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Peptide-mediated interactions play prominent roles in many cellular processes: their weak, 
transient character, and their easy manipulation by targeted changes such as post- translational 
modifications, makes them especially amenable to versatile regulation.

The structure of a peptide-protein complex allows its detailed characterization and fine- 
tuned manipulation and provides important leads for targeted inhibitor design. It is there-
fore not surprising that much effort has been put into the development of tailored tools for 
the modeling of peptide-protein complex structures. However, until not long ago, such 
approaches were significantly limited, mainly due to challenges of sampling (peptides pre-
dominantly do not adopt a defined conformation prior to binding, so that peptide docking 
may be seen as a “fold-and-dock” challenge), but also scoring (peptide-protein interactions 
are often transient and weak, and modeling of solvation can be particularly challenging for 
these small interfaces).

The last few years have witnessed an unprecedented interest, and consequently advance, 
in our abilities to model and manipulate peptide-mediated interactions. This started with 
the development of dedicated protocols for local peptide-protein docking that apply a 
range of different algorithms to tackle the sampling problem. These now generate on a 
regular basis accurate, near-atom resolution models. It did not take long for the develop-
ment of a second wave of approaches that extend and complement these tools towards full 
blind docking, without prior knowledge of the binding site, or an approximate starting 
conformation for the peptide. Such global docking may be accomplished either by combin-
ing binding site prediction with subsequent peptide docking or, alternatively, by perform-
ing both together.

Another area of fruitful advance has been our improved ability to predict not only the 
structure but also the binding affinity and specificity of peptide-protein interactions. These 
come together with dramatic improvement in the design of inhibitory peptides for the fine- 
tuned manipulation of protein interactions. Such advances bring us closer to be able to 
perform peptide-protein modeling on proteomic scale.

It is truly impressive how, in a short time, peptide-protein modeling has risen from a 
challenged side topic to an ever improving, buzzing field! Key to this improvement has 
been benchmarks, in the form of curated datasets of peptide-protein complex structures 
(such as PeptiDB), and last but not least, the CAPRI challenge for the assessment of the 
modeling of protein interactions: CAPRI has enthusiastically embraced peptide docking 
and included several peptide-protein docking targets over the past few years. This has fur-
ther spurred the development of peptide docking protocols; many of them have been dis-
cussed in detail at the latest CAPRI evaluation meeting in 2016 in Tel Aviv (www.cs.tau.
ac.il/conferences/CAPRI2016/).

In this book we have collected a series of chapters from the leading figures in the field 
of peptide-protein docking. The chapters are bundled into four inter-related parts, includ-
ing (1) peptide binding site prediction; (2) peptide-protein docking; (3) prediction and 

Preface



vi

design of peptide binding specificity; and (4) the design of inhibitory peptides. In their 
combination in this book, the chapters provide a diverse and unified state-of-the-art over-
view of this rapidly advancing field of major interest and applicability.

We look forward to seeing the many applications that will result from applying the 
methodologies described in this book.

Jerusalem, Israel Ora Schueler-Furman 
Rehovot, Israel Nir London 
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Chapter 1

The Usage of ACCLUSTER for Peptide  
Binding Site Prediction

Chengfei Yan, Xianjin Xu, and Xiaoqin Zou

Abstract

Peptides mediate up to 40 % of protein–protein interactions in a variety of cellular processes and are also 
attractive drug candidates. Thus, predicting peptide binding sites on the given protein structure is of great 
importance for mechanistic investigation of protein–peptide interactions and peptide therapeutics develop-
ment. In this chapter, we describe the usage of our web server, referred to as ACCLUSTER, for peptide 
binding site prediction for a given protein structure. ACCLUSTER is freely available for users without 
registration at http://zougrouptoolkit.missouri.edu/accluster.

Key words Binding site prediction, Molecular docking, Protein–peptide interaction

1 Introduction

Peptides mediate up to 40 % of protein–protein interactions 
involved in signal transduction, immune responses, transcriptional 
regulation, and other cellular processes [1]. The development of 
peptide therapeutics has also become an attractive direction for 
cancer therapy [2].

However, due to the difficulties and cost for resolving the pro-
tein–peptide complex structures, the current number of released 
protein–peptide complexes in Protein Data Bank (PDB) [3] is 
quite limited in comparison with the number of protein mono-
meric structures. The lack of structures significantly hinders our 
understanding of the mechanisms underlying protein–peptide 
interactions and impedes the peptide-based therapeutic develop-
ment. Efficient and effective in silico methods to complement the 
experimental techniques are urgently needed. The prediction of 
peptide binding site is generally the first step towards the more 
challenging protein–peptide complex structure prediction.

ACCLUSTER is a web server for the application of our previ-
ously developed computational method for predicting peptide 
binding sites [4]. Given a protein structure, ACCLUSTER employs 

http://zougrouptoolkit.missouri.edu/accluster
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amino acid residue probes to globally detect the protein surface to 
identify the regions allowing for forming good chemical interac-
tions with these probes, which are considered as putative peptide 
binding sites. The binding sites predicted by ACCLUSTER can be 
used for guiding experimental mutant design to find critical resi-
dues and also providing inputs to molecular docking tools, which 
usually require the binding site information.

In this chapter, we describe the usage of ACCLUSTER for 
peptide binding site prediction.

2 Materials

ACCLUSTER is a prediction method for identifying the peptide 
binding sites on a given protein. The method was developed based 
on the assumption that the peptide binding site is generally the 
region on the protein surface with which amino acids can form 
good chemical interactions [4].

Specifically, given the protein structure, the 20 standard amino 
acids (or the residues in the bound peptide if the sequence of the 
peptide is known) are used as the probes to globally scan the protein 
surface with ZDOCK3.02 [5, 6]. The modes sampled by ZDOCK 
are then re-scored and optimized with our knowledge- based scoring 
function, ITScorePP [7]. Only modes that form good chemical 
interactions with the protein according to the ITScorePP scores are 
kept and then clustered by the Density-Based Spatial Clustering 
Applications with Noise (DBSCAN) method [8]. The produced 
clusters are ranked based on the cluster sizes; the top cluster is con-
sidered as the predicted peptide binding site (see Fig. 1).

ACCLUSTER can be reached through http://zougrouptoolkit.
missouri.edu/accluster. The submission page is shown in Fig. 2. 
The details are described as follows.

2.1 An Overview 
of ACCLUSTER 
Methodology

2.2 The Website 
of ACCLUSTER

Fig. 1 The schematic diagram of the ACCLUSTER method

Chengfei Yan et al.

http://zougrouptoolkit.missouri.edu/accluster
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 1. ACCLUSTER requires only the Brookhaven PDB file of the 
protein structure as the input. The PDB file is allowed to con-
tain either one protein chain or multiple protein chains. 
Currently, the total chain length is limited to a range between 
31 and 1000. Although the uploaded pdb will be cleaned such 
as the deletion of solvates, ligands, and hydrogens), uploading 
a pre-checked structure which contains only standard amino 
acid residues is strongly recommended.

 2. The user is encouraged to type a name to specify the job. If not, 
the default job name is set as “test.”

 3. An email address for receiving the notification after the job is 
completed is strongly recommended. Otherwise, the user will 
have to manually check the job status in the queue page.

 4. ACCLUSTER allows the user to provide the sequence of the 
bound peptide (if known) to assist the prediction. The peptide 
sequence can be input either by entering the single-letter 
amino acid codes or by uploading a FASTA file. The allowed 
sequence length is between 4 and 30. According to our previ-
ous systematic tests, the inclusion of the peptide sequence only 
slightly improves the performance of ACCLUSTER. However, 
the main advantage of the use of the peptide sequence is that 
this approach significantly reduces the computational time, 
because only the residues occurring in the sequence of the 
bound peptide (usually much fewer than 20 amino acids) are 
used to scan the protein surface [4].

 5. ACCLUSTER allows the user to block the protein residues 
that are known to be remote from the binding site, by uploading 

2.3 Input

2.3.1 Basic Input

2.3.2 Advanced Options

Fig. 2 The submission page of the ACCLUSTER server

Accluster for Peptide Binding Site Prediction
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a “.txt” file which specifies the residue names. Specifically, the 
user can copy the columns 18 to 26 of the atom lines that cor-
respond to these residues in the protein pdb file, and paste 
them into the “.txt” file.

 6. The user may choose not to show the job information in the queue 
page by checking the box. If so, an email address for receiving 
the notification after the job is completed must be provided; 
otherwise, the user will not be able to reach the result page.

3 Methods

Submitting jobs to ACCLUSTER is easy. After navigating to the 
ACCLUSTER homepage, the user can upload the pdb file of the 
protein structure, fill the necessary information, and then click the 
“Submit” button. After the job is submitted, the job status can be 
monitored by checking the queue page. If an email address is pro-
vided, a notification with the link to the result page will be sent 
after the job is completed.

Each job can usually be completed in 30 min. One example of the 
result page is shown in Fig. 3. On the result page, up to three pre-
dicted binding sites are displayed via a JavaScript library 3Dmol.js 
[9]. The top prediction is colored red, the second prediction is 
colored cyan, and the third prediction is colored magenta. The 
pdb files representing the predicted binding sites (accluster_site1.
pdb accluster_site2.pdb accluster_site3.pdb) are stored in a com-
pressed file (Result.tar), which can be downloaded and then ana-
lyzed locally using a molecular visualization program such as UCSF 
Chimera [12].

4 A Case Study

Here, we use the ubiquitin-specific protease, USP7, as an example. 
USP7 plays a key role in the p53 pathway. The PDB entry, 2FOJ, 
contains the N-terminal domain of USP7 bound with p53 peptides 
[10]. We use the unbound structure of the N-terminal domain of 
USP7, 2F1W [11] for binding site prediction to mimic the real 
practice in which the bound structure of the protein is usually not 
available. We test two different conditions, either use or not use 
the sequence of the bound peptide. In both cases, ACCLUSTER 
successfully identified the native peptide binding site on the 
unbound protein structure as the top prediction, as shown in 
Fig. 4. However, ACCLUSTER took about 17 min for the predic-
tion without being given the sequence of the bound peptide, and 
took about only 6 min with the use of the sequence of the bound 
peptide.

3.1 Submitting Jobs 
to ACCLUSTER

3.2 The Result Page

Chengfei Yan et al.
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5 Notes

 1. The only required input for ACCLUSTER is a pdb file which 
contains the protein structure. Although the pdb file will be 
cleaned by deleting the hydrogens, solvates, and ligands, the 
pre-checking of the pdb file to mutate non-standard residues is 
strongly encouraged.

 2. ACCLUSTER allows the user to provide the sequence of the 
bound peptide to assist the prediction. According to the pre-
vious test, the inclusion of the sequence of the bound peptide 
can significantly improve the computational efficiency of 
ACCLUSTER.

 3. Protein residues that are known to be remote from the peptide 
binding site can be blocked by uploading a “.txt” file that spec-
ifies these residues by copying the columns 18 to 26 of the 
corresponding atom lines in the protein pdb file.

 4. By default, the job submitted to ACCLUSTER will be shown 
in the queue page, which is accessible to the public. On the 

Fig. 3 An example of the result page of ACCLUSTER. The three predicted binding 
sites are displayed via 3Dmol.js. The top prediction is colored red. The second 
prediction is colored cyan. The third prediction is colored magenta. The protein is 
shown in a gray-colored ribbon diagram

Accluster for Peptide Binding Site Prediction
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other hand, the user can also choose not to show the job in the 
queue page for the sake of privacy. In this case, a valid email 
address must be provided for receiving the notification when 
the job is completed.

 5. The details are provided in the Tutorial posted on the server site.
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Chapter 2

Detection of Peptide-Binding Sites on Protein Surfaces 
Using the Peptimap Server

Tanggis Bohnuud, George Jones, Ora Schueler-Furman, 
and Dima Kozakov

Abstract

Peptide-mediated interactions are of primordial importance to the cell, and the structure of such interac-
tion provides an important starting point for their further characterization. In many cases, the structure of 
the peptide-protein complex has not been solved by experiment, and modeling tools need to be applied to 
generate structural models of the interaction. PeptiMap is a protocol that identifies the peptide-binding 
site when only the structure of the receptor is known, but no information about where the peptide binds 
is available. This is achieved by mapping the surface for solvents to identify ligand-binding sites, similar in 
approach to ANCHORMAP in which amino acids are mapped. Peptimap is a free open access web-based 
server. It can be accessed at http://peptimap.cluspro.org.

Key words Peptide-protein interactions, Binding site prediction, Solvent mapping, Peptide mapping

1 Introduction

Peptide-mediated interactions are of primordial importance to the 
cell. It has been estimated that up to half of known protein-protein 
reactions are mediated by peptides in higher Eukaryotes (e.g., [1]). 
It is believed that peptides play an essential role in the modulation 
of these protein-protein interactions. As such, they are important 
drug targets, and it is therefore crucial to improve our understand-
ing of these important players. The structures of such interactions 
provide good starting points for their further characterization. 
However, in many cases, such a structure has not been solved by 
experiment, and in silico modeling tools need to be developed and 
applied to fill the gap. These methods can be broken down into 
two main steps: the identification of possible binding spots on the 
protein surface, and the prediction of the peptide sequence and 
peptide pose in the binding spots. If the binding site is known, 
modeling protocols such as FlexPepDock [2, 3], peptide Haddock 
[4], pepCrawler [5], and others can be used to generate the full 

http://peptimap.cluspro.org/
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atom model of the interaction (reviewed in [6], and covered by 
other chapters in this volume).

PeptiMap is a protocol that identifies peptide-binding sites 
when only the structure of the receptor is known. The approach is 
based on the experimental observation, in both crystal soaking and 
NMR experiments, that small organic molecules of varying size 
and polarity tend to accumulate on the protein surface in regions 
that bind larger ligands and proteins [7, 8]. FTmap is a Fast Fourier 
Transform (FFT)-based method for computational mapping of the 
surface for solvents [9] to identify ligand-binding sites [10, 11]. 
The approach is similar to ANCHORMAP in which amino acids 
are mapped [12]. In PeptiMap, the FTmap is modified to specify 
the search for peptide-binding sites. This chapter will introduce the 
reader to Peptimap’s functionality and the means to use the freely 
accessible Peptimap server at http://peptimap.cluspro.org.

2 Materials

The following are needed to run PeptiMap on the server (at pepti-
map.cluspro.org; Fig. 1a):

 1. An input structure of the protein receptor on which we would 
like to identify peptide-binding site(s) (in Protein Data Bank 
format, see www.pdb.org [13]). It can be uploaded, or provided 
as PDB id.

 2. Chain(s) of the protein receptor to be mapped.

The output of the mapping will be available for visual inspec-
tion on the server (Fig. 1c), as well as a PyMOL session file for 
download and inspection using the molecular viewer PyMOL 
(PyMOL can be obtained at www.pymol.org; Schroedinger LLC).

3 Methods

We first describe the setup of the PeptiMap Server, and detail the 
input options. We then present case studies to demonstrate the utility 
of PeptiMap. Finally, we provide more details about the underlying 
algorithms, as implemented in the server. Further details are also 
available in a previous publication on PeptiMap [14].

Peptimap provides a simple interface with which to search for 
peptide- binding sites on a given receptor protein surface (see Fig. 1a). 
The following information is required/accepted as input:

 1. PDB file to map, provided either in the form of a PDB id, or 
uploaded onto the server.

 2. Chains to be investigated: indicate simply the chain(s) name, 
separated by spaces in case of multiple chains.

3.1 Input Interface

Tanggis Bohnuud et al.
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 3. For multi-chain structures: Map single or multiple chains 
(see Note 1 for guidelines on what unit to map, and 
Subheading 3.3.2 on how these guidelines are implemented).

 4. For single-chain structures: Map specific domains or full 
receptor chain (currently the PDB must be provided as PDB 
ID for invoking this option). You can search the provided pro-
tein to identify (multiple) domains in the provided structure 
(see Subheading 3.3.3 and Fig. 1c). If the structure contains 
multiple domains, Peptimap provides the option to search the 
entire structure, or alternatively to focus on specified domains 
(see Note 2 for guidelines/suggestions of what part of the 
structure to map).

 5. Mask option—removes from the search on the protein surface 
the atoms present in a provided mask PDB file. Such a file can 

Fig. 1 Overview of the PeptiMap server pages. (a) The main page where the job is submitted. (b) Results page 
for 2DS5 (see also Fig. 2): For each site, buttons allow to toggle the display of the predicted site (as mesh), 
as well as the binding residues on the protein receptor (shown as sticks and displayed as list). A Java applet 
allows changing the view of the protein, by scaling, rotating, and translating. In addition, the receptor can be 
shown as cartoon (default option), sticks, spheres, or surface representation. (c) Output of domain mapping 
option for 3BQC (see also Fig. 3). (d) Example for Output that detects inaccessible pockets for 2YNO, and 
suggests repeating the mapping using the provided PDB file for masking (download the PDB file and upload 
it in your new submission)

Identification of Peptide Binding Sites Using the PeptiMap Server 
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be provided, or alternatively, Peptimap will identify sites that are 
too small for peptides to bind, and suggest filtering them out, by 
automatically providing the mask file (see Subheading 3.2.3 and 
Fig. 1d). The criteria used to define such sites inaccessible to 
peptides are defined in Subheading 3.3.4.

Once the appropriate options for the desired search have been 
selected, an email address and job name can be entered. The email 
address allows Peptimap to inform the submitting party that the 
search has been completed. The results of the search will be dis-
played on the Peptimap site (see Fig. 1b), and can also be down-
loaded as a Pymol session.

In the following three examples, we demonstrate how the Analyze 
Multimer Interface, Analyze Domain, and Submit Mask options 
implemented in the PeptiMap server can be applied to focus and 
improve binding site prediction.

We will use the Analyze Multimer Interface option to determine 
whether or not the structure is a homo-multimer and if so, how 
many monomers should be included in the mapping unit. The 
example used is the Zinc Binding Domain of ClpX (PDB id 2DS5 
[15]). In the following, we describe each step involved for the pre-
diction of peptide-binding sites in detail.

 1. Go to the site peptimap.bu.edu.
 2. Locate the PDB ID field and type 2DS5.
 3. In the PDB Chains field type A B.
 4. Now click on the Analyze Multimer Interface button function. 

After a few seconds, a message should appear specifying the bur-
ied surface area between the individual chains, in this case:

A B are tight multimers (Buried SA: 42.6 % of monomer sur-
face, >25 %). We recommend submitting the multimer.

 5. Once you have finished selecting options, specify an email 
where the notifications will be sent, and submit the job. This 
job took approximately 30 min to finish.

The result of this search revealed six binding hotspots on the 
protein surface (the top site is shown on the server page, and two 
additional sites can be displayed using the buttons to the right, 
Fig. 1b, while details of the top-6 sites are included in the PyMOL 
session). Figure 2 shows the corresponding protein bound to two 
copies of an SSPB tail peptide (2DS8 [15]), superimposed over the 
results generated by Peptimap. One peptide interacts with hotspots 
ranked 1 and 4, while a second peptide interacts with the predicted 
hotspot ranked 2. Thus, Peptimap was able to identify the binding 
sites of the two peptides.

3.2 PeptiMap Case 
Studies

3.2.1 The Analyze 
Multimer Interface Option, 
Applied to 2DS5

Tanggis Bohnuud et al.
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We will analyze the domain composition of the catalytic subunit of 
protein kinase CK2 to identify the domain to map for peptide- 
binding sites. The structure of this protein is available as PDB ID 
3BQC, chain A [16]. Go to the site peptimap.bu.edu.

 1. Locate the PDB ID field and type 3BQC.
 2. In the PDB Chain field type A. This automatically defines the 

job name to 3bqc_a.
 3. Now click on the Analyze Domain button function. The domain 

composition according to CATH [17] will be displayed (Fig. 1c). 
For our case, this includes (a) the Transferase Phosphorylase 
family (CATH id 1.10.510.10) and (b) the Phosphorylase 
Kinase Family (CATH id 3.30.200.20).

 4. In this example, we will look at one of the domains, the 
Phosphorylase Kinase Family domain. Click on the box next to 
this family: 3.30.200.20.

 5. Once you have finished selecting options, specify an email 
where the notifications will be sent, and submit the job. This 
job took approximately 40 min to finish.

The result of this search revealed six binding hotspots on the 
protein surface. Figure 3 shows the bound protein-peptide complex 
(PDB ID 4IB5, human protein kinase CK2 catalytic subunit in a 

3.2.2 The Analyze 
Domain Function, Applied 
to 3BQC

Fig. 2 Mapping on a homodimer: the predicted binding site on homodimeric Zinc Binding Domain of ClpX 
(2DS5), overlapped with the structure of ClpX complexed with SspB-tail peptides ALRVVK (2DS8). The two 
domains are shown as surface, in different shades of gray. Two views are shown, to capture the two peptides 
(yellow stick representation): (a) In the first peptide, residues L2 and V4 overlap with the predicted binding 
hotspots ranked 1 and 4 (red and pink), respectively. (b) In the second peptide, residue L2 overlaps with the 
predicted site ranked 2 (green). This and the following figures were generated from the PyMOL sessions 
provided by the server. The binding sites are colored according to their ranking (ranks 1–5 red-green-blue-
pink-yellow meshes)

Identification of Peptide Binding Sites Using the PeptiMap Server 
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complex with a CK2β-competitive cyclic peptide [16]), superim-
posed onto the results generated by Peptimap. The bound peptide 
is clearly located within the predicted binding hotspots ranked 
3 and 5 (Fig. 3a). Examination of the structure reveals the best- 
ranking site is inaccessible within the context of the second domain 
(Fig. 3b). (Note that to identify only sites outside this domain 
interface, a second search could be performed using the Submit 
mask option, see next Subheading).

We will use the Submit mask function to remove from the search 
parts of the protein that will be inaccessible due to a ligand bound, 
on the example of the mRNA Cap-Binding interface of eIF4E 
bound to M7G (PDB id 1EJ1 [18]).

 1. Go to the site peptimap.bu.edu.
 2. Locate the PDB ID field and type 1EJ1.
 3. In the specify chains field type A.
 4. Using a text processor, remove from the PDB file all residues 

that do not contact the ligand M7G (i.e., keep only residues 
with at least one atom within 10 Å of M7G; remove also 
non- amino acid entities). Save the resulting PDB file.

 5. Click on the Submit mask option and select the file that you 
just have generated.

 6. Once you have finished selecting options, specify an email where 
the notifications will be sent, and submit the job. This job took 
approximately 32 min to finish.

3.2.3 The Submit mask 
Option, Applied to 1EJ1 
and 2YNO

Fig. 3 Single domain mapping: shown are the predicted binding sites on protein kinase CK2 (3BQC), overlapped 
with the peptide-bound structure (to CK2β-competitive cyclic peptide GCRLYGFKIHGC; 4IB5). The mapped 
domain is shown as gray surface, the second domain as green cartoon. (a) View of the peptide with residues 
F7 and Y5 overlapping sites ranked 3 and 5 (blue and yellow meshes, respectively). (b) View of the domain 
interface, covering the top-ranking site (red), that could be masked

Tanggis Bohnuud et al.
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The result of this search revealed six binding hotspots on the 
protein surface. Figure 4 shows the bound protein (PDB id 1WKW 
[19]) superimposed over the results generated by Peptimap. The 
peptide 4EBP1 interacts with hot spots ranked 2, 3, and 5.

Masking may also be used to skip deep binding pockets 
inaccessible to peptides. In the example of 2YNO, the propeller 
WD40 repeat domain of COP1 [20], such sites are automatically 
identified by the server, and a PDB file is provided for submission 
as masking file (Fig. 1d; see Subheading 3.3.4 for details how these 
sites are identified).

We provide here a short overview of the protocol as implemented 
in the PeptiMap server. More details can be found in our previous 
publication of the PeptiMap algorithm [14].

Peptimap uses Fast Fourier Transform (FFT)-based grid-sampling 
to search the receptor surface for binding sites [14] . Water mole-
cules and other ligands are removed prior to calculations. Sixteen 
small molecules are used as probes, as done previously for ligand 
mapping (see, e.g., Fig. 1b in [11]). These small molecules are var-
ied enough to cover all the functional groups found in amino acids. 
The probes are allowed to adopt different conformations, which 
are all subjected to an FFT search to select favorable positions and 
conformations on the receptor surface. The 2000 best poses are 
then clustered using a greedy algorithm. This selects the lowest 
energy pose and incorporates all poses within 4 Å into the cluster 
(see [14]). The poses in the cluster are removed from the general 

3.3 Details 
of Implementation

3.3.1 Mapping 
of a Receptor Surface 
for Peptide- Binding Sites

Fig. 4 Using a mask to exclude a ligand binding site: the predicted peptide-binding site on Eukaryotic Translation 
Initiation Factor 4E, eIF4E (1EJ1), overlapped with the structure of eIF4E complexed with the 4E-BP1 peptide 
(1WKW). (a) The peptide overlaps sites ranked 2, 3, and 5 (green, blue, and yellow, respectively). (b) Rotated 
view, showing the masked ligand binding site

Identification of Peptide Binding Sites Using the PeptiMap Server 
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bin and the procedure is repeated with the lowest energy pose 
remaining. If a cluster contains less than ten probes it is removed. 
The remaining clusters are then minimized with the CHARMM 
potential, using the Analytic Continuum Electrostatic (ACE) 
model [21]. The minimized results are re-clustered using 4 Å full 
atom RMSD as the clustering restraint, and clusters with less than 
ten members are discarded. The remaining clusters are re-ranked 
based upon Boltzmann-averaged energy, and the six lowest energy 
poses for each type of probe are retained. Hotspots are generated 
by grouping neighboring clusters together. If there are multiple 
neighbors to a cluster (neighbor being defined as a cluster falling 
within 4 Å), then they are considered a better hotspot.

Homo-multimers are identified based on their sequence similar-
ity—two monomers are considered homomers only if they are 
exactly the same. To define if monomers in these homo-multimers 
are tightly or loosely associated, the ratio of buried surface area is 
calculated: if >25 % of the surface area is buried in the homo- 
multimer, the multimer is considered to be obligatory and it is 
suggested to consider it as one unit to map (see also Note 1).

Peptimap uses the CATH classification [17] to define domains on 
the receptor structure. If no classification is available, sequence 
alignment is used to find the CATH domain closest to the provided 
structure.

The use of small molecules as a search method allows for identifica-
tion of sites that are not necessarily accessible to peptides, such as 
those in the core of a protein. In order to remove these sites, a 
sphere is generated at the center of the site and one hundred rays 
are projected outward. If 80 % or more of the rays contact the 
protein (i.e., they pass within 2 Å of an atom), the site is consid-
ered internal and it is suggested to the reader to discard it.

4 Notes

 1. Criteria for deciding on mapping monomers or homo- multimers. 
Detection of peptide-binding sites depends on defining the 
structure that the peptide will encounter on its search. For obli-
gate homo-multimers, it can be assumed that the individual 
monomer structure is never encountered (if it exists as stable, 
separate structure at all). In contrast, transient homo-multimers 
might also expose single monomers. Therefore, the following 
rule is suggested:

Rule #1: If the interaction between the individual mono-
mers is strong, map the homo-multimer, else map individual 
monomer structures. Strength of interaction is estimated based 

3.3.2 Definition of Tight 
Homo-Multimer Interaction

3.3.3 Definition 
of Domains in Receptor 
Protein

3.3.4 Identification 
of Binding Pockets 
Inaccessible to Peptides

Tanggis Bohnuud et al.
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on the buried surface area of the interface (see Subheading 3.3.2 
for details on buried surface area criteria).

 2. Criteria for deciding on which region to map in a multi-domain 
protein. Multi-domain protein structures solved by x-ray crys-
tallography might display pockets at the domain interface that 
could fit a peptide well. However, these pockets are not neces-
sarily stable, as the two domains might not be oriented in a 
fixed orientation shown in the crystal, but rather show a more 
flexible orientation, which will affect the stability of the bind-
ing pocket. In calibrating PeptiMap, we have therefore devised 
simple rules to distinguish true binding sites at domain inter-
faces from unstable false-positive hits, for protein chains that 
contain more than one structured domain (see Subheading 3.3.3 
for details of how domains are mapped).

Rule #2: If the mapped domains are identical, it is recom-
mended to map the full structure.

Rule #3: If the domains are different (hetero-domain struc-
ture), it is suggested to map single specific domains of interest. 
In that case, we assume that even if a binding site is at a domain 
interface, one of the domains will be the predominant contrib-
utor to binding, and consequently that binding site is also iden-
tified on single domains.
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Chapter 3

Peptide Suboptimal Conformation Sampling 
for the Prediction of Protein-Peptide Interactions

Alexis Lamiable, Pierre Thévenet, Stephanie Eustache, Adrien Saladin, 
Gautier Moroy, and Pierre Tuffery

Abstract

The blind identification of candidate patches of interaction on the protein surface is a difficult task that can 
hardly be accomplished without a heuristic or the use of simplified representations to speed up the search. 
The PEP-SiteFinder protocol performs a systematic blind search on the protein surface using a rigid docking 
procedure applied to a limited set of peptide suboptimal conformations expected to approximate satisfac-
torily the conformation of the peptide in interaction. All steps rely on a coarse-grained representation of 
the protein and the peptide. While simple, such a protocol can help to infer useful information, assuming 
a critical analysis of the results. Moreover, such a protocol can be extended to a semi-flexible protocol 
where the suboptimal conformations are directly folded in the vicinity of the receptor.

