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Preface

Hurricanes are among nature’s most destructive agents. Widespread interest
surrounds the possibility that they might even get more damaging in the future.
Some policy makers consider it a call to action. Financial want to know when and
by how much. And scientists are certainly challenged by the range and interactions
of the processes involved. This book, arising from the Second International Sum-
mit on Hurricanes and Climate Change (31 May through 5 June 2009 in Corfu,
Greece), contains new research since the First Summit (2007 in Crete) on topics
related to hurricanes and climate change. Chapters are grouped into studies using
global climate models and those taking empirical and statistical approaches. The
latter include investigations of basin-wide and regional tropical cyclone activity.

The book opens with a review of progress on an international project to com-
pare global climate models on their ability to generate tropical cyclones. Chapter 2
highlights predictions of tropical cyclone activity under global warming using a
cloud-resolving climate model. Chapter 5 discusses the potential insights of con-
sidering tropical cyclone activity as critical phenomenon. Chapter 6 highlights the
importance of sea-surface temperature in driving the amount of monetary losses
from hurricanes (but not the frequency of loss events) affecting the United States.
This is important as most of the literature on this subject, including that written by
some of the insurance companies, has failed to do a credible job with this issue. We
know greater monetary losses occur with stronger hurricanes. We know hurricanes
can become more intense when they are over warmer waters. So we expect the prob-
ability of a large loss to be higher when the oceans warm. Interestingly, results show
that when sunspots are few there is a higher probability of at least one loss event.

The intriguing finding of a solar signal in hurricane activity is taken up in more
detail in Chapter 7. Statistical evidence of a linkage between the solar cycle and
major hurricanes over the eastern North Pacific and hurricanes along the U.S. coast
is presented. These results are particular salient given that the sun may be go-
ing through an extended period of inactivity. The record of coastal hurricanes is
sometimes invoked as evidence that climate change plays no significant role in
modulating hurricane activity. But other factors could mitigate against a climate
signal in these hurricanes. For instance, evidence presented in Chapter 10 is con-
sistent with the hypothesis that hurricanes near land may be increasingly affected
by continental aerosols. Also, modeling studies show increasing carbon dioxide
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vi Preface

causes the stratosphere to cool leading to a faster jet stream and a tendency for
more frequent positive phases of the North Atlantic Oscillation. It is well known
that a positive North Atlantic Oscillation tends to steer the hurricanes away from the
United States.

Return periods of high winds from hurricanes in the vicinity of Florida are es-
timated in Chapter 11. Historically the state was affected by hurricane winds of
60 m s�1 once every 2 years, but there is evidence that the strongest hurricanes may
be getting stronger in this part of the world as well. Chapter 13 provides a method-
ology for producing a track-relative climatology. This is a novel way to examine
hurricane activity, and it is applied toward understanding the risk of high winds to
Eglin Air Force Base in northern Florida.

Although much has been written on hurricanes and climate change, the chapters
in this volume represent some of the more interesting and innovative new research
on this important topic. The Summit, which had participants from 17 different
countries, was sponsored by Aegean Conferences, the Risk Prediction Initiative,
and Climatek. Plans are underway to hold the Third International Summit on the
island of Rhodes in the summer of 2011.

Tallahassee, Florida James B. Elsner
April 2010 Robert E. Hodges

Jill C. Malmstadt
Kelsey N. Scheitlin

The Editors
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Chapter 1
The Tropical Cyclone Climate Model
Intercomparison Project

Kevin Walsh, Sally Lavender, Hiroyuki Murakami, Enrico Scoccimarro,
Louis-Phillipe Caron, and Malek Ghantous

Abstract In this chapter, a review is given of progress to date on an intercom-
parison project designed to compare and evaluate the ability of climate models to
generate tropical cyclones, the Tropical Cyclone climate Model Intercomparison
Project (TC-MIP). Like other intercomparison projects, this project aims to evaluate
climate models using common metrics in order to make suggestions regarding future
development of such models. A brief summary is given of the current ability of these
models and some initial conclusions are made. Coarser-resolution climate models
appear to have difficulty simulating tropical formation in the Atlantic basin, but sim-
ply increasing the resolution of such models does not necessarily lead to improved
simulations in this region. The choice of convective scheme is also important in de-
termining the tropical cyclone formation rate. There appears to be little relationship
between the simulated details of the large-scale climate and model tropical cyclone
formation rates, and possible reasons are given for this. Recent fine-resolution mod-
els have shown considerable improvement in their simulation of both global and
Atlantic tropical cyclone formation, leading to the possibility that such models could
be used for detection and attribution studies of the causes of observed changes in
tropical cyclone formation rate, particularly in the Atlantic basin.
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1 Introduction

The possible effect of climate change on tropical cyclones remains one of the most
controversial topics in modern meteorology. Opinions on this issue range from flat
denial that there could be any effect to predictions of large increases in tropical
cyclone incidence and intensity that are already detectable in the observed record.
A range of techniques have been used to make inferences about this topic, ranging
from purely statistical analyses to sophisticated fine-resolution models to fundamen-
tal theories of atmospheric behaviour.

Some years ago, the debate about the effects of climate change on overall global
warming went through the same stage as the current controversy about its effects
on tropical cyclones. In both topics, initial theoretical work established that such
an effect was consistent with our understanding of atmospheric physics – for tropi-
cal cyclones and climate change, this was the work of Emanuel (1987). For global
climate change, this was followed by a period of model development and experi-
mentation, accompanied by argument over both the existence and the magnitude of
the possible climate change signal. This debate is now essentially over: there are few
serious climate scientists who still believe that there is no significant global effect.
Numerous detection and attribution studies have shown that the observed twentieth
and early twenty-first century warming is consistent with climate model predictions
based on the observed increases in greenhouse gas concentration in the atmosphere
(Hegerl et al. 2007). These same climate models project even larger changes later
this century (IPCC 2007).

In contrast, for tropical cyclones and climate change, the debate continues. There
are fundamental reasons why this is so. Most climate data consists of daily records,
whereas tropical cyclones are considerably rarer events. Unlike the global climate
record of (for example) land-based screen temperature, there is considerable contro-
versy about the consistency of the tropical cyclone record, due to significant changes
in observing systems over several decades (Kossin et al. 2007). Unlike the land-
based temperature record, the main tropical cyclone records, the best track data,
were never intended to be used as climate data sets. As a result, little attention
was paid to ensuring that the techniques used to construct them were consistent
from year to year. The other issue limiting scientific conclusions from this debate
is that until very recently, climate model simulations of the observed distribution of
tropical cyclone extreme wind speeds were poor (e.g. Walsh 2008). This is also in
contrast to the quality of the simulation of global average temperature: since this is
considerably easier to simulate, its quality has always been better (IPCC 2007). One
of the crucial steps in the debate on the causes of the observed increase in global
average temperature over the past century or so was the development of an ability
to simulate that increase and the relative contributions of the various climate forc-
ings (aerosols, solar radiance, greenhouse gas concentrations) to observed climate
change (e.g. Stott et al. 2001). Thus the causes of global climate change were able
to be identified, through the process of detection and attribution.

Recent improvements in climate model simulations of tropical cyclones have the
same potential to resolve arguments about the causes of observed trends in tropical
cyclone characteristics, provided of course that there is agreement on the magnitude
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and direction of observed trends. Leaving aside the question of observed trends for
the moment, this article focuses on recent developments in tropical cyclone climate
models.

2 Tropical Cyclones as Simulated by Climate Models

2.1 Current-Climate Simulation

A recent review of the quality of tropical cyclone simulation in climate models is
contained in Walsh (2008). In a nutshell, this paper concluded that the simulation
of tropical cyclone formation and tracks by the best climate models is reasonable.
In contrast, the simulation of tropical cyclone intensity distributions is inadequate,
largely as a result of coarse resolution. While the simulation of tropical cyclone
formation and tracks does not depend so much on model resolution as intensity
does, there is still considerable room for improvement in climate model simulations
of these variables. This is important as there have been observed trends in tropical
cyclone formation that are less controversial than trends in observed wind speeds
(e.g. Kossin et al. 2007). Thus climate models used for attribution studies need the
best possible simulation of these trends that can be obtained.

Recent climate models have continued to demonstrate improvement in their abil-
ity to simulate tropical cyclones. In particular, Knutson et al. (2008) employ a
regional climate model of 18 km resolution to demonstrate an excellent ability to
simulate the year-to-year variations of tropical cyclone formation in the Atlantic
basin, when forced with NCEP reanalyses. This model uses a form of internal
nudging to ensure that the larger scale features of the regional model solution in
the interior of the domain remain similar to the large-scale forcing outside of the
domain. The regional climate model study of Semmler et al. (2008) employed a
resolution of 28 km over an Atlantic domain, giving a good simulation of both the
mean and the interannual variability of tropical cyclone formation in this basin. No
internal nudging was used in this model simulation.

Global model simulations have also been improving. Bengtsson et al. (2007)
used the ECHAM5 atmosphere-only model, run with observed interannually-
varying sea surface temperatures, to generate large numbers of simulated tropical
cyclones, although numbers were lower than observed in the Atlantic basin. Gualdi
et al. (2008) used a T106 (about 125 km resolution) version of the SINTEX-G cou-
pled ocean-atmosphere model and examined the tropical cyclone climatology. This
model employs the mass flux convection scheme of Nordeng (1994), as adapted
from the previous work of Tiedtke (1989). Numbers of tropical cyclones generated
globally were less than observed but still good in the Atlantic region. The statistical-
deterministic model of Emanuel et al. (2008) also generates reasonable numbers
of storms in the Atlantic and has a good representation of the interannual variabil-
ity of storm formation. The global 50 km resolution model of Zhao et al. (2010)
used observed SSTs as a lower boundary condition, running four realisations of
the period 1981–2005. The model produced realistic simulations of the observed
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trends in tropical cyclone frequency over that period of time, including the upward
trend in numbers in the Atlantic basin. While correlations between simulated and
observed interannual variation were good in the Atlantic, they were not as good in
other tropical cyclone formation basins, with the Indian Ocean displaying a poor
relationship. In all of these simulations, however, the simulated distribution of trop-
ical cyclone intensity remains inadequate, with much fewer high-intensity storms
simulated than observed.

As model resolution increases and experience is gained in constructing the best
model formulation required to generate tropical cyclones, the simulation of tropical
cyclone climatology will improve. But high-resolution global model runs remain
very expensive, so most climate simulations during the next few years will continue
to be of coarser resolution (100–200 km). It would be best if the climate model that
is used for prediction of future global or regional temperature and precipitation also
had a reasonable climatology of tropical cyclone formation, as this would demon-
strate that the model is performing well at most spatial and time scales. Nevertheless,
one issue that was identified by Walsh et al. (2007) was that many climate model
studies of tropical cyclones had been performed to date but that almost all of them
used different criteria to define a model-generated tropical cyclone. One way to cir-
cumvent this issue would be to define a simulated tropical cyclone in the same way
that observed tropical cyclones are defined: by simply counting all of the storms that
had 10 m wind speeds in excess of 17:5 ms�1 and had the warm core structure of
tropical cyclones, similar to the method used by Zhao et al. (2010) for their 50 km
resolution global model simulations. Even so, this is a very severe test for a climate
model of coarser resolution, indeed an unfair test as it compares a model of limited
resolution with reality, which has effectively unlimited resolution. Climate models
are usually validated by comparing their performance against observations that have
been degraded to a resolution similar to that of the model. Walsh et al. (2007) pro-
posed the same process for tropical cyclone simulation: to degrade data from weak,
observed tropical cyclones to the resolution of the climate model and determine
what are their maximum wind speeds at that resolution. Additionally, this serves as
a way of comparing the results of climate models running at slightly different reso-
lutions. In this way, the native ability of the model to generate tropical cyclones is
assessed in a resolution-appropriate fashion.

This was the philosophy behind the proposed Tropical Cyclone climate Model
Intercomparison Project (TC-MIP).1 Like all intercomparison projects, this project
proposes and defines common metrics for the assessment of climate models of
tropical cyclones (e.g. Camargo et al. 2007; Yokoi et al. 2009). Ideally, at this
stage in the intercomparison project, it would be best if there were numerous re-
cent high-resolution global model experiments that could all be analysed using
consistent methodologies. Such model output does not yet exist, but the proposed
CMIP5 archive may eventually provide such a resource. In the meantime, building
on similar previous projects, we reanalyse the CMIP3 model output and some recent
high-resolution climate models, using common metrics for all models, including two
separate detection routines.

1 www.earthsci.unimelb.edu.au/�kwalsh/tcmip index.html



1 The Tropical Cyclone Climate Model Intercomparison Project 5

3 Model Description

The CMIP3 climate model archive (www-pcmdi.llnl.gov) was established to
enable further analysis of output produced for the IPCC Fourth Assessment Re-
port (IPCC 2007). The simulations analysed here are the climate of the twentieth
century experiments (20c3 m), for the model years 1980–1999. In these runs, cou-
pled ocean-atmosphere models are forced with the observed increase in greenhouse
gas concentrations over the twentieth century. The models analysed (Table 1) have

Table 1 List of models analysed from CMIP3 archive. Resolution is in degrees

No. Model Institution Resolution

1 BCCR-BCM2.0 Bjerknes Centre for Climate Research 2:8 � 2:8

2 CGCM3.1(T47) Canadian Centre for Climate Modelling
& Analysis

3:75 � 3:75

3 CGCM3.1(T63) Canadian Centre for Climate Modelling
& Analysis

2:8� 2.8

4 CNRM-CM3 Météo-France/Centre National de
Recherches Météorologiques

2:8 � 2:8

5 CSIRO-Mk3.0 CSIRO Atmospheric Research 1:9 � 1:9

6 CSIRO-Mk3.5 CSIRO Atmospheric Research 1:9 � 1:9

7 GFDL-CM2.0 US Department of
Commerce/NOAA/Geophysical
Fluid Dynamics Laboratory

2:5 � 2:0

8 GFDL-CM2.1 US Department of
Commerce/NOAA/Geophysical
Fluid Dynamics Laboratory

2:5 � 2:0

9 GISS-AOM NASA/Goddard Institute for Space
Studies

4:0 � 3:0

10 GISS-EH NASA/Goddard Institute for Space
Studies

5:0 � 4:0

11 GISS-ER NASA/Goddard Institute for Space
Studies

5:0 � 4:0

12 FGOALS-g1.0 LASG/Institute of Atmospheric Physics 2:8 � 3:0

13 INM-CM3.0 Institute for Numerical Mathematics 5:0 � 4:0

14 IPSL-CM4 Institut Pierre Simon Laplace 3:75 � 2:5

15 MIROC3.2(hires) University of Tokyo, National Institute
for Environmental Studies,
and JAMSTEC

1:1 � 1:1

16 MIROC3.2(medres) University of Tokyo, National Institute
for Environmental Studies,
and JAMSTEC

2:8 � 2:8

17 ECHAM5/MPI-OM Max Planck Institute for Meteorology 1:9 � 1:9

18 MRI-CGCM2.3.2 Meteorological Research Institute 2:8 � 2:8

19 NCAR-CCSM3 National Center for Atmospheric
Research

1:4 � 1:4

20 NCAR-PCM1 National Center for Atmospheric
Research

2:8 � 2:8

21 UKMO-HadCM3 Hadley Centre for Climate Prediction
and Research/Met Office

3:75 � 2:5

22 UKMO-HadGEM1 Hadley Centre for Climate Prediction
and Research/Met Office

1:9 � 1:25
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a range of resolutions, from 1ı � 1ı to 5ı � 4ı. While none of these models
have resolutions that are genuinely suitable for the generation of intense tropical
cyclones, the techniques developed as part of this project for examining the in-
terrelationships between model formulation, model large-scale climate and model
generation of tropical cyclones are directly applicable to similar comparisons of the
results of high-resolution models.

Two recent high-resolution models have been analysed using the TC-MIP com-
mon metrics. The MRI/JMA 20-km global mesh model (Mizuta et al. 2006) is
run using a timeslice method for model years 1979–2003. The model is hydro-
static, with 60 vertical levels, uses a semi-Lagrangian time integration scheme and a
prognostic Arakawa-Schubert cumulus convection scheme (Randall and Pan 1993).
The CMCC-INGV model is a fully coupled general circulation model without
flux adjustments using a T159 (about 80 Km) atmospheric component (Roeckner
et al. 2003). The parameterization of convection is based on the mass flux con-
cept (Tiedtke 1989), modified following Nordeng (1994). The global ocean model
used is a 2ı resolution global ocean model (Madec et al. 1998) with a merid-
ional refinement near the equator, to 0:5ı. The CMCC-INGV data used in this
work are obtained running the model over the period 1970–1999 using twenti-
eth century (20C3 M) atmospheric forcings as specified by the IPCC (http://www-
pcmdi.llnl.gov/ipcc/aboutn ipcc.php).

4 Methodology

4.1 Large-Scale Climate Variables

One of the primary goals of the intercomparison project is to identify relationships
between simulated large-scale climate variables and simulated tropical cyclone
formation. As part of the TC-MIP project, the following climate variables are exam-
ined, as they have been shown in previous observational studies to influence tropical
cyclone formation and characteristics (e.g. intensity, size):

� Mean sea level pressure
� Precipitation
� Convective precipitation
� Sea surface temperature
� Maximum potential intensity
� Genesis potential index
� Relative humidity
� Wind shear
� Surface latent heat flux

The definition of most of these variables is self-explanatory, but explanation is
needed of some of them. Convective precipitation is the model’s estimate of that
portion of the precipitation that is convective rather than stratiform. Numerous
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observations had shown that the presence of persistent deep convection is a prereq-
uisite for tropical cyclone formation (e.g. McBride 1995). It is recognized, though,
that the quality of model simulation of this quantity varies greatly between models,
as it is determined by the model’s convective parameterisation. Maximum potential
intensity (potential maximum wind speed and potential minimum pressure) is based
on based the formulation of Bister and Emanuel (1998). The genesis potential index
(GP) is that of Emanuel and Nolan (2004):

GPI D ˇ
ˇ105 �

ˇ
ˇ
3= 2

�
H

50

�3 �
Vpot

70

�3

.1 C 0:1 Vshear/
�2

where � is the absolute vorticity at 850 hPa in s�1, H is the relative humidity at
700 hPa in percent, Vpot is the potential maximum wind speed in metres per second
and Vshear is the magnitude of the vertical wind shear between 850 and 200 hPa, also
in metres per second.

Not all of these variables will be discussed in this chapter, as a full analysis of the
interrelationships has yet to be performed. This chapter will focus on the relation-
ship between the genesis potential and model-generated tropical cyclone formation,
as the GP includes several of the large-scale variables analysed.

4.2 Detection of Tropical Cyclones in Model Output

Two detection methods are used for the identification of tropical cyclones in the
climate model output. The CSIRO detection scheme (Walsh et al. 2007) defines a
low-level wind speed threshold for tropical cyclone identification that is resolution-
dependent. The resolution-dependent thresholds are derived from the maximum
10 m winds seen in high-resolution analyses of weak tropical cyclones that are
degraded to various coarser resolutions. In this way, the output of a coarser-
resolution model is compared with reality degraded to the same resolution. For
models of horizontal resolution finer than about 30 km, the detection threshold be-
comes the same as the observed definition: 17.5 m s�1 wind speeds at a height of
10 m. At a climate model resolution of 200 km, the threshold becomes about 13 m
s�1. The advantage of this scheme is that enables the results of climate models of
different resolutions to be compared. A disadvantage is that it does not account for
the non-linear interaction inherent in climate models between resolution and storm
development.

In addition, the detection scheme of Camargo and Zebiak (2002) was employed.
In this scheme, joint probability distribution functions of quantities important for
tropical cyclone detection, such as low-level vorticity, are constructed for each
tropical cyclone formation basin. Based on these probability distributions, tropical
cyclones are declared to be those lows that have values of these quantities in excess
of a pre-defined statistical threshold. The advantage of this scheme is that it partially
corrects for model biases and thus gives a better indication of the pattern of model
formation in regions where storms might be weak, while still giving an indication of
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Fig. 1 Comparison of number of detections from four-times daily NCEP-2 reanalyses versus
detectionsfrom the same data daily averaged. Only one detection per individual storm track is
made

the differences in formation rates between basins. A disadvantage is that because the
thresholds vary between basins and between models, it becomes harder to compare
model results using this scheme.

One issue that needs to be addressed for this type of scheme is that the CMIP3
archive consists almost entirely of daily-average data rather than instantaneous
fields. This causes tropical cyclones in the models to be smeared over an area rather
than detected at a specific location. For example, Fig. 1 shows a comparison between
detection of storms using the CSIRO detection scheme for four times daily instan-
taneous NCEP-2 reanalyses versus the same data daily averaged. Only one count
per individual storm track is made so that a direct comparison can be made between
formation rates in the two datasets. It is clear that applying the CSIRO detection
scheme to daily average data results, as expected, in a considerable undercount of
detections. Thus as an approximate correction for this effect, we multiply detected
numbers of storms in the daily-average data using the CSIRO detection scheme by
a factor of 2.5, commensurate with the relationship shown in Fig. 1. This approxi-
mate factor has been chosen because the linear relationship shown in Fig. 1 cannot
be used precisely, as it implies that zero daily detections must be accompanied by
roughly ten 6-h detections, which is unphysical.
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5 Results

5.1 CMIP3 Model Output

5.1.1 Large-Scale Fields: Emanuel Genesis Parameter

Figure 2 shows a compilation of genesis parameter results, for January–March
(Fig. 2a) and July–September (Fig. 2b), with models arranged down the page from
highest to lowest resolution. For January–March (Fig. 1a), almost all models display
higher GP than derived from the NCEP-2 reanalysis (top figure). Further analysis
of the reasons for this systematic model bias indicate that almost all models have
higher 700 hPa relative humidity values than observed in a broad band across the
regions close to the location of the monsoonal trough. Since the GP is related to the
cube of the relative humidity, this largely explains the overestimate in almost every
model of the NCEP-based GP.

The reasons for this bias are unclear at this time. The representation of the
boundary-layer physics in a model with relatively coarse vertical resolution is neces-
sarily fairly crude, and it is possible that this leads to an excessive vertical transport
of moisture in these models, particularly in the tropics. Alternatively, there may be
a systematic dry bias in the NCEP-2 reanalysis over the monsoon trough regions.
Trenberth (2005) note that the precipitable water content in the NCEP-2 reanalysis
over the tropics is dry compared with the ERA-40 reanalysis, and also dry com-
pared with RSS SSM/I data. In general, the spatial pattern of the GP produced by the
higher-resolution models is mostly superior to that produced by the lower-resolution
models. Calculations of GP using the ERA-40 given a much better agreement with
model-simulated GP (not shown).

Figure 2b shows similar results for July–September. Once again, the GP shows
general higher values than those derived from the NCEP reanalysis.

5.1.2 Comparison Between Results of Two Detection Schemes

Figure 3 shows a comparison between the two detection schemes. Tropical cyclone
formation for the months January–March, from the IBtracs best track data (Knapp
et al. 2009) (top), and from the CSIRO Mk3.5 model output for the CSIRO detec-
tion scheme (middle) and basin-dependent detection scheme. The best track data
shows the well-known pattern of observed tropical cyclone in the Southern Hemi-
sphere summer months: maximum formation occurs in regions off the northeast and
northwest coasts of Australia and east of Madagascar. The CSIRO detection scheme
shows that the CSIRO Mk 3.5 model appears to be simulating about the correct num-
ber of formations, although the pattern of formation has some deficiencies: there is
little formation in the eastern South Pacific region, for instance. Comparing these
detections to those determined using the basin-dependent detection scheme, the
patterns are similar. A small amount of formation that is not observed is indicated
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Fig. 3 Global tropical cyclone genesis for JFM from (top) IBTracs best track data; and as gener-
ated by the CMIP3 CSIRO Mk 3.5 data from (middle) the CSIRO detection scheme; and (bottom)
the basin-dependent detection scheme. Formation rate is per 2:5ı � 2:5ı grid box per 20 years

in the basin-dependent scheme in the north Indian Ocean. The differences between
the results from the two schemes are partly due to the higher sensitivity of the
basin-dependent scheme; further analysis of the CSIRO detection results indicates
that it also detects some formation in the north Indian Ocean, but at a lower rate.

5.1.3 PCMDI Model Tropical Cyclone Generation

Results using the CSIRO detection scheme from those higher-resolution PCMDI
models that have sufficient daily data to enable tropical cyclone detection are shown
in Figs. 4 and 5. In general, results from lower-resolution models tend to be poorer
(not shown). Figure 4 shows results for January–March. The same arrangement of
models is made as for the GP results of Fig. 1. Comparing Fig. 1 to Figs. 4 and 5,
there appears to be little relationship between the GP and the actual rate of model
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formation of storms. For example, the ECHAM5 model (second row, third from
the left) has a very large value of GP, but the formation rate is not that high. In
contrast, the CSIRO models (third row) have a more realistic GP and a relatively
realistic formation rate. Both Camargo et al. (2007) and Yokoi et al. (2009) also
found little relationship between the GP and tropical cyclone formation. There
are a priori reasons to believe why these relationships might differ from model
to model. For instance, models have different representations of horizontal diffu-
sion and diffusive processes that are either explicitly specified in their dynamical
formulation or implicit in that formulation – for instance, a model that employs
semi-Lagrangian advection has an inherently more diffusive structure than one that
uses a more explicit advection scheme. Part of the process of model intercomparison
is identifying such model-dependent issues as a way of making recommendations
for improvements in model formulation.

The results of Figs. 4 and 5 show that there are substantial differences between
the formation rates of cyclones from model to model. There appears to be a slight
tendency for lower-resolution models to have lower rates of formation, but this is
certainly not systematic: for instance, the MIROC high-resolution model has rela-
tively low rates of cyclone formation despite it being the highest resolution model
in the PCMDI suite. A comparison of Figs. 4 and 5 shows that formation rates are
consistent from model to model despite the different season: if a model has a larger
formation rate in one season than other models, it also has a larger formation rate in
the other season.

Some systematic biases are evident in cyclone formation common across most
models. For instance, Fig. 5 shows that there is little formation in any model in the
Atlantic basin in June–September, even in models like the CSIRO models that have
considerable formation in other tropical cyclone basins. The observed formation rate
in the Atlantic is consistently lower than in the northeast and northwest Pacific, sug-
gesting that this could be a threshold effect: it can be argued that because the North
Atlantic is the only tropical cyclone basin not associated with a monsoon trough,
and because the seasonal mean flow has a westerly vertical shear, formation of trop-
ical cyclones is inherently more difficult in the Atlantic (McBride 1995). Thus, in
coarse-resolution models, few (or none) are formed. Certainly, finer-resolution mod-
els implemented in the Atlantic have little difficulty in generating tropical cyclones
(e.g. Knutson et al. 2008), although as discussed later, this is not solely a function
of resolution.

6 High-Resolution Global Model Output

Some preliminary results have been obtained from high-resolution model output.
The JMA-GSM 20-km global mesh model and the CMCC-INGV 80-km GCM
results are shown in Figs. 6 and 7. Both models appear to have a good pattern
of cyclone formation compared with observations, although both also have fewer
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Fig. 6 The same as Fig. 3 for (top) the MRI model and (bottom) the CMCC-INGV model as
described in the text, using the CSIRO detection scheme

than observed tropical cyclone formations. Again, neither model simulates suffi-
cient storm formation in the Atlantic. In the case of the results from the MRI model,
it is believed that the specification of the convection scheme in the model is caus-
ing the number of tropical cyclones to be less than observed (H. Murakami, 2009,
personal communication). For the CMCC-INGV model, the data analysed here are
daily average data, which as Fig. 1 shows would lead to an underestimate by at least
a factor of 2 on average in the number of detected storms. More recent analysis
of the CMCC-INGV model output is shown in Fig. 8, where four-times daily data
were analysed. The number of storms generated in the Atlantic basin is considerably
larger than in the daily average data, although still less than observed. Numbers in
most other basins are good, however.
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Fig. 7 The same as Fig. 6 for July–September

7 Regional Climate Model Results

One of the persistent biases even in the high resolution global models examined
here is the undersimulation of tropical cyclone formation in the Atlantic. Neverthe-
less, regional models implemented over the Atlantic have been shown to achieve
excellent results when nested within reanalyses (Knutson et al. 2008). Results are
shown here from the Canadian Regional Climate Model (GEM). GEM is a fully
non-hydrostatic model, employing an advanced semi-implicit, semi-Lagrangian
dynamical core (Zadra et al. 2008). The model uses a hybrid-terrain-following
vertical coordinate with 53 levels (top at 10 hPa) and uses the Kain-Fritsch parame-
terization scheme (Kain and Fritsch 1990) for deep convection and the Kuo transient
scheme (Kuo 1965; Bélair et al. 2005) for shallow convective processes. The lateral
boundaries are forced using a one-way nesting technique and the lateral boundary
conditions are derived from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis data (ERA-40; Uppala et al. 2005) for the 1979–2001
period and the ECMWF uninitialized global analyses for the 2002–2006 period.
No spectral nudging toward the pilot large-scale fields is performed.
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Fig. 8 Box plot of yearly tropical cyclone numbers, CSIRO detection scheme, for the CMCC-
INGV model, four times daily data, current climate, compared with observations

Over the entire period of simulation, GEM produced a total of 357 Atlantic trop-
ical cyclones, slightly more than the 318 storms observed during the same period.
The geographical distribution of the simulated storms is shown in Fig. 9, which dis-
plays the mean number of cyclogenesis events over a 2:5ı � 2:5ı area per decade.
There appears to be good concordance between actual cyclogenesis locations and
high ASO Genesis Potential Index values seen in Fig. 9.

Both this model and the ZETAC model employed by Knutson et al. (2008) cannot
simulate the strongest tropical cyclones, however. In this model, there were no hur-
ricanes stronger than Saffir-Simpson category 1, while Knutson et al. (2008) showed
a similar intensity distribution in their 18-km resolution model.

8 Discussion and Conclusion

A number of issues have been identified in this intercomparison process to date.
Many of the CMIP3 models simulate fewer than observed systems in the Atlantic
basin. The more recent experience of Zhao et al. (2010) may give some guidance
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Fig. 9 Top: Model formation rate (formation per 2:5ı�2:5ı box per decade); bottom: Emanuel GP

regarding how this problem may be addressed. The issue appears not to be simply a
matter of increasing resolution: Zhao et al. (2010) found that a previous version of
their model run at the same 50 km resolution as their recently published simulations
was unable to generate sufficient numbers of storms in the Atlantic. They made
several significant changes to this model, including the implementation of a new
dynamical core; an increase in the number of vertical levels; the introduction of a
diagnostic cloud scheme that assumed a sub grid-scale distribution of water; and the
replacement of the Arakawa-Schubert convection scheme by a shallow convection
scheme based on that of Bretherton et al. (2004). Testing showed that the main rea-
son that a better climatology of tropical cyclones was produced was the replacement
of the convective parameterization (M. Zhao, 2009, personal communication). This
emphasizes the importance of the specification of the convection scheme for the
generation of tropical cyclones, as also illustrated in Figs. 6 and 7 in this study.

Thus it is important to emphasize that higher resolution alone will not enable a
better climatology of tropical cyclones to be produced. In developing a good climate
model of tropical cyclone formation, it is clear that in addition to having a good
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simulation of the large-scale tropical climate, a model needs to generate realistic
small-scale variance. It is tempting to assume that the simulated detailed pattern of
large-scale variables, as for instance represented by genesis parameters, will neces-
sarily have a good relationship to tropical cyclone formation. But as shown by some
previous work and also in this study, there appears to be little relationship between
the chosen genesis parameter and the actual simulated rate of tropical cyclone for-
mation, at least at the typical resolution of the CMIP3 models. This is a significant
issue because it would be preferable not to have to take the model that is used for
mean climate prediction and tune or modify it into a special version that is used for
tropical cyclone climate prediction. If this is done, it reduces the confidence in these
predictions.

There are nevertheless good reasons to be optimistic regarding the future qual-
ity of tropical cyclone climate predictions. It is clear that models are continuing
to improve. A near-term goal may be the confident attribution of the recent ob-
served increase in tropical cyclone formation in the Atlantic ocean, in other words
determining the relative contribution of global warming and natural variability
(Emanuel 2007). The TC-MIP project, by suggesting common ways in which such
models can be improved, will aid in this process.
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Chapter 2
Change of Tropical Cyclone and Seasonal
Climate State in a Global Warming Experiment
with a Global Cloud-System-Resolving Model

Kazuyoshi Oouchi, Masaki Satoh, Yohei Yamada, Hirofumi Tomita,
and Wataru Yanase

Abstract Recent increase in computation power allows a use of high-resolution
global model to investigate possible future change of tropical cyclones. In this
chapter, we propose a new approach here to pursue the issue: the use of global
cloud- system resolving model (GCRM).1 It is the model designed with the clear
aim of resolving cloud cluster, an essential component of tropical cyclogenesis, and
therefore expected to provide a new result for the projection of future change of
tropical cyclone. This chapter highlights our first attempt of time-slice prediction
of future tropical cyclone (TC) under a global warming condition and associated
climate change of season-long period with 14-km mesh version of Nonhydrostatic
ICosahedral Atmospheric Model (NICAM), a prototype GCRM. Notable changes
in the seasonal-mean state include decrease in outgoing longwave radiation (OLR)
in the western to central Pacific, in particular east of the maritime continent, and
increase in OLR and decrease in outgoing shortwave radiation in the mid and high
latitudes. The former (the latter) is associated with an enhanced activity of precip-
itation (decrease in cloud amount) over the region. Global frequency of TCs in the

1“Cloud-system-resolving model” here refers specifically to a characteristic of the model in which
gross effects of mesocale ensemble of convection that plays important role in tropical cyclone are
represented. This type of model is capable of representing tropical cyclone viewed as a convec-
tive system built up of mesoscale ensemble of cumulus convection, if not the details of processes
associated with inner cumulus clouds or cumulus convection.
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seasonal period is projected to decrease, in agreement with the general statement in
the Intergovernmental Panel on Climate Change Fourth Assessment Report. On a
regional basis, the frequency decreases over the North Atlantic, and remains almost
unchanged in the western Pacific. The tendency of global frequency is found to be
insensitive to detection threshold of the surface wind speed in the tropical cyclone
tracking algorithm. The control experiment is designed for the particular year of
2004, which had a more El Nino flavor than normal year; therefore some caution is
necessary in interpreting the results for this particular choice of experimental design.

Keywords Tropical cyclone change � Global warming experiment � Global cloud-
resolving model

1 Introduction

High-resolution climate modeling is a general trend in the climate modeling com-
munity across worldwide. The 20-km mesh atmospheric general circulation model
developed in Meteorological Research Institute/Japan Meteorological Agency of
Japan is one of the highest resolution hydrostatic models (Mizuta et al. 2006). On
the other hand, global cloud-resolving modeling has recently opened a new era
to global modeling of tropical weather and short-term climate states. The Nonhy-
drostatic ICosahedral Atmospheric Model (NICAM, Satoh et al. 2008; Tomita and
Satoh 2004) is a prototype of such kind of model, and has demonstrated simulations
of tropical weather events in which mesoscale clouds and convection play vital role,
such as Madden-Julian Oscillation (MJO; Miura et al. 2007) and tropical cyclone
(Fudeyasu et al. 2008; Oouchi et al. 2009a) and boreal summer Indo-Asian monsoon
(Oouchi et al. 2009b).

This chapter shows some results from another new attempt to apply NICAM
to the study of future change of tropical cyclone activity and the associated sea-
sonal climate states. The time-slice experiment is performed with the boundary
condition provided by World Climate Research Program (WCRP) Coupled Model
Inter-comparison Project phase 3 (CMIP3) coordinated activity. Results from an-
other comprehensive analysis on the projected tropical cyclone change are discussed
in Yamada et al. (2010). This chapter is organized as follows: Section 2 overviews
design of the experiments. Section 3 discusses the results, and summary and addi-
tional remarks are described in Section 4.

2 Experimental Design

The model configuration of NICAM is the same as that used by Oouchi
et al. (2009a). The horizontal grid spacing is approximately 14 km. Although
the resolution is coarser for cloud-resolving model, it is chosen partly because the
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multi-months time integration with much finer resolution is very computationally
demanding, and partly because this is a first step to investigate this problem
using global nonhydrostatic model and identify an overall performance of the
approach. The resolution can capture mesoscale convection and cloud cluster and
their interaction with tropical disturbances such as Madden-Julian Oscillation
(MJO) that play important role in tropical cyclogenesis (Miura et al. 2007; Oouchi
et al. 2009a). The experiment follows a time-slice approach (Bengtsson et al. 1996)
consisting of a control (CTL) experiment for the period of June–October 2004 and
a future GW experiment for the period of May–October at the end of the twenty-
first century. May for GW is regarded as a spin-up period and excluded from the
analysis.

Due to the large computational burden of GCRM approach, time integration is
limited to one season, and statistical reliability of the projected TC changes remains
as a topic of future research. The purpose of this experiment is therefore to see
general feasibility of GCRM to approach the problem of future TC change un-
der a particular boundary condition (such as sea surface temperature) as well as the
associated climate components, to provide a general background to see merit and de-
merit of the GCRM approach for this purpose against conventional climate models.
The intention here is not to provide general conclusion regarding the future tropical
cyclone change, but rather to provide a case study of future change with a particular
set of CTL and future experiment conditions. For CTL, the boundary conditions of
sea surface temperature (SST) and sea ice concentration (SIC) are the same as those
in the boreal summer 2004 experiment of Oouchi et al. (2009a). The conditions for
GW are created using the dataset of the World Climate Research Program (WCRP)
Coupled Model Inter-comparison Project phase 3 (CMIP3) with the method of
Mizuta et al. (2008). The climate forcing for GW is created by adding the SST and
SIC differences between the present-day (1979–2003) and GW (2075–2099) peri-
ods to the CTL. The pattern of SST forcing is El-Nino like and details are discussed
in Yamada et al. (2010). The carbon dioxide concentration in GW is uniformly twice
that in CTL, following the A1B scenario of the Intergovernmental Panel on Climate
Change (IPCC)’s Special Report on Emissions Scenarios (SRES). The initial con-
ditions for GW are taken from a present-day National Centers for Environmental
Prediction (NCEP) reanalysis dataset for 0:00 UTC 1 May 2004. The model TCs
are tracked using the methodology described by Sugi et al. (2002) and Oouchi
et al. (2006). We compare the simulated TCs with an observational TC dataset
(OBS) provided by the Unisys Corporation (http://weather.unisys.com/hurricane/)
and IBTrACS (International Best Track Archive for Climate Stewardship). We
use 17.5 m s�1 at 1,000 hPa as the wind speed threshold for TC definition;
no artificial tuning of thresholds is required for the 14-km mesh simulation
(Walsh et al. (2007).
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3 Results

3.1 Changes in Mean Climate Features

A possible change in tropical cyclone under future climate condition has been
investigated by many types of numerical models with multi-year time integration.
The results discussed in this chapter are based on seasonal-long analysis (3 months),
and therefore they cannot be extrapolated beyond the context of seasonal long
projection. Yet, as GCRM has strength in treating mesoscale organization of clouds
and convection (Satoh et al. 2008), it is as such expected to convey more reliable
information regarding the tropical cyclone genesis, its development and the associ-
ated cloud climatology than in the conventional climate models. Its potential merits
further investigation.

Figures 1–4 show the horizontal distribution (left) and zonal mean (right) of the
seasonal (3-months) averaged Outgoing Shortwave Radiation (OSR), OLR, surface
precipitation rate, and surface temperature for the control (CTL), global warming
experiments (GW), and the difference as GW minus CTL. In terms of general char-
acteristics, two features are to be mentioned here. First, OLR decreases for GW in
the northern Indian Ocean, and the east of the maritime continent. This can be due to
the enhanced precipitation activity over the region, which can be confirmed in Fig. 3.
Second, OLR increases and OSR decreases in the mid latitudes over 30–60ı N. This
feature is likely to result from decrease in cloud amount (not shown), which is sug-
gested by decrease in OSR and the increase in OLR as a manifestation of the surface
temperature increase over the region (Fig. 4).

For regional characteristics, a precipitation increase under GW condition is dom-
inant, in particular over the western Pacific. Across the central to eastern Pacific
east of 120–150ı W, significant increase is detected in the latitudinal belt around
5–10ı N. On its poleward and equatorward sides, precipitation is found to decrease.
This suggests a meridional shift or change in the width of the active precipitation
band corresponding to the intertropical convergence zone.

3.2 Changes in Tropical Cyclones Tracks Frequency
and Maximum Wind Speed

The changes in seasonal mean features discussed in the previous sub-section are the
background climate states on which disturbances such as tropical cyclones are em-
bedded. This subsection treats some simulated changes in tropical cyclone activity.
The tropical cyclone tracks during the 3 months period for CTL and GW experi-
ments, and the best track dataset are shown in Fig. 5, wherein distribution of the
period-averaged sea surface temperature are superimposed on the plots. We can see
that the tracks in CTL experiment are generally consistent with those in the observa-
tion (Figs. 5a and 5b). There is little deficiency over the north western Pacific, which
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Fig. 1 Horizontal distribution of outgoing shortwave radiation (W m�2/ averaged over the
3 months period, JJA (left), and its zonal average (right) for (a) from Observation from NCEP
Reanalysis, (b) control experiment (CTL), (c) global warming experiment (GW), and (d) the dif-
ference as GW minus CTL. Error bars are included for the difference (GW minus CTL) of the
zonal average (d)
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Fig. 2 Same as Fig. 1 but for outgoing longwave radiation (W m�2)
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Fig. 3 Same as Fig. 1 but for surface precipitation rate (mm day�1/. Observation (a) is from the
Tropical Rainfall Measuring Mission 3B42 dataset
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Fig. 4 Same as Fig. 1 but for surface temperature (K)
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Fig. 5 Tropical cyclone tracks (black) from June to August, and sea surface temperature (shade)
averaged over the period for (a) CTL experiment, (b) Unisys best track, and (c) GW experiment.
(d) sea surface temperature difference as GW minus CTL. White contours in (a–c) are every 1 K

Table 1 The tropical cyclone numbers for the globe and each ocean basin during June, July and
August of 2004 for observations (best track database from Unisys and IBTrACS), CTL exper-
iment and a future 3-month period under GW experiment. Each oceanic basin is defined as in
Oouchi et al. (2006); Indian Ocean (30–100ıE); Western Pacific Ocean (100–180ıE); Eastern
Pacific Ocean (180–90ıW); Atlantic Ocean (90ıW–0)

Indian Ocean W. Pacific E. Pacific Atlantic Globe (JJA)

OBS (Unisys) 3 15 7 8 33
OBS (IBTrACS) 0 16 7 8 31
CTL 8 12 3 3 26
GW 2 13 3 1 19

is usually the case in most of conventional climate models (Oouchi et al. 2006). In
the GW experiment, tropical cyclones become active over the western Pacific and
quiescent over the Atlantic ocean (Yamada et al. 2010). Table 1 summarizes the
tropical cyclone frequency for each oceanic basin and the globe for OBS, CTL,
and GW. The global number (26) for CTL is close to the observed number of 33
(Unisys) or 31 (IBTrACS). This particular experiment with 14-km mesh GCRM
therefore reproduces the global tropical cyclone number for this particular season
(JJA of 2004) close to observation without artificial tuning of the threshold for TC
definition. However, model underpredicts the count over the Atlantic Ocean and the
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Fig. 6 Frequency percentile for CTL and GW as a function of the maximum wind speed at 1,000
hPa (left panel) and minimum sealevel pressure (right panel) for each of the 3-month experiment

Eastern Pacific, and overpredicts it over the Indian Ocean. Improvement of these
biases are important for accurate projection of tropical cyclone change, which we
are intensely working on. In terms of future change, the global frequency is reduced
from 26 to 19 (by about 30%), but the change depends on the ocean basin. The fre-
quency is decreased over the Indian Ocean and the North Atlantic Ocean, whereas
it remains almost unchanged over the western Pacific and the eastern Pacific.

The change in intensity of TCs in GW condition is investigated, and the his-
tograms of the maximum wind speed and the minimum sea-level pressure are
displayed in Fig. 6. Overall, TCs of intense class (such as wind speed higher than
55 m s�1 and the pressure lower than 900 hPa) are found to increase in GW, com-
pared to the TCs of weaker class; for example, the pressure of the most intense TC is
about 871 hPa in GW while it is 902 hPa in CTL. The tendency of increase in intense
TCs under GW condition is in agreement with past studies with high-resolution cli-
mate model (e.g., Oouchi et al. 2006).

How to specify threshold values in physical parameters in detecting tropical
cyclone in a given model is a key problem for model inter-comparison. Figure 7
shows the sensitivity of the global tropical cyclone numbers to threshold values of
the wind speed. It is demonstrated that global reduction tendency in GW is robust
for any given surface wind speed threshold. It turned out that the robustness of the
reduction in the tropical cyclone number holds even when the other thresholds (such
as warm core criterion) are changed. The graphs also suggest that storm of tropical
depression type (with the maximum wind speed being less than 17 m s�1/ occupies
about 47% and 40% of the total storms that reached the wind speed of more than
10 m s�1 for CTL and GW experiment, respectively. Therefore, it is hypothesized
that the GW atmosphere can be generally unfavorable for increasing frequency of
diabatically sustained vortex disturbances of weaker intensity class, in spite of in-
crease in moisture compared to present-day climate condition. On the contrary, it is
favorable for increasing frequency of intense tropical cyclone (Yamada et al. 2010),
which supports the 20-km mesh GCM study (Oouchi et al. 2006) and recent obser-
vational study (Elsner et al. 2008). Walsh et al. (2007) suggested that most of the



2 Change of Tropical Cyclone and Seasonal Climate State in a GW Experiment 35

Fig. 7 Tropical cyclone numbers for CTL and GW experiments with varying maximum wind
speed thresholds

conventional climate models used different criteria for detecting tropical cyclone,
and therefore it has been difficult to extract unified information by inter-model com-
parisons. It is pointed out that the threshold varies roughly linearly with resolution.
According to their results, the 17.5 m s�1 threshold used in this experiment can pro-
vide reasonable assessment to detect tropical cyclone with the grid spacing of 14-km
used in this experiment.

4 Summary and Remarks

This chapter reports our attempt to use GCRM to investigate changes in tropical
cyclones (TCs) under future global warming conditions by discussing highlights of
some simulated results. The use of GCRM can be a new, promising strategy for a
scenario-driven estimate of future climate that would benefit most from the expected
future high-end computation environment.

We found that the projected TC changes are consistent with findings of the
IPCC-4th Assessment Report (IPCC 2007) in terms of a global reduction of fre-
quency and global increase of more intense TCs under the global warming climate
condition (Yamada et al. 2010). In each oceanic basin, the model projects little
change over the western Pacific, and noticeable reduction in the North Atlantic, al-
though its statistical robustness remains to be fully evaluated in future work with the
extension of time integration period. Over the western Pacific, TC genesis is merely
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shifted eastward due to the prescribed SST of El-Nino-like pattern, leading to lit-
tle change in frequency, and reduction in the North Atlantic is also associated with
change in the atmospheric circulation pattern that is mostly ascribed to El-Nino-like
SST forcing (Yamada et al. 2010). The result also suggests that the projected TC
change in the western Pacific and the Atlantic Ocean is sensitive to the way SST
forcing is given, as pointed out by Sugi et al. (2009). It is necessary to investigate
how sea surface temperature change affects future tropical cyclone activity; an evi-
dence was demonstrated by satellite-derived observation study (Elsner et al. 2008).

It is important to note that, although the present work projects global reduc-
tion in future TC frequency being consistent with the IPCC AR4, the underlying
physical implications are far-reaching; GCRM is capable of tracking the major-
ity of convection-coupled seed vortices that can develop into TCs, and these are
the processes inadequately represented in conventional GCMs due to uncertainty
in cumulus convection schemes (Oouchi et al. 2009a). The subsequent aim of the
present work is therefore to clarify the mechanism of the projected change in TCs,
making use of the strength of GCRM that resolves with fidelity cloud system. To
obtain statistical robustness of TC characteristics, time integration needs to be ex-
tended beyond one season, which is another direction we should take in a future
work. Climate variability on different time scale, such as decadal change in SST,
complicates the real picture and clear understanding on causal relationship between
SST change and tropical cyclone activity change (Knutson et al. 2007). Discrimina-
tion of these processes spanning different time scales is difficult by the present study
with the limited time integration period, and nor can we plan to clarify this type of
problem using GCRM under the current computational power. We may ultimately
need to incorporate some ocean–atmosphere interaction processes for accurate pro-
jection of future change, which should be an important research theme in a near
future.

An ongoing analysis plan with the current dataset is to investigate change in
triggering disturbances such as MJO and easterly and equatorial waves. It will help
understand the two distinguishing questions of “how tropical cyclones intensify in
future” and “how tropical cyclones are initiated in future.” This is an important
subject that has not been systematically investigated using conventional GCMs, and
GCRM can provide a comprehensive understanding on this problem.
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Chapter 3
Role of the SST Anomaly Structures in Response
of Cyclogenesis to Global Warming

Fabrice Chauvin and Jean-François Royer

Abstract Projections of future changes in tropical cyclone genesis are still subject
to debate since no consensus has been reached, yet, among the General Circulation
Models which participated in the last IPCC Assessment Report (AR4). Making the
hypothesis that the main reason for such a dispersion in the responses come from
the diversity of sea surface temperature anomaly structures obtained in the coupled
atmosphere/ocean systems, an ensemble of experiments has been conducted with
the CNRM/Météo-France ARPEGE/Climate model, forced with climatological sea
surface temperatures (SST) issued from 15 of the 22 coupled models of the AR4.
In this chapter, responses in the original AR4 simulations and ARPEGE experi-
ments were compared for two indices representing global cyclogenesis of tropical
cyclones: the Convective Yearly Genesis Parameter and the Genesis Potential Index.
CYGP responses in the ARPEGE experiment present a dispersion similar to the one
from original AR4 scenarios, suggesting that the SST anomaly structures play a sig-
nificant role in these responses. Additional experiments, using year-to-year varying
SST, suggested that the interannual variability of SST cannot explain the dispersion.
Additionally, looking at the mean ensemble response for original AR4 and ARPEGE
SST forced simulations, tropical Indian Ocean and parts of the West Pacific, North
of 20ıN, appear to deliver a consistent response, which ARPEGE is able to repro-
duce and even to enhance. This implies that use of a single model in sensitivity
experiments may be an interesting approach in suppressing all dependencies on the
models characteristics and configurations.
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GAME/CNRM (Météo-France/CNRS), 42 Avenue Coriolis 31057 Toulouse Cedex 01, France
e-mail: fabrice.chauvin@meteo.fr; jean-francois.royer@meteo.fr

J.B. Elsner et al. (eds.), Hurricanes and Climate Change: Volume 2,
DOI 10.1007/978-90-481-9510-7 3, c� Springer Science+Business Media B.V. 2010

39

fabrice.chauvin@meteo.fr
jean-francois.royer@meteo.fr


40 F. Chauvin and J.-F. Royer

1 Introduction

According to last Assessment Report (AR4) of the IPCC (Solomon et al. 2007),
a synthesis of the model results to date indicates that, for a future warmer cli-
mate, coarse-resolution models show few consistent changes in tropical cyclones,
with results dependent on the model (WG1, Chapter 10). Due to the complexity
of the climate and its representation by models of different complexity, differ-
ent reasons may be emphasized to explain such a spread in the response of the
models. The model resolution is probably the most important, since most of the
models participating in the last IPCC exercise show resolutions between 500 and
120 km which are not sufficient to represent correctly all the dynamics or mech-
anisms of the tropical cyclones. Moreover, assuming that tropical cyclones could
be represented, their characteristics will depend largely on the model physical pa-
rameterizations, which determine how convection organizes. A third reason for the
discrepancy between models lies on the structures of the sea surface temperatures
(SST) calculated by the coupled systems. Indeed, while all the IPCC models in-
dicate a substantial rise in the global mean SSTs, spatial and temporal patterns of
change can differ greatly from one system to another. These differences may arise
from ocean model, atmospheric model and/or surface fluxes at the interface between
the two. Chauvin et al. (2006), using high-resolution atmospheric configuration of
the ARPEGE/Climat model forced with two sets of SST anomalies, showed that
the response of the tropical Atlantic cyclonic activity to global warming depended
strongly on the spatial structure of these anomalies, more than the magnitude of the
warming. The reason for such a dependency to SST anomaly patterns was found
to be the mean response of the atmosphere to differential heating at the surface,
through vertical shear of the horizontal wind, particularly.

