M̂ , y). A graph G belongs to this family
if and only if G contains the edges 1k, ky, yz for some z �= 1 and has the
property that G− {1k, ky, yz} contains three connected components, each 2-
edge-connected, one containing {1, z}, one containing k, and one containing y.
Let A1 = [k]\M̂ , Ay = M̂ \ Â, and Ak = Â. Using exactly the same approach
as in Step 8, we conclude that {{1k, ky, yz, 1n, kn}}∗EC2

A∗Π̂k(Â, M̂ , y) equals

{{1k, ky, yz, 1n, kn}} ∗ EC2
A ∗ EC2

A1
∗ EC2

Ay
∗ EC2

Ak

and hence admits an acyclic matching satisfying the desired bounds. See
Figure 23.8 for an illustration.

Conclusion.

We have established the following result:

Theorem 23.1. For n ≥ 3, NEC2
n is � 3(n−3)

2 �-connected with the property
that the homology group H̃i(NEC2

n, Z) is zero unless⌈
3n− 7

2

⌉
≤ i ≤

⌊
5n− 11

3

⌋
. �
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23.2 Enumerative Properties of the Given Matching

Throughout this section, generating functions are of the form
∑

n rnxn/(n−
1)!; this is to obtain as simple formulas as possible. The acyclic matching in
the previous section induces an upper bound on the Betti numbers:

Theorem 23.2. For n ≥ 1, let {fn(t) =
∑

i≥0 fn,it
i} be the unique sequence

of polynomials with the property that F = F (t, x) =
∑

n≥1 fn(t)xn/(n − 1)!
satisfies

x · ∂F

∂x
=

F (1 + t3F 2)
1− t5F 3

(23.3)

and f1(t) = 1. Then EC2
n admits an acyclic matching with fn,i unmatched sets

of size i. In particular, H = H(x) = F (−1, x) = −∑n≥1 χ̃(EC2
n)xn/(n − 1)!

satisfies

xH ′ =
H −H2

1−H + H2
⇐⇒ H = ln

H

x(1−H)
.

As a consequence,

χ̃(EC2
n) = −

n−1∑
k=0

(−1)k

(
n

k

)
nn−k−3 · n!
(n− k − 1)!

.

Remark. Note that χ̃(EC2
n) = −χ̃(NEC2

n) for n ≥ 2.

Proof. From the proof of Theorem 23.1, we deduce that there are three types
of critical graphs with respect to the given matching:

• With notation as in Step 6, we obtain graphs of the form

{1x, 1n, xn} ∪G1 ∪Gx ∪Gn,

where Gi is a critical graph with respect to an acyclic matching on EC2
Ai

.
We may choose x in (n − 2) ways and A1, Ax, An of size a1, ax, an (with∑

ai = n) in
(n− 3)!

(a1 − 1)!(ax − 1)!(an − 1)!
ways.

• With notation as in Step 8, we obtain graphs of the form

{1y, 1x, xy, 1n, xn} ∪G1 ∪Gx ∪Gy ∪Gn,

where Gi is a critical graph with respect to an acyclic matching on EC2
Ai

.
Note that we fixed x = k and An = [k + 1, n] in Step 7, but that was only
to simplify notation. We may choose x and y in (n − 2)(n − 3) ways and
A1, Ax, Ay, An of size a1, ax, ay, an (with

∑
ai = n) in

(n− 4)!
(a1 − 1)!(ax − 1)!(ay − 1)!(an − 1)!

ways.
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• With notation as in Step 9, we obtain graphs of the form

{1x, xy, yz, 1n, xn} ∪G1 ∪Gx ∪Gy ∪Gn,

where Gi is a critical graph with respect to an acyclic matching on EC2
Ai

.
Again we fixed x = k and An = [k+1, n], which was only for simplicity. We
may choose x, y, and z in (n−2)(n−3)(n−4) ways and A1, Ax, Ay, An of

size a1, ax, ay, an (with
∑

ai = n) in
(n− 5)!

(a1 − 2)!(ax − 1)!(ay − 1)!(an − 1)!
ways.

As a conclusion, with fn = fn(t) and n ≥ 3, we obtain that

fn

(n− 2)!
=

∑
∑

ai=n

t3
∏

i∈{1,x,n}

fai

(ai − 1)!
+

∑
∑

ai=n

t5
∏

i∈{1,x,y,n}

fai

(ai − 1)!

+
∑

∑
ai=n

t5
fa1

(a1 − 2)!
·

∏
i∈{x,y,n}

fai

(ai − 1)!

and hence that

∂x

(
F

x

)
=

t3F 3

x2
+

t5F 4

x2
+ t5F 3∂x

(
F

x

)
⇐⇒

x∂x(F )− F = t3F 3 + t5F 4 + xt5F 3∂x(F )− t5F 4,

and we are done.
To compute the Euler characteristic of EC2

n, we note that the inverse of
H(x) equals G(y) = ye−y/(1 − y). By the Lagrange inversion formula (see
Stanley [134]), the coefficient of xn in H(x) is equal to the coefficient of yn−1

in (y/G(y))n/n = (1− y)neyn/n, which is

n−1∑
k=0

(−1)k

(
n

k

)
· nn−2−k

(n− 1− k)!
.

Since the coefficient of xn in H(x) is also equal to −χ̃(EC2
n)/(n−1)!, the final

claim in the theorem follows. �

As a side note, let us mention that the coefficient of yn/n! in G(y) is the
number of permutations on n + 1 elements with exactly one fixed point; see
sequence A000240 in Sloane’s Encyclopedia [127].

For k ≥ 1, note that there are no critical graphs in EC2
2k−1 with fewer than

3k − 3 edges.

Corollary 23.3. For k ≥ 1, f2k−1,3k−3 is equal to ((2k − 3)!!)2; f1,0 = 1.

Proof. To obtain this identity, ignore the t5F 3 term in the equation (23.3);
this yields the equation
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∂x

(
F

x

)
= xt3 ·

(
F

x

)3

⇐⇒ F

x
=

1√
1− t3x2

.

In particular,

∑
k≥0

f2k+1,3k−3
x2k

(2k)!
=

1√
1− x2

=
∑
k≥0

((2k − 1)!!)2
x2k

(2k)!
;

hence we are done. �

Let us also examine f2k,3k−1 for k ≥ 1; there are no critical graphs in EC2
2k

with fewer than 3k − 1 edges.

Theorem 23.4. The integers f2k,3k−1 satisfy the identity

H(x)
x

:=
∑
k≥1

f2k,3k−1
x2k−1

(2k − 1)!
=

x− arcsin(x)
√

1− x2

(1− x2)2
.

Proof. Let k ≥ 2 and write n = 2k. As in the proof of Theorem 23.2, there
are three cases:

• In the first case, we have graphs of the form

G = {1x, 1n, xn} ∪G1 ∪Gx ∪Gn

and the vertex set of Gi is Ai. If A1, Ax, and An are all of even size, then
the number of edges in G is at least 3 +

∑
i

3|Ai|−2
2 = 3k. Thus we must

have that two of the vertex sets have odd size; in this case it is possible to
obtain exactly 3k − 1 edges.

• In the second and third cases, we obtain graphs of the form

G = E0 ∪G1 ∪Gx ∪Gy ∪Gn,

where E0 is an edge set of size five. This time, all four graphs Gi must
have an vertex set of odd size; otherwise, G will end up with more than
3k − 1 edges.

Write fn = fn,� 3n−3
2 �. Analogously to the proof of Theorem 23.2, one may

conclude that

f2k

(2k − 2)!
=

∑
∑

ai=n

∏
i∈{1,x,n}

fai

(ai − 1)!
+

∑
∑

ai=n

∏
i∈{1,x,y,n}

fai

(ai − 1)!

+
∑

∑
ai=n

fa1

(a1 − 2)!
·

∏
i∈{x,y,n}

fai

(ai − 1)!
.

In the first sum, we require that exactly two ai be odd, whereas in the
other sums, all ai must be odd. Hence with F defined as in the proof of
Corollary 23.3, fixing t to one, we obtain that
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d

dx

(
H

x

)
=

3F 2H

x2
+

F 4

x2
+ F 3 d

dx

(
F

x

)
⇐⇒

xH ′ = (1 + 3F 2)H + xF 3F ′.

Substituting F = x/
√

1− x2, we derive the equation

xH ′ =
2x2 + 1
1− x2

H +
x4

(1− x2)3
⇐⇒

d

dx

(
(1− x2)3/2

x
H

)
=

x2

(1− x2)3/2
⇐⇒

(1− x2)3/2

x
H =

x

(1− x2)1/2
− arcsin(x),

which concludes the proof. �

23.3 Bottom Nonvanishing Homology Group

We prove that the lower bound in Theorem 23.1 is sharp for odd n. Specifically,
we demonstrate that the homology group H̃3k−5(NEC2

2k−1, Z) is nonzero for
k ≥ 2.

Recall that NFC2k−1 is the complex of not factor-critical graphs on 2k− 1
vertices; a graph G = (V,E) is factor-critical if G(V \ {v}) contains a perfect
matching for each v ∈ V . Let FC2k−1 be the quotient complex of factor-critical
graphs; FC2k−1 = 2K2k−1/NFC2k−1. This complex is of importance in the
analysis of the complex NMn,k of graphs that do not contain any k-matching;
see Chapter 24.

Theorem 23.5 (Linusson et al. [95]). For k ≥ 2, NFC2k−1 is homotopy
equivalent to a wedge of ((2k − 3)!!)2 spheres of dimension 3k − 5. As a con-
sequence, FC2k−1 is homotopy equivalent to a wedge of ((2k − 3)!!)2 spheres
of dimension 3k − 4. �

Linusson et al. [95] defined a tree of triangles to be a graph G on a linearly
ordered vertex set V = {v1, . . . , vn} with vi < vi+1 satisfying either of the
following properties:

• G consists of a single vertex.
• The edge v1v2 belongs to G, and there is a unique vertex vi such that v1vi

and v2vi belong to G. Moreover, the graph obtained from G by removing
the three edges v1v2, v1vi, and v2vi has three connected components, each
of which is a tree of triangles.

Any tree of triangles on the set [2k− 1] is easily seen to be a minimal nonface
of NFC2k−1 [95].
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Theorem 23.6 (Linusson et al. [95]). For k ≥ 2, the set

Ck = {[G] : G is a tree of triangles on [2k − 1]}

is a basis for H̃3k−4(FC2k−1; Z) and the set

C′k = {∂([G]) : G is a tree of triangles on [2k − 1]}

is a basis for H̃3k−5(NFC2k−1; Z). �

By the exact sequence for the pair (2K2k−1 ,NFC2k−1) and the remark before
the theorem, the second statement is an immediate consequence of the first.

Theorem 23.7. For k ≥ 2, the sets Ck and C′k in Theorem 23.6 form bases
for the groups H̃3k−4(EC2

2k−1; Z) and H̃3k−5(NEC2
2k−1; Z), respectively. As a

consequence, H̃3k−4(EC2
2k−1, Z) and H̃3k−5(NEC2

2k−1, Z) are both free of rank
((2k − 3)!!)2.

Proof. One easily adapts our acyclic matching on EC2
2k−1 such that a graph

with 3k − 3 edges is critical if and only if the graph is a tree of triangles on
the set [2k − 1]. Specifically, switch the roles of the vertices 2 and n in our
construction and proceed recursively in the natural manner on a graph as in
Figure 23.5. Moreover, if H is a subgraph obtained from a tree of triangles G
by removing an edge e, then H is not 2-edge-connected; each of f and g sep-
arates H, where {e, f, g} is the unique triangle in G containing e. As a conse-
quence, Ck generates H̃3k−4(EC2

2k−1; Z) and C′k generates H̃3k−5(NEC2
2k−1; Z).

By Theorems 23.5 and 23.6, we are done if we can prove that C′k is a basis for
H̃3k−5(NEC2

2k−1; Z).
Now, NFC2k−1 contains NEC2

2k−1. Namely, suppose that G is not 2-edge-
connected. If G is not connected, then let v be a vertex such that some con-
nected component not containing v is odd (i.e., contains an odd number of
vertices). Clearly, H = G([2k− 1] \ {v}) does not contain a perfect matching,
because H contains an odd component. If G is connected, let e = ab be an
edge separating G into two components; assume that the component contain-
ing a is odd. Then H = G([2k− 1] \ {b}) does not contain a perfect matching,
again because H contains an odd component.

We conclude that C′k constitutes an independent set in H̃3k−5(NEC2
2k−1, Z)

and hence forms a basis for this group. Namely, since NEC2
2k−1 is a subcomplex

of NFC2k−1, any boundary in the chain complex of NEC2
2k−1 would also be a

boundary in the chain complex of NFC2k−1. �

Corollary 23.8. For k ≥ 2, the shifted connectivity degree of NEC2
2k−1 equals

3k − 5. �

The analogous problem for even n remains unsettled:

Conjecture 23.9. For k ≥ 1, H̃3k−3(NEC2
2k, Z) is free of rank f2k,3k−1, where

f2k,3k−1 satisfies the identity in Theorem 23.4.
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The acyclic matching in Theorem 23.1 is optimal for n ≤ 11, except pos-
sibly for n = 10. Namely, for n = 8 and n ≤ 6, all critical faces have the same
dimension. Moreover, for n ∈ {7, 9, 11}, all critical faces are concentrated in
two dimensions. Since the matching is optimal in the lower of these two di-
mensions by Corollary 23.3 and Theorem 23.7, the matching must be optimal
in both dimensions.

Problem 23.10. Is the acyclic matching in Section 23.1 optimal for n = 10
and n ≥ 12? In particular, is NEC2

n semi-collapsible over Z?

As Figure 23.9 exemplifies, not all critical graphs G and H have the property
that G �−→ H. In particular, we cannot obtain a solution to Problem 23.10
simply by referring to Corollary 4.13.

Let k, p ≥ 1 and let Π1 mod p
kp+1 be the subposet of Πkp+1 consisting of all

nontrival proper partitions in which the size of each part is congruent to 1
modulo p. Björner [7] proved that ∆(Π1 mod p

kp+1 ) is shellable of dimension k−2;
hence the complex has homology only in its top dimension k − 2.

