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Preface

In this book, we give applications of the theory of process algebra, known by
the acronym ACP (Algebra of Communicating Processes), as it has been
developed since 1982 at the Centre for Mathematics and Computer Science,
Amsterdam (see [7]), since 1985 in cooperation with the University of Amster-
dam and the University of Utrecht. An important stimulus for this book was
given by the ESPRIT contract no. 432, An Integrated Formal Approach to
Industrial Software Development (Meteor). The theory itself is treated in [3],
which will be revised, translated and published in this series. The theory is
briefly reviewed in the first article in this book, An introduction to process alge-
bra, by J.A. Bergstra and J.W. Klop.

This book gives applications of the theory of process algebra. By the term
process algebra we mean the study of concurrent or communicating processes
in an algebraic framework. We endeavour to treat communicating processes in
an axiomatic way, just as for instance the study of mathematical objects as
groups or fields starts with an axiomatization of the intended objects. The
axiomatic method which will concern us, is algebraic in the sense that we con-
sider structures which are models of some set of (mostly) equational axioms;
these structures are equipped with several operators. Thus we use the term
'algebra' in the sense of model theory.

There is ample motivation for such an axiomatic-algebraic approach to the
theory of communicating processes. An important reason is that there is not
one definite notion of process. There is a staggering amount of properties
which one may or may not attribute to processes, there are dozens of views
('semantics') which one may have on processes, and there are infinitely many
models of processes. So an attempt to organize this field of process theories
leads very naturally to an axiomatic methodology.

The aspect of the axiomatic-algebraic approach that is most prominent in
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this book, is the obvious computational aspect. Much more than in mathema-
tics or mathematical logic, in computer science it is 'algebra' that counts - the
well-known etymology of the word 'algebra5 should be convincing enough. In
system verification, the use of transition diagrams is very illuminating, but
especially for larger systems it is desirable to have a formalized mathematical
language at our disposal in which specifications, computations, proofs can be
given in what is in principle a linear notation. Only then can we expect some-
thing of attempts to mechanize our dealings with the objects of interest. In our
case the mathematical language is algebraic, with basic constants, operators to
construct larger processes and equations defining the nature of the processes
under consideration. (The format of pure equations will not be enough,
though. We also will use conditional equations and some infinitary proof-
rules.)

Of course, the present axiomatizations for communicating processes do not
cover the entire spectrum of interest. Several aspects of processes are as yet not
well treated in the algebraic framework. The most notable examples are real-
time behaviour of processes, and what sometimes is called 'true concurrency'
(non-interleaving semantics).

The first system verifications that were done using this theory were [9] and [8].
The verification of the Alternating Bit Protocol of the first article is (in a
revised version) part of the second article of this book, Two simple protocols, by
F.W. Vaandrager. The second article, dealing with FIFO queues, contains
problems, that are at this moment not yet well understood. This is the reason
that it is not included in this book. From these articles, it became clear that
more structuring mechanisms, more operators, were needed to deal with the
verification of larger systems. The article [4] was written in order to provide
more structuring power. Most of the operators introduced were then used in
[28]. Parts of this article can be found in this book: The verification of the
Positive Acknowledgement with Retransmission protocol is the second proto-
col discussed in Two simple protocols, and the modularization tool of redun-
dancy in context is discussed (in an extensively revised form) in Some observa-
tions on redundancy in a context, the tenth article in this book. Other parts of
[28], most notably the verification of a One Bit Sliding Window protocol, will
appear elsewhere. In the meantime, another approach to modularization was
pursued in [18]. The last article in this book is a revision of this paper. Later,
more complicated protocol verifications were attempted. [12] gives a
verification of a Sliding Window protocol, that takes over 100 pages. Further
investigation is necessary, in order to incorporate Hoare-style proof-rules into
the theory.

This book presents examples of algorithms other than communication proto-
cols. The third article, a revision of [24], considers Peterson's protocol for
ensuring mutual exclusion. Some properties are shown to hold for the process
algebra specification. Interesting is the idea of considering global variables as
processes communicating with all components in a system. Assigning a value
to a variable is done by sending it the value, testing for an equality by reading
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its value. In the following article, a revision of [20], an example is given of an
automated plant (a CIM-architecture), and it is verified that the design goals
were met. Next, [6] introduces the concept of process creation, that is used in
the following articles. An example is given in the specification of the Sieve of
Eratosthenes, an algorithm to generate prime numbers. Recently, in [29], we
find a verification of this specification.

An application of the process creation operator is given in the following arti-
cle, a revision of [16]. Here, a verification is given of two so-called systolic
algorithms, an algorithm for recognizing palindromes, and an algorithm for
sorting sequences of numbers. Systolic systems consist of regular configurations
of simple components, which make them very suitable for chip design. The
next article, a revision of [22], also considers a systolic algorithm. Two other
articles about such algorithms in the present theory are [17] and [30].

The following article is the recent [21], that considers the distributed operat-
ing system Amoeba. It is found that there is a mistake in the description of
this system in [23], and it is indicated how this mistake can be corrected. The
corrected version is verified. Finally, there is an article in this book about the
object-oriented programming language POOL, which is a revision of [27]. A
translation is given to the language of ACP, which gives a number of different
semantics for POOL. A direction that is not represented in this book is the
investigation of circuit architecture, see [5].

Of course, we do not mean to imply that the verification techniques presented
in this book constitute the only approach to these problems. In fact, there are
many other approaches. From some we have benefited, others have inspired us.
To mention just a few verifications in other theories, there are [19] and [25] in
the context of CCS, [14] by Hennessy, [26] and [15] in the context of trace
theory, [10] in the context of LOTOS, [11] in the context of ASL, [13] using
knowledge-based reasoning, and [1,2] using denotational and operational
semantics. However, I think this is the first time a collection of articles in this
area is collected together, where a single approach is followed in all articles.

Finally, I would like to thank all authors, and all other participants of the
PAM seminar, for their cooperation. Also, my thanks goes to the typing staff
of the Centre for Mathematics and Computer Science and the desk editor
W.A.M. Aspers.

J.C.M. BAETEN
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An Introduction to Process Algebra

J.A. Bergstra
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Department of Mathematics and Computer Science, Free University

P.O. Box 7161, 1007 MC Amsterdam, The Netherlands

This article serves as an introduction to the basis of the theory, that will be
used in the rest of this book. To be more precise, we will discuss the axiomatic
theory ACPT (Algebra of Communicating Processes with abstraction), with
additional features added, which is suitable for both specification and
verification of communicating processes. As such, it can be used as back-
ground material for the other articles in the book, where all basic axioms are
gathered. But we address ourselves not exclusively to readers with previous
exposure to algebraic approaches to concurrency (or, as we will call it, process
algebra). Also newcomers to this type of theory could find enough here, to get
started. For a more thorough treatment of the theory, we refer to [1], which
will be revised, translated and published in this CWI Monograph series.
There, most proofs can also be found; we refer also to the original papers
where the theory was developed. This article is an abbreviated version of
reference [11].

Our presentation will concentrate on process algebra as it has been
developed since 1982 at the Centre for Mathematics and Computer Science,
Amsterdam (see [7]), since 1985 in cooperation with the University of Amster-
dam and the University of Utrecht. This means that we make no attempt to
give a survey of related approaches though there will be references to some of
the main ones.

This paper is not intended to give a survey of the whole area of activities in
process algebra.

We acknowledge the help of Jos Baeten in the preparation of this paper.

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).



2 J.A. Bergstra, J.W. Klop

1. THE BASIC CONSTRUCTORS
The processes that we will consider are capable of performing atomic steps or
actions a,b,c, ..., with the idealization that these actions are events without
positive duration in time; it takes only one moment to execute an action. The
actions are combined into composite processes by the operations 4- and •, with
the interpretation that (a+b)-c is the process that first chooses between execut-
ing a or b and, second, performs the action c after which it is finished. (We
will often suppress the dot and write (a+b)c.) These operations, 'alternative
composition' and 'sequential composition' (or just sum and product), are the
basic constructors of processes. Since time has a direction, multiplication is not
commutative; but addition is, and in fact it is stipulated that the options (sum-
mands) possible at some stage of the process form a set. Formally, we will
require that processes x,y, ... satisfy the following axioms:

x+y=y
(x+y) +
X +X =X
(x +y)z =
(xy)z =x

BPA
+ JC

z=jc+(y+z)

-xz +yz
0*)

TABLE 1

Thus far we used 'process algebra' in the generic sense of denoting the area
of algebraic approaches to concurrency, but we will also adopt the following
technical meaning for it: any model of these axioms will be a process algebra.
The simplest process algebra, then, is the term model of BPA (Basic Process
Algebra), whose elements are BPA-expressions (built from the atoms a,b,c,...
by means of the basic constructors) modulo the equality generated by the
axioms. This process algebra contains only finite processes; things get more
lively if we admit recursion enabling us to define infinite processes. Even at
this stage one can define, recursively, interesting processes:

COUNTER
= (zero + upY)X

TABLE 2

where 'zero' is the action that asserts that the counter has value 0, and 'up'
and 'down' are the actions of incrementing resp. decrementing the counter by
one unit. The process COUNTER is now represented by X; 7 is an auxiliary
process. COUNTER is a 'perpetual' process, that is, all its execution traces are
infinite. Such a trace is e.g. zero-zero-up-down-zero-up-up-up-....
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Equations as in Table 2 are also called fixed point equations. An important
property of such equations is whether or not they are guarded. A fixed point
equation is guarded if every occurrence of a recursion variable in the right
hand side is preceded ('guarded') by an occurrence of an action. For instance,
the occurrence of X in the RHS of X = {zero + up-Y)X is guarded since, when
this X is accessed, one has to pass either the guard zero or the guard up. A
non-example: the equation X=X+aXis not guarded.

Before proceeding to the next section, let us assure the reader that the omis-
sion of the other distributive law, z(x +y)=zx +zy, is intentional. The reason
will become clear after the introduction of 'deadlock'.

2. DEADLOCK
A vital element in the present set-up of process algebra is the process 5, signi-
fying 'deadlock'. The process ab performs its two steps and then stops, silently
and happily; but the process abS deadlocks (with a crunching sound, one may
imagine) after the a- and fe-action: it wants to do a proper action but it can-
not. So 8 is the acknowledgement of stagnation. With this in mind, the axioms
to which 8 is subject, should be clear:

DEADLOCK
8 + x=x
8x=8

TABLE 3

(In fact, it can be argued that 'deadlock' is not the most appropriate name for
the process constant 8. In the sequel we will encounter a process which can
more rightfully claim this name: T8, where r is the silent step. We will stick to
the present terminology, however.)

The axiom system of BPA (Table 1) together with the present axioms for 8
is called BPA .̂ Now suppose that the distributive law z (x +y)=zx +zy is
added to BPA$. Then: ab—a{b-\-8)—ab +a8. This means that a process with
deadlock possibility is equal to one without; and that conflicts with our inten-
tion to model also deadlock behaviour of processes.

3. INTERLEAVING OR FREE MERGE
If x9y are processes, their 'parallel composition' x\\y is the process that first
chooses whether to do a step in x or in y, and proceeds as the parallel compo-
sition of the remainders of x,y. In other words, the steps of x,y are inter-
leaved. Using an auxiliary operator L (with the interpretation that x\Ly is
like x\\y but with the commitment of choosing the initial step from x) the
operation || can be succinctly defined by the axioms:
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FREE MERGE
x\\y=x\Ly+y\Lx
a\[_x=ax
ax\\_y=a(x\\y)
(x+y)Lz=xl_z+yL.z

TABLE 4

One can show that an equivalent axiomatization of || without an auxiliary
operator like [|_, would require infinitely many axioms.

The system of nine axioms consisting of BPA and the four axioms for free
merge will be called PA. Moreover, if the axioms for 5 are added, the result
will be PA .̂ The operators 11 and []_ will also be called merge and left-merge
respectively.

An example of a process recursively defined in PA, is: X—a{b\\X).  It turns
out that this process can already be defined in BPA, by the two fixed point
equations X=aYX9 Y = b +aYY. (This is a simplified version of the counter
in Table 2, without the action zero.) To see that both ways of defining X yield
the same process, one may 'unwind' according to the given equations:

=a(bX+a((b\\X)\\b)) = a
while on the other hand

X = aYX=a(b+aYY)X=a(bX+aYYX) = a
so at least up to level 2 the processes are equal. In fact they can be proved
equal up to each finite level. Later on, we will introduce an infinitary proof
rule enabling us to infer that, therefore, the processes are equal.

So, is the defining power (or expressibility) of PA greater than that of BPA?
Indeed it is, as is shown by the following process:

BAG
X=in(0)(out(0)\\X) + in

TABLE 5

This equation describes the process behaviour of a 'bag' or 'multiset' that may
contain finitely many instances of data 0, 1. The actions in(0), out(0) are: put-
ting a 0 in the bag resp. getting a 0 from the bag, and likewise for 1. This pro-
cess does not have a finite specification in BPA, that is, a finite specification
without merge (II).

If we want to define a bag over a general finite data set D (instead of just
over {0,1}) we use a sum notation as an abbreviation, so

X = ^in{d)\out{d)\\X).
d&D
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4. FIXED POINTS
We have already alluded to the existence of infinite processes; this raises the
question how one can actually construct process algebras (for BPA or PA)
containing infinite processes in addition to finite ones. Such models can be
obtained by means of:
(1) projective limits ([8,10]);
(2) complete metrical spaces, as in the work of De Bakker and Zucker [5,6];
(3) quotients of graph domains (a graph domain is a set of process graphs or

transition diagrams), as in Milner [18], Baeten, Bergstra and Klop [4]; or
Van Glabbeek [14];

(4) the 'explicit' models of Hoare [16];
(5) ultraproducts of finite models (Kranakis [17]).
In Section 12 we will discuss a model as in (3).

5. COMMUNICATION
So far, the parallel composition or merge (II) did not involve communication in
the process x\\y: x and y are 'freely' merged. However, some actions in one
process may need an action in another process for an actual execution, like the
act of shaking hands requires simultaneous acts of two persons. In fact, 'hand
shaking' is the paradigm for the type of communication which we will intro-
duce now. If A — {a,b,c, ...,} is the action alphabet, let us adopt a partial
binary function y on A, that is required to be commutative and associative. If
y{a,b) is defined, a and b communicate, and y(a,b) is the result of the com-
munication; if y(a,b) is not defined, a and b do not communicate. We can
extend y to a total function | on A U {5}, by putting a\b =8 whenever y(a,b) is
not defined (so also when one of a,b equals 8). The result is a binary commun-
ication function | on A U {8} satisfying

COMMUNICATION FUNCTION
a\b=b\a
(a\b)\c=a\(b\c)
8\a=8

TABLE 6

(Here a,b vary over A U{8}.) We can now specify merge with communication',
we use the same notation || as for the free merge, since in fact free merge is an
instance of merge with communication (by choosing the communication func-
tion trivial, i.e. a\b=8 for all a,b). There are now two auxiliary operators,
allowing a finite axiomatization: left-merge ([]_) as before and | (communica-
tion merge or 'bar'), which is an extension of the communication function to
all processes, not only the constants. The axioms for || and its auxiliary opera-
tors are:
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MERGE WITH COMMUNICATION

a\\_x=ax
ax\Ly=a(x\\y)
(x+y)l_z=xl_z+y)Lz
ax\b=(a\b)x
a\bx=(a\b)x
ax\by = (a\b)(x\\y)
(x+y)\z=x\z+y\z
x\(y+z) = x\y+x\z

TABLE 7

We also need the so-called encapsulation operators dH(HcA) for removing
unsuccessful attempts at communication:

ENCAPSULATION

dH(a) = 8 if

TABLE 8

The axioms for BPA, DEADLOCK together with the present ones constitute
the axiom system ACP (Algebra of Communicating Processes). Typically, a
system of communicating processes x\, ...,xn is now represented in ACP by
the expression 9//(xill • • • \\xn). Prefixing the encapsulation operator says that
the system JCI, ...,xn is to be perceived as a separate unit w.r.t. the communica-
tion actions mentioned in H\ no communications between actions in H with
an environment are expected or intended.

We will often adopt the following special format for the communication
function, called read/write (receive/send) communication. Let a finite set D of
data d and a set {1, ...,/?} of ports be given. Then the alphabet consists of
read actions ri(d) and send actions si(d\ for z' = l, ...,/? and d^D. The
interpretation is: read datum d at port /, resp. send datum d at port /. Further-
more, the alphabet contains actions ci(d) for / = 1, ...,/? and dsD, with
interpretation: communicate d at i. These actions will be called transactions.
The only non-trivial communications (i.e. not resulting in S) are:
si(d)\ri(d) = ci(d). Instead of si(d) we will also see the notation wi(d) (write d
along i).
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6. ABSTRACTION
A fundamental issue in the design and specification of hierarchical (or modu-
larized) systems of communicating processes is abstraction. Without having an
abstraction mechanism enabling us to abstract from the inner workings of
modules to be composed to larger systems, specification of all but very small
systems would be virtually impossible. We will now extend the axiom system
ACP, obtained thus far, with such an abstraction mechanism. Consider two
bags Bn, B23 (cf. Section 3) with action alphabets {rl(d\s2(d)\dGD} resp.
{r2(d)9s3(d)\deD}. That is, Bn is a bag-like channel reading data d at port 1,
sending them at port 2; B23 reads data at 2 and sends them to 3. (That the
channels are bags means that, unlike the case of a queue, the order of incom-
ing data is lost in the transmission.) Suppose the bags are connected at 2; that
is, we adopt communications s2{d)\r2{d) — c2(d) where c2(d) is the transaction
of d at 2.

B12

FIGURE 1

The composite system B13=3//(JB12II^23) where H = {s2(d\ r2(d)\d<ED]
should, intuitively, be again a bag between locations 1,3. However, some
(rather involved) calculations learn that Bn=*2dsDr\(dy((c2(d)s3(d))\\Bu); so
B13 is a 'transparent' bag: the passage of d through 2 is visible as the transac-
tion event c2(d).

How can we abstract from such internal details, if we are only interested in
the external behaviour at 1,3? The first step to obtain such an abstraction is to
remove the distinctive identity of the actions to be abstracted, that is, to
rename them all into one designated action which we call, after Milner, r: the
silent action (this is called 'pre-abstraction' in [2]). This renaming operator is
the abstraction operator T/, parameterized by a set of actions IQA and subject
to the following axioms:

TABLE 9

The second step is to attempt to devise axioms for the silent step T by means
of which T can be removed from expressions, as e.g. in the equation arb —ab.
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However, it is not possible (nor desirable) to remove all T'S in an expression if
one is interested in a faithful description of deadlock behaviour of processes.
For, consider the process (expression) a+rS; this process can deadlock,
namely if it chooses to perform the silent action. Now, if one would propose
naively the equations rx—xr—x, then a+TS=<z+8 = 0, and the latter process
has no deadlock possibility. It turns out that one of the proposed equations,
XT—X,  can safely be adopted, but the other one is wrong. Fortunately, Milner
[19] has devised some simple axioms which can be used to give a complete
description of the properties of the silent step (complete w.r.t. a certain
semantical notion of process equivalence called bisimulation, which does
respect deadlock behaviour; this notion is discussed in the sequel), as follows.

SILENT STEP
XT —  X
TX —  TX +X
a (TX + J ) —  a (TX +y) + ax

TABLE 10

To return to our example of the transparant bag B13, after abstraction of the
set of transactions / = {c2(d)\d<ED} the result is indeed an 'ordinary' bag:

T/(B13) =

(**)()from which it follows that T/(BI3) = 2?]3, the bag defined by

Here we were able to eliminate all silent actions, but this will not always be
the case. In fact, this computation is not as straightforward as was maybe sug-
gested: to justify the equations marked with (*) and (**) we need more power-
ful principles, which we will discuss in the sequel. (Specifically, in (*) an
appeal to the 'alphabet calculus' of Section 9 is needed and (**) requires the
principle RSP, see Section 8 below.)

7. PROJECTION AND AUXILIARY AXIOMS
First, we define the projection operators 7rn(n>\), cutting off a process at level
n:

PROJECTION
irn(a) = a irn(x

TABLE 11
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E.g., for X defining BAG as in Table 5:

TT2(X) = in(0)(out(0) + in(0) + in(l)) + in(\)(out{\) + in(O) + in (I)).
We have that T-steps do not add to the depth; this is enforced by the r-laws

(since, e.g. mb—ab and ra —ra +a).
By means of these projections a distance between processes x,y can be

defined: d(x,y) — 2~n where n is the least natural number such that
W/IOO^T/IOO, and d(x,y) = 0 if there is no such n. If the term model of BPA
(or PA) as in Section 1 is equipped with this distance function, the result is an
ultrametrical space. By metrical completion we obtain a model of BPA (resp.
PA) in which all systems of guarded recursion equations have a unique solu-
tion. This model construction has been employed in various settings by De
Bakker and Zucker [5,6].

In the articles of Vaandrager in this volume a slightly different definition of
the projection operators is used, which lead to the same theorems below, but
which have the advantage that they also can be defined for n=0, and are
definable in our theory ACPT (see Section 11). We present the new axioms
below.

PROJECTION, Second version

TABLE 12

In ACPT, systems are described as the parallel composition of their com-
ponents, and so a system of communicating processes x\, ...9xn is represented
by the expression dj?(jcill • • • ||JCW). When we want to focus on the external
actions of such a system, we apply an abstraction operator, that abstracts from
all communications between actions from H. A useful theorem to break down
these expressions is the Expansion Theorem which holds under the assumption
of the handshaking axiom x\y\z=S. This axiom says that all communications
are binary.

THEOREM (EXPANSION THEOREM).

*ill • • • II** = 2*iU-4 + 2(*il̂ )L*5?A

Here X*k denotes the merge of xu ...,xk except JCZ, and Xfy denotes the same
merge except xi9Xj(k>3). In order to prove the Expansion Theorem, one first
proves by simultaneous induction on term complexity that for all closed
ACPT-terms (i.e. terms without free variables) the following holds:
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AXIOMS OF STANDARD CONCURRENCY
(xLy)l_z=xl_(y\\z)

x\y=y\x
x\\y=y\\x
x\(y\z) = (x\y)\z
x\\(y\\z) = (x\\y)\\z

TABLE 13

8. PROOF RULES FOR RECURSIVE SPECIFICATIONS
We have now presented a survey of ACPT; we refer to [9] for an analysis of
this proof system. Note that ACPT (displayed in full in Section 11) is entirely
equational. Without further proof rules it is not possible to deal (in an algebra-
ical way) with infinite processes, obtained by recursive specifications, such as
BAG; in the derivation above we tacitly used such proof rules which will be
made explicit now.
(i) RDP, the Recursive Definition Principle: Every guarded and abstraction -

free recursive specification has a solution.
(ii) RSP, the Recursive Specification Principle: Every guarded and abstraction-

free recursive specification has at most one solution.
(iii) AIP, the Approximation Induction Principle: A process is determined by its

finite projections.
In a more formal notation, AIP can be rendered as the infinitary rule

Vn Vn(x) = 7Tn(y)

x=y
As to (i), the restriction to guarded specifications is not very important (for the
definition of 'guarded' see Section 1); in the process algebras that we have
encountered and that satisfy RDP, also the same principle without the guard-
edness condition is true. More delicate is the situation in principle (ii): first, T-
steps may not act as guards: e.g. the recursion equation X=rX+a has infi-
nitely many solutions, namely r(a+q) is a solution for arbitrary q; and se-
cond, the recursion equations must not contain occurrences of abstraction opera-
tors TJ. That is, they are 'abstraction-free' (but there may be occurrences of T in
the equations). The latter restriction is in view of the fact that, surprisingly, the
recursion equation X=a -r^(X) possesses infinitely many solutions, even
though it looks very guarded. (ITie solutions are: a • q where q satisfies
7{a }(?) = 9-) That the presence of abstraction operators in recursive specifica-
tions causes trouble, was first noticed by Hoare [15,16].

The unrestricted form of AIP as in (iii) will turn out to be too strong in
some circumstances; it does not hold in one of the main models of ACPT,
namely the graph model which is introduced in Section 12. Therefore we also
introduce the following weaker form.
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(iv) AIP (Weak Approximation Induction Principle): Every process which has
an abstraction-free guarded specification is determined by its finite projec-
tions.

Roughly, a process which can be specified without abstraction operators is
one in which there are no infinite T-traces (and which is definable). E.g. the
process Xo defined by the infinite specification {XQ=bXi, Xn + \ =bXn+2 +
an}9 where an is a -a a (n times), contains an infinite trace of ^-actions;
after abstraction w.r.t. b, the resulting process, Y = T^(XQ)9 has an infinite
trace of T-steps; and (at least in the main model of ACPT of Section 12) this Y
is not definable without abstraction operators.

Even the Weak Approximation Induction Principle is rather strong. In fact
a short argument shows the following:

THEOREM. AIP~=»RSP.

As a rule, we will be very careful in admitting abstraction operators in recur-
sive specifications. Yet there are processes which can be elegantly specified by
using abstraction inside recursion.

9. ALPHABET CALCULUS
In computations with infinite processes one often needs information about the
alphabet a(x) of a process x. E.g. if x is the process uniquely defined by the
recursion equation X—aX,  we have a(x) = {a}. An example of the use of this
alphabet information is given by the implication a(x)DH= 0=>dH(x)=x. For
finite closed process expressions this fact can be proved with induction to the
structure, but for infinite processes we have to require such a property
axiomatically. In fact, the example will be one of the 'conditional axioms'
below (conditional, in contrast with the purely equational axioms we have
introduced thus far). First we have to define the alphabet:

ALPHABET

a(r)=0
a(a)={a} (if a

(
a(ax)
a(x

{a}Ua(x) (if
— a(x)  U a(y )

TABLE 14

To appreciate the non-triviality of the concept a(x\ let us mention that a finite
specification can be given of a process for which the alphabet is uncomputable
(see [3] for an example).
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Now the following conditional axioms will be adopted:

CONDITIONAL AXIOMS
a(x)\(a(y)DH)CH
a(x)\(a(y)M)=0
a(x)r\H=0 =
a(x)ni=0 =*

HDI =
TABLE 15

Using these axioms, one can derive for instance the following fact: if commun-
ication is of the read-write format and / is disjoint from the set of transactions
(communication results) as well as disjoint from the set of communication
actions, then the abstraction 77 distributes over merges x\\y.

10. KOOMEN'S FAIR ABSTRACTION RULE
Suppose the following statistical experiment is performed: somebody flips a
coin, repeatedly, until head comes up. This process is described by the recur-
sion equation X'= flip-(tail-X+head). Suppose further that the experiment
takes place in a closed room, and all information to be obtained about the
process in the room is that we can hear the experimenter shout joyfully:
'Head!'. That is, we observe the process TJ(X) where / = {flip.tail}. Now, if the
coin is 'fair', it is to be expected that sooner or later (i.e., after a T-step) the
action 'head' will be perceived. Hence, intuitively, rj(X) = r-head. (This vivid
example is from Vaandrager [21].)

Koomen's Fair Abstraction Rule (KFAR) is an algebraic rule enabling us to
arrive at such a conclusion formally. The rule was introduced in this form in
Bergstra and Klop [12]. (For an extensive analysis of the rule see [4].) The
simplest form is

x = ix+y

So, KFAR! expresses the fact that the V-loop' (originating from the /-loop)
in T/(JC) will not be taken infinitely often. In case this 'r-loop' is of length 2,
the same conclusion is expressed in the rule

KFAR2

and it is not hard to guess what the general formulation (KFARW, n>\) will
be. In fact, we will need an even more general formulation, CFAR (the Cluster
Fair Abstraction Rule). This principle was introduced by Vaandrager [21].
There, he showed that CFAR can already be derived from KFARj (at least in
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the framework to be discussed below).
Suppose £ is a recursive specification (a system of fixed point equations)

over variables V, and suppose / is the set of atomic actions to be abstracted
from. We call a subset C of V a cluster of I in E if for all X in C the equation
for X in E has the form

m n

x= 2'*•**+2 *i,
where m^l , n>0, iu...JmElU{r}, Xu...,XmeC, Yu...9YneV-C. The va-
riables in C are called cluster variables. For variables X, Ye F we write X~* Y
if Y occurs in the right hand side of the equation of X. Then, the exits of the
cluster are those variables outside C, that can be reached from C, i.e.

exits(C) = {YeV-C : X~»Y for some XGC}.
Let ~** be the transitive and reflexive closure of ~*. We call a cluster C of /
in E conservative if every exit can be reached from every cluster variable, i.e.
for all XGC and all Ye exits (C) we have X ~** Y. Now we can formulate the
rule CFAR as follows.

DEFINITION. The Cluster Fair Abstraction Rule is the following statement: let E
be a guarded recursive specification; let IQA be such that | / | ^=2; let C be a
finite conservative cluster of I in E; and let X G C . Then:

We see that CFAR can only be applied when we are dealing with a conserva-
tive cluster. In practice, most specifications will not contain conservative clus-
ters. If, in such a situation, we state that a certain result is obtained by the use
of CFAR, we mean that there is a specification which is equivalent to the one
we are dealing with (using RSP), which contains a conservative cluster, and
that the result follows when we apply CFAR to this second specification.

KFAR and CFAR are of great help in protocol verifications. As an exam-
ple, KFAR can be used to abstract from a cycle of internal steps which is due
to a defective communication channel; the underlying fairness assumption is
that this channel is not defective forever, but will function properly after an
undetermined period of time. (Just as in the coin flipping experiment the
wrong option, tail, is not chosen infinitely often.)

An interesting peculiarity of the present framework is the following. Call
the process t" ( = T-T-T • • • ) livelock. Formally, this is the process r^(x)
where x is uniquely defined by the recursion equation X — iX. Noting that
x =i-x =i-x+8 and applying KFAR] we obtain IM=T^(X) = T8. In words:
livelock = deadlock. There are other semantical frameworks for processes, also
in the scope of process algebra but not in the scope of this paper, where this
equality does not hold (see [13]).
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11. A FRAMEWORK FOR PROCESS SPECIFICATION AND VERIFICATION
We have now arrived at a framework which contains all the axioms and proof
rules introduced so far. In Table 16 the list of all components of this system is
given; Table 17 contains the equational system ACPT and Table 18 contains
the extra features and furthermore the proof principles which were introduced.
Note that for specification purposes one only needs ACPT; for verification one
will need the whole system. Also, it is important to notice that this framework
resides entirely on the level of syntax and formal specifications and verification
using that syntax - even though some proof rules are infinitary. No semantics
has been provided yet; this will be done in Section 12. The idea is that 'users'
can stay in the realm of this formal system and execute algebraical manipula-
tions, without the need for an excursion into the semantics. That this can be
done is demonstrated throughout this book. This does not mean that the
semantics is unimportant; it does mean that the user needs only be concerned
with formula manipulation. The underlying semantics is of great interest for
the theory, if only to guarantee the consistency of the formal system; but
applications should not be burdened with it, in our intention.

A PROCESS SPECIFICATION
Basic Process Algebra
Deadlock
Communication Function
Merge with Communication
Encapsulation
Silent Step
Silent Step: Auxiliary Axioms
Abstraction
Projection
Hand Shaking
Standard Concurrency
Expansion Theorem
Alphabet Calculus
Recursive Definition Principle
Recursive Specification Principle
Weak Approximation Induction
Cluster Fair Abstraction Rule

AND VERIFICATION FRAMEWORK
Al-5
A6,7
Cl-3
CM1-9
Dl-4
Tl-3
TM1,2; TC1-4
DT; TI1-5
PR1-6
HA
SC
ET
CA
RDP
RSP

Principle AIP~
CFAR

TABLE 16
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x +y =y+x
(x+y)+z=x+(y+z)
X +X =X
(x +y)z —xz  +yz
(xy)z=x(yz)
x+8=x
8x=8

a\b=b\a
(a\b)\c=a\(b\c)
8\a=8

x\\y =x\\_y +y\Lx +x\y
a\[_x =ax
ax\Ly =a(x\\y)
(x+y)JLz=x\\_z+y\Lz
ax\b=(a\b)x
a\bx =(a\b)x
ax\by=(a\b)(x\\y)
(x +y)\z =x\z +y\z
x\(y+z)=x\y+x\z

dH(a)=a if a$H
dH(a)=8itaeH
dH(x +y) = dH(x) + dH(y)
^H(xy) = dH(xydH(y)

ACPT

Al
A2
A3
A4
A5
A6
A7

Cl
C2
C3

CM1
CM2
CM3
CM4
CM5
CM6
CM7
CM8
CM9

Dl
D2
D3
D4

XT = X
TX —TX  +X
O(TX +y)=za(TX +y) + ax

T L - X = TX
Tx\[_y —T(x\\y)
T\X=8
X\T=8
Tx\y=x\y
x\Ty=x\y

3W(T) = T
T/(T) = T

T / ( a )=a i f fl«7
T/(a)=T if a el
TI(x+y)=TI(x)+Ti(y)
Ti(xy) = Ti(x)-TI(y)

Tl
T2
T3

TM1
TM2
TCI
TC2
TC3
TC4

DT
Til
TI2
TI3
TI4
TI5

TABLE 17
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REMAINING AXIOMS AND RULES
irx(ax)=a PR1
irn + l(ax)=a-'!Tn(x) PR2
wn(a)=a " PR3

PR4
PR5

) = T •*•„(*) PR6
x\y\z=S HA_
x\y =y\x SCI
x\\y=y\\x SC2
*|0>|z)=(*l>0|2 SC3
(xl_y)\Lz=x\L(y\\z) SC4
(x\ay)l.z=x\(ay\Lz) SC5
x\\(y\\z)=(x\\y)\\z SC6

v \-L- \J / ' v | v \ | | / I! v \ /M">>'5\ CT

0 AB1
a(r)=0 AB2
a(^)= {̂ } (if a^S) AB3
a(TX) = a(x ) AB4
a(a;c)= {a} Ua(jc) (if a^8) AB5

AB6
AB7
AB8
CA1

)=0 => Tr(x\\y) = rr(x\Wr(v)) CA2
CA3
CA4
CA5

1—1 \\ j  = ^ T ^Y^^IT- OT CY\ CA6

HDI=0 => T/oaw(jc) = 8 Jo n ( x ) CA7

RDP Every guarded and abstraction-free specification has a solution
RSP Every guarded and abstraction-free specification has at most one solution
AIP~ Every process which has an guarded abstraction-free specification is

determined by its finite projections
CFAR If E is a guarded recursive specification, and C a finite conservative

cluster of I in E, then for each XeC:

Yeexits(C)

TABLE 18



An introduction to process algebra 17

It should be noted that there is redundancy in this presentation; as we already
stated, AIP~ implies RSP and there are other instances where we can save
some axioms or rules (for instance, the axioms CM2,5,6 turn out to be deriv-
able from the other axioms). This would however not enhance clarity.

So we have here a medium for formal process specifications and
verifications; let us note that we also admit infinite specifications. As the sys-
tem is meant to have practical applications, we will only encounter computable
specifications.

12. THE GRAPH MODEL FOR ACPT

We will give a quick introduction to what we consider to be the 'main' model
of ACPT. The basic building material consists of the domain of countably
branching, labeled, rooted, connected, directed multigraphs. Such a graph, also
called a process graph, consists of a possibly infinite set of nodes s with one
distinguished node s0, the root. The edges, also called transitions or steps,
between the nodes are labeled with an element from the action alphabet; also
8 and T may be edge labels. We use the notation s-*at for an a-transition from
node s to node /; likewise s->rt is a T-transition and s-*$t is a 6-step. That the
graph is connected means that every node must be accessible by finitely many
steps from the root node.

Corresponding to the operations f ,%||,L,i,3//,T/?^,a in our theory we
define operations in this domain of process graphs. Precise definitions can be
found in [1,4]; we will sketch some of them here. The sum g+h of two process
graphs g,h is obtained by glueing together the roots of g and h (see Figure
2(i)); there is one caveat: if a root is cyclic (i.e. lying on a cycle of transitions
leading back to the root), then the initial part of the graph has to be
'unwound' first so as to make the root acyclic (see Figure 2(ii)). The product
g - h is obtained by appending copies of h to each terminal node of g; alterna-
tively, one may first identify all terminal nodes of g and then append one copy
of h to the unique terminal node if it exists (see Figure 2 (iii)). The merge g\\h
is obtained as a cartesian product of both graphs, with 'diagonal' edges for
communications (see Figure 2(v) for an example without communication, and
Figure 2(vi) for an example with communication action a\b). Definitions of the
auxiliary operators are somewhat more complicated and not discussed here.
The encapsulation and abstraction operators are simply renamings, that
replace the edge labels in H resp. in 1 by 8 resp. T. Definitions of the projec-
tion operators mn and a should be clear from the axioms by which they are
specified. As to the projection operators, it should be emphasized that T-steps
are 'transparent': they do not increase the depth.
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OPERATIONS ON PROCESS GRAPHS

( i)

a! bl

(ii) t

a| I b|

(iii)

Q

(iv) t

(v)

( V ! )

FIGURE 2
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This domain of process graphs equipped with the operations just introduced, is
not yet a model of ACPT: for instance the axiom x -fx —x does not hold. In
order to obtain a model, we define an equivalence on the process graphs which
is moreover a congruence w.r.t. the operations. This equivalence is called
bisimulation congruence or bisimilarity. (The original notion is due to Park
[20]; it was anticipated by Milner's observational equivalence, see [18].) In
order to define this notion, let us first introduce the notation s=>at for nodes s,
t of graph g, indicating that from node s to node t there is a finite path con-
sisting of zero or more T-steps and one a-step followed by zero or more r-steps.
Let us say that in this situation there is a 'generalized a-step' from s to t. Like-
wise with V replaced by V. Next, let a coloring of process graph g be a surjec-
tive mapping from a set of 'colors' C to the node set of g, such that the color
assigned to the root of g is different from all other colors, and furthermore,
such that all end nodes are assigned the same color which is different from
other colors. Now two process graphs g, h are bisimilar if there are colorings of
g, h such that (1) the roots of g, h have the same color and (2) whenever some-
where in the two graphs a generalized a-step is possible from a node with color
c to a node with color c\ then every ocolored node admits a generalized a-step
to a c'-colored node (be it in g or in h). We use the notation g^h to indicate
that g, h are bisimilar. One can prove that ^ is a congruence and, if G is the
original domain of countably branching process graphs:

THEOREM ([4]). G/** is a model of all axioms in Tables 17 and 18.

Remarkably, this graph model does not satisfy the unrestricted Approximation
Induction Principle. A counterexample is given (in a self-explaining notation)
by the two graphs g—^ n^\an and h =2n^\an +au; while g and h have the
same finite projections tnn(g)= w/l(/r)= a+a2+a3 + • • • Jran, they are not
bisimilar due to the presence of the infinite trace of a-steps in h. It might be
thought that it would be helpful to restrict the domain of process graphs to
finitely branching graphs, in order to obtain a model which satisfies AIP, but
there are two reasons why this is not the case: (1) the finitely branching graph
domain would not be closed under the operations, in particular the communi-
cation merge (|); (2) a similar counterexample can be obtained by considering
the finitely branching graphs g' = T{t}(g") where g" is the graph defined by
{X n X \ l } andh'=g' + a°.
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Two Simple Protocols

Frits W. Vaandrager
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

After some introductory remarks about the specification and verification of dis-
tributed systems in the framework of process algebra, simple versions of the
Alternating Bit Protocol and the Positive Acknowledgement with Retransmission
protocol are discussed.

1. GENERAL INTRODUCTION
In the ACP formalism we can define (specify) networks of processes which
cooperate in an asynchronous way. We can do this by looking at the commun-
ication channels in the network as processes which communicate in a synchro-
nous way with the processors to which they are connected. Almost always, this
synchronous communication will take place according to the handshaking para-
digm: exactly two processes participate in every communication. When we
specify communications of this type we will employ a read/send communica-
tion function: Let D be a finite set of data which can be communicated
between processes, and let P be a finite set of locations (or ports) where syn-
chronous communication can take place. The alphabet of atomic actions now
consists of read actions rp(d), send actions sp(d) and communication actions
cp(d) for /?£P and deO. As the only communications we have:
y(rp(d\sp(d)) = cp(d).

A typical system that can be specified in this way in ACP is depicted in Fig-
ure 1. This graphical representation was first used by Jan Willem Klop. The
corresponding process expression is then for instance:

dH(Pi\\P2\\P3\\P4\\P5\\Ci\\C2\\C3\\C4\\C5y

Let us stand still for a moment at the issue of the physical interpretation of
expressions of this type and the question about the nature of the events in
reality that are modelled by the read and send actions. In general we will
describe with expressions Pi, P 2 v and C\, C2,.- the behaviour of physical

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).
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input ports

T
output port

FIGURE 1

^ internal
ports

objects. Px and P2 for example correspond with personal computers, P3 and
P4 with disk drives and P5 with a printer. C\ up to C5 describe cables of a
network connecting all these machines together. All the components have a
spatial extent. Now we associate with each port name/?eP a point in space on
the border line between two (or more) components (see Figure 2).

• • • • . . . . . . . . , • • • '

FIGURE 2

When process Px performs an action s\(do) we relate this to the transmission
of a datum d0 by the personal computer. At the physical level this means that
at the location (port 1) where cable C\ is connected to the computer variations
occur in the electric voltage during a certain amount of time. Because d$ can
have a considerable size (think of a file which is sent to the printer) the
transmission can take a lot of time. The instantaneous event associated with
r\(d0) occurs at a moment the cable 'knows' that a datum d0 has been
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transmitted at port 1. Such a moment occurs when Px has almost finished
transmission of this datum. The complementary event s\(d0) happens at the
moment that the computer has made so much progress with the transmission
of da that the environment has enough information to 'know' that it is d0
indeed. By defining the events in the right way we can ensure that sl(d0) and
rl(do) coincide. It is impossible that s\(do) occurs and r\(do) does not, or the
other way around. Therefore we can consider the occurrence of s l(d0) and
r\(do) as a single event. This is precisely what we express in process algebra
with the communication function and the encapsulation operator. Notice that
the above interpretation of read and send actions is not in conflict with the
intuition presented in [6] that the instantaneous event associated with an
atomic process should be situated at the beginning of that process. Apparently
a command print(J0) that one can give to the computer corresponds to a pro-
cess T-s l(d0). At the moment process C\ knows that d0 is transmitted and the
event c \(d0) occurs, the execution of processes s l(d0) and r l(d0) will not yet
be finished. One possible scenario is that execution of s l(d0) finishes before
the end of the execution of r l(d0).

In process theory we assume that the only thing which is interesting about a
system is its external behaviour. Two systems with identical external
behaviour should be identified in principle. From the point of view of process
algebra there is no difference between a labourer assembling bicycle pumps,
and a robot performing the same job. Unless attention is paid in the formal
specification to all kind of details like fluctuations in productivity due to noc-
turnal excesses, the approaching weekend, depressions because of the mono-
tony of the job, etc.

In order to realise a certain external behaviour (the specification), often a
complex internal structure (the implementation) is needed. This brings us to the
important issue of abstraction. We are interested in a technique which makes it
possible to abstract from the internal structure of a system, so that we can
derive statements about the external behaviour. Abstraction is an indispensable
tool for managing the complexity of process verifications. This is because
abstraction allows for a reduction of the complexity (the number of states) of
subprocesses. This makes it possible to verify large processes in a hierarchical
way. A typical verification consists of a proof that, after abstraction, an imple-
mentation IMP behaves like the much simpler process SPEC which serves as
system specification:

ABS(IMP) = SPEC
In process algebra we model abstraction by making the distinction between

two types of actions, namely external or observable actions and the internal or
hidden action T, and by introducing explicit abstraction operators 17 which
transform observable actions into the hidden action (see Figure 3).

Fundamental within the ACP-formalism is the algebraic approach. A
verification consists of a proof of a statement of the form:

ACPT + • • •
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FIGURE 3

The idea is that 'users' can stay in the realm of the formal system and execute
algebraic manipulations, without the need for an excursion into the semantics.

2. THE ALTERNATING BIT PROTOCOL
The most studied communication protocol in existence is undoubtedly the
Alternating Bit Protocol (ABP). Whenever somewhere in this world someone
introduces a new formalism for concurrent processes, you can count on it that
the practical applicability of the formalism is illustrated by means of a
specification and verification of a variant of the ABP. As a first test-case for a
concurrency theory the protocol is very appropriate indeed: the protocol can
be described in a few words, but the formal specification and verification of it
forms a non-trivial problem. However, for real practical application of a con-
currency theory much more is needed. In the analysis of realistic protocols one
encounters various problems of scale which cannot be observed when dealing
with the ABP.

We do not want to break with the traditions concerning the ABP, and will
start here with a discussion of a simple variant of the ABP in the setting of
process algebra. More complex protocols are dealt with in some other contri-
butions of this volume.

Other discussions of the Alternating Bit Protocol can be found in
[2,8,10,12,15]. In the context of ACP the protocol was verified for the first
time in [4]. The discussion of the ABP here is based on a streamlined version
of the proof, given by the author, which can be found in [5]. Variants of the
ABP are discussed in the setting of process algebra in [7,9].

2.1. Specification
The Alternating Bit Protocol can be visualised as follows:
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output
port

FIGURE 4

Let D be a finite set of data. Elements of D are to be transmitted by the proto-
col from port 1 to port 2. There are four components: a sender 5, a receiver
JR, and two channels K and L.

2.1.1. Component S. S starts by Reading a Message (RM) at port 1. Then a
frame consisting of the message from D and a control bit is transmitted via
channel K (SF= Send Frame), until a correct acknowledgement has arrived via
channel L (RA = Receive Acknowledgement). In equations we will always use
the symbol d to denote elements from the set D, b denotes an element from
B = {0,1}, and/finally is used for frames in DXB. In Table 1 we 'declare'
the recursive specification that gives the behaviour of component S. After a
variable has been declared we will use it without mentioning the corresponding
specification.

s
RMb

SFdb

= RM°

= 2'-m-sFdb

deD

= s3(db) RAdb

= (r5(l-b) + r5(a?))-SFdb+r5(b) •RMx~b

TABLE 1. Recursive specification for component S

Graphically we can depict process S as in Figure 5. In a certain sense the
figure is inaccurate: instead of a node SFe0 for each element e in Z>, there is
only a single node SFd0. Between each pair of nodes we draw only one edge,
which however can be labelled with more than one action. Figure 5 can be
considered as a 'projection' of the transition diagram belonging to S.
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r5(ce) r5(ce)

RM
FIGURE 5

2.1.2. Component K. We assume that two things can happen if we send a
frame into channel K: (1) the message is communicated correctly, (2) the mes-
sage is damaged in transit. We assume that if something goes wrong with the
message, the receiver hardware will detect this when it computes a checksum
(ce= checksum error). Further the channels are supposed to be fair in the
sense that they will not produce an infinite consecutive sequence of erroneous
outputs. These are plausible assumptions we have to make in order to prove
correctness of a protocol that is based on unreliable message passing. Data
transmission channel K communicates frames in the set D X B from port 3 to
4. We give the defining equations (Table 2) and the corresponding diagram
(Figure 6).

TABLE 2. Defining equations for channel K

The T'S in the second equation express that the choice whether or not a frame /
is to be communicated correctly, is nondeterministic and cannot be influenced
by one of the other components.

2.1.3. Component R. R starts by Receiving a Frame (RF) via channel K. If the
control bit of the frame is correct, then the message contained in the frame is
sent to port 2 (SM = Send Message). Component R Sends Acknowledgements
(SA) via channel L. Figure 7 gives the transition diagram for R.
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s4(f)

K

s4(ce;

FIGURE 6

r4(eO)
r4(ce)

R

RFb

SAb

SM®

= RF«

= ( 2 rMd{\-
dsD

= s6(b)RFl~b

= slid) SAb

b)) + r4(ce)) 'SAl~bjr ^r4(db) -SMdb

deD

TABLE 3. Recursive specification for component R
do

s2(d) o x 4 r4(dO)

r4(dl)
r4(ce)

SA

2.1.4. Component L. The task of acknowledgement transmission channel L is
to communicate boolean values from R to S. The channel may yield error
outputs but again we assume that this is detected, and that moreover the chan-
nel is fair. See Figure 8 for the diagram.
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TABLE 4. Defining equations for channel L

s5(ce)

FIGURE 8

2.1.5. Sets. Define D=DU(DXB)UBU{ce). D is the set of 'generalised'
data (i.e. plain data, frames, bits, error) that occur as parameter of atomic
actions. We use the notation geD. The second parameter of atomic actions is
the set P = {1,2,...,6} of ports. We use symbol/? for elements of P. Com-
munication follows the read/send scheme. This leads to an alphabet

A = isP(sl *p(g\ cp(g)\PGP,g^n}
and communications y(sp(g), rp{g)) — cp{g) voor/?eP, geO. Define the fol-
lowing two subsets of A:

H = {*P(g)> rp(g)\p<={3A5,6},g<EB},
I = {cp(g)\pe{3A5,6},geB}.

Now the ABP is described by

ABP = 7/03 (̂511^11/1 IIL)

This is a good description in the sense that the specifications of the com-
ponents 5, K, R and L are guarded and consequently the specification of the
ABP as a whole has a unique solution.
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2.2. Verification
Verification of the ABP amounts to a proof that:
(1) the protocol will eventually send at port 2 all and only data it has read at

port 1,
(2) the protocol will output data at port 2 in the same order as it has read

them at port 1.
This means that, in order to verify the protocol, it is enough to prove the fol-
lowing theorem.

THEOREM 2.2.1. ACPr + SC + RDP + RSP + CA + CFAR v
ABP = ^rl(d)'s2(d)'ABP.

deD

PROOF. Let / ' = {c/?(g)|/>e {3,4,5}, geO}. We will use [x] as a notation for
Tr°dH(x). F is defined in such a way that we just can derive a guarded system
of equations for [x]. Consider the following system of recursion equations in
Table 5.

(0)

(1)

(2)

(3)

(4)

(5)

(6)

Y — yO-/\ A. j

Xf = T -Xf + T

Xf = c6(l-b)-

Xf = sl{d)

Xf = c6ib)

Xf = T Xf

•Xf

•xf

+ T

xf

•xf

xf

•x\-b

TABLE 5. Recursion equations for X

The transition diagram of X is displayed in Figure 9. We claim that with the
above mentioned axioms one can prove that Jif=[.S||X1|jR||L]. We prove this
by showing that [S1|JC||1?||L] satisfies the same recursion equations (0)-(6) as X
does. In the computations below, the bold-face part denotes the part of the
expression currently being 'rewritten'.

(0)
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X

FIGURE 9

[RM1' \\K\\RFb \\L] = 2 /• 1 (<0

= ^r\{d)\RAdb\\Kdb\\RFb\\L\

+ T -[/M * ||s4(db) -KIIRF* HZ.]

= r\RAdb\\K\\SAx-b\\L]+r\RAdb\\K\\SMdb\\L]
= c6(l-b)iRAdb\\K\\RFb\\V-b]

-[RAdb \\K\\RFb ||s5(l - b ) -L])

= c6(\-b)-r-r-riRAdb\\Kdb\\RFb\\L]
= c6(l -b) [RAdb\\Kdb\\RFb\\L]

[RAdb\\K\\SM^\\L] = s2(d)\RAdb\\K\\SAb\\L]
[iL4*||/i:||SAb||L] = c6(b)\RAdb\\K\\RF^b\\Lb]
[RAdb\\K\\RFx-b\\\}>] =

'HZ]

(1)

(2)

(3)

(4)
(5)
(6)
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[SF* \\K\\RFX ~b \\L] = T [RA * ||Kdb ||RF] ~b \\L\ (7)
= T-(T-[iL4*||s4(ce)-K||RF1-b||L] +

+ T-[/M*||s4(db)-K||RF1-b||L])
= T[RAdb\\K\\SAb\\L]

Now substitute (7) in (6) and apply RSP. Using conditional axiom CA6 we
have ABP = TI([S\\K\\R\\L]) = T/(X) = T/(A^). Further, an application of
CFAR gives T/(Af) = r -r^Xf) and v,{Xf) = T T/(Jfl"6). Hence,

•Hd)
dGD dsD

= 2lrHd)-s2(d)-TI(Xf)= 2 '
deD d&D

and thus
•2rl(e)-*2(e)-T/(*?) and

= 2 r K<0-*2(J)• 2 »• He)s2(e)-T,{X\ ).
d<=D e&D

Applying RSP again yields rj(Xf\) = TJ(X\ ) and therefore

This finishes the proof of the theorem. •

REMARK. Channels K and L can contain only one datum at a time. Now one
can say that this is no problem because S and R will never send a message
into a channel when the previous one is still there. If S and R would do this
then our process algebra modelling would be incorrect. Because they don't,
there is no problem. This argument is correct for the ABP, but one should be
careful in more complex situations: if one implicitly uses assumptions about the
behaviour of a system in the specification of that system, then there is a danger
that a verification shows that the system has a lot of 'wonderful' properties
which in reality it has not. We give an example. Consider the situation where
a process S first sends three threatening letters into channel K followed by an
violent attempt to eliminate process R. Suppose K is a 1-datum-buffer. The
system starts and S sends the first threatening letter into the channel. Now
receiver R at the other side of the channel is very busy doing other things, and
has no time to read messages from K. Only after a long, long time R looks if
there is mail in K. Of course R is really shocked by the contents of the letter,
and immediately tries to eliminate S. Only after this has succeeded, it reads
from K again. Because S becomes dangerous only after the third message has
been sent, process R will not get into trouble. The crucial point is now that
this would have been different if K were a FIFO-queue.
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3. THE PAR PROTOCOL (PART 1)
In this section we will describe a protocol that is very similar to the ABP,
although there is a fundamental difference. The protocol, that is described in
[13], is called PAR, which stands for Positive Acknowledgement with
Retransmission. In the protocol the sender waits for an acknowledgement
before a new datum is transmitted. Instead of two different acknowledgements,
like in the ABP, the PAR protocol only uses one type of acknowledgement
(hence the word 'Positive'). This discussion of the PAR protocol is a revised
version of Sections 3 and 4 of [14].

