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Preface

When I first started out working in this field, I participated in a series of conferences
in the 1970s and 1980s, organized by John and Winona Vernberg of the University
of South Carolina, and Anthony Calabrese and Fred Thurberg of the NOAA
laboratory in Milford CT, in which marine biologists interested in organismal
biology started examining responses to pollutants. These were small meetings of
around 100 people, and were among the most stimulating and enjoyable meetings
I have participated in. This was an exciting beginning of a new field of study. The
participants were physiologists and other biologists who had not been trained in
“aquatic toxicology,” as that field was still in the early stages of development. These
meetings resulted in a series of peer-reviewed volumes with titles that were variants
on “Physiological Responses of Marine Organisms to Pollution,” but each volume
had a somewhat different title, thus using up many possible titles I might have used
for this book. At around the same time, another group of people, as yet unknown
to me, were establishing the field of “aquatic toxicology” with a goal of developing
“standard toxicity tests.” I first came upon this approach when I was speaking with
some EPA people about the interesting variation we had seen in killifish embryos
exposed to the same concentration of mercury – some females produced very
sensitive embryos and others produced very tolerant ones. I asked if they might be
interested in funding further research into this intriguing observation. The response
was “Could you turn this into a toxicity test?” I had no interest in toxicity tests; I
merely wanted to follow up an interesting observation and learn what was going
on. As it turned out, I pursued the research without EPA support. I also learned that
much of the work going on in the field, unlike the research of the people who came
to the “Vernberg meetings” focused on lethality as an endpoint – the “kill ‘em and
count ‘em” approach. These projects calculated the LC50 for different chemicals,
numbers that were used in the development of regulations. Even today, research
papers are still coming out with this kind of data, using a new species or different
conditions. A paper entitled “Effects of X fchemicalg on Y (species)” might very
well turn out to be how much of chemical X was needed to kill 50 % of species Y.
I find this uninteresting, and think it unfortunate for two reasons: (1) Scientists are
intelligent creative people who should be developing new hypotheses and expanding
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the intellectual range of the field and should not be wasting their time doing this
sort of routine work – the field is in need of progress and advancing along more
scientifically sophisticated routes. (2) Regulatory agencies should not be relying on
such crude measures for setting criteria and standards. The science has advanced far
beyond this, and we know a lot about subtle sublethal responses as well as delayed
responses. Setting numbers on the basis of dividing 96 h LC50s by some arbitrary
number is an antiquated approach. If this approach to standard setting is no longer
being used, why are people still doing this kind of work?

Another aspect of the field is the rapid development over the past few decades of
biochemical and molecular approaches. The search for new biochemical “biomark-
ers” of exposure or response to contaminants is a major part of the field. This
reductionist approach leads to greater insight and understanding of the mechanisms
by which chemicals produce effects on organisms. For the past 30 or so years there
has been a series of relatively small meetings, comparable to the early “Vernberg
meetings,” called “Pollution Responses in Marine Organisms” (PRIMO). The
papers presented at these meetings are almost exclusively biochemical and molec-
ular. Even newer approaches are genomic and other types of “omic” approaches.
However, the connection between these biochemical responses and an effect at the
organism level is often difficult to draw. How does it affect the life of the animal
that it is producing more or less of a certain enzyme? The study of physiological,
developmental, and behavioral effects that are the focus of this book are whole
animal responses that are easily related to effects at the population level, and their
ecological significance is more obvious. While these kinds of studies have been
somewhat overshadowed by the biochemical/molecular approaches in recent years,
it is my earnest hope that they will remain active and essential components of the
field, as they are the best way to link to effects on the ecosystem. This book does
not cover biochemical, molecular and ‘omic studies, including immunotoxicology
and genotoxicology. For the topics covered there is a very extensive literature, so
the book is not exhaustive, and of necessity many studies have not been included.

The marine environment is under assault from overfishing, habitat loss and
pollution from increasing types of sources. New kinds of pollutants (“contaminants
of emerging concern”) include both new pollutants and old pollutants that no one
ever paid attention to before. These include pharmaceuticals which are designed to
have effects on the body at very low concentrations – so they can have effects on
marine life at low concentrations also. The unsightly volumes of marine debris, often
persistent plastic, washing up on beaches and collecting in Great Garbage Patches
in the Atlantic and Pacific Oceans is something that most people have heard about.
New awareness of the damaging effects of loud noise on marine animals, especially
mammals, is a great concern as it may relate to cetacean beaching incidents. There
have been a huge number of papers coming out in recent years on effects of ocean
acidification. While many focus on effects on shell formation/calcification, since it
is the most obvious problem caused by lower pH, people are also investigating and
uncovering effects on physiology and behavior as well. Fortunately for this field,
the toxicity testing folks have not gotten involved, and I am happy to report that
I have not come across any publications that determine how low the pH has to be
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in order to kill half of the test animals. Perhaps the most widespread and serious
type of pollution worldwide is eutrophication resulting from excess nutrients, which
stimulates algal blooms and results in hypoxia. On a global scale, eutrophic/hypoxic
areas are increasing, and there is considerable research into the sublethal effects
of low D.O. on marine organisms. On the other hand, there is some “good news”
in that many persistent organic pollutants have been banned and are no longer
manufactured in many countries (even though as legacy pollutants they still persist
in sediments, accumulate in marine life, and exert effects). Also, the frequency of oil
spills has gone down in the past few decades. In addition to this reduction of inputs
of some of the historical pollutants, efforts have begun to physically remove highly
contaminated sediments from some of the estuarine toxic hot-spots in the U.S.
under the auspices of the Superfund Program. After decades of delay, sediments
highly contaminated with dioxins, PCBs and mercury are finally being removed
from the Passaic River in New Jersey and other notorious sites through Superfund
remediation programs.
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Chapter 1
Introduction to Marine Pollution

Abstract The ocean plays a key role in cycles of carbon, nitrogen, phosphorus
and a variety of other important chemicals. Ocean chemistry has been changing
due to human activities, both regionally in coastal waters and in the open ocean.
Some of the greatest impacts are on carbon, nitrogen, and dissolved oxygen,
which affect biological productivity. The rate of primary production is determined
primarily by light and nutrients. Decades of pollution of marine waters, along with
coastal habitat destruction, overfishing and bottom trawling have had devastating
impacts on biodiversity and habitats. The increasing demand for seafood worldwide
has depleted fish populations and devastated the economic well-being of coastal
communities. At the same time, climate change is altering the oceans in major ways
that we are only beginning to understand.

Land-based sources pollute estuaries and coastal waters with nutrients, sedi-
ments, pathogens as well as many thousands of toxic chemicals, including metals,
pesticides, industrial products, pharmaceuticals and more. Following the industrial
revolution, increasing amounts of materials have been discharged into the environ-
ment from chemical industries, sewage treatment plants, and agriculture, eventually
reaching marine ecosystems. Highly visible events such as the Exxon Valdez, and the
Gulf of Mexico “gusher” have raised public awareness of marine pollution in recent
decades. There is growing scientific evidence demonstrating serious, sometimes
disastrous, impacts of pollution in the marine environment. Pollutants of major
concern are those that are widespread and persistent in the environment, accumulate
in biota, and induce effects at low concentrations. Toxic chemicals are varied and
often difficult to detect. In recent years, attention is being devoted to new or newly
recognized threats to the environment – contaminants of emerging concern (CEC),
ocean acidification, and noise pollution.

Keywords Metal • Pesticide • Acidification • Eutrophication • Litter • Metal •
Nitrogen • Noise • Nutrient • Sediment
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4 1 Introduction to Marine Pollution

1.1 Sources and Fate in the Environment

Sources of contaminants in the marine environment are mostly based on land.
While many pollutants come from industrial or residential areas, others come from
agricultural areas. Factories and sewage treatment plants discharge into receiving
waters through a pipe – this is referred to as a “point source” and it can be
monitored and regulated by environmental protection agencies. Since passage of
the Clean Water Act in the United States in 1972, much progress has been made
in controlling pollution from point sources. However, the historic use of some
chemicals no longer manufactured in the United States (e.g., DDT, PCBs) has left
a legacy of contamination. Sediments remain contaminated with these persistent
chemicals, which continue to affect marine life long after their inputs have ceased. In
recent decades attention has moved from end-of-pipe discharges to diffuse pathways
of runoff and atmospheric deposition. Sources of contaminants that wash into
the water during rainfall are diffuse and enter water bodies in many places, as
do pollutants from the atmosphere that come down in precipitation. This diffuse
pollution is referred to as “non-point source,” and is not so easily regulated. Non-
point sources, such as farms, roadways, and urban or suburban landscapes remain
largely uncontrolled, and are major sources of continuing pollution inputs. The few
sources that are not land-based include oil spills from tankers and drilling platforms,
leaching of antifouling paints and discharge of wastes from vessels. Point sources
of pollution from industrial discharges and oil spills are highly destructive to local
areas where they occur, but lower concentrations of these chemicals are wide-
spread in the global oceans. Elevated levels of persistent organic pollutants and
methylmercury are widespread and of concern since these chemicals build up in
food chains and pose a threat to humans from eating contaminated fish and other
seafood.

1.1.1 Metals

Metals released from mining and industrial processes are among the major con-
taminants of concern in coastal environments. Many studies have shown their
accumulation in sediments and coastal organisms. Mercury, cadmium, copper,
zinc, and silver are major contaminants from industrial processes including power
plants. Since mercury is present in coal, when it is burned the mercury enters the
atmosphere, where it can be transported long distances before being deposited
far from its source. While some metals (copper and zinc) are essential for life
at low concentrations, other metals play no normal biological role. While most
metal contaminants originate from land-based industrial sources, metals also are
used in anti-fouling paints for ships. Since fouling organisms can accumulate on
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ship bottoms (reducing streamlining, thus increasing fuel consumption), antifoulant
coatings have been developed. For thousands of years ship hulls have been treated
with various substances to reduce fouling. Paints containing copper have been used
for many years. Starting in the 1940s organotin compounds were developed for this
purpose and one of the most effective and long-lasting is tributyltin, which is one of
the most toxic to other non-target organisms.

In aquatic environments, copper exists in particulate, colloidal and soluble states,
predominantly as metallic (Cu0) and cupric copper (Cu2C). It forms complexes with
both inorganic and organic ligands. The toxicity of copper is directly associated with
the free ion, as is the toxicity of Cd, so measurements of total Cu or total Cd in the
water overestimate the amount the is bioavailable (Sunda et al. 1978; Sunda and
Lewis 1978).

Mercury is a highly toxic element that is found both naturally and as a
contaminant. Although its potential for toxicity in highly contaminated areas such
as Minamata Bay, Japan, in the 1950s and 1960s, is well documented, mercury
can also be a threat to the health of people and wildlife in environments that are
not obviously polluted. The risk is determined by the form of mercury present and
the geochemical and biological factors that influence how it moves and changes
form in the environment. Mercury can exist in three oxidation states in natural
waters: Hg0, Hg1C and Hg2C. The distribution of the forms depends on the pH,
redox potential, and availability of anions to form complexes with the mercury.
In the environment, inorganic mercury can be transformed into organic mercury
compounds. Methylmercury (meHg) is a highly toxic form, and inorganic Hg can
be converted to meHg by bacteria in marine sediments (Fig. 1.1). Bacteria capable
of methylating Hg2C have been isolated from sediment, water, soil and fish tissue.
However, little is known about the physiology and the mechanisms controlling
methylation. MeHg, in addition to being far more toxic than inorganic forms of
the metal, also is biomagnified up the food chain, so tissue concentrations increase
as it passes up the food chain. People are exposed to meHg primarily by eating fish
that are high on aquatic food chains.

The other organometal of concern is tributyltin, which was formerly used in
antifouling paints for vessels, but unlike Hg, tributyltin (TBT) breaks down in the
environment, losing its butyl groups over time, reducing its toxicity as it eventually
becomes inorganic tin, which is not toxic. However, the breakdown is not as rapid
as initially thought, so effects can persist for some years.

Metals tend to bind to sediments, from which they are available to varying
degrees to marine organisms, particularly benthic ones, from which the metals can
be moved up the food chain. Bioavailability of sediment-bound metals is a critical
issue for their toxicity.

Acid volatile sulfide (AVS) has been used to predict the toxicity in sediments of
divalent metals, including copper (Cu), cadmium (Cd), nickel (Ni), lead (Pb) and
zinc (Zn) (Ankley et al. 1996; Berry et al. 1996). The rationale is that the AVS in
sediment reacts with the simultaneously extracted metal (SEM), the reactive metal
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Fig. 1.1 Mercury cycle (From USGS)

fraction that is measured in the cold acid extract. This reaction forms an insoluble
metal sulfide that is relatively non-available for uptake. Estuarine sediments tend
to have high levels of sulfide, and thus relatively low bioavailability of sediment-
bound metals. Ironically, elevating the oxygen in overlying water increases the redox
potential in the sediment while decreasing AVS, thus increasing metal availability in
the sediment’s pore water. Thus, increased oxygen from water quality improvements
can increase the mobility of trace metals and may cause sediment-bound metals
to leach into the overlying surface water. In contrast, prolonged hypoxia promotes
the release of iron and manganese from contaminated estuarine sediments (Banks
et al. 2012).
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1.1.2 Organics

Oil

Petroleum hydrocarbons (including both linear alkanes and polyaromatic hydrocar-
bons, PAHs) in the marine environment have been a long-standing problem. There is
great public concern about oil spills and the resultant shoreline fouling and mortality
of large numbers of marine birds and mammals. Major oil disasters in recent years
include the Exxon Valdez in Alaska, and the blow out of the mile-deep BP well
Deepwater Horizon in the Gulf of Mexico.

Many of the major spills had long-term consequences, associated mainly with
estuaries and marshes, due to the persistence of oil or petroleum fractions in these
low-energy environments. The bioavailability of residual oil to benthic infauna is
influenced by several factors, such as water solubility, weathering rate and sediment
grain size. These effects may last for decades on processes including behavior,
development, genetics, growth, feeding, and reproduction. Long-term effects have
been studied after spills, and they vary depending on the nature of the oil, the
temperature, and the nature of the area of the spill. After a spill, most of the oil
undergoes a weathering process. However, oil in marshes or sandy beaches can sink
down to depths where it persists for decades in the absence of oxygen.

The number of spills from tanker ships has decreased over the past three decades.
There were about three times as many spills in the 1970s as in the 1990s. However,
the number of spills does not consider the volume of oil; the frequency of large spills
has decreased as well as the frequency of small ones.

The Exxon Valdez Oil Spill

The Exxon Valdez oil spill occurred in Prince William Sound, Alaska, on March
24, 1989, when Exxon Valdez, an oil tanker struck Prince William Sound’s Bligh
Reef and spilled 260,000–750,000 barrels (41,000–119,000 m3) of crude oil. It is
considered to be one of the most devastating human-caused environmental disasters.
Within 6 h of the grounding, the Exxon Valdez spilled approximately 10.9 million
gallons of its 53 million gallon cargo of Prudhoe Bay crude oil. The Valdez spill
was the largest ever in U.S. waters until the 2010 Deepwater Horizon oil spill, in
terms of volume released. However, the remote location, which could be reached
only by helicopter, plane, and boat, made government and industry response efforts
very difficult. The oil eventually covered 1,300 miles (2,100 km) of coastline, and
11,000 square miles (28,000 km2) of ocean. After the spill, the subsurface oil
persisted, and chronic exposures continued to affect biota for over a decade. The
region is a habitat for salmon, sea otters, seals and seabirds, many of which were
obvious victims of the spill, which involved 1,500 miles of oiled shoreline, several
hundred thousand dead birds and marine mammals. Three years after the spill, most
of the remaining oil was sequestered in places where degradation was inhibited,
such as intertidal subsurface sediments or under mussel beds. Heavily oiled coarse
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sediments protected oil reservoirs beneath the surface, preventing it from weathering
in intertidal sites. These sites often contained fish eggs and other vulnerable biota
(Peterson et al. 2003).

Various reasons for the spill include the following: Exxon Shipping Company
failed to supervise and provide a rested and sufficient crew. The third mate failed
to properly maneuver the vessel, possibly due to fatigue or excessive workload.
(The 1989 tanker crew was half the size of the 1977 crew, worked 12–14 h shifts,
plus overtime.) Exxon Valdez was sailing outside the normal sea lane to avoid small
icebergs thought to be in the area. Exxon failed to properly maintain the Collision
Avoidance System (RAYCAS) radar, which should have indicated to the third mate
an impending collision with the Bligh Reef. The captain was asleep when the ship
crashed, having had too much to drink. At the helm, the third mate did not look at
the radar, because it was not turned on, having been broken and disabled for over
a year. Coast Guard tanker inspections in Valdez were not done, and the number of
staff was reduced (National Transportation Safety Board 1990).

Lack of available equipment and personnel hampered the spill cleanup, which
was delayed during a few days of relatively calm weather because of confusion over
which entity (Exxon, the EPA, the State of Alaska) was in charge. Many cleanup
techniques were tried with only moderate success. One trial burning was conducted
during the early stages of the spill to burn the oil, in a region of the spill isolated
from the rest by another explosion. The test reduced 113,400 l of oil to 1,134 l of
removable residue, but because of unfavorable weather no additional burning was
attempted. The dispersant Corexit® 9580 was tried as part of the cleanup. Corexit
has been found to be effective but toxic to wildlife. The primary means of open water
oil recovery was with skimmers, but the skimmers were not readily available during
the first 24 h following the spill. In general, most skimmers became less effective
once the oil had spread, emulsified and mixed with debris. Thick oil tended to clog
the equipment. Sorbents were used to recover oil in cases where mechanical means
were less practical. The drawback to sorbents was that they were labor intensive
and generated additional solid waste. In 1989, hoses spraying seawater were used to
flush oil from shorelines. The released oil was then trapped with offshore boom, and
removed using skimmers, vacuum trucks (useful for thick layers of oil) and boom
(e.g., sorbents). Because there were rocky coves where the oil collected, the decision
was made to displace it with high-pressure hot water. However, this also displaced
and destroyed the microbial and meiofaunal populations on the shoreline; many
of these organisms are important ecologically and/or capable of biodegradation of
oil. At the time, both scientific advice and public pressure was to clean everything,
but since then greater understanding of bioremediation processes has developed.
The general opinion is that the high pressure hot water treatment did more harm
than good. Beach applications of dispersants were also tried in several locations.
Corexit® 7664 was applied on Ingot Island, followed by a warm water wash.
No significant change in oil cover or the physical state of the oil was observed
after the treatment, but some ecological impacts were found in the treated areas.
It appeared that the effects were due more to the intensive washing than to the
use of dispersant, and were evident in intertidal epibenthic macrobiota. Despite the
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extensive cleanup attempts, less than 10 % of the oil was recovered. An important
observation that resulted from the Exxon Valdez oil spill was that natural cleaning
processes (bioremediation), on both sheltered and exposed beaches, could be very
effective at degrading oil. It took longer for some areas of shoreline to recover
from invasive cleaning methods (hot water flushing) than from the oil itself. NOAA
determined that as of early 2007 more than 26,000 gallons (98 m3) of oil remained
in the sandy soil of the contaminated shoreline, declining at a rate of less than 4 %
per year (Cleveland et al. 2010).

The Gulf Oil Spill and Dispersants

On April 20, 2010, the Macondo well blowout occurred approximately 5,000 ft
below the surface of the Gulf of Mexico, causing the BP-Transocean drilling
platform Deepwater Horizon to explode, killing 11 workers and injuring others.
About five million barrels of crude oil were released into the sea; on average, 60,000
barrels a day (about 11,350 t of gas and oil per day) before the gusher was capped
on July 15. Over 630 miles of Gulf Coast shoreline were oiled, mostly in Louisiana.
There were over 400 controlled burns, which killed hundreds of sea turtles and
unknown numbers of dolphins. To protect marshes from incoming oil, booms were
set around islands and shorelines, and two million gallons of the dispersant Corexit®

were applied on and beneath the surface of the sea to break up the oil. After
extensive use, oil was no longer visible on the surface of the water, and some
claimed it was “gone” and degraded by microbes. The use of the dispersants was
highly controversial. By enhancing the amount of oil that physically mixes into the
water column, dispersants reduce the amount of oil that reaches shoreline habitats,
but dispersants are controversial because of the toxicity of dispersed mixtures. Also,
once oil is dispersed in deep water, it cannot be recovered. Oil, when combined with
dispersants in the water is usually more toxic than either the oil or the dispersant
alone. Most studies found that the combination of oil and dispersant increased toxic
effects. Two dispersants, Corexit® 9500 and 9527A, were used, which are complex
mixtures of chemicals that have surfactant (wetting) properties, which allows them
to act as emulsifiers (USEPA 2010). Although these two are EPA-approved, they are
more toxic and less effective than other approved dispersants (Scarlett et al. 2005).

EPA performed short-term tests on mysid shrimp and inland silverside fish stated
that JD-2000® and Corexit® 9500 were generally less toxic to small fish and JD-
2000 and SAF-RON GOLD® were least toxic to mysid shrimp. However, on May
20, EPA gave BP 24 h to find a less toxic alternative, which BP ignored. On May
25, the EPA gave BP a directive to reduce dispersant use, but the Coast Guard
granted exemptions, allowing continued use of Corexit®. The goal of the EPA was
to decrease toxicity, while that of the Coast Guard was to protect the coastline from
being oiled.

The blowout occurred in deep water, where a turbulent discharge of hot pres-
surized oil and gas mixed with seawater and dispersed by itself into droplets and
gas hydrates without the use of chemicals. This mixture did not rise to float on the
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surface but stayed in a subsurface plume. Amid reports of the oil being nearly gone,
a plume of hydrocarbons about 22 miles long in deep water over 3,000 ft below the
surface was discovered. Camilli et al. (2010) found a continuous plume of oil, which
persisted for months without substantial biodegradation. Samples collected from
the plume had monoaromatic petroleum hydrocarbon concentrations >50 ug l�1.
Dissolved oxygen concentrations suggest that microbial respiration in the plume
was not more than 1 uM oxygen per day. The high pressures and low temperatures
made the mixture of oil, dispersants, sea water and methane neutrally buoyant.

Subsequently, Kujawinski et al. (2011) reported that a major component of
the dispersant was contained in the plume in the deep ocean and had still not
degraded after 3 months. They measured one of Corexit® 9500A’s main ingredients
in May and June and again in September, 2 months after the well was capped. The
results raise questions about what impact the oil and dispersant might have had
on the environment. The toxicity of this mixture on deep sea corals and cold seep
communities is unknown, as are the impacts on planktonic filter feeders and fish
eggs/larvae in the water column. Eventually intense microbial activity degraded the
oil (Kessler et al. 2011).

The Deepwater Horizon blowout was unprecedented because of the use of
dispersants at the wellhead, retention of oil as finely dispersed droplets and
emulsions and deepwater retention of plumes of natural gas that underwent rapid
microbial degradation. Subsurface effects of oil had not been seen before. According
to the government’s “oil budget,” released by NOAA in November 2010, one fourth
of the oil evaporated or dissolved into the water, and 13 % was blown into fine
droplets as it rushed from the broken pipe. Corexit® 9500 sprayed at the wellhead
dispersed another 16 % into fine droplets, which joined the plume. Natural oil-
degrading Proteobacteria then worked on the plumes (Hazen et al. 2010). Rapid
degradation was seen at 5 ıC. Thus, intrinsic bioremediation of the plume took
place in the deep water, as a result of the geography of the Gulf of Mexico, which
is fairly enclosed. When the hydrocarbons were released from the well, bacteria
bloomed, and then swirled around and often came back repeatedly over the leaking
well. Water with a bacterial community got a second input of hydrocarbons and the
organisms attacked and degraded the new oil (Valentine et al. 2012). In addition
to the oil that was degraded, the Unified Command, led by the U.S. Coast Guard,
physically removed about a third of it, and burning at the surface removed another
5 %. However, the budget was criticized as incomplete. Samantha Joye of the
University of Georgia said her data showed that oil and gas at depth remained much
longer than the oil budget suggested. There was also the “residual” oil unaccounted
for, which is still out there, on or under beaches, in marshes, sunk to the bottom, or
floating as tarballs.

If dispersants had not been used, the surface oil would have been weathered (tar
balls) by the time it reached the coast. This would have created a public relations
nightmare on beaches and affected the socio-economic activities of residents and
tourists. The dispersed oil below the ocean surface appears to have killed benthic
animals in intertidal and shallow subtidal regions on and near sandy beaches.
In the wetlands only the fringe-edge marsh plants were damaged by the toxic
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oil/dispersants in the surface water, since the plants appear to have absorbed these
chemicals which caused the death of shoots. At the time this book is being written,
in 2011 and 2012, there have been relatively few published reports on effects, as
many scientists are not permitted to publish their findings yet, and it is too early to
say anything about long-term effects on the Gulf ecosystems.

Pesticides

Halogenated hydrocarbons (mostly DDT-related pesticides, PCBs, and dioxins)
have been studied intensively for decades. DDT (dichlorodiphenyltrichloroethane)
(Fig. 1.2), the most powerful pesticide the world had ever known, could kill
hundreds of different kinds of insects.

Synthesized in 1874, its insecticidal ability was identified in 1939 by the chemist
Paul Hermann Müller. It was used in World War II, clearing South Pacific islands of
malaria-causing insects, and was used as a de-lousing powder in Europe. When it
became available for civilian use, few people expressed concern about this miracle
compound. In 1948, Müller won the Nobel Prize for Physiology and Medicine.
Related pesticides included aldrin, dieldrin, chlordane, heptachlor, and toxaphene,
which caused fish kills when applied near the water. These chemicals are lipophilic
and highly persistent. Rachel Carson’s writing about the dangers of DDT was
stimulated by bird kills that occurred as the result of DDT sprayings. Having already
collected a large amount of research on the subject, she decided to write a book.
Silent Spring described how DDT entered the food chain and accumulated in the
fatty tissues of animals, including humans, and caused cancer and genetic damage.
A single application on a crop, she wrote, killed insects for weeks and months (not
only the targeted insects but many others) and remained toxic even after dilution
by rainwater. She concluded that DDT and related pesticides had harmed birds
and other animals and had contaminated the world food supply. The book alarmed
readers and triggered an indignant response from the chemical industry. “If man
were to faithfully follow the teachings of Miss Carson,” complained an executive
of the American Cyanamid Company, “we would return to the Dark Ages, and the
insects and diseases and vermin would once again inherit the earth.” Anticipating
such a reaction, Carson had written Silent Spring with numerous scientific citations
and a list of expert scientists who had approved it. Many eminent scientists
supported it, and President Kennedy’s Science Advisory Committee vindicated
the book. As a result, DDT came under much closer government scrutiny and
was eventually banned. Most other chlorinated hydrocarbons were also phased out
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in subsequent decades. An important legacy of Silent Spring was a new public
awareness that nature was vulnerable to human activities. The growth of the
environmental movement was partly a response to this new awareness. Most uses of
DDT and other chlorinated hydrocarbons were banned in the1970s. In the United
States, the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) requires
that adverse ecological effects be balanced against the economic costs of regulating
pesticide use and benefits the pesticide provides.

The diversity of pesticides has increased greatly. Hundreds of chemicals are now
in use, and they generally occur in mixtures, whose toxicity may be additive or
synergistic or antagonistic. Newer chemicals are less persistent than the “legacy
pesticides” and do not generally cause kills. However, they can produce sublethal
effects such as endocrine disruption, altered development and behavior, reduced
growth, and other effects that are the major focus of this book. “Second generation”
pesticides such as organophosphates and carbamates are much less persistent in the
environment. Nevertheless, if spraying coincides with the time of reproduction and
early life stages of susceptible organisms, they can also have deleterious effects.
“Third generation” pesticides such as insect growth inhibitors, chitin synthesis
inhibitors, and juvenile hormone mimics such as methoprene are more narrowly
focused on insect biology, but tend to have severe effects on crustaceans, especially
early life stages.

Industrial Chemicals

PCBs

PCBs (polychlorinated biphenyls) are also chlorinated hydrocarbons, and were
manufactured from 1929 until they were banned in the U.S. in 1979 (Fig. 1.3). They
include over 200 congeners with differing numbers of chlorine on different locations
on the biphenyl structure, have a range of toxicity, and vary in consistency from
thin, light-colored liquids to yellow or black waxy solids. In terms of toxicity, there
are two distinct categories – coplanar (or non-ortho-substituted) and non-coplanar
(or ortho-substituted) congeners. Coplanar PCBs have a fairly rigid structure, with
the two phenyl rings in the same plane, which gives the molecule a structure
similar to polychlorinated dibenzo-p-dioxins (PCDDs) (see below), and allows them
to act in the same way as these molecules. Non-coplanar PCBs, with chlorine
atoms at the ortho positions, are not part of the dioxin group. Nevertheless they
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have some neurotoxic and immunotoxic effects, but at levels higher than normally
associated with dioxins. Due to their non-flammability, chemical stability, high
boiling point, and electrical insulating properties, PCBs were used in hundreds
of industrial and commercial applications including electrical, heat transfer, and
hydraulic equipment; as plasticizers in paints and rubber products; in pigments,
dyes, and carbonless copy paper; and many other industrial applications. PCBs
entered the environment during their manufacture and use in the United States.
They can still be released into the environment from poorly maintained hazardous
waste sites that contain PCBs; illegal or improper dumping of PCB wastes; leaks
or releases from electrical transformers containing PCBs; and disposal of PCB-
containing products into landfills not designed to handle hazardous waste. PCBs
may also be released into the environment by the burning of some wastes in
municipal and industrial incinerators.

Because of their persistence in the environment and low water solubility, chlo-
rinated hydrocarbons tend to accumulate in sediments and in tissues. Chlorinated
hydrocarbons are highly persistent and remain in the environment (especially in
sediments) for many decades, so they continue to be found long after they have
been banned. Since PCBs are particularly resistant to microbial degradation, they
may remain for long periods of time cycling between air, water, and soil. PCBs
can be carried long distances and have been found in snow and sea water in areas
far away from where they were released. As a consequence, PCBs are found all
over the world. In general, the lighter the form of PCB (i.e., fewer chlorine atoms
per molecule), the further it can be transported. PCBs accumulate in aquatic biota,
including plankton and fish. Like chlorinated pesticides and methylmercury, PCBs
biomagnify. Thus, larger fishes higher on the food chain are likely to have higher
concentrations than smaller fishes (Fig. 1.4).

As a result, people who ingest fish may be exposed high concentrations. The
highest environmental concentrations of PCB are usually found in soil and sediment,
with much lower levels found in air and water. Fortunately, PCB levels have been
declining in the past few decades and have been the subject of a number of federal
and state regulations and clean-up actions in the U.S.

Dioxins

Dioxins and furans are some of the most toxic chemicals known. Dioxin is a general
term that describes a group of hundreds of chemicals that are highly persistent in
the environment. The most toxic compound is 2,3,7,8-tetrachlorodibenzo-p-dioxin
or TCDD (Fig. 1.5). Polychlorinated dibenzofurans are similar to dibenzodioxins,
but with a single oxygen connecting the benzene rings instead of two.

The toxicity of other dioxins and chemicals such as dioxin-like PCBs are
measured in relation to TCDD. Dioxins and furans are formed as unintentional
by-products of many industrial processes that use chlorine, such as chemical
and pesticide manufacturing, pulp and paper mills that use chlorine bleach, the
production of polyvinyl chloride (PVC) plastics, the production of chlorinated
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Fig. 1.4 Biomagnification of PCBs (From oceansoffun.org)

Fig. 1.5 Dioxin molecule,
showing positions where Cl
could be attached

chemicals, and incineration of waste including plastics,. Dioxin, a contaminant of
Agent Orange, was found at Love Canal in Niagara Falls, NY and was the basis for
evacuations at Times Beach, MO and Seveso, Italy. The industrial accident in Seveso
led to many cases of Acquired Dioxin-Induced Skin Haematoma, or ADISH, in
which the skin acquires disfiguring lumps. Perhaps the most famous case of ADISH
was that of Viktor Yushchenko, who was poisoned while running for the presidency
of Ukraine. The disfiguration led to the diagnosis. He went on to win the election,
but had to undergo many surgical procedures to preserve his life. Like PCBs, dioxins
are persistent in the environment and biomagnify in food chains.

1.1.3 Contaminants of Emerging Concern (CECs)

“Emerging contaminants” have been defined as any synthetic or naturally occurring
chemical or microorganism that is not commonly monitored in the environment but
has the potential to enter the environment and cause known or suspected adverse
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ecological or human health effects. In some cases, release of these contaminants
to the environment has occurred for a long time, but the chemicals have not
previously been regarded as contaminants and are widespread in the environment.
They are derived from municipal, agricultural, and industrial wastewater sources.
Some examples are: alkylphenols, used as detergents and known to disrupt the re-
productive system; pharmaceuticals, and triclosan (trichlorohydroxydiphenyl ether),
an antibacterial agent found in many personal care products and which has been
identified as posing risks to humans and the environment.

Microplastics are both abundant and widespread in the oceans, found in highest
concentrations along coastlines and within mid-ocean gyres. Ingestion of microplas-
tics has been demonstrated in a range of marine organisms, a process which may
facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to
biota.

Halogenated Organics

Polybrominated diphenylethers (PBDEs) are used as flame retardants on many
consumer products. PBDEs are chemically similar to chlorinated hydrocarbons,
with bromine instead of chlorine, and cause long-term adverse effects in humans
and wildlife. They move from consumer products to the outdoor environment, and
have been found in tissues of marine mammals in the Arctic, very far from sites of
use. Fluorinated compounds are also of concern. Perfluorinated compounds (PFCs)
are a family of manmade chemicals that are used to make products that resist
heat, oil, stains, grease and water. Common uses include nonstick cookware, stain-
resistant carpets and fabrics, coatings on some food packaging (e.g., microwave
popcorn bags and fast food wrappers), and in fire-fighting foam. These chemicals,
such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA),
are persistent and ubiquitous in the environment. PFCs are also likely to be toxic
and have bioaccumulative properties. All of the chemicals listed above are, like
DDT, PCBs and dioxin, halogenated – that is, include F, Cl or Br in their structure,
which makes them resistant to microbial degradation.

Pharmaceuticals and Personal Care Products (PPCPs)

These contaminants are being discovered in our waters, as well as in fish tissue,
at very low concentrations. Pharmaceuticals are prescription and over-the-counter
therapeutic and veterinary drugs, including antibiotics, birth control pills, tranquil-
izers, etc., while personal care products include soaps, fragrances, sunscreen, and
cosmetics. It is likely they have been present in the environment for as long as they
have been in use. Many PPCPs remain in the environment because as they degrade,
more are added, and their use is increasing. Because of increasing concentrations,
effects in the environment are being noticed. When endocrine disruption was first
being studied in aquatic biota in the early 1990s, people looked to the “usual
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suspects,” the chlorinated hydrocarbons (which do have endocrine effects). Later
it was noticed that estrogens themselves were in the water, coming from sewage
treatment plants without being broken down, and it was realized that estrogens from
birth control pills were playing a major role. Glucocorticoids are also found in
the environment at concentrations higher than those of estrogens, which may be
high enough to affect aquatic life. Even caffeine (found in many food and beverage
products as well as some pharmaceuticals) has been found in coastal waters.

Nanoparticles

Nanomaterials or nanoparticles (<100 nm) are being used in many applications,
including cosmetics, electronics, drug delivery, manufacturing, paints, and more.
They may be composed of carbon (nanotubes, fullerenes), transition metals (gold,
platinum, silver), metal oxides (titanium dioxide, zinc oxide), polystyrene, and
silica, and are being manufactured in increasing amounts. Greater use of such
products has led to their release into the environment in runoff and sewage effluent,
and their accumulation in coastal environments. They have come under scrutiny
as potential pollutants. For example, it was found that the nanoparticulate form
of titanium dioxide (TiO2) exposed to ultraviolet radiation can be toxic to marine
organisms (Miller et al. 2012).

While metal nanoparticles (NPs) may have fates similar to other forms of the
same metal, metals in NPs may be tightly bound to the core material and not readily
dissociate (Griffitt et al. 2008). However, Cleveland et al. (2012) studied fate of
three nanosilver consumer products, two AgNP standards, and ionic silver (AgC)
in estuarine mesocosms. The consumer product released significant amounts of Ag
(>80 %) over 60 days, which moved from the water column into estuarine biota,
including clams, grass shrimp, mud snails, cordgrass, biofilms, intertidal sediment,
and sand. Ag was adsorbed from the water into the biofilms, sediment, and sand,
then from the sand to the clams. Significant amounts were taken up by the organisms
through trophic transfer.

Research is underway to develop analytical methods to measure these unreg-
ulated chemicals in water, sediment, and waste down to trace levels, determine
their environmental occurrence, sources and pathways of release to the environment,
their transport and fate, and potential ecological effects. There is a need to develop
standardized analytical techniques and reliable extraction procedures, understand
the role of wastewater treatment systems on the environmental fate of these
contaminants, and characterize the mechanisms responsible for their transport and
fate in the environment.

Noise Pollution

Though not fitting the definition of a “chemical,” noise pollution in the ocean
is another stress of emerging concern. For millions of years, the oceans have
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been filled with sounds from natural sources such as the clicks of whales and
the snapping of shrimp. Many marine species have specialized hearing abilities,
communication skills and echolocation abilities. However, humans generate a
lot of sound. An increase in motorboats, primarily commercial shipping traffic,
exploration and extraction of oil and minerals, air guns used for seismic exploration,
sonar and even jet skis contribute to the increased level of underwater noise. Sound
travels four times faster in water (1,230 m/s) than in air (340 m/s) so it travels
farther under water. High intensity sound in the oceans can travel for thousands
of miles. Since water is denser than air sound waves travel though water at higher
energy levels and are hence louder. New sources of marine sound pollution have
been added. One source having immediate and obvious negative effects has been
the development and testing of “Low-frequency Active (LFA) Sonar” that has a
potential worldwide deployment by the U.S. Navy. Several tests have resulted in
large losses in marine life.

1.1.4 Nutrients and Sewage

Nutrient enrichment due to excessive amounts of nitrogen (N) is the primary cause
of impaired coastal waters worldwide, while excessive phosphorus (P) tends to be
associated with enrichment in fresh waters. Nitrogen occurs in several oxidized
forms, collectively termed NOx. N is an essential nutrient and a fertilizer that
contributes to agricultural productivity but also a pollutant. It is a benefit or a hazard,
depending on its form, location, and quantity. Human activities, primarily increased
use of commercial fertilizers, have increased N inputs by ten-fold in many parts
of the world. Another major source is burning of fossil fuels, which emit NOx

into the atmosphere, creating acid rain and air pollution as well as water pollution.
Coastal oceans receive enormous inputs of nitrogen and phosphorus from sewage
treatment plants, runoff of fertilizers and atmospheric deposition. Sewage, even
after treatment, contains high levels of nutrients. Excess N flows from agricultural
fields, suburban lawns, and stockyards, generally as ammonia and nitrate, entering
freshwater and going down to estuaries via streams and rivers, altering water
chemistry and ecological communities. It also is released from septic tanks and
reaches coastal waters via groundwater, and comes down from the atmosphere in
precipitation. These nutrients cause algal blooms, followed by hypoxia (low oxygen)
in deeper waters (Fig. 1.6). The global rise in eutrophic and hypoxic events is due to
increases in intensive agriculture, industrial activities, and population, which have
increased N and P flows in the environment. There are variations in the importance
of each source among regions. For example, in the U.S. and Europe, agricultural
sources (animal manure and fertilizers) are generally the primary contributors,
while sewage and industrial discharges (which usually receive treatment prior to
discharge) are a secondary source. Atmospheric sources are also a significant
contributor of N in coastal areas. N from fossil fuel combustion and volatilization
from fertilizers and manure is released into the atmosphere and deposited on land
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Fig. 1.6 Eutrophication diagram (Taken from Wikimedia (original source US EPA))

and water by wind and precipitation. In Chesapeake Bay, atmospheric sources
account for a third of all controllable N that enters the bay. However, in Latin
America, Asia, and Africa, wastewater from sewage and industry are often untreated
and may be the primary contributors to eutrophication.

Nutrient enrichment of marine waters promotes excessive growth of algae, both
attached multicellular forms (e.g., sea lettuce) and microscopic phytoplankton.
Small increases in algal biomass can increase production in food webs sustaining
fish and shellfish. However, over-stimulation of algal growth can severely degrade
water quality and threaten human health and living resources. Some phytoplank-
ton species, generally dinoflagellates, produce toxins that can impair respiratory,
nervous, digestive and reproductive system function, and even cause death of fish,
shellfish, seabirds, mammals, and humans. These harmful algal blooms (HABs)
can cause fish kills, human illness through shellfish poisoning, and death of
marine mammals and shore birds. HABs may be called “red tides” or “brown
tides” because of water discoloration when these blooms occur. Their economic
impacts can be severe, as shellfish harvest and fishing are closed. HABs have been
increasing worldwide, and strong correlations have been shown between N input
and phytoplankton production. There are examples in regions around the world such
as Chesapeake Bay, the Inland Sea of Japan, the Black Sea, and Chinese coastal
waters, where increases in nutrient loading have been linked with the development
of large blooms, which can lead to toxic effects on ecosystems, fisheries resources,
and human health (Anderson et al. 2002). Not only has the frequency of HABs been
increasing, new toxin-producing species have been found to cause serious problems.
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With species that do not produce toxins, algal blooms eventually die and sink
and are degraded by bacteria, whose metabolism consumes oxygen. If the aeration
of water by mixing is less than bacterial metabolism, the bottom waters will
become hypoxic (low oxygen) or anoxic (devoid of oxygen), creating stressful or
lethal conditions. This is a major problem in many estuaries, especially in late
summer and early fall, and is termed eutrophication. Hypoxia has been increasing
globally; increasing numbers of “dead zones” have been reported a result of
fertilizer runoff and nitrogen deposition from fossil fuel burning. Eutrophication
is especially harmful to coral reefs, where the nutrients cause benthic algae to
proliferate and cover and smother the corals, eventually leading to the replacement
of the coral community with an algal community, especially when grazers (e.g.,
parrot fish) are not plentiful (Bell 1992). Of the 415 areas around the world
identified as experiencing some form of eutrophication, 169 are hypoxic and only
13 are classified as “in recovery.” Seasonal occurrences of dead zones with no
oxygen have expanded in the Gulf of Mexico (where the dead zone has approached
the size of New Jersey) and many other regions worldwide. While trends show
increases worldwide, some localized areas are improving (Diaz and Rosenberg
2008). Efforts to reduce the flow of fertilizers, animal waste and other pollutants
into the Chesapeake Bay appear to be helping the bay’s health. The size of mid- to
late-summer “dead zones,” in deep channels of the bay has been declining.

Sewage and nonpoint runoff also discharge microbes into the water. Microorgan-
isms such as hepatitis A virus, and pathogenic bacteria (e.g., Salmonella, Listeria
monocytogenes, Vibrio cholerae and Vibrio parahaemolyticus) have been reported
in coastal waters. Coliform bacteria are a commonly used bacterial indicator of
water pollution, although not an actual cause of disease. Microbiological contami-
nation can occur in marine biota when sewage from humans or animals is discharged
to coastal waters or arrives in river flow. High levels of pathogens may result from
inadequately treated sewage, which may be from a sewage plant without secondary
treatment. Older cities with aging systems may have leaky pipes, pumps, or valves,
which can cause sanitary sewer overflows. Some older cities also have combined
sewers (sanitary and storm sewers) which may discharge untreated sewage during
rain storms when the volume of water exceeds the capacity of the system. Pathogens
may be from animal feces, from poorly managed livestock operations or dense
concentrations of wild animals. Bacteria and viruses from humans and animals,
mainly attached to fine particulate matter, can affect bathing water quality and
accumulate in filter feeding shellfish.

Microbial pollution by pathogens from sewage or animal waste is of concern
for drinking water supplies, but is also a human health issue in coastal waters
where swimmers may become ill after rain has washed bacterial pollution in from
combined sewers or runoff from land. Infections and illness due to recreational
water contact are generally mild and difficult to detect. Even when illness is more
severe, it may still be difficult to attribute to water exposure. Epidemiological
studies have shown gastrointestinal and respiratory infections associated with
polluted recreational water. Bathing beaches may be closed by officials when they
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have excessive levels of bacterial pollution. Another concern is accumulation of
pathogenic bacteria in edible shellfish. Since many estuaries are contaminated by
municipal and agricultural wastes, bacteria and viruses can cause disease associated
with shellfish consumption. Gastroenteritis and hepatitis A are the most important
diseases transmitted to humans through shellfish, but cholera and typhoid fever were
the first to be linked to consumption of contaminated shellfish. Viral outbreaks
are also associated with eating contaminated shellfish. Initially, the analysis of
outbreaks was based on epidemiological data but advances in molecular biology
and the ability to detect low levels of enteric viruses in shellfish has provided more
accurate assessment of shellfish as a path for disease transmission. Shellfish beds
are closed when tests indicate elevated bacterial levels. Microbiological quality of
coastal waters has been improving following better waste water treatment.

1.1.5 Carbon Dioxide, Climate Change and Ocean
Acidification

The burning of fossil fuels emits carbon dioxide into the atmosphere, which results
in the “greenhouse effect,” raising the earth’s temperature. Studies confirm that in
the past century the oceans have warmed by about 1 ıF to a depth of 200 ft, and
the overwhelming scientific consensus is that increasing levels of human-caused
greenhouse gases in the atmosphere are the principal cause. As surface water
warms, vertical water movements (upwelling) which bring nutrients up to surface
waters where most phytoplankton are found, are reduced and thermal stratification
increases. There is a negative relationship between ocean temperatures in the tropics
and subtropics and productivity of plankton, probably because of reduced upwelling
and increased stratification. Much of the CO2 is absorbed by the ocean where it is
converted to carbonic acid, which releases hydrogen ions into the water, reducing its
pH and making it more acidic. Since the industrial age began, the pH of the oceans
has declined by 0.1 pH unit, which, because the pH scale is logarithmic, represents
a 30 % increase in acidity. According to projections of the IPCC (Intergovernmental
Panel on Climate Change), pH values will decrease another 0.2–0.3 units by 2100,
thus doubling the current acidity.

The extent to which human activities have raised ocean acidity has been difficult
to calculate because it varies naturally between seasons, from one year to the next,
and between regions, and direct observations go back only 30 years. Combining
computer modeling with observations, Friedrich and colleagues (2012) concluded
that CO2 emissions over the last 100–200 years have already raised ocean acidity far
beyond the range of natural variations. The excess hydrogen ions reduce seawater
concentrations of carbonate ions. They studied changes in the saturation level
of aragonite (a form of calcium carbonate) typically used to measure of ocean
acidification. As seawater becomes more acid, the saturation level of aragonite
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drops. Their models captured the current seasonal and annual variations of aragonite
in coral reefs, where today’s levels of aragonite saturation are already five times
below the pre-industrial range. The saturation state, denoted by the Greek letter
�, refers to the degree to which seawater is saturated with a carbonate mineral
and is inversely proportional to the mineral’s solubility. The saturation state is
determined by the concentration of calcium and carbonate ions in relation to
the solubility coefficient for the particular calcium carbonate mineral (aragonite,
calcite). Aragonite saturation is very sensitive to acidity because it is more soluble.
It is also the form most often used for mollusk shell formation, so this can affect
the growth of these organisms. When the saturation state equals 1, there is an equal
chance of dissolution or formation of calcium carbonate; when it is <1 dissolution
is favored, and when it is >1 formation of calcium carbonate is favored. If the
aragonite saturation state falls below 1 (undersaturation) already-formed shells will
dissolve. If it falls below 1.5, some organisms are unable to build new shells. The
saturation state is highest in shallow warm tropical waters and lowest in deep
and cold high latitude waters (Feely et al. 2004). This suggests that effects of
acidification will be more severe in cold high latitudes.

Acidification can interact with eutrophication. When nutrient-rich river water
enters coastal waters, phytoplankton bloom. When the algae die, sink to the sea floor
and decompose, carbon dioxide is released and oxygen depleted. The dissolved CO2

reacts with water, forming carbonic acid. Ocean acidity also increases when excess
carbon dioxide is absorbed from the air at the ocean’s surface. The combination of
these two sources of CO2 increases acidity beyond what would be expected from
the individual processes (Cai et al. 2011).

Rising temperatures due to increases in greenhouse gases are also warming the
surface water of the oceans. Thermal expansion as well as increased meltwater
and discharged ice from terrestrial glaciers and ice sheets are causing sea level to
rise. Warmer ocean currents also can move migrating fish and invasive species to
areas they previously didn’t previously inhabit, and alter timing of reproduction or
migration. Warm water holds less oxygen, and tends to amplify the threats of toxic
pollution.

1.1.6 Litter, Marine Debris

Marine debris is any man-made object discarded, disposed of, or abandoned that
enters the coastal or marine environment. It may enter directly from a ship, or
indirectly when washed out to sea. Materials can be dumped, swept, or blown
off vessels and platforms at sea. Sources of the debris are littering, dumping
in rivers and streams, and industrial losses, e.g. spillage of materials during
production, transportation, and processing. It is estimated that about 14 billion
pounds (6.4 � 109 kg) of trash end up in the oceans every year. Plastics comprise
a large proportion of the debris, and the variety and quantity of plastic items has
increased dramatically, including domestic material (shopping bags, cups, bottles,
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Fig. 1.7 Marine litter (From NOAA)

bottle caps, food wrappers, balloons) (Fig. 1.7), industrial products (strapping bands,
plastic sheeting, hard hats, resin pellets), and lost or discarded fishing gear (nets,
buoys, traps, lines).

Glass, metal, styrofoam, and rubber are used for a wide range of products. While
they can be worn away – broken down into smaller and smaller fragments, they
generally do not biodegrade entirely. As these materials are used commonly, they
are common in marine debris. Derelict fishing gear includes nets, lines, crab/shrimp
pots, and other recreational or commercial fishing equipment that has been lost,
abandoned, or discarded in the marine environment. Modern gear is generally made
of synthetic materials and metal, so lost gear can persist for a very long time.

Marine debris accumulates along shorelines and in coastal waters, estuaries, and
oceans throughout the world. It can be blown by the wind, or follow the flow of
ocean currents, often ending up in the middle of oceanic gyres where currents are
weakest. The Great Pacific Garbage Patch is one such example; comprising a vast
region of the North Pacific Ocean. Estimated to be double the size of Texas, the
area contains over 3 million tons of plastic, mostly in very small pieces. Islands
within gyres frequently have their coastlines covered by litter that washes ashore;
prime examples being Midway and Hawaii, where plankton tows sometimes come
up with more plastic pieces than plankton. The next biggest known marine garbage
patch is the North Atlantic Garbage Patch, estimated to be some hundreds of km
across. All estimates of the amount of litter are underestimates. Wind pushes the
lightweight plastic particles below the surface, suggesting that research into how
much plastic litter is in the ocean conducted by skimming the surface may vastly
underestimate the true amount (Kukulka et al. 2012).
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In addition to the visible litter that washes up on beaches, microscopic plastic
debris from washing clothes is accumulating in the marine environment and could
be entering the food chain. Researchers traced the “microplastic” back to synthetic
clothes, which release up to 1,900 tiny fibers per garment every time they are
washed (Browne et al. 2011). Earlier research showed plastic smaller than 1mm
was being eaten by animals and getting into the food chain. In order to identify how
widespread the presence of microplastic was on shorelines, the team took samples
from 18 beaches around the globe, and found that samples contained pieces of
microplastic. Polyester, acrylic and polyamides (nylon) were the major ones, and
their concentration was greatest near large urban areas. They found exactly the same
proportion of plastics in sewage, which led them to conclude that sewage was the
source of the fibers.

1.2 Measuring Effects on Biota

Toxic effects, both lethal and sublethal, have been documented extensively in
laboratory experiments. There have been fewer field studies of effects on popu-
lations of marine organisms. Early work on pollutant effects relied on tests that
measured lethality. The LC50 – the concentration of a toxicant that produced
50 % mortality – was the benchmark. Regulations under FIFRA (the U.S. Federal
Insecticide Fungicide and Rodenticide Act) for developing criteria for pesticides
for the protection of aquatic life require standard endpoints, the LC50, which is of
little ecological relevance. Toxicity tests are required for a few species: rainbow
trout, bluegill, and daphnids – one cold-water fish, one warm water fish and one
crustacean – all freshwater. Unfortunately, even today, over half a century later,
many studies still rely on this approach – acute toxicity tests – that are still
considered most useful in a regulatory context. These tests do not consider sublethal
toxicity or toxicity that is delayed in time, or differences in life history among
species. Knowing sublethal effects of chronic lower dose exposures on physiology,
behavior, development, etc., is essential for understanding ecological impacts of
pollutants in nature and is the focus of this book.

Extensive research has shown that toxicants can disrupt the metabolic, regulatory,
or disease defense systems, eventually compromising survival or reproduction.
Sublethal effects can lead to understanding of mechanisms and also to understanding
of ecological effects in the “real world.” Another insight is that early life stages –
gametes, fertilization, embryonic and larval development – are most sensitive to
stresses including contaminants. The hormonal control of reproduction can be
affected by many contaminants, now called “endocrine disruptors.” Exposures
during early life stages may cause effects that appear later, sometimes many years
later. Thus, long-term delayed effects and indirect effects are important to evaluate.
There has been a trend towards greater ecological realism in ecotoxicology, but
advances have been mainly in freshwater ecosystems.
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1.2.1 Hormesis

In toxicological investigations, whatever the endpoint, the degree of response
typically goes up with the dose, a fundamental principle of toxicology. However,
this is not always the case; there are cases in which low levels of a toxicant produce
“positive” effects, while higher concentrations produce “negative” effects (e.g.,
increased growth vs. reduced growth). In these cases, the dose response curve is
J-shaped, or inverted U- shaped. Some of the early reports of this phenomenon,
termed “hormesis”, were made with marine organisms. Laughlin et al. (1981)
reported that crab zoeae (Rhithropanopeus harrisii) exposed to low concentrations
of jet fuel oil had increased weight above that of controls. Stebbing (1981) similarly
found increased growth in colonies of the hydroid Campanularia flexuosa in
low concentrations of cadmium and copper. Many studies on different organisms
with different toxicants have shown a similar pattern, which led Calabrese and
Baldwin (1997) to conclude that hormesis is generalizable with respect to organism,
endpoint, and chemical class, though this has not been universally agreed upon.

1.2.2 Mechanistic Approaches

A dominant approach of ecotoxicology focuses on discovering mechanisms of
action at the biochemical level. There is considerable effort and an enormous
literature devoted to development of biochemical biomarkers, which are measured
in tissues and body fluids of organisms exposed to environmental chemicals.
These responses presumably occur prior to effects at higher levels of organization
and can be early warning signals. This reductionistic approach is useful for
learning molecular mechanisms, but it cannot predict effects on whole organisms,
populations, communities, or ecosystems. Many are biomarkers of exposure, rather
than of effects, and do not necessarily link to impairment of growth, reproduction,
energy utilization, etc. However, in some cases such connections are made. For
example, Sanders et al. (1991) related changes in stress proteins to scope-for-growth
measurements in Cu-exposed mussels, which relates to fitness and could have
consequences at the population level. Integrated measures have been developed,
such as scope-for-growth, which is an indication of energy status based on the
concept that energy needed for detoxification will reduce the amount available for
growth. The vast literature on biochemical biomarkers is the subject of many books
but is barely covered here, where the focus is on organism-level responses. These
processes, including respiration, osmoregulation, energy metabolism, excretion,
growth, reproduction, behavior, etc., must function appropriately for individuals and
populations to thrive. While most studies have been in laboratory organisms (which
may be exposed to far higher concentrations of chemicals than occur naturally)
some studies have measured these processes in organisms from contaminated
sites. Automated monitoring systems have been developed to measure rates of
physiological processes and certain types of behavior (Depledge et al. 1995).
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Fig. 1.8 Compensatory responses of Carcinus maenas following exposure to copper (Reprinted
from: Hebel et al. 1997: 178, courtesy Elsevier Publishing Company)

1.2.3 Linked Responses – Metals

Comprehensive linked responses of many systems to the same stressor can be found.
For example, Hebel et al. (1997) examined in a holistic way the responses of the crab
Carcinus maenas to copper, including behavioral (locomotion, feeding, mating),
physiological (osmoregulation, circulation, respiration), and cellular responses
(lysosomal changes, induction of metallothioneins (MT) and stress proteins, and
altered enzyme activity) (Fig. 1.8). A proposed sequence of responses is as follows:
when the contaminant is first detected, the crab may attempt to avoid it and leave
the area. If the chemical interferes with chemoreception, other behaviors such as
reduced feeding will follow. Copper enters the crab via the gills, causing changes
in cardiac and ventilatory activity. Effects on osmoregulation may follow, and some
days later gill structural damage will occur, further impairing osmoregulation. The
crab may increase its ventilation to compensate, but oxygen uptake will probably
decline nevertheless. Detoxification mechanisms will be activated such as formation
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of granules to excrete excess metal. At the molecular level MT synthesis and stress
proteins will be increased, which may or may not allow repair of damage and
restoration of normal function.

1.2.4 Field Studies

Integrated field approaches focused on ecological effects are essential complements
to laboratory studies and can produce insights into effects at the population and
community level. Field experiments can investigate contaminated environments, but
only under very restricted conditions can scientists release known amounts of chem-
icals in the field to observe effects in a controlled experimental way. Attempts to
bring the field closer to the lab include studies on multiple species in microcosms or
mesocosms, which can be used to reveal community effects of contaminants. They
allow for replication, so dose-response relationships under controlled conditions can
be ascertained. They can account for differential sensitivity of different species,
and biological interactions. There is much to be learned from such approaches.
However, dosing of complicated mesocosms with known concentrations of specific
chemicals does not really replicate the natural environment in which organisms are
subjected to many different pollutants at different concentrations, and where some
biota may have evolved increased resistance to some contaminants. Thus, there
remains uncertainty with ecological risk assessments and with upscaling mesocosm
studies to be consistent with field situations.

It is generally difficult to attribute problems seen in the field to particular
contaminants since field sites generally have multiple contaminants. In some rare
cases initial observations on natural populations in the field called attention to toxic
effects of certain chemicals. This was the case with tributyltin (TBT) effects on
oysters in Europe (see Chap. 8). Since abnormalities produced by TBT are unlike
those produced by other chemicals, making the connection between effects observed
(abnormal shells in oysters, imposex in snails) and the particular chemical (TBT)
was easier (Alzieu et al. 1986).

At the level of the organism, life history strategies are related to the severity
of effects of contaminants. Differential sensitivity can be related to physiological
differences, generation time, and life cycle characteristics, which can all affect initial
effects and the ability to recovery from the effects. Species that are “r-selected,”
that tend to be opportunistic, short-lived, and produce large numbers of offspring,
can exploit changing environments, including contaminated ones. High metabolic
rates can lead to more rapid biotransformation. In contrast, “k-selected” species,
which are long-lived, slow to mature, and have relatively few offspring, are suited
to stable environments and less likely to be resistant to or to evolve resistance
to contaminants. Long-lived species tend to be at higher trophic levels and ac-
cumulate greater body burdens of persistent contaminants over a long period of
time. Their slow reproduction makes population recovery from declines very slow.
Slow reproduction, combined with high bioaccumulation of contaminants makes

http://dx.doi.org/10.1007/978-94-007-6949-6
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them particularly vulnerable to reproductive effects. Maternal transfer of lipophilic
contaminants (e.g., PCBs, DDT) into the yolk of developing oocytes, exposes the
next generation even before they are hatched (Rowe 2008).

1.2.5 Oil

Early studies after oil spills focused on short-term monitoring and tests of acute
toxicity in the laboratory. Approaches to studying sublethal effects in the laboratory
include the use of the water-soluble fraction of oil or of particular PAHs. However,
after the Exxon Valdez spill in Alaska it became clear that long-term impacts at the
population level, as well as interactions among species and abiotic variables, need
to be considered (Peterson et al. 2003).

Since the 1970s, it has been known that application of dispersants increases
toxicity by increasing hydrocarbon exposure to water column species. Many
scientists are concerned about the likelihood of severe, acute impacts on Gulf
species exposed to Corexit® and oil in the water column. For vulnerable species
such as seagrass, corals, plankton, shrimp, crabs, and small fish, acute effects can
be lethal, particularly during the spring spawning season (Rhoton et al. 1998;
Bhattacharyya et al. 2003; Chapman et al. 2007; Anderson et al. 2009; Couillard
et al. 2005; Ramachandran et al. 2004; Fisher and Foss 1993). Coral larvae are
extremely sensitive to the combined effects, with 0 % fertilization in the presence
of dispersant and dispersed oil, compared with 98 % fertilization in the presence of
oil alone (Negri and Heyward 2000; Shafir et al. 2007; Epstein et al. 2000).

1.2.6 CECs

Nanoparticles are likely to have enhanced toxicity due to their size, which facilitates
movement across cellular membranes and into organelles. Inside cells, NPs can
stimulate the formation of reactive oxygen species (ROS) that interfere with
structural integrity of DNA, proteins, and cell membranes (Moore 2006). Studies
on fish and invertebrates reveal that uptake and harmful effects are possible (Gagné
et al. 2008; Griffitt et al. 2008). Fullerenes and nanotubes produced adverse effects
on adult fish (Smith et al. 2007), and metal NPs caused deleterious effects in several
fish species (Asharani et al. 2008) and invertebrates (Griffitt et al. 2008; Gagné et al.
2008). Most nanoparticle types present in the aquatic environment, such as titanium
dioxide, have low acute toxicity, but display sublethal effects (Jovanovic and Palic
2012).

Noise pollution can cause lethal and sublethal effects. Most animals are alarmed
by the sounds, which may damage internal organs especially ears, and cause a
panic response. Normal communication between marine animals can be disrupted
by noise. Scientists are working on the question of which frequencies and at
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what levels noise negatively effects marine life. The death of animals, especially
cetaceans, often occurs hours after exposure to extreme underwater noise. For
example, whales die after beaching themselves shortly after a tactical sonar exercise;
this is a rather common occurrence. Such beachings have been reported in Greece,
Madeira, Hawaii, Spain and the coastal US- areas where sonar exercises are
common. In March 2000, at least 17 whales stranded themselves in the Bahamas,
and a federal investigation identified testing of a U.S. Navy active sonar system
as the cause. Other taxa are also sensitive. Giant squid were found dead along
the shores of Spain in 2001 and 2003 following the use of air guns by offshore
vessels; examinations indicated that the deaths were related to excessive sound
exposure. André et al. (2011) examined the effects of low frequency sound
exposure – similar to what the giant squid would have experienced – in four
cephalopod species, and found that all of the exposed squid, octopus and cuttlefish
exhibited massive acoustic trauma in the form of severe lesions in their auditory
structures.

1.2.7 Nutrients

The two major symptoms of eutrophication are hypoxia and harmful algal blooms,
both of which can destroy aquatic life in affected areas. Hypoxia occurs after algae
die, sink to the bottom, and are decomposed by bacteria, using up the available
dissolved oxygen. Salinity and temperature differences between surface and deep
waters lead to stratification, limiting the ability to replenish oxygen from surface
waters and creating conditions that lead to formation of a hypoxic or “dead” zone.
Hypoxia is a chronic stress for organisms in or near the bottom, and there have
been numerous studies of this stress alone and combined with effects of chemical
contaminants. Hypoxia occurs when the dissolved oxygen (DO) falls below �2 ml
of O2/l, which may cause benthic species to abandon burrows for the sediment-
water interface, eventually dying when DO falls below 0.5 ml/l. Dead zones in the
coastal oceans have increased greatly since the 1960s, including continental seas,
such as the Baltic Sea, Kattegat, Black Sea, and East China Sea, as well as the Gulf
of Mexico.

Pelagic species experience habitat compression when hypoxia makes deeper,
cooler water unavailable in the summer or overlaps with nursery habitat. Blue
marlin, other billfish and tropical tuna are rapid swimmers that need high dissolved
oxygen, and the expansion of dead zones shrinks the useable habitat for these
valuable pelagic fishes. Ecosystems exposed to long periods of hypoxia have low
secondary production and little or no benthic fauna. Factors determining the degree
of degradation are the duration of exposure and DO concentration. It may take
years to recover from severe hypoxia and the species that establish during recovery
will likely not be the same as the pattern of species loss during DO depletion
(Diaz and Rosenberg 2008). Hypoxia can interact with chemical contaminants
to increase stress. Particularly sensitive ecosystems include submerged aquatic
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vegetation (e.g., eel grass), which dies as excessive algal growth reduces light
penetration. Coral reefs are another particularly sensitive ecosystem, where excess
nutrients alter the normal balance between corals and algae. Eutrophication and
herbivore overfishing promote seaweed overgrowth and reef degradation. Harm-
ful algal blooms (HAB) of species that produce toxins, can cause fish kills,
human illness through shellfish poisoning, and death of marine mammals and
birds.

1.2.8 Climate Change

The warming of the ocean will have numerous effects on all organisms, most
basically elevating their metabolic rates, which ultimately determine life history
traits, population growth, and ecosystem processes. Elevated metabolic rates create
increased demand for oxygen at the same time that the warmer water can hold less
oxygen. Variation in temperature can also affect biological processes such as the
abundance and distribution of plankton. As the ocean surface warms, it becomes
more stratified or confined to layers that mix less than they did in the past, which will
reduce overall ocean productivity, because nutrients in surface water get depleted
and plankton productivity depends on upwelling of deeper water to replenish
nutrients. The annual primary production of the world has decreased since the
1980s (Hoegh-Guldberg and Bruno 2010). Studies suggest that increasing acidity
reduces the availability of iron, an element crucial to phytoplankton production.
Because iron already is limited in marine waters, increased acidity may have serious
implications (Shi et al. 2010).

Among the most sensitive groups of organisms are organisms such as sea grasses,
mangroves, salt marsh grasses, oysters, and corals, which form the habitat for
thousands of other species. Intertidal mangroves and salt marshes are threatened
by rising sea levels, and will have to migrate inland or elevate in order to prevent
themselves from being submerged. Current and future CO2 levels will result
in changes in ocean temperature and chemistry beyond those that corals have
experienced. Some scientists suggest that conditions have already reached a “tipping
point” for coral survival, and corals now are less able to recover from additional
change (Eakin et al. 2009; Anthony et al. 2008). They are considered one of the
most sensitive ecosystems to climate change and can be likened to the canary in
the coal mine. Coral reefs have been in existence for over 500 million years, but
their continued persistence is in doubt. With increases in ocean temperature, corals
begin to bleach (Fig. 1.9). Bleaching occurs when the corals lose their symbiotic
relationship with single-celled photosynthetic algae, zooxanthellae, which provide
corals with food and receive protection and nutrients needed for photosynthesis.
Zooxanthellae are sensitive to temperature changes, and when they die or leave,
bleached corals are generally unable to meet their energy requirements. Coral death
by bleaching and diseases due to increased heat and irradiation, as well as the
decline in calcification caused by ocean acidification are the most important large-
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Fig. 1.9 Normal and bleached areas of coral (From NOAA)

scale threats. Since the 1980s, major bleaching events have increasingly occurred
across the globe – for example, in 1998, 80 % of the coral reefs in the Indian Ocean
bleached, causing 20 % mortality.

Unlike rising temperature, research on ocean acidification is relatively recent.
However, changing pH levels can cause dissolution of a coral’s calcium carbonate
skeleton and impair calcification. Increasing CO2 may be an additional stress driving
a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality
in contact with a common coral-reef seaweed (Lobophora papenfussii) increased
two- to threefold between background CO2 (400 ppm) and a level projected for
late twenty-first century (1,140 ppm). The interaction between CO2 and seaweeds
on coral mortality was attributed to a chemical competitive mechanism. Thus,
coral reefs may become more susceptible to seaweed proliferation under ocean
acidification (Diaz-Pulido et al. 2011).

Polar ecosystems are also vulnerable to effects of climate change. Their tem-
peratures are increasing more rapidly than elsewhere (>5 times the global average).
Researchers have documented that warming ocean currents have accelerated melting
of the Arctic sea ice sheet and the decline and breakup of Antarctic ice shelves.
Greenland is now losing an estimated 100 billion tons of ice annually as a result
of accelerated melting. Sea levels are now projected to rise much faster than
predicted by the Intergovernmental Panel on Climate Change in 2007, because of
this acceleration, further threatening coastal habitats (Schofield et al. 2010). As the
temperature has risen, plankton blooms, typical of the region, have decreased, and
the plankton community has shifted from large species to smaller ones. The shift
in phytoplankton biomass and size has affected the zooplankton. Krill, which are
inefficient at grazing on small phytoplankton, are declining, while salps, which
are efficient, are increasing. Krill also depend on sea ice for their reproduction.
Furthermore, other species that depend on the ice, like Adelie penguins, are also
decreasing, while other penguin species have increased (Schofield et al. 2010).
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Along with physiological effects on organisms, temperature stress affects preda-
tor/prey interactions. Many intertidal organisms already live very close to their
thermal tolerance limits. At cooler sites, mussels and rocky shore barnacles were
able to live high on the shore, well beyond the range of their aquatic predators.
However, as temperatures rose, they were forced to live at lower shore levels, placing
them at the same level as predatory sea stars (Harley 2011). Daily high temperatures
during the summer months have increased by almost 3.5o C in the last 60 years,
causing the upper limits of the habitats to retreat 50 cm down the shore, while effects
of predators, and the position of the lower limit, have remained constant.

The increased acidity of the oceans is expected to harm a wide range of ocean
life – particularly those with shells (Fig. 1.10). Many organisms use calcium and
carbonate ions from seawater to produce calcium carbonate for shells.

Some acidity is natural in some regions, even without added CO2 from human
activities. Water off the Pacific coast of the United States already has a low carbonate
saturation state. When surface winds blow the top layer of water out from coastal
regions, deeper water with high acidity (“corrosive water”) can upwell, and produce
deleterious effects. The common mineral forms of calcium carbonate are aragonite
and calcite. Aragonite calcifiers (corals, pteropods, bivalves) are expected to be
more strongly affected than calcite calcifiers (coralline algae, sea urchins) because
of differences in the solubility of the mineral: aragonite is more soluble than calcite.
The resulting disruption to the ocean ecosystem could have widespread effects and
further deplete already struggling fisheries worldwide. Research suggests that larval
mollusks and other calcifying organisms are already experiencing these effects.
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Delicate corals may face an even greater risk than shellfish because they require
very high levels of carbonate to build their skeletons. Acidity slows reef-building,
which could lower the resiliency of corals and lead to their erosion. Coral reefs are
home for many other forms of ocean life, so their loss would reverberate throughout
the marine environment and have profound social impacts in the tropics – especially
on fishing and tourism. The loss of coral reefs would also reduce the protection that
they offer coastal communities against storms surges and hurricanes, which might
become more severe with warmer air and sea surface temperatures.

1.2.9 Marine Debris/Litter

Effects of marine litter are primarily physical rather than chemical. Marine debris
takes a toll on the marine environment by affecting animals through ingestion
or entanglement; it is estimated that up to 100,000 marine mammals, including
endangered species, are killed each year by marine debris. Many marine animals
consume flotsam by mistake, as it often looks similar to their natural prey. Sea
turtles, for example, may mistake plastic bags or balloons for jellyfish. Marine
debris is ingested by marine animals, including fishes, birds, sea turtles and
marine mammals. Avery-Gomm et al. (2012) quantified the stomach contents of
67 Northern fulmars (Fulmarus glacialis) from beaches in the eastern North Pacific
in 2009–2010 and found that 92.5 % of the birds had ingested an average of 36.8
pieces, or 0.385 g of plastic. Plastic ingestion in these fulmars is among the highest
recorded globally. Compared to earlier studies in the North Pacific, these findings
indicate an increase in plastic ingestion over the past 40 or so years. Plastic debris
may become lodged in digestive tracts, blocking the passage of food and causing
death through starvation. Tiny floating particles also resemble zooplankton, which
can lead filter feeders to consume them and cause them to enter the food chain.
In addition, hydrophobic pollutants collect on the surface of plastic debris, thus
making plastic a source of toxicity, by transferring chemicals such as PCBs into the
food web. Worldwide efforts are underway to monitor and remove marine debris,
as well as to prevent further pollution by controlling litter or trash at its source.
One unexpected finding was that the litter provided a habitat for the marine insect
Halobates sericeus. These sea skaters, relatives of pond water skaters, inhabit water
surfaces and lay eggs on flotsam (floating objects). Goldstein et al. (2012) found
that they have exploited the plastic garbage as new surfaces for their eggs, leading
to a rise in egg densities in the North Pacific Subtropical Gyre.

1.2.10 Survival in Contaminated Environments

The combined effects of many anthropogenic stressors pose major challenges to or-
ganisms in estuaries, and reduces biological diversity in contaminated environments.
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The species that remain have some degree of inherent resistance to the contaminants
they are subject to, and have developed adaptive strategies to reduce pollution
impacts – such as increased resistance via plasticity or via selection over many
generations. Numerous studies have been done examining the processes by which
organisms detoxify metals (e.g., metallothioneins) and organic contaminants (CYP,
or cytochrome P-450 system). The CYP system is important in metabolizing
organic contaminants such as PAHs (Stegeman and Lech 1991). Other resistance
mechanisms include reducing uptake of contaminants by being less permeable,
and mucus production – excess mucus is shed from an organism, taking with
it whatever was irritating the organism. Changing the energy budget is another
common strategy – since they must spend more energy on detoxification, animals
generally reduce their respiration and activity rates to maintain their energy balance.

While some organisms are able to develop tolerance to pollutants in their
environment, this comes at a cost. A reduction of marine pollution in estuaries and
oceans should be a long-term goal of policy-makers in order to protect the health of
the oceans, their inhabitants, and humans.
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Chapter 2
Feeding and Digestion

Abstract Obtaining food for energy is essential for all living things that don’t
photosynthesize. Reduced feeding and digestion are commonly observed after
exposure to a variety of pollutants. Alterations in feeding, nutrient assimilation, and
energetics in many species could not only impact their own population dynamics,
but also could have community-wide repercussions. Decreased feeding is not only
a general response to contaminants, but also can result in a “positive feedback”
situation, since poor nutrition resulting from decreased feeding can in turn make
animals more susceptible to contaminants (Dissanayake et al. Aquat Toxicol
89:40–46, 2008). These authors advised that “ecotoxicological studies need to take
into account the nutritional state of the test organism to achieve the full assessment
of contaminant impact.” On the other hand, it is also likely that decreased feeding
will reduce further uptake of contaminants. This is particularly true for animals at
higher trophic levels, which acquire much of their body burden of contaminants
from their food. Additional discussion of pollution effects on feeding is covered in
Chap. 9, Behavior.

Keywords Assimilation • Consumption • Enzymes • Feces • Filtration •
Foraging • Growth • Gut fluid • Intestinal transport

2.1 Feeding

2.1.1 Crustaceans

Reduced food consumption is an almost universal response in crustaceans to many
toxicants (Taylor et al. 1993; Maltby and Crane 1994; Wallace et al. 2000). However,
increased feeding rates have occasionally been observed, e.g., in amphipods exposed
to the chlorinated pesticide lindane (Blockwell et al. 1998).

J.S. Weis, Physiological, Developmental and Behavioral Effects of Marine Pollution,
DOI 10.1007/978-94-007-6949-6 2, © Springer ScienceCBusiness Media Dordrecht 2014
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Metals

Chronic exposure to copper (>85 �g l�1) and zinc (>106 �g l�1) reduced growth
of shrimp larvae (Farfantepenaeus paulensis) because of reduced feeding (Santos
et al. 2000). Both metals reduced the number of Artemia captured by the shrimp
larvae during 30 min. Oxygen consumption also was reduced by about 30 % in all
concentrations. Similarly, gut fullness of shrimp, Metapenaeus ensis, larvae feeding
on the diatom gracilis was reduced by a 2-h exposure to copper at 0.25 mg l�1

(Wong et al. 1993).
In contrast, gut fullness of larvae was not affected even after 24-h exposure

to chromium or nickel at high concentrations close to the 48-h LC50 (5.41 and
1.28 mg l�1, respectively). However, postlarval shrimp exposed for 24-h to those
concentrations of Cr, Cu or Ni consumed fewer Artemia nauplii. While younger
stages are generally more sensitive than older stages, this obviously depends on
the species and toxicant. Blue crabs, Callinectes sapidus, were fed grass shrimp
Palaemonetes pugio contaminated with 1.8 �g TBT, 0.09 �g DBT (dibutyltin) and
0.03 �g MBT (monobutyltin) g�1 wet weight tissue. Feeding rates for exposed
and control crabs were equal during the 16-day test (Rice et al. 1989). Growth,
molting success and feeding rates were not affected. Catabolism of TBT reduced
tissue concentrations of TBT, thereby increasing the tolerance of blue crabs to TBT.

Organics

Jensen and Carroll (2010) examined feeding of copepods exposed to the water-
soluble fraction (WSF) of crude oil. Feeding was inhibited in Calanus finmarchicus
exposed to 0.4 �g l�1 of the WSF, showing that adults are sensitive to exposure
to crude oil well below saturation level. Effects of PCBs on estuarine shrimps
were investigated by Nimmo et al. (1975). Toxicity tests showed estuarine species
to be sensitive at low concentrations in water, with shrimps (Penaeus duorarum,
P. aztecus, and Palaemonetes pugio) affected at or near 1 �g l�1. Exposed shrimp
later became lethargic and stopped feeding. It is possible that the lethargy was due to
non-polar narcosis, which could have caused the reduced feeding. It is also possible
that the reduced activity (lethargy) was due to low energy levels from reduced
feeding.

Hypoxia

Feeding by the mud crab Neopanope sayi and juvenile blue crabs Callinectes
sapidus, decreased during hypoxia, suggesting that short hypoxic episodes may
create predation refuges for their prey (Sagasti et al. 2001). This was supported
by mesocosm studies by Seitz et al. (2003) using blue crabs and Macoma balthica
clams. Predation on clams was significantly lower under low DO (<2 mg O2 l�1)
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than under normoxia. Thus, under short-term hypoxia, both crab feeding efficiency
and trophic transfer from M. balthica to blue crabs were reduced. Changes in clam
burial depth due to oxygen levels were determined by establishing normoxic and
low DO levels in replicate aquaria. Burial depth after 48 h exposure did not differ
as a function of oxygen level. None of the clams died after 2 days in low DO, 27 %
died after 6 days, and 90 % died after 21 days. Authors concluded that short-term
hypoxia therefore reduces the ability of crabs to forage upon clams efficiently and
increases clam survival, whereas long-term hypoxia may increase the availability
of clams to predators through mortality and movement to the surface. Bell et al.
(2003) used biotelemetry and measurements of dissolved oxygen to monitor the
feeding and movement responses of free-ranging blue crabs Callinectes sapidus to
episodic hypoxic events and subsequent relaxation events within the Neuse River
Estuary, North Carolina, USA. Although crabs did feed in water with DO as low as
1.01 mg l�1, the feeding declined slightly in mild (2–4 mg l�1) and severe hypoxia
(<2 mg l�1). Crabs reduced the proportion of time spent feeding during hypoxic
conditions. However, the proportion of time crabs spent feeding did not increase
and crabs did not reinvade deeper water habitats when DO increased, as had been
hypothesized. No significant difference occurred in the feeding rates of blue crabs
exposed to normoxia, 119 and 73 Torr O2, but these rates were significantly higher
than that of blue crabs exposed to 50 Torr O2. [Unfortunately, different investigators
use different measurements for DO. Torr is a measurement of pressure, defined
as 1/760 of one atmosphere; a pressure of 1 Torr is approximately equal to one
mm of mercury. In this book the units utilized by the investigator will be used.]
Feeding rates in the lesser blue crab (C. similis) exposed to 50 and 25 Torr O2 were
significantly lower than in crabs exposed to 119 Torr O2 and normoxia (Das and
Stickle 1993). The feeding rate of crabs after being exposed to hypoxia for 10 days
increased sharply upon transfer to normoxic water; however, this may have been
due to partial starvation during hypoxia.

Climate Change/Acidification

Effects of 650, 1,250 and 3,500 �atm CO2 on feeding of shore crabs Carcinus
maenas, were examined after exposure of both the predators and their prey, the
blue mussel Mytilus edulis, for 10 weeks. Intermediate levels had no significant
effect, but the highest level reduced feeding by 41 % (Appelhans et al. 2012). Active
extracellular pH compensation by means of bicarbonate accumulation was observed
in the crabs.

In contrast to the effects of hypoxia and acidification on shore crabs, the copepod,
Centropages tenuiremis, increased both its feeding and respiration rate at elevated
CO2 (1,000 �atm), and associated acidity (pH 7.83), (Fig. 2.1) except for an initial
acclimation period, when it fed less (Li and Gao 2012). The authors suggest that
copepods increase their respiration and feeding in response to acidification in order
to balance the energy costs associated with increased acidity and CO2.
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Impacts in Polluted Sites

A number of studies have assessed feeding rates in animals living in contaminated
sites. Perez and Wallace (2004) found that grass shrimp (Palaemonetes pugio) from
a clean reference site (Great Kills) captured brine shrimp at about twice the rate as
grass shrimp from more contaminated sites (Fig. 2.2).

Grass shrimp from the clean site that were maintained in the laboratory for
8 weeks with sediment and water from the contaminated site reduced their feeding
to that typical of shrimp from that site, showing that the behavioral difference was
caused by the environment. Videotape analysis indicated that reduced feeding was
due to shrimp using a less efficient grab type of capture, rather than a lunge or pursuit
type of attack. Khoury et al. (2009) compared feeding rate (number of scoops of
substrate) of fiddler crabs (Uca pugnax) from a contaminated site and a reference
site. Crabs from the reference site performed twice as many scoops (on the same
sediment) than crabs from the contaminated site. Blue crabs (Callinectes sapidus)
from a contaminated site captured fewer active prey (killifish or juvenile blue crabs)
compared with crabs from a cleaner reference site, but ate comparable amounts of
less active prey (fiddler crabs and mussels) (Reichmuth et al. 2009). Gut content
analysis showed that blue crabs from the contaminated site ate less fish and crabs
but much more detritus, algae, and sediment than crabs from the cleaner site. These
food items are not typical for this predatory species. Transplanting “polluted” crabs
to the clean site or maintaining them in the laboratory with food from the clean
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site, caused a reversal in behavior – “polluted” crabs increased their feeding on
juvenile blue crabs. Conversely, transplanting reference site crabs to the polluted
site or maintaining them in the lab on food from the polluted site caused them to
decrease their feeding; this was correlated with bioaccumulation of mercury.

Cellular activity, immune function, cardiac activity, and foraging behavior were
studied in green crabs, Carcinus maenas, collected from a PAH-contaminated site
and two comparatively clean field sites and compared with responses of crabs
exposed in the laboratory to the PAH pyrene as a model organic contaminant
(200 �g l�1) for 28 days (Dissanayake et al. 2010). Cellular function (hemocyte
membrane integrity) and immune function (phagocytosis), were decreased by
pyrene exposure in the laboratory. In the field, however, no significant cellular or
physiological impacts were seen in the contaminated site, but foraging behavior
was significantly reduced, demonstrating that feeding behavior is a more sensitive
response (Fig. 2.3). Crabs from the contaminated site (PLYM) took significantly
longer than other field-collected and laboratory-exposed crabs to approach a cockle
and break the shell, causing longer prey handling time, with both contaminated
groups showing significantly longer handling times.

A precise method for quantifying feeding of C. maenas in polluted sediments,
using the polychaete Hediste (Nereis) diversicolor as food, was developed (Moreira
et al. 2006b). Organisms were deployed at several reference and contaminated sites,
and reduced feeding (16.3–72.7 %) was observed at all contaminated sites.

Litter

Marine debris can become part of the diet of animals. Small plastic fragments
are available to invertebrates because they are in the same size range as their
normal food items. Many of these small fragments come from fishing debris,
which accumulates in areas used by commercially important marine life. Of 120
specimens of Norway lobster, Nephrops norvegicus collected from the Clyde Sea,
Scotland, 83 % contained plastic in their stomachs. This plastic consisted mainly of
monofilament strands of different colors and thickness (Murray and Cowie 2011).
Nephrops fed fish seeded with strands of polypropylene rope were able to ingest but
not to excrete the strands. The study showed that some filaments are unable to pass
through the gastric mill system (composed of one median and two serrated lateral
teeth) and into the pyloric stomach for eventual elimination via the hindgut. The
long-term effects of this build-up are unknown and should be investigated.

2.1.2 Mollusks

Mollusks also reduce their feeding activity after exposure to a variety of toxicants.
Shipp and Grant (2006) and Krell et al. (2011) developed a short-term in situ toxicity
assay based on the post-exposure feeding of the mudsnail Hydrobia ulvae. Growth
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Fig. 2.3 Foraging behaviours (mean C SE) in adult Carcinus maenas. (a). Breaking time of
shelled prey, (b) eating time of flesh, (c) handling time, and (d) cardiac activity during prey
handling time (beats/min). Different letters D significant differences (Reprinted from Dissanayake
et al. 2010, 70: 368–373, 73: 96, courtesy of Elsevier Publishing Co)

over 28 days in H. ulvae was reduced at all sites where other studies had detected
adverse ecological effects. Feeding rate after 24 h also was decreased at moderately
contaminated sites where sediments were not acutely toxic, and feeding was a very
good predictor of 28-day growth. Methodologies to quantify post-exposure egestion
as a surrogate of feeding were also developed. Reduced feeding in these bioassays
was a good predictor of growth.

Metals

Feeding behavior of snails and bivalves has been analyzed in the presence of
metal contaminants. Filtration rates of the mussel Mytilus edulis and clam Mya
arenaria were reduced by exposure to chromium (1 mg l�1), to sediments from a
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Fig. 2.4 Clearance rates (M ˙ SE) of M. edulis following 5 days exposure to copper. Different
letters D significant differences (Reprinted from Al-Subiai et al. 2011: 1916, reprinted courtesy of
Elsevier Publishing Co)

Cr-contaminated site, or to artificial sediments enriched in Cr (Capuzzo and Sasner
1977). Both dissolved and particulate Cr (CrCl3) reduced filtration rates; Mya was
less affected than Mytilus by particulate Cr. M. edulis were exposed for 5 days to
Cu (18–56 �g l�1). While molecular biomarkers were affected at 56 �g l�1 Cu,
the clearance rate showed a significant decrease at concentrations of 18 �g l�1

(Fig. 2.4) (Al-Subiai et al. 2011), supporting previous observations that feeding is
more sensitive than biochemical biomarkers.

Mollusks are particularly sensitive to copper, which is used as a molluscicide.
Effects of 20 �g Cu2C l�1 and lowered salinity (20 psu) were studied on the
grazing snail Trochus maculatus and the macroalgae, Gracilaria tenuistipitata
and Enteromorpha intestinalis (Elfwing and Tedengren 2002). The two factors
were applied both separately and in combination to evaluate interactions. Results
indicated that moderate salinity reduction and ecologically relevant amounts of Cu
reduced snail grazing but not algal productivity, and thus could promote algal growth
and potential dominance on coral reefs.

Organics

Oil and Dispersants

Exposure of mussels (M. edulis) to an unresolved complex mixture (UCM) of
aromatic hydrocarbons isolated from crude oil reduced feeding rate by 40 %



2.1 Feeding 45

(Donkin et al. 2003). The feeding rate of mussels collected from polluted sites
increased when they were placed in clean water, suggesting depuration of toxicants.
Water into which mussels from an oil-polluted site had depurated contained a UCM,
and tissue extracts of mussels from polluted sites reduced the feeding activity of
juvenile mussels. Extracts of mussels from an oil-polluted site were fractionated
by HPLC, and a fraction comprising a monoaromatic UCM, reduced feeding of
juvenile mussels by 70 %.

Since dispersants are often used following oil spills, there is concern that they
may exert toxic effects. The objective of dispersant use is to increase the amount
of oil that mixes into the water column, reducing the chances that a slick will
contaminate the shoreline or come into contact with birds, marine mammals, or
other organisms on the surface or shoreline. By promoting dispersion into the
water, however, dispersants increase the potential exposure of biota to both oil and
the dispersants themselves. Feeding rates of M. edulis exposed to two common
oil dispersants were measured by Scarlett et al. (2005). Effects were assessed at
dispersant concentrations of 50 mg�l for 48 h. Feeding was reduced dramatically
by both dispersants, with SD-25 reducing feeding to 9.8 % of control levels and
Corexit® 9527 reducing feeding rates to only 2.6 % of controls.

Pesticides

Filtration rate of adult Pacific oysters Crassostrea gigas in response to different
concentrations of lindane (gamma-hexachlorocyclohexane [”-HCH]) for 12 days
was investigated (Anguiano et al. 2007). Oysters were exposed to ten different
concentrations (<10.0 mg l�1) of ”-HCH. After 4 h of exposure to 0.3 and 0.7 mg
l�1 ”-HCH, filtration rates were reduced compared with controls to 65.8 and 38.2 %,
respectively. After 11 days of exposure, filtration rates were reduced to 60.4 and
30.9 % at concentrations of 0.1 mg l�1 and higher. This study showed the filtration
rate to be more sensitive than genotoxicity and cytotoxicity.

Hypoxia

Significant differences were noticed in the feeding rate of the oyster drill Stramonita
haemastoma exposed to hypoxia. Feeding rate in S. haemastoma declined linearly
with declining oxygen concentration (Das and Stickle 1993).

Contaminants of Emerging Concern

Since mussels take up 100-nm polystyrene (PS) beads, effects of 30-nm PS on the
feeding behavior of the blue mussel (M. edulis) were studied by Wegner et al.
(2012) by exposing mussels to different nano PS and different concentrations of
algae (Pavlova lutheri). In all treatments, mussels produced pseudofeces. Mussels
reduced their filtering activity when nano PS was present, but still reduced the nano
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PS concentration in the water and accumulated it. Authors felt that chronic effect
studies are needed to further investigate effects of nanoplastics on M. edulis and
possible consequences for its predators.

Polluted Sites

Growth in Hydrobia ulvae was reduced at metal-contaminated field sites, which was
associated with reduced feeding rates. Feeding rate after 24 h also was decreased at
moderately contaminated sites, which was a very good predictor of 28-day growth
(Shipp and Grant 2006).

2.1.3 Fishes

Fish feeding, like that of crustaceans and mollusks, is generally reduced after
exposure to a variety of contaminants. These responses are discussed in greater
detail under “prey capture” in the behavior chapter.

Metals

Weis and Khan (1990) found that exposure of adult mummichogs (F. heteroclitus)
to 10 �g l�1 of either HgCl2 or meHg for 1 week reduced feeding rate. In addition,
feeding of mummichog larvae was examined after embryonic exposure to 5 or
10 �g l�1. After hatching, larvae were maintained in clean water. Feeding by early
larvae was reduced by the embryonic exposure, but approximately 1 week after
hatching feeding was comparable to controls, showing that this effect was temporary
(Weis and Weis 1995a). The exposure may have caused retardation of neurological
development that was subsequently compensated for. After exposure during both
embryonic and larval stages, deleterious effects on feeding were greater than after
embryonic exposure alone, i.e. lower concentrations were seen to reduce feeding
(Zhou et al. 2001).

Organics

Embryonic exposure of mummichogs to environmentally relevant concentrations
of PCBs similarly reduced prey capture of larvae (Couillard et al. 2011). The
lowest observed effective dose was 5.0 pg PCB126 egg�1. Prey capture efficiency
(number of Artemia captured per feeding strike) was reduced at �10.0 pg egg�1.
In microcosm experiments, juvenile spot (Leiostomus xanthurus) removed fewer
harpacticoid copepods from PAH-contaminated sediments than from reference sed-
iments (Marshall and Coull 1996). This may reflect avoidance of the contaminated
sediments or a decreased feeding response due to toxicity.
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Acidification

Nowicki et al. (2012) found CO2 level did not significantly affect foraging in
juvenile anemonefish, but there was an interaction with temperature. At high tem-
perature (31.5 ıC) and control or moderate (530 �atm) CO2 food consumption and
foraging activity were reduced, while high temperature and high CO2 (960 �atm)
increased feeding. Maintaining food consumption and foraging activity in high
temperature and CO2 may reduce energy efficiency if the thermal optimum for
food assimilation and growth has been exceeded. The authors concluded that the
interaction of rising temperatures and CO2 will have deleterious effects on this
species by mid-century.

Contaminants of Emerging Concern (CECs)

Feeding was inhibited by the anti-depressant fluoxetine, (a selective serotonin re-
uptake inhibitor, SSRI) in hybrid striped bass (Morone saxatilis x M. chrysops).,
with significant effects observed after only 6 days at the lowest concentration,
23.2 �g l�1 (Gaworecki and Klaine 2008). Increased time to capture food was
correlated with decreases in brain serotonin activity, which also decreased in a time-
and concentration-dependent manner.

Hypoxia

Growth rates of both winter flounder Pseudopleuronectes americanus and summer
flounder Paralichthys dentatus were generally reduced as DO decreased, particu-
larly at DO levels of 50–70 % air saturation, and as temperature increased (Stierhoff
et al. 2006). Summer flounder were more tolerant of low DO than winter flounder
in this laboratory experiment. A significant relationship between feeding rate and
growth indicated that reduced feeding was the major cause of growth reduction.
Effects of moderate hypoxia and oscillating DO on feeding and growth of European
sea bass (Dicentrarchus labrax) were investigated (Thetmeyer et al. 2001). Fish
were exposed to one of three oxygen regimes (40 % air saturation; oscillations
between 40 and 86 % with a period of 770 min; 86 % as a control) for 1 month.
Fish in hypoxia consumed less food, had reduced growth, and a lower condition
factor. Fish in oscillating conditions were intermediate. Growth was correlated with
food intake, suggesting that reduced growth is primarily due to reduced appetite.
Juvenile turbot Scophthalmus maximus were fed to satiation at O2-concentrations
of 3.5, and 5.0 mg l�1 and 7.2 mg l�1 (normoxia) (Pichavant et al. 2000). Both
food intake and growth were significantly lower under reduced DO. During the first
2 weeks of the experiment, food intake was halved in hypoxic conditions, and there
were large differences among treatments in feed conversion ratio. When juvenile
turbot, Scophthalmus maximus, and European sea bass, Dicentrarchus labrax, were
fed to satiation, food intake and growth were depressed under hypoxia (3.2 and
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4.5 mg O2 l�1) (Pichavant et al. 2001). Growth was comparable between fish in
hypoxia that were fed to satiation and fish in normoxia that were fed restricted
rations. Decreased food intake is a mechanism by which prolonged hypoxia reduces
growth, and may be a way to reduce energy and oxygen demand under hypoxic
conditions.

Negative effects of hypoxia on fish feeding can sometimes be compensated for
by increased availability of benthic prey during periods of hypoxia. For example,
in a field study, spot (Leiostomus xanthurus) and hogchoker (Trinectes maculatus)
showed evidence of optimal prey exploitation during or right after hypoxic events in
Chesapeake Bay (Pihl et al. 1992). In most instances gut contents contained larger,
deeper-burrowing prey during periods of low oxygen than during normal oxygen
levels. Spot consumed a greater biomass (45–73 %) of polychaetes than other prey,
with crustaceans initially also constituting a main dietary component. The deep-
burrowing anemone, Edwardsia elegans, was an important prey species for spot,
particularly in deeper hypoxic areas. Prey consumed by 10-to 15-cm-long spot
increased significantly in size during some hypoxic events, suggesting a sublethal
effect of hypoxia causing large benthic species to move up closer to the sediment
surface where they are more available to fish predators.

Polluted Environment

Young-of-the-year bluefish Pomatomus saltatrix, that were fed diets in the lab-
oratory of contaminated food (mummichogs and menhaden from Hackensack
Meadowlands, an estuary with multiple contaminants including Hg and PCBs),
gradually showed reduced appetite and consumed less food than fish that had been
fed diets of the same species from a reference estuary (Candelmo et al. 2010)
(Fig. 2.5). Bluefish fed contaminated diets grew more slowly, probably due to the
reduced food intake.
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2.1.4 Other Taxa

Metals

Coral feeding on zooplankton can be inhibited by metal exposure. Peng et al.
(2004) found that Cu-exposed corals, Subergorgia suberosa were unable to catch or
consume brine shrimp effectively. The rate of successful feeding for control polyps
was 85 %, but was 57 % at 0.2 �g Cu l�1 and only 24 % at 0.5 �g Cu l�1. This is
one of the most sensitive responses to Cu. Other metals (Zn, Cd, Pb) did not produce
this sublethal effect.

