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Preface

Algebraic curves and surfaces are an old topic of geometric and algebraic
investigation. They have found applications for instance in ancient and mod-
ern architectural designs, in number theoretic problems, in models of bio-
logical shapes, in error-correcting codes, and in cryptographic algorithms.
Recently they have gained additional practical importance as central objects
in computer-aided geometric design. Modern airplanes, cars, and household
appliances would be unthinkable without the computational manipulation of
algebraic curves and surfaces. Algebraic curves and surfaces combine fasci-
nating mathematical beauty with challenging computational complexity and
wide spread practical applicability.

In this book we treat only algebraic curves, although many of the results
and methods can be and in fact have been generalized to surfaces. Being the
solution loci of algebraic, i.e., polynomial, equations in two variables, plane
algebraic curves are well suited for being investigated with symbolic computer
algebra methods. This is exactly the approach we take in our book. We apply
algorithms from computer algebra to the analysis, and manipulation of alge-
braic curves. To a large extent this amounts to being able to represent these
algebraic curves in different ways, such as implicitly by defining polynomi-
als, parametrically by rational functions, or locally parametrically by power
series expansions around a point. All these representations have their indi-
vidual advantages; an implicit representation lets us decide easily whether a
given point actually lies on a given curve, a parametric representation allows
us to generate points of a given curve over the desired coordinate fields, and
with the help of a power series expansion we can for instance overcome the
numerical problems of tracing a curve through a singularity.

The central problem in this book is the determination of rational para-
metrizability of a curve, and, in case it exists, the computation of a good
rational parametrization. This amounts to determining the genus of a curve,
i.e., its complete singularity structure, computing regular points of the curve
in small coordinate fields, and constructing linear systems of curves with
prescribed intersection multiplicities. Various optimality criteria for rational
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parametrizations of algebraic curves are discussed. We also point to some
applications of these techniques in computer aided geometric design. Many of
the symbolic algorithmic methods described in our book are implemented in
the program system CASA, which is based on the computer algebra system
Maple.

Our book is mainly intended for graduate students specializing in con-
structive algebraic curve geometry. We hope that researchers wanting to get a
quick overview of what can be done with algebraic curves in terms of symbolic
algebraic computation will also find this book helpful.

This book is the result of several years of research of the authors in the
topic, and in consequence some parts of it are based on previous research pub-
lished in journal papers, surveys, and conference proceedings (see [ReS97a],
[Sen02], [Sen04], [SeW91], [SeW97], [SeW99], [SeW01a], [SeW01b]).

We gratefully acknowledge support of our work on this book by FWF
(Austria) SFB F013/F1304, ÖAD (Austria) Acc.Int.Proj.Nr.20/2002, (Spain)
Acc. Int. HU2001-0002, (Spain) BMF 2002-04402-C02-01, and (Spain) MTM
2005-08690-C02-01.

Alcalá de Henares and Linz, J. Rafael Sendra
June 2007 Franz Winkler

Sonia Pérez-Dı́az
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1

Introduction and Motivation

Summary. In this first chapter, we informally introduce the notion of rational alge-
braic curves, and we motivate their use by means of some examples of applications.
These examples cover the intersection of curves in Section 1.1, the generation of
points on curves in Section 1.2, the solution of Diophantine equations in Section 1.3,
the solution of certain differential equations in Section 1.4, and applications in com-
puter aided geometric design in Section 1.5.

The theory of algebraic curves has a long and distinguished history, and
there is a huge number of excellent books on this topic. In our book we
concentrate on the computational aspects of algebraic curves, specially of
rational algebraic curves, and we will frequently refer to classical literature.
Moreover, our computational approach is not approximative but symbolic and
based on computer algebra methods. That means we are dealing with exact
mathematical descriptions of geometric objects and both the input and the
output of algorithms are exact.

Our book is mainly intended for graduate students specializing in con-
structive algebraic curve geometry, as well as for researchers wanting to get
a quick overview of what can be done with algebraic curves in terms of sym-
bolic algebraic computation. Throughout this book we only consider algebraic
curves. So, whenever we speak of a “curve” we mean an “algebraic curve.”

In this first chapter, we informally introduce the notion of rational al-
gebraic curves, and we motivate their use by means of some examples of
applications.

When speaking about algebraic curves one may distinguish between alge-
braic plane curves and algebraic space curves. Nevertheless, it is well known
(see for instance [Ful89], p. 155) that any space curve can be birationally pro-
jected onto a plane curve. This means that there exists a rationally invertible
projection (in fact, almost all projections have this property), that maps the
space curve onto a plane curve. Using such a projection and its inverse, which
can be computed by means of elimination theory techniques, one may reduce
the study of algebraic curves in arbitrary dimensional space to the study of
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plane algebraic curves. In fact, throughout this book we will consider plane
algebraic curves, i.e., solution loci of nonconstant bivariate polynomials with
coefficients in a field, say C. In general, we will not work specifically over the
complex numbers C, but rather over an arbitrary algebraically closed field of
characteristic zero.

Let us see an example of a birational projection of a space curve onto a
plane curve. We consider in C3 the space curve C3 (see Fig. 1.1), defined as
the intersection of the surfaces

g1(x, y, z) = y + z − z3, g2(x, y, z) = x + 1 − z2;

that is, C3 = {(x, y, z) ∈ C3 | g1(x, y, z) = g2(x, y, z) = 0}. We consider the
projection along the z-axis

πz : C3 −→ C2; (x, y, z) �→ (x, y).

πz(C3) is the plane curve C2 (see Fig. 1.1) defined by the polynomial

f(x, y) = x3 + x2 − y2

(in fact, in this case, f is the resultant of g1 and g2 w.r.t. z); i.e. C2 = {(x, y) ∈
C2 | f(x, y) = 0}. The restriction of the projection πz to the curve C3 is ratio-
nally invertible for all but finitely many points on C2. Indeed, the inverse is

π−1
z : C2 −→ C3; (x, y) �→

(
x, y,

y

x

)
.

Some algebraic plane curves can be represented parametrically by means of
rational functions. This means that a pair of rational functions χ1(t), χ2(t) ∈
C(t) generates all (except perhaps finitely many) points on the curve when the
parameter t takes values in C. This requirement is equivalent to the condition
f(χ1(t), χ2(t)) = 0, assuming that not both rational functions are constant
and that f(x, y) = 0 is the equation of the curve. Plane curves with this
property are called rational curves, and their study is the central topic of
this book. Only irreducible curves can be rational. The simplest example of
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a rational curve is a line; the line with equation ax + by + c = 0 can be
parametrized as (bt,−at − c/b) if b is nonzero, and as (−c/a, t) otherwise.
Similarly we see (cf. Sect. 4.6) that all irreducible conics (i.e., plane curves
defined by an irreducible polynomial in C[x, y] of degree 2) are rational. For
instance, the circle defined by x2 + y2 = 1 can be parametrized as(

2t

t2 + 1
,
t2 − 1
t2 + 1

)
.

Therefore all irreducible plane curves of degree 1 or 2 are rational. However,
curves of higher degree might or might not be rational. For instance, the
cubic curve defined by x3 +y3 = 1 cannot be parametrized (see Example 4.3),
while the cubic defined by y3 = x2 is parametrized as (t3, t2). A criterion
for rationality is the genus of the curve (see Chap. 3). Intuitively speaking,
the genus of an irreducible plane curve C of degree d measures the difference
between the maximum number of singularities that an arbitrary irreducible
curve of degree d may have and the actual number of singularities C has. For
curves of degree 3 the maximum number of singularities is 1. This explains
why the cubic defined by y3 − x2 = 0, having a double point at the origin, is
rational, whereas the cubic defined by x3 + y3 = 1, having no singularity, is
not rational (see Fig. 1.2). Of course, for determining the genus of a curve we
have to view it in projective space. Note that the cubic defined by y = x3 is
smooth in the affine plane but can be parametrized as (t, t3); it has a double
point at infinity.

In this book we are interested in rational curves, and more precisely in
the algorithmic treatment of this type of geometric objects. Once the basic
notions have been introduced in Chap. 2, we start the study of rational curves
with two different computational problems. The first one consists in deciding
algorithmically whether a given curve is rational or not, and the second one
deals with the question of actually computing rational parametrizations of
rational curves. A solution of the rationality problem by means of the genus
is described in Chap. 3. In Chap. 4 we give an algorithmic solution of the
parametrization problem.
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Obviously parametrizations of rational curves are not unique. Note that if
P(t) parametrizes a curve C, and R(t) is any nonconstant rational function,
then P(R(t)) also parametrizes C. Therefore it is natural to ask for optimal
parametrizations w.r.t. different criteria, such as the degree of the rational
functions or the type of coefficients involved in the parametrization. These
questions are analyzed in Chap. 5, assuming that the curve is given by its
implicit equation, and in Chap. 6, assuming that the curve is already given
by a parametrization.

From Chaps. 2–6, the theory is developed over algebraically closed fields
of characteristic zero. In Chap. 7, we see how these concepts, results, and
algorithms can be adapted to the case of real curves; i.e. to the case where
the reference field is the field of real numbers R.

So now that we have an idea what rational curves are and which problems
we might have to address when working with them, let us see what can be
done with rational curves. The natural question is: if one is given a curve
by means of its implicit equation, why do we need to generate a parametric
representation of the curve? Of course, for some of us the sheer pleasure of
developing the mathematical theory might be justification enough. But be-
yond this epistemological justification there are other good reasons for the
parametrization of a curve. There exist problems in mathematics and its ap-
plications where the parametric representation of a curve is much more useful
than its implicit representation; and vice versa.

In the following we briefly describe some mathematical problems where
the use of parametrizations is helpful. By these examples we intend to con-
vince the reader of the usefulness of rational curves. By no means do we claim
to present an exhaustive list of applications. Algebraic curves appear in an-
cient and modern architectural designs, in number theoretic problems (see
[PoV00] and [PoV02]), in biological shapes (see [BLM97]) in error-correcting
codes (see [Gop77], [Gop81], [Pre98]), and in cryptographic algorithms (see
[BSS99], [Buc01], [Kob98], [Kob02]). Moreover, recently they have gained ad-
ditional practical importance as central objects in computer aided geometric
design (see [Far93], [FHK02], [HoL93], [Sed98]): modern airplanes, cars, and
household appliances would be unthinkable without the computational manip-
ulation of algebraic curves and surfaces. Parametrizations also play a role in
line integration, plotting, node distribution in polynomial interpolation (see
[GMS02]), control theory (see [For92]), etc. The topic of rational algebraic
curves and surfaces is an active research area. Recent advances can be found,
for instance, in [Baj94], [CoS97b], [HSW97] and [ScS07]. We have chosen a
few examples of applications which we want to describe briefly.

1.1 Intersection of Curves

Let us assume that two curves C1 and C2 are defined implicitly by the poly-
nomials f1(x, y) and f2(x, y); i.e., Ci consists of the solutions of fi(x, y) = 0.
Also, let us assume that C1 and C2 do not have common components, i.e.



1.2 Generating Points on a Curve 5

gcd(f1, f2) = 1. In order to determine the intersection points, we compute the
roots of m(x) = resy(f1, f2), and for each root α of the resultant we compute
the roots, say {βi |i ∈ Iα}, of gcd(f1(α, y), f2(α, y)) (see Sect. 2.3). Finally the
(affine) intersection points are

{(α, βi) |m(α) = 0, i ∈ Iα}.

This approach is simple and it is not worthy to parametrize the curves in
order to solve the problem. However, if one of the curves is rational, and a
rational parametrization of it is available, the process can be simplified as
follows. Let P(t) be a parametrization of C2. Then we simply compute the
roots, say {α1, . . . , αs}, of the numerator of the rational function f2(P(t))
which are not roots of the denominators of the parametrization. What we get
are the (affine) intersection points

{P(αi) | i = 1, . . . , s}.

In this process the normality of the parametrization (see Sects. 6.3 and 7.3)
plays a role. If the parametrization is not normal then we should check whether
the critical point is an intersection point.

1.2 Generating Points on a Curve

We start with a typical simple example. Let us consider the problem of gener-
ating points on a plane curve C. If the curve is given implicitly by its defining
polynomial, say f(x, y), then we can generate points by intersecting C with
a line; i.e., by computing the roots of a univariate polynomial of the form
g(t) = f(at + b, ct + d). For each root α of g(t), the point (aα + b, cα + d)
is on the curve. In general, these points will have coordinates in an algebraic
extension field whose degree is the degree of C. However, if C is rational, and
we have a parametrization P(t), then by giving values to the parameter we
can easily generate points on the curve.

Moreover, let us now assume that the defining polynomial f(x, y) has
coefficients in a subfield of C, say for instance Q, and let us assume that the
curve is rational. We propose the problem of deciding the existence of points
on C with coordinates in Q. This question can be answered with the algorithms
described in Chap. 5. Furthermore, in Chap. 5, we prove that if there exists a
simple point on C with coordinates in Q, then the parametrization algorithm,
given in Sect. 5.3, generates a rational parametrization of C with coefficients
in Q, and therefore taking rational parameter values one may generate infinity
many points in C with coordinates in Q. In addition, in the above situation, one
may generate points of the curve with coordinates in any algebraic extension
Q(α) of Q. In a similar way, we can generate points over R. Note that these
problems are difficult to approach if one only works with the implicit equation
of the curve.
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On the other hand, if we need to decide whether a point (a, b) is on
the curve, we simply has to check whether f(a, b) is zero, while using a

parametrization P(t) =
(

χ1,1(t)
χ1,2(t)

,
χ2,1(t)
χ2,2(t)

)
one would have to check whether

gcd(χ1,2(t)a − χ1,1(t), χ2,2(t)b − χ2,1(t)) �= const,

where we assume that gcd(χi,1, χi,2) = 1.

1.3 Solving Diophantine Equations

Now, we show how parametrizations can be used to solve certain types of
Diophantine equations. For further details on this application we refer to
[PoV00], [PoV02].

We consider a polynomial f(x, y) ∈ Z[x, y] of total degree at least 3, such
that the curve C defined by f(x, y) is rational, and such that C has at least
three valuations at infinity (a necessary and sufficient condition for this last
requirement can be found in [PoV00]). In [PoV00], the authors present an
algorithmic method for the explicit determination of all integer solutions of
Diophantine equations of this type. This method is based on the construc-
tion of a rational parametrization with coefficients over Q of the curve C
(see Sect. 5.3 on how to find such a parametrization), and on the practical
solution of Thue equations (for solving Thue equations we refer to [TzW89]
and [BiH96]).

For simplicity in the explanation, we assume that (0 : 1 : 0) and (1 : 0 : 0)
are not points on the projective closure of C. First we decide whether C can be
parametrized over Q (see Chap. 5). If this is not the case, then the only integer
solutions are the integer singular points of the curve. Otherwise, applying the
algorithm in Sect. 5.3, we compute a rational proper parametrization of C over
Q in reduced form,

P(t) =
(

u(t)
w1(t)

,
v(t)
w2(t)

)
∈ Q(t).

Afterwards, we homogenize the rational functions of the parametrization, say

P∗(t, s) =
(

U(t, s)
W1(t, s)

,
V (t, s)
W2(t, s)

)
.

Now, because of our assumptions, either W1(t, s) or W2(t, s) have at least
three different factors (see [PoV00] for further details). Let us assume w.l.o.g.
that W1 satisfies this property. Then, we compute the resultant R1 =
rest(U(t, 1), W1(t, 1)), and the greatest common divisor, δ1, of the cofactors
of the first column of the Sylvester matrix of U(t, 1), W1(t, 1). A similar
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strategy is applied to U(1, s), W1(1, s) to get R2 and δ2. Next we determine
the integer solutions (t, s) with gcd(t, s) = 1 and t ≥ 0, of the Thue equations

W1(t, s) = k,

where k ∈ Z divides lcm(R1/δ1, R2/δ2). Let us say that S is the set of integer
solutions of these Thue equations. Then, the integer singular points of C and
the points in {P∗(t, s) | (t, s) ∈ S} ∩ Z2 are all the integer solutions of the
equation f(x, y) = 0.

Let us see an example of this procedure. In fact, this is Example 4.1. in
[PoV00]. Let n be a positive integer, and let Cn be the curve defined by the
polynomial

fn(x, y) = x3 − (n − 1)x2y − (n + 2)xy2 − y3 − 2ny(x + y).

Applying the algorithms in Chap. 3, we check that all the curves Cn are
rational (in fact, they are irreducible cubics with a double point at the origin).
Performing the parametrization algorithms in Chap. 4, we derive the following
parametrization of Cn:

Pn(t) =
(

2nt2 + 2nt

t3 − (n − 1)t2 − (n + 2)t − 1
,

2nt + 2n

t3 − (n − 1)t2 − (n + 2)t − 1

)
.

Now, we consider

U(n, t, s) = 2nt2s + 2nts2, V (n, t, s) = 2nts2 + 2ns3,

W (n, t, s) = t3 − (n − 1)t2s − (n + 2)ts2 − s3.

Note that in this example, W1 = W2 = W (n, t, s). Therefore,

P∗
n(t, s) =(

2nt2s + 2nts2

t3 − (n − 1)t2s − (n + 2)ts2 − s3
,

2nts2 + 2ns3

t3 − (n − 1)t2s − (n + 2)ts2 − s3

)
.

The resultant of U(n, t, 1), W (n, t, 1) is R1 = 8n3. The greatest common
divisor δ1 of the cofactors of the first column of the Sylvester matrix of
U(n, t, 1), W (n, t, 1) is 4n2. Thus, R1/δ1 = −2n. Reasoning similarly with
U(n, 1, s), W (n, 1, s) we get that R2/δ2 = −2n, and then lcm(R1/δ1,
R2/δ2) = 2n.

Finally, we compute the integer solutions (t, s), with gcd(t, s) = 1 and
t ≥ 0, of the Thue equations W (n, t, s) = k, where k divides 2n. By applying
Theorem 3 in [MPL96] we get that S =

{(1, 0), (0, 1), (1,−1), (1, 1), (1,−2), (2,−1), (1,−n−1), (n, 1), (n+1,−n)}.
Moreover,

{P∗
n(t, s) | (t, s) ∈ S} ∩ Z2 = {(0, 0) = P∗

n(1, 0), (0,−2n) = P∗
n(0, 1)}.

Since the only singularity of Cn is (0, 0), one deduces that the integer solutions
to fn(x, y) = 0 are (0, 0) and (0,−2n).
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1.4 Computing the General Solution
of First-Order Ordinary Differential Equations

Let us show how to deal with the problem of deciding the existence, and actual
computation, of rational general solutions of algebraic ordinary differential
equations (for further details on this application we refer to [FeG04]).

Let F (y, y′) be a first order irreducible differential polynomial with coeffi-
cients in Q. If

y =
anxn + · · · + a0

xm + bm−1xm−1 + · · · + b0

,

is a nontrivial solution of F (y, y′) = 0, where ai, bj ∈ Q, and an �= 0, then

ŷ =
an(x + c)n + · · · + a0

(x + c)m + bm−1(x + c)m−1 + · · · + b0

,

is a general solution of F (y, y′) = 0, where c is an arbitrary constant.
Therefore, the problem of finding a rational general solution is reduced

to the problem of finding a nontrivial rational solution. For this purpose,
we consider the polynomial F (y, y1) ∈ Q[y, y1]. This polynomial defines an
algebraic plane curve C. Now, if y = r(x) ∈ Q(t) is a nontrivial rational
solution of F (y, y′) = 0, then

P(x) = (r(x), r′(x)) ∈ Q(x)2

can be regarded as a rational parametrization of C. In fact, one can see that
P(x) is a proper parametrization of C (see Definition 4.12 for the notion of
properness). In [FeG04] it is shown that given a proper rational parametriza-
tion P(x) = (r(x), s(x)) ∈ Q(x)2 of C, the differential equation F (y, y′) has a
rational solution if and only if one of the following relations:

ar′(x) = s(x) or a(x − b)2r′(x) = s(x), (1.1)

is satisfied, where a, b ∈ Q, and a �= 0. Moreover, if one of the above relations
holds, replacing x by a(x+ c) or by (ab(x+ c)− 1)/(a(x+ c)), respectively, in
y(x) = r(x), one obtains a rational general solution of F (y, y′) = 0, where c is
an arbitrary constant. Using the results developed in Sect. 5.3, one may prove
that if F (y, y′) = 0 has a rational general solution, then the coefficients of the
rational general solution are in Q. For further developments of this problem
see [ACFG05].

Let us see an example of this procedure. We consider the differential equa-
tion

F (y, y′) = 229− 144y + 16y(y′)2 + 16y4 − 128y2 + 4y(y′)3 + 4y3 − 4y3(y′)2

−y2(y′)2 + 6(y′)2 + (y′)3 + (y′)4 = 0.
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The curve C associated to the differential equation is defined by the polynomial
F (y, y1) =

229−144y+16yy2
1 +16y4−128y2 +4yy3

1 +4y3−4y3y2
1 −y2y2

1 +6y2
1 +y3

1 +y4
1.

Applying the methods which will be developed in this book (see Chaps. 3–5),
we check that C is rational and we determine the parametrization

(r(x), s(x)) :=
(

x3 + x4 + 1
x2

,
x3 + 2x4 − 2

x

)
of C. Now, we see that

s

r′
= x2.

Therefore, the second condition in (1.1) is satisfied with a = 1, b = 0.
Substituting

ab(x + c) − 1
a(x + c)

=
−1

x + c
,

in r(x) we get the following rational general solution of the differential
equation:

ŷ =
−x − c + 1 + x4 + 4x3c + 6x2c2 + 4xc3 + c4

(x + c)2
.

1.5 Applications in CAGD

Computer-aided geometric design (cagd) is a natural environment for practi-
cal applications of algebraic curves and surfaces, and in particular of rational
curves and rational surfaces. The widely used Bézier curves and surfaces are
typical examples of rational curves and surfaces. Offsetting and blending of
such geometrical objects lead to interesting problems. The reader may find
explanations of these and other problems in the vast literature on CAGD,
e.g., [ASS97], [ASS99], [Far93], [FHK02], [FaN90a], [FaN90b], [Har01], [Hof93],
[HoL93], [Lü95], [PDS01], [PDS03], [PoW97], [SeS99], [SeS00].

Blending processes appear in the modeling of geometric objects. Usually,
one models the object as a collection of surfaces. But, in many cases, one
wants this collection to form a composite object whose surface is smooth. This
question leads to the blending problem. In fact, a blending surface is a surface
that provides a smooth transition between distinct geometric features of an
object. Consequently the bending construction basically deals with algebraic
surfaces. However, in addition to surfaces, we also encounter certain algebraic
curves, called clipping curves, which describe the borders of the geometric
features to be blended. When the problem is approached parametrically (see
for instance [Har01], [PDS01], [PDS03], [PoW97]), parametrizations of the
surfaces and of the clipping curves are required, and in particular polynomial
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Fig. 1.3. Generation of the offset to the parabola

parametrizations. For this purpose, the results and algorithms developed in
Sect. 6.2 can be applied.

The notion of an offset is directly related to the concept of an envelope.
More precisely, the offset curve, at distance d, to an irreducible plane curve C
is “essentially” the envelope of the system of circles centered at the points of
C with fixed radius d (see Fig. 1.3). Offsets arise in practical applications such
as tolerance analysis, geometric control, robot path-planning and numerical-
control machining problems. Typically we may think of describing the curve
that a cylindrical tool generates when it moves on a prescribed path.

Frequently offset processes are carried out with rational geometric objects,
in particular with rational plane curves. However, in order to guarantee the
computability of data structures and algorithms, rational parametrizations of
offset curves are required. The main difficulty is that in general the rationality
of the original curve is not preserved in the transition to the offset. For in-
stance, while the parabola, the ellipse, and the hyperbola are rational curves
(compare Fig. 1.4), the offset of a parabola is rational but the offset of an
ellipse or a hyperbola is not rational.

In order to overcome this difficulty one may use different techniques such as
Laguerre geometry (see [PeP98a], and [PeP98b]) or parametrization methods
(see [ASS97]). Based on some of the algorithms presented in this book, the
method described in [ASS97] solves this problem. Essentially, this method
works as follows. Let C be the original rational curve. Let

P(t) = (P1(t), P2(t))



1.5 Applications in CAGD 11

Fig. 1.4. Offset to the parabola (left), to the hyperbola (center), to the ellipse
(right)

be a proper rational parametrization of C. In practical applications C is as-
sumed to be real, and one wants to work with a real parametrization. However,
P(t) might have been produced by some previous process, as for instance an
intersection problem, in which case it may happen that the input parametriza-
tion is not real. In this situation, the real reparametrization algorithm pre-
sented in Sect. 7.2 can be applied. It also may occur that C is given by means
of its implicit equation, in which case the real parametrization algorithm in
Section 7.1 can be applied.

Once P(t) is provided, one computes the normal vector associated to the
parametrization P(t), namely

N (t) := (−P
′
2(t), P

′
1(t)).

Note that the offset at distance d basically consist of the points of the form

P(t) ± d√
P

′
1(t)2 + P

′
2(t)2

N (t).

Now one checks whether this parametrization satisfies the “rational Pyth-
agorean hodograph condition”, i.e. whether

P
′
1(t)

2 + P
′
2(t)

2,

written in reduced form, is the square of a rational function in t. If the con-
dition holds, then the offset to C has two components (see Chap. 2 for the
precise definition of the concept of curve component), and both components
are rational. In fact, these two components are parametrized as

P(t) +
d

m(t)
N (t), and P(t) − d

m(t)
N (t),

where m(t) = a(t)/b(t), assuming that P
′
1(t)

2 + P
′
2(t)

2 = a(t)2/b(t)2.
If the rational Pythagorean hodograph condition does not hold, then the

offset is irreducible. In this case, in order to analyze whether the offset is
rational, one associates to P(t) an auxiliary plane curve, namely the curve
defined by the primitive part w.r.t. x2 of the numerator of the rational function

x2
2P

′
1(x1) − P

′
1(x1) − 2x2P

′
2(x1),
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where one assumes that P
′
1(t) is not identically zero; note that if this is the

case then C is a line and the situation is trivial. Let us denote this auxiliary
curve as GP . This curve is constructed directly from P(t), it does not depend
on the distance, and is much simpler than the offset. The offset is rational
if and only if GP is rational (note that this can be check with the material
in Chap. 3). Moreover, if GP is rational, one may apply a parametrization
algorithm (see Chap. 4) to generate a parametrization of it, say

R(t) = (R1(t), R2(t)).

Then, if Q(t) := P(R(t)) and M(t) := (M1(t), M2(t)) is the normal vector
associated to Q(t), the rational function M1(t)2 + M2(t)2 can be written as
the square of a rational function A(t)/B(t), from where one deduces that the
offset is parametrized as

Q(t) ± dB(t)
A(t)

M(t).

The study of offsets is an active research area, and many other topics
related to algebraic plane curves such as genus, degree, singularities, intersec-
tions, implicitization, topology, etc., have been investigated for offset curves
(see for instance [ASS07], [AlS07], [ASS97], [ASS99], [FaN90a], [FaN90b],
[Hof93], [HSW97], [HoL93], [Lü95], [PeP98b], [PoW97], [Pot95], [SSeS05],
[SeS99], [SeS00]).

Let us see an example of the process described above. We consider as
initial curve the parabola of equation y = x2, and its proper parametrization
P(t) = (t, t2). The normal vector associated to P(t) is N (t) = (−2t, 1). Now,
we check the rational Pythagorean hodograph condition

P
′
1(t)

2 + P
′
2(t)

2 = 4t2 + 1,

and we observe that 4t2 +1 is not the square of a rational function. Therefore,
the offset to the parabola is irreducible. We still have to analyze whether the
offset is rational. For this purpose, we consider the auxiliary curve GP whose
implicit equation is

x2
2 − 1 − 4x2x1.

We observe that GP is rational, and therefore the offset is rational. Moreover,
a parametrization of GP is

R =
(

t2 − 1
4t

, t

)
.

Therefore, the reparametrization Q(t) is

Q(t) := P
(

t2 − 1
4t

)
,
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and applying the formula one gets that the offset to the parabola, at a generic
distance d, can be parametrized as(

(t2 + 1 − 4dt)(t2 − 1)
4t (t2 + 1)

,
t6 − t4 − t2 + 1 + 32dt3

16t2 (t2 + 1)

)
.

The implicit equation of the offset to the parabola is

−y2 + 32x2d2y2 − 8x2yd2 + d2 + 20x2d2 − 32x2y2 + 8d2y2 + 2yx2 − 8yd2

+ 48x4d2 − 16x4y2 − 48x2d4 + 40x4y + 32x2y3 − 16d4y2 − 32d4y

+ 32d2y3 − x4 + 8d4 + 8y3 − 16x6 + 16d6 − 16y4 = 0.

Of course, one might also first compute the implicit equation of the off-
set, and then apply directly the genus and parametrization algorithms in the
book. Why would not this approach be preferable to the one described above?
The answer is clear: first one has to apply elimination techniques for implici-
tizing, and this might be very time consuming. Second, in general the newly
constructed offset curve is much more complicated, and its implicit equation
has parametric coefficients in the distance d. However, with the approach we
have described above, instead of treating the offset directly, we read the in-
formation from the original curve and an auxiliary curve much simpler than
the offset. In our example, this should be obvious from a comparison of the
equation defining GP and the equation of the offset for the parabola.



2

Plane Algebraic Curves

In this chapter we introduce some basic notions on plane algebraic curves, we
derive some fundamental properties of algebraic curves, and we outline the
general working environment of the book. This chapter consists of five sections.
In Sect. 2.1, we present the basic notions on curves distinguishing between
affine and projective curves. Section 2.2 is devoted to polynomial and rational
functions. The material of this section is presented for the more general case
of varieties (i.e., irreducible algebraic sets), and will play an important role in
subsequent sections. In Sect. 2.3 we focus again on the case of plane curves.
The study of the intersection of curves leads to the notion of multiplicity
of intersection and to Bézout’s theorem. Section 2.4 is devoted to the study
of linear systems of curves. We will see in the following chapters that this
notion is crucial for solving the problem of parametrizing a rational curve.
The chapter ends with Sect. 2.5 where we show how to locally parametrize a
curve around a point of the curve by means of Puiseux series. In addition,
based on this fact, we introduce the notion of a place of a curve.

Throughout this chapter let K be an algebraically closed field of char-
acteristic zero, and as usual let the affine plane A2(K) be embedded into
the projective plane P2(K) by identifying the point (a, b) ∈ A2(K) with the
point (a : b : 1) ∈ P2(K). Also throughout this book, we assume that the
set of natural numbers N contains 0. Some important algebraic and geometric
prerequisites are collected in Appendix B.

2.1 Basic Notions

In this section we introduce the basic notions and results on algebraic plane
curves. We first deal with affine plane curves, and afterwards projective plane
curves are considered.
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2.1.1 Affine Plane Curves

An affine plane algebraic curve C over K is a hypersurface in A2(K). Thus,
it is an affine algebraic set defined by a nonconstant polynomial f in K[x, y].
The squarefree part of f defines the same curve C, so we might as well require
the defining polynomial to be squarefree.

Definition 2.1. An affine plane algebraic curve over K is defined as the set

C = {(a, b) ∈ A2(K) | f(a, b) = 0}

for a nonconstant squarefree polynomial f(x, y) ∈ K[x, y].
We call f the defining polynomial of C (of course, a polynomial g = c f ,

for some nonzero c ∈ K, defines the same curve, so f is unique only up to
multiplication by nonzero constants).

We will write f as

f(x, y) = fd(x, y) + fd−1(x, y) + · · · + f0(x, y),

where fk(x, y) is a homogeneous polynomial (form) of degree k, and fd(x, y)
is nonzero. The polynomials fk are called the homogeneous components of f ,
and d is called the degree of C, denoted by deg(C). Curves of degree 1 are
called lines, of degree 2 conics, of degree 3 cubics, etc.

If f =
∏n

i=1 fi, where fi are the irreducible factors of f , we say that the
affine curve defined by each polynomial fi is a component of C. Furthermore,
the curve C is said to be irreducible if its defining polynomial is irreducible.

Throughout this book we only consider algebraic curves. So, whenever we
speak of a “curve” we mean an “algebraic curve.”

Sometimes in subsequent chapters we will need to consider curves with
multiple components. This means that the given definition has to be extended
to arbitrary polynomials f =

∏n
i=1 fei

i , where fi are the irreducible factors
of f , and ei ∈ N are their multiplicities. In this situation, the curve defined
by f is the curve defined by its squarefree part, but the component generated
by fi carries multiplicity ei. Whenever we will use this generalization we will
always explicitly say so.

Definition 2.2. Let C be an affine plane curve over K defined by f(x, y) ∈
K[x, y], and let P = (a, b) ∈ C. We say that P is of multiplicity r on C if and
only if all the derivatives of f up to and including the (r−1)th vanish at P but
at least one rth derivative does not vanish at P . We denote the multiplicity
of P on C by multP (C).

P is called a simple point on C iff multP (C) = 1. If multP (C) = r > 1, then
we say that P is a multiple or singular point (or singularity) of multiplicity
r on C or an r-fold point; if r = 2, then P is called a double point, if r = 3
a triple point, etc. We say that a curve is nonsingular if it has no singular
points.
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Clearly P �∈ C if and only if multP (C) = 0. If C is a line, then for every
P ∈ C we have multP (C) = 1; i.e., C is nonsingular. The case of conics is
investigated in Exercise 2.3. Furthermore, for every point P ∈ C we have
1 ≤ multP (C) ≤ deg(C).

The singularities of the curve C defined by f are the points of the affine
algebraic set V (f, ∂f

∂x , ∂f
∂y ). Later we will see that this set is 0-dimensional, i.e.,

every curve has only finitely many singularities.
We leave the proofs of the following two theorems as exercises.

Theorem 2.3. Let the curve C be defined by f , P ∈ C, and T an invertible
linear mapping on A2(K) (i.e. a linear change of coordinates) s.t. T (P̃ ) = P .
Let C̃ be defined by f̃ = f ◦ T . Then the multiplicity of P on C is the same as
the multiplicity of P̃ on C̃.

So the notion of multiplicity is invariant under linear changes of coordi-
nates, cf. Definition 2.28.

Theorem 2.4. Let C be an affine plane curve defined by f(x, y). The mul-
tiplicity of C at the origin of A2(K) is the minimum of the degrees of the
nonzero homogeneous components of f .

Hence, taking into account Theorem 2.3, the multiplicity of P can also
be determined by moving P to the origin by means of a linear change of
coordinates and applying Theorem 2.4.

Let P = (a, b) ∈ A2(K) be an r-fold point (r ≥ 1) on the curve C defined
by the polynomial f . Then the first nonvanishing component in the Taylor
expansion of f at P is

Tr(x, y) =
r∑

i=0

(r
i )

∂rf

∂xi∂yr−i
(P )(x − a)i(y − b)r−i.

By a linear change of coordinates which moves P to the origin the polynomial
Tr is transformed to a homogeneous bivariate polynomial of degree r. Hence,
since the number of factors of a polynomial is invariant under linear changes
of coordinates, we get that all irreducible factors of Tr are linear. They are
the tangents to the curve at P .

Definition 2.5. Let C be an affine plane curve with defining polynomial
f(x, y), and P = (a, b) ∈ A2(K) such that multP (C) = r ≥ 1. Then the
tangents to C at P are the irreducible factors of the polynomial

r∑
i=0

(r
i )

∂rf

∂xi∂yr−i
(P )(x − a)i(y − b)r−i

and the multiplicity of a tangent is the multiplicity of the corresponding factor.
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For analyzing a singular point P on a curve C we need to know its multi-
plicity but also the multiplicities of the tangents at P . If all the r tangents at
the r-fold point P are different, then this singularity is of well-behaved type.
For instance, when we trace the curve through P we can simply follow the
tangent and then approximate back onto the curve. This is not possible any
more when some of the tangents are the same.

Definition 2.6. A singular point P of multiplicity r on an affine plane curve
C is called ordinary iff the r tangents to C at P are distinct, and nonordinary
otherwise. We also say that the character of P is either ordinary of nonordi-
nary.

Theorem 2.7. Let the curve C be defined by f , P ∈ C, and T an invertible
linear mapping on A2(K) (i.e., a linear change of coordinates) s.t. T (P̃ ) = P .
Let C̃ be defined by f̃ = f ◦T . Then T defines a 1–1 correspondence, preserving
multiplicities, between the tangents to C at P and the tangents to C̃ at P̃ .

We leave the proof of this theorem as an exercise.

Corollary 2.8. The character of a singular point is invariant under linear
changes of coordinates.

Lemma 2.9. Let C be an affine plane curve defined by the squarefree poly-
nomial f =

∏n
i=1 fi, where all the factors fi are irreducible. Let Ci be the

component of C defined by fi. Let P be a point in A2(K). Then the following
hold:

(1) multP (C) =
∑n

i=1 multP (Ci).
(2) If L is a tangent to Ci at P with multiplicity si, then L is a tangent to C

at P with multiplicity
∑n

i=1 si.

Proof. (1) By Theorem 2.3 we may assume that P is the origin. Let

fi(x, y) =
ni∑

j=ri

gi,j(x, y) for i = 1, . . . , n,

where ni is the degree of Ci, ri = multP (Ci), and gi,j is the homogeneous
component of fi of degree j. Then the lowest degree homogeneous component
of f is

∏n
i=1 gi,ri . Hence, (1) follows from Lemma 2.4 (2).

(2) follows directly from Theorem 2.7 and from the expression of the lowest
degree homogeneous component of f deduced in the proof of statement (1).

	


Theorem 2.10. An affine plane curve has only finitely many singular points.

Proof. Let C be an affine plane curve with defining polynomial f , let f =
f1 · · · fr be the irreducible factorization of f , and let Ci be the component
generated by fi (note that f is squarefree, so the fi’s are pairwise relatively
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prime). From Lemma 2.9, we deduce that the singular points of C are the
singular points of each component Ci and the intersection points of all pairs
of components (i.e., the points in the affine algebraic sets V (fi, fj), i �= j).
Hence the set W of singular points of C is

W = V

(
f,

∂f

∂x
,
∂f

∂y

)
=

r⋃
i=1

V

(
fi,

∂fi

∂x
,
∂fi

∂y

)
∪
⋃
i�=j

V (fi, fj).

Now, observe that gcd(fi, fj) = 1 for i �= j and gcd(fi,
∂fi

∂x , ∂fi

∂y ) = 1. Therefore
(compare Appendix B), we conclude that W is finite. 	


2.1.2 Projective Plane Curves

A projective plane curve is a hypersurface in the projective plane.

Definition 2.11. A projective plane algebraic curve over K is defined as the
set

C = {(a : b : c) ∈ P2(K) | F (a, b, c) = 0}
for a nonconstant squarefree homogeneous polynomial F (x, y, z) ∈ K[x, y, z].

We call F the defining polynomial of C (of course, a polynomial G = c F ,
for some nonzero c ∈ K defines the same curve, so F is unique only up to
multiplication by nonzero constants).

The notions of degree, component, and irreducibility (defined in Defini-
tion 2.1 for affine curves) can be adapted for projective curves in an obvious
way. Also, as in the case of affine curves, we sometimes need to refer to multiple
components of a projective plane curve. We introduce this notion by extend-
ing the concept of curve to arbitrary forms. We will also always explicitly
indicate when we make use of this generalization.

The natural embedding of A2(K) into P2(K) induces a natural correspon-
dence between affine and projective curves.

Definition 2.12. The projective plane curve C∗ corresponding to an affine
plane curve C over K is the projective closure of C in P2(K).

If the affine curve C is defined by the polynomial f(x, y), then (compare
Appendix B) we immediately get that the corresponding projective curve C∗

is defined by the homogenization F (x, y, z) of f(x, y). Therefore, if

f(x, y) = fd(x, y) + fd−1(x, y) + · · · + f0(x, y)

is the decomposition of f into forms, then

F (x, y, z) = fd(x, y) + fd−1(x, y)z + · · · + f0(x, y)zd,
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and
C∗ = {(a : b : c) ∈ P2(K) | F (a, b, c) = 0}.

Every point (a, b) on C corresponds to a point on (a : b : 1) on C∗, and every
additional point on C∗ is a point at infinity. In other words, the first two
coordinates of the additional points are the nontrivial solutions of fd(x, y),
the third coordinate being 0. Thus, the curve C∗ has only finitely many points
at infinity. Of course, a projective curve, not associated to an affine curve,
could have z = 0 as a component and therefore have infinitely many points
at infinity.

On the other hand, associated to every projective curve there are infinitely
many affine curves. We may take any line in P2(K) as the line at infinity, by
a linear change of coordinates move it to z = 0, and then dehomogenize. But
in practice we mostly use dehomogenizations provided by taking the axes as
lines at infinity. More precisely, if C is the projective curve defined by the
form F (x, y, z), we denote by C∗,z the affine plane curve defined by F (x, y, 1).
Similarly, we consider C∗,y, and C∗,x.

So, any point P on a projective curve C corresponds to a point on a suitable
affine version of C. The notions of multiplicity of a point and tangents at a
point are local properties. So for determining the multiplicity of P at C and the
tangents to C at P we choose a suitable affine plane (by dehomogenizing w.r.t.
one of the projective variables) containing P , determine the multiplicity and
tangents there, and afterwards homogenize the tangents to move them back
to the projective plane. This process does not depend on the particular deho-
mogenizing variable (compare, for instance, [Ful89], Chap. 5). For the case of
simple points one has the following explicit expression for the tangent line.

Theorem 2.13. Let P be a simple point of the projective plane curve C of
defining polynomial F (x, y, z). Then

x
F

∂x
(P ) + y

F

∂y
(P ) + z

F

∂z
(P )

is the defining polynomial of the tangent to C at P .

Proof. We may assume w.l.o.g. that P = (a : b : 1). The tangent line to C�,z

at (a, b) is given by

(x − a)
f

∂x
(a, b) + (y − b)

f

∂y
(a, b),

where f(x, y) = F (x, y, 1). Therefore, the tangent to C at P is given by

(x − az)
F

∂x
(P ) + (y − bz)

F

∂y
(P ).

Now, the result follows applying Euler’s formula to F at P (see Appendix B),
i.e.,

0 = a
F

∂x
(P ) + b

F

∂y
(P ) + 1

F

∂z
(P ). 	




2.1 Basic Notions 21

Projective singularities can be characterized as follows.

Theorem 2.14. P ∈ P2(K) is a singularity of the projective plane curve
C defined by the homogeneous polynomial F (x, y, z) if and only if ∂F

∂x (P ) =
∂F
∂y (P ) = ∂F

∂z (P ) = 0.

Proof. Let d = deg(F ). We may assume w.l.o.g. that P is not on the line at
infinity z = 0, i.e., P = (a : b : 1). Let C∗,z be the affine curve defined by
f(x, y) = F (x, y, 1) and let P∗ = (a, b) be the image of P in this affine version
of the plane. P is a singular point of C if and only if P∗ is a singular point of
C∗,z, i.e. if and only if

f(P∗) =
∂f

∂x
(P∗) =

∂f

∂y
(P∗) = 0.

But
∂f

∂x
(P∗) =

∂F

∂x
(P ),

∂f

∂y
(P∗) =

∂F

∂y
(P ).

Furthermore, by Euler’s Formula for homogeneous polynomials we have

x · ∂F

∂x
(P ) + y · ∂F

∂y
(P ) + z · ∂F

∂z
(P ) = d · F (P ).

The theorem now follows at once. 	


By an inductive argument this theorem can be extended to higher multi-
plicities. We leave the proof as an exercise.

Theorem 2.15. P ∈ P2(K) is a point of multiplicity at least r on the projec-
tive plane curve C defined by the homogeneous polynomial F (x, y, z) of degree
d (where r ≤ d) if and only if all the (r − 1)th partial derivatives of F vanish
at P .

We finish this section with an example where all these notions are illus-
trated.

Example 2.16. Let C be the projective plane curve over C defined by the
homogeneous polynomial

F (x, y, z) = x2 y3 z4 − y6 z3 − 4 x2 y4 z3 − 4 x4 y2 z3 + 3 y7 z2 + 10 x2 y5 z2

+ 9 x4 y3 z2 + 5 x6 y z2 − 3 y8 z − 9 x2 y6 z − 11 x4 y4 z − 7 x6 y2 z

− 2 x8 z + y9 + 2 x2 y7 + 3 x4 y5 + 4 x6 y3 + 2 x8 y .

The degree of the curve is 9. In Fig. 2.1 the real part of C�,z is plotted.
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Fig. 2.1. Real part of C�,z

First, we compute the finitely many points at infinity of the curve. We
observe that

F (x, y, 0) = y(2x4 + y4)(y2 + x2)2

does not vanish identically, so the line z = 0 is not a component of C. In fact,
the points at infinity are (1 : 0 : 0), (1 : α : 0) for α4 + 2 = 0, and the cyclic
points (1 : ±i : 0). Hence, the line at infinity intersects C at seven points
(compare to Bézout’s Theorem, see Theorem 2.48).

Now, we proceed to determine and analyze the singularities. We apply
Theorem 2.14. Solving the system{

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂z
= 0
}

we find that the singular points of C are

(1 : ±i : 0), (0 : 0 : 1),
(
± 1

3
√

2
:

1
3

: 1
)

,

(
± 1

2
:

1
2

: 1
)

, (0 : 1 : 1), and (±1 : α : 1),

where α3 + α − 1 = 0. So C has 14 singular points.
Now we compute the multiplicity of and the tangents to each singular

point. For this purpose, we determine the first nonvanishing term in the
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Table 2.1. Singular points of C

Point Tangents Multiplicity

P+
1 (2y − z − 2ix)(2y + z − 2ix) 2

P−
1 (2y + z + 2ix)(2y − z + 2ix) 2

P2 y3x2 5

P+
3 (8x +

√
2z − 7

√
2y)(28x − 5

√
2z +

√
2y) 2

P−
3 (8x −√

2z + 7
√

2y)(28x + 5
√

2z −√
2y) 2

P+
4 (2x − z)(2x − 4y + z) 2

P−
4 (2x + z)(2x + 4y − z) 2

P5 (y − z)(3x2 + 2yz − y2 − z2) 3

P+
α ((1 + 1

2
α + 1

2
α2)z + x + (− 5

2
− 1

2
α − 2α2)y)

((− 35
146

− 23
73

α + 1
73

α2)z + x + (− 65
146

− 1
73

α − 111
146

α2)y) 2

P−
α ((−1 − 1

2
α − 1

2
α2)z + x + ( 5

2
+ 1

2
α + 2α2)y)

(( 35
146

+ 23
73

α − 1
73

α2)z + x + ( 65
146

+ 1
73

α + 111
146

α2)y) 2

corresponding Taylor expansion. The result of this computation is shown in
Table 2.1. In this table we denote the singularities of C as follows:

P±
1 := (1 : ±i : 0), P2 := (0 : 0 : 1), P±

3 :=
(
± 1

3
√

2
:

1
3

: 1
)

,

P±
4 :=

(
±1

2
:

1
2

: 1
)

, P5 := (0 : 1 : 1), P±
α := (±1 : α : 1)
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All these singular points are ordinary, except the affine origin P2. Factoring
F over C we get

F (x, y, z) = (x2 + y2 − yz)(y3 + yx2 − zx2)(y4 − 2y3z + y2z2 − 3yzx2 + 2x4).

Therefore, C decomposes into a union of a conic, a cubic, and a quartic
(see Fig. 2.1). Furthermore, P2 is a double point on the quartic, a double point
on the cubic, and a simple point on the conic. Thus, applying Lemma 2.9(1),
the multiplicity of C at the point P2 is 5. P5 is a double point on the quartic
and a simple point on the conic. Hence, the multiplicity of C at P5 is 3. P±

4 are
simple points on the conic and the cubic. P±

3 are simple points on the quartic
and the cubic. Similarly, the points P±

α are also simple points on the quartic
and the cubic (two of them are real, and four of them complex). Finally, the
cyclic points are simple points on the cubic and the conic. Hence, the singular
points P±

1 , P±
3 , P±

4 , P±
α , are double points on C.

2.2 Polynomial and Rational Functions

In this section, we do not just consider algebraic curves, but general varieties,
i.e., irreducible algebraic sets in An(K), for a fixed n (see Appendix B). This
section is devoted to the study of some notations and concepts which are
important in subsequent chapters. These results allow to establish the bridge
from curves to rational function fields. The reader may skip this section now
and return to it when necessary.

All the rings and fields in this section will contain K as a subring. A hom-
omorphism of such rings, ϕ : R −→ S, will always be a ring homomorphism
which leaves K fixed.

2.2.1 Coordinate Rings and Polynomial Functions

We consider a variety V in An(K). Note that I(V ), the ideal of all polynomials
in K[x1, . . . , xn] vanishing on V , is a prime ideal.

Definition 2.17. Let V ⊆ An(K) be a variety and I(V ) its ideal. The integral
domain

Γ (V ) = K[x1, . . . , xn]/I(V )

is called the coordinate ring of V . So the elements of Γ (V ) are of the form
[g]I(V ), i.e., equivalence classes modulo I(V ).

Let J (V, K) be the set of all functions from V to K. The set J (V, K)
becomes a ring if we define

(f + g)(x) = f(x) + g(x), (f · g)(x) = f(x) · g(x),

for all f, g ∈ J (V, K), x ∈ V . The natural homomorphism from K into
J (V, K), which maps a λ ∈ K to the constant function x �→ λ, makes K a
subring of J (V, K).
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Definition 2.18. Let V ⊆ An(K) be a variety. A function ϕ ∈ J (V, K)
is called a polynomial function on V , iff there exists a polynomial f ∈
K[x1, . . . , xn] with

ϕ(a1, . . . , an) = f(a1, . . . , an)

for all (a1, . . . , an) ∈ V . In this case we say that f represents the function ϕ.

The polynomial functions on a variety V form a subring of J (V, K) con-
taining K (via the natural homomorphism). Two polynomials f, g represent
the same function if and only if (f −g)(P ) = 0 for all P ∈ V , i.e. f −g ∈ I(V ).
So we can identify the polynomial functions on V with the elements of the
coordinate ring Γ (V ).

There is an effective method for computing in Γ (V ), the coordinate ring
of variety V , based on Gröbner bases. Compare Appendix B for the definition
and some basic facts about Gröbner bases. Let G be a Gröbner basis for the
prime ideal I(V ). Then

Γ (V ) � NG = { f ∈ K[x1, . . . , xn] | f is in normal form w.r.t. G }.
So, if we have a Gröbner basis G for I(V ) w.r.t. any term ordering, then the ir-
reducible terms w.r.t. G are representatives of the elements of Γ (V ). Addition
in Γ (V ) = NG is simply addition of the representatives, for multiplication we
multiply the representatives and then reduce modulo the Gröbner basis G. If
V is a hypersurface, then the ideal I(V ) is principal, and the defining poly-
nomial of V is a Gröbner basis for I(V ). Hence, arithmetic in the coordinate
ring Γ (V ) can be carried out by means of remainders.

Example 2.19. (a) If V = An(K), then I(V ) = 〈0〉 and Γ (V ) = K[x1, . . . , xn].
(b) Let V ⊆ An(K) be a variety. Then V is a single point if and only if

Γ (V ) = K.
(c) Let the hyperbola H be defined by xy − 1 in A2(C). So

Γ (H) = { f(x) + g(y) | f ∈ C[x], g ∈ C[y] }.
(d) Let C be the circle in the space A3(C) created by the intersection of the

two spheres

x2 + y2 + z2 − 9 and (x − 1)2 + (y − 1)2 + (z − 1)2 − 9.

A Gröbner basis for I(C) (w.r.t. to the lexicographic term ordering with
x > y > z) is

G = {2x + 2y + 2z − 3, 8y2 + 8yz − 12y + 8z2 − 12z − 27}.
So

f = yz + z2 + 1, g = y + z − 1

are two elements of Γ (C) in reduced form modulo G. We get the repre-
sentation of the product modulo G as

f · g = yz2 +
1
2
yz + y +

1
2
z2 +

35
8

z − 1.
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There is a 1–1 correspondence between ideals in Γ (V ) and superideals of
I(V ) in K[x1, . . . , xn]; i.e., ideals of K[x1, . . . , xn] containing I(V ) (compare,
for instance, Proposition 10 of Chap. 5, pp.223, in [CLO97]). Therefore, the
following statement follows from the Noetherianity of K[x1, . . . , xn].

Theorem 2.20. Let V be a variety. Then Γ (V ) is a Noetherian ring.

We do not introduce coordinate rings of projective varieties here. The
interested reader is refereed to [Ful89].

2.2.2 Polynomial Mappings

Definition 2.21. Let V ⊆ An(K), W ⊆ Am(K) be varieties. A function
ϕ : V → W is called a polynomial or regular mapping iff there are polyno-
mials f1, . . . , fm ∈ K[x1, . . . , xn] such that ϕ(P ) = (f1(P ), . . . , fm(P )) for all
P ∈ V .

Theorem 2.22. Let V ⊆ An(K), W ⊆ Am(K) be varieties. There is a natural
1–1 correspondence between the polynomial mappings ϕ : V → W and the
homomorphisms ϕ̃ : Γ (W ) → Γ (V ).

Proof. Let ϕ : V → W be regular. With ϕ we associate the homomorphism

ϕ̃ : Γ (W ) → Γ (V )
f �→ f ◦ ϕ .

The map ˜ : ϕ → ϕ̃ is 1-1 and onto. Cf. [Ful89], Chap.II.2, for details. 	


Definition 2.23. A regular mapping ϕ : V → W is a regular isomorphism iff
there is a regular mapping ψ : W → V , such that

ϕ ◦ ψ = idW and ψ ◦ ϕ = idV .

In this case the varieties V and W are regularly isomorphic (via ϕ, ψ).

Theorem 2.24. V and W are regularly isomorphic via ϕ if and only if ϕ̃ :
Γ (W ) → Γ (V ) is an isomorphism of K-algebras.

Proof. By Theorem 2.22 ϕ̃ is a homomorphism. Let ψ : W → V be such that
ϕ ◦ ψ = idW , ψ ◦ ϕ = idV . Then, ψ̃ is a homomorphism from Γ (V ) to Γ (W ).
ϕ̃ ◦ ψ̃ : Γ (V ) → Γ (V ) is the identity on Γ (V ), since

ϕ̃ ◦ ψ̃(f) = ϕ̃(f ◦ ψ) = f ◦ ψ ◦ ϕ = f.

Analogously we get that ψ̃ ◦ ϕ̃ = idΓ (W ). Thus, ϕ̃ is an isomorphism.
Conversely, if λ̃ is an isomorphism from Γ (W ) to Γ (V ), then the corre-

sponding λ is an isomorphism from V to W . 	
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Example 2.25. (a) Let the (generalized) parabola V ⊂ A2(C) be defined by
y − xk. V and A1(C) are isomorphic via

ϕ : V → A1(C) , ψ : A1(C) → V
(x, y) �→ x t �→ (t, tk) .

(b) The projection ϕ(x, y) = x of the hyperbola xy − 1 to the x-axis (A1(C))
is not an isomorphism. There is no point (x, y) on the hyperbola such that
ϕ(x, y) = 0.

(c) Let V ⊂ A2(C) be defined by y2−x3. Then Γ (V ) ∼= {p(x)+q(x)y|p, q ∈
C[x]}. The mapping ϕ : t �→ (t2, t3) from A1(C) to V is 1–1, but not an
isomorphism. Otherwise, we would have that ϕ̃ : Γ (V ) → Γ (A1(C)) = C[t]
is an isomorphism. But for arbitrary p, q ∈ C[x] we have ϕ̃(p(x) + q(x)y) =
p(t2) + q(t2)t3 �= t.

Theorem 2.26. Let V ⊆ An(K), W ⊆ Am(K) be varieties. Let ϕ : V → W
be a surjective regular mapping, X an algebraic subset of W .

(a) ϕ−1(X) is an algebraic subset of V .
(b) If ϕ−1(X) is irreducible, then also X is irreducible.

Proof. (a) Let ϕ = (ϕ1, . . . , ϕm), f1 = · · · = fr = 0 be the defining equations
for X , and gi = fi(ϕ1, . . . , ϕm) ∈ K[x1, . . . , xn] for 1 ≤ i ≤ r. Let P =
(a1, . . . , an) be an arbitrary point in V . Then

P ∈ ϕ−1(X) ⇐⇒ ϕ(P ) ∈ X ⇐⇒ g1(P ) = · · · = gr(P ) = 0.

(b) If X = X1∪X2, then ϕ−1(X) = ϕ−1(X1)∪ϕ−1(X2). If X1 �⊂ X2 then
ϕ−1(X1) �⊂ ϕ−1(X2). So if X is reducible, then so is ϕ−1(X). 	


Example 2.27. We show that V = V (y − x2, z − x3) ⊂ A3(C) is a variety. The
regular mapping

ϕ : A1(C) → V
t �→ (t, t2, t3)

is surjective and ϕ−1(V ) = A1(C) is irreducible. So by Theorem 2.26 also V
is irreducible.

There are some kinds of very frequently used and important regular map-
pings. One such kind of mappings are the projections

pr : An(K) → Ar(K)
(a1, . . . , an) �→ (a1, . . . , ar),

for n ≥ r.
Let V ⊆ An(K) be a variety, f ∈ Γ (V ). Let

G(f) = {(a1, . . . , an+1) | (a1, . . . , an) ∈ V, an+1 = f(a1, . . . , an)} ⊆ An+1(K)
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be the graph of f . G(f) is an affine variety, and

ϕ : V → G(f)
(a1, . . . , an) �→ (a1, . . . , an, f(a1, . . . , an))

is an isomorphism between V and G(f). The projection from An+1(K) to
An(K) is the inverse of ϕ.

Another important kind of regular mappings are changes of coordinates.

Definition 2.28. An affine change of coordinates in An(K) is a bijective lin-
ear polynomial mapping, i.e. a bijective mapping of the form

T : An(K) → An(K)
(a1, . . . , an) �→ (T1(a1, . . . , an), . . . , Tn(a1, . . . , an)),

where deg(Ti) = 1 for 1 ≤ i ≤ n. A projective change of coordinates in Pn is
a bijective linear mapping of the form

T : Pn(K) → Pn(K)
(a1 : . . . : an+1) �→ (T1(a1 : . . . : an+1) : . . . : Tn(a1 : . . . : an+1)),

where Ti is a linear form for 1 ≤ i ≤ n.

Using column notation for the coordinates of points, every linear polyno-
mial mapping from An(K) into itself can be written as

T (x) = A · x + b

for some matrix A and vector b. T is an affine change of coordinates, if and
only if A is an invertible matrix.

Affine geometry is the geometry of properties which are invariant under
affine changes of coordinates, whereas in projective geometry the properties
are invariant under projective changes of coordinates.

2.2.3 Rational Functions and Local Rings

The coordinate ring Γ (V ) of a variety V ⊆ An(K) is an integral domain. So
it can be embedded into its quotient field.

Definition 2.29. The field of rational functions K(V ) on a variety V ⊆
An(K) is the quotient field of Γ (V ). So

K(V ) �
{

f

g
| f, g ∈ K[x1, . . . , xn], g �∈ I(V )

}
/ ∼ ,

where
f

g
∼ f ′

g′
⇐⇒ fg′ − f ′g ∈ I(V ).
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Definition 2.30. A rational function ϕ ∈ K(V ) is defined or regular at P ∈
V iff ϕ can be written as ϕ = f/g with g(P ) �= 0. In this case f(P )/g(P ) is
the value of ϕ at P . The set of points in V at which a rational function ϕ is
defined is called the domain of definition of ϕ. A point P ∈ V at which the
function ϕ is not defined is a pole of ϕ. For P ∈ V the local ring of V at P
is defined as OP (V ) = {ϕ ∈ K(V ) | ϕ regular at P}.

The notion of value of a rational function at a point on a variety is well
defined. The local ring OP (V ) is indeed a local ring in the sense of having a
unique maximal ideal. This maximal ideal is the subset of OP (V ) containing
those rational functions which vanish on P . One easily verifies that OP (V ) is
a subring of K(V ) containing Γ (V ). So we have the following increasing chain
of rings:

K ⊆ Γ (V ) ⊆ OP (V ) ⊆ K(V ).

Example 2.31. Let V be the unit circle in A2(C) defined by x2 + y2 − 1. The
rational function

ϕ(x, y) =
1 − y

x

is obviously regular at all points of V except possibly (0,±1). But ϕ is also
regular at (0, 1), which can be seen by the following transformation:

1 − y

x
=

x(1 − y)
x2

=
x(1 − y)
1 − y2

=
x

1 + y
.

Theorem 2.32. The set of poles of a rational function ϕ on a variety
V ⊆ An(K) is an algebraic set.

Proof. Consider Jϕ = {g ∈ K[x1, . . . , xn] | gϕ ∈ Γ (V )}. Jϕ is an ideal in
K[x1, . . . , xn] containing I(V ). The points of V (Jϕ) are exactly the poles of
ϕ: if P ∈ V (Jϕ), then for every representation ϕ = f/g we have g ∈ Jϕ, so
g(P ) = 0, and therefore P is a pole. On the other hand, if P �∈ V (Jϕ), then
for some g ∈ Jϕ we have g(P ) �= 0. So there is an r ∈ Γ (V ) such that ϕ = r/g
and g(P ) �= 0, i.e., P is not a pole. 	


Theorem 2.33. A rational function ϕ ∈ K(V ), which is regular on every
point of the variety V , is a regular function on V . So

Γ (V ) =
⋂

P∈V

OP (V ).

Proof. If ϕ is regular on every point of V , then V (Jϕ) = ∅ (proof of Theorem
2.32). So, by Hilbert’s Nullstellensatz (see Appendix B) we have 1 ∈ Jϕ, i.e.
1 · ϕ = ϕ ∈ Γ (V ). 	
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Example 2.34 (Example 2.31 continued). ϕ = (1 − y)/x cannot be regular
on the whole circle, because otherwise, by Theorem 2.33, there should be a
polynomial p(x, y) ∈ C[x, y] such that

ϕ(x, y) =
1 − y

x
= p(x, y).

This would mean 1 − y − x · p(x, y) ∈ I(V ) = 〈x2 + y2 − 1〉, or, equivalently,
1−y ∈ 〈x2 + y2 − 1, x〉 = 〈y2 − 1, x〉, which is impossible, as can be seen from
the theory of Gröbner bases.

As we have extended the notion of a regular function to that of a regular
mapping, we will now extend the notion of a rational function on a variety to
that of a rational mapping on the variety.

Definition 2.35. Let V ⊆ An(K), W ⊆ Am(K) be varieties. An m-tuple ϕ of
rational functions ϕ1, . . . , ϕm ∈ K(V ) with the property that for an arbitrary
point P ∈ V , at which all the ϕi are regular, we have (ϕ1(P ), . . . , ϕm(P )) ∈
W , is called a rational mapping from V to W , ϕ : V → W . ϕ is regular at
P ∈ V iff all the ϕi are regular at P .

So, a rational mapping is not a mapping of the whole variety V into W , but
of a certain nonempty open (in the Zariski topology) subset U ⊆ V into W .

Example 2.36. Let C be the curve in A2(C) defined by (see Fig. 2.2)

f(x, y) = y2 − x3 − x2.
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Fig. 2.2. Curve C in Example 2.36
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The tuple of rational (in fact polynomial) functions

ϕ1(t) = t2 − 1, ϕ2(t) = t(t2 − 1)

determines a rational mapping ϕ from A1(C) to C. This rational mapping has
a rational inverse, i.e., a rational mapping from C to A1(C):

χ(x, y) = y/x.

We check that χ really is the inverse of ϕ:

χ(ϕ1(t), ϕ2(t)) =
t(t2 − 1)
t2 − 1

= t,

ϕ1(χ(x, y)) =
y2

x2
− 1 =

y2 − x2

x2
=

x3

x2
= x,

ϕ2(χ(x, y)) =
y

x
·
(

y2

x2
− 1
)

=
y(y2 − x2)

x3
= y.

So, up to finitely many exceptions, the points in A1(C) and C correspond
uniquely to each other.

Definition 2.37. Let the rational mapping ϕ : V → W have a rational in-
verse, i.e., a rational mapping ψ : W → V such that ψ ◦ϕ = idV , ϕ◦ψ = idW

(wherever the composition of these mappings is defined), and ϕ(V ), ψ(W ) are
dense in W, V , respectively. In this case ϕ is called a birational isomorphism
from V to W (and ψ a birational isomorphism from W to V ), and V and W
are birationally isomorphic or birationally equivalent.

Isomorphism of varieties is reflected in the function fields of these varieties.

Theorem 2.38. The varieties V and W are birationally isomorphic if and
only if the corresponding function fields K(V ) and K(W ) are isomorphic.

Proof. Let V ⊆ An(K) and W ⊆ Am(K). Let ϕ : V → W be a birational
isomorphism from V to W and let ψ : W → V be its inverse. Consider the
following homomorphisms between the function fields:

ϕ̃ : K(W ) −→ K(V ) ψ̃ : K(V ) −→ K(W )
r �−→ r ◦ ϕ s �−→ s ◦ ψ

(Actually by r ◦ ϕ we mean the rational function on K(W ) whose restriction
to the dense subset ϕ(V ) of W is r ◦ ϕ, and analogously for s ◦ ψ.) These
homomorphisms ϕ̃ and ψ̃ are inverses of each other, so we have an isomorphism
of the function fields.

On the other hand, let α be an isomorphism from K(V ) to K(W ), and β
its inverse, i.e.,

α : K(V ) → K(W ), β : K(W ) → K(V ).
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Let x1, . . . , xn and y1, . . . , ym be the coordinate functions of V and W ,
respectively. Then

β̃ = (β(y1)(x1, . . . , xn), . . . , β(ym)(x1, . . . , xn))

is a birational isomorphism from V to W and

α̃ = (α(x1)(y1, . . . , ym), . . . , α(xn)(y1, . . . , ym))

is its inverse from W to V . 	


2.2.4 Degree of a Rational Mapping

Now let us investigate the degree of rational mappings between varieties. In-
tuitively speaking, the degree measures how often the mapping traces the
image variety. The interested reader is advised to check out [SeW01b] for
more details.

Definition 2.39. Let W1 and W2 be varieties over K. Let φ : W1 → W2 be
a rational mapping such that φ(W1) ⊂ W2 is dense. Then φ is a dominant
mapping from W1 to W2.

Now, let us assume that dim(W1) = dim(W2) (cf. Appendix B for the
notion of dimension), and we consider the monomorphism induced by a dom-
inant rational mapping φ from W1 to W2, and the field extensions

K ⊂ φ̃(K(W2)) ⊂ K(W1).

Then, since the transcendence degree of field extensions is additive, taking
into account that dim(W1) = dim(W2) and that φ is dominant, one has that
the transcendence degree of K(W1) over φ̃(K(W2)) is zero, and hence the
extension is algebraic. Moreover, since K(W1) can be obtained by adjoining
to φ̃(K(W2)) the variables of W1, we see that [K(W1) : φ̃(K(W2))] is finite.

Definition 2.40. The degree of the dominant rational mapping φ from W1

to W2, where dim(W1) = dim(W2), is the degree of the finite algebraic field
extension K(W1) over φ̃(K(W2)), that is

degree(φ) = [K(W1) : φ̃(K(W2))].

Observe that the notion of degree can be used to characterize the bira-
tionality of rational mappings as follows.

Lemma 2.41. A dominant rational mapping φ : W1 → W2 between varieties
of the same dimension is birational if and only if degree(φ) = 1.

Taking into account that the degree of algebraic field extensions is multi-
plicative, one deduces the following lemma.
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Lemma 2.42. Let φ1 : W1 → W2 and φ2 : W2 → W3 be dominant rational
mappings between varieties of the same dimension. Then

degree(φ2 ◦ φ1) = degree(φ1) · degree(φ2).

One way of computing the degree of a rational mapping is by directly
computing the degree of the algebraic field extension. Alternatively, we may
use the fact that the degree of the mapping is the cardinality of a generic fibre.
Those points where the cardinality of the fibre does not equal the degree of
the mapping are called ramification points of the rational mapping. More
precisely, we may apply the following result (see Proposition 7.16 in [Har95]).

Theorem 2.43. Let φ : W1 → W2 be a dominant rational mapping between
varieties of the same dimension. There exists a nonempty open subset U of
W2 such that for every P ∈ U the cardinality of the fibre φ−1(P ) is equal to
degree(φ).

Thus, a direct application of this result, combined with elimination tech-
niques, provides a method for computing the degree. Let W1 ⊂ Ar(K)
and W2 ⊂ As(K) be varieties of the same dimension defined over K by
{F1(x̄), . . . , Fn(x̄)} ⊂ K[x̄], and {G1(ȳ), . . . , Gm(ȳ)} ⊂ K[ȳ], respectively,
where x̄ = (x1, . . . , xr), ȳ = (y1, . . . , ys). Let

φ =
(

φ1

φs+1,1
, . . . ,

φs

φs+1,s

)
: W1 → W2

be a dominant rational mapping, where φi, φs+1,i are polynomials over K,
and gcd(φi, φs+1,i) = 1. Then, Corollary 2.44 follows from Theorem 2.43.

Corollary 2.44. Let φ : W1 → W2 be a dominant rational mapping between
varieties of the same dimension.

(a) Let b be a generic element of W2. Then the degree of φ is equal to the
cardinality of the finite set{

a ∈ W1

∣∣∣∣∣φ(a) = b,
s∏

i=1

φs+1,i(a) �= 0

}
.

(b) Let a be a generic element of W1. Then the degree of φ is equal to the
cardinality of the finite set{

a ′ ∈ W1

∣∣∣∣∣φ(a ′) = φ(a),
s∏

i=1

φs+1,i(a ′) �= 0

}
.

Function fields of projective varieties can be introduced in a similar way.
One only has to take care that representations of rational functions should
have the same degrees in the numerators and denominators. For details the
interested reader is referred to [Ful89], Sect. 4.2.
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2.3 Intersection of Curves

In this section, we analyze the intersection of two plane curves. Since curves
are algebraic sets, and since the intersection of two algebraic sets is again an
algebraic set, we see that the intersection of two plane curves is an algebraic
set in the plane consisting of 0-dimensional and 1-dimensional components.
The ground field K is algebraically closed, so the intersection of two curves
(seen projectively) is nonempty. In fact, the intersection of two curves con-
tains a 1-dimensional component, i.e., a curve, if and only if the gcd of the
corresponding defining polynomials is nonconstant, or equivalently if the two
curves have a common component. In this case, the 1-dimensional component
of the intersection is defined by the gcd.

Therefore, the problem of analyzing the intersection of curves is reduced to
the case of two curves without common components. There are two questions
which we need to answer. First, we want to compute the finitely many inter-
section points of the two curves. This means solving a 0-dimensional system
of two bivariate polynomials. Second, we also want to analyze the number of
intersection points of the curves without actually computing them. This count-
ing of intersections points with proper multiplicities is achieved by Bézout’s
Theorem (see Theorem 2.48). For this purpose, we introduce the notion of
multiplicity of intersection.

We start with the problem of computing the intersection points. Let C
and D be two projective plane curves defined by F (x, y, z) and G(x, y, z),
respectively, such that gcd(F, G) = 1. We want to compute the finitely many
points in V (F, G). Since we are working in the plane, the solutions of this
system of algebraic equations can be determined by resultants.

First, we observe that if both polynomials F and G are bivariate forms in
the same variables, say F, G ∈ K[x, y] (similarly if F, G ∈ K[x, z] or F, G ∈
K[y, z]), then each curve is a finite union of lines passing through (0 : 0 : 1).
Hence, since the curves do not have common components, they intersect only
in (0 : 0 : 1). For instance, the curves defined by the equations x(x − y) and
y(x + y) meet only at (0 : 0 : 1).

So now let us assume that at least one of the defining polynomials is not
a bivariate form in x and y (or any other pair of variables), say F �∈ K[x, y].
Then, we consider the resultant R(x, y) of F and G with respect to z. Since
C and D do not have common components, R(x, y) is not identically zero.
Furthermore, since degz(F ) ≥ 1 and G is not constant, the resultant R is a
nonconstant bivariate homogeneous polynomial. Hence it factors as

R(x, y) =
s∏

i=1

(bix − aiy)ri

for some ai, bi ∈ K, and ri ∈ N. Every intersection point of C and D must
have coordinates (a : b : c) s.t. (a, b) is a root of the resultant R. Therefore,
the solutions of R provide the intersection points. Since (0 : 0 : 0) is not a
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point in P2(K), but it might be the formal result of extending the solution
(0, 0) of R, we check whether (0 : 0 : 1) is an intersection point. The remaining
intersection points are given by (ai : bi : ci,j), where ci,j are the roots in K of
gcd(F (ai, bi, z), G(ai, bi, z)).