Shareshian and Wachs [121] recently proved that H̃k−2(∆(Π1 mod 2
2k+1 ); Z) is

isomorphic to each of H̃3k−1(FC2k+1; Z) and H̃3k−2(NEC2
2k+1; Z) as S2k+1-

modules. Based on this observation, they conjectured that the two groups
H̃k−2(∆(Π1 mod p

kp+1 ); Z) and H̃k(p+1
2 )−2(NECp

kp+1; Z) are isomorphic for all p, k ≥
1. The conjecture is known to be true for p = 1 and p = 2; in the former case,
we obtain the complex NCk+1 of disconnected graphs and the proper part of
the full partition lattice Πk+1 (see Section 18.1). The conjecture is also true
in the trivial case k = 1. However, for k = 2 and p = 3, we obtain NEC3

7,
and via a computer calculation we have been able to prove that this complex
is homotopy equivalent to a wedge of 310 spheres of dimension 10. Clearly,
∆(Π1 mod 3

7 ) is a discrete point set of size 35, which implies that the homology
in the relevant degrees is not the same for the two complexes. Yet, there is
still some hope that the following conjecture holds:

Conjecture 23.11. For p ≥ 1 and n ≥ p + 1, the shifted connectivity degree
of NECp

n equals
⌈

(n−1)(p+1)
2 − 2

⌉
. Moreover, for each p, k ≥ 1, there is an

embedding from H̃k−2(∆(Π1 mod p
kp+1 ); Z) to H̃k(p+1

2 )−2(NECp
kp+1; Z).

23.4 Top Nonvanishing Homology Group

Finally, we show that the upper bound in Theorem 23.1 is sharp.

Lemma 23.12. Let G be a critical graph with respect to the given acyclic
matching on EC2

n and let ûG be the corresponding group element in the result-
ing chain complex U in Theorem 4.16; see Corollary 4.17. If all 2-connected
components in G contain either three or four vertices, then ∂(ûG) = 0.
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Fig. 23.9. A directed path between two critical graphs in the digraph corresponding
to the given matching. Removing 14 in the first step and 34 in the third step,
we obtain another directed path that “cancels out” this path; see Forman [49] for
information about how paths cancel out.

Proof. All 2-connected components having vertex size three or four implies
that G is either as in Figure 23.5 or as in Figure 23.7; we thus have two cases.
We use induction on n to prove the desired result.

In the first case, the component containing the vertices 1 and n is a triangle;
let x be the third vertex in this triangle. G is the union of this triangle and
three 2-edge-connected graphs G1, Gx, and Gn. By induction on n, each Gi

corresponds to a group element ûi such that the boundary of ûi vanishes
in the chain complex of EC2

V (Gi). Moreover, the boundary of the element
û0 = [1x]∧ [1n]∧ [xn] in the chain complex of EC2

{1,x,n} is zero. It follows that
the boundary of the element û = û0 ∧ û1 ∧ ûx ∧ ûn in the chain complex of
EC2

n is zero. Using an induction argument, one easily concludes that all graphs
appearing in the sum û are matched with smaller graphs. Thus û = ûG.

In the second case, the edge set of the component containing the vertices
1 and n is of the form {1y, 1k, ky, 1n, kn} for some vertices k and y. G is the
union of this component and four 2-edge-connected graphs G1, Gk, Gy, and
Gn. As above, each Gi corresponds to a group element ûi such that ∂(ûi) = 0.
Moreover, the boundary of the element û0 = [1y]∧[1n]∧[ky]∧[kn]∧([1k]−[yn])
in the chain complex of EC2

{1,k,y,n} is zero. As in the first case, we obtain an
element û in the chain complex of EC2

n such that the boundary vanishes. Now,
consider a graph G′ appearing in the sum û such that yn ∈ G′ and 1k /∈ G′.
Then {1y, yn, ky, 1n, kn} forms a 2-connected component in G′, which implies
that G′ belongs to Λn(A,M, y, 1) for some sets A and M . As a consequence,
G′ is matched with the smaller graph G′ − yn. An induction argument yields
that all noncritical graphs G′ in û such that 1k ∈ G′ and yn /∈ G′ are also
matched with smaller graphs. Again, we obtain that û = ûG. �

Theorem 23.13. For n ≥ 3, the complex NEC2
n has nonvanishing homology

in dimension
⌊

5n−11
3

⌋
but no homology above this dimension.

Proof. By Lemma 23.12, we need only prove that there are critical graphs in
EC2

n with the maximum number � 5n−5
3 � of edges such that all 2-connected

components contain three or four vertices. This is clear if n = 3 or n = 4.
Assume that n ≥ 5 and write n = 3k + r, where k ≥ 0 and r ∈ {5, 6, 7}.
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• If r = 5, then take the wedge of k copies of the graph G4 on four vertices
with edge set {12, 13, 14, 23, 24} and two copies of the triangle graph G3

with edge set {12, 13, 23}.
• If r = 6, then take the wedge of k + 1 copies of G4 and one copy of G3.
• If r = 7, then take the wedge of k + 2 copies of G4.

The number of vertices in the resulting graph is one more than the sum of
the number of vertices in the separate graphs minus the number of graphs.
This is n in each of the three cases. One easily checks that we obtain a graph
isomorphic to some critical graph in all three cases. Moreover, the number of
edges is easily seen to be 5k + 2r − 4 = 5n

3 + r−12
3 = 5n−5

3 . �



24

Graphs Avoiding k-matchings

We review the main known results about the complex NMn,k of graphs on n
vertices that do not contain a k-matching; these results are due to Linusson,
Shareshian, and Welker [95]. Their most prominent achievement is the result
that NMn,k is homotopy equivalent to a wedge of spheres of dimension 3k−4;
the number of spheres in the wedge is a polynomial in n for each k. They
proved a similar formula for the complex NMm+n,k(Km,n) of subgraphs of
Km,n that do not contain a k-matching.

Theorem 24.1 (Linusson et al. [95]). Let Π1
n−1(k) be the family of par-

titions U = {U1, . . . , Un−2k+1} of [n − 1] such that |Ui| is odd for each Ui.
Then NMn,k is homotopy equivalent to a wedge of gk(n) spheres of dimension
3k − 4, where

gk(n) =
∑

U∈Π1
n−1(k)

n−2k+1∏
i=1

((|Ui| − 2)!!)2 . (24.1)

In particular, gk(n) is a polynomial in n of degree 3k − 3 such that gk(2k) =
((2k − 3)!!)2 and gk(i) = 0 for 1 ≤ i ≤ 2k − 1. �

The proof of Linusson et al. relies on discrete Morse theory and the Gallai-
Edmonds structure theorem; see Lovász and Plummer [97] for details about
this theorem.

To see that gk(n) is indeed a polynomial with the given properties, let
us investigate the formula (24.1) in greater detail. Let λ = (λ1, . . . , λr) be
a weakly decreasing sequence of odd integers such that λi ≥ 3 and such
that

∑
i λi = 2k − 2 + r. There are finitely many such sequences, because

2k − 2 + r =
∑

i λi ≥ 3r, which implies that r ≤ k − 1. Write l(λ) = r. The
number of partitions U = {U1, . . . , Un−2k+1} of [n− 1] such that |Ui| = λi for
1 ≤ i ≤ l(λ) and |Ui| = 1 otherwise is

cλ ·
(

n− 1
2k − 2 + l(λ)

)
, (24.2)
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where cλ is the number of partitions U = {U1, . . . , Ul(λ)} of [2k − 2 + l(λ)]
such that |Ui| = λi for all i. This implies that gk(n) is a polynomial, being a
finite sum of expressions of the form (24.2). More precisely,

gk(n) =
∑

λ

(
n− 1

2k − 2 + l(λ)

)
· cλ ·

l(λ)∏
i=1

((λi − 2)!!)2 , (24.3)

where the sum is over all λ with properties as above. As a consequence, we
have the following corollary:

Corollary 24.2. The coefficient of the highest-degree term n3k−3 in gk(n)
equals 1

(k−1)!6k−1 . In particular,

gk(n) ∼ 1
(k − 1)!

·
(

n3

6

)k−1

.

Proof. The only weakly decreasing sequence λ such that 2k−2+ l(λ) ≥ 3k−3
and λi ≥ 3 for all i is the sequence consisting of k − 1 threes. Clearly, cλ =

(3k−3)!
(k−1)!(3!)k−1 , which concludes the proof. �

We give an alternative proof that gk is a polynomial in a separate manuscript
[73], where we also deduce that gk(0) = (−1)k−1. Equivalently, the polynomial
counting the reduced Euler characteristic equals −1 at 0. For small values of
k, one may easily compute an exact formula for gk(n):

Proposition 24.3. We have that

g2(n) =
(

n− 1
3

)
;

g3(n) =
(

n− 1
5

)
· 5n− 3

3
;

g4(n) =
(

n− 1
7

)
· 35n2 − 28n + 9

9
;

g5(n) =
(

n− 1
9

)
· (5n− 1)(35n2 − 14n + 15)

15
;

g6(n) =
(

n− 1
11

)
· 385n4 + 374n2 + 9

9
;

g7(n) =
(

n− 1
13

)
· 1001n2(175n3 + 175n2 + 410n + 218) + 83343n − 945

945
;

g8(n) =
(

n− 1
15

)
· 1001n3(25n3 + 60n2 + 145n + 168) + 120107n2 + 34428n + 27

27
.
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Proof. This is just a matter of applying formula (24.3). For example, for k = 4,
there are three relevant sequences λ; these are (7), (5, 3) and (3, 3, 3). Observ-
ing that c(7) = 1, c(5,3) = 56, and c(3,3,3) = 280, we immediately obtain the
desired formula for g4(n). �

The coefficients in g8(n) are not alternating; the coefficients of 1, n, and n2

are all negative. In fact, g8 has two real and negative roots. g4 and g5 have
two nonreal roots, whereas g6, g7, and g8 have four nonreal roots. For k ≤ 6,
the real part of each root of hk(n) = gk(n)/

(
n−1
2k−1

)
equals (6 − k)/5. This

intriguing property does not hold for h7(n) and h8(n), but it does hold for
the slightly modified polynomial h7(n) + 55296

4375 .
For n odd, recall that a graph G on n vertices is factor-critical if G([n]\{v})

contains a perfect matching for each v ∈ [n]. In Section 23.3, we discussed
the complex FC2k−1 of factor-critical graphs. By Theorems 23.5 and 24.1,
FC2k−1 and NM2k,k are homotopy equivalent. Indeed, this is an observation of
fundamental importance in the work of Linusson et al. [95]. One may establish
a homotopy equivalence in the following manner:

Let ∆ be the subcomplex of NM2k,k consisting of all graphs G such that
G([2k − 1]) is not factor-critical. For G ∈ ∆, let x = xG be minimal such
that G([2k − 1] \ {x}) does not contain a perfect matching. It is easy to see
that we obtain a perfect acyclic matching on ∆ by pairing G − xG(2k) and
G + xG(2k). Thus NM2k,k is homotopy equivalent to NM2k,k/∆ by the Con-
tractible Subcomplex Lemma 3.16. Now, a graph G belonging to NM2k,k/∆
has the property that G([2k−1]) is factor-critical. As a consequence, G+x(2k)
contains a perfect matching for each x ∈ [2k−1]. This implies that the vertex
2k must be isolated in G. Hence we have an isomorphism from NM2k,k/∆ to
FC2k−1 defined by removing the vertex 2k.

In this context, it is worth mentioning that there is an intriguing homologi-
cal connection between FC2k−1 and a certain sublattice of the partition lattice
Π2k−1; this sublattice consists of all partitions in which all sets are odd. We
refer the reader to Linusson et al. [95] for more information and references.

Finally, let us mention a beautiful result about the complex of subgraphs
of a complete bipartite graph that do not contain a k-matching.

Theorem 24.4 (Linusson et al. [95]). For n,m, k ≥ 1, NMm+n,k(Km,n) is
homotopy equivalent to a wedge of

(
m−1
k−1

)(
n−1
k−1

)
spheres of dimension 2k − 3.

�
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t-colorable Graphs

We consider the complex Coltn of t-colorable graphs on n vertices, summarizing
the results of Linusson and Shareshian [94] about the homotopy type and
Euler characteristic of Coltn for t ∈ {2, n − 3, n − 2}. In addition, we present
a conjecture about χ̃(Coln−4

n ) based on the intriguing observation that this
value fits a certain polynomial of degree seven for nine different values of n.

First, note that t = 2 yields the complex Bn of bipartite graphs, which we
examined in detail in Chapter 14. For easy reference, let us restate the main
result (see Theorem 14.1) about this complex:

For n ≥ 1, Col2n is homotopy equivalent to a wedge of spheres of dimension
n− 2.

Next, consider t = n − 2. As Linusson and Shareshian observed [94], Coln−2
n

is the Alexander dual of the complex of star graphs considered in Proposition
14.16. This complex is semi-nonevasive and homotopy equivalent to a wedge
of
(
n−1

2

)
spheres of dimension 1 by Theorem 14.12 and Proposition 14.16.

Corollary 25.1. For n ≥ 3, Coln−2
n is homotopy equivalent to a wedge of(

n−1
2

)
spheres of dimension

(
n
2

)
− 4.

Proof. Use Proposition 5.36. �

Finally, the case t = n− 3 is as follows:

Theorem 25.2 (Linusson and Shareshian [94]). For n ≥ 4, Coln−3
n is

homotopy equivalent to a wedge of
(
n−1

3

)
· 3n2−12n+5

5 spheres of dimension(
n
2

)
− 7. �

The proof of Theorem 25.2 relies on the following general lemma:

Lemma 25.3 (Linusson and Shareshian [94]). For 1 ≤ t ≤ n, Coltn ad-
mits a decision tree such that G is evasive if and only if G([n− 1]) /∈ Colt−1

n−1

and the degree of every vertex in G([n− 1]) is at least t− 1.
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Proof. Let Y =
(
[n−1]

2

)
and En = {1n, . . . , (n − 1)n}. Consider the lifted

complex ΣB = Coltn(B, Y \B) for each subset B of Y . Let H be the graph on
the vertex set [n−1] with edge set B. If H belongs to Colt−1

n−1, then every edge
in En is a cone point in ΣB . If some vertex v has degree at most t− 2 in H,
then vn is a cone point in ΣB . Namely, for every graph G in ΣB , v has fewer
than t neighbors in G + vn, which implies that we may extend any t-coloring
of G([n] \ {v}) to a t-coloring of G + vn. �

In their proof of Theorem 25.2, Linusson and Shareshian applied Lemma 25.3
to Coln−3

n and then defined an optimal acyclic matching on the remaining
quotient complex of evasive graphs.