Organics

The deposit feeding lugworm, Arenicola cristata, exposed to Kepone (>2.8 �g l�1)
showed a significant reduction in sediment processing (feeding) (Rubenstein 1979).
The reduction of sediment reworking by these deposit feeders could affect sediment-
water column dynamics and alter benthic food chains.

Effects of oil on the sea anemone Actinia equina were investigated by Ormond
and Caldwell (1982). After 7 weeks exposure to 2.5 ml l�1 crude oil, anemones were
frequently observed with tentacles expanded and mouth open, but the response to
food offered to the tentacles was slow or absent. In separate tests it was found that
crude oil presented on filter paper to the anemones could act as a feeding inducer,
but that it interfered with or diluted the action of natural feeding inducers present in
fish muscle extract.

Corals normally acquire food by a combination of filter feeding by the tentacles
of the polyps at night and by photosynthesis by the symbiotic dinoflagellates
(zooxanthellae) in cells lining the polyp’s gut during the day. When filter feeding,
tentacles capture planktonic prey, which are stunned or killed by the nematocysts
on the tentacles. Corals also produce mucus, which can trap planktonic prey.
Dinoflagellates in the genus Symbiodinium occur as endosymbionts, forming a
mutualistic relationship with their coral host (Baker 2003). They provide the coral
with fixed carbon for energy, remove waste products, and enhance calcification.
The host coral polyp provides its zooxanthellae with protection and with carbon
dioxide and nutrients in its waste that can be used for photosynthetic processes.
This symbiotic relationship allows corals to thrive because of the tight coupling
of resources and the advantage of combining filter feeding at night and algal
photosynthesis in the day. However, the relationship can be disrupted by a number
of stresses, including various pesticides. Irgarol is now used in antifouling paints as
a substitute for tributyltin, which has been banned in many countries. Irgarol 1051
was detected by Owen et al. (2002) in marinas, harbors and coastal waters of Florida,
Bermuda and St. Croix, with concentrations ranging between 3 and 294 ng l�1. Incu-
bation experiments with isolated zooxanthellae from the coral Madracis mirabilis
showed no incorporation of H14CO3

� from seawater (no photosynthesis) after 4–
8 h exposure to Irgarol 1051 concentrations as low as 63 ng l�1. Reduction in net
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photosynthesis of intact corals was found at concentrations of 100 ng l�1 with little
or no photosynthesis at concentrations exceeding 1,000 ng l�1 after 2–8 h exposure.
These data suggest Irgarol 1051 is prevalent in tropical marine ecosystems and is a
potent inhibitor of coral photosynthesis at environmentally relevant concentrations.

Similarly, Photosystem II (PSII) herbicides used in agriculture and antifouling
paints can affect corals and their symbiotic dinoflagellates. Jones (2006) reviewed
ecotoxicological studies and found that PSII herbicides readily penetrate coral tis-
sues and within minutes reduce the photochemical efficiency of the algal symbionts,
with photosynthesis being affected at low concentrations (i.e. in the ng l�1 range). At
these levels and over short exposure periods, effects are reversible when corals are
returned to clean seawater. However, with higher concentrations or longer exposure
periods, there is long-term reduction of the photochemical efficiency of the algae,
which can result in the loss of the symbionts (bleaching, see below) a stress response
that requires months for recovery.

Markey et al. (2007) investigated various pesticides for effects on the coral
Acropora millepora. Most had few visible effects on adults after 96 h exposure
to 10 �g l–1, with the exception of profenofos, which caused polyp retraction,
bleaching, and a slight reduction in photosynthetic efficiency of the algal symbionts.
The fungicide MEMC (2-methoxyethylmercuric chloride) caused polyps to become
withdrawn and photosynthetic efficiency was slightly reduced at 1.0 �g l�1.
At 10 �g l�1 MEMC, branches bleached and some host tissue died.

Climate Change

Corals

The symbiotic relationship of corals and zooxanthellae is vulnerable to stresses
such as elevated temperature, which causes the corals to bleach, i.e. lose their
zooxanthellae (see Fig. 1.9). While bleaching can also be caused by intense irradi-
ance, chemical stresses (see above), freshwater inflow, and sedimentation, elevated
temperature is the primary cause of mass bleaching events (Kleppel et al. 1989).
Most reef-building corals normally contain around 1–5 � 106 zooxanthellae cm�2

of live surface tissue and 2–10 pg of chlorophyll a per zooxanthella. Photosynthetic
pathways in zooxanthellae are impaired at temperatures above 30 ıC, which could
activate the separation of coral and algae. When corals bleach they generally lose
60–90 % of their zooxanthellae and each remaining zooxanthella may lose 50–
80 % of its photosynthetic pigments (Glynn 1996). The pale appearance of bleached
corals is due to the calcareous skeleton showing through the tissues that have
lost pigmented zooxanthellae. Temperature shocks can also reduce zooxanthellae
through loss of cell adhesion, the detachment of coral endodermal cells from
their zooxanthellae and eventual expulsion. If bleaching is not too severe and if
it decreases over time, the corals may regain their symbiotic algae within several
weeks or months. If zooxanthellae loss continues and dinoflagellate populations
do not recover, the coral eventually dies because filter feeding is not adequate to

http://dx.doi.org/10.1007/978-94-007-6949-6_1
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meet its nutritional needs. However the coral plays a significant role in recovery and
resilience, and some species can adjust. Bleached and recovering Montipora capi-
tata corals could meet all their daily metabolic energy requirements by increasing
their feeding rates and CHAR (percent contribution of heterotrophically acquired
carbon to daily animal respiration), whereas Porites compressa and Porites lobata
could not. Therefore coral species with high-CHAR capability are more resilient
to bleaching, and may become the dominant coral species on reefs in the future
(Grottoli et al. 2006).

It had been hoped that corals living inside marine protected areas (MPAs) where
there is no fishing would also be more resilient to effects of increased temperatures.
To determine whether coral deaths caused by bleaching were lower inside MPAs,
Selig et al. (2012) compared over 8,000 coral reef surveys by divers with satellite
measurements of ocean surface temperatures. They found that although MPAs
could help coral populations recover from temperature-induced mortality in some
situations, it did not appear to be a general solution. In general, corals living inside
MPAs were just as susceptible to warming as unprotected corals.

While there is some specialization of particular hosts for particular Symbiodinium
species, many corals associate with more than one type of Symbiodinium, and a
particular Symbiodinium may associate with a variety of hosts (Baker 2003). This
flexibility allows corals to function well in different settings (e.g., shallow, high-light
situations versus deep water low-light conditions). Physiologically distinct lines of
Symbiodinium may have different thermal tolerance. Oliver and Palumbi (2011)
found that the coral–algal symbiosis adapts to particular temperature environments
through changes in the algal symbiont. It has been hypothesized that bleaching
allows the coral to be repopulated with zooxanthellae that are more temperature-
resistant. Thus, the coral/algal association may be able to adapt within a coral’s
lifetime. Corals in warmer environments tend to host Symbiodinium that are more
thermally tolerant.

Sponges

Elevated temperature also affects feeding in sponges. Massaro et al. (2012) ex-
amined the effects of thermal stress on feeding in the Great Barrier Reef sponge,
Rhopaloeides odorabile, focusing on filtration efficiencies and choanocyte chamber
characteristics. When temperature reached 31 ıC, flow rate, filtration efficiency, and
choanocyte chamber density and size were reduced, thus reducing food intake.

Echinoderms

Acidification altered feeding and growth in sea stars Asterias rubens exposed to 650,
1,250 and 3,500 �atm. Appelhans et al. (2012) exposed both the predators and their
prey, the blue mussel Mytilus edulis, over 10 weeks and subsequently performed
feeding assays. Intermediate acidification levels had no significant effect on growth
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or consumption, but produced a slight increase in feeding and growth. The highest
acidification level reduced feeding and growth rates by 56 %. Mussels exposed to
elevated pCO2 were preferred by previously untreated A. rubens. A trend toward
a lower shell mass in mussels in increasing seawater pCO2 was observed, and the
breaking resistance of shells was significantly lowered by �20 % at 3,500 �atm.
Despite the decrease in the breaking resistance of the shell, mussels did not become
more susceptible to crab predation under high acidification levels, even though crabs
consume them by breaking the shells. Breaking the shell is not the feeding mode of
the sea star, which pries open the valves; however, the mussel’s adductor muscle
(which holds the shells together) was not affected by the acidification. Thus, the
altered predation by the sea star predators is not explained by the physical changes
(or lack thereof) in the mussels.

Hypoxia/Nutrients

Benthic polychaetes have variable tolerance to low DO. Loima medusa, a common
species in estuarine habitats where summer hypoxic events often occur can tolerate
anoxia or severe hypoxia (7 % air saturation at 26 ıC) for 3–5 days (Llanso and Diaz
1994). Under low DO (<14 % air saturation) feeding stops, although tube irrigation
continues and periodic protrusions from the tube are common. Most worms come
out to the sediment surface. The prevalence of L. medusa in deep estuarine channels
may be partially explained by its tolerance to prolonged periods of hypoxia.

Excess nutrients (N), rather than hypoxia, can affect the susceptibility of corals
to bleaching. Increased dissolved inorganic nitrogen (DIN) has been linked to a
reduction of the temperature threshold of coral bleaching. Wiedenmann et al. (2013)
found that increased DIN and decreased phosphate increased the susceptibility
of corals to bleaching. Analyses suggested that the imbalanced supply of DIN
results in phosphate starvation of the symbiotic algae. A model was developed that
assumes that a transition of zooxanthellae from a nutrient-limited to a nutrient-
starved (in this case phosphate) state leads to changes in the lipid composition
of the algal membranes. Under stress, the altered photosynthetic membranes
and photosystems would impair photosynthesis and cause the breakdown of the
symbiosis and loss of zooxanthellae. These results suggest that a balanced reduction
of N input in coastal waters could help mitigate effects of increasing temperatures
on coral reefs.

Other Cnidarians (e.g. jellyfish) appear to be quite tolerant of low DO, which
can give them an advantage over more sensitive taxa. Low DO (�2 mg l�1)
greatly increased predation on fish larvae (naked goby Gobiosoma bosc) by sea
nettles (Chrysaora quinquecirrha) but decreased predation by juvenile striped bass
(Morone saxatilis) (Breitburg et al. 1997). Predation by the sea nettle increased
for fish larvae, decreased for fish eggs, and was not strongly affected for copepods
(mostly Acartia tonsa) at low DO. Changes in predator–prey interactions reflected
species differences in tolerance to low DO and its effects on escape behavior of
prey and on swimming and feeding behaviors of predators. Because of the variation
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in effects, low DO has the potential to alter the relative importance of different
pathways of energy flow in estuarine systems. Larvae of the red sea bream Pagrus
major in four size classes were used as prey in a short-term predation experiment
with moon jellyfish Aurelia aurita. No change in the bell contraction rate of the
jellyfish was observed at the DO levels tested (1, 2 and 4 mg/l, and 5.5–6.0 mg/l),
suggesting tolerance to low DO (Shoji et al. 2005). Over 80 % of the 2.5 and 4.1-mm
larvae were eaten at all DO concentrations during 15-min trials. The 6.2 and 8.6-
mm larvae were able to escape due to their developed swimming ability at the two
higher DO concentrations, but they suffered increased predation at the two lower
DO levels. Similarly, ctenophores (comb jellies) also are quite tolerant of hypoxia.
Laboratory clearance rates of Mnemiopsis leidyi feeding on bay anchovy (Anchoa
mitchilli) eggs and yolk sac larvae, and naked goby (Gobiosoma bosc) larvae were
as high at low DO (1.5 mg l�1) as at high DO concentrations (7 mg l�1) (Kolesar
et al. 2010). Years of field sampling at two sites revealed that ctenophore densities
remained high in the bottom even at low DO levels.

Polluted Sites

Sediments from estuaries in Southwest Portugal classified as undisturbed and
impacted were tested on the polychaete Hediste diversicolor (Moreira et al. 2006a).
A significant depression in post-exposure feeding (from 30 to 70 %) was consis-
tently seen in all impacted sediments, supporting the sensitivity and responsiveness
of feeding as a sublethal endpoint. Along with a reduced energy intake, increased
anaerobic metabolism (enhancement of lactate dehydrogenase activity), suggested
a rapid need for additional energy to ameliorate chemical stress.

This section has shown that reduced feeding (or reduced energy uptake from
photosynthetic symbionts) is a very common response to a variety of pollutant
stresses. Reduced energy intake can be the initial impetus for a variety of subsequent
responses, including respiration, growth, etc. that will be discussed in subsequent
chapters.

2.2 Digestion and Assimilation

Ingested pollutants can alter digestive physiology even before they are assimilated –
while still in the gut fluids they can affect gut motility, enzyme activities, or
absorption (De La Ruelle et al. 1992). This is termed “pre-assimilatory toxicity.”
Post-assimilatory toxicity occurs after the pollutant has been incorporated into
tissues; this may damage gut tissues and interfere with digestive enzyme synthesis
or release, and interfere with absorption, transport and subsequent assimilation of
nutrients (and pollutants), and thus impact energy reserves (Seebaugh 2010). Most
studies, however, do not attempt to distinguish between pre- and post-assimilatory
toxicity. Impacts on digestive function may depend on the manner of exposure.
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2.2.1 Crustaceans

Metals

Digestive enzymes tend to be inhibited by metals (Li et al. 2008). Sarojini et al.
(1992) reported that amylase, lipase, and protease activities of the stomach, midgut,
and hindgut of the prawn Caridina rajadhari were reduced after exposure to
tributyltin. Cd exposure (0.05 mg l�1) reduced food assimilation efficiency and fecal
pellet production in the mysid Leptomysis (Gaudy et al. 1991). Exposures ranged
from 0.01 to 0.2 mg l�1. Reduced food intake, combined with decreases in fecal
pellet production and reduced assimilation efficiency reflected a significant decrease
in energy which authors felt would lead to an unbalanced energy budget and lower
reproductive potential. Hydrolase activity increased initially at 0.2 mg Cd l�1, but
after 48 h it declined, reaching very low values at 72 h. The unbalanced energy
budget was an overall consequence of the inability to utilize food.

Cd in prey altered assimilation efficiency of Cd in the grass shrimp, P. pugio
(Seebaugh and Wallace 2004; Seebaugh et al. 2006). Cd assimilation was positively
correlated with gut residence time in shrimp collected along a pollution gradient.
Increased gut residence time can, in turn, influence pollutant assimilation. Ingestion
of a pulse of Cd reduced protease activities and fecal elimination rate (Seebaugh
2010). Digestive protease activities could have been influenced by pre-assimilatory
interactions between Cd in the gut fluids and enzyme-secreting cells, or they
could have resulted from impacts on stored or circulating enzymes. Ingestion of
a pulse of Cd can influence protease activities and fecal elimination rate (Seebaugh
2010). Thus, previous exposure to dietary metals can induce changes in digestive
physiology and affect digestive enzymes that may influence future digestion and
assimilation.

Grass shrimp fed Cd-containing polychaetes did not show a change in carbon
assimilation efficiency, minimum gut residence time, or gut pH, but did show a dose-
dependent decrease in feces elimination rate and an increase in protease activities,
but the latter was not dose-dependent (Seebaugh et al. 2012a). Studies with dye-
labeled food suggested that the reduced feces elimination rate was not due to
reduced food intake, but rather to reduced feces packaging and transport, possibly
by affecting the muscles responsible for peristalsis.

Grass shrimp were fed Hg-contaminated oligochaetes (Tubifex worms exposed to
0.007, 0.014, or 0.028 lM Hg for 96 h) over a 15-day period and analyzed for Hg, Cd,
and carbon assimilation efficiencies (AE) as well as end points related to digestion
(Seebaugh et al. 2012b). Hg AE by pre-exposed shrimp reached a plateau (approxi-
mately 53 %), whereas Cd AE varied (approximately 40–60 %) in a manner that was
not dose-dependent. Carbon AE did not differ among treatments. Gut residence time
and feces elimination were not impacted. Extracellular protease activity varied but
did not exhibit dose-dependency. pH increased over the range of Hg pre-exposures
within the gut, and Hg assimilation had a negative relationship to hydrogen ion
concentrations. Thus, previous Hg ingestion can elicit post-assimilatory impacts on
digestive physiology, which may, in turn, influence subsequent Hg assimilation.
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Organic Pollutants – Pesticides

There have been few studies on effects of organic pollutants on digestion. Fisher and
Clark (1990) examined kepone and assimilation in grass shrimp, P. pugio. Grass
shrimp and their food were exposed to a Kepone concentration of 0.04 �g l�1.
A first-order pharmacokinetic equation was used to model accumulation kinetics
during 16-day uptake and 21-day clearance. Doubling the contaminated food ration
caused a significant increase in the whole-body Kepone concentration. Shrimp fed
either a 4 or 8 % ration of uncontaminated food and exposed to Kepone in water
bioconcentrated Kepone equally. When shrimp were exposed to contaminated water
and food, Kepone accumulation from each source was additive, but the food was
very important in determining final body burdens. Dietary Kepone represented
approximately 24 and 33 % of the total body burden accumulated by shrimp fed
4 and 8 % food rations, respectively, but assimilation efficiencies of Kepone from
the food were low.

Horst et al. (2007) found that exposure to the juvenile hormone analog metho-
prene (50 �g l�1) caused up-regulation of genes in the hepatopancreas of the lobster,
Homarus americanus, for the enzymes betaine-homocysteine S-methyltransferase
(BHMT) and other enzymes of the methionine cycle. Increased levels of enzymes
associated with protein turnover, including trypsin, ubiquitin conjugating enzyme,
and ubiquitin carboxyl terminal hydrolase were also observed.

Polluted Sites

Grass shrimp (P. pugio) from polluted sites had reduced digestive protease ac-
tivity compared to shrimp from a reference site. Casein hydrolysis rates were
negatively correlated with gut residence time and inversely related to AE of Cd
(Seebaugh 2010), which would affect future assimilation of pollutants. However,
carbon assimilation was not affected, suggesting that the shrimp could compensate
for metal-induced post-assimilatory toxicity to maintain assimilation of nutrients
(Seebaugh 2010). It appears that gut plasticity (increasing gut residence time)
allows shrimp in contaminated sites to maintain adequate assimilation of essential
nutrients, but may increase the risk of dietary exposure to specific pollutants. There
was a trend of increasing gut residence time with increasing dietary Cd but not
Hg or carbon. Increased gut residence time can compensate for reduced digestive
enzyme activities. Fecal elimination rate was also not affected by field exposure,
which also may be a compensatory response to impacts of pollutants. Seebaugh et al.
(2011) found that digestive protease activities decreased markedly in grass shrimp
from impacted field sites relative to reference shrimp, and suggested that digestive
plasticity (increasing gut residence time) may be important in compensating for
post-assimilatory digestive toxicity (reduced protease activities) in order to maintain
nutrient assimilation. Stress-induced variability in digestive function may, in turn,
enhance the assimilation of non-essential elements, such as Cd.
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2.2.2 Mollusks

Pesticides

Field-collected oysters, C. gigas from areas in Northwest France highly contam-
inated with urea herbicides showed elevated mortality. Laboratory exposures to
diuron and isoproturon, 0.5 and 1 � gl�1 produced histopathology in the digestive
system (atrophy of the digestive tubule epithelium) (Buisson et al. 2008), which
would affect digestion and assimilation.

Contaminants of Emerging Concern

Canesi et al. (2012) exposed mussels (M. edulis) to nanoparticles (NPs) and found
that, due to the physiological mechanisms involved in the feeding process, NP
agglomerates/aggregates taken up by the gills were directed to the digestive gland,
where intracellular uptake of nanosized materials induced lysosomal perturbations
and oxidative stress. This could be a major mechanism of action underlying the
potential toxicity of NPs in marine invertebrates.

Acidification

Juvenile Mytilus galloprovincialis under conditions of �0.3 and �0.6 pH units
for 78 days showed increased absorption efficiency and ammonium excretion, and
increased scope for growth and tissue dry weight, suggesting that this species
is tolerant to acidification (Fernandez-Reiriz et al. 2012). Feeding itself was
unaffected.

2.2.3 Fishes

Metals

Socci and Farmanfarmaian (1985) investigated effects of inorganic Hg, methylmer-
cury, and Cd (<5.0 mg l�1) on intestinal absorption of amino acids (l-leucine and
l-methionine) by the toadfish, Opsanus tau, using an in vitro system. At 2.5 mg l�1

inorganic Hg inhibited leucine uptake, while meHg inhibited uptake at 5 mg l�1.
For methionine, inorganic Hg reduced intestinal uptake at 5 mg l�1, while meHg
inhibited it at 2.5 mg l�1. It is of interest that for leucine, HgCl2 was a more potent
inhibitor of intestinal uptake, which is unusual, in that meHg is generally the more
toxic form of the metal.

A high concentration (6.8 mg l�1) of Cd affected the histology and enzyme activ-
ities of the alimentary tract and liver of the fish, Heteropneustes fossilis (Sastry and
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Gupta 1979). Three phosphatases studied were significantly inhibited in the liver
and intestine. Pepsin activity was elevated in the stomach, but trypsin was inhibited
in the intestine. Inhibition was also noted in the activities of aminotripeptidase and
glycylglycine dipeptidase. High concentrations (0.3 mg l�1) of HgCl2 also affected
digestive enzymes in this fish (Gupta and Sastry 1981). The activities of alkaline
phosphatase and glucose-6-phosphatase decreased, while acid phosphatase activity
was elevated above normal. Significant decreases were observed in activities of all
the digestive enzymes except pepsin.

These experiments are decades old, and used high concentrations of metals, well
above those encountered in the field; thus, there is a need for new studies on effects
of lower levels of contaminants on fish digestive and assimilative activities.

Organic Pollutants – Pesticides

DDT exposure (0.05 or 0.1 mg l�1 for 24 h) of mummichogs (Fundulus heteroclitus)
impaired intestinal absorption of amino acids (Miller and Kinter 1977). The authors
thought this was due to impairment of membrane transport and speculated that this
could lead to reduced nutrition and growth.

Hypoxia

Juvenile cod (Gadus morhua) were exposed to low DO to investigate digestion
and metabolism (Jordan and Steffenson 2007). Reduced oxygen (6.3 kPa PO2)
depressed the usual postprandial (after feeding) increase in oxygen consumption.
The specific dynamic action (production of heat associated with the ingestion of
food) lasted over twice as long, perhaps to compensate for the reduced oxygen
availability. The percentage of energy associated with digestion and assimilation
was greater in hypoxia, occupying most of the scope for activity and leaving
little energy for other activities On the other hand, postprandial blood flow to the
gut during hypoxia was not proportionately reduced in sea bass, as predicted by
Axelsson et al. (2002). Although post-prandial absolute blood flow decreased during
hypoxia, the relative proportion of cardiac output reaching the gut did not decrease.
This was unlike the situation in non-feeding fish.

2.2.4 Other Taxa

Metals

Chen et al. (2002) assessed potential impacts of Cu on digestive enzyme activities
in a wide range of benthic invertebrates (echinoderms, mollusks, polychaetes,
echiurids, and hemichordates), by monitoring enzyme activities in their gut fluids
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during in vitro titrations with dissolved Cu, which mimics Cu solubilization from
sediments. Increasing Cu inhibited digestive protease activities at values that
varied from 8 �M for an echinoderm to 0.4 M for an echiuran. Threshold Cu
concentrations were similar for different digestive enzymes, suggesting the same
inhibition mechanism. Copper was less effective at inhibiting enzymes at lower pH,
suggesting that HC can compete with Cu ion for binding to active sites or that
enzyme conformation is less vulnerable to Cu inhibition at lower pH. The results
suggest that animals with low enzyme activity and high gut pH are more vulnerable
to Cu, although they solubilize less sedimentary Cu than animals with high enzyme
activity and low gut pH.

Seick et al. (1999) examined how cadmium pre-exposure (3 and 30 �g Cd g�1

dry wt. sediment) and gut passage time interact to determine cadmium absorption
efficiency (Cd-AE) in the polychaete Capitella sp. A 5-day pre-exposure to Cd did
not affect egestion rates during either the pre-exposure period or the chase phase.
Overall, Cd-AE increased with increasing gut passage time in worms that were not
pre-exposed, but pre-exposure to cadmium reversed the relationship between gut
passage time and Cd-AE. Thus, worm physiology may be especially important
in controlling metal bioavailability in deposit-feeding organisms and should be
considered in sediment quality approaches.

Organics

Schweitzer et al. (2000) examined dietary assimilation of PCBs and maternal
transfer in sea urchins. Adult Lytechinus pictus were allowed to graze on sediment
spiked with radiolabeled PCB, 2,20,4,40-tetrachlorobiphenyl for 35 days. L. pictus
was found to have quite high extraction efficiency; approx. 62 % of the PCB
sediment concentration was removed while passing through the gut. Maternal
transfer was not a more sensitive exposure route to developing embryos than
direct water exposure. Both adults and embryos were resilient to this PCB at
environmentally relevant sediment concentrations. Low toxicity of PCBs allows for
significant bioaccumulation in sea urchins.

Hypoxia

Specific feeding rate, growth, and production efficiency were measured on
individuals of the polychaete Capitella species 1 to determine whether previously
measured declines in growth rates in response to hypoxia were due to decreased
feeding, decreased conversion efficiency, or both (Forbes et al. 1994). The
relationship between feeding rate and growth was influenced by oxygen
concentration such that in relatively nitrogen-poor sediment, greater growth rates
were observed at lower DO. Measurements of growth and feeding rates indicated
that the effect of DO was due to a decrease in the efficiency with which ingested
sediment was converted to tissue under low N, high DO conditions. Authors
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suggested that the decreased conversion rate of ingested sediment to body volume
under the higher DO regime reflected an aerobic metabolic system poised to rapidly
exploit available oxygen supplies.

Along with tolerance to hypoxia in their feeding responses, gelatinous taxa also
appear to have high tolerance in their digestive processes. Ctenophore (Mnemiopsis
leidyi) digestion rates were unchanged at oxygen concentrations of 1 mg l�1 (Decker
et al. 2004). Gelatinous species, which are more tolerant of hypoxia than fishes, may
be able to inhabit regions of low oxygen that are avoided by zooplanktivorous fishes
that have higher oxygen requirements. This could lead to dominance of gelatinous
predators in areas affected by hypoxia and might alter energy pathways in these
systems.

Polluted Sites

The polychaete Nereis diversicolor from a polluted estuary (Loire) and a relatively
clean site (Bay of Bourgneuf) were compared (Kalman et al. 2009). Significant inhi-
bition of the digestive enzymes amylase and carboxymethylcellulase were recorded
in individuals from the Loire compared to the reference site. Feeding and egestion
rates were also depressed in worms from the Loire compared to the reference site.
This impairment was accompanied by changes in digestive enzyme activities, which
could explain the generally poorer condition of worms in the Loire estuary.

2.3 Conclusions

Most animals respond to most contaminants with a reduction in feeding and
digestion. Decreased food intake places energetic demands on the organism, which
may be responsible for decreases in other physiological functions (e.g. respiration)
that will be discussed in the following chapters. In many cases when food intake
is reduced, animals reduce their activity in order to conserve energy; this in turn
may make it harder to find and get food – which intensifies the problem in positive
feedback situation. The taxonomic group that would seem to be at greatest risk
of mortality from reduced energy intake would appear be the corals, which get
most of their energy requirements from their photosynthetic symbionts, which are
very sensitive to toxicants and temperature. Coral bleaching can frequently lead to
mortality.

References

Al-Subiai N, Moody AJ, Mustafa SA, Jha AN (2011) A multiple biomarker approach to investigate
the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicol Environ Saf
74:1913–1920



60 2 Feeding and Digestion

Anguiano G, Llera-Herrera R, Rojas E, Vazquez-Boucard C (2007) Subchronic organismal
toxicity, cytotoxicity, genotoxicity, and feeding response of pacific oyster (Crassostrea gi-
gas) to lindane (”-HCH) exposure under experimental conditions. Environ Toxicol Chem
26:2192–2197

Appelhans YS, Thomsen J, Pansch C, Melzner F, Wahl M (2012) Sour times: seawater acidification
effects on growth, feeding behaviour and acid–base status of Asterias rubens and Carcinus
maenas. Mar Ecol Prog Ser 459:85–98

Axelsson M, Altimiras J, Claireux G (2002) Post-prandial blood flow to the gastrointestinal
tract is not compromised during hypoxia in the sea bass Dicentrarchus labrax. J Exp Biol
205:2891–2896*

Baker A (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology and
biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

Bell GW, Eggleston DB, Wolcott TG (2003) Behavioral responses of free-ranging blue crabs to
episodic hypoxia. II. Feeding. Mar Ecol Prog Ser 259:227–235

Blockwell SJ, Taylor EJ, Jones I, Pascoe D (1998) The influence of fresh water pollutants and
interaction with Asellus aquaticus (L) on the feeding activity of Gammarus pulex (L). Arch
Environ Contam Toxicol 34:41–47

Breitburg DL, Loher T, Pacey CA, Gerstein A (1997) Varying effects of low dissolved oxygen on
trophic interactions in an estuarine food web. Ecol Monogr 67:489–507

Buisson S, Bouchart V, Guerlet E, Malas JP, Costil K (2008) Level of contamination and impact
of pesticides in cupped oyster, Crassostrea gigas, reared in a shellfish production area in
Normandy (France). J Environ Sci Health B 43:655–664

Candelmo A, Deshpande A, Dockum B, Weis P, Weis JS (2010) The effect of contaminated prey
on feeding, activity, and growth of young-of-the-year bluefish, Pomatomus saltatrix, in the
laboratory. Estuar Coast 33:1025–1038

Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a
unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

Capuzzo JM, Sasner JJ (1977) The effect of chromium on filtration rates and metabolic activity
of Mytilus edulis and Mya arenaria. In: Vernberg FJ, Calabrese A, Thurberg FP, Vernberg WB
(eds) Physiological responses of Marine Biota to pollutants. Academic, New York, pp 225–237

Chen Z, Mayer LM, Weston DP, Bock MJ, Jumars PA (2002) Inhibition of digestive enzyme
activities by copper in the guts of various marine benthic invertebrates. Environ Toxicol Chem
21:1243–1248
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Chapter 3
Respiration and Metabolism

Abstract Respiration includes the transport of oxygen from the outside of the
organism into the cells and the transport of carbon dioxide in the opposite direction.
Cellular respiration, which takes place within cells, consists of the metabolic
processes by which energy is obtained by breaking down glucose through enzymatic
pathways (glycolysis and the Krebs cycle), creating water, carbon dioxide and ATP.
Respiration responds directly to metabolic needs. Most toxicants studied have been
found to reduce the metabolic rate and thus, the respiration of many organisms.
Many studies have relied primarily on a single metric, oxygen consumption, to
determine changes in metabolic rates. In some cases, however, lowered oxygen
consumption can be attributed to reduced ventilation of the gills or to gill damage,
and in other cases the toxic mechanism is disruption of the enzymes of cellular
respiration. Relatively few studies have related effects on respiration to carbon
assimilation through measures of feeding and excretion or have examined total
effects on the carbon, nitrogen, or energy budget.

Keywords Anaerobic • CO2 • Energy • Gills • Glycolysis • Oxygen • Respi-
ratory enzymes

3.1 Crustaceans

3.1.1 Metals

Cadmium

Early studies showed that Cd (0.1 and 0.5 mg l�1) reduced the metabolic rate
(O2 consumption) in both larval and adult fiddler crabs, Uca pugilator (Vernberg
et al. 1974), and grass shrimp (Hutcheson et al. 1985). When grass shrimp
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(Palaemonetes pugio) were placed in reduced DO (4.6 mg l�1) they reduced their
respiration rate and activity level (an adaptive response) and when Cd was present,
respiration and activity were reduced even further. Similarly, Barbieri (2007) found
that exposure of pink shrimp (Farfantepenaeus paulensis) to Zn (0.31 mg l�1) or
to Cd (0.18 mg l�1) inhibited oxygen consumption. However, lobsters exposed to
much lower concentrations of Cd (3 �g l�1) had elevated gill oxygen consumption
and increased ATPase activity (Thurberg et al. 1977). This may have been an
example of hormesis (the tendency for low levels of contaminants to have “positive”
effects, while at high levels, processes are inhibited). Gaudy et al. (1991) found
that temperature affected the responses of the mysid Leptomysis lingvura to Cd. At
18 ıC, respiration rate was affected only by concentrations greater than 0.05 mg Cd
l�1. Exposure to 0.1 mg Cd l�1 depressed the respiration rate more significantly at
20 ıC than at 10 ıC. Thus it is important to consider temperature and oxygen level
when examining respiratory responses to contaminants.

Mercury

St-Amand et al. (1999) exposed zoea larvae of the shrimp Pandalus borealis to
inorganic Hg (0–160 �g Hg l�1) for 27 h. and measured oxygen consumption,
potential respiration (respiratory electron transfer system activity, ETSA), and
swimming activity. ETSA was unchanged after 27 h exposure to 160 �g Hg l�1,
while oxygen consumption and swimming activity decreased, showing that Hg
disturbed a part of the respiration process without changing the activity of the
enzymes involved in ETSA.

Copper and Zinc

Cu and Zn (0.4 mg l�1) impaired respiratory function of the crab Cancer pagurus
after 7 days exposure, but only during hypoxia (Spicer and Weber 1991). Exposure
did not produce significant changes in ventilation or perfusion rates, although
there was some indication that cardiac output may increase in respiratory-impaired
individuals. They considered that respiratory impairment was due to an increase
in the diffusion barrier thickness of the gills. Similar responses were observed
by Nonnotte et al. (1993) in Carcinus maenas in 0.5 mg l�1 Cu. Gill structural
alterations such as hyperplasia, vacuolization and necrosis were found after only
5–6 days, causing thickening of the gill epithelium, which restricted respiratory
gas exchange. In a review, Spicer and Weber (1992) concluded that the essential
metals Cu and Zn act on the respiratory system primarily by disrupting gill
function, causing development of internal hypoxia, while the more toxic Hg and
Cd interfere with the respiratory system at every level of organization including
cellular respiration itself.
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3.1.2 Organics

Oil

Effects of oil and its constituent hydrocarbons vary considerably among differ-
ent crustaceans, with a number of studies showing increased metabolic rates in
response to exposure. Studies have generally used individual hydrocarbons (e.g.,
naphthalene) or the water soluble fraction (WSF) of oil, which lowered respiration
in the shrimp Crangon (Edwards 1978). In adult Northern shrimp Pandalus borealis,
energy balance (scope for growth) declined after exposure to WSF (20–36 �g
l�1), but this was due to reduced food intake and remained positive at all oil
concentrations (Stickle et al. 1987). These investigators measured the costs of
respiration and ammonia excretion and found that energy budget costs did not
change significantly in response to differing levels of fuel oil, while feeding rate was
dose dependent. In fact, at low levels of exposure, feeding rates increased (evidence
of hormesis), while at high levels feeding rate decreased. Since metabolic costs
remained relatively constant, food consumption alone determined energy budget
in this study. Nitrogen excretion accounted for only 10–20 % of metabolic costs,
while oxygen metabolism accounted for 80–90 % of costs. Blue crabs (C. sapidus)
exposed to WSF increased their energy expenditure and decreased their scope for
growth, due (again) primarily to reduced feeding. The crabs reduced their energy
intake without reducing maintenance costs and had reduced growth and longer
intermolt periods at 800 �g l�1 (Wang and Stickle 1987). In both studies, metabolic
costs of respiration remained relatively constant while feeding rate changed in
response to contamination. Lobster larvae (Homarus americanus) exposed to
0.25 mg l�1 South Louisiana crude oil showed reduced respiration rate and O:N
ratios (Capuzzo and Lancaster 1981). Low O:N ratios suggest that the larvae were
deriving their energy from catabolism of protein, rather than carbohydrates or
lipids. Energy metabolism did not return to control values after 1 week in clean
water.

Atlantic rock crab (Cancer irroratus) in 14C-naphthalene-labeled oiled sea water
readily accumulated the isotope into hemolymph (Vandermeulen et al. 1980).
Respiration was lowered in crabs in 11.0 mg l�1, and returned to control levels when
crabs were returned to clean sea water. The hemocyanin-O2 binding potential and
the structural integrity of hemocyanin were unaltered, suggesting that disruption of
hemocyanin-O2 binding is not a mechanism of hydrocarbon respiratory toxicity.
Naphthalene (0.12 mg l�1) exposure in the shrimp Metapenaeus affinis, caused
reduced oxygen consumption, protein content, organic carbon, and weight gain,
but lipid content increased (Ansari et al. 2010). In contrast, oxygen consumption
increased in 8 mg l�1-naphthalene-treated mud crabs, Scylla serrata (Vijayavel and
Balasubramanian 2006), while activity of the respiratory enzymes lactate dehydro-
genase, isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase,
and ’-ketoglutarate dehydrogenase decreased in the hepatopancreas, ovary, and gills
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at all tested concentrations. Thus, some of the oxygen brought into the animal was
not used in cellular respiration. Authors explained these somewhat contradictory
effects as follows: When the animal is under stress, it consumes more oxygen to
generate more energy and more water to utilize the oxygen, leading to enhanced
uptake of naphthalene, which bioaccumulates to high concentrations. Normally
there is equilibrium between the amount of oxygen generated and the activity of
mitochondrial enzymes. Under stress, the equilibrium is disturbed which, as oxygen
consumption increases, leads to the reduction in activity of the respiratory enzymes.
Damage to mitochondrial membranes causes inhibition of mitochondrial enzymes,
which reduces substrate oxidation and the rate of transfer to molecular oxygen,
thus reducing the energy produced. Mitochondrial damage by naphthalene leads to
decreased respiration, partial uncoupling of oxidative phosphorylation, and reduced
ATP production.

Naphthalene at the much lower concentration of 0.2 mg l�1 also increased
oxygen consumption in adult mysids Neomysis americana (Smith and Hargreaves
1985). In another example of increase in metabolic rate, Laughlin and Linden
(1983) found that exposure to high levels of WSF of crude oil (200 and 1,000 �g
l�1) increased metabolic rate and ammonia excretion in another mysid, N. integer.
Effects were influenced by temperature, with the greatest effect at 21.5 ıC, the
highest temperature tested. It is possible that temperature may partially explain some
of the contradictory results in direction of response. Differences have been found
in sensitivity of juvenile vs. adult shore (green) crabs (C. maenas) (Dissanayake
et al. 2008). Sublethal exposure to 200 �g l�1 pyrene elevated the basal heart rate
and decreased respiration rate of juveniles, but had no overall impact on adults,
confirming that juveniles are more susceptible than adults. The authors felt their
results had implications for environmental risk assessment, since basing “safe”
concentrations on the tolerances of adults fails to protect more sensitive life stages.

Pesticides and Other Organic Chemicals

Energy metabolism of the mysid Mysidopsis bahia was altered by exposure to
the pesticide fenthion. Juveniles increased their respiration, which reduced the
amount of energy available for growth, resulting in reduced growth (McKenney and
Matthews 1990). Fenvalerate, a pyrethroid insecticide, when present in sediment
at 10 �g kg�1, also reduced weight gain in P. pugio larvae and juveniles due
to altered energy metabolism. Affected larvae contained significantly less N than
controls, while exposed postlarvae contained significantly less carbon and less
energy (McKenney et al. 1998) (Fig. 3.1). Thiobencarb, a carbamate insecticide,
at 100 �g l�1 also stimulated the respiratory rate in M. bahia, thus reducing the
amount of energy available for growth. Higher O:N ratios suggested a greater
reliance on energy-rich lipid substrates resulting in less lipid being available for
gamete production (McKenney 1985).

Verslycke et al. (2004) studied cellular respiratory responses of the mysid
Neomysis integer as well as scope for growth (SFG) and cellular energy allocation



3.1 Crustaceans 69

5

4

3
0 1 10

ug fenvalerate/kg sediment ug fenvalerate/kg sediment

Day 7

J 
(x

 1
03  

pe
r 

sh
rim

p)

100

11

10

9

8
0 1 10

Day 14

100

24

21

18

15

12
0 1 10

Day 21

*
*

Postmetamorphic

Premetamorphica

b

J 
(x

 1
03  

pe
r 

sh
rim

p)

100

50

45

40

35

30
0 1 10

Day 28

100

Fig. 3.1 Energy content (J � 103 per shrimp) for P. pugio larvae (a) and post-larvae (b) as
influenced by exposure from day of hatch to sediment with fenvalerate. Values D means ˙ SE;
asterisks D significant differences (p < 0.05) from control (Reprinted from McKenney et al. 1998:
469, courtesy of Springer Publishing Co)

(CEA). Both assays are based on the concept that energy in excess of that required
for normal maintenance will be available for growth and reproduction. Mysids
were exposed to environmentally realistic concentrations of the organophosphate
pesticide chlorpyrifos. Results of both assays were significantly correlated, and both
were significantly affected by chlorpyrifos (Fig. 3.2). CEA was more sensitive and
was reduced at lower concentrations (0.038 and 0.056 �g l�1) than SFG.

Effects of PCBs on fiddler crab Uca pugilator respiration were variable – at some
temperatures 50 �g l�1 PCBs increased metabolic rate and at other temperatures
it decreased it (Vernberg et al. 1978), showing again that temperature may be
responsible for some of the disparate results obtained in different studies. Effects
of pentachlorophenol on the metabolic rate of grass shrimp depended on the molt
cycle stage (Cantelmo et al. 1978), with molting stages much more sensitive
than intermolt animals. This study also found pentachlorophenol inhibition of
respiratory enzymes in blue crabs, including fumarase, succinate dehydrogenase,
malate dehydrogenase, glucose-6-phosphate dehydrogenase, pyruvate kinase, and
lactic dehydrogenase.
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3.1.3 Hypoxia

Most organisms reduce their respiration in response to hypoxia, which is an adaptive
response. Bridges and Brand (1980) found a respiratory overshoot or oxygen debt
in Corystes cussivelaunus and Galathea strigosa after exposure to a hypoxic stress.
This oxygen debt depended on the length and severity of the hypoxia, and the
oxygen debt/deficit ratio was smaller in Corystes than in Galathea. Hemolymph
lactate levels rose rapidly during hypoxia in both species but returned to control
levels more rapidly in Corystes when returned to normoxia. Studies of lactate
levels in other crustaceans showed that lactate declines during recovery from
hypoxia more rapidly in burrowing crustaceans (which may normally be exposed
to low DO more often) compared to non-burrowing species. Examples of burrow-
dwelling crustaceans are the mud shrimps Upogebia stellata and U. deltaura whose
burrows are usually hypoxic and hypercapnic. Burrow water pO2 in the parts of
the burrow normally occupied by the mud-shrimp was between 80 and 110 Torr
(1 Torr D1/760 of one atmosphere), but was much lower (10–45 Torr) in the deepest,
poorly-irrigated parts. They irrigate their burrows by pleopod beating, which draws
oxygenated water into the burrow. When exposed to hypoxia, these species could
maintain their rates of oxygen consumption over a wide range of pO2 (30–50 Torr)
(Astall et al. 1997). The shrimp Calocaris macandreae inhabits complex burrows in
marine muddy sediments which are subject to severe hypoxia. In the laboratory,
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it was highly tolerant of anoxia (LT50 D 43 h) and accumulated L-lactate as the
end-product of anaerobic metabolism (Anderson et al. 1994). Metabolic recovery
was slow; hemolymph lactate concentrations returned to normal after approximately
40 h. Anaerobic metabolism appeared to be initiated only during exposure to severe
hypoxia (<7 Torr).

Taylor and Spicer (1987) investigated the prawns, Palaemon elegans from
intertidal pools, and P. serratus from subtidal areas. P. elegans had greater tolerance
of severe hypoxia than P. serratus. Exposure to moderate hypoxia (30 Torr) resulted
in little change in the concentration of L-lactate in the blood or in the tissues of
either species, but when in extreme hypoxia (10 or 5 Torr), there was a progressive
increase in the concentration of L-lactate in the blood and tissues of both species,
which returned to normal levels more rapidly in P. elegans after return to normoxic
conditions. Under hypoxia, both species showed an increase in blood glucose and
a reduction in the glycogen content of the tissues, which returned to normal levels
within 6 h of return to normoxic conditions. However, during exposure to severe
hypoxia under both laboratory and field conditions, P. elegans frequently exhibited
partial emersion by moving into shallow water, usually lying on their sides at the
water’s edge (Taylor and Spicer 1988). The PO2 at which this response occurred
depended on temperature; at higher temperatures they exhibited the response at
higher oxygen tensions. When exposed to anoxic conditions in the laboratory
P. elegans often left the water and emerged on rocks. In these prawns, the total
oxygen content of the blood was higher and lactate lower than that of either fully
immersed or totally emersed prawns. Similarly, when exposed to hypoxia, the
green crab, Carcinus maenas also can emerge and aerate its branchial chambers
by reversing the direction of their irrigation (Taylor et al. 1973). At low oxygen
tensions submerged crabs underwent a progressive bradycardia – heart rate became
significantly lower than the rate in normoxia. However, emersion into air resulted
in aeration of the branchial chambers and an immediate return of heart beat towards
that in normoxic seawater. The results provide indicate a respiratory role for the
emersion response.

Glucose, lactate, and ammonia concentrations of Norway lobster, Nephrops
norvegicus were studied in normoxia and in various hypoxia levels for periods up to
3 weeks. Increases in circulating glucose and lactate took place in oxygen tensions
less than 30 Torr, indicating aerobic metabolism down to this oxygen tension
(Hagerman et al. 1990). In moderate hypoxia (half saturation), lobsters synthesised
hemocyanin; in more severe hypoxia some hemocyanin catabolism occurred.

3.1.4 Climate Change/Ocean Acidification

The copepod, Centropages tenuiremis, under 1,000 �atm CO2 increased respiration
and feeding, except for an initial acclimating period, when feeding was less (Li and
Gao 2012). The authors suggested that the copepods increased their respiration and
feeding in response to acidification in order to balance energy costs.
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The shrimp Metapenaeus joyneri exposed to both hypercapnia (1 kPa) at
two temperatures (15 and 20 ıC) demonstrated physiological effects, (i.e. lower
hemolymph osmolality and higher pH) and reduced metabolic scope (the difference
between active and routine metabolism), compared with control individuals at
0.04 kPa (Dissanayake and Ishimatsu 2011). Authors suggested that synergistic
factors may cause organisms to shift their energy utilization towards up-regulation
of maintenance functions (e.g. osmoregulation) causing a decrease in aerobic scope
and energy-demanding activities.

3.2 Mollusks

3.2.1 Metals

Oysters, Crassostrea virginica, were exposed to Cu (50–100 �g l�1) or Cd (100–
600 �gl�1) for up to 14 days. Cu produced increases in oxygen consumption at
100 �g l�1, as did Cd at 600 �gl�1 (Engel and Fowler 1979). Gills accumulated
both metals as a function of time of exposure, and Cu produced cellular swelling
and mitochondrial damage in gill tissue. Brown and Newell (1972) found that Cu
reduced oxygen consumption in M. edulis, while Thurberg et al. (1974) reported
that silver stimulated respiration of surf clams (Spisula solidissima) after exposure
to 0.05 and 0.10 �g l�1 Ag. Thus, different metals produced different responses in
respiratory processes.

Brown mussels, Perna perna, exposed to Cu at 25 and 50 �g l�1 increased
their mucus secretion rate, nitrogen excretion rates and oxygen consumption
rates (Vosloo et al. 2012). The increased respiratory rates at the higher metal
concentrations were related to the induced stress response (Fig. 3.3).

Elfwing and Tedengren (2002) compared responses of two intertidal oysters
(Saccostrea cucullata and Crassostrea lugubris) and a subtidal species, C. belcheri
to 12 h exposure to 20 �g l�1 Cu. While oxygen consumption, ammonia excretion,
clearance rate, and absorption efficiency were reduced, the intertidal species were
more tolerant than the subtidal species, presumably because they live in a more
variable environment.

Manila clams (Ruditapes philippinarum) were exposed to 10 and 40 �g l�1 of Cu
(96 h) and responses characterized using NMR-based metabolomics (Zhang et al.
2011). At both concentrations, metabolic changes were seen in intermediates of the
Krebs cycle and amino acids, such as increases in homarine and branched chain
amino acids, and decreases in succinate, alanine and dimethylamine in gills. Similar
studies with arsenic by Wu et al. (2013) with different salinities revealed that in
salinity of 31.1 ppt, As decreased levels of amino acids (glutamate, “-alanine, etc.),
and increased betaine and fumarate. Metabolic biomarkers of decreased threonine,
histidine, ATP and fumarate were found in As-treated clams at medium salinity
(23.3 ppt). However, in low salinity (15.6) only elevated ATP and depleted succinate
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were detected. Thus, As induced osmotic stress and disturbed energy metabolism in
normal and medium salinities, but caused only disturbance in energy metabolism
under low salinity.

Leung et al. (2000) found metabolic depression in Cd-exposed (500 �g l�1) dog-
whelks, Nucella lapillus. (Fig. 3.4). Reduced metabolism was considered a strategy
to minimize Cd uptake and toxicity while meeting the extra energy demands for
detoxification and maintenance. They also observed mucus secretion and necrotic
cells on the surface of the gills, which would also depress O2 uptake. Reduction
in metabolic O2 may be directly linked to Cd-induced mucus production, structural
damage to gills, and reduction in oxygen carrying capacity of hemocyanin. These
effects were observed at 10 ıC but not at 5 ıC.

Mussels, Perna viridis, exposed to Cd or Zn similarly exhibited reduced oxygen
consumption and ammonia excretion (Cheung and Cheung 1995). Mudsnails
(Hydrobia ulvae) exposed to 100 and 200 �g l�1 Cd had altered carbon and energy
balance as well as growth rate and increased carbon loss but no change in egestion
rates (Forbes and Depledge 1992). The changes in the partitioning of carbon loss
from body stores suggested a partial shift from aerobic to anaerobic metabolic
pathways. Oysters (C. virginica) exposed to Cd showed suppressed anaerobic
metabolism during anoxia. In controls, ATP turnover during anoxia was sustained
by anaerobic glycolysis with negligible contributions from ATP breakdown, but
in Cd-exposed oysters ATP breakdown contributed significantly to turnover rate.
Thus, while control oysters could maintain ATP levels and tissue energy status
during anoxia by glycolysis, Cd-exposed oysters had disturbed energy balance as
indicated by the depletion of ATP, decline in adenylate energy charge and increase
in ADP/ATP ratios (Fig. 3.5) (Ivanina et al. 2010).
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Mercury was associated with respiratory impairment in cockles Cerastoderma
edule at field sites in Portugal (Nilin et al. 2012). The energy content was negatively
correlated with both Hg concentration in tissues and survival in air. Hexavalent Cr
(0.1, 1, and 10 �g l�1) had multiple effects on gills of the mussel M. galloprovin-
cialis. Exposure induced progressive changes in morphology and immunoreactivity
(Ciacci et al. 2012). Cr(VI) increased the activities of the glycolytic enzymes
GST and GSR, indicating modulation of carbohydrate metabolism. Changes in
transcription of genes for various enzymes were also observed, indicating that Cr
affected functional and molecular parameters in gills.

Tributyltin increased the respiration rate in mussels (Mytilus edulis) in a dose-
dependent manner from 0.5 to 10 �g TBT g�1 in tissues. The maximum rate was
about twice the control level. Feeding rates were reduced at 3–4 �g g�1, indicating
a severe reduction in scope for growth, which is consistent with field observations
of growth reduction. Effects of dibutyltin (DBT) were an order of magnitude less
toxic (Widdows and Page 1993).

3.2.2 Organics

Oil

The scope for growth (SFG – derived by subtracting the energy used and excreted
from the energy absorbed from food) represents the energy available for repro-
duction and somatic growth. Stickle et al. (1985) found Mytilus edulis exposed
to the WSF of crude oil reduced their scope for growth with increasing WSF
concentrations until it was 0 at 1,163 �g�1 aromatic hydrocarbons. The major
reason for the reduction, however, was found – again- to be reduced food intake.

Pesticides

Effects of the piscicide, 3-trifluoromethyl-4-nitrophenol, were studied in two marine
mollusks by in vivo 31P nuclear magnetic resonance spectroscopy, a technique for
examination of cellular respiratory toxicity since inorganic phosphate, phosphoargi-
nine, and adenosine 50-triphosphate levels, and the arginine kinase rate constant, can
be measured (Viant et al. 2001). These parameters were measured in red abalone
(Haliotis rufescens) and owl limpets (Lottia gigantea) during 5-h exposures to
3 mg l�1 3-trifluoromethyl-4-nitrophenol, followed by 5-h recovery. In the abalone,
phosphoarginine decreased by 50 %, inorganic phosphate increased by 900 %, and
the arginine kinase rate constant quadrupled compared to controls, which is consis-
tent with an uncoupling of oxidative phosphorylation. Limpets were less affected,
showing no change in phosphoarginine, an increase of only 200 % in inorganic phos-
phate, and an approximate doubling of the arginine kinase rate constant. Adenosine
50-triphosphate levels remained constant in all control and exposed mollusks.
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As biological pesticides have become more prevalent, products based on the
bacterium Bacillus thuringiensis (Bt) are among the most common biopesticides.
Manachini et al. (2013) studied the effect of a commercial Bt product on physiolog-
ical responses and energy budgets of two intertidal bivalves in the Mediterranean,
the native Mytilaster minimus and the invasive Brachidontes pharaonis. They
simulated worst case scenarios using the average dose applied to fields (45 �l l�1)
and a hypothetical accumulation dose (90 �l l�1). Feeding rates declined while
respiration rates and cardiac activity increased, resulting in reduced energy budgets.
B. pharaonis was affected to a greater degree than M. minimus, but neither species
showed altered excretion rates. Whether such “worst case” concentrations would
occur in nature is unknown.

3.2.3 Contaminants of Emerging Concern

Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound
used in pharmaceuticals and personal care products. Alterations in lysosomal
stability can be induced by various stressors. When stable, lysosomes accumulate
and retain the dye neutral red for extended periods of time, but when destabilized,
they coalesce to form larger structures and the neutral red will leak into the cytosol
of the cell through damaged membranes. Lysosomal changes following the addition
of neutral red dye can be directly related to the degree of stress being imposed.
Triclosan produced a significant reduction of neutral red retention time by Perna
perna at 12 ng l�1, levels considered similar to environmental levels (Fig. 3.6)
(Cortez et al. 2012).

3.2.4 Hypoxia

Wang et al. (2011) maintained mussels, Perna viridis, for 4 weeks under different
DO (1.5, 3.0 and 6.0 mg O2 l�1) and salinity (15, 20, 25 and 30) regimes. Clearance
rate, absorption efficiency, respiration rate and scope for growth decreased with
decreasing salinity and DO, while excretion rate increased with decreasing salinity
and increasing DO. The O:N ratio was <10 at salinities of 15 and 20 at all DO
levels. SFG was negative in most cases, except for those exposed to 6.0 mg O2 l�1

or at a salinity of 30 with lower DO.
Exposure to hypoxic sea water (pO2 of 50 mmHg) and hyposalinity (20 %)

caused the heart rate of the limpet Patella granularis to decline rapidly (Marshall
and McQuaid 1993). In hypoxia the normal heart rate (50 beats/min) fell initially
to 15–30 beats/min, and 2 h later, cardiac arrest occurred. When oxygen tension
and salinity were returned to normal, heart rate became significantly elevated.
In Siphonaria capensis, a pulmonate, exposure to reduced oxygen tension and
salinity induced a regular, although often delayed (after 2 h) bradycardia (<10
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beats/min). No significant cardiac overshoot was observed for this limpet. Different
heart beat patterns by the limpet species may be linked with respiratory/metabolic
responses.

Kozuki et al. (2013) studied after-effects of hypoxia (DO of 0.5 mg l�1) on
the manila clam Ruditapes philippinarum. After 3 days of hypoxia, no substantial
change in mortality, glycogen content, or clearance rate was observed in the period
following the hypoxia. However, after another 3 days of hypoxia following recovery
from the first exposure, mortality rate increased, glycogen content declined, and
clearance rate decreased to 77 % of controls and was unable to recover following
the second exposure.

Hypoxia can interact with metals. Ivanina et al. (2011) studied the combined
effects of Cd and intermittent anoxia on anaerobic metabolism and energy status
of oysters (C. virginica). Anaerobic metabolism (indicated by accumulation of
L-alanine, succinate and acetate) was suppressed in Cd-exposed oysters. In control
oysters, ATP turnover rate during anoxia was mostly sustained by anaerobic gly-
colysis with negligible contributions from ATP and PLA breakdown. In contrast, in
Cd-exposed oysters ATP breakdown was a major factor. Thus, while controls could
maintain ATP levels and tissue energy status during prolonged anoxia, Cd-exposed
oysters had disturbed energy balance, as indicated by the depletion of ATP, a decline
in adenylate energy charge, and increase in ADP/ATP ratios. This energy deficiency
combined with suppression of anaerobic metabolism may strongly affect oysters in
estuaries where metal pollution co-occurs with hypoxia. However, some acclimation
can occur. Hypoxia-acclimated oysters retained normal standard metabolic rates at
5 % O2 (in contrast to a decline during acute hypoxia). Oysters spent more time
actively ventilating in hypoxia than normoxia, causing enhanced Cd uptake (Ivanina
et al. 2011). Cd (50 �g l�1) led to a decrease in tissue glycogen stores, increase in
free glucose, and elevated activity of glycolytic enzymes (hexokinase and aldolase)
indicating a greater dependence on carbohydrate catabolism.

3.2.5 Climate Change/Ocean Acidification

Juvenile clams Ruditapes decussatus were exposed to reduced pH (�0.4 and �0.7
pH units) compared with control seawater. After 87 days, clearance, ingestion and
respiration rates decreased, and ammonia excretion increased (Fernández-Reiriz
et al. 2011). Reduced ingestion combined with increased excretion is associated
with lowered energy input, which will likely contribute to slower growth. It is
interesting to note that in this relatively long-term exposure, there was no adaptation
to the changed environment.

High CO2 levels (pH �7.5, pCO2 �3,500 �atm) increased juvenile mortality
rates and inhibited both shell and soft-body growth of juvenile C. virginica
compared to control conditions (pH �8.2, pCO2 �380 �atm) (Beniash et al. 2010).
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Furthermore, elevated CO2 raised the standard metabolic rate which was considered
to be due to the higher energy cost of homeostasis. Dickinson et al. (2012)
studied interactive effects of salinity and CO2 on energy homeostasis in juvenile
C. virginica, exposed for 11 weeks to 30 or 15 salinity at current atmospheric PCO2

(�400 �atm) or �700–800 �atm. Elevated PCO2 and/or low salinity led to increased
mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft
tissue growth, indicating energy deficiency. Tissue ATP levels were not affected by
changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular
energy status at the expense of lipid and glycogen stores. At the same time, no
compensatory up-regulation of carbonic anhydrase activity was found. Metabolic
profiling revealed altered metabolite status; specifically, acetate levels were lower in
high CO2 individuals at low salinity.

Navarro et al. (2013) evaluated the impact of medium-term exposure to elevated
pCO2 (750–1,200 ppm and 380 control) on juvenile mussels, Mytilus chilensis, over
70 days in a mesocosm system. Reduced clearance was observed after 35 days;
absorption rate and absorption efficiency were reduced at high pCO2 levels. In
addition, oxygen uptake fell significantly, indicating metabolic depression. These
physiological responses resulted in reduced energy available for growth (scope for
growth) with negative consequences for aquaculture during medium-term exposure
to acid conditions.

Melatunan et al. (2011) investigated respiration rates, adenylate energy charge,
nucleotide concentrations, and metabolite concentrations in the periwinkle, Lit-
torina littorea maintained for 30 days at pH of 8.0 or 7.6 and at temperatures
of 15 or 20 ıC. Snails in reduced pH decreased respiration rate by 31 %, but
only by 15 % in reduced pH plus elevated temperature. Decreased respiration was
associated with metabolic reduction and an increase in end-product metabolites,
indicating increased reliance on anaerobic metabolism. There was an interactive
effect of low pH with elevated temperature on total adenylate nucleotides, which
was apparently compensated for by the maintenance of adenylate energy charge via
AMP deaminase activity. The findings suggest that snails have complex responses,
with likely negative effects on growth.

The deep-sea bivalve Acesta excavata was subjected from 1 to 96 h to elevated
CO2 (pH 6.35, PCO2 D 33,000 �atm), corresponding to conditions reported from
natural CO2 seeps (Hammer et al. 2011). During exposure there was a drop
in hemolymph and intracellular pH. During recovery, intracellular pH returned
to control values, while extracellular pH remained significantly lower. Oxygen
consumption initially dropped by 60 %, but then increased during the later stages
of exposure, indicating some recovery. These results of extreme, although brief,
exposures suggest that some species of deep-sea organisms can compensate for
elevated CO2.

Seibel et al. (2012) showed that high PCO2 reduced oxygen consumption in
the pelagic pteropod, Limacina helicina forma antarctica, by �20 %. The rates
measured at 180–380 �atm were significantly higher than those measured at
elevated CO2 levels (789–1,000 �atm). However, metabolic plasticity was noted,
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and the response to CO2 was dependent on the baseline level of metabolism and
on food intake. In contrast, Maas et al. (2012) studied oxygen consumption and
ammonia excretion of five pteropod species, collected from the tropical Pacific.
When exposed to elevated CO2 (1,000 ppm), pteropods that naturally migrate into
oxygen minimum zones (Hyalocylis striata, Clio pyramidata, Cavolinia longirostris
and Creseis virgula) were not affected. However, Diacria quadridentata, which
does not migrate, responded to high CO2 with reduced oxygen consumption and
ammonia excretion, similar to Limacina, indicating that the natural environment
of a species influences its resilience to ocean acidification. Since over the past
half-century the Norwegian Sea has experienced a progressive freshening with
time, Manno et al. (2012) investigated the combined effects of ocean acidification
and freshening on Limacina retroversa, the dominant pteropod in sub polar areas.
Living L. retroversa were exposed to four different pH values ranging from the
pre-industrial level to the forecasted end of century level. Each pH was combined
with a salinity gradient. Mortality increased only when both pH and salinity were
reduced. The combined effects also affected the ability to swim upwards, suggesting
that energy costs of maintaining ion balance (low salinity) and avoiding sinking
combined with the energy cost necessary to counteract shell dissolution (high
pCO2), exceed the available energy budget.

3.2.6 Polluted Environment

Mytilus galloprovincialis were caged in impacted and reference sites along the
coast of Sicily, Italy. PAHs were elevated in the digestive gland of mussels from
the industrial areas compared with control. Digestive gland metabolic profiles
showed changes in metabolites involved in energy metabolism. Changes in lactate
and acetoacetate indicate increased anaerobic metabolism and alteration in lipid
metabolism, respectively, suggesting that the mussels in the contaminated sites were
affected by adverse environmental conditions (Fasulo et al. 2012). Physiological
parameters were measured on natural populations of cockles Cerastoderma edule
from different sites in Portugal (Nilin et al. 2012). The energy content was
negatively correlated with both Hg concentration in cockle tissues and survival in
air, but was positively correlated with the condition index. Interestingly, there was a
positive correlation between survival in air and tissue mercury concentration.

Scope for Growth and physiological rates were measured in wild mussels from
many sites by the Spanish Marine Pollution monitoring program. The integration of
biological and chemical data suggests that organochlorine compounds, particularly
chlordanes and DDTs, may have a negative effect on SFG, although such effects
are smaller than those associated with biological parameters such as mussel age
and condition, which act as confounding factors when attempting to determine the
effect of chemicals on SFG (Albentosa et al. 2012). However, one would think that
condition index was an effect of contaminant exposure, rather than a cause of SFG.
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3.3 Fishes

3.3.1 Metals

Chronic exposures (30–90 days) of juvenile striped bass (Morone saxatilis) to low
levels of Cd (0.5–5 �g l�1) or inorganic Hg (1–10 �g l�1) depressed gill-tissue
respiration, but did not cause changes in two liver enzymes monitored. Chronic
exposures (60 days) of winter flounder (Pseudopleuronectes americanus) to Cd,
inorganic Hg, or Ag produced contrasting effects. At 10 �g l�1, Cd depressed
gill-tissue respiration, while Hg increased it and altered plasma protein levels,
while Ag caused no detectable change in gill-tissue respiration (Calabrese et al.
1977). Gharaei et al. (2011) examined blood biochemical parameters including
GLU (glucose), LDH (lactate dehydrogenase), AST (aspartate aminotransferase),
ALT (alanine aminotransferase), ALP (alkaline phosphatase) and cortisol in juvenile
Beluga sturgeon (Huso huso) fed 32 days on diets with meHg: (low D 0.76 mg kg�1;
medium D 7.88 mg kg�1; and high D 16.22 mg kg�1). Significant increases were
observed in all parameters, except ALP, which decreased compared to controls.
These results suggest that long-term dietary meHg affects metabolic enzyme activity
and glucose levels in this fish. Yadetie et al. (2013) analyzed transcriptional changes
in the liver of cod (Gadus morhua) treated with meHg (0.5 and 2 mg/kg of body
weight) for 14 days. From the observed transcriptional changes, the main pathways
affected by the treatment were energy metabolism, oxidative stress response,
immune response and cytoskeleton remodeling. The activity of many genes in
oxidative stress pathways such as glutathione metabolism were altered. There were
disproportionate numbers of genes coding for enzymes involved in metabolism of
amino acids, fatty acids and glucose. The effects observed on transcripts coding
for enzymes of energy pathways suggests meHg disruption of nutrient metabolism.
Overall, there has been surprisingly little recent work on effects of metals on
respiration and metabolism of marine fishes.

3.3.2 Organics – Oil

Petroleum hydrocarbons (WSF of crude oil and No. 2 fuel oil) increased “coughing
rates” of pink salmon (Oncorhynchus gorbuscha) fry (Rice et al. 1977). This is a
response in which fish flex their gills to expel unwanted irritants. Rates increased in
proportion to oil concentration and remained above normal over 72 h of exposure,
although the fish had begun to depurate the aromatics by 24 h of exposure. The
increased metabolic rate may be detrimental in the long term. Sole (Solea solea)
were exposed to oil conditions found during the weeks following the Erika oil spill
(December 1999, off the coast of France). Davoodie and Claireaux (2007) measured
basal and active metabolic rates, calculated aerobic metabolic scope, and compared
the ability of control and exposed sole to cope with reduced oxygen. While basal
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Fig. 3.7 Standard and active metabolic rates in control 5-day fuel-exposed fish. For a given
group, the difference between standard and active metabolic rates is the aerobic metabolic scope
(Reprinted from Davoodie and Claireaux 2007: 931, courtesy of Elsevier Publishing Co)

metabolic rate was not altered, active metabolic rate and therefore metabolic scope,
was reduced in exposed fish (Fig. 3.7). The ability to deal with reduced oxygen was
impaired, as indicated by a 65 % increase in the critical oxygen level.

Pyrene alone was found to impair metabolic scope and scope for activity. Juvenile
common gobies Pomatoschistus microps, were exposed under acute conditions –
0.125, 0.25, 0.5 or 1 mg l�1 pyrene for 96 h. Swimming performance was
significantly decreased at all concentrations tested (Oliviera et al. 2012). Changes
in enzymes suggested changes in pathways of energy production. Exposure to
naphthalene (2 mg l�1) caused a typical stress response: elevation of plasma cortisol
and an increase in glucose in striped mullet (Mugil cephalus) (Thomas and Neff
1985). Responses of golden grey mullet, Liza aurata, to a chemically dispersed oil,
a single dispersant, a mechanically dispersed oil simulating natural dispersion of oil,
a water soluble fraction of oil simulating an undispersed and untreated oil slick, and
control seawater were evaluated (Milinkovich et al. 2012). Biliary PAH metabolites
showed that incorporation of PAH compounds increased when the oil was dispersed
either mechanically or chemically. However, the aerobic metabolic scope and the
critical swimming speed of exposed fish were not altered, perhaps because of the
relatively brief (48 h) exposure.

3.3.3 Hypoxia

Juvenile turbot Scophthalmus maximus were fed to satiation at reduced O2 con-
centrations of 3.5, 5.0 mg l�1 and at 7.2 mg l�1 (normoxia). Both feed intake and
growth were significantly lower under hypoxia. Oxygen consumption of feeding fish
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was significantly higher under normoxia, but following 7 days of feed deprivation
oxygen consumption was similar under normoxia and hypoxia (Pichavant et al.
2000).

O’Connor et al. (2011) examined responses of three populations of sticklebacks
to acute and chronic hypoxia (DO 2.2 mg l�1). Fish from the population least likely
to experience hypoxia in their normal habitat had the greatest response to low
oxygen, demonstrating anaerobic glycolysis after only 2 h of hypoxia. However,
there was no measurable effect of a more prolonged period (7 days) of hypoxia on
any of the fish, suggesting that they had acclimated to this low DO over that time.

The epaulette shark (Hemiscyllium ocellatum) and grey carpet shark (Chiloscyl-
lium punctatum) are commonly found in periodically hypoxic environments. Chap-
man et al. (2011) measured ventilation rates during an anoxic challenge at 23 ıC and
during 1.5 h of anoxia followed by 2 h of re-oxygenation at 23 and 25 ıC. During the
anoxic challenge, epaulette sharks started ventilatory depression significantly earlier
at 25 ıC. During re-oxygenation, those at 23 ıC did not increase their ventilation
rates, but those in 25 ıC did. Grey carpet sharks had no ventilatory depression
during anoxia, but had elevated ventilation rates during re-oxygenation. Anoxia
tolerance of both species was temperature-dependent. Temperature was also an
important factor for summer flounder, Paralichthys dentatus, responses to hypoxia.
Fish were subject to progressive hypoxia at acclimation temperature (22 ıC) and
after an acute temperature increase (to 30 ıC). Mean critical oxygen levels (the
oxygen levels below which fish could not maintain aerobic metabolism) increased
from 27 % saturation (2.0 mg O2 l�1) at 22 ıC to 39 % saturation (2.4 mg O2 l�1)
at 30 ıC (Capossela et al. 2012). Gill ventilation and oxygen extraction changed
immediately with the onset of hypoxia at both temperatures. The fractional increase
in gill ventilation was much larger at 22 ıC than at 30 ıC, but the decrease in oxygen
extraction was similar at both temperatures, and smaller than the changes in gill
ventilation. Bradycardia was not observed until 20 and 30 % oxygen saturation at
22 and 30 ıC, respectively, which was below critical oxygen levels. The increase
in the critical oxygen level at 30 ıC suggests a lower tolerance to hypoxia after an
acute increase in temperature.

One would predict that the glycolytic pathway would be enhanced in fish at
low DO. The specific activities of glycolytic enzymes in liver and skeletal muscle
were determined in F. heteroclitus prior to the onset of low DO treatments (1 mg
l�1 for severe hypoxia, 3 mg l�1 for moderate hypoxia), and at intervals thereafter
(Abbaraju and Rees 2012). Significant effects of low DO were seen on three liver
enzymes, PGI, PFK, and PGK, whose specific activities were highest in fish in
severe hypoxia, especially after 14 days. In skeletal muscle, only one glycolytic
enzyme, ALD, was affected, being significantly lower in fish in severe hypoxia
than in those at moderate hypoxia at 14 days. These observations suggest that
mechanisms causing these alterations are enzyme- and tissue- specific, rather than
applying uniformly to all enzymes in the glycolytic pathway. Cooper et al. (2002)
exposed spot (Leiostomus xanthurus) to various oxygen tensions (10 % saturation,
0.8 mg/l; 25 %, 2.0 mg/l; 50 %, 4.0 mg/l; 100 %, 8.0 mg/l). After 12 h of exposure,
tissue samples were analyzed for citrate synthase (CS) and lactate dehydrogenase
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(LDH). There was a significant increase in LDH activity, an indicator of anaerobic
metabolism, in the 10 % treatment in gills, while there was no significant change
in citrate synthase activity, an indicator of aerobic metabolism. Van Ginnekin
et al. (1995) found that with increasing hypoxia, metabolic parameters started to
change in the following order: O2 consumption decreased, PCr (phosphocreatine)
decreased, intracellular pH decreased, free ADP concentration increased, ATP
decreased. PCr levels fell with the PO2. After each increment, the PCr reached a
stable value while, in some cases, recovery was observed, which could be explained
because the balance between anaerobic and aerobic metabolism fluctuates during
hypoxia due to changes in the activity of the fish. In all species studied, anaerobic
glycolysis was activated, but in contrast to anoxia, metabolic suppression did not
occur.

Some fishes can resort to aquatic surface respiration (ASR) in hypoxic water.
Intertidal gobies of various genera ventilate their gills with surface water when the
DO declines to 2.1 mg l�1. Some of the species hold an air bubble in their buccal
chamber, which is frequently exchanged. The bubble provides a source of oxygen
and also lifts up the head for easier ASR (Gee and Gee 1991).

3.3.4 Contaminants of Emerging Concern

Handy et al. (2011) reviewed effects of nanoparticles (NPs) on fish, and found that
sublethal effects have been reported at concentrations of about 100 �g–1 mg l�1.
Exposure to NPs can alter ventilation, mucus secretion, and gill pathology, which
may or may not lead to hematological disturbances. The internal target organs (liver,
spleen and hematopoietic system, kidney, gut and brain) exhibit oxidative stress and
pathology.

Griffit et al. (2012) found that low levels of silver NPs induced adverse effects in
juvenile and adult sheepshead minnows (Cyprinodon variegatus). Chronic exposure
produced thickening of gill epithelia and altered gene expression profiles.

3.3.5 Polluted Environments

F. heteroclitus from a degraded prey-impoverished marsh (PIM) had elevated total
metabolic costs compared with fish from reference sites, but also had higher food
consumption than reference populations, suggesting that increased food consump-
tion could offset elevated metabolic costs (Goto and Wallace 2010). Only age-2C
females of the PIM had significantly reduced growth. Most PIM fish, however, had
lower growth conversion efficiency, suggesting energetic costs of living in degraded
habitats.

Juvenile sea bass (Dicentrarchus labrax) and turbot (Scophtalmus maximus)
were caged in areas with differential pollution for 38 days. Physiological perfor-
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mance and metabolism was affected. Fish had higher growth rates, RNA:DNA ratio,
growth and condition index in the least contaminated station. Lipid storage index
based on the ratio of triacylglycerols to sterols (TAG:ST), was highest in the least
contaminated station for both species (Kerambrun et al. 2012).

3.4 Other Taxa

3.4.1 Metals

The polychaete Neanthes virens from a clean site had decreased oxygen con-
sumption after they had accumulated 113 ppm Ag. However, worms from Ag-
contaminated sites did not show effects of additional Ag exposure (Pereira and
Kanungo 1981).

Alutoin et al. (2001) investigated physiological responses of the coral Porites
lutea to reduced salinity (20 psu) and 10 and 30 �g l�1 Cu. No significant changes
in respiration were seen, but primary production by the zooxanthellae was reduced
in lower salinity, 30 �g l�1 Cu, and the combination of the two (Fig. 3.8).

Complicated interactions of Cu and temperature with zooxanthellar production
rate were noted in the coral, Porites cylindrica after 24 h exposure to 11 �g Cu l�1

and increased temperature, separately and in combination (Nyström et al. 2001).
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Elevated temperature and the combination of heat and Cu reduced production rate,
but after exposure to elevated temperature, corals had higher production after a
5-day recovery period. The combination of the two stressors showed no additive
or synergistic effects. Cu alone had no effect on zooxanthellar production rate, but
corals that were pre-exposed to increased temperature and again exposed to Cu after
5 days had reduced production.

3.4.2 Ocean Acidification

Edmunds (2012) exposed the massive coral Porites sp. to pCO2 of 76.6 Pa,
which had no effects, but 87.2 Pa pCO2 reduced respiration 36 %, as well as
maximum photochemical efficiency. Biomass, calcification, and energy expenditure
of calcification were not affected. These results do not support the hypothesis that
high pCO2 reduces coral calcification through increased metabolic costs, but suggest
that high pCO2 causes metabolic depression and photochemical impairment similar
to that of bleaching. Response of the brittle star Ophionereis schayeri to elevated
temperature and lowered pH was studied by Christensen et al. (2011) with animals
acclimated to 19 and 25 ıC. Temperature had the predicted effect on oxygen uptake,
with the Q10 being 2.6 at normal pH of 8.2. It was predicted that low pH (7.4–7.8)
would be stressful and cause decreased respiration. A pH of 7.8 caused lethargy,
which may have caused reduced oxygen uptake. This pH is near the lower range of
pH experienced in the field, and short term metabolic depression may be a routine
response. However, exposure to pH 7.6 and 7.4 caused a significant increase in
oxygen uptake (Fig. 3.9) and copious secretion of mucus, a stress response.



88 3 Respiration and Metabolism

However, when the seastar Parvulastra exigua was exposed to intermediate pH
(7.8) combined with pulses of warming occasionally experienced in nature (6 ıC
above ambient), the effect of temperature on metabolism was diminished compared
to ambient temperature (McElroy et al. 2012). The results show that the metabolic
response is resilient to current levels of stress, but may become vulnerable to the
interactive effects of ocean warming and acidification at levels expected in the near-
future.

While most studies of ocean acidification on corals focus on calcification,
changes in gene expression, respiration, photosynthesis and symbiosis of the coral,
Acropora millepora, were noted before effects on calcification. Under high CO2

corals lost over half their Symbiodinium, and decreased both photosynthesis and
respiration (Kaniewska et al. 2012). Changes in gene expression indicated metabolic
suppression, an increase in oxidative stress, apoptosis, and symbiont loss.

3.4.3 Hypoxia

Major differences in response to low DO are seen among Echinoderms. The
sea urchin Stronglylocentrotus nudus and seastar Patiria pectinifera are apparent
oxyregulators at levels over 3.0 and 0.66 ml O2 1�1, respectively. Levels of lactic
acid in tissues of the sea urchin are 3–4 times higher than in seastar. The ATP in
ambulacral tissues of animals decreases in response to low DO. With decrease in DO
to 2.5 ml O2 1�1, ATP in sea urchin gonads decreased by 33 %, while in seastar it
increased eight-fold, and seastars spawned at these low levels of oxygen (Ryabushko
et al. 1980).

Benthic polychaetes tend to be resistant to low DO, a factor frequently encoun-
tered in the soft sediment habitats where they are dominant species. At 10 and
20 ıC and 5 ppt salinity, Marenzelleria viridis gradually reduced its metabolic
activity with declining DO, whereas Hediste diversicolor maintained its metabolic
activity. The metabolism of both species stayed fully aerobic down to a pO2

of 2 kPa (one atmosphere is 101.325 kPa [kilo Pascals]). An additional stress
of 0.5 ppt salinity at 20 ıC led to a decrease in oxygen consumption in H.
diversicolor below a pO2 of 10 kPa, while metabolic heat dissipation remained
constant. M. viridis, however, further reduced both metabolic heat dissipation
and oxygen consumption. The metabolic rates of both species under anoxia were
similar, about 20 % of the normoxic rate (Fritzsche and Oertzen 1995). The benthic
lugworm, Arenicola marina, ventilated intermittently, irrespective of ambient pO2

and sulphide concentration. The ventilation rate was 28.5 ml h�1 g�1 wet mass
during normoxia, but increased to 175 % of this value during moderate hypoxia,
during which time aerobic energy metabolism was maintained. Below a pO2 of
6.2 kPa, A. marina reduced the ventilated volume to 54 % of the normoxic value
and became anaerobic (Wohlgemuth et al. 2000).
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3.4.4 Polluted Environments

Bioenergetics of the polychaete, Nephtys incisa, were studied by Johns and Gutjahr-
Gobell (1985), after exposure to dredged material from contaminated Black Rock
Harbor, Connecticut, U.S.A. Exposed worms had reduced respiration rate, higher
maintenance costs, reduced excretion, and reduced growth efficiency. They reduced
burrowing activity, possibly to avoid contact with contaminated sediments, and thus
ingested less sediment (from which they obtain their food) reducing their energy
intake. Nereis diversicolor from the moderately contaminated Loire Estuary had
impaired amylase activity, reduced feeding, lower energy reserves (glycogen and
lipids), and reduced length and weight compared to those from a reference site
(Tankoua et al. 2012).

3.5 Conclusions

A pollutant can alter respiration by altering metabolic enzymes or indirectly by
injury to gill tissue thus interfering with gaseous exchange. Studies examining
physiological parameters and respiratory enzymes are much more informative than
those that measure only oxygen consumption rates. A general response of reduced
respiration may help to conserve energy for a stressed organism that has reduced
its food intake. A number of studies, however, have found increased respiration
in response to some contaminants, especially oil and component hydrocarbons.
This can lead to energy deficits if it is accompanied by reduced feeding, which
is common.
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Chapter 4
Osmoregulation and Excretion

Abstract Maintaining a constant internal chemical environment (homeostasis) is
a critical physiological activity that is particularly important in certain taxa living
in fluctuating environments such as estuaries and in those that migrate between
fresh- and salt water. Stress, such as exposure to contaminants, typically causes
a disruption of this activity, which involves primarily the gills. The ability to
ionoregulate or to osmoregulate (mostly Na and Cl regulation) following exposure
to stress decreased in most of the species studied with most of the contaminants.
Concomitant with osmoregulation is the necessity to excrete ammonia, a waste
product of protein metabolism; this activity may be either enhanced or depressed
by contaminants and is affected by salinity and whether the animals are fed or not.
Increased excretion rates reflect increased reliance on protein metabolism.

Keywords Ammonia • Carbonic anhydrase • Gills • Ions balance • Salinity •
Na-K-ATPase

4.1 Osmoregulation

Many marine invertebrates tend to be isotonic in relation to seawater, i.e., they are
as salty as the water outside. These animals, called osmoconformers, do not have
to regulate ion levels, but are usually restricted to narrow ranges of salinity. Other
aquatic organisms maintain internal homeostasis, and keep a constant internal salt
environment. Osmoregulation is the process by which this is done. Osmoregulators
must actively regulate ions to maintain their body fluids at ionic concentrations
different from the surrounding water. In a hyperosmotic environment like the ocean,
they take in water to offset loss. They drink seawater and subsequently excrete
the excess salt from their gills. This has an energy cost, the magnitude of which
depends on a number of factors: how different the animal’s osmolarity is from
the surrounding water, how easily water moves across the animal’s surface, and
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how much membrane-transport is needed to pump solutes across the membrane.
In freshwater there is a tendency to take in water, so they excrete copious dilute
urine to compensate. The ability to maintain osmotic concentrations in body fluids
regardless of the salt concentration of the environment is particularly important
for animals living in estuaries with changing salinity. If the animal moves to
a lower salinity part of an estuary, it is in a hypoosmotic environment, where
it must retain salts and excrete water. These animals may be exposed to both
salinity and pollution stress. The literature suggests that stress often disrupts ionic
regulation – mostly of Na and Cl – and therefore osmotic regulation. The ability
to ionoregulate or to osmoregulate following exposure to stress decreases in most
pollution studies.

Two enzymes play a major role in osmoregulation: sodium, potassium ATP-ase
(NaC–KC-ATPase) and carbonic anhydrase (CA). NaC–KC-ATPase, in intestines
and gills maintains gradients needed for salt movements and is related to NaC and
Cl� exchanges across tissues. CA is involved in the hydration of CO2 to produce
HC and HCO3

�, and plays a role in osmoregulation as well as gas exchange and
acid–base balance (Lionetto et al. 2000). It should be noted that impaired osmoreg-
ulation, like decreased feeding, could result in altered uptake of contaminants, which
could then modify toxic effects.

4.1.1 Crustaceans

Exposure to pollutants and other environmental stressors often results in a decrease
in NaC and Cl� regulation and/or of osmoregulatory capacity (OC: defined as the
difference between the osmotic pressure of the hemolymph and the external medium
at any given salinity). The loss of osmoregulatory and ionoregulatory capacity can
be caused by altered structure of the gills and/or excretory organs, and changes
in activity of the enzyme NaC, KC-ATPase, ionic fluxes and surface permeability.
Measurement of OC variations was proposed by Lignot et al. (2000) as a way to
monitor the physiological condition and effects of stressors. Responses can vary
with the molt cycle, but very few studies have taken that into consideration.

Metals

Many trace metals are more toxic in lower salinity water, in part because more of the
metal is in free ion form and therefore more bioavailable, but also because of physi-
ological responses of organisms. Metal uptake is reduced as salinity approaches the
isosmotic point of a species because of reduced activity of ion exchange pumps.
Effects of metals on estuarine animals were reviewed by Monserrat et al. (2007).
A key mechanism of acute metal toxicity in many organisms has been reported
to be osmoregulatory impairment associated with gill NaC–KC-ATPase inhibition.
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Cu, Ag, Cd, Pb, Zn, and Hg have all been found to impair osmoregulation via
inhibition of NaC–KC-ATPase in a variety of freshwater, brackish and marine
animals (Péquex et al. 1996; Bianchini and di Castilho 1999).

Inhibitory effects of many metals – Ag (0.05–0.5 �M), Cd (0.05–0.5 �M or
1.25 mg l�1), Cu (0.05–0.5 �M) and Zn (2–6 �M) have been also reported on
carbonic anhydrase in euryhaline crabs (Vitale et al. 1999; Skaggs and Henry 2002).

Copper

Exposure to copper (1 mg l�1) induces disturbances in ion homeostasis and
acid–base balance in green crabs Carcinus maenas (Boitel and Truchot 1990). At
sublethal Cu levels, hemolymph concentrations of NaC and Cl� decrease when
exposure is in low salinity, but not in full-strength seawater. A metabolic acidosis de-
velops in both media, but in full-strength sea water the crabs can recover. Exposure
of C. maenas to 1 mg l�1 Cu altered hemolymph osmolality and ion balance
(Bjerregaard and Vislie 1986); disruption of NaC-KC-ATPase was considered the
cause of the disturbance. Hansen et al. (1992a) found that exposure to 10 mg l�1

Cu for 1 week reduced this enzyme by 50–60 %, resulting in a major reduction in
hemolymph NaC concentration. However, osmoregulation was less sensitive to Cu
than respiration (Hebel et al. 1999). In this species, the anterior gills (numbers 1–6)
are primarily respiratory in function, while the posterior gills (numbers 7–9) play an
osmoregulatory role. Following exposure to Cu, gill damage (epithelial hyperplasia
and necrosis) initially occurred at 100 �g Cu l�1, but only in the respiratory gills.
No damage was seen in osmoregulatory gills at levels up to 300 �g Cu l�1. In an
investigation of Cu (0.78 �M) effects on blue crabs (Callinectes sapidus) at low
(2 psu) and high (30 psu) salinity, Martins et al. (2011) found that crabs that had
been acclimated to dilute seawater showed inhibition of expression of mRNA of the
genes for NaC/KC-ATPase and the NaC/KC/2Cl� co-transporter, but that NaC/KC-
ATPase activity itself was not affected, indicating that the gene transcription is
down-regulated before significant inhibition of enzyme activity occurs. Authors felt
that this suggests that there may be a compensatory response of this enzyme after
short-term exposure to environmentally relevant Cu concentrations. No effects were
seen at high salinity, possibly because of lower bioavailability of toxic Cu (free ion).
Bambang et al. (1995) found that concentrations of 500 (“low”), 1,000 (“medium”)
and 1,500 (“high”) �g Cu 1�1 altered both hypo- and hyper-osmoregulation in
larvae of the shrimp Penaeus japonicus. Hypo-osmoregulation was reduced after
4 days at the low Cu concentration and was suppressed in the medium and
high concentrations. Hyper-osmoregulatory capacity was significantly reduced after
4 days exposure to low and medium concentrations (Fig. 4.1). Only the shrimp from
low and medium Cu recovered their hypo-osmoregulatory ability after 7 days in
clean seawater. Tolerance to Cu increased when nauplii became juveniles. It should
be mentioned that many other investigators would not consider 500 �g Cu 1�1 to
be a “low” concentration.
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Fig. 4.1 Hyper-osmoregulatory capacity in juvenile Penaeus japonicus after 4 (D4) and 7 (D7)
days exposure to Cu in dilute seawater (SW). * D significantly different from controls (P < 0.05)
(Reprinted from Bambang et al. 1995: 132, courtesy Elsevier Publishing Co)

Mercury

Hypothesizing that mercury interferes with osmoregulation and that its effects
are greater in lower salinity waters, Pequeux et al. (1996) examined its effects
on three crab species that have different degrees of osmoregulatory ability: the
strong regulator Eriocheir sinensis, the weak regulator Carcinus maenas (both
euryhaline), and the stenohaline osmoconformer Cancer pagurus. They found
synergistic effects between salinity and HgCl2 (0.1 mg l�1) toxicity in the two
euryhaline hyperregulators in dilute media (E. sinensis and C. maenas). In E.
sinensis, NaC and Cl� permeability of the gill epithelium was affected, as well as
NaC and Cl� active transport processes. They showed that Hg drastically disturbs
the NaC/KC pump and the Cl� channels in the posterior gills.

Lead

The crab Hepatus pudibundus is an osmoconformer, while Callinectes ornatus is an
estuarine weak hyper-osmoregulator in dilute seawater. Amado et al. (2012) noted
that osmoconformers are expected to have greater cell volume regulation, while gill
cells of an osmoregulators are expected to have greater levels of ion transporters.
They investigated the influence of lead nitrate (10 �M) on the ability of isolated gill
cells from both species to regulate their volume under isosmotic and hyposmotic
conditions. Pb was associated with hyposmotic shock; C. ornatus cells lost more
volume in hyposmotic conditions, while H. pudibundus cells had volume regulation,
as predicted. They concluded that osmoregulators can be more susceptible to metals
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than osmoconformers in low salinity, because of poorer volume regulation and
expected higher uptake of Pb2C via pathways that operate in absorption of salts,
such as NaC/KC-ATPase.

Zn

Zn at 0.05 mg l�1 reduced oxygen uptake and gill NaC KC ATPase in the
estuarine crab Chasmagnathus granulata (Bianchini and di Castilho 1999). Zn
also impaired osmoregulation by affecting hemolymph osmolality and sodium
levels in amphipods (Gammarus duebeni). However, amphipods collected from a
contaminated site were less sensitive to these effects than those from a reference
site (Johnson and Jones 1990). Furthermore, this effect was observed only at low
salinity (10 psu), and only at very high zinc concentrations � 500 �g Zn 1�1.

Cd

Cd had minor effects on osmoregulation in the mysid, Mysidopsis bahia, at 3.62 �g
l Cd�1 at salinity of 12 psu. Effects were reduced by calcium and increased salinity
(DeLisle and Roberts 1994). Bambang et al. (1994) investigated effects of Cd on
different life stages of the shrimp Penaeus japonicus. In juvenile shrimp, 2,000 �g
Cd 1�1 significantly reduced hypo- and hyper-OC in a dose- and time-dependent
response. Surviving shrimp recovered their hypo-osmoregulatory capacity after
6 days in cadmium-free seawater.

Tributyltin

Tolerance to TBT in shrimp (Penaeus japonicus) increased with development
from larvae to juveniles. In shrimp kept in seawater or dilute seawater, acute
TBT exposures (0.88 �g l�1 for nauplii to 708 �g l�1 for juveniles) decreased
the osmoregulatory capacity (Lignot et al. 1998). Effects were time- and dose-
dependent, and were more severe in pre-molt animals (Fig. 4.2). Histopathological
effects in gills increased with the TBT concentration and were considered the cause
of impaired osmoregulation. However, the ability to osmoregulate recovered after
shrimp were kept in TBT-free water for 48–120 h.

Organic Chemicals

Pesticides and PCBs

Neufield and Pritchard (1979a) found that gill NaC, KC-ATPase was inhibited by
both in vitro and in vivo exposure to DDT (1 �g l�1) in the rock crab Cancer
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irroratus. However, in Callinectes sapidus, the in vivo response was transient
and disappeared after return to clean water (Neufield and Pritchard 1979b). The
authors felt it was likely that induction of new NaC, KC-ATPase in response to
osmoregulatory stress protected the crabs from osmotic failure in response to DDT
exposure.

Sublethal levels of lindane altered ionic and osmoregulatory ability of the mud
crab Eurypanopeus depressus. Chloride ion regulation was disrupted at concentra-
tions as low as 0.70 �g l�1, while hemolymph osmotic concentration was reduced
at 1.45 �g l�1 (Shirley and McKenney 1987). In juvenile Penaeus japonicus in
seawater or diluted seawater, the insecticide fenitrothion decreased osmoregulatory
capacity at low �g l�1 concentrations (Lignot et al. 1997). The effect was time- and
dose-dependent. In seawater, shrimp could recover in less than 48 h in clean water.
In dilute sea water, however, recovery by 48 h was possible only after exposure to
the lowest tested concentration.

Silvestre et al. (2002) investigated effects of Atrazine (1 mg l�1) in vitro
in contact with the basolateral membrane of gills of the mitten crab, Erocheir
sinensis, a species that migrates between fresh and salt water. Atrazine increased
the transepithelial potential difference (TEP) in isolated perfused posterior gills. No
TEP modification by the herbicide was detected in vivo, however, indicating to the
authors that molecular mechanisms located on the basolateral membrane are likely
to be the only ones affected or that the cuticular barrier prevents the chemical from
penetrating into the gill in the whole animal. Hemolymph osmolarity, NaC and Cl�
concentrations of crabs in freshwater with atrazine (1 mg l�1) for 14 days were not
significantly changed.
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The PCB mixture Aroclor 1254 at 7.5 or 29 �g l�1 did not alter hemolymph
chloride and osmotic concentrations or chloride-exchange kinetics in adult grass
shrimp P. pugio (Roesijadi et al. 1976), but it did disrupt hemolymph chloride
regulation in juveniles, and was associated with mortalities not seen in adults.

Both positive and negative effects of pesticides were observed by Galindo-
Reyes et al. (2000). Shrimp, Litopenaeus vannamei were exposed to DDT, Lindane,
Chlordane, Lorsban, Gusathion, Folidol, Diazinon or Tamaron. Increases in os-
moregulation were observed in shrimp exposed to Folidol, Diazinon and Gusathion,
whereas decreases were seen with DDT, Lindane and Lorsban. Authors concluded
that different pesticides can cause different alterations in physiological and bio-
chemical functions.

Oil/Hydrocarbons

Palaemon adspersus, a hyper- and hypo-osmoregulating shallow-water shrimp, was
exposed to 20, 70, 100 and 200 �g l�1 WSF of North Sea crude oil (Baden
1982). The ability to maintain hyper-osmolality decreased after 1, 2, and 3 weeks
exposures to 200, 70, and 100 �g l�1, but no effect was observed in 20 �g
l�1. Shore crabs, Carcinus maenas, were tested for osmoregulatory responses to
various toxicants (Bamber and DePledge 1997). While exposure to Cu was clearly
detrimental, crabs exposed to high concentrations of B[a]P showed no significant
impairment of osmoregulatory ability. Authors concluded that acute B[a]P exposure
poses little immediate threat to processes controlling osmoregulation in adult shore
crabs.

Hypoxia

Osmoregulatory capacity (OC) was used to study the effects of hypoxia in the
shrimp Penaeus vannamei. Since OC varied with molt stages with reduced OC
before and after ecdysis, only shrimp at intermolt stages C-D0 were used. Hyper-
OC and hypo-OC, respectively, in low salinity and in seawater, were both depressed
after 1–2 days exposure to low oxygen tension of 4–8 kPa. OC recovered fully after
24 h in O2 saturated water (Charmantier et al. 1994). In Carcinus maenas at both
13.5 and 30.0 psu salinity, blood pH increased during hypoxia at 40 torr due to an
elevation of scaphognathite beating rate. However at 20 torr in both salinities the
increase in blood pH was greater than at 40 torr even though the scaphognathite
beat rate was the same (Johnson and Uglow 1987). At both salinities blood lactate
increased with decreasing pO2, the changes being larger at 13.5 psu than 30.0 psu
for a given pO2. Blood NaC did not change at any pO2/salinity combination, but in
13.5 psu blood Cl� decreased during hypoxia.

The brackish water isopod Saduria entomon from the Gulf of Gdañsk, Poland
appeared to be quite resistant to hypoxia. While hypoxia (15 % saturation) had
no significant effect on osmoregulation, anoxia (<1 % saturation) decreased the
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osmotic concentration of hemolymph. After 6 h at salinity of 3 psu there was a
significant difference between anoxic isopods and controls, and after 96 h of anoxia
osmotic concentrations decreased at all salinities except 25 psu. A tendency was
observed for hemolymph Na to decrease in anoxia, which was significant at 7.3 psu
after 96 h but not statistically significant at the other salinities (Dobrzycka-Krahel
and Szaniawska 2007).