Example 2.45. Let C and D be the projective plane curves defined by
F (x, y, z) = x2 +y2−yz and G(x, y, z) = y3+x2y−x2z, respectively. Observe
that these curves are the conic and cubic of Example 2.16. Since gcd(F, G) = 1,
C and D do not have common components. Obviously (0 : 0 : 1) is an inter-
section point. For determining the other intersection points, we compute

R = resz(F, G) = x4 − y4 = (x − y)(x + y)(x2 + y2).

For extending the solutions of R to the third coordinate we compute

gcd(F (1, 1, z), G(1, 1, z)) = z − 2,

gcd(F (1,−1, z), G(1,−1, z)) = z + 2,

gcd(F (1,±i, z), G(1,±i, z)) = z.

So the intersection points of C and D are

(0 : 0 : 1),
(

1
2

:
1
2

: 1
)

,

(
−1

2
:

1
2

: 1
)

, (1 : i : 0), (1 : −i : 0)

Now we proceed to the problem of analyzing the number of intersections
of two projective curves without common components. For this purpose, we
first study upper bounds, and then we see how these upper bounds can always
be reached by a suitable definition of the notion of intersection multiplicity.

Theorem 2.46. Let C and D be two projective plane curves without common
components and degrees n and m, respectively. Then the number of intersec-
tion points of C and D is at most n · m.

Proof. First observe that the number of intersection points is invariant under
linear changes of coordinates. Let k be the number of intersection points of
C and D. W.l.o.g. we assume that (perhaps after a suitable linear change
of coordinates) P = (0 : 0 : 1) is not a point on C or D (so the leading
coefficients of F and G w.r.t. z are constant and every root of the resultant
of F and G w.r.t. z is extendable) and also not on a line connecting any pair
of intersection points of C and D. Let F (x, y, z) and G(x, y, z) be the defining
polynomials of C and D, respectively. Note that since (0 : 0 : 1) is not on
the curves, we have F, G �∈ K[x, y]. Let R(x, y) be the resultant of F and G
with respect to z. Since the curves do not have common components and the
defining polynomials have positive degrees in z, R is a nonzero homogeneous
polynomial in K[x, y] of degree n · m. Furthermore, as we have already seen,
each linear factor of R generates a set of intersection points. Thus, if we can
prove that each linear factor generates exactly one intersection point, we have
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shown that k ≤ deg(R) = n · m. Let us assume that (bx − ay) is a linear
factor generating at least two different intersection points P1 and P2. But this
implies that the line bx − ay passes through P1, P2 and (0 : 0 : 1), which is
impossible. Furthermore, a root (a, b) of R cannot be a common root of the
leading coefficients of F and G; so there exists a c s.t. (a : b : c) ∈ C ∩D. This
shows that every linear factor (bx − ay) generates at least one intersection
point. 	


Remarks. Observe that from the proof of Theorem 2.46, we get that every
linear factor (bx − ay) of the resultant R(x, y) of F and G with respect to z
generates exactly one intersection point of F and G.

This upper bound on the number of intersection points can be turned into
an exact number of intersections by a proper counting of multiple intersection
points. The definition of intersection multiplicity is motivated by the proof of
the previous theorem. First, we present the notion for curves such that the
point (0 : 0 : 1) is not on any of the two curves, nor on any line connecting
two of their intersection points. Afterwards, we observe that the concept can
be extended to the general case by means of linear changes of coordinates.

Definition 2.47. Let C and D be projective plane curves without common
components, such that (0 : 0 : 1) is not on C or D and also not on any
line connecting two intersection points of C and D. Let P = (a : b : c) ∈
C∩D, and let F (x, y, z) and G(x, y, z) be the defining polynomials of C and D,
respectively. Then, the multiplicity of intersection of C and D at P , denoted by
multP (C,D), is defined as the multiplicity of the corresponding factor bx− ay
in the resultant of F and G with respect to z. If P �∈ C ∩D then we define the
multiplicity of intersection at P as 0.

We observe that the conditions on (0 : 0 : 1), required in Definition 2.47,
can be avoided by means of linear changes of coordinates. Moreover, the ex-
tension of the definition to the general case does not depend on the particular
linear change of coordinates, as remarked in [Wal50], Sect. IV.5. Indeed, since
C and D do not have common components the number of intersection points
is finite. Therefore, there always exist linear changes of coordinates satisfying
the conditions required in the definition. Furthermore, as remarked in the last
part of the proof of Theorem 2.46, if T is any linear change of coordinates
satisfying the conditions of the definition, then each factor of the correspond-
ing resultant is generated by exactly one intersection point. Therefore, the
multiplicity of the factors in the resultant is preserved by this type of linear
changes of coordinates.

Theorem 2.48 (Bézout’s Theorem). Let C and D be two projective plane
curves without common components and degrees n and m, respectively. Then

n · m =
∑

P∈C∩D
multP (C,D).
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Proof. Let us assume w.l.o.g. that C and D are such that (0 : 0 : 1) is not
on C or D nor on any line connecting two of their intersection points. Let
F (x, y, z) and G(x, y, z) be the defining polynomials of C and D, respectively.
Then the resultant R(x, y) of F and G with respect to z is a nonconstant
homogeneous polynomial of degree n ·m. Furthermore, if {(ai : bi : ci)}i=1,...,r

are the intersection points of C and D (note that (0 : 0 : 1) is not one of them)
then we get

R(x, y) =
r∏

i=1

(bix − aiy)ni ,

where ni is, by definition, the multiplicity of intersection of C and D at (ai :
bi : ci). 	


Example 2.49. We consider the two cubics C and D of Fig. 2.3 defined by the
polynomials F (x, y, z) =

516
85

z3− 352
85

yz2− 7
17

y2z+
41
85

y3 +
172
85

xz2− 88
85

xyz+
1
85

y2x−3x2z+x2y−x3,

and G(x, y, z) = −132z3 + 128yz2 − 29y2z − y3 + 28xz2 − 76xyz + 31y2x +
75x2z − 41x2y + 17x3, respectively.
Let us determine the intersection points of these two cubics and their corre-
sponding multiplicities of intersection. For this purpose, we first compute the
resultant

R(x, y) = resz(F, G) =
5474304

25
x4 y (3x + y) (x + 2y) (x + y) (x − y).

For each factor (bx − ay) of the resultant R(x, y) we obtain the polynomial
D(z) = gcd(F (a, b, z), G(a, b, z)) in order to find the intersection points gener-
ated by this factor. Table 2.2 shows the results of this computation (compare
Fig. 2.4):
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Table 2.2. Intersection points of C and D

Factor D(z) Intersection point Multipl. of intersection

x4 (2z − 1)2 P1 = (0 : 2 : 1) 4

y z + 1/3 P2 = (−3 : 0 : 1) 1

3x + y z − 1 P3 = (1 : −3 : 1) 1

x + 2y −z + 1 P4 = (−2 : 1 : 1) 1

x + y −z + 1 P5 = (−1 : 1 : 1) 1

x − y z − 1 P6 = (1 : 1 : 1) 1

−4

−2

0 2

2

4

y

− 4 −2

x

4

Fig. 2.4. Joint picture of the real parts of C�,z and D�,z

Furthermore, since (0 : 0 : 1) is not on the cubics nor on any line connecting
their intersection points, the multiplicity of intersection is 4 for P1, and 1 for
the other points. It is also interesting to observe that P1 is a double point on
each cubic (compare Theorem 2.50(6)).

As we have seen above, the computational determination of the multiplic-
ity of intersection requires a linear change of coordinates and the absolute
factorization of the resultant of the defining polynomials. However, if the
defining polynomials F are G are given over a computable subfield K of K,
then we can proceed as follows to factor the resultant. We factor the resultant
R of F and G over K. Let M(x, y) be an irreducible factor of R. Then for
every root α of M(x, 1) we may compute gcd(F (α, 1, z), G(α, 1, z)) over K(α)
to determine the corresponding intersection point (α : 1 : βα) ∈ P2(K(α)). By
the same arguments as in the previous proofs we see that this gcd is linear in z.
Note that for all the conjugate roots of M(x, 1) the corresponding multiplic-
ity of intersection is the same. Furthermore, if α1, α2 are two conjugate roots
of M(x, 1) and ϕ is the automorphism on the splitting field of M(x, 1) that
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maps α1 to α2 then (α2 : 1 : βα2) = (ϕ(α1) : 1 : ϕ(βα1 )). In the sequel we will
frequently use this idea, and we will then speak about families of conjugate
points (see Definition 3.15).

Some authors introduce the notion of multiplicity of intersection axiomat-
ically (see, for instance, [Ful89], Sect. 3.3). The following theorem shows that
these axioms are satisfied for our definition.

Theorem 2.50. Let C and D be two projective plane curves without common
components, defined by the polynomials F and G, respectively, and let P ∈
P2(K). Then the following statements hold:

(1) multP (C,D) ∈ N.
(2) multP (C,D) = 0 if and only if P �∈ C ∩ D.
(3) If T is a linear change of coordinates, and C′, D′ are the imagines of C

and D under T , respectively, then multP (C,D) = multT (P )(C′,D′).
(4) multP (C,D) = multP (D, C)
(5) multP (C,D) ≥ multP (C) · multP (D).
(6) multP (C,D) = multP (C)·multP (D) if and only C and D intersect transver-

sally at P (i.e. if the curves have no common tangents at P ).
(7) Let C1, . . . , Cr and D1, . . . ,Ds be the irreducible components of C and D

respectively. Then

multP (C,D) =
r∑

i=1

s∑
j=1

multP (Ci,Dj).

(8) multP (C,D) = multP (C,DH), where DH is the curve defined by G + HF
for an arbitrary form H ∈ K[x, y, z]; i.e., the intersection multiplicity does
not depend on the particular representative G in the coordinate ring of C.

Proof. We have already remarked above that the intersection multiplicity is
independent of a particular linear change of coordinates. Statements (1), (2),
and (4) can be easily deduced from the definition of multiplicity of intersection,
and we leave them to the reader.

A proof of (5) and (6) can be found for instance in [Wal50], Chap. IV.5,
Theorem 5.10.

(7) Let us assume without loss of generality that C and D satisfy the
requirements of Definition 2.47. That is, (0 : 0 : 1) is not on the curves nor on
any line connecting their intersection points. Let Fi, i = 1, . . . , r, and Gj , j =
1 . . . , s, be the defining polynomials of Ci and Dj , respectively. Then we use
the following fact: if A, B, C ∈ D[x], where D is an integral domain, then
resx(A, B ·C) = resx(A, B) · resx(A, C) (see, for instance, [BCL83] Theorem 3,
p. 178). Hence, (7) follows immediately from

resz

(
r∏

i=1

Fi,

s∏
j=1

Gj

)
=

r∏
i=1

resz

(
Fi,

s∏
j=1

Gj

)
=

r∏
i=1

s∏
j=1

resz(Fi, Gj).
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(8) Let H ∈ K[x, y, z] be a form. Obviously P ∈ C ∩ D if and only if
P ∈ C∩DH . W.l.o.g. we assume that the conditions of Definition 2.47 are sat-
isfied by C and D, and also by C and DH . Then, multP (C,D) and multP (C,DH)
are given by the multiplicities of the corresponding factors in resz(F, G) and
resz(F, G + H F ), respectively. Now, we use the following property of resul-
tants: if A, B, C ∈ D[x], where D is an integral domain, and a is the leading
coefficient of A, then

resx(A, B) = adegx(B)−degx(A C+B) resx(A, AC + B)

(see, for instance, Theorem 4 on p.178 of [BCL83]). Now (8) follows directly
from this fact, since the leading coefficient of F in z is a nonzero constant
(note that (0 : 0 : 1) is not on C). 	


From Theorem 2.50, and the proof of uniqueness and existence of the no-
tion of intersection multiplicity given in [Ful89], one can extract an alternative
algorithm for computing the intersection multiplicity as it is illustrated in the
next example. We leave this as an exercise.

Example 2.51 ([Ful89]). We determine the intersection multiplicity at the ori-
gin O = (0, 0) of the affine curves E ,F defined by

E : e(x, y) = (x2 + y2)2 + 3x2y − y3, F : f(x, y) = (x2 + y2)3 − 4x2y2.

For ease of notation we do not distinguish between the curves and their defin-
ing polynomials. We replace f by the following curve g:

f(x, y) − (x2 + y2)e(x, y) = y · ((x2 + y2)(y2 − 3x2) − 4x2y) = y · g(x, y).

Now we have

multO(e, f) = multO(e, y) + multO(e, g).

We replace g by h:

g + 3e = y · (5x2 − 3y2 + 4y3 + 4x2y) = y · h(x, y).

So
multO(e, f) = 2 · multO(e, y) + multO(e, h).

By relations (4), (7) in Theorem 2.50, multO(e, y) is equal to multO(x4, y),
which in turn is equal to 4 by relations (6), (5). By relation (5), multO(e, h)
is equal to multO(e) · multO(h), which is 6. Thus, multO(E , F) =
multO(e, f) = 14.
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2.4 Linear Systems of Curves

Linear systems of curves are an indispensably tool in algebraic geometry. In
this section we derive some basic properties of linear systems of curves, based
on the exposition in [Mir99]. The idea of linear systems of curves is to work
with sets of curves of fixed degree related by means of some linear conditions;
for instance, sets of curves of fixed degree passing through some specific points
with at least some fixed multiplicities. Such conditions are captured by the
notion of a divisor.

Definition 2.52. A divisor is a formal expression of the type

m∑
i=1

riPi,

where ri ∈ Z, and the Pi are different points in P2(K). If all integers ri are
non-negative we say that the divisor is effective or positive.

We will identify projective algebraic curves with forms in K[x, y, z]. Thus,
throughout this section, we allow curves to have multiple components; i.e., we
consider curves as defined by arbitrary nonconstant, not necessarily square-
free, forms. This means that set theoretically the curves are defined by the
squarefree parts of homogeneous polynomials, but the components generated
by their irreducible factors carry the corresponding multiplicity.

Let T1, . . . , Tn be a fixed ordering of the set of monomials in x, y, z of
degree d. It is clear that

n =
1
2
(d + 1)(d + 2) =

1
2
d(d + 3) + 1.

Then, for every curve C of degree d there exists (a1 : · · · : an) ∈ Pn−1(K), such
that F = a1T1+· · ·+anTn defines C, and vice versa. Observe that F is defined
only up to multiplication by nonzero constants. Thus, one may identify the
set of all projective curves of degree d with Pn−1(K).

Definition 2.53. A linear system of curves of degree d and dimension r is a
linear subvariety of dimension r of P

d(d+3)
2 (K). If the dimension is one, the

linear system is also called a pencil of curves.

An interesting type of linear systems arises when we require the curves
to pass through given points with given multiplicities. This motivates the
following definition.

Definition 2.54. P ∈ P2(K) is a base point of multiplicity r ∈ N of a
linear system H of curves of fixed degree, if every curve C in H satisfies
multP (C) ≥ r.
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Definition 2.55. We define the linear system of curves of degree d generated
by the effective divisor D = r1P1 + · · · + rmPm as the set of all curves C
of degree d such that multPi(C) ≥ ri, for i = 1, . . . , m, and we denote it by
H(d, D).

Example 2.56. We compute the linear system of quintics generated by the
effective divisor D = 3P1 + 2 P2 + P3, where P1 = (0 : 0 : 1), P2 = (0 : 1 : 1),
and P3 = (1 : 1 : 1). For this purpose, we consider the generic form of degree 5:

H(x, y, z) = a0 z5 + a1 yz4 + a2 y2z3 + a3 y3z2 + a4 y4z + a5 y5 + a6 xz4

+ a7 xyz3 + a8 xy2z2 + a9 xy3z + a10 xy4 + a11 x2z3

+ a12 x2yz2 + a13 x2y2z + a14 x2y3 + a15 x3z2 + a16 x3yz

+ a17 x3y2 + a18 x4z + a19 x4y + a20 x5.

The linear conditions that we have to impose are (see Theorem 2.15):

∂k+i+jH

∂xk∂yi∂zj
(P1) = 0, i + j + k ≤ 2,

∂k+i+jH

∂xk∂yi∂zj
(P2) = 0, i + j + k ≤ 1,

H(P3) = 0.

Solving them one gets that the linear system is defined by H(x, y, z) =

a3 y3z2 − 2 a3 y4z + a3 y5 + (−a9 − a10 )xy2z2 + a9 xy3z + a10 xy4+
(−a13 − a14 − a15 − a16 − a17 − a18 − a19 − a20 )x2yz2 + a13 x2y2z+
a14 x2y3 + a15 x3z2 + a16 x3yz + a17 x3y2 + a18 x4z + a19 x4y + a20 x5

Hence, the dimension of the system is 10 (compare Theorem 2.59). Finally, we
take two particular curves in the system, C1 and C2, defined by the polynomials

H1(x, y, z) = 3 y3 z2 − 6 y4 z + 3 y5 − x y3 z + x y4 − 5 x2 y z2 + 2 x2 y2 z
+x3 y2 + x4 z + y x4,

H2(x, y, z) = y3 z2 − 2 y4 z + y5 − 8
3 z2 x y2 + 3 x y3 z − 1

3 x y4 − 8 x2 y z2

+2 x2 y2 z + y3 x2 + 2 y x3 z + x3 y2 − x4 z + 2 y x4 + x5,

respectively.
In Fig. 2.5 the real parts of the affine curves C1�,z and C2�,z are plotted.

Clearly, a linear system H(d, D) is the solution variety of a system of linear
equations. This system is directly derived from the conditions imposed by the
effective divisor D. The conditions imposed by the divisor D might be linearly
dependent, i.e., the codimension of H(d, D) might be less than the number of
conditions. In the following we analyze the behavior of the dimension of linear
systems generated by effective divisors.

Theorem 2.57. Let P ∈ P2(K), and r ∈ N. Then, for every d ∈ N

dim(H(d, rP )) =

{
d(d+3)

2 − r(r+1)
2 if d ≥ r,

−1 if d < r.
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Fig. 2.5. real part of C1�,z (left), real part of C2�,z (right)

Proof. First we observe that the inequality d(d+3)−r(r+1) ≥ 0 is equivalent
to d ≥ r. Let H be a generic form, with undetermined coefficients, of degree d
in the variables x, y, z. Then, by Theorem 2.15, we get the defining polynomial
of H(d, rP ) by solving the linear conditions requiring all the (r − 1)th deriva-
tives of H to vanish at P ; i.e., it is obtained by requiring all the terms in the
Taylor expansion of H at P up to degree r to vanish. Since Taylor expansion
is unique, we see that these r(r+1)

2 conditions are independent. Hence, if d < r,
then H is identically zero, and thus dim(H(d, rP )) = −1. On the other hand,
if d ≥ r,

dim(H(d, rP )) =
d(d + 3)

2
− r(r + 1)

2
. 	


Corollary 2.58. Let P ∈ P2(K) be a fixed point. Then the linear system of
curves of degree d generated by 1 ·P has codimension 1; i.e., it is a hyperplane
in P

d(d+3)
2 (K).

The situation is much more complicated if the generating effective divisor
consists of more than one point. One might expect that for each new con-
straint the dimension drops by one. That is, one might expect the dimension
of H(d, r1P1 + · · · + rmPm) to be

µ = max

{
−1,

d(d + 3)
2

−
m∑

i=1

ri(ri + 1)
2

}
. (2.1)

However, this number is only a lower bound, since these constraints may be
dependent.

Theorem 2.59. Let P1, . . . , Pm ∈ P2(K), and r1, . . . , rm ∈ N. Then, for
every d ∈ N,

dim(H(d,

m∑
i=1

riPi)) ≥ d(d + 3)
2

−
m∑

i=1

ri(ri + 1)
2

.
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Proof. First, we observe that the theorem holds if d(d + 3) <
∑m

i=1 ri(ri + 1).
So let us assume that d(d+3) ≥∑m

i=1 ri(ri+1). Let H be a generic form, with
undetermined coefficients, of degree d in the variable x, y, z. Then, by Theo-
rem 2.15, we get the defining polynomial of H(d,

∑m
i=1 riPi)) by solving the

linear conditions requiring all the (ri − 1)th derivatives of H to vanish at Pi,
for i = 1, . . . , m. Clearly, this is always possible since the total number of lin-
ear equations is

∑m
i=1

ri(ri+1)
2 , and the number of independent undetermined

coefficients in H is d(d+3)
2 . Hence,

dim

(
H
(

d,
m∑

i=1

riPi

))
≥ d(d + 3)

2
−

m∑
i=1

ri(ri + 1)
2

. 	


From Bézout’s Theorem (Theorem 2.48) and the previous theorem one
may derive bounds for the number of singularities of an irreducible curve.

Theorem 2.60. Let C be an irreducible projective plane curve of degree d.
Then ∑

P∈C
multP (C)(multP (C) − 1) ≤ (d − 1)(d − 2).

Proof. Obviously the statement holds if C is a line. So let us assume that d > 1.
Let F be the defining polynomial of C. By Theorem 2.10, C has only finitely
many singular points. Let us denote these singular points by P1, . . . , Pm, and
let us assume that ri = multPi(C) for i = 1, . . . , m. By Euler’s formula for
homogeneous polynomials (see Appendix B), it is clear that not all the first
derivatives of F are identically zero. Let us assume that ∂F

∂x is not identically
zero, and let D be the curve defined by this derivative. The degree of D is
d − 1 > 0. Furthermore, D has no components in common with C, since F
is irreducible and deg(C) > deg(D). Moreover, {P1, . . . , Pm} ⊂ C ∩ D. In
fact, multPi(D) = ri − 1. Therefore, by Bézout’s Theorem (Theorem 2.48),
we get

d(d − 1) =
∑

P∈C∩D
multP (C,D) ≥

m∑
i=1

multPi(C,D) ,

and by Theorem 2.50(5) we get

d(d − 1) ≥
m∑

i=1

multPi(C) · multP (D) ≥
m∑

i=1

ri(ri − 1).

Consequently, since d > 1, we get

(d − 1)(d + 2)
2

−
m∑

i=1

ri(ri − 1)
2

>
d(d − 1)

2
−

m∑
i=1

ri(ri − 1)
2

≥ 0.
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Now, we consider the linear system H of curves of degree (d − 1) generated
by the effective divisor ((r1 − 1)P1 + · · ·+ (rm − 1)Pm). Using Theorem 2.59,
we deduce that

dim(H) ≥ (d − 1)(d + 2)
2

−
m∑

i=1

ri(ri − 1)
2

> 0.

We choose � = (d−1)(d+2)
2 −∑m

i=1
ri(ri−1)

2 > 0 simple points Q1, . . . , Q� on C,
and we consider the linear subsystem H′ of H generated by the effective divisor
(1 · Q1 + · · · + 1 · Q�). Clearly

dim(H′) ≥ dim(H) − � ≥ 0 .

Hence H′ is not empty. Let C′ be a curve in H′. Then from Bézout’s Theorem
(note that C is irreducible and deg(C) > deg(C′)) and Theorem 2.50(5) we get

d(d − 1) =
∑

P∈C∩C′ multP (C, C′)

≥∑m
i=1 multPi(C, C′) +

∑�
j=1 multQj (C, C′)

≥∑m
i=1 multPi(C) · multPi(C′) +

∑�
j=1 multQj (C) · multQj (C′)

≥
∑m

i=1 ri(ri − 1) + �

=
∑n

i=1
ri(ri−1)

2 + (d−1)(d+2)
2 .

Hence, ∑
P∈C

multp(C)(multp(C) − 1)
2

≤ (d − 1)(d − 2)
2

. 	


As we have seen in Theorem 2.59, the expected dimension µ (see (2.1))
is a lower bound for the actual dimension. For instance, if P and Q are two
different points, the expected dimension µ of the linear system H(2, 2P +2Q)
is −1. Nevertheless a double line passing through these two points is in the
linear system, and hence it is not empty.

Even for the case of linear systems generated by divisors of the form P1 +
· · ·+Pm the actual dimension may be different from µ. For example, take m =
d2 and consider two curves C1, C2 of degree d, without common components,
and such that all their intersections are transversal and occur at regular points.
Then, by Bézout’s Theorem the number of intersection points is m; denote
them by P1, . . . , Pm. In this situation, C1, C2 ∈ H(d, P1 + · · · + Pm), and
therefore H(d, P1 + · · · + Pm) has positive dimension. But, if d ≥ 3, then

d(d + 3)
2

− d2 ≤ 0.

So the actual dimension and the expected dimension µ do not agree. We
illustrate this reasoning by a specific example.
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Fig. 2.6. Joint picture of the real parts of C1 and C2

Example 2.61. Let us consider the projective cubics C1 and C2 defined by the
polynomials

z2x − y3 + 3yz2, and z2y − x3 + 3xz2,

respectively (see Fig. 2.6). The intersection points of the two cubics are the
real points

P1 = (0 : 0 : 1), P2 =
(−√

5 − 1
2

:
√

5 − 1
2

: 1
)

,

P3 =
(√

5 − 1
2

:
−
√

5 − 1
2

: 1
)

, P4 =
(−√

5 + 1
2

:
√

5 + 1
2

: 1
)

,

P5 =
(√

5 + 1
2

:
−
√

5 + 1
2

: 1
)

, P6 = (2 : 2 : 1),

P7 = (−2 : −2 : 1), P8 = (−
√

2 :
√

2 : 1),

P9 = (
√

2 : −
√

2 : 1).

Therefore, C1, C2 ∈ H(3, P1 + · · · + P9), but the expected multiplicity is 0. In
fact, dim(H(3, P1 + · · · + P9)) = 1.

Another way to generate examples of linear systems whose actual dimen-
sion is higher than the formally expected dimension is to force linear depen-
dencies by taking all base points on a line. More precisely, let us consider the
linear system H(d, P1 + · · ·+Pm), where d < m and all the points Pi are on a
line L. Then, every curve C ∈ H(d, P1 + · · ·+Pm) intersects L at more than d
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points. Hence, by Bézout’s Theorem, L must be a component of C. Therefore,
if we take any collection of more than d different points on L then the cor-
responding linear system of curves of degree d is in fact H(d, P1 + · · · + Pm),
while the expected dimension decreases.

Now we analyze the behavior of the dimension of the linear system if the
points are taken in general position. One could expect that if the points are
selected generally enough, the dimension of the linear system agrees with the
lower bound µ (see (2.1)). But, as we have seen in the example H(2, 2P +2Q),
no matter how generally we choose P and Q, the expected dimension µ will
always be less that the actual dimension. Thus, this lower bound µ is not
optimal in general. So, the idea is to define the notion of general position such
that one reaches the optimal lower bound; that is, such that the dimension of
the linear system is minimal.

Therefore, one has to require the solution space of the system of linear
equations generated by the divisor to have minimal dimension. This condi-
tion can be stated by means of the rank of the matrix of the system. To be
more precise, let us fix a degree d, and let us also fix a tuple of multiplicities
(r1, . . . , rm). Now let H(Λ, x, y, z) be a generic form with undetermined coeffi-
cients Λ, and let Pi = (xi : yi : zi), i = 1 . . . , m, be arbitrary points in P2(K).
Let S(Λ, x1, y1, z1, . . . , xm, ym, zm) be the system of linear equations, in the
undetermined coefficients Λ, such that H(d, r1P1 + · · ·+rmPm) is the solution
space of S(Λ, x1, y1, z1, . . . , xm, ym, zm). Now, let A(x1, y1, z1, . . . , xm, ym, zm)
be the matrix of the system S; note that the entries of A are polynomials in
xi, yi, zi. Then, for every non-negative integer j we consider the set

Rj(d, r1, . . . , rm)

= {((x̃1 : ỹ1 : z̃1), . . . , (x̃m : ỹm : z̃m)) ∈ (P2(K))m | rank(A(x̃1, . . . , z̃m)) ≤ j}.
Clearly Rj(d, r1, . . . , rm) is a projective algebraic set, since the above rank
condition is achieved by means of the vanishing of certain minors of the matrix.
On the other hand, it is also clear that

R0(d, r1, . . . , rm) ⊆· · ·⊆ Rk(d, r1, . . . , rm) ⊆/ Rk+1(d, r1, . . . , rm) = (P2(K))m

for some minimal k. Note that R0(d, r1, . . . , rm) �= (P2(K))m, and that
Rs(d, r1, . . . , rm) = (P2(K))m for s ∈ N larger than the size of the matrix.

Then we say that a particular divisor D = r1Q1 + · · · + rmQm is in
d-general position if Q1×· · ·×Qm ∈ (P2(K))m \Rk(d, r1, . . . , rm), and there-
fore the specialization of the system S at Q1, . . . , Qm has minimal dimension.
In other words, the divisor D = r1Q1 + · · ·+ rmQm is in d-general position if
for any other divisor D̃ = r1Q̃1 + · · · + rmQ̃m we have

k + 1 =rank(A(Q1, . . . , Qm)) ≥ rank(A(Q̃1, . . . , Q̃m)).
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Or equivalently

d(d + 3)
2

− (k + 1) = dim(H(d, D)) ≤ dim(H(d, D̃)).

We illustrate these ideas by the next example.

Example 2.62. (a) We consider the linear system H(1, 2P ). Clearly, for every
P dim(H(1, 2P )) = −1. Let us see what general position means here. Let
P = (x1 : y1 : z1) be an arbitrary point in P2(K). Then A(x1, y1, z1) is the
3 × 3 identity matrix. Thus,

∅ = R2(1, 2) ⊆/ R3(1, 2) = P2(K).

Therefore, for every P ∈ P2(K) \ R2(1, 2) = P2(K), the divisor 2P is in
2-general position, and dim(H(1, 2P )) = −1.

(b) We consider the situation analyzed in Theorem 2.57. Let P ∈ P2(K)
and let r ≤ d. Because of the uniqueness of the Taylor expansion of a polyno-
mial we have that the rank of the matrix of the system S is precisely r(r+1)

2 .
Hence,

∅ = R r(r+1)
2 −1

(d, r) ⊂ R r(r+1)
2

(d, r) = P2(K).

Thus,
P2(K) \ R r(r+1)

2 −1
(d, r) = P2(K).

Therefore, every divisor of the form D = rP , with 0 < r ≤ d is in d-general
position. Furthermore,

dim(H(d, D)) =
d(d + 3)

2
− r(r + 1)

2
,

in accordance with Theorem 2.57.
(c) Now we study the special example of the linear system of conics

H(2, 2P + 2Q). Let P = (x1 : y1 : z1) and Q = (x2 : y2 : z2) be arbitrary
points in P2(K). Then,

A(x1, y1, z1, x2, y2, z2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 z1 y1 2 x1

0 z1 2 y1 0 x1 0

2 z1 y1 0 x1 0 0

0 0 0 z2 y2 2 x2

0 z2 2 y2 0 x2 0

2 z2 y2 0 x2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since det(A(x1, y1, z1, x2, y2, z2)) = 0, we have R5(2, 2, 2) = R6(2, 2, 2) =
(P2(K))2. However, taking random values for x1, y1, z1, x2, y2, z2, we deduce
that R4(2, 2, 2) ⊆/ R5(2, 2, 2). Furthermore, the algebraic conditions defining
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R4(2, 2, 2) are {x1y2 = y1x2, x1z2 = z1x2, y2z1 = y1z2}. Thus 2P + 2Q is in
2-general position if P �= Q. Now, observe that, because of Theorem 2.60, if
a conic C belongs to H(2, 2P + 2Q) with P �= Q, then it must be reducible;
i.e. a pair of lines. Moreover, since it must have two different double points,
namely P and Q, then C must be the double line passing through P and Q.
So, dim(H(2, 2P + 2Q)) = 0.

We finish this study by proving that for d-general divisors of the form
D = P1 + · · ·+Pm, the dimension of the linear system, generated by D, is the
expected one (see (2.1)). For further details and considerations on this topic
we refer to [Mir99].

Lemma 2.63. Let D = r1P1 + · · ·+ rmPm be an effective divisor in d-general
position. Then for every 1 ≤ i ≤ m the divisor Di = r1P1 + · · · + riPi is also
in d-general position.

Proof. This follows from the fact that the set of linear equations generated
by Di is contained in the linear equations generated by D. 	


Lemma 2.64. Let D = r1P1 + · · ·+ rmPm be an effective divisor in d-general
position, and let Ω be a nonempty open subset of (P2(K))m. Then

max{rank(A(Q1, . . . , Qm)) | Q1 × · · · × Qm ∈ Ω} = rank(A(P1, . . . , Pm)).

Proof. Since D is in d-general position, there exists a nonempty open subset
Ω̃ ⊂ (P2(K))m such that, for all Q1 × · · · ×Qm ∈ Ω̃, rank(A(Q1, . . . , Qm)) is
the same and its value is maximal. Therefore, since (P2(K))m is irreducible,
one gets that Ω ∩ Ω̃ �= ∅. Thus, the proof is finished by taking a point in
Ω ∩ Ω̃. 	


Theorem 2.65. Let D = P1+· · ·+Pm be in d-general position. Then H(d, D)
has the expected dimension, i.e.:

dim(H(d, D) = max
{
− 1,

d(d + 3)
2

− m

}
.

Proof. We prove this by induction on m. For m = 1, the statement follows
from Theorem 2.57. Let us assume that the result holds for P1+· · ·+Pi−1, 1 <
i ≤ m. Then,

dim(H(d, P1 + · · · + Pi−1)) = max
{
− 1,

d(d + 3)
2

− (i − 1)
}

.

If dim(H(d, P1+· · ·+Pi−1)) = −1, then dim(H(d, P1+· · ·+Pi)) = −1 because
H(d, P1 + · · ·+Pi) ⊂ H(d, P1 + · · ·+Pi−1), and therefore the statement holds
for the divisor P1+· · ·+Pi. Otherwise, 1

2 (d(d+3)−(i−1)) ≥ 0; or equivalently
H(d, P1 + · · ·+ Pi−1) �= ∅. Now, from Lemma 2.63 we get that P1 + · · ·+ Pi is
in d-general position. Furthermore, taking into account Lemma 2.64, in order
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to prove the result for P1 + · · · + Pi we just have to show that there exists
a point Q such that linear equation introduced by Q is linearly independent
from the linear equations generated by the divisor P1 + · · · + Pi−1. If this is
the case, then taking Ω = (P2(K))i in Lemma 2.64, we get

rank(A(P1, . . . , Pi)) = max{rank(A(Q1, . . . , Qi)) | Q1 × · · · × Qi ∈ (P2(K))i}
= rank(A(P1, . . . , Pi−1, Q)) = i.

Now, take C ∈ H(d, P1+ · · ·+Pi−1) and Q ∈ P2(K)\C; observe that H(d, P1+
· · · + Pi−1) �= ∅. This point satisfies all our requirements. 	


2.5 Local Parametrizations and Puiseux Series

Although the main topic of this book is global rational parametrization of
algebraic curves, local parametrization by Puiseux series is also an important
tool in the theory of algebraic curves. In this section we recall some basic
definitions and facts relating to local parametrizations.

Let us start out with an example of what we want to do in this section.

Example 2.66. Consider the plane algebraic curve C ⊂ A2(C) defined by the
polynomial

f(x, y) = y5 − 4y4 + 4y3 + 2x2y2 − xy2 + 2x2y + 2xy + x4 + x3

(see Fig. 2.7). Note that the affine point (0, 2) is an isolated singularity of
C. Around the origin, C is parametrized by two different pairs of analytic
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Fig. 2.7. Real part of C
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Fig. 2.8. Real part of C and some points generated by (A1(t),B1(t)) (left), real
part of C and some points generated by (A2(t),B2(t))(right)

functions (x1, y1) and (x2, y2) which have the following power series expan-
sions:

(A1(t), B1(t)) =
(

t, −1
2
t2 +

1
8
t4 − 1

8
t5 +

1
16

t6 +
1
16

t7 + · · ·
)

,

(A2(t), B2(t)) =
(
−2t2, t +

1
4
t2 − 27

32
t3 − 7

8
t4 − 4057

2048
t5 + · · ·

)
.

In a neighborhood around the origin these power series actually converge to
points of the curve C. In fact, these two power series correspond to what we
want to call the two branches of C through the origin. In Fig. 2.8 we exhibit
how (Ai(t), Bi(t)) approaches the curve C in a neighborhood of the origin. We
will be interested in determining such power series.

2.5.1 Power Series, Places, and Branches

We denote by K[[t]] the domain of formal power series in the indetermi-
nate t with coefficients in the field K, i.e., the set of all sums of the form∑∞

i=0 ait
i, where ai ∈ K. The quotient field of K[[t]] is called the field of formal

Laurent series and is denoted by K((t)). As is well known, every nonzero
formal Laurent series A(t) ∈ K((t)) can be written in the form

A(t) = tk · (a0 + a1t + a2t
2 + · · ·), where a0 �= 0 and k ∈ Z.

The exponent k, i.e., the exponent of the first nonvanishing term of A, is called
the order of A. We denote it by ord(A). We let the order of 0 be ∞.

The units in K[[t]] are exactly the power series of order 0, i.e., those having
a nonzero constant term. If ord(A) = 0, then A−1 can be computed by an
obvious recursive process, in which linear equations over K have to be solved.
It is easy to check whether a power series is a multiple of another one: A | B
if and only if ord(A) ≤ ord(B).
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In the sequel we will need power series with fractional exponents. So we
will consider Laurent series K((t1/n)) in t1/n, n ∈ N. In fact, the union of all
these fields of Laurent series with denominator n, for n ∈ N, is again a field
(see Exercise 2.24).

Definition 2.67. The field K � t � :=
⋃∞

n=1 K((t1/n)) is called the field of
formal Puiseux series. The order of a nonzero Puiseux series A is the smallest
exponent of a term with nonvanishing coefficient in A. The order of 0 is ∞.

Note that Puiseux series are power series with fractional exponents. In ad-
dition, every Puiseux series has a bound n for the denominators of exponents
with nonvanishing coefficients.

The substitution of constants for the indeterminate x in a formal power
series is usually meaningless. This operation only makes sense for convergent
power series in a certain neighborhood of the origin. But we can always sub-
stitute 0 for the variable in a power series A = a0 + a1t + a2t

2 + · · ·, getting
the constant coefficient a0.

It is useful to define the substitution of a power series into another. Let
A, B ∈ K[[t]], A = a0 + a1t + a2t

2 + · · ·, B = b1t + b2t
2 + · · ·, i.e. ord(B) ≥ 1.

Then the substitution A(B) is defined as

A(B) = a0 + a1B + a2B
2 + a3B

3 + · · · =
= a0 + a1b1t + (a1b2 + a2b

2
1)t

2 + (a1b3 + 2a2b1b2 + a3b
3
1)t

3 + · · · .

In order to avoid the problem of substitution of constants we have to request
that ord(B) ≥ 1. The following properties of the substitution operation can
be easily proved.

Lemma 2.68. Let A, B, C ∈ K[[x]], ord(B), ord(C) ≥ 1.

(a) (A(B))(C) = A(B(C)).
(b) If ord(B) = 1 then there exists a power series B′ of order 1, such that

A = (A(B))(B′).
(c) The mapping A −→ A(B) is an endomorphism on K[[x]].
(d) If ord(B) = 1 then the mapping A −→ A(B) is an automorphism of K[[x]]

over K which preserves the order of the elements.

A curve defined over the field K can be considered to have points over
the bigger field K((t)) of Laurent series, i.e. in P2(K((t)) ). Such a point,
not being constant, is called a local parametrization of the curve. P2(K) is
naturally embedded in P2(K((t)) ). P2(K) corresponds to those points (x :
y : z) ∈ P2(K((t)) ), such that u · (x, y, z) ∈ K3 for some u ∈ K((t))∗. These
considerations lead to the following definition.

Definition 2.69. Let C ⊂ P2(K) be a curve defined by the homogeneous poly-
nomial F (x, y, z) ∈ K[x, y, z]. Let A(t), B(t), C(t) be in K((t)) such that

(i) F (A, B, C) = 0, and
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(ii) there is no D(t) ∈ K((t))∗ such that D · (A, B, C) ∈ K3.

Then the point P(t) = (A : B : C) ∈ P2(K((t)) ) is called a (projective) local
parametrization of C.

So, obviously, A, B, C are just one possible set of projective coordinates
for the local parametrization P(t) = (A : B : C). For every D ∈ K((t))∗,
(DA : DB : DC) is another set of projective coordinates for P(t).

Lemma 2.70. Every local parametrization of a projective curve C defined over
K has coordinates (A1 : A2 : A3) with Ai ∈ K[[t]] for i = 1, 2, 3, and the
minimal order of the nonzero components Ai is 0.

Proof. Let (Ã1 : Ã2 : Ã3) be a local parametrization of C. Let h̃ be the minimal
order of the nonzero components Ãi. Let h := −h̃. We set Ai := th · Ãi. Then
(A1 : A2 : A3) satisfies the conditions of the lemma. 	


Definition 2.71. Let P = (A : B : C) be a local parametrization of C with
min{ord(A), ord(B), ord(C)} = 0. Let a, b, c be the constant coefficients of
A, B, C, respectively. Then the point (a : b : c) ∈ P2(K) is called the center of
the local parametrization P.

Since local parametrizations are just points in the projective space over a
bigger field, we can also introduce the notion of affine local parametrization in
the obvious way. Namely, let C be an affine curve, and C∗ the corresponding
projective curve. Let (A∗ : B∗ : C∗) be a projective local parametrization of
C∗. Setting A := A∗/C∗ and B := B∗/C∗ we get

(i) f(A, B) = F (A, B, 1) = 0, and
(ii) not both A and B are in K,

where f defines C and F defines C∗. Then the pair of Laurent series (A, B) is
called an affine local parametrization of the affine curve C.

Let (A∗(t) : B∗(t) : C∗(t)) be a (projective) local parametrization of the
projective curve C∗ corresponding to the affine curve C, such that A∗, B∗, C∗ ∈
K[[t]] and min{ord(A∗), ord(B∗), ord(C∗)) = 0 (cf. Lemma 2.70). If ord(C∗) =
0, then ord(C∗−1) = 0, so if we set A := A∗/C∗, B := B∗/C∗, then (A, B) is
an affine local parametrization of C with A, B ∈ K[[t]], i.e., with center at a
finite affine point. Conversely, every affine local parametrization with center
at a finite affine point has coordinates in K[[t]].

Substituting a nonzero power series of positive order into the coordinates
of a local parametrization yields a parametrization with the same center.

Definition 2.72. Two (affine or projective) local parametrizations P1(t),
P2(t) of an algebraic curve C are called equivalent iff there exists A ∈ K[[t]]
with ord(A) = 1 such that P1 = P2(A).

By Lemma 2.68 we see that this equivalence of local parametrizations is
actually an equivalence relation.
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Theorem 2.73. In a suitable affine coordinate system any given local para-
metrization is equivalent to one of the type(

tn, a1t
n1 + a2t

n2 + a3t
n3 + · · ·

)
,

where 0 < n, and 0 < n1 < n2 < n3 < · · ·.

Proof. We choose the origin of the affine coordinate system to be the center
of the parametrization. This means the parametrization will have the form
(A, B), with

A(t) = tn(a0 + a1t + a2t
2 + · · ·), n > 0,

B(t) = tm(b0 + b1t + b2t
2 + · · ·), m > 0.

At least one of a0, b0 is not 0; w.l.o.g. (perhaps after interchanging the axes)
we may assume a0 �= 0. So now we have to find a power series C(t) of order 1
such that A(C) = tn. This can be done by making an undetermined ansatz for
C(t), and solving the linear equations derived from A(C) = tn. The condition
a0 �= 0 guarantees that these linear equations are solvable. 	


Definition 2.74. If a local parametrization P(t), or one equivalent to it, has
coordinates in K((tn)), for some natural number n > 1, i.e., P(t) = P ′(tn)
for some parametrization P ′(t), then P(t) is said to be reducible. Otherwise,
P(t) is said to be irreducible.

The following criterion for irreducibility is proved in [Wal50].

Theorem 2.75. The local parametrization ( tn, a1t
n1 + a2t

n2 + a3t
n3 + · · · ),

where 0 < n, 0 < n1 < n2 < n3 < · · · and ai �= 0, is reducible if and only if
the integers n, n1, n2, n3, . . . have a common factor greater than 1.

Now, we are ready to introduce the concept of a place.

Definition 2.76. An equivalence class of irreducible local parametrizations of
the algebraic curve C is called a place of C. The common center of the local
parametrizations is the center of the place.

By abuse of notation, we will denote places of C by any irreducible local
parametrization representative of the equivalence class.

This notion of a place on a curve C can be motivated by looking at the
case K = C. Let us assume that C is defined by f ∈ C[x, y] and the origin O
of the affine coordinate system is a point on C. We want to study the local
parametrizations of C around O. If O is a regular point, we may assume w.l.o.g.
that ∂f

∂y (0, 0) �= 0. Then, by the Implicit Function Theorem (see Appendix B),
there exists a function y(x), analytic in some neighborhood of x = 0, such that

• y(0) = 0,
• f(x, y(x)) = 0, and
• for all (x0, y0) in some neighborhood of (0, 0) we have y0 = y(x0).
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This means that the pair of analytic functions (x, y(x)) parametrizes C
around the origin. The analytic function y(x) defined by f(x, y(x)) = 0 can
be expanded into a Taylor series

∑∞
i=0 cit

i for some ci ∈ C, convergent in
a certain neighborhood of the origin. If we set X(t) = t, Y (t) =

∑∞
i=0 cit

i,
then f(X(t), Y (t)) = 0 and X and Y are convergent around t = 0. Hence,
(X(t), Y (t)) is a local parametrization of C with center at the origin.

If the origin is a singular point of C then, there exist finitely many pairs
of functions (x(t), y(t)), analytic in some neighborhood of t = 0, such that

• x(0) = 0, y(0) = 0,
• f(x(t), y(t)) = 0, and
• for every point (x0, y0) �= (0, 0) on C in a suitable neighborhood of (0, 0)

there is exactly one of the pairs of functions (x(t), y(t)) for which there
exists a unique t0 such that x(t0) = x0 and y(t0) = y0.

Again the pairs of analytic functions can be expanded into power series
(X(t), Y (t)), resulting in local parametrizations of C. These parametrizations
are irreducible because of the claim of uniqueness of t0.

It is important to note that the pairs of analytic functions parametrizing
C are not unique. However, any such collection of parametrizations gives the
same set of points in a suitable neighborhood.

Let (x′(t), y′(t)) be a pair of analytic functions different from (x(t), y(t))
but giving the same set of points in a suitable neighborhood of t = 0. Then
there exists a nonconstant analytic function v(t) with v(0) = 0, such that
(x(t), y(t)) = (x′(v(t)), y′(v(t))). So the two parametrizations are equivalent.

All parametrizations in an equivalence class determine the same set of
points as t varies in a certain neighborhood of 0. So all these parametrizations
determine a branch of C, a branch being a set of all points (x(t), y(t)) obtained
by allowing t to vary within some neighborhood of 0 within which x(t) and
y(t) are analytic. A place on C is an algebraic counterpart of a branch of C.
Places and branches can also be interpreted in terms of valuations rings. For
further details in this direction see [Orz81].

It is not hard to see that the center of a parametrization of C is a point
on C, and the proof is left to the reader. The converse, namely that every
point on C is the center of a least one place of C, follows from the fundamental
theorem of Puiseux about the algebraic closure of the field of Puiseux series.

2.5.2 Puiseux’s Theorem and the Newton Polygon Method

Let us view f ∈ K[x, y] as a polynomial in y with coefficients in the field of
formal Puiseux series K � x �. Computing a power series expansion for y
can be seen as solving a polynomial equation in one variable over the field of
Puiseux series. Puiseux’s Theorem states that a root always exists. In fact, the
proof is constructive and provides a method, the so-called Newton polygon
method, for actually constructing solutions.
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Theorem 2.77 (Puiseux’s Theorem). The field K � x � is algebraically
closed.

A proof of Puiseux’s Theorem can be given constructively by the Newton
polygon method. We describe the Newton polygon method here, and point out
how it solves the construction of solutions of univariate polynomial equations
over K � x �.

We are given a polynomial f ∈ K � x � [y] of degree n > 0, i.e.

f(x, y) = A0(x) + A1(x)y + · · · + An(x)yn, with An �= 0.

If A0 = 0, then obviously y = 0 is a solution. So now let us assume that
A0 �= 0. Let αi := ord(Ai) and ai the coefficient of xαi in Ai, i.e.,

Ai(x) = aix
αi + terms of higher order.

We will recursively construct a solution Y (x), a Puiseux series in x, of the
equation f(x, y) = 0. Y (x) must have the form

Y (x) = c1x
γ1 + c2x

γ2 + c3x
γ3 + · · ·︸ ︷︷ ︸

Y1(x)

,

with cj �= 0, γj ∈ Q, γj < γj+1 for all j. In order to get necessary conditions
for c1 and γ1, we substitute the ansatz Y (x) = c1x

γ1 + Y1(x) for y in f(x, y),
getting

f(x, Y (x)) = A0(x)+A1(x)·(c1x
γ1 +Y1(x))+· · ·+An(x)·(c1x

γ1 +Y1(x))n = 0.

The terms of lowest order must cancel. Therefore there must exist at least
two indices j, k with j �= k and 0 ≤ j, k ≤ n such that

cj
1Aj(x)xjγ1 = cj

1ajx
αj+jγ1 + · · · and ck

1Ak(x)xkγ1 = ck
1akxαk+kγ1 + · · ·

have the same order and this order is minimal. So if we think of the pairs
(i, αi), for 0 ≤ i ≤ n, as points in the affine plane over Q (if Ai(x) = 0 then
αi = ∞ and this point is not contained in the affine plane) then this condition
means that all the points (i, αi) are on or above the line L connecting (j, αj)
and (k, αk). If we set β1 := αj + jγ1, then the points (u, v) on this line L
satisfy v = −β1 − uγ1, i.e., γ1 is the negative slope of L.

A convenient way of determining the possible values for γ1 is to consider
the so-called Newton polytope of f . This is the smallest convex polytope
in the affine plane over Q, which contains all the points (i, αi). Those faces of
the Newton polygon, s.t. all the Pi’s lie on or above the corresponding line,
have possible values for γ1 as their negative slopes.

There can be at most n possible values for γ1. Having determined a
value for γ1, we now take all the points (i, αi) on the line L. They corre-
spond to the terms of lowest order in f(x, Y (x)). So we have to determine a
c1 such that
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αi+iγ1=β1

aic
i
1 = 0.

Since K is algebraically closed, this equation will always have nonzero solu-
tions in K. The possible values for c1 are the nonzero roots of this equation.

So after γ1 and c1 have been determined, the same process is performed
on Y1(x), which must be a root of the equation

f1(x, y1) = f(x, c1x
γ1 + y1) = 0.

Again the Newton polygon may be used to derive necessary conditions on c2

and γ2. However, this time only those lines are considered whose corresponding
negative slope γ2 is greater than γ1.

This recursive process in the Newton polygon method can be iterated until
the desired number of terms is computed, or no further splitting of solutions
is possible.

A detailed proof of the fact, that the Newton polygon method can be
performed on any polynomial f and that it actually yields Puiseux series
(with bounded denominators of exponents) is given in [Wal50].

Now we are ready to see that every point P on an affine curve C has a
corresponding place with center at P . For a proof of the following theorem we
refer to [Wal50], Theorem 4.1 in Chap. 4.

Theorem 2.78. Let f(x, y) be a polynomial in K[x, y], and let C be the curve
defined by f . To each root Y (x) ∈ K � x � of f(x, y) = 0 with ord(Y ) > 0
there corresponds a unique place of C with center at the origin. Conversely, to
each place (X(t), Y (t)) of C with center at the origin there correspond ord(X)
roots of f(x, y) = 0, each of order greater than zero.

If Y (x) is a Puiseux series solving f(x, y) = 0, ord(Y ) > 0, and n is the
least integer for which Y (x) ∈ K((x

1
n )), then we put x

1
n = t, and (tn, Y ) is

a local parametrization with center at the origin. The solutions of f(x, y) of
order 0 correspond to places with center on the y-axis (but different from the
origin), and the solutions of negative order correspond to places at infinity.

Example 2.79. We consider the curve of Example 2.66. So the defining poly-
nomial for C is

f(x, y) = y5 − 4y4 + 4y3 + 2x2y2 − xy2 + 2x2y + 2xy + x4 + x3.

Figure 2.9 shows the Newton polygon of f . There are three segments on the
lower left boundary of the Newton polygon of f . These three segments give
three possible choices for the first exponent γ1 in the Puiseux series expansion
of a solution, namely

γ1 ∈
{

2,
1
2
, 0
}

.
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Fig. 2.9. Newton polygon of f

In all three cases the corresponding equation has nonzero roots. In the case
of γ1 = 2, there are two points on the segment of the Newton polygon, and
the corresponding equation

1 + 2c1 = 0

has the solution c1 = − 1
2 . For γ1 = 1

2 the equation is 4c3
1 + 2c1 = 0, the

nonzero solutions are ± 1√−2
. Finally, for γ1 = 0 the equation is c5

1−4c4
1+4c3

1 =
c3
1(c1 − 2)2 = 0, the nonzero solution is 2.

So we get four possible smallest terms of Puiseux series solving f(x, y) = 0.
Since the field of Puiseux series is algebraically closed, and f is a squarefree
polynomial of degree 5, there must be 2 solutions starting with the same
term. This is the case for the series starting with the term 2x0. Continuing
the process with this series, we would see that in the next step it splits into
the two different solutions

2 +
1 +

√
−95

8
x + · · · and 2 +

1 −
√
−95

8
x + · · · .

We continue to expand the series starting with − 1
2x2. For determining

the next highest exponent γ2 and nonzero coefficient c2, we make the ansatz



2.5 Local Parametrizations and Puiseux Series 59

Y (x) = − 1
2x2 + Y1(x). Now Y1(x) must solve the modified equation

f1(x, y1) = f

(
x,−1

2
x2 + y1

)
= y5

1 −
(

5
2
x2 + 4

)
y4
1 +
(

5
2
x4 + 8x2 + 4

)
y3
1

−
(

5
4
x6 + 6x4 + 4x2 + x

)
y2
1

+
(

5
16

x8 + 2x6 + x4 + x3 + 2x2 + 2x

)
y1 −

1
32

x10 − 1
4
x8 − 1

4
x5.

The Newton polygon of f1 has only one segment with negative slope greater
than γ1 = 2. So we get γ2 = 4 and c2 = 1

8 .
Repeating this process, we finally get the following series expansions for

the solutions of f(x, y) = 0:

Y1(x) = −1
2
x2 +

1
8
x4 − 1

8
x5 +

1
16

x6 +
1
16

x7 + · · · ,

Y2(x) =
√
−2
2

x
1
2 − 1

8
x +

27
√
−2

128
x

3
2 − 7

32
x2 − 4057

√
−2

16384
x

5
2 + · · · ,

Y3(x) = −
√
−2
2

x
1
2 − 1

8
x − 27

√
−2

128
x

3
2 − 7

32
x2 +

4057
√
−2

16384
x

5
2 + · · · ,

Y4(x) = 2 +
1 +

√
−95

8
x +

1425 − 47
√
−95

3040
x2 + · · · ,

Y5(x) = 2 +
1 −

√
−95

8
x +

1425 + 47
√
−95

3040
x2 + · · · .

Y1, Y2, Y3 have order greater than 0, so they correspond to places of C
centered at the origin. Y1 corresponds to the local parametrization

(A1(t), B1(t)) =
(

t, −1
2
t2 +

1
8
t4 − 1

8
t5 +

1
16

t6 +
1
16

t7 + · · ·
)

,

and Y2, Y3 both correspond to the local parametrization

(A2(t), B2(t)) =
(
−2t2, t +

1
4
t2 − 27

32
t3 − 7

8
t4 − 4057

2048
t5 + · · ·

)
.

Y4, Y5 have order 0, and they correspond to parametrizations centered at
(0, 2). Not all the branches corresponding to these parametrizations can be
seen in Fig. 2.7, since they are complex, except for the point (0, 2).

In Definition 4.1, we will define the notion of rational parametrization.
In fact, such rational parametrizations might be called global parametriza-
tions versus the local ones. In the following example we determine a global
polynomial parametrization by the Newton polygon method.



60 2 Plane Algebraic Curves

−4

1 3

−2

0

2

4

y

−1 5x2 4

Fig. 2.10. Real part of C

Example 2.80. Let us consider the curve C in A2(C) defined by

f(x, y) = y2 − x3 + 2x2 − x.

A plot of C around the origin is given in Fig. 2.10. Let us determine the
local parametrizations of C centered at the origin. C has only one branch at
(0, 0), so there should be exactly one place at the origin. We have

A0(x) = −x + 2x2 − x3, α0 = 1, a0 = −1,

A1(x) = 0, α1 = ∞,

A2(x) = 1, α2 = 0, a2 = 1.

The Newton polygon of f is given in Fig. 2.11 (left).
So γ1 = 1

2 , and c1 is the solution of the equation −1+ c2
1 = 0, i.e. c1 = ±1.

We get two different Puiseux series solutions of f(x, y) = 0, starting with

Y1(x) = x
1
2 + · · · , and Y2(x) = −x

1
2 + · · · .

We continue to expand Y1. For determining the next term in Y1, we get the
equation

f1(x, y1) = f(x, x
1
2 + y1) = y2

1 + 2x
1
2 y1 + 2x2 − x3.

The Newton polygon of f1 is given in Fig. 2.11 (right). There is only one seg-
ment with negative slope greater than 1

2 , namely γ2 = 3
2 . The corresponding

equation 2 + 2c2 = 0 yields c2 = −1. So now we have

Y1(x) = x
1
2 − x

3
2 + · · · .
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Fig. 2.11. Newton polygon of f (left), Newton polygon of f1 (right)

For determining the next term, we consider the equation

f2(x, y2) = f(x, x
1
2 − x

3
2 + y2) = y2(y2 + 2x

1
2 − 2x

3
2 ).

Since y2 divides f2(x, y2), y2 = 0 is a solution. Thus,

Y1(x) = x
1
2 − x

3
2 .

In the same way we could expand Y2 further, and we would get

Y2(x) = −x
1
2 + x

3
2 .

So, by setting x
1
2 = ±t in Y1, Y2, respectively, we get the local parametrization

P(t) = (t2, t − t3).

The series in this local parametrization converge for every t, and in fact P(t)
is a global parametrization of C (compare Chap. 4).

2.5.3 Rational Newton Polygon Method

As we have seen above, several different Puiseux series may correspond to
the same parametrization. So we have the problem of identifying equivalent
Puiseux series. On the other hand, if K is a subfield of K and f ∈ K[x, y],
these series may have coefficients in a more complicated algebraic extension
field of K than the corresponding parametrizations. Compare, for instance,
the Puiseux series

Y2(x) =
√
−2
2

x
1
2 − 1

8
x +

27
√
−2

128
x

3
2 − 7

32
x2 − 4057

√
−2

16384
x

5
2 + · · · ,

Y3(x) = −
√
−2
2

x
1
2 − 1

8
x − 27

√
−2

128
x

3
2 − 7

32
x2 +

4057
√
−2

16384
x

5
2 + · · · ,
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of Example 2.79, corresponding to the parametrization (here K = Q)

(A2(t), B2(t)) =
(
−2t2, t +

1
4
t2 − 27

32
t3 − 7

8
t4 − 4057

2048
t5 + · · ·

)
.

The parametrization is obtained from (x, Y2(x)) by setting t =
√−2

2 x1/2 and
from (x, Y3(x)) by setting t = −

√−2
2 x1/2.

D. Duval has developed a refinement of the classical Newton polygon
method, the so-called rational Newton polygon method, which allows to detect
this kind of parameter substitutions at the stage where the corresponding
equation of a segment of the Newton polygon has to be solved [Duv87],
[Duv89]. If the exponents in the equation∑

αi+iγ1=β1

aic
i
1 = 0

have a greatest common divisor q > 1, then∑
αi+iγ1=β1

aic
i
1 =

∑
αi+iγ1=β1

aic̃
i/q
1 for c̃1 = c1

q.

It suffices to solve for c̃1. In terms of parametrizations, this amounts to setting
X(t) = tmq, if X(t) = tm has been computed so far, starting with X(t) =
t. Additionally it is sometimes possible to avoid algebraic extension for the
coefficients if one allows X(t) = λtm.

Applying this idea to the computation in Example 2.79, we see that the
segment corresponding to γ = 1

2 has the equation 4c2 + 2 = 0, which can be
simplified to 4c̃ + 2 = 0. This equation has the root c̃ = − 1

2 . For determining
the corresponding parametrization, it is sufficient to set X(t) = −2t2 and
Y (t) = t. In this way the algebraic extension of the coefficient field Q by

√
−2

can be avoided.
For a detailed complexity analysis of Puiseux series expansion and local

parametrization we refer to [Sta00].

Exercises

2.1. Extend the notion of multiplicity at a point and of tangent to curves
with multiple components. Generalize Theorem 2.4 to curves with multiple
components. Find a curve with multiple components having infinitely many
double points.

2.2. Prove that every reducible curve has singularities.
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2.3. Let A be a symmetric matrix of order 3 over K, and let C be the conic
defined by A; i.e. the conic defined by the polynomial

F (x, y, z) = (x, y, z) · A ·

⎛⎝x
y
z

⎞⎠ .

(i) Prove that C is irreducible if and only if det(A) �= 0.
(ii) Prove that if C is irreducible then C is nonsingular. What are the singu-

larities of C if it is reducible?
(iii) Now, let K = C, and let A be real and regular. Let λ1, λ2 be the eigen-

values of the 2 × 2 principal submatrix of A. Prove that
a. if λ1 · λ2 > 0 then C is a circle iff λ1 = λ2; otherwise it is a ellipse.
b. if λ1 · λ2 < 0 then C is a hyperbola.
c. if λ1 · λ2 = 0 then C is a parabola.

2.4. Compute the singular points of the three-leafed rose; i.e. of the projective
plane curve defined over C by F (x, y, z) = (x2 + y2)2 + rx(3y2 − x2)z, where
r ∈ C, r �= 0. Determine the tangents to the curve at each singularity.

2.5. Let C be the projective plane curve defined by the irreducible form F ∈
K[x, y, z], and let P = (a : b : c) ∈ P2(K) be such that the polynomial

G(x, y, z) = a
∂F

∂x
+ b

∂F

∂y
+ c

∂F

∂z

is not identically zero.

a. If D is the projective curve defined by G, prove that C ∩ D is the set of
singular points of C and those points Q on C at which the line passing
through P and Q is tangent to C at Q. The curve D is called the polar
curve of P with respect to C.

b. Check that, for conics, the notion of polar curve coincides with the ele-
mentary geometric concept of polar line to a conic.

2.6. Let C be the Folium of Descartes, i.e. C is the projective curve defined
over C by x3 + y3−3axyz, where a ∈ R, a �= 0. Obtain the real regular points
on C (i.e. regular points with coordinates over R) at which the tangent to C
passes through the point (4a : 4a : 1).

2.7. Let C be the irreducible projective plane curve defined by the irreducible
form F ∈ K[x, y, z], and suppose that C is not a line. We consider the ring
homomorphism ψ between K[x, y, z] and the coordinate ring Γ (C) such that

ψ(x) =
∂F

∂x
mod I(C), ψ(y) =

∂F

∂y
mod I(C), ψ(z) =

∂F

∂z
mod I(C).

Prove that ker(ψ) is a homogeneous prime ideal.
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2.8. With the notation of Exercise 2.7:

(i) Prove that V (ker(ψ)) is an irreducible curve. This curve is called the dual
curve of C.

(ii) Prove that the dual curve of C is the algebraic closure of the set{(
∂F (P )

∂x
:

∂F (P )
∂y

:
∂F (P )

∂z

)/
P ∈ C is simple

}
.

(iii) Let A be a symmetric regular matrix of order 3 over K, and let C be
the irreducible conic defined by A (see Exercise 2.3). Prove that the dual
curve of C is the conic defined by A−1.

(iv) Compute the dual curve of the cubic x3 + y3 − z3.

2.9. Let C be the tacnode; i.e., C is the curve defined by the polynomial
F (x, y, z) = 2 x4 − 3 x2yz + y2z2 − 2 y3z + y4, and let D be the cubic de-
fined by G(x, y, z) = −1850 xyz + 1850 xy2 − 90 x2z − 3114 x2y + 2617 x3.

(i) Compute the singularities, their multiplicity, tangents, and character of C
and D.

(ii) Compute the multiplicity of intersection at the intersection points of C
and D. Compare to Bézout’s theorem.

2.10. Generalize Lemma 2.9 to curves with multiple components.

2.11. Consider the tacnode curve C defined by y4 − 2y3 + y2 − 3x2y + 2x4.
Let f = xy5 + xy3 and g = 2xy4 + 3x3y2 − 2x5y. Decide whether f = g as
polynomial functions on C.

2.12. Consider the variety V in A3(C) defined by x2 + y2 − 4 = (x − 2)2 +
y2 + z2 − 16 = 0. Let f = 4x + 15z2 and g = 16y2 + z4 − 8. Decide whether
f = g as polynomial functions on V .

2.13. Consider the circle C in A2(C) defined by x2+y2−1 and the polynomial
mapping ϕ(x, y) = (x + y, x − y) from the plane to itself. What is the image
of C under ϕ?

2.14. Consider the circle C in A2(C) defined by x2+y2−1 and the polynomial
mapping ϕ(x, y) = (x + y, x + 2y, x + 3y) from A2(C) to A3(C). What is the
image of C under ϕ? Give defining equations for ϕ(C). Is ϕ(C) irreducible?

2.15. Is the algebraic curve C defined by x6 + 3x4y2 − x2y2 + 3x2y4 + y6 in
A2(C) irreducible?

2.16. Let C be the parabola defined in A2(C) by y−2x2. Determine the poles
of the rational function ϕ(x, y) = 2x

y−2x on C, if any.

2.17. Extract an algorithm for the computation of intersection multiplicity
from Theorem 2.50.
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2.18. Extend the notion of multiplicity of intersection to curves with multiple
components.

2.19. Generalize Theorem 2.50(7) to curves with multiple components.

2.20. Compute the intersection multiplicity of the curves C and D defined by
the polynomials

F (x, y, z) = x3 + y3 − 2xyz,

G(x, y, z) = 2x3 − 4x2y + 3xy2 + y3 − 2y2z

at the intersection points.

2.21. Compute a linear system of quintics generated by six double points; i.e.
generated by 2P1 + 2P2 + 2P3 + 2P4 + 2P5 + 2P6, for some Pi ∈ P2(C).

2.22. Determine an irreducible quintic such that all its singularities are double
points, and the equality in Theorem 2.60 holds.

2.23. Let P = (1 : 1 : 1) and Q = (1 : 0 : 1). Prove that D = 2P + Q is in
3-general position. Compute dim(3, D).

2.24. Prove that the union of all fields of Laurent series with denominator n,
for n ∈ N, is a field.

2.25. Prove that the center of a local parametrization of a plane curve C is a
point on C.

2.26. Consider the local parametrizations of the curve C of Examples 2.66
and 2.79 centered at (0, 2). Find a suitable coordinate system, such that the
parametrization is equivalent to the form in Theorem 2.73.

2.27. Carry out the Newton polygon method for determining the exponents
and coefficients of the first three terms of the solutions Y2, Y3 in Example 2.79.

2.28. Suppose the Newton polygon of the polynomial f(x, y) has a segment
of positive slope such that all the points (i, αi) are on or above this segment.
What does this mean for the corresponding Puiseux series solutions?
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The Genus of a Curve

The genus of a curve is a birational invariant which plays an important
role in the parametrization of algebraic curves (and in the geometry of al-
gebraic curves in general). In fact, only curves of genus 0 can be rationally
parametrized. So in the process of parametrization we will first compute the
genus of the curve C. This will involve an analysis of the singularities of C,
and we will determine the genus as the deficiency between a bound on the
number of singularities and the actual number of singularities of C. But in
order to arrive at a definition of the genus, we first need to consider divisors
on C and their associated linear spaces. We do not want to repeat this classical
development here (for further details see for instance [Ful89] or [Wal50]), but
we give a kind of road map for getting to the definition of the genus and from
there to a method for computing it.

The chapter consists of three sections. In Sect. 3.1 we present the formal
definition of genus. In Sect. 3.2 we see how the genus can be computed by
blowing up the singularities, and in Sect. 3.3 we study the problem of carrying
out symbolically the algorithmic methods in Sect. 3.2

3.1 Divisor Spaces and Genus

In this section we review some standard notions and properties of divisors of
curves. We state the facts without proofs. The reader may consult [LiV00] or
[Ful89] for details. We will also make use of Sect. 2.4.

Let C be a nonsingular irreducible algebraic curve in P2(K), defined by the
homogeneous polynomial F . Consider an element [G] ∈ Γ (C), the coordinate
ring of C, and let D be the curve defined by G. Let P be a point on C. We
define the order of [G] at P w.r.t. C to be

ordP,C([G]) = multP (C,D).

Because of the properties of the intersection multiplicity (compare Theo-
rem 2.50), this definition is independent of the representative G.
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Now consider a nonzero rational function ϕ = G/H on C, G and H having
no common factors. Since ϕ is in the function field of the projective curve C,
the degrees of G and H have to be the same. Let E be the curve defined by H .
By Bézout’s Theorem (see Theorem 2.48), D and E have the same number of
intersections with C. So if we define the order of ϕ at P w.r.t. C to be

ordP,C(ϕ) = ordP,C([G]) − ordP,C([H ]),

then ∑
p∈C

ordP,C(ϕ) = 0,

i.e., ϕ has as many zeros as poles on C (see Exercise 3.2).
In Sect. 2.4 we have introduced the notion of a divisor. Here we focus on

divisors of curves.

Definition 3.1. Let Div(C) be the free abelian group generated by the points
of C; i.e. an element of Div(C) is of the form

D =
∑
P∈C

nP P,

where nP ∈ Z and almost all the nP ’s are zero. The elements of Div(C) are
called divisors of C. Furthermore, the support of D is the set of those points,
whose coefficients are nonzero; i.e.

Supp(D) = {P ∈ C | nP �= 0}.

As we have defined in Section 2.4, a divisor D of C is positive or effective
iff nP > 0 for all P ∈ Supp(D). In this case we write D � 0. Furthermore,
we say D � D′ iff D−D′ � 0. The degree of the divisor D is deg(D) =

∑
nP .

Note that the 0-divisor,
∑

0 · P , is effective.
Let ϕ = G/H be a nonzero rational function on C. Then the following

divisor ÷(ϕ) is generated in a natural way by ϕ:

÷(ϕ) :=
∑
P∈C

ordP,C(ϕ)P.

If we let

÷0(ϕ) :=
∑

ordP,C(ϕ)>0

ordP,C(ϕ)P, the divisor of zeros of ϕ,

÷∞(ϕ) := −
∑

ordP,C(ϕ)<0

ordP,C(ϕ)P, the divisor of poles of ϕ,

then ÷(ϕ) = ÷0(ϕ)−÷∞(ϕ). The 0-divisor is generated by constant rational
functions.

Now we associate a linear space of rational functions with a divisor D.
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Definition 3.2. Let D be a divisor of C. The linear space of D over K is
defined as

L(D) := {ϕ ∈ K(C) | D + ÷(ϕ) � 0}.
By �(D) we denote the dimension of L(D).

If D = D+ − D− for effective divisors D+, D− of disjoint support, then
the condition D + ÷(ϕ) � 0 means that ϕ has zeros of order larger or equal
to D− and poles of order smaller or equal to D+, i.e. ÷0(ϕ) − D− � 0 and
D+ −÷∞(ϕ) � 0.

Riemann’s Theorem connects the degree of divisors to the dimension of
their linear spaces. It will allow us to define the notion of genus of a curve.

Theorem 3.3 (Riemann’s Theorem). There is a constant g (∈ N) de-
pending on C such that �(D) ≥ deg(D) + 1 − g for all divisors D of C.

Definition 3.4. The genus of a nonsingular irreducible curve C is the least
possible value of the constant g in Riemann’s Theorem.

In [Ful89] this theory of divisors and also Riemann’s Theorem are devel-
oped in an analogous way for nonsingular not necessarily plane curves, e.g.,
nonsingular models of plane curves. Roughly speaking, a nonsingular model of
an irreducible plane curve is a nonsingular not necessarily plane curve which
is birationally equivalent to C (see [Ful89] Sect. 7.5 for details). The whole
theory of divisors depends only on the function field of C, so it is invariant
under birational transformations. Therefore, also the genus is a birational in-
variant. This leads to an extension of Definition 3.4 to arbitrary irreducible
plane curves, because every such curve has a nonsingular model.