The following immediate consequence of Lemma 25.3 is worth mentioning.

Corollary 25.4 (Linusson and Shareshian [94]). For 1 ≤ t ≤ n, the
shifted connectivity degree of Coltn is at least (n−1)(t−1)

2 − 1.

Proof. Every evasive graph with respect to the decision tree in Lemma 25.3
contains at least (n−1)(t−1)

2 edges, which implies that all faces of Coltn of di-
mension at most (n−1)(t−1)

2 − 2 are contained in a collapsible subcomplex of
Coltn. By Corollary 3.10, we are done. �

The bound in Corollary 25.4 on the shifted connectivity degree of Coltn is not
sharp. In fact, for t ∈ {1, 2, n − 3, n − 2, n − 1}, the actual value is n(t −
1) −

(
t
2

)
− 1; apply the results in this section. Computations by Linusson

and Shareshian [94] yield some evidence that this value might be a bound
on the shifted connectivity degree in general. More precisely, Linusson and
Shareshian used computer to show that Col37 is homotopy equivalent to a
wedge of 1535 spheres of dimension ten. Moreover, they showed that

H̃i(Col48; Z) ∼=

⎧⎨
⎩

Z9396 if i = 17;
Z if i = 19;
0 otherwise.

Let p be fixed. In a separate manuscript [73], we prove that the Euler
characteristic of the Alexander dual NQPn,n−p−1 of Coln−p−1

n is a polynomial
gp(n) such that gp(0) = −1 and gp(k) = 0 if 1 ≤ k ≤ p + 1; see Section 26.8
for some more discussion. By Corollary 25.1 and Theorem 25.2, we know that

g1(n) = −
(

n− 1
2

)
;

g2(n) =
(

n− 1
3

)
· 3n2 − 12n + 5

5
.

Consider p = 3. As already mentioned, g3(0) = −1 and g3(1) = g3(2) =
g3(3) = g3(4) = 0. Moreover, computations by Linusson and Shareshian yield
that g3(5) = 1, g3(6) = 105, g3(7) = 1535, and g3(8) = 9397. Let ĝ3 be the



25 t-colorable Graphs 335

unique polynomial of degree at most seven with the property that ĝ3(k) =
g3(k) for 0 ≤ k ≤ 7. A straightforward calculation yields that ĝ3(8) = g3(8) =
9397; hence we have quite strong evidence for the following conjecture:

Conjecture 25.5. We have that g3(n) = χ̃(NQPn,n−4) is equal to

ĝ3(n) =
(

n− 1
4

)
· 411n3 − 4178n2 + 10657n− 105

105
.

Note that ĝ3(n) has two nonreal roots. To prove this conjecture, it suffices to
demonstrate that g3(n) is of degree at most eight; we know the value of g3(n)
at nine distinct points n.

For 2 ≤ n ≤ 7, there is homology only in dimension eight. For n = 8,
we have that dim H̃8(NQP8,4) = 9396 and dim H̃6(NQP8,4) = 1. This is very
little evidence to base any conjecture on, but if each Betti number were given
by a polynomial of degree at most seven, then we would obtain that

dim H̃8(NQPn,n−4) =
(

n

5

)
· 821n2 − 8338n + 21207

42
;

dim H̃6(NQPn,n−4) =
(

n− 1
7

)
,

whereas all the other Betti numbers would vanish. Note that we do not know
whether the Betti numbers are given by polynomials.

Let t ≥ 2 and p ≥ 1, and let c = (c1, . . . , ct−1) be a sequence of positive
integers. Let Coltn,c,p be the complex of graphs admitting a t-coloring γ : V →
[t] such that the following hold:

• |γ−1(i)| ≤ ci for i ∈ [1, t− 1].
• |γ−1(t)| ≥ n− p.

For t = 2 and c1 = p, we obtain the complex Bn,p of graphs with balance
number at most p. For t = p + 1 and c1 = . . . cp = 1, we obtain the complex
Covn,p of graphs with covering number at most p; see Chapter 26. Note that if
c = (p, . . . , p), then Coltn,c,p is the complex of t-colorable graphs such that the
color t is used on at least n−p vertices. In a separate manuscript [73], we show
that the Euler characteristic of Coltn,c,p is a polynomial in n for sufficiently
large n for each fixed t, p, and c. This generalizes the corresponding results
about Bn,p and Covn,p in Sections 14.3.3 above and 26.4 below, respectively.
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Graphs and Hypergraphs with Bounded
Covering Number

1 A hypergraph H is p-coverable if there is a vertex set W of size at most p
such that every edge in H contains at least one vertex from W . We refer to
W as a |W |-cover of H. The covering number τ(H) of a hypergraph H is the
smallest integer p such that H has a p-cover. For 1 ≤ p ≤ n and 1 ≤ r ≤ n, let
HCovn,p,r be the simplicial complex of r-uniform hypergraphs on the vertex
set [n] with covering number at most p. Note that HCovn,p,2 coincides with
the complex Covn,p of p-coverable graphs.

The main results of this chapter are as follows:

• In Sections 26.3 and 26.4, we show, for any fixed p and r, that the Betti
numbers of HCovn,p,r over any field F are polynomials in n. Specifically,

dim H̃i(HCovn,p,r, F) =
γ+1∑

k=p+r

(−1)γ+1−kfk,γ(n) dim H̃i(HCovk,p,r, F),

where each fk,γ(n) is a polynomial in n and γ = γ(p, r) is an integer. For
r = 2, we have that γ = 2p, which turns out to imply that the degree of
fk,γ(n) is at most 2p in this case.

• In Section 26.5, we give explicit formulas for the homology of Covn,p =
HCovn,p,2 for p ≤ 3; for p = 2 and p = 3, our results are based on computer
calculations with the program homology [42]. Notably, there is 2-torsion
in dimension six in the homology of Covn,3 for n ≥ 6.

• In Section 26.6, we demonstrate, for any p ≥ 1, that the (2p− 1)-skeleton
of Covn,p is vertex-decomposable and hence shellable. As a consequence,
Covn,p is (2p−2)-connected and has no homology in dimension i ≤ 2p−2.
For p ≤ 3 and n ≥ 2p+1, we have detected nonzero homology in dimension
2p − 1. We have not been able to find meaningful counterparts of these
results for HCovn,p,r when r ≥ 3.

1 This chapter is a revised and extended version of a paper [72] published in SIAM
Journal of Discrete Mathematics.
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In Section 26.2, we introduce a complex HCov#
n,p,r with the same homotopy

type as HCovn,p,r and with certain nice properties that allow for a smooth
analysis. We apply discrete Morse theory to HCov#

n,p,r in Section 26.3 and
derive the polynomial property of the Betti numbers in Section 26.4.

The graph theory presented in Section 26.1 is crucial for our theorems and
is used throughout the chapter. This is classical theory – basically Chapter 13
in Berge [6] – about graphs with the property that each vertex is contained
in the complement of a cover of minimum size.

26.1 Solid Hypergraphs

Let us say that a hypergraph H = (V,E) with covering number p is (p, r)-
solid if, for every vertex set U of size at most r − 1, there is a p-cover W of
H such that U ∩W = ∅. In this section, we present some useful results about
(p, r)-solid [r]-hypergraphs; recall that a hypergraph is an S-hypergraph if all
edges are of size an integer in S.

Lemma 26.1. If an [r]-hypergraph H is (p, r)-solid, then H is r-uniform.
Moreover, every covered vertex is contained in a p-cover of H.

Proof. For the first statement, since H is (p, r)-solid, a vertex set of size at
most r − 1 cannot form an edge in H. For the second statement, let v be a
covered vertex and let e be an edge in H containing v; clearly, |e\{v}| = r−1.
H being (p, r)-solid means that some p-cover does not intersect e \ {v}. Since
this cover must then contain v, we are done. �

By Lemma 26.1, we may restrict our attention to r-uniform hypergraphs.
First, a simple observation:

Lemma 26.2. If H is r-uniform with covering number p, then the vertex set
of H has size at least p + r− 1. In particular, this is true if H is (p, r)-solid.

Proof. Any r-uniform hypergraph on at most p + r − 2 vertices has covering
number at most p− 1. �

The bound in Lemma 26.2 is tight; the complete r-uniform hypergraph on
p + r − 1 vertices is (p, r)-solid.

We will use the following lemma in Section 26.4 to prove that the Betti
numbers of HCovn,p,r are polynomials in n for each fixed p and r.

Lemma 26.3. For every p, r ≥ 1, there is a positive integer γ(p, r) such that
if H is a (p, r)-solid and r-uniform hypergraph with no uncovered vertices,
then the number of vertices in H is at most γ(p, r).

Proof. Let H be (p, r)-solid without uncovered vertices. If we remove an edge
e such that that τ(H) = τ(H − e), then H − e is again (p, r)-solid with no
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uncovered vertices. Namely, assume to the contrary that some vertex v ∈ e is
uncovered in H − e. By Lemma 26.1, there is a p-cover W of H containing
v. However, this implies that W \ {v} is a (p − 1)-cover of H − e, which is a
contradiction.

Starting with H, remove edges not affecting the covering number until we
have a τ -critical hypergraph H ′, meaning that the removal of any edge in
H ′ decreases the covering number of H ′.2 By a result of Bollobás [18], the
number of edges in a τ -critical r-uniform hypergraph with covering number p
is at most

(
p+r−1

r

)
; see Lovász [96, Ex. 13.32]. This implies that the number

of vertices in H ′ is at most r ·
(
p+r−1

r

)
(this is a very loose bound), and the

lemma follows. �

For r = 2, we can establish a tight bound on γ(p, r):

Theorem 26.4 (Berge [6, Th. 13.13]). If G is a simple graph with τ(G) =
p such that G contains no uncovered vertices and such that every vertex is
contained in a p-cover, then the number of vertices in G is at most 2p. As a
consequence, if G is (p, 2)-solid with no uncovered vertices, then the number
of vertices in G is at most 2p. �

The bound 2p is tight, as the 2p-cycle is (p, 2)-solid. The first statement in
the theorem is basically a consequence of some results due to Hajnal [58];
see Berge [6, Th. 13.8-9]. Unfortunately, these results seem hard to generalize
to hypergraphs. By Lemma 26.1, the second statement in the theorem is a
consequence of the first.

Finally, we state and prove a few results that we will use in Section 26.6
to prove that the (2p − 1)-skeleton of Covn,p is vertex-decomposable; again,
we restrict our attention to graphs.

Lemma 26.5. Let H be a graph with covering number p and with connected
components C1, . . . , Ck. Then H is (p, 2)-solid if and only if there are integers
p1, . . . , pk summing up to p such that Ci is (pi, 2)-solid for each i.

Proof. With pi = τ(Ci), it is clear that
∑

i pi = τ(H) = p. Suppose that some
vertex v ∈ Ci is contained in every pi-cover of Ci. Then v is contained in
every p-cover of H; we cannot cover H \ Ci with fewer than p − pi vertices.
Conversely, if v is not contained in a given pi-cover of Ci, then we can extend
this cover to a p-cover of H not containing v by picking an arbitrary pj-cover
of every other Cj . �

Lemma 26.6. A (p, 2)-solid graph H contains at least 2p− k edges, where k
is the number of connected components in H with at least two vertices.

Proof. The lemma is clear for p = 1; assume that p ≥ 2. We may assume
that H contains no uncovered vertices. Let the connected components of H
be C1, . . . , Ck. With pi = τ(Ci), we have that Ci is (pi, 2)-solid for each i

2 This is equivalent to H ′ being α-critical as defined by Berge [6, Sec. 13.3].
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by Lemma 26.5. In particular, if k ≥ 2, then we may use induction on p to
conclude that Ci contains at least 2pi − 1 edges. Summing over i and using
the fact that

∑
i pi = p, we obtain that H contains at least 2p− k edges.

Thus assume that H is connected. As in the proof of Lemma 26.3, note
that if we remove an edge that does not affect the covering number of H, then
the resulting graph is again (p, 2)-solid with no uncovered vertices. Remove
such edges from H until we have a τ -critical graph H ′; the removal of any
edge from H ′ decreases the covering number.

If the obtained graph H ′ is disconnected with k components, then we
removed at least k − 1 edges, and by the same induction argument as above,
H ′ contains at least 2p− k edges. Hence H contains at least 2p− 1 edges as
desired.

Assume that H ′ is connected; for simplicity, let us write H instead of H ′.
Berge [6, Th. 13.6] proved that a τ -critical and connected graph is 2-connected.
We want to find a vertex x in H such that the induced subgraph K obtained
by removing x from H is (p− 1, 2)-solid. By induction, this will imply that K
contains at least 2(p− 1)− 1 edges, which in turn will imply that H contains
at least 2(p − 1) − 1 + 2 = 2p − 1 edges as desired. Namely, we get rid of at
least two edges when we remove x, and the resulting graph K is connected,
as H is 2-connected.

To find the vertex x, let y ≤ z mean that any p-cover of H containing y
also contains z. This defines a partial order. Namely, since H is τ -critical, we
have, for each y, w such that yw ∈ H, that the graph H − yw has a (p − 1)-
cover Q with the property that y, w /∈ Q. If z /∈ Q, then y �≤ z, as Q ∪ {y}
is a p-cover of H not containing z. If z ∈ Q, then z �≤ y, as Q ∪ {w} is a
p-cover of H containing z but not y. Now, pick x maximal with respect to the
given partial order. This means, for any y �= x, that there is a p-cover of H
containing x but not y. In particular, there is a (p − 1)-cover not containing
y of the induced subgraph K obtained by removing x from H. However, this
means exactly that K is (p− 1, 2)-solid, and we are done. �

The bound in Lemma 26.6 is tight: Let G be the graph consisting of a path
of vertex length 2(p− k + 1) and k− 1 additional components, each of vertex
size two. Then G is (p, 2)-solid and contains k−1+2p−2k+1 = 2p−k edges.