3.1. Specification
The diagram that describes the architecture of the PAR protocol is identical to
the diagram for the ABP, with as only difference that on one side of the sender
a small timer process has been added.

output
port

FIGURE 10

Thus, there are five components:
S: Sender
T: Timer
K: Data transmission channel
R: Receiver
L: Acknowledgement transmission channel

3.1.1. Sets. Let D be a finite set of data. Elements of D are to be transmitted
by the PAR protocol from port 1 to port 2. Let £ = {0,1}. Frames in DXB
are transmitted by channel K. Define D = D U (D X B) U {ac, ce,st, to]
(ac = acknowledgement, ce=checksum error, st = start timer, to = time out).
For the interaction with their environment, the components use ports from a
set P = {1,2,...,6,7}. P and D occur as parameters of atomic actions. Alpha-
bet A and communication function y are defined using the read/ send scheme.
In addition, A contains two other actions i and j which do not communicate.
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3.1.2. The channels. If a message is sent into channel K or L, three things can
happen:
(1) the message is communicated correctly,
(2) the message is damaged in transit,
(3) the message gets lost in the channel.

Channels K and L are described by the equations in Table 6.

K = 2 r3(f)-Kf
feDXB

Kf = (/ -s A(f) +1 -5 4(a?) +1) -

L = r6(ac)Lac

Lac = (j -s 5(ac) +j -s 5(ce) +j) L

TABLE 6. Definition for channels K and L

The reason why we use actions / and y, instead of the r as is done in the
specification of the ABP, will become clear further on.

3.1.3. The sender. In the specification of the sender process S (Table 7) we use
formal variables RH\ SF*1, STd\ WSdn (dzD, nsB):

RH— Read a message from the Host at port 1. The host process, which is
not specified here, furnishes the sender with data.

SF —  Send a Frame in channel K at port 3.
ST= Start the Timer.
WS = Wait for Something to happen. Here there are three possibilities: (1) an

acknowledgement frame arrives undamaged, (2) something damaged
comes in, or (3) the timer goes off. If a valid acknowledgement comes
in, the sender fetches the next message, and changes the control bit,
otherwise a duplicate of the old frame is sent.

3.1.4. The timer. The timer process T is very simple (see Table 8). There are
two states: the initial (stop-) state and the (run-) state in which the timer is
running. In both states the timer can be started, but only in the running state
a time out can be generated.
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s
RH"

Spdn

STdn

WSdn

= RH°

deD

= s3(dn)-STdn

= sl{st)-WSdn

= r5(ac)RH1-" + (r5(ce)+rl{to))-SFdn

TABLE 7. Specification of the sender process S

T = rl(st)-Tr

Tr = rl(st)'Tr+sl(to)-T

TABLE 8. Specification of the timer process T

3.1.5. The receiver. For the specification of the receiver process R (see Table 9)
we use formal variables WFn, SAn, SHdn (dsD, neB):

WF —  Wait for the arrival of a Frame at port 4.
&4 = Send an Acknowledgement at port 6.
SH —  Send a message to the Host at port 2. In general the host of the receiver

will of course be different than the host of the sender.

R

WF"

SA"

SHdn

= WF°

= r4(ce)-WFn+ 2r4(*
deD

= s6(ac)WF"

= s2(d)-SA1-"

d(l-n))-SA"+ ^r4(dn)SHdn

deD

TABLE 9. Specification of the receiver process R

When a valid frame arrives at the receiver, its control bit is checked to see if it
is a duplicate. If not, it is accepted, the message contained in it is written at
port 2, and an acknowledgement is generated. Duplicates and damaged frames
are not written at port 2.
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3.1.6. Premature time outs. We define

H = {spig), rp(g)\ps{3,4,5,6,7}, geD}
and consider the expression

dH(S\\T\\K\\R\\L).
Each time after a frame is sent, the sender S starts the timer. An unpleasant
property of the PAR protocol is that a premature time out can disturb the
functioning of the protocol. If the sender times out too early, while the ac-
knowledgement is still on the way, it will send a duplicate. When the previous
acknowledgement finally arrives, the sender will mistakenly think that the just
sent frame is the one being acknowledged and will not realise that there is
potentially another acknowledgement somewhere in the channel. If the next
frame sent is lost completely, but the extra acknowledgement arrives correctly,
the sender will not attempt to retransmit the lost frame, and the protocol will
fail.

An important observation is that in our modelling 'too early' corresponds
exactly to the availability of an alternative action. Thus we can express the
desired behaviour of the timer by giving the action c l(to) a lower priority then
every other atomic action. In the next section we will elaborate on this idea.

4. PRIORITIES
The axiom system ACPe, introduced in [1], consists of the operators and
axioms of ACP, extended with a unary priority operator 0, an auxiliary binary
operator <| (unless) and some defining axioms for these operators. We use 0 to
model priorities. Parameter of 0 is a partial order < on the atomic actions. So
for a,b,ceA we have

2. a<b&b<c=>a<c.
The constant 8 can be incorporated in this ordering as a minimal element. We
then have 8<a for all asA. Consider, as an example, the following partial
order on atomic actions a, b and c:

b<a and c<a.
Relative to this ordering the operator 0 will forbid in a sum-context all actions
that are majorated by one of the other actions in that sum-context. So we have
for instance:
(i) 0(a +b) = a, 0(a + c) = a but
(ii) 0(b + c) = b + c.
Operator 0 is axiomatized in the system ACP# (see Table 10).

EXAMPLE. Let b <a and c <a. Then:
(i) 0(a +b) = 0(a)<\b + 0(b)<\a = a<\b + b<\a = a 4- 8 = a,
(ii) 0(b +c) = 0(b)<\c + 0(c)<\b = b<\c + c<\b = b + c,
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(iii) 6(b{a + c)) = 6{b) 6{a + c) =
= b(a+8)-ba.

b iO(a)<\c

F.W. Vaandrager

ja) = b (a<\c + c<\a)

x +y = y+x
x+(y+z) = (x+y)+z
X +X = X
(x +y)z — xz +yz
(xy)z = x(yz)
x+8 = x
8x = 8

a\b = y(a,b)

x\\y = x\Ly +y\Lx +x\y
ai_x = ax
ax\Ly — a(x\\y)
(x+y)\Lz = x\Lz+y\Lz
(ax)\b = (a\b)x
a\(bx) = (a\b)x
(ax)\(by) = (a\bXx\\y)
(x+y)\z = x\z+y\z
x\(y+z) = x\y+x\z

9#(a) — a if a &H
dH(a) = 8 UaeH
dH(x+y) = ^H(x)+dH(y)
^H(xy) = ^H(x)-dH(y)

ACP9

Al
A2
A3
A4
A5
A6
A7

CF

CM1
CM2
CM3
CM4
CM5
CM6
CM7
CM8
CM9

Dl
D2
D3
D4

a<\b —a if  -,(a<b)
a<\b = 8 iia<b
x<tyz = x<\y
x<\(y +z) = (x<\y)<\z
xy<\z = (x<\z)y
(x +y)<\z - x<\z +y<\z

6{a) = a
d{xy) = 6(x)-9(y)
6(x +y) = 6{x)<\y +O(y)<[x

PI
P2
P3
P4
P5
P6

TH1
TH2
TH3

TABLE 10

In [1] the proof can be found of the following theorem:

THEOREM 4.1.

i) For each recursion-free closed ACPe-term s there is a basic term t such that
ACPe \-s = t.

ii) ACPQ ^ a conservative extension of ACP, i.e. for all recursion-free ACP-
terms s,t we have: ACPe *- s=t => ACP \- s —t.

At present it is not altogether clear how ACP# and ACPT should be combined
into ACP^. As a consequence of Theorem 4.1 however we can give meaning to
a term like T/(.S), where s is a recursion-free closed ACP^-term. Expression s is
related to exactly one ACP process, and ACPT is a conservative extension of
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ACP. For infinite processes the situation is a bit more complicated. Without
proof we mention that for the theory of regular process expressions (expres-
sions that generate a finite transition diagram) we also have conservativity.

5. THE PAR PROTOCOL (PART 2)
Returning to the specification of the PAR protocol we define operator 6 on the
basis of the following partial ordering < on A:
(1) a<cl{st) for a<=A-{c7(st)}
(2) cl(to)<a for a GA - {cl(to)}.
The reason for giving action cl{to) a lower priority than the other actions has
already been given in Section 3.1.6. In addition we have given action cl(st) a
higher priority than the other actions in order to express that immediately
after sending a message the timer is started. This assumption is not essential
for the correctness of the protocol. The system as a whole is now described by

OodH{S\\T\\K\\R\\L).
The fact that in the scope of a priority operator no T'S are allowed explains the
use of i and j actions in the specification of components K and L. We are
only interested in the actions taking place at ports 1 and 2. The other actions
cannot be observed.

I = {cp(g)\ps{3,4,5,6J},
The PAR protocol can now be specified by:

PAR = noeodH(S\\T\\K\\R\\L)

For a verification of the protocol it is enough to prove the following theorem.

THEOREM 5.1. ACPr + ACPe + SC + RDP + RSP + CA + CFAR v
PAR= ^

PROOF. Let / ' = {c/?(g)|/?e{4,5,7},gED} U{i,y}. We use [x] as notation for
Tj'°6°dH{x). Since / ' C / we can apply axiom CA6:

PAR=rI([S\\T\\K\\R\\L\).
In the first part of the proof we will derive a guarded system of recursion
equations for the process expression [S'||71||if||i?||L] in which only the opera-
tors + and • occur. Thereafter, in the second part, we will abstract from the
other internal actions using CFAR. Throughout the proof d ranges over D and
n ranges over B. The transition diagram of [S'||71||A'||i^||L] is depicted in Fig-
ure 11.
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FIGURE 11

[S\\T\\K\\R\\L] = [RH0\\T\\K\\WF°\\L]

dl

[RH" \\L] = \SFdn \\ T\\K\\ WF" \\L]
deD

(0)

(1)

(2)[SFdn\\T\\K\\WFn\\L] = c3(dn)-[STdn\\T\\Kd"\\WF"\\L]
= c3(dn)iWSd"\\Tr\\Kd"\\WF"\\L]

(Here we used that the action cl(st) has higher priority than the other
actions.)
[WSdn\\Tr\\Kdn\\WFn\\L\ = Tro6(cl(to)-dH{SFdn\\T\\Kdn\\WF"\\L) (3)

i-dH(WSdn\\r\\s4(ce)-K\\WF"\\L)

+ i-
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(Action cl{to) has lower priority than the other actions.)

= r\WSdn\\Tr\\K\\SHdn\\L] +
+ TiSFdn\\T\\K\\WFn\\L]

(If the message is damaged, the resulting state is the same as in the case in
which the message gets lost. In both cases a time out event occurs.)
\WSdn\\Tr\\K\\SHdn\\L\=s2(d)\WSdn\\Tr\\K\\SAx-n\\L] (4)
[WSdn\\Tr\\K\\SA1-"\\L]=c6(ac)-[WSd"\\Tr\\K\\WFl~n\\Lac] (5)
[WSdn\\Tr\\K\\WFx-n\\Lac] =r-[RHl-n\\Tr\\K\\WFi-"\\L] + (6)

+ T-[SFdn\\Tr\\K\\WF]'~"\\L] +

(la)

(2a)

(7)
(7a)

(8)

Now observe that the processes of equations 1 and la, 2 and 2a, and 7 and 7a
are identical. This means we have derived that X (= [5||r||^||i?||Z,]) satisfies
the system of recursion equations in Table 11.

[RHn\\Tr\\K\\WFn\\L] = ^r\(d)iSFdn\\Tr\\K\\WFn\\L]
deD

[SFdn\\Tr\\K\\WFn\\L] = c3(dn)\WSdn\\Tr\\Kdn\\WF"\\L]

\\K\\ WFX -" \\L ] = c 3(dn) •[ WSdn IIT \\Kdn || WFX -" \\L]

|| T\\K\\ WFX"" ||L ] = c 3(J«) •[ WSdn II Tf || Kdn \\ WFX ~n \\L\

[WSdn\\Tr\\Kdn\\WFx-n\\L] =

(0)

(1)

(2)

(3)

(4)

X

x\

xf
xf
xt

deD

= c3(dn)-Xf

= T-Xf +T-Xd
4"

= s2(d)-Xf

(5)

(6)

(7)

(8)

Xf

v~dft6

xt
xt

= < « * ) • *

= r-X\-" +

= c3(dn)-Xi

~ T ' Xf + T

1

r-Xf
n

•xt

TABLE 11. Recursion equations for X

This finishes the first part of the proof. In the second part we will abstract
from the communications at ports 3 and 6. Because PAR= TJ(X)—  T7(A^), it
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is enough to show that

deD

For d and w fixed, variables Xf and Jff form a conservative cluster from /.
Hence we can apply CFAR:

Variables Xf, Xf, Xf and Xf (J and n fixed) also form a conservative clus-
ter from /. CFAR gives:

We use these two results in the following derivation:

= 2

Substituting this equation in itself gives:

= 2 ^(^0 -̂  2(d) • 2 ^ KO -̂  2(0 -T 7(^ ) and
deD eeD

TI(X\ ) = 2 r l(d) -s 2(d) • 2 r 1(0 * 2(
eeD

Due to the Recursive Specification Principle we have:

Hence

which is the desired result. •

REMARK. For the modelling of time outs in the PAR protocol the use of the
priority operator is not essential. We sketch an alternative. If a frame gets lost
in one of the channels then one can say that this event in a sense causes a time
out. This causal relationship can be expressed in process algebra by means of a
communication between the channel and the pair sender/timer. For channels
K and L the specifications then become as shown in Table 12.
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K

Kf

L
jac

= 2 rKf)-Kf

fzDXB

— (i -s 4(f) + / -s 4(ce) + /  s

= r6(ac)-Lac

= (j -s 5(ac) +j -s 5(ce) +y

l(to))-K

-si (to))-I

TABLE 12. Specification for channels K and L

In a time out event three processes participate: the timer, the sender and a
channel. This means that when dealing with time outs we have ternary com-
munication at port 7.

y(sl(to),sl(to)) - ssl(to) y(sl(to),rl(to)) - srl(to)

y(sl{to\srl(to)) = cl(to) y{rl(to\ssl{to)) = cl(to)

This leads to a slightly bigger set of unsuccessful communications:
H = H\J{ssl(to\srl(to)}.

The alternative specification of the PAR protocol now becomes.

PAR =

One can prove that PAR—PAR.  In [11], essentially the above idea is used to
specify a simple version of the PAR protocol.

5.2. Asymmetric communication
Consider the situation where channel K contains a frame and the receiver is
doing some other things and reads the datum from K only after a long time.
Now one can consider it to be unnatural that during this whole period the
datum keeps 'floating' in K and does not disappear. In a more realistic
approach we would assume that if a datum is contained in channel K, either
this is read by process R, or it gets lost if R is not willing to receive. Formally
we can model this in process algebra by not encapsulating s4(d) actions, but
give them a lower priority than the corresponding cA{d) actions. This mechan-
ism is called put mechanism in [3]. One can prove that the ABP and the PAR
protocol are invariant under the use of the put mechanism.
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Proving Mutual Exclusion with Process Algebra

Eric R. Nieuwland
Computer Science Department, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

This paper provides a new method to prove mutual exclusion of concurrent
processes via process algebra.

1. INTRODUCTION

1.1. Mutual exclusion
When many processes are sharing or using common computer resources it is
imperative that Mutual Exclusion is taken into account. There are resources,
indeed, that can be used by only one process at a time (e.g. it is not possible
to have two processes printing on one printer at the same time).

The section in which a process uses such a resource is called its critical sec-
tion. So the problem is to find a protocol that makes sure that at most one
process is in its critical section for a certain resource.

In addition, it is necessary that a process will stop only in its non-critical
section (i.e. outside its critical section and protocol section), and that all
processes will have equal possibility to proceed (this is known as fair-
scheduling). Under these assumptions such a protocol must have the following
properties:

- ME (Mutual Exclusion) : Given a resource, no more than one process may
enter its critical part in which it uses that resource.

- LC (Loosely Connected) : If a process stops within its non-critical part, the
other processes must be able to proceed.

- Li (Liveness) : At least one process is able to proceed.

The reader is refered to [1] for a more complete discussion on the topic of

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Approach to Industrial Software Development (METEOR).
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mutual exclusion and related problems in concurrency. Consider, for example,
a crossing. The properties are then as follows :
- ME : No more than one vehicle may cross at a time.
- LC : If a vehicle stops outside the crossing, the other vehicles are not

affected in their movements and are able to pass the crossing.
- Li : At least one vehicle is able to move.

1.2. Mutual exclusion and process algebra
The problem of Mutual Exclusion has been studied for over two decades,
which has resulted in a number of protocols. The proof of correctness of these
protocols is sometimes hard and cumbersome. All kinds of tools and logics
have been developed to provide these proofs. Since process algebra is designed
to describe processes, it is only natural to expect that it also provides means to
prove the correctness of protocols.

2. TOOLS IN PROCESS ALGEBRA

2.1. Global variables
A global variable v, used by any number of processes, can be defined as a
communicating process:

Vd =s(v=dyVd
ecD

where D is the set of values for v, *v =d9 signals that v has the value d and
tv:=e9 means that the value of v becomes e. A process wishing to test the
value of such a variable tries to receive it:

r(v=d).
To use its value in a calculation:

This could also be written as V(v = F)use(F)' for better readability. To assign
a value to it:

s(v:=d).

2.2. Stopping a process
When n processes are running concurrently, the system is written as:

To stop one of the processes, simply delete it from the merge. The effect is that
the values of global variables that are controlled by this process cannot
change.
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2.3. The model
The machine in which a process algebra specification is executed is depicted in
Figure 1.

PE... PEn

FIGURE 1. Executing machine

Here, every PEt is an autonomous process and each GMj one of the global
variables. This machine is not only convenient for making calculations, it also
exists in practice and is known as a common-bus system.

3. THE BASIC METHOD
The method of proving the properties ME, LC and Li with process algebra is
founded in a simple set of descriptions that restate the definitions of these pro-
perties in terms of process algebra.

In the descriptions 9//CP), with H the set of sends and receives used to con-
trol the global variables and P the merge of all processes and global variables,
denotes any legal state of the system, while 9#0P/) stands for the system
obtained by removing process pt from P.

ME : For all processes pt the following must be true: When more than one
process is in its protocol section, at least one will be able to enter its
critical section. And when pt is in its critical section then 3#(P/) will
lead to a deadlock (i.e. will equal a sequence of atomic actions fol-
lowed by 8).
For all processes pt the following must be true: When /?, is in its
non-critical section then 3//(P/) will never lead to a deadlock and
process Pk{k^i) is able to enter and leave its critical section.
In any valid configuration, d

LC :

Li :

4. AN EXAMPLE: PROVING THE CORRECTNESS OF PETERSON'S PROTOCOL
Peterson's protocol [3] is one of the simplest and most elegant protocols to
establish mutual exclusion of two processes:
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Process L

LOOP

NonCriticalPartL

tu rn :=M;

Process M

LOOP

; Afow CriticalPartM;

\2M'' ~~ true;

turn: --L\
WAIT UNTIL -,QM OR turn=L; WAIT UNTIL ->QL

CriticalPartL;

QL:= false;

FOREVER

CriticalPartM\

QM- = false'.
FOREVER

Initial conditions: QL = £>M = false, tu rn=L (or M, makes no

OR turn =M;

difference)

FIGURE 2. Peterson's protocol represented as a program

To get a better notion of what happens one can use a directed graph Each
node in this graph represents a state of a process. Each arc has a label of the
form [Condition => Action], meaning that this arc may be passed onl) when
the condition is met and that on passing the arc the action is taken. A condi-
tion true is always met and an action No Action does nothing.

hQM=>NoRction] QL=*Nofidion]

[brue=>QM:=fa1se]

FIGURE 3. Peterson's protocol represented as a graph
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Each node can now be interpreted as a variable in a set of process algebra
equations. A label is translated to a test on the condition followed by an
action. Obviously, a test on a condition true and an action No Action may be
discarded.

Process L:
h =s(QL : = true)/]
l\ —^(tum :— M)l 2
h =(r(turn=L)+r(QM
I?, —S{QI  : = false)/0

Variable QL:
Qurue =(S(Q

+r(Qi
Qljalse ~(S(Q

+r(Qi

: = true))g
j \— false)g
L — false)

= false))/3

Process M:
m0 —S(QM  •— true)wi
m\ =s(turn := L)m2
m2 = (r (turn = M) + r (g L = f alse))m 3
m 3 = ^ ( 2 M :== false)m0

Variable QM-
QM

QM

7me =(s(0M=true)
+ ^ ( 2 M • - true))gMrrM^

7b/5e = (s (QM = false)

+ ^ (GM : ~ true)^M/rMe

Variable turn:
turnL = (.y ( tu rn=L) + r (turn : = L))turnL-hr(turn : = M)tumM

=(5( tu rn=M)-hr ( tu rn : =

= {s(QL: = true), $(&.:= false), 5(gM:=true), 5(gM: = false), j(tum:=M),

5(turn:-L), r(()L:=true), r(gL:-false), r(gM:=true), r (g M := false),

r(turn:=M), r(turn: =L),s(gL = true), ^(gL = false), ^(gM^true),
5 (GM = false), ^(turn = M), s(turn = L), r(gL = true), r(QL = false),
r (CM-t rue) , r(QM = false), r(turn=M), r(turn=L)}

^.7. Mutual Exclusion
The fact that process L is in state / and M is in y, will be denoted as (/,, my).
When both processes are in the first state of their protocol sections this gives
(/i,mi), QL~QM~true and turn is either L or M:

11 m 111 QLtrue 11 gM/rwe 11 turn^) =

L^IICM/ruJlturnL)

+ c(turn: =M)dH(l2\\mx\\QUrue\\QMtrue\\tx\mM).
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Since this is (/l5 m2) + (/2, /Hi), it is, by symmetry, sufficient to prove (l\,m2).

^c(tum:=M)dH(l2\\m2\\QUme\\QMtruJtnmM) (1)

). (2)

This is the first requirement; (1) is (/ 2,m2), (2) is (/2,W3). So process M
entered its critical section. Now, let M be the process held. Let L start in its
Critical Part. (A situation which should not appear, but makes the proof
easier.) So L is in state /3 and M is in state m3. Clearly QL — QM~true. The
value of turn is either L or M. This gives:

dH(l0\\QLfalse\\QMtrue\\tumL)-h

c(QL:-false) c ( 0 L : = true) 3/j(/i II G i i ^ II G J # I ^ II tumL)

- f c ( g L : = false) c ( e L : - t r u e ) 3/f(/i IIgiimeIIGMm«IIturnM) (4)

c(turn:=M) 3//(

c(turn:=M) dH(l2\\QLtrue\\QMtrue\\turnM) (5)

= c (QL - = false) c (QL: = true) c (turn: = M)S.

Since (3), (4) and (5) are the situations in which L is at /0, l\ and /2 respec-
tively, it is shown that, no matter where L starts, a deadlock occurs and thus -
because of symmetry - ME is guaranteed.

4.2. Loosely Connected
This is almost the same as ME except that the process that is held is in its
Non-Critical Part. So this problem is tackled in a similar way. M will be held
in m0 and L will be in /0. So QL = QM —  false. The value of turn is either L or
M.

(6)

c(turn:=M)

c ( tu rn :=M) c ( £ M = false) dH(l3\\QLtrue\\QMfaise\\turnM)

- c {QL : = true) c (turn: -M) c (QM=false) c (QL: = false)

3tf(/0 H Ql/abe WQMfabe II tumM) (7)

This last term (7) is one of the summands in (6). This proves that L can
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always continue when M is held in its Non-Critical Part. So, by symmetry
again, LC is guaranteed.

4.3. Liveness
To prove Li one has to consider all possible combinations of the states of L
and M. A list of the possibilities:

(7o> wo) (/o> m\) Vo
(Iu m0) ( / i , m i ) (l\, m2) ( / i , m3)

3, m2) (/3, m3)

From ME it is known that (/0,m3), (/i,/wi), (/i,m2), (/2,w2), (/
(/2,w3) and (/3,m3) have a successor. The same is known from LC for
(/o,mo), (/i,wo), (/2,w0) and (/3,m0). Because of symmetry all configu-
rations have a successor. So Li is guaranteed.

5. CONCLUSIONS
This paper provides a simple method based on process algebra to verify the
desired features of a Mutual Exclusion protocol. The method is truly easy to
apply. Also important is that process algebra provides a tool to verify the
cooperation of hardware components (assuming that these components operate
correct). This was the key idea that lead to this paper: modelling a (part of a)
global memory as a process. It should be noted that in this paper ACP is used
to prove properties. The standard process algebra techniques use abstraction
from ACPT [2] to prove the correctness of external behaviour of a process. The
properties considered here result from the cooperation of the processes
involved, so abstraction was not used, as cooperation is internal to the
processes.
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Process Algebra as a Tool for the Specification and

Verification of CIM-architectures

S. Mauw
Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

Flexibility of a manufacturing system implies that it must be possible to reorgan-
ize the configuration of the system's components efficiently and correctly. To
avoid costly redesign, we have the need for a formal description technique for
specifying the (co)operation of the components. Process algebra - a theory for
concurrency - will be shown to be expressive enough to specify, and even ver-
ify, the correct functioning of such a system. This will be demonstrated by for-
mally specifying and verifying two workcells, which can be viewed as units of a
small number of cooperating machines.

1. INTRODUCTION
One can speak of Computer Integrated Manufacturing (CIM) if the computer is
used in all phases of the production of some industrial product. In this paper
we will focus on the design of the product-flow and the information-flow,
which occurs when products are actually produced. Topics like product-
development, marketing and management are beyond the scope of this paper.
The technique used in this paper is based on a theory for concurrency, called
process algebra (see [4] or [5]). It can be used to describe the total phase of
manufacturing, from the ordering of raw materials up to the shipping of the
products which are made from this materials. During this process many
machines are used, which can operate independently, but often depend on the
correct operation of each other. Providing a correct functioning of the total of
all machines, computers and transport-services is not a trivial exercise. Before
actually building such a system (a CIM-architecture) there must be some
design. Such a specification, when validated, describes a properly functioning
system. The current trend towards Flexible Manufacturing Systems (FMS)
introduces the need for a tool, able to validate a new design of a plant, before
implementing it. The possibilities to use methods developed in process algebra
for specification and verification of concurrent systems are described in this
paper.

From a high level of view, a plant can be seen as constructed from several

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).
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concurrently operating workcells (W1-W5 in Figure 1). Every workcell is
responsible for some well-defined part of the manufacturing process, e.g. filling
and capping a number of milk bottles. The various workcells are connected to
each other via some transport-service, which manages input and output of
goods for the workcells (the logistics). Of course some supervisor (control)
must keep track of the (co)operation of all workcells. This control has connec-
tions to all other components of the plant, along which commands and status-
reports are transmitted. The components labeled supply and shipping are used
to store raw materials and processed goods.

out;

FIGURE 1. A sample architecture of a plant

Seen from a lower level, each workcell is constructed from a number of basic
components which can perform one function, e.g. drilling a hole or assembling
two parts. For controlling the communication with the outside and to instruct
the various components of the workcell, each workcell has a workcell-controller.
Also some simple transport-system must be present to transport the products
within the workcell (see Figure 2).

The description of the components of some workcell can be given using pro-
cess algebra. When abstracting from the internal actions of that workcell, it is
possible to determine its external behaviour. At the high level view on the flow
of products, we are only interested in the products which enter the workcell
and the products leaving it. Also at the high level view on the flow of informa-
tion, we only look at the commands we give a workcell to produce or process a
number of products and the status-reports sent back.

The simple two level view on a manufacturing process expressed above, can
be refined into a multi layered model, as is done in e.g. [7].

As an illustration of the technique we specify and verify two workcells in the
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theory ACPT (see [5]). The first one is a very simple one, able to produce and
process one kind of product. The second one is more involved. It has the pos-
sibility to process some input product either correctly or faultily. Part of the
workcell is a quality-check tool, which decides upon rejecting the product or
not.

One should notice that in process algebra no real-time aspects are captured.
So the important notions of efficiency (maximal productivity of the machines)
and tuning (synchronization of the speed of the machines) cannot be modeled.

NOTE. This paper is partially based on discussions with F. Biemans, and
inspired by his article [8], who used the specification language LOTOS (see [9])
to describe CIM-architectures. Other applications of theories for concurrency
to CIM can be found in [10] and [11].

2. A SIMPLE WORKCELL

2.1. Specification

2.1.1. General description. In this section a simple workcell will be specified
and verified, which consists of four components (see Figure 2). This workcell is
identical to the one described in Biemans and Blonk [8]. Workstation A (WA)
produces a product (productl) and offers this to the Transport service (T).
Then the product is transported to Workstation B {WB\ which processes the
product and outputs it to the environment. The Workcell Controller (WC)
receives a command from the environment to produce a number of products,
then controls the operating of the other components and reports a ready-status
back to the environment. So the total of the four components can be viewed as
one workcell, producing and processing a number of products. The aim is to
specify the components in such a way that the workcell behaves as desired.

10
FIGURE 2. A simple workcell
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2.1.2. Definitions. The four components are connected by 11 ports. Some ports
are used to transmit data (the ports 0 through 7), while others are used to
exchange products (the ports 8 through 10). Three ports are connected to the
environment (the ports 0, 1 and 10). The set P of Ports is defined by

The set PROD contains all products that are produced and processed within
the workstation (or the complete factory). It contains the products product 1
(p 1) and the processed product 1 (proc(p 1)), but could contain other products
as well.

PRODD{p\,proc(p\)}
Different kinds of data have to be transmitted. Via the ports 1, 2 and 4 a non-
negative integer (n) can be sent to indicate that the receiver has to produce (or
process) n products. We assume that this number has some upper bound N,
which determines the maximum number of products the workcell can deal with
in one drive. One can consider this number as a parameter of the specification.
A ready message (r) is sent back over the ports 0, 3 and 5 to indicate that the
component has fulfilled its task. Over port 6 the Workcell Controller can send
a Transport Command (tc) to the Transport service, indicating that one pro-
duct has to be transported from WA to WB. If this is done, an arrival-
message (ar) is sent back via port 7. The ports 8 and 9 are used to transmit
product 1 (p 1) and port 10 is used to transmit the processed product 1
(proc(p 1)). So the set of items that can be transmitted (D) is defined as

D = {n\0<n<N}U{r,tc,ar}UPROD.
A component can offer some element d of D at some port p by executing a
send action (sp(d)). If simultaneously another component is able to execute a
read action (rp (d)) at the same port and with the same element of D, this ele-
ment is communicated (cp(d)) via port p. In this way both products and
information will be distributed through the workcell. The atomic action / is
used to denote an internal action, which will not be visible to the environment.
The set of all atomic actions that can be performed is defined by

A={sp(d),rp(d),q>(d)\pePAdeD}U{t}.
The communication function on the atoms is defined by

rp(d)\sp(d)=sp(d)\rp(d) = cp(d) forpsP and deD.
All other communications yield deadlock.

Now we come to the definition of the four components.

2.1.3. Workstation A. Workstation A receives via port 2 the command to pro-
duce n times product/? 1 (2n>0r2(n)). Then it executes this command by pro-
ducing n products (XAn) and sends a ready-status message at port ? (s3(r)).
Then WA starts all over. If WA was commanded to produce zero products,
XA° just ends after doing some internal action /. If a positive number of
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products has to be produced (XA n + l \ this is done by producing one product,
followed by the production of n products (XAn).

WA = 2(r2(n)'XAn-s3(r)'WA)

XA° = t

2.1.4. Workstation B. Workstation B has almost the same definition as Works-
tation A. It accepts the command to process n products via port 4
(2in>or4(n)), processes n products (XBn), sends a ready-status message (s5(r))
and starts all over. The processing of n products is achieved by repeatedly
receiving an arbitrary product/? at port 9 (2>pGpRODr9(p)) and sending the pro-
cessed version of this product to port 10 (s \0(proc(p))).

WB = ^{r^n)XBn's5(r)WB)

XB° = t
XBn+l = 2 (r9(pys\0(proc(p)yXBn)

pePROD

2.1.5. Transport service. The Transport service (T) can be seen as a FIFO-
queue. It is indexed with its contents. Adding an element p to the queue with
contents a, yields the queue with as its contents the concatenation p* o. The
empty queue is denoted by X. The transport system either has an empty queue,
or contains elements. If the queue is empty, T can receive a transport-
command via port 6 (r6(tc)) and then it receives some product via port 8
C%pePRODr%(p))- Next the transport service behaves as the transport service
with one element in its queue (7^). It is also possible to receive the product
first and then receive the transport-command. If the queue was not empty, the
Transport service has both options as mentioned for the empty queue, but it
also has the option to send an element out of the queue at port 9 (^9(^)).
Then the arrival of this element is reported to the Workcell Controller (s l{ar))
and the element is deleted from the queue.

Tx = r6(tcy 2 (r8(p)-77)+ 2 (
psPROD p&PROD

T°*1 = r6(tcy 2
pePROD

+ 2 (
PGPROD
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2.1.6. Workcell Controller. The Workcell Controller {WC) controls the com-
munication with the environment and the interaction of the other components.
It receives via port 1 the command to produce and process n products
(2n>orl(n)). Then it commands Workstation B to process n products (s4(n))
and goes into state Dn were n times product 1 is produced and transported.
Then finally it receives a ready-status message from WB via port 5 (r5(r)) and
sends ready to the environment (sO(r)% returning to its initial state. The pro-
duction and transport of n products is done in Dn. It repeatedly commands
via port 2 Workstation A to produce one single product ($2(1)). If this is done
a ready message is received at port 3 (r3(r)) and a transport command is sent
at port 6 (s6(tc)). If the product has arrived at Workstation B, an arrival mes-
sage is received at port 7 (rl(ar)).

WC = ^{r\{n)'sMn)'Dnr5{r)'s0{r)'WC)

D° = t

= s2(\yr3(r)'s6{tc)'rl(ar)'Dn

2.1.7. The workcell. The concurrent operation of these four components can be
considered as the specification of the whole workcell:

WC\\TX\\WA\\WB.
Notice that the Transport service has to start with an empty queue.

Of course all unsuccessful communications must be encapsulated, so define
the encapsulation set H to contain all internal send and receive actions:

H = [rp(d\ sp(d)\2<p<9AdGD}.
Furthermore we are only interested in the external behaviour of the system, so
define

Now the complete definition of the Workcell (WO is

W = TjdH(WC\\Tx\\WA\\WB)

SPECIFICATION 2.1

2.2. Correctness
When designing the workcell, we had in mind some idea about its external
behaviour. It receives a command at port 1, which indicates the number of
products that has to be produced, then these products are produced and
offered at port 10 and finally a ready message is offered at port 0 and we
return to the starting state. This intended behaviour can easily be specified:
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V=
n > 0

E° = sO(r)

En + X = slO(proc(pl)yE"

SPECIFICATION 2.2

Now, using RDP, let v and w be solutions of the two given specifications, 2.1
and 2.2. A proof that the processes v and w are equal can be seen as a
verification that the specification of W is correct with respect to its intended
external behaviour.

THEOREM 2.3. The specification of the workcell is correct.
ACPT+RDP+RSP+ET\-v=w

PROOF. The proof consists of a series of successive expansions. All atoms that
do not communicate yield deadlock, because they are encapsulated. The
atoms that do communicate are underlined. All actions that are not abstracted
from are boldfaced.

W = T/alf(»'C||7*||»<(4||»ra)

Knys4(nyDn-r5(r)s0(r)WC)\\

(2r2(nyXAn-s3(ryWA)\\

(2,r4(nyXB"s5(ryWB))

/• 5(r)-s - WC)\\

(2lr2(nyXA"-s3(ryWA)\\

(XBn-s5(ryWB)))
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Now let
K" = rfiH(iDnr5(rysQ{ryWC)\\

(XBns5(ryWB)), then

WC)\\

C2r2(nyXAn-s3(ryWA)\\

(ts5(ryWB))

(WB))

= TSXK&W

Kn + X = TIdH((s2(iyr3(rys6(tcyrl(aryD"r5(rys0(ryWC)\\

C^r 9(p)s \0(proc (p)yXB"-s 5(r)- WB))

T7(c 2( 1 )-dH((r 3(r)-s 6(tc)-r l{ar)D"-r 5{r)s 0(r)- WC)\\

(sZ(p\yXA0-s3(ryWA)\\

(2r9(p)s KXproc(p))XBns5(r)-WB)))

= TT7(C8(/> iydH((r3(rys6(tc)r7(aryDnr5(rys0(ryWC)\\

(r6(tcyTPx)\\

{fs3{ryWA)\\
S HHproc(p)yXBns5(ryWB)))

6(?C)T l(ar)Dnr 5(r)s 0(r)- WC)\\

{WA)\\
)s \0(proc(p))XBn-s5(r)-WB)))
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(**) = rrI(c6(tcydH((rl(aryD''r5(r)s0(ryWC)\\

P'P l)+s9(p\yS

(WA)\\

ys l(Hproc(p)yXBns 5(r)WB)))

(sXar)-TK)\\

(WA)\\

(s \0(proc(p l)yXBtt-s5(ryWB)))

= T((T7(C7(ar)-3i/((£>" r 5(r)-s0(/-)- WC)\\

(Tx)\\

(WA)\\

(s KXproc(p\)yXBns5(ryWB))) +

+slO(proc(pl))/i:n)

Now let

L" = TjdH((Dn-r5(rys(KryWC)\\

(Tx)\\

(WA)\\

(s \0(proc(p \)yXBns5{r)WB)), then

° ) -WC)\\

(WA)\\
(s \0(proc(p l))ts5(r)WB))

slO(proc(pl))T/aff ((/-r 5(r)s O(r)- WC)\\

(Tx)\\

(WA)\\

(rs5(r)WB)) +

^ r 5(r)-s O(r)- WC)\\

(WA)\\
(ts5(ryWB))
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= T-slO(proc(pl))-T/(c 5(r)-dH((<Mr> WC)\\ [using T2]

(7*)ll

{WA)\\
(WB)))

= T slO(proc(pl)) sO(r) -W

%{p)-TP) + 2(r

(2r2(nyXAns3(ryWA)\\

(s I0(proc

= T7(C 2(iydH((r 3(r)-s 6(/c)r l(ar)-Dn-r 5(r)-s 0(r>

(s I0(proc (p 1 ))XBn +' -5 5(r)- WB)))+

(XA°-s3(ryWA)\\
(s KXproc (p l)yXB" +! -s 5(r)- WB)))+

3^((r3(r)-s6(tcyrl(ar)-Dn r5(r)-s0(r)-WC)\\

(pyTP)+'2(

(s%(piyXA°-s3(ryWA)\\

-s5(ryWB))+

sl0(proc(pl)yTI(c2(iydH((r3(rys6(tcyr7(aryDn-r5(rys0(ryWC)\\

(s&(piyXA0-s3(ryWA)\\

(XBn + xs5(r)WB)))

(The first two summands in this expression come from the first summand in
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the previous expression. Axiom T2 states that the summation of the second
and third summand equals the second summand.)

= TT/(c8(p iydH((r3(r)-s6(tcyrl(aryD"-r5(rys0(ryWC)\\

(r6(fc>77")||

(t-s3(r)-WA)\\

(s Wproc(p \)yXBn + ' -s 5(r)- WB)))+

3(r)-s 6(tc)-r 7(ar)-Z)n -r 5(r)-s 0(r)- WC)\\

(r6(/c)-2(r

= T-T7(C3(r)-8#((56(fc>r7(ar)-Z)" r5(r)-j0(r)-

5(r> WB)))+

T-sl<Kproc(pl))"J7(c8(/> l)-9#(r 3(r)-5 6(fc)r 7(ar)-D" -r 5(r)-j 0(r)- WC)\\

(r6(/c>77")||

(fs3(ryWA)\\

= T-T7(C 6(tcydH((r l{aryD"-r 5(r)-s 0(r)- WC)\\

(p \))XB" +'-55(r>

(r)-aH((J 6(tcyrl(ar)-Dn -r 5(r)-s 0(r)-

(WA)\\

(XBn + 1s5(r

= T-slO(proc(pl))-T7a^((r 7(ar>D" -r 5(r)-j 0(r>
(77i)||

(WA)\\

\0(proc(p)yXBns5(ryWB))

[see(**)]
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So the process w is a solution of the following system:

= T ( T L " +* \0(proc(p \))'Kn)

L° =T-S \0(proc(p

= T-s \0(proc (p \))'Kn

SPECIFICATION 2.3

Now look at the specification of the process V, which specifies the intended
behaviour. From RDP it follows that a solution (v, en) exists. Now, if v is also
a solution of the specification for W, RSP can be used to infer that v equals w.

Define kn and ln by:

kn = Te

ln - T'en

v = 2
v9 then

= r(HH+sl0(proc(pl)ykn)
1° = T'el'V=T's\0(proc(p\))'e0v=T's\0(proc(pl)ysO(ryv

So (v9knjn) is a solution of specification 2.3.

2.4. Redundancy
Note that the specification of the workcell contains some redundancy. Al-
though the transport service has the capability to store any number of pro-
ducts in the queue, this feature is not used in the workcell. At any moment
not more than one product is stored in the buffer. So a one-item buffer would
have functioned in the same way. Also, the option of receiving first a transport
command and then a product is not used.

The capability of workstation A to receive a command to produce more
than one product is also not used.



Specification and verification of CIM-architectures 65

3. A WORKCELL WITH QUALITY CHECK

3.1. Specification

3.1.1. Global description. In this section a more complex workcell will be
defined, having the possibility of checking the quality of the produced goods.
Again we assume that some upper bound N is given which is the maximum
number of products the workcell can produce in one drive. The workcell con-
sists of four components. (1) Workstation A (WA) accepts a product,
processes it and returns either a good product or a faulty product. (2) The
Transport service (T) is a queue, at the one end accepting and at the other end
sending products. After receiving a product, the (3) Quality check (Q) deter-
mines whether it is a good product or not. A good product will be passed
along, while a rejected product will be removed. The latter occurrence is sig-
naled to the (4) Workcell Controller (WC). This part controls the workcell. It
receives the number of products that have to be processed, and instructs the
workcell to do so. While the processing is going on, it will count the number of
rejected products. At the end the workcell is instructed to process again an
amount of products, equal to the number of rejections.

The workcell is graphically depicted in Figure 3.

11

FIGURE 3. A workcell with quality check

3.1.2. Definitions. The four components are connected to each other by 12
ports. The ports 0 through 7 are used to transmit data and the ports 8 through
11 are used to exchange products. The ports 0, 1, 8 and 11 are connected to
the environment. The set P of Ports is defined by

The set PROD contains all products that are produced and processed within
the workstation. It contains product 1 (p 1) and the product p 1 after either
good or faulty processing (proc(p \,ok) andproc(p 1,fault)).
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PROD D {p 1, proc(p \,ok\ procip I,fault)}
A partial function qual can determine whether the processing of a product has
been good or faulty.

qual (proc (pl,ok)) = ok
qual (proc (p 1, fault)) = fault

Note that the information about the quality of a processed product is attached
to the product itself, and one can only become aware of it by explicitly using
the qual function. As an example consider drilling a hole in some product.
After drilling, the hole is in the right position or not, but one can only become
aware of this after applying some measuring tool, which reveals the quality.
Along ports 1, 2, 4 and 6 a non-negative integer (n) can be sent to indicate
that the receiver has to cope with n products. A ready message (r) is sent back
over the ports 0, 3, 5 and 7 to indicate that the component has fulfilled its
task. Port 5 is also used to indicate that a product has been rejected (rej). So
the set D, of items that can be transmitted is defined as

D = {H|0<« <N} U{r,rej}UPROD.
Thus the set of atomic actions can be defined by:

A={sp(dXrp(dlcp(d)\psPAdsD}U{i}.
The atom i is used to indicate an internal action. The communication function
on atoms is defined by

rp(d)\sp(d)=sp(d)\rp(d) = cp(d) forp<=P and deD.
All other communications yield deadlock.

After these preliminary definitions we come to the specification of the four
components.

3.1.3. Workstation A. Workstation A is a machine able to process a specified
number of products. This number is received over port 2 (2n>0r2(n)i Then
it executes its function n times (XAn). The process XA° simply sends a ready
message (s 3(r)) and starts the workstation all over. The process XAn+ is able
to receive some product &pGpRODr^(p)\ which has to be processed. The possi-
bility of either doing a good job or making an error while processing, is
modeled by using the nondeterministic choice operator. By prefixing the
actions with the internal atom /, a choice is made which cannot be influenced
by the environment.

XA°=s3(r)'WA
XAn + l = 2 (

PGPROD
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3.1.4. Transport service. The transport service can best be seen as a bounded
FIFO-queue. First it receives the number of products that have to be trans-
ported (2n>0r6(n)). Then it behaves like the empty queue with bound n {T\).
After transporting n products (To) a ready message is sent to the controller
(sl(r)) and it starts all over. The process T°n is intended to model a queue with
contents a, where n denotes the number of products that still have to be read
in to the queue. 7^ + 1 has an empty buffer, so it can only read in products
(^pEPRODr^(p))- T$q c a n onty output the contents of its buffer. The process
T°*$.\ can either accept some product (2p<EpRODr9(p)) o r it can send a queued
item (s lO(q)). This transport service differs from the one defined in the previ-
ous section in the sense that it needs less external control and that the capabil-
ity of buffering more than one product is being used. Also, its specification has
less redundancy.

T= 2r6(«)-7*

7$ = sl(r)-T

= 2 (
pePROD

2
pePROD

3.1.5. Quality check. The quality of the processed product is tested by the pro-
cess Q. It receives the command to test n products (2n>or4(n)). Then the n
tests are performed (XQn). If there are no tests left to do (XQ°) a ready mes-
sage is sent back (s^^)) and the quality check returns to its initial state. The
checks are done by accepting some product (2>pEpRODr 1CK/7)) a nd determining
the quality of that product {XQ^quai^). If the quality is ok then the product
can continue on its way (s\\(p)). If the quality is fault then a rejection mes-
sage is sent to the workcell controller (s 5(rej)) and the product is rejected (i.e.
discarded).

XQ0=S5(r)Q

XQ" + 1= 2 r\O(p)-XQ"Mual(p)
pePROD

XQlok=s\\(pyXQ"
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3.1.6. Workcell Controller. The workcell is controlled by the Workcell Con-
troller. It receives the message to process n products (2>n>orl(n)). When this is
done (D°), a ready message is reported (sO(r)) and the controller starts all
over. The process Dn + l handles the processing of n +1 products. It sends the
number of products that have to be processed to Workstation A (s2(n +1)),
the Transport service (s6(n+\)) and the Quality check (s4(n + \)). Then it
starts to count the number of rejections, starting with 0 (RCo). The Rejection
Counter will be incremented when it receives a rejection message (r5(rej)).
When the Quality check, the Transport service and Workstation A respectively
send their ready messages (r5(r)-r7(r)-r3(r)), the controller again commands
the workcell to process some number of products (Dn). This new number of
products is equal to the number of rejections encountered up to that moment.

D0=s0(r)WC

Dn + l =s4(n+l)'s6(n+iys2(n+l)'RCo
RCn = r 5(r)r 7(r )-r 3(r)D" + r 5(rej)-RCn + ,

Note that the order in which the ready messages are received is of importance.
If e.g. the ready message of WA can be received first, it is still possible for Q
to contain faulty products. But then, since WC is not able to receive any rejec-
tion messages from Qy a deadlock would occur.

3.1.7. The workcell. Now we are interested in the parallel operation of the four
components as described above:

WC\\T\\WA\\Q.
To filter out all unsuccessful communications we use the encapsulation opera-
tor. All unsuccessful communications are gathered in the set H:

Because we are only interested in the external behaviour of the system, we
abstract from the internal actions and communications, and define

1 = {Cp(d)\\p e{2,3,4,5,6,7,9,10} AdeD}U{i}.
Thus the final definition of the workcell W becomes

W=TfiH(WC\\T\\WA\\Q)

SPECIFICATION 3.1
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3.2. Correctness
Now we have to define some criterion for correctness of the specification. It is
not enough to require that for any command n along port 1 the workcell
processes n products correctly and reports a ready message. The problem is
that if there is not enough supply of products along port 8, the workcell can
reach a deadlock situation, waiting for more products. So we will only consider
the behaviour of the workcell in an environment, supplying an unlimited
number of products. The supplier is repeatedly sending product p 1 along port
8, and is defined by

Of course we have to encapsulate unsuccessful communications over port 8
and abstract from successful communications over this port.

H' = {rp(d),sp(d)\p=SAdt=D}
I' = {q>(d)\p=&Ad€:D}

So we will consider the behaviour of the following specification (See also Fig-
ure 4).

SPECIFICATION 3.2.1

FIGURE 4. Adding a supplier to the workcell

The intended behaviour can be specified by the following specification 3.2.2. A
command to process n products correctly will be received, then the n processed
products will be delivered and a ready message will be reported.
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E°=sO(r)

En + l=sU(proc(p\,ok))'En

SPECIFICATION 3.2.2

Now a verification of the correctness of the specification of the workcell will
consist of a proof that specification 3.2.1. and specification 3.2.2. define the
same process. So if w' and v are solutions of the two specifications, we have to
prove v =w'.

THEOREM 3.3. The specification of the workcell is correct.

ACPT+RDP+RSP+ET+CFAR + CA h v = w '

PROOF

3.3.1. Step 1. First we reduce the number of components by aggregating the
supplier S and workstation A. The resulting process (K) can be seen as being a
supplier of either good or bad products (Figure 5).

FIGURE 5. Aggregating S and WA

Let the process K be specified by

XK°=s3(r)-K
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And let the encapsulation set and the abstraction set be denned by
H\ = {rp{d),sp(d) | / ; = 8 A J G D } ,

I\ = {cp(d) | / 7 = 8 A J G Z » } U { J } ,

then the following proposition holds:

PROPOSITION 3.3.1.1. K=rIxdHX(S\\WA).

PROOF. Let the process L be denned by

Let L" be denned by
£n=T/i3/n(S||X4"), then
L°=Tndin(S\\s3(r)-WA)

=s3(r)-L

X'"5 9(proc(p,ok)) + is 9(proc (p,fault))))-XAn)

=rn(c%(p l>dHl(S\\(i-s9(proc(p I,ok)) + i-s9(proc(p 1,fault))))-XA")

=r(r-s9(proc(p \,ok)) + r-s9(proc(p \,fault)))-L"

Thus we have

L = 2 r 2 ( H ) L "

L°=s3(r)'L
Ln +] = T'(T-S 9(proc (pl9ok)) + rs 9(proc (p 1 Jault)))-Ln

Now it is easy to see that K and L define the same process. Use RSP to prove
that a solution of K is also a solution of system L.

As a consequence of this proposition we can replace the two components S
and WA by one simpler component K. This technique is called local replace-
ment and was introduced in [12]. In order to actually replace the two com-
ponents in the specification of the workcell, we need the conditional axioms
(see [1]).

W' = rrdH>(S\\W)
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= rruIdWUH(S\\WA\\T\\Q\\WC)

= TjdH(K\\T\\Q\\WC)

3.3.2. Step 2. In the second step we will remove the parallelism in the specifi-
cation by expanding the merges. This will result in a complex process, which
describes all states that the workcell has.

First we define a new abstraction set, 12, obtained by deleting the communi-
cation of the rejection message from the old one. This will be useful when
applying CFAR in step 3.

/2=/ \{c5(«y)}
If we define

U=TI2dH(K\\T\\Q\\WC\then we have
W'=T[c5{rej)](U).

For U we can derive
U = rI2dH(K\\T\\Q\\WC)="2rl(n)'TI2dH(K\\T\\Q\\Dn)

Let Un be defined by rI2dH(K\\T\\Q\\Dn\ then
U°=TI2dH(K\\T\\Q\\D0)=s0(r)'U

=TI2dH(K\\T\\Q\\Dn + x)

The process Un denotes the total workcell, which has just received a command
to produce a certain number of products. After distributing this command, the
workcell enters the state in which the products will be produced. In the process
of producing the products, there are several intermediate states. These states
are determined by e.g. the number of products that still have to be produced,
and the contents of the buffer of the transport service. The quality-check can
also contain some product, i.e. the product which is read in and will be chec-
ked. All values that determine the actual state the workcell is in, are listed
below:
choice The choice made in K about processing correctly or faulty. The

choice can be ok ox fault. If no choice has been made yet, the value
of this variable is X.

count The number of products that still have to be produced (not consid-
ering the number of rejected products).

buffer The contents of the buffer in the transport service. The value is A if
the buffer is empty.