Definition 3.5. Let C be an irreducible plane curve, and let X be its nonsin-
gular model. The genus of C is the genus of X . We denote it by genus(C).

The genus of a curve C can also be introduced in different ways. So, for
instance, we might view a complex curve as a surface in real 4-space (the
Riemann surface of C), and define the genus of C as the number of topological
handles of this surface. Compare Sect. 9.2 in [BrK86]. In this way we get an
equivalent definition of the notion of genus.

3.2 Computation of the Genus

For computing the genus of an irreducible plane curve, we will apply quadratic
transformations (blow-ups) for birationally transforming the curve into a
curve with only ordinary singularities (see Definition 2.6). For such a curve
the genus can be readily determined by proper counting the singularities.
Alternatively one could apply, for instance, local parametrizations by Puiseux
series (see Sect. 2.5 and [Sta00]).
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Throughout this section and also in subsequent chapters we will denote
by Sing(C) the singular locus of a projective curve C, i.e., if F (x, y, z) is the
homogeneous defining polynomial of C, then

Sing(C) = V

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
(compare Theorem 2.14). In Theorem 2.60 we have proved that for an irre-
ducible projective curve C of degree d we have the bound∑

P∈Sing(C)

multP (C)(multP (C) − 1) ≤ (d − 1)(d − 2)

on the multiplicities of singular points.
This bound is actually sharp. Every irreducible conic achieves this bound,

and also every irreducible cubic having a double point. As we will see later,
the curves achieving this bound can be rationally parametrized; i.e., they are
birationally equivalent to a line. Such curves are of central importance in
the field of computer aided geometric design (CAGD). Curves achieving this
bound are, in fact, curves of genus 0. Moreover, if a curve C has only ordinary
singularities, then the difference between this bound and the actual number of
singularities on C is basically the genus of C (actually 2 · genus(C)), as proved
for instance in [Ful89] Sect. 8.3. This gives us a good computational method
for determining the genus of a curve.

Theorem 3.6. Let C be a curve with only ordinary singularities, and let d be
the degree of C. Then

genus(C) =
1
2

⎡⎣(d − 1)(d − 2) −
∑

P∈Sing(C)

multP (C)(multP (C) − 1)

⎤⎦ .

Nonordinary singularities have to be treated specially in the genus formula.
In some sense, which will be made precise below, a nonordinary singularity
might have other singularities in its “neighborhood,” which have to be counted
properly in the genus formula. The analysis of such neighborhoods is the
topic of the field of resolution of singularities (cf. [Abh66], [Zar39]). Here
we treat only a specific subproblem in the resolution of curve singularities,
namely the determination of the so-called neighboring singularities and their
multiplicities.

More precisely, the plan is the following: since the genus of a curve is
invariant under birational transformation (compare the remark after Defi-
nition 3.4), we show that there is a sequence of birational transformations
Q = (Q1, . . . ,Qn) such that

C = C0 −→Q1 C1 −→Q2 · · · −→Qn Cn,
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where Cn has only ordinary singularities. So, no matter which sequence Q we
take, we get genus(C) = genus(Cn).

The problem with nonordinary singularities is that they have coinciding
tangents, i.e., multiple tangents. We will resolve these multiple tangents by
“blowing up” the singularity into a line. Then the tangents at the singularity
correspond to points on this line. A multiple tangent will correspond to a
multiple point on the blow-up. This point will also have to be properly counted
in the genus formula. Now this multiple point, a “neighboring singularity,” can
be investigated further. If it is ordinary, then the process stops, and we have
“resolved” the nonordinariness of this singularity. Otherwise the process is
continued with the next transformation. It can be shown that after finitely
many such blow-ups every nonordinary singularity can be resolved.

We can achieve the blow-ups by quadratic transformations of the plane.
These quadratic transformations are special birational maps of the projective
plane onto itself, so-called Cremona transformations.

Definition 3.7. The transformation Q of the projective plane P2(K) defined
by x′ = yz, y′ = xz, z′ = xy, is called the standard quadratic transformation
or standard Cremona transformation. For any change of coordinates T we
call Q ◦ T a quadratic transformation.

For the special points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) the quadratic
transformation is not defined. These points are called the fundamental points
of the transformation. Every point lying on one of the lines x = 0, y = 0 or
z = 0 is sent to the point (1 : 0 : 0), (0 : 1 : 0) or (0 : 0 : 1), respectively.
These lines are called the irregular lines of the transformation. One can easily
prove that this transformation defines a one to one correspondence between
points of P2(K) not on irregular lines. So the quadratic transformation is a
birational map between P2(K) and itself. In fact, Q is its own inverse, as we
can see from

Q(Q(x : y : z)) = (xzxy : yzxy : yzxz) = (x : y : z).

Now we study the action of quadratic transformations on an irreducible pro-
jective curve.

Definition 3.8. Let the projective curve C be defined by the homogeneous poly-
nomial F (x, y, z). Then the polynomial G(x, y, z) = F (yz, xz, xy) is called the
algebraic transform of F . If G(x, y, z) = H(x, y, z)F ′(x, y, z), where H(x, y, z)
is a product of powers of x, y, z, and F ′ is not divisible by any x, y, z, we say
that F ′ is the quadratic transform of F . We will also say that the curve C′

defined by F ′ is the quadratic transform of C.

The following theorem, taken from Sect. 7.4 of [Wal50], gives a collection
of effects of a quadratic transformation on the singularities of a curve. For
this purpose, in the sequel, when we speak of nonfundamental intersections of
a curve with an irregular line, we mean intersection points different from the
fundamental points.
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Theorem 3.9. Let C be a projective curve of degree d defined by F and having
the fundamental points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) as points of
multiplicity r1, r2 and r3, respectively. Let F ′ be the quadratic transform of F
and C′ the curve defined by F ′. Then if no tangent at any of the fundamental
points is an irregular line, the following holds:

(1) ThedegreeofF ′ is2d−r1−r2−r3 andF ′(x, y, z) = F (yz, xz, xy)/xr1yr2zr3 .
Furthermore, if F (x, y, z) = fd(x, y) + · · · + fr3(x, y)zd−r3, then

F ′ = xd−r3−r1yd−r3−r2fr3 + · · · + zd−r3−1x1−r1y1−r2fd−1

+ zd−r3x−r1y−r2fd.

(2) There is a one to one correspondence, preserving multiplicities, between
the tangents to C at (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) and the
nonfundamental intersections of C′ with the irregular lines x = 0, y = 0,
and z = 0, respectively.

(3) An r–fold point of C not on an irregular line is transformed into an r–fold
point on C′, and the tangents at these two points correspond in multiplicity.
In particular, the character of the r–fold point is preserved.

(4) C′ has multiplicity d−r2−r3, d−r1−r3, d−r1−r2 at (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1), respectively, the tangents being distinct from the irregular lines
and corresponding to the nonfundamental intersections of C with x = 0,
y = 0, z = 0, respectively.

Let us clarify Statement (2) in this theorem. Let P be one of the fundamen-
tal points, say P = (0 : 0 : 1), then F (x, y, z) = fd(x, y)+ · · ·+ fr3(x, y)zd−r3.
Let the form fr3 factor as

fr3 = (a1x − b1y)�1 · · · (asx − bsy)�s .

Then the nonfundamental intersections of C′ with the irregular line z = 0 are
{Pi = (bi : ai : 0)}i=1,...,s (i.e., these intersections correspond to the tangents
of C at P ). To prove this, note that, by Statement (1), the quadratic transform
of F satisfies

F ′(x, y, 0) = xd−r1−r3yd−r2−r3fr3(y, x),

and therefore the nonfundamental intersections are given by the factors of
fr3(x, y).

Observe that the singularities introduced at the fundamental points (com-
pare Theorem 3.9 (4)) are ordinary, if the nonfundamental intersections of C
with the irregular lines are simple points.

Now we could proceed in the following way for obtaining this sequence
of quadratic transformations resolving the singularities of a given irreducible
curve C. The method consists in recursively “blowing up” C at the nonordinary
singularities, i.e.:
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(1) Choose a nonordinary singularity P of C. Choose a coordinate system (i.e.,
apply a linear change of coordinates) such that the singularity P is moved
to (0 : 0 : 1), none of its tangents is an irregular line, and no other point
on an irregular line is a singular point on C.

(2) Apply the standard quadratic transformation to C, getting the transform
curve C′. Outside of the irregular lines, this transform preserves the mul-
tiplicity of points and their tangents. New ordinary singularities might be
created at the fundamental points. The new curve C′ might have singu-
larities, also nonordinary ones, on the irregular line z = 0.

(3) Apply steps (1) and (2) recursively to C′, until no nonordinary singularity
is left.

This method selects a coordinate system, and also the order in which the
nonordinary singularities of the curve are moved to the fundamental points.
One can prove (compare [Ful89], Sect. 7.4) that independently of these selec-
tions, the method always achieves an irreducible curve having only ordinary
singularities in a finite number of steps. In the sequel, when we will speak
about finite sequences of quadratic transformations reducing a given curve,
we will assume that these sequences are obtained by the preceding method.

For the purpose of describing this blowing-up process in more detail, we
introduce the concept of neighboring points. Let C be the irreducible curve
of degree d defined by F (x, y, z), and Q = (Q1, . . . ,Qn) a finite sequence
of quadratic transformations constructed as it has been described above and
reducing C to a curve which has only ordinary singularities. We adopt the
convention that Qi represents the composition of the quadratic transforma-
tion with a suitable change of the coordinate system that moves one of the
singularities to a fundamental point. Let us also assume that Q generates the
sequence of irreducible curves

C = C0 −→Q1 C1 −→Q2 · · · −→Qn Cn,

where Ci+1 is the quadratic transform obtained from Ci by Qi+1, for 0 ≤ i ≤
n−1. Given an r–fold point P on C, suppose that during the process described
by Q the point P has not been translated to a fundamental point till the
action of the ith quadratic transformation. Then the first neighborhood of P
with respect to Q is defined as the set of all the nonfundamental intersections
of the curve Ci+1 with the irregular line z = 0, assuming that P was moved
to (0 : 0 : 1) by the according change of coordinates. Similarly, we take the
nonfundamental intersections of Ci+1 with x = 0 or y = 0 if P was translated
to (1 : 0 : 0) or (0 : 1 : 0), respectively. The points in the first neighborhood
of P with respect to Q are called the neighboring points of P at its first
neighborhood. Using the fact that every neighboring point P ′ of P at its first
neighborhood is a point on Ci+1, we define the multiplicity and the character
of P ′ as the multiplicity and character of P ′ as a point on Ci+1. Similarly, if
{P ′

1, . . . , P
′
s} is the first neighborhood of P with respect to Q, we get the second

neighborhood of P with respect to Q as the union of the first neighborhoods
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of P ′
k, k = 1, . . . , s. The points in the second neighborhood of P with respect

to Q are called the neighboring points of P at its second neighborhood. The
multiplicity and character of points at the second neighborhood are defined
in a way analogous to the one for points in the first neighborhood. But, one
must realize that now it may happen that not all the neighboring points are
lying on the same curve. These notions are easily extended to neighborhoods
of arbitrarily high order. In general, we will call any point in one of the
neighborhoods of P a neighboring point of P . The neighboring points of P
with multiplicity higher than 1 will be called the singular neighboring points
of P .

Now let us define the neighborhood graph of an irreducible curve.

Definition 3.10. Let C be an irreducible projective plane curve, P ∈ Sing(C).
If P is ordinary, then the neighborhood tree at P consists of the single node P .
If P is nonordinary, then the neighborhood tree at P has P as its root and the
neighborhood trees of the singular neighboring points of P at its first neigh-
borhood as subtrees.

The neighborhood graph of C, denoted by Ngr(C), is the collection of the
neighborhood trees of all the singular points of C.

The neighboring points of simple points are always simple points, and if
P is an ordinary r-fold point its first neighborhood contains exactly r simple
points. Therefore, whenever a neighborhood tree contains an ordinary singu-
lar point P , then the associated branch of the tree terminates in P . So the
neighborhood graph of any curve is finite.

Let us continue using the notation introduced above. That is, C is an
irreducible projective plane curve, Q = (Q1, . . . ,Qn) is a sequence of quadratic
transformations reducing C to a curve with only ordinary singularities, and
C = C0, . . . , Cn is the sequence of curves generated by Q. Let di denote the
degree of Ci, Si = Sing(Ci), and Ni = Ngr(Ci). Also, for simplicity, when we
work with a point P in either Si or Ni we will denote by mP its multiplicity
on the corresponding curve.

Theorem 3.11. Let C, Ci, Si, Ni be as above.

(1) genus(C) = 1
2 · [(dn − 1)(dn − 2) −∑P∈Sn

mP (mP − 1)].

(2) For every i, 0 ≤ i < n,

(di−1)(di−2)−
∑

P∈Ni

rP (rP −1) = (di+1−1)(di+1−2)−
∑

P∈Ni+1

rP (rP −1).

(3) genus(C) = 1
2 · [((d − 1)(d − 2) −∑P∈N0

mP (mP − 1)].

Proof. (1) The r.h.s. is equal to genus(Cn), since Cn has only ordinary singu-
larities. Cn is birationally equivalent to C, so genus(C) = genus(Cn).
(2) Let Si = {P1, P2, P3, . . . , Ps}, where P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 =
(0 : 0 : 1). By abuse of notation we include all the fundamental points in Si,
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R3R2R1PsP4N(i+1):

PsP4P3P2P1Ni :

Fig. 3.1. Neighborhood graphs

even if they are not singular points of the curve Ci. That, however, does not
affect the count in the equation. The points in Si+1 are the singular neigh-
boring points of P1, P2, P3 at their first neighborhood, the transformed points
Qi+1(Pk) of Pk, 4 ≤ k ≤ s, and possibly three new ordinary singularities
R1, R2, R3 resulting from the fundamental points, compare Theorem 3.9(4).
Again, w.l.o.g. we include Rj in Si+1, even if it is a simple point. The quadratic
transformation does not affect the character and multiplicity of Pk, 4 ≤ k ≤ s,
so we identify Pk and Qi+1(Pk), 4 ≤ k ≤ s. The points Ri, 1 ≤ i ≤ 3, do not
have any neighboring singularities. See Fig. 3.1 for a sketch of the neighbor-
hoods.
So the equation is equivalent to

(di−1)(di −2)−
3∑

j=1

mPj (mPj −1) = (di+1−1)(di+1−2)−
3∑

j=1

mRj (mRj −1).

But this follows immediately from the relations

di+1 = 2di −
3∑

j=1

rPj , mRj = di −
3∑

k=1
k �=j

mPk
, 1 ≤ j ≤ 3.

(3) The statement follows immediately from (1) and (2). 	


The method described above for determining a birationally equivalent
curve with only ordinary singularities is a global one. However, the problem
can be solved by local analysis of the curve at the nonordinary singulari-
ties. This results in a computationally better way of determining the genus
of a curve C. In the local method we do not compute the whole sequence
of transform curves of the given curve C. Instead, we act in an equivalent
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way: Let {P1, . . . , Ps} be the set of all the nonordinary singular points of C.
It is clear that for every Pk there always exists a sequence of quadratic trans-
formations QPk

= (Q1,k, . . . ,Qnk,k) reducing C to a curve having only or-
dinary singularities and such that Pk is moved to a fundamental point by
the action of Q1,k. Then, for every Pk, we only compute the sequence QPk

till all the neighboring points of Pk have been determined, that is till an-
other Pk′ is moved to a fundamental point. Let us say that this sequence is
Q∗

Pk
= (Q1,k, . . . ,Qrk,k), rk ≤ nk, and it generates the sequence of curves

C −→Q1,k C1,Pk
−→Q2,k · · · −→Qrk,k Crk,Pk

,

where in general Crk
(Pk) can have nonordinary singularities, but these are not

singular neighboring points of Pk. Then at the end of this process we have

C −→ C1,P1 −→ · · · −→ Cr1,P1 ,
...

C −→ Cs,Ps −→ · · · −→ Crs,Ps .

Theorem 3.12. Let P1, . . . , Ps be the singularities of the irreducible projective
curve C of degree d. Let S = {P1, . . . , Ps}∪N(P1)∪ . . .∪N(Ps), where N(Pk)
is the set of all the neighboring singularities of Pk w.r.t. Q∗

Pk
as above. For

every P ∈ S let mP denote the multiplicity of P in the corresponding curve.
Then

genus(C) =
1
2
[(d − 1)(d − 2) −

∑
P∈S

mP (mP − 1)].

Proof. Taking into account the result stated in Theorem 3.11(3), it is enough
to note that the multiplicity of a neighboring point does not depend on the
reduction process of other singularities. 	


Thus, the genus of an irreducible algebraic plane curve C can be deter-
mined computationally by analyzing the multiplicities of the singularities and
neighboring singularities of C. This analysis can be achieved either by a global
transformation to a curve with only ordinary singularities, or by the local pro-
cess of resolving one nonordinary singularity at a time. We summarize this
result in an algorithm for determining the genus of a curve.

Algorithm GENUS
Given the defining polynomial F ∈ K[x, y, z] of an irreducible projective
curve C of degree d. The algorithm computes g = genus(C).

1. Determine, using the quadratic transformation techniques explained
above, the neighborhood graph N = Ngr(C) of the curve C, computing
also the multiplicity mP of every point P in N .

2. Set g = 1
2 [(d − 1)(d − 2) −

∑
P∈N mP (mP − 1)].

3. Return g.
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Example 3.13. Let C be the quintic over C (see Fig. 3.2) of equation

F (x, y, z) = y2z3 − x5.

We have that
Sing(C) = {(0 : 1 : 0), (0 : 0 : 1)},

where (0 : 1 : 0) is a triple nonordinary point, and (0 : 0 : 1) is a double
nonordinary point. Furthermore, the neighboring graph of C is:

P1 = (0 : 1 : 0) 3-fold nonord. P2 = (0 : 0 : 1) 2-fold nonord.

� �

QP1 QP2

P1,1 = (1 : 1 : 0)
2-fold ord.

(1st neighborhood)
P2,1 = (1 : 1 : 0)

2-fold nonord.

(1st neighborhood)

�

QP2,1

P2,2 = (−2 : 1 : 0) Simple point

(2nd neighborhood)
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where

QP1 = {x = yz, y = xz, z = xy} ◦ {x = x + y, y = z, z = x − y}

QP2 = {x = yz, y = xz, z = xy} ◦ {x = x + y, y = −x + y, z = z}
and

QP2,1 = {x = yz, y = xz, z = xy} ◦ {x = x + y + z, y = y − x, z = y}.

Therefore, genus(C) = 0, and hence C is rational (see Theorem 4.63).
In Example 3.13, we will determine a rational parametrization of C.

3.3 Symbolic Computation of the Genus

In this section we consider the problem of carrying out the computation of the
genus of a curve C in the smallest possible subfield of K. Thus, throughout
this subsection we assume that K is the smallest computable subfield of K
containing the coefficients of the defining polynomial of C, i.e. K is the ground
field of C; see Definition 3.14. In addition, we also assume that L is a subfield
of K such that K ⊂ L ⊂ K. For technical reasons, we assume that deg(C) > 1.
Obviously the genus of a line is 0.

In a direct method one would introduce algebraic extensions of the ground
field K during the computation. However, in [Noe83] M. Noether proved that
the computation can be carried out without ever extending the ground field.
In the following we present a method based on the notion of a family of
conjugate points which allows us to determine the genus of a curve without
directly introducing algebraic numbers in the computations.

Definition 3.14. The ground field of a plane curve C over K is the smallest
subfield of K containing the coefficients of any defining polynomial of C.

We introduce the notion of a family of conjugate points. The basic idea is to
collect points whose coordinates depend algebraically on all conjugate roots of
the same polynomial m(t). This will imply that computations on such families
can be carried out by using only the defining polynomial m(t) of these algebraic
numbers, without ever having to isolate any of the individual roots of m(t).

Definition 3.15. The set of projective points

F = {(p1(α) : p2(α) : p3(α)) | m(α) = 0} ⊂ P2(K)

is called a family of s conjugate points over L if the following conditions are
satisfied:

(1) p1, p2, p3, m ∈ L[t], and gcd(p1, p2, p3) = 1
(2) m is squarefree and deg(m) = s,
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(3) deg(pi) < deg(m) for i = 1, 2, 3,
(4) F contains exactly s different points of P2(K).

We denote such a family by { (p1(t) : p2(t) : p3(t)) }m(t). The polynomial m(t)
is called the generating polynomial of F .

Note that condition (4) in Definition 3.15 is necessary. For instance, the
family F = {(t2 : t2 − 1 : t2 + 1)}t3−t satisfies conditions (1), (2), (3) but
F = {(0 : −1 : 1), (1 : 0 : 2)} contains only two points.

Definition 3.16. We say that a family F of conjugate points over L is a
family of conjugate r-fold points on C over L iff multP (C) = r for all P ∈ F .

A simple way for finding families of conjugate points on C is to intersect
C with a line over L. We consider an example.

Example 3.17. Let C be the quintic over C of equation

F (x, y, z) = −4y2z3 + y4z − 1
3
x2y3 +

8
3
x2z3 − 4xy2z2 + 8xz4 + 4z5 + x2y2z.

Thus, the ground field is Q. Intersecting C with the line x = 0 we get the
family

F1 = {(0 : 1 : t)}2t2−1.

It is easy to check that F1 is a family of 2 double points of C over Q, namely

{(0 : ±
√

2 : 1)}.
Similarly, if we intersect with the line x = y we get a family of five simple
points of C over Q:

F2 = {(1 : 1 : t)}4t5+8t4− 4
3 t3−4t2+2t− 1

3
.

In order to compute with families of conjugate points we need not explic-
itly consider the individual points, but we can instead compute modulo the
generating polynomial. This is shown in the next lemma.

Lemma 3.18. Let F = { (p1(t) : p2(t) : p3(t)) }m(t) be a family of s conjugate
points over L, and let F ∈ K[x, y, z] be the defining polynomial of C. Then the
following statements are equivalent

(1) F is a family of conjugate r-fold points on C over L,
(2) r is the greatest non-negative integer such that all partial derivatives of F

of order less than r vanish at (p1(t) : p2(t) : p3(t)) modulo m(t).

Proof. (2) implies (1) is trivial. In order to prove that (1) implies (2), let G
be any partial derivative of F of order less than r. For every root α of m(t),
let Pα = (p1(α) : p2(α) : p3(α)). Then, since multPα(C) = r, one has that
G(Pα) = 0. Thus m(t) divides G(p1(t), p2(t), p3(t)). On the other hand, since
Pα is an r-fold point C, there exists a partial derivative of F of order r not
vanishing at Pα. Therefore, there exists at least one partial derivative of F of
order r not vanishing at (p1(t), p2(t), p3(t)) modulo m(t). 	
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The important property of families of conjugate points is that they can be
used to generate linear systems of curves without extending the ground field.

Lemma 3.19. Let F be a family of s conjugate points (singular or not) over
a field L, and let k, � ∈ N. Then, L is the ground field of all curves in the
linear system

H
(

k,
∑
P∈F

�P

)
.

Proof. Let H denote the linear system considered in the statement of the
theorem. If H = ∅ the result is trivial. If dim(H) ≥ 0 the result follows from
Lemma 3.18. 	


Our final goal is to compute the genus of C. Thus, first we have to analyze
whether singularities can be structured in families of conjugate points and
afterwards we will have to deal with the neighboring points. For this purpose,
we introduce the following notion (see [FaS90]).

Definition 3.20. We say that the irreducible affine curve C defined by the
polynomial f(x, y) is in regular position w.r.t. x iff

(1) the coefficient of ydeg(C) in f is not zero,

(2) if f(x0, yi) =
∂f

∂x
(x0, yi) = 0 for i = 0, 1 then y0 = y1.

Remarks. (1) Note that condition (1) in Definition 3.20 is equivalent to
(0 : 1 : 0) �∈ C∗ and condition (2) is equivalent to requiring that two
different ramification points (see [Ful89], pp. 265) are not on the same
vertical line; in particular no vertical line contains two singularities of the
curve.

(2) For any irreducible projective curve C, one can always find a suitable
change of coordinates such that C�,z is in regular position. In [FaS90] a
deterministic algorithm for finding such a change of coordinates is given.

(3) The conditions in Definition 3.20 can be checked algorithmically. 	


Lemma 3.21. Let F = {(p1(t) : p2(t) : p3(t))}m(t) be a family of conjugate
r-fold points of C over L. If m(t) is irreducible over L, then all points in F
have the same character (compare Definition 2.6).

Proof. First we observe that all points of F are either affine or points at
infinity. This follows immediately from the irreducibility of m(t) and condition
(3) in Definition 3.15. Let us assume w.l.o.g. that the points in F are affine.
For every root α of m(t), let T (α, x, y, z) be the polynomial in x, y, z defining
the tangents of C at Pα = (p1(α) : p2(α) : p3(α)). Then the character of Pα

depends on the discriminant D(α, y) of T (α, x, y, 1) w.r.t. x being identically
zero or not. Thus, since m(t) is irreducible, the character depends on the
divisibility of D(t, y) by m(t), and therefore all points in F have the same
character. 	
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Theorem 3.22. Let C be an irreducible projective curve such that C�,z is in
regular position w.r.t. either x or y. Then Sing(C) can be decomposed as a
finite union of families of conjugate points over K such that all points in the
same family have the same multiplicity and character.

Proof. Let us assume w.l.o.g. that C�,z is in regular position w.r.t. x, and let
the defining polynomial of C be expressed as

F (x, y, z) = fd(x, y) + · · · + f0(x, y)zd,

where fi is a form of degree i. By Lemma 3.21 it is enough to prove that sin-
gularities can be distributed in conjugate families over K of the same multi-
plicity. We analyze separately the cases of affine singularities and singularities
at infinity.

(1) First we deal with the singularities at infinity. For 1 ≤ i ≤ d, we introduce
polynomials

M i(x, y) = gcd
(

fd,
∂ifd

∂xi
,

∂ifd

∂xi−1y
, . . . ,

∂ifd

∂yi

)
,

Note that linear factors of M i(x, y) correspond to singularities at infinity
of multiplicity at least i + 1. Furthermore, since C�,z is in regular position
w.r.t. x, (0 : 1 : 0) �∈ C∗. Therefore, the singularities at infinity of multi-
plicity at least i+1 are of the form (α : 1 : 0) where α is a root of M i(t, 1).
Thus, if

Mi(t) =
M i(t, 1)

gcd
(

M i(t, 1),
∂M i(t, 1)

∂t

) , Ni(t) =
Mi(t)

Mi+1(t)
,

then the singularities at infinity of multiplicity i + 1 are in the family
{(t : 1 : 0)}Ni(t). Now, for each irreducible factor m(t) of Ni(t) ∈ K[t] over
K, we consider the family

{(t : 1 : 0)}m(t).

Note that this is a family of (i + 1)-fold points on C over K, and its car-
dinality equals the degree of m(t).

(2) For the affine singularities let f(x, y) = F (x, y, 1), and for 1 ≤ i ≤ d let
us consider the polynomials

Bi(x) = gcd
(

resy

(
f,

∂if

∂xi

)
, resy

(
f,

∂if

∂xi−1y

)
, . . . , resy

(
f,

∂if

∂yi

))
,

Bi(x) =
Bi

gcd
(

Bi,
∂Bi

∂x

) , Ai =
Bi

Bi+1
.
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The x-coordinates of the (i+1)-fold affine points of C are exactly the roots
of Ai. Furthermore, since C�,z is in regular position w.r.t. x, for every root
α of Ai the y–coordinate of the corresponding singularity is the unique
solution of {

f(α, y) = 0,
∂f

∂x
(α, y) = 0

}
.

Thus, if we take any irreducible factor m(t) of Ai over K, and L denotes
the extension of K by a root α of m(t), i.e., L = K(α) = K[t]/〈m(t)〉, we
have that

gcd
L[y]

(
f(t, y),

∂f

∂x
(t, y)

)
is linear; say it is b(t)y − a(t).

Therefore, the y-coordinate can be expressed rationally in terms of t.
Summarizing, for every irreducible factor m of Ai over K we get a family
of singularities of multiplicity i + 1 of the form

{(c(t) : a(t) : b(t))}m(t),

where c(t) is the remainder of tb(t) modulo m(t). Let us finally see that
the above family is in fact a family of conjugate points over K. Note that,
by construction, conditions (1),(2) and (3) in Definition 3.15 are satisfied.
In order to check condition (4), let Pα be the point generated by a root α
of m(t), and let us assume that there exist two different roots α, β of m(t)
such that Pα = Pβ . The polynomial b(t) is not identically zero because it
is the leading coefficient of the gcd. Thus, since deg(b) < deg(m) and m
is irreducible, one has that b(α) and b(β) are not zero. Therefore,

Pα = (c(α)/b(α) : a(α)/b(α) : 1) = (α : a(α)/b(α) : 1),

and
Pβ = (c(β)/b(β) : a(β)/b(β) : 1) = (β : a(β)/b(β) : 1).

Hence, α = β. 	


Corollary 3.23. The singularities of an irreducible projective curve with
ground field K can be decomposed as a finite union of families of conjugate
points over K such that all points in the same family have the same multiplicity
and character.

Proof. Let C be an irreducible projective curve with ground field K, and let
L be a change of projective coordinates over K such that L(C)�,z is in regular
position. By Theorem 3.22 the singularities of L(C)�,z can be decomposed as
a finite union of families of conjugate points over K such that all points in the
same family have the same multiplicity and character. Therefore, applying
L−1 to the coordinates of each family we get the result. 	
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Definition 3.24. The decomposition of Sing(C) into families of conjugate
points given in the Corollary 3.23 is called a standard decomposition of the
singular locus of C, and we denote it by D(Sing(C)).

The ideas described in the proof of Theorem 3.22 immediately yield an
algorithm for computing a standard decomposition of the singularities.

Algorithm STANDARD-DECOMPOSITION-
SINGULARITIES
Given the defining polynomial F ∈ K[x, y, z] of a nonlinear irreducible
projective curve C of degree d, the algorithm computes a standard decom-
position SD = D(Sing(C)).

1. Apply a change of projective coordinates L over K such that the affine
version of G(x, y, z) := F (L(x, y, z)) is in regular position w.r.t. x. Set
SD = ∅.

2. Let g(x, y) := G(x, y, 0). For 1 ≤ i ≤ d, and while M i(x, y) is not
constant compute

2.1. M i(x, y) = gcd
(

g,
∂ig

∂xi
,

∂ig

∂xi−1y
, . . . ,

∂ig

∂yi

)
.

2.2. Mi(t) = M i(t, 1)

gcd
(

M i(t, 1),
∂M i(t, 1)

∂t

) , and Ni(t) = Mi(t)
Mi+1(t)

.

2.3. For every Ni(t) and for every irreducible factor m(t) of Ni(t) over
K do

SD = SD ∪ {L−1((t : 1 : 0))}m(t).

3. Let f(x, y) = G(x, y, 1). For 1 ≤ i ≤ d, and while Bi(x, y) is not
constant compute

3.1. Bi(x) = gcd
(

resy

(
f,

∂if

∂xi

)
, resy

(
f,

∂if

∂xi−1y

)
, . . . , resy

(
f,

∂if

∂yi

))
3.2. Bi(x) = Bi

gcd
(

Bi,
∂Bi

∂x

) , and Ai(x) =
Bi

Bi+1
.

3.3. For every Ai and for every irreducible factor m(t) of Ai(t) over K

do

3.3.1. Compute gcd
L[y]

(
f(t, y),

∂f

∂x
(t, y)

)
:= b(t)y − a(t) where L is

the extension of K by a root α of m(t).
3.3.2. Let c(t) be the remainder of tb(t) by m(t) and

SD = SD ∪ {L−1((c(t) : a(t) : b(t)))}m(t).

4. Return SD.
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Example 3.25. Let C be the irreducible curve defined by

F = 359
12 xy2z2 + 2yz4 + 187

12 y3z2 + xz4 + 67
3 x2yz2 + 117

4 y5 + 9x5 + 6x3z2

+ 393
4 xy4 + 145x2y3 + 115x3y2 + 49x4y .

First we observe that F is in regular position w.r.t. x. In Step 2.2., we get the
polynomials

N1(t) = 3 + 4t + 2t2, N2(t) = 1.

Thus, the singularities of C at infinity are double points and are collected in
the family (see Step 2.3.)

SD1 = {(t : 1 : 0)}3+4t+2t2 .

In Step 3.2. we get the polynomials

A1(t) = (1 + 3t2)(1 + t2), A2(t) = 1.

For m(t) = 1 + 3t2, we obtain the family of double affine points

SD2 = {(t : 0 : 1)}1+3t2 ,

and for m(t) = 1 + t2 we obtain the family of double affine points

SD3 = {(t : −t : 1)}1+t2 .

Thus, all singularities of C are double points and the singular locus of C has
the decomposition

D(Sing(C)) = SD1 ∪ SD2 ∪ SD3.

Therefore, genus(C) = 0.

In the next theorem we prove that neighboring points can also be struc-
tured in families of conjugate points.

Theorem 3.26. Let C be an irreducible projective curve, and let F ∈ D
(Sing(C)) be a conjugate family of nonordinary singularities on C. The sin-
gularities at each neighborhood of F can be decomposed as a finite union of
families of conjugate points over K such that all points in the same family
have the same multiplicity and character as neighboring points.

Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C, let d be the
degree of C, and let

F = {(p1(t) : p2(t) : p3(t))}m(t).

Let Pt = (p1(t) : p2(t) : p3(t)) be a generic element of F . Let L be the
extension of K by a root α of m(t). We apply a change of projective coordinates
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Lt, defined over L, such that Pt is moved to (0 : 0 : 1), no tangent of Lt(C) at Pt

is an irregular line, and no other point on an irregular line is singular on Lt(C).
Let Qt be the composition of Lt with the standard quadratic transformation.
Let F ′(t, x, y, z) be the defining equation of the transformed curve C′

t of C
under Qt, and let T ′(t, x, y) be the squarefree part of F ′(t, x, y, 0) after crossing
out the factors of the form x�

1 and y�
2. Then, the first neighborhood of Pt w.r.t.

Qt is
{(h : 1 : 0)}T ′(t,h,1).

Furthermore, applying the reasoning in step (1) of the proof of Theorem 3.22,
the above family can be decomposed into families of conjugate points over
L such that all elements in the same family have the same multiplicity and
character as points in C′

t. Thus, the first neighborhood of Pt w.r.t. Qt can be
expressed as ⋃

i∈I

{(h : 1 : 0)}mi(t,h),

where within a family multiplicity and character are the same.
Multiple separable field extensions can always be rewritten as simple field

extensions. Hence, the family is now expressed as a family over L.
Repeating this process through all levels of neighborhoods and for all fam-

ilies of nonordinary singularities in D(Sing(C)), we reach a representation, in
families of conjugate points, of the neighborhood graph of C. 	


Definition 3.27. The decomposition of Ngr(C) into families of conjugate
points described in the proof of Theorem 3.26 is called a standard decom-
position of the neighborhood graph of C, and we denote it by D(Ngr(C)).

The ideas described above provide an algorithm for computing a standard
decomposition of the neighborhood graph (see Exercise 3.8).

Exercises

3.1. Prove that L(D) is a linear space over K.

3.2. Let ϕ be a nonzero rational function on a nonsingular algebraic curve, C,
in P2(K). Prove the following statements:

(i) ϕ has as many zeros as poles on C.
(ii) A function ϕ is said to have valence r if it takes every value c ∈ K exactly

r-times. If ϕ is not a constant in K(C) then ϕ has valence equal to the
number of poles of ϕ on C.

(iii) Let φ be a nonzero rational function on C. Then, ÷(ϕ · φ) = ÷(ϕ) +
÷(φ),÷(ϕ−1) = −÷ (ϕ). Hence ÷(ϕ/φ) = ÷(ϕ) −÷(φ).

3.3. Compute the neighboring graph of the curve defined by y+x2−2xy3+y6

and determine its genus.
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3.4. Let f(x, y) define an affine algebraic curve C over the field K and assume
that at least one of the coefficients of f is 1. Let L be the algebraic extension
of the prime field of K by the coefficients of f . Show that L is the ground
field of C.

3.5. Compute a standard decomposition of the singularities of the cardiod

F (x, y, z) = (x2 + 4yz + y2)2 − 16(x2 + y2)z2

and determine the genus of the cardioid.

3.6. Find a curve of degree 8 with all its singularities being triple points, and
collected in only one family.

3.7. Check that the curve defined implicitly by the polynomial

F = 385262029422463 z4x − 13271226736003144 z4y − 51195290397407 z3x2

− 141398711398438 z3y2 − 236012324707 z2x3 − 314714123403525377 z5

+ 47129502337494 x z3y − 526034082419 x2 z2 y + 852907374437 x z2y2

− 567607920 x2 z y2 + 4968341530 x zy3 + 256764427424 z2y3

− 1220539178 x3 z y − 187208023 z x4 + 4861447511 z y4 − 52488x5

− 12754584 y5 − 4723920 x3 y2 − 14171760 x2 y3 − 787320 x4 y

− 21257640 x y4

has six double points in a unique family.

3.8. Describe an algorithm for computing a standard decomposition of the
neighboring graph of an irreducible projective curve.
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Rational Parametrization

Summary. Chapter 4 is the central chapter of the book. In this chapter, we focus
on rational or parametric curves, we study different problems related to this type of
curves and we show how to algorithmically parametrize a rational curve. The chapter
consists of three conceptual blocks. The first one (Sect. 4.1) is devoted to the notion
of rational parametrization of a curve, and to the study of the class of rational curves,
i.e., curves having a rational parametrization. In the second block of the chapter
(Sects. 4.2–4.5), we assume that a rational parametrization of a curve is provided
and we consider various problems related to such a rational parametrization. The
material in this part of the chapter follows the ideas in [SeW01a]. In Sect. 4.2 the
injectivity of the parametrization is studied, in Sect. 4.3 we analyze the number
of times the points on the curve are traced via the parametrization, in Sect. 4.4
the inversion problem for proper parametrizations is studied, and in Sect. 4.5 the
implicitization question is addressed. The third block of the chapter (Sects. 4.6–4.8)
deals with the problem of algorithmically deciding whether a given curve is rational,
and in the affirmative case, of actually computing a rational parametrization of the
curve. The material in this part of the chapter follows the ideas in [SeW91], which
are based on [AbB87a, AbB87b, AbB88, AbB89]. In Sect. 4.6 we study the simple
case of curves parametrizable by lines, in Sect. 4.7 these ideas are extended to the
general case, and in Sect. 4.8, once the theoretical and algorithmic ideas have been
developed, we show how to carry out all these algorithms symbolically.

Alternatively, a parametrization algorithm can be constructed from meth-
ods in [VaH94]. Also, the reader interested in the parametrization problem for
surfaces may see [Sch98a].

Throughout this chapter, unless explicitly stated otherwise, we use the
following notation. K is an algebraically closed field of characteristic 0. We
consider either affine or projective plane algebraic curves. In addition, if C is
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an affine rational curve, and P(t) is a rational affine parametrization of C over
K (see Definition 4.1), we write its components either as

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where χi j(t) ∈ K[t] and gcd(χ1 i, χ2 i) = 1, or as

P(t) = (χ1(t), χ2(t)),

where χi(t) ∈ K(t). Similarly, rational projective parametrizations (see
Definition 4.2) are expressed as

P(t) = (χ1(t), χ2(t), χ3(t)),

where χi(t) ∈ K[t] and gcd(χ1, χ2, χ3) = 1.
Furthermore, associated with a given parametrization P(t) we consider

the polynomials

GP
1 (s, t) = χ1 1(s)χ1 2(t) − χ1 2(s)χ1 1(t), GP

2 (s, t) = χ2 1(s)χ2 2(t) − χ2 2(s)χ2 1(t)

as well as the polynomials

HP
1 (t, x) = x · χ1 2(t) − χ1 1(t), HP

2 (t, y) = y · χ2 2(t) − χ2 1(t).

The polynomials GP
i will play an important role in Sect. 4.3 in deciding

whether a parametrization P(t) is proper by means of the tracing index; i.e.,
in studying whether the parametrization is injective for almost all parameter
values. The polynomials HP

i will be used in Sect. 4.5 for the implicitization
problem.

4.1 Rational Curves and Parametrizations

Some plane algebraic curves can be expressed by means of rational parametri-
zations, i.e., pairs of univariate rational functions that, except for finitely many
exceptions, represent all the points on the curve. For instance, the parabola
y = x2 can also be described as the set {(t, t2) | t ∈ C}; in this case, all
affine points on the parabola are given by the parametrization (t, t2). Also,
the tacnode curve (see Exercise 2.9 and Fig. 4.1) defined in A2(C) by the
polynomial

f(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4

can be represented, for instance, as{(
t3 − 6t2 + 9t − 2

2t4 − 16t3 + 40t2 − 32t + 9
,

t2 − 4t + 4
2t4 − 16t3 + 40t2 − 32t + 9

) ∣∣∣∣ t ∈ C

}
.
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Fig. 4.1. Tacnode curve

In this case, all points on the tacnode are reachable by this pair of rational
functions with the exception of the origin.

However, not all plane algebraic curves can be rationally parametrized,
as we will see in Example 4.3. In this section, we introduce the notion of
rational or parametrizable curves and in this whole chapter we study the
main properties and characterizations of this type of curves. In fact, we will
see that the rationality of curves can be characterized by means of the genus,
and therefore the algorithmic methods described in Chap. 3 will be used.

Definition 4.1. The affine curve C in A2(K) defined by the square-free poly-
nomial f(x, y) is rational (or parametrizable) if there are rational functions
χ1(t), χ2(t) ∈ K(t) such that

(1) for almost all t0 ∈ K (i.e. for all but a finite number of exceptions) the
point (χ1(t0), χ2(t0)) is on C, and

(2) for almost every point (x0, y0) ∈ C there is a t0 ∈ K such that (x0, y0) =
(χ1(t0), χ2(t0)).

In this case (χ1(t), χ2(t)) is called an affine rational parametrization of C.
We say that (χ1(t), χ2(t)) is in reduced form if the rational functions χ1(t),
and χ2(t) are in reduced form; i.e., if for i = 1, 2 the gcd of the numerator
and the denominator of χi is trivial.

Definition 4.2. The projective curve C in P2(K) defined by the square-free
homogeneous polynomial F (x, y, z) is rational (or parametrizable) if there are
polynomials χ1(t), χ2(t), χ3(t) ∈ K[t], gcd(χ1, χ2, χ3) = 1, such that

(1) for almost all t0 ∈ K the point (χ1(t0) : χ2(t0) : χ3(t0)) is on C, and
(2) for almost every point (x0 : y0 : z0) ∈ C there is a t0 ∈ K such that

(x0 : y0 : z0) = (χ1(t0) : χ2(t0) : χ3(t0)).
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In this case, (χ1(t), χ2(t), χ3(t)) is called a projective rational parametriza-
tion of C.

Remarks. (1) By abuse of notation, we will sometimes refer to a pro-
jective parametrization as a triple of rational functions. Of course, we
could always clear denominators and generate a polynomial projective
parametrization.

(2) In Sect. 2.5 we have introduced the notion of local parametrization of a
curve over K, not necessarily rational. Rational parametrizations are also
called global parametrizations, and can only be achieved for curves of genus
0 (see Theorem 4.11). On the other hand, since K(t) ⊂ K((t)), it is clear
that any global parametrization is a local parametrization. Consider the
global rational parametrization P = (χ1, χ2). W.l.o.g. (perhaps after a
linear change of parameter) we may assume that t = 0 is not a root of
the denominators. By interpreting the numerators and denominators of a
global parametrization as formal power series, and inverting the denomi-
nators, we get exactly a local parametrization χ1 = A(t), χ2 = B(t) with
center (χ1(0), χ2(0)), as introduced in Sect. 2.5,

(3) The notion of rational parametrization can be stated by means of rational
maps. More precisely, let C be a rational affine curve and P(t) ∈ K(t)2 a
rational parametrization of C. By Definition 4.1, the parametrization P(t)
induces the rational map

P : A1(K) −→ C
t �−→ P(t),

and P(A1(K)) is a dense (in the Zariski topology) subset of C. Sometimes,
by abuse of notation, we also call this rational map a rational parametriza-
tion of C.

(4) Every rational parametrization P(t) defines a monomorphism from the
field of rational functions K(C) to K(t) as follows (see proof of Theo-
rem 4.9):

ϕ : K(C) −→ K(t)
R(x, y) �−→ R(P(t)). 	


Example 4.3. An example of an irreducible curve which is not rational is the
projective cubic C, defined over C, by x3 +y3 = z3. Suppose that C is rational,
and let (χ1(t), χ2(t), χ3(t)) be a projective parametrization of C. Observe that
not all components of the parametrization can be constant. Then

χ3
1 + χ3

2 − χ3
3 = 0.

Differentiating this equation w.r.t. t we get

3 · (χ′
1χ

2
1 + χ′

2χ
2
2 − χ′

3χ
2
3) = 0.
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W.l.o.g. assume that χ2 is not constant, so χ2 �= 0 and χ′
2 �= 0. χ2

1, χ
2
2, χ

2
3

are a solution of the system of homogeneous linear equations with coefficient
matrix (

χ1 χ2 −χ3

χ′
1 χ′

2 −χ′
3

)
.

By fundamental line operations we reduce this coefficient matrix to(
χ2χ

′
1 − χ′

2χ1 0 χ′
2χ3 − χ2χ

′
3

0 χ2χ
′
1 − χ′

2χ1 χ′
3χ1 − χ3χ

′
1

)
.

So
(χ2

1 : χ2
2 : χ2

3) = (χ2χ
′
3 − χ3χ

′
2 : χ3χ

′
1 − χ1χ

′
3 : χ1χ

′
2 − χ2χ

′
1).

Since χ1, χ2, χ3 are relatively prime, this proportionality implies

χ2
1 | (χ2χ

′
3 − χ3χ

′
2), χ2

2 | (χ3χ
′
1 − χ1χ

′
3), χ2

3 | (χ1χ
′
2 − χ2χ

′
1).

Suppose deg(χ1) ≥ deg(χ2), deg(χ3). Then, we get that the first divisibility
implies 2 deg(χ1) ≤ deg(χ2) + deg(χ3) − 1, a contradiction. Similarly, we see
that deg(χ2) ≥ deg(χ1), deg(χ3) and deg(χ3) ≥ deg(χ1), deg(χ2) are impos-
sible. Thus, there can be no parametrization of C.

Definitions 4.1 and 4.2 are stated for general affine and projective curves,
respectively. However, in the next theorem we show that only irreducible
curves can be parametrizable.

Theorem 4.4. Any rational curve is irreducible.

Proof. We prove this for affine curves, the proof for projective curves is similar
and is left to the reader. Let C be a rational affine curve parametrized by a
rational parametrization P(t). First observe that the ideal of C consists of the
polynomials vanishing at P(t), i.e.,

I(C) = {h ∈ K[x, y] |h(P(t)) = 0} .

Indeed, if h ∈ I(C) then h(P ) = 0 for all P ∈ C. In particular h vanishes
on all points of C generated by the parametrization, and hence h(P(t)) = 0.
Conversely, let h ∈ K[x, y] be such that h(P(t)) = 0. Therefore, h vanishes
on all points of the curve generated by P(t), i.e., on all points of C with
finitely many exceptions. So, since C is the Zariski closure of the image of P ,
it vanishes on C, i.e., h ∈ I(C) (see Appendix B).

Finally, in order to prove that C is irreducible, we prove that I(C) is prime
(see Appendix B). Let h1 · h2 ∈ I(C). Then h1(P(t)) · h2(P(t)) = 0. Thus,
either h1(P(t)) = 0 or h2(P(t)) = 0. Therefore, either h1 ∈ I(C) or h2 ∈ I(C).

	

The rationality of a curve does not depend on its embedding into an affine

or projective plane. So, in the sequel, we may choose freely between projective
and affine situations, whatever we find more convenient.
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Lemma 4.5. Let C be an irreducible affine curve and C∗ its corresponding
projective curve. Then C is rational if and only if C∗ is rational. Furthermore,
a parametrization of C can be computed from a parametrization of C∗ and vice
versa.

Proof. Let
(χ1(t), χ2(t), χ3(t))

be a parametrization of C∗. Observe that χ3(t) �= 0, since the curve C∗ can
have only finitely many points at infinity. Hence,(

χ1(t)
χ3(t)

,
χ2(t)
χ3(t)

)
is a parametrization of the affine curve C.

Conversely, a rational parametrization of C can always be extended to
a parametrization of C∗ by normalizing the z-coordinate to 1 and clearing
denominators. 	


Definition 4.1 clearly implies that associated with any rational plane curve
there is a pair of univariate rational functions over K, not both simultane-
ously constant, which is a parametrization of the curve. The converse is also
true. That is, associated with any pair of univariate rational functions over K,
not both simultaneously constant, there is a rational plane curve C such that
the image of the parametrization is dense in C. The implicit equation of this
curve C is directly related to a resultant. In the following lemma we state
this property. Later, in Sect. 4.5, we give a geometric interpretation to the
integer r that appears in Lemma 4.6, proving that it counts the number
of times the curve is traced when one gives values to the parameter of the
parametrization.

Lemma 4.6. Let C be an affine rational curve over K, f(x, y) its the defining
polynomial, and

P(t) = (χ1(t), χ2(t))

a rational parametrization of C. Then, there exists r ∈ N such that

rest(HP
1 (t, x), HP

2 (t, y)) = (f(x, y))r.

Proof. Let χi(t) = χi 1(t)
χi 2(t) , and let

h(x, y) = rest(HP
1 (t, x), HP

2 (t, y)).

First we observe that HP
1 and HP

2 are irreducible, because χ1(t) and χ2(t)
are in reduced form. Hence HP

1 and HP
2 do not have common factors. There-

fore, h(x, y) is not the zero polynomial. Furthermore, h cannot be a constant
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polynomial either. Indeed: let t0 ∈ K be such that χ1 2(t0)χ2 2(t0) �= 0. Then
HP

1 (t0,P(t0)) = HP
2 (t0,P(t0)) = 0. So h(P(t0)) = 0, and since h is not the

zero polynomial it cannot be constant.
Now, we consider the square-free part h′(x, y) of h(x, y) and the plane

curve C defined by h′(x, y) over K. Let us see that P(t) parametrizes C. For
this purpose, we check the conditions introduced in Definition 4.1.

1. Let t0 ∈ K be such that χ1 2(t0)χ2 2(t0) �= 0. Reasoning as above, we see
that h(P(t0)) = 0. So h′(P(t0)) = 0, and hence P(t0) is on C.

2. Let c1, c2 be the leading coefficients of HP
1 , HP

2 w.r.t. t, respectively. Note
that c1 ∈ K[x], c2 ∈ K[y] are of degree at most 1. For every (x0, y0) on C
such that c1(x0) �= 0 or c2(y0) �= 0 (note that there is at most one point
in K2 where c1 and c2 vanish simultaneously), we have h(x0, y0) = 0.
Thus, since h is a resultant, there exists t0 ∈ K such that HP

1 (t0, x0) =
HP

2 (t0, y0) = 0. Also, observe that χ1 2(t0) �= 0 since otherwise the first
component of the parametrization would not be in reduced form. Similarly,
χ2 2(t0) �= 0. Thus, (x0, y0) = P(t0). Therefore, almost all points on C are
generated by P(t).

Now by Theorem 4.4 it follows that h′(x, y) is irreducible. Therefore, there
exists r ∈ N such that h(x, y) = (h′(x, y))r. 	


Sometimes it is useful to apply equivalent characterizations of the con-
cept of rationality. In Theorems 4.7, 4.9, 4.10, and 4.11 some such equivalent
characterizations are established.

Theorem 4.7. An irreducible curve C, defined by f(x, y), is rational if and
only if there exist rational functions χ1(t), χ2(t) ∈ K(t), not both con-
stant, such that f(χ1(t), χ2(t)) = 0. In this case, (χ1(t), χ2(t)) is a rational
parametrization of C.

Proof. Let C be rational. So there exist rational functions χ1, χ2 ∈ K(t) sat-
isfying conditions (1) and (2) in Definition 4.1. Obviously not both rational
functions χi are constant, and clearly f(χ1(t), χ2(t)) = 0.

Conversely, let χ1, χ2 ∈ K(t), not both constant, be such that f(χ1(t),
χ2(t)) is identically zero. Let D be the irreducible plane curve defined by
(χ1(t), χ2(t)) (see Lemma 4.6). Then C and D are both irreducible, because of
Theorem 4.4, and have infinitely many points in common. Thus, by Bézout’s
Theorem (Theorem 2.48) one concludes that C = D. Hence, (χ1(t), χ2(t)) is a
parametrization of C. 	


An alternative characterization of rationality in terms of field theory is
given in Theorem 4.9. This theorem can be seen as the geometric version of
Lüroth’s Theorem. Lüroth’s Theorem appears in basic text books on algebra
such as [Jac74], [Jac80], or [VaW70]. Here we do not give a proof of this
result.
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Theorem 4.8 (Lüroth’s Theorem). Let L be a field (not necessarily alge-
braically closed), t a transcendental element over L. If K is a subfield of L(t)
strictly containing L, then K is L-isomorphic to L(t).

Theorem 4.9. An irreducible affine curve C is rational if and only if the field
of rational functions on C, i.e. K(C), is isomorphic to K(t) (t a transcendental
element).

Proof. Let f(x, y) be the defining polynomial of C, and let P(t) be a parametr-
ization of C. We consider the map

ϕP : K(C) −→ K(t)
R(x, y) �−→ R(P(t)).

First we observe that ϕP is well-defined. Let p1
q1

, p2
q2

, where pi, qi ∈ K[x, y],
be two different expressions of the same element in K(C). Then f divides
p1q2 − q1p2. In addition, by Theorem 4.7, f(P(t)) is identically zero, and
therefore p1(P(t))q2(P(t))−q1(P(t))p2(P(t)) is also identically zero. Further-
more, since q1 �= 0 in K(C), we have q1(P(t)) �= 0. Similarly q2(P(t)) �= 0.
Therefore, ϕP (p1

q1
) = ϕP (p2

q2
).

Now, since ϕP is not the zero homomorphism, the map ϕP defines an iso-
morphism of K(C) onto a subfield of K(t) that properly contains K. Thus, by
Lüroth’s Theorem, this subfield, and K(C) itself, must be isomorphic to K(t).

Conversely, let ψ : K(C) → K(t) be an isomorphism and χ1(t) =
ψ(x), χ2(t) = ψ(y). Clearly, since the image of ψ is K(t), χ1 and χ2 can-
not both be constant. Furthermore

f(χ1(t), χ2(t)) = f(ψ(x), ψ(y)) = ψ(f(x, y)) = 0.

Hence, by Theorem 4.7, the pair (χ1(t), χ2(t)) is a rational parametrization
of C. 	


Remarks. From the proof of Theorem 4.9 we see that every parametrization
P(t) induces a monomorphism ϕP from K(C) to K(t). We will refer to ϕP as
the monomorphism induced by P(t).

In the following theorem we see how rationality can also be established by
means of rational maps.

Theorem 4.10. An affine algebraic curve C is rational if and only if it is
birationally equivalent to K (i.e., the affine line A1(K)).

Proof. By Theorem 2.38 one has that C is birationally equivalent to K if and
only if K(C) is isomorphic to K(t). Thus, by Theorem 4.9 we get the desired
result. 	


The following theorem states that only curves of genus 0 can be rational.
In fact, all irreducible conics are rational, and an irreducible cubic is rational
if and only if it has a double point.
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Theorem 4.11. If an algebraic curve C is rational then genus(C) = 0.

Proof. By the remark after Definition 3.4 the genus is invariant under bira-
tional maps. Hence the result follows from Theorem 4.10. 	


In Sect. 4.7 (see Theorem 4.63) we will demonstrate that also the converse
is true, namely that every curve of genus 0 is rational.

4.2 Proper Parametrizations

Although the implicit representation for a plane curve is unique, up to
multiplication by nonzero constants, there exist infinitely many different
parametrizations of the same rational curve. For instance, for every i ∈ N,
(ti, t2i) parametrizes the parabola y = x2. Obviously (t, t2) is the parametriza-
tion of lowest degree in this family and it generates every point on the
parabola only once. Such parametrizations are called proper parametrizations
(see Definition 4.12).

The parametrization algorithms presented in this book always output
proper parametrizations. Furthermore, there are algorithms for determining
whether a given parametrization of a plane curve is proper, and if that is not
the case, for transforming it to a proper one. In Sect. 6.1 we will describe these
methods.

In this section, we introduce the notion of proper parametrization and we
study some of their main properties. For this purpose, in the following we
assume that C is an affine rational plane curve, and P(t) is an affine rational
parametrization of C.

Definition 4.12. An affine parametrization P(t) of a rational curve C is
proper if the map

P : A1(K) −→ C
t �−→ P(t)

is birational, or equivalently, if almost every point on C is generated by exactly
one value of the parameter t.

We define the inversion of a proper parametrization P(t) as the inverse
rational mapping of P, and we denote it by P−1.

Lemma 4.13. Every rational curve can be properly parametrized.

Proof. From Theorem 4.10 one deduces that every rational curve C is bira-
tionally equivalent to A1(K). Therefore, every rational curve can be properly
parametrized. 	


The notion of properness can also be stated algebraically in terms of
fields of rational functions. From Theorem 2.38 we deduce that a rational
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parametrization P(t) is proper if and only if the induced monomorphism ϕP
(see Remark to Theorem 4.9)

ϕP : K(C) −→ K(t)
R(x, y) �−→ R(P(t)).

is an isomorphism. Therefore, P(t) is proper if and only if the mapping ϕP is
surjective, that is, if and only if ϕP (K(C)) = K(P(t)) = K(t). More precisely,
we have the following theorem.

Theorem 4.14. Let P(t) be a rational parametrization of a plane curve C.
Then, the following statements are equivalent:

(1) P(t) is proper.
(2) The monomorphism ϕP induced by P is an isomorphism.
(3) K(P(t)) = K(t).

Remarks. We have introduced the notion of properness for affine parametri-
zations. For projective parametrizations the notion of properness can be
introduced in a similar way by requiring the rational map, associated with
the projective parametrization, to be birational. Moreover, if C is an irre-
ducible affine curve and C� is its projective closure, then K(C) = K(C�).
Thus, taking into account Theorem 4.14 one has that the properness of affine
and projective parametrizations are equivalent.

Now, we characterize proper parametrizations by means of the degree of
the corresponding rational curve. To state this result, we first introduce the
notion of degree of a parametrization.

Definition 4.15. Let χ(t) ∈ K(t) be a rational function in reduced form.
If χ(t) is not zero, the degree of χ(t) is the maximum of the degrees of the nu-
merator and denominator of χ(t). If χ(t) is zero, we define its degree to be −1.
We denote the degree of χ(t) as deg(χ(t)). Rational functions of degree 1 are
called linear.

Obviously the degree is multiplicative with respect to the composition of
rational functions. Furthermore, invertible rational functions are exactly the
linear rational functions (see Exercise 4.1).

Definition 4.16. We define the degree of an affine rational parametrization
P(t) = (χ1(t), χ2(t)) as the maximum of the degrees of its rational compo-
nents; i.e.

deg(P(t)) = max {deg(χ1(t)), deg(χ2(t))} .

We start this study with a lemma that shows how proper and improper
parametrizations of an affine plane curve are related.

Lemma 4.17. Let P(t) be a proper parametrization of an affine rational curve
C, and let P ′(t) be any other rational parametrization of C.
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(1) There exists a nonconstant rational function R(t) ∈ K(t) such that
P ′(t) = P(R(t)).

(2) P ′(t) is proper if and only if there exists a linear rational function L(t) ∈
K(t) such that P ′(t) = P(L(t)).

Proof. (1) We consider the following diagram:

A1(K)
P

� C ⊂ A2(K)

P−1 ◦ P ′ P ′

�
�

�
�

�
���

�

A1(K)

Then, since P is a birational mapping, it is clear that R(t) = P−1(P ′(t)) ∈
K(t).
(2) If P ′(t) is proper, then from the diagram above we see that ϕ := P−1 ◦P ′

is a birational mapping from A1(K) onto A1(K). Hence, by Theorem 2.38 one
has that ϕ induces an automorphism ϕ̃ of K(t) defined as:

ϕ̃ : K(t) −→ K(t)
t �−→ ϕ(t).

Therefore, since K-automorphisms of K(t) are the invertible rational functions
(see e.g., [VaW70]), we see that ϕ̃ is our linear rational function.

Conversely, let ψ be the birational mapping from A1(K) onto A1(K)
defined by the linear rational function L(t) ∈ K(t). Then, it is clear that
P ′ = P ◦ ψ : A1(K) → C is a birational mapping, and therefore P ′(t) is
proper. 	


Lemma 4.17 seems to suggest that a parametrization of prime degree is
proper. But in fact, this is not true, as can easily be seen from the parametriza-
tion (t2, t2) of a line. Exercise 4.2 asks whether the line is the only curve for
which primality of a parametrization does not imply properness.

Proper parametrizations can always be normalized such that in every com-
ponent of the parametrization the degrees of the numerator and denominator
agree. This will be useful later.

Lemma 4.18. Every rational curve C has a proper parametrization P(t) =
(χ1(t), χ2(t)) such that if χi(t) is nonzero, then deg(χi1) = deg(χi2).

Proof. By Lemma 4.13 we know that C has a proper rational parametrization,
say P ′(t). Note that if the i−th component of a parametrization is zero, then
it is zero for every parametrization. Let us assume w.l.o.g that χ1 is nonzero.
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By Lemma 4.17, any linear reparametrization of a proper parametrization is
again proper. If 0 is a root of none of the numerator and denominator of χ1(t),
then P ′(1

t ) is still proper and the requirement on the degree is fulfilled. If 0
is a root of any of the numerator or denominator of χ1(t), we consider the
proper parametrization P ′(t+a), where a is not a root of any of the numerator
and denominator. This a always exists since χ1(t) is nonzero. Now, observe
that the numerator and the denominator of the first component of P ′(t + a)
do not vanish at 0. Therefore, we can always reparametrize the initial proper
parametrization into a proper one, for which the degree requirement holds.

	


Before we can characterize the properness of a parametrization via the
degree of the curve, we first derive the following technical property.

Lemma 4.19. Let p(x), q(x) ∈ K[x]� be relatively prime such that at least
one of them is nonconstant. There exist only finitely many values a ∈ K such
that the polynomial p(x) − aq(x) has multiple roots.

Proof. Let us consider the polynomial f(x, y) = p(x)− yq(x) ∈ K[x, y]. Since
gcd(p, q) = 1 and p(x), q(x) are nonzero, the polynomial f is irreducible.
Now we study the existence of roots of the discriminant of f w.r.t. y. Let
g(x, y) = ∂f

∂x . Note that g is nonzero, since at least one of the two polynomials
p(x) and q(x) is not constant. Since deg(g) < deg(f) and f is irreducible, we
get gcd(f, g) = 1. So discrx(f) �= 0. Hence the result follows immediately. 	


Corollary 4.20. Let p(x), q(x) ∈ K[x]� be relatively prime such that at least
one of them is nonconstant, and let R(y) be the resultant

R(y) = resx(p(x) − yq(x), p′(x) − yq′(x)).

Then, for all b ∈ K such that R(b) �= 0, the polynomial p(x) − bq(x) is
squarefree.

The next theorem characterizes the properness of a parametrization by
means of the degree of the implicit equation of the curve.

Theorem 4.21. Let C be an affine rational curve defined over K with defining
polynomial f(x, y) ∈ K[x, y], and let P(t) = (χ1(t), χ2(t)) be a parametriza-
tion of C. Then P(t) is proper if and only if

deg(P(t)) = max{degx(f), degy(f)}.

Furthermore, if P(t) is proper and χ1(t) is nonzero, then deg(χ1(t))=degy(f);
similarly, if χ2(t) is nonzero then deg(χ2(t))=degx(f).

Proof. First we prove the result for the special case of parametrizations having
a constant component; i.e., for horizontal or vertical lines. Afterwards, we
consider the general case. Let P(t) be a parametrization such that one of its
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two components is constant, say P(t) = (χ1(t), λ) for some λ ∈ K. Then the
curve C is the line of equation y = λ. Hence, by Lemma 4.17 (2) and because
(t, λ) parametrizes C properly, we get that all proper parametrizations of C
are of the form (at+b

ct+d , λ), where a, b, c, d,∈ K and ad − bc �= 0. Therefore,
deg(χ1) = 1, and the theorem clearly holds.

Now we consider the general case, i.e., C is not a horizontal or vertical line.
Let P(t) be proper and in reduced form, such that none of its components is
constant. Then we prove that deg(χ2(t))=degx(f), and analogously one can
prove that deg(χ1(t))=degy(f). From these relations we immediately get that
deg(P(t)) = max{degx(f), degy(f)}. Let χ2(t) = χ2 1(t)/χ2 2(t). We define S
as the subset of K containing

(a) all the second coordinates of those points on C that are either not gener-
ated by P(t), or more than once by different values of t,

(b) those b ∈ K such that the polynomial χ2 1(t)− bχ2 2(t) has multiple roots,
(c) lc(χ2 1)/lc(χ2 2), where “ lc” denotes the leading coefficient,
(d) those b ∈ K such that the polynomial f(x, b) has multiple roots,
(e) the roots of the leading coefficient of f(x, y) w.r.t. x.

We claim that S is finite. Indeed: Since P(t) is a proper parametrization,
there are only finitely many values satisfying (a). According to Lemma 4.19
there are only finitely many field elements satisfying (b). The argument for
(c) is trivial. An element b ∈ K satisfies (d) if and only if b is the second
coordinate of a singular point of C or the line y = b is tangent to the curve at
some simple point (see Theorem 2.50(6)). By Theorem 2.10, C has only finitely
many singular points, and y = b is tangent to C at some point (a, b) if (a, b)
is a solution of the system {f = 0, ∂f

∂x = 0}. However, by Bézout’s Theorem
(Theorem 2.48), this system has only finitely many solutions. So only finitely
many field elements satisfy (d). Since the leading coefficient of f(x, y) w.r.t.
x is a nonzero univariate polynomial, only finitely many field elements satisfy
(e). Therefore, S is finite.

Now we take an element b ∈ K \ S and we consider the intersection of C
and the line of equation y = b. Because of condition (e) the degree of f(x, b)
is exactly degx(f(x, y)), say m := degx(f(x, y)). Furthermore, by (d), f(x, b)
has m different roots, say {r1, . . . , rm}. So, there are m different points on
C having b as a second coordinate, namely {(ri, b)}i=1,...,m, and they can be
generated by P(t) because of (a).

On the other hand, we consider the polynomial M(t) = χ2 1(t) − bχ2 2(t).
We note that degt(M) ≥ m, since every point (ri, b) is generated by some
value of the parameter t. But, since every point (a, b) ∈ C is generated exactly
once by P (see condition (a)) and M cannot have multiple roots, we get that
degt(M) = m = degx(f(x, y)). Now, since b is not the quotient of the leading
coefficients of χ2 1 and χ2 2 (because of (c)), we finally see that degx(f(x, y)) =
deg(M) =max{deg(χ2 1), deg(χ2 2)}.

Conversely, let P(t) be a parametrization of C such that deg(P(t)) =
max{degx(f), degy(f)}, and let P ′(t) be any proper parametrization of C.
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Then, by Lemma 4.17(1), there exists R(t) ∈ K(t) such that P ′(R(t)) =
P(t). P ′(t) is proper, so deg(P ′(t)) = max{degx(f), degy(f)} = deg(P(t)).
Therefore, since the degree is multiplicative with respect to composition, R(t)
must be of degree 1, and hence invertible. Thus, by Lemma 4.17(2), P(t) is
proper. 	


The next corollary follow from Theorem 4.21 and Lemma 4.17(1).

Corollary 4.22. Let C be a rational affine plane curve defined by f(x, y) ∈
K[x, y]. Then the degree of any rational parametrization of C is a multiple of
max{degx(f), degy(f)}.
Example 4.23. We consider the rational quintic C defined by the polynomial
f(x, y) = y5+x2y3−3 x2y2+3 x2y−x2. By Theorem 4.21, any proper rational
parametrization of C must have a first component of degree 5, and a second
component of degree 2. It is easy to check that

P(t) =
(

t5

t2 + 1
,

t2

t2 + 1

)
properly parametrizes C. Note that f(P(t)) = 0.

For a generalization of the Theorem 4.21 to the surface case see [PDS05].

4.3 Tracing Index

In Sect. 2.2 we have introduced the notion of degree of a dominant rational
map between varieties (i.e., irreducible algebraic sets). In this section, we
investigate the degree of a special type of rational maps, namely those induced
by rational parametrizations of curves. That is, if P(t) is an affine rational
parametrization of C, we study the degree of the dominant rational map P :
A(K) −→ C: t �→ P(t). Later, in Sect. 4.5, we will see that the degree of the
rational map induced by the parametrization plays a role in the implicitization
problem.

In addition, we will work with the fibres of the map P . We will denote by
FP(P ) the fibre of a point P ∈ C; that is

FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}.

In Theorem 2.43 we have seen that the degree of a dominant rational map
between two varieties of the same dimension is the cardinality of the fiber of
a generic element. Therefore, in the case of the mapping P , this implies that
almost all points of C are generated via P(t) by the same number of parameter
values, and this number is the degree. Thus, intuitively speaking, the degree
measures the number of times the parametrization traces the curve when the
parameter takes values in K. Taking into account this intuitive meaning of
the notion of degree, we will also call the degree of the mapping P the tracing
index of P(t).
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Definition 4.24. Let C be an affine rational curve, and let P(t) be a rational
parametrization of C. Then the tracing index of P(t), denoted by index(P(t)),
is the degree of P : A(K) −→ C, t �→ P(t); i.e., index(P(t)) is a natural
number such that almost all points on C are generated, via P(t), by exactly
index(P(t)) parameter values.

4.3.1 Computation of the Index of a Parametrization

Theorem 4.25. Let P(t) be a parametrization in reduced form. Then for
almost all α ∈ K we have

card(FP(P(α))) = degt(gcd(GP
1 (α, t), GP

2 (α, t))).

Proof. Let χi = χi 1/χi 2, in reduced form, be the i-th component of P(t).
Let S be the set of all α ∈ K such that either P(α) is not defined or both
polynomials GP

1 (α, t) and GP
2 (α, t) have multiple roots. First, we see that

S is a finite set. Indeed: clearly there exist only finitely many values such
that P(t) is not defined. Now, we assume w.l.o.g. that χ1(t) is nonconstant.
Let α be such that χ1 2(α)χ2 2(α) �= 0. If GP

1 (α, t) has multiple roots, then
HP

1 (t, χ1(α)) = 1/χ12(α)GP
1 (α, t) also has multiple roots. But by Lemma 4.19

this can only happen for finitely many values of α. Therefore, S is finite.
Now, let α ∈ K \ S. We observe that every element of the fibre FP(P(α))

is a common root of GP
1 (α, t) and GP

2 (α, t). On the other hand, let β be a root
of gcd(GP

1 (α, t), GP
2 (α, t)). Note that gcd(GP

1 (α, t), GP
2 (α, t)) is defined since

not both components of P(t) are constant, and therefore at least one of the
polynomials GP

i (α, t) is not zero. Let us assume that χ1 is not constant. Then
χ1 2(β) �= 0, since otherwise χ1 2(α)χ1 1(β) = 0. But χ1 2(α) �= 0 and hence
χ1 1(β) = 0, which is impossible because gcd(χ1 1, χ1 2) = 1. Similarly, if χ2 is
not constant, we get that χ2 2(β) �= 0. Note that if some χi is constant the
result is obtained trivially. Thus, β ∈ FP(P (α)). Therefore, since GP

1 (α, t)
and GP

2 (α, t) do not have multiple roots, the cardinality of the fibre is the
degree of the gcd. 	


Theorem 4.25 implies that almost all points (xα, yα) = P(α) ∈ C are
generated more than once if and only if degt(gcd(GP

1 (α, t), GP
2 (α, t))) > 1. In

Lemma 4.27 we will see that the degree of this gcd is preserved under almost
all specializations of the variable s. First we state the following result on gcds.
Let ϕa denote the natural evaluation homomorphism of K[x, y] into K[y], i.e.,
for a ∈ K,

ϕa : K[x, y] −→ K[y]
f(x, y) �−→ f(a, y).