Hypoxia can interact with other stresses such as metals and salinity. While blood
NaC and Cl�1 levels in Crangon crangon and Carcinus maenas were not signif-
icantly affected during metal Cu/Zn (0.2 5mg l�1) or hypoxic (pwO2 D 40 torr),
exposure at both 13.5 and 27.0 psu decreased blood ion levels were seen in
exposures to metal plus hypoxia at low salinity. In C. maenas blood Ca2C regulation
was not affected by metal or hypoxic exposure individually, but combinations
resulted in salinity-dependent increases in blood Ca2C levels (Johnson 1988).
Hypoxia also interacts with ammonia. Shrimp (Litopenaeus stylirostris) treated
separately with ammonia or hypoxia had low mortality; most shrimp that died
were in early post molt (stage A) in ammonia, while hypoxia affected mainly late
premolt animals (stage D2). A synergistic effect of ammonia and hypoxia affected
mostly shrimp in late premolt stage D2. The common physiological response
was a reduced OC and an increase in Ca2C. Plasma lactate levels increased in
shrimp in hypoxia and hypoxia plus ammonia (Mugnier et al. 2008). Total protein
concentration was reduced in ammonia and combined treatments, and was more
pronounced in late premolt stage than in intermolt shrimp. The combination of
ammonia plus hypoxia led to a stronger response than ammonia alone and/or
hypoxia alone.

Polluted Sites

Animals from polluted sites have been studied for degree of response to contami-
nants. The mangrove crabs Ucides cordatus and Callinectes danae were sampled
from “polluted” mangrove areas and from a reference site (Harris and Santos
2000). Individuals of both species from the polluted site showed greater capacities
for regulating blood osmotic concentrations at low salinity (9 psu). However, U.
cordatus showed reduced hypo-regulatory ability in 34 psu. C. danae from the
polluted site showed significantly higher NaC/KC-ATPase levels in posterior gills
compared to crabs from the reference site. These differences may reflect adaptive
changes following long-term exposure to contamination.

Climate Change/Acidification

Hermit crabs, Pagurus bernhardus, at low pH (6.8) showed osmoregulatory changes
(de la Haye et al. 2012). Analysis of their hemolymph revealed a greater concen-
tration of chloride ions (Cl�) in reduced pH, suggesting iono-regulatory disruption.
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The iono-regulating prawns Palaemon elegans and P. serratus, could compensate
for a pCO2 of 0.30 kPa over a 30 day period (Dissanayake et al. 2010). However,
ion regulation was maintained at the expense of acid–base balance. The crabs
Necora puber and Cancer magister, which are relatively poor iono-regulators, could
compensate for acid–base disturbances in 24 h after exposure to 0.10–0.20 kPa
CO2 (Pane and Barry 2007; Spicer et al. 2007). Compensation was via elevation in
hemolymph [HCO3

�]. Continued exposure to the same pCO2 had a negative effect
on N. puber, as bicarbonate buffering started to fail after 16 days when [HCO3

�]
reached 27 mmol l–1 (Spicer et al. 2007). However, Small et al. (2010) found that
hemolymph [HCO3

–] was much lower after 30 days at the same pCO2.

4.1.2 Mollusks

Most mollusks are iso-osmotic, having the same level of osmotic pressure as their
environment. However, those inhabiting estuaries may be able to osmoregulate,
but impacts of pollution on osmoregulation in mollusks have not been extensively
studied. Dillon and Anderson (1979) found that low-level mercury contamination
has minimal effects on the ability of the clam Rangia cuneata to adapt to reduced
salinity. They found a transitory “lag” effect in which mercury-exposed clams were
somewhat slower in adjusting osmotically active blood constituents in reduced
salinity. In response to a salinity decrease, the hemolymph of Rangia cuneata
exhibits an initial rapid decrease in inorganic ions followed by additional osmotic
adjustments. Liu et al. (2011) investigated effects of Hg on metabolomics in gills
of three varieties of Manila clam (Ruditapes philippinarum). In all three mercury-
exposed (White, Liangdao Red and Zebra) varieties of clams, increased glycine and
decreased taurine and homarine were found, which were interpreted as disturbances
in osmotic regulation.

Bivalve mollusks are considered to be likely to be vulnerable to ocean acidifi-
cation because they are poor iono-regulators and show little ability to buffer the
acidifying effects of elevated CO2 in their body compartments (Fabry et al. 2008;
Doney et al. 2009).

4.1.3 Fishes

In a review, Bonga and Lock (1991) concluded that fishes respond to many toxicants
because they affect the gills by increasing the permeability of the gill epithelium to
water and ions, and by inhibiting ion exchange in the chloride cells. They stated that
many stressors can affect osmoregulation indirectly via effects of catecholamines on
gills. Since many toxicants evoke a stress response, it may be difficult to distinguish
specific toxic effects on gills from non-specific stress responses.
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Fig. 4.3 Dose–response curves of the effect of Cd on carbonic anhydrase activity in eel intestinal
and gill homogenates. Values D M ˙ SE of four experiments. Ordinate: percentage of enzymatic
activity inhibition (Reprinted from Lionetto et al. 2000: 564, courtesy of Elsevier Publishing Co)

Metals

Kim et al. (2012) investigated effects of Hg on flounder Paralichthys olivaceus.
Fish were injected twice intraperitoneally with mercuric chloride (2, 4, or 8 mg
Hg/kg BW). Very low levels of calcium and chloride, and reduced osmolality, were
observed at 8 mg Hg/kg BW. The sheepshead minnow, Cyprinodon variegatus,
is a euryhaline fish that lives in estuaries and coastal marshes that have a wide
range of salinities. Many of these areas also have elevated contaminants, creating
the possibility of metals interfering with the uptake of ions for osmoregulation.
To determine whether the effect of Cu on osmoregulation depends on the osmotic
conditions that fish were living in, fish were acclimated for 14 days to 2.5,
10.5 or 18.5 psu salinity and then exposed to free cupric ion (14.6 �M Cu2C)
for 6 h (Adeyemi et al. 2012). Plasma Na, plasma Cl, wet/dry weight ratio,
transepithelial potential difference (TEPD) and branchial NaC/KC-ATPase activity
were determined before and after Cu exposure. Fish acclimated to low salinity
(2.5) had lower TEPD and plasma Na and higher gill NaC/KC-ATPase activity
compared to fish at higher salinities. Cu caused a significant decrease in plasma Na
and NaC/KC-ATPase activity, and an increase in wet/dry weight ratio, but only in
fish in low salinity. No significant changes in plasma Cl were detected. The results
show that effects of Cu on osmoregulation depend on the fish’s previous salinity
regime, and tend to be more severe at lower salinity.

Osmoregulation is particularly important for species such as eels that migrate
between freshwater and the ocean. Cd exposure affected CA in the intestine and
gills of the eel, Anguilla anguilla, with the gill enzyme being more sensitive than
that of the intestines (Fig. 4.3) (Lionetto et al. 2000). Lorin-Nebel et al. (2013)
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studied single and combined effects of Cu plus infestation with the nematode
Anguillicoloides crassus in A. anguilla after a salinity challenge from nearly isotonic
(18 psu) to hypo- (5 psu) and hypertonic (29 psu) conditions. In 18 psu, blood
osmolality remained constant over the 6 weeks with Cu2C and Anguillicoloides
crassus. In fish exposed to hypertonic 29 psu for 2 weeks, no significant change in
blood osmolality, NaC/KC-ATPase (NKA) activity, or NaC and Cl� concentrations
was seen. After 2 weeks at 5 psu however, a significant decrease in blood osmolality
was seen in fish with the parasite and Cu2C. Gill NKA activity was lower in eels in
the combined stress. Thus, the low salinity disturbed osmoregulation in eels exposed
to Cu and the parasite. Again, low salinity again produced more severe effects than
high salinity.

Juvenile salmon migrate from freshwater to the ocean. To simulate a situation in
which juvenile coho salmon, Oncorhynchus kisutch, are exposed to Cr in freshwater
(FW) before migrating to seawater (SW), effects of FW exposure to Cr on salinity
tolerance and serum osmolality in SW were investigated (Sugatt 1980). SW survival
decreased in salmon exposed to 0.23 mg Cr l�1 for 4 weeks or to 0.5 mg Cr l�1 for
2 weeks and transferred to 20 or 30 psu salinity, respectively. Serum osmolality after
2 weeks of FW exposure to 0.5 mg Cr l�1 then transfer to 20 or 30 psu SW, was
elevated in Cr-exposed fish shortly after transfer but not 1 week after transfer. The
author suggested that Cr acted non-specifically on osmoregulatory epithelia to cause
dehydration in SW, and that salinity tolerance and serum osmolality are sensitive
responses.

Some non-migratory species are able to live in both freshwater and seawater.
Effects of arsenic (As2O3) on plasma osmolarity, Na and K concentrations, gill
Na�K-ATPase, and the ultrastructure of gill chloride cells were compared between
seawater tilapia (Oreochromis mossambicus) and freshwater tilapia (Hwang and
Tsai 1993). No significant effect was found on plasma ion concentrations and
osmolarity, enzyme activity, or chloride cells in freshwater tilapia after 96 h
exposure to concentrations up to 70 mg l�1 arsenic. However, 96 h exposure to
15 mg l�1 produced an increase in plasma osmolarity and activity of gill NaC/KC-
ATPase, as well as better development of the chloride cell tubules in the seawater
tilapia. This is an unusual case of effects being greater in higher salinity, but
these effects are not deleterious. Authors felt that the activation of gill NaCKC-
ATPase and chloride cells in seawater tilapia may indicate an adaptation in the
osmoregulatory mechanism to enhance gill secretion of ions or arsenic.

Spiny dogfish (Squalus acanthias) were exposed to 20 and 100 �M Pb, which
accumulated primarily in gills and skin (Eyckmans et al. 2013). A disturbance
in acid–base status was noted after 1 day. The increase in pH was temporary at
20 �M, but persisted at 100 �M. After 2 days, plasma Na and Cl concentrations
were reduced at 100 �M Pb, and urea excretion rates increased. Pb impaired
NaC/KC-ATPase activity in gills, but not in the rectal gland. The authors concluded
that spiny dogfish experienced relatively low ion-osmoregulatory and respiratory
distress when exposed to lead, especially when compared to other metals.
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Organics

Pesticides and PCBs

Miller and Kinter (1977) found that DDT inhibited NaC/KC-ATPase in intestinal
tissue of F. heteroclitus, with significant effects after 24 h exposure to 0.75 mg l�1,
which the authors thought was related to the inhibition of amino acid transport
(discussed in digestion chapter). Plasma Na increased with concentration and time
of exposure. Both DDT and PCBs inhibited osmoregulation in killifish and eels
(Anguilla rostrata) by inhibiting NaC/KC-ATPase (Kinter et al. 1972).

Effects of the antifoulant Mexel®432 (0.5, 1 and 2 mg l�1) on osmoregulation
(osmolality and NaC/KC-ATPase activity) in juvenile flatfish Solea senegalensis
were investigated by Lopez-Galindo et al. (2010) Gill histopathology and alterations
due to oxidative stress were also examined. They noted significant changes in
osmoregulatory parameters, histological lesions in gills, and decreased branchial
NaC/KC-ATPase activity in exposed fish.

Osmoregulation is critical in smolting salmonids that have to migrate from
freshwater to the ocean. Exposure of Atlantic salmon smolts to 0.5 �g l�1atrazine
in freshwater resulted in a significant decrease in gill NaCKC ATPase activity
but, surprisingly, not at the higher 5.0 �g l�1 concentration (Moore et al. 2007).
On transfer to saltwater there was no significant effect on gill NaCKC ATPase
activity. Jørgensen et al. (2004) studied effects of PCB exposure on smoltification
and subsequent seawater performance in hatchery-reared, anadromous Arctic charr
(Salvelinus alpinus). The fish were placed for two summer months in seawater,
then orally dosed with 0 (Control, C), 1 (Low Dose, LD) or 100 mg Aroclor
1,254 kg�1 body mass (High Dose, HD) in November. They were then kept
in fresh water without being fed to mimic overwintering in fresh water until
they smolted the following June. They were then transferred to seawater and
fed to mimic their summer feeding residence in seawater followed by a period
without food in freshwater from August until maturation in October. HD charr
had reduced plasma growth hormone, insulin-like growth factor-1, and thyroxin and
triiodothyronine during smoltification. These hormonal alterations correlated with
impaired hyposmoregulatory ability as well as reduced growth rate and survival after
transfer to seawater.

PAHs

Goanvec et al. (2011) exposed juvenile turbot, Scophthalmus maximus to the
WSF of a heavy fuel oil (about 320 ng l�1) for 5 days and then placed them
for 30 days in clean seawater for recovery. Osmolality, [NaC] and [Cl�] rapidly
increased and then slowly decreased back to normal levels during the recovery
period. Branchial histology showed decreased numbers of mucocytes and chloride
cells. The authors suggested that the osmotic imbalance was due to structural
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alteration of the gills, i.e., the reduction of ionocyte numbers. Boese et al. (1982)
investigated effects of exposure to various concentrations of petroleum refinery
wastewater on gill ATPase, plasma protein, plasma osmolarity, and hematocrit of
the staghorn sculpin, Leptocottus armatus. The extent of the reduction in NaC,
KC-ATPase activity resulting from the exposure to the two refineries’ wastewaters
was considered to be related to the specific chemical composition of the two
wastewaters.

To investigate chronic effects of a Brazilian oil spill on a resident fish, the
Brazilian silverside Atherinella brasiliensis was sampled from 2 affected sites and
an unaffected reference area 1, 4, and 7 months after a spill (Souza-Bastos and
Freire 2011). Four months after the spill, fish from the oil spill site had increased
plasma osmolality (<525 mOsm/kg H2O, or 70 % above reference fish) and chloride
(<214 mM or 51 % above reference fish). Affected fish also showed branchial CA
inhibition (56 % of the values in reference fish). Thus, osmoregulation was still
affected in these fish months after the oil spill, and was considered a sensitive tool
for evaluating chronic effects of oil spills.

Contaminants of Emerging Concern

Estrogenic substances such as 17“-estradiol (E2) and 4-nonylphenol (NP) can affect
osmoregulation in Atlantic salmon (Salmo salar). Compared to controls, plasma
chloride concentrations of E2-treated fish were decreased 5.5 mM in freshwater
(FW) and increased 10.5 mM in saltwater (SW). There was no effect of NP or E2
on gill NaC/KC-ATPase activity in FW smolts, but E2 treatment in SW reduced
gill NaC/KC-ATPase activity and altered the number and size of ionocytes (Lerner
et al. 2012). The study indicates that E2 reduces SW tolerance, which may be
part of its normal function for reproduction and movement into FW. Farmen et
al. (2012) showed that the gills of Atlantic salmon accumulated Ag from silver
nanoparticles, which caused increases in plasma glucose and gill gene expression
of heat shock protein. A concentration-dependant inhibition of NaC/K ATPase
expression indicated impaired osmoregulation at >20 �g l�1 of Ag-NP. The Ag-
NP suspension caused acute necrosis of gill lamellae at 100 �g l�1.

Larvae of many fishes are planktonic and live near the surface of the ocean where
they can be exposed to UV radiation. The effects of increased UVB radiation on
osmoregulation of Dicentrarchus labrax larvae, which drift high in the water, were
investigated by Sucré et al. (2012). In young larvae, osmoregulation depends on
ion transporting cells, ionocytes, on the skin of the trunk and yolk sac. A loss of
osmoregulatory ability occurred in larvae after 2 days of low (50 �W cm�2: 4 h
l/20 h D) and medium (80 �W cm�2: 4 h l/20 h D) UVB exposure. Compared to
control larvae in the dark, a significant increase in blood osmolality and high mortal-
ities were seen in larvae exposed to UVB for 2 days or more. Decreased ionocytes
and mucus cells were noted after 2 days, which were considered responsible for
impaired osmoregulation.
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Hypoxia

Atlantic cod (Gadus morhua L.) acclimated to salinities 28–7 psu were exposed
to mild (8.0 kPa) or severe (4.0 kPa) hypoxia for 6 h (Claireaux and Dutil 1992).
During mild hypoxia, a strong hyperventilatory response was noted, causing a
respiratory alkalosis. Plasma Cl� and pyruvate both increased. In more severe
hypoxia, the ventilatory response was the same, and a weak metabolic acidosis
was superimposed. Both NaC and Cl� concentrations increased, and metabolic
disturbances were noted: plasma lactate, pyruvate and glucose concentrations
increased, indicative of glycolysis. Salinity affected the degree of the responses:
the amplitude decreased with decreasing salinity – opposite of the usual effect of
low salinity.

Peterson (1990) investigated plasma osmolality, plasma chloride ion concen-
tration, and survival of two mangrove species, sheepshead minnow, Cyprinodon
variegatus and sailfin molly, Poecilia latipinna under normoxic (150 mmHg) and
hypoxic (40 mmHg) conditions (30 ıC and 30 psu salinity). Reductions in oxygen
consumption occurred in both species in hypoxia. Plasma osmolality increased
in sheepshead minnows in hypoxia but plasma chloride did not change in either
species. There was no mortality in either species during the 24 h tests. Results
suggest tolerance of hypoxia in both species. P. latipinna was observed to use
aquatic surface respiration (ASR) in hypoxic conditions.

Acidification

Osmoregulation is critical in species that migrate between freshwater and the ocean.
Atlantic salmon, Salmo salar, smolts of both wild and hatchery origin were held for
5–16 days in ambient (pH 6.35), limed (pH 6.72), or acidified (pH 5.47) freshwater
(Magee et al. 2001). Osmoregulation was assessed by measuring NaC/KC ATPase,
hematocrit, and blood Cl concentration in freshwater and after 24-h in seawater.
Both hatchery and wild smolts exposed to acidic water had ionoregulatory stress in
both fresh and seawater; stress was so severe that there were mortalities of some
treated wild smolts in seawater.

Polluted Sites

DeDomenico et al. (2011) investigated impacts of contaminated sediments from a
petrochemical region on gills of seabass, Dicentrarchus labrax. Sublethal endpoints
were assessed such as histopathological lesions and molecules involved in home-
ostasis. Exposed fish showed a reduction of gill cell membrane permeability, which
could result in altered osmotic balance and gas exchange, although these processes
were not directly measured.
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4.1.4 Other Taxa

Metals

Effects of silver on ion and water balance were studied in the polychaete Neanthes
virens. Worms from a clean site showed increased KC and decreased Ca2C in their
coelomic fluid after accumulating 88 mg l�1 Ag, but worms from a Ag-contaminated
site in Long Island Sound showed effects only on Ca2C (Pereira and Kanungo 1981).
All worms developed edema and a curled posture, but these effects were more severe
in the worms from the reference site, indicating that chronic exposure had led to
some Ag tolerance.

Ocean Acidification

Echinoderms are considered likely to be vulnerable to acidification because they are
poor iono-regulators that have low capability to buffer elevated CO2 in their body
(Dupont et al. 2010). Spicer et al. (2011) investigated the effect of a 5 day exposure
to CO2-acidified sea water on the extracellular acid–base balance of the sea urchin
Strongylocentrotus dröebachiensis and found respiratory acidosis which increased
with decreasing pH. This was similar to another sea urchin, Psammechinus miliaris.
However, at the lowest pH (6.78) there was a metabolic component to the acidosis
(correlated with increased l-lactate) in S. dröebachiensis but not P. miliaris. The
acidosis was accompanied by an increase Ca in coelomic fluid.

4.2 Excretion

Excretion, ridding the body of waste products, is primarily a consequence of protein
breakdown; when proteins are converted to carbohydrates to provide energy, the
amino group is removed and becomes a waste product that must be eliminated.
The amino group is oxidized to form ammonia, which is toxic and highly soluble
in water. If the organism has a sufficient source of water, ammonia can simply be
diluted and excreted into the water. Ammonia can diffuse passively out of gills,
but to be excreted via kidneys much water is required to dissolve and flush the
toxic ammonia. Animals that have enzymes to convert ammonia to urea or uric
acid can produce urine that is more concentrated and thus conserve water. This
is particularly important in terrestrial animals, but detoxification of ammonia to
urea has also been noted in some aquatic organisms including elasmobranch and
teleost fishes. Excretion is related to osmoregulation since marine osmoregulators,
which tend to lose water to the environment, compensate by drinking sea water,
eliminating the excess salt via salt secreting organs (e.g. chloride cells in fish gills),
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and excreting highly concentrated urine. Freshwater species, which tend to absorb
water from the environment, drink little and excrete large amounts of dilute urine.
High concentrations of ammonia are produced in aquaculture operations where
population density of animals is high, and ammonia can have toxic effects on a
wide variety of organisms. There is an extensive body of literature on the toxicity of
ammonia to both invertebrates and fishes, which will not be covered here.

While there has been considerable research into the excretion of contaminants
and their by-products, there has not been as extensive a research effort into the
physiological effects of contaminants on the process of excretion itself. Within
the limited literature, there have been reports of both increases and decreases
in ammonia excretion in different species, sometimes in response to the same
toxicants. Many other factors such as salinity and feeding play a role in the process.

4.2.1 Crustacea

Ammonia excretion in crustaceans may show a relation to the molt cycle. At the
early premolt (stage D0) in Crangon crangon excretion is higher than levels at
intermolt; at late premolt (stage D2) excretion decreases to a minimum (Regnault
1979). After ecdysis, the excretion rate is about twice that of intermolt shrimp.
Results of contaminant exposures show both increases and decreases in ammonia
excretion; some of the variation in effects may be due to investigators not taking the
molt cycle into consideration when planning studies.

Metals

Gaudy et al. (1991) reported that 0.05 mg l�1 Cd reduced ammonia excretion
rate in Leptomysis. These mysids had reduced ability to utilize food (see chapter
on Digestion); the reduced excretion could be a result of low food intake. After
exposure to Cd or Zn (1 mg l�1), ammonium excretion in the white shrimp, Litope-
naeus vannamei, was higher than controls (Fig. 4.4) (Wu and Chen 2004) – the
opposite effect from that observed by Gaudy et al. (1991). Wu and Chen suggested
that elevated ammonium excretion was related to decreased osmotic pressure of
shrimp blood. Barbieri (2007) found similar results in Litopenaeus schmitti: 0.18–
0.98 mg l�1 Cd and 0.31–1.64 mg l�1 Zn increased ammonium excretion. Barbieri
et al. (2005) found that while Hg (0.045 mg l�1) reduced oxygen consumption,
it increased ammonia excretion in larvae of Farfantepenaeus brasiliensis. Barbieri
and Paes (2011) studied effects of salinity on the toxicity of Cd in F. paulensis.
Oxygen consumption and ammonium excretion were measured in shrimp at three
salinities (36, 20 and 5), at temperature of 20 ıC. At 5 psu salinity Cd reduced
oxygen consumption. Elevated ammonium excretion was seen at all salinities, but
was greatest at 5 psu salinity. In contrast, postlarvae of Penaeus indicus decreased
their ammonia excretion when exposed to increasing concentrations of Pb up to
7 mg l�1 (Chinni et al. 2002).
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Fig. 4.4 Ammonium (M ˙ SE) excreted by control L. vannamei and individuals exposed to
3 mg l�1 Cd and 3 mg l�1 Zn for 24 h. Means with different letters significantly differ (P < 0.05)
(Reprinted from Wu and Chen 2004: 1594, courtesy of Elsevier Publishing Co)

Mysids (Praunus flexuosus) responded differently depending on the season
(Garnacho et al. 2001). Metabolic responses to copper (0, 5, 25, 75 and 200 �g l�1)
were measured in winter and summer at 24 h, 96 h and 10 days of exposure. Control
metabolic rates were different between seasons. Respiration and ammonia excretion
were 2.5–6 times lower in winter and O:N ratios varied from 3.5 to 5 in summer to
8 in winter. Cu exposure decreased the O:N ratio (from 10 to 2–4). The responses
to Cu were greater in summer, causing larger changes and being effective at lower
concentrations. Alterations of the O:N ratio were a very sensitive indicator. Other
investigators generally do not consider the role of season in determining responses
to toxicants.

Oxygen consumption and excretion patterns (ammonia and nitrite) of mud crabs
Sesarma quadratum were studied at two sublethal concentrations of 1/10 (2.8 mg
l�1) and 1/3 (9.3 mg l�1) of the LC50 of copper chloride, and 1/10 (0.29 mg l�1) and
1/3 (0.98 mg l�1) of the LC50 value of chlorine for 1, 7, 14 and 21 days (Valarmathi
and Azariah 2002). The rates of oxygen consumption and excretion both decreased
and were negatively correlated to the concentrations of the toxicants.

Organic Contaminants

Laughlin and Linden (1983) found that exposure of the Baltic mysid, Neomysis
integer, to WSF of oil at concentrations between 200 and 1,000 pg 1�l produced
decreases in ammonia excretion that were strongly influenced by temperature, with
the greatest effect at the highest temperature tested.

Mysidopsis bahia were exposed throughout their life cycle to the defoliant DEF
(McKenney et al. 1991). After 5-day exposure to �0.085 �g l�1 DEF, mysids
excreted less ammonia. O:N ratios of unexposed mysids decreased as juveniles
matured, and DEF exposure resulted in higher O:N ratios. Higher O:N ratios during
maturation of exposed mysids suggests greater reliance on energy-rich lipids to
support metabolic demands.
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Hypoxia

Norway lobsters (Nephrops norvegicus) were exposed to hypoxic conditions
(Hagerman et al. 1990). Blood ammonia levels decreased over time in both
normoxia and hypoxia, indicating a decreasing metabolic rate over the experimental
period. In short term experiments, blood ammonia decreased in hypoxia and
ammonia excretion was negatively related to DO. Responses to hypoxia can be
affected by feeding. In Carcinus maenas, ammonia excretion decreased in hypoxia
(60 and 35 % saturation): a 40–45 % decrease was seen in fed crabs at 35 %
saturation and in 3 day-unfed crabs at both hypoxic levels (Regnault and Aldrich
1988). In crabs that had been unfed for 6 days, the effect of hypoxia was confounded
by the effect of starvation. Oxygen consumption rate was directly related to the
external O2 tension, regardless of the crab’s nutritional state. A strong relationship
was noted between ammonia excretion and oxygen consumption rates in fed crabs
in hypoxia, but not in starved crabs. In Cancer pagurus, Regnault (1993) found
a 50 and 60 % decrease in ammonia excretion at a Pw02 of 40 Torr and 15 Torr,
respectively, in regularly fed crabs. This decrease was seen within the 1st hour.
In 2-week starved crabs, the ammonia excretion rate in normoxia was reduced by
40 % due to starvation. A further decrease took place at both hypoxic levels, but the
hypoxia effect was secondary to the primary starvation effect.

Effects of hypoxia can also interact with salinity. Rosas et al. (1999) exposed
juvenile shrimp (Penaeus setiferus) to DO of 2, 3, 4 and 5.8 mg l�1 at two salinities
(15 and 35 psu) for 60 days. Ammonia excretion was significantly greater in 15 than
in 35 psu, and in 15 psu excretion decreased with DO; in unfed animals it diminished
in direct proportion to the DO, while fed shrimp could regulate ammonia excretion
at DO between 5.8 and 4 mg l�1. In 35 psu salinity, excretion increased in fed
animals at 2 and 3 mg l�1 DO. In low salinity the shrimp maintained proteins as
their energy source at all DO levels, while in high salinity they changed their energy
source from lipids-proteins to proteins when at low DO.

Acidification

The Chinese mitten crab, Eriocheir sinensis, migrates between fresh and salt water,
and thus can be exposed to a wide variety of pHs, both acidic and alkaline. Yu
et al. (2008) exposed mature female crabs to pH 4.5, 6.0, 7.5, 9.0 and 10.5 for
24 h, and measured ammonia excretion rate and hemolymph nitrogen content. They
found no significant difference in ammonia excretion at pH between 4.5 and 9.0,
but inhibitory effects were seen at the alkaline pH of 10.5. The hemolymph pH was
relatively constant from pH 4.5–9.0, but increased at pH 10.5. Hemolymph urea
and urate were also affected by pH; urea and urate increased between pH 7.5 and
pH 10.5. The results indicated that exposure to low pH did not affect the crabs’
excretory physiology, but that high alkaline pH produced a decrease in ammonia
excretion, and elevated the hemolymph ammonia, urea, urate and total free amino
acids.
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Fig. 4.5 Mean ammonia excretion rates (˙ SE) of P. viridis exposed to various concentrations
of Cd or Zn at 24 ıC (Reprinted from Cheung and Cheung 1995: 383, courtesy Elsevier
Publishing Co)

4.2.2 Mollusks

Metals

Mussels, Perna viridis, exposed to Cd (0.15, 0.32, 0.70 and 1.50 mg l�1) and
Zn (0.60, 1.29, 2.79 and 6.00 mg l�1) generally exhibited both reduced oxygen
consumption and ammonia excretion (Fig. 4.5) (Cheung and Cheung 1995). Cheung
and Wong (1998) exposed the prosobranch gastropod, Babylonia lutosa, to copper
(0.02, 0.06 and 0.20 mg l�1) for 23 days. The oxygen consumption rate and
the ammonia excretion rate decreased with increasing concentrations of Cu and
increased time, while the O:N ratio remained low.

Perna perna were exposed to 12.5, 25.0, 37.5 and 50.0 �g l�1 Cu for 24 h. In
contrast to P. viridis in the previous study, mucus secretion, nitrogen excretion, and
oxygen consumption rates all increased at 25 and 50 �g l�1 copper. Perna perna
changed its substrate utilization in favor of protein metabolism, thus increasing
excretion of ammonia (Vosloo et al. 2012). Sze and Lee (2000) investigated effects
of Cu exposure on growth and physiological responses of the green mussel P. viridis
by exposing mussels to 50 �g l�1 Cu for 3 months at 17 and 25 ıC. While growth
and condition index were reduced by Cu exposure, along with clearance rates, feces
production, assimilation efficiency, and oxygen consumption, ammonia excretion
increased with chronic Cu exposure.

Effects can also be seen in larval stages. D-shaped larvae of P. perna were
exposed to 0.47 mg l�1 ZnSO4, which reduced both oxygen consumption and am-
monia excretion. The O:N ratios were low, indicating that larvae were metabolizing
mostly protein (Radlvic et al. 2007).

Organics

Pesticides

Effects of two pesticides, methamidophos and omethoate, at 1, 10, 50, 100, and
200 �g l�1 for 96 h. on oxygen consumption, ammonia excretion, and filtration
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rate were studied in Mytilus edulis (Zhen et al. 2010). While oxygen consumption
increased in all concentrations of methamidophos and in the lower concentrations of
omethoate from 6 to 24 h, after 24 h, it decreased significantly. Ammonia excretion
rates were elevated after 36 h of exposure to methamidophos, but lower than controls
in omethoate. The O:N ratios increased initially when mussels were exposed to
the pesticides and then decreased. At 100 and 200 �g l�1, the O:N ratio was
below 30 after 72 h. Fuhrer et al. (2012) examined effects of the organophosphate
pesticide chlorpyrifos on the activity of acetylcholinesterase and on the O:N ratio
in the mussel Aulacomya aterwas. Chlorpyrifos concentrations between 0.2 and
1.61 �g l�1 inhibited AChE activity, and concentrations between 0.8 and 1.61 �g
l�1 stimulated ammonia excretion and decreased the O:N ratio, reflecting increased
reliance on protein metabolism. El Shenawy et al. (2003) investigated the toxicity
of a herbicide (48 % glyphosate, Roundup®) and an insecticide (50 % chlorpyrifos-
methyl, Reldan®) to the clam Ruditapes decussatus. After determining LC50, effects
of ½ LC50 of Roundup® (1.1 �l l�1) and Reldan® (0.6 �l l�1) were ascertained.
Reldan® reduced valve activity more than Roundup®, and the decreased respiration
rate was associated with decreased ammonia excretion. Reduced respiration and
excretion accounted for the decline in metabolism and excretion with increased time
of exposure.

PAHs

Stickle et al. (1984) exposed the carnivorous snail Thais lima to the water soluble
fraction (WSF) of Cook Inlet crude oil for 28 days. Predation rate on M. edulis
declined linearly with increasing aromatic hydrocarbon concentrations. Percentages
of total energy expenditure were dominated by respiration (87 %), while ammonia
excretion was responsible for only 9 % and did not vary with dose or time. O:N
ratios were also unaffected by concentration or time and indicated that T. lima
derived most of its energy from protein catabolism.

Axiak and George (1987) studied physiological responses of the bivalve Venus
verrucosa to low levels of WAF of Kuwait crude oil (100 �g l�1) for 145 days.
Clams decreased their feeding rates and food absorption efficiencies, while increas-
ing oxygen consumption and ammonia excretion. The integration of these responses
into the scope for growth, as well as the O:N ratio, showed that exposure reduced
the energy available for somatic growth and reproduction and enhanced protein
catabolism.

Oysters (C. gigas) exposed to 50 �g l�1 PAHs initially maintained their
metabolic rate, but when exposure was prolonged, they decreased their energy
intake while increasing catabolism to satisfy energy demands. When exposed to
200 �g l�1, they reduced energy intake and increased their excretion rate, which
can facilitate elimination of toxic chemicals (Jeong and Cho 2007). Kim et al. (2007)
also investigated effects of PAH on C. gigas, by exposing the oysters to 0, 50, 100
and 200 �g l�1 for 7 days with a 3-day acclimation period. Filtration and respiration
rates increased at 50 �g l�1 PAH and decreased at higher concentrations. Ammonia
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excretion increased with increasing PAH levels, with a significant elevation at
200 �g l�1. Overall, oysters exposed to 50 �g l�1 had scope for growth (SFG)
similar to controls, but those at to 200 �g l�1 PAH had negative SFG values.

Effects can also be seen in larval stages of mollusks. D-shaped larvae of P. perna
were exposed to 5.69 �L.L�1 benzene, which reduced their ammonia excretion. The
O:N ratios were low, indicating that the larvae were metabolizing mostly protein
(Radlvic et al. 2007).

Acidification

Juvenile M. galloprovincialis under conditions of �0.3 and �0.6 pH units had
increased absorption efficiency and ammonium excretion. Overall these mussels
had increased scope for growth and tissue dry weight, suggesting that this species is
relatively tolerant to acidification (Fernandez-Reiriz et al. 2012).

Polluted Environment

Bakke (1988) measured ingestion, food absorption efficiency, ammonia excretion,
respiration and their integration into scope for growth in periwinkles Littorina
littorea from 4 field populations from Norway, and 4 groups exposed in mesocosms
to different concentrations of oil and copper for 4 months. Measurements did
not vary among the different mesocosm treatments. The author concluded using
physiological energetics of L. littorea in pollution monitoring was premature,
and recommended method development and a better understanding of the factors
regulating the processes.

Grant and Thorpe (1991) exposed soft-shell clams (Mya arenaria) to a flow-
through suspension of intertidal sediment (100–200�1) with ambient filtered sea-
water control. Clams were given microalgae as food. Clams decreased their oxygen
consumption and increased ammonia excretion in the turbidity treatment. O:N ratios
fell in exposed clams, suggesting that they were utilizing body protein reserves to
meet nutritional needs. While control animals grew over the study period, treated
clams did not, suggesting that M. arenaria copes with turbidity by reducing its
ventilation rate, which gives them tolerance to intermittent turbidity at the expense
of nutrition.

4.2.3 Fishes

The excretion of ammonia is critical because ammonia is toxic and ammonia itself
can be considered a pollutant with deleterious effects on biota. A body of literature
on ammonia toxicity suggests that during ammonia exposures, estuarine fish may
be most at risk as larvae or juveniles, at elevated temperatures, low salinity, and
low pH (reviewed by Eddy 2005), conditions that can promote ammonia uptake and



118 4 Osmoregulation and Excretion

retention. Fish are more susceptible to ammonia toxicity if they are not feeding, are
stressed and if they are active. Some fishes convert the ammonia they produce to urea
for excretion. Relatively few studies of the effects of environmental contaminants
on excretion in marine fishes have been performed.

Metals

Zimmer et al. (2012) exposed euryhaline guppies (Poecilia vivipara) to 20 �g
Cu l�1 in 0 and 25 psu salinity for 96 h. In both salinities, Cu initially inhibited
ammonia excretion, which recovered by the end of the 96 h exposure. The activities
of NaC/KC-ATPase and carbonic anhydrase (CA) were studied in the gills at 12
and 96 h. At both salinities, CA activity was inhibited after 12 h, which the authors
felt was the first in vivo evidence of Cu-induced inhibition of CA in fish. The
inhibition and subsequent recovery of CA were correlated with the inhibition and
recovery of ammonia excretion, so CA inhibition may be a mechanism of inhibition
of ammonia excretion. No effects were seen on NaC/KC-ATPase. Since many metal
contaminants are known to damage gill epithelia and/or kidney, ammonia excretion
could certainly be affected.

Organics

The Florida pomapano, Trachinotus carolinus was exposed to naphthalene to
investigate physiological effects after acute (50 min and 24 h) and chronic (12 days)
exposures (Dos Santos et al. 2006). The 96h-LC50 at 24 ıC was 2.83 mg l�1

of naphthalene. After acute exposures, fish had a tendency to increase oxygen
consumption, but after chronic exposures, they decreased oxygen consumption at
the highest concentration, suggesting a narcotic effect. Ammonia excretion was
reduced significantly in all the exposed organisms, and the O:N ratio indicated a
tendency to use lipids to supply metabolic demands.

Contaminants of Emerging Concern

The gulf toadfish, Opsanus beta, was implanted intraperitoneally with various
concentrations of the selective serotonin reuptake inhibitor, fluoxetine (0, 25, 50,
75 and 100 �g g�1). Fluoxetine concentrations of 25 and 50 �g g�1 were sublethal
and were used in subsequent experiments (Morando et al. 2009). Fish treated with
25 or 50 �g g�1 had significantly higher circulating levels of 5-HT than controls,
suggesting that 5-HT sensitive physiological processes could be affected. However,
only the fish treated with 25 �g g�1 fluoxetine (the lowest dose) showed a significant
increase in urea excretion. A similar increase was not seen in fish treated with the
higher concentration of fluoxetine, probably because of their high circulating levels
of cortisol, which inhibits urea excretion in toadfish. This may also be in keeping
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with effects of endocrine disruptors which do not follow typical dose–response
relationships.

Hypoxia

Juvenile turbot (Scophthalmus maximus) were fed to satiation at O2 concentrations
of 3.5, or 5.0 mg l�1 (hypoxia) and 7.2 mg l�1 (normoxia). Food intake and
growth were both significantly lower under hypoxia than normoxia (Pichavant et al.
2000). During the first 2 weeks of the experiment, food intake of hypoxic fish was
reduced by half. Nitrogen excretion and oxygen consumption of feeding fish were
significantly reduced under hypoxia. Reduced N excretion was probably related to
the lower intake of food.

Ocean Acidification

Ip and Chew (2010) in a review article stated that it is likely that ocean acidification
will not be a problem for ammonia-excreting organisms because lowering the
pH facilitates ammonia excretion. Conversely, they said, elevated pH could be
a significant problem, but this does not occur in seawater. However, since low
pH-induces long-term increases in ammonia excretion and protein catabolism in
many species, prolonged exposure to reduced pH could have deleterious effects on
energetics and growth.

4.2.4 Other Taxa

Metals

Oxygen consumption and ammonia excretion of the sipunculid worm Phascolo-
soma esculenta exposed to Cd (0.45, 0.96, 2.04, and 4.46 mg l�1) or Zn (1.09,
2.34, 4.96, and 10.91 mg l�1) was measured over 21 days. Oxygen consumption
decreased from day 1 to day 6, but at low Cd (0.45 and 0.96 mg l�1), oxygen con-
sumption increased (Chen et al. 2009). Oxygen consumption decreased significantly
with time in Zn-exposed individuals. Changes occurred in ammonia excretion rates
and O:N ratios. Although low O:N ratios (<30) were seen in most of the treatments,
no predictable correlation was found between metal concentration and O:N ratio.

Acidification

Sea urchins (Strongylocentrotus droebachiensis) from the Kattegat region are
normally exposed to periods of low pH. Urchins exposed to moderately (102–
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145 Pa, 1,007–1,431 �atm) and highly (284–385 Pa, 2,800–3,800 �atm) elevated
seawater pCO2 for 45 days showed a shift in energy budgets, leading to reduced
growth (Stumpp et al. 2012). Exposed animals had increased ammonia excretion and
decreased O:N ratios, suggesting that protein metabolism was enhanced in order to
maintain ion homeostasis. The acid–base status indicated that the sea urchins could
fully or partially compensate for pH changes by slow accumulation of bicarbonate.
Sea urchins in the high pCO2 treatment fell into two distinct groups: 29 % of them
had food in their digestive system and maintained partially compensated pH, while
the other 71 % had an empty digestive system and a severe metabolic acidosis. This
suggested to the authors that some of the urchins from the Kattegat might be pre-
adapted to high pCO2 because of the natural variability in pCO2 in their habitat.
Seawater pCO2 values of >200 Pa, which are expected to occur in this century
during seasonal hypoxia, might be tolerated for a few weeks.

4.3 Conclusions

While osmoregulation is typically depressed by a wide range of contaminants,
excretion can be either depressed or enhanced, depending on a number of factors
including the organism, the contaminant, the length of time of exposure, the salinity,
and food intake. Increased ammonia excretion is a result of increased protein
catabolism, which is a response to some contaminants, while decreased excretion
often follows decreased food intake, which is a very common response to stresses.
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Chapter 5
Reproduction

Abstract Reproduction is obviously a very important endpoint, since impaired
reproduction can have rapid repercussions at the population level. Life-cycle charac-
teristics of different organisms are a major factor in determining their vulnerability
to particular contaminants. There are many ways in which reproduction can be
affected, but one of particular concern is by very low levels of some environmental
chemicals that can interfere with the endocrine system, termed endocrine disruption.
Contaminants can also directly affect gametogenesis, mating, and fertilization.
These various stages of the reproductive process are clearly connected to one
another.

Keywords Endocrine • Fertilization • Gametogenesis • Mating • Vitellogenin

This chapter and the three to follow cover life cycle functions; separate chapters
cover reproduction, embryonic development, larval development, and subsequent
developmental processes. The present chapter is subdivided into sections dealing
with Endocrine Effects, Gametogenesis and Fecundity, and Mating and Fertiliza-
tion. All these processes are continuous, and the subdivisions between sections (and
chapters) are not totally distinct from each other. It is clear that effects at one stage
can produce subsequent effects at later stages.

5.1 Endocrine Effects

The endocrine system regulates all biological processes in the body, including
metabolism, development of the nervous system, and the growth and function of
the reproductive system. The female ovaries, male testes, and pituitary, thyroid,
and adrenal glands are major constituents of the vertebrate endocrine system.
These glands produce hormones that circulate in the blood and interact with
cells by binding to special proteins called receptors, which are specific for each
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hormone. When enough binding sites are occupied, a message is passed on to the
target cell nucleus stimulating genes that result in physiological changes regulating
metabolism, development, growth, reproduction etc.

For the past 20 or so years, there has been considerable attention devoted to ef-
fects of very low levels of contaminants on the endocrine system; chemicals having
such effects (and there are many) have been called “endocrine disruptors.” Some
of the concern is because hormones have effects at extremely low concentrations
in the body, and endocrine-disrupting chemicals similarly can produce effects at
levels far below those that had previously been considered safe. Since hormones
are already present in the body in biologically active concentrations, additional
exposure to relatively small amounts of hormonally active substances can disrupt the
proper functioning of the endocrine system. In some cases, these effects disappear
at higher concentrations, being an exception to general dose–response relationships
in toxicology. Another cause for concern is that exposures during early life stages
(e.g. embryos) can produce delayed effects that become apparent only when the
organism is mature and theoretically ready to reproduce.

The bulk of research on endocrine disruption has focused on sex steroids. The
two main classes of sex steroids are androgens and estrogens, which include testos-
terone and estradiol. In general, androgens are considered “male sex hormones”
since they have masculinizing effects, while estrogens are considered “female
sex hormones” although all types are present in each sex, but at different levels.
Some chemicals mimic a natural hormone, fooling the body into over-responding
to the stimulus, or responding at inappropriate times. Other endocrine-disrupting
chemicals block the effects of a hormone from certain receptors, stimulate or inhibit
the endocrine system causing overproduction or underproduction of hormones.
Environmental chemicals can be estrogen mimics, anti-estrogens, androgen mimics,
and anti-androgens. Endocrine disrupting chemicals may resemble sex steroids
structurally. These chemical properties allow them to bind to hormone-specific
receptors on the cells of target organs. This binding may result in activating the cell
inappropriately or blocking natural hormones from binding. Among xenoestrogens
are widely used industrial compounds, such as PCBs, Bisphenol-A, and phthalates.
They can cause an estrogen-like response at the wrong time or in the wrong amounts
in both sexes, and can enhance female traits in males (feminize). Hormone blockers
include drugs like tamoxifen, a specific antiestrogen used to treat breast cancers that
need estrogen to grow. DDE, a breakdown product DDT, blocks androgen receptors
so testosterone cannot bind.

5.1.1 Crustaceans

In crustaceans ecdysteroids and terpenoids play major roles in regulating develop-
ment, growth, maturation, and reproduction. Laboratory studies have demonstrated
the susceptibility of crustaceans to endocrine disruptors, and studies have shown en-
docrine disruption in field populations, though the causal link between abnormalities
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and particular environmental chemicals is often lacking. Indicators of reproductive
endocrine disruption (e.g., intersexuality) allow investigation of the degree to which
endocrine disruptors are affecting populations (LeBlanc 2007), yet there are few
studies that examine gonadal development, intersex or other direct reproductive
endocrine effects. Ecdysteroids regulate aspects of embryo development, molting,
and reproduction, so chemicals that interfere with ecdysteroid signaling can produce
effects. Chemicals with anti-ecdysteroidal activity can function as ecdysteroid
synthesis inhibitors or ecdysteroid receptor antagonists. Such chemicals include
many of the classic estrogen receptor agonists (e.g. bisphenol a, DDT metabolites,
nonylphenol). Many of these endpoints are appropriate to chapters on embryo and
larval development, but will be described here. Alterations in molt frequency can
indicate disruption of ecdysteroid signaling, but effects of chemicals on molting
will be discussed in the chapter that covers growth (Chap. 8).

Pesticides and Contaminants of Emerging Concern

Methyl farnesoate is a major terpenoid hormone of crustaceans. Many laboratory
studies have been performed with insect growth- regulating insecticides (McKenney
2005) which function as methyl farnesoate mimics. Metamorphic success of
decapods is among the most sensitive endpoints affected by insect growth regulators.
Delayed metamorphosis or metamorphic abnormalities caused by exposure to insect
growth regulators have been reported in shrimp, crabs, and lobsters (Christiansen
et al. 1977a, b; McKenney and Celestial 1993; Celestial and McKenney 1994;
Cripe et al. 2003). These will be discussed in greater detail in Chap. 7, on
larval development. Estrogens themselves (17b-estradiol, diethylstilbestrol, 17a-
ethinyl estradiol, estrone) can elicit effects on crustaceans including altered gonadal
development in amphipods (Segner et al. 2003), and reduced vitellin levels in
mysids (Ghekiere et al. 2006).

Metals

There has been very little work on endocrine-disrupting effects of metals on
crustacean reproduction. Tributyltin exposure of hermit crabs, Clibanarius vittatus
females caused disorganization and atrophy of the ovaries, which would impair
reproduction (Sant’Anna et al. 2012). This chemical has profound endocrine
disrupting effects on females of many groups of organisms, described below for
mollusks and fishes.

Polluted Environment

There have been reports of intersex individuals of many species, but they have
not been generally correlated with particular pollutants. Copepods Paramphiascella

http://dx.doi.org/10.1007/978-94-007-6949-8
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hyperborean, Stenhelia gibba, and Halectinosoma sp. collected near sewage outfalls
had elevated incidence of intersex (Moore and Stevenson 1991, 1994). This similar
effect in different species in the same vicinity suggests an environmental cause, but
no clear relationship could be established between sewage effluent and incidence of
intersex (Moore and Stevenson 1994).

5.1.2 Mollusks

Metals

TBT

One of the earliest reported examples of endocrine disruption found in the field
was a condition called imposex in female gastropods exposed to very low levels
of tributyltin (TBT), a commonly used constituent of antifouling paints on vessels
until the 1980s, when it was restricted or banned in many countries. Affected female
snails developed male structures including a penis and vas deferens, which could
block the passage of eggs down the oviduct preventing egg deposition and causing
reproductive failure. Many dogwhelk, Nucella lapillus, populations had females in
which vas deferens overgrew the female opening, rendering the female sterile (Gibbs
and Bryan 1986); this was associated with population declines around Southwest
England (Bryan et al. 1986). Population recovery occurred only after restrictions on
the use of TBT came into effect. While some species recovered quickly after TBT
use was restricted, in Nassarius reticulatus, tissue levels of TBT in polluted sites
dropped by 5–10 times between 1987 and 1993, but the rate of imposex declined
very slowly; this was attributed to longevity of the snails and limited recruitment of
less-affected females (Bryan et al. 1993). Even in 2011, however, Qiu et al. found
that imposex remained severe in Thais clavigera from Victoria Harbour and other
sites with extensive shipping activities. Imposex severity (measured by relative penis
length in females) was correlated with tissue concentrations of TBT. High levels of
imposex were also found in Thais biserialis, T. brevidentata, and T. kiosquiformis
in many coastal sites in Ecuador (Castro et al. 2012). Butyltin compounds (TBT,
dibutylin -DBT, and monobutylin -MBT) were found in sediments. TBT does
degrade over time, but not as rapidly as was originally thought. Although BT
degradation suggested an older input of TBT, the high imposex levels suggest that
restrictions on TBT were still not effective in Ecuador.

Abidli et al. (2011) studied testosterone and estradiol in two gastropods,
Hexaplex trunculus and Bolinus brandaris, to clarify the impact of TBT on free and
esterified steroids. Two months exposure to 50 ng l�1 induced imposex. Testosterone
and estradiol were present in free and esterified forms in the digestive gland-gonad
complex. In female B. brandaris, 50 ng TBT l�1 elevated free testosterone and
decreased the esterified form. However, in female H. trunculus, TBT elevated both
the free and esterified form of testosterone.
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5.1.3 Fishes

Fishes have considerable sexual plasticity. Although the sexes are usually separate,
there are some functional hermaphrodites (e.g., some Serranidae and Sparidae).
In some species, individuals can change functional sex in response to social and
environmental cues. There are examples of both protandrous (male first) and pro-
togynous (female first) groups, e.g., bluehead wrasses and clownfish, respectively,
but increasing numbers of species are being found to have this ability. It has
become clear that this natural hormonal balance may be disturbed by chemicals
with hormone-like activities. Fish are particularly vulnerable to potential endocrine-
disrupting chemicals (EDCs) in surface waters.

The egg protein, vitellogenin (VTG), is produced in the female’s liver and
transported to the ovaries, where it is added to egg yolk prior to ovulation. Synthesis
of this protein is regulated by estrogens and thus can serve as a marker of exposure
to environmental estrogens. VTG induction in male fish (which have very low
endogenous estrogens, but whose livers nevertheless are able to synthesize VTG
in response to exogenous ones) is an effect of estrogenic contamination; numerous
studies have measured this biomarker in field populations. VTG induction in males
is an excellent biomarker of exposure to estrogens acting via hepatic estrogen
receptors. Other commonly observed responses are intersex individuals and altered
sex ratios. Biochemical changes in sex hormones or enzymes involved in their
synthesis are also frequently studied. Numerous bioassays have been developed
using steroid hormones and VTG as end points (MacLatchy et al. 2003).

An analogous biomarker to VTG that is sensitive to androgens has been
developed in the three-spine stickleback (Gasterosteus aculeatus) (Katsiadaki et al.
2002). This is the protein spiggin, which is produced in the male kidney and secreted
for use as a glue during nest construction. Spiggin is produced in females only after
exposure to exogenous androgens.

Metals

Thomas (1989) examined effects of Cd on the reproductive endocrine function in
female Atlantic croaker (Micropogonias undulatus) Fish were exposed to 1 mg
l�1 Cd for 40 days during the period of ovarian recrudescence. Exposure accel-
erated ovarian growth and elevated plasma estradiol concentrations, suggesting
a stimulation of vitellogenesis. He also observed an increase in the spontaneous
secretion of gonadotropin (GTH) from pituitaries of Cd-exposed fish in vitro.
Depew et al. (2012) reviewed effects of dietary mercury on fish and found that
adverse effects on behavior had a wide range of effective dietary concentrations,
but generally occurred above 0.5 �g g�1 wet weight. In contrast, effects on
reproduction (generally endocrine effects) occurred at dietary concentrations that
were much lower (<0.2 �g g�1 wet wt). Tributyltin (TBT) produces masculinization
in fish, reminiscent of effects in invertebrates. Genetically female Japanese flounder
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(Paralichthys olivaceus) were fed an artificial diet containing tributyltin oxide
(TBTO) at concentrations of 0.1 and 1.0 �g/g diet from 35 to 100 days after
hatching, which includes the sex differentiation period (Shimasaki et al. 2003). The
ratio of sex-reversed males increased to 25.7 % in flounder fed the 0.1 �g/g diet
and to 31.1 % in those fed the 1.0 �g/g diet compared with the control (2.2 %).
TBT’s breakdown product, dibutyltin (DBT), also can act as a masculinizing agent
in fish (McGuiness et al. 2012). Zhang et al. (2013) investigated effects of TBT on
ovarian lipid accumulation and testosterone esterification in rockfish (Sebastiscus
marmoratus). After exposure to TBT (0, 1, 10 or 100 ng l�1 as Sn) for 48 days, there
was delay in oogenesis, a decrease of neutral lipid droplets in the ooplasm of ovaries.
Exposure also induced an increase of interstitial ectopic lipid accumulation and total
lipids in ovaries. A decrease of serum T3 and T4 (triiodothyronine and thyroxine)
concentrations (at 10 and 100 ng l�1) was a possible cause for the lipid responses.
In addition, the percentage of testosterone in esterified form was decreased in the
ovaries by TBT, which might be a mechanism by which free testosterone levels
increased. The accumulation of ectopic lipids and increase of free testosterone in
ovaries could impact ovarian functions and oocyte development.

Organics

Chlorinated Chemicals

PCBs and dioxins have frequently been associated with endocrine disruption.
Thomas (1989) examined effects of the PCB mixture Aroclor 1254 on the repro-
ductive endocrine function in female Atlantic croaker (M. undulatus). Fish were fed
PCBs in the diet (0.5 mg/100 g body wt/day) during the period of ovarian recrude-
scence, which impaired ovarian growth and decreased plasma estradiol. Pituitaries
from treated fish decreased their spontaneous secretion of gonadotropin in vitro.
Loomis and Thomas (1999) identified an estrogen receptor in the testis in Atlantic
croaker. Xenoestrogens, including DDT, chlordecone (Kepone), nonylphenol, and
PCBs, bound to this receptor with relatively low binding affinities, 10�3 to 10�5 that
of estradiol. Khan and Thomas (1992, 1997, 2001, 2006) accumulated evidence of
the involvement of PCBs in disruption of the serotoninergic systems in fish brains
that regulate reproductive hormones. In male M. undulatus, exposure to Aroclor
1254 during gonadal recrudescence caused a significant decline in 5-HT (serotonin)
and DA (dopamine) and an increase in their metabolites (Khan and Thomas 1997).
The reduction in 5-HT led to an inhibition of luteinizing hormone (LH) secretion
and an absence of gonadal growth, since 5-HT stimulates LH secretion in this
species (Khan and Thomas 1992, 1997; Khan et al. 2001).

Dioxins, furans and dioxin-like polychlorinated biphenyls (PCBs) were analyzed
in muscle of yellow phase European eel (Anguilla anguilla) from 38 sites (Geeraerts
et al. 2011). In most sites, eels had levels considered detrimental for reproduction;
these chemicals were suggested as factors contributing to the population decline of
this species.
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Oil and PAHs

Oil has major impacts on fish embryos that may be manifested in adult stages as
endocrine disruption. Pink salmon that had been exposed as embryos to Exxon
Valdez oil and survived to migrate to the ocean, returned from the sea at only half the
rate of control fish (Heintz et al. 2000). These returning adults showed reproductive
impairment and their embryos had reduced survival. Thus, the second generation
was affected by the sublethal exposures their parents had had as embryos and fry
(Peterson et al. 2003).

Specific PAHs may act as endocrine disruptors. Dong et al. (2008) hypoth-
esized that altered expression of genes for the P450 enzyme aromatase could
be responsible for reproductive dysfunction caused by Benzo(a)Pyrene (BaP).
Aromatase is involved in steroid balance by converting androgens into estrogens.
CYP19A1 expression decreased after BaP exposure in 3-month-old Fundulus
immature oocytes, but BaP did not affect its expression in adult oocytes. In embryo
brains, BaP significantly decreased CYP19A2, and in adults, CYP19A2 expression
was decreased in the pituitary and hypothalamus. The study gives insights into
molecular mechanisms of action of BaP.

Following the ExxonValdez oil spill in 1989, Sol et al. (2000) studied the effect of
oil on reproductive parameters in wild populations of female dolly varden, yellowfin
sole, and pollock. Exposure to oil was the highest in the first year and decreased in
subsequent years of sampling. A higher proportion of dolly varden sampled in 1989
had depressed plasma estradiol-17“ compared to the fish in 1990.

Contaminants of Emerging Concern

Some studies have exposed animals to hormones themselves instead of hormone
mimics, often ethynylestradiol (EE2), since this estrogen (used in birth control
pills) is released from sewage treatment plants. In some cases, EE2 has been used
to develop a bioassay for contaminants with estrogenic effects. F. heteroclitus
exposed to 17’-ethynylestradiol showed decreased plasma reproductive steroid
levels, decreased gonadal steroid production, increased plasma VTG, decreased
fecundity and impaired fertilization. In exposed males, testosterone production
decreased, indicating effects on the steroidogenic pathway. Hepatic transcript levels
of estrogen receptor alpha (ER’) and VTG increased in treated males, an estrogenic
response (Hogan et al. 2010). Recrudescing F. heteroclitus were exposed to EE2

for 7–15 days (MacLatchy et al. 2003). At high EE2 (>250 ng l�1), males had
depressed androgen synthesis and plasma steroid levels and females had depressed
gonadal production and circulating E2; however, <100 ng l�1 EE2 increased
gonadal production and plasma E2. Male and female plasma VTG responded in a
concentration-dependent fashion, with the low effect concentration being 1 ng l�1.

Loomis and Thomas (2000) studied short-term effects of estrogens and xenoe-
strogens on androgen production by testicular tissue from the Atlantic croaker
(M. undulatus). Incubation of testicular tissue with estradiol (37 nM to 37 �M)
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decreased gonadotropin-stimulated 11-ketotestosterone (11-KT) production. The
effect was specific for estrogens; progesterone, cortisol, or the synthetic androgen
mibolerone did not alter 11-KT production at similar concentrations. Diethylstilbe-
strol, the antiestrogen ICI 182,780, and several xenoestrogens including Kepone
(chlordecone), 4-nonylphenol, and a hydroxylated PCB metabolite also decreased
gonadotropin-stimulated 11-KT production. The action of estradiol was rapid
(<5 min) and was not blocked by actinomycin D or cycloheximide (inhibitors of
transcription and translation, respectively) demonstrating that estrogens (and also
probably xenoestrogens) act on the cell surface via a nongenomic mechanism to
alter androgen production. However, genes normally induced by estradiol (E2) in
female fish, those for VTG and zona radiata proteins, are inducible in males exposed
to estrogenic chemicals. Male sheepshead minnows (Cyprinodon variegatus) were
exposed to both E2 and para-nonylphenol (NP), to determine a dose–response
(Knoebl et al. 2004). Quantitative real time PCR measured mRNA for the genes.
Both E2 and NP elicited a dose-related increase in all of the mRNAs tested.
Hogan et al. (2008) also examined genetic responses as well as hormonal ones.
To determine the sensitivity of genes to induction by hormones, male and female
three-spine sticklebacks (G. aculeatus) were exposed to 1, 10 and 100 ng l�1

of methyltestosterone (MT) or estradiol (E2). Spiggin induction in females, and
VTG induction in males were both detectable at 10 ng l�1 of either hormone.
Gonadal steroid hormone production was measured in exposed fish to compare gene
expression endpoints to an endpoint of hormonal reproductive alteration. Reduction
in testosterone production in ovaries at all three MT exposure concentrations, and
ovarian estradiol synthesis at the 100 ng l�1 exposure were observed in vitro for
both hormone exposures.

Pharmaceuticals that are not designed for reproductive functions may also
interfere with androgen synthesis. The in vitro interference of fibrate (gemfibrozil,
clofibrate, clofibric acid), anti-inflammatory (ibuprofen, diclofenac), and anti-
depressive (fluoxetine, fluvoxamine) drugs with key enzymes – C17,20-lyase and
CYP11ˇ – that are involved in androgen synthesis in gonads of male fish were
investigated by Fernandes et al. (2011). Fluvoxamine and fluoxetine were the
strongest inhibitors of C17,20-lyase and CYP11ˇ enzymes at concentrations of
321–335 and 244–550 �M, respectively.

Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) and the active
ingredient of Prozac. Usually detected <1 �g l�1, fluoxetine and its metabolite
norfluoxetine bioaccumulate in fish, particularly in the brain. In the Atlantic croaker
Micropogonias undulatus, serotonin is involved in the neuroendocrine stimulation
of reproduction by increasing LH release (Khan and Thomas 1992, 1994).

EE2 exposure of juveniles can have delayed effects. Maunder et al. (2007)
exposed juvenile sticklebacks to 1.75 and 27.7 ng l�1 EE2 for 4 weeks post-
hatch and reared them in clean water until they matured. Exposure to the higher
concentration caused the occurrence of ovotestis in males, which had less intense
nuptial coloration, built fewer nests, in which fewer eggs were deposited. The group
exposed to 1.75 ng l�1 also built significantly fewer nests than controls.
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Fig. 5.1 Testicular development and endocrine function in male croaker collected from normoxic
(N1, N2) and hypoxic (H 1,2,3,4) sites. (a) GSI (testicular growth). (b) Relative sperm production.
(c, d) Plasma 11-KT levels. * D significant differences between normoxic and hypoxic sites.
*** D highly significant differences between normoxic and hypoxic sites. Individual site differ-
ences indicated with different letters (p < 0.05) (Reprinted from Thomas et al. 2007: 2696, courtesy
The Royal Society)

Hypoxia

It is interesting that exposure to low DO can also trigger reproductive endocrine
disruption. Chronic environmental exposure of Atlantic croaker (M. undulatus)
to hypoxia suppressed ovarian and testicular growth, associated with impair-
ment of reproductive neuroendocrine function and decreases in hypothalamic
serotonin (5-HT) and activity of the 5-HT biosynthetic enzyme, tryptophan hy-
droxylase (Thomas et al. 2007) (Fig. 5.1). Pharmacological restoration of hypotha-
lamic 5-HT levels restored neuroendocrine function, indicating that the seroton-
ergic neuroendocrine pathway is a major site of hypoxia-induced reproductive
disruption.

Thomas et al. (2006) studied effects of 10 week exposures to low DO (2.7 and
1.7 mg l�1) on reproductive responses in female M. undulatus in the laboratory,
and in fish from hypoxic sites. Exposure to moderate hypoxia during ovarian
recrudescence, both in the laboratory and field, impaired ovarian growth and
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decreased production of mature oocytes, associated with decreases in the estrogen
signaling pathway for production of VTG. The results indicated that endocrine and
morphological biomarkers are sensitive to moderate hypoxia, and are early warning
indicators of reproductive failure. Sustained diel exposure to hypoxia was associated
with smaller gonadosomatic index (GSI, gonad mass/body mass) and lower sex
steroid concentrations in wild Gulf killifish (F. grandis) (Cheek et al. 2009). Testes
and ovaries were significantly smaller under both moderate (2.61 mg l–1, 0.6 h day–1)
and severe (0.93 mg l–1, 3.4 h day–1) diel hypoxia. Male 11-KT concentrations
were lower under moderate hypoxia, while both testosterone (T) and 11-KT were
significantly reduced under severe diel hypoxia, which may affect reproduction by
inhibiting steroidogenic enzymes in the gonad. Reproductive success, growth, and
physiological status under longer hypoxic episodes (5 h daily for 30 days) were
examined by Cheek (2011). Growth, GSI, steroid hormone levels, and fertilization
rate were unaltered by exposure to diel hypoxia, but at sites with diel hypoxia
egg production was 50–85 % lower than at sites in the same estuary without daily
hypoxia.

Climate Change

Susceptibility of F. heteroclitus to EE2 exposure, as indicated by increases in VTG
gene expression changed with temperature. Liver vtg1 mRNA was induced in males
exposed to EE2. Males acclimated to 26 ıC and exposed to 250 ng l�1 EE2 produced
3.5-fold more vtg1 mRNA than EE2-exposed males acclimated to 10 ıC, suggesting
that they are more susceptible to EE2 under temperature increases that are expected
with warming of coastal waters (Chandra et al. 2012).

Polluted Sites

Animals in polluted estuaries are exposed to complex mixtures of xenobiotics
which can alter normal reproduction. Many effects have been reported in flatfish,
which spend their lives in close contact with contaminated sediments. Lye et al.
(1998) reported VTG induction and testicular abnormalities in male flounder
(Platichthys flesus) from near a sewage discharge in NE England. More detailed
surveys (Matthiessen et al. 2002) showed that VTG induction is widespread in
the males of this species. It is worth noting that reduced VTG has occasionally
been reported in females (e.g. Casillas et al. 1991) from contaminated sites, which
might be attributable to antiestrogen or androgen exposure or to generalized stress,
causing lower VTG synthesis, which could reduce normal egg development. Female
sole from contaminated sites also have lower estrogen levels and inhibited ovarian
development (Johnson et al. 1988). Significant levels of VTG were found in male
English sole from several urban sites, with especially high numbers in Elliott Bay,
along the Seattle Waterfront (Johnson et al. 2008). At the sites with male VTG
production, the timing of spawning appeared altered.
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Experimental exposure to pulp-mill effluent depressed testosterone in F. het-
eroclitus (Dubé and MacLatchy 2000), possibly via action on pituitary GTH
secretion. Bugel et al. (2009) found impaired reproductive health in both sexes of F.
heteroclitus in industrialized Newark Bay (NB), New Jersey. Males had decreased
gonad weight, altered testis development and decreased gonadal aromatase mRNA
expression; females had decreased gonad weight, inhibited gonadal development,
decreased hepatic VTG production, and increased mRNA expression of gonadal
aromatase, as well as fewer mature follicles (Fig. 5.2). NB fish also had reduced
fecundity and lower hatching success, as well as lower mass and yolk-volume of
eggs. Circulating 17“-estradiol levels in NB females were eight-fold lower than
females from the reference site (Bugel et al. 2011).

Sewage plant effluent with anti-androgenic activity affected reproductive physi-
ology and behavior of three-spined sticklebacks (G. aculeatus) exposed for 21 days.
Levels of spiggin and VTG were unaffected, but male reproductive behavior was
impaired (Sebire et al. 2011). Males in full strength effluent built fewer nests, and
courtship behavior was reduced in 50 and 100 % effluent treatments. This is another
example of behavior being more sensitive than the biochemical biomarkers. Wild
gudgeon were collected upstream and downstream of urban and pharmaceutical
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manufacture effluents by Sanchez et al. (2011). Fish downstream of the effluent
exhibited endocrine disruption including VTG induction, intersex and male-biased
sex-ratio. These effects were associated with reduced population density.

5.1.4 Other Taxa

Polychaetes

Lewis and Watson (2012) have encouraged increased focus on reproductive end-
points in polychaetes. They suggest the following be investigated: (1) reproductive
endpoints for the traditional ‘model’ species and those that have different repro-
ductive traits to ensure broad ecological relevance; (2) Nereids and Arenicola
marina be used to investigate the interaction of pollutants with the endocrine/
environmental control of reproduction; (3) Use of polychaetes to assess male
ecotoxicity effects; and (4) Assess emerging pollutants with reproductive endpoints.
Long-term exposure to Cu-spiked sediment had deleterious effects on sperm and egg
production in N. virens (Watson et al. 2013). Differences in the number of normal
embryos produced by eggs fertilized with sperm from exposed males showed that
sperm were more susceptible to toxicity, although eggs were also affected at higher
concentrations.

Marine Mammals

Marine mammals are frequently top carnivores, and as such accumulate very
high concentrations of chlorinated chemicals that can be endocrine disruptors.
Although experimental studies are rare, there have been many correlative studies of
which a few are presented here. Relationships between organochlorine compounds
such as PCBs, DDTs, hexachlorobenzene, and oxychlordane, and hormones in
Arctic mammals imply that these chemicals pose a threat to endocrine systems of
these animals. The most pronounced relationships were reported with the thyroid
hormone system, but effects are also seen in sex steroid hormones (Jenssen 2006).
Pseudo-hermaphroditism in polar bears is thought to be an effect of EDCs. Over the
past several decades, female polar bears at Svalbard, Norway have been reported
with both female and male genitals (Wiig et al. 1998). The pseudo-hermaphrodites
were genetically females but also had small penises. California sea lions had
premature births, associated with accumulation of organochlorines (DeLong et al.
1973). Harbor seals from the Dutch Wadden Sea had low reproductive success and
declining population numbers that were attributed to the impact of PCBs. Experi-
mental studies showed that female harbor seals fed fish from the polluted Wadden
Sea had a lower reproductive success (50 %) than seals fed less-contaminated
fish. Implantation failure was found to be associated with reduced levels of 17“-
estradiol (Reijnders 1986) induced by EDCs. Increasing levels of PCBs and DDE
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in the blubber of Dall’s porpoises were found to have a negative association
with testosterone in blood, which decreased in a statistically significant way with
increasing DDE concentrations (Subramanian et al. 1987). These results collectively
suggest that current levels of persistent organochlorines are causing an imbalance
in sex hormones and subsequent reproductive abnormalities in marine mammals.
Recent reduction of chlorinated organic chemical levels was correlated with im-
proved reproductive status (Roos et al. 2012). In female sea otters, reproduction
increased after 1990. In grey seals, pregnancy rate increased 1990–2010 and uterine
obstructions ceased after 1993. The frequency of uterine tumors was highest 1980–
2000. Organochlorine concentrations decreased at annual rates of between 3.5 and
10.2 %. The estimated mean concentration (mg/kg) for total-PCB decreased from
70 to 8 (otters), and from 110 to 15 (seals). The corresponding concentrations for
†DDT decreased from 3.4 to 0.2 (otters), and from 192 to 2.8 (seals).

Corals

The scleractinian coral, Oculina patagonica, inhabiting contaminated vs. uncontam-
inated reference sites in the Mediterranean was investigated by Armoza-Zvuloni
et al. (2012), who found significantly higher steroid levels in water and coral
tissue from contaminated sites, suggesting that corals accumulate steroids from the
surrounding waters. Despite their higher steroid levels, corals from the contaminated
sites showed reproductive potential comparable to those of the reference sites.

5.2 Gametogenesis and Fecundity

Gametogenesis is the production of gametes. Spermatogenesis, which takes place in
the testes, is the process by which male primordial germ cells called spermatogonia
undergo meiosis, halving their number of chromosomes. The initial cells in this
pathway are primary spermatocytes, which divide into two secondary spermato-
cytes, each of which divides into two spermatids. Thus, each primary spermatocyte
gives rise four spermatids. These undergo development (spermiogenesis) into
mature spermatozoa (sperm cells) under the influence of testosterone, by growing
a tail (flagellum), and developing a thickened mid-piece, where mitochondria
concentrate. Spermiogenesis also involves nuclear condensation, formation of the
acrosomal cap from the Golgi apparatus, and removal of unnecessary organelles.

Oogenesis is the comparable process in females, Primary oocytes enlarge and
begin to undergo meiosis. The primary oocyte is a very large cell containing many
nutrients that will be important for the early embryo. It undergoes the first meiotic
division, producing a secondary oocyte and another small cell called the first polar
body. During cell division, most of the cytoplasm of the primary oocyte moves to the
secondary oocyte. The first polar body may undergo a second meiotic division and
its daughter cells degenerate. The secondary oocyte undergoes a second division,
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producing another polar body and one final ovum. The asymmetric division insures
that the ovum retains most of the yolk. The mechanisms of oogenesis vary more
between species than for spermatogenesis. For example, in most mammals only a
few eggs are produced during an individual’s lifetime whereas in other species such
as fishes or sea urchins, thousands of eggs can be produced routinely. In the species
that produce thousands of eggs, oogonia are stem cells that proliferate throughout
the lifespan of the organism. In species that produce fewer eggs, the oogonia divide
to form a limited number of egg precursor cells.

As animals approach the mating season, the gonads grow relative to the rest of
the body. A measurement of the relative size of gonads is the gonosomatic index
(GSI), a reduction of which is a frequently measured response to contaminants.

Observations of endocrine effects lead to the question of whether marine
organisms that have experienced disturbances including estrogen alteration, VTG
induction, perturbed steroid levels, intersex, etc. have been reproductively com-
promised, and whether populations are potentially at risk. It is also possible that
toxicants can exert direct effects on developing gametes directly, without involving
hormones.

5.2.1 Crustaceans

Metals

Hg and Cd, especially when acquired through food, produced decreases in ovarian
development, egg production, yolk content of eggs, and hatching rates in the
copepods Acartia hudsonica and A. tonsa. Exposure to dissolved Cd had no
effect, but dissolved Hg did affect egg production (Fig. 5.3) (Hook and Fisher
(2001). Different exposure routes produced different metal distributions: after water
exposures most accumulation was in the exoskeleton, while dietary exposures
caused most accumulation in internal organs, which is more likely to produce
toxicity. Decreased reproduction was seen at metal concentrations only slightly
higher than levels in coastal waters.

Effects of elevated Cu on egg production in the amphipod Corophium volutator
were studied by Eriksson and Weeks (1994). The amphipods were exposed for 14
days to <0.1, 50 and 100 �g Cu l�1 resulting in increased total body Cu and reduced
egg production. The effects of TBT on reproduction are not restricted to mollusks.
While male hermit crabs Clibanarius vittatus exposed to TBT in the laboratory
for 9 months showed no effects, exposed females displayed disorganization and
atrophy of their ovaries, thus affecting reproduction (Sant’Anna et al. 2012). The
amphipod, Caprella danilevskii, was exposed to TBT over a generation. Marked
delays in growth and molting during the early developmental stages and maturation
occurred at 100 and 1,000 ng l�1. Inhibition of maturation and reproduction such
as a decrease in the number of juveniles hatched was apparent in 10 and 100 ng l�1

(Ohji et al. 2003).
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Organics

Male grass shrimp (P. pugio) exposed to 63 �g l�1 pyrene had delayed molting and
time until reproduction, as well as elevated ethoxycoumarin o-deethylase (ECOD)
activity. Pyrene did not affect females, but their offspring had elevated mortality
(Oberdörster et al. 2000). The authors hypothesized that vitellin binds pyrene,
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making it unavailable to adult females, resulting in maternal transfer of pyrene to the
embryos. This would account for the lack of effect on females, and reduced survival
of their offspring.

Jensen and Carroll (2010) examined reproduction of Calanus spp. exposed to the
WSF of crude oil. While egg production in C. glacialis exposed to 10.4 and 3.6 �g
l�1 was unaffected, after eggs were transferred to clean seawater, hatching success
was significantly lower in the high dose group. Exposure of Tigriopus japonicus
to PCB 126 (3,30,4,40,5 pentachlorophenol) resulted in increased sensitivity in
successive generations of this copepod. While body size was most sensitive,
reproduction and intrinsic population growth were reduced at 1 �gl�1 in the F1
generation (Guo et al. 2012).

Acidification and Climate Change

Fitzer et al. (2012) determined reproductive response (naupliar production and
growth) of the copepod Tisbe battagliai over three generations at pH 7.67, 7.82,
7.95, and 8.06. Naupliar production increased at pH 7.95, followed by a decline
at pH 7.82, the increase at 7.95 attributed to hormesis. A multi-generational
model predicted a gradual decline in naupliar production and growth over the next
100 years. Effects of seawater pH levels (8.2, 7.6 and 6.9) on the reproduction of
Calanus glacialis, an Arctic copepod, were examined (Weydmann et al. 2012). Low
pH did not affect egg production, but pH 6.9 delayed hatching and reduced hatching
success. The results indicate that copepods are not very susceptible to acidification.
However, studies have been over short periods and have only considered impacts
of elevated CO2. Authors encouraged long-term exposures examining synergistic
effects of acidification and warming. Bergey and Weis (2008) observed a much
longer breeding season for fiddler crabs (Uca pugnax) in New Jersey (US) compared
to what had been reported in the 1970s. It was suggested that climate change might
have been responsible for the lengthened breeding season.

Hypoxia

Wiklund and Sundelin (2001) investigated effects of hypoxia on reproductive
variables in the amphipods Monoporeia affinis and Pontoporeia femorata in-
cluding unfertilized/ undeveloped eggs, dead eggs and females carrying a dead
brood. Low oxygen (2–6 mg O2 l�1), resulted in more females carrying dead
broods; females exposed to hypoxia had a lower fertility rate than controls.
Similarly, the amphipod Melita longidactyla was impaired by moderate DO levels
(3.5–4.5 mg O2 l�1), higher than levels considered hypoxic (2.8 mg O2 l�1).
Negative growth and decreases in respiratory energy expenditure were noted
after exposure to moderately low DO for 3 weeks. Complete reproductive failure
occurred after exposure to 3.5 mg O2 l�1 for 1 month, but no significant effect
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on percentage copulation, number of broods and offspring or fecundity was
seen at 4.5 mg O2 l�1, indicating that reproductive impairment occurs below
4.5 mg O2 l�1 (Wu and Or 2005). In contrast, Brouwer et al. (2007) found
that chronic hypoxia appeared to enhance grass shrimp (P. pugio) reproduction.
Females exposed to 2.5 mg O2 l�1 had higher fecundity, and a greater per-
centage produced repeated broods than normoxic shrimp. The hypoxic shrimp
took longer to produce their first brood than controls, but starved larvae from
hypoxia-exposed mothers lived longer than those from controls. Shrimp exposed
to severe hypoxia (1.5 mg O2 l�1) also had higher fecundity than controls,
although embryos from hypoxia-exposed mothers took longer to hatch than control
embryos. This species lives in eutrophic estuaries and seems to be quite resilient to
hypoxia.

Polluted Sites

Egg membranes of the mole crab Emerita analoga near the San Onofre nuclear
plant ruptured soon after egg extrusion (Siegel and Wenner 1984). These females
had a smaller size at the onset of egg production and a later onset of reproduction
than in areas north or south. This may have been due to a failure of overwintering
(Wenner 1988). When crabs from the affected area were brought into the laboratory
they extruded eggs that developed normally, but their molt rate and molt increment
were depressed.

Exposure of copepods, Tigriopus californicus, to contaminated sediments
from Puget Sound resulted in delays in the period of peak reproduction and
reductions in the total number of nauplii produced by each female (Misitano
and Schiewe 1990).

5.2.2 Mollusks

Metals

The giant sea scallop, Placopecten magellanicus was exposed to Cu or Cd at 20 �g
l�1 for 7 weeks. In scallops undergoing early gametogenesis, Cd promoted early
gamete maturation, while Cu inhibited it (Gould et al. 1985). In scallops with fully
differentiated gonads, however, Cu induced gonad regression. Gonads accumulated
high levels of the metals. Mya arenaria were collected at different sites along the
St. Lawrence estuary. Near an active harbor, clams had high levels of TBT and DBT
in gonads, along with a lower gonadosomatic index, low progesterone levels and
delayed sexual maturation compared to the reference site. Sites with intermediate
levels of TBT exhibited intermediate responses of hormones and maturation stages
(Siah et al. 2003).
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Organics

Dioxin (TCDD)

2,3,7,8-TCDD alters normal development of reproductive organs and early de-
velopment in bivalve mollusks at 2–20 pg g�1 wet weight. In both C. virginica
and M. arenaria, 2,3,7,8-TCDD accumulates in gonads, and in oysters 10 pg g�1

caused histopathological lesions by day 14 of gametogenesis in both sexes, resulting
in complete inhibition of gonadogenesis. A total body dose of 2 and 10 pg g�1

caused abnormal gametogenesis in female and male oysters, respectively, including
incomplete oocyte division, inhibition of oocyte growth and maturation, unsyn-
chronized sperm development, and inhibition of spermatogenesis (Wintermyer and
Cooper 2007). The sensitivity of gonad maturation is likely due to disruption of
cross-talk between steroid, insulin, and metabolic pathways involved in gonad
differentiation. Altered gonad development and decreased veliger larval survival can
partially explain the lack of self-sustaining bivalve populations in 2,3,7,8-TCDD-
contaminated estuaries (Cooper and Wintermyer 2009).

Oil

Mytilus edulis were exposed to dispersed crude oil (0.015–0.25 mg l�1) by Baussant
et al. (2011). After 1 month in 0.25 mg l�1, alkali-labile phosphates and the volume
and density of atretic oocytes in females were elevated, indicating that oil affected
VTG-like proteins and gamete development. Parental oil exposure did not affect
subsequent fertilization success, but caused slower development, abnormalities,
and reduced larval growth, effects that were enhanced when larvae were raised at
0.25 mg oil l�1.

Pesticides

Akcha et al. (2012) investigated effects of the herbicides glyphosate and diuron
on oyster gametes and embryos. Glyphosate had no effect, while diuron signifi-
cantly affected embryo-larval development from the lowest tested concentration of
0.05 �g l�1, an environmentally realistic concentration. The alkaline comet assay
showed diuron had genotoxic effects on sperm at the lowest tested concentration,
but did not effect sperm mitochondrial function or acrosomal membrane integrity.

Contaminants of Emerging Concern

Pang et al. (2012) compared effects of CuO nanoparticles with aqueous Cu
(CuCl2). They added copper to the sediment as aqueous Cu, nano- (6 nm) and
micro- (<5 �m) CuO particles and examined effects on the deposit-feeding snail,
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Potamopyrgus antipodarum. After 8 weeks of exposure to nominal concentrations
of 30, 60, 120 and 240 �g Cu g�1 dry weight sediment, nano-CuO had greater
effects on reproduction than copper added as either micro-CuO or aqueous Cu.

Polluted Sites

Tlili et al. (2011) noted differences in the gametogenic cycle of the clam Donax
trunculus from polluted and unpolluted sites. The spawning period began in March
and was maximum in May at both sites, but the percentage of spawners was
higher and the spawning period was shorter at the polluted site. Energy reserves
(glycogen, lipids) were lower in clams from the polluted site, suggesting that
energy was being shunted to deal with the chemical stress. Scallops Mizuhopecten
yessoensis from six stations in Peter the Great Bay (Sea of Japan) were studied
(Vaschenko et al. 1997). Those from polluted sites had retarded gametogenesis,
oocyte resorption, and autolysis of spermatozoa. They had more hermaphrodites,
decreased fertilization success, reduced percent of normal larvae, and retardation of
larval growth. Clams, Potamocorbula amurensis from a silver-contaminated site in
San Francisco Bay had a low percentage of reproductive individuals, <60 %. When
Ag tissue concentrations decreased, the proportion of reproductive individuals
increased to 80–100 % (Brown et al. 2003). There was a negative correlation of
tissue Ag and percent of reproductive individuals (Fig. 5.4), and no correlation with
other environmental variables.

5.2.3 Fishes

Organics

Pesticides and Industrial Chemicals

Exposure to Kepone or o,p0-DDD (100 nM–100 �M) prevented most of the oocytes
of M. undulatus from completing germinal vesicle breakdown (GVBD); many
were arrested at the lipid coalescence or germinal vesicle migration stage after
exposure to100 �M (Ghosh and Thomas 1995). In addition, clearing of the ooplasm,
oil droplet formation and hydration were incomplete in oocytes that did undergo
GVBD. The pesticides inhibited GVBD in a concentration-dependent manner.
Exposure to either pesticide for as little as 1 min could block GVBD. Washing the
follicle-enclosed oocytes after exposure restored their ability to undergo GVBD.

Paclobutrazol (PBZ), a triazole-containing fungicide, is widely used in agri-
culture. Li et al. (2012) investigated effects of PBZ at environmentally relevant
concentrations on testicular development in male rockfish Sebastiscus marmoratus.
Exposure to 10, 100 and 1,000 ng l�1 for 50 days did not alter the GSI, but
reduced the number of mature sperm and late stage spermatocytes in the testes.
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Fig. 5.4 Correlation between annual proportions (%) of reproductive clams (Potamocorbula
anurensis) with annual mean Ag concentration at four sites. Y-axis D central tendency of the
reproduction data: the proportion of clams that were reproductively active (% active C % ripe C %
spawned) minus the proportion that were non-reproductively active (% inactive C % spent)
(Reprinted from Brown et al. 2003: 110, courtesy Taylor & Francis)

Juvenile Atlantic cod (Gadus morhua) were fed different alkyl phenols (APs)
(4-tert-butylphenol, 4-n-pentylphenol, 4-n-hexylphenol and 4-n-heptylphenol) for
20 weeks during vitellogenesis (Meier et al. 2011). While 60 % of the females and
96 % of the male controls were mature at the end of the experiment, exposure to
APs and E2 had different effects depending on the developmental stage. Juvenile
females advanced into maturation, but gonad development was delayed in maturing
females and males. The AP-exposed groups (>4 �g/kg body weight) had increased
numbers of mature females, suggesting that AP-exposure affects the timing of onset
of puberty at extremely low concentrations.

Sea-Nine® 211 (4,5-dichloro-2-n-octyl-3(2H)-isothiazolone) is widely used as
an antifouling biocide after the banning of TBT. Ito et al. (2013) found testicular
toxicity in mummichog Fundulus heteroclitus, after 28-days exposure. Although
Sea-Nine® 211 did not affect germ cell proliferation, the number of apoptotic
spermatocytes was increased in 1.0- and 3.0-�g l�1-exposed groups. The numbers
of cysts expressing caspases 2, 3, 6, and 8 (apoptosis-associated proteins) were
increased in the 1.0-�g l�1 group, and the signal intensity of an anti-apoptotic
protein Bcl-xL was reduced in a dose-dependent manner. This suggests that
Sea-Nine® 211 induces apoptosis in the testicular germ cells of mummichogs via
a caspase-dependent pathway.
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Oil/Hydrocarbons

When female winter flounder (Pseudopleuronectes americanus) and their develop-
ing oocytes were exposed to #2 fuel oil at 100 �g l�1, there was delayed hatching,
reduced viable hatch, and increased incidence of malformations. Larvae raised
in clean water after exposure only during parental gametogenesis had elevated
mortality and slower growth (Kuhnhold et al. 1978).

Produced water discharged from offshore oil industry activities contains toxic
substances including PAHs. Reproductive biomarkers were studied by Sundt and
Bjorkblom (2011) in prespawning Atlantic cod (Gadus morhua) exposed for
12 weeks. Results showed that exposure to sufficiently high levels of PW produced
an increase in VTG levels in females, as well as impaired oocyte development and
reduced estrogen levels. In males testicular development was altered, showing a rise
in amount of spermatogonia and primary spermatocytes and a reduction in mature
sperm in the exposed fish compared to control.

Sun et al. (2011) investigated effects of phenanthrene (PHE) at environmentally
relevant concentrations on testicular development in Sebastiscus marmoratus. After
50 days exposure, the GSI and percentage of sperm produced showed a U-shaped
dose response. The levels of gonadotropin releasing hormone, follicle-stimulating
hormone, luteinizing hormone mRNA, 17“-estradiol, and ”-glutamyl transpeptidase
activity all showed a U-shaped dose responses, which demonstrated the U-shaped
effects on spermatogenesis. A U-shaped dose–response curve is well recognized as
a hormetic phenomenon. PHE accumulation in the brain also showed an inverse
U-shaped increase.

Climate Change

Since rising temperatures are changing the phenology (timing) of reproduction in
many taxa, it is not surprising that effects are seen in fishes. Effects were reviewed
by van der Kraak and Pankhurst (1997). There have been many more reports since
then. Recently, Zucchetta et al. (2012) studied relationships between changes in
water temperature and the timing of reproductive investment of the grass goby
Zosterisessor ophiocephalus in the Venice lagoon. A time series of the monthly GSI
was coupled with thermal profiles of water temperatures from 1997 to 2010. Repro-
ductive investment was positively affected by warmer water, in terms of monthly
thermal anomalies and cumulative degree days. A predictive model to assess the
shift of reproductive peaks in response to thermal fluctuations indicated that in
warmer years, the reproductive peak occurred earlier than during colder years.

Polluted Sites

A number of field studies have linked reduced hatching success and fry survival
to increased levels of lipophilic contaminants in eggs. For example, elevated PCBs
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in Baltic flounder (P. flesus) ovaries were correlated with impaired egg development
and fry survival (Westernhagen et al. 1981); a similar study of Baltic herring (Clupea
harengus) found that ovarian DDE residues of >18 ng g�1 wet wt. or PCB residues
>120 ng g�1 wet wt. were associated with reduced viable hatch (Hansen et al.
1985). High larval mortality and reduced hatching success in Baltic cod (Gadus
morhua) have also been associated with organochlorines (Petersen et al. 1997).
Annual investigations of the health status of female perch (Perca fluviatilis) from
the Baltic Sea were undertaken by Hansson et al. (2006). Fish were sampled at three
coastal sites in Sweden: two in the Baltic Proper and one in the Bothnian Bay. In
all, 19 biochemical, physiological and histopathological variables were measured.
The most important observation was decreased gonadosomatic index (GSI) in the
Baltic proper. The reduced gonad size indicates that unidentified pollutants affect
reproduction even in a reference area in the Baltic proper.

Cross and Hose (1988) and Hose et al. (1989) found that a population of white
croaker (Genyonemus lineatus) from a DDT-contaminated site had early oocyte
destruction, preovulatory atresia, lower fecundity and/or spawning inducibility, and
lower fertilization success than reference populations. Similarly, flatfish (P. bilin-
eatus and P. vetulus) from contaminated areas of Puget Sound have precocious
sexual maturation, retarded gonadal development, reduced egg weight, and reduced
spawning success (Johnson et al. 1998). These fish are contaminated with a variety
of chemicals, including aromatic hydrocarbons and PCBs, which are potential
causative agents, either as antiestrogens (PAHs) or estrogen-mimics (some PCBs).
These English sole have reduced viability of eggs and larvae (Casillas et al.
1991). Starry flounders (Platichthys stellatus) from polluted San Francisco Bay had
reduced embryo development and hatching success, associated with PCBs in the
eggs (Spies et al. 1985). Winter flounder (P. americanus) from industrial areas in
Boston Harbor had reduced egg size, fertilization success, viable hatch and larval
size compared to reference fish (Nelson et al. 1991). F. heteroclitus from the PCB-
contaminated New Bedford Harbor (MA) produced as many eggs as those from
reference sites, but their progeny had reduced survival and increased malformations
(Black et al. 1998a) (Fig. 5.5). When adult females were given IP injections of
PCBs, egg production was reduced by 77 % at the highest dose (19ug PCB per
gram of dry liver) (Black et al. 1998b).

Mummichogs near a bleached kraft pulp mill in Canada had delayed gonadal
maturation and reduced egg size (Leblanc et al. 1997), but higher fecundity and GSI
at their reproductive peak than fish at the other sites. Nesting plainfin midshipman
Porichthys notatus were collected from areas with low and high contamination
on Vancouver Island, British Columbia. Males in contaminated areas had more
testicular asymmetry, sperm with shorter heads, and fewer live eggs in their nests
(Sopinka et al. 2012).
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5.2.4 Other Taxa

Corals

Oil

Oil damages the reproductive system of corals resulting in fewer breeding colonies,
fewer ovaries per polyp, fewer planula larvae, premature shedding of planulae,
abnormal behavior of planulae, and lower growth rates (Loya and Rinkevich
1980). A review of effects of dispersants indicated that they enhanced the damage.
Sublethal effects of oil on coral reproduction were evaluated 39 months after a
spill in Panama using Siderastrea siderea at oiled and unoiled reefs. The number
of reproductive colonies and number of gonads per polyp did not differ, but gonads
were larger at unoiled than at oiled reefs during spawning periods. Years after the
spill, injuries, reduced colony size, and decreased size of gonads at oiled reefs can
reduce the number of reproductively viable colonies (Guzmán and Holst 1993).

Effects of the water-accommodated fraction (WAF) of a natural gas condensate
on reproduction of the brooding coral Pocillopora damicornis were studied in
laboratory experiments (Villanueva et al. 2011). Exposure during gametogenesis did
not inhibit subsequent production of larvae, but exposure of gravid corals to >25 %
WAF during early and late embryogenesis caused abortion and early release of
larvae, with higher percentages of larvae expelled by corals in higher concentrations.
Aborted larvae were small, had low metamorphic competency, and were white with
a pale brown oral end (indicating low density of zooxanthellae).

Sea Anemones

Responses of the sea anemone Actinia equina to oil were investigated by Ormond
and Caldwell (1982). Exposure to 2.5 ml l�1 crude oil for 7 weeks resulted in
ejection of increased numbers of the young which are normally brooded within the
gastric cavity. Subsequently the numbers of surviving young being produced fell to
zero, and the ovaries were found to be regressed and lacking ova.

Polychaetes

Late gametogenic Nereis virens were incubated for up to 2.5 months in environ-
mentally relevant concentrations of copper-spiked sediment by Watson et al. (2012).
Sediments were spiked with cupric nitrate solutions to give nominal concentrations
of 50, 500 and 1,000 mg kg�1 (dry weight) and non-spiked sediment was also
included as a control. Oocytes were significantly smaller at higher concentrations.
Spawning of males took place a number of days earlier in the higher concentrations.
Differences in the number of embryos developing normally after in vitro fertiliza-
tions of oocytes fertilized with sperm from exposed males and non-exposed males
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showed that sperm were more susceptible to toxicity, but oocytes were also affected
at the highest concentration. These results show that there are direct and indirect
reproductive consequences of parental exposure to copper with implications for
recruitment and colonization of polluted sediments.

5.3 Mating and Fertilization

The majority of marine animals reproduce by spawning, the release of sperm by
males and eggs by females into the water column. This requires coordinated timing
of gamete release, and fertilization takes place in the water column. Some groups,
including decapod crustaceans, have mating, in which males release sperm into
females and fertilization takes place internally. There may be elaborate behavior
preceding mating, such as release of pheromones in some male crabs to attract
females, or waving behavior by male fiddler crabs. Contaminants may affect these
processes by interfering with the chemical or visual communication determining
timing of gamete release or altering mating behaviors.

The fertilization process is initiated by the acrosome at the anterior end of the
sperm contacting the egg. As the sperm approaches the egg, the acrosome reaction
occurs – the membrane surrounding the acrosome fuses with the plasma membrane
of the egg, releasing the contents of the acrosome. The contents include enzymes
that break through the egg coat, allowing fertilization to occur. At this point the egg
undergoes a cortical reaction. Cortical granules are secretory vesicles just below
the egg’s plasma membrane. When the fertilizing sperm contacts the egg plasma
membrane, it triggers fusion of the cortical granule membranes with the egg plasma
membrane, liberating the contents of the granules into the extracellular space. The
granule contents modify a protein coat on the outside of the plasma membrane so
that it is released from the membrane and elevates, as the fertilization membrane,
which prevents further sperm from penetrating. Contaminants can affect fertilization
by impairing sperm swimming or their ability to fertilize eggs. Contaminants can
affect egg cells by prematurely triggering a cortical reaction, so that no sperm can
fertilize them.

5.3.1 Crustaceans

Seuront (2011) examined whether the WSF of diesel oil (0.01, 0.1 and 1 %)
affected male copepods’ (Temora longcornis) ability to locate, track and mate
with females. All concentrations impacted mating behavior and mating success.
The ability of males to detect female pheromone trails, follow trails and track a
female decreased with increasing oil concentrations, leading to decreased contact
and mating (Fig. 5.6). Poulton and Pascoe (1990) devised a behavioral bioassay for
pollutant stress based on disrupting the mating behavior (precopula) of amphipods.
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5.3.2 Mollusks

Treatment of Mytilus edulis sperm with Cu or Zn (0.1–3.3 mM) decreased sperm
motility; Zn was more inhibitory than Cu and produced greater mitochondrial
damage, as revealed by transmission electron microscopy, than Cu (Earnshaw et al.
1986). This is a reversal of the usual relative toxicity of Cu and Zn. The reduction
of sperm motility can be explained by respiratory inhibition. However, Zn had a less
pronounced effect on sperm motility than on respiration.