Due to the low resolution of the models used to simulate present and future cli-
mate, tropical cyclones cannot be explicitly tracked in most AR4 climate scenarios.
One way to deal with this discrepancy is to assess large-scale conditions which are
thought to favor cyclogenesis. Early works of Gray (1968, 1975) suggested some
large-scale indices combining several variables leading to enhancement of cycloge-
nesis. Among these variables, one can distinguish between dynamical and thermal
conditions. Dynamical conditions include the Coriolis effect, the vertical shear of
horizontal wind between low and high troposphere and relative vorticity in low
levels, while thermal conditions account for the instability of the atmosphere as
well as the oceanic heat content, through mid-level relative humidity, lapse rate
and difference between SST and 26ıC, a threshold widely accepted as a condition
of formation of cyclones after the works of Palmen (1948). Combination of these
variables led to the building of a Yearly Genesis Parameter, calibrated to account
for a 20-year genesis climatology. This index was used by Ryan et al. (1992) and
Watterson et al. (1995) to demonstrate that it allowed to diagnose, in General Cir-
culation Models, climatology and interannual variability of cylogenesis. In 1998,
Royer et al. showed that the Gray’s formulation as it was defined, could not be
used to address climate change They proposed a refinement of the YGP to repre-
sent the thermal component through the use of convective precipitation, which can
be seen as an integration of all the thermal effects in play inside the model. The
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Convective YGP (CYGP) was thus used to address the impact of anthropogenic
global warming in model scenarios. This new index has been largely used in a num-
ber of studies (McDonald et al. 2005; Chauvin et al. 2006; Royer and Chauvin 2008;
Caron and Jones 2008). Since then, Emanuel and Nolan (2004) have proposed a
new formulation of what is called the Genesis Potential Index (GPI), based on
broadly the same dynamical component as the YGP but using relative humidity
and the concept of Potential Intensity (PI, Bister and Emanuel 1997) to account
for thermal conditions. This index has been described and validated in Camargo
et al. (2007a, b). It is important to mention that one does not really know whether
large-scale indices represent the favourable conditions for cyclogenesis or traces of
the tropical cyclone activity on the large-scale conditions. Indeed, few attempts have
been made to assess the interannual variability of indices in relation with ENSO pat-
terns (Camargo et al. 2007a). On the contrary, most studies related to indices have
described climatological relationships between large-scale conditions and genesis.

Relationship between SST and cyclonic activity have been largely debated in the
past. Early works of Palmen (1948) related cyclonic activity with SST and further
works have emphasized the role of SST in the development of tropical cyclones
(Emanuel 1986; Holland 1997). Beyond the direct effect linking SST to tropical
cyclone activity (Saunders and Lea 2008), another relationship may occur through
atmospheric circulation induced by SST anomaly structures. The impact of ENSO
on cyclonic activity, notably, is important in modifying the distribution of favorable
regions of cyclogenesis (Camargo et al. 2007a).

2 Definitions of the Cyclogenesis Indices

2.1 Convective Yearly Genesis Parameter (CYGP)

The CYGP has been defined by Royer et al. (1998) to solve the problem of Gray’s
YGP to account for climate change scenarios.

The dynamical potential was the same as in the YGP, defined as the product of
the three original factors:

CYGP D f .—r f=jfj C 5/ .j•V=•Pj C 3/�1 Pc;

where f D 2�: sin ® is the Coriolis parameter, ® is the latitude and � the angular
velocity of the Earth in 10�5 s�1, —r is the low level relative vorticity at 950 hPa
in 10�6 s�1, •V=•P is the vertical shear of the horizontal wind (V) between the
pressure (P) levels 950 and 200 hPa, in m s�1/750 hPa and Pc is the convective pre-
cipitation which exceeds a given threshold.

The complete thermal potential of Gray’s YGP has been replaced by one based on
the convective precipitation diagnosed by the models. In order to avoid that cyclo-
genesis is diagnosed over regions of shallow convection, a threshold was introduced
in the formulation of the thermal potential, i.e. if convective precipitations are un-
der this amount, the convective potential is set to 0. The choice of the threshold
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has been made empirically, in such a way that the ERA40 spatial repartition of the
CYGP corresponds fairly to global observations. A basic threshold of 3 mm day�1

was fixed for ERA40. Without taking into account the 3 mm day�1 threshold, near
mid-latitudes cyclogenesis is artificially diagnosed while the conditions are gener-
ally not favorable over these regions.

Since the total convective precipitation varies from model to model, depending
on the convective precipitation scheme, we made the convective threshold model-
dependent and proportional to the total oceanic convective precipitation simulated
by each model between the latitudes 35ıS and 35ıN. The complete description of
the calculation appears in Royer et al. (1998) and Royer and Chauvin (2008).

2.2 Genesis Potential Index (GPI)

The GPI of Emanuel and Nolan (2004) is defined as follows:

GPI D j105 —aj3=2 .H=50/3 .Vpot=70/3 .1 C 0:1Vshear/
�2;

where —a is the absolute vorticity at 850 hPa, H the relative humidity, Vpot is the
maximum PI wind speed and Vshear is the vertical shear of the horizontal wind be-
tween 850 and 200 hPa.

The PI used in this index has been studied from a long time by Emanuel (1995)
and Bister and Emanuel (1997) and aims at representing the stability of the atmo-
sphere, given the SST, MSLP and lapse rate. The GPI index has been used in climate
studies by Camargo et al. (2007a, b) and Nolan et al. (2007).

2.3 Calibration

To allow comparison between all the indices from all the models, a convention was
adopted which ensures that the global number of cyclogenesis is equal to 84 systems
in the present climate. Thus, the model-dependent calibrating factor is applied to in-
dices for future climate in the same way as in the present one. We choose to perform
a global instead of per-oceanic-basin calibration to let each simulation produce its
proper distribution of cyclogenesis around the world. When looking at basin num-
ber of cyclogenesis, one should keep in mind that numbers are representative of the
part of cyclogenesis calculated in the basin relative to the total number.

3 Objectives of the Study

In order to try to understand why models give such different responses to global
warming, we undertook a set of simulations with the help of ARPEGE/Climat model
of the CNRM. Use of a unique model allows to address the impact of SST anomaly
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patterns in a forced configuration and at a constant resolution. This is an attempt to
isolate the only SST effect from the complete set of IPCC AR4 models.

From 15 of the 22 models archived in the IPCC database, we calculated the
present (1990–1999) and future (2090–2099) climatologies of SST, taken from the
control and SRESA2 scenarios for each and we performed present and future runs
of 10 years each with these climatologies as a forcing. No interannual variabil-
ity was considered in this ensemble of simulations due to the computational cost
of such experiments. Additional four 30-year simulations were nevertheless per-
formed with interanually varying SSTs to address the sensitivity of the results to
this timescale variability. These additional simulations were forced by SSTs over
the periods 1970–1999 and 2070–2099. ARPEGE/Climat was run in a T63 trun-
cation, associated with a physical grid of approximately 2ı8 � 2ı8. The vertical
resolution consists in 31 atmospheric levels, mainly distributed in the troposphere
but nevertheless representing the stratosphere quite well. The convective scheme is
from Bougeault (1985). For all the simulations, CYGP and GPI were calculated on
the base of monthly means and averaged over the same periods of 10 years to calcu-
late the annual number of cyclogenesis. Figure 1 shows the 15 SST anomalies taken
from the original AR4 models. It can be seen, from Fig. 1 that there is a large variety
of SST patterns, even though general patterns seem to emerge: positive anomalies
over equatorial Pacific and global Indian Ocean and negative ones over southeastern
Pacific. Over the Atlantic, no common feature emerges.

The hypothesis that we want to test here is that the dispersion in cyclogenesis
activity, at least as measured by CYGP and GPI, is due to the variety of SST anomaly
patterns structure. For this, we eliminate all the other sources of dispersion by us-
ing the same physics and resolution, through the use of a unique model. Another
source of dispersion has been suppressed, in the first part of the study, interannual
variability of the surface boundary forcings. In a second part, we performed some
experiments to assess the sensitivity of the cyclogenesis response to interannually
varying SSTs.

4 Global Results

Table 1 shows the correlations for the two cyclogenesis indices and for each AR4
model between the climatological response in the original simulation and in the
ARPEGE forced simulation. The first notable feature in Table 1 is that the GPI
correlations are much stronger that the CYGP correlations. To understand this
relationship more clearly between the ARPEGE and original simulations, one
should remember that the two indices differ largely in their definition of the thermal
potential. Indeed, for the GPI, the PI concept is largely dependent on SST while the
CYGP is essentially based on convective precipitation. The latter is more variable
and highly dependent on the convective scheme used in the model. It is thus not
surprising that the thermal potential obtained with ARPEGE can differ greatly from
the original one. Indeed, the ARPEGE simulated CYGP anomaly is quite better



44 F. Chauvin and J.-F. Royer

Fig. 1 Normalized SST anomaly patterns for the 15 models. Red to yellow colors are associated
with positive anomalies and blue to green to negative ones. The periods of averaging for climatolo-
gies are respectively 1990–1999 and 2090–2099. Units are in degree Celsius

correlated to the original CNRM-CM3 (0.38) than to the other models, since the
same convective scheme is used for original and forced simulations. The most strik-
ing feature in the CYGP correlations is the good correlation for the other French
model from IPSL. Although the two models are completely different in their con-
stitution (ARPEGE is spectral while the IPSL model is performed in grid-point)
as well as in their parameterizations, their respective correlations appear equal, far
higher than the other models. The MPI model is also distinct from the other models
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Table 1 IPCC AR4 name and horizontal resolution of the models selected for this study,
and spatial correlations between responses in coupled AR4 models and ARPEGE sim-
ulations for CYGP and GPI. Numbers in parentheses are for interannual varying SST
experiments

Model Resolution CYGP GPI

INMcm3 0 5ı � 4ı 0.05 0.44
GISS model e r 5ı � 4ı 0.11 0.49
CCMA cgcm3 1 T47 0.17 0.46
IPSL cm4 3:75ı � 2:5ı 0.38 (0.41) 0.61
UKMO hadcm3 3:75ı � 2:5ı 0.11 (0.07) 0.25
MRI cgcm2 3 2 a T42 0.12 0.31
MIROC3 2 medres T42 0.21 0.44
BCCR bcm2 0 T63/G42 0.04 0.44
CNRM cm3 T63/G42 0.38 (0.51) 0.44
GFDL cm2 0 2:5ı � 2ı 0.07 (–0.06) 0.47
CSIRO mk3 0 T63 0.00 0.26
MPI echam5 T63 –0.07 0.00
UKMO hadgem1 1:875ı � 1:25ı –0.06 0.16
NCAR ccsm3 0 T85 0.15 0.32
INGV echam4 T106 0.10 0.34

in that the ARPEGE simulations fails at reproducing both CYGP and GPI anomalies
obtained with the original run. Since the two indices present the same discrepancy,
one may think that the problem lies in the dynamical potential. We verified that in
the original AR4 simulations with MPI model, response in dynamical variables is
weaker than in the other models.

As an illustration, Fig. 2 shows the original AR4 and ARPEGE simulated anoma-
lies in CYGP for the models from CNRM, GFDL, IPSL and UKMO which will
be studied in more details in the next section. The two French models show some
strong similarities in the anomalies in the South Indian Ocean (SIO) and, in parts of
the Arabian Sea. In other part of the world, the patterns differ and each of the models
present their own particularities. CNRM reproduces relatively well the Northern Pa-
cific tropical band as well as the South Pacific West/East dipole, while IPSL does a
good job for North Pacific subtropical dipole and tropical Atlantic. On the contrary,
GFDL and UKMO models show several parts of the world were the patterns differ
substantially, even if by some places, results are in agreement. For the GPI index, as
said earlier, similarities are higher between original and forced simulations (Fig. 3).

According to correlations shown in Table 1, SST anomaly patterns between
present and future climate in the original scenarios of the AR4 cannot account
for the entire response of cyclogenesis, as hypothesized in Section 3. On the other
hand, Figs. 2 and 3 suggest that dispersion in the SST anomaly patterns prescribed in
the ARPEGE simulations leads to quite different cyclogenesis anomalies. Thus, in
agreement with Chauvin et al. (2006), SST plays an important role in the cyclogene-
sis response to climate change even though it cannot explain the whole response. In
Section 3, we mentioned that four additional experiments were performed in order
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Fig. 2 Future minus present climate CYGP anomaly for original scenarios (left) and ARPEGE
SST-forced simulations (right). Climatologies have been computed over periods 1970–1999 and
2070–2099 for AR4 original models and over the ten climatological years for ARPEGE. Units
are in number of cyclogenesis per 5ı per 20 years. Models retained are CNRM, GFDL, IPSL and
UKMO (hadcm3)
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Fig. 3 Same as Fig. 2 for GPI

to assess the sensitivity of ARPEGE response to the year-to-year varying SSTs. We
performed 30-year simulations for both present and future climate SSTs from each
of the four models presented in Fig. 2. CYGP anomalies are presented in Fig. 4.
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Fig. 4 Future minus present climate for ARPEGE year-to-year varying SST-forced simulations.
Climatologies have been computed over periods 1970–1999 and 2070–2099 for both original AR4
and ARPEGE simulations. Units are in number of cyclogenesis per 5ı per 20 years. Models re-
tained are CNRM, GFDL, IPSL and UKMO (hadcm3)

For the CNRM SST anomaly, including interannual variability makes the CYGP
response closest to the coupled scenario than using the mean anomaly. Correlation
reaches 0.51 instead of 0.38 for the mean SST experiment (correlation was per-
formed with a 30-year climatology of the original AR4 model instead of the 10-year
climatology used to compare mean SST experiments). Nevertheless, the major dis-
crepancy in the WNP basin between 15ıN and 30ıN persists though less marked.
For the other models, no significant increase can be detected in the year-to-year
varying SST experiments. This is not surprising since ARPEGE model has no rea-
son to respond to interannual SST varying in the same way as original AR4 models.
Thus, except for the CNRM model, performing the year-to-year varying SST exper-
iments has not really improved the correlations between ARPEGE experiments and
original AR4 models. This implies that lack of interannual variability cannot explain
the weak correlations between ARPEGE and original AR4 anomalies. Since all the
simulations have been calibrated relatively to the same number of global cyclogene-
ses, all the responses from the original AR4 models can be averaged for CYGP
and GPI, and thus compared with the mean ensemble response from ARPEGE.
Figure 5 shows the resulting CYGP (top) and GPI (bottom), for original AR4 (left)
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Fig. 5 Future minus present climate mean anomaly of CYGP (top) and GPI (bottom) calculated
from the 15 models. On the left, anomalies are for the original AR4 scenarios and on the right for
ARPEGE climatological SST-forced simulations. Climatologies have been computed as in Fig. 2.
Units are in number of cyclogenesis per 5ı per 20 years. Black contour delineate regions were the
difference is significant at 90% in a Student’s t-test

and ARPEGE (right) simulations. Black contour represents the regions were the
mean response is significant at the 90% level, according to a Student’s t-test. From
Fig. 5 left panels, it can be seen that most basins show coherent responses for both
CYGP and GPI in the original AR4 models. Among all the basins, some show some
significant responses: North Indian Ocean and tropical North East Pacific for both
CYGP and GPI, and South Indian Ocean for CYGP. From Fig. 5 right panels, some
regions show robustness of the mean ARPEGE ensemble simulations over Indian
Ocean and, in a lesser extent, over West North Pacific, North of 20ıN. On the
contrary, North East Pacific is no more coherent while tropical Atlantic shows a
coherent response where original AR4 models did not converge. Strength of the
response in the Indian Ocean is higher than for original AR4 models.
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5 Results for the Different Oceanic Basins

To assess cyclogenesis in a more integrated point of view, we calculated the mean
number of cyclogeneses (NC) for each of the original AR4 and ARPEGE simula-
tions, from both CYGP and GPI. 6 basins were considered: North Indian Ocean
(NIO), South Indian Ocean (SIO), West North Pacific (WNP), North East Pacific
(NEP), South West Pacific (SWP) and Atlantic (ATL). Table 2 indicates the limits
of the basins.

Figure 6 shows a scatter plot of NC in ARPEGE versus original AR4, for each
basin. Dots are for present and triangles for future climate and the left figure shows
the results for the CYGP and the right one for the GPI. For both CYGP and GPI
in the present climate, the respective NC for each basin is preserved when using
ARPEGE, that is the CNRM model does not bias the cyclonic activity toward a
particular basin when forced by the original AR4 SST. Looking in more detail shows
that ARPEGE tends, nevertheless, to overestimate cyclonic activity over NWP and
ATL, and to underestimate it over NEP and SWP, for the two indices. In the Indian

Table 2 Limits of the
oceanic basins

Basin Limits

North Indian Ocean 40–100ıE 0–35ıN
South Indian Ocean 20–100ıE 0–45ıS
West North Pacific 100–180ıE 0–55ıN
North East Pacific 180ıW to American coast 0–55ıN
South West Pacific 100–200ıE 0–50ıS
Atlantic American coast-Greenwich 0–55ıN
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Fig. 6 Scatter plot of the numbers of cyclogenesis per basin and per model. Each symbol repre-
sents the number of cyclogenesis calculated from original AR4 model in abscissa and ARPEGE
forced simulation in ordinate. Dots are for present and triangles up for future climate
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Ocean, SWI is well reproduced by ARPEGE while NI is overestimated for GPI and
underestimated for CYGP. In agreement with correlations showed in Table 1, GPI
index shows a smaller dispersion than CYGP.

Concerning the response to global warming, comparison of ARPEGE simula-
tions with original AR4 runs differs from indices and basins. For the CYGP (Fig. 5
left), and in agreement with Fig. 5, future NC in ARPEGE simulations tends to
be greater than present NC over NIO and SIO, as well as Atlantic basin. For the
latter, original mean AR4 models did not show any consensus. For Indian basins,
the increase in the future was already present in original AR4 even though not as
strong and significant than in ARPEGE. For the NWP, ARPEGE shows no preferred
scenario while original AR4 tended to increase NC, although results were not signif-
icant. For the NEP and SWP, ARPEGE agrees with original AR4 on no consensual
change. The results obtained for the GPI are sensibly the same as for the CYGP
except for the SWP were ARPEGE clearly shows an increasing NC while original
AR4 were less conclusive.

From Figs. 5 and 6, thus, it can be concluded that Indian Ocean has a particular
status among the other basins in the sense that original AR4 models seem to present
some coherent tendencies well reproduced by ARPEGE.

To understand this relative consensus on the Indian Ocean response to anthro-
pogenic warming, we distinguished between thermal and dynamical components of
CYGP and GPI. Thermal potential appears to be the component which explains the
mean behavior of the indices. For CYGP, this potential is based on the convective
precipitation (Pc), while for GPI, this is the product of the PI and relative humid-
ity. Only the PI and Pc show a mean response structure coherent with the whole
CYGP and GPI mean responses. The anomalies of thermal potential in CYGP and
PI term in GPI are represented in Fig. 6. Relative humidity, vorticity and vertical
shear do not show such structures which could explain the consensus (not shown).
Both terms show a largely positive response everywhere except in the central South
Pacific, and this structure is in good agreement with the mean SST response shown
in Fig. 8. Indeed, Fig. 7 shows a mean positive anomaly over all the tropical band,
Arabian Sea, North Eastern Pacific and Gulf of Mexico and a negative anomaly over
South Central Pacific and North Atlantic. It is not surprising that Pc and PI show the
structure similar to SST since these are directly dependent on air-sea interactions:
Pc, through convective parameterization schemes and PI, through its formulation
(Bister and Emanuel 1997). The association between dynamical variables and SST
are more subtle and relative humidity results from evaporation but also from advec-
tive processes.

6 Discussion

Royer and Chauvin (2008) have emphasized the lack of common CYGP response of
AR4 models. They did not investigate the reasons for such discrepancies nor the en-
semble mean response of cyclogenesis. Nevertheless, they brought a methodology
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Fig. 7 Same as Fig. 5 for CYGP thermal potential term and PI term in GPI
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which allowed to make possible the comparison between the models, through a
calibrating process which has been applied by Caron and Jones (2008) in a more
systematic comparison of CYGP for all the AR4 scenarios and models. The latter
come to the same conclusions that there is a large dispersion in the models re-
sponses, at least in the large-scale conditions which are thought to be favourable
for cyclogenesis. For each AR4 model SST conditions, the CYGP and, to a lesser
extent, the GPI responses are not the same when forcing ARPEGE than in the orig-
inal AR4 scenarios. The lack of interannual variability cannot account for these
differences since the four models for which we have performed year-to-year vary-
ing SST forcing did not show real increase of the correlation between original AR4
and ARPEGE anomalies. In fact, the relation between SST and cyclonic activity is
probably much more complex than a purely passive response of cyclogenesis to SST
anomaly and cutting the coupling between the two processes leads to different re-
sponses of cylogenesis. Nevertheless, even without coupling process, SST anomaly
structure plays a non negligible role in the response of cyclogenesis. One can re-
mind the relatively good correlation between original and forced ARPEGE CYGP
anomalies (0.38 in Table 1). This correlation, while not so high, is far higher than
the other correlations, except the second French model for an unexplained reason.
It is not surprising that ARPEGE forced run better reproduces the CYGP anomaly
pattern when forced with SST anomaly from the original coupled simulation, since
the same atmospheric component has been used in the two simulations. This cor-
relation can be interpreted as a measure of the forcing contribution of SST to the
CYGP anomaly. For the other models, it cannot really be expected to reproduce the
same response due to large differences in physics and dynamics of the AR4 models.
In other words, the forcing contribution of SST anomalies is masked by the existing
differences between ARPEGE and original AR4 models. If the same set of exper-
iments had been performed with another model of the AR4 database, we would
probably observe a better correlation between CYGP patterns for this model.

Another interesting result obtained in this study is illustrated in Fig. 9, which rep-
resents model-to-model anomaly spatial correlations for original AR4 and ARPEGE
experiments. Left panel shows that for CYGP, ARPEGE shows the same dispersion
as the original AR4 scenarios did, with a slight tendency to bias the correlations
toward positive values. This is not the case for GPI since ARPEGE tends to produce
essentially positive correlations while original AR4 correlations were more widely
distributed in negative values. This means that for the GPI, the use of a single model
forced with different SST patterns reduces the dispersion of responses. Our feeling
is that use of PI theory in the GPI index may be the clue for this behavior. Its too
strong dependence in SST probably explains why the SST-forced experiments bias
the inter-model correlations toward positive values.

As mentioned earlier, when forcing ARPEGE with the SST anomaly produced
by the CNRM-CM3 coupled system (with the same atmospheric component), the
correlation between CYGP anomaly patterns is the highest although not very high.
Comparison of responses in Fig. 2 shows that the WNP response in the ARPEGE
forced experiment is quite different from the response in the original CNRM-CM3.
The reasons for such differences should be searched in the coupling process which
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Fig. 9 Scatter plots representing model-to-model anomaly spatial correlations for original (ab-
scissa) and forced (ordinate) experiments. Left panel is for CYGP and right panel is for GPI

takes into account the interactions between atmospheric conditions and underlying
ocean. WNP is the region of the world of highest cyclogeneses. The cumulated
effect of tropical cyclones may play an active role in the modulation of SSTs which
may no more be seen as a purely forcing effect. Indeed, even though resolution
of the original AR4 models is not sufficient to explicitly represent such systems,
large scale systems occur nevertheless and contribute to modify SSTs, through heat
exchange and upwelling of cooler water. Therefore, forcing the atmosphere with
the resulting SST anomalies cannot lead to the same CYGP patterns as the original
coupled model. The fact that largest discrepancies in CYGP patterns occur over the
most active basin in the world agrees with the interaction between SST and CYGP.

7 Conclusion

This study investigated the dispersion of the AR4 models in representing tropical
cyclone genesis through large-scale dynamical and thermal conditions. Previous
studies (Royer and Chauvin 2008; Caron and Jones 2008) emphasized the lack of
consensus between AR4 models in the response of CYGP in the scenarios of global
warming. We tried, here, to extend the comparison, by using both CYGP and GPI
in original AR4 models and in idealized ARPEGE atmospheric simulations where
SST were prescribed according to the original AR4 SST anomalies between future
and present climate.

Main results of the present study confirm that SST anomaly spatial structures
play an important role in the CYGP and GPI response to global warming, even
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though, the link between the two indices and underlying surface conditions can-
not be simply summarized in a passive response of cyclognesis to SST. Indeed,
the use of ARPEGE/Climat to simulate the atmospheric response to the different
SST anomalies shows that a large diversity of responses may be obtained. Interest-
ingly, as a sensitivity experiment, the actual study demonstrated that the use of a
single atmospheric model in a forced configuration, can account for the large vari-
ability of responses obtained with the ensemble of AR4 models, at least for the
CYGP index. For the GPI, this conclusion is not so evident, due to its too strong
dependency on SST anomalies, thus leading to a reduction of degrees of freedom in
the ensemble simulations.

Finally, another important result found here, is that, even though original AR4
models globally differ in their response of the cyclogenesis activity to global warm-
ing, some regions of the world seem to be more consensual than others. Indian
Ocean shows a fairly coherent positive response in AR4 models, in relation to the
coherent warming between most of the coupled models. This response is even re-
inforced in the ARPEGE ensemble simulation. On the contrary the Western North
Pacific region seems to be very dependent on the coupling processes, since even
when forcing ARPEGE with SST anomalies produced by the original CNRM-CM3,
large discrepancies still exist in the cyclogenesis response between the two simula-
tions.

It appears that for the major part of the world, atmosphere/ocean coupling may
be crucial in the representation of the cyclonic activity response to global warming.
Future simulations should take into account the entire atmosphere/ocean system
with high resolutions to explicitly represent tropical cyclones. Thus, retroactions of
tropical cyclones over ocean could be investigated.
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Chapter 4
Tropical Cyclone Rainfall in the Observations,
Reanalysis and ARPEGE Simulations
in the North Atlantic Basin

Anne S. Daloz, Fabrice Chauvin, and Frank Roux

Abstract In this chapter, we performed a climatological study of the tropical
cyclone (TC) precipitation in the satellite observations and the reanalysis from the
ECMWF and NCEP/NCAR centers over the North Atlantic (NATL) basin. Using
the recently developed best track IBTrACS (Kruk et al. 2009; Knapp et al. 2009) we
derived the mean daily TCs rainfall within 10ı�10ı box around the center of the
TCs, the fraction of TCs rainfall to total rainfall and the TCs precipitation efficiency
(TCPE). These variables were used to assess the ability of the reanalysis to repre-
sent the impact of TCs in altering the total rainfall over the North Atlantic basin.
The main results show that:

� The maximum of cyclonic precipitation is located in the Caribbean Sea and the
Gulf of Mexico, for the observation and the reanalysis.

� TCs contribute to a maximum of precipitation (between 15ı and 25ıN) over the
Southern Gulf of Mexico, the Caribbean Sea and the West Atlantic Ocean for the
observation and the reanalysis.

� The most efficient TCs are located in the Gulf of Mexico, the Caribbean Sea and
the West Atlantic Ocean for the observation and the reanalysis.

We used a high resolution (0.5ı) stretched atmospheric global climate model
(GCM) ARPEGE to simulate the present and future TCs rainfall.The tracking of
TCs was realized with the method of Chauvin et al. (2006). With the present inte-
gration, we assessed the ability of ARPEGE in simulating the TCs rainfall and the
fraction and the efficiency of TCs rainfall. Future simulation has also been produced
to study the possible evolution of those variables. The main results for the present
and future simulations over the North Atlantic basin indicate that:

A.S. Daloz (�) and F. Chauvin
CNRM, 42 av. G. Coriolis, 31057 Toulouse Cedex 1, France
e-mail: anne-sophie.daloz@cnrm.meteo.fr; fabrice.chauvin@meteo.fr

F. Roux
OMP, 22 av. E. Belin, 31400 Toulouse, France
e-mail: frank.roux@aero.obs-mip.fr

J.B. Elsner et al. (eds.), Hurricanes and Climate Change: Volume 2,
DOI 10.1007/978-90-481-9510-7 4, c� Springer Science+Business Media B.V. 2010

57

anne-sophie.daloz@cnrm.meteo.fr;
fabrice.chauvin@meteo.fr
frank.roux@aero.obs-mip.fr


58 A.S. Daloz et al.

� ARPEGE detects the maxima obtained by the observations and the reanalysis for
the TCs rainfall and the fraction. However, it overestimates them.

� ARPEGE obtains sparser results than the observations and the reanalysis for the
efficiency of TCs, but detects the maxima over the West and East NATL Ocean.

� ARPEGE presents a sensitivity to the time period, consistent with the real varia-
tion of TCs activity.

� The difference between the future and present integration shows a decreasing
contribution of the TCs rainfall and an increasing efficiency of TCs.

Keywords Tropical cyclone � Rainfall � Reanalysis � Climate model

1 Introduction

Tropical cyclones (TCs) have a great impact on the environment. Rodgers and Adler
(2001) showed in the NATL basin, that precipitation associated to TCs represents
a small but significant amount of the total annual rainfall. Flooding produced by
the TCs rainfall can be quite destructive; they are currently the leading cause of
hurricane-related fatalities in the United States (Fitzpatrick 2006). Coastal commu-
nities devastated by strong hurricanes usually take years to recover. Inland flooding
associated with TCs accounted for a majority (57%) of the 600 US deaths due to
hurricanes between 1970 and 1999 (Rappaport 2000).

In the North Atlantic basin, the official hurricane season begins June 1 and
ends November 30, although activity has been observed outside this time frame.
Due to the changes of genesis location during the hurricane season (Neumann
et al. 1999), the genesis patterns in the Atlantic and the Gulf of Mexico can be
divided in tree categories (Fitzpatrick 2006): early season (June 1–July 15), mid-
season (July 16–September 20), and late season (September 21–November 30). In
the early-season, storms mostly occur in the Western Caribbean Sea and the Gulf of
Mexico. Midseason storms originate in the main basin of the tropical Atlantic Ocean
even if genesis still occur in the Gulf of Mexico, but not in the majority of cases,
and is virtually nonexistent in the Caribbean Sea. The mid-summer genesis lull in
the Caribbean Sea is possibly due to local enhancement of trade winds mixing the
ocean in the area (Inoue et al. 2008) or because conditions favorable for dynamic
instability only occur in the early and late season (Molinari et al. 1997). Genesis in
the tropical Atlantic Ocean peaks in the midseason. Water temperatures are warm
enough to immediately impact tropical waves propagating off the African continent.
The late season witnesses a quick decline in the main basin of the tropical Atlantic
Ocean. However the Gulf of Mexico experiences a more gradual decline and the
Caribbean Sea a revival of storm formation.

According to the Fourth Intergovernmental Panel on Climate Change (IPCC
2007), it is difficult to distinguish any man-induced long-term trend of the cyclonic
activity and scenarios for a warmer climate do not converge on any trend in the in-
tensity or number of TCs. Most recent studies assessing the associated precipitation
to TCs in the NATL basin indicate that an increase may be induced by a warmer
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climate (Lau et al. 2008). However, questions remain concerning the ability of the
reanalysis and the global climate models (GCMs, General Circulation Models) to
simulate the amount that TCs contribute to the total rainfall, how the cyclonic pre-
cipitation is distributed geographically or the precipitation efficiency of the TCs.

Rodgers and Adler (1999) first estimated monthly TC rainfall using Special Sen-
sor Microwave Imager (SSM/I) satellite data in the Western North Pacific (WNP)
Ocean. They indicated that about 7% of the rainfall to the entire domain of the
WNP from June to November is due to TCs and also that TCs rainfall contribute
to a maximum of 40% off the lower Baja California. They also studied the impact
of El Niño on the TCs rainfall, and they noticed that in general, TCs rainfall is en-
hanced during El Niño years. Dedicated to the WNP basin, Ren et al. (2006) studied
the TCs rainfall using stations observations in China. They showed that in most of
the southeastern regions, TCs rainfall accounts for more than 20–40% of the total
annual precipitation. They suggested that China has experienced decreasing TCs
rainfall influence over the past 48 years, presenting downwards trends of the TCs
rainfall volume, the annual frequency of torrential events and the contribution of
TCs rainfall. Wu et al. (2007) confirmed the decreasing influence of the TCs rainfall
using station observations in the Hainan Islands. In the WNP basin, Kubota (2009)
investigate the effects of TCs on seasonal and interannual rainfall variability by us-
ing rainfall data in stations. They showed that, in some regions, TC rainfall exceed
60% of the total rainfall. They also found that the interannual variability of the TC
rainfall is primarily modulated by El Niño-Southern Oscillation (ENSO). Hasegawa
and Emori (2005) used a relatively high resolution (1.1ı) atmospheric GCM to simu-
late TCs rainfall within the WNP basin under present day and doubled CO2 climates.
They found an increase in mean TCs rainfall over Japan with doubling CO2 despite
an accompanying decrease in the frequency and intensity of TCs. In the NATL basin,
Rodgers and Adler (2001) showed that the contribution was around 4% for the en-
tire basin, but regionally could reach 30% in the northeast of Puerto Rico, 15ıW,
55ıW and off the west coast of Africa. During warm El Niño events TCs rainfall is
inhibited. Larson (2004) used gridded daily rainfall analysis based on rain gauge ob-
servations and found that landfalling TCs contribute up to 15–20% of rainfall along
the US Gulf and Mexican coast on average. Moreover they noted that tropical cy-
clone activity was modulated on both seasonal and intraseasonal time scales by the
Arctic Oscillation (AO) and El Niño. During La Niña conditions with AO positive
conditions, the atmospheric circulation is more conducive to activity in the main de-
velopment region. Sheperd et al. (2007) studied the contribution of tropical cyclones
to extreme rainfall in four mini-basins near coastal southeastern United States using
satellite precipitation dataset (TRMM). They noticed that major hurricanes produce
the most extreme rainfall days, but tropical depression/storm days contribute most
significantly to cumulative seasonal rainfall (8–17%) and are thus more critical to
assess trends. Lau et al. (2008) conducted a study with GPCP and TRMM rainfall
data on the relationship between TCs and extreme rain events in the NATL and WNP
basins. Results show that climatologically, TCs contribute to 8% of rain events and
17% of total rain amount in NATL, compared to 9% of rain events and 21% of rain
amount in WNP. In the NATL basin, there is a positive trend in the contribution
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of TCs to extreme events. The last result is confirmed by Knight and Davis (2009)
for the Southeastern United States where they studied the contribution of tropical
cyclones to extreme rainfall with surface observation station. They attributed this
increase to the storm wetness (precipitation per storm), the storm frequency and
storm duration driven by natural decadal oscillations or by large-scale warming of
the environment. Based on the TRMM database, Jiang and Zipser (2009) studied
the global, seasonal and interannual variations of the monthly TCs rainfall in the six
basins of tropical cyclogenesis. For the NATL basin they found that, TCs contribute
8–9%, with a maximum contribution in September and more generally during La
Niña years.

The next question that should be addressed is the manner in which reanalysis and
GCMs simulate the influence of the TCs to the total North Atlantic rainfall. In a first
part, we focus on the study of the TCs rainfall from the satellite observation and the
reanalysis. The mean daily North Atlantic TCs rainfall is determined using the re-
cently developed best track, IBTrACS. We also established two quantitative metrics
for the cyclonic rainfall associated with tropical systems; the mean precipitation dis-
tribution of the TCs and the precipitation efficiency of the TCs. The second section
is dedicated to the analysis of high resolution present and future (0.5ı) stretched
grid experiment using the tracking method presented in Chauvin et al. (2006). The
final section provides conclusion and discussions.

2 Observation and Reanalysis

2.1 Datasets and Tracking Methodology

2.1.1 Datasets

Satellite Observations

� TRMM

The Tropical Rainfall Measurement Mission (TRMM) (daily; 3B-42; 0.25ı by
0.25ı grid) is used to generate daily gridded precipitation data (Huffman et al. 2007).
TRMM rainfall estimates are produced in four stages: (1) the microwave estimates
precipitation are calibrated and combined, (2) infrared precipitation estimates are
created using the calibrated microwave precipitation, (3) the microwave and IR es-
timates are combined, and (4) rescaling to monthly data is applied.

� GPCP

The Global Precipitation Climatology Project (GPCP) (daily; 1DD; 1ı grid by
1ı grid) daily precipitation is produced at the NASA Goddard Space Flight Center.
They used the geo-synchronous-satellite operators to collect histograms of geo-IR
brightness temperature that allowed the estimation of the precipitation. To complete
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the global coverage, they estimated the precipitation outside of the geo-IR coverage
using sounding data from low-earth polar satellites. The different methods employed
for the construction of this dataset are detailed in Huffman et al. (2001).

Reanalysis

ECMWF (European Centre for Medium-range Weather Forecasts) – Reanalysis

� ERA-40

A 44-year integration (1958–2001) ERA-40 product (daily, 1.12ı by 1.12ı grid)
has been developed by the ECMWF. This dataset is obtained through a global spec-
tral model with T159L60 truncation. ERA data are freely distributed to the scientific
community, but after being downgraded to a lower resolution corresponding to a
T95 truncation ( 2.5ı resolution). Analysis involves comprehensive use of satellite
data, starting 1972 and later including Cloud Motion Winds will be used from 1979
onwards. More details can be found in Uppala et al. (2005).

� ERA-Interim

The ERA-Interim (daily, 1.5ı by 1.5ı grid) archive is more extensive than that for
ERA-40. The number of pressure levels is increased from ERA-40’s 23 to 37 levels,
main advances are done in the data assimilation and the sets of observations acquired
for ERA-40 are supplemented by data for later years from ECMWF’s operational
archive. Several of the problems experienced in ERA-40 have been significantly
reduced in ERA-Interim such as the too-strong tropical oceanic precipitation begin-
ning in the 1990s (Uppala et al. 2008).

NCEP (National Center for Environmental Prediction) / NCAR (National Center
for Atmospheric Research – Reanalysis)

� NCEP-1

This data archive is issued by NCEP/NCAR center, covering the period from
1948 to present. NCEP-1 reanalysis (daily; 2.5ı by 2.5ı grid) was provided by a
global spectral model with T62 truncation and 28 vertical levels (T62L28; Kalnay
et al., 1996).

� NCEP-2

NCEP-2 (daily; 1.875ı by 1.875ı grid) is an improved version of the NCEP
Reanalysis I model that fixes errors and updates parameterizations of physical pro-
cesses. For a detailed explanation of the improvements see Kanamitsu et al. (2002).

2.1.2 Tracking Methodology

The NOAA National Climatic Data Center (NCDC) created a new global tropi-
cal cyclone 6-hourly best track dataset. The International Best Track Archive for
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Climate Stewardship, IBTrACS is a global best track compilation dataset which
contains information on all documented tropical cyclones which have been com-
piled and archived by many agencies from around the world. The methods used to
combine the disparate datasets into a centralized repository of global TC best track
data are detailed in Kruk et al. (2009) and Knapp et al. (2009).

2.2 TCs Rainfall

To assemble the mean daily TCs rainfall data, observations and reanalysis of TCs
rain rates are used. Only the rain rates that are observed within a 10ı�10ı box
around the center of TCs are sampled. This TC rain-rate sampling area is chosen
to encompass the majority of the rainfall that is contributed by TCs. The radius
of a TC, defined by the location and area of threshold speed, varies widely (radii
between 100 and 1,100 km have been observed) and is not necessarily proportional
to TC intensity. Most of the time, the precipitation shield is found to be asymmetric,
but for an objective procedure we supposed that the TCs rainfall were symmetric
around the center. The radius of 5ı around the center has already been tested by
Englehart and Douglas (2001) who showed that the distance between the center of
a TC and an outer edge of its cloud shield is between 550 and 600 km for 90% of
the cases. Larson (2004) also did some sensitivity tests between 2.5ı and 7.5ı radius
and found that radii smaller than 5ı necessarily exclude much of the TCs-rainfall.
Centers of the sampled tropical cyclones for the time of the observations and the
reanalyses comes from IBTrACS data.

The precipitation associated with TCs is seen in Fig. 1 for TRMM (left panel) and
GPCP (right panel) for 1998 to 2006, in the NATL ocean. Figure 1 shows that a TCs
rainfall maximum is located in the Caribbean Sea and in the South-eastern part of
the Gulf of Mexico, for both datasets. TRMM shows higher values (310 mm/year)
in comparison with GPCP (240 mm/year). We can see that in the Honduras Bay,
GPCP clearly underestimates the local maxima detected by TRMM. TRMM and
GPCP also detect three rainfall maxima in the center of the Atlantic Ocean. They

a b

Fig. 1 A plan view showing the TRMM (a) and the GPCP interpoled on the TRMM grid (b) North
Atlantic TCs rainfall (mm/year) averaged over the time period 1998–2006
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Fig. 2 A plan view showing the ERA-40 (a), ERA-Interim (b), NCEP-1 (c) and NCEP-2 (d) North
Atlantic tropical cyclones precipitation (mm/year) averaged over the time period 1989–2001

are located around the latitude 18ıN: on the French Antilles (64ıW), at the longi-
tudes 55ıW and 46ıW; attaining values between 160 and 220 mm/year. The highest
values of TCs rainfall are obtained by TRMM. Differences in range of value be-
tween TRMM and GPCP must partly be due to the higher spatial resolution of the
TRMM experiment.

Figure 2 presents the TCs rainfall calculated in the reanalysis from the ECMWF
and NCEP/NCAR centres in the NATL Ocean. On the top left panel, we find ERA-
40 and on the top right panel ERA-Interim for 1989–2001. A comparison of these
two figures shows that ERA-40 TCs rainfall is globally higher than ERA-Interim,
especially in the Carribean Sea and the center of the NATL basin. A reason for this
difference is explained in (Uppala et al. 2008). ERA-40 has a problem in term of
humidity from the 1990s. Strong discrepancies have been detected over the oceanic
domains, where values are more likely influenced by the physics of the atmospheric
model and the method used for the extrapolation of unmonitored locations. Few val-
ues of RH850 are lower than 0%, but numerous are higher than 100%. The maxima
encountered in Fig. 1 for the satellite observations, in the Caribbean Sea, the Gulf
of Mexico and the French Antilles are also detected by ERAs datasets, but with a
lower range of value, around 150 mm/year for ERA-40 (Fig. 2a) and 175 mm/year
for ERA-Interim (Fig. 2b). Theses differences in range of value must partly be due
to the change of time period between Figs. 1 and 2 from 1998–2006 to 1989–2001
respectively. However, it still remains an underestimate of TCs rainfall from the
reanalysis. The lower resolution could also impact local maxima in the center of
the NATL Ocean (18ıN, 55ıW) obtained by TRMM and GPCP (Fig. 1) because
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they are not detected by the ECMWF reanalysis. Except the eastern maxima (Fig. 1,
18ıN, 46ıW) not detected by TRMM, GPCP and ERAs datasets which comes from
the time period from 2002 to 2006. Figure 2 also shows the TCs rainfall calcu-
lated in two datasets of the NCAR/NCEP center in the NATL Ocean. Bottom left
panel shows NCEP-1 and the bottom right panel NCEP-2 for 1989–2001. The max-
imum encountered in Figs. 1 and 2a, b on the Caribbean Sea, the Gulf of Mexico
and the French Antilles are also detected by the NCEP datasets. NCEP-1 obtains a
lower range of value in comparison with TRMM and GPCP, around 175 mm/year
(Fig. 2c) and NCEP-2 (Fig. 2d) attains values in between the satellite observations
with 270 mm/year. Both NCEP datasets miss the local maxima situated at 18ıN,
55ıW. It should also be noticed that a maximum appears for NCEP-1 and especially
NCEP-2 in the Bay in front of Panama and Costa Rica that is not detected by ERAs
reanalysis, it could be an artifact of the NCEPs reanalysis.

Uppala et al. (2008) allows us to identify ERA interim as the more reliable
dataset in comparison with ERA-40. The results from the Figs. 1 and 2 pointed
out NCEP-2 with regard to NCEP-1. NCEP-2 is even closer than ERA-Interim to
the results obtained by our reference TRMM in terms of amplitude and localization
of TCs precipitation maxima. The differences between ERA-Interim and NCEP-2
come partly from the way of assimilating the satellite observations. NCEP-2 directly
assimilates the rain rates from the instruments on the satellite TRMM, the TRMM
Microwave Imager (TMI) and the Special Sensor Microwave Imager (SSM/I). On
the other hand, ERA-interim only uses the data from the SSM/I instruments and they
do not assimilate the rain rate but the humidity profiles obtained with the variance.

Figure 3 presents the TCs rainfall of ERA-Interim (Fig. 3a) and NCEP-2 (Fig. 3b)
on the common time period from 1998 to 2006. Figure 3 confirms the good agree-
ment between TRMM and NCEP-2 in amplitude and localization of the maxima
of TCs rainfall. The amplitudes of the maxima from NCEP-2 in the North of the
Caribbean Sea and the French Antilles islands is nearly the same as those obtained
by TRMM (Fig. 1a). However, we should also notice that the maximum in the South
of the Caribbean Sea detected by NCEP-2 and discussed in the precedent section
seems to be an artifact of this dataset as we are now on the same time period, and

a b

Fig. 3 A plan view showing the ERA-Interim (a) and NCEP-2 (b) North Atlantic tropical cyclones
precipitation (mm/year) averaged over the time period 1998–2006
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Table 1 TCs rainfall averaged over the four regions defined in Fig. 4 for the
satellite observations TRMM and GPCP, and the reanalysis ERAI and NCEP2

TCs rainfall (mm/year) NW-NATL NE-NATL SW-NATL SE-NATL

TRMM 68.43 18.73 81:53 55.17
GPCP 40.51 11.76 49:02 39.85
ERAI 54.99 15.90 85:79 53.90
NCEP2 89.79 16.81 128:24 62.67

Fig. 4 A plan view showing the map of the NATL basin with four boxes presenting the areas of
studies: NW-NATL, NE-NATL, SW-NATL and SE-NATL

this maximum is not appearing in TRMM. In order to obtain a more objective vi-
sion of the performance of GPCP, ERA-interim and NCEP-2 in comparison with
TRMM, we derived the mean TCs rainfall in different regions of the NATL basin
presented in Table 1. The NATL basin has been divided in four areas as presented
in Fig. 4. The coordinates of the regions are

� NW (North-Western) – NATL D 96–56ıW and 22–30ıN
� NE (North-Eastern) – NATL D 55–15ıW and 22–30ıN
� SW (South-Western) – NATL D 96–56ıW and 5–21ıN
� SE (South-Eastern) – NATL D 55–15ıW and 5–21ıN

Table 1 allows us to see that for the TCs rainfall in average, ERA-Interim seems
to be closer to TRMM than GPCP and NCEP-2 in the four areas of study. The bias
encountered for NCEP-2 in the Caribbean Sea is visible in the Table 1 as the value
of TCs rainfall in the SW-NATL zone is the highest for NCEP-2. With Figs. 1 and 3,
we noticed that in term of amplitude of maxima NCEP-2 offers the closest results
to TRMM, but the Table 1 showed that in term of average, ERA-Interim seems to
be closer.

As we have seen with the study of the Figs. 1 to 3, GPCP, ERA-Interim and
NCEP-2 underestimate, miss or create some of the TCs rainfall maxima when com-
paring with TRMM. We hypothesized that these biases could be related to the
higher spatial resolution of TRMM. The lower resolution of GPCP and the reanal-
ysis datasets could have an effect on the winds and on the representativeness of the
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Fig. 5 A plan view showing the TRMM (a), GPCP (b), ERAI (c) and NCEP-2 (d) North Atlantic
tropical cyclones precipitation (mm/year) averaged over the time period 1998–2006 for the systems
from Tropical Storm to Category 2 on the Saffir–Simpson scale

different categories of TCs. Figure 5 presents the TCs rainfall associated with sys-
tems from Tropical Storms (TSs) to Category 2 of TCs for the satellite observations
TRMM (Fig. 5a), GPCP (Fig. 5b), the reanalysis ERA-Interim (Fig. 5c) and NCEP-
2 (Fig. 5d) for the time period 1998–2006 on the NATL basin. TRMM (Fig. 5a)
shows the same maximum encountered in Fig. 1a, on the Caribbean Sea and lo-
cal maximum in the center of the NATL basin (55ıW and 46ıW) but they attain
lower values and are less spread. GPCP (Fig. 5b) presents the same maximum with
an underestimate in comparison with TRMM, which is coherent with the results of
Fig. 1b for the total TCs rainfall. ERA-Interim misses all the maximum obtained by
TRMM and overestimates the TCs rainfall in the Honduras Bay. NCEP-2 (Fig. 5d)
overestimates the maximum on the North of the Caribbean Sea and does not show
those in the center of the NATL basin. NCEP-2 presents a maximum in the South of
the Caribbean Sea assumed as an artifact, as it is present neither in TRMM, nor in
GPCP. NCEP-2 also represents fairly well the maximum in the Main Development
Region (MDR) except that it is located too West.

Figure 6 presents the precipitation from intense TCs (Category 3 to 5) for TRMM
(Fig. 6a), GPCP (Fig. 6b), ERA-Interim (Fig. 6c) and NCEP-2 (Fig. 6d) from 1998
to 2006 in the NATL basin. TRMM presents a maximum of precipitation for intense
TCs in the North of the Caribbean Sea with the maximum cumulated value equal to
what is obtained at the same place for weak TCs (TS to Category 2). GPCP, ERA-
Interim and NCEP-2 find the same maxima with nearly the same rain rate as TRMM
for NCEP-2, but GPCP and ERA-Interim present an underestimate. The maxima on
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Fig. 6 A plan view showing the TRMM (a), GPCP (b), ERAI (c) and NCEP-2 (d) North Atlantic
tropical cyclones precipitation (mm/year) averaged over the time period 1998–2006 for the systems
from Catergory 3 to 5 on the Saffir–Simpson scale

the center of the NATL basin are nearly the same for GPCP in comparison with
TRMM, however NCEP-2 and ERA-Interim missed it, except the one on the French
Antilles.

Figures 1 to 6 present the tropical cyclonic precipitation in satellite observation
and reanalysis. They suggest that the tropical cyclone rainfall maxima are concen-
trated in the subtropical latitudes from the middle NATL basin, toward the Gulf of
Mexico. No TC rainfall is found off the west coast of Spain and Africa and equar-
torward of 5ıN latitude. The regional area with the greatest tropical cyclone rainfall
occurs in the Caribbean Sea and the Gulf of Mexico. Many weak and intense TCs
are born and intensify in this region. Local maximum are also found in the center of
the NATL Ocean. For example around the French Antilles, which is a region where
many TCs recurve and momentarily intensify. We also noticed that the values of
the maxima of TCs rainfall are higher for the satellite observations in comparison
with the reanalysis; this is especially true for TRMM. The dissimilarities between
the datasets are partly due to a difference of spatial resolution which create discrep-
ancies in the representation of weak and intense TCs.