Lemma 4.26. Let f, g ∈ K[x, y]∗, f = f̄ · gcd(f, g), g = ḡ · gcd(f, g). Let
a ∈ K be such that not both leading coefficients of f and g w.r.t. y vanish
at a.
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(1) degy(gcd(ϕa(f), ϕa(g))) ≥ degy(ϕa(gcd(f, g)) = degy(gcd(f, g)).
(2) If the resultant w.r.t. y of f̄ and ḡ does not vanish at a, then

gcd(ϕa(f), ϕa(g)) = ϕa(gcd(f, g)).

Proof. Let h = gcd(f, g). Since not both leading coefficients (w.r.t. y) of f and
g vanish under ϕa, also the leading coefficient of h cannot vanish under ϕa.
So degy(ϕa(h)) = degy(h). Furthermore, ϕa(f) = ϕa(f̄)ϕa(h) and ϕa(g) =
ϕa(ḡ)ϕa(h).
(1) ϕa(h) divides gcd(ϕa(f), ϕa(g)), so

degy(gcd(ϕa(f), ϕa(g))) ≥ degy(ϕa(h)) = degy(h).

(2) We have

gcd(ϕa(f), ϕa(g)) = gcd(ϕa(f̄), ϕa(ḡ)) · ϕa(h).

If gcd(ϕa(f), ϕa(g)) �= ϕa(h), then gcd(ϕa(f̄), ϕa(ḡ)) �= 1. Hence, the resul-
tant w.r.t. y of ϕa(f̄), ϕa(ḡ) is zero. Therefore, since ϕa is a ring homomor-
phism, one obtains that

0 = resy(ϕa(f̄), ϕa(ḡ)) = ϕa(resy(f̄ , ḡ)).

This, however, is excluded by the assumptions. 	


Lemma 4.27. Let P(t) be a rational parametrization in reduced form. Then
for almost all values α ∈ K of s we have

degt(gcd(GP
1 (s, t), GP

2 (s, t))) = degt(gcd(GP
1 (α, t), GP

2 (α, t))).

Proof. We distinguish two cases. First, we assume that no component of P(t)
is constant, so GP

1 (s, t) and GP
2 (s, t) cannot be zero. Thus, if G = gcd(GP

1 , GP
2 )

and GP
1 = GP

1 · G, GP
2 = GP

2 · G, then T (s) = rest(GP
1 , GP

2 ) ∈ K[s] is not
identically zero. Therefore, T (s) and the leading coefficients of GP

1 and GP
2 ,

w.r.t. t, can only vanish at finitely many values. From Lemma 4.26 (2) we get
ϕα(gcd(GP

1 , GP
2 )) = gcd(ϕα(GP

1 ), ϕα(GP
2 )) for almost all α ∈ K.

Second, if any component of the parametrization P(t) is constant, we obvi-
ously have ϕα(gcd(GP

1 , GP
2 )) = gcd(ϕα(GP

1 ), ϕα(GP
2 )).

So, for almost all α ∈ K,

degt(gcd(ϕα(GP
1 ), ϕα(GP

2 )))=degt(ϕα(gcd(GP
1 , GP

2 ))) ≤ degt(gcd(GP
1 , GP

2 )).

On the other hand, by Lemma 4.26 (1), for almost all α ∈ K,

degt(gcd(ϕα(GP
1 ), ϕα(GP

2 ))) ≥ degt(gcd(GP
1 , GP

2 )).

Thus, for almost all α∈K, degt(gcd(ϕα(GP
1 ), ϕα(GP

2 ))) = degt(gcd(GP
1 , GP

2 )).
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Theorem 4.28. Let P(t) be a parametrization in reduced form of the curve C.
Then

index(P(t)) = degt(gcd(GP
1 (s, t), GP

2 (s, t)).

Proof. The result follows from Theorem 4.25, Lemma 4.27, and Theorem 2.43.
	


Now from Lemma 4.26, Theorem 4.28, and the proof of Lemma 4.27 we
get the following corollary.

Corollary 4.29. Let P(t) be a parametrization in reduced form, and let
GP(s, t) = gcd(GP

1 , GP
2 ). We define T (s) = rest(

GP
1

GP ,
GP

2
GP ) if P does not have

constant components, and T (s) = 1 otherwise. Then, for α ∈ K such that
χ1 2(α)χ2 2(α)T (α) �= 0, and such that α is not a common root of the leading
coefficients of GP

1 and GP
2 w.r.t. t, we have

(1) card(FP(P(α))) = degt(G
P (α, t)) = degt(G

P (s, t)),
(2) FP(P(α)) = {β ∈ K |GP(α, β) = 0}. 	


Since a parametrization is proper if and only if it defines a birational map-
ping between the affine line and the curve, it is clear that a parametrization
is proper if and only if its tracing index is 1.

Theorem 4.30. A rational parametrization is proper if and only if its tracing
index is 1, i.e. if and only if degt(gcd(GP

1 , GP
2 )) = 1.

The previous results can be used to derive the following algorithm for
computing the tracing index of a given parametrization. This algorithm can
also be used for checking the properness of a parametrization.

Algorithm TRACING INDEX
Given a rational parametrization P(t) in reduced form, the algo-
rithm computes index(P(t)), and decides whether the parametrization
is proper.

1. Compute the polynomials GP
1 (s, t), GP

2 (s, t).
2. Determine GP(s, t) := gcd(GP

1 , GP
2 ).

3. � := degt(GP (s, t)).
4. If � = 1 then return “P(t) is proper and index(P(t)) = 1” else

return “P(t) is not proper and index(P(t)) = �”

We illustrate the algorithm by an example.

Example 4.31. Let P(t) be the rational parametrization

P(t) =

( (
t2 − 1

)
t

t4 − t2 + 1
,

(
t2 − 1

)
t2

t6 − 3 t4 + 3 t2 − 1 − 2 t3

)
.
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In Step 1 the polynomials

GP
1 (s, t) = s3t4 − st4 + s2t3 − s4t3 − t3 − s3t2 + st2 + s4t − s2t + t + s3 − s

GP
2 (s, t) = s4t6 − s2t6 − s6t4 + 2 s3t4 + t4 − 2 s4t3 + 2 s2t3 + s6t2 − 2 s3t2

−t2 − s4 + s2,

are generated. Their gcd, computed in Step 2, is GP(s, t) = st2 − s2t + t − s.
Thus, index(P(t)) = 2, and therefore the parametrization is not proper.

For a generalization of these results to the surface case see [PDS04].

4.3.2 Tracing Index Under Reparametrizations

In order to study the behavior of the index under reparametrizations we first
prove a technical lemma where we show that, in the case of a single noncon-
stant rational function R(t), the degree w.r.t. t of R(t) is the degree of the
rational map from K to K induced by R(t).

Lemma 4.32. Let R(t) = p(t)/q(t) ∈ K(t) be nonconstant and in re-
duced form. Let R : K → K be the rational map induced by R(t). Then
card(R−1(a)) = deg(R(t)) for almost all a ∈ K.

Proof. Let W0 be the nonempty open subset of K where R is defined, and
let V0 be the subset of points a ∈ K such that p(t)− aq(t) is square-free, and
such that deg(p(t) − aq(t)) = deg(R(t)). From Lemma 4.19 we get that V0

is open and nonempty. Furthermore, since R is nonconstant, R(W0) is also a
nonempty open set (see Exercise 4.5). We consider the set U = V0 ∩ R(W0).
So also U is a nonempty open set. We show that card(R−1(a)) = deg(R(t))
for all a ∈ U . Indeed: take a ∈ U . Then R−1(a) is nonempty. Moreover, since
gcd(p, q) = 1, p(t) − aq(t) is square-free, and deg(p(t) − aq(t)) = deg(R(t)).
Then, card(R−1(a)) = deg(R(t)). 	

Theorem 4.33. Let P(t) be a rational parametrization, and R(t) ∈ K(t)\K.
Then

index(P(R(t))) = deg(R(t)) · index(P(t)).

Proof. The statement follows from Lemmas 2.42 and 4.32. 	

Corollary 4.34. Let C be an affine rational curve defined over K by f(x, y),
and let P(t) = (χ1(t), χ2(t)) be a parametrization of C. If χ1(t) is nonzero then
degy(f) = deg(χ1(t))

index(P) ; similarly if χ2(t) is nonzero then degx(f) = deg(χ2(t))
index(P) .

Proof. By Lemmas 4.13 and 4.17, there exists a proper parametrization
Q(t) = (ξ1(t), ξ2(t)) of C, and R(t) ∈ K(t) \ K such that P(t) = Q(R(t)).
By Theorem 4.33

index(P(t)) = deg(R(t)) · index(Q(t)) = deg(R(t)).

Moreover, deg(χi(t)) = deg(R(t)) · deg(ξi(t)). Now, the result follows from
Theorem 4.21. 	
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In Theorem 4.35 we show the relation between the index of a parametriza-
tion, the degree of a parametrization and the degree of the curve.

Theorem 4.35. Let C be an affine rational curve defined by f(x, y) ∈ K[x, y],
let n = max{degx(f), degy(f)}, and let P(t) be a rational parametrization of
C. Then,

index(P(t)) =
deg(P(t))

n
.

Proof. Because of Lemma 4.13 there exists a proper parametrization P ′(t) of
C, and because of Lemma 4.17 there exists R(t) ∈ K(t) \K such that P(t) =
P ′(R(t)). From Theorem 4.33 and the fact that P ′(t) is proper we get that

index(P(t)) = deg(R(t)) · index(P ′(t)) = deg(R(t)).

Furthermore, since the degree of rational functions under composition is mul-
tiplicative, we arrive at deg(P(t)) = deg(R(t)) · deg(P ′(t)). Thus

index(P(t)) =
deg(P(t))
deg(P ′(t))

.

Applying Theorem 4.21 we see that deg(P ′(t)) = n, which completes the proof.
	


4.4 Inversion of Proper Parametrizations

In Theorems 4.14, 4.21, and 4.30 we have deduced various different criteria for
deciding the properness of a parametrization. Now, we show how to compute
the inverse map of a proper rational parametrization. Let P(t) be a proper
parametrization of an affine rational curve C. Then the inversion problem
consists of computing the inverse rational mapping of the birational map
(compare Definition 4.12)

P : A1(K) −→ C.

More precisely, we want to compute the rational map

ϕ : C −→ A1(K)
(x, y) �−→ ϕ(x, y) ,

satisfying

(1) ϕ ◦ P = idA1(K), i.e. ϕ(P(t)) = t, and
(2) P ◦ ϕ = idC , i.e. χi 2(ϕ)x − χi 1(ϕ) = 0 mod I(C) for i = 1, 2,

where χi 1/χi 2 is the i–th component of P(t). In this case ϕ is the inverse
P−1 we are looking for.
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So the inversion problem is essentially an elimination problem, and there-
fore elimination techniques such as Gröbner bases can be applied. Here we
give a different approach to the problem based on the computation of gcds
over the function field of the curve. A generalization to surfaces of these ideas
can be found in [PDSS02]. For a more general statement of the problem,
namely inversion of birational maps, see [Sch98b]. Alternative methods for
inverting proper parametrizations can be found in [BuD06], [ChG92b], and
[GSA84].

In addition, in order to check whether a rational function is the inverse
of a given parametrization, it is enough to test one the two conditions given
above. A proof of this fact, for the general case of hypersurfaces, can be found
in [PDSS02]. Thus, in the sequel, we will choose freely one of the conditions
to check the rational invertibility of a parametrization.

Lemma 4.36. Let
P : A1(K) −→ C ⊂ A2(K)

t �−→ (χ1(t), χ2(t))

be a rational parametrization of a plane curve C, and let

U : C −→ A1(K)
(x, y) �−→ U(x, y)

be a rational map, where the denominators of U do not belong to the ideal of
C. The following statements are equivalent:

(1) U is the inverse of P.
(2) P(U(P )) = P for almost all points P ∈ C.
(3) U(P(t)) = t for almost all values t ∈ K. 	


First we observe that K(C)[t] is a Euclidean domain. Furthermore, since we
know how to computationally perform the arithmetic in the coordinate ring
Γ (C) (see Sect. 2.2), we know how to compute gcds in K(C)[t]. Moreover, since
I(C) is principal, all computations can be carried out by means of remainders
w.r.t. the defining polynomial. Alternatively we may use the parametrization
P(t) to check whether a class in the quotient ring Γ (C) is zero. Of course, this
second approach avoids the use of the implicit equation but representatives of
the classes are not reduced.

Theorem 4.37. Let P(t) be a proper parametrization in reduced form with
nonconstant components of a rational curve C. Let HP

1 (t, x), HP
2 (t, y) be con-

sidered as polynomials in K(C)[t]. Then,

degt( gcd
K(C)[t]

(HP
1 , HP

2 )) = 1.

Moreover, the single root of this gcd is the inverse of P.
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Proof. Let R(t) = gcdK(C)[t](HP
1 , HP

2 ), and let ϕ be the inverse of P .
Then ϕ is a root of R(t), and therefore degt(R) ≥ 1. Now, since R is the
gcd, there exist polynomials Mi(x, y, t) ∈ K(C)[t] such that HP

i (x, y, t) =
Mi(x, y, t)R(x, y, t) mod I(C). Thus, if f defines C, the above equality can be
written in K[x, y, t] as:

Ni(x, y)HP
i (x, y, t) = M∗

i (x, y, t)S(x, y, t) + A(x, y)f(x, y) ,

where degt(S) = degt(R), and neither Ni nor all coefficients of M∗
i w.r.t. t,

nor the leading coefficient of S w.r.t. t belong to I(C). Thus, substituting
P(s) into this formula and clearing denominators, we see that degt(S) ≤
degt(gcd(GP

1 (s, t), GP
1 (s, t))). Now, by Theorem 4.30, we get that degt(R) =

degt(S) ≤ 1. 	


In the following we outline an algorithm for inverting a proper parametriza-
tion, based on Theorem 4.37.

Algorithm INVERSE
Given an affine rational parametrization P(t), in reduced form, the algo-
rithm decides whether the parametrization is proper, and in the affirma-
tive case it determines the inverse of the mapping P .

1. Apply algorithm tracing index to check whether P(t) is proper. If
P(t) is not proper then return “not proper” and exit.

2. Compute HP
1 (t, x) and HP

2 (t, y).
3. Determine M(x, y, t) = gcdK(C)[t](HP

1 , HP
2 ). By Theorem 4.37

M(x, y, t) is linear in t; let us say

M(x, y, t) = D1(x, y)t − D0(x, y) .

4. Return “the inverse is D0(x,y)
D1(x,y) .”

Example 4.38. Let C be the plane curve over C defined by the rational
parametrization

P(t) =
(

t3 + 1
t2 + 3

,
t3 + t + 1

t2 + 1

)
.

It is easy to check, applying algorithm tracing index, that index(P(t)) = 1
and therefore P(t) is proper. Furthermore, the implicit equation of C is

f(x, y) = −4 x2y3 + 4 xy3 − 2 y3 + 4 x3y2 − 8 x2y2 + 4 xy2 + 3 y2 + 4 x3y
−3 x2y − 11 xy + 13 x3 + 8 x2 + 3 x − 1 .

For a method for computing the implicit equation see Theorem 4.39. In Step
2 we consider the polynomials in K(C)[t]

HP
1 (t, x) = −t3 + xt2 + 3 x − 1, HP

2 (t, y) = −t3 + yt2 − t + y − 1.
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In Step 3, we determine gcdC(C)[t](HP
1 , HP

2 ). The polynomial remainder
sequence of HP

1 and HP
2 is:

R0(t) = −t3 + xt2 + 3 x − 1

R1(t) = −t3 + yt2 − t + y − 1

R2(t) = (x − y)t2 + t + 3x − y

R3(t) = 2 x2−3 yx−1+y2

(−x+y)2
t +

(−2 y−1)x2+(2 y2+2 y−3)x−y2+y

(−x+y)2

R4(t) = 0.

Thus, gcdC(C)[t](H
P
1 , HP

2 )

=

(
2 x2 − 3 yx − 1 + y2

)
(−x + y)2

t +
−y2 + 2 y2x + 2 yx − 3 x − 2 yx2 − x2 + y

(−x + y)2
.

Therefore, the inverse mapping is:

P−1(x, y) = −−y2 + 2 y2x + 2 yx − 3 x − 2 yx2 − x2 + y

2 x2 − 3 yx − 1 + y2
.

4.5 Implicitization

Given an affine rational parametrization P(t), the implicitization problem con-
sists of computing the defining polynomial for the Zariski closure of the set

S = {P(t) | t ∈ K such that P(t) is defined} .

Therefore, the problem consists of finding the smallest algebraic set in A2(K)
containing S. Note also, that if we are given a projective rational parametriza-
tion the implicitization problem is the same since the defining polynomial of
the projective curve is the homogenization of the defining polynomial of the
affine curve.

The problem can be solved by general elimination techniques such as
Gröbner bases ([AdL94] and [CLO97]). This approach is valid not only for
curves but for the more general case of parametric varieties in A(K)n. Also,
for surfaces, different approaches can be found in [BCD03], [ChG92a], [Gon97],
[Kot04], [SGD97]. However, for the case of plane curves, the implicit equation
can be found by means of gcd’s and resultants alone. For instance, apply-
ing Lemma 4.6, the defining polynomial of the curve parametrized by P(t)
can be obtained by computing the square-free part of a resultant. Moreover,
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if properness is guaranteed, Theorem 4.39 shows that the implicit equation
can be computed by a single resultant. This result can be found in [SGD97],
[SeW89], or in [SeW01a]. In addition to these results, in Theorem 4.41 we
see that in this resultant the implicit equation appears to the power of the
tracing index. Similar results on implicitization can be found in [ChG92a] and
[CLO97].

Theorem 4.39. Let P(t) be a proper parametrization in reduced form of a ra-
tional affine plane curve C. Then, the defining polynomial of C is the resultant

rest(HP
1 (t, x), HP

2 (t, y)).

Proof. Let P(t) = (χ1(t), χ2(t)). We know from Theorem 4.21 that, if f(x, y)
is the implicit equation of C, then degy(f) = deg(χ1(t)), and degx(f) =
deg(χ2(t)). The polynomials HP

i can be written as

HP
1 (t, x) = am(x)tm + · · · + a0(x), where m = degy(f),

HP
2 (t, y) = bn(y)tn + · · · + b0(y), where n = degx(f),

where degx(ai) ≤ 1 and degy(bi) ≤ 1.
Let R(x, y) be the resultant of HP

1 and HP
2 with respect to t, and let A be

the Sylvester matrix of HP
1 , HP

2 ∈ K(x, y)[t] seen as univariate polynomials
in t:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

am(x) · · · · · · · · · a0(x)
. . . . . .

am(x) · · · · · · · · · a0(x)
bn(y) · · · · · · · · · b0(y)

. . . . . .
bn(y) · · · · · · · · · b0(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, since only the entries in the first n rows depend on x, and this
dependence on x is linear, degx(R) ≤ n. Analogously, degy(R) ≤ m. On the
other hand, it is known that f(x, y) is a factor of R(x, y) (compare Lemma
4.6). Thus, degx(f) = degx(R) and degy(f) = degy(R). Therefore, up to a
constant, f(x, y) = R(x, y). 	


We finish this section showing how Lemma 4.6, Theorem 4.39, and the
notion of tracing index of a parametrization (compare Definition 4.24) are
related. Basically, the result follows from the next lemma on resultants, which
is valid for an arbitrary field.

Lemma 4.40. Let A, B ∈ L[t] be nonconstant polynomials over a field L:

A(t) = amtm + · · · + a0, B(t) = bntn + · · · + b0, ambn �= 0
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and let R(t) = M(t)
N(t) ∈ L(t) be a nonconstant rational function in reduced

form, such that deg(M − βN) = deg(R) for every root β of A(t)B(t). Let
A′(t) and B′(t) be the polynomials

A′(t) = amM(t)m + am−1M(t)m−1N(t) + · · · + a0N(t)m,

B′(t) = bnM(t)n + bn−1M(t)n−1N(t) + · · · + b0N(t)n.

Then, if b′ is the leading coefficient of B′,

rest(A′, B′) =
(b′)m(deg(R)−deg(N))

b
m deg(R)
n

rest(A, B)deg(R) · rest(B′, N)m.

Proof. Let B decompose over the algebraic closure of L as

B(t) = bn

n∏
i=1

(t − βi).

Since B′(t) = Nn · B(R) one has that

B′(t) = bn

n∏
i=1

(M(t) − biN(t)).

Therefore, since deg(M − βiN) = deg(R) for every i ∈ {1, . . . , n}, we have
deg(B′) = n·deg(R). In particular, since R is nonconstant, B′ is not a constant
polynomial. Similarly we see that deg(A′) = m · deg(R), and that A′ is also a
nonconstant polynomial.

Now, observe that if r = deg(R), every root βi of B generates r roots
{βi,1, . . . , βi,r} of B′(t), namely the roots of M(t)− βiN(t). Moreover, if α is
a root of B′ then N(α) �= 0, since otherwise one gets that M(α) = 0, which
is impossible because of gcd(M, N) = 1. Therefore,

βi =
M(βi,j)
N(βi,j)

= R(βi,j), j = 1, . . . , r.

Let S = rest(A, B), S′ = rest(A′, B′) and S′′ = rest(B′, N). From the relation
A′ = Nm · A(R) we get

S′=(b′)mr
∏

B′(α)=0

A′(α) = (b′)mr
n∏

i=1

r∏
j=1

A′(βi,j) = (b′)mr
n∏

i=1

A(βi)r
r∏

j=1

N(βi,j)m.

Furthermore, if k = deg(N), we have

S = bm
n

n∏
i=1

A(βi), S′′ = (b′)k
n∏

i=1

r∏
j=1

N(βi,j).

Thus,

S′ =
(b′)mr

brm
n

Sr
n∏

i=1

r∏
j=1

N(βi,j)m =
(b′)mr−km

brm
n

Sr · (S′′)m. 	




4.5 Implicitization 111

Theorem 4.41. Let P(t) be a parametrization in reduced form of an affine
rational plane curve C, and let f(x, y) be the defining polynomial of C. Then
for some nonzero constant c we have

rest(HP
1 (t, x), HP

2 (t, y)) = c · (f(x, y))index(P).

Proof. If C is a line parallel to one of the axes, let us say y = a, then P(t) =
(χ1 1(t)

χ1 2(t)
, a). By Lemma 4.32 index(P) = deg(P). Therefore,

rest(HP
1 (t), HP

2 (t))

= rest(x · χ1 2(t) − χ1 1(t), y − a) = (y − a)deg(P(t)) = (y − a)index(P) .

Let us now assume that the irreducible curve C is not a line parallel to
one of the axes, i.e. its defining polynomial depends on both variables x, y.
By Lemma 4.18 there is a proper parametrization of C in which the degrees
of numerator and denominator at each component agree. So let

P ′(t) =
(

ξ1 1(t)
ξ1 2(t)

,
ξ2 1(t)
ξ2 2(t)

)
be a proper parametrization, in reduced form, of C where deg(ξi 1) = deg(ξi 2).
By Lemma 4.17 there exists a nonconstant rational function R(t) such that
P(t) = P ′(R(t)) =

(
χ1 1(t)
χ1 2(t) ,

χ2 1(t)
χ2 2(t)

)
. Let R(t) = M(t)

N(t) be in reduced form. We
consider the polynomials

HP
1 (t) = x · χ1 2(t) − χ1 1(t), HP

2 (t) = y · χ2 2(t) − χ2 1(t),

HP′
1 (t) = x · ξ1 2(t) − ξ1 1(t), HP′

2 (t) = y · ξ2 2(t) − ξ2 1(t).

Note that HP
i , HP′

i ∈ (K[x, y])[t].
We structure the remaining part of the proof in the following way:

(1) we relate the polynomials HP
i and H

P′

i (the result of substituting the
rational function R into HP′

i ),
(2) we extract common factors in these relations,

(3) we derive a nontrivial relation between rest(HP
1 , HP

2 ) and rest(H
P′

1 , H
P′

2 ),
(4) these resultants contain powers of the defining polynomial of C. We express

the exponent as index(P).

So let us deal with step (1). Let

ξi 1(t) =
ni∑

j=0

ai,jt
j , ξi 2(t) =

ni∑
j=0

bi,jt
j , HP′

i (t) =
mi∑
j=0

hi,jt
j , for i = 1, 2.
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Observe that mi = ni. For i = 1, 2, we introduce the new polynomials

ξi 1(t) =
ni∑

j=0

ai,jM(t)jN(t)ni−j, ξi 2(t) =
ni∑

j=0

bi,jM(t)jN(t)ni−j ,

H
P′

i (t) =
mi∑
j=0

hi,jM(t)jN(t)mi−j,

which result from ξi 1, ξi 2, H
P′
i by substituting R(t) for t and clearing

denominators. In order to apply Lemma 4.40 to the nonconstant polynomials
HP′

1 (t), HP′
2 (t) ∈ K(x, y)[t] and the rational function R(t), let us see that

deg(M(t) − βN(t)) = deg(R) for every root β of HP′
1 (t) · HP′

2 (t). Indeed,
if β is such that deg(M(t) − βN(t)) < deg(R) then β ∈ K. Therefore,
either HP′

1 (β) = 0 or HP′
2 (β) = 0 and β ∈ K. This implies that either

gcd(ξ1 1, ξ1 2) �= 1 or gcd(ξ2 1, ξ2 2) �= 1, which is impossible. The application
of Lemma 4.40 leads to

rest(H
P′

1 , H
P′

2 ) =

(b′)m1(deg(R)−deg(N))

h
deg(R)m1
2,m2

· rest(HP′
1 , HP′

2 )deg(R) · rest(H
P′

2 , N)m1 , (4.1)

where b′ is the leading coefficient of H
P′

2 w.r.t. t. In addition, since P(t) =
P ′(R(t)), we have

χj 1(t) · ξj 2(R(t)) = ξj 1(R(t)) · χj 2(t), j = 1, 2.

Thus,
χj 1(t) · HP′

j (R(t)) = ξj 1(R(t)) · HP
j (t), j = 1, 2,

and (note that mj = nj)

χj 1(t)H
P′

j (t) = ξj 1(t)H
P
j (t), χj 1(t)ξj 2(t) = ξj 1(t)χj 2(t), for j = 1, 2.

Next we deal with step (2). We prove that gcd(χ1 1, χ2 1) = gcd(ξ1 1, ξ2 1).
Indeed: from the line above and the fact that the numerators and denom-
inators in the parametrization are relatively prime we deduce χj1|ξj1 and
thus gcd(χ11, χ21)| gcd(ξ11, ξ21). In order to prove that gcd(ξ1 1, ξ2 1) divides
gcd(χ1 1, χ2 1), we first see that gcd(ξj 1, ξj 2) = 1. Let a be a common root
of ξj 1 and ξj 2. Note that by definition of ξj 1 it follows that N(a) �= 0,
since otherwise it would imply that M(a) = 0, which is impossible since
gcd(M, N) = 1. Therefore, taking into account that ξj 1 = Nnj ξj 1(R),
ξj 2 = Nnj ξj 2(R), one deduces that ξj 1(R(a)) = ξj 2(R(a)) = 0 which
is impossible since gcd(ξj 1, ξj 2) = 1. So we have gcd(ξj 1, ξj 2) = 1, from
which we get by a similar reasoning as above that gcd(ξ1 1, ξ2 1) divides
gcd(χ1 1, χ2 1).



4.5 Implicitization 113

As a consequence of this remark we can extract this gcd from the equalities
above and express them as:

χ∗
j 1(t)H

P′

j (t) = ξ
∗
j 1(t)H

P
j (t), χ∗

j 1(t)ξj 2(t) = ξ
∗
j 1(t)χ2 j(t), for j = 1, 2,

where gcd(χ∗
1 1, χ

∗
2 1) = gcd(ξ

∗
1 1, ξ

∗
2 1) = 1.

Now we come to step (3). Observe that

rest(χ∗
1 1H

P′

1 , χ∗
2 1H

P′

2 ) = rest(ξ
∗
1 1H

P
1 , ξ

∗
2 1H

P
2 ).

So,

rest(χ∗
1 1, χ

∗
2 1) · rest(χ∗

1 1, H
P′

2 ) · rest(H
P′

1 , χ∗
2 1) · rest(H

P′

1 , H
P′

2 )

= rest(ξ
∗
1 1, ξ

∗
2 1) · rest(ξ

∗
1 1, H

P
2 ) · rest(HP

1 , ξ
∗
2 1(t)) · rest(HP

1 , HP
2 ).

Let us see that none of the factors involving χ∗
j 1 or ξ

∗
j 1 vanishes. Since χ∗

1 1, χ
∗
2 1

are relatively prime, their resultant does not vanish. Analogously for ξ
∗
j 1.

In order to see that the remaining factors do not vanish, we prove that if
L(t) ∈ K[t]� then gcd(L, HP

i ) = gcd(L, H
P′

i ) = 1; note that since we have
assumed that C is not a line parallel to the axes, none of the polynomial
ξ
∗
i j , χ∗

i j can be zero. Indeed: if the gcd is not trivial there exists a ∈ K

such that, for instance, HP
i (a) = 0. But this implies that gcd(χi 1, χi 2) �= 1,

which is impossible. Also, if H
P′

i (a) = 0, from its definition it follows that

N(a) �= 0. Therefore, since H
P′

i (t) = NmiHP′
i (R(t)), one would deduce that

HP′
i (R(a)) = 0, and hence gcd(ξi 1, ξi 2) �= 1, which is impossible.
Taking into account this fact, the previous equality on resultants can be

written as

T1(y)T2(x)rest(H
P′

1 , H
P′

2 ) = T
′
1(y)T

′
2(x)rest(HP

1 , HP
2 ), (4.2)

where Ti, T
′
i are univariate nonzero polynomials over K. Now, combining (4.1)

and (4.2) we get

T1(y)T2(x)

(
(b′)m1(deg(R)−deg(N))

h
deg(R)m1
2,m2

rest(HP′
1 , HP′

2 )deg(R) · rest(H
P′

2 , N)m1

)

= T
′
1(y)T

′
2(x)rest(HP

1 , HP
2 ).

Finally we come to step (4). If f(x, y) is the implicit equation of C, from
Lemma 4.6 and Theorem 4.39 we see that there exists � ∈ N such that

T1(y)T2(x)

(
(b′)m1(deg(R)−deg(N))

h
deg(R)m1
2,m2

f(x, y)deg(R) · rest(H
P′

2 , N)m1

)

= T
′
1(y)T

′
2(x)f(x, y)�.
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Moreover, since b′, h2,m2 ∈ K[y]∗ and rest(H
P′

2 , N)m1 ∈ K[y]∗ (note that we

have already proved that the gcd of H
P′

2 and a nonzero polynomial depending
only on t is trivial) the above equality can be rewritten as

U1(y)U2(x)f(x, y)deg(R) = U
′
1(y)U

′
2(x)f(x, y)�

for some nonzero polynomials Ui, U
′
i . Therefore, since f(x, y) is irreducible

and it depends on both variables x, y (note that we are assuming that C is not
a line parallel to the axes), we conclude that deg(R) = �. Furthermore, from
Theorem 4.33 we get that

index(P(t)) = index(P ′(R(t)) = deg(R) · index(P ′(t)) = deg(R),

which finishes the proof. 	


4.6 Parametrization by Lines

In this section we treat some straight-forward cases in which we can easily
parametrize implicitly given algebraic curves. This approach will be general-
ized in Sect. 4.7. The basic idea consists in using a pencil of lines through a
suitable point on the curve such that by computing an intersection point of a
generic element of the pencil with the curve one determines a parametrization
of the curve. Of course every line L can be rationally parametrized, in fact
by a pencil of lines with a base point not on L. In the following we will not
consider lines.

4.6.1 Parametrization of Conics

Only irreducible curves can be rational (see Theorem 4.4). So let C be an
irreducible conic defined by the quadratic polynomial

f(x, y) = f2(x, y) + f1(x, y) + f0(x, y),

where fi(x, y) are homogeneous of degree i. Let us first assume w.l.o.g. that
C passes through the origin, so f0(x, y) = 0. Let H(t) be the linear system
H(1, O) of lines through the origin (compare Sect. 2.4), the elements of H(t)
being parametrized by their slope t. So the defining polynomial of H(t) is

h(x, y, t) = y − tx.

Now, we compute the intersection points of a generic element of H(t) and C.
That is, we solve the system {

y = tx
f(x, y) = 0
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w.r.t. the variables x, y. The solutions are

O = (0, 0) and Q(t) =
(
−f1(1, t)

f2(1, t)
,− t · f1(1, t)

f2(1, t)

)
.

Note that f1(x, y) is not identically zero, since C is an irreducible curve. There-
fore, Q depends on the parameter t. Furthermore, f(Q(t)) = 0, so by Theo-
rem 4.7 Q(t) is a parametrization of C.

Theorem 4.42. The irreducible projective conic C defined by the polynomial
F (x, y, z) = f2(x, y) + f1(x, y)z (fi a form of degree i, respectively), has the
rational projective parametrization

P(t) = (−f1(1, t),−tf1(1, t), f2(1, t)).

Corollary 4.43. Every irreducible conic is rational.

So after a suitable change of coordinates, Theorem 4.42 yields a parametr-
ization of the irreducible conic C. We summarize this process in the following
algorithm.

Algorithm CONIC-PARAMETRIZATION.
Given the defining polynomial F (x, y, z) of an irreducible projective conic
C, the algorithm computes a rational parametrization.

1. Determine a point (a : b : 1) ∈ C.
2. g(x, y) = F (x + a, y + b, 1). Let g2(x, y) and g1(x, y) be the homoge-

neous components of g(x, y) of degree 2 and 1, respectively.
3. Return P(t) = (−g1(1, t) + ag2(1, t),−tg1(1, t) + bg2(1, t), g2(1, t)).

Remarks. Note that, because of the geometric construction, the output
parametrization of algorithm conic-parametrization is proper. Moreover,
if P�,z(t) is the affine parametrization of C�,z derived from P(t), and (a : b : 1)
is the point on C used in the algorithm, then its inverse can be expressed as

P−1
�,z(x, y) =

y − b

x − a
. 	


Example 4.44. Let C be the ellipse defined by

F (x, y, z) = x2 + 2y2 − z2.

We apply algorithm conic-parametrization. In Step (1) we take the point
(1 : 0 : 1) on C. Then, performing Step (2), we get g(x, y) = x2 + 2x + 2y2.
So, a parametrization of C is

P(t) = (−1 + 2 t2,−2 t, 1 + 2 t2).
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4.6.2 Parametrization of Curves with a Point of High Multiplicity

Obviously, this approach can be immediately generalized to the situation
where we have an irreducible projective curve C of degree d with a (d−1)–fold
point P . W.l.o.g. we assume that P = (0 : 0 : 1). So the defining polynomial
of C is of the form

F (x, y, z) = fd(x, y) + fd−1(x, y)z ,

where fi is a form of degree i, respectively. Of course, there can be no other
singularity of C, since otherwise the line passing through the two singularities
would intersect C more than d times.

As above, let H(t) be the linear system of lines H(1, O) through O =
(0 : 0 : 1). Intersecting C with an element of H(t) we get the origin as an
intersection point of multiplicity at least d − 1. Reasoning as in the case of
conics, we see that

Q(t) = (−fd−1(1, t),−t · fd−1(1, t), fd(1, t)).

is a rational parametrization of the curve C. We summarize this in the following
theorem.

Theorem 4.45. Let C be an irreducible projective curve of degree d defined
by the polynomial F (x, y, z) = fd(x, y) + fd−1(x, y)z (fi a form of degree i,
resp.), i.e. having a (d − 1)–fold point at (0 : 0 : 1). Then C is rational and a
rational parametrization is

P(t) = (−fd−1(1, t),−tfd−1(1, t), fd(1, t)).

Corollary 4.46. Every irreducible curve of degree d with a (d− 1)-fold point
is rational.

So after a suitable change of coordinates Theorem 4.45 yields a parametr-
ization of the irreducible curve C. We summarize this process in the following
algorithm.

Algorithm PARAMETRIZATION-BY-LINES.
Given the defining polynomial F (x, y, z) of an irreducible projective curve
C of degree d, having a (d − 1)–fold point, the algorithm computes a
rational parametrization of C.

1. If d = 1, then proceed as in Remark to Definition 4.48. If d > 1,
compute the (d−1)–fold point P of C. W.l.o.g., perhaps after renaming
the variables, let P = (a : b : 1).

2. g(x, y) := F (x + a, y + b, 1). Let gd(x, y) and gd−1(x, y) be the homo-
geneous components of g(x, y) of degree d and d − 1, respectively.

3. Return P(t) = (−gd−1(1, t)+agd(1, t),−tgd−1(1, t)+bgd(1, t), gd(1, t)).
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Fig. 4.2. Quartic C

Remarks. Note that, because of the underlying geometric construction,
the parametrization computed by algorithm parametrization-by-lines is
proper. Furthermore, if P�,z(t) is the affine parametrization of C�,z derived
from P(t), then its inverse can be computed as follows. W.l.o.g., perhaps
after renaming the variables, let P = (a : b : 1) be the singularity of the
curve. Then

P−1
�,z(x, y) =

y − b

x − a
.

Example 4.47. Let C be the affine quartic curve defined by (see Fig. 4.2)

f(x, y) = 1+x−15 x2−29 y2+30 y3−25 xy2+x3y+35 xy+x4−6 y4+6 x2y.

C has an affine triple point at (1, 1). We apply algorithm parametrization-
by-lines to parametrize C. In Step 2, we compute the polynomial

g(x, y) = 5 x3 + 6 y3 − 25 xy2 + x3y + x4 − 6 y4 + 9 x2y,

and determining the homogeneous forms of g(x, y), we get the rational
parametrization of C

P(t) =
(

4 + 6 t3 − 25 t2 + 8 t + 6 t4

−1 + 6 t4 − t
,
4 t + 12 t4 − 25 t3 + 9 t2 − 1

−1 + 6 t4 − t

)
.

Furthermore, taking into account the remark to the algorithm we have that

P−1(x, y) =
y − 1
x − 1

.
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4.6.3 The Class of Curves Parametrizable by Lines

A natural question is whether only the rational curves considered previously
are those parametrizable by lines. In order to answer this question, first of all,
we must be more precise and give a formal definition of what we mean by a
curve parametrizable by lines.

Definition 4.48. The irreducible projective curve C is parametrizable by lines
if there exists a linear system of curves H of degree 1 such that

(1) dim(H) = 1,
(2) the intersection of a generic element in H and C contains a nonconstant

point whose coordinates depend rationally on the free parameter of H.

We say that an irreducible affine curve is parametrizable by lines if its pro-
jective closure is parametrizable by lines.

Remarks. 1. Note that in Definition 4.48 we have not required that the
base point of H is on the curve. Later, we will see that in fact the base
point must lie on C, unless C is a line.

2. Any line is parametrizable by lines (see Exercise 4.12).
3. Note that an affine curve parametrizable by lines is in fact rational. More-

over, the implicit equation of C vanishes on the generic intersection point
depending rationally on the parameter. So, by Theorem 4.7, this generic
point is a rational parametrization of C. Furthermore, if the irreducibility
condition in Definition 4.48 is not imposed, then the curve has a rational
component (see Exercises 4.13 and 4.14).

4. Let C be an affine curve such that its associated projective curve C� is
parametrizable by the linear system of lines H(t) of equation L1(x, y, z)−
tL2(x, y, z). Then, the affine parametrization of C, generated by H(t), is
proper and L1(x,y,1)

L2(x,y,1) is its inverse (see Exercise 4.15). In fact, H(t) is a
pencil of lines (Definition 2.53) and its base point is L1 ∩ L2.

Theorem 4.49. Let C be an irreducible projective plane curve of degree d > 1.
The following statements are equivalent:

(1) C is parametrizable by a pencil of lines H(t).
(2) C has a point of multiplicity d − 1 which is the base point of H(t).

Proof. That (2) implies (1) follows from Definition 4.48 and Theorem 4.45.
Conversely, let L1(x, y, z) − tL2(x, y, z) be the defining polynomial of H(t),
let P(t) be the proper parametrization derived from H(t), and let Q be the
base point of H(t). Since d > 1, for almost all t0 ∈ K, H(t0) intersects C in
at least two points, and one of them is P(t0). First we prove that H(t0)∩C =
{P(t0), Q} for almost all t0 ∈ K. Let P ∈ [H(t0)∩C]\P(t0). If P is reachable
by P(t), then there exists t1 ∈ K, t1 �= t0, such that P(t1) = P . This implies
that P ∈ H(t1) ∩H(t0). Therefore, P = Q. If P is not reachable, the inverse
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of P(t) is not defined at P , and hence L2(P ) = 0. But, since P ∈ H(t0), then
L1(P ) = 0. Thus P is in all the lines of the system of lines H(t), so P = Q.

Now, since C is irreducible, it has only finitely many singularities. Thus
multP(t0)(C,H(t0)) = 1 for almost all t0 ∈ K. This implies, by Bézout’s
Theorem, that multQ(C,H(t0)) = d − 1 for almost all t0 ∈ K. Therefore,
d − 1 = multQ(C), i.e. the base point of H(t) is a point on C of multiplicity
d − 1. Thus, (1) implies (2). 	


We have seen that the inverse of an affine parametrization generated by the
algorithm parametrization-by-lines is linear. In the next theorem we see
that this phenomenon also characterizes the curves parametrizable by lines.

Theorem 4.50. Let C be an irreducible affine plane curve. The following
statements are equivalent:

(1) C is parametrizable by lines.
(2) There exists a proper affine parametrization of C with a linear inverse.
(3) The inverse of any proper affine parametrization of C is linear.

Proof. Let d be the degree of C. If d = 1 the result is trivial. Let us assume
that d > 1. If (1) holds, by Theorem 4.49 we know that C� has a (d − 1)–fold
point. Therefore, applying algorithm parametrization-by-lines one gets a
proper affine parametrization of C with linear inverse. Thus, (2) holds.

We prove now that (2) implies (3). Let P(t) be a proper affine parametriza-
tion with linear inverse, and let P ′(t) be any other proper affine para-
metrization of C. Because of Lemma 4.17 (2) there exists a linear rational
function L(t) such that P ′(t) = P(L(t)). Therefore, P ′−1 = L−1 ◦P−1 is also
linear.

Finally, we prove that (3) implies (1). Let P(t) be a proper affine parame-
trization of C with a rational inverse of the form (ax+by+c)/(a′x+b′y+c′). Let
P�(t) be the projective parametrization generated by P(t). Then, we consider
the pencil of lines H(t) defined by H(x, y, z, t) = (ax + by + cz)− (a′x + b′y +
c′z)t. Clearly, H(P�(t), t) = 0. Thus, P�(t) ∈ H(t) ∩ C� . Therefore, C� is
parametrizable by lines. 	


4.7 Parametrization by Adjoint Curves

In Theorem 4.11 we saw that only curves of genus 0 have any chance of being
rationally parametrizable. In this section we conclude that the curves of genus
0 are exactly the rational curves.

In Theorem 4.49 we have seen that, in general, rational curves can not be
parametrized by lines. In fact, we have proved that a rational curve C of de-
gree d ≥ 2 is parametrizable by lines if and only if it has a (d− 1)–fold point.
In order to treat the general case, we develop here a method based on the
notion of adjoint curves that, intuitively speaking, is a generalization of the
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idea underlining the parametrization by lines method. The method described
in this section follows basically the approach in [Wal50] and [SeW91]. There
are alternative parametrization methods such as [VaH97] based on the com-
putation of the anticanonical divisor, or [Sch92] where adjoints of high degree
are used.

Throughout this section, C will be an irreducible projective curve of degree
d > 2 and genus 0. Note that this is not a loss of generality, because we
have seen in the previous section that lines and irreducible conics can be
parametrized by lines. Before showing how adjoints are defined and how they
can be used to solve the parametrization problem, we first generalize the
notion of parametrization by lines. We need to guarantee that every curve
in the parametrizing system H intersects C in finitely many points. This is
trivial when we parametrize by lines, but in the generalization it leads to an
additional condition.

Definition 4.51. A linear system of curves H parametrizes C iff

(1) dim(H) = 1,
(2) the intersection of a generic element in H and C contains a nonconstant

point whose coordinates depend rationally on the free parameter in H,
(3) C is not a component of any curve in H.

In this case we say that C is parametrizable by H.

Lemma 4.52. Let H(t) be a linear system of curves parametrizing C, then
there exists only one nonconstant intersection point of a generic element of
H(t) and C depending on t, and it is a proper parametrization of C.

Proof. By condition (2) in Definition 4.51 we know that there exists a non-
constant point P(t) in H(t) ∩ C depending rationally on t. Let us see that
P(t) is a proper parametrization of C. It is clear that the defining polynomial
of C vanishes at it. Thus, P(t) is a parametrization of C. In order to see that
it is proper, we find the inverse of the affine parametrization P�,z(t) of C�,z

generated by P(t). Let H(t, x, y, z) = H0(x, y, z)− tH1(x, y, z) be the defining
polynomial of H(t). Then, H(t,P(t)) = 0. Moreover, H1(P(t)) �= 0, because
otherwise we would have that H0(P(t)) = 0, which is impossible because of
condition (3) in Definition 4.51. Therefore, M = H0/H1 is defined at P(t)
and M(P(t)) = t. Thus, by Lemma 4.36, M(x, y, 1) is the inverse of P�,z(t).

Finally, let us see that P(t) is unique. Let Q(t) be another intersec-
tion point depending rationally on t. By the argument above, we know that
both are proper rational parametrizations, and that P−1

�,z (t) = Q−1
�,z(t). Thus,

P(t) = Q(t). 	


Now let us see how to actually compute a parametrization from a para-
metrizing linear system of curves. For this purpose, for a polynomial G in
K[x, y, z][t] we use the notation ppt(G) to denote the primitive part of G
w.r.t. t, i.e. G divided by the gcd of its coefficients.
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Theorem 4.53. Let F (x, y, z) be the defining polynomial of C, and let H(t, x,
y, z) be the defining polynomial of a linear system H(t) parametrizing C. Then,
the proper parametrization P(t) generated by H(t) is the solution in P2(K(t))
of the system of algebraic equations

ppt(resy(F, H)) = 0
ppt(resx(F, H)) = 0

}
.

Proof. Let {P1, . . . , Ps,P(t)} be the intersection points of H(t) and C. By
Lemma 4.52 we know that Pi ∈P2(K) and P(t)∈P2(K(t)). Let Pi = (ai : bi : ci)
and P(t) = (χ1(t), χ2(t), χ3(t)). Condition (3) in Definition 4.51 implies that
resy(F, H) and resx(F, H) are not identically zero. Furthermore, from Bézout’s
Theorem we get that

resy(F, H) = (χ3(t)x − χ1(t)z)β
s∏

i=1

(cix − aiz)αi

resx(F, H) = (χ3(t)y − χ2(t)z)β′
s∏

i=1

(ciy − biz)α′
i

for some αi, α
′
i, β, β′ ∈ N. So, obviously, the parametrization is determined by

the primitive parts of these resultants. 	


The following theorem gives sufficient conditions for a linear system of
curves to be a parametrizing system.

Theorem 4.54. Let H be a linear system of curves of degree k and let B be
the set of base points of H (cf. Definition 2.54). If

(1) dim(H) = 1,
(2)
∑

P∈B multP (C, C′) = dk − 1 for almost all curves C′ ∈ H, and
(3) C is not a component of any curve in H,

then H parametrizes C.

Proof. We just have to prove that condition (2) in the statement of the the-
orem implies condition (2) in Definition 4.51. By condition (3) we know that
C is not a component of any curve in H. Thus, by Bézout’s Theorem and
condition (2) we see that (C′ ∩ C) \ B consists of a single point for almost all
C′ ∈ H. Therefore, this point depends rationally on the parameter of H. 	


Now, the natural question is how to determine parametrizing linear sys-
tems of curves. We will show that adjoints provide an answer to this question.
Adjoint curves can be defined for reducible curves. However, since our final
goal is to work with rational curves, we will only consider irreducible curves.
For the reducible case we refer to [BrK86],[Ful89],[Wal50].
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Before we introduce the notion of adjoint curves and establish some of their
important properties, we remind the reader of some of the notation introduced
in Sect. 3.2 concerning the blowing up of curves:

1. Sing(C) denotes the singular locus of C.
2. Ngr(C) denotes the neighboring graph of C, i.e. Ngr(C) comprises the sin-

gularities and neighboring singularities of C.
3. For P ∈ Sing(C), NgrP (C) denotes the subgraph of Ngr(C) with root at P .
4. For P ∈ Ngr(C) we denote by QP the sequence of quadratic transforma-

tions and linear transformations generating the neighborhood where P
belongs to. Moreover, for any projective curve C′ we denote by QP (C′)
the quadratic transform of C′ by QP .

Definition 4.55. A projective curve C′ is an adjoint curve of the irreducible
projective curve C iff multP (QP (C′)) ≥ multP (QP (C)) − 1 for every P ∈
Ngr(C). We say that C′ is an adjoint curve of degree k of C, if C′ is an adjoint
of C and deg(C′) = k.

All algebraic conditions required in the definition of adjoint curves are
linear. Therefore if one fixes the degree, the set of all adjoint curves of C
is a linear system of curves (see Sect. 2.4). In fact, if C has only ordinary
singularities, then the set of adjoint curves of degree k of C is the linear
system generated by the effective divisor∑

P∈Sing(C)

(multP (C) − 1)P.

This remark motivates the following definition.

Definition 4.56. The set of all adjoints of C of degree k, k ∈ N, is called the
system of adjoints of C of degree k. We denote this system by Ak(C).

Theorem 4.57. Let C be a projective curve of degree d and genus 0, and let
k ≥ d − 2, then Ak(C) �= ∅.

Proof. The full linear system of curves of degree k has dimension k(k + 3)/2
(cf. Sect. 2.4). Since genus(C) = 0, the number of linear conditions required
by Ak(C) is∑

P∈Ngr(QP (C))

multP (QP (C))(multP (QP (C)) − 1)
2

=
(d − 1)(d − 2)

2
.

Therefore,
dim(Ak(C)) ≥ k(k + 3)

2
− (d − 1)(d − 2)

2
(compare to Theorem 2.59 for the case of curves with only ordinary singulari-
ties). Now, if k ≥ d−2, then dim(Ak(C)) ≥ d−2 > 0 and hence Ak(C) �= ∅. 	


In [Noe83], Sect. 50, the dimension of the linear system of adjoints of an
irreducible curve is determined. Applying this result one has the following
result.
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Theorem 4.58. Let C be a projective curve of degree d and genus 0, and let
k ≥ d − 2, then

dim(Ak(C)) =
k(k + 3)

2
− (d − 1)(d − 2)

2
.

Now, we proceed to show how from linear systems of adjoint curves we
may generate parametrizing linear systems. For this purpose, we first prove
two preliminary lemmas. In the first one, if C1, C2 are projective curves defined
respectively by the forms F1, F2, we denote by C1C2 the curve defined by F1F2,
and by λC1 + µC2 the curve defined by λF1 + µF2 where λ, µ ∈ K, assuming
that the corresponding polynomial is not identically zero.

Lemma 4.59. Let C be an irreducible projective curve of degree d, let k ∈
{d, d − 1, d − 2}, let F ⊂ C \ Sing(C) be a finite set and let

Hk := Ak(C) ∩H(k,
∑
P∈F

P ).

Then the following hold:

(1) If k = d, for every C′ ∈ Hd, and for almost all (λ, µ) ∈ K2 we have
µC′ + λC ∈ Hd, and µC′ + λC does not have multiple components.

(2) If we take a fixed k ∈ {d − 1, d − 2}, then for every C′ ∈ Hk, for every
projective curve M of degree d−k, and for almost all (λ, µ) ∈ K2 we have

µMC′ + λC ∈ Hd ∩H(d,
∑

P∈M∩C
P ),

and µMC′ + λC does not have multiple components.

Proof. If Hk = ∅, then there is nothing to prove. Let us assume that Hk �= ∅.
Let F, G, M be the defining polynomials of C, C′,M, respectively.

In order to prove Statement (1), we first observe that if C′ = C the result
trivially holds for λ, µ ∈ K such that λ + µ �= 0. Let us assume that C′ �= C.
We observe that C′, C ∈ Hd. Therefore, since Hd is a projective linear variety,
if λ, µ are such that µG + λF is not identically zero, then µC′ + λC ∈ Hd.
Moreover, since C′ �= C, for all (λ, µ) ∈ Ω1 := K2 \ {(0, 0)} we have that
µG+λF is not identically zero. Let us prove the second part of Statement (1).
For this purpose, we take the polynomial A(λ, µ, x, y, z) := µG + λF , where
λ, µ are considered as formal parameters. Let us see that A is irreducible as a
polynomial in K[λ, µ, x, y, z]. Indeed, if it factors, since A is linear in {λ, µ},
one factor belongs to K[x, y, z]. But this implies that F is either reducible or
F = G up to constant, which is impossible since F is irreducible and we have
assumed that C′ �= C. Moreover, taking into account that F is irreducible
and nonlinear (lines have been excluded), A does depend on {x, y, z}, and
hence A can be seen as a nonconstant polynomial in K[λ, µ, x, y][z]. Now,
because of the irreducibility of A, one has that A is primitive w.r.t. z, and it
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is square-free. Therefore, by Theorem 8.1, p. 338, in [GCL92], the discriminant
of A w.r.t. z is not identically zero. Thus, computing this discriminant, we
find a nonempty open Zariski subset Ω2 of K2, such that A(λ0, µ0, x, y, z) is
squarefree for every (λ0, µ0) ∈ Ω2. So, for every (λ, µ) ∈ Ω1 ∩ Ω2, which is
nonempty because K2 is irreducible, we have that µC′+λC ∈ Hd, and µC′+λC
does not have multiple components.

Let us prove Statement (2). F is irreducible and k < d, so µMG + λF is
identically zero if and only if λ = µ = 0. We prove that if (λ, µ) �= (0, 0) then
µMC′ + λC ∈ Hd ∩H(d,

∑
P∈M∩C P ). Indeed:

(i) Let us see that µMC′+λC ∈ H(d,
∑

P∈F P ). Clearly, C ∈ H(d,
∑

P∈F P ).
Moreover, by hypothesis, C′ ∈ H(k,

∑
P∈F P ), hence multP (C′) ≥ 1 for

P ∈ F . Furthermore, multP (MC′) = multP (M) + multP (C′) ≥ 1 for
P ∈ F (see Exercise 2.10). So, since deg(MC′) = d, one gets that
MC′ ∈ H(d,

∑
P∈F P ). Now, the statement follows from the linearity

of H(d,
∑

P∈F P ); note that µMG + λF is not identically zero.
(ii) Reasoning similarly as in (i) we deduce that µMC′+λC∈H(d,

∑
P∈M∩C P ).

(iii) Let us see that µMC′ + λC ∈ Ad(C). First, we observe that C ∈ Ad(C),
so we have to prove that MC′ ∈ Ad(C). For this purpose, we first note
that deg(MC′) = d. We analyze separately the required conditions on
the singularities and on the neighboring points (see Definition 4.55).
(iii.i) Let P ∈ Sing(C). Then, taking into account that C′ ∈ Ak(C), we

have

multP (MC′) = multP (M) + multP (C′) ≥ multP (C′) ≥ multP (C) − 1.

(iii.ii) Let P ∈ Ngr(C), and let QP as above. Observe that QP (MC′) =
QP (M)QP (C′). Therefore,

multP (QP (MC′)) = multP (QP (M)QP (C′)) =
multP (QP (M)) + multP (QP (C′)) ≥ multP (QP (C′))
≥ multP (QP (C)) − 1.

Summarizing, we get that if (λ, µ) �= (0, 0) then µMC′ + λC ∈ Hd ∩
H(d,

∑
P∈M∩C P ). In order to prove that for almost all (λ, µ) ∈ K2 the curve

µMC′ + λC does not have multiple components, one reasons analogously as
in the proof of Statement (1). In this case, A(λ, µ, x, y, z) := µMG + λF . 	


The following lemma can be found in [Wal50] Chap. III, Theorem 7.6.

Lemma 4.60. Let C1 and C2 be two projective curves of degrees d1 and d2

respectively, having no common components and neither C1 nor C2 having any
multiple components. Then

d1d2 ≥
∑

P ∈ NgrP ′(C1)
P ′ ∈ C1 ∩ C2

multP (Qp(C1))multP (Qp(C2)),

where NgrP ′(C1) = {P ′} if P ′ ∈ [C1 ∩ C2] \ Sing(C1).
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Now, we show how from linear systems of adjoint curves we may generate
parametrizing linear systems.

Theorem 4.61. Let C be a projective curve of degree d and genus 0, let
k ∈ {d − 1, d − 2}, and let Sk ⊂ C \ Sing(C) be such that card(Sk) = kd −
(d − 1)(d − 2) − 1. Then

Ak(C) ∩H(k,
∑

P∈Sk

P )

parametrizes C.

Proof. Let H = Ak(C)∩H(k,
∑

P∈Sk
P ). We check whether the conditions in

Theorem 4.54 are satisfied. Note that Condition (3) holds trivially, because
C is irreducible and k < d. Let us check Condition (1), i.e. dim(H) = 1.
dim(H) ≥ dim(Ak(C)) − [kd − (d − 1)(d − 2) − 1], and by Theorem 4.58
we know that dim(H) ≥ 1. Now, let us assume that dim(H) > 1. We take
two different points Q1, Q2 ∈ C \ (Sing(C) ∪ Sk), and we consider the linear
subsystem

H′ = H ∩H(k, Q1 + Q2).

Observe that dim(H′) ≥ 0. Thus, H′ �= ∅. Let C′ ∈ H′. Since deg(C′) < deg(C)
and C is irreducible, we know that C′ and C do not have common components.
Now, we distinguish two different cases:

(i) If C′ does not have multiple components, then since C does not have com-
mon components either, by Lemma 4.60 and the fact that genus(C) = 0,
we get that

kd ≥∑
P∈Ngr(C)

multP (QP (C))multP (QP (C′)) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′) ≥

∑
P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′)

≥ (d − 1)(d − 2) + [kd − (d − 1)(d − 2) − 1] + 2 = kd + 1,

which is impossible.
(ii) Let us assume that C′ has multiple components. Then, we consider d − k

different lines L1, . . . ,Ld−k such that Li and C intersects in d different
points and

(Li ∩ C) ∩ (Sing(C) ∪ Sk ∪ {Q1, Q2} ∪j �=i (Lj ∩ C)) = ∅.

Let Li be the defining polynomial of Li and let M be the curve of defining
polynomial L1 · · ·Ld−k. Now, applying Lemma 4.59 (2) to C and taking
F as Sk ∪ {Q1, Q2}, we take λ, µ ∈ K such that

C′′ := µMC′ + λC ∈ Ad(C) ∩H(d,
∑

P∈Sk∪{Q1,Q2}
P ) ∩H(d,

∑
p∈M∩C

P ),
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and C′′ does not have common components. In this situation we apply
Lemma 4.60 to C′′ and C; note that C′′ and C do not have common com-
ponents because both curves have the same degree and C is irreducible. So

d2 ≥∑
P∈Ngr(C)

multP (QP (C))multP (QP (C′′)) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′′)+

∑
P∈M∩C

multP (C)multP (C′′) ≥
∑

P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1)

+
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′′) + d(d − k)

= (d − 1)(d − 2) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′′) + d(d − k)

≥ (d − 1)(d − 2) + [kd − (d − 1)(d − 2) − 1] + 2 + d(d − k)

= kd + 1 + d(d − k) = d2 + 1,

which is impossible.

Now, let us check that Condition (2) holds in Theorem 4.54. For this
purpose, we first prove that the set of base points B of H is Sing(C) ∪ Sk. It
is clear that Sing(C)∪Sk ⊂ B. Let us assume that B �= Sing(C)∪Sk, so there
exists Q ∈ B \ (Sing(C) ∪ Sk). We choose a curve C′ ∈ H passing through a
point Q′ ∈ C \ B. This is possible because dim(H) = 1. Then, since C and C′

do not have common components, we argue similarly as above distinguishing
two different cases:

(i) Let C′ be without multiple components. Since C does not have multiple
components either, we can apply Lemma 4.60. Reasoning as in (i) above,
we arrive at the contradiction kd ≥ kd + 1. Thus, B = Sing(C) ∪ Sk.

(ii) Let us assume that C′ has multiple components. We consider d−k different
lines L1, . . . ,Ld−k such that Li and C intersect in d different points and

(Li ∩ C) ∩ (Sing(C) ∪ Sk ∪ {Q, Q′} ∪j �=i (Lj ∩ C)) = ∅.

Let Li be the defining polynomial of Li and let M be the curve defined
by L1 · · ·Ld−k. Now, applying Lemma 4.59 (2) to C and taking F as
Sk ∪ {Q, Q′}, we take λ, µ ∈ K such that

C′′ := µMC′ + λC ∈ Ad(C) ∩H(d,
∑

P∈Sk∪{Q,Q′}
P ) ∩H(d,

∑
p∈M∩C

P ),

and C′′ does not have multiple components. In this situation we apply
Lemma 4.60 to C′′ and C; note that C′′ and C do not have common com-
ponents because both curves have the same degree and C is irreducible.
So, reasoning as in (ii) above, we arrive at the contradiction d2 ≥ d2 + 1.
Thus, B = Sing(C) ∪ Sk.
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Now that we have proved that B = Sing(C)∪Sk, we show that Statement (2)
in Theorem 4.54 holds. That is, we have to prove∑

P∈B
multP (C, C′) = dk − 1

for almost all C′ ∈ H. We structure the proof as follows: First, we prove that
for all C′ ∈ H we have ∑

P∈B
multP (C, C′) ≥ dk − 1.

Second, we show that there exists at least one curve C′ ∈ H such that∑
P∈B

multP (C, C′) = dk − 1,

and finally we show that the equality holds for almost all curves in H.

(a) Let us assume that there exists C′ ∈ H such that the sum of multiplicities
of intersection at B is equal to dk − �, where � > 1. Then, since C and
C′ do not have common components, by Bézout Theorem we deduce that
there exists a set of points E ⊂ (C ∩ C′) \ B such that∑

P∈E
multP (C, C′) = �.

Now we argue similarly as above distinguishing two different cases:
(a.1) Let C′ be without multiple components. Since C does not have mul-

tiple components either, we can apply Lemma 4.60. Reasoning as
in (i) above, and using the fact that B = Sing(C) ∪ Sk, we derive
kd ≥ kd + � − 1, which is impossible since � > 1.

(a.2) Let us assume that C′ has multiple components. Then, we consider
d − k different lines L1, . . . ,Ld−k such that Li and C intersect in d
different points and

(Li ∩ C) ∩ (Sing(C) ∪ Sk ∪ E ∪j �=i (Lj ∩ C)) = ∅.

Let Li be the defining polynomial of Li and let M be the curve of
defining polynomial L1 · · ·Ld−k. Now, applying Lemma 4.59(2) to
C, and taking F as Sk ∪A, we take λ, µ ∈ K such that

C′′ := µMC′ + λC ∈ Ad(C) ∩H(d,
∑

P∈Sk∪A
P ) ∩H(d,

∑
p∈M∩C

P ),

and C′′ does not have multiple components. In this situation we
apply Lemma 4.60 to C′′ and C; note that C′′ and C do not have
common components because both curves have the same degree and
C is irreducible. So, reasoning as in (ii), we derive d2 ≥ d2 + � − 1,
which is impossible since � > 1.
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(b) Let us assume that for all curves in H the sum of multiplicities of inter-
section at B is dk. Then, since dim(H) = 1, we consider a point Q ∈ C \B,
and we take C′ ∈ H such that Q ∈ C′. In this situation we have∑

P∈C′∩C
multP (C, C′) ≥

∑
P∈B

multP (C, C′) + multQ(C, C′) ≥ dk + 1.

Therefore, by Bézout’s theorem, the curves C and C′ have a common
component, which is impossible.

(c) Let C′ ∈ H be the curve whose existence ensures step (b) of our rea-
soning. Since the sum of multiplicities of intersection at B is dk − 1,
and since C′ and C do not have common components, by Bézout’s the-
orem we know that C ∩ C′ = B ∪ {Q}, where Q := (a : b : c) �∈ B.
Now, let H(t0, t1, x, y, z) := t0G0 + t1G1 be the defining polynomial of
a generic element in H, where we assume w.l.o.g. that G0 is the defin-
ing polynomial of C′. Furthermore we assume w.l.o.g., probably after
performing a suitable linear change of coordinates, that F (0, 0, 1) �= 0,
Gi(0, 0, 1) �= 0, and that (0 : 0 : 1) is not on any line connecting two
different points in B ∪ {Q}. Note that if F (0, 0, 1) �= 0 then, in partic-
ular, one has that the leading coefficient of F w.r.t. z is constant and
that (0 : 0 : 1) �∈ B ∪ {Q}. Also, condition Gi(0, 0, 1) �= 0 implies
that (0 : 0 : 1) is neither on C′ nor on the curve defined by H over
the algebraic closure of K(t0, t1). Then let R(t0, t1, x, y) := resz(H, F ).
Taking into account the previous steps (a) and (b), one has that R fac-
tors as

R(t0, t1, x, y) = (α2(t0, t1)x − α1(t0, t1)y)
∏

(ai:bi:ci)∈B
(bix − aiy)ri ,

where
∑

ri = dk − 1.
Now, for every i we introduce the polynomials δi(t0, t1) = α2ai − α1bi.
Let us see that none of these polynomials is identically zero. For this
purpose, we first observe that, since the leading coefficient of F w.r.t. z
is constant, the resultant specializes properly and therefore (α2(1, 0)x −
α1(1, 0)y) = λ(bx − ay) for some λ ∈ K∗. Therefore if δi is identi-
cally zero then bai − abi = 0, which is impossible because (0 : 0 :
1) is not on any line connecting a point in B and Q. We consider
the set

Ω = {(t0, t1) ∈ K2 \ {(0, 0)} |
∏

δi(t0, t1) �= 0} .

Note that Ω is open and nonempty. Moreover, because of the construction,
for every (t0, t1) ∈ Ω, if C′′ is the curve defined by H(t0, t1, x, y, z), then∑

P∈B
multP (C, C′′) = dk − 1. 	
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Theorem 4.62. Let C be a projective curve of degree d and genus 0, let Q /∈ C,
and let Sd ⊂ C \ Sing(C) be such that card(Sd) = 3(d − 1). Then

Ad(C) ∩H(d, Q +
∑

P∈Sd

P )

parametrizes C.

Proof. Let H = Ad(C) ∩ H(d,
∑

P∈Sd
P + Q). We prove that the conditions

in Theorem 4.54 are satisfied. First, we observe that for every C′ ∈ H, since
deg(C) = deg(C′), since Q ∈ C′ but Q �∈ C, and since C is irreducible, the
curves C and C′ do not have common components. Therefore, Condition (3)
holds.

Let us now check Condition (1), i.e. dim(H) = 1. Since dim(H) ≥
dim(Ad(C)) − [3(d − 1)] − 1, by Theorem 4.58, we know that dim(H) ≥ 1.
Now, let us assume that dim(H) > 1. Then, we take two different points
Q1, Q2 ∈ C \ (Sing(C) ∪ Sd), and we consider the linear subsystem

H′ = H∩H(d, Q1 + Q2).

Observe that dim(H′) ≥ 0. Thus, H′ �= ∅. Let C′ ∈ H′. Note that, since
C′ ∈ H′ ⊂ H, reasoning as above one has that C′ and C do not have common
components. Now, we distinguish two different cases:

(i) If C′ does not have multiple components, then since C does not have com-
mon components either, applying Lemma 4.60 and that genus(C) = 0, one
has that (note that Q �∈ C ∩ C′)

d2 ≥∑
P∈Ngr(C)

multP (QP (C))multP (QP (C′)) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′) ≥

∑
P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′)

= (d − 1)(d − 2) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′)

≥ (d − 1)(d − 2) + 3(d − 1) + 2 = d2 + 1,

which is impossible.
(ii) Let us assume that C′ has multiple components. Then, we consider the

linear system H∗ := Ad(C)∩H(d,
∑

P∈Sd
P )∩H(d, Q1 +Q2). We observe

that, since C′ ∈ H′, then C′ ∈ H∗. Now, we apply Lemma 4.59(1) to C and
F := Sd ∪ {Q1, Q2}, and we take λ, µ ∈ K such that

C′′ := µC′ + λC ∈ H∗,
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and such that C′′ does not have common components. In this situation we
apply Lemma 4.60 to C′′ and C; note that C′′ and C do not have common
components because otherwise this would imply that C′ and C have a
common component, which is a contradiction.

d2 ≥∑
P∈Ngr(C)

multP (QP (C))multP (QP (C′′)) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′′) ≥

∑
P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′′)

≥ (d − 1)(d − 2) + 3(d − 1) + 2 = d2 + 1,

which is impossible.

Now, let us check whether Condition (2) in Theorem 4.54 holds. For this
purpose, we first prove that the set of base points B of H is Sing(C)∪Sd∪{Q}. It
is clear that Sing(C)∪Sd∪{Q} ⊂ B. Let us assume that B �= Sing(C)∪Sd∪{Q}.
Then there exists R ∈ B \ (Sing(C) ∪ Sd ∪ {Q}). We choose a curve C′ ∈ H
passing through a point R′ ∈ C \ B. This is possible because dim(H) = 1.
Then, since C and C′ do not have common components, we argue similarly as
above distinguishing two different cases:

(i) Let C′ be without multiple components. Since C does not have com-
mon components either, we can apply Lemma 4.60. Reasoning as in
(i) above, we arrive at the contradiction d2 ≥ d2 + 1. Thus, B =
Sing(C) ∪ Sd ∪ {Q}.

(ii) Let us assume that C′ has multiple components. Then, we consider the
linear system H∗ := Ad(C) ∩H(d,

∑
P∈Sd

P ) ∩H(d, R + R′). We observe
that, since C′ ∈ H ∩ H(d, R + R′), then C′ ∈ H∗. Now, we apply
Lemma 4.59(1) to C and F := Sd ∪ {R, R′}, and we take λ, µ ∈ K
such that

C′′ := µC′ + λC ∈ H∗,

and C′′ does not have multiple components. In this situation we apply
Lemma 4.60 to C′′ and C; note that C′′ and C do not have common
components because otherwise it would imply that C′ and C have a
common component, which is not the case. Now, reasoning as in (ii)
above, we arrive at the contradiction d2 ≥ d2 + 1. Thus, B = Sing(C) ∪
Sd ∪ {Q}.

Once we have proved that B = Sing(C)∪Sd∪{Q}, we show that Statement (2)
in Theorem 4.54 holds. That is, we have to prove that for almost all C′ ∈ H
one has that ∑

P∈B
multP (C, C′) = d2 − 1.
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We structure the proof as follows: First, we prove that for all C′ ∈ H it
holds that ∑

P∈B
multP (C, C′) ≥ d2 − 1.

Second, we show that there exists at least one curve C′ ∈ H such that∑
P∈B

multP (C, C′) = d2 − 1,

and finally we show that the equality holds for almost all curves in H.

(a) Let us assume that there exists C′ ∈ H such that the sum of multiplicities
of intersection at B is equal to d2 − �, where � > 1. Then, since C and
C′ do not have common components, by Bézout Theorem we deduce that
there exists a set of points E ⊂ (C ∩ C′) \ B such that∑

P∈E
multP (C, C′) = �.

Now we argue similarly as above distinguishing two different cases:
(a.1) Let C′ be without multiple components. Since C does not have mul-

tiple components either, we can apply Lemma 4.60. Reasoning as
in (i) above, and using the fact that B = Sing(C) ∪ Sk, we derive
d2 ≥ d2 + � − 1, which is impossible since � > 1.

(a.2) Let us assume that C′ has multiple components. Then, we consider
the linear system H∗ := Ad(C) ∩H(d,

∑
P∈Sd

P ). We observe that,
since C′ ∈ H, then C′ ∈ H∗. Now, we apply Lemma 4.59(1) to C and
F := Sd, and we take λ, µ ∈ K such that

C′′ := µC′ + λC ∈ H∗,

and C′′ does not have multiple components. In this situation we
apply Lemma 4.60 to C′′ and C; note that C′′ and C do not have
common components because otherwise also C′ and C would have
common components, which we have excluded. Also, note that by
assumption E ⊂ C′ ∩ C, and therefore E ⊂ C′′ ∩ C. So, reasoning as
in (ii), we derive d2 ≥ d2 + � − 1, which is impossible since � > 1.

(b) Let us assume that for all curves in H the sum of multiplicities of inter-
section is d2. Then, since dim(H) = 1, we consider a point R ∈ C \B, and
we take C′ ∈ H such that R ∈ C′. In this situation we have∑

P∈C′∩C
multP (C, C′) ≥

∑
P∈B

multP (C, C′) + multR(C, C′) ≥ d2 + 1.