26.2 A Related Simplicial Complex

For n, p, r ≥ 1, let HCov#
n,p,r be the simplicial complex of [r]-hypergraphs on

the vertex set [n] with covering number at most p. Hence HCov#
n,p,r consists

of hypergraphs with edges of size between 1 and r, whereas HCovn,p,r consists
of r-uniform hypergraphs. As it turns out, HCov#

n,p,r has several attractive
properties that make the complex easier to handle than the original complex
HCovn,p,r. We will write Cov#

n,p = HCov#
n,p,2.
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Lemma 26.7. For p ≥ 1 and 1 ≤ r ≤ n, HCovn,p,r � HCov#
n,p,r.

Proof. We show how to collapse HCov#
n,p,r down to HCovn,p,r. Fix a linear

order on
(
[n]
r

)
; this is the family of edges of maximum size r. For a hypergraph

H ∈ HCov#
n,p,r \HCovn,p,r, let e = e(H) be maximal with respect to this linear

order such that e contains an edge e′ ∈ H of size at most r − 1; e itself is
not necessarily contained in H. For each e of size r, let F(e) be the family of
hypergraphs H ∈ HCov#

n,p,r \ HCovn,p,r such that e(H) = e. It is clear that
the families F(e) satisfy the Cluster Lemma 4.2. Namely, H 	→ e(H) ∈

(
[n]
r

)
is a poset map with the given linear order on

(
[n]
r

)
. Now, we obtain a perfect

matching on F(e) by pairing H + e with H − e for each H ∈ F(e). Namely,
adding or deleting e does not affect e(H). Also, the covering number remains
the same when e is added or deleted, as H already contains an edge e′ � e.
By the Cluster Lemma 4.2, we are done. �

Next, we prove that HCov#
n,p,r and HCov#

n,r,p are homotopy equivalent; we
may hence swap p and r without affecting the homotopy type. One may
view this result as an analogue of the result about the complex HBn,p,t in
Proposition 14.21.

Proposition 26.8. For n, p, r ≥ 1, we have that HCov#
n,p,r � HCov#

n,r,p. In
particular, HCovn,p,r � HCovn,r,p whenever n ≥ max{p, r}.
Proof. For 1 ≤ n ≤ p + r − 1, HCov#

n,p,r and HCov#
n,r,p are both cones and

hence collapsible; every edge of maximum size is a cone point. Assume that
n ≥ p + r. Consider the nerve complex Nn,p,r = N(HCov#

n,p,r); see the Nerve
Theorem 6.2. We may identify the 0-cells in Nn,p,r with subsets of [n] of size
p. Namely, every maximal hypergraph H ∈ HCov#

n,p,r has a unique p-cover
consisting of those x with the property that the singleton edge x belongs to
H.

For a set U of size p, let HU be the maximal hypergraph in HCov#
n,p,r with

unique p-cover U . A family W of 0-cells in Nn,p,r forms a face of Nn,p,r if and
only if the intersection

⋂
W∈W HW is nonempty. This means that there is a

set S of size at most r such that |W ∩ S| ≥ 1 for each W ∈ W. However, this
is exactly the condition that the hypergraph ([n],W) admits a cover of size
at most r. As a consequence, we may identify Nn,p,r with HCovn,r,p. Thus

HCov#
n,p,r � Nn,p,r

∼= HCovn,r,p � HCov#
n,r,p;

the first equivalence follows from the Nerve Theorem 6.2, whereas the last
equivalence follows from Lemma 26.7. �

26.3 An Acyclic Matching

The purpose of this section is to present an acyclic matching on HCov#
n,p,r such

that the unmatched graphs have certain rather strong properties. Observant
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readers may note that our matching is quite similar in nature to the matching
that Linusson and Shareshian provided for complexes of t-colorable graphs;
see Lemma 25.3.

For an [r]-hypergraph H on the vertex set [n], let X (H) be the family of
all subsets of [n−1] of size at most r−1 that have nonempty intersection with
every p-cover of H([n− 1]). Note that if H ∈ HCov#

n,p,r, then we may add the
edge X ∪ {n} to H for any X ∈ X (H) without ending up outside HCov#

n,p,r.
Define

An,p,r = {H ∈ HCov#
n,p,r : H([n− 1]) ∈ HCov#

n−1,p−1,r};
Bn,p,r = {H ∈ HCov#

n,p,r : H([n− 1]) /∈ HCov#
n−1,p−1,r and X (H) �= ∅};

Cn,p,r = {H ∈ HCov#
n,p,r : H([n− 1]) /∈ HCov#

n−1,p−1,r and X (H) = ∅}.

It is clear that HCov#
n,p,r is the disjoint union of An,p,r, Bn,p,r, and Cn,p,r and

that An,p,r and An,p,r∪Cn,p,r are both simplicial complexes. This implies that
the three families satisfy the Cluster Lemma 4.2. We want to prove that there
are perfect acyclic matchings on An,p,r and Bn,p,r. The remaining family Cn,p,r

is the family of all [r]-hypergraphs H such that H([n−1]) has covering number
p and such that every subset of [n − 1] of size at most r − 1 is disjoint from
some p-cover of H([n− 1]). This means exactly that H([n− 1]) is (p, r)-solid.

We obtain a perfect acyclic matching on An,p,r by pairing H − n with
H + n; we match with the singleton edge n. Namely, for any cover W of
H([n− 1]), W ∪ {n} is a cover of H.

For a family X of subsets of [n− 1], let Bn,p,r(X ) be the family of hyper-
graphs H ∈ Bn,p,r such that X (H) = X . It is clear that the families Bn,p,r(X )
satisfy the Cluster Lemma 4.2. Namely, H 	→ X (H) is a poset map; X (H)
cannot grow when we delete edges from H. Let X(H) be minimal in X (H)
with respect to some fixed linear order. If H ∈ Bn,p,r(X ), then the same is
true for H + X(H)n; every p-cover of H contains an element from X(H),
and X(H) has size at most r − 1. X (H) does not depend on the set of edges
containing n, which means that we obtain a perfect matching on Bn,p,r(X ) by
pairing H −X(H)n with H + X(H)n. Taking the union over all X , we get a
perfect acyclic matching on Bn,p,r.

Combining our two perfect acyclic matchings on An,p,r and Bn,p,r, we
obtain an acyclic matching on HCov#

n,p,r with Cn,p,r as the set of critical
graphs. Theorem 4.11 yields the following:

Proposition 26.9. With notation as above and as in (4.2) in Section 4.3,

HCov#
n,p,r � (HCov#

n,p,r)Cn,p,r
.

Also, given an acyclic matching on Cn,p,r with ci critical sets of dimension i

for each i, HCov#
n,p,r is homotopy equivalent to a CW complex with ci cells of

dimension i for each i and one additional 0-cell. �
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26.4 Homotopy Type and Homology

Before proceeding, let us examine some special cases. First of all, note that
HCov#

n,p,r is a cone and hence collapsible whenever 1 ≤ n ≤ p + r − 1. Also,
by Lemma 26.7, HCov#

p+r,p,r is homotopy equivalent to HCovp+r,p,r, which
contains all r-uniform hypergraphs on the vertex set [p+r] except the complete
hypergraph. This implies that

HCov#
p+r,p,r � SC(p+r,r)−2, (26.1)

where C(m, k) =
(
m
k

)
.

Next, consider p = 1. The complex HCov#
n,1,r consists of star hyper-

graphs, which are hypergraphs covered by a single vertex. By Proposition 26.8,
HCov#

n,1,r is homotopy equivalent to HCov#
n,r,1 = HCovn,r,1. Now, the latter

complex is obviously the (r − 1)-skeleton of an (n − 1)-simplex. As a conse-
quence, we have the following simple result.

Proposition 26.10. For n, r ≥ 1, HCov#
n,1,r and HCov#

n,r,1 are both homotopy
equivalent to a wedge of

(
n−1

r

)
spheres of dimension r − 1. �

Note that Covn,1 = HCovn,1,2 coincides with the complex Bn,1 of star graphs
considered in Proposition 14.16. Since Covn,1 is homotopy equivalent to
HCov#

n,1,2 by Lemma 26.7, Proposition 26.10 is equivalent to Proposition 14.16
for the special case r = 2.

Now, proceed with general n, p, r. Recall that Cn,p,r is the set of critical
hypergraphs in Proposition 26.9 and that a hypergraph H in HCov#

n,p,r belongs
to Cn,p,r if and only if H([n − 1]) is (p, r)-solid. For a nonempty vertex set
J ⊆ [n − 1], let Cn,p,r(J) be the family of hypergraphs H in Cn,p,r such that
J is the set of vertices that are covered in H([n− 1]). Write

Λn,p,r(J) = (HCov#
n,p,r)Cn,p,r(J) (notation as in (4.2));

Λk,p,r = Λk,p,r([k − 1]).

Lemma 26.11. Let n, p, r ≥ 1. For any nonempty vertex set J ⊆ [n − 1],
Λn,p,r(J) is the union of Cn,p,r(J) and a collapsible subcomplex of the complex
An,p,r defined in Section 26.3. Moreover, we have that

Λn,p,r(J) � Λ|J|+1,p,r. (26.2)

Proof. For the first claim, let H be a hypergraph in Cn,p,r(J). We want to
prove that H �−→ Cn,p,r(I) if I �= J . Note that if we remove an edge e from
H, then we obtain a hypergraph in Cn,p,r(I) for some I ⊆ J or a hypergraph
in An,p,r. If n ∈ e, then H − e ∈ Cn,p,r(J); thus assume that n /∈ e. It is clear
that An,p,r �−→ Cn,p,r, which means that we only have to prove that if the
new hypergraph G = H − e belongs to Cn,p,r(I), then I = J .
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Assume the opposite. Then some x ∈ e is uncovered in G([n − 1]). Since
H ∈ Cn,p,r, there is a p-cover W of H([n − 1]) such that (e \ {x}) ∩W = ∅.
Since e ∈ H([n−1]), we must have that x ∈W . However, since x is uncovered
in G([n − 1]), W \ {x} covers G([n − 1]), which implies that G ∈ An,p,r,
contradictory to assumption. Thus our claim is proved.

For the second claim, we have that the first claim implies that Λn,p,r(J) is
the union of Cn,p,r(J) and a collapsible subcomplex T of An,p,r. To see that
T is collapsible, just note that H − n ∈ T if and only if H + n ∈ T ; this is
by definition of Λn,p,r(J) and Lemma 4.10. In particular, T is a cone with
cone point the singleton edge n. Cn,p,r(J) ∪ T is easily seen to be homotopy
equivalent to Cn,p,r(J)∪An,p,r. Namely, we obtain a perfect acyclic matching
on An,p,r \ T by pairing H − n with H + n whenever H ∈ An,p,r \ T ; An,p,r

and T are both cones with cone point n.
Let C′n,p,r(J) be the subfamily of Cn,p,r(J) consisting of those H with

the property that all vertices in [n − 1] \ J are uncovered in H (not only in
H([n − 1])). We obtain a perfect acyclic matching on Cn,p,r(J) \ C′n,p,r(J) in
the following manner. In a hypergraph H ∈ Cn,p,r(J) \ C′n,p,r(J), define e(H)
as the maximal edge in H with respect to some fixed linear order such that
e(H) contains some vertex in [n − 1] \ J . Let Cn,p,r(J, e) be the subfamily of
Cn,p,r(J) \ C′n,p,r(J) consisting of those H satisfying e(H) = e.

It is clear that the families Cn,p,r(J, e) satisfy the Cluster Lemma 4.2.
Namely, H 	→ e(H) is a poset map; e(H) cannot increase when edges are
removed from H. Write e′(H) = (e(H) ∩ J) ∪ {n}. We claim that we may
define a perfect matching on Cn,p,r(J, e) by pairing H− e′(H) with H + e′(H)
whenever H ∈ Cn,p,r(J, e); note that e′(H) is the same for all H ∈ Cn,p,r(J, e).
To prove the claim, it suffices to prove that H − e′(H) ∈ Cn,p,r(J) if and only
if H + e′(H) ∈ Cn,p,r(J); e(H) does not depend on whether the edge e′(H) is
present in H. To prove this, we need only show that H + e′(H) ∈ HCov#

n,p,r

whenever H ∈ Cn,p,r(J). Now, every p-cover W of H is contained in J by
assumption; otherwise, we would have a (p − 1)-cover of H([n − 1]). This
implies that W must contain an element from e(H) ∩ J = e′(H) \ {n}. Thus
W intersects e′, and we are done.

The conclusion is that the simplicial complex Cn,p,r(J) ∪ An,p,r is homo-
topy equivalent to C′n,p,r(J) ∪ An,p,r. Now, C′n,p,r(J) ∪ An,p,r(J) is a simpli-
cial complex, where An,p,r(J) is the set of all graphs in An,p,r such that
all vertices in [n − 1] \ J are uncovered. We may collapse C′n,p,r(J) ∪ An,p,r

down to C′n,p,r(J) ∪ An,p,r(J) by matching H − n with H + n whenever
H ∈ An,p,r \ An,p,r(J). The resulting complex is clearly isomorphic to
C|J|+1,p,r([|J |]) ∪ A|J|+1,p,r. By the proof above, we may collapse this com-
plex down to Λ|J|+1,p,r, and we are done. �

Define
γ(p, r) = min{γ : Cn,p,r(J) = ∅ whenever |J | > γ}. (26.3)

Such a γ(p, r) exists by Lemma 26.3, and γ(p, 2) = 2p by Theorem 26.4.
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Theorem 26.12. Let n, p, r ≥ 1. With notation as above,

HCov#
n,p,r �

γ(p,r)+1∨
k=p+r

∨
(n−1

k−1)
Λk,p,r =

min{γ(p,r)+1,n}∨
k=p+r

∨
(n−1

k−1)
Λk,p,r, (26.4)

where γ = γ(p, r) is defined as in (26.3); γ(p, r) = pr for 1 ≤ r ≤ 2.