2.3 Fraction of TCs Rainfall

The fraction of TCs rainfall is defined as the ratio of tropical cyclone rainfall to total
rainfall multiplied by one hundred. Figure 7 presents the geographical distribution of
the percentage of rainfall contribution by TCs over the NATL basin for 1998–2006
for the satellite observations TRMM (Fig. 7a) and GPCP (Fig. 7b), ERA-Interim
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Fig. 7 Fraction of TCs rainfall (%) in the NATL basin for 1998–2006 for: TRMM (a), the GPCP
interpoled on the TRMM grid (b), ERA-Interim (c) and NCEP2 (d)

(Fig. 7c) and the reanalysis NCEP-2 (Fig. 7d). In the eastern NATL Ocean (12–
20ıN; 56–30ıW), there is a broad region where the contribution of TCs rainfall
is high for TRMM (Fig. 7a), GPCP (Fig. 7b), ERA-Interim (Fig. 7c) and NCEP-2
(Fig. 7d). The satellite observations obtain values between 30% and 40%, the re-
analysis between 20% and 25%. This result shows that the area where contribution
of TCs rainfall is the highest (eastern NATL) is not necessarily the region of highest
TCs rainfall rates (cf. Fig. 1, western NATL). In the western NATL Ocean, the con-
tribution of TCs rainfall is not negligible as it reaches around 30% for TRMM, 20%
for GPCP and NCEP-2, and 10% for ERA-Interim. The fraction is lower as others
mecanims such Mesoscale Convective Systems (MCSs, Houze, 1988) contribute to
the total rainfall. It should also be noticed that a large area (green in the figures) for
the four datasets presents no negligible values of fraction, as it attains values around
10% of the total rainfall.

Table 2 presents the averaged fraction of TCs rainfall for the observations and
the reanalysis on the four areas of study defined in Section 2.2. In average for
the four regions, all the datasets underestimate the fraction of TCs rainfall from
TRMM. The closer results on the four regions are obtained by NCEP-2 in com-
parison with TRMM even if it is underestimated; GPCP and ERA-Interim are both
under NCEP-2. These results put in evidence the good results of NCEP-2 in terms
of maximum and average for the fraction of TCs rainfall, that is maybe due to the
way of assimilating the precipitation. Table 2 also shows that GPCP and the two
reanalysis datasets obtain a too low contribution of TCs rainfall to total rainfall.
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Table 2 Fraction of TCs rainfall (%) averaged over the four regions defined
in Fig. 4 for the satellite observations TRMM and GPCP, and the reanalysis
ERAI and NCEP-2

Fraction (%) NW-NATL NE-NATL SW-NATL SE-NATL

TRMM 7.5 3.48 8.47 10:11

GPCP 4.83 2.17 5.64 7:38

ERAI 5.07 2.04 5.81 6:60

NCEP2 6.71 2.13 6.88 7:75

2.4 Tropical Cyclonic Precipitation Efficiency – TCPE

We defined the TCs precipitation efficiency (TCPE) as the mean precipitation per
day of TCs. TCPE is equal to the precipitation associated with TCs, divided by
the number of days of TCs activity over each grid point in a 10ı � 10ı box of
precipitation. The unit of this variable is mm/ TC day. Figure 8 presents the TCPE
over the NATL basin averaged over the time period 1998–2006 for TRMM (Fig. 8a),
GPCP (Fig. 8b), ERA-Interim (Fig. 8c) and NCEP-2 (Fig. 8d). A maximum over the
Southern Gulf of Mexico and the Caribbean Sea is detected by TRMM (30 mm/TC
day), GPCP (35 mm/TC day) and NCEP-2 (30 mm/TC day). TRMM also detects a
maximum of TCPE in front of the West African coast (20 mm/TC day). In this area
GPCP (30 mm/TC day) and NCEP-2 (36 mm/TC day) also find a maximum but they
overestimate it, as it is higher and further spread. Globally, GPCP is overestimating
the TCPE. NCEP-2 has a maximum in the South of the Caribbean Sea, but as we
have seen with the TCs rainfall Figs. 1a and 3b, it is an artifact of the reanalysis. In
the Western NATL basin, all the datasets obtain a maximum off the West African
coast, but NCEP-2 (Fig. 8d) overestimates it.

Table 3 presents the TCPE for the four regions of the NATL basin described
in Section 2.2 for the satellite observations and the reanalysis for the time period
1998–2006. ERA-Interim is closer to TRMM but still underestimates the Northern
region and overestimates the Southern region. These results show a better agreement
between ERA-Interim and TRMM than from GPCP and NCEP-2 with TRMM for
the average of TCPE.

The results obtained in Figs. 1 to 8 show that in the Gulf of Mexico and the
Caribbean Sea, we have a maximum of tropical cyclonic precipitation (Fig. 1 to 6)
certainly due to the high efficiency of the TCs in this region (Fig. 8). However the
contribution of TCs rainfall to total rainfall is not the highest in the western NATL
basin (Fig. 7) even if it is not negligible as it varies between 10% and 25%. Never-
theless in this area other mechanisms are highly contributing to the total rainfall. It
should be noticed that, the regions where the fraction is over 10% and the TCPE is
over 10 mm/TC day are inhabited area such as the South of Florida, Cuba and the
French Antilles. In the eastern part of the NATL basin, we do not find such high
values of TCs rainfall (Fig. 1 to 6) and TCPE (Fig. 8) but the fraction is really ele-
vated (Fig. 7) due to the type of precipitation in this area. The rainfall in this region
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a b

c d

Fig. 8 Tropical cyclonic precipitation efficiency (TCPE, mm/TC day) in the NATL basin for
1998–2006 for: TRMM (a), the GPCP interpoled on the TRMM grid (b), ERA-Interim (c) and
NCEP-2 (d)

Table 3 TCPE averaged over the four regions defined in Fig. 4 for the satellite
observations TRMM and GPCP, and the reanalysis ERAI and NCEP2

TCPE (mm/TC day) NW-NATL NE-NATL SW-NATL SE-NATL

TRMM 6.16 12:16 5:2 8:4

GPCP 2.32 5:76 1:88 2:08

ERAI 7.48 10 8:4 12:28

NCEP2 5.6 9:52 6:04 7:52

comes in majority from the tracks of the just born TCs from the West African con-
tinent. The fraction and the TCPE have allowed us to indicate the areas where TCs
are the most dangerous in term of precipitation and through the possible spot of
floods. These two variables have also permitted us to test the different datasets of
satellite observations and reanalysis. This characteristic can also be used to test the
capability of the models to represent the tropical cyclonic precipitation.

3 Global Climate Model ARPEGE

3.1 Model Description and Tracking Methodology

3.1.1 Model Description and Experiment Design

The ARPEGE-Climate model originates from the ARPEGE/IFS (Integrated
Forecast System) numerical weather prediction model developed jointly by
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Meteo-France and ECMWF. It is a spectral atmospheric model with a hybrid -
pressure vertical coordinate. Since the first release of the ARPEGE-Climate model
(Deque et al. 1994), many developments have been included, both dynamical and
physical. Here we use the third generation ARPEGE-Climat model (Deque 1999).
The main difference compared to former versions is the use of a time-level semi-
lagrangian numerical integration scheme with a 30 min time-step. The physical
package includes the turbulence-scheme of Louis et al. (1981), the statistical cloud
scheme of Ricard and Royer (1993) and the mass-flux convective scheme with Kuo-
type closure of Bougeault (1985). The radiative scheme is derived from Morcrette
(1990) and is activated every 3 hours. More details about the physics of the model
can be found in Geleyn et al. (1995).

A rotated-stretched twentieth–twenty-first century experiment was performed us-
ing the ARP-EGE-Climat GCM (Courtier and Geleyn 1988), to represent Atlantic
hurricane activity. The grid stretching technique permits distortion of the initial
globally uniform grid in such a way that a maximum concentration of grid points
will cover the region of interest at the expense of antipode. Once the region of in-
terest is chosen, the grid is rotated so as to bring the pole over the center of the
domain. This method has been used and validated for a long time in operational me-
teorological forecast (Courtier et al. 1991) and in climate modeling studies (Deque
and Piedelievre 1995; Lorant and Royer 2001; Moustaoui et al. 2002). It has also
been validated by Chauvin et al. (2006) for the ARPEGE integrations used in this pa-
per. In addition, they showed that, for a spatial resolution high enough, ARPEGE is
able to represent TCs structures. The stretching coefficient is 2.5 in our simulations,
and the pole of the grid is located 60ıW, 20ıN in the Western Atlantic. Simula-
tions for present and future climates are 30 years long with year-to-year variation
of SSTs, reproducing the interannual variability of 1960–1989 observed patterns.
The equivalent resolution is of approximately 50 km over the Atlantic basin and
decreases linearly when going far away from the pole to reach approximately 310
km at the opposite. Another experiment was performed in the stretched configura-
tion for the twenty-first century scenario. For the future climate, an anomaly was
added to the 1960–1989 climatology. SST anomaly was taken from a Hadley Centre
coupled simulation and following a SRES-A2 IPCC scenario for the GHGs (Johns
et al. 2001) for 2070–2099.

3.1.2 Tracking Methodology

In order to track the tropical storms, Chauvin et al. (2006) used and updated the
method developed at Mto-France by Ayrault and Joly (2000) to track mid-latitude
lows for the Atlantic tropical cyclones. For the construction of the tracks, criteria
from Bengtsson et al. (1995) have been introduced and the following criteria were
retained:

� Mean sea level pressure (MSLP) is a local minimum (considered therefore as the
center of the system)

� 850 hPa vorticity � VT (a vorticity threshold)
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� 850 hPa wind intensity � WT (a wind threshold)
� Mean 700–300 hPa temperature anomaly � TT (a temperature threshold)
� 300 hPa temperature anomaly � 850 hPa temperature anomaly
� 850 hPa tangential wind � 300 hPa tangential wind

Anomalies are defined as the difference between the system and its environment. For
each criterion, a threshold is fixed and a grid point, at a given time step, must meet all
conditions to be selected for a track. Choice of the thresholds was made subjectively,
partly in agreement with literature and partly to compare favourably with the real
world. The threshold combinations adopted, for this case, are the followings

VT D 14.10–5 1/s, WT D 15 m/s and TT D 3ıK

The entire description of the tracking method is given in Chauvin et al. (2006).

3.2 Present Integration

3.2.1 TCs Rainfall

Figure 9 presents the tropical cyclonic precipitation in the NATL basin in the present
integration of ARPEGE for the three decades: 1960–1969 (Fig. 9a), 1970–1979
(Fig. 9b) and 1980–1989 (Fig. 9c). The first decade (Fig. 9a) presents a maximum of
TCs rainfall in the Caribbean Sea (850 mm/year) and from the South of the Gulf of
Mexico (500 mm/year) to the eastern Florida peninsula. We also have some traces of

a b

c

Fig. 9 TCs rainfall (mm/year) in the NATL basin in the present ARPEGE integration for the time
periods:1960–1969 (a), 1970–1979 (b) and 1980–1989 (c)
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tracks in the center of the NATL basin coming from the West African coast, but the
signal is really lower (100 mm/year). The second decade (Fig. 9b) presents the same
position of maximum but with a lower range of value than the first decade except
for the south of the Gulf of Mexico. The maximum on the Caribbean Sea attains
600 mm/year, the eastern Florida 250 mm/year. The trace of TCs from the West
African coast is less visible in this decade. For the last decade, the maximum on
the Caribbean Sea obtains values between the two other decades (�700 mm/year).
In the Gulf of Mexico, the TCs rainfall give the same range of value as the two
other decades. The TCs rainfall in the eastern Florida and the center of the NATL
basin, as the second decade, are lower than the first decade. The results from Fig. 9
put in evidence the sensitivity of the simulated TCs rainfall to the period of study.
The amplitude of the maxima in all the areas vary in function of the time period,
except the Gulf of Mexico. We could also notice that the decades where ARPEGE
simulates a lower activity are the real time period known for lower TCs rainfall. If
we compare the results of ARPEGE, to those obtains by TRMM in Fig. 1, taking
account that it is not the same period of study, we can still see that ARPEGE is
highly overestimating the TCs rainfall. However the bias of the TCs rainfall of
ARPEGE must also be due to the errors in the tracking of the TCs. We surely have
too many tracks on the west side of the NATL basin and not enough in the east side
explaining why we have so low precipitation in the center of the NATL basin.

3.2.2 Fraction of TCs Rainfall

Figure 10 presents the fraction of TCs rainfall simulated by ARPEGE in the North
Atlantic Basin for the three decades: 1960–1969 (Fig. 10a), 1970–1979 (Fig. 10b)
and 1980–1989 (Fig. 10c). The first decade (Fig. 10a) presents maxima over the
Gulf of Mexico, the Caribbean Sea with equivalent values (�25%) and close to the
West African coast with a higher amplitude (60%). The next decades (Fig. 10b, c)
show nearly the same results for the Gulf of Mexico and the Caribbean Sea. How-
ever the maxima on the West African coast nearly disappears in the second decade
(1970–1979) and comes back in 1980–1989. When comparing the results of the sim-
ulation with those of TRMM, we can see that the maximum in the west of the NATL
basin is broader and northern for ARPEGE. The difference on the localization can
come from the sensitivity to the time period. On the eastern part of the NATL basin
ARPEGE finds a maximum on two decades which is, in the satellite observation,
more in the center of the ocean and broader. This maximum is highly overestimated
by the model. Like in the TCs rainfall, we can assume that some of the differences
between the model and the observation come from the tracking in the simulations.

3.2.3 Tropical Cyclonic Precipitation Efficiency – TCPE

Figure 11 presents the TCPE simulated by ARPEGE in the North Atlantic Basin
for the three decades: 1960–1969 (Fig. 11a), 1970–1979 (Fig. 11b) and 1980–1989
(Fig. 11c). In the three panels, we nearly obtain the same amplitude (25–40 mm/TC



74 A.S. Daloz et al.

a b

c

Fig. 10 Fraction (%) in the NATL basin in a present ARPEGE integration for the time
periods:1960–1969 (a), 1970–1979 (b) and 1980–1989 (c)

a b

c

Fig. 11 TCPE (mm/TC day) in the NATL basin in a present ARPEGE integration for the time
periods:1960–1969 (a), 1970–1979 (b) and 1980–1989 (c)
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day) in the Gulf of Mexico and the Caribbean Sea. We can also notice the trace of
efficient TCs in the New Orleans and Guatemala coast, regions vulnerable to TCs.
For the TCPE, the sensitivity to the time period is visible especially off the West
African coast. The amplitude is nearly the same in the center and the east of the
NATL basin and is really close to what obtained TRMM in Fig. 1.

3.3 Future Integration

3.3.1 Fraction of TCs Rainfall

Figure 12 presents the fraction of TCs rainfall from the future integration
(2060–2089) minus the present integration (1960–1989) over the NATL basin.
The blue values indicate a decrease of fraction of TCs rainfall and the red, an in-
crease. This figure shows that for this configuration of ARPEGE, the contribution
of TCs rainfall is decreasing in the future in comparison with the present. But as the
fraction is a ratio this decrease means a decrease of TCs rainfall or an increase in
total rainfall.

3.3.2 Tropical Cyclonic Precipitation Efficiency – TCPE

Figure 13 presents the TCPE from the future integration (2060–2089) minus the
present integration (1960–1989) over the NATL basin. The blue values indicate a
decrease of TCPE and the red, an increase. It seems that the efficiency is slightly
increasing in the future, in comparison with the present, as the red value indicate a
positive difference between the two integrations.

Fig. 12 Difference in fraction of TCs rainfall (%) between the future (2060–2089) and present
(1960–1989) ARPEGE integration in the NATL basin
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Fig. 13 Difference in TCPE (mm/TC day) between the future (2060–2089) and present
(1960–1989) ARPEGE integration in the NATL basin

4 Conclusion and Discussions

The impacts of the TCs rainfall on geographical variability of the total rainfall over
the NATL basin is investigated in a first part, in daily satellite observations and
reanalysis. We studied TRMM and GPCP for the satellite observations, ERA-40,
ERA-Interim, NCEP-1 and NCEP-2 for the reanalysis. The patterns of TRMM TCs
rainfall are similar to GPCP features, but GPCP presents an underestimates in am-
plitude and misses some local maxima in the center of the NATL basin surely due
to the lower spatial resolution of the latter. Then, we studied the ability of GPCP
and the reanalysis to represent the tropical cyclonic precipitation in comparison with
TRMM. It may be surprising to study the TCs rainfall from the reanalysis as we said
before that the spatial resolution seems to be important for the TCs rainfall. However
the time period covered by the reanalysis is not offered by the satellite observations
and for the study of climate integrations, we need a longer time period, that is why
we tried to validate the reanalysis. In this aim, we used a variety of metrics such as
the fraction of TCs rainfall and the TCPE. We noticed the improvement with the new
versions of the reanalysis from ECMWF and NCEP/NCAR centers (ERA-Interim
and NCEP-2). We especially note the good representation of the TCs rainfall for
NCEP-2 in comparison with TRMM, that is surely due to the way that NCEP-2 as-
similates the precipitation. The maximum of cyclonic precipitation is located in the
Caribbean Sea and the Gulf of Mexico, for the observation and the reanalysis. GPCP
and ERA-Interim underestimate the TCs rainfall in comparison with TRMM due to
an underestimate of intense TCs. TCs contribute to a maximum of precipitation (be-
tween 15ı and 25ıN) over the Southern Gulf of Mexico, the Caribbean sea and the
West Atlantic ocean for the observation and the reanalysis.The most efficient TCs
are located in the Gulf of Mexico, the Caribbean Sea and the West Atlantic Ocean
for the observations and the reanalysis.
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In a second part, we studied the ability of ARPEGE to simulate the TCs rainfall in
present simulation. ARPEGE is able to detect the maxima of TCs rainfall, fraction of
TCs rainfall and TCs efficiency obtained in the observation and reanalysis however
it overestimates them in term of amplitude. The decomposition of the 30 years of
integrations in decades has permitted to show the sensitivity of the model to the time
period. It is interesting to notice that the two last decades present lower TCs rainfall
which is consistent with the real TCs activity. This study has also allowed to see
the problems in the localization of the tracks. The tracking produces too much TCs
in the western NATL basin and not enough off the West African coast. Finally, we
run a future simulation to see the possible evolution of the fraction of TCs rainfall
and the TCPE. The difference between the future and present simulations shows an
decreasing contribution of TCs rainfall to total rainfall and an increasing efficiency
of TCs.
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Chapter 5
Tropical Cyclones as a Critical Phenomenon

Álvaro Corral

Abstract It has been proposed that the number of tropical cyclones as a function
of the energy they release is a decreasing power-law function, up to a characteristic
energy cutoff determined by the spatial size of the ocean basin in which the storm
occurs. This means that no characteristic scale exists for the energy of tropical cy-
clones, except for the finite-size effects induced by the boundaries of the basins.
This has important implications for the physics of tropical cyclones. In this chapter,
we discuss up to what point tropical cyclones are related to critical phenomena (in
the same way as earthquakes, rainfall, etc.), providing a consistent picture of the en-
ergy balance in the system. Moreover, this perspective allows one to visualize more
clearly the effects of global warming on tropical-cyclone occurrence.

Keywords Power laws � Scaling � Self-organized criticality � Power dissipation
index � Hurricanes

1 Introduction

A fundamental way to characterize a physical phenomenon is by analyzing the fluc-
tuations of the energy it releases over successive occurrences. Of course, in most of
the cases this is not a simple issue. For tropical cyclones, Bister and Emanuel (1998)
have found that the dissipated energy E can be estimated by integrating the cube of
the surface velocity field over space and time, by means of the formula

E '
Z

�CD jv.r; t/j3d 2r dt; (1)

with � the surface air density, CD the surface drag coefficient, and v.r; t/ the surface
wind velocity at position r and time t . It is implicit in the formula that the main
contribution to dissipation comes from the atmospheric surface layer.

Á. Corral (�)
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In order to obtain the distribution of energy then, one only needs to apply the
previous formula to as many tropical cyclones as possible (without any selection
bias) and perform the corresponding statistics. However, in practice, the available
records do not allow such a detailed calculation: instead of providing a nearly in-
stantaneous velocity field, best-track data consist of a single value of the velocity
reported every 6 h (the maximum sustained surface wind velocity).

Emanuel has envisaged a way to reconcile the calculation of the energy with the
limitation of the data (Emanuel 2005b). First, � and CD can be approximated as con-
stants in Eq. 1. Second, one can apply the similarity between radial profiles of veloc-
ities for different tropical cyclones to write v.r; t/ D vm.t/f .r=R.t//, where R.t/

is the radius of storm at time t (no matter how it is defined), vm.t/ is the maximum
of the velocity field for all r at t , and f is the function that describes the shape of the
velocity profile (the same for all storms, the scale given by vm and R). This yields a
scaling between the integral over space on the one side and the maximum velocity
and the radius on the other (with the same constant of proportionality), and then,

E /
Z

jvm.t/j3R2.t/dt;

where the symbol / indicates proportionality. An additional approximation is that
the radius of the storm is nearly uncorrelated with the velocity, and therefore as-
signing a common radius to all storms leads only to random errors in the evaluation
of the energy. Finally, enlarging the integration time step up to �t D 6 h gives

E / PDI �
X

t

v3
t �t;

with PDI defining the so-called power dissipation index, which is then a proxy for
the total energy dissipated by a tropical cyclone during all its life. The symbol vt

denotes the maximum sustained surface wind velocity.
A similar definition is that of the so-called accumulated cyclone energy (ACE)

(Bell et al. 2000; Gray et al 1992), which integrates kinetic energy over time,

ACE �
X

t

v2
t �t;

where the essential difference with the PDI is the replacement of the cube of the
velocity by a square. Note that the time integral of the kinetic energy is not an
energy, unless some proportionality factors are introduced in the formula, in the
same way as in Eq. 1. In any case, in this work we will study the distribution of
energy dissipated by tropical cyclones using both PDI and ACE as proxies for the
energy, evaluated over the complete lifetime of the storms.
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2 Power-Law Distribution of the Energy of Tropical Cyclones

In order to describe probability distributions we use the probability density function.
For the case of power dissipation index this is defined as the probability that the
value of this variable lies in a narrow interval of size dPDI around a concrete PDI ,
divided by dPDI to make the result independent on dPDI, i.e.,

D.PDI/ � Prob[ PDI � dPDI=2 � value < PDI C dPDI=2 ]

dPDI
;

where Prob denotes probability, which is evaluated as the number of events that
fulfill the condition divided by the total number of events. This definition ensures
normalization,

R 1
0

D.PDI/dPDI D 1. Note also that the units of the density are the
reciprocal of the units of the variable, so, for D.PDI/ these are s2=m3 (if the PDI
is measured in m3/s2). An analogous definition applies to the probability density of
the ACE, D.ACE/, or of any other variable.

Recently, we have shown that the distribution of PDI in different tropical-cyclone
basins follows a power law,

D.PDI/ / 1=PDI˛;

except for the largest and smallest values of PDI. The exponent ˛ turns out to be
close to 1 (between 1 and 1.2, roughly) (Ossó et al. 2009). Note that an exponent
equal to one implies that all decades contribute in the same proportion to the total
number of events, in other words, any interval of PDI values in which the extremes
keep the same proportion contains the same probability.

The calculation of D.PDI/ is not direct, though. The quantity of interest, the
PDI, varies across a broad range in the basins studied, from less than 109 m3/s2

to more that 1011 m3/s2, being necessary to plot the distribution in logarithmic
scale in order to represent the different scales. Moreover, this has the advantage
that on a log-log plot a power law appears as a straight line (note that this is not the
case for the cumulative distribution function if the power law has an upper cutoff
(Hergarten 2002).

On the other hand, the broad range of variation also makes it inappropriate
to use a constant interval size dPDI. Essentially, dPDI should be large enough
to contain enough statistics but small enough to provide a complete sampling
of the range of variation of D.PDI/. Logarithmic binning is a solution to this
problem (Hergarten 2002), where the size of the bins appears as constant in the
logarithmic scale used. (An equivalent, simpler solution, is to work with the dis-
tribution of ` � ln PDI, calculating its probability density D.`/ using standard
linear binning and then obtaining the PDI density by means of the change of
variable D.PDI/ D D.`/d`=dPDI D D.`/=PDI ; of course, D.PDI/ and D.`/

have different functional forms, despite the ambiguous notation.) Naturally, similar
considerations hold for the distribution of ACE.
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Turning back to the results of Ossó et al. (2009), it is shown that the PDI distri-
bution is well described by a decreasing power law in the North Atlantic (NAtl), the
Northeastern and Northwestern Pacific (EPac and WPac), and the Southern Hemi-
sphere (SHem) basins, with an exponent ˛ ranging from 0:98 ˙ 0:03 in the WPac
to 1:19 ˙ 0:07 in the NAtl, where the uncertainty refers to one standard deviation of
the maximum-likelihood-estimator mean value. The power law holds from a range
of a bit more than one decade (for the NAtl and the EPac) up to two decades (for the
WPac). The data used were the best tracks from NOAA’s National Hurricane Center
for NAtl and EPac (Jarvinen et al. 1988; National Hurricane Center 2010) and from
US Navy’s Joint Typhoon Warning Center for WPac and SHem (Chu et al. 2002;
Joint Typhoon Warning Center 2010). Here we will use the same data sets.

As an illustration, we show in Fig. 1a the PDI distribution for the Northern Hemi-
sphere (excluding the Indian Ocean, i.e., only NAtl+EPac+WPac) for the years 1986
to 2007. Tropical depressions (storms whose maximum sustained surface wind ve-
locity does not exceed 34 knots), not included in the NAtl and EPac records, have
been eliminated from our analysis of the WPac, for consistency. Of course, the re-
sults are in agreement with Ossó et al. (2009), with an exponent ˛ D 1:07 ˙ 0:06.

If instead of the PDI we use the ACE the results do not change in essence,
yielding ˛ D 1:10 ˙ 0:05, as displayed in Fig. 1b. The reason for the coincidence
of results between both variables is due to the fact that they are highly (though
non-linearly) correlated. Figure 2 shows a scatter plot for the values of the PDI ver-
sus the ACE, using the same data as above. A linear regression applied to ln PDI
versus ln ACE yields PDI / ACE� , with � ' 1:36 and a correlation coefficient
� D 0:994. If we write our probability distributions as D.PDI/ / 1=PDI1Cˇp and
D.ACE/ / 1=ACE1Cˇa , and introduce PDI / ACE� in the identity relation
D.PDI/ D D.ACE/dACE=dPDI, one gets ˇa D �ˇp , which implies that a power
law with exponent ˛ D 1 (i.e., ˇ D 0) is invariant under power-law changes of
variables. These results are in good concordance with our numerical findings.

An important issue is the deviation of the distribution from the power-law behav-
ior for small and large energies. In the first case, the deviation is due to the scarcity
of data referring to small storms. The best tracks of the National Hurricane Center
(for NAtl and EPac) do not contain tropical depressions, so the data are truncated
including only hurricanes (of category 1 at least) and tropical storms (maximum
sustained surface wind velocity larger than 34 knots but below hurricane category).
In the case of the best tracks of the Joint Typhoon Warning Center some tropical
depressions are included, but these are very few, only those ones which are consider
“significant”. This artificial truncation of the data obviously makes the distribution
depart from the power-law behavior for small values of the energy. The paths of the
tropical cyclones of a small part of the record, just for the 5 year period 2003–2007,
are shown in Fig. 3, separated in distinct PDI ranges; the top panel shows how the
set of storms with PDI < 109 m3=s2 seems certainly incomplete.

More fundamental is a decay faster than power law for large values of the energy.
We suggest in Ossó et al. (2009) that this is due to a finite size effect: the spatial size
of the basin is not big enough to sustain tropical cyclones with larger PDI values (re-
member that the PDI integrates v3

t over time, and time can be considered equivalent
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Fig. 1 Probability density of tropical-cyclone dissipated energy, for the NAtl, EPac, and WPac
basins, during 1986–2007, compressing 1,212 storms. (a) PDI probability density, D.PDI/, to-
gether with the number of tropical cyclones in each bin per year n.PDI/. A maximum-likelihood
fit of the distribution between the values 3:2 � 109 and 4:0 � 1010 m3=s2 yields ˛ D 1:07 ˙ 0:06

with a p�value D 99 ˙ 0:3% (calculated generalizing the method of Clauset et al. (2009), with a
resolution in the optimization of 10 points per decade). (b) ACE probability density. A maximum-
likelihood fit between the values 1:6 �108 and 2:0 �109 m2=s yields ˛ D 1:10 ˙ 0:05 with a p-value
D 59 ˙ 1:6%
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Fig. 2 Non-linear correlation between PDI and ACE. The former variable is plotted versus the
latter for all hurricanes, typhoons, and tropical storms occurring in the NAtl, EPac, and WPac for
the period 1986–2007. A power-law correlation PDI / ACE1:36 shows up, with a corresponding
linear correlation coefficient (for the logarithm of the variables) � D 0:994. The two regression
lines are included, although they overlap

to space). Indeed, when a tropical cyclone in any of the basins considered reaches a
PDI of about 1011 m3/s2 it is very likely that its evolution is affected by the bound-
aries of the basin, which are constituted essentially either by continental land or by
a colder environment; this deprives the tropical cyclone from its source of energy in
the form of warm water and provokes its attenuation and eventual death, see Fig. 3,
bottom panel. Under the name “colder environment” we can compress both a low
sea surface temperature (as it happens in high latitudes or with the cold California
Current) or the presence of extratropical weather systems. In any case, this makes
the boundaries of the basin be not fully “rigid” in contrast to condensed matter
physics (even for the case of continental boundaries, there have been hurricanes that
have jumped from the NAtl to the EPac).

Another relevant issue to take into account is up to what point the power law is
the right distribution to fit the PDI and ACE distributions. We have shown in Ossó
et al. (2009) that the power law provides indeed a good fit, but this does not exclude
that other distributions can fit the data equally well, or even better. In fact, any power
law in a finite domain (let us say, with the variable x in between m1 and m2) can
be fit also by a lognormal distribution, with a �-parameter (the standard deviation
of the underlying normal distribution) which tends to infinity. Indeed, the lognormal
probability density,

D.x/ / 1

x
exp

�

� .ln x � �/2

2�2

�

;
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Fig. 3 Trajectories of hurricanes, typhoons, and tropical storms (i.e., excluding tropical depres-
sions) in the WPac, EPac, and NAtl, separated for different values of the PDI. Different line styles
correspond to different years, from 2003 to 2007. The top panel points to the incompleteness of
the record for the smallest PDI values, whereas the bottom panel shows that the tropical cyclones
with the largest PDI values tend to travel through the whole basin
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can be written as

D.x/ /
�

e�

x

�1C.ln x��/=.2�2/

:

This is a kind of pseudo-power-law, with a pseudo-exponent 1 C .ln x � �/=.2�2/

that changes very slowly with x if � is big enough. Taking m1 � e�C2�2"1 and
m2 � e�C2�2"2 , the pseudo-exponent changes from 1 C "1 for x D m1 to 1 C "2

for x D m2, and the extreme values m1 and m2 can be as large as desired if � is big
enough. Note, anyhow, that the lognormal distribution has two parameters (� and
�), whereas the power law has just one (˛). A similar argument can be presented for
other long-tailed distributions. In conclusion, the choice of the right fit is a problem
that cannot be solved only by means of the statistical analysis, and the physical
knowledge provides a criterion to select the most appropriate distribution. The rest
of this work will justify the preferability of the power law as a physical model of
tropical-cyclone dissipation distribution.

3 Power-Law Distribution of Earthquake Energies

The power-law distribution of energy dissipation in tropical cyclones is analogous
to the well known Gutenberg–Richter law of earthquakes. This law states that, for
a given spatial region and over a certain period of time, the number of earthquakes
with magnitude larger than M is about 10 times greater than the number of earth-
quakes with magnitude larger than M C 1, which in its turn is 10 times greater
than the number of earthquakes larger than M C 2 and so on (Kanamori and Brod-
sky 2004). In mathematical terms, the number of earthquakes above M , denoted by
N.M /, is a decreasing exponential function,

N.M / / 10�bM

where the b-value is a parameter close to 1.
The cumulative distribution function of magnitudes, defined as S.M /�

Prob[magnitude value 	M] is estimated directly from N.M / as S.M / D N.M /=N ,
where N is the total number of earthquakes considered, of any magnitude. It is
obvious that the cumulative distribution is exponential, and therefore the density,
given as D.M / D � dS.M /=dM , is an exponential too, with the same b�value.
(This allows that, when working with magnitude distributions, one does not need
to specify if one is measuring the density or the cumulative distribution. Of course,
this is only acceptable for exponential distributions).

However, magnitude is not a physical variable, as it is a unitless variable. It is
believed, at least as a first approximation, that the energy E radiated in an earthquake
is an exponential function of the magnitude, E / 103M=2 (with a proportionality
factor between 103 and 105 J) (Kanamori and Brodsky 2004). Therefore, the energy
probability density will be a power law,
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D.E/ D D.M /dM=dE / D.M /=E / 1=E1C2b=3:

Note that, as in the case of tropical cyclones, we have used the same symbol for
the density of energies and for the density of the logarithm, although the functional
form of each one is not the same (power law versus exponential, respectively).

Summarizing, although the Gutenberg–Richter law implies an exponential dis-
tribution of the magnitudes of earthquakes, in terms of the radiated energy the
Gutenberg–Richter law is given by a power law. Then the fundamental difference
in the structure of energy release between earthquakes and tropical cyclones is only
quantitative and not qualitative, as both phenomena follow power-law distributions
of energy with ˛ ' 1:7 in the first case and ˛ ' 1:1 for tropical cyclones. Another
difference is the deviation from the power-law behavior at the largest values of the
energy in tropical cyclones; in the case of earthquakes the existence or not of this
boundary effect is not clear (Kagan 2006; Main et al. 2008).

In fact, many other complex phenomena in the geosciences yield power-law dis-
tributions of energies, or, broadly speaking, “sizes”. These phenomena include, in
addition to earthquakes and tropical cyclones: rainfall (Peters et al. 2002), landslides
and rock avalanches (Malamud 2004; Frette et al. 1996), forest fires (Malamud
et al. 1998), volcanic eruptions (Lahaie and Grasso 1998), solar flares (Arcange-
lis et al. 2006; Baiesi et al. 2006), the activity of the magnetosphere (Wanliss and
Weygand 2007), tsunamis (Burroughs and Tebbens 2005), and perhaps meteorite
impacts (Chapman and Morrison 1989). Nevertheless, the power laws are not to-
tally ubiquitous, see for instance Corral et al. (2008).

4 Relevance and Mechanisms for Power-Law Distributions

What are the implications of having a power-law distribution, as it happens for
the released energy of tropical cyclones, earthquakes and other phenomena just
mentioned? In general, power-law distributions denote the presence of three main
characteristics:

� Divergence of the mean value of the variable
� Absence of a characteristic scale
� Possible connection with criticality

Here we explain each one.

4.1 Divergence of the Mean Value

Regarding the first issue, it is obvious that, if we consider the mean energy value, this
fulfills hEi � R 1

m ED.E/dE D 1, if the power law exponent ˛ is smaller than 2
(but larger than 1 for normalization), with m the minimum value of the energy. Note
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that this is a property which is neither a characteristic of all power laws nor exclusive
of some power laws (there are many other distributions which show this divergence,
for instance, D.E/ / E�˛ cos2 E).

Obviously, from a physical point of view, the mean energy dissipated by a phe-
nomenon as earthquakes or hurricanes cannot be infinite (the Earth has a finite
energy content) and therefore the power-law behavior cannot be extrapolated to in-
finity. But if we do not know up to which maximum energy value the power law
holds (which seems to be the case of earthquakes, but not that of tropical cyclones),
the mean value of the energy is not defined and its calculation from any data set
does not converge. What happens is that the scarce extreme events dominate the
calculation of the average, as when they occur their contribution to the mean value
is large enough to alter significantly this mean value. So, the fluctuations are the
most significant trend of the energy, and not the mean value. In the case of tropical
cyclones, we can only say that if it were not for the finite-size effects imposed by
the boundaries of the basins, the mean released energy could not be calculated.

4.2 Lack of Characteristic Scale

In contrast to the first one, the second property, the absence of any characteristic
scale for the energy release, is an exclusive property of power laws (Christensen
and Moloney 2005). It is possible to show that a power-law function g.x/ /
1=x˛ (with �1 < ˛ < 1) is the only solution to the scale-invariance condition:
g.x/ Dcg.x=a/; 8x; 8a, where it turns out then that c has to be related to a by
c D 1=a˛ (alternatively, fixing the relation between a and c determines the value of
the exponent ˛). This condition means that it does not matter in which scale we look
at the variable x, we will see the same shape for the function g.x/. For example,
let us take a D 1; 000, then, when we write x=a we are looking at x at a scale that
is three orders of magnitude smaller than the original one (we go from the scale of
kilo-Joules to Joules, let us say). If we take c D 0:01, which means that we are per-
forming another linear transformation in the y�axis, we find that the corresponding
scale-invariant function is g.x/ / 1=

3
p

x2, indeed, ˛ D � log c= log a D 2=3.
Another example is given in Fig. 4.

Nevertheless, there is a “little” problem regarding scale invariance of probability
distributions: a function of the kind g.x/ / 1=x˛ cannot be a probability density for
all x, even for just x > 0, as

R 1
0

g.x/dx D 1, for all ˛. In practice, it is necessary
a small-energy cutoff m if ˛ 	 1 or a large-energy cutoff if ˛ � 1, so, the scale
invariance only can exist for a range of x and a, and not for all of them.

4.3 Criticality

One has to recognize that scale invariance is a rather strange property. How can it
be that the relative proportion of the value of a physical observable at two different
values of its variable, g.x/=g.x=a/, is the same (Dc) at the milli-scale and at the
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Fig. 4 Illustration of the scale invariance of power laws. A power-law function with ˛ D �0:5

looks exactly the same at two different scales. The box in the top panel (a) is enlarged in the bottom
one (b), the scale factors of the scale transformation are a D 4 and c D 1=a˛ D 2

Mega-scale (i.e., independent on x) if the values x and x=a take a constant propor-
tion (a)? This means that the study of the function g does not allow us to distinguish
the scale of observation (in order words, g cannot be used as an x-meter). It seems
obvious that the same physics has to operate at very different scales.
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In order to elucidate how scale invariance in energy distributions is achieved we
need a model of the energy release. Once again we use earthquakes as an example.
Earthquake energy is released in tectonic faults in an avalanche-like process. The
picture can be summarized as follows: stress in the Earth crust displays very small
changes. At some point the static friction cannot sustain a small variation in stress
and a slip takes place. This local slip increases the stress in the neighboring area,
where more slip can be induced in this way, and so on.

A very simple model of this process is given by a chain of dominoes. The slip
at a fault patch is represented by the toppling of one piece. A sequence of topplings
until the end of the activity constitutes an avalanche that represents an earthquake
(or other phenomenon). The energy released in the process will be proportional to
the number of topplings, which is called the avalanche size. In the usual game, the
toppling of one piece induces the toppling of the next and so on. This is the so-called
domino effect and yields toppling events (avalanches) whose size is equal to the size
of the system (the number of topplings equals the total number pieces). We arrive
then to the so-called characteristic-earthquake model. But this is not what the data
tells us, as the Gutenberg–Richter law shows that there should be avalanches of all
sizes, with no characteristic scale.

We need to modify the domino model. Instead of having that one toppling always
induces just one toppling, let us consider that one toppling induces one toppling, or
none, or may be two, or three, etc. That is, we have a random number of topplings,
with the probability of the number of induced topplings given by the same proba-
bility distribution for all pieces. For this purpose it is convenient to imagine not a
one-dimensional domino chain but an array of pieces. Mathematically, this is just an
image of a simple branching process, introduced in science to describe in the first
place the growth and extinction of populations.

The outcome of a branching process depends on the so-called branching ratio B ,
which is the average number of topplings induced directly by a single toppling (from
one time step to the next) (Harris 1989; Sornette 2004). It is clear that if B > 1 the
process will have a tendency to grow exponentially, giving rise to a system-spanning
avalanche (although there is also a finite probability that the chain of topplings dies
spontaneously). In contrast, if B < 1, the activity attenuates fast, on average, and
the size of the avalanches is small. However, if B is precisely equal to one (with a
standard deviation different than zero) these two tendencies compensate, and then
we loose any characteristic scale in the size of the avalanches: they are power-law
distributed, the concrete shape of the density being D.s/ / 1=s3=2, with s the size
of the avalanche (proportional to the energy). This case is called a critical branching
process.

So, in principle, we have arrived at a reasonable model to generate power-law
distributions by adjusting the branching ratio to be equal to one. The next question
in order to give an explanation of these phenomena is of course how the fine tuning
of the branching ratio is achieved in nature. An answer is given by the idea of self-
organized criticality proposed by Bak et al. in the 80s (Bak 1996; Jensen 1998). The
basic idea is the existence of a feedback mechanism that keeps the branching ratio
close to one. If it is larger than one this produces large avalanches and in this case
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the branching ratio is reduced (the distance between the domino pieces is increased
somehow); if the branching ratio is small, the avalanches are small, and then the
branching ratio is increased (Zapperi et al. 1995).

The idea is better illustrated substituting the toppling of domino pieces by the
toppling of grains in a sandpile (Bak et al. 1987; Christensen et al. 1996). The ad-
vantage of the sandpile is that after a large avalanche (which usually happens for
high B), many grains leave the pile through its open boundaries (the pile is built
over a finite support) and this decreases the average slope of the pile, making more
difficult the toppling of the remaining grains and reducing then the branching ratio.
On the contrary, when small avalanches predominate (low B) the grains do not reach
the boundaries of the pile, and a subsequent slow addition of more grains increases
the slope and also the branching ratio (as the toppling of the grains is facilitated by
a steeper pile).

The ideal sandpile is a particular realization of one kind of system called slowly
driven, interaction-dominated threshold systems (Jensen 1998). The three main in-
gredients are, as the name denotes: a slow energy input, an intermediate energy
storage caused by local thresholds, and sudden bursty energy releases that spread
through the system (Peters and Christensen 2006). The energy input comes from
the slow addition of grains and the energy storage is in the form of potential en-
ergy of the metastable configurations of the grains, which are possible thanks to
the thresholds built by the static friction between grains. When the input of grains
causes one of the thresholds to be overpassed, some grains start to move. This helps
other grains to overpass their thresholds, giving rise (or not) to an energy release in
the form of an avalanche.

Earthquakes also fulfill this picture. In this case the slow energy input comes
from the relative motion of the tectonic plates. This energy is stored in the form of
stress in the faults, due again to the thresholds provided by static friction. When an
increase in stress cannot be sustained by friction, energy is released and redistributed
in the system, triggering an avalanche of slips, i.e, an earthquake.

Among the geophysical phenomena mentioned at the end of Section 3 as display-
ing power-law statistics in their energy release, most of them (rainfall, landslides,
rock avalanches, forest fires, volcanic eruptions, magnetosphere activity, and solar
flares) can be understood as self-organized critical systems (see Table 1). Perhaps,
the only exceptions are tsunamis, which are not slowly driven (but driven by earth-
quakes, landslides, etc.), and maybe meteorites. In the next section we will discuss
if the evolution of tropical cyclones can be understood in these terms.

5 Criticality of Tropical Cyclones

Previously we have shown that the energy dissipated by tropical cyclones follows
a power-law distribution. As other catastrophic phenomena also show this behav-
ior, and as some of these other complex phenomena can be accommodated to the
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Table 1 Self-organized critical characteristics of diverse phenomena. All systems receive a slow
driving of energy which is stored thanks to local thresholds; eventually, a sudden release of energy
spreads through the system

Sandpile Earthquakes Rainfall Tropical cyclones

Driving Addition Motion of Solar Solar
of grains tectonic plates radiation radiation

Storage of Gravitational Elastic Water in Heat of the sea
energy potential energy potential energy atmosphere

Threshold Friction Friction Saturation Sea surface
temperaturea

Spread of Toppling of Release Nucleation Wind
energy grains of stress of drops

aPlus an external trigger.

perspective of self-organized criticality, it is natural to investigate the possible con-
nections between self-organized criticality and tropical cyclones.

In principle, we can guarantee that the broad requirements of self-organized
criticality are fulfilled in tropical cyclones. Indeed, the tropical sea surface stores
enormous quantities of energy in the form of warm water. Naturally, this energy is
slowly supplied to the sea by solar radiation. Moreover, a certain amount of stored
energy is necessary previous to its release by a tropical cyclone, as if the sea surface
temperature is below about 26ıC these storms cannot develop (Gray 2000). How-
ever, when the tropical cyclone is at work, the release of energy is very rapid (even
more rapid compared with the slow heating of the sea by the sun). This release is
facilitated by the strong winds, which increase the evaporation of water from the
sea and then also the release of energy, which in turn increase the strength of the
winds. This is in some sense analogous to the chain-reaction nature of avalanches,
in which part of the released energy is invested in facilitating further release. It is
important to stress that tropical cyclones liberate vast amounts of heat from the trop-
ical oceans; Emanuel estimates that quantity in more than 1022 Joules every year
(Emanuel 2008). Table 1 illustrates the energy flow of tropical cyclones comparing
it with that of some well-known self-organized critical phenomena.

Nevertheless, there are also differences between tropical cyclones and earth-
quakes or sandpiles. In the latter cases, the release of energy spreads through the
system in all possible directions, in principle. In contrast, a tropical cyclone attains
a characteristic radius and moves in an irregular but close to one-dimensional path,
carried by the predominant large-scale winds. Another difference is that favorable
conditions, i.e., more than enough energy content in the sea, is not a sufficient con-
dition for these storms to develop. As the experts know, some kind of perturbation
is needed to trigger the genesis process, by means of easterly waves for example
(Emanuel 2005a). So, some kind of overheating or supercriticality seems to be
present in the process. Curiously, recent research seems to indicate that most earth-
quakes do not occur “spontaneously” by the slow increase of the tectonic stress,
rather, they are triggered by the passing of seismic waves (Elst and Brodsky 2010).
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6 Tropical Cyclone Energy and Climate Change

The relationship between global warming and tropical cyclones constitutes a very
complex issue. In recent years, many works have investigated the response of
tropical cyclones to increased sea surface temperature and other changing climate
indicators (Emanuel 2005b; Goldenberg et al. 2001; Trenberth 2005; Landsea 2005;
Webster et al. 2005; Chan 2006; Klotzbach 2006; Shepherd and Knutson 2007;
Kossin et al. 2007; Elsner et al. 2008; Gray 2006; Landsea et al. 2006; Landsea
2007; Aberson 2009; Elsner and Jagger 2009). Most of these studies use measures
that involve the change in the annual number of tropical cyclones, as for instance
the PDI defined originally by Emanuel (2005b). In contrast, the individual-cyclone
PDI probability distribution (introduced in the previous sections) is independent on
the number of cyclones, and allows the comparison of the characteristics of single
events in different years (Ossó et al. 2009). This has the advantage of avoiding the
frequency of storms, which is underestimated in old records.

But what can one expect from the response of a self-organized critical system
under a change in external conditions? This kind of system is supposed to show a
robust behavior. After all, the critical point is an attractor of the dynamics, which
means that perturbations in the parameters that define the system are usually not
relevant. So the power-law behavior should hold independently of the changing of
climatic conditions.

That was indeed the result of Ossó et al. (2009), where it was shown that
D.PDI/ / 1=PDI˛, both for periods of high or low tropical-cyclone activity or
for periods of high or low sea surface temperature (in the NAtl and EPac). Does
this mean that changing climate does not alter the distribution of the energy re-
leased by tropical cyclones? Not at all: although the power-law exponent ˛ does not
change (under the statistical uncertainties) the high�PDI tail of the distribution does
change. Let us approximate the distribution by means of the following formula,

D.PDI/ / exp.�PDI=a/

PDI˛ ;

which covers both the power-law behavior for PDI 
 a and the faster high�PDI
decrease, modeled here by an exponential, for PDI � a. The parameter a, called
the cutoff, separates then both behaviors. A normalization constant, hidden under
the proportionality symbol, also depends on a, but this dependence is not important
in our argument.

The effect of an increase in sea surface temperature is just an increase in the
value of a, so,the transition from power-law behavior to exponential decay occurs
at a larger PDI value (given by a). In other words, the PDI values are shifted by
a scale factor equal to the ratio of increase of a. As a denotes the value of the
PDI for which tropical cyclones are affected by the boundaries of the basin, we can
understand the increase in a as an enlargement of the effective size of the basin.
This is not surprising, as higher sea surface temperature implies that the part of the
ocean over which tropical cyclones can develop is larger.



96 Á. Corral

Fig. 5 Probability density of tropical-cyclone PDI for time periods with different levels of activ-
ity. (a) The comparison between 1971–1994 and 1995–2007 shows that in the latter period larger
PDI values are possible. (b) In contrast, the period 1944–1969 shows no significant differences
with 1995–2007. Even, a correction of the velocities of the former period (subtracting 4 m/s (Land-
sea 1993) does not change noticeably the results

Figure 5a shows the PDI distributions in the North Atlantic for the years
1971–1994 and 1995–2007. The first period corresponds predominantly to rela-
tively low sea surface temperatures, whereas in the second period the temperatures
are higher. We clearly see how the scale that delimits the boundary effects increases.
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In summary, the last years of the North Atlantic are characterized by larger hurri-
canes, in terms of dissipation of energy, in comparison with the period 1971–1994.

Nevertheless, going back beyond 1970 yields a different tendency, as then the
hurricanes show a distribution very similar to that of recent years. In fact, Fig. 5b
compares the PDI distribution for the period 1944–1969 with the one corresponding
to 1995–2007, showing no significant differences. Even a correction of old values
of the velocities inspired in the work of Landsea (1993, 2005), in which they are
decreased by an amount of 4 m/s, does not alter significantly the results.

7 Discussion

The criticality of tropical cyclones offers a new perspective for the understand-
ing this complex phenomenon. Naturally, many questions arise, and much more
research will be necessary to answer them. First, we wonder how this criticality
relates to the results of Peters and Neelin (2006), who have recently proposed the
criticality of the atmosphere for the transition to rainfall occurrence (i.e., the tran-
sition from no precipitation to precipitation). After all, tropical cyclones show, in
addition to strong winds, enormous quantities of rainfall, and so they contribute to
the precipitation data analyzed by Peters and Neelin. These authors showed that the
state of the atmosphere, represented by its water-vapor content, is usually close to
the onset of precipitation (this onset marks the critical point of the transition). How-
ever, tropical cyclones clearly surpass this onset of precipitation (O. Peters, private
communication) and then it is not clear why they still retain critical characteristics.