Key words Peptide-protein interactions, Blind docking, Rigid docking, Peptide conformational 
sampling, PEP-FOLD, PEP-SiteFinder

1 Introduction

Protein peptide interactions have recently been the object of many 
studies, owing to several reasons. For one part, peptides have 
gained attraction as candidate therapeutics, as the consequence of 
a series of progress in better control of their bioavailability, biode-
livery, and manufacturing, among others [1–3]. New classes of 
natural peptides have focused attention, such as the antimicrobial 
peptides [4], or venom peptides [5], not talking about non- 
ribosomal peptides [6]. For another part, peptides that correspond 
to proteins fragments have also raised interest, following the 
emerging promise that targeting protein-protein interactions could 
become a new Eldorado for drug development [7].

Protein-peptide interactions have become a new field for in 
silico approaches, which comes with a series of new specific 
challenges. Compared with small compounds for which in silico 
docking protocols are now routinely used, peptides are in general 
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more flexible which limits the application of approaches set for 
chemicals to very short peptides [8]. The tuning of protocols to 
characterize and model protein-peptide complexes, with questions 
in terms of the conformations adopted by the peptide alone or in 
complex, remains a challenge to which answers start to be brought.

Here, we investigate a model in which the conformation of the 
protein receptor is kept rigid, and the ligand peptide is represented 
using a limited collection of suboptimal conformations, also rigid 
in a first approximation. We show how such a model can be used 
for the identification of candidate sites of interaction given the 
structure of the protein receptor and the sequence of the candidate 
peptide. This model can be extended to the de novo modeling of 
peptides in contact with the protein receptor.

PeptiDB [9] is a collection of protein-peptide complexes obtained 
at a resolution of the crystal structure of less than 2 Å for which 
protein sequence identity is less than 70 % and peptide size com-
prised between 5 and 15 residues. From the initial collection of 
103 structures of protein-peptide complexes (holo conformation), 
the authors could identify for 78 cases the structure of the protein 
solved without the peptide (apo conformation). It is striking that 
for most cases (67 over 78) the authors reported a very small dif-
ference between the apo and holo conformations of the protein 
(average Cα RMSD of 0.83 Å). This observation can lead to pos-
tulate that most of peptides could adapt their conformation to 
allow their interaction with proteins.

Checking this assertion turns however to be difficult due to 
data sparsity. Despite the number of entries of the Protein Data 
Bank (PDB) [10] being presently more than 100,000 structures, 
the number of systems for which both the conformation of the 
peptide alone in solution and the conformation of the same pep-
tide in complex with a protein is known is very small. Scanning the 
PDB entries that have only one chain and a short size—e.g., 
between 4 and 19 amino acids, and looking for protein-peptide 
complexes in which one chain has the exact same amino acid 
sequence than that of the free peptide, only 29 such cases could be 
identified (November 2015). Sixteen of those correspond to pep-
tides that either contain un-natural amino acids, have a structure 
stabilized by ions or appear to be homo-multimers and are thus 
not suitable for a direct analysis. For six of the 13 cases, the apo 
and holo conformations look very similar—backbone Root Mean 
Square Deviation (RMSD) below 1 Å. These conformations appear 
stabilized by the existence of a secondary structure: two α helices, 
3 β-hairpins, and one helix-turn-helix motif. Such structuration 
tends to rigidify peptide conformation, and is also favorable for 
interactions since it is associated with a reduction of the loss of 
conformational entropy upon binding and consequently facilitates 
the interaction with the protein. For three other peptides, the 

1.1 Peptide-Protein 
Complexes: Moderate 
Conformational 
Changes for Proteins, 
Possibly Larger 
for Peptides
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structure of the complex does not include all the amino acids, 
suggesting that the missing residues are too flexible to determine 
their structure. The four remaining peptides adopt a random coil 
conformation for both bound and unbound conformations and 
have a backbone RMSD of more than 1.0 Å—from 1.37 to 2.75 Å. 
One such example is depicted in Fig. 1.

An outcome of this analysis is that for seven cases of 13 (54 %), 
the peptide tends to undergo large conformational changes. It is 
tempting to transpose to peptides observations made for protein- 
protein interactions. The conformational plasticity of proteins plays 
a role in most binding events. Among the conformations in equilib-
rium, only some of them are able to bind a specific partner whereas 
others are not [11–13]. This is the well-accepted concept of confor-
mational selection for small ligand binding. Another scenario, called 
induced-fit hypothesis, proposes that the presence of the partner 
causes changes of the active site to allow its binding. For large 
ligands, such as peptides, proteins, or nucleic acids, the conforma-
tional selection and the induced-fit mechanisms can be intricately 
coupled to enable the interaction with specific proteins [14–16]. 
Present observations, together with previous ones [9], suggest that 
the generally more preserved conformation of proteins compared to 
that of peptides may drive a conformational selection of unbound 
peptides among their conformations in equilibrium, for peptides not 
stabilized by secondary structure or disulfide bridges.

A first approximation of peptide protein interactions is thus a 
model in which the protein conformation is kept rigid, and the 
peptide conformation should include some flexibility.

Fig. 1 Peptide adaptation upon the binding. Example of the Eukaryotic ribonu-
cleotide reductase in interaction with the FTLDADF peptide. The conformations 
of the holo protein, in green (PDB ID: 2ZLF), and the apo protein, in blue (PDB 
ID: 2CVX), are very close (backbone RMSD = 0.27 Å); the bound peptide of 
sequence FTLDADF is in magenta. Bottom right inset: the conformation of the 
bound peptide, in magenta, has a backbone RMSD of 2.75 Å with the free 
peptide in orange (PDB ID: 1AFT)
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In this section, only the peptide is considered. Sampling peptide 
conformations can be achieved using a modified version of PEP- 
FOLD [17, 18] which returns not just a few optimal conforma-
tions, but series of suboptimal conformations (in preparation). 
Results are presented for a subset of 41 peptides of the peptiDB 
that corresponds to the proteins in different folds, according to 
CATH classification [19] and with little conformational changes 
between holo and apo forms. Figure 2a depicts how, on average, 

1.2 The Holo 
Conformation 
of Peptides Can 
Be Approached 
by Suboptimal 
Sampling of the Apo 
Peptide
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Fig. 2 Identification of peptide holo conformation in the apo suboptimal conformation. (a) Best peptide confor-
mation generated as a function of the number of suboptimal conformations drawn. Conformation similarity is 
measured using the BCscore (see the text). A value of 1.0 corresponds to perfect similarity, and a value of 0.8 
to a cutoff above which conformations can be considered native like. (b) BCscore of the best representative 
conformation identified after clustering, as a function of the number of clusters. (c) Distribution of the BCscores 
for the best conformation generated for each of the 41 peptides of the collection. (d) Distribution of the 
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Alexis Lamiable et al.



25

suboptimal sampling is able to approximate the holo peptide con-
formation as a function of the number of conformations generated. 
Conformation similarity is measured using the BCscore [20], a 
score more selective than the widely used Root Mean Square 
Deviation (RMSD), and independent of the size. Briefly, a BCscore 
value of 1 corresponds to perfect structural identity (−1 to mirror 
conformation), and values of more than 0.8 can be considered close 
enough to the experimental conformation, values above 0.6 can be 
considered similar, and values below irrelevant conformations. One 
observes that for a number of conformations of more than 400, it 
is possible, on average, to generate a conformation close to the 
experimental conformation in the complex. Note that being able to 
generate such conformations does not mean their identification is 
feasible. Since such a large number of conformations can rapidly 
become incompatible with systematic docking owing to a high 
computational cost, a possible approach to limit the number of con-
formations is to cluster the conformations generated and to con-
sider one representative per cluster. Here, we use as a distance 
d = 1 − BCscore, and a complete linkage approach with a cutoff 
value of 0.8. Figure 2b shows the average BCscore of the best clus-
ter representative as a function of the number of clusters consid-
ered. Two major observations can be drawn. First, rapid increase in 
quality is reached up to 20 clusters, and the gain in average quality 
becomes small for a number of clusters of more than 40, which 
gives an upper limit to the number of conformations to consider. 
Second, the average quality, while not reaching 0.8 on average, i.e., 
being degraded compared to Fig. 2a, remains in the range of values 
where the conformations still have a significant similarity with that 
of the peptide holo conformation. Thus, it seems possible to iden-
tify a limited set of suboptimal conformations in which some are 
similar to the peptide holo conformation. Of course, large varia-
tions can be observed depending on the peptides. Figure 2c shows 
the distribution of the BCscores observed for the 41 peptides. For 
only three peptides, no conformation  significantly similar to that of 
the peptide in complex could be generated among 600. Figure 2d 
shows the distribution of the BC score after selecting 40 representa-
tives only. One also observes that the distribution of the similarity 
of cluster representatives tends to be bimodal, with in 15 cases con-
formations very close to the experimental one, the other cases being 
distributed around a BCscore value of 0.55. It is important to note 
that BC score values around 0.5, while implying dissimilarity with 
the reference conformation, do not imply a total dissemblance, fully 
unrelated conformations being for values close to 0. Some examples 
of how similar the conformations can be to the experimental one are 
depicted in Fig. 3. The best BCscores over 600 conformations are of 
0.97, 0.89, 0.62, and 0.11 for 1OU8, 1MFG, 1SFI, and 1LVM, 
respectively. Selecting the representatives of only the 40 lowest 
energy clusters, the corresponding scores are of 0.58, 0.73, 0.56, 
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and 0.11. Despite a general decrease in similarity, note that except 
for 1LVM where a helical conformation is preferred to a more 
extended one, global conformational trends tend to be preserved 
for BCscore around 0.5.

Given that the peptide bound conformation can be approached by 
sampling the conformational space of the peptide in isolation, one 
can expect that the blind rigid docking of a limited number of sub-
optimal peptide conformations onto the protein receptor should 
make it possible to infer information about the putative peptide 
binding site. PEP-SiteFinder is a four-step protocol that starts with 
the peptide amino acid sequence, the structure of the receptor, and 
returns information about the candidate-binding site.

2 Methods

PEP-SiteFinder consists of rigid blind rigid docking starting from 
a collection of representative conformations of the peptide to infer 
information about the candidate peptide-binding site. Figure 4 
shows the four main steps of the protocol used by PEP-SiteFinder 
as available online at http://bioserv.rpbs.univ-paris-diderot.fr/
services/PEP-SiteFinder.

Achieved using a modified version of PEP-FOLD, as discussed in 
Subheading 1.2. In order to limit the calculation cost, the number 
of suboptimal conformation generated is limited to 200.

1.3 PEP-SiteFinder: 
Blind Rigid Docking 
of Ensembles 
of Suboptimal Peptide 
Conformations 
to Identify Candidate 
Binding Sites

2.1 The PEP- 
SiteFinder Protocol

2.1.1 Generation 
of a Large Number 
of Peptide Conformations

Fig. 3 Examples of conformations generated using PEP-FOLD and their similarity 
with the peptide holo conformation (green). Cyan: best conformation generated 
among 600. The BCscores are of 0.97, 0.89, 0.62, and 0.11 for 1OU8, 1MFG, 1SFI, 
and 1LVM, respectively. Magenta: best cluster representative among the 40 clusters 
of lowest energy. The corresponding scores are of 0.58, 0.73, 0.56, and 0.11
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Performed using the python hcluster library applied to the 
BCscores, using as distance (1 − BCscore), complete linkage and a 
cut-off value of 0.85. In order to limit the calculation cost, the 
number of cluster representatives selected for further steps is 
limited to 20.

For each peptide conformation, the ATTRACT docking protocol 
is applied, as implemented in the PTools library. Details on the 
ATTRACT force field can be found in Fiorucci et al. [21]. Briefly, 
the ATTRACT force field uses a coarse-grained representation in 
which all atoms from the backbone are kept while side chains are 
represented by up to two pseudo-atoms. The energy function is 
the sum of two contributions, the electrostatic energy and a pair-
wise soft Lennard-Jones potential. The PTools library [22] is freely 

2.1.2 Selection 
of Peptide Representative 
Conformations

2.1.3 Blind Docking 
Using PTools 
and the ATTRACT2 Force 
Field

Fig. 4 Flowchart of the PEP-SiteFinder protocol
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available on github (https://github.com/ptools/ptools). The dock-
ing protocol involves the following steps:

 1. Reduction of both peptide and receptor to the coarse-grained 
representation.

 2. Generation of starting points around the protein. This genera-
tion depends on two parameters, as illustrated in Fig. 5. The 
first is the distance of the starting points to the surface of 
the protein (d1). It is dependent on the radius of the peptide 
conformation. The second is the separation distance between 
the starting points that cannot be less than a cut-off value (d2). 
A sensitivity analysis of these two parameters has shown that 
using twice the radius of the peptide (i.e., the minimal distance 
to the protein ensuring no peptide protein clash of the initial 
complex), and a separation distance of 10 Å provides a good 
tradeoff between performance and calculation cost.

 3. For each starting point, 260 peptide orientations are generated.
 4. For each orientation, a minimization is performed, allowing the 

peptide to move only using its translational and rotational 
degrees of freedom (rigid-body docking). All minimizations are 
independent and can be run in parallel on a cluster. Using on 
the order of 200 cores, docking simulations take on the order 
of 1 min for most targets.

Fig. 5 Generation of starting points around a protein. Only a slice is depicted. 
Two parameters drive the generation of the points. The first is the distance to 
the protein (d1), expressed in terms of the radius of the peptide conformation. 
Here, starting points generated using values of 2 (yellow, red) and 3 (gray) are 
depicted. The second is the density of the points. It is expressed as the minimal 
separation distance between them (d2). Here values of 5 (yellow) or 10 Å (red) 
are depicted. In practice, PEP-SiteFinder uses the parameters corresponding to 
the red points
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 5. For each docking experiment, the poses are sorted and ranked 
by energy. Redundant solutions are filtered. Note that the pos-
sibly huge number of poses make an exact clustering approach 
unmanageable. Instead, PEP-SiteFinder relies on a fast and 
sequential clustering approach starting from the lowest energy 
pose, removing a pose if it has a RMSD of less than 1 Å with the 
poses of lower energy not discarded. To keep the algorithm in 
O(n) with respect to the possibly large number of poses, only 
the latest 50 poses are compared to a new pose.

The results of all the rigid docking performed for all the peptide 
representative conformations are merged, and poses are ranked by 
energy. The 50 best poses are used to determine protein residue 
propensities to bind the peptide. For each pose, protein residues at 
the peptide interface are defined as the residues having at least one 
heavy atom at a distance of less than 5 Å of any peptide heavy 
atom. The propensity of a residue is then calculated as the fraction 
of times it has been at the peptide–protein interface.

The PEP-SiteFinder protocol relies on several approximations. 
A first one is the rigid docking approach. Although representative 
conformations can approximate in a satisfactory manner the con-
formation of the peptide in complex, the limited number of the 
conformations selected introduces some degradation in the quality 
of the conformations effectively in use (see Fig. 2d). The second 
one is the use of a simplified representation associated with a very 
simple force field. The impact of such a representation can be 
assessed by an auto validation where the experimental conforma-
tion is docked on the holo conformation of the protein. Results 
over all the 103 peptiDB complexes are illustrated in Fig. 6. Clearly, 
the best poses generated can, in some cases, differ largely from the 
experimental one—large ligand RMSD values. However, the frac-
tion of native contacts matching these poses looks much better. 
Indeed for 94 cases over 103 at least one pose overlaps with the 
experimental one for more than 50 % of the interacting residues. 
Thus, it is important to note that high accuracy poses are not 
requested to obtain correct propensities. As illustrated in Fig. 6 for 
the case of PDB entry 1YWO, a large RMSD value (over 16 Å) 
results from the flip of the peptide, but is still located in the correct 
binding site, resulting in correct estimation of the propensity of 
interaction of the residues in the binding site.

Therefore, despite these approximations, the rigid docking 
protocol is able to infer useful information about the interaction. 
Figure 7 shows the results in terms of propensities obtained for the 
nonredundant subset of 41 complexes of the peptiDB. A first 
observation is that for noninteracting residues (middle), the 
propensities tend to be low, as expected. However, a second obser-
vation is that the distribution of the values of the propensities of 

2.1.4 Protein Residue 
Propensities to Interact 
with the Peptide

2.2 Protocol 
Assessment
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interacting residues (left) is also, slightly, shifted to low values, 
indicating that the protocol fails to identify some interacting resi-
dues. However, larger propensity values are also associated with a 
better confidence in the prediction of the interacting residues 
which makes it possible to analyze the results in a critical manner. 
Indeed, propensity values of more than 0.7 correspond to a correct 
prediction for 80 % of the cases.

In the following, we present two examples to illustrate the behav-
ior of PEP-SiteFinder and to emphasize some of its limits.

The first example is the complex between mouse Kelch-like 
ECH- associated protein 1 (Keap1) and a 9-mer peptide derived 
from mouse nuclear factor erythroid 2 related factor 2 (Nrf2). 
The structure of this complex has been solved (PDB ID: 1X2R) to 
elucidate the molecular mechanism of the Nrf2/Keap1 interaction, 

2.3 Case Studies

2.3.1 Kelch-Like 
ECH-Associated Protein 1 
(Keap1) Interaction 
with a Nonamer Peptide
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which is implicated in a regulation pathway of the cellular response 
against oxidative stress [23]. The apo conformation of the protein 
is known (PDB ID: 1X2J). As shown in Fig. 8, application of 
PEP- SiteFinder to 1X2J using the peptide sequence 
“LDEETGEFL” identifies a candidate region that actually corre-
sponds to that of the experimental structure of the complex (PDB 
ID: 1X2R). Looking more in detail at the propensity values, 25 
residues have a propensity index of more than 0.9, i.e., associated 
with a good confidence.

The second example is the complex between Eukaryotic ribonucle-
otide reductase (RR), a target for cancer therapy and the FTLDADF 
peptide, which was designed to inhibit RR [24]. We have run PEP- 
SiteFinder using as apo conformation the chain A of PDB entry 
2CVX. As shown in Fig. 9a, the candidate patch identified by 

2.3.2 Eukaryotic 
Ribonucleotide Reductase 
in Interaction 
with a Heptapeptide

Fig. 8 PEP-SiteFinder results for the apo form of mouse Keap1 and a 9-mer 
peptide derived from mouse Nrf2. Protein residues are colored according to their 
predicted propensities, from blue (0) to red (100) and the peptide (positioned as 
in the experimental complex) is in green

Fig. 9 PEP-SiteFinder results for the apo form of Eukaryotic ribonucleotide reductase and the FTLDADF peptide. 
(a) Protein residues are colored according to their predicted propensities, from blue (0) to red (100), (b) the peptide 
from the experimental conformation is in magenta and the 50 best predicted models are in cyan
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PEP- SiteFinder does not correspond to the region interacting with 
the peptide (magenta in Fig. 9b). Instead, the patch corresponds 
to the ADP-binding site (Note that the ADP was not present 
during the simulation). Looking more in detail, one observes how-
ever that only weak propensities values are returned. Only for 12 
residues are the propensities higher than 0.7 and none exceeds 0.8, 
suggesting a medium confidence of the prediction. Actually, looking 
at the 50 best poses, one observes that alternate peptide positions 
are proposed, among which one matches the experimental interac-
tion. This highlights the necessity of a critical analysis of the results 
returned by PEP-SiteFinder.

3 Discussion and Perspectives

The PEP-SiteFinder protocol relies on one core assumption and 
two major approximations. The assumption is that the receptor 
and the peptide interact. This has important consequences since 
PEP-SiteFinder will return results for whatever peptide sequence 
and receptor structure specified, not considering the affinity or the 
specificity of the interaction. Ways to estimate these are however 
presently unclear. Concerning the approximations, the first one is 
the use of a coarse-grained representation both to sample peptide 
suboptimal conformations and to score the peptide-protein inter-
actions. The second one is the use of a rigid docking procedure. 
Their combination makes it possible to set up a procedure that 
samples exhaustively protein surface to identify candidate patches 
of interaction in a reasonable amount of calculation time. Doing 
so, an expectation is that peptide protein interactions involve spe-
cific and favorable enough interaction mechanisms, detectable 
even introducing fuzziness into the evaluation process. It is thus 
interesting that such a protocol, while simplistic, is able in most 
cases to infer useful information. However, it is also important to 
remember, as illustrated in the example cases, that a critical analysis 
of the results is necessary. It is also obvious that the approximations 
consented result in a lack of accuracy in the details of the peptide- 
protein interaction, and cannot lead, in general, to high accuracy 
complex modeling. This protocol must be considered the first step 
to drive further investigations. Several ways to move farther are 
described in other contributions of this book. Interestingly, the 
suboptimal sampling approach used to generate representative 
peptide conformations can easily be adapted to the generation of 
peptide-protein complexes, to fold a peptide in the vicinity of the 
protein receptor given a candidate binding patch, as illustrated in 
Fig. 10. This service, now available online at http://bioserv.rpbs.
univ-paris-diderot.fr/services/PEP-FOLD3, is the subject of our 
present efforts [25].

Alexis Lamiable et al.

http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3
http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3


33

Acknowledgments

This work has been supported by the French IA bioinformatics 
BipBip grant (ANR-10-BINF-0003), French Institute for 
Bioinformatics (IFB) (ANR-11-INBS-0013), and INSERM UMR-S 
973 recurrent funding.

References

Fig. 10 Example of preliminary results obtained by folding of a peptide in the 
vicinity of a protein, as applied to the FTLDADF peptide binding to the Eukaryotic 
ribonucleotide reductase, specifying a candidate patch of interaction. Candidate 
starting points to fold the peptide correspond to dots. The best generated peptide 
conformation (ranked 5 according to lowest energy) is in blue and has a 
RMSD = 2.72 Å to the experimental conformation in wheat (PDB ID: 2ZLF)

 1. Vlieghe P, Lisowski V, Martinez J et al (2010) 
Synthetic therapeutic peptides: science and 
market. Drug Discov Today 15(1-2):40–56

 2. Zambrowicz A, Timmer M, Polanowski A et al 
(2013) Manufacturing of peptides exhibiting 
biological activity. Amino Acids 44(2):315–320

 3. Kaspar AA, Reichert JM (2013) Future direc-
tions for peptide therapeutics development. 
Drug Discov Today 18(17-18):807–817

 4. Hancock RE, Sahl HG (2006) Antimicrobial 
and host-defense peptides as new anti-infective 
therapeutic strategies. Nat Biotechnol 
24(12):1551–1557

 5. Vetter I, Davis JL, Rash LD et al (2011) Venomics: 
a new paradigm for natural products- based drug 
discovery. Amino Acids 40(1):15–28

 6. Caboche S, Pupin M, Leclère V et al (2008) 
NORINE: a database of nonribosomal 
 peptides. Nucleic Acids Res 36(Database 
issue):D326–D331

 7. Dietrich U, Dürr R, Koch J (2013) Peptides as 
drugs: from screening to application. Curr 
Pharm Biotechnol 14(5):501–512

 8. Fosgerau K, Hoffmann T (2015) Peptide ther-
apeutics: current status and future directions. 
Drug Discov Today 20(1):122–128

 9. London N, Movshovitz-Attias D, Schueler- 
Furman O (2010) The structural basis of 
peptide- protein binding strategies. Structure 
18(2):188–199

 10. Berman HM, Westbrook J, Feng Z et al (2000) 
The Protein Data Bank. Nucleic Acids Res 
28(1):235–242

 11. Ma B, Kumar S, Tsai CJ et al (1999) Folding 
funnels and binding mechanisms. Protein Eng 
12(9):713–720

 12. Boehr DD, Nussinov R, Wright PE (2009) 
The role of dynamic conformational ensembles 
in biomolecular recognition. Nat Chem Biol 
5(11):789–796

Sub-Optimal Conformation Sampling to Predict Peptide Binding Sites



34

 13. Changeux JP, Edelstein S (2011) 
Conformational selection or induced fit 50 
years of debate resolved. F1000 Biol Rep 
3:19

 14. Sugase K, Dyson HJ, Wright PE (2007) 
Mechanism of coupled folding and binding of 
an intrinsically disordered protein. Nature 
447(7147):1021–1025

 15. Csermely P, Palotai R, Nussinov R (2010) 
Induced fit, conformational selection and inde-
pendent dynamic segments: an extended view 
of binding events. Trends Biochem Sci 
35(10):539–546

 16. Bachmann A, Wildemann D, Praetorius F 
et al (2011) Mapping backbone and side-
chain interactions in the transition state of a 
coupled protein folding and binding reaction. 
Proc Natl Acad Sci U S A 108(10): 
3952–3957

 17. Maupetit J, Derreumaux P, Tufféry P (2010) A 
fast method for large-scale de novo peptide and 
miniprotein structure prediction. J Comput 
Chem 31(4):726–738

 18. Shen Y, Maupetit J, Derreumaux P et al (2014) 
Improved PEP-FOLD approach for peptide 
and miniprotein structure prediction. J Chem 
Theory Comput 10(10):4745–4758

 19. Orengo CA, Michie AD, Jones S et al (1997) 
CATH—a hierarchic classification of protein 
domain structures. Structure 5(8):1093–1108

 20. Guyon F, Tufféry P (2014) Fast protein frag-
ment similarity scoring using a Binet-Cauchy 
kernel. Bioinformatics 30(6):784–791

 21. Fiorucci S, Zacharias M (2010) Binding site 
prediction and improved scoring during flex-
ible protein-protein docking with ATTRACT. 
Proteins 78:3131–3139

 22. Saladin A, Fiorucci S, Poulain P et al (2009) 
PTools: an opensource molecular docking 
library. BMC Struct Biol 9:27

 23. Padmanabhan B, Tong KI, Ohta T et al (2006) 
Structural basis for defects of Keap1 activity 
provoked by its point mutations in lung cancer. 
Mol Cell 21(5):689–700

 24. Xu H, Fairman JW, Wijerathna SR et al (2008) 
The structural basis for peptidomimetic inhibi-
tion of eukaryotic ribonucleotide reductase: a 
conformationally flexible pharmacophore. 
J Med Chem 51(15):4653–4659

 25. Lamiable A, Thévenet P, Rey J et al (2016) 
PEP-FOLD3: faster de novo structure predic-
tion for linear peptides in solution and in com-
plex. Nucleic Acids Res 44(W1):W449–W454. 
doi:10.1093/nar/gkw329

Alexis Lamiable et al.

http://dx.doi.org/10.1093/nar/gkw329


Part II

Peptide Docking



37

Ora Schueler-Furman and Nir London (eds.), Modeling Peptide-Protein Interactions: Methods and Protocols, Methods in Molecular 
Biology, vol. 1561, DOI 10.1007/978-1-4939-6798-8_4, © Springer Science+Business Media LLC 2017

Chapter 4

Template-Based Prediction of Protein-Peptide Interactions 
by Using GalaxyPepDock

Hasup Lee and Chaok Seok

Abstract

We introduce a web server called GalaxyPepDock that predicts protein-peptide interactions based on tem-
plates. With the continuously increasing size of the protein structure database, the probability of finding 
related proteins for templates is increasing. GalaxyPepDock takes a protein structure and a peptide 
sequence as input and returns protein-peptide complex structures as output. Templates for protein-peptide 
complex structures are selected from the structure database considering similarity to the target protein 
structure and to putative protein-peptide interactions as estimated by protein structure alignment and 
peptide sequence alignment. Complex structures are then built from the template structures by template- 
based modeling. By further structure refinement that performs energy-based optimization, structural 
aspects that are missing in the template structures or that are not compatible with the given protein and 
peptide are refined. During the refinement, flexibilities of both protein and peptide induced by binding are 
considered. The atomistic protein-peptide interactions predicted by GalaxyPepDock can offer important 
clues for designing new peptides with desired binding properties.

Key words Protein-peptide interaction, Template-based modeling, Structure refinement, Peptide 
structure flexibility

1 Introduction

Protein-peptide interactions play important roles in many biological 
processes such as signaling pathways, protein cellular localization, 
immune response, and posttranslational modifications [1–3], and 
are related to human diseases such as cancer. Protein-peptide inter-
actions may be modulated by small chemicals or synthetic peptides 
because of the relatively small interface areas. Therefore, there 
are a lot of interests in developing therapeutic agents by targeting 
protein-peptide interactions [4, 5].

The atomistic protein-peptide interactions revealed by protein- 
peptide complex structures can help to design therapeutic mole-
cules. Protein-peptide complex structures can be determined by 
experimental methods such as X-ray crystallography and NMR, 
but the structures resolved by experimental methods so far cover 
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only a small portion of possible protein-peptide interactions [6]. 
Predicting protein-peptide complex structures by computational 
means can be one of the alternatives for obtaining structures. 
Various protein-peptide docking programs have been developed, 
and they can be classified into local docking and global docking. 
Local docking methods perform docking near the predefined bind-
ing site of protein, so putative protein-peptide complex structure 
may be required as input. On the other hand, global docking 
methods search the whole protein surface to dock peptide, so pre-
defined binding site or putative complex structure is not required 
and only a protein structure and a peptide sequence are needed as 
input. Some protein-peptide docking programs are available as 
web servers. For example, Rosetta FlexPepDock [7] and PepCrawler 
[8] are web servers for local docking and PEP-SiteFinder [9] and 
CABS-dock [10] are for global docking. PEP-SiteFinder generates 
initial peptide structures by PEP-FOLD [11] and then predicts the 
complex structure by rigid-body docking with ATTRACT [12]. 
CABS-dock generates initial peptide structures randomly and 
predicts the complex structure by a replica exchange Monte Carlo 
method. The above-mentioned programs are ab initio docking 
programs that do not use information on evolutionarily related 
protein-peptide complex structures.