Remark. Since the 1-skeleton of HCov#
n,p,r is full as soon as p ≥ 2, the right-

hand side in (26.4) is unambiguous from a homotopy point of view. For p = 1,
HCov#

n,p,r is homotopy equivalent to a wedge of spheres in a fixed dimension
by Proposition 26.10, which immediately yields unambiguity.

Proof. First, note that Lemma 26.11 implies that

HCov#
n,p,r �

∨
J⊆[n−1]

Λn,p,r(J) �
n∨

k=1

∨
(n−1

k−1)
Λk,p,r.

Namely, by the proof of the lemma, Cn,p,r(J) �−→ Cn,p,r(I) if I �= J ; hence
Theorem 4.11 yields the desired result. It remains to prove that Cn,p,r(J)
is void unless p + r ≤ |J | + 1 ≤ γ(p, r) + 1. The lower bound follows by
Lemma 26.2, whereas the upper bound is by definition of γ(p, r); see (26.3).
�
Corollary 26.13. Let p, r ≥ 1 and n ≥ γ(p, r)+1. For any field F and any in-
teger i ≥ −1, H̃i(HCov#

n,p,r, F) is nonzero if and only if H̃i(HCov#
γ(p,r)+1,p,r, F)

is nonzero. Moreover, the connectivity degrees of the complexes HCov#
n,p,r and

HCov#
γ(p,r)+1,p,r are the same. In particular, for n ≥ 2p+1, H̃i(Cov#

n,p, F) �= 0

if and only if H̃i(Cov#
2p+1,p, F) �= 0, and the connectivity degrees of Cov#

n,p and
Cov#

2p+1,p are the same.

Proof. Whenever n ≥ γ(p, r) + 1, H̃i(HCov#
n,p,r, F) is nonzero if and only if

H̃i(Λk,p,r, F) is nonzero for some k such that p + r ≤ k ≤ γ(p, r) + 1; use
Theorem 26.12. By the same theorem, the connectivity degree of HCov#

n,p,r is
the minimum of the connectivity degrees of Λk,p,r for p + r ≤ k ≤ γ(p, r) + 1.
Since these conditions do not depend on n, we are done. For the last claim,
apply Theorem 26.4. �
Corollary 26.14. Let n, p, r ≥ 1. For any field F and any integer i ≥ −1, the
Betti number βi(HCov#

n,p,r, F) = dim H̃i(HCov#
n,p,r, F) satisfies

βi(HCov#
n,p,r, F) =

γ+1∑
k=p+r

(−1)γ+1−k

(
n− 1
k − 1

)(
n− 1− k

γ + 1− k

)
βi(HCov#

k,p,r, F);

γ = γ(p, r). In particular, βi(HCov#
n,p,r, F) is a polynomial in n of degree at

most γ(p, r).
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Remark. Since γ(p, 2) = 2p by Theorem 26.4, we have that

βi(Cov#
n,p, F) =

2p+1∑
k=p+2

(−1)k−1

(
n− 1
k − 1

)(
n− 1− k

2p + 1− k

)
βi(Cov#

k,p, F).

By Proposition 26.8, we may choose γ(p, r) = pr in the corollary whenever
p ≤ 2.

Proof. By Theorem 26.12, we know that fp,r,i(n) = βi(HCov#
n,p,r, F) defines a

polynomial in n of degree at most γ(p, r) such that fp,r,i(k) = 0 for 1 ≤ k ≤
p + r − 1. By Proposition 6.13 with s = 1, we are done. �

For the remainder of this section, we confine ourselves to the case r = 2.

Corollary 26.15. Let F be a field or Z. For 1 ≤ p ≤ n− 2, H̃i(Covn,p, F) =
H̃i(Cov#

n,p, F) is zero unless i ≤ p ·min{p + 1, n+1
2 } − 1. Hence, for 2 ≤ q ≤

n − 1, H̃i(Covn,n−q, F) is zero unless i ≤ � (n+1)(n−q)
2 � − 1, which implies

that the Alexander dual of Covn,n−q has no homology strictly below dimension
� (q−2)(n+1)

2 � − 1.

Proof. It is clear that all hypergraphs G ∈ Ck,p,2([k− 1]) are ordinary graphs;
since G([k−1]) is (p, 2)-solid, G([k−1]) has this property (apply Lemma 26.1),
and the singleton edge k cannot be present in G. We claim that a graph
G ∈ Ck,p,2([k−1]) has at most p· k+1

2 edges; inserting k = min{2p+1, n} yields
the desired bound. Now, by construction, the degree of each vertex in G([k−1])
is at most p; otherwise some vertices would necessarily be part of every p-cover
of G([k− 1]). Also, the vertex k is not part of any p-cover, which implies that
the degree of k is at most p. Summing, we get p · k−1

2 +p = p · k+1
2 as claimed.

The last statement follows by Alexander duality;
(
n
2

)
− ( (n+1)(n−q)

2 − 1)− 3 =
(q−2)(n+1)

2 − 1. �

Remark. In Section 26.6, we show that H̃i(Covn,p) is zero unless i ≥ 2p− 1.

One may compare the last statement in the corollary to Linusson and
Shareshian’s Corollary 25.4, which states that the complex Coltn of t-colorable
graphs on n vertices is (� (t−1)(n−1)

2 � − 2)-connected. In this context, it might
be worth noting that Coltn is contained in the Alexander dual of Covn,n−(t+1); a
t-colorable graph does not contain any (t+1)-cliques. Since our acyclic match-
ing is closely related to the acyclic matching of Linusson and Shareshian (see
Lemma 25.3), it is therefore not too surprising that our bound is only slightly
different from theirs. See Section 26.8 for a potential improvement of this
bound.

Finally, we prove a minor result about the Euler characteristic of Cov#
n,p.

Note that Corollaries 26.14 and 26.15 imply that χ̃(Cov#
n,p) defines a polyno-

mial in n of degree at most 2p for each fixed p.
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Proposition 26.16. Let p ≥ 1 and let fp be the polynomial with the property
that fp(n) = χ̃(Cov#

n,p) for n ≥ 1. Then fp(0) = −1. Moreover, let Yn,p be the
family of hypergraphs in Cov#

n,p with no uncovered vertices. Then χ̃(Yn,p) = 0
whenever n > 2p.

Proof. Define Cov#
0,p = Y0,p = {∅}. Clearly,

χ̃(Cov#
n,p) =

n∑
k=0

(
n

k

)
χ̃(Yk,p) (26.5)

for all n ≥ 0. Moreover, for n ≥ 1,

χ̃(Cov#
n,p) = fp(n) =

∑
k≥0

(
n

k

)
yk, (26.6)

where yk = 0 for k > 2p; the degree of fp is at most 2p. One easily derives
from (26.5) and (26.6) that

yn − χ̃(Yn,p) = (−1)n(y0 − χ̃(Y0,p)) = (−1)n(y0 + 1)

for n ≥ 0. Thus it suffices to prove that χ̃(Yn,p) = 0 for some n > 2p; this
will imply that y0 = χ̃(Y0,p) = −1 and hence that fp(0) = χ̃(Cov#

0,p) = −1 as
desired. As a byproduct, we will also obtain that χ̃(Yn,p) = 0 for all n > 2p.

Now, for a given hypergraph H ∈ Yn,p, let H∗ be the graph obtained
from H by removing all singleton edges. Let Xn,p be the subfamily of Yn,p

consisting of all hypergraphs H such that some vertex x is contained in every
p-cover of the underlying graph H∗. For each H ∈ Xn,p, let x(H) be minimal
with this property. We obtain a perfect element matching on Xn,p by pairing
H − {x(H)} and H + {x(H)}.

Let H ∈ Yn,p \ Xn,p and let W be a p-cover of H. By assumption, for
each w ∈ W , there is a p-cover of H∗ not containing w, which implies that
w is adjacent to at most p vertices in H. It follows that there are at most
p + p2 covered vertices in H; hence Yn,p \ Xn,p = ∅ whenever n > p + p2. As
a consequence, χ̃(Yn,p) = 0 whenever n > p + p2, and we are done. �

26.5 Computations

Corollary 26.14 reduces the problem of determining the homology of the
complex HCovn,p,r � HCov#

n,p,r for general n ≥ p + r to the special cases
p+r ≤ n ≤ γ(p, r)+1. For r = 2, we know by Theorem 26.4 that it suffices to
consider p + 2 ≤ n ≤ 2p + 1. Using the computer program homology [42], we
have been able to compute the homology of Covn,p = HCovn,p,2 for p = 2, 3;
the results are presented in Theorems 26.17 and 26.18 below.

For integers m, r, define C(m, r) =
(
m
r

)
.
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Theorem 26.17. For n ≥ 4, the kth homology group of Covn,2 is zero unless
3 ≤ k ≤ 4, in which case we have that

H̃3(Covn,2) ∼= ZC(n−1,4);

H̃4(Covn,2) ∼= ZC(n,4).

In particular, the reduced Euler characteristic of Covn,2 is
(
n−1

3

)
.

Proof. Running homology [42] on the complex Cov5,2, we obtain that

H̃3(Cov5,2) ∼= Z;

H̃4(Cov5,2) ∼= Z5.

By (26.1), Cov4,2 � S4. Thus Corollary 26.14 yields that the homology of
Covn,2 is torsion-free and that

dim H̃3(Covn,2, Q) =
(
n−1
5−1

)(
n−5−1
4−5+1

)
=
(
n−1

4

)
;

dim H̃4(Covn,2, Q) = −
(
n−1
4−1

)(
n−4−1
4−4+1

)
+ 5

(
n−1
5−1

)(
n−5−1
4−5+1

)
=

(
n
4

)
. �

Remark. We have not been able to determine the homotopy type of Covn,2.

Theorem 26.18. For n ≥ 5, the kth homology group of Covn,3 is zero unless
5 ≤ k ≤ 8, in which case we have that

H̃5(Covn,3) ∼= ZC(n−1,6);

H̃6(Covn,3) ∼= (Z2)C(n,6);

H̃7(Covn,3) ∼= Z9C(n,6);

H̃8(Covn,3) ∼= ZC(n,5).

In particular, the reduced Euler characteristic of Covn,3 is −
(
n−1

4

)
· 5n2−31n+15

15 .
By Proposition 26.8, the same holds for the complex Covn,2,3.

Proof. Computations with homology [42] yield that

⎧⎪⎨
⎪⎩

H̃6(Cov6,3) ∼= Z2;

H̃7(Cov6,3) ∼= Z9;

H̃8(Cov6,3) ∼= Z6

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H̃5(Cov7,3) ∼= Z;

H̃6(Cov7,3) ∼= (Z2)7;

H̃7(Cov7,3) ∼= Z63;

H̃8(Cov7,3) ∼= Z21.

By (26.1), we know that H̃i(Cov5,3) = Z if i = 8 and 0 otherwise. By
Corollary 26.14, there is no torsion in H̃i(Covn,3, Z) unless i = 6, in which
case there is 2-torsion but no free homology. Corollary 26.14 yields that
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Table 26.1. The reduced Euler characteristic of HCov#
n,p,2 for small values on n

and p. Recall that χ̃(HCov#
n,p,2) = χ̃(Covn,p) whenever n ≥ 2.

χ̃(HCov#
n,p,2) n = 0 1 2 3 4 5 6 7 8 9 10

p = 1 −1 0 0 −1 −3 −6 −10 −15 −21 −28 −36

2 −1 0 0 0 1 4 10 20 35 56 84

3 −1 0 0 0 0 1 −3 −43 −203 -658 −1722

4 −1 0 0 0 0 0 −1 −61 ? ? ?

Table 26.2. The homology of Λk,p,2 for all interesting (k, p) such that 2 ≤ p ≤ 3 and
for (k, p) = (6, 4), (7, 4) (we obtained the latter homology via a computer calculation
of the homology of Cov7,4).

H̃i(Λk,p,2, Z) i = 3 4 5 6 7 8 9 10 11 12 13

(k, p) = (4, 2) - Z - - - - - - - - -

(5, 2) Z Z - - - - - - - - -

(5, 3) - - - - - Z - - - - -

(6, 3) - - - Z2 Z9 Z - - - - -

(7, 3) - - Z Z2 Z9 - - - - - -

(6, 4) - - - - - - - - - - Z

(7, 4) - - - - - - - Z Z55 ⊕ Z2 - Z

dim H̃5(Covn,3, Q) =
(
n−1

6

)(
n−8

0

)
=
(
n−1

6

)
;

dim H̃6(Covn,3, Z2) = −
(
n−1

5

)(
n−7

1

)
+ 7

(
n−1

6

)(
n−8

0

)
=

(
n
6

)
;

dim H̃7(Covn,3, Q) = − 9
(
n−1

5

)(
n−7

1

)
+ 63

(
n−1

6

)(
n−8

0

)
= 9

(
n
6

)
;

dim H̃8(Covn,3, Q) =
(
n−1

4

)(
n−6

2

)
− 6

(
n−1

5

)(
n−7

1

)
+ 21

(
n−1

6

)(
n−8

0

)
=

(
n
5

)
.

�

See Table 26.1 for the Euler characteristic of Covn,2 for small n and p.

Remark. Note that all Betti numbers are integer multiples of binomial coeffi-
cients. This is due to Theorem 26.12 and the simple structure of the homology
of Λk,p,2; see Table 26.2. We would be surprised if this property held in gen-
eral; see Proposition 26.22 (e) for a potential conjecture that might be a bit
more realistic.
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26.6 Homotopical Depth

We prove that Covn,p has a vertex-decomposable (2p−1)-skeleton for n ≥ p+2.
Note that we consider the graph complex Covn,p, not the hypergraph complex
HCov#

n,p,2 We have not been able to prove anything of interest about the depth
or the connectivity degree of HCovn,p,r for r ≥ 3.