A subsequent question is how the idea of criticality affects our vision of atmo-
spheric processes, and, in particular, the concept of a chaotic weather (Lorenz 1993).
It is true that both behaviors, chaos and criticality, share some characteristics, among
them an inherent unpredictability. But there are also fundamental differences. First,
chaos usually appears in low-dimensional systems, i.e., systems described by a few
non-linear differential equations, for instance, whereas criticality is the hallmark of
a high number of strongly interacting degrees of freedom. And second, the unpre-
dictability in chaos is described by the exponential separation of close trajectories
(positive maximum Lyapunov exponent), whereas in a critical system this diver-
gence should be a power law (with a zero maximum Lyapunov exponent, if one
likes). This suggests that a reconsideration of the limits of predictability of the
weather could give interesting outcomes (Orrell 2002).
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Chapter 6
Environmental Signals in Property Damage
Losses from Hurricanes

Thomas H. Jagger, James B. Elsner, and R. King Burch

Abstract In this chapter, we demonstrate the existence of environmental signals in
property damage losses from hurricanes affecting the United States. The methodol-
ogy is based on a random sums model, where the number of damaging hurricane
events is modeled separately from the amount of damage per event. It is shown that
when the springtime north-south surface pressure gradient over the North Atlantic
is weaker than normal, the Atlantic ocean is warmer than normal, there is no El
Niño event, and sunspots are few, the probability of at least one loss event increases.
However, given at least some losses, the magnitude of the damage per annum is cor-
related only to ocean temperatures in the Atlantic. The magnitude of damage losses
at a return period of 50 years is largest under a scenario featuring a warm Atlantic
Ocean, a weak North Atlantic surface pressure gradient, El Niño, and few sunspots.

Keywords Hurricanes � Loss model � Property damage � Climate � Risk

1 Introduction

Hurricanes at landfall generate large financial losses. Hurricane climatologists have
developed statistical models to anticipate the level of coastal hurricane activity from
independent climate signals. In addition, these models can be used to account for
changes in hurricane intensity. Thus we posit that it should be possible to detect
environmental signals in historical damages. Our purpose here is to show to what
extent environmental patterns that are known to influence the frequency and inten-
sity of hurricanes over the North Atlantic can be detected in long records of damage
losses from hurricanes along the U.S. coastline (Gulf and Atlantic).
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Elucidating this connection between ambient environmental conditions and
future economic threats from natural hazards is an important new and interesting
line of inquiry (Leckebusch et al. 2007). Lane (2008a) writes that insurance markets
and capital markets are converging that they are borrowing techniques from each
other to access capital and to assess and deal with risk. As the participation of the
financial markets becomes more important so does the need to provide investors
with sufficient and timely information. Early information is particularly valuable if
it aids investors in predicting the number or severity of loss events. For example,
Lane (2008b) analyzes investment returns for Insurance Linked Securities (i.e.,
Catastrophe Bonds) and notes, unsurprisingly, that different loss magnitudes and
loss timing patterns are controlled by nature and that this can significantly affect
investment results.

Although others have shown environmental signals in damage losses using bi-
variate relationships including El Niño and wind shear (Katz 2002; Saunders and
Lea 2005), this paper is the first to look at the problem from a multivariate perspec-
tive. It is based on a recent study that uses pre-season environmental conditions to
anticipate insured losses before the start of the hurricane season (Jagger et al. 2008).
Here we focus on the set of predictors shown to directly influence U.S. hurricane
activity and intensity (Jagger and Elsner 2006). These predictors are the most likely
candidates to elucidate the multivariate relationships between the environment and
losses from hurricanes. Based on recent research into Atlantic hurricane activity
(Elsner et al. 2008) we also introduce the solar cycle as a potentially important co-
variate in estimating losses.

The strategy is to model annual total economic losses associated with hurricanes
as a compound stochastic point process. The process is compound since the number
of hurricanes causing damage in a given year is fit using a Poisson distribution,
while the amount of damage is fit using a log-normal distribution. Loss totals are
thus represented as a random sum, with variations in total losses decomposed into
two sources, one attributable to variations in the frequency of events and another
to variations in the amount of damage from individual events. We also consider a
model for losses over a longer time horizon using a generalized Pareto distribution
for the amount of losses coupled with a Poisson distribution for the number of loss
events exceeding a threshold amount.

We begin with an examination of the normalized damage loss data and the data
associated with climate patterns. We then describe the overall modeling approach
and conclude with forecasts of annual and maximum losses for a variety of climate
scenarios.

2 Normalized Damage Losses: 1900–2007

We obtain normalized hurricane damage data from the work of Pielke et al. (2008).
The normalization attempts to adjust damage amounts to what they would be if the
hurricane struck in the year 2005 by accounting for inflation and changes in wealth
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and population, plus an additional factor that represents a change in the number
of housing units that exceeds population growth between the year of the loss and
2005. The methodology produces a longitudinally consistent estimate of economic
damage from past tropical cyclones affecting the U.S. Gulf and Atlantic coasts.

Economic damage is the direct losses associated with the hurricane’s impact. It
does not include losses due to business interruption or other macroeconomic effects
including demand surge and mitigation. Details and caveats for two slightly different
normalization procedures are provided in Pielke et al. (2008). Here we focus on the
data set from the Collins/Lowe methodology, but note that both data sets are quite
similar. Results presented in this study are not sensitive to the choice of data set.

We extend the data by adding the estimated economic damage losses from the
three tropical cyclones during 2006 and 2007. The damage estimates are those re-
ported in the National Hurricane Center (NHC) storm summaries and derived by
the NHC by the American Insurance Services and the Property Claim Services.
This is the same primary data source used in both normalization methods described
in Pielke et al. (2008). We did not adjust these losses at this time. There were six
tropical cyclones that caused at least some damage in the United Stated during this
two-year period, but loss levels were quite small, especially when compared with
the losses experienced in 2004 and 2005. In fact loss levels for three of the six trop-
ical storms were below the $25 million reporting threshold (Alberto in 2006, and
Barry and Gabrielle in 2007).

Tropical storm Ernesto in 2006 struck southern Florida and North Carolina. Total
direct damage losses are estimated at $500 mn (million). We estimate that 4/5ths of
those losses occurred in North Carolina where the storm was stronger at landfall.
An estimate of the total property damage from tropical storm Erin and hurricane
Humberto, both of which hit Texas in 2007, is $35 and $50 mn, respectively. The
NHC suggests that the low damage total from Humberto was probably due to its
small size and the relatively unpopulated area subjected to Humberto. In addition,
the large losses in the same area from Hurricane Rita in 2005 and may have mod-
erated the amount of damage that could have been done by Humberto. We make no
attempt to normalize the losses from 2006 and 2007.

Here we assume that multiple landfalls from a single tropical cyclone produce
multiple loss events. For example, in 1992 Hurricane Andrew produced a $52 bn
(billion) loss in southeast Florida and a separate $2 bn loss in Louisiana. When
multiple landfall events are included, the updated data set contains 221 loss events
from 210 separate tropical cyclones over the period 1900–2007. Figure 1 shows the
distribution and time series of the damages from all loss events. The histogram bars
indicate the percentage of events with losses in groups of $10 bn. The distribution
is highly skewed with 88% of the events having losses less than or equal to $10
bn and 95% of the events having losses less than $20 bn. The worst loss occurred
with the 1926 hurricane that struck southeast Florida creating an estimated damage
loss adjusted to $2005 of $129 bn. The Galveston hurricane of 1900 ranks second
with an estimated loss of $99 bn and hurricane Katrina of 2005 ranks third with
an estimated total loss of $81 bn. Years with more than one loss have more than
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Fig. 1 (a) Distribution of per storm damage losses from hurricanes in the United States (excluding
Hawaii). The distribution is highly skewed with a few events generating very large damage losses.
(b) Time series of the damage losses. Individual years may have more than one loss event

Table 1 Damage
exceedances ($US adjusted
to 2005$). The values are the
number of events exceeding
various damage loss
thresholds from 1900
to 2007 inclusive

Exceedance Number Number
$US (2005) events (CL)a events (PL)b

1 million 219 219
10 million 207 207
100 million 169 169
1 billion 98 94
10 billion 28 27
100 billion 1 1
aCollins and Lowe data set.
bPielke and Landsea data set.

one dot in the time series plot. There is large year-to-year variability but no obvious
long-term trend, although here the data are not disaggregated into loss amount and
the number of loss events.

The damage loss exceedances are shown in Table 1. Of the 221 loss events from
1900 to 2007, 169 exceeded $100 mn in losses and 28 of these exceeded $10 bn.
The distribution of losses is similar using the Collins/Lowe (CL) method and the
Pielke/Landsea (PL) methods, although the Collins/Lowe method tends to result in
somewhat larger losses. The two events producing losses less than $1 mn include
Gustav in 2002 and Dean in 1995. Another way to examine the data is to look at the
total amount of loss for storms exceeding the Saffir–Simpson lower intensity thresh-
old. Table 2 shows losses in billions of U.S. dollars from 1900 to 2007, inclusive.
For example, category 0 is for the minimum tropical storm threshold (17 m s�1),
and category 1 is for the minimum hurricane threshold (33 m s�1). So from this
table, all tropical storms accounted for of $1,103.9 bn 2005 adjusted $US with hur-
ricanes accounting for 1063.1 bn. Here again we see the similarity in the two data
sets and that category 4 and 5 hurricanes, although rare, have historically accounted
for nearly 50% of all losses.
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Table 2 Cumulative losses
by Saffir–Simpson scale ($US
bn adjusted to 2005)

Category Cumulative Cumulative
(Saffir/Simp) losses (CL) losses (PL)

0 1,103.9 1,125.1
1 1,063.1 1,084.5
2 1,022.7 1,045.6
3 941.4 964.4
4 533.1 557.3
5 79.4 79.3

1900 1915 1930 1945 1960 1975 1990 2005

Year

N
um

be
r 

of
 D

am
ag

e 
E

ve
nt

s

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Number of Damage Events

F
re

qu
en

cy
0

10

20

30

40

1900 1920 1940 1960 1980 2000

7

8

9

10

11

Year

Lo
g 

D
am

ag
e 

(2
00

5 
$U

S
 b

n)

Log Damage (2005 $US bn)

a b

c d

F
re

qu
en

cy

96 7 8 10 11 12

0

5

10

15

Fig. 2 Annual total damage losses. (a) Time series and (b) distribution of loss events and the
(c) time series and (d) distribution of the number of the logarithm (base 10) of annual total damage
losses

Figure 2 shows the annual number of loss events and their distribution. There
are five years with six loss events, the most recent being 2005. The annual rate
of loss events is 1.94 events/year with a variance of 2.48 (events/year)2. There is
a distinct upward trend in the number of loss events attributable to some extent
to an increase in coastal population. As population increases so do the number of
loss events from the weaker tropical cyclones. Indeed, prior to 1950 the number
of loss events from tropical storms was 6% of the total number of events. This
increases to nearly 38% from 1950 onward. In the present work we focus on the
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set of large losses from the stronger tropical cyclones. There is significant positive
skewness in per storm damage amounts. If we transform the data using base-10
logarithms then the loss frequency distribution becomes more symmetric.

3 Climate and Solar Factors

Statistical relationships between U.S. hurricane activity and climate are well estab-
lished (Elsner et al. 2004; Murnane et al. 2000). More importantly for the present
work, Jagger et al. (2001) and Jagger and Elsner (2006) model the wind speeds of
hurricanes at or near landfall and show that the exceedance probabilities (e.g., wind
speeds in excess of 50 m s�1) vary appreciably with the phase of the ENSO, the
NAO, and Atlantic sea-surface temperature (SST). Recent work has also shown a
linkage between U.S. hurricanes and sunspot numbers (SSN) (Elsner et al. 2008).

The ENSO can be characterized by basin-scale fluctuations in sea-level pressure
between Tahiti and Darwin. Although noisier than equatorial Pacific ocean temper-
atures, pressure values are available back to 1900. The Southern Oscillation Index
(SOI) is defined as the normalized sea-level pressure difference between Tahiti and
Darwin (in units of standard deviation). Negative values of the SOI indicate an El
Niño event. The relationship between ENSO and hurricane activity is strongest dur-
ing the hurricane season so we use a August–October average of the SOI as a climate
factor. The monthly SOI values (Ropelewski and Jones 1997) are obtained from the
Climatic Research Unit (CRU).

The NAO is characterized by fluctuations in sea level pressure (SLP) differences.
Index values for the NAO (NAOI) are calculated as the difference in SLP between
Gibraltar and a station over southwest Iceland (in units of standard deviation), and
are obtained from the CRU (Jones et al. 1997). The values are averaged over the
pre- and early-hurricane season months of May and June (Elsner et al. 2001) as this
is when the relationship with hurricane activity is strongest. (Elsner 2006).

The SST values are a blend of modeled and observed data and, to a first order,
correlate with the amount of fuel for hurricane development. Unsmoothed and un-
detrended Monthly North Atlantic arealy averaged SST anomalies from 0 to 70ıN
(in units of ıC) were computed using the base period 1951–2000. Data are obtained
from the NOAA-CIRES Climate Diagnostics Center back to 1871. For this study we
average the North Atlantic SST anomalies over the peak hurricane season months
of August through October.

For SSN we use the monthly total sunspot number for September (the peak month
of the hurricane season). Sunspots are magnetic disturbances of the sun surface
having both dark and brighter regions. The brighter regions (plages and faculae) in-
crease the intensity of the UV emissions. Increased sunspot numbers correspond to
more magnetic disturbances. Sunspot numbers produced by the Solar Influences
Data Analysis Center (SIDC), World Data Center for the Sunspot Index, at the
Royal Observatory of Belgium are obtained from the U.S. National Oceanic and
Atmospheric Administration.
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Fig. 3 Time series of the four covariates used to estimate wind damage losses from hurricanes

In summary, normalized historical economic damage losses from hurricane
events from the period 1900 to 2007 will be modeled using climate and solar data
that represent optimal relationships found in previous studies on U.S. hurricane ac-
tivity. By “optimal” we mean relative to what is currently understood about how
environmental variables influence hurricanes. It does not mean relative to an ex-
haustive search for correlations across many different variables.

Figure 3 shows the time series of the climate factors that are used in the model.
Upper and lower quartile values of the SOI are 0.40 and �0:90 s.d., respectively with
a median (mean) value of �0.18 (�0.16) s.d. Years of above (below) normal SOI
correspond to La Niña (El Niño) events and thus a higher probability of at least one
U.S. hurricane. The upper and lower quartile values of the NAO are 0.40 and �1:09

s.d., respectively with a median (mean) value of �0.39 (�0.33) s.d. Years of below
(above) normal values of the NAO correspond to a weak (strong) NAO phase and
thus to higher (lower) probability of U.S. hurricanes. The upper and lower quartile
values of the Atlantic SST anomalies are 0.22ıC and �0.16ıC, respectively. Years
of above (below) normal values of SST correspond to higher (lower) probability
of hurricane activity. The upper and lower quartile values of the September SSN
are 91.7 and 17.1, respectively with a median (mean) value of 50.2 (62.0). Years
of below (above) normal SSN correspond to a lower (higher) probability of U.S.
hurricanes. The largest correlation among the covariates occurs between the SSN
and SST at a marginally statistically significant value of 0.18 (p-value D 0.064).

As an initial analysis of the damage data relative to the climate signals, here we
compare locations on the distribution of per storm damage losses conditional on the
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Table 3 Damage amounts for Hurricanes in billions $US
adjusted to 2005 along with conditional damage ratios. The
damage ratio is the respective quantile amount of damage per
storm during above normal years to the amount during below
normal years

Collins/Lowe Pielke/Landsea

50% 99% 50% 99%

Damage 1.326 86:308 1.216 90:181

SOI 2.460 0:578 2.860 0:560

NAO 0.829 0:354 0.711 0:319

SST 1.027 1:342 1.233 1:289

SSN 0.671 0:493 0.557 0:480

various climate factors. Table 3 lists the damage amounts at the median and upper
99th percentile for both data sets and the damage ratio as the amount of damage
during above normal years to the amount during below normal years. During sea-
sons characterized by La Niña conditions (above normal values of SOI) the median
losses are greater by a factor of more than two compared with years with El Niño
conditions. However, the extreme losses are greater during El Niño conditions. Dur-
ing seasons with below normal springtime NAO conditions, the damages tend to be
greater at the median level and even more so at the extremes.

Interestingly, seasons characterized by higher than average SSTs show lower
amounts of total damage at the median levels compared with seasons character-
ized by lower SSTs. There is, however, a modest increase in damage loss amounts
during warm years over loss amounts during the cold years at the upper tails of
the distribution. During seasons with below normal sunspots, damage losses tend
to be greater at the median level and similarly so at the extremes. These results are
expected from what we know about how these climate factors influence U.S. hur-
ricane activity (Elsner 2006; Jagger and Elsner 2006). Again, note that the CL and
PL damage loss data sets give practically the same results.

4 Large and Small Losses

Figure 4 shows the amount of losses by the Saffir–Simpson category of storm inten-
sity. It is clear that both the category 0 and 1 tropical cyclones are different from the
stronger tropical cyclones, in that the range of damage is larger. For instance, at the
80% interval of losses the range is from 6.8 to 9.0 for category 0 storms, and from
7.2 to 9.1 for category 1 storms, this is about 2.2 and 1.9, respectively, or approxi-
mately a factor of 100. In comparison, the category 2, 3, 4, and 5 ranges are 1.3, 1.5,
1.4, and 1.1, respectively. Thus it makes sense to model tropical storms (category 0)
and category 1 hurricanes separately from category 2 and higher storms. However,
there is a practical limitation in that we lose 109 of the 212 storms. Thus for this
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Fig. 4 Common logarithm
(log10) of damage losses by
Saffir–Simpson hurricane
category
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Fig. 5 Empirical cumulative
distribution function of per
storm damage losses
expressed on the common
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paper we restrict our analysis to category 1 and higher tropical cyclones (hurricanes
only) as a compromise between removing too much data and keeping too many
weaker events.

Moreover, the total damage from the 221 events (1900–2007) calibrated to 2005
is estimated at US $1.1 trillion. The large skewness in damage losses per event and
per annum suggests that it might be a good strategy to separate large losses from
small losses for the purpose of modeling. It is often noted that 80% of the total
damage from tropical cyclones is caused by 20% of the biggest loss events. Figure 5
shows that the distribution of damage data is more skewed than that. In fact, the top
35 loss events (less than 16% of the total number of loss events) account for more
than 81% of the total loss amount. The relative infrequency of the largest loss events
argues for a split that favors more data for modeling the largest losses. Here we use
a cutoff of 1 bn $US and find that 90 of the 160 hurricane events (56.3%) exceed
this threshold. The remaining 70 events (43.7%) account for only 15.4% of the total
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damages. Thus it might be reasonable to assume that the small loss events are at
the “noise” level. In summary, our focus here is on the set of large losses from the
stronger tropical cyclones.

5 A Model for Annual Expected Loss

Given a loss event, the logarithm of the amount of loss on an annual basis is mod-
eled using a linear regression with the logarithm of the loss amount modeled as a
truncated Normal distribution. The only statistically significant climate signal in the
loss amount is the SST. Thus given a loss event, the magnitude of the loss increases
with increasing ocean warmth. This is consistent with SST acting as a proxy for
upper-ocean heat; a source of energy for hurricanes (Emanuel 1991).

To arrive at an estimate of the annual loss we need to combine this loss amount
estimate given an event with the frequency of a loss event. Since we divide loss
events into large and small events, we use separate models. Thus, given a mean
annual rate of large (small) loss events, the annual number of large (small) loss
events follows a Poisson distribution with the natural logarithm of the loss event
rate given as a linear function of the climate variables. We find that SST, NAO, SOI,
and SSN are all statistically significant indicators of the frequency of large losses,
but none of the climate variables are important for the frequency of small losses.

Mathematically we write the model for large losses as:

log L � Normal.�; ¢2/

� D ˛0 C ˛1SST
N � Poisson.	/

	 D exp.ˇ0 C ˇ1SST C ˇ2NAO C ˇ3SOI C ˇ4SSN/

(1)

where L is the amount of total loss for an event and 	 is the yearly hurricane
frequency. The symbol � refers to a stochastic relationship and indicates that the
variable on the left hand side is a random draw (sample) from a distribution speci-
fied on the right hand side. The equal sign indicates a logical relationship with the
variable on the left hand side algebraically related to variable(s) on the right hand
side. As mentioned, the size of the loss is modeled as a truncated Normal distribu-
tion with parameters � and �2 indicating the location and scale for the distribution.
Unlike the normal distribution the location and scale parameters of the truncated
normal distribution are not the same as its mean and variance. In short, the model
describes a compound Poisson process with rate 	 and logarithm of the jump size
distributed as a truncated normal distribution with parameters � and � .

Chi-square goodness-of-fit statistics do not show any evidence against adequacy
of the rate model. Furthermore, there is no trend in the deviance residuals implying
the rate model for large losses conditioned on the climate variables chosen is statis-
tically stationary and the addition of a trend term does not improve the model. This
suggests to us that there is no significant historical under reporting of the number of
loss events from hurricanes in the United States over the period considered here.
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The final model that combines the frequency of loss events with the magnitude
of the loss given an event uses a hierarchical Bayesian specification. Bayesian mod-
els provide posterior distributions of model parameters, as opposed to a frequentist
model using maximum likelihood estimation (MLE) which only provides the pa-
rameter estimate and prediction error. For non normal distributions these MLE
estimates lead to biased predictions. We chose flat (uniform) model priors for the
location and model precision .1=�2/ parameters to minimize the influence of prior.
The final model is selected from a set of possible models by comparing the Deviance
Information Criterion (DIC) for each model and then choosing the model with the
smallest DIC. The DIC is the formulated explicitly for model selection in Bayesian
models, in the same fashion that the AIC which is used to compare models using
maximum likelihood estimation (Spiegelhalter et al. 2002). It is useful in Bayesian
model selection where the posterior distributions of the models are obtained by
Markov Chain Monte Carlo (MCMC) simulation. The model with the smallest DIC
is estimated to be the model that would best predict a replicate data set that has the
same structure as the observed one.

Given the hierarchical form of the model, samples of the annual losses are
generated using WinBUGS (Windows version of Bayesian inference Using Gibbs
Sampling) developed at the Medical Research Council in the UK (Gilks et al. 1996;
Spiegelhalter et al. 1996). WinBUGS chooses an appropriate MCMC sampling
algorithm based on the model structure. In this way annual losses are sampled con-
ditional on the model coefficients and the observed values of the covariates. The
cost associated with a Bayesian approach is the requirement to formally specify
prior beliefs. Here we take the standard route and assume noninformative priors that
provide little information about the parameters of interest.

MCMC, in particular Gibbs sampling, is used to sample the parameters given the
data since no closed form solution exists for the posterior distribution of the model
parameters in the truncated Normal (or for the generalized Pareto distribution (GPD)
used in the next section). Indeed, WinBUGS is useful in that it allows us to sample
the parameters from the posteriors created from arbitrary likelihood functions. As
far as we are aware, there is no software for finding the maximum likelihood esti-
mates of the regression parameters for a truncated normal distribution.

We check for mixing and convergence by examining successive samples of the
parameters. Samples from the posterior distributions of the parameters indicate rel-
atively good mixing and quick settling as two different sets of initial conditions
produce sample values that fluctuate around a fixed mean. Based on these diag-
nostics, we discard the first 10,000 samples and analyze the output from the next
10,000 samples. The utility of the Bayesian approach for modeling the mean num-
ber of coastal hurricanes is described in Elsner and Jagger (2004) and for predicting
damage losses is described in Jagger et al. (2008).

Figure 6 shows the predictive posterior distributions of annually aggregated
losses for six different climate scenarios. The set of scenarios is ordered by gen-
erally increasing favorable climate conditions for hurricanes to affect the United
States. Each panel shows the probability of no losses and the probability of losses
on a logarithm (base 10) scale given at least one loss event. The upper left panel
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Fig. 6 Simulated annual losses for six different climate scenarios. The histograms show the prob-
ability of no losses on the left and the distribution of annual amount of loss on a logarithmic scale
on the right. The panels are ordered toward conditions increasingly favorable for hurricane activity
along the U.S. coast. The histograms are created from posterior samples generated from the hier-
archical Bayesian model using (a) SST D �0.52ıC, NAO D C2.9 s.d., SOI D �2.3 s.d., and
SSN D 236, (b) SST D �0.24ıC, NAO D C0.7 s.d., SOI D �1.1 s.d., and SSN D 115, (c)
SST D C0.01ıC, NAO D �0.3 s.d., SOI D �0.2 s.d., and SSN D 62, (d) SST D C0.27ıC,
NAO D �1.4 s.d., SOI D C0.8 s.d., and SSN D 9, (e) SST D C0.43ıC, NAO D �1.3 s.d.,
SOI D �0.1 s.d., and SSN D 5, and (f) SST D C0.61ıC, NAO D �2.7 s.d., SOI D C2.6 s.d.,
and SSN D 1

shows the posterior probabilities for a year during which the SST is much below
normal, the NAO is much above normal, there is a strong El Niño, and the sun is very
active (many sunspots). The specific covariate values are listed in the figure caption.
The posterior samples indicate a relatively large probability of no damage events
(37%) under this scenario. The estimated annual loss taking into account the non-
zero probability of no loss events is centered in the range between $0.1 and $1 bn.

As the climate factors change to indicate more favorable conditions for hurri-
canes, the posterior samples provide a distribution of annual losses that are more



6 Environmental Signals in Property Damage Losses from Hurricanes 113

ominous with the probability of no losses decreasing to less than 1% and the ex-
pected annual total loss amount exceeding $100 bn. All estimated loss amounts are
converted to $2005. The results of the model integration are rather remarkable in
showing a distinct climate signal in aggregate property losses in the United States
from hurricanes. The annual expected loss increases with warmer Atlantic SSTs,
cooler equatorial eastern Pacific SSTs, a negative phase of the NAO, and fewer
sunspots.

6 A Model for the Probable Maximum Loss

While the above modeling strategy makes sense for estimating the distribution of
likely annual damage associated with variations in environmental conditions from
one year to the next, for financial planning it might be of greater importance to know
the maximum possible storm loss. In this case, the normal distribution is replaced
by an extreme value distribution for the logarithm of losses. For example, the fam-
ily of Generalized Pareto Distributions (GPD) describes the behavior of individual
extreme events.

Consider observations from a collection of random variables in which only those
observations that exceed a fixed value are kept. As the magnitude of this value in-
creases, the GPD family represents the limiting behavior of each new collection
of random variables. This property makes the family of GPD a good choice for
modeling extreme events including large losses from wind storms. The choice of
threshold, above which we treat the values as extreme, is a compromise between re-
taining enough observations to properly estimate the distributional parameters (scale
and shape), but few enough that the observations follow a GPD family.

The GPD describes the distribution of losses that exceed a threshold l but not
the frequency of losses at that threshold. As we did with the annual loss model, we
specify that, given a rate of loss events above the threshold, the number of loss events
follows a Poisson distribution. Here there is no need to consider small loss events
as we are only interested in the large ones. Combining the GPD for the distribution
of large loss amounts with the Poisson distribution for the frequency of loss events
above the threshold allows us to obtain return periods for given levels of losses.

Mathematically we are modeling the exceedances, L � l , as samples from a
family of GPD distributions so that for any threshold l and any event with losses L,
the probability that L exceeds some arbitrary level x above l is

Pr.L > x C l jL > l/ D
8

<

:

exp.� x
�

/ 
 D 0
�

1 C �
�l

x
�� 1

�


 ¤ 0
(2)

D GPD.xj�l ; 
/ (3)

where �l > 0, x 	 0, and �l C 
x 	 0. If the exceedances above l0 follow a GPD
then the exceedances above l > l0 follow a GPD with the same shape, 
 and scale
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that shifts linearly with the threshold:

�l D �0 C 
l

The parameters �l and 
 are the scale and shape parameters respectively. For
negative shape parameters the GPD family of distributions has an upper limit of
Lmax D l C �l =j
j. The equation for �l specifies that if the values follow a GPD,
then for any threshold the distribution of exceedances is GPD with the same value
of the shape parameter (
) from the original distribution and a scale parameter that
changes linearly with the threshold at a rate equal to the shape parameter.

We determine the threshold value at $1 bn U.S. for the set of losses by examining
the mean residual life plot. This is a plot of the mean value of the exceedances as
a function of the threshold. If the data follow a GPD distribution, this plot is linear.
The threshold is chosen as the smallest value where the function is linear for all
larger thresholds Coles (2001).

The GPD describes the loss distribution for each wind event whose losses exceed
l but not the frequency of events at that magnitude. We assume that the num-
ber of loss events in year y that exceed l has a Poisson distribution with mean
(or exceedance) rate is 	l . Thus by combining the exceedance probability and the
exceedance rate with our assumption that they are independent we get a Poisson
distribution for the number of loss events per year with losses exceeding m (Nm)
with a rate given by

	m D 	l Pr.L > mjL > l/: (4)

This specification is physically realistic since it allows us to model loss occurrence
separately from loss amount. Moreover from a practical perspective, rather than a
return rate per loss occurrence, the above specification allows us to obtain an annual
return rate on the extreme losses, which is more meaningful for the business of risk
and insurance.

Now, the probability that the yearly maximum will be less than m is the proba-
bility that Nm D 0. Since Nm has a Poisson distribution

Pr.Lmax � m/ D Pr.Nm D 0/ (5)

D exp.�	m/ (6)

D exp f�	lGPD.m � l j�l ; 
/g (7)

If we make the substitution for 
 ¤ 0:

�� D 	
�

l
�l (8)

� D l C �� � �l



(9)
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then

Pr.Lmax � m/ D exp

(

�
�

1 C 


�
m � �

��

��� 1
�

)

(10)

has a Generalized Extreme Value (GEV) distribution, which is in canonical form. If

 D 0 then we make the substitutions

�� D �l

� D l C �l log.	l/

then

Pr.Lmax � m/ D exp

�

� exp

�

�
�

m � �

��

��	

(11)

We convert the peaks-over-threshold parameters 	l ; �l ; 
 to the GEV canoni-
cal parameters �; ��; 
, and so compare results obtained with different thresholds.
Using the canonical parameters, for example we calculate the yearly (seasonal) re-
turn level, rl.r/, corresponding to a given return period, r and GEV parameters
�; �; 
 by solving for m in Pr.Lmax 	 m/ D 1

r
giving

rl.r/ D � C �
�

nh

log



r
r�1

��� � 1
io


 ¤ 0

� � � � log
˚

log



r
r�1

��


 D 0
(12)

Additional details are given in (Coles 2001).
As with the annual loss model we use a Bayesian hierarchical specification for the

model of extreme losses. MCMC samples are used to generate posterior predictive
distributions. Here we are interested in the return level as a function of return period.
The annual return level is determined by the return level of individual extreme events
and the annual frequency of such events above a threshold rate. The annual number
of extreme events follows a Poisson distribution with the natural logarithm of the
rate specified as a linear function of the four covariates.

Given values for the scale (�) and shape (
) parameters, the return level of indi-
vidual extreme events follows a GPD. The logarithm of the scale parameter and the
shape parameter are both linear functions of the four covariates.

As before, samples of the return levels are generated using WinBUGS and we use
noninformative prior distributions. Samples from the posterior distribution of the
model parameters indicate good mixing and good convergence properties. We dis-
card the first 10,000 samples and analyze the output from the next 10,000 samples.
Applications of Bayesian extremal analysis are found in Coles and Tawn (1996),
Walshaw (2000), Katz et al. 2002, Coles et al. (2003), Hsieh (2004), and Jagger
and Elsner (2006). Figure 7 shows the predictive posterior distributions of ex-
treme losses for four different climate scenarios using quantile values. For each
return period the 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.975 quantile values of the
maximum storm damage losses are plotted. The first scenario is characterized by
covariates in favor of fewer hurricanes, the second scenario represents long-term
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Fig. 7 Simulated extreme losses for four different climate scenarios. The points are the 0.025,
0.05, 0.25, 0.5, 0.75, 0.95, and 0.975 quantiles from the posterior distribution of the loss model. The
panels are ordered toward conditions increasingly favorable for large losses. (a) SST D �0.243ıC,
NAO D C0.698 s.d., SOI D �1.087 s.d., and SSN D 115, (b) SST D C0.012ıC, NAO D
�0.331 s.d., SOI D �0.160 s.d., and SSN D 62, (c) SST D C0.268ıC, NAO D �1.359 s.d.,
SOI D �0.766 s.d., and SSN D 9, (d) SST D C0.268ıC, NAO D �1.359 s.d., SOI D �1.087
s.d., and SSN D 9. The upper quantile values in panel (d) are outside the range of the plot

climatological conditions, the third scenario is characterized by covariates favoring
more hurricanes, and the fourth scenario is characterized by covariates favoring
stronger hurricanes. The loss distribution changes substantially between the dif-
ferent climate and solar scenarios and in a direction that is consistent with our
understanding about the relationship between climate and hurricane activity.

Under the first scenario we find the median return level of a 50-year extreme
event at approximately $18 bn, this compares with a median return level of the
same 50-year extreme event loss of approximately $793 bn under the fourth sce-
nario. Thus the model can be useful for projecting extreme losses over time horizons
longer than a year given values of the covariates. Note that the results are interpreted
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as the posterior distributions of the return level for a return period of 50 years of the
covariate values as extreme or more extreme than 1 standard deviation. With four
independent covariates and an annual probability of about 16% that a particular co-
variate is more than 1 s.d. from its mean, the chance that all covariates will be this
extreme or more in a given year is less than 0.1%.

7 Summary

Coastal hurricanes are capable of generating large financial losses to the insurance
industry. Annual loss totals are directly related to the intensity and frequency of
hurricanes affecting the coast. Since a measurable amount of skill exists in forecasts
of coastal hurricane activity, it makes sense to investigate the potential of model-
ing losses directly. This paper demonstrates clear climate and solar signals in the
historical estimates of property damage losses.

Two separate statistical models are specified using hierarchical Bayesian tech-
nology and predictive posterior distributions are generated using MCMC sampling.
The first model can be used to estimate the expected annual loss under various en-
vironmental scenarios. The annual expected loss increases with warmer Atlantic
SSTs, cooler equatorial eastern Pacific SSTs, a negative phase of the NAO, and
fewer sunspots. The second model can be used to estimate the distribution of losses
over a longer time horizon conditional on the values of the four covariates.

Results are consistent with current understanding of hurricane climate variabil-
ity. While the models here are developed from aggregate loss data for the entire
United States susceptible to Atlantic hurricanes, it would be possible to apply the
techniques to model data representing a subset of losses capturing, for example, a
particular reinsurance portfolio. Moreover, since the models make use of MCMC
sampling they can be easily extended to include measurement error and miss-
ing data.

Hazard risk affects the profit and loss of the insurance industry. Some of this risk
is transferred to the performance of securities traded in financial markets. This im-
plies that early and reliable information concerning potential hazards will be useful
to investors. This paper advances those goals.

Traditional hurricane risk models used by the insurance industry rely on a catalog
of storms that represent the historical data in some way or another. While useful for
estimating AAL and loss exceedance curves for aggregate and occurrence portfolio
losses, these catalogs are not easily suited for anticipating losses based on an ever-
changing climate. Specifically, at the core of the catalog is a set of synthetic storms
and a way to assign a probability to each. However, it is not obvious how to condition
the set of storm characteristics on climate. The approach demonstrated here provides
an alternative way to anticipate losses on the seasonal to multi-year time scale.

Concerning the future, increases in ocean temperature will raise a hurricane’s
potential intensity, all else being equal. However, corresponding increases in
atmospheric wind shear – in which winds at different altitudes blow in differ-
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ent directions – could tear apart developing hurricanes and could counter this
tendency by dispersing the hurricane’s heat. However, a recent study based on a
set of homogenized satellite-derived wind speeds indicates the strongest hurricanes
are getting stronger worldwide (Elsner et al. 2008). This new information can be
incorporated in models of the type demonstrated here by placing a discount factor
on the older information relative to the more recent events.
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Chapter 7
A Statistical Analysis of the Frequency of United
States and Eastern North Pacific Hurricanes
Related to Solar Activity

Robert E. Hodges and James B. Elsner

Abstract In this chapter, we examine the statistical relationship between the
frequency of United States and eastern North Pacific (ENP) hurricanes and the solar
cycle. First, a relationship between the probability of a hurricane and sunspot num-
bers is shown that is conditional on ocean temperature. For years of above normal
ocean temperatures, the probability of three or more hurricanes in the United States
decreases from 40% to 20% as sunspot numbers increase. Second, a solar index that
tracks intraseasonal variability in sunspot numbers is constructed and correlated
with hurricane activity. The index is inversely related to the total sunspot numbers
(SSN) and is significantly correlated with the probability of hurricanes and major
hurricanes affecting the United States. The chances of at least one U.S. hurricane
in the lowest and highest SSN anomaly season are 25% and 64%, respectively. The
solar index is then used as a predictor of major hurricane frequency over the ENP
where it is found that the chance of at least six major ENP hurricanes increases
from about 1% when the solar index lowest to 28% when the index is highest.

Keywords UV radiation � Sunspots � Poisson process � Multivariate regression

1 Introduction

Tropical cyclones are different from their middle-latitude counterparts because of
their warm central core. This warm core is generated and sustained by sensible
heat realized from water vapor condensation in rising air. A supply of water va-
por comes from the flow of air toward low pressures that remains in contact with
the warm ocean surface. Indeed, the heat-engine theory of idealized tropical cy-
clones (Emanuel 1991) stipulates that the tangential wind speed of a tropical cyclone
(intensity) is directly proportional to inflow temperature. However, it also stipulates
that intensity is inversely related the outflow temperature aloft.
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Exogenous controls on upper atmospheric temperatures include variations in
ultraviolet (UV) radiation from the sun related to the presence of ozone. Increased
UV radiation warms the upper troposphere and lower stratosphere, possibly de-
creasing the intensity of tropical cyclones. Elsner and Jagger (2008) (hereafter,
EJ08) show an inverse relationship between the probability of a hurricane hitting the
United States or the Caribbean and sunspot number (SSN) although a sun–hurricane
relationship was postulated as early as the eighteenth century (Meldrum 1872;
Poey 1873).

This chapter examines the case for a relationship between solar activity and the
probability of ENP tropical cyclones. In Section 2, background information is intro-
duced regarding solar variability and its possible relationship with hurricane activity.
In Section 3 the data used in the study are described. In Section 4 we examine the
sun–hurricane relationship using data since 1851 for US hurricanes, and data since
1953 for ENP major hurricanes. An index of solar activity is proposed, which ar-
ticulates the two principal time scales of solar variability as the relate to hurricane
intensity. For years with a large solar index there is a statistically significant increase
in the probability of US hurricanes and ENP major hurricanes.

2 Background

The purpose of this chapter is to examine the inverse relationship between solar
activity and US hurricanes, and whether it exists for hurricanes over the ENP trop-
ical cyclone basin. We begin by considering how solar radiation fluctuates on time
scales of days to years, and then we consider how these fluctuations might relate to
hurricanes through the heat-engine theory.

Variation in solar radiation is a consequence of disturbances in the sun’s magnetic
field. These traveling disturbances are slightly cooler than their surroundings, ap-
pearing as dark blotches in the photosphere (surface layer of the sun). The sunspots
tend to come in pairs on opposite sides of the sun’s equator and wax and wane in
frequency over 27 days or so. The number of overall sunspots varies directly with
the strength of the magnetic field, which waxes and wanes over an 11-year period
(Schwabe solar cycle). When the strength of the magnetic field reaches a minimum,
the polarity of the field switches beginning a new solar cycle.

The heat-engine theory postulates that in an idealized thermodynamic environ-
ment a hurricane’s maximum possible intensity (MPI) is proportional to the ther-
modynamic efficiency between input energy (entropy gain from ocean/atmosphere
interaction) and outflow venting (mechanical dissipation) (Miller 1958; Emanuel
1991; Holland 1997; Bister and Emanuel 1998). An increase in ocean temperature
as indexed by sea-surface temperature (SST) increases the thermodynamic poten-
tial energy available for convection, all else being equal. However, the sun’s total
solar irradiance varies directly with the number of sunspots (SSN) especially in
the UV and extreme UV wavelengths. Upper-tropospheric warming is a known re-
sponse to increases in UV radiation, especially over the tropics (Pap and Fox 2004;
Labitzke 2002; Hood 2003). Subsequently, an active sun (many sunspots) leads to
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warmer ocean temperatures over regions where hurricanes form (White et al. 1997),
but also to a warmer upper troposphere due to additional UV radiation absorbed
by ozone.

EJ08 unmask the solar variability effect on hurricanes over the North Atlantic
basin. Over the western half of the basin ocean heat content is nearly always high
enough to support tropical cyclogenesis; the limiting thermodynamic factor is upper
tropospheric temperatures. There exists a significant negative relationship between
daily SSN and hurricane intensity. Because of the region’s already warm SSTs the
extra energy from an active sun limits intensification via a warmer upper tropo-
sphere. Thus, a solar signal is detected in hurricanes by controlling for SST.

In the western North Atlantic, including the Caribbean Sea and Gulf of Mexico,
ocean heat content is spatially expansive. Here the limiting thermodynamic factor
for a tropical cyclone to reach maximum intensity is the temperature of the atmo-
sphere near the tropopause. Since this covariate is inversely related to MPI, we note
that an active sun warms the lower stratosphere, thereby decreasing potential inten-
sity. The correlation between seasonally-averaged SSN and temperatures near the
tropopause over the domain is consistently positive based on atmospheric data over
the period 1948–2008 (EJ08). In contrast, the daily SSN is positively correlated
with daily averaged tropical cyclone intensity for cyclones over the eastern North
Atlantic.

One hypothesis for this geographic difference in the sun–hurricane relationship
centers on the difference in the limiting factors associated with tropical cyclone
intensity. Over the western Atlantic cloud top temperature appears to be the limiting
factor, whereas over the eastern and central tropical Atlantic, the limiting factor in
the thermodynamic potential for intensity is oceanic heat content. Since there is a
direct relationship between SST and potential intensity, an active sun increases the
shortwave flux to the ocean, raising the heat content and increasing the potential
for tropical cyclone intensification. In fact, an autoregressive time series model of
North Atlantic SST contains a component corresponding to the solar cycle (Elsner
et al. 2008) with August through October averaged SST values generally higher
(lower) during years of high (low) SSN.

Thus, there are two mechanisms at work. On the time scale of months to years,
an increase in solar radiation helps warm the ocean leading to a positive correlation
between SSN and hurricane frequency. In contrast, on the time scale of days to
weeks, an increase in solar radiation helps to warm the upper troposphere leading
to a negative correlation between SSN and hurricane frequency. The present work
examines the sun–hurricane relationship by constructing an index that accounts for
both the low (11-year Schwabe cycle) and high (27-day solar rotation) frequency
variability inherent in the solar cycle.

3 Data

The National Hurricane Center (NHC) maintains the North Atlantic-basin hurri-
cane database (HURDAT, or Best Track), containing the date, location, wind speed,
and central pressure values for six-hourly observations of tropical cyclones since
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1851 (Jarvinen et al. 1984). With refining work begun by Jose Fernandez–Partagàs
(Partagás and Diaz 1996), over 5,000 additions and alterations have been approved
by the NHC Best Track Change Committee in an effort to improve the accuracy
of storm data between 1851–1910 (AOML 2008). Through the 2008 hurricane sea-
son, HURDAT identifies 1,362 unique North Atlantic storms (	17 m s�1) and 819
individual hurricanes (	33 m s�1), 283 of which struck the U.S. mainland.

For ENP hurricanes, data are obtained from the IBTrACS (Overview of the In-
ternational Best Track Archive for Climate Stewardship) repository available online
from the National Climatic Data Center (Knapp et al. 2009). The data set provides
storm dates, locations, wind speeds, and central pressures as available. Information
on these hurricanes is available back to 1957.

SSN used for this study are the international sunspot number as made available
by the National Geographic Data Center. The data set was originally constructed
by Solar Influences Data Analysis Center, World Data Center at the Royal Observa-
tory of Belgium (Van Der Linden 2009). Reliable monthly observations extend back
to 1749. Swiss astronomer Johann Rudolph Wolf introduced a daily measurement
technique that observes both total spots observed and the quantity of their cluster-
ings. The data set addresses observed error by incorporating a weighted average of
cooperating observations.

North Atlantic SST used for this study are departures from the long-term average
over the entire North Atlantic basin. The SST data are maintained by the Physical
Sciences Division of the Earth System Research Laboratory, NOAA, and is derived
from the Kaplan SST dataset (Kaplan et al. 1998). ENP SST data are from the El
Niño 3 region of the tropical Pacific bounded between 90ıW and 150ıW longitudes
and between 5ıN and 5ıS latitudes. Monthly data for this region are available back
to 1950 courtesy of NASA’s Global Change Master Directory.

Other covariates included in this study are the North Atlantic oscillation (NAO)
and the Southern Oscillation index (SOI). The NAO May–June monthly index val-
ues are courtesy of the Climatic Research Unit, and are calculated from sea level
pressures at Gibraltar and at a station over southwest Iceland (Jones et al. 1997).
More information about the NAO as a covariate for U.S. hurricane activity is
provided in Elsner and Jagger (2006). The SOI is defined as the normalized sea-
level pressure difference between Tahiti and Darwin, and is obtained also from the
Climatic Research Unit. The NAO, SST, and SOI are standardized to have a mean
of zero and a standard deviation of one.

4 The Sun–Hurricane Relationship

4.1 Seasonal Variability

We begin with a look at the sun–hurricane relationship U.S.-affecting hurricanes.
EJ08 assume a Poisson model for U.S. hurricane frequency and the model in-
cludes ocean temperature and SSN as covariates. Here we make the same Poisson
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Fig. 1 Probability distribution of U.S. hurricanes. The probability is conditional on upper (a) and
lower (b) tercile years of August–October Atlantic SST anomalies. Sunspot values are displayed
as means of their respective terciles. Data spans from 1856 to 2008

assumption and look at the bivariate relationship between hurricanes and the SSN,
conditional on the SST being above and below normal.

Figure 1 shows the probability distribution of hurricanes conditioned on values of
August–October SSN for seasons of (a) above-normal and (b) below-normal SST,
based on upper and lower tercile SST values averaged from June–November, re-
spectively. For each hurricane count the percent bar represents the probability of that
many hurricanes given the data and the Poisson rate. For above normal SST values
amongst lowest August–October SSN, the probability of no U.S. hurricanes is 9%.
This probability increases to 17% for the highest-tercile value of SSN. Conversely,
the probability for exactly four hurricanes is 13% and 6% for lowest and highest
SSN, respectively. Likewise, the probability of three or more hurricanes occurring
dwindles from 40% to 22%.

In years of below normal SST values amongst lowest August–October SSN, the
probability of one U.S. hurricanes occurring is 17%. This probability increases to
39% for highest-tercile SSN. Note that these probabilities are greater than those for
warm years, but also demonstrate the same inverse relationship for increasing SSN.
Conversely, the probability of exactly four hurricanes is 7% and 1% for lowest and
highest SSN, respectively. Likewise, the probability of three or more hurricanes
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dwindles from 26% to 6%. Note that the higher storm count probabilities are less
than for those of the warm years. With hurricane intensity dependent on SST (e.g.,
Emanuel 1991; Holland 1997; Henderson-Sellers et al. 1998), the decrease in overall
U.S. hurricane probabilities from warm SST to cold SST is expected. However,
increasing SSN under both regimes support the heat-engine theory, in that warmed
upper tropospheric temperatures inhibit hurricane intensification.

Another way to consider the relationship between SSN and hurricanes as modu-
lated by SST is through the conditional correlation. Figure 2 shows the correlation
between SSN and hurricane counts (U.S. and ENP) at different percentiles of SST.
For U.S. hurricanes the correlation (Pearson product moment) over all years is
�0.13 as indicated by the left-most point on the graph. The correlation is based
on a sample size of N D 153 years. Each storm season is considered independent,
and the standard error on the overall correlation estimate is 0.14, providing a 90%
confidence interval on the correlation value of (�0:264; C0:01). The confidence
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interval is shown by the width of the gray band in the figure. The next point on
the graph to the immediate right is the correlation between hurricane counts and
SSN after removing the coldest 20% (20th percentile) seasons. The 20th percentile
SST value constitutes an anomaly of �0.17ıC. The correlation changes negligibly,
but with reduced sample size the confidence band widens. The sample size is plot-
ted along the horizontal axis. The correlation does not change much for the coldest
50% of seasons. However, when 60% of the coldest seasons are removed, the cor-
relation decreases to �0.24 with a 90% confidence interval of (�0.429, �0.027),
based on a sample size of 61 years. The correlation continues to decrease as only
the warmest years remain. With sample size decreasing accordingly the confidence
bands expand, but the relationship between hurricane counts and August–October
SSN remains statistically significant. The strengthening negative correlation in-
dicates that the warmest core-season SSTs display the most suppressive effects
from high core-season SSN. Warmer core-season SSTs provide a fertile developing
ground for tropical development. As such, suppressed tropical development from
high August–October SSN should be most evident at this time. Very similar results
are obtained using the Spearman rank correlation. For ENP hurricanes the correla-
tion is also negative but not statistically significant as the sample size is considerably
smaller.

4.2 Within Season Variability

As mentioned, EJ08 suggest that the sun–hurricane relationship results from
changes in upper-level temperatures due to changes in UV radiation. In short,
increased solar activity – associated with sunspots – means more UV radiation
reaching the Earth’s upper atmosphere. This is corroborated by UV/upper-level
temperature studies (Hood 2003) and solar activity/ozone production increases
(Angell 1989; Calisesi and Matthes 2007). The extra radiation contributes to warm-
ing the air aloft (via the exothermic response from ozone photodissociation), thus
decreasing the temperature differential between high and low elevations that would
otherwise foster vertical motion and cloud growth. This thermodynamic explanation
is in line theoretically with the observed changes in hurricane intensity concurrent
with the diurnal cycle and net radiation changes (Hobgood 1986; Gray 1998). How-
ever, increased solar activity also contributes to the warming of the oceans (White
et al. 1997, 1998), thus complicating the role solar variability plays in modulating
hurricane activity.

Solar UV radiation at wavelengths near 200 nm is important for ozone produc-
tion in the Earth’s upper stratosphere. Variation in the amount of this radiation is
best measured by the Mg II core-to-wing ratio (Mg II index) (Heath and Schlesinger
1986; Lean et al. 1997; Viereck and Puga 1999; Viereck et al. 2001) and is shown
in Fig. 3. The time series reveals the well-known 11-year Schwabe cycle and
short-term fluctuations (near 27 days) caused by the asymmetric distribution of ac-
tive, rotating solar regions (plages and sunspots). The short-term fluctuations are
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especially pronounced near solar maxima (Mg II index values exceeding 0.27).
Although accurate estimates of UV radiation are only available since the advent
of satellite measurements, the record of sunspots dating back to the eighteenth cen-
tury is robust. The relationship between daily SSN and Mg II core-to-wing ratio is
quite strong as shown in Fig. 4 with a correlation of C0.9, allowing us to use sunspot
numbers as a reasonable proxy for UV radiation.

The impact of changes in UV radiation on upper tropospheric temperature is a
fast process. Hood (2003) notes that tropical tropopause (�15 km) temperatures
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vary in phase with incoming UV at a zero-day lag. As such the UV impact on hurri-
cane is better represented on a short time scale compared with the sun’s influence on
warming the oceans, which occurs on a monthly to yearly timescale. Thus, if EJ08
are correct, we should be able to detect an immediate solar influence on hurricanes
by using changes in UV radiation caused by the 27-day solar rotational period.