It has been discussed previously that many protein-peptide 
interactions are stabilized through conserved binding sites of the 
protein and short linear motifs of the peptide [13]. It can be there-
fore conceived that homologous proteins may be used as templates 
for predicting protein-peptide complex structures. As increasing 
number of protein-peptide complex structures are being deposited 
in the Protein Data Bank (PDB), the probability of finding similar 
protein-peptide complexes for a given target complex is also 
increasing. For example, 87 % of the nonredundant protein- peptide 
complex structures in the PeptiDB set [14] have similar proteins, 
with a protein TM-score > 0.6, among the experimentally deter-
mined structures released prior to the given complex. Therefore, it 
is timely to have a template-based protein-peptide docking method, 
and such a method will find more applications as the structure 
database grows.

In this chapter, we introduce the GalaxyPepDock server [15] 
that performs template-based protein-peptide docking. It is avail-
able as a part of the GalaxyWEB server [16]. GalaxyPepDock takes 
a protein structure and a peptide sequence as input. The server 
searches the protein-peptide structure database to find available 
experimental structures of related proteins complexed with pep-
tides, and then generates protein-peptide complex structures based 
on the selected templates. The structures are further refined by 
minimizing GALAXY energy. The GALAXY energy is a hybrid 
energy that combines physicochemical energy terms derived from 
molecular mechanics force field, knowledge-based energy terms 
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derived from statistics of atom pair interactions in the structure 
database, and restraint energy terms derived from information on 
the interactions found in homologous complexes. The rigid-body 
translational and rotational displacements of peptide relative to 
protein and internal structural flexibilities of protein and peptide 
are all allowed to change during the optimization. The method 
was tested successfully on the PeptiDB benchmark set and on 
recently released targets of critical assessment of prediction of 
interactions (CAPRI) ([17], http://www.ebi.ac.uk/msd-srv/
capri/round28/round28.html). The server shows much superior 
predictions of protein-peptide complex structures compared to the 
existing ab initio docking methods when related complex structures 
are available in the database. The server also returns an estimated 
accuracy of the prediction to help users to decide whether ab initio 
docking is necessary for their problems or not.

2 Materials

 1. A personal computer or device and a web browser are required to 
access the GalaxyWEB server through the Internet. A JavaScript- 
enabled web browser is highly recommended to see the results 
on the web browser. The server compatibility was tested on 
Google Chrome, Firefox, Safari, and Internet Explorer.

 2. The following input material is required to use GalaxyPepDock 
on GalaxyWEB. To run GalaxyPepDock for predicting protein- 
peptide interactions, a structure file in standard PDB format 
for the protein of interest and a sequence file in FASTA format 
for the peptide of interest are required. The number of 
amino acids of the protein should be less than 900 and that 
of the peptide less than 30. The input peptide sequence file 
must contain 20 standard amino acids in one-letter codes. 
Example input files (Fig. 1, Label 1) can be obtained from 
the GalaxyPepDock web page.

3 Methods

GalaxyPepDock runs in two stages:

 1. Template selection: Templates for predicting protein-peptide 
interactions are selected from the PepBind database [18] based 
on protein structure similarity measured by TM-score [19] 
and protein-peptide interaction similarity measured by interac-
tion similarity score (Sinter) [15]. Up to ten complex structures 
with score >90 % of the maximum value are selected as templates 
and used for model-building.

3.1 The 
GalaxyPepDock 
Protocol

Prediction of Protein-Peptide Interactions with GalaxyPepDock
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 2. Complex structure optimization: 50 models are first generated 
by the model-building tool of the GalaxyTBM template-based 
modeling method [20] for each selected template. After 
model- building, ten structures are selected by GALAXY energy 
and are subject to further refinement by the GalaxyRefine 
model refinement method [21]. The refinement protocol 
refines both internal structures of protein and peptide as well 
as relative displacements of protein and peptide.

For further details refer to the GalaxyPepDock paper [15].

 1. Go to GalaxyWEB, http://galaxy.seoklab.org. Click 
“PepDock” in the “Services” tab at the top of the page.

 2. In the “User Information” section, enter job name (defaults to 
“None”). If the user provides email address, the server will send 
progress reports of submitted job automatically. Otherwise, the 
user should bookmark the report page after submitting a job.

 3. In the “Protein-peptide Docking” section, provide a standard 
PDB-formatted protein structure file (Fig. 1, Label 2) and a 
FASTA-formatted peptide sequence file (Fig. 1, Label 3).

 4. Press the submit button to queue the job. If the submission is 
successful, a “Submission Information” page will appear (Fig. 2a).

3.2 Peptide-Binding 
Prediction 
by GalaxyPepDock

Fig. 1 The GalaxyPepDock input page
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 5. Click “LINK” of the submission information page to access 
the report page. The report page will be refreshed every 30 s, 
updating the status of the submitted job. When the job is 
completed, the predicted results will be presented. The average 
run time of GalaxyPepDock is about 2–3 h (Fig. 2b).

 6. Predicted protein-peptide complex structures: Predicted struc-
tures of the query protein-peptide complex can be visualized 
on the report page using PV (http://biasmv.github.io/pv/), 
a JavaScript protein viewer, if the web browser supports 
JavaScript (Fig. 3). Users can zoom in and out by scrolling 
mouse wheel and change the focusing center by double click-
ing. Template structures selected from the database of protein-
peptide complex structures to be used in the prediction are 
shown in light colors; protein and peptide structures are in 
light red and blue, respectively. Different protein-peptide com-
plex model structures can be seen by clicking the model num-
ber in the “View in PV” line (Fig. 3, Label 1). Predicted 
protein-peptide complex structures can also be downloaded in 
PDB-formatted files for further analyses (Fig. 3, Label 2).

Fig. 2 (a) A summary page showing the submission information of a GalaxyPepDock job. (b) An example report 
page showing of the status of the GalaxyPepDock job

Prediction of Protein-Peptide Interactions with GalaxyPepDock
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 7. Additional information: Additional information on predicted 
models and intermediate results generated during the 
GalaxyPepDock run is provided in a table (Fig. 4a). Structures 
of protein template and peptide template are given as PDB IDs 
and can also be downloaded (Fig. 4a, Label 1 and 2, respec-
tively). Sequences and alignments of the query and the tem-
plate used for the prediction are provided (Fig. 4a, Label 3) for 
both protein and peptide (Fig. 4b). Structure similarity 
between the predicted protein structure and the protein tem-
plate structure is presented in terms of TM-score [19] and 
RMSD (Fig. 4a, Label 4). A score called interaction similarity 
score (Sinter) [15] that was designed to describe the similarity of 
the amino acids of the query complex aligned to the interact-
ing residues of the template complex is reported for each pre-
diction. This is to give an idea on the degree of the relative 
differences in similarity to the selected templates among differ-
ent models (Fig. 4a, Label 5).

 8. Predicted binding site residues: Binding site residues of the 
protein taken from the predicted complex structure (Fig. 4a, 

Fig. 3 An example of the “Predicted protein-peptide complex structures” section 
on the GalaxyPepDock report page
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Label 7 and Fig. 4c) and the estimated prediction accuracy of 
the binding site (Fig. 4a, Label 6) are provided (see Note 1). 
Those residues with any heavy atom within 5 Å from any pep-
tide heavy atom in the predicted structure are reported as 
binding residues.

 9. A GalaxyPepDock help page is also available; click the “Help” 
tab at the top of the page, and click “GalaxyPepDock” on the 
right of the help page. A more detailed description of the pre-
diction method of GalaxyPepDock can be found in the original 
paper [15].

We describe here the GalaxyPepDock results when tested on the 
CAPRI target 67, a complex of the third WW domain of human 
Nedd4 and the first PPXY motif of ARRDC3 (PDB ID: 4N7H) 
[22]. The test was of course performed without including the 
known crystal structure. In the template selection stage, the server 
selected a template of high structural similarity to the input protein 
structure (TM-score = 0.733) and of high interaction similarity to 
the target complex as estimated by the structure alignment to the 
input protein structure and sequence alignment to the input 
peptide sequence (Sinter = 182). The initial model generated from 
the template had the ligand RMSD and interface RMSD from the 

3.3 Case Study

Fig. 4 An example of the “Additional information” section on the GalaxyPepDock report page. (a) A summary 
table showing the results of the protein-peptide complex structure predictions. (b) An example of structure/
sequence alignments between the query protein/peptide and the template protein/peptide. (c) An example of 
the list of predicted binding residues of protein

Prediction of Protein-Peptide Interactions with GalaxyPepDock
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crystal structure of 2.9 and 1.5 Ǻ, respectively, and the fraction of 
native contacts of 0.5. This prediction corresponds to acceptable 
accuracy by the CAPRI criterion (Fig. 5). The initial model was 
further refined in the complex optimization stage, and the quality 
of the model was improved from acceptable accuracy to medium 
accuracy by the CAPRI criterion, with improvements in ligand 
RMSD/interface RMSD/(fraction of native contacts) to 
1.8 Ǻ/1.0 Ǻ/0.688 (Fig. 6). GalaxyPepDock successfully pre-
dicted the following key interactions found in this target: hydro-
phobic interactions among tryptophan, phenylalanine, isoleucine, 
proline, and valine residues and polar interaction between 

Fig. 5 An input protein structure and peptide sequence and selected template. 
Input protein and peptide are shown in green and light green, and selected tem-
plate is shown in magenta and pink

Fig. 6 Native structure (yellow) and (a) initial model (green) and (b) refined model (dark green)
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histidine and tyrosine residues (Fig. 7). The fraction of correctly 
predicted binding site residues is 0.929. This result shows that 
when reasonably close templates can be found with protein 
TM-score > 0.7, GalaxyPepDock can predict the binding site and 
interactions quite reliably.

4 Note

 1. The estimated accuracy returned by GalaxyPepDock means an 
estimated fraction of correctly predicted binding site residues. 
This value was calculated by plugging in the intermediate data 
generated during the prediction to the linear regression relation-
ship between the intermediate data and the prediction accuracy 
for the targets of the PeptiDB test set [14]. A low value of the 
estimated prediction accuracy implies that proper templates 
could not be found, and the current similarity-based method 
may not be accurate. If a very low value of estimated accuracy is 
returned, the user is recommended to try other ab initio protein-
peptide docking methods such as PEP-SiteFinder [9] or CABS-
dock [10] that do not rely on template information.
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Fig. 7 Key interactions of (a) native structure and (b) GalaxyPepDock model
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Chapter 5

Application of the ATTRACT Coarse-Grained  
Docking and Atomistic Refinement for Predicting  
Peptide-Protein Interactions

Christina Schindler and Martin Zacharias

Abstract

Peptide-protein interactions are abundant in the cell and form an important part of the interactome. 
Large-scale modeling of peptide-protein complexes requires a fully blind approach; i.e., simultaneously 
predicting the peptide-binding site and the peptide conformation to high accuracy. Here, we present one 
of the first fully blind peptide-protein docking protocols, pepATTRACT. It combines a coarse-grained 
ensemble docking search of the entire protein surface with two stages of atomistic flexible refinement. 
pepATTRACT yields high-quality predictions for 70 % of the cases when tested on a large benchmark of 
peptide-protein complexes. This performance in fully blind mode is similar to state-of-the-art local docking 
approaches that use information on the location of the binding site. Limiting the search to the peptide- 
binding region, the resulting pepATTRACT-local approach further improves the performance. Docking 
scripts for pepATTRACT and pepATTRACT-local can be generated via a web interface at www.attract.
ph.tum.de/peptide.html. Here, we explain how to set up a docking run with the pepATTRACT web 
interface and demonstrate its usage by an application on binding of disordered regions from tumor 
suppressor p53 to a partner protein.

Key words Fully blind peptide-protein docking, Peptide flexibility, Peptide-protein complex formation, 
Proteome-wide modeling, Coarse-graining, Ensemble docking, Flexible interface refinement, 
Docking minimization, Molecular dynamics refinement

1 Introduction

Proteins are involved in almost all biological processes within and 
between cells. In the last decades, it has become clear that most 
proteins do not carry out their function individually but rather as 
parts of larger, often transiently formed assemblies. Increasing 
efforts have gone into characterizing these protein-protein interac-
tion networks. Interactomes for several model organisms have 
already been drafted [1–5]. Protein-protein interactions can be 
divided into two main categories: domain-domain and peptide- 
domain interactions. The former refers to the binding of two 

http://www.attract.ph.tum.de/peptide.html
http://www.attract.ph.tum.de/peptide.html


50

globular domains from different proteins, whereas in the latter, a 
peptidic motif interacts with a globular domain from another pro-
tein. Peptidic-binding motifs can be short, isolated peptides, but 
are more often located as part of intrinsically disordered protein 
(IDP) regions [6, 7]. Such regions can be found in approximately 
20–50 % of all eukaryotic proteins [8]. In recent years, the discov-
ery of the various functions of IDPs and IDP regions demonstrated 
that a lack of structural constraints facilitates several biological pro-
cesses. Similarly, peptide-protein complexes benefit from the 
intrinsic flexibility and plasticity of the interaction and are therefore 
key players in many cellular pathways [9]. Peptide-protein interac-
tions are found in signaling, apoptosis, immune response, and 
other (regulatory) pathways and possibly account for up to 40 % of 
the interactome [10]. The vital role in the cell and the smaller 
interface compared to domain-domain interactions potentially 
make peptide-protein complexes promising targets for modulation 
by small molecules [11–15]. However, rational peptidic drug design 
requires a detailed understanding of the interaction and hence atom-
istic structural knowledge of the complex. The transient nature and 
the inherent flexibility of peptide-mediated interactions make it chal-
lenging to resolve the three-dimensional structure by experimental 
methods such as X-ray crystallography or NMR. In addition, due to 
the large number of known and possible peptide-protein complexes, 
it is unlikely that high-resolution structures for all of them will 
become available in the near future. To overcome these difficulties 
and to complement experimental efforts, a range of computational 
approaches have been developed for modeling of peptide-protein 
interactions. If the structure of the isolated protein is available, 
computational peptide-protein docking methods can be used to 
generate models of the bound complex.

Peptide-protein docking aims to predict the three-dimensional 
structure of the complex based on the unbound (apo) structure of 
the protein and the peptide sequence. Due to the intrinsic flexibil-
ity of peptides, unbound structures for them are not available in 
the general case. Hence, predicting the structure of a peptide- 
protein complex requires both predicting the peptide-binding site 
on the protein and the conformation of the bound peptide to high 
accuracy. A large variety of binding site prediction tools have been 
developed to date [16–24]. However, typical binding site predic-
tors do not model the bound peptide structure (at high precision) 
[25]. In contrast, local docking approaches, including several 
target- specific approaches, sample possible peptide conformations 
at a previously identified binding site only [26–39]. Local docking 
approaches often yield high-quality predictions when tested on 
peptide-protein docking benchmarks [25] and these approaches 
are also very useful for refinement. Still, for proteome-wide, high- 
throughput modeling, it is desirable for peptide-protein docking 
methods to be fully blind meaning that they should predict the 
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peptide-binding site and the peptide conformation simultaneously 
without prior information. Recently, several fully blind protocols 
have been developed and tested on known peptide-protein com-
plexes [40–44]. Our peptide-protein docking approach pepAT-
TRACT [43] combines coarse-grained and atomistic docking with 
different flexibility mechanisms in the ATTRACT docking engine.

The ATTRACT docking engine [45–47] (Fig. 1) can perform struc-
tural modeling for a variety of biomolecular interactions and has 
been applied to protein-protein, protein-DNA [48], protein- RNA 
[49], and protein-small molecule complexes [50]. It has been used 
successfully to predict targets in various rounds of the blind protein-
protein docking challenge CAPRI [51–53]. ATTRACT distin-
guishes itself from other docking programs by its coarse-grained 
force field, the possible use of protein flexibility throughout the 
docking search, and the simultaneous docking of any number of 
(protein) bodies. It was recently expanded to fitting protein mole-
cules in low-resolution cryo-EM maps [54] and also supports incor-
porating experimental information on interface residues and 
contacts. Flexible interface refinement of ATTRACT- generated 
models can be performed by the iATTRACT protocol [55]. A part 
of the functionality in ATTRACT has been made easily accessible to 
non-expert users through a web-interface that facilitates setting up 
protein-protein docking scripts (www.attract.ph.tum.de) [47].

The empirical, coarse-grained protein model in ATTRACT is 
intermediate between a residue-level and full atomistic description. 
It represents each amino acid of a protein by up to four pseudo 
atoms. The protein main chain is represented by two pseudo atoms 
per residue (located at the backbone nitrogen and backbone oxy-
gen atoms, respectively). Small amino acid side chains (Ala, Asp, 
Asn, Cys, Ile, Leu, Pro, Ser, Thr, Val) are represented by one 
pseudo atom (geometric mean of side chain heavy atoms). Larger 
and more flexible side chains are represented by two pseudo atoms 
to better account for the shape and dual chemical character of 
some side chains. Effective interactions between pseudoatoms A 
and B are described by soft distance-dependent Lennard-Jones 
(LJ) type potentials of the following form
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where σAB and ϵAB are effective pairwise radii and attractive or 
repulsive Lennard-Jones parameters. At the distance rmin between 
two pseudo atoms, the standard LJ-potential has the energy emin. A 
Coulomb type term accounts for electrostatic interactions between 
real charges (Lys, Arg, Glu, Asp) damped by a distance-dependent 
dielectric constant (ε = 15r). In contrast to the original force field 
[4], this form allows for purely repulsive interacting pseudo-atom 
pairs. The attractive and repulsive parameters for each pseudo- 
atom pair were iteratively optimized by minimizing the root-mean- 
square-deviation of near-native docking minima and by comparing 
the scoring of near-native minima with many high-scoring decoy 
complexes [45, 56]. The LJ interaction potentials were parameter-
ized to consider both surface complementarity and physicochemi-
cal properties of protein-protein interfaces. The coarse-grained 
representation is coupled to a simplified, smoothened energy land-
scape that contains fewer docking energy minima and allows for 
much more rapid and fully converged energy minimization com-
pared with an atomic resolution representation. Calculations can be 
further accelerated by precalculating the potential energy around 
one of the protein partners on a grid (de Vries, unpublished data). 
This fast coarse-grained docking approach makes it possible to scan 
hundreds of thousands configurations in the initial docking stage. 
ATTRACT also provides coarse-grained models for nucleic acids 
and their interactions with their protein partners [48, 49].

Several different possibilities are available to model flexibility 
throughout the different docking stages in ATTRACT. Global 
backbone flexibility (e.g., domain-domain motion) can be included 
by energy minimization along the directions of precalculated soft 
normal modes for each partner structure [46, 57]. The normal 
modes are derived from an elastic network model. This approach 
mimics an induced fit upon binding of the partners. For modeling 
a conformational selection-type binding process, a set of multiple 
rigid conformations can be supplied for each partner allowing 
selection of the most likely conformation during docking  (ensemble 
docking). Initial rigid body docking solutions can be optimized 
with the flexible interface refinement method iATTRACT [55]. 
For efficient refinement, iATTRACT combines simultaneous local 
optimization of the interface with large-scale whole body transla-
tion and rotation of the ligand protein relative to the receptor. 
A structure-based force field for the unbound protein structures is 
generated on the fly and applied to the flexible interface atoms 
throughout the refinement process. The structure-based intra- 
molecular force field contains harmonic potentials for controlling 
bond lengths and bond angles as well as a double-quadratic 
potential to represent steric repulsion between nonbonded atoms. 
The force field representation allows motions that result in changes 
of dihedral torsion angles and does not include any attractive non-
bonded interactions within the protein. The structure-based 
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potential is specific for the particular protein and optimal in the 
vicinity of the unbound structure that serves as reference. The 
form of the soft repulsive potential allows for partial atom-atom 
overlap (of atoms within one protein partner but not between 
atoms of separate partners) during the refinement. For the inter-
molecular interaction between partners, an atomistic force field 
based on the OPLS parameters is used. Applied to a large bench-
mark set of protein-protein complexes, the iATTRACT refinement 
method resulted in significant improvements of the quality of many 
docking solutions with respect to the native complexes. A major 
effect on increasing the fraction of native contacts up to 70 % was 
observed [55]. Even though in many cases only small conforma-
tional changes at the interface were detected, these changes were 
decisive to removing steric barriers for larger scale whole body 
movements of the ligand protein. Hence in iATTRACT, increased 
local flexibility lowers barriers for triggering simultaneous global 
large-scale motions, which can result in improved surface comple-
mentarity and a larger fraction of native contacts.

Peptide-protein interactions constitute a large fraction of the inter-
actome but due to their abundance and the inherent flexibility, 
only a limited number of complexes have been characterized 
experimentally. The high level of flexibility and the small size of the 
interface have proven to be obstacles for peptide-protein docking 
and until recently, many methods carried out local docking, relying 
on prior information about the peptide-binding site. Our peptide- 
protein docking method pepATTRACT is one of the first fully 
blind flexible protocols. The protocol allows for global searches of 
the entire protein surface given the protein structure and the pep-
tide sequence. It identifies the binding site and simultaneously pre-
dicts the bound peptide conformation for a large variety of 
complexes. Our protocol is intermediate between binding site 
 prediction tools and high-resolution refinement methods and can 
be easily combined with either method for improved accuracy. We 
believe that this fast method could be useful for large-scale studies 
and the design of peptide-based inhibitors. Especially, interactions 
of globular proteins with disordered segments could also be mod-
eled with this approach.

pepATTRACT [43] combines different flexibility mechanisms in 
the ATTRACT engine in a very efficient manner. The protocol 
uses a coarse-grained force field, ensemble docking, flexible inter-
face refinement, and a final molecular dynamics refinement to 
model protein and peptide flexibility. A schematic overview of the 
protocol is shown in Fig. 2. First, three idealized peptide confor-
mations (α-helical, extended, and polyproline-II) are generated 
from sequence and used as an ensemble during an initial global 
search of the protein surface. This ensemble is composed of the 

1.2 Fully Blind 
Modeling of Peptide- 
Protein Complexes 
with pepATTRACT

1.2.1 Protocol 
Description
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three most common conformations found in peptide-protein 
complexes [58]. For each of the conformations, 100,000 different 
starting positions are explored in a potential energy minimization 
(ensemble docking). During this stage, we employ the coarse- 
grained ATTRACT model to represent the protein and the pep-
tide. We also precalculate the potential energy around the protein 
on a grid to speed up the calculations. The internal structure of the 
protein and the peptide is kept rigid at this stage, but the coarse- 
grained representation implicitly takes side-chain flexibility into 
account and partly compensates for inaccuracies in the initial 

+
Input

MYSEQ

Generate Peptide Ensemble

Docking

ATTRACT rigid body docking
300,000 initial positions

CG protein model

iATTRACT refinement
top-ranked 1,000 models

Flexible interface; atomistic

AMBER refinement
molecular dynamics; implicit solvent

Clustering
by fraction of common residue contacts

Output Models

Rank by ATTRACT score

Rank by AMBER score

Fig. 2 Overview of the pepATTRACT protocol
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peptide structures. The rigid-body docking models are ranked by 
their ATTRACT score and the top-ranked models are selected for 
flexible refinement (typically 1000 models). During iATTRACT 
flexible interface refinement, the placement of the protein and the 
peptide is optimized and clashes resulting from the coarse-grained 
representation are relaxed. At this stage, the interface region of the 
protein and the peptide are treated as fully flexible, while simulta-
neously optimizing the center of mass position and orientation of 
the peptide. Finally, we run molecular dynamics refinement on 
each docking solution with Amber 14 [59]. A Generalized-Born 
implicit solvent model (igb = 8) is used with the ff14SB version of 
the AMBER force field. First, we perform a short minimization in 
vacuo with the sander program (500 steps) using a short cutoff 
(9 Å) and a small step size (dx = 0.0000001) to relax possible 
clashes and deformations resulting from the structure-based force 
field used in iATTRACT. Then two short molecular dynamics sim-
ulations are carried out with the pmemd.cuda program for 1000 
and 2500 steps at temperatures T = 400 and 350 K, respectively. 
During the molecular dynamics simulations, Cα intra-molecular 
distances for the protein and intermolecular distances between 
protein and peptide backbone atoms are restrained to prevent large 
deformations and dissociation of the peptide. The intra-molecular 
distances are controlled by a harmonic potential with equilibrium 
value set to the initial distance in the structure with force constant 
2 kcal/mol/Å2 and for deviations of larger than 3.5 Å with a linear 
response function and force constant 2 kcal/mol/Å2. The inter-
molecular distances are allowed to vary by 10 Å with respect to the 
distance found in the initial structure. Deviations between 10 and 
13.5 Å are restrained by a harmonic potential with a force constant 
0.25 kcal/mol/Å2 and further deviations by a linear potential with 
a force constant 0.25 kcal/mol/Å. Then the structures are mini-
mized for 5000 steps with a large cutoff using the pmemd.cuda 
program without restraints. Finally, the energy is evaluated for the 
complex and the individual docking partners by the sander program 
(“one- step minimization”). The binding interaction energy score is 
calculated by subtracting the energy of the free monomers from 
the energy of the complex ∆E = Ecomplex − (Eprotein + Epeptide). We clus-
ter the refined models by fraction of common contacts [60] and 
rank the clusters by the average AMBER interaction energy score 
of their top-ranked four members.

We tested the pepATTRACT approach on 80 previously character-
ized peptide-protein complexes from the peptiDB benchmark 
[58]. Overall, pepATTRACT yielded near-native models of the 
complex for 70 % of the docking cases in a fully blind prediction 
manner and the top-ranked 10 clusters contained a near-native 
cluster in 68 % of the successful cases [43]. During the initial 
coarse-grained docking stage, the surface of the protein was 

1.2.2 Benchmarking 
pepATTRACT’s 
Performance
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scanned and in many cases the top-ranked solutions identified the 
binding site correctly. The coarse-grained rigid body docking stage 
achieved a success rate of 58 % among the top-ranked 1000 mod-
els. Subsequent iATTRACT refinement increased this total success 
rate to 68 % and also succeeded in refining near-native structures to 
sub-angstrom precision. Moreover, iATTRACT helped to resolve 
minor clashes resulting from transitioning between a coarse- 
grained to an atomistic force field. MD refinement with Amber 
optimized the structures further and decreased the interface- 
RMSD of the docking solutions on average by 0.44 Å. More 
importantly, it significantly improved the scoring of near-native 
solutions compared to the ranking based on the ATTRACT coarse- 
grained force field. We also developed a local docking approach, 
pepATTRACT-local by combining pepATTRACT with ambiguous 
interaction restraints as often used in the HADDOCK program [61, 
62]. In this way, information about the binding site from either 
experiments or bioinformatic predictions can be incorporated in the 
docking protocol and enhance the accuracy of the prediction. pep-
ATTRACT’s performance in fully blind mode was comparable to 
two previously published local docking methods [35, 36] and clearly 
surpassed their performance in local mode [43].

The success of the pepATTRACT protocol is based on a versa-
tile combination of different docking stages and flexibility mecha-
nisms. The protocol allows a high level of detail and accuracy in the 
final stages but at the same time is computationally efficient enough 
to screen 300,000 initial positions in a matter of minutes in the 
initial search stage. The large sampling in the rigid body phase 
provides placements at the native binding site even of nonoptimal 
peptide structures that can then be relaxed to near-native models 
in the subsequent flexible refinement stages. We believe that iden-
tifying many good initial global placements of the peptide and 
refining these is possibly more efficient than trying to sample all 
degrees of freedoms of the peptides right from the start. Our 
results on the peptiDB benchmark showed that the coarse-grained 
ATTRACT protein model is also applicable to modeling peptide- 
protein interactions. This is probably due to common interface 
design principles [14, 63, 64] and hence the intrinsic similarity 
between protein-protein and peptide-protein complexes. Yet, it 
might be possible to further improve the performance by design-
ing specific parameters for peptide-protein interactions employing 
a similar optimization procedure as used for the design of the 
original form [45, 56]. Interestingly, we found that using an 
ensemble of only three peptide conformations already yields high-
quality predictions. This again underlines the fundamental inter-
face design principles found in nature [14, 58]. Still, for predictions 
of sub- angstrom precision for backbone and side chains, in many 
cases, more extensive peptide modeling and refinement has to be 
performed (e.g., [35]).
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To make the protocol available to the scientific community, we 
created a web interface for pepATTRACT (www.attract.ph.tum.
de/peptide.html). The web interface generates a docking script 
that performs the rigid body sampling stage and the flexible inter-
face refinement starting from the structure of the unbound protein 
and the peptide sequence. The peptide-protein docking can then 
run on the user’s machine with a local installation of the ATTRACT 
program (ATTRACT is available for download at www.t38.ph.tum.
de). Hence, the docking script generated by the web interface pro-
vides an easy entry point for non-expert users into fast peptide- 
protein docking with pepATTRACT. The web-interface also offers 
the possibility of including experimental information in the dock-
ing run and restricting the search for the peptide binding site to a 
portion of the protein’s surface (pepATTRACT-local). This is 
achieved by specifying important residues on the protein as active 
residues for ambiguous interaction restraints [61, 62]. Furthermore, 
conformational change on the protein side can be included by pro-
viding multiple protein structures for an ensemble docking 
approach. Note that the molecular dynamics refinement stage is 
not included in the docking script. Scripts for the AMBER refine-
ment can be requested from the authors. The whole protocol, 
including molecular dynamics refinement, typically runs overnight 
on a standard Desktop PC.