Specification and verification of CIM-architectures 73

Qcont The contents of the quality-check part. The value is X if Q contains
no product.

re The rejection counter, counting the number of rejected products.
All states can be described using these five variables. Now it is possible to
define the process £/, indexed by these five variables, which describes the
behaviour of the workcell during the production of the products.

Define
rrchoice, count, buffer, Qcont,re

as the composition of the four components K, T, Q and WC, where the super-
scripts determine the state of the four components as follows:

If choice = X then K is in state XK°°un\ otherwise K is in state
s9(proc(pl,choice))'XKcoxini-1. Tis in state 7*SSg\

If Qcont =X then Q is in state jjfgcount+ibuffer̂  otherwise Q is in state
YV^count +1 bufferl

A \i Qcont, qual(Qcont)-

W'C i s m state #CC0MW,.

For every combination of values we can calculate the behaviour of the system.
Note that the choice can only be unequal to X if the count is positive. Let ch
be some quality (i.e. either ok ox fault), let n and re be natural numbers, let a
be a series of processed products and let q be a processed product.
rjch,n + l,a,proc(p \,ok),rc

c(p \,ch))-XKn\\rn + x \\XQ"p+k
l+W \\RCn)

=Tj(c9(proc(p l,ch))-dH(XK" 117^X'ch)*°ll*C?,Jt1+M \\RCn)+

l,ch)*o,proc(p \,ok),rc + s j \Q,roc(p \,ok))-Uch'n

Tjch,n + \,o,proc(p \,fault),rc

=T,(c9(proc(p l,ch))-dH(XKn\\Tre<pl-d>)''WXQtfa£M \\RCrc) +

c5(rej)-dH{s9(proc(p\,ch))-XKn\\T°n + x\\XQn + x+\°\\\RCrc + x))

_ T.jjX,n,proc(p \,ch)*a,proc(p \Jault\rc _ j_ c 5(rej\. Jjch,n + l,o,X,rc 4-1

jjch,n + \,o*qy\,rc

=T,dH(s9(proc(p \,ch))-XKn\\T°;U

c \0(qydH(s9(proc(p l,ch
T.TjX,n,proc(p \,ch)* a*q,\,rc _j_-.rjch,n +\,o,q,rc
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Tjch,n + l,X,X,rc

" + 1\\RCrc)

= T.(jX,n,proc(p\,ch)Xrc

TjX,n + l,o,proc(p l,ok),rc

= T,dH(XK" + ]\\T°n + , \\XQ"p$+H\\RCn)

= rI(r-dH(s9(proc(p l,ok))XK"\\rn + l \\XQ"p+k
]+l°l\\RCrc)+

TdH(s9(proc(p \,fault))XK"\\rn + l ||*g»,&1+M\\RCn) +

— _. Tjok,n +  \,o,proc(p \,ok),rc _i_ _. TJfault,n + \,a,proc(p \,ok),rc _i_

,« + \,o,proc(p \,fault),rc

—-  _. Tjok,n + \,o,proc(p \,fault),rc i _. rjfault,n + \,a,proc(p \,fault),rc i

T-dH(s9(proc(p \,fault))XKn\\T£U ||Z<2"

c iO(^)-9H(^"+' || rn+, lixe?,^")1 II^Cc))
_. j j o k , n + l , o * ^ , \ , r c _ ) _ _. r j f a u l t , n + l , o * ^ , X , r c _ i _ _. TTX,n

\\RCrc)

r-dH(s9(proc(p \,fault))XKn\\l\ + x \\XQn + x \\RCrc))
j . Tjok,n + l,X,X,rc _j_ rjfault,n + l,X,X,rc
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rjX,0,o,proc(p \,ok),rc

M mcrc))
=s\\(proc(p \,ok))-UXAaXrc

TjX,O, a,proc (p 1,fault), re

^jdffiXK0 \\U \\XQ\°\fault \\RCrc)

=TJ(C5(rejydH(XK° II7^ l l^ 1 " 1 \\RCn +,

0| + 1 \\RCK)
\°}qual(q) \\RCrc))

= T.l/X,0,o,q,rc

fjX,O,\Krc

= TIdH(XK°\\TU\XQ°\\RCrc)
=n(c 5(r)-c l(r)-c 3(rydH(K\\T\\ Q\\Drc))
= T-Urc

Thus we have the following system:
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2) UQ=s0(r)-U
3) fjn+ 1 =T.fjX,n+ \,\,K0

A\ Tjch,n + \,a,proc(p \,ok),rc —-

= T.JJ*^proc(p \,eh)*o,proe(p \,ok),rc + s j \(proc(p \^

c\ Tjch,n + \,o,proc(p \,fauli),rc —

—  T.jjX,n,proc{p \,ch)*oyproc(p \,fault),rc _|_ c ^(rej\. Jjch,n + \,o\rc

6^ TJch,n + \,o*q,\jc — TJX ,n,proc(p \,ch)*o*q,\,rc _(-«-. Tjch,n +\,o,q,rc

n\ Jjch,n + l,\,X,rc -—-.rjX yn,proc(p \,ch),X,rc

o\ TjX,n + \,o,proc(p\,ok),rc —

-—  _ . jjok,n + \,a,proc(p \,ok),rc _i_ jjfault,n + \,a,proc(p \,ok),rc i

Q\ rrX,n + \,o,proc(p \,fault),rc —

= = j . Tjok,n 4- \,a,proc(p 1,fault),re _j_ TJfault,n + l,a,proc(p 1,fault),re i

I Q \ TjX,n + \,o*q,\,rc —

— ~.jjok,n + \,o*q,\,rc \-.jjfault,n + \,o*q, \,rc \_T.TjX,n + \,a,q,rc

A,rc \-.jjfault,n + \,X,X,rc

12) ux>°-°'Proc(P l'ok)-rc = 5 1 l ^ r o c ( p l,oA:))-C/x-0'a'A-rc

13) ljX,0,a,proc(p\,fault),re _ ^ $(rej\. JjX,O,a,\,rc + 1

14) (jX,0,o*q,\,rc — T.jjX,Q,o,q,rc

15) UX*°'KKrc =T'UrC

SPECIFICATION 3.3.2

i.i.3. S/g? 5. In the final part of the proof we use CFAR (see [12]) and RSP
(see [2]) to prove that the system derived in step 2 (specification 3.3.2) can be
reduced to the desired specification F (specification 3.2.2).

Some observations about the specification above can be made. The number
of products that still have to be produced correctly (m) can be determined
from the values of the superscripts of the process:

count + |buffer| -h |Qcont| + re.

So we must prove the equality

for m — count + |buffer| 4- |Qcont| + re. We must also prove
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T-Em=T-T{c5(rej)](Um).

Comparing the two processes one easily notes that Um has the possibility to
produce only faulty products, hence it can loop forever, sending rejection mes-
sages. The process Em however does not have this possibility. Thus we must
make the assumption that workstation WA is not completely broken. It now
and then must process some product correctly. This fairness assumption can be
modeled in process algebra with the Cluster Fair Abstraction Rule.

The only cases in which it is possible to never process a product correctly
are the processes which are indexed such that (i) choice^tf/c, (ii) the buffer
contains no correctly processed products and (iii) Qcont=£proc (p \,ok). This
observation leads us to consider clusters of processes which satisfy these condi-
tions and have to produce the same number of products. Thus cluster m (for
m >0) is defined by:
CL (m} = I Um 1 U ( J/choice,count,buffer,Qcont,re I

choice^ok Aproc(p \,ok)^buffer AQcont^proc(p \yok)A
count + \buffer | + | Qcont \ + re = m }.

This defines a conservative cluster from [c5(rej)} in specification 3.3.2 (using
terminology of [12]). The workcell can choose to loop forever in such a cluster,
or it can choose to process some product correctly. This will be indicated by
setting the choice-index to ok. After some time, this choice leads to a correctly
processed product leaving the workcell. In the meantime the workcell has to
make new choices. If they are all negative, we again enter a cluster that per-
mits infinite loops. If a choice was made to produce one or more correct pro-
ducts, we are still in a state in which progress can be made.

Now we can determine the exits of such a cluster. These are all states which
can be reached from the cluster, but are no member of it. Thus there are no
correctly processed products in the buffers and the choice has been made to
process the next product correctly.

Applying CFAR to the specification derived in step 2 leads to a new
specification. This specification is equal to the old one for states which contain
some correctly processed products and is modified for states which only con-
tain faulty products.

Now set

W = T[c5irej))(U)

Wn=r{c5{rej)}(Un)
Tj/choice, count, buffer, Qcont, re -_ / r rchoice, count, buffer, Qcont, re)
yy T{c5(rej)}\iJ
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In the first part of the following specification we assume that there are
correctly processed products in the buffer a, or in Qcont, or ch --ok. The
numbers correspond to the numbers in the specification of U.

2) W°=sO(r)'W
4) fflch,n + \,o,proc(p \,ok),rc —.

= T.J^X,n,proc(p\,eh)*a,proc(p\,ok),re + J \\{prOc(p \,ok)

c\ Vt/ch,n + \,a,proc(p \,fault),rc —
—  _. TlfX,n,proc(p \,ch)*a,proc(p \,fault),rc _j_ \X[ch,n + \,a,X,rc

,n + \,o*q,\,rc —  T.jyX,n,proc(p \,ch)*o*q,\,rc +fT.yych,n + \,o,q,rc

,ch),\,rc

o\ irrX,n+ \,o,proc(p\,ok),rc —
— yyokyn  -I- \,o,proc(p \,ok),rc _i_ _. iTffault,n + \,a,proc(p \,ok),rc

n\ w X, n + 1, a,proc (p 1, fault), re —-
,a,proc(p \,fault),rc _j_ T . jyfault,n + \,a,proc(p \,fault),rc

10) |^X,/i-fl,a*^,A,rc —
1= j . \\fok,n + l,a* r̂, A,rc _|_ Ti/-fault,n + \,a*q, X,rc _j_ ^. w X ,n -I- \,a,q,rc

12) ^x-°- ( ' ' / " ' o c (P1- ( ) A : ^ c

13) fyrX,0,oyproc(p \,fault),rc = T .

14) ^j/X,0,a*^, X,rc —  T. p^

SPECIFICATION 3.4.3, PART 1

In the second part we assume that there are no correct products in the
workcell, so we are in a cluster. The expression ^EXITS (m) is shorthand for
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3) W^=r^EXITS(n + l)
Da) Vr ' ' T 2^Ln

ua) rV ' ' "' ' ~T* sth,X.1 L ij (r

i n \ yu'ch,n + 1,A,A,rc—T'^?F)CTTS!(n  -

Qa^ \A/^->n "*" l,o,proc(p \,fault),rc —  _.^n 17

11 \ TI/X,/? + i,x,x,rc—T'^PFXTTS(n ~

14a) ^x'°'^'A'-=r-2^/r5(|a|-
15) ^x^A,c = T . 2 ^ / r e ( r c )

Y/rS(/i+l + |a| + l+rc)
i + 1 + |a| + 1 +/*c)
-1 + re)
X7rS(/!+l+|o| + l+/r)

hi+rc)

SPECIFICATION 3.4.3, PART 2

This specification now describes exactly the same process as specification 3.2.2.
This can be easily verified by substituting V for W\ E° for W°, T-En + l for
J*™  + 1 and r.Ecount+\bu#er\+\Qcont\+rc for wcKcountMffer'QcontJC. No te that the only
equation not starting with a T is equation 12. So we must substitute £'lal + 1 for
wx,o,o,Proc(phok) S o w e s e e t h a t v i s a s o i u t i o n of the system defining W, and
thus we can use RSP to conclude that V equals W".

Note that RSP is only applicable if the specifications are guarded. A proof
of the guardedness of specification 3.4.3 is straightforward.

4. FINAL REMARKS
The techniques introduced in this paper seem to be powerful enough to aid in
the specification and verification of CIM-architectures. Although two workcells
were considered of low complexity, the basic concepts of the technique are well
illustrated. Now, due to the compositionality of the specifications, one can
build a large plant consisting of a number of workcells which are already
proved to function correctly. Thus, increasing the scale of the system will be
possible.

It is also possible to add new features to the workcell and model them in
process algebra. Possible features are: interrupts (modeled by the priority-
operator, see [3]), detailed reports on the functioning of a machine, changing
the tools of a machine, etc. Most of these features are not more complex than
adding quality checks to a workcell.

Since a wide range of proof-rules and proof-techniques are developed in pro-
cess algebra, the specification of a CIM-architecture in process algebra has
advantages over specification in e.g. LOTOS. To name one, in LOTOS there is
no equivalent of the fairness assumption.
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A Process Creation Mechanism in Process Algebra
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We introduce an encapsulation operator E^ that provides process algebra with
a process creation mechanism. Several simple examples are considered. It is
shown that E^ does not extend the defining power of the system 'ACP with
guarded recursion1.

1. INTRODUCTION

1.1. Extension of process algebra
In this paper we extend process algebra with a new operator that will be help-
ful to describe process creation. From a methodological point of view the
extension of process algebra with new operators is just the right way to incor-
porate new features. Only in a very rich calculus with many operators one may
hope to be able to perform significant algebraic calculations on systems. In
many cases a new feature requires new (additional) syntax and more equations,
only in very rare circumstances the addition of equations alone suffices to
obtain an appropriate model of some new system aspect. The core system
ACP, see [4,5,6], describes asynchronous cooperation with synchronous com-
munication.

On top of ACP various features can be added, for instance: asynchronous
communication [7], cooperation in the presence of shared data [1], broadcasting
[3], interrupts [2]. This note adds process creation to the features that are com-
patible with process algebra.

For historical remarks and relations with previous literature we refer to [4].

1.2. Process creation
We start on basis of the axiom system ACP which is supposed to be known to
the reader. We assume the presence of a finite set of data D and introduce for
each dsD an action cr(d). The action cr(d) stands for: create a process on
basis of initial information d. Let cr(D) denote the set {cr{d)\d^D}.

Let <p be a mapping that assigns to each d^D a process q>(d). Then the
operator E9 (process creation encapsulation w.r.t. <p) is defined by the follow-
ing equations. We assume that always cr(d)\a =8 and never a\b = cr(d).
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EV(S) = S

Ey{a) = a-S
E9(a-X) = c

Ev(cr(d)) =

E,(x+y) =

if a<icr(D)

<-E9(X)

cr(d>E9

Eyix) +

if a<£cr(D)

E*(y)

TABLE 1. Definition of E9

Here cr{d) is a new atom which indicates that process creation has taken place
(<p(J) is 'born').

As usual it is the case that on all finite terms E9 can be eliminated (pro-
vided (p(d) contains no cr(d) actions). In any case one can compute for each n
the n-th projection irn{t) of a term with E^ as a term without Ey by applying
the equations as rewrite rules from left to right.

2. VERY SMALL EXAMPLES
In this section we provide several examples that should support the claim that
E9 properly describes process creation on top of ACP. It should be noted that
in terms of [1] we are dealing with concrete process algebra, i.e. there is no
abstraction present.

EXAMPLE 2.1. D = {d], cp(d) = cr(d).
Let P^Eyicrid)), then P = cr(d)'Eq)((p{d)) = cr(dyE<f)(cr(d))= cr(d)P It fol-
lows that Ey involves recursion already under the simplest conditions.

We assume that we will always use guarded recursive specifications, and have a
semantics in the standard model of graphs modulo bisimulation. Then one
may use the approximation induction principle AIP (see [1]):

for all it,7rn(X) = TT,(7)

X= Y
Using AIP one can prove that in the absence of communication (a\b = S for all
a,b) the following holds:

This leads to the second example.

EXAMPLE 2.2. Let D = {d), <p(d)=a-cr(d)\\b'cr(d)9 a\b = 8 and p = Etp(cr(d)).
Then

p=cr(d)-Ey(a'cr(d)\\b-cr(d)) (using (*))
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EXAMPLE 2.3. Let D = {d}9 <p(d)=aicr(d)\\cr(d))+b, let a\b = 8 and put
p=Ey(cr(d)). Now

(again using (*)).

3. SMALL BUT GENUINE EXAMPLES

3.1. A population of animals
Let D be a finite set of genetic codes provided with a mixing operation *:
DXD-+D and a predicate i7 (female) on D. Moreover there is a predicate V
on Z) that indicates which genetic codes are vital and which are not. A vital
genetic code will lead to living offspring whereas a non-vital code will not. Let
for aeD:

pa = (hunt(tf) + sleep(tf) 4- eat(a) + id\o(a))pa + end(a).
Further for a EF we define the process qa as follows:

qa =
b$F

On the other hand if a&F then we define

qa = 2pair(M)-?fl +end(a).

Take the following communication function:

end(J)|end(^) = end(J)

(all other communications S). Let

Hx = {paxr(a,b)\a,beD}.

Then define

if a is vital (i.e. an element of V), otherwise take

<p(a) = 8.
Now define the system S as follows:
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S describes a population of animals starting with two individuals. Eacii animal
can hunt, sleep, eat, idle, pair, create (when female) and end (its life).

The population can develop in many different ways, in particular it can die
out. Very simple observations can be made on this system. For instance if both
a and b are male (i.e. &F) then no create action will take place.

3.2. The bag
Let B = ̂ 2deDTQSid(dycr(d) B and cp(d) = write(J). Consider B* =E9(B) then

d&D

= 2
dsD

= 2
d&D

= 2 T&*A'cr(d)iwrite(d)\\Bm)
d&D

Here we use the fact that B has no finite traces which implies that E^(B) has
no finite traces from which it follows that E^ByS equals Ey{B). Moreover we
use the fact that in the absence of communication E^ distributes over 11, as
well as the identity X\\(Y'8) = (X-8)\\Y.

If we now use abstraction and substitute r for cr(d) then we obtain (with
I — {cr{d)\d^D) and T7 as in [5]) that TJ(B*) satisfies the equation for a bag
over D:

d&D

This equation was discussed in several earlier papers, for instance [6).
The above calculation shows the intuition behind the equation fo* TJ(B*):

the read(d) action creates the option to write(J).

3.3. A sieve of Eratosthenes _
We will write a program that generates all prime numbers in N = [l ...,N] in
increasing order. The program is called SIEVE, all its internal steps and com-
munications will be represented by the action t, and it is claimed (but not
proved) that T( , } (SIEVE)_= write(2) • write(3) •...• w r i t e r s where 2,3,...,^
enumerates the primes in N in increasing order.
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3.3.1. Alphabet of actions A. 8: deadlock

/: internal step
for all
write (/): output /
send /(/): send j through port i
read i (/): read j through port i
cr(/): create a new process from data /, we write cr(i) = t
Then there is a family of atomic actions parametrized by pairs of elements of
N as follows:

t if i = 0 mod j
t(i = 0 mod j) = «

8 otherwise

t if J'T^O mod j
mod j) = <

8 otherwise

The communication function is taken as follows: send /(/)|read i(j) = t, all
other communications are 8. Counting the actions we find #(A) = 5N2 4-
N + 2.

3.3.2. Construction of the SIEVE. We have SIEVE =3//£(p(5<
1) where H, <p

and S i are given below.

H = {send i(j), read i(j)\i9jsN)
Sl =cr(2)- send 2(3)...send 2(N)

thus S i creates a process for the (first) prime 2 and then sends all numbers in
[3, N] in increasing order through port 2. (These messages are going to be
received by <p(2).)

<p(p) = Sp with
Sp=write(p).

modp)'cr(z)'Rz
p

RP = 2.read/?(z) [t(z =0 mod p)-B}p + /(z^O mod /?)-send /(z)-

The explanation of Sp is as follows: 5^ will be created as soon as a new prime
p is found by Sq (with q the prime preceding p). The first task of Sp is to out-
put p, then it receives a sequence of larger numbers and checks all of these on
being 0 mod p. The first z^Omodp must be a prime since it has survived the
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entire pipeline from S{ to S2 to S3 to S5... till Sq. For this z a new process Sz
is created. Thereafter Sp restricts itself to filtering out all numbers in the pipe-
line that are a multiple of/? and transmitting the others to Sz.

4. Ey CAN ALREADY BE DEFINED IN A C P
We assume a situation where the E^ operator is not explicitly mentioned in
the definition of <p. All foregoing examples are of that nature.

We will then show how to eliminate Ev in favour of synchronous communi-
cation. For each dsD an action cr*(d) is introduced and communication
works as follows:

cr(d)\cr*(d) = cr(d)
(the create-actions are not involved in any other proper communications).
Now define K^ as follows:

Let H—{cr(d), cr*(d)\d^D). Suppose that/? does not contain E^. Then

Note that K^ does not involve E^ any more. We support this identity by
showing that the operator /?—>9//(#<pll/?) satisfies the defining equations of E^.
On appropriate models, like the standard graph model modulo bisimulation it
can be shown that this type of functional recursion has a unique solution
indeed. We have to distinguish several cases

p=S = 8

p = X+ Y

= 8 +dH(Y\LK<p)

dH(X\LKv) +



A process creation mechanism in process algebra 87

Then there are the following cases for p involving the execution of an atomic
action:

1
form cr(d)

cr(d)

cr(d)-X

We consider the last case only, the others being similar or simpler.

p = cr{d)-X

E9(p) = Fr (d)-E9(X\\<p(d))

MKJp) = dH( 2 cr*(a)iKy\\<p(a))\\cr(d)-X)

= Fr(dydH((K<p\\<p(d))\\X)

5. CONCLUDING REMARKS
The message of this note is that process creation is a feature not too distant
from process algebra. It should be stated that this introduction of process crea-
tion can equally well be applied within related formalisms like CCS [9], CSP
[8], or trace theory [10] provided sufficiently many recursion equations can be
solved. In CCS it would be natural to write r for create (d).
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Palindromes and Sorting

L. Kossen

W.P. Weij!and
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In designing VLSI-circuits it is very useful, if not necessary, to construct the
specific circuit by placing simple components in regular configurations. Sys-
tolic systems are circuits built up from arrays of cells and therefore very suit-
able for formal analysis and induction methods. In two examples correctness
proofs are given using bisimulation semantics with asynchronous cooperation.
These examples also have been worked out by Hennessy in a setting of failure
semantics with synchronous cooperation. Finally the notion of process creation
is introduced and used to construct machines with unbounded capacity.

1. INTRODUCTION
In this article we will present simple descriptions of so-called systolic systems.
Such systems can be looked at as a large integration of identical cells in such a
way that the behaviour of the total system strongly resembles the behaviour of
the individual cells. In fact the total system behaves like one of its individual
cells 'on a larger scale'.

For example one can think of a machine sorting arrays of numbers with a
certain maximum length. Suppose we need a machine handling arrays that are
much longer. A typical 'systolic approach' to this problem would be to try to
interconnect the smaller machines such that the total circuit sorts arrays of a
greater length. As a matter of fact this specific example will be worked out in
the following sections. In designing VLSI-circuits (short for very large scale
integrated circuits) it is very useful, if not necessary, to construct the specific
circuit by placing simple components in regular configurations ([9]). Otherwise
one looses all intuition about the behaviour of the circuit that is eventually
constructed. For this reason one may see systolic systems as a sort of regular
subclass of VLSI-circuits which is very suitable for formal analysis. As we will
see from two typical examples from Kung [8] these regular circuits can easily
be analyzed as to their correct behaviour.

In designing a systolic system, finding a correct definition of the individual
cells turns out to be the main problem. Apparently we already have in mind
what we want the total network to do and hence we may assume there is some
general specification of the desired behaviour. Indeed this specification may be
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general in the sense that it only needs to describe the 'outside behaviour' of the
machine without specifying in detail the internal actions.

On the other hand looking for a correct definition of the individual cells we
are working with a much more detailed description, since all relevant actions
need to be described. This means we are looking for a certain implementation
that satisfies the general specification we had in mind.

In this article we will add an extra element to ACPT denoting chaos (see
Brookes, Hoare and Roscoe [4] and Bergstra, Klop and Olderog [3]). One can
look at this element, written as 12, as a process which runs totally out of order
without any restriction as to its behaviour. We assume that 12 does not (suc-
cessfully) terminate.

There is a specific reason for introducing 12 in ACPT. In fact, in a
specification £2 will stand for a process that is of no theoretical interest to us at
the moment. Think for example of the behaviour of a computer just after
memory-overflow occurs: in reasoning about the correct behaviour of the
machine we do not specify what the machine should do after having announced
its memory- overflow; the machine even may cause a deadlock instead of
announcing its memory-overflow at all, since the announcement itself is
already a diverging step from its specified behaviour.

So, not having specified part of its behaviour, we could say that the same
specification can be implemented by many different machines. This notion '...is
implemented by...' will be denoted by i= in the sequel.

We will define a new relation ^ on processes in an algebraical setting as is
shown below in Table 1. By definition we assume ^ to be reflexive, transitive
and closed under contexts. Moreover we assume all general laws holding for
atoms to hold for 12 as well.

In Koymans and Mulder [7] this notion has already been worked out in a
semantical setting of process graphs. So far it has not been verified whether
this leads to the same interpretation.

ft
Q

ft
a

•x

+
i=

Q

= ft

x=Q

X

1=8

CHI
CH2
IM1
IM2

TABLE 1. The axioms of chaos and of implementation

Within the semantical setting of Process Algebra (see Bergstra and Klop
[2]), in two specific examples we will be able to prove correctness of certain
implementations of systolic systems with respect to these specifications. These
proofs already were presented by Hennessy [6] using synchronous ('clocked')
cooperation between cells. In the following, however, we will specify asynchro-
nous versions of these examples. We therefore construct delay-insensitive
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circuits (see Ebergen [5]), which says that the system can 'wait' for communica-
tion at its channels without starting to malfunction.

Other authors working with formal specifications to describe the behaviour
of VLSI-circuits are for instance Milne [10] and Rem [11].

It turns out that ACPT provides us with a convenient proof system in which
correctness proofs can be presented in a fairly standard way.

At this place we especially want to thank Jos Baeten who took the trouble to
check this article several times and who gave so much of his support in
developing its content.

2. A PALINDROME-RECOGNISER
In the following we will describe a machine which is able to recognise palin-
dromes from strings of input symbols i.e. a machine that answers 'true' if and
only if a given string of input symbols is equal to its reverse.

Suppose S is a finite set of symbols from which the input strings are built up.
The actions of sending and receiving a symbol d along a certain channel are

written as s(d) and r(d) respectively. Moreover we have a predicate ispal with
strings of symbols as its domain which is true if and only if its argument is a
palindrome. Finally we write \w\ for the length of the string w.

Now we can easily write down the specification of the palindrome-recogniser
PAL as is done in Table 2.

PAL(e)=s(true)PAL(c) + 2 /*(*)•* (true)-PAL(jc)
xeS

PAL(w)= 2'(*Mispal(jc-H>))PAL(jt-H0 (M>0)
XGS

TABLE 2. A specification of the palindrome-recogniser PAL

The specification in Table 2 describes precisely our intuition about what a
palindrome-recogniser should do.

Note that the machine PAL only receives input symbols. Since it is clear
that a palindrome-recogniser should not throw away any of its received infor-
mation the machine described in Table 2 needs to be able to contain arbi-
trarily long strings of symbols. In practice, however, machines are of a finite
size. So from a more practical point of view we should first give a specification
of a machine that only works on input strings with a limited length.

In Table 3 a machine PAL^ is specified working exactly like the previous
palindrome-recogniser but now with a limit to the length of its input strings.
For reasons to be explained later this limit is put 2k instead of k.

We assume our machine PAL^ has an in/output channel numbered k + \.
So sk + i(d) and rk + x{d) will denote the actions of sending and receiving a
symbol d.



92 L Kossen, W.P. Weijland

PALo(w)=51(true)-PALo(w)4- ^'ito'to
xeS

<k + \(e)=Sk+2 (true) ?ALk + l(e) + ^rk+2(x)'Sk+1 (true) PAL^,
JC65

(0<\w\<2(k +1))
XGS

TABLE 3. A specification of PAL^ for arbitrary natural number k

The fourth equation tells us that if PAL^ has reached its maximum capacity
it will turn into chaos, i.e. it will not be restricted any more as to its behaviour.
Indeed if the machine has thrown away any of its input it can never react like
a palindrome-recogniser with respect to this input.

We will now introduce an implementation of a palindrome-recogniser of
some given size k. This means we will construct a machine implementing the
specification given above.

As mentioned in the introduction this particular implementation has the
look of a large integration of identical cells. As a matter of fact each cell itself
is again a palindrome-recogniser of size 2. We will prove that a merge of k
such cells gives us exactly a palindrome-recogniser of size 2k.

Consider the cell pictured in Figure 1. The i-th cell Q has two communica-
tion channels / and i + l. Internally C, has three storage locations one for
boolean values and two for symbols.

boolean

symboM

symbol2

FIGURE 1. An individual cell, Ch of the palindrome-recognisei

The cell Ct has three distinct states.
(0) In the initial state the cell carries no symbols, i.e.: carries the empty word,

and since the empty word is a palindrome it can always output the
boolean value true to the left. If a symbol is input from the left it is stored
in the location symbol2, then the boolean value true is output to the left
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since a word consisting of a single symbol always is a palindrome. The
cell now is in state one.

(1) In state one a symbol is input from the left and a boolean from the right
(in any order), and stored in the remaining locations symboll and boolean.
The cell is now in state two.

(2) In state two the cell contains two symbols symboll and symbol2 forming a
word that is a palindrome iff symboll = symbol2. Now a boolean value b
is output to the left, which is calculated according to the formula

b = boolean A(symboll = symbol2).

Hence before deciding about its output the cell C,- consults messages
received from the outside world. Together with this boolean output the
symbol in location symboll is output to the right (in any order inter-
leaved) making room for new input symbols. The cell is now in state one
once more.

In the language of ACPT the behaviour of the cell Q described above can be
expressed by the equations shown in Table 4. The fourth equation defines a
machine called TC which stands for terminal cell This terminal cell has a
fairly destructive behaviour with respect to its input data since they are simply
thrown away. Since TC never 'contains' any symbol (or always contains the
empty string) it can always output a boolean value true and thus behaves like
a palindrome-recogniser of size zero (note that the empty string is a palin-
drome). In the sequel we write B for the set of booleans {true, false}.

Q =si + l (true)-q + 2 / +1 (true)-C',(x)
x&S

=y\Av)\\si(y))'C'i(x)
TC=51(true)-TC-h 2

xeS

TABLE 4. Formal definition of the behaviour of an individual cell

Note that the second equation violates the scope rules of 2 since y and v
are bounded variables in the first term. We will nevertheless use this notation
as a shorthand for the correct but much more complex term

v&B VEB

We prefer not to introduce a formal notion here.
From the cells described above we now construct a stronger machine by put-

ting the cells in a chain and defining communications between connected cells.
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Consider the configuration as pictured in Figure 2 below. Since now the cells
are connected by their channels it is easy to see how we should define an
appropriate communication function. Through channel / the cells C, _ t and Ct
communicate by the communication action Sj(x)\ri(x). Any separate action
Sj(x) or rt{x) means something like 'waiting to communicate' and since we do
not want our machine to wait eternally for communication we have to encap-
sulate them. The only exceptions are sk + \(x) and rk + x(x) since there is no cell
Q + 1 to communicate with them. Hence these two actions can communicate
with the outside world.

TC

k k-1 1

FIGURE 2. A chain configuration of h cells

From now we assume k to be fixed.
We have in general the following communication function defined on atomic

actions:

Si(x)\ri(x) = ct(x) for all x<=SUB and
a\b —8 for all other pairs of actions a.beA.

The encapsulation set Hk of actions resulting in a deadlock is defined as

Hk = {Si(x),ri(x):xeS\JB and /<A: + 1}.
The abstraction set I of invisible machine actions is denned as

/ = {Ci(x): xsSUB and i<o)}.
Note that by definition machine actions are invisible if and only if they do not
occur in the specification of the particular machine. One can also look at them
as internal actions that can not be influenced from the outside.

The machine pictured in Figure 2 can algebraically be described as a com-
munication merge M(k) of k individual cells i.e:

M(k) = rflHk(Ck\\ '" IICiHTC).

In the following we will formally prove that M(k) indeed is an implementation
of the palindrome-recogniser given in Table 3.
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3. A FORMAL PROOF OF CORRECTNESS
Before turning to the formal proof itself let us first try an example to see how
the machine works. Indeed this gives us some intuition about the practical
behaviour of M(k) which will be helpful later in this section. The specific
example given below was found in [8].

In Figure 3 four connected cells are pictured and we can look at the
machine until the string baabaaba is input. As we see, immediately after
receiving a new input symbol the machine returns a boolean value at the left-
most channel to state whether the string in the machine is a palindrome or not.

In Figure 4 we connect the terminal cell TC to our previous machine and
assume aababba has already been input. When in addition abb is input we get
as output, true, although abbaababba is not a palindrome. So we see that the
behaviour of the machine depends on the length of the input.

If the input gets too long TC will destruct input symbols loosing all relevant
information about them.

We will now get to the main fact in this paragraph which will be proved by
means of the equations of ACPT together with RSP, the Recursive Speci-
fication Principle which says that if two processes satisfy the same guarded
recursive specification then they are equal.

To do this we first need to give a more detailed specification of the machine
we have constructed so far. As a matter of fact we will prove our machine to
be equal to the process DP^ specified below in Table 5.

xsS

TC=51(true)TC+ 2 ' i
xsS

where a function/(k,w) is defined as
[w if|w|<2A:

/ (K9w) - < first^ _ 1 > v v) . iast(A:,w) otherwise

with the obvious extra functions

! • • - xn) = (xx - - • xk)

! • • • xn) = (*„_* + ! • • • xn).

TABLE 5. A specification of DP*, for arbitrary natural number k
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input: a

output: true

input: b true

b

a

output: false

-
a b

input: a true

a

a b

output: true

a

true

a

b

input: a false

a

a b a

FIGURE 3. An example to give an idea of how the machine works
(to be continued)
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output: false -

a

true

a

b a

input: b false

b

a

-

b

true

a

a

output: false

a

true

b

b a a

input: a true

a

a b

true

b

a a

output: true

a

false

a

b

-

-

a

true

b

a

input: a false

a
a

-

-
b

false

a
a

-

-
a

output: false

a

false

a

b a

true

a

a

input: b false

b

a b

true

a

a a

FIGURE 3. (continued)



98 L Kossen, W.P Weijland

TC

input: b false

b

a

-

b

false

a

b

-

a

TC

output: false -

-
a

false

b

b

-

b

true

a

a

TC

input: b false

b

a

-

-

b

true

b

b

-

a

TC

output: false

a

true

b

b b

true

b

a

TC

true

a

a b

false

b

b

-

-

a

input: a

output: true

FIGURE 4. The machine now in connection with the terminal cell

Comparing the specifications of DP^ and PAL^ (see Table 5 and Table 3)
one can see immediately that DP*, is a more detailed version of PAL^. From
the axioms in Table 1 it follows easily that PALjt(e) i= D?k(e).

FACT. M(*) = ||C,||TC) = DP*(c>

PROOF. By induction on k.

k=0: TjdHo(M(O)) = r/3i/o(TC)-TC=DPo(€).

k + l: we first prove

Then the result can easily be proved by use of the conditional axioms. It is
easily checked that the following two equations hold:
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, + 1 L (1)

1 l . (2)
yeS

To continue we need a definition.
fv if \v\*Z2lc

DEFINITION. g(k,v) = ^ ^ y ^ ^ otherwise

Now we can formulate what is in fact the crucial induction hypothesis:

LEMMA. For all symbols x,yeS and strings v eS* we have

(i) T/3Hiti(C', + 1(x)||(^ + 1(ispal(g(A:,v)))-DPt(v)))

(ii) rtdHM{C'k + l(x,y, ispal(g(A:,v)))||DPt(v))

PROOF. Let

Q(x,v) = ^+i

Now we prove that we have

Q(x,v) =

which gives us precisely rD¥k + \(vx) given in Table 5, and hence Lemma (i)
byRSP. We have

t+1 ( ( ( 2 ^+2OOH 2 '•k+1 (*)) -c"k
ysS beB

2 ' k + 2 0 ) - T / 3 # 4 + 1 ( ( 2 »•* +1 (*)-c'V +1 (*, y , b))\\(sk +1 (ispaUg(k,v))) -
yeS beB

9 # t + , ( (2 'k +2(y)C"t +1 (x,y, is
yzS

= r-'2rk +2(y)-T/9i/t+i(C"k +,(x,7, ispal(g(*,v)))||DPt(v)) (using axiom T2).
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Furthermore we have

TidHkJC"k + \(x,y, ispal(#(A:,v)))||DP,(v)) =

= sk+2(\x=y\Aispal(g(k,v)))- T/a^+1(fe + 1(y)-C

zeS

- T / 3 ^ ((sk +! (\x =y | Aispalfe(*, v))) -C*

•T/3jf4+I(CV +1(*)Hfe +1(ispal(y/(fc, v))) -

and since

|jc=j|Aispal(^(/:,v)) = ispal(y-f(k, vx))

yf(k,v) = g(k,yv)
we have

dHk+i (Ck

After substitution we find

which is precisely what we wanted.
By RSP we have Lemma (i). Note that we implicitly proved (ii). • (Lemma)

The rest of the proof is straightforward:
With Lemma (ii) and (2) we have

Finally with (1) we have
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HDP*(e))+
xeS

using RSP again.
Note that we have proved

It is easy to prove by induction, however, that

a(Q + 1)|(«(Q||M(A: - l))nHk)QHk

fur all k (in fact a(Q + 1)|(a(Q||M(A: -\))nHk)= 0 , and

= 0).

So because Hk + iDHk we find with the use of the conditional axioms CAl,
CA2 and CA5:

••)) =

Ht(••• r,dHi(Ck +,||CfcII • • • IIC,IITC)

Since

HOI = 0

we have

I I C , I I T C ) •••

by axiom CA7 and finally with axioms CA5 and CA6 we find

Q + , I I Q | | - - - | I

-- IIC,IITC)

which is exactly M(A: +1).
Therefore, we have M(k) = DFk(e)y for all k. This finishes the induction. •

Finally we find

PAL*(£) N DPfc(c) = M(fc)=T/3if4(Q|| • • • IIQHTC)

so we have

which is the formal way to express that T / 3 ^ ( Q | | • • • 11Q IITC) indeed is a
palindrome-recogniser.
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4. A SORTING MACHINE
A second example of a machine implemented by a 'systolic system' is a sorting
machine. A sorting machine can input a sequence of numbers and output them
in increasing order. First we will discuss a restricted sorting machine which is a
sorting machine with a restricted capacity. For a good performance of such a
restricted sorting machine with capacity n it is necessary that the machine does
not contain more than n numbers. If the absolute value of the difference of
the number of input and output actions is greater than n, the behaviour of the
restricted sorting machine is undefined. Later on, a sorting machine which can
contain an arbitrary amount of numbers will be discussed.

Before we discuss in what way the restricted sorting machine is constructed
we first state its expected external behaviour. This is done in Table 6.

SORT*( 0)=j*(empty)-SORT*( 0 ) + 2 rk(d)-SORTk({d})

^rk(d)'SORTk(BU{d}) 0<|5|<ifc
d&D

*2rk(d)-tt \B\=k
dsD

TABLE 6. Specification of a restricted sorting machine with capacity k(k >0)

Some explanation is useful here. B is a bag or multiset with \B\ elements.
0 is the empty bag. If bag B is not empty the minimal element of B is
denoted by \iB. On bags the operations U and —  are defined in the standard
way. SORTfc(i?) is the restricted sorting machine of capacity k with contents
B. SORTfc has a communication channel k. Through this channel the res-
tricted sorting machine can output (sk) and input (rk) data to and from the
outside. A datum can be a number or a special symbol called 'empty'. The
relevance of sending an empty signal is made clear in the implementation part
later on. There it turns out to be an inevitable action as a result of that imple-
mentation. The £2 stands for the process chaos discussed in Section 2. fi is
encountered when the content of the restricted sorting machine gets greater
than its capacity. The behaviour of the machine then becomes irrelevant.

Now we will describe the implementation of a restricted sorting machine of
a certain capacity by connecting a number of identical cells. It shall be proved
that k connected cells plus one special cell is an implementation of the res-
tricted sorting machine SORT2£. The notion of implementation, denoted by »=
is described in Section 2. Before we discuss a chain of cells we first turn to an
individual cell.

An individual cell has two storage locations called MIN and MAX and two
communication channels. The channels of cell Q (/ >0) are called i and / —  1.
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Elements of a number set D can be stored in MIN and MAX. Elements of D
and 'empty' can be transmitted through the communication channels. An indi-
vidual cell Q is pictured in Figure 5.

celli

FIGURE 5. An individual cell C,

Each cell can be in three states.
(0) Iii this state both storage locations MIN and MAX are empty. The cell

C; can receive a number from the left. This number is stored in MIN and
the cell enters state (1). Another possible action is sending an 'empty' to
the left. In this case the cell remains in state (0). State (0) is also the initial
state for each cell Q (i >0).

(1) In state (1), MIN is filled and MAX is empty (really empty). A number
from the left can be received. The minimum of the content of MIN and
the received number is stored in MIN. The other number is stored in
MAX. State (2) is entered. The second possibility is sending the content of
MIN to the left and entering state (0) again.

(2) Now MIN and MAX are both filled and the content of MIN is less than
or equal to the content of MAX. The cell Q can receive a number from
the left and send the content of MAX to the right. MIN becomes the
minimum of the content of MIN and the received number. The other
number is stored in MAX. The cell remains in state (2). The other action
the cell can perform is sending the content of MIN to the left. Now two
possibilities arise: the cell receives an empty signal from the right, MIN
gets the content of MAX and the cell enters state (1). The second possi-
bility is receiving a number from the right. MIN becomes the minimum of
MAX and the received number and MAX becomes the maximum of the
two. The cell Q remains in state (2).

Because we are building a restricted sorting machine an extra cell is needed.
This cell is called Co. It is pictured in Figure 6. This cell has one communi-
cation channel called 0 and contains no storage locations. Co remains always
in the same state. In this state Co is able to send an 'empty' to the left or
receive a number from the left. The number received disappears completely.
Co can be considered as a cell crushing the incoming numbers.

The specification of the cell C, (/>0) is given in Table 7.
All parts needed for building a restricted sorting machine have been dis-

cussed. A restricted sorting machine with capacity 2k can be built by intercon-
necting k + l cells-C; (0<i<&). C/ and C,-_i(Ki<fc) communicate through
channel i —  1. Channel k is the external input/output channel for the machine.
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0

cellO

FIGURE 6. The terminal cell

i=0:

;>0:

Q> = ^ro(dyCo+so(emptyyCo
deD

deD

C',(d)='2ri(eyC'i(sw(fi

+Si(d)-(ri _ i (empty)- C,

Here sw stands for swap:

npty)-q

?, e))+Si(

(0+2'
/EZ)

rf)C,

'/-i(/")-C",-(w(e,/))

=(min(J, e), max(rf.

)

TABLE 7. Specification of an individual cell Q for

When an internal cell / (that is a cell which is not the first cell in the chain)
performs an action st(d\ r,-(rf), st-\(d) or rt-X{d\ dsDU {empty}, this action
must be matched by a complementary action of a neighbouring cell. For cell
Q only actions sk-\(d) and rk-\(d) must be answered by complementary
actions of cell k —  1. This is achieved in Process Algebra by defining communi-
cations Cj(d) as the result of st{d) and r^d) and encapsulating the individual
actions st(d) and rt(d). Of course the actions rk(d) and sk(d) are not encapsu-
lated because these actions are the communications with the outside world. To
illustrate that this chain of k cells plus one special cell really gives a restricted
sorting machine of capacity 2k an example is worked out in Figure 7 In this
case k=3.

A formal description of the machine discussed before and pictured in Figure
7 is given in Table 8. We call the empty restricted sorting machine built from
k normal cells plus the terminal cell SORT*2A:(c). Hk is the encapsulation set
and contains the actions that should not be performed without a partner. To
describe the external behaviour of the restricted sorting machine we abstract
from the internal actions that still can be performed after encapsulation. Sym-
bols to be abstracted from are in /. The resulting sorting machine is called
SORT*2A;(€). Now it will be proved that this restricted sorting machine is an
implementation of the restricted sorting machine defined by the specification in
Table 6.



Correctness proofs for systolic algorithms: palindromes and sorting

cell 3 cell 2 cell 1 cell 0

input 3

105

input 2

input 12

input 15

input 4

output 2

input 9

input 1

output 1 T 3

output 3

output 4

output 7

output 9

ran-a

2 4 3 15 7 12

3 9 4 7 12 15

1-CEHII
—i  i h-TTT—I  I I—

FIGURE 7. Example of restricted sorting machine
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T/o3lft(Q|| • • • IICo)
Communication actions ct(d) for each pair rt{d\ st(d\ dsD U {empty}, i <k:
c,(<0 = r,(<0k/(<0
Hk = {si(d\ rt{d)\ deDU {empty}, 0<i<k}
I = {Ci(d): deDU {empty}, i>0)

TABLE 8. A restricted sorting machine with capacity k for k >0

FACT. For all k7*\\ SORT2*(0) i= SORT*2it(e).

Before we turn to the proof some definitions are given.

DEFINITION.
(i) A sequence <d\,...,dn) is called correctly ordered (co.) if and only if

di<di+2 and 4 < 4 + i for all odd i. Note that every sequence contained
in the restricted sorting machine at any time will be co., as illustrated in
Figure 7.

(ii) On sequences <d\,..., dn) a function sw is defined inductively as follows:

d2), max(d\, d2))*sw(w') if \w\>2w = (d\9d2>*w'
FACT. (i) ifw is co. then sw((d)*w) is co.

(ii) if (d)*w is co. then sw(w) is co.
(iii) ifw*{d) is co. then sw(w) is co.

PROOF. The proof consists of two parts. First we prove that SORT*2>c(c) is a
solution of the specification, formulated in Table 9. Next we prove that any
solution of that specification also is an implementation of the restricted sorting
machine specified in Table 6. First we define SORT^(w) for k>0, weS*,

and w co. SORT^vv) is defined below:

DEFINITION.
(i) SORT'0(c) = Co
(ii) SORT2ik+2(€)=T/o8^+i(Q + 1 USORT'2,(£))
(iii)
(iv)

Now SORT"2Jt(e)= SORT*2*(e) is proved in two steps:



Correctness proofs for systolic algorithms: palindromes and sorting 107

SORT''2,(£)=^(empty)-SORT''2,(€) + 2
d&D

for all w with \{d\ >*w|<2A: and <d\ >*w c.o

JeZ)

for all w with | = 2A: and <di>*w*<d2k) c.o.

TABLE 9. Intermediate specification of a restricted sorting
machine with capacity 2k

first step: for all k>l, w c.o. and

SORT"2*0v) = SORT'^(w)

second step: for all k^ 1: SORTr
2^(c) = SORT*2£(c)

(*)

PROOF (•). The first step will be proved by induction on k and the length of
the content, k —  1: three subcases have to be considered:

(i)

SORT2(c)

deD

Using the definition of SORT'2A:(w) the intended result is obtained:

SORT'2(€)=

W = <dx) (ii)

2
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dsD

Using again the definition of SORT^(w):

.m>(<4 dl>))+sl(dySORT2(e)
deD

w = <d\, d2 >, w is c.o. (iii)

>ifI(c//
1(w(rf,rf1))iiCo)+Ji(rfi)-T-T/oa/fi(c/

1(rf2)iiCo)

so we have

dcD

k—n-^rl  where n>0. Five cases have to be considered:

(i)

» + i(empty)-Cw

d&D

+sn + 1(empty)-T/o3/?-+i (Cw + 1 ||SORr2w(c))

= 2 r» +1 W ' S O R T ^ + 1 } « d»+sn + ! (empty)-SORr2(w
JGZ)

This expression is in the form of the specification of Table 9.
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(ii)

SORT'2(n

d, dx))+sn +, (J, )-Cn + , ||SORT'2n(c))
I/EC

°9//.+, (C"n +1 (w(d, dx ))||SORT'2n(€)) +

l)-7I^H^{Cn + X ||SORT'2n(£)) =

Again in the form of the specification of Table 9.

M = 2, w — {dud2), w c.o.

"n + , (sw(d, dx ))||SORT'2n(€)) +

+ ^rn(eyCn + i(sw(d2, e)))l!SORT'2n(0)

(induction hypothesis)

3 ^ + I (C'n + , (c/2)||SORT'2n(£))

which is the intended form.

3<|w|<2A;, w=<dx,d2)*w', w' = (d3)*w", w c.o. (iv)

,, </2)||SORT'2n(w')) =

(iii)
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dsD

+sn + l (dO-ri^H^ ((rn(emptyyC'n +, (d2) +

+ 2 rn(e)-C"n + , (sw(d2, e)))||SORT'2n(w'))
eeD

(induction hypothesis)

= 2 rn +, (d)-T-r,odH^ (sn(d2)-C"n +, (sw(d, dx ))||
deD

\\SORT2n(sw(<d2>*(di>*w')))+
3^+ I (C"n +, (sw(d2, d3))\\SORV2n(SW(w")))

2
deD

again the intended form.

M=2fc, w=<dud2)*w\ w' = <d3)*w\ w" = w'"*<dk> (v)

SORT'2(n + 1)(w)=T/°aw.t, (C"n + l(du

dsD

+ 2 rnif)'C\ +! (^(^

(induction hypothesis)
= 2 rn +1 (d)-T'TjodHn+i (C"n + !

dcD

)-SORT2(/2 + l}(sw«d2 >*w'))
which is the intended form.

From this we can conclude SORT(H>) satisfies the specification in Table 9.
Using RSP we get for all k>l, w c.o. and 0<|w|<2A::

This ends the proof of (*). •
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PROOF (**). SORT'2*(€) = SORT*2*(c), is proved by induction on k.

k = 1 SORr2(£)=T/°3ffi(Ci IIC0) = SORT*2(€)

k>\ SORTv
2t(«)=T<'8fft(CJfcl|SORT'2Jt_2(e))

Because Hk(~\I= 0 one can rewrite this to

=T/°3// t°T/(Glia//(_,(Q_1||---||C0))

Because ot(Ck)\<x(dHk t(Ck-i II • • • | |C0))n/= 0 axiom CA2 can be applied

=T/°3^(Q| |3^_ |(Q-, | | - -- | |CO))

Because a(Q)|a(Q_1| | • • • ||C0)n//fc_, QHk-X axiom CA1 can be applied

Using axiom CA5 the induction step is completed

=T/°9f f ,(Q|ia-, | | • • • I|C0)=SORT*2,(£)

This ends the proof of (**). •

Comparing the specification of Table 9 to the one in Table 10 we directly con-
clude that SORT'"2A:(e) 1= SORT"2*(e) follows from the definition of K

Because of the transitivity of t= and since x —y => x  N y we only need to
prove the equation SORT'"2*(£) = SORT2fc(0) to prove SORT2^(0)^
SORT*2A:(c). Consider the specification in Table 10 then it follows that
SORT2*(2?W) (Bw denotes the bag containing the elements of w, w c.o.,
0<|w|<2A:) satisfies this specification, substituting it for S O R T ' " ^ ) . It is
crucial here that of any correctly ordered sequence the first element also is the
minimal element of that sequence. Using RSP we can conclude

). So, SORT2*(0) t SORT*2jt(c). •

deD

R T / / / ( ( / ) ) f | < r f > | 2 A l <rf> c . o .

d&D

for \<di)*w*<d2k>\ = 2k, w c.o.

TABLE 10. Intermediate specification of restricted sorting machine using £2
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5. A PALINDROME-RECOGNISER WITH UNRESTRICTED CAPACITY
In this section we will remove the restriction on the length of the input string
of Section 3. Thus no terminal cell is present. The specification of this machine
is given in Table 11 (compare with Table 2). k is the name of the
input/output channel. Note that the subscript k in PALA:(w) has nothing to
do with its capacity. It just indicates the name of the input/output channel.

)= 2 rk(x)sk(tmQ)?ALk(x)+sk(true)PALk(e)
XGS

PAL*(HO=

TABLE 11. Specification of palindrome recogniser with unbounded capacity

When more capacity is needed, a new cell is created. A cell can be in two
major states: it is a cell left from the last cell or the last cell in the chain. The
last cell is always empty. When the last cell is filled it creates a new cell on the
right.

As an extension of ACP the mechanism of process creation is described in
[3]. With this mechanism it is possible to create a new process concurrent with
the present one. To make process creation possible a creation atom and a spe-
cial operator E^ are introduced. We assume that a creation atom is neither a
result of a communication nor communicates with another atom. For all deZ>,
where D is a set of data, creation atoms cr(d) are introduced. This in combina-
tion with the special operator E^ gives a mechanism to create a process §(d).
When E^ is applied to a process all the atoms which are not creation atoms
will be executed without any problem. Whenever a creation atom is detected a
new process will be started. The axioms for process creation are formulated in
Table 12.

TABLE 12. Axioms for process creation
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The atom cr{d) indicates that the process <j>(d) has been created.
Since a creation atom neither communicates nor is the result of a communi-

cation, the following propositions hold.