We do this by defining solar activity during the hurricane season as anoma-
lous if the August–October SSN is substantially different from the SSN during
the months of May–July and November. Formally, let SSNanom D SSNMJJN �
SSNASO, where SSNMJJN is the sunspot number averaged over May, June, July,
and November, and SSNASO is the sunspot number averaged over August through
October. Negative (positive) anomalies indicate solar activity during the hurricane
season is greater (less) than the solar activity during the months prior to and after
the season. In general, positive anomalies arise during hurricane seasons when the
Schwabe cycle is near a peak but sunspot numbers are relatively low during August,
September, or October in response to the phase and intensity of the 27-day solar ro-
tation. Negative anomalies arise during hurricane seasons when the Schwabe cycle
is near a trough but sunspot numbers are relatively high during August, Septem-
ber, or October. Thus there is a inverse relationship between total SSN during the
hurricane season and the SSN anomaly as defined here.

Hurricane season peripheral month (May, June, July, November) SSN aver-
ages reflect the 11-year Schwabe cycle position most directly. It also demon-
strates intraseasonal SST variability (Dima et al. 2005), and core month (August,
September, October) SSN averages describe the impact of increased upper-level
temperatures from increased UV radiation, decreasing a storm’s environmental
thermodynamic efficiency and, thus, maximum potential intensity (Emanuel 1988;
Holland 1997; EJ08). Therefore, hurricane seasons characterized by positive SSN
anomalies (higher inflow temperature and colder outflow temperatures) should cor-
respond with greater hurricane activity.

Table 1 lists the top and bottom 10 hurricane seasons according to the value of the
SSN anomaly using the years 1851–2008. The list includes the estimated number
of U.S. and major U.S. hurricanes by year along with anomaly values of other co-
variates known to be related to hurricane activity. These covariates include the NAO
(averaged over May and June prior to the hurricane season), the SOI (averaged over
the hurricane season months of June through November), and North Atlantic SST
(averaged over June through November). The NAO is a precursor signal for hurri-
cane steering and the SOI is an indicator of the El Ninõ-Southern Oscillation and
therefore wind shear and subsidence over the tropical Atlantic. Data for the SOI is
available back only to 1866.

Of the top 10 positive SSN anomaly years, 2 years featured four U.S. hurricanes
and 3 years featured three hurricanes. There was at least one hurricane in each of the
top 10 anomalous years. In contrast, half of the bottom 10 years had no hurricanes
affect the United States and four had only one hurricane. The mean hurricane rate for
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Table 1 SSN anomalies and U.S. hurricanes: 1851–2008. The years are
listed according to the value of the 10 most positive SSN anomalies (top)
and 10 most negative anomalies (bottom). Corresponding columns include
the number of U.S. hurricanes (US), major U.S.hurricanes (MUS), the
NAO as a May–June average anomaly, the SOI as a June–November av-
erage anomaly, and SST as a June–November average anomaly. The mean
values in each column are given in bold

SSN Anomaly US MUS Year NAO SOI SST

C28.7 3 1 1999 C1:21 C0:43 C0:19

C27.9 1 0 1984 �1:01 �0:22 �0:26

C26.6 2 1 1938 C0:31 C1:19 C0:29

C25.3 4 1 1906 �1:72 C0:99 �0:05

C21.7 4 2 1916 �1:88 C1:06 �0:06

C20.8 1 1 1885 C0:96 �1:23 C0:01

C20.1 2 1 1894 C0:70 �0:29 �0:27

C19.0 2 1 1929 C0:31 C0:30 �0:12

C18.3 3 1 1871 �1:94 C0:23 C0:01

C17.9 3 2 1950 �0:24 C1:59 C0:01

C22.6 2.5 1.1 1927 �0.33 C0.4 �0.03

�37.9 0 0 1981 �0:76 0:41 �0:07

�27.4 0 0 1990 �0:39 �0:31 C0:07

�26.9 6 0 1858 C0:15 � �0:17

�26.4 1 0 1909 C1:38 C0:58 �0:06

�25.0 1 1 1957 �0:82 �0:60 C0:14

�24.8 4 1 1880 �0:67 C0:75 C0:13

�22.8 0 0 2001 �0:71 �0:18 C0:25

�21.7 1 1 1958 �0:17 �0:14 C0:21

�20.6 0 0 1978 C0:26 C0:01 �0:19

�20.1 1 0 1956 C2:9 C0:93 �0:09

�25.4 1.4 0.3 1947 C0.12 C0.16 C0.02

positive SSN anomaly years is 37% higher than the overall mean rate (1.8 hur/year).
For negative SSN anomalies the mean rate is 56% lower. The mean major U.S. hur-
ricane rates is 72% above the average rate (0.6 hur/year) during high SSN anomaly
years and 53% below during low SSN anomaly years. Mean values of the SST and
SOI over these two contrasting periods indicate that these variables are clearly not
able to explain the difference in hurricane rates, however the NAO might be a con-
founding variable. This is examined later in the context of a multivariate regression
model.

Table 2 lists the top and bottom 10 major hurricane seasons according to the
value of the SSN anomaly for the years 1953–2008. The list includes the estimated
number of major (1) East Pacific and (2) U.S. hurricanes and the corresponding year
of occurrence. Interestingly enough, the mean major U.S. hurricane rate is the same
as that of those listed in Table 1. Over the entirety of this period, mean East Pacific
major hurricane rate is 3.3 storms. For the most positive anomaly seasons, the mean
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Table 2 SSN anomalies
and major ENP and U.S.
hurricanes: 1953–2008. The
years are listed according to
the value of the 10 most
positive SSN anomalies
(top) and 10 most negative
anomalies (bottom).
Corresponding columns
include the number of major
ENP (MEP) and the number
of major U.S. (MUS)
hurricanes. The mean values
in each column are given
in bold

SSN Anomaly MEP MUS Year

C28:7 2 1 1999
C27:9 9 0 1984
C17:7 2 0 2000
C17:5 1 1 1970
C17:2 9 1 1983
C13:5 8 2 1985
C12:7 2 4 2005
C10:8 9 1 1993
C9:1 0 1 1969
C8:4 6 0 1971
C16:3 4.8 1.1 1985.9

�37:9 1 0 1981
�27:4 6 0 1990
�25:0 1 1 1957
�22:8 2 0 2001
�21:7 0 1 1958
�20:6 6 0 1978
�20:1 0 0 1956
�18:7 3 0 1988
�15:6 4 1 1979
�13:6 4 0 1987
�22:3 2.7 0.3 1977.5

rate of 4.8 major hurricanes represents a 45% increase over the mean rate. For the
most negative anomaly seasons, the mean rate of 2.7 major hurricanes represents an
18% decrease over the mean rate.

The results suggest that indeed variations in solar activity appear to influence
seasonal hurricane activity; not only the probability of a U.S. hurricane but also
the probability of a major hurricane over the ENP. Since other factors are known to
affect hurricane probability for the United States next we consider the sun–hurricane
relationship using a multivariate model.

4.3 Multivariate Models of Seasonal Hurricane Frequency

To examine the SSN anomaly as a predictor for hurricanes we need a multivariate
setting. This is best achieved through the use of a statistical regression model. Sepa-
rate models are developed for hurricanes and major hurricanes that make landfall in
the United States. The model of choice is the generalized linear model with a log-
arithmic link function (see EJ08). This is the same as a Poisson regression model.
The model covariates include May–June NAO (as an indicator of steering flow), the
SOI (as an indicator of Atlantic basin shear), SST (as an indicator of ocean heat
content), and the SSN anomaly (as an indicator of thermodynamic potential).



132 R.E. Hodges and J.B. Elsner

The NAO is the atmospheric pressure difference between the permanent
Icelandic Low and semi-permanent Azores High, and has been shown to be statisti-
cally significant in prediction models of U.S. hurricane landfall probability (Elsner
and Kocher 2000; Elsner and Jagger 2006). When the NAO values are below normal
the subtropical high pressure region tends to be located farther south and west of its
normal position. With this setup hurricanes that form over the central Atlantic and
eastern Caribbean tend to track westward toward the Greater Antilles, the Bahamas,
and the United States. The SOI is also an atmospheric pressure difference, but
between Tahiti and Darwin, Australia that is positively related to North Atlantic
hurricane activity (Gray 1984). When the SOI is negative the tropical Pacific is
experiencing El Niño conditions, which tends to inhibit hurricanes over the North
Atlantic due to wind shear. SST as a proxy for ocean heat content is positively
related to hurricane activity (Holland 1997).

We create three separate Poisson regression models, one for U.S. hurricanes, one
for major U.S. hurricanes, and another for major ENP hurricanes. Table 3 lists the
parameters and the output of an analysis of deviance for the U.S. and major U.S.
hurricane models. The data for the model are from the period 1866–2008, inclu-
sive. The coefficient on the SSN anomaly term indicates a positive relationship with
hurricane frequency, consistent with the relationship proposed from the analysis of
Table 1. Model covariates are added sequentially to the model. Model parameters
and analysis of deviance for the first three covariates were originally shown to be
statistically significant in EJ08. The SSN anomaly is determined to be the second
most important variable (based on the magnitude of deviance) toward explaining
the U.S. hurricanes. The model for major USA hurricanes is similar, but here the
SSN anomaly term is the most important variable. Model adequacy is checked by
examining the residual deviance after all terms are included. For the hurricane model

Table 3 Poisson regression model of U.S. (top) and major U.S. (bottom) hurricanes.
The columns include the parameter estimate, the deviance, the residual degrees of
freedom (dof), the residual deviance and the p-value. All p-values are less than 0.1
indicating the importance of the term to the model after accounting for the terms
already in the model

Term Estimate Deviance Residual dof Residual Deviance p-Value

U.S. hurricanes
NULL 0.498 142 180.756
NAO �0.176 12.166 141 168.589 0.005
SOI C0.157 6.254 140 162.336 0.022
SST C0.665 4.186 139 158.150 0.034
SSNanom C0.028 6.447 138 151.703 0.011
Major U.S. hurricanes
NULL �0.604 142 152.929
NAO �0.190 5.654 141 147.275 0.073
SOI C0.256 5.936 140 141.338 0.022
SST C1.144 4.424 139 136.914 0.030
SSNanom C0.047 6.624 138 130.290 0.010
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Table 4 Same as Table 3 except for major ENP hurricanes

Term Estimate Deviance Residual dof Residual Deviance p-Value

Major ENP hurricanes
NULL 1.089 52 168.003
SOI �0.295 10.313 51 157.690 <0.001
SSNanom C0.015 6.026 50 151.633 0.014

the residual deviance is 151.7 with 138 degrees of freedom (dof). The p-value as
evidence in favor of model adequacy from a �2 distribution with this quantile value
and this dof is 0.2 indicating no strong evidence against model adequacy. The p-
value on the residual deviance of the major hurricane model is 0.7 again providing
no evidence against model adequacy.

Table 4 lists the parameters and the output of an analysis of deviance for the ma-
jor ENP hurricane model. The data for the model are from the period 1953–2008.
As mentioned earlier, the relationship between solar activity and all ENP hurri-
canes is negligible. However, a statistical significant relationship exists for major
ENP hurricanes. The coefficient on the SSN anomaly term again indicates a pos-
itive relationship with major hurricane frequency, consistent with the findings for
U.S. hurricanes. SST from June–November for the region were originally included
as an additional covariate in the model, but were determined to be insignificant and,
thus, removed. SOI values (June–November averaged) were demonstrated as best
explaining the changes in the major hurricane occurrence based on the overall de-
crease in model deviance, buttressing what is already known about ENP hurricanes
and El Niño (Chu 2004). However, SSN anomalies also demonstrate a significant
role in describing strong hurricanes over this part of the world.

The models can be used for predicting the probability of a hurricane given val-
ues for the covariates. Here we contrast the probability predictions when the SSN
anomaly are highest and lowest. Figure 5 illustrates how the probability of a U.S.
hurricane and a major ENP hurricane changes given the two models and holding
the other covariates in the model at their mean values. For the U.S. hurricane model
the probability of no hurricanes during the season is twice as likely during the low-
est SSN anomaly season compared with the probability during the highest SSN
anomaly season. In fact, the lowest SSN anomaly season has 3:1 odds of no hur-
ricanes striking the United States. In contrast the chances of at least one hurricane
affecting the U.S. in the lowest and highest SSN anomaly season are 25% and 64%,
respectively.

For the major ENP hurricane model the difference in annual probability between
extremes of the SSN anomalies is even more dramatic. Assuming the SOI value
is zero, the model predicts a 16% chance of no major hurricanes when the SSN
anomalies are their lowest compared with only a 1% of not seeing a major hurricane
when the anomalies are their largest. Conversely, the predicted probability of six or
more major hurricanes is 28% in the very highest SSN anomaly season compared
with only 1% in the very lowest SSN anomaly season. The results are compelling in
showing a strong solar signal in major ENP hurricanes. This finding is new.
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Fig. 5 Predicted probability distributions. The models include (a) U.S. hurricanes and (b) ENP
major hurricanes. Predictions are made using a generalized linear regression model (Poisson) for
values of SSN anomalies corresponding to the 1st and 99th percentiles keeping the other covariates
at neutral values. The quantile SSN anomalies are different because of differing number of years

5 Summary and Conclusions

Here we examined the evidence for a sun–hurricane relationship that was identi-
fied recently by EJ08. We first looked at seasonal activity and noted a consistent
inverse relationship between U.S. hurricane probabilities and SSN. The relation-
ship occurs for both warm and cold years as defined by Atlantic SSTs. Since it has
been suggested that the sun–hurricane relationship arises due to changes in upper
tropospheric temperature (UTT) associated with variations in the ultra-violet (UV)
radiation, next we show the strong correlation between sunspot numbers and a core-
to-wing ratio as a satellite-derived measure of the UV flux. While the findings were
not statistically significant, the negative correlation between SSN and ENP major
hurricanes was consistent with North Atlantic findings.

Since the ocean temperatures respond on a slower timescale to changes in
total solar irradiance we derive a SSN anomaly that captures a portion of the
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intra-hurricane season variability in solar activity by subtracting the SSN averaged
over August through October from the SSN averaged over May, June, July, and
November. The SSN anomaly is used to divide the hurricane record from 1851 to
2008 into top and bottom years with respect to their anomaly values. As expected,
years with positive SSN anomalies featuring high peripheral month sunspot num-
bers but low in-season numbers have, on average, significantly more (68%) U.S.
hurricanes. This relationship is checked over all years by controlling for SST, El
Niño, and the NAO in a statistical regression model. The SSN anomaly is statis-
tically significant in models for U.S. hurricanes, major U.S. hurricanes, and major
ENP hurricanes.

The study has extended our understanding of the sun–hurricane relationship by
developing an SSN anomaly index and by considering hurricanes over the ENP.
More work is needed to better understand this relationship and a next step will be to
consider whether there is a solar signal in global tropical cyclone activity.
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Chapter 8
Regional Typhoon Activity as Revealed by Track
Patterns and Climate Change

Pao-Shin Chu, Xin Zhao, and Joo-Hong Kim

Abstract In this chapter the Joint Typhoon Warning Center (JTWC) best-track
records of western North Pacific tropical cyclones (TC) are classified by track type
using the expectation-maximization (EM) algorithm. The first three types are la-
beled as straight movers (A, B, and C), followed by four recurved types (D, E, F,
and G), and one mixed straight-recurved type (H). For each type, a log-linear regres-
sion model is then applied to detect abrupt shifts in the time series of TC attributes
including frequency, lifespan, intensity, and accumulated cyclone energy (ACE). In
this chapter, results indicate that the major climate shift in 1976/1977 may have af-
fected storm’s counts for two track patterns (types F and H). All eight types exhibit
at least one abrupt shift in their duration since 1945, with three types (A, C, and
H) showing a common shift in 1972. For a majority of the eight types, the storms’
mean lifetime became longer after the shift. TC intensity shows a prevalence of
abrupt shifts in the 1970s. For type D, its intensity has undergone several changes
(1972, 1988, and 1998) with stronger intensity since the last shift. Because of its
proximity to the East Asian landmasses and its abundance in numbers, the increas-
ing intensity of type D since 1998 is a concern for Taiwan, the east China coast, the
Philippines, Japan, and Korea. For ACE, the signal is mixed. To draw more defini-
tive conclusions, a consistency check with another best-track record is called for.
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1 Introduction

There is a growing interest in knowing the impact of climate change on tropical
cyclone (TC) activity. This interest stems from the fact that tropical storms are
among the most destructive of natural disasters. As the world becomes warmer,
it is conceivable that the intensity, frequency, tracks, and location of occurrences
of tropical storms will be altered from the present-day climate. Using the Joint Ty-
phoon Warning Center (JTWC) best-track records or satellite data, Emanuel (2005),
Webster et al. (2005), and more recently Elsner et al. (2008) demonstrated that
historical storm intensity has increased dramatically in the western North Pacific
(WNP) as well as the North Atlantic. In particular, Webster et al. (2005) noted a
large increase in the frequency for the strongest TC categories (4 and 5) in the WNP
over the last 30 years: 25 such storms were found in the first 15 years (1975–1989)
but the 41 strongest storms occurred during the second 15 years (1990–2004). How-
ever, this large trend has been questioned due to large interdecadal variations in the
number of intense TCs (Chan 2006) or possible measurement errors in the dataset
(Knaff and Zehr 2007). In addition, based on the best-track records over a more
recent 20-year (1986–2006), Klotzbach (2006) found small or no trends using alter-
native analysis methods. Besides the variation in intensity, TC induced rainfall in the
WNP also appears to have undergone long-term variations with decadal signatures
(Kim et al. 2006; Lau et al. 2008).

Given this dramatic increase over the entire basin as noted by Webster et al.
(2005), it is of interest to examine whether there is any change in TC activity at the
regional level within the WNP as this is a huge basin and TCs have preferred tracks.
Some of them form over the Philippine Sea and track westward to the South China
Sea, southern China, and/or Vietnam. Others form over the tropical Pacific and move
northwestward toward Taiwan and/or China’s coast or recurve toward Japan and Ko-
rea (Tu et al. 2009). This study examines the temporal changes in regional typhoon
activity over the WNP during the past 60 years using the 6-h best track data from
the JTWC. A mixture Gaussian model is built for WNP typhoon tracks based on
which historical typhoon tracks are categorized using a clustering algorithm. Eight
track patterns are identified and the TC frequency, intensity, lifespan, and ACE of
these eight patterns are individually examined for temporal changes over the last 60
years.

2 Methods

2.1 Clustering Methodology

Our TC track clustering method is based on the mixture Gaussian model. A key
feature of the mixture Gaussian model is its ability to model multimodal densi-
ties while adopting a small set of basic component densities. Finite mixture models
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have been widely used for clustering data in a variety of areas such as large-scale
atmospheric circulation (Camargo et al. 2007). In this study, we assume that there
are a few distinct path track types characterizing TC tracks in the WNP. For each TC
track path, we model it as a second-order polynomial function of the lifetime of this
TC. The basic assumption we impose here is that for each specific track type, the
set of coefficient of this polynomial function is jointly Gaussian distributed. Each
TC track type has its unique distribution parameter. Therefore, the space spanned by
the parameters of this track type model is a linear combination of a set of Gaussian
distribution, or a mixture Gaussian distribution model.

We assume there are n observed track records at 6-h intervals for a given TC. For
each record, there will be three features reported – latitude, longitude, and the time.
We will denote the path record of a TC by

z D Œzlat; zlong� D
2

4

z1;lat z1;long

::: :::

zn;lat zn;long

3

5 (1a)

where zi;lat and zi;long for i D 1; : : ; n represent the i th latitude and longitude record,
respectively. We then denote the relative observed time vector for the second order
polynomial function by

T D
2

4

1 t1 t2
1

::: ::: :::

1 tn t2
n

3

5 (1b)

where ti for i D 1; : : ; n represents the time for the i th records of this TC relative
to the first record. We further assume that there are K distinct TC track types in the
WNP, where K is assumed to be a constant throughout this study. With definitions
(1a) and (1b), provided that this TC is categorized as type k, 1 � k � K , the linkage
between the passage and relative time is governed by the following formula

z D T“k C ©; where “k D

2

6
4

ˇk
0;lat ˇk

0;long

ˇk
1;lat ˇk

1;long

ˇk
2;lat ˇk

2;long

3

7
5 and © � N.0; †k/: (1c)

In (1c), the parameter set “k is distinct from other TC types. With the model given
in (1) for type k, intuitively we can see that the zero-order coefficient dual provides
the mean genesis location of this type; the first-order term features the characteristic
direction of this path type; the second-order type will determine the recurving shape
of the typical path of this type; and the covariance matrix (†) in (1c) determines
the spread of a particular type. The noise term in (1), ©i , is multivariate Gaussian
with zero mean and a 2 by 2 covariance matrix, †k . The covariance matrix †k

contains diagonal elements �2
0:k

and �2
1:k

, which are the noise variances for each
latitude and longitude observation, respectively, in the cluster k. For simplicity the
cross covariance of †k is set to 0.
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The conditional density for the i th cyclone, conditioned on membership in the
cluster k, is thus defined as

P.zi jTi ; ™k/ D .2/�ni j†kj�ni =2 exp
˚�trŒ.zi � Ti “k/†�1

k .zi � Ti “k/0�=2
�

(2)

In (2), we adopt the notation ™k D f“k; †kg. This distribution leads to the marginal
regression mixture model with K D 8 clusters,

P.zi jTi / D
KX

kD1

˛kP.zi jTi ; ™k/: (3)

In (3), ˛k is the probability of cluster k, and
KP

kD1

˛k D 1. If we let Z0 D
Œz0

1; z0
2; : : :; z0

N � be the complete set of all observed TC trajectories and T0 D
ŒT0

1; T0
2; : : :; T0

N � be the associated measurement times, then the full probability den-
sity of Z given T, which is also known as the conditional likelihood, is

P.ZjT/ D
NY

iD1

KX

kD1

˛kP.zi jTi ; ™k/: (4)

Given a set of a total N TC records, fzi ; Ti ji D 1; : : :; N g, to derive the maxi-
mum likelihood estimation of all model parameters and class type, we resort to the
Expectation-Maximization (EM) algorithm. In the E-step, we calculate the mem-
bership probability of each type for each TC as follows

wi;k D ˛kf .zi jTi “
k; †k/

KP

j D1

˛j f .zi jTi “
j; †j/

; i D 1; : : :; N (5)

where ˛k D f .k/ is the prior probability of type k. Apparently, the membership
probability of a TC in (5) is virtually the Bayes’ posterior probability of each track
type given all model parameter sets. If wi;k D wi;k1ni

, where ni denotes the record
length of the i th TC and 1ni

represents the ni vector of ones, we define a new
diagonal matrix Wk D diag.Œw0

1;k
; w0

2;k
; : : : ; w0

N;k
�/ for each track type k. In the

M-step, we then calculate the following estimation for the model parameter set of
each type.

O“k D .T0WkT/�1T0WkZ (6a)

Ǫk D 1

S

NX

iD1

ni wi;k (6b)
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†k D 1

S

.Z � T“k/0Wk.Z � T“k/

Ǫk

(6c)

In (6), Z0 D Œz1; z2; : : : ; zN �0, T0 D ŒT1; T2; : : : ; TN �0, where z, T are defined in (1)

and the subscript represents the index of a TC; and S D
NP

iD1

ni is the total number

of observations.
If the number of clusters, K , is provided, given an initial setting of the model

parameters and with multiple iterations of (5) and (6), the proposed EM algorithm
will converge to a fixed set of parameter estimation. These convergence values are
not necessarily the global best estimation and are determined by the initial starting
values. Therefore, we apply multiple different initial values and choose the set of
estimation with the maximum likelihood. It is also noteworthy that the cluster prob-
lem presented hereby is essentially a missing value problem in which the indicators
of class identification are not available.

2.2 Change-Point Analysis

In this study we analyze the time series of annual TC counts, average life spans,
average ACE, and average intensity to determine any abrupt shifts. All these se-
ries are positive numbers and can be approximated by a gamma distribution. On the
other hand, it is well known that a logarithm of a gamma distribution can be well
approximated by a Gaussian distribution. In view of this fact, we adopt a (gener-
alized) log linear regression model to determine abrupt shifts (or change-points) of
the aforementioned time series (Elsner et al. 2000; Chu 2002). More elaborately,
change-point analysis can be cast in the Bayesian framework to explicitly provide
the posterior probabilities of the change points as a function of time (e.g., Chu and
Zhao 2004; Zhao and Chu 2006). Assuming that a time series is denoted by Xi ,
i D 1; : : : ; n, we calculate the latent set Yi D log.1 C Xi /. We then define the fol-
lowing function

Si .l/ D
(

0 i < l

1 i 	 l
; for 1 < l < n: (7a)

We thereby adopt the following linear regression model

Yi D c0.l/ C c1.l/Si .l/ C "i .l/: (7b)

For each l , we use a Least Square Error (LSE) algorithm to compute the intercept
c0.l/ and slope c1.l/. Subsequently we define t-ratio as follows.

t.l/ D Oc1.l/=se. Oc1.l// (7c)
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In (7c), Oc1.l/ is the estimated slope term and se. Oc1.l// the estimated standard error
of this term. If t.m/ D maxft.l/; l D 2; : : : ; n�1g is larger than a critical value, we
set index m as a change-point. The critical value is obtained from a t-distribution.
For example, this critical value is set as 2.65 for a 99% confidence level. After
finding the first change-pointm, the process (7) is repeated with a new response
series Y �

i D Yi �c1.m/Si .m/, which yields the second change-point if there is any.
We repeat this iterative process until no more change-points are found.

3 Data

The TC data over the WNP come from the US JTWC in Honolulu. The data cover
the period 1945–2007. The data sets contain measurements of TC center location in
latitude, longitude, 1-min sustained maximum wind speed, and central pressure at
6-h intervals for all TCs in the WNP. Here TC refers to tropical storms and typhoons.
Tropical storms are defined as maximum sustained surface wind speeds between
17.5 and 33 m s�1, and typhoons are defined as wind speeds at least 33 m s�1. The
ACE of a year is defined by summing the squares of the estimated maximum sus-
tained velocity of every tropical storm or typhoon at 6-h intervals during the lifetime
of a storm through the course of a year. This summed value is then divided by the
number of TCs in that year to get the ACE per storm for each year. Because the orig-
inal numbers are large, they are divided by 10,000 to make them more manageable.
ACE is related to storm kinetic energy.

4 Results

The methods presented in Section 2 are applied to the data outlined in Section 3.
Using an empirical argument, Camargo et al. (2007) suggested that the optimum
number of track patterns in the WNP varies from six to eight. Based on our own
simulation results with longer data sets, it seems that eight clusters offer the best
explanation for the data.

Figure 1 shows eight major track patterns over the WNP and the South China
Sea, with three straight movers (types A, B and C), four recurved ones (types D,
E, F, and G), and one mixed pattern of both straight moving and recurved (type H).
The type A and B clusters are similar in nature in that they both move more or less
straight across Philippines to the South China Sea and/or Hong Kong, Hainan, and
Vietnam. The major difference is that type B storms tend to form farther eastward
and southward than type A storms. As a result, the mean track for type B storms is
longer than that of Type A. Type C cyclones form in the South China Sea and are
landlocked by the Indochina peninsula and southern China’s coast, with very short
paths. Similar to types A and B, type D and E systems form in the Philippine Sea
but they follow a northward path and many of them made landfall on Taiwan, the
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Fig. 1 Eight TC track types identified by the mixture Gaussian model. The number in each panel
indicates the number of cases in each type. Black circles denote the mean track for each type

eastern China coast, Japan, and Korea. Type F storms tend to form in low-latitudes
and away from Asia. Type G storms also form far away from the Asian continent
but at higher latitudes (�15ıN). They move northwestward and then northward to
the east of Japan over the open ocean. Storms associated with type H are generally
formed near the equator and to the east of 165ıE, and have a long trajectory over
the water. In terms of the frequency of occurrence, Type D has the highest number
(316 out of a total of 1,621 cases). This is followed by type C (270), E (231), and G
(225). Type H has the least number of occurrences (84) among eight types.

For each pattern, temporal variations of typhoon related attributes such as
frequency, intensity, lifetime, and energy (ACE) are examined. A change-point
analysis is applied to detect abrupt shifts in the time series of such attributes. For
TC frequency (Fig. 2), five out of eight types (B, D, F, G, and H) show at least one
step-like change since 1945. For types F and H, the abrupt shift occurs in 1976, at
a time when major climate regime underwent a phase shift (e.g., Trenberth 1990).
After 1976, TCs became more active for both types F and H. For type D storms,
which are the leading pattern among all eight groups, typhoon activity has very
likely undergone a decadal variation with two abrupt shifts occurring around 1987
and 1998 with three epochs characterized by the active 1945–1986 epoch, the inac-
tive 1987–1997 epoch, and the active 1998–2007 epoch. The reincreasing activity
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Fig. 2 Time series of annual tropical cyclone counts in the western North Pacific for eight track
types. Years in each panel indicate possible change-points or abrupt shifts. Dotted lines are time-
mean for each sub-period. The y-axis is the tropical cyclone number

for type D since 1998 is a concern because storms associated with this type are
formed near the eastern Asian landmass and their preferred tracks are likely to
cause damage to Taiwan, east China coast, Japan, and Korea.

In Fig. 3, six of the track types (A, B, C, D, F, and H) exhibit one abrupt shift
over the last 60 years with the exception of type B, which experienced two shifts.
Interestingly, after the shift all five types (A, C, D, F, and H) show an increasing
level of storm days, indicative of longer mean storm days after the identified shifts.
It is possible that steering flows over the WNP become weaker, making storms tra-
verse more slowly and increasing the lifetime of the storms. This possibility will be
examined in future research. Also noteworthy in Fig. 3 is the phase shift in 1972,
which occurs in types A, C and H.

The change in TC intensity is also quite interesting (Fig. 4), although this quan-
tity from the JTWC is subject to larger uncertainty. Over the last 60 years, seven
(A, B, C, D, E, F, and G) out of the eight types exhibit abrupt shifts in the 1970s.
For types B, C, D and G, the shift occurs in 1971–1973 and for types E and F in
1974. For type D, which is not only the leading cluster but also bears threats to
Taiwan, east China, Japan, and Korea, a step-like change also occurred recently
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Fig. 3 Same as Fig. 2 but for tropical cyclone lifespan. The y-axis is number of days

(1998) with higher intensities, signifying stronger TC intensities in the last few
years. This increase in intensity, together with the concurrent increase in frequency
(Fig. 2), deserves further investigation.

For ACE (Fig. 5), types C, E, and F do not show any apparent change in the past
60 years. The lifetime, intensity, and number of tropical cyclones all contribute to the
magnitude of ACE. During El Niño and La Niña years, Camargo and Sobel (2005)
found that the lifetime effect appears to be more important than the other two factors
to ACE variations in the WNP. This may be reflected by a shift in type H in the
1972 El Niño (Figs. 3 and 5), but not on other types (e.g., A and C). Emanuel (2005)
noted a substantial increase in the power dissipation index (PDI) for the WNP since
1970s. The PDI is similar to ACE, except that maximum wind speed is cubed over
the storm’s lifetime. Emanuel (2005) attributed this increase to the longer lifetime of
the storm and greater storm intensities. In our case, only five types show an increase
in their lifetimes (Types A, C, D, F, and H) and there is a lack of general intensity
increase. These results are different from Emanuel which is based on the basin-wide
values.
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Fig. 4 Same as Fig. 2 but for tropical cyclone intensity. The y-axis is knots

5 A Suggestion for Future Research

It should be noted that the results presented in this study are based on the JTWC
best-track dataset. The veracity of JTWC data during the period prior to satellite
observation (before 1970) is called into question (Knaff and Zehr 2007; Lowry
et al. 2009). While the track patterns, TC counts, and lifetime are probably reliable,
TC intensity estimates and ACE may be subject to uncertainty. Therefore, extreme
caution must be exercised in the intensity and ACE analysis and interpretations. In
the future, we plan to apply the same methodology outlined in foregoing section to
other best-track data to check for consistency.
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Chapter 9
Climatic Features and Their Relationship
with Tropical Cyclones Over
the Intra-Americas Seas

Jorge A. Amador, Eric J. Alfaro, Erick R. Rivera, and Blanca Calderón

Abstract In this chapter, indexes of the Intra-Americas or Caribbean Low-Level Jet
(IALLJ or CLLJ, respectively), Niño 3, Tropical North Atlantic (NATL), Atlantic
Multidecadal Oscillation (AMO), and Outgoing Long Wave Radiation (OLR) are
quantified for the period 1950–2007, to study their relationship with tropical cyclone
(TC) frequency for summer–autumn of the Northern Hemisphere. A remarkable
inverse relationship is found between both, the strength of the wind speed at 925 hPa
and the vertical wind shear at low levels, and the monthly relative frequency of TCs
for two selected areas in the Caribbean. The July peak in wind speed and low-level
vertical wind shear are associated with a minimum in the monthly relative frequency
of TCs. On the contrary, a decrease in the wind speed and vertical shears are asso-
ciated with a maximum value of the relative frequency of TCs. Stronger (weaker)
than normal IALLJ summer winds (July–August) during warm (cold) ENSO events
imply a stronger (weaker) than normal vertical wind shear at low-levels in the
Caribbean. This condition may inhibit (allow) deep convection, disfavoring (favor-
ing) TC development during these months. Correlation values of the monthly mean
CLLJ core winds and the monthly normalized values of NATL – Niño 3 index for
1950–2007 showed statistical significance greater than 99% during July–August.
During El Niño years, low-level wind increases at the jet core strengthening the low
level convergence near Central America at the jet exit and the low-level divergence
in the central Caribbean at the jet entrance. The descending motion associated
with the latter acts as an inhibiting factor for convection and TC development. TC
activity in the Caribbean is not only sensitive to ENSO influences, but to the
strength of the CLLJ vertical wind shear, to barotropic energy conversions induced
by the lateral wind shear, to the intensity of the regional scale descending motion
associated with the jet entrance, and to the SST cooling generated by the CLLJ at
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the sea surface. Climatology of a group of General Circulation Models used in the
2007 report of the IPCC were tested to study their ability to capture the low-level
wind annual cycle over the Caribbean and the known CLLJ structure. Some models
do not capture basic characteristics of the jet. A discussion of cyclone potential over
the Caribbean, based on the relationships developed using the models climatology,
is presented for the period 2010–2050. As a study case, the findings were contrasted
with the observed 2008 climate over the IAS region. Rainy season for 2008 in
Central America evolved in a way consistent with the presence of La Niña event and
the meridional migration of the ITCZ. Wind anomalies associated with the IALLJ
were larger (smaller) than normal during February (July) 2008, in agreement with
earlier findings in regards to the relationship of the IALLJ and ENSO phases. The
year of 2008 was very active for tropical storm formation in the Caribbean basin
(10–22:5ıN, 60–82:5ıW). From 16 named storms observed in the Atlantic, 10
entered the Caribbean basin. Eight (five) Atlantic cyclones were hurricanes
(strong hurricanes) and from the five hurricanes crossing the Caribbean basin,
four were strong.

Keywords Intra-Americas (Caribbean) Low-Level Jet � Mid-Summer Drought
� Tropical cyclone frequency � El Niño-Southern Oscillation (ENSO) � Tropical
North Atlantic (NATL)

1 Introduction

Climate monitoring, the development of conceptual models and the understanding
of interactions between elements of the climate system, are the basis for planning
activities focused on the reduction of societal impacts caused by climate variabil-
ity and climate change. Different regions of the world, however, are generally
affected by different predominant meteorological and climate features with asso-
ciated particular challenges for societal protection. For example, the western Africa
is known for the predominance of tropical waves (Burpee 1972), the Panama Bight
and the western Caribbean for severe and frequent presence of convective systems
(Mapes et al. 2003; Amador 1998, 2008), and some tropical basins for the seasonal
generation of tropical cyclones (TC; Gray 1993; Goldenberg et al. 2001; Wang
and Chan 2002; Frank and Young 2007; Kuleshov et al. 2008). This chapter will
investigate, in particular, some of the links between climate features for different
space and time scales (from regional to global and from intraseasonal to interannual
modes, respectively), and variations in the intensity and frequency of tropical storms
(TS) in the Intra-Americas Seas (IAS). The IAS region is defined here as consist-
ing of the Gulf of Mexico, Southern Mexico, Central America, the eastern tropical
Pacific, the Caribbean, and northern South America, and is one of the most active
regions in the world, as far as TC formation is concerned.

Gray (1993) was among the first to study the El Niño-Southern Oscillation
(ENSO) relationship with seasonal TC activity for different worldwide regions. He
reported that TC activity in the North Atlantic is more sensitive to El Niño (warm
phase of ENSO) influences than that in any other ocean basin. His study indicates
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that in the North Atlantic region, moderate to strong El Niño conditions are gener-
ally associated with a substantial decrement in the number of cyclones (especially
at low latitudes); a 60% reduction in numbers of hurricane days; and an overall de-
crease in the cyclonic system intensity. In the Eastern North Pacific basin, there is a
strong ENSO signal in hurricane activity, as there is a tendency for an increased fre-
quency of hurricane systems during El Niño years. Statistical analysis of the records
for 40 years of TC in the Indian Ocean indicates no obvious consistent, ENSO re-
lated response on seasonal TC frequency, location or intensity in the North and
South Indian Oceans. For the Australian region Gray determined that differences
in sea surface temperatures and surface pressure seemed to provide the primary
physical linkage. In this region, El Nino events were usually associated with cool
sea surface temperature anomalies, high barometric pressure, and a diminished fre-
quency of Australian Coral Sea area cyclones.

In terms of the variability of cyclonic activity, Goldenberg et al. (2001) reported
that years 1995–2000 experienced the highest level of North Atlantic hurricane ac-
tivity occurrences in the reliable 1971–2000 record. Compared with the generally
low activity of the previous 24 years (1971–1994), the latter years showed a dou-
bling of overall frequency activity for the whole basin, a 2.5-fold increase in the
intensity of the maximum wind-speed of major hurricanes (	50 m/s), and a fivefold
increase in hurricanes affecting the Caribbean. These authors showed that greater
activity results from simultaneous increases in North Atlantic sea-surface temper-
atures along with decreases in vertical wind shear (a common condition observed
during La Niña events). Because these changes exhibit a multidecadal time scale,
the present high level of hurricane activity is likely to persist for an additional period
of 10–40 years, approximately.

Wang and Chan (2002) found impacts of strong (but not moderate) El Niño and
La Niña events on TS activity over the western North Pacific (WNP). Although the
total number of TS formed in the entire WNP does not vary significantly from year
to year, during El Niño summer and fall seasons, the frequency of TS formation in-
creases remarkably in the southeast quadrant (0–17ıN, 140–180ıE) and decreases
in the northwest quadrant (17–30ıN, 120–140ıE). After the El Niño (La Niña),
the early season (January–July) TS formation in the entire WNP is suppressed (en-
hanced). In strong warm (cold) ENSO years, the mean TS life span is about 7 (4)
days, and the mean number of days of TS occurrence is 159 (84) days. Wang and
Chan (2002) also reported during the fall of strong warm ENSO years, the num-
ber of TS curving northward across 35ıN, is 2.5 times greater than during strong
cold ENSO years. This implies that El Niño substantially enhances poleward trans-
port of heat–moisture and impacts high latitudes through changing TS formation
and tracks. The enhanced TS formation in the southeast quadrant during El Nino
events is attributed to the increase of the low-level shear vorticity generated by El
Niño–induced equatorial westerlies, while the suppressed TS generation over the
northwest quadrant is ascribed to upper-level convergence induced by the deepening
of the east Asian trough and strengthening of the WNP subtropical high. The WNP
TS activity in July–December is noticeably predictable using preceding winter–
spring Niño-3.4 sea surface temperature (SST) anomalies, while the TS formation in
March– July is exceedingly predictable using preceding October–December Niño-
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3.4 SST anomalies. The physical basis for the former is the phase lock of ENSO
evolution to the annual cycle, while for the latter it is the persistence of Philip-
pine Sea wind anomalies that are excited by ENSO forcing but maintained by local
atmosphere–ocean interaction.

Frank and Young (2007) examined the interannual variability of TCs in each of
the earth’s cyclone basins using data from 1985 to 2003. Interbasin correlations and
factor analysis of patterns of TC activity revealed that there are several significant
modes of variability. The largest three factors explain together about 70% of the vari-
ance, and each of these factors shows significant correlation with ENSO, the North
Atlantic Oscillation (NAO), or both, with ENSO producing the largest effects. Their
results suggest that patterns of TC variability are strongly affected by large-scale
modes of interannual variability. The temporal and spatial variations in storm activ-
ity are quite different for weaker TCs (tropical storm through category 2 strength)
than for major storms (categories 3–5). The most intense storms tend to show the
stronger interbasin correlations and stronger relationships with ENSO and the NAO
than do the weaker storms. This suggests that factors controlling TC formation differ
in important ways from those that ultimately determine storm intensity.

Kuleshov et al. (2008) developed a collective list of historical El Niño and La
Niña events, based on an examination of different indexes describing ENSO phe-
nomenon. Based on this list, TC data from a newly created TC archive for the
Southern Hemisphere (SH) have been stratified accordingly and significant changes
in TC occurrences depending on warm or cold phases of ENSO have been identi-
fied. TC trends in the SH (area south of the equator, 30ıE–120ıW) were examined.
For the 1981/82 to 2005/06 TC seasons, there are no apparent trends in the total
number of TCs and cyclone days, nor in the numbers and number of cyclone days
of severe TCs with minimum central pressure of 970 hPa or lower. However, signif-
icant positive trends in occurrences and cyclone days of severe TCs with minimum
central pressure of 945 hPa or lower were identified.

As discussed above, atmospheric and oceanic factors influencing TC formation,
frequency and intensity range over a large variety of time and space modes. This
problem is approached here, by selecting the dominant meteorological and climate
features of the IAS region in order to quantify atmospheric and oceanic indexes
that are then linked to TC formation and characteristics. The IAS region is char-
acterized by unique climate features, such as the Mid-Summer Drought (MSD) or
“veranillo”, a phenomenon rarely observed in the tropics (Magaña et al. 1999); the
Caribbean low-level jet during summer (Amador 1998) and its winter counterpart
(Amador et al. 2006; Amador 2008), the only mostly zonal marine low-level jet
in the Americas; the Caribbean and eastern tropical Pacific warm pools and asso-
ciated cyclogenetic regions (Gray 1979; Wang and Enfield 2001, 2003); and the
strong convective activity of the Intertropical Convergence Zone (ITCZ). The im-
portance of studying these phenomena and its relationship with TC response is that
they all heavily imprint the economy and human well-being of the inhabitants of the
IAS region.

The IAS low-level jet (IALLJ), also known as the Caribbean Low-Level Jet
(CLLJ), is a relevant climate feature that dominates the IAS circulation, both in
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summer and winter (Amador 2008). Its relationship with TC formation, another
prominent climate characteristic of the Caribbean Sea, is not well understood
despite CLLJ’s known influence over the lower troposphere vertical wind shear
(Amador and Magaña 1999) and in the reduction of sea surface temperature over
the Caribbean Sea (Amador 2008). Over the Pacific slope of Central America and
southern Mexico, there is a climatological relative minimum in July–August precip-
itation known as the MSD (Magaña et al. 1999). This phenomenon strongly affects
the agriculture sector over that region, especially when the MSD extends into the
climatological wet season (June and September) or when TC activity is intense dur-
ing the summer months. The MSD, a component of the annual cycle of precipitation
(Magaña et al. 1999), has a remarkable interannual variability (Amador 2008) that
is not known to be associated with any regional or global signals such as the CLLJ,
ENSO, Pacific Decadal Oscillation (PDO), or North Atlantic Index (NATL), among
others.

The relevance of improving the scientific knowledge about the IAS climatic
features lies on the fact that their variations are associated with very important socio-
economic losses caused by floods, droughts, landslides, wind damage, and extreme
precipitation events. This paper focuses its attention in the quantification of a set of
indexes, associated with some of these relevant climate features of the Caribbean
and eastern tropical Pacific basins (the IAS), and their relationship with TC activity.

Since there still is a scientific debate about the potential increase (decrease) in
hurricane occurrences and their intensities under specific climate change scenarios
in the Atlantic (see, Gutowski, Jr. et al. (2008) who presented results opposite to
those of Bender et al. (2010), Knutson et al. (2008), and Bengtsson et al. (2007),
who reported a reduction in the occurrences of the Atlantic hurricanes under the
same warming scenario), this work also studies the internal statistical structure of
TC activity under potential climate change scenarios. To do this, the same set of
climate indexes, as quantified from historical data, is estimated from climate projec-
tions based on global model output used by the Intergovernmental Panel on Climate
Change (IPCC 2007) for the period 2010–2050.

The key climate features of the IAS region used for the quantification of the in-
dexes, are briefly reviewed in the next section, especially in regards to atmospheric
and oceanic conditions for TC development. Section 3 presents the data and the
methods used to carry out the estimates of the climate indexes and the procedures
for the statistical analysis. The results for both periods analyzed, 1950–2007, and
2010–2050 are presented in Section 4, along with a discussion and interpretation
of these results on the basis of some climate change scenarios generated by se-
lected general circulation models. The lessons learned from the indexes and their
associated statistical interactions are used to understand the role of the physical
mechanisms involved and their potential prediction skill in a case study; the 2008
climate of the IAS (Section 5). Final remarks and conclusions are found in Section 6.
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2 Brief Review of the Intra-Americas Seas Climate Features

Central America is characterized by a relatively high mountain range crossing the
region from northwest highlands in Guatemala to southeast summits near the Costa
Rica–Panama border. Topography across Central America determines climate dis-
tribution, especially that part relative to the precipitation and surface temperature
distributions.

The climate of the IAS is determined by a wide range of atmospheric signals,
however, some of them are particularly important and are observed to dominate
the regional circulations. As it is known, SST variations are associated with the
origin and structure of many climate systems at low latitudes and their association
with convective activity and rainfall distribution. Regarding the start and end of
the rainy season, several studies have shown that the SST anomalies of the tropical
Atlantic and Pacific Oceans are related to variations in the duration and timing of the
rainy season in Central America (Enfield and Alfaro 1999). Central America and the
Caribbean islands are embedded in oceanic “warm pools” (Wang and Enfield 2001,
2003), one in the eastern tropical north Pacific, where the ITCZ forms and rainfall
is a maximum, and the other one over the Caribbean Sea, where precipitation is
relatively scarce.

In Central America, the prevailing trade wind regime interacting with topo-
graphic barriers imprints unique characteristics to the spatial and temporal distribu-
tion of precipitation. The annual distribution of rainfall in Central America exhibits
two contrasting regimes, one in the Caribbean side and the other one on the Pacific
slope (Magaña et al. 1999; Taylor and Alfaro 2005; Amador 2008). The latter pat-
tern exhibits a bimodal distribution, with two maxima, one in June and the other
one in September–October, and a relative minimum during July–August (MSD).
The existence of such a fluctuation in the annual distribution of precipitation has
been shown to be part of the seasonal cycle of precipitation in the region (Magaña
et al. 1999), and it partially relates to changes in the intensity of convective activity
over the northeastern Pacific “warm pool”. These authors proposed that the intensity
of the ITCZ over the eastern Pacific produces a dynamical response in the low level
circulation that controls the MSD intensity. A weak ITCZ allows the intensification
of the MSD along the Pacific side of Central America.

The most interesting dynamical feature over the IAS is, however, the CLLJ,
known also as the IASLLJ, that appears during June, reaches a maximum in July
and weakens in September (Amador 1998), with another maximum in February
(Amador et al. 2006; Amador 2008). The flow is relatively weak during the rest of
the annual cycle. According to Wang and Lee (2007) the semi-annual feature of the
CLLJ results from the semi-annual variation of sea level pressure in the Caribbean
region associated with the east-west excursion of the North Atlantic Subtropical
High. The warm pools impact is to weaken the summertime component of the sub-
tropical high, especially at its southwestern edge and thus weaken the easterly CLLJ.
The weakening of the easterly CLLJ, in conjunction with the warm pools induced
change of upper-level wind, reduces the tropospheric vertical wind shear thus favor-
ing hurricane formation and intensification during August–October.
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The presence of this strong low level easterly jet constitutes the most important
factor in determining the distribution of regional precipitation during summer, and
partially during winter through interactions with regional topographical features and
cold fronts reaching low latitudes. The intense convergence that forms at the exit
of the low level jet is associated with a maximum in convective activity over the
western Caribbean (Amador 1998, 2008).

3 Data and Methods

Several indexes were estimated to quantify the relationship between atmospheric
and oceanic physical mechanisms and TC activity in the Caribbean. The indexes are
based on values of the low-level wind shear, SST anomalies, outgoing long wave
radiation (OLR) averaged over selected areas, on the MSD intensity (Amador 2008)
for selected precipitation stations and on Niño 3, NATL, and Atlantic Multidecadal
Oscillation (AMO) familiar indexes. The wind shear is known to be a relevant
factor in the development of TCs (Gray 1979). Monthly estimates of vertical
wind shear (VWS) for 925 hPa to surface, and for 700–925 hPa, for regions com-
prising the CLLJ core (12.5–17:5ıN, 75–80ıW), the whole basin (10–22:5ıN,
60–82:5ıW), and eastern tropical Pacific (5–12:5ıN, 87.5–105ıW) were calcu-
lated using National Center for Environmental Prediction (NCEP) and the National
Center for Atmospheric Research (NCAR) data (Kalnay et al. 1996). The areas se-
lected are shown in Fig. 1. Also, monthly values of SST (Smith et al. 2008) and
surface wind (SW) from NCEP/NCAR for the same two regions above were com-
puted. Values of OLR (Liebmann and Smith 1996) were calculated for the same

Fig. 1 Stations and areas used in this study to estimate the analyzed indexes. Station information
is in Table 1 and the areas are located in the eastern tropical Pacific (Pacific), the Caribbean Low-
Level Jet core (CLLJ core), and the whole Caribbean basin (Caribbean). See text for other details
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areas above over the Caribbean and the eastern tropical Pacific. The standard Pear-
son correlation function was used to compute the statistical relationship among
variables (Wilks 1995). Monthly climatologies (1950–1999) and indexes (2010–
2050) from a group of General Circulation Models (GCMs) used in the 2007 report
of the IPCC (2007) were also calculated to study their ability to capture some known
physical features, such as the low-level wind annual cycle over the Caribbean, the
known CLLJ structure and its relationship with TC activity in the region. Models
used are: ECHAM5 [T63] (Roeckner et al. 2003; Marsland et al. 2003), HadCM3
[2:75ı latitude by 3:75ı longitude] (Gordon et al. 2000), CGCM3 [T63] (Kim
et al. 2002, 2003), and Mk3.5 [T63] (Gordon et al. 2002). Twentieth Century sim-
ulations and SRES A1B data for all models were obtained from the World Climate
Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3
(CMIP3) multi-model dataset (http://cmip-pcmdi.llnl.gov/).

The variability of some atmospheric variables in Central America and its asso-
ciation with fluctuations in the NATL and that of ENSO related SST, was studied
by following the method discussed by Wilks (1995). Accordingly, monthly SST
indexes for the NATL and Niño 3 regions (available at the Climate Prediction Cen-
ter database, http://www.cpc.ncep.noaa.gov/data/indices) were used. The difference
of the normalized indexes indicated above was also calculated. Observed cate-
gories for the AMO from the Climate Diagnostics Center (http://www.cdc.noaa.
gov/Timeseries/AMO/) were included in the analysis as well.