2 Materials

 1. Atomic 3D structure of protein of interest in PDB file format 
(www.pdb.org).

 2. Sequence of peptide of interest in one-letter code.
 3. Optional: information on protein residues involved in binding 

(literature research).
 4. PC with Unix-based OS (Linux/Mac) and at least 2–3 GB RAM.
 5. ATTRACT software (available at www.t38.ph.tum.de).
 6. Molecular viewer (PyMOL, VMD, Rasmol etc.).

3 Methods

For modeling the structure of a peptide-protein complex with the 
fully blind docking protocol pepATTRACT, the following steps 
have to be performed:

 1. Installation of the ATTRACT software (www.t38.ph.tum.de) 
and a molecular viewer.

 2. Providing the protein structure and the sequence of the peptide 
of interest.

1.3 The pep- 
ATTRACT Web 
Interface
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 3. Generating a docking script and input files with the pepAT-
TRACT web interface (www.attract.ph.tum.de/peptide.html).

 4. Running the docking script on the user’s local machine.
 5. Analyzing the docking results.

Subsequently, the individual steps are described in more detail. 
In an example application, we demonstrate how pepATTRACT 
can be used to model peptidic interactions in the field of cancer 
research.

There are two possibilities of using the ATTRACT software: install-
ing ATTRACT directly from the source code or downloading an 
ATTRACT VirtualBox. The virtual box has ATTRACT and all its 
dependencies installed. Note that ATTRACT can only be com-
piled and installed directly on Unix-based OS (Linux/Mac). In 
contrast, the ATTRACT VirtualBox can be used on a large num-
ber of operating systems (including Windows, Linux, Macintosh, 
and Solaris).

 1. Download and install VirtualBox (Oracle, www.virtualbox.org).
 2. Download the ATTRACT VM from www.attract.ph.tum.de/

services/ATTRACT/ATTRACT.vdi.gz and unpack the file.
 3. Open the VirtualBox program. Add the ATTRACT.vdi file to 

VirtualBox (click the “New” button, pick the option “Use an 
existing virtual hard disk file,” and select the ATTRACT.vdi 
file, follow the instructions). Start the virtual machine to use 
ATTRACT.

Example commands are given for Ubuntu OS (Canonical Ltd., 
www.ubuntu.com).

 1. Download the ATTRACT source code from www.attract.
ph.tum.de/services/ATTRACT/attract.tgz.

 2. Open a terminal and unpack the source code (tar xzf attract.
tgz).

 3. Install g++ and gfortran (sudo apt-get install g++ gfortran).
 4. Install numpy and scipy (sudo apt-get install python-numpy 

python-scipy).
 5. Install pdb2pqr (sudo apt-get install pdb2pqr).
 6. Go into attract/bin, type “make clean” and then “make all” or 

“make all -j 4” (if you have four cores on the local computer).
 7. Edit your “.bashrc” file (typically found in the home directory) 

and add the following lines:
●● export ATTRACTDIR=/home/yourname/attract/bin 

*(i.e., wherever you installed ATTRACT)*.
●● export ATTRACTTOOLS = $ATTRACTDIR/../tools.

3.1 Installation 
of the ATTRACT 
Software

3.1.1 ATTRACT 
VirtualBox

3.1.2 Building 
and Installing ATTRACT 
from Source Code
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●● export PYTHONPATH = $PYTHONPATH:/usr/share/
pdb2pqr.

 8. Type “source ~/.bashrc.”

The molecular viewer PyMOL (Schroedinger LLC, www.pymol.org) 
can be installed on Ubuntu by entering “sudo apt-get install 
pymol” in the terminal. Open a PDB file with it by typing “pymol 
myprotein.pdb.”

The user needs an atomic 3D structure of the protein of interest in 
PDB file format. Such a file can be obtained, e.g., from the Protein 
Data Bank (www.pdb.org). Alternatively, good homology models 
with sufficient sequence similarity can be used (e.g., from I-TASSER 
[65] or MODELLER [66]). At the moment, unnatural and modi-
fied amino acids and cofactors are not supported (see Note 1).

 1. Go to www.attract.ph.tum.de/peptide.html (Fig. 3).
 2. Upload the PDB file of the protein.
 3. Enter the sequence of the peptide in one-letter code (standard 

amino acids only).
 4. Specify the number of cores to be used for the calculation 

(default = 1, Section “Computation”).
 5. Specify optional parameters (see Notes 2–6).
 6. Hit the “Get configuration” button.
 7. Download the archive mydocking.tgz and unpack it.
 8. Run the protocol by double-click (typical run time 1–4 h).

For changing the standard settings for building ATTRACT, 
see Note 7, 8.

3.1.3 Installing 
a Molecular Viewer

3.2 Input Data

3.3 Obtaining 
a pepATTRACT 
Docking Script 
and Running It

Upload protein structure
(PDB format)

Enter peptide sequence
in single letter code

Known interface residues
optional

Generate protocol

Further options

Fig. 3 Instructions to the pepATTRACT web interface (www.attract.ph.tum.de/peptide.html)
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If the docking script runs without problems, the final docking 
models can be found in the file result.pdb. This file can be opened 
with a molecular viewer to visualize and analyze predicted contacts 
between peptide and protein.

We demonstrate the usage of pepATTRACT by docking the dis-
ordered regions of tumor suppressor p53 to three of its interac-
tion partners. p53 plays a crucial role in preventing cancer 
formation. It is engaged in DNA repair, apoptosis, and cell cycle 
arrest and is subject to tight regulation. In the absence of cellular 
stress, MDM2 binds to an N-terminal disordered region of p53 to 
inhibit its  function and mark it for proteosomal degradation. The 
crystal structure of this interaction was characterized experimen-
tally (PDB ID: 1YCR) [67]. A structure of apo MDM2 is also 
available in the Protein Data Bank (PDB ID: 4HBM) [68]. We 
also predicted two other complexes that involve the C-terminal 
disordered region of p53: the interactions with the Set9 methyl-
tranferase and the Sir2 deacetylase. Both complexes have been 
resolved by X-ray crystallography (PDB ID: 1XQH, 1MA3) [69, 
70]. For Set9, we also identified an unbound structure (PDB ID: 
1NC6) [71], for Sir2, we repacked the side chains of the protein 
with the program Scwrl [72] and used this structure during dock-
ing. In all cases, we used the pepATTRACT web-interface to gen-
erate the docking scripts as described above and refined the top 
1000 models in a short molecular dynamics simulation with 
AMBER [43]. Near-native docking results in comparison with the 
experimental crystal structures are shown in Fig. 4. The binding 
site was identified correctly by a large number of solutions for all 
cases and near-native structures were among the top-ranked ten 
clusters for MDM2 and Sir2 and among the top-ranked 50 clus-
ters for Set9 (the clusters were ranked by interaction energy; an 
alternative to looking at the clusters ranked by energy would be to 
examine the largest clusters). The interface backbone atoms of 
these near-native docking models only deviated by ≈2 Å from the 
native complex. The docking models also correctly predicted 
important contacts between the protein and the peptide (e.g., the 
crucial role for tryptophan in the interaction with MDM2, Fig. 4) 
and the structural class of the bound peptide (extended or heli-
cal). Even though not all residues of the peptide were inferred at 
high precision, the key interactions (e.g., a lysine residue in dock-
ing to Sir2, Fig. 4) were reproduced by the model. The docking 
models could be used to extract the predicted interface residues 
on the protein and to validate/investigate these in mutational 
studies or truncation experiments. Once a model has been validated 
experimentally, the predicted structure can be used for further 
protein/peptide/peptidomimetic design studies.

3.4 Analysis 
of Docking Results

3.5 Application 
to Tumor Suppressor 
p53
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4 Notes

 1. Structure preparation.
ATTRACT does not support unnatural and modified 

amino acids and cofactors to date. All HETATM entries in the 
PDB file will be ignored. The user has to change modified 
amino acids like phospho-threonine manually to threonine 
(and HETATM to ATOM); otherwise, these atoms will not be 
considered during docking. In the future, we plan to offer sup-
port for modified amino acid and protein-bound ions and 
cofactors into the docking process. If multiple conformations 
are resolved for certain residues, the alternative conformations 
have to be deleted and the residue names should be changed 
accordingly (e.g., ASER to SER). Furthermore, if the asym-
metric unit contains more than one copy of the protein of 
interest, these should be deleted as well (unless it is the bio-
logical assembly). If the PDB file contains multiple models of 
the protein, the number of models has to be specified in the 
web interface (“number of conformers,” see also Note 3).
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Fig. 4 pepATTRACT docking results for modeling the interactions between disordered regions from tumor sup-
pressor p53 and MDM2, Set9 or Sir2. The protein is shown in surface representation, the docked peptide in 
red. For comparison, the crystal structure is shown in black. For each case, the PDB ID of the bound complex, 
the cluster rank, the interface-RMSD (IRMSD), and the fraction of native contacts (fnat) of the docking model 
are listed. The disorder in the p53 sequence was predicted with the IUPred web server [73, 74]
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 2. Using experimental information.
The web interface allows the user to restrict the docking 

search to a proportion of the protein surface/known peptide 
binding site (pepATTRACT-local). If certain protein residues 
are known to be important in peptide binding, e.g., from 
mutational experiments, they can be specified as active residues 
(“Partners” section). This will ensure that only solutions in 
which these residues are in contact with the peptide are 
generated.

 3. Protein flexibility.
Many proteins undergo conformational changes upon 

binding to a partner molecule. Although the effect is smaller in 
peptide- protein interactions than in protein-protein com-
plexes, it affects the prediction quality of our semirigid peptide 
docking approach. The pepATTRACT protocol allows 
accounting for conformational change on the protein side by 
providing an ensemble of possible conformations (ensemble 
docking). This option is also suitable, if the protein structure 
has been homology modeled or derived from NMR experi-
ments. Snapshots from MD simulations could also be used as 
an ensemble in docking. Instead of uploading a PDB file con-
taining a single protein structure, the user can upload a multi-
model PDB file to the web interface and specify the number of 
conformers (number of models in the PDB file). It is necessary 
to superimpose all the models in the file; otherwise, the dock-
ing will give incorrect results. Unfortunately, predicting when 
conformational change happens is very difficult. Protein flexi-
bility can be tested to a certain degree by performing MD 
simulations or normal mode calculations prior to docking.

 4. Enhanced peptide modeling.
During the initial search, pepATTRACT uses just three 

types of peptide conformations to identify an initial binding 
position and binding orientation. Further conformational 
changes and adaptation to the binding pocket are possible dur-
ing the refinement steps. However, it is likely that the perfor-
mance can be enhanced by using more types of basic peptide 
conformations in the initial rigid body docking. Such an exten-
sion is unlikely to degrade the speed of the approach, since it 
only affects the rapid initial search. First, the user needs to set 
up a docking run with the pepATTRACT web interface as 
described before and to download the embedded parameter 
file from the web interface instead of the docking archive (e.g., 
attract pep-embedded.web). Then this parameter file should 
be uploaded at www.attract.ph.tum.de/services/ATTRACT/
upload.html, choose Standard interface for “Data model.” 
Now modify the number of conformers for the “Ligand” pro-
tein (i.e., the peptide) from three to the number of conforma-
tions used and upload the multi-model PDB file with the 
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peptide conformations as the structure for the “Ligand” pro-
tein. Generate the docking script (“Get configuration”), 
download the docking archive from the web interface, unpack 
it, and execute the docking script by double- click. Peptide 
conformations can be obtained from fragment libraries [75], 
by ab-initio structure prediction [76] or as snapshots from 
molecular dynamics simulations. The user needs to make sure 
that all peptide conformation used contain the same number of 
residues and that all models are aligned to the first model.

 5. Refinement.
The iATTRACT refinement can be disabled in the “Energy 

and Interaction” section of the web-interface (enabled by 
default). As a default in the web interface, 50 structures are 
selected for refinement. To increase this number, the user has 
to change the field “Number of structures to collect as PDB 
file” in the “Analysis” section. We recommend using 1000 
structures for iATTRACT and if possible for a final molecular 
dynamics based refinement. It is likely that the final MD refine-
ment step can be considerably improved with respect to the 
procedure described above. Both more extensive MD simula-
tions and conformational optimization in implicit solvent but 
also possible extension to explicit solvent (e.g., limited to the 
immediate vicinity of the docking placement) are routes that 
could be explored. With the availability of graphical processing 
units (GPUs), it is possible to perform such simulations on 
hundreds or thousands of putative docking geometries.

 6. Analysis and benchmarking.
The final models are converted to PDB file format for 

visual inspection by the user (type pymol results.pdb to look at 
the structures). The structures could then be used as starting 
structures in molecular dynamics simulations (like described 
above and in [43]). The web interface offers the opportunity 
to benchmark pepATTRACT’s performance by docking 
known peptide-protein complexes and evaluating whether the 
experimental structure can be reproduced. For this, reference 
PDB files containing the protein structure and the peptide 
structure can be provided (RMSD calculation in “Partners” 
section of the web interface). Standard CAPRI evaluation cri-
teria like ligand- RMSD, interface-RMSD, and fraction of 
native contacts can be selected for automatic computation in 
the “Analysis” section (the results can be found in the files 
results.lrmsd, results.irmsd, results.fnat). We highly recom-
mend testing the pepATTRACT protocol for specific biologi-
cal systems whenever possible using similar experimentally 
resolved complex structures as benchmark cases.

 7. Memory requirements.
During docking, a precalculated potential energy grid is 

loaded into shared memory. This requires at least 2 GB of 
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RAM, for larger proteins, the demand might be higher. Failures 
of the protocol are often a result of insufficient memory.

 8. Large protein structures.
The ATTRACT software is compiled with default settings 

limiting the number of atoms in a protein to 10,000. This limit 
can be expanded by changing the file $ATTRACTDIR/max.h 
and increasing the variable MAXATOM (maximum number of 
atoms in protein) and if necessary MAXRES (maximum num-
ber of residues), TOTMAXATOM, TOTMAXRES etc. to the 
desired number. Then the user has to recompile by going to 
$ATTRACTDIR and typing make clean and make all. We rec-
ommend checking the OPLS converted file myprotein-aa.pdb 
to find out how many atoms the protein has during docking 
with ATTRACT. Users should keep in mind that docking 
larger proteins requires more memory and longer run times. 
For large proteins, it might also be necessary to increase the 
number of starting conformations (default 100,000 per pep-
tide conformation) by modifying the line with randsearch.py in 
the docking script.
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Chapter 6

Highly Flexible Protein-Peptide Docking Using CABS-Dock

Maciej Paweł Ciemny*, Mateusz Kurcinski*, Konrad Jakub Kozak, 
Andrzej Kolinski, and Sebastian Kmiecik

Abstract

Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when 
significant conformational changes that may occur during the binding process need to be predicted. In 
this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-
peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant 
flexibility of a protein receptor. During CABS-dock docking, the peptide folding and binding process is 
explicitly simulated and no information about the peptide binding site or its structure is used. This 
chapter presents a successful CABS-dock use for docking a potentially therapeutic peptide to a protein 
target. Moreover, simulation contact maps, a new CABS-dock feature, are described and applied to the 
docking test case. Finally, a tutorial for running CABS-dock from the command line or command line 
scripts is provided. The CABS-dock web server is available from http://biocomp.chem.uw.edu.pl/
CABSdock/.

Key words Protein-peptide interactions, Molecular docking, CABS, Peptide binding, Peptide design, 
Computational modeling

1 Introduction

Protein-peptide interactions play a predominant role in cell func-
tion and they can be found in a variety of signaling pathways 
involved in cellular localization, immune response or protein 
expression, and degradation. Because of their association with cel-
lular regulatory mechanisms, erroneous protein-peptide interac-
tions are speculated to be pathogenic in a number of diseases (e.g., 
cancer, autoimmune diseases). The possible applications in bio-
medical research (targeted drug design) make the understanding 
of protein-peptide interactions a critical issue for further advances 
in the field [1, 2]. Characterization of protein-peptide interactions 
is difficult due to their large complexity and transient and dynamic 
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nature. Despite extensive computational and experimental studies 
in this area, peptide-mediated cellular regulation mechanisms have 
not been fully described or understood.

Among computational approaches, molecular docking is com-
monly used to predict the structure of protein-peptide complexes. 
Handling large conformational changes during docking is one of the 
most challenging and important issues in the field [3, 4]. Modeling of 
protein-peptide interactions usually follows two steps realized by sepa-
rate protocols: (1) prediction of binding site location on the protein 
surface [5–8], and (2) local protein-peptide docking (i.e., modeling of 
the peptide backbone in the binding site) [9–14]. The CABS-dock 
method [15, 16] unifies these two steps into one efficient docking 
simulation. In the CABS-dock single simulation run, a fully flexible 
peptide explores the entire surface of a flexible protein receptor in 
search for a binding site (no information about the binding site is 
used). Such high modeling efficiency is achieved thanks to the simula-
tion engine based on the CABS prediction platform [17–19]. Alongside 
with the Rosetta platform [20], CABS currently offers perhaps the 
most efficient means for modeling significant conformational changes, 
successfully tested in protein-peptide on-the-fly docking [21].

This chapter provides a tutorial for the CABS-dock server and 
for its possible applications. Subheading 2 gives a short description 
of the CABS-dock methodology, together with the information 
and instructions required to successfully perform a CABS-dock 
run. It is followed by Subheading 3 which serves as a step-by-step 
guide with example docking results and analysis. A description of 
simulation contact maps, the new CABS-dock feature, is also pro-
vided along with the examples of use. Subsequently, possible 
schemes for incorporating CABS-dock in the multi-stage modeling 
of protein-peptide interaction are given. Finally, a tutorial how to 
use the CABS-dock server from the command line or command 
line scripts is provided. Additional comments on the procedure or 
method itself are provided in Subheading 4.

2 Materials

The CABS-dock web server (freely available at http://biocomp.
chem.uw.edu.pl/CABSdock/) provides an interface for the CABS- 
dock method for protein-peptide docking together with up-to- date 
documentation and benchmark examples [15]. Several illustrative 
examples of CABS-dock applications have also been described in [16, 
21]. Here only the basic CABS-dock features are outlined. The CABS-
dock server protocol is based on the CABS model [17–19, 22] for 
coarse-grained simulations of protein dynamics and protein structure 
prediction. The model employs a reduced representation of the 
protein chain (see Fig. 1). The  protein is represented with a set of 
pseudo-atoms: each residue is described by beads corresponding to 
the alpha carbon (CA), beta carbon (B), and side chain (S) (see Fig. 1).  

2.1 CABS-Dock 
Server Methodology

Maciej Paweł Ciemny et al.
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To define the hydrogen bonds properly, an additional pseudo-atom 
representing the geometric center of the virtual CA-CA bond is also 
included. The knowledge-based force-field used for calculations was 
derived from statistical potentials based on known protein structures. 
Sampling of the conformation space is executed with a Replica 
Exchange Monte Carlo protocol. The CABS-dock docking proce-
dure may be divided into four stages: (1) flexible docking based on 
the CABS model resulting in 10,000 models, (2) initial filtering 
resulting in 1000 models, (3) selection of 10 representative (top-
ranked) models using structural clustering, (4) all-atom model recon-
struction of ten top-ranked models combined with local optimization 
of their structure. All those sets of models can be downloaded from 
the server web site for their visualization or analysis.

A fully functional, up-to-date version of the CABS-dock method is 
available as an automated server accessible via standard internet 
browsers [15, 16]. No registration is required to use CABS-dock. 
To run the automated docking procedure on the CABS-dock 
server it is sufficient to provide:

 1. A 3D model of the protein receptor in the PDB format (the 
protein model should be provided in the standard PDB for-
mat; if the protein receptor structure is stored in the PDB 
databank, it is sufficient to provide its code only); for addi-
tional protein input hints see Note 1.

 2. A peptide sequence and, optionally, peptide secondary struc-
ture in the one letter code; for additional peptide input hints 
see Note 2.

The screenshots of the CABS-dock web server interface are 
shown in Fig. 2. Docking results may be further improved by 
providing additional information about the protein complex 
(assigning regions of increased flexibility or excluded from docking, 
see Note 3).

2.2 Running 
the CABS- Dock Server

Fig. 1 Representation of protein and peptide chains in CABS-dock. CABS-dock uses all-atom and coarse- grained 
modeling tools merged with procedures enabling transition between both resolutions. The figure shows compari-
son between all-atom (left) and CABS coarse-grained representation (right) for an example 4-residue peptide. 
In the CABS model, a single residue is represented by two atoms (alpha and beta carbon, colored in black) and two 
pseudo-atoms (side chain, colored in orange, and center of the peptide bond, colored in green)

Flexible Protein-Peptide Docking with CABS-Dock
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3 Methods

This case study presents an example of CABS-dock docking 
performed with default server settings. The docking uses the pro-
tein receptor structure: peroxisome proliferator-activated receptor 
gamma (PPARγ) (PDB code of the unbound receptor form: 
2HWQ) and the sequence of the peptide that contains the LXXLL 
motif of a cofactor protein crucial for the biological action of 

3.1 A Case Study 
of Docking a Peptide 
Containing the LXXLL 
Motif to PPARγ

Fig. 2 Screenshots of the CABS-dock server. The figure shows the main page input panel (a) and example 
output panels (b–d). The buttons to be selected to see these panels are marked by red rectangles and arrows
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PPARγs [23]. Such a complex has been hypothesized to be respon-
sible for the decoupling of insulin sensitization from adipogenesis 
in type-2 diabetes patients. The hypothesis was positively validated 
in vitro. A candidate for a partial PPARγ agonist was synthesized 
and crystallized by Burgermeister et al. [24] (PDB code of the 
complex: 2FVJ). The complex structure has been explored experi-
mentally because of its potential for developing new therapies with 
fewer adverse effects on diabetes patients.

The “submit new job” form was completed in the following man-
ner to attempt docking the peptide to the protein receptor:

 1. Protein tab: “2HWQ:A” (this instructs the server to access the 
“A” chain of the 2HWQ structure). For additional hints 
regarding the input of a protein receptor structure, see Note 1.

 2. Peptide tab: HKLVQLLTTT (this is the one-letter code 
sequence of the peptide containing the LXXLL docking motif 
of the protein cofactor). For additional hints regarding the 
input of a peptide sequence, see Note 2.

 3. Optional tab:
●● Project name: “2HWQ:A tutorial” (used to identify the 

project in the server queue).
●● Peptide secondary structure: “CHHHHHHHCC”; this is 

the experimentally derived preferred secondary structure 
of the peptide. For additional hints see Note 2.

●● Additionally, an e-mail address may be provided. It will be 
used to notify the user on project status.

The run is started with the “Submit” button. The server will 
redirect the user to an auto-refreshing site with details on project 
status. Alternatively, it is possible to run the docking from the ter-
minal command line using the following command (for further 
details on command-line job submission, see Subheading 3.4):

curl -H "Content-Type: application/json" -X POST -d '
{"receptor_pdb_code":"2HWQ:A", 
"ligand_seq":"HKLVQLLTTT","ligand_ss":"CHHHHHHHCC", "project_name":"2HWQ:A 

tutorial", "email":"mail@host.com"}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

The results of docking may be either interactively viewed on the 
CABS-dock server or downloaded from the project site as a zipped 
folder with all the resulting files, see Note 4. The basic output pro-
vided by the CABS-dock server interface consists of ten top-ranked 
models (CABS-dock ranking is largely based on the outcome of 
structural clustering, for details see [15, 16]). The ten top-ranked 
models are also stored in the zipped folder (in the form of PDB 
files named “model_(number).pdb”). The structures of models 

3.1.1 Input and Job 
Submission

3.1.2 Analysis of Results
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resulting from the docking performed for this case study are 
presented in Fig. 3 together with the crystallographic structure of 
the protein (extracted from the 2FVJ PDB entry).

To analyze the quality of the resulting structures, calculation of 
RMSD values can be performed using for example VMD software 
[25]. A detailed tutorial for the VMD analysis of CABS-dock 
results is provided in the supplementary data in [16]. Our analysis 
below was performed using this tutorial to calculate RMSD values: 
first for the ten top-ranked models, and second for the 10,000 
models obtained in the CABS-dock simulation.

The RMSD values for the ten top-ranked models to the crystal 
structure of the peptide (from the 2FVJ complex) are presented in 
Table 1. The lowest RMSD value of 1.29 Å was obtained for the 
model ranked as the sixth out of ten models (see Fig. 3). Obviously, 
in the best case scenario the model with the lowest RMSD is ranked 
first. However, this is rarely the case as ranking the models is a very 

Fig. 3 Steps of the CABS-dock docking procedure illustrated by peptide-PPARγ docking. (a) Ten random peptide 
structures placed in random positions around the PPARγ structure. (b) Ten thousand peptide structures generated 
in the CABS-dock docking simulation. (c) Thousand models filtered from the previous set. (d) Ten top-ranked 
models (according to the structural clustering analysis) resulting from the docking. The close-up frame shows 
the best fitting model (RMSD value of 1.29 Å) out of the ten top-ranked models. The peptide models resulting 
from docking are shown in orange, the crystallographic peptide structure is shown in yellow, and the protein 
receptor is represented by its surface with elements of the secondary structure visible
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complex and yet unsolved problem (the scoring problem has been 
discussed in ref. 16).

As briefly described in Subheading 3, CABS-dock flexible 
docking produces a total of 10,000 models. For all these models 
RMSD values can also be easily calculated and plotted, for example 
against their CABS-energy values. Such analysis (showing for 
example whether the top-ranked models are also the lowest-RMSD 
models) is presented in Fig. 4. The lowest RMSD model from all 
the 10,000 models has the accuracy of 1.00 Å and belongs to the 
set of near-native low-energy models. As shown in Fig. 4, apart 
from the low-energy and low-RMSD set of structures, there is also 
another low-energy set with RMSD around 9 Å. These structures 
also have their representatives in the set of ten top-ranked models 
(i.e., models number 1, 4, and 5, see Table 1). The analysis of those 
cases proves that they fit into the appropriate binding site of the 
receptor. However, the peptide conformation differs from that of 
the crystallographic structure. With models 1 and 4 the C and N 
termini of the peptide are flipped, and in model 5 the peptide is 
bent and does not form a helix.

Please note that in this test case: (1) in several top-ranked 
models the actual binding site of the receptor protein was not 
found, and (2) the CABS-dock ranking procedure works relatively 
well (the lowest RMSD out of ten top scored models is only slightly 
higher than out of 10,000 models). Obviously, these two points 

Table 1  
The RMSD values of ten top-ranked models to the crystallographic 
structure

Index of top-ranked models RMSD value

1 9.705

2 3.444

3 3.801

4 9.987

5 9.242

6 1.290

7 3.610

8 1.778

9 31.353

10 26.036

The entry for the best fitting structure is marked in bold. The provided RMSD values 
are root mean square deviations calculated on the peptides after superposition of the 
receptor molecules

Flexible Protein-Peptide Docking with CABS-Dock
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may be not satisfied in other docking cases and the detailed statis-
tics of CABS-dock performance on a large benchmark data set is 
presented in detail in [15, 16]. Finally, it is important to note that 
the CABS-dock procedure is a Monte Carlo-based algorithm, 
which may lead to different results in different runs.

The CABS-dock server provides an additional tool for the analysis 
of docking simulations in the form of contact maps. These maps 
depict the frequencies at which a pair of receptor/peptide residues 
interacts during simulation. Such information may be utilized to 
investigate the binding mechanism and three- dimensional struc-
tures of intermediates that occur on complex  formation (as pre-
sented in our study of the folding and binding of a disordered 
peptide [26]). It can also provide clues about potential mutation 
sites to alter the binding affinity of the peptide.

An archive with CABS-dock simulation contact maps (maps.
tar) can be downloaded as part of the ZIP file with the results 
(see Note 4). The contact maps are both given in the MAP file 
format (txt files, see Note 5) and PNG images. The file names cor-
respond to maps presenting contact frequencies of the following 
sets of models:

 1. cluster_(number)—models classified to a particular cluster in 
structural clustering. Cluster numbering corresponds to model 
numbering (i.e., model_6.pdb is a representative model of the 
models grouped into the sixth cluster. The clusters are ranked 
according to their CABS-score).

3.2 Simulation 
Contact Maps

3.2.1 Maps: An Overview

Fig. 4 CABS-energy and RMSD values for all (10,000) models obtained in 
peptide-PPARγ docking. The colors of the dots represent ten trajectories of a 
single docking simulation
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 2. trajectory_(number)—trajectory models (each of the trajecto-
ries contains 1000 models). Each CABS-dock job contains ten 
trajectories.

 3. top1000—top 1000 models selected after initial filtering.
 4. trajectory_all—all models from the ten trajectories (10,000 

models in total).

In the PNG images, contact frequencies are denoted by colors 
(example maps are presented in Subheading 3.2.2 below). Residue 
numbers and chain identifiers are marked on map borders. All the 
maps were derived from the distances of gravity centers of the side 
chains (in the CABS CG representation) and the contact cutoff 
was set to 4.5 Å.

Because of their importance in further studies of the complex as well 
as potential significance in drug design, contact maps are one of the 
most informative results of the CABS-dock docking procedure. 
Most importantly, they may be used to predict residue- residue con-
tacts that are crucial for the interaction, which for example can be 
subsequently used in peptide design.

According to experimental studies of the PPARγ-SRC-1 (a 
coactivator protein with the LXXLL motif) complex [27], the 
interaction site on the receptor protein is formed by the following 
residues: L468, L318, T297, Q314, L311, V315, K301, and 
E471. The docking LXXLL motif, which was experimentally deter-
mined to interact with PPARγs [23], is represented by residues 3–7 
of the peptide used in the docking.