Therefore, by Bézout’s theorem, the curves C and C′ have a common
component, which is impossible.



132 4 Rational Parametrization

(c) Let C′ ∈ H be the curve whose existence ensures step (b) of our reasoning.
Since the sum of multiplicities of intersection at B is d2 − 1, since C′ and
C do not have common components, and since Q ∈ B but Q �∈ C ∩ C′, by
Bézout’s theorem we know that C ∩ C′ = (B \ {Q}) ∪ {R}, where R :=
(a : b : c) �∈ B. Now, let H(t0, t1, x, y, z) := t0G0 + t1G1 be the defining
polynomial of a generic element in H, where we assume w.l.o.g. that G0 is
the defining polynomial of C′, and let F be the defining polynomial of C.
We assume w.l.o.g., probably after performing a suitable linear change of
coordinates, that F (0, 0, 1) �= 0, Gi(0, 0, 1) �= 0, and that (0 : 0 : 1) is not
on any line connecting two different points in (B \ {Q})∪ {R}. Note that
if F (0, 0, 1) �= 0 then, in particular, one has that the leading coefficient
of F w.r.t. z is constant and that (0 : 0 : 1) �∈ (B \ {Q}) ∪ {R}. Also,
condition Gi(0, 0, 1) �= 0 implies that (0 : 0 : 1) is neither on C′ nor on
the curve defined by H over the algebraic closure of K(t0, t1). Then let
R(t0, t1, x, y) := resz(H, F ). Taking into account the previous steps (a)
and (b) one has that R factors as

R(t0, t1, x, y) = (α2(t0, t1)x − α1(t0, t1)y)
∏

(ai:bi:ci)∈B\{Q}
(bix − aiy)ri ,

where
∑

ri = d2 − 1.
Now, for every i we introduce the polynomials δi(t0, t1) = α2ai − α1bi.
Let us see that none of these polynomials is identically zero. For this
purpose, we first observe that, since the leading coefficient of F w.r.t. z
is constant, the resultant specializes properly and therefore (α2(1, 0)x −
α1(1, 0)y) = λ(bx−ay) for some λ ∈ K∗. Therefore if δi is identically zero
then bai − abi = 0 which is impossible because (0 : 0 : 1) is not on any
line connecting a point in (B \ {Q}) and R. We consider the set

Ω = {(t0, t1) ∈ K2 \ {(0, 0)} |
∏

δi(t0, t1) �= 0} .

Note that Ω is open and nonempty. Moreover, because of the construction,
for every (t0, t1) ∈ Ω, if C′′ is the curve defined by H(t0, t1, x, y, z), then∑

P∈B
multP (C, C′′) = d2 − 1. 	


From these theorems, one deduces the following result:

Theorem 4.63. An algebraic curve C is rational if and only if genus(C) = 0.

Proof. One implication is already stated in Theorem 4.11. In this section we
have developed an algorithm which can parametrize every curve of genus 0.

	


The results proved in this section provide a family of algorithms for
parametrizing any rational curve by means of adjoints.
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Algorithm PARAMETRIZATION-BY-ADJOINTS.
Given the defining polynomial F (x, y, z) of an irreducible projective curve
C of degree d and genus 0, the algorithm computes a rational parametriza-
tion of C.

1. If d ≤ 3 or Sing(C) contains exactly one point of multiplicity d − 1,
apply algorithm parametrization-by-lines.

2. Choose k ∈ {d − 2, d− 1, d} and compute the defining polynomial of
Ak(C).

3. Choose a set S ⊂ (C \ Sing(C)) such that card(S) = kd − (d − 1)
(d − 2) − 1.

4. If k < d then
compute the defining polynomial H of Ak(C) ∩H(k,

∑
P∈S P );

else (i.e. k = d)
choose Q /∈ C and
compute the defining polynomial H of Ak(C)∩H(k, Q+

∑
P∈S P ).

5. Set one of the parameters in H to 1 and let t be the remaining pa-
rameter in H . Return the solution in P2(K(t)) of {ppt(resy(F, H)) =
0, ppt(resx(F, H)) = 0}.

From the point of view of time efficiency one must choose k = d − 2 in
Step 2, since then degrees of polynomials are the smallest. Nevertheless, the se-
lection of k = d can be also interesting in the sense that at most one algebraic
number of degree d has to be introduced (see Theorem 4.72), and therefore
it is a first approach to algebraic optimality of the output (see Chap. 5). In
the next section, we will consider the algebraic extensions of the field of defi-
nition required by the parametrization algorithm. But first, we illustrate the
algorithm by two examples.

Example 4.64. Let C be the quintic over C (see Figure 4.3) of defining poly-
nomial (see Example 3.13)

F (x, y, z) = y2z3 − x5.

From the implicit equation it is clear that (t2, t5, 1) is a parametrization of C.
Nevertheless, let us see how the algorithm works. In Example 3.13 we have
determined that

Sing(C) = {(0 : 1 : 0), (0 : 0 : 1)},
where P1 = (0 : 1 : 0) is a triple nonordinary point, and P2 = (0 : 0 : 1) is
a nonordinary double point. Furthermore, in Example 3.13 the neighboring
graph of C was computed. We have obtained that P1,1 = (1 : 1 : 0) is an
ordinary double point in the first neighborhood of P1, P2,1 = (1 : 1 : 0) is a
nonordinary double point in the first neighborhood of P2, and P2,2 = (−2 :
1 : 0) is a simple point in the second neighborhood of P2.
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Therefore, genus(C) = 0, and hence C is rational (see Theorem 4.63). We
proceed to parametrize the curve. In Step 2 we choose k = d−2 = 3. In order
to compute Ak(C), we consider a generic form in {x, y, z} of degree 3:

H = a00 z3 + a01 yz2 + a02 y2z + a03 y3 + a10 xz2 + a11 xyz + a12 xy2

+a20 x2z + a21 x2y + a30 x3.

First, we require P1 to be a double point on A3(C), and P2 to be a simple
point on A3(C). That is, we consider the equations:{

∂H

∂x
(P1) = 0,

∂H

∂y
(P1) = 0,

∂H

∂z
(P1) = 0, H(P2) = 0

}
.

Solving the linear system of equations in ai,j derived from the system above
one gets:

H = a01 yz2 + a10 xz2 + a11 xyz + a20 x2z + a21 x2y + a30 x3

Next, we consider the neighboring points. That is, we impose that

{QP1(H)(P1,1) = 0, QP2(H)(P2,1) = 0} .

This leads to
H = a01yz2 + a11xyz + a20x

2z + a30x
3,

as the defining polynomial of A3(C).
In Step 3 we choose a set S ⊂ (C \ Sing(C)) with 2 points, namely

S = {(1 : 1 : 1), (1 : −1 : 1)}.
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In Step 4 we compute the defining polynomial of A3(C)∩H(3, Q1+Q2), where
Q1 = (1 : 1 : 1) and Q2 = (1 : −1 : 1). That is, we solve the equations

H(1, 1, 1) = 0, H(1,−1, 1) = 0,

which leads to

H(x, y, z) = −a11yz2 + a11xyz − x2za30 + a30x
3.

Setting a11 = 1, a30 = t, we get the defining polynomial

H(t, x, y, z) = −yz2 + xyz − x2zt + tx3

of the parametrizing system. Finally, in Step 5, the solution of the system{
−x + t2z = 0
−y + t5z = 0

provides the parametrization

P(t) = (t2, t5, 1).

Example 4.65. Let C be the quartic over C (see Fig. 4.4) of

F (x, y, z) = −2xy2z − 48x2z2 + 4xyz2 − 2x3z + x3y − 6y4 + 48y2z2 + 6x4.
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Fig. 4.4. C�,z
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The singular locus of C is

Sing(C) = {(0 : 0 : 1), (2 : 2 : 1), (−2 : 2 : 1)},

all three points being double points. Therefore, genus(C) = 0, and hence C is
rational (see Theorem 4.63). Note that no blowing up is required. We proceed
to parametrize the curve. In Step 2 we choose k = d − 2 = 2. The defining
polynomial of A2(C) is

H(x, y, z) = (−2 a02 − 2 a20) yz + a02y
2 − 2 a11xz + a1,1xy + a20x

2.

In Step 3 we choose a set S ⊂ (C \Sing(C)) with 1 point, namely S = {(3 : 0 :
1)}. In Step 4, we compute the defining polynomial of H := A2(C)∩H(2, Q),
where Q = (3 : 0 : 1). This leads to

H(x, y, z) = (−2 a02 − 2 a20) yz + a02y
2 − 3 a20xz +

3
2

a20xy + a20x
2.

Setting a02 = 1, a20 = t, we get the defining polynomial

H(t, x, y, z) = (−2 − 2 t) yz + y2 − 3 txz +
3
2

txy + tx2

of the parametrizing system. Finally, in Step 5, the solution of the system
defined by the resultants provides the following affine parametrization of C:
P(t) =(

12
9 t4 + t3 − 51 t2 + t + 8

126 t4 − 297 t3 + 72 t2 + 8 t− 36
, −2

t(162 t3 − 459 t2 + 145 t + 136)
126 t4 − 297 t3 + 72 t2 + 8 t − 36

)
.

4.8 Symbolic Treatment of Parametrization

In algorithm parametrization-by-adjoints we have described how to
parametrize rational curves. However, from the symbolic point of view, we
still want to clarify some steps. For instance, we want to explain how to sym-
bolically compute the system of adjoints, and how to choose and manipulate
the simple points that are taken in Step 3 of the algorithm. Obviously, one
can always approach the problem directly, by introducing algebraic numbers
and carrying out all computations over algebraic extensions of the ground
field. However, we take here a different approach, using the notion of a family
of conjugate points (see Definition 3.15). This means that we do not need to
work with individual points, and hence we safe time in computation.

In Sect. 3.3 we have seen how to symbolically analyze the genus by
introducing families of conjugate points. In this section we show how to use
the standard decomposition of the singularities to compute linear systems
of adjoints, and we describe a first approach for choosing the simple points.



4.8 Symbolic Treatment of Parametrization 137

In the next chapter, we will develop an optimal approach for the choice of the
necessary simple points.

Throughout this section, we assume that C is a projective rational curve
of degree d, and that its not necessarily algebraically closed ground field K

(see Definition 3.14) is a computable field.
We start by proving that linear systems of adjoint curves can be computed

without extending K.

Theorem 4.66. Let C be a rational projective curve of degree d and ground
field K. Then K is also the ground field of Ak(C), k ≥ d − 2.

Proof. The linear system of adjoints Ak(C) can be expressed as

Ak(C) = H(k,
∑

P∈D(Ngr(C))

(multP (QP (C)) − 1) · P ),

where D(Ngr(C)) is the standard decomposition of the neighboring graph of C
(see Definition 3.27). Observe that all the transformations for dealing with the
neighboring graph of C are performed over the ground field. So Theorem 3.26
and Lemma 3.19 yield the result. 	


Combining the results in Sect. 4.6 and Theorem 4.66, we can guarantee
that the output of Step 2 in algorithm parametrization-by-adjoints is
defined over K. In Step 3 we have to compute simple points on C. In Chap. 5
we will see that we can find such points in a field extension of K of degree
at most 2. Here we prove a more modest result, namely that we can always
parametrize using a field extension of K of degree at most d. Note that if the
simple points are taken randomly, and adjoints of degree d−2 are considered,
then in general a field extension of degree (d − 3)d has to be introduced.
Moreover, this bound is even worse if adjoints of higher degree are used.

Lemma 4.67. Let P be a simple point on an irreducible projective curve C
of degree d > 1. There exist at most d(d− 1) tangents to C, at a simple point
on C, passing through P .

Proof. We assume w.l.o.g. that P = (0 : 0 : 1). If Q ∈ C \ Sing(C), then the
tangent to C at Q is given by

x
∂F

∂x
(Q) + y

∂F

∂y
(Q) + z

∂F

∂z
(Q) = 0 ,

where F is the defining polynomial of C (see Theorem 2.13). Thus, the simple
points of C with tangent passing through P are solutions of {∂F

∂z = 0, F = 0}.
Since F is irreducible and since ∂F/∂z has total degree d − 1, according to
Bézout’s Theorem there are at most d(d − 1) different solutions. 	


In the following we show how the simple points in algorithm parametri-
zation-by-adjoints can be taken in families of conjugate points for different
options of the degree of the adjoint curves.
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Theorem 4.68 (Parametrizing with adjoints of degree d− 2). If algo-
rithm parametrization-by-adjoints is performed with adjoints of degree
k = d − 2, the set S of simple points in Step 3 of the algorithm can be taken
as a family of conjugate points over a field extension of K of degree at most
d(d − 1)(d − 2).

Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C. The theorem
obviously holds for curves of degree ≤ 4. So w.l.o.g. we may assume that
deg(C) > 4. Note that card(S) = d − 3 in Step 3. Take b1, b2 ∈ K such that
no singular point of C is of the form (b1 : b2 : c). Now, compute an irreducible
factor p1(t) of F (b1, b2, t) over K. Then,

P1 = (b1 : b2 : β1) ∈ P2(K(β1)),

where p1(β1) = 0, is a simple point of C. Note that deg(p1) ≤ d. In this
situation, choose λ, µ ∈ K such that:

(1) b1 �= λβ1, b2 �= µβ1,
(2) rest

(
q(t), ∂q

∂t

)
�= 0, where q(t) = F (λt + b1, µt + b2, t + β1) ∈ K(β1)[t].

Condition (2) implies that the line L = {(λt+b1 : µt+b2 : t+β1) | t ∈ K} does
not pass through the singularities and that L is not tangent to C. The reason
for Condition (1) will become clear later. Note that Lemma 4.67 implies that
Condition (2) can always be achieved. Condition (1) is clearly reachable. Now,
we consider the polynomial

q(t) =
q(t)
t

∈ K(β1)[t]

(note that q(0) = F (P1) = 0), and choose an irreducible factor p2(t) over
K(β1) of q(t). Thus, from the above construction we deduce that

P2 = (λβ2 + b1 : µβ2 + b2 : β2 + β1) ∈ P2(K(β1, β2)),

where p2(β2) = 0, is a simple point of C because of (2). Note that deg(p2) ≤
d − 1. Then, we introduce the polynomial

q�(t) =
q(t)

t − β2
∈ K(β1, β2)[t].

Take an irreducible factor p3(t) of q�(t) over K(β1, β2), and consider the point

P3 = (λβ3 + b1 : µβ3 + b2 : β3 + β1) ∈ P2(K(β1, β2, β3)),

where p3(β3) = 0. Note that deg(p3) ≤ d − 2. Observe that P3 is a simple
point on C because of (2). Finally, we introduce the polynomial

m(t) =
q�(t)
t − β3

∈ K(β1, β2, β3)[t].
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In this situation, we claim that

F = {(λt + b1 : µt + b2 : t + β1)}m(t)

is a family of (d − 3) conjugate simple points on C over K(β1, β2, β3). First,
note that m(t) ∈ K(β1, β2, β3)[t], thus F contains conjugate points over
K(β1, β2, β3). Moreover, because of Condition (1), the coordinate polynomi-
als in F are coprime and with coefficients in K(β1) ⊂ K(β1, β2, β3). Hence,
Condition (1) in Definition 3.15 is satisfied. Furthermore, by construction q(t)
is squarefree. Thus, since m(t) is a factor of q(t), also m(t) must be squarefree.
So Condition (2) in Definition 3.15 is satisfied. Moreover deg(q(t)) = d > 4,
hence deg(m(t)) = d − 3 > 1 and the degree of the polynomials defining the
coordinates of F is 1. Thus, Condition (3) in Definition 3.15 is also satisfied.
Now, we check that card(F) = d − 3. Let α1, α2 be two different roots of
m(t), and let Pαi be the point in F generated by the root αi. If α1 = −β1

then α2 �= −β1 and hence Pα1 �= Pα2 (similarly if α2 = −β1). Let α1, α2 be
different from −β1. Then Pα1 = Pα2 implies

λα1 + b1

α1 + β1
=

λα2 + b1

α2 + β1
,

µα1 + b2

α1 + β1
=

µα2 + b2

α2 + β1
.

Since α1 �= α2, this implies λβ1 = b1 and µβ1 = b2, which is impossible
because of Condition (1) in the construction. Summarizing, F is a family of
(d− 3) conjugate simple points over K(β1, β2, β3), which is an extension of K

of degree at most d(d − 1)(d − 2). 	


Corollary 4.69. If algorithm parametrization-by-adjoints is performed
with adjoints of degree k = d−2, and S in Step 3 of the algorithm is taken as in
Theorem 4.68, the algorithm outputs a parametrization over a field extension
of K of degree at most d(d − 1)(d − 2).

Proof. In Theorem 4.66 we have seen that the defining polynomial of Ad−2(C)
has coefficients over K. By Theorem 4.68, points in S are in a family of
conjugate points over a field extension L of K of degree at most d(d−1)(d−2).
Thus, by Lemma 3.19 the defining polynomial of

Ad−2(C) ∩H
(

d − 2,
∑
P∈S

P

)

has coefficients in L. Therefore, the resultant polynomials in Step 5 are over
L, and hence also the parametrization. 	


Theorem 4.70 (Parametrizing with adjoints of degree d− 1). If algo-
rithm parametrization-by-adjoints is performed with adjoints of degree
k = d − 1, the set S of simple points in Step 3 of the algorithm can be taken
as the union of two families of conjugate points over a field extension of K of
degree at most d(d − 1).
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Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C. The theorem
obviously holds for curves of degree ≤ 4. So w.l.o.g. we may assume that
deg(C) > 4. Note that card(S) = 2d − 3 = (d − 1) + (d − 2) in Step 3.
Then, the idea is to express S as the union of two families of conjugate simple
points, one with (d−2) points and the other with (d−1). More precisely, take
b1, b2 ∈ K such that no singular point of C is of the form (b1 : b2 : c). Now,
compute an irreducible factor p1(t) of F (b1, b2, t) over K. Then,

P1 = (b1 : b2 : β1) ∈ P2(K(β1)),

where p1(β1) = 0, is a simple point of C. Note that deg(p1) ≤ d. In this
situation, choose λ1, λ2, µ1, µ2 ∈ K such that:

(1) λ1µ2 �= λ2µ1, b1 �= λiβ1, b2 �= µiβ1 for i = 1, 2,
(2) rest

(
qi(t), ∂qi

∂t

)
�= 0, for i = 1, 2, where qi(t) = F (λit+b1, µit+b2, t+β1) ∈

K(β1)[t].

Condition (1) implies in particular that the lines Li = {(λit + b1 : µit + b2 :
t + β1) | t ∈ K} are different. Condition (2) guarantees that the lines Li do
not pass through any singularities and that Li is not tangent to C. Note that
Lemma 4.67 implies that Condition (2) can always be achieved. Condition (1)
is easily reachable. Now, we consider the polynomials

qi(t) =
qi(t)

t
∈ K(β1)[t], i = 1, 2,

(note that qi(0) = F (P1) = 0). We claim that

F1 = {(λ1t + b1 : µ1t + b2 : t + β1)}q1(t)

is a family of (d − 1) conjugate simple points on C over K(β1). The proof of
this fact is similar to the proof of Theorem 4.68 and we leave it to the reader.

In order to generate the second family we use q2(t). More precisely, let
p2(t) be an irreducible factor of q2(t) over K(β1). Then, we introduce the
point

P2 = (λ2β2 + b1 : µ2β2 + b2 : β2 + β1),

where p2(β2) = 0. Note that deg(p2) ≤ d − 1. P2 ∈ L2 ∩ C, and therefore it is
a simple point on C. Now, we take

m(t) =
q2(t)
t − β2

∈ K(β1, β2)[t].

Then, reasoning similarly as above, we deduce that

F2 = {(λ2t + b1 : µ2t + b2 : t + β1)}m(t)

is a family of (d − 2) conjugate simple points on C over K(β1, β2). Thus, we
have expressed S as F1 ∪ F2. The only thing that we still have to prove is
that F1 ∩ F2 = ∅. Indeed, L1 ∩ L2 = {P1}, and Fi ⊂ Li ∩ C. Thus the only
common point of F1 and F2 is P1. But the root corresponding to P1 has been
crossed out in both polynomials defining the families. 	
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Corollary 4.71. If algorithm parametrization-by-adjoints is performed
with adjoints of degree k = d−1, and S in Step 3 of the algorithm is taken as in
Theorem 4.70, the algorithm outputs a parametrization over a field extension
of K of degree at most d(d − 1).

Proof. Similar to the proof of Corollary 4.69. 	


Theorem 4.72 (Parametrizing with adjoints of degree d). If algorithm
parametrization-by-adjoints is performed with adjoints of degree k = d,
the set S of simple points in Step 3 of the algorithm can be taken as the union
of three families of conjugate points over a field extension of K of degree at
most d.

Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C. As in the
previous proofs we may assume w.l.o.g. that deg(C) > 4. Note that card(S) =
3(d − 1) in Step 3. The idea is to express S as the union of three families
of (d − 1) conjugate points. For this purpose, we proceed as in the previous
theorems. We take a simple point on the curve. This implies, in general, an
extension of degree d, and we consider three lines through this point. More
precisely, take b1, b2 ∈ K such that no singular point of C is of the form
(b1 : b2 : c). Now, compute an irreducible factor p1(t) of F (b1, b2, t) over K.
Therefore,

P1 = (b1 : b2 : β1) ∈ P2(K(β1)),

where p1(β1) = 0, is a simple point of C. Note that deg(p1) ≤ d. In this
situation, choose λ1, λ2, λ3, µ1, µ2, µ3 ∈ K such that:

(1) λiµj �= λjµi, for i �= j, and b1 �= λiβ1, b2 �= µiβ1 for i = 1, 2, 3,

(2) rest

(
qi(t), ∂qi

∂t

)
�= 0, for i = 1, 2, 3, where qi(t) = F (λit + b1, µit + b2, t +

β1) ∈ K(β1)[t].

Condition (1) implies in particular that the lines Li = {(λit + b1 : µit + b2 :
t + β1) | t ∈ K} are pairwise different, i.e. Li �= Lj for i �= j. Condition (2)
guarantees that the lines Li do not pass through any singularities and that
Li is not tangent to C. Note that Lemma 4.67 implies that Condition (2) can
always be achieved. Condition (1) is easily reachable. Now, we consider the
polynomials

qi(t) =
qi(t)

t
∈ K(β1)[t], i = 1, 2, 3

(note that qi(0) = F (P1) = 0). We claim that

Fi = {(λit + b1 : µit + b2 : t + β1)}qi(t), i = 1, 2, 3

are families of (d − 1) conjugate simple points on C over K(β1). The proof
of this fact is similar to the proof of Theorem 4.68 and we leave it to the
reader. 	
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Corollary 4.73. If algorithm parametrization-by-adjoints is performed
with adjoints of degree k = d, S in Step 3 of the algorithm is taken as in
Theorem 4.72, and Q in Step 4 is taken over K, the algorithm outputs a
parametrization over a field extension of K of degree at most d.

Proof. Similar to the proof of Corollary 4.69. 	


From the constructive proof of Theorem 4.72 it is clear that the field
extension of K introduced in the parametrization method is the one used
to define the simple point P1 through which the three families of (d − 1)
conjugate simple points are taken. Therefore, if P1 can be taken to be rational,
i.e. with coordinates in K, then the output parametrization is defined over
K. In addition, the following result can be also deduced from the proof of
Theorem 4.72.

Theorem 4.74. Let C be a rational projective curve with ground field K. Then
C is parametrizable over K if and only if there exists a simple point on C with
coordinates over K.

Proof. If C is parametrizable over K, giving values in K to the parameter,
one generates infinitely many points on C over K. Thus, since the curve has
finitely many singularities, one generates simple points on the curve with
coordinates in K. Conversely, let P ∈ C be simple with coordinates over K.
Then, P can be taken as the point P1 in the proof of Theorem 4.72 to generate
the 3 families of (d− 1) conjugate simple points on C. This implies that these
families are over K, and therefore the output parametrization of the algorithm
parametrization-by-adjoints is over K. 	


The proofs of the previous theorems are constructive and they provide
algorithms. We will outline the algorithm corresponding to adjoint curves of
degree d = deg(C) (see Theorem 4.72 and Corollary 4.73). Algorithms derived
from corollaries to Theorems 4.68 and 4.70 are left as exercises.

Algorithm SYMBOLIC-PARAMETRIZATION-BY-DEGREE-
d-ADJOINTS.
Given the defining polynomial F (x, y, z) ∈ K[x, y, z] of a rational irre-
ducible projective curve C of degree d, and the standard decomposition
D(Ngr(C)) of Ngr(C), the algorithm computes a rational parametrization
of C.

1. If d ≤ 3 or Sing(C) contains exactly one point of multiplicity d − 1,
apply algorithm parametrization-by-lines.

2. Take b1, b2 ∈ K such that no singular point of C is of the form
(b1 : b2 : c).

3. Compute an irreducible factor p(t) of F (b1, b2, t) over K. Let β be a
root of p(t).
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4. Choose λ1, λ2, λ3, µ1, µ2, µ3 ∈ K such that:
(i) λiµj �= λjµi, for i �= j,
(ii) b1 �= λiβ, b2 �= µiβ for i = 1, 2, 3,
(iii) rest

(
qi(t), ∂qi

∂t

)
�= 0, for i = 1, 2, 3, where qi(t) = F (λit+b1, µit+

b2, t + β).
5. Compute qi(t) = qi(t)

t for i = 1, 2, 3.
6. Set Fi := {(λit + b1 : µit + b2 : t + β)}qi(t) for i = 1, 2, 3.
7. Choose a point Q ∈ P2(K) \ C.
8. Let H be the defining polynomial of H = Ad(C) ∩ H(d, Q +∑3

i=1

∑
P∈Fi

P ); use D(Ngr(C)) to compute symbolically H (see
Theorem 4.72).

9. Set one of the parameters in H to 1 and let t be the remaining param-
eter in H . Return the solution in P2(K(β)(t)) of {ppt(resy(F, H)) =
0, ppt(resx(F, H)) = 0}.

Remarks. Note that in Step 4 and also in the next step, we do not need to
isolate an individual root of p(t), but we can simply work modulo p(t).

Example 4.75. We consider the quintic curve C over C defined by the
polynomial

F (x, y, z) = 3y3z2 − 3xy2z2 − 2xy3z + y3x2 + x3z2.

The ground field of C is Q. In Step 2, we take b1 = −1, b2 = 1. Thus,

F (−1, 1, t) = 5t2 + 2t + 1.

In Step 3, we consider p(t) = 5t2 + 2t + 1 and β with minimal polynomial
p(t). In Step 4, we take λ1 = 1, λ2 = 0, λ3 = 1 and µ1 = 0, µ2 = 1, µ3 = 2. It
is easy to check that conditions (i),(ii),(iii) are satisfied. In this situation, the
polynomials qi(t) in Step 5 are

q1(t) =
23
5

t + t4 − 3 t3 − 1
5

t2 + 8 β + 2 βt3 − 32
5

βt2 +
6
5

βt,

q2(t) = 3 t4 + 14 t3 +
107
5

t2 +
58
5

t + 2 + 6 βt3 +
124
5

βt2 +
156
5

βt + 10 β,

q3(t) = 5 t4 + 21 t3 +
147
5

t2 +
47
5

t + 10 βt3 +
264
5

βt2 +
294
5

βt + 8 β.

Therefore, the families in Step 6 are

F1 = {(t − 1 : 1 : t + β)}q1(t), F2 = {(−1 : t + 1 : t + β)}q2(t),

F3 = {(t − 1 : 2t + 1 : t + β)}q3(t).
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In Step 7, we consider Q = (1 : −1 : 1). In Step 8, we compute H. For this
purpose, first we apply the results on the symbolic computation of the genus
(see Sect. 3.3), and we determine the standard decomposition of the singular
locus:

D(Sing(C)) = D(Ngr(C)) =

triple︷ ︸︸ ︷
{(0 : 0 : 1)}∪

double︷ ︸︸ ︷
{(1 : 1 : 1)} ∪ {(1 : 0 : 0)} ∪ {(0 : 1 : 0)},

where the first singularity is a triple point and the others are double points.
Let H be the defining polynomial of a generic form in x, y, z of degree 5:

H = a00z
5 + a01yz4 + a02y

2z3 + a03y
3z2 + a04y

4z + a05y
5 + a10xz4 +

a11xyz3 + a12xy2z2 + a13xy3z + a14xy4 + a20x
2z3 + a21x

2yz2 + a22x
2y2z +

a23x
2y3 + a30x

3z2 + a31x
3yz + a32x

3y2 + a40x
4z + a41x

4y + a50x
5.

Next, we compute the defining polynomial of A5(C). That is, we consider
the equations

∂H

∂x
(0, 0, 1) = 0,

∂H

∂y
(0, 0, 1) = 0,

∂H

∂z
(0, 0, 1) = 0,

H(1, 1, 1) = 0, H(1, 0, 0) = 0, H(0, 1, 0) = 0.

Solving them and substituting in H we get the defining polynomial of the
linear system of adjoints, which we denote again by H :

H = (−a03−a04−a11−a12−a13−a14−a20−a21−a22−a23−a30−a31−
a32 − a40− a41)y2z3 + a03y

3z2 + a04y
4z + a11xyz3 + a12xy2z2 + a13xy3z +

a14xy4 + a20x
2z3 + a21x

2yz2 + a22x
2y2z + a23x

2y3 + a30x
3z2 + a31x

3yz +
a32x

3y2 + a40x
4z + a41x

4y.

Now, we introduce the new conditions

H(1,−1, 1) = 0,

H(t − 1, 1, t + β) = 0 mod q1(t),

H(−1, t + 1, t + β) = 0 mod q2(t),

H(t − 1, 2t + 1, t + β) = 0 mod q3(t).

Solving these equations, and substituting in H we get the new linear subsys-
tem of dimension 1 corresponding to Step 8 (we denote it again by H):

H = a41−12340xy3za30 +47562xy3za41−4670xy2z2a30−3024xy2z2a41−
1275xyz3a30−3435xyz3a41 +4500y4za30β−47100y4zβa41−11280y3z2a30β+
7425y2z3a30β−2900x4za30β−9130x4zβa41+600x3y2a30β−16505x3y2βa41−
595x3yza30−16824x3yza41 +3160x2y3a30β−39113x2y3βa41 +7830y2z3a41 +
675y2z3a30−5940y2z3βa41+362x3yzβa41−10965x3yza30β+10565x2y2za30β+
48008x2y2zβa41 − 36677x2yz2βa41 + 13890x2yz2a30β + 7729x2yz2a41 −
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915x2z3a41 − 300x2z3a30 + 94094xy3zβa41 + 11420xy3za30β − 3200xy4a30 −
6120xy4a41 − 11590xy2z2a30β − 6225xyz3a30β + 22712xy2z2βa41 +
19005xyz3βa41 − 27633y3z2a41 + 4860y3z2a30 − 8700y4za41 + 7500y4za30 −
37671y3z2βa41 + 3600x3y2a30 − 4990x4za41 − 500x4za30 − 3115x3y2a41 −
9999x2y3a41 + 5180x2y3a30.

Normalizing to a30 = 1 and a41 = t and performing Step 9 we get the
output parametrization

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where,
χ1 1(t) = −293257020t2−37389240βt2+1396500+12020500β+23655150t−

116431950βt + 480367237t3 + 1072866719βt3,

χ1 2(t) = 54925000t3,

χ2 1(t) = −5618255790βt2 − 1542285990t2 + 2931800β − 38638880 +
693472350βt + 588212970t + 7167937919βt3 − 1401717583t3,

χ2 2(t) = −260t
(
−69001t + 6701585βt− 201199− 839635β + 6739937t2

)
which requires a field extension of degree 2. However, if in Step 3 we consider
b1 = −3, b2 = 1, then β = 1, and the algorithm leads to the parametrization

P(t) =
(

21 t + 343 t3 + 1 + 1470 t2

−9261t3
,
21 t + 343 t3 + 1 + 1470 t2

21t (931 t2 + 14 t + 1)

)
which is over the ground field. In the next chapter, we will see how to
parametrize over the smallest possible field extension.

Exercises

4.1. Let R(t) ∈ K(t) be nonconstant. Prove that the following statements are
equivalent:

(i) R(t) is invertible.
(ii) R(t) is linear.
(iii) R(t) = at+b

ct+d , where a, b, c, d ∈ K and ad − bc �= 0.

4.2. Consider a rational curve C and a parametrization P of C. Is it true that
if the degree of P is prime then P is proper? If not, what are the exceptions?.

4.3. Compute the tracing index of the parametrization

P(t) =
(

t4 + 3 t2 + 3
t4 + 3 t2 + 1

,
t4 + 2 t2 + 3

t2 + 2

)
.
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4.4. May it happen that a proper parametrization is not injective for finitely
many parameter values?. If so, give an example.

4.5. Let R(t) = p(t)
q(t) ∈ K(t) be a nonconstant rational function in reduced

form, let U = {α ∈ K | q(α) �= 0}, and let R : K −→ K be the rational
mapping induced by R(t). Prove that card(K \ R(U)) ≤ 1.

4.6. Apply Exercise 4.5 to show that the number of exceptions in Lemma 4.32
is bounded by 2 deg(R(t)) + 1.

4.7. Carry out the computations in Example 4.38 without using the implicit
equation of the curve C.

4.8. Let C be the plane curve defined by the irreducible polynomial

f = −2+5y−2yx+5y2x−4y2+9yx2+y3−2x2−12y2x2+4y3x2−2y3x ∈ C[x, y],

and consider the rational parametrization

P(t) =
(

t + 1
t3 + 1

,
t2 + 1

t2 + t + 1

)
,

of C. Determine whether P is proper, and in the affirmative case compute its
inverse.

4.9. Compute the defining polynomial of the curve defined by the rational
parametrization

P(t) =
(

t5 + 1
t2 + 3

,
t3 + t + 1

t2 + 1

)
and the inverse of P(t).

4.10. Prove that the curve C defining by the polynomial

f(x, y) = y4 + x − 75
8

x2y2 +
125
8

x3y − 1875
256

x4

is parametrizable by lines. Compute a proper parametrization of C and its
inverse.

4.11. Let C be the affine quintic curve defined by the polynomial

−75
8

x2y2 +
125
8

x3y − 1875
256

x4 + x + y4 +
625
16

x3y2 − 9375
256

x4y

−125
8

x2y3 +
3125
256

x5 + y5.

Apply algorithm parametrization-by-lines to parametrize C.

4.12. Prove that any line can by parametrized by lines.
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4.13. Give an example of a nonrational curve for which there exists a pencil
of lines with the property required in Definition 4.48.

4.14. Prove that for a curve with no rational component, there does not exist
a pencil of lines with the property required in Definition 4.48.

4.15. Let C be an affine curve such that its associated projective curve C� is
parametrizable by the pencil of lines H(t) of equation L1(x, y, z)−tL2(x, y, z).
Then, the affine parametrization of C, generated by H(t), is proper and
L1(x,y,1)
L2(x,y,1) is its inverse.

4.16. Extend the notion of proper rational parametrization to hypersurfaces
over algebraically closed fields of characteristic zero.

4.17. Construct an algorithm that, given the defining polynomial of a plane
rational curve and the inverse ϕ of a proper rational parametrization, com-
putes the parametrization ϕ−1. Apply the algorithm to the inverse mapping
computed in Example 4.38.

4.18. Prove that irreducible nonrational curves of degree d may have adjoints
of degree d − 3.

4.19. Let C be the affine curve defined by f(x, y) = (x2 +4y + y2)2 − 16(x2 +
y2) = 0. Compute a rational parametrization of C.

4.20. Let C be the affine curve defined by f(x, y) = x4 + 5xy3 + y4 − 20y3 +
23y2− 9x2y− 6x3y +16xy2− 11xy. Compute a rational parametrization of C.

4.21. Describe an algorithm for parametrizing curves based on Theorem 4.68.

4.22. Describe an algorithm for parametrizing curves based on Theorem 4.70.
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Algebraically Optimal Parametrization

Summary. In Chap. 4 we have analyzed the parametrization problem for rational
curves, and we have presented algorithms for this purpose. Furthermore, we have
proved that these algorithms determine proper parametrizations. Therefore, we can
ensure that the parametrizations generated by these algorithms are optimal w.r.t.
the degree of the components (see Theorem 4.21 and Corollary 4.22). In this chapter
we analyze a different optimality criterion for parametrizations, namely the degree of
the field extension necessary for representing coefficients of the parametrization. For
instance, the parametrization (

√
2t, 2t2) of the parabola is optimal w.r.t. the degree

(i.e., is proper) but it is expressed over Q(
√

2), while the alternative parametriza-
tion (t, t2) is expressed over Q and is also optimal w.r.t. the degree. Thus, we are
interested in computing proper parametrizations that require the smallest possi-
ble field extension of the ground field. After introducing the notion of the field of
parametrization in Section 5.1 and describing the Legendre method for finding ra-
tional points on conics in Section 5.2, we present in Section 5.3 an algebraically
optimal parametrization of algebraic curves.

Different tools may be applied for attacking this problem, such as an-
ticanonical divisors or adjoint curves. The approach based on anticanonical
divisors consists of computing a basis of the vector space L(D), where D is
the anticanonical divisor, that defines a bijective morphism from the origi-
nal curve to a conic. An optimal parametrization of this conic can then be
transformed, via the bijective morphism, to an optimal parametrization of
the curve. The approach based on adjoints consists of using adjoint curves
to birationally transform the original curve into a conic or a line. Then, as
in the previous method, such an optimal parametrization of the conic or
line is transformed to an optimal parametrization of the curve via the bi-
rational morphism. In this chapter we describe the adjoint approach which is
based on [SeW97], and we refer to [VaH97] for the method using anticanonical
divisors.

Throughout this chapter we assume that K is a computable field of
characteristic zero, K is its algebraic closure, and C is a rational projective
curve over K of degree d, whose defining polynomial is F (x, y, z) and whose
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ground field is K. In addition, we will always assume that C is not a line.
Observe that for lines the problem is trivial.

5.1 Fields of Parametrization

We want to compute algebraically optimal parametrizations, that is para-
metrizations defined over the “smallest” possible field extension of the ground
field. Before we can present a solution to the problem of the optimal field of
parametrization, we first need to clarify what we mean by the term “smallest”
extension field.

Definition 5.1. We say that a subfield L ⊂ K is a field of parametrization
of C (or a parametrizing field of C) if C can be parametrized over L; that is, if
there exists a parametrization P(t) of C with coefficients in L. In this case we
say that L is the field of definition of P(t).

The following result limits the possibilities for being a field of parametriza-
tion.

Theorem 5.2. (1) If L is a field of parametrization of C then L is a field
extension of the ground field.
(2) Every rational plane curve over K has fields of parametrization that are
finite extensions of its ground field.

Proof. (1) If L is a field of parametrization of C, then there exists a para-
metrization of C with coefficients in L. Now, applying elimination techniques,
one gets that the implicit equation of C is in L, and then K ⊂ L.
(2) This follows from Sect. 4.8. 	


This theorem motivates Definition 5.3.

Definition 5.3. A point of C with coordinates in a field extension L of K is
called an L-rational point of C. Moreover, we say that a point of C is rational
if it is K-rational.

With this new terminology we can rewrite Theorem 4.74.

Theorem 5.4. An algebraic extension field L of K is a field of parametriza-
tion of C if and only if C has at least one simple L-rational point.

Now we are ready to introduce the precise notion of algebraic optimality.
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Definition 5.5. A field of parametrization L of C is optimal if it has minimal
degree among all the finite algebraic fields of parametrization of C, i.e., if

[L : K] = min

{
[F : K]

F is a field of parametrization of C,
and F is a finite algebraic extension of K.

}

Also, a rational parametrization of C is (algebraically) optimal if its field of
definition is optimal.

In general, optimal fields of parametrization of a rational curve are not
unique. For instance, let us consider the ellipse over C of equation 2x2 +3y2 =
1. Its ground field is Q. In Exercise 5.9, we will see that this curve does not
have any point with coordinates in Q. Therefore, by Theorem 5.4, Q is not a
field of parametrization. Now, applying Algorithm conic-parametrization

(see Sect. 4.6) first with the simple point (
√

2
2 , 0), and second with (0,

√
3

3 ) one
gets the following parametrizations of the ellipse(

1
2

√
2
(
3 t2 − 2

)
2 + 3 t2

,−2
t
√

2
2 + 3 t2

)
,

(
−2

t
√

3
2 t2 + 3

,
1
3

√
3
(
2 t2 − 3

)
2 t2 + 3

)
.

Therefore, Q(
√

2) and Q(
√

3) are optimal fields of parametrization for the
ellipse.

Now we can present a proper statement of the problem as follows: given
the rational curve C, whose ground field is K, compute an (algebraically)
optimal parametrization of C. Note that, taking into account Theorem 5.4, in
general this means finding optimal simple points on C; that is simple points
with coordinates in an optimal field of C.

Let us first consider the case of irreducible conics. Using Algorithm conic-
parametrization and taking into account that by intersecting the conic with
lines we generate points on the conic with coordinates in a field extension of
K of degree at most 2, we get Theorem 5.6.

Theorem 5.6. (1) The optimal fields of parametrization of an irreducible
conic have degree at most 2.

(2) The optimal field of parametrization of an irreducible conic is the
ground field if and only if the conic has at least one rational point.

We have seen that optimal fields for the conic 2x2 +3y2 = 1 are quadratic
over Q, and therefore the bound in Theorem 5.6 is sharp. In Sect. 5.2 we
will see how the existence of rational points on a conic can be checked for
certain ground fields, and how such rational points can be computed if they
exist. This will lead to an algorithm for computing optimal parametrizations
of conics.

Now, we consider the case where deg(C) ≥ 3 and C can be parametrized by
lines. This case includes for instance the rational cubics. So C has exactly one
singularity and its coefficients are in K. Therefore, the output of Algorithm
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parametrization-by-lines (see Sect. 4.6) has coefficients in K, and hence
it is algebraically optimal. Furthermore, Algorithm parametrization-by-
lines always provides optimal parametrizations. Thus, we have Theorem 5.7.

Theorem 5.7. If C is parametrizable by lines and d �= 2, then its optimal field
of parametrization is the ground field.

To complete this analysis we consider now the general case. In 1890, Hilbert
and Hurwitz introduced a method, based on adjoints, for dealing with this
problem (see [HiH90]). In fact, from the proof of their result one may derive
a first approach to compute optimal parametrizations.

Theorem 5.8 (Hilbert–Hurwitz). Let C be a rational plane curve of degree
d. Then, for almost all adjoint curves Φ1, Φ2, Φ3 ∈ Ad−2(C), the mapping

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}

transforms C birationally to an irreducible curve of degree d − 2.

The main consequence of the theorem by Hilbert–Hurwitz is Corollary 5.9.

Corollary 5.9. If K is the ground field of C, and deg(C) = d, the following
holds:

(1) If d is odd then K is the optimal field of parametrization of C.
(2) If d is even then the optimal fields of parametrization of C are field exten-

sions of K of degree at most 2. Furthermore, the optimal field is K if and
only if C has at least one rational simple point.

Proof. First we observe that the ground field of all curves in Ad−2(C) is K

(see Theorem 4.66). Let T be a birational transformation as introduced in
Theorem 5.8. Then T (C) is rational, its degree is d − 2 and because rational
maps do not extend the ground field one has that the ground field of T (C)
is again K. Now we repeat the process until we arrive at a curve of degree 1
or 2, depending on whether the degree of the original curve is odd or even,
respectively. Therefore, we have a birational map defined over K from C onto
a rational curve D which is either a line or a conic depending on whether d is
odd or even. Now the results follow from Theorems 5.6 and 5.7. 	


From the argument used in the proof of the Corollary 5.9 we can derive an
algorithm for computing optimal parametrizations if a method for optimally
parametrizing conics is provided. Although the problem for conics will be
discussed in Sect. 5.2, for the sake of completeness we outline here the
algorithm derived from the theorem of Hilbert–Hurwitz, referring to Sect. 5.2
when necessary.
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Algorithm HILBERT–HURWITZ
Given a rational plane curve C, the algorithm computes an (algebraically)
optimal parametrization of the curve C.

1. If C is parametrizable by lines and d �= 2 apply Algorithm
parametrization-by-lines.

2. Consider D := C and G := {x : y : z = x : y : z}.
3. While deg(D) ≥ 3 do

3.1. Compute Ad−2(D).
3.2. Take three adjoints Φ1, Φ2, Φ3 ∈ Ad−2(D) and consider the

mapping
T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}.

If T is not birational try with three new adjoints.
3.3. G := T ◦ G and D := T (D).

4. Determine an optimal parametrization P(t) of D (this is obvious for
a line, and in the case of a conic we use Sect. 5.2).

5. Return G−1(P(t)).

In Step 5 of Algorithm Hilbert–Hurwitz, instead of inverting the
parametrization P(t), we might as well compute d − 3 simple points in D
using P(t), and giving values to t in K. Then, we might transform them onto
points in C using G−1. If any of these transformed points in not simple on C re-
place it by a new one. With these d−3 simple points on C, we can parametrize
C as described in Sect. 4.7. In Sect. 5.3 we will return to this problem and we
will present a computationally more efficient solution. We finish this section
with a simple example where we illustrate the method described above.

Example 5.10. We consider the projective curve C defined over C by the
poynomial

F (x, y, z) =
3
2

y3z2 + x y2z2 − 2 x y3z − 5
2

x2y z2 + x3z2 + x3y2

The ground field of C is Q. C has a triple point at the (0 : 0 : 1) and three
double points at (0 : 1 : 0), (1 : 0 : 0), and (1 : 1 : 1). So the genus of C
is 0, i.e., C is rational. Furthermore, since the degree of the curve is odd, by
Corollary 5.9, we know that Q is in fact an optimal field of parametrization
of C. We now proceed to compute an optimal parametrization applying the
previous algorithm. Note that only one adjoint reduction suffices. We compute
A3(C). Its defining polynomial is

H(x, y, z, λ1, λ2, λ3, λ4) = −y2z λ1 − λ2y
2z − y2z λ3 − y2z λ4 + λ1x y z

+ λ2x y2 + λ3x
2z + λ4x

2y .
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Now we choose three adjoints in A3(C):

Φ1(x, y, z) = H(x, y, z, 0, 0, 0, 1) = −y2z + x2y

Φ2(x, y, z) = H(x, y, z, 0, 1, 0, 0) = −y2z + xy2

Φ3(x, y, z) = H(x, y, z, 0, 0, 1, 0) = −y2z + x2z,

and we consider the rational map T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}. By the
method of Gröbner bases one deduces that T is birational (see [Sch98b]), that
the implicit equation of D = T (C) is

G(x, y, z) = −10 x z y+2 y2z−11 z2y+2 x y2+6 x3+4 x2y+6 z2x−4 z x2−4 z3 ,

and that T −1 is given by

(x : y : z) = (T1(x, y, z) : T2(x, y, z) : T3(x, y, z)) ,

where

T1 = (−x2 + y2 + 5 z x − 5 z y)z (4 y − z),
T2 = −18 y2z2 + 2 x2z y + 2 z3y + 14 y3z + 24 x z2y − 2 z x3 − 2 z3x

− 14 x y2z + 8 x3y − 2 y4 − 6 z2x2 − 6 x4,

T3 = z (4 y − z)(−z y + 2 x2 + 2 z2).

Since D is a rational cubic (it has a double point at (−3 : 13 : 2)) we apply
Algorithm parametrization-by-lines (see Sect. 4.6) and we get the affine
parametrization

Q(t) =
(
−5 t + 2 + t2

t2 + 3 + 2 t
,

39 + 31 t + 9 t2 + t3

2(t2 + 3 + 2 t)

)
.

Finally, applying T −1 to Q(t), we get the optimal parametrization of C

T −1(Q(t)) =
(
− t3 + 11 t2 + 41 t + 43

2(t2 + 6 t + 13)
,

t3 + 11 t2 + 41 t + 43
4(2 t + 5)

)
.

In Exercise 5.1 we propose the computation of D using interpolation tech-
niques.

5.2 Rational Points on Conics

In Sect. 5.1 we have analyzed optimal fields of parametrization of a curve C
over K with ground field K. Corollary 5.9 tells us that if the degree of C is odd
then the optimal field of parametrization is K, otherwise it is a field extension
of K of degree at most 2. Furthermore, the algorithm Hilbert–Hurwitz
shows how the problem of checking the precise degree of this field extension
can be reduced to the case of conics.
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In this section, we focus on the case of conics. For certain fields we can de-
cide the existence of rational points and, in the positive case, actually compute
such points. Therefore, over such fields, we can derive an optimal parametriza-
tion algorithm. We present here the classical approach, based on the Legendre
theory, for the case K = Q. For a description of the Legendre theory we re-
fer to [CrR03], [IrR82], [Krä81], [LiN94], or [Ros88]. The relation of rational
points and optimal parametrization has been investigated in [HiW98].

Throughout this section, C is a projective conic with ground field Q,
defined by

F (x, y, z) = a1x
2 + a2xy + a3y

2 + a4xz + a5yz + a6z
2,

where ai ∈ Q.
Our goal is to decide whether there is a rational point on C, and if so,

to compute one. By Theorem 5.6 we know that C has a rational point if and
only if Q is an optimal field of parametrization; hence, if and only if, C has
infinitely many rational points. In the following study, we distinguish between
parabolas, ellipses (including circles), and hyperbolas. The case of parabolas
is the easy one, and one may always, in fact, give an explicit formula for
a rational point on it. However, the case of ellipses and hyperbolas is not
so straight-forward. We need to manipulate the equation to reach a Legendre
equation. The Legendre equation lets us decide the existence of rational points,
and actually allows to compute such a point if it exists. In the sequel we denote
by Z� the set of nonzero integers, and by Z+ the set of positive integers.

5.2.1 The Parabolic Case

We start by observing that C is a parabola if and only if the coefficients of
F (x, y, z) satisfy one of the following relations (see Exercise 2.3):

a2
2 = 4a1a3 or a2

4 = 4a1a6 or a2
5 = 4a3a6.

Let us assume w.l.o.g that a2
2 = 4a1a3, i.e., we consider a parabola with

respect to x and y, where z is the homogenizing variable. Furthermore, let us
assume that a3 �= 0 (otherwise, we may reason similarly by interchanging x
and y). Then we have the relation

4a3F (x, y, z) = (a2x + 2a3y + a5z)2 + (4a3a4 − 2a2a5)xz + (4a3a6 − a2
5)z

2.

Since C is irreducible, this implies 4a3a4 − 2a2a5 �= 0. Thus,

(−2a3(4a3a6 − a2
5), −4a5a3a4 + a2a

2
5 + 4a2a3a6, 4a3(a3a4 − a2a5))

is a rational point on C.

Example 5.11. Consider the affine parabola defined by

f(x, y) = x2 + 2xy + y2 + x + 2y − 2.

Since a3 �= 0, we can use the formula, and we get the rational point (−3, 2)
on the parabola.
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5.2.2 The Hyperbolic and the Elliptic Case

The hyperbolic/elliptic case is characterized by the conditions

a2
2 �= 4a1a3 and a2

4 �= 4a1a6 and a2
5 �= 4a3a6

on the coefficients of F (x, y, z). By well-known techniques in linear algebra
(see [Krä81]) we can find a linear change of coordinates over Q transforming
the conic C onto a conic of the form

x2 + ky2 = �z2 (5.1)

where k, � ∈ Q, and where either k < 0 or � > 0. This implies the existence

of real points. Now, expressing k and � as k =
k1

k2
, � =

�1

�2
with ki, �j ∈ Z∗,

and cleaning up denominators in (5.1) we get the following equation over Z

a′x2 + b′y2 + c′z2 = 0 (5.2)

where a′ = lcm(k2, �2), b′ =
k1 �2

gcd(k2, �2)
, and c′ = − �1 k2

gcd(k2, �2)
.

Clearly, a′, b′, c′ are nonzero and do not have the same sign. Now, we want to
reduce (5.2) to an equation of similar form whose coefficients are squarefree
and pairwise relatively prime.

First, we express a′, b′, c′ as

a′ = a′
1r

2
1, b′ = b′1r

2
2, c′ = c′1r

2
3,

where a′
1, b

′
1, c

′
1 are squarefree (see Exercise 5.5). We get the equation

a′
1x

2 + b′1y
2 + c′1z

2 = 0 (5.3)

Note that (5.3) has an integral solution if and only if (5.2) has one.
Next, we divide (5.3) by gcd(a′

1, b
′
1, c

′
1), getting

a′′x2 + b′′y2 + c′′z2 = 0 (5.4)

Now, we make the coefficients pairwise relatively prime. For this purpose, let
g1 = gcd(a′′, b′′), a′′′ = a′′/g1, b′′′ = b′′/g1, and let (x, y, z) be an integral
solution of (5.4). Then g1 | c′′ z2, and hence, since gcd(a′′, b′′, c′′) = 1, we have
g1 | z2. Furthermore, since g1 is squarefree (since a′′, b′′ are), we have g1 | z.
So, letting z = g1z

′ and dividing (5.4) by g1, we arrive at the equation

a′′′x2 + b′′′y2 + c′′g1︸︷︷︸
c′′′

(z′)2 = 0.

At this point gcd(a′′′, b′′′) = 1 and c′′′ is squarefree since g1 and c′′ are
relatively prime. Repeating this process with g2 = gcd(a′′′, c′′′) and g3 =
gcd(b′′′′, c′′′′) we finally arrive at an equation

a(x′)2 + b(y′)2 + c(z′)2 = 0 ,

where a, b, c satisfy the requirements in Definition 5.12.



5.2 Rational Points on Conics 157

Definition 5.12. Let a, b, c ∈ Z be such that abc �= 0, and they satisfy the
following conditions:

(i) a > 0, b < 0, and c < 0

(ii) a, b, and c are squarefree (5.5)

(iii) gcd(a, b) = gcd(a, c) = gcd(b, c) = 1.

Then, the equation
ax2 + by2 + cz2 = 0 (5.6)

is called a Legendre equation.

5.2.3 Solving the Legendre Equation

The problem of finding a rational point on an ellipse or hyperbola reduces
to the problem of finding a nontrivial integral solution of the so called
Legendre Equation. Let us investigate necessary and sufficient conditions
for the Legendre equation to have nontrivial integral solutions. By a non-
trivial integral solution we mean a solution (x, y, z) ∈ Z3 with (x, y, z) �=
(0, 0, 0) and gcd(x, y, z) = 1. Such conditions are given by Legendre’s Theo-
rem (Theorem 5.18). Based on the description in [IrR82] we develop here a
constructive proof from which we can extract an algorithm to compute integral
solutions. For the formulation of Legendre’s Theorem we need to introduce
the notion of quadratic residues.

Definition 5.13. Let m, n ∈ Z�. Then we say that m is a quadratic residue
modulo n, and we denote this by mRn, if there exists x ∈ Z such that
x2 ≡n m.

The problem of deciding whether mRn can be solved directly by checking
all the elements in Zn. Alternatively, one may approach the problem by using
Legendre’s symbol (see [Coh00] or [IrR82] for the notion of Legendre’s sym-
bol). We outline here a method based on the notion of quadratic reciprocity
to solve this question. If n = 1 or n = 2 the problem is trivial, and we may
always assume w.l.o.g that n > 0 (see Exercise 5.7). In this situation, if n is
an odd prime number one can prove from the Law of quadratic reprocity (see
Sect. 18.5 in [vGG99]) that mRn if and only if

m
n−1

2 ≡n 1.

So we will have to deal with the case where n > 2 and n is not a prime
number.

Lemma 5.14. Let n, m ∈ Z� such that gcd(m, n) = 1. If a ∈ Z� satisfies
aRn and aRm, then a also satisfies aRnm.
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Proof. Since aRn and aRm, there exist x1, x2 ∈ Z such that

x2
1 ≡n a, x2

2 ≡m a.

In addition, gcd(n, m) = 1 implies that there exist �′1, �′2 ∈ Z such that �′1n−
�′2m = 1. Thus, there exist �1, �2 ∈ Z, namely �i = �′i(x2 − x1), i = 1, 2, such
that

x1 + �1n = x2 + �2m .

In this situation we prove that for x3 = x1 +�1n we get x2
3 ≡nm a, from where

we deduce that aRnm. Indeed,

x2
3 = (x1 + �1n)2 ≡n x2

1 ≡n a, x2
3 = (x2 + �2m)2 ≡m x2

2 ≡m a .

Thus, there exist k1, k2 ∈ Z such that

x2
3 = a + k1n = a + k2m .

This implies that k1n = k2m. But gcd(n, m) = 1, and therefore n divides k2.
Hence, there exists k3 ∈ Z such that k2 = k3n, and then

x2
3 = a + k3nm ≡nm a . 	


Now let us return to consider the case where n > 2 and n is not a prime
number. Let

n =
r∏

i=1

nei

i

be the irreducible factorization of n. Then, mRn implies that mRni for
i = 1, . . . , r (see Exercise 5.7). Now, we distinguish two cases depending on
whether n is squarefree or not.
Suppose n is squarefree. Then, mRn if and only if mRni for i = 1, . . . , r
(note that the left–right implication always holds and for the right–left impli-
cation see Lemma 5.14). Thus, in this case, one may check whether mRn by
checking whether mRni, ∀ i = 1, . . . , r. We have seen above how this can be
done for any prime number.
Now assume that n is not squarefree. Let mRn, and let x ∈ Z be such that
x2 ≡n m. Then, we know that x2 ≡ni m for i = 1, . . . , r. Thus, one may check
the existence of x as follows: if for some i ∈ {1, . . . , r} we have that mR/ni,
then mR/n. On the other hand, assume that for every i ∈ {1, . . . , r} we have
mRni and xi ∈ Z is such that x2

i ≡ni m (these xi are usually not unique).
For the possible x ∈ Z such that x2 ≡n m we must have that x ≡ni xi

for some candidates xi. Thus, applying the Chinese Remainder Algorithm to
these congruences one determines the possible candidates for x (observe that
these candidates are x+ k

∏r
i=1 ni, for some k). Finally the problem is solved

by checking whether any of these candidates satisfies x2 ≡n m.
So now let us return to our original problem of solving the Legendre equa-

tion. First, we state some preliminary technical lemmas.
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Lemma 5.15. Let n ∈ Z+, and let α, β, and γ be positive nonintegral real
numbers such that αβγ = n. Then, for every triple (a1, a2, a3) ∈ Z3\{(0, 0, 0)},
the congruence

a1x + a2y + a3z ≡n 0

has a solution (x, y, z) �= (0, 0, 0) such that

|x| < α , |y| < β, and |z| < γ.

Proof. Consider the set

S = {(x, y, z) ∈ N 3 | x ≤ �α� and y ≤ �β� and z ≤ �γ�} .

Note that card(S) = (1+�α�)(1+�β�) (1+�γ�) > αβγ = n. Now we consider
the set A = {a1x+a2y+a3z | (x, y, z) ∈ S}. If card(A) < card(S), this means
that there exist at least two distinct elements (x1, y1, z1), (x2, y2, z2) ∈ S such
that

a1x1 + a2y1 + a3z1 = a1x2 + a2y2 + a3z2 .

Now, let us assume that card(A) = card(S). Then, since card(S) > n and
there are n residue classes modulo n, one deduces that there exist at least two
distinct elements (x1, y1, z1), (x2, y2, z2) ∈ S such that

a1x1 + a2y1 + a3z1 ≡n a1x2 + a2y2 + a3z2 .

In any case, (x, y, z) = (x1 −x2, y1 − y2, z1 − z2) �= (0, 0, 0) is a solution of the
congruence

a1x + a2y + a3z ≡n 0 .

In addition, since α, β, and γ are positive nonintegral real numbers, and
xi, yi, zi ∈ N, we know that 0 ≤ xi < α, 0 ≤ yi < β, 0 ≤ zi < γ, for i = 1, 2.
Thus,

|x| = |x1 − x2| ≤ max{x1, x2} < α ,

and similarly

|y| < β, and |z| < γ . 	


Lemma 5.16. Let m, n ∈ N such that gcd(m, n) = 1, and let ax2 + by2 + cz2,
with a, b, c ∈ Z, be a form that factors modulo m and modulo n. Then, ax2 +
by2 + cz2 also factors modulo mn.

Proof. See Exercise 5.6. 	


Lemma 5.17. Let r ∈ Z+ such that −1R r. Then, the equation

x2 + y2 = r

has an integral solution.
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Proof. First, since −1R r, there exists x0 ∈ Z and k ∈ Z such that

x2
0 + 1 = kr .

Moreover, k ∈ N� because r > 0. Let us assume that k = 1. Then, (x0, 1) is a
nontrivial integral solution of the equation x2 + y2 = r; hence the statement
holds. Now, let k > 1. Then, taking y0 = 1, one has that (x0, y0) is a nontrivial
integral solution of the equation x2 + y2 = kr. Then, let x1, y1 be integers of
least absolute value such that x1 ≡k x0, and y1 ≡k y0. Note that there exist
c, d ∈ Z such that x1 = x0 + ck, and y1 = y0 + dk. Thus,

x2
1 + y2

1 = (x0 + ck)2 + (y0 + dk)2 ≡k x2
0 + y2

0 ≡k 0 .

Therefore, there exists k′ such that x2
1 + y2

1 = k′k. Moreover, because of
|x1|, |y1| ≤ k/2, we get

x2
1 + y2

1 ≤
(

k

2

)2

+
(

k

2

)2

=
1
2
k2 ,

and hence 0 < k′ ≤ k
2 . Additionally

k′k2r = (k′k)(kr) = (x2
1 + y2

1)(x
2
0 + y2

0) = (x0x1 + y0y1)2 + (x0y1 − x1y0)2 ,

and therefore

k′r =
(

x0x1 + y0y1

k

)2

+
(

x0y1 − x1y0

k

)2

.

Now, let x2 = (x0x1 + y0y1)/k, and y2 = (x0y1 − x1y0)/k. We observe that

x0x1 + y0y1 = x0(x0 + ck) + y0(y0 + dk) ≡k x2
0 + y2

0 ≡k 0 ,

and
x0y1 − x1y0 = x0(y0 + dk) − y0(x0 + ck) ≡k 0 .

Thus, x2, y2 ∈ Z, and (x2, y2) is a nontrivial integral solution of x2 +y2 = k′r.
In this situation, since k′ ≤ k, we either have a solution of x2 + y2 = r (i.e., if
k′ = 1) or we may apply the previous reasoning again. Proceeding inductively
we finally finish the proof. 	


Remarks. The proof of Lemma 5.17 is constructive. In the following we
outline the corresponding algorithmic process. For this purpose, we will denote
by “qr” an algorithmic procedure that decides whether mRn, and that in the
affirmative case outputs x ∈ Z such that x2 ≡n m. Then, given r ∈ Z+ such
that −1R r, the computation of α, β ∈ Z such that r = α2 + β2, can be
performed as follows.

1. Determine

α := qr(−1, r), β := 1, k :=
α2 + β2

r
.
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2. While k > 1 do

α1 := α mod k, β1 := β mod k, α2 :=
α1α + β1β

k
,

β2 :=
αβ1 − α1β

k
, α := α2, β := β2, k :=

α2 + β2

r
.

3. Return (α, β).

Now we are ready for stating Legendre’s Theorem.

Theorem 5.18 (Legendre’s Theorem). The Legendre equation ax2+by2+
cz2 = 0 has a nontrivial integral solution if and only if (−ab)R c, (−bc)R a,
and (−ac)R b.

Proof. Let (x, y, z) be a nontrivial integral solution of ax2 + by2 + cz2 = 0.
Note that we can assume w.l.o.g that gcd(x, y, z) = 1. First we prove that
gcd(c, x) = 1. Indeed, if any prime p divides gcd(c, x), then p divides by2.
Because of (5.5), gcd(b, c) = 1, so p does not divide b. Thus, p divides y.
Consequently, p2 divides ax2 + by2, and hence p2 divides cz2. Because of (5.5)
c is squarefree, which implies that p divides z. Therefore, p divides gcd(x, y, z),
which is impossible. So, we have proved that gcd(c, x) = 1.
Now, since gcd(c, x) = 1 there exist λ, µ ∈ Z such that λc + µx = 1. This
implies that µx ≡c 1. Furthermore, from the equality ax2 + by2 + cz2 = 0 we
get that ax2 ≡c −by2. Thus,

b2µ2y2 ≡c −ab(xµ)2 ≡c −ab ,

and consequently we have (−ab)R c. The remaining conditions can be derived
analogously.

In order to prove the reverse implication we first deal with three special
cases.

1. Case b = c = −1. In this case, the hypothesis (−bc)R a implies that
−1R a. So, by Lemma 5.17 there exist r, s ∈ Z such that r2 + s2 = a.
Hence, in this case, (1, r, s) is a nontrivial integral solution of the Legendre
equation.

2. Case a = 1, b = −1. In this case (1, 1, 0) is a nontrivial integral solution
of the Legendre equation.

3. Case a = 1, c = −1. In this case (1, 0, 1) is a nontrivial integral solution
of the Legendre equation.

Now, we treat the general case. Since (−ab)R c, there exists t ∈ Z such that

t2 ≡c −ab .
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On the other hand, because of (5.5) we have gcd(a, c) = 1. Thus, there exists
a∗ ∈ Z such that aa∗ ≡c 1, and therefore

ax2 + by2 + cz2 ≡c aa∗(ax2 + by2) ≡c a∗(a2x2 + aby2)

≡c a∗(a2x2 − t2y2) = a∗(ax − ty)(ax + ty)

≡c (x − a∗ty)(ax + ty) .

Using the remaining hypotheses (i.e., (−bc)R a, and (−ac)R b) and reasoning
similarly as above we see that ax2 + by2 + cz2 can also be expressed as a
product of linear factors modulo b and modulo a. Then, taking into account
Lemma 5.16 and (5.5), we deduce that there exist a1, . . . , a6 ∈ Z such that

ax2 + by2 + cz2 ≡abc (a1x + a2y + a3z)(a4x + a5y + a6z) .

Now, we consider the congruence

(a1x + a2y + a3z) ≡abc 0 .

Since we are not in any of the special cases, and since a, b, and c satisfy
(5.5), we have that

√
bc,

√
−ac, and

√
−ab are nonintegral real numbers, and

their product is abc. Applying Lemma 5.15 to the previous congruence, with
α =

√
bc, β =

√−ac, and γ =
√
−ab, we deduce that there exists a nontrivial

integral solution, say (x1, y1, z1) of a1x + a2y + a3z ≡abc 0, where

|x1| <
√

bc, |y1| <
√
−ac, and |z1| <

√
−ab .

Thus, taking into account that

ax2 + by2 + cz2 ≡abc (a1x + a2y + a3z)(a4x + a5y + a6z) ,

we deduce that
ax2

1 + by2
1 + cz2

1 ≡abc 0 .

Furthermore, since b and c are negative and |x1| <
√

bc, the above inequalities
imply that

ax2
1 + by2

1 + cz2
1 ≤ ax2

1 < abc .

Moreover, since a > 0, |y1| <
√
−Ac, |z1| <

√
−ab and b, c are negative, we

have
ax2

1 + by2
1 + cz2

1 ≥ by2
1 + cz2

1 > b(−ac) + c(−ab) = −2abc .

Thus, ax2
1 + by2

1 + cz2
1 is a multiple of abc, and −2abc < ax2

1 + by2
1 + cz2

1 < abc.
Hence, we are in one of the following cases:

ax2
1 + by2

1 + cz2
1 = 0, or ax2

1 + by2
1 + cz2

1 = −abc .



5.2 Rational Points on Conics 163

In the first case the result follows immediately. So let us assume that ax2
1 +

by2
1 + cz2

1 = −abc. In this situation, we introduce the integers

x2 = x1z1 − by1, y2 = y1z1 + ax1, z2 = z2
1 + ab .

For these numbers we get the relation

ax2
2 + by2

2 + cz2
2 = a(x1z1 − by1)2 + b(y1z1 + ax1)2 + c(z2

1 + ab)2

= (ax2
1 + by2

1 + cz2
1)z

2
1 − 2abx1y1z1 + 2abx1y1z1

+ ab(by2
1 + ax2

1 + cz2
1) + abcz2

1 + a2b2c

= (−abc)z2
1 + ab(−abc) + abcz2

1 + a2b2c = 0 .

Thus, (x2, y2, z2) is a solution. Furthermore, it is a nontrivial solution. Indeed,
if z2

1 + ab = 0, the coprimality and squarefreeness of a and b imply that a = 1
and b = −1. But this case has been treated above.

This completes the proof. Nontrivial solutions have been found in all cases.
	


Theorem 5.18 characterizes the existence of nontrivial solutions of the
Legendre equation by means of quadratic residues. However, from the proof it
is not clear how to compute a solution if it exists. In the following, we see how
to approach the problem algorithmically. For this purpose, we first introduce
the following notion.

Definition 5.19. Let ax2+by2+cz2 = 0 be a Legendre equation. The equation

−x2 + (−ba)y2 + (−ca)z2 = 0

is called the associated equation to the Legendre equation.

Remarks. Consider the equation of the form −x2 + Ay2 + Bz2 = 0, where
A, B are positive squarefree integers. This equation is associated to the Leg-
endre equation gcd(A, B)x2 − A

gcd(A,B)y
2 − B

gcd(A,B)z
2 = 0.

Theorem 5.20. The Legendre equation has a nontrivial integral solution if
and only if its associated equation has a nontrivial integral solution.

Proof. Let (λ, µ, γ) be a nontrivial integral solution of the Legendre equation
ax2 + by2 + cz2 = 0, i.e.,

aλ2 + bµ2 + cγ2 = 0 .

Multiplying by −a, we get

−(aλ)2 + (−ab)µ2 + (−ac)γ2 = 0 .

Thus, (−aλ, µ, γ) is a nontrivial integral solution of the associated equation
to the Legendre equation (note that a > 0).



164 5 Algebraically Optimal Parametrization

Conversely, if (λ, µ, γ) is a nontrivial integral solution of the associated equa-
tion to the Legendre equation, then

−λ2 + (−Ba)µ2 + (−ca)γ2 = 0 .

Multiplying by −a, we get

aλ2 + b(aµ)2 + c(aγ)2 = 0 ,

so (λ, aµ, aγ) is a nontrivial integral solution of the Legendre equation (note
that a > 0). 	

Remarks. The proof of Theorem 5.20 provides an explicit transformation of
solutions of the Legendre equation and solutions of the associated equation.
More precisely,

(i) if (λ, µ, γ) is a nontrivial integral solution of the Legendre equation, then
(−aλ, µ, γ) is a nontrivial integral solution of the associated equation,
and

(ii) if (λ, µ, γ) is a nontrivial integral solution of the associated equation,
then (λ, aµ, aγ) is a nontrivial integral solution of the Legendre equation.

Applying Legendre’s Theorem (Theorem 5.18) and Theorem 5.20, we may
also characterize the existence of solutions of the associated equation by means
of quadratic residues of its coefficients. More precisely, we get Theorem 5.21.

Theorem 5.21. The associated equation to the Legendre equation has a non-
trivial solution if and only if (−ab)R (−ac), (−ac)R (−ab), and (−bc)R a.

Proof. From Theorem 5.20 we know that the equation −x2 + (−ba)y2 +
(−ca)z2 = 0 has a nontrivial integral solution if and only if the Leg-
endre equation ax2 + by2 + cz2 = 0 has one. From Theorem 5.18 we
know that ax2 + by2 + cz2 = 0 has a nontrivial integral solution if and
only if (−bc)R a, (−ac)R b, and (−ab)R c. Observe that (−ac)R (−a) and
(−ab)R (−a) always hold; we see this by taking x = a for both cases in Def-
inition 5.13. Thus, from (−ac)R b and (−ac)R (−a) and Lemma 5.14 (note
that gcd(a, b) = 1 because of (5.5)) we get that (−ac)R (−ab). Similarly, from
(−ab)R c, (−ab)R (−a) and Lemma 5.14 we get that (−ab)R (−ac).
Conversely, we assume that (−ab)R (−ac), (−ac)R (−ab), and (−bc)R a.
Then from Exercise 5.7 (iv) we deduce that (−ab)Rc, (−ac)Rb, and (−bc)Ra.
Theorem 5.18 now implies that ax2 + by2 + cz2 = 0 has a nontrivial integral
solution. Because of Theorem 5.20 this means that the associated equation
−x2 + (−ba)y2 + (−ca)z2 = 0 also has a nontrivial integral solution. 	

Remarks. Note that the conditions in Theorems 5.18 and 5.21 are equivalent.