Theorem 26.19. For 1 ≤ p ≤ n−2, Covn,p is V D(2p−1). In particular, the
homotopical depth of Covn,p is at least (2p− 1).

Proof. Let Y =
(
[n−1]

2

)
and En = {1n, . . . , (n− 1)n}. For any subset B of Y ,

let
dp(B) = p + min{p− 1, |Y \B|};

dp(B) = 2p− 1 if |Y \B| ≥ p− 1. We claim that Covn,p(A,B) is V D(dp(B))
for any disjoint subsets A and B of Y . The special case A = B = ∅ yields the
theorem, since |Y | ≥ p− 1.

To prove the claim, we use induction on |Y \B|. We distinguish three cases:

(i) |Y \ B| ≤ p − 1. Then the covering number of the graph with edge
set Y \ B is at most p − 1. As a consequence, the graph with edge
set En ∪ (Y \B) has covering number at most p, which implies that all
edges in En∪(Y \(A∪B)) are cone points in Covn,p(A,B). In particular,
Covn,p(A,B) is the join of {A} and the full simplex on

|En|+ |Y \B| − |A| = n− 1 + |Y \B| − |A| ≥ dp(B)− |A|+ 1

elements (n− 1 ≥ p + 1). This implies that Covn,p(A,B) is V D(dp(B))
as desired.

(ii) |Y \B| ≥ p and A � Y \B. Then let e ∈ Y \(A∪B). We have by induction
on |Y \(A∪B)| that Covn,p(A+e,B) and Covn,p(A,B+e) are V D(2p−1).
As a consequence, Covn,p(A,B) is V D(2p− 1) by Lemma 6.9.

(iii) |Y \ B| = |A| ≥ p and A = Y \ B. In this case, we consider complexes
Covn,p(A, Y \A) such that |A| ≥ p. Note that all faces of Covn,p(A, Y \A)
are of the form A ∪ C for some set C ⊆ En. Let H be the graph with
edge set A. We identify three subcases:
(a) τ(H) ≤ p − 1. Then all n − 1 edges in En are cone points in

Covn,p(A,B), and we are done; |En| − 1 = n − 2 ≥ p ≥ 2p − |A| >
dp(Y \A)− |A|.

(b) τ(H) = p and some vertex x is contained in every p-cover of H. Since
every p-cover contains x, the edge xn is a cone point in Covn,p(A,B).
In particular, Covn,p(A, Y \A) is V D(2p−1) if and only if Covn,p(A+
xn, Y \A) is V D(2p− 1).
Define A0 and Y0 as the sets obtained from A and Y by removing all
edges containing x; hence Y0 =

(
[n−1]\{x}

2

)
. We have that Covn,p(A+

xn, Y \A) coincides with Covn−1,p−1(A0, Y0 \A0) ∗ {(A + xn) \A0},
where we remove the vertex x (rather than n) to obtain Covn−1,p−1.
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Namely, a graph G containing H and being contained in H+En has a
p-cover if and only if G([n]\{x}) has a (p−1)-cover. By induction on
n, Covn−1,p−1(A0, Y0\A0) is V D(dp−1), where dp−1 = dp−1(Y0\A0).
We need to prove that

dp−1 ≥ 2p− 1− |(A + xn)−A0| = 2p− 2− |A|+ |A0|.

Now,
dp−1 = p− 1 + min{p− 2, |A0|}.

If p− 2 ≥ |A0|, then dp−1 = p− 1 + |A0|, which is at least 2p− 1−
|A|+ |A0|, as |A| ≥ p. If p− 2 < |A0|, then dp−1 = 2p− 3, which is
at least 2p − 2 + |A0| − |A|, as |A \ A0| ≥ 1. In fact, we must have
|A \ A0| > 1, because x is contained in every p-cover. Thus we are
done.

(c) τ(H) = p and no vertex is contained in every p-cover of H. This
means that H is (p, 2)-solid. As a consequence, Lemma 26.6 yields
that |A| ≥ 2p− k, where k is the number of connected components
of H with at least two vertices. Thus it suffices to prove that ∆ =
Covn,p(A, Y \A) is V D(|A|+k−1). Let C1, . . . , Ck be the connected
components of H (uncovered vertices excluded); by Lemma 26.5,
each Ci is (pi, 2)-solid for some pi ≥ 1 satisfying

∑
i pi = p. Let

Ti be the set of edges xn ∈ En with one endpoint x in Ci. Let
∆i be the induced subcomplex of ∆ on the set Ti. It is clear that
∆ = {A} ∗∆1 ∗ · · · ∗∆k; we can add a subset Q of En to H without
increasing p = τ(H) if and only if we can add the corresponding
subsets Q ∩ Ti without increasing pi = τ(Ci).
Now, each vertex in Ci is contained in a pi-cover of Ci by Lemma 26.1,
and pi ≥ 1 for each i. As a consequence, ∆i is V D(0) for each i,
which implies by Lemma 6.11 that ∆ is V D(|A| + k − 1). Thus we
are done. �

We conjecture that there is nonvanishing homology in dimension 2p − 1 for
n ≥ 2p + 1; this would imply that the shifted connectivity degree of Covn,p

equals 2p− 1 whenever n ≥ 2p + 1. See Section 26.8 for further discussion.

26.7 Triangle-Free Graphs

Note that Covn,p is the Alexander dual of the complex of graphs on n vertices
that do not contain a clique of size n−p. For p = n−3, we obtain the complex
�n of triangle-free graphs on n vertices. In this section, we summarize our
humble results for this very important graph property.

Corollary 26.20. For n ≥ r + 2,



352 26 Graphs with Bounded Covering Number

HCovn,n−r−1,r � Λn,n−r−1,r ∨
∨
n−1

Λn−1,n−r−1,r

� Λn,n−r−1,r ∨
∨
n−1

SC(n−1,r)−2,

where C(m, k) =
(
m
k

)
. In particular, for r = 2, the dual complex �n of

triangle-free graphs on n vertices has the property that H̃n−2(�n, Z) contains
Zn−1 as a free subgroup.

Proof. The first equivalence is Theorem 26.12. The second equivalence follows
from the fact that

Λp+r,p,r � HCovp+r,p,r � SC(p+r,r)−2;

use Theorem 26.12 and (26.1) with p = n− r− 1. For the final statement, use
Theorem 3.4. �

Corollary 26.21. For n ≥ 3, �n is V D(n − 2) and has homotopical depth
n− 2.

Proof. �n is V D(n− 2) by Corollary 13.8; all minimal nonfaces are triangles,
which are isthmus-free. However, the (n−1)-skeleton of �n is not even Cohen-
Macaulay, as there is homology in dimension n − 2; use Theorem 13.9 or
Corollary 26.20. �

Table 26.3. The homology of �n for 4 ≤ n ≤ 7. The figures are collected from
Table 26.2 and translated via Alexander duality.

H̃i(�n, Z) i = 2 3 4 5 6 7 8

n = 4 Z3 - - - - - -

5 - Z5 Z - - - -

6 - - Z6 Z9 ⊕ Z2 - - -

7 - - - Z7 Z2 Z55 Z

We have no complete description of the homology of �n except for n ≤ 7; see
Table 26.3.

26.8 Concluding Remarks and Open Problems

We have not been able to compute the homology of HCovn,p,r for general n,
p, and r, and we have very little hope to ever see this being achieved; see the
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complexity-theoretic remark below for some further discussion. Nevertheless,
the homology of Covn,p = HCovn,p,2 certainly has plenty of structure, and
our computations for small values of n and p suggest that there is quite some
more structure to be found. In the following proposition, note that we restrict
our attention to p ≤ 3.

Proposition 26.22. The following hold for 1 ≤ p ≤ 3:

(a) Covn,p has no homology over any field strictly above dimension
(
p+2
2

)
−

2. Equivalently, the Alexander dual of Covn,n−r has no homology strictly
below dimension dn,r = n(r − 2)−

(
r−1
2

)
− 1.

(b) For p + 2 ≤ n ≤ 2p + 1, Covn,p has no homology strictly below dimension
2p− 1 +

(
2p−n+2

2

)
.

(c) For p = 2 and p = 3, H̃(p+2
2 )−2(Covn,p, Z) is free of rank

(
n

p+2

)
.

(d) H̃2p−1(Covn,p, Z) is free of rank
(
n−1
2p

)
.

(e) For i ≥ 2p and for any field F,

2p+1∑
k=p+2

(−1)kβi(Λk,p,2, F) = 0.

Equivalently, for i ≥ 2p, the polynomial fp,i(n) = βi(Covn,p, F) vanishes
at zero.

(f) All roots of the polynomial fp,i are real and nonnegative (they are indeed
integers). Moreover, the Euler characteristic of Covn,p is a polynomial in
n with only real and positive roots. �

Note that properties (a)-(d) are also true for p = 4 and n ≤ 7; see Table 26.2.
Moreover, by Corollary 26.21, property (a) is true whenever p = n− 3.

Proposition 26.22 suggests the following problem.

Question 2. Among the six properties listed in Proposition 26.22, which of
them hold for general p?

We are particularly interested in knowing whether property (a) remains true
in general. First, this relates to the important problem of determining the
connectivity degree of the complex of Kn−p-free graphs; this is the Alexander
dual Cov∗n,p of Covn,p. Second, we would like to know more about connections
between the complex Coltn of t-colorable graphs and Cov∗n,n−(t+1); recall that
the latter complex contains the former. As Linusson and Shareshian [94] ob-
served (see Chapter 25 for discussion), most homology of Coltn is concentrated
in dimension n(t − 1) −

(
t
2

)
− 1 = dn,t+1 for all known examples, and so far

no homology below this dimension has been found.
Regarding property (b), one may also ask whether the corresponding skele-

ton is vertex-decomposable or at least Cohen-Macaulay. Regarding property
(c), we know that H̃(p+2

2 )−2(Covn,p, Z) contains a free subgroup of rank
(
n−1
p+1

)
;

use (26.1) and Corollary 26.14.
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Since we do not have much data, it may well turn out that several of the
properties in Proposition 26.22 do not generalize to larger values of p. We
are particularly skeptical about properties (b) and (f). Regarding property
(f), one may recall Conjecture 14.20 about the real-rootedness of χ̃(Bn,p);
see Section 14.3.3. We justified this conjecture by reducing it to a conjecture
about the homotopy type of certain simplicial complexes. In the present case,
we have no such justification.

For hypergraphs, the situation is even worse, as we have almost no data.
Still, regarding property (a), one may ask whether it is true that HCovn,p,r

has no homology over any field strictly above dimension
(
p+r

r

)
− 2.

In our opinion however, the most important open problem for r ≥ 3 is to
determine the maximum integer k for which Λk,p,r has nonvanishing homology.
This would give an upper bound on the degree of the polynomials fp,r,i. Our
hope is that the answer is pr, but we have no evidence whatsoever for this
guess when p, r ≥ 3. In particular, pr is not an upper bound on γ(p, r);
γ(3, 3) ≥ 10, as the hypergraph on the vertex set {0, 1, . . . , 9} with edges
012, 234, 456, 678, 890 is (3, 3)-solid.

Recall that NMn,k is the complex of graphs on n vertices that do not con-
tain a k-matching and that NQPn,t is the complex of graphs on n vertices that
do not admit a clique partition into t parts; see Chapter 25 for more informa-
tion. In a separate manuscript [73], we give a unified proof that NMn,p+1,
NQPn,n−p−1, and Covn,p have Euler characteristics given by polynomials.
These graph properties have in common that they all avoid (p+1)-matchings
while admitting p-matchings. Moreover, if Σn is any of the properties, then
there is a d such that the following holds:

• If G ∈ Σn and x ∈ G has the property that degG(x) ≥ d, then G+En(x) ∈
Σn.

We show that the polynomial property holds for any class of graph properties
satisfying these two conditions, provided that the union of all properties in
the class is closed under addition and deletion of isolated vertices.

Complexity-theoretic remark. The (VERTEX) COVER problem on input a pair
(G, p) is to determine whether G ∈ Covn,p; n is the number of vertices in G.
This is the containment problem for the family {Covn,p : n, p ≥ 1}. COVER
is well-known to be NP-complete [81, 33]. A potentially interesting question
is whether there is any deeper connection between this fact and the fact that
the homology of Covn,p seems difficult to compute for general n and p. One
may raise the analogous question for any family of monotone graph prop-
erties with an NP-complete containment problem. One example is the NP-
complete HAMILTONIAN problem: On input a graph G, determine whether
G ∈ Hamn, where Hamn is the quotient complex of Hamiltonian graphs dis-
cussed in Chapter 17.
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Open Problems

We collect different open problems related to the complexes discussed in this
book. Some of these problems have already been discussed in earlier chapters,
but we restate them for completeness. Whenever we make a statement about
the connectivity degree of a complex, we ignore special cases for which the
complex happens to be contractible.

Problems on Chapter 5

Throughout this section, ∆ and Γ are simplicial complexes.

Problem 27.1 (cf. Propositions 5.17 and 5.19). Is it true that every
contractible complex is buildable? Is it true that every homotopically Cohen-
Macaulay complex is semi-buildable?
Conjecture: False; we suggest the dunce hat as a potential counterexample.

Problem 27.2 (Welker [146]; cf. Theorem 5.27). If ∆ ∗ Γ is collapsible,
is it true that at least one of ∆ and Γ is collapsible?

Problem 27.3 (cf. Theorem 5.28). If ∆ ∗ Γ is semi-collapsible but not
collapsible, is it true that each of ∆ and Γ is semi-collapsible?

Problem 27.4 (Welker [146]; cf. Theorem 5.30). If the barycentric sub-
division of ∆ is nonevasive, is it true that ∆ is collapsible?

Problem 27.5 (cf. Theorem 5.31). If the barycentric subdivision of ∆ is
semi-nonevasive, is it true that ∆ is semi-collapsible?

Problem 27.6 (Welker [146]; cf. Theorem 5.30). If the barycentric sub-
division of ∆ is collapsible, is it true that this subdivision is in fact nonevasive?