To study the 2008 climate of the IAS region, daily mean temperature and pen-
tad precipitation data from the ten selected stations described in Table 1 (see also
Fig. 1) were used in order to compare their climatology for 1971–2000, with corre-
sponding values for that particular year. A seven-point moving average was applied
to temperature occurrence time-series to reduce high frequency oscillations in the

Table 1 Station characteristics, elevation in meters above sea level (masl); latitude (lat); longitude
(lon); missing data in %; temperature T in ıC, and precipitation p in mm, climatology “clim”
1971–2000; T and p for 2008

Station, country
[altitude, m]

Lat (ıN)
Lon (ıW)

Missing data (%)
T(clim, 2008)
p[clim, 2008]

p (mm)
clim [2008]

P. G., Belize [50] 17.53 88.30 (38.1, 4.9) [39.7, 6.6] 1988 [1171]
S. J., Guatemala [20] 13.92 90.82 (21.0, 1.9) [38.9, 9.9] 1334 [1326]
P. L., Honduras [130] 15.22 83.80 (34.6, 3.3) [39.4, 3.3] 2247 [1945]
C., Honduras [480] 13.30 87.18 (36.0, 2.7) [39.2, 5.2] 2204 [1628]
P. L., Costa Rica [30] 10.00 83.05 (30.0, 1.7) [37.0, 10.1] 3372 [1511]
L., Costa Rica [800] 10.62 85.43 (12.9, 0.8) [54.9, 8.0] 1603 [2165]
D., Panamá [260] 08.40 82.42 (12.9,12.8) [29.0, 17.8] 2213 [2116]
G., Panama [30] 9.27 79.92 (0.0a, 0.0) [0.0, 0.0] 2740 [2828]
S.D., Dominican Rep. [14] 18.40 69.90 (32.1, 4.6) [34.1, 11.2] 1519 [1694]
P., Trinidad and Tobago [12] 10.60 61.40 (8.2, 0.5) [11.2, 0.8] 2157 [1584]
aData for temperature climatology only available for 1985–2000. Station Name: P.G. (Phillip
Goldson), S.J. (San Jose), P. L. (Puerto Lempira), C. (Choluteca), P. L. (Puerto Limon),
L. (Liberia), D. (David), G. (Gatun), S.D. (Santo Domingo), P. (Piarco)

http://www.cpc.ncep.noaa.gov/data/indices
http://www.cdc.noaa.gov/Timeseries/AMO/
http://www.cdc.noaa.gov/Timeseries/AMO/
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data. The accumulated daily rainfall for 2008 was also calculated at each station
to analyze the MSD characteristics. Meteorological data for all stations come from
the National Climatic Data Center archives (NCDC, http://www.ncdc.noaa.gov), ex-
cept data for Gatun, Panama, provided by the Panama Canal Authority. Gridded data
from the NCEP/NCAR Reanalysis Project (Kalnay et al. 1996) was used to obtain
wind anomalies over the IAS (12.5–17:5ıN, 75.0–80:0ıW) at 925 hPa from corre-
sponding long term mean (1958–1999) during the 2008 cold ENSO event (La Niña)
for February and July. Definition of a warm, cold and neutral ENSO conditions was
based on criteria by Mora and Amador (2000).

4 Results

4.1 Annual Cycle

Figure 2 presents the mean annual cycle of wind speed (m/s) at 925 hPa for the
Caribbean region (dashed line), and the CLLJ core region (dashed-circled line),
the mean vertical wind shear (m/s) between 925 hPa and surface for the Caribbean
region (solid line), and for the CLLJ core region (solid-squared line), and the
monthly relative frequency (%) of TCs (bars) for the period 1950–2007. A remark-
able inverse relationship is observed between both the strength of the wind speed at
925 hPa and the vertical wind shear, and the monthly relative frequency of TCs for
the two selected areas. The July peak in wind speed and vertical shears with values
of more than 12 and about 3 m/s, respectively, are associated with a minimum in the
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Fig. 2 Mean annual cycle of wind speed (m/s) at 925 hPa for the Caribbean region (10–22:5ıN,
60–82:5ıW, dashed line), and the CLLJ core region (12.5–17:5ıN,75–80ıW, dashed-circled line),
mean vertical wind shear (m/s) between 925 hPa and surface for the Caribbean region (solid
line), and the CLLJ core region (solid-squared line) (925 hPa – surface), and monthly relative
frequency (%) of tropical cyclones (bars) for the period 1950–2007



158 J.A. Amador et al.

monthly relative frequency of TCs. On the contrary, a decrease in the wind speed
and vertical shears are associated with a maximum value of the relative frequency
of TCs.

In order to analyze the relationship between the strength of the easterly flow
at 925 hPa and the number of TCs for the summer months of July and August,
when the CLLJ attains maximum values, wind anomalies were estimated at that
level. The anomalies were calculated in a standard way, in other words, as the dif-
ference between the wind speed at a particular month minus the mean monthly
wind, both at 925 hPa. Figure 3 shows the number of TCs (bars) and the wind speed
anomalies (m/s) at 925 hPa for the Caribbean region for July (Fig. 3a), and Au-
gust (Fig. 3b). Squared (circled) marks denote anomalies for warm (cold) ENSO
events, and crossed marks denote anomalies for non-ENSO (neutral) events (Mora
and Amador 2000). The most active July years (1966, 1970, 1979, 1996, and 2005,
Fig. 3a) are associated with either neutral or cold ENSO conditions, however, this
relationship does not hold for all years. In this context, it is widely known that
ENSO is not the only variability mode for TC activity. Also from this figure, it is
seen that most warm ENSO events (squares) are characterized by practically no July
TC activity in the Caribbean. Many negative (eastward) wind anomalies (stronger
than normal July winds) are observed during neutral ENSO conditions, whereas
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Fig. 3 Number of tropical cyclones (bars), and wind speed anomalies (m/s) at 925 hPa for the
Caribbean region (see Fig. 1) for (a) July, and (b) August. Squared (circled) marks denote anoma-
lies for warm (cold) ENSO events, and crossed marks denote anomalies for non-ENSO (neutral)
events, according to the criteria of Mora and Amador (2000)
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Fig. 4 Correlation values of the CLLJ core monthly wind averages and the monthly normalized
values of (NATL C Niño 3, dashed line; and (NATL – Niño 3) indexes, solid line, for 1950–2007.
Asterisks are values with statistical significance smaller than 90%, diamonds are between 90% and
95%, triangles are between 95% and 99% and squares are greater than 99%

positive (westward) wind anomalies (weaker than normal July winds) are mostly
associated with no TC activity. Comparing Fig. 3a with b, it is observed that Au-
gust is more active, in regards to TC formation, than July. Figure 3b also shows that
some of the most active August years with at least 3 TCs (1955, 1978, 1995, 1996,
1998, 2000, and 2005, except 1969 and 2004) correspond to neutral conditions or
La Niña events with some of them with relatively large negative (less than –1 m/s)
wind speed anomalies (1995, 1995, and 2005).

Figure 4 shows the correlation values of the CLLJ core monthly wind averages
and the monthly normalized values of (NATL C Niño 3), dashed line; and (NATL –
Niño 3) indexes, solid line, for 1950–2007. Asterisks are values with statistical
significance smaller than 90%, diamonds are between 90% and 95%, triangles are
between 95% and 99% and squares are greater than 99%. This figure indicates that
during winter and spring when anomalies in both, NATL and Niño 3 regions have
the same sign, the time series associated with the CLLJ tends to covariate in the op-
posite direction, for example, NATL and Niño 3 warm (cold) anomalies, coincident
in both ocean basins during winter-spring, are associated with negative (positive)
anomalies in the CLLJ index (notice that during these months NATL – Niño 3 CLLJ
correlations are non significant). For the rest of the year (summer–early autumn), the
NATL C Niño 3 index has a non significant correlation value with the CLLJ index,
meanwhile the NATL – Niño 3 index has a significant value. During those months
that index has negative covariance with the CLLJ. It means that when NATL tends to
be warm (cold) when it is compared with Niño 3, the CLLJ tends to present negative
(positive) anomalies. This figure suggests that CLLJ strength is mainly controlled by
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tropical mid-latitude contrast during winter-spring and by the contrast between the
anomalies in the two ocean basins that surrounds Central America during summer-
early autumn, suggesting a more local control during this period.

4.2 Climate Indexes for 1950–2007

The Pearson correlation coefficients for some indexes are shown in Table 2 (treated
here as an inter-correlation matrix in the usual sense). The elements [1, 1], [1, 3],
[2, 2], and [3, 3] of the correlation matrix imply that the VWS below the CLLJ
maximum at 925 hPa covariates negatively with its counterpart above this level.
Note the relatively high positive correlation values (99% significance level) between
the VWS at the jet core and the whole basin, below (0.92) and above (0.87) 925 hPa,
clearly indicating the importance of the jet in determining mean atmospheric flow
conditions for this TC active region. At the jet core, the correlation is positive with
Niño 3 below 925 hPa, in other words, the greater the VWS in this layer, the TC
frequency is smaller, being the opposite true above 925 hPa (see elements [3, 4] and
[4, 4], respectively). The above results are consistent for the whole Caribbean (el-
ements [1, 4], and [2, 4]). Other elements of this matrix [2, 5] and [4, 5] indicate
that the VWS below 925 hPa behaves in an opposite way to that above this level.
During a warm ENSO phase the low level VWS is stronger, so the TC frequency
diminishes. The opposite is true for La Niña decreases in low level VWS and in-
creases in TC numbers ([5,5] D –0.42 at a significance level of 99%). Though the
correlation values of Table 2 indicate that there is no straightforward relationship
among the indexes, perhaps the most important one, explaining about 40% of the
variance of TC formation is the CLLJ VWS at the jet core below 925 hPa. This
result also applies to the whole basin (see elements [1,1], and [1,5]).

Table 2 Pearson correlation function for the yearly indexes of the June to November means used
in this study. All series have a record from January 1950 to December 2007 (italics and boldface in-
dicate significance level D 0.01; boldface indicates D 0.5, and italics indicates D 0.10, calculated
as in Davis, 1976)

Index
Caribbean VWS
(700–925)

CLLJ core VWS
(925-Sfc)

CLLJ core VWS
(700–925) Niño 3 TC

Caribbean VWS
(925-Sfc) –0.56 0.92 –0.74 0.39 –0.55

Caribbean VWS
(700–925) – –0.62 0.87 –0.40 0.46

CLLJ core VWS
(925-Sfc) – – –0.78 0.43 –0.61

CLLJ core VWS
(700–925) – – – –0.53 0.52

Niño 3 – – – – –0.42
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Table 3 Same as Table 2, except for indexes for the July–August means (1950–2007)

Index
CLLJ core
SW

Caribbean
SST

CLLJ core
SST Pacific SST Niño 3

Caribbean SW 0.88 –0.48 –0.50 0.31 0.44
CLLJ core SW – –0.46 –0.50 0.30 0.53
Caribbean SST – – 0.97 0.38 –0.04
CLLJ core SST – – – 0.33 –0.11
Pacific SST – – – – 0.77

The SST distribution is a very important factor for cyclone development, so in
this part of the paper, the SST at the jet core and the Caribbean are analyzed in terms
of the CLLJ intensity at the sea surface. Table 3 shows the matrix correlation ele-
ments of the SST, Niño 3 and SW. As in the case of the VWS, the SW and SST at the
CLLJ core are highly correlated with the SW and SST for the whole basin, respec-
tively. This relationship is observed in the elements [1,1] and [3,3]. The correlation
between the Niño 3 and Pacific SST is, as also expected, positive ([5,5] D 0.77, at
a confidence level of 99%). A very interesting result is found between SW and SST
for both the jet core and the whole Caribbean (see elements [1,2], [2,2], [1,3], and
[2,3] of Table 3). The covariance for all these indexes is indicative of negative SST
anomalies in the presence of greater than normal surface winds. Under warm (cold)
ENSO phases, SW is stronger (weaker) than normal decreasing (not decreasing) the
SST in the Caribbean Sea, the VWS is stronger (weaker) than normal below 925 hPa
inhibiting (allowing) convective activity and associated moisture transfer, both con-
ditions being not favorable (favorable) for TC formation. No significant relationship
was found between the MSD and ENSO (not shown).

4.3 Climate Indexes for 2010–2050

As in the previous section, the Pearson correlation function was obtained for all
indexes from projections made by four GCMs (ECHAM5, HadCM3, CGCM3
and Mk3.5) for 2010–2050 (Table 4). Only all correlation matrix elements from
ECHAM5 and HadCM3 (suffixes “a” and “b”, respectively) are consistent with
those obtained for 1950–2007 (see Table 2). CGCM3 (suffix “c”) presents the
most notorious discrepancies. The first two models as well as Mk3.5 (suffix “d”)
show that the VWS below 925 hPa at the CLLJ core region is negatively correlated
(significance level of 99%) with the VWS above this level (elements [1, 1abd],
[1, 3abd], [2, 2abd], and [3, 3abd]). The positive correlations with significance lev-
els of 99% in elements [1,2abcd], and [2, 3abcd] indicate that these models capture
the basic dynamics of the regional circulation that determine the atmospheric condi-
tions in the Caribbean basin (compare with Table 3). The CLLJ core indexes below
(above) 925 hPa for ECHAM5 and HadCM3 covariate positively (negatively) with
Niño 3 (elements [3,4ab], and [4,4ab]), which is in agreement with results from
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Table 4 Pearson correlation function for the yearly indexes of the projected June to November
means used in this study. All series have a record from January 2010 to December 2050 (italics
and boldface indicate significance level D 0.01; boldface indicates D 0.5, and italics indicates D
0.10, calculated as in Davis, 1976). Rows in the cells correspond vertically to correlation values
for (a) ECHAM5, (b) HadCM3, (c) CGCM3, and (d) Mk3.5

Caribbean VWS CLLJ core VWS CLLJ core VWS
Index (700–925) (925-Sfc) (700–925) Niño 3

�0.73 0.97 �0.51 0.54Caribbean VWS
�0.54 0.95 �0.77 0.57(925-Sfc)

0.15 0.91 �0.21 0.33
�0.53 0.95 �0.63 0.10

�0.72 0.53 �0.78Caribbean VWS
– �0.51 0.86 �0.74(700–925)

0.24 0.78 0.07
�0.48 0.93 �0.62

�0.53 0.58CLLJ core VWS
– – �0.82 0.55(925-Sfc)

�0.15 0.32
�0.60 0.13

�0.34CLLJ core VWS
– – – �0.77(700–925)

0.03
�0.65

Section 4.2. Same relationship occurs for the Caribbean region (elements [1, 4ab],
and [2, 4ab]). Mk3.5 only exhibits consistent negative correlations between the
VWS above 925 hPa and Niño 3 for both the jet core and the whole basin. No sig-
nificant correlations are found between the VWS at any level and Niño 3 for the
CGCM3.

The correlation matrix for modeled SST, Niño 3 and SW for July and August
is presented in Table 5. At first, it is important to note that none of the models
completely captures the correlation patterns featured in Table 3; however, some
agreements are obtained. SW and SST values for all GCMs in the CLLJ core region
have positive correlations with those in the Caribbean basin (elements [1, 1abcd],
and [3, 3abcd]). Positive covariances (at a significance level greater or equal to 95%)
between Pacific SST and Niño 3 are present for all models. HadCM3 and Mk3.5
show that negative (positive) anomalies of SST in the jet core are related to greater
(lesser) SW in the same region (elements [2, 2bd]). Caribbean SW and SST are not
significantly correlated, except for Mk3.5 (element [1, 2d]). HadCM3 also captures
the positive correlation pattern found in Table 3 between Niño 3 and SW in the CLLJ
core (elements [1, 5b], and [2, 5b]), indicating that in presence of warm (cold) Niño
3 SST, the SW is stronger (weaker), and thus decreases (not decreases) the SST for
that particular area.

Figure 5 presents the mean annual cycle of wind speed (m/s) at 925 hPa for
the CLLJ core region (12.5–17:5ıN, 75–80ıW) from NCEP/NCAR (solid black
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Table 5 Same as Table 4, except for indexes for the July–August means (2010–2050)

Index
CLLJ core
SW

Caribbean
SST

CLLJ core
SST Pacific SST Niño3

Caribbean 0.94 –0.11 –0.27 0.53 0.44
SW 0.95 –0.28 –0.33 0.75 0.55

0.89 –0.26 –0.19 0.04 0.18
0.93 –0.37 –0.41 0.25 0.24

–0.11 –0.30 0.54 0.53CLLJ core
– –0.41 –0.45 0.73 0.50SW

–0.22 –0.16 0.13 0.25
–0.40 –0.49 0.32 0.35

0.96 0.60 0.22Caribbean
– – 0.95 0.05 0.03SST

0.97 0.71 0.60
0.97 0.60 0.34

0.40 0.05CLLJ core
– – – –0.11 –0.11SST

0.69 0.61
0.48 0.23

0.72Pacific
– – – – 0.78SST

0.82
0.79
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Fig. 5 Mean annual cycle of wind speed (m/s) at 925 hPa for the CLLJ core region (12.5–17:5ıN,
75–80ıW) from NCEP/NCAR (solid black line), and for 20c3m simulations for ECHAM5 (dashed
line), HadCM3 (dashed-circled), CGCM3 (gray line-squared), Mk3.5 (gray line-triangles), and the
ensemble mean (solid gray line)

line), and for Twentieth Century simulations (1950–1999) for ECHAM5 (dashed
line), HadCM3 (dashed-circled), CGCM3 (gray line-squared), Mk3.5 (gray line-
triangles), and the ensemble mean (solid gray line). The NCEP/NCAR data clearly
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shows the two known maxima of the CLLJ in summer and winter and an absolute
minimum in October. Most models used in this work resemble the NCEP/NCAR
analysis, however, when look carefully major discrepancies are found. The CGCM3
overestimates the monthly values for 2–3 m/s all year round and does not show
the maximum peak in July. During the first semester, the ECHAM5 presents lit-
tle wind speed variations with a marked overestimation of the wind speed during
these months and a peak in June, 1 month earlier than observed. The HadCM3
also shows a small gradual increase in wind speed from January to June–July and
overestimates the October minimum by nearly 5 m/s. The Mk3.5 shows the lesser
skill in determining the wind annual cycle presenting two maxima one in April and
the other in August. As it has been shown by Amador (2008), the models ensemble
mean does not necessarily capture, as it is the case here, the mean annual cycle of
the IALLJ. To study the CLLJ time variability, a very important factor for future
climate projections, Fig. 6 is presented. A very simple measure of variability of
the wind at 925 hPa, its standard deviation, is used to show that there is great dis-
persion in this parameter among all analyzed models. Values range from 1.69 m/s
in the ensemble mean to 1.72, 2.22, 2.22, and 3.35 m/s in the Mk3.5, CGCM3,
HadCM3, and ECHAM5, respectively, for the period 2010–2050. The “observed”
NCEP/NCAR data estimates of the standard deviation are 2.24 and 2.29 m/s, for
the 1950–2007 and 1967–2007 periods, respectively. From Figs. 5 and 6, and the
results shown before with the indexes correlation functions (Tables 2, 3, 4, and 5),
it is easy to recognize severe limitations of the general circulation models used to
represent adequately one of the most important features of the IAS regional climate,
the IALLJ. This, of course, has important implications on the future climate and
the IPCC scenarios of 2007, especially if some indexes and characteristics of the
models are to be used to estimate future TC activity and societal impacts.
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Fig. 6 CLLJ variability at the jet core in NCEP/NCAR data (2000–2009) and models used in this
study for the period 2010–2020 (see Fig. 5 and text for details of models used)
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5 The 2008 Regional Climate

5.1 Sea Surface Temperature

According to Enfield and Alfaro (1999), the variability in the NATL and the
ENSO related SST is also associated with the variability of several atmospheric
variables in Central America. Table 6 results follow basically the method dis-
cussed by Wilks (1995). This table shows the categories observed in the SST
indexes associated with the NATL, Niño 3 regions (http://www.cpc.ncep.noaa.
gov/data/indices/), and the difference and addition of the normalized indexes indi-
cated above. This table also includes the different observed categories for the AMO
(http://www.cdc.noaa.gov/Timeseries/AMO/). According to Enfield et al. (2001),
AMO should be considered as a variability source in the IAS region. Some implica-
tions of the results shown in Table 6 are discussed below.

5.2 Surface Temperature

To illustrate the behavior of the 2008 surface temperature in the context of its
long-term mean, four stations were analyzed for the Pacific and four for the
Caribbean slopes along the region, as well as two for the Caribbean islands. Figure 1
shows the location of the ten stations selected (see also Table 1). Results for the
surface temperature are presented in Fig. 7a. As observed in this figure, all four

Table 6 Monthly 2008 categories observed in the SST indexes associated with the NATL,
Niño 3 regions (http://www.cpc.ncep.noaa.gov/data/indices/), and the difference of the normalized
two indexes indicated above. Also includes is the different observed categories for the Atlantic
Multidecadal Oscillation, AMO (http://www.cdc.noaa.gov/Timeseries/AMO/). Categories where
defined for 1950–2007, in which VBN, very below normal (<P20), BN, below normal (>P20 &
<P40), N, normal (>P40 & <P60), AN, above normal (>P60 & <P80), VAN, very above normal
(>P80). Pnn means percentile nn

Index NATL Niño 3 NATL-Niño 3 AMO AMO-Niño 3

Jan AN VBN VAN AN VAN
Feb N VBN VAN VAN VAN
Mar N VBN AN VAN VAN
Apr N N N AN AN
May N AN N VAN AN
June AN AN N VAN AN
July VAN VAN N AN N
Aug AN VAN AN AN N
Sept VAN AN VAN VAN AN
Oct VAN AN VAN AN AN
Nov VAN N VAN AN N
Dec VAN N VAN AN AN
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stations located in the Pacific side, show a consistent decrease in the 2008 mean
temperature with respect to climate. This feature is seen as a shift to the left in the
2008 frequency distribution when compared with the corresponding climatology.
Liberia in northwestern Costa Rica has a shift of about 2ıC, the largest of them
all. On the contrary, two stations in the Caribbean side (those located in Belize and
Costa Rica) and Santo Domingo and Piarco present an increase in surface tempera-
ture with respect to normal conditions; the other ones do not exhibit any significant
shift. Maximum increment of less than 1ıC is found in Limon, Costa Rica. The
bias toward positive temperature anomalies in the Caribbean slope is in agreement
with the observed values in the NATL SST in Table 6 (an above normal condition
in most 2008 months). Negative shifts of temperature in the Pacific slope stations
are consistent with the relatively cool SST values associated with ENSO during the
first 2008 quarter, in which Niño 3 index showed in general Very Below Normal
temperatures (Table 6).

5.3 Precipitation

The stations in the Caribbean slope of Central America (Fig. 7b) present a de-
crease in precipitation for 2008 with respect the climate. Note that in most cases
missing data to estimate climatology was relatively high (Table 1). In most of the
region, precipitation showers were concentrated in categories smaller than 20 mm
approximately with very few extreme events in excess of 40–50 mm. Following the
methodology described by Enfield and Alfaro (1999), the Start Date (SD) and End
Date (ED) of the rainy season were only calculated for the Pacific slope gauge sta-
tions. Stations in the Caribbean slope show practically just one rainy season (see
Fig. 7c). Using the technique developed by Alfaro (2002), the SD observed during
2008 is near normal, it is slightly late for David (Panama) and Choluteca (Hon-
duras). ED of the Central America rainy season was about normal.

5.4 The Mid Summer Drought

The behavior of the 2008 MSD is investigated by means of the cumulative pre-
cipitation pentad distribution at the ten selected sites in Central America and the
Caribbean (Fig. 7c). Pentads 37–48, approximately, correspond to the period where
the “veranillo” has been observed. In an accumulated precipitation graph, a rainy

J
Fig. 7 A comparison at some selected stations in Central America of (a) frequency distribution
of surface temperature (ıC) for climatology (black lines) and 2008 (gray lines), and (b) frequency
distribution of precipitation (mm) at 10 mm intervals except for dry days for climatology (gray
bars) and 2008 (black bars). Accumulated pentad precipitation (mm) for all analyzed stations (c)
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period would have a positive slope, whereas a period with no-rain would show as
a horizontal line, so a change in the slope would mean a change in the temporal
precipitation distribution. All Pacific stations present a rainy season onset, near pen-
tad 29 or so (end of May), except David that shows an earlier start with respect to
the analyzed sites. In regards to the ED (Fig. 7c), the Pacific slope stations to the
north (San Jose and Choluteca) had an earlier end than Liberia and David, the latter
showing the end near 2 weeks after Liberia. This behavior is fairly consistent with
the results presented in Table 6 and with the idea of the meridional migration of the
ITCZ. The reduction in precipitation corresponding to the MSD is clearly observed
in all stations, especially in Choluteca and Liberia. The Caribbean stations (Fig. 7c)
behaved, as expected, differently from those in the Pacific, showing a more continu-
ous rainfall distribution throughout the year with practically very few dry spells (see
Puerto Lempira and Limon). The Belize and Piarco stations presented a relatively
dry year respect to their climatology.

5.5 The Intra-Americas (Caribbean) Low-Level Jet

Figure 8 shows the wind anomalies over the IAS at 925 hPa, from corresponding
long-term mean (1958–1999), during the 2008 cold ENSO event (La Niña) for
February and July (Figs. 8a, and b, respectively). As can be observed, wind anoma-
lies were larger (smaller) than normal during February (July) 2008, consistent with
the findings of Amador et al. (2003), Amador et al. (2006), and Amador (2008)
in regards to the relationship of the IALLJ and ENSO phases. The IALLJ 2008
February and July mean values lay between percentile 60 and 80 (P60 and P80, re-
spectively) when compared with the last 58 years (1950–2007). The trades for the
period January–July 2008, except May, were stronger than normal (between P60
and P80). May, October and November were near normal (between P40 and P60),
while August was weaker than normal (between P20 and P40), and September was
very weak (below P20). December on the other hand, was observed to be very strong
(above P80). Following these findings, some questions arise. Is the IALLJ summer
component shorter in duration than normal over the Caribbean, for a La Niña event?
Is the opposite true for winter?

5.6 Cyclone Activity

Median values of the number of TS and TCs in the Caribbean expected during
the year are four named storms, two hurricanes and one strong hurricane. The
Caribbean basin was very active during 2008 in regard to tropical storm fomation
with 10 named storms, out of which, 4 were strong hurricanes. Additionally, some
cyclones landed or were observed near the Central American Caribbean coast:
Arthur (May 30–June 6), Dolly (July 20–25), Marco (October 6–8), Tropical
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Fig. 8 Wind anomalies over the Intra-Americas Seas (IAS) at 925 hPa from corresponding long-
term mean (1958–1999), during the 2008 cold El Niño-Southern Oscillation (ENSO) event (La
Niña) for (a) February and (b) July

Depression 16 (October 14–16) and Paloma (November 5–10). Important impacts
associated with hurricanes Fay, Gustav, Hanna and Ike during August–September
2008 were reported in Costa Rica. The Costa Rica National Meteorological In-
stitute reported 36 easterly waves between May and October. In spite that Pacific
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hurricanes affect in very rare occasions the Central American isthmus, the first
hurricane of the 2008 season, Alma (May 28–30), landed in Leon, Nicaragua,
producing important economic and social damage.

6 Concluding Remarks

The analysis of some atmospheric and oceanic indexes and their statistical rela-
tionship has provided important clues about the complex processes that determine
TC activity in the Caribbean basin. On the one hand, locally controlled mech-
anisms by the CLLJ, the most important regional climate feature on the annual
scale (Amador 2008), and on the other, the influence of remote atmospheric and
oceanic signals, determine to a great extent tropical storm formation in this re-
gion. The CLLJ, also known as the IALLJ, has a marked annual cycle with two
peaks, one in July (the absolute maximum) and the other one in February with an
absolute minimum on October. During summer the development of the jet makes
the Caribbean atmosphere barotropically unstable (Amador 1998), a condition that
allows kinetic energy exchanges between atmospheric perturbations and the mean
flow. The IALLJ vertical wind shear plays an important role controlling convective
activity and cyclone formation whereas, the low-level divergence and descending
motion associated with the jet entrance in the central Caribbean, act as an inhibiting
factor for the organization of TCs. The July peak in wind speed and low-level
vertical wind shear (with values of more than 12 and about 3 m/s, respectively),
are associated with a minimum in the monthly relative frequency of TCs. On the
contrary, a decrease in the wind speed and vertical shears are associated with a
maximum value of the relative frequency of TCs. A remarkable inverse relation-
ship was found between both, the strength of the wind speed at 925 hPa and the
vertical wind shear at low levels, and the monthly relative frequency of TCs for two
selected areas in the Caribbean (the IALLJ core and the whole basin). The surface
wind below the jet core induces negative SST anomalies, minimizing the chances
of systems to form in that region. Non-regional atmospheric and oceanic signals,
such as NATL, AMO, and ENSO influence the IALLJ, changing its characteristics
on seasonal scales. Stronger (weaker) than normal IALLJ summer winds (July–
August), during warm (cold) ENSO events imply a stronger (weaker) than normal
vertical wind shear at low-levels in the Caribbean. This condition may inhibit
(allow) deep convection, disfavoring (favoring) TC development during these
months. Correlation values of the monthly mean CLLJ core winds and the monthly
normalized values of NATL C Niño 3, and NATL – Niño 3 indexes for 1950–2007
showed statistical significance greater than 99% during July–August. During El
Niño years, low-level wind increases at the jet core strengthening the low level con-
vergence and upward motion near Central America at the jet exit and the low-level
divergence and descending motion in the central Caribbean at the jet entrance.

Climatologies of a group of General Circulation Models used in the IPCC (2007)
report were studied to test the ability of the models to capture the low-level wind
annual cycle over the Caribbean and the known CLLJ structure. Some models do
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not capture the basic characteristics of the jet, such as its annual cycle, which has a
lot of implications, especially for future climate change scenarios in this region and
its associated societal impacts.

As a study case, the findings of this work were contrasted with the observed 2008
climate over the IAS region. Rainy season for 2008 in Central America evolved in
a way consistent with the presence of La Niña event and the meridional migration
of the ITCZ. Wind anomalies associated with the IALLJ were larger (smaller) than
normal during February (July) 2008, consistent with this work and earlier findings in
regards to the relationship of the IALLJ and ENSO phases (Amador 2008). The year
of 2008 was very active for tropical storm formation in the Caribbean basin (10–
22:5ıN, 60–82:5ıW). From 16 named storms observed in the Atlantic, 10 entered
the Caribbean basin. Eight (five) Atlantic cyclones were hurricanes (strong hurri-
canes) and from the five hurricanes crossing the Caribbean basin, four were strong.

A major scientific problem that needs to be addressed, in the context of the
IAS climate features and TC formation, is the observed precipitation distribution
and its relationship with the moisture sources in or outside the region. In order to
better understand some of the physical processes that explain precipitation vari-
ability in the region and its sources it is necessary to rely on numerical models.
Rauscher et al. (2008) report that a comparison of the climate of the Twentieth Cen-
tury simulations with observations over the period 1961–1990 shows that nearly all
numerical models underestimate precipitation over Central America, due in part to
an underestimation of sea surface temperatures over the tropical North Atlantic and
an excessively smooth representation of regional topographical features. In regards
to this problem, many questions arise. Do the models capture the moisture sources
identified by Durán-Quesada et al. (2010)? Are the moisture sources the same for the
wet season day-to-day precipitation and those during cyclone development? What is
the mean contribution of precipitation from TC activity to that of the annual cycle?
What is the interannual variability of this contribution? Are the strong and weak TC
activity variations driven by the same factors in the IAS?
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Chapter 10
On the Increasing Intensity of the Strongest
Atlantic Hurricanes

James B. Elsner and Thomas H. Jagger

Abstract The past three decades have seen a significant upward trend in the in-
tensity of the strongest hurricanes worldwide that is most pronounced over the
North Atlantic. Questions remain about this trend especially its relevance to coastal
communities in the United States and elsewhere. This chapter focuses on observed
changes in the intensity of the strongest hurricanes over the North Atlantic basin
and on the geographic pattern of these changes. Results show that the upward trend
is significantly related to rising sea-surface temperature (SST) after accounting for
El Niño. The trend peaks at 16 m s�1 per ıC at the 75th percentile with a 90% confi-
dence interval of between 7 and 20 m s�1 per ıC. The consequences of increasing in-
tensity of the strongest hurricanes is not confined to the open ocean as nearly 70% of
all hurricanes that occur over the basin reach a lifetime maximum intensity west of
60ıW longitude. The largest intensity increases are occurring over the Gulf of Mex-
ico and the Caribbean Sea, where ocean temperatures are warmest and hurricanes
are strongest. Decreases in intensity are noted along most of the United States coast-
line consistent with a hypothesis that continental aerosols act to decrease hurricane
intensity. This might help explain why, despite the increasing intensity of basin-wide
hurricanes, there is no detectable upward tend in damage costs in the United States.

Keywords Hurricanes � Trends � Strongest � Geographic pattern � Sea surface
temperature � Percentile � Quantile � Gulf of Mexico � Caribbean Sea � United States
� El Nino � Aerosols

1 Introduction

Hurricanes are getting stronger on average with a recent trend that is related to an
increase in ocean temperatures over the Atlantic and elsewhere (Emanuel 2005;
Webster et al. 2005). Indeed our paper entitled “The increasing intensity of the

J.B. Elsner (�) and T.H. Jagger
Department of Geography, Florida State University, Tallahassee, FL 32306, USA
e-mail: jelsner@fsu.edu; tjagger@blarg.net

J.B. Elsner et al. (eds.), Hurricanes and Climate Change: Volume 2,
DOI 10.1007/978-90-481-9510-7 10, c� Springer Science+Business Media B.V. 2010

175

jelsner@fsu.edu
tjagger@blarg.net


176 J.B. Elsner and T.H. Jagger

strongest tropical cyclones” published in September of 2008 (Elsner et al. 2008)
generated considerable attention in the hurricane research community. The pur-
pose of this chapter is to examine the evidence for trends in the strongest Atlantic
hurricanes in more detail and to provide rejoinders to some of concerns that were
raised about our methods and findings on blogs and especially on the tropical storms
mailing list.

In particular here we show three new aspects of our original result. (1) The
strongest hurricanes are getting stronger and the increase is related to an increase
in sea-surface temperature (SST) after statistically controlling for the El Niño cycle.
(2) Hurricanes often have a lifetime maximum intensity relatively near the coast of
the United States. (3) The largest increase in the intensity of the strongest hurricanes
is occurring over the Caribbean Sea and Gulf of Mexico where ocean temperatures
are the warmest in the basin and where hurricanes tend to be the strongest.

At present hurricanes cannot be fully resolved in climate models, and the com-
plex relationships between climate and hurricane frequency, intensity, and location
are not well understood. Moreover, hurricanes and climate processes extend over a
broad range of spatial and temporal scales making it difficult to model the potential
relationships with a low-order numerical model. Thus in order to shed light on ques-
tions concerning the relationships between hurricanes and climate it is necessary to
rely on the available historical data while keeping in mind data limitations and what
we might expect to see in the data from theory.

As an example, there is no empirical evidence, modeling result, or theoretical ar-
gument that indicates the number of hurricanes will increase in a warmer world. On
the other hand, relying on the notion of ceteris paribus, we can say from theory that
warmer oceans should lead to stronger hurricanes. To detect this signal in historical
records, it is necessary to separate hurricane frequency from hurricane intensity. Our
approach is to use quantiles of lifetime maximum hurricane intensity and to quan-
tify trends and examine statistical significance of quantile intensities using quantile
regression.

This chapter is outlined as follows. A brief description of the hurricane and
climate data is provided in Section 2. Here we use the HURDAT data hourly in-
terpolated over the period 1943–2008, inclusive. In Section 3 a short introduction
to quantiles is given followed in Section 4 by the results of a quantile regression of
hurricane intensity on SST and El Niño. Results from the regression model verify
that the strongest hurricanes are getting stronger as SST increases after statistically
controlling for El Niño. The geographic distribution of lifetime maximum intensi-
ties are considered in Section 5. Areas near the Gulf coast and Florida are relatively
more frequently visited by hurricanes near the time of their lifetime maximum than
areas farther east over the open ocean. In Section 6 changes over time in the ge-
ographic distribution of maximum intensity of hurricanes are examined. The Gulf
of Mexico and the Caribbean Sea are regions where some of the strongest Atlantic
hurricanes occur and where the trend toward stronger hurricanes is most notable.
The summary and conclusions are given in Section 7. The chapter ends with replies
to comments made about our earlier research on this topic.
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2 Data

As is customary in this kind of research, tropical cyclone wind speed estimates are
obtained from the HURricane DATa base (HURDAT or best-track) maintained by
the US National Ocean and Atmospheric Administration (NOAA) National Hurri-
cane Center (NHC). HURDAT is the official record of tropical cyclone information
for the Atlantic Ocean, Gulf of Mexico and Caribbean Sea, including those that have
made landfall in the United States. HURDAT consists of the 6-h position and inten-
sity estimates for tropical cyclones back to 1851 (Jarvinen et al. 1984; Neumann
et al. 1999). Here a natural spline interpolation is used to obtain positions and wind
speeds at 1-h intervals from the 6-h values based on the work of Jagger and Elsner
(2006), Elsner et al. (2008).

For the present study we consider only tropical cyclones at hurricane intensity
or above (	33 m s�1) over the period 1943–2008, inclusive. The period is long
enough to examine temporal changes but not too long that it includes data from
the pre-aircraft reconnaissance era (prior to 1943). There are N D 409 hurricanes
over the 66-year period. The raw wind speed values are given in 5 kt (2.5 m s�1)
increments. Although knots (kt) are the operational unit used for reporting tropical
cyclone intensity to the public in the United States, here we use the MKS units
of m s�1. Throughout this chapter we use the term “intensity” as shorthand for
“maximum wind speed,” where maximum wind speed refers to the estimated fastest
wind velocity somewhere in the core of the hurricane. Lifetime maximum refers to
the highest maximum wind speed throughout the lifetime of the hurricane.

On the seasonal time scale and to a first order a warm ocean and a calm atmo-
sphere (low wind shear) allows hurricanes to intensify. Some of the wind shear is
related to the El Niño-Southern Oscillation (ENSO) cycle. Here we include data
on the Southern Oscillation Index (SOI) as an indicator of ENSO and data on At-
lantic SST as an indicator of ocean warmth. ENSO is characterized by basin-scale
fluctuations in sea-level pressure between Tahiti and Darwin. The SOI is defined as
the normalized sea-level pressure difference between Tahiti and Darwin. The SOI
is strongly anti-correlated with equatorial Pacific SST so that an El Niño warming
event is associated with negative values of the SOI. Units on the SOI values are
given in standard deviations indicating they are standardized by the long-term mean
and standard deviation. The relationship between ENSO and hurricane activity is
strongest during the hurricane season, so we use an August–October average of the
SOI as our covariate (explanatory variable). The monthly SOI values (Ropelewski
and Jones 1997) are obtained from the Climatic Research Unit (CRU).

The United Kingdom Hadley model SST and U.S. NOAA optimal interpolated
SST datasets were used to compute Atlantic SST anomalies in ıC north of the equa-
tor. Anomalies are computed by month using the base period 1951–2000. Data are
obtained from the NOAA-CIRES Climate Diagnostics Center back to 1871. For
this study we average the SST anomalies over the peak hurricane season months of
August through October. Monthly global temperature anomalies (1961–1990 base
period) from the Intergovernmental Panel on Climate Change (IPCC) values are
obtained from the CRU (Folland 2001).
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3 Quantiles and Hurricane Intensity

Quantile regression, introduced by Koenker and Bassett (1978), extends the ordinary
least-squares regression model to conditional quantiles of the response variable. It
is used in Elsner et al. (2008) and Jagger and Elsner (2008) to examine trends in
the intensity of tropical cyclones. Before considering our application of quantile re-
gression using hurricane intensity we say a few words about quantiles and hurricane
intensity.

Quantiles are points taken at regular intervals from the cumulative distribution
function of a random variable. The quantiles mark a set of ordered data into equal-
sized data subsets. For example, of the 409 hurricane intensity values in our North
Atlantic data set, 25% of them are less than 39 m s�1, while 50% are less than 47
m s�1. Thus there is an equal number of hurricanes with intensities between 33
and 39 m s�1 as there is between 39 and 47 m s�1. When we say that the median
maximum hurricane intensity is 47 m s�1, we mean that half of all hurricanes
have intensities less than this value and half have intensities greater than this value.
Similarly, the quartiles (deciles) divide the sample of hurricane intensities into four
(ten) groups with equal proportions of the sample in each group. The quantiles,
or percentiles, refer to the general case of dividing the intensities into any number
of groups.

Quantile values of hurricane intensity are not directly tied to the frequency of hur-
ricanes. This is important to understand before examining how the quantiles might
be changing over time. Suppose for instance that in some earlier year there occur
four hurricanes with lifetime maximum wind speeds of 33, 38, 48, and 53 m s�1,
and that in some later year there occur three hurricanes with lifetime maximum wind
speeds of 33, 43 and 61 m s�1. Then using only these 2 years we can see that there is
a decrease in the frequency of hurricanes yet there is no change in the mean intensity
(46 m s�1) nor is there a change in the median intensity (43 m s�1). However, there
is an increase in the quantile values of wind speed above the median. For instance,
the 75th percentile increases from 49 to 52 m s�1 and the 90th percentile increases
from 52 to 57 m s�1 over this period.

Others have argued that the percentage of strong hurricanes to total number of
hurricanes is the important index for detecting change in hurricane activity (Webster
et al. 2005). Consider another example, where in the earlier year there are only three
hurricanes with maximum speeds of 33, 40 and 50 m s�1 and where the later year
is the same as before. Then the ratio of major hurricanes (	50 m s�1) remains the
same yet the strongest hurricane is stronger. Thus we argue that the intensity of
the strongest hurricanes as indicated by the change in the upper quantile values
of lifetime maximum wind speed is the variable most relevant to the debate on
hurricane intensity in a changing climate.

Moreover, the concern that if the total number of hurricanes is not changing and
the number of strong hurricanes is increasing, then the number of weak hurricanes
must decrease proportionally is misplaced. The rate of strong hurricanes is much
smaller than the rate of weak hurricanes. As the ocean warms the stronger hurricanes
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can effectively “borrow” a few hurricanes from below a specified threshold intensity
that may result in a significant increase in the rate of stronger hurricanes while not
significantly reducing the rate of weaker hurricanes.

4 Increases in Hurricane Intensity with Increasing SST
Accounting for ENSO

The value of a simple trend analysis (involving only one variable – usually time)
is limited by the fact that other explanatory variables also might be trending. In the
context of hurricane intensity, it is well known that the ENSO cycle can significantly
alter the frequency and intensity of hurricane activity on the seasonal time scale. A
trend over time in hurricane intensity could simply reflect a change in this cycle.
Thus it is important to look at the trend after controlling for this important factor.
Here we go beyond what was done in Elsner et al. (2008) and show the trend as
a function of Atlantic SST after controlling for the ENSO cycle. Thus we answer
the question of whether the data support the contention that the increasing trend in
the intensity of the strongest hurricanes is related to an increase in ocean warmth
conditional on ENSO.

Figure 1 shows the results of a quantile regression model using North Atlantic
lifetime maximum intensity as the response variable and Atlantic SST and Pacific
SOI as the explanatory variables. Other variables including the North Atlantic oscil-
lation (NAO) and sunspots were found not to be statistically significant. The trend
values are plotted for percentile values of wind speed between 5% and 95% in in-
tervals of 5%.

Trend values for Atlantic SST range from near zero for the weaker hurricanes
(lowest quantiles) to between 10 and 15 m s�1 per ıC. The trends are statistically
significant for hurricanes above the 60th percentile (on average, above 52 m s�1) as
can be seen by the 90% confidence band sitting entirely above the zero trend line.
The trend peaks at 16 m s�1 per ıC at the 75th percentile with a 90% confidence
interval of between 7 and 20 m s�1 per ıC. The mean regression line indicates a
trend of about 5 m s�1 per ıC which is statistically significant above the zero trend
line as indicated by the dashed lines (90% confidence intervals).

Trend values for the SOI range from about 1 m s�1 per standard deviation for
the weakest hurricanes to near 3 m s�1 per standard deviation for hurricanes above
the median intensity (on average 49 m s�1). The trends are mostly statistically sig-
nificant and the mean regression line indicates a statistically significant trend of
2 m s�1 per standard deviation. The results indicate that the rising trend of the most
intense hurricanes as the ocean temperatures rise is statistically significant after ac-
counting for the ENSO cycle. Thus the ENSO cycle, although also significant as
expected in modulating hurricane intensity, cannot explain the increasing intensity
of the strongest Atlantic hurricanes as ocean temperature rises.
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Fig. 1 Basin-wide trends in North Atlantic hurricane intensity. (a) Quantile trends with respect
to Atlantic SST controlling for ENSO. For an increase in SST there are increases in hurricane
intensity with increases generally larger (above 10 m s�1 per ıC) at higher hurricane intensities.
Statistically significant trends are noted for quantile values above the median hurricane intensity.
The plot looks similar when using data starting with 1965 (satellite era). (b) Quantile trends with
respect to ENSO controlling for SST. For a 1 standard deviation increase in the SOI (toward La
Niña conditions) there is an increase of around 2 m s�1 in hurricane intensity. The gray area
defines the 90% confidence intervals about the trend estimates. The mean regression line is about
5 m s�1 per ıC for SST and about 2 m s�1 per s.d. for SOI and both are statistically significant
above zero as shown by the dashed lines (90% confidence intervals)

5 Geographic Distribution of Lifetime Maximum Intensity

Even though the strongest hurricanes are getting stronger over the period 1943–
2008, it does not necessarily imply that hurricanes approaching land or those over
land are getting stronger. In fact it has been mentioned that our results might not
be particularly relevant to decision makers if most hurricanes reach their maximum
intensity far from land. Here we examine the geographic distribution of lifetime
maximum intensity and find what might, at first, seem a bit surprising.
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We do this by dividing the North Atlantic basin into nearly-equal area hexagon
bins and counting the number of times the location of a hurricane’s lifetime maxi-
mum intensity occurs within each bin. Hexagon bins are used instead of the more
common rectangular bins because a hexagon represents the best compromise be-
tween overlap and spatial uniformity (Brettschneider 2008). As with the rectangles,
hexagons provide a tiling of the two dimensional plane. That is they can be fit to-
gether with no gaps. Moreover since all interior angles are congruent and all sides
are of equal length, the hexagon is the shape with the most angles that still tiles the
plane and that best approximates the circle.

For each hurricane we determine where the hurricane first reached its lifetime
maximum intensity. Figure 2 shows the results of this counting procedure along
with the maximum value over all lifetime maximum intensities for hurricanes within
each bin. The “bee hive” plot shows the geographic distribution of the frequency and
intensity of the lifetime maximum intensity. Only locations with at least one lifetime
maximum intensity value have a hexagon bin and the bin width is approximately 5ı
of longitude.

Perhaps somewhat surprising is that the U.S. coast (especially along the Gulf and
southeast) are more threatened by hurricanes near their lifetime maximum compared
with areas farther to the east and south over the open ocean. In fact, 69% of all 409
hurricanes over the period 1943–2008 have a lifetime maxima in a hexagon bin that
is centered to the west of 60ıW longitude.

Upon deeper reflection, near-coastal locations might be expected to have a
greater number of hurricanes at lifetime maximum since an intensifying hurricane
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Fig. 2 Frequency and maximum intensity of Atlantic hurricanes at lifetime maximum intensity.
The gray scale shows the number of times a hurricane reached its lifetime maximum intensity (first
time only) within the hexagon bin using hurricanes over the period 1943–2008. The value inside
the hexagon is the maximum intensity (m s�1) of all lifetime maxima in the bin
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will decay after making landfall thereby capping intensity at or near the coast.
Interestingly though, these regions tend also to be where the intensities of the life-
time maxima are large. This is not entirely surprising as these bins contain a larger
collection of maxima. In fact the correlation between the number of times a hurri-
cane reaches its lifetime maximum in the bin and the maximum intensity over all
lifetime maxima is 0.5 [0.33, 0.63] (95% confidence interval) over the 98 bins.

Hurricanes typically originate over the waters of the wide expanse of the tropical
oceans. They intensify over these warm waters then decay as they move over cooler
waters or over land. Thus over the western part of the North Atlantic hurricane basin
and especially near the Gulf coast the hexagon bins contain a mixture of hurricanes
that are close to their theoretical maximum potential intensity as well as hurricanes
that were intensifying prior to landfall, but still conceivably far from their theoretical
maximum potential intensity. It is this mixture of hurricane intensities that might
help explain why a climate change signal is not apparent in the set of hurricane
intensities at landfall as it is for the larger set of hurricanes basin wide.

6 Geographic Distribution of Changes in Maximum Intensity

As noted previously, using only the lifetime maximum intensity limits the data set to
409 hurricanes over the period 1943–2008. Examining the geographic distribution
of these lifetime maxima as was done in the previous section limits the number of
cases to a median of about three hurricanes per bin. This is too few cases to examine
the geographic distribution of changes in maximum intensity over time.

Therefore in this section we consider the intensity of hurricanes along their entire
path at hourly intervals. The hourly intensities are based on a spline interpolation
of the 6-h estimates as mentioned in Section 2. The hourly hurricane intensities are
binned using hexagons as before and the maximum intensity value for each bin is
obtained. This maximum intensity reflects the strongest estimated wind speed over
all hourly observations and over all hurricanes passing through the bin.

Figure 3 shows the geographic distribution of hurricane frequency and maximum
intensities using hexagon bins. The regions of higher frequency corresponds to the
preferred pathway of hurricanes across the basin. The most notable pathway being
the parabolic sweep from the low latitudes of the central Atlantic northwestward to
the Bahamas and then northward and northeastward towards higher latitudes. The
main focal region for hurricane activity is the area near and just to the north of the
Bahamas.

The correlation between the spatial density of hourly hurricane observations and
maximum intensity is 0.73 indicating, as expected, a tight spatial relationship be-
tween factors that control hurricane frequency and factors that control intensity.
However, the strongest of the strong hurricanes occur over the western Caribbean
Sea and into the Gulf of Mexico. Next we consider the geographic variation in the
change of maximum intensity over time. To do this we divide the 66-year record into
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Fig. 3 Frequency and maximum intensity of hourly hurricane observations. The gray shade indi-
cates the frequency of hourly observations in the hexagon bin and the number inside the bin is the
maximum intensity over all hourly observations in the bin

two parts and create similar bee hives of hurricane intensity and frequency. We then
plot the differences using the same bee hive plot. The division is based on separating
the years into two equal groups.

The frequency and maximum intensity of hurricanes over two consecutive non-
overlapping time periods are displayed in Fig. 4. The top panels show the number of
hourly observations and the bottom panels show the maximum intensity value over
all the observations. The left panels show the data from the period 1943–1975 and
the right panels show the data from the period 1976–2008.

Overall there are 9% fewer hourly observations over the later years compared
with the earlier years. But over the Caribbean and Gulf of Mexico the difference is in
favor of the earlier period. That is, there are 25% more hourly hurricane observations
in the 20 hexagon bins comprising the Gulf of Mexico and the Caribbean during the
33-year period 1943–1975 as there are in the same 20 bins over the later 33-year
period 1976–2008. There are also notably more hurricane observations during the
earlier period over the Bahamas extending into the western North Atlantic.