The contact maps for all the models (10,000 models in total, 
from the ten trajectories) and cluster number 6 (the representative 
of this cluster is the lowest RMSD model from the top scored 
models) are presented in Fig. 5. The maps show that the peptide 
residues comprising the motif, and the receptor residues creating 
native contacts in the crystallographic structure form the most per-
sistent contacts during the CABS-dock docking simulation. The 
map prepared for all the simulation models (Fig. 5a) shows that 
most of the (final) contacts are in the expected contact area.

Another informative way to visualize the engagement of par-
ticular residues in protein-peptide interaction during docking 
simulation is to prepare a histogram of residue contacts. The his-
togram can be prepared by summing up contact frequencies from 
the maps (available in MAP txt files) over the peptide residues. 
Two histograms for PPARγ receptor residues for all the models 
and cluster number 6 models are presented in Fig. 6. The peaks 
found on both histograms correspond to residues crucial for the 
modeled interaction which form the interaction site of the receptor. 
The histogram for all the structures (Fig. 6a) contains “background” 
noise resulting from peptide sampling of the receptor surface in 
search for the best binding position. Some of those interactions 
are more persistent (e.g., residue 259) and may take part in 

3.2.2 Example Maps 
for Docking a Peptide 
Containing the LXXLL Motif 
to PPARγ

Flexible Protein-Peptide Docking with CABS-Dock



Fig. 5 Protein-peptide contact maps from peptide-PPARγ docking. (a) Contact map for all 10,000 models. 
(b) Contact map for the models from cluster number 6 whose representative was the model best fitting the 
experimental structure. The columns represent amino acids of the receptor, and the rows are amino acids of 
the peptide. The residues reported in the literature to form the interaction site of the complex are marked in 
green. Contact frequencies are marked according to the color maps below each of the maps. The maps were 
divided into four elements for clarity of presentation
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intermediate complex formation while most of them are likely to 
be accidental. Although not all of the expected contacts were 
present in the resulting structures, it is clear that the most impor-
tant interactions are well preserved and visible in the models. It is 
also possible that further all-atom refinement of the complex 
structure may lead to enhancement of the interaction site details 
that are not clear in the CG representation (see Subheading 3.3 
below).

Finally, note that the contact map analysis of the folding and 
binding of a disordered peptide (simulated using CABS-dock 
methodology) has also been presented in [26].

Fig. 6 Histograms of protein-peptide contacts from peptide-PPARγ docking. 
The normalized histograms show frequencies of contact for each of the receptor 
residues with the peptide: (a) for all 10,000 models, (b) for the models from 
cluster 6 whose representative was the best fitting model. The green markers 
represent residues that were reported in the literature to form a pocket for the 
LXXLL- peptide motif on the surface of PPARγ

Flexible Protein-Peptide Docking with CABS-Dock
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It is expected that computational techniques will play an important 
role in the rational design of peptide therapeutics [3]. Peptides 
make very promising candidates for drugs as they can adopt mul-
tiple shapes and various chemical features through careful design. 
Moreover, the design and synthesis of peptide drugs is relatively 
simple, so large libraries of peptides may be easily scanned to look 
for optimal peptide design.

The CABS-dock server may be used as an initial docking tool in 
a multistage docking procedure. Perhaps the most straightforward 
CABS-dock application is to use it as a tool for determining the 
initial structure(s) of a protein-peptide complex that may be used as 
an input for further refinement by local docking methods [9–14]. 
As shown before on a large protein-peptide benchmark dataset [15, 
16], for the majority of cases CABS-dock produced models with 
high or medium accuracy (for example sufficient for structure refine-
ment by Rosetta FlexPepDock [10, 12]). Another conclusion from 
the benchmark analysis was that CABS-dock accuracy can be signifi-
cantly improved by its combination with exact scoring methods. By 
default, top-ranked models produced in the CABS-dock procedure 
are reconstructed to all-atom representation and refined using 
MODELLER [28] procedures and ranked by the DOPE score 
[29]. Since the reconstruction and the final all-atom refinement 
may significantly alter the quality of models, other techniques (bet-
ter suited for the reconstruction and optimization of CABS-dock 
coarse-grained models) may be highly useful.

Future CABS-dock improvements also include its integration 
with methods for the prediction of peptide binding-sites [5–8] or 
extending the CABS-dock functionality to user-guided docking 
(by providing a possibility of pointing residues that belong to the 
binding site). Narrowing the conformation space to the selected 
neighborhood should result in the better sampling of near-native 
states, and thus in increasing the chances for building high accu-
racy models. Virtually any structural information may be utilized 
by CABS-dock as distance restraints or filters. Therefore, CABS- 
dock is well suited to be integrated as an efficient sampling tool 
with computational pipelines for modeling protein-peptide inter-
actions, including methods for de novo peptide design [30, 31] or 
template-based docking [32].

Finally, CABS-dock could be used in hierarchical protein- 
protein docking protocols composed of three modeling steps:

 1. Reduction of the protein-protein docking problem to protein- 
peptide docking. This starts from the arbitrary selection of 
the receptor protein and bound protein, followed by the 
identification of “hot segment(s)” of the bound protein, i.e., 
a short epitope that contributes the most to the protein-pro-
tein interaction [33, 34].

 2. CABS-dock docking of “hot segment(s)” [33, 34], i.e., 
peptide(s).

3.3 CABS-Dock: 
Possible Applications 
and Future Advances
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 3. Reconstruction and adjustment of the remaining receptor 
structure to the docked peptide-like fragment.

Peptide-like “hot segment(s)” can be of various length and can 
represent more than one fragment of the original structure, pro-
vided that they can be realistically replaced by a continuous peptide 
chain. In the context of the potential application of CABS-dock in 
protein-protein docking described above, one can also easily design 
a simple sequential procedure for the efficient modeling of amyloid 
aggregation.

Except for using the web interface (available at http://biocomp.
chem.uw.edu.pl/CABSdock/), the CABS-dock server can also be 
operated from the command line or scripts using REST-full ser-
vice. This option is recommended for handling multiple jobs by 
users experienced in Bash and python scripting.

To submit a job for a chosen protein, e.g., 2GB1, and a peptide 
sequence, e.g., SFDG, with default parameters, the following com-
mand or python script should be run:

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
'{"receptor_pdb_code":"2GB1", "ligand_seq":"SFGD"}' 
 http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json 
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/' 
data = { 

"receptor_pdb_code": "2GB1", 
"ligand_seq": "SFGD", 

} 
response = requests.post(url, data=data)

The PDB file corresponding to "receptor_pdb_code" will be 
automatically downloaded from the PDB database. On success, a 
job identifier assigned to the submitted job “jid” will be returned. 
Jid will be used as a query for the job status and results later on. 
Otherwise, for example if the pdb code does not exist or input data 
do not fulfill requirements, error will be signaled.

Instead of the PDB code, a PDB file can be attached to the query 
in the following ways:

●● command line:

curl -X POST -F data='{"ligand_seq":"SFGD"}' -F  
file=@path_to_pdb_file.pdb  
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

3.4 Running 
CABS-Dock 
from the Command 
Line

3.4.1 Submitting a Job 
with the PDB Code 
of a Protein Receptor

3.4.2 Submitting a Job 
with a User- Provided PDB 
File

Flexible Protein-Peptide Docking with CABS-Dock
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●● python script:

import requests 
import json 
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/' 
files = {'file': open('path_to_pdb_file.pdb')} 
data = { 

"ligand_seq": "SFGD", 
} 
response = requests.post(url, files=files, data=data)

To override default parameters, additional options may be 
posted, i.e.,

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
'{"receptor_pdb_code":"2IV9", 
"ligand_seq":"SFGD","project_name":"my_project1", 
"email":"mail@host.com", 
"ligand_ss":"CCHHC", 
"simulation_cycles":"100", "show_job":True, 
"excluded_regions":[{"start":"100","end":"340","chain 
":"A"}], 
"flexible_regions":[{"start":"101","end":"202","chain": 
"B","flexibility":"full"}]}' 
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json 
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/' 
files = {'file': open('your_PDB_file.pdb')}
#or use PDB code in var data 
data = { 

"receptor_pdb_code": "2IV9",
#or use PDB file in var files 
"ligand_seq": "SFGD", 
"email": "mail@host.com", 
"show": True, 
"project_name":"my_project1", 
"excluded_regions":[ 

{ 
"start": "1000", 
"end": "2000", 
"chain": "A" 

} 
], 
"flexible_regions":[ 

{ 
"start": "101", 
"end": "202", 
"chain": "A", 
"flexibility": "full" 

}, 

3.4.3 Overriding Default 
Parameters
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{ 
"start": "300", 
"end": "370", 
"chain": "B", 
"flexibility": "moderate" 

}, 
] 

} 
#request with file 
response = requests.post(url, files=files, data=data)
#request without file
#response = requests.post(url, data=data)

 1. project_name—name of the project used for job identification, 
i.e., in the queue.

 2. email—email used to inform the user about job progress.
 3. ligand_ss—ligand secondary structure.
 4. simulation_cycles—number of simulation cycles: the default is 

100 and the maximum is 200.
 5. show_job—boolean value (True or False) indicating whether 

to show a job on the queue page.
 6. excluded_regions—array of excluded regions. Each excluded 

region represents a selected receptor residue that is unlikely to 
interact with the peptide and should contain the following 
fields: start position, end position, and chain

 7. flexible_regions—array of flexible regions. The flexibility of the 
region is changed by removing distance restraints that keep the 
receptor structure in a near native conformation. Each element 
of the array contains start position, end position, chain, and 
flexibility. Flexibility can be either full or moderate.

To check the status of a job, a job identifier (“jid”) should be 
provided:

●● command line:

curl -I 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/ 
status/somejobidentifier"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
status/somejobidentifier'
response = requests.post(url)
As a result, one of the following statuses will be returned:

●● done—job is finished and the results are ready.
●● pending/running/pre_quere—job is in progress.
●● error—the job identifier does not exist.

Additional Parameters 
Include

3.4.4 Getting Job Status

Flexible Protein-Peptide Docking with CABS-Dock
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More detailed information about the job can be obtained by 
running:

●● command line:

curl -I 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/job_
info/somejobidentifier"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
job_info/somejobidentifier' 
response = requests.post(url)

Additional information includes job configuration that was 
provided on submission and more details about the status. The fol-
lowing fields will be listed in the result:

 1. del—job results will be kept on the server until this date.
 2. excluded—list of excluded regions sent on job submission.
 3. flexible—list of flexible regions sent on job submission.
 4. ligand_sequence—ligand sequence sent on job submission.
 5. ligand_ss—ligand secondary structure sent on job 

submission.
 6. project_name—name assigned to the project on job submission.
 7. receptor_sequence—receptor sequence sent on job submission.
 8. ss_psipred—secondary structure predicted by psipred.
 9. status—one of the possible job statuses as described in the sec-

tion Getting job status.
 10. status_change—time of last status change.

Essential information for each model includes:

 1. Average RMSD.
 2. Max RMSD.
 3. Cluster density.
 4. Number of elements.
 5. Model data.
 6. Information about submitted data.

See the next chapter for more information.

3.4.5 Getting Job 
Results: Essential 
Information
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To obtain essential information, the job identifier (“jid”) must 
be provided:

●● command line:

curl -i 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
job/somejobidentifier"

We strongly recommend that curl with compression should 
be sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
job/somejobidentifier"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier' 
response = requests.post(url)

Optional parameters for filtering the results can be attached to 
the query. The parameters must specify the attribute used for filtering 
(“value”) and the allowed range of values for the attribute (“min” 
and “max”). The following attributes can be used for filtering:

 1. density—cluster density.
 2. rmsd—average RMSD.
 3. maxrmsd—maximum RMSD.
 4. counts—number of elements in a cluster.

Exemplary use of filtering:

●● command line:

curl -i -X POST -d '{"filter":"density","min":
"10","max":"20"}' 
"http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier'
data = { 

"value":"rmsd", 
"min":"5", 
"max":"12" 
} 

response = requests.post(url, data=data)

Flexible Protein-Peptide Docking with CABS-Dock
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All information for each model includes:

 1. Average RMSD.
 2. Max RMSD.
 3. Cluster density.
 4. Number of elements.
 5. Model data.
 6. Information about submitted data.

and additionally:
 1. Cluster data.

To get cluster data or trajectory data, see the next sections.
To obtain all information, the job identifier (“jid”) must be 

provided:

●● command line:

curl -i  
"http://biocomp.chem.uw.edu.pl/CABSdock/
REST/get_job_all/somejobidentifier"

We strongly recommend that curl with compression should be 
sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
"http://biocomp.chem.uw.edu.pl/CABSdock/REST/ 
get_job_all/somejobidentifier"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job_all/somejobidentifier' 
response = requests.post(url)

Additional filtering can be applied to the query as described in 
the previous section.

To get information about a chosen cluster, the job identifier 
together with the cluster number corresponding to the model 
number should be submitted:

●● command line:

curl -i 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
cluster/somejobidentifier/clusterNumber"

We strongly recommend that curl with compression should be 
sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
cluster/somejobidentifier/clusterNumber"

3.4.6 Getting Job 
Results: All Information

3.4.7 Getting Cluster 
Information
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●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_cluster/somejobidentifier/clusterNumber' 
response = requests.post(url)

The cluster number must be in the range [1, 10]. As a result, 
cluster data and additional information about the cluster (average 
and maximum RMSD, cluster density, and number of elements) 
will be returned.

Trajectory data can be obtained by sending a query with the 
attached job identifier and model number in the range [1, 10]:

●● command line:

curl -i 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber"

We strongly recommend that curl with compression should 
be sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber' 
response = requests.post(url)

Additionally, a section of the trajectory model can be selected by:

●● command line:

curl -i 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
selected_trajectory/somejobidentifier/modelNumber/
start/end"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_selected_trajectory/somejobidentifier/modelNum-
ber/start/end' 
response = requests.post(url)

3.4.8 Getting Trajectory 
Information
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Example 1 (default settings)
The first example shows how to submit a job with the following 

data:

●● Peptide sequence: SSRFESLFAG.
●● Peptide secondary structure: CHHHHHHHHC.
●● Receptor input structure: PDB ID, 2 AM9, crystal structure of 

the human androgen receptor in the unbound form.

and the default CABS-dock server settings.

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
 '{"receptor_pdb_code":"2 AM9", "ligand_seq":"SSRFESLFAG", 
"ligand_ss":"CHHHHHHHHC"}' 
 "http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_
job/"

●● python script:

import requests 
import json 
 url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/' 
data = { 

"receptor_pdb_code": "2 AM9" 
"ligand_seq": "SSRFESLFAG", 
"ligand_ss": "CHHHHHHHHC" 

} 
response = requests.post(url, data=data)

Example 2 (increasing the flexibility of selected receptor 
fragments)

The second example shows how to increase the flexibility of 
selected receptor fragments.

For each selected residue, one of two settings of flexibility (mod-
erate or full) can be set. Technically, this is achieved by changing the 
default distance restraints used to keep the receptor structure near to 
the input conformation. The assignment of moderate flexibility 
decreases the strength of restrains, while full flexibility assignment 
removes all the restraints imposed on the selected residue.

Data used in the example:

 1. Peptide sequence: HPQFEK.
 2. Peptide secondary structure: CHHHCC.
 3. Receptor input structure: PDB ID: 2RTM, crystal structure of 

biotin binding protein in the unbound form.

Additional options:

 1. Using the CABS-dock “Mark flexible regions” option, ten 
residues (45–54) forming the flexible loop are selected and the 
fully flexible setting is assigned to those residues.

3.4.9 Examples
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Important: Numbering in the PDB format must be used.

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
'{"receptor_pdb_code":"2RTM", "ligand_seq":"HPQFEK", 
"ligand_ss":"CHHHCC", "flexible_regions":[{"start"
:"45","end":"54","chain": "A","flexibility":"full"}]}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json  
url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/' 
data = { 

"receptor_pdb_code": "2RTM" 
"ligand_seq": "HPQFEK", 
"ligand_ss": "CHHHCC" 
"flexible_regions":[ 

{ 
"start": "45", 
"end": "54", 
"chain": "A", 
"flexibility": "full" 

} 
] 

} 
response = requests.post(url, data=data) 
print response.text

Example 3 (excluding binding modes from docking search)
The third example focuses on excluding binding modes form 

docking search. In the default mode, CABS-dock allows peptides 
to explore the entire receptor surface. However, in certain model-
ing cases it is known that some parts of the protein are not acces-
sible (for example due to binding to other proteins) and therefore 
it could be useful to exclude these regions from the search.

Data used in the example:

 1. Peptide sequence: PQQATDD.
 2. Peptide secondary structure: CEECCCC.
 3. Receptor input structure: PDB ID: 1CZY:C, tumor necrosis 

factor receptor associated protein 2 in the unbound form.

Additional options:

 1. 1CZY protein is a trimer and 1CZY:C forms contacts with 
1CZY:A (according to the http://ligin.weizmann.ac.il/cma/ 
server for the analysis of protein-protein interfaces). Therefore, 
the residues in the C chain (the input protein) listed above 
which are responsible for contacts with A and B chains can be 

Flexible Protein-Peptide Docking with CABS-Dock
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excluded from the docking search using the CABS-dock 
“Exclude regions” option.

●● command line:

 curl -H "Content-Type: application/json" -X POST -d 
 '{"receptor_pdb_code":"1CZY:C", "ligand_seq":"PQQATDD", 
"ligand_ss":"CEECCCC", "excluded_regions":[ 
{"start":"334","end":"335","chain":"C"}, 
{"start":"338","end":"338","chain":"C"}, 
{"start":"341","end":"342","chain":"C"}, 
{"start":"345","end":"345","chain":"C"}, 
{"start":"350","end":"350","chain":"C"}, 
{"start":"385","end":"386","chain":"C"}, 
{"start":"416","end":"418","chain":"C"}, 
{"start":"420","end":"421","chain":"C"}, 
{"start":"458","end":"458","chain":"C"} ]}' 
 http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json  
url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/' 
files = {'file': open('your_PDB_file.pdb')} 
#or use PDB code in var data 
data = { 

"receptor_pdb_code": "1CZY:C" 
"ligand_seq": "PQQATDD", 
"ligand_ss": "CEECCCC" 
"excluded_regions":[ 

{ 
"start": "334", 
"end": "335", 
"chain": "C", 

}, 
{ 

"start": "338", 
"end": "338", 
"chain": "C", 

}, 
{ 

"start": "341", 
"end": "342", 
"chain": "C", 

}, 
{ 

"start": "345", 
"end": "345", 
"chain": "C", 

}, 
{ 

"start": "350", 
"end": "350", 
"chain": "C", 

}, 
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{ 
"start": "385", 
"end": "386", 
"chain": "C", 

}, 
{ 

"start": "416", 
"end": "418", 
"chain": "C", 

}, 
{ 

"start": "420", 
"end": "421", 
"chain": "C", 

}, 
{ 

"start": "458", 
"end": "458", 
"chain": "C", 

} 
] 
}  

response = requests.post(url, data=data)

4 Notes

 1. The CABS-dock server requires a user-provided protein recep-
tor structure in the PDB format or the PDB code of the recep-
tor (the file will be automatically downloaded to the server 
from the PDB database). The chain of the protein receptor 
must be shorter than 500 amino acids. The backbone must be 
complete; however side chain atoms may be missing. Any non-
standard amino acids in the protein receptor will be changed to 
their standard counterparts.

 2. The peptide sequence input must be 4–30 amino acids in length 
and consist of standard amino acids only. It is also possible to 
provide the secondary structure of the peptide in the standard 
one-letter code (C—coil, H—helix, E—extended) using the 
“Optional” tab (if not, the secondary structure will be predicted 
with PsiPred). The structure may be experimentally derived or 
based on any sequence-based prediction method. Please note 
that “overprediction” of regular structures (H, E) was shown to 
be more likely to give incorrect results of docking than their 
underprediction. If the secondary structure is not known, it is 
better to supply it as a list of “C” (coil assignments). More 
information on how the secondary structure information is 
used in the simulations is provided in reference [35].

 3. On top of standard input settings the CABS-dock server pro-
vides an advanced input panel that enables additional features to 
tailor simulation conditions to the user’s needs. These features 

Flexible Protein-Peptide Docking with CABS-Dock
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include: (a) Custom adjusted run time: the user is allowed to 
lengthen the simulation run time, which may save time in case of 
small complexes or lead to better results for large complexes, 
where the standard setting may be insufficient to cover the whole 
conformational space. (b) Selection of flexible regions of the 
receptor: the user may mark some of the residues of the receptor 
to be granted more conformational flexibility than in the stan-
dard settings. By default receptor residues are flexible, but lim-
ited to only near-native conformations, which is suitable for 
most docking applications. Additional flexibility may be adjusted 
to semi- or full flexible to model more accurately regions believed 
to change their conformation on peptide binding. (c) Exclusion 
from sampling the receptor regions unlikely to be involved in 
peptide binding: the user may select some of the receptor resi-
dues believed not to take part in peptide binding. This feature is 
useful when the receptor molecule contains more than one 
binding spot and only one needs to be investigated (i.e., in 
receptors containing dimerization sites) or when part of the 
receptor is inaccessible to the peptide in vivo (i.e., receptors 
embedded in the membrane). Illustrative examples of using 
these advanced features are provided in [16].

 4. All CABS-dock results can be downloaded in a single ZIP 
archive file available from the “Docking predictions results” 
tab. The ZIP archive file contains the simulation trajectories, 
clusters of models, and the top-ranked models (representatives 
of the clusters). All the provided structures are in PDB format 
files and the top-ranked models are provided in all-atom reso-
lution. The trajectories and cluster model coordinates are pro-
vided in C-alpha representation only. The ZIP archive also 
contains simulation contact maps (discussed in Subheading 3.2).

 5. The contact maps are stored as PNG figures and MAP files. The 
MAP file is a text file (txt) that consists of three columns: the 
first two list the residues of the protein receptor and the 
peptide, respectively. In each row, the third column gives the 
frequency of the contact between the residues in the first two 
columns. An example fragment of a MAP file format is pre-
sented below:
…
A224 C7 0.0117647
A224 C8 0.0117647
A224 C9 0
A225 C1 0
A225 C10 0.0117647
A225 C2 0
A225 C3 0
A225 C4 0

Maciej Paweł Ciemny et al.
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A225 C5 0
A225 C6 0
A225 C7 0.0117647
…

Each of the residues in the receptor protein is paired with 
each residue of the peptide, so the number of rows in the file is 
(number of protein residues) × (number of peptide residues).
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Chapter 7

AnchorDock for Blind Flexible Docking  
of Peptides to Proteins

Michal Slutzki, Avraham Ben-Shimon, and Masha Y. Niv

Abstract

Due to increasing interest in peptides as signaling modulators and drug candidates, several methods for 
peptide docking to their target proteins are under active development. The “blind” docking problem, 
where the peptide-binding site on the protein surface is unknown, presents one of the current challenges 
in the field. AnchorDock protocol was developed by Ben-Shimon and Niv to address this challenge.

This protocol narrows the docking search to the most relevant parts of the conformational space. This 
is achieved by pre-folding the free peptide and by computationally detecting anchoring spots on the sur-
face of the unbound protein. Multiple flexible simulated annealing molecular dynamics (SAMD) simula-
tions are subsequently carried out, starting from pre-folded peptide conformations, constrained to the 
various precomputed anchoring spots.

Here, AnchorDock is demonstrated using two known protein-peptide complexes. A PDZ-peptide 
complex provides a relatively easy case due to the relatively small size of the protein, and a typical peptide 
conformation and binding region; a more challenging example is a complex between USP7N-term and a 
p53-derived peptide, where the protein is larger, and the peptide conformation and a binding site are 
generally assumed to be unknown. AnchorDock returned native-like solutions ranked first and third for 
the PDZ and USP7 complexes, respectively. We describe the procedure step by step and discuss possible 
modifications where applicable.

Key words Peptide folding, Peptide docking, Binding site prediction, Anchors, Surface mapping, 
Simulated annealing molecular dynamics

1 Introduction

Protein-peptide interactions occur widely in nature: peptides bind 
to proteins and exert different biological effects. Peptides act as 
hormones [1, 2], neurotransmitters [2, 3], various bioactives from 
food [4], antibacterial agents [5] and more. Furthermore, peptides 
can be also rationally designed with the goal of modulating protein- 
protein interactions [6, 7]. In recent years, peptides are increas-
ingly used for therapeutic purposes [8–10]. In 2015, there were 
about 140 FDA-approved peptidic drugs on the market, with 
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 hundreds more under development [8]. These peptides vary in 
length (from a few to above 40 amino acids) and in indications, 
which include short bowel syndrome, Cushing's disease, and some 
types of cancer [10].

Low oral bioavailability and poor metabolic stability are some 
of the peptides’ disadvantages, but these are counterbalanced by 
the straightforward and relatively inexpensive synthesis, and pep-
tides’ ability to bind to interfaces not easily targeted by small mol-
ecules, potentially achieving higher specificity [9]. Thus, peptides 
provide novel opportunities for alternative or complementary drug 
design strategies to those pursued by the design of small molecule 
drugs. Specifically, protein-like “building blocks” make naturally 
occurring and synthetic peptides particularly suitable to modulate 
protein-protein interactions. Lack of structural data on protein- 
peptide complexes calls for advanced modeling approaches. 
However, state-of-the-art docking tools designed for small mole-
cules are not well suited even for short peptides [11]. Due to a 
large number of rotatable bonds in peptides and the flatter binding 
sites compared to binding pockets for small molecules, specialized 
peptide docking tools are required.

Indeed, multiple peptide docking methods have been recently 
developed. Some of these methods are mainly geared toward refine-
ment of an initial pose (such as Rosetta FlexPepDock [12–15], 
PepCrawler [16], and HADDOCK [17, 18]). Other methods are 
knowledge-based, namely, use structurally analogous peptide- protein 
complexes (i.e., GalaxyPepDock [19]) or experimentally known 
interactions between part of the peptide and the protein (i.e., PDZ 
domain-binding proteins [20] and MHC peptides [21, 22]). 
The most difficult methodological challenge is that of a “blind” 
docking approach, when no prior knowledge of the binding site is 
used. This was recently tackled by CABS-dock [23], pepATTRACT 
[24], and AnchorDock [25], which will be described below.

Previously, SAMD simulations starting from an extended 
peptide conformation and using a single knowledge-based con-
straint regarding C-terminus location of the peptide were success-
fully applied to PDZ domains [20]. To generalize the method, 
namely—to overcome the need for knowledge-based input, the 
AnchorDock protocol was developed [25]. AnchorDock allows 
protein and peptide flexibility and uses the ANCHORSmap 
algorithm [26] to locate possible binding positions of individual 
peptide residues on the protein. These positions are used to reduce 
the SAMD conformational search, as the pre-folded peptides 
conformations are tethered to these anchors via constraints.

AnchorDock was previously used to dock peptides into 13 
unbound proteins (also available in their bound state) for valida-
tion purposes [25]. In ten cases, the method yielded solutions with 
backbone (bb) RMSD below 2.2 Å, and in nine of those, the best 
solution was ranked among the top 10. In round 29 of CAPRI 
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(A Critical Assessment of Predicted Interaction [27]), AnchorDock 
was the only method that provided an acceptable model for 
target T65 [25].

Our goal here is to demonstrate step-by-step usage of the 
AnchorDock protocol. We do so by presenting two illustrative 
cases of protein—peptide docking, starting from the unbound pro-
tein conformation, and the amino acid sequence of the peptide 
(Table 1). The first case is an interaction between the PDZ domain 
of Tax-Interacting Protein-1 (TIP-1) and its peptidic inhibitor 
(PDB_ID 4NNM). TIP-1 is a human protein, composed of a sin-
gle PDZ domain. It is found in the brain in asterocytes and neu-
rons and is involved in cystic fibrosis disease. In the complex we 
model in this chapter, TIP-1 interacts with its inhibitory peptide, 
which was designed based on the C-terminus of its naturally bind-
ing partner, CAL (CFTR—Cystic Fibrosis Transmembrane con-
ductance Regulator Associated Ligand) [24, 29]. We chose this 
example for demonstration purposes because it belongs to the 
large and important family of PDZ domains which is known to 
interact with many different peptides through a carboxylic termini- 
mediated interaction [30, 31]. We have studied PDZ domains 
before [20, 30, 32] and have successfully docked peptides to other 
members of the PDZ domain family using the specialized PDZ- 
DocScheme [20] and the general AnchorDock protocol [25]. 
The second example we chose for illustrating the AnchorDock 
protocol is somewhat more challenging—the complex between the 
N-terminal domain of USP7 and a p53-derived peptide [28], a 
larger protein target with the main direct contact to the peptide’s 
sidechain made by a C-terminal serine.

2 Materials

 1. GROMACS version 4.5.5 [33]—a molecular dynamics package 
for simulation of macromolecules.

 2. PyMol version 1.3—a molecular visualization software that is 
used in this protocol to remove hydrogens and to calculate 
RMSD between a docking solution and a native structure.

2.1 Software

Table 1  
Protein-peptide complexes used for demonstration of the protocol

Case Name
PDB 
complex

PDB 
apo

Peptide 
sequence

Protein 
size in AAs

1 Tax-Interacting Protein-1 (TIP-1) PDZ domain and 
Y-iCAL36 peptide

4NNM 2VZ5 YPTSII 102

2 USP7 and p53-derived peptide [28] 2FOJ 2F1W GARAHSS 138

Anchor-Driven Blind Docking  
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 3. DeepView—Swiss-PdbViewer v4.1.0 http://www.expasy.
org/spdbv/ [34]—a molecular visualization software that is 
used in the protocol to fill the missing sidechains atoms. Freely 
available.