Problem 27.7 (cf. Theorem 5.31). If the barycentric subdivision of ∆ is
semi-collapsible, is it true that this subdivision is in fact semi-nonevasive?
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Problem 27.8 (Welker [146]; cf. Theorem 5.33). If ∆(P ×Q) is noneva-
sive, is it true that ∆(P ) and ∆(Q) are both nonevasive?

Problem 27.9 (cf. Theorem 5.34). If ∆(P ) and ∆(Q) are semi-nonevasive
and evasive, is it true that ∆(P ×Q) is semi-nonevasive?

Problems on Chapter 11

Problem 27.10 (cf. Theorems 11.16 and 11.26). Find the rank of the
elementary 3-group H̃k−1+r(M2k+1+3r; Z) for k ∈ {1, 2} and r ≥ k + 2.

Problem 27.11 (cf. Corollary 11.23). Is it true that H̃d(Mn; Z) is torsion-
free if and only if d < n−4

3 or d > n−5
2 ?

Conjecture: True. Open for n odd and d = n−5
2 .

Problem 27.12 (cf. Section 11.2.3). For which integers p and n is there a
d such that H̃d(Mn; Z) contains p-torsion?
Remark. For almost all n, the homology of Mn contains 3-torsion. A daring
conjecture would be that this is true not only for p = 3 but for all odd p.

Problem 27.13 (cf. Section 11.2.4). For each n and d, is it true that

H̃d(Mn; Z) ∼= H̃d(delMn
(e); Z)⊕ H̃d−1(Mn−2; Z),

where e is any edge in the complete graph Kn?

Problem 27.14 (Shareshian and Wachs [122]; cf. Theorem 11.32).
For 1 ≤ m ≤ n, with νm,n defined as in (11.6) in Section 11.3.1, is it true that
H̃νm,n

(Mm,n; Z) is torsion-free if and only if n ≥ 2m− 4?
Conjecture: True. Open for n ∈ {2m− 4, 2m− 3}.

Problem 27.15 (Shareshian and Wachs [122]; cf. Theorem 11.37). Is
it true that H̃d(Mm,n; Z) is torsion-free if and only if d < νm,n or d > m− 3?
Conjecture: True. Open for d = m − 2 when m + 2 ≤ n ≤ 2m − 3 and for
d = m− 3 when 8 ≤ m = n.

Problems on Chapter 12

Problem 27.16 (cf. Theorem 12.2). For n ≥ 3, Is it true that the shifted
connectivity degree and the homotopical depth of BD2

n are equal to � 7n−13
9 �?

Problem 27.17 (cf. Theorem 12.17). For n ≥ 3, is it true that the shifted
connectivity degree and the homotopical depth of BD

2

n are equal to � 7n−13
9 �?

Problem 27.18 (cf. Theorems 12.8, Theorem 12.10, and 12.17). De-
termine the shifted connectivity degree and the homotopical depth of BDd

n

and BD
d

n for general d.
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Problems on Chapter 13

Problem 27.19 (cf. Proposition 13.16). A necessary condition for a sim-
plicial complex to be SPI over a matroid M is that each minimal nonface
is a circuit. Find a necessary and sufficient condition in terms of the set of
nonfaces.

Problem 27.20 (cf. Section 13.3). Find axioms for the class of SPI com-
plexes (or a strictly larger class with all nice topological properties preserved)
without referring to any underlying matroid.

Problems on Chapter 14

Problem 27.21 (cf. Theorem 14.8). Let Tn be the family of spanning
trees T on the vertex set [n] with the property that each simple path (1 =
a1, a2, . . . , ak) in T starting at the vertex 1 has the property that ai < ai+2

for 1 ≤ i ≤ k − 2. Find a bijection between Tn and the family of ordered
partitions of the set [n− 1].

Problem 27.22 (cf. Corollaries 14.18 and 14.19). For p ≥ 1, is it true
that the polynomial fp(n) = χ̃(Bn,p) is of degree exactly 2p with only real
and positive roots?
Conjecture: True.

Problem 27.23 (cf. Section 14.3.4). Is it true that the hypergraph com-
plex HBn,p,t is homotopy equivalent to a wedge of spheres of dimension pt− 1
whenever n ≥ pt + 1?

Problems on Chapter 15

Problem 27.24. Analyze the topology of DFn(D) in cases where Kozlov’s
Corollary 15.2 does not apply.

Problem 27.25. Analyze the topology of DAcyn(D) in cases where Hult-
man’s Theorem 15.5 does not apply.

Problem 27.26 (cf. Section 15.5). Compute the Euler characteristic of
DOACn.

Problem 27.27 (cf. Theorem 15.15). Is it true that DNOCyn is V D(2n−3)
or at least has a Cohen-Macaulay (2n− 3)-skeleton?
Conjecture: True.
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Problems on Chapter 16

Problem 27.28 (cf. Theorem 16.8). Is it true that the rank of the group
H̃k−1(NXM3k+1; Z) is 1

k+1

(
4k+2

k

)
= 1

3k+2

(
4k+2
k+1

)
?

Conjecture: True.

Problem 27.29 (cf. Theorem 16.8). Find an explicit formula for the ho-
mology of NXMn in any given degree d.

Problem 27.30 (cf. Theorem 16.15). For n ≥ 2p + 1, is it true that the
shifted connectivity degree and the homotopical depth of NXBn,p are equal to
2p− 1?
Conjecture: True.

Problem 27.31 (cf. Theorem 16.15). Compute the homology of NXBn,p.

Problems on Chapter 17

Problem 27.32 (cf. Theorem 17.2 and Corollary 17.3). Compute the
shifted connectivity degree and depth of NHamn.

Problem 27.33 (cf. Section 17.3). Is it true that H̃3(n−2)(DNHamn, Z)
contains a free subgroup isomorphic to Z(n−2)! for all n ≥ 2? What is the
shifted connectivity degree of DNHamn?

Problems on Chapter 18

Problem 27.34 (cf. Theorems 18.6 and 18.7 and Section 18.2.2). Let
k, n ≥ 1. Write r = (n−1) mod (k+1). Is it true that the shifted connectivity
degree of NLCn,k equals �αn,k�, where αn,k := (k−1)(n−1+r/k)

k+1 − 1?
Conjecture: True. Open for k ≥ 4 unless k + 2 ≤ n ≤ 2k + 2, n = 3k + 2, or
n = t(k + 1)/2 for t ≥ 2 and k odd.

Problem 27.35 (cf. Theorem 18.11). With notation as in the previous
Problem, is it true that the αn,k-skeleton of NLCn,k is V D or at least shellable?
Conjecture: True. Open for k ≥ 3.

Problem 27.36 (cf. Theorem 18.6 and Section 18.2.2). Compute the
homology of NLCn,k.
Open for n ≥ 2k + 3, n �= 3k + 2.

Problems on Chapter 19

Problem 27.37 (cf. Theorem 19.4). Is it true that the (2n − 5)-skeleton
of NC2

n is V D or at least shellable?
Conjecture: True.
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Problem 27.38. Let M be a matroid on the set E with rank function ρ. A
set σ ⊆ E is connected if σ has full rank and if there is no partition σ = σ1∪σ2

such that ρ(σ) = ρ(σ1) + ρ(σ2). NC2
n is the complex of disconnected sets in

the graphic matroid M(Kn). Examine the topology of this complex for other
matroids.

Problems on Chapter 20

Problem 27.39 (cf. Section 20.1). Is it true that NC3
n is semi-nonevasive?

Problem 27.40 (cf. Section 20.1). Is it true that the (2n− 4)-skeleton of
NC3

n is Cohen-Macaulay?
Conjecture: True.

Problem 27.41 (cf. Section 20.4). Prove any nontrivial and general result
about NCk

n for k /∈ {1, 2, 3, n− 2}.

Problems on Chapter 21

Problem 27.42 (cf. Theorem 21.3). Is it true that the (2n − 5)-skeleton
of NCR1,0

n is V D or at least shellable?
Conjecture: True.

Problem 27.43 (cf. Theorem 21.8). Is it true that the order complex of
NXΠ2

n is homeomorphic to a sphere or even the boundary complex of a poly-
tope?
Conjecture: True.

Problem 27.44 (cf. Theorem 21.9). Is it true that NCR
(1,1)

n is semi-
nonevasive?

Problem 27.45 (cf. Theorem 21.9). Is it true that the (2n − 4)-skeleton
of NCR(1,1)

n (equivalently, the (n−4)-skeleton of NCR
1,1

n ) is Cohen-Macaulay?
Conjecture: True.

Problems on Chapter 22

Problem 27.46 (cf. Theorem 22.4). Is it true that the (2n − 4)-skeleton
of DNSCn is V D or at least shellable?
Conjecture: True.

Problem 27.47 (cf. Section 22.2). Is it true that DNSC2
n is homotopy

equivalent to a wedge of (n− 2) · (n− 2)! spheres of dimension 3n− 5?
Conjecture: True.

Problem 27.48 (cf. Theorem 22.8). Is it true that the (2n − 5)-skeleton
of DNSpn is Cohen-Macaulay?
Conjecture: True.
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Problems on Chapter 23

Problem 27.49 (cf. Theorems 23.1 and 23.7). Is it true that the shifted
connectivity degree of NEC2

n equals � 3n−7
2 �?

Conjecture: True. Open for even n.

Problem 27.50 (cf. Theorem 23.1). Is the homology of NEC2
n torsion-free?

More generally, is NEC2
n semi-collapsible over Z?

Conjecture: True.

Problem 27.51 (cf. Theorem 23.4). Is it true that H̃3k−5(NEC2
2k−1, Z) is

free of rank ((2k − 3)!!)2?
Conjecture: True.

Problem 27.52 (cf. Section 23.3). For p ≥ 1 and n ≥ p + 1, is it true that
the shifted connectivity degree of NECp

n equals
⌈

(n−1)(p+1)
2 − 2

⌉
?

Problems on Chapter 25

Problem 27.53. Find the degree of the polynomial gp = χ̃(NQPn,n−p−1).

Problems on Chapter 26

See Section 26.8 for discussion.

Problem 27.54. Is it true that Covn,p has no homology over any field strictly
above dimension

(
p+2
2

)
−2 and that H̃(p+2

2 )−2(Covn,p, Z) is free of rank
(

n
p+2

)
?

Conjecture: True.

Problem 27.55. For p+2 ≤ n ≤ 2p+1, is it true that Covn,p has no homology
strictly below dimension 2p− 1 +

(
2p−n+2

2

)
?

Problem 27.56. Is it true that H̃2p−1(Covn,p, Z) is free of rank
(
n−1
2p

)
?

Conjecture: True.

Problem 27.57. For i ≥ 2p, is it true that the polynomial fp,i(n) =
βi(Covn,p, F) satisfies fp,i(0) = 0?
Conjecture: True.

Problem 27.58. With notation as in the previous problem, is it true that all
roots of the polynomial fp,i are real and nonnegative?
Conjecture: False.
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61. P. Hersh and V. Welker. Gröbner basis degree bounds on Tor

k[Λ]
• (k, k)• and

Discrete Morse Theory for posets. In Proceedings of the Summer Research
Conference on Integer Points in Polyhedra, 2003.
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∧ – exterior product, 29
∗ – join, 25
∨ – wedge, 25(

S
k

)
– all k-subsets of S, 19

∅ – empty set, 19
2S – all subsets of S, 19
SS – symmetric group, 19
Km,n – complete bipartite graph, 21
Kn – complete graph, 20
K→

n – complete digraph, 21
2Kn – all graphs on n vertices, 20
∆(P ) – order complex, 25
∆(σ, τ) – lifted link-deletion, 25
∆∗ – Alexander dual, 25
P (D) – poset associated to digraph D,

115
P (∆) – face poset, 26
del∆(σ) – deletion, 25
fdel∆(σ) – face deletion, 25
lk∆(σ) – link, 25
sd(∆) – barycentric subdivision, 26
CM complex, see Cohen-Macaulay

complex
V D complex, see vertex-decomposable

complex
V D(d) complex, 92
V D+(d) complex, 92

acyclic
digraph, 22
matching, 53–59, 93

optimal, 73
F-acyclic complex, 35
k-acyclic complex, 35

adjacent vertices, 20
Alexander dual, 25, 80

homology of, 32
of monotone graph property, 103
of nonevasive complex, 85
of semi-nonevasive complex, 85
of SPI complex, see SPI ∗ complex

alternating circuit, 115
J. L. Andersen, 164
associahedron, 5, 107, 109, 120,

217–222, 233, 241, 268, 269, 291,
294, 295, 299, 300

C. A. Athanasiadis, 80, 127, 129–131,
144

atom in poset, 23
M. Auslander, 89, 90

E. Babson, 6, 13, 17, 165, 209, 263, 264,
275, 289, 290

balance number, 101
balanced bipartition, 101
d-ball, 46
barycentric subdivision, 26
base point, 32
basis of matroid, 27
C. Berge, 13, 339, 340
L. J. Billera, 42, 43, 82, 171, 172
bipartite digraph, 114
bipartite graph, 21
bipartition, 21
A. Björner, 6, 9, 10, 12, 13, 17, 38, 39,

42, 43, 45, 46, 55, 76, 127, 128,
131, 143, 144, 165, 171, 205, 206,
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208, 247, 262–264, 275, 288–290,
294, 301

block
in block-closed graph, 264
in connected bipartite graph, 194

block-closed digraph, 303
block-closed graph, 11, 263
blocks of bipartite graph, 21
B. Bollobás, 339
S. Bouc, 16, 127, 130, 132–134, 289
boundary

in chain complex, 30
of d-simplex, 24
of ball, 46
of convex polytope, 46

boundary edge, 108
bounded-degree graph, 101
Brown complex, 6
D. Buchsbaum, 89, 90
buildable complex, 77

canonical realization, 33
Catalan number, 109, 218, 222, 229, 293
d-cell, 24
cell complex, 34–35
chain complex, 30
chain in poset, 23
M. K. Chari, 5, 51, 76, 172, 189, 190
chessboard complex, 127, 143–148
circuit

alternating, 115
of matroid, 27

clique, 20
clique partition, 103
closure operator, 87
cocircuit of matroid, 27
Cohen-Macaulay complex, 40–41,