PROPOSITION 1. For all closed terms x: E<i>°E<t>(x) = E<f>(x).

PROPOSITION 2. For all closed terms x9y:

We assume these propositions to hold for all recursively defined processes. An
example of process creation is given below. This example can be found in [3].

EXAMPLE. D = {d}, <${d)=a'cr(d)\\b'cr{d\ a\b=8. When P = E*(cr(</)) then
using proposition 2 we have P = cr(d)(aP\\bP).

Now let's return to our palindrome-recogniser and see how, in this specific
example, process creation works. We will first discuss an individual cell Q
which is pictured in Figure 8.

boolean
symbol2
symbol

cell i
FIGURE 8. An individual cell C,

Note that the names of the channels are reversed in comparison with
Section 2.

A cell Q can be in three states.
(0) The cell is the last cell and it is empty. When a symbol is received from

the left a new cell is created. The symbol is stored in symbol 1 and the cell
enters state (1). The second possibility is that a true signal can be sent to
the left. In this case, the cell remains in the same state.

(1) The cell contains one symbol. It can receive a symbol from the left and a
boolean value from the right in either order. These are stored in locations
symbol2 and boolean respectively. The cell enters state (2).

(2) The cell contains two symbols. We need the boolean value b to be calcu-
lated in the following way:

b — boolean A(symboll  = symbol2)

The cell sends value b to the left and symbol2 to the right. The cell enters
state (1) again.

A formal description of an individual cell is given in Table 13. Ci9 C'h and
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C"i correspond to the states (0), (1) and (2) respectively.

xeS

c,w=(

(jc)*cr(

yeS

V)
c
=(Sii

i +1)-^(true)

0}ii{2/'.+i(

:k=7|and

•C',(x)+5,(true)-

v)})-C",(x,7, v)

Q

)

TABLE 13. Specification of an individual cell

An example (the same example as pictured in Section 4) is written out in
Figure 9 on the next page. A formal definition of the palindrome-recogniser
with input/output channel k is given in Table 14.

Communications for / > 1: c,
Process creation for i ̂  1: <«
Hk - {Si(d), rt(d): deSUB,
I = {Ci(d),cr(i): deSUB, il

(d)=Si(d)\ri(d)

i>k}
^1}

TABLE 14. Formal definition of implementation of palindrome-recogniser

This definition is extended in the following Table 15.

Hk, /, communications, <>: see Table 14.

TABLE 15. Alternative implementation of the palindrome-recogniser
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output true

input a

output true —

input b —
trup
b
a

output false —
b

input a
true

output true —

input a — a —

a

false
a
a

true
a
b

h

—

output false —
t r im

input b
false

b
true

output false —
true

input a
true true

D

output true —
false true

input a —
fa l se

h

fa l se
a
a

FIGURE 9. Example of unrestricted palindrome-recogniser
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FACT. For all k>\: PAL^(c) = ?AL*k(e).

PROOF. Consider the definitions in Tables 14 and 15. It is immediate that for
all k PAL*^(c) = IPAL^(c). We will prove that the processes given in Table 15
are specified by the specification formulated in Table 16. From Table 11 and
Table 16 it is not difficult to see that PAL^(c) = PALV(c). Substitute PAL^(c)
for PALV(e) and TPAL^JCW) for PAI4(JCH>). This is a solution of the
specification in Table 16 and by RSP it follows that PAL)t(c) = PAL/

fc(e). So
what we need to prove is that the process defined in Table 15 is specified by
the specification in Table 16.

PAL't(e)=2'

X

PALH',(») = ,
eS

truO-PAL'^H

PALHV(xw) |v

l(w))PALV(w)

•-. (^PALW.)

|w|>2

TABLE 16. Alternative specification of the palindrome-recogniser for

PROPOSITION. I P A L ^ C ) satisfies the specification in Table 16.

PROOF. This is proved for all k simultaneously with induction on the length of
the content of the palindrome-recogniser. The proof considers five cases where
in each case the previous cases are assumed to hold for all k.

(i)

JCGS

Using E+(x\\y) = E+(x)\\12+(y)9 E<t>(x) = E<l>oE<t>(x) and the axioms CA1, CA2,
CA5 and CA7, and the fact that when / and H don't contain creation atoms
E^ can be pushed through the T7 and dH operators, we find

xeS
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Sofor

xeS

W=X (ii)

using step (i) we get

+ck + l(true)- 2rk{y)) -dHt °E+(C"k(x, y, true)||IPAI* +, (c)))
yeS

",t(x, j , true)||IPAI*

(using step (i) and T2).
SoforallA:>l:

(iii)

Using (ii) and T2,

, z,

Sofor

) = r-

(iv)

v))

Using the induction hypothesis we obtain:
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= rsk(\x =y\Aispal(v))'TIodHkoE<i>(Ck(x)\\lPALHk + l{yv)) (using T2)

Sofor allA:^l:
l?ALHk(yvx) = T-̂ (is

(v)

k x)\\ IPALH* + ! (v))

Using the induction hypothesis and T2 we obtain:

= T- 2 '*00-T/°ajT4 °^(C"*0y% ispal(v))||IPAL* + , (v)))
yeS

So for a\lk>\:

yeS

This ends the proof of the proposition. Then, using RSP as described above we
obtain the desired equality PAL*)k(c) = PALA:(€). •

6. THE SORTING MACHINE WITH UNRESTRICTED CAPACITY
After handling the restricted sorting machine in Section 5 we now come to the
sorting machine with unrestricted capacity. The specification of a sorting
machine with infinite capacity, which we call sorting machine from now on, is
given in Table 17. Note that the subscript in SORT^f?) indicates the name of
the input/output channel.

The implementation of the sorting machine is different from the implemen-
tation of the restricted sorting machine. The number of cells of the restricted
sorting machine was fixed but the sorting machine is built by using a variable
number of cells. The last cell is always empty. When this last cell receives a
number from the left it creates a new cell. When a stop signal is received the
cell stops working and disappears.

= 2 rk(d)-SORTk({d})+sk(emptyySQRTk(0)

TABLE 17. Specification of a sorting machine with infinite capacity for

Just like the cells of the restricted sorting machine these cells can contain
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two numbers in MIN and MAX. The content of MIN is less than or equal to
the content of MAX. The last cell can create a new cell when needed. A cell
Q is pictured in Figure 10. Note that the names of the channels are reversed
in comparison with Section 5.

(1)

celli

FIGURE 10. An individual cell

A cell can be in three states.
(0) The cell is empty. From the left the cell can receive a number or the stop

signal. When the cell receives a number from the left a new cell on the
right is created. The number is stored in MIN. The cell enters state (1).
When the cell receives the stop signal the cell stops working and disap-
pears.
The cell contains one number, stored in MIN. (a) The cell can receive a
number from the left. The minimum of the content of MIN and the
received number is stored in MIN. The larger of the two numbers is
stored in MAX. State (2) is entered, (b) The cell can send the content of
MIN to the left. Because the cell has become empty a stop signal is send
to the right. The cell enters state (0).
The cell contains two numbers, stored in MIN and MAX. (a) When a
number is received from the left, the content of MAX is send to the right.
The minimum of the content of MIN and the received number is stored in
MIN. The other number is stored in MAX. The cell remains in the same
state, (b) When a number is sent to the left two possibilities arise. If an
empty signal is received from the right, then the content of MAX is stored
in MIN, MAX becomes empty and the cell changes to state (1). Receiving
a number from the right doesn't change the state of the cell. The
minimum of the content of MAX and the received number is stored in
MIN. The other number is stored in MAX.

A formal description of an individual cell is given in Table 18.

(2)

deD

C'i(d)= 2>
eeD

+sl(d)i"2r
feD

sw(d,e) = (m

D

+ 1

dn(

(/+

yc"

(/)••

(ft
d,e

l)-C',(^)+r,(stop)+5,(empty)

( W ( ^ ) ) + , ( ^ , + 1(stoP).C,

sl + l(eyC",(sw(d,f))+

C",(™</,e))+/7  + 1(enipty)C'

), max(d,e))

•c,

,(e))

TABLE 18. Specification of cell i, i>0
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In Figure 11 below a chain configuration of cells is pictured to illustrate how
the unbounded sorting machine works. Note how cells are created and killed.
These cells are connected in the same way as is done in the restricted sorting
machine implementation. The behaviour of the sorting machine with
input/output channel k is described in Table 19. Note that the subscript of
SORT*fc(c) indicates the name of the input/output channel, and has nothing to
do with its capacity.

SORT*,(C)=T7O9

Communication:
Process creation:

Hk = {ri(d),Si(d):

I = {Ci(d),Fr(i +

HkE*(Ck), k^\
ci(d=ri(d)\si(d), deDU {empty, stop}), i>\
«K/)=C,
deD U

1): deD

, i>2
(empty, stop}, / >k +1} U {^(stop)}

U {empty, stop}, i>l}

TABLE 19. Formal description of a sorting machine with input/output channel k

FACT. For all k>l SORT**(c) =

PROOF. The definitions of c.o. and sw (see Section 5) will be used in this
proof. Similarly to the restricted sorting machine section an intermediate
specification is given in Table 20. This specification includes the possibility to
stop the sorting machine. An extended definition for the chain of cells is given
in Table 21.

SORT'*(c)=

SORT"k(<dx >*w)= 2 rk(d)'SORT"k(sw(<d>*<dx
deD

+sk(di)-SORTk(sw(w)) <dx >*w c.o.

TABLE 20. Intermediate specification of unrestricted sorting machine

By putting r^(stop) in Hk the machine described above is obtained. This
step is necessary to make a proof by induction possible. However, the desired
equation is obtained after abstraction from r^(stop) in SORT'^c).
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-m
i«p».3 _131 H ~ n

input 7

input 2

input 12 12 K

output 2 — P L Z J — i 7 1 1 5 — i n i —r~j

mH-EaHn
output 1

output 9

output 12 | l 5 | | 1 | |

output 15 1 F

121

input 9 —[J__M—[Z~_ZJ—LLii]—I  I

input 1

FIGURE 11. Example of unrestricted sorting machine
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SORTk(<dud2>

SORTk(<dud2>i

Communication:
Process creation:

H'k = {r,(d),Sl(d)
I = {Ci{d),Fr(i +

*w) = TrfH.to-E+(C"k(dUd2

c,(<0=r,(<%(tf)

: deDU(empty, stop}, i^

I): dsDU (empty, stop}, i

Ck + \) <d\, d2) c.o.

)||SORT'fc(w))
(d\, d2)*w c.o., |w|>0

deDU{empty, stop), i>\
i>2

^ + 1}

>\}

TABLE 21. Alternative definition for the implementation

PROPOSITION.
(I) for allk>\,w c.o.: SORT'V(w) = SORT\(w)
(II) for all k>l,SORTk(0) = dH.k(SORTk(€)\ where H*k = {rk(stop)}
(III) for all k>\9SORT\(€) = dH.k(SORTk(d\ where H*k = {rk(stop)}

PROOF. (I) This will be done by induction on the length of the content simul-
taneously for all k. The cases (i), (ii) and (iii) are the basic steps. Case (iv) is
the induction step.

(i) for all k
SORTit(c)=

d

SORT^(c) -

rk(d)-cr(k
deD

d&D

(ii)
deD

SORTk«dx» = Tjo^k
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= 2 rk(dySORTk(sw«d, dx

deD

Using the standard concurrency axioms and E^(jc||_y)=E^(jc)||E^(y) we obtain:

Applying conditional axioms CA, E^°E^(X) = E^(JC) and using the fact that
when / and H don't contain creation atoms E^ can be pushed through the 77
and dH operators this last expression becomes

Using the definitions in Table 21:

= ri°dH>ko^(C"k(sw(d9 dl))\\SORTk^«d2») = SORTk(sw«d9 dud2))\

Making this observation the desired result is obtained:

d, dud2»)+sk(dlySORTk«d2».
deD

(iv) This case is the induction step. The proposition will be proved for all k
and w, |w|>3, assuming it has already been proved for a\i k>\ and w\
|W'|<|H>|. In this proof w = {d\9 d2)*v is co., |v|>l and v = <<i3>*v'.
SORTV(w)= 2

deD

Using the induction hypothesis on SORTV + iO), \v\>l, we obtain:

deD
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Considering the definition of sw we obtain:

= 2 rk(dySORTk(sw(<d>^w))+sk(dl)'SORTk(sw(<d2>^v))

Using RSP we have the desired result. This ends the proof of proposition I.

PROOF. (II) For w c.o. SORT^(w) satisfies the specification in Table 20. Then
it is easy to deduce that ^^(SORT'^e)) is specified by the specification in the
following Table 22.

-dH*k (SORTk«d»)+^(empty)-3//% (SORT'*(c))

deD

+Sk(di)-dH*k(SORTk(sw(w))) <dx >*w c.o.

TABLE 22. Specification of dH*k(SORTk(€J)

To prove proposition II substitute for all c.o. w SORTk(Bw) for
9//%(SORT/

A:(w)) where Bw is the bag containing the elements in the sequence
w. Because the first element of a c.o. w is the minimal element of the sequence
it is easy to see that SORT^(0) satisfies the specification in Table 22. Then,
with RSP the equation in proposition II is proved.

PROOF. (Ill) This is proved using the conditional axioms CA5 and CA7.
We find:
for all

3 ^ (SORTV(c)) - dH\ °T/°3/rt °E*(C*) = rtf^ u H\

so we can conclude for all k SORT\(e) = SORT^( 0 ) . D
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In this paper a concurrent sorting algorithm called RANKSORT is presented, able
to sort an input sequence of length n in log n time, using n2 processors. The
algorithm is formally specified as a delay-insensitive circuit. Then, a formal
correctness proof is given, using bisimulation semantics in the language ACPT.
The algorithm has area-time2 -O(n2 log4 n) complexity which is slightly sub-
optimal with respect to the lower bound of AT2 = f i (n 2 log n).

1. INTRODUCTION
Many authors have studied the concurrency aspects of sorting, and indeed the
n-time bubblesort algorithm (using n processors) is rather thoroughly analyzed
already (e.g. see: Hennessy [3], Kossen and Weijland [4]). However, bubblesort
is not the most efficient sorting algorithm in sequential programming, since it
is H2-time and for instance heapsort and mergesort are «log«-time sorting algo-
rithms. So, the natural question arises whether it would be possible to design
an algorithm using even less than H-time.

In this paper we discuss a concurrent algorithm, capable of sorting n
numbers in O(logn) time. This algorithm is based on the idea of square com-
parison: putting all numbers to be sorted in a square matrix, all comparisons
can be made in 0(1) time, using n2 processors (one for each cell of the
matrix). Then, the algorithm only needs to evaluate the result of this
operation.

The algorithm presented here, which is called RANKSORT, is not the only
concurrent time-efficient sorting algorithm. Several subn-time algorithms have
been developed by others (see: Thompson [5]). For instance algorithms were
presented of time-complexity Vn, Iog3«, log2** and log«. Indeed, the square
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comparison algorithm presented here, appeared in [5] as well. Its network has
been given various names, like mesh of trees or orthogonal tree network.

In this paper we will show how a logn-sorter can be constructed. Moreover
we will present a formal specification of the algorithm and prove it correct
using bisimulation semantics with asynchronous cooperation.

At this place we want to thank Niek van Diepen (University of Nijmegen)
and Karl Meinke (University of Leeds) for their contributions to this paper.
Moreover we thank Jaap Jan de Bruin for his assistance concerning the illus-
trations which were made on an Apple Macintosh. Finally, we thank Jos Bae-
ten for his remarks on the early drafts of this paper.

2. SORTING BY SQUARE COMPARISON
Suppose we have a sequence <0O>0i >02>... ,0n-l> of distinct numbers, for some
n >0 , and consider the problem of computing a non-decreasing permutation of
this sequence. Note that, in fact, we can start from an arbitrary set of symbols
and any linear ordering > , defined on this finite set. Now restrict this order-
ing to the n elements that are considered, then we obtain a finite ordering,
which can be represented in a matrix as pictured in Figures 1 and 2.
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FIGURE 1. Defining > by laying out a full matrix

In every cell (ij) of the matrix in Figure 1 we write 1 if a / >a / , and 0 other-
wise. Note that now the matrix has only 0's on its diagonal. Moreover it is
antisymmetric, i.e.: if i^j we have 1 in (ij) if and only if we have 0 in (/',/).
So in fact we only need one 'half of the matrix.

The idea of square comparison now simply reads as follows: suppose we
have a finite sequence of numbers to be sorted, then all the information
relevant to the ordering problem can be computed in unit time, starting from
the matrix above. Indeed, in one blow all AI2 individual cells (i,y) can do one
comparison (between at and aj), and next all information about > is available.
Note that we can set up this matrix in O(logw) time, starting from n proces-
sors containing the values to be sorted. Thus all ordering information can be
computed in OQogn) time.

After O(logw) time we have computed a matrix which is full of 0's and l's.
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Note, that on the i-th row, we have a 1 for every aj which is smaller than at.
Hence the number of l's in the i-th row is precisely the number of elements aj
out of <<Zo,tfi,tf2> —  »fln-i^ satisfying aj<at. However, the number of ele-
ments less than at is exactly the index of at in the sorted sequence, i.e.
represents the place of the number at in the sorted array.

Finally note that the number of l's can simply be found, by computing the
sum of all matrix values on the row considered. This computation can be
done in 0(log/?) time, since we can repeatedly add pairs of numbers con-
currently, until there is only one single value left. Thus we conclude that, for
all input values, we can compute the 'sorted index' in O(logrt) time.

In fact we have computed a permutation of the index values
<0,l,2,... ,/i —1>.  From this permutation one can compute the sorted array in
0(1) time, since all cells consider the computed index value, as an address to
send the value to, they actually contain. Having enough wires to interconnect
all cells, this can be done in one single computation step. (By putting the pro-
cessors in a tree configuration once again, we can do this in O(logw) time,
with many wires less.)

So, indeed, we can sort a sequence of numbers in logrc time using n2 proces-
sors. An example of this square comparison method is presented in Figure 2.
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FIGURE 2. An example of the square comparison method
on the sequence <2,7,1,-5,11,2,3,8)

Here we have a small problem: suppose two numbers in the array are equal
(the numbers are no longer distinct), then the matrix values, computed in Fig-
ure 1, would be equal for both numbers. Thus the problem is that the com-
puted array of index values no longer is a permutation of <0,l,2,... ,/i —  1),
since some of the computed indices might be equal.

In Figure 2, this problem is solved by slightly changing the former pro-
cedure. Now, the 'lower' cells, i.e. the cells below the main diagonal of the
matrix, do not compare two values via ' > ' but via *>'. It turns out that the
computed indices indeed are a permutation of <0,l,2,...,« —  1) and that the
'original order' of equal numbers is preserved in the sorted array.

In Figure 2 the sequence <2,7,1,-5,11,2,3,8) is considered. Note that here,
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the computed index values <2,5,1,0,7,3,4,6) indeed form a permutation of
<0,1,2,3,4,5,6,7). To be specific: note that the number 2 has two different
computed indices (namely 2 and 3); without the adaptation mentioned above,
both occurrences of the value 2 would yield the index value 2.

The sorting machine considered in this paper is pictured in Figure 3, for
n =4. Note that on the upper side we have n trees, one for every input value.
Each input value is broadcast to n leaves in a row of the matrix, which is in
the middle part of the machine. Then, the cells on the main diagonal will send
the value received from the upper tree downwards to the bottom of the con-
nected lower tree; this value is broadcast upwards again to n matrix cells,
belonging to a column of the matrix. So, every matrix cell now contains two
values, precisely in the way as in Figure 1. Then the n2 comparisons are made
and each cell sends a 1 or a 0 to its upper tree. In every node the addition of
two input values is computed, and the result is sent upwards again. Finally,
the computed index permutation can be read from the roots of the upper trees.

3. A FORMAL SPECIFICATION OF THE SORTING MACHINE
In this section we will present a formal specification of RANKSORT, using the
language ACP. First, we have to name the channels of the machine (Figures
3-5) in order to be able to give a precise definition of the behaviour of the
individual cells. For reasons of simplicity, in the following we will assume
n =2k for some given k >0, n being the length of the array to be sorted,

In Figure 4 we present the names of the processes, corresponding to the ver-
tices in the trees and the cells of the matrix. The upper trees are called
Ui(0<i<n) and the cells in these trees are numbered Uij(0<j<n). Like-
wise, the lower trees are called Ly, with cells LUj (0<i<n), and the matrix cells
are called MUj (0<z, j<n). The bottom cells will be called £, (0</ <n).

Note that for all i, Ut has depth 2logn—k  and has 2 — l = w - l cells.
Further, the cells and channels in the trees are numbered 'left first/ breadth
first', as one can see in the Figures 4 and 5.

Now, let us present a more detailed description of the behaviour of the indi-
vidual processes.
• A cell Ujj will receive a value from its upper neighbour. Next, it will send

this value to both of its lower neighbours, and from both of them it will
receive another value in return. Since both lower neighbours are indepen-
dent processes, these send and receive actions are fully interleaved. Finally,
having received two values from below, Utj will send its sum up again.

• A matrix cell MUj in the middle of the sorter will first receive a value from
the upper neighbour. Then, if it is a diagonal cell, it will send this value
downwards to its lower neighbour. For sake of simplicity, we will make
non-diagonal cells send a value nil downwards as well. Next, the cell will
receive a new value from below, and send up a 0 or a 1, depending on its
position (see Figure 2) and the two input values.

• A cell Ljj from one of the lower trees, will first receive two values from
above (in any order). Note that in any lower tree only one leaf, the one in



Verification of an algorithm for log-time sorting 131

FIGURE 3. A 'mesh of trees'; the circuit configuration of RANKSORT
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FIGURE 4. The names of the individual cells in the sorter
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FIGURE 5. The channel numbers are in left first/breadth first' order
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the diagonal of the matrix, will send down a number. The others will only
send down nil. Now, if one of the values received from above is not ml, LUj
will send this value to its lower neighbour. Otherwise it will send down just
nil. Next a value is received from below and 'broadcast' upwards, just like
in Uitj, by sending it to its upper neighbours.

• Finally, a cell Bj from the bottom of the machine, acts as a reflector it will
receive a value from its upper neighbour, and simply return it. Note that Bj
will actually receive the number (^nil) which is sent down by MJJ.

Now we will translate these informal descriptions into the algebraical
specification language ACP. To do this we need the definitions of the follow-
ing functions.

DEFINITION. We need a function diag to specify the value that will actually be
sent down by Mtj after having received d:

diag(U,<0 = d

diag(z,y,</) = nil

DEFINITION. We also need a function comp to express what boolean value, 0
or 1, will be sent up by Miy again, after having received d and e. So in comp
we actually use the square comparison method (see Figure 2):

comp(/,y,</,e) = if i>j then if d>e then 1 else 0 fi

else if d>e then 1 else 0 fi

fi;

DEFINITION. Finally we need a kind of exclusive or on strings of symbols, to
express what value is sent down by L/y after having received two values

xor (d, nil) —  xor (nil, d) = d

xor(d,e) = xor (nil, nil) = nil (d9e eD).

Inductively, we will define xor on arbitrary strings of length n=2k:

Note, that if exactly one value out of {du... ,</„}, dt say, is not equal to nil,
then xor(^!,... ,dn) = di. So xor 'picks' out the unique value =̂= nil, assuming
this unique value exists. This more general definition will be needed later, to
describe the specific behaviour of the lower trees, since all of its leaves will
send down nil except for the leaf on the diagonal of the matrix.

Now we will turn to the formal specification of the cells (see Table 1). In
this specification we have atomic actions rtjm{d) and sitjtm(d) for receiving and
sending a datum d from and to the channel [i,j,m]. Note that receive and
send actions do not have a fixed 'direction' in the channel. We assume D to



Verification by square comparison 135

be a (finite) set of numbers. All (bound) variables are written in italics.

deD

• 2 r<
eeD

' Sij +„, 0(comp (ij,d,e))

•s,-; i(xor(</,«))•

/ei)

TABLE 1. Specification of the cells in the sorter

As a shorthand, the scope rules of 2 are violated in the first equation. Writ-
ing out || using the axioms CM 1-4 of [1], Utj can easily be specified correctly
(see also [4] and [6]). It takes some effort to check all the indices, correspond-
ing to the names of the channels. However, making use of the regular
configuration of the circuit, and comparing the specification with Figures 3
and 4, one can find out that they are presented correctly here. Furthermore, in
the next section we will concentrate on a formal proof of correctness of the
sorter, and from any such proof it follows immediately that the channel
numbers in the specification above are correct.

Now we present the final specification of the sorting machine as a whole by
simply interconnecting all cells (see Table 2).

TABLE 2. Specification of RANKSORT
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So this is the specification, in detail, of RANKSORT. Indeed, it is not clear at
all why such a complex machine would be a sorting machine. In the next sec-
tion we will hide almost all of the internal actions of the machine (only actions
via channels [i, 1,0] are of interest to the user). Then we will prove the result
to be a sorting machine, and hence prove RANKSORT correct.

4. FORMULATING A CORRECTNESS THEOREM
In this section we will present a formal theorem of correctness for RANKSORT,
i.e.: abstracting from internal actions, we will state that RANKSORT indeed
behaves like a sorting machine. To do this, we first have to specify what actu-
ally is a sorting machine.

DEFINITION. In the following we define the sorted indices of a given sequence
of numbers. Suppose a = <a09ai,a2,... ,an-\> is such a sequence of numbers,
then we have:
(i) <pQ(a),... ,pn-X(a))zPERM«0,... ,n - 1 » ,
(ii) pt(a)<pj(a) implies a^a^
(iii) pi(a)<pj(a) & ty^aj implies /</ .

Because of part (iii) of the definition the permutation pl(a)o</<w satisfying all
three conditions, is uniquely determined.

Note that from the sorted indices Pi(a)0<i<n we can immediately compute
the sorted sequence itself: assume we have n processors Po> ••• >Pn-\> contain-
ing the values/?o(tf),•• >,pn~\(a) and ao,...,an-\ respectively, and suppose all
processors are interconnected by channels (wires) then in one step every pro-
cess Pt can send the number at to the 'address' given by pt(a), i.e.: to Ppt(ay

Next we will formulate a crucial proposition, stating a criterion for tx>rrect-
ness of the square comparison method. A proof of this proposition is omitted.

PROPOSITION. For all sequences a —  (ao,... 9an-\ > and all 0^ / < « we have:
n-\

Clearly, the proposition states that the square comparison method provides us
with the sorted indices of the input sequence. Using this proposition we will
be able to prove RANKSORT correct, in the sense that RANKSORT turns out to
calculate precisely ^20<j<ncomp(i,j\ai,aj) for all sequences <a0,... ,an-\)

DEFINITION. Suppose a process SORT(AZ) satisfies the equation

SORT(*)=

and x = <x0, ••• >*n-i h ^ e n SORT(AI) is called a sorting machine of size n.
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So we agree that any machine that receives a sequence of n numbers, and con-
sequently outputs ail sorted indices of this input sequence, may be called a
sorting machine. Now we will return to RANKSORT again.

Let D be a (finite) set of numbers. Suppose n—7.  , fc^O. The communica-
tion function | is defined by

irujym{d)\sUhm{d)) = (siJim(d)\r^m(d)) = c^m(d) for all ij,m9

all other communication actions result in deadlock, S.
The encapsulation sets Mny Bn9 Hn and En are defined by

{st +„,,-!(d),rt +„,,,x(d):deDU {iul}, i,y < « }

corresponding to all channels connected with the matrix cells M,7,

corresponding to the channels connected with the bottom cells Bj9

Hn = {suj%m(d)9 riJm(d): deD UN U {nfl}; for all i,y,m, such that:

) and ( i » ^ = ( l , l ) and ij<n]

which is the set of all communicating actions, except for actions from Mn or
Bn or the ones corresponding to the input/output channels [i, 1,0] (i <n\

En=HnUMnUBn.

Finally, the abstraction set I is defined by

/ = {Cij>m(d): deD U {nil}; for all appropriate ij9m).

The definition of the communication function says, that receive and send
actions only result in a communication Cjjm(d) if they correspond to the same
channel [ij,m] and the same datum d. If not, a deadlock occurs, e.g. if
dx^d2 then (r2t7to(d)\s5>2A(d)) = (rUhm{dx)\sUjim{d2)) = fy,*W|ty,m(<0) = «•
The choice of the encapsulation sets Afn, 2*n and ifn is quite standard: we want
no single receive or send actions to happen without direct communication with
their 'partner', since otherwise data would be sent to a channel but never read
from it. Except for the receive and send actions on the channels [i, 1,0]
(0<i<n): they are the input and output channels of the machine, and are
ready for communication with the outside world. The encapsulation sets, Mn
and Bny are defined separately from Hn, to simplify the proofs that will be
presented later. At the end of the proof, however, we will encapsulate all
actions from En =Hn UMn UBn.

The abstraction set / has no index n since it contains all communication
actions Cijm(d). By renaming all actions from / into T we can hide internal
communication actions from the outside world. Note that any user of
RANKSORT will indeed not be interested in the internal communications of the
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machine; only the outside behaviour will be observed, i.e.:
T/9^ (RANKSORT(AI)).

Now a correctness theorem can easily be formulated as follows:

THEOREM (CORRECTNESS OF RANKSORT). For all k>0 and n=2k, we have

ACPT I- T/9^(RANKSORT(rt)) = SORT(Tl)

where SORT(AI) is specified earlier.

This theorem states that T/9^(RANKSORT(AI)) is indeed a sorting machine in
the sense of the definition of SORT(H). The proof will be presented in the next
section.

5. A FORMAL PROOF OF CORRECTNESS
In this section we will present the final proof of the correctness theorem. First
we will simplify the problem by stating and proving two lemmas. Combining
both of them we can easily find the proof we are looking for.

First we will formulate what we expect the i-th upper tree Uiy\\\—\\U itn-i to
behave like. This is done in Lemma 1 below.

LEMMA 1. Assume n=2k, for some given k>0. Then in the theory ACPT we
can prove

n-\
htj +n,o(xi) 'Zfij +n,o(yij) ' si, 1 0

SK] J

iti, and the lemma
PROOF. By induction on k.
k = l: Now n=29 so rIdHii(Uiy\\\—\\U iyn-i) 2

directly follows from the definition of Uit \.
k + 1: Suppose the lemma holds for n=2k. Now we prove it to hold for

2n=2k + l as well:

- Tf 8jyfc

j=0
'ij+n

Note, that we needed the conditional axioms to prove the first step. Using the
definition of Uiyj+n we immediately find
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•^•,1,0

n — 1

2 ri,j+n,o(dj)'

,o(^y)' 2 r/,2

Note that for every (Xj <n we have two communications: the first one bind-
ing the variable dj and the value xh and the second one binding ytj and
rijj + m/y. So we find:

0</<«

)AXi)' 2

xi)' 2 r

/w,yelM

n-\

2(
y=0

Si,2(j+n),o(Xi)' 2 r/,2

ZJ r/',2(/+n)+l,0
W,.(.GN 7 = 0

using the equation (rjc|[y) = T(jc||y), which can be derived directly from the
axioms of ACPT. Thus we have
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0</<2n

renaming the «'s and m's into j ' s again. D

2/t-l

j=0

So indeed, the i-th upper tree first will receive a number JC, from channel
[i, 1,0], i.e.: from its own root. Next, after some time, we will see all of its
leaves send this value downward to the cells in the matrix, getting some other
value in return. All processes in the leaves of the tree are interleaved, precisely
as we expected. Finally, after some time, we will find the sum of all values
being sent up from the leaves, appears at the root channel [i, 1,0] again.

In the same way we can describe what the y'-th lower tree acts like, as is
done in Lemma 2.
LEMMA 2. Assume n = 2k, for some given k >0. Then we have (for j<n)

PROOF. By induction on k.
k = 1: Now n—2,  so the result directly follows from the definition of

0<i<n

2 r2i+2nJ, l(4,y)H 2 r2(+ l+2n,y, l(ei,/)

' 2 ri+n,j,\(fi,j)'

=2kusing the definition of Ljy and the lemma for n =2
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II 2 r2i+2n,j,\(dUj)\\
D { U }

Ci +*,7,1 («/)H *2i +1 +2nj,

binding xor(dij,eij) and zl>y; moreover the variables Uj and yjy are identified,
for all Uj. Note that xor(xor(J0,y,^o,yX ••• ^ W C ^ I - I J ^ H - i j ) ) =
xor(tfo,y,eoj>->^-ij>en-ij); renaming 4-y and e/>y into z2iJ and z2/ + i,7
respectively, we find

0<i<2n

•
From Lemma 2 we read that the y-th lower tree first will receive n values
(probably with some nil's) from its leaves, say zo,7,... ,zn-\j- Then it will send
xor(z0>y,... ,zn-ij) to the bottom. Next it waits until it gets a value Uj from
the bottom in return, and it will broadcast this value up to the leaves again,
i.e.: after some time all leaves, in any order, will send up Uj. Using both lem-
mas we can now easily find the final proof of the correctness theorem.

Proof of the correctness theorem
Let n=2k for some k>0. Using the conditional axioms of [1], one easily
verifies

Then, using Lemma 1 and the definition of Mtj we find

fi,o I I - I



1 4 2 J.C. Mulder, W.F Weijland

Using the conditional axioms once again we have

From the definition of Bj and Lemma 2 we find directly

0<i<n 'J'

so we have

—  T/0^

II J II L+^,(xor(dhg(0,y,jc0),.»,«lhg(»-i,y,Jc,-i)))l
0<i<n \0<j<n L J

n - 1

w - 1

0<i<n

/ i - l

0<i<n

= SORT(/l)

using the proposition of Section 4 for the last but one equality. •
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6. SOME REMARKS ABOUT THE COMPLEXITY OF RANKSORT
It is beyond the subject of this paper to study the complexity of the machine
described in the former sections. Still, some obvious remarks can be made to
indicate that RANKSORT in fact is only slightly suboptimal with respect to
other well-known algorithms. All of these remarks are from [5], in which a
review over thirteen VLSI sorting algorithms is presented.

As it turns out, RANKSORT works with n2 processors and in log/i time. So
one could say, comparing this complexity behaviour with for instance the
ft log ft time sequential mergesort algorithm, a factor O(n) time can be 'won' by
exchanging it for a large amount of space. In some well-known models of
VLSI complexity this notion of 'space' is worked out in more detail (see:
Bilardi & Preparata [2] and Thompson [5]). A convenient unit of area of a
VLSI chip is the square of the minimum separation between parallel wires.
Every square unit on the chip surface may contain a wire element, or a piece
of a gate, i.e.: a localized set of transistors or other switching elements, which
perform a simple logical function. Starting from a square tessellation of the
chip surface, some restrictions on the design of the chip are made. For
instance, no pieces of gates may overlap (i.e.: any square unit only contains a
part of at most one gate) and only two (or perhaps three, depending on the
model) wires can pass over the same point (any square unit can represent the
crossing of at most two wires).

The unit of time can be taken to be the time of one clock pulse, so the time
behaviour of the chip can be expressed as a number of pulses. Note, that the
specification of RANKSORT, as given in Section 4, can be implemented in an
unclocked network, since we have asynchronous cooperation between indivi-
dual processes. A clocked network, however, is a special case of the general
network in which no restrictions on timing are made, so a clock can do no
'harm' to the correct behaviour of the machine.

Of course, the list of restrictions mentioned here is not complete. In [2] all
restrictions are formulated in detail, as rules on the underlying graphs
representing the VLSI networks.

In [2] and [5], VLSI models are used to find lower and upper bounds for the
complexity behaviour of sorting algorithms. Assume a VLSI chip has area A
and needs time T to do its task, then a useful complexity measure turns out to
be AT2 (although AT and AT/logA can be used as well). In [5] a lower
bound for the complexity of any sorting algorithm is put at AT2 = S(«2 log/?).
Moreover about thirteen VLSI sorting algorithms are examined, ranging from
O(n2 log2/!) to O(n2 log5/!), and hence all are only slightly suboptimal in AT2

behaviour.
Although we have O(n2) wires in the network, we need some more wire unit

elements to implement the orthogonal tree network on a VLSI chip. The
RANKSORT algorithm turns out to be A = 0(/!2log2/i), and thus
AT2 = O(n2 log;/!), which can be understood by making the following
observation.

As we can see, the orthogonal tree network consists of O(n2) processors,
interconnected by a number of wires. Note that every wire has width 0(1),
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not 0. Now consider the projection of the orthogonal tree network on a plane,
as pictured in Figure 6. We see we have to leave at least log« units of space
between two rows or columns of matrix cells, since this is the minimum area
needed to construct a tree in between these cells. So, we may conclude that
the width of the whole circuit is O(/ilogn), since the distance between two
matrix processors is 0(logn), and any processor is O(log«) square. So we
find directly that the total area of the orthogonal tree network is O(n2 log2/?).
Since the sorting task can be done in 0(log«) time, we have
AT2 = O(n2 log4n).

Indeed, RANKSORT can be said to be slightly suboptimal with respect to the
lower bound AT2=Q(n2 log/i). Clearly, however, the strong time performance
of the algorithm takes a large amount of area, so we may not expect the circuit
to be of much interest until chip area is cheap enough.

reflectors:

input/
output:
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[1]

>

[2]

>

[3]
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2 , 0
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1 ,3
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FIGURE 6. A two dimensional projection of the
orthogonal tree network with n = 4
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On the Amoeba Protocol

J.C. Mulder
Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

The Amoeba distributed operating system supports the transaction as its com-
munication primitive. The protocol that the Amoeba system uses to carry out
sequences of transactions reliably and efficiently is analyzed in terms of pro-
cess algebra. The design goals are formulated as process algebra equations
and it is established that one of them is not met. This can be repaired by
adding an extra transition. Subsequently it is verified that the revised version
meets its specifications.

It has been observed that formal verification methods for mathematical proofs,
computer programs, communication protocols and the like are usually illus-
trated by Hoy9 examples and that such proofs tend to be discouragingly long.
In order to demonstrate that it is feasible to verify a 'real-life' communication
protocol by means of process algebra, we picked one from the literature.

In his Ph.D. thesis [9], Mullender investigates issues he considered while
developing the Amoeba distributed operating system. In Section 3.2.4 of [9] a
transaction protocol is described to which we will refer as the Amoeba proto-
col. In the preceding sections of [9] the design goals are described that this
protocol is supposed to satisfy. He does not give a formal verification that his
protocol meets this criteria. In fact, it turns out that one of them is not met.
Note that this only applies to the simplified version of the protocol that
appears in [9], the actual implementation uses a much more complicated ver-
sion in which this mistake is not found.

Section 1 of this article gives the minimum background information neces-
sary for understanding the rest of the article.

In Section 2 the design goals are formulated in English and in terms of pro-
cess algebra.

Section 3 describes the protocol and explains what is wrong.
In Section 4 the (obvious) correction is given and it is verified that the

resulting protocol meets the requirements.
The reader is supposed to be acquainted with process algebra. For an intro-

duction we refer to e.g. [1,3,4,5].
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1. SOME BACKGROUND ON THE AMOEBA DISTRIBUTED OPERATING SYSTEM

1.0. It should be stressed that this section is not intended to give an accurate
picture of the Amoeba system. We will only sketch the environment in which
the Amoeba protocol operates. For a more detailed introduction the reader is
referred to [9].

1.1. The context in which Amoeba operates is essentially a local area network
connecting several machines with (possibly) different capabilities. E.g. some
network nodes may have (or be) printers, huge disks, fast floating point
hardware, etc. Needless to say, when a user posts a request, the system may
decide to carry it out on another network node.

1.2. The centralized approach to such a configuration would use a request
dispatcher residing on a fixed node in the center of the network. All requests
would be mailed to the dispatcher, who would forward it to the machine that
was most suitable for carrying it out. Of course this dispatcher must have up-
to-date knowledge of work load, availability of services, etc.

This method is probably optimal in a star-shaped network, i.e. one in which
one central machine is connected to all others and the others are connected to
this central node only. In such a configuration all messages have to travel via
the center node anyway.

However, in a more general network, the overhead of diverting each and
every request via the center and keeping the dispatchers picture of the system
up-to-date can probably better be avoided. Moreover, the central node might
crash and it would be nice if the rest of the system would continue operating
without it.

1.3. Amoeba uses a more distributed approach: each network node does its
own dispatching. The Amoeba system does not try to maintain at every node a
complete overview of what services are available on what nodes. If a user posts
a request, the local Amoeba kernel may have to broadcast the question "which
machines can carry out requests of type X?'. Several machines may answer 'I
can' and then one of them is chosen; perhaps the first one to respond.

1.4. The Amoeba kernel does not carry out requests itself; it merely forwards
them to a suitable server process, that may or may not live on the same
machine. To the user the difference is immaterial, he is just posting requests
and getting replies. In fact, a 'user' may very well be a server process handing
out a subtask of the request he is resolving.
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1.5. In some network protocols, e.g. in the ISO model, the basic service is the
virtual stream, carrying unlimited amounts of data from A to B. This may be
very efficient when large amounts of data are to be transferred, but the
designers of Amoeba felt that this would be a rare event in an Amoeba system.
If, for instance, a user wants to query a large database, the database will not
be transferred to the user, rather the query will be transferred to the database,
thereby saving huge amounts of data transfer.

If it turns out that the information to be transferred in an average request
fits in a single packet, then establishing and maintaining a virtual stream is not
optimal.

1.6. The other end of the spectrum is a model in which the basic communica-
tion service is passing a single message. If this is to happen reliably, then for
each message sent, an acknowledgement message must be sent back.

One might even be misled to think that this acknowledgement should also
be acknowledged, and so on indefinitely. Fortunately, this is not the case: if
the acknowledgement message does not arrive, then the sender of the original
message will have to retransmit it. So if the receiver is able to recognize this
retransmitted message as one it has received before, then it can simply re-
acknowledge it, and forget about it.

1.7. Nevertheless, Amoeba does not support the message passing primitive.
The designers expect that most requests will lead to some sort of reply from
the server, at the very least an indication of whether the request could be car-
ried out. Obviously, a reply implicitly acknowledges receipt of the request. In
fact, if the server has established his reply before the user feels like retransmit-
ting his request, the original acknowledgement becomes superfluous.

To exploit the above possibility, Amoeba supports the transaction as its
primitive communication service. This means that the process receiving the
message (called the server) is obliged to send some sort of reply back to the
sender (hereafter called the client). The client, on the other hand, is not obliged
to return a follow-up query, so communication might stop after two messages.

1.8. The ISO communication standard prescribes some complicated seven-
layer model. The Amoeba designers think that such a complicated system can-
not possibly operate quickly, so they invented their own, three-layered model.
• The lowest layer is the physical layer. It consists of physical intercon-

nections. We will not explore it any further.
• The middle layer is the port layer. The port layer transfers so-called 'data-

grams' of up to 32K to specified ports. A datagram is guaranteed to arrive
at most once; it is left to the next higher layer to resubmit the datagram if
necessary.

• The upper layer is the transaction layer. This is the layer we will investigate.
It implements the transaction service, using the port layer's datagram ser-
vice. If a datagram does not arrive the transaction layer will have to
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resubmit it. To detect such mishaps the transaction layer employs the usual
devices: timers and acknowledgement datagrams.

1.9. The transaction layer software on each network node has three interfaces:
on the lower side there is an interface to the port layer and on the upper side
there is an interface for clients and one for server processes.

When a client files a request, he indicates the type of service required by
mentioning an associated port number. The transaction layer then uses the
port layer for locating a server process offering this sort of service. If more
then one server process offers this service, it is up to the port layer to pick a
suitable one. Once this choice has been made, only four processes are relevant
to the transaction from the transaction layer's point of view: the client, the
server, the transaction layer software at the client's node, and the transaction
layer at the server's node. In the sequel we will denote these as CL, SV, TLCN
and TLSN, respectively.

1.10. In order to simplify the picture, we will largely ignore the fact that the
port layer has to choose an available server able to carry out the specified type
of request and act as if only the four processes mentioned above are involved.
Obviously, we will concentrate on TLCN and TLSN> who try to communicate
on behalf of CL and SV respectively via an unreliable medium provided by the
port layer.

1.11. There is one more aspect of Amoeba that we do take into account.
Sometimes, one of the network nodes crashes, i.e. it stops whatever it is doing
and does not respond to any attempts to communicate.

We will assume that after a while this mishap is noticed and the malfunc-
tioning machine is restarted. When restarted, the machine does not remember
what it was doing before the crash, so it won't do anything before new
requests arrive.

Consequently, when the TLCN has successfully delivered a request, it cannot
simply wait for a reply. The network node where the server is working on a
reply might crash and the client would be waiting forever. Instead, the TLCN
will regularly poll the TLSN to check whether it is still alive. If the TLSN does
not seem to be responding, the TLCN will assume that the server's network
node has crashed and reissue the request, hoping that the unfortunate node has
been restarted, or that some other server of the same type exists in the net-
work. It might also notify some trouble server.

1.12. Conversely, it is not really a problem for a server if its client has
crashed. If this happens the TLSN will be unable to deliver the reply, but once
that fact has been discovered, there is not really any problem, though the
TLSN might notify the trouble server, just for the record. The server may
have done some processing in vain, but that is tolerable, as crashes are rare
events. Anyway, if the client had crashed immediately after receiving and ac-
knowledging the reply, the result would have been the same: request carried
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out, result not used.

LI3. One might be tempted to think that, from a theoretical point of view,
crashing machines are just another innocent feature, but this is not the case. If
one wants to communicate reliably via an unreliable medium, one must be
prepared to retransmit a message any number of times. If, on the other hand,
one takes into consideration the possibility that one's partner has crashed, one
should give up after a predetermined finite number of attempts. These options
are evidently incompatible.

This does not necessarily imply that the Amoeba system is unreliable. In case
of trouble the TLCN can usually restart the whole transaction. For some types
of service it might be inappropriate to redo the essential processing. For exam-
ple, suppose an accounting service keeps track of the usage of some services.
Whenever one of the monitored servers satisfies a request, it notifies the
accounting server. When the latter has updated its bookkeeping, it returns an
acknowledgement. If this acknowledgement fails to be delivered, the account-
ing TLSN will assume that the other party has crashed. If this assumption is
false, the TLCN, after a while, resubmits an account request. This glitch
should not cause the user to be charged doubly, so the accounting server
should be able to deduce from its files that it has satisfied this request before
and react accordingly.

We will assume that this sort of safety precaution has been made and thus
we will let the TLCN restart the whole transaction whenever it cannot be com-
pleted satisfactorily.

2. THE REQUIREMENTS

2.0. In this section we will try to pin down the design goals that the Amoeba
system is supposed to satisfy, both in English and in terms of process algebra.

2.1. The main problem is to distinguish the three possible reasons why a client
does not get an answer from a server:
(i) the server is still busy computing,
(ii) the server is trying to transmit a response, but the communication channel

is malfunctioning,
(iii) the server has crashed.

As explained in Section 1, we assume that if a server crashes, so does its
interface. Consequently, case (i) can be distinguished from (iii) by periodically
polling the interface. If it reacts, we will assume that the server is still alive. On
the other hand, as long as we don't get a response we know that either the
channel malfunctions or the server has crashed (or both). If we fail to get a
response a number of times successively, we find it highly unlikely that this is
due to a faulty communication channel, so we assume that the server has
crashed and start afresh. After a while the server will be in its initial state
again, either because it had indeed crashed and is being restarted, or because it
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found that is was unable to deliver a reply to our original request.
In the real Amoeba system, the number of successive failures it takes before

the client system decides to give up is fixed. In our presentation, whenever a
client process fails to receive a sign of life it decides non-detenninistically
whether it will give up or try again.

2.2. Perhaps surprisingly, the hardest notion to catch in process algebra is
periodical polling. The point is that process algebra does not explicitly mention
time. After an event has happened, the next one takes place and there is no
mention of the intervening time. If at a certain stage the only possible next
event is that the server comes up with a result, this will be the next step in the
process term, no matter how long it takes. Algebraically, we cannot say any-
thing about the time spent waiting, because it does not appear in our formal-
ism.

The only way to describe in process algebra that the interfaces exchange
acknowledgements while waiting for the real reply, is saying that if the server
never yields a reply, then infinitely many reacknowledgements will be
transferred.

2.3. A first approximation to an algebraic formulation of the above is the fol-
lowing. Let ans be the event that the server delivers an answer; let ack be the
event that the client receives an acknowledgement message; let / be the set of
all other events; then we require, at least, that:

= rack*.

2.4. The main defect of the above formula is that it describes the situation
that every reply takes for ever. In particular the first request will never be
answered, so there will never be a second request. This can easily be repaired.
It so happens that requests and replies will be indexed by natural numbers.
Consequently, we can use d{ans(n)} t o express that the server thinks infinitely
long about the /i-th request. So we will require (taking / to be all actions
except ack):

VweN Tjd{ims(n)}(Amoeba) = rack".

To be quite honest, we should mention that a finite number of the ack-
nowledgements mentioned above may have been exchanged while the server
was contemplating the first n — 1  requests.

2.5. The server network node runs (at least) two processes: the actual server
process and its interface to the network. If this network node crashes, then
both processes die simultaneously. This is not too hard to model. We introduce
an atomic action crash and add to each and every term of the specification a
summand crash. Or rather, crash • Server, to model the fact that the server is
eventually restarted by a crash server.

A minor complication is the fact that the specification is presented in the
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form Server = InterfaceWServerProper. We could, of course, introduce yet
another operator x-^y that adds a summand y to every state of process x. In
fact, in [2] such an operator is proposed under the name mode transfer opera-
tor. A similar operator occurs in LOTOS [7], where it is denoted x[>y and
called disable operator. But we can also use existing operators. We introduce
an atomic action crash', that communicates with itself: crash']crash' = crash,
and we (textually) add summands crash' to all states of the interface and
server proper.

2.6. The usual fairness assumptions in process algebra imply that, if the server
is given the chance to crash infinitely often, it eventually will. One might inter-
pret this as an instance of Murphy s law, or regard it as a defect of process
algebra. In any case, in this article we will not propose any alternative notion
of fairness. We will limit ourselves to verifying that the protocol does not
abuse crashes to escape from problematic situations. In other words, for some
suitable set / of internal actions, we will require:

rj(Amoeba) =

2.7. The client process crashes in much the same way the server does. A minor
difference is that a client process is not restarted when it crashes. As a result,
the entire system will get stuck as soon as the server tries to communicate to
its client again. Here our toy system with only one client deviates from the real
Amoeba system where there is more than one client and one naturally requires
that if one client dies, the server goes on to serve other clients. Thus we are led
to also considering a two-client version and requiring:

rfiffiClienti \\Client2\\Server) = ^^(Clientx WServer)

where / contains at least all actions pertaining to Client2.

2.8. By now we have exhausted the requirements associated with crashing
processes. We proceed by describing the regular behaviour of the system.

First of all, if the client does not crash, then it submits requests and the
server should answer these. The requests are indexed by natural numbers and
so are their responses. This gives something like:

TjdH(Amoeba) = T JJre9(w)a/ts(«).

Here, and in the sequel, we use J\Tn as a notation for a solution for Xo of
/ IEN

the system of equations {Xn = Tn-Xn + X | /iel\l}.
The attentive reader has noticed that the above equation disagrees with our

description in 2.7 in case of a client crash. A better approximation is:

Ti^H{^{crash){Client)\\Ser\er) = r- J\req(n)• ans(n).

This one, however fails to take into account, that a server crash may cause
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the request to be repeated. In fact, the easiest way out is to assume that the
server never generates an answer unless it received a corresponding request
and only specify that in the long run it is going to send all answers:

Ti\j{req{n) \ neN}9#(9{crash}{Client)\\Server) = T- JJans(n).

2.9. An important aspect we have been ignoring so far, is the communication
channel connecting the Client and Server processes. In the Amoeba system this
channel is set up and run by the port layer software. In process algebra, this
channel is modelled as a separate process.

This Channel process is described most easily as the parallel composition of
two one-way channels. Such a one-way channel would accept a datum at one
end and then choose non-detenninistically between three options:
• deliver the datum at the other end undisturbed
• deliver it corrupted (this is assumed to be detectable)
• do not deliver anything at all.
In process algebra, this is easily described:

OWC = (read(datum) • (i • deliver(datum)+i • deliver(error)+1)) • OWC.

In this equation i is an internal step, used as a guard. In [8], we use different
guards for different options, but we now feel that this only opens up such
weird possibilities as cutting out the second option by applying a d^y
operator. In fact, we would prefer to use T as a guard here, but that is impos-
sible.

2.9.1. If the one-way channel specified above could systematically choose, say,
the second alternative, it would not be usable. Therefore we will adopt the
usual fairness rule, which implies that this cannot happen: if the same datum
is input to the channel often enough, it will eventually be delivered correctly.

2.10. Incidentally, the Amoeba system does not respond at all if a corrupted
message arrives. For one thing, one cannot extract the sender's name from a
corrupted message. So the receiver is described in process algebra by a system
of equations of the form:

= accept(error) • Rec^ +
i

where the a# are atomic actions distinct from accept(error).
Now, if such a receiver is connected to a simplified one-way channel that

does not deliver errors, but only 'forgets' data, the result is the same as before.