5.3.3 Fishes

A particular characteristic of the teleost egg is the chorion, the outer protective
membrane that is initially synthesized in the ovary. A canal, the micropyle, forms
a pore in the membrane, through which sperm must pass in order to fertilize the
eggs. Once a sperm penetrates the egg, a cortical reaction occurs, in which vesicles
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in the outer layer of the egg release material that blocks the micropyle to prevent
polyspermy, and elevates the fertilization membrane, increasing its ability to act as
a barrier. There have been relatively few studies of the impact of contaminants on
gametes prior to fertilization.

Metals

Exposure of mummichog (F. heteroclitus) sperm to 0.01 mg l�1 meHg or mercuric
chloride for as little as 1 min reduced fertilization success, while similar exposure
of eggs had no effect on fertilization or subsequent development (Khan and Weis
1987a, b). Reductions in sperm motility were seen in treated groups. Sperm from
fish from Piles Creek (PC) a polluted site in New Jersey, were unaffected by 0.01 or
0.05 mg l�1 meHg until they were exposed for 5 min, showing tolerance in fish from
this site. Higher concentrations of either HgCl2 or meHg and longer exposures of
unfertilized eggs were needed to reduce fertilization and/or produce abnormalities
in embryos that were subsequently raised in clean water (Khan and Weis 1987c, d).
Thus Hg incorporated prior to fertilization could produce embryonic malformations
in eggs that were successfully fertilized, another example of delayed effects. Eggs
from PC fish were more tolerant of meHg exposure. The two forms of mercury had
different mechanisms to reduce fertilization: meHg triggered a cortical reaction,
preventing sperm from entering the micropyle, while HgCl2 caused a swelling of
the lip of the micropyle, reducing its diameter and possibly impeding sperm from
swimming through (Khan and Weis 1993).

Organics

Pesticides

Exposure of mature male salmon to some currently used pesticides inhibited male
olfactory detection of female pheromones that are involved in synchronization
of spawning between the sexes (Moore and Waring 1996; Waring and Moore
1997). Exposure for 30 min to 1 �g l�1 diazinon suppressed olfactory responses.
Physiological responses of males to female urine, such as increased milt volume
and level of sex hormones were reduced after 120 h exposure to 0.3 �g l�l diazinon
or 0.04 �g l�1 atrazine.

Exposure to subchronic levels of the herbicide glyphosate (Roundup) caused a
significant decrease in the number of copulations and mating success in male cyprin-
odontid fish, Jenynsia multidentata (Hued et al. 2012). Reproduction of Atlantic
salmon was impaired by the pyrethroid insecticide Cypermethrin at 0.1 �g l�1.
Affected fish had reduced fertilization rates, as well as lower hormone levels in
males (Moore and Waring 2001). This pesticide is used to treat salmonids in
aquaculture for sea lice, so farmed fish and nearby wild fish can be exposed to high
levels of this chemical.
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Oil

Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring
(Clupea harengus) was tested for short exposures, from 1 to 144 h (McIntosh
et al. 2010). Crude oil dispersed with Corexit® 9500 was very toxic to gametes
and dramatically impaired fertilization success. For brief exposures, gametes and
free-swimming embryos were the most sensitive life stages. Male American plaice
(Hippoglossoides platessoides) exposed to sediments contaminated with PAHs and
PCBs had 30–50 % reduction in hatch of eggs fertilized with their sperm (Nagler
and Cyr 1997).

Contaminants of Emerging Concern

Female three-spined sticklebacks were fed with freeze-dried chironomids con-
taminated with low or high doses of polybrominated diphenyl ethers (PBDEs),
polychlorinated naphthalenes (PCNs), or PCBs for 3.5 months (Holm et al. 1993).
No significant difference in number of eggs was found, but while spawning success
in the controls was 80 %, it was 20 and 25 % in the groups that received high
doses of PBDE or PCB, respectively. Levels of PBDE accumulated in the low- and
high-dose groups were 861 ˙ 271 and 1,630 ˙ 275 mg/kg fat, respectively, whereas
the corresponding concentrations of PCN in the PCN groups were 845 ˙ 43 and
1,929 ˙ 72 mg/kg fat, respectively. Concentrations of PCB in fish from the PCB
groups were 1,972 ˙ 158 and 3,594 ˙ 521 mg/kg fat, respectively. Morphological
examination of the liver revealed pronounced lipid accumulation in all exposed
groups.

5.3.4 Other Taxa

Sea urchin fertilization success is a commonly employed bioassay, so considerable
work has been done on Strongylocentrotus and other sea urchin species on toxicity
of metals and organic contaminants to fertilization (reviewed by Dinnel et al. 1989).
A few more recent studies are reviewed here.

Metals

Fertilization in corals can impeded by some metals. Reichelt-Brushett and Harrison
(2005) examined effects of Cu, Pb, Zn, Cd, and Ni on fertilization success of
gametes of the corals Goniastrea aspera, Goniastrea retiformis, Acropora tenuis,
and Acropora longicyathus. The EC50 values (concentration that reduces the
fertilization rate by 50 %) for Cu was 15–40 �g l�1, while other metals were much



5.3 Mating and Fertilization 157

less toxic. Hédouin and Gates (2013) investigated how Cu alters fertilization success
of the coral Montipora capitata over several nights of spawning and found that
gametes are sensitive to Cu, with EC50 after 3 h ranging from 16.6 to 31.7 �g l�1. In
addition, the sensitivity of the gametes was affected by the night of spawning during
which fertilization experiments were performed. This likely reflected changes in the
quality of gametes over the spawning period.

Populations of the echinoderms Asterias rubens and Echinus acutus that occur
naturally along a contamination gradient of Cd, Cu, Pb, and Zn in a Norwegian
fjord were studied. Sperm motility, a measure of sperm quality, was quantified
using a computer-assisted sperm analysis system. The RNA/DNA ratio, a measure
of protein synthesis, was also assessed. Although both species accumulated metals
at high concentrations, neither sperm motility in A. rubens nor the RNA/DNA ratio
in either species were affected (Catarino et al. 2008).

Organics

The chlorinated pesticides methoxychlor, dieldrin, and lindane affect fertilization
and early development of sea urchin, Paracentrotus lividus. Pesando et al. (2004)
observed that fertilization decreased when sperm were incubated for various period
of time with 100 �M of dieldrin or lindane. Treatment of eggs (1 h with 100 �M) did
not prevent fertilization, but increased the rate of polyspermy, delayed or blocked
the first mitotic divisions, and altered early embryonic development.

Oil mixed with dispersants is highly toxic to coral early life stages. Coral are
extremely sensitive to the combined effects, with fertilization failure in the presence
of dispersant and dispersed oil, compared with mostly successful fertilization in
the presence of oil alone (Negri and Heyward 2000; Shafir et al. 2007; Epstein
et al. 2000). Negri and Heyward (2000) studying Acropora millepora found that
20 % v/v PFW (production formation water) inhibited fertilization by 25 %. This
was equivalent 0.0721 mg l�1 total hydrocarbon (THC). Crude oil WAF did not
inhibit fertilization unless dispersant was added. Dispersed oil was slightly more
toxic to fertilization than dispersant alone, suggesting toxicity may be additive. The
minimum concentration of dispersed oil which inhibited fertilization was 0.0325 mg
l�1 THC.

To study effects of chronic exposure to produced water (an oil production
effluent) on gametogenesis and gamete performance of the purple sea urchin
(Strongylocentrotus purpuratus) Krause (1994) caged urchins at varying distances
from an outfall. Those living closer to the outfall produced larger gonads. Gamete
performance was measured using a fertilization bioassay that held eggs constant
and varied the amount of sperm added. The proportion of eggs fertilized under
each sperm concentration increased with distance from the outfall, indicating that
although the exposed adults had larger gonads, they showed a marked decrease in
gamete performance.
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Fig. 5.7 Results of fertilization, settlement and growth experiments (mean ˙ SE). (a) 26-day old
A. palma juveniles reared under ambient CO2. (b) Nonlinear regressions of fertilization data by
CO2 treatment. (c) Percent settlement, (d) Linear growth (um day�1) of juveniles over 50 days
(Reprinted from Albright et al. 2010: 20401), courtesy National Academy of Sciences)

Climate Change/Acidification

For many marine invertebrates, sperm flagellar motility is likely initiated when
intracellular pH is elevated and suppressed when it decreases. The fertilization
potential of eggs may also be influenced by changes to internal pH.

Corals

Elevated pCO2 negatively affected fertilization success of the coral, Acropora
palmata, but the effect was due to reduced sperm concentration. As sperm concen-
tration declined, the effect of pCO2 was exacerbated – higher sperm concentrations
were required to achieve comparable fertilization rates to controls (Fig. 5.7)
(Albright et al. 2010).

Nakamura and Morita (2012) investigated effects of different pCO2 conditions
(300, 400, and 1,000 mg l�1) on sperm motility of Acropora digitifera, and found
that acidification could suppress the flagellar motility. They calculated that sperm
motility will likely decline by �30 %, which may impact fertility.
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Echinoderms

Sperm concentration effects of pCO2 on fertilization success have also been
found for the sea urchin, Strongylocentrotus franciscanus, in which fertilization
efficiency decreased. Elevated pCO2 reduced the ability of sea urchin eggs to block
polyspermy, which inhibits successful embryo development (Reuter et al. 2011).
Acidification-induced changes may be due to effects on the sperm, egg, or both.

Interactive effects of warming and acidification were observed on fertilization
and embryonic development of the sea urchin Sterechinus neumayeri in elevated
temperature (C1.5 and 3 ıC) and decreased pH (�0.3 and �0.5 pH units) treatments
(Ericson et al. 2012). Fertilization was resilient to acidification at ambient tempera-
ture, but at elevated temperatures, there was a negative interaction of temperature
and pH on percentage fertilization (11 % reduction at C3 ıC). Cleavage stage
embryos, showed a significant, but small reduction (6 %) in the percentage of normal
embryos at pH 7.5. For blastulae, a 10–11 % decrease in normal development
occurred in the C3 ıC treatments at all pHs. The results highlight the importance
of considering the impacts of both temperature and pH in assessing responses to
climate change. Interactive effects of near-future ocean warming and acidification
on fertilization of a variety of intertidal and shallow subtidal echinoids (Heliocidaris
erythrogramma, H. tuberculata, Tripneustes gratilla, Centrostephanus rodgersii),
an asteroid (Patiriella regularis) and an abalone (Haliotis coccoradiata) were
examined. Eggs from multiple females were fertilized by sperm from multiple
males in combinations of three temperature and three pH/PCO2 treatments (Byrne
et al. 2010) based on near-future conditions for southeast Australia. No significant
effects were seen, indicating that fertilization is robust to temperature and pH/PCO2

fluctuation. This may reflect adaptation to fluctuations in temperature and pH in
their shallow water habitats.

5.4 Conclusions

From endocrine effects to gametogenesis, mating, and fertilization, reproduction
can be impaired in many different ways by contaminants. It can be seen that there is
continuity and overlap of effects from gametes to fertilization to embryonic devel-
opment which is discussed in the following chapter. Effects initiated by endocrine
disruption, for example can be followed through the life cycle. Reproduction is
clearly a process with obvious repercussions at the population level. However, many
marine organisms normally produce enormous numbers of embryos, so it is not clear
what degree of reproductive impairment would be required to lead to population
level effects, which are rare. One clear example of population level effects is that
of TBT on dog whelks. Nevertheless, additive effects of impairments at numerous
stages of reproduction and development imply that overall reproductive success in
many taxa could be severely compromised in a number of pollution scenarios.
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Chapter 6
Embryonic Development

Abstract Embryonic stages of marine animals have been used extensively in
explorations of effects of contaminants and toxicity testing. This chapter provides
a review and summary of the nature of observed adverse effects and toxic levels
on embryonic development for important classes of chemical pollutants. Early life
stages are generally more susceptible to environmental contaminants than later
stages, so many studies focus on embryos or larvae. Embryos can be exposed
to developmental toxicants during oogenesis in exposed females, during the brief
period between shedding of gametes and fertilization, and after fertilization. Studies
have shown that chemicals incorporated into the egg during oogenesis can produce
malformations in the embryos that subsequently develop from these eggs. In most
experimental studies, however, embryos are exposed to chemicals after fertilization.
Exposures can be throughout embryonic development or during shorter time
periods. Although many toxicity tests still use hatching success as the endpoint
of interest, common responses include delayed development and formation of
abnormalities. Chemicals can affect morphogenetic movements such as gastrulation,
tissue interactions such as induction, growth, and degeneration or cell death, which
is an inherent part of embryonic development. Some responses do not become
apparent until larval or juvenile stages.

Keywords Delay • Egg • Embryo • Hatch • Malformation • Terata

6.1 Crustaceans

Many crustacean embryos develop in egg sacs held by the pleopods of the female,
after which time they hatch into a swimming larval stage. Exposures can be done
on gravid females or on eggs that have been removed and cultured separately. While
there are many studies on Daphnia embryos, the amount of literature on embryonic
responses of marine crustaceans, especially investigations of responses other than
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Fig. 6.1 Mean frequencies of larvae with abnormalities after mercury exposure during early, late,
or entire egg incubation period (Hg- C, C- Hg, and Hg-Hg respectively; C-C D control in clean
water). * D significant difference with respect to control group. C D significant difference between
the C- Hg group and any other experimental group (Reprinted from Sanchez et al. 2005: 77,
courtesy of Elsevier Publishing Co.)

hatching success, is surprisingly small. With their numerous appendages, setae,
etc. crustaceans provide extensive opportunities for investigating developmental
malformations and asymmetry (Allenbach 2011), yet relatively few recent studies
examine these phenomena.

6.1.1 Metals

Exposure to Cu and Cd (at 3.1 and 0.25 �g l�1 respectively) inhibited development
of blue crab (Callinectes sapidus) embryos, with effects more pronounced at lower
salinity (Lee et al. 1996). In contrast, 0.2 and 2 mg l�1 Cd increased the hatching
rate of king crab (Lithodes santolla) embryos but increased the percent of abnormal
larvae (Amin et al. 1998). Pb (0.16 and 1.6 mg l�1) produced abnormalities and
decreased the proportion of larvae hatching. When stage 3 blue crab embryos were
exposed to 4 �g l�1 Hg, all stage 7 embryos had no heart beat. Abnormal eye spots
were also produced (Lee and Oshima 1998). The crab Chasmagnathus granulatus
appears to be relatively insensitive to Hg, as. 0.1 mg l�1 produced only minor
effects – developmental delay, reduced pigmentation of the body and the eyes, and
hypertrophy of the eyes (Fig. 6.1) (Sanchez et al. 2005). The effects on pigmentation
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were attributed to interference with pigment-controlling hormones of the eyestalks.
A loss of pigmentation has been noted in embryos of this species exposed to higher
concentrations of Zn and Pb (Lavolpe et al. 2004).

Lopez-Greco et al. (2002) investigated toxicity of copper sulfate (1 mg l�1)
during embryonic development of the grass shrimp Palaemonetes pugio. One group
of embryos was exposed throughout development, a second during the first half
of development, and a third group during the second half. The group continuously
exposed to Cu and that exposed during the second half of development had higher
mortality and fewer hatched larvae than controls in clean water. Thus, the later
embryonic period was more sensitive than the early one. Deformed eyespots were
seen in all Cu-exposed groups, while underdeveloped setae were noted in hatched
larvae after exposure during the entire or the second half of development. Lee et al.
(2000) exposed grass shrimp (P. pugio) embryos to chromium(III) chloride, sodium
chromate, and mercuric chloride and found a reduced hatching rate. Stage 4 embryos
were more affected after exposure than stage 7 embryos. This is the opposite
result from that of the Lopez-Greco et al. study above, in which later embryonic
stages were more sensitive to Cu than earlier ones. This difference deserves future
investigation.

Though not a crustacean, horseshoe crab, Limulus polyphemus embryos are very
tolerant to TBT. Greater toxicity was seen following exposure of larvae. Acute
exposures increased the time required by larvae to molt into the first-tailed stage.
Horseshoe crabs are highly tolerant of TBT compared to early developmental stages
of other marine arthropods (Botton et al. 1998).

6.1.2 Organics

Pesticides

The pesticides fenvalerate, chlorpyrifos, cypermethrin, diflubenzuron at 1.8–
5.9 �g l�1 inhibit hatching in blue crabs (Fig. 6.2) (C. sapidus) (Lee and Oshima
1998).

Ovigerous grass shrimp, Palaemonetes pugio, were exposed to the chitin-
inhibiting pesticide diflubenzuron for 4 days, which did not cause immediate
effects on embryo development or on hatching. However, delayed effects occurred,
included stunting and swelling in the larvae that hatched from exposed embryos
(>0.3 �g l�1), along with reduced viability (Wilson et al. 1995). Toxicity was
reduced when sediment was present and in old solutions of the pesticide. Behavioral
differences were also seen in larvae.

Methoprene, a juvenile hormone analog, at 2–10 �M reduced hatching of blue
crab embryos; surviving larvae were lethargic (Horst and Walker 1999). Wirth et al.
(2001) exposed reproductively active grass shrimp to 200 ng l�1 endosulfan or
1 mg l�1 methoprene and they were allowed to produce embryos. The resulting
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Fig. 6.2 Effect of different concentrations of diflubenzuron on hatching of blue crabs. Stage 3 em-
bryos were exposed (Reprinted from Lee and Oshima 1998: 481, courtesy Elsevier Publishing Co.)

embryos were assessed for potential sublethal toxicity. There were no observed
differences in the percent successfully hatching or larval mortality 3-days post hatch
among treatments, but endosulfan-treated embryos had a significantly increased
hatching time (9.76 days compared to 8.72 days in controls). Methoprene treated
embryos also took longer to hatch (9.55 days), but this delay was not significantly
different from controls.

Embryos of the mysid Neomysis integer were removed from the marsupium
in which they normally develop, and exposed to nominal concentrations of 0.01,
1, and 100 �g methoprene l�1. Average percentage survival, hatching success,
total development time and duration of each developmental stage were analyzed.
Embryos exposed to 1 and 100 �g methoprene l�1 had a significantly lower hatching
success and lower survival rates (Ghekiere et al. 2007).

A number of studies have compared sensitivity of embryos, larvae, and adults
of grass shrimp and found embryos less sensitive than other stages. Key et al.
(2003) examined the fungicide chlorothalonil and found embryos were the least
sensitive with a 96 h LC50 of 396.0 �g l�1. Larvae were the most sensitive with
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a 96 h LC50 of 49.5 �g l�1. Surviving larvae in lower concentrations required
more molts to reach postlarvae than the control. Thus, larvae are the most sensitive
stage. However, this study did not examine embryos for sublethal effects. Larvae
were also the most sensitive life stage for the pyrethroid insecticide Etofenprox,
with 96-h LC50 of 0.89 �g l�1, compared with 1.26 �g l�1 for adults and
100 �g l�1 for embryos. Etofenprox exposure (100 �g l�1) increased time to hatch
(DeLorenzo and DeLeon 2010). McKenney et al. (2004) found that fenoxycarb at
888 �g l�1 significantly inhibited embryonic development to hatching and extended
the embryonic developmental period. Exposure to 502 �g l�1 had no significant
effect on embryos, but at 4 �g l�1 significantly fewer larvae metamorphosed.
Larvae were thus found to be much more sensitive to this juvenile hormone agonist
than embryos. Unfortunately, these comparative studies did not investigate subtle
responses such as malformations, asymmetry, or delayed effects of embryonic
exposure on larval behavior, such as are described in Wilson et al. (1995), above
and in Chap. 9.

Oil

Lee and Nicol (1980) studied toxicity of fuel oil to embryos and juveniles of two
amphipods. Parhyale hawaiensis eggs could develop in 10 % (2 mg l�1)–40 %
(8 mg l�1) water soluble fraction (WSF), but hatching success and juvenile survival
were reduced at concentrations �10 % WSF. Juveniles that hatched from those
eggs in higher WSFs had more mortality than those that hatched from eggs in
lower WSFs. Survival of juveniles from late-exposed eggs was also greater than
those from early-exposed eggs. Amphithoe valida eggs were more sensitive than P.
hawaiensis; <10 % of the eggs hatched in 4 mg l�1 WSF compared with 66 % of
P. hawaiensis eggs at the same concentration. Authors concluded that toxicity was
related to concentration and duration of exposure, and to developmental stage and
species, possibly due to the permeability of the egg case.

Fisher and Foss (1993) tested embryos of grass shrimp P. pugio, with two
commercial oil dispersants (Corexit® 7664 and Corexit 9527), and the WSF of
Number 2 fuel oil prepared with and without the dispersants. P. pugio embryos
were similar to previously measured life stages in their sensitivity to WSF prepared
without dispersants. They were ten times more sensitive to WSF of dispersed
oil, which may have been due to the increases in total hydrocarbons, which
were measured. Temperature and salinity affected toxicity of WSF prepared with
dispersants, the most obvious effect being earlier mortalities at higher temperatures.
Differences observed in the onset of mortalities with WSF prepared with and
without dispersants implicated egg-case permeability as a factor in toxicity.

Toxicity tests using P. pugio exposed to WSF of Number 2 fuel oil were
developed (Rayburn et al. 1996). The original test, a 12-day embryo exposure period
in glass tubes, was compared with modified 4-day and 12-day tests in plastic tissue
culture plates. Comparison of LC50 values, coefficients of variation and time to hatch

http://dx.doi.org/10.1007/978-94-007-6949-6_9
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indicated no significant change in sensitivity due to the plastic containers. Sensitivity
was reduced, however, by shortening the test to a 4-day exposure initiated 9 days
after oviposition.

Two years after the Deepwater Horizon blow-out in the Gulf of Mexico,
abnormalities were found in white shrimp in 2012, which was considered evidence
of transgenerational effects in the second generation. Shrimp had defective eye
stalks, pleopods, and pereiopods. These anatomical defects were found in the
markedly reduced white shrimp population, though this has not yet been published
in the refereed literature nor has it been definitely linked to the oil (Darryl Felder,
Professor, Louisiana State University 2013, pers. commun.).

Contaminants of Emerging Concern

To investigate how polybrominated diphenyl ethers (PBDEs) affect grass shrimp
(P. pugio) embryos in different developmental stages, hatching rates were measured
by Lee et al. (2012) after PBDE exposure of early- and late-stage embryos. BDE-
47, -99, and -209 at 5, 50 and 100 �g l�1 concentrations were used on stage 4
and stage 8 embryos. PBDEs at these concentrations had no clear influence on the
hatching rate. Also, to investigate on the reproductive and genetic toxicities of UV-
exposed PBDEs, the hatching rate and DNA damage of stage 7 embryos were also
measured. In most cases, PBDEs had no significant impact on the hatching rate
or DNA damage, but in the case of UV-exposed BDE-47, the hatching rate was
decreased, suggesting potential reproductive toxicity.

P. pugio embryos exposed to 2-methyl-1,2-naphthoquinone (MNQ) (Vitamin K)
had a reduced hatching rate (Lee et al. 2000). Development of stage 4 embryos was
more affected by MNQ exposure than stage 7 embryos. The hatching rates of stage
4 and 7 embryos exposed to MNQ (172 �g l�1) were 0 and 90 %, respectively.
DNA damage was measured by the comet assay. Thus, exposure of early embryos
to MNQ prevented full development, while development of exposed later stages
was not affected. It may be that the DNA repair systems are more efficient in later
embryo stages than in early stages.

6.1.3 Acidification

Weydman et al. (2012) examined effects of different pH (8.2, 7.6 and 6.9) on the
reproduction of Calanus glacialis, an Arctic shelf-water copepod, and found that
CO2-induced seawater acidification did not affect egg production, but a reduction in
pH to 6.9 significantly delayed hatching and reduced overall hatching success.

In active swimmers, exercise-produced increases in metabolic rate require
efficient ion-regulatory machinery for CO2 excretion and acid–base regulation,
especially when anaerobic metabolism is used. These ion-transport systems, which
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are located in gill epithelia, enable compensation of pH disturbances during low pH.
So far, performance at higher seawater pCO2 (>0.3–0.6 kPa) has been observed
in adults/juveniles of active, high metabolic species. However, while these taxa
are adapted to cope with elevated pCO2, their embryos and gametes, which lack
specialized ion-regulatory epithelia, may be vulnerable – even in tolerant taxa
(Melzner et al. 2009).

6.1.4 Hypoxia

Oxygen can be limiting in embryo masses of marine invertebrates, but brooding
female crabs can ventilate and provide oxygen to the embryo masses on their
abdomens. Brooding females of C. setosus performed abdominal flapping, which
increased oxygen availability to the brood mass; the frequency of abdominal
flapping increased with embryonic development, as oxygen demand of embryos
increased (Baeza and Fernandez 2002). Oxygen consumption of brooding females
also increased throughout embryonic development. Female lobsters, Nephrops
norvegicus, carrying eggs in late developmental stages exhibited brood irrigation
in normoxic conditions. In hypoxic conditions (30 % saturation, or sat) the behavior
was initiated in females with early eggs. Both early and late embryos survived acute
exposure to 5–95 % sat. Early embryos also survived chronic progressive exposure
down to 5 % sat, while late embryos displayed premature hatching at <16 % sat and
decreased survival at <7 % sat (Eriksson et al. 2006).

Regardless of female ventilatory behavior, there is less oxygen available in the
center than at the periphery of embryo masses. Fernández et al. (2003) investigated
differences in patterns of oxygen supply to the periphery and the center of embryo
masses of the crabs Cancer setosus and Homalaspis plana. Oxygen availability
at the center vs periphery of the embryo masses was very different during early
development, but the differences decreased over time. Inner embryos spent a greater
proportion of the time exposed to low pO2 levels throughout development. pO2

affected oxygen consumption of the inner and outer embryos in the same fashion,
but the oxygen demand of inner embryos was lower. Development of inner embryos
was delayed, probably due to oxygen limitation, which affected their oxygen
consumption.

6.1.5 Polluted Environment

Sundelin and Eriksson (1997) studied the Baltic amphipod Monoporeia affinis from
fertilization to hatching. Between 2 and 6 % malformed, 0–5 % undifferentiated
and 0–6 % dead eggs and embryos were observed at sites in the northern Baltic and
the Bothnian Sea without contaminant discharges. Gravid females were sampled
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near pulp mills and an aluminum smelter. Frequency of malformed embryos
was higher at these industrial sites, with the highest frequencies (15.3 %) near
the smelter. The number of enlarged embryos with edema was higher near the
pulp mills particularly one with a bleaching stage, where 25–40 % embryos per
female were affected. Background frequencies of enlarged embryos were only 0.7–
3.5 %. Undifferentiated and dead eggs did not correlate to the exposure situation,
suggesting they are of limited value in monitoring. The frequency of malformed
embryos was more sensitive than fecundity or reproductive success. Thus, this
variable was particularly sensitive to toxicants.

6.2 Fishes

Exposures can affect morphogenetic movements such as gastrulation, tissue inter-
actions such as induction, growth, and degeneration or cell death, all of which can
produce abnormalities in the developing embryos. Fish embryos tend to become
abnormal in certain ways, regardless of the chemical they are exposed to. The
most sensitive systems are the developing skeletal system, circulatory system,
and craniofacial system. Another common response is a general retardation of
development. A slower development rate can allow teratogenic chemicals to work
for a longer time during sensitive periods (critical stages) and thus produce more
severe anomalies. A number of investigators have proposed using malformations
in wild fish embryos and larvae for assessing pollution in local waters (von
Westernhagen and Dethlefsen 1997; Kingsford and Gray 1996). Nevertheless, many
studies still focus on hatching as an endpoint for bioassays. More detailed and
complex analyses of developmental toxicology in fishes are developed for the
freshwater zebrafish (Danio rerio) for which the entire genome has been analyzed.

6.2.1 Metals

Many of the studies on metals and marine fish embryos are decades old. A review
of more recent studies – primarily on freshwater fishes, however – was published by
Jezierska et al. (2009).

Stormwater runoff in a coastal urban area (San Diego, CA, USA) produced
toxicity to early life stages of silversides (M. beryllina) (Skinner et al. 1999).
Exposure of embryos to lower concentrations (5–25 %) increased the incidence
of abnormal swim bladder inflation and other teratogenic responses, while higher
concentrations caused mortality or failure to hatch. Correlation of EC50s with
concentrations of individual pollutants (including Cd, Cr, Cu, Pb, Ni, and Zn)
was low, but the correlation with total metals was high and corresponded with
exceedences of Water Quality Criteria for Cd, Cu, Pb, and Zn.
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Fig. 6.3 Craniofacial abnormalities of varying severity leading to cyclopia in F. heteroclitus
embryos in 0.05 mg l�1 meHg. A Normal control, B fusion of optic vesicles (synophthalmia),
C cyclopia (Photo courtesy of P. Weis)

Mercury

Weis and Weis (1977a, b) noted cyclopia and intermediate conditions in which eye
rudiments converge in Fundulus heteroclitus embryos treated with 50 �g l�1 meHg
or inorganic Hg (Fig. 6.3).

The mechanism underlying the fusion of the optic vesicles is reduced devel-
opment of the forebrain, which then permits the eye rudiments to approach each
other in the anterior midline of the embryo. The critical period for development
of this anomaly was gastrulation, which is the time of induction of the forebrain
and well before the actual formation of the optic cups, so this is not basically a
defect in eye development, but rather one of craniofacial development. Defects of
the cardiovascular system, including thin atrial and ventricular walls, a failure of the
heart tube to differentiate or to bend, hemostasis, and pericardial swelling have been
observed in fish embryos including F. heteroclitus. These effects can be produced
by inorganic or meHg. Axial malformations are also common, ranging from slight
bending of the skeletal axis to the extreme condition of no axis formation at all.
Flexures and stunting were observed in F. heteroclitus. Indices of severity can grade
embryos in terms of the degree of severity of anomalies, a more accurate evaluation
than the percentage of affected embryos (Weis and Weis 1977a, b). Using such
scales and separating out eggs produced by different females, it was seen that eggs
produced by different females were very different in susceptibility to meHg; some
females produced eggs that were very susceptible, others produced very resistant
ones (Weis et al. 1982). Traits of the females producing tolerant eggs included
different meristic characters (fin ray counts), suggesting that it is genetic. Females
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from a polluted site (Piles Creek in New Jersey) produced highly tolerant eggs,
an indication of tolerance in this population (Weis et al. 1981). Fin ray counts in
the PC population were similar to those females of the reference population that
produced more tolerant embryos. Mutagenic effects were also observed in meHg-
treated embryos; and those with more severe teratogenic responses had more severe
mutagenic responses (Perry et al. 1988).

Cadmium

Cd is much less embryotoxic and teratogenic than Hg. Herring embryos (Clupea
harengus) in 100 �g Cd l�1 had accelerated hatching (Rosenthal and Sperling
1974), which was attributed to reduced embryonic movements preventing the
normal distribution of hatching enzyme, causing it to concentrate in the head
region where the capsule ruptured. von Westernhagen et al. (1975) reported that
pectoral fin movements of garpike embryos (Belone belone) were reduced after
exposure to 5 mg l�1 Cd, and that lower salinity increased toxicity. Effects of a
2 h pulse-exposure of Cd on early life stages of Australian crimson spotted rainbow
fish (Melanotaenia fluviatilis) were investigated on 3, 46, and 92 h old embryos
(Williams and Holdway 2000). The 3-h-old embryos had the highest percentage of
deformities with 27 % for embryos pulse-exposed to 3.3 mg l�1 Cd. Exposed 9–
10-day-old larvae were more tolerant. Pulse-exposure to Cd caused reduced hatch,
spinal deformities, and toxicity in larvae.

Tributyltin

Tributyltin (TBT) (a commonly used ingredient in antifouling paints for boats until
banned in many countries because of its developmental and reproductive effects)
produced eye and skeletal defects and delayed hatching in F. heteroclitus exposed
to concentrations as low as 3 �g l�1 (Weis et al. 1987). Exposure to <10 �g l�1

induced craniofacial cartilage defects in rockfish (Sebastiscus marmoratus) embryos
by perturbing the proliferation and differentiation of cartilage cells and disturbing
calcium metabolism (Zhang et al. 2012). It also produced dorsal curvature, severely
twisted tails and pericardial edema.

Fertilized cod eggs exposed to 5 �g TBT l�1 had increased larval mortality, but
those exposed to 0.004–0.8 �g l�1 did not show altered respiration or teratogenic
effects (Granmo et al. 2002).

Copper

Herring (Clupea harengus) incubated in 30 �g l�1 Cu had high mortality as
embryos, and those that hatched were deformed. If exposure was delayed until 4
days post-fertilization, no deformities occurred, indicating that the early stages were
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most sensitive (Blaxter 1977). European seabass, Dicentrarchus labrax embryos
had reduced hatching after exposure to 5 �g l�1 Cu (Cosson and Martin 1981).
Exposure to 11.5 �g l�1 reduced hatching, prolonged incubation time, and produced
abnormalities, such as bent axis and cyclopia, in embryos of cod, Gadus morhua
(Swedmark and Granmo 1981).

Zinc

Zinc tends to be less toxic and teratogenic than the other metals, usually requiring
higher concentrations to produce effects. Exposure to 50 �g l�1 Zn caused
craniofacial and skeletal malformations in herring (Clupea harengus) embryos
(Somasundaram et al. 1984), while 5 mg l�1 increased the frequency of skeletal
abnormalities in cod (Gadus morhua) embryos (Swedmark and Granmo 1981).
A 2 h pulse-exposure to 33.3 mg l�1 Zn of 3-h old Australian crimson spotted
rainbow fish (Melanotaenia fluviatilis) embryos produced 27 % spinal deformities
and reduced hatch. Zn affected development, growth, and survival of red sea
bream (Pagrus major) embryos and larvae (Huang et al. 2010). Concentrations
�0.5 mg l�1 reduced hatching rate, caused high mortality and morphological
abnormalities; time-to-hatch was delayed in �1.0 mg l�1. Larval length at the end
of the study was reduced in the 1.0 and 2.0 mg l�1 groups.

Silver

Klein-McPhee et al. (1984) found that winter flounder, Pseudopleuronectes ameri-
canus larvae hatched from Ag-exposed eggs were shortened and curved; their yolk
sacs were smaller and showed abnormal shape and inclusions.

6.2.2 Organics

Pesticides

Adult Cyprinodon variegatus surviving exposure to the organochlorine pesticide
Kepone were spawned, and embryonic development, hatching, and survival and
growth of fry were monitored in 36 days exposure to <33 �g l�1. A significant
number of embryos from adult fish exposed to 1.9 �g l�1 developed abnormally
and died even when incubated in clean water. The length of juveniles was reduced
by embryonic exposure to 0.08 �g l�1 and some fish developed scoliosis (Hanson
et al. 1977a).

A given pesticide can produce different types of malformations in different
species, showing that particular species are especially prone to certain types of
malformations. DDT, malathion, and parathion induced cardiovascular defects in
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embryos of the killifish, Fundulus heteroclitus (Weis and Weis 1974). In contrast,
these insecticides produced primarily optical malformations (microphthalmia) in
embryos of the silversides, Menidia menidia (Weis and Weis 1976a) and malathion
produced primarily skeletal malformations in developing sheepshead minnows,
Cyprinodon variegatus (Weis and Weis 1976b). However, exposure of this species
to 0.31 �g l�1 endrin caused early hatching, stunting, and some mortality, but
no major abnormalities (Hanson et al. 1977b). The organophosphate terbufos at
50 �g l�1 produced fused vertebrae and lesions in silversides (Menidia beryllina)
embryos (Middaugh et al. 1990). Hemmer et al. (1990) found effects of temperature
and salinity on these responses, but the percentage of hatched larvae with normal
vertebrae was significantly reduced from controls at terbufos concentrations of
25, 50 and 100 �g l�1 for the three temperatures (20, 25, and 30 ıC) tested.
Vertebral anomalies occurred across all temperature and salinity combinations,
and were observed at concentrations as low as 12.5 �g l�1 terbufos. Chlorpyrifos
was studied by Humphrey and Klumpp (2003) on various life history stages of
the eastern rainbowfish Melanotaenia splendida splendida. Chlorpyrifos was toxic
to all stages and became more toxic to embryos and larvae as the temperature
increased. The LC50 values increased from 0.02 mg l�1, for eggs and sperm prior
to fertilization, to 2.02 mg l�1, for eggs exposed after fertilization and hardening of
the chorion. Sublethal tests revealed that larval length and otolith perimeter were
the most sensitive indicators of stress, with significant effects at 0.006 mg l�1.
Thus, these sublethal effects were seen at orders of magnitude less pesticide than
the LC50.

Arufe et al. (2010) examined the toxicity of the organophosphorus pesticide
parathion on embryos and yolk-sac larvae of gilthead seabream (Sparus aurata),
and investigated effects on cholinesterase and carboxylesterase activity of larvae.
The 72-h LC50 for yolk-sac larvae (0.523 mg l�1) was about twofold lower than
the 48-h LC50 for embryos (1.005 mg l�1). Parathion significantly inhibited the
activity of ChE and CaE in yolk sac larvae. Larvae exposed to parathion for 72 h
showed a 70 % inhibition of whole body acetylcholinesterase at approximately the
LC50. No examination of embryos for malformations or other sublethal effects was
performed, however.

Bioassays of degraded pentachlorophenol with M. beryllina embryos indicated
that the biodegraded samples were toxic or teratogenic, showing that intermediate
metabolites of the degradation process or undegraded impurities remained toxic
or teratogenic (Middaugh et al. 1993). Goodman et al. (1992) investigated early-
life-stage toxicity of fenvalerate, a synthetic pyrethroid, to topsmelt (Atherinops
affinis), a Pacific coast saltwater fish. In the 30-d ELS test with laboratory-
spawned embryos, average measured fenvalerate concentrations were 0.14, 0.34,
0.82, 1.5, and 3.2 �g l�1. Survival to hatching was 94–100 %, with no statistically
significant differences among treatments. No fry survived exposure to fenvalerate
concentrations �0.82 �g l�1. There was no mention of sublethal abnormalities or
delayed effects on exposed embryos.

Exposure to environmental levels of the insecticides cypermethrin and diazinon
(0.05 and 0.10 �g l�1 cypermethrin and 0.05 �g l�1 diazinon) inhibited embryo
development in Atlantic salmon (Salmo salar). Even brief exposure of eggs and
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sperm during fertilization reduced the number of fry that emerged and the time of
emergence (Lower and Moore 2003). Following insecticide exposure there was a
high incidence of fry deformities and a reduction in the survival of the fry.

PCBs and Dioxins

Extensive work on embryological effects of PCBs and dioxins has been done on
freshwater fish such as zebrafish and medakas. Less work has focused on estuarine
and marine species. Chambers et al. (2012) investigated sensitivities of shortnose
sturgeon, Acipenser brevirostrum, and Atlantic sturgeon, A. oxyrinchus, to early-
life-stage exposure to PCB 126 and 2,3,7,8-TCDD. Morphological alterations of
larvae of both species included shortening of the body, reduction in head size, yolk
reserves, and eye size. Eye development in both species was delayed with increasing
dose for both chemicals. Survival of larvae decreased in both species, with sharp
declines occurring at PCB126 and TCDD doses of �1 and �0.1 ppb, respectively.

The developing fish heart is particularly sensitive to effects of low concentrations
of TCDD, as seen by Prince and Cooper (1995) in F. heteroclitus, and reviewed by
Kopf and Walker (2009). Early signs of TCDD cardiovascular toxicity are decreased
blood flow, yolk sac edema, pericardial edema, hemorrhage, and eventual mortality.
While heart rate remains normal during vascular degeneration, heart size of TCDD-
exposed sac fry is dramatically reduced. Close examination of the endothelium
of capillaries revealed increased vacuolation, separation of the interendothelial
spaces, and interstitial fluid accumulation. Other cardiovascular effects include
decreased vascular growth, and deformities, such as altered looping, compaction
of the ventricle, and elongation of atria. Many of these effects are similar to effects
produced by metals.

Yamauchi et al. (2006) characterized early life stage toxicity of TCDD in red
seabream (Pagrus major) related to the expression of aryl hydrocarbon receptors
(AHRs) and cytochrome P 1A (CYP1A). Embryos at 10 hours post fertilization
were exposed to 0–100 �g l�1 TCDD for 80 min, which elicited mortality, yolk
sac edema, retarded growth, spinal deformity, reduced heart rate, shortened snout,
underdeveloped fin, heart, and lower jaw. Interestingly, hemorrhage and pericardial
edema, typical defects noticed in other fish, were not found until test termination.
The EC 50 s for yolk sac edema, underdeveloped fin, and spinal deformity were 170,
240, and 340 pg g�1, respectively. The LC 50 was 360 pg g�1, indicating that this
species is one of the most sensitive fishes to TCDD. Comparing temporal trends
of TCDD-induced AHRs and CYP1A expression, and developmental toxicities,
the highest expression of AHR2 and CYP1A mRNAs were detected prior to
the appearance of most severe malformations. These results suggest that TCDD
defects are dependent on the alteration of rsAHR2 and/or rsAHR2-CYP1A signaling
pathway that is controlled through their expression levels. This species is also very
sensitive to effects of 2,3,7,8 TCDD on the developing nervous system. Iida et al.
(2013) found that neuronal outgrowth of the facial nerve was shortened and axon
guidance in the glossopharyngeal (IX) and vagus nerves (X) was altered in a dose-
dependent manner with a lowest observable effect level of 0.1 �g l�1.
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Foekema et al. (2008) investigated effects of the dioxin-like PCB 126 (3,30,4,40,5-
pentachlorobiphenyl) on early development of the sole (Solea solea). Early life
stages were exposed until 4, 8, 10 and 15 days post fertilization (dpf) and later
development of larvae was in clean water. The LC50s at the start of the free-feeding
stage (12 dpf) was 39–83 ng l�1 depending on exposure duration, but after fish
had metamorphosed, LC50s were 1.7–3.7 ng l�1 for groups exposed for 4, 8 and
10 dpf, respectively. Thus, exposure for only 4 days during the egg stage caused
adverse effects during a critical phase 2 weeks later. This study indicates that ELS
fish tests that end shortly after the fish become free-feeding underestimate the toxic
potential of compounds such as PCBs. Foekema’s study itself, since it focuses
only on mortality, also underestimates toxicity since it does not examine sublethal
effects.

Palstra et al. (2006) noted that during maturation of female European eels
(Anguilla anguilla), about 60 g fat per kg eel is incorporated in the oocytes,
along with dioxin-like PCBs. The total dioxin-like toxic potency of the individual
gonads was determined as 2,3,7,8-TCDD equivalents (TEQs). Observed differences
in development and survival showed a negative correlation with TEQ levels in
the gonads. The inverse relationship between the TEQ level and survival of the
fertilized eggs strongly suggests that the current levels of dioxin-like compounds
are impairing reproduction of the European eel.

Oil/PAHs

Oil spill effects on fish eggs have been intensively studied, with studies initially
focusing on the water-soluble fraction (WSF) containing mostly 1- and 2-ringed
aromatic hydrocarbons (Rice et al. 2001). F. heteroclitus embryos exposed to
the WSF of number 2 fuel oil had reduced growth, decreased vertebral counts,
skeletal malformations, and decreased yolk utilization during development, effects
which were intensified at higher temperature (Linden et al. 1980). Pollock embryos
(Theragra chalcogramma) exposed to WSF of Cook Inlet crude oil were shorter,
and had malformations of eye, brain, jaw and intestine in addition to skeletal
malformations. Many did not hatch, but those that did had abnormalities (Carls
and Rice 1989). Kocan et al. (1996a) found genetic damage was the most sensitive
response in Pacific herring (Clupea pallasi) embryos exposed to oil–water disper-
sions of Prudhoe Bay crude oil, followed by deformities, reduced mitotic activity,
and premature hatch. Exposures at blastodisc and gastrula stages had the greatest
effects.

Among the common embryonic malformations induced by oil are heart defects.
Cardiac malformations produced by PAH were found to be preceded by deficiencies
in cardiac function (Incardona et al. 2004). Hicken et al. (2011) found that
crude oil produces a lethal syndrome of heart failure in fish embryos. Transient
embryonic exposure to very low concentrations causes delayed toxicity that is not
counteracted by protective effects of cytochrome P450 induction. Nearly a year
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Fig. 6.4 (a) Transverse section of adult heart showing atrium, ventricle and bulbus arteriosus.
Arrows indicate length and width. (b) Box plots showing length-width ratios for fish exposed
embryonically to clean or oiled gravel effluent (Reprinted from Hicken et al. 2011: 7088, courtesy
National Academy of Sciences)

after embryonic exposure, adults showed subtle changes in heart shape and reduced
swimming performance, indicating reduced cardiac output. These delayed impacts
on cardiovascular performance provide a potential mechanism linking reduced
individual survival to population-level responses (Fig. 6.4).

Oil on the sea surface penetrates into floating eggs. Irie et al. (2011) compared
responses of floating eggs and sinking eggs from a variety of marine fishes. In
the course of development, floating embryos showed abnormal gross morphology,
whereas sinking embryos were almost normal. However, the peripheral nervous
system of sinking eggs had abnormalities, showing that these embryos were also
susceptible. Capelin (Mallotus villosus) spawn on beaches and thus eggs can be
affected by oil. Newly fertilized eggs were collected from a spawning beach and
exposed until hatch (32 days) to the WSF of crude oil or to pyrene. Concentrations
of 40 �g l�1 crude oil or 55 �g l�1 pyrene significantly increased mortality and
decreased hatching success, indicating that an oil spill could cause significant
impacts. Interestingly, no significant teratological effects were seen (Frantzen et al.
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Fig. 6.5 Effects of creosote (1.2 mg l�1) on embryo morphology (a) Normal optic vesicle
pigmentation in 5-day old control Pacific herring embryo. (b) Normal optic vesicle pigmentation
in 5-day old embryo exposed to untreated wood (c) 2-day old embryo exposed to creosote (arrows
indicate vacuolization of yolk). (d) Delayed optic vesicle pigmentation in 5-day old embryo
exposed to creosote (Reprinted from Vines et al. 2000: 231, courtesy Elsevier Publishing Co.)

2012). However, He et al. (2012) found pyrene caused neurodevelopmental defects
in the rockfish (Sebastiscus marmoratus) by disrupting the cranial innervation
pattern, reducing motor nerves and impairing axon growth. Acetylcholine (Ach), a
neurotransmitter which can suppress retinal cell neurite outgrowth, was increased by
pyrene exposure. Authors suggested PAHs might suppress neurite growth through
increasing ACh concentration or depressing NO concentration. Exposure also
caused defects in craniofacial cartilage development in this species (Shi et al.
2012).

When a Pacific herring deposited her eggs on creosote-treated wood in a marina
in California, all the eggs failed to develop past a few days of incubation (Vines
et al. 2000). This fortuitous discovery (for the scientists, not the fish) prompted
a further study on embryonic effects of diffusible creosote-derived compounds.
Incubations of eggs that were not adhering directly to the wood caused 40–50 %
mortality. Survivors had severely reduced heartbeat, tremors, and greatly reduced
hatching rates. Those that did hatch had abnormalities including pericardial edema
and axial bends (Figs. 6.5, 6.6, and 6.7). The creosote- treated wood in the marina
was weathered, and estimated at 40 years old, demonstrating the continued leaching
and toxicity of PAHs from the wood over decades.
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Fig. 6.6 Pre-hatching embryonic-larval activity in untreated and wood control embryos, and
embryos exposed to creosote (1.2 mg l�1) from day 5 to 9 of incubation. Normal activity was
vigorous movements within the chorion, while abnormal movements were tremors (Reprinted from
Vines et al. 2000: 232, courtesy Elsevier Publishing Co.)

Exxon Valdez

The Exxon Valdez ran aground on March 24 1989, releasing 11–32 million gallons
(42,000–120,000 m3) of oil into Prince William Sound (PWS), Alaska during the
breeding season of many fish. After the spill, fish embryos were chronically exposed
to partially weathered oil including 3-, 4-, and 5-ringed hydrocarbons generally
missing from standard bioassays (Murphy et al. 1999). These PAHs affected pink
salmon and herring eggs at <1 ug l�1, concentrations far lower than had been pre-
viously known to be toxic. Abnormal development was seen in herring and salmon
after exposure to the oil (Hose et al. 1996; Carls et al. 1999; Marty et al. 1997).
After incubating herring egg masses collected from oiled and unoiled beaches, Hose
et al. 1996 found more morphological deformities and cytogenetic abnormalities in
embryos from oiled than from unoiled locations. By 1990 and 1991 no oil related
differences were seen. Exposure to an initial aqueous concentration of 0.7 �g l�1

PAHs caused malformations, genetic damage, gonadal cell apoptosis, mortality,
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reduced size, and reduced swimming. Concentrations as low as 0.4 �g l�1 caused
yolk sac edema and immaturity consistent with premature hatching. Increased
gonadal apoptosis may be related to later reproductive impairment seen in field
studies of pink salmon up to 4 years after the spill (Marty et al. 1997). Responses
to less weathered oil with fewer high molecular weight PAH, generally paralleled
those of more weathered oil, but the lowest effective concentrations were higher
(9.1 �g l�1), demonstrating the higher toxicity of heavier PAHs. Biological effects
were identical to those seen in PWS in 1989 and support the conclusion that the oil
caused significant damage to herring. Previous demonstration that most malformed
or precocious larvae die supports the decreased larval production measured after the
spill. Pacific herring (Clupea pallasi) embryos that were deployed in PWS 3 years
after the spill had more abnormalities and lower weight at previously oiled sites
than at unoiled sites (Kocan et al. 1996a). Reproductive impairment was also seen
in herring 3 years after the spill (Kocan et al. 1996b). Adults from oiled sites had a
lower hatch and produced more abnormal larvae than fish from an unoiled site.

Heintz et al. (1999) incubated pink salmon Oncorhynchus gorbuscha embryos
under three conditions: direct contact with oil-coated gravel, effluent from oil-
coated gravel, and direct contact with gravel coated with very weathered oil
(VWO). Mortalities and PAH accumulation in direct-contact and effluent exposure
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Fig. 6.8 Growth rate of O. gorbuscha (M ˙ SE) of 1993 brood fish 4–6 months after PAH
exposures ended and 1995 brood fish during first 10 m after exposure. * D significantly different
from control (Reprinted from Heintz et al. 2000: 211, courtesy of Inter-Research)

experiments were not significantly different, indicating that PAH accumulation was
mediated by aqueous transport. Mortality of embryos exposed initially to a total
PAH of 1.0 �g l�1 was significantly higher than controls when the PAH were derived
from VWO, but not from less weathered oil, indicating that toxicity was associated
with the heavier PAH.

Delayed effects were noted (Heintz et al. 2000). Pink salmon exposed to
5.4 �g l�1 PAHs as embryos had decreased marine survival compared to unexposed
salmon. A delayed effect on growth was found in juveniles that survived embryonic
exposure to doses as low as 18 �g l�1 PAH (Fig. 6.8). Reduced growth could
account for the reduced marine survival of the released fish.

Bue et al. (1998) investigated transgenerational effects of the Exxon Valdez oil
spill and found that chronic damage occurred to some populations of pink salmon.
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Elevated embryo mortalities were observed from 1989 to 1993 in areas previously
contaminated by oil, but not in 1994 and 1995. They collected gametes from adults
returning to contaminated and to uncontaminated streams, transported the gametes
to a hatchery where crosses were made, and incubated the resulting embryos under
identical environmental conditions. Significantly increased mortality was seen in
embryos originating from the oil-contaminated lineages in 1993 but not in 1994.

There has been controversy over the embryotoxicity of weathered oil reflecting
disagreements over how long after the spill effects could still be seen. While
numerous studies demonstrated PAHs dissolved from weathered crude oil affect fish
embryos at 0.5–23 �g l�1 this has been challenged by studies that claim much lower
toxicity of weathered aqueous PAHs, and say that direct contact with dispersed
oil droplets is required for toxicity. For example, Brannon et al. (2009) reported
no toxicity of weathered EVO to pink salmon embryos until exposure exceeded
1,500 �g l�1 representing a PAH tissue burden of 7,100 ppb. They stated that after
a spill, hydrocarbons drop well below levels that can cause harm over a few weeks,
regardless of oiling level. In contrast, other studies demonstrated high toxicity of
weathered oil; embryos accumulated dissolved PAHs at low concentrations and
were damaged. Shifts in PAH composition (weathering) indicate that PAHs become
more toxic because high molecular weight PAHs are more persistent and toxic than
low molecular weight PAHs (Carls and Meador 2009). Years after the publication of
Heinz et al. (1999), Exxon-funded scientists wrote a letter to the editor of the journal
(Page et al. 2012a) complaining that the dose–response plot presented in a figure did
not demonstrate PAH causality for the VWO treatment because the dose, as defined
as the total extractable oil concentration in the VWO gravel on the columns at the
start of the exposure, did not reflect the bioavailable dose, measured as PAHs in
water or tissue and suggested that embryo injury may have resulted from exposure
to other stressors, e.g., products of microbial degradation of petroleum. In response,
Heintz et al. (2012a) replied that when they originally published the work, the idea
that high molecular weight PAHs were teratogenic at such low concentrations was
novel. Since then, the sensitivity to low concentrations of PAHs has been confirmed
for fish embryos exposed to oiled sediments, to dissolved mixtures of PAHs, and
to specific high molecular weight PAHs dissolved in water. They reiterated that the
most toxic components of oil are the most persistent and become more concentrated
as oil weathers because less toxic components are lost. There were additional
exchanges (Page et al. 2012b; Heintz et al. 2012b), and Page et al. (2012c) wrote an
article criticizing the Heintz study, pointing out that it did not establish consistent
dose–response or show that dissolved PAH alone from the weathered oil caused the
effects on fish embryos at low concentrations. They advised that these studies should
not be relied on for decision-making.

Deepwater Horizon

Killifish (Fundulus grandis) from Louisiana marshes showed a variety of sublethal
effects following the Deepwater Horizon blowout in 2010. Genome expression
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responses in liver were predictive of the types of responses associated with
developmental abnormalities and death observed in previous studies (Whitehead
et al. 2011). Furthermore, responses were predictive of reproductive impairment;
thus the probability of population impacts is significant. Gills of oiled fish appeared
damaged and had altered protein expression long after the visible oil disappeared
from the marsh surface. Controlled laboratory exposures of developing embryos to
field-collected waters induced similar cellular responses.

Photoenhanced Toxicity

Photoenhanced toxicity of weathered Alaska North Slope crude oil was investigated
in eggs and larvae of Pacific herring (Clupea pallasi) with and without the
dispersant Corexit®. Oil alone was acutely toxic below 50 �g l�1 total PAH and
toxicity decreased with time after exposure, but brief exposure to sunlight increased
toxicity 1.5- to 48-fold (Barron et al. 2003). Photoenhanced toxicity increased with
increasing tissue PAH concentration. The toxicity of dispersed oil was similar to
oil alone, but oil C dispersant was more toxic in light treatments. The dispersant
appeared to accelerate PAH dissolution, causing more rapid toxicity. Similarly,
Incardona et al. (2012) found that the toxicity of bunker oil (thick fuel oil distilled
from crude oil) to fish embryos is greatly increased by light. The study analyzed
Pacific herring embryos following the Cosco Busan spill in San Francisco Bay.
Components of the oil accumulated in naturally spawned herring embryos, then
interacted with sunlight at low tide to kill the embryos. Three months after the
spill, caged embryos at deeper sites in oiled areas had sublethal cardiac toxicity, as
expected from exposure to PAHs, but intertidal embryos exposed to light had very
high rates of necrosis and mortality unrelated to cardiac toxicity. Embryos sampled
2 years later from oiled sites still had modest heart defects but not increased death
rates.

Oil Dispersants

Effects of dispersed oil are of interest since dispersants can modify the toxicity of
oil and may also be toxic themselves. Toxicity of dispersed weathered crude oil
to early life stages of Atlantic herring (Clupea harengus) was tested with 1–144 h
exposures (McIntosh et al. 2010). Crude oil dispersed with Corexit® 9500 caused
blue sac disease in embryos. Newly fertilized embryos were more sensitive than
later stages, but sensitivity increased again after hatch, with signs of narcosis.
Dispersed oil dramatically impaired fertilization success. For brief exposures,
gametes and free-swimming embryos were the most sensitive stages. Anderson
et al. (2009) exposed topsmelt eggs (Atherinops affinis) to Prudhoe Bay oil with and
without Corexit®. While the water-accommodated fraction produced only minor
effects, oil C dispersant produced major cardiovascular and other anomalies. Greer
et al. (2012) investigated whether brief exposures of Atlantic herring (C. harengus)
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embryos to dispersed oil prepared by standard mixing procedures was as toxic as oil
dispersed in a more realistic model system. Toxicity increased with exposure time,
and 2.4 h exposures at realistic concentrations of oil induced blue-sac disease and
reduced the percentage of normal embryos at hatch. Overall, the laboratory- and
wave tank-derived solutions of dispersed oil had similar toxicity, suggesting that
laboratory and wave tank data are a reliable basis for ecological risk assessments of
spilled oil.

Dispersants alone are also toxic to fish embryos. Boudreau et al. (2009) studied
the toxicity of Orimulsion-400® to Atlantic herring (C. harengus) and mummichog
(F. heteroclitus) embryos. Water-accommodated fractions (WAFs) of no. 6 fuel
oil were tested to compare dispersant toxicity with that of a heavy fuel oil.
Concentrations of Orimulsion-400® >0.001 % produced 100 % abnormal larvae
in herring. Abnormalities, including pericardial edema and spinal deformities,
(the same effects caused by fuel oils and PAHs), were produced in both species.
Fish exposed to Orimulsion-400® had increased mortality, reduced heart rates,
premature hatch, and reduced length. The dispersant was about 300-fold more toxic
than the WAFs of fuel oil. Fuller et al. (2004) evaluated the relative toxicity of
dispersant, weathered crude oil, and weathered crude oil C dispersant to embryos of
Cyprinodon variegatus and Menidia beryllina, and found that oil C dispersant was
equal to or less toxic than the oil alone. Unweathered oil (dominated by soluble
hydrocarbon fractions) was more toxic than weathered oil (dominated by colloidal
oil fractions). Total hydrocarbons in oil C dispersant media prepared with weathered
or unweathered crude oil were dominated by colloidal oil and showed no significant
difference in toxicity. These results are contrary to other results of weathered oil on
pink salmon and herring.

6.2.3 CECs

Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant that has been
widely detected in seawater. Huang et al. (2011) investigated its effects on cardiac
development of Oryzias melastigma embryos. Embryos 2 days post-fertilization
were exposed to 1, 4 and 16 mg l�1 PFOS and those in 4 and 16 mg l�1 developed
an enlarged sinus venosus –bulbus arteriosus distance and altered heart rate. This
is similar to effects of chlorinated chemicals, but effects occurred at much higher
concentrations. Boudreau et al. (2004) investigated estrogenic (ethylene estradiol,
EE2) and antiestrogenic (ZM 189,154, ZM) endocrine disrupting chemicals (10–
10,000 ng l�1) for effects on developing F. heteroclitus embryos. Skeletal abnor-
malities were produced at high concentrations of EE2 (1,000 ng l�1). Exposures to
ZM produced abnormalities, but also at high concentrations. Authors concluded
that developmental abnormalities are not a sensitive indicator of estrogenic or
antiestrogenic effects in this species.
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6.2.4 Hypoxia

Mejda et al. (2012) studied effects of different levels of DO on embryonic develop-
ment and hatching success of Greenland halibut (Reinhardtius hippoglossoides).
Fertilized eggs were exposed to severely hypoxic (10 and 20 %sat [percent
saturation]), moderately hypoxic (35 and 50 %sat), and normoxic water. Embryos
were tolerant to hypoxia, with hatching occurring at levels down to 20 %sat.
However at 10 %sat development was impaired and no hatching occurred. The
results suggest that only very severe hypoxia has detrimental effects on the early
development of this species. Other species are more sensitive. Black bream embryos
(Acanthopagrus butcheri) in hypoxic conditions (30 % sat) had reduced survival and
no hatching. In moderately hypoxic conditions (45–55 %sat), both precocious and
delayed hatching occurred, hatch rates were reduced, and the number of hatched
larvae with deformities and reduced length increased. No larvae survived to Day 2
post-hatch when held in hypoxic conditions <55 %sat (Hassell et al. 2008).

Energy exchange between yolk and embryo in dogfish (Scyliorhinus canicula)
eggs in 100, 50 and 20 % sat, and anoxia for 2 h/day was studied for 10 weeks,
starting when eggs were 13–15 weeks old (Diez and Davenport 1990). Exposure to
20 % sat was lethal after 3 weeks; embryos exposed to anoxia for only 2 h/day died
after 10 weeks. Animals exposed to normoxia and 50%sat survived the experimental
period. Embryos in reduced DO had reduced growth. S. canicula embryos utilize
different ventilatory methods; small and intermediate embryos use body movements
to stir the jelly or sea water in the capsule, larger embryos use pharyngeal pumping
to pump water through the case. The effects of reduced DO on ventilation were
studied (Thomason et al. 1996) but there was no significant change in ventilatory
frequency induced by 2 h hypoxia.

While hypoxia in deep water is likely to be a problem for benthic eggs, there
has also been some study of its effects on floating eggs. In order to elucidate the
causes of malformations in buoyant eggs, Sawada et al. (2012) estimated the time
change of DO and dissolved CO2 concentrations in the interstitial water within egg
aggregations of red sea bream, Pagrus major. They estimated that DO decreases
below 10 % sat within 21 s and CO2 increases to more than 135 mg l�1 within
60 min in interstitial water, suggesting that hypoxia and hypercapnia might become
teratogenic within a short time in aquaculture when eggs aggregate at the surface
in containers, or possibly in the wild when clumps of eggs are exposed to harmful
algal blooms.

6.2.5 Climate/Ocean Acidification

Changes in pH can disturb calcification, acid–base regulation, blood circulation,
respiration, and the nervous system of marine organisms, leading to long-term
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effects. Early life stages of fishes are vulnerable since they lack the specialized pH
regulatory mechanisms that adults have. Menidia beryllina embryos were placed
in pCO2 concentrations comparable to current levels (400 mg l�1), those expected
by mid-century (600 mg l�1) and levels projected for the end of the century
(1,000 mg l�1) (Baumann et al. 2011). Survival was cut in half at 600 and dropped
by 74 % at 1,000 mg l�1. In contrast, eggs of the Atlantic herring (C. harengus) were
fertilized and incubated in acidified seawater (pCO2 1,260, 1,859, 2,626, 2,903,
4,635 �atm). Elevated pCO2 did not affect embryogenesis or hatch rate, and there
was no relationship between pCO2 and total length, dry weight, yolk sac area and
otolith area of newly hatched larvae, indicating they are much more tolerant than M.
beryllina (Franke and Clemmesen 2011). However, RNA concentration was reduced
at higher pCO2 levels, which could lead to a decreased protein synthesis and growth
of larvae. Slow growing individuals have a lower survival potential due to lower
feeding success and increased predation.

6.2.6 Polluted Sites

Klumpp et al. (2002) sampled fish and eggs from several areas in Xiamen coastal
waters with varying levels of pollution. Embryonic malformation rates, which
indicate general water quality, varied with location and species of fish, and exceeded
background levels for unpolluted waters by up to eightfold at some sites. Generally,
sites around Xiamen Harbour showed signs of poor water quality and had the
highest levels of embryo deformity (20–30 %) and these decreased towards open
waters (Tongan Bay, Eastern Channel) where abnormalities approached background
levels.

The sea surface is an important habitat for eggs and larvae of many fishes but
it also concentrates anthropogenic contaminants. Herring (C. harengus) and turbot
(Psetta maxima) eggs were used to test effects of the sea-surface microlayer (full
strength and 1, 10, 50 % dilutions). Depending on the sampling site and time,
the microlayer contained Zn, Cd, Cu, Ni, Fe, Pb and Co, in concentrations 100x
above those found in subsurface water and considerable amounts of petroleum
hydrocarbons and phthalate esters. Exposure produced concentration-dependent
effects on hatching time, percent hatch, and number of abnormalities. Herring eggs
were more greatly affected by Helgoland microlayer (which contained high metals)
while turbot eggs were more sensitive to Travemünde and Elbe microlayer (with
high petroleum hydrocarbons) (von Westernhagen et al. 1987). Planktonic embryos
of Atlantic mackerel Scomber scombrus collected from more polluted coastal areas
had higher frequencies of mitotic abnormalities and malformations than those
collected from less polluted regions (Longwell et al. 1992). Abnormalities were
associated with higher levels of PAHs, metals, and PCBs.
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6.3 Mollusks

Toxicity tests have been developed using embryo/larval stages of bivalves such as
hard clams, Mercenaria mercenaria and oysters, Crassostrea virginica so there is
a very large data base on these species, of which only a few examples will be
presented.

6.3.1 Metals

Mercury at 11 �g l�1 caused 50 % of developing oyster embryos to become
abnormal, and growth of larvae was retarded at 4 �g l�1 (Beiras and His 1994).
Interestingly, metamorphosis of the larvae was a much less sensitive response. Mus-
sel (Mytilus californianus) embryos were exposed to barium acetate and strontium
chloride (Spangenberg and Cherr 1996). The most sensitive stage was the gastrula,
while blastula and trochophore larvae were less sensitive. Ba showed activity at
levels comparable to what can be found in some environments (200 �g l�1).

Tributyltin reduced reproduction and development of the clam Scrobicularia
plana; major population reductions in Northern Europe were attributed the TBT-
induced reduction of recruitment (Ruiz et al. 1995). Effects are primarily on
reproduction rather than embryo development, however. Many bivalve species
suffered reproductive and developmental failure, which was attributed to widespread
use of TBT antifouling paints (Thain and Waldock 1986). Recovery followed the
ban on TBT.

Mai et al. (2012) evaluated embryotoxicity and genotoxicity of copper and
cadmium (Cu and Cd) occurring in Arcachon Bay (SW France) in Pacific oyster
(Crassostrea gigas) larvae and investigated the relationship between those two
endpoints. Embryotoxicity was measured by calculating the percentage of abnormal
D-shaped larvae and genotoxicity was evaluated with DNA strand breaks using
the comet assay. After 24 h exposure, significant increases of the percentage of
abnormal D-larvae and DNA strand breaks were observed from 0.1 �g l�1 for Cu
and 10 �g l�1 for Cd in comparison with controls. A strong positive relationship
between embryotoxicity and genotoxicity was recorded for Cu and Cd. This study
suggests that copper can induce abnormalities and DNA damage in oysters at
environmentally relevant concentrations.

In a rare study on cephalopods, Şen and Sunlu (2007) investigated effects of
Cd on embryo development of the squid Loligo vulgaris and found little effect
of concentrations up to 100 �g Cd l�1 on hatching success. At 1,000 �g Cd l�1,
however, eggs developed abnormally and eventually all died. Thus this species is
much more resistant than oysters.
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6.3.2 Organics

Pesticides

Unfertilized eggs and six developmental stages of M. edulis were exposed for 1 h
to the insecticide Sevin (carbaryl) and its hydrolytic product, 1-naphthol. The most
sensitive stage was just after fertilization at the time of appearance of the first polar
body, when the EC50 was 5.3 mg l�1. Toxicity of 1-naphthol for the first polar body
stage was comparable. Developmental effects included disjunction of blastomeres,
retardation of development, and unaligned and asynchronous cleavage (Armstrong
and Milleman 1974). Toxicity tests were carried out by Beiras and Bellas (2008)
on M. galloprovincialis embryos, and the toxicity of the surfactant sodium dodecyl
sulphate (SDS) and the biocides TBT, chlorpyrifos and lindane were evaluated using
embryo success as the end point. The EC10 (concentration to affect 10 %) and EC50

(50 % affected) values were 161 and 377 ng l�1 for TBT, 79 and 154 �g l�1 for
chlorpyrifos, 495 and 2,353 �g l�1 for SDS, 1.41 and 1.99 mg l�1 for lindane.
Toxicity thresholds were compared to environmental concentrations found in coastal
waters, and only TBT risk was unacceptably high.

Mai et al. (2012) evaluated embryotoxicity and genotoxicity of two pesticides,
metolachlor and irgarol, occurring in Arcachon Bay (SW France) in Pacific oyster
(Crassostrea gigas) larvae. Irgarol is a supposedly less toxic substitute for TBT in
antifouling paints. Embryotoxicity was measured by calculating the percentage of
abnormal D-shaped larvae and genotoxicity was evaluated with DNA strand breaks
using the comet assay. After 24 h exposure, significant increases of the percentage
of abnormal D-larvae and the DNA strand breaks were observed at 0.01 �g l�1 for
both irgarol and metolachlor in comparison with the controls. A strong positive re-
lationship between embryotoxicity and genotoxicity was recorded for metolachlor.
This study indicates that irgarol and metolachlor can induce abnormalities and DNA
damage in oysters at environmentally relevant concentrations. They are, however,
less toxic than TBT.

In contrast, glyphosate-related herbicides had very low toxicity to C. gigas
embryos (Mottier et al. 2013). During embryo-larval development, no mortali-
ties were recorded at any of the concentrations of glyphosate or its by-product
aminomethylphosphonic acid, whereas no embryos or D-shaped larvae survived
after exposure to Roundup® formulations REX or RAT at 10,000 �g l�1. No effects
on embryo-larval development were recorded up to 1,000 �g l�1, of any of the
chemicals tested.

Oil

Bellas et al. (2013) investigated possible changes in toxicity due to weathering of
petroleum. They evaluated the toxicity of the water-accommodated fraction (WAF)
obtained from a standard fuel oil following an environmentally realistic simulated
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weathering process for a period of 80 days, using sea urchin (Paracentrotus lividus)
and mussel (Mytilus galloprovincialis) embryos. Reminiscent of the fish embryo
studies following the Exxon Valdez, this research also showed an increase in WAF
toxicity with weathering. The EC50 after 80 days was eightfold lower than the EC50

at day 1, while the AH concentration slightly decreased. For mussel embryogenesis,
the median effective concentrations (EC50) and the 10 % effective concentrations
(EC10) were 82, 37, 41 and 12 % WAF dilution and 78, 29, 32 and 9 % WAF dilution
for 1, 7, 21 and 80 days. For sea urchin growth the calculated EC50 and EC10 values
decreased from 45 to 20 % WAF dilution, and from 15 to 2 % respectively. The
differences in toxicity between fresh and weathered fuels could not be explained by
total AH content, but to differences in particular PAHs present.

6.3.3 Contaminants of Emerging Concern

Effects of phthalate esters (PAEs) on abalone (Haliotis diversicolor) embryos
were investigated by exposing embryos to 0.05, 0.2, 2 and 10 �g ml�1 (Zhou
et al. 2011). PAEs at fairly high concentrations reduced hatchability, increased
malformations, and suppressed metamorphosis of abalone larvae (Fig. 6.9). The
ability of PAEs to affect osmoregulation, induce oxidative stress, damage embryo
envelope structure, and alter physiological homeostasis were considered responsible
for the embryotoxicity.

The toxicity of nanosized titanium dioxide (nTiO2) aggregates was evaluated
on abalone (H. diversicolor supertexta) embryos, as well as interactions of nTiO2

aggregates with TBT. No developmental effects of nTiO2 were observed at 2 mg l�1

but concentrations �10 mg l�1 caused hatching inhibition and malformations. The
presence of 2 mg l�1 nTiO2 increased the toxicity of TBT 20-fold compared with
TBT alone (Zhu et al. 2011). This enhancement of toxicity may be due to TBT
adsorption onto nTiO2 aggregates and internalization of aggregates, indicating that
nanoparticles may have important indirect impacts on aquatic organisms by altering
the toxicity of coexisting pollutants.

6.3.4 Hypoxia

Chaparro et al. (2009) investigated effects of external stress on conditions in the
brood chambers for the gastropod Crepipatella dilatata and the bivalve Ostrea
chilensis. Both species incubate their embryos in the pallial cavity for 4 weeks
before the young emerge as larvae (oyster) or juveniles (gastropod). Females were
stimulated to isolate the pallial cavity from the external environment by exposing
them to reduced salinity. Subsequent changes in salinity, dissolved oxygen, pH,
and ammonium within the pallial fluid were recorded. Oxygen availability for
both species dropped down to hypoxic levels (<1.5 mg O2 l�1) within 12 h and
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Fig. 6.9 Effects of phthalate esters on abalone embryos (M ˙ SD) * D significant difference from
controls. (a–c) Abnormal rates, hatching success rate and metamorphosis rate (Reprinted from
Zhou et al. 2011: 1118, courtesy Elsevier Publishing Co.)
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20 min, respectively and the pH of the intrapallial fluid dropped substantially,
suggesting a possible impact on shell formation for brooded veligers. Thus,
while the isolation initially protected incubated embryos from low salinity stress,
continued isolation resulted in increased hypoxic stress. Hypoxia can also be a risk
for deposited egg masses. As with fishes, aggregation of embryos in clutches that
lack internal circulation can increase the risk of hypoxia by limiting gas exchange.
Hypoxia can slow development, increase mortality, and reduce size at hatching.
The risks, however, can be reduced by association with photosynthetic organisms.
Fernandes and Podolsky (2011) examined development of Haminoea vesicula as
influenced by oviposition on eelgrass (Zostera marina) and found beneficial effects
on development, mediated by light conditions. Under intermediate and high light
levels, association with eelgrass accelerated development, while under dim light,
the presence of the macrophyte increased development time and reduced hatchling
shell size.

Hypoxic risks are increased by warming of the oceans. Impacts of a realistic
warming scenario on the physiology of early life stages of cephalopods (squid
Loligo vulgaris and cuttlefish Sepia officinalis) was investigated (Pimentel et al.
2012). During warming conditions the increase in oxygen consumption was much
steeper in squid (28-fold increase) than cuttlefish (11-fold increase). Elevated
catabolic activity and faster oxygen depletion within egg capsules intensified
metabolic suppression in late embryos. Squid late-stage embryos were more affected
by metabolic suppression than cuttlefish embryos. Combined effects of DO and
temperature affected development of the snail, Chorus giganteus. In normoxia
increasing water temperature from 12 to 18 ıC reduced the time to hatch (Cancino
et al. 2003). Hypoxia (50 % sat) slowed development and prevented both shell
secretion and hatching from the egg capsule. Experimental transfer at weekly
intervals, from normoxia to hypoxia and vice versa did not affect the number of
hatched larvae. The inability to produce a shell under hypoxia was considered likely
to be due to the combined effect of low external DO added to the intracapsular em-
bryonic oxygen demands, which lowers the O2 still further. Under such conditions,
a decrease in intracapsular pH is likely, and, if so, embryos might divert carbonates
away from shell calcification to balance pH changes.

6.3.5 Climate and Ocean Acidification

Early life stages of many marine invertebrates may be at particular risk from
effects of global change (Byrne 2011). Laboratory experiments have shown that
acidification impairs fertilization, cleavage, larval development, settlement and
reproductive stages of marine calcifiers, including echinoderms, bivalves, corals
and crustaceans (Figs. 6.10 and 6.11) (Kurihara 2008). The most vulnerable stages
differed among species. While larval sea urchins and bivalves seemed to be most
vulnerable, the settlement stage was the most severely affected in corals and shrimp.
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Fig. 6.10 Larval or polyp morphology of sea urchins Hemicentrotus pulcherrimus (a–c) and
Echinometra mathaei (d–f), bivalves Crassostrea gigas (g–i) and Mytilus galloprovincialis (j, k)
and the coral Acropora tenuis (l, m) incubated in control (a, d, g, j, l), 1,000 �atm pCO2 (b, e, h, m)
and 2,000 �atm pCO2 (c, f, i, k) (Reprinted from Kurihara 2008: 278, courtesy of Inter-Research)
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Fig. 6.11 Summary of CO2 effects at different life cycle stages of benthic calcifiers under
CO2 concentrations expected to occur in the future ocean (380–2,000 �atm pCO2/pH 8.2–7.3)
(Reprinted from Kurihara 2008: 281, courtesy of Inter-Research)

This can be explained since most echinoderms and mollusks begin shell synthesis
during larval stages, while corals start calcification at the settlement stage.

Ocean warming also can have negative effects on mollusk embryos. Recently-
spawned egg masses of the squid Loligo pealeii were collected and reared until
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hatching at present day and projected near future (C2ıC) temperatures. Under the
projected near-future warming, the conditions inside the eggs promoted metabolic
suppression, followed by premature hatching. Concomitantly, the less developed
hatchlings showed more malformations (Rosa et al. 2012). After hatching, the
metabolic burst associated with the transition from an embryo to a planktonic
larval stage increased linearly with temperature. However, the greater exposure to
environmental stress seemed to be compensated by physiological mechanisms that
reduce the negative effects. Heat shock proteins (HSP70/HSC70) and antioxidant
enzymes activities were stress responses to warming seen in hatchlings but not
embryos. Pimentel et al. (2012) compared metabolic physiology of early life stages
of squid Loligo vulgaris and cuttlefish Sepia officinalis. As described in the section
on hypoxia, in warmer conditions the increase in oxygen consumption was much
steeper in squid (28-fold increase) than cuttlefish (11-fold increase). Increased
metabolism depleted oxygen inside egg capsules, which intensified metabolic
suppression in late embryogenesis, especially in squid. Unlike benthic cuttlefish
newborns, planktonic squid paralarvae use pulsed jet locomotion that requires more
energy use. In warmer conditions, larvae will require more food so greater feeding
will be crucial.

6.4 Other Taxa

Sea urchin development is a commonly used bioassay for various contaminants,
so there is an extensive literature on this group, of which only a small fraction is
presented here.

6.4.1 Echinoderms

Metals

Embryogenesis and early larval growth were evaluated after incubation of fertilized
eggs of Paracentrotus lividis in seawater with metals (Fernandez and Beiras 2001).
For individual metals the ranking of toxicity was Hg > Cu > Pb > Cd, with EC50

values of 21.9, 66.8, 509 and 9,240 �g l�1, respectively. Lowest observed effect
concentrations (LOEC) for early larval growth were approximately three times
lower than the EC50 values for Hg, Cu and Pb, and more than two orders of
magnitude lower for Cd.

King and Riddle (2001) exposed embryos and larvae of the sea urchin Sterech-
inus neumayeri to Cu, Cd, Zn and Pb, and examined effects on development to
hatched blastulae after 6–8 days, and to 2-arm plutei after 20–23 days. For all
metals, the long-term test to the 2-arm pluteus stage was more sensitive than
the short-term test. Cu was the most toxic with EC50s of 11.4 and 1.4 �g l�1
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after 6–8 days and 20–23 days exposure respectively. Exposure to Cd >2 mg l�1

decreased the proportion of embryos developing normally to hatched blastulae
(EC50 D 6.9 mg l�1) and concentrations >0.2 mg l�1 decreased normal 2-arm
plutei. EC50 values for Zn were 2,230 and 326.8 �g l�1 for the short- and long-
term tests respectively. Pb had no effect up to 3.2 mg l�1. As the concentration of Cu
shown to inhibit development is similar to levels found at impacted sites in Antarctic
nearshore environments, this metal may have an impact on the development of
S. neumayeri.

Polluted water from an abandoned lead mine was evaluated using sea urchin
(Anthocidaris crassispina) bioassays. The water contained elevated Mn, Pb, Cd, Zn,
Cr, Ni, Fe, and Cu. The water inhibited, in a dose-dependent manner, the first cleav-
age and pluteus formation (Kobayashi and Okamura 2004). Some malformations,
such as a radialized pluteus, exo-gastrula, and “spaceship Apollo-like” embryos
were induced by undiluted test waters. Zinc alone also induced the same anomaly.
Zn in the test seawater was one of the metals that caused the anomalies, but not all
of the toxicity was caused by Zn. It was speculated that interactive effects of Zn
and possibly Mn and Ni, were occurring. Ni also can be teratogenic to sea urchin
embryos. Malformations were observed in Strongylocentrotus intermedius exposed
to 10 mg l�1 Ni for 30 h. The most critical stage for triggering effects was thought
to be the blastula (Ryu et al. 2012).

TBT at 3.5 �g l�1 delayed cleavage, and inhibited echinochrome synthesis in
embryonic Paracentrotus lividus (Ozretic et al. 1998). Perina et al. (2011) used
embryos of Lytechinus variegatus to compare effects of TBT and triphenyltin (TPT)
(banned antifouling agents), with Irgarol and Diuron (two new commonly used
booster biocides). Development was arrested at the gastrula and blastula stages
at 1.25 and 2.5 �g l�1 TBT, respectively, while development continued to the
pluteus stage in the same concentrations of TPT. Embryos reached the prism and
morula stages at 5 �g l�1 of TPT and TBT, respectively. Effects of Irgarol were
more severe than those of Diuron. The pluteus stage was reached at all tested
Diuron concentrations (125–8,000 �g l�1) while development was arrested at
blastula/gastrula stages at the highest Irgarol concentration (8,000 �g l�1), showing
that the newer antifouling agents were less toxic to developing echinoderms.
(However, they are very toxic to other organisms). The possibility of delayed
effects was not considered. Bellas et al. (2005) investigated effects of the new
antifouling compound zinc pyrithione (Zpt) on the embryonic development of sea
urchin (Paracentrotus lividus). The median effective concentration (EC50) was 7.7
nM. Toxic effects of Zpt on larval growth were detected at 0.5 nM. Predicted
environmental concentrations of Zpt in pleasure craft harbors are higher than the
predicted no effect concentrations, indicating that Zpt may pose a threat to this
species from exposure in the field.

Pesticides and CECs

The chlorinated pesticides methoxychlor, dieldrin, and lindane affect fertilization
and early development of sea urchin, Paracentrotus lividus. Pesando et al. (2004)
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Fig. 6.12 Effects of 100 �M dieldrin, lindane and MXC (methoxychlor) on early sea urchin
development. Eggs treated for 1 h with each pesticide, rinsed, fertilized and let to develop. (a)
Gastrula stage – all normal except for lindane-treated embryos where some were altered (b) Pluteus
stage – some dieldrin and lindane-treated were abnormal and all MXC treated eggs were abnormal
(Reprinted from Pesando et al. 2004: 233, courtesy Elsevier Publishing Co.)

observed that fertilization decreased when sperm were incubated for various periods
of time with 100 �M of dieldrin, methoxychlor (MXC), or lindane. Treatment
of eggs (1 h with 100 �M) did not prevent fertilization, but increased the rate
of polyspermy, delayed or blocked the first mitotic divisions, and altered early
embryonic development (Figs. 6.12 and 6.13). All these pesticides altered biochem-
ical pathways that control first mitotic divisions and early development, including
intracellular calcium homeostasis, mitosis promoting factor, and formation of the
mitotic spindle. Lindane was the most potent of the three pesticides. All these effects
were observed at relatively high concentrations.

Buono et al. (2012) examined effects of three current-use pesticides, pen-
tachlorophenol (PCP), azinphos-methyl (AZM), and chlorpyrifos, on Paracentrotus
lividus early development. PCP at high concentrations modified cytoskeleton
assembly, while low concentrations altered the deposition of the larval skeleton.
At 500 �g l�1 of the organophosphates developmental arrest was produced. The
sea urchin Psammechinus miliaris, unlike amphibians and fish, was not sensitive to
dioxin-like toxicity (Anselmo et al. 2011), but Triclosan >500 nM was acutely toxic.
Morphological abnormalities were induced at >50 nM hexabromocyclododecane
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Fig. 6.13 Effects of 100 �M dieldrin (a), MXC (methyoxychlor) (b) and lindane (c) on the
first division cycle. Eggs treated for 1 h with each pesticide, rinsed, fertilized and let to develop
(Reprinted from Pesando et al. 2004: 230, courtesy Elsevier Publishing Co.)
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(HBCD) and 1,000 nM tetrabromobisphenol A (TBBPA). Larval development was
delayed in levels >25 nM HBCD and 500 nM TBBPA, and heptadecafluorooctane
sulfonic acid (PFOS) exposure accelerated larval development.

Ocean Acidification/Climate Change

Developmental effects of near-future ocean acidification/hypercapnia were investi-
gated by Doo et al. (2012) in the sea urchin Centrostephanus rodgersii. Decreased
pH (�0.3 to �0.5 pH units) or increased pCO2 significantly reduced the percentage
of normal larvae. Larval growth was reduced, with smaller larvae in the pH
7.6/1,800 ppm treatments. The impact of acidification on development was similar
on days 3 and 5, indicating effects early in development. On day 3, increased abnor-
malities in the pH 7.6/1,600 ppm treatment were seen in aberrant prism stage larvae
and arrested/dead embryos. By day 5, echinoplutei in this treatment had smaller
arm rods. Observations of smaller larvae may have ecological significance because
larval success may be a potential bottleneck for survival. However, Foo et al. (2012)
examined genetic variation in tolerance of early development of this species to
future ocean conditions. Multiple crosses were used to quantify interactive effects of
warming (C2–4 ıC) and acidification (�0.3 to 0.5 pH units) across 27 family lines.
Acidification, but not temperature, decreased the percentage of cleaving embryos,
while temperature, but not acidification decreased the percentage of gastrulation.
Cleavage and gastrulation success in response to both stressors was strongly affected
by parental identity. Genotypes that did well at lower pH also did well in higher
temperatures, indicating the presence of heritable variation in thermal tolerance.
The presence of tolerant genotypes indicates the potential to adapt to warming and
acidification.

Byrne et al. (2013) examined effects of warming and acidification on de-
velopment to the non-calcifying larval stage in the sea star Patiriella regularis.
Fertilization was resilient to both stressors, as were cleavage stage embryos.
Warming increased developmental rate across all pHs. For blastulae, there was a
complex interaction between stressors, with C4 ıC/pH 7.6 lethal to many embryos.
A 4 ıC warming increased mortality by the gastrula stage by 13–25 % across
all pH levels. In conjunction with warming, pH 7.6 increased mortality by 25–
27 % across all temperatures. For embryos that reached the 3 day bipinnaria stage,
warming reduced the percentage of normal larvae and larval size, with no effect of
acidification. These results highlight the importance of considering both warming
and acidification. Bipinnaria reared to Day 28 (non-calcifying feeding larvae) were
also sensitive. pH 7.6 and 7.8 resulted in smaller larvae and increased mortality.
Since acidification reduced growth in larvae that do not calcify, the stunting is
influenced by changes in metabolism and teratogenic effects.
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6.4.2 Corals

Effects of the water-accommodated fraction (WAF) of a natural gas condensate on
the brooding coral Pocillopora damicornis were studied (Villaneuva et al. 2011) in
short-term (24 h) laboratory experiments. Exposure of gravid corals to >25 % WAF
at early and late embryogenesis, resulted in abortion and early release of larvae,
respectively, with more larvae expelled in corals treated with higher concentrations.
Aborted larvae during early embryogenesis were premature – small size, with low
metamorphic competency and low density of zooxanthellae.

Kipson et al. (2012) investigated responses of early life stages of a gorgonian
coral, Paramuricea clavata, to the highest summer temperature recorded in the
Mediterranean study area (25 ıC), which simulates the end-of-century predicted
warming (C3 ıC). The results showed a severe impact on the viability of P.
clavata embryos and larvae, resulting in reduced survivorship, abnormal embryonic
development and impaired metamorphosis. The effect was rapid for embryos (after
7 h), but slower for larvae. This suggests that thermal stress during embryonic
development may be the most critical factor for the viability of P. clavata.

6.4.3 Sea Turtles

Sea turtles come ashore to lay their eggs in the sand. Maulany et al. (2012)
investigated the influences of the thermal nest environment of olive ridley turtles
Lepidochelys olivacea on emergence success and quality of hatchlings of hatchery
nests in Alas Purwo National Park, East Java, Indonesia. Nest temperatures above
34 ıC for at least 3 consecutive days during incubation resulted in decreases in
emergence success and locomotor performance of hatchlings.

Other problems may arise in sea turtle embryos in a warming world because they
have temperature-dependent sex determination (TSD). The temperatures during
embryonic development determine the sex of the offspring. Males are generally
produced at lower incubation temperatures than females, with this change occurring
over a narrow range of temperatures, as little as 1–2 ıC. At cooler temperatures of
22.5 and 27 ıC mostly males are produced, and at warmer temperatures around
30 ıC only females are produced. Janzen (1994) found that annual offspring
sex ratio was highly correlated with mean July air temperature and even modest
increases in mean temperature may drastically skew the sex ratio. He was concerned
that populations with temperature-dependent sex determination may be unable to
evolve rapidly enough to counteract the consequences of rapid climate change.
Binkley et al. (1998) monitored nests of leatherback turtles in Costa Rica and
found that 18 monitored nests in which the temperature was 30o C during the
critical period, produced 100 % females. Since many nests reached this temperature,
estimated sex ratios for two breeding seasons were >90 % female. However, factors
such as increased rainfall and nest site selection may allow for the production of
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greater numbers of males (Houghton et al. 2007). Another risk for newly hatched
turtles is light pollution from buildings near the beaches where they hatch. Sea turtle
hatchlings normally navigate toward the sea by orienting away from the elevated,
dark silhouette of the landward horizon (Salmon et al. 1992). When there are
artificial bright lights on the beach, newly hatched turtles become disoriented and
navigate toward the artificial light source, never finding the sea.

6.4.4 Rotifers

The toxicity of dispersed oil from the Gulf of Mexico spill was tested in rotifers.
Rico-Martı́nez et al. (2013) tested the toxicity of oil from the Deep Water Horizon
spill, dispersant (Corexit®) and mixtures on five strains of rotifers (Brachionus
plicatilis), small planktonic animals with fast response time and sensitivity to
toxicants. The oil-dispersant mixture was much (>50x) more toxic than either the
oil or the dispersant alone in causing mortality in adults. Concentrations as low as
2.6 % of the mixture inhibited rotifer egg hatching by 50 %.

6.4.5 Tunicates

Matsushima et al. (2013) exposed embryos of the tunicate (a chordate), Ciona
intestinalis, to seawater containing bisphenol-a (BPA). Abnormalities increased
and the hatching rate decreased in a dose-dependent manner with exposures above
3 �M; swimming of larvae was affected after embryonic exposure to 1 �M BPA.
Effects were most severe in embryos exposed early in development – at the 2-cell
stage, within 7 h post-fertilization.

6.5 Discussion and Conclusions

It has been known for a long time that early life history stages are particularly vul-
nerable to environmental insults, and various toxicity tests are based on embryonic
exposures. However, many of these tests use hatching success as the metric, while,
as has been discussed here, many more subtle effects can be seen, evaluated and
quantified, giving much greater insight into effects of contaminants. Another issue,
not considered in toxicity tests, is the fact that some impacts of embryonic exposures
are not apparent until much later in life, and can only be seen in larvae or adult
animals.

A phenomenon seen across many taxa is fluctuating asymmetry (FA, differences
between the left and right side of an organism), which is a subtle response that is a
very sensitive indicator of stress. Allenbach (2011) reviewed papers over 30 years
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to evaluate the potential for FA to be an effective biomonitoring tool, and pointed
out areas in which FA studies can be improved, including determining baseline FA
levels in populations, increasing the number of laboratory studies to corroborate
field observations and conducting true replications to validate previous findings.
With improved experimental design and data analysis FA may become a powerful
tool to assess very subtle effects of environmental degradation.

A recently noted phenomenon that has been studied in mammals, is the transgen-
erational nature of some contaminant effects. Some exposures during embryological
development can induce a permanent epigenetic change in the germ line (sperm) that
then transmits epigenetic transgenerational inheritance of abnormalities without any
further exposure. The epigenetic transgenerational effects of a pesticide mixture
(permethrin and insect repellant DEET), a plastic mixture (bisphenol A and
phthalates), dioxin (TCDD) and a hydrocarbon mixture (jet fuel, JP8) were studied
by Manikkam et al. (2012). After transient exposure of pregnant rats during the
period of embryonic gonadal sex determination, the subsequent F1–F3 generations,
with no further exposure, exhibited changes in pubertal onset and gonadal function.
Such effects are likely to occur in marine animals as well, and are deserving of
study.
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Pimentel MS, Trübenbach K, Faleiro F, Boavida-Portugal J, Repolho T, Rosa R (2012) Impact
of ocean warming on the early ontogeny of cephalopods: a metabolic approach. Mar Biol
159:2051–2059

Prince R, Cooper KR (1995) Comparisons of the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin
on chemically impacted and nonimpacted subpopulations of Fundulus heteroclitus. I. TCDD
toxicity. Environ Toxicol Chem 14:579–588

Rayburn JR, Glas PS, Foss SS, Fisher WS (1996) Characterization of grass shrimp (Palaemonetes
pugio) embryo toxicity tests using the water soluble fraction of number 2 fuel oil. Mar Pollut
Bull 32:860–866

Rice SD, Thomas RE, Heintz RA, Wertheimer AC, Murphy ML, Carls MG, Short JW, Moles
A (2001) Impacts to pink salmon following the Exxon Valdez oil spill: persistence, toxicity,
sensitivity, and controversy. Rev Fish Sci 9:165–211

Rico-Martı́nez R, Snell TW, Shearer TL (2013) Synergistic toxicity of Macondo crude oil and
dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera). Environ
Pollut 173:5–10

Rosa R, Pimentel MS, Boavida-Portugal J, Teixeira T, Trübenbach K et al (2012) Ocean
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Chapter 7
Larval Development

Abstract After hatching, an organism leaves a relatively closed and protected
system for life in a larger environment. Many studies have been performed exposing
larval stages directly to contaminants or examining larvae after embryonic exposure.
Larvae may be more sensitive than embryonic stages of the same organism, since
embryos are protected by an outer membrane that may reduce contaminant uptake
(e.g. chorion) that is no longer present in larvae. Larvae also must usually swim and
obtain food. Most benthic invertebrates have planktonic larvae, which at a certain
stage of development settle to the bottom to metamorphose into a juvenile stage
in an appropriate habitat. Larval exposures to contaminants can lead to impaired
settlement in the benthic environment and/or to delayed physiological disturbances
as juveniles or adults.

Keywords Abnormalities • Delay • Development • Growth • Molting •
Morphology • Settlement • Stages

Most marine animals hatch out as small planktonic organisms with little resem-
blance to the adult form that they will eventually become. Planktonic larvae are
common even in taxa that are benthic as adults, such as decapod crustaceans,
echinoderms, corals, and most bivalve and gastropod mollusks. The larvae of
many species have some yolk, so they need not feed immediately, but most larvae
eventually do need to acquire food, (generally smaller phytoplankton) which is a
critical point in development. The transition to feeding requires the maturation of a
number of organ systems – not only the digestive system, but the nervous system
for detecting food and the musculo-skeletal system for moving to the food. There
are some species, however, such as deep sea king crabs, in which the larvae are
provided with enough yolk that they don’t have to feed during their entire larval
life (which may be as long as a year). For species that are benthic as adults,
planktonic larvae enable greater dispersal. However, being small and floating, they
are very vulnerable to predation and only a tiny percentage survive long enough
to undergo metamorphosis. Metamorphosis is another critical stage; larvae must
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find an appropriate substrate on which to metamorphose. Contaminants are yet
additional stresses on larvae, and the process of metamorphosis is very sensitive.
In addition, pollution is probably a greater threat at the time when larvae are
settling to metamorphose, as they are likely to encounter higher concentrations of
contaminants at the bottom than in the water column. Delayed metamorphosis is a
common response to environmental stressors.

7.1 Crustaceans

Since crustaceans go through a series of several larval stages (e.g., nauplius,
zoea, megalopa) that undergo a series of molts as they develop, exposures can
be performed on particular larval stages that may have differential sensitivity to
particular contaminants. In general, later stage larvae are more tolerant than earlier
ones. One very common response is a delay in molting from one stage to another
and in metamorphosis to the juvenile form.

Molting and its hormonal regulation will be discussed in greater detail in the next
chapter.

Deformities are also be produced by some contaminants. Delayed metamorpho-
sis can itself produce “carry-over” effects in juveniles. Simith et al. (2013) found that
delayed metamorphosis affected early juvenile survival and growth of mangrove
crabs, Ucides cordatus. After delayed metamorphosis, survival of juveniles was
11–31 % lower and intermolt periods were 1.5–4.2 days longer than in controls.
They also were smaller and had lower growth rates than juveniles derived from
non-delayed megalopae. Most effects were observed in all five crab stages studied,
indicating that the costs of delayed metamorphosis may persist throughout early
juvenile stages.