One explanation for the fewer hourly hurricane observations is the faster forward
speeds in the later period. Although the average forward speed of hurricanes over the
entire basin during the earlier period is 6.5 m s�1, which compares with 6.3 m s�1

over the later period. Over the region bounded by 100ı and 60ıW and 10ı and 30ıN,
the average forward speed is 4.9 m s�1 over the earlier period compared with 5.2
m s�1 over the later period. Thus over the region including the Caribbean Sea, Gulf
of Mexico, and the Bahamas, hurricanes moved on average about 6% faster during
the most recent 33-year period compared with the earlier period. This difference
in forward speed accounts for a 5.6% reduction in counts on average. With fewer
hurricane observations we might expect the maximum intensities to be lower.
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Fig. 4 Number of hurricane hourly values and maximum hurricane intensity by region and period.
The regions are the hexagon bins used in Fig. 3. The number of hourly values is based on a spline
interpolation of the 6-h HURDAT estimates. The maximum intensity in m s�1 is based on all
hourly values in the bin. The two periods include the intervals before and after 1975. The number
of observations (a) 1943–1975 and (b) 1976–2008 are shown in the top panels and the maximum
intensities (c) 1943–1975 and (d) 1976–2008 are shown in the bottom panels

Indeed with fewer hurricanes more recently you would expect to see lower max-
imum intensities as is noted over the western North Atlantic. Interestingly, however,
over the Gulf of Mexico and Caribbean Sea, where there are also fewer hurricane
observations during the later half of the record, the maximum intensities tend to be
larger. In fact the average maximum intensity over the 20 hexagon bins is 68 m s�1

during the early period compared with 74 m s�1 during the later period, an increase
of about 10%. Thus over the Gulf of Mexico and Caribbean the strongest hurricanes
are getting stronger. And this is also where hurricanes are generally strongest fueled
by the largest ocean heat capacity of anywhere across the basin. In fact, 6 of the 20
hexagon bins over the Gulf and Caribbean have maximum intensities at 80 m s�1

or higher compared during the later period compared with only 1 during the earlier
period.

The differences in the number of observations (expressed as a percentage) and the
differences in maximum hurricane intensities between the two periods is illustrated
in Fig. 5. The positive (negative) percentages indicate more (fewer) hurricane obser-
vations over the later period. The positive (negative) values indicate higher (lower)



10 On the Increasing Intensity of the Strongest Atlantic Hurricanes 185

60oN

100oW 80oW 60oW 40oW 20oW 0oW

100oW 80oW 60oW 40oW 20oW 0oW

50oN

40oN

30oN

20oN

10oN

60oN

50oN

40oN

30oN

20oN

10oN
−44−20−31

−32 −7 −17−20 −7 −6 −50

−16 −20−10−35 −3

−43−28 −1 −13−13−21 −5

−28−18 −3 −27−16−27−28 −26

−41 −26−55−26−31 −4

−11 −9 −33−22−18 −7

−6 −26−14−23

−46−44 −63 −20 −70−13−90

−52−46 −8 −38−28

−64 −6 −3 −7 −22−16−38

−55 −47

−50

−56

40 85 14 58 38 14 29 89 45

4 4 42 44 28

10 20 7 8 28 34 54

11 5 44 42

5304 14 1 93

4 40 31 55 75 60 59

29 9 18 4 69 78

9 71 3 35 43 32 29

9 15 16 10

38 16 35

43 17 9 19 43

83 9 22 14

0 37

Difference in No. Observations (%)a

−3 0 −2

−6 −3 −5

−7 −2 −1 −8 −6

0 −5 0 −1

−17 −4 −14 −5 0

−20−11−24 −9 −1 −2 −21 0 −1

−2 −10 −8 −2 0 −5

−6 −6 −2 −4 −2 −3 −8

−8 −12 −7 −2 −1 −5 −10

−6 −4 −13 −6

−7 −2 −11 −8 −5 0 0 −4

−10−12 −4

−2 −3 −13

−13

11 10 19 10 6 10 12 13 9

5 10 11 10 8 1 3 13 5

2 5 19 7 10 2 13

6 11 16 3 5 18 12

2 3 1 6 0 0 5 11

4 3 8 13

1 2 1 2 2 8

3 5 0 13

1 5 2 0

0 8 11 1

9 6 2 3

4 5 1

Difference in Maximum Intensity (m/s)

60oN

100oW 80oW 60oW 40oW 20oW 0oW

100oW 80oW 60oW 40oW 20oW 0oW

50oN

40oN

30oN

20oN

10oN

60oN

50oN

40oN

30oN

20oN

10oN

b

Fig. 5 Differences in the number of observations and maximum hurricane intensities. The differ-
ences are based on the periods 1943–1975 and 1976–2008, where the number of observations and
maximum hurricane intensity in the bin during the earlier period are subtracted from the number
of observations and maximum hurricane intensity in the bin during the later period. (a) Positive
(negative) values indicate more (fewer) hurricane observations over the later period. (b) Positive
(negative) values indicate an increase (a decrease) in the intensity of the strongest hurricanes. Note
there are fewer but stronger hurricanes across much of the Gulf of Mexico and the Caribbean Sea
during the more recent period
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maximum intensities over the later period. Increases as large as 10–19 m s�1 are
noted over the Gulf of Mexico and the Caribbean Sea. Decreases are noted over the
western North Atlantic to the northeast of the Bahamas. Decreases are also noted
along most of the United States coastline. This is an interesting finding that is con-
sistent with the hypothesis that continental aerosols can act to decrease hurricane
intensity (Khain et al. 2010) and that might help explain why, despite the increasing
intensity of basin-wide hurricanes, there is no upward trend in normalized insured
losses (Jagger et al. 2008; Pielke et al. 2008). Because of the spatial correlation, the
number of comparisons, and the arbitrary division of years, we make no attempt to
estimate the statistical significance of these results, only noting that they are largely
consistent with our admittedly limited theoretical understanding of hurricanes on a
climate scale.

7 Summary and Conclusions

Hurricanes are not well resolved in current climate models thus we must rely on the
available historical data to get a glimpse of what might happen in the future. In a
recent paper (Elsner et al. 2008) we showed that the strongest hurricanes have been
getting stronger with a 26-year trend that is related to an increase in ocean tem-
perature over the Atlantic and elsewhere. In this chapter evidence for this claim is
examined in more detail. In particular, quantile trends with respect to SST are esti-
mated after statistically controlling for ENSO. Moreover the geographic variability
of lifetime maximum intensities and their changes over time are examined by divid-
ing the North Atlantic hurricane basin into hexagon bins. Hexagon bins provide a
tiling of the area of interest while best approximating the ideal shape of a circle.

It is found that the strongest Atlantic hurricanes are getting stronger and the in-
crease is related to an increase in SST after controlling for changes in the ENSO.
The trend peaks at 16 m s�1 per ıC at the 75th percentile with a 90% confidence
interval of between 7 and 20 m s�1 per ıC. The increasing intensity of the strongest
hurricanes is not confined to the open ocean as nearly 70% of all hurricanes reach
their lifetime maximum intensity west of 60ıW longitude. The largest increase in
the intensity of the strongest hurricanes is occurring over the Gulf of Mexico and
the Caribbean Sea where ocean temperatures are warmest. Interestingly, these re-
gions where the strongest hurricanes are getting stronger correspond to areas with
fewer observations. We also note a tendency for decreases in maximum intensities
for hurricanes along the U.S. coastline.

In summary, the heat-engine theory of tropical cyclone intensity (Emanuel 1991)
is not about more intense hurricanes rather it is about a hurricane becoming more
intense. There is an important difference. The first is about a collection of hurri-
canes so more intense hurricanes could result from simply having more hurricanes.
But even under a scenario of constant (or decreasing) hurricane rate, the strongest
hurricanes are getting stronger. If we consider near-coastal hurricanes as a subset
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of all hurricanes, then we do not necessarily expect to see the signal, since we
are capturing hurricanes at a somewhat random part of their lifecycle. This mix-
ing of intensity distributions might help explain why a climate change signal is not
apparent in the set of landfall hurricane intensities. Moreover, increasing aerosol
concentrations from the increasing built environments could be dampening the in-
tensity of the strongest hurricanes as they approach the coast. More work on this
interesting and important topic is needed.

8 Replies to Comments on Elsner et al. (2008)

Our paper entitled “The increasing intensity of the strongest tropical cyclones” pub-
lished in the September 4th, 2008 issue of Nature garnered considerable attention in
the scientific community. Here we present comments, listed as bullets, that were
received on this work. The comments came from various sources including the
tropical storms mailing list and we reproduce them here as is. Our replies to the
comments follow in the gray boxes.

� Comment Intuitively the number of tropical cyclones exceeding the mean rate
plus two times the standard deviation as was shown in previous studies (e.g.,
Kossin et al. 2010) should be equivalent to number of tropical cyclones exceeding
some upper quantile level as shown in Elsner et al. (2008).

Reply The number of cyclones exceeding plus two times the standard devi-
ation is positively correlated to the rate of cyclones. A basin with a lower rate
of tropical cyclones will have fewer cyclones exceeding plus two times the
standard deviation compared with a basin with a higher rate, while the num-
ber of cyclones exceeding the 90th percentile is not necessarily dependent on
the rate. Thus it is not appropriate to compare, in this way, the differences
between Kossin et al. (2007) and Elsner et al. 2008.

� Comment I’ve regressed the most intense tropical cyclones per season on year
and my results do not match those presented in Elsner et al. (2008).

Reply A regression of the most intense tropical cyclones per season is not
the same as quantile regression on year as was done in Elsner et al. (2008) for
the following two reasons. (a) Quantile regression minimizes a linear absolute
deviation statistic rather than a quadratic statistic, and (b) quantile regression
treats each intensity value equally; no wind speed contributes more to the
model fit.
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� Comment Your results are only marginally significant and there are many fac-
tors contributing to hurricane intensification.

Reply That is correct, but all else being equal, a warming of the tropical
oceans where tropical cyclones form should increase their intensity. Since the
strongest tropical cyclones are, on average, closest to their theoretical maxi-
mum potential intensity it stands to reason that if there is a warming signal it
should be most apparent in the tendency of the strongest cyclones. Moreover,
statistical inference is concerned with drawing conclusions based on data to-
gether with prior assumptions. Arguments that include the basic physics of the
role ocean heat plays in tropical cyclone intensity have more weight before the
data are examined.

� Comment The authors claim that the increasing trend is consistent with theory,
yet numerical modeling studies suggest a different sensitivity of tropical cyclone
intensity to warming.

Reply Numerical models are not theory. They are based on theory, but re-
quire ad hoc empirical arguments that place them into the realm of “scenario
generators.” The theory we have in mind is the 2nd law of thermodynamics. If
the future is one with greater wind shear across the warming North Atlantic,
then there may indeed be fewer hurricanes.

� Comment I’m surprised that the relationship between intensity and sea-surface
temperature is not stronger.

Reply The physics of cyclone intensification works against the correla-
tive relationship. An active year of tropical cyclones will effectively remove
warmth from the ocean so that a seasonal average temperature will not corre-
late as strongly with tropical cyclone activity as one might expect even though
the physical causality is strong.

� Comment Yet when you look at scatter plots of these SST series versus number
of intense TCs [tropical cyclones] there is no relationship in the warmer SST,
more intense TCs direction.

Reply We did not look at the number of TCs; we looked at the intensity.
There is no theory for TC formation. However, given a TC, there is a nice
theory for the efficiency of intensification. So, we focused on intensity rather
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than on frequency. Given a TC in a nearly optimal dynamic environment, we
should expect to see it reach a higher intensity with warmer SST. If on average
10% of the storms get within 5% of their maximum potential intensity (MPI)
and the MPI increases then we would see the strongest storms getting stronger,
assuming all else stays the same.

� Comment Here’s a hypothetical, what if the predictor had been another quan-
tity that also shows a significant trend over the period 1981–2006, I don’t
know: : :my weight, perhaps: : :would one be discussing what the physical mean-
ing of a non-significant correlation between the two was?

Reply This hypothetical has little to do with the relationship of hurricanes
to warming seas since in the latter there is a theory linking the two, whereas
with your weight and hurricanes there is none. In science this makes a big
difference.
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Chapter 11
Frequency and Intensity of Hurricanes
Within Florida’s Threat Zone

Jill C. Malmstadt, James B. Elsner, and Thomas H. Jagger

Abstract This chapter examines historical hurricanes within Florida’s threat zone;
a 1,000 km radius around 26ıN latitude and 82ıW longitude. The area is visited by
hurricanes from May through December with a peak in September. Threats come
from hurricanes originating or passing over the Gulf of Mexico, Caribbean Sea, and
the Bahamas. On average, three hurricanes every 2 years and one major hurricane
every other year occur in the threat zone. Hurricane Wilma in 2005 is the strongest
hurricane in the record with a peak intensity of 78.4 m s�1. This is approximately a
one-in-20 year event for the threat zone as a whole. The region can expect hurricane
wind intensities of 60.8 m s�1 (58.3–63.3) (90% CI), on average, once every 2 years.
There appears to be no upward or downward trend in the frequency of hurricanes
within the region, but the intensity of hurricanes is on the rise. The rise could be
related to recent (since 1980) warming ocean temperatures in the Caribbean, but a
simple linear regression model finds no statistically significant signal. Hurricanes
over and around Florida are intensifying and decaying more rapidly than in the past.
Explanations for these changes are lacking but they suggest a bias in risk models
that assume a stationary hurricane climate over and around Florida.

Keywords Florida � Hurricane � Threat � Return period � Intensity

1 Introduction

The United States’ Gulf and Atlantic coasts are threatened by hurricanes each
year. The coastal stretch from Louisiana to Florida to the northern shores of South
Carolina have experienced numerous catastrophic hurricane events, with some very
recent in memory. In particular, hurricanes affecting the state of Florida come from
Bahamas, the western Caribbean, and the Gulf of Mexico. The region within a
1,000-km radius of 26ıN latitude and 82ıW longitude off the southwest coast of
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Florida is the area described by Hamid et al. (2008) in an attempt to identify storms
that could conceivably impact Florida. The Florida Commission on Hurricane Loss
Projection Methodology (FCHLPM), created during the 1995 Florida Legislative
session to evaluate hurricane risk models, advises modelers to consider hurricanes
in this area as a potential threat to Florida (Florida threat zone). This is done for
the purposes of comparing different risk models used by the insurance industry
(Hamid et al. 2008; Jagger and Elsner 2009) using a common set of hurricanes. The
threat zone includes the region from Baton Rouge, LA to Myrtle Beach, SC. It also
includes most of Cuba, portions of the Yucatan Peninsula, and the Bahamas. A hur-
ricane within the Florida threat zone does not imply it will directly affect the state.

This chapter examines hurricanes in the Florida threat zone including a look at
the return periods of the strongest hurricanes and changes in the occurrence rate
and intensities over time. According to Blake et al. (2007), 40% of all U.S. hur-
ricanes and major hurricanes hit Florida. The analysis conducted here provides
insight into the climatology of hurricanes that have affected Florida and the sur-
rounding threat zone. First, descriptive statistics about the observed frequency and
intensity of hurricanes in the zone are provided. Next, using a statistical method
developed in Jagger and Elsner (2006), and since employed in Elsner et al. (2008b)
and Malmstadt et al. (2010), return levels for the most extreme hurricane winds are
estimated, as a way to assess hurricane risk in the threat zone. The analysis con-
cludes with an examination of trends in hurricane intensity and intensification rates
using the method of quantile regression. The relationship between changes in wind
speed and observed changes in sea surface temperature (SST) over the Gulf and
Caribbean is also briefly examined.

2 Data

The wind speed estimates and their locales are derived from the National Hurricane
Center’s Hurricane Database (HURDAT; or best track). This is the official record
of tropical cyclones for the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea,
including those that have passed through Florida’s threat zone. This record consists
of the six-hourly cyclone location and intensity for individual storms back to 1851.
The intensities represent an estimate of the maximum wind speed somewhere in the
hurricane sustained for 1 min as indexed at a 10-m height above sea level. Estimates
are more reliable for data since the time of aircraft observations (middle 1940s) and
especially since the time of satellite observations (early 1970s).

This study examines hurricanes in the vicinity of Florida going back to 1899 as
this is the start year used by the FCLPM. The FCLPM uses this time period for
evaluating historical hurricanes as a common benchmark to compare proprietary
hurricane loss models used by the insurance industry. The hurricane data col-
lected are combined with the one-hourly interpolated hurricane positions and
intensity values available from the spline interpolation technique provided in
Jagger and Elsner (2006). The interpolation scheme provides a nonlinear inter-
polation of values for each hour.
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The Caribbean SST data used in the analysis serve as evidence for climate change
over the western Caribbean and Gulf of Mexico. These data can be found at http://
www.esrl.noaa.gov/psd/data/correlation/CAR.data. The data include monthly SST
anomalies from the Caribbean Index from 1951 to 2006. Here we use the average
August–October anomaly for each year. This is done to highlight the SST anomalies
during the most active part of the hurricane season for this part of the basin (Landsea
et al. 1999). The Caribbean SST data are an area average that includes the entire
Caribbean Sea, the Florida Straits and the seas surrounding the Bahamas, as well
as the majority of the Gulf of Mexico. More specifically, the spatial coordinates of
the averaging region includes 27ıN to 9ıS latitude and 60ıE to 100ıW longitude
(NOAA Earth Systems Research Laboratory 2009).

3 Hurricanes in the Vicinity of Florida

The analysis of hurricanes in Florida’s threat zone begins with some descriptive
statistics about the observed hurricane events since 1899. The region, shown with
a black outline in Fig. 1, is a 1,000-km radius surrounding 26ıN latitude and 82ıW
longitude; just off the southwest coast of Florida. The area captures hurricanes that
may affect the panhandle, west, and northeast coasts of Florida, as well as hurricanes
that approach south Florida from the vicinity of Cuba and the Bahamas. Again it is
important to remember that not all hurricanes that visit the threat zone actually affect
Florida.

Using data from 1899 to 2008, the location of the maximum wind speed per
hurricane is plotted based on the Saffir–Simpson category of wind speeds. Differ-
ent symbols denote different categories on this scale. The maximum wind speed

Fig. 1 Florida threat zone
and locations of the strongest
wind speed of each hurricane
that entered the area. The
symbol type denotes intensity
categories according to the
Saffir–Simpson scale
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location refers to the strongest wind speed for a hurricane inside the region. A hurri-
cane that reaches this maximum more than once is counted only once and is located
at the time of first maxima.

The Florida threat zone experienced 165 hurricanes and 59 major hurricanes
(category 3 or higher on the Saffir–Simpson scale) over the 110-year period. As
hurricane wind speeds slacken over land the points are generally over water. Two
broad clusters of points are noted; one over the western Caribbean Sea extending
northwest into the Gulf of Mexico and the other over the Bahamas and areas to the
north. Between these two clusters a band of lower point densities is noted over the
Greater Antilles. The distribution of category one hurricanes appears more spatially
uniform in comparison to the distribution of the stronger categories of hurricanes
although no formal tests of clustering are carried out here.

Table 1 lists the top ten highest wind speeds from hurricanes experienced in
the threat zone during this time period. Four of these extreme hurricanes occurred
since 2004; Hurricane Ivan in 2004, Hurricanes Wilma and Katrina in 2005, and
Hurricane Dean in 2007. The other six storms occurred during earlier portions of the
record. The highest wind speed experienced in this threat zone came from Hurricane
Wilma, with a maximum sustained wind speed of 78.4 m s�1.

Figure 2 shows the monthly occurrence of the hurricanes that have passed
through Florida’s threat zone. Hurricanes have occurred in this region in all months
from May through December. September is the peak month of hurricane threats to
Florida followed by August and October. Just over 85% of all hurricanes in this part
of the world occur in the 3 months from August through October. The seasonality
of hurricanes in the threat zone is similar to the seasonality of hurricanes over
the Atlantic basin as a whole, although October is relatively more active over and
around Florida.

Figure 3 shows a time series of the observed hurricane counts in the threat zone.
All hurricanes are shown with gray lines, and major hurricanes are indicated with
black lines. For example, in 1899 there were two hurricanes, one of which was
a major hurricane. Most years have at least one hurricane but there are 64 years
without a major hurricane in the region. There were six hurricanes in the region in

Table 1 Top ten highest
hurricane wind speeds
experienced in the Florida
threat zone over the period
1899–2008. The year of the
hurricane and the hurricane
name are provided. Where a
hurricane name is not given,
the season sequence number
is shown

Wind speed
Year Hurricane (m s�1)

2005 Wilma 78.4
2004 Ivan 74.6
1955 Janet 73.1
2007 Dean 72.5
1938 Storm 4 72.2

1988 Gilbert 72.0
1928 Storm 4 69.4
2005 Katrina 68.6
1961 Hattie 66.9
1947 Storm 4 66.8
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Fig. 2 Monthly occurrence
of hurricanes passing through
Florida’s threat zone. The bar
indicates the number of
hurricanes by month
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Fig. 3 Time series of hurricanes and major hurricanes. All hurricanes are shown with gray lines,
and major hurricanes are shown with black lines. There does not appear to be any upward or
downward trend in these counts

1933 and three of them were major hurricanes. This is the maximum single year
occurrence rate over all years in the record. The consecutive years of 2004 and
2005 each featured five hurricanes. The average annual number of hurricanes (major
hurricanes) is 1.5 hurricanes/year (0.5 hurricanes/year). In other words, on average,
Florida gets threatened by three hurricanes every 2 years and one major hurricane
every other year. There does not appear to be any significant upward or downward
trend in the frequency of hurricanes in the vicinity of Florida.

Figure 4 shows a time series of the maximum wind speed (m s�1) for each hur-
ricane. The maximum refers to the fastest wind speed in the threat zone. Years with
more than one hurricane have more than one value. Hurricanes that reached a maxi-
mum intensity over water are shown with circles. Here there appears to be an upward
trend in the intensity over time especially for the strongest hurricanes. The average
maximum intensity is 47 m s�1 with a standard deviation of 10.2 m s�1.
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Fig. 4 Maximum sustained
wind speeds for hurricanes in
the Florida threat zone as a
function of time with trend
lines shown for the 0.5 and
0.9 quantiles. Maximum
winds over sea are shown
with circles, and
maximum winds over land
are denoted with squares
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4 Hurricane Return Levels

To assess the risk of hurricane occurrence in the threat zone, a statistical model based
on extreme value theory is employed. The risk of a hurricane represents the proba-
bility of a region experiencing winds of hurricane force or greater within a specified
period. Thus, regional risk is determined by the size and location of the region. Risk
is an unobserved and changing quantity that is estimated using a statistical model.

Here the statistical model provides an estimate of the exceedence wind speed
(return level) as a function of return period (inverse of the annual probability). Fol-
lowing Jagger and Elsner (2006), the exceedences W � u are modeled as samples
from a family of generalized Pareto distributions (GPD), so that for an individual
hurricane with maximum wind W ,

Pr.W > vjW > u/ D
�

1 C 


�
Œv � u�

��1=�

D GPD.v � uj�; 
/ (1)

where � > 0 and � C 
.v � u/ 	 0. For negative values of the shape parameter (
)
the GPD family of distributions has an upper limit of Wmax D u C �u=j
j.

The frequency of storms with intensity of at least u follows a Poisson distribution
with a rate, 	u, the threshold crossing rate. Thus the number of hurricanes per year
with winds exceeding v is a thinned Poisson process with mean 	v D 	u Pr.W > vj
W > u/, where v is an arbitrary wind speed above threshold u. This is called
the peaks over threshold (POT) method and the resulting model is completely
characterized for a given threshold u by �; 
; 	u; the GPD parameters and the thresh-
old crossing rate, respectively.
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Since the number of storms exceeding any wind speed v is a Poisson process, the
return period for any v has an exponential distribution, with mean r.v/ D 1=	v. By
substituting for 	v in terms of both 	u and the GPD parameters then solving for v as
a function of r we can find the corresponding return level for a given return period as

rl.r/ D u C �




h

.r � 	u/� � 1
i

: (2)

For a more complete description of the statistical theory supporting this model refer
to Jagger and Elsner (2006).

Figure 5 shows the return level curve for the Florida threat zone based on the
model. The u and � parameters used to estimate this curve are 35 and 24 m s�1,
respectively. The return levels (hurricane intensities) increase with increasing return
period in an exponential manner. Specifically, Florida can expect to be threatened
by a hurricane with wind speeds of 60.8 m s�1 (58.3–63.3) (90% CI), on average,
once every 2 years. It also shows that this threat zone can expect a hurricane with
wind speeds of 70.6 m s�1 (68.2–73.0), on average, once every 5 years.

Table 2 lists return levels for selected return periods, along with the 90% con-
fidence intervals. A confidence interval (CI) for the mean return level at the radial
distance of interest is obtained by first, calculating the return levels for a given return
period, and then assuming the estimate is asymptotically normal from a knowledge
of the limiting variance of the estimator (delta method). The model indicates that
Hurricane Wilma with its 78.4 m s�1 wind speeds is about a 20-year event for the
threat zone as a whole.

Fig. 5 Return levels as a
function of return period. The
return levels are based on the
statistical model presented
above and include data over
the period 1899–2008. The
return period refers to the
expected time between
hurricanes of this intensity
occurring somewhere within
the threat zone. The vertical
lines represent the 90%
confidence intervals on the
return levels for selected
return periods
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Table 2 Return period
for selected wind speed
exceedance values. The return
levels are based on the
statistical model presented
above and include data over
the period 1899–2008. The
90% confidence intervals are
also listed

Return period Wind speed
(year) (m s�1)

10 75.8
(73.5–78.1)

20 79.7
(77.5–81.9)

50 83.3
(81.0–85.6)

100 85.3
(82.8–87.8)

500 88.0
(85.0–91.0)

5 Trends in Hurricane Intensity

In the previous section we showed that the occurrence of hurricanes threatening
Florida is not changing over time but there appears to be an upward trend in hur-
ricane intensity. To quantify the trend we employ quantile regression. Quantile
regression is an extension of ordinary regression applied to quantiles of the response
variable. A quantile is a point taken from the inverse cumulative distribution func-
tion so that the 0.5 quantile is the value such that 50% of the values are less than
the value. For instance, the 0.9 quantile (90th percentile) value of hurricane wind
speeds near Florida is 61 m s�1. The response variable is the hurricane intensity and
the explanatory variable is time (year).

Two trend lines are shown in Fig. 4. The 50th-percentile trend is shown with
a solid black line and the 90th-percentile trend is shown with a dashed line. Both
trends are upward with the 90th-percentile trend greater than the 50th-percentile
trend. The upward trends indicate that hurricanes in the vicinity of Florida are get-
ting stronger over time with the greatest increases noted for the strongest hurricanes.
The trend values and their standard errors and p-values are given in Table 3. Al-
though the trend at the 50th percentile is not statistically significant, the trend at the
90th percentile is as indicated by the trend value more than twice its standard error.
This result is consistent with those presented in Elsner et al. (2008a) for global and
basin-wide tropical cyclone activity.

Increasing SST, with an assumed upward trend in ocean heat content, is one
explanation for the observed rise in intensity of the strongest hurricanes. Figure 6
shows the August through October Caribbean SST anomalies as a function of year,
and a scatter plot of wind speed maxima and these same SST values. As noted
previously, the Caribbean SST data are the August–October averaged SST anomaly
over the period 1951–2006. There is a nonlinear change in the SST values over time
with a rising trend since about 1980. The upward trend since then is rather large.
The nonlinear trend line is based on fitting the data to second-order polynomial.
A weak positive relationship between SST and wind speeds exists, but the trend
coefficient is not statistically different from zero. The SST trend is consistent with
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Table 3 Hurricane wind intensity trend statistics are shown with the asso-
ciated standard errors and p-values for the 0.5, 0.75, and 0.9 quantiles

Statistic

Quantile

0.5 0.75 0.9

W (m s�1) 44.6 53.4 61.4
Trend (m s�1 year�1) C0.07 C0.04 C0.13
s.e. (m s�1 year�1) 0.04 0.05 0.06
p-Value 0.06 0.38 0.02
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Fig. 6 Caribbean SST anomalies and hurricane wind speeds. (a) Time series of the average
August–October Caribbean SST anomalies. (b) Scatter plot of maximum hurricane wind speed
versus Caribbean SST. The regression lines are shown on the plots

the increasing trend in local hurricane intensities. It is also possible that changes in
other (local) environmental parameters, such as vertical wind shear, are the reason
local hurricane intensities have increased in this region over time.

6 Changes in Intensification and Decay Rates

While increasing ocean heat content may play a role in the increasing intensity of
hurricanes in the vicinity of Florida, it is likely not the entire story. Another con-
sideration is hurricane intensification within the threat zone and how it might be
changing over time. The intensification is the time change of the maximum hur-
ricane wind speed. We use a Savitzky–Golay filter to compute the time derivative
as it has better accuracy than the simpler finite differencing method (Savitzky and
Golay 1964).

We divide the data set into values that are above zero indicating hurricane
strengthening and values below zero indicate hurricane weakening. We then take the
maximum value of strengthening (intensification) along the track of each hurricane
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Fig. 7 Hourly hurricane
intensification values over
time. The values are the
maximum intensification rate
for a hurricane within the
threat zone based on hourly
wind speed increases. The
50th- and 90th-percentile
trends are plotted with a
dashed and solid line,
respectively

1900 1920 1940 1960 1980 2000

0.0

0.5

1.0

1.5

2.0

Year

In
te

ns
ifi

ca
tio

n 
R

at
e 

[ m
 s

−1
/h

r]

within the threat zone to obtain one intensification value per hurricane. We do the
same for the maximum value of weakening, or decay (the largest negative value).

The maximum per hurricane intensification in units of m s�1 per hour is plotted in
Fig. 7. As before, we also plot the 50th- and 90th-percentile trends from a quantile
regression of intensification on year. The highest values of intensification exceed
2 m s �1 per hour while the lowest are near zero. There is a distinct upward trend
in hurricane strengthening rates over time. Hurricanes apparently are intensifying
more rapidly in more recent years. The trend values, standard errors, and p-values
are given in Table 4. The 50th- and 90th-percentile trends are C0.6 m s�1/h/century;
both statistically significant from a zero trend.

It is also interesting to consider the maximum decay rates of hurricanes in the
vicinity of Florida. The maximum per hurricane decay in units of m s�1 per hour is
plotted in Fig. 8. Again we plot the 50th- and 90th-percentile trends from a quan-
tile regression of decay on year. The highest decay rates are larger than the highest
intensification rates with one hurricane’s maximum decay rate exceeding 4 m s�1

per hour. As with intensification there is a rather distinct trend in decay over time,
with today’s hurricanes decaying faster than hurricanes earlier in the twentieth cen-
tury. This is especially true for the hurricanes with the largest decay rates. The trend
statistics for these percentiles, along with their standard errors and p-values, are also
shown in Table 4.

In order to recognize spatial patterns in these decay rates, the observations are
plotted based on the following criteria: whether the maximum decay rate occurred
over land or over sea. If the maximum decay rate occurred over land, the observation
is plotted with a square, and if over sea, it is plotted with a circle. Approximately
34% of the hurricanes reached their maximum decay rate over land, and 66%
reached it over sea.
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Table 4 Hurricane intensification and decay. The intensification rate and
decay rate trend statistics are shown with the associated standard errors and
p-values for the 0.5, 0.75, and 0.9 quantiles based on a quantile regression
model

Statistic

Quantile

0.5 0.75 0.9

Intensification rate
W (m s�1 h�1) 0.70 0.98 1.34
Trend (m s�1 year�1) C0.006 C0.005 C0.006
s.e. (m s�1 year�1) 0.001 0.002 0.002
p-Value <0.001 0.006 0.006

Decay rate
W (m s�1 h�1) �0.83 �0.28 �0.11
Trend (m s�1 year�1) �0.01 �0.005 �0.003
s.e. (m s�1 year�1) 0.003 0.002 0.001
p-Value 0.001 0.02 0.01

Fig. 8 Hourly hurricane
decay rates over time. The
values are the maximum
decay rate for a hurricane
within the threat zone based
on hourly wind speed
decreases. The 50th- and
90th-percentile trends are
plotted with a dashed and
solid line, respectively
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Land Decay=34%

Sea Decay=66%

7 Summary and Conclusions

Hurricanes head the list of catastrophic and expensive natural phenomena. The
state of Florida has experienced well over $450 billion dollars in damages from
these deadly events since the early twentieth century (Pielke et al. 2008), and these
losses have been increasing through time even after accounting for inflation changes
(Malmstadt et al. 2009). This analysis was conducted to provide information for
emergency planners and the insurance industry about the characteristics of the hur-
ricanes that pass in the vicinity of Florida.

Since 1899, there have been 165 hurricanes – 59 of them at category 3 or higher
on the Saffir–Simpson scale – that have passed within a 1,000-km radius of 26ıN
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latitude and 82ıW longitude off the southwest coast of Florida. Hurricanes occur
mainly from June through November with a peak in September. Threats come from
hurricanes originating or passing over the Gulf of Mexico, Caribbean Sea, and the
Bahamas. On average, the annual number of hurricanes (major hurricanes) threat-
ening Florida is 1.5 hurricanes/year (0.5 hurricanes/year). The frequency of these
hurricanes is not changing through time but hurricane intensification rates are.

The strongest hurricane in the record is Hurricane Wilma in 2005, which had
a peak intensity of 78.4 m s�1. This is approximately a one-in-20 year event for
the threat zone as a whole. The average maximum intensity is 47 m s�1 with a
standard deviation of 10.2 m s�1. The region can expect hurricane wind intensities
of 60.8 m s�1 (58.3–63.3) (90% CI), on average, once every 2 years and wind speeds
of 70.6 m s�1 (68.2–73.0), on average, once every 5 years.

Quantile regression was employed to establish the statistical significance of the
upward trend in the intensity of hurricanes, especially at the highest wind speed lev-
els. The rise can be related to warming ocean temperatures in the Caribbean, but the
simple linear regression model found no statistically significant signal. Hurricanes
are also intensifying more rapidly in the vicinity of Florida today than hurricanes in
the past. However, there is also a rather distinct trend in decay rates over time with
today’s hurricanes decaying faster than hurricanes earlier in the record. This is espe-
cially true for the hurricanes with the largest decay rates. Although the explanations
for these changes are lacking, the changes suggest models that assume a stationary
hurricane climate might be misleading about Florida’s future hurricane risk.
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Chapter 12
Linking Tropical Cyclone Number Over
the Western North Pacific with Sea Surface
Temperatures

Chongjian Liu, Liping Ma, Ying Liu, Zhexian Luo, Xiaotu Lei,
Xiaogang Zhou, Donghai Wang, and Hui Xu

Abstract The analyses based on the observational data show that the tropical
cyclone (TC) numbers tend to become decreasing over some oceanic basins during
the recent multiple decades despite a rise in their sea surface temperatures (SSTs).
A methodology of understanding the mechanism responsible for such seemingly
counter intuitive phenomena is suggested in this chapter and thus the causality be-
tween the unusually heterogeneous pattern of SSTs in warming environment and
TC frequency over, as an example, the western North Pacific (WNP) is explained.
This methodology is important in that it provides an insight into the problem why
under global warming high SSTs as one of the necessary conditions for TC genesis
should unexpectedly contribute to TC number reduction, though locally, and fur-
thermore, in view of that such phenomena have also been observed over the other
oceanic basins than the WNP and that the principle of the technique is universal,
this procedure of analysis can be expected to apply globally to examine the extreme
weather/climate extent frequency trend in the worldwide warning conditions.

Keywords Tropical cyclone � Sea surface temperatures � Climate thermodynamics

C. Liu (�) and X. Lei
Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
e-mail: cliu@cams.cma.gov.cn; leixt@mail.typhoon.gov.cn

C. Liu, L. Ma, Y. Liu, and D. Wang
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences,
Beijing 100081, China
e-mail: maliping@cams.cma.gov.cn; y119@cams.cma.gov.cn; wangdh@cams.cma.gov.cn

Z. Luo
Institute of Remote Sensing, Nanjing University of Information Science and Technology,
Nanjing 210044, China
e-mail: luozxma@yeah.net

X. Zhou
Training Centre, China Meteorological Administration, Beijing 100081, China
e-mail: zhouxgang@sina.com

H. Xu
National Meteorological Center, China Meteorological Administration, Beijing 100081, China
e-mail: xuhui@cma.gov.cn

J.B. Elsner et al. (eds.), Hurricanes and Climate Change: Volume 2,
DOI 10.1007/978-90-481-9510-7 12, c� Springer Science+Business Media B.V. 2010

205

cliu@cams.cma.gov.cn
leixt@mail.typhoon.gov.cn
maliping@cams.cma.gov.cn
y119@cams.cma.gov.cn
wangdh@cams.cma.gov.cn
luozxma@yeah.net
zhouxgang@sina.com
xuhui@cma.gov.cn


206 C. Liu et al.

1 Introduction

A great number of the literatures and the observational data reveal that a variety
of devastating weather/climate events happened frequently over the world. Some
examples include the most serious drought since 1940 occurred in the central west-
ern part of the United States in 1998 with grain drop in production by 38%, the
warmest year 1999 experienced in China in the last 100 years, the extraordinar-
ily powerful and deadly Hurricane Katrina happened with the total damage cost
of about $81 billion and the total number of fatalities over 1,800 in 2005, and
so forth (Easterling et al. 2000; Karl et al. 1991; Manton and Eral 2001; Wang
and Gong 2000; Cerveny et al. 2007). However, under the worldwide extreme
weather/climate events getting more frequent, a counter intuitive phenomenon that
the tropical cyclone (TC) numbers tend to become decreased over some oceanic
basins with a rise in their sea surface temperatures (SSTs) has been observed during
the recent multiple decades (e.g. Wang et al. 2008; von Storch 2008; McBride and
Ramsay 2009). As a result, a scientific question is why, under the background of
global warming, higher SSTs with more potential energy supplies implied as one of
the necessary conditions for typhoon genesis would lead to decreased TC numbers?

In a recently published monograph (e.g. Elsner and Jagger 2009) it is stated most
numerical models indicate an overall decrease in the number of storms attributable
to greater atmospheric stability and to a decrease in vertical mass flux. However,
the proposed analysis in this chapter for understanding of the observational counter
intuitive phenomena is quite different from those described in the previous works.
This analysis is based on the fundamental dynamics rather than the numerical ex-
periments whose results are inevitably affected by the numerical model itself. On
the other hand, such methodology can be employed to directly address the science
behind the fact that the TC numbers are dramatically decreased in some oceanic
basins against a background of global warming.

In this chapter the western North Pacific (WNP) over which the TC occurrence
frequencies tended to decrease with minor fluctuations from late 1960s (Fig. 1) is
taken as an example to discuss the possible mechanism responsible for the causation.

In Fig. 1 the data for TC numbers are from the Tropical Cyclone Annals (CMA
1949–2007) and the relative vorticity (RV) is based on the National Centers for En-
vironmental Prediction/National Center for Atmospheric Research (NCEP/NCAR)
2:5ı � 2:5ı (latitude–longitude grid) reanalysis data.

In view of the fact that the majority of TCs originate around the intertropical con-
vergence zone (ITCZ) and that the intensity and position of ITCZ can be described
reasonably in terms of the RV (see the text below for further details), this chapter is
arranged as follows: the main source of TC genesis and ITCZ of monsoon trough
type over the WNP are described in the next section; discussions on the ITCZ vari-
abilities and their possible causes are given in Section 3 with focus on SSTs changes
and the effect of SSTs pattern on the ITCZ migration; the further discussions and
conclusive remarks are presented in Section 4.
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Fig. 1 The long term evolution series for the TC numbers in the WNP and in the basin west
of 140ıE as well as the averaged RV in 10�5 s�1 in the ITCZ of monsoon trough type during
1949–2007 (see the text for data source)

2 The Main Source of TC Genesis and the ITCZ

According to previous studies, 80–85% of TCs are originated in the ITCZ or just
on its poleward side, and the ITCZ of monsoon trough type located in the basin
west of 140ıE is the main origin of TCs over the WNP (Gray 1967; Bates 1970;
Charney 1971). On the other hand, the necessary conditions of TC genesis and
development include higher SSTs, stronger low level vorticity, weaker vertical wind
shear, and higher latitudinal position of subtropical anticyclone ridge/ITCZ. These
conditions, however, are not equally important. Among them low level vorticity
should be the fundamental factor for TC genesis since initial disturbances are the
embryo of TCs. In addition, the intensity of the ITCZ as a main system generating
TCs can be described in terms of the RV (e.g. use RV at 850 hPa for defining the
ITCZ, as is seen in Chan and Evans (2002)). Indeed the TC numbers over the WNP
and the basin west of 140ıE have a high correlation with the RV around the ITCZ, as
is seen in Fig. 1 where these numbers show almost synchronous changes with those
of the RV. The corresponding correlation coefficients for the WNP and the basin
west of 140ıE are 0.6552 and 0.6614 at the 0.001 significance level, respectively.
It is noticed, in Ma and Chen (2009), that a 10-year running mean to the annual TC
frequency data and NCEP typhoon season mean wind data has been applied to get
the long term evolution series of the averaged TC numbers and RV in 10�5 s�1, at
925 hPa in the ITCZ of monsoon trough type for the period 1949–2007, and, that
July–October (JASO hereafter) is defined as the typhoon season since JASO is the
most frequent season of TCs over the WNP. It will therefore be a reasonable way to
discuss the causality between the TC frequency trend and warming SSTs over the
WNP via the ITCZ variability as the medium.
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3 The ITCZ Variabilities and Their Possible Causes

3.1 The ITCZ Variation

The analyses below are based on the NCEP/NCAR 2:5ı �2:5ı resolution reanalysis
data for horizontal winds from which the ITCZ fields in terms of RV are figured out
via the definition of RV at constant pressure

&p D
�

@v

@x

�

p

�
�

@u

@y

�

p

; (1)

where &p, u and v are the RV, the latitudinal and longitudinal velocities at con-
stant pressure, respectively, and the 2:0ı � 2:0ı data for the SST fields (Kalnay
et al. 1996). All the means are calculated against the period of JASO as mentioned
above.

Figure 2 shows the stream fields superimposed by the positive RV at 925 hPa
during JASO over the WNP. It is found from near the equator in Fig. 2 that the zones
of positive RV in the RV field can simply tell the general position of the convergence
zones in the stream fields. This convergence zones should be able to represent the
ITCZs due to the fact that the ITCZ is mainly formed by the trade winds converging
(e.g., Bjerknes et al. 1969; Holton et al. 1971). In fact, as mentioned in Section 2,
the attempt using RV at 850 hPa for defining the ITCZ has been done (e.g. Chan
and Evans 2002). However, the RV in terms of 850 hPa is not continuous in some
sections of ITCZs over the Pacific owing to its weaker intensity (figures not shown
here). Therefore the RV at 925 hPa that is more continuous and smoother than that
at 850 hPa is chosen instead in this chapter.

It is noticed from Fig. 2 that the variabilities of the ITCZ of monsoon trough
type associated with the reduction in the TC numbers over the WNP under warming
SSTs during the last several decades are involved with the following two factors:
(1) the intensity of the ITCZ of monsoon trough type as the main origin of TCs
over the WNP, in terms of RV at 925 hPa, was weakened and (2) the position of the
ITCZ shifted into the latitudes further south (see also Fig. 3), both of which would
contribute to the decrease in TC numbers over the WNP.

Next we will specifically discuss these two aspects.

3.2 The Implication of SSTs Variation

Figure 3 shows the 20-year means of SSTs over the WNP for JASO during 1949–
2008. It is seen from Fig. 3 that the SSTs over the North Pacific are gradually
increased during the recent 60 years, especially, the areas circled with the isotherm
of 28ıC that is defined as the critical temperature for the warm pool (Ho et al. 1995)
extended eastward prominently. This cross-equatorial area of warm pool was limited
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Fig. 2 Comparison of the stream fields superimposed by the positive RV at 925 hPa (isolines are
for the positive RV in 10�5 s�1) during JASO over the WNP between the first and last 20-year/
30-year means (as marked above the respective panel)
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Fig. 3 The illustration of changes in the average position of the ITCZ from 1949 to 2007. Here,
the central position of the ITCZ is determined via singling out the points with maximum positive
RV along the longitudinal direction within the 100–140ıE and then averaging their respective
latitudinal position

within the western Pacific initially which has extended straightforwardly till the
eastern Pacific, so as to be connected eventually from the western up to eastern
Pacific as seen in the panel for the last 20-year period (1989–2008) of Fig. 3. Since
there is a close relationship between SSTs and surface wind divergence and con-
vection over the tropical oceans or the ITCZs (Graham and Barnett 1987; Lau
et al. 1997; Lindzen and Nigam 1987) the following questions are then raised: how
the SSTs or their gradient influence the intensity of the ITCZ, and why the sea sur-
face warming extent reached around the western Pacific covering some part of the
warm pool is not as dramatic as those over the central and eastern Pacific. The latter
is relevant to the first factor of the ITCZ variabilities mentioned above. A potential
clue would be implied by the modern nonlinear non-equilibrium thermodynamics.

For an isolated thermodynamic system, the state function of the system, entropy
s per unit mass, will spontaneously increase with time according to the second
law of thermodynamics, which can be expressed by the formula (Prigogine 1955;
De Groot and Mazur 1962)

ds

dt
	 0; (2)

and be usually called the spontaneous entropy increment principle. As a result, an
isolated system will spontaneously tend to homogenization. However, for an open
system with the diabatic heating rate Q transferred through its boundaries, Eq. (2)
should be modified to

ds

dt
	 Q

T
; (3)

where T is the temperature (in Kelvin) of the system. The nature of the second law
of thermodynamics shows that, if there exists difference initially, heat (particles)
will be spontaneously transferred (diffused) from part with higher T (concentration)
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to that with lower T (concentration). Any many-body system like the atmosphere
or ocean must be controlled by the second law of thermodynamics and, in fact, the
entropy flow properties of the atmospheric systems have been revealed based on this
law (Liu and Liu 2005, 2007; Liu et al. 2006; Xu and Liu 2008).

Specifically, if there exists difference of temperature spatially (say, on sea sur-
face), the original part of warmer sea surface will diffuse its thermal energy (the
inner energy, proportional positively to temperature via the formula of e D CpT

where e is the inner energy per unit mass, Cp is the specific heat at constant pressure
and T is temperature) to its surrounding parts with lower temperature. As a conse-
quence, compared with the surrounding areas the original warmer area (e.g., the area
related with the warm pool) will experience a weaker warming under global warm-
ing since it will lose a certain amount of heat via the diffusive process at the same
time, and vice versa (Fig. 3 showing the case for the North Pacific is only an exam-
ple in which it is demonstrated that the SSTs around the ITCZ of monsoon trough
type have a smaller increment of temperature while those over the adjacent ITCZ
sections near the central and eastern equatorial Pacific have larger increments). In
view of that the ITCZ is caused, at least in the initial stages, mainly by the thermody-
namic forcings such as the gradient in SST that has been regarded as playing more
of a role than the absolute SST value with regard to convection and precipitation
(Lindzen and Nigam 1987) the ITCZ of monsoon trough type should indeed become
weaker in response to more uniform SSTs or weakened SST gradient over there.

3.3 The Effect of SSTs Pattern on the ITCZ Migration

As described above, in the warming environment the higher SSTs area circled with
the isotherm of 28ıC related to the warm pool has gradually extended eastward and
been connected from the western to eastern Pacific eventually during the last 20
years (Fig. 4) so as to form an apparent zone of higher SSTs with a distinct gradi-
ent of nearly north–south direction created on the both northern and southern sides
of this zone. Such a SST pattern will cause corresponding changes in the average
temperature Tm of an immediate air layer above the sea surface. Thus, in some re-
gions to the north of the zone of higher temperature where the semi-geostrophic
relation for the Tropics is valid (Lin and Chao 1998) a western wind component at
the higher levels (e.g. at 925 hPa) should be superposed, which will cause a positive
increment of the latitudinal velocity u with �u > 0 (at the higher level), according
to the thermal wind relation (Holton 1992):

*
V

T
D �R

f
ln

p1

p2

rpTm � *
k (4)

where
*
V

T
denotes the thermal wind between the constant pressure layers p1 (e.g.

1,000 hPa that is near the sea surface) and p2 (e.g. 925 hPa that is used for defining
the ITCZ in terms of RV in this chapter); rpTm is the average temperature gradient
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Fig. 4 The every 20-year-averaged SST fields (in degree Celsius) for the North Pacific south of
40ıN during the period from 1949 to 2008

with Tm is the average temperature between p1 and p2;
*

k the unit vector in the ver-
tical direction; and R and f are the gas constant for dry air and Coriolis parameter,
respectively. In contrast, the latitudinal velocity u to the south of the zone should
be superposed by an eastern component as the gradient in SSTs in the south re-
gions is reverse to that in the north ones. As a result, the RV, as is expressed by

&p D
�
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p
�

�
@u
@y

�

p
, in the regions to the north of the zone of higher temperature

will be decreased (at the higher level) since the term of �
�

@u
@y

�

becomes smaller

with the term of
�

@v
@x

�

p
having a minor change in this case. At the same time, the

RV in the regions to the south of the zone of higher temperature will be increased
owing to the reversed gradient in SSTs or Tm there.

Taking the definition of ITCZ in terms of positive RV into account, we might
expect that the part of the ITCZ to the north of the zone of high temperature will
tend to weaken and even disappear as the result of reduction in RV there and, on
the contrary, the part of the initial ITCZ to the south will enhance and even extend
south further (see Fig. 5 for reference). That is able to be used to explain why the
ITCZ migrates south apparently, as is relevant to the second factor of the ITCZ
variabilities above.
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Fig. 5 The diagrammatic sketch for the proposed mechanism for a southern shift of the ITCZ
coupled with RV which is contributive to the reduction in TC counts around the WNP (see the
text for further details). The red lines represent SSTs showing sketchily the opposite temperate
gradients (and the potentially-forced average temperature gradients @Tm

@y
within the immediate layer

above the sea surface) in the both sides of the maximum SSTs

4 Conclusive Remarks

As well-known to all, the necessary conditions for TC genesis are not equally impor-
tant and, among them dynamical factors such as low level vorticity and vertical wind
shear play a more important role than thermodynamic factors such as SST and moist
instability as suggested on some simulative results (Sugi et al. 2002; McDonald
et al. 2005; Chauvin et al. 2006). This study shows that, warmer SSTs in the WNP
even caused fewer TCs, that is, warmer SSTs as one of the necessary conditions
do not definitely lead to an increase in TC numbers, which might be attributed to
the heterogeneous effects of complicated pattern of SSTs on RV as implied by the
second law of thermodynamics with the thermal wind principle taken into account.
This study further proves that low level vorticity associated with ITCZ variations
should be a fundamental factor for TC genesis. Based on the analyses in this chap-
ter, a new way of understanding the mechanism responsible for the causality among
SSTs and TC occurrence frequency over the WNP is then suggested. As a matter
of fact, the WNP is only used as an example in this study and, the principle of the
methodology illustrated herein is universal. This analysis can be also applied to the
other oceanic basins worldwide than the WNP.
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Some Related Support Websites

http://www.ncdc.noaa.gov/oa/climate/severeweather/extremes.html
http://www.ncdc.noaa.gov/ncdc/data.ncep.reanalysis.derived.pressure.html
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Chapter 13
A Track-Relative Climatology of Eglin Air Force
Base Hurricanes in a Variable Climate

Kelsey N. Scheitlin and James B. Elsner

Abstract The evolving hurricane threat to coastal communities is a critical
consideration in the face of a changing climate. With a possible increase in hurri-
cane destructive potential, it is important to analyze the climatology of hurricanes at
a local, or decision-making, level. This chapter outlines a technique for establishing
a climatological hurricane track for Eglin Air Force Base (EAFB) based on the
occurrence and intensity of past hurricane events. First a “worst-case” track for a
hurricane approaching EAFB is created by averaging distance maps of historical
hurricanes. Hurricane characteristics (intensity and translation speed) are assigned
to the track by gathering information from past hurricanes that passed nearby a set
of points along the track. Then, by limiting the set of hurricanes to those from warm
and cool sea surface temperatures epochs, the process is repeated to show the affects
a changing climate might have on the hurricane risk to EAFB. The technique can be
applied to any coastal location, and serves as a basis for understanding a local-scale
hurricane climate and the affects of climate change on future hurricane threats.