 4. Maestro 10.2 (Schrodinger LLC.)—a molecular modeling 
environment that was used for data analysis, visualizations, and 
figures preparation.

A computer cluster that contains 128 processors, in a Sun Greed 
Engene (SGE), was used for the calculations [8]. Short calculations 
such as file preparations, peptide rotations, anchors calculations, and 
clustering were performed on single processors (8 CPUs), while 
folding and docking were calculated in parallel in the SGE queue.

The amino acid sequence of the peptide is used. AnchorDock was 
tested on peptides smaller than 14 amino acids [25]. Peptide 
sequences used in this protocol appear in Table 1.

We use the ANCHORSmap protocol [26], developed in the lab of 
Dr. Miriam Eisenstein at the Weizmann Institute of Science, Israel, 
to find putative anchoring spots, representing possible interaction 
sites between a peptide (as an anchor) and a protein (as anchor- 
surrounding residues on the protein surface). In this protocol, a 
protein can be introduced by several conformations according to a 
multiple protein conformation approach (MPCA). The method 
first detects local surface minima (LSM) and distributes probes for 
amino acids in the vicinity of each LSM, then applies simultaneous 
minimization (SM) and clusters spatially adjacent probes. Free 
energy of the probes is calculated with correction for dielectric 
shielding (to represent the effect created by the rest of the peptide 
behind the probe) in the electrostatic energy term. Finally, probes 
for all protein conformations are averaged into one set of anchors, 
which are then ranked according to their energy-based score. 
Twelve percent of the highest scored anchors are used as input for 
AnchorDock.

3 Methods

The steps of the AnchorDock protocol are illustrated for two 
protein- peptide complexes that are listed in Table 1.

 1. Peptide preparation for docking:
(a) The extended form of the peptide is generated using 

Maestro or PyMol (see Note 1). Specifically, we created the 
extended structure of YPTSII and of GARAHSS.

(b) Simulated Annealing Molecular Dynamics (SAMD) is per-
formed in GROMACS to produce peptide conformations 

2.2 Hardware

2.3 Peptide 
Sequences

2.4 ANCHORSmap

Michal Slutzki et al.
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in the unbound state. See parameters of the molecular 
dynamics simulation in Table 2. The annealing protocol is 
repeated 25 times the number of residues in the peptide.

(c) The snapshots, collected every 1 ps from all trajectories 
at the temperature range between 285 and 295 K, are 
clustered according to backbone RMSD using the gro-
mos clustering algorithm [36], and ranked based on the 
average energy of the 15 lowest energy structures in the 
cluster.

(d) The second best scoring conformation, shown to be a 
preferable starting conformation [25], is used as input for 

Table 2  
Parameters for molecular dynamics for different stages of the protocol

Peptide folding
Receptor 
conformations

First cycle of 
docking

Second cycle of 
docking

Force field AMBER96

Implicit solvent GBSA, OBC

Thermostat V-rescale

PBS No

Distance restraint 
potential

Low = 0, low1 = 0.5 
up2 = 1.5 fac = 10

Low = 0, low1 = 0.15, up2 = 1.5,
fac = 250

Minimization Conjugate gradient

Maximal force 1.0 kJ/mol

Max. steps 20,000 5000 5000 5000

Write every 10 steps

SAMD
Integration time step

5 fs

Write every 200 steps

VDW and 
electrostatic cutoff

0 nm 1.5 nm 1.8 nm

Annealing times, ps Peptide size 
dependent, 
calculated as in 
Figure S4 in [25]

0, 70, 215, 
225, 250

0, 100, 250, 350, 
500, 580, 680, 
690, 700, 750

0, 5, 80, 205, 250, 
320, 455, 500, 
570, 705, 750, 
820, 955, 1000

Annealing 
temperatures, K

290, 450, 275, 
290, 290

275, 600, 275, 
550, 275, 500, 
275, 275, 290, 
290

290, 209, 450, 290, 
290, 600, 290, 
290, 550, 290, 
290, 500, 290, 290

Snapshot frequency 1 ps 0.5 ps 0.5 ps 0.5 ps

PBC periodic boundary conditions, OBC Onufriev-Bashford-Case method for Born radii [35], SAMD simulated 
annealing molecular dynamics

Anchor-Driven Blind Docking  
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docking (see Note 2). The conformations used for our 
example calculations are shown in Fig. 1.

 2. Protein preparation for docking:
(a) The unbound structure of the protein is downloaded from 

the Protein Data Bank (PDB_ID 2VZ5 and 2F1W for 
cases 1 and 2, respectively). It is possible to use a homol-
ogy model (as was successfully done by the related PDZ-
DockScheme [20], but has not been evaluated for 
AnchorDock). No hydrogens should be included since 
they are introduced by GROMACS through virtual hydro-
gen representation.

(b) Heteroatoms and water molecules are removed using 
PyMol, Maestro, or other structure visualization soft-
ware. The 2VZ5.pdb file contains also anisotropic tem-
perature factors for some atoms, which should be removed 
as well.

(c) Missing sidechains atoms are added (with Swiss- PdbViewer, 
for example).

(d) N- and C- termini of the protein can be defined as frozen 
(not allowed to move during the simulation). If there is a 
missing segment in the protein, the atoms before and after 
the missing segment should be frozen as well (see Note 3).

Fig. 1 The second conformation of unbound peptide as modeled using 
AnchorDock peptide structure prediction protocol (end of stage 1). (a) Inhibitory 
peptide based on CAL (case 1); (b) p53 fragment (case 2). These conformations 
were used as input for the peptide docking protocol. The bound peptide confor-
mations are shown in black

Michal Slutzki et al.
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 3. The files are converted into GROMACS formats .gro and .itp, 
for structure and topology representations, respectively. 
Protonation state of peptide histidines can be defined at this 
stage [37]. For case 2 peptide, the δ-nitrogen protonation 
(HID) was used.

 4. Protein/peptide flexibility is defined as follows: all atoms in 
the protein (defined by shell radius of 250–400 Å to cover 
entire mid-size proteins) are allowed to move freely, except 
backbone nitrogens that can move in a radius of 1.5 Å and are 
constrained by a distance restraint potential at further distances 
(Table 2).

 5. Multiple conformations of the protein:
(a) The unbound protein is simulated for 1 ns, using SAMD 

parameters detailed in Table 2.
(b) The 0.5 ps snapshot conformations obtained in 5a are 

clustered. The goal is to obtain 3–4 clusters, each contain-
ing at least 15 structures. To this end, the RMSD cutoff 
can usually be set to 0.6–0.8 Å. The variability between 
different conformations in the test case examples is illus-
trated in Fig. 2.

 6. Protein conformations from step 5 are subjected to the 
ANCHORSmap protocol [26] to obtain an anchors list (see 
Note 4): The appropriate probe for each residue in the peptide 
sequence is selected from 14 anchor probes available in 
ANCHORSmap: Arg, Ile, His, Asp, Tyr, Trp, Lys, Gln, Phe, 
Leu, Asn, Met, Val, and Glu (see Note 5). In addition to the 

Fig. 2 Receptor conformations. For each receptor, the unbound conformation is in gray and four additional 
fluctuating conformations are presented as cartoons and as sticks (a) TIP-1 (case 1) in green; (b) N-term 
domain of USP7 (case 2) in blue

Anchor-Driven Blind Docking  
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peptide side chains, peptide termini should be represented. 
The carboxylic group at the C-terminus of the peptide is 
known to play an important role in many interactions and can 
be modeled by an Asp probe (e.g., in PDZ domains, as in our 
case 1). In our calculations, we did not use any probe for the 
N- terminus, but it can be approximately modeled using Asn 
probe. For case 1 we used Tyr, Val, Asn, Ile, and Asp probes 
and for case 2 we used Val, Arg, His, Asn, and Asp probes. 
In Fig. 3 the anchors for each case protein are demonstrated. 
See also Note 6.

At this point, the following are available: protein 
structure(s), peptide conformation(s) (see Note 2), and a list 
of anchors. When the goal is evaluation of protocol perfor-
mance, peptide pose from a known complex structure should 
be available as well.

 7. Rotations of the peptide around each anchor: for each anchor 
spot, each conformation of the peptide is placed 5 Å from the 
anchor. AnchorDock creates copies of the peptide rotated 
around the axes by increments of 36°; one axis is determined 
as the normal from the anchoring spot toward a centroid of the 
protein and the other is the peptide normal from the atom that 
fits the anchor spot to the centroid of the peptide (see Note 7).

 8. To obtain a reduced number of productive peptide conforma-
tions and orientations from those generated in step 7, a short 
and crude anchor-driven cycle of docking is performed:
(a) The above peptide rotations for each anchor are used as 

initial positions for 0.75 ns SAMD with parameters 
summarized in Table 2. The protein is flexible as described 

Fig. 3 Anchors on (a) TIP-1 (case 1); (b) N-term domain of USP7 (case 2). The anchors are colored according 
to their properties as detailed in the figure
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in step 4. The anchor residue of the peptide is constrained 
to the anchoring spot by energy penalty applied at dis-
tances larger than 5 Å.

(b) The snapshots are collected from the last 50 ps of all trajec-
tories in temperature range of 285–295 K and are clus-
tered using the gromos clustering algorithm [36]. Only 
clusters containing at least 15 structures are used for fur-
ther analysis. An RMSD matrix is built with a cutoff of 
2.5 Å. An energy- based score is calculated to rank the clus-
ters: the central solution of each cluster is selected as a 
representative structure and is assigned the energy average 
of the 15 lowest energy solutions of the cluster.

(c) The number of peptide conformations (Npeptide confs) used in 
the simulation, the length of the proteins (Naa), and the 
number of anchors (Nanchors) determine the number of con-
formations (Nsm) that enter the refinement stage.

 

N N N

N N
N

conf anchors peptide confs

sm conf
aa

rotations= ´ ´

= ´
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In our illustrative examples, we used 26 initial structures of 
2VZ5/YPTSII and 32 of 2F1W/GARAHSS for the refine-
ment stage of SAMD (stage 9).

 9. Refinement SAMD simulation:
(a) A 5 ns long SAMD simulation is applied with parameters 

as presented in Table 2, repeating the simulation annealing 
protocol 5 times. Flexibility and constraints are defined as 
in step 8a.

(b) All snapshots are collected and clustered as described in 
step 8b, but omitting the first 70 ps for each trajectory 
and using an RMSD matrix cutoff of 2.0 Å. See Note 8.

10. Results are analyzed and can be compared to the experimental 
structure (when available, as in our examples):
(a) The reference complex and the docking solutions are rep-

resented in Maestro (or another molecular visualization 
environment).

(b) The proteins in the reference structure and the model are 
aligned using structural alignment option in Maestro.

(c) Heavy atom RMSD between the reference and the docked 
peptide conformations are calculated.
Figure 4 presents the high-scored native-like solutions for 

both test cases. The top-ranked solution for case 1 (PDZ 
domain/YPTSII) has low RMSD. In the more challenging 
case 2 (USP7/GARASS), a native-like solution was ranked 
third (Table 3).
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Fig. 4 Docking solution. (a) TIP-1 with its peptide inhibitor (case 1); (b) N-terminal domain of USP7 with p53 
fragment (case 2); (c) bb-RMSD vs. energy plots (the right for case 1 and the left for case 2). Three best-scored 
solutions are colored red

Table 3  
Quality of the native-like solution of the AnchorDock protocol

Case Name
PDB 
complex

PDB 
apo

Peptide 
sequence

Protein 
Size

Native-like solution

Rank
Heavy atom 
RMSDa

1 Tax-Interacting Protein-1 
(TIP-1) PDZ domain and 
Y-iCAL36 peptide

4NNM 2VZ5 YPTSII 102 1 1.3 (45 atoms)

2 USP7 and p53-derived 
peptide [28]

2FOJ 2F1W GARAHSS 138 3 2.1 (46 atoms)

aCalculated in PyMol
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In summary, prediction of peptide-protein interaction with 
the AnchorDock protocol was illustrated step by step, resulting in 
excellent solutions for blind docking to unbound proteins. The 
protocol and possible variations (discussed in Notes 2, 4 and 9 
below) are summarized in Fig. 5.

4 Notes

 1. It is important to verify that the termini of the peptide are 
represented correctly. Specifically, the carboxylic terminus of 
the peptide mediates many important interactions (e.g., in 
peptide binding to PDZ domains).

 2. At least one input conformation of the peptide is needed. It can 
be either a pre-folded conformation as discussed here, or an 
extended one. Alternatively, a structure of the sequence cor-
responding to the sequence of the peptide can be extracted 
from the PDB (Fig. 5). From our experience, the conforma-
tion that was scored second in the peptide folding leads to 
better prediction results than the top-scoring conformation 
[25]. In the examples used in this chapter (Table 1), using the 
first conformation produced very similar results for the PDZ 
domain case, but higher RMSD (2.4) and lower rank (4) than 
the second conformation (RMSD 2.1 ranked 3) for USP7/
p53 case.

Fig. 5 AnchorDock protocol for anchor-driven simulated annealing demonstrated for the PDZ-domain case. 
Alternative options for different parts of the protocol are written in gray
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 3. If the protein contains unstructured regions that are known 
to be irrelevant to interactions with the peptide, they can be 
deleted.

 4. An important advantage of ANCHORSmap [26] is that it 
searches sites on the protein surface that are specific for the 
peptide sequence. However, other predictions of possible 
 binding sites (i.e., [38–40]) may be considered. For example, 
PeptiMap [41] predicts binding sites using small molecule 
probes. Knowledge-based anchors can be used as well.

 5. For Ala, Cys, Ser, Thr, Pro, and Gly, no probes are available in 
ANCHORSmap [26]. Val probe may be used for Pro and Ala; 
Met probe may be used for Cys. Ser and Thr can be represented 
by Asn probe [26] (as was done here for case 2).

 6. The initial position of anchors does not have to be exact, since 
during both stages of docking the peptide can move toward its 
optimal position within a radius of 5–6 Å.

 7. If the binding pocket is deep and peptide rotation results in 
clashes with the protein, optimize the protocol for producing 
initial rotations:
(a) Increase the number of starting peptide conformations.
(b) Use a finer rotation grid.
(c) Reduce the radius of the sphere for mass center calculation 

(e.g., 6 Å instead of 10 Å).
(d) Decrease the distance from the anchor of the peptide start-

ing position (e.g., 3 Å instead of 5 Å).
(e) Of course, in some of these cases (such as (a) and (b)) the 

new calculation will be computationally more costly.
 8. It is possible to use another cycle of SAMD for further 

refinement with parameters similar to those of second cycle of 
docking in Table 2.

 9. Alternatively to SAMD, a replica exchange molecular dynamics 
(REMD) protocol can be used to improve sampling further 
[42, 43].
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Chapter 8

Information-Driven, Ensemble Flexible Peptide Docking 
Using HADDOCK

Cunliang Geng*, Siddarth Narasimhan*, João P.G.L.M. Rodrigues, 
and Alexandre M.J.J. Bonvin

Abstract

Modeling protein-peptide interactions remains a significant challenge for docking programs due to the 
inherent highly flexible nature of peptides, which often adopt different conformations whether in their free 
or bound forms. We present here a protocol consisting of a hybrid approach, combining the most fre-
quently found peptide conformations in complexes with representative conformations taken from molecu-
lar dynamics simulations of the free peptide. This approach intends to broaden the range of conformations 
sampled during docking. The resulting ensemble of conformations is used as a starting point for informa-
tion-driven flexible docking with HADDOCK. We demonstrate the performance of this protocol on six 
cases of increasing difficulty, taken from a protein-peptide benchmark set. In each case, we use knowledge 
of the binding site on the receptor to drive the docking process. In the majority of cases where MD con-
formations are added to the starting ensemble for docking, we observe an improvement in the quality of 
the resulting models.

Key words Protein-peptide docking, Flexibility, Information-driven docking, Ensemble docking, 
HADDOCK, Molecular dynamics simulations

1 Introduction

Peptides are receiving an increasing level of attention from the 
wider biological and pharmaceutical communities owing to an 
incre ase in the number of peptide-based drugs and therapeutics 
entering the market [1, 2]. Despite their importance, there is much 
to be learned about the structural and dynamical properties of 
peptides, in particular in the context of their interactions with 
other biomolecules. The binding partner that peptides associate 
with often plays an important role in restricting/defining their 
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conformational space. Many peptides are known to exist in an 
intrinsically disordered state, meaning they lack a well-defined and 
stable folded form on the time scales that are available to experi-
mental methods in structural biology. As a consequence, the struc-
tures of peptides are mostly known in the context of their protein 
receptors, which adds to the challenge of predicting in silico, the 
structure of these interactions.

The two most common thermodynamic models often used to 
describe biomolecular recognition and binding processes are 
induced fit [3, 4] and conformational selection [5–7]. These mod-
els were formulated based on observations from classical titration- 
like experiments, aimed at studying the manner in which an 
estimated equilibrium is achieved upon addition of a binding part-
ner [8]. From a structural perspective, the induced fit model can be 
explained as a binding mechanism where the partners induce con-
formational changes on each other during complex formation. The 
conformational selection mechanism, on the other hand, predicts 
bound conformations are sampled naturally by the free molecules, 
i.e., without induction by the partner, and that partners merely 
select the most favorable conformation for binding (minor struc-
tural changes, such as side-chain re-orientation, may still occur 
upon binding).

A combination of the aforementioned mechanisms has been 
exploited previously to design a protocol for information-driven 
protein-peptide docking using HADDOCK [9]. Briefly, this proto-
col uses an ensemble of starting conformations for the peptide 
(alpha-helix, polyproline-II, and extended) that represent “ideal” 
conformational states of a given peptide and have been shown to 
feature in a large fraction of the protein-peptide interactions depos-
ited in the Protein Data Bank (PDB) [10]. This ensemble is then 
docked onto the receptor structure through restraints-guided rigid-
body energy minimization, and then a fraction of the models is fur-
ther optimized in successive flexible refinement stages. The flexibility 
of the peptide is also increased compared to default HADDOCK 
settings. The scoring function of HADDOCK selects, at each stage, 
the most favored conformations, i.e., those showing the most favor-
able interaction with the receptor based on a set of energy criteria. 
This protocol thus computationally approximates a combination of 
the induced fit and conformational selection models.

In the protocol presented here, we suggest a way to further 
improve our published protein-peptide docking protocol of 
HADDOCK by focusing more on the fact that peptides are inher-
ently flexible. In addition to the three most common bound con-
formations, we use short MD simulations of the peptides, starting 
from the three conformations mentioned above, to obtain more 
detailed information on the conformational landscape of the free 
peptide. Structures selected from the MD simulations that corre-
spond to different preferred conformational states of the free 
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peptide supplement the three ideal structures to perform ensemble 
docking. Thereby, we aim at improving the conformational selection 
scheme in the rigid body docking stage by providing more plausi-
ble conformations of the peptide and subsequently improving the 
odds of success of the refinement stages. We illustrate this extended 
ensemble approach with cases from the benchmark of protein- 
peptide docking benchmark [11] and compare its performance 
with the standard three-conformation protocol we previously pro-
posed [9].

2 Materials

This protocol was designed and tested on a Linux cluster. Given 
the computational cost of molecular dynamics (MD) simulations, 
we recommend the use of multiple CPUs and/or GPUs. Local 
installation/compilation of the following programs is necessary, 
most of which are available for GNU/Linux and OS X operating 
systems:

 1. PyMOL: PyMOL [12] is a 3D molecular structure visualization 
program, which can be obtained from http://pymol.org/. We 
use it here to generate the ideal peptide conformations (alpha- 
helix, polyproline-II, and extended).

 2. GROMACS: GROMACS [13] is a molecular dynamics 
 simulation program that includes a number of useful tools for 
analysis. The current protocol was run using version 5.0.4. 
Note that commands for versions 4.x and earlier might differ 
from those used here. The software is available free of charge 
at http://www.gromacs.org/

 3. Grace: Grace (xmgrace) is a 2D plotting software, which 
 provides a quick way to visualize plots generated during the 
execution of this protocol. It is available free of charge at 
http://plasma-gate.weizmann.ac.il/Grace

 4. MolProbity: MolProbity [14] is a structure validation service 
that we use to assign the protonation states of Histidine resi-
dues. It can be downloaded from its GitHub repository: 
https://github.com/rlabduke/MolProbity. Note that other 
software/approaches can be used to define the charge state of 
Histidine residues.

 5. HADDOCK v2.2: HADDOCK [15, 16] can be obtained free 
of charge for noncommercial users by filling and returning the 
license form available from http://www.bonvinlab.org/ 
software/haddock2.2/download.html. Installation instructions 
can be found at http://www.bonvinlab.org/software/ 
haddock2.2/installation.html. Moreover, the software can be 
used via a user-friendly web server [17, 18]. This protocol, 
however, makes use of a locally installed version of HADDOCK.

2.1 Software 
Requirements

Protein-Peptide HADDOCKing
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 6. Crystallography and NMR System (CNS) v1.3: CNS [19, 20] is 
the engine used for energy minimization and molecular dynam-
ics simulations in HADDOCK. Therefore, it is a main require-
ment for running HADDOCK. Note that HADDOCK v2.2 is 
designed to work with CNS v1.3, but recompiled using 
 additional source code provided together with HADDOCK 
(see the cns1.3 directory in the HADDOCK distribution).  
The program is freely available for nonprofit users from http://
cns- online.org/v1.3/

 7. NACCESS: NACCESS is a useful tool that can be used to cal-
culate the solvent accessible surface area of a molecule from a 
PDB structure file for both proteins and nucleic acids. It is free 
for academic users and can be obtained from http://www. 
bioinf.manchester.ac.uk/naccess/. A free alternative can be 
obtained from http://freesasa.github.io/ [21].

 8. ProFit: ProFit is a protein least squares fitting program with 
many powerful features including flexible selection of fitting 
zones and atoms, calculation of RMS over different zones or 
atoms, etc. It can be obtained free of charge for academic users 
at http://www.bioinf.org.uk/software

The structure of the receptor, preferably in the bound conforma-
tion, should be available (e.g., from the PDB, or via homology 
modelling) and the peptide sequence should be known. Addi-
tionally, for information-driven docking, experimental data per-
taining to the interaction between the protein and peptide should 
be available to define the binding site on the receptor. The more 
information is available, the higher the chances for correct result-
ing models of the protein-peptide complex. Such information can 
be obtained from a variety of experimental techniques such as 
mutagenesis, chemical cross-linking, NMR chemical shift pertur-
bations, etc. [22–24], or bioinformatics predictions (e.g., CPORT 
[25, 26]), all of which can be used to drive the docking in 
HADDOCK.

3 Methods

This protocol is divided into five major stages (summarized in 
Fig. 1):

 1. Building the peptide in three extreme conformations.
 2. Running MD simulations (50 ns) in explicit water for the pep-

tide conformations built in step 1.
 3. Analysis of the MD trajectories by Dihedral Principal Com-

ponent Analysis (dPCA) and selection of the 30 most popu-
lated conformational states of the peptides.

2.2 Data 
Requirements

Cunliang Geng et al.
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 4. Protein-peptide docking from an ensemble of 30 structures 
obtained from MD plus the three extreme conformations built 
in step 1, including available information on the binding sites, 
using HADDOCK 2.2.

 5. Analysis of the docking solutions to select the best models.
To execute this protocol, the user is required to have working 

knowledge of a command-line interface and, preferably, experience 
with running MD simulations using GROMACS. In the following 
sections, commands are indicated in Courier font, and start with a 
“>” sign (note that here a command that should be given as a 
single line—i.e., indicated by a single “>,” could span multiple 
lines). Text between < > in a command should be replaced by the 
proper selection/value.

For the sake of demonstration, unless otherwise specified, we 
will illustrate all the following steps using the complex of the TRAF 
domain of TRAF2 with the LMP1 binding peptide (PDB ID: 
1CZY, see Table 1). All the necessary information to run this exam-
ple case is provided in the supplementary material.

As described in our original protein-peptide docking protocol [9] 
using the HADDOCK webserver, we use the build_seq.py script 
written by Robert L. Campbell to generate the starting structures 
of the peptides for MD simulations in PyMOL. The following 
steps describe this procedure, with steps 3 and 4 describing the 
procedure to cap residues at the N- and C-termini. GROMACS 
can perform terminal capping during topology generation, 

3.1 Generating 
Peptide Conformations 
for MD Simulations

Fig. 1 Schematic overview of the workflow described in our protocol
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 however, if one uses the AMBER99SB-ILDN force field [27] 
(which we will use in this protocol), it is necessary to manually add 
standard capping residues Acetyl and N-Methyl (abbreviated as 
ACE and NME). These steps can be ignored if the peptide has 
charged termini.

 1. Start PyMOL and load the build_seq.py script from the 
PyMOL command line interface by typing:
> run build_seq.py

 2. Build the structure:
> build_seq <peptide_name>, <peptide_seq>, 
ss=<secondary_structure: helix, beta, or 
polypro>

For example, to create an alpha-helical conformation of the pep-
tide of the case 1CZY (peptide sequence: PQQATDD), type:
> build_seq alpha-peptide, PQQATDD, ss=helix

 3. To add the capping residue to the N-terminus, first select the 
Nitrogen atom of the first residue (numbered as 2 by default in 
PyMOL) by typing the following command:
> select pk1, name n and resi 2

Alternatively, simply select the proper atom by clicking on it 
with the mouse in “editing mode,” for which using a stick 
representation can be useful. Then select from the PyMOL 
menu:
“Build > Residue > Acetyl”

 4. To add the capping residue to the C-terminus, select the 
Carbonyl carbon atom of the last residue by typing the follow-
ing command (if you have followed the previous step, ensure 
that you have deselected all atoms before proceeding):
> select pk1, name c and resi <residue_number>

Table 1 
Statistics of the six protein-peptide complexes used in the case study

Case difficulty
PDB ID 
complex

PDB ID 
free 
protein

Number  
of protein 
residues

Number  
of peptide 
residues RMSDbound/extended (Å)

Easy (RMSDbound/extended 
≤4 Å)

1DDV 1I2H 104 6 2.58
1LVM 1LVB 214 6 1.54

Medium (4 Å <  
RMSDbound/extended ≤ 8 Å)

1CZY 1CZZ 168 7 1.94
1D4T 1D1Z 101 11 3.27

Hard (RMSDbound/extended 
>8 Å)

1HC9 2ABX 74 13 11.04
1NX1 1ALV 173 11 6.11

The classification of the case difficulty is based on Trellet et al. [9]
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Alternatively, simply select the proper atom by clicking on it 
with the mouse. Then select from the PyMOL menu:
“Build > Residue > N-Methyl”

 5. Save the molecule by typing:
> save <peptide_name>

Or you could do it by clicking “File > Save Molecule”.
Repeat these steps to create all three starting conformations.

This protocol has been designed using the AMBER99SB-ILDN 
force field with periodic boundary conditions. To facilitate the 
combined analysis of the MD trajectories originating from differ-
ent peptide conformations, it is recommended to make sure that 
every simulation contains the same number of water molecules. An 
example of a MD parameters file (*.mdp) suited for use with the 
AMBER99SB-ILDN force field is provided in the supplementary 
material. The commands described in the following subsections 
can also be performed by running the script automd.sh provided in 
the supplementary material (see the README section at the top 
of the script for instructions).

We will perform the MD simulation in a rhombic dodecahedral 
box, to minimize the volume of the simulation cell. The dimen-
sions of the box should be selected carefully to avoid interactions 
between neighboring periodic images. To determine the appropri-
ate box dimensions, follow these steps:

 1. Use the peptide in its extended conformation to determine the 
optimal box dimensions, considering that this represents the 
conformation with longest end-to-end distance.

 2. Prepare the topology for the extended peptide:
> gmx pdb2gmx -f protein.pdb -o protein.gro 
-ignh -ff amber99sb-ildn -water tip3p

 3. Prepare a box that accommodates the peptide in its center and 
ensure that the minimum distance from the box edge to the 
peptide is at least half the nonbonded cutoff (as per the mini-
mum image convention):
> gmx editconf -f protein.pdb -o protein_
pbc.gro -bt dodecahedron -d 1.0

 4. Note the “new box vectors” value in the last lines of the out-
put. This is the box vector that you must use with the “-box” 
flag during box preparation for the other peptides. An example 
is shown:
system size : 2.108 2.098 0.985 (nm)
diameter : 2.786(nm)
center : 2.581 0.469 1.224 (nm)
box vectors : 2.109 2.098 0.985 (nm)
box angles : 90.00 90.00 90.00 (degrees)

3.2 System 
Preparation 
for Running the MD 
Simulations 
with GROMACS 5.0.4

3.2.1 Determination 
of the Optimal Box 
Dimensions
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box volume : 4.36 (nm^3)
shift : 1.009 3.120 0.468 (nm)
new center : 3.589 3.589 1.692 (nm)
new box vectors : 4.786 4.786 4.786 (nm)
new box angles : 60.00 60.00 90.00 (degrees)
new box volume : 77.51 (nm^3)

Given the same box dimensions, the three peptides will accommo-
date a slightly different number of water molecules (to fill the box 
completely), depending on a variety of factors including surface 
areas and volumes. Therefore, it is necessary to determine this and 
use the smallest number of water molecules among the three sys-
tems (again to facilitate the combined analysis later—but not per se 
a requirement in principle). To determine this number of water 
molecules that the simulation system can accommodate, follow 
these steps:

 1. Prepare the topology for the extended peptide:
> gmx pdb2gmx -f protein.pdb -o protein.gro 
-ignh -ff amber99sb-ildn -water tip3p

 2. Prepare the box, defining the box vector with the value 
obtained in Subheading 3.2.1:
>gmx editconf -f protein.pdb -o protein_pbc.
gro -bt dodecahedron -box 4.786

 3. Run a first energy minimization in vacuum:
>gmx grompp -f vacuum.mdp -c protein_pbc.
gro -p topol.top -o protein_vac.tpr
> gmx mdrun -v –deffnm protein_vac

 4. Solvate the system:
>gmx solvate -cp protein_vac.gro -cs spc216.
gro -p topol.top -o protein_solvated.gro

 5. Note the number of water molecules, referred to as “SOL 
molecules” that were added from the output:
Output configuration contains 7605 atoms in 
2508 residues
Volume : 77.518 (nm^3)
Density : 983.104 (g/l)
Number of SOL molecules: 2499

 6. Repeat the above steps for all the peptides in all the conforma-
tions and note the lowest number of the three cases. Solvate 
the other two peptides (which are not the lowest) by using the 
“-maxsol” flag to set the optimal number of water molecules:
> gmx solvate -cp protein_vac.gro -cs spc216.gro 
-p topol.top -o protein_solvated.gro -maxsol 
2499

3.2.2 Determination 
of the Optimal Number 
of Water Molecules
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The following steps prepare the system for the production MD 
simulation. They must be repeated for all three peptide conforma-
tions. Since the initial energy minimization in vacuum and solva-
tion has been done in the previous optimization steps, we can 
proceed with neutralizing the electrical charge of the system. Note 
that the various parameter files (.mdp) are provided in the supple-
mentary material.