LEMMA. Suppose processes OWC, OWCf and Rec are defined by the following
systems of equations:

OWC =read(datum)OWC2
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= iOWC3+iOWCA+iOWC
OWC3 = deliveridatum) • OWC
OWC4 = deliveiierroryOWC
OWC = read(datum)OWC2

OWC 2 = i' OWC i +i • OWC
OWC3 = deliveridatum) • OJTC

= accept(error) - Reck + ^ajReq and Itec =

deliverierror) \ accept(error) = arrives(error)
H = {deliver(error)9accept(error)}
I = {arrives(em>r)}

PROOF. In every state the receiver can perform an action accept(error). Execu-
tion of this action never results in a state change. Hence the receiver can be
described in process algebra by a system of equations of the form:

Rec = accept(error)u\\Rec'

and Red - Rec'o

Using the CA rules we find:
rfiH{OWC\\Rec) = TjdH(OWC\\Recf\\accept(errory)

= 7fiH{QWC\\Rec) D

2.11. The upshot of all this is that there is no point in mentioning the possi-
bility of the channel producing an error-value. Consequently, we will leave it
out in the sequel. Thus the one-way channel will be described as:

OWC = read(datum) • (/ • deliver(datum)+i) • OWC
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3. PROCESS ALGEBRA EQUATIONS

5. ft In this section we will present both the design criteria and the actual sys-
tem in the form of process algebra equations. As it happens, the system
presented in Section 3.2 does not satisfy the criteria in Section 3.3. This is
easily mended and we will do so in Section 3.4.

3.1 Preliminaries
As a preliminary to the equations in 3.2, this subsection presents the alphabet,
the communication function, etc.

3.1.1. The architecture. The architecture is depicted schematically in Figure 1:

Client Server

FIGURE 1

The Amoeba system contains a Client process and a Server process, connected
by a communication channel. The Client process consists of a client proper
and an interface. In 1.9 we have called these CL and TLCN, respectively. Like-
wise, the Server process consists of the server proper, SV and an interface,
TLSN. Lastly there is the communication channel, that consists of two one-
way channels.

These processes are connected by ports numbered as indicated in Figure 1.

3.1.2. Data. Four types of messages are passed around: requests, answers,
enquiries and acknowledgements. They will be denoted req, ans, enq and ack,
respectively. For later reference, we collect them in a set D =
{req9ans,enq9ack}. It does not make things clearer if we introduce actual con-
tents for the requests and answers and consequently we will refrain from doing
so.

In order to be able to describe the two-client version, we introduce the set
C = {1,2} of client numbers.

To make messages recognizable as pertaining to the same request, they are
tagged with tags drawn from T = CXN, i.e. pairs consisting of the client's
number and a sequence number.

We will need two auxiliary functions on T: if t = (c,/i), then t+ = (c,n +1)
is the next tag from the same client and t~ = (c,n —1) is the previous one
(provided n >0).

The complete set of possible messages is M = D X T.
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3.1.3. Atomic actions. For m eM and p e {1,...,6} there are read, send and com-
municate actions:
r(p,m): read message m at port/7.
s(p,m): send message m at port/?.
c(p,m): communicate message m at port/?.
In fact c(p,m) is a communication action: c(p9m) = r(p,m)\s(p9m).

A message m is in fact an element of DXT, and we will often leave out
some parentheses, and write e.g. r(p9d,c,n) for r(p9 (d, (c9n))).

In Section 2.5 we introduced the atoms crash and crash', satisfying
crash = crash'\ crash'.

Finally we need an atomic action to denoting the timeout event and the
communication channels contain an internal action i. The entire alphabet is
then:

A = {r(p,m),s(p,m),c(p,m)
and the communication function is:

a\b =
c if BmsM,
crash if a = b = crash'
8 otherwise

, Kp<6}\J{crashicrash',i,to}

= {r(p9m\s(p,m)} A c =c(p,m)]

Some subsets of A will be referred to in the next subsection:

ForPC{l,...,6}: HP = {r(p,m)9s(p9m) \ msM9peP}U{crash'}

H —  #{1,...,6}

I=A-{c(\yans9\,n) | « E N }

3.2 The specification
The Amoeba system consists of three component processes:

Amoeba = dH(Client\\Channel\\Server).

Client Channel Server

We will describe these components in detail in the next three subsections.

3.2.1. The Client process.
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The Client process consists of the client proper and its interface:

Client = dH{i)(CL\\TLCN).

3.2.1.1. From our point of view, the client only generates requests and some-
times crashes:

crash' ^ r(\9ans) ^^ crash' m<J

CL = s(l9req)CL2 + crash'

CL2=r(l9ans)CL +crash'

3.2.1.2. The client's interface, TLCN, accepts a request from the client process,
gives it a sequence number and sends it to the server. If no answer arrives for
some time, a timeout occurs and the request is sent again. If an acknowledge-
ment arrives, the interface moves on to the next stage, where it periodically
sends an enquiry message and expects another acknowledgement. If this ack-
nowledgement fails to arrive, the TLSN non-deterministically chooses between
sending another enquiry and believing that the server has crashed, in which
case he starts afresh sending the request.
At any time during these stages, an answer to the request may arrive. The
TLCN then delivers this answer, stripped of its tag, to the client and starts
waiting for a further request. If the next request comes quickly enough, the
TLCN will enter the next cycle at the second stage, otherwise, it sends an ack-
nowledgement and starts its next cycle at the beginning. In the first three
states, it may happen that the answer to the previous question arrives again.
The interface reacts by sending the current request, if it has one, and an ack-
nowledgement otherwise.

The resulting process graph is shown in Figure 2, except that the increment-
ing of the sequence number is not shown, in order to keep the picture finite.

This yields the following system of equations:

TLCN = TCW)

TC\,t =r(l9req)'TC2tt+r(39ans9t~)TC9tt- +crash'

TC^t = s(29req9t)- TCXt+r{39ans9t~)- TC2tt+r(39ans9t) TClyt+crash'

TCXt = to • TCU +r(39ack9t) • TCAt +r(39ans9t) • TClt

+ r(39ans9t~) • TC2t + crash'

TCAt = to- TC5yt+r{39ans9t)TClyt + crash'

TC5t = s(29enq9t) • TC6t +r(39ans9t) • TClt + crash'

TC6t =toTC:
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TCltt = s{\yans)TC%yt+crash'

TC%tt = r(l9req)- TC2yt
+ + to-TC%t+crash'

TC9yt = s(29ack,t)'TCu+ + crash'

o crash

o

crash—o

crash'

s(\,ans)

o crash'

r(3,ans,t)

crash'

s(2,enqtt)

crash'

6

o

o

FIGURE 2. Process graph of the TLCN
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3.2.2. The Channel process. The channel consists of two non-interacting one-
way channels:

Channel = OWCWOWC.

3.2.2.1. The one-way channel has been discussed at length in Section 2.9. For
reference we repeat:

OWC = ^r(2ym)OWC2tm

OWCXm=s{4,m)OWC

r(2,m)

3.2.2.2. The reverse channel is just a renaming of the first one. Let f :A-*A
be the function defined by:

f(a) = -
r(5,m) if a = r(2,m),
s(3,m) if a = s(4,m),
a otherwise

This /induces a renaming operator pf and we put:

OWC = pj(OWC).
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3,23. The Server process. The Server process consists of the server proper and
its interface. If it ever stops, it is restarted:

Server = 8H{<) (TLSNWSV) • Server.

3.2.3.1. l ike the client, the server is not studied in detail. It is just a sink of
requests and a source of answers:

c w w * ^ ( 6 , a / w , 0 c r a s / i ' ^

<SK = 2K6,re9,0'SF2,,+cras/i'

SK2,i=j(6,awsf,O S F + crasA'

3.2.3.2. The server's interface is roughly analogous to its counterpart on the
client's side. Initially, the interface awaits a request and relays it to the server.
If the answer doesn't seem to come immediately, the interface acknowledges
receipt of the request and awaits further events. If an enquiry message from an
impatient client arrives, the TLSN waits some more and sends another ack-
nowledgement. This gives rise to the following system of equations:

TLSN = TSX

TSX = ^r(49req9t)'TS2,t + ^2r(49enq9t)'TSi + crash'
teT ' teT

TSlt = s(69req9t)• TS3t4- 2 r(*>m)' TSXt+crash'
meM

TS3t = toTS4yt+r(69ans9t)TS6tt+ 2 r(49m)-TS3t,+crash'

TS4tt = s(59ack9t)TS5t+r(69ans9t)TS6tt+ 2 r{49m)-TS4yt+ crash'
meM

TS5yt = r{49enq9t)• TS3t +r(69ans9t)• TS6t + 2 r(4>"0* TS5yt+crash' (*)
meM

TS6tt = s(59ans9t)- TSl9,+ 2 r(4,m)- TS6j+crash'
meM
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TSlt, = r{A,req,t+)TSXt* +r(4,ack,t)TSl +toTSi>t

+ 2 r(4,m) • TSlt,+crash'
meM

+

r(4,req,t + )TS2y +r(4,ack9t)TSl+s(5ians,t)TSl

+ s(5,ans9t) • TSlt + 2 r(4,m) • TSSj + crash'
meM +

o

o

o

o

crash'

r(4,req,t)

crash'

s(6yreq,t)

crash'

crash'

r(4,acktt)
crash'

s(5,ans,t)

crash'

s(5,ans,t)

s(5,ack,t)

o

G-M )

C

FIGURE 3. Process graph of the TLSN. Note that the loops n r^$n are not shown

Contrary to its counterpart on the client's node, the TLSN is always willing
to accept and ignore the wrong input. The asymmetry arises because it is the
client's role to get impatient if the computation takes a lot of time, and then to
generate a message that might be inappropriate by the time it arrives. These
loops are not shown in Figure 3. Also not shown is the incrementing of the
sequence numbers.

Another minor difference is that the TLSN does not remember the request
sequence number while the server is idle. The prime reason for doing so is to
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cope with the situation that a server has crashed and a new one is started. The
new one should not insist on starting with request number 1, for that has
already been served by its predecessor.

3.2.4. In the next subsection, we will study the subsystem consisting of the
Server and the Channel, properly linked. For want of a better name, we will
call this combination System:

System = dH (ChannelWServer).

3.3. The requirements
This section summarises the requirements from Sections 2.3 through 2.8, with
all i's dotted and some t's crossed. In particular, we will try to be clear on the
position of the communication channel and the precise subsets of A occurring
in various equations.

3.3.1. Client crashes apart, the client and server are exchanging requests and
answers (from 2.8):

ridHlli)(d{crash)(Oient)\\System) = T- JJc(39ans9 l,n)

where I—A  —  {c(39ans9 l,n) | n e N } as before.

3.3.2. While it is computing an answer, the System generates acknowledge-
ment messages (from 2.4):

= rc(39ack, 1,AI)W

where In =A-{c(39ack9 l,/i)}. Here we use the notation Xu for J J X
neN

Recall that c(69ans9 l9n) is the event that the server establishes the n-th answer.

3.3.3. In a two-client system, even if one client crashes, the other will be
served (from 2.7):

TjdH(Client\\pg(Client)\\System) = Tj(Amoeba)

where/ =A —  {c(p9d9l,n) \pe{2,3}9de{req9ans}9neN}9 and pg is the renam-
ing operator induced by g: A -*A defined by:

g(a) =
if a = r(39d9l9n)9deD9

s(29d,29n) if a = s(29d,l,n),d<=D9 / ieN
a otherwise

Note that rI abstracts from (among others) all events pertaining to the second
client.
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3.3.4. Finally, the system does not abuse crashes to escape from illegal states.
In other words, the equations above are also satisfied if the system is not
allowed to crash:

rid{crash)(Amoeba) = T- JJc(39ans9 \9n)

= rc(39ack9 l,/i)w

3.4. A problematic situation
When we tried to establish algebraically that the Amoeba system satisfies the
requirements in 3.3, we discovered that it does not.

To be specific, the system described in 3.2 does not satisfy the second
requirement in 3.3.4. I.e., it may happen that the client and server's interfaces
do not enter the phase where they exchange enquiries and acknowledgements
while the server proper is establishing a reply. This situation ends when the
reply comes, or if one of the parties crashes. If we block both these escapes
we will observe livelock: the TLCN keeps repeating its request and the TLSN
does not respond.

3.4.1. Trouble starts if the server's interface acknowledges receipt of a request,
and this acknowledgement fails to arrive. When the TLCN times out, it
assumes that the request was not delivered properly and repeats the request.
The server's interface, however, is in a state where it does not accept requests
on the ground that the server proper is busy. This interface is expecting an
enquiry message. Thus, the parties are out of sync and will remain so until the
server comes up with a reply, for that is the only event that both parties are
willing to accept at their respective stages.

3.4.2. The shortest trace that leads to the problematic situation is:

c(l9req)c(29req9l9l)ic(49req9l9l)c(69req9t) to s(59ack9l9l)i9

where the to is the one that takes the TLSN from state 3 to state 4 and the last
i is the one in the ipj{OWC) summand of P/iOWC2,(ack,h\))- This lea(*s to a
state S =

Inspecting the specifications, we see that the only possible transition in this
state is a to that brings TLCN in state 2,1,1. Next, a c(29req9 1,1) action brings
TLCN back to state 3,1,1 and OWC to 29(29req9 1,1), from where it can choose
between an j action or an i action followed by a c(49req91,1) action. In both
cases the global state reverts to S. Consequently we are in a livelock situation.
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3.4.3. The problem is easily mended. The point is that the TLSN ignores all
requests while the server is busy. This policy is wrong: it should check whether
the request is in fact a retransmission of the request the server is currently
serving. If so, this indicates that the original acknowledgement message was
lost in the return channel. Hence it should be retransmitted. In other words, a
term +r(49req9t)TS3yt should be added to the equation (*) for state TS5t in
Section 3.2.3.2.

4. THE VERIFICATION

4.0. In this section we will formally verify that the corrected Amoeba protocol
satisfies all requirements mentioned in 3.3. If the reader has read verifications
in process algebra before, he will probably not find anything new in this sec-
tion.

4.1. For reference, we include the revised version of the TLSN specification:

TLSN = TSX

TSX = ^ir(49req9t)TSXt+"2ir(49enqyt)TSx+crash'
teT teT

TS%t = s(69req9t)• TS3t + 2 r(49m)• TS%t +crash'
meM

TS3yt = toTS4tt+r(6,ans,t)TS6j+ 2 r(4,m)TSXt+crash'

TS4tt = s(5,ack,t)TS5,t+r(6,ans,t)TS6it+ 2 r(4,m)TS4,t+crash'
meM

TS5tt = (r(4,enq9t)+r(4,req,t))- TSXt +r(69ans,t)- TS6jt +

+ 2 r(4,m)'TS5ti+crash'
meM

TS6tt=s(59ans,t)TSltt+ 2 r(49m)- TS6tt+crash'
meM

TS1<l = r(4,req,t+)TS2tl+ +r(4,ack,t)-TSl+to-TSKt

r(4,m)-TS%l+crash'
meM

+r(49ack,t)-TSi +s(59aFis9t)-TSx +s(5,ans,t)TSVf

2
meM
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4.2. We start by showing that the presence of the CL process is redundant:
LEMMA. Client —  ph(TLCN) where ph is the renaming induced by
defined by:

h(a) =

c(l9req) if a = r(\,req)
c(\,ans) if a = s(l,ans)
crash if a = crash'
a otherwise

PROOF. By direct calculation, one shows that the vector:

\^H{n(CL\\TCu\ *Hm{CL2\\TCXt), ..., 3#( i )(CL2||rc7jr),

ZH(ii(CL\\TCs,,),dHw(CL\\rC9yt)

satisfies the (renamed) equations 3.2.1.2. The result then follows by RSP. •

4.3. LEMMA. Server = ph>(TLSN) where ph> is the renaming induced by
h':A -*A defined by:

h'(a) =

c(69req,t) if a = s(6,req,t%
c(69ans,t) if a = r(6,req,t)9 teT
crash if a —  crash'
a otherwise

PROOF. Analogous to 4.2. •

4.4. For the sake of clarity, we will first consider the requirements from 3.3.4,
the ones without server crashes. In this subsection, we will tackle:

= r-
neN

4.4.1. NOTATION. Let us denote, for n > 1:

where Channeln = OWCn\\p^OWCn) and OWCn = 2 OWCK{dyXn) where
*e{l,2,3}

deD
we take OWCXm to mean OWC as specified in 3.2.2.1. We wilt write
OWC'i)0 if we want to emphasise that the channel is actually empty. For n = 1
reference would be made to messages pertaining to request number 0. Because
this does not exists, we have to define Amoeba \ separately:

Amoeba i = Tjd^crash^(Amoeba).
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4.4.2. LEMMA.Amoebon —  T*c(3,a/w, 1,/t)-Amoeban + \.

The proof naturally breaks in two halves. Denote:

Halfwayn =

2<*<6

4.4.3. LEMMA. For n > 1: Amoeban = r- Halfwayn.

PROOF. Notice that the set of states

/ = 1 V (2</<5 A n'=#i) V (7</<8 A n'=/i -1) ,

d=req V rf=e/i£, (m'=(ans9 l,n - 1 ) V m'=(ack, l

forms a (huge) cluster. The exits of this cluster are the summands of Halfwayn.
The result now follows by CFAR [3]. •

4.4.4. LEMMA. Amoebax =T-Halfway}.

PROOF. This is just a watered-down version of the previous lemma, the
difference being that in this case the reverse channel cannot contain a message
pertaining to the previous cycle. So the possible states are the elements of

{hcrash) u/f{M) (Ph(TCiy (U))lia#(<J) (OWCJ>m \\p/(OWClt0)\\ph,(TSuhl))))\

I i<6, y<3, /<5, m =(dy 1,1), de{req,enq}}

As before, this forms a cluster, and the result follows by CFAR. •

4.4.5. LEMMA. Halfwayn —  Tc(l,ans,l9n)-

PROOF. TO begin with, the set of states

Picra*} u i M (Ph(TCit n)\\dH{<$) (OWCj,m \\pj{OWCkymf)\\phf(TSw)))\

| 2<*<6,y<3, k<39 /e{7,8,l}, m=(rf,l,/i), d=reqVd=enq,

m'=(d'Xn')y d'=ackvd'=ans, n'e{n ~l,/i}}
forms a huge cluster, all of whose exits are of the form c(39ans9 l,/i)• X, with X
an element of the set S below. Hence by CFAR:

Halfwayn=r- ^c(l9ans9l9n)X
XeS
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where

|ie{7,8,9,l},y<3,*<3,/<8,

m=(*/,l,«), ds{req9enq9ack}9 m'=(ans9l9n)}.

Again 5 is a cluster, so by CFAR: VXeS: X = rAmoeban +!.
Summing up, we have:

Haljwayn = T- 2 C ( 1 , O W , l,n) X
XeS

= T-c(l,a#w, l,w)'T *Amoeban + \

= T- c{\,ans,\*n)- AmoebOn + x D

Equation (*) in 4.4 follows from the three lemmas above by observing that
rj(Amoeba) = Amoeba \ (by definition) and cancelling all T'S except the initial
one.

4,5. In this section we will establish the second equation from 3.3.4:

LEMMA. rJnd{crashtC(!Si{m3tl n)){Amoeba) = T-c(3,ack, l9n)u.

PROOF. AS always, this boils down to applying CFAR to a suitable set of
states, in this case:

As before, we have to convince ourselves that from each state in this set there
is a path to a c(3,ack9 \,n) exit. After all, the trouble in the original
specification was that from some states this was no longer possible. Consider
any state a in the repaired version. If either channel contains a message, then
the receiving process is willing to accept that message. So it is possible that
these messages are delivered. Now, if the n-th request hasn't yet been sent, it is
possible that all requests up to the (n —  l)st are sent and replied to promptly.
Next, it is possible that the client (re)sends a (req9l,/i) or an (enq, \9n) mes-
sage. This may arrive and the TLSN may timeout and reply with an (ack9 \,n)
message, which may also arrive. So we see that from each state within the clus-
ter there is a possible sequence of events leading to a c(39ack9 \9n) exchange.



On the Amoeba protocol 169

4.6. The third equation from 3.3.4:

= Tjd{crash](Amoeba)

At first one is tempted to use the CA rules to show that the 17-operator
abstracts from all actions pertaining to the second client. However, this does
not, and should not, work, as the second client interferes with the system. In
fact, the point of the whole exercise is to show that the second client cannot
clog up the system forever. Once we have established that the first client has a
chance to proceed after finitely many steps of his colleague, and consequently
infinitely many such chances, CFAR guarantees us that it will eventually
proceed.

So we are to convince ourselves that:

- > I < 6 , *'<9, /i2elM, j,k<3, /<8,
m=(d,c,p)> d=reqV d=enq, m'=(d\c\p'\ d'=ansV d'=ack,
(c'=\A(p'=nlVp'=nl-\))v(c'=2A(p'=n2vP' = n2-\)X
(c = l Ap =nx)V(c =2 Ap =n2), n3e{nunx -I,n2,n2-l}}

indeed forms a cluster with exits of the form c(3,a/w, l,n)• X.
The hard part here is to convince oneself that from each point within this

cluster there is a path to an exit. If we compare the specifications of the chan-
nels and the TLxN*s we can see that in each of the states mentioned above it is
possible that the channels deliver any messages they may contain; next, if the
ph>(TLSN) is not in its initial state, it is possible that it completes the transac-
tion it is dealing with, and if that was not the n-th transaction for Client 1,
then it is possible that the system goes on to carry out transactions with Client
1, until it has completed the /i-th. So we see that indeed from each point in the
cluster there is a path to an exit.

4.7. Having satisfied ourselves that the system behaves as promised if it
doesn't crash, we turn to cases where the server does crash and is restarted
from scratch. If this happens while the old server was busy and the client knew
this, i.e. it had received an acknowledgement but not yet an answer, the client
will send a number of enq messages, to which the server doesn't respond1.
After a while the client guesses what has happened, resends its request and
reverts to state 2,(l,/i).

What we set out to verify in this section, is that if the client makes this cycle
through states 2-6 and the client possibly crashes, then the parallel composi-
tion of these four processes just runs around some gigantic cluster and never

1. In the data set as described in [9] there is a nak message which seems applicable here, but there
is no mention of it ever being used. In the actual Amoeba system it is, of course, used in this si-
tuation.
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gets stuck in a dark corner of it.

4.7.1. In order to establish equation 3.3.1:
= r- JJc(l9ans9 l,/i)

neN

we denote:

where Channeln is the same as in 4.4.1. Note that Amoeban is not the same:
here the server may crash, whereas in 4.4.1 it may not.

4.7.2. LEMMA.Amoebc^ = r-c(l9ans9l^
PROOF. The set of states

(owcJim

/t'=/i-l), m=(dy l,/i), d=reqvd=enq,
m'=(ans, l,/i - 1 ) Vm'=(ack9 l,/i) Vm/=(a/w, l,/i)}

forms a cluster whose exits are of the form c(l,a/w, l,n) • Jf, with X in the set S
below. In particular, if the server crashes and is restarted, it goes to state
1,(1,AI), which is still in this cluster. Applying CFAR yields:

XeS
where

|

|/e{7,8,9,l},y<3, A:<3,
/e{7,8,l}, m=(rf,l,n), de{req,enq,ack}9 m'=(ans9l9n)}.

S is a cluster, too, and by CFAR VXeS : X = r - Amoebc^ +1. So we conclude:
Amoeban =T'c(39ans9l9n)'Amoeban + \. D

4.7.3. To complete the proof of 3.3.1, we have to show that
Tj(Amoeba) = rc(39ans91,1) Amoeba^. In this case the reverse channel cannot
contain a message (arts, 1,0), so the cluster simplifies to:

(OWCjym\\pf(OWCk,m,)\\ph>(TShl))) \

3, A:<3, /<8, w=(rf,l,l),
= enq9 m'=(ack9 l9l) Vm'=(ans91,1)}.

The rest of the proof is entirely analogous to 4.7.2. •
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4.7.4. The proofs of 3.3.2 and 3.3.3 are entirely analogous to those in 4.5 and
4.6 and will therefore be omitted. The point is that even if the server crashes
and begins afresh, the system does not leave the relevant cluster. The crash
transition provides an extra path from certain states to the exit, but we have
already established in 4.S and 4.6 that such paths exist in the revised version of
the protocol.

5. CONCLUSIONS
We have demonstrated that it is possible to describe in process algebra equa-
tions what liveness and safety properties a communication protocol is meant to
have. Theoretically it is also possible to derive that a specific implementation
indeed possesses these properties but this usually boils down to apply the
CFAR rule to large and intricate clusters and process algebra offers little
means to handle these gracefully. One seems to need a criterion that guaran-
tees that all states satisfying some assertion form a cluster and that CFAR
may be applied to it. The state operator [1] might provide such a means, but as
of now we do not see how to use it for this purpose.
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Process Algebra Semantics of POOL
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P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this article we describe a translation of the Parallel Object-Oriented
Language POOL to the language of ACP, the Algebra of Communicating
Processes. This translation provides us with a large number of semantics for
POOL. It is argued that an optimal semantics for POOL does not exist: what is
optimal depends on the application domain one has in mind. We show that the
select statement in POOL makes a semantical description of POOL with
handshaking communication between objects incompatible with a description
level where message queues are used. Attention is paid to the question how
fairness and successful termination can be included in the semantics. Finally it
is shown that integers and booleans in POOL can be implemented in various
ways.

1. INTRODUCTION
At this moment there are a lot of programming languages which offer facilities
for concurrent programming. The basic notions of some of these languages, for
example CSP [18], occam [19] and LOTOS [20], are rather close to the basic
notions in ACP, and it is not very difficult to give semantics of these languages
in the framework of ACP. Milner [23] showed how a simple high level con-
current language can be translated into CCS. However, it is not obvious at first
sight how to give process algebra semantics of more complex concurrent pro-
gramming languages like Ada [6], Pascal-Plus [13] or POOL [1-3]. This is an
important problem because of the simple fact that a lot of concurrent systems
are specified in terms of these languages. In this article we will tackle the
problem, and give process algebra semantics of the language POOL.

In order to modularize the problems we first give, in Section 2, a translation
to process algebra of a simple sequential programming language: with each ele-
ment of the language a process is associated, specified in terms of the operators
•, +, ^^> (sequential and alternative composition, and chaining).

In Section 3, we give process algebra semantics of a representative subset of
the programming language POOL-T (see [1]). POOL is an acronym for 'Paral-
lel Object-Oriented Language'. It stands for a family of languages designed at
Philips Research Laboratories in Eindhoven. The T in POOL-T stands for
'Target'. POOL is a language that permits the programming of systems with a

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).
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large amount of parallelism, using object-oriented programming. In [4] an
operational semantics is given of a language from the POOL-family. Our
semantics of POOL is to a large extent inspired by this paper. A denotational
semantics of POOL is presented in [5].

In order to deal with the complexity of POOL (compared to the toy
language of Section 2) we make use of attribute grammars. We associate with
each (abstract) POOL program a process specified in the signature of ACP
together with some additional operators. As soon as the translation of a pro-
gramming language into the signature of ACP ( +additional operators) is
accomplished, the whole range of process algebras becomes available as possi-
ble semantics of the language. We think this is a major advantage of our
approach. Especially when dealing with concurrent programming languages,
the answer to the question what is to be considered as the optimal semantics,
is heavily influenced by the application one has in mind: if the system that
executes the program is placed in a glass box and does not communicate with
the external world, one can work with a more identifying semantics (allowing
for simpler proofs) than in the case in which the system is part of a network
and does communicate with the external world. Issues like fairness and the
presence of interrupt mechanism are also relevant in the choice of the optimal
semantics. The axioms we will give correspond to bisimulation semantics. In
this semantics relatively few processes are identified, and therefore all the
results we will prove are also valid in a large number of other semantics.

The process algebra semantics are very operational: we can define a term
rewriting machine that executes the process algebra specification we relate to a
program. Interestingly, the semantics are also (to a large extent) composi-
tional: the value denoted by a construct is specified in terms of the values
denoted by its syntactic subcomponents.

A good theory of semantics of programming languages is a method which
makes it possible to predict the behaviour of a computer that executes a pro-
gram. Furthermore a good theory assists people in building new predictable
computers. This implies that a theory of semantics of programming languages
should provide tools which make it possible to substantiate the claim that the
mathematical models in which the language constructs are interpreted indeed
model reality. In our framework such a tool is the abstraction operator 77.
This operator makes it possible to prove that the semantics of POOL as
presented in Section 3 has a common abstraction with a number of other
semantics of the language, which are closer to implementation.

In an implementation of the language POOL there will be message queues in
which the incoming messages for an object are stored. On the conceptual
level, there are no queues and we have handshaking communication between
the objects. In Section 4 an example is presented which shows that these two
views are in contradiction with each other. The problem is due to the so-
called 'select statement', which is part of the language POOL-T. A minor
change in the definition of the select statement is proposed in order to remove
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this difficulty1. However, it is shown that even with the new language
definition the two descriptions are different in bisimulation semantics.
Although we think that the two views of a POOL system are equivalent in
failure semantics, we have not proved this.

A similar question is dealt with in Section 6: on the conceptual level each
integer and boolean in POOL is an object which has a data part and a process
part. In an implementation this is of course not the case. Instead, an imple-
mentation will contain some special circuits for arithmetical and logical opera-
tions. We prove that these views of the system have a common abstraction.

In Section 5 we discuss a trace semantics of the language POOL. A lot of
things can be proved with more ease in this semantics, but we show that this
semantics does not describe deadlock behaviour in a situation in which the
POOL system interacts with the environment. We also pay some attention to
the question how issues like fairness and successful termination can be
included in a semantical description of POOL.

Section 7 contains a number of conclusions.
At the end of this introduction we give the definition of the renaming opera-

tors and chaining operators. These operators will pay an important role in the
rest of the paper, but are not described in the introduction of this volume.

1.1. Renaming operators (RN)
For every function f:AT8^>AT$ with the property that f(8)~8 and / ( T ) = T,
we define an operator p :̂P—>P. Axioms for py are given in Table 1.1. (Here

Pj(a) =f(a)

P/(x+y) = pj(x) + c

Pj(xy) - pjix)-pf(y)

RN1

>jiy) RN2

RN3

TABLE 1,1

For tGAr8, and HQA we define the function rt H \Ar8-^Ar8 by:
U if aeH

nMa) = L otherwise

We use tH as a notation for the operator prw. The operators dH and 8H are
considered to be equal.

1. In a more recent offspring of the POOL-family of languages, called POOL2 (see [3]), the select
statement has been removed altogether. Instead this language contains a 'conditional answer state-
ment'. It seems that this construct does not lead to semantical problems like the select statement.
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1.2. Chaining operators (CH)
A basic situation we will encounter is one in which there are processes which
input and output values in a domain D. Often we want to 'chain' two
processes in such a way that the output of the first one becomes the input of
the second. In order to describe this, we define chaining operators ^ > and > .
In the process x 7$^>y the output of process x serves as input of process y.
Operator > is identical to operator ^^>, but hides in addition the communi-
cations that take place at the internal communication port. The reason for
introducing two operators is a technical one: the operator » (in which we are
interested most) often leads to unguarded recursion. We will define the chaining
operators in terms of the operators of ACPT + RN. In this way we obtain a
finite axiomatisation of the operator (if the alphabet of atomic actions is
finite).

First we make a number of assumptions about the alphabet A and the com-
munication function y. Let for rfeZ), \d be the action of reading d, and \d be
the action of sending d. Let A' be the following set

Af = {Uld,s(d\r(dlc(d) | deD}.
We assume A'QA and furthermore that for a,bGA— Af\ y(a,b)&A'. On A'
communication is defined by

y(s(d),r(d)) = c(d)
and all other communications give 8. Define HCH — {s(d),r(d) \  d^D}. The
renaming functions / and g are defined by

/(T<0 = s(d) and g(id) = r(d) (deD)
and f(a)=g(a) = a for every other a^AT8. Now the 'concrete' chaining of
processes x and y, notation x ^>y, is defined by means of the axiom

= dHcH(Pj{x)\\pg(y)) CHC

Figure 1.1 contains a graphical display of the construction
s ^ c ̂  r

3.H,CH

FIGURE 1.1
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Define the set ICH — {c(d) \ deD}. The 'abstract' chaining of processes x
and y, notation ;t»y, is defined by means of the axiom

C H A

One of the properties of the chaining operators we use most is that they are
associative (under some very weak assumptions). The conditional axioms
below state that the chaining operators are associative if the actions of HCH do
not occur in the alphabets of the components. In [26] it is shown that, if we
add some natural axioms about alphabets to the axiom system, these two
axioms become derivable.

The module consisting of axioms CHC, CHA, CC1 and CC2 is denoted CH.

1.2.1. Notation. For the term

(where Du ...,/)„ CD) we write

In all applications it will be clear from the context what Du ...,Dn are. A simi-
lar notation is used for the »-operator.

2. A SIMPLE SEQUENTIAL PROGRAMMING LANGUAGE
The following definition of a simple programming language is adopted from
[9]. In the definition a choice between different versions of a rule is indicated
by a vertical bar ('|').

2.1. DEFINITION (syntax of Iexp, Bexp and Stai). Let Ivar, with typical ele-
ments v,w,w, ..., and Icon, with typical elements a, ..., be given finite sets of
symbols,
a. The class Iexp, with typical elements syt, ..., is defined by

s ::= v | a if b then S\ else s2 fi
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(Expressions such as s\ — s2, S\ Xs2.- ... may be added at the position of
the ..., if desired.)

b. The class Bexp, with typical elements b, ..., is defined by

b :: —  true | false | si = £2 I ' * ' | -> * | * 1 ^ b2

(Expressions such as s\ <s2, ... may be added at the position of the ..., if
desired.)

c. The class Stat, with typical elements S, ..., is defined by

S : := v:=s \ Sx ;S2 | if-then Sx else S2 fi | while/? doSod

2.2. Note. In contrast to [9], we require the sets Ivar and Icon to be finite. If
we would allow them to be infinite this would lead to infinite sums in our pro-
cess algebra specifications. It is trivial to add an infinite sum operator to, for
example, the term model defined in [16]. However, the combination of such
an operator and the abstraction operators T7 leads to a number of non-trivial
questions that are worth separate investigation. For this reason we will confine
ourselves to the finite case in this article.

2.3. Semantics of the toy language. We will now relate to each element of the
language defined in Section 2.1, a recursive specification in the signature of the
operators •, + and :^>. The first thing we have to do is to give the parame-
ters of ACP: the alphabet A and the communication function. The value
domain D of the chaining operator is

D = (Ivar^Icon)UIcon U {true, false}.

Here Ivar^Icon is the set of all functions from variables to their values. The
set A of atomic actions is the set A' as described in Section 1.2. Communica-
tion on A' is also as described in Section 1.2.

2.4. Notation. Let oelvar-*lcon, vtlvar and atlcon. We use the well-known
notation o{a/v] to denote the element of Ivar-^Icon that satisfies for each
v'slvar

[a if v' = v
) = a ( v , } o t h e r w i s e

2.5. Below we give a number of process algebra equations. The variables in
these equations are elements of the toy language with semantical brackets ( '[ '
and ']') placed around them, often sub- and super-scripted with elements of D.
The process corresponding to execution of language element
welexpUBexpUStat, with an initial memory configuration o^Ivar-^Icon, is
the solution of this system, with
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taken as root variable. Throughout the rest of this section a,a!
/?,/?'e{true,false} and o,o'elvar-*lcon.

2.6. The class Iexp

[vp = Mv)
[a]a = fa

[ifftthen^ else j 2 fiP = [*P»>atrue-[j1p 4- ^fabe-[j2P)

2.7. The class i?ex/?
[true]0 -
[false]9 = ffalse

f|true if a = a'
[ —W  - j otherwise

jfalse-Ttrue)

lbxDb2¥ =

2.5. The class
[v:=j]ff =

else 52 flp - [6p^>(Jftnie-[SiP + ifalse-[52P)

The following theorem shows that the specification presented above singles out
a unique process.

2.9. THEOREM. The specification defined in 2.6-2.8 is guarded.

u

PROOF. Define a relation --> between elements of E by

X —>  Y <^> Y occurs unguarded in tx.

It is enough to show that the relation —> is  well founded (i.e. there is no
infinite sequence X\ -^>X2 -^>X3 • • • ). This can be done by defining a
function m : E->N such that for X, YeE
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X -^Y =» m(Y)<m(X).
The definition goes by induction on the complexity of the language elements in
the variables. We give only a very small part of it. This should convince the
reader that it is possible to give a complete definition, which has the desired
property.

mdvY) = 1
m(laf) = 1

etc. •

2.10. Note. As a direct consequence of axiom CC1 we have that ';' is associa-
tive:

2.11. Remark. In the equation for \s\ +s2Y we say that, in order to evaluate
s\+S2, we first have to evaluate s\ and thereafter s2. Other possibilities would
have been

(evaluation in the reverse order), or

is\+s2Y =
(evaluation in parallel). The three resulting semantics are all different. One can
prove however that they are identical after appropriate abstraction.

2.12. Remark. It is easy to define a term rewriting system which, for given
guarded specification E — {X—t x | XeE), rewrites a given term t in the sig-
nature of ACPT + RN + CH with variables in E, into a term of the form
Stf,--// + 26y. Now the simple data flow network of Figure 2.1 represents a
machine that 'executes' specification E. Here TRS is a component that imple-
ments the term rewriting system described above, and N is a. nondeterministic
device that for each input Sa,--^ + 2£>y chooses either one summand at-th
and thereafter sends term tt to the input port and atomic action a{ to the out-
put port, or chooses one summand bj and sends this to the output port.

The following theorem says that the operators + and ^^> can be eliminated
in favour of the sequential composition operator •. This means that in the case
of the toy language the nondeterministic device N of Section 2.12 never has a
real choice.
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t.

X
TRS

T
b.

FIGURE 2.1

2.13. THEOREM. Using the axioms of ACP+RN+CH+RDP+PR+AIP~ we
can prove:

(1) Vstlexp Vae(/wjr—>/<%>«)  3d\, ...,dneD 3ctGlcon :

isY =c(dl)--c(dn)-1a

(2) VbsBexp \/o<E(Ivar->Icon) 3du ...,dneD 3£e{true,false}:

(3) VS G Stat Va e (Ivar^Icon):

V(3dud29... :[SY =

PROOF. By induction on the complexity of the language elements. •

2.14. REMARK. The reason why we used the operator ^ > instead of operator
» in the definitions above is that the use of > would lead to unguarded sys-
tems of equations. There exist models of ACPT (for example the term model
discussed in [16]) in which we can relate to each specification (so also the
unguarded ones) a special solution. If we would work in these models it would
be possible to use the operator » instead of the operator ^ > . But as stated
before, we do not want to restrict ourselves to one single model. In the
axiomatic framework the following approaches are available if one wants to
obtain 'abstract' semantics:
1. Partial abstraction. In the system of equations defining the semantics of

the toy language (Sections 2.6-2.8) we can replace all occurrences of
operator 7$^> in the equations for the classes Iexp and Bexp by an opera-
tor > . Using induction on the structure of the elements of Iexp and Bexp
one can prove that the resulting system is still guarded. It is not possible
to replace occurrences of ^ > in the equations for elements of the class
Stat by > . Consequently this approach will not lead to 'full abstractness'.

2. Delayed abstraction. Let E be a guarded specification that contains no T-
steps or abstraction operator. For a language element w and a memory
configuration a, [w]a is the formal variable that corresponds to execution
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of w with initial memory configuration a. Now we extend specification E
with variables (w)° for which we have equations

Here / is a set of 'unimportant' actions which we want to hide. Formal
variable <w>a corresponds to the execution of program w with initial
memory state a, in an environment where actions from / cannot be
observed. Call the new system Ej. Ej has a unique solution because E
has one. Note that when we follow this approach we lose, to a certain
extent, compositionality.

3. Combination of 1 and 2.

3 TRANSLATION OF POOL TO PROCESS ALGEBRA

3.1. In this section we give a translation to process algebra of a (representa-
tive) subset of the programming language POOL-T. POOL is an acronym for
'Parallel Object-Oriented Language'. It stands for a family of languages
designed at Philips Research Laboratories in Eindhoven. The 'T' in POOL-T
stands for 'Target'. Below we give, by means of a context-free grammar, the
definition of a language POOL-JL-CF. This language is a subset of the context
free syntax of POOL-T, as presented in [I]1. In this section we will give pro-
cess algebra semantics of a language POOL-J_, defined by:

POOL-± = POOL-T H POOL-_L-CF.

By giving a definition in this way we do not have to give an exhaustive
enumeration of all the context conditions. Because most of the context condi-
tions in POOL are rather obvious ('all instance variables are declared in the
current class definition', etc.), this is not a serious omission. Moreover, we will
mention context conditions whenever we need them.

First we will define a mapping SPECC that relates a process algebra
specification to each element of the language POOL-_L. The subscript C indi-
cates that the resulting specification is in the signature of concrete process
algebra, as opposed to the specification we will present in Section 3.11, which
contains an abstraction operator.

3.2. Context-free languages. Although the notions of a context-free grammar
and the language generated by it will be commonly known, we give a formal
definition, because we will need this later on.

1. Except for the fact that the expression denoting the destination object in a send-expression can
be nil in POOL-J_-CF, which is not the case in the context-free syntax of POOL-T.
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3.2.1. DEFINITION. A context-free grammar is a 4-tuple G = (T,N,S,P\
where T and N are finite sets of terminal resp. nonterminal symbols;
V = TUN is called the vocabulary of symbols; SGN is the start symbol, and P
is a finite set of production rules of the form X0-^X\ • - - Xn with XoeN, «>0,

3.2.2. DEFINITION. Let G = (T,N,S,P) be a context-free grammar, and let
V = TUN. Let 91 = (N —{0})*  be the set of sequences of positive natural
numbers. We write c for the empty string, and use a.O as a notation for
sequence a. A derivation tree of G is a 2-tuple t —  {nodes (t),label'(/)), where
nodes(t) is a nonempty finite subset of 91 such that for all (JE91 and

{)
1. o.nenodes(t) => oGnodes(t)
2. o.nenodes(t) Am <n => a.ra enodes (t)
and label(t) is a function from nodes(t) into F such that if o.nenodes(t) and
a.(fi+l)£»0*fes(f), and label(t)(o.j) = Xj for 0</<w, then production
(XQ-^XI • • • JSfn) is in P. (XQ-*X\ • • • Xn) is called the production applied at
a. An element oenodes(t) is called a /eo/*if o.\$nodes(t). A derivation tree is
called complete if the labels of all the leaves are in T. Let ox - - - on be the
sequence consisting of all the leaves of t, ordered lexicographically. Now
yield(t) is the sequence label{o\) • • • label(on).

3.2.3. DEFINITION. Let G = (T,N,S,P) be a context-free grammar. The
language L(G) generated by G is the set

= {yield(t) | f is a complete derivation tree of G and label{t){t) —  S}.

3.3. Objects in POOL. A system that executes a POOL-program can be
decomposed into objects. An object possesses some internal data, and also a
process, that has the ability to act on these data. Each object has a clear
separation between its inside and its outside: the data of an object cannot be
accessed directly by (the process part of) other objects.

Interaction between objects takes place in the form of so-called method calls.
One object can send a message to another object, requesting it to perform a
certain method (a kind of procedure). The result of the method execution is
sent back to the sender. In this way one object can access the data of another
object. However, because the object that receives a method call decides
whether and when to execute this method, every object has its own responsibil-
ity of keeping its internal data in a consistent state.

The programs of POOL are called units. A unit consists of a number of class
definitions. A class is a description of the behaviour of a set of objects. All
objects in one class (the instances of that class) have the same data domain, the
same methods for answering messages, and the same local process (called the
object's body).

If a unit is to be executed, a new instance of the last class defined in the
unit is created and its body is started. The body of an object can contain
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instructions for the creation of new objects. This makes it possible for the first
object to start the whole system up.

When several objects have been created, their bodies may execute in parallel,
thus introducing parallelism into the language. However, the sender of a mes-
sage always waits until the destination object has returned its answer (this
mechanism is known as rendezvous message passing).

A number of standard classes are already predefined in the language (e.g.
Integer and Boolean). They can be used in any program without defining them,
but they also cannot be redefined.

The symbol nil denotes for each class a special object present in the system.
Sending a message to such an object will always result in an error. The initial
value of variables that are not parameters of a procedure is nil.

Because numbers are also objects, the addition of 3 and 4 is indicated in
POOL by sending a message with method name add and parameter 4 to the
object 3.

We first give, in Section 3.4, the formal definition of POOL-J--CF. Section
3.5 contains some remarks concerning this definition, and the relation with
POOL-T and POOL-±.

3.4. DEFINITION (POOL-±-CF). We assume that two finite sets, Lid and
Uld, of syntactic elements are given. These sets correspond to the lower-
identifiers resp. upper-identifiers in POOL-T. Elements of Lid are strings start-
ing with a lower case letter, elements of Uld start with an upper case letter.
We define: Id = LidU Uld. Let NQ^N be given. The set Int of integers in
POOL-± is

Int = {-iV0, ... ,-1,0,1, ...,7V0}.
Âo can not be <o because that would lead to infinite sums and infinite merges.
The set Bool of booleans is

Bool = {true,false}.
Now the context-free grammar G, which defines POOL-_L-CF, is

G = (T9N9U9P)
where
T = 7(iU/«/U5c>o/U{root,imit,class,var,body,end,method,routine,local,in,nil

return, post, if, then, else, fi, do, od,sel,les, or, answer, self, new, ; ,- ,<—,!, , , :}
N = {U,RU,CDL,CD,MDL,MDyRDL,RD,PD,VDL,VD,SS,S,SE,

GCL, GC,AN9MIL,E, CO9SN9RC9MC9EL9 CI9MI9RI9 VI]
P: see Table 3.1
In Table 3.1, optional syntactical elements are enclosed in square brackets ( '['
and ']')•
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Syntax of POOL-_L

No Description Syntactic Rule

1 unit

2 root unit

3 class definition list

4 class definition

5 method definition list

6 method definition

7 routine definition list

8 routine definition

9 procedure denotation

10 variable declaration list

11 variable declaration

12 statement sequence

13 statement

U-*RU

RU->root unit CDL

O)-*class CI [ \2LXVDL ] [ RDL ] [ MDL ]
body SS end CI

MDL->MD[MDL]

MD -̂ method MI PD end MI

RDL^RD[RDL]

RD -^routine RI PD end RI

PD^([VDL])CI: [local VDL \n][SS]
return E [ post SS ]

14 select statement

15 guarded command list

16 guarded command

VDL

VD-

SS-^

S^

SE-

GCL

GC-

->VD[,VDL]

>VI\CI

>S[;SS]

VI^-E
| AN

if E then SS [else SS]b
| do E then SS od

SE
| SN

MC
| RC

>sel GCL les

-^GC[or GCL]

> E[AN]thenSS
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17 answer statement AN-*answer (MIL)

18 method identifier list

19

20

21

22

23

24

25

26

27

28

expression

constant

send expression

method call

routine call

expression list

class identifier

method identifier

routine identifier

variable identifier

E^

CO-

SN^.

MC-

RC-

EL^

C/-»

M / -

* / -

VI^

VI
self
CO
new
SN
MC
RC
nil

>c (for ceBoolUInt)

.EIMI([EL))

->MI([EL\)

>CIRI([EL])

•E[,EL]

C (for CtUId)

> m (for me Lid)

r (for re Lid)

v (for v&LId)

TABLE 3.1

3.5. Remarks (numbers refer to productions).
(1) In POOL-T a unit can also be a specification unit or an implementation

unit. This makes it possible to group a set of class definitions together
into a logically coherent collection and to specify a clear interface with
other units.

(2) The names of the classes defined in a unit must be different (similar
context conditions in (5), (7), (9) and (10)). There are 4 standard
classes: Integer, Boolean, Read-File and Write-File. The definitions of
these classes can be found in Section 3.9.3. The standard classes can be
used in any program without defining them, but they also cannot be
redefined. Elements of Int are instances of class Integer and elements of



Process algebra semantics of POOL 187

Bool are instances of class Boolean.
(4) The class identifier following the end must be identical to the initial

class identifier (similar context conditions in (6) and (8)).
(8) Routines are procedural abstractions related to a class, rather than to

an individual object. They can be called also by objects from another
class. Two objects can call and execute a routine concurrently as though
each has its own version of the routine.

(9) The first variable declaration list is the formal parameter list, the second
one contains the local variables of the method or routine. Only in the
case of a method, a post-processing section may be present. The type of
the return expression must be the same as the class identifier in the pro-
cedure denotation.

(11) A strong typing mechanism is included in the language: each variable is
associated to a class (its type) and may contain the names of objects of
that class only.

(13) The statement VI<^E is called an assignment and executed as follows:
First the expression on the right hand side is evaluated and its result (a
reference to an object) is determined. Then the variable is made to con-
tain this reference.
The statement do E then SS od is the classical while statement.
A send expression, a method call and a routine call can occur as state-
ment as well as expression. If they occur as statement, the correspond-
ing expression is evaluated, and its result is discarded. So only the
side-effects of the evaluation are important.

(14) The select statement is the most complicated construct in the language.
It specifies the conditional answering of messages. A select statement is
executed as follows:

All the expressions (called: guards) of the guarded commands
are evaluated in the order in which they occur in the text. If any
of them results in nil, an error occurs.
The guarded commands whose expressions result in false are dis-
carded, they do not play a role in the rest of the execution of the
select statement. Only the ones with true (the open guarded com-
mands) remain. If there are no open guarded commands, an
error occurs.
Now the object may choose to execute the (textually) first open
guarded command without an answer statement, or it may
choose to answer a message with a method identifier which
occurs in one of the answer statements of an open guarded com-
mand that has no open guarded command without an answer
statement before it. In the last case it must select the first open
guarded command in which the method identifier of the chosen
message occurs.
If the object has chosen to answer a message, this is done.
After that in either case the statement after then is executed, and
the select statement terminates.
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(17) An object executing an answer statement waits for a message with a
method name that is present in the list. Then it executes the method
(after initializing parameters). The result is sent back to the sender of
the message, and the answer statement terminates.

(19) The symbol self always denotes the object that is executing the expres-
sion itself.
The expression new may only occur in a routine. When a new expres-
sion is evaluated, a new object of the class where the routine is defined,
is created, and execution of its body is started. The result of the new
expression is a reference to that new object.

(21) When a send expression is evaluated, first the expression before the T
is evaluated. The result will be the destination for the message. Then
the expressions in the expression list are evaluated from left to right.
The resulting objects will be the parameters of the message. Thereafter
the message, consisting of the indicated method identifier and the
parameters, is sent to the destination object. The answer of the destina-
tion object is the result of the send expression.

(22) An object may not send a message to itself. If an object wants to
invoke one of its own methods, this can be done by means of a method
call. A method call may not occur in a routine.

3.6. Attribute grammars. The complexity of the language POOL does not allow
for a translation into process algebra which is as straightforward as in the case
of the toy language of Section 2. Several problems arise, e.g. how to establish
the relation between a method call and the corresponding method declaration,
the semantics of a new expression, etc.

The main tool we will use in order to manage this complexity is the formal-
ism of attribute grammars. This is not the place to give an extensive introduc-
tion into the theory of attribute grammars. For this we refer to e.g. [12,14,21].

Informally an attribute grammar is a context-free grammar in which we add
to each nonterminal a finite number of attributes. For each occurrence of a
nonterminal in a derivation tree these attributes have a value. With each pro-
duction rule of the context-free grammar we associate a number of semantic
rules. These rules define the values of the attributes. Some of the attributes are
based on the attributes of the descendants of the nonterminal symbol. These
are called synthesized attributes. Other attributes, called inherited attributes, are
based on the attributes of the ancestors.

In the theory of abstract data types one presents specifications of the stack,
Petri net people model the producer/consumer problem, and in the field of
communication protocols one verifies the Alternating Bit Protocol. The exam-
ple one always encounters in an introduction into the theory of attribute gram-
mars is the one, first presented in [21], in which the binary notation for
numbers is defined. We do not want to break with this tradition, and will also
give the famous example.
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3.6.1. EXAMPLE. We start with a context-free grammar that generates binary
notations for numbers: the terminal symbols are *, 0, 1; the nonterminal sym-
bols are 2?, L and N, standing respectively for bit, list of bits, and number; the
starting symbol is N; and the productions are

B->0 | 1
L^B | LB
N^L| LL

Strings in the corresponding language are for instance '0', '010', '0.010' and
'1010.101'. Now we introduce the following attributes
1 Each B has a 'value' v (B) which is a rational number.
2 Each B has a 'scale' s (B) which is an integer.
3 Each L has a 'value' v (L) which is a rational number.
4 Each L has a 'length' l(L) which is an integer.
5 Each L has a 'scale' s (L) which is an integer.
6 Each N has a 'value' v (N) which is a rational number.