7.1.1 Metals

Stage II nauplii of the barnacle Balanus improvisus were exposed to Cu and Cd by
Lang et al. (1981). Cu in concentrations as low as 10 �g l�1 caused a dose related
delay in molting to stage III nauplii and these had deformed appendages and loss
of setae. Cd at 100 �g l�1 caused a molting delay but no abnormalities. Similar
retarding effects of Cu on the shrimp Metapenaeus ensis were reported by Wong
et al. 1995 (Fig. 7.1).

Rosenberg and Costlow (1976) exposed blue crab megalopae (the last larval
stage of crabs) to 50 and 150 �g l�1 Cd and found delayed development from
the megalopa to third crab stage. The effect was more pronounced at lower
salinities, those preferred by the species. These authors also found that mud
crab Rhithropanopeus harrisii zoea were more susceptible to Cd than the (older)
megalopae. Lopez Greco et al. (2001) found differential responses of different larval
stages of the pea crab Tunicotheres moseri to Cu (0.5–1,000 �g l�1). The zoea I
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of Metapenaeus ensis larvae
during a 10 day exposure to
copper. (Reprinted from
Wong et al. 1995: 417,
courtesy Elsevier Publishing
Co.)

stage was the most sensitive, and those that molted to zoea II in 100 �g l�1 had
abnormal setae causing reduced swimming. However, the abnormality could be
reversed if they were maintained in clean water for subsequent molts to megalopa.
Cu at 100 �g l�1 retarded the duration of zoea I stage but did not affect the duration
of zoea II, and accelerated the molt from megalopa to first crab.

Developmental rates of blue crab megalopae were prolonged by exposure to Hg
or to low salinity. While optimum time was 8 days, the period was extended to
10 days by salinity of 10 psu, and to 13 days at a salinity of 10 psu plus 20 �g l�1

Hg (McKenney and Costlow 1981). After metamorphosis, the first crab stage was
more resistant. Exposure of R. harrisii and Callinectes sapidus larvae to hexavalent
chromium slowed zoeal development from hatching to megalopa or to first crab
stage (Bookhout et al. 1984). Swimming speed of R. harrisii larvae was modified;
speed was elevated at low sublethal concentrations (7.2 mg l�1) but depressed at
higher concentrations (14 mg l�1). Mortimer and Miller (1994) reported Cr, Ni Zn,
and Cu effects on larvae of the crab Portunus pelagicus were inhibition of molting,
increase in duration of developmental stages, and reduced size. Relative toxicities
were Cu2C > Cd2C � Zn2C > Ni2C > Cr(V1).

7.1.2 Organics

Pesticides

Effects of the chlorinated hydrocarbon mirex on zoeae of the crabs Menippe
mercenaria and Rhithropanopeus harrisii included retardation and production of an
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extra (6th) zoeal stage (Bookhout and Costlow 1974). The duration of zoeal stages
and development to 2nd crab stage of R. harrisii increased significantly with an
increase in concentration of mirex from 0.01 to 10.0 �g l�1. The organophosphate
malathion at 0.02–0.08 mg l�1 also prolonged development time in these species
(Bookhout and Monroe 1977). In contrast, Key et al. (1998) found that 30.0 �g l�1

malathion reduced the number of larval instars in the grass shrimp, Palaemonetes
pugio.

Snyder and Mulder (2001) exposed lobster, Homarus americanus, larvae for 24 h
to heptachlor (333 �g l�1), a known endocrine disruptor, on different days of the 1st
larval instar and followed the larvae for effects on timing of ecdysis to 2nd stage,
molting hormone titers, and alterations in the levels of cytochrome P450 CYP45
and HSP70 proteins. Control larvae molted on Day 8–9 with 96 % survival. Larvae
treated with heptachlor for 24 h on Day 3 molted successfully (92 %) on Day 10,
a delay of 2 days. Molting days for other 24 h heptachlor treatments were: Day 1
treatment – molt on Day 11, 90 % success, Day 2 treatment – molt on Day 12, 85 %
success, and Day 4 treatment – molt on Day 13, 65 % success. Larvae treated on
days 5–6 never molted successfully, while those treated during the late premolt on
Day 7 molted on Day 8 with the same survival percentage as controls. The effects of
24 h heptachlor treatment were thus very different, depending on the day of exposure
and the sensitive period was days 4–6.

On days 1 or 2, heptachlor treatment caused a significant elevation in ecdysteroid
levels the day after treatment, which corresponded to a delay in the premolt
ecdysteroid peak prior to ecdysis. Larvae treated on day 3 had no immediate effect
on ecdysteroid levels, although the premolt peak was delayed. Those treated on days
4 or 5 had diminished ecdysteroid levels for several days. Day 4 larvae had a 4–5
day delay in the premolt peak, while day 5- or day 6-treated larvae never showed any
premolt ecdysteroid peak and all had died by day 16. CYP45 and HSP70 levels were
elevated for several days following exposure. Delays in molting were correlated
with alterations in ecdysteroid levels, suggesting that this pesticide may function as
an endocrine disruptor in crustaceans.

Osterberg et al. (2012) investigated toxicity of a number of pesticides to
megalopae of blue crabs. LC50 values ranged from 0.22 �g l�1 for megalopae
in lambda-cyhalothrin to 316,000 �g l�1 for juveniles exposed to Roundup®.
Treatment of intermolt megalopae with LC20 levels of Roundup® (5,500 �g l�1)
reduced the time to metamorphosis, but no effects resulted from treatment with the
four active ingredient insecticides (lambda-cyhalothrin, imidacloprid, aldicarb, and
acephate). Acephate, aldicarb, imidacloprid, and Roundup® increased mortality of
juveniles shortly after molting. The sensitivity of molting crabs to these pesticides
indicates that frequently molting animals are particularly vulnerable.

It is not surprising that insect growth regulators should affect crustacean larvae.
Exposure to the juvenile hormone mimic methoprene caused crabs in suboptimal
salinity to be unable to complete metamorphosis (Bookhout and Costlow 1974).
The time required for development was not altered, however, by sublethal con-
centrations. Methoprene exposure of grass shrimp (P. pugio) larvae (McKenney
and Matthews 1990) reduced completion of larval metamorphosis at 100 �g l�1.
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The first two larval stages and the final premetamorphic larval stage were more
sensitive than intermediate stages. The total number of larval stages was not
affected. Dimilin, a chitin synthesis inhibitor, was highly toxic to larvae of R.
harrisii, Sesarma reticulatum, and C. sapidus, causing morphological abnormalities
that became apparent at molt (Costlow 1979). Significant increases were seen in
swimming speed of Stage I, II and III R. harrisii zoeae, with 0.3 �g l�1 being
the lowest effective concentration. However, it did not delay larval development.
Walker et al. (2005) found that low levels of methoprene had adverse effects
on lobster larvae. It was toxic to stage II larvae at 1 �g l�1. Stage IV larvae
were more resistant, but had significant increases in molt frequency at 5 �g l�1.
Environmental concentrations of methoprene inhibited almost all protein synthesis
in the hepatopancreas.

Crustacean larvae are often more sensitive than embryos. Larval development
of P. pugio, was over two orders of magnitude more sensitive to disruption by
methoprene and fenoxycarb than was embryonic development (McKenney 2005).
Mud crab larvae R. harrisii, exhibited reduced metamorphic success at lower
concentrations of methoprene and pyriproxyfen than grass shrimp larvae, suggesting
that the more rigidly controlled metamorphic process in crabs is more sensitive to
endocrine disruptors than the more flexible metamorphic pattern in shrimp. The
final crab larva, the megalopa, was more sensitive to methoprene and fenoxycarb
than earlier zoeal stages.

PCBs

Roesejadi et al. (1976) tested PCBs (Aroclor 1254) on larvae of Palaemonetes
pugio. At concentrations above 3.2 �g l�1, there was significant mortality. At 3.2
and 1.0 �g l�1, there was not significant mortality but the duration of development
increased and metamorphosis was delayed.

Oil

Zoea larvae of R. harrisii were exposed to low concentrations of the water soluble
fraction (WSF) of jet fuel for the first 5 days of development. At some low levels
there were no negative effects but increased megalopal weight (Laughlin et al.
1981). This was an early reported example of hormesis, a phenomenon that is
now widely reported in diverse groups of organisms. The PAHs, phenanthrene and
naphthalene, were also tested at 100–200 �g l�1. Phenanthrene-exposed larvae had
a decreased development rate, while naphthalene-exposed larvae developed faster
than controls (Laughlin and Neff 1979).

Lee et al. (1970) studied effects of freshly prepared WSF of Number 2 fuel oil
and WSF exposed to air for 48 h on larval shrimp Lucifer faxoni. Based on survival
for 14 days, critical levels of toxicities of fresh oil were about 0.2 mg l�1, while in
weathered oil they were around 2 mg l�1. A similar trend was found in studies of
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feeding and activity – fresh extracts were more toxic and effects on feeding were
immediate and irreversible, while air-exposed WSF was less toxic, and the effect on
feeding was delayed and reversible. Alkyl benzenes, indans, and naphthalenes were
rapidly lost from the exposed solution, with negligible concentrations remaining
after 24 h. The data suggest that the higher toxicity of fresh WSF was due to volatile
aromatic hydrocarbons and there is reduced toxicity following evaporation. This
finding is the opposite of that found with fish embryos in Alaska following the oil
spill, discussed in the previous chapter. Respiration rates during an 8 h exposure
to fresh WSF rose with increasing concentrations up to 30 % of WSF, then fell
with further increases of WSF. This may have been hormesis, as later described by
Laughlin et al. (1981).

The water accommodated fraction of Number 2 fuel oil (0.1 mg l�1) was
tested on Cancer irroratus zoea larvae by Johns and Pechenik (1980). Along with
decreased survival to megalopae, larvae exhibited reduced food consumption and
growth, while metabolic costs of maintenance increased. Larvae of the coonstripe
shrimp (Pandalus hypsinotus) and king crab (Paralithodes camtschaticus) were
exposed to solutions of the water-soluble fraction (WSF) of Cook Inlet crude oil
in bioassays on intermolt stages I and II and the molt period from stage I to stage II
(Mecklenberg et al. 1977). Molting larvae were more sensitive than intermolt larvae,
and molting coonstripe shrimp larvae were more sensitive than molting king crab
larvae. When molting larvae were exposed to high concentrations of the WSF for as
little as 6 h, molting success was reduced by 10–30 % and some deaths occurred.
When larvae were exposed to these high concentrations for 24 h or longer, molting
declined 90–100 % and the larvae usually died. The lowest concentrations tested did
not inhibit molting, but many larvae died after molting.

7.1.3 Contaminants of Emerging Concern

Various hormones and known endocrine disruptors were tested for effects on larval
development in the copepod Acartia tonsa (Anderson et al. 2001). Tamoxifen (EC50
of 0.049 mg l�1), 17’-ethinylestradiol (EC50 of 0.088 mg l�1) and p-octylphenol
(EC50 of 0.013 mg l�1) were potent inhibitors of naupliar development. Other
estrogens, 17“-estradiol, estrone, and bisphenol A, had little effect. Testosterone and
progesterone did not inhibit development, but the antiandrogen flutamide (EC50 of
0.48 mg l�1) had inhibitory effects. Juvenile hormone III (EC50 of 0.102 mg l�1)
was a potent inhibitor, as would be expected, but 20-hydroxyecdysone had no effect.
Six of the 17 test compounds had LC50: EC50 ratios higher than 10, suggesting that
naupliar development, as a parameter, is very sensitive to hormonal disrupters.

Key et al. (2008) examined the effects of a polybrominated diphenyl ether
(flame retardant) compound, PBDE-47, on adult and larval stages of grass shrimp
(P. pugio). The 96-h LC50 was 23.60 �g l�1 for larvae and 78.07 �g l�1 for
adults. Four physiological biomarkers: glutathione (GSH), lipid peroxidation (LPx),
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cholesterol (CHL) and acetylcholinesterase (AChE) were assessed. GSH, LPx and
AChE were not affected at concentrations up to 50 �g l�1 for 96 h. CHL levels were
elevated at the lowest exposure concentrations tested, but significant differences
were found only in adults. Effects thus were observed only at levels well above those
reported in the environment, but these investigators did not examine development
rate, which has been shown to be very sensitive. Breitholtz and Wollenberger (2003)
examined effects of PBDE- 47, -99, and -100s on the larval development of the
particle-feeding copepod Nitocra spinipes. Larval development rate significantly
decreased in copepods exposed for 6 days to nominal concentrations of 0.013 mg l�1

BDE-47 and 0.03 mg l�1 BDE-99. Partitioning experiments showed that the major
fractions were associated with particulate material, showing that development and
reproduction in N. spinipes are sensitive to PBDEs and that ingestion of particle-
adsorbed PBDEs is most likely the major route of exposure.

Chiu et al. 2012 investigated responses of barnacle larvae Balanus amphitrite to
PBDEs, and demonstrated that chronic exposure to BDE-47 (up to 1,000 ng l�1)
throughout the entire larval stage did not affect settlement, development or growth,
despite documented bioaccumulation.

7.1.4 Hypoxia

The ability to regulate O2 uptake during declining DO co-occurred with metamor-
phosis from a planktonic to a benthic existence in the Norway lobster Nephrops
norvegicus. The onset of this regulation appears to be related to the development
of hypoxia-related ventilation by pleopods of exchange surfaces on the telson and
uropods and a shift of hemocyanin from low to high O2 affinity (Spicer and Eriksson
2003). This is experimental evidence for the use of uropods/telson by larval lobsters
as supplemental gas exchange surfaces. The change occurred with calcification of
the exoskeleton at metamorphosis, which restricts gas exchange over the general
body surface. Pre-exposure of larvae to reduced DO resulted in the “adult” pattern
of regulation being established before metamorphosis. Accelerating ontogeny of this
regulation was a result of a shift from a low to a high hemocyanin O2 affinity before
metamorphosis and an increase in the magnitude of the hyperventilatory response
in the planktonic larval stages. Thus, the development of respiratory regulation can
be influenced by ambient O2 levels.

7.1.5 Ocean Acidification/Climate Change

Pansch et al. (2012) investigated responses of the barnacle Amphibalanus improvi-
sus to simulated warming and ocean acidification (OA) during early development.
Nauplii and cyprids were exposed to 12, 20 and 27 ıC and pCO2 of 400 (current),
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1,250 and 3,250 �atm for 8 and 4 weeks, respectively. Warming affected larvae
more than OA. Increased temperatures favored survival and development of nauplii
but decreased survival of cyprids, the subsequent stage. Acidification had no effect
upon survival of nauplii but enhanced their development at low (12 ıC) and
high (27 ıC) temperatures. At intermediate temperature (20 ıC), nauplii were not
affected, even by 3,250 �atm pCO2. No treatments affected settlement success,
showing tolerance of A. improvisus larvae to OA predicted for the end of the century.
Effects of warming and acidification were studied on larvae of the spider crab Hyas
araneus from two locations, Svalbard (farther north) and Helgoland (Walther et al.
2010). Larvae were exposed at 3, 9 and 15 ıC to present day conditions (380 mg l�1

CO2) and to pCO2 conditions predicted for the near or medium-term future (710 and
3,000 mg l�1). Enhanced pCO2 levels extended the duration of larval development
and reduced larval growth and fitness, decreasing C/N ratio, a proxy of lipid content.
Effects were greatest in the zoeal stages of Svalbard larvae, and during the megalopa
stage of Helgoland larvae. The high sensitivity of megalopae from Svalbard to
warming and of those from Helgoland to enhanced CO2 suggests that this larval
stage is a sensitive bottleneck within the life cycle of H. araneus. Arnold et al.
(2009) investigated effects of acidified sea water (pCO2 approx. 1,200 mg l�1) on
early larval stages of the European lobster Homarus gammarus. Acidified water
did not significantly affect carapace length or development, but reduced carapace
mass during the final stage of larval development was seen along with reduced
mineral (calcium and magnesium) content of the carapace. These alterations were
considered the result of acidosis or hypercapnia interfering with normal homeostatic
function.

7.1.6 Polluted Environment

Béguer et al. (2008) reported on morphological deformities in a population of
Palaemon shrimp in the Gironde estuary (France). The most frequent abnormalities
were of the cephalothorax and rostrum, and to a lesser extent scaphocerites
and uropods; few cases of antenna or telson deformities were observed. Reports
of morphological abnormalities of crustaceans were found in the literature, but
previously described only isolated individuals, while in the Gironde estuary up to
40 % of individuals were affected. Authors considered the deformities to be due to
pollutants, such as metals and PCBs.

Fiddler crabs (Uca pugnax) from a highly industrialized site contaminated with
metals, PCBs, and PAHs near the Arthur Kill in Northern New Jersey (U.S.)
produced many eggs, but had proportionately fewer larvae return to settle than in
populations from a reference site (Bergey and Weis 2008). Larval life in highly
contaminated waterways appeared to be the bottleneck in reducing population
density at this site.
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7.2 Mollusks

The basic molluscan larva is a trochophore, which feeds with two bands of cilia
around its “equator” to sweep food into its mouth. The trochophore stage is often
followed by a veliger stage in which the prototroch, the band of cilia nearest the
apical tuft, develops into the velum (“veil”), a pair of cilia-bearing lobes with
which the larva swims. Eventually, larvae sink to the bottom and metamorphose
into the adult form. While most gastropods and bivalves undergo metamorphosis,
cephalopods have direct development and hatch as a small form of the adult.
There has been hardly any work on effects of toxicants on cephalopods, perhaps
because it is not easy to raise them in the laboratory. In contrast, oysters have
been used in standardized embryo-larval bioassays (His et al. 1997). In contrast
with bivalves, which spawn, releasing eggs and sperm into the water column,
gastropods (which are sometimes hermaphroditic) typically mate and have eggs
develop in a sheltered site before larvae are released into the water. Growth
retardation and abnormalities are common responses of larval mollusks to a variety
of toxicants.

7.2.1 Metals

Calabrese et al. (1977) studied a suite of metals (Cu, Zn, Cd) on Crassostrea
virginica and Mercenaria mercenaria larvae. The order of toxicity for oysters was
Hg > Ag > Cu > Ni > Zn, while that for clams was Hg > Cu > Ag > Zn > Ni. All
retarded shell growth at their LC50 concentrations, but Ni retarded shell growth at the
LC5 concentration of 1.1 mg l�1. Toxicities were significantly altered by changing
the salinity and temperature (MacInnes and Calabrese 1979). Fertilized eggs of the
abalone Haliotis rubra were exposed to a range of concentrations of Cd, Cu, Fe,
Pb, Hg, and Zn for 48 h after which survival and morphological abnormalities of
veliger larvae were recorded (Gorski and Nugegoda 2006). The effective median
concentrations affecting morphological development in decreasing order of toxicity
were: Cu (7 �g l�1), Hg (21 �g l�1), Zn (35 �g l�1), Fe (4,102 �g l�1), Cd
(4,515 �g l�1), and Pb (5,111 �g l�1). It is surprising that Cu was more toxic than
Hg, and that Zn was more toxic than Cd and Pb. Effects of Zn on development of
oyster (C. gigas) larvae were reported by Brereton et al. (1973). At 0.05 mg l�1

growth rates of 48-h veliger larvae were slower than controls but development was
normal. Increasing concentrations decreased growth and increased the incidence of
abnormality and mortality. At concentrations of 0.15 mg l�1 veligers were abnormal
and had no umbo development.

Exposure of Mytilus edulis to 8 �g l�1 Cu during the veliger larval or post-larval
stages had no significant effects on survivorship or shell growth (Hoare et al. 1995).
However, previous exposure to 8 �g l�1 Cu during embryonic stages significantly
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increased veliger growth rate and decreased spat survivorship in a mussels from
the Menai Strait, Wales, UK. In this population, Cu caused a significant increase
in embryo abnormalities. The embryo exposure effects outweighed the influence of
copper during later stages.

Effects of Hg on survival, growth and metamorphosis of Crassostrea gigas
larvae were examined (Beiras and His 1994). Growth, the most sensitive process,
was significantly retarded at 4 �g l�1. Metamorphosis was significantly reduced
when competent pediveligers were exposed to 64 �g l�1 for 48 h. Larval clams
Mercenaria mercenaria were exposed to dissolved Cu (LaBreche et al. 2002).
Clams exposed to 5 �g Cu l�1 and fed Isochrysis galbana had similar survival
to controls, but those in 14 and 29 �g Cu l�1 had increased mortality. Swimming
activity decreased exponentially. Dissolved Cu was taken up by I. galbana, and
ingested algae were a source of Cu toxicity for clams.

7.2.2 Organics

Wang et al. (2012) examined effects of PAHs (benzo[a]pyrene – BaP) and PCBs
(Aroclor 1254) on embryogenesis and larval development of the bivalve Meretrix
meretrix. Even at 1,600 �g l�1 of BaP and Aroclor1254 only minor reductions
in embryo development rates were produced. The most sensitive endpoint was
larval metamorphosis, with an EC50 value of 20 �g l�1 for BaP and 35 �g l�1

for Aroclor1254. These results indicate that BaP and Aroclor1254 are not highly
toxic to M. meretrix embryos and larvae.

The toxic effects of different types of gasoline formulations on Crassostrea
rhizophorae embryos and larvae were studied by Paixão et al. (2007). Oyster
embryos were exposed to water-soluble fractions (WSF) of different gasoline
formulations at a range of concentrations (0, 4.6, 10.0, 22.0, 46.0, and 100 %),
for 24 h. The EC50-24h (concentration causing abnormalities in 50 % of the
exposed embryos) was evaluated. The results showed gasoline formulations with
high concentrations of monoaromatic hydrocarbons to be the least toxic, while
formulations having higher content of aromatic hydrocarbons of 9 carbon atoms
and naphtha were the most harmful.

Ryan et al. (2001) examined hard clam (Mercenaria mercenaria) larvae exposed
to PCBs. Aroclor 1254, at concentrations near environmentally relevant levels.
A dose–response relationship was observed for larval development; at higher
concentrations, fewer larvae developed to the normal straight-hinge, or D-shaped
stage, relative to the controls, while the number of abnormally shaped larvae
increased.

Hanson et al. (1997) investigated effects of the detergent linear alkylbenzene
sulphonate (LAS) (0–39 mg l�1), which is found in nearshore areas receiving
wastewater from urban treatment plants. They examined effects on swimming,
grazing, and growth of mussel larvae, Mytilus edulis in the laboratory, and effects
on settling and population development in field mesocosms. In the laboratory the
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larvae had 50 % mortality at 3.8 mg LAS l�1 after 96 h. Swimming was affected
at 0.8 mg l�1 (i.e. smaller diameter of swimming tracks, reduced speed). Feeding
was reduced 50 % at 1.4 mg l�1, and specific growth rate was reduced by half at
0.82 mg l�1 in 9 days. In mesocosms, the larval population decreased dramatically
in 2 days at concentrations as low as 0.08 mg l�1, due to increased mortality and
to settling. Settling success was reduced at the same LAS concentration as that
which increased mortality. Treated larvae had delayed metamorphosis and reduced
shell growth. Authors felt that the larval ciliary apparatus, crucial for swimming,
orientation, settling behaviors, and feeding, was damaged by LAS. Data on grazing
and growth agreed with video observations of larvae. These effects occurred at LAS
levels found in some estuaries. This is an unusually comprehensive study with many
ecologically important endpoints evaluated as well as a proposed mechanism for the
effects. More studies like this should be done.

Contaminated sediments can also affect mollusk development. Geffard et al.
(2003) studied bioavailability and toxicity of sediment-associated PAHs to embryos
and larvae of C. gigas, exposed to whole sediment and elutriate. Percentages of ab-
normal larvae and contaminant accumulation were measured. Sediment-associated
PAHs were available, as indicated by accumulation in larvae and by abnormalities
induced during larval development. The critical body burden of various PAHs was
0.3 �g g�1, above which abnormalities were observed. The bioavailability of PAHs
is determined by their solubility; only the soluble fraction is accumulated by the
embryos.

Toxicity of glyphosate herbicides to embryo-larval development of oysters
(C. gigas) was studied by Mottier et al. (2013). Embryo-larval development was
quite insensitive to the pure chemical and commercial formulations, but commer-
cial formulations were considerably more toxic, with EC50 values of 1,133 and
1,675 �g l�1 for Roundup Express® (REX) and Roundup Allées et Terrasses®

(RAT).
Since both oysters and sea urchins are used in embryo-larval bioassays, the

respective sensitivity of oyster (Crassostrea gigas) and sea urchin (Paracentrotus
lividus) embryos and larvae to various pollutants were compared (His et al. 1999).
C. gigas embryos and larvae were more sensitive to copper and to the herbicide
Dinoterbe; the sensitivity of both species to TBT was practically the same, and P.
lividus was more sensitive to lead and mercury. Authors felt the oyster bioassay
is more suitable for estuarine waters, because of the broader salinity tolerance of
estuarine bivalve larvae than sea urchin larvae.

7.2.3 Contaminants of Emerging Concern

The effects of the endocrine disruptors nonylphenol (NP) and bisphenol A (BPA), on
embryonic and larval development of the abalone Haliotis diversicolor supertexta,
were investigated by Liu et al. (2011). The respective 96-h EC50 values based on
completion of metamorphosis were very high, 11.65 and 1.02 g l�1, suggesting very
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low sensitivity. However, when abalone were exposed for a longer time, or if the
benthic diatoms that are both a food source and a settlement substrate for abalone
had been exposed and accumulated the chemicals, then there was much greater
sensitivity at metamorphosis.

Crassostrea gigas was exposed to a range of concentrations of 4-nonylphenol
(0.1, 1, 10, 100, 1,000 and 10,000 �g/l) by Nice et al. (2000). Development to the
D-shape larval stage was monitored. This endocrine disruptor delayed development
to D-shape, produced abnormalities, and decreased survival rate. Thus oyster larvae
are much more sensitive than abalone larvae.

Chiu et al. (2012) investigated effects of the flame retardant PBDE on the
gastropod Crepidula onyx, and demonstrated that chronic exposure to BDE-47
(up to 1,000 ng l�1) throughout the entire larval stage did not affect settlement,
development, or growth despite bioaccumulation.

7.2.4 Hypoxia

Anoxia tolerance of M. edulis larvae, (median mortality time) increased from 14 h in
early prodissoconch larvae to 38 h in later veliconch larvae. Both embryos and early
larvae developed and grew normally at pO2 values �3.16 kPa (Wang and Widdows
1991). Feeding activity of early larval stages was maintained or enhanced under
hypoxia, but feeding and growth of later stages was depressed at all hypoxic levels
examined. Hypoxia had little influence on settlement, but larvae developed eye-spots
at a smaller size, indicating an uncoupling of growth and morphogenesis. These
responses were supported by calorimetric and respirometric measurements showing
that early larvae could maintain their energy metabolism at reduced O2, while later
stages suppressed heat dissipation in moderate hypoxia.

Effects of hypoxia (1.5 mg O2 l�1, 20 % sat) and anoxia (<0.07 mg O2 l�1,
<1 % sat) on oyster (Crassostrea virginica) larval settlement, juvenile growth, and
juvenile survival were studied. Settlement was reduced significantly in hypoxic
treatments, and almost no settlement took place in anoxia (Baker and Mann 1992).
After 96 h, 38 and 4 % of the larvae in hypoxic and anoxic treatments had settled,
while 79 % settled in control normoxic treatments. After settlement, juveniles in
hypoxia grew one third as much as those in normoxia, while those in anoxia did
not grow at all. In response to hypoxic treatments, post-settlement oysters with shell
heights of >469 �m maintained normal rates of ingestion but oysters with shell
heights of 436 �m reduced ingestion rates to 54–61 % of control rates (Baker and
Mann 1994). These oyster sizes differed in the extent of gill development, which
may have been responsible for the differential responses. In response to microxic
treatments, (<0.4 mg O2 l�1, <5 % sat) ingestion rates were 1–14 % of normoxic
rates and decreased with body size. Authors concluded that oysters have the ability
to feed at nearly all stages of settlement and metamorphosis, that hypoxia affects
the feeding of only the youngest post-settlement oysters, while microxic conditions
will affect all post-settlement oysters.
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The embryo/larval development of bay scallop (Argopecten irradians) was
inhibited at a DO of 1.38–3.64 mg l�1 at 23 ıC (Wang and Zhang 1995).
Tolerance to anoxia increased with larval sizes and was related to their oxygen debt
(accumulation of lactic acid).

Gastropod larvae may be more sensitive than the bivalves discussed above.
Effects of low DO on early development and swimming behavior of veliger
larvae of the snail, Nassarius festivus were studied (Chan et al. 2008). Embryonic
development was significantly delayed when DO was reduced to 3.0 mg O2 l�1.
Veligers that hatched at 4.5 mg O2 l�1 had smaller velar lobes, shell length and shell
width and lower swimming speeds than those in normoxia. The percentage that
developed into juveniles was reduced and metamorphosis was delayed at 4.5 mg
O2 l�1 while all larvae at 3.5 mg O2 l�1died before metamorphosis. Juveniles that
developed at 4.5 mg O2 l�1 were smaller than those at 6.0 mg O2 l�1, indicating
that DO levels well above hypoxic levels (2.8 mg O2 l�1) have significant impacts
on hatching and larval development in these gastropods.

7.2.5 Ocean Acidification/CO2

Acidification leads to thinner shells in mollusks, which can make them more
susceptible to predation. Kurihara et al. (2007) exposed eggs of the oyster, C. gigas
for 48 h to seawater at pH 7.4, and examined the larval morphology and shell
mineralization. Only 5 % of the low pH group developed into normal D-shaped
veligers compared with 68 % of the controls, although no difference was seen up to
the trochophore stage. Control D-shaped veligers had greater shell length and height
24–48 h after fertilization, while the few D-shaped veligers of the experimental
group had no shell growth during that period (Fig. 7.2). Calcification appeared to be
particularly affected by low pH and/or the low CaCO3 saturation state of high-CO2

seawater.
Mussel embryos (M. galloprovincialis) were incubated for 6 days in control and

high-CO2 (2,000 mg l�1, pH 7.4) seawater (Kurihara et al. 2008). While embryo-
genesis was unaffected, development at the trochophore stage was delayed when
the shell began to form. Veligers of the high-CO2 group showed morphological ab-
normalities, reduced height and length, consistent with the previous findings on the
oyster, although the severity of CO2 effects was less in the mussels, possibly due to
differing spawning seasons. In contrast, Gazeau et al. (2007) found that mussels, in
this case M. edulis, were more sensitive than oysters – calcification rates of M. edulis
and C. gigas declined linearly with increasing pCO2, but mussels declined more, and
projections were that mussel and oyster calcification may decrease by 25 and 10 %,
respectively, by the end of the century. Gazeau et al. (2010) found impacts on mussel
calcification with a decrease of �0.5 pH unit during the first 2 days of development.
Hatching rates were 24 % lower while D-veliger shells were 13 % smaller at pH 7.6
than at control pH of 8.1. Although larvae developed a shell at this pH, lower
hatching and growth could lead to a significant decrease in settlement success.



228 7 Larval Development

Time after fertilization (h)

S
iz

e 
(μ

m
)

*

* *

*

*
*

*

54 120

Control
Co2

144 120 14454
60

70

80

90

60

50

70

80

90
HeightLength

100

110

120

130
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Hettinger et al. (2012) investigated consequences of decreased pH for early
stages of the Olympia oyster (Ostrea lurida). Oysters were raised through their
larval period and into early juvenile stages at control pH (8.0) as well as 7.9 and 7.8.
Larvae at pH 7.8 had a 15 % decrease in shell growth rate, and a 7 % decrease in
shell area at settlement. Impacts were greater 1 week after settlement; juveniles that
had been larvae in low pH had a 41 % decrease in shell growth rate. Importantly, this
was seen in juveniles kept at control pH as well as those that were still in reduced pH,
indicating a strong delayed effect from the larval stage. Impacts of early exposure to
low pH persisted for at least 1.5 months after juveniles were transferred to control
pH. Delayed effects appear to be very important and are overlooked in short-term
larval tests that end at metamorphosis.

Endangered northern abalone (Haliotis kamtschatkana) larvae were exposed to
various levels of CO2: 400 (ambient), 800, and 1,800 mg l�1 (Crim et al. 2011).
Larval survival decreased by 40 % in elevated CO2, but the percent of surviving
larvae to metamorphose was unaffected. Shell abnormalities occurred in 40 % of
the larvae at 800 mg l�1 CO2 and almost all larvae at 1,800 mg l�1 had abnormal
or no shells. Zippay and Hoffman (2010) examined the effect of pH on larvae of
the red abalone, Haliotis rufescens. Low pH (7.87) decreased thermal tolerance of
pretorsion and late veliger stages, but not post-torsion and premetamorphic veligers.
However, the expression pattern of shell formation genes was not affected in any of
the stages.

Since acidification will be accompanied by increasing temperature, Talmadge
and Gobler (2011) studied responses of larvae and juveniles of M. mercenaria,
C. virginica, and Argopecten irradians to temperatures (24 and 28 ıC) and
CO2 levels (�250, 390, and 750 mg l�1). Increased temperature and CO2 each
depressed survival, development, growth, and lipid synthesis of M. mercenaria
and A. irradians larvae and effects were additive (Figs. 7.3 and 7.4). Juvenile
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M. mercenaria and A. irradians were negatively affected by higher temperatures
while C. virginica juveniles were not. C. virginica and A. irradians juveniles were
negatively affected by higher CO2, while M. mercenaria was not. Larvae were more
vulnerable to elevated CO2 than juveniles. Increases in temperature and CO2 will
have combined negative consequences for coastal bivalves.

Impacts have already been seen on oyster larvae. Researchers studied oysters
at the Whiskey Creek Hatchery in Oregon after oyster production failures, ex-
amining the coastal waters in which the shellfish were raised. For several years
larval production collapsed by up to 80 % at shellfish farms. Production failures
were linked to CO2 levels in the water in which the oysters spawned and spent
their early lives when they develop into larvae and build their initial shells.
Barton et al. (2012) linked the collapse of oyster seed production to increased
CO2 from seasonal upwelling of low pH water, which inhibited larvae from
developing shells and growing at a rate that would make commercial production
viable.

However, adaptation may be possible. Parker et al. (2012) found that while
elevated CO2 reduced growth, developmental rate and survival of oyster Sacostrea
glomerata larvae, exposing adults to elevated CO2 during reproductive conditioning
had positive effects. Larvae spawned from adults at elevated CO2 were larger,
developed faster, and had similar survival as larvae from adults at ambient CO2.
Furthermore, they were more resilient to elevated CO2 than wild larvae, suggesting
that they may be able to acclimate or adapt to elevated CO2.

7.2.6 Polluted Environments

Money et al. (2011) analyzed responses of C. gigas larvae exposed to water from
the industrialized Tamar estuary (England). A high level of toxicity (up to 100 %
abnormal development) was seen at two stations, particularly during periods of
the tidal cycle when the influence of more pristine coastal water was lowest.
Competitive ligand-exchange Cu titrations showed that natural organic ligands
reduced the free cupric ion concentration to levels that were unlikely to have been
the sole cause of the observed toxicity. It is probable that combined effects of Cu
and other contaminants contributed to the response.

Effects of contaminants along a well-defined North Sea pollution gradient
were assessed by McFadzen (1992) using veliger larvae of C. gigas and the
Manila clam Tapes philippinarum. The results demonstrated that larval survival
steadily improved further offshore towards the Dogger Bank, with higher mortalities
occurring in the surface microlayer and sediment elutriate samples than in the
subsurface bulk waters. Clam larvae were more sensitive to contaminants than the
younger oyster larvae.
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7.3 Fishes

Fish larvae tend not to be quite as different from adult forms as larvae of
invertebrates. As they grow, they gradually change shape, instead of having a
specific metamorphosis. Exceptions to this are in the flatfish, whose planktonic
larvae resemble those of other fishes, but which undergo a major metamorphosis
in which one eye (and accompanying nerves) migrate from one side of the head
to join the other eye, as the fish settles to the bottom to lie on one side. Eels also
undergo a clear metamorphosis. Large numbers of bioassays of contaminants have
been done using fish larvae, of which most have been on freshwater species such as
zebrafish, fathead minnows, and medaka.

Based on experimental data with sole (Solea solea), a bioaccumulation model
was adapted to calculate concentrations of persistent organic pollutants in tissues
of developing fish (Foekema et al. 2012). Tissue concentrations were predicted to
peak at the time when larvae become free-feeding, when lipid reserves are depleted.
This may explain delayed effects on larvae that have been observed after egg and
embryo exposures. Effects of embryonic exposures on larval behavior are discussed
Chap. 9.

7.3.1 Metals

Larvae of garpike (Belone belone) exhibited vertebral flexures, reduced activity
and swimming ability after incubation in 0.5 mg l�1 Cd (Dethlefsen et al. 1975).
Toxicity of Cd, Cr (VI) and Cu to Cyprinodon variegatus larvae was evaluated in
terms of survival and growth over 7 days (Hutchinson et al. 1994). Concentrations
affecting survival and growth after 7 days were 0.75 mg Cd l�1, 24.0 mg Cr6C l�1

and 0.16 mg Cu l�1. Effects of 2 h pulse-exposure of Cd or Zn on early life stages of
Australian crimson spotted rainbow fish (Melanotaenia fluviatilis) were investigated
by Williams and Holdway (2000). For Cd and Zn, 9–10-day-old larvae were more
tolerant than younger ages and Cd was more toxic than Zn. Pulse-exposed metals
(3.3 mg l�1 of cadmium and 33.3 mg l�1 of zinc on 3 h old embryos) caused
reduced hatch, spinal deformities, and toxicity in larvae. Continuous exposure LC50
values for 9–10-day-old larvae were 0.01 and 0.27 mg l�1 for cadmium and zinc,
respectively. Zn at 0.1, 0.5 and 2.0 mg l�1 produced deformations of the jaw, head,
optic capsules, otic capsules and vertebral column of yolk-sac larvae of herring
Clupea harengus (Somasundaram et al. 1984). Authors suggested that larvae with
moderate deformations, induced by lower concentrations, may survive and continue
development, although while this is possible in a laboratory, it seems relatively
unlikely to occur in the field where there are predators. However, some adult fish
with mild deformities have been collected from field sites.

LC50 values for larvae of red sea bream Pagrus major were higher than those
of embryos, indicating that embryos were more sensitive to Cd than larvae (Cao

http://dx.doi.org/10.1007/978-94-007-6949-6_9
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et al. 2009). Cd concentrations of �0.8 mg l�1 led to low hatchability, delay in
time to hatch, and high mortality, morphological abnormality, and reduced length
in the embryos and larvae. Heart beat and yolk absorption of the larvae were
significantly inhibited at some high concentrations but they were not as sensitive
as other endpoints. Anderson et al. (1991) compared the relative sensitivity of
topsmelt (Atherinops affinis) sperm, embryos, and larvae to copper chloride. The
EC50 from 48-h fertilization experiments was 109 �g l�1. The EC50 from 12-
day embryo development tests was 142 �g l�1, and the mean LC50 from 96-h
larval mortality tests was 238 �g l�1. Authors concluded that sperm were more
sensitive than embryos, and embryos were more sensitive than larvae. However, the
larval test was lethality, while the others had sublethal endpoints. It would have
been a more valid comparison if sublethal endpoints had been evaluated for larvae
as well.

7.3.2 Organics

Pesticides and PCBs

Holdway et al. (1994) studied effects of pulse exposure with two synthetic
pyrethroids, fenvalerate and esfenvalerate, on survival of larval Australian crimson-
spotted rainbow fish (Melanotaenia fluviatilis). Both pesticides were highly toxic
with 1-h esfenvalerate pulse-exposure concentrations as low as 0.32 �g l�1, and
1-min fenvalerate pulse-exposure concentrations of 4.5 �g l�1, causing significant
mortality. There was a complex relationship between pesticide concentration and
time to mortality. At low concentrations of pesticide, most mortality occurred
within the first 24 h, while at higher concentrations, mortality continued for 96 h
after exposure. The authors suggested that mortality within the first 24 h was due to
direct physiological effects on the larvae, while subsequent mortality was primarily
due to starvation of larvae unable to recover from the initial insult.

Parental exposure to DDT (2.0 or 10.0 �g per 100 g fish per day in the diet for
1 month) affected behavior of Atlantic croaker, Micropogonias undulatus, larvae
(Faulk et al. 1999). The proportion of larvae responding to a vibratory stimulus,
burst and routine swimming speeds, active duration, and pause duration were
affected by parental exposure. Burst speeds in response to the visual stimulus were
lower than controls. These changes may decrease survival by increasing predation
rates and/or decreasing feeding rates. Additional studies on larval behavior are
discussed in Chap. 9.

Monosson et al. (1994) gave adult white perch (Morone americana) injections of
3,30,4,40-tetrachlorobiphenyl (TCB) at one of three doses (0.2–5.0 mg TCB/kg body
weight) approx. 3 months prior to the spawning season and at 3-week intervals.
Fewer females receiving the highest dose matured. Those that did mature had a
GSI 50 % that of controls. Levels of estradiol-17“, testosterone, and VTG were not
altered. By 7 dph survival of larvae from females exposed to 1.0 and 5.0 mg/kg TCB

http://dx.doi.org/10.1007/978-94-007-6949-6_9
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was reduced compared to controls (0, 1 and 54 %, respectively). Thus decreased
larval survival was seen at parental doses less than those that decrease ovarian
growth, oocyte maturation, or circulating sex steroid hormone and VTG levels in
adults.

Olufsen and Arukwe (2011) studied effects of PCB-77 (3,30,4,40-tetrachlorobiph-
enyl) on vascular and bone development of salmon (Salmo salar). PCB-77 (1 or
10 ng l�1) produced concentration-dependent increases in the rate of bone tissue
formation, dependent on larval age. Evidence of vascular system disruption by the
PCB was observed as cardiac edema, anemia and arrhythmia. Foekema et al. (2008)
exposed early life stages of sole (Solea solea) to dioxin-like PCB 126 until 4, 8,
10 and 15 days post fertilization (dpf), then raised them in clean seawater. The
LC50s at the start of the free-feeding stage (12 dpf) was 39–83 ng PCB 126 l�1

depending on exposure duration. After fish had completed metamorphosis, the LC50
values were between 1.7 and 3.7 ng PCB 126 l�1 depending on exposure duration.
Thus exposure of embryos for only 4 days caused adverse effects during a critical
developmental phase 2 weeks later. This study indicates that fish tests that are
terminated shortly after the fish become free-feeding underestimate the toxicity of
compounds such as PCBs.

Larval and metamorphosing summer flounder (Paralichthys dentatus) were
exposed to the dioxin-like PCB 126, to document effects on metamorphic de-
velopment (Soffientino et al. 2010). Median lethal doses ranged between 30 and
220 ng g�1 wet mass, indicating that this species is very sensitive. Dose-dependent
induction of cytochrome P-4501A (CYP1A) at 4 days post-exposure was observed
in liver, stomach, intestine, and kidney of metamorphosing larvae. A single sublethal
dose (15 ng g�1) delayed metamorphic progress as determined by the degree of
eye migration, and resulted in abnormally high levels of cell proliferation and
abnormal gastric gland morphology in late metamorphic stages. These results
suggest that larval and metamorphic stages of summer flounder are vulnerable to
the effects of dioxin-like compounds, including lethality, developmental delay, and
malformations.

McCarthy et al. (2003) examined effects of PCBs (Aroclor 1254) on Atlantic
croaker larvae. Adult fish were given a dietary administration of 0 (control) or
0.4 (dosed) mg Aroclor 1254 kg�1 fish day�1 for 2 weeks during the final stages
of gonadal recrudescence. Fertilized eggs collected from control and dosed adults
immediately after spawning contained 0 and 0.66 �g Aroclor 1254 g�1 egg,
respectively. Growth rate of dosed larvae was significantly lower than that of control
larvae, with dosed larvae showing a 4 day delay in attaining a given size. Routine
swimming speed and activity were similar, but there was a difference in response
to stimulus. While the percentage of control larvae responding to the stimulus and
their burst speeds increased with age, dosed larvae had no such increase. Further
studies on larval behavior are described in Chap. 9.

Couillard et al. (2008) investigated the interaction between PCBs and pesticides.
The effect of diazinon was evaluated in Fundulus heteroclitus larvae produced
from eggs differentially treated with PCB126. A few hours after fertilization, eggs

http://dx.doi.org/10.1007/978-94-007-6949-6_9
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Fig. 7.5 Size distribution of standard length (SL) head length (HL) and eye diameter (ED) of
herring larvae in control and oil exposure groups after 8 weeks recovery in clean sea water
(Reprinted from Ingvarsdottir et al. 2012: 73, courtesy of Elsevier Publishing Co.)

were treated topically with PCB126 (100 pg ul�1) in dimethyl sulfoxide or not
treated. Newly hatched larvae were exposed to diazinon (125–12,900 ng l�1) or
seawater alone. Diazinon inhibited cholinesterase activity at 361 ng l�1. Body
length was inversely related to diazinon concentration. Embryonic treatment with
PCB126 also caused a reduction in body length. The effects of PCB126 and
diazinon on body length are cumulative because no significant interactions were
observed.

Oil and Dispersants

Atlantic herring (C. harengus) larvae were exposed to dispersed Arctic crude oil at
0.129, 0.373, 0.496, 2.486 and 6.019 �g l�1 total PAH, and control seawater for
12 days, then transferred to clean water for 8 weeks (Ingvarsdóttir et al. 2012).
Higher mortality was found in all oil concentrations after 12 days. There was
no difference in mortality during the recovery phase, but after recovery in clean
seawater, the oil-exposed larvae exhibited delayed effects including morphological
deformities and reduced growth (Fig. 7.5).

Atlantic cod (Gadus morhua) larvae were exposed to five concentrations of either
artificially weathered dispersed oil containing oil droplets and water-soluble fraction
(WSF) or the filtered dispersions containing only the WSF (Olvsvik et al. 2011). The
larvae were exposed for 4 days then subjected to transcriptional analysis at 13 days
post hatching. The most affected genes were those related to drug metabolism,
endocrine system development and function, and lipid metabolism. Oil exposure
also increased expression of genes involved in bone resorption, and decreased
expression of genes related to bone formation. The altered gene transcription was
dominated by the WSF; oil droplets played a smaller role.



236 7 Larval Development

Kawaguchi et al. (2011) exposed eggs and larvae of Japanese flounder
(Paralichthys olivaceus) to heavy oil and investigated neural disorders. In larvae
exposed to 8.75 mg l�1, the facial and lateral line nerves partially entered into the
incorrect region. Exposed larvae also had abnormal expression of Sema3A, an axon
guidance molecule, suggesting that the abnormal expression of Sema3A caused
disruption of the facial nerve scaffolding.

Newly hatched mummichog (Fundulus heteroclitus) were exposed to crude oil
or water-accommodated fraction (WAF) of dispersed crude oil to evaluate if the
dispersant-induced changes in dissolved PAH affected larval survival or body length
(Couillard et al. 2005). Weathered Mesa light crude oil (0.05–1 g l�1) with or
without Corexit 9500® was used. At 0.2 g l�1, the addition of dispersant caused
a two- and fivefold increase in concentrations of total PAH and high-molecular-
weight PAH with three or more benzene rings. The highest mortality rates (89 %)
were in larvae exposed to dispersed oil. Reduced body length correlated with
increased levels of PAH. Thus, dispersion increased total PAH, the proportion of
high molecular weight PAH, and overall toxicity.

Contaminants of Emerging Concern

Turbot embryos (Psetta maxima) were exposed to BDE-47 and BDE-99 for
6 days. Both compounds caused lethal toxicity as well as non-lethal malformations
during embryo development (Mhadhbi et al. 2012). BDE-47 was more toxic than
BDE-99 (LC50 values for embryos and larvae, respectively, BDE-47: 27.35 and
14.13 �g l�1; BDE-99: 38.28 and 29.64 �g l�1). PBDEs were teratogenic at
concentrations higher than 8.14 and 16.12 �g l�1 for BDE-47 and -99 respectively,
leading developmental delays and death, as well as malformations and mortality
of larvae. Based on environmental concentrations of PBDEs in various aquatic
ecosystems, authors concluded that waterborne BDE-47 and BDE-99 pose little
risk of acute toxicity to marine fish. However, no sublethal effects on larvae were
investigated. More subtle effects of PFOS and PFOA were studied in salmon (S.
salar) larvae (Arukwe et al. 2013) exposed to100 �g l�1 from fertilization for
52 days. PFOS and PFOA body burden increased during the exposure period and af-
fected metabolism and morphometry. PFOA produced increases in heart-, thymus-,
liver- and kidney somatic indexes (HSI, TSI, LSI and KSI). PFOA and PFOS
decreased whole body dehydroepiandrosterone (DHEA), estrone and testosterone
at sampling day 21 and increased cortisol and cholesterol at the end of recovery
period (day 56). They observed changes in FA (fatty acid) composition that involved
increases in FA methyl esters (FAMEs), mono- and poly-unsaturated FA (MUFA
and PUFA) and a decrease in n-3/n-6 PUFA ratio by both PFOA and PFOS. Authors
concluded that changes in hormonal and FA profiles may represent cellular and/or
physiological adaptation to continuous exposure by increasing membrane fluidity,
and/or overt developmental effects.
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7.3.3 Hypoxia

Silverside (Menidia beryllina) larvae avoid hypoxic water. When larvae sink from an
upper normoxic layer into a lower hypoxic layer, they display an avoidance reaction
consisting of a burst of fast swimming that ends in an upward direction leading the
larva out of the hypoxic region. Each swimming burst lasts for approximately 2–3 s,
with a maximum speed of approximately 25 mm s�1 (Weltzien et al. 1999). The
reaction was seen in larvae from 6 to 64 h post hatching and was correlated with the
DO but not with N2 concentration or salinity. The avoidance response was observed
at DO levels from 4.7 to 0.8 mg O2 l�1.

Tolerance to hypoxic stress and oxygen consumption was studied in the red sea
bream, Pagrus major, from its early life stage until 42 days post-hatch (Ishibashi
et al. 2005). Lethal DO levels and mass-specific metabolic rates increased with
larval growth from 2.6 to 5 mm total length (TL), then levels remained high and
decreased until about 9.5 mm TL, around the flexion and post flexion stages.
In juveniles, lethal DO levels and mass-specific metabolic rates decreased as TL
increased. The relationship between lethal DO levels and mass-specific metabolic
rates indicated that metabolic rates were highest during metamorphosis, when
hypoxia tolerance was lowest. It was presumed that the increasing metabolic rate at
metamorphosis decreased the metabolic scope of activity. Similar results were found
in bonefish larvae (Pfeiler 2001). Survival times of metamorphosing leptocephali of
the bonefish Albula sp. placed in hypoxic sea water (0.68 mg O2 l�1) decreased from
15 to 5 min over the 10 day metamorphic period. Thus they became more sensitive
to low DO as they went through metamorphosis. Increased sensitivity to hypoxia
again coincided with increased oxygen demand at metamorphosis.

Larvae of the air-breathing teleost Monopterus are frequently exposed to periods
of hypoxia, which they survive because they have capillary networks in the skin,
a small blood-water barrier, pectoral fins that generate a respiratory water current
originating from the oxygen-rich surface layer, and a principal flow of blood that
runs countercurrent to the water stream. The larva as a whole can be considered
functionally comparable to a fish gill lamella (Liem 1981).

7.3.4 Ocean Acidification

Atlantic cod (Gadus morhua) larvae were kept at three levels of pCO2: present day
(380 mg l�1), end of next century (about 1,800 mg l�1) and an extreme, coastal
upwelling scenario where winds bring CO2-rich deep water to the surface (about
4,200 mg l�1), in a mesocosm experiment (Frommel et al. 2012). Elevated pCO2

caused tissue damage in many internal organs, including liver, pancreas, kidney,
eye, and gut about 1 month after hatching.
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Clownfish Amphiprion percula larvae were reared from hatching to settlement
at three pH levels (control pH 8.15; intermediate pH 7.8 and extreme: pH 7.6) to
test possible effects of ocean acidification on otolith development (Munday et al.
2011a). There was no effect of pH 7.8 on otolith size, shape, chemistry, or symmetry
between left and right. However, at pH 7.6 otolith area and maximum length were
larger than controls. These results support the hypothesis that pH regulation may
cause increased precipitation of CaCO3 in otoliths in elevated CO2, as suggested
by an earlier study, and imply that otolith development is robust to the changes in
pH. Newly hatched spiny damselfish Acanthochromis polyacanthus were reared for
3 weeks at 4 different levels of pCO2 from concentrations already experienced in
near-reef waters (450 �atm CO2) to those predicted to occur over the next 50–100
years (600, 725, 850 �atm CO2). Elevated pCO2 had no effect on growth, survival
or size of skeletal elements (Munday et al. 2011b). Also, otolith size, shape and
symmetry between left and right side of the body were not affected by elevated
pCO2, despite the fact that they are composed of aragonite These results suggest
that this species is tolerant to increases in environmental CO2.

7.3.5 Polluted Environments

The sea surface is an important habitat for eggs and larvae of many fishes but it
also concentrates contaminants. The microlayer generally has higher levels than the
water column of anthropogenic substances which frequently occur at concentrations
102 � 104 greater than these in the water column. These include plastics, tar
lumps, PAHs, hydrocarbons, chlorinated hydrocarbons, and metals, such as, lead,
copper, zinc, and nickel. Studies were conducted to determine the toxicity of
the sea surface of Puget Sound to planktonic larval stages (Hardy et al. 1987).
Three contaminated urban bays and a rural reference bay were studied. Sand sole
(Psettichthys melanostictus) embryos and larvae of anchovies and kelp bass were
exposed in the field and lab to the sea-surface microlayer. Laboratory exposure
to surface microlayer from urban bays increased the incidence of chromosomal
aberrations and reduced hatching of sole. In situ hatching success of sole eggs was
reduced to 50 % in urban bays compared to reference sites. Toxicity was correlated
with concentrations of PAHs and metals in the sea-surface microlayer, and was
similar in sole, anchovy, and kelp bass. Cross et al. (1987) similarly correlated
contaminants in the microlayer in coastal waters off California with toxic effects
on kelp bass (Paralabrax clathratus) eggs and larvae, which were highest in Los
Angeles harbor (with high metals: 17 �g l�1 Ag, 0.26 �g l�1 Cd, 32 �g l�1 Cr,
101 �g l�1 Cu, 100 �g l�1 Pb, and 457 �g l�1 Zn; high chlorinated organics such
as 30,708 ng l�1 Aroclor 1242, and 8,141 ng l�1 Aroclor 1254; and high PAHs, such
as 1,260 ng l�1 phenanthrene, and 2,178 ng l�1 benz(a)pyrene). Microlayer samples
from farther offshore had lower contaminants and lower toxicity.

There have been studies investigating skeletal abnormalities in adult field-
collected fish. These likely originated when the fish were larvae, so are discussed
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in this chapter. These are relatively subtle abnormalities that allow the fish to
survive to adulthood. Fish from metal-polluted waters in the Gulf of Bothnia were
examined for morphological anomalies, such as vertebral and spinal deformities
and asymmetrical fins and gill rakers (Bengtsson et al. 1985). Fourhorn sculpin
(Myoxocephalus quadricornis) from polluted sites had high frequencies of skeletal
deformities, which decreased as distance from polluted areas increased. Whitefish
(Coregonus lavaretus) from polluted areas had elevated frequencies of deformed gill
rakers and of asymmetrical gill rakers and fins. Kessabi et al. (2013) studied skeletal
deformities in natural populations of the Mediterranean killifish Aphanius fasciatus
from the Tunisian coast. Fish were collected from one reference area and three
industrialized polluted areas (S2: industrialized coast of Sfax, S3: coast of Khniss
and S4: Hamdoun’Oued), and skeletal deformities were diagnosed with double
staining. A total of 1,025 abnormalities were quantified, which were classified into
categories of abnormalities on spines, vertebrae, arcs and mandibles. In addition,
levels of Cd, Cu and Zn, various PAHs, and estrogenic compounds were measured
in water and sediment from the different sites. The frequency of spinal deformities
was greatest in fish from S2, the site which had significantly higher levels of metals
and PAHs than all the others.

7.4 Other Taxa

Larval studies have been performed with various species of cnidarians, mainly
corals. The planula is the free-swimming, ciliated larval form of cnidarians. When
ready to metamorphose into a coral, it must find a hard substrate (many may prefer
specific substrates) where it anchors and grows into a polyp. Echinoderms (sea
urchins) are frequently used in standard embryo-larval bioassays. Sea urchins, sand
dollars, and brittle stars have a pluteus larva that uses ciliated bands for swimming
and suspension feeding. The larva uses its ciliated arms to sweep food into its mouth
as it glides through the water. As the larva develops, it increases the number of arms.
The body form changes dramatically with metamorphosis. Many larval structures
used during planktonic life are lost, and replaced by appendages adapted to the
adult’s benthic life. Polychaete worm larvae have also been studied. Polychaetes
typically hatch into planktonic trochophore larvae, which eventually metamorphose
into the adult form by adding segments.

7.4.1 Metals

Coral larvae are sensitive to metals, especially Cu, which reduced settlement success
of Acropora tenuis larvae after 48-h compared with controls. The 48-h EC50 was
35 �g l�1 (Reichelt-Brushett and Harrison 2000), indicating that moderate Cu
concentrations impair settlement of coral larvae.
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Brix et al. (2012) tested larvae of the sea echinoderm, Lytechinus variegatus
in an 18-day study in which larvae were continuously exposed to Ag-laden algae
(Isochrysis galbana). After 7 days, no significant effects were observed on growth
up to the highest concentration tested (10.68 �g g�1 dw Ag in algae) but after
18 days, significant effects were observed in all Ag treatments >0.68 �g g�1 dw
Ag in algae (corresponding waterborne Ag concentration of 0.05–0.07 �g l�1).
However, the dose–response relationship was quite flat with a similar growth
inhibition (15 %) in all Ag treatments.

7.4.2 Organics

Oil and Dispersants

Laboratory experiments were conducted to measure larval settlement and metamor-
phosis of the polychaete Streblospio benedicti, as well as juvenile bioaccumulation
and growth rates when exposed to sediment-associated PAHs (Chandler et al. 1997).
Larval settlement and metamorphosis was reduced, but not significantly (relative to
controls) by IX, 5X and 10X background PAH mixture concentrations of the six
most abundant PAHs in urbanized Murrell’s Inlet South Carolina (1X D 0.9 �g PAH
g dry sediment�1). Bioaccumulation of the most abundant PAH, fluoranthene (FL),
was very high in this PAH tolerant species—9.5–13.7X FL sediment concentrations
after 28-day exposures. Twenty-eight-day exposures to 0.26 and 2.4 �g FL g�1

caused no significant mortality, and produced positive weight gains in S. benedicti
up to 18 d exposure. However, dramatic weight declines occurred from days 18–28
in both FL treatments. High tolerance of PAH may explain why this species recruits
and survives in hydrocarbon-contaminated sediments.

Epstein et al. (2000) investigated short-term effects of five oil dispersants (Inipol
IP-90®, Petrotech PTI-25®, Bioreico R-93®, Biosolve® and Emulgal C-100®) on
planula larvae of the Red Sea stony coral Stylophora pistillata and soft coral
Heteroxenia fuscescens. Larvae were exposed to WSFs, dispersed oil water ac-
commodated fractions (WAFs) and dispersants dissolved in seawater. While WSF
reduced settlement success (Fig. 7.6), dispersants produced a greater decrease in
settlement. Dispersed oil showed a dramatic increase in toxicity to both species,
suggesting that the low oil: seawater ratio 1:200, that was not lethal to S. pistillata
larvae in the WSF tests, became highly toxic after dispersion. Dispersants and
WAF caused deformation, abnormal swimming and tissue degeneration (Fig. 7.7).
Authors suggested dispersants not be used near coral reefs.

Pesticides

Markey et al. (2007) examined effects of two organophosphates (chlorpyrifos,
profenofos), an organochlorine (endosulfan), a carbamate (carbaryl), a pyrethroid
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Fig. 7.6 Settlement rates of S. pistillata planulae in seawater control and Egyptian crude oil WSF
treatments (Reprinted from Epstein et al. 2000: 499, courtesy Elsevier Publishing Co.)

(permethrin), and a fungicide (2-methoxyethylmercuric chloride, MEMC) on em-
bryos and larvae of the coral Acropora millepora. Fertilization was not affected
by any of the insecticides up to 30 �g l�1, but settlement and metamorphosis
were reduced by 50–100 % after 18 h exposure to very low concentrations
(0.3–1.0 �g l�1) of each insecticide.

Endosulfan (ES) strongly inhibited larval settlement and early juvenile growth
of the polychaete Streblospio benedicti. ES concentrations as low as 50 �g kg�1

sediment reduced settlement by >50 % relative to control sediments (Chandler and
Scott 1991). Higher concentrations closer to actual field levels suppressed coloniza-
tion completely. Early growth of newly metamorphosed juveniles was depressed 36
and 40 % in 50 and 100 �g kg�1, respectively. This is in contrast with the tolerance
of this species for PAHs (above) and tolerance of harpacticoid copepods. When
the benthic harpacticoid copepod Pseudobradya pulchella was exposed to sediment
ES < 200 �g kg�1, survival and egg production were unaffected. Of the P. pulchella
tested, >95 % survived 200 �g kg�1, and over 98 % of the females produced
normal clutches of eggs. Similarly, survival of another common benthic copepod,
Nannopus palustris, was not affected below 200 �g kg�1 ES, but 200 �g kg�1

reduced survival.

Contaminants of Emerging Concern

Chiu et al. (2012) investigated effects of flame retardant polybrominated diphenyl
ethers (PBDEs) on larvae of the polychaete Hydroides elegans, and demonstrated
that chronic exposure to BDE-47 (up to 1,000 ng l�1) throughout the entire larval
stage did not affect settlement, development or growth despite bioaccumulation.



242 7 Larval Development

Fig. 7.7 Effects of dispersed oil on S. pistillata planulae. (a) Disintegration. Release of small
spherical bodies through the ectodermal layer (arrow) (b) Control planula (c) deformed primary
polyp with no mouth or tentacles (d) deformed unattached planula with 12 pairs of septa instead
of 6 (e) and (f) are histological sections from treated larva (e) and control (f). Arrows show
ectodermal layer which is damaged in (e) (Reprinted from Epstein et al. 2000: 501, courtesy
Elsevier Publishing Co.)
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7.4.3 Hypoxia

Miller and Graham (2012) made the unexpected finding that low DO had a positive
effect on planula larva settlement of the jellyfish Aurelia sp. Greatest settlement
rates occurred under lowest DO (1.3 mg l�1), indicating that reduced DO promotes
settlement. In another set of experiments, they found that survival of scyphistomae
(the benthic attached stage) decreased only marginally under prolonged (56 days)
hypoxia. Laboratory experiments showed that the normal sessile community cov-
erage was significantly reduced under similar levels of hypoxia when compared
to normoxia. Thus, not only was settlement of planulae favored at low DO, but
potentially competing species were reduced. These findings support previous ideas
that eutrophication and hypoxia can promote outbreaks of jellyfish.

7.4.4 Climate Change/Ocean Acidification

In a field study, artificial collectors were placed for 1 month along pH gradi-
ents near CO2 vents in the Tyrrhenian Sea, Italy to collect newly settled forms
(Cigliano et al. 2010). Seventy-nine taxa were identified from six main groups
(foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths).
Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves were
greatly reduced as pCO2 rose from normal (336–341 mg l�1, pH 8.09–8.15) to high
levels (886–5,148 mg l�1) near vent sites (pH 7.08–7.79). The syllid polychaete
Syllis prolifera was most abundant at the most acidic station, although many
polychaetes and small crustaceans could settle and survive. A few taxa (Amphiglena
mediterranea, Leptochelia dubia, Caprella acanthifera) were most abundant at sites
with intermediate pCO2 (pH 7.41–7.99), showing that increased pCO2 can affect the
settlement of a wide range of benthic organisms.

Corals

Nakamura et al. (2011) found that the oxygen consumption of planula larvae of the
coral Acropora digitifera was reduced (but not significantly) with reduced pH (8.0,
7.6, and 7.3). Metamorphosis was significantly decreased under acidified conditions
after both short- (2 h) and long- (7 days) term exposure. Larval metabolism and
settlement, and post-settlement growth of the coral Porites astreoides was studied at
ambient seawater, 560, and 800 �atm. Larval metabolism was depressed by 27 and
63 % at 560 and 800 �atm, respectively (Albright and Langdon 2011). Settlement
was reduced by 45 % at 560 �atm and 60 % at 800 �atm, but via indirect pathways,
i.e. by altering the substrate community composition and reducing settlement
cues. Post-settlement growth decreased by 16 and 35 % at 560 and 800 �atm,
respectively. Similarly, pCO2 concentrations of 800 and 1,300 �atm significantly
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reduced Acropora millepora settlement and crustose coralline algae (CCA) cover by
�45 % (Doropoulos et al. 2012) (CCA are important for inducing coral settlement).
The preferred alga substrate for settlement (Titanoderma) of control larvae was
avoided by larvae as pCO2 increased, and other substrates selected. These results
suggest acidification may reduce coral populations by reducing coral settlement
rates, disrupting larval settlement behavior, and reducing the availability of desirable
coralline algal species for coral settlement and recruitment.

Echinoderms

Larval development of the brittlestar Ophiothrix fragilis (a keystone species
throughout the shelf seas of the eastern Atlantic) was studied by DuPont et al.
(2008). A decrease of 0.2 pH units induced 100 % larval mortality within 8 days
while control larvae showed 70 % survival. Low pH also resulted in smaller
larval size, abnormal development and skeletogenesis including abnormalities,
asymmetry, and altered skeletal proportions (Fig. 7.8). The larval development of
the sea urchin Arbacia dufresnei from a sub-Antarctic population was studied at
high (8.0), medium (7.7) and low (7.4) pH (Catarino et al. 2012). Larvae showed
a developmental delay at low pH but without increases in abnormalities. Even at
calcium carbonate saturation states <1, skeletal deposition occurred. Thus, some
polar and sub-polar sea urchin larvae are resilient to acidification.
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Larval sand dollars Dendraster excentricus have calcified skeletal rods sup-
porting their bodies, and propel themselves with ciliated bands looped around
projections called arms. The ciliated bands are used in food capture, and filtration
rate is correlated with band length. Therefore, swimming and feeding perfor-
mance are sensitive to morphological changes. When reared at elevated pCO2

(1,000 mg l�1), larvae developed significantly narrower bodies at the four and six-
arm stages and had significantly smaller stomachs and bodies, suggesting reduced
feeding ability (Chan et al. 2011).

Sea urchins (Heliocidaris erythrogramma) were reared by Byrne et al. (2011)
in varying temperature and pH: C2–4 ıC, and pH 7.6–7.8. Treatments resulted in
unshelled larvae and abnormal juveniles, with the percentage of normal juveniles
decreasing in response to both stressors. The number of spines decreased with
increasing acidification, and the interactive effect between stressors indicated that
C2 ıC warming reduced the negative effects of low pH, which may be good news
for the future of this species, since warming and lower pH will happen together. To
investigate effects of acidification on calcification at the molecular level, Kurihara
et al. (2012) evaluated the expression of biomineralization-related genes in the sea
urchin Hemicentrotus pulcherrimus at control, 1,000, and 2,000 mg l�1 CO2 from
egg to pluteus larva. They found that the expression of the gene msp130, which is
proposed to transport Ca2C to the calcification site, is suppressed by increased CO2.
This suggests that OA suppression of the expression of skeletogenesis-related genes
is responsible for impaired biomineralization of sea urchins.

7.5 Conclusions/Discussion

Larvae are very sensitive to contaminants, in some cases more so than embryos.
The studies that have been done are numerous, and are a “mixed bag.” While many
studies to date focus solely on measurements of mortality (i.e. LC50 in standard
toxicity tests), other (more interesting) studies examine sublethal effects on growth,
development, behavior, physiological processes, etc. Studies of sublethal effects on
these processes enable one to understand the ways in which a particular stressor
affects the larvae, and may give insight and understanding into possible mechanisms
of larval mortality. The taxa that have been used in these studies tend to be ones
for which techniques have been developed and standardized for raising them in
the laboratory, but techniques can be developed for culturing additional species.
This should be encouraged and would be a significant advance for the field, as
responses and sensitivities vary considerably among different taxa. Settlement and
metamorphosis to juvenile stages is critical in many taxa, and is often the stage most
sensitive to stressors. Furthermore, some effects of larval exposures are not apparent
until after larvae have metamorphosed and have become juveniles or adults. This
emphasizes the point that long-term studies are far more useful and important than
short term larval toxicity tests.
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Chapter 8
Developmental Processes Later in Life

Abstract Growth is an obvious and easily measured response, and is included in
many standard toxicity tests as well as in research projects. Reduced growth is
frequently traced back to reduced food intake, but even without reduced feeding,
it is a logical outcome since organisms must expend energy to defend themselves
against and detoxify contaminants. The more energy needed to detoxify pollutants,
the less will be available for growth. In addition to overall body growth, molting,
regeneration, development of calcified structures (shell and bone), carcinogenesis,
and smoltification are other developmental processes that take place after larval
stages. These processes are all sensitive to environmental contaminants.

Keywords Calcification • Carcinogenesis • Ecdysis • Molting • Regeneration •
Shell • Smolt

8.1 Growth

Growth is the end result of a number of processes including food intake and energy
metabolism which are affected negatively by many contaminants. Consequently,
growth tends to be reduced in exposed organisms.

8.1.1 Fishes

Fishes continue growing as juveniles and adults, albeit more slowly over time,
throughout their lives, and growth can be affected by contaminants. There have
been hundreds of studies of fish growth in response to contaminants, largely in
freshwater species and early life stages. Many of these studies are based on dietary
exposure, and show that reduced feeding is responsible for growth effects. However,
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some environmentally important pollutants, including xenoestrogens and metals
have been shown to affect growth via hormone-mediated mechanisms, possibly
by interfering with the GH receptor and/or GH transcription (Deane and Woo
2009). Other contaminants, such as dioxins, furans, PCBs, polycyclic aromatic
hydrocarbons, pesticides, phenols, ammonia, pharmaceuticals and metals, may
affect growth and other developmental processes by thyroid disruption (reviewed
by Brown et al. 2004; Rolland 2000).

Woltering (1984) reviewed 173 studies to date on fish growth. The tests
include exposure to metals, pesticides, unclassified organics, inorganic compounds,
detergents and complex effluents. Fry survival was significantly reduced in 57 % of
all tests at the lowest effect level and fry growth was reduced in 36 % of the tests.
Only 60 % of the tests include exposure of adults; adult growth was seldom the most
sensitive effect. Fry survival and growth were very often equally sensitive.

Metals

There have been many studies of effects of metals on juvenile fishes, of which a few
will be mentioned. Baker et al. (1998) fed juvenile grey mullet (Chelon labrosus) a
basal (4.4 mg Cu/kg dry wt) or high-Cu diet (2,400 mg Cu/kg dry wt) for 10 weeks
to assess the relationship between growth and Cu-induced oxidative damage. No
mortalities were seen, but growth rate and food intake were reduced by 43 and 29 %,
respectively, in the high-Cu group. Aqueous exposure to Cu also affects feeding
and growth. Buckley et al. (1982) exposed coho salmon (Oncorhynchus kisutch) to
sublethal levels of aqueous copper (0.5 and 0.25 of the LC50.), which caused loss
of appetite and decreased growth. These both recovered when fish were returned to
clean water.

Juvenile green and white sturgeon (Acipenser medirostris and A. transmontanus)
were exposed to dietary meHg, at 25, 50, and 100 mg meHg kg�1 diet for 8 weeks.
Higher mortality and lower growth rate were noted in both species in a dose-
dependent manner (Lee et al. 2011). Green sturgeon exhibited earlier and more
severe effects than white sturgeon. Hg accumulated to the highest concentrations
in kidneys of both species.

In a field study, Cd, Cr, Cu, Fe, Pb, and Zn concentrations in the muscle, gill
and liver of six fish species (Sparus auratus, Atherina hepsetus, Mugil cephalus,
Trigla cuculus, Sardina pilchardus and Scomberesox saurus) from the northeast
Mediterranean Sea were measured and the relationships between fish size (length
and weight) and metal concentrations were investigated by linear regression analysis
(Canli and Atli 2003). In most cases, relationships between metal concentrations and
fish size were negative. Highly significant (P < 0.001) negative relationships were
found between fish length and Cr concentrations in the liver of A. hepsetus and M.
cephalus, and Cr concentrations in the gill of T. cuculus. Cr and Pb concentrations in
the liver and Cu concentrations in all the tissues of Scomberesox saurus also showed
very significant (P < 0.001) negative relationships.
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Organics

Most studies of organic chemicals affecting marine fish growth have been done
on oil and its components. Pink salmon fry (Oncorhynchus gorbuscha) fed oil-
contaminated prey (0.6, 3.2, and 6.5 mg l�1) had a reduced growth rate with
increasing concentrations, which was strongly correlated with decreases in feeding
rate (Schwartz 1985). Growth reduction in fry exposed to 0.7 mg l�1 of WSF in the
water was greater than those of fry fed the oil-contaminated prey.

Following the Exxon Valdez spill, Heintz et al. (2000) reported delayed effects in
pink salmon that had been exposed as embryos to gravel coated with weathered oil.
Weathering caused the PAH composition to be dominated by heavier compounds.
Survivors that appeared healthy were released to the marine environment with
coded-wire tags and their survival evaluated when they returned 2 years later.
Fish that had been exposed to an initial concentration of total PAH equal to
5.4 �g l�1 had a 15 % decrease in marine survival compared to unexposed fish.
Reduced growth was seen in fish that had had embryonic exposure to 18 �g l�1

PAH. Thus, exposure at sensitive early life stages led to reduced growth and higher
mortality later in life.

Rice et al. (2000) exposed polychaetes (Armandia brevis) for 28 days to
sediments with benzo(a)pyrene (BaP), para-para dichlorodiphenyldichloroethylene
(pp0DDE), Aroclor 1254, or field sediments collected from sites in Puget Sound,
Washington, contaminated predominantly with PAHs or chlorinated compounds.
Exposed worms were then fed to juvenile English sole (Pleuronectes vetulus) for
10 or 12 days, and fish were measured for length and weight, sacrificed, and
preserved. Growth of fish was lower than reference in all but one of eight groups
fed contaminated worms, but statistically significant reductions in growth were only
observed in three groups, at least in part due to low statistical power. Fish from all
exposed groups showed increased expression of CYP1A, and fish exposed to BaP
showed evidence of hepatic PAH-DNA adducts.

Cong et al. (2009) investigated effects of the organophosphate insecticide
diazinon on juvenile snakehead fish Channa striata, which were exposed twice to
4-day pulses of 0.016, 0.079 or 0.35 mg l�1 of diazinon, separated by a 2 week
interval (done to imitate the exposure conditions near rice fields). Fish were then
moved to clean water for recovery. Diazinon caused long term inhibition of brain
ChE activity, which was still significantly depressed at the termination of the
experiment, and the highest diazinon concentration caused a significant 30 % growth
inhibition.

Hypoxia

Growth rates of winter flounder Pseudopleuronectes americanus and summer
flounder Paralichthys dentatus were reduced as DO decreased, particularly at
50–70 % sat, and as temperature increased. Summer flounder were more tolerant
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than winter flounder. A significant relationship between feeding rate and growth
indicated that reduced food consumption was responsible for growth limitation
(Steirhoff et al. 2006).

Effects of moderate hypoxia and oscillating DO on growth of European sea
bass (Dicentrarchus labrax) were investigated (Thetmeyer et al. 2001). Fish were
exposed to one of three conditions: 40 % sat; oscillations between 40 and 86 %
with a period of 770 min, and 86% sat as a control at 22 ıC for 1 month. Fish in
hypoxia consumed significantly less food, had reduced growth, and lower condition
factor. Those in oscillating conditions were intermediate, and not statistically
distinguishable from either normoxic or hypoxic groups. Growth was correlated
with food intake, suggesting that reduced growth was primarily due to reduced
appetite.

When juvenile turbot Scophthalmus maximus and sea bass Dicentrarchus labrax
were fed to satiation, food intake and growth were depressed under hypoxia (3.2 and
4.5 mg O2 l�1). Growth was comparable between fish fed to satiation in hypoxia and
those reared in normoxia but fed restricted rations (Pichavant et al. 2001). Decreased
food thus appears to be a mechanism by which prolonged hypoxia reduces growth,
and may be a way to reduce energy and thus oxygen demand.

Killifish (Fundulus heteroclitus) were subjected to severe hypoxia (1.2 mg O2 l�1),
moderate hypoxia (3.0 mg O2 l�1), normoxia (7.1 mg O2 l�1) and hyperoxia
(10.6 mg O2 l�1) and specific growth rate calculated weekly. Severe hypoxia
reduced growth and reduced muscle protein content and RNA: DNA compared
with other treatments. However, growth increased significantly during the second
2-week interval, to the rate of normoxic fish (Rees et al. 2012). Neither moderate
hypoxia nor hyperoxia affected growth or biochemical variables, showing that F.
heteroclitus tolerates hypoxia and, during prolonged severe hypoxia, compensates
for the initial negative effects on growth. Its capacity to grow in low DO contributes
to its persistence in highly degraded habitats.

Polluted Environment

European flounder (Platichthys flesus) responses to chemical stress were assessed
in four estuaries with different patterns of contamination. Fish in contaminated
estuaries were characterized by high levels of bioaccumulated contaminants, slow
energetic metabolism and reduced growth rate (Evrard et al. 2010).

Juvenile turbot (Scophthalmus maximus) were exposed to sediments contami-
nated with metals, PAH and PCBs (Kerambrun et al. 2012a). Significant decreases
in growth rates, morphometric index, RNA:DNA ratio and lipid storage index were
observed with increasing levels of contamination from site A to site C (Fig. 8.1).
The decrease in physiological status could be related to the accumulation of metals
in gills and of PAH metabolites in bile.

Juvenile sea bass (Dicentrarchus labrax) and turbot (Scophtalmus maximus)
were caged for 38 days at three locations with varying levels of contaminants
(Kerambrun et al. 2012b). At the most contaminated station, all the fish died within
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Fig. 8.1 Differences in specific growth rate in weight (GW), length (GL) and recent otolith growth
(RG) of juvenile turbot exposed to 5 sediments (Ref. Seine, A,B,C) after 7 (gray) and 21 (black)
days (M ˙ SE). Numbers D significant differences compared to t0 (Reprinted from Kerambrun
et al. 2012a: 136, courtesy of Elsevier Publishing Co.)

2 weeks. At the least contaminated station, fish had higher growth, RNA:DNA
ratios and condition index than at the intermediate station. Lipid storage index,
based on the ratio of the quantity of triacylglycerols to sterols (TAG:ST), was
significantly higher in the less contaminated station. Reduced growth and condition
was associated with metal accumulation in gills.
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8.1.2 Mollusks

Growth of mollusks can be investigated by measuring increments in the shell, or by
measuring the condition index (weight of soft tissues vs shell), which reflects growth
of soft tissues. Studies are quite limited, and many of the studies on contaminant
effects on mollusk growth are quite old. Studies on shell growth reflect effects on
calcification, which will be discussed later in the chapter.

Metals

Juvenile and adult mollusks are sensitive to metals. Boyden et al. (1975) found that
Zn at 0.25 and 0.50 mg l�1 reduced growth of juvenile C. gigas to 78 and 51 % of
control values, but after a 5-day depuration period, growth rebounded. Cunningham
(1976) found similar retardation of growth in juvenile C. virginica exposed to 0.01
and 0.10 mg l�1 Hg for 47 days, and similar recovery after return to clean water
for about a month. Exposure to a mercury-equilibrated algal suspension containing
0.25, 0.42 and 1 Hg l�1 reduced growth and condition of adult limpets Crepidula
fornicata over 16 weeks (Thain 1984).

Organics

There has been some work, much of it old, on effects of pesticides and PAHs on clam
growth. Butler et al. (1968) investigated effects of the pesticide carbaryl (Sevin) and
its breakdown product, 1-naphthol, on clams (Clinocardium nuttalli). Sevin was
less toxic than 1-naphthol to juvenile clams, the respective 96-h TLM’s (median
tolerance limits) being 3.75 and 2.70 mg l�1. Growth of clams was reduced more
by 1-naphthol than by Sevin. The food consumption of clams exposed to 1.6 mg l�1

Sevin was markedly reduced and their food conversion efficiency was impaired.
Small (<30 mm) clams, Protothaca staminea, were marked and placed in the

intertidal zone of Sequim Bay, Washington for 1 year to measure effects of oiled
sediments on growth (Anderson et al. 1981). Growth in oil-treated sediment was
significantly slower than in clean sediment; oil mixed into sediment (10 cm)
produced greater tissue contamination and greater growth reduction than a layer
(3 cm) of oiled sediment. Effects of residual Exxon Valdez oil on P. staminea,
were studied 5–6 years after the spill using reciprocal transplants of clams between
unoiled and oiled sites (Fukuyama et al. 2000). Tagged clams were transplanted
in 1994 and collected in 1995 and 1996. Greatest mortality and tissue burdens of
hydrocarbons were in clams from the oiled site, and the best growth was in clams
moved from the oiled to the unoiled site where they could depurate.
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Hypoxia

Burrell et al. (2011) examined the relationship between diel-cycling hypoxia and
growth and the acquisition and progression of Perkinsus marinus infections in
C. virginica. Laboratory and field experiments indicated that diel-cycling hypoxia
increased acquisition and progression of infection, and decreased growth. Patterson
et al. (2011) found heavier 15N in tissues of oysters under lower DO conditions; this
is consistent with reduced feeding and catabolism of tissues, common in stressed
bivalves and in keeping with the reduced growth noted previously.

Acidification/Climate Change

Sydney rock oysters, Saccostrea glomerata, were deployed at sites affected and
unaffected by acid sulfate soils in two Australian estuaries. After 10 weeks, oysters
were transplanted within and across sites and maintained another 10 weeks. Oysters
that remained 20 weeks at affected sites grew at about half the rate of oysters at
reference sites (Amaral et al. 2012b) Oysters moved from acidified to reference
sites grew more than oysters moved from reference to acidified sites or that stayed
at reference sites. Dickinson et al. (2012) studied interactive effects of salinity and
CO2 on growth and energy homeostasis in C. virginica. Juveniles were exposed for
11 weeks to 30 or 15 psu salinity at current atmosphere (�400 �atm), or �700–
800 �atm. Exposure to elevated PCO2 and/or low salinity led to increased mortality,
reduced tissue energy stores (glycogen and lipid) and negative soft tissue growth,
indicating energy deficiency. In contrast, juvenile mussels, M. galloprovincialis
under conditions of �0.3 and �0.6 pH units had increased absorption efficiency
and ammonium excretion, and increased scope for growth and tissue dry weight,
suggesting that this species tolerates acidification (Fernandez-Reiriz et al. 2012).

Other Pollutants

Growth of oysters (Crassostrea virginica) subjected to chlorine-produced oxidants
was studied by Scott and Vernberg (1979). The condition index and gonadal index
were reduced by 0.16 mg l�1. This concentration also reduced fecal production. This
implies effects on feeding, which was not directly measured. There were seasonal
differences in responses, reflecting temperature interacting with toxic effects.

8.1.3 Crustaceans

Most effects on growth are related to the molt cycle, which is discussed below.
However, there is some evidence of effects of selected organic contaminants on
somatic growth of crustaceans.
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Organics

Guo et al. (2012) investigated long-term effects of PCB 126 on the copepod
Tigriopus japonicus. No obvious effects were observed in the first generation at
concentrations <100 �g l�1 but in the second generation effects on reproduction
were seen at levels over 1 �g l�1 and on growth at concentrations over 0.1 �g/l.
Thus, they became more sensitive in the second generation and growth was the most
sensitive parameter. The authors concluded that environmental risk assessment of
contaminants should be based on a long-term multigenerational exposure to provide
realistic measures of pollutant effects.

8.1.4 Other Taxa

Acidification/Climate Change

Sea urchins, Lytechinus variegatus, were reared in ambient seawater (380 �atm)
and two elevated levels of pCO2, 560 and 800 �atm. After 89 days, urchins at
ambient pCO2 weighed 12 % more than those at 560 �atm and 28 % more than
those at 800 �atm (Albright et al. 2012). Skeletons examined with scanning electron
microscopy, showed degradation of spines at 800 �atm. Doropoulos et al. (2012)
found that after 2 months’ growth in ambient or elevated pCO2 levels, the linear
extension and calcification of coral (Acropora millepora) recruits decreased as CO2

partial pressure (pCO2) increased. When recruits were subjected to incidental fish
grazing, their mortality was inversely size dependent. There was an additive effect
of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of
size. In elevated pCO2, coral recruits needed to double their size at the highest pCO2

to escape grazing mortality. This general trend was seen with different predators
(blenny, surgeonfish, and parrotfish). In contrast, OA-like conditions can enhance
the ecological success of non-calcifying anthozoans e.g. sea anemones. Increased
growth (abundance and size) of the sea anemone (Anemonia viridis) was observed
by Suggett et al. (2012) along a natural pCO2 gradient at Vulcano, Italy. Both gross
photosynthesis (PG) and respiration (R) increased with pCO2 indicating that the
increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of
metabolism. The increase of PG outweighed that of R and the genetic identity
of the symbiotic microalgae (Symbiodinium spp.) remained unchanged. These
observations of enhanced productivity with pCO2, may increase fitness and enable
non-calcifying anthozoans to thrive in future high CO2 environments.

Reduced growth can have profound ecological consequences for calcifying
organisms. Kroeker et al. (2013) investigated species interactions that can modify
direct effects of acidification on individual species and showed that altered com-
petitive dynamics between calcareous species and fleshy seaweeds drive significant
ecosystem shifts. Although calcareous species recruited and grew in low pH during
early successional stages, they were rapidly overgrown by fleshy seaweeds later
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in succession in low pH. The altered competitive dynamics between calcareous
and fleshy seaweeds is probably due to decreased growth of calcareous species,
increased growth of fleshy seaweeds, and/or altered grazing rates. Phase shifts
towards dominance by fleshy seaweeds are common in many marine ecosystems,
and these results suggest that changes in the competitive balance between these
groups is a key factor leading to profound ecosystem changes as the pH decreases.

Six Caribbean coral reef sponges—Aiolochroia crassa, Aplysina cauliformis,
Aplysina fistularis, Ectyoplasia ferox, Lotrochota birotulata and Smenospongia
conulosa—were grown for 24 days in seawater ranging from current summer
maxima (28 ıC; pH D 8.1) to those predicted for 2100 (31 ıC; pH D 7.8). For
all species, growth and survival were similar among temperature and pH levels
(Duckworth et al. 2012). Sponge attachment, which is important for reef consol-
idation, was unchanged by pH for all species, and highest at 31 ıC for E. ferox,
I. birotulata and A. cauliformis. These findings on adult sponges suggest that
ecological roles and growth of these species will not be adversely affected by the
temperature and pH predicted for the end of the century.

8.2 Regeneration and Molting

Regeneration of lost tissue is a process that, while extremely limited in birds and
mammals, is common among invertebrates and fishes. The processes by which
structures are regenerated resemble the cell differentiation that goes on in embryos,
although a pool of stem cells must be initially developed from more differentiated
tissue near the point of injury. In crustaceans, the regeneration of appendages is tied
in with the molt cycle.

8.2.1 Crustaceans

In order to grow, crustaceans must molt their old exoskeleton to accommodate their
larger body. Growth is thus periodic, and depends on molting of the exoskeleton.
The frequency of molting and the growth increment are influenced by environmental
factors and hormones, particularly ecdysteroids, which are steroids. Molt-inhibiting
hormones also play a role. In preparation for molting (proecdysis) ecdysteroid levels
in hemolymph increase and the tissue layer under the exoskeleton secretes materials
that erode and soften the old cuticle. Calcium is dissolved and moved to interior
storage places, softening the old cuticle. The epidermal tissues then produce a thin,
soft new exoskeleton underneath it. Then the animal takes in a lot of water, swells
up and bursts the old skeleton along specific weak points, and extricates itself from
it (ecdysis). Mobility is limited right after a molt (postecdysis) because the new
exoskeleton is very soft and not rigid enough to keep the limbs stiff. Animals
are very vulnerable until the new exoskeleton expands and hardens. Although
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most crustaceans molt throughout their entire life, small individuals must molt
frequently; some species have a terminal molt after reaching their maximum size.
During ecdysis, postecdysis, and intermolt phases, ecdysteroid levels in hemolymph
are low.

Some crustaceans can autotomize injured limbs, i.e., break them off at a
preformed breakage plane where there is a membrane, thus minimizing tissue
damage. Autotomy is an effective anti-predator response, and animals subsequently
regenerate lost appendages, in association with the molt cycle. Regeneration begins
after a period of tissue re-organization and is first noticeable as a small protrusion
at the autotomy plane. The limb bud grows within a covering of cuticle. In crabs,
regenerating limbs grow folded and only unfold when the animal molts. In shrimp,
the regenerating limbs have joints nestled within one another, so they also do not
become functional until the animal molts. Thus, regeneration is closely tied with
the molt cycle. Regeneration consists of basal growth, when tissue differentiation
occurs and which is independent of the molt cycle, and pro-ecdysial growth, a
phase of rapid growth which is dependent on molting hormones. There may be
a plateau between basal and proecdysial growth. Multiple autotomy, removal of
many limbs, stimulates accelerated regeneration and molting. Many chemicals alter
the rate of limb regeneration and/or molting. The two processes may be affected
independently, but it is often not possible to distinguish effects on regeneration per
se from those on the molt cycle, since they are usually coupled and both processes
are affected simultaneously. Some toxicants produce morphological alterations in
the regenerated limbs; these may be relatively minor, such as reduced number of
pigment cells, setae, or tubercles, or may be major, such as abnormal bending or
defects in exoskeleton formation. By molting, crustaceans may be able to reduce
their body burdens of contaminants that are contained within the exoskeleton
(Keteles and Fleeger 2001; Bergey and Weis 2007).

Metals

The most common effect of metals is retardation of regeneration accompanied
by a delay in ecdysis; in some cases regeneration is affected without altering
the timing of the molt. A series of studies of metals on regeneration in fiddler
crabs was conducted in the 1970s and 1980s by Weis and colleagues; these are
reviewed in Weis et al. (1992). Delayed regeneration and molting were observed
in Uca pugilator after exposure to HgCl2, meHg, Cd, and Zn at 0.5–1.0 mg l�1.
Retardation of regeneration was accompanied with delayed ecdysis so when molting
took place limbs were fully formed. MeHg at 0.1 mg l�1 inhibited melanin pigment
development in the regenerated limbs and reduced the number of tubercles on
regenerated first walking legs of males. While Hg and Cd individually retarded
limb regeneration, the presence of meHg reduced the particularly toxic effects of
Cd at low salinity. Zn and Hg together were additive, while Zn and Cd interacted
antagonistically. Uca pugnax from a contaminated site were less affected by meHg
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Fig. 8.2 (a) Malformed chela in fiddler crab after regenerating in TBT. Chela has deformity in the
dactyl (D). (b) Curled, stunted chela (C) and malformed walking legs 2 and 3 after regeneration in
TBT (Reprinted from Weis et al. 1987b: 323, courtesy Springer Publishing Co.)

than those from a relatively clean site, i.e., limb regeneration was not as greatly
retarded, indicating that they had acquired some tolerance. However, short-term
pre-exposure to low concentrations of meHg did not enhance tolerance to higher
concentrations.

Juvenile tiger shrimp, Penaeus monodon, shortened the time to first molt and
decreased molting frequency after exposure to 0.9 mg l�1 Cr (Chen and Lin 2001).
They had a reduced feeding rate. Grass shrimp, P. pugio, telson regeneration was
retarded by exposure to Hg or meHg (10 �g l�1) and they had a reduced intermolt
period (Kraus and Weis 1988). However, these effects were not seen in shrimp from
a contaminated site. Hexavalent Cr inhibited limb regeneration in grass shrimp (Rao
et al. 1985). The antifouling agent tributyltin (TBT) retarded limb regeneration and
molting in U. pugilator at 0.5 �g l�1, and produced anatomical abnormalities in
regenerated chelae of males, in which the regenerated dactyl curved upward, away
from the pollex, instead of downward towards it (Fig. 8.2) (Weis et al. 1987b). In P.
pugio, 0.5 �g l�1 TBT slowed regeneration rate, but did not produce abnormalities
(Khan et al. 1993).

Organic Contaminants

Aromatic Hydrocarbons

Exposure of juvenile blue crabs to 1 mg l�1 benzene or dimethylnaphthalene
increased the length of the intermolt cycle, decreased the increment per molt,
and retarded limb regeneration (Cantelmo et al. 1981). Affected crabs had slower
limb regeneration, a longer plateau stage, and a longer time for regenerated limbs
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to develop pigmentation. Wang and Stickle (1987) found that the WSF (1.5 or
2.5 mg l�1) of South Louisiana crude oil inhibited growth and molting in blue crabs,
reduced the increment at molt, and prolonged the intermolt period.

Pesticides, PCBs and Dioxins

The PCB mixture Aroclor 1242 (8 mg l�1) inhibited limb regeneration in U.
pugilator, with greater inhibition at high and low salinities than at intermediate
salinities (Fingerman and Fingerman 1978). Chlorophenols and dithiocarbamates
at 0.1–1.0 mg l�1 inhibited regeneration in P. pugio, generally without affecting the
timing of molting. Retarded limb regeneration and molting in P. pugio was seen
in response to dithiocarbamates and pentachlorophenol, with the early stages of
regeneration more sensitive than later ones (Rao et al. 1979). Other chlorophenols
(2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol at 0.3 and 0.7 mg l�1

respectively) inhibited limb regeneration but did not alter the duration of the molt
cycle, suggesting a direct effect on limb growth rather than one on hormones (Rao
et al. 1981).

Current insect growth-regulating pesticides are very toxic to growth processes
in crustaceans. The chitin-synthesis inhibitor, diflubenzuron (Dimilin®) interferes
with chitin deposition and produces disturbances in cuticular structure. Treated
larvae appear healthy until they molt, at which time they may be unable to shed
the old cuticle and die. Exposure to 0.5, 5.0 and 50 �g l�1 produced a dose-
dependent retardation of regeneration and molting in U. pugilator; crabs that molted
in high concentrations had high mortality (Weis et al. 1987a). Regenerated limbs
had blackened areas in which the cuticle had not developed properly. Dimilin also
retarded the molt cycle in juvenile fiddler crabs (Cunningham and Myers 1987)
and grass shrimp, and 0.11 �g l�1 inhibited limb regeneration (Touart and Rao
1987). This suggests that in addition to affecting cuticle synthesis, it affects molting
hormones, mitosis and differentiation of limb buds. Stueckle et al. (2008) found that
methoprene, a juvenile hormone mimic, retarded regeneration in U. pugnax, with
greater effects on males, which took longer than females at 0.1 �g l�1 and exhibited
a greater frequency of abnormalities at 1.0 �g l�1. They had a greater frequency of
abnormal limbs that failed to regenerate or had a bent or bulging merus, carpus or
propodus, or a hook-shaped dactyl. The frequency of abnormal limbs was greatest
at intermediate concentrations, producing inverted U-shaped curves, reminiscent of
other endocrine disrupting effects (Fig. 8.3).

However, not all toxic chemicals retard limb regeneration and molting. DDT
(10 �g l�1) accelerated limb regeneration in U. pugilator (Weis and Mantel 1976).
In the case of crabs with multiple autotomy, the time to ecdysis was shortened as
well. These responses may have been due to heightened excitation of the nervous
system and secretion of neuroendocrine factors promoting molting.
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Hypoxia

Shrimps (Penaeus semisulcatus) kept for 17 days at an oxygen level of 2 mg l�1 did
not molt, and high mortality was observed. When the DO was increased to 5 mg l�1

the mortalities ceased and many molts took place (Clark 1986).
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8.2.2 Fishes

Teleost fins are composed of connective tissue and bony rays, and can regenerate
after amputation. Cells at the cut end dedifferentiate to form a blastema, a mass
of undifferentiated stem cells, which then grows and develops new bony rays
and connective tissue. Teleosts are also capable of regenerating scales and other
structures, including components of the nervous system.