In the previous theorems we have seen how to reduce the study of the
Legendre equation to its associated equation. In Theorem 5.22 we prove that
if the associated Legendre equation has a nontrivial integral solution, then
this solution can be determined algorithmically.
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Theorem 5.22. If the associated equation to the Legendre equation has a
nontrivial integral solution, then it can be determined algorithmically.

Proof. Let us assume that −x2 + (−ba)y2 + (−ca)z2 = 0, the associated
equation to the Legendre equation, has a nontrivial integral solution. By The-
orem 5.21 we deduce that (−ab)R (−ca), (−ca)R (−ab), and (−cb)R a. Let
us first deal with two special cases.

(1) If −ca = 1 (that is a = 1 and c = −1, see Definition 5.12), then (1, 0, 1) is
a nontrivial integral solution, and if −ba = 1 (that is a = 1 and b = −1,
see Definition 5.12), then (1, 1, 0) is a nontrivial integral solution.

(2) Now consider the case −ca = −ba (that is c = b = −1, see Definition 5.12).
(−cb)R a means −1R a, so by the remark to Lemma 5.17 we can deter-
mine algorithmically integers r and s, not both zero, such that a = r2+s2.
Then, (r2+s2, s, r) is a nontrivial solution of −x2+(−ba)y2+(−ca)z2 = 0.

Now we treat the general case. W.l.o.g. we assume that −ba < −ca, i.e., −b <
−c. Otherwise we only have to interchange the roles of z and y. The strategy
will be the following: first, we find a squarefree integer A, with 0 < A < −ca,
and we consider the new equation Az2 + (−ba)Y 2 = X2, where

AR (−ba), (−ba)RA, and
−A(−ba)

gcd(A,−ba)2
R gcd(A,−ba) .

Thus, we reduce the given associated Legendre equation (−ca)z2 +(−ba)y2 =
x2 to a new equation associated to some Legendre equation (see Remark to
Definition 5.19) having a nontrivial solution (see Theorem 5.21). Moreover,
we show that a solution of the old equation can be computed from a solution
of the new equation. After a finite number of steps, interchanging A and −ba
in case A is less than −ba (we are assuming that −ba < −ca), we arrive either
at the case A = 1 or at A = −ba, each of which has been treated in (1) or (2).
Since (−ba)R (−ca), we deduce that there exist α, k ∈ Z such that

α2 = −ba + k(−ca) .

Observe that we can always assume |α| ≤ −ca/2. We express k = Am2,
where A, m ∈ Z, and A is squarefree; note that A and m can be determined
algorithmically from the squarefree factorization of k (see Exercise 5.5). So
we have

α2 = −ba + Am2(−ca) .

First we show that 0 < A < −ca. From our assumption −ba < −ca we get

0 ≤ α2 = −ba + Am2(−ca) < −ca + Am2(−ca) = −ca(1 + Am2) .

Neither A nor m can be 0, because otherwise α2 = −ba, which is impossible
(gcd(a, b) = 1 and a, b are squarefree). Furthermore, −ca > 0 implies that
0 < 1 + Am2, so A > 0.
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The relations α2 = −ba + Am2(−ca), −ba > 0, and |α| ≤ −ca/2 imply

Am2(−ca) = α2 + ba < α2 ≤ (−ca)2

4
.

This finishes the proof of 0 < A < −ca.
Now we consider the new equation

AZ2 + (−ba)Y 2 = X2 ,

and we prove that this equation satisfies the same hypothesis as the original
equation (−ca)z2 +(−ba)y2 = x2. First, note that A, −ba ∈ Z+, and they are
squarefree. Now we prove that

AR (−ba), (−ba)RA, and
−A(−ba)

gcd(A,−ba)2
R gcd(A,−ba) , (5.7)

which implies that AZ2 + (−ba)Y 2 = X2 is associated to some Legendre
equation (see remark to Definition 5.19). Observe that, by Theorem 5.21, we
deduce that the new equation has a nontrivial solution.
Let us prove that each of these relations hold.

(i) First we prove that AR(−ba). For this purpose, we show that AR(−a)
and ARb which implies, by Lemma 5.14, that AR (−ba). From α2 =
−ba + Am2(−ca) and the squarefreeness of a we deduce that a divides
α. So if we set α1 = −α/a, then α1 ∈ Z and

−aα2
1 = b + Am2c .

Hence,
Am2c2 ≡−a −cb .

Moreover, from −aα2
1 = b+Am2c and gcd(a, b) = 1 we get gcd(m, a) = 1.

Because of (−cb)R (−a) there exists y1 ∈ Z such that y2
1 ≡−a −cb. Thus,

A ≡−a (m�)2(c�)2y2
1 ,

where m� and c� are the inverses of m and c modulo −a, respectively.
m and a are relatively prime, so are c and a. Therefore, AR (−a).
Now we show that AR b. Because of (−ca)R (ab) there exists β ∈ Z such
that β2 ≡b (−ca). So from α2 = −ab + Am2(−ca) we get

α2 ≡b Am2(−ca) ≡b Am2β2 .

Observe that gcd(β, b) = 1. Indeed, assume 1 �= d = gcd(β, b). Because
of β2 ≡b (−ca) there exists λ ∈ Z such that β2 = (−ca) + λb. Therefore,
d divides ca, which is impossible because of gcd(a, b) = gcd(c, b) = 1.
Furthermore, note that by hypothesis a, b, c are pairwise relatively prime,
so also gcd(ca, b) = gcd(m, b) = 1 (see Exercise 5.8). Putting all this
together, we get

α2(m∗)2(u∗)2 ≡b A ,
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where u∗, and m∗ are the inverses of β, and m modulo b, respectively.
Therefore, AR b.

(ii) The condition (−ba)RA follows from α2 = −ba + Am2(−ca).
(iii) Finally, we show that −A(−ba)

gcd(A,−ba)2 R gcd(A,−ba) holds. Let r =
gcd(A,−ba), A1 = A/r, and b1 = −ba/r. Then, we have to show that
(−A1b1)R r. From α2 = −ba + Am2(−ca) we deduce that

α2 = b1r + A1rm
2(−ca) .

A is squarefree, so also r is squarefree, and hence that r divides α. So

A1m
2(−ca) ≡r −b1 ,

which implies that
−A1b1m

2(−ca) ≡r b2
1 .

Note that by hypothesis a, b, c are pairwise relatively prime, so by the
same reasoning as above gcd(ca, r) = gcd(m, r) = 1. From (−ca)R (−ba)
and b1r = −ab we obtain (−ca)R r. Thus, there exists w ∈ Z such
that w2 ≡r (−ca). Observe that gcd(w, r) = 1. Indeed, assume 1 �=
d = gcd(w, r). Because of w2 ≡r (−ca) there exists λ ∈ Z such that
w2 = (−ca)+λr. Therefore, d divides to ca, which is impossible because
of gcd(ac, r) = 1. Putting all this together, we get

−A1b1 ≡r b2
1(m

∗)2v∗ ≡r b2
1(m

∗)2(w∗)2 ,

where v∗, m∗, and w∗ are the inverses of −ca and m and w modulo r,
respectively. Therefore, (−A1b1)R r.

So all the relations in (5.7) hold.
Finally, we show that if we have a nontrivial solution (X, Y , Z) of AZ2 +
(−ba)Y 2 = X2, we can algorithmically determine a nontrivial solution (x, y, z)
of (−ca)z2 + (−ba)y2 = x2. So assume

AZ
2

= X
2 − (−ba)Y

2
.

Then, taking into account that Am2(−ca) = α2 − (−ba), we get

(−ca)(AZm)2 = (X
2 − (−ba)Y

2
)(α2 − (−ba))

= (Xα + (−ba)Y )2 − (−ba)(αY + X)2 .

Thus,
x = Xα + (−ba)Y , y = αY + X, z = AZm ,

is a solution of the equation (−ca)z2 + (−ba)y2 = x2. Clearly, (x, y, z) ∈ Z3,
but we still have to prove that the solution is nontrivial. For this purpose, we
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write the above equalities in matrix notation as:⎛⎝x
y
z

⎞⎠ =

⎛⎝α −ba 0
1 α 0
0 0 Am

⎞⎠ ·

⎛⎝X
Y
Z

⎞⎠ .

The determinant of the matrix is Am(α2−(−ba)). A > 0, m �= 0 and α2 �= −ba
because gcd(a, b) = 1 and a, b are squarefree. So the determinant is nonzero.
Since (X, Y , Z) is nontrivial, (x, y, z) is also nontrivial. 	


In Theorems 5.20 and 5.21, we have seen how to decide whether the Legen-
dre equation has nontrivial solutions (see also the algorithmic comments given
after Definition 5.12), and the proof of Theorem 5.22 shows how to compute
a nontrivial solution of the Legendre equation, if there exists one. In the fol-
lowing, assuming that the existence of nontrivial solutions has already been
checked, we outline an algorithm (derived from the proof of Theorem 5.22)
for determining a nontrivial solution of the Legendre equation. To be more
precise, we assume that the equation is given in Legendre form (see (5.5) and
(5.6)). As above, we assume an algorithm “qr,” which for given inputs m, n
decides whether mRn, and in the affirmative case outputs x ∈ Z such that
x2 ≡n m. Furthermore, we represent by “oddf” an algorithmic procedure such
that if k ∈ Z∗, then oddf(k) is a squarefree integer A satisfying k = Am2 with
m ∈ Z.

Algorithm ASSOCIATED LEGENDRE SOLVE
Given positive squarefree integers B, C such that the equation −x2+By2+
Cz2 = 0 has a nontrivial solution, the algorithm computes a nontrivial
integral solution (x, y, z) of the equation −x2 + By2 + Cz2 = 0.

1. If C = 1, then set (x, y, z) = (1, 0, 1), and go to Step 6.
2. If B = 1, then set (x, y, z) = (1, 1, 0), and go to Step 6.
3. If C = B, then compute r, s ∈ Z� such that B = C = r2 + s2 (see

Lemma 5.17 and the following remark). Set (x, y, z) = (r2 + s2, s, r),
and go to Step 6.

4. If C < B, then apply Algorithm Associated Legendre Equa-
tion to the inputs C, B. Let (x1, y1, z1) be the solution obtained. Set
(x, y, z) = (x1, z1, y1), and go to Step 6.

5. If B < C, then compute

α := qr(B, C), k := (α2 − B)/C, A := oddf(k), m :=
√

k/A .

Apply Algorithm Associated Legendre Solve to the inputs B, A.
Let (x1, y1, z1) be the solution obtained. Set (x, y, z) = (αx1 +
By1, αy1 + x1, Amz1), and go to Step 6.

6. Return the point (x, y, z).



5.3 Optimal Parametrization of Rational Curves 169

Algorithm LEGENDRE SOLVE
Given integers a, b, c defining the Legendre equation ax2 + by2 + cz2 = 0,
having nontrivial solutions (see Definition 5.12), the algorithm computes
a nontrivial integral solution (x, y, z) of the Legendre equation.

1. Compute the point (x1, y1, z1) obtained by applying the Algorithm
Associated Legendre Solve to the pair (−ba,−ca).

2. Return the point (x, y, z) = (x1, ay1, az1).

Example 5.23. Consider the Legendre Equation

(i) 7x2 − y2 − 3z2 = 0.

We show how to solve this equation by the Algorithm legendre solve.
Legendre Solve (7,−1,−3):

a = 7, b = −1, c = −3.

(STEP 1) Associated Legendre Solve (7, 21):
B = 7, C = 21
(ii) − x2 + 7y2 + 21z2 = 0.
(STEP 5) B < C, so

α = qr(7, 21) = 14, k = 196−7
21 = 9, A = 1, m = 3.

Associated Legendre Solve (7, 1):
B = 7, C = 1
(iii) − x2 + 7y2 + z2 = 0.
(STEP 1) C = 1, so
Return (1, 0, 1) (Solution of (iii))

(x, y, z) := (14 · 1 + 7 · 0, 14 · 0 + 1, 1 · 3 · 1) = (14, 1, 3)
Return (14, 1, 3) (Solution of (ii))

(STEP 2) (x, y, z) := (14, 7, 21)
Return (14, 7, 21) (Solution of (i))

5.3 Optimal Parametrization of Rational Curves

We have seen how the theorem of Hilbert–Hurwitz (Theorem 5.8) can be used
to classify optimal fields of parametrization of a rational curve, and in addi-
tion we have outlined an algorithm derived from the constructive proof of its
Corollary 5.9. But the algorithm, although theoretically interesting, does not
have very satisfactory performance in practice. The reason is that, in general,
O(d) birational transformations are required in order to reach a conic or a
line and to invert either the simple points or the parametrization. Further-
more O(d) adjoint computations have to be carried out. From Theorem 5.8
we know that the birationality check in Step 3.2 is very unlikely to yield a
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negative result. Avoiding it leads to a probabilistic parametrization algorithm.
Instead of directly applying T , or actually its inverse, for computing the im-
plicit equation of T (D), we might use interpolation methods combined with
the technique of families of conjugate simple points (compare Chaps. 3 and
4). Note that if T is birational, then we must have deg(T (D)) = deg(D) − 2.
In any case, these difficulties render the method all but impossible to use in
practical applications, unless the curve under consideration has extremely low
degree. In this section we show how the algorithm Hilbert–Hurwitz can be
improved to avoid most of these difficulties.

Throughout this section, in addition to the notation introduced at the
beginning of the chapter, we assume d > 2 for the degree of the rational
curve C, and we fix k ∈ {d, d− 1, d− 2}. Furthermore, we consider only linear
subsystems of Ak(C) generated as follows.

Definition 5.24. If k ∈ {d − 2, d − 1} and S ⊂ C \ Sing(C) is such that
card(S) ≤ kd − (d − 1)(d − 2) − 1, then

AS
k (C) := Ak(C) ∩H(k,

∑
P∈S

P )

is called the proper linear subsystem of Ak(C) generated by S.
If k = d, and S̃ ⊂ C \Sing(C) is such that card(S̃) ≤ 3d−3, and S = S̃ ∪{Q},
where Q �∈ C, then

AS
d (C) := Ad(C) ∩H(d,

∑
P∈S

P )

is called the proper linear subsystem of Ad(C) generated by S.
Moreover, if all curves in a proper linear subsystem have K as ground field

we say that it is rational.

Before we prove the generalization of the theorem of Hilbert–Hurwitz, we
first state some technical lemmas. By the same reasoning as in Sect. 4.8 we
can immediately derive the following result.

Lemma 5.25. If the simple points in S are distributed in families of simple
conjugate points over K (see Definitions 3.15 and 3.16) then AS

k (C) is rational.

So in the sequel we will make use of families of conjugate simple points.
We use the notation introduced just before Lemma 4.59.

Lemma 5.26. Let AS
k (C) be a proper linear subsystem of Ak(C). Then the

following hold:

(1) dim(AS
k (C)) = dim(Ak(C)) − card(S) = k(k+3)

2 − (d−1)(d−2)
2 − card(S).

(2) For almost all curves C′ ∈ AS
k (C) we have∑

P∈Sing(C)∪S
multP (C, C′) = dk − dim(AS

k (C)) .
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(3) For all curves C′ ∈ AS
k (C) satisfying Statement (2), and for almost all

λ ∈ K we have∑
P∈Sing(C)∪S

multP (C, C′ + λC′′) = dk − dim(AS
k (C)) ,

where C′′ ∈ AS
k (C).

Proof. Statement (1) follows from Theorem 4.58 by the same reasoning as in
the proofs of Theorems 4.61 and 4.62 (Condition (1)).
Statement (2) is derived by the same reasoning as in the proofs of Theo-
rems 4.61 and 4.62 (Condition (2)).
Let us prove Statement (3). Let s = dim(AS

k (C)). We identify AS
k (C) with

Ps(K) (see Sect. 2.4). Then by Statement (2) there exists a Zariski closed
subset V of Ps(K), where V �= Ps(K), such that for all C′ ∈ Ps(K) \ V we
have ∑

P∈Sing(C)∪S
multP (C, C′) = dk − dim(AS

k (C)) .

Now let C′ ∈ Ps(K) \ V , and consider all the lines in Ps(K) passing through
C′. That is, consider the lines of equation L = C′ + tC′′, where C′′ ∈ Ps(K).
Since C′ �∈ V , no line L is included in V . Thus, each line L only intersects V
in finitely many points. Thus, for every C′′ ∈ Ps(K) and all but finitely many
values λ of t in K we get that C′ + λC′′ �∈ V . This finishes the proof. 	


Lemma 5.27. Let AS
k (C) be a proper linear subsystem of Ak(C). Then there

always exist Φ1, Φ2, Φ3 ∈ AS
k (C) such that the mapping

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}

is birational on C.

Proof. Let �k = kd− (d−1)(d−2)−1 if k ∈ {d−2, d−1}, and let �d = 3d−2.
Then, if card(S) < �k, we take a new set S′ of simple points on C such that
card(S ∪ S′) = �k, and we consider the new linear system

H′ = AS
k (C) ∩H

(
k,
∑

P∈S′
P

)
.

Then, applying Theorems 4.61 and 4.62, we see that H′ parametrizes C (see
Definition 4.51). Since dim(H′) = 1, we may express the defining polynomial
of H′ as H ′(x, y, z, t) = Ψ1 + tΨ2, where {Ψ1, Ψ2} is a basis of H′. Let P(t) be
the proper parametrization of C generated by H′ (see Lemma 4.52). Now, we
take a, b ∈ K such that a �= b, and we consider

Φ1 = Ψ1 + aΨ2, Φ2 = Ψ1 + bΨ2, Φ3 = Ψ1 .
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We prove that the mapping T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3} is birational on
C. For this purpose and w.l.o.g. we dehomogenize with respect to z and we
reason on the affine plane. Let φi = Φi(x, y, 1), ψi = Ψi(x, y, 1) and let

φ : C�,z −→ φ(C�,z)

(x, y) �−→
(

φ1(x,y)
φ3(x,y) ,

φ2(x,y)
φ3(x,y)

)
.

Note that φ3 �∈ I(C), because φ3 ∈ H′ and H′ parametrizes C (see Defi-
nition 4.51). Because H′ generates P(t), we get H ′(P(t), 1, t) = 0. On the
other hand, observe that Ψ2(P(t), 1) cannot be identically zero, since other-
wise Bézout’s Theorem would imply that C and the adjoint Ψ2 have a common
component. This, however, is impossible because H′ parametrizes C. Thus, by
Lemma 4.36, −ψ1/ψ2 is the inverse of P(t), and for almost all points P ∈ C�,z

we have P = P(−ψ1(P )/ψ2(P )).
In order to see that φ is birational we now explicitly compute its inverse.

We consider the rational map

ρ : φ(C�,z) −→ C�,z

(y1, y2) �−→ P
(

b−a
y1−y2

)
.

First we show that ρ is well defined. Almost all points in φ(C�,z) are of the
form (φ1(x,y)

φ3(x,y) ,
φ2(x,y)
φ3(x,y)), where (x, y) ∈ C�,z. But φ1(x,y)

φ3(x,y)−
φ2(x,y)
φ3(x,y) cannot be zero,

since otherwise we would have (a − b)ψ2(x, y) = 0 for almost all (x, y) ∈ C.
Therefore, since a �= b, from Bézout’s Theorem we would get that C and Ψ2

have a common component, which is impossible. Reasoning as above, we can
also prove that the mapping b−a

y1−y2
is not constant over φ(C�,z), since otherwise

Ψ1 and Ψ2 would be linearly dependent, which is impossible. Thus ρ is not a
constant map and it is defined for almost all points. Finally we observe that
for almost all points P ∈ C�,z the map ρ inverts the action of φ, i.e.,

ρ(φ(P )) = ρ

(
φ1(P )
φ3(P )

,
φ2(P )
φ3(P )

)
= P
(

(b − a)φ3(P ))
φ1(P ) − φ2(P )

)
= P
(
−ψ1(P )

ψ2(P )

)
= P .

Thus, we conclude that T is birational. 	


Now, we are ready for a generalization of the theorem of Hilbert–Huritwz.

Theorem 5.28. Let AS
k (C) be a proper linear subsystem of Ak(C), and let

dim(AS
k (C)) = s. Then for almost all Φ1, Φ2, Φ3 ∈ AS

k (C) the mapping

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}

transforms C birationally to an irreducible curve of degree s.

Proof. First we prove that for almost all Φ1, Φ2, Φ3 ∈ AS
k (C) the mapping

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3} is birational on C. For this purpose, we
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identify AS
k (C) with Ps(K), and we prove that there exists a nonempty open

Zariski subset Ω in Ps(K) such that for all different Φ1, Φ2, Φ3 ∈ Ω, T is bira-
tional. We consider three generic elements Φ1, Φ2, Φ3 ∈ AS

k (C). Thus, each Φi

depends on a different set of undetermined coefficients Λi, namely its coordi-
nates as elements in Ps(K). Then, we consider the formal rational mapping T
defined by Φ1, Φ2, Φ3, and let D = T (C). In addition, we take a rational proper
parametrization P(t) of C. So we have the following commutative diagram

P1(K)
P

� C ⊂ P2(K)

Q T
�

�
�

�
�

���
�

D ⊂ P2(K)

Thus, T is birational if and only if Q is birational. Note that, because of
Lemma 5.27, there exist parameter values for Λi such that T is birational.
Hence, Q(t) = T (P(t)) does depend on t, and therefore it is a rational
parametrization. So, T is birational if and only the rational parametrization
Q(t) = T (P(t)) is proper. In order to prove that Q(t) is proper, we reason
over the affine plane, considering Q(t) as an affine rational parametrization.
We write its components as

Q(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where χi j(t) ∈ K[Λ1, Λ2, Λ3][t] and gcd(χ1 i, χ2 i) = 1. We note that Q(t) de-
pends on the undetermined coefficients Λi. By Theorem 4.30 the parametriza-
tion Q(t) is proper if and only if the gcd of the polynomials

GQ
1 (t, h) = χ1 1(h)χ1 2(t) − χ1 2(h)χ1 1(t),

GQ
2 (t, h) = χ2 1(h)χ2 2(t) − χ2 2(h)χ2 1(t),

with GQ
1 , GQ

2 ∈ K[Λ1, Λ2, Λ3][t, h], is linear in t. On the other hand, by
Lemma 5.27 we know that there exist specific values of Λ1, Λ2, Λ3 for which
the gcd is in fact linear in t. So the expression of the formal gcd of GQ

1 , GQ
2

cannot have degree higher than 1, and the parameter values under which the
gcd has higher degree satisfy certain algebraic conditions. So for a Zariski open
subset Ω′ of (Ps(K))3 this gcd has exactly degree 1. Ω′ cannot be empty be-
cause of Lemma 5.27. Now we can finish the proof of birationality by taking
a nonempty open subset Ω included in the projection of Ω′ over Ps(K).

We proceed to prove the second part of the theorem, concerning the ir-
reducibility and the degree of the transformed curve. Let Ω∗ be a nonempty
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open subset of AS
k (C) for which Statement (2) in Lemma 5.26 holds. Then,

we take Σ = Ω∗ ∩ Ω. Note that Σ is open and since Ps(K) is irreducible it
is nonempty. Let us see that for all different Φ1, Φ2, Φ3 ∈ Σ the transformed
curve D = T (C) is irreducible of degree s. Clearly, D is rational and therefore
irreducible. Let us see that deg(D) = s. Let n = deg(D). T determines a 1–1
relation between the points of C and D, except for finitely many points on
these curves. We call these points the exception points. Now take b ∈ K such
that the line L = {(b : t : 1)}t∈K intersects D in n different simple points
{(b : λi : 1)}i=1,...,n such that none of them is an exception point on D nor
the imagine by T of a point in Sing(C)∪S and such that Φ1− bΦ3 ∈ Ω∗. Note
that this is always possible because of Lemma 5.26 (3) and because we are
excluding finitely many points in P(K)2. Now, consider the curve M defined
by Φ1 − bΦ3. In this situation, we apply the inverse of T to the n simple
points in L ∩ D. Because of the construction we must get n different points
{P1, . . . , Pn} in C\[Sing(C)∪S]. Moreover, observe that every Pi is also on M.
Then, since Φ1 − bΦ3 ∈ Ω∗, from Lemma 5.26 (3) we deduce that n ≤ s; note
that by construction of AS

k (C), C and M do not have common components.
Suppose n were actually less than s. Then, we could take an additional

common point Pn+1 on C and M, not being in {P1, . . . , Pn} ∪ Sing(C) ∪ S
and not being an exception point for T . Note that this is always possible,
because by Lemma 5.26 (3) there are s free intersection points (i.e., other
than those in Sing(C) ∪ S), and by Lemma 5.26 (1) we have s ≥ 1. Now,
{T (P1), . . . , T (Pn+1)} contains n + 1 different points, and all of them are in
L ∩D, which is impossible. Hence n = s. 	


The theorem of Hilbert–Hurwitz is a particular case of Theorem 5.28.
Apply Theorem 5.28 taking k = d − 2 and S as the empty set, and use
Theorem 4.58.

Corollary 5.29. If the proper linear system AS
k (C) in Theorem 5.28 is ratio-

nal, then the ground field of the transformed curves T (C) is K.

Proof. If AS
k (C) is rational then the ground field of all curves in C is K. But

T does not extend the ground field. 	


Based on this corollary, the strategy for optimal parametrization consists
in generating rational proper subsystems of the system of adjoints of low
dimension. Because of Corollary 5.9 to Theorem 5.8 we cannot expect to
generate, in general, rational subsystems of dimension 1, since it would imply
that all rational curves can be parametrized over the ground field. What we
may actually try to generate are proper subsystems of dimension at most 2.
This means that we generate birational maps over K mapping the original
curve into a line or conic. Lemma 5.26 (1) tells us that we can reduce the
dimension of the proper linear subsystem by increasing the cardinality of the
set S of new base points. Of course, we have to do that in such a way that
the new linear subsystem is still proper and rational. For this purpose, we
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apply the technique of families of conjugate points. Obviously, we could reach
our goal if we had a method for computing rational points on C. But before we
have a parametrization, this is not possible in general. Therefore, the best we
can do is to provide a method for computing families of two conjugate simple
points. We will see that this is always possible.

Proposition 5.30. Let F be a family of � conjugate simple points on C over
K, where � < dim(Ak(C)), and let

H = Ak(C) ∩
∑
P∈F

P .

Then

(1) H is a proper rational linear subsystem of Ak(C), and
(2) dim(H) = dim(Ak(C)) − �.

Proof. By the hypothesis and by Theorem 4.58 we have

card(F) = � < dim(Ak) =
k(k + 3)

2
− (d − 1)(d − 2)

2
.

Therefore card(F) ≤ kd − (d − 1)(d − 2) − 1 if k ∈ {d − 1, d − 2}, and
card(F) ≤ kd− (d− 1)(d− 2) if k = d. Thus, H is a proper linear subsystem,
and by Lemma 5.25 it is rational. This proves Statement (1). Statement (2)
now follows from Lemma 5.26 (1). 	


Theorem 5.31. Let AS
k (C) be a proper rational linear subsystem of dimension

s of Ak(C) . Then almost all curves in AS
k (C) generate, by intersection with

C, families of s conjugate simple points over K.

Proof. Let F (x, y, z) be the form defining C and H(x, y, z, λ1, . . . , λs+1) the
form defining AS

k (C). Since H does depend on some of the variables x, y, z, let
us assume w.l.o.g. that degy(H) > 0. Let us also assume that (0 : 1 : 0) �∈ C.
Note that undoing the necessary change of coordinates will not change the
ground field of the conjugate families of points. Since AS

k (C) is a proper linear
subsystem, from Lemma 5.26 (2) we get the following relation for almost all
curves C′ ∈ AS

k (C): ∑
P∈Sing(C)∪S

multP (C, C′) = dk − dim(AS
k (C)) .

We identify AS
k (C) with Ps(K), and let Ω1 ⊂ Ps(K) be the nonempty open

subset where the above property is satisfied. Now, we proceed by constructing
a chain of nonempty open subset of Ω1. Let B be equal to S ∪ Sing(C) if k < d
and to S ∪ Sing(C) minus the point of S not in C if k = d.
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(i) We prove that there exists a nonempty open subset Ω2 ⊂ Ω1, such that,
for C′ ∈ Ω2, no point in [C ∩ C′]\B is on a line passing through (0 : 1 : 0)
and a point in B; note that (0 : 1 : 0) �∈ C and therefore all these lines
are well defined. Indeed, Ω2 is the intersection of Ω1 with a finite union
of open subsets, each for them generated by a point in B.
In order to show that Ω2 �= ∅, take s points on C not lying on a line
passing through (0 : 1 : 0) and a point in B. Consider a curve C′ in Ω1

passing through them. This is possible because dim(AS
k (C)) = s, and∑

P∈B multP (C, C′) = dk− s. Clearly C′ ∈ Ω2, and hence it is not empty.
(ii) Now, we prove that there exists a nonempty open subset Ω3 ⊂ Ω2,

such that, for C′ ∈ Ω3, the x-coordinates of all points in [C ∩ C′] \ B
are different. Indeed, compute the resultant of F and H w.r.t. y, and
cross out the factors corresponding to points in B. Let us require that
this new polynomial, seen as a polynomial in K[λ1, . . . , λs+1][x, z], is
squarefree. This leads to inequalities in λi defining an open set Ω̃2. Now
set Ω3 = Ω2 ∩ Ω̃2. Note that, because of Ω2, intersection points out of B
and points in B generate different factors in the resultant.
In order to show that Ω3 �= ∅ reason as in (i), by taking s points on C not
lying on a line passing through (0 : 1 : 0) and a point in B and having
all x-coordinates different.

(iii) Next we prove that there exists a nonempty open subset Ω4 ⊂ Ω3, such
that, for C′ ∈ Ω4, no point in [C ∩ C′] \ B is of the type (0 : 1 : c)
or (a : 1 : 0). Indeed, take the resultant of F and H w.r.t. y and
cross out the factors corresponding to points in B. Let us call the re-
sult R̃(x, z, λ1, . . . , λs+1). Now consider the open subset Ω̃3 defined by
the inequalities R̃(0, z, λ1, . . . , λs+1) �= 0 and R̃(x, 0, λ1, . . . , λs+1) �= 0,
and define Ω4 = Ω3 ∩ Ω̃3.
In order to show that Ω4 �= ∅ reason as in (i), by taking s points on C
not on the lines x = 0 and z = 0, not on a line passing through (0 : 1 : 0)
and a point in B, and having all x-coordinates different.

(iv) Finally we prove that there exists a nonempty open subset Ω5 ⊂ Ω4,
such that, for C′ ∈ Ω5 its defining polynomial has positive degree w.r.t.
y. This is always possible because by assumption degy(H) > 0.

Let us demonstrate that all curves in Ω5 have the desired property. Let G
be the defining polynomial of C′ ∈ Ω5, and R(x, z) = resy(F, G). Let R̃(x, z)
be the result of crossing out in R all factors generated by points in B. By
Lemma 19 in [SSeS05], and because of Ω1 and Ω2, we have deg(R̃) = s
(note that degy(F ) > 0 because F (0, 1, 0) �= 0, and degy(G) > 0 by Ω5).
In addition, because of the properness of AS

k (C), R̃ is a polynomial over K.
R̃(t, 1) has degree s because of Ω4 and it is squarefree because of Ω3. We
take any irreducible factor A(t) over K of R̃(t, 1), and let α be one of its
roots. Because of Ω3, the x-coordinate of the intersection points out of B are
all different. Thus gcd

K(α)[y](H(α, y, 1), F (α, y, 1)) must be linear. Therefore,
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the corresponding y-coordinate can be expressed rationally in α. So we have
generated a family of s conjugate simple points on C. 	


The previous proof provides a probabilistic process to generate families of
conjugate points over K. We outline this process:

Let F (x, y, z) be the form defining C and H(x, y, z, λ1, . . . , λs+1) the form
defining AS

k (C), where AS
k (C) is as in Theorem 5.31, and dim(AS

k (C)) = s.

(1) Consider a variable v in {x, y, z} such that degv(H) > 0. Say v = y.
(2) If F (0, 1, 0) = 0, perform a linear change of coordinates T over K such

that (0 : 1 : 0) �∈ T (C).
(3) Give random values to λi in H to generate a polynomial H ′(x, y, z).
(4) Compute R := resy(F, H ′) and cross out the factors corresponding to

points in Sing(C) ∪ S. Let R̃(x, z) be the resulting polynomial.
(5) If either deg(R̃(t, 1)) �= s or R̃(t, 1) is not squarefree go back to (4).
(6) For each irreducible factor A(t) of R̃(t, 1) compute

gcd
K(α)[y]

(F (α, y, 1), H ′(α, y, 1)),

where α is a root of A(t). Let B(α) be the root of this gcd, and take
FA = {(t : B(t) : 1)}A(t). Take F as the union of all FA.

(7) Return T −1(F).

We illustrate this process by an example, where a family of three conjugate
points over a quintic curve is computed.

Example 5.32. We consider the rational curve C of degree 5, given by the
polynomial:

F (x, y, z) = y3z2 − 2y4z + y5 + 8x2y2z + x3z2 − 2x4z + x5 .

The ground field is K = Q. C has a triple point at (0 : 0 : 1) and three double
points at (1 : 0 : 1), (0 : 1 : 1), (−1 : −1 : 1). So C is rational. In addition, note
that F (0, 1, 0) �= 0. Now, we consider k = d − 2 := 3 and we take S as the
empty set. That is AS

3 (C) = A3(C), and its dimension is s = 3. The defining
polynomial of A3(C) is

H(x, y, z, λ1, . . . , λ4) = λ1y
2z − λ1y

3 + λ3xyz + λ2xy2 + λ4x
2z+

(2λ1 + λ3 − λ2 + 2λ4)x2y − λ4x
3 .

Note that degy(H) > 0. We take a curve C′ ∈ A3(C) with defining polynomial

H ′(x, y, z) := H(x, y, z, 0,−1, 2, 0) = 2xzy − xy2 + 3x2y .

Then

R(x, z) := resy(F, H ′) = −2x8(x−z)2(122x3 +115x2z+34z2x+4z3)(z+x)2 .
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R̃(x, z) = 122x3 +115x2z +34z2x+4z3 is one of the irreducible factors. Note
that deg(R̃) = 3 and it is squarefree. We set

A(t) := R̃(t, 1) = 122t3 + 115t2 + 34t + 4 ,

and we let α be a root of A(t). We compute gcd
K(α)[y]

(F (α, y, 1), H ′(α, y, 1)) =

122(105229 α2 + 41478 α + 6028)y − 4552819α2 − 1593522α− 208084.

The root of this univariate polynomial is

B(α) =
208084 + 4552819 α2 + 1593522 α

122(105229 α2 + 41478 α + 6028)
.

Therefore the family of three conjugate points generated by A3(C) is{(
t :

208084 + 4552819 t2 + 1593522 t

122(105229 t2 + 41478 t + 6028)
: 1
)}

A(t)

Corollary 5.33 states that there always exist families of conjugate simple
points of certain cardinality. In fact, the above theorem may be applied to find
families of two conjugate simple points on C (see Statement (ii) of corollary).

Corollary 5.33. We can algorithmically produce families of conjugate simple
points on C over K with the following cardinality:

(i) families of (d − 2), (2d − 2), and (3d − 2) conjugate simple points,
(ii) families of two conjugate simple points (i.e., points over an algebraic ex-

tension of degree 2 over K),
(iii) individual simple points, if d is odd.

Proof. (i) This is a consequence of Theorem 5.31 with S = ∅, i.e., Ak(C),
and Theorem 4.58.

(ii) We first apply Statement (i) to obtain two different families, F1 and F2,
of (d−2) simple points on C. By Proposition 5.30, the proper rational lin-
ear subsystem AF1∪F2

d−1 (C) has dimension 2. Thus, applying Theorem 5.31
to AF1∪F2

d−1 (C) we obtain families of two simple points.
(iii) Let � = d−3

2 . Applying Statement (ii) we can determine � different fami-
lies, F1, . . . ,F�, of two simple points each on C. By Proposition 5.30, the
proper rational linear subsystem AF1∪···∪F�

d−2 (C) has dimension 1. Now the
statement follows from Theorem 5.31. 	


Obviously, the proof of Corollary 5.33 provides algorithmic processes. We
briefly outline the corresponding methods for Statements (ii) and (iii).
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Let C be rational of degree d. The following process provides families of
two conjugate points of C over the ground field:

(1) Apply to A∅
d−2 the algorithmic method derived from the proof of Theo-

rem 5.31 to generate two different families F1, F2 of (d − 2) conjugate
simple points on C over K.

(2) Apply to AF1∪F2
d−2 the algorithmic method derived from the proof of Theo-

rem 5.31 to generate a family F of two conjugate simple points on C over
K, and return F .

Let C be rational of odd degree d. The following process provides rational
simple points on C over the ground field.

(1) If d = 1 it is trivial. If d = 3, simply intersect C with a line through the
double point on C and return the resulting rational intersection point.

(2) Otherwise, apply the previous method to compute � = d−3
2 different fam-

ilies, F1, . . . ,F�, of two simple points each on C over K.
(3) Apply to AF1∪···∪F�

d−2 the algorithmic method derived from the proof of
Theorem 5.31 to generate a family F of one simple point on C over K.
Return this simple rational point.

In the sequel we put together all the ideas that have been developed in this
chapter to finally derive an algebraically optimal parametrization algorithm
for rational curves.

In Sect. 5.1 (see Corollary (5.9) to Theorem 5.8) we have seen that every
rational plane curve is parametrizable over an algebraic extension of the
ground field of degree at most 2. Furthermore, if the curve has odd degree, then
parametrizations over the ground field exist. However, when the curve is of
even degree a decision problem appears, and the existence of parametrizations
over the ground field depends directly on the existence of simple points on the
curve over the ground field. Furthermore, the algorithm Hilbert–Huritwz
shows how to reduce this problem to conics. In Sect. 5.2 we have analyzed the
problem of finding rational points on conics over the ground field Q, and we
have given an algorithm for solving this problem. However, as we have already
mentioned before, the direct application of the algorithm Hilbert–Huritwz
requires, in general, O(d) birational transformations, where d = deg(C). In the
following we show how Theorem 5.28 and Corollary 5.33 can be applied to
solve the problem using only one birational transformation in case d is even,
and no one in case d is odd. Moreover, when the birational transformation is
required, then the image curve is computed by simply solving a linear system
of five equations over K.

To be more precise, let F ∈ K[x, y, z] be the homogeneous form defining
C. By Theorem 5.28, the problem of computing optimal parametrizations of C
can be reduced to the problem of computing a rational proper linear subsys-
tem of Ad−2(C) of dimension 1 or 2. If d is odd, applying Corollary 5.33, we can
compute d−3

2 families of two conjugate points over K that can be used to con-
struct a rational proper linear subsystem of Ad−2(C) of dimension 1 (see also
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Proposition 5.30). Therefore, a parametrization over the ground field can be
determined. If d is even, applying Corollary 5.33, we can compute d−4

2 families
of two conjugate points over K that can be used to construct a rational linear
subsystem of Ad−2(C) of dimension 2 (see also Proposition 5.30). Applying
Theorem 5.28 to this subsystem, we can always find a birational transfor-
mation defined by elements of the linear subsystem mapping C onto a conic.
Hence, the optimality question is reduced to the existence and computation
of optimal parametrizations of the corresponding conic. Indeed, since we have
a subsystem of dimension 2, we only need to lift a single point on the conic
with coordinates over an optimal field extension to obtain a new subsystem of
dimension 1, and therefore to parametrize C over an optimal extension. Thus,
the question now is how to compute the birationally equivalent conic, and
how to invert a rational point, when it exists.

Let us consider how we can determine the birationally equivalent conic to a
rational curve C of even degree d. Let F be the union of d−4

2 different families
of two conjugate simple points on C over K. We consider the proper linear sub-
system AF

d−2(C) of Ad−2(C). Because of Theorem 5.28 and its Corollary 5.29,
we may take Φ1, Φ2, Φ3 ∈ AF

d−2(C) such that {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}
K-birationally transforms C onto a conic. Let G(y1, y2, y3) be the equation of
this conic. The goal is to compute this conic by interpolation. For this pur-
pose, we take a line L not passing through any point in Sing(C) ∪ F . Then,
we consider the conjugate family defined by L∩C; if d = 4, we determine two
families of four points on C. Now, applying the birational transformation to
the constructed family, we get a family G of d simple conjugate points over K

on the conic. Therefore, we have detected more than five points on the conic
and we can interpolate it.

Now, let us consider the problem of inverting points on the conic, i.e.,
mapping them back to the original curve. First of all, we observe that we are
only interested in inverting rational points on the conic, because, if no rational
point on the conic exists, then we take a point on the original curve over an
algebraic extension of degree 2 as described in Corollary 5.33. Let us assume
that Q = (q1 : q2 : 1) is a rational point on the conic. Then, we want to
compute the inverse rational point P on C. Thus, we have to solve the system

F (x, y, 1) = 0

Φ3(x, y, 1)q1 − Φ1(x, y, 1) = 0

Φ3(x, y, 1)q2 − Φ2(x, y, 1) = 0.

We know that the system has a unique solution. Therefore, we can solve the
system by computing resultants and rational roots of univariate polynomials
over K.

We summarize all these ideas in algorithm optimal-parametrization.
In this algorithm we do not consider the trivial case of rational curves
that can be parametrized by lines, since the direct application of Algorithm
parametrization-by-lines (see Sect. 4.6) always provides an algebraically
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optimal output (see Theorem 5.7). Furthermore, we use the results presented
in Sect. 5.2 to compute rational points on conics. Therefore the algorithm only
works over Q. If one is working over other fields, the algorithm can be adapted
to output a “nearly” optimal parametrization in the sense that the output is
over the ground field or over a field extension of degree at most 2, but without
guaranteeing that the field of parametrization is optimal.

Algorithm OPTIMAL-PARAMETRIZATION.
Given F (x, y, z) ∈ Q[x, y, z], an irreducible homogeneous polynomial
defining a rational plane curve C, the algorithm computes an optimal
rational parametrization of C.

1. The case of a linear F is trivial. So, in the subsequent steps we assume
that deg(F ) > 1.

2. Let d be the degree of the polynomial F .
2.1 If d is odd, we determine Ad−2(C). Then, we apply Statement

(ii) of Corollary 5.33 to produce d−3
2 different families of 2 simple

conjugate points each over Q. Let F be the union of all these
families. Determine the defining polynomial H of the proper linear
subsystem AF

d−2(C).
2.2 If d = 2, analyze the existence of rational points on C

(see Sect. 5.2). Apply Steps 4 and 5 of the algorithm conic-
parametrization (see Sect. 4.6) with an optimal point.

2.3 If d is even and d �= 2, determine Ad−2(C).
2.3.1 Apply Statement (ii) of Corollary 5.33 to produce d−4

2 dif-
ferent families of 2 simple conjugate points over Q. Let F
be the union of all these families. Determine AF

d−2(C).
2.3.2 Using adjoints in AF

d−2(C) find the birationally equivalent
conic D to C.

2.3.3 Analyze the existence of rational points on D (see Sect. 5.2).
2.3.4 If there exist rational points on D, then compute one (see

Sect. 5.2), map it back to obtain a rational point P on C,
and determine AF

d−2(C) ∩H(d − 2, P ); let H be its defining
polynomial.

2.3.5 If there are no rational points on D, then apply Statement
(ii) of Corollary 5.33 to produce a new different family F ′

of 2 simple conjugate points on C over Q. Take one point Q
in F ′. This implies a field extension of degree 2. Compute
AF∪{Q}

d−2 (C); let H be its defining polynomial.
3. Set one of the parameters in H to 1 and let t be the remaining pa-

rameter of H . Return the solution in P2(C) of {ppt(resy(F, H))) =
0, ppt(resx(F, H))) = 0}.
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In general the coefficients of the birationally equivalent conic can be ex-
tremely large, and therefore the computation of rational points can be time
consuming. To avoid this problem, and for practical implementations, one may
also consider an algorithm that provides “nearly” optimal parametrizations
(see above), i.e., in which Steps 2.2, 2.3, and 2.4 are omitted. In addition,
the algorithm can be simplified for some special cases, e.g., if the curve C has
singularities of certain multiplicities. For instance, in Example 5.32, taking
lines through one of the double points one generates directly families of two
conjugate points. In the following example we illustrate the algorithm as well
as the previous remark.

Example 5.34. Let C be the curve of degree 5 defined by the polynomial

F (x, y, z) = y5 − xy2z2 + xy3z + xy4 + 4x2y2z + x2y3 + x3z2 + x3yz − x3y2

(see Fig. 5.1). C has a triple point at (0 : 0 : 1), a double point at (1 : 0 : 0),
and two double points in the family {(1 : t : 1)}t2+1. So C is rational.
We apply the Algorithm optimal-parametrization to C. We have to con-
struct two families F1,F2 of d − 2 = 3 conjugate simple points each. For this
purpose, we use A3(C). Next, we compute AF1∪F2

4 (C) and use it for generating
a family F3 of two conjugate simple points. Finally, constructing AF3

3 (C) we
get a proper rational linear subsystem of dimension 1 parametrizing C.

−2

x2

−2 −1 1
x1

−1

0

1

2

2

Fig. 5.1. Real part of C
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(i) Construction of F1,F2: The defining polynomial of A3(C) is

H3(x, y, z, λ1, . . . , λ4) = λ1y
2z − λ2y

2z + λ3y
3 + λ4y

3 + λ4xyz+

λ2xy2 + λ1x
2z + λ3x

2y .

Now, using the adjoint

H3(x, y, z, 1,−1, 1, 1) = 2y2z + 2y3 + yzx− xy2 + x2z + x2y ,

we generate the family F1 ={(
t,
−4(428117873 t2 + 370615860 t− 237870392)
11(205830037 t2 + 178336836 t− 114428472

, 1
)}

11 t3−48 t2−56 t+32

.

The family F1 consists of three real affine points (see rectangles in Fig. 5.2)
Similarly, using the adjoint

H3(x, y, z, 1,−1, 1,−1) = 2y2z − yzx − xy2 + x2z + x2y ,

we generate the family F2 ={(
t,

512 +880t4 +76t6 − 3t8 − 343t5 + 1856t2− 1544t3− 1408t

−1165t4 +430t5 − 512 +3t8 − 89t6 + 2096t3− 2440t2 + 1664t
, 1
)}

A(t)

where A(t) = t3 +4 t2−24 t+32. The family F2 consists of one real affine
point and two complex affine points (see rhombus in Fig. 5.2).

(ii) Construction of F3: The implicit equation of AF1∪F2
4 (C) is

H4(x, y, z, λ1, λ2, λ3) = −8 x2z2λ2 + 4 x2z2λ3 + 2 x2y2λ1 + 5 x2y2λ2 +
2 x2y2λ3 +12 y2z2λ3 +4 y3zλ1−3 xy3λ1 +16 y3zλ3−7 xy3λ3 +4 y2z2λ1−
4 xy3λ2 − 8 y3zλ2 + λ1x

2yz + λ2x
3z + λ3x

3y − 20 xy2zλ2 − 6 xy2zλ3 −
6 xy2zλ1 − 8 y4λ2 + 4 y4λ3 + 8 xyz2λ3 − 12 xyz2λ2.
We consider the adjoint
H4(x, y, z, 0, 1, 1) = −4 x2z2 + 7 x2y2 + 12 y2z2 + 8 y3z − 11 xy3 + x3z +
x3y − 26 xy2z − 4 y4 − 4 xyz2,
and we generate the family F3 = {(tq(t), p(t), q(t))}81+330 t+53 t2 , where

p(t) = 3(2494124925978455383603257572871324049939t

+ 638441695230869281812342822978067045125)

q(t) = 53(132548802196256150127922482135232643201t

+ 33929608389897702169602293042658593727) .

The family F3 consists of two real affine points (see circles in Fig. 5.2).
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−6

−4

−2

0

2

x2

x1

Fig. 5.2. C in continuous trace; H4(x, y, z, 0, 1, 1) in dot; points in F3 are circles;
points in F2 are rhombi; points in F1 are rectangles

(iii) Parametrization of C: The implicit equation of AF3
3 (C) is

H(x, y, z, t) = −3 y2z−3 ty2z+4 ty3+y3 +xyz+3 yzxt+4 xy2 +3 xy2t+
x2z + tx2y.
In Step (3) we finally determine the parametrization

P(t) =
(
− 7 t3 + 5 t + 9 t2 + 1 + 2 t4

−3 t + 2 t5 − 2 t3 − 3 t2 − 1
,− 1 + 3 t + 2 t2

2 t + 2 t2 + 2 t3 + 1

)
.

In Fig. 5.3, one may observe how different elements in H(x, y, z, t) generate
the points on C. In the first picture (top left box) C and F3 are plotted; in
the second picture (top right box) C, F3, and one element of H(x, y, z, t) are
plotted; in the third picture (bottom left box) C, F3, and two elements of
H(x, y, z, t) are plotted; in the forth picture (bottom right box) C, F3, and
three elements of H(x, y, z, t) are plotted. Note how, in all cases, points of F3

are fixed, as well as the singularities (the origin is a real 3-fold point, the other
singularities are either complex or at infinity) and always a new intersection
point appears, namely the point generated by the parametrization.
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Fig. 5.3. Parametrization process

Exercises

5.1. Compute the implicit equation of the curve D in Example 5.10 using
interpolation.

5.2. Prove that if d is even and C has a singularity over K of odd multiplicity,
then C has simple points over K.

5.3. Apply Exercise 5.2 to compute a rational point on the curve given in
Example 5.32.

5.4. Decide whether 7R18 by using the algorithm suggested in the paragraph
before Lemma 5.15.

5.5. Let a ∈ Z. Prove that a can be expressed as a = br2, where b is squarefree.
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5.6. Let m, n ∈ N with gcd(m, n) = 1, and let ax2 + by2 + cz2 be a form
that factors modulo m and modulo n. Prove that ax2 + by2 + cz2 also factors
modulo mn.

5.7. Let m, n ∈ Z�. Prove the following statements:

(i) If n = 1, every integer m is a quadratic residue modulo n.
(ii) If n = 2, every integer m is a quadratic residue modulo n.
(iii) mRn if and only if mR(−n).
(iv) If n = n1 · · ·nr then mRn implies that mRni for i = 1, . . . , r.
(v) Let n ∈ Z� be an odd prime number and m ∈ Z� such that mRn. If

n ≡4 3, then the integer solutions of the congruence x2 ≡n m are ±m
n+1
4 .

5.8. With the notation given in the proof of Theorem 5.22 prove that
gcd(ca, b) = gcd(m, b) = 1.

5.9. Determine whether the ellipse 2x2 + 3y2 = 1 has a point over Q.

5.10. Given the conic C defined by the polynomial 4x2−8xy−3y2+8x+8y−5,
apply the Algorithm Legendre Solve to compute a rational point on C.

5.11. Apply Algorithm optimal-parametrization to compute an optimal
parametrization of the rational curve C defined implicitly by the polynomial
F (x, y, z) = −9y3z2+16y4z+3y5+16xy2z2+20xy3z−7xy4−x2yz2+2x2y2z−
5x2y3 + 9x3z2 + 4x3yz.
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Rational Reparametrization

Summary. In Chaps. 4 and 5 we have studied different problems related to rational
curves, assuming that the original curve was given implicitly. In this chapter we
consider similar problems but now from another point of view, namely, we assume
the curve is given in parametric form. But this parametric representation might not
be optimal with respect to various criteria. So we want to transform such a rational
parametrization into a better one. This new statement of the problem is specially
interesting in some practical applications in CAGD, where objects are often given
and manipulated parametrically. More precisely, we will focus on three different
types of criteria: properness of parametrizations in Section 6.1, polynomiality of
parametrizations in Section 6.2, and normality of parametrizations in Section 6.3.
There are other criteria that might be considered. For instance, as we did in Chap. 5,
one may ask for the algebraic optimality of the parametrization. For this case we
refer to [ARS97], [ARS99], [ARS04], [RSV04], [SeV01], [SeV02].

As in previous chapters, we restrict the discussion to curves in the affine or
projective plane over an algebraically closed field K of characteristic 0. Most
of the results presented in this chapter can easily be extended to space curves.
The results in Sects. 6.1 and 6.2 are also valid without the assumption of an
algebraically closed field.

Given a rational parametrization of the curve, a solution to the problem of
optimizing the parametrization might consist in first implicitizing the curve
and afterward applying the algorithms developed in previous chapters. This
solution might be too time consuming, and we would like to approach the
problem by means of rational “reparametrizations.” This means we want to
avoid implicitizing the curve. Instead, our aim is to find a rational change
of parameter, which transforms the given parametrization to a new and
optimal parametrization of the same curve w.r.t. these criteria. Note that
any reparametrization of a rational parametrization by means of a noncon-
stant rational change of parameter is again a parametrization of the same
curve (see Exercise 6.1).
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6.1 Making a Parametrization Proper

In Lemma 4.13 we have seen that any rational curve can be properly
parametrized. Furthermore, in Theorem 4.14 the properness was character-
ized by means of the function field, and in Theorem 4.21 we also have char-
acterized the properness by means of the degree. Moreover, in Theorem 4.30
an algorithmic criterion, based on the tracing index, was given for deciding
the properness of a parametrization. In this section, we deal with the problem
of determining a proper parametrization of a parametrically given rational
curve. The proper reparametrization problem can be stated as follows: given a
rational improper parametrization P(t) ∈ K(t)2 of an algebraic plane curve C,
find a rational proper parametrization Q(t) ∈ K(t)2 of C.

Note that the existence of such a proper parametrization Q(t) is guar-
anteed by Lemma 4.13. Furthermore, by Lemma 4.17, we know that there
exists a rational function R(t) ∈ K(t) such that P(t) = Q(R(t)), namely
R(t) = Q−1(P(t)). We will develop an algorithm which, in addition to the
proper parametrization, will also provide the transforming rational function
R(t). In the following, we first show how constructive proofs of Lüroth’s
Theorem (see Theorem 4.8) provide an algorithmic solution, and afterward we
develop Sederberg’s approach to the reparametrization problem (see [Sed86]).

In the sequel we use the same notation as in Chap. 4; i.e., if P(t) is a
rational affine parametrization of C over K in reduced form, we write its
components either as

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where χi j(t) ∈ K[t], or as

P(t) = (χ1(t), χ2(t)),

where χi(t) ∈ K(t). Furthermore, associated to P(t) we consider the
polynomials

GP
1 (s, t) = χ1 1(s)χ1 2(t) − χ1 2(s)χ1 1(t),

GP
2 (s, t) = χ2 1(s)χ2 2(t) − χ2 2(s)χ2 1(t).

as well as
GP (s, t) = gcd(GP

1 (s, t), GP
2 (s, t)).

6.1.1 Lüroth’s Theorem and Proper Reparametrizations

Let us see now that a constructive proof of Lüroth’s Theorem provides an algo-
rithmic solution to the problem. We consider P(t), a rational parametrization
of a curve C over K. Then

K ⊂ K(P(t)) ⊂ K(t)
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and clearly K(P(t)) is different from K. Therefore, by Lüroth’s Theorem,
K(P(t)) is isomorphic to K(t). Let

Φ : K(t) −→ K(P(t)),

be an isomorphism which fixes the field K. Then

Φ(K(t)) = K(Φ(t)) = K(P(t)).

Thus, there exists a rational function R(t) ∈ K(t), namely R(t) = Φ(t),
such that K(R(t)) = K(P(t)). In particular, there exist rational functions
ξ1, ξ2 ∈ K(t) such that

χi 1(t)
χi 2(t)

= ξi(R(t)), i = 1, 2.

Hence for Q(t) = (ξ1(t), ξ2(t)) we have

P(t) = Q(R(t)).

Let us prove that Q(t) is, in fact, a proper parametrization.

Lemma 6.1. Q(t) = (ξ1(t), ξ2(t)) is a proper parametrization of C.

Proof. First, since P(t) is a parametrization, at least one of its components
is not constant. Thus, the equality P(t) = Q(R(t)) implies that at least one
component of Q(t) is not constant, from which we deduce that Q(t) is a
parametrization, and that R(t) is not constant either. So, applying Exercise 6.1
we see that Q(t) and P(t) parametrize the same curve, namely C.

Now, let us see that Q(t) is proper. By Theorem 4.33 we get that
index(P(t))= deg(R(t))·index(Q(t)). Thus, if we can prove that index(P(t)) =
deg(R(t)), then the properness of Q(t) follows by Theorem 4.30. For this pur-
pose, we consider the rational maps

R := K → K; t �→ R(t), and P : K → C; t �→ P(t).

Note that, since R(t) is not constant, by Exercise 4.5 the rational map R
is dominant. Also, it is clear that P is dominant. Moreover, note that by
Lemma 4.32, degree(R) = deg(R(t)). Then, by Definitions 2.40 and 4.24

deg(R(t)) = degree(R) = [K(t) : φ̃R(K(t))] = [K(t) : K(R(t))]

and

index(P(t)) = degree(P) = [K(t) : φ̃P (K(C))] = [K(t) : K(P(t))],
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where φ̃R and φ̃P are the induced homomorphisms between the functions fields
(see Sect. 2.2). But K(R(t)) = K(P(t)), so index(P(t)) = deg(R(t)). 	


Therefore, any isomorphism between K(t) and K(P(t)) provides a
solution of the reparametrization problem. Conversely, any solution of the
reparametrizationproblemprovidesan isomorphismbetweenK(t)andK(P(t)).
More precisely, we have the following result.

Lemma 6.2. Let P(t) be a rational parametrization of an algebraic curve C,
let Q(t) be a proper parametrization of C, and let R(t) ∈ K(t) be such that
P(t) = Q(R(t)). Then, the homomorphism defined as

Φ : K(t) −→ K(P(t))
t �−→ Q−1(P(t)) = R(t)

is an isomorphism.

Proof. First we observe that Φ is injective, since Φ is not the zero homo-
morphism. Now, let us see that Im(Φ) = K(P(t)). Since Q(t) is proper,
Theorem 4.14 implies that K(t) = K(Q(t)).
Now, let us prove that K(R(t)) = K(Q(R(t))). Indeed, since Q(t) is proper,
there exists Q−1, say that a representant of it is the rational function M(x, y).
Then t = M(Q(t)). So, R(t) = M(Q(R(t))). Thus, R(t) ∈ K(Q(R(t))). The
other inclusion is trivial. From these equalities of fields we get that

Im(Φ) = K(R(t)) = K(Q(R(t))) = K(P(t)). 	


6.1.2 Proper Reparametrization Algorithm

There are many approaches to the problem, most of them based on construc-
tive proofs of Lüroth’s Theorem, see for instance [GuR92], [Sed86], [Zip91],
etc. For contributions to the problem in the surface case see for instance
[CGS06] and [PeD06]. In [Sed86] a simple method based on evaluations of
the polynomial GP(s, t) and subsequent gcd computations is proposed. But
Sederberg is not very precise about which evaluations actually work. In the
following we present a detailed analysis of this approach.

We start showing how the results on the tracing index stated in Sect. 4.3
give information on the reparametrization problem.

Theorem 6.3. Let P(t) be a rational parametrization of an algebraic curve
C, let Q(t) be a proper parametrization of C, and let R(t) ∈ K(t) be such that
P(t) = Q(R(t)). Then the following hold:

(1) deg(R(t)) = index(P(t));
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(2) if f(x, y) is the implicit equation of C then deg(R(t))= deg(P(t))
max{degx(f),degy(f)} ;

(3) deg(Q(t)) = deg(P(t))
index(P(t)) = deg(P(t))

deg(R(t)) .

Proof. These statements follow from Theorems 4.30, 4.33, and 4.35. 	


In order to deal with the proper reparametrization problem, we first
observe that Lüroth’s theorem guarantees the existence of solutions to the
problem. But the solution is not unique; note that because of Lemma 4.17
any linear reparametrization of a proper parametrization is again proper. How-
ever, for a given proper parametrization Q(t) there exists a unique rational
function R(t) such that P(t) = Q(R(t)); namely R(t) = Q−1(P(t)). More-
over, by Theorem 6.3, we know how to relate the degrees of P(t), Q(t), and
R(t). Therefore, if we were able to describe the set of all possible “proper
reparametrizing rational functions” R(t), taking an element there we would
deduce deg(Q(t)). Then, introducing undetermined coefficients in the expres-
sion of Q(t), and applying the equality P(t) = Q(R(t)), we would generate a
linear system of equations proving Q(t).

In Theorem 6.4, for a given parametrization P(t) we describe the set con-
taining all the associated reparametrizing rational functions by means of the
polynomials GP(s, t) (see introduction to Sect. 6.1).

Theorem 6.4. Let P(t) be a parametrization of C. Then, the set of all possible
proper reparametrizing rational functions R(t) associated to P(t) is{

a GP(α, t) + b GP(β, t)
c GP(α, t) + dGP(β, t)

| where GP (α, β) �= 0, and ad − bc �= 0
}

Proof. Let us denote the proposed set in the statement of the theorem by
R. Let R(t) = M(t)/N(t), where gcd(M, N) = 1, be a proper reparametriz-
ing rational function associated to P(t); i.e., there exists a proper rational
parametrization Q(t) such that Q(R(t)) = P(t). By Lemma3 in [PeD06], we
have

GP (s, t) = M(t)N(s) − M(s)N(t)

up to multiplication by nonzero constants. Now, let (α, β) ∈ K2 be such that
GP(α, β) �= 0. Then(

N(α) −M(α)
N(β) −M(β)

)
·
(

M(t)
N(t)

)
=
(

GP(α, t)
GP(β, t)

)
.

Since GP(α, β) �= 0, the above 2 × 2 matrix is invertible, and hence

M(t) = aGP(α, t) + bGP(β, t), N(t) = cGP (α, t) + dGP (β, t),
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where (
a b
c d

)
=
(

N(α) −M(α)
N(β) −M(β)

)−1

.

Thus, ad �= bc. Therefore, R(t) ∈ R.
Conversely, let us see that if R(t) ∈ R, then R(t) is a proper reparametriz-

ing rational function. So there exist α, β ∈ K such that GP(α, β) �= 0, and
there exist a, b, c, d ∈ K such that ab − cd �= 0, satisfying that R(t) =
a GP(α,t)+b GP(β,t)
c GP(α,t)+d GP(β,t)

. Let φ(t) = (at + b)/(ct + d) (note that this is an in-
vertible rational function; see Exercise 4.1), and let H = GP(α, t)/GP (β, t).
Then, R(t) = φ(H(t)). Now, let Q(t) be a proper parametrization of C.
Then, there exists a proper reparametrizing function S(t) ∈ K(t) such
that Q(S(t)) = P(t). So, S(t) ∈ R. Furthermore, note that in the first
part of the proof we have seen that for every (α′, β′) ∈ K2 such that
GP(α′, β′) �= 0, there exist a′, b′, c′, d′ ∈ K such that a′b′ − c′d′ �= 0 sat-
isfying that S(t) = a′ GP(α′,t)+b′ GP(β′,t)

c′ GP(α′,t)+d′ GP(β′,t) . Applying the above remark to the
α, β generating R(t), i.e., taking α′ = α, β′ = β, we get some a′, b′, c′, d′ ∈ K,
with a′d′ �= b′c′ such that if φ̃(t) = (a′t + b′)/(c′t + d′), then S(t) = φ̃(H(t)).
Thus, taking into account that φ(t) is invertible, one has that

Q(φ̃(φ−1(R)(t))) = P(t).

Finally, observing that φ̃(φ−1(t)) is an invertible rational function, by
Lemma 4.17, we get that Q̃(t) := Q(φ̃(φ−1(t))) is proper and Q̃(R(t)) = P(t).

	


Remarks. Once the set of all proper reparametrizing rational functions
have been described, one may (as mentioned before) compute the corre-
sponding proper parametrization by introducing undetermined coefficients
and solving a linear system of equations. Alternatively, one may proceed as
follows: let P(t) = (χ1,1(t)

χ1,2(t) ,
χ2,1(t)
χ2,2(t) ) be a parametrization in reduced form,

let R(t) be a proper reparametrizing rational function for P(t), and let
Q(t) = ( ξ1,1(t)

ξ1,2(t) ,
ξ2,1(t)
ξ2,2(t) ) be a proper parametrization in reduced form, such that

Q(R(t)) = P(t). We consider the polynomials gi(x, y) := ξi,2(y) − xξi,1(y).
If ξi,1(t) �= 0, since ξi,2(t) �= 0 and gcd(ξi,1, ξi,2) �= 1, gi(x, y) defines an ir-
reducible curve. Moreover gi(

χi,1(t)
χi,2(t) , R(t)) = 0. Thus, the curve defined by

gi is indeed rational. In this situation, we may implicitize the parametriza-
tions (χi,1(t)

χi,2(t) , R(t)), and from there determine Q(t). If for some i we have
χi,1(t) = 0, then the curve is either the line x = 0 or y = 0, and we can
obviously determine Q(t).

From these results we can derive the following algorithm.
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Algorithm PROPER-REPARAMETRIZATION
Given a rational parametrization

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
in reduced form, of a plane algebraic curve C, the algorithm computes a
proper rational parametrization Q(t) of C, and a rational function R(t)
such that Q(R(t)) = P(t).

1. Compute the polynomials

GP
1 (s, t) = χ1 1(s)χ1 2(t) − χ1 2(s)χ1 1(t),

GP
2 (s, t) = χ2 1(s)χ2 2(t) − χ2 2(s)χ2 1(t),

and
GP(s, t) = gcd(GP

1 (s, t), GP
2 (s, t)).

2. If degt(GP (s, t)) = 1, then P is proper. Thus, return Q(t) = P(t)
and R(t) = t. Otherwise, go to Step 3.

3. Choose α, β ∈ K such that GP(α, β) �= 0, and choose a, b, c, d ∈ K
such that ad − bc �= 0. Consider the rational function

R(t) =
aGP (α, t) + bGP(β, t)
cGP (α, t) + dGP (β, t)

.

4. (Option 1). Let r = deg(P(t))/ deg(R(t)). Introduce a generic ratio-
nal parametrization Q(t) of degree r with undetermined coefficients.
From the equality P(t) = Q(R(t)) derive a linear system of equations
in the undetermined coefficients, and solving it determine Q(t).

4. (Option 2). For i = 1, 2, compute the implicit equations gi(x, y) = 0
of the curves defined by the parametrizations (χi 1(t)

χi 2(t)
, R(t)). From

gi(x, y) determine Q(t) (see remark to Theorem 6.4).
5. Return the proper parametrization Q(t), and the rational function

R(t).

Example 6.5. Let C be the rational curve defined by the parametrization

P(t) =
(

8t6 − 12t5 + 32t3 + 24t2 + 12t

t6 − 3t5 + 3t4 + 3t2 + 3t + 1
,

24t5 + 54t4 − 54t3 − 54t2 + 30t

t6 − 3t5 + 3t4 + 3t2 + 3t + 1

)
.

First, we compute the polynomial

GP(s, t) = gcd(GP
1 (s, t), GP

2 (s, t)) = (−t + st − 1 − s)(−s + t).

Since degt(G
P (s, t)) �= 1, we apply Step 3 of the algorithm, and we arbitrarily

select α = 2, and β = 4 (note that GP(α, β) �= 0), and we consider a = 1,
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b = 2, c = 3, d = 4 (observe that ad − bc �= 0). So we get the rational
function

R(t) =
aGP(α, t) + bGP(β, t)
cGP(α, t) + dGP (β, t)

=
−39t + 7t2 + 46
−83t + 15t2 + 98

.

In Step 4 (Option 1) of the algorithm, we have that r = 3, and we consider

Q(t) =
(

a3t
3 + a2t

2 + a1t + a0

b3t3 + b2t2 + b1t + b0
,

c3t
3 + c2t

2 + c1t + c0

d3t3 + d2t2 + d1t + d0

)
.

Solving the linear system derived from Q(R(t)) = P(t), we get that

Q =
(

q1(t)
q(t)

,
q2(t)
q(t)

)
where

q1(t) = 8(325997t3 − 460641t2 + 216963t− 34063)

q2(t) = 12(343245t3 − 482261t2 + 225859t− 35259),

q(t) = 205757t3 − 291399t2 + 137559t− 21645.

If we apply Option 2 in Step 4 of the algorithm, we compute the implicit
equations of the parametrizations(

8t6 − 12t5 + 32t3 + 24t2 + 12t

t6 − 3t5 + 3t4 + 3t2 + 3t + 1
,
−39t + 7t2 + 46
−83t + 15t2 + 98

)
,

and (
24t5 + 54t4 − 54t3 − 54t2 + 30t

t6 − 3t5 + 3t4 + 3t2 + 3t + 1
,
−39t + 7t2 + 46
−83t + 15t2 + 98

)
.

This leads to

g1(x, y) = 2607976y3 − 3685128y2 + 1735704y − 272504− 205757xy3

+ 291399xy2 − 137559xy + 21645x ,
g2(x, y) = 4118940y3 − 5787132y2 + 2710308y − 423108− 205757xy3

= + 291399xy2 − 137559xy + 21645x .

Solving g1 = 0 and g2 = 0 for the variable x, we get the parametrization Q(t).

6.2 Making a Parametrization Polynomial

Till now, we have been dealing with rational parametrizations. However, one
may ask whether the curve admits a polynomial parametrization, i.e., a ratio-
nal affine parametrization where all components are polynomial. This type of
representation is specially interesting when dealing with applications. For in-
stance, if one is giving numerical values to the parameter, and the parametriza-
tion is not polynomial, one may have a numerically unstable behavior when
getting close to the roots of a denominator.
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Clear examples of curves having polynomial parametrizations are, for in-
stance, curves defined by polynomials of the type x−G(y), like the parabolas.
This class of curves can be extended to a more general family, namely those
affine rational curves having only one place at infinity (see [Abh66]).

In this section, we show how to decide whether a given affine rational
parametrization can be reparametrized into a polynomial parametrization.
Moreover, if this is the case, we explicitly compute the change of parameter
to be performed. Although we will present this reparametrization method for
plane algebraic curves, one may observe that it can be easily extended to
space curves. A similar analysis can be done for quasipolynomial curves, i.e.,
rational affine curves that can be parametrized with a parametrization having
at least one polynomial component, as for instance the hyperbola yx−1. Here
we do not consider this extension, for further details we refer to [SeV02].

In the sequel we follow the reasoning scheme in [CaM91]. Similar results
can be found in [AGR95]. For further reading on the topic we refer to [GRS02].

Definition 6.6. A rational affine parametrization P(t) of a rational affine
curve C is called a polynomial parametrization if all its components are poly-
nomial. Furthermore, the affine curve C is called a polynomial curve if it is
rational and can be parametrized by means of a polynomial parametrization.

We start our analysis with some lemmas on rational functions.

Lemma 6.7. Let R(t) = p(t)
(bt−a)s ∈ K(t), with a , b ∈ K, b �= 0, s ∈ N, and

deg(p) ≤ s. Then R
(

b+at
bt

)
is a polynomial.

Proof. Let deg(p) = r and p(t) = art
r + · · · + a0 then

R

(
b + at

bt

)
=

1
bs+r

(ar(b + at)r + ar−1(b + at)r−1bt + · · · + a0(bt)r) · ts−r

is a polynomial since s ≥ r. 	


Lemma 6.8. Let p(t) ∈ K[t] be a nonconstant polynomial, and let ϕ(t) ∈
K(t) be a nonconstant rational function such that p(ϕ(t)) is a polynomial.
Then ϕ(t) is a polynomial.

Proof. Let ϕ = ϕ1
ϕ2

with gcd(ϕ1, ϕ2) = 1, let p(t) = art
r + · · · + a0 with

r = deg(p) > 0, and let p(ϕ(t)) = A(t) ∈ K[t]. Then arϕ
r
1 + ar−1ϕ

r−1
1 ϕ2 +

· · · + a0ϕ
r
2 = ϕr

2A(t). Therefore, ϕ2 divides the left-hand side of the equality,
and hence it divides ϕ1. Thus, since gcd(ϕ1, ϕ2) = 1, ϕ2 must be constant. 	


Lemma 6.9. Let R(t) ∈ K(t). If there exists a nonconstant polynomial ϕ(t) ∈
K[t] such that R(ϕ(t)) is a polynomial then R(t) is also a polynomial.
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Proof. Let R = p
q , with gcd(p, q) = 1, and let R(ϕ(t)) = A(t) ∈ K[t]. Then,

one has the polynomial equality

p(ϕ(t)) = q(ϕ(t))A(t).

Now assume that deg(q) > 0, and take a root α of q. Since ϕ is not constant,
there exists t0 ∈ K such that ϕ(t0) = α. But this implies that p(ϕ(t0)) =
p(α) = 0, which is impossible since gcd(p, q) = 1. 	