Keywords Hurricane tracks � Climatology � Climate change

1 Introduction

The relationship between hurricanes and climate change has received a lot of
attention. Current attempts to understand this relationship focus on the affects cli-
mate change will have on the frequency and intensity of future tropical cyclones.
Some question our ability to discern changes in hurricane frequency due to climate
change, as the signals may be masked by large natural variability (Trenberth 2005).
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The intensity of future cyclones is also in question, but findings suggest a 30-year
increase in tropical cyclone destruction potential (Emanuel 2005), especially in the
strongest hurricanes (Elsner et al. 2008). This increase in destructiveness, coupled
with an increase in coastal populations, will result in greater economic loss due to
tropical cyclones (Emanuel 2005; Hallegatte 2007). Others suggest there is no basis
for making such claims in the present state of knowledge (Pielke et al. 2005; Land-
sea et al. 2006). Regardless, one can not deny the tremendous coastal devastation
in the past decade due to tropical cyclone activity worldwide, and the weariness
associated with a potential increase in destruction.

It is important for coastal communities to be prepared for future storms. This
can be achieved through sound prediction and mitigation strategies. In this regard,
it is useful to assess hurricane risk at a local, or decision-making level. This chap-
ter serves to analyze the hurricane vulnerability of Eglin Air Force Base (EAFB),
located on the Florida Panhandle, to help personnel understand the potential for fu-
ture infrastructure damage (Fig. 1). Utilizing a “point” analysis approach as opposed
to the common method of using portions of coastline, provides a resolution suitable
for understanding local hurricane vulnerability (Muller and Stone 2001).

The method uses past hurricane events to understand the movement and char-
acteristics of the “typical” strong hurricane affecting EAFB. Through creation
of an average track we outline the hurricane climatology of the area. Additionally,
we show how past tropical cyclone characteristics can be used to understand the
future of EAFB hurricanes in a changing climate. In Section 2, we illustrate our
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Fig. 1 Study area. Eglin Air Force Base (hatched) is located in the Florida Panhandle, in portions
of Okaloosa, Walton, and Santa Rosa counties
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technique for constructing a climatological hurricane track for a specific area based
on the movement of past hurricanes. We create an average track representing the typ-
ical EAFB hurricane. In Section 3, average hurricane characteristics (i.e. intensity
and translation speed) are found along the track based on past hurricane events.
Together, the track and wind characteristics serve as a track-relative climatology
of EAFB hurricanes. Further, in Section 4, we construct separate climatologies for
years of warm and cool sea surface temperature (SST). This provides a glimpse
into the possible future of EAFB hurricanes associated with a change in SST. The
methodology can be repeated for any location to help understand the present local-
scale hurricane climate, as well as the future of these storms in a changing climate.
Section 5 provides the summary and conclusions regarding both the overall method-
ology and the EAFB-specific analysis.

2 An Average Hurricane Track

Due to the nature of their driving forces, hurricanes move in somewhat predictable
patterns (Brettschneider 2008). Thus, hurricanes striking a particular locale are
likely to follow similar pathways. It is possible to summarize the behavior of the
typical track of hurricanes for a specific location based off of past tropical cyclone
events. The goal is to provide a technique for analyzing a local-level hurricane cli-
mate, and the affect changing SST may have on the average hurricane. The first step
is creating a track for the average hurricane.

When creating a track for the typical EAFB-affecting hurricane, we take into
account that the wind effects of a hurricane are largely based on where the cyclone
makes landfall relative to a particular location. It is known that the forward right
quadrant usually contains the most intense wind speeds (Elsner and Kara 1999) and
the greatest storm surge (Simpson and Riehl 1981). Consequently, EAFB is likely to
experience the greatest effects from a tropical cyclone striking just to the west. Since
this research is interested in those hurricanes that threaten local infrastructure, we
analyze EAFB vulnerability relative to those making landfall just west of the base.
The remainder of this chapter considers hurricanes making landfall near 30.4ıN
and 86.8ıW, a point on Santa Rosa Island, Florida located approximately 30 km
southwest of the EAFB geographic center.

We first create an average hurricane track for EAFB based on past hurricanes
making landfall near the selected landfall location on Santa Rosa Island. The hurri-
cane data are an hourly-interpolated version of the HURDAT data set (1851–2008).
As described in Jagger and Elsner (2006), spline interpolations are used to cre-
ate hourly estimations from the six-hourly HURDAT observations. Using hourly-
interpolated data reduces the chance of missing a hurricane passing through a small
area relative to the chance when using six-hourly data. Moreover, at an area the size
of EAFB, higher temporal resolution is not needed.
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Fig. 2 Tracks of hurricanes
affecting Eglin Air Force
Base (EAFB). All 26 tracks
came within 100 km of Santa
Rosa Island, FL (30.4ıN and
86.8ıW) based on data from
1851 to 2008. The gray
shading is proportional to the
distance the track came to the
landfall location. Darkest
tracks are those that passed
nearest the island
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Figure 2 shows the 26 tracks that have come within a 100 km radius of EAFB
over the period 1851 through 2008. The tracks have gray shading to reflect their
closest great-circle distance to the chosen location of interest; the darker the track
the closer it came to the location. Each of the tropical cyclones reached winds of
hurricane force (33 m s�1) or greater within the radius. We consider an average
of these tracks to represent the typical EAFB hurricane track capable of producing
catastrophic winds across the region.

The method to obtain an average hurricane track uses a series of distance maps
(Scheitlin et al. 2010). The value at any point on the distance map is the length
of the shortest route from that point perpendicular to the track, in units of degrees
longitude. A distance map is created for each of the 26 hurricanes shown in Fig. 2.
The methodology could be made more precise by using great-circle distances in
projected coordinates, but for the length of track used here and because we are only
interested in relative distances (relative to the track) the use of degrees longitude is
acceptable.

In order to find the average track we create an average-distance map. The value
at any point on the average-distance map is the mean of the shortest lengths at that
point on the individual distance maps (one for each hurricane track). Instead of
taking the simple mean of the distance maps, we use an inverse-distance weighted
mean based on the distance from the track to the landfall location. The tracks passing
closest by the landfall point (the darkest tracks in Fig. 2) are weighted more heavily
than those at a farther distance. In this way the search radius used for selecting
tracks is not critically important as increasing the search radius only increases the
number of hurricanes farther from the landfall point, which have minimal weight in
the averaging.

Figure 3 shows the average-distance map based on the 26 hurricanes. The aver-
age track is the line down the center of the distance contours. This represents the
track of a typical EAFB hurricane. Here the track is drawn within a threshold of
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Fig. 3 Average hurricane track for EAFB. The average track is the solid line drawn through the
minimum distance contours of the average-distance map. The average-distance map is based on 26
hurricanes affecting EAFB over the period 1851–2008

2.5ı longitude of distance, but it can be drawn longer or shorter depending on the
purpose. Next, we are interested in gathering information about the typical hurricane
characteristics along this track.

3 Hurricane Characteristics Along the Track

The previous section described the method for creating a track based on past
hurricanes affecting the area. An important additional consideration is the hurricane
characteristics along the track, such as intensity and translation speed. In this sec-
tion, the average track is sampled at equal-distant points, and the data used to charac-
terize each point comes from past hurricanes that passed nearby the sampled points.

Figure 4 shows the average EAFB track represented by points spaced in 100 km
intervals before and after landfall. Tracks of all hurricanes passing within a 100 km
radius of the point 500 km from landfall are also depicted. The radius about this
point contains the most hurricane tracks, with 39 historical hurricanes passing within
100 km. Hurricane characteristics are averaged based on the maximum value ob-
tained from the hourly data as the hurricane passes through the circle. For example,
if the hurricane spends 8 h within 100 km of the point, only the single maximum
wind speed value is used in the average.

This process is repeated along the track, selecting a set of hurricanes com-
ing within 100 km of each of the track points. The average translation speed and
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Fig. 4 The average EAFB hurricane track depicted as a series of equal-interval points spaced 100
km apart and centered on the landfall location of EAFB. The tracks of all hurricanes passing within
a 100 km radius of the point 500 km from landfall are also depicted. Hurricane characteristics
(intensity, forward speed, etc.) are averaged based on the maximum value obtained from the hourly
data as the hurricane passes through the circle. The process is repeated for each point

intensity are calculated from the selected hurricanes, again using the maximum
hourly-observation within the radii for each event. Information regarding the av-
erage decay and intensification behavior is gathered from the change of average
intensity over track distance.

Figure 5 shows the profiles of the average hurricane characteristics along the
length of the average track. The number of hurricanes used in the average is given
inside the horizontal axis. As noted, the frequency peaks at locations 300–600 km
from the landfall point. As expected there are fewer hurricanes closer to the coast
and over land as tropical cyclones weaken below hurricane intensity.

For the intensity profile, which is based on the maximum wind speed, the dashed
line marks the Category 3 (Saffir/Simpson hurricane intensity scale) threshold,
which the cyclone maintains for some distance prior to landfall. The hurricane
reaches its maximum intensity of approximately 52 ˙ 2 m s�1 (s.e.) 400 km be-
fore reaching the coast. After that point, hurricanes approaching EAFB, on average,
begin to weaken until making landfall with wind speeds of approximately 45 m s�1,
a Category 2 hurricane. The downward slope of the intensity profile provides infor-
mation about the typical decay rate of hurricanes approaching the coast.
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Fig. 5 Hurricane characteristics along the average track. Average (a) wind speeds and (b) trans-
lation speeds at 100 km intervals along the track. Distances in kilometers before (negative) and
after landfall are plotted on the horizontal axis. Standard errors (s.e.) about the mean are drawn as
vertical lines and the number of hurricanes used in the averaging are shown above the horizontal
axis

Although the intensity profile shown in Fig. 5 is based on an average, a similar
intensity profile was exhibited by Hurricane Opal in 1995, which affected EAFB.
While much more intense than the average EAFB hurricane, Opal experienced rapid
intensification in the Gulf of Mexico and subsequent decay prior to landfall, similar
to the average cyclone. Approximately 450 km prior to making landfall just west of
Santa Rosa Island, Florida, a warm-core ring in the Gulf of Mexico helped Opal
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reach Category 4 intensity (Hong et al. 2000). The late onset of intensification
surprised forecasters and an unsuspecting coastline. However, the average intensity
profile shows that Opal’s intensification profile is the rule rather than the exception.
Although Opal is a more extreme case, the average EAFB hurricane exhibits some
degree of intensification until 500–400 km from landfall before decaying during its
final advancement towards the shore.

What is known about Hurricane Opal and other Gulf of Mexico hurricanes can
provide insight into the average EAFB hurricane intensity profile. Similar to Opal,
it is likely that the increased intensification exhibited by the average hurricane ap-
proximately 500–400 km before landfall is due to especially warm SSTs in the Gulf
of Mexico. Areas of warm SST are often associated with warm-core rings that sep-
arate from the Loop Current and travel across the Gulf of Mexico (Vukovich and
Crissman 1986). The Loop Current is a stream of warm upper-ocean water in the
Gulf of Mexico that flows northward between Cuba and the Yucatán peninsula into
the Gulf of Mexico then exits east through the Florida Straits.

Once a tropical cyclone reaches tropical storm strength, the thermodynamic
structure of the upper ocean plays an important role on storm intensity (Emanuel
1999). For Opal and the average EAFB hurricane, the extra heat content of the
warm-core ring increases the thermodynamic instability that fuels the hurricane as
it travels northward toward the Gulf coast.

While the intensification of the average EAFB hurricane is easily interpreted, the
decay of the hurricane as it approaches inland has a more complex explanation. That
being said, it is no surprise that the hurricane decays in such a manner. Hurricane
Opal experienced similar pre-landfall decay, and Vickery and Wadhera (2008) note
that this 12–24 h pre-landfall decay is common in, and exclusive to, hurricanes mak-
ing landfall along the Gulf Coast. Levinson et al. (2009) add that this pre-landfall
weakening is more prominent in stronger Gulf of Mexico hurricanes.

There are at least three factors associated with the pre-landfall decay of the EAFB
hurricane. One obvious factor is the movement of the hurricane away from the
warmest waters associated with the warm-core rings of the Loop Current. Second,
the entrainment of dry continental air works to “fill in” a hurricane as a portion of it
begins to reach the coast (Levinson et al. 2009). This will affect larger storms first, as
they will interact with the drier air earlier than smaller storms as they approach land-
fall. A third, lesser-known factor in the pre-landfall decay is the effect of continental
aerosols near the coast. Khain (2008) found that aerosols decrease the convective
intensity in the center of a simulated hurricane leading to weakening. These three
factors help explain the pre-landfall weakening.

In addition to intensity, the average EAFB hurricane translation speed is also
gathered from the historical data set. Figure 5b displays the translational speed
profile along the average track. On average, hurricanes are accelerating as they
approach EAFB. And the acceleration rate increases, especially after landfall. For a
large portion of the track, the average forward speed is in the range of 6–7 m s�1.
Extrapolating from a constant translation speed of 6.5 m s�1 from the location of
maximum intensity, the hurricane is estimated to reach EAFB in about 17 h. This
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extrapolation would error on the wrong side for coastal communities and EAFB em-
ployees as the tendency is for an acceleration of the hurricane resulting in an arrival
earlier than anticipated.

4 Warm Versus Cool SST Years

A major concern about hurricane risk is the possibility that the risk will change
in a warming world. Once again, it is useful to take a local-scale approach to this
research in order to provide information at the decision-making level. This also
allows us to account for different affects of climate change based on location, as
previous studies have shown that intense hurricanes in different ocean basins are
affected somewhat differently by a warming environment (Elsner et al. 2008). Here
we analyze how SST variability has affected past EAFB hurricane characteristics.
This may provide information regarding the affects of future SST changes on local
hurricane activity.

SST data are obtained from the Caribbean SST Index provided by NOAA Earth
System Research Laboratory (2009). The data set contains monthly SST anomalies
for the Caribbean Sea from 1951 to 2006. For this analysis, an August–September
–October anomaly average is calculated each year. The yearly averages are divided
into thirds (terciles), with the top third representing warm years, and the bottom
third representing cool years. The lower tercile is a �0.060ıC temperature anomaly
with a minimum value being a �0.374ıC anomaly. The upper tercile is a 0.194ıC
temperature anomaly with a maximum value being a 0.472ıC anomaly. Intensity
and translation speed profiles are created for cool and warm years by finding the
average maximum values for each cyclone passing within 100 km of each track
point during the appropriate years. The track stops 100 km inland due to decreasing
sample size.

Figure 6 displays the EAFB intensity profile for the cool (a) and warm (b) years,
along with the standard error of the mean. It is important to note that the time frame
for these graphs is 1951–2006, differing from that of Fig. 5, which is based on
data over the period 1851–2008. The number of events used to calculate the means
are given above the horizontal axis. Larger samples during the cooler years mean
that since 1951, more tropical cyclones have passed nearby the average track in
cooler years than warmer years. However, the warmer years exhibit greater wind
speeds at each location. The highest average wind speed for warm years is 50 m s�1

(threshold for a Category 3 hurricane), occurring 800 km before landfall. The large
standard error associated with the warm years suggests the possibility of much
greater intensities. The warm years also exhibit the largest range of wind speeds
along the track. During cooler years the average wind speed peaks at 42 m s�1

(a Category 2 hurricane), 600 km prior to landfall. On average, the hurricane makes
landfall at category 1 intensity for warm and cool years.

Figure 7 shows the average translation speed for the (a) cool and (b) warm years.
There is little difference in forward speed of the average hurricane approaching
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Fig. 6 Average hurricane intensities along the average track for hurricanes during (a) cool and
(b) warm SST years. Distances in kilometers before (negative) and after landfall are plotted on the
horizontal axis. Standard errors (s.e.) about the mean intensities are drawn as vertical lines and the
number of hurricanes used in the averaging are shown above the horizontal axis

EAFB between warm and cool years. The exception is near the coast. On average
the warm years feature slower moving hurricanes as they approach and cross the
coast. This can amplify the damage potential, as the slightly more intense hurricane
will move more slowly over an area. While it is difficult to draw conclusions from
such a small sample size, these data suggest that more destruction may be expected
from hurricanes occurring in warm years, or in a warming environment.
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Fig. 7 Average hurricane forward speed along the average track for hurricanes during (a) cool and
(b) warm SST years. Distances in kilometers before (negative) and after landfall are plotted on the
horizontal axis. Standard errors (s.e.) about the mean translation speed are drawn as vertical lines
and the number of hurricanes used in the averaging are shown above the horizontal axis

5 Summary and Conclusion

This chapter provides a methodology for developing a local-scale hurricane
climatology and assessing the impact of SSTs on hurricane characteristics. Us-
ing Eglin Air Force Base (EAFB) as an example, an average hurricane track is
created, and the average characteristics along the track are attained based off of past
hurricane events. The process is repeated for warm and cool SST years. The results
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are a track-relative climatology of the average EAFB hurricane, as well as the
average warm- and cool-year EAFB hurricanes.

First, we create an average EAFB hurricane track based off of past hurricanes.
A landfall point just west of EAFB on Santa Rosa Island, Florida is chosen be-
cause it places EAFB in the front right quadrant of the cyclone. Historical hurricanes
(1851–2008) coming within 150 km of this point are selected, resulting in 26 hurri-
canes. A distance map is created for each hurricane, the values of which display the
distance from the hurricane track to any point on the map. The distance maps are
averaged using an inverse-distance weighted approach favoring the hurricanes that
passed nearest the landfall point. A line down the center of the averaged distance
map is the climatological EAFB hurricane track.

Next, we obtain hurricane characteristics along the average track. The track is
represented by a series of equal interval points, spaced in 100 km intervals before
and after landfall. Past hurricanes coming within 100 km of these points are selected,
and their maximum hourly-observation within the radii are averaged to represent the
mean characteristics for that location. The average intensity and translation speed
are shown in the form of track profiles, creating a track-relative climatology. The av-
erage EAFB hurricane reaches its maximum intensity of 52 ˙ 2 m s�1 (s.e.) 400 km
prior to landfall. The cyclone continues to travel towards the coast at approximately
6.5 m s�1, before making landfall with winds of 45 m s�1.

The characteristics along the track are determined, this time using only those
hurricanes occurring in warm or cool SST epochs. The lack of Caribbean SST data
prior to 1951 makes it difficult to discern the impact of SSTs on EAFB hurricanes.
However, since 1951, warm-year hurricanes have exhibited slightly higher wind
speeds and moved a slower pace than their cold-year counterparts. In addition to
increased wind speed, higher storm surge should also occur with warmer SSTs for
two reasons. First, greater wind speeds result in a higher surge. Second, storm surge
is best correlated with wind speeds further from the coast, rather than wind speeds
at landfall (Jordan and Clayson 2008). Thus, the relatively larger difference be-
tween the pre-landfall wind speeds in warm versus cool years will likely result in
large differences of surge damage. Since an increase in surge and wind speeds will
cause more destruction, the economic impacts of warmer SSTs should be further
analyzed.

While EAFB is likely to accrue greater hurricane damages per hurricane in a
warmer climate, it may be especially worthwhile to look at strongest storms. Since
the most intense hurricanes are the most destructive, and are already exhibiting
strengthening in the North Atlantic (Elsner et al. 2008), it would be useful to an-
alyze the affect of changing SSTs on major hurricanes. Currently, we provide a
methodology for obtaining a local-scale hurricane climate and the basis for under-
standing the affects of SSTs on the hurricane characteristics. The technique can be
made more useful with additional variables such as storm surge and economic loss,
and by employing return levels to look at the most extreme events.
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Chapter 14
Estimating the Impact of Climate Variability
on Cumulative Hurricane Destructive Potential
Through Data Mining

Roshanak Nateghi, Steven M. Quiring, and Seth D. Guikema

Abstract In this chapter, we assess the relationship between climate variability and
hurricane hazard in the U.S. using data mining techniques. Regression trees are
developed to investigate the relationship between seventeen climate variables (with
their quarterly and annual averages) on the yearly cumulative destructive potential
of U.S. land-falling hurricanes. The U.S. coast is divided into three separate sec-
tions: the Atlantic Coast excluding Florida, Florida, and the Gulf Coast excluding
Florida. Each region is analysed separately as well as the aggregate of all the regions
in an effort to better understand the factors that drive the frequency and intensity of
hurricanes making landfall in the U.S. The results indicate that a large number of cli-
mate variables contribute to the observed historical variations in hurricane activity.
This insight is validated by demonstrating that the models outperform previously
published models that are based on only two climate variables. The results show
that geographic partitioning is essential in both understanding the pattern of past
hurricane activity and forecasting future hurricane hazard. The analysis of variable
importance shows that temperature-related variables are useful for explaining hurri-
cane activity, even though their importance differs between regions.

Keywords Classification and regression trees � Hurricane hazard � Climate
variability � Data mining

1 Introduction

The concern over the impacts of climate variability and climate change on human
lives and the environment has escalated over the past two decades. Past efforts ex-
amining the relationship between climate variability, climate change and hurricane
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hazard include Yonetani and Gordon (2001), Emanuel (2005), Michaels et al.
(2005), Elsner et al. (2008), Knutson et al. (2008), Webster et al. (2005) and
Saunders and Lea (2008). However, these previous studies considered a limited
number of climate variables for their analysis, limiting the strength of the infer-
ences that can be drawn.

The objective of this chapter is to investigate the potential impact of climate vari-
ability on the frequency and intensity of hurricanes by utilizing a large number of
climate variables and employing distinctly different statistical modeling approaches
to the ones that have been used in the past. In our study, regression trees were built
in order to determine which set of variables is most important in capturing the vari-
ability of past patterns of hurricane hazard in the U.S. We start in Section 2 with a
brief overview of the past research in the field. In Section 3 we introduce the data
used in our analysis. Section 4 presents the methods for developing regression trees.
In Section 5, we summarize the results of fitting regression trees and discuss the
implications of our results. To conclude we provide a summary in Section 6.

2 Background Information

Numerous previous studies have investigated climate variables to determine which
are the most important factors influencing hurricane occurrence rate and inten-
sity. For example, Sabbatelli and Mann (2007) used Poisson regression and binary
classification schemes to examine the link between El Niño /Southern Oscillation
(ENSO), Main Development Region Sea Surface Temperature (MDR SST), North
Atlantic Oscillation (NAO) and tropical cyclone counts and concluded that only
ENSO and MDR SST were essential to take into account for forecasting future hur-
ricane counts.

A number of studies such as Knutson and Tuleya (2004), Emanuel (2005), Pielke
et al. (2005) and Elsner et al. (2008) argued that sea surface temperature (SST) is
a critical explanatory variable in explaining hurricane frequency and intensity. For
instance, Emanuel (2005) stated that net hurricane power dissipation is highly corre-
lated with tropical SST and hence a warmer world in the future will see an increase
in the potential intensity of tropical cyclones. A statistical analysis concluded that
every 0:5ıC increase in SST is associated with 40% increase in hurricane frequency
and activity in the Atlantic basin (Saunders and Lea 2008). Model-based research
has suggested insights different to the ones stated above. For example, a physics-
based model suggested that environmental changes in circulation or atmospheric
moisture are more important than sea surface temperatures in determining future
hurricane activity (Knutson et al. 2008). Their models suggest that the frequency of
Atlantic hurricanes and tropical storms will likely be reduced in the future (Knutson
et al. 2008). Results obtained by downscaling IPCC AR4 simulations also suggest
a reduction in the global frequency of hurricanes in a warmer future climate sce-
nario, with a potential increase in intensity in some locations (Emanuel et al. 2008).
However, there still exists a considerable degree of uncertainty and disagreement
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regarding the climate factors that drive hurricane intensity and frequency and the
potential impact of climate change on hurricane hazards. Moreover, none of the pre-
vious research has investigated an extensive range of climate variables. In this paper,
we will explore the potential links between climate variability and climate change
on hurricane destructive potential by including a large number of climate variables
in our analysis.

3 Data

A chronological list of all hurricanes that made landfall in the continental United
States from 1948 through 2007 was obtained from the National Oceanic and At-
mospheric Administration website (NOAA 2008: www.aoml.noaa.gov/hrd/hurdat/
ushurrlist.htm). The U.S. coast was then subdivided into the following three distinct
sections as shown in Fig. 1:

1. Region one: the Gulf Coast excluding Florida
2. Region two: Florida
3. Region three: the Atlantic Coast excluding Florida

Florida was treated as a separate coastal segment because it experiences a unique
hurricane environment with hurricanes approaching from both the Atlantic and the
Gulf of Mexico.

Rather than simply using hurricane counts or occurrence rates as our response
variable as some have done (e.g., Elsner et al. 2001), we use a measure that incorpo-
rates both hurricane occurrence rates and hurricane intensity, because it is a better

Gulf Florida East Coast

Fig. 1 Regions used as the basis for developing the regression tree models. Texas through Al-
abama is Region one (left figure), Florida is region two (middle figure), and the rest of the Atlantic
Coast north of Florida is Region three (right figure). Maps are not drawn to scale

www.aoml.noaa.gov/hrd/hurdat/ushurrlist.htm
www.aoml.noaa.gov/hrd/hurdat/ushurrlist.htm
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indicator of hurricane damage than counts. Hurricane damage is generally modelled
as a function of hurricane wind speed, and hurricane wind speed is proportional to
the square root of the central pressure difference of hurricanes. Consequently, we
used the following equation to calculate our measure of the hurricane hazard in a
given region in a given year:

Vy D
X

h2Y

q

.Ph;n � Ph;c/ (1)

where Vy is the cumulative hurricane hazard for year y, Ph;n and Ph;c are ambient
and central pressures for hurricane h respectively, and Y is the set of hurricanes
occurring in the region in year y. We used 1,005 mb for Ph;n for all years and
all hurricanes in accordance with Holland (1980). This approximate measure of
yearly hurricane hazard was used as our response variable in fitting regression trees.
We fit regression trees using quarterly averages and annual averages of the climate
variables. We included a total of 73 exploratory variables (described below) in our
models. It should be noted that modelling this high dimension data set with conven-
tional regression-based methods such as a simple regression or a compound Poisson
approach is challenging, and the results would be difficult to interpret. This is be-
cause (1) the number of covariates (73) exceeds the number of our records (60) and
(2) there is a high degree of collinearity among the covariates. PCA transformation
could potentially be implemented to reduce the number of dimensions and transform
the covariates to an orthogonal space, however interpreting the importance of the
significant beta values when transformed back to the original space is challenging.

Previous studies have modelled the occurrence or intensity of Atlantic tropi-
cal cyclones using at most four climate variables (e.g., Jagger and Elsner 2006;
Sabbatelli and Mann 2007). Jagger and Elsner (2006) developed a model of maxi-
mum hurricane wind speeds in the Atlantic basin using El Niño/Southern Oscillation
(ENSO), Atlantic Multi-decadal Oscillation (AMO), North Atlantic Oscillation
(NAO), and global temperature. Sabbatelli and Mann (2007) predicted the occur-
rence of Atlantic tropical cyclones based on ENSO, NAO, and August–October sea
surface temperatures (SST) over the main development region (MDR) in the tropi-
cal Atlantic. This paper includes additional candidate predictors that were selected
because they are known to influence hurricane development, intensity, and move-
ment or because they have been previously considered in similar studies. Table 1
lists the 17 climate variables that were used and they are described briefly be-
low. Quarterly averages (e.g. January–February–March (1), April–May–June (2),
July–August–September (3), October–November–December (4)) were calculated
for each variable and they were used to develop regression trees.

ENSO has been shown to play an important role in modulating hurricane activity
in the Atlantic Basin (Elsner et al. 2001; Jagger and Elsner 2006). ENSO conditions
can be represented using equatorial Pacific SST. The Niño 3.4 index SST averaged
over the region (5ıN�5ıS & 170ıW�120ıW) is one of the SST indices commonly
used (Sabbatelli and Mann 2007; Trenberth 1997). El Niño (La Niña) is associated
with large positive (negative) SST anomalies.
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Table 1 Variables used in our models: we used the values of quarterly averages as well as
the annual values for all the variables listed below except for aerosol, volcanic and solar
forcing for which only the annual values were used

Variable (abbr.) Source

Niño-3.4 (ENSO) ftp.cgd.ucar.edu/pub/CAS/TNI-N34
North Atlantic

Oscillation (NAO)
www.cru.uea.ac.uk/ftpdata/nao.dat

Pacific Decadal
Oscillation (PDO)

jisao.washington.edu/pdo/PDO.latestl

Atlantic Multidecadal
Oscillation (AMO)

www.cdc.noaa.gov/Correlation/amon.us.long.data

Quasi-Biennial
Oscillation (QBO)

www.cdc.noaa.gov/Correlation/qbo.data

Sahel Standardized
Rainfall (Sahel)

jisao.washington.edu/data-sets/sahel/sahelrain18982004

North Tropical Atlantic
SST (NTA)

www.cdc.noaa.gov/Correlation/NTA.data

Caribbean SST (CAR) www.cdc.noaa.gov/Correlation/CAR.data
Tropospheric Aerosol

Forcing (AF)
www.meteo.psu.edu/ mann/eos06/tropoAer.dat

Volcanic Forcing ftp.ncdc.noaa.gov/pub/data/paleo/climate-forcing/mann2005/
Solar Forcing ftp.ncdc.noaa.gov/pub/data/paleo/climate-forcing/mann2005/
Main Development

Region (MDR)
Sea-level Pressure
(SLP)

www.cdc.noaa.gov/cgi-bin/Timeseries/timeseries1.pl

Main Development
Region (MDR) Zonal
Wind (925 mb) (ZW)

www.cdc.noaa.gov/cgi-bin/Timeseries/timeseries1.pl

Main Development
Region (MDR)
Specific Humidity
(600 mb) (H)

www.cdc.noaa.gov/cgi-bin/Timeseries/timeseries1.pl

Hadley CRU global land
and ocean
temperature
anomalies (CRU)

www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt

Sunspot numbers (SSN) www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html
Wind shear (W) www.cdc.noaa.gov/cgi-bin/Timeseries/timeseries1.pl

North Atlantic Oscillation (NAO) is calculated based on the normalized sea
level pressure differences between Gibraltar (or Lisbon, Portugal) and Iceland. The
positive phase of the NAO corresponds to below-normal heights and pressure across
the high latitudes of the North Atlantic and above-normal heights and pressure over
the central North Atlantic, the eastern United States and western Europe. Positive
NAO is associated with an enhanced polar vortex, stronger westerlies, and above
normal temperatures over Eurasia and central North America, and below normal
temperatures in eastern North America (Marshall et al. 2001).

Pacific Decadal Oscillation (PDO) is the leading EOF (Empirical Orthogonal
Functions) of monthly SST anomalies in the North Pacific Ocean, pole-ward of



236 R. Nateghi et al.

20ıN. The positive (or warm) phase of the PDO is associated with above normal
SSTs along the west coast of North America and in the tropical Pacific and below
normal SSTs in the central north Pacific (Mantua and Hare 2002).

The Atlantic Multi-decadal Oscillation (AMO) is a 65–80 year cycle in North
Atlantic sea surface temperatures (SST). It is associated with SST differences be-
tween the warm and cold phases that are on the order of 0:4ıC throughout the North
Atlantic basin. AMO warm (or positive) phases occurred from 1860 to 1880 and
1940 to 1960, and cool (or negative) phases occurred from 1905 to 1925 and 1970
to 1990 (Enfield et al. 2001).

Quasi-Biennial Oscillation (QBO) is a stratospheric (30 mb) oscillation of equa-
torial zonal trade winds with a period of 26–30 months. The positive (negative)
phase is associated with easterly (westerly) winds. The negative phase of QBO (e.g.,
westerly winds) is associated with decreased hurricane activity in the Atlantic basin
(Gray 1984).

Sahel standardized rainfall departures are calculated based on stations between
8ı–20ıN and 20ıW�10ıE. Above normal Sahel rainfall is associated with increased
Atlantic hurricane activity (Landsea et al. 1999; Lehmiller et al. 1997).

Sea surface temperatures (SST) in the Caribbean and North Atlantic (60ıW to
20ıW, 6ıN to 18ıN and 20ıW to 10ıW, 6ıN to 10ıN respectively) were also in-
cluded. Previous research has shown that SST has a strong positive influence on
hurricane activity (Emanuel 2005; Mann and Emanuel 2006; Sabbatelli and Mann
2007).

Other factors that were considered include solar forcing, volcanic radiative
forcing, and tropospheric aerosol forcing (Mann and Emanuel 2006). Increased
concentrations of tropospheric aerosol can lead to cooling over the MDR, and this
cooling is associated with decreased hurricane activity (Mann and Emanuel 2006).
Although the influence of solar variability and volcanic forcing on Atlantic hurri-
cane activity is not well understood, it is considered potentially important.

Atmospheric conditions in the main development region (10ı–20ıN, 20ı–60ıW)
have also been shown to influence hurricane activity (Landsea et al. 1999; Michaels
et al. 2005; Saunders and Lea 2008). This paper considers mean (area weighted)
sea-level pressure (mb), zonal wind (u) at 925 mb, and specific humidity at 600 mb.

The potential influence of increasing global temperatures on Atlantic hurricane
activity is incorporated by considering Hadley CRU global land and ocean temper-
ature anomalies. Previous studies have shown that global surface temperatures are
useful for predicting Atlantic SST and hurricane activity (Elsner 2006; Sabbatelli
and Mann 2007).

4 Theory and Methods

We constructed regression trees using the data described in Section 3 to under-
stand which variables are most important to include in modelling past patterns in
hurricane destructive potential and to develop fitted models using the past data. In
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the following discussion we closely follow the presentation of classification and
regression trees of Breiman et al. (1998). Regression trees are built by recursive
binary partitioning of the data space at nodes. The following sections describe the
process of building and validating a regression tree. At each node t of a tree, a set
of binary questions of the form xj � t and xj > t (i.e., a binary partitioning of the
data based on splitting covariate j at value t), generate a set of splits; those cases in
node t answering yes to the questions go to the left; otherwise they go to the right.
The best splits are the ones that maximize the decrease in re-substitution error R(t)
given by Eq. 2:

4R.s; t/ D R.t/ � R.tL/ � R.tR/ (2)

where R(t) is a measure of fit such as the sum of squared errors or absolute deviation
within node t.

At any given point in the tree, splits (i.e., which variable to split on and where to
split that variable) are chosen from the large set of possible splits to minimize the
re-substitution error at that node. That is, a greedy algorithm is used that looks only
at the current split and does not attempt to look deeper into the developing tree. The
tree re-substitution error, R(T), decreases as the number of terminal nodes increases.
In this respect, R(T) is similar to R2 in regression in that the more independent
variables are included, the higher the value of R2 even though the variables may add
little additional information. Similarly, the higher the number of terminal nodes, the
lower the value of R(T), even though the additional splits may not extract any extra
information.

Regression trees use a stopping rule to determine how large to build a tree for
a given data set and then prune (reduce) this large tree back to a smaller tree that
should give more accurate predictions. We use the standard stopping rule of splitting
the data space recursively until each terminal node contains no more than a certain
predefined minimum number of records. The average or median value of the records
in the training data set classified into a given terminal node is then assigned as the
value to be used as the prediction for all future records ending in that terminal node
(Breiman et al. 1998).

Trees are pruned after growing maximum trees .Tmax/ to avoid over-fitting
(Breiman et al. 1998). The standard approach for pruning a tree, termed minimal
cost complexity pruning, involves iteratively removing nodes from the tree such
that the node removed at any iteration is the one that contributes the least to model
fit. The cost complexity measure R˛.T / given in Eq. 3 is used as basis for this de-
termination, and it takes into account both the cost of misclassification and the cost
for the terminal nodes.

R˛.T / D R.T / C ˛j QT j (3)

The complexity parameter ˛ 	 0 is a real number and QT stands for terminal nodes.
In pruning, for each value of ˛, the sub-tree that minimizes the cost complexity
measure is found. The final result is a series of trees of decreasing size such that
T1 > T2 > � � � > Tk (while T1 D Tmax). Tk is the smallest sub-tree of Tmax , the
largest tree built, that minimizes R˛.T /.
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To compare the different trees in this series of trees and choose the best tree for
inference and prediction, we used v-fold cross validation. With this approach, the
learning sample S is randomly divided into v subsets of almost equal sizes with
the vth learning sample denoted S .v/ D S � Sv for v D 1 � � � v with Sv consist-
ing of the data in the vth holdout. First, v trees are grown together with a specified
maximum size tree where the vth tree is grown using the learning sample S .v/. S .v/

consists of all of the data except the data in Sv, which will be used for validation pur-
poses. The least squares v-fold-cross validation error is computed as given in Eq. 4:

RC V .Tk/ D 1

N

vX

vD1

X

.xn;yn2lv/

�

yn � d
.v/

k
.xn/

�2

(4)

where N is the total number of cases, yn is our data point and d
.v/

k
.xn/ is the

prediction from the regression rule from the tree fitted to S .v/. The relative cross
validation error is then given by Eq. 5:

REC V .Tk/ D RC V .Tk/

R.y/
(5)

where y in the equation represents replacing the fitted tree with the mean value
from the training data set. If least absolute deviation is used as the error measure
rather than squared error, the same procedure applies except that the squared error
term in Eq. 4 is replaced by an absolute value of the error. In both cases, the tree
with minimum cross validation error is chosen as the optimal tree.

Our implementation of regression trees was done through Salford system’s
CART package. This approach uses surrogate splits to handle missing data and cor-
related data and to rank variables based on their importance. For each split s on xm,
a surrogate split Qs is found on a variable other than xm such that whenever a case has
the variable xm missing, it can be classified using the surrogate. Variable importance
for regression trees is calculated using Eq. 6:

M.xm/ D
X

t2T

4R.Qs; t/ (6)

where M.xm/ is the variable importance and 4R.Qs; t/ is change in re-substitution
error via the surrogate split Qs for node t. Since the importance of variables relative to
each other is of interest, variable rankings are normalized so that the most important
variable(s) has a value of 100. This normalization is given by Eq. 7:

100M.xm/

maxmM.xm/
(7)

In our analysis we fitted regression trees to the entire data set to detect the
climate variables that are most important in explaining hurricane intensity and



14 Impact of Climate Variability on Hurricane Destructive Potential 239

frequency. In order to minimize fit and cross validation errors the method of least-
absolute deviation was used to develop the regression tree for region one, and the
method of least-squares was used to develop regression trees for region two, three
and aggregate of all regions. In order to determine the importance of including a
large number of climate factors relative to simpler models with pre-selected sets of
variables we developed regression trees using only a subset of the total of seven-
teen climate variables that we originally included in our analysis. First we included
only NTA3 (third quarter North Tropical Atlantic SST) and ENSO3 (third quarter
ENSO) in this reduced set as they were reported to be the most critical explanatory
variables by Sabbatelli and Mann (2007). It should be noted that these variables are
similar, but not identical, to the variables used by Sabbatelli and Mann (2007). The
correlation between MDR SST and NTA3 is 0.89 and the correlation between MDR
ENSO and ENSO3 is 0.90. In the second reduced model we included ZW3 (zonal
wind for the months of July–September) and NTAO3 as they were the explanatory
variables that were closest to the ones included in Saunders and Lea (2008). The
correlation between the August–September–October zonal wind variable used by
Saunders and Lea (2008) and our ZW3 variable is 0.86. A comparison of these
previously published models to our models provides a means for quantifying the
improvement achieved by including additional climate variables.

5 Results

5.1 Model Fit and Predictive Ability

Our models yielded very good fits for each region as well as the combined region
when judged by the root mean square error (RMSE) and mean absolution deviation
(MAD). For example, the ratios of MAD to the mean annual cumulative destructive
potentials were 0.21, 0.53, 0.36, and 0.31 for regions one through three and the
aggregate of all regions, respectively (Table 2).

This suggests that these models fit the past hurricane record with reasonable
accuracy, though there is still unexplained variability in the fitted values. When the
results given in Table 2 are compared with those from the models fits with only two
climate variables (Tables 3 and 4), we see that both MAD and RMSE are substan-
tially higher in these two-variable models. The errors of the fitted trees based on the
full set of climate variables are substantially smaller than those of the fitted trees

Table 2 Regression tree fitting results for hurricane cumulative destructive
potential by region

Region of interest REC V RMSE MAD Mean of observation

Region one 1:4 ˙ 0:1 2.2 0.8 3.8
Region two 0:6 ˙ 0:2 3.8 1.8 3.4
Region three 2:0 ˙ 0:5 2.1 1.0 2.8
Aggregate of regions 1:5 ˙ 0:2 5.6 3.1 10
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Table 3 Results from fitting regression trees for hurricane cumulative destructive
potential using only NTA3 and ENSO3

Region of interest REC V RMSE MAD Mean of observation

Region one 1:4 ˙ 0:1 3.5 2.1 3.8
Region two 1:1 ˙ 0:2 4.5 2.3 3.4
Region three 1:7 ˙ 0:3 3.6 2.2 2.8
Aggregate of regions 1:3 ˙ 0:2 6.0 4.3 10

Table 4 Results from fitting regression trees for hurricane cumulative destructive
potential using only ZW3 and NTA3

Region of interest REC V RMSE MAD Mean of observation

Region one 1:2 ˙ 0:1 3.4 1.8 3.8
Region two 1:1 ˙ 0:2 4.4 2.5 3.4
Region three 2:1 ˙ 0:4 3.2 1.6 2.8
Aggregate of regions 1:4 ˙ 0:3 5.8 4.4 10

Fig. 2 Fitted values vs. actual values for the trees fitted for each separate region (a) and the
aggregate of all regions together (b)

based on only two climate variables. A small set of variables alone does not suffice.
Hence our results indicate the importance of incorporating a wide range of climate
variables to reproduce the past variability of hurricane activities when using CART.
This is the advantage that CART offers since we cannot use a wide range of climate
variables with traditional regression-based approaches without both variable reduc-
tion and variable transformation to address collinearity. As discussed above, this
impedes interpretation of the results of the analysis.

Graphs of the fitted values against the observed values shown in Figs. 2–4 help
visualize the extent to which we succeeded in reproducing the variability in the past
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Fig. 3 Fitted values vs. actual values for regression trees fitted to the entire data set for each sep-
arate region (a) and the aggregate of all regions together (b) and using only two climate variables
of NTA3 and ENSO3 as independent variables

Fig. 4 Fitted values vs. actual values for regression trees fitted to the entire data set for each sep-
arate region (a) and the aggregate of all regions together (b) and using only two climate variables
of NTA3 and ZW3 as independent variables

data. The value of R2 for a linear regression of fitted values against actual values
ranges from 0.62 to 0.81 for the models utilizing all of the climate variables. These
results indicate good model fits in general, and better fits for each geographic re-
gion individually than for the aggregate of all the regions together. Once the coast
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has been segmented appropriately, it is possible to model past hurricane patterns
with high degrees of accuracy if appropriate climate variables are used. However,
as can be seen in Figs. 3 and 4, the R2 percentages for the models using only
two climate variables have dropped to 0.43–0.65, further indicating that including
just two climate variables is not sufficient to capture the past patterns in hurricane
variability.

In examining the REC V values in Tables 2–4, recall that a relative cross val-
idation error value below one indicates that the fitted model should, on average,
yield better predictions than using the mean. The cross validation errors of our fit-
ted models are one or above in every case except for regression trees for the entire
data set for region two (see Tables 2–4). We did select for comparison those trees
that yielded the best fit, not those that yielded the lowest REC V . However, even the
trees with the lowest REC V values had similar problems. Despite the fact that our
models fit the past data very well, we should not expect accurate future predictions
from these models, except, perhaps, for region 2 when using the entire data set. This
highlights the fact that accurate prediction of future hurricane destructive potential
is a difficult problem. Past efforts to statistically model long-term hurricane patterns
have also had similar problems with achieving accurate predictions. This poses a
significant unanswered research problem.

5.2 Variable Importance

There are three basic goals that can underlie the development of a statistical model
for hurricane hazard: explaining the past hurricane record on the basis of explana-
tory variables (model fitting), accurately predicting future hurricane hazards on the
basis of explanatory variables, and drawing inferences about which variables are
most important in explaining or predicting hurricane hazard. The previous section
addressed fit and prediction. In this section we discuss variable importance based on
the approach given by Eqs. 6 and 7.

The variable importance rankings for the fitted regression trees show that a large
number of climate variables are needed to adequately capture the variability in the
past hurricane destructive potential. Table 5 lists the 10 most important climate vari-
ables for each region.

The results show that a range of climate variables are important, and that vari-
able importance differs by region. This suggests that it is important to include a
large number of climate variables in statistical analyses as opposed to including
only a limited number as has been done in the past. We next examine the vari-
able importance results by region in more detail, focusing in particular on areas
where our results support or disagree with results previously reported in the litera-
ture. Since the climate variables that contribute to hurricane activity differ by region
(Ballenzweig 1959), the regions are discussed separately.
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Table 5 List of the 10 most important variables for each region. The variable
names are defined in Table 1, and the numbers indicate the quarter. The dimen-
sionless variable importance is given as a measure of the relative improvement
in model fit due to inclusion of that variable

List of variables Region one Region two Region three Aggregate

W2 71:9

W3 100:0

ZW2 84:1

CRU1 28:8

CRU3 18:4 51:2

CRU4 34:1 36:6

CRUANN 16:7 30:2

QBO4 57:8 39:5 63:4

QBOANN 64:1 40:8 65:6

NTA4 51:2 100 100:0

SLP3 53:6

SLP4 9:6

SAHEL4 57:1 36:4

SAHELANN 57:1 50:6

AMO1 47:2 59:1

SSN1 85:6

SSN2 71:5 100:0

SSN3 59:3 85:6

SSN4 76:3

SSNANN 76:3 85:6

PDO2 53:6

PDO3 53:6

PDOANN 53:6

CAR4 83:9

NAO1 29:9

NAOANN 76:4

5.2.1 Region One

The regression tree for Region One, the Gulf Coast excluding Florida, suggests
that hurricane activity in this region is primarily dependent on wind parameters,
temperature anomalies and sunspot numbers. The significance of QBO agrees with
Shapiro (1989), Gray et al. (1992) and Lehmiller et al. (1997) in that the QBO
is associated with hurricane activity because it modulates the strength of the cou-
pling between the troposphere and the lower stratosphere. Previously, Lehmiller
et al. (1997) also identified the QBO as an important predictor of hurricane activity
in the Gulf of Mexico.

Zonal wind (ZW) and wind shear (W) were identified as important factors for
explaining cumulative hurricane intensity. Our findings are supported by Saunders
and Lea (2008) who also found that it is important to include measures of the
wind field over the main development region given that this influences cyclonic



244 R. Nateghi et al.

vorticity and vertical wind shear. Previous work has also suggested that solar forc-
ing is associated with changes in hurricane activity over the Caribbean and Gulf of
Mexico (Elsner et al. 2008), again in agreement with our model results. North Trop-
ical Atlantic SST (NTA) and Hadley Climate Research Unit global land and ocean
temperature anomalies (CRU) were also found important in agreement with the pre-
vious literature in that higher temperatures are associated with increased hurricane
activity (Elsner 2006).

Inspection of the structure of the regression trees (shown in the Appendix) illus-
trates how CART generates splits on the data space by primarily trying to separate
all the years with zero hurricane activity to the left and the more active years to
the right. Hence the variables that appear to the right of the tree are more indica-
tive of the variables that are associated with hurricane activity. For Region One it
can be seen that higher global temperatures are associated with increased hurricane
activity, and that higher solar forcing is associated with decreased hurricane activity
(Elsner 2006; Elsner et al. 2008).

5.2.2 Region Two

Our models suggest that hurricane cumulative destructive potential in the state
of Florida (region two) is influenced primarily by wind parameters, temperature,
and Sahel rainfall anomalies. NTA is of primary importance and, as expected,
higher temperatures are seen to be associated with increased hurricane activity
(Emanuel 2005; Elsner 2006). The importance of Sahel rainfall anomalies is also
not surprising since years of increased rainfall are known to be associated with in-
creased hurricane activity in the Atlantic basin as the pressure troughs generated by
storms over Africa can become the seeds needed to generate hurricanes (Landsea
and Gray 1992). Our model also suggests that above (below) normal NAO anoma-
lies are associated with decreased (increased) hurricane activity, in agreement with
the results of Elsner et al. (2001) who found that coastal hurricane activity increases
when NAO is weak.

5.2.3 Region Three

Our results suggest that sunspot number is the most important variable in Region
Three (Atlantic Coast north of Florida). The influence of sunspot numbers on hurri-
cane destructive potential agrees with Elsner et al. (2008) in that years with higher
sunspot numbers are associated with lower levels of hurricane activity. Similarly,
our model suggests that NAO is important in agreement with the literature. Both sea
surface and air temperature variables (NTA, AMO, CRU, CAR, and PDO) are also
important in the region. The one anomaly is that higher values of NTA in the second
quarter are found to be associated with decreased hurricane destructive potential.
The reason for this remains an open question.
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The importance of a climate variable that is removing an outlier should be treated
carefully. Looking at the regression tree for this region (please refer to Appendix,
Fig. 9) we can see that PDO is important in identifying the outlier. When the
regression tree is re-developed with the outlier removed, PDO not seem to be a
critical predictive variable. We can conclude that PDO for this region is a key factor
in identifying the anomalous year.

5.2.4 Aggregate of All Regions

When considering the aggregate of all regions together, the temperature parameters,
Sahel rainfall, wind parameters and solar forcing are the most important variables in
the regression tree. As discussed above, higher temperatures (NTA, CRU) are asso-
ciated with an increase in hurricane activity as expected. The one exception for this
is that CRU tends to be associated with decreased hurricane cumulative destructive
potential, though this variable is of lower importance in the tree than the other tem-
perature variables. Higher PDO values are also associated with increased hurricane
activity. As expected (Landsea and Gray 1992), above normal rainfall in the Sahel is
associated with increased hurricane activity. Higher NAO values are associated with
decreased hurricane activity in agreement with the literature as discussed above for
individual regions.

6 Conclusion

We have demonstrated that regression trees can be used to accurately fit complicated
historical patterns in annual hurricane hazard. It is worth mentioning that similar
results are achieved when a different measure of hurricane destructive potential (i.e.
Vy D P

h2Y

p

.Ph;n � Ph;c/3) is used as the response variable in developing the
regression trees. We have also shown that a range of climate variables is needed to
achieve accurate model fits. Small subsets of variables, as have tended to be used in
the past, are generally insufficient to capture the inherent complexity in hurricane
patterns. For example, the regression trees developed based on the pairs of variables
used by Sabbatelli and Mann (2007) and Saunders and Lea (2008) perform poorly
in comparison to regression trees developed based on all of the climate variables
considered in this paper. While future research is needed to increase the predic-
tive accuracy of these statistical models, they offer a promising direction for future
developments. These results also suggest that regardless of the statistical methods
used, a suite of climate variables should be investigated in future modelling efforts
rather than determining a small subset of variables to use a priori.
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Appendix

Fig. 5 Regression tree developed for region one
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Fig. 6 Regression tree developed for region two
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Fig. 7 Regression tree developed for region three
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Fig. 8 Regression tree developed for the aggregate of all regions
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Fig. 9 Regression tree developed for region three with the outlier removed
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