 1. Add counter ions to the system to neutralize its electrical 
charge:
> gmx grompp -f ions.mdp -c protein_solvated.
gro -p topol.top -o protein_pp_ionize.tpr
> gmx genion -s protein_pp_ionize.tpr -p 
topol.top -o protein_ionized.gro –neutral

If and when prompted to “Select a continuous group of sol-
vent molecules,” choose the group “SOL” or “non-Protein” 
or “Water” as they are all the same in our system.

 2. Run energy minimization:
> gmx grompp -f ions.mdp -c protein_ionized.
gro -p topol.top -o protein_neutral_relaxed.
tpr
> gmx mdrun -v -deffnm protein_neutral_relaxed

 3. Run a first equilibration under NVT conditions (constant 
volume):
> gmx grompp -f nvt.mdp -c protein_neutral_
relaxed.gro -p topol.top -o protein_nvt.tpr
> gmx mdrun -v -deffnm protein_nvt

 4. Continue the equilibration under NPT conditions (constant 
pressure):
> gmx grompp -f npt.mdp -c protein_nvt.gro 
-p topol.top -o protein_npt.tpr
> gmx mdrun -v -deffnm protein_npt -nt 48 
-ntmpi 12 -pin on

 5. Progressively release the position restraints during successive 
short MD runs:
> sed -e 's/1000  1000  1000/ 100   100   
100/g' posre.itp > tmp.itp && mv tmp.itp 
posre.itp
> gmx grompp -f npt.mdp -c protein_npt.gro 
-p topol.top -o protein_npt_progrel100.tpr
> gmx mdrun -v -deffnm protein_npt_progrel100
> sed -e 's/100 100 100/ 10 10 10/g' posre.
itp > tmp.itp && mv tmp.itp posre.itp
> gmx grompp -f npt.mdp -c protein_npt_progrel100.
gro -p topol.top -o protein_npt_progrel10.tpr
> gmx mdrun -v -deffnm protein_npt_progrel10

3.2.3 System Preparation 
and Production MD

Protein-Peptide HADDOCKing



118

 6. Run a final short unrestrained equilibration MD step:
> gmx grompp -f unrestrained.mdp -c protein_
npt_progrel10.gro -p topol.top -o protein_
all_set.tpr
> gmx mdrun -v -deffnm protein_all_set

 7. Run the production MD simulation:
> gmx grompp -f production.mdp -c protein_
all_set.gro -p topol.top -o protein_md.tpr
> gmx mdrun -v -deffnm protein_md

Please bear in mind that in all the steps involving energy mini-
mization and MD simulations (which start with gmx mdrun), 
it is likely that GROMACS might use all of the processor(s) 
available to the user. It is possible that gmx mdrun may then 
give error messages if the system cannot be parallelized with 
the given conditions. In such cases, the user must set the num-
ber of threads and the PME ranks by using the -nt and -ntmpi 
flags with the gmx mdrun command. If one wishes to opti-
mize parallelization, GROMACS offers a utility (gmx tune_
pme) to find the optimal PME conditions for a given number 
of parallel processes (see the online GROMACS manual  
pages for more information, http://manual.gromacs.org/
archive/5.0.4/programs/gmx-tune_pme.html).

The protocol to perform Dihedral PCA was adapted from  
the GROMACS documentation (http://www.gromacs.org/
Documentation/How-tos/Dihedral_PCA). It consists of the fol-
lowing steps:

 1. Concatenate the various trajectories (three in this particular 
case):
> gmx trjcat -f <path_trajectory_1> <path_
trajectory_2> <path_trajectory_3> -o all_
traj.xtc –settime

Ensure that you set the proper start time for the trajectories, 
which in our case would be 0, 50,000, and 100,000 in picosec-
onds (ps). This will not be done automatically. Hence, we use 
the -settime flag.

 2. Make an index file containing all residues except the capping 
residues:
> gmx make_ndx -f protein_md.tpr -o index.
ndx

Follow the interactive menu to isolate the indices of the pep-
tide residues without the capping groups.

 3. Remove the capping groups from the trajectory:
> gmx trjconv -f all_traj.xtc -s protein_
md.tpr -n index.ndx -o protein_uncapped.xtc

3.3 Clustering 
by Dihedral Principal 
Component Analysis 
(dPCA)
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Choose the index group corresponding to the peptide residues 
without the capping groups that were made in the previous 
step.

 4. Create a topology for the peptide that excludes the capping 
residues:
> gmx convert-tpr -s protein_md.tpr -n index. 
ndx -o protein_uncapped.tpr

Select the same index group as the previous step.
 5. Now create a topology containing only the backbone atoms of 

all residues and also a trajectory file with the corresponding 
coordinates:
> gmx convert-tpr -s protein_uncapped.tpr 
-o protein_bb.tpr
> gmx trjconv -f protein_uncapped.xtc -s 
protein_uncapped -o protein_bb.xtc

When prompted, in both cases, choose the index group titled 
“Backbone,” which by default would be option 4.

 6. Create an index group for the backbone dihedral angles by 
creating an angle index file:
> gmx mk_angndx -s protein_bb.tpr -type dihedral 
-o dangle.ndx

 7. Open dangle.ndx with any text editor like, for example, vim or 
nano, and identify the index groups that correspond to the 
atoms forming the φ and ψ angles. Every four consecutive 
atom indices present in the index groups in the dangle.ndx file 
correspond to a single dihedral angle. For example, the first 
index group (Titled as [Phi=180.0_2_10.46]) in the text box 
shown below (which is a sample of dangle.ndx file), the atom 
indices 2 3 4 5 correspond to the first dihedral angle and 5 6 7 
8 correspond to the second dihedral angle, and so on. The 
atoms that contribute to the φ angles are Coi-Ni+1- Cαi+1-Coi+1 
and the ψ angles are Ni-Cαi-Coi-Ni+1. When your topology 
contains only the backbone atoms, like in our case here, the φ 
angles usually have the atom indices that start with “3,” which 
represents the first backbone carbonyl carbon atom, and the ψ 
angles usually have atom indices that start with “1” that repre-
sents the first backbone nitrogen atom. In the example below, 
the atom indices that correspond to the φ angles are high-
lighted in bold and the ones that correspond to the ψ angles 
are highlighted in Italic:
[ Phi=180.0_2_10.46 ]
2 3 4 5 5 6 7 8 8 9 10 11
11 12 13 14 14 15 16 17 17 18 19 20
[Phi=0.0_2_1.13]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
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[Phi=0.0_3_1.76]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
[Phi=180.0_1_1.88]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19
[ Phi=180.0_2_6.61 ]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19
[Phi=180.0_3_2.30]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19

 8. Delete all the other index groups and combine the ones that 
correspond to φ and ψ angles that were identified, you can also 
rename the group name for convenience:
[Psi and Phi]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19

 9. Extract the dihedral angles from the backbone trajectory file:
> gmx angle -f protein_bb.xtc -n dangle.ndx 
-or dangle.trr -type dihedral

 10. Note the number of atom positions that are filled with cos/sin 
of the angles:
There are 12 dihedrals. Will fill 8 atom po-
sitions with cos/sin

and create an index file (referred to in the following steps as 
“covar.ndx”) containing indices from 1 to the number of posi-
tions that are filled with cos/sin:
[Covar]
1 2 3 4 5 6 7 8

 11. Make a reference structure for constructing the covariance 
matrix using the dihedral angles, you can choose any frame for 
the “-e” flag:
> gmx trjconv -f dangle.trr -s protein_
bb.tpr -o resized.gro –n covar.ndx -e 100

 12. Perform the covariance analysis:
> gmx covar -f dangle.trr -n covar.ndx -ascii 
-xpm -nofit -nomwa -noref -nopbc -s resized.
gro

 13. Since the first two eigenvectors (Principal Components) con-
tain the largest variance in data, we will use them for the analy-
sis by calculating the Potential of Mean Force (PMF) at every 
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time frame and projecting the vectors on each other to obtain 
a 2D free energy landscape.
> gmx anaeig -v eigenvec.trr -f dangle.
trr -s resized.gro -first 1 -last 2 -2d 
2dproj_1_2.xvg

 14. Convert the 2D plot into a 3D Gibbs free energy landscape by 
Bolzmann invertion:
> gmx sham -f 2dproj_1_2.xvg -notime 
-bin bindex-1_2.ndx -lp prob-1_2.xpm -ls 
gibbs-1_2.xpm -lsh enthalpy-1_2.xpm -g shamlog-1_2 
-lss entropy- 1_2.xpm
Any of the *.xpm files can be converted to *.eps using the 
GROMACS command “gmx xpm2ps”

 15. As explained in the introduction of Subheading 3 (see also 
Fig. 1), our aim is to obtain 30 representative peptide confor-
mations from the MD simulations. For this, we will use the 30 
biggest bins (conformational states) identified by the PCA 
analysis. In order to identify the largest bins, check the “sham-
log- 1_2.log” file that contains the energy of each bin esti-
mated by the Boltzmann Inversion method (by gmx sham in 
the previous step). Therefore, the size of the bin is inversely 
proportional to its energy. Bin indices sorted by their energies 
are listed after the “Minima sorted after energy” line in the 
“shamlog-1_2.log” file (with the lowest energy bin—the 
most populated one—having an energy of 0). This part is 
shown below where the energies are highlighted in bold and 
the bin indices are highlighted in Italic:
...
...
Minima sorted after energy
Minimum 0 at index 249 energy 0.000
Minimum 1 at index 766 energy 0.101
Minimum 2 at index 754 energy 0.884
Minimum 3 at index 918 energy 1.621
Minimum 4 at index 570 energy 1.669
Minimum 5 at index 594 energy 2.533
...
...

Note down the indices of the 30 lowest energy bins (Minimum 
0 to 29).

 16. From the “bindex-1_2.ndx” note down (any) one frame 
number from each of the 30 bins whose indices were sought in 
the previous step. In all our test cases, the first frame that  
is listed under the bin index was used. Samples from the 
 “bindex- 1_2.ndx” are shown below where the first three 
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structures in the biggest bins: 249, 766, and 570 are shown 
and the first frame in these respective bins is highlighted in bold:
...
...
[249]
232
233
235
...
...
[766]
121
122
159
...
...
[570]
141
149
151
...
...

 17. Extract the selected frames from the combined trajectory. 
Please note that you should extract the frames from the trajec-
tory that contains ALL atoms and not just the backbone atoms 
that were used to perform PCA. Also, the numbers noted in 
the previous steps are the frame numbers. These need to be 
multiplied by 50 (time frequency in ps at which coordinates 
were saved in the production MD—change this value if you 
have modified the save frequency in the parameter files) to 
obtain the time stamp. In the following example, we used 
frame number 219 as an example:
> gmx trjconv -f protein_nocap.xtc -s protein_
nocap.tpr -dump 10950 -o frame_219.pdb -pbc 
mol

When prompted, choose the index group 1, containing all 
atoms.
Repeat this step to extract a total of 30 conformations (or less). 
We do not recommend using too many conformations for 
ensemble docking since it might lead to under-sampling of 
each conformation during the docking (a “dilution” problem), 
as the number of rigid-body docking models generated in 
HADDOCK is fixed.
Steps 9–17 can be automated by using the dpca.sh script that 

is given in the supplementary material. Ensure that the filenames 
are identical to what has been described in steps 1–8 and the script 
should be run in the directory where all the files generated in these 
steps are present.
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We provide here a brief introduction into the various docking and 
refinement stages of HADDOCK and its scoring functions. Before 
using a locally installed version of HADDOCK, it is recommended 
that the user also reads the HADDOCK manual (http://www.
bonvinlab.org/software/haddock2.2/manual.html).

The initial stage of HADDOCK consists of a randomization of the 
starting orientations of the various molecules, followed by rigid 
body energy minimization (it0). During the randomization stage, 
the molecules are separated by a minimum of 25 Å and randomly 
rotated around their respective center of mass and translated within 
a 10 Å cube. During the following energy minimization, the mol-
ecules are treated as rigid bodies, i.e., all molecular bonds, angles, 
and internal rotations around bonds are frozen. The energy func-
tion being minimized contains the interaction restraints and the 
intermolecular van der Waals and electrostatics potentials. Typically, 
between 1000 (default) and 10,000 models are written to disk at 
this stage. The rigid body energy minimization is repeated multiple 
times internally (5 by default) with symmetrical solutions being 
sampled and minimized and only the best solution based on the 
HADDOCK score (see below) being written to disk. Typically, the 
top few hundred solutions (by default 200) are selected for further 
refinement.

The second stage in HADDOCK consists of a semi-flexible refine-
ment by high-temperature molecular dynamics in torsion angle 
space (it1), during which increasing flexibility is introduced in the 
interface of the complex. It consists of four stages:

 1. High temperature rigid body dynamics (hot).
 2. Rigid-body simulated annealing (cool1).
 3. Semi-flexible simulated annealing with flexible side-chains at 

the interface (cool2).
 4. Semi-flexible simulated annealing with fully flexible backbone 

and side-chains at the interface (cool3).
During this stage, the interface of the complex model is opti-

mized. The flexible regions are defined by default automatically for 
all residues within 5 Å of a partner molecule (the user can, how-
ever, also define these manually). Usually, all the solutions at this 
stage are passed to the final refinement stage in explicit solvent.

The last stage is a flexible refinement in explicit solvent (TIP3P 
water by default, but DMSO is also supported as a lipid environ-
ment mimic). The models from the previous stage are solvated in 
an 8.5 Å solvent shell and further refined using molecular dynam-
ics simulations in Cartesian space, with weak position restraints on 
backbone atoms outside the interface, followed by a final energy 
minimization.

3.4 Docking 
and Scoring

3.4.1 Introduction 
to Docking Using 
HADDOCK v2.2

Initial Rigid Body Docking 
Stage (it0)

Semi-flexible Refinement 
Stage (it1)

Explicit Solvent Refinement 
Stage (water)
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The HADDOCK score is a weighted sum of various energy and 
other scoring terms. It is used to rank the models at the various 
stages of the docking. The weight of various terms differs for each 
stage of the docking process. By default, the HADDOCK score is 
calculated as follows (a combination that has been shown to be 
successful for various types of systems, from protein-protein to 
protein-nucleic acid complexes):

 it E E E E E0 0 01 0 01 1 0 1 0 0 01: . . . . .= + + +air vdw elec desolv BSA-  

 it E E E E E1 0 1 1 0 1 0 1 0 0 01: . . . . .= + + +air vdw elec desolv BSA-  

 water air vdw elec desolv: . . . .E E E E E= + + +0 1 1 0 0 2 1 0  

where Eair is the ambiguous interaction restraints energy, Evdw is the 
intermolecular van der Waals energy described by a 12-6 Lennard- 
Jones potential, Eelec is the intermolecular electrostatic energy 
described by a Coulomb potential, Edesolv is an empirical desolva-
tion energy term [28], and BSA is the buried surface area in Å2. 
The nonbonded energies are calculated using an 8.5 Å cutoff using 
the OPLS force field parameters [29]. Additional energy terms can 
be included in the scoring function if other restraint types are used.

As described in Subheadings 3.1–3.3, various peptide conforma-
tions have been obtained, either built in ideal conformations, or 
through MD simulations followed by clustering by dihedral PCA, 
from which we selected 30 representatives. This ensemble of pep-
tide conformations (33 in total) along with the unbound receptor 
structure will be used for docking. The following protocol describes 
the steps to perform docking using a local version of HADDOCK. 
As for the MD part, we use the 1CZY case (see Table 1) as an 
example.

Since HADDOCK is an information-driven docking approach, it is 
necessary to define information about the putative interfaces (note 
that HADDOCK does offer various ab initio docking protocols, 
although these will not be described here). For a manual run, this 
means generating an ambiguous interaction restraints (AIRs) file 
(the webserver will simply take a comma-separated list of residue 
numbers). In order to generate AIRs, it is necessary to define active 
and passive residues at the interface of each molecule based on 
experimental data and/or bioinformatics predictions. In this exam-
ple, we will assume that we know the peptide-binding site on the 
receptor—defining it from the known complex as all residues on 
the receptor that are within a 5 Å distance from the peptide. This 
represents of course an ideal situation. In case there is no available 
experimental information about interface residues, various bioin-
formatics predictors, including our webserver CPORT (http://
haddock.science.uu.nl/services/CPORT/), can help predict inter-
face residues. HADDOCK distinguishes between active and  passive 

Scoring Functions 
of HADDOCK

3.4.2 Docking Protocol

Defining Ambiguous 
Interaction 
Restraints (AIRs)
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residues: Active residues must be in the interface (i.e., make 
 contacts to either passive or active residues of the other molecule), 
otherwise an energy penalty will be paid; passive residues, in 
 contrast, can be part of the interface, but are not penalized if oth-
erwise. While active residues are typically selected based on high-
quality experimental data or bioinformatics predictions, passive 
residues can be defined as the surface neighbors of active residues, 
or as a user-defined surface patch. In this protocol, we will define 
all residues of the peptide as passive. For our example 1CZY, the 
protein active residues are:

“41,42,44,60,62,66,67,68,77,114,115,116,117, 
120,121,122,123,131,132,133,134,135,136,137,”
and the peptide passive residues: 
“1,2,3,4,5,6,7.”
After obtaining the list of active and passive residues for each 

molecule, the webserver for generating ambiguous interaction 
restraints can be used to generate the AIRs file required for 
HADDOCK. It can be found at http://www.bonvinlab.org/soft-
ware/Haddock2.2/generate_air.html. A description of the format 
of the various restraints files in HADDOCK can be found in Box 4 
of the original HADDOCK server article [17]. In the section 
“Active residues for 1st molecule” and “Passive residues for 2nd 
molecule,” fill in the 1CZY protein active residues and peptide pas-
sive residues, respectively. In the section “Segid of 1st molecule:” 
and “Segid of 2nd molecule:”, specify the segment IDs to use for 
each molecule during the docking (typically A and B). Then move 
to the bottom of the page, click on “Generate AIR restraints” to 
generate AIRs. You should be redirected to a new page that con-
tains all the AIRs. Save this page as a restraint file “restraints.tbl” 
and copy it into your working directory. The “restraints.tbl” file 
will be used when setting up your new HADDOCK project.

In general, small charge differences can have a strong impact 
on the results of the docking. It is therefore advisable to define 
the protonation state of Histidine residues prior to docking (if 
not, by default Histidines will be considered positively charged). 
The HADDOCK webserver can do that automatically, using 
MolProbity [14] to guess the most plausible Histidine protonation 
states. Here, we provide a Python script that uses the “reduce” 
executable of MolProbity to assign the protonation state. Run the 
script on the pdb file(s) to determine the protonation states of 
Histidines:

> python ./molprobity.py ./protein.pdb

The reduce program will be used to add hydrogen atoms and 
perform basic validation checks and optimizations on the protein 
structure to generate a temporary new structure. Based on the pres-
ence and location of the hydrogen atoms in a Histidine residue, the 
script will determine its protonation state. For each histidine, if 
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atom HD1 and HE2 exist, the doubly protonated, charged  histidine 
HIS+ state is assigned, if HD1 exists but not HE2, a singly proton-
ated histidine HISD is assigned, and if HE2 exists but not HD1, a 
singly protonated histidine HISE is assigned.

The output of the script is shown below for the unbound form 
of 1CZY:

## Executing Reduce to assign histidine pro-
tonation states
## Input PDB: protein.pdb
HIS (73) --> HISD
HIS (109) --> HISE

Save this information since it will be used later while editing 
the run parameters.

To start a new project, it is necessary to generate the “new.html” 
file that contains the information about all the required input data 
for the docking. An online tool to prepare this file is available on 
the HADDOCK webpage: http://www.bonvinlab.org/software/
Haddock2.2/start_new.html.

Three sections need to be filled. In the first section “HADDOCK 
and project setup,” you should define the path to your local 
HADDOCK installation under “Current HADDOCK program 
directory” and the path to where your project will be created in 
“Path of the new project.” Then, define the “Run number,” 1 in 
this case, and the “Number of molecules for docking (max. 6),” 
2 in this particular case.

In the second section, “Define the various molecules for dock-
ing”, set “PDB file of 1st molecule” to the absolute path of the 
protein structure, “PDB file of 2nd molecule” to the absolute path 
of the peptide (use one of the peptide PDB files for this), use the 
default values for “Segid of 1st molecule” and “Segid of 2nd mol-
ecule” (unless of course you changed those values when creating 
the AIR file). Since we will make use of an ensemble of peptide 
conformations for the docking, a list file containing all absolute (or 
relative) paths of those conformations (3 extreme + 30 MD confor-
mations) should be created, and set “file list for 2nd molecule 
(opt.)” to the absolute path of this list file. Note that in principle, 
instead of absolute paths, relative paths can also be used, e.g., “./
peptide.pdb.”

In the last section “Define the various restraint files,” the “AIR 
restraints” should be set to the path of the “restraints.tbl”  
file generated in Subheading “Defining Ambiguous Interaction 
Restraints (AIRs).”

Move to the bottom of the page and click on “Save updated 
parameters.” You should see a new webpage containing the gener-
ated file. Save it as the “new.html” file, and then copy it into your 
working directory.

Starting a New Project
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An example of the “new.html” file for 1CZY (also provided in 
supplementary material) is given below:

<html>
<head>
<title>HADDOCK - start</title>
</head>
<body bgcolor=#ffffff>
<h2>Parameters for the start:</h2>
<BR>
<!-- HADDOCK -->
HADDOCK_DIR=/home/software/haddock/
haddock2.2<BR>
N_COMP=2<BR>
PDB_FILE1=../pdb_files/protein.pdb<BR>
PDB_FILE2=../pdb_files/MD_conformations/md_1.
pdb<BR>
PDB_LIST2=../pdb_files/structures.list<BR>
PROJECT_DIR=./<BR>
PROT_SEGID_1=A<BR>
PROT_SEGID_2=B<BR>
AMBIG_TBL=./restraints.tbl<BR>
RUN_NUMBER=1<BR>
submit_save=Save updated parameters<BR>
</h4><!-- HADDOCK -->
</body>
</html>

Now go to your working directory, make sure that the “new.
html” file is present and then type the command (which should be 
defined after proper installation of HADDOCK and sourcing of 
the configuration script):

> haddock2.2
A new directory “runX” (X is a number that is defined as “Run 

number” above) will be created, containing several subdirectories 
and the important “run.cns” parameter file, which will need to be 
edited in the next step. For details on the various subdirectories, 
please refer to the online HADDOCK manual at http://www.
bonvinlab.org/software/Haddock2.2/start_new_help.html.

It is necessary to modify some docking parameters in the freshly 
generated “run.cns” file. For this, the user can use an online tool 
or edit the file directly with a text editor. The easiest way to modify 
this file is to use our online tool: In the http://www.bonvinlab.
org/software/Haddock2.2/Haddock-start.html page (best viewed 
with Firefox or Google Chrome), upload your “run.cns” file and 
click on “Edit file.” You will be redirected to a new webpage that 
contains all parameters to run HADDOCK. For details on all the 
parameters, see the online manual (http://www.bonvinlab.org/

Setting the Docking 
Parameters

Protein-Peptide HADDOCKing

http://www.bonvinlab.org/software/haddock2.2/start_new_help.html
http://www.bonvinlab.org/software/haddock2.2/start_new_help.html
http://www.bonvinlab.org/software/haddock2.2/haddock-start.html
http://www.bonvinlab.org/software/haddock2.2/haddock-start.html
http://www.bonvinlab.org/software/haddock2.2/run.html


128

software/Haddock2.2/run.html). Below, we will deal with only 
the parameters that should be adjusted to run our protein- peptide 
protocol.

Histidine patches: These parameters are used to define the pro-
tonation state of Histidines. By default, a Histidine is doubly 
 protonated and thus positively charged in HADDOCK. The histi-
dine parameters only need to be defined when a histidine should 
be singly protonated (HISD or HISE). The information on the 
protonation state of the various Histidines obtained in Subheading 
“Determining the Protonation State of Histidine Residues,” will 
be used here. For our example 1CZY in that section, Histidine 73 
should be in HISD state and Histidine 109 in HISE. In the sec-
tion, “Patch to change doubly protonated HIS to singly proton-
ated histidine (HD1),” set the first residue of “molecule (Protein) 
A” to 73. Then in “Patch to change doubly protonated HIS to 
singly protonated histidine (HE2),” set the first residue of “mole-
cule (Protein) A” to 109. In this particular example, the peptide 
does not contain any Histidine; otherwise, the same procedure 
should be followed for the second molecule.

Definition of fully flexible segments: This section defines the 
segments that are defined as fully flexible during all stages of it1. In 
this protocol, because of the intrinsic high flexibility of peptides, 
we will define all residues of the peptide as fully flexible. Therefore, 
set the “Start Residue” to 1 and the “End Residue” to the residue 
number of the last residue in the peptide, here should be 7 for the 
case 1CZY.

Topology and parameter files: The linkage file in this section 
allows defining the charged states of the N- and C-termini of the 
protein and peptide. If the protein or peptide is a fragment of a 
larger protein or was capped in experiments for some specific 
 reason, the N- and/or C-terminus should be uncharged. In 
HADDOCK, the default linkage file used to generate the topology 
is “protein-allhdg5-4.link,” which produces charged N and C ter-
mini. For uncharged termini, the linkage file “protein-allhdg5- 4-
noter.link” should be used. For uncharged N-terminus and charged 
C-terminus, use “protein-allhdg5-4-noNter.link”; for charged 
N-terminus and uncharged C-terminus, use “protein- allhdg5-4-
noCter.link.”

For our particular example 1CZY, we will use “protein- allhdg 
5- 4-noter.link” for the peptide since the peptide is a fragment of a 
larger protein and capped in its N-terminus.

Number of structures to dock: Due to the flexibility of the peptide, 
the number of decoys to generate should be increased to improve the 
sampling of all conformations of the protein-peptide complex. Since 
we used 33 peptide conformations (3 extreme conformations + 30 
MD cluster representatives) as initial ensemble for docking, we will 
change the “number of structures for rigid body docking” from 
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1000 to 9900 (in that way each starting conformation is used 300 
times), and the “number of structures for refinement” from 200  
to 400.

Number of MD steps in the docking protocol: To improve the 
sampling of protein-peptide interactions and in particular to allow 
the peptide to better sample its conformation in the context of the 
receptor, the number of MD steps for the it1 stages also needs to 
be increased: From 500/500/1000/1000 to 2000/2000/4000/ 
4000 for the hot, cool1, cool2, and cool3 stages in it1, 
respectively.

Final explicit solvent refinement: Just like the number of struc-
tures to dock, the “number of structures for the explicit solvent 
refinement” is increased from 200 to 400.

Analysis and clustering: The “clustering method” is set to 
RMSD, and due to the smaller size of peptide the “RMSD cutoff 
for clustering” is decreased to 5 Å.

Parallel jobs: The user should specify the local “queue com-
mand” (e.g., simply csh if using a single computer, or a batch 
queue submission command for a cluster (e.g., qsub)), the abso-
lute path of “cns executable” and define for “cpunumber” a num-
ber that matches the number of cores on the system (or the number 
of allocated slots in the queue in the batch system). The internal 
job dispatching routines will use this setting to limit the number of 
concurrent refinement jobs. Note that for rigid-body stage jobs, 
given the computational efficiency of this algorithm, several indi-
vidual minimizations are bundled together in each job.

After updating the parameters above, click “Save updated file” 
on the page bottom, and then save the file as a new run.cns and 
copy it to the runX directory to replace the old one.

The following lines describe how these changes would look 
like if done manually simply in a text editor:

Histidine patches :
A_hisd_resid_1=73;
A_hise_resid_1=109;

The histidine protonation states are defined by these parameters.

Definition of fully flexible segments :
B_start_fle_1="1";
B_end_fle_1="7";

The parameters define the fully flexible segments in it1 step.
Topology and parameter files:

prot_link_B="protein-allhdg5-4-noter.link";

The parameter sets the charged states of N-terminus and 
C-terminus of the molecule. Here, it sets both termini uncharged 
for the peptide of 1CZY.
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Number of structures to dock:
structures_0=9900;
structures_1=400;

These parameters set the number of structures to dock for it0 
and it1.