Lemma 6.10. Let R(t) = p(t)
q(t) ∈ K(t) be a nonpolynomial rational function

in reduced form. The following statements are equivalent:

(1) There exists a nonconstant rational function ϕ(t) ∈ K(t) such that
R(ϕ(t)) is a polynomial.

(2) q(t) = (bt − a)s with a , b ∈ K, b �= 0, s ∈ N, and deg(p(t)) ≤ s.

Proof. (2) implies (1) because of Lemma 6.7.
Let us prove that (1) implies (2). For this purpose, let ϕ = ϕ1

ϕ2
with

gcd(ϕ1, ϕ2) = 1 and let deg(p) = r, deg(q) = s, and p(t) = art
r + · · · + a0,

q(t) = bst
s + · · · + b0. Moreover, let R(ϕ(t)) = A(t) ∈ K[t]. First we see that

r ≤ s. Indeed, if r > s then

arϕ
r
1 + ar−1ϕ

r−1
1 ϕ2 + · · ·+ a0ϕ

r
2 = ϕr−s

2 (bsϕ
s
1 + as−1ϕ

s−1
1 ϕ2 + · · ·+ b0ϕ

s
2)A(t)

where ϕr−s
2 is a nonzero polynomial. Therefore, ϕ2 divides the left-hand side

of the equality, and hence it divides ϕ1. So, because of gcd(ϕ1, ϕ2) = 1, ϕ2

must be constant. Thus, we have the polynomial equality

p(ϕ(t)) = q(ϕ(t))A(t).

Then, since ϕ is not constant, we can always take t0 ∈ K such that ϕ(t0)
is a root of q(t). But this implies that ϕ(t0) is also a root of p(t), which is
impossible since gcd(p, q) = 1 (note that q is not constant because R is not
polynomial). Therefore, r ≤ s.
Now, we prove that q(t) has only one different root. For this, let us write p
and q as

p(t) =
r∏

i=1

(βit − αi), q(t) =
s∏

j=1

(ρjt − γj).

This leads to the polynomial equality

ϕs−r
2

r∏
i=1

(βiϕ1 − αiϕ2) =
s∏

j=1

(ρjϕ1 − γjϕ2)A(t) .

Now we prove that for every j, ρjϕ1−γjϕ2 is a nonzero constant polynomial.
First observe that ρjϕ1 − γjϕ2 cannot be zero, since otherwise, taking into
account that ϕ2 is not zero and that ρj �= 0, then ϕ1/ϕ2 = γj/ρj ∈ K, but
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ϕ is not constant. Let us assume that there exists j such that ρjϕ1 − γjϕ2

is not constant, and let t0 be one of its roots. Note that ϕ2(t0) �= 0, since
ρj �= 0 and gcd(ϕ1, ϕ2) = 1. Therefore, there exists i such that t0 is a root of
βiϕ1 − αiϕ2, but this implies that p, q have a common root, namely γj

ρj
= αi

βi
,

which is impossible.
In this situation, let us assume that q(t) has two different roots, say

γ1
ρ1

, γ2
ρ2

. So {
ρ1ϕ1 − γ1ϕ2 = λ1 ∈ K
ρ2ϕ1 − γ2ϕ2 = λ2 ∈ K

Since the two roots are different, then ∆ := −ρ1γ2 + γ1ρ2 �= 0, and hence
both ϕ1 and ϕ2 are constant. But this implies that ϕ is constant too, which
is impossible. Therefore, q(t) = (bt−a)s for some a, b ∈ K, and b �= 0 because
R is not polynomial. 	


Remarks. Note that if Statement (1) in Lemma 6.10 holds, we have also
proved that for every root α of q(t) one gets that ϕ1 −αϕ2 is constant, where
ϕ1 and ϕ2 are the numerator and denominator of ϕ in reduced form.

In Definition 6.6, we have introduced the notion of a polynomial affine
curve by requiring the existence of a polynomial affine parametrization. How-
ever, we have not imposed on the polynomial parametrization the condition of
being proper. In Theorem 6.11, we see that properness can always be achieved
simultaneously with polynomiality.

Theorem 6.11. For every polynomial curve there exist proper polynomial
parametrizations.

Proof. Let C be polynomial. So there exists a polynomial parametrizationP(t)
of C. By Lemma 4.17 there exists a nonconstant rational function ϕ(t) ∈
K(t) and a proper rational parametrization Q(t) such that Q(ϕ(t)) = P(t).
If Q(t) is polynomial, then the theorem holds. Let Q(t) be nonpolynomial.
We distinguish two cases depending on whether one component of Q(t) is
polynomial or not. If only one component of Q(t) is polynomial, then it must
be constant. Indeed, if it is not constant, applying Lemma 6.8, one gets that ϕ
is polynomial, and applying Lemma 6.9 to the other component one gets that
the other component is also polynomial, which is impossible because Q(t)
is not polynomial. Therefore if only one component of Q(t) is polynomial,
say for instance the first one, then (λ, t), with λ ∈ K parametrizes polyno-
mially and properly the curve C. Now, let us assume that no component of
Q(t) is polynomial. Applying Lemma 6.10 to each component, we can express
Q(t) as

Q(t) =
(

p1(t)
(b1t − a1)s1

,
p2(t)

(b2t − a2)s2

)
,
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where pi is a polynomial of degree smaller or equal to si, and bi �= 0. Further-
more, by the remark to Lemma 6.10, one also has{

b1ϕ1 − a1ϕ2 = λ1

b2ϕ1 − a2ϕ2 = λ2

where λi are constants and ϕ1, ϕ2 are the numerator and denominator of ϕ
expressed in reduced form. If the roots of the denominators in Q(t) are dif-
ferent, then ∆ := a1b2 − a2b1 �= 0. Therefore ϕ1 and ϕ2 are both constant,
that ϕ must be constant, which is impossible. Thus, a1b2 = a2b1. In this sit-
uation, the reparametrization suggested in Lemma 6.7 is the same for both
components of Q(t), namely

Φ(t) =
b1 + a1t

b1t
=

1
t

+
a1

b1
=

1
t

+
a2

b2
=

b2 + a2t

b2t
.

Hence, since Φ(t) is linear, and Q(Φ(t)) is a proper polynomial rational
parametrization of C. 	


Theorem 6.12. If C is a polynomial curve, then every proper nonpolynomial
rational parametrization in reduced form of C is of the type

P(t) =
(

χ1 1(t)
(bt − a)r

,
χ2 1(t)

(bt − a)s

)
,

where deg(χ1 1) ≤ r and deg(χ2 1) ≤ s, and b �= 0.

Proof. Since C is polynomial, by Theorem 6.11, one knows that there exists a
proper polynomial parametrization Q(t) of C. Moreover, since P(t) is proper,
by Lemma 4.17, there exists a linear rational function ϕ(t) ∈ K(t) such that
P(ϕ(t)) = Q(t). Therefore, reasoning as in the proof of Theorem 6.11, we get
the result. 	


Theorem 6.13. If

P(t) =
(

χ1 1(t)
(bt − a)r

,
χ21(t)

(bt − a)s

)
,

where deg(χ11) ≤ r and deg(χ2 1) ≤ s is a rational parametrization of an
affine curve C, then C is polynomial and can be polynomially parametrized as

P
(

b + at

bt

)
.

Proof. This follows from Lemma 6.7. 	
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Corollary 6.14. Let C be a rational curve, and let

P(t) =
(

χ1,1(t)
χ1,2(t)

,
χ2,1(t)
χ2,2(t)

)
be a proper nonpolynomial parametrization of C, in reduced form. Then the
following statements are equivalent

(1) C is polynomial;
(2) deg(χi,1) ≤ deg(χi,2) for i = 1, 2 and both χ1,2 and χ2,2 are powers of the

same linear polynomial.

Proof. That (1) implies (2) follows from Theorem 6.12, and that (2) implies
(1) follows from Theorem 6.13. 	


These results lead to the following reparametrization algorithm for poly-
nomiality.

Algorithm POLYNOMIAL-REPARAMETRIZATION
Given a rational (nonpolynomial) parametrization P(t) =

(
χ1 1(t)
χ1 2(t) ,

χ2 1(t)
χ2 2(t)

)
in reduced form, of a plane affine algebraic curve C, the algo-

rithm decides whether C is polynomial, and in the affirmative case it
computes a polynomial parametrization of C.

1. Apply algorithm proper-reparametrization and if P(t) is not
proper replace it by a proper parametrization.

2. Compute the square-free part χ∗
i 2(t) of χi 2(t) for i = 1, 2.

3. If χ∗
1 2 and χ∗

2 2 are both linear and have the same root β,
then return “A polynomial proper parametrization of C is

P
(

1+βt
t

)
” else return “C is not polynomial”.

Example 6.15. Let C be the rational affine curve parametrized as

P(t) =
(

35 t3 + 66 t2 + 42 t + 9
27 t3 + 54 t2 + 36 t + 8

,
97 t4 + 248 t3 + 240 t2 + 104 t + 17
81 t4 + 216 t3 + 216 t2 + 96 t + 16

)
.

Algorithm proper-reparametrization tells us that P(t) is proper. More-
over, we have

χ∗
1 2(t) = χ∗

2 2(t) = 3t + 2.

Therefore, C is polynomial and a proper polynomial parametrization of C is

P
(

3 − 2t

3t

)
=
(

35
27

− 4
27

t +
2
81

t2 − 1
729

t3,
97
81

− 32
243

t +
8

243
t2 − 8

2187
t3 +

1
6561

t4
)

.
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We also observe that the implicit equation of C is

f(x, y) = −2 + 4 x + 3 y − 6 x2 − 3 y2 + 4 x3 + y3 − x4.

Note that C has only one point at infinity, namely (0 : 1 : 0). This is a simple
point and consequently C only has only one place at infinity.

Example 6.16. Let C be the rational affine curve parametrized as

P(t) =
(

35 t3 − 99 t2 + 279 t− 98
27 t3 − 135 t2 + 225 t− 125

,
35 t3 − 99 t2 + 279 t− 98
18 t3 − 33 t2 − 40 t + 75

)
.

Algorithm proper-reparametrization tells us that P(t) is proper. More-
over, we have

χ∗
1 2(t) = 3t − 5, χ∗

2 2(t) = 6t2 − t − 15.

Therefore, C is not polynomial. We also observe that the implicit equation of
C is

f(x, y) = −x3 + xy3 − y3.

Note that C has two points at infinity, namely (0 : 1 : 0) and (1 : 0 : 0),
and consequently C has more than one place at infinity. In addition, one may
observe that

χ∗
1 2(t) = 3t− 5, χ∗

2 2(t) = (2t + 3)(3t − 5).

If we consider the reparametrization corresponding to the common root 5
3 of

χ∗
i 2(t), we get

P
(

3 + 5t

3t

)
=
(

35
27

+
76
27

t +
722
81

t2 +
6859
729

t3,

1
81

945 + 2052 t + 6498 t2 + 6859 t3

6 + 19 t

)
,

which is not polynomial but quasipolynomial. For an explanation of this phe-
nomenon see [SeV02].

6.3 Making a Parametrization Normal

In the previous sections we have reparametrized a given parametrization w.r.t.
the criteria of properness and polynomiality. In this section we analyze an-
other property of the parametrization, namely its normality. In Chap. 4, we
have seen that any rational parametrization P(t) induces a natural dominant
rational mapping P from the affine line onto the curve. In fact, in studying the
properness of a parametrizationP(t) we have analyzed the injectivity of P over
almost all values in A1(K). Now, we focus on the surjectivity. The mapping
P is dominant. Thus, in general, it might not be surjective (i.e., normal), and
hence some points of the algebraic set might be missed. This phenomenon may
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generate unexpected complications in applications; for instance in the problem
of plotting of geometric objects on the screen of a computer. Therefore, the
question of deciding whether a rational parametrization is normal and if not
computing a normal parametrization, if possible, arises.

In this section we show how to decide whether a given rational parametriza-
tion of a curve over K is normal or not. Furthermore, if it is not normal we
show how to reparametrize the given parametrization into a normal one. Here
we consider the problem over algebraically closed fields. In Sect. 7.3, we will
treat the case of the field of the real numbers. Most of the results in this
section can be found in [Sen02]. For further reading on this problem we refer
to [AnR06], [BaR95], and [ChG91].

Throughout this section we will use the same notation as in Sect. 6.1. P(t)
is a rational affine parametrization in reduced form, not necessarily proper,
of a curve C over K. We write the components of P(t) as

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
.

In addition, we denote by P the rational map

P : A1(K) −→ C
t �−→ P(t).

Furthermore, associated to P(t) we also consider the polynomials (see Chap. 4)

HP
1 (x, t) = x · χ1 2(t) − χ1 1(t), HP

2 (y, t) = y · χ2 2(t) − χ2 1(t).

In this situation, we introduce the notion of normality as follows.

Definition 6.17. A rational affine parametrization P(t) is normal iff the
rational mapping P is surjective, or equivalently iff for all P ∈ C there
exists t0 ∈ K such that P(t0) = P . Furthermore, if there exists a normal
parametrization of C we say that C can be normally parametrized.

An obvious example of normality is the parabola parametrization (t, t2). It is
also easy to check that the circle parametrization

P(t) =
(

2t

t2 + 1
,
t2 − 1
t2 + 1

)
is not normal, since the point (0, 1) is on the circle x2 +y2 = 1 but no value of
t generates (0, 1). In the following we show a less trivial example of a normal
parametrization.

Example 6.18. We consider the parametrization

P(t) =
(

t2 − 1
t3

,
t − 1
t2

)
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of the plane cubic defined by the polynomial

f(x, y) = y3 + 2y2 − 3xy + x2.

Applying methods from Sect. 4.3, one may check that P(t) is a proper
parametrization. We compute the inverse of P(t) (see Sect. 4.4), which can
be expressed as

P−1(t) =
2y − x

y2
.

Thus, we deduce that for every (a, b) ∈ C \ {(0, 0)}

(a, b) = P
(

2b − a

b2

)
.

Furthermore, P(1) = (0, 0). Therefore, P(t) is normal.

We will prove that any affine rational parametrization generates, when
the parameter takes values in an algebraically closed field, all affine points
on the curve with the exception of at most one point, and we will show that
any affine parametrization can always be reparametrized into a normal one.
The basic idea is that the image of a projective variety under a regular map
is closed (see, e.g., [Sha94] Vol. 1., Chap. 1, Sect. 5.2, Theorem 2). Thus, if
the parametrization is seen projectively, the induced rational map is defined
from the projective line over K onto the projective closure of C. Hence, in
this case, the image is the whole curve. This means that when considering
again the affine parametrization, only the corresponding point on the curve
corresponding to the point at infinity of K may not be generated. Moreover,
taking a projective parametrization of the curve that sends the infinity of K
into a point of C at infinity one may generate a normal parametrization of the
curve.

In the following we describe these ideas in details giving constructive
proofs that will provide algorithmic procedures. We start our analysis with
Lemma 6.19. This result can also be found in [GRY02], Remark 1.6. The
approach in [GRY02] is derived using rational function field theory.

For technical reasons, in the following we consider the leading coefficient
of the zero polynomial to be 0.

Lemma 6.19. Let �1(x), �2(y) be the leading coefficients w.r.t. t of the poly-
nomials HP

1 (x, t), HP
2 (y, t), respectively. Then

P(K) = {(a, b) ∈ C | gcd(HP
1 (a, t), HP

2 (b, t)) �= 1}.

Furthermore,

C \ P(K) ⊂ {(a, b) ∈ C | �1(a) = �2(b) = 0} .
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Proof. Note that if P(t) has a constant component the result is trivial. So, in
the following, we assume that no component of P(t) is constant.
First, we prove that

P(K) = {(a, b) ∈ C | gcd(HP
1 (a, t), HP

2 (b, t)) �= 1} .

Clearly, if (a, b) ∈ P(K) then (a, b) ∈ C, and there exists t0 ∈ K such that
P(t0) = (a, b). Thus, t0 is a common root of HP

1 (a, t) and HP
2 (b, t). Con-

versely, if (a, b) ∈ C and t0 ∈ K is a common root of HP
1 (a, t) and HP

2 (b, t),
then χ1 2(t0)χ2 2(t0) �= 0, since otherwise either HP

1 (a, t0) = χ1 1(t0) = 0 or
HP

2 (b, t0) = χ2 1(t0) = 0, which is impossible because of gcd(χ1 1, χ1 2) =
gcd(χ2 1, χ2 2) = 1. Therefore, P(t0) = (a, b), and hence (a, b) ∈ P(K).

Now, for every (a, b) ∈ C such that �1(a) �= 0 or �2(b) �= 0 we con-
sider the evaluation homomorphism ψ(a,b) : K[x, y][t] → K[t] defined as
ψ(a,b)(M(x, y, t)) = M(a, b, t). W.l.o.g we assume that �1(a) �= 0. Taking
into account the behavior of the resultant under a homomorphism (see, e.g.,
Lemma 4.3.1 in [Win96]), one has that

ψ(a,b)(rest(HP
1 (x, t), HP

2 (y, t)))

= �1(a)degt(H
P
2 (y,t))−degt(H

P
2 (b,t))rest(HP

1 (a, t), HP
2 (b, t)) ,

since �1(a) �= 0. Moreover, up to multiplication by a nonzero constant,

rest(HP
1 (x, t), HP

2 (y, t)) = f(x, y)index(P)

(see Theorem 4.41), where f(x, y) is the defining polynomial of C. Therefore,
since (a, b) ∈ C and, �1(a) �= 0, one gets that rest(HP

1 (a, t), HP
2 (b, t)) = 0.

Thus, gcd(HP
1 (a, t), HP

2 (b, t)) �= 1. So, one deduces that

{(a, b) ∈ C | �1(a) �= 0 or �2(b) �= 0} ⊂

{(a, b) ∈ C | gcd(HP
1 (a, t), HP

2 (b, t)) �= 1} = P(K),

and therefore C \ P(K) ⊂ {(a, b) ∈ C | �1(a) = �2(b) = 0}. 	


From Lemma 6.19, one immediately gets the following corollaries. Note that
for the case of parametrizations with constant components the corollaries hold
trivially.

Corollary 6.20. If one of the denominators in P(t) has degree less than the
degree of its numerator, then P(t) is normal.

Proof. Note that the corresponding leading coefficient �i of the parametriza-
tion component with higher degree in the numerator, is a nonzero constant.
Thus, C = P(K). 	


Corollary 6.21. Any polynomial parametrization is normal.



204 6 Rational Reparametrization

Example 6.18 shows that the conditions in Corollary 6.20 to Lemma 6.19
do not characterize the normality of a parametrization. In Theorem 6.22 we
give a complete characterization. For this purpose, we use the following nota-
tion: if p ∈ K[t] and k ∈ N, coeff(p, k) denotes the coefficient of the term tk

in p(t).

Theorem 6.22. Let n=deg(χ1 1), m=deg(χ12), r = deg(χ2 1), s = deg(χ2 2),
and let a = coeff(χ1 1, m), b = coeff(χ1 2, m), c = coeff(χ2 1, s), d =
coeff(χ2 2, s). Then

(1) if n > m or r > s then P(t) is normal;
(2) if n ≤ m and r ≤ s then P(t) is normal if and only if

deg(gcd(aχ1 2(t) − bχ1 1(t), cχ2 2(t) − dχ2 1(t))) ≥ 1 .

Furthermore, if P(t) is not normal, all points in C are generated by P(t)
with the exception of

(
a
b , c

d

)
, which is a point on C.

Proof. Note that if P(t) has a constant component, the result is trivial. So,
in the following, we assume that none component of P(t) is constant.
Statement (1) is Corollary 6.20 to Lemma 6.19. In order to prove Statement
(2), let

P(t) =
(

antn + · · · + a0

bmtm + · · · + b0
,
crt

r + · · · + c0

dsts + · · · + d0

)
.

Also, let �1(x), �2(y) be the leading coefficients w.r.t. t of HP
1 (x, t) and

HP
2 (y, t), respectively, and let Q(t) = P

(
1
t

)
. Clearly

Q(t) =
(

an + · · · + a0t
n

bm + · · · + b0tm
tm−n,

cr + · · · + c0t
r

ds + · · · + d0ts
ts−r

)
.

In this situation, we distinguish the following cases:

(i) Let n < m and r < s. First observe that the denominators of Q(t) do
not vanish at t = 0, since bm �= 0, ds �= 0, and m − n > 0, s − r > 0.
Thus, the parametrization Q(t) is defined for t = 0, and Q(0) = (0, 0) ∈
C. Moreover, �1(x) = bmx, �2(y) = dsy. Therefore, by Lemma 6.19,
the only point that might not be generated by P(t) is the origin.
Furthermore, by Lemma 6.19, (0, 0) is generated by P(t) if and only if
gcd(HP

1 (0, t), HP
2 (0, t)) �= 1. Finally, note that gcd(HP

1 (0, t), HP
2 (0, t)) =

gcd(aχ1 2(t) − bχ1 1(t), cχ2 2(t) − dχ2 1(t)) and (0, 0) =
(

a
b , c

d

)
. Therefore

the statement holds.
(ii) Let m = n, and r = s. Since bm �= 0, ds �= 0, we have Q(0) =(

an

bm
, cr

ds

)
∈ C. Moreover, �1(x) = bmx− an, �2(y) = dsy − cr. Therefore,

applying Lemma 6.19 as in case (i), we get the result.
(iii) Let m > n, and r = s. Since bm �= 0, ds �= 0, we have Q(0) =

(
0, cr

ds

)
∈ C.

Moreover, �1(x) = bmx, �2(y) = dsy−cr. Therefore, applying Lemma 6.19
as in case (i), we get the result.
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(iv) Let m = n, and r < s. Since bm �= 0, ds �= 0, we have Q(0) =(
an

bm
, 0
)
∈ C. Moreover, �1(x) = bmx− an, �2(y) = dsy. Therefore, apply-

ing Lemma 6.19 as in case (i), we get the result. 	


Corollary 6.23. A rational parametrization of an affine plane curve reaches
all points on the curve with the exception of at most one point. Moreover,
the only possible unreachable point is the one described in Statement (2) of
Theorem 6.22.

Definition 6.24. Let P(t) be a rational parametrization in reduced form such
that the degree of each numerator is not higher than the degree of the corre-
sponding denominator, i.e., deg(χi 2(t)) ≥ deg(χi 1(t)) for i = 1, 2. Then, the
only possible missing point of the parametrization is called the critical point
of P(t).

Remarks. Observe that the notion of critical point is not defined for
parametrizations such that at least one of the numerators has higher degree
than its denominator.

Theorem 6.22 leads to the following algorithm for deciding whether a given
parametrization is normal.

Algorithm NORMALITY-TEST
Given a rational parametrization P(t) =

(
χ1 1(t)
χ1 2(t)

, χ2 1(t)
χ2 2(t)

)
in reduced

form, of a plane affine algebraic curve C, the algorithm decides whether
P(t) is normal.

1. n := deg(χ1 1(t)), m := deg(χ1 2(t)), r := deg(χ2 1(t)), s :=
deg(χ2 2(t)).

2. If n > m or r > s then return “P(t) is normal”.
3. a := coeff(χ11, m), b := coeff(χ1 2, m), c := coeff(χ2 1, s), d :=

coeff(χ2 2, s).
4. Compute M(t) := gcd(aχ1 2 − bχ1 1, cχ2 2 − dχ2 1).
5. If deg(M) ≥ 1 then return “P(t) is normal” else return “P(t) is

not normal and the only point on C that is not reachable
is
(

a
b , c

d

)
”.

Example 6.25. Let us consider the affine conic defined by

x2

u2
+

y2

v2
= 1, u �= 0, v �= 0

and the standard proper parametrization

P(t) =

(
u
(
t2 − 1

)
1 + t2

, 2
vt

1 + t2

)
.
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Applying Algorithm normality-test, in Step 4 we get that

M(t) := gcd(2u,−2vt) = 1 .

Therefore, P(t) is not normal and the only point on the affine conic that is
not reachable is (u, 0). That is the critical point of the parametrization.

We have already described a method for deciding whether a given parame-
trization is normal. In the last part of this section we deal with the problem of
computing normal parametrizations of a rational curve over K. We start with
the following theorem due to T. Recio, in a personal communication (1994).
Geometrically, the idea is to take a projective parametrization sending the
infinity of K into a point of C at infinity.

Theorem 6.26. Every rational affine curve over K can be properly and nor-
mally parametrized.

Proof. Let C be an affine rational curve over K, and let P(t) be a proper
nonnormal parametrization, in reduced form, of C (see Lemma 4.13). Then,
by Corollary 6.21 to Lemma 6.19, P(t) is not polynomial, and hence either
χ1 2 or χ2 2 is nonconstant. W.l.o.g. we assume that χ1 2 is nonconstant. Then,
we take α ∈ K such that χ1 2(α) = 0. Note that gcd(χ1 1, χ1 2) = 1 and hence
χ1 1(α) �= 0. By the linear change of parameter φ(t) = αt+1

t , the parametriza-
tion P(t) is transformed to a normal parametrization. Furthermore, since φ(t)
is invertible, the reparametrization preserves the properness (see Lemma 4.17).

	


Remarks. In Theorem 6.26 we have emphasized the fact that the normal pa-
rametrization is proper. If the parametrization P(t) in the proof has tracing
index k then, since the reparametrization function φ(t) is linear, the tracing
index of the normal parametrization is also k (see Theorem 4.33).

Combining algorithm normality-test and the constructive proof of
Theorem 6.26, one can derive the following algorithm.

Algorithm NORMAL-PARAMETRIZATION
Given a rational parametrization P(t) =

(
χ1 1(t)
χ1 2(t)

, χ2 1(t)
χ2 2(t)

)
in reduced

form, of a plane affine algebraic curve C, the algorithm computes a nor-
mal parametrization of C.

1. Apply algorithm normality-test to check whether P(t) is normal.
If so, return P(t).

2. If χ12(t) is not constant take α ∈ K such that χ1 2(α) = 0, else take
α ∈ K such that χ2 2(α) = 0.

3. Return P
(

αt+1
t

)
.
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Example 6.27. From the algorithm normal-parametrization applied to
the proper parametrizations given in Example 6.25, we get(

−u
(
2 t2 − 2 it − 1

)
2 it + 1

, 2
v (it + 1) t

2 it + 1

)
.

This is a normal and proper parametrization of the affine conics.

Remarks. The situation is different when the curve is seen over a subfield
of K. The difficulty arises when a point on the curve, although reachable by
the parametrization, might only be generated by parameter values in K \L (L
being a subfield of K). For instance, the parametrization P(t) = (t4 + 1, t3 +
2t + 1), which is proper and normal over C, is not normal over R because the
point (5, 1), which is on the curve, is only reachable via P(t) taking t = ±i

√
2.

Thus, in certain cases normality and optimal field parametrization may not
be reachable at the same time. This type of phenomena will be studied in
Chap. 7.

Exercises

6.1. Let P(t) be a rational parametrization of a curve C over K, and let
φ(t) ∈ K(t) \ K. Prove that Q(t) = P(φ(t)) also parametrizes C.

6.2. Apply algorithm proper-reparametrization to compute a rational
proper parametrization of the curve parametrized by

P(t) =
(

3t4 + 4t3 + 32t2 + 28t + 99
(t2 + t + 7)(t2 + 1)

,
(t2 + t + 7)3

(t + 6)(t2 + 1)2

)
.

6.3. Apply algorithm polynomial-reparametrization to compute a ratio-
nal polynomial parametrization of the curve parametrized by

P(t) =
(

7t2 + 17t + 13
4t2 + 4t + 1

,
2t2 + 11t + 15

8t3 + 12t2 + 6t + 1

)
.

Check that C has only one place at infinity.

6.4. Let C be an irreducible affine curve of degree d having an affine (d− 1)–
fold point. Prove that C is polynomial if and only if the homogeneous form
of maximum degree of the defining polynomial of C is the power of a linear
homogeneous polynomial.

6.5. Construct a nonpolynomial rational affine curve such that the homoge-
neous form of maximum degree of its defining polynomial is the power of a
linear homogeneous polynomial.
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6.6. Give an example of each of the cases analyzed in the proof of
Theorem 6.22.

6.7. Apply algorithm normal-parametrization to compute a rational
normal parametrization of the curve parametrized by

P(t) =
(

7t2 + 17t + 13
t3 − 3t + 2

,
7t2 + 42t + 35

8t3 + 12t2 + 6t + 1

)
.
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Real Curves

Up to now we have dealt with curves in affine or projective planes over alge-
braically closed fields. For practical applications this may be unsatisfactory.
So in this chapter we consider curves in the real plane. It turns out that a real
curve which can be parametrized over an algebraically closed field can actu-
ally be parametrized with real coefficients. In Sect. 7.1 we adapt the previously
introduced parametrization algorithm to find such a real parametrization. The
material in this part of the chapter follows the ideas in [SeW97] and [SeW99].
In Sect. 7.2 we consider the following problem: given a complex parametriza-
tion of a curve C we decide whether C is a real curve and in the affirmative case
we determine a real parametrization of C. The ideas and results developed in
this section follow essentially the material presented in [ReS97a]. In Sect. 7.3
we consider the problem of determining real normal parametrizations; i.e., real
parametrizations P(t) covering the whole curve and not just a dense subset
of it, with real values of the parameter t. The material in this part of the
chapter follows the ideas in [Sen02]. For further reading on algorithms in real
algebraic geometry we refer to [BPR03].

7.1 Parametrization

In this section, we introduce the notion of real plane curve and we ana-
lyze some basic properties related to defining polynomials, irreducibility, and
rationality. We finish the section showing how the algorithms in Chaps. 4 and
5 can be adapted to the real case.

Definition 7.1. A real affine plane curve is an affine plane curve over C with
infinitely many points in the affine plane over R. Similarly, we define a real
projective plane curve as a projective plane curve over C with infinitely many
points in the projective plane over R.

Observe that the projective closure of any real affine plane curve is a
real projective curve, and that, in general, the dehomogenization of a real
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projective plane curve is a real affine plane curve. In fact, if the curve is
irreducible, the only exception is the line at infinity. Therefore, in the sequel,
we can choose freely between projective and affine situations, whatever we
find more convenient.

Real curves are not necessarily defined by real polynomials. For instance,
the polynomial f(x, y) = x2 + ixy ∈ C[x, y] defines a real curve according to
Definition 7.1, since all the points (0, b), with b ∈ R, are on the curve. Clearly,
in this example, what is happening is that the curve decomposes over C into
two curves, namely the real line defined by x, and the complex line defined
by x + iy. On the other hand, real polynomials may not define real curves
as for instance f(x, y) = x2 + y2 + 1 ∈ R[x, y]. However, in Lemma 7.2 we
see that if the curve is real and irreducible over C, then it can be defined by
a real polynomial. Here, when we say that the real curve is irreducible, we
mean that it is irreducible over C; i.e., its defining polynomial is irreducible
as a polynomial in C[x, y].

Lemma 7.2. Every irreducible real curve has a real defining polynomial.

Proof. Obviously the line at infinity has a real defining polynomial. So now, let
C be different from the line at infinity, and let f(x, y) = f1(x, y) + if2(x, y) ∈
C[x, y], fi(x, y) ∈ R[x, y], i = 1, 2 be the defining polynomial for the affine
version of C. By Definition 7.1 there exist infinitely many points (a, b) ∈ R2

such that f1(a, b) + if2(a, b) = 0; i.e., f1(a, b) = f2(a, b) = 0. Thus, the
curves defined over C by f1 and f2, have infinitely many points in com-
mon. Hence, by Bézout’s Theorem, they must have a common component.
Let g = gcd(f1, f2) ∈ R[x, y] be the polynomial defining the common compo-
nent. Then, f(x, y) = g(x, y) · f̃(x, y). Since f is irreducible over C, f̃(x, y)
must be constant, and therefore g(x, y) is a real defining polynomial of C. 	


Observe that a plane curve over C is real if and only if at least one com-
ponent of the curve is real. Since we can always decompose any curve into
irreducible components over C, we get the following result.

Lemma 7.3. The defining polynomial of a real plane curve has a real factor.

Proof. Let C be a real plane curve defined by f(x, y) ∈ C[x, y]. One of the
irreducible factors of f , say f̃ , has infinitely many real roots. So f̃ defines a
real curve C̃. Because of Lemma 7.2, C̃ has a real defining polynomial g(x, y) ∈
R[x, y]. Then, f̃ and g can only differ by a constant complex factor. So g is a
factor of f . 	


Of course, since an algebraic curve can have only finitely many singulari-
ties, a real algebraic curve must have real simple points. But also the converse
is true, so the existence of a real simple point on C is a criterion for the realness
of C.

Theorem 7.4. Let C be a plane algebraic curve defined by a real squarefree
polynomial. Then, C is real if and only if C has at least one real simple point.
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Proof. The left to right implication is trivial. Conversely, let f(x, y) ∈ R[x, y]
be a squarefree polynomial defining C, and let P ∈ A2(R) be a simple point
on C. Then, not both partial derivatives of f vanish at P . Therefore, since
f(x, y) ∈ R[x, y], we apply the Implicit Function Theorem (see Appendix B),
and we deduce that C has infinitely many points in A2(R). Thus, C is a real
curve. 	


Note that Theorem 7.4 is not true without the assumption of squarefree-
ness; for instance the curve of equation x2 has infinitely many real points, but
all of them are singular. Also, note that the condition on the simplicity of the
real point is necessary. For instance, one may consider the curve C defined by
the irreducible real polynomial

f(x, y) = x2 + 2y2 + 2x2y2,

which is not real, but it has a real point, namely the origin. However, in this
example the origin is a double point of the curve.

Now that real curves have been analyzed, we focus on irreducible real
curves. In Lemma 7.5, we prove that the irreducibility of real curves follows
from the irreducibility over R of its defining polynomial.

Lemma 7.5. A real curve C is irreducible if and only if it is defined by a real
polynomial irreducible over R.

Proof. This follows from Lemma 7.2, and taking into account that a real
polynomial irreducible over R with infinitely many real roots is irreducible in
C[x, y] (see Exercise 7.1). 	


So from now on we will assume that the real curves we work with are
irreducible and therefore defined by real irreducible polynomials. Concerning
rationality, since a real curve can be seen as a curve over C, by Theorem 4.63,
we know that the real curve can be parametrized if and only if its genus is
zero. However, strictly speaking this characterization ensures that real curves
with genus zero can be parametrized over C; i.e., by means of rational func-
tions with complex coefficients. But for practical applications, we are actually
interested in the possibility of parametrizing the real rational curve over R.
That is, we want to know whether R is a field of parametrization of a given
rational real curve (see Definition 5.1). This is always possible, and it can be
seen as a consequence of the Real Lüroth Theorem (see [ReS97b]). We can
also deduce this result directly from Theorems 5.4 and 7.4, from which we get
Theorem 7.6.

Theorem 7.6. Every rational real curve can be properly parametrized over
the reals.

For actually carrying out the parametrization process we have several
options. We might use a slightly generalized version of the Algorithm
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Optimal-Parametrization (see Sect. 5.3). We input a defining real polyno-
mial f(x, y). All the steps in the algorithm can be executed over computable
subfields of R. We still can determine whether the conic in Step 2.3.5 has a
real point, and if so determine one. Note that there exist elementary meth-
ods in linear algebra to check whether a real quadratic polynomial defines
a real conic, for instance analyzing the signature and rank of the associated
quadratic form.

Alternatively, we can try to determine a finite number of regular real points
on C directly from the defining polynomial. This can be achieved by a standard
application of cylindrical algebraic decomposition as shown in Theorem 7.7
(see [Joh98]). Once we have these regular real points on C, we can apply
any one of the variants of Algorithm Parametrization-by-Adjoints (see
Sects. 4.7 and 4.8).

Theorem 7.7. Let f(x, y) ∈ R[x, y] be a squarefree polynomial, not having a
linear factor independent of y. Let C be the affine plane curve defined over
C by the polynomial f(x, y), and let D(x) be the discriminant of f w.r.t the
variable y. Then the following hold:

1. If D(x) does not have a real root, then C is a real plane curve if and only
if the univariate polynomial f(0, y) has real roots. Furthermore, if β ∈ R

is a root of f(0, y), then (0, β) ∈ R2 is a real simple point of C.
2. Let a1, . . . , an be the real roots of D(x), and let λ0, . . . , λn ∈ R be such

that

−∞ = a0 < λ0 < a1 < λ1 < a2 < · · · < λn−1 < an < λn < an+1 = +∞.

Then, C is a real plane curve if and only if there exists i ∈ {0, . . . , n}
such that the univariate polynomial f(λi, y) has real roots. Furthermore,
if β ∈ R is a root of f(λi, y), then (λi, β) ∈ R2 is a real simple point of C.

In the following examples, we illustrate various methods in the full
parametrization process.

Example 7.8. Let C be the plane curve defined over C by the polynomial

F (x, y, z) = 10y3z2 − 15xy2z2 + 6xy3z − 12x2y2z + 8x3z2 + 3x3y2.

From applying Theorem 7.7 to F (x, y, 1), we get that C is a real curve. In
addition, P1 = (−1 : 3

√
2 : 1) and P2 = (5 : − 3

√
25 : 1), are two real simple

points on C. In order to check whether C is rational, we compute the genus
of C (see Chap. 3). For this purpose, first we determine the singularities of C.
We get

Q1 = (0 : 0 : 1), Q2 = (0 : 1 : 0), Q3 = (1 : 0 : 0), Q4 = (1 : 1 : 1),

where Q1 is a triple point, and Qi, i = 2, 3, 4, are double points. Thus,
genus(C) = 0, and therefore C is rational. Now, we proceed to compute a real
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rational parametrization. For this purpose, we apply Algorithm
Parametrization-by-Adjoints, taking k = d − 2 (see Sect. 4.7). We con-
sider a form in x, y, z of degree d − 2 = 3 defining the linear system H of
adjoint curves to C:

H(x, y, z, λ1, λ2, λ3, λ4) = λ2y
2z + (−λ2 − λ1 − λ3 − λ4)xyz + λ1xy2

+λ3x
2z + λ4x

2y.

Now, we determine the equation of the subsystem of H having P1 and P2 as
simple base points. We get this subsystem as the solution of the linear equa-
tions H(Pi) = 0, i = 1, 2, namely

H(x, y, z, t) = 64tx2 − 3x2yβ2αt + 9β2α2x2yt − 6x2yα2tβ − 7β2α2xyt +
29xyβαt + 34xyβα2t − 5xyβ2αt + 24xyβα + 16βα2xy + 36βx2yt + 6αx2yt −
18x2yα2t + 12x2yβ2t + 14xyα2t + 20xyβ2t− 116βxyt− 66βy2α2t + 10αxyt−
2β2α2tx2+38βα2tx2+8β2αtx2−20tx2βα+38βα2xy2+8β2αxy2−20xy2βα−
24β2α2xy + 8β2xyα − 9x2yβαt − 2β2α2xy2 − 24β2y2 + 120y2α − 140α2y2 +
104βy2 + 136α2xy− 16tx2α + 4α2tx2 − 32β2tx2 + 64xy2− 24x2yt− 184βxy−
54βα2y2−156xy+132x2y−16β2αy2−32β2xy2 +80xy2β +4α2xy2−40xyt−
16xy2α + 26β2α2y2 − 40y2 − 4βy2α − 104xyα + 56β2xy + 80tx2β,

where α := 3
√

2, and β := 3
√

5. Finally, from the primitive parts of the resul-
tants of F and H , w.r.t x and w.r.t y, respectively, we get the real rational
parametrization P(t) over Q( 3

√
2, 3

√
5):

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where

χ1 1(t) = 3(9024α + 2046β2t2 − 1122t2β − 84t3β + 7248αt + 408t3 + 1716t2 −
912βα2t+4800β2α2t−2688βαt−3888β2αt−672α2+3264β2+6576β2t−14976+
3600α2t + 4912β2α2 − 11040t + 1020t3α + 2550t3α2 − 3680βα + 375t3β2α2 +
150t3β2α − 525t3βα2 − 210t3βα − 3456β2α + 14016β + 7056βt + 7458t2α2 +
2112t2α+60t3β2−5328βα2−2112t2α2β+462t2αβ−1782t2αβ2+2442t2α2β2),

χ1 2(t) = 2(2816 − 704α + 507β2t2 − 129t2β + 3096αt − 618t2 − 2832βα2t +
1608β2α2t − 552βαt − 1680β2αt + 176α2 − 1408β2 + 2232β2t + 3384α2t −
88β2α2 − 3408t − 880βα + 352β2α + 3520β + 360βt − 51t2α2 + 996t2α +
1672βα2 − 534t2α2β − 141t2αβ − 3t2αβ2 + 1263t2α2β2),

χ2 1(t) = −24560α−462β2t2−2112t2β−1020t3β−24000αt−750t3+8910t2+
5520βα2t − 3528β2α2t − 3600βαt + 912β2αt − 8160α2 + 3680β2 + 2688β2t −
16440α2t − 7008β2α2 + 19440t − 1875t3α − 150t3α2 + 672βα + 42t3β2α2 +
525t3β2α − 204t3βα2 − 2550t3βα + 5328β2α − 9024β − 7248βt− 5115t2α2 −
12210t2α+210t3β2 +17280+7488βα2− 858t2α2β− 7458t2αβ +2112t2αβ2 +
561t2α2β2,
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χ2 2(t) = 4(1108β2α2−2920α2+2220α+472β−1236β2+1024β2α−1724βα+
288βα2 + 256β2α2t− 310βα2t + 1190αt + 296β2αt + 2340− 608βαt + 355t−
293β2t − 50α2t + 386βt).

So, we have determined a real parametrization, but unfortunately the coeffi-
cients involve several algebraic numbers.

Example 7.9. In this example, we consider again the curve C of Exam-
ple 7.8. We apply Algorithm Symbolic-Parametrization-by-Degree-d-
Adjoints (see Sect. 4.8) and we use P = P1 = (−1 : 3

√
2 : 1) to obtain the

point (b1 : b2 : β) in Steps 3 and 4. For this purpose, we first determine the
polynomial H defining the linear system H of adjoints curves to C of degree
d = 5. Afterward, we compute a real point Q �∈ C, for instance Q = (1 : 1 : 0),
and three families of four conjugate points over Q( 3

√
2) on lines through P .

Note that P satisfies the conditions required in Steps 3 and 4 of Algorithm
Symbolic-Parametrization-by-Degree-d-Adjoints. More precisely, we
get the following families over Q(α):

F1 = {(γ − 1 : γ + α : 1) | q1(γ) = 0}

F2 = {(−1 : α + γ : γ + 1) | q2(γ) = 0},
and

F3 = {(−1 + γ : α + γ : 2γ + 1) | q3(γ) = 0},
where α := 3

√
2, and

q1(t) = 36+30t2+48αt+30α2−24t−24t2α−3α2t−15t3+6t3α+3t2α2 +3t4,

q2(t) = 12+22t2+48αt+30α2+12t+72t2α+57α2t+29t3+30t3α+30t2α2+10t4,

q3(t) = 60 + 66t2 + 120αt + 66α2 + 144t + 156t2α + 129α2t − 3t3 − 6t3α +
75t2α2 + 3t4.

Now, we determine the equation H of the subsystem of H having Q and
the points of the families Fi, i = 1, 2, 3, as simple base points. This implies
to solve the linear system of equations, in the undetermined coefficients of H ,
given by the conditions

H(Q) = 0, H(t − 1, t + α, 1) = 0 mod q1(t),

H(−1, α + t, t + 1) = 0 mod q2(t), H(−1 + t, α + t, 2t + 1) = 0 mod q3(t).

Finally, from the primitive parts of the resultants of F and H , w.r.t. x and y,
we get the rational parametrization P(t) over the real extension Q(α) of Q:

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,
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where
χ1 1(t) = −50208t + 12084t3 + 229068t2 − 27808α− 230736tα− 134244t2α −
38448t2α2 + 219288tα2 − 36849t3α2 − 27776α2 + 18678t3α − 335264,

χ1 2(t) = 16368tα + 6138t3α − 11220t2α − 29920α − 17600α2 − 6600t2α2 −
12320− 4620t2 + 20064t + 7524t3 + 5016tα2 + 1881t3α2,

χ2 1(t) = −515328t + 1246344t3 + 179388t2 − 87192tα2 + 749241t3α2 +
13945824α2 + 17648672α + 53532t2α2 + 975648t3α − 394176tα− 69804t2α +
22011616,

χ2 2(t) = 9164760t − 3083364t2α − 3911292t2 − 4234800α2 + 300699t3α +
408672t3 + 7489920tα− 2369988t2α2 + 5849640tα2 + 252558t3α2 − 6591200−
5226400α.

This second parametrization involves only one algebraic number of degree 3,
but the integer coefficients of the parametrization have grown in comparison
to the result of Example 7.8.

Example 7.10. In this last example, we consider again the curve C of Exam-
ple 7.8. We apply Algorithm Optimal Parametrization (see Sect. 5.3) for
obtaining an algebraically optimal real parametrization of C. Note that the
ground field is Q. For this purpose, since the degree of C is 5, we apply Step 2.1
and we determine A3(C). Thus, we construct two families F1, F2 of d− 2 = 3
conjugate simple points over Q using A3(C). Next, we compute AF1∪F2

4 (C),
from which we generate a family F3 of 2 conjugate simple points over Q. Fi-
nally, we determine AF3

3 (C) and we get a proper rational linear subsystem of
dimension 1, which we may use to parametrize C. We start with the construc-
tion of F1, F2. The defining polynomial of A3(C) is

H3(x, y, z, λ1, λ2, λ3, λ4)
= −y2zλ1 − y2zλ2 − y2zλ3 − y2zλ4 + λ1xyz + λ2xy2 + λ3x

2z + λ4x
2y .

Now, using the adjoint

H3(x, y, z, 1, 1,−1, 1) = −2y2z + xyz + xy2 − x2z + yx2

we generate the family

F1 =
{(

t,
t(3t2 − 13t− 52)

3t3 − 18t2 − 55t− 40
, 1
)}

33t3−138t2−967t−1232

.

Similarly, using the adjoint

H3(x, y, z,−1,−1,−1,−1) = 4y2z − xyz − xy2 − x2z − yx2
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we generate the family

F2 =
{(

t,
−t(−78 + 81t + 3t3 − 38t2)
53t− 7t2 − 27t3 + 10 + 3t4

, 1
)}

33t3−300t2+197t−1466

.

Now, we construct F3. The implicit equation of AF1∪F2
4 (C) is

H4(x, y, z, λ1, λ2, λ3) = λ1x
3z + λ3y

3z − 175/162xyz2λ3 + λ2x
3y +

8165/891xyz2λ1 − 23/3xyz2λ2 + 7/9xy2zλ3 + 38/11x2yzλ1 +
4/11x2yzλ2 + 17/27xy3λ1 − 5/54xy3λ3 − 79/162x2z2λ3 − 8/11x2y2λ2 +
302/99x2y2λ1 − 1/18x2y2λ3 − 280/33x2z2λ2 + 10520/891x2z2λ1 −
1303/99xy2zλ1 + 118/11xy2zλ2 − 14206/891y2z2λ1 + 158/33y2z2λ2 −
5/81y2z2λ3.

Then, we consider the adjoint

H4(x, y, z, 1, 0, 1) = x3z + y3z + 14405/1782xyz2 − 1226/99xy2z +
38/11x2yz + 29/54xy3 + 20171/1782x2z2 + 593/198x2y2 −
14261/891y2z2

to generate the family

F3 =
{(

t,
p(t)
q(t)

, 1
)}

−14827985+5414364t+8371836t2
,

where

p(t) = 11805973373808605804747111724117757296834t

+ 19987596870995582233845840971567338905065,

and

q(t) = −296735076(76490543269530013045997305511523t

+ 129494292536231122739685918017555).

Then, the implicit equation of AF3
3 (C) is

H(x, y, z, t) = −545
432

y2z +
5

162
y2zt + xyz − 167

162
txyz − 319

432
xy2 + x2z + tx2y .

ExecutingStep3of the algorithmOptimal-Parametrization (see Sect. 5.3),
we finally get the following rational parametrization over Q:

P(t) =
(−9 − 72t2 + 64t3 + 72t

−3(8t2 + 3)
,
−9 − 72t2 + 64t3 + 72t

−18(t− 1)

)
.

This parametrization is defined over the ground field Q, which is clearly op-
timal.

The previous examples show the advantages and disadvantages of the pos-
sible variants of the algorithms. If one is not interested in the symbolic manip-
ulation of the problem the best option is the parametrization by d− 2 degree
adjoints since the degrees of the polynomials involved are smaller. However,
from the symbolic point of view the best option to manipulate the output is
Optimal Parametrization.
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7.2 Reparametrization

In Sect. 7.1 we have seen how to decide whether an algebraic plane curve, given
by its implicit equation, is real and in the affirmative case, how to parametrize
it over the reals. In this section, we deal with a related but slightly different
problem. More precisely, we consider a complex rational parametrization of a
plane curve C, defined over C, and we want to deduce whether C is a real curve,
and in the affirmative case, we would like to compute a real parametrization
of C. An obvious approach to this problem consists in implicitizing P(t) and
afterward applying the algorithms in Sect. 7.1. However, we want to solve the
problem without using the implicit equation of C. That is, once the reality
of C is guaranteed, we look for a change of parameter that transforms P(t)
into a real parametrization. We will see that this problem can be solved by
computing a gcd of two univariate polynomials and by parametrizing over R

a line or a circle.
The ideas and results presented in this section are contained in the paper

[ReS97a]. We will omit the proofs of some technical results on analytic poly-
nomials and rational functions, and we will present proofs of the main results,
following the description in that paper.

Throughout this section, if f(z) ∈ C[z] we denote by f(z) the conjugation
of the polynomial f(z).

7.2.1 Analytic Polynomial and Analytic Rational Functions

In the following, given a bivariate complex polynomial p(x, y) we refer to its
real and imaginary parts as the components of p(x, y).

Definition 7.11. A polynomial p(x, y) ∈ C[x, y] is called analytic if there
exists a polynomial f(z) ∈ C[z] such that

f(x + iy) = p(x, y).

The polynomial f(z) is called the (polynomial) generator of p(x, y).

Equivalent definitions can be found in complex analysis textbooks in the
context of harmonic and holomorphic functions (see, e.g., [BaN82]). Analytic
polynomials can be characterized as follows (we leave the proof as an exercise;
Exercise 7.6).

Proposition 7.12. Let u(x, y) and v(x, y) be the components of p(x, y) ∈
C[x, y]. Then, the following statements are equivalent:

1. p(x, y) is an analytic polynomial,

2.
∂u

∂x
=

∂v

∂y
, and

∂u

∂y
= −∂v

∂x
(Cauchy–Riemann conditions),

3. p(x, y) = p(x + iy, 0),
4. p(x, y) = p(0,−ix + y).
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From this proposition, we see that if p(x, y) is an analytic polynomial,
then p(z, 0) = p(0,−iz), and f(z) = p(z, 0) generates p(x, y). Consequently,
the generator of an analytic polynomial is unique. In addition, one also de-
duces that constant analytic polynomials are only generated by the constant
polynomials in C[z]. See also Exercise 7.7 for additional properties of ana-
lytic polynomials. For our purposes, we are specially interested in analyzing
properties of the components of an analytic polynomial.

Lemma 7.13. Let f(z) be the generator of a nonconstant analytic polynomial
of components u(x, y), and v(x, y), and let Cu, Cv be the affine plane curves
defined over C by u(x, y) and v(x, y), respectively. Then Cu and Cv do not
have common components; i.e., gcd(u, v) = 1.

Proof. Let p(x, y) be the analytic polynomial generated by f(z), and let
w(x, y) = gcd(u, v). Since u, v ∈ R[x, y], one has that A ∈ R[x, y], and w
is a factor of p(x, y). Because of Exercise 7.7 (4) this polynomial w is analytic,
and because of Exercise 7.7 (2) it must be constant. Therefore, gcd(u, v) = 1.

	


In Exercise 7.8 one may check that this coprimality does not hold in general
for nonanalytic polynomials. Additional properties of the curves Cu, Cv can
be found in Exercise 7.9.

Now that basic properties of analytic polynomials have been studied, we
focus on the case of analytic rational functions. Similarly as for bivariate
complex polynomials, we call the real and imaginary parts of an element in
r(x, y) ∈ C(x, y) the components of r(x, y).

Definition 7.14. A rational function r(x, y) ∈ C(x, y) is called analytic if
there exists a rational function h(z) ∈ C(z) such that

h(x + iy) = r(x, y).

The rational function h(z) is called the (rational function) generator of r(x, y).

As in the case of analytic polynomials, equivalent definitions and basic
properties of analytic rational functions can be found in complex analysis
textbooks in the context of harmonic and holomorphic functions (see [BaN82],
[GuR65], [Rud66], or [Kiy93]). In addition, one may characterize analytic
rational functions as follows (we leave the proof as an exercise; Exercise 7.6).

Proposition 7.15. Let u(x, y), and v(x, y) be the components of r(x, y) ∈
C(x, y). Then, the following statements are equivalent:

1. r(x, y) is an analytic rational function,

2.
∂u

∂x
=

∂v

∂y
, and

∂u

∂y
= −∂v

∂x
(Cauchy–Riemann conditions),

3. r(x + iy, 0) is well defined, and r(x, y) = r(x + iy, 0),
4. r(0,−ix + y) is well defined, and r(x, y) = r(0,−ix + y).
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Now, let us see that the generator of an analytic rational function is unique.
For this purpose, from Proposition 7.15 one gets that r(z, 0) = r(0,−iz),
and that h(z) = r(z, 0) is a generator of r(x, y). Also, one deduces that the
generator of a rational function is unique.

The following lemmas analyze different properties of the components of
analytic rational functions, and they will be used in Theorems 7.19 and 7.20.

Lemma 7.16. Let χ(z) = f(z)
h(z) ∈ C(z) \ C, and d(z) = gcd(f, h). Let

(i) uh, vh be the components of the analytic polynomial generated by h(z),
(ii) ud, vd be the components of the analytic polynomial generated by d(z),
(iii) u, v be the real and imaginary parts of f(x + iy) · h(x − iy).

Then, the following hold:

1. u/(u2
h + v2

h), v/(u2
h + v2

h) are the components of the analytic rational func-
tion generated by χ(z),

2. u and v are not identically zero,
3. gcd(u, v) = gcd(u, v, u2

h + v2
h) = gcd(u, u2

h + v2
h) = gcd(v, u2

h + v2
h) =

β(u2
d + v2

d), for some β ∈ R�.

Proof. For (1) observe that

χ(x+iy) =
f(x + iy) · h(x + iy)

(u2
h + v2

h)
=

f(x + iy) · h(x − iy)
(u2

h + v2
h)

=
u(x, y) + iv(x, y)

(u2
h + v2

h)
.

(2) follows from (1). For (3) we refer to Lemma 2.2. in [ReS97a]. 	


Lemma 7.17. Let χ1(z) = f
h , χ2(z) = g

h ∈ C(z)\C be such that gcd(f, g, h) =
1. Let

(i) uh, vh be the components of the analytic polynomial generated by h(z),
(ii) u1/(u2

h +v2
h), v1/(u2

h +v2
h) be the components of the analytic rational func-

tion generated by χ1(z),
(iii) u2/(u2

h +v2
h), v2/(u2

h +v2
h) be the components of the analytic rational func-

tion generated by χ2(z).

Then gcd(v1, v2, u
2
h + v2

h) = 1.

Proof. See Corollary 2.1 in [ReS97a]. 	


Lemma 7.18. Let χ(z) = az+b
cz+d ∈ C(z) be invertible, and let

(i) u1, v1 be the components of the analytic polynomial generated by cz + d,
(ii) u/(u2

1+v2
1), v/(u2

1+v2
1) be the components of the analytic rational function

generated by χ(z).

Then the following hold:

(1) u2
1 + u2

2 is irreducible over R,
(2) u(x, y), v(x, y) are nonconstant and irreducible over C,
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(3) u(x, y) defines either a real line or a real circle; similarly for v(x, y).

Proof. For (1) see Lemma 2.3 in [ReS97a]. Now, we prove (2) and (3), simul-
taneously. Let �(z) and �(z) denote the real and imaginary part of z ∈ C,
respectively. Then, we consider the expressions

A1 = �(ac̄), A2 = �(ad̄ + bc̄), A3 = �(bc̄ − ad̄), A4 = �(bd̄),

B1 = �(ac̄), B2 = �(ad̄ + bc̄), B3 = �(ad̄ − bc̄), B4 = �(bd̄),

With these notations

u(x, y) = A1(x2+y2)+A2x+A3y+A4, v(x, y) = B1(x2+y2)+B2x+B3y+B4.

Let us see that the statements hold for u; similarly for v. We observe that
|ad − bc|2 = A2

2 + A2
3 − 4A4A1. Now, let us assume that u(x, y) is constant,

then A1 = A2 = A3 = 0. However, this implies that |ad − bc| = 0, which is
impossible because χ(z) is invertible.

Let us see that u is irreducible over C, and that it defines either a real line
or a real circle. We distinguish two cases. If A1 = 0, then the result follows
using that u is nonconstant. Now let A1 �= 0. Then,

u(x, y) = A1

(
x +

A2

2A1

)2

+ A1

(
y +

A3

2A1

)2

− |ad − bc|2
4A1

.

Therefore, since |ad − bc| �= 0 and χ(z) is invertible, the polynomial u(x, y)
must be irreducible over C. In addition, in this case, u is the real circle of
radius |ad−bc|

2 , centered at
(
− A2

2A1
,− A3

2A1

)
. 	


7.2.2 Real Reparametrization

Given a rational parametrization with complex coefficients, we consider the
problem of deciding whether it defines a real curve. Moreover, if the curve is real,
we want to find a reparametrization transforming the original parametrization
into a real parametrization.

For this purpose, throughout this section, C is an affine plane curve defined
over C, and

P(t) =
(

χ1,1(t)
ξ(t)

,
χ2,1(t)
ξ(t)

)
∈ C(t)2,

where gcd(χ1,1, χ2,1, ξ) = 1, a proper parametrization of C. Note that if any
component of P(t) is constant the problem is trivial. Thus, we assume that
P(t) does not define a vertical or an horizontal line.

In Theorem 7.19, which reproduces Theorem 3.1 in [ReS97a], we give nec-
essary and sufficient conditions for C to be real.
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Theorem 7.19. Let C and P(t) be as above, and let

(i) u1(x, y), v1(x, y) be the real and imaginary parts of χ1,1(x+ iy) · ξ(x− iy),
(ii) u2(x, y), v2(x, y) be the real and imaginary parts of χ2,1(x+ iy) · ξ(x− iy).

Then, C is real if and only if gcd(v1, v2) defines either a real line or a real
circle.

Proof. Let uχ1,1 , vχ1,1 be the components of the analytic polynomial gener-
ated by χ1,1(z). Similarly for uχ2,1 , vχ2,1 , and χ2,1(z), and for uξ, vξ,
and ξ(z).

We first assume that gcd(v1, v2) is either a real line or a real circle. By
Lemmas 7.16 and 7.17, gcd(v1, v2, u

2
ξ + v2

ξ ) = 1. Therefore, if V1, V2, H denote
the varieties defined over C by v1, v2, u

2
ξ + v2

ξ , respectively, one has that Ω =
[R2 \H ]∩ [V1 ∩ V2 ∩R2] has dimension 1. Now, we observe that N = {P(x +
iy) | (x, y) ∈ Ω} ⊂ C ∩ R2, and card(N ) = ∞; note that P(t) is proper.
Therefore, C has infinitely many real points and so C is real.
Conversely, let C be real, and let f(x, y) ∈ R[x, y] be the irreducible poly-
nomial defining C (see Lemma 7.2). Taking into account Theorem 7.6, C can
be properly parametrized over the reals. Let Q(t) ∈ R(t)2 be a real proper
rational parametrization of C. Then, by Lemma 4.17 there exists an invert-
ible rational function ϕ(t) = at+b

ct+d ∈ C(t), such that P(t) = Q(ϕ(t)). Also,
let M(x, y) = M1/M2 ∈ R(x, y) be the inverse of Q with gcd(M1, M2) = 1;
note that we can take M(x, y) ∈ R(x, y). Therefore, M(Q(t)) = t, and hence
M(P(t)) = ϕ(t). We consider the homogenization Mh

j (x, y, w) ∈ R[x, y, w] of
the polynomials Mj(x, y) ∈ R[x, y], for j = 1, 2. We have

Mj(P(x + iy)) =
Mh

j (χ1,1(x + iy), χ2,1(x + iy), ξ(x + iy))
ξ(x + iy)αj

,

where αj = deg(Mh
j ), for j = 1, 2. In these conditions, we get that

Mj(P(x + iy)) =
Mh

j (χ1,1(x + iy), χ2,1(x + iy), ξ(x + iy))ξ(x − iy)αj

(u2
ξ + v2

ξ )αj

=
Mh

j (χ1,1(x + iy)ξ(x − iy), χ2,1(x + iy)ξ(x − iy), ξ(x + iy)ξ(x − iy))
(u2

ξ + v2
ξ )αj

=
Mh

j (u1 + iv1, u2 + iv2, u
2
ξ + v2

ξ )
(u2

ξ + v2
ξ )αj

=
Aj(x, y) + iBj(x, y)

(u2
ξ + v2

ξ )αj
,

where Aj , Bj ∈ R[x, y] denote the real and imaginary parts, respectively, of
the polynomial Mh

j (u1 + iv1, u2 + iv2, u
2
ξ + v2

ξ ). Therefore,

M(P(x + iy)) =
M1(P(x + iy))
M2(P(x + iy))

=
A1(x, y) + iB1(x, y)
A2(x, y) + iB2(x, y)

(u2
ξ + v2

ξ )α2−α1 .
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On the other hand, if L1(z) = az + b, and L2(z) = cz + d, then

M(P(x + iy)) = ϕ(x + iy) =
L1(x + iy)
L2(x + iy)

=
u(x, y) + iv(x, y)

r(x, y)
,

where r = L2(x+ iy) ·L2(x− iy) and u, v are its real and imaginary parts (see
Lemma 7.16). Moreover, by Lemma 7.18, u and v are nonconstant. Thus, one
has that

A1(x, y) + iB1(x, y)
A2(x, y) + iB2(x, y)

(u2
ξ + v2

ξ )α2 =
u(x, y) + iv(x, y)

r(x, y)
(u2

ξ + v2
ξ )α1 .

By Lemma 7.18, one deduces that r is irreducible over R, and u, v define either
a real line or a real circle. Normalizing the left-hand side of the equality, and
taking the imaginary parts, one deduces that

r · (u2
ξ + v2

ξ )α2 · (A2B1 − A1B2) = (A2
2 + B2

2) · (u2
ξ + v2

ξ )α1 · v.

Now, let G = gcd(v1, v2). Note that G �= 0, since v1 ·v2 �= 0 (see Lemma 7.16).
Furthermore, note that

P(x + iy) =

(
u1 + iv1

u2
ξ + v2

ξ

,
u2 + iv2

u2
ξ + v2

ξ

)
.

Thus, since card(C ∩ R2) = ∞, there exist infinitely many (x0, y0) ∈ R2 such
that v1(x0, y0) = v2(x0, y0) = 0. Therefore, G is a nonconstant polynomial.
In these conditions, we have to prove that G is either a real line or a real
circle. We first note that Mh

j (x, y, w) is real and homogeneous. Since Bj is the
imaginary part of Mh

j (u1 + iv1, u2 + iv2, u
2
ξ + v2

ξ ), we have that G divides Bj ,
for j = 1, 2. Thus, since (see above)

r · (u2
ξ + v2

ξ )α2 · (A2B1 − A1B2) = (A2
2 + B2

2) · (u2
ξ + v2

ξ )α1 · v,

we deduce that G divides (A2
2 + B2

2) · (u2
ξ + v2

ξ )α1 · v. On the other hand,
taking into account Lemma 7.17, one has that gcd(v1, v2, u

2
ξ +v2

ξ ) = 1. Hence,
G divides (A2

2 + B2
2) · v. Let us see that gcd(G, A2

2 + B2
2) = 1. Indeed, if

gcd(G, A2
2 + B2

2) �= 1, then we deduce that there exists an irreducible real
common factor, H , of G and A2

2 + B2
2 . Since H divides G, and G divides B2,

it follows that H divides B2, and then H divides also A2. Now, we consider
the complex polynomial

N(t) = gcd(Mh
2 (χ1,1(t), χ2,1(t), ξ(t)), ξ(t)α2 ).

Let N1, N2 be the components of N(x + iy). We observe that (see above)

Mh
2 (χ1,1(x + iy), χ2,1(x + iy), ξ(x + iy))

ξ(x + iy)α2
=

A2(x, y) + iB2(x, y)
(u2

ξ + v2
ξ )α2

.
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Therefore, by Lemma 7.16, gcd(A2, B2) = N2
1 + N2

2 . Thus, H divides
N2

1 +N2
2 . Moreover, since N(t) divides ξ(t)α2 , then N(x+iy)N(x−iy) divides

ξ(x + iy)α2 · ξ(x − iy)α2 . Thus H divides (u2
ξ + v2

ξ )α2 . However, since H

is irreducible, one deduces that H divides u2
ξ + v2

ξ , and then, H divides
gcd(v1, v2, u

2
ξ + v2

ξ ). Thus, by Lemma 7.17, one concludes that H = 1 which
implies that gcd(G, A2

2 + B2
2) = 1. Therefore, since v is irreducible, then G

and v are associated, and therefore G defines a real line or a real circle (note
that v defines a real line or a real circle). 	


In Theorem 7.20, which reproduces Theorem 3.2 in [ReS97a], we see how to
reparametrize over R real curves given by complex rational parametrizations.

Theorem 7.20. Let C and P(t) be as above. Let C be real and let

(i) u1(x, y), v1(x, y) be the real and imaginary parts of χ1,1(x+ iy) ·ξ(x− iy),
(ii) u2(x, y), v2(x, y) be the real and imaginary parts of χ2,1(x+ iy) ·ξ(x− iy),
(iii) uξ, vξ be the components of the analytic polynomial generated by ξ(z),
(iv) M(t) = (m1(t), m2(t)) be a real proper parametrization of the curve de-

fined by gcd(v1, v2).

Then

P(m1(t) + im2(t)) =
(

u1(M(t))
uξ(M(t))2 + vξ(M(t))2

,
u2(M(t))

uξ(M(t))2 + vξ(M(t))2

)
is a real proper rational parametrization of C.

Proof. Since G is real, by Theorem 7.19, G = gcd(v1, v2) defines either a real
line or a real circle. Let us first see that m1(t)+im2(t) is an invertible rational
function. If G is a real line, then there exists a polynomial parametrization
L(t) = (L1(t), L2(t)) of G, where deg(Li) ≤ 1. Moreover, since M(t) is proper,
there exists a linear rational function ϕ(t) such that L(ϕ(t)) = M(t). Further-
more, L1(t) + iL2(t) is a polynomial of degree 1 (note that if the polynomial
were constant this would imply that G would be a nonreal line), say λ + µt,
with µ �= 0. Therefore, m1(t)+ im2(t) = L1(ϕ(t))+ iL2(ϕ(t)) = λ+µϕ, which
is linear. Now, assume that G is a real circle of the form (x−a)2+(y−b)2 = c2,
with a, b, c ∈ R. Then,

N (t) =
(

a + c
t2 − 1
t2 + 1

, b + c
2t

t2 + 1

)
,

is a real proper parametrization of G. Therefore, since M(t) is another proper
parametrization of the same circle, there exists an invertible rational function
φ ∈ C(t) such that M(t) = N (φ(t)). Thus,

m1(t) + i m2(t) = (a + i b) + c
(φ(t) + i)2

φ(t)2 + 1
= (a + i b) + c

φ(t) + i

φ(t) − i
,

which is an invertible rational function. In both situations, one deduces that
m1(t) + im2(t) is invertible, and hence P(m1(t) + im2(t)) is again a proper
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rational parametrization of C. Furthermore, by Lemma 7.17, one has that
gcd(v1, v2, u

2
ξ + v2

ξ ) = 1, and hence (u2
ξ + v2

ξ )(M(t)) �= 0. Finally, taking into
account that M(t) parametrizes G = gcd(v1, v2), one has that (see proof of
Theorem 7.19)

P(m1(t) + im2(t))

=
(

u1(M(t)) + iv1(M(t))
uξ(M(t))2 + vξ(M(t))2

,
u2(M(t)) + iv2(M(t))
uξ(M(t))2 + vξ(M(t))2

)
=
(

u1(M(t))
uξ(M(t))2 + vξ(M(t))2

,
u2(M(t))

uξ(M(t))2 + vξ(M(t))2

)
∈ R(t)2,

which implies that P(m1(t)+im2(t)) is a real proper rational parametrization
of C. 	


The combination of all these ideas leads to the algorithm Real-
Reparametrization.

Algorithm REAL-REPARAMETRIZATION
Given P(t) =

(
χ11(t)
ξ(t) , χ21(t)

ξ(t)

)
∈ C(t)2, with gcd(χ11, χ21, ξ) = 1, a

proper rational parametrization defining an affine plane curve C over
C, the algorithm decides whether C can be parametrized over the reals
and, in the affirmative case, it computes a proper real parametrization
of C.

1. If χ11/ξ is constant (similarly if χ21/ξ is constant), then if it is real
return (χ11/ξ, t) else return that C is not real.

2. Compute u1+iv1 := χ11(x+iy)ξ(x−iy), u2+iv2 := χ21(x+iy)ξ(x−
iy) and w := ξ(x + iy)ξ(x − iy), where u1, v1, u2, v2, w ∈ R[x, y].

3. Determine G(x, y) = gcd(v1, v2) ∈ R[x, y].
4. If deg(G(x, y)) �∈ {1, 2}, then return that C is not real.
5. If deg(G(x, y)) = 1, then

5.1. Compute a real proper rational parametrization M(t) =
(m1(t), m2(t)) ∈ R(t)2 of the real line that G(x, y) defines.

5.2. Return Q(t) = P(m1(t) + im2(t)) =
(

u1(M(t))
w(M(t))

,
u2(M(t))
w(M(t))

)
∈

R(t)2.
6. If deg(G(x, y)) = 2, then

6.1. If G(x, y) does not define a real circle, then return that C is not
real

6.2. If G(x, y) defines a real circle D then
6.2.1. Compute a real proper rational parametrization M(t) ∈

R(t)2 of D.

6.2.2. Return Q(t)=P(m1(t)+im2(t))=
(

u1(M(t))
w(M(t))

,
u2(M(t))
w(M(t))

)
∈

R(t)2.
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Example 7.21. Let C be the affine plane curve defined by the proper complex
parametrization P(t) =(

(t + 2)3

−t3 − 5t2 + t + 3 − 2it2 − 7it + it3
, − it3 + 4it2 + 4it− t2 − 4t − 4

−t3 − 5t2 + t + 3 − 2it2 − 7it + it3

)
.

We compute the polynomials u1, u2, v1, v2, w:

u1 := 24 + 44x + 56y − 8y5 − 11x5 − 42x2y + 32xy − 10x2 − 19y4 − 39xy2 −
60x2y2 − 59x3 − 41x4 + 34y2 − 10y3 − x6 − 3x2y4 − 16x2y3 − 38x3y − y6 −
38xy3 − 8x4y − 3x4y2 − 22x3y2 − 11xy4

v1 := −4x5 +7x4−y6 +17y4+y5−x6 +68y2 +55y3 +58x3 +100x2 +26xy3−
4xy4 +90xy2−3x2y4 +116xy+x4y +26x3y−8x3y2 +28y+24x2y2−3x4y2 +
2x2y3 + 99x2y + 56x

u2 := 12 + 16x + 40y − 2y5 − 3x5 + 22x2y + 40xy + 15x2 + 4y4 + 29xy2 +
6x2y2 + 13x3 + 2x4 + 49y2 + 26y3 − x6 − 3x2y4 − 4x2y3 + 2x3y − y6 + 2xy3 −
2x4y − 3x4y2 − 6x3y2 − 3xy4

v2 := 24x3 + 20x2 + 28y2 + 8x5 + 21x4 + y6 + 23y4 + 7y5 + 30xy3 + 8xy4 +
x6 + 16x + 8y + 30x3y + 16x3y2 + 3x2y4 + 14x2y3 + 3x4y2 + 7x4y + 52xy2 +
53x2y + 44x2y2 + 46xy + 37y3

w := 9 + 6x + 42y + 14y5 + 6x5 + 56x2y + 24xy + 20x2 + 45y4 + 36xy2 +
58x2y2 + 12x3 + 13x4 + 80y2 + 80y3 + 2x6 + 6x2y4 + 28x2y3 + 24x3y + 2y6 +
24xy3 + 14x4y + 6x4y2 + 12x3y2 + 6xy4

We have that

G(x, y) = gcd(v1, v2) = 2x + x2 + y + y2,

which defines the real circle (x+1)2+(y+ 1
2 )2− 5

4 = 0. So C can be parametrized
over the reals. We consider the real proper rational parametrization

M(t) = (m1(t), m2(t)) =
(
− t + 2

1 + t2
,− t(2 + t)

1 + t2

)
.