Metals

The rate of caudal fin regeneration in Fundulus heteroclitus was retarded by
0.1 mg l�1 Cd (Weis and Weis 1976) and 0.001 mg l�1 meHg (Weis and Weis 1978),
which also retarded regeneration in Mugil cephalus. However, the two metals
interacted in an antagonistic fashion so that fish exposed to combinations of meHg
and Cd regenerated at rates comparable to controls. In addition, fish pre-exposed to
0.05 mg l�1 Cd acclimated to the metal and their regeneration in 0.1 mg l�1 was not
retarded, but was faster than controls, evidence of hormesis (Weis and Weis 1986).
In contrast to Hg and Cd, Zn at 1.0, 3.0 and 10.0 mg l�1 accelerated regeneration
in a dose-dependent fashion, and could counteract the inhibitory effects of meHg
(Weis and Weis 1980).

Exposure to Cd and Zn at 0.1 mg l�1 reduced calcification and reduced Ca/P
ratios in regenerating scales of F. heteroclitus (Sauer 1987).

Organics

The pesticides DDT, malathion, parathion, and carbaryl at 10 �g l�1 retarded fin
regeneration in F. heteroclitus (Weis and Weis 1975). The effects of DDT were less
pronounced than the other three insecticides.

Polluted Environment

There have been a number of field reports of increased prevalence of a fin erosion
condition (or “fin rot”) in fishes from highly contaminated sites. While these
reports were more common in decades past, new reports continue to be published
(Bodammer 2000; Ziskowski et al. 2008). While many of these studies find bacterial
infection associated with the condition, the infection may be opportunistic and the
condition may also involve poor ability to regenerate fins after injury.
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8.2.3 Other Taxa

Echinoderms are capable of regenerating their arms. This ability was apparently
unknown to people who tried to kill nuisance crown-of-thorns starfish by cutting
them up. All they accomplished by this was to produce more nuisance starfish.

Metals

Arm regeneration in the brittle star, Ophioderma brevispina was inhibited by
0.1 �g l�1 of TBT or triphenyltin (Walsh et al. 1986). Cadmium-exposed brittle
stars, Microphiopholis gracillima, regenerated thinner arms with less soft and
skeletal tissue (D’Andrea et al. 1996).

Hypoxia

Arm regeneration in the brittle star Amphiura filiformis was studied in normoxia
>8.5 mg O2 l�1 (control) and in two levels of hypoxia, 2.7 and 1.8 mg O2 l�1

(29 and 19 % sat). The treatments were chosen to simulate short term hypoxia
(17 days) over a 2-month period. Reduced arm growth was seen in both hypoxic
treatments compared with normoxia. Slowest regeneration of arms was observed
at 1.8 mg O2 l�1 (65 % arm regeneration compared to controls) (Nilsson and
Sköld 1996).

Acidification/Climate Change

Sea stars, Luidia clathrata with two arms excised, were maintained in seawater of
pH 8.2 or 7.8. After 97 days, a period of time sufficient for 80 % arm regeneration,
the lower pH did not significantly effect whole animal growth, arm regeneration,
or biochemical composition (Schram et al. 2011). Wood et al. (2011) investigated
responses of the brittlestar, Ophiocten sericeum, a polar species, to a temperature
increase of 3.5 ıC (ambient, 5–8.5 ıC) and reduction in pH to 7.7 or 7.3 (ambient
was 8.3). Faster arm regeneration was stimulated by higher temperature but was
counteracted by low pH; at pH 7.3 in high temperature, the maintenance of calcified
structures reduced the rate of regeneration, possibly due to use of energy reserves.

8.3 Shell/Bone Formation

Numerous studies have been done on effects of contaminants on formation of
skeletal structures. In recent years studies on calcification have been dominated
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by examination of effects of ocean acidification on different taxa, which vary
greatly in susceptibility. A widespread analysis suggests that increased acidity is
affecting the size and weight of shells and skeletons, and the trend is widespread
across marine species (Watson et al. 2012). Variation in shell thickness and skeletal
size was studied in clams, snails, brachiopods, and sea urchins from 12 different
environments from tropics to polar regions to get a clearer understanding of
similarities and differences among taxa, and to make better predictions of how
animals respond to increasing acidity. The study showed that over evolutionary
time, animals adapt to environments where calcium carbonate is difficult to obtain
by forming lighter skeletons. Low pH makes it harder for marine animals to make
shells and skeletons. As the availability of calcium carbonate decreases, skeletons
get lighter and account for a smaller part of the animal’s weight. The fact that same
effect occurs consistently across taxa suggests the effect is widespread. The effect is
greatest at low temperatures; polar species have the smallest and lightest skeletons,
suggesting that they may be at greater risk as the ocean becomes more acidic.

8.3.1 Crustacea

Polluted Sites

Many crustaceans inhabiting degraded estuaries and coastal waters can develop a
condition called “shell disease” or shell erosion. For example, lobsters and rock
crabs (Homarus americanus and Cancer irroratus) from grossly polluted areas
of the NY Bight (a sewage sludge dump site) had erosion on legs, spines and
elsewhere. The condition could be produced in the lab by exposing animals to
sediments from the sewage sludge or dredge spoil disposal site (Young and Pearce
1975). Shrimp, Crangon septemspinosa, from the vicinity of the dump site had
high prevalence of eroded appendages and blackened erosion of the exoskeleton,
rarely observed elsewhere (Gopalan and Young 1975); this condition was produced
in the laboratory in 50 % of the individuals exposed to sea water from the site.
Erosion was progressive and the eroded parts of appendages did not regenerate after
molting. Shell erosion is caused by bacteria that break down chitin, with subsequent
secondary infection of underlying tissue by other bacteria. These dump sites have
been closed, and shell erosion disease has not been reported from the area since
then.

Acidification

Ries et al. (2009) investigated responses of various marine organisms to differ-
ent pCO2 levels. In three crustaceans, blue crabs (Callinectes sapidus), lobsters
(Homarus americanus), and shrimps (Penaeus plebejus) net calcification was,



8.3 Shell/Bone Formation 269

Fig. 8.4 TBT-exposed oyster shell showing chambers in upper valve (Reprinted from Alzieu 1986,
courtesy of IEEE)

surprisingly, greatest under the highest level of pCO2 (2,856 mg l�1). An ex-
planation offered for these unexpected results was that if seawater is the source
of an organism’s calcifying fluid, then the concentration of dissolved inorganic
carbon (DIC) in this fluid will increase as pCO2 increases. Organisms that can
maintain an elevated pH at their site of calcification despite reduced external pH
will convert much of this increased DIC to carbonate. They would have a final
carbonate concentration at the site of calcification that is only slightly less than (and
possibly equal to or greater than) that under present-day pCO2 levels, depending on
the efficiency of their proton-regulating mechanism. Furthermore, organisms that
accrete shell that is covered and protected by an external organic layer (such as the
crustacean epicuticle) can be more resilient to acidification than those whose shell
is directly exposed to seawater.

8.3.2 Mollusks

Metals

The effects of Cu and Zn on the daily shell growth of M. edulis were measured
with a laser diffraction technique. Within 3 days 10 �g l�1 Cu inhibited shell
growth (Manley et al. 1984); effects became more severe as exposure time increased.
Recovery of nearly normal shell growth occurred upon transfer to clean sea water.
Effects of zinc were less severe. Oysters (C. gigas) are sensitive to effects of TBT
at levels as low as 0.05 �g l�1 Oysters living near marinas developed anomalies
in which the shell developed many layers with gel-like material between the layers
(Fig. 8.4) (Waldock and Thain 1983). Abnormalities decreased with distance from
port areas, and TBT could induce it in the laboratory. Oysters transplanted into
port areas developed these abnormalities. After the use of TBT paints was banned,
abnormalities decreased (Alzieu et al. 1986).

Zuykov et al. (2011) studied morphology of the inner shell surface of the
mussel Mytilus edulis after short-term exposures to Ag as free-ion (AgC) and as
nanoparticles. The nacre portion of exposed mussels (both treatments) developed
doughnut shaped structures of calcium carbonate micrograins covering the surface.
Formation of these structures was explained as a disturbance of shell calcification.
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Organics

Mollusks in mesocosms with sediment were exposed to oil and oil C dispersant
equivalent to 50 mg l�1 oil (Carr et al. 1987). Mya arenaria showed major reduction
in shell growth and condition index in oil and in oil C dispersant treatments.

Acidification

Pteropods are shelled pelagic mollusks that play an important role in planktonic
food webs. The impact of pH was investigated on Limacina helicina, a key species
of Arctic ecosystems. Pteropods were kept under pH conditions corresponding
to pCO2 levels of 350 and 760 �atm. The pteropods had a 28 % decrease in
calcification at the higher pCO2 (expected for the year 2100), supporting concerns
for their future in high CO2, as well as for species dependent on them for food
(Comeau et al. 2009). A more comprehensive study (Comeau et al. 2010) examined
pCO2 levels of 280, 380, 550, 760 and 1,020 �atm with ambient (control) and
elevated (C4 ıC) temperatures. Respiration was unaffected by pCO2 at control
temperature, but significantly increased as a function of the pCO2 level at elevated
temperature. Precipitation of CaCO3 declined as a function of pCO2 at both
temperatures. The decrease in CaCO3 precipitation was highly correlated to the
aragonite saturation state. Even though the pteropods could precipitate CaCO3 at
low aragonite saturation state, their shell production is very sensitive to decreased
pH. Comeau et al. (2012) found evidence for shell dissolution in this species at
pH of 7.9. Bednarsek et al. (2012) found shell dissolution of this species is already
happening. They examined L. helicina antarctica collected from the top 200 m of the
water column, where aragonite saturation levels were around 1, and where upwelled
deep water mixes with surface water with anthropogenic CO2. They compared the
shell structure under a scanning electron microscope with samples from aragonite-
supersaturated regions, and found severe shell dissolution in the undersaturated
region. Laboratory incubations for 8 days in aragonite saturation levels of 0.94–1.12
produced equivalent levels of shell dissolution. Benthic mollusks are also affected.
Gazeau et al. (2007) demonstrated that calcification rates of M. edulis and C. gigas
decline linearly with increasing pCO2. Mussel and oyster calcification was projected
to decrease by 25 and 10 %, respectively, by the end of the century. Gaylord et al.
(2011) found that acidification degrades the mechanical integrity of larval shells of
the mussel M. californianus, on rocky shores in the northeastern Pacific. Larvae
cultured in seawater with CO2 of 540 or 970 mg l�1 produced weaker, thinner and
smaller shells and lower tissue mass than those raised under current conditions.
M. edulis adults exposed to elevated pCO2 decreased shell growth and exhibited
internal shell corrosion of the nacreous layer at high pCO2 (240 and 405 Pa)
(Fig. 8.5) (Melzner et al. 2012). Thus the inner shell surface is vulnerable in mussels,
especially under conditions of low food.

Nienhuis et al. (2010) tested the effects of increased pCO2 (forecast to occur
in 100 and 200 years) on shell deposition and dissolution in the rocky intertidal
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Fig. 8.5 (a) Mussel Shell length growth during 7 weeks (b) Internal shell surface dissolution.
Low food (white) and high food (black) groups, mean ˙ SEM (Reprinted from Melzner et al. 2012
(open access))

snail, Nucella lamellosa. Shell weight gain decreased linearly with increasing pCO2

levels. However, this trend was paralleled by weight loss of empty shells, suggesting
that the declines in shell weight gain in live snails were due to dissolution of
existing shell, rather than reduced production of new shell material. Acidification
may therefore have a greater effect on shell dissolution than deposition, at least
in this species. Range et al. (2012) found some similar results with mussels. The
carbonate chemistry of Rio Formosa water was manipulated by diffusing CO2,
to attain two reduced pH levels, by �0.3 and �0.6 pH units, relative to control
seawater. After 84 days, no differences were in seen in growth (somatic or shell)
of juvenile mussels M. galloprovincialis. The naturally elevated total alkalinity
of the seawater prevented under-saturation of CaCO3. However, calcification was
reduced in elevated CO2, but most of the loss of shell probably occurred as post-
deposition dissolution in the internal aragonite nacre layer. The results show that,
even under extreme levels of acidification, juvenile M. galloprovincialis continued
to calcify and grow in this coastal lagoon. Melatunan et al. (2013) studied effects
pH levels of 8.0 and 7.7 and temperatures of 15 or 20 ıC on shell growth of
Littorina littorea. Snails in acidified seawater, elevated temperature, or both had
reduced shell growth. The increase in shell length was lower for individuals kept
in low pH C high temperature, and the shell thickness increase at the growing edge
was lower under low pH and combined conditions. ATP was positively correlated
with shell thickening and weight, indicating that effects of low pH and elevated
temperature may occur in part through metabolic disruption.
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Shellfish with weakened shells can become more susceptible to predation and
bioerosion. Amaral et al. (2012a) investigated the susceptibility of oysters from
acidified areas (receiving runoff from acid sulphate soils) and reference areas to
predation by the gastropod Morula marginalba. Shells were significantly weaker
at acidified sites than at reference sites (Amaral et al. 2012b), and more oysters
were consumed because M. marginalba needed less time to drill through the weaker
shells. The boring sponge Cliona celata was grown on scallop (Argopecten irradi-
ans) shells in seawater at current pH and that predicted for 2100 (7.8) (Duckworth
and Peterson 2013). Lower pH greatly affected shell boring. At pH D 7.8, sponges
bored twice the number of holes and removed twice as much shell weight than at
pH D 8.1, showing that OA may increase boring rates of C. celata in shellfish with
weaker shells. Green crabs Carcinus maenas and periwinkles Littorina littorea were
put under ambient conditions or warming and acidification, both separately and in
combination, for 5 months and predators, prey, and their interactions were examined
(Landes and Zimmer 2012). Acidification reduced the claw strength in C. maenas
and weakened the shells of L. littorea. Predator–prey interactions were not changed,
indicating that both species were affected equally. One would not expect that to be
the case in most predator/prey interactions, however.

In the Pacific Coast of North America, because of patterns of ocean circulation,
shellfish are already suffering from changes in ocean chemistry. Colder, more acidic
waters well up from the depths and move inshore in bays and estuaries of Oregon,
Washington, and British Columbia, causing damage to oysters (Feely et al. 2008).
Wild oysters in many sites have failed to reproduce successfully because acidic
waters have prevented larvae from forming shells. Oyster hatcheries have adapted
to the acidity by buffering the water in which they grow their larvae, by providing
the oysters with sodium bicarbonate.

In contrast to the response of most mollusks, calcification rates in the cephalopod
Sepia officinalis increased during long-term exposure to elevated pCO2 (Gutowska
et al. 2010). The potential negative impact of increased calcification in the cut-
tlebone of S. officinalis was discussed with regard to its function as a lightweight
and porous buoyancy regulation device. The response of the nautilus, a cephalopod
with an outer shell, is very different. In Argonauta nodosa, females construct a very
thin (225 �m) shell that lacks an outer protective layer and that is used as a brood
chamber for developing embryos. Wolfe et al. (2012) immersed shell fragments
at different temperatures and pH. Shells incubated in pH 7.8 (projected for 2070)
for 14 days had reduced weight due to dissolution, with increased dissolution in
warmer and lower pH treatments. Unless living animals respond with increased
mineralization, the brood chamber will be susceptible to dissolution under ocean
acidification, which could compromise survival of the species, according to the
authors.

The diversity of responses among species prevents clear predictions about
ecosystem level impacts of acidification. Kroeker et al. (2011) used shallow water
CO2 vents as a model system to examine ecosystem responses to acidification in
rocky reefs. They found fewer taxa, reduced taxonomic evenness, and lower biomass
in low pH zones. However, the number of individuals did not differ, suggesting that
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there is compensation via population increases of acid-tolerant taxa. The trophic
structure shifted to fewer trophic groups and dominance by generalists, suggesting
a simplification of food webs.

Polluted Sites

Blue mussels, M. edulis, were exposed to dredged material from a polluted site,
Black Rock Harbor, Connecticut (US) at 0–10 mg l�1 of suspended sediment
(Nelson 1987). At >1.5 mg l�1 mussels showed reduced scope for growth and shell
growth. Exposure in the field to lower concentrations of dredged material produced
no noticeable effects.

8.3.3 Fishes

There have been far fewer papers studying effects of contaminants on bone
development in fishes. Of those studies that have been done, many are on freshwater
species.

Metals

Lead has particular toxicity causing weakened bones in fishes, but this has been
seen primarily in fresh water systems where the pH is low, allowing more Pb to be
dissolved and bioavailable to fish (Hamilton and Haines 1989).

Organics

After a spill of the pesticide kepone in the James River Virginia, effects on the
skeletal system were seen in spot (Leiostomus xanthurus), croaker (Micropogonias
undulatus), and black drum (Pogonias cromis), which had shortened vertebral
columns and “broken back” syndrome due to vertebral fractures (Davis 1997).
This could be demonstrated in the laboratory (Couch et al. 1979) with kepone, as
well as other compounds such as trifluralin, dibutylphthalate, toxaphene, PCBs, and
toxaphene (Karen et al. 1998, 2001).

Striped bass (Morone saxatilis) from estuaries along the East Coast were
examined for body burdens of selected contaminants and bone strength (vertebral
mechanical properties) (Mehrle et al. 1982). Fish from the Hudson River, the
most polluted site, had the weakest vertebrae. PCBs were the most prevalent
contaminant. Authors proposed a mode of action involving competition for vitamin
C between collagen in bone and MFOs (mixed-function oxidases) that detoxify the
contaminants. The competition for vitamin C causes a decrease in bone vitamin C
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and reduces collagen content, with an increase in bone minerals and the ratio of
minerals:collagen that renders the backbone more fragile. Sea bass (Dicentrarchus
labrax) were exposed to the soluble fraction of light cycle oil (1,136 ng l�1) for
7 days which did not affect the frequency and severity of vertebral abnormalities,
but decreased mineralization of vertebrae in a reversible way, indicating that it is an
early stress indicator (Danion et al. 2011).

8.3.4 Other Taxa

Foraminifera

Foraminifera are single-celled protists with a calcified spiral shell. Prazeres et al.
(2011) investigated effects of Zn in the symbiont-bearing foraminifer Amphistegina
lessonii. Forams were acutely (48 h) exposed to dissolved Zn (9.5–93.4 �g Zn l–1).
Many individuals showed white spots and/or dark-brown areas in the test after
24 and 48 h, with a positive correlation between this endpoint and dissolved Zn.
Increases in lipid peroxidation and metallothionein-like protein were observed,
particularly in pale/partly-bleached individuals. Denoyelle et al. (2012) developed
a chronic bioassay by incubating forams for 30 days in seawater with Cd, fuel
Oil #2, or drilling muds. Responses included pseudopodal activity and number
of newly built chambers. Experiments were conducted in a solution of calcein in
seawater, so that foraminiferal tests with newly added chambers could be seen by an
epifluorescence microscope. The forams had a strong response to incubation with
high concentrations of all tested pollutants.

Not surprisingly, acidification has negative effects on foram shells. McIntyre-
Wressnig et al. (2013) assessed effects of elevated pCO2 on the survival, fitness,
shell microfabric and growth of Amphistegina gibbosa, a symbiont-bearing, benthic
coral-reef species that precipitates low-Mg calcite tests. Specimens were cultured
in controlled pCO2 (ambient, 1,000 ppm by volume [ppmv], and 2,000 ppmv) for
6 weeks. Fitness and survival were not affected. While test growth was not affected
by elevated pCO2, areas of dissolution were observed in small, well defined patches
distributed over the whole test surface. Similar dissolution was observed in offspring
produced in the 2,000 ppmv pCO2 treatments.

Echinoderms

Ossicles of the sea urchin Echinus acutus and the sea star Asterias rubens were stud-
ied in stations along a metal contamination gradient. Ossicles with major mechanical
functions – sea urchin spines and sea star ambulacral plates – were analyzed for
metals and mechanical properties. Sea star plates were more contaminated by Cd,
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Pb, and Zn than sea urchin spines, and their stiffness and toughness decreased in the
most contaminated station (Moureaux et al. 2011). This was attributed either to the
incorporation of metals in the calcite lattice and/or to deleterious effects of metals
during skeletogenesis.

Ries et al. (2009) tested various marine organisms under different pCO2 levels
and found that in purple sea urchins (Eucidaris tribuloides) net calcification in-
creased relative to the control under intermediate pCO2 levels (605 and 903 mg l�1),
and then declined at the highest pCO2 level (2,856 mg l�1), and spines deteriorated.
Urchins accrete shell that is covered by an external organic layer, which may give
them more resilience to elevated pCO2 than species producing shell that is directly
exposed to ambient water. Wood et al. (2008) found that the brittle star, Amphiura
filiformis, increased its rate of metabolism and ability to calcify to compensate
for increased seawater acidity. However, the up-regulation of metabolism and
calcification, potentially ameliorating some of the effects of increased acidity, came
at a substantial cost, namely muscle wastage.

Corals

Organics

Jackson et al. (1989) and Guzmán et al. (1994) studied effects of a Panamanian
oil spill on injury, growth, and regeneration of corals over 5 years. The spill
initially caused bleaching, tissue swelling, mucus production, and dead areas, even
in subtidal reefs that had not been in contact with the oil. Corals from heavily
oiled reefs had higher levels of injury, faster regeneration but slower growth.
Hydrocarbons in reef sediments were correlated with the degree of injury and
negatively correlated with growth (Fig. 8.6). The probable cause of persistently
high injury was chronic exposure to sediments mixed with partially degraded oil
that were exported from mangroves onto reefs. Injury resulted in a reallocation of
resources to regeneration and decreased investment in fecundity and growth. There
was no evidence of coral recovery 5 years after the spill.

Shafir et al. (2007) used a “nubbin assay” on coral fragments to evaluate
short- and long-term impacts of dispersed oil from six commercial dispersants,
the dispersants themselves, and water-soluble-fractions (WSFs) of Egyptian crude
oil, on two branching corals, Stylophora pistillata and Pocillopora damicornis.
Survival and growth of nubbins were recorded for up to 50 days after a single,
24 h exposure to various concentrations. Manufacturer-recommended dispersant
concentrations were highly toxic and caused mortality for all nubbins. Dispersed
oil and the dispersants were significantly more toxic than crude oil WSFs. As corals
are particularly susceptible to dispersants and dispersed oil, authors felt their results
rule out the use of dispersants near coral reefs.
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Fig. 8.6 Siderastrea siderea and Porites astreoides. Relation between growth rates and oil in reef
sediments in 1986 and 1988. Symbols connote specific reefs (Reprinted from Guzman et al. 1994:
239, courtesy Inter-Research)

Ocean Acidification/Climate Change

Corals are particularly sensitive to effects of climate change and acidification, and it
is predicted by some that within decades the rates of reef erosion will exceed rates of
accretion throughout much of the tropics and subtropics. In addition to acidification
reducing calcification, rising temperatures trigger bleaching, the loss of symbiotic
microalgae from the coral, doubly stressing the corals. Loss of corals reduces habitat
for associated reef species and the whole reef community can be degraded. However
some reef species may benefit from weakened coral skeletons; bioeroding sponges
such as Cliona orientalis normally erode coral skeletons. Wisshak et al. (2012)
found a clear relationship between the pH of the seawater and the bioerosion rate
of the sponges. Thus, with increasing ocean acidification corals will be exposed to
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a double stress: calcification will be more difficult, and existing skeletons will be
weakened more by bioerosion.

Pandolfi et al. (2011) reviewed historical data on past climate change and found
that of the five major episodes of severe “reef crises,” four coincided with periods of
ocean acidification. However, there is considerable variation among different types
of corals, with some being much more resistant than others. An inventory of coral
growth from Pacific Panama shows that declines have occurred in some, but not all
species (Manzello 2010). Growth declined significantly in the most important reef
builder of the eastern tropical Pacific, Pocillopora damicornis, by nearly one-third
from 1974 to 2006. The rate of decline in skeletal extension for P. damicornis from
Pacific Panama (0.9 % year�1) was comparable to Porites in the Indo-Pacific over
the past 20–30 years (0.89–1.23 % year�1). Branching pocilloporid corals show
increased tolerance to thermal stress, but appear to be very susceptible to OA. In
contrast, the massive pavonid corals are relatively tolerant to both thermal stress
and to OA.

Ries et al., (2010) investigated impacts of OA on the temperate coral Oculina
arbuscula by rearing colonies for 60 days in chambers bubbled with air-CO2

gas mixtures of varying pCO2. Measurement of calcification and linear extension
revealed that skeletal accretion was minimally impaired; the corals continued
accreting new skeletal material, although at reduced rates. Correlation between rates
of linear extension and calcification suggests that reduced calcification resulted
from reduced aragonite accretion, rather than from dissolution. Accretion of pure
aragonite under each condition discounts the possibility that corals will begin
producing calcite, a less soluble form of CaCO3, as oceans acidify. The corals’
nonlinear responses and their ability to accrete new skeletal material suggest that
they can control the biomineralization process.

Calcification was measured in the Mediterranean cold-water scleractinian
coral (CWC) Madrepora oculata in sea water reduced or enriched in pCO2

(Maier et al. 2012). Calcification rates were the same for ambient and elevated
pCO2 (404 and 867 �atm) with 0.06 ˙ 0.06 % day�1, while calcification was
0.12 ˙ 0.06 % day�1 when pCO2 was reduced to its pre-industrial level (285
�atm), suggesting that present-day CWC calcification in the Mediterranean Sea has
already drastically declined by 50 % due to OA.

Physiological data and models of coral calcification indicate that corals utilize
a combination of seawater bicarbonate and respiratory CO2 for calcification, rather
than seawater carbonate. However, a number of investigators attribute effects of
experimental acidification by CO2 or hydrochloric acid additions to a reduction
in seawater carbonate ion concentration and thus aragonite saturation state (Jury
et al. 2010). Thus, there is a discrepancy between the physiological and geochemical
views of coral biomineralization. Furthermore, not all calcifiers respond negatively
to decreased pH or saturation state. Madracis corals responded strongly to variation
in bicarbonate concentration, but not consistently to carbonate concentration, arago-
nite saturation state, or pH. Corals calcified at normal or elevated rates under low pH
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(7.6–7.8) when the seawater bicarbonate was above 1,800 �m. Conversely, corals
incubated at normal pH had low calcification rates if the bicarbonate concentration
was lowered.

There may be differences in the energetic costs of calcification among different
corals. Pandolfi et al. (2011) stated that corals probably utilize all forms of seawater
carbon, using enzyme and proton pumps to convert CO2 and HCO3

� to carbonate
ions for rapid calcification, but this process is energetically costly; well-nourished
corals are better equipped to do this in a high CO2 environment. However, poorly
nourished or energetically depleted corals (including bleached ones) are more
sensitive to acidification. Evolutionary adaptation and phenotypic plasticity in
thermal tolerance may also buffer populations of corals, as will be discussed further
in Chap. 11.

The role of zooxanthellae was further investigated by Holcomb et al. (2012) in
Astrangia poculata. Elevated pCO2 appeared to have a similar effect on calcification
whether or not zooxanthellae were present at 16 ıC. However, at 24 ıC, corals
spawned and there was a sex difference in response. Females exposed to elevated
pCO2 had calcification rates 39 % lower than females at ambient pCO2, while males
showed a non-significant decline. The increased sensitivity of females may reflect
a greater investment of energy in reproduction. Thus, sex and spawning affect the
sensitivity to acidification.

Thresher et al. (2011) examined the distribution and skeletal characteristics of
coral taxa along a natural deep-sea concentration gradient on seamounts of SW
Australia. Carbonate undersaturation had little effect on the depth distribution,
growth or skeletal composition of live scleractinians or gorgonians, with corals
growing, often abundantly, in waters as much as 20–30 % under-saturated. Evidence
for an effect of acidification on the accumulation of reef structure was not
clear. Abundant old scleractinian skeletons were present well below the aragonite
saturation horizon, although this might have been the result of ferromanganese
deposition on exposed skeletons.

The exact responses of coral reefs to pH changes are uncertain. Naturally low
pH (6.70–7.30) groundwater normally discharges at localized submarine springs at
Puerto Morelos, Mexico, and gives insight into potential long term responses of
coral ecosystems to low pH. Crook et al. (2012) found species richness and colony
size declined with increasing proximity to low-pH water. Iguchi et al. (2012) found
that the massive coral, Porites australiensis decreased calcification and fluorescence
yield (reflecting photosynthesis) in acidified seawater, but that zooxanthellar density
was unchanged, unlike in Acropora species. Thus responses are quite variable
among different corals.

A compilation of studies by Edmunds et al. (2012) showed great variation in
calcification as a function of pH, [HCO3

�], and [CO3
2�], and concluded that studies

of the effects of OA on corals need to pay closer attention to reducing variance in
experimental outcomes to achieve stronger synthetic capacity; coral genera respond
in dissimilar ways to pH, [HCO3

�], and [CO3
2�]; and calcification of massive

Porites spp. is relatively resistant to short exposures of increased pCO2, similar to
that expected within 100 years.

http://dx.doi.org/10.1007/978-94-007-6949-6_11
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Coccolithophores/Calcareous Algae

Coccolithophores are phytoplankton with calcified tests, and are susceptible to OA.
A significant effect of pCO2 and temperature on calcification was found by De
Bodt et al. (2010) on Emiliania huxleyi. Coccosphere particles were smaller at
higher temperature and CO2. The number of well-formed coccoliths decreased with
increasing pCO2 but temperature did not affect morphology. In natural ecosystems,
there is a shift in species composition from strongly to weakly calcified species
and strains. As OA increases, species that have to invest more energy to form their
calcite skeleton may be displaced (Beaufort et al. 2011). However, in the coastal
zone of Chile, where currently acidic conditions prevail (pH 7.6–7.9 instead of
8.1 on average), highly calcified individuals were found; a strain of E. huxleyi
has evolved there that is resistant to acidification. Furthermore, Smith et al. (2012)
studied coccolithophore morphology in the Bay of Biscay and found seasonality in
the morphotypes of E. huxleyi, the most abundant species. While pH and CaCO3

saturation are lowest in winter, the E. huxleyi population shifts from <10 %
(summer) to >90 % (winter) of the heavily calcified form. The finding that the most
heavily calcified form dominates under acidic conditions is contrary to the earlier
predictions and raises questions about responses of coccolithophores to high pCO2.

Larger calcareous algae may also be affected by ocean acidification. Price et al.
(2011) investigated potential effects on growth, calcification and photophysiology
of two species of reef macroalgae, and found Halimeda opuntia had net dissolution
and 15 % reduction in photosynthetic capacity, while H. taenicola did not calcify
but did not alter its photophysiology. The different responses of the two species
may be due to anatomical and physiological differences and could represent a
future shift in their relative dominance. Ries et al. (2009) found that calcifying
red algae (Neogoniolithon) grew better at 600 mg l�1 than at 300 mg l�1CO2,
but exhibited reduced calcification at higher pCO2 levels. Johnson and Carpenter
(2012) investigated effects of elevated pCO2 and temperature on calcification of
Hydrolithon onkodes, a coralline alga, and subsequent effects on susceptibility to
grazing by sea urchins. H. onkodes was exposed for 21 days to a combination of
pCO2 (420, 530, 830 �atm) and temperature (26, 29 ıC). They found increased
calcification in moderately elevated pCO2, similar to Ries et al. (2009), and reduced
calcification at higher p CO2. There was a trend for highest calcification at ambient
temperature. When H. onkodes was exposed to the sea urchin Echinothrix diadema,
grazing removed 60 % more algae grown at high temperature and high pCO2 than
at ambient temperature and low pCO2. The increased susceptibility to grazing
was considered early evidence of the potential for cascading effects of OA and
temperature on coral reef ecosystems. However, the possibility that feeding by
E. diadema might also be impaired after spending 21 days in these conditions did
not seem to be considered.

Since calcifying algae are impaired by acidification, they can be outcompeted
by non-calcifying species. Hofmann et al. (2012) examined Corallina officinalis
(calcifying) and Chondrus crispus (noncalcifying) and found an interactive effect of
CO2 concentration and exposure time on growth rates of C. officinalis. Community
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structure changed, as Chondrus crispus cover increased in all treatments (385, 665,
and 1,486 �atm pCO2) while C. officinalis cover decreased in both elevated-pCO2

treatments.

8.4 Carcinogenesis

Cancer is a developmental process gone awry – it is uncontrolled growth of cells.
Normal cells multiply when the body needs them, stop dividing when growth is
complete, and die when no longer needed. Cancer occurs when cells divide and grow
uncontrollably, forming malignant tumors or neoplasms, which may invade nearby
parts of the body. The cancer may also spread to more distant parts of the body via
cells that break off and enter the blood to be transported to other organs. Not all
tumors are cancerous, however. Benign tumors do not grow uncontrollably, do not
invade neighboring tissues, and do not spread through the body. The development of
cancer is often associated with exposure to certain chemicals, termed carcinogens,
in both humans, and marine animals.

8.4.1 Mollusks

A number of laboratory and field studies have associated environmental chemicals
with neoplasms in shellfish (Yevich and Barszcz 1977). The soft shell clam Mya
arenaria from chronically oil-polluted sites had elevated levels of gonadal and
hematopoeitic neoplasms. Similar findings were seen in soft shell clams from an oil
spill site in Massachusetts (Brown et al. 1977), in Macoma balthica from areas of
Chesapeake Bay (Christensen et al. 1974), and others (Sindermann 1979). Oysters
(C. virginica) developed neoplasms when exposed in the laboratory or field to
contaminated sediment from Black Rock Harbor (BRH), Bridgeport, Connecticut
(Gardiner et al. 1991). Neoplasia was seen after 30- and 60-days laboratory exposure
to a 20 mg l�1 suspension of BRH sediment with postexposure for 0, 30, or 60 days.
Composite tumor incidence was 13.6 %. Tumors were most prevalent in the renal
epithelium, followed by gill, gonad, gastrointestinal, heart, and neural tissue; tumors
did not regress when oysters were placed in clean sediments. Gill neoplasms devel-
oped in oysters deployed for 30 days at BRH and 36 days at a BRH dredge material
disposal area, and kidney and gastrointestinal neoplasms developed in oysters caged
40 days in Boston Harbor. Exposed oysters accumulated high concentrations of
PCBs, PAHs, and chlorinated pesticides. Gonad tumors and siphon anomalies were
seen in Mya arenaria at sites in New England with widespread use of the herbicides
Tordon 101, 2,4-D,2,4,5-T, and other agrochemicals (Gardner et al. 1991).
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The general hypothesis has been that cancers are caused by chemical pollutants.
However, when the occurrence of mollusk neoplasms was reviewed by Mix (1988),
who examined neoplastic diseases in shellfish from around the world, results
supporting this hypothesis were not prevalent in the literature. Some studies found
shellfish with no neoplasms in highly polluted environments and others found
neoplastic diseases in pristine areas. Mix concluded that more research is needed
to better understand the association between chemicals and neoplasia in shellfish.
However, there has been little research since then to lead to this understanding.
Wolowicz et al. (2005) thought pollution by carcinogens was implicated in the
Gulf of Gdańsk, southern Baltic Sea. A higher prevalence of mollusk tumors was
observed in infaunal deposit/suspension feeders compared to epifaunal suspension-
feeders, providing new ecological insights into the genesis of the neoplasia. They
discussed a relationship between sediment factors and the incidence of neoplasia
across a range of environmental conditions.

8.4.2 Fishes

There have been numerous reports of liver tumors in fishes from contaminated
sites around the world. Fish in the laboratory can develop tumors after treatment
with a variety of chemical carcinogens (Couch and Harshbarger 1985). The field
was reviewed by Bauman (1992) who concluded that some types of tumors, but
only neoplasms that have chemicals as a portion of their etiology, would be
useful in assessing ecosystem health. Lesions which may fit these criteria include
liver neoplasms and skin lesions in a variety of primarily benthic fishes, and
neural lesions in various drum species and butterflyfish. There is a correlation
with habitat degradation and length of time of residence in a contaminated site.
Bottom-dwelling fishes in contact with contaminated sediments appear to be most
vulnerable. Winter flounder (P. americanus) from degraded east coast estuaries had
tumors (Murchelano and Wolke 1985). Winter flounder fed BRH-contaminated (see
above) blue mussels contained xenobiotic chemicals analyzed in mussels (PCBs,
PAHs, chlorinated pesticides), and developed renal and pancreatic neoplasms and
hepatic neoplastic precursor lesions, demonstrating trophic transfer of sediment-
bound carcinogens up the food chain (Gardiner et al. 1991). Hepatic lesions in
fish from Boston Harbor were correlated with chlorinated hydrocarbons in the liver
(Moore et al. 1996). They have been decreasing over time along with the level of
pollution in Boston Harbor (Fig. 8.7).

Tumors in West Coast flatfish (English sole, Parophrys vetulus) were also
associated with contaminants (Malins et al. 1984, 1988); Sole with the highest
frequencies of liver neoplasms were from the urban Duwamish Waterway (16 %)
and Everett Harbor (12 %), while frequencies in sole from other areas ranged
from 0 to 5.5 %. Sediment PAH was significantly correlated with tumors. Metals
correlated with total (including non-neoplastic) hepatic lesions. Myers et al. (1990)
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Fig. 8.7 Cumulative graph of winter flounder lesion prevalence 1987–1993 from Deer Island,
Boston Harbor. Mean length and age for each year are shown as line plots to indicate between-
year comparability of samples (Reprinted from Moore et al. 1996: 464, courtesy Elsevier
Publishing Co.)

reported that liver lesions of English sole in Puget Sound represent morphologically
identifiable steps leading to the development of neoplasms, similar to carcinogenesis
in rodents. The view that these lesions are caused by exposure to chemicals
in Puget Sound is based on statistical associations between levels of aromatic
hydrocarbons (AH) in sediment and prevalence of lesions, the contribution of AHs
in accounting for the variability in neoplasm prevalence in a regression model,
correlations between lesions and levels of metabolites of aromatic compounds in
bile, and experimental induction of lesions in fish injected with extracts of Puget
Sound sediments. These induced lesions were structurally identical to those seen
in wild fish from the same site. Since remediation (sediment capping) of highly
contaminated areas, there has been a trend of decreasing lesions in English sole
(Myers et al. 2008). Lesion risk has been consistently low (<0.20), showing that
sediment capping was effective in reducing AH exposure and cancers in resident
flatfish.

The Atlantic tomcod, Microgadus tomcod, is a bottom-dwelling anadromous
species in estuaries including the Hudson River (HR), which contains high con-
centrations of sediment-bound contaminants including PCBs and PAHs. The HR
population was reported to have a high level of liver tumors (up to 90 % in 2-
year old fish) compared to only 5 % in fish from other estuaries (Dey et al. 1993).
These tomcod have elevated levels of CYP1A mRNA, hydrophobic DNA adducts,
and elevated PCBs in their tissues, suggesting that DNA damage by carcinogens
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Fig. 8.8 Gross liver pathology and normal histology from mummichog from (a) reference site
(GB gall bladder), (b) liver of fish from Station 3 exhibiting tan focal lesions (c) liver of fish from
Station 3 exhibiting many focal lesions and one 8 mm diameter hepatocellular carcinoma (arrow).
(d) normal hepatocellular structure of fish from reference site (Reprinted from Vogelbein et al.
1990: 5980, courtesy American Association for Cancer Research)

is occurring (Wirgin et al. 1994). Even the highly tolerant killifish (mummichog)
Fundulus heteroclitus, develops liver tumors if the environment is toxic enough.
Fish from a creosote-contaminated site in the Elizabeth River, VA (sediments at
2,200 mg kg�1 dry wt PAHs from a wood treatment facility) had liver tumors
(Figs. 8.8 and 8.9) in about one third of the population (Vogelbein et al. 1990).
There has been a recent report of skin cancer in fish from Australian waters
in the area with the “ozone hole” and thus high exposure to UV light. Sweet
et al. (2012) found extensive melanosis and melanoma in wild populations of the
commercially-important coral trout, Plectropomus leopardus. The syndrome was
similar to previous studies associated with UV induced melanomas in the platyfish,
Xiphophorus. Relatively high prevalence rates (15 %) were found at sites in the
Great Barrier Reef. Authors concluded that in the absence of microbial pathogens
and given the strong similarities to UV-induced melanomas in platyfish, the likely
cause was environmental exposure to UV radiation. Further studies are needed to
establish the distribution of the syndrome.
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Fig. 8.9 Hepatocellular carcinomas in mummichogs from creosote-contaminated site. (a) car-
cinoma with invasive border, (b) higher magnification of carcinoma (c) less well differentiated
hepatocellular carcinoma (d) less well differentiated hepatocellular carcinoma with epithelial-
appearing tumor cells (e) poorly differentiated hepatocellular carcinoma (f) poorly differentiated
anaplastic hepatocellular carcinoma with epithelial-appearing cells (Reprinted from Vogelbein
et al. 1990: 5983, courtesy American Association for Cancer Research)
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8.5 Smoltification

In salmonid fishes that breed in streams, larvae hatch out and live in freshwater for a
period of time and then undergo further developmental processes to prepare them for
their seaward migration and life in salt water. Newly hatched larvae (alevins) remain
in the gravel and utilize the yolk sac as they grow into the fry stage, at which point
they emerge from the gravel and feed on insects and zooplankton. As they grow to
about 10 cm long, they utilize deeper water and become known as parr, which can
remain in freshwater for several years. Then they become smolts, when they begin
to prepare for downstream migration. An essential part of this development involves
osmoregulation and development of gill enzymes carbonic anhydrase (CA) and
NaCKC-ATPase. The regulation of smoltification requires environmental factors
such as photoperiod and temperature, and endogenous factors, namely hormones.
Thyroid hormones and growth hormone peak during smoltification. Treatment with
either hormone can stimulate some of the changes associated with smoltification.
Thus, these changes are susceptible to some endocrine disruptors. Smolts have a
limited period of readiness (“physiological smolt window”) for entering salt water,
and the timing of sea water entry can be adversely affected by pollution.

8.5.1 Metals

Unlike seawater, freshwater pH is normally close to neutral, around 6.5–7.0. In
freshwater systems affected by acid rain, pH decreases and aluminum is released
from sediments to which it is usually tightly bound and unavailable. Under these
conditions Al becomes toxic. Staurnes et al. (1993) exposed smolting Atlantic
salmon (Salmo salar) to acid water (pH 5 or pH 5 plus 50 �g Al l�1), which resulted
in osmoregulatory failure and mortality. Al strongly enhanced toxicity. Sensitivity
to low pH or low pH C Al exposure greatly increased when fish had developed
to seawater tolerant smolts. In Al-exposed fish, gill CA activity decreased. Gill
NaCKC-ATPase activity in control fish peaked in mid-May simultaneously with
development of seawater tolerance. Fish from both exposed groups had low seawater
tolerance and reduced NaC, KC-ATPase activity, which declined to 60 % in acid-
exposed fish and even lower in Al-exposed fish. Kroglund et al. (2007) exposed
1-year old hatchery reared S. salar smolts to water of pH 5.8 from 3 to 60 days.
Fish exposed to Lake Imsa water (pH > 6.5) acted as controls. Control fish had gill-
Al concentrations of 5–10 �g Al g�1 gill dry weight (dw), while Al-exposed fish
had gill-Al concentrations >20 �g Al g�1 gill dw prior to seawater release. Gill
NaC, KC-ATPase activity was depressed in all groups having >25 �g Al g�1 gill
dw. Following exposure, the smolts were released to monitor downstream migration
and ocean return rates. Return rates were reduced by 20–50 % in all Al-exposed
groups.
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8.5.2 Pesticides and PCBs

Mortensen and Arukwe (2006) studied effects of 1,1-dichloro-2,2-bis
(p-chlorophenyl) ethylene (DDE) on the thyroid and steroid-metabolizing system
in Atlantic salmon parr. Fish were exposed for 5 days to waterborne DDE and
thyroxine (T4), both singly and in combination. Thyroid-stimulating hormone
(TSH“), T4 deiodinase (T4ORD), thyroid receptors (TR’ and TR“), and insulin-
like growth factor type 1 receptor (IGF-1R) were analyzed. Results indicated that
DDE alters thyroid hormone–dependent genes and hepatic CYP3A and PXR levels,
demonstrating possible physiological and endocrine consequences from exposure
to endocrine-disrupting chemicals during smoltification.

Many investigators have examined effects of PCBs on smoltification. Folmar
et al. (1982) injected yearling coho salmon (Oncorhynchus kisutch) with 150 �g
kg�1 of Aroclor 1254 just prior to smoltification. Alterations in the normal devel-
opmental patterns of T4 were observed in PCB-injected fish. At sea-water entry,
one-half of each group (experimentals and controls) were put in seawater and the
other half into seawater with 700 �g l�1 No. 2 fuel oil. Significant mortalities were
observed in all treatment groups. Mortalities in the PCB-injected, fuel oil-exposed
fish appeared additive compared with PCB-injected-only or fuel oil-exposed-only
fish. Arctic charr (Salvelinus alpinus) were orally dosed with 0, 1, or 100 mg Aroclor
1,254 kg�1 body mass (High Dose, HD) in November (Jørgensen et al. 2004). They
were then held in freshwater until they smolted in June the next year when they were
transferred to seawater. HD charr had reduced plasma growth hormone, insulin-like
growth factor-1, and thyroxin and triiodothyronine titers during smoltification. The
hormonal alterations corresponded with impaired hyposmoregulatory ability, and
reduced growth rate and survival in seawater.

Lerner et al. (2007) examined effects of aqueous Aroclor 1254 (1 �g l�1 (PCB-1)
or 10 �g l�1 (PCB-10)) on Atlantic salmon after 21 days exposure either as
yolk-sac larvae or as juveniles just prior to the parr–smolt transformation. After
exposure, yolk-sac larvae were reared at ambient conditions for 1 year, until
smolting the following May. Juveniles were sampled immediately after exposure. At
smolting, prior exposure to PCB -1 as larvae did not affect behavior, while PCB-10
dramatically decreased preference for seawater. There were no long-term effects on
osmoregulation or hormones of fish exposed as larvae. Juveniles exposed to PCB-1
or PCB-10 showed a dose-dependent reduction in preference for seawater. Fish
treated with PCB-10 had a 50 % decrease in gill NaC, KC-ATPase. In addition,
plasma T3 was reduced 35–50 % and plasma cortisol 58 % in response to either
concentration. Thus, effects vary according to developmental stage. Exposure to
PCBs in freshwater can inhibit changes that occur during smolting, and reduce
marine survival.
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8.5.3 Contaminants of Emerging Concern (CECs)

Bangsgaard et al. (2006) exposed Atlantic salmon parr or pre-smolts to estradiol-
17“ (E2 conc.: nominal 500 ng l�1/actual 8–16 ng l�1) and tert-octylphenol (OP:
nominal 25 �g l�1/actual 4.5–6.5 �g l�1 and OP: nominal 100 �g l�1/actual
10–30 �g l�1) for 26 days in freshwater, and studied effects on parr-smolt transfor-
mation. Vitellogenesis was induced by all treatments, and elevated VTG levels were
still found 4–5 months after treatment. Smolting was impaired by E2 and OP-100
as judged by reduced gill NaC, KC-ATPase and reduced ability to regulate plasma
osmolality and muscle water content in 24-h seawater (SW) challenge tests during
smolting. Downstream migration was monitored by implanting passive integrated
transponder tags into smolts and placing them in a stream raceway. Downstream
movement was initiated in all groups, but E2 and OP-100 fish migrated at lower
frequency than controls, suggesting that xenoestrogens reduce physiological and
behavioral components of smoltification, even when exposure occurred several
months prior to smolting.

Madson et al. (2004) gave Atlantic salmon serial injections over 20 days of
2 �g/g body weight estradiol (E2), 120 �g/g nonylphenol (4-NP) in peanut oil or
peanut oil as control. After the last injection, fish were individually tagged. Two days
later 100 fish per group were released into a small stream. Migration was evaluated
by measuring arrival time at a trap downstream. Serum VTG levels increased
several-fold in both male and female E2- and 4-NP-treated fish. Overall, E2- and 4-
NP-treatment impaired smolting as judged by reduced gill NaC, KC-ATPase activity
and ’-subunit NaC, KC-ATPase mRNA level, reduced muscle water content and
increased mortality following 24 h SW-challenge. After release, control fish initiated
downstream migration immediately, with 50 % of them appearing in the trap within
10 days. E2- and 4-NP-treated fish appeared in the trap, with a delay of 6 and 8
days, respectively. The total number of fish reaching the trap was control (81 %), E2
(53 %), 4-NP (12 %), indicating that short-term exposure to environmental estrogens
impaired smoltification, survival, and downstream migration.

Keen et al. (2005) studied 4-week dietary exposure of coho salmon
(Oncorhynchus kisutch) to nonylphenol (4-NP) during the parr-smolt transfor-
mation. Doses varied between 0 (control) and 2,000 mg/kg after which fish were
transferred to sea water, when all groups were fed the control diet. Dietary treatment
of 4-NP did not influence growth or smoltification of coho salmon, a result that
conflicts to some extent with other reports (e.g. Madson et al., above) in which
deleterious effects of 4-NP were linked to disruption of the endocrine system.
Differences may be due to species, concentration, route of exposure, timing, or other
factors. There have not been studies of other types of CECs besides environmental
estrogens.
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8.5.4 Acidification

Effects of low pH were discussed in relation to Al, above. There have also been
studies of effects of low pH alone. Saunders et al. (1983) reared Atlantic salmon
(Salmo salar) at pH 6.4–6.7 (control) and 4.2–4.7, from Feb. to June, to assess
the effect on survival, growth, and smolting under rising (4–8.5 ıC) or relatively
constant (9.5–10.5 ıC) temperature. Survival was lower in low pH under both
temperature regimes. Neither group in low pH gained weight while both control
groups did. Parr–smolt transformation, as indicated by salinity tolerance and gill
NaC, KC-ATPase activity, was impaired by low pH. Controls increased their
tolerance to 35 psu salinity between March and May but those in low pH did
not. ATPase activity was greater in controls in rising than in constant temperature.
Plasma chloride and sodium levels were reduced at low pH, indicating impaired
ionic regulation in freshwater. Thyroid hormones (T3 and T4) gave no clear
indication of effects, but smoltification did not proceed normally at low pH.

Haya et al. (1985) found effects of low pH on energy metabolism, an indirect
way of affecting smoltification. Juvenile S. salar were held for 76 days at pH 4.7
during the time when the final stages of smoltification normally occur. Controls at
pH 6.5 had significant increases in weight, length and liver somatic index which
were not seen in fish at low pH. After 15 days, ADP and glucose levels were higher
and adenylate energy charge (AEC), and glycogen lower in muscles of fish at low
pH; differences were maintained until the end of the experiment. ATP and total
adenylate concentrations in muscle were lower after 62 days in low pH. Fish at low
pH decreased their food intake, reducing growth.

8.6 Conclusions

This chapter has focused on developmental processes that take place in juvenile or
adult animals, and the research findings have shown that developmental processes
remain sensitive to contaminant effects throughout life. Effects on growth per se
have been studied for a long time, and in many cases, reductions in growth can
be traced back to reduced food intake (see Chap. 2). Reduced limb regeneration
in crustaceans can be in some cases attributed to endocrine disruption of molting
hormones, and impaired smoltification in salmon can also be endocrine-related. Car-
cinogenesis was a major research area in previous years, but studies have diminished
along with much of the gross contamination that produced cancers in highly polluted
systems. Reports of tumors in both fish and mollusk populations at contaminated
sites have decreased considerably over the past 20 years. This may reflect improving
environmental conditions due to reduction of contaminants in effluents and cessation
of dumping of wastes into the ocean. However, it may also be that this type of
research is not as popular as it once was. Some reports suggest that exposures
to some types of contaminants are increasing (Hanson et al. 2009), probably due

http://dx.doi.org/10.1007/978-94-007-6949-6_2


References 289

to increased rain and runoff from land. Recently, considerable attention is being
devoted to effects of ocean acidification on deposition of calcareous structures
(shells, bones) in a variety of marine species, with mollusks and corals being the
taxa that appear to be at greatest risk.
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Chapter 9
Behavior

Abstract Behavior is a particularly sensitive measure of an organism’s response
to stresses, including environmental contaminants. Noticeable changes in behavior
can be found at low concentrations of chemicals, often lower than concentrations
affecting biochemical biomarkers. Since behavior is a link between physiological
and ecological processes, it is a particularly important type of response. In addition
to being sensitive, behavioral changes are likely to occur in nature and can have
ecological effects at the population and community level. While much early research
focused on avoidance, tremors, or coughs, complex behaviors such as predator/prey
interactions, burrowing, reproductive, and social behaviors are much more relevant
to ecological impacts.

Keywords Activity • Aggression • Burrowing • Migration • Neurotransmitter •
Predator/prey • Schooling • Sense organs • Thyroid

9.1 General Activity

Reduced activity is very common in response to a variety of stresses. Contaminants
may be neurotoxic, or may increase the metabolic burden as an organism attempts
to detoxify or excrete the toxicant, depleting its energy reserves. Toxicants may
reduce oxygen-carrying capacity of gills, which could also lead to reduced activity,
which may be temporary or long lasting. Some toxicants produce hyperactivity.
Both decreased and increased activity levels may lead to increased predation risk,
either by not escaping quickly enough or being more conspicuous and attracting a
predator’s attention.
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9.1.1 Crustaceans

Many behavioral observations have been done on both larval and adult crustaceans,
including amphipods, mysids, copepods, and decapods over many years.

Metals

Studies of deleterious effects of low concentrations of metals on behavior of larval
crustaceans go back to the early 1970s, with the Vernberg group leading the way.
Fiddler crab (Uca pugilator) zoeae exposed to 0.018 mg l�1 HgCl2 had reduced
activity and erratic spiral swimming, swimming on their sides or darting up from the
bottom then settling slowly back down (DeCoursey and Vernberg 1972). Metabolic
rate (O2 consumption) was also depressed. Mud crab, Eurypanopeus depressus
zoeae were exposed to 10 �g Cd l�1 or 1.8 �g Hg�1. Cd increased swimming
rates of the later stages, while Hg depressed swimming rates of the early stages
(Mirkes et al. 1978). Nauplius larvae of barnacles Balanus improvisus increased
swimming speeds at 20–80 �g Cu l�1, but after 72 h speed was depressed in all
concentrations (Lang et al. 1981). This may be an example of hormesis. Phototactic
behavior (swimming toward the light) was also altered at higher concentrations.
Similarly, exposure to Cd at 50–100 �g l�1 increased swimming speed initially but
subsequently depressed it at 100 �g l�1. Sullivan et al. (1983) found that swimming
speed of nauplii of the copepod Eurytemora affinis was affected by Cu >10 �g l�1;
they reduced their escape responses, and were more rapidly captured by larval
striped bass.

Adult crustaceans have also been the subject of many behavioral investigations.
Roast et al. (2001) studied effects of a 7 day exposure to 0.5 and 1.0 �g l�1 Cd2C
on swimming of the mysid, Neomysis integer in a flume. The lower concentration
caused fewer mysids to move into the current (normal behavior) at low current
speeds. Some animals maintained their position while others were swept away by
the current. At the higher concentration more mysids spent more time up in the
water column, which could displace them from their optimum habitat in an estuary.
Reduced locomotion was seen in grass shrimp exposed to 0.56 but not to 0.3 mg l�1

Cd (Hutcheson et al. 1985). Wallace and Estephan (2004) found that while control
amphipods (Gammarus lawrencianus) were active 61 % of the time, horizontal
swimming decreased to only 0.3 % of the time in 125 and 500 �g Cd l�1. Vertical
swimming was also impaired, with significant decreases at 12 and 62 �g l�1.
Vertical swimming was more sensitive, presumably because of greater energetic
costs to swim upwards.

When grass shrimp (P. pugio) were in reduced DO (4.6 mg l�1) they reduced
their respiration rate; they reduced their activity level at 1.8 mg l�1, which is an
adaptive response (Hutcheson et al. 1985). When Cd was present, respiration was
reduced even further and locomotion was reduced at 0.56 mg l�1 Cd. Sandhopper
(Talitrus saltator) activity varied in a dose-dependent manner in Cu and Hg (dosed
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sand with Hg 0.33 and 0.66 mg kg�1, Cu 10 and 20 mg kg�1 and Cd 0.5 and
1.0 mg kg�1) (Ugolini et al. 2012). In Cd circadian activity patterns (with controls
more active in the dark) disappeared. Pre-exposure to metals induced a decrease of
movement. The locomotor activity of sandhoppers maintained for 48 h in contam-
inated seawater (with different concentrations of Hg, Cu and Cd) and subsequently
tested in uncontaminated sand was significantly affected by pre-exposure to trace
metals. Animals avoided sand with high concentrations of Hg and Cu.

Organics

Oil

Both hyper- and hypoactivity of amphipods were seen after oil exposure. Kienle
and Gehrhardt (2008) investigated short-term effects of the water accommodated
fraction (WAF) of weathered crude oil on behavior of the amphipod Corophium
volutator. Exposure to 25 and 50 % WAF caused hyperactivity, while 100 % WAF
led to hypoactivity. In a sediment exposure with 100 % WAF, there was a tendency
toward hyperactivity. In a pulse experiment, hyperactivity appeared after 130 min
exposure to 50 % WAF. It is possible that non-polar narcosis was involved in these
responses.

Pesticides

Organophosphates inhibit acetylcholinesterase (AchE), which normally inactivates
the neurotransmitter acetylcholine, and thus may be expected to affect movement.
Two organophosphates, methyl parathion at 0.5 �g l�1 and phorate at 0.1 �g l�1

reduced the swimming stamina of the mysid Mysidopsis bahia (Cripe et al. 1981).
Fiddler crab Uca minax zoea exposed to carbaryl at 1.0, 0.5 and 0.1 mg l�1 had a
rapid loss of positive phototaxis (normal movement towards light) after 2 h, followed
by abnormal swimming, described as twitching of the body with rapid vibrations of
the maxillipeds (Capaldo 1987). Larvae then ceased horizontal swimming which
preceded death. It appears that in this study the behavioral changes are not true be-
havioral effects but “death throes.” Since organophosphates and carbamates inhibit
AChE, its inhibition and changes in feeding and locomotion were investigated in the
amphipod Gammarus fossarum during 96 h exposure to chlorpyrifos and methomyl
(Xuereb et al. 2009). Feeding and locomotor impairment were generally correlated
to degree of AChE inhibition (which was seen at 0.36 nM for chlorpyrifos),
suggesting that this underlies behavioral effects. However, in the shrimp Palaemon
serratus, swimming velocity was significantly reduced by deltamethrin, with a
lowest observed effect (LOEC) of 0.6 ng l�1, but AChE activity was increased
(Oliveira et al. 2012). On the other hand, lactate dehydrogenase (LDH) activity
increased in muscle of exposed prawns, showing that they required additional
energy, but were probably using it for detoxification rather than locomotion, since
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swimming speed was reduced. Decreased swimming speed was associated with
allocation of energy for detoxification instead of swimming.

Effects of fenitrothion on swimming velocity were determined in prawns
(P. serratus) exposed to 39–625 ng l�1 (Oliviera et al. 2013). A bioassay was
also developed to assess prawns’ ability to avoid the toxicant. Prawns exhibited
a significant inhibition of swimming velocity at concentrations of 313 ng l�1 and
avoided fenitrothion at 78 ng l�1, but not at 156 ng l�1. Impairment of locomotion
and avoidance behavior may lead to alterations at the population level.

Photobehavior of grass shrimp (P. pugio) larvae was altered after they had been
exposed as embryos to 0.3 �g l�1 of dimilin (diflubenzuron) (Wilson et al. 1985).
Exposed shrimp had strongly negative responses to high and low light intensity,
while controls had positive phototaxis at high light intensity. The depression of
positive phototaxis and increase in negative phototaxis was greatest at 0.5 �g l�1.
Reversals in phototactic responses were observed when embryos were exposed at
different stages of development. Altered phototaxis could alter the maintenance
of proper depth in the water column, which is important for larval retention in
an estuary. The swimming pattern and velocity of larval grass shrimp were also
altered by embryonic dimilin exposure (Wilson et al. 1987). Low concentrations
(0.3 �g l�1) increased swimming speed, while higher concentrations decreased it;
this may be a hormetic response. Larvae with higher exposure tended to be found
lower in the water column than controls.

CECs

Effects of serotonin and the antidepressant fluoxetine at 10 ng l�1 to 10 �g l�1

were studied on the amphipod Echinogammarus marinus (Guler and Ford 2010).
Phototaxis and geotaxis (responding to gravity, i.e. moving downward) increased in
a concentration-dependent manner with serotonin (Fig. 9.1), while fluoxetine had
its greatest effect at 100 ng l�1, which caused animals to spend more time higher in
the water column in the light, where they might be more susceptible to predation.
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9.1.2 Mollusks

Since benthic bivalve mollusks tend to have limited mobility, most studies have been
performed on larvae or on valve closing speeds of scallops. It is disappointing that
there are so few studies on cephalopods such as squids, which are active swimmers
or octopuses which are a frequent subject of study in behavior labs.

Metals

Valve closing speed of juvenile Catarina scallop (Argopecten ventricosus) exposed
to Cd (0.02, 0.1, 0.2 mg l�1), Cr (0.1, 0.5, 1.0 mg l�1) or Pb (0.2, 0.4 mg l�1)
and mixtures was studied by Sobrino-Figueroa and Cáceres-Martı́nez (2009). The
average closing speed was under 1 s in controls, but 2–3.6 s in Cd, 1.4–3.4 s in
Cr, 3–12 s in Pb, and 12–15 s in the mixtures. Thus all metals retarded closing. In
combination, effects of the metals appeared to be additive.

A dosage-sensitive relationship was seen for the loss and subsequent recovery of
locomotor response and chromatophore expansion in octopuses (Octopus joubini,
O. maya and O. bimaculoides) after exposure to mercuric chloride (Adams et al.
1988). For each species the 3-hour LC50 was 1,000 mg l�1.

Organics

All species of octopus tested (Octopus joubini, O. maya and O. bimaculoides)
showed a dosage-sensitive relationship for the loss and subsequent recovery of
locomotor response and of chromatophore expansion after exposure to ethylene
dibromide (EDB). For each species the 12-hour LC50 was 100 mg l�1 (Adams et al.
1988).

Contaminants of Emerging Concern

Fong and Molnar (2013) investigated effects of four antidepressants ffluoxetine
(“Prozac”), fluvoxamine (“Luvox”), venlafaxine (“Effexor”), and citalopram
(“Celexa”)g on adhesion to the substrate in five marine snails (Chlorostoma
funebralis, Nucella ostrina, Urosalpinx cinerea, Tegula fasciatus, and Lithopoma
americanum) representing three different gastropod families. All antidepressants
induced foot detachment in all snails in a dose-dependent manner. The lowest
observed effect concentrations were seen in Lithopoma in 43.4 �g l�1 fluvoxamine
and Chlorostoma in 157 �g l�1 venlafaxine. Latency to detachment was also dose
dependent, with the fastest times to detach in Chlorostoma and Lithopoma (7.33
and 13.16 min in 3.13 mg l�1 venlafaxine).
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Hypoxia

While normal levels of dissolved oxygen are �8 mg l�1, organisms can resist
somewhat lower levels. A general response to hypoxia is reduced respiration and
activity. Liu et al. (2011) found that larval respiration rates of the gastropods
Nassarius siquijorensis and N. conoidalis were reduced at 4.5 mg O2 l�1 and
swimming speed was reduced in 10-day old larvae exposed to <2.0 mg O2 l�1

for N. siquijorensis and <1.0 mg O2 l�1 for N. conoidalis, suggesting that the latter
species is more tolerant of low oxygen conditions.

Polluted Environment

A scallop “coughs” to expel feces and water from its central cavity; the friction
between the two valves makes a sharp crack as the valves quickly close. By using
submersible acoustic sensors (hydrophones), DiIorio et al. (2012) could record the
scallops’ (Pecten maximus) outbursts from up to 10 m away. They thought that the
sounds can serve as an early warning system for water quality.

9.1.3 Fishes

Swimming activity of fishes is impaired by exposure to many contaminants.
Swimming behavior is often used as an indicator of sublethal toxicity in fish
(Little and Finger 1990). Studies have been done measuring both swimming speed,
percentage of time swimming, and swimming stamina.

Metals

MeHg (10 �g l�1) decreased activity and swimming performance in mummichogs
(Weis and Khan 1990; Zhou and Weis 1998), gobies Pomatoschistus microps
(Viera et al. 2009), and Atlantic croaker. Alvarez et al. (2006) fed adult croakers
(M. undulatus) meHg-contaminated food for 1 month, induced spawning, and ana-
lyzed swimming speed and startle response of larvae. Maternally-transferred meHg
impaired these behaviors, which are considered survival skills (Figs. 9.2 and 9.3).

Cu can either increase or decrease activity, depending on the species and
concentration. Swimming velocity of silversides (Menidia menidia) increased after
a short exposure to 100 �g l�1 (Koltes 1985), but 50 �g l�1 reduced swimming
in the goby, Pomatoschistus microps (Viera et al. 2009). Scarfe et al. (1982)
found that 72 h exposure to 0.1 mg ml�1 Cu decreased activity in Atlantic
croaker (M. undulatus) and pinfish (Lagodon rhomboids) and increased activity of
sheepshead (Archosargus probatocephalus) and sea catfish (Ariopsis felus).
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Newly hatched F. heteroclitus larvae were exposed to 0.1, 0.3, or 1.0 mg l�1 Pb.
A reduction in spontaneous activity and swimming stamina was seen after 1 week,
but when larvae were returned to clean sea water for 4 weeks, behaviors were
no longer statistically different from controls, showing that effects were reversible
(Weis and Weis 1998).
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Organics

Oil

Juvenile coho salmon (Oncorhynchus kisutch) exposed for 48 h to the water
soluble fraction (WSF, at 75 % of the LC50 value) of Cook Inlet crude oil
showed reduced swimming activity, which was dependent on the concentration
and time of exposure (Thomas et al. 1987). When fish were transferred to clean
water, control activity levels were restored in 8 h. Authors suggested that oil
increases metabolism, which reduces the energy available for swimming. PAHs
(8 �g l�1 BaP), decreased locomotion in seabass, Dicentrarchus labrax (Gravato
and Guilhermino 2009). Although they occur as mixtures, little information exists
about the joint action of PAHs. In 4-day tests with juvenile gilthead seabream
(Sparus aurata) Goncalves et al. (2008) performed concentration-response analyses
for fluorene (FE), phenanthrene (PHE), and pyrene (PY). The single compounds and
the mixture produced dose-related changes in activity. For lethargy and swimming,
PY was the most potent (0.031 �M for swimming, 0.039 �M for lethargy) and FE
the least (0.29 �M for swimming, 0.26 �M for lethargy). Effects were additive ().
Changes in the number of lethargic fish were the most sensitive parameter.

To examine toxicological effects of heavy oil (HO), Kawaguchi et al. (2012)
performed embryonic exposure experiments and morphological and behavioral
analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs were exposed to
50 mg l�1 of HO for 8 days then transferred to clean seawater before hatching.
The hatched larvae were observed for their swimming behavior and morphology.
Exposed larvae appeared normal but exhibited an abnormal swimming pattern and
disorganized midbrain, which controls movement. These results suggest that HO-
exposed fishes develop abnormal brain structure, which alters normal swimming
behavior.

Chlorinated Organic Chemicals

Fingerman and Russell (1980) examined activity and neurotransmitters in Gulf
killifish Fundulus grandis after exposure to PCBs (Aroclor mixture 1,242 at
0.0004 %). After a 24-h exposure, significant increases in locomotor activity were
seen and norepinephrine (NE) and dopamine (DA) were lower than controls.
Average NE in controls was 2.5 �g g�1 which decreased to 0.6 in treated fish.
Average DA in controls was 0.9 �g g�1, which decreased to 0.4 in treated fish.
Similar increases in activity were seen in F. heteroclitus exposed to PCBs as
embryos (Couillard et al. 2011).
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Pesticides

Among the pesticides reducing swimming activity are fenitrothion and carbofuran
in juvenile European seabass (Dicentrarchus labrax) (Almeida et al. 2010). After
96 h exposure to >31 �g l�1 carbofuran, decreased swimming velocity was
seen (Hernández-Moreno et al. 2011) suggesting that the pesticide interfered with
neuronal function. Correlations between swimming velocity and cholinesterase
activity suggest that this enzyme may be related to the behavioral changes. Parental
exposure to DDT caused reduced activity in Atlantic croaker fry (Faulk et al. 1999).
Chlorpyrifos at 0.05 �g l�1 reduced swimming activity in coho salmon (O. kisutch)
(Sandahl et al. 2005). However, some pesticides increase activity. Atrazine at 40,
and 80 �g l�1 for 4 days increased velocity and the percentage of the time red drum
(Sciaenops ocellatus) larvae were active (Alvarez and Fuiman 2005), thus increasing
potential encounter rates with predators (Fig. 9.4); carbaryl (24 h in 100 �g l�1)
increased swimming activity of Atlantic silverside (Menidia menidia) (Weis and
Weis 1974).

Emerging Contaminants

Newborn pipefish altered their distribution when exposed to exogenous estrogens
(Sárria et al. 2011b). Environmentally relevant concentrations of EE2 (nominal con-
centrations of 8, 12 and 36 ng l�1) caused newborn Syngnathus abaster to shift their
vertical distribution towards the surface in a dose-dependent manner. Bell (2004)
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exposed three-spined stickleback (Gasterosteus aculeatus) to environmentally rel-
evant levels of EE. Exposure to 100 ng l�1 ethinyl estradiol increased activity and
foraging under predation risk, which increases susceptibility to predation. Exposed
fish had increased mortality later in life.

Hypoxia

A common behavioral response to hypoxia is avoidance. Craig (2012) investigated
behavior of fishes in the Gulf of Mexico related to the large hypoxic region. On
average, DO avoidance thresholds were low (1–3 mg l�1) suggesting fish avoid
only the lowest, lethal DO levels. They aggregated fairly close to the margins of the
hypoxic zone, indicating that effects of hypoxia are probably most intense within
a relatively narrow region. Avoidance thresholds were similar in brown shrimp and
several finfish species.

Polluted Environments

Killifish, F. heteroclitus, from a contaminated estuary (industrialized Piles Creek in
New Jersey, U.S.) had lower activity rates than fish from reference sites (Smith
and Weis 1997). Young-of-the-year bluefish Pomatomus saltatrix, that were fed
contaminated food (killifish and menhaden with high levels of Hg and PCBs
collected from contaminated Hackensack Meadowlands) for a few months swam
more slowly than fish fed the same prey collected from a cleaner estuary (Candelmo
et al. 2010).

9.1.4 Other Taxa

Motility of coral planula larvae is sensitive to metals (Reichelt-Brushett and
Harrison 2004). Larval motility was significantly affected by Cu and Pb immediately
after dosing at low levels; the EC50 values for motility of Goniastrea aspera larvae
(e.g. for Cu 12 h, 21 �g l�1; 24 h, 16 �g l�1; 48 h, 22 �g l�1) were much lower
than the LC50 values.

9.2 Burrowing Behavior

Reduced burrowing in contaminated sediments may be an avoidance response,
which is protective, or can reflect behavioral toxicology. Not all studies distinguish
between these different mechanisms. To do so, animals should be provided with
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clean as well as contaminated sediments to burrow in. In either case, an animal on
the surface is more vulnerable to predation than one burrowed under the surface of
the substrate.

9.2.1 Crustaceans

Metals

Burrowing by the isopod, Saduria entomon, decreased in metal-contaminated
sediments (10 �g g�1 dry sediment Cu, 35 �g g�1 Cd, or 299 �g g�1 Fe),
but this was an example of avoidance, as animals burrowed normally in clean
sediments. Pre-exposure at levels similar to those in contaminated estuaries of the
Baltic Sea, impaired the ability of the animals to avoid contaminated sediments and
reduced feeding (Pynnönen 1996). The amphipod, Rhepoxinius avoided burrowing
in sediments with levels of sewage, Zn, or Cd typical of waste-water discharge sites
(Oakden et al. 1984).

Organics

After a moderate oil spill at West Falmouth, Massachusetts in 1969, fiddler crabs,
Uca pugnax dug abnormal burrows which did not go deep enough for them to avoid
the freezing layer in the winter, resulting in excessive overwinter mortality. Effects
were still seen after 7 years (Krebs and Burns 1977). Scientists revisited this marsh
almost 40 years later and found that a substantial amount of moderately degraded
oil remained 8–20 cm below the marsh surface (Culbertson et al. 2007) and fiddler
crabs that burrow at depths of 5–25 cm were still chronically exposed to the oil.
These crabs dug shallower burrows to avoid oiled layers, (Fig. 9.5) and also showed
delayed escape responses and lowered feeding rates. The oil residues were therefore
still affecting U. pugnax.

Burrowing of Uca pugilator was reduced by exposure to the insecticide difluben-
zuron (Dimilin) and to tributyltin, a constituent in antifouling paints (Weis and
Perlmutter 1987a, b). Although crabs did not avoid substrate contaminated with
DFB or TBT, crabs that had been exposed to >0.5 �g l�1 DFB or TBT for 1 week
dug fewer burrows in clean sediment than control crabs.

Hypoxia

Behavioral reactions of Crangon crangon were studied in shrimp exposed to
various degrees of hypoxia at different temperatures. At 20 ıC, the normally buried
C. crangon emerge from the sand at 40–50 % sat; at 9 ıC this emersion response
occurs at 20 % sat (Hagerman and Szaniawska 1986). Thus, they withstand lower
DO at lower temperature.
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9.2.2 Mollusks

Metals

Burrowing (or burial) by the bivalve Scrobicularia plana in clean sediments was
reduced by 4 days exposure to 25–150 �g Cu l�1 (Bonnard et al. 2009). At the end
of exposure, the burrowing kinetics in clean sediment were determined after 1 and
2 days. Even at the lowest tested concentrations, Cu reduced burying. Other reports
document reduced burying in 5.8 �g g�1 Cu-contaminated sediments (avoidance)
by the clams Protothaca staminea (Phelps et al. 1985) and Macomona liliana
(Roper and Hickey 1994), as well as the gastropod Polinices sordidus (Hughes
et al. 1987). Cd also reduces burying in short-neck clam Ruditapes philippinarum.
Clams took the longest time to burrow in sediments from sites with the highest
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concentrations of Cd, Cr, Cu, Ni and Zn (Shin et al. 2002) There was reduced
burrowing when sediment Cd concentrations were 1 mg kg�1 (dw) or greater.
Macomona liliana juveniles were exposed to Cu- and Zn-dosed sediments and
sediments collected from contaminated sites. The number burying by 10 min was
reduced at 25 mg Cu kg�1 (dw). After a 96-h exposure, clams crawled away from
sediment with 10 mg Cu kg�1 (dw), and when a weak current was provided they
left this sediment by drifting (Roper et al. 1995). Zn-dosed sediment slowed burial
at 80 mg Zn kg�1 (dw), and stimulated crawling and drifting at 40 mg Zn kg�1

(dry wt). Some field-collected contaminated sediments slowed burial and stimulated
drifting, which could affect the distribution of these clams in natural habitats.

Contaminants of Emerging Concern

Buffet et al. (2012) investigated effects of Zn nanoparticles in the clam Scrobicularia
plana. They chose 3 mg kg�1 sediment ZnO NPs since this was considered a
realistic prediction of the environmental concentration in sediments.67ZnO NPs
were synthesized in diethylene glycol (DEG). 67Zn accumulation was seen. As
with the clams (above), burrowing behavior and feeding rate were impaired in
clams exposed to 67ZnO NPs but also in control clams exposed to DEG alone.
Therefore there is no strong evidence for a severe nanoparticle effect since effects
were observed in response to DEG alone.

Polluted Environment

Tanouka et al. (2013) collected S. plana from a moderately polluted estuary
(Loire) and reference sites, and found increased GST activity (which defends
against organic compounds) and impaired burrowing behavior, condition index, and
gonado-somatic index. This integrated biomarker approach indicated higher levels
of stress in clams from the Loire estuary compared to those from the reference site.

9.2.3 Other Taxa

Metals

Polychaetes reduce burrowing in contaminated sediments and reduce burrowing in
clean sediments after contaminant exposure. Exposure to 25 �g Cu l�1 reduced
burrowing in Nereis diversicolor (Bonnard et al. 2009). Behavioral impairments
were not related to AChE inhibition, but may have been due to metabolic or
physiological disturbances.
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Organics

Exposure of the polychaete Glycera dibranchiata to oil-contaminated sediments at
120, 1,067, and 2,879 �g g�1 (Studholme et al. 1987) impaired burrowing in clean
sediments. At the two higher concentrations, worms emerged from their burrows.
They recovered after being placed in clean sediment, suggesting that effects may
have been due to a narcotic effect of aromatic fractions. Reduced burrowing may be
responsible for increased predation due to greater accessibility of benthic infauna to
predators.

Contaminants of Emerging Concern

Buffet et al. (2012) investigated of Zn nanoparticles in the polychaete Nereis
diversicolor. They used 3 mg kg�1 sediment ZnO NPs since this was considered
a realistic prediction of the environmental concentration in sediments.67ZnO NPs
were synthesized in diethylene glycol (DEG). 67Zn accumulation was seen. As with
the clams (above), burrowing behavior and feeding rate were impaired in worms
exposed to 67ZnO NPs but also in worms exposed to DEG alone. Therefore there
was no evidence for a nanoparticle effect since effects were also observed with DEG
alone.

Polluted Environment

Nereis diversicolor originating from a polluted estuary (Loire estuary) and a
relatively clean site (Bay of Bourgneuf) were compared (Kalman et al. 2009). At
the individual level no significant differences in burrowing speed were observed
when worms were exposed to their sediment of origin. No link between AChE
activity and burrowing was found in worms from either site. Cross-tests revealed that
differences in locomotion were not due to neurological dysfunction but to avoidance
of contaminated sediments.

Polychaetes, Perinereis gualpensis were moved from a reference site (Raqui estu-
ary, Chile) to a location with high sediment Hg (Lenga estuary: 1.78–9.89 mg kg�1).
Individuals were placed in polluted and non-polluted sediments for 21 days and
sampled every 7 days with cages deployed at three different depths (Dı́az-Jaramillo
et al. 2013). Tissue Hg was measured in conjunction with stress responses. Translo-
cated worms accumulated Hg rapidly. Glutathione S-transferase (GST) activities
measured from posterior body regions were twofold higher than controls after
21 days of exposure. Differences in burrowing behavior were observed; while
controls had more homogenous vertical distributions, in Lenga, worms tended
to remain in upper layers. Authors thought these studies demonstrate that under
natural conditions, Hg is bioavailable to polychaetes affecting both biochemical and
behavioral responses after relatively short-term exposure. However, they did not
discuss other potential causes such as other sediment contaminants.
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9.3 Feeding and Predator Avoidance

To survive, an individual must avoid being eaten and must find and capture food.
Feeding is an ecologically meaningful response because its impairment has direct
effects on individuals, populations, communities and ecosystems. Complex behav-
iors of prey capture and predator avoidance include locomotion/activity, sensory
detection of food or predators, and rapid prey capture or escape reflexes. Visual or
chemical cues provide information about the presence of predators or prey. Predator
avoidance ability is often impaired in response to contaminants, resulting in reduced
survival in the presence of a predator. However, the ability of the predator to capture
the prey may also be impaired in contaminated environments. Contaminant-induced
effects on predator/prey relationships can cause trophic cascades (top-down effects)
and alter community composition (Fleeger et al. 2003). For example, the pesticide
methyl carbamate reduced grazing by arthropods, causing increased abundance of
macroalgae (Carpenter 1986; Duffy and Hay 2000).

9.3.1 Crustaceans

Metals

Wallace et al. (2000) investigated prey capture in grass shrimp (P. pugio) fed
Cd-contaminated prey (field-exposed oligochaetes or laboratory-exposed Artemia
salina). Shrimp fed contaminated A. salina (with Cd body burdens of 4, 16,
and 40 mg g�1 wet weight, respectively, which would result in shrimp ingesting
approximately 0.08, 0.32, or 0.80 mg Cd day�1, if they consumed all of the
food) had impaired ability to capture prey; after feeding on oligochaetes effects
were not as severe. Cd-exposed shrimp produced a low molecular weight Cd-
binding metallothionein protein; their prey capture decreased with increased Cd
bound to high molecular weight proteins, i.e., enzymes. Inorganic Hg and meHg
(0.01 mg l�1) affected predator avoidance of P. pugio (Kraus and Kraus 1986).
While exposure made shrimp from a reference site more vulnerable to F. heteroclitus
predation, shrimp from a contaminated site (Piles Creek in New Jersey US) were
unaffected by HgCl2 and were less affected by meHg than the reference population,
suggesting tolerance, which will be discussed at length in Chap. 11. Brief exposure
of the copepods Notodiaptomus conifer and Argyrodiaptomus falcifer to Cu and Cr
(15 min) affected their escape behavior in an unexpected fashion. Exposed copepods
had higher escape ability than controls (Gutierrez et al. 2012). This may have been
hormesis, which might have turned into reduced escape ability after longer exposure
times.

http://dx.doi.org/10.1007/978-94-007-6949-6_11
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Organics

Cellular (cell viability and immune function), physiological (cardiac activity)
and behavioral (foraging) responses were evaluated in field-collected shore crabs
Carcinus maenas from a PAH-contaminated site (Plym) and two cleaner sites and
compared with responses of crabs exposed in the laboratory to the PAH pyrene
(200 mg l�1 for 28 days). No significant cellular or physiological impacts were
seen in Plym crabs, but foraging was significantly altered. When given a cockle,
Plym and the laboratory-exposed crabs took longer to handle and break into the
shells. Therefore, behavioral indicators were more sensitive than the cellular and
physiological responses (Dissanayake et al. 2010).

Hypoxia

Feeding and predation by the mud crab Neopanope sayi, and juvenile blue crab
C. sapidus, decreased during hypoxia (1.0 and 0.5 mg O2 l�1 ), suggesting that
short hypoxic episodes may create predation refuges for prey species (Sagasti et al.
2001). (However, as seen above, prey species often become more susceptible to
predation.) Bell et al. (2003) used biotelemetry with measurements of DO to monitor
feeding and movement of free-ranging C. sapidus in the Neuse River Estuary,
NC, USA during hypoxic upwelling and subsequent relaxation events. The percent
feeding declined in mild (2–4 mg l�1) and severe (<2 mg l–1) hypoxia. Crabs
reduced the proportion of time spent feeding during hypoxia, but during relaxation
events, feeding time did not increase and crabs did not reinvade deep water, as was
hypothesized.

Predator–prey dynamics between the blue crab Callinectes sapidus and an
infaunal clam prey Mya arenaria were examined by Taylor and Eggleston (2000) to
assess the impact of hypoxia on foraging rates and prey mortality. The relationship
between predator consumption rates and prey density were studied in normoxia,
moderate hypoxia (3.0–4.0 mg l�1) after acclimation to high DO, and moderate
hypoxia after acclimation to low DO. M. arenaria burial depth decreased and
siphon extension increased in severe hypoxia. Initiation of moderate hypoxia after
normoxia altered blue crab foraging. Low DO affected the interaction between C.
sapidus and M. arenaria by either hindering blue crab foraging, or alternatively,
increasing clam vulnerability by altering their siphon extension and depth distribu-
tion within the sediment. Predator preference for certain prey can be modified by
exposure to low DO (Munari and Mistri 2012). Carcinus aestuarii normally prefers
Musculista senhousia as prey, but after hypoxia, their preference was influenced by
the presence of another prey, Tapes philippinarum.
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Climate Change/Acidification

Reduced pH affected chemosensation related to feeding in hermit crabs Pagurus
bernhardi (De la Haye et al. 2012). Crabs in 6.8 pH water with a food odor
present had less antennular flicking (the “sniffing” response), were less successful in
locating the odor source, and had reduced activity compared to those at normal pH.
Briffa et al. (2012) reviewed studies of elevated CO2 and the behavior of tropical reef
fishes and hermit crabs. Three main routes through which behavior might be altered
were elevated metabolic load, “info-disruption” (transfer of chemical information
between organisms) and avoidance of polluted sites. They stated there is clear
evidence that exposure to high CO2 disrupts the ability to find settlement sites and
shelters and the ability to detect predators and food. Behavioral changes appear to
occur primarily via info-disruption.

Polluted Environment

Impaired prey capture may have important implications for energy flow in impacted
environments. Perez and Wallace (2004) compared prey capture (of brine shrimp,
Artemia franciscana) by grass shrimp (P. pugio) from a relatively clean site, Great
Kills (GK) and two polluted creeks by the Arthur Kill (NY, US). GK shrimp
captured prey twice as fast than shrimp from a polluted creek near landfills. Prey
capture by shrimp from a creek with historic smelting activities was intermediate.
When shrimp from a reference site were exposed to sediment and water from the
landfill site for 8 weeks, prey capture was reduced. Video analysis showed that prey
capture was impaired because of reduced use of a lunge attack, and greater use of a
less efficient grab attack. Foraging (number of total scoops and scoops on a protein-
rich patch) by fiddler crabs U. pugnax from a polluted and a reference site was
compared in the laboratory by Khoury et al. (2009). Reference site crabs had twice
the number of total scoops and three times the number of scoops on the patch than
crabs from the polluted site. Reichmuth et al. (2009) studied blue crabs (C. sapidus)
from polluted Hackensack Meadowlands (HM) and a reference site, Tuckerton (TK)
both in New Jersey (U.S.). HM crabs were slower to capture active prey (killifish
and juvenile blue crabs) though they consumed mussels and fiddler crabs at an
equivalent rate. Their stomach contents in the field contained much sediment and
detritus and far less live food than TK crabs supporting the laboratory observations.
Transplanting HM crabs to TK improved their prey capture; transplanting TK crabs
to HM impaired their prey capture, demonstrating environmental cause for the
behavior (Fig. 9.6). Surprisingly, HM juveniles had better predator avoidance ability
and were more aggressive than TK crabs. However, aggressiveness did not appear
to be the reason for their superior predator avoidance (Reichmuth et al. 2011).
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9.3.2 Mollusks

Effects of metals and organic chemicals on feeding are discussed in Chap. 2,
Feeding and Digestion.

Hypoxia

Hypoxia can cause bivalve infauna to move up to the surface and become more
susceptible to predation. Long and Seitz (2008) performed experiments varying
predator access to marked Macoma balthica clams at deep and shallow sites in
the York River, Virginia, before and during hypoxic episodes. During hypoxia,
predation rates at hypoxic sites were more than double those in normoxic sites.
Ambient clam densities were lower at the deep sites, and lower in August than in
June. They concluded that hypoxia increased the susceptibility of benthic prey to
predation. Chronic hypoxia impaired anti-predator responses in the green lipped
mussel Perna viridis (Wang et al. 2012) by reducing the normal anti-predator
responses of shell thickening, byssus thread production, and adductor muscle
growth. Hypoxia affected predation by the non-native rapa whelk (Rapana venosa)
on bivalve prey: the non-native ark shell (Scapharca inaequivalvis) and Manila clam
(Tapes philippinarum), and the native cockle Cerastoderma glaucum (Munari and
Mistri 2011). Under normoxia, R. venosa preferred S. inaequivalvis. Short-term
hypoxia increased the vulnerability of T. philippinarum, and whelks switched their
preference to this species. Altered prey preferences can affect community structure.

http://dx.doi.org/10.1007/978-94-007-6949-6_2
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Climate Change/Acidification

Amaral et al. (2012) investigated the susceptibility of oysters from acidified areas
(receiving runoff from acid sulphate soils) and reference areas to predation by
the gastropod Morula marginalba. Oyster shells were weaker at acidified sites,
therefore they were more vulnerable because M. marginalba could drill through
them faster. Many other predators consume prey at rates inversely proportional to
their shell strength. While not a behavioral response, this effect of acidification alters
predator/prey relationships.

9.3.3 Fishes

Detection of predators and of prey is often olfactory; some fish species produce an
alarm substance that warns conspecifics of danger. Impaired detection of an alarm
substance would put fish at risk of predation. Visual signals are also important in
detecting prey and predators. Behavioral development occurs in association with
the development of the nervous system and developing fishes are generally more
sensitive to contaminants than adults. Embryonic exposures to chemicals can affect
subsequent predator/prey and other behavior later in life. Early life stages may
be exposed to contaminants passed on from females via egg reserves as well as
directly from water and food. Understanding the physiological mechanisms that
underlie effects on behavior early in life has not received much attention, possibly
because physiological measurements are difficult to perform on small specimens.
The physiology underlying behavioral disruption in early life stages is similar to
that in juveniles and adults: sensory impairment, altered neurogenesis and altered
neurotransmitters (Sloman and McNeil 2012).

Metals

Copper and some other metals can suppress the olfactory response to amino acids
that are detected as food odors by coho salmon (Sandahl et al. 2004). Copper also
reduces the response of salmon to water-borne alarm substances, thus making them
more vulnerable to predation (McIntyre et al. 2012). Injured fish release a chemical
that alerts other fish. Juvenile coho salmon normally freeze in the presence of alarm
substances, making it harder for predators to detect them. However, salmon in water
with 5 �g l�1 Cu failed to detect the substance and kept swimming; they were
readily attacked by the predator (McIntyre et al. 2012).

Weis and Khan (1990) found that exposure of adult mummichogs (F. hetero-
clitus) to 10 �g l�1 of either HgCl2 or meHg for 1 week reduced prey capture.
Sticklebacks (Gasterosteus aculeatus) exposed to 3 �g l�1 TBT chose more exposed
regions of the water column and had longer latency times before performing
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antipredator behavior in response to a simulated predator (fake heron bill) (Wibe
et al. 2001), increasing their predation risk. TBT is also able to affect predatory
behavior. Yu et al. (2013) examined effects of 10, 100 and 1,000 ng l�1 on prey
capture of Sebastiscus marmoratus. TBT exposure depressed predatory activity after
50 days. Along with behavior changes, dopamine levels in the fish brains increased
in a dose-dependent manner and 5-hydroxytryptamine and norepinephrine levels
decreased in the TBT exposed group compared to the control.

Embryonic exposures of F. heteroclitus to 5 and 10 �g l�1 meHg affected prey
capture and predator avoidance of larvae maintained in clean water. Prey capture of
early larvae was impaired, but after about 1 week after hatching prey capture was
equal to controls, showing that this was a temporary effect (Weis and Weis 1995a).
Exposure may have caused retardation of neurological development that was later
compensated for. Larvae that had been exposed as embryos were more susceptible
to predation by P. pugio or by adult mummichogs (Weis and Weis 1995b) and had
increased activity levels, making them more susceptible (Zhou and Weis 1998).
After both embryonic and larval exposure, deleterious effects were greater than
embryonic exposure alone (Zhou et al. 2001).

Newly hatched F. heteroclitus larvae were exposed to 0, 0.1, 0.3, or 1.0 mg l�1

Pb and tested for prey capture (Artemia), and predator avoidance. Prey capture was
significantly decreased after 4 weeks and susceptibility to predation by grass shrimp
increased. However, when larvae were returned to clean sea water for another
4 weeks these behaviors were no longer statistically different from controls (Weis
and Weis 1998).

Organics – Pesticides and PCBs

Pesticides can affect olfaction in fishes, disrupting normal predator and prey
detection. Diazinon at >1.0 �g l�1 inhibited olfactory-mediated alarm responses
in chinook salmon (Oncorhynchus tshawytscha) (Scholz et al. 2000). Homing
behavior was impaired at 10 �g l�1, suggesting that olfactory-mediated behaviors
are sensitive, and that short-term exposure to insecticides that impair cholinesterase
may cause significant behavioral deficits. After 2 h exposure to 1 and 10 �g l�1

diazinon, chinook salmon had a reduced fright response to skin extract: instead of
decreasing swimming and foraging they stayed highly active, which would increase
susceptibility to predation. The fungicide iodocarb and herbicides glyphosate and
atrazine suppressed the olfactory response of coho salmon, Oncorhynchus kisutch,
to L-serene after short-term (30 min) exposure to relatively low concentrations
(�1 �g l�1) (Tierney et al. 2006).

Embryonic exposure (topical treatment) of mummichog (F. heteroclitus) em-
bryos to PCB 126 (�10.0 pg egg�1) reduced larval prey capture of Artemia by
30 %, while not reducing the number of strikes, suggesting impaired coordination
rather than appetite (Couillard et al. 2011). McCarthy et al. (2003) fed adult croakers
(Micropogonias undulatus) PCBs (0.4 mg Aroclor 1,254 kg�1 fish day�1) let them
spawn, and studied larval behavior. The percentage of control larvae responding to a
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frightening stimulus and their burst speeds increased with age, but no such increase
was seen in exposed larvae, suggesting that the transferred PCBs impair their startle
response, making them more susceptible to predation.

Contaminants of Emerging Concern

The flame retardant PBDE �71 (0.001–100 �g l�1) reduced feeding efficiency
in mummichog larvae (Timme-Laragy et al. 2006). Exposed fish also performed
poorly in a maze, suggesting impaired cognition. Prey capture was inhibited by
the anti-depressant fluoxetine, (a selective serotonin re-uptake inhibitor, SSRI) in
hybrid striped bass, with significant effects after 6 days at the lowest concentration
tested, 23.2 �g l�1 (Gaworecki and Klaine 2008). Increased time to capture prey
was correlated with decreased brain serotonin, which decreased with time and
concentration.

Noise pollution reduced feeding and escape behavior in the damselfish Chromis
chromis in a Mediterranean marine reserve (Bracciali et al. 2012). Greater boat
traffic volume corresponded with lower feeding frequencies. The escape reaction
was longer in duration (>1 min) when boats passed nearby. Overall, the findings
revealed a significant modification of the foraging behavior of C. chromis due to
boat noise, which was only slightly buffered by no-take zones established within
the reserve.

Hypoxia

When juvenile turbot Scophthalmus maximus and sea bass Dicentrarchus labrax
were fed to satiation, food intake (and growth) was depressed in hypoxia (3.2
and 4.5 mg O2 l�1) (Pichavant et al. 2001). Growth was comparable between fish
in hypoxia that were fed to satiation and fish reared in normoxia with restricted
rations. Decreased food intake could be a mechanism by which prolonged hypoxia
reduces growth, and may be a way to reduce energy and thus oxygen demand.
The northern, Syngnathus fuscus, and dusky pipefish, S. floridae, were held in
normoxic (>5 mg l�1 O2) and hypoxic (2 and 1 mg l�1 O2) conditions (Ripley
and Foran 2007). Both species produce high frequency, short duration clicks related
to feeding activity. In hypoxia, reduced food intake corresponded with decreased
sound production. Declines in both behaviors were seen after 1 day and continued
while hypoxia was maintained.

Growth rates of winter flounder Pseudopleuronectes americanus and summer
flounder Paralichthys dentatus were reduced as DO decreased and as temperature
increased. Summer flounder were more tolerant than winter flounder (Steirhoff et al.
2006. A significant relationship between feeding rate and growth suggested reduced
feeding was a major cause of growth limitation. European sea bass (Dicentrarchus
labrax L.) were exposed to 40 % air saturation; oscillations between 40 and 86 %
with a period of 770 min, and 86 % sat control) for 1 month (Thetmeyer et al.
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2001). Fish in hypoxia consumed less food, had reduced growth, and a lower
condition factor. Oscillating groups were intermediate. Growth was correlated with
food intake, suggesting that reduced growth is primarily due to reduced appetite.

In contrast, bottom-feeding spot (Leiostomus xanthurus) and hogchoker
(Trinectes maculatus) in Chesapeake Bay benefited from hypoxia, because their
benthic prey were more available (Pihl et al. 1992). During or immediately after
hypoxic events their gut contents contained larger, deeper-burrowing prey than
during normal oxygen periods. Spot consumed a greater biomass (45–73 %) of
polychaetes than other prey. Thus in areas where hypoxia is intermittent, its effect on
behavior of macrobenthos may be advantageous to oxygen-tolerant bottom-feeding
fish. However, in the Neuse River estuary, intermittent hypoxia had negative effects
on feeding by croakers, M. undulatus by restricting fish to shallower oxygenated
areas where prey were less abundant and by killing deeper benthic prey, thus greatly
reducing their numbers (Eby et al. 2005).

Acidification

Effects of elevated pCO2 were tested on prey and predator by letting one predatory
reef fish interact for 24 h with 8 small or large juvenile damselfishes (Ferrari et al.
2011). Both prey and predator were exposed to control (440 �atm) or elevated
(700 �atm) pCO2. Small juveniles of all species had higher mortality from predation
at high pCO2 because of reduced anti-predator behavior (Fig. 9.7), while larger
ones were unaffected. For large prey, the pattern of prey selection by predators was
reversed under elevated pCO2. The results demonstrate effects of CO2 on behavior
of juvenile damselfish, likely caused by altered neurological function.