DOCKING protocol:
initiosteps=2000;
cool1_steps=2000;
cool2_steps=4000;
cool3_steps=4000;

These parameters set the number of MD steps for hot, cool1, 
cool2, and cool3 stage in it1 step.

Final explicit solvent refinement:
waterrefine=400;

The parameter sets the number of structures to dock for the 
water step.

Analysis and clustering:
clust_meth="RMSD";
clust_cutoff=5;

These parameters set the clustering method and its cutoff.
Parallel jobs:

queue_1="csh";
cns_exe_1="/home/software/bin/cns";
cpunumber_1=50;

These parameters set the local queue command, path of cns 
program, and the number of parallel jobs.

After ensuring that all parameters have been properly defined as 
explained in the previous steps, navigate to the runX directory and 
launch the docking by typing:

> haddock2.2 &>HADDOCK.log &

The docking should start in background and the information 
about the run will be written to the HADDOCK.log file. During 
the docking process, HADDOCK writes docking decoys in PDB 
format and outputs the ranked PDB files in file.cns, file.list and file.
nam files at the end of each docking step in runX/structures/it0, 
runX/structures/it1 and runX/structures/it1/water directories, 
respectively. The file.cns, file.list and file.nam files contain a list  
of generated structures sorted on HADDOCK score. For it1 and 
water stages, the generated structures are automatically analyzed 
and the results are placed in the runX/structures/it1/analysis  
and runX/structures/it1/water/analysis directories, respectively.

Start the Docking
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As described above, the results of automatic analysis for it1 and 
water steps are placed in the analysis directories under each direc-
tory, respectively. Here, we will describe some relevant files con-
taining useful information.

fileroot_ave.pdb and fileroot_X.pdb:

These are the models in PDB format. fileroot_ave.pdb is  
the average structure generated by superimposing the structures of 
docking solutions on the backbone atoms of interface residues, 
while the superimposed models are fileroot_N.pdb (N is a number 
that corresponds to the ranking of the model in the file.list file). 
The interface residues are automatically determined from an analy-
sis of all generated models. Note that the average model might not 
be of much relevance in cases where very different solutions are 
sampled.

fileroot_rmsd.disp:

This file contains the pairwise RMSD matrix calculated over all 
models. The RMSD calculated here is the ligand interface RMSD, 
i.e., the structures are fitted on backbone atoms of interface resi-
dues of the first molecule and the RMSD is calculated on the inter-
face backbone atoms of the second molecule. This file is used as 
input for the RMSD clustering. If the clustering method defined in 
run.cns is FCC (fraction of common contacts) instead, the name of 
this file will become fileroot_fcc.disp. and contain the fraction of 
common contacts between models [30].

cluster.out:

The file contains the list of clusters generated based on the 
matrix in the fileroot_rmsd.disp or fileroot_fcc.disp file, depending 
on the clustering method used. The clusters are numbered accord-
ing to the size of the cluster, e.g., the largest cluster is cluster 1. 
The cluster.out file is used as input for analysis of clusters (ana_
cluster.csh) described below.

energies.disp, edesolv.disp and ene-reside.
disp:

These files contain various energy terms. The bonded and 
nonbonded energies and buried surface area for each structure are 
written to energies.disp, together with the average values over the 
ensemble. The empirical desolvation energies are contained in 
 edesolv.disp. The ene-residue.disp file lists the per-residue inter-
molecular energies for all interface residues.

hbonds.disp, ana_hbonds.lis and nbcontacts.
disp, ana_nbcontacts.lis:

The hbonds.disp file contains the intermolecular hydrogen 
bonds for each model, while the ana_hbonds.lis file lists all 
 hydrogen bonds with their occurrence and average distance. 

3.4.3 Analysis
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Similar information for intermolecular hydrophobic contacts is 
provided in nbcontacts.disp and ana_nbcontacts.lis.

geom.disp:

The file contains the averaged deviations from ideal covalent 
geometry (bonds, angles, impropers, and dihedrals) for each struc-
ture and averaged over all structures.

noe.disp:

The file contains the number of distance restraints violations 
per structure and averaged over the ensemble over all distance 
restraint classes and for each class (unambiguous, ambiguous, 
hbonds). Similar files are generated for dihedral angle restraints 
(dihedrals.disp), residual dipolar coupling restraints (sani.disp), 
intervector projection angle restraints (vean.disp), diffusion anisot-
ropy restraints (dani.disp), and pseudo contact shifts restraints 
(pcs.disp).

ana_XXX.lis:

These files report restraint violations over the ensemble of 
models, giving the number of times various restraints are violated, 
the average distance, and the violation per restraint. The XXX can 
be dihed_viol, dist_viol_all, hbond_viol, noe_viol_all, noe_viol_
ambig, and noe_viol_unambig.

Besides the automatic analysis, the user should also perform man-
ual analysis of the models and clusters. For this purpose, a number 
of scripts are provided in the runX/tools directory.

 1. Collecting model statistics using ana_structures.csh: This script 
extracts information from the header of the PDB files such as 
various energy terms, violation statistics, and buried surface 
area and calculates the overall backbone RMSD of each struc-
ture superimposed on the top ranking model. To run it type:
>$HADDOCKTOOLS/ana_structures.csh

in the runX/structures/it1 or runX/structures/it1/water 
directory.
It generates a number of “file.nam_XXX” and “structures_
XXX- sorted.stat” files (XXX is energy term). The “file.nam_
XXX” file contains the values of the respective energy (or 
other) term XXX for all structures. All of these terms are com-
bined into one file and sorted in different ways, generating the 
corresponding “structures_XXX-sorted.stat” files. Of these, 
structures_haddock- sorted.stat is usually the most important, 
which corresponds to the HADDOCK score ranking.
Relationships between these energy terms can be checked by 
plotting. For this purpose the make_ene-rmsd_graph.csh script 

Manual Analysis
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is provided. For example, the user can make a plot of the 
HADDOCK score as a function of the RMSD:
> $HADDOCKTOOLS/make_ene-rmsd_graph.csh 3 2 
structures_haddock-sorted.stat

It will generate a ene_rmsd.xmgr file in xmgr format which can 
be displayed with xmgr or xmgrace:
> xmgrace ene_rmsd.xmgr

 2. RMSD clustering using cluster_struc: This program is used in 
HADDOCK to perform clustering based on RMSDs. In the 
process of automatic analysis, if RMSD clustering was defined 
in run.cns, it has been run automatically in each analysis direc-
tory. However, the user can run it again to try different cluster-
ing cutoffs depending on the complex studied. It takes the 
fileroot_rmsd.disp file as input:
> $HADDOCKTOOLS/cluster_struc [-f] fileroot_
rmsd.disp cutoff min_cluster_size>cluster.
out

Here, the -f is an option for full linkage clustering algorithm 
(not used by default), the cutoff is the RMSD cutoff used to 
determine if two structures belong in the same cluster, and 
min_cluster_size is the minimum number of models to define 
a cluster.
The output in the cluster.out file looks like:
Cluster 1 -> 2 4 5 9 11 12 14 20 121 127 129 
141 145 156 170
Cluster 2 -> 1 48 51 56 58 93 96 139 161 164 
171 181 187
Cluster 3 -> 36 7 37 49 112 148

The numbering of the clusters is based on the size of the clus-
ter, and the numbering of the structures corresponds to the 
position of the structure in the file.list file. The first structure 
of each cluster corresponds to the cluster center and the other 
structures are sorted according to their index.

 3. FCC clustering using cluster_fcc.py: This Python script is used 
to perform clustering based on the fraction of common con-
tacts (FCC) if FCC clustering was defined in run.cns. FCC is 
an alternative metric to measure the structural similarity 
between two docking models, based on the network of resi-
due-residue interactions at the interface of the models. As for 
RMSD clustering, the user can choose to run it again to try 
different clustering cutoffs depending on the complex studied. 
It takes the fileroot_fcc.disp file as input:
> $HADDOCKTOOLS/cluster_fcc.py fileroot_fcc.
disp cutoff -c min_cluster_size > cluster.out
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where cutoff is the FCC cutoff used to determine if two 
 structures belong to the same cluster, and min_cluster_size is 
the minimum number of models to define a cluster.

 4. Analysis of clusters using ana_cluster.csh: The ana_clusters.csh 
script calculates various statistics on a per cluster level. It takes 
the cluster.out file as input. To run it type:
>$HADDOCKTOOLS/ana_clusters.csh [-best #] 
analysis/cluster.out

in the runX/structures/it1 or runX/structures/it1/water 
directory. The -best # is an optional argument to generate 
additional files with calculation only on the best # structures of 
a cluster, e.g., the top four structures of a cluster sorted on 
their HADDOCK score as done by default by the HADDOCK 
web server; this allows removing the dependency of the calcu-
lated averages on size of the various clusters.
Like the output of the ana_structures.csh script, the ana_ 
clusters.csh script also generates a number of files containing 
values of different energy terms XXX but over models belong-
ing to the same cluster (clustX), e.g., file.nam_clustX_XXX 
files, based on the list of models for each cluster stored in the 
file.nam_clustX files. The script also calculates averages of vari-
ous energy terms for each cluster, which can be found in the 
various cluster_XXX.txt files. All these are combined and sorted 
in various ways in clusters_XXX-sorted.stat files. If the option 
“–best #” is used, additional files will be created containing the 
average values over the best # structures of each cluster, i.e., 
file.nam_clustX_best#, cluster_XXX.txt_best# and clusters_
XXX-sorted.stat_best# files. Of all these files, clusters_had-
dock-sorted.stat and clusters_haddock-sorted.stat_best# are 
usually the most relevant.

 5. Rerunning automatic analysis on the basis of clusters: After hav-
ing performed the cluster-based analysis, it is possible to rerun 
the HADDOCK automatic analysis for a given cluster. For this 
the user needs to create cluster-specific files (e.g., file.cns_
clustX_best#, file.list_clustX_best#, and file.nam_clustX_best#) 
and directory (e.g., analysis_clustX_best#). To simplify this 
process, the make_links.csh script is provided. To run it type:
>$HADDOCKTOOLS/make_links.csh clustX_best#

This will automatically move the original file.cns, file.list and 
file.nam files and analysis directory to new files and directory 
by adding a suffix _all, and then make links to cluster-specific 
files and directory, i.e.,
file.cns    -> file.cns_clustX_best#
file.list    -> file.list_clustX_best#
file.nam    -> file.nam_clustX_best#
analysis    -> analysis_clustX_best#
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To rerun the analysis, go back to the runX directory and restart 
HADDOCK:
> haddock2.2

Once finished, the user will find a new directory analysis_
clustX_best# that contains cluster-specific result files described 
in Subheading “Automatic Analysis.”

Following the protocol described above, we performed unbound/
unbound docking for six protein-peptide complexes from the 
protein- peptide benchmark [11], using a combination of ideal 
peptide conformations and MD cluster representatives. These six 
complexes (Table 1) correspond to two easy, two medium, and two 
hard docking cases (based on the classification of Trellet et al. [9]). 
The length of the peptides in these systems varies from 6 to 13 
amino acids, while the proteins are much larger, varying from 74 
to 214 residues.

We performed the docking using both the original three con-
formations (alpha-helix, polyproline-II, and extended) protocol 
(regular protocol) [9] and by adding 30 additional conformations 
sampled in MD simulations as described in this chapter (MD-based 
protocol). To assess the performance of the docking, the interface 
RMSD measure from the community-wide experiment CAPRI 
(Critical Assessment of PRedicted Interactions) [31, 32] is used as 
criteria, which is calculated on interface residues by superimposing 
the docking solutions to the crystal structure of bound complex. In 
the case of protein-peptide complexes, in CAPRI a docking solu-
tion is considered acceptable if its interface RMSD is less than 2 Å.

We summarized in Table 2, for both the regular protocol and 
the current MD-based protocol, the number of acceptable models 
out of the 400 water-refined models, together with the rank of the 
first acceptable model and the first acceptable cluster in the list of 
models or clusters sorted on HADDOCK score. This allows us to 
compare the docking performance of both protocols. For the easy 
cases, 1DDV and 1LVM, the MD-based protocol generated less 
acceptable models. This is due to the “dilution” problem men-
tioned above: with a larger number of starting conformations, only 
few will lead to acceptable models and accordingly the total  number 
of acceptable models is expected to decrease depending on the 
information used to drive the docking. On the other hand, when 
large conformational changes are taking place, it seems that the 
MD-based protocol does improve the number of acceptable mod-
els (1CZY and 1NX1) and the ranking. However, both protocols 
fail for two cases, for long peptides (11 and 13 amino acids, for 
1D4T and 1HC9, respectively), with rather large conformational 
changes. 1HC9 is especially challenging since the peptide forms a 
b-hairpin conformation in its bound form that is not sampled  
in the starting models. This clearly illustrates the challenges of 
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protein- peptide docking. The best models for each case are shown 
in Fig. 2, superimposed onto the reference crystal structure.

In conclusion, the presented results, although taken from  
a limited number of cases, seem to indicate that the presented 
MD-based protocol is better at generating acceptable models with 
HADDOCK. This was however for an ideal case where the bind-
ing site on the receptor is well defined. Lack of proper information, 
high-flexibility, and large conformational changes still remain 
major challenges to be addressed in protein-peptide interaction 
modeling.

Table 2 
Comparison of (A) unbound/unbound docking performance between the original three-conformations 
protocol and the MD-based protocol presented in this chapter and (B) interface RMSD of the best and 
first acceptable model using the MD-based protocol

(A)

Case 
difficulty

PDB ID 
complex

Number of acceptablea 
models

Rankb of first 
acceptable model

Rankb of first 
acceptable clusterc

Regular 
protocol

MD-based 
protocol

Regular 
protocol

MD-based 
protocol

Regular 
protocol

MD-based 
protocol

Easy 1DDV 39 30 11 3 5 1
1LVM 176 92 1 1 1 1

Medium 1CZY 74 175 1 1 1 1
1D4T 0 0 NA NA NA NA

Hard 1HC9 0 0 NA NA NA NA
1NX1 58 62 6 3 3 2

(B)

Case difficulty PDB ID complex i-RMSD (Å)/rank  
of best model (Å)

i-RMSD (Å)/rank of 
first acceptablea model

Easy 1DDV 1.74/95 1.96/3
1LVM 1.26/40 1.64/1

Medium 1CZY 0.93/42 1.31/1
1D4T 2.31/3 NA

Difficult 1HC9 4.42/131 NA
1NX1 1.28/43 1.59/3

The original protocol [9] uses three peptide conformations (alpha-helix, polyproline-II, and extended), while 30 addi-
tional conformations sampled in MD simulations were added in the MD-based protocol. Both protocols output 400 
docking models at the end of the HADDOCK process
aA model is defined as acceptable if its interface RMSD (i-RMSD) from the reference is less than 2 Å according to the 
criteria of CAPRI. The i-RMSD is calculated on interface backbone atoms of docking models superimposed onto the 
crystal structure
bThe ranking of the first acceptable model/cluster is the position of the first acceptable model/cluster in the list of 
models/clusters sorted on HADDOCK score
cA cluster is defined as acceptable when at least one model is acceptable within the top four models
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Chapter 9

Modeling Peptide-Protein Structure and Binding Using 
Monte Carlo Sampling Approaches: Rosetta FlexPepDock 
and FlexPepBind

Nawsad Alam and Ora Schueler-Furman

Abstract

Many signaling and regulatory processes involve peptide-mediated protein interactions, i.e., the binding of 
a short stretch in one protein to a domain in its partner. Computational tools that generate accurate mod-
els of peptide-receptor structures and binding improve characterization and manipulation of known inter-
actions, help to discover yet unknown peptide-protein interactions and networks, and bring into reach the 
design of peptide-based drugs for targeting specific systems of medical interest.

Here, we present a concise overview of the Rosetta FlexPepDock protocol and its derivatives that we 
have developed for the structure-based characterization of peptide-protein binding. Rosetta FlexPepDock 
was built to generate precise models of protein-peptide complex structures, by effectively addressing the 
challenge of the considerable conformational flexibility of the peptide. Rosetta FlexPepBind is an extension 
of this protocol that allows characterizing peptide-binding affinities and specificities of various biological 
systems, based on the structural models generated by Rosetta FlexPepDock. We provide detailed descrip-
tions and guidelines for the usage of these protocols, and on a specific example, we highlight the variety of 
different challenges that can be met and the questions that can be answered with Rosetta FlexPepDock.

Key words Peptide-protein interactions, Peptide binding, Peptide specificity, Peptide docking, 
Peptide modeling, Rosetta FlexPepDock, Rosetta FlexPepBind

1 Introduction

Protein-protein interactions are main components of various criti-
cal biological processes in living cells [1, 2]. A significant fraction 
of these interactions (15–40 %) are mediated by short linear inter-
acting motifs (SLIMs) embedded inside disordered regions of a 
protein [1, 3]. Peptidic stretches may also appear in-between 
domains [4], or as flexible loops that bulge out of structured 
domains and mediate a protein-protein interaction (e.g., [5]). 
Thus, even among domain-domain interactions it is often one lin-
ear segment that contributes most of the binding affinity [6, 7]. 
Isolated peptides also play critical regulatory roles. Many have 
been recently found to be encoded and transcribed from short 

1.1 The Importance 
of Peptide- Mediated 
Interactions
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open reading frames [8]. Others are generated posttranslationally 
by proteolytic cleavage [9, 10]. Finally, peptides are also an important 
source of drugs used for medical purposes [11].

The flexibility of the peptide partner prior to binding presents con-
siderable challenges for peptide docking [12, 13]. Even when the 
binding site on the receptor is known, and even if information 
about the approximate location and conformation of the peptide is 
available, identifying the correct conformation in this huge sam-
pling space can still be a formidable challenge that has been met 
only recently. By efficiently dividing peptide docking into separate, 
predominantly independent modules, and by focusing on relevant 
conformations, this space can be considerably reduced. On the 
peptide side, the conformational sampling model states that pep-
tides fluctuate in equilibrium between a more or less restricted 
number of preferred conformational states, and binding results in 
an equilibrium-shift toward pre-existing bound conformations 
[14–16], while simultaneous binding and folding upon encounter-
ing the receptor (i.e., the induced fit model) is less prevalent [4, 14, 
17, 18]. Therefore, mapping out the conformational ensemble can 
significantly reduce the internal degrees of freedom to be sampled 
for the peptide during docking. Consequently, the peptide back-
bone conformation space can be reduced to a significant extent by 
biasing to specific conformation(s), such as helix and extended 
poly-proline [19], or a limited set of initial plausible peptide back-
bone conformations generated using molecular dynamics simula-
tions [20] or other folding algorithms [21], or fragments extracted 
from existing protein structures [22]. On the receptor side, the 
search can be restricted to promising binding sites identified by 
mapping of the receptor surface using, e.g., solvent mapping [23] 
or mapping of individual amino acids [24]. Thus, while the gen-
eration of accurate structures of peptide-protein complexes is still 
challenging, it has become doable, as demonstrated by the range of 
different approaches that have been developed recently, many of 
them described in this book.

Given the simplifications described above, initial models of a 
peptide-receptor complex can be generated efficiently. However, 
for practical use, they often need to be further refined to high 
quality. This last step of docking and optimization may result in 
significant conformational changes of the peptide, in particular if 
induced fit upon binding is considerable and the peptide folds and 
binds simultaneously. Therefore, the docking protocol needs to 
be able to sample the required conformational changes so that 
near-native conformations are sampled and well refined to low-
energy models.

The protocols described in this chapter are aimed at the 
refinement to high resolution of a peptide with known approx-
imate location in a binding site.

1.2 The Challenges 
of Peptide Docking

Nawsad Alam and Ora Schueler-Furman
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Rosetta FlexPepDock [22, 25] (Fig. 1; Subheadings 3.1–3.3) was 
one of the first approaches that overcame the challenge of the vast 
conformational space of peptide conformations: It accurately 
modeled peptides beyond five residues into their receptor-binding 
site, using a combination of docking (rigid body optimization) 
and folding (extensive backbone optimization of the peptide). 

1.3 The Rosetta 
FlexPepDock Peptide-
Receptor Modeling 
Suite

Fig. 1 Overview of the Rosetta FlexPepDock protocols described in this chapter. (A) Rosetta FlexPepDock 
Refinement. Left panel: Outline of the Refinement protocol. The starting structure is refined by iterative cycles 
of rigid body and peptide backbone optimizations. These cycles start with reduced Van der Waals (VdW) repul-
sive and increased VdW attractive terms, which are gradually ramped back to their original value in the energy 
function. Middle panel: Output models from n = 1000 independent simulations are ranked using the Rosetta 
energy score and the top-scoring model (magenta circle) is chosen. Right panel: Slam tail peptide bound to the 
SH2 domain of the XLP protein SAP (pdb id: 1d4t [80]). Starting from an initial coarse model (red), refinement 
produces a final model (magenta) that is very similar to the solved structure (green). (B) Rosetta FlexPepDock 
ab- initio peptide docking. Left panel: Outline of ab-initio peptide docking. The starting structure (in an arbitrary, 
extended conformation) is refined in iterative cycles of rigid body and peptide backbone optimizations, using a 
coarse-grained model with side chains represented by a centroid. These cycles start at a high simulation 
temperature that is gradually ramped back to normal. Each resulting model is further refined to a full-atom 
model using FlexPepDock refinement (orange box; see a). Middle panel: Top scoring output models from 
n = 50,000 independent simulations are ranked using the Rosetta energy score (lower right) and clustered to 
select several representative models (magenta circles). Note the larger sampled range. Right panel: The native, 
input and final folded and docked model of a peptide derived from Nuclear receptor coactivator 1 bound to 
Mineralocorticoid receptor (pdb id: 2a3i [81]; coloring as above). Abbreviations: MCM Monte Carlo with 
Minimization, rmsBB_if Interface backbone RMSD (i.e., the root mean square deviation of the peptide back-
bone atoms of residues at the interface), reweighted_sc reweighted score, energy score with up-weighted 
contribution of the peptide (see Table 3 for more details)

Modeling Peptide-Protein Interactions with Rosetta FlexPepDock
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This protocol is embedded within the Rosetta framework [26–28] 
that is based on efficient Monte-Carlo sampling of relevant confor-
mations, using an energy function well calibrated on a range of 
different structural modeling and design applications.

Accurate models of peptide-protein complexes can be used as start-
ing point to further characterize the details of an interaction. 
Understanding peptide-binding specificity of a given receptor pro-
tein can in principle be addressed by varying amino acids at differ-
ent peptide sites and evaluating their compatibility with the binding 
site, to determine a sequence profile [29–32]. Alternatively, a set of 
different protein sequences can be threaded and optimized onto a 
template peptide-receptor complex, and new substrates can be 
identified based on energies associated with the resulting struc-
tures. This strategy is used in the Rosetta FlexPepBind protocol 
[33–35] (Fig. 2; Subheadings 3.4 and 3.5).

1.4 Use of Structural 
Models to Study 
Peptide-Binding 
Affinity and Specificity

Fig. 2 Rosetta FlexPepBind. (A) Overview of the Rosetta FlexPepBind approach. Initially, a set of known substrates 
and non-substrates is used to calibrate the protocol to optimize the distinction between substrates and non-
substrates. The calibrated protocol is then used to identify novel substrates. (B) Details of the substrate binding 
sites for three biological systems studied using the FlexPepBind protocol that are described in the text

Nawsad Alam and Ora Schueler-Furman
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While traditional approaches have characterized binding speci-
ficity based on sequence profiles derived from known binders 
(compiled, e.g., in the comprehensive Eukaryotic Linear Motif, 
ELM, database [36, 37]), a sequence-profile derived from struc-
tural consideration may be less biased to already known binders 
and therefore can provide more general features. Consequently, 
new, nonstandard substrates may be identified.

In this chapter, we provide a detailed description of Rosetta 
FlexPepDock and its derived application FlexPepBind. Our hope is 
that this will give readers appetite, and provide practical details, to 
apply these tools to their biological systems of interest.

2 Materials

FlexPepDock is part of the Rosetta Macromolecular molecular 
modeling package [26–28]. Detailed instructions for downloading 
and installing Rosetta can be found on the RosettaCommons web-
page at www.rosettacommons.org

 1. Online documentation that includes detailed description of 
runline options and optimal parameter settings can be accessed 
at the following web address:

www.rosettacommons.org/docs/latest/application_doc-
umentation/docking/flex-pep-dock

 2. In the downloaded Rosetta package, located in the rosetta/
demos/public/ directory, the subdirectories:
(a) refinement_of_protein_peptide_complex_using_FlexPepDock
(b) abinitio_fold_and_dock_of_peptides_using_FlexPepDock
(c) peptide_specificity_using_FlexPepBind

include detailed instructions and example 
files for running the different protocols.

 3. A protocol capture (rosetta/demos/protocol_capture/
FlexPepDock_AbInitio directory of the downloaded Rosetta 
package): describes how to set up, run, and postprocess the 
result for the ab-initio FlexPepDock protocol.

Queries regarding the various FlexPepDock protocols can be 
addressed to the Rosetta Forum webpage (www.rosettacommons.
org/forum). In addition, a dedicated web server allows submission 
of FlexPepDock refinement runs online and to obtain results 
quickly without the need to manage command lines: (flexpepdock.
furmanlab.cs.huji.ac.il) [38].

2.1 Rosetta

2.2 Documentation 
for FlexPepDock 
and FlexPepBind

Modeling Peptide-Protein Interactions with Rosetta FlexPepDock
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3 Methods

In this section, we first describe the functionalities of the different 
FlexPepDock protocols (FlexPepDock: Fig. 1 and Subheadings 3.1–
3.3; FlexPepBind: Fig. 2 and Subheadings 3.4 and 3.5). Then we 
demonstrate on an example study, namely the generation and 
mode of action of the bactericidal EDF peptide [39, 40], how the 
use of a combination of these protocols has significantly advanced 
our understanding of the structural details of mode of action in 
this system (Fig. 3 and Subheading 3.6).

Fig. 3 Example application of the Rosetta FlexPepDock suite: Structure-based characterization of the bacterial 
external death factor (EDF) activity and generation. (A) Mechanism of action of EDF. EDF competes with the 
MazE antitoxin for toxin MazF, and by this removes toxin inhibition. Left panel: identification of binding site of 
EDF: the EDF pentapeptide sequence was threaded onto each overlapping MazE pentapeptide stretch, and 
each structure was optimized. The best-scoring complex identifies the location of mimicry and competition, 
namely the c-terminal MazE residues 71–75. Middle and right panels: Comparison of the solved structure of 
MazE bound to MazF to the model of EDF bound to MazF highlights the sophisticated mimicry of EDF: The criti-
cal interaction with the central tryptophan side chain is conserved (middle panel), and several hydrogen bonds 
between the peptide backbone and side chain atoms in MazF are retained (highlighted by arrows). (B) 
Mechanism of EDF generation. The E. coli protease ClpP acts on Zwf to generate EDF. Left panel: calibration of 
known ClpP substrates and non-substrates: FlexPepBind predictions are strongly correlated with experimen-
tally determined cleavage propensities, allowing the definition of a threshold for subsequent substrate predic-
tion (red dashed line). Middle panel: screening of overlapping six residue windows of Zwf predicts two putative, 
consequent ClpP cleavage sites that suggests the generation of a heptapeptide intermediate (highlighted by a 
dashed red rectangle). Right panel: Model of the ClpP-Zwf interaction, highlighting the two consecutive P1 
cleavage sites bound to adjacent subunits in the homo-multimeric ClpP (in red dashed rectangles)

Nawsad Alam and Ora Schueler-Furman
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In contrast to protein-protein docking, where both partners 
are predominantly pre-folded, the challenge in peptide-protein 
docking lies in the need to sample both the rigid body orientation 
of the peptide relative to its receptor, as well as its internal flexibil-
ity. Starting from the RosettaDock framework of protein-protein 
docking [41–43], Rosetta FlexPepDock was optimized to sample 
in addition to these internal peptide degrees of freedom.

The Rosetta FlexPepDock Refinement protocol [25] was devel-
oped with the purpose of refining a coarse peptide-protein com-
plex, obtained, e.g., from a homolog complex, to a near-native 
model. Starting with this coarse model, the FlexPepDock 
Refinement protocol refines all of the peptide’s degrees of freedom 
(i.e., its rigid body orientation, as well as backbone dihedral angles) 
using a Monte-Carlo-Minimization based approach, in which each 
perturbation is followed by extensive minimization to find the 
local energy minimum, before the Metropolis-criterion is applied 
to accept/reject the new structure. All side chains at the interface 
(both on the peptide and receptor side) are continuously read-
justed during the refinement, by allowing their replacement from a 
rotamer library that includes also the native receptor side chain 
conformation. The refinement starts with an energy function up- 
weighted for contacts (VdW attractive term) and down-weighted 
for clashes (VdW repulsive term); these are gradually ramped back 
to the default energy function. This allows initial efficient sweeping 
of the highly rugged energy landscape that is followed by accurate 
refinement into the energy minima.

FlexPepDock Refinement was benchmarked on a set of per-
turbed peptide-protein structures, and can successfully refine to 
near-native models (peptide backbone [bb]-RMSD <2.0 Å) struc-
tures with initial peptide bb-RMSD of up to 5.5 Å, with an effec-
tive range of up to 50° between phi-psi angles (see Note 8).

In many cases, no prior information about the peptide conforma-