These attributes can be defined as follows:

Syntactic Rules

B^>0

B-*l

1 j > ft

LX^>L2B

N-»Li-L2

Semantic

v(B) =

v(B) =

v(L) =

v(L,) =

v(N) =

v(N) =

s(L2) =

; Rules

0

2*{B)

v(B);s(B) =

v(L2) + v(B)

v(L);s(L) =

v(L,) + v(L2)

- / (L2)

s(L);l(L) = 1

;^(5) = J (LI ) ;

0

;5(L,) = 0;

TABLE 3.2

(In the fourth and sixth rules subscripts have been used to distinguish between
occurrences of like nonterminals.) If one looks for some time at this equations,
one sees (hopefully) that for each complete derivation tree t with label(t)(e)=N
there is a unique valuation of the attributes such that the semantic rules hold.
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Furthermore the v attribute of the root nonterminal gives the value of the
string generated by the tree.

Below we give a formal definition of an attribute grammar. There are many
(often essentially different) definitions possible. The following one is a
simplified version of the definition presented in [14].

3.6.2. DEFINITION. The elements of an attribute grammar G are:
1. A context-free grammar Go = (T,N,So,P).
2. A semantic domain (or set of data types) D = <fi,O>, where £2 is a finite

set of sets and $ is a set of functions of type VXX • • • XVm^>Vm + \ for
m>0 and FJ-efl. In the case m = 0 , 0 can contain elements of V (for
Fe£2). We demand that for each Fef i there is a v e V with VGO.

3. An attribute description consisting of
a. Two finite disjoint sets S-Att and I-Att of synthesized or s-attributes

resp. inherited or i-attributes; Att = S-AttUI-Att is the set of attri-
butes.

b. For XeN, S(X) and I{X) are subsets of S-Att resp. I-Att; A(X) =
S(X)UI(X)is the set of attributes of X We demand I(S0) = 0 .

c. For each as Att, V(a)G& is the (possibly infinite) set of attribute
values of a.

4. First some intermediate terminology:
For each production rule p :X0->X\ • • • Xn, we define the set A(p) of
attributes of/?, by

A(p)= {(aj) | 0</<#!, ae,4(*,)}.

Intuitively <a,y> is an attribute of the occurrence of Xj on they-th posi-
tion in p. Furthermore the sets INT(p) and EXT(p) of internal resp.
wtf/ attributes of/? are defined by

INT(p) = {(aj) | ( / =

£ X 7 » = {(aj) | ( / = ;

A semantic rule f o r /? is a s t r i n g of t h e f o r m

(aj) =f((aukl),...,(am,km)) (*)

with (aj)elNT(p), m^O, (ahki)GEXT(p) for K / < w , a n d / G O is a
function from V(ax)X • • • X F(aw) into K(«).
Now we continue the definition:
For each/?GP, i^^?) is a finite set of semantic rules for/?. We demand
that for each/?eP and (aj)<ElNT(p), R(p) contains exactly one seman-
tic rule.

The definition above gives the 'syntax' of attribute grammars. To define the
'semantics' of an attribute grammar, we need again some terminology:
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3.6.3. DEFINITION. Let G be an attribute grammar. Let t be a derivation tree
of the corresponding context-free grammar. The attributes of / are defined by

A(i) = {(a,o) | o<Enodes(t), a<EA(label(t)(o))}
(the notation A (.) is clearly overloaded, but always means 'attributes of . . . ' ) .
A decoration of / is a function

val:A(t)-+{v \ 3aeA(t):vsV(a)}
such that for each <a,a> GA (/), val(a,o)e V(a).
Suppose oenodes(t) and p : X0->X\ • • • Xn is a production applied at a. If
R(p) contains a semantic rule (*) (see Definition 3.6.2), then the string

(a,o.j) = f{(aua.kl)9 ...,<<*m,a./;m» (**)
is called a semantic instruction of /.

3.6.4. DEFINITION. A decoration val of / is called a correct decoration if for
each semantic instruction (**) of t

val(a,o.j) = f(val(auo.kil ...,val(am,o.km))
(this is a serious equality, not a string!)

3.6.5. It follows from the Definitions 3.6.2 and 3.6.3, that for each attribute
(a,o) there is exactly one semantic instruction in R(t) of the form (a,o) = ....
This means that each attribute of / is defined by exactly one equation in the
system of equations R (t). A sufficient condition to solve this system is that the
system of equations contains no circularities. In [21], an algorithm is given
which detects for an arbitrary attribute grammar whether or not the semantic
rules can possibly lead to circular definition of some attributes. All the attri-
bute grammars we will employ, contain no circularities, and therefore there is
for each complete derivation tree precisely one correct decoration. This decora-
tion can be computed if the functions which occur in the semantic rules are
computable.

3.7. State Operator (SO). In [8], state operators XJ1 are introduced. Here m is
member of a set M, the set of objects. These objects are very much like the
objects in POOL: they posses some internal data, and there is a local process
which can act upon these data. The object can block actions of the process, or
rename then, depending on the data. X^(JC) is a process corresponding to
object m in state a, executing process x. We can visualize as in Figure 3.1.
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i
m

FIGURE 3.1

Below we give the formal definition of the state operators.

3.7.1. DEFINITION. Let M and 2 be two given sets. Elements of M are called
objects, elements of 2 are called states. Suppose two functions act and eff are
given

act: A X M X 2->A TS (action function)
eff: AXMX 2 ^ 2 (effect function)

Now we extend the signature with operators
K'.P^P (for meM, ae2)

and extend the set of axioms by (asA; x,ysP; m^M; ae2)

W) = 8

K(r) = T

*?<«) = act(a,m,o)\

X?(rx) = rA?(*)

SOI

SO2

?ff(a,m,o)(x) SO3

SO4

(y) SO5

TABLE 3.3

The state operators can be defined in terms of the operators and constants of
ACPT + RN(see[26]).
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3.8. Parameters of the axiom system. We will relate to POOL-_1_ programs
specifications in the signature of ACP + RN + CH + SO. The first thing we have
to do is to specify the parameters of the axiom system. We will not give a
complete list of all the atomic actions. The alphabet A of atomic actions sim-
ply consists of all the atomic actions we mention.

3.8.1. Objects. Let N\ be a fixed natural number. N\ gives an upperbound on
the number of active (or non-standard) POOL objects which can be created
during the execution of a POOL-_L program. The set AObj contains references
to these potential objects.

AObj = {6,1, ...,£,}
The hats are needed to distinguish between the names of the non-standard
objects and the names of the standard objects which are always present in the
system:

SObj = Int U Bool U {nil} U {input,output}.
The set Obj = SObj UAObj gives the domain of values of variables in
POOL-_L programs. It is also the value domain of the chaining operator we
will employ; this means that the alphabet contains actions t a4a> etc- f°r

as Obj).

3.8.2. Communication. Objects in POOL communicate by sending frames to
each other. These frames are built up as follows

destination type of message message sender

The field 'sender' contains a reference to the object which sends the message;
the field 'destination' contains a reference to the object which reads the mes-
sage. There are two types of messages:
me: The sender asks the destination to perform a method-call. The field 'mes-

sage' contains the name of the method together with the actual parame-
ters. So a moframe looks as follows

(a9mc,m(au ...,OLn),P) (3.8.2.1)
an: After an object has executed a method call, an an-frame is sent back to

the object which originated the method call. The field 'message' contains
the answer (a reference to an object):

(P,an,y,a) (3.8.2.2)

Let N2 be a fixed natural number. iV2 gives an upperbound on the length of a
variable declaration list of a procedure denotation. The set 9H of messages that
occurs in a method call frame is:
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9H = {m(ot\, ...,aw) | meLId,Q<:n<N2,oi\, ...,ane0bj} (3.8.2.3)
and the set ̂ Fof frames is:
9= {(a9mc,d,f$) | a,/?e0fy',de91t}U{(/?,tffl,Y,a) | a,fi,y<EObj}. (3.8.2.4)
For each frame fe% we have atomic actions read(f% send(f) and comm(f).
The communication function on these actions is given by

read{f) \ send if) = comm (f) for fsf. (3.8.2.5)
The set J of forbidden actions that will be encapsulated is

/ = {read(f),send(f)\fe<3). (3.8.2.6)

3.8.3. Renamings. A POOL object is fully determined by its class and by its
name. For each class we will specify a process that gives the general behaviour
of the instances (the objects) of that class. Now the only thing we have to do
in order to define the process corresponding to a specific object, is to give a
renaming function which renames the actions of the process which is related to
the class of that object. This renaming function gives the object its identity, a
name. The frames which are sent and received by an object, contain the name
of that object. But since on the level of a class this name is not known, the
process related to a class contains 'unfinished' read and send actions: actions
rd(uf) and sn(uf\ where uf is an unfinished frame in which the field that gives
the identity of the object is absent. Actions of the form rd(uf) and sn(uf) do
not communicate.

For each aeObj we define a renaming function fa by:

fa(sn(frmc9rn(au ...,«„))) = send(/3,mc,m(au ...,«„),«) (3.8.3.1)
fa(rd(mc9rn(au ...,an\/3)) = read(a,mc,m(au ...,aj,/?) (3.8.3.2)

= send(p,an,y,a) (3.8.3.3)

= read(a,an,p,y) (3.8.3.4)
If an object executes a self expression, the corresponding process on class level
contains a non-deterministic choice between actions eqs(J$) for JSGOA/ The
following equations for the renaming functions make that, for a specific
instance of the class, the action which will be actually performed is the right
one.

( skip if B = a
8 otherwise <3-8-3-5)

If an object answers a method call, the result of the return expression in the
procedure denotation has to be sent back to the sender of the method call. To
model this we introduce renaming functions ga. The function ga interprets a
1ft action as a sn(a,an,fS) action:

sn{a,an9P).' (3.8.3.6)
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3.8.4. Process creation. For d^°KXAObj we introduce atomic actions
create(d), create*(d) and create(d). create(d) stands for: ask for the creation
of a process on basis of initial information d. create*(d) means: receive a
request for creation. create(d) indicates that process creation has taken place.

Elements of 91 (see Definition 3.2.2) play the role of formal variables in the
process algebra specification that we will construct in order to give the seman-
tics of POOL-±. In general the process denoted by the first parameter of a
create action will give the behaviours of a certain class, and the second para-
meter gives the name of the instance of that class to be created.

We extend the communication function by

create(d) \ create*(d) = create(d). (3.8.4.1)
Create actions are not involved in any other proper communication. Let

K = {create (d), create*(d) \ dG%XAObj}. (3.8.4.2)
Actions from K will be encapsulated.

Our way of dealing with process creation in POOL is inspired by the
mechanism described in [10]. We have chosen however not to use the process
creation operator E^ presented there, because of the lack of proof rules for
this operator.

3.8.5. State operator. In the semantical description of the toy language of Sec-
tion 2 the state of the memory was a parameter of the formal variables in the
specification. In principle this approach can also be followed in the case of the
language POOL-_L But since in POOL objects of a different class have, in
general, different variables and the language contains recursion, which leads to
the creation of new instances of variables, the memory state of a POOL object
can become rather complicated. For this reason we prefer to keep track of the
memory state in a different way: namely by means of a state operator. For
each variable v^LId and value aeObj, Xv

a represents a memory cell with name
v in state a. A value /? can be assigned to variable v by means of an atomic
action ass (v, /?):

\v
a(ass(v90)-x) = skip-X^x). (3.8.5.1)

If in the evaluation of an expression the value of a variable v is needed, this
can be expressed at the level of process algebra by means of an alternative
composition of actions eqv(v,/i). The following equation makes that in an
environment with variable cell v, the correct action will be actually performed:

(skip'Xv
a(x) if a = P

K(«r(y*P)'x)=\s otherwise <3'8-5-2)

Notice that in the case of nested Xv
a operators, actions ass (v, /?) and eqv(v,/$)

interact with the innermost Xv
a operator. This is relevant for nested method

calls, etc.
The initial object, which starts the system up, has name 0. An object
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counter counts the number of objects which have been created. It also provides
an environment in which new objects obtain new names. An error occurs when
more than N\ objects have been created. For n <EN we have

skip -KlVix) if a = n An <NX
r(create(X9a)'x) = error'\c

n°f{er(x) iin=Nx (3.8.5.3)
8 otherwise

3.8.6. Formal variables. The set E of formal variables of the process algebra
specification related to POOL--L consists of the elements of % possibly sub-
and superscripted with elements of Lid and Obj*. Formally we have:

H = 91 U %XLId U %X(Obf) U %XLIdX(Obf). (3.8.6.1)
We define node : S-»9l to be the projection function which relates to each
variable the corresponding element of 9L

3.8.7. Note. From now on, when we speak about a POOL-± program, what
we mean is an extended program, in which the class definition list begins with
the class definitions of the standard classes (see Section 3.9.3).

3.9. Attribute description. Table 3.4 contains a list of all the attributes we will
employ for the semantical description of POOL-_L In Section 3.9.1 we give a
detailed description of these attributes. Section 3.9.2 contains all the semanti-
cal rules which were not already given in Section 3.9.1, and in Section 3.9.3 the
standard classes are defined.

3.9.1. Remarks.
1. We make the names of the nodes in a derivation tree explicit by means of

an inherited attribute [.]. With each node in a derivation tree we will
relate a number of process algebra equations with variables in E. The
values of the attribute [.] (which are elements of S) will be the 'most
important' or 'key' variables in this specification. The semantic rules for
this attribute are as follows

For production U-+RU the rule is {RU} = 1
If X0^X\ • - - Xn is a production with XQ^U, and if XtsN for cer-
tain K / < « then we have the rule [A ]̂ = pfo]./.

2. The value of synthesized attribute id is (one of) the identifier(s) generated
by the corresponding nonterminal.

3. Attribute vd collects variables declared in a variable declaration list.
4. Attribute pd gives the information concerning a procedure declaration that

we need: a formal variable denoting the process related to the procedure,
and the number of parameters of the procedure.

5. The attribute rd gives for each routine in a routine definition list the
essential information: a process variable and the number of parameters.
The value of rd is arbitrary for elements of Lid which are not the name of
a routine.
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Name
attr.

H
id

vd
pd
rd
md
cd
rdc
mdc
cdf
rdf
mdf
class
1
mis
misl
peq

spec

Us

i
s

s
s
s
s
s
s
s
i
i
i
i
s
s
s
s

s

Description

Key variable
Identifier

Variable declarations
Procedure declaration
Routine declarations
Method declarations
Class declarations
Routine decl. of a CDL
Method decl. of a CDL
Class definitions
Routine definitions
Method definitions
Class
Length
Method ident. set
Method ident. set list
Process equations

Specification

Attribute
value

91
Lid

Lid'
?fLXN
Lld-t^XN
LW->91XN
UId-*%
UIdXLId->%XN
UIdXLId->%XN
UId->%
UIdXLId-+%XN
UIdXLId-+%XN
Uld
IM
Pow(LId)
(Pow(LId)Y
Sets of eq. over
ACP + RN + CH + SO
with variables in H
Sets of eq. over
ACP + RN + CH + SO
with variables in E

Nonterminals

N-{U}
{VI,RI,MI,CI,
VD,RD,MD,CD}
{VDL}
{PD,RD,MD}
{RDL,CD}
(MDL,CD)
{CDL}
{CDL}
{CDL}
N-{U,RU}
N-{U,RU}
N-{U,RU}
N-{U,RU,CDL,CD}
{EL}
{MIL,AN,GC}
{GCL}
N-{U,VI,RI,MI,CI,
VD,VDL,RD,RDL,
MD,MDL}
N-{VI,RI,MI,CI,
VD,VDL,RD,RDL,
MD,MDL}

TABLE 3.4

6. The meaning of attribute md is similar to the meaning of rd.
7. The attribute cd gives the essential information for each class definition in

a class definition list: the process corresponding to the general behaviour
of that class. The value of cd is arbitrary for elements of Uld which are
not present in the class definition list.

8. Attribute rdc is like rd but now for a list of class definitions.
9. Attribute mdc is like md but now for a list of class definitions.
10. All the information that is gathered in the s-attribute cd is distributed

over the parse tree by means of the i-attribute cdf:
For production RU-^root unit CDL we have the rule cdf (CDL) =
cd(CDL).
If X0-+Xi • • • Xn is a production (X0^U,RU), and if XteN for cer-
tain !</</! , then cdf(Xt) = cdf(X0).
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11. Attribute rdf is like attribute cdf.
12. Attribute mdf is like attribute cdf.
13. In order to define the semantics of, for example, a new expression, we

need to know in which class definition this expression occurs. Therefore
we define an i-attribute class with domain Uld:

For production

CZ)->dass CIX [ \arVDL ] [ RDL ] [ MDL ] body SS end CI2

we have rules
[class(VDL) = ] [class(RDL) = ] [class(MDL) = ]class(SS) = id(CIx)

If XO->XX - - Xn is a production (X0^U,RU,CDL,CD\ and if
X;eN for certain K / < « , then class(Xi) = class(XQ).

14. In the semantic rules for the send expression we need information about
the length of the expression list. This information is contained in attribute
/.

15. The attribute mis gives the method identifiers which occur in the method
identifier list of an answer statement. The attribute is used to define the
semantics of the select statement.

16. The attribute misl gives a list of the method identifier sets which occur in
the answer statements in a guarded command list.

17. The value of the attribute peq is a set of equations in the signature of
ACP + RN + CH + SO with variables in E. We will define the attribute in
such a way that for each nonterminal X:

(Y = tY)epeq(X) =>
Furthermore we take care that for each nonterminal X, peq (X) never con-
tains two equations for the same variable. These conditions make that the
union for all the nodes in a derivation tree of the values of attribute peq
never contains two equations for the same variable.

18. The s-attribute spec collects the values of attribute/?^. The value of the
attribute spec belonging to the root of the derivation tree (which has label
U) is the specification we relate to the parse tree. We have the following
semantic rules:

Let XQ-±X\ - • • Xn be a production such that X0^U has attribute
spec. Let -Sell , ...,«} be the set of indices / for which Xt has an
attribute spec. Then:

spec(X0) =peq(X0)U {Jspec(Xt)
i&S

For production U-^RU we have:
spec(U) = spec(RU) U
U {(X—S) | JfeH and there is no equation for X in spec(RU)}.
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3.9.2. Semantic rules. In case a production contains an optional syntactical
element, we will often use a fraction notation in the semantic rules: the
numerator corresponds to the semantic rule for the production with the
optional element, the denominator corresponds to the production without the
optional element. In case of a semantic rule peq{X) — {E UE2,...}, we only
write down the equations Ei9E29.-Ml Numbers refer to the numbering of pro-
ductions in Table 3.1.

VI^v (veLId) (28)

id (VI) = v

RI->r (r<ELId) (27)

id(RI) = r

(m<ELId) (26)

id(MI) = m

(CGUId) (25)

id(CI) = C

[9ELX] (24)

l(EL0)= l[ + l(ELx)]

IELO1 =
O We state again that the equation for [ ^ L Q ] is not to be considered as a
semantic rule defining attribute [.], but as an element of the set defining attri-
bute peq. The equation says that execution of an expression list consists of
sequential execution of all the expressions from left to right.

RC-*CIRI() (23.1)

Let

rdf(RC)(id(CI\id(RI)) = (Xn)

then

\RCl = skip - X€

O In a correct POOL-_L program n will be 0. The skip action is needed in
order to keep the specification guarded.

RC^CIRI(EL) (23.2)

Let

rdf(RC)(id(CI)Jd(RI)) = (X n)

then

\RC\ =
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O First the expressions of the parameter list are evaluated. Thereafter the rou-
tine call is executed, with the actual parameters instantiated. In a correct pro-
gram the number of actual parameters equals the number of formal parame-
ters: l(EL) - n.
MC->MI{) (22.1)

Let

mdf(MC)(class(MC)Jd(MI)) = (X n)
then

IMC} = skip-X€

MC^MI(EL) (22.2)
Let

mdf(MC)(class(MC\id(MI)) = (X n)
then

IMC} = lEL}^>au_an Xau_an

SN->E\MI() (21.1)

Let

id (MI) = m
then

[SN] = lE}^>a lSN}a

lSN}a =

O First the expression on the left is evaluated. If the result is nil an error
occurs. Otherwise the result of the expression is the destination of the message.
Now the message is sent and the answer awaited. This answer (if it comes) is
the result of the send expression. In a correct POOL program the type of
expression E will be a class that contains a method m without parameters.

SN^EIMI(EL) (21.2)

Let

id (MI) = m
I (EL) = n

then

ISN} = lE}^>a lSN}a

error if a = nil
sn(a,mc,m())' 2 r^(an>Aa)mW otherwise
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] ^ = error
and for a^nil:

O Like 21.1 but now with parameters.
c (ceBoolUInt) (20)

ICO} = tc
/ (19.1)

aeObj

O Cf. equation 3.8.5.2.
£-*self (19.2)

IE] = 2 eqs(a)-]a
aGObj

O Cf. equation 3.8.3.5.
E^CO (19.3)

= [CO]
(19.4)

Let

cdf{E)(class(E)) = X

then

O Process creation takes place in an environment (cf. equation 3.8.5.3) that
takes care of the naming of new objects, and always allows only one of the
actions create(X, a) to occur.
E->SN (19.5)

[El = [SN1
E->MC (19.6)

[£] = [MCI
(19.7)

[El = IRCJ
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E^nil (19.8)

IE] = |nil
MILQ^MI[,MILX] (18)

Let

id(MI) = m

mdf(MILo)(class(MILolm) = (X n)
then

mis(MIL0) = {m}[Umis(MILl)]

L = 2 rd(mc,m(au ...,an)9a)'pga(Xau ...,aJ
a,, ...,an,«e0Zy

O For the w which occur in the method identifier list, lMIL0}m gives the pro-
cess that describes the answering of a message m: first a method call with
identifier m is read, then the method is executed, and the result is returned to
the sender (cf. equation 3.8.3.6). For m not in MIL0, lMIL0}m — 8.

znsYux (MIL) (17)

mis (AN) = mis (MIL)

= [MIL]m

IAN} = 2 \MIL]m
meLId

O The variables L4iV]m will be needed for the description of the select state-
ment.

The semantic rules for the nonterminals MIL, AN, GC, GCL and SE are
rather complicated. This is because the semantics of the select statement is to a
large extent not compositional: it is not defined in terms of the semantics of
the answer statements which occur in the guarded commands, but in terms of
the individual method identifiers of these answer statements. The formalism of
attribute grammars has difficulties in dealing with such a case.

GC^EthenSS (16.1)

mis(GC) = 0

IGCI = [E]

IGC]€ = skip-lSS]
O The prefix skip in the equation for variable [GCI€ is needed because we
want to give a different semantics to the following two select statements:
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sel

true answer(m j) then x <-1 or
true answer(m2) then x<r-2

les
and
sel

true answer(m!) then JC«-1 or
true then answer(m2) ; ;c<—2

les

If the environment offers a method call with method identifier m1? but no
method call with method identifier m2, then the first select statement will
answer m\. The second select statement however may choose to execute the
second guarded command, which will result in a deadlock,

GC^E AN then SS (16.2)

mis(GC) = mis (AN)
IGC] = IE]

lGC\m = lAN]m-lSS]
GCL-+GC (15.1)
Let

mis(GC) = M
then

misl(GCL) = (M)
[GCLl = [GC1

O See

GCL0-
Let

[GCL]«

[GCLlJj,

remark about

-*GC or GCLi

mis(GC)

= .

IGCJ.
8

IGCI
\GC\m
8

production

= M0

if a = trueAAf=0
otherwise

if a = t rueAM=0
if a = trueAweM
otherwise

14.

(15.2)
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misl(GCLx) =

then

misl(GCL0) = (M0,M\, .~,Mn)

if On =

IGCLJ"1' 'a" otherwise

[GCL0 C •-«"
IGC}€ if ao=trueAMo=0
lGC}m if ao=trueAmeMo

[GCLJ^' a" otherwise

O See remark about production 14.

Let
misl{GCL) = (Ml9 ...9Mn)

then

[SE] = IGCL} ^>ai , . . . ,aJ^Ia i , . . . ,an

^ ...>a> = error if (3/ : a, =nil)V(V/ : a,- =false)
a" otherwise

O Execution of a select statement starts with evaluation of the expressions in
the guarded commands. If one expression yields nil or all expressions yields
false an error occurs. The intuitive meaning of variable

is: Execute the first open guarded command without an answer statement,
assuming that evaluation of the expressions yields values a\, ...,an. If there is
no open guarded command without an answer statement the result is S.
Analogously, for m sLId, the intuitive meaning of variable

is: Execute the first open guarded command without an answer statement or
with m in the method identifier list of the answer statement.

S^ VI<-E (13.1)

IS} = [£ ]^> a ass(id(VI\a)
O Cf. equation 3.8.5.1.
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[51 = [AN]

S^ifE then SS, [ else SS2 ] fi

[Si = IE}^>* [S]a

ISSJ if a=true

205

(13.2)

(13.3)

[si =

S->do£thenSSod
[SI =

ISS2} .
, if a=false

skip
error otherwise

(13.4)

ISSJ-IS] if a=true
skip if a=false
error otherwise

S-+SE
IS} = ISE}

(13.5)

(13.6)

aeObj
la)

O The send expression is evaluated and afterwards the result is discarded.
S-+MC (13.7)

[S] =

[s] =

ISSO] =
VD->VI:CI

VDL0->VD[, VDLi]
vd(VDL0) = (id(VD))[*vd(VDLx)]

O The function * denotes concatenation of lists.

(13.8)

(12)

(11)

(10)
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PD^ilVDL] ])CI: [local VDL2 in] [SS} ] returnE[postSS2] (9)
Let

vd(VDLi) = (v,, ...,vn)
vd(VDL2) = (wu ...,wk)

(n =0 or & =0 if there is no FDL, resp. VDL2)
then

= {IPD\ n)

O Process \PD\a^ an corresponds to execution of the procedure with param-
eters OL\> ...,aw.

RD -^routine RIlPDendRI2 (8)
id(RD) = id{RIx)
pd(RD) = pd(PD)

(7)

rd(RDL0) = r d ^ L ^ {pd(RD)/id(RD)}
rd0

O We use the notation for function modification of Section 2.4. rd0 is an
arbitrarily chosen element out of the domain of attribute rd. We use similar
conventions in the semantic rules for productions 5, 4 and 3.

MD ̂ method MIX PD end MI 2 (6)

id{MD) = id(MIx)
pd(MD) = pd(PD)

(5)

md(MDL0) = m ( M ^ L l ) {pd(MD)/id(MD)}
mdo

CZ>->class CIX [ var VDL ] [ RDL ] [ MDL ] body SS end CI2 (4)

Let

then
id (CD) = id(CIx)

=
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(3)

cd(CDL0) = Cd{C^Lx) {lCDl/id{CD)}cd0

mdc(CDL0) = K— -{md(CD)/id(CD)}
ffluC

rdc(CDL0) = —^-  l-{rd(CD)/id(CD)}
rdC

O Process [CDL0] gives the behaviour of the last class defined in CDLQ.

RU^root unit CDL (2)
Let

cd(CDL)(Integer) = /
cd(CDL){Boolean) = B
cd(CDL)(Read-File) = R
cd(CDL)(Write-File) = W

6 = {cd(CDL)(C) | CeUId)

ACTIVE = | | ( 2 cmzte*(X,a) • Pf (X))
ccGAObj X&

STANDARD = (J^Pf.W )\\Pu(B)\\pfttm(B)\\pf^(R)\\pf^(W)

then

IRU} = \funtero^jo^K{create{lCDL\M\^CTIVE\\STANDARD)
O The environment in which a POOL-_L unit is to be executed consists of
encapsulation operators 3y and 9^ (cf. equations 3.8.2.6 and 3.8.4.2), and the
object counter (cf. equation 3.8.5.3). In the scope of these operators we have
the 'sleeping' active objects and the standard objects (except for nil, which is in
our semantics a kind of virtual object). Now execution of a POOL-_L unit
starts with an action that orders for the creation of an instance of the last class
defined in the unit.

3.9.3. Standard classes. In POOL-T there are a number of classes that are pre-
defined. Four of them, the classes Integer, Boolean, Read-File and Write-File,
are, although in simplified form, also present in POOL-_L. The standard
classes can, to a large extent, be defined in terms of POOL-_L. To make a
complete definition possible, we extend the language POOL-_L with a new



208 F.W. Vaandrager

construct:

£-»acp / pea

for each closed term / in the signature of ACP. The corresponding semantic
rule is

peq(E) = {IE} = /}.

The standard classes are described by the following class definitions:

3.9.3.1. The Booleans. This is a class with as only objects true, false and the
virtual nil. The methods of the class generate an error if a parameter is nil.
Surprisingly, we can describe this class completely in terms of POOL itself.

class Boolean

var result: Boolean

method or(b : Boolean ) Boolean :

if self then

if b then result*-true else result <—true fi else

if b then result ̂ -true else rasw/f <-false fi

fi

return result

end or

method and( b : Boolean ) Boolean :

if self then

if b then result <r-true else resw//<—false fi else

if b then r&sw//^false else results-false fi

fi

return result

end and

method not ( ) Boolean :

if self then r&swft^false else result <—true fi

return result

end not

method equal (b : Boolean ) Boolean :

if self then
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if b then result<—true  else result <—false  fi else

if b then result <^Mse else results-true fi

fi

return result

end equal

body do true then answer(or,and,not,equal )od

end Boolean

3.9.3.2. The Integers. This class contains all the integers from Int (plus nil).
The methods of the class generate an error if the parameter is nil. In case of
overflow the result of a method call is nil (so, for example sum(N0,N0) = nil).
Another option would have been to generate an error. We only give the
definition of the method add. The other method definitions are similar.

class Integer

method add (/ : Integer) Integer :

return acp 2 e<ls(a)( 2 eqv(i,p)-/\sum{a,p) + eqv(i,nH)- error) pea
aelnt /?e Int

end add

etc., etc.

body do true then answer(#aW, sub, mul, div, mod, power, minus,

less, less _or—equal, equal, greater, greater —or  —equal)  od

end Integer

3.9.3.3. The classes Read-File and Write-File. In POOL-T it is possible to
open new input and output files. These options are not present in POOL-_L:
there is only one object of class Read-File (the object input), and one object of
class Write-File (the object output). These objects communicate with the exter-
nal world by means of actions input (d) and output (d), for d^IntUBool.

class Read-File

routine standardJtn ( ) Read-File :

return acp f input pea

end standard-in

method read-int ( ) Integer :

return acp 2 input (a) • \a pea
aelnt
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end read Ant

method readJbool ( ) Boolean :

return acp 2 input (/?) • f/? pea
fieBool

end readJbool

body do true then answer(read-int, readJbool) od

end Read-File

class Write-File

routine standard-out ( ) Write-File :

return acp foutput pea

end standard-.out

method write Jint ( / : Integer) Write-File :

return acp 2 ^ (*>a)' output (a) • f output + eqv (/, nil) • error pea
aelnt

end write-int

method write Jbool ( fe : Boolean ) Write-File :

return acp 2 e^(fe,/J)-0tt/pwfO8)-/Toutput + eqv(b,nil)-error pea

end write Jbool

body do true then answer(wnte_/>2r, write Jbool) od

end Write-File

3.10. THEOREM, i w each program we POOL-_L the specification SPECc(w) is
guarded.

PROOF. Introduce a new ^-attribute height for those nonterminals which have
attribute peq. Let the value domain of this new attribute be the set N of
natural numbers. Let X0^X\ • • • Xn be a production where Xo has attribute
height. Then the semantic rule for the attribute height is:

height(Xo) = max({0}U {heightiXt) | K / < A I and Xt has attribute height})+\
Using the same technique as in the proof of Theorem 2.9, the proof that for
each POOL-J- program the corresponding specification is guarded can now be
given by mieans of straightforward induction on the value of attribute height.
•
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3.11. Abstraction. Most of the atomic actions which were used in the descrip-
tion of the semantics for POOL will be invisible in an actual implementation
of the language. If one looks at a computer executing a POOL program, one
most likely cannot observe that one object sends a message to another object.
In general the only visible actions will be the actions by means of which the
POOL system communicates with the external world: the error action and the
actions input(d) and output (d) (delntUBool) as defined in Section 3.9.3.3.
Therefore we define:

/ = (c(j) | dsD}U{comm(f) \ f^U{skip} (3.11.1)
and introduce a new formal variable ROOT, which will be the root variable of
the specification corresponding to a given POOL-_L unit. The equation for
ROOT is:

ROOT = T7(LR[/]). (3.11.2)
ROOT gives the abstract behaviour of a POOL system executing a given unit.
We call the corresponding function from POOL units to process algebra
expressions SPECA.

3.12. Models. A lot of semantics (models, 2-algebras) have been given of the
signature that is used in this section. In this article we are only interested in
models where the principles RDP and RSP are valid. For each of these models
M, there exists a mapping INTM that relates to every guarded specification E
the unique solution of this system in the model. As examples of models we
mention the semantics @(BS) of terms modulo bisimulation equivalence
presented in [16], the semantics (S(FS) of process graphs modulo failure
equivalence described in [11], and the trace model that is presented in [28].

4. MESSAGE QUEUES
In the description of POOL as presented in the previous section, communica-
tion between objects takes place by means of handshaking. However, in the
official language definition (see [1]) communication is described differently: All
messages sent to a certain object will be stored there in a queue in the order in
which they arrive. When that object executes an answer statement, the first
message in the queue whose name occurs in the method identifier list of the
answer statement will be answered. Below we present a modified process alge-
bra description of POOL, in which each object has its own message queue.
This description, which, due to the select statement, turns out to be rather
complicated, corresponds to the language definition in [1]. We call the new
translation function SPECAQ. Thereafter, in Section 4.5, we discuss the impor-
tant question for which models M the mappings INTM°SPECA and
INTMoSPECAQ are identical.
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4.1. New channels. If we view the field 'type of message' of a frame (cf. Sec-
tion 3.8.2) as the name of a channel, then we can depict the situation in which
there are two objects a and /}, connected by channel me, 'classically' as fol-
lows:

a me

FIGURE 4.1

In this section we introduce for each object /? a message queue P/P(Q). Furth-
ermore we have new channels (message types) iq, om and fm. The new version
of Figure 4.1 becomes: *

FIGURE 4.2
om

First we discuss the new message types.
iq: (in queue). If object a wants to send a message to object /?, it must send

this message by channel iq to the queue of object /}. We have the follow-
ing new semantic rules for the send expression:

SN->E\MI()
Let

(21.1)

then

id(MI) = m

ISN] = lE]»a{SN]a

iSNla =
error
sn (a, iq, m ( )) •

if a = nil
rd(an, /}, a) • f/J otherwise

(production 21.2 is changed analogously).
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om: (order message). Let LcLId. By sending message L along channel om to
its queue, object /? orders the queue to deliver the first message with a
message identifier in L. The message type om occurs in the new semantic
rules for the answer statement:

A A^answer (MIL) (17)

Let

M = mis {MIL)
then

mis (AN) = M
UN}m =sn(om,{m})-lMIL}m

IAN} =sn(om,M)- ^\MlL\m
meM

fm: (first method). During the execution of a select statement object /? some-
times needs to know, for given L CLId, if there is a message in its queue
with a method identifier in L, and if so, what is the method identifier of
the first one. This information is passed along channel fm (the negative
answer is coded as €). The new semantic rules for the select statement
are:

SE->se\GCLles (14)

Let

misl(GCL) = (Mu ...,MJ
M «, , ...,«„ = U Mt

{ i |o , = true}

then

\SE\ = IGCL\ »>ttlf...A

lSElau0Ln-error

if (3/: a, =nil)V(V/: a, =false),

meLId

if Vi: a, = true =» Af,-̂ = 0 , and

otherwise.

O Mai, ...,<*„ is the set of all method identifiers occurring in the answer
statement of an open guarded command. If there is no message in the
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queue whose method identifier is in Mft] ttn, and there are open guarded
commands without an answer statement (Mt —  0 for some /), then the
(textually) first of them is selected. If there is no message in the queue
whose method identifier is in Mtti a , and there is no open guarded com-
mand without an answer statement, the object waits until a message that
belongs to Mau an arrives, and then proceeds with this message. This
waiting may last forever. If there is a message in the queue with method
identifier in Mtt] ttn this message is selected. The first guarded command
is chosen that has either no answer statement or whose answer statement
contains the method named in the message.

4.2. The process Q. We introduce a new object q as parameter of the state
operator. The state of this object (the content of the queue) will be an element
of (cjlXObj)* (for definition % see equation 3.8.2.3): a list of pairs of method
calls and references to the senders of these calls. We need four fresh formal
variables Q, R, S and A. The process Q gives the behaviour of an 'unfinished'
queue, a queue that is not yet associated with one specific object. We have the
following equation:

Q = \?(R\\S\\A). (4.2.1)

Q consists of the merge of three processes, R, S and A, which operate in an
environment in which the content of the queue is known. The job of process R
is to read messages in the queue:

R = 2 2 rd(iq,d,a)'R. (4.2.2)
de9H a&Obj

The relevant equation for the state operator is:
a)-\faa)+a(x). (4.2.3)

The process S first waits for an order to deliver a message with method
identifier in a certain set L, and thereafter delivers the first message in the
queue with this property. When such a message is not in the queue, process S
waits until it arrives.

5 = 2 rd(om,L)'sn(mc,L)-S. (4.2.4)
LQLld

In order to define the interaction between actions sn(mc,L) and operator \%
we need three auxiliary functions. The function mf(L,o) picks the first mes-
sage in a with a method identifier in L, and returns e if there is no such mes-
sage. The function is recursively defined by:

mf(L,e) = e (4.2.5)

I m(a\, ...,an) if meL
mf{L,o) otherwise <4-2-6)

The function sf(L,o) returns the sender of the first message in o with method
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identifier in L, or returns e.

sf(L9€) = c (4.2.6)
fa if

sf(L,o*(m(au ...,«„),«)) = f̂(L<j) o t h e r w i s e (4.2.7)

The function of(L,o) omits the first element of a with method identifier in L.
of(L,e) = € (4.2.8)

(a if meL

of(L,oHm(au...,an),a) otherwise <4-19>
Now we can define:

(sn(mc9mf(L,o\sf(L,o))'\$f{La)(x) if mf(L,o)^e
K(sn(mc,L)x) = jg otherwise (4.2.10)

The process A gives an answer to questions of the form: 'Is there a message in
the queue with method identifier in a set L, and if so, what is the method
identifier of the first one?'.

A = 2 2 sn(Jm,(L,m))'A. (4.2.11)
LQLId

Again we need an auxiliary function: if(L,o) gives the identifier of the first
message in a with identifier in L.
if(L,t) = € (4.2.12)

f m if meL

if(L,o) otherwise <4-113)
The relevant equation for the state operator is:

\sn(frn,(L,m))'\$(x) if if(L,o) = m
\%{(f^)y) (4.2.14)

4.3. Extensions. We add the new frames which were introduced in the previous
section to the set S'of frames (see equation 3.8.2.4), we introduce actions rd(f\
sn{f), read if), send if) and commif) for the new frames, and extend the com-
munication function in the obvious way. Furthermore the set J of encapsu-
lated actions (see equation 3.8.2.4) is extended. For the new atoms the renam-
ing functions fa are defined by:

Usn (fi9iq9d)) = sendifriqA a) (4.3.1)
fa(rd(iq9d,P)) = read(a9iq,d9P) (4.3.2)

sendia,om,M,a) (4.3.3)
readia,om,M,a) (4.3.4)
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fa(sn(fm, (Mym

fa(rd(fm, (M,m

))) = send(a,fm,(M,m),a)

))) = read(ajm, (M,m),a)

F.W. Vaandrager

(4.3.5)

(4.3.6)

4.4. Root unit. Now we change the semantic rule for the root unit as follows:

RU->root unit CDL (2)

Let

cd(CDL)(Integer) = /

cd(CDL)(Boolean) = B

cd(CDL)(Read-File) = R

cd(CDL){Write_File) = W

8 = {cd(CDL)(C) | CtUId]

ACTIVE = || {^create\X,a)'pf(X))
aGAObj XG

STANDARD = ( || Pf^I))\\pf^(B)\\pf^(B)\\pf^(R)\\pf^(W)

QUEUE = || ipfm(Q))
a&Obj J

then

\RU\ = X^unterodjodK(create(lCDLlb)\\ACTIVE\\STANDARD\\QUEUE)

4.5. The incompatibility of SPECA and SPECAQ. Clearly the mapping SPECAQ
is much more complicated than the mapping SPECA. Therefore we would like
to work with SPECA instead of SPECAQ. But since SPECAQ corresponds to
the official language definition in [1] and SPECA does not, we first have to
show that the two mappings lead to the same semantics of POOL. Unfor-
tunately this is not possible: for any model M of ACPT which preserves fair-
ness and liveness properties we have

INTMoSPECA =£INTMoSPECAQ.

Stated informally, the fairness we require of the models is that (1) all processes
that become permanently enabled, must execute infinitely often, and (2) two
processes that can communicate infinitely often will do so infinitely often.
These fairness requirements correspond to the fairness requirements formu-
lated in [1]. The issue of fairness is discussed in more detail in Section 5.4.

The notions of safety and liveness are frequently used in the literature.
Roughly, safety means that something bad cannot happen, while liveness
means that something good will eventually happen. In the context of POOL,
liveness implies that a program that will certainly perform a certain action is
different from a program which may not do this.

Now consider the situation in which an object executes the following piece
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of POOL text:

6<-true;

do b then sel

true answei^mj) then /?<-false or

true then b<—b  or

true answer(m2) then Z><—false or

les od ;

Write—File. standard-out{)! write Jbool{b)

Suppose the object operates in a system with message queues, and that at the
moment at which the object starts execution of the POOL text, the message
queue of the object contains two messages: first a message with method
identifier m2, and after that a message with method identifier mx. Now execu-
tion of the POOL text takes place as follows: first b is set to true, then the
object enters the do-loop and the select statement is executed. The set of
method identifiers occurring in an open guarded command is {m^mi}- The
first message in the queue with a method identifier in this set is m2. Now the
first guarded command is chosen that has either no answer statement or whose
answer statement contains m2. In our case this is the second guarded com-
mand. The trivial statement part of this guarded command is executed, and the
select statement terminates. But since variable b is still equal to true, the select
statement is immediately executed for the second time. Again b remains true.
It will be clear that the select statement never terminates.

However, if the object operates in a system without message queues, the
select statement will terminate! In the situation with handshaking communica-
tion there is one object that wants to send a message with identifier m1? and
one object that wants to send a message with identifier m2. Due to the fair-
ness requirement communication of the message with identifier m \ will eventu-
ally take place, b is set to false, the do-loop terminates, and false is printed.
This means that there is a difference with respect to liveness between the situa-
tion with, and the situation without message queues.

A good semantics of POOL should preserve fairness and liveness properties.
The example presented above shows that in a semantical description employ-
ing handshaking communication between the objects instead of communication
by means of message queues, liveness properties get lost almost inevitably.

4.6. In this section we propose a minor change in the language definition of
POOL, which removes the difficulty of Section 4.5. In the example of Section
4.5 it is clear from the beginning that the third guarded command will never
be chosen. But instead of leaving the turmoil of battle, the third guarded com-
mand starts helping his neighbour, the second guarded command. Because of
this the competition between the first and the second guarded command is not
fair and the second guarded command always wins. The modification of the
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language definition we propose consists of the removal of all open guarded
commands in a select statement which have an open guarded command
without an answer statement before them. Formally this means that we replace
the definition of sets Mtti an in the semantic rules for the select statement in
Section 4.1 by:

The modified version of SPECAQ is called SPECAQ'.

4.7. Even after modification of the language definition, the semantical descrip-
tion with handshaking communication is not equivalent to the description
using message queues. The following theorem shows that it is impossible to
prove equivalence if one only uses the axioms presented thus far. However,
whereas the difficulty of Section 4.5 was a general difficulty, present in all
semantical descriptions employing handshaking communication between the
objects, the difficulty pointed out in the following theorem is specific, and only
present in bisimulation semantics and other semantics which distinguish
processes that cannot be distinguished by observation.

4.7.1. THEOREM. INT^sfSPEC^INT^BsfSPEC^.

PROOF. Below we present a POOL-_L unit u with the property that in the term
model modulo bisimulation the unique solutions of specifications SPECA(u)
and SPECAQ'(U) are different. The program is a very simple one: the initial
object of class Root creates 3 objects of class Number and these three objects
ask the standard output object to print resp. numbers 1, 2 and 3.

root unit

class Number

var m : Integer

routine new ( ) Number :

return new

end new

method init (n : Integer) Number :

m<r-n return self

end init

body answer(init)\ Write-File .standard-out ( ) ! write-int(m)

end Number,
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class Root
body Number. new( )! init (I); Number. new()! init(2); Number. new( )! init(3)
end Root

Writing down SPECA(u) and SPECAQ>(u) is a long and tedious job which we
happily leave to the reader. However, it is easy to see that the process graphs
that correspond to these specifications can not be bisimilar. If there is a mes-
sage queue before the standard output object, it is possible that at a certain
moment during execution of the program the three method calls of the three
objects of class Number are waiting in the queue. Because, for given method,
an object answers the methods calls in the queue in the order in which they
have arrived, the order in which the actions output (1), output (2) and output (3)
will be performed, is completely determined in such a state. However, in the
case where there are no message queues there is no state in which no output
action has taken place but still the order in which the output actions will occur
is known. Therefore the process graphs corresponding to SPECA and SPECAQ>
are not bisimilar. •

What we learn from Theorem 4.7.1 is that we can either do bisimulation
semantics based on a translation of units in which we use queues (this leads to
very long and complicated proofs), or add some axioms to our theory in such
a way that we can prove equivalence of SPECA and SPECAQ>. We conjecture
that

= INT^FSfSPECAQ>
and that equivalence can be proved if we add to our theory the axioms of
failure semantics as presented in [11]. The proof however will be long and
complicated, and we do not give it in this article.

5. TRACE SEMANTICS, FAIRNESS AND SUCCESSFUL TERMINATION

5.7. The trace model as presented in [28], is not a good semantic domain for
POOL in the sense that it identifies too much and does not describe deadlock
behaviour. In S(TRden) we have for example:

output ( 0 ) = output ( 0 ) + T S .
We do not want to identify these processes because the first one will definitely
output a 0, whereas the second one may not.

5.2. It is well-known that it is not possible to give a trace model of ACP in
which one looks at the terminating (and infinite) traces, and the trace sets do
not have to be prefix closed. In such a model a(b+c) and ab -Vac would be
identical. This is problematic since d^(a(b +c)) = ab and d^(ab~\-ac) =
ab +a8 are different.
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5.3. However, there exist some interesting semantics of POOL based on trace
sets. The basic idea of the approach which is, although in a different setting,
followed in [4], is that one first interprets a specification in a domain in which
not very many processes are identified (the domain of transition systems, the
model @(BS)) and then takes the set of terminating (and infinite) traces of this
process. In this approach one typically looks at

YIELDoINT^BS)oSPECA (u)
where YIELD is a function that gives the set of terminating (and infinite)
traces of elements of (S(BS). The resulting semantic domain is not a model of
ACP but for most applications that does not matter. An advantage of the
approach is that it allows for simple solutions to a number of problems.

5.4. Fairness. The fairness problem for example can be solved easily. In [1] a
fairness condition concerning POOL is formulated by stating that the execu-
tion 'speed' of any object is arbitrary but positive. Whenever an object can
proceed with its execution without having to wait for a message or a message
result, it will eventually do so. A second fairness requirement on the execution
of a POOL program is the condition that all messages sent to a certain object
will be stored there in one queue in the order in which they arrive. In process
algebra we have deliberately chosen to ignore the exact timing of occurrences
of events. Fortunately the fairness requirements concerning POOL can be
defined without referring to timing aspects. The first fairness requirement is
called weak process fairness or justice in the literature:

All processes that become permanently enabled, must execute infinitely often
The second requirement is called strong channel fairness:

Two processes that can communicate infinitely often will do so infinitely often
For reviews of the literature on fairness we refer to [15,24]. We think that the
Petri net model for ACP based on occurrence nets, which is presented in [17],
preserves enough information for a description of the fairness requirements of
POOL. More research is needed to make this explicit. In the trace set
approach the solution is very simple: one omits all the unfair traces and looks
at:

where YIELDF gives the set of fair terminating and infinite traces of elements
of S(BS).

5.4.1. Fair abstraction. If we work with 'abstract' translation functions like
SPECA and SPECAQ, then it is possible to give a 'more or less' fair semantics
of POOL without using a YIELDp function. This employs the fact that
Koomen's Fair Abstraction Rule (KFAR) is valid in (for example) the model
S(BS). Consider the following unit / :
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root unit

class Out

routine new() Out:

return new

end new

body Write-File. standard-out! write -Jnt(0)

end Out,
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class Chatter

var x : Integer

body Out. new(); do true then x<—1  od

end Chatter

It can be proved that in any model M in which KFAR holds:

INTMoSPECA(f) = r • output (0)- &

This means that the object of class Owf will make progress despite the infinite
chatter of the object of class Chatter. Note that KFAR equates infinite chatter
and deadlock.

5.4.2. KFAR is too fair. We give an example which shows that sometimes
KFAR is too fair. Consider the architecture of Figure 5.1.

Driverl

Driver2

Merge
write_int(O)

output

FIGURE 5.1

There are two objects Driverl and Driver2. The only thing these objects do is
sending method calls to an object Merge. Driverl all the time asks Merge to
perform method m\ and analogously Driver2 asks Merge to perform method
w2. The object Merge has the task to perform statement answer^!,m2) until
doomsday. Every time when it has answered method mx two times
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consecutively, the object Merge asks the object output to print a 0. We leave it
to the reader to write down the corresponding POOL program.

The point we want to make is this. According to the language definition in
[1], the execution where object Merge answers messages of Driver 1 and Driver2
in turn (mi, ra2, mu ^2,...) will be fair. Hence it is possible that Merge never
orders to print a 0. However, in a semantics where KFAR holds, a 0 will be
printed: the only way for the system to get out of the 'cluster' of internal
actions is to perform an action output (0). This action is always possible during
execution of the program. KFAR says that therefore it will occur. Again we
leave it to the reader to fill in the formal details.

5.4.3. Failure semantics. In [11] it is shown that KFAR is not valid in the
model S(FS). Nevertheless the model admits a restricted rule KFAR" for the
fair abstraction of so-called unstable divergence:

KFAR turns out to be sufficient for the protocol verifications in [22,25,27].
However, for our purposes KFAR~ is not what we want. Like KFAR, the
rule is too fair for some applications. But in addition there are applications
where KFAR~ is not fair enough. KFAR~ does not allow for a proof that
the object of class Out in the example of Section 5.4.1 will make progress. We
even have:

77! (INT^FS)oSPECA (f))^r • output (0) • S.
This is a crucial observation. Failure semantics - being a linear semantics -
often yields simpler proofs than bisimulation semantics which preserves the
full branching structure of processes. Although the notion of full abstractness
still has to be defined for the language POOL, it is clear that failure semantics
is closer to full abstractness than bisimulation semantics. Furthermore, as
pointed out in Section 4, failure semantics will supposedly allow for a proof
that the communication between objects can be implemented by means of
message queues. Thus failure semantics seems to be ideal for POOL. But now
it turns out that the combination of failure semantics and weak process fair-
ness is problematic. At present we do not know if it is possible to give a
semantics of POOL which is 'fully abstract' and also 'fair'.

5.5. Deadlock behaviour. A limit on the applicability of the trace approach
sketched in Section 5.3 is that it only describes the behaviour of a POOL sys-
tem in situations in which this system is placed in a 'glass' box, and does not
communicate with the environment. Below we present two POOL-_L units u 1
and u 2 with the property that
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YIELDoINT^BS)oSPECA(ul) = YIELDoINT^BSfSPECA{u2)

although

INT^BS)oSPECA(u 1) ^ INT^BSfSPECA(u2)

(we even have

INT^OSPECA (u 1) ^ INT^FS)oSPECA (u 2) ).

The root object of unit w 1 creates an object that performs the job of output-
ting a 0. After ordering for the creation, the root object inputs a value.

root unit

class Out

routine new() Out:

return new

end new

body Write-File. standard-out! write -Jnt(Q)

end Out,

class /«

body Out. new{ ) ; Read—File. standardSn( ) ! read.Jnt(  )

end /«

In unit w2 the root object of class Semaphore creates two objects: one object
has to output a 0, and the other object inputs a value. But before the I/O
actions can take place the objects have to decrease a semaphore. After an
object has decreased a semaphore, it can perform the I/O action. After that, it
increases the semaphore again. If during execution of u 2 the input actions are
blocked (the enemy has bombed the input device), it can happen (if the object
that has to input a value is the first one to decrease the semaphore) that the
output action will not take place. In this respect u 2 differs from u 1: if during
execution of u 1 the input actions are blocked, the output action will still hap-
pen.

root unit

class Out

var sent: Semaphore

routine new() Out:

return new

end new
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method init (s : Semaphore) Out:

sem<^s return self

end init

body

answer(zmY);

sem ! down( ) ;

Write—File. standard—out( ) ! write-int(0);

sem ! up()

end Out,

class /«

var sem : Semaphore

routine «ew() In :

return new

end new

method init (s : Semaphore) In :

sem ̂ -5 return self

end init

body

answer;

sem ! <i0vtw();

Read—File. standard-Jn{)! read-int( ) ;

sem ! wp()

end In,

class Semaphore

method doww ( ) Semaphore :

return self

end JovvAi

method up ( ) Semaphore :

return self
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end up

body

Out. new ( ) Unit (self);

In . new ( ) ! init (self);

do true then answer(down); answer (up) od

end Semaphore

We can prove in the theory that:
(1) The following JCJ is a solution of SPECA(u 1):

xx ~ r- (output-(0)|| 2 input (a))-8
a&Int

(2) The following JC2 is a solution of SPECA(u2):

x2 = T • (T • 0W//7W/ (0) •( 2 input (a)) + T • ( 2 input (a)) • awf/jitf (0)) • 8

Let 5 = {input(a) \ aelnt} be the set of blocked actions. Then

9fl(*i) — r  - output (0) - S

^B(X2) = T • (T > OUtpUt (0)'8 + T'S)

Thus units u 1 and u 2 behave differently in an environment which does not
offer certain actions: in environment dB u 1 will certainly output a 0, whereas
u 2 may not do this.