Finally, Algorithm Real-Reparametrization returns

Q(t) =
(

u1(M(t))
w(M(t))

,
u2(M(t))
w(M(t))

)
=
(

t3

t − 1
,
−t2

t − 1

)
.

Example 7.22. Let C be the affine plane curve defined by the proper complex
parametrization

P(t) =
(

χ11(t)
ξ(t)

,
χ21(t)
ξ(t)

)
=(

−7 + 32it− 64t2 − 96it3 + 80t4 + 32it5

−7 − 10it + 12t2 + 8it3
,
−7 − 26it + 28t2 + 16it3

−7 − 10it + 12t2 + 8it3

)
.
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We compute the polynomials v1, v2:

v1 := 832x3y +64x5 + 154x+ 256x7 − 360x3 +2104xy2 − 728xy +3840x3y4 +
2304x5y2 − 3200xy5 − 3840x3y3 − 640x5y − 1536x3y5 − 1536x5y3 − 512x7y +
1792xy6 − 512xy7 + 640x3y2 − 3648xy3 + 4160xy4

v2 := −(−7+26y+28x2 − 28y2− 48x2y +16y3)(24xy +8x3− 24xy2− 10x)−
(56xy + 16x3 − 48xy2 − 26x)(7 + 12y2 − 10y − 12x2 − 8y3 + 24x2y)

We have that G(x, y) = gcd(v1, v2) = 2x, so C can be parametrized over the
reals. In Step 5 of the algorithm we consider a real proper rational parametriza-
tion M(t) = (m1(t), m2(t)) ∈ R(t)2 of the real line defined by G(x, y). Let
M(t) = (0, t). Finally, Algorithm Real-Reparametrization returns

Q(t)=P(m1(t) + im2(t))

=
(−7 − 80t4 + 32t − 64t2 + 96t3 + 32t5

−7 − 12t2 + 10t + 8t3
,
−7 − 28t2 + 26t + 16t3

−7 − 12t2 + 10t + 8t3

)
.

Example 7.23. Let C be the affine plane curve defined by the proper complex
parametrization P(t) =(

−1
2
−12 + i − 24it + 6it2 + 24it3 + it4 + 12t4

−2it3 + 2it + t4 − 1
,

1
2

i(1 + 2it + t2)2

−2it3 + 2it + t4 − 1

)
.

The gcd computed in Step 3 of the algorithm is G(x, y) = x2 + y2 + 1. Al-
though deg(G(x, y)) = 2, it does not define a real circle. Thus, C cannot be
parametrized over the reals. In fact, C is the curve defined implicitly by the
polynomial f(x, y) = −48x2y +144y4 +146x2y2 +2x4 +5329y2−1752y3, and
applying for instance Theorem 7.7 one can check that C is not a real curve.
Indeed, it only has the two real points (0, 0) and (0, 73

12 ) and they are singular
(compare Theorem 7.4).

7.3 Normal Parametrization

In Sect. 6.3 we have studied the normality of parametrizations over an alge-
braically closed field. In this section we analyze the normality problem for real
parametrizations; i.e., we study the surjectivity of the rational map induced
by the real parametrization being restricted to the field of real numbers. As
in Sect. 6.3 we follow the ideas in [Sen02]; see also [BaR95]. A generalization
to the case of real space curves, based on valuation rings, can be found in
[AnR06].

Throughout this section, we consider a real affine plane curve C, and
we assume w.l.o.g. that we are given an affine rational parametrization,
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not necessarily proper, P(t) of C over R that is expressed, in reduced
form, as

P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
∈ R(t)2.

In addition, for every rational parametrization Q(t) we consider the polyno-
mials HQ

1 (t, x) and HQ
2 (t, y) introduced in Chap. 4. Furthermore, we consider

the rational map
ϕP |R : R −→ C ∩ R2

t �−→ P(t).

As in previous sections, we denote the fiber of a point P ∈ C as

FP(P ) = {t0 ∈ C | P(t0) = P}.

Note that this is the fiber of the map ϕP and not of ϕP |R.

Definition 7.24. A rational affine real parametrization P(t) of an affine
curve C is R-normal, or normal over R, if ϕP |R(R) = C ∩ R2, or equivalently
iff for all P ∈ C ∩R2 there exists t0 ∈ R such that P(t0) = P . Furthermore, if
there exists an R-normal parametrization of C we say that C can be R-normally
parametrized.

In Sect. 6.3, when dealing with the normality problem over an algebraically
closed field, the picture was very clear; namely, every rational parametriza-
tion reaches all points on the curve with the possible exception of one point
(the critical point), and every rational curve can always be parametrized by
means of a proper normal parametrization (see Theorem 6.26). Now, in this
new setting, the situation is different: not all rational real curves can be R-
normally parametrized and, for those that can, we will only ensure (in gen-
eral) the existence of R-normal parametrizations of tracing index two (see
Sect. 4.3). The difficulty behind this complication is that some points on the
curve, although reachable by the real parametrization, are only generated by
nonreal complex values of the parameter. For instance, let us consider the
proper polynomial parametrization P(t) = (t4, t3 + t) of the curve C defined
by f(x, y) = 4y2x − y4 + x − 2x2 + x3. By Corollary 6.21 to Lemma 6.19,
we know that P(t) is normal. However, P(t) is not R-normal since the point
(1, 0) ∈ C is only reachable via P(t) by the parameter values ±i. Based on
the existence of this phenomenon we will introduce the notions of degener-
ated and nondegenerated parametrization. In addition, we will distinguish
between two different types of degeneration: weak and strong. In this situ-
ation, the picture will be as follows: nondegenerate and weakly degenerate
parametrizations can be reparametrized into R-normal parametrizations with
tracing index at most 2. However, if there exists a proper strong degener-
ated parametrization, then the corresponding curve cannot be R-normally
parametrized.
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Definition 7.25. Let P(t) ∈ R(t)2 be a not necessarily proper parametriza-
tion of an affine curve C. Then,

(1) we define the set of degenerations of P(t), denoted by DP , as

DP = {P ∈ C ∩ R2 | FP(P ) �= ∅ and FP(P ) ⊂ C \ R} ;

(2) we say that P(t) is degenerate if DP �= ∅, otherwise we say that P(t) is
nondegenerate;

(3) we say that P(t) is weakly degenerate if it is degenerated, the critical point
of P(t) exists (see Definition 6.24), and DP contains only the critical
point;

(4) we say that P(t) is strongly degenerate if it is degenerate but not weakly
degenerate.

Remarks. We observe that

(1) a degenerate parametrization is not R-normal;
(2) the condition on the existence of the critical point, required in Defini-

tion 7.25 (3), is equivalent to deg(χi 1) ≤ deg(χi 2) for i = 1, 2 (see Defi-
nition 6.24);

(3) degenerate polynomial parametrizations are strongly degenerate;
(4) if P(t) is nondegenerate, then every point P ∈ C ∩ R2 different from the

critical point is reachable by at least one real parameter value. More-
over, if the critical point exits, then either it is not reachable via P(t)
(i.e., its fibre is empty) or it is reachable by at least one real parameter
value;

(5) every real proper parametrization of a line is nondegenerate.

Now, let us see how to compute DP , when P(t) is assumed to be proper.
For further details see Propositions 1 and 2 in [Sen02]. We consider a real
function S(x, y) representing the inverse of P(t) (note that P(t) is real and
proper). We observe that for those P ∈ C∩R2, such that S(P ) and P(S(P )) are
defined, the fiber FP(P ) is not empty and contains at least a real value, namely
S(P ). Therefore, these points are not in DP . This implies that DP is either
empty or zero-dimensional. Moreover, the missing points satisfy that either
the denominator of S or some of the denominators of P(S(x, y)) vanishes at
them. Therefore, considering the intersection of the curve C defined by P(t)
and each of curves defined by the denominators of S and P(S(x, y)) we have
a description of the possible elements in DP . Finally, taking into account that
parametrizations are given in reduced form, it is clear that for every point
P = (a, b) ∈ C the fiber FP(P ) is nonempty iff gcd(HP

1 (t, a), HP
2 (t, b)) has

positive degree. Moreover, if P ∈ C ∩ R2, FP(P ) ∩ R is the set of real roots
of gcd(HP

1 (t, a), HP
2 (t, b)). Therefore, P ∈ DP iff gcd(HP

1 (t, a), HP
2 (t, b)) has

positive degree and no real roots. From this reasoning, we derive the following
algorithm.
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Algorithm DEGENERATIONS
Given a rational proper parametrization P(t) =

(
χ1 1(t)
χ1 2(t) ,

χ2 1(t)
χ2 2(t)

)
∈ L(t)2,

where L is a computable subfield of R, of an affine rational curve C, the
algorithm computes DP .

1. Apply Algorithm inverse (see Sect. 4.4) to compute the inverse of
P(t). Let S(x, y) = A(x, y)/B(x, y) be a representative of the inverse
over R, such that gcd(A, B) = 1.

2. For i = 1, 2 compute the denominator q�
i (x, y) of the reduced expres-

sion of χi1(S(x,y))
χi2(S(x,y)) .

3. Compute the set B of affine intersection points of C and each of the
curves defined by B(x, y), q�

1(x, y), q�
2(x, y).

4. D := ∅. For every (a, b) ∈ B ∩ R2 check whether gcd(HP
1 (t, a),

HP
2 (t, b)) has positive degree and whether it has a root in R. If not

then D = D ∪ {(a, b)}.
5. Return D.

Example 7.26. Let us consider the parametrization mentioned in the intro-
duction to the section. That is, P(t) = (t4, t3 + t). In Step 1, applying Algo-
rithm inverse (see Sect. 4.4), we get that S(x, y) = A(x, y)/B(x, y), where
A = −x+x2 + y2 and B = y(1+x). In Step 2 we obtain q�

1 = (−x+x2 + y2)4

and q�
2 = (−x+x2 + y2)(x2 −2x3 +x4 +3y2x2 + y4 + y2). The set B in Step 3

is B = {(0, 0), (1, 0), (−1,±
√

2i)}. Moreover, gcd(HP
1 (t, 0), HP

2 (t, 0)) = t and
gcd(HP

1 (t, 1), HP
2 (t, 0)) = t2 + 1 (see Step 4). Thus, DP = {(1, 0)}. So, since

the critical point of P(t) does not exists, P(t) is strongly degenerate.

Example 7.27. We consider the rational proper parametrization

P(t) =
(

1
t2

,
t + 1
t3

)
∈ R(t)2.

In Step 1, applying Algorithm inverse, we get that S(x, y) = A(x, y)/B(x, y),
where A = x and B = y − x. In Step 2 we obtain q�

1 = (x − y)2 and
q�
2 = (x − y)2y. The set B in Step 3 is B = {(0, 0), (1, 0)}. Moreover,

gcd(HP
1 (t, 0), HP

2 (t, 0)) = 1 and gcd(HP
1 (t, 1), HP

2 (t, 0)) = t + 1 (see Step
4). Thus, DP = {(0, 0)}. So, since (0, 0) is the critical point of P(t), the
parametrization P(t) is weakly degenerate.

Before dealing with the problem of computing R-normal parametrizations,
it is natural to have an algorithmic criterion to check whether a given real
parametrization is already R-normal or not. As remarked after Definition 7.25,
if the parametrization is degenerate then it is not R-normal. This can be
decided by Algorithm degenerations. So we only need to know how to
proceed when the parametrization is nondegenerate. Because of remark (4) to
Definition 7.25 we have Theorem 7.28.
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Theorem 7.28. Let P(t) ∈ R(t)2 be a nondegenerate parametrization. Then
P(t) is R-normal if and only if P(t) is normal.

A combination of Algorithms degenerations and normality-test
(see Sect. 6.3) leads to an algorithm for deciding the R-normality of
proper real parametrizations. Theorem 7.29 shows how to reparametrize
nondegenerate parametrizations into R-normal parametrizations (see also
[BaR95]).

Theorem 7.29. Let P(t) be a nondegenerate real proper parametrization of
C. Then the following hold:

(1) C can be R-normally parametrized as

P
(

t

t2 − 1

)
.

(2) If χ1 2(t)χ2 2(t) has a real root α, then C can be R-normally and properly
parametrized as

P
(

αt + 1
t

)
.

Proof. Let us prove (1). Let Q(t) be the reparametrization of P(t) in State-
ment (1), expressed in reduced form. First observe that if P = P(t0) with
t0 ∈ R, then

P = Q(0) if t0 = 0, and P = Q(1±
√

1+4t20
2t0

) if t0 �= 0.

Therefore, ϕP |R(R) ⊂ ϕQ|R(R) ⊂ C ∩ R2. Now, if P(t) is R-normal then
ϕP |R(R) = C ∩ R2, and hence Q(t) is R-normal too. On the other hand, if
P(t) is not R-normal, then by Theorem 7.28, P(t) is not normal. Therefore, by
Theorem 6.22, the critical point of P(t) exists. Let us call it PP . Moreover, by
remark (4) to Definition 7.25, one has that ϕP |R(R) = [C∩R2]\{PP}. However,
since deg(χi 1) ≤ deg(χi 2) for i = 1, 2, Q(1) is defined and Q(1) = PP .
Therefore Q(t) is R-normal.

In order to prove (2), let R(t) = αt+1
t and let Q(t) be the reduced ex-

pression of P(R(t)). First observe that the properness of Q(t) follows from
Lemma 4.17. Now, by the reasoning in the proof of Theorem 6.26, we know
that Q(t) is normal. Thus, by Theorem 7.28, we only need to prove that
Q(t) is nondegenerate. For this purpose, let us assume that DQ �= ∅, and
consider P ∈ DQ. Then P ∈ C ∩ R2, and ∅ �= FQ(P ) ⊂ C \ R. So, there
exists t0 ∈ C \ R, in particular t0 �= 0, such that Q(t0) = P . Therefore,
R(t0) ∈ FP(P ), and hence FP(P ) �= ∅. Now, since P(t) is nondegenerate
and FP(P ) �= ∅, there exists t1 ∈ R such that P(t1) = P . P(t) is defined
at t1, so t1 �= α, and we have 1/(t1 − α) ∈ FQ(P ) ∩ R. This, however, is a
contradiction.
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Now we analyze the case of weakly degenerate parametrizations.

Theorem 7.30. Let P(t) be a weakly degenerate real proper parametrization
of C. Then the following hold:

(1) C can be R-normally parametrized as

P
(

t2 + at − 1
t2 + t − 1

)
,

where a ∈ R \ {1} is such that FP(P(a)) = {a}.
(2) If χ1 2(t)χ2 2(t) has a real root α, then C can be R-normally and properly

parametrized as

P
(

αt + 1
t

)
.

Proof. In order to prove (1), we observe that because of Theorem 7.29 (1), it
is enough to prove that

Q(t) := P
(

at + 1
t + 1

)
is nondegenerate; as always Q(t) is considered in reduced form. Since P(t)
is weakly degenerate, the critical point PP of P(t) exists and therefore
deg(χi 1) ≤ deg(χi 2) for i = 1, 2. Moreover, χ1 2(a)χ2 2(a) �= 0 because
P(a) is defined by hypothesis. Therefore, the degree of each numerator
of Q(t) is less or equal to the degree of the corresponding denominator.
Thus, the critical point PQ of Q(t) exists, and PQ = P(a). Moreover,
since a �= 1, Q(−1) is defined and Q(−1) = PP . Now, we prove that
DQ = ∅. Clearly PP �∈ DQ. Let us see that PQ �∈ DQ. If there ex-
ists t0 ∈ C \ R, in particular t0 �= −1, such that Q(t0) = PQ, then
P((at0 + 1)/(t0 + 1)) = PQ = P(a). But FP(PQ) = FP(P(a)) = {a}. So,
(at0 + 1)/(t0 + 1) = a, and this is impossible because a �= 1. Thus, PQ �∈ DQ.
Now, let P ∈ [C∩R2]\{PP , PQ}. Since P(t) is weakly degenerate and P �= PP ,
there exists t0 ∈ R such that P(t0) = P ; recall from Sect. 6.3 that every
point different from the critical point is reachable. Moreover, t0 �= a since
P �= PQ. Therefore, (t0 − 1)/(a − t0) ∈ FQ(P ) ∩ R. Thus, P �∈ DQ. So, Q(t)
is nondegenerate.

The proof of (2) is essentially analogous to the proof of (2) in Theorem 7.29.
Properness is clear. Let us see that all real points on C are reachable by
real values via Q(t) := P(αt+1

t ); where Q(t) is considered in reduced form.
Indeed, first we observe that Q(0) is the critical point PP of P(t). Now, take
P ∈ [C ∩ R2] \ {PP}. Then, since P �= PP and since DP = {PP}, there exists
t0 ∈ R such that P(t0) = P . Note that t0 �= α because P(t0) is defined. Then
Q(1/(t0 − α)) = P and 1/(t0 − α) ∈ R. 	


Remarks. Note that, since in Theorem 7.30 the parametrization P(t) is as-
sumed to be proper, there exist infinitely many real values a satisfying the



232 7 Real Curves

condition imposed in Statement (1). Furthermore, in order to check whether
a particular a is valid one only needs to check whether a is the only root of
gcd(HP

1 (t, χ1 1(a)/χ1 2(a)), HP
2 (t, χ2 1(a)/χ2 2(a))).

Finally, we deal with the strongly degenerate case. We will see that in this
situation, the corresponding curve cannot be normally parametrized over R.
Geometrically, the reason is that the existence of strong degeneration is related
to the existence of isolated singularities (compare Exercise 7.16). Intuitively
speaking, observe that if one has an isolated singular, there is no real place
centered at it, and hence it is impossible to approach the point via a real
parametrization.

We start with some technical lemmas (see Exercise 7.17).

Lemma 7.31. Let P(t) ∈ R(t)2 be a rational parametrization of an affine
curve C. Let R(t) = M(t)

N(t) ∈ C(t) \ C, with gcd(M, N) = 1, and let Q(t) =
P(R(t)). Then,

HQ
1 (t, x) = N

deg
(

χ1 1
χ1 2

)
· HP

1 (R(t), x), HQ
2 (t, y) = N

deg
(

χ2 1
χ2 2

)
· HP

2 (R(t), y).

Lemma 7.32. Let P(t) ∈ R(t)2 be a proper parametrization of C. If there
exists (a1, a2) ∈ DP such that for some i ∈ {1, 2}

deg(HP
i (t, ai)) = deg(χi 1/χi 2),

then C cannot be R-normally parametrized.

Proof. Let us assume that the hypothesis on the degrees holds for i = 1; sim-
ilarly, for i = 2. Let �i = deg(χi 1/χi 2) and ki = deg(HP

i (t, ai)) for i = 1, 2.
So, k1 = �1, and �2 ≥ k2; note that since P(t) is degenerate, by the remark
to Definition 7.25 the rational functions cannot be zero. The idea is to prove
that every real parametrization of C is degenerate. By hypothesis DP �= ∅,
and hence P(t) is degenerate. Now, let Q(t) be another real parametriza-
tion of C. Since P(t) is proper, because of Lemma 4.17, Q(t) = P(R(t))
where R(t) is a nonconstant rational function. Moreover, because of Sect. 6.2,
R(t) = P−1(Q(t)). Thus, since P(t) and Q(t) are real, then R(t) is also real.
Let R(t) = M(t)

N(t) be in reduced form. We prove that (a1, a2) ∈ DQ. This
will imply that Q(t) is degenerate. For this purpose, we have to show that
T (t) := gcd(HQ

1 (t, a1), HQ
2 (t, a2)) �= 1, and that T (t) does not have real roots

(see paragraph before Algorithm degenerations). First we carry out some
preparatory steps. By Lemma 7.31,

HQ
1 (t, a1) =

k1∏
j=1

(αjM(t)−βjN(t)), HQ
2 (t, a2) = N �2−k2

k2∏
j=1

(α′
jM(t)−β′

jN(t)),
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where βj/αj and β′
j/α′

j are the roots in C of HP
1 (t, a1) and HP

2 (t, a2), respec-
tively. Now, since αj �= 0 and gcd(M, N) = 1, we have gcd(N, αjM − βjN) =
1. Therefore,

T (t) = gcd

⎛⎝ k1∏
j=1

(αjM(t) − βjN(t)),
k2∏

j=1

(α′
jM(t) − β′

jN(t))

⎞⎠ .

Let K(t) := gcd(HP
1 (t, a1), HP

2 (t, a2)). Since (a1, a2) ∈ DP , then K(t) is not
constant, and it does not have real roots. Therefore, there exists a common
complex, nonreal, root (say βi0/αi0) of HP

1 (t, a1), HP
2 (t, a2). Thus, αi0M(t)−

βi0N(t) is a common factor of HQ
1 (t, a1) and HQ

2 (t, a2). This factor cannot be
constant. Indeed, if αi0M(t) − βi0N(t) = λ ∈ C, taking conjugates, one gets
that ⎛⎝αi0 βi0

αi0 βi0

⎞⎠ ·

⎛⎝M

N

⎞⎠ =

⎛⎝λ

λ

⎞⎠ .

Now, observe that the determinant of the 2 × 2 matrix cannot be zero, since
otherwise one would get that βi0/αi0 = βi0/αi0 and this implies that the root
is real. However, inverting the matrix, this implies that both M and N are
constant, which is a contradiction. So, T (t) �= 1. Now, let us assume that
there exists a real root ρ of T (t). Then, there exists some i0 and j0 such that
αi0M(ρ)−βi0N(ρ) = α′

j0
M(ρ)−β′

j0
N(ρ) = 0. Since gcd(N, αjM −βjN) = 1

for every j, we deduce that N(ρ) �= 0. Thus R(ρ), which is real be-
cause ρ ∈ R and R ∈ R(t), is a real root of K(t). This, however, is a
contradiction. 	


Now, finally, we are ready to state the corresponding theorem on strong
degenerations.

Theorem 7.33. Let P(t) ∈ R(t)2 be a strongly degenerate proper parametriza-
tion of C. Then, the curve C cannot be R-normally parametrized.

Proof. If there exists a point (a1, a2) ∈ C such that for i = 1, 2 we have
deg(Hi(t, ai)) �= deg(χi 1/χi 2), then (a1, a2) is the critical point PP of P(t).
Now, since P(t) is strongly degenerate, either PP exists and card(DP ) > 1
or PP does not exists and DP �= ∅. In any case, the theorem follows from
Lemma 7.32. 	


We finish this section by summarizing these results in the following
algorithm.
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Algorithm REAL-NORMAL-PARAMETRIZATION

Given a proper rational parametrization P(t) =
(

χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
∈

L(t)2, in reduced form, where L is a computable subfield of R, of an
affine rational real curve C, the algorithm decides whether C can be
R-normally parametrized, and in the affirmative case computes an R-
normal parametrization of C.

1. Apply algorithm degenerations to compute DP .
2. If [card(DP) > 1] or [DP �= ∅ and the critical point of P(t) does not

exist] then return “C can not be R-normally parametrized”.
3. If DP = ∅, apply Algorithm normality-test (see Sect. 6.3), and if

it outputs that P(t) is normal then return P(t).
4. Check whether χ1 2χ2 2 has a real root, say α. If yes, return

P
(

αt + 1
t

)
.

5. If DP = ∅ return

P
(

t

t2 − 1

)
.

6. Compute α ∈ R \ {1} such that card(FP(P(α))) = 1, and return

P
(

t2 + αt − 1
t2 + t − 1

)
.

Remarks. For performing Step 6, see the remark to Theorem 7.30. Also,
note that if the algorithm continues through Steps 3 and 4, then the output
is proper, otherwise either the curve cannot be R-normally parametrized or
the output has tracing index 2.

We finish this section with some examples to illustrate the Algorithm
Real-Normal-Parametrization.

Example 7.34. We consider the proper parametrization

P(t) =
(

t + 1
t3 − 1

,
t + 1
t3

)
,

and we apply the Algorithm Real-Normal-Parametrization. In the first
step, we apply Algorithm degenerations, and we get that DP = {(0, 0)}.
Since, the origin is the critical point of P(t), we have that P(t) is weakly
degenerate. In Step 4, taking α = 0, we return the R-normal and proper
parametrization

P
(

1
t

)
=

(
(t + 1)

(
2 + t2

)
t

t2 + 1
,
(t + 1) t

t2 + 1

)
.
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Example 7.35. We consider the proper parametrization

P(t) =
(
t3 + 1, t3 + 2t + 1

)
.

Applying Algorithm degenerations, we get that DP = ∅. Thus P(t) is
nondegenerate. Moreover, applying Algorithm normality-test, we deduce
that P(t) is normal. Thus, P(t) is R-normal.

Example 7.36. We consider the proper parametrization

P(t) =
(

t3 + 3 t + t2 + 1
(t2 + 1) (t2 + 3)

,
1

(t2 + 3)

)
.

In the first step, we apply Algorithm degenerations, and we get that DP
R

=
{(0, 0)}. Since the origin is the critical point of P(t), we get that P(t) is weakly
degenerate. Now, since the denominators of P(t) do not have real roots, we
execute Step 6. Then, we compute α ∈ R\{1} such that card(FP(P(α))) = 1.
We take α = 2. P(2)= (19/35, 1/7) and gcd(HP

1 (t, 19/35), HP
2 (t, 1/7))= t−2.

Therefore, FP(P(2)) = {2}. Thus, we return the R-normal parametrization
(of tracing index 2):

P
(

t2 + 2t − 1
t2 + t − 1

)
=
(

p1(t)
q1(t)

,
p2(t)
q2(t)

)
,

p1(t) = (t2 + t − 1)(−6 + 26t − 33t3 − 20t2 + 20t4 + 6t6 + 26t5),

q1(t) = (2t4 + 6t3 + t2 − 6t + 2)(4t4 + 10t3 − t2 − 10t + 4),

p2(t) = (t2 + t − 1)2, q2(t) = 4t4 + 10t3 − t2 − 10t + 4.

Exercises

7.1. Let f(x, y) ∈ R[x, y] be irreducible over R, such that f has infinitely
many roots in R2. Show that f is irreducible over C.

7.2. Let C be the plane curve defined over C by the polynomial

f(x, y) = 3y3 − 3xy2 − 2xy3 + x2y3 + x3.

(i) Apply Algorithm Reality-Test to decide whether C is real and, in the
affirmative case, compute one real simple point on C.

(ii) Determine, if possible, a real rational parametrization of C.
(iii) Obtain an algebraically optimal real parametrization of C.

7.3. Let C be the plane curve defined over C by the polynomial

f(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2).

Decide if the curve C is real, and in the affirmative case compute a real rational
parametrization.
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7.4. Let C be the plane curve defined over C by the polynomial

f(x, y) = −13870y3x − 542y3 + 8074x2y2 + 686xy2 + 8y2 + 40x3

+ 2x2 − 8xy − 2080x3y − 288x2y + 8902y4 + 200x4.

Determine, if possible, a real rational parametrization of C.

7.5. Let C be the plane curve defined over C by the polynomial

f(x, y) = −12x2 + 8x2y + 2x2y2 + 48y + 12y2 + x4 + 8y3 + y4 + 4 − 4x2y
√

2
−4y3

√
2 − 8y

√
2 − 24y2

√
2 − 16

√
2 − 8x2

√
2.

Determine, if possible, a real rational parametrization of C.

7.6. Prove Propositions 7.12 and 7.15.

7.7. Let p(x, y) be an analytic polynomial of components u, v and generator
f . Prove the following:

(i) If either u or v are constant, then p is constant.
(ii) If p ∈ R[x, y], then p(x, y) is constant.
(iii) p is irreducible over C if and only if f is irreducible over C.
(iv) The factors of p are analytic polynomials.

7.8. (i) Let p(x, y) = x3+xy2−x+x2yi−xi. Prove that p(x, y) is not analytic
and that gcd(u, v) �= 1, where u and v are the real and imaginary parts of
p(x, y), respectively.
(ii) Let p(x, y) = x2 + y2 − 1 − i + xyi. Prove that p(x, y) is not analytic and
that gcd(u, v) = 1, where u and v are the real and imaginary parts of p(x, y),
respectively.

7.9. Using the notation of Lemma 7.13 prove that

(i) deg(Cu) = deg(Cv) = deg(f(z)).
(ii) Cu and Cv do not have intersection points at infinity.
(iii) The affine intersection points of Cu and Cv are⋃

a∈C, f(a)=0

{(a − it0, t0) | t0 is a root of gcd(u(a − it, t), v(a − it, t))}.

(iv) The real affine intersection points of Cu and Cv are

{(x0, y0) ∈ R2 | f(x0 + iy0) = 0 }.

7.10. Show that r(x, y) =
1

x + iy
is analytic, but the numerator of r(x, y),

when written in normalized form, is not an analytic polynomial.
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7.11. Decide whether the curve defined by the parametrization

P(t) =
( −6it2 + i + it4

−4t − 4t3 − 2 + 2t4
,
i(−4t − 4t3 + 2 − 2t4)
−4t− 4t3 − 2 + 2t4

)
is real, and if so compute a real parametrization.

7.12. Determine the set of degenerations of the parametrization

P(t) =
(−t3 + t + 1

t
,

t − 1
t3 + 2t + 1

)
∈ R(t)2.

7.13. Give a nonpolynomial proper parametrization that is strongly
degenerate.

7.14. By applying the algorithm Degenerations, decide whether the
parametrization

P(t) =
(

(1 − 10t + 26t2)t2

1 − 20t + 150t2 − 500t3 + 626t4
,

−(1 − 10t + 26t2)t
−1 + 15t− 77t2 + 134t3

)
is degenerate or not.

7.15. Given the proper parametrizations

P1(t)=
(

(2t − 3)2(−11 + 8t)
−2249 + 4794t− 3408t2 + 808t3

,
(2t − 3)3

−1547 + 3336t− 2400t2 + 576t3

)
,

and

P2(t) =
( −(2t + 7)(25 + 8t)

2(337 + 214t + 34t2)
,

(2t + 7)2

4(193 + 121t + 19t2)

)
,

decide whether they are R-normal. In the negative case decide whether they
can be R-normally parametrized, and compute a reparametrization of them.

7.16. Prove that a real rational curve is not R-normal if and only if it has
isolated singularities.

7.17. Prove Lemma 7.31.



A

The System CASA

In this appendix, we briefly describe the mathematical software package
casa and we illustrate, by means of some examples, how some of the al-
gorithms in the book can be carried out with this package. casa has been
developed by the computer algebra research group at the Research Institute
for Symbolic Computation (RISC) of Johannes Kepler University in Linz,
Austria. It can be freely downloaded at

http://www.risc.uni-linz.ac.at/software.

casa or Computer Algebra Software for constructive Algebraic geometry is
based on Maple, and it is designed for symbolic manipulation in algebraic ge-
ometry, mainly in projective algebraic geometry, over an algebraically closed
field of characteristic zero. Essentially, the package provides some basic func-
tions for the algebraic manipulation of geometric objects from the practical
point of view. Many of the algorithms in casa are now integrated into major
computer algebra software such as Maple. A reference to casa can be found
in the example worksheet for the algebraic curves package of Maple 10.

The main data structure of casa is that of an algebraic sets. In the follow-
ing, we describe some of the functions of the package. For more details we refer
to [GKW91], and [HHW03]. In casa an algebraic set can be given implicitly,
parametrically, by places or by projection. The system provides functions for
computing with algebraic sets, as well as conversion algorithms between differ-
ent representations. The functions of casa can roughly be grouped as follows:

1. computations with ideals
2. determination of algebraic sets in different representations
3. conversion algorithms between representations
4. determination of linear systems of curves
5. intersection, union and difference of algebraic sets
6. computation of tangent spaces
7. computation of the dimension of algebraic sets
8. decomposition of an algebraic set on irreducible components
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9. projection of algebraic sets onto hypersurfaces
10. computation of singularities and genus
11. algorithms of parametrization and implicitation
12. determination of Puiseux series
13. multivariate resultants and Dixon resultants
14. Gröbner bases for ideals and modules
15. Gröbner walk
16. computation of rational points
17. plotting of curves and surfaces
18. manipulation of offset curves
19. algorithms in algebraic coding theory

Let us illustrate the usability of casa by means of some examples. First
we read the package within the Maple session.

> with(casa);

|__|
| | Welcome to CASA 2.5 for Maple V.5

| /\| |/\
/=\__| [] |
/ \_ Copyright (C) 1990-2000 by Research Institute
| \ for Symbolic Computation (RISC-Linz), the
\ CASA 2.5 | University of Linz, A-4040 Linz, Austria.
| |
_| ||| | For help type ’?casa’ or ’?casa,<topic>’.

__/ ||| |_

[BCH2, BCHDecode, CyclicEncode, DivBasisL, GWalk, GoppaDecode,

GoppaEncode, GoppaPrepareDu, GoppaPrepareSV, GoppaPrepareSa,

GoppaPrimary, Groebnerbasis, InPolynomial, NormalPolynomial,

OutPolynomial, PolynomialRoots, RPHcurve, SakataDecode,

SubsPolynomial, casaAlgebraicSet, adjointCurve, algset, casaAttributes,

casaVariable, computeRadical, conic, decompose, delete, dimension,

equalBaseSpaces, equalProjectivePoints, finiteCurve, finiteField, generators,

genus, homogeneousForm, homogeneousPolynomial, homogenize, implDifference,

implEmpty, implEqual, implIdealQuo, implIntersect, implOffset, implSubSet,

implUnion, implUnionLCM, imult, independentVariables, init, isProjective,

leadingForm, makeDivisor, mapOutPolynomial, mapSubsPolynomial, mgbasis,

mgbasisx, mkAlgSet, mkImplAlgSet, mkParaAlgSet, mkPlacAlgSet,

mkProjAlgSet, mnormalf , msolveGB, msolveSP, mvresultant, neighbGraph,

neighborhoodTree, numberOfTerms, pacPlot, paraOffset, parameterList,

passGenCurve, planecurve, plotAlgSet, pointInAlgSet, projPoint,

properParametrization, properties, rationalPoint, realroot a, realroot sb,

setPuiseuxExpansion, setRandomParameters, singLocus, singularities, ssiPlot,
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subresultantChain, tangSpace, toAffine, toImpl, toPara, toPlac, toProj,

toProjective, tsolve, variableDifferentFrom, variableList]

We start with a complex affine plane curve C of degree 15 defined by the
polynomial:

f := −15 x5y4−21 y2x8−7 y2x7−3 y3x6−30 x2y8 +2 y4x9 +3 y6x5 +3 y5x−
5 yx8 + y5x8 − 11 xy10 +11 x6y8 + y2x3 − 68 y5x6 − y8x7 +7 y4x2 +15 x10y2 −
2 y6x4 +2 y9x3−2 x7y−22 x8y4−11 x5y5+5 y3x3−x5y2−106 y3x8 +5 x2y7−
165 y4x7 + 3 x10y + 167 y7x6 + x10 + 33 y5x2 + 13 y6x + 12 x10y3 + 21 y4x3 +
76 y8x5−x8 +165 y6x2−3 x5y3+33 y6x6−3 y8+15 y7x5−5 x7y5 +106 y5x3 +
22 x3y6 − y7 − y7x3 + 22 x7y7 + 65 y3x9 − 167 y9x − x6y2 − 15 y9 − 2 y7x8 −
y3x11 − 33 y8x + 69 y7x + y10x2 − 13 y4x6 + 30 x7y6 − 33 y3x7 − 22 x2y9 −
65 y5x4 − 76 y10 + 2 y3x2 + y4x

We declare C to be the curve defined by f ; i.e., we “make an implicitly
defined algebraic set” from f and the variables x, y. For a detailed description
of this command call help(casa,mkImplAlgSet).

> C:=mkImplAlgSet([f],[x,y]);

C := Implicit Algebraic Set([y10 x2 − y7 − 3 y8 − y7 x3 + 30 x7 y6

− y3 x11 − x6 y2 − 33 y3 x7 − 22 x2 y9 − 3 y3 x6 − 65 y5 x4 − 7 y2 x7

+ 2 y3 x2 − 13 y4 x6 + 13 y6 x − 22 x8 y4 − 2 y6 x4 − 5 y x8 + y4 x + 69 y7 x

− 15 x5 y4 − 21 y2 x8 − 76 y10 − 33 y8 x − 2 y7 x8 + 65 y3 x9 − 167 y9 x

+ 22 x7 y7 + 22 x3 y6 + 106 y5 x3 − 5 x7 y5 + 15 y7 x5 + 33 y6 x6 − 3 x5 y3

+ 76 y8 x5 + 21 y4 x3 + 33 y5 x2 + 12 x10 y3 + 3 x10 y + 167 y7 x6 − 15 y9

− x8 + y5 x8 + x10 + y2 x3 − y8 x7 − 165 y4 x7 + 5 x2 y7 + 165 y6 x2

+ 5 y3 x3 − 106 y3 x8 − 11 x y10 + 11 x6 y8 − 68 y5 x6 + 7 y4 x2 + 15 x10 y2

+ 2 y9 x3 − 2 x7 y − 11 x5 y5 − x5 y2 − 30 x2 y8 + 2 y4 x9 + 3 y6 x5

+ 3 y5 x], [x, y])

Let us compute the components of C (see Sect. 2.1).
> Components:=decompose(C);

Components := Implicit Algebraic Set([y2 − x5], [x, y]),
Implicit Algebraic Set([y5 + 2 y4 x − y2 x − 2 y x2 − x3 + x4], [x, y]),
Implicit Algebraic Set([y3 x2 − 11 y3 x − 76 y3 − 15 y2

−3 y − 1 − 15 y2 x − 3 y x − x], [x, y])

So we see that C has three irreducible components, each of them of degree
5. Let us call them C1, C2 and C3, respectively. We give names to them in
Maple

> for i from 1 to 3 do C[i]:=Components[i] od:
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Now, we proceed to compute the genus of each component of C (see
Sect. 3.3).

> for i from 1 to 3 do g[i]:=genus(C[i]) od;

g1 := 3
g2 := 0
g3 := 0

We can ask for information on algebraic sets:

> properties(C[1]);

“The algebraic set is known to have the following properties:”
“It has genus 3”

“A neighborhood graph is: ”

[[3, 0, 0, 1, {y = y − x, x = x + y}, []]]

Implicit Algebraic Set([y5 + 2 y4 x − y2 x − 2 y x2 − x3 + x4], [x, y])

We determine the singularities of the curves. The singularities are given
projectively with their multiplicities (see Sect. 2.1).

> singularities(C[1]);

table([3 = [[0, 0, 1]]])

> singularities(C[2]);

table([2 = [[
40
21

RootOf(5 Z 2 + 4 Z + 89) − 5
21

,

− 5
21

− 2
21

RootOf(5 Z 2 + 4 Z + 89), 1],

[0, 1, 0]], 3 = [[1, 0, 0]]])

> singularities(C[3]);

table([2 = [[0, 0, 1]], 3 = [[0, 1, 0]]])

C1 has one triple point. C2 has three double points, two of them in an
algebraic extension of degree 2 (each of them depending on one root of the
polynomial 5x2 + 4x + 89), and one triple point. C3 has one double point
and one triple point. Thus, genus(C1) = 3, and genus(C2) = 0. However, in
the case of C3 there must be infinitely near singularities. Let us compute the
neighborhood graph for C3 (see Sect. 3.2).



A The System CASA 243

> neighbGraph(C[3]);

[[2, 0, 0, 1, {x = x + y, y = y − x}, [[2, 1, 1, 0, {}, []]]],
[3, −1, 1, 0, {x=x+ y, y = y− x}, [[2, 2, 1, 0, {x = x + 2 y, y = y − 2 x}, []]]]

In the blow-up, every singularity has an infinitely near double point. Note
that we also get information on the necessary linear changes for the blowing
up (compare Sect. 3.2).

Since the curves C2 and C3 have genus zero, we may determine rational
parametrizations of these curves (see Sect. 4.8). In addition, these parametri-
zations can be obtained over the original ground field if possible (with the
optional argument: optimal), or otherwise over an algebraic extension field
of degree 2 (see Sect. 5.3).

> P[2]:=toPara(C[2],t,["optimal"]);

P2 := Parametric Algebraic Set([−t3 + 3 t2 − 3 t, − t − 1
−4 + t2 − t

], [t])

> P[3]:=toPara(C[3],t);

P3 := Parametric Algebraic Set([
1
t2

, − 1
t5

], [t])

Since the curve C1 has positive genus, we deduce that it is not rational.
However, we may compute a local parametrization with center, for instance,
at (0, 0) (see Sect. 2.5).

> properties(toPlac(C[1]));

“The algebraic set is known to have the following properties:”
“There are at least 3 terms to show in the Puiseux expansion”

Places Algebraic Set([[x2, −x2 − x3 − 1
2

x5 − 3
2

x6 − 7
8

x7 + x8 − 3
16

x9

+ O(x10)], [x3, x +
1
3

x5 − 2
3

x7 − 1
3

x8 + x9 + O(x10)]], [x])

Now, we can implicitize the rational parametrizations given by P2 and P3

(see Sect. 4.5).

> toImpl(P[3]);toImpl(P[2]);

Implicit Algebraic Set([x5 − y2], [x, y])

Implicit Algebraic Set([y3 x2 − 11 y3 x − 76 y3 − 15 y2 − 3 y − 1 − 15 y2 x

−3 y x − x], [x, y])
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We may determine a reparametrization of the curve C2 by performing a
substitution of the parameter in the algebraic set P2 in parametric represen-
tation.

> RP[2]:=mkAlgSet(P[2],[t=t^2-2]);

RP2 := Parametric Algebraic Set([−t6 + 9 t4− 27 t2+ 26,− t2 − 3
t4 − 5 t2 + 2

], [t])

Observe that now, the parametrization RP2 of the curve C2 is not proper.
However, from the parametrization RP2, we may determine a new proper
parametrization of C2 (see Sect. 6.1).

> properParametrization(RP[2]) ;

[
−26 + 51 t − 33 t2 + 7 t3

−1 + t3 − 3 t2 + 3 t
, −2 t2 − 5 t + 3

2 t2 − t − 2
]

casa can also plot the following types of algebraic sets: planar curves rep-
resented implicitly, in parametric form or by places, space curves represented
implicitly, in parametric form, in projected form or by places, surfaces repre-
sented implicitly or in parametric form. Let us plot the plane curves C1, C2,
and C3.

> plotAlgSet(C[1],x=-3..3,y=-3..3,numpoints=200,thickness=5,
color=blue);

Time for isolating critical points : , .047
Time for finding intermediate points : , 1.156

Time for others : , .0

−3

−2

−1

0

1

2

3

y

−3 −2 −1 321 x
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> plotAlgSet(C[2],x=-2..2,y=-2..2,numpoints=200,thickness=5,
color=red);

Time for isolating critical points : , .016

Time for finding intermediate points : , 2.703

Time for others : , .032

−2

−1

0 1 2

1

2

y

−2 −1
x

> plotAlgSet(C[3],x=-4..4,y=-4..4,numpoints=200,thickness=5);

Time for isolating critical points : , .031

Time for finding intermediate points : , .532

Time for others : , .015

−4

−3

−2

−1
0

1

2

3

4

y

−4 −3 −2 −1 1 2 3
x

4
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Let us also plot the whole composite curve C.
> plotAlgSet(C,x=-2..2,y=-2..2,numpoints=200, thickness=5,
color=pink)

Time for isolating critical points : , .012

Time for finding intermediate points : , 0.516

Time for others : , .0

Time for isolating critical points : , .031
Time for finding intermediate points : , 2.375

Time for others : , .031
Time for isolating critical points : , .047

Time for finding intermediate points : , 1.500
Time for others : , .0

−4

−3

−2

−1
0

1

2

3

4

y

−4 −3 −2 −1 1 2 3 4
x

Finally, for computing the intersection multiplicity of two plane curves at
an intersection point (see Sect. 2.3), we may use the command imult:

> imult(C[1],C[3],[0,0]);

6



B

Algebraic Preliminaries

For a thorough introduction to algebra we refer the reader to any of a great
number of classical textbooks, e.g., [BiM79], [Lan84], [ZaS58] or [VaW70]. We
denote the set of natural numbers (including 0) by N, the integers by Z, the
rational numbers by Q, the real numbers by R, and the complex numbers
by C.

B.1 Basic Ring and Field Theory

A semigroup (S, ◦) is a set S together with an associative binary operation ◦ on
S. A semigroup is commutative iff the operation ◦ is commutative. A monoid
(S, ◦, e) is a semigroup with an identity element e; that is e ◦ x = x ◦ e = x,
for all x ∈ S. A monoid is commutative iff the operation ◦ is commutative.
For a monoid S, we denote by S∗ the set S \ {e}. A group (G, ◦,  , e) is a
monoid (G, ◦, e) together with a unitary inverse operation  ; that is, x◦( x) =
( x)◦x = e, for all x ∈ G. G is commutative or abelian group iff the operation
◦ is commutative.

A ring (R, +, ·, 0) is an abelian group (R, +, 0), and a semigroup (R, ·)
satisfying the laws of distributivity x · (y + z) = x · y + x · z, and (x + y) ·
z = x · z + y · z. A commutative ring is one in which the operation · is
commutative. A ring with identity is a ring R together with an element 1
(�= 0), such that (R, ·, 1) is a monoid. If R is a ring (with identity or not),
by R∗ we denote the set R \ {0}. Unless stated otherwise, we will always use
the symbols +,−, ·, 0, 1 for the operations of a ring. We call these operations
addition, subtraction, multiplication, zero, and one. The subtraction operation
is defined as x − y := x + (−y), for x, y ∈ R.

The characteristic of a commutative ring with identity R, char(R), is the
least positive integer m such that 1 + · · · + 1︸ ︷︷ ︸

m times

= 0. char(R) = 0 if no such

m exists.
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Let (R, +, ·, 0) and (R̃, +̃, ·̃, 0̃) be rings. A ring homomorphism h is a func-
tion from R to R̃ satisfying the conditions

h(r + s) = h(r)+̃h(s), h(r · s) = h(r)̃·h(s).

Furthermore, if R and R̃ are rings with identities 1 and 1̃, respectively, and
h is not the zero-homomorphism, then h(1) = 1̃. Moreover, if h is one-to-one
and onto then h is called an isomorphism from R to R̃. In this case, we say
that R and R̃ are isomorphic, and we write R ∼= R̃.

A nonzero element a of R is a zero divisor iff for some nonzero b ∈ R, we
have that a · b = 0. An integral domain or a domain D is a commutative ring
with identity having no zero divisors.

A field (K, +, ·, 0, 1) is a commutative ring with identity (K, +, ·, 0, 1), and
simultaneously a group (K�, ·, 1). If all the operations on K are computable,
we call K a computable field.

Let D be an integral domain. The quotient field Q(D) of D is defined as

Q(D) = {a

b
| a, b ∈ D, b �= 0}/∼,

where a
b∼ c

d if and only if ad = bc. The operations +,−, ·,−1, can be defined
on representatives of the elements of Q(D) as:

a

b
+

c

d
=

ad + bc

bd
,

a

b
· c

d
=

ac

bd
, −a

b
=

−a

b
,

(a

b

)−1

=
b

a
.

Q(D) is the smallest field containing D.
Let (R, +, ·, 0, 1) be a commutative ring with identity. A nonempty subset

I of R is an ideal in R iff a + b ∈ I, and a · c ∈ I for all a, b ∈ I, and c ∈ R.
Moreover we say that I is a proper ideal iff {0} �= I �= R. I is a maximal ideal if
it is not contained in a bigger proper ideal. I is a prime ideal iff a·b ∈ I implies
that a ∈ I or b ∈ I. I is a primary ideal if a · b ∈ I implies that a ∈ I or bn ∈ I
for some n ∈ N. I is a radical ideal iff an ∈ I for some n ∈ N implies that a ∈ I.
Moreover, the radical of the ideal I is the ideal {a | an ∈ I for some n ∈ N},
and we denote it by

√
I or radical(I). A set B ⊆ R generates the ideal I or B

is a generating set or a basis for I iff

I = {
n∑

i=1

ribi | n ∈ N�, ri ∈ R, bi ∈ B}.

In this case, we say that the ideal I is generated by B, and we denote this by
I = 〈B〉. Furthermore, we say that the ideal I is finitely generated if it has a
finite generating set. If the cardinality of the generating set is 1, we say that
I is a principal ideal.

An ideal I in R generates a congruence relation, ≡I on R by a ≡I b
or a ≡ b mod I iff a − b ∈ I. In this case we say that a is congruent to
b modulo I. Observe that the factor ring R/I consisting of the congruence
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classes w.r.t. ≡I inherits the operations of R in a natural way. If R is a
commutative ring with identity 1 and I is a prime ideal of R, then R/I is an
integral domain. If I is maximal, then R/I is a field.

In the following considerations, we take nonzero elements of a commutative
ring R with identity 1. Invertible elements of R are called units. If a = b · u
for a unit u, then a and b are called associated. b divides a iff a = b · c for
some c ∈ R. If c divides a − b we say that a is congruent to b modulo c, and
we write this as a ≡c b or a ≡ b mod c or a ≡ b mod < c >. The congruence
modulo c is an equivalence relation.

An element a of R is irreducible iff every b dividing a is either a unit or
associated to a. An element a of R is prime iff a is not a unit, and whenever
a divides a product b · c, then a divides either b or c; i.e. if < a > is a proper
prime ideal. In general prime and irreducible elements can be different; for
instance, 6 has two different factorizations into irreducibles in Z[

√
−5], and

none of these factors is prime.
A principal ideal domain D is a domain in which every ideal is principal.

An integral domain D is a unique factorization domain iff every nonunit of D
is a finite product of irreducible factors and every such factorization is unique
up to reordering and unit factors. In a unique factorization domain prime and
irreducible elements are the same. An element a is squarefree iff every nonunit
factor of a occurs with multiplicity exactly 1 in a.

Let D be an integral domain, and let a, b ∈ D such that at least one of
them is not zero. We say that d ∈ D is a greatest common divisor (gcd) of a
and b iff (i.) d divides both a and b, and (ii.) if c is a common divisor of a and b
then, c divides d. In a unique factorization domain the gcd always exists, and
it is determined up to associates. Moreover, if R is a principal ideal domain,
the greatest common divisor d ∈ R, can be written as a linear combination
d = s · a + t · b, for some s, t ∈ R. This equation is called the Bézout equality,
and s, t are the Bézout cofactors. If gcd(a, b) = 1, we say that a and b are
relatively prime.

In Z we have the well known Euclidean Algorithm for computing a gcd.
In general, an integral domain D in which we can execute the Euclidean al-
gorithm, i.e., we have division with quotient and remainder such that the
remainder is less than the divisor, is called a Euclidean Domain. More pre-
cisely, a Euclidean domain D is an integral domain together with a degree
function deg : D� → N, such that

1. deg(a · b) ≥ deg(a) for all a, b ∈ D�,
2. (division property) for all a, b ∈ D, b �= 0, there exists a quotient q and

a remainder r in D such that a = q · b + r and r = 0 or deg(r) <
deg(b).

Every Euclidean domain is a principal ideal domain and every principal ideal
domain is a unique factorization domain. However, the reverse implications
do not hold in general.
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In a Euclidean Domain, the Euclidean algorithm can be adapted such that
the Bézout cofactors are also computed. Usually, this extension is called the
extended Euclidean algorithm.

B.2 Polynomials and Power Series

Let R be a ring. A (univariate) polynomial over R is a mapping p : N −→ R,
n �−→ pn, such that pn = 0 nearly everywhere, i.e., for all but finitely many
values of n. If n1 < n2 < · · · < nr are the nonnegative integers for which p
yields a nonzero result, then we usually write

p = p(x) =
r∑

i=1

pnix
ni .

pj is the coefficient of xj in the polynomial p, and we denote it by coeff(p, j).
If p is the zero mapping, we say that p is the zero polynomial. The set of
all polynomials over R together with the usual addition and multiplication
of polynomials form a ring over R, which is denoted by R[x]. The degree of
a nonzero polynomial p, degree(p), is the maximal n ∈ N such that pn �= 0.
We say that the degree of the zero polynomial is −1. The leading term of a
nonzero polynomial p is xdegree(p), denoted by lt(p). The leading coefficient of
a nonzero polynomial p is the coefficient of lt(p), denoted by lc(p). For the
zero polynomial the leading coefficient and the leading term are undefined.
A polynomial p is monic iff lc(p) = 1.

If R is an integral domain, then also the ring of polynomials R[x] over R is
an integral domain. Furthermore, if R is a unique factorization domain, then
also the ring of polynomials R[x] over R is a unique factorization domain.

An n-variate polynomial over R is a mapping p : Nn −→R, (i1, . . . , in) �−→
pi1,...,in , such that pi1,...,in = 0 nearly everywhere. We usually write

p = p(x1, . . . , xn) =
∑

i1,...,in

pi1,...,inxi1
1 · · ·xin

n .

The set of all n-variate polynomials over R together with the usual ad-
dition and multiplication of polynomials form a ring over R, which is de-
noted by R[x1, . . . , xn]. The n-variate polynomial ring can be viewed as built
up successively from R by adjoining one polynomial variable at a time. In
fact, R[x1, . . . , xn] is isomorphic to (R[x1, . . . , xn−1])[xn]. The total degree
of an n-variate polynomial p is defined as the maximal

∑n
j=1 ij such that

pi1,...,in �= 0. We denote this total degree by degree(p). In addition, we write
coeff(p, xn, j) for the coefficient of xj

n in the polynomial p, where p is consid-
ered in (R[x1, . . . , xn−1])[xn]. The degree in the variable xn of

p = p(x1, . . . , xn) =
m∑

i=0

pi(x1, . . . , xn−1)xi
n ∈ (R[x1, . . . , xn−1])[xn]�
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is m if pm �= 0, and we denote this by degxn
(p). By reordering the set of

variables we get degxi
(p) for all 1 ≤ i ≤ n. In a similar way, we get ltxi(p)

and lcxi(p). If all the terms occurring (with nonzero coefficient) in the poly-
nomial p have the same (total) degree, then p is call a form or a homogeneous
polynomial.

An n-variate polynomial p(x1, . . . , xn) of total degree d can be written as

p(x1, . . . , xn) = pd(x1, . . . , xn) + pd−1(x1, . . . , xn) + · · · + p0(x1, . . . , xn),

where pi(x1, . . . , xn) are forms of degree i, respectively (i.e., all the terms
occurring in pi are of the same degree and it is i). The homogenization
p�(x1, . . . , xn, xn+1) of the polynomial p(x1, . . . , xn) is given as

p�(x1, . . . , xn, xn+1) =

pd(x1, . . . , xn) + pd−1(x1, . . . , xn)xn+1 + . . . + p0(x1, . . . , xn)xd
n+1.

The polynomial p�(x1, . . . , xn, xn+1) is homogeneous. For all α ∈ K�, where
K is a field, we have that p�(a1, . . . , an, an+1) = 0 if and only if it holds that
p�(α a1, . . . , α an, α an+1) = 0. Furthermore p(a1, . . . , an) = 0 if and only if
p�(a1, . . . , an, 1) = 0. In addition, p�(a1, a2, . . . , an, 0) = pd(a1, . . . , an) = 0
means that there is a zero (a1, a2, . . . , an, 0) of p� at infinity in the direction
(a1, . . . , an). By adding these points at infinity to affine space we get the
corresponding projective space.

For homogeneous polynomials, we have the following well known Euler’s
Formula: let F (x1, . . . , xr) be an homogeneous polynomial of degree d. Then,

r∑
i=1

xi ·
∂F

∂xi
= d · F.

Let K, L be fields such that K ⊂ L. Let α ∈ L such that f(α) = 0 for
some irreducible f ∈ K[x]. Then, α is called algebraic over K of degree deg(f).
If α is not algebraic over K, the we say that α is transcendental over K. The
polynomial f is determined up to a constant and it is called the minimal
polynomial of α over K. In addition, by K(α) we denote the smallest field
containing K and α. K(α) is called a (simple) algebraic extension field of K.
For representing the elements in the algebraic extension field K(α) of K, we
use the isomorphism K(α) ∼= K[x]/〈f(x)〉, where 〈f(x)〉 denotes the ideal
generated by f(x) in K[x]. Every polynomial can be reduced modulo f(x) to
some r(x), with deg(r) < deg(f). On the other hand, two different polynomials
r(x), s(x) with deg(r), deg(s) < deg(f) cannot be congruent modulo f(x),
since otherwise r − s, a nonzero polynomial of degree less than deg(f), would
be a multiple of f . Thus, every element a ∈ K(α) has a unique representation

a = am−1x
m−1 + . . . + a1x + a0︸ ︷︷ ︸

a(x)

+〈f(x)〉, ai ∈ K.
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We call a(x) the normal representation of a. Observe that from this unique
normal representation we can immediately deduce that K(α) is a vector space
over K of dimension deg(f), and {1, α, . . . , αm−1} is a basis of this vector
space.

The field K is called the algebraic closure of K if K is algebraic over
K and every polynomial f(x) ∈ K has a root over K, so that K can be
said to contain all the elements that are algebraic over K. We say that K is
algebraically closed if K = K.

Let K be a field, and let K be the algebraic closure of K. A polyno-
mial f(x1, . . . , xn) ∈ K[x1, . . . , xn] is irreducible over K if and only if every
g(x1, . . . , xn) ∈ K[x1, . . . , xn] dividing f is either a unit or an associate of
f . Moreover, if f(x1, . . . , xn) has no nontrivial factor in K[x1, . . . , xn], then
f(x1, . . . , xn) is called absolutely irreducible. A factorization over K is called
an absolute factorization.

Let I be an ideal. A univariate polynomial p(x) over I is primitive if and
only if there is no prime in I which divides all the coefficients in p(x). Every
polynomial q(x) ∈ I[x] can be decomposed uniquely, up to multiplication by
units, as

q(x) = cont(q) · pp(q),

where cont(q) ∈ I, and pp(q) is the primitive polynomial in I[x]. We call
cont(q) the content of q(x), and pp(q) the primitive part of q(x).

If K is a field, then K[x] is a Euclidean domain, so h = gcd(f, g), for
f, g ∈ K[x] can be computed by means of the Euclidean Algorithm.

A polynomial p(x1, . . . , xn) ∈ K[x1, . . . , xn] is squarefree if and only if
every nontrivial factor q(x1, . . . , xn) of p (i.e, q not associated to p and not a
constant) occurs with multiplicity exactly 1 in p. There is a simple criterion
for deciding squarefreeness (see for instance [Win96], pp.101). More precisely,
let q(x) be a nonzero polynomial in K[x], where char(K) is either zero or
prime. Then, q(x) is squarefree if and only if gcd(q(x), q′(x)) = 1 (q′(x) is the
derivative of q(x)). The problem of squarefree factorization of q(x) ∈ K[x]
consists of determining the squarefree pairwise relatively prime polynomials
q1(x), . . . , qs(x) such that

q(x) =
s∏

i=1

qi(x)ei ,

where ei ∈ N. The representation of q(x) as above is called the squarefree fac-
torization of q(x). For a thorough introduction to factorization of polynomials
we refer the reader to Chapter 5 in [Win96].

Let K be a field. A power series A(x) over K is a mapping A : N −→ K.
Usually we write a power series as A(x) =

∑∞
i=0 aix

i, where ai is the image
of i under the mapping A.

The set of all power series over K form a commutative ring with 1 and we
denote this ring by K[[x]]. The order of the power series A is the smallest i
such that ai �= 0.
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Taylor’s Theorem Let D be a unique factorization domain of characteristic
zero, and let f(x1, . . . , xn) ∈ D[x1, . . . , xn]. Let p = (a1, . . . , an), ai ∈ D, and
h = (h1, . . . , hn) = (x1 − a1, . . . , xn − an). Then,

f(x1, . . . , xn) = f(p) +
n∑

i1=1

∂f(p)
∂xi1

hi1 +
1
2!

n∑
i1,i2=1

∂2f(p)
∂xi1∂xi2

hi1hi2 + · · ·+

1
k!

n∑
i1,...,ik=1

∂kf(p)
∂xi1 . . . ∂xik

hi1 · · ·hik
+ · · · .

We call this expression the Taylor expansion of the polynomial f at p.

Taylor’s Theorem for univariate analytic functions: Let f(z) be a complex
analytic function in an open disk centered at z0 and radius r. Then, for |z −
z0| < r, the power series

∑∞
n=0

f(n)(z0)
n! (z − z0)n converges to f(z).

Implicit Mapping Theorem (see [Gun90]): Let F be an holomorphic map-
ping from an open neighborhood of a point A ∈ Cn into Cm for some m ≤ n,
such that F (A) = 0 and rank(J ′′

F (A)) = m, where JF (A) = (J ′
F (A), J ′′

F (A))
is the Jacobian matrix of F at A, and J ′

F (A) is an m × (n − m) matrix,
and J ′′

F (A) is an m × m matrix. Then, for some open polydisc U(A, R) =
U(A′, R′) × U(A′′, R′′) ⊂ Cn−m × Cm = Cn, there exists an holomorphic
mapping G : U(A′, R′) → U(A′′, R′′) such that G(A′) = A′′, and F (Z) = 0
for some point Z = (Z ′, Z ′′) ∈ U(A, R), precisely when Z ′′ = G(Z ′).

B.3 Polynomial Ideals and Elimination Theory

Let R be a commutative ring with identity 1 and R[x1, . . . , xn] the polynomial
ring in n indeterminates over R. A commutative ring with identity R is called
a Noetherian ring if and only if the basis condition holds in R, i.e., every ideal
in R is finitely generated.

A commutative ring with identity R is Noetherian if and only if there are
no infinitely ascending chains of ideals in R. I.e., if I1 ⊆ I2 ⊆ . . . ⊆ R, then
there is an index k such that Ik = Ik+1 = · · · .

Hilbert’s Basis Theorem: If R is a Noetherian ring then also the ring of
polynomials R[x] is Noetherian.

Hilbert’s basis theorem implies that the multivariate polynomial ring
K[x1, . . . , xn] over a field K is Noetherian. So every ideal I ∈ K[x1, . . . , xn]
has a finite basis, and if we are able to effectively compute with finite bases
then we are dealing with all the ideals in K[x1, . . . , xn].

B.3.1 Gröbner Bases

The method of Gröbner bases was introduced by Buchberger in [Buc65],
where he also developed an algorithm for computing it. Gröbner bases are
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very special and useful bases for polynomial ideals. The Buchberger algo-
rithm for constructing Gröbner bases is at the same time a generalization of
the Euclidean Algorithm and of Gauss’ triangularization algorithm for linear
systems. Intuitively speaking, Gröbner bases can be motivated from different
points of view. The first one is based on the theory of polynomials ideals,
and the second one focuses on the application to the solution of systems of
algebraic equations. In both cases, the difficulty of the problem comes from
the need to generalize the Euclidean division to the non-Euclidean domain
K[x1, . . . , xn], where K is a field.

Ideal theoretically the goal is to decide the “main problem in ideal theory”,
namely the question whether a polynomial f ∈ K[x1, . . . , xn] is contained in
a given ideal I of the ring R = K[x1, . . . , xn]. Observe that if R is univariate,
then R is a Euclidean domain. Therefore, I is a principal ideal, and it can be
expressed as I = 〈g(x)〉. So f ∈ I if and only if f is a multiple of g if and only
if the remainder of f on division by g is 0. In the multivariate case a Gröbner
basis for the ideal I admits a generalization of the division algorithm such that
f ∈ I if and only if the remainder of f on division by the Gröbner basis is 0.

The Buchberger algorithm for computing a Gröbner basis for an ideal
I can also be considered as a generalization of Gaussian elimination to the
multivariate case. Given a system of algebraic, i.e., polynomial, equations

fi(x1, . . . , xn) = 0, i = 1, . . . , m,

where fi ∈ K[x1, . . . , xn], we observe that the solutions of these equations
over the algebraic closure of K remain unchanged when we replace the fi

by gj , where {gj|1 ≤ j ≤ k} is another basis for the ideal generated by
{fi|1 ≤ i ≤ m}. If we determine a Gröbner basis w.r.t a lexicographic ordering
of the terms, then we get a triangular basis comparable to a triangular system
of linear equations. This property is expressed in the following theorem.

Theorem (elimination property of Gröbner bases): Let G be a Gröbner
basis for the ideal I in K[x1, . . . , xn] w.r.t. the lexicographic ordering x1 <
x2 < · · · < xn. Then for every i ∈ {1, . . . , n} the ideal I ∩ K[x1, . . . , xi] is
generated by G ∩ K[x1, . . . , xi].

Any Gröbner basis allows to decide the solvability of the corresponding
system of algebraic equations, simply by checking whether the Gröbner basis
contains a constant. We can also read off whether the system has finitely or
infinitely many solutions.

For a thorough introduction to Gröbner bases we refer the reader to
[AdL94], [BeW93], [BCL83], [CLO97] or [Win96].

B.3.2 Resultants

Let D be a unique factorization domain, and let f(x), g(x) ∈ D[x] be the
polynomials

f(x) = anxn + · · · + a0, an �= 0, g(x) = bmxm + · · · + b0, bm �= 0.
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The resultant, resx(f, g), of the univariate polynomials f(x), g(x) over D is
the determinant of the Sylvester matrix of f and g, consisting of shifted lines
of coefficients of f and g. More precisely, resx(f, g) = det(Sylx(f, g)), where

Sylx(f, g) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an . . . a0

an . . . a0

. . . . . . . . .
an . . . a0

bm . . . b0

bm . . . b0

. . . . . . . . .
bm . . . b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Sylx(f, g) contains m rows of coefficients of f , and n rows of coefficients of g.
Resultants have important properties (see [BrK86], [CLO98], [VaW70]).

Some of the more important ones are the following:

1. resx(f, g) = 0 if and only if f and g have a common root.
2. resx(f, g) = (−1)mnresx(g, f).
3. Let αi, i = 1, . . . , n, be the roots of f , and let βi, i = 1, . . . , m, be the

roots of g. Then

resx(f, g) = lc(f)mlc(g)n
n∏

i=1

m∏
j=1

(αi−βj), and resx(f, g) = lc(f)m
n∏

j=1

g(αj).

4. There exist polynomials a(x) and b(x) over D such that af + bg =
resx(f, g).

The notion of resultant of two univariate polynomials can be general-
ized to multivariate polynomials. Let K be an algebraically closed field,
and let f(x1, . . . , xn), g(x1, . . . , xn) ∈ K[x1, . . . , xn]. We view the polyno-
mials f and g as elements of K[x1, . . . , xn−1][xn] where the coefficients
are in K[x1, . . . , xn−1], and the main variable is xn. So we may determine
R(x1, . . . , xn−1) := resxn(f, g) ∈ K[x1, . . . , xn−1], and we have the following
important property (see [Mis93]): if (a1, . . . , an) ∈ Kn is a common root of f
and g, then R(a1, . . . , an−1) = 0. Conversely, if R(a1, . . . , an−1) = 0, then one
of the following holds:

1. lcxn(f)(a1, . . . , an−1) = lcxn(g)(a1, . . . , an−1) = 0,
2. f(a1, . . . , an−1, xn) = 0 or g(a1, . . . , an−1, xn) = 0,
3. for some an ∈ K, (a1, . . . , an) is a common root of f and g

For a thorough introduction to resultants we refer the reader to [BrK86],
[CLO98] or [Mis93].
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B.4 Algebraic Sets

For any field K, the n-dimensional affine space over K is defined as

An(K) := Kn = {(a1, . . . , an) | ai ∈ K} .

A2(K) is the affine plane over K. The n-dimensional projective space over K
is defined as

Pn(K) := {(a1 : · · · : an+1) | (a1, . . . , an+1) ∈ Kn+1 \ {(0, . . . , 0)}} ,

where (a1 : · · · : an+1) = {(αa1, . . . , αan+1) | α ∈ K�}. So a point in Pn(K)
has many representations as an (n + 1)-tuple, since (a1 : · · · : an+1) and
(αa1 : · · · : αan+1), for any α ∈ K�, denote the same projective point P .
(a1 : . . . : an+1) are homogeneous coordinates for P . P2(K) is the projective
plane over K.

For any ideal I in K[x1, . . . , xn] we denote by V (I) the set of all the
points in An(K), the n-dimensional affine space over the algebraic closure of
K, which are common zeros of all the polynomials in I. Such sets V (I) are
called algebraic sets. In commutative algebra and algebraic geometry there is
a 1–1 correspondence between radical polynomial ideals and algebraic sets,
the zeros of such ideals over the algebraic closure of the field of coefficients.
Hilbert’s Nullstellensatz relates the radical of an ideal I to the set of common
roots V (I) of the polynomials contained in I. More precisely, the radical of I
consists of exactly those polynomials in K[x1, . . . , xn] which vanish on all the
common roots of I.

On the other hand, for any subset V of An(K) we denote by I(V ) the
ideal of all the polynomials vanishing at V . Then for radical ideals I and
algebraic sets V (·) and I(·) are inverses of each other, i.e., V (I(V )) = V
and I(V (I)) = I. This correspondence extends to operations on ideals and
algebraic sets (see, for instance [CLO97], Chap. 4).

An algebraic set V is called irreducible if it cannot be expressed as a union
of two algebraic sets, both of them different from V . In fact, V is irreducible if
and only if I(V ) is a prime ideal. Irreducible algebraic sets are called algebraic
varieties. In general, an algebraic set can be written uniquely as the finite
union of algebraic varieties. These notions can be extended analogously to
projective space.

The intersection of two algebraic sets is an algebraic set defined by the
union of the two ideals. In fact, the intersection of an arbitrary number of
algebraic sets is again an algebraic set. However, in general, only finite unions
of algebraic sets are algebraic. The empty set is the algebraic set generated by
any nonzero constant polynomial, for example 1, and the whole affine space
is the algebraic set generated by the zero polynomial. Consequently, the alge-
braic sets are the closed sets in a topology, called the Zariski topology. In the
Zariski topology, any two nonempty open sets have a nonempty intersection.
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[HiH90] Hilbert, D., Hurwitz, A.: Über die Diophantischen Gleichungen vom
Geschlecht Null. Acta math; 14, 217–224 (1890)

[HiW98] Hillgarter, E., Winkler, F.: Points on Algebraic Curves and the Parametri-
zation Problem. Automated Deduction in Geometry. Lecture Notes in Artif. Intell.
1360: 185–203. D. Wang (ed.). Springer Verlag Berlin Heidelberg (1998)

[Hof93] Hoffmann, C. M.: Geometric and Solid Modeling. Morgan Kaufmann Publ.,
Inc (1993)

[HSW97] Hoffmann, C.M., Sendra, J.R., Winkler, F. (eds.): Parametric Algebraic
Curves and Applications. Special Issue on Parametric Curves and Applications of
the Journal of Symbolic Computation; 23/2&3 (1997)

[HoL93] Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric
Design. A.K. Peters, Ltd. Natick, MA, USA (1993)

[IrR82] Ireland, K., Rosen, M.: A classical introduction to modern number theory.
Springer Verlag (1982)



References 261

[Jac74] Jacobson, N.: Basic Algebra I. Freeman, San Francisco (1974)
[Jac80] Jacobson, N.: Basic Algebra II. Freeman, San Francisco (1980)
[Joh98] Johnson, J.R.: Algorithms for Real Root Isolation. Quantifier Elimination

and Cylindrical Algebraic Decomposition. Text and Monographs in Symbolic Com-
putation. Springer Verlag: 269–289 (1998)

[Kiy93] Kiyosi, I. (ed.): Encyclopedic Dictionary of Mathematics. Vol. 1. Mathe-
matical Society of Japan (1993)

[Kob98] Koblitz, N.: Algebraic Aspects of Cryptography. Springer-Verlag Berlin
(1998)

[Kob02] Koblitz, N.: Good and bad uses of elliptic curves in cryptography. Moscow
Math. J; 2, n.4: 693–715 (2002)

[Kot04] Kotsireas I. S.: Panorama of Methods for Exact Implicitization of Algebraic
Curves and Surfaces. Geometric Computation. Falai Chen and Dongming Wang
(eds.). Lecture Notes Series on Computing; 11, Chapter 4, World Scientific
Publishing Co., Singapore (2004)
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