Nowicki et al. (2012) found CO2 level did not significantly affect foraging
behavior in juvenile anemonefish Amphiprion melanopus, but there was an inter-
action with temperature. At high temperature (31.5 ıC) and control or moderate
(530 �atm) pCO2, food consumption and foraging activity were reduced, while
high temperature and high pCO2 (960 �atm) caused an increase in these behaviors.
Maintaining foraging activity in high temperature and CO2 may reduce energy
efficiency if the thermal optimum for food assimilation and growth has been
exceeded. Elevated CO2 and reduced pH affected olfactory preferences, activity,
and feeding behavior of the brown dottyback (Pseudochromis fuscus) (Cripps et al.
2011). Fish were exposed to current and elevated pCO2 levels (�600 or �950
�atm). Exposed fish shifted from preference to avoidance of the smell of injured
prey, spending 20 % less time in a stream containing prey odor compared with
controls. Activity was higher in the high pCO2 treatment and feeding was lower
in the mid pCO2 treatment. Elevated activity in the high pCO2 treatment may
compensate for reduced olfaction, as visual detection of food might improve.
Juvenile damselfish Pomacentrus amboinensis exposed to high pCO2 responded
differently to a potential threat, the sight of a predator, the chromis, Acanthochromis
polyacanthus, placed in a watertight bag (Ferrari et al. 2012). Juvenile damselfish in
440 (control), 550 or 700 �atm pCO2 did not differ in their response to the chromis,
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but those in 850 �atm showed reduced antipredator responses; they failed to reduce
foraging activity and area use. They moved closer to the chromis, suggesting that
their response to visual cues of the predator was impaired by high pCO2.

Polluted Environments

Reduced feeding and condition factor were noted in F. heteroclitus from a heavily
industrialized estuary, Piles Creek (PC) in Linden, New Jersey (U.S.). Toppin et al.
(1987) showed that PC fish had reduced life span and growth; reduced feeding
could be partly responsible for reduced growth. When fish from a reference site,
Tuckerton (TK) were kept in aquaria with water, sediments, and food (grass shrimp)
from PC, their prey capture ability declined to that of PC fish (Smith and Weis
1997). The level of Hg in their brains increased to that of the PC population. When
PC fish were maintained in clean water, sediments, and food, their prey capture
ability increased slightly but not significantly, and brain Hg did not decrease. The
correlation of behavior with Hg does not mean that Hg causes the behavioral
impairment as there are many other contaminants at the site including lead and
PCBs which could contribute to behavioral deficits. PC fish collected from the field
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had much more sediment and detritus in their stomachs and less live prey than
fish from TK, providing field validation for the poor predatory ability observed
in the laboratory. PC fish also were more vulnerable to predation by blue crabs,
which can contribute to their shorter life span (Smith and Weis 1997). When
populations from many different sites were investigated, their prey capture ability
was directly related to sediment and tissue levels of contaminants (Weis et al.
2001). Since the levels of contaminants at a site were highly correlated with each
other, the role of specific contaminants could not be determined. In laboratory
experiments, fish from the cleanest sites captured the most grass shrimp. Gut
contents of field-collected fish revealed that fish that had the highest capture rates
in the laboratory had the most grass shrimp in their diets. Goto and Wallace (2011)
found that F. heteroclitus from chronically polluted salt marshes (Arthur Kill–AK,
NY) had lower diet niche breadth than reference fish, reflecting reduced benthic
macroinfaunal species diversity. AK fish had 2–3 times less food in their gut than the
reference population, partly due to prey size – they ingested fewer large prey than
the reference population. Gut fullness of the AK fish significantly decreased with
increasing Hg body burdens. Reduced prey availability was also partly responsible
for altering the feeding ecology. Young-of-the-year bluefish Pomatomus saltatrix,
fed contaminated diets (killifish and menhaden from Hackensack Meadowlands,
HM, a contaminated estuary) for 4 months showed reduced appetite and consumed
less than fish that were fed diets of the same species collected from the reference
site, TK (Candelmo et al. 2010). Fish fed HM food grew more slowly, probably as
a result of reduced food intake.

Impaired predator avoidance (of blue crabs, C. sapidus) was observed in PC
killifish compared to those from TK (Smith and Weis 1997). Among killifish and
menhaden living in the polluted HM, higher levels of Hg and PCBs were found
in fish that had been consumed by bluefish (P. saltatrix) than in conspecifics that
had not been eaten (Weis and Candelmo 2012) suggesting that prey fish that had
accumulated more neurotoxic contaminants were easier for the predator to capture.
This also has the consequence of facilitating transfer of more toxicants to higher
levels in the food web.

9.3.4 Other Taxa

Cu-exposed corals, Subergorgia suberosa were unable to catch brine shrimp
effectively. The rate of successful feeding for controls was 85 %, but this was
reduced to 57 % at 0.2 �g l�1 Cu and only 24 % at 0.5 �g l�1 (Peng et al. 2004).
Other metals (Zn, Cd, Pb) did not produce this sublethal effect.
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9.4 Reproductive Behavior

9.4.1 Crustaceans

Many crustaceans use pheromones to find mates and induce mating behaviors. If
pollutants impair the ability to detect chemosensory cues and respond to pheromone
signals (info-disruption), they could affect mating.

Metals

Effects of Cu (0, 0.1 or 0.5 mg Cu(II) l�1 for 5 days) on mating behavior of male
shore (green) crabs Carcinus maenas were investigated by Krang and Ekerholm
(2006). Cu altered the response to a pheromone stimulus (pre-molt female urine)
presented alone, together with a dummy female (a sponge injected with pre-molt
female urine) or with a real female. Male crabs in high Cu took over twice as long
to initiate search activity after pheromone introduction and their search behavior
was less directed. When offered a dummy female, they had decreased pheromone
discrimination in both Cu treatments. Stroking behavior was reduced, and males
from the high Cu often pinched the dummy female or real female, and took longer
to establish cradle-carrying behavior, which normally precedes mating. Thus, Cu
affected the ability to detect female pheromones, perform specific mating behaviors
and form pairs (Fig. 9.8).

Organics

The amphipod Corophium volutator lives in shallow soft sediments in estuaries
and coastal waters, and their reproductive season coincides with intense traffic of
leisure boats, which discharge fuel into the water and sediment. Burrowed females
release pheromones that guide males to them. Krang (2007) found that exposure to
naphthalene, a PAH in motor fuel, disturbs this chemical communication. Males
were put in Y-mazes, where they were allowed to follow female pheromones
after separately exposing the males or females to naphthalene-spiked sediments
(0, 0.5, and 5 �g g�1 dw) for 3 days. Treated males’ search activity was reduced
by 27–45 % and they could no longer find females using olfaction. Analysis of
sediments indicated that naphthalene concentrations causing this effect were 2–20
times lower than the nominal concentrations. Females continued to produce and
release pheromones, despite naphthalene exposure.

Medetomidine (an antifouling compound) at 0.01 and 0.1 mg l�1 caused fewer
males to search for females (Krang and Dahlstrom 2006).
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9.4.2 Mollusks

Despite the extensive literature on reproductive endocrine disruption in mollusks,
there do not appear to be studies on effects on reproductive behavior. This would
appear to be a wide open field for investigation. However, for many mollusks that
spawn, reproductive behavior per se is limited to simultaneous release of gametes.
Some examples of contaminant effects on the timing of gamete release are discussed
in Chap. 5, Reproduction. However, cephalopods have elaborate mating behavior
that would be of great interest to study.

9.4.3 Fishes

Successful reproduction in fishes requires the performance of a number of different
behaviors which may include spawning site selection, nest building, courtship and
spawning, and may include post-spawning behaviors such as nest guarding and
fanning, depending on the species, though nest building is uncommon in marine
fishes. Toxicants can disrupt any of these behaviors and decrease reproductive
success. However, despite considerable research on pollution and fish behavior, few
articles focus on reproductive behavior (Jones and Reynolds 1997), and of these,
most are on freshwater species (guppies, fathead minnows, mosquitofish, cichlids)
that tend to have more complex behaviors than most marine fishes. Nest-building
and courtship in male sticklebacks, which live in both fresh and salt water, have
been the most studied, along with gobies.

Metals

Matta et al. (2001) found that dietary methylmercury (0.2–11 �g g�1) altered male
behavior in killifish (F. heteroclitus), increasing aggression in some fish and lethargy
in others. Furthermore, their offspring were less able to reproduce successfully and
had an altered sex ratio.

Organics

The organophosphate fenitrothion (FN) has structural similarities with the anti-
androgen flutamide. The potential for FN to act as an anti-androgen (at 1, 50,
and 200 �g l�1 over 26 days) was assessed in male three-spined sticklebacks,
Gasterosteus aculeatus, by measuring kidney spiggin (the “glue” substance that
holds the nest together) concentration, nest-building, and courtship behavior. FN
significantly reduced spiggin production, nest-building, and courtship, especially
the ‘zigzag dance’ and biting behavior (Sebire et al. 2009).

http://dx.doi.org/10.1007/978-94-007-6949-6_5
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Contaminants of Emerging Concern (CECs)

It is not surprising that some endocrine disruptors affect courtship and mating be-
havior. Brian et al. (2006) examined nesting behavior of male G. aculeatus exposed
to the synthetic estrogen, 17“-ethinylestradiol. There were immediate reductions of
nest gluing frequency and time spent near the nest, but fish subsequently recovered
and there was no permanent effect on nest building success. However, Wibe et al.
(2002) found G. aculeatus exposed to17“-estradiol (2.0 �g g�1) had impaired
paternal care. There were no differences in number of males that built nests or
in courtship displays, but exposed males started nest building later than controls,
suggesting that some reproductive behaviors were altered. Sebire et al. (2008)
induced breeding in male sticklebacks that were exposed to the anti-androgen
flutamide (FL) at 100, 500 and 1,000 �g l�1 for 21 days. Exposed males had lower
spiggin levels at 500 and 1,000 �g l�1, built fewer nests at 100 �g l�1 and no nests
at 500 and 1,000 �g l�1(Fig. 9.9). Exposed males showed fewer zigzags towards
the female.

Male G. aculeatus were presented with a dummy male and dummy female before
and after a short-term exposure to 15 ng l�1 17’-ethinyloestradiol (Dzieweczynski
2011). Courtship, aggression, and nesting behaviors were all reduced, and behav-
ioral consistency over trials was markedly reduced after EE2 exposure.

Saaristo et al. (2009) exposed male sand gobies (Pomatoschistus minutus) for
1–4 weeks to 5 and 24 ng l�1 of 17’-ethinyl estradiol (EE2). This species has a
polygynous mating system, in which mating success is skewed towards the largest
males, resulting in strong sexual selection for increased male size. After exposure
to EE2, male size had a reduced effect on mating success. Results suggested that
exposure to EDCs can affect the mating system before physiological changes are
observable.
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Hypoxia

Female common gobies (Pomatoschistus microps) usually prefer to spawn with
males that had already been chosen by females and whose nests therefore already
contain eggs. However, this preference was reversed in low DO (Reynolds and Jones
1999). In 35 % sat, males showed a nearly threefold increase in ventilation of eggs
and spent less time near a female. Authors thought females avoided males which
would be less likely to meet the demands of care of a second clutch under low DO
conditions. Naked gobies (Gobiosoma bosc) subjected to hypoxia in Chesapeake
Bay and in the laboratory, were quite resistant in terms of reproductive behavior, and
continued to guard eggs until levels approached lethal levels (<1 mg l�1) (Breitburg
1992).

Polluted Environment

Sebire et al. (2011) investigated effects of 21 days exposure to a sewage plant
effluent with anti-androgenic activity on reproductive physiology and behavior of
G. aculeatus. Levels of spiggin were not affected, nor were levels of vitellogenin,
but males built fewer nests and had less courtship behavior in both the 50 and 100 %
effluent treatments compared with controls. Thus behavior was more sensitive than
the biochemical biomarkers.

9.5 Aggression

Aggression or agonistic behaviors are common in many species, and altered social
relations in response to toxicants, such as threats, chases, or bites, have been
measured. Toxicants may increase or decrease agonistic behaviors.

9.5.1 Crustaceans

Organics

Dissanayake et al. (2009) exposed shore crabs, C. maenas to 200 �g l�1 of the PAH
pyrene. After 14 days, crabs were used in staged agonistic interactions, where an
unexposed crab was paired with an exposed crab from the same dietary regime (fully
fed, starved, or diet restricted), using a cockle as the limited resource. Physiological
condition had no significant effect on most behavioral measures (e.g. number of
fights, fight duration), but starved pyrene-exposed crabs won the resource more of
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the time than starved controls. Thus, the reduced physiological condition in starved
exposed crabs caused an unexpected increased competitive ability over starved
unexposed crabs.

Hypoxia

Hermit crabs engage in fights over possession of the gastropod shells that they
inhabit. In Pagurus bernhardus, attackers rap their shell against that of the defender
in a series of bouts while defenders remain tightly withdrawn into their shells. At the
end of a fight the attacker may evict the defender from its shell or give up without
an eviction; the decision for a defender is either to maintain a grip on its shell or
allow itself to be evicted. Briffa and Elwood (2000) found that the vigor of rapping
and the likelihood of eviction were reduced when the attacker was subjected to low
DO, but that low DO had no effect on rates of eviction when applied to defenders.

Polluted Environment

Blue crabs (C. sapidus) from the contaminated Hackensack Meadowlands (HM)
(New Jersey US) were much more aggressive than conspecifics from a reference
site (Tuckerton, TK) (Reichmuth et al. 2011). When presented with a threatening
stimulus, most HM crabs attacked it while most TK crabs fled. This unexpected
result is reminiscent of the results of Dissanayake above, and different from that
of Khoury et al. (2009) in fiddler crabs. It has not been demonstrated whether the
aggression in this case is related to contaminants in the environment or to other
factors.

9.5.2 Fishes

A number of studies have found reduced aggression in various fish species exposed
to metals or organic pollutants, but these have been in freshwater species.

Emerging Contaminants

Aggressive behavior is decreased in the male bluehead wrasse, Thalassoma
bifasciatum, and in the betta when repeatedly injected with 5 �g g�1 body
weight fluoxetine (Lynn et al. 2007). Bell (2001) found that plasma gonadal steroid
concentrations were related to levels of nesting and aggressive behaviors by male
G. aculeatus. Levels of estradiol were negatively related to courtship behavior,
while levels of 11-ketotestosterone were negatively related to nesting behaviors.
Control males increased their aggressive response to a live male conspecific over
time, while males exposed to EE2 decreased their aggressive response.
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9.6 Social Behavior

9.6.1 Fishes

Schooling

Schooling behavior is a social interaction, in which fish of the same size and same
species swim close together and at the same speed, in a coordinated fashion. It
decreases susceptibility to predation, and can be altered by exposure to a variety
of contaminants, including the pesticides DDT and carbaryl (Weis and Weis 1974).
Carbaryl-exposed (100 �g l�1) groups of Atlantic silversides (Menidia menidia)
had greater distances between individuals and did not swim as parallel to one
another as control groups. They also had faster swimming rates. In contrast, copper
(100 �g l�1) exposure of Atlantic silversides caused them to become hyperactive,
but they increased rather than decreased school cohesion (Koltes 1985). Social
interactions were impaired in larval F. heteroclitus after they had been exposed
to 5 and 10 �g meHg l�1 as embryos (Ososkov and Weis 1996). Treated larvae
collided into one another more frequently. Low concentrations of the surfactant
4-nonylphenol (1–2 �g l�1) impaired schooling of juvenile banded killifish (F.
diaphanous) – distances between fish were greater (Ward et al. 2008). Williams
and Coutant (2003) found that short-term exposures to sublethal increases in water
temperature during egg and larval stages affected development of schooling in
the sand smelt Atherina mochon. Larvae tested at 10–35 dph showed retardation
of schooling behavior. There was an increased number of approach–withdrawals
(behavior that precedes parallel swimming; two fry approach and immediately veer
away), a decrease in parallel orientation (schooling), higher latency for formation
of the first schools, and shorter duration of the longest-persisting schools in
exposed fish. Schooling was unstable, with wide fish-to-fish distances and an
absence of synchrony. Young-of-the-year bluefish Pomatomus saltatrix, that were
fed contaminated diets (killifish and menhaden from contaminated Hackensack
Meadowlands, an estuary with multiple contaminants including Hg and PCBs) for a
few months disrupted their normal schooling behavior more often than fish fed the
same prey species collected from a cleaner estuary (Candelmo et al. 2010).

Communication

Some fish communicate using sounds. Vasconcelos et al. (2007) investigated
effects of ship noise pollution on the detection of conspecific vocalizations by
the Lusitanian toadfish, Halobatrachus didactylus. Ambient and ferry boat noises
were recorded, as well as toadfish sounds. Hearing was measured under quiet lab
conditions and in the presence of these noises at levels encountered in the field. In
the presence of ship noise, auditory thresholds increased considerably because the
boat noise was within the most sensitive hearing range of this species. The ship
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noise decreased the fish’s ability to detect conspecific sounds, which are important
in agonistic encounters and mate attraction.

There is concern that the noise from windmills may also decrease the effective
range for sound communication of fish, but little is known to what extent it may
occur. Windmill noise does not have destructive effects on hearing, even within short
distances. It is estimated that fish are scared away from windmills at distances less
than about 4 m, and only at high wind speeds. Thus, the acoustic impact of windmills
may be one of masking communication signals rather than physiological damage or
avoidance (Wahlberg and Westerberg 2005). However, data are very limited and
further studies of fish behavior around windmills are needed.

9.6.2 Other Taxa

Cetaceans and Noise Pollution

Nowacek et al. (2007) reviewed responses of cetaceans to noise and found three
types of responses: behavioral, acoustic and physiological. Behavioral responses
include changes in surfacing, diving and swimming patterns. Acoustic responses
include changes in type or timing of vocalizations. Physiological responses include
auditory threshold shifts. Overall, they documented responses of cetaceans to
various noise sources, but were concerned about the lack of study of effects of
noise sources such as commercial sonars, depth finders and fisheries acoustics
gear. Conducting experiments with cetaceans is challenging and opportunities
are limited, so studies should include rigorous measurements and or modeling
of exposure. Romano et al. (2004) measured blood parameters of white whale,
Delphinapterus leucas, and bottlenose dolphin, Tursiops truncatus, in response to
noise. Norepinephrine, epinephrine, and dopamine levels, related to stress, increased
with increasing sound levels and were significantly higher after high-level sound
exposures compared with low-level sound exposures or controls.

Noise from ship traffic and commercial, research and military activities has
increased over the past century, and has resulted in changes in the vocalizations and
behaviors of many marine mammals, such as beluga whales (Delphinapterus leucas)
(Lesage et al. 1999), manatees (Trichechus manatus) (Miksis-Olds and Miller 2006)
and right whales (Eubalaena glacialis, E. australis) (Parks et al. 2007). The calls of
killer whales are longer in the presence of noise from boats, probably to compensate
for the acoustic pollution (Foote et al. 2004), while humpback whales (Megaptera
novaeangliae) increase the repetition of phrases in their songs when exposed to low-
frequency sonar (Miller et al. 2000). Similarly, several dolphin species change their
behavior and vocalization in the presence of boat sounds (Buckstaff 2004). Parks
et al. (2011) documented calling behavior by individual endangered North Atlantic
right whales (Eubalaena glacialis) in increased background noise. Right whales
respond to periods of increased noise by increasing the amplitude of their calls. This
may help to maintain the communication range with conspecifics during periods
of increased noise. This may be interpreted as an adaptive response. However,



9.7 Migration and Homing/Habitat Evaluation 333

periods of high noise are increasing and have reduced the ability of right whales
to communicate with each other by about two-thirds. E. glacialis were studied by
Hatch et al. (2012) in an ecologically relevant area (10,000 km2 Stellwagen Bank
marine sanctuary) and time period (1 month) using vessel-tracking data from the
U.S. Coast Guard’s Automatic Identification System to quantify acoustic signatures
of large commercial vessels and calculate noise from vessels inside and outside
the sanctuary. By comparing noise levels from commercial ships today with lower
noise conditions a half-century ago, the authors estimate that right whales have lost
about 63–67 % of their “communication space” in the sanctuary and surrounding
waters. Humpback whales in this sanctuary stopped their singing during an Ocean
Acoustic Waveguide Remote Sensing (OAWRS) experiment approximately 200 km
away (Risch et al. 2012).

A common behavioral response is to leave the area. Olesiuk et al. (2002) assessed
impacts of the sound generated by an acoustic harassment device (AHD) on the
relative abundance and distribution of harbor porpoises (Phocoena phocoena).
Abundance declined quickly when the AHD was activated. The mean number
of porpoise re-sightings while tracking their movements also declined, which
suggested that the few porpoises that went into the study area spent less time within
it when the AHD was activated. The effect of the AHD diminished with distance
but no porpoises were observed within 200 m of the AHD when it was activated.

9.7 Migration and Homing/Habitat Evaluation

9.7.1 Crustaceans

Hypoxia

Hermit crabs, Pagurus bernhardus, in hypoxic conditions spent less time investigat-
ing new shells before entering them, and also selected lighter shells than did crabs
in normal DO levels. This shift in shell preference may reduce energy expenditure,
but was at the expense of internal spaciousness of the shell, since lighter shells
were smaller. These smaller shells may make residents more vulnerable to predation
(Côté et al. 1998).

Acidification

Since chemoreception is a key activity by which many aquatic animals perceive their
environment, disruptions of this process could have serious impacts on survival and
fitness. De la Haye et al. (2011b) tested the chemosensory responses of the hermit
crab P. bernhardus to a food odor under reduced pH (6.8). Acidifying the odor did
not affect its attractiveness, but at the low pH crabs had lower antennular flicking
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rates, were less successful in locating the odor source, and had reduced general
activity compared to those at normal pH. De la Haye et al. (2012) investigated effects
of reduced pH on shell assessment and selection by P. bernhardus. At pH 6.8 crabs
were less likely to change from a suboptimal to an optimal shell than those in normal
pH, and those that did change shells took longer to do so. Thus, a reduction in
pH disrupts resource assessment and decision-making of these crabs, reducing their
ability to acquire a vital resource.

9.7.2 Fishes

Olfaction is important for the homing of adult salmonids from the ocean to their
natal river to spawn. If the olfactory sense is impaired by toxicants, homing
behavior can be affected. Smolting is the juvenile stage specialized for downstream
migration, seawater entry, and marine residence; it is controlled by a number of
hormones and includes numerous physiological and behavioral changes in fresh
water which prepare smolts for migrating into marine waters (McCormick et al.
1998). Smolting is discussed below and further in Chap. 8.

Metals

Copper is particularly damaging to the olfactory system, which is critical for
migration and homing in salmon. After exposure to 22 �g l�1 copper, salmonids
could no longer discriminate among different sources of water (Saucier et al. 1991).
When controls were given a choice between their own rearing water vs either well
water or heterospecifc water, they significantly preferred their own rearing water,
whereas copper-exposed groups showed no preference. The behavioral response of
exposed fish indicates impairment of their olfactory discrimination ability.

Organics

The transition of salmonids to the smolting stage is controlled by the endocrine sys-
tem. Growth hormone, insulin-like growth factor I (IGF-I), cortisol, and thyroxine
are all involved in the development of salinity tolerance in smolting (Kavlock et al.
1996) and these hormones all increase during smolting. It is likely that exposure to
endocrine-disrupting chemicals will affect smolting and affect seaward migration
The pesticide atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine), which
is known to modify the parr–smolt transformation and olfactory function in adult
Atlantic salmon (S. salar) had a significant effect on migratory activity and olfactory
sensitivity of smolts (Moore et al. 2007). Exposure for 81 days to 5.0 �g l�1atrazine
during the parr–smolt transformation significantly reduced migratory activity in an
experimental stream during the period of peak migration in the wild population.

http://dx.doi.org/10.1007/978-94-007-6949-6_8
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Fig. 9.10 Response of larval clownfish to olfactory cues from three tropical plants and from
anemones when reared in current seawater pH (control, open bars) and ph 7.8 (filled bars).
Bars D percentage of time larvae spent on the side of a 2-channel flume chamber which contained
the cue. Numbers above bars D number of replicates (Reprinted from Munday et al. 2009: 1849,
courtesy National Academy of Sciences)

After exposure to atrazine at (nominal) 0.5, 1.0, 2.0 and 5.0 �g l�1 electrophysio-
logical responses recorded from the olfactory epithelium of salmon smolts to both
L-serine and smolt urine were significantly reduced.

CECs

Exposure of migrating Atlantic salmon (S. salar) to 10 ng l�1 of the brominated
flame retardant hexabromocyclododecane (HMCD) impaired olfactory responses
(Lower and Moore 2007).

Exposure to loud noise can cause fish to move away from the area. The actual
effect could be minor, since they may return when the noise stops. However,
effects can be more extensive and result in fish leaving important feeding grounds
or spawning sites. Skalski et al. (1992) found that sounds generated by acoustic
geophysical survey devices resulted in reduced numbers of rockfish (Sebastes spp.)
relative to control trials. This overall decline was also reflected in the catches of
individual rockfish species – chilipepper (S. goodei), bocaccio (S. paucispinis), and
greenspotted rockfish (S. chlorostictus).

Acidification

Larvae of clownfish (Amphiprion percula) reared under acidic conditions (pH 7.8)
were unable to locate safe habitats (Munday et al. 2009). They had damaged sensory
abilities, were unable to discern the scent and sound of predators and thus were less
likely to detect and swim away from threats, lowering their chances for survival
(Fig. 9.10). For example, they were more attracted to odors of terrestrial plants such
as Melaleuca.
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Many fishes also rely on hearing for orientation, habitat selection, predator
avoidance and/or communication. Simpson et al. (2011) studied the influence of
enriched CO2 on directional responses of juvenile clownfish (A. percula) to daytime
reef noise. Juveniles in ambient pCO2 conditions avoided reef noise, as expected,
but this behavior was absent in high pCO2 (700 and 900 �atm pCO2), showing that
ocean acidification affects auditory responses, with potentially detrimental impacts
on early survival. Adults can also be affected. The ability of adult cardinalfish,
Cheilodipterus quinquelineatus, to home to their diurnal resting sites after nocturnal
feeding was impaired by elevated pCO2 (550, 700 or 950 �atm) (Devine et al.
2012). Exposed fish had reduced ability to distinguish between home vs foreign-site
odors. Fish in elevated pCO2 showed reduced homing success when released 200 m
away from home sites. Behavior at the home sites was also affected, with exposed
fish having higher activity and venturing further from shelter. Thus, disruption of
chemosensory mechanisms was seen in critical behaviors.

Long before awareness of ocean acidification, decreased pH in freshwater
was a concern due to acid rain, and large numbers of studies of effects of this
environmental problem were done in previous decades. Acidity and accompanying
aluminum in freshwater can impair the development of gill NaC, KC-ATP-ase and
thus salinity tolerance, which is essential for salmon to develop before migrating
to saline waters. Exposures as short as 12 h to relatively mild acidity (pH 5.2,
31 mg l�1 aluminum) can impair salinity tolerance (Staurnes et al. 1996a). Atlantic
salmon smolts (S. salar) released into an acidic river in Norway often had no adult
returns and had only one-tenth the returns of fish released at the mouth of the
river or in a nearby limed river (Staurnes et al. 1996b). These return rates were
strongly correlated with the effect of acidity on gill NaC, KC�ATPase activity and
osmotic balance of fish held in cages at the different sites. Therefore, the smolt stage
appears to be particularly sensitive to acid rain and other pollutants. By affecting the
development of salinity tolerance, migration to the sea can be impaired.

9.7.3 Other Taxa

Corals and Acidification

Coral larvae (Acropora millepora) normally settle on the crustose calcareous
alga, Titanoderma, for metamorphosis. Doropoulos et al. (2012) found that as
pCO2 increased (to 800 and 1,300 �atm), the coral larvae avoided this alga and
started to settle elsewhere. Titanoderma also became less prevalent. Acidification
therefore reduced the number of larvae settling, disrupted their normal preference
for settlement, and reduced the availability of the most desirable algal substrate for
their future survival.
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9.8 Neurotoxicology Underlying Behavior

Effects on complex behaviors are due to underlying effects on the nervous and
endocrine systems. Effects of pollutants on behavior are likely caused by in-
terference with these systems, including neurological development and levels
of neurotransmitters. Sensory receptors may be affected. Chemoreception is an
important factor for responses to their environment; olfaction, vision, and hearing
are important chemical senses that can be impaired by contaminants. In addition,
many behaviors are affected by the endocrine system, which is very sensitive to
environmental contaminants. These underlying mechanisms will be discussed only
briefly.

9.8.1 Crustaceans

Neurosecretion and CNS

Various metals and organic pollutants have been found to affect the nervous
system of crustaceans. Increased acetylcholinerase in thoracic ganglia of the crab
Barytelphusa guerini was noted (Reddy and Venugopal 1993) after 4 days of Cd
(0.6 mg l�1) exposure, but after 15 days the enzyme was inhibited. The eyestalks
of decapod crustaceans are central neuroendocrine coordinators, controlling almost
all aspects of their lives including the molt cycle, color change, maturation, blood
sugar, and nerve function. Cd (10 mg l�1) damaged neurosecretory cells in the
brain and eyestalk ganglia of U. pugilator (Reddy and Fingerman 1995). Impaired
color change is an easily measured response to disruption of these hormones.
Crabs exposed to Cd were less able to disperse pigment in their melanophores
because Cd depleted neurosecretory material. Exposure to the WSF of Louisiana
crude oil or naphthalene resulted in accumulation of neurosecretory material in
the brain of U. pugilator (Deecaraman and Fingerman 1985), suggesting that
these chemicals, unlike Cd, inhibit release, rather than synthesis of neurosecretory
material. Similarly, exposure to PCBs inhibited release of black pigment dispersing
hormone from the eyestalks, so that the crabs did not become as dark as unexposed
fiddler crabs (Staub and Fingerman 1984).

Sense Organs

Crustaceans depend on chemical senses for feeding and social interactions, and their
chemoreceptors are on the surface of the body and exposed directly to the environ-
ment with whatever contaminants may be present. Disrupted chemoreception can
be responsible for changes in settlement of larvae, hermit crab shell acquisition,
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and reproductive interactions (Krang 2007; Krang and Ekerholm 2006; Krang and
Dahlstrom 2006). Pesticides designed to affect the nervous system of insects are
likely to have effects on the crustacean nervous system including chemoreception.

9.8.2 Fishes

Neurotransmitters

Brain neurotransmitter levels and enzyme functions are related to behaviors, so it
is likely that altered neurotransmitters induced by toxicants will result in altered
behaviors. One of the most common indicators of altered neural function is altered
acetylcholinesterase (AchE) in the brain. AchE breaks down the transmitter acetyl-
choline after it diffuses across the synapse in cholinergic neurons. Organophosphate
pesticides inhibit fish AchE, as this is their “mode of action,” as do many carbamate
pesticides (Scott and Sloman 2004). Brain cholinesterase and feeding behavior of
bream (Abramis brama) were both affected by the organophosphate pesticide DDVP
(Dichlorvos), suggesting a connection between the physiological and behavioral
effects (Pavlov et al. 1992). Injection of atropine, which counteracts the effects of
DDVP, restored both feeding behavior and brain AchE activity. Fish with altered
behavior have been shown to have altered brain neurotransmitters. Killifish (F.
heteroclitus) after mercury exposure or collected from polluted sites, which had
reduced activity and prey capture, also had reduced serotonin in their brains (Smith
et al. 1995; Zhou et al. 1999b). In contrast, Gulf killifish (F. grandis) showed
decreased dopamine and norepinephrine after exposure to PCBs (Aroclor 242),
along with greatly increased activity levels, but no effect on serotonin (Fingerman
and Russell 1980). Yu et al. (2013) found that 10, 100 and 1,000 ng l�1 TBT
reduced prey capture of Sebastiscus marmoratus and altered neurotransmitters.
Dopamine levels in the fish brains increased in a dose-dependent manner and
5-hydroxytryptamine and norepinephrine levels decreased in TBT-exposed fish
compared to controls.

Exposure to PbNO3 (1.6 mg l�1) reduced feeding and resting bouts of the cleaner
fish Thalassoma pavo after 24 h of exposure, while hyperactive swimming episodes
were seen (Zizza et al. 2013). The abnormal behaviors were highly correlated to up-
regulated orexin receptor (ORXR) mRNA expression in the lateral thalamic nucleus
and the optic tectum of the brain. These transcriptional effects were attenuated when
exposed fish received either 100 ng g�1 of ORX-A or 0.1 �g g�1 of ”-aminobutyric
acidA receptor (GABAAR) agonist muscimol (MUS). Moreover, neurodegenerative
processes noted after Pb exposure were not seen after treatment with MUS, but
addition of the GABAAR antagonist bicuculline (BIC; 1 �g g�1) enhanced the
behavioral and neurodegenerative effects of Pb. Thus, there are a number of different
neurotransmitters that can be affected by various contaminants that are associated
with altered behaviors.
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Sense Organs

Olfaction

The olfactory system of fishes is open to the environment and particularly sensitive
to metals including Hg (Baatrup et al. 1990), although inorganic Hg and meHg
localize in different parts of the olfactory system. Many metals directly enter the
olfactory system where they can disrupt normal function. By accumulating in
and damaging cells of the olfactory system, toxicants can disrupt transmission of
information from olfactory lobes to higher levels of the brain. Olfactory receptor
neurons can be a direct transport route of contaminants to the olfactory bulbs and the
brain, with resulting effects on the functioning of the nervous system. Cd appears to
move along olfactory neurons by axonal transport (Scott and Sloman 2004). Some
studies have shown a connection between altered behavior and altered olfactory
system. Rehnberg and Schreck (1986) showed reduced avoidance of the amino acid
L-serine (a potent odor to fish) by coho salmon (Oncorhynchus kisutch) exposed to
Cu and Hg. Hg but not Cu inhibited serine binding to the olfactory epithelium. Cu
produced morphological lesions in olfactory, taste, and lateral line receptor systems
(Brown et al. 1982). Copper exposure of juvenile coho salmon (Oncorhynchus
kisutch) (30 min exposure to 20 �g l�1 Cu) reduced the olfactory response to a
natural odorant (10�5 M L-serine) by 82 % (McIntyre et al. 2008).

Kennedy et al. (2012) found that Cu inhibited the ability of chinook salmon to
detect and avoid the odorant L-histidine amino acid in a concentration-dependent
manner, and Cu toxicity (olfactory inhibition) decreased with increasing dissolved
organic carbon (DOC) concentration. These finding suggest that DOC concentration
should be considered when evaluating impacts of Cu on fish olfaction.

Olfactory alterations in early life history stages due to organophosphate and
carbamate pesticides may be related to effects on AChE and sodium channels
(Narahashi 1996).

The olfactory system of male salmonids responds to many pesticides. For exam-
ple, short-term exposure of the olfactory epithelium of mature male Atlantic salmon
(S. salar) to simazine (1.0 and 2.0 �g l�1) or atrazine (1.0 �g l�1) significantly
reduced the olfactory response to the female priming pheromone, prostaglandin F2’.
In addition, the reproductive priming effect of the pheromone on the amount of
expressible milt was also reduced after exposure to the individual pesticides (Moore
and Lower 2001). Exposure of mature males for 5 d to <0.004 �g l�1 cypermethrin
significantly reduced or inhibited the olfactory response to prostaglandin F2’. In
addition, exposure to cypermethrin significantly reduced their ability to respond to
the priming effect of the pheromone (Moore and Waring 2001).

Impaired olfactory function may cause larval fish to be attracted to odors they
normally avoid, including those from predators and unfavorable habitats. The
underlying mechanism linking high CO2 to these responses has been shown to
be neurotransmitters (Nilsson et al. 2012). Abnormal olfactory preferences of fish
exposed to high CO2 can be reversed by treatment with an antagonist of the receptor
for GABA-A, a major neurotransmitter receptor in the brain. This shows that high
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CO2 interferes with neurotransmitter function, which underlies many behaviors.
Since these receptors are widespread in animals, rising CO2 levels could cause
sensory and behavioral impairment in a wide range of marine species.

Vision

Impaired vision can also underlie some behavioral changes. Interference with visual
ability is likely to affect prey capture and predator avoidance. Cu (60–110 �g l�1)
caused pathological changes in the cornea of the developing eye of striped bass
Morone saxatilis (Bodammer 1985), while TBT (10 and 50 ng l�1) and EE2 (3 and
9 ng l�1) reduced the pupil area of pipefish, Syngnathus abaster larvae (Sárria et al.
2011b).

Hearing and Lateral Line

Hearing in fish can be impaired by prolonged exposure to loud noise. Marine
petroleum exploration involves the repetitive use of high-energy noise sources, air-
guns, which produce a short, sharp, low-frequency sound. Ears of pink snapper
(Pagrus auratus) exposed to an operating air-gun sustained extensive damage to
their sensory epithelia that was apparent as ablated hair cells (McCauley et al.
2003). Sensory cells were missing and there was considerable cell death observed.
The damage was regionally severe, with no evidence of repair or replacement of
damaged sensory cells up to 58 days after exposure. This study was done on fish
caged near the source that could not escape. Wild fish would have left the area,
mitigating the destructive effects of the noise.

The lateral line can be a target for toxicants, such as cadmium, whose effects can
impair escape behavior (Faucher et al. 2006).

Endocrine System

Many studies have shown linkages between hormones and behavior. Many pol-
lutants act as agonists or antagonists to hormones. Thyroid hormones influence
many processes in fish, including neural development, metabolism, maturation
(smoltification in salmonids and metamorphosis in flatfish), and behavior. Many
chemicals, including chlorinated hydrocarbons, PAHs, organochlorine pesticides,
chlorinated paraffins, organophosphate pesticides, carbamate pesticides, cyanide
compounds, methyl bromide, phenols, ammonia, metals, acid, sex steroids, and
pharmaceuticals, exert effects on the fish thyroid, which has implications for
behavior. About 40 fish species have been shown to have thyroid responses to
contaminants (reviewed by Brown et al. 2004). Fundulus heteroclitus from Piles
Creek, New Jersey (contaminated with metals, PCBs and more) are sluggish with
poor prey capture and predator avoidance. They have abnormal thyroid glands,
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with extremely enlarged and follicular cell heights, and contain elevated plasma
thyroxine (T4), but not plasma or tissue T3 (Zhou et al. 1999a). Reference site fish
held in conditions simulating Piles Creek also developed elevated T4.

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) affected
endocrine signalling in Atlantic salmon (Salmo salar) embryos and larvae after
exposure to 100 �g l�1 from egg for 52 days, followed by 1 week recovery
(Spachmo and Arukwe 2012). Exposure altered expression of thyroid receptor ’ and
“, thyroid-stimulating hormone, and T4 outer-ring deiodinase. Turbot (Scophthal-
mus maximus) larvae exposed to WSF of crude oil had increased levels of circulating
thyroxine (T4) leading to a decrease in T3:T4 ratio, and reduced swimming activity
(Stephens et al. 1997).

9.8.3 Other Taxa

Solé et al. (2011) found morphological evidence of massive acoustic trauma in four
cephalopod species subjected to low-frequency controlled-exposure experiments.
Exposure to low-frequency sounds resulted in permanent and substantial alterations
of the sensory hair cells of the statocysts, the structures responsible for the animals’
sense of balance and position.

Exposure to noise may result in physiological and endocrine responses in marine
mammals with significant consequences. Rolland et al. (2012) showed that reduced
ship traffic in the Bay of Fundy, Canada, after the events of 11 September 2001,
resulted in a 6 dB decrease in underwater noise with a significant reduction below
150 Hz. This noise reduction was associated with decreased baseline levels of
stress-related glucocorticoids in North Atlantic right whales (Eubalaena glacialis).
This is the first evidence that exposure to low-frequency ship noise may be
associated with chronic stress in whales.

9.9 Discussion and Conclusions

Behavioral ecotoxicology can link disturbances at the biochemical level (e.g.,
altered neurological function or thyroid hormones) to effects at the population
level. Types of behaviors that have been measured include swimming activity,
burrowing, and migration, which are individual behaviors, and prey capture,
predator avoidance, reproductive behaviors, aggression, and social behaviors, which
involve interactions among individuals. Effects on behavior may be direct, such
as impairment of reproductive behavior, habitat evaluation, prey capture, and
avoidance of predators. Indirect effects include alteration of activity or reproduction
success due to reduced feeding and thus, less energy. The sensitivity of behavioral
responses can be useful in ecological risk assessments, as behavior can be affected
at levels lower than those that affect physiology.
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Behavior can be altered in larvae or older stages after exposure to contaminants
at the embryo stage. These delayed effects should be considered in risk assessment,
though they are not generally taken into consideration. Behavior evolves in response
to natural selection, maximizing an organism’s fitness. Since few species show
behavioral changes that are beneficial, most behavioral alterations in response to
contaminants are deleterious to an organism’s fitness.
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Chapter 10
Bioaccumulation/Storage/Detoxification

Abstract Bioavailability refers to the fraction of the total chemical in the
environment that is available for absorption into biota. This depends on the
chemical, the organism, and environmental conditions, such as temperature, DO,
and pH. Uptake of contaminants generally is via the skin, respiratory system, or
food, with food being a major route of uptake for species that are higher on the
food web such as large carnivorous fishes or mammals. Hydrophobic compounds
that have low water solubility (log octanol/water partition coefficient – log Kow

>6) are absorbed primarily from food, while compounds with low hydrophobicity
(log Kow <4) are more water-soluble, and are absorbed directly from the water,
primarily by the gills. Hydrophobic chemicals including halogenated organics and
metals that have low water solubility tend to be adsorbed to sediments, which
are the main sink and source for uptake into biota (via pore water). They also
partition onto particulates and small planktonic organisms. Once absorbed, only
a portion of the chemical actually reaches the circulation for distribution around
an animal’s body. This amount is affected by processes including absorption,
transport, biotransformation, and excretion via gills or kidneys. Within cells, metals
can become associated with metallothioneins or metal rich granules, which make
them unavailable, while metals associated with enzymes can cause toxicity. The
subcellular distribution also affects the degree of trophic transfer. Persistent organic
chemicals tend to accumulate in fatty tissue and to biomagnify up food webs.
Organic chemicals are metabolized with the cytochrome P450 (CYP) enzyme
system. Both metals and organic chemicals tend to accumulate in the liver or
hepatopancreas; lipophilic chemicals accumulate in the blubber of large animals
such as marine mammals.

While previous chapters have focused on what pollutants do to marine organ-
isms, this chapter deals with what marine organisms do to pollutants – taking
them up from the environment and doing something with them such as storage
or metabolism. Uptake can be through the skin, gills, or gut and may involve
adsorption, passive diffusion, active transport, or endocytosis. The specific kinetics
of uptake relate to the concentration and nature of the contaminant. The term
bioaccumulation is generally used to describe uptake, but there are specific terms
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and acronyms that refer to variations in processes but are not always used cor-
rectly. Bioaccumulation refers to uptake from all sources in the environment. The
bioaccumulation factor (BAF or BSAF) refers to the concentration in the organism
relative to that of the sediment, when that is the major source of accumulation. If the
concentration is normalized to the amount of lipid in the organism and the amount
of organic carbon in sediments, the ratio may be referred to as the accumulation
factor (AF). Bioconcentration is a more specific term that refers to accumulation
from water. The bioconcentration factor (BCF) is the concentration of a chemical
in the organism relative to that in the water. Biomagnification refers to increasing
concentrations of a persistent contaminant from one trophic level to the next in a
food chain, due to accumulation from food. The biomagnification factor (BMF) is
the concentration at one trophic level divided by that at the trophic level below.

Keywords Absorption • Biomagnification • Depuration • Cytochrome •
Detoxification • Granule • Hepatopancreas • Lysosome • Metallothionein •
Mixed-function oxidase (MFO) • Stress protein • Trophically available metal
(TAM) • Uptake

10.1 Metals

Life evolved in the presence of metals, and some metals are part of essential
molecules (enzymes) and metabolic processes. Cu, Zn, and Fe are major essential
metals, while trace amounts of Co Ni, Mn, Ni, Mb and Cr are also needed. Metals,
particularly Zn, Cu, and Fe, may help with proper protein folding. Metal contami-
nation of terrestrial and aquatic systems dates as far back as human civilization, but
with the industrialization of the eighteenth century severe environmental impacts
of metals released by mining and smelting began to pose threats to wildlife. The
ionic form of most metals is the most bioavailable, and is taken up to the greatest
degree. Of all the toxic metals, only mercury (as methylmercury) biomagnifies up
food webs.

10.1.1 Bioaccumulation

Crustaceans

Since crustaceans are covered with an impervious chitinous exoskeleton, uptake
in large animals is mostly via the gills or food, except perhaps directly after
ecdysis, when the cuticle is thin and permeable. Smaller crustaceans can take up
chemicals through the thin exoskeleton. The subsequent fate of the metal depends
on the physiology of the animal and whether or not the metal is essential. The
accumulation pattern of different metals varies considerably among taxa depending
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on the degree to which excretion plays a role and where the metal is stored.
Essential metals tend to be regulated to optimum concentrations, above which
excretion removes the excess. Potentially toxic metals must either be excreted or
stored in a non-available form if they are not to cause damage. Toxicity occurs
when the concentration exceeds the amount that can be stored in these forms or
excreted. Metals tend to be stored in specific tissues such as the hepatopancreas
(Rainbow 1988), which generally has the highest concentration of Cd, Zn, Cu,
Pb, and Cr. However, significant levels may also be found in muscle, which has
implications for human consumption of edible species. For example, in many
crustaceans including blue crabs, Hg (which has caused serious effects in humans
from consuming fish) accumulates largely in muscle (Reichmuth et al. 2010). Cd is
taken up and accumulated from the water and food (Devi et al. 1996), and stored
and detoxified mainly in the hepatopancreas (White and Rainbow 1986). Blue crabs
accumulate Cd from food in the hepatopancreas and from water in the gills (Engel
1983). The order of Zn accumulation was found by Bagatto and Alikhan (1987) to
be: hepatopancreas > exoskeleton > digestive tract > abdominal muscle. Engel et al.
(1985) compared responses of blue crabs and lobsters to Cd, and found that both
species accumulate it in the digestive gland (hepatopancreas) but only blue crabs
accumulated significant amounts in the gills.

Cu in crustaceans is also essential as part of the hemocyanin molecule. It is
regulated to a roughly constant level until bioavailability exceeds a threshold and
net accumulation begins (White and Rainbow 1982; Rainbow and White 1989).
Excess Cu and Zn can be rapidly depurated when the animals are put in clean water
(Kouba et al. 2010). The shrimp Palaemon elegans can match excretion to uptake
of certain metals such as Zn (Rainbow 1993). In other cases, such as the amphipod
Orchestia gammarellis, excretion of Cu takes place from detoxified stores (Nassiri
et al. 2000). Martins et al. (2011) showed that Cu flux into the gills of blue crabs was
higher than into other tissues, and that both anterior and posterior gills were sites of
accumulation at both high and low salinity. Experiments with isolated perfused gills
showed a positive relationship between metal concentration in the incubation media
and Cu accumulation in gills.

Lead is neither essential nor beneficial and accumulates mostly in the hepatopan-
creas. However, in the prawn Penaeus monodon, Pb granules were found in the
antennal gland and to a lesser degree in the hepatopancreas. In the antennal gland,
Pb granules were discharged into the lumen and excreted with the urine (Vogt and
Quinitio 1994). Little Pb was transferred trophically from metal-rich worms to the
prawn Penaeus varians. Prawns consuming metal-contaminated worms showed net
accumulation only of Cd (Rainbow et al. 2006).

Since crustaceans periodically molt, depositing metals in the exoskeleton prior
to molting provides a possible route for depurating contaminants. However, when
grass shrimp (P. pugio) were exposed to Zn, or Cd and then placed in clean water
to molt, relatively low percentages of their body burden were actually depurated via
ecdysis, although about one-fourth of the Cd was removed. It appeared that much
of the Cu in the exoskeleton was reabsorbed prior to molting (Keteles and Fleeger
2001). In contrast, fiddler crabs, U. pugnax, particularly those from a contaminated
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Fig. 10.1 Metal distribution between soft tissues and exoskeleton during intermolt and post-molt
for the Piles Creek (polluted) population and Tuckerton (reference) population (Reprinted from
Bergey and Weis 2007: 560, courtesy of Elsevier Publishing Co)

site, moved considerable amounts of toxic Pb and Hg from soft tissues into the
exoskeleton prior to molting, while moving the essential Cu and Zn from the
exoskeleton to the soft tissues (Bergey and Weis 2007) (Fig. 10.1). This was an
effective way to depurate the more toxic metals.

Mollusks

Mollusks can accumulate metals from the water, sediments, and food. Assimilation
efficiencies (AEs) and physiological turnover-rate constants (k) of Ag, Am, Cd, Co,
Se, and Zn in the oyster Crassostrea virginica, the clams Macoma balthica and
Mercenaria mercenaria, and the mussel Mytilus edulis were measured by Reinfelder
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et al. (1997) in radiotracer-depuration experiments. Egestion of unassimilated
elements was highest during the first 24 h and then declined. The AEs of Ag, Cd, Se,
and Zn were directly related to the proportion of each element in the cytoplasmic
fraction of ingested phytoplankton; >80 % of metals in the algal cytoplasm were
assimilated. C. virginica, M. balthica, and M. mercenaria assimilated about one-
third of the Ag and Cd in the membrane/organelle fraction of ingested cells as
well as the cytoplasmic fraction. The ratio of AE:k, which is proportional to the
concentration in consumer: concentration in prey was greater for Cd, Se, and Zn
than for Ag, Am, and Co. The ratio was lowest in M. edulis, indicating that this
bivalve, widely used in biomonitoring, is inefficient at accumulating Ag, Cd, and
Zn from ingested phytoplankton. This suggests that other bivalves might be better
monitors of pollution.

Pan and Wang (2011) examined Hg accumulation in scallops Chlamys no-
bilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels
Perna viridis, and black mussels Septifer virgatus, which showed different pat-
terns of accumulation in terms of concentrations of meHg and total Hg (THg)
(0.01–0.5 �g l�1), and the ratio of meHg to THg. Scallops in 0.01 �g l�1 meHg
accumulated it at the fastest rate, about 5 �g g�1 day�1. With the exception of black
mussels, there was a significant relationship between efflux rates of Hg(II) and the
THg concentrations (increasing from 0.02 to 0.06 day�1 with Hg concentration).
Interspecific variations in the meHg to THg ratio were due to relative differences
between the elimination rates of Hg(II) and meHg. Stable isotope analysis indicated
that contrasting feeding niches of the species may affect Hg accumulation.

Mucus secretion is an indicator of stress but also a mechanism of depuration and
protection for mollusks. Copper-exposed mussels Perna viridis secreted mucus with
six times the concentration of Cu than the soft tissues (Sze and Lee 1995). Oysters
(C. virginica) living on bulkheads of wood treated with CCA (chromated copper
arsenate) accumulated extremely high levels of Cu (�200 �g g�1 wet wt.) as well
as some arsenic (�3 �g g�1), enough Cu to acquire a green coloration. Highest
concentrations were seen in small oysters compared to large ones, suggesting a
growth dilution effect (Weis et al. 1993). Snails, Thais (Stramonita) haemastoma
floridana that fed on these oysters gradually reduced their feeding, grew more
slowly than snails fed clean oysters, and increased their body burden of copper about
fourfold over 8 weeks (Weis and Weis 1993).

Gastropods are often predators in marine benthic environments, and trophic
transfer is a major route of metal accumulation. The influences of prey composition
on the trophic transfer, accumulation, subcellular distribution and metallothionein
(MT) induction of Ag, As, Cd, Cu, Pb and Zn in Nassarius siquijorensis were
investigated (Guo et al. 2013). The snails were fed clams Ruditapes philippinarum,
mussels Perna viridis, oysters Crassostrea angulata or barnacles Fistulobalanus
albicostatus, each differing in their metal accumulation and handling patterns.
N. siquijorensis showed prey-specific bioaccumulation and trophic transfer of the
metals. Body burdens in the viscera and muscles of the snail increased with
increasing exposure period and metal concentration in the four prey. Calculated
trophic transfer factors (TTFs) of the metals were the highest for clam and mussel



360 10 Bioaccumulation/Storage/Detoxification

prey, indicating that metal bioavailability from these prey was higher than that
from barnacles and oysters. All the metals except Pb were enriched during transfer
to the snails. The subcellular metal distribution in viscera was affected by prey
species, but all induced MTs. Li et al. (2012) compared the accumulation of aqueous
vs nanoparticle silver by the herbivorous gastropod, Littorina littorea, both in
the presence and absence of contaminated algal food (sea lettuce, Ulva lactuca).
Significant accumulation occurred in the gill, kidney, stomach and visceral mass
after exposure to aqueous Ag in the absence of food. Despite the consumption
of U. lactuca that was contaminated by Ag, no accumulation was observed from
the dietary route. The levels of Ag in U. lactuca and in the snail feces clearly
indicate throughput of Ag in the digestive system of the snail, but there was little
mobilization of Ag from contaminated food. This is in contrast with previous
studies, above. Trophic transfer of Ag from algae may be lower. When added as
nanoparticles, accumulation of Ag was measured in the head and gill and only in
the absence of contaminated food. That Ag was only detected in the head and gill
suggests the association may be physical adsorption, with little Ag entering internal
organs. These observations are also different from other studies, and suggest that Ag
is most bioavailable to L. littorina when in solution, and that when in nanoparticle
form, there is little transfer to internal organs.

Cd and Hg levels were measured in tissue samples of two loliginid (Alloteuthis
sp. and Loligo forbesi) and two ommastrephid (Todarodes sagittatus and Todaropsis
eblanae) squids by Pierce et al. (2008). Cd was generally higher in the ommas-
trephids in all tissues except muscle. Hg was higher in T. sagittatus than in the
loliginids. In L. forbesi, Cd varied in relation to body size, geographic origin, and
season. Cd levels decreased with increasing body size. This may be related to a shift
in diet, since small L. forbesi feed on benthic invertebrates with relatively high Cd
levels, while larger ones prey mainly on fish with lower Cd. In contrast, Hg levels
increased with body size, and were highest at the end of the spawning season and in
squid from the English Channel and the Scottish West Coast. It is likely that the Hg
concentration in seawater plays an important part in its accumulation.

Metal uptake can be affected by ocean acidification. Lacoue-Labarthe et al.
(2011) investigated effects of acidification (pH of 8.1, 7.85 and 7.60) on the
accumulation of dissolved 110mAg, 109Cd, 57Co, 203Hg, 54Mn and 65Zn radiotracers
in the whole egg strand and in different compartments of the squid Loligo vulgaris
during embryonic development and early hatchlings. In embryos, decreasing pH
enhanced uptake of Ag and Zn, while Hg had the lowest uptake at the intermediate
pH. Zn incorporation into statoliths increased with decreasing pH. Conversely,
uptake of Cd and Mn decreased with decreasing pH, and the accumulation of Co
was unaffected. In hatchlings, uptake of Ag increased with decreasing pH, that of
Co was reduced at the lowest pH, and Hg had maximal uptake at the intermediate
pH. Mn and Zn accumulation were not changed. These results suggest pH affects
metabolism of embryos and hatchlings, and alters metal accumulation in various
ways depending on the metal and pH.
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Fishes

Fishes also take up metals from the water or food, and the type of food can
influence the degree of trophic transfer. Dutton and Fisher (2011a) investigated
the trophic transfer of As, Cd, Cr, Hg(II), and meHg from a benthic amphipod
(Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish
(Fundulus heteroclitus) using radioisotopes. Except for meHg, absorption efficiency
(AE) varied among prey types. AEs were highest for meHg (92 %) and lowest for
Cd (2.9–4.5 %) and Cr (0.2–4 %). Hg(II) showed the largest AE difference between
prey type (14 % for amphipods vs 24 % for worms). Tissue distribution data showed
that Cd and Hg(II) were mainly associated with the intestine, whereas As and meHg
were transported throughout the body. Calculated trophic transfer factors (TTFs)
suggest that meHg is likely to biomagnify at this trophic step at all ingestion rates,
whereas As, Cd, Cr, and Hg(II) will not (Fig. 10.2). This is consistent with previous
work indicating that of metals, only meHg biomagnifies.

The same authors (2011b) assessed the role of salinity on the uptake of As, Cd,
Cr, inorganic Hg (Hg(II), and meHg into the euryhaline F. heteroclitus from the
water. Fish were exposed to 4.98 nM 73As, 0.73 nM 109Cd, 0.51 nM 51Cr, 0.51
nM 203Hg(II), and 0.42 nM MeHg. Uptake rate constants were highest for meHg
(0.79–2.29 l g�1 day �1), followed by Hg(II), Cd, Cr, and lowest for As. Cr showed
no relationship with salinity; Cd, had an inverse relationship; and As, Hg(II), and
meHg uptake increased as salinity increased. As and Cr were regulated by the fish,
while Cd, Hg(II), and meHg were not. Concentration factors (CFs) were >1 at all
salinities for Cd, Hg(II), and meHg, indicating that the fish were more enriched
in the metal than the water, whereas As and Cr CFs were <1 at all salinities.
Uptake rate was highest for meHg, followed by Hg(II), Cd, Cr, and lowest for
As. As salinity increased, Cd increased in the viscera and decreased in the head
and gills, suggesting that drinking to osmoregulate may account for some of the
uptake. Salinity plays a major role in the toxicity of Zn to F. heteroclitus, with the
greatest damage (oxidative stress) in freshwater, and the least in seawater (Loro
et al. 2012). Shyn et al. (2012) examined uptake of two Zn concentrations: 15 and
75 �g l�1 in moderately hard freshwater, and 100 and 1,000 �g l�1 in 35 ppt salinity
(saltwater) for 7 days. The ionic Zn concentrations were equivalent in the 75 �g l�1

freshwater treatment and the 100 �g l�1 saltwater treatment. Organ Zn distribution
was quantified in different organs and different patterns of Zn accumulation were
observed dependent on exposure medium. Despite lower exposure concentrations,
fish accumulated more Zn in freshwater than in saltwater in all of the organs. Humic
acid also plays a role in metal bioaccumulation (Dutton and Fisher 2012). While Cd
uptake showed no relationship with humic acid concentration, Cr, Hg(II), and MeHg
uptake showed an inverse relationship, and As uptake increased with increasing
humic acid concentration. Concentration factors were >1 for Cd, Hg(II), and MeHg
at all humic acid concentrations, indicating killifish were more enriched in the
metal than the experimental media, whereas As and Cr generally had concentration
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2011a: 3441, courtesy of Elsevier Publishing Co)

factors <1. Gills generally had the highest concentration of all metals under all
humic acid treatments. Thus, changes in humic acid concentration can influence the
accumulation of aqueous metals in killifish.

Mercury accumulation throughout the lifespan of golden gray mullet Liza aurata
was analyzed by Tavares et al. (2011) in muscle, gills, liver and brain in sites with
differential Hg contamination. Hg was higher in all tissues in contaminated bays, as
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expected. The liver had the highest levels, ranging from 0.11 to 4.2 �g g�1, followed
by muscle, brain, and gills. Most sampling sites and tissues showed a dilution pattern
as fish got bigger (Fig. 10.3). Organic Hg in muscle accounted for over 95 % of
total Hg, and followed the same accumulation pattern of total Hg. While, in general,
meHg biomagnifies and accumulates over time reaching highest levels in old large
fish, if growth is particularly rapid somatic growth dilution can occur.

Similarly, in juvenile Atlantic salmon, large, fast-growing fish were found to
have lower Hg concentrations than small, slow-growing ones (Ward et al. 2010).
Hg concentration in the prey accounted for 59 % of the explained variation in the
Hg concentration, and salmon growth rate accounted for 38 %. Juvenile European
sea bass (Dicentrarchus labrax) and golden grey mullet (L. aurata) were surveyed
in a Hg-contaminated estuary. Hg accumulated primarily in intestine, muscle, and
liver, while gills and brain had the lowest Hg (Mieiro et al. 2012). D. labrax muscle
levels were greater than L. aurata’s. Unlike the species above, muscle accounted
for >87 % of the Hg tissue burden, whereas liver did not exceed 11 %. Organic Hg
accumulation occurred mainly in liver and muscle, with D. labrax having higher
loads. Organic Hg in prey items was also significantly greater in D. labrax; showing
that feeding habits are important in determining metal accumulation. In Baltic
Sea turbot (Scophthalmus maximus), muscle had the highest Hg concentration,
with levels approaching 140 �g kg�1 in 30-cm fish, while livers had only 50–
60 �g kg�1. The BAF and BMF showed that muscle had maximum affinity for
Hg, and thus best reflected environmental metals (Polak-Juszczak 2012). Finding
the highest Hg concentration in muscle of edible species is a concern for human
consumers.

The uptake of meHg has been found to be reduced by the presence of selenium in
a number of organisms and Se can protect against some Hg toxicity. While this has
been studied mostly in mammals, Huang et al. (2013) investigated interactive effects
of Se and Hg on their absorption, disposition, and elimination in juvenile white
sturgeon (Acipenser transmontanus). Selenium was provided as l-selenomethionine
(SeMet). Sturgeon were orally intubated with a single dose of either 0 (control),
SeMet (500 �g Se kg body weight�1; BW), MeHg (850 �g Hg kg BW�1), or their
combination (500 �g Se kg BW�1 plus 850 �g Hg kg BW�1). The combination of
SeMet and MeHg significantly lowered blood concentrations of both Se and Hg and
tissue Se. Even in the absence of exogenous SeMet, Se and Hg co-accumulated in
tissue at a Se:Hg molar ratio greater than 1. Thus, similar to mammals, maintaining
at least a 1:1 M ratio of Se and Hg is of great physiological importance. Interestingly,
SeMet did not prevent Hg from accumulating in the brain.

Other Taxa

Corals accumulate metals in their skeletons, which can be used to record the
chronology of metal pollution (Dodge and Gilbert 1984). Historic input of mine
tailings in the Philippines was traced through variations in metals in Porites growth
bands (David 2002). Peaks coincided with a documented release of mine tailings in
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the area during that year. Other metal peaks observed in coral samples correlated
with years of high precipitation which may have resulted in increased sediment
runoff in the region.

Despite the usefulness of coral skeletons for historical records, the symbiotic
zooxanthellae accumulate greater metal concentrations than the skeleton or living
coral tissue. Coral skeletons had consistently lower metal concentrations than
the zooxanthellae, tissue and gametes. The loss of zooxanthellae during stress
(bleaching) may help reduce metal loads (Reichelt-Brushett and McOrist 2003).
Similarly, Bastidas and Garcia (2004) found most accumulation of Hg in zooxan-
thellae (Fig. 10.4). Corals exposed to 0.180 mg Hg l�1 accumulated 1.738 �g cm�2,
89 % of which was in the zooxanthellae, 7 % in polyps and 4 % in the skeleton. They
thought that the capacity of zooxanthellae and the skeleton of Porites astreoides to
concentrate Hg and the loss of zooxanthellae after Hg exposure suggest that the
accumulation of Hg in these compartments functions as a detoxifying mechanism.

10.1.2 Subcellular Disposition/Detoxification

The cellular localization of metals is critical to their toxicity. Metals associated with
metal-sensitive intracellular components (e.g., organelles and enzymes) can impair
cell functioning. Metals tend to bind to proteins and may prevent the protein from
functioning normally. For example, metals can bind to active sites of enzymes that
play an essential role in the regulation of biochemical, metabolic, and physiological
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activities, changing their configurations and inhibiting their activities; Khoury et al.
(2009) found that fiddler crabs (U. pugnax) from a contaminated site had elevated
levels of metals in the heat-denatured proteins (enzymes). However, other proteins
(e.g. metallothioneins, MT) can bind to metals and make them unavailable (to a
degree). Thus, metals may be toxic and available or may be unavailable, depending
on which protein they are bound to. Though not strictly a metal but a metalloid,
arsenic accumulated by the deposit-feeding polychaete Arenicola marina is stored
in the cytosol in heat stable proteins (�50 %) including metallothioneins (Casado-
Martinez et al. 2012). The remaining As is accumulated mainly in the fraction
containing cellular debris (�20 %), with the remainder in metal-rich granules
(MRG), organelles and heat-sensitive proteins. A detoxified metal compartment
including heat stable proteins and MRG can bind arsenic coming into the cells
at a constant rate under sublethal conditions (Casado-Martinez et al. 2012). In
environments with high levels of available metals, animals tend to have evolved
mechanisms to enhance detoxification. The induction of detoxification systems such
as MRG or MT may lead to tissue concentrations that are highly elevated. Wang
et al. (2011) reported on a metal-contaminated estuary in Fujian Province, China,
in which blue oysters (Crassostrea hongkongensis) and green oysters (C. angulata)
were contaminated with very high levels of Cu (<14,000 �g g�1 tissue dry wt,
compared to about 700 in reference oysters) and other metals. Metal concentrations
in blue oysters were as high as 1.4 and 2.4 % of whole-body tissue dry wt for
Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding
the metals, but MRG were important for Cr, Ni, and Pb. With increasing Cu
accumulation, its partitioning into cytosolic proteins decreased. In contrast, MT-like
proteins bound more Zn as tissue Zn increased. In the most severely contaminated
oysters, hardly any Cu or Zn was bound with the metal-sensitive fraction, which
may explain survival in such contaminated environments.

Intracellular Localization and Trophic Transfer

Different subcellular compartments are associated with differing degrees of trophic
transfer. Assimilation of trace metals by predators from prey is affected by the form
of the metal in the prey, leading to the concept of a Trophically Available Metal
(TAM) component in the prey depending on the subcellular fractioning of metals.
Wallace and Lopez (1996) studied relationships between oligochaete subcellular Cd
distribution and Cd absorption by a predator, the grass shrimp (P. pugio). Over time,
there were increases in both the amount and proportion of Cd bound to the cytosolic
fraction in the prey, which was considered to be induction of Cd-binding MTs. They
found 1:1 relationships between the Cd in oligochaete cytosol and Cd adsorbed by
shrimp, demonstrating that the metal bound to the MT fraction was available to
higher trophic levels, and that factors influencing subcellular metal distribution in
prey can alter trophic transfer to predators.
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As originally defined, TAM consists of soluble metal and metal associated with
organelles, the combination of which best explained results involving a crustacean
predator feeding on polychaetes or mollusks. Rainbow et al. (2011) reviewed the
literature and concluded that TAM as originally defined was frequently used in the
literature as an absolute description of that component of metal that is trophically
available in all prey to all consumers, but it is now clear that what is trophically
available varies among prey species, consumers, and metals. Mechanisms involved
in tolerance can be linked to trophic transfer of contaminants. Metals bound to MT
would not be expected to interfere with cellular functions, but tend to be more
available to predators than metals associated with insoluble cellular constituents.
Seebaugh et al. (2005) fed P. pugio brine shrimp that had been exposed to Cd.
An increase in metal associated with MT in the brine shrimp was associated
with enhanced trophic transfer to the grass shrimp. Metals associated with the
fractions containing MT, enzymes, and organelles were considered the TAM, which
is available to predators (Seebaugh and Wallace 2004). A direct relationship was
observed between the Cd and Zn in the TAM compartment in brine shrimp and
absorption of these metals by P. pugio. Similarly, when Cd-exposed amphipods
(Gammarus lawrencianus) were fed to grass shrimp, the amount of TAM was
directly related to the shrimp’s assimilation efficiency (Seebaugh et al. 2006).

Wallace and Luoma (2003) investigated subcellular partitioning of Cd and Zn
in the bivalves Macoma balthica and Potamocorbula amurensis and found that
metals associated with organelles, enzymes, and MT are trophically available to
predators, and that this partitioning varies with species, animal size and metal.
Clams were exposed to Cd and Zn and fed to shrimp Palaemon macrodatylus,
or used to investigate subcellular partitioning. Shrimp fed Cd-contaminated P.
amurensis absorbed �60 % of ingested Cd, in accordance with the partitioning
of Cd to the bivalve’s TAM compartment (Fig. 10.5). About 34 % of the Cd and
Zn in M. balthica was associated with TAM, while in P. amurensis it was metal-
dependent (�60 % for Cd, �73 % for Zn). TAM tended to decrease with increased
clam size. P. amurensis poses a greater threat to predators because of higher tissue
concentrations and greater partitioning of Cd as TAM.

Goto and Wallace (2009a) examined intracellular partitioning in prey as an
indicator of metal trophic availability to mummichogs Fundulus heteroclitus, in
metal-polluted salt marshes in New York, USA. Two common prey, P. pugio and
Nereis acuminata, stored higher proportions of non-essential metals (particularly
Pb) in insoluble (less trophically available) cellular components, as body burdens
increased. In contrast, intracellular partitioning of essential metals (Cu and Zn) in
prey varied relatively little among sites. Cd and Pb partitioning in P. pugio from
different sites was associated with Cd and Pb body burdens in their mummichog
predators, but bioaccumulation of Cu and Zn in mummichogs was similar among
populations. This suggests that intracellular partitioning within prey may be only
partially responsible for availability to a predator in polluted habitats, and that some
predator-dependent processes may offset differential trophic availabilities from prey.
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Furthermore, mummichogs consume other prey items besides grass shrimp. In
contrast to the previous studies, marine fish Terapon jurbua terepon fed polychaetes,
Nereis diversicolor, vs clams, Scrobicularia plana, from metal-polluted estuaries
showed very different effects (Dang et al. 2012). Fish fed S. plana from Restronguet
Creek which had body burdens of 9.55 Cr (�g g�1 dw), 1,321 Fe, 86 Cu, 3,184 Zn,
186 As, 45.8 Pb, and 0.93 Cd exhibited mortality, unlike those fed N. diversicolor
(which had body burdens of 2.49 (�g g�1 dw) Cr, 529 Fe, 662 Cu, 214 Zn, 106
As, 1.19 Pb, and 0.27 Cd). Differences in metal content rather than subcellular
metal distributions in the two food species appeared to be the cause of differential
mortalities. Partial least squares regression revealed that Pb, Fe, Cd and Zn in the
prey species co-varied most strongly with the observed mortality in fish consumers.
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Metallothioneins

MTs are low molecular weight heat-stable proteins that are rich in cysteine and can
bind high amounts of metals (Ag, Cu, Zn, Cd, Hg). They play a normal role in
regulating the essential metals Cu and Zn but are also involved in detoxification of
non-essential metals. Blue crabs that had not been exposed to elevated metals were
examined for partitioning of Zn and Cu into different fractions at different phases of
the molt cycle (Engel 1987). Cu and Zn in hemolymph decreased during molt, while
these metals were highest in the digestive gland during premolt and lowest just after
molt. Concentrations of MT were highest during intermolt and premolt and lowest
just after ecdysis. MTs occur naturally and are actively involved in hemocyanin
synthesis and Zn regulation. Their synthesis, primarily in hepatopancreas and gills,
can be stimulated by metal exposure, and by binding metals MT limits their toxicity
(Engel and Brouwer 1989). Most of the Cd taken up from solution by Palaemon
elegans becomes bound to MT without being excreted (Rainbow and White 1989).
Engel et al. (1985) compared responses of blue crabs and lobsters to Cd and Cu,
and found that lobsters have a copper-MT in the digestive gland and a Cd-MT in
the gills, while blue crabs have a Cd/Zn-MT and a Cu-MT in the digestive gland
and a Cd-MT in gills. It has been assumed that if metals are sequestered by MT,
an organism is protected from toxicity. However, Sanders and Jenkins (1984) found
that when crab (Rhithropanopeus harrisii) larvae were exposed to elevated Cu, the
accumulation of Cu in the MT pool was associated with growth inhibition. Different
isoforms of MT appear to be involved in Cu metabolism versus detoxification in blue
crabs (Schlenk and Brouwer 1991).

Mieiro et al. (2011) investigated exposure, Hg accumulation, and MT content
of Dicentrarchus labrax and Liza aurata, in a Hg-polluted estuary. Total mercury
(T-Hg) and MT content were determined in gills, blood, liver, kidney, muscle and
brain. Tissues had different T-Hg accumulation patterns, and D. labrax accumulated
generally higher levels. D. labrax had 0.6 and 0.4 mg kg�1 in muscle and brain,
respectively, while L. aurata had 0.3 and 0.2 mg kg�1. D. labrax had low MT in
brain and Hg exposure did not induce its synthesis in other tissues, whereas L.
aurata increased its MT in liver and muscle in response to Hg exposure. However,
tissues did not show correlations between T-Hg and MT levels. The applicability of
MT in fish tissues as biomarker of Hg exposure was uncertain. While Hg does bind
to MT, most Hg in fishes is in organic form, meHg, which does not bind to MT and
undergoes biomagnification, leading to increasing concentrations at higher trophic
levels. MeHg is highest in muscle and liver.

Lysosomes

Lysosomes can sequester metals in many invertebrates, and thereby play an
important role in detoxification. They accumulate metals and trap them in lipofuscin
granules, making them unavailable to the cell. Lysosomal sequestration leads to
elimination of the metals through the kidneys. Nassiri et al. (2000) investigated
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the amphipod Orchestia, which uses lysosomes in the ventral caeca for metal
detoxification. When animals from contaminated and reference sites were com-
pared, there was no difference in Zn uptake by the different populations when
they were exposed to the same concentration of Zn. However, the contaminated
population took up significantly less Cd. After laboratory exposure to Cu, Zn,
and Cd, lysosomes contained Cu and Zn but not Cd. Lysosomes in cells of the
ventral caeca appeared to be a major detoxification pathway for Cu and Zn in this
species, while Cd bound to MTs. Ahearn et al. (2010) summarized investigations
of lysosomal function in lobster hepatopancreas and described carrier-mediated
transport processes on lysosomal membranes for accumulating metals from the
cytoplasm. Metal transporters are linked with the uptake of anions that may then
precipitate metal concretions within the lysosomes.

Insoluble Granules

Trace metals can be detoxified in the form of insoluble metal-rich granules (MRG)
or deposits in tissues. Prawn juveniles, Penaeus monodon, were exposed to Cu and
Pb to investigate the formation and accumulation of MRG in soft tissues and their
excretion from the body (Vogt and Quinitio 1994). Cu-containing granules were
accumulated primarily in the hepatopancreatic tubules. The amount and size of the
granules increased along the tubules in accordance with the cells’ age; the granules
were released by discharge of senescent cells into the intestine and were added to
the feces. In contrast, Pb-containing granules were found mostly in the thoracic
extensions of the antennal gland, where they were individually discharged into the
gland lumen by secretion and excreted with the urine. While metals associated
with MT are available to predators, sequestering metals in granules reduces trophic
transfer (Wallace and Lopez 1997), although the specific granule composition can
influence the bioavailability of sequestered metals.

Stress Proteins

Heat shock proteins (HSPs), originally discovered after exposure to elevated tem-
perature, play a role in protein folding and assembly and protect damaged cells from
further damage. Various stresses can bring about changes in protein conformation;
mechanisms to maintain proteins in their functional conformation are important.
HSPs can repair proteins or eliminate them if they cannot be repaired. They act
as molecular “chaperones” protecting other proteins. This family of proteins has
been highly conserved in evolution and documented in many groups of organisms.
HSPs are classified by their molecular weight. They are also induced by contaminant
stress and have general protective functions, so are better termed “stress proteins”
since they can confer increased tolerance to toxicants (Sanders 1993). Survival and
stress protein response were investigated in the amphipod, Gammarus fossarum,
(Schill et al. 2003). Low Cd2C concentrations led to an induction of stress proteins
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Fig. 10.6 Part 1 from left to right: control in 4ı C, Cd in 4ı C, heatshock 20ı C, Cd with
heatshock 20ı C. Part 2 from left to right: control in 4ı C, Cd in 4ı C, pre-heated 20ı C,
Cd with pre-heat in 20ı C. Mean values with standard error (bars) per g tissue dry wt. Central
* D significant differences (F < 0.05) between temperature treatments (combined); other * D
significant differences between Cd treatments within temperature treatments (Reprinted from
Tedengren et al. 2000: 7, courtesy Elsevier Publishing Co)

while higher Cd2C concentrations resulted in a reduced response, most likely due to
pathological damage. Surviving individuals retained their capacity to produce stress
proteins during recovery. Acquisition of tolerance by HSP induction is possible
only up to a certain level (Eckwert et al. 1997). However, thermal acclimation
confers resistance to other stresses such as toxic chemicals. For example, in the
copepod, Tigriopus japonicus HSP70 is expressed in response to temperature and
metals, and appears to be protective against both (Rhee et al. 2009). Stress proteins
are utilized in mollusks to protect against metal as well as thermal stress. In M.
edulis, exposure to elevated temperature led to increased tolerance to 20 �g l�1

Cd, correlated with increasing levels of HSP70 (Tedengren et al. 2000) (Fig. 10.6).
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Increased HSP due to heat shock led to better fitness of Cd-exposed mussels in terms
of scope for growth, even though the mussels had higher Cd body burdens (25 vs
15 �g g�1).

Other Antioxidants

Ahmad et al. (2012) investigated the role of non-enzymatic antioxidants in the
bivalve Scrobicularia plana exposed to Hg at moderately and highly contaminated
sites in Ria de Aveiro (Portugal). Moderately contaminated sites had Hg levels 27�
the Effects Range Low (ERL) of 0.15 mg kg�1, while highly contaminated sites had
Hg levels 132� the ERL. In moderate contamination, antioxidants were produced
that allowed the animals to adjust. In higher contamination, S. plana failed to cope
with Hg, and its defense abilities deteriorated. Gills in moderate levels increased
non-protein thiols and glutathione, but in high contamination they increased levels
of ascorbic acid.

10.2 Organic Contaminants

The uptake of foreign hydrocarbons presents organisms with problems of
metabolism, storage and/or excretion. Chlorinated organics tend not to be
metabolized, but bioaccumulated and stored in liver, hepatopancreas, or blubber
of large marine organisms such as mammals. PAHs, which are also accumulated
primarily in the liver or hepatopancreas, may be transformed into metabolites that
can be excreted via the gills and kidneys. Sometimes, intermediate metabolites are
more toxic than the original pollutant.

10.2.1 Accumulation of Halogenated Organics

As hydrophobic lipophilic compounds, chlorinated organics accumulate in fatty
tissues, including yolk, liver/hepatopancreas, and blubber, and to biomagnify up
food webs.

Crustaceans

Small crustaceans in the water column can take up organic contaminants from the
water, while benthic species accumulate them primarily from sediments, which will
have higher levels. Magnusson et al. (2007) studied accumulation of PCBs in pelagic
copepods. Bioaccumulation factors (BAFs) were determined for 14C-PCB 101 and
14C-PBDE 99 in Calanus finmarchicus after exposure to either contaminated water
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or after being fed contaminated phytoplankton (the dinoflagellate Prorocentrum
minimum or diatom Thalassiosira weissflogii). BAFs in algae were 7.6–8.0 for PCB
101 and 8.5–8.6 for PBDE 99. BAFs in copepods were significantly lower, 6.3–6.8
for PCB 101 and 7.6 for PBDE 99. For each chemical, the BAFs in copepods were
independent of which algal species they had consumed, even though the bioaccumu-
lation of both chemicals was higher in P. minimum than in T. weissflogii. Berrojalbiz
et al. (2009) performed laboratory studies on bioconcentration (by passive uptake)
of PAHs in phytoplankton (Rhodomonas salina) and subsequent accumulation in
copepods (Paracartia grani) by both ingestion and diffusion. Both BCF and BAF
showed significant correlation with the octanol–water partition coefficient (Kow) for
phytoplankton and zooplankton. BCF values for phytoplankton were two orders
of magnitude higher than those for copepods. Fecal pellet analysis showed that
for PAHs taken in by ingestion but not diffusion, elimination by defecation was
important. Elimination was mainly by metabolism and depuration however. Uptake,
depuration, egestion, and ingestion rates increased with hydrophobicity of the
chemical, while metabolism was greater for the less hydrophobic compounds.

PAHs and PCBs were measured in the water column and in copepods, Eury-
temora affinis from the Seine Estuary (Cailleaud et al. 2007). Total PCB and PAH
levels in suspended particulate matter (SPM) and in copepods varied seasonally,
with maximum levels during winter. PAH and PCB in the SPM ranged from 499
to 5,819 ng g�1 and from 58 to 463 ng g�1, respectively. PCBs and PAHs bioaccu-
mulated by E. affinis were 383–1,785 and 165–3,866 ng g�1. Thus, copepods could
have high accumulation factors (91,000 for PCBs and 17,000 for PAHs). The winter
samples, with a high percentage of adults, had the highest PCB and PAH levels.
Juveniles had the lowest concentrations.

Fiddler crabs, which dig burrows and process marsh sediments for food, take
up PCBs from sediments (Marinucci and Bartha 1982; Clark et al. 1986). Another
marsh burrower is the crab Chasmagnathus granulate. Sediment collected from
inside and outside crab burrows as well as outside the crab bed, and cordgrass
(Spartina densiflora) were collected from intertidal mudflat and marsh and analyzed
for organochlorine (OC) compounds When lipid-normalized data for all OC pesti-
cides were summed together, there were higher concentrations in crabs from the
cordgrass habitat than crabs from the mudflat (Menone et al. 2000). There were no
significant differences in percent organic matter of marsh and mudflat sediments,
but the †OCs (normalized to organic carbon) were higher in marsh sediments
than mudflat. Cordgrass rhizomes and roots contained high concentrations of
OCs, indicating that it is important in determining the distribution of persistent
contaminants and can be a source of these contaminants to marsh biota.

Biota-sediment accumulation factors (BSAFs) for some polychlorinated
dibenzo-p-dioxin and dibenzofuran congeners (PCDD/Fs) in Dungeness crab
(Cancer magister) hepatopancreas and associated sediments are concentration inde-
pendent (as required by equilibrium partition models). In particular 2, 3, 7, 8-TCDD,
2, 3, 7, 8-TCDF, 2, 3, 7, 8-substituted pentachlorodibenzofurans, and the non-2, 3,
7, 8-hexachlorodibenzofurans (HxCDFs) fell into this group (Cretney and Yunker
2000). However, the BSAFs for other isomers exhibited significant, but nonlinear
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variations with sediment or crab PCDD/F concentrations. The nonlinear relationship
between BSAFs and concentrations complicates predictions of the potential for
dioxin and furan bioaccumulation in crabs. Blue crabs (C. sapidus) from Pensacola
Florida (USA) were analyzed for 17 dioxins/furans, 12 dioxin-like PCB (DL-
PCBs) congeners and levels compared to screening values (SV) calculated using
U.S. EPA recommendations for establishing consumption advisories (Karouna-
Renier et al. 2007). All samples exceeded the SV for dioxins/furans/DL-PCBs
(0.098 pg g�1), based on a Florida-specific consumption rate of 46 g seafood day�1.
Risks to human health were greatest from consumption of the hepatopancreas,
suggesting that it should be avoided. Hepatopancreas and meat from blue crabs
from contaminated Newark Bay NJ (USA) were subjected to congener specific
analysis (Rappe et al. 1991). All samples were contaminated by 2,3,7,8-TCDD and
other 2,3,7,8-substituted congeners as well as less hazardous PCDDs and PCDFs.
A value exceeding 6,000 ppt wet tissue weight of 2,3,7,8-TCDD was found in one
sample of hepatopancreas, which seemed to be the highest value so far reported in
a food product. The meat, on the other hand, had only 100 ppt.

Pruell et al. (2000) exposed polychaetes, Nereis virens, to contaminated sedi-
ments from the Passaic River, NJ (USA) for 70 days, then fed them to lobsters,
Homarus americanus, for up to 112 days. Sediments averaged 219.37 pg g�1 of
2,3,7,8-TCDD and 145.29 pg g�1 of 2,3,7,8-tetrachlorodibenzofuran (TCDF) dry
weight. Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofu-
rans (PCDFs), 2,4,6,8-tetrachlorodibenzothiophene (TCDT), PCBs, and chlorinated
pesticides were accumulated by polychaetes, some of which were also accumulated
by lobsters exposed to contaminated sediment (CS) and/or fed contaminated
polychaetes. Polychaetes exposed to CS for 70 days accumulated the tetrachlo-
rinated congeners, including 2,3,7,8-TCDD (168.7 pg g�1 dw), 2,3,7,8-TCDF
(72.0.9.7 pg g�1) and 2,4,6,8-TCDT (474.131 pg g�1). BSAF for 2,3,7,8, TCDD
was 0.36 for polychaetes, 0.27 for lobster muscle and 0.8 for lobster hepatopancreas.
BSAF for PCB 77 was 1.7 for polychaetes, 1.4 for lobster muscle and 4.8 for
lobster hepatopancreas. Only the lesser chlorinated PCDDs and PCDFs (mostly
tetra- and pentachlorinated congeners) and 2,4,6,8-TCDT were detected in the
polychaetes and lobster. Alterations were noted in the PCB congeners in both
species. The non-ortho-substituted PCBs became enriched in the polychaetes and
especially the lobsters relative to the sediment, probably because these congeners
were not metabolized. These congeners and the 2,3,7,8-TCDD toxicity equivalents
of the mixtures were enriched by a factor of about six in the lobsters relative to
the sediment. Shrimp can also bioaccumulate organochlorines, but generally to a
lesser degree. While organochlorine compounds including PCBs, polychlorinated
dibenzo-p-dioxins and dibenzofurans were non-detectable in muscle of Northern
shrimp, Pandalus borealis, from the Northwest Atlantic (Hellou et al. 1997), high
levels were seen in the hepatopancreas, which has a high lipid content. Higher
concentrations were observed in eggs in November (e.g. 10 ng g�1 wet wt PCBs)
and in hepatopancreas of females in April (e.g. 40 ng g�1 wet wt. PCBs). A larger
number of PCB and PCDF congeners were seen in the shrimp hepatopancreas than
livers of finfish species previously sampled.
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Mollusks

PCBs and DDT in mollusks and sediments at sites in the U.S. National Status
and Trends Program were reported by O’Connor (1991). The dry weight-based
chlorinated organic concentrations in mollusks generally exceeded those in nearby
sediments by an order of magnitude. Highest concentrations of PCBs and DDT
in mollusks were in the ranges of 1,000–4,000 and 400–1,000 ng g�1 (dry),
respectively. While higher concentrations of contaminants can be found in localized
hotspots, the NST data represent the distribution of concentrations over general
areas of the coastal U.S.

Contamination levels and accumulation of PCBs and organochlorine pesticides
(OCPs) were measured in bivalves from various sites along the coast of Korea
(Kim et al. 2002). The dry weight based

P
PCBs and

P
OCPs ranged from 4.4 to

422 ng g�1 and from 9.95 to 131.37 ng g�1, respectively. Organochlorine pesticides
were mostly DDTs, HCHs, and chlordanes. At sites near urban and/or industrial
areas levels were quite high, and the spatial distributions of DDTs were correlated
with that of PCBs. Wang et al. (2008) investigated spatial patterns of OCPs, PCBs,
and polybrominated biphenyl ethers (PBDEs) in mollusks of the coastal Chinese
Bohai Sea. Seven species, including Rapana venosa, Neverita didyma, Scapharca
subcrenata, Mytilus edulis (mussel), Amusium, Meretrix meretrix, and Crassostrea
talienwhanensis (oyster) were investigated. Oysters and mussels, which have higher
lipid contents than the other mollusks, had the highest concentrations of OCPs and
PBDEs. Total OCP, PCBs and PBDE were 8.8 ng g�1 dw in oysters and 14.6
in mussels, while other mollusks generally had lower levels. Multivariate linear
regression showed that the most influential factor for contaminant concentrations
was the trophic level, followed by lipid content. However, concentrations correlated
negatively with the total length, suggesting that these chemicals do not accumulate
over time. However, different accumulation patterns were noted between oysters
Crassostrea angulata and clams Ruditapes decussatus from the Sado estuary and
Ria Formosa, respectively (Ferreira and Vale 1998). Oysters showed no significant
differences in accumulation with size, but smaller clams had higher PCB levels than
larger ones, indicating growth dilution. The PCB accumulation in same size classes
of the two species, and the effect of PCB exposure on their lipids were investigated
in the laboratory and again, no differences in oyster accumulation related to size
were seen, but smaller clams accumulated PCB levels ten times higher than larger
ones. PCB in the larger clams reached 360 ng g�1, but small clams accumulated up
to 2,400 ng g�1 and showed altered lipids. Thus, small and large individuals of the
two species responded very differently in terms of PCB accumulation.

Ueno et al. (2003) measured PCBs, DDTs, CHLs (chlordane compounds), HCHs
(hexachlorocyclohexane isomers) and HCB (hexachlorobenzene) in the liver of
Japanese squid (Todarodes pacificus) from the Japan Sea and western North Pacific
Ocean. PCBs (up to 5,600 ng g�1 lipid wt.) were the highest, the others were in the
order of DDT > CHLs > HCHs > HCB. Studies on growth and seasonal variation
suggest a rapid reflection of the pollution levels in seawater where and when they
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were collected, regardless of body-length and time of collection, indicating that
Japanese common squid is a suitable bioindicator species for monitoring pollution.

Fishes

Sediment and food are the major pathways for organochlorine uptake. Accumu-
lation may be affected by the proximity to contaminated sediments and prey, the
magnitude of contamination, movement patterns, trophic status, growth rates, and
duration of exposure (i.e., lifespan or fish age). Species-specific metabolism and
detoxification of PCBs, reproductive (e.g. female depuration in eggs) and matura-
tional patterns, and body fat (i.e., percent lipids) can affect the degree to which
PCBs accumulate in tissues. Growth-related and species-specific accumulation of
PCBs was studied for a variety of tidal flat organisms from the Ariake Sea, Japan
(Nakata et al. 2002). Highest concentrations were found in omnivorous fishes,
followed in decreasing order by crabs, herbivorous fishes, and mussels, showing
that trophic level plays an important role in PCB accumulation. Age- and body
length–dependent accumulations of PCBs were observed in herbivorous mudskip-
pers. Among the three non-ortho coplanar PCBs, CB-77 was the predominant
congener with an average of 1.5 ng g�1 (lipid weight) in herbivorous mudskippers.
Concentrations were highly correlated with body length rather than age, which may
indicate that the growth rate is important in determining PCB accumulation. The
body burdens of PCBs averaged 870 ng in whole bodies and 97 ng in eggs, so
the transfer rate to eggs was estimated to be about 10 % of female body burden.
Comparison of PCB composition in eggs and whole body suggests the selective
transfer of lower-chlorinated congeners to eggs. The relationship between BSAFs
in organisms and log Kow showed that omnivorous mudskippers accumulated higher
concentrations of PCBs (averaging 2,900 ng g�1 lipid weight), which might be due
to their greater feeding and/or higher trophic level.

Organochlorines were analyzed in cod (Gadus morhua), dab (Limanda limanda),
plaice (Pleuronectes platessa) and lemon sole (Microstomus kitt) collected between
1991 and 2000 in Norway (Green and Knutzen 2003). PCB levels in liver of cod
and dab showed a positive but weak correlation with length, but no correlation was
found between PCBs and liver fat. Red mullet (Mullus barbatus), sea mullet (Mugil
cephalus) and sea bass (Dicentrarchus labrax), from the Ebro Delta have different
habitats and feeding behaviors. Higher levels of PCBs and DDTs were found in red
mullet (20.3 and 16.8 ng g�1 wet wt. respectively) which has higher lipid content
(Pastor et al. 1996). Red mullet and sea bass had a similar distribution pattern of
PCBs, but DDTs and HCB (hexachlorobenzene, 10.0 ng g�1 wet wt.) were higher
in sea mullet, probably due to direct uptake from the lagoons from which they were
collected and where these pollutants are high. A decrease in concentrations with
size (age) was generally observed in red mullet and sea bass, but less clearly in sea
mullet. This decrease was more pronounced for DDTs, probably due to metabolic
transformations. However, when data were normalized to lipid level, evidence for
a positive uptake by sea mullet was seen, probably relating to its faster growth.
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These results indicate that the accumulation of organochlorine compounds in coastal
fishes from the same area depends on lipid content, habitat, diet, growth rate and the
metabolism of each species.

Young-of-the year bluefish (Pomatomus saltatrix), a lipid-rich fish, were col-
lected from the contaminated Hackensack River and from Tuckerton, a reference
site. Hackensack fish were significantly smaller and had elevated levels of contam-
inants (Weis and Candelmo 2012). The mean PCB concentration in Hackensack
bluefish (about 1,000 Aroclor ng g�1 wet wt) was 2–3 fold greater than that of the
menhaden Brevoortia tyrannus and mummichog Fundulus heteroclitus prey found
in their stomachs, showing biomagnification from prey to predator. The levels in the
juvenile 4-month old bluefish exceeded the level considered safe for consumption.

Fish can accumulate PCBs from sediments or from food. Accumulation and
trophic transfer were studied in a laboratory food chain consisting of sediments,
polychaetes (Nereis virens) and fish (Leiostomus xanthurus). In phase I, fish and
polychaetes were separately exposed to contaminated sediments (5.2 �g g�1 dw
as Aroclor 1242 and 1254). In Phase II, the dietary fraction of PCB accumulation
was determined by feeding exposed and control fish polychaetes with a known
PCB body burden. Fish exposed to contaminated sediments and fed polychaetes
from the same sediment accumulated more than twice as much PCB than fish in
similar conditions but fed uncontaminated polychaetes. The dietary contribution of
PCBs accounted for 53 % of the total body burden (Rubinstein et al. 1984). In a
similar trophic transfer study, benthic copepods were exposed to sediments with
Aroclor 1254 (83.3 �g PCBg�1 sediment) and then fed to juvenile L. xanthurus
in uncontaminated sediments (DiPinto and Coull 1997). Experiments in which
uncontaminated copepods were fed to fish in PCB-contaminated sediments were
conducted to determine the relative roles of sediments vs prey in PCB uptake. Total
PCBs measured in fish fed contaminated copepods averaged 380.4 ˙ 60 ng/fish,
an average assimilation of 33 % of the PCB dose. Mean PCB body-burden
concentrations in fish fed meals of PCB-contaminated copepods was 2,956 ng
PCB/g fish dw. However, fish feeding on clean food in contaminated sediments
accumulated five times as much PCB as fish feeding on contaminated prey in clean
sediments, suggesting direct sediment exposure is more important than trophic
transfer, unlike the Rubinstein study. This suggests an important role for the
prey species, as was seen in studies of metals discussed previously. In terms of
congeners, fish preferentially accumulated the tetrachlorinated congeners, which are
less important in copepods and sediments.

Bioaccumulation of sediment-associated PCBs was examined in Atlantic cod
(Gadus morhua) through diffusion from sediment and via dietary exposure (Ruus
et al. 2012). To facilitate accumulation from sediment, it was continuously resus-
pended. To study dietary bioaccumulation, cod were fed polychaetes (N. virens)
previously exposed to test sediments (†PCB 10 �g kg�1) Polychaetes accumulated
17.4 †PCB �g kg�1. Results suggest that the contaminated sediments of the inner
Oslofjord are an important source of PCBs for cod, although additional contribu-
tions may also be important. Estimates of AE of ingested PCBs were found to be
30–50 %; the highest was for the lower chlorinated congeners (PCB-28 and -52).
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In general, organochlorine compounds were lower in tropical Pacific fishes than
in temperate fishes and showed less spatial variation (Kannan et al. 1995), despite
continued use of these chemicals in tropical countries. This was attributed to the
shorter residence time of semi-volatile chemicals in tropical waters. This study also
found declining concentrations in walleye pollock (Theragra chalcogramma) from
the Bering Sea.

The upper Hudson River in New York State was the site of a major PCB
hot-spot discovered in the 1970s. Sloan and Armstrong (1988) studied migratory
Hudson River fishes and found substantial declines in PCB levels since 1977, but
concentrations in lipids were still an order of magnitude higher than background.
Average annual percent declines for total PCB, Aroclor 1016, and Aroclor 1254
were 28, 42, and 5 %, respectively. PCB concentrations were slightly higher in
upstream sites, and there was little variation among organs when PCB concen-
tration was expressed on a lipid basis. The American eel (Anguilla rostrata) and
blue crab (C. sapidus) hepatopancreas had concentrations >5 ppm, striped bass
(M. saxatilis) had about 5 ppm, while Atlantic sturgeon (Acipenser oxyrinchus),
shortnose sturgeon (A. brevirostrum), blueback herring (Alosa aestivalis), alewife
(A. pseudoharengus), American shad (A. sapidissima), rainbow smelt (Osmerus
mordax), Atlantic tomcod (Microgadus tomcod), and juvenile bluefish (P. saltatrix)
all had <5 ppm.