5.6. Successful termination. For arbitrary POOL units u\ and w2> and for an
arbitrary model M we have that:

INTMoSPECA(ux)INTMoSPECA(u2) = INTMoSPECA(ux).

This is because the process corresponding to a unit is infinite or ends in a
deadlock. If one wants to describe a situation where after execution of a
POOL unit, something else can be done, one has to change the semantics. In
the trace set approach of the previous section this is simple: one simply defines
the operation sequential composition in the obvious way. In the axiomatic
approach things are not that easy. We propose (but do not work out) a solu-
tion in the spirit of [7]: one defines a program transformation that transforms
the original program (in the case of POOL also the definitions of the standard
classes have to be transformed). The transformation introduces a number of
new program variables and statements in such a way that the resulting pro-
gram can terminate successfully. In this approach it is possible to differentiate
between various ways in which a unit can terminate: one option is that a unit
terminates successfully if all active objects have finished execution of their
body; another option says that a unit terminates successfully if there is no
object (or pair of objects) that can do a step.
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6. INTEGERS AND BOOLEANS
On the conceptual level, each integer and each boolean is represented by a
different object. In an implementation of the language it will of course not be
possible to point at different processors saying: This is object true' or 'That
processor over there implements object 4370578', etc. On the level of imple-
mentation integers and booleans certainly will not be objects. Instead an
implementation will contain some special circuits for arithmetical and logical
operations. The aim of this section is to make it plausible that, when speaking
about integers and booleans, the conceptual and implementation view of the
system are not in contradiction with each other (although there is a problem).

6.1. Simple expressions for integer and Boolean objects. The first two equations
in a SPECA specification have the form (cf. equation 3.11.2 and the semantic
rule for production (2) in Section 3.9.2):

ROOT =

IRU] = XTnter°h°^K{create(lCDL\h)\\ACTIVE\\STANDARD)
Here / = {c(d) I dsD} U {comm(f) I / e £ } U {skip}. If we define

/ ' = {c(d) | dsD}U{skip}
then we can prove, using the conditional axioms, that this is equivalent to:

ROOT = T7([/it/I)

IRU] = X^unterodjodK(create(lCDLlb)\\ACTIVE\\Tr(STANDARD))
Applying the conditional axioms again gives that TI (STANDARD) equals

( II r r o P f ( I ) ) \ \ T r o P f • (B)\\rroPf• ( B ) \ Wr o p r ( R ) \ W r o p > / ( W ) .
aelnt Ja J J y ^ J^^

The processes corresponding to the objects of class Integer and Boolean are
very simple. For the object true we can derive:

= T ' ( 2 2 read (tmeymc,or (fi\a) - send (a,anytme,true) - Tj'Opf^B)
fie Bool otGObj

+ 2 read (true, me, or (nil), a) • error • rr °pf^ (B)
atObj

+ 2 2 read(tnEe,mc,or(J$)9a)'8 + • • • ).
PeObj- Bool -{nil} aeObj

The dots at the end of the equation stand for similar summands corresponding
to the other methods of class Boolean. In a correct POOL-_L program the
parameter of a message with method identifier or will always be an element of
BoolU{nil}. Therefore the summand 2peobj-Booi-{*&}(•) is redundant in the
context in which it is placed, and we can omit it (the corresponding summands
of the other methods can of course also be omitted). A formal proof of this
obvious fact can be given using the theorems about the notion of 'redundancy
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in a context' of [28].
After this simplification the process that gives the behaviour of object true

can be written into the following form:

^tnie —  T'(2/ead(true,me, ...,/3)'send(/3,an, ...,true)

+ ^read(true,mc, ...,/?)• error) Xtrue.

Using the identity TJC||>> = T(;C||}>), we can replace the equation for variable
ROOT by:

ROOT = T-T/p[/I)

and omit the initial T in the equation for Xtrue:

^trae - G£read(tirue,mc9 ...,/?)• send {fi,an, ...,true)

+ ^read(true,mc, ...,/})•error) t̂me-

We claim that all the processes corresponding to objects of class Integer and
Boolean can be specified analogously. Let for a^IntUBool, Sa C^be the set
of frames that can be sent to object a:

§a = {(a,me,J,/?) | de^H, fieObj and d correct for a}.
Message d is correct for object a if the method identifier of d occurs in the
class description of a, the number of parameters is correct, and the parameters
are of the right type. For each a^IntUBool process Xa is defined by:

Xa = 2
a

Here aitf is an atomic action, the answer to the method call / . This can be a
send action or the error action. For example:

an(\,mc,minus(ni\),b)

Now we define:
INT = || Xa

aelnt

BOOL = Xfruell̂ foUe
I/O = Tropf^(R)\\rr°Pf^(W)

Let SPECAA be the same function as SPECA except for the fact that the term
for variable ROOT is prefixed with a T and that in the equation for I J
STANDARD is replaced by INT\\BOOL\\I/O. We have for all models M:

INTMoSPECA = INTM°SPECAA.
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6.2. Monadic objects. The processes STANDARD and INT\\BOOL\\I/O both
consist of the merge of a number of objects. Each object answers all the mes-
sages for one integer or boolean, and different objects answer messages for
different integers or booleans.

We now introduce processes INTM and BOOLM. These processes are com-
posed of a huge amount of 'monadic' objects. For each frame there is a
monadic object which has nothing else to do but answering that frame. There
is for example a monadic object answering the message from object 0 to object
1 in which it asks to perform method add with parameter 3:

M(imc,add(3),0) = read(\,mc,add(3\0ysend(09anA, l

Let %INT = (J Sa and %BOOL = Stme^ §&!<*• W e define for

the process Mf by:

Mf — read{f)-arif Mf.

Processes INTM and BOOLM are defined by:

INTM = || Mf and BOOLM = || Mf.

Let SPECAM be the same as SPECAA except for the fact that in the equation
for IRUIINTWBOOL is replaced by INTM\\BOOLM.

6.3. The error action. We would like to prove for all models M\

INTMoSPECAA = INTMoSPECAM.

This would be a nice theorem because the same argument used to 'ungroup'
the standard objects into monadic objects, can, when reversed, also be used to
'group' the monadic objects into a new configuration (a single object integer
and a single object boolean, or separate objects for the various methods, etc.).

Unfortunately the two semantics are different. The problem, which has to do
with the error action, is illustrated by the following POOL unit m:

root unit

class One-plus-one

var n : Integer

routine new() One-plus-one :

return new

end new

body n<^\! add(\) ; Write-File -standard-out ( ) ! write -Jnt(n)

end One-plus .jone,
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class One—minus-nil

body One-plus-one • new(); 1! minus (nil)

end One-minus—nil

In the SPECAA case where integers are objects, it can happen that object 1
first answers the method call minus (nil). This leads to a state in which no
external action has been performed but the order in which the actions will be
executed is fully determined, namely first the error action and then the action
output (2). In the SPECAM case such a state cannot be reached since there are
different monadic objects for frames (1, me, minus (nil), 0) and {\,mc,add(\), 1),
and these monadic objects work independently. If the error action is blocked it
can happen in the SPECAA case that the action output (2) will not be per-
formed. In the SPECAM case the output (2) action will always be performed in
such a situation. As a result of this:

INT^FS)oSPECAA(m) =£ INT%FSfSPECAM(m).

6.4. Ostrich policy. The problem is not typical for the 'monadic' implementa-
tion of the integers and booleans but arises in every implementation different
from the one suggested by SPECAA. However, it has to be noticed that in the
trace set approach of Section 5.3, SPECAA and SPECAM (and thereby all other
implementations) lead to the same semantics. In case we do not want to
describe the system in terms of trace semantics, the best solution seems to be
to abstract from the error action. We replace the equation for variable ROOT
in SPECAA and SPECAM by

ROOT = T-TIU{error}(lRU]).

Call the new functions SPECAA0 and SPECAM0 (the 'O' from ostrich policy).

CLAIM. For all models M:

INTMoSPECAAO = INTMoSPECAMO.

We will not give a rigorous proof of this claim but confine ourselves to a
sketch of it.

6.5. DEFINITION. A specification E — {X—t x \ X<EZ) is called strictly linear
if for every XGK:

tx —  T or

tx = 8 or

3au ...yameAT

3XU ...,XmeZ such that
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m
h - ^ak'Xk

k = \

6.6. THEOREM. For every guarded specification E there exists a strictly linear
guarded specification F with the same solution.

6.7. Structure of active objects. Although a POOL system contains a large
amount of parallelism, the individual objects work in a totally sequential way.
The process algebra equations which define the behaviour of these objects con-
tain chaining operators but, beside value passing, the process on the right hand
side always starts after termination of the left hand side process. This observa-
tion (which of course can be expressed formally) motivates the following claim.

CLAIM. For every aeAObj there exists a strictly linear guarded system of
equations with root variable Xa such that

Xa = ^create* (V,aypfm(V)

and with the property (cf. semantic rules for production 21) that atomic
actions send(a,mc,m(a\, ...,«„),/?) only occur in equations of the form:

X = send(a,mc,m(au ...,«„),#)• 7

where 7 is a variable for which we have an equation of the form:

7 = 2 read(^,an,y,a)-Zy.
yeObj

This means that every time when an active object performs an action
send(a,mc,m((X}, ...,an),f5), the next action will be of the form read (ft, an, y, a).

6.8. We rewrite the equations for INT, BOOL, INTM and BOOLM into the
following form:

INT = 2 read{f)'INTf

INTf = ( j | _ ^ Xp)\\anrXa for/eSa

BOOL = ^ read(f)BOOLf
f^BOOL

BOOLf = ( || XB)\\anrXa for/eSa

2 read(f)-INTi
f(=&INT

( || Mg)\\anrMf

BOOLM = 2 read{f)BOOLfM
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( || MA\anrMf

Define:
/ " — {comm(a,an,fi,y) \ a,/3eObj; yGlntUBool}  U {error}.

Application of the conditional axioms gives that, in order to prove the claim of
Section 6.4, it is enough to show:

LHS = RHS
where

LHS = Tr°djodK(create(lCDLlO)\\( || Xa)\\INT\\BOOL\\I/O)
a&AObj

RHS = T/»o3/o8JC(Cf^,te(lCDLl,6)||( II Xa)\\INTM\\BOOLM\\I/O)
a&AObj

A quick inspection of the semantic rules defining SPECAA0 learns us that LHS
is specifiable by means of guarded equations for all nsN. Therefore it is
enough to show that for every « G N :

vn(LHS) = iTn(RHS).

6.9. DEFINITION. For X a variable and t a term, the relation X occurs open in
t is defined inductively by:
1. X occurs open in X
2. if X occurs open in t then X occurs open in t-s, t\\_s, t+s, s+t, t\\s, s\\t,

t\s,s\t, 8#(0, T7(0, pj(t) and mn(t).
An occurrence of a variable X in a term / is needed if / contains a subterm of
the form irn(s) and X occurs open in s.

6.10. DEFINITION. For given specification E, E is the term rewriting system
consisting of the axioms from ACPT + RN + CH + SO + PR + RC-AT together
with the equations of E (read from left to right). Here RC is the rewrite rule:

a\b - y(a,b)
that rewrites a term a \ b into the corresponding communication, and AT is the
set of axioms consisting of Al, A2, Cl-3 and Tl-3.

6.11. THEOREM. Let E be a guarded specification with root variable Xo. Let
neN. Then the term 7Tn(Xo) will be rewritten into a closed term if we apply the
rewrite rules ofE, following the strategy that only needed occurrences of variables
are replaced.

6.12. Choose a n GI^I. We have to prove:
irn{LHS) = 7rn(RHS).

The specifications that specify LHS and RHS are almost the same. We relate
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variables LHS and RHS, INT and INTM, INTf and INT^, BOOL and
BOOLM, BOOL* and BOOL^, and furthermore all variables with the same
name. Now we start to rewrite the term <nn{LHS) into a closed term. Simul-
taneously we start rewriting irn{RHS) in exactly the same way. If on the left
hand side a variable is rewritten, then we also rewrite the corresponding vari-
able on the right hand side, etc. The problem with this imitation game is of
course that the equations for INTf and INT^9 BOOlJ and BOOL^ are
different. What we do in order to solve this problem is that, when during the
rewrite process a variable INTf or BOOL/ becomes needed, we rewrite the left
and right hand side in such a way that:
1. The new left and right hand side are equivalent modulo names of vari-

ables.
2. No variable INTf or BOOL/ occurs needed in the left hand side.
3. It is clear that this intermediate 'surgery' will not slow down the process

of rewriting irn(LHS) into a closed term.
Using the imitation + surgery strategy we rewrite iTn{LHS) and 7rn(RHS) into
the same closed term. Because n was chosen arbitrarily that finishes the proof
of the claim of Section 6.4.

6.13. Surgery. Let aelnt and / = (a,rac,d,/?)eStt (the boolean case can be
dealt with analogously). Suppose that after some rewrite step variable INTf
becomes needed in the left hand side term. We claim that INTf occurs in a
sub term which can be brought into the form:

comm(f)'irmoTr>odHodK( • • • \\INTf\\ 2 read(fi9an9y9a)'Zy).
y&Obj

If we rewrite variable INTf this becomes:
)'irmorrodHodK( • • • ||( || XK)\\anf'XJ 2 read(fi9an9y9ayZy\

The corresponding right hand side sub term can be brought into the form:

)'irmOTj»°dHodK( • • • ||( II Mg)\\anf'Mf\\ 2 read(fi,an9y9a)-Zyy
ge$-{f} 0bj

If arif — error we bring the ostrich policy into practice: because error ̂ 1" we
can replace the error action by T in both terms. The next step is to eliminate
these T'S using the identity rx\\y = T(JC||J). But then the sub term on the left
contains the merge for all aslnt of Xa. This is equal to INT. The sub term on
the right contains the merge for all fe%INT of processes My, which is equal to
INTM. This finishes the surgery activities for the case anj — error.

In the other case we have arif — send(fi,an,y,a) for some yeObj. Using the
conditional axioms we can replace the left hand side subsubterm (excusez le
mot):

anfXa\\ 2 read(fi,an,y,a)Zy
y&Obj

by
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^{comm(^an,y,a)}°^{Send(p,an,y,a)}(send(li,an,y,a)• Xa|| 2 read(/l,an,y,a)• ZY)

which is equal to

n,y9a)• T{ c o m w (^a w^,a ) }
o9( 5^( /8,a w,y,a)}(^«J(/?,««,y,a)• Xa | |Z Y ) .

ye O6/

The second summand is redundant in the context in which it occurs and can
be omitted. Using the conditional axioms again, together with identity
Tx|[y =T(X||)>), yields that the term can be replaced by:

XjZy.
Now we have brought the left hand side subterm in a form which contains the
merge for all aelnt of Xa. This merge we can replace by INT. The same stra-
tegy that was used to rewrite the left hand side can be used to rewrite the right
hand side. The result is the same term as obtained on the left hand side, except
that we have variable INTM instead of INT.

7. CONCLUSIONS
1. In this paper we showed that it is possible to give semantics of a realistic

concurrent programming language by means of process algebra. The
translation of POOL programs into process algebra is complicated, but
this is mainly caused by the complexity of POOL, in particular by the
complexity of the select statement. The attribute grammar which we used
for the translation made it possible to give the semantics in a modular
way.

2. This paper contains an application of ACP where the sequential composi-
tion operator is used in full generality. It would have been more involved
to give semantics of POOL in a signature containing prefixing (an opera-
tor AXP-^P) instead of sequential composition. Three auxiliary opera-
tors, the renaming operator, the chaining operator and the state operator,
turned out to be useful.

3. Because we have no infinite sum and infinite merge operators in the signa-
ture, we had to choose the value domain of POOL variables finite. Furth-
ermore the number of objects which can be created during execution of a
POOL unit is finite. Although it would be useful to have these infinitary
operators available, we do not think that their absence in the present
paper is a real deficiency: the memory of each computer is finite, and no
computer will function eternally.

4. The approach followed in this paper can also be used to give semantics of
other concurrent programming languages. From the point of view of pro-
cess algebra we see no fundamental difference between the object-oriented
approach from POOL, and the imperative, logic or functional approaches
followed in other languages. However, at present it is difficult to give pro-
cess algebra semantics of a language in which real-time aspects play a
role.
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5. KFAR does not completely capture the notion of fairness in POOL. In
Section 5.4.3 we pointed out that combination of failure semantics and
weak process fairness is especially problematic. An open question is
whether or not the two concepts can be combined in a consistent manner.

6. There is not one single 'optimal' semantics of POOL. Depending on the
application domain one has in mind one can try to find an optimum.
There are a lot of features which can be included in the semantical
description of the language: infinite domains of variables, fairness, error
behaviour, termination behaviour, etc. An important parameter in the
choice of a semantics is the type of interaction between the environment
and the POOL system. In case one wants to use the semantics to build
an executable prototype, the semantics has to be operational. In case the
semantics is used for the construction of proof systems or for the correct-
ness proof of implementations, one requires abstractness and composi-
tionality. It might be the case that the combination of all these require-
ments leads to inconsistencies.

7. The translation of POOL into process algebra can be used for prototyping
of the language. The shortest route seems to be a translation into an alge-
braic specification formalism. The attribute grammar which we used can
be specified algebraically in a straightforward way. The process algebra
part is already specified algebraically but some work has to be done in
order to deal with a number of notational conventions, for example the
sum operator and the numerous '...' occurring in the equations. There are
several alternatives for transforming algebraic specifications into execut-
able prototypes, for example by means of a transformation into a com-
plete (conditional) term rewriting system and execution by means of an
existing rewrite rule interpreter, or by means of a transformation into a
set of Horn clauses and using an existing Prolog system for their execu-
tion.

8. It would be interesting to construct a proof system, based on our process
algebra semantics, which can be used to prove correctness of POOL pro-
grams.

9. A semantical description of POOL with handshaking communication
between the objects is incompatible with the description in [1], where mes-
sage queues are used. A minor change in the language definition is pro-
posed in order to remove this difficulty. In our opinion this result shows
that, when dealing with concurrent programming languages, questions
like: 'Is this semantical description in accordance with the language
definition?' and 'Is this a correct implementation of the language?' are
highly relevant.

10. An important problem to be solved is in our view the development of
techniques which make it possible to prove that two semantics of POOL
have a common abstraction. In Section 6 we gave a sketch of such a
proof, showing that the Integers and Booleans can be implemented in a
lot of ways. In Section 4 we discussed the question whether or not the
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communication between objects can be implemented by message queues.
We showed that, even after modification of the language definition, this is
not possible in bisimulation semantics. An open question is the
equivalence in failure semantics.
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Redundancy in a Context
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P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Let x be a process which can perform an action a when it is in state s. In this
article we consider the situation where x is placed in a context which blocks a
whenever, x is in s. The option of doing a in state s is redundant in such a
context and x can be replaced by a process x' which is identical to x, except
for the fact that x' cannot do a when it is in s (irrespective of the context). A
simple, compositional proof technique is presented, which uses information
about the traces of processes to detect redundancies in a process
specification. As an illustration of the technique, a modular verification of a
workcell architecture is presented.

1. INTRODUCTION
We are interested in the verification of distributed systems by means of alge-
braic manipulations. In process algebra, verifications often consist of a proof
that the behaviour of an implementation IMPL equals the behaviour of a
specification SPEC, after abstraction from internal activity: TJ(IMPL) = SPEC.

The simplest strategy to prove such a statement is to derive first the transi-
tion system (process graph) for the process IMPL with the expansion theorem,
apply an abstraction operator to this transition system, and then simplify the
resulting system to the system for SPEC using the laws of (for instance)
bisimulation semantics. This 'global' strategy however, is often not very prac-
tical due to combinatorial state explosion: the number of states of IMPL can
be of the same order as the product of the number of states of its components.
Another serious problem with this strategy is that it provides almost no
'insight' in the structure of the system being verified. It is impossible to use
the approach for the design of distributed systems, i.e. the stepwise construc-
tion of an implementation starting from a specification. This makes that there
is a strong need for proof methods with a more modular/compositional charac-
ter.

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).
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1.1. Modularity and compositionality. For the purpose of verification, we are
interested in proof principles which transform a system locally, so that for a
correctness proof of a local transformation one does not have to deal with the
complexity of the system as a whole. A modular verification transforms an
expression TJ(IMPL) gradually into SPEC by a sequence of local transforma-
tion steps. Consider, as an example, the case where IMPL represents the
parallel composition of components Xu X2 and X3, where the actions in a set
H have to synchronise: IMPL = dH(Xx \\X2\\X3). A possible step in a modu-
lar verification could be that Xx and X2 are replaced by Y\ and Y2. In that
case one has to prove that:

It is sufficient to prove that Xx \\X2 — Y\ \\Y 2. However, this will not be pos-
sible in general. It can be the case that processes X\ \\X2 and Yx \\Y2 are only
equal in the context rj°dH( • • • 11 ̂ 3). And even if the processes are equal,
then still it is often not a good strategy to prove this. If one shows that two
processes are equal, then one shows that they are interchangeable in any con-
text, not only in the context in which they actually occur. In order to bring
about successful substitutions, it is therefore desirable (or even necessary) to
incorporate information about the context in which components are placed in
correctness proofs of substitutions. A proof technique which allows one to do
this to a sufficiently large degree is called modular. It is also possible to use a
modular proof system the other way around. In that case one starts with a
specification, which is refined to an implementation by a sequence of transfor-
mation steps.

A proof rule is called compositional if it helps to prove properties of the sys-
tem as a whole from properties of the individual components. Compositional
proof rules are essential for modular verifications.

In this article we present a proof principle which can be used to enhance the
modularity of verifications. We claim that the principle captures a simple
intuition about the behaviour of concurrent systems, and moreover makes it
possible to give short, modular proofs in quite a large number of situations.

1.2. Example. We give a specification of a Dutch coffee machine similar to the
one described in [14]:

KM = Wcihrf+d^:)-zoem-KM.
After inserting 30 cents, the user may select 'koffie' or 'chocolade'. Dutch
coffee machines make a humming sound ('zoemen') when they produce a
drink. The behaviour of a typical Dutch user of such a machine can be
described by the recursive equation below:

DU = (kof+30ckof)'talk-DU.
Dutch people are widely known for their thrift, and they will never spend 30
cents for a cup of coffee if they can get it for free*. Synchronisation of actions

* Dutch users do not occur in [14], In the modelling as presented here, the thrift of the Dutch
user is not really taken into account: we can think of an environment where process DU performs
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is given by: y{kof,kof) — kof,  y(30c, 30c) = 30c* and y {choc,choc) —choc*.  Let
H = {kof,kof, choc, choc, 30c, 30c}. Consider the system dH(DU\\KM). It will
be clear that in this environment the thrift of the Dutch user makes no sense.
This behaviour is redundant Jn_ the given context. More 'realistic' is the
behaviour DU = 30ckof'talk'DU, because dH(DU\\KM) = dH{DU\\KM).

1.3. Redundancy in a context. The example above is an instance of a situation
which occurs very often: a process x has, in principle, the possibility to per-
form an action a when it is in state s, but is placed in an environment
9#( * * * 11)0 which blocks a whenever the process is in s. In situations like this,
the <2-step from s is redundant in the context dH{ • • • \\y). We want to have the
possibility to replace x by a component 3c, that is identical to x except for the
fact that x cannot do action a when it is in state s (irrespective of the context).
For a compositional proof of the correctness of this type of substitutions new
proof rules are needed. In this article we will show that in most situations par-
tial information about the (finite, sequential) traces of processes is sufficient to
prove that a summand in a specification is redundant and can be omitted.
The notion 'redundancy in a context' was introduced in [16]. The present arti-
cle can be viewed as a thorough revision of Section 6 from that paper.

1.4. Trace-specifications. It is argued by many authors (see for instance [5]),
that if one is interested in program development by stepwise refinement, one
needs to have the possibility of mixing programming notation with
specification parts. A natural way to specify aspects of concurrent processes,
advocated by [9,14,15,17], is to give information about the traces, ready pairs
and failure pairs of these processes. This leads to the notation

x sat S
which expresses that process x satisfies property S. When we use the notation
in this article, S will always be a property of the traces of x. Without any
problem we can also include other information in S but we don't need that
here.

In recent years it has become abundantly clear that there are many notions
of 'process'. For instance, the idea that a process, in general, is the set of its
traces, ready pairs or failure pairs is just false, because these notions of process
do not capture features like real-time and fairness. Therefore we are interested
in proof rules which express 'universal' truths about processes, and which are
not tied to some particular model.

The point which is new in this article is that we use statements of the form
x sat S, i.e. information about the traces of processes, in proofs that processes
are equal in a sense different from (and finer than) trace equivalence. Thus we
combine the advantages of a linear trace semantics with the distinctive power
of finer equivalences.

an action 30c even though it has the possibility to perform an action kof instead. Preference of a
process for certain actions can be modelled by means of the 'priority operator' of [2].
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1.5. Workcell architecture. As an illustration of our technique, we present in
Section 5 of this article a specification and verification of a workcell architec-
ture, i.e. a system consisting of a number of workcells which cooperate in order
to manufacture a certain product. The verification is not only modular, but
also short when compared with the non-modular verifications of the same sys-
tem by Biemans and Blonk [4], and Mauw [13]. In the first steps of the
verification we remove the redundant summands in the process specification of
the workcell architecture. Often the information that some summand is redun-
dant has some importance of its own. It allows one to replace one component
by another which is simpler cq. cheaper. In our modular proof this informa-
tion becomes available as a by-product.

1.6. Related work. This is not the first article which is concerned with modular
verification in the setting of process algebra. Work in this area has also been
done by Larsen and Milner [11,12], and Koymans and Mulder [10]. We think
that our approach has basically two advantages when compared with this
work. The first advantage is that our approach is technically speaking much
simpler. People have strong intuitions concerning the trace behaviour of con-
current systems. Our proof rule makes it possible to use these intuitions quite
directly in verifications. The intuitions behind the techniques of [10-12] are
more involved and a lot of technical machinery is needed to formalize them.
Our approach is probably less general than the approaches of [10-12], but we
think that for almost all practical applications it can be used just as well.

The second advantage of our technique is that it is independent of the par-
ticular process semantics which is used. This in contrast to the work of [10-12],
which is tied heavily to bisimulation semantics. In the discussion below we
employ the laws of interleaved bisimulation semantics. However, we could just
as well work with the laws of failure equivalence, ready equivalence or trace
equivalence. Working with bisimulation semantics only makes our results
stronger. We conjecture that the proof rule based on trace-specifications, as
presented in this article, also holds in partial order semantics (see [7]). Prob-
ably the correctness proof of the workcell architecture which is presented in
Section 5, when reorganized a little bit, is also valid in partial order semantics.
It is a topic for future research to substantiate these claims.

2. TRACES AND TRACE-SPECIFICATIONS
A trace of a process is a finite sequence that gives a possible order in which
atomic actions can be performed by that process. A trace can end with the
symbol \ / (pronounce 'tick'), to indicate that, after execution of the last
atomic action, successful termination can occur. After some preliminary
definitions we give, in Section 2.3, axioms that relate processes to trace sets.

2.1. DEFINITION.
1. For any alphabet 2, we use 2* to denote the set of finite sequences over

alphabet 2. We write X for the empty sequence and a for the sequence
consisting of the single symbol # e2 . By o*o\ often abbreviated oo\ we
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denote the concatenation of sequences a and a'.
2. Let a be a sequence and V be a set of sequences. We use notation a* V

(or oV) for the set {a*p|peF}, and notation F*a (or Vo) for the set
{pa | p e r ) .

3. By Ja we denote the length of a sequence a.
4. On sequences we define a partial ordering < (the prefix ordering) by:

a<p if and only if, for some sequence a', oof —  p. A set of sequences V is
closed under prefixing if, for all a<p, pe F implies that oeV.

5. 4̂ ̂  —A U { \/} is the set of atomic actions together with the termination
symbol. Elements from {A ^)* are called traces or histories, r acts as the
identity over (Ay/)* and is therefore replaced by X when occurring in
traces.

6. T is the set of nonempty, countable subsets of T = A* UA**\/ which are
closed under prefixing.

2.2. DEFINITION. Let a,b<=A, V,W<ET, o,ouo2eT. We define the following
ACP-operators on trace sets*:
1. Sequential composition.

V-W ::= (VHA*) U {ox*o2 \ol ^GV and o2eW}.
2. Parallel composition. V\\W ::= {o\3o} GF , a2e W:oeo} ||a2}. The set

O\\\o2 of traces is defined inductively by:
(a{ox \\bo2)Ub(ao{ \\a2)Uy(a,b\ax \\o2) if y(a,b)eA

aox\\bo2 = L(a i | | f c a 2)U f t ( f l a i | | a 2 ) otherwise

\\\aa = ao\\X = a(\\\o), X\\X = {X}, V ^ = *H V = {^}-
Here y: A8 XAs^>A$ is a given function which describes the synchronisa-
tion between atomic actions, y is commutative, associative and has S as
zero-element.

3. Encapsulation. Let H CA. dH( V) :: = V n {A v - Hf.
4. Abstraction. Let ICA. T7(F) :: = {TJ(O)\OGV}. The function T7 on traces

is given by:

f T/(a) i f ^ e /
a*T7(a) otherwise

r7(X) = X, r7(V) = V-
5. Renaming. Let f:ArS^AT8 with / ( T ) = T and /(5) = 5. p /F) :: =

(py<a) | ae V). The function p^ on traces is given by:

otherwise

*The auxiliary operator U_ cannot be defined on trace sets. For a discussion of this issue we refer
to 18].
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P/X) = A,
6. Projection. LetneN.

= V-

7. Alphabets. a(F) ::= {a(a)|aeF}. The function a: T-*Pow(A) is given
by:

<x(a*o) = (fl a(k) = a(y/) = 0.

2.5. 77*e 7race Operator (TO). Let P be the sort of processes. The trace opera-
tor tr:P^J relates to every process the set of traces that can be executed by
that process. The operator satisfies the axioms of Table 1. (aeA, x,y eP,

with/(r) = r and/(S) = S, and

tr(8) =
tr(r) =
trifi) =

iKV)
{\,a,a V}

tr(x+y) = tr(x)Utr(y)
tr(xy)
tr(x\\y)

= tr(x)-tr(y)
= tr(x)\\tr(y)

TO1
TO2
TO3
TO4
TO5
TO6

tr(dH(x)) = dH(tr(x))
tr(T,(x)) = rj(tr(x))
tr{Pj{x)) = pj(tr(x))
tr(iru(x)) = irn{tr(x))
a{x) = a(tr(x))

TO7
TO8
TO9
TO10
TO11

TABLE 1. Axioms for the trace operator

When calculating with trace sets we implicitly use ZF. This means that the
considerations of this paper are not of a completely algebraic nature. We res-
trict our attention to the models of the theory ACPT with recursion and auxili-
ary operators that can be mapped homomorphically to the trace algebra. This
is no serious restriction because all 'interesting' process algebras are in this
class. A similar approach is followed in [1].

(i)

2.3.1. Examples.

tr(x) = tr(8+x) = tr(S)Utr(x) = {\}Utr(x).
So X is member of the trace set of every process.

tr(ax) = tr(a)-tr(x) = {\,a,ay/}'tr(x) = {\,a}Ua*tr(x) =
= {\}U{a}Ua*(tr(x)U{\}) ={\}Ua*tr(x).

Let X be given by the recursive equation X—aX.

tr(X)= (J "*("•(*))= U "•(*«(*))= \Jtr{an-8)
n>0 n>0

(1)

(2)

(3)

t The ^-operators we define here, satisfy the same axioms as the ones defined in [6]: WW(
iro(ax)=8, TTn + l(ax)=a-7Tn(x\ etc.
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The first identity in derivation (3) follows from the structure of T and the
definition of the ^-operators on T.

2.4. Trace-specifications. A trace-specification is a predicate. A trace-
specification S describes the set of traces which, when assigned to free
occurrences of a chosen variable o of type trace in S, make the predicate true:
(a| S}. The syntax for trace-specifications we have in mind is a first-order
language with integers, actions, traces, some simple functions like addition and
multiplication, taking the i-th element of a trace, #a, Pj{o\ equality predicates
for the integers, actions and traces, and quantification over integers and traces.
This syntax is almost equivalent to the syntax proposed in [14], except for the
fact that we moreover have multiplication. This increases the expressiveness of
our logic, and makes it for instance possible to define for each regular trace-
language L a predicate SL such that L = {o\SL}. In Section 4.5 it will be
argued that such predicates are useful. All predicates that we will use in this
article are definable in terms of the syntax which is described informally
above.

A process x satisfies a trace-specification S for trace variable a, notation

x sat* S,
if

\fostr(x):S.
Because in nearly all cases we will use a fixed trace-variable a, we often omit
the subscript a and write x sat S. In this article we regard JC sat S merely as a
notation. The proofs take place on the more elementary level of the fr-operator
and trace sets. In [9] an elegant proof system is given which takes x sat S as a
primitive notion. This system contains for instance rules like

x sat S, x sat S' x sat S, S=>S'
xsatSAS" xsatS'

2.4.1. Notation. Let OGT, B QA and aeA.
1. o\B gives the projection of trace a onto the actions of B:

a\B = TA-B(O).
2. ola denotes the number of occurrences of a in a:

|tf( { } ) - l if o =
1 #(a t {a }) otherwise

3. Even though our trace-specification language contains no alphabet opera-
tor, we can talk about alphabets in predicates: a(o)CB <=> a IB —o.
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2.4.2. Example. The coffee machine from Example 1.2 satisfies

KM sat a(o)C{^di^,Wc,zoem} A(oikqf < aj30c).
The number of cups of 'koffie' produced by the machine is always less or equal
to the number of times 30 cents have been paid. The Dutch user however,
takes care that never more than 30 cents are paid in advance:

DU sat <x(o)C{kof,30c,talk}A(olkof >(ol30c - 1)).

2.4.3. Remark. Sometimes we write a specification as S (a), to indicate that the
specification will normally contain a as a free variable. In that case we use the
notation S(te) to denote the predicate obtained from S(a) by substituting all
free occurrences of a by an expression te of sort trace, avoiding name clashes.

3. OBSERVABILITY AND LOCALISATION
The parallel combinator || is in some sense related to the cartesian product
construction. In the graph model of [3], the set of nodes of a graph g\\h is
defined as the set of ordered pairs of the nodes of g and h. Still the 11-operator
lacks an important property of cartesian products, namely the existence of pro-
jection operators. It is not possible in general to define operators / and r such
that l(x\\y)=x and r{x\\y)—y. In this section we show that, if we impose a
number of constraints on the communication function, and on x and y, it
becomes possible to define an operator which, given the alphabet of x, can
recover x almost completely from x \ \y:

T'Pv(a(x))(x\\y)'8 = T'X'S.

The conditions on x and y make that x is observable, the operator p^*)) local-
ises x in x\\y.

3.1. Communication. For the specification of distributed systems, we mostly
use the_ read/send communication scheme, or communications of type
y(kof,kof)=kof. Following [10], such communication functions will be
characterized as trijective. The assumption that communication is trijective will
simplify the discussion of this article.

3.1.1. DEFINITION. A communication function y is trijective if three pairwise
disjoint subsets R,S,CCA can be given, and bisections":R-*S and °:R^C
such that for every a,b,ceA:

y(a,b)=c => (a<ERAb=aAc = a°) V
In the rest of this article we assume that communication is trijective.
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3.1.2. Remark. Observe that a trijective communication function y satisfies the
following three properties, and that each y satisfying these properties is trijec-
tive (a,b,c,deA):
1. y(a,a) = 8,
2. if y(a,b)=£8 and y(a,c)=£8 then b — c (y is 'monogamous'),
3. if y(a,b)=y(c,d)=£8 then a =c or a —d  (y is 'injective').
Observe further that a trijective y satisfies y(y(a,b\c) = 8 ('handshaking').

3.2. Observability. We are interested in the behaviour of a process JC when it is
placed in a context • • • \\y. In order to keep things simple, we will always
choose x and y in such a way that JC is observable in context with y: every
action of x|[y is either an action from JC, or an action from y, or a synchronisa-
tion between JC and y. In the last case we moreover know which action from x
participates in the synchronisation. Below we give a formal definition of this
notion of observability.

3.2.1. DEFINITION. Let B QA be a set of atomic actions. B is called observable
if for each triple a,b,c^A with y(a,b) = c at most one element of {a,byc} is a
member of B.

Let for A\9 A2 QA: A\ \A2 = {y(a\9a2)eA \a\ GA\,a2£A2}. From the fact
that a set B of actions is observable, we can conclude that BDB\A = 0.
Because y is injective, we know in addition that y has an 'inverse' on B \A: for
each CGB\A, there is exactly one bsB such that an aeA exists with
y(a,b) = c. In this case we write b = ysl(c).

3.2.2. DEFINITION. Let x,y be processes. Process JC is called observable in con-
text - - - \\y9 if <x(x) is observable, and a(y) is disjoint from a(x) and a(x)\A.

If a process x is observable in a context • • • \\y9 then one can tell for each
action from x\\y whether it is from x, from y9 or from x and y together. In the
last case one can also tell which action from JC participates in the communica-
tion. Observe that the fact that x is observable in context • • • \\y does not
imply that j> is observable in context • • • ||*.

3.3. Localisation. The 'localisation' of actions from JC in a context • • • \\y as
described informally above, can be expressed formally by means of renaming
operators. In the literature other definitions of the notions observability and
localisation can be found (see [1] and [16]). In the choice of the definitions,
there is a trade-off between the degree of generality (the capability of operators
to localise actions) and the length of the definitions.

3.3.1. DEFINITION. Let BCA be observable. The localisation function v(B):
Ar$-+Ar$ is the renaming function defined by:

v{B){a) =
if aeBU{r,8}
iiaeBIA
otherwise



246 F.W. Vaandrager

3.3.2. Example. The communication function in Example 1.2 is trijective.
Furthermore a(DU) — {kof ,30c,talk} is observable. Process DUis observable
in the context • • • \\KM. DU is however not observable in the context
• • • \\(DU\\KM). The expression

denotes the process corresponding to the behaviour of the Dutch user in a con-
text dH( • • • \\KM). We derive:

* -kof italk-zoem + zoem'talk)'dH(DU\\KM))

= 30ckof'talk'Pw{a{DU))odH(DU\\KM)
Hence pv^a^DU))°dH{DU\\KM) and DU satisfy the same guarded recursion equa-
tion. Application of the Recursive Specification Principle (RSP) now gives that
both processes are equal.

3.3.3. Remark. It may seem that one needs the r-law T2 (TX=TX+X) in the
verification above. Surprisingly we can perform the verification using only the
T-law Tl (JCT=X):

kofitalk'T+Ttalk) = kofir\\talk) = kofr\Ltalk = kofLtalk = kof-talk.
In fact we claim that all the verifications in this article can be done using the
T-law Tl only. So we also do not need the law T3 (a(rx -\-y) — a(rx +y) +  ax).

3.3.4. THEOREM. Let p,q be closed terms with p observable in context ..\\q. Then
ACPT + RN + AB h T'Pv{a(p))(p\\q)'S = r-p-S.

PROOF. Easy. •

5.5.5. THEOREM. Let x,y be processes, with x observable in context ..\\y. Then
we can prove using the axioms TO that: tr(pJ^a^xy)(x\\y))Qtr(x).

PROOF. Using the axioms from Table 1, we rewrite the statement we have to
prove into:

Because tr(x\ /r(y)e¥, it is sufficient to prove that for every V,WGT with
a(V) observable and a(W) disjoint from a{V) and a(V)\A:

P«a(v))(V\\W)CV.
First we apply the definition of the merge-operator on trace sets:

= pKa(l0)({a|3vGF, WGW
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The theorem is proved if we show for all v e V and wsW that:

PK«(F))(v II w)QV.

We prove a slightly stronger fact: Let V = V 1 * V 2 G F a n d let WGW. Then:

The proof goes by means of simultaneous induction on the structure of v2 and
w.

Case 1: v2 = V

Here we use that V is closed under prefixing.

Case 2: w = -\J

Vl*PKa(F))(V2llV) = Vi*pKa(F))({v2}) = V j •{pKa(F))(v2)} = V!*{v2} = {v} QV

Case 3.1: v2 = X en

i.2: v2 = X en w = w\

4.7: v2eA* en w = X

= {v} CV

Case 4.2: v2 = V3 \ / en w = X

( F is closed under prefixing.)

Case 5.1: v2 = av3, w = bw\ en

(Apply induction hypothesis.)

5.2: v2 = av3, w = bwx en y(a,
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(Apply induction hypothesis.) D

Notice that the C-sign in Theorem 3.3.5 cannot be changed into an =-sign. If
tr(y) contains no traces ending on \/> then tr(p^a{x))(x\\y) will also contain no
such traces, even if they are in tr{x).

3.3.6. THEOREM. Let x,y be processes, with x observable in context ,.\\y, and let
He. A. Then we can prove using the axioms TO that: tr(pv^a^x^odj{(x\\y))C.tr(x).

PROOF. Just like we did in the proof of Theorem 3.3.5, we reformulate the
statement. Let V.WeJ with a(V) observable, and a(W) disjoint from a(V)
and a(V)\A. We have to prove:

For X, 7 e T we have that dH(X)CX a n d l C K ^ p/JQCp/y) . Hence

From the proof of Theorem 3.3.5 we conclude:

The following corollary of Theorem 3.3.6 plays an important role in this article
because it allows us to derive a property of a system as a whole from a pro-
perty of a component (this is the essence of compositionality).

3.3.7. COROLLARY. Let x,y be processes, with x observable in context ,.\\y, let
HQA and suppose f—v{a{x)).  If x sat S (o), then:

PfMxWy) sat S(o)
and consequently

dH(x\\y) sat

3.4. REMARK. The formal definitions of the notions 'observable' and 'localisa-
tion' in this section are quite complex. The definitions are much simpler if one
works with the synchronisation-merge IU of Olderog and Hoare [15] instead of
the parallel combinator || of ACP. In fact the whole discussion of this article
can be simplified considerably if one uses the I \A -combinator. The main reason
for this is that the combinator corresponds quite directly with logical conjunc-
tion of trace-specifications (see [14]).

Still, one cannot say that 11̂  is a better operator than 11 in general. The syn-
chronisation format of the 11-operator is very flexible and often allows for
elegant specifications. An unpleasant property of the I \A -operator is that it is
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not associative (in general (x||5j)||cz ^ x\\B(y\\cz)). We think that the opera-
tors || and \\A are both very useful and that therefore notions like 'observable',
'localisation' and 'redundancy in context' should be worked out for both.

4. REDUNDANCY IN A CONTEXT
We want to prove, in a compositional way, that in a given context a summand
in a specification can be omitted. We will restrict ourselves in this article to
the case where the summand occurs in a 'linear' equation.

4.1. DEFINITION. Let E — {X=t x I XeVE] be a recursive specification. A
set CCVE of variables is called a cluster if for each XeCy tx is of the form:

for actions akeAT, variables XkeC and YIEVE — C. Cluster C is called iso-
lated if variables from C do not occur in the terms for the variables from
vE-c.
4.2. DEFINITION. Let E = {X=tx I XeVE} be a recursive specification and
let C be an isolated cluster in E. Let X0,XuX2eC, aeAr and let aX2 be a
summand of tXx. Let E' be obtained from E by replacing summand aX2 in
*xx by a 'fresh' atom /. Write/?=<X0 \E> and/?'=<Jfo \E'). Lety be a process
with/? observable in context ..||y. Let HQA. The summand aX2 of p is redun-
dant in the context 9#(..|[)>) if:

} ^ 0.

4.2.1. Comment. One can say that the set {oa \otGtr(p')} is the contribution
of summand aX2 to tr(p). Theorem 3.3.6 gives that tr(p^a^°dH(p\\y)) is also
a subset of tr(p). If summand aX2 is redundant, this means that all behaviours
of p of the form 'go from state X\ with an a-step to state X2 are not possible
if p is placed in the context 3^(..||/).

We give an example which shows why we require in Definition 4.2 that clus-
ter C is isolated. _ Assume a trijective communication Junction y with
y(a,a) = a* and y(b,b) = b*. Assume further that H — {a,a,b,b} en / = {#*,/>*}.
Consider the following recursive specification E\

Xo = aX0 + Xx

Xx = b-TrodH(X0\\a'c)

In this system Xo forms a cluster which is not isolated. We derive:

Xo = aX0 + b'C-8.

From this equation it is easy to see that Xo is observable in context ..\\b. We
have:
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Pv(a(X0))0dH(Xo\\b) = b'C'8.

If the condition in Definition 4.2 that C is isolated would be absent^ then the
summand aX0 would (by definition) be redundant in context dH(..\\b). How-
ever, the summand cannot be omitted: outside the cluster it plays an essential
role!

We can now formulate the central proof principle of this article:
A redundant summand can be omitted.

Below we formally present this principle as a theorem.

4.3. THEOREM. Let p=<X0 \E> and ^ = < 7 Q \E), with E and F guarded recur-
sive specifications, andp observable in context ,.\\q. Let HQA. Let C be an iso-
lated cluster in E with X09XuX2eC, aeAT and aX2 a summand oftXr Let E'
and E be obtained from E by resp. replacing aX2 by afresh atom t, and omitting
it. Let p'=<X0\E'> andp=<X0\E>. Suppose that ACPT + RDP + RN +
PR + TO proves that summand aX2 is redundant. Then: ACPT + RDP + RN
+ PR + AIP" h dH(p\\q) = dH(p\\q).

PROOF. Omitted. The proof uses a bisimulation model generated by Plotkin
like action rules. It is proved that the (infinitary) axiom system ACPT + RDP
+ RN + PR + AIP~ is sound and complete for processes represented by a
guarded specification. Consequently it is enough to prove that 9//(/?ll<7) and
<Mpll?) are bisimilar. The proof that the obvious candidate for a bisimulation
between these processes indeed is a bisimulation uses the fact that every trace
of actions in the transition system of an expression p is also a (provable) ele-
ment of trip). •

4.4. Remark. A summand which can be omitted is in general not redundant.
In every context the second summand of the equation

X = aX + aX
can be omitted, even if it is not redundant. At present we have no idea how a
'reversed version' of Theorem 4.3 would look like.

4.5. Proving redundancies. Now we know that a redundant summand can be
omitted, it becomes of course interesting to look for techniques which allow us
to prove that summands are redundant. The following strategy works in most
cases.

Let E, C, Xo, etc., be as given in Definition 4.2. In order to prove that the
summand is redundant, it is enough to show that for some predicate S(a):

pf sat Var :o = o't => S(o'a) and

Pvia(p))o^Hip\\y) sat -.SXa).
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If the cluster C is finite, then {oa \atstr(p')} is a regular language and can be
denoted by a predicate in the trace-specification language of Section 2.4. Con-
sequently we can in such cases always express that a summand is redundant.

4.6. Example. We return to Example 1.2 and show how the statement

dH(DU\\KM) = dH(DU\\KM)
can be proved with the notions presented in this section. KM is observable in
context DU\\.., and DU is observable in context ..\\KM. The specification of
DU contains no isolated clusters, but using RSP we can give an equivalent
specification where the set of variables as a whole forms an isolated cluster
(DU=UD).

UD
UDX

UD2

= 30cUD}

= kof-UD2

= talk-UD

+ kof-UD2

TABLE 2. Specification of DU

In Example 2.4.2 we already observed that:

KM sat aikqf <a|30c.

Because of Corollary 3.3.7 we also have:

Pvia(KM))°MUD\\KM) sat

The alphabet of process dH(UD\\KM) contains no actions kof or 30c, because
these actions are in H. This implies that occurrences of these actions in traces
from tr(py(a(KMy)odH(UD\\KM)) 'originated' (by renaming) from actions kof
and 30c*. Hence:

dH(UD\\KM) sat aikof < a|30c\
But since the alphabet of dH(UD\\KM) contains no actions kof and 30c, this
implies:

PKa{UD))^H{UD\\KM) sat

Define UD' by:
aj30c.

UD' = 30c- UD\+t
UD\ = kofUDf

2

UD\ = talk-UD'

Of course we have
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UD' sat Va' :o=o't => (p'kof)\,kof > (o'kof)l30c.
This shows that the second summand in the equation from UD is redundant.
•
In the example above, we gave a long proof of a trivial fact. The nice thing
about the proof is however that it is compositional and only uses general pro-
perties of the separate components. This makes that the technique can be used
also in less trivial situations where the number of states of the components is
large.

In the sequel we will speak about redundant summands of equations which
are not part of a cluster. What we mean in such a case is that the correspond-
ing system of equations can be transformed into another system, that a certain
summand in the new system is redundant, and that the system which results
from omitting this summand is equivalent to the system obtained by omitting
the summand in the original system that was called 'redundant'.

5. A WORKCELL ARCHITECTURE
In this section we present a modular verification of a small system which is
described in [4,13].

One can speak about Computer Integrated Manufacturing (CIM) if comput-
ers play a role in all phases of an industrial production process. In the CIM-
philosophy one views a plant as a (possibly hierarchically organized) set of
concurrently operating workcells. Each workcell is responsible for a well-
defined part of the production process, for instance the filling and closing of
bottles of milk.

In principle it is possible to specify the behaviour of individual workcells in
process algebra. A composite workcell, or even a plant, can then be described
as the parallel composition of a number of more elementary workcells. Proof
techniques from process algebra can be applied to show that a composite
workcell has the desired external behaviour.

In general, not all capabilities of a workcell which is part of a CIM-
architecture will be used. A robot which can perform a multitude of tasks, can
be part of an architecture where its only task is to fasten a bolt. Other possi-
bilities of the robot will be used only when the architecture is changed. A large
part of the behaviours of workcells will be redundant in the context of the
CIM-architecture of which they are part. Therefore it can be expected that the
notions which are presented in the previous sections of this article, will be use-
ful in the verification of such systems.

5.7. Specification

5.1.1. The external behaviour. We want to construct a composite workcell
which satisfies the following specification.



Some observations on redundancy in a context 253

SPEC = ^rl

SPEC0 = sO(r) SPEC" +» = s 1 0(/woc (p 1 ))SPEC"

TABLE 3. Specification of a composite workcell

Via port 1, the workcell accepts an order to produce n products of type
proc{p 1) and to deliver these products at port 10. Here (Xw<iV for a given
upperbound iV>0. After execution of the order, the workcell gives a signal r
at port 0, and returns to its initial state (r = ready).

5.1.2. Architecture. The architecture of the system that has to implement this
specification is depicted in Figure 1.

WA WB
FIGURE 1

There are four components: Workcell A (WA), Workcell B (WB\ the Tran-
sport service T, and the Workcell Controller WC.

5.1.3. Workcell A. By means of a signal n at port 2, Workcell A receives the
order to produce n products of type pi. The cell performs the job and
delivers the products to the Transport service T at port 8. Thereafter a mes-
sage r is sent at port 3, to indicate that a next order can be given.

WA = %r2(n)-XAn

XA° = s3(r)WA

TABLE 4. Specification of Workcell A
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5.1.4. Workcell B. By means of a signal n at port 4, Workcell B receives the
order to process n products. B receives products from a set PROD at port 9.
An incoming product/? is processed and the resultprocip)^PROD is delivered
at port 10 (proc = processed). Thereafter a message r is sent at port 5 and the
workcell returns to its initial state. We assume that/? 1 GPROD.

WB = %r4(n)'XBn

n=0

XB° = s5(ryWB XBn + l = 2 r9(p)'s\0(proc(p)yXBn

pzPROD

TABLE 5. Specification of Workcell B

5.1.5. Transport service T transports products in PROD and behaves like a
FIFO-queue. Products are accepted by T at port 8. Transport commands tc
are given to T at port 6. The number of products accepted by the transport
service should not exceed the number of transport commands which have been
received by more than one. Each time a product leaves T at port 9, a signal
s l{ar) is given (ar = arrival). Variables in the specification below are indexed
by the contents of the transport service: OGPROD* andp,qePROD.

7* = r6(tc)i 2 r%(p)-TP)+ 2 r%(pyr6(tc)'TP
pePROD p^PROD

T°<i = r6(tc)i 2 r%(pyTP°i)+ 2 rS(p)-r6(tcyTPa^ +s9(q)-sl(ar)-Ta

pePROD pePROD

TABLE 6. Specification of Transport service

5.1.6. Workcell Controller WC is the boss of components WA, T and WB.
From his superiors (via port 1), WC can get the order to take care of the
manufacturing of n products procip 1). In order to execute this order, WC
sends a stream of commands to his subordinates, receiving progress reports
from these subordinates in between. When the controller thinks that the task
has been completed, he generates a signal s 0(r).