43–45
homotopically, 40
over F, 40
sequentially, 41, 43–45

Cohen-Macaulay ring, 47
collapse, 24
collapsible complex, 14, 24, 37, 81–83,

85, 86, 124
t-colorable graph, 20
t-coloring, 20
combinatorially equivalent complexes,

24

complement of graph, 20
complete

bipartite graph, 21
digraph, 21
graph, 20

cone, 25
cone point, 25
conjugate of integer partition, 28
k-connected

complex, 36
graph, 21
hypergraph, 268

connected component, 21
connected graph, 21
connectivity degree, 36

shifted, 36
constructible

complex, 41, 43–45
nonpure, 41
semipure, 41, 43, 44

containment problem, 354
contractible complex, 36
contraction in matroid, 27
convex polytope, 46
p-cover, 337
p-coverable

graph, 103
hypergraph, 337

covered vertex, 22
covering number, 103

of hypergraph, 337
covering relation, 23
crossing edges, 108
cut point, 21

in polygon representation, 111
cut set, 21

in polygon representation, 111
cycle, 21

directed, 21
fundamental, 46

decision tree, 67–70, 79, 93, 119
optimal, 73, 74

degree of vertex
in graph, 20
in L-graph, 151

deletion
in complex, 25
in matroid, 27
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depth of complex, 120–122
homotopical, 40, 91–92
over F, 40, 88–91

depth of ring, 47
determinantal ideal, 11–12
diagonal of integer partition, 28
digraph, 21

without non-alternating circuits, 115
without odd cycles, 115

digraph complex, 5, 26
digraph property, 26

monotone, see monotone digraph
property

digraphic matroid, 27
dihedral graph property, 108

monotone, see monotone dihedral
graph property

dihedral group, 4
dimension

of face, 24
of ring, 47
of simplicial complex, 24

direct product
of posets, 23

directed
cycle, 21
edge, 21
forest, 22
graph, see digraph
path, 21
simple path, 22
spanning tree, 22
tree, 22

disconnected graph, 21
discrete Morse theory, 5–6, 51–66, 119
dominating integer partition, 28
X. Dong, 7, 16, 131, 151–162, 164
dual depth of complex, 91
dual of matroid, 27
dual of simplicial complex, see

Alexander dual

edge
in digraph, 21
in graph, 20
in hypergraph, 22

edge connectivity, 102
k-edge-connected graph, 102
J. Edmonds, 13, 329

element-decision tree, see decision tree
elementary collapse, 24
empty graph or digraph, 22
Euler characteristic, 24, 122–123
evasive

complex, 38
set, 70

in set-decision tree, 71
evasiveness conjecture, 14, 123
exact transversal, 204

face, 24
face poset, 26
face ring, see Stanley-Reisner ring
face-deletion, 25
factor-critical graph, 102
J. D. Farley, 288
Fine number, 109, 218, 229
flat of matroid, 27
J. Folkman, 247
forest, 21
R. Forman, 5, 6, 15, 51, 56, 57, 59, 60,

67, 70, 73, 324
J. Friedman, 128, 144
full simplex, 24
fundamental cycle, 46

T. Gallai, 13, 329
generating function, 94–95
Gorenstein∗ poset, 298
graded digraph, 114

modulo p, 114
graph, 20
graph complex, 3, 26
graph property, 4, 26

dihedral, see dihedral graph property
monotone, see monotone graph

property
monotone dihedral, see monotone

dihedral graph property
graphic matroid, 27
O. A. Gross, 193

M. Hachimori, 76
M. Haiman, 217, 218
A. Hajnal, 13, 339
Hamiltonian

cycle, 21
directed, 22
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digraph, 22
graph, 21
path, 21

directed, 22
P. Hanlon, 128, 144
head of directed edge, 21
Hermite polynomial, 173
P. Hersh, 55
J. Herzog, 12
M. Hochster, 11, 41, 90
homology

Lie algebra, 8
relative, see relative homology
simplicial, see simplicial homology

homotopic, 33
homotopical depth, see depth of

complex
homotopically Cohen-Macaulay, see

Cohen-Macaulay complex
homotopy, 32–34

equivalence, 33
map, 33
type, 33

A. Hultman, 205, 208, 301, 303
hypergraph, 22
S-hypergraph, 22
hypergraph complex, 26
hypergraph property, 26

monotone, see monotone hypergraph
property

independence complex, 27, 101, 172–173
independent set in graph, see stable set
independent set in matroid, 27
induced

subgraph, 20
subhypergraph, 22
submatroid, 27

integer partition, 28
interior edge, 108
intersection lattice of subspace

arrangement, 9
interval of vertices, 108
isolated vertex, 21
isthmus-free

digraph, 175
graph, 175
matroid, 174

join, 25
M. Jöllenbeck, 51, 59
T. Józefiak, 8

J. Kahn, 14, 38, 67, 70
D. B. Karaguezian, 127, 131
R. Karp, 14
D. M. Kozlov, 13, 128, 148, 149, 205,

206, 209
R. Ksontini, 7, 131

L-graph, 151
lattice, 23

of block-closed graphs, 11, 263–264,
267–268

dihedral variant, 297–298
of flats in matroid, 171
of noncrossing partitions, see

partition lattice, noncrossing
of partitions, see partition lattice
of PI complexes, 175
of SPI complexes, 180, 186
of SPI ∗ complexes, 186

C. W. Lee, 16, 217–219
lifted complex, 25
link, 25
S. Linusson, 6, 13, 17, 120, 165, 172,

189, 190, 263, 264, 275, 289, 290,
309, 321, 322, 329, 331, 333, 334,
341, 346, 353

long exact sequence
Mayer-Vietoris, 31
relative homology, 32

loop in L-graph, 151
L. Lovász, 127, 128, 131, 143
F. H. Lutz, 14

matching, 20
matching complex, 101, 127–149

noncrossing, 222–226
on chessboard, see chessboard

complex
on cycle, 149
on path, 148–149

matroid, 26
matroid complex, see independence

complex
monotone digraph property, 26,

113–117
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acyclic, 13, 114, 206–208
no directed path of edge length

k + 1, 116, 209
associated poset has at least k + 1

atoms, 116, 307
associated poset has at least k + 1

elements, 116, 301–303
bipartite, 13, 114, 208–209
directed forest, 113, 206
graded, 114, 184, 209–213
graded modulo p, 114, 184, 209–212
no non-alternating circuits, 115, 184,

213
non-Hamiltonian, 233, 242
non-spanning, 115, 301, 307–308
not strongly 2-connected, 115,

306–307
not strongly connected, 13, 115,

301–306
without odd cycles, 115, 213–215

monotone dihedral graph property, 5,
107–112

disconnected representation, 110,
291–294

noncrossing, see associahedron
bipartite, 110, 229–230
bipartite with balance number at

most p, 230–231
forest, 110, 226–228
matching, 110, 222–226

separable representation, 111,
291–292, 294–298

2-separable representation, 111,
291–292, 298–300

monotone graph property, 4, 26, 99–106
Q-acyclic example, 124
all components of size at most k, 13,

102, 245, 247–258
at least s isolated vertices, 102,

260–261
bipartite, 101, 172, 181, 183, 189–191

balance number at most p, 101,
120, 193–203

disconnected, 192–193, 260
bounded degree, 101, 151–161

variant admitting loops, 7–8,
161–165

t-colorable, 14, 103, 333–335
p-coverable, 13, 14, 103, 120, 337–354

disconnected, 102, 172, 173, 184, 186,
245–250, 309

forest, 101, 171, 172, 183
disconnected, 172, 260

matching, 6–8, 101, 130–142, 245,
248, 290

no component of size divisible by p,
186, 245

no k-matching, 13, 103, 120, 329–331
no partition into t cliques, 103,

334–335
non-Hamiltonian, 13, 14, 101,

233–241
not 1-connected, see disconnected
not 2-connected, 6, 10, 102, 263–273,

291, 301, 309
not 3-connected, 102, 275–289
not k-connected, 102, 275, 289–290
not 2-edge-connected, 309–323
not k-edge-connected, 102, 309
not factor-critical, 102, 309, 321–322
some component of size not divisible

by p, 102, 262
some small components, 102, 245,

258–261
triangle-free, 103, 351–352

monotone hypergraph property, 26
p-coverable, 337–346, 354
disconnected, 9, 246, 262
exact r-transversal, 203–204
matching, 7, 131
not 2-connected, 268

multiplicity of ring, 47

natural action of symmetric group, 26
nearly nonevasive, 123
neighborhood, 20
nerve, 88
non-(PROPERTY), see (PROPERTY)
noncrossing

bipartite graph, 110
edges, 108
forest, 110
graph, 108
matching, 110
spanning tree, 226

nonevasive
complex, 14, 38, 76, 79, 81–83, 85,

86, 124
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set, 70
in set-decision tree, 71

not (PROPERTY), see (PROPERTY)
I. Novik, 173

one-point wedge, 25
order complex, 25
order-preserving, 23
ordered Bell number, 189, 192, 193
ordered partition, 193

partially ordered set, see poset
partition lattice, 23, 246–247

1 mod p subposet, 323
bounded parts, 13, 248
k-equal, 9, 262
noncrossing, 291, 294

partition of integer, 28
partition of set, 9, 23
path, 20

directed, 21
perfect matching, 20

noncrossing, 110
Petersen graph, 13, 239–240
PI complex, 171, 173–176, 221, 261
PI ∗ complex, 171, 184
point (0-simplex), 24
pointed map, 32
pointed space, 32
polygon representation, 108

disconnected, 110
separable, 111
2-separable, 111

polytopal complex, 47
poset, 23

associated to digraph, 115
of all posets, 13, 208

poset map, 23
A. Postnikov, 173
preferential arrangement, 193
proper coloring, 20
proper part of lattice, 23
J. S. Provan, 42, 43, 82, 171, 172, 288
pseudo-independence complex, see PI

complex
pure complex, 24
pure d-skeleton, 40

D. Quillen, 6

Quillen complex, 6–7
quotient complex, 31

homology of, see relative homology
of connected bipartite graphs,

192–193
of connected graphs, 11, 246, 247, 250
of 2-connected graphs, 10–11, 233,

241, 263–271, 291, 295
of 3-connected graphs, 275, 283–287
of 2-edge-connected graphs, 310–323
of factor-critical graphs, 321–323, 331
of graphs with a connected represen-

tation, 293–294
of graphs with a non-separable

representation, 291, 295–298
of Hamiltonian graphs, 233, 240–241
of strongly connected digraphs,

303–306

rank
of element in poset, 23
of matroid, 27
of poset, 23

ranked poset, 23
reduced Euler characteristic, see Euler

characteristic
reduced homology, see simplicial

homology
V. Reiner, 7, 127, 131, 151, 161, 162
G. Reisner, 11, 47
relative

chain complex, 31
homology, 31–32

removable pair, 60
J. Roberts, 7, 127, 131, 151, 161, 162
root of spanning directed tree, 22
G.-C. Rota, 247

M. Saks, 14, 38, 67, 70
self-conjugate integer partition, 28
semi-buildable complex, 77
semi-collapsible complex, 72–79, 81–86,

124
semi-nonevasive complex, 72–86, 124
set-decision tree, 70–72

optimal, 73, 74
J. Shareshian, 6, 7, 13, 16, 17, 51, 54,

107, 120, 127, 128, 131, 133–135,
140, 144, 145, 147, 148, 165,
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172, 189, 190, 233, 241, 263, 264,
267–269, 275, 286, 289, 290, 295,
309, 321, 322, 329, 331, 333, 334,
341, 346, 353

shedding face
in set-decision tree, 73
in shelling, 42

shedding vertex
in element-decision tree, 73
in vertex decomposition, 42, 43

shellable complex, 41–42, 43–45, 76, 79
nonpure, 42
semipure, 42, 43, 44, 76

shelling, 42
shelling pair, 42
shifted connectivity degree, 36
S. Sigg, 8
R. Simion, 264
simple

cycle, 21
directed path, 22
graph, 20
path, 21

d-simplex, 24
boundary of, 24

simplicial complex, 24
generated by family, 24
of {0, 1}-matrices, 116–117

simplicial homology, 29–32
reduced, 30

simply connected complex, 36
d-skeleton, 24

pure, 40
E. Sköldberg, 51, 59
D. E. Smith, 89, 90
solid hypergraph, 338
D. Soll, 73, 76
spanning

digraph, 115
directed tree, 22
tree, 21

d-sphere, 46
SPI complex, 171, 172, 176–184, 221,

258–260
SPI ∗ complex, 171, 172, 184–188
stable set, 20
standard Young tableau, 130
R. P. Stanley, 11, 40, 47, 189, 190, 247
Stanley-Reisner ring, 12, 47, 90

star graph, 201
star hypergraph, 343
J. Stasheff, 217
strong pseudo-independence complex,

see SPI complex
strongly connected digraph, 22
strongly 2-connected digraph, 115
B. Sturmfels, 173
D. Sturtevant, 14, 38, 67, 70
S. Sundaram, 13, 17, 245, 248, 249, 251,

257, 262
suspension, 25

tail of directed edge, 21
τ -critical hypergraph, 339
topological realization

of quotient complex, 38
of simplicial complex, 33

tree, 21
triangle-free graph, 103
trivial extension of graph, 26
truncation, 27
N. V. Trung, 12
V. Turchin, 17, 263
two-step nilpotent Lie algebra, 8
type of connected bipartite graph, 194

unbalanced bipartite graph, 101
uncovered vertex, 22
uniform hypergraph, 22

V. A. Vassiliev, 10, 11
V D-shelling, 93
Veronese algebra, 7
vertex

in complex, 24
in digraph, 21
in graph, 20

vertex-decomposable
complex, 42–45, 92–93

nonpure, 43
semipure, 43, 44, 76

skeleton, 92–93
void complex or family, 24
S. T. Vrećica, 127, 128, 131, 143

M. L. Wachs, 16, 42, 43, 45, 46, 107,
127, 128, 131, 133–135, 140, 144,
145, 147, 148, 262, 269, 289
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J. Weyman, 8
H. S. Wilf, 193
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