Anadromous Pacific salmon may be exposed to PCBs in freshwater, estuaries,
or the ocean. In freshwater, they eat insects and crustaceans, in the estuary they
eat a wider variety of invertebrates and larval fish, and adults in the ocean eat
more fish, increasing the likelihood of biomagnification. Most of their growth
occurs in the sea before they return upstream. O’Neill et al. (1998) observed
that chinook salmon (Oncorhynchus tshawytscha) had higher PCB concentrations
than coho (O. kisutch) and that concentrations were higher in fish in marine than
in freshwater areas. Marine chinook averaged 74.2 �g kg�1, freshwater chinook
averaged 49.1 �g kg�1, while marine coho averaged 35.1 �g kg�1 and freshwater
coho averaged 26.5 �g kg�1, all statistically different from each other. For coho,
lipid content and sampling site accounted for most of the variation in PCBs.
Concentrations in chinook were highest in the older larger fish. The higher PCB
levels in chinook may be the result of differences in migratory pattern and diet.
While Puget Sound coho migrate to the sea in their second year and return to
freshwater as 3-year-olds, chinook go to sea in their first or second year and return
as 2-, 3-, 4-, and 5-year-olds. O’Neill et al. (1998) suggested that salmon accumulate
most of their PCBs in Puget Sound and the ocean, and because chinook stay longer
at sea they accumulate more. Also, adult chinook eat more fish, resulting in higher
levels due to biomagnification. It has been found that contaminant levels in farmed
salmon are higher than in wild fish (van Leeuwen et al. 2009). This may be related
to the fish-based feed for farmed salmon.
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Other Taxa

Marine birds and mammals, high in food webs, tend to accumulate high concen-
trations of PCBs and chlorinated pesticides. A number of studies have investigated
accumulation of specific congeners or groups of congeners. Cacccamise et al. (2012)
compared 1-month old and 4–5-month old black-footed albatross chicks and black-
footed and Laysan albatross eggs on Midway atoll. In the 1-month old chicks, PCBs
99, 118, 138, 153, 170, 180 and 183 accounted for 36–78 % of the total PCBs,
which were inversely related to the total body weights. In 4–5-month old chicks,
those congeners accounted for much lower percentages; these old chicks had more
of the less chlorinated congeners. The total toxic equivalents (TEQs) for the 1-month
olds was 130–11,000 pg g�1 (lipid weight, lw), while total TEQs for the 4–5-month
olds was 18,000–100,000 pg g�1, reflecting bioaccumulation over time. The total
concentration averaged 7.9 and 4.6 �g g�1 in Black footed and Laysan albatross
eggs, respectively. The high concentrations could be due to the age and PCB level of
the female producing the egg. Tanaka et al. (2013) analyzed PBDEs in adipose tissue
of short-tailed shearwaters, Puffinus tenuirostris from the North Pacific Ocean. In 3
of 12 birds, they detected higher-brominated congeners, which are not present in the
natural prey (pelagic fish) of the birds. The same compounds were present in plastic
found in the stomachs of the three birds, suggesting the transfer of chemicals from
ingested plastics to the tissues of marine organisms.

PCDDs, PCDFs and PCB congeners were investigated in beluga whale (Del-
phinapterus leucas), narwhal (Monodon monoceros) and other species at the
same trophic level in two areas of Canada (Norstrom et al. 1992). There was a
greater relative abundance of meta-para-unsubstituted PCBs in cetaceans compared
with other species, suggesting that activity of cytochrome P450 monooxygenase
enzymes causing CYP2B-type metabolism was low in beluga and narwhal. Lower
relative levels of 2,3,7,8-TCDD were found in beluga from both areas, and
selective reduction of non-ortho PCBs occurred in the highly PCB-contaminated St.
Lawrence beluga. These compounds are potent inducers of cytochrome P450 CYP
1A enzymes (see next section), suggesting that enzymes for metabolizing TCDD-
like substrates are present in the two cetaceans.

A wide range of contaminants was detected in the blubber of walruses, including
PCBs (mean 2,000 ng g�1 lipid), DDE (mean 100 ng g�1 lipid), chlordanes
(mean 2,500 ng g�1 lipid), toxaphenes (mean 80 ng g�1 lipid) and polybrominated
diphenyl ethers (PBDEs) (mean 15 ng g�1 lipid). PCB and DDE levels were
substantially lower than those of animals sampled 10 years earlier in the area,
confirming a decrease of these compounds in the Arctic (Wolkers et al. 2006).
However, compared to other marine mammals from Svalbard, walruses had higher
PCB and chlordane levels but lower DDE, toxaphene, and PBDEs, possibly due to
species- and location-specific differences in exposure and metabolism. The range
in contaminant levels was wide, even though all were adult males from the same
location. The PCB pattern in highly contaminated animals was different from that



380 10 Bioaccumulation/Storage/Detoxification

in animals with lower levels, with relatively more persistent PCBs in the highly
contaminated group, suggesting that they were feeding at higher trophic levels;
possibly eating seals in addition to mollusks (Wolkers et al. 2006).

CECs

Uptake of brominated vs chlorinated chemicals is not determined by the same
physico-chemical properties of the environment. PBDEs and PCBs were measured
by Dinn et al. (2012) in sediments and benthic invertebrates near outfalls in Victoria
and Vancouver, B.C., Canada. PBDE levels in wastewater exceeded those of PCBs
eightfold at Vancouver and 35-fold at Victoria. PBDE levels in benthic inverte-
brates were higher in Vancouver than Victoria, despite lower sediment levels, and
correlated with organic carbon-normalized concentrations in sediment. Uptake of
individual PBDE congeners was determined by sediment properties (organic carbon,
grain size), while PCB congener uptake was governed by octanol-water partitioning
coefficient. Results suggest that sediment quality guidelines for PBDEs should
consider organic carbon-normalized concentrations. Where the PBDE: particulate
organic carbon ratio is high, benthic invertebrates will have greater bioaccumulation.

Nakata et al. (2012) analyzed green and blue mussels collected from ten Asian
countries to study the occurrence and distribution of emerging pollutants, synthetic
musks and benzotriazole UV stabilizers (BUVSs) in Asia–Pacific coastal waters.
Synthetic musks and BUVSs were detected in mussels from all countries, showing
widespread distribution. High concentrations were seen in mussels from Japan and
Korea, where levels were comparable or greater than those of PCBs, DDTs and
PBDEs. Significant correlations were found between the concentrations of HHCB
and AHTN, and between the concentrations of BUV-327 and BUV-328, which
suggest similar sources of these compounds in commercial products.

10.2.2 Metabolism

Pathways of transformation of organic contaminants involve two phases. Phase I
reactions hydrolyze or oxidize the molecule in order to make it more polar or water
soluble. Phase II reactions involve the conjugation of the product of the Phase I re-
action with another substance that makes it less bioactive and more readily excreted.
The most common Phase I reaction is carbon oxidation. The enzymes responsible
for oxidation of foreign compounds are mixed function oxidases (MFOs), which
include the highly studied cytochrome P-450 (CYP) system. CYPs, found in many
organisms and tissues, are involved in oxidative metabolism of a wide range of
organic compounds including PAHs, PCBs, pesticides, and other chemicals. The
mixed-function oxidase system requires NADH or NADPH and molecular oxygen
to convert nonpolar PAHs into polar hydroxy derivatives and arene oxides (some of
which may be more toxic than the parent compound). In Phase II, another molecule
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(such as acetate, glucuronic acid, sulfate, glycine, or glutathione) is conjugated to a
susceptible group on the chemical, making it more readily excreted. For chlorine-
containing molecules like DDT and PCBs, dechlorination is an important early step.

Crustaceans

Rates of detoxification in some crustaceans tend to be slow, and clearance time
long. Petroleum hydrocarbons are metabolized by the CYP system. Their slow
rate of detoxification partially accounts for their sensitivity to oil pollution (Burns
1976). More recent studies demonstrate the activity of CYP systems of crustaceans
varies considerably among species. The shore crab Carcinus maenas has a high
capacity for metabolizing PAHs with CYP enzymes. Expression of CYP2 and
CYP3-like genes fluctuated over the molt cycle with low expression during premolt
and maximum expression during late post-molt, and was predominant in the
hepatopancreas, while expression of CYP4-like genes was predominant in gills and
epidermis (Dam et al. 2008). This supports previous biochemical studies showing
that the hepatopancreas is the major site of CYP-mediated xenobiotic metabolism.
In addition, the data showed that CYP2 and CYP3-related genes responded to
ecdysteroids and xenobiotics, while CYP4-related genes did not, and probably are
involved in more general physiological functions such as fatty acid metabolism.
The data also suggest that premolt crabs, with low gene expression, would be more
susceptible to organic pollutants (Fig. 10.7).

Mothershead and Hale (1992) exposed molting and intermolt blue crabs
(C, sapidus) to high levels of unsubstituted PAHs in a field site. Newly molted
crabs had higher tissue burdens than intermolt crabs of cyclopentanophenanthrene,
fluoranthene and pyrene, characteristic of the creosote-contaminated exposure site.
The mean total concentration of these PAHs in hepatopancreas was 9,560 ng g�1

in newly molted crabs and 3,360 ng g�1 in intermolt crabs. Mean total PAH
concentration in muscle was 1,380 ng g�1 in new molts and 498 ng g�1 in intermolts.
The elevated tissue burdens at molt may be due to increased water uptake and shell
permeability at ecdysis and/or decreased metabolism of PAH during molting. PAHs
can be conjugated and then excreted in the urine. C. maenas were exposed to
phenanthrene and pyrene (separately) at 0–200 �g l�1. After 48 h, urine samples
were taken and analyzed by immunoassay and UV-fluorescence spectrophotometry.
Urinary levels were dose-dependent for both compounds (Fillman et al. 2004).
C. maenas was exposed to waterborne pyrene for 48 h and depuration monitored
over time. No unchanged pyrene was detected in urine from exposed crabs, which
had transformed pyrene into three major conjugates that were excreted in the urine
(Watson et al. 2004). Urinary levels reached a maximum 2–4 days after initial
exposure and then decreased steadily.

While liver microsomes of fish could metabolize various CYP-mediated
substrates with enzymes in the CYP1A and CYP3A subfamilies, hepatopancreatic
microsomes of the shrimp Alepocephalus antennatus showed activity for
only a few substrates, generally related to mammalian CYP2-like enzymes
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Fig. 10.7 Stage-specific expression of six CYP genes, coding for different CYP enzymes in
different tissues. mRNA levels were analyzed with qPCR and normalized to ribosomal protein
rpL 17. Hep hepatopancreas, test testes, GL gills, EP epidermis, MS muscle. Premoult D2-
D3; Postmoult, B; Intermolt C3-C4 (Reprinted from Dam et al. 2008: 1136, courtesy Elsevier
Publishing Co)

(Koenig et al. 2012). Furthermore, a direct relationship between metabolic
activities and PCB accumulation profiles (which congeners were accumulated)
was established. Ong et al. (2011) studied bioaccumulation and depuration of PAHs
in Penaeus monodon, using anthracene as a model PAH. Food pellets spiked with
anthracene were fed to P. monodon. At 20 mg kg�1, the shrimp accumulated 0.1 %
of the anthracene from the food, but depurated it twice as fast as its accumulation,
showing that it is efficient in depurating hydrocarbons (Figs. 10.8 and 10.9).
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Pesticides are stored and metabolized primarily in the hepatopancreas. Highly
chlorinated compounds are metabolized very slowly, so they accumulate (Lee
1989). Lesser chlorinated compounds can be rapidly metabolized, conjugated, often
to glutathione, and eliminated. Organophosphorus pesticides such as fenitrothion
can be oxidized by the MFO system of crustaceans (Johnston and Corbett 1986).
Hepatopancreases of Eriocheir japonicus from three Japanese rivers were analyzed
for planar halogenated aromatic hydrocarbons (HAHs), including polychlorinated
dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and coplanar PCBs. Crabs
from the Tone river that runs through industrial, agricultural, and urban areas, had
the highest concentrations of HAHs (4,100 pg g�1 fat weight). Identification of



384 10 Bioaccumulation/Storage/Detoxification

numerous PCDD and PCDF congeners in crabs from all three rivers provided evi-
dence that one of the major sources of PCDDs and PCDFs was waste incineration.
The higher TEQs in crabs from the Tone River (94.7 TEQ pg g�1 fat weight) were
due to PCDDs and PCDFs, but the most important contributor was coplanar PCBs
(49.95 %). The hepatopancreas contained glutathione S transferase (GST), and crabs
with the highest TEQ levels had the highest GST activity (Ishizuka et al. 1998).

A variety of estuarine animals, including crabs (C. sapidus) and shrimp
(P. aztecus) could metabolize tributyltin oxide (TBTO) which entered the animal
via food or water. The hepatopancreas and stomach were important for metabolism
of TBTO, while the gill, although important for uptake via the water, did not appear
to be important in TBTO metabolism. In vivo studies showed dibutyltin (DBT)
to be the major metabolite. The major metabolites in crab hepatopancreas were
beta-hydroxybutyldibutltin and DBT. The CYP system appeared to be responsible
for the oxidation of TBTO (Lee 1986).

Mollusks

Bioaccumulation and depuration experiments were performed by Yakan et al.
(2011) with the mussel M. galloprovincialis. Benzo(a)anthracene (BaA) was chosen
as the model PAH compound. Results showed that BaA can reach high levels
in mussel tissues. When exposed for 15 days to water with 9 �g l�1, mussels
accumulated 17,180 ng g�1, but rapidly depurated it when returned to clean water.
A physiologically-based pharmacokinetic model (PBPK) was developed to describe
the kinetics of 2,3,7,8-TCDD in the oyster C. virginica (Wintermyer et al. 2005).
The estimated t1/2 for elimination for a bolus dose of TCDD was 14–24 days
based on experimental data and the model. The highest dioxin concentration was
in the digestive gland followed by the mantle, gonad, hemolymph, gill, adductor
muscle, and the kidney/heart. The PBPK model predicted the distribution and the
elimination concentrations within each tissue compartment.

Stress proteins can be induced in mollusks in response to organic contaminants.
Exposure to PAHs adsorbed onto clay particles and to suspended contaminated
sediments induced HSP70 in C. virginica, which played a protective role (Cruz-
Rodriguez and Chu 2002). Jonsson et al. (2006) found that exposure of mussels to
brominated flame retardant, crude oil, bisphenol A and diallylphthalate all induced
HSP70 expression. C. virginica showed only a limited ability to metabolize TBTO
(Lee 1986).

Fishes

PCBs accumulate in fish primarily via food. Sex differences in PCB concentrations
of adult fish have been attributed to females losing a substantial portion of their
PCB body burden during spawning. There may also be sex differences in habitat
utilization leading to sex differences in the PCB concentrations of prey and/or
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sex differences in growth efficiency, (growth divided by the amount of food
consumption needed to achieve that growth). Based on analyses by Madenjian
(2011), the first two mechanisms operate in relatively few fish, but can lead to males
having PCB concentrations 2–3� higher than females. Growth efficiency operates
in all fish, but results in only modest sex differences, with mature males having only
15–35 % higher PCB levels than mature females.

Fish metabolize PAHs using the CYP system, and CYP1A is a biomarker of
environmental exposure to organic xenobiotic chemicals that act through the aryl
hydrocarbon receptor. Many environments contaminated with organic chemicals,
such as urban harbors, are also hypoxic. Rahman and Thomas (2012) found that
hypoxia induces down-regulation of CYP1A expression in the Atlantic croaker,
thereby interfering with metabolism of organic chemicals.

There are differences in PAH metabolism depending on life history stage.
When mature eels are preparing to migrate downstream to reproduce in the
ocean, the “silvering process” involves physiological and morphological changes
including cessation of feeding. Reduced food intake results in a reduction of bile
production and increased accumulation of PAH-metabolites in bile. Nagel et al.
(2012) investigated the hydroxyl-metabolites of pyrene and phenanthrene in the bile
of different maturation stages of eels, and found increasing PAH metabolite levels
in bile during the silvering process. The highest rise was observed at the transition
from pre migration stage III to the migrating stage IV, suggesting the beginning of
cessation of feeding at this stage (Fig. 10.10).

Spot (Leistomus xanthurus) were able to metabolize tributyltin oxide (TBTO)
which entered via food or water. The liver and intestine were important organs
for TBTO metabolism, while the gill did not appear to be important. The major
metabolites were beta-hydroxybutyldibutyltin and DBT. The CYP system appeared
to be responsible for the oxidation of TBTO in liver microsomes. TBTO oxidation
required NADPH and oxygen and was inhibited by carbon monoxide (Lee 1986).

Among contaminants of emerging concern are synthetic musks. Fernandes
et al. (2013) investigated the metabolism and mode of action of the polycyclic
musk galaxolide (HHCB) in the European sea bass, Dicentrarchus labrax, after
an intraperitoneal injection of 50 mg HHCB kg body weight�1. HHCB was
actively metabolized and acted as a weak inhibitor of the synthesis of oxyandro-
gens in gonads of male fish. Both HHCB and a hydroxylated metabolite were
detected in bile.

Other Taxa

The polychaetes Nereis virens and Capitella capitata have a CYP system that me-
tabolizes PAHs. The system in N. virens is associated with microsomes in the lower
intestine (Lee et al. 1979). In C. capitata, enzyme activity was seen only after expo-
sure to petroleum hydrocarbons. Exposure of Nereis succinea to crude oil decreased
growth rate and stimulated an increase in CYP activity. Elevated CYP activity was
also seen in worms collected from a chronically polluted site (Lee et al. 1981).
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Fig. 10.10 Levels of PAH metabolites (ng ml�1) in relation to silvering process in European eel.
1-hydroxypyrene (1-OH Pyr) (a and b); and hydrophenanthrene (1-OH Phen) (c and d) grouped
from German rivers (a and c) or silvering index (SI) (b and d). SI 1 (white) to II (slight gray)
for yellow eel, SI III (gray) for pre migrating eels and SI IV (dark gray) to V (black) for silver
eel (M ˙ SE). Letters indicate significantly different groups, p < 0.05 (Reprinted from Nagel et al.
2012: 93, courtesy Elsevier Publishing Co)

10.3 Conclusions

Marine organisms incorporate chemicals in relation to their bioavailability in the
environment, generally from water, food, or sediment. Intake can be via gills,
digestive system, or the skin. Bioaccumulation is frequently (but not always) highest
in the liver, or comparable organ in invertebrates (hepatopancreas), though levels
in muscle tissue may also be high, which is of concern to human consumers
of seafood. The subcellular distribution of the contaminant is of importance in
determining its toxicity to the organism in question, as well as the potential for
trophic transfer to animals higher in the food web. Chlorinated organic chemicals
tend to be metabolized very slowly, so they tend to bioaccumulate and biomagnify.
The ability to metabolize other organic contaminants such as PAHs via the CYP
system of enzymes may reduce their toxicity and enable them to be excreted.
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Chapter 11
Tolerance

Abstract Tolerance is the ability of organisms to cope with stress, in this case to
environmental pollutants. It appears to be a widespread phenomenon, and can be
achieved by physiological acclimation or genetic adaptation. It can be assessed by
comparing responses (lethal or sublethal) of individuals from different populations
to the same degree of stress, e.g. the same concentration of a toxicant would produce
less of an effect in a tolerant population. The phenomenon is well documented for
metals and organic contaminants (for example, resistance of insect populations to
insecticides is well-known). There are also cases in which tolerance has been looked
for but not found in chronically exposed populations; probably more cases than
have been reported in the literature, as this can be viewed as “negative data” and
not reported. When enhanced tolerance does not occur in polluted populations, the
reasons may be difficult to ascertain; it may be because detoxification mechanisms
are adequate to cope with elevated exposures, or that dispersal and mixing between
contaminated and reference populations obscures any observation of tolerance, or
that the fitness costs counteract the selective advantage of the tolerance, or other
reasons.

Compensatory responses to pollutants at the physiological level are referred to
as “acclimation.” Pre-exposure to chemicals can induce or enhance detoxification
processes, discussed in the previous chapter, which reduces toxicity in pre-exposed
organisms, either in the lab or at field sites. These responses (e.g. synthesis of MTs,
CYPs) can mitigate effects on individuals experiencing moderate stress. Developing
tolerance is energetically expensive, however, and may have deleterious effects
on energy allocation. Thus exposure over extended periods may reduce fitness
and increase selection pressure for genetically resistant individuals in populations
that have variation and heritability for the response. The development of these
populations that have adapted and become more resistant to pollution can be
considered an evolutionary compensatory mechanism.

Keywords Costs • Cytochrome P450 • CYP • Energetics • Evolution • Food
web • Metallothioneins • Sediment • Trade-offs
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11.1 Metals

Some metals (Zn, Cu) are essential for life, so organisms have developed ways
to optimize their exposures and respond to higher levels. Metal tolerance is
widespread, and is often associated with the storage of metals in a non-available
form, rather than reduced uptake or increased elimination, although these mecha-
nisms have also been observed. Metallothioneins (MTs) play important roles in the
metabolism of essential metals and can be utilized in dealing with metal contami-
nants. For example, some contaminated populations have developed multiple copies
of the gene for MT, enabling them to tolerate high metal concentrations (Soskine and
Towkik 2010).

11.1.1 Fishes

While there are numerous papers about MTs and other protective mechanisms
(see previous chapter) and many studies documenting enhanced metal tolerance in
fish populations living in contaminated freshwater environments, reports on metal
tolerance in marine species are less frequent. Early life stages of the killifish,
Fundulus heteroclitus, inhabiting Piles Creek (PC), a contaminated industrialized
estuary in New Jersey, U.S., have tolerance to Hg, one of the contaminants in the
environment (Weis 2002). However, tolerance is manifested only in early life stages.
Tolerance to meHg was seen in gametes (both sperm and eggs) and in developing
embryos, which were less affected by meHg (Weis et al. 1981; Khan and Weis
1987a, b, c, d) (Fig. 11.1). A possible mechanism for tolerance of the embryos
was reduced uptake through the chorion. While PC embryos were more tolerant to
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meHg, they were less tolerant than embryos of reference populations to inorganic
Hg. Tolerance was not exhibited in larvae or adults from the PC population, which
showed signs of stress in terms of reduced growth and longevity (Weis and Weis
1989).

Mechanisms of copper tolerance in black-banded rainbowfish (Melanotaenia
nigrans) were investigated by Gale et al. (2003). One population has been exposed
to elevated Cu for over 40 years, due to mine leachate. The 96 h EC50 of exposed
[E] fish was 8.3 times higher than that of reference [R] fish. Both E and R fish
were exposed to low (LCu, 30 �g Cu l�1) and elevated (ECu, 300 �g Cu l�1) Cu
for 24 and 48 h, respectively. Copper uptake in most tissues was less (up to 50 %)
in E fish. Thus, the mechanism of tolerance was considered to be reduced uptake in
the gills, rather than increased binding or elimination. Allozyme electrophoresis was
performed and allozyme frequencies at the AAT-1 and GPI-1 loci were significantly
different between E and R populations. Also, there was less heterozygosity in
the E population. These results suggest that genetic selection may have occurred
in the E population: selection for allozymes less sensitive to Cu may be another
mechanism of tolerance.

Klerks and Lentz (1998) investigated resistance of mosquitofish Gambusia affinis
to lead and zinc. Fish collected from highly contaminated Bayou Trepagnier (LA,
USA) and exposed to Zn in a laboratory bioassay did not differ in their sensitivity
from conspecifics from a control site. In contrast, Bayou Trepagnier fish did
show increased resistance to lead. This difference, however, disappeared when
both groups were kept for 34 days in clean water. This suggests that the elevated
Pb resistance is due to physiological acclimation rather than adaptation at the
population level. Annabi et al. (2009) reported resistance to Cd in a population of
G. affinis from a polluted site in Tunisia. A genetic basis was inferred from assays
performed on the F1 generation raised in the laboratory.

In the sheepshead minnow (Cyprinodon variegatus) heritability was estimated
for tolerance to individual contaminants (phenanthrene, zinc) and to contaminant
mixtures (phenanthrene plus zinc, and a complex mixture with three metals and
three PAHs) (Klerks and Moreau 2001). Estimates were obtained from resemblances
between relatives, parent–offspring pairs, and families of sibs and half-sibs. Heri-
tabilities for resistance to these chemicals were low (with the high resemblances
among sibs being due to common environmental and dominance genetic variation
rather than additive genetic variation). Results were interpreted to mean that C.
variegatus in contaminated environments is not likely to become resistant to
these contaminants rapidly, and that resistance may develop even more slowly
as more contaminants become involved. Adeyami and Klerks (2013) investigated
Cu acclimation in the least killifish, Heterandria formosa using both lethal and
sublethal endpoints, as well as potential mechanisms. Fish were exposed to either
a background Cu level or to 15 �g l�1 Cu for 7 days and then exposed to a lethal
level (150 �g l�1) and monitored until all fish had died, and (during the first 8 h of
this exposure) for whole-body Na levels and lipid peroxidation (LPO). Pre-exposed
fish had a significantly longer time-to-death than controls. Neither whole-body Na
nor LPO changed in the pre-exposed fish during the acute exposure, while both
decreased in the control fish. Thus, acclimation was seen in both time-to-death
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and sublethal endpoints, and Cu toxicity may involve both Na loss and LPO.
Acclimation may be brought about by prevention of these effects. A follow-up
study on potential mechanisms used a similar pre-exposure/exposure design and
quantified Cu accumulation, NaC/KC-ATPase activity, MT levels, and catalase
activity. While Cu levels were higher in pre-exposed fish at T0, net accumulation
was faster in the controls during the high-level Cu exposure. Therefore, changes in
accumulation dynamics may play a role in resistance. Cu-acclimated fish also had
higher MT levels. There was no evidence of involvement of NaC/KC-ATPase.

Noel-Lambot (1981) observed in various species of unfed fishes (Anguilla
anguilla, Myoxocephalus scorpjus, Serranus cabrilla, Moena chryselis, Scorpaena
sp.), white mucus corpuscles in the intestinal lumen that contained high concentra-
tions of Ca and Mg. In fish treated with Cd, Zn, or Cu, these corpuscles contained
very high concentrations of these metals, potentially much of the body burden.
It appeared that metals were accumulated in the corpuscles directly from ingested
sea water and that the corpuscles limited their entry through the intestinal wall, thus
protecting the fish against potentially hazardous concentrations of metals.

11.1.2 Crustaceans

In some classic studies, Bryan and colleagues (Bryan and Hummerstone 1971, 1973;
Bryan and Gibbs 1983) studied invertebrates including the amphipod, Corophium
volutator in Restronguet Creek (RC), Cornwall, England, an estuary with high metal
concentrations, particularly Cu, from mining operations upstream. These amphipods
were more tolerant to Cu than conspecifics from reference sites, as was the crab,
Carcinus maenas, which was also more tolerant to Zn. Since crab larvae have a
pelagic phase that distributes them widely, it is likely that the larvae settling in RC
are derived from parents from far away with no history of metal exposure. Thus,
selection would operate on individual crabs that settle in the contaminated area,
with the more resistant ones able to survive due to physiological acclimation rather
than genetic adaptation of the population. Investigators found that Zn resistance
increased with crab size, supporting the idea of selection on individuals and
physiological acclimation. The tolerant crabs accumulated less metal or excreted
more, reducing their body burdens.

Fiddler crabs (Uca pugnax) from highly contaminated Piles Creek (PC) N.J.,
U.S.A. were more tolerant to meHg than crabs from a reference site, as indicated
by the degree of growth inhibition in regenerating limbs and the degree of delay in
time to molt (Callahan and Weis 1983). However, tolerance could not be induced by
short-term pre-exposure to meHg in either U. pugnax or U. pugilator. An adaptive
mechanism seen in PC fiddler crabs was the ability to move significant amounts
of the toxic Hg and Pb from their soft tissues into their exoskeleton shortly before
ecdysis, thus reducing their body burden (Bergey and Weis 2007).

Comparing grass shrimp (P. pugio) from PC and a reference site, Tuckerton (TK)
N.J., U.S.A. Kraus et al. (1988) found no significant difference in larval tolerance to
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Fig. 11.2 Number adult shrimp from Piles Creek (PC) (black circles) and Big Sheepshead Creek
(BSC, reference population) surviving in 0.025 mg l�1 meHg over 14 days (Reprinted from Kraus
et al. 1988: 358, courtesy Springer Publishing Co)

HgCl2. However, PC larvae were more tolerant to meHg than TK larvae. In contrast,
PC adults were more tolerant than TK shrimp to both forms of Hg, suggesting that
tolerance to meHg may be inherited, while tolerance to inorganic Hg had to be first
induced by exposure earlier in life (Fig. 11.2).

Similarly, TK adults exposed to meHg or inorganic Hg (at 0.01 mg l�1) had
impaired regeneration of the telson, but PC shrimp were unaffected (Kraus and
Weis 1988). Kraus and Kraus (1986) investigated effects of inorganic Hg and meHg
(0.01 mg l�1) on predator avoidance by PC and TK shrimp and found that while
exposed TK shrimp were more vulnerable to predation, PC shrimp were unaffected
by HgCl2 and were less affected by meHg than TK shrimp. PC shrimp were also
more tolerant to Cd, and pre-treatment of TK shrimp enhanced their tolerance to
higher concentrations of Cd, showing acclimation (Khan et al. 1988).

A metal-tolerant population of the copepod Tisbe holothuridae collected from a
polluted site was maintained for over 40 generations in the laboratory, after which
time they remained more tolerant to Co2C and Cr6C than those from a clean area
(Miliou et al. 2000). This suggests that under laboratory conditions there was little
cost in maintaining tolerance, or that the tolerant phenotype had been genetically
fixed.

Mangrove crabs Ucides cordatus and Callinectes danae were sampled from
metal-polluted and clean mangroves in Brazil. Crabs from the polluted site showed
greater ability to regulate blood osmotic concentrations at low salinity, but U.
cordatus had reduced hypo-regulatory ability in seawater (Harris and Santos 2000).
Differences in ion regulation were also seen. Differences in osmoregulation were
considered possible adaptive changes after long-term exposure to contamination.
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11.1.3 Mollusks

Bryan and Gibbs (1983) studied the bivalve, Scrobicularia plana from RC (see
above), and found the clams to be resistant to Cu. Populations of the gastropod
Cerithidium rupestre from Hg-polluted sites were much more tolerant to Hg than
those from clean sites, presumably due to selection (Baker et al. 1985). Luoma
et al. (1983) found tolerance to soluble Cu in the bivalve, Macoma balthica, varied
substantially among populations within San Francisco Bay (US). Tolerance differed
ten-fold or more over relatively small distances, suggesting geographical isolation of
populations is not required for the development of differences in tolerance. Among
five species of gastropods exposed to Cd in the laboratory, there was an association
of allozyme genotypes with resistance; PGI genotypes of the dead animals had a
higher proportion of heterozygotes than genotypes of the animals that survived the
Cd treatment (Lavie and Nevo 1986).

Since larvae are generally more susceptible to contaminants than adults, it is of
interest to see if they exhibit tolerance as well. Larvae were obtained from oysters
(C. gigas) from a clean area (Arcachon Bay) and a polluted one (Bidassoa estuary)
and exposed to Cu in the laboratory; their MT concentration was measured as well as
biomarkers of oxidative stress. Biomarker responses and sensitivity to Cu for larvae
from Arcachon Bay oysters were higher than for those from Bidassoa (Damiens
et al. 2006).

Hoare et al. (1995) investigated effects of Cu on embryo development in different
populations of Mytilus edulis. Concentrations of Cu that increased the rates of
abnormality in populations from an unpolluted site (Menai Straits, Wales, UK) and
to a lesser extent in an intermediately polluted site (Oosterschelde, The Netherlands)
did not affect development of embryos from a polluted-site (Westerschelde, The
Netherlands). Crosses between populations indicated that tolerance was mostly
maternally determined, but there was also evidence of some paternal effect. An
appreciable quantity of background embryo abnormality appeared to be sperm-
mediated.

Metal exposure may induce specific metal-binding ligands. Metallothionein-like
proteins appear to play an important role. Unger and Roesijadi (1996) investigated
the effect of sublethal Cd on metallothionein (MT) mRNA accumulation in Cras-
sostrea virginica preexposed to Cd. Initial treatments of control, 0.0044, 0.044, and
0.44 �M Cd for 21 days were followed by challenge with 0.44 �M Cd. MT mRNA
accumulation during preexposure was concentration- and time-dependent. During
the challenge, MT mRNA increased in all oysters and the concentration-dependence
of MT mRNA in relation to preexposure concentration was maintained. MT mRNA
during the challenge was significantly increased in oysters pre-exposed to the two
highest Cd concentrations in comparison with the controls. These data demonstrate
greater MT synthesis in individuals pre-exposed to low Cd concentrations and
implicate new MT synthesis in acquired tolerance to Cd.
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11.1.4 Other Taxa

Annelids, which tend to live in (and often eat) sediments, which are sinks for con-
taminants, can develop resistance. One of the earliest studies of tolerance was that of
Bryan and Hummerstone (1971), who found that Nereis diversicolor in Restronguet
Creek (RC, UK), had enhanced tolerance to Cu. Bryan and Hummerstone (1973)
investigated potential mechanisms and found that tolerance to Zn was related to
reduced uptake or greater excretion, so RC worms did not accumulate as much in
their tissues. Uptake was studied further by Rainbow et al. (2009) who found that
RC worms could balance increased uptake with detoxification, and had greater rates
of storage detoxification of Zn in the form of crystals in the gut wall. Mouneyrac
et al. (2003) tested tolerance of this species from metal-contaminated vs clean areas
with a range of metals, and found increased tolerance to Cd, Cu, and Zn but reduced
tolerance to Ag. Since tolerance to Cu and Zn in N. diversicolor was found to
be inherited, it is possible to use the occurrence of tolerant individuals to map
the ecological impact of contamination. In RC, the effect of Zn was restricted to
an area within 1 km of the head of the estuary, and the impact of Cu was also
greatest near the head of the estuary and became negligible by the estuary mouth.
Sediment levels of >1,000 �g�1 Cu and 3,500 �g�1 Zn are not toxic to this tolerant
population (Grant et al. 1989). To evaluate tolerance, Burlinson and Larwrence
(2007) developed a behavioral bioassay for Hediste (Nereis) diversicolor subjected
to Cu. Under metal stress worms showed attempts at burrowing, eversion of the
proboscis and abnormal crawling. The bioassay consisted of exposing worms to
increasing concentrations of Cu and recording the concentration at which the stress
response was elicited. The behavioral end-points were shown to be a good predictor
of time of death of Fal estuary worms under acutely toxic conditions. The bioassay
would therefore allow the separation of tolerant phenotypes without mortality to the
worm. Worms were not affected by consecutive bioassays and it was proposed that
tolerance to more than one metal could be determined for individual worms.

However, some negative results have been seen also (Zhou et al. 2003).
N. diversicolor from other differentially polluted sites in the UK had no difference
in Zn or Cd tolerance. There were slight differences in Cu tolerance, but the most
tolerant population was not the one from the most contaminated site.

It is also possible to increase tolerance in the laboratory by pre-exposing indi-
vidual non-tolerant worms, Neanthes arenaceodentata, to Cu. Pre-exposed worms
had lower uptake of Cu (Pesch and Hoffman 1982), an example of physiological
acclimation. Neanthes virens was used to study effects of Ag on ion and water
balance. Worms from a clean site showed an increase in KC and decrease in Ca2C in
coelomic fluid after accumulating 88 mg l�l Ag, but worms from a Ag-contaminated
site had effects only on Ca2C (Pereira and Kanungo 1981). Exposed worms showed
edema and a curled posture, effects which were more severe in the clean population,
indicating that the exposed population had some Ag tolerance.
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As tolerance comes with energetic and other costs, one would predict that when
the contaminant stress decreases, the degree of tolerance might eventually decrease
as well. A population of the oligochaete, Limnodrilus hoffmeisteri, in a highly Cd-
polluted site in the Hudson River, Foundry Cove, (FC, where there had been a
battery factory), was found to be tolerant to Cd. The elevated resistance in FC worms
was genetically determined, as it was still present after two generations in clean
sediment. Resistance had evolved rapidly (within 30 years). A laboratory selection
experiment and estimates of the heritability of this resistance in L. hoffmeisteri from
the control site, indicated that the resistance could have evolved in 1–4 generations.
The laboratory selection resulted in a large increase in resistance after two genera-
tions of selection (Klerks and Levinton 1989). The resistant worms had significantly
higher levels of a Cd-binding, MT-like protein than control worms. The elevated
protein level was shown to be genetically determined and was considered partly
responsible for the resistance. In addition, high levels of Cd were found in sulfur-
rich granules, possibly in the form of cadmium sulfide (Klerks and Bartholomew
1991). As a result of U.S. Superfund legislation, the site was remediated and most
of the Cd was removed, thereby removing the selection pressure for resistance.
Following the cleanup, there was a rapid loss of resistance in �9–18 generations,
showing that the resistant worms were at a selective disadvantage relative to non-
resistant ones after the pollution was no longer present, possibly reflecting a cost
of resistance (Levinton et al. 2003). In contrast, Nereis diversicolor from Oued
Souss, a highly contaminated site in Morocco, which had acquired tolerance to Cu
and Zn due to a long-term exposure, maintained this tolerance after cessation of
wastewater discharges in this site (Ait-Alla et al. 2006). This is different from what
was observed by Levinton et al., (above). Higher catalase, GSTs and TBARs were
observed in worms from Oued Souss than in those from reference sites.

At the community level, nematode communities from RC had increased Cu
resistance due to a combination of three factors: (1) evolution of tolerance in some
species, (2) an increase in abundance of tolerant species, and (3) the disappearance
of more sensitive species. This combination of factors is called Pollution Induced
Community Tolerance (PICT) (Millward and Grant 1995).

Non-indigenous species introduced via hull fouling may be able to adapt readily
to metal-polluted environments, since they had previously adhered to a metallic
boat hull that was probably coated with Cu-based antifouling paints. McKenzie
et al. (2011) investigated Cu tolerance in the non-indigenous bryozoan Watersipora
subtorquata from four populations from sites near Sydney, Australia. Colonies were
collected, raised in the laboratory, and their offspring exposed to a range of Cu
concentrations. Settlement and metamorphosis were measured, as were larval sizes
for each colony. While there was no difference in tolerance among sites, there
was a significant genotype � environment interaction, with a large variation in the
response of colony offspring within sites. The variation in Cu tolerance suggests that
there is potential within populations to adapt to elevated Cu, as tolerance is heritable.
Larval size also differed significantly and was positively correlated with tolerance.
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Tolerance to organic contaminants has also been noted frequently. Possible mech-
anisms of resistance include reduced uptake, increased sequestration, enhanced
metabolism and excretion, or reduced sensitivity at the target sites. Mechanisms
of transformation and elimination can be employed. CYPs are ubiquitous proteins
that are used in normal metabolic transformations, and can be utilized to detoxify
contaminants. Stress proteins are also highly conserved, and can protect organisms
against both heat and chemical stressors. In many of the tolerance studies, CYP1A
is involved. The mechanism by which TCDD, PCBs, and related chemicals cause
induction of these enzymes is through the aryl hydrocarbon receptor (AHR), which
is a transcription factor involved in regulation of genes for xenobiotic-metabolizing
enzymes, including CYPs. The AHR is a receptor for chlorinated dioxins and
other halogenated aromatic hydrocarbons. There is considerable evidence for its
role in fishes, and some evidence that it plays a role in invertebrates as well. One
might think AHR and CYPs would be enhanced in tolerant populations. However,
in many of the populations that exhibit enhanced tolerance, the normal induction
of CYP1A in response to exposure does not occur and/or the AHR has greatly
reduced sensitivity to binding the chemicals – thus, if the receptors are impaired,
the organism doesn’t “see” the contaminants and toxic effects are not produced.

11.2.1 Fishes

Many studies have been performed by Nacci and colleagues on the evolution of
tolerance in killifish (F. heteroclitus) to PCBs in New Bedford Harbor (NB), a highly
contaminated site in Massachusetts, U.S. Nacci et al. (1999) compared embryos and
larvae from reference sites and NB for sensitivity to dioxin-like compounds (DLCs);
fish from NB were much more tolerant (Figs. 11.3 and 11.4).
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Concentrations of DLCs similar to those measured in NB-collected fish eggs
were lethal to reference embryos. Responsiveness was inherited and independent
of maternal contaminant contributions. CYP1A was found to have very low
inducibility in NB fish (Fig. 11.4). Thus, PCB contamination has selected for fish
that are resistant. This adaptation may be a critical way that populations persist in
this contaminated site. The NB population is also resistant to dioxin, which could
not induce normal levels of CYP1A, showing that the Ah receptor signal pathway
was altered in these fish (Bello et al. 2001) (Fig. 11.5).

Examining the possibility that the resistant NB population had reduced genetic
diversity, McMillan et al. (2006) used AFLP markers, and found that genetic
diversity did not differ among populations from contaminated vs reference estuaries.
A possible reason that diversity may have been preserved could be because of
large effective population sizes or because the mechanisms for adaptation to the
contaminants affected only a small number of loci. Examining the issue of trade-
offs, Nacci et al. (2009) investigated whether the NB population might be more
susceptible to bacterial infection. They performed bacterial challenges of the marine
pathogen Vibrio harveyi and found comparable survival by NB and reference
fish, and improved survival by NB males. These results were inconsistent with
hypothesized trade-offs of adaptation, and suggest that evolved tolerance in NB fish
may include mechanisms that minimize the immunosuppressive effects of PCBs.
Nacci et al. (2010) investigated many mummichog populations and found that
they varied over four orders of magnitude in sensitivity to PCB126 and that this
variation reflected the degree of contamination at the population’s home site and
was heritable between the F1 and F2 generations. The four most tolerant populations
were from NB, Bridgeport, CT, Newark, NJ, and Norfolk, VA (all US), all highly
contaminated sites (Fig. 11.6). The investigators found some similarities among the
four highly tolerant populations, but they did not respond identically, and in at least
one population, tolerance appeared to decrease in subsequent generations raised in
the laboratory.

Roark et al. (2005) studied genetic adaptation in populations of the silversides,
Menidia menidia, a migratory species residing seasonally in reference sites or
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in NB. Offspring of M. menidia from NB were significantly less sensitive to
embryonic exposure to the dioxin-like PCB 3,30,4,40,5-pentachlorobiphenyl (PCB
126) than offspring of reference fish. Analysis of ten polymorphic enzymatic loci
indicated that juveniles from NB and an adjacent site had significant deviations from
Hardy–Weinberg equilibrium at the phosphoglucomutase (PGM*) locus. Survivors
of embryonic laboratory exposure to PCB 126 indicated that PGM* genotypes
were associated with survival. Although a relationship was seen between tolerance
and PGM* genotype, mixing of populations during migration and the absence of
multigeneration exposure at contaminated sites may limit adaptation in this species.

Prince and Cooper studied the F. heteroclitus population in Newark Bay NJ,
highly contaminated with PCBs, metals, and dioxins. CYP1A was not inducible
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in this population, which was highly tolerant to TCDD exposure. The Newark
embryos, when exposed to 12–100 parts per trillion (ng l�1) TCDD did not exhibit
pericardial edema or death, seen in the reference population (Fig. 11.7). Resistance
could not be attributed to reduced absorption of TCDD. Newark adults were also
tolerant to TCDD (unlike the meHg tolerance of nearby PC fish discussed earlier,
which was seen only in early life stages). When dermally treated, NB adults did
not die or exhibit lesions seen in the reference population. Adults had elevated
CYP450 activity, but induction of EROD (ethoxyresorufin-O-deethylase, a catalytic
measurement of cytochrome P4501A induction) by TCDD exposure was much
lower than in the reference population, suggesting an alteration in the AH receptor,
similar to the NB fish.

Adults and laboratory-reared offspring of resistant NB fish showed decreased
inducibility of CYP1A mRNA, CYP1A protein, and EROD enzyme activity,
compared to fish from cleaner sites (Prince and Cooper 1995b; Elskus et al. 1999;
Nacci et al. 1999). The laboratory-reared offspring had increased tolerance to
PCBs as well as TCDD. Teratological effects of coplanar PCBs and TCDD in
sensitive populations included pericardial edema, craniofacial malformations, yolk
sac edema, and spine curvature, which probably were a result of altered vascular
modeling, decreased blood flow and altered heart size and function (Antkiewicz
et al. 2005), which were not seen in the tolerant populations. Blocking the expres-
sion of AHR2 protects against the cardiotoxicity of TCDD (Antkiewicz et al. 2006).

F. heteroclitus from a creosote-contaminated site (wood treatment facility) in
the Elizabeth River, VA, US (ER) which has extremely high levels of PAHs, have
liver neoplasms in moderate to high frequencies (see Chap. 8) (Vogelbein et al.

http://dx.doi.org/10.1007/978-94-007-6949-6_8
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1990), but are more tolerant to PAHs than reference fish. Similar to the other tolerant
populations, CYP1A was not inducible when exposed to PAHs or PCB126 (van Veld
and Westbrook 1995; Meyer and DiGiulio 2002; Meyer et al. 2002).

The tolerant ER fish have elevated glutathione S-transferases, enzymes involved
in biotransformation of xenobiotics, which could be involved in resistance
(Armknecht et al. 1998). However, when reared in clean water or exposed to
other contaminants, the F1 from ER had reduced fitness, indicating evolutionary
costs of tolerance (Meyer and DiGiulio 2003). However, ER fish were tolerant
to chlorpyrifos, permethrin, and carbaryl, suggesting that the adaptive phenotype
was multi-faceted and that aspects other than CYP are likely to affect responses to
contaminants (Clark and diGiulio 2012).

Wirgin and colleagues have studied Atlantic tomcod (Microgadus tomcod) from
the Hudson River (HR), which is contaminated with PCBs and dioxins. HR tomcod
have liver cancers (see Chap. 8), but have undergone evolutionary changes and
become resistant to PCBs. They accumulate high levels of PCBs, PCDDs and
PCDFs, but not PAH. The toxicity of these compounds and induction of CYP1A
is mediated through the aryl hydrocarbon receptor (AHR), which has two forms, of
which AHR2 is more active in fishes. HR fish have higher levels of CYP1A mRNA
and bile metabolites of PAH than fish from four cleaner estuaries (Wirgin et al.
1994), but in the laboratory they had very reduced inducibility of CYP1A mRNA
after treatment with PCBs and TCDD (Fig. 11.8) (Yuan et al. 2006a, b).

The reduced inducibility of CYP 1A mRNA and increased resistance to PCBs
and TCDD in HR tomcod persisted in the F1 and F2 generations reared in the
laboratory (Wirgin and Chambers 2006; Wirgin et al. 1992). Wirgin et al. (2011)
investigated the mechanistic basis for the resistance and found that HR fish had
variants in AHR not found elsewhere – there were deletions in the AHR2 gene. The
fish are missing six base pairs of DNA of the AHR2 gene, and the two amino acids
each triplet would code for. The mutated gene reduces the binding of molecules like
TCDD to the receptor by fivefold, which lessens the toxicity. These changes were
considered an evolutionary response to contaminant exposure. Authors felt AHR2
is a sensitive target for selection because of its regulatory role in the metabolism
of contaminants. Evolutionary change probably resulted from selective pressure
against sensitive phenotypes at susceptible early life stages.

Pollution resistance in populations of North American fishes, focusing on organic
contaminants and genetic mechanisms, was reviewed by Wirgin and Waldman
(2004).

Peña-Llopis et al. (2001) investigated the genetic basis of herbicide tolerance
in eels in a laboratory study. Anguilla anguilla were exposed to 41.8 mg l�1 of
the herbicide molinate in a time to death (TTD) test. Glutathione content (GSx,
GSH, GSSG), glutathione reductase (GR) and ”-glutamyl transpeptidase (”-GT)
activities were determined in the liver and muscle of dead and surviving animals and
compared with non-exposed eels. TTD was positively correlated to hepatic GSH,
GSH:GSSG ratio, hepatic and muscular GR, but negatively correlated to muscular
GSH. Eels that were able to induce GR activity, increase GSH and maintain the
GSH:GSSG ratio in the liver showed greater survival than those that lost glutathione

http://dx.doi.org/10.1007/978-94-007-6949-6_8
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homeostasis. It would be interesting to follow up and see if these responses are
greater in eels collected from herbicide-contaminated field sites than in those from
clean sites.

In contrast to the above studies, resistance was not found in darter gobies
(Gobionellus boleosoma) from a coastal marsh with a long history of PAH
contamination (Klerks et al. 1997). A 2-week pre-exposure at the polluted site
resulted in a decreased rather than an increased resistance in a subsequent laboratory
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exposure to polluted sediment; also fish from the contaminated sites did not show
increased resistance to polluted sediment, confirming the lack of acclimation and
of adaptation. No differences were detected in frequencies of allozyme genotypes
between gobies from polluted vs a control site, and heterozygosity was similar in
both populations. Authors suggested four explanations for the lack of resistance:
(1) bioavailability of contaminants could have been low, although other evidence
contradicts this. (2) The contaminated marsh has many different chemicals and
development of resistance is less likely when more contaminants are involved.
(This can also be ruled out since PC, NB, NBH, HR and other polluted sites
discussed above also have multiple contaminants). (3) The hydrocarbon distribution
at the contaminated marsh is very patchy, such that fish may avoid exposure to the
highly-contaminated sediment. (4) Gene flow may be sufficiently high in this mobile
species to prevent local adaptation. It would seem likely that explanation three or
four (or some other) is correct. Another goby species, (Gillichthys mirabilis) from
three differentially polluted southern California estuaries was studied by Forrester
et al. (2003). Fish from each estuary were transplanted to cages in each estuary
in reciprocal transplant experiments. The growth rates of caged fish, and the size-
distribution of natural populations, showed the same pattern of difference among
estuaries. The total pollutant burden at the site was related to the growth of caged
fish. Fish in the field caging experiments, and other fish held in the laboratory
under constant conditions, showed no difference in growth due to their estuary of
origin. These results thus also suggest a lack of genetic adaptation or physiological
acclimation. It is interesting that of a limited number of reports of lack of tolerance,
gobies seem to be a group that does not exhibit tolerance. It is likely that many other
taxa do not develop tolerance but publications reporting such are relatively rare.

11.2.2 Crustaceans

While there is considerable literature on development of tolerance to pesticides by
freshwater crustaceans, reports of tolerance in marine species are limited. Grass
shrimp (P. pugio) in the laboratory could be acclimated to specific metals and
PAHs, but not to polluted sediments that contained a variety of contaminants.
Similarly, shrimp from Pass Fourchon in Louisiana, a site with elevated PAHs
and metals did not exhibit PAH tolerance (Klerks 1999). The explanation offered
for the lack of tolerance in the shrimp was that acclimation is less likely when
there are numerous contaminants; one contaminant may inhibit the detoxification of
others, and energetic requirements of exposure to one contaminant may be offset by
decreases in resistance to other types of contaminants. However, sites like PC, NB,
HR and NB, discussed above, also have numerous contaminants, yet have tolerant
animals (including grass shrimp at PC).

Harper-Arabie et al. (2004) investigated whether the allozymes of the enzymes
glucose phosphate isomerase (GPI), phosphoglucomutase (GPM), or mannose
phosphate isomerase (MPI) were related to survival of P. pugio during acute
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endosulfan, fluoranthene, and chromium(VI) exposures. Palaemonetes pugio were
exposed in the laboratory to 6.3 �g l�1 endosulfan, 100 mg l�1 chromium(VI), or
0.6 mg l�1 fluoranthene. Dead shrimp were removed at approximately 15–30 m
intervals and the individual’s genotypes for the Gpi, Mpi, and Pgm enzymes
were determined. Results indicated individuals that were heterozygous for the Gpi
allozyme survived longer than the homozygous MM genotype when exposed to
chromium(VI) or fluoranthene. No allozyme genotypes were related to tolerance
to endosulfan. The results support the hypothesis that there is a genetic basis for
tolerance in P. pugio during acute exposures to chromium(VI) and fluoranthene.

Carman et al. (2000) compared responses of meiofaunal communities from
contaminated vs reference sediments to diesel oil. Responses at the two sites
were generally similar, but several variables, including abundance of total nauplii,
ostracods, and copepods were affected to a greater degree in the reference com-
munity. Pseudostenhelia wellsi (a benthic copepod) nauplii from the reference
site showed greater adverse effects of diesel oil, suggesting increased tolerance of
copepods from the contaminated site. However, no differences in tolerance were
noted in meiobenthic copepods (Microarthridion littorale) populations exposed to a
highly contaminated sediment mixture vs unexposed animals (Kovatch et al. 2000),
despite the fact that significant genetic differences were found. The absence of
enhanced tolerance may be because detoxification mechanisms are adequate to cope
with elevated exposures, or that mixing between contaminated and reference popu-
lations obscures any observation of tolerance, or that the fitness costs counteract the
selective advantage of tolerance.

11.2.3 Mollusks

Reduced uptake appears to be a common method by which mollusks acquire
tolerance to organic pollutants. Mussels from the vicinity of the Prestige oil spill
on the coast of Spain were investigated 4–8 years after the spill. The results showed
that PAH pollution was still present, but bioaccumulation in M. galloprovincialis
was low, compared to reference mussels. This suggests that the mussels in the area
of the spill had been able to reduce their uptake of PAHs, as a method of tolerance
(Fernández-Tajes et al. 2011). Reduced accumulation of PCBs by mollusks in
contaminated sites has also been noted. Accumulation factors (AFs) for PCBs (the
lipid normalized PCB concentration in organisms divided by the organic carbon
normalized PCB concentration in sediments) were measured for PCBs in infaunal
mollusks at field sites with a range of sediment Aroclor (A-1254) and total organic
carbon (TOC) concentrations. The average AFs for A-1254 were higher at sites
with lower contaminant concentrations (15.0–48.3 ng g�1dry sediment) than at more
contaminated sites (328–9,200 ng g�1) (Lake et al. 1990).

Metabolic mechanisms of tolerance are also seen in mollusks. Yawetz et al.
(2010) investigated defense mechanisms in mussels, Donax trunculus, from
differentially polluted sites. Mussels from an oil-polluted site showed increased
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activity of the system of active transport of organic anions (SATOA) and the
multixenobiotic resistance transporter (MXR) in the gills. In contrast, those
collected near a PVC factory showed a decrease in SATOA activity and no increase
in the activity of MXR in the gills. Those from the reference site demonstrated
equilibrium between energy production and utilization, while in Donax from both
the oil polluted and the PVC-polluted sites, the mitochondrial redox state reflected
intensive consumption of energy. No significant changes were found in the activity
of reduced glutathione s-transferase (GST) in the cytosolic fraction of the digestive
gland of Donax from any of the three sites. These data demonstrate an increase in
the anti-chemical defense systems and an intensification of energy metabolism in
the mussels at polluted sites.

11.2.4 Other Taxa

Polychaete worms (Neanthes arenaceodentata) chronically exposed to petroleum
hydrocarbons had developed enhanced tolerance (Rossi and Anderson 1978).
However, tolerance could not be induced in the laboratory. In successive generations
raised in WSF of fuel oil, F3 adults were no more tolerant than F1 animals. It appears
that resistance was due to a selection process that selected over many generations
for animals with genetic characteristics conferring resistance.

Physiological tolerance can arise from developing a way to metabolize the con-
taminant and excrete it. The opportunistic polychaete, Capitella sp. I accumulated
fluoranthene from sediment in a concentration-dependent manner, but body burdens
began to decrease after 2 days and were undetectable by 7 days, despite continued
exposure to fluoranthene. Worms pre-exposed to PAH-contaminated sediment for
1 week excreted much more ingested fluoranthene than control worms and retained
significantly less in their tissues than control worms (Forbes et al. 1996), indicating
they had increased their metabolism and excretion of the hydrocarbon.

11.3 Hypoxia

As summarized by Hochachka et al. (1993) organisms use various defense strategies
when confronted with low oxygen: (1) switching toward other metabolic pathways
including anaerobic metabolism, (2) suppressing energy metabolism in order to
balance ATP production and utilization, (3) minimizing the damage caused by
physiological changes such as may occur by loss of ion homeostasis, and (4) using
metabolic or other protective adaptations that are needed for recovery after hypoxia.

Marine animals initially respond to hypoxia by attempting to maintain oxygen
delivery (e.g. increasing respiration rate, number of red blood cells, or oxygen
binding capacity of hemoglobin or hemocyanin), then later by conserving en-
ergy (metabolic depression, reduced activity, down-regulation of protein synthesis
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and down-regulation/modification of certain regulatory enzymes). Upon exposure
to prolonged hypoxia, animals must eventually resort to anaerobic respiration.
Hypoxia reduces growth and feeding, which eventually affects fitness. Many marine
organisms can detect and actively avoid hypoxia. Some benthic animals leave their
burrows and move up to the sediment surface, making them more vulnerable to
predation. Under chronic hypoxic conditions, there is a general tendency for benthic
suspension feeders to be replaced by deposit feeders; demersal fish by pelagic fish;
and macrobenthos by meiobenthos. Microflagellates and nanoplankton also tend to
dominate in the phytoplankton community (Wu 2002).

11.3.1 Fishes

Some fish can engage in aquatic surface respiration (ASR), getting their oxygen
from the air. Active swimmers can avoid hypoxic areas, but some are more
likely to remain in hypoxic water than others due to differences in physiological
tolerance and movement responses. Determining avoidance responses is important
for identifying the species most susceptible to impacts of hypoxia. A trawl
survey was used to examine avoidance responses of blue crabs (C. sapidus) and
several fish: pinfish (Lagodon rhomboides), spot (Leiostomus xanthurus), Atlantic
croaker (Micropogonias undulatus), bay anchovy (Anchoa mitchilli), and flounders
(Paralichthys dentatus and P. lethostigma) to chronic hypoxia and episodic hypoxic
upwelling events in the Neuse River Estuary, NC, USA (Bell and Eggleston 2005).
Trawl collections quantified changes in distribution and abundance patterns during
normoxia, chronic hypoxia, and hypoxic upwelling events. Pinfish, anchovies, blue
crabs, and flounder abundance increased with increasing DO. The two taxa most
closely associated with the bottom (blue crabs and flounder) showed the strongest
avoidance response to hypoxia. All taxa showed a stronger avoidance response
to chronic hypoxia than to episodic hypoxic upwelling, which was attributed to
reduced ability to avoid the rapid intrusions of hypoxic water during episodic
events, or to increased risks of predation in shallow habitats, which may force
some individuals back into hypoxic water. Froeschke and Stunz (2012) used
mesocosm choice experiments to examine how habitat selection in pinfish (Lagodon
rhomboides) and Atlantic croaker (M. undulatus) was affected by substrate, DO,
food availability, and predation risk. Both species strongly avoided low DO, but
at moderate levels of DO, substrate and food influenced selection. Both species
avoided predators even when the alternative habitat had low DO, suggesting that
predation risk is more important than DO for habitat selection. Swimming speed
and indicators of stress (blood cortisol and lactate) were measured in Atlantic cod
to assess if a shift in physiological homeostasis preceded changes in behavior or
vice versa (Herbert and Steffenson 2005). Swimming speed increased when DO was
reduced rapidly, an avoidance response. However, swimming speed was reduced at
moderate DO and continued to drop under progressively deep hypoxia. Elevations
in plasma cortisol and blood lactate indicated physiological stress but only at
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levels near the critical oxygen tension. Reduced activity is adaptive for survival
in low DO. Mandic et al. (2009) noted that sculpins with higher hypoxia tolerance
inhabited the O2 variable intertidal zone, while species with lower hypoxia tolerance
inhabited the more stable subtidal zone. Hypoxia tolerance is associated with
enhanced O2 extraction capacity, which has three principal components: routine
O2 consumption rate; mass-specific gill surface area; and hemoglobin O2-binding
affinity. Differences in the concentration of ATP and GTP provide a system with
plasticity for survival in a highly O2 variable environment.

Inheritable tolerance and acclimation to sulfide (related to eutrophication and
low DO in salt marshes) was found in California killifish F. parvipinnis exposed to
dissolved sulfide (Bagarinao and Vetter 1993). The high sulfide tolerance, partic-
ularly of concentrations typical of salt marshes, was explained by mitochondrial
sulfide oxidation. Sulfide tolerance and mitochondrial sulfide oxidation did not
diminish in fish held in the laboratory in sulfide-free water for 1–2 months. Seasonal
differences in capacity of gulf killifish, F. grandis, to tolerate hypoxia were studied
by Love and Rees (2002), who measured the frequency of aquatic surface respiration
(ASR) during gradual reduction in DO and survival time during severe hypoxia,
and found both to be significantly affected by season. Fish collected in summer
did not engage in ASR until the DO concentration dropped below that required
to cause ASR during other seasons. Laboratory acclimation to low DO did not
change the relationship of ASR and DO, suggesting that the seasonal effect on
ASR was not due simply to previous exposure. Fish collected in the summer and
winter had longer survival times in severe hypoxia than fish collected in the fall.
Seasonal variation in ASR and survival suggest that tolerance may be subject
to acclimatization. Increased tolerance in summer could increase survival in low
DO, which prevails during the summer. In comparison to other marsh fishes,
F. heteroclitus is highly tolerant of low oxygen (D’Avanzo and Kremer 1994;
Smith and Able 2003), with little or no mortality occurring until DO drops below
1 mg l�1. F. heteroclitus does not avoid water of 1 mg l�1 in laboratory choice
experiments, whereas other marsh fish do (Wannamaker and Rice 2000). During
chronic exposure to oxygen tensions near their Pcrit, the oxygen-binding capacity
of blood increases due to increased hematocrit and hemoglobin oxygen affinity
(Greaney et al. 1980). The increased hematocrit is likely due to several factors,
including splenic contraction and synthesis and possibly maturation of red blood
cells stimulated by erythropoietin (Lai et al. 2006). As oxygen drops below Pcrit,
F. heteroclitus and F. grandis utilize anaerobic metabolism. Increased glycolysis is
reflected by the accumulation of lactate in blood and tissues after both acute and
chronic hypoxic exposure (Cochran and Burnett 1996).

ASR and avoidance are not viable options for sluggish bottom dwelling fishes
such as flatfish. Maxime et al. (2000) examined turbot (Scophthalmus maximus) dur-
ing progressive severe hypoxia followed by recovery. Fish initially increased their
ventilation amplitude and frequency, which maintained standard O2 consumption
over a broad range of DO, until a critical level of 30 mmHg. The hyperventilation
induced a moderate blood alkalosis, compensated by a lactic acidosis. Blood pH did
not decrease below control values, which could be explained by the retention of most
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of the lactate produced in muscle, and by a high capacity for HC excretion. During
the recovery period, a marked increase in O2 uptake (oxygen debt repayment) was
related to lactate elimination. When energy contributions of aerobic and anaerobic
processes were assessed in terms of ATP, the anaerobic contribution during hypoxia
was >20 % of the total energy budget and compensated for the reduced aerobic
metabolism. The high value of O2 tension in arterial blood in normoxia and during
recovery from hypoxia showed high diffusing capacity of gills, also contributing to
the high tolerance of turbot for low DO.

Nilsson and Östlund-Nilsson (2008) reviewed the literature on the relation of
fish size to hypoxia tolerance and concluded that body size per se has little impact
on the ability to take up oxygen during low DO conditions, primarily because
the respiratory surface area matches the metabolic rate over a wide size range. In
cases where size-related differences are seen in a species, these were considered
likely to reflect adaptation to different life-styles or habitats. However, during severe
hypoxia and anoxia where fish must rely on glycolysis for survival, large individuals
have a clear advantage because small ones will run out of glycogen or reach lethal
levels of anaerobic end-products (lactate and HC) sooner, due to their higher mass-
specific metabolic rate. Those species that have evolved extreme adaptations to
hypoxia, such as hemoglobin with very high oxygen affinity or alternative anaerobic
end-products, reveal that evolutionary adaptation is more important in developing
hypoxia tolerance than physiological acclimation.

11.3.2 Crustaceans

Active swimmers like shrimp can actively avoid hypoxic areas. When confronted
with a gradient of dissolved oxygen, Metapenaeus ensis were able to avoid hypoxic
areas and move to oxygenated water. Their ability to detect and avoid hypoxia
may enhance their survival (Wu et al. 2002). Behavior and mortality of juvenile
Norway lobster (Nephrops norvegicus) changed with lowered DO; energetically
costly activities were reduced, and general activity declined (Eriksson and Baden
1997). In normoxia, juveniles walked and burrowed, but when exposed to hypoxia
they became inactive with occasional outbursts of escape swimming. To increase
oxygen availability they raised their bodies. However, oxygen saturations of 25 %
were lethal within 24 h. Juveniles were more sensitive than adults. Copepods,
Acartia clausi from the polluted Elefsis Bay (Greece) were much more tolerant
of low DO conditions than ones from reference areas (Kerambrun et al. 1993).
A common way of increasing tolerance is to synthesize more hemocyanin (Hc) or
increase its oxygen affinity. Blue crabs (Callinectes sapidus) were held in hypoxic
(50–55 mmHg) water for 7–25 days. Lactate, urate, and CaC2 all raised the O2

affinity of blue crab hemocyanin (Hc); by 25 days, blood lactate and urate had risen
slightly, and CaC2 had increased dramatically. Hc concentration had also increased
by 25 days. At both 7–25 days there was an increase in hemocyanin-O2 affinity and
a change in subunit composition (DeFur et al. 1990).
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The extent to which exposure to hypoxia (40, 30, and 20 % sat) produce
an increase in the concentration of Hc in Norway lobster Nephrops norvegicus,
depends on the initial Hc concentration and the intensity of the hypoxia. While
Hc did increase with decreasing pO2, individuals with relatively high initial Hc
levels did not increase Hc further. The greatest hypoxia-related increase in Hc
was in individuals with the lowest initial Hc concentrations. The changes in Hc
concentration took place over a short time scale (hours rather than days) (Spicer and
Baden 2001).

11.3.3 Mollusks

Metabolic depression and arrest are common responses among mollusks to low DO.
Starved Crassostrea virginica and Thais haemastoma were anoxia tolerant; their
metabolic rates were depressed under anoxia to 75 and 9 % of the normoxic rate
(Stickle et al. 1989). Ueda et al. (2009) investigated whether tolerance to low oxygen
could be selected for in oysters and examined the expression of heat shock protein
70 (HSP 70) in control and anoxia-challenged juvenile oysters. C. virginica were
collected from an area (CP) considered to have normoxic conditions and an area
(WH) with periodic anoxia. F1 oysters were produced from CP and WH parents
that survived anoxia for 96 h and from both parental stocks not exposed to anoxia.
The F1 oysters were subsequently exposed to anoxia or normoxia, and expression of
HSP 70 was examined. Three HSP 70 isoforms were expressed in both anoxia- and
normoxia-exposed oysters from all groups. In general, there were not significant
differences in the expression of these proteins between the control and anoxia-
treated oysters, suggesting no selection for tolerance. They did not report on the
actual anoxia tolerance of the F1 oysters, however.

Two South African mussels show marked differences in their tolerance to low
DO. Choromytilus meridionalis occurs low on the shore and on rocks associated
with sand, while Perna perna occurs higher on the shore on rocks that are not usually
influenced by sand. C. meridionaus withstands prolonged exposure to hypoxia
(<1.00 ppm O2: LT50 > 30 days) longer than P. perna with LT50 value of �6.5 days
for hypoxia. C. meridionalis activates anaerobic pathways more readily than P.
perna when exposed to hypoxia, and shows a much stronger tendency to close its
valves and to reduce its heart rate. With declining oxygen tension it regulates oxygen
uptake down to a lower level (2 ppm O2) than P. perna (3 ppm O2) (Marshall and
McQuaid 1993).

Kurochkin et al. (2009) studied metabolic responses to prolonged anoxia and
subsequent recovery in anoxia-tolerant C. virginica and effects of Cd on these
processes. Anoxia led to anaerobic respiration, as indicated by accumulation
of L-alanine, acetate, and succinate. Prolonged anoxia caused a decline in the
maximum activity of electron transport chain and oxygen uptake by mitochondria.
During reoxygenation, there was a significant overshoot of mitochondrial oxygen
uptake (<70 % above normoxic values). Mild mitochondrial uncoupling in anoxic
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tissues and a subsequent strong stimulation during recovery may help to restore
redox status and protect against formation of damaging reactive oxygen species
(ROS). Exposure to Cd inhibited anaerobic metabolism, abolished the stimulation of
mitochondrial oxygen uptake, and led to oxidative stress and a loss of mitochondrial
capacity during the recovery period.

11.3.4 Other Taxa

Many polychaetes including the lugworm, Arenicola marina, live in eutrophic
benthic habitats subject to frequent hypoxia. They are able to shift gradually from
aerobic metabolism to anaerobic metabolism, accompanied by a drop in ATP
demand and production. The activity of the enzyme glycogen phosphorylase plays
a major role in switching to anaerobic metabolism (Kemp 1993). The intertidal
polychaete Scoloplos armiger in anaerobic conditions produces energy in a similar
manner, but is less tolerant. Energy is produced from phosphagen stores and from
the conversion of glycogen to fatty acids, mainly propionate and acetate. S. armiger
is able to maintain aerobic metabolism down to a PwO2 of �20 Torr and even at
a PwO2 of 10 Torr retained some aerobic metabolism. However, S. armiger cannot
reduce its energy demands to the same degree as A. marina and has a relatively
small pool of glycogen, which may account for why it is only moderately resistant.
Its recovery from anoxia is slower than in A. marina. In the field during low tide
S. armiger goes up into the oxic layer, where it can maintain aerobic metabolism
(Schöttler and Grieshaber 1988).

The number of forms of enzymes involved in glycolysis can affect the degree
of hypoxia tolerance of a species. Nine polychaete species (Paraprionospio pin-
nata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris
composta, Sigambra bassi, Aricidea pigmentata, Cossura chilensis, and Pectinaria
chilensis) were assayed for lactic dehydrogenase, octopine dehydrogenase, strom-
bine dehydrogenase and alanopine dehydrogenase. Each species had a characteristic
number of the pyruvate oxidoreductases, ranging from 4 in Paraprionospio pinnata
to 1 in Pectinaria chilensis. The pyruvate saturation curves suggest that NADH
is oxidized at different rates depending on the amino acid used in the reaction
with pyruvate. The data indicate that organisms with more than one pyruvate
oxidoreductase have greater metabolic capacity to cope with low DO because
these enzymes would better regulate the pyruvate consumption rate during the
transition period. Thus, the dominance of Paraprionospio pinnata in hypoxic areas,
and its worldwide distribution is consistent with its high number of pyruvate
oxidoreductases with different pyruvate consumption rates (González and Quiñones
2000).

Low oxygen is also found in deep sea hydrothermal vent habitats (though
not due to pollution). The polychaete Methanoaricia dendrobranchiata lives at
hydrocarbon seeps in a microhabitat that is always very hypoxic and sulfidic. A suite
of adaptations to low DO were described by Hourdez et al. (2002). The worms
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can regulate their oxygen consumption down to about 870 Pa oxygen, have a large
gill surface area, a small diffusion distance from sea water to blood, a very high
hemoglobin oxygen affinity and a Bohr effect that is pronounced at high oxygen
saturations. They can withstand extended periods of anoxia even though when
fully saturated, the hemoglobin binds sufficient oxygen for only 31 min of aerobic
metabolism.

11.4 Climate Change/Ocean Acidification

A special issue of Proceedings of the Royal Society has been devoted to the idea
of “evolutionary rescue” in changing environments (ER) as a way to maintain
biodiversity in the face of climate change. In the introductory article, Gonzalez et al.
(2013) explain that ER is the idea that evolution might occur sufficiently fast to
arrest population decline and allow recovery before extinction results. ER provides
a perspective on evolutionary dynamics that focuses on short time-scales, genetic
variants of large effects, and absolute rather than relative fitness. Contributions
in the issue cover conceptual developments and modeling, as well as theoretical
and experimental results. Populations under severe stress may be rescued by
natural selection, but its operation has ecological and genetic constraints. Whether
evolution will be rapid enough to rescue declining populations will depend upon
the population size, the degree of genetic variation, the degree of maladaptation and
the evolutionary history. A factor that may limit their ability to adapt is the rate
at which beneficial mutations can become established. Population persistence can
also be influenced by phenotypic plasticity (acclimation), and by the evolution of
plasticity itself. These articles are general and none focus on the oceans or pH.

Kelly and Hofmann (2012) reviewed current literature on the potential for
adaptation to elevated pCO2 in marine organisms. Although the number of papers
is currently quite small, they argued that data on physiological effects, natural
variation in pH and lessons learned from previous work on adaptation can all
inform predictions and priorities for future research. They argued that selection is
one of the most important forces maintaining intraspecific genetic variation. Unlike
temperature, pH lacks a strong global gradient, and so selection may maintain less
adaptive variation for pH than for temperature. However, long-term data sets for
natural pH variation are scarce, so pH gradients may be more common than previ-
ously observed. Two important effects of elevated pCO2 are reduced calcification
and changes in metabolism. Detailed understanding of physiological mechanisms
underlying these effects is important for predicting the ability to acclimatize or
adapt. They recommended that future research should assess adaptation to local pH
conditions and measure the capacity for adaptation to acidified conditions in natural
populations.
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11.4.1 Fishes

Juvenile anemonefish, Amphiprion melanopus, which show an increase in metabolic
rate and decreases in length, weight, condition and survival in response to acidifi-
cation, can adjust to the pH expected by 2100 (1,000 �atm CO2 and a temperature
rise of 1.5–3.0 ıC) if their parents were also raised in more acidic water (Miller
et al. 2012). Under those circumstances, juveniles were able to compensate for the
change, although it is not known if the tolerance persists throughout their lives. How
parent fish pass on the ability to deal with acidity to their offspring is not known.
The time interval is too short for it to be genetic adaptation in the normal sense.
Thus some fish species have greater capacity to cope than was previously thought.
Anemonefish are particularly hardy, however, and may not be representative of all
marine fish.

Munday et al. (2012) used a field-based experiment to test for differential survival
associated with variation in CO2 tolerance in a wild population of coral-reef fishes.
Juvenile damselfish, Pomacentrus wardi exhibited variation in their response to
elevated (700 �atm) pCO2 when tested in the laboratory and this influenced their
behavior in the field. Individuals that were sensitive to elevated pCO2 (changing
normal response to predator odor) were more active and moved farther from shelter
in natural coral reef habitat and consequently had higher mortality from predation
than fish that were more tolerant to elevated pCO2. Authors concluded that if
individual variation in CO2 tolerance is heritable, this selection of phenotypes
tolerant to elevated pCO2 could potentially help mitigate the effects of ocean
acidification.

Adaptation to climate change also involves temperature tolerance. Klerks and
Blaha (2009) compared heat tolerance of fish collected from pairs of sites with
different thermal regimes, using least killifish (Heterandria formosa) and eastern
mosquitofish (Gambusia holbrooki). They measured heat tolerance as temperature-
at-death and time-to-death when field-collected fish were exposed in the laboratory
to increasing water temperatures. For the four pairs of populations that were
compared, two differed in heat tolerance. Fish from one site with above-normal
temperatures had reduced heat tolerance indicative of stress, rather than tolerance.
Fish from another site with above-normal temperatures had elevated heat tolerance,
which appeared to be due to acclimation rather than adaptation, since it was not
maintained in their offspring.

For coastal wetland species, sea level rise results in salt water intrusion, which
can be another stress. Populations of the eastern mosquitofish, Gambusia affinis,
with exposure to saline environments develop adaptations for increased survival in
high salinity (Purcell et al. 2008). Fish from brackish and intermediate marshes
had increased salinity tolerance compared to fish from freshwater marshes. They
tested the descendents of fish from the fresh and brackish marshes that were reared
for two generations in fresh water, and found that descendents of fish from brackish
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marshes had higher survival in saline water than descendents of fish from freshwater,
implying genetic adaptation. Purcell et al. (2012) evaluated the genetic structure of
G. affinis populations previously shown to have adaptations for increased salinity
tolerance. They found that gene flow was higher between populations experiencing
different salinity regimes within an estuary than between similar marsh types in
different estuaries, suggesting the development of saline-tolerant phenotypes is due
to local adaptation.

11.4.2 Crustaceans

Crustaceans appear to be very variable in vulnerability to ocean acidification due to
differences in lifestyle and in the ability to compensate for environmental change.
It is predicted that strong iono- and osmo-regulating species are likely to be the
most tolerant to acidification, because they have the compensatory mechanisms
to respond to acid–base disruptions. These species tend to inhabit shallow coastal
environments with freshwater inputs, where they experience natural variations in
seawater pCO2, pO2, salinity and temperature. The ability to compensate for the
effects of ocean acidification can also vary with lifestyle. Decapods with high
rates of activity, for example, have a greater capacity for passive compensation of
hemolymph acid–base disturbances (i.e. buffering by non-bicarbonate buffers) than
slow-moving, relatively inactive species due to differences in respiratory variables
(Whitely 2011).

11.4.3 Mollusks

Amerala et al. (2011) sampled oyster, gastropod and crab populations at sites close
to and far from drains discharging acid sulfate soil (ASS) runoff, hypothesizing
that reduced populations of smaller-sized individuals would be found at the more
acidified sites. Oysters Saccostrea glomerata and gastropods (Bembicium auratum)
were less abundant at ASS-affected than reference sites in New South Wales,
Australia, but impacts were smaller than predicted. Although gastropod populations
were dominated by smaller individuals, oyster populations were skewed towards
larger individuals at affected sites, and abundances of both species were comparable
to reference estuaries. Authors felt that behavior, physiological acclimation and/or
genetic selection may be responsible, or that populations may recover between the
rain events that bring in acidic runoff. Thus, at the population level, these calcifying
organisms showed some resistance to acidic runoff.

Parker et al. (2012) exposed adult Sydney rock oysters, Saccostrea glomerata
to ambient and elevated pCO2 during reproductive conditioning and measured
development, growth and survival of their larvae. Elevated pCO2 caused a reduction
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in growth, development rate and survival. However, exposing adults to elevated
pCO2 during reproductive conditioning had positive effects on larvae. Larvae
spawned from adults exposed to elevated pCO2 were larger, developed faster and
had similar survival as larvae spawned from adults exposed to ambient pCO2. This
suggests that these oysters have the capacity to acclimate or adapt to elevated pCO2.

11.4.4 Other Taxa

Corals

Some corals can adapt to high temperatures and/or low pH. Populations that were
able to survive a massive bleaching event in 2010 in Southeast Asia were ones that
had previously experienced severe bleaching in 1998. In Indonesia, corals responded
to higher temperatures in a typical way, with branching species such as staghorn
corals suffering severe die-offs. But at sites in Singapore and Malaysia, normally
susceptible Acropora corals appeared healthy and unbleached. The locations that
had less severe bleaching in 2010 had bleached in 1998. In contrast, the site that
had severe bleaching in 2010 had not bleached in 1998. It appears that the corals
that had bleached in 1998 had subsequently adapted and/or acclimatized to thermal
stress (Guest et al. 2012). Genetic changes in the corals may play a role in increasing
tolerance to temperature. Some of the Acropora hyacinthus corals in the back reef
of Ofu Island, American Samoa, thrive in pools with daily heat fluctuations of
up to 6 ıC. To find the molecular basis of this resilience, Barshis et al. (2013)
compared gene activity in heat-resistant and heat-sensitive corals by measuring their
‘transcriptome’ – the RNA molecules transcribed from the genes – under different
temperatures. They found a suite of genes that are present in both types of corals but
are more highly expressed in the heat-resistant corals, which had 60 stress-related
genes turned on even before the experiment began. These genes, which code for a
number of antioxidants and heat shock proteins, are “frontloaded” in the resistant
corals – already turned on and ready to work even before the stress began.

Corals may also adapt by hosting varieties of algal symbionts that are more
temperature tolerant. Increasing numbers of coral species have been found to be
able to host multiple algal symbionts. Being capable of hosting symbionts that
survive in warmer temperatures suggests they have potential to adapt to warmer
temperatures (Silverstein et al. 2012). However, some confounding evidence was
found by Putnam et al. (2012) who collected 132 samples of coral from reefs
around Moorea, analyzed DNA to determine the types of dinoflagellates present,
and reviewed the scientific literature for information on how well each type of coral
dealt with environmental changes. Surprisingly, the corals that hosted many diverse
dinoflagellates were less resilient. For example, flexible corals such as Acropora
and Pocillopora that hosted a variety of symbionts fared the worst after a mass
bleaching in 1994. Corals that were more selective about their symbionts coped
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more successfully. It would appear that the symbionts, though less diverse, were
more temperature tolerant. Complicating the picture further, Hume et al. (2013)
studied heat-tolerant corals in the Persian Gulf, and found that although both
the coral host and the associated algae need to withstand the high temperatures,
the algae belong to a group not known for its thermal tolerance. The algae
found in most of the corals in Abu Dhabi reefs were previously described as a
‘generalist strain’ that is usually not found in corals exposed to high levels of
heat stress.

Bleaching was studied in two species of octocorals, Phenganax parrini and
Sarcothelia sp. both of which had similar responses (Parrin et al. 2012). While
symbionts detach or die leaving the polyps bleached, large numbers of the symbionts
accumulate in the stolons. The presence of symbionts in the stolons may be a mech-
anism to help the colonies recover from bleaching if the symbionts subsequently
migrate back into the polyps.

Climate change includes both ocean acidification and temperature increase.
Edmunds (2011) exposed Porites corals to different temperatures and pH for
1 month in the laboratory, and provided them with brine shrimp as food. Increasing
the amount of food reduced the effects of acidification. Both calcification and
biomass were sustained at high pCO2 by increased food, showing that this species
can resist effects of 1 month in high pCO2 through heterotrophy. This mechanism
may play a role in determining the extent to which corals can resist the long-
term effects, and it depends on adequate amounts of suitable plankton food being
available, which is also necessary to survive bleaching.

Organisms that form calcium carbonate skeletons produce it in one of two forms,
aragonite and calcite. McCulloch et al. (2012) suggest that those with aragonite
skeletons, such as Porites and Acropora, have molecular pumps that enable them
to regulate their internal acid balance, which buffers them from the changes in
seawater pH. This up-regulation of pH at the site of calcification provides them
with enhanced resilience to the effects of acidification, while those that use the
calcite pathway lack this resilience. The cold-water coral Lophelia pertusa can
keep growing even in low pH if given time to adjust to the new conditions
(Form and Riebesell 2012). Coral branches were kept at a range of pCO2 levels
while temperature was constant and corals were fed well. In the short term, a pH
decrease of only 0.1 unit caused a decline of growth by about one third, but after
6 months the corals seemed to adapt; those in high pCO2 grew even faster than
controls. However, since acidification is only one aspect of climate change, more
studies are needed to investigate interactions of carbon dioxide, temperature, and
food availability. Further evidence for adaptation to long-term exposure to very
low carbonate concentrations was seen by Thresher et al. (2011) who examined
the distribution and skeletal characteristics of corals along a natural deep-sea
concentration gradient on seamounts. Carbonate under-saturation had little effect
on depth distribution, growth, or skeletal composition of live scleractinians or
gorgonians, with corals growing, often abundantly, in waters as much as 20–30 %
under-saturated.
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Coccolithophores/Algae

Coccolithophores, phytoplankton with calcite shells, have been shown to be vulnera-
ble to acidification. However, when Emeliana huxleyi were cultured under increased
CO2 conditions, after 1 year (500 generations) they grew and calcified better than
non- adapted control populations when tested under acidified conditions (Lohbeck
et al. 2012).

Collins (2011) used an experimental evolution approach to investigate adaptation
in changing environments, using fitness and the total number of reproductive events
to quantify adaptation of phytoplankton communities to global change, where
environmental variables change continuously. She examined the possible scenario
that climate change will not acidify the ocean because microbes will absorb the extra
carbon in photosynthesis, store it and release oxygen, a logical scenario because
many microorganisms are photosynthesizers. To test this idea, algae were grown in
high CO2, and 1,000 generations later some surprising responses were seen. Some
of the algae in high CO2 did not store it any more. Others photosynthesized much
faster, but were no longer able to use the extra carbon for growth. Thus, the notion
that phytoplankton will efficiently absorb all the extra CO2 would appear to be
unlikely.

11.5 Costs of Tolerance

11.5.1 Energy Costs

Processes involved in developing tolerance are energetically expensive and may
have deleterious effects on energy allocation. To adjust to the metabolic costs of
a chemical stressor, a shift in allocation of energy occurs at the expense of other
energy-demanding processes such as growth. For example, mucus secretion in the
gastropod Patella vulgata uses almost 25 % of the animal’s energy (Davies et al.
1990). In dogwhelks, Nucella lapillus, exposed to Cd, reduced oxygen consumption
and glycogen level could be linked to the production of mucus and metallothioneins
(Leung et al. 2000). The production of enzymes to detoxify organic contaminants
also has energy costs (Calow 1991). Many of the studies described in Chap. 3 report
decreased metabolic rate, which reflects energy costs. Thus contaminant exposure
over extended periods may reduce fitness, which increases selection pressure for
more resistant individuals in populations that exhibit variation and heritability for
their response. Populations subject to strong selection pressure for a particular stress
may show a reduction in genetic variation, since the more susceptible genotypes
would have disappeared and only the resistant remain. This may in turn increase
their vulnerability to other types of stresses, which is a cost of tolerance. For
example, in Cd-polluted environments, the upregulation of heat shock proteins
is partially suppressed in the oyster Crassostrea virginica, resulting in reduced
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thermotolerance (Ivanova et al. 2009). Thus, populations with tolerance to some
pollutants may have lower tolerance to others and lower survival ability in the
longer term. Grant et al. (1989) demonstrated that the genetically based tolerance
of Nereis worms in Restronguet Creek to Cu was a disadvantage at sites with low
levels of metals. The metabolic costs of the tolerance produced a much lower scope
for growth than seen in non-resistant populations. The loss of Cd-tolerance in the
Foundry Cove (Hudson River) Limnodrilus worms after clean-up of the Superfund
site (Levinton et al. 2003) demonstrates that the tolerance had a cost and when the
selection pressure for Cd-tolerance was removed, non-tolerant worms were at an
advantage.

Meyer and DiGiulio (2003) reported that F1 and F2 offspring of PAH-resistant
killifish from the creosote-contaminated Elizabeth River were less tolerant of low
DO than the F1 and F2 from fish from reference sites. They also found that the F1 but
not F2 offspring from ER had reduced growth and survival in clean conditions. The
F1 offspring were more susceptible to phototoxicity and oxidative stress. Frederick
et al. (2007) similarly found that adult ER fish had lower antibody responses and
increased susceptibility to bacterial pathogens. However, since these tests were on
fish taken from ER, rather than their offspring raised in the laboratory, it cannot
be established if this is a “cost” of tolerance or a direct effect of PAHs and other
contaminants on the immune system.

It is often difficult to separate out costs of tolerance from direct or indirect sub-
lethal effects of the contaminants. For example, metal-tolerant Nereis diversicolor
from the Seine River exhibited lower physiological and population status than those
from a reference site (Mouneyrac et al. 2010). Reduced feeding (as described in
many studies) is a common response to contaminants, and will also have negative
effects on the energy budget. This could be responsible for the observations of
Mouneyrac et al. (2010). Also, killifish from Piles Creek that are resistant to meHg
in early life stages show reduced feeding, predator avoidance, growth, and longevity
as adults (Weis and Weis 1989). These may be costs of tolerance, but are more likely
to be direct effects of the contaminants. It is necessary to study laboratory-raised F2
and F3 generations to distinguish true costs of tolerance from direct effects of the
contaminated environment.

11.5.2 Food web Costs

Metals

Mechanisms that allow organisms to tolerate contaminants could be a risk to
consumers if tolerant prey accumulate high concentrations of contaminants and
transfer them to less well-adapted predators. In addition, for organisms that produce
mucus in response to contaminants (e.g. mussels), the secreted mucus that has high
contaminant levels (Sze and Lee 1995) may then be consumed by other species.
Trophic transfer can have major, even lethal impacts. For example, shrimp that
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Fig. 11.9 Percentage retention (filled symbols, mean C SE) and egestion (open symbols) of 109Cd
by grass shrimp fed 109Cd-labelled South Cove (reference site, circles) or Foundry Cove (triangles)
Limnodrilus hoffmeisteri (Reprinted from Wallace et al. 1998: 232, courtesy Inter-Research)

consumed metal-rich N. diversicolor from Restronguet Creek had elevated mortality
(Rainbow et al. 2006), suggesting that the shrimp were not as tolerant as their
polychaete prey. In many invertebrates, metals complexed with MT in the cytosol
are transferred to predators, while metals stored in metal-rich granules (MRG) tend
to be unavailable to predators (Fig. 11.9) (Wallace et al. 1998). However, some
predators may be able to acquire metals from MRG in their food (Rainbow et al.
2007) (Fig. 11.10) so differences in trophic transfer of metals are also affected by
the digestive processes of the predator, which will affect the predator’s body burden.

Organics

Despite the ability of many organisms to degrade organic compounds, many
xenobiotics accumulate in biota to varying degrees, especially persistent organic
pollutants (POPs), such as DDT, PCBs, PBDEs, and dioxins. These are metabolized
poorly, and therefore are readily passed up food chains, biomagnifying in the
process. Therefore predators (including humans) acquire higher concentrations than
their prey. Fish consumption advisories remain in many places, due to unacceptably
high levels of chemicals such as PCBs in fish or crab muscle tissue. Tolerant prey
can accumulate greater concentrations to pass onto their predators. For example,
crustaceans fed PCB-tolerant phytoplankton Nannochloris oculata accumulated
more PCBs than those fed sensitive Isochrysis galbana (Wang et al. 1998).

In contrast, PAHs tend to be better metabolized and do not biomagnify because
they are rapidly transformed at higher trophic levels (especially vertebrates), so
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their levels may be “trophically diluted” along the food web. But this is not always
the case. The oligochaete worm Monophlephorus rubroniveus has a high tolerance
of and a low ability to metabolize and eliminate PAHs. It bioaccumulates high
concentrations of fluoranthene from sediments, which it passes on to consumers
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such as grass shrimp (Filipowicz et al. 2007). Prey that do transform PAHs
may produce carcinogenic metabolites, which are then passed on to consumers.
English sole fed B[a]P-contaminated polychaetes showed slower growth, increased
CYP1A, and hepatic DNA adducts (Rice et al. 2000). Bottom-dwelling fish in areas
contaminated with PAHs have higher incidence of tumors (see Chap. 8), probably
partly due to PAHs acquired from their prey.

11.6 Discussion and Conclusions

It is clear that pollutants can cause physiological changes that reduce their toxicity
and exert selection pressure on populations in contaminated environments. Reduced
accumulation and increased depuration are effective ways to become more resistant
to a chemical. Other mechanisms include synthesis of MTs and other metabolic
detoxification methods. In addition to physiological acclimation, many species are
able to evolve to become more tolerant to the contaminants they are exposed to. Life
evolved in the presence of metals, and MTs and other protective mechanisms are
found in a diversity of species including microorganisms, invertebrates, plants, and
vertebrates, enabling them to resist toxic effects. The most common defense against
toxic organic chemicals are the cytochrome P450s (CYPs), highly diverse enzyme
systems that may have been used initially to defend animals against natural plant
toxins, and subsequently became utilized to defend against the growing numbers of
toxic organic chemicals produced by industry.

However, organisms do not have the luxury of coping with one chemical at a
time, but must deal with numerous chemicals in some coordinated fashion.

Tolerance is an issue relevant to toxicity testing for choosing organisms for
“standard toxicity tests,” since the origin of the animals used in bioassays will affect
their responses to chemical stress. It is also relevant to the field of biomarkers.
Biochemical biomarkers in organisms from polluted field sites will be different
(reduced) if the organisms have developed tolerance.

The acquisition of tolerance to pollutants in the environment allows populations
of organisms to sustain themselves in highly contaminated sites, even though they
may show negative effects such as reduced abundance, reduced genetic diversity,
altered behavior, liver tumors, etc. Thus, while some organisms can develop
tolerance to pollutants in their environment, this comes at a cost, often energetic.
Also, in cases in which high concentrations of contaminants are accumulated,
this can pose risks to non-tolerant consumers, including humans who eat seafood
containing elevated levels of methylmercury, PCBs, or other contaminants that
biomagnify through food webs. As Klerks et al. (2011) noted in a review, approaches
used over the past few decades have limitations, including difficulty in separating
the various genetic and environmental variance components, since responses depend
on specific populations and test conditions. To improve insights into the long-
term consequences of adaptation, it is important to look not only at resistance
itself, but also at the fitness consequences and responses in other characteristics.

http://dx.doi.org/10.1007/978-94-007-6949-6_8
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Developments in molecular genetics have yielded additional insights. Quantitative
genetics is benefiting from the use of molecular tools and is becoming an important
field for studying evolutionary toxicology.

Other reviews on the overall topic of tolerance have been published recently
including Amiard-Triquet (2011, 2013), Johnson (2011), Berthet et al. (2011),
Rainbow and Luoma (2011), Romeo and Wirgin (2011) and others in the same
volume edited by Amiard-Triquet, Rainbow and Romeo.

As contaminant levels are reduced as a result of environmental clean-ups and
reduction of inputs, negative effects on marine species are expected to decline, along
with tolerance and bioaccumulation, resulting in a healthier environment for both
marine species and humans. Such “good news” has been seen in many areas and
is expected to continue for conventional pollutants like metals, oil, and persistent
organic compounds. However, with respect to CECs, warming temperatures, and
ocean acidification, the future health of the marine environment is likely to worsen,
since there has been no progress in curbing these inputs. Whether or not organisms
will be able to evolve tolerance to the inevitable increased levels of stressors
associated with climate change remains in question. Research to date suggests that
coral reefs and some shellfish may face very serious consequences although some
species will undoubtedly be able to thrive, while others may disappear. Those who
care about the environment can only hope and advocate for international agreements
that will result in major reductions in greenhouse gases in the near future.
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bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environ
Pollut 140:492–499

Davies MS, Hawkins SJ, Jones HD (1990) Mucus production and physiological energetics in
Patella vulgata L. J Mollus Stud 56:499–503



428 11 Tolerance

DeFur P, Mangum C, Reese JE (1990) Respiratory responses of the blue crab Callinectes sapidus
to long-term hypoxia. Biol Bull 178:46–54

Edmunds P (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral
Porites spp. Limnol Oceanogr 56:2402–2410

Elskus AA, Monosson E, McElroy AE, Stegeman JJ, Woltering DS (1999) Altered CYP1A
expression in Fundulus heteroclitus adults and larvae: a sign of pollution resistance? Aquat
Toxicol 45:99–113

Eriksson SP, Baden SP (1997) Behaviour and tolerance to hypoxia in juvenile Norway lobster
(Nephrops norvegicus) of different ages. Mar Biol 128:49–54

Fernández-Tajes J, Rábade T, Laffon B, Méndez J (2011) Monitoring follow up of two areas
affected by the Prestige oil four years after the spillage. J Toxicol Environ Health 74:
1067–1075

Filipowicz AB, Weinstein JE, Sanger DM (2007) Dietary transfer of fluoranthene from an estuarine
oligochaete (Monopylephorus rubroniveus) to grass shrimp (Palaemonetes pugio): influence of
piperonyl butoxide. Mar Environ Res 63:132–145

Forbes V, Forbes TL, Holmer M (1996) Inducible metabolism of fluoranthene by the opportunistic
polychaete Capitella sp. I. Mar Ecol Prog Ser 132:63–70

Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure
in the cold-water coral Lophelia pertusa. Glob Change Biol 18:843–853

Forrester GE et al (2003) Growth of estuarine fish is associated with the combined concentration of
sediment contaminants and shows no adaptation or acclimation to past conditions. Mar Environ
Res 56:423–442

Frederick LA, Van Veld PA, Rice CD (2007) Bioindicators of immune function in creosote-adapted
estuarine killifish, Fundulus heteroclitus. J Toxicol Environ Health 70A:1433–1442

Froeschke JT, Stunz GW (2012) Hierarchical and interactive habitat selection in response to abiotic
and biotic factors: the effect of hypoxia on habitat selection of juvenile estuarine fishes. Environ
Biol Fishes 93:31–41

Gale SA, Smith SV, Lim RP, Jeffree RA, Petocz P (2003) Insights into the mechanisms of copper
tolerance of a population of black-banded rainbowfish (Melanotaenia nigrans) (Richardson)
exposed to mine leachate, using 64/67Cu. Aquat Toxicol 62:135–153
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