XC° = r5(rysO(ryWC

TABLE 7. Specification of Workcell Controller
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5.1.7. D = {n\0<n<N}U{r,tc,ar}UPROD is the set of objects which can
be communicated in the system, and P = {0,1,...,10) is the set of port-names
used. Communication takes place following the read/send-scheme:

y(rp (d\sp (d)) = cp(d) for/> eP, J E D

and y yields 8 in all other cases. Important sets of actions are:

H = {rp(d),sp(d)\2<p<9 and deO} and
/ = {cp(d)\Kp<9 and deB}.

The implementation as a whole can now be described by:

IMPL = dH(WC\\WA\\Tx\\WB)

5.2. THEOREM (CORRECTNESS IMPLEMENTATION).

ACPT + SC 4- RDP + PR + AIP" + AB + CA v r^IMPL) = SPEC.

PROOF. In seven steps we transform TJ(IMPL) to SPEC. Before we start with
the 'real' calculations, we show in the first three steps that in the specifications
of components WA, T and WB, a large number of summands can be omitted.
Notice that communication is trijective and that each component of IMPL is
observable in context with the other components.

First we use that the only command which is given by the controller to
Workcell A is a request to produce a single product/? 1. This means that:

IMPL sat oic2(n) = 0 for /i^=l.

Consequently

P*tWA))(IMPL) sat air2(n) = 0 for n^\.
Using the approach of Section 4.5, together with Theorem 4.3, we obtain that
all the summands in the specification of WA which correspond to the accep-
tance of a command different from rl{\) are redundant. We have

IMPL = dH(WC\\WA\\Tx\\WB\

where WA is given by:

WA = r2(iyS&(p\ys3(ryWA

Hence:

T 7 ( /MPL) = TjodH(WC\\WA\\Tx\\WB). (step 1)
Also component Tx is clearly a candidate for simplification. With some simple
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trace-theoretic arguments we show that nearly all summands in the
specification of Tx are redundant.

The only product which is delivered by WA at port 8 is pi. This means
that:

IMPL sat olc8(p) = 0 for p^p 1. (1)
From the behaviour of component WC we conclude:

IMPL sat ajc6(/c) < aj,c3(r). (2)

Further we deduce from the behaviour of WA:
IMPL sat o\,c 3(r) < oic %(p 1). (3)

From (2) and (3) together we conclude that the number of transport com-
mands at port 6 is less or equal to the number of products p 1 that are handed
to the transport service at port 8:

IMPL sat oic 6(tc) < oic S(p 1). (4)

From the specification of WA we learn that A does not deliver products
without being asked for:

IMPL sat oicS(p 1) < ajc2(l). (5)
Further it follows from the specification of WC that the number of commands
given to A by the controller, never exceeds the number of ar-signals with more
than one:

IMPL sat ajc2(l) < olcl(ar) + 1. (6)

From (5) and (6) together we conclude:
IMPL sat olcS(p 1) < oicl(ar) + 1. (7)

From formulas (1), (4) and (7) it follows that nearly all summands in the
specification of Tx are redundant.

Tjod^WCWWAW^WWB) = TjodH(WC\\WA\\T\\WB) (step 2)
where T is given by:

T = r&(pl)r6(tc)s9(pl)sl(aryT

The transport service delivers at port 9 only products of type/? 1. Therefore all
summands in the specification of WB which correspond to the acceptance of
another product, are redundant.

= nodffiWCWWAWTWWB) (step 3)
where WB is given by:
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WB =
n=0

XB = s 5(ry WB XB = r 9(p 1 )-s 10(proc (p 1 ))XB

We will now 'zoom in' on components WC, WA and T. Define:
H' = {rp(d\sp(d)\pG{2,3,6,7,8} and deD} and
/ ' = {c/?(J)|/?e{2,3,6,7,8} and J G O } .

Application of the conditional axioms CA gives:

(step 4)
Let PTbe given by:

N
W = ^r\

n=0

W° = r5(rysO(r)'W = T's9(p\ywn

We prove _that W-rr<>%H,(WC\\WA\\T), by showing that process
rro^H,{WC\\WA\\T) satisfies the defining equations of W.

Tr°%H>{WC\\WA\\T) =
n=0

= Tr(c2(iydH,(s3(rys6(tcyrl(aryXCn\\s8(p iyS3(r)'WA\\T))

= T-rr(c&(p iydHis3(rys6(tcyrl(aryXCn\\s3(ryWA\\r6(tcys9(p l)-s7(aryT))

= T'T'Tr(c3(rydw(s6(tcyrl(aryXCn\\WA\\r6(tcys9(p l)'sl(ar)'T))

= TTr(c6(tcydH>(r7(aryXC"\\WA\\s9(p l)'sl(ar)'T))

= Trr(s9(p iydHirl(aryXCn\\WA\\sl(aryT))

= r-s9(p iyrr(cl(arydHiXCn\\WA\\T))

= T's9(piyrrodw(XCn\\WA\\T)

We have now derived:

l (step 5)
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Let Fbe given by:

F.W. Vaandrager

We show that Tj°dH(W\\WB) satisfies the defining equations of V.

2
n=0

2
m=0

(here we use that T
tion it follows that:

TjodH(W\\WB) = K

We show that SPEC satisfies the defining equations of V.
N

SPEC =

T-SPEC0 SPEC = TsO(r)-SPEC
r

Hence:

. From the above deriva-

(step 6)

F = • (step 7)

This example shows that a combination of trace-theoretic arguments and the
use of alphabet calculus makes it possible to verify simple systems in a compo-
sitional and modular way.
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A version of the Alternating Bit Protocol is verified by means of process alge-
bra. To avoid a combinatorial explosion, a notion of 'modules' is introduced
and the protocol is divided in two such modules. A method is developed for
verifying conglomerates of modules and applied to the motivating example.

One of the basic problems in protocol verification is the following: data are to
be transmitted from A to B via some unreliable medium M. A protocol has
been proposed for doing so correctly and perhaps efficiently. A rigorous
mathematical proof of the correctness claim is desired.

Now protocol verification aims at providing the techniques for giving such
a proof. Several formalisms have been advocated, but as yet none has been
widely accepted.

The framework we adhere to is process algebra. The first protocol correct-
ness proof by means of process algebra is in Bergstra and Klop [2], where a
simple version of the Alternating Bit Protocol is verified.

We have tried our hands at a more complicated version, called the Con-
current Alternating Bit Protocol (CABP) and found that the number of possi-
ble state transitions was prohibitively large. In this article we propose a
divide-and-conquer strategy. We group processes into modules, describe and
verify their behaviour and finally combine them. For different approaches, see
[4,5,6,7].

In Section 1 we deal with the Concurrent Alternating Bit Protocol (CABP).
In Section 2 we present the modular approach. Modules are introduced in Sec-
tion 3, whereas the verification of the CABP is given in Section 4.

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).
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1. THE CONCURRENT ALTERNATING BIT PROTOCOL

1.1. Architecture
The architecture of the protocol can be depicted as in Figure 1.1:

FIGURE 1.1

There are six components:
A: Data transmitter. A reads data from port 1 and transmits them repeatedly

via channel K until an acknowledgement has been received from D.
K: Data transmission channel. K transfers data from A to B and may make

two sorts of mistakes: a datum may be corrupted, i.e. changed into some
error value e recognizable as such, or it may be lost altogether. However K
is supposed to be fair in the sense that it will not make infinitely many mis-
takes consecutively.

B: Data receiver. B receives data from K, outputs them at port 4, and sends
an acknowledgement to C via port 5.

C: Acknowledgement transmitter. C receives an acknowledgement from B and
repeatedly transmits it via L to D.

L: Acknowledgement transmission channel. L transfers acknowledgements from
C to D. It makes similar mistakes as K.

D: Acknowledgement receiver. D receives acknowledgements from L and
passes them on to A.

1.2. Remarks

1.2.1. One might propose to collapse A and D into a sender process, and B
plus C into a receiver process. The resulting processes would be more compli-
cated and in the correctness proof we would have to decompose them again.
Consequently, we present them as separate processes in the first place. Of
course, if the reader feels more comfortable when he thinks of A and D as run-
ning interleaved on the same physical processor, he is free to do so.
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1.2.2. This version of the Alternating Bit Protocol is called 'concurrent' to
emphasize the fact that A and C do not wait for a negative response before
retransmitting. The idea is that one can freely retransmit in what otherwise
would have been idle time, whereas performance gain will occur if the channel
malfunctions, because in this version retransmissions start earlier and occur
more often.

1.2.3. In [2] it was assumed that neither K nor L ever 'forget' a datum,
whereas in [7] a timeout mechanism was added to overcome such a mishap. In
Petri-net terms, those protocols pass around a single token. If it ever gets lost,
things stop moving, unless a time-out mechanism introduces a fresh token.

In the CABP however, processes A and C keep on firing, so that the rest
will have to throw away many tokens to prevent the system from being
flooded. In any case, activity never stops, for C never waits for input.

1.3. Data and actions

1.3.1. Data
D is the finite set of data to be transferred from port 1 to port 4.
B = {0,1} is the set of acknowledgement bits sent at port 6.
DXB, the Cartesian product set, will be transferred at port 2.
B U {e}, where e is the error value, is used at port 7.
DXBU{e) may be sent at port 3.
{ac}, where ac is an acknowledgement, occurs at ports 5 and 8.
D^DUDXBU{0,l,e,ac} is the set of
all transferable data.

1.3.2. Actions
For deO and/?e{l,.. . ,8} there are read, send and transfer actions:

r(dyp): read datum d at port/?.
s(d,p): send datum d at port/?.
t(d,p): transfer datum d at port/?.

In fact t(d,p) is a communication action: t(d9p) = r(d9p)\s(d9p). There are six
more atomic actions. They are called ifc, jk, kk, //, jl and kl and they are inter-
nal actions of K and L corresponding to internal choices. And, of course,
there are the inevitable constants 8 and T.

The entire alphabet is then:

A =
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The communication function |- : A XA-+A is:

c if 3rfeO3/>e{l,...,8} [{a,b} = {r(d,p),s(d,p)} Ac = t(d,p)]
a\b =

8 otherwise.

Two relevant subsets of A are:

H = {r(d,p)ys(d,p) | rf£D,;e{2,3,5,6,7,8}}

/ = {t{d9p) | deD9l<p<%}U{ik9jk,kk9ihjI9kl}
The process we are investigating is T/3//(yl||Ar||5||C||L||jD), where A9... ,D are
specified in Section 1.4.

I A, The individual components
We will describe each component twice, viz. by a state transition diagram and
by a recursive set of equations. These states are parameterised by parameters

FIGURE 1.2

A: A =A°

Ab =y.i
deD

Ab
d =
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K: K = 2 r(2,x)-(ik-s(3,x)+jk-sQ,e)
XEDXB

s(3,x)

265

•o

o
B: B =B°

Bb = (r(3,e) +

FIGURE 1.4

NOTE. A doubly labelled arrow O—JT^O stands  for two arrows ri gr"̂
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C: C =C1 (N.B. notC0)
Cb =r(5,oc)-Ci~b +s(6,b)-Cb

r(5,ac)

L: L =
beB

D: D =D°

r(5,ac) (c")

FIGURE 1.5

O

O

\-b
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2. THE MODULAR APPROACH

267

2.1. Running example
When irrelevant details are stripped off, CABP consists of six processes look-
ing like this:

o

FIGURE 2.1
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Here /| / = 1° for those / that occur overlined.
We put Pi,i>2>^>3>Gi>C2»C3 for A,K9B,C,L9D, respectively. The atomic

actions have been given more systematic names, too. This renaming forces us
to 'unfold' the state transition diagrams of the channels. E.g. where Figure
1.3 contains a single edge labelled s(3,b), P2 in Figure 2.1 must contain
separate actions A3 and A 4, in order that P 3 can react differently to these
events. _ _ _

Now put H = {hi9h\9...9hio} and H+ = HU{c9c,d,d}9 furthermore
/ = {h°l9... ,A°10, I'I, ... , i 6} and / + = / U {c°9d°}.

CABP being a communication protocol, T7+ (8jy+ (/*! II-P2II-P3 IIGi IIG2II63))
should equal (rXtfi)", where (T)JC stands for 'either x or rx\ Due to a com-
binatorial explosion, this is not easy to prove.

2.2. The CA axioms allow a significant reduction. Put:

Hp = {h\9h\9... yh5}, HQ = {7J6, /I6 , . . . ,Aio},

Ip = {h°\9... ,A°5,1*1,12,13}, IQ — {A°6,... ,A°io,1*4,15,1*6},

G = T7<|8ir,(G

by CA5

by CA1

= T/aJK3if,(/'ill/>2ll^3)IIGillG2llG3) by CA5

by CA5

fl IIP211*3)113^(Gi HG2IIG3)) by CA1

= T / 9 « ( 9 # , ( P , WPiWPdWtjiJQiHG2IIG3)) by CA5

(61 HG2IIG3)) by CA7

ffe(Gi IIG2IIG3)) by CA6

^ ( g i IIG2IIG3)) by CA2

a(Qi HG2IIG3)) by CA6

= 3tfT7T/e(P||3ffe((2, IIG2IIG3)) by CA6

= djtrtr^PWQ) by CA2

= 3HT/(i»IIG) by CA6
byCA7

So we may first calculate P and Q separately, and then combine them.
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FIGURE 2.2

FIGURE 2.3

When merging these processes, one finds that the edges marked with a

crossbar (-|—*)  are redundant in the sense of Vaandrager [7], i.e. they do not
communicate and are encapsulated out when P and Q are combined.

It is evident that any edge that can be reached from the root only via one
of these redundant edges is itself redundant, too. Inspection of Figures 2.2
and 2.3 shows that this is the case in about 80% of both P and Q. So 80% of
these graphs is irrelevant information. We only need to know that they look
somewhat like this:

This diagram is meant as an illustration only. In the sequel we will argue that this calculation
would be a rather cumbersome way of verifying CABP, which is why we left it out.
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P:

FIGURE 2.5

Figures 2.4 and 2.5 are evidently much clearer than Figures 2.2 and 2.3 and
yet they contain all relevant information for showing rIdH(P\\Q) =
r{abcod°Y. The rest of this paper is mainly devoted to formalizing these
ideas.

2.3. In Section 2.2 a process graph P was constructed and then it was argued
that 80% of it was redundant and could be thrown away. Hence 80% of the
calculations needed to find P were redundant and should have been avoided.
That is, instead of laboriously deriving Figures 2.2 and 2.3 from the CABP
specification and then simplifying to Figure 2.4 we should have conjectured
Figure 2.4 from the information in Section 1, and we should have proved this
conjecture by methods to be developed in Section 3. In fact this programme
will be carried out in Section 4.

2.4. Figure 2.6 is a simplified version of Figure 1.1:

FIGURE 2.6
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Recall that P is supposed to communicate at ports 1, 4, 5 and 8, in that
order, repeatedly. In this section we denote these communications as
a,b,c and d, so a first approximation to P should be P* = abcd-P*.

2.5. In Section 2.4 it was argued that P 'should be' {abcdf. Of course, it
isn't. For, if it were, process Q would not be needed. Q has to pass signals
from port S to port 8. As these signals do not contain any information, all Q
actually does, is ensuring that communication at port 8 occurs later than com-
munication at port S.

P is ready to communicate at port 8 at any time after communicating at 1.
In contrast, the other ports of P only communicate when it is their turn. We
will call a port robust if it always awaits its turn before communicating. Here
'its turn' is defined by a specification, so in case of doubt we may have to talk
about robustness relative to a certain specification. For example, in process P,
port 8 is not robust relative to P*9 port 5 is not robust relative to ab8 and all
ports are robust relative to P itself.

As a general design principle, whenever we connect two modules via a
channel, we will see to it that at least one end is a robust port and hence
blocks the channel when it should be inactive. Usually the robust end will be
thought of as sending the signal.

2.6. DEFINITION. A module specification S is a pair (F(S),R(S)), where F(S)
is a process called the functional part, and R(S) is a subset of a(R(S)) called
the robustness set.

Think of a module specification as describing an imperfect black box: F(S)
describes the intended behaviour, and the complement of R(S) describes possi-
ble deviations from F(S).

EXAMPLES. SP = ((abed)"\{a,b9c})9 SQ = {(cdTy{d}).
Processes P and Q are to 'implement' SP and SQ respectively.

2.7. In Section 3.8 we will define a notion of 'P implements M9, define an
algebraic criterion for this relation, describe how modules are assembled into
larger modules, and prove that a robust module meets its specification.

2.8. REMARK. The terms 'specification' and 'implementation' are meant to
suggest that module implementations are interchangeable: if some assembly of
modules performs a certain function, then any implementations of these
modules will do the job.

For example, channels K and L in Section 1.4 can buffer at most one item
at a time. If they are replaced by channels with a larger capacity, P and Q
still implement SP and SQ, SO the combination still works.
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3. MODULES

C.P.J. Koymans, J.C. Mulder

3.1. DEFINITION. A module is a finitely branching, rooted, directed, connected

multigraph with two sorts of edges: normal ( »), and barred (-[—»).
Moreover, both sorts of edges are labeled with labels from a finite set
AU{89T}.

3.2. NOTATION. M is the set of modules. If M E M , then
r{M) is the root of M,
N(M) is the set of nodes of M,
E(M) is its set of edges,
a(M) is its alphabet, i.e. its set of node labels,

e: n —»m means that e is an edge from n to m labeled a,

IT: n -^m means that TT is a path from n to m, and the labels along m other
than T spell the word as A*. If n =m, m may be empty. Notice that a
never contains S.

G = { M E M I M contains no barred edges}. An element of G will be called a
robust module.

t±rT denotes rooted r-bisimulation on G, denoted by t± in [1].
t±T denotes r-bisimulation on G, definable by: gt±TA iff Tg+±rrrh.

3.3. DEFINITION. With each module specification S we associate a module
M(5) in the following way:
Take a process graph G of the functional part F(S) of S, with normal edges,

and add barred edges n -f—»• for each non-robust action a (i.e. as A —R(S))

and for each node n from which no edge n —%• emerges. The destination of
the barred edges is immaterial. For definiteness we will make them end in new
terminal nodes.

EXAMPLE. M(SP) = M(((abcdf,{a,b,c})) becomes:
c - id

FIGURE 3.1
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3.4. The reader might notice that Figure 3.1 contains one more -f—»• edge
than does Figure 2.4. This is because Figure 3.1 expresses *P might always do
d\ whereas Figure 2.4 is based on a careful analysis of exactly when *P really
can do d\ When a port p is 'partially' robust, i.e. it is sometimes but not
always willing to communicate when it shouldn't, then a module can describe
exactly when it is robust and when it isn't, whereas robustness sets can only
express that p is not completely robust. This is why we study graphs rather
than algebraic specifications.

O
MP:

FIGURE 3.2

In the sequel, our running example will be MP, depicted in Figure 3.2. This is
the exact counterpart of Figure 2.4.

3.5. DEFINITION. A node / is called loopy if its outgoing edges are (precisely)

/ —%/ for all a sA, i.e. loops labeled with all letters of the alphabet A.

is loopy.EXAMPLE. If A = {a,b,c,d}, then

FIGURE 3.3

In the sequel we will abbreviate multiple edges connecting the same nodes, and
in particular loops, by multi-labeled edges (as in 1.4), like this:

abed

XV
FIGURE 3.4
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3.6. DEFINITION. We will need two operations from M to G:

| | : leave out all barred edges, and

!•!: add a loopy node /, and replace each n -£-+• by n — -̂>/.

In these and all subsequent operations on graphs it is tacitly implied that
whenever a graph becomes disconnected, only those parts that can be reached
from the root are retained.

EXAMPLES.

= d

t*-K>

o

FIGURE 3.5

3.7.1. DEFINITION. Let g,/ieG. Then gtzh (pronounced 'g emulates K) iff

whenever a path IT: r(h) -^-*n can be lengthened to r{h) -^n -^>m then all

paths r(g) —̂ ->fc can be lengthened to r(g) —%/c -—••.

3.7.2. REMARK. Note that if g<-h and there exists a path r(h) —%n, then

there is at least one path r(g) ~^k, because the empty path r(g) -^->r(g) can

be lengthened to r(g) -—>r(g)  — a—*k,  so the condition 'for all paths ...' never
holds vacuously.

3.7.3. A more playful way to describe emulation is the following two-player
game:

Player H runs down a path in graph h. When he traverses a r-edge, he
remains silent, but when he traverses an a-edge, he says V , and his turn is
over. Player G runs down a path in graph g. When H announces he traversed
an a-edge, G tries to traverse zero or more T-edges, and then an a-edge. If he
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fails, he loses; if he succeeds, it is / f s turn again.
Some obvious rules: both players start at the roots of their own graphs;

they do not traverse S-edges; they do not reveal which path they are following,
but only the labels they encounter; G wins if he does not lose, etc.

Now g emulates h iff G can not lose, no matter how stupid he may play.

3.7.4. EXAMPLES.

FIGURE 3.6

FIGURE 3.7
Emulation is not reflexive, in other words a graph does not necessarily emulate
itself:

FIGURE 3.8

The rightmost > can be lengthened to > whereas the leftmost

—-—» can be lengthened to  > only.
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3.7.5. REMARK. There are several notions of emulation, simulation and imple-
mentation in the literature. We invented this one while trying to verify CABP
and it turns out that our notion is usable in this case. Experience will show
which notion is 'best', most universal, easiest to comprehend, etc.

3.8. DEFINITION. The main relation onMXM is called implementation:

MtN:** \M\<=.\N\ and W!«z!M!
EXAMPLES.
i)

because
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FIGURE 3.10

FIGURE 3.11

5.9. LEMMA, tz and »= are transitive.

PROOF.

tz -.Suppose £itzg2 andg2^g3 and TT: r(^3) - % n 3 - % ^ 3 and r^O - % W l .

Then Remark 3.7.2 grants the existence of a path r(g2) —^n 2. Then there

is a path r(g2) —->ni —^>k 2 by the definition of t=, and for the same rea-

son there is a path r(gx) —%«i  -^—•&].
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»=: If M\VM2 and M2tM3 then by the definition of i=, |M 1 | tz |M 2 | tz |M 3 |
and \M3\±\M2\±.\M}1 So I M ^ I ^ I and \M3\ti\Mll hence

•
3.10. DEFINITION. A graph is called concrete if it contains no T-edges, and
deterministic if no node has two outgoing edges bearing the same label.

3.11. LEMMA. Ifg±g then g8+*Th-8 for some concrete deterministic h.

PROOF. Recall that g+zg means that if r(g) — a-+nx and r(g) —%/i 2 then
nx and/i 2 have the same outgoing paths. We identify all such pairs, thus
turning all T-edges into T-loops. Knowing that a T-loop bisimulates with a
8-edge, we replace T-loops by 8-edges, thus forming h. One easily sees that
g and h are nearly bisimilar, i.e. they are T-bisimilar except that possibly their
end nodes into failures: g'8±+h'8. Clearly h is concrete and deterministic. •

3.12. DEFINITION. A communication function -|-: A XA-+A is _called
trijective if there are three subsets C,C9C°CA and operations"7,0 and ° such
that: _
i) QQC° and {8,T} are disjoint;

ii) \ \ ^ ^ / o commutes (i.e. a = a, (a °)° = a, etc);

ifaeCUCAb=a,
a\b= U otherwise.

iv) a° = a = 8 if
Tlie operations T etc. are extended to &(A) in the usual way, e.g.
X— {3c  | xsX} — {8}.  In fact C and C° are examples of this usage. Note
that in fact A = C, A = C and A° = C°.

Also note that trijectivity implies HA: a\b\c=89 unless a\b =~c. However
a\bsC°U{8), while C E C U C U { « ) . Furthermore C° and CUC are disjoint,
so a\b = 7implies a\b = ~c — 8, but  then a\b\c = 8, too.

3.13. Fair FIFO queues satisfy an algebraic criterion [3], viz. X is a queue if
and only if T-dH(X\\T)-8 = T'dH(Q\\T)-8 where Q is a standard example of a
queue, and H and T are suitably chosen. In other words, X is a queue if and
only if it behaves like one in a suitably chosen test environment. In the sequel
we will generalize this idea to a large class of modules. In Section 3.14 we will
define a tester T(M) for this larger class of modules and in Section 3.20 we
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will prove rdH(X\\T(M)y8 = T'dH(M\\T(M))'8=*XtM modulo some reason-
able restrictions.

3.14. DEFINITION. Suppose the communication function is trijective. Let M
be a concrete module. Now apply the following transformations to M (strictly
in this order):
1. For each neN(M)9 and for each aea(M), if there is neither an edge

n -—>-  nor an edge n 4—»%  then add an edge n -—»/io  to some new
terminal node n0. These extra edges are called traps or trap edges.

2. Apply"7to all edge labels.
3. Apply | | to the graph. The resulting graph T(M) is called the tester for

Af. If S is a specification, T(M(S)) may be abbreviated T(S).

3.15. EXAMPLES.

= M(S(Q)) = - K )

= T(S(Q))=

FIGURE 3.12

ii) A one-bit buffer B = (r(0,l)-.s(0,2)+r(l,l)-$(l,2))-JJ, where port 2 is
robust:

1 f ~ \ 2

Here C = {r(d9p) |/>e{l,2},de{(U}}, C =
1 ), r(d,p)= t(dQ,p),

and t(d°,p) = r(d,p). This is sometimes called read-send communication.

r(0,1)7(1,1) r(0,2)
FIGURE 3.13
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iii) Our running example:

MP:

C.PJ. Koymans, J.C. Mulder

- O \4-

-K5

TP = T(MP): -

0 FIGURE 3.14

iv) Our tester for a robust queue over some finite alphabet D would have
infinitely many states, indexed by finite sequences over D:

de de

2)

Here C,QC°9- etc. are chosen similarly to example ii.
Note that this tester is different from the one in [3] in that it communicates

at both ends of the queue.

3.16. REMARK. It is possible to describe the transformation M <>T{M)
algebraically, but this is not particularly enlightening.
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3.17. In order to do anything nontrivial with modules, we need the whole
bunch of operations and relations traditionally defined for graphs.

3.17.1. The constructions for + , • ,dH, and T7 can be copied verbatim from [1].

3.17.2. The constructions for | | ,L, and | are the usual Cartesian product
constructions, augmented with a clause that diagonal edges representing suc-
cessful communication are barred if and only if at least one of the composing
edges is barred.

3.17.3. The definition of ±*r is augmented with a clause that barred edges
should correspond to barred edges (bearing the same label, of course). This

implies that -\^> edges can only correspond to -£-* edges.

3.18. EXAMPLES.

FIGURE 3.16

iii)

-K3 D-

O
FIGURE 3.17
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iv)

v)

wi)M(Q)\\T(Q) =

d

FIGURE 3.18

O

FIGURE 3.19

+^-K>||O—y J =

FIGURE 3.20
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vii)

L

FIGURE 3.21

viii) M(Q)l_T(Q) =

d

O

D =

FIGURE 3.22
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ix)

M(fi)|r(fi) =
FIGURE 3.23

o-
A d_

FIGURE 3.24
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3.19.1. LEMMA.

FIGURE 3.25

ii) IM\\\INI+±TIM\\N\

PROOF.

i) Follows trivially from the definitions.
ii) Call a point in the Cartesian product graph semi-loopy if at least one of its

coordinates is loopy. If / is the loopy node in \M! then any edge n —%w

in \N\ will give rise to an edge (/,/?) —^-»(/,m), and similarly with  N and M
reversed. Those and the loops (/,/i) —%(/,/i)  are precisely the outgoing
edges of the semi-loopy nodes in \M\\\\N\. Consequently, any outgoing
path from a semi-loopy node ends in a semi-loopy node (possibly the
same), and any sequence of labels can be obtained. Hence we can bisimu-
late \M\\\\N\ and \M\\N\ by relating the semi-loopy points in \M\\\\N\
to the loopy point in \M\\N\ and the rest to 'themselves'. •
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3.19.2. EXAMPLE.

Af =
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o

N =

\M\\N\ FIGURE 3.26

3.20. THEOREM. (TEster Principle, or TEP). Let M be a module, T = T(M) its
tester, X any process. Suppose:
1. Communication is trijective.
2. \M\ is concrete and deterministic.
3. a(X) = a(M) C C = v4, i.e. X a/irf M consist of communication actions only.
4. a#(A1l T) • 8<=>TdH(M|| 7) •«, wAere i / = a(M) U a(Jlf).

PROOF. Abbreviate: L: = dH(X\\T)-8, jR: = 8^(

l^ltilAfl: Suppose that a path itM\ r(\M\) —*m x can be lengthened to



A modular approach to protocol verification 287

T^M'. r(\M\) — a—*m x -^-»m2 and \X\ also contains a path

TTX'- r ( |^|) —-»*i- \M\ being concrete, we may assume without loss of gen-
erality that a' is in fact a singleton {a). By construction, T contains a

path ir*T: r(T) -^-*tx —+t 2. Note that 5=̂ =8 in view of condition 3. Con-

sequently, there is a path i/R: r(R) —>r x —>r 2 . Moreover this rx is
unique, for trijectivity implies that the decomposition a°=a\a is unique,
condition 3 implies that a can only come from \M\ and also that
a(T)Ca(M)CC, so a can only come from T; finally, \M\ being determinis-
tic implies that TTM is the unique path labeled a, and that its tester T is also

deterministic, hence mT\ r(T) -^>tx is the unique path labeled a. The

presence of paths irx
: r(\X\) —*^>x x in \X\ and irT: r(T) -^->tx in T gives

_o

rise to the existence of a path mL\ r(\L\) >lx in L. In the bisimulation
relation asserted by |L|i^T|l^|, lx must be related to rx above, because the

path r(\R\) -^>rx in \R\ is unique. As rx -^>r2 there must be a path

lx
 <a >

>12 By trijectivity and condition 3 this can only come from a path
X j

 <a>
 yx2 (and the matching path in T, of course).

So we see that we can lengthen any path r(\X\) -^-*xx to

r(\X\)-^xx^^x2.

\M\ti\X\: Note that 1^!=^ and \M\=M. Suppose a path
trx: r(\X\) -^-*xx can be lengthened to r(\X\) -^-*xx -^>x2. We are to

show that any path r(\M\)— a-+mx can be lengthened to

r(\M\) —^m x -?-*m2. \M\ being deterministic, this is equivalent to
showing that \M\ contains a path labeled o0=o*o'. We distinguish two
cases:
Case 1: !L! contains a path labeled a0. Then \R\ does so, too.

Trijectivity and condition 3 now imply that we can 'project' this path
down to M9 and from there to \M\.

Case 2: We can find some, possibly empty, initial segment a°x of a°0
in!L! (i.e. a path bearing that label), a°x maximal, but shorter

than a°Q. Consider the 'projection' onto T: r(T)— l-+t\. Since trap
edges of T do not communicate with actions of X by conditions 2 and

4, a corresponding path r(\M\) — l-+mx exists.

Now, since a°x is not all of a°0, the rest of a°0 must begin with some

atom fl°. So now \X\ contains a path r(\X\) -^-+xx
 <a> >*3 and \L\

does not contain a similar path r(\L\) —*-*lx >'- Apparently, T
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does not contain an edge tx ——>*.  Now t\ can not be the end node of
one of the trap edges added in step 3.14.1 for those edges do not com-
municate with edges of M by construction (of 7). So we can deduce

that this can only happen if M contains an edge mx -^Um3. But then

\M\ contains an edge mx -^>mh with m/ loopy. Hence we can com-

plete our path r(\M!) — x-±m\ -^mi —^m h •

3.21. REMARK. The role of the S's in condition 4 of Section 3.20 is not evi-
dent from the proof, to say the least. Inspection of the proof shows that the
theorem also holds without them. In fact one can derive that result more
easily by noting that it is just a weakening of Section 3.20. Stated differently,
condition 4 as given is a weakening of the version without delta's and conse-
quently the theorem as a whole is stronger than the variation. For example,
consider

One easily sees that NtM.

We calculate:

T(M) = J

We see that L and R are 'equal up to leading T'S and trailing 8Y. Precisely
this relation is expressed by L • 8+±rR • S.

3.22. REMARK. The reader might wonder why we introduced these testers
when after all the relation R can be read off from the graphs directly. How-
ever, in our motivating example, CABP, the proposed implementation is not
given as a graph, but as a rather complex process term. To draw the graph is
of course possible, but we saw in Section 2 that it involves a lot of work, and
most of it is in fact redundant. The tester equation 3.20.4, on the other hand,
encapsulates any redundant edge as soon as possible. That way, we can keep
the amount of work feasible. In Section 4, we will actually carry out this
calculation.
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3.23. LEMMA. LetghhteG (i = 1,2).

Suppose:

i) communication is trijective: C\C —  C°;
ii) ft!=Mi=l,2);
in)a(gl)CQa(g2)QC.
Then gx\\g2tihx\\h2.

PROOF. First note that condition ii}^implies that a(/ij)Ca(g,), and hence condi-
tion iii) implies a(hx)QC9 a(h2)QC. Next, recall that trijectivity implies that
C9C and C\C are disjoint. The upshot of all this, is that each trace in gx \\g2
(or h\\\h2) can be uniquely decomposed into traces in gx andg2 (hx and h2\
i.e. we can establish atom by atom where it comes from.

So if a path <n: r(hx\\h2)-?-+• can be lengthened to

IT7: r(h\ \\h2) —%• -^-»* we can find the unique labels ox,o29o'x and a'2 of the

(possibly non-unique) paths irt: r{ht) —U- —U- that 'caused'  TT". In any case,

there exist paths r(ht) —U* that can be lengthened to r(h t) —U- —U-.

Moreover, each path r(gx\\g2) —^-*-  'originates' from paths r(gi) —'-*- also

labeled oh Now fti=A, implies that each such path r(gt) —U- can be

lengthened to /•(£,•) —->- - ^ - , and therefore each path r(gi \\g2) —%• can be

lengthened to r(gx \\g2) —%• - ^ * as was to be shown. •

.̂ THEOREM. (Modular Assembly Principle, or MAP).
Let MhNt e M (i = 1,2). Suppose:
i) communication is trijective;
ii) MttNf,
i i i)a(M1)CC,a(M2)CC.

Af! ||Af21=^! ||iV2.

PROOF.

|Mx\\M2\<-\NX\\N2\: This follows directly from Lemmas 3.19.i and 3.23.

lNi\\N2\tzlMi\\M2l: Suppose, as always, a path mM\ r(\Mx\\M2\) - % • can

be lengthened to ^M: r(!M1||M2!) —%• -^->-, and consider a path

TT :̂ (!JVi l|iV2!) — -̂»\ There are three cases:
1. WJV passes through the loopy node of WjHiV^!. In that case the result is

trivial, because in a loopy node one can construct any trace one likes.
2. TTN does not pass through the loopy node, but mM does. This contradicts

the fact that XN\\tz.\M\\ and W2!i=!M2!, because for entering a loopy
node in the merge, one of the components has to go through a barred edge,
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thereby entering a loopy node itself.
3. mM and TTN do not pass through loopy nodes. In this case the proof of

Lemma 3.23 works, using the observation that when ifM enters the loopy
node in \MX ||Af2! we can choose to continue this path in that component
that caused the loopy node and hence has a loopy node itself. •

3.25. Recall that barred edges are supposed to be redundant, i.e. we intended
them to occur in a context in which they can not communicate. So if we
encapsulate we expect all barred edges to disappear. Consequently, the result-
ing graphs should be robust. As was to be expected, this is the case in our
motivating example, CABP:

-•<>

o —

FIGURE 3.27
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FIGURE 3.28

3.26, THEOREM. (Robustness Principle, or ROP). If gth, and both g and h
are robust, then T g ' S = r h - S .

PROOF. Robustness means that \g\ = \g\=g and\h\ = \h\=h. So gth boils
down to gtzh and htig.

Now define a relation R on N(g)XN(h) by putting nWc if and only if a
word OE:A* exists such that 3w: r(g) —°—*n  and lir*: r(h) —°-+k.  Then, if
n\Rk\ and there is a path nx -^>n2 in g, then h±g implies that there exists a
path k\ -^-»fc2 in h, and so n2Wc2, for r(g) -^» / i 2 and r(A) -̂ -%A:2-

The same holds with g and h interchanged. In other words, g and h are
T-bisimilar, except possibly for their end node labels. I.e., T-g-S = r-h-S. •

4. A VERIFICATION OF CABP

4.1. In this section the calculations alluded to in Section 3.22 will be carried
out. In Section 4.3 through Section 4.6 TEP is applied to CIILHA in Section
4.7 through Section 4.10 it is applied to ^4||A1|2?, and in Section 4.11 an alge-
braic reformulation of Section 3.25 follows.

4.2. NOTATION. In Sections 1.3 and 2.2 we named some subsets of A:
H = {r{d,p\s(d,p) | rfeD,/>e{2,3,5,6,7,8}}

= {r(d,p)9s(d,p) | </€=D,/>e{2,3}}
={t(d,p)\deD9pe{293}}U{ikJk9kk}
= {r(d,p),s(d,p) I </€=D,/>e{6,7}}
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IQ = {t(d,p) \deD,ps{6,7})U{il,jl,kl}

We defined P = rIrdHr(4\\K\\B) and Q = rIedH<i(C\\L\\D) and noticed that
CA1,2,5,6 l- T/ajr^lWrilBIICHLIID) = TfaiPUQ).

4.3. In the Sections 4.3-4.6 we will verify that QtM(Q). According to TEP
(3.20), it suffices to show that

T • dH(Q || T(M(Q))) •« = T • dH(M(Q)\\ T(M(Q))) • 8 (*)

s(S,oc) ,r(5,ac)
Recall that M(Q) =

r(5,ac)

1 r(8,ac)
and T(Q)=T(M(Q))= O" f(% . &• ) -O

r{p,ac) s(5,ac)
In order to calculate M(Q)\\T(M(Q)) we need some notation for the

barred r(5,ac)-edge of M(Q). We choose r(5,ac)Q9 inspired by Section 2.2,
where barred edges were introduced to denote V(5,ac), followed by some
unidentified process'. More formally, barred edges communicate and are
encapsulated like their unbarred counterparts. In an earlier version of this
paper we used the notation r(5,tfc)*x> thus suggesting that the barred edge is
followed by chaos. This is not exactly true: in an implementation the barred
edge is followed by a definite, albeit unspecified, process. At any rate, it
should be possible to eliminate all Bs.

4.4. We will abbreviate:

5 = s(5,ac)9 5 = r(5,ar), 5° - /(5,oc),

8 = s(&,ac), 8 = r(8,flc), 8° = /(8,ac),

Tl=T=T(M(Q)% T2 = S'Tl9

Mx =M(Q), M2 = 8-M, +5-0 .

(MO 8 (M2) - (0)

5 (T2)

FIGURE 4.1
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So:

7-j = 5 • T2 + 8,

M, =5-M2,
M2 = 8-M, + 5

Hence

TX\\MX =
and

Consequently

and

3{5j,8,I}(^IIA/2) = 8°

Therefore

So

So the right hand side of (*) reduces to T • (5° • 8°)" • 8.

4.5. In order to investigate Q = T/e9fle(C||L||£>), we will need quite a lot of
notation. First we abbreviate:

6b=s(6,b) (6=0,1),
lb =s(l,b) (b = 0,l,e),
8 = s(S,ac),
5,6A,7ft, 8 = /•(•,•),

5°, 6%, 7%, 8° = *(•,•).
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Next, we need names for all states of the processes involved:

C: C =

( C 1 ) 5 (c&)

FIGURE 4.2

+6b-Cb

L: L =L,

L\ =UL\

FlGtFRE 4.3

(D\)

FIGURE 4.4

D: D =
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Finally, we introduce names for some relevant composite terms:

= ^H(T1\\Cb\\L^-b)\\Dbx)

w = dH(T2\\cb\\L?HDb
2)

where b =0,1, i = 1,... ,4 and (b) is either b or blank, as appropriate.

4.6. CLAIM. 8^(7110 = T - ( 5 ° - 8 T -

In Subsection 4.6.6 this will be deduced from a number of auxiliary claims:

4.6.1. CLAIM.

PROOF.

= 8/fT/e(r||T/e8/,(((C||L||Z>)) byCA4

(C\\L\\D)) by CA2

t(C||L|U>)) by CA7

= Tl9dH(T\\C\\L\\D) byCAl and CA5

= TIgdH(Tl\\Cl-°\\Ll\\D°i)

4.6.2. CLAIM. rIg(QlAi) = T- 2,

PROOF.

We find that (d,*, , | i = 1,... ,4} is a cluster. Applying CFAR yields:

-2
1 = 1
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4.6.3. C L A I M . TIg(QXb,d = ( T - ) TI(I(Q3AI). H e r e ( T ) i s T - iff i ^ l .

P R O O F .

62.6.3 = 7°i-* • 63,6,1 hence TIe(QXbj) = r-

QxbA = 7% • 63,6,1 hence rIa(QXbA) = T • TIQ(Q3A!)

62,6,2 = '/ • 62,6,3 + jl • QxbA + kl • 62,6,1

hence ^(62,6,2) = (T2 + T2 + T)-TIB(QXI)A)

The claim is now easily derived. •

4.6.4. CLAIM. ^(63,6,1) = T-T/e«24>M).

PROOF.

63.6.1 = 6 ° , - 6 - 63,6,2

63.6.2 = »• 63,6,3 + fl • Qyb.4 + « • 63,6,1

63.6.4 = 7%-63,6,1

We find that {63,6,. I » = 1.2,4} is a cluster. Applying CFAR yields:

- 64,6,0

1)

= TT/fl (64,6,1) •

4.6.5. CLAIM. rIg{QA>bA) = r- 2 ( T - ) 8 ° - T / B ( f i u - w ) - ( T ) is T - i f f / = 3 , 4 .
1 = 1

PROOF.

64.6.1 = 8° -61,1-6,1+6V 64,6,2
64.6.2 =8°-6l,l-6,2 +'/-64,6,3 +7/64,6,4 +kh 64,6,1

So 64,6,1 ^ d 64,6,2 fonn a cluster and (using CFAR):
T/fl (64,6,1) = T-T/fl ( 8 ° - e U - M

= T-T/<((8°-6l,l-6,l+8°8°-
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-2
1 = 1

4.6.6. Summing up:

-2
1 = 1

1=1

Similarly, T/fl(eM_ft>I) = • • • = r-5°-r^Q^-^). (**)

Hence ^ ( T O S 0 - ^ ^ , , , - ^ ) ^ 2 ( ^ ) 8 ° ^ 5 ° T

using (**) in both directions.

Consequently, substituting 1 — b for 6, T /fl(g itbt x) = T • 5° • 8° • TIQ(G I,I -fc, I )•
Similarly, T/ (gi t i_^i) = T - 5 ° -8° ' ^ ( g ! fc>1). Hence both equal the unique
solution of X = T - 5 ° -8°*, which is r ( 5 ° -8°)".

So the left hand side of (*) in Section 4.3, being equal to T-T/ (QlfO,i)'8,
equals the right hand side. This proves (*). •

4.7. In Section 3.4 we introduced two modules M(P) and MP differing by one
barred edge. For no specific reason, we choose to verify PtMP in the next
four sections. They will be rather similar to the last three.

According to TEP, it suffices to show

T • dH(P II T(MP)) • 8 = T • dH(MP || T(MP)) - 8. (*)
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4.8. NOTATION. We will use abbreviations similar to those in Section 4.5, e.g.
2db =s(2,(d,b)). Incidentally 5,5 etc. have the same meaning as in Section
4.4, whereas T\ etc. have not.

MP:

MP=

5 (M3) 8 (fl)
-O h K)

FIGURE 4.5

M3 = 5 - M 4

M4 = 8 - M ,

T(MP):

FIGURE 4.6

+ 5 + 8
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dT

T4 =

One easily sees:

3*0*1 IWi) =

= 5 ° -dH(T4\\M4)

dH(T4\\M4) =8° -8 F ( r 1 | |M 1 )

Therefore the right hand side of (*) in Section 4.7 reduces to

49. Like in Section 4.5 we repeat the relevant parts of Section 1.4:

FIGURE 4.7

A: A —• A \

dT
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K: K =K,

KXtkb = Ik • K3Ab +jk-K4+kkKi

K4 =3e

B: B =

Relevant composite tenns are:

Xb \\KU (1 -btd) \\B i>b
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3,byi,(d)

where b =0,1, dsD, i = 1,... ,4 and (x) means either x or blank, as
appropriate.

4.10. CLAIM. dH(T(MP)\\P) = C2lo
d-4o

d-5o-S°y-
dTb

This will be deduced in Subsection 4.10.10.

4.10.1. CLAIM.

PROOF. Entirely analogous to Claim 4.6.1. •

4.10.2. CLAIM. T 7 , ( P 1 A 1 ) = ^\\°d•T/,(P2AU)

PROOF. Straightforward calculations. D

4.10.3. CLAIM. P ^ W = ^ U

PROOF. By definition. •

4.10.4. CLAIM.

PROOF.

We find that {P^b^d I ' = 1,2,4} is a cluster. We apply CFAR:
= T * Th (ik ' P3X 3,</)

This proves the claim for i = 1,2,4. It trivially holds for / = 3. •



302 C.P.J. Koymans, J.C. Mulder

4
4.10.5. CLAIM. TIp(P4Ahd) = T-"2(T') 4o

d-TIp(P5M). Here (T-) is r- if

and only if i =3,4.

PROOF.

4,6,1,</ d 5,b,\,d ' *̂ i/,6 4,b,2,d

Hence P4,6,1^ and P^bXd form a cluster and (applying CFAR):

T / F ( P 5 A / W ) . D

4.10.6.1. CLAIM. T 7 , (P 5 ,^ ) = *' 2 ( T - ) 5°'*!,&6,tj,d) for 1= 1,2. Again,

(T•) is T* if and only if j'= 3,4.

PROOF.

Ps,b,2,d = 5° -P6AW + ik'p5A3,d +jk-P5,bA,d + kk-PStbtltd

Again Psyb,\,d a n ^ Ps,b,i,d fonn a cluster and, by CFAR:

) = T-T/ F(5° - P M , U + 5° *PM,2^ + ik-P5XXd +jk-P5tbtAtd)

= T• 2 (T*) 5° • rIp(P6tbJtd)9 as before. D

4.10.6.2. CLAIM. T / P ( P 5 A W ) = 5° • rIp(P6M) for 1 =3,4.

PROOF. Straightforward. D
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4.10.7. CLAIM. T ^ ( P M ^ ) = T- 2 ^'^('u-*/.«>)•

PROOF.

P + *k'P + 7* 'P6,6,4,<*

We find that {P6,6,,,,/ 11 = 1,... ,4} is a cluster. Applying CFAR yields:
4

= T T / , (2 8° "

.̂7O.&7. CLAIM. T / # ( P 1 A 4 ) = T-

PROOF.

. •

HenceT 4 (P 1 A 4 )= 2 l°rf-T/F(P^u) + T- 2 1VT/ , (P 2 ,6 ,W)

deb

4.10.8.2. CLAIM. T 7 , ( P 1 A M ) = T- 2 1°# '

PROOF. Analogous to Claim 4.10.8.1. •

4.10.8.3. CLAIM. T 7 , ( P 1 A W ) = T-
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PROOF.

Xd
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ik

kk

3%

t _^_

d,b

jk

ik

kk

FIGURE 4.10

2 IV -(ik'
d'Tb

2 1 V-*-3V

*•( 2 iV-3%-i>2AM, + 3%- 2 IV-
7D j'TD

The claim is now easily derived. •

4.10.8.4. We can summarize Claim 4.10.2 and Claim 4.10.8.1 through 4.10.8.3:
ri,(P\tbMd)) = ( T ' S ' V - T / , ^ , ! / ) ' w h e r e 0") i s b l a n k if ^ on ly if » = I-

d'

4.10.9. Summing up Claims 4.10.3 through 4.10.8 we find:
4

= T« 2 - 2
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= T-4«y 2 5°-T- 2 %o-rIr(pu-bX{d))
7 = 1 k = l

- 2
A: = 1

= T-4^-5°-8o- 2 1 V

So if we denote 2 l°d • T / ^ P ^ 1 J) by Pb then

and

So both equal the unique solution of X= V loj-4°rf-5o-8°-Jf, which is

4.10.10. Finally we are in a position to prove Claim 4.10:

dH(T(MP)\\P) = T 7 , ( P 1 A I ) =

4.11. In this section we will calculate dH(MP\\M(Q)). As the notations from
Sections 4.4 and 4.8 collide, we have to rename some states. We choose to
rename the states of M(Q) to Ni and N2. So:

dT
MXd = 4d M3 + 8 - 0 M{Q) = NX= 5-N2

M 3 =5-Af 4 + 8-a N2 = i'Nx -f 5 - 0

Next we compute:

2 Î -̂
dTb

dH(M3\\Nx)
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= 2 V V 5 ° • dH(M4\\N2)
deb

So we find that â MpHMCg)) = ( 2 j , - V 5 ° -8°)".

In the previous sections we established P N M ? and g tM(g). We apply
MAP (Theorem 3.24) and find P||g*Jlfp||JI#(g). This_ implies that
%H(P\\Q)*%H(MP\\M(Q)\ which was shown equal to ( £ h•4d'$o%°Y-

deb
The latter being robust^ we may apply ROP (Theorem 3.26) and find that
T-3#(PHg)-« = T - ( 2 Xd•4d'5°-%°y-8 holds in the graph model. Since

deb
these processes are perpetual (never terminate), this implies
T/9ff(PHg) = 0"X 2 ldm*df' This proves that CABP is a correct communi-

deb
cation protocol.
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Francez, N. 235,236
Fujii, K. 80
Glabbeek, R.J. van 5,20,44,236,259
Groenveld, R.A. viii
Halpern, J.Y. viii,44
Hazewinkel, M. 20,44,80,124,171
Heijblok, M. 51
Hennessy, M.C.B. vii,viii,90,125,127,145
Hoare, CA.R. 5,20,88,90,125,236,259
Jantke, K.P. 20,44,306
Kaldewaij, A. viii
Kera, K. 80
Klop, J.W. v,viii,l,5,12,19,20,23,44,51,80,87,

88,90,124,145,171,235,259,261,306
Knuth, D.E. 236
Kodate, H. 80
Kok, J.N. vii,235
Komoda, N. 80
Koomen, C.J. 12
Kossen, L. viii,89,127,145
Koymans, C.P.J. ix,44,90,125,171,236,240,259,261
Kranakis, E. 5,20,51
Kubo, T. 80
Kung, K.T. 89,125
Larsen, K.G. ix,44,240,259
Leeuwen, J. van 88,125,306
Lenstra, J.K. 20,44,80,124,171
Macnaghten, A.M. 235
Mauw, S. ix,53,240,259
McKeag, R.M. 235
Mead, C.A. 125
Meertens, L.G.L.T. 20,44,171
Meinke, K. 128
Milne, G.J. 91,125
Milner, R. ix,5,7,21,44,88,173,236,240,259
Mulder, J.C. ix,44,90,125,127,147,171,236,240,259,261
Mullender, SJ. ix,147,171
Nieuwland, E.R. ix,45
Nijman, AJ . viii,ix,236,259
Olderog, E.-R. 20,90,124,235,259
Ottmann, Th. ix,44,259
Paredaens, J. 87
Park, D.M.R. 21
Parrow, J. ix,44,236,306
Peterson, G.L. 47,51
Preparata, F.P. 143,145
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Rem, M.
Roever, W.-P. de
Roscoe, A.W.
Rozenberg, G.
Rutten, JJ.M.M.
Scantlebury, R.A.
Schoone, A.A.
Streicher, T.
Tanenbaum, A.S.
Thompson, C D .
Treleaven, P.C.
Tucker, J.V.
Vaandrager, F.W.
Veltink, GJ .
Vergamini, D.
Vidal-Naquet, G.
Vrancken, J.L.M.
Weijland, W.P.
Wiedijk, F.
Wilkinson, P.T.
Winskel, G.
Wirsing, M.
Yamanoi, K.
Zuck, L.D.
Zucker, J.I.
Zwiers, J.

ix,88,91,125
259

88,90,125
259

vii,235
44

306
44

44,306
127,143,145

viii,ix,236,259
88

vi,viii,ix,9,12,21,23,44,80,171,173,236,237,259,260,306
51
44

20,44,236,259
ix

viii,ix,89,127,145
80
44
88

19,20,44,80,124,235,236,259
80

viii,44
5,9,20

259
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Index of symbols and notation

+ 2
2

S 2
II 4
L 4
Y 5
I 5

(Jff O

ri(d) 6
«(</) 6
«'(</) 6
T/ '
T 7

O

a" 11
-•« 17
-»T 17
-»« 17
*• 19
G 19

$ 37
< 37
£ 9 81,112
cr(d) 81,112
Q 90
(= 90,276

11

tfj

»

| ^

A?
V
T
sat
tr
r

|A/|
!M!

153
175
175
176
176
176
176
192
240
241
243
242
243
243
245
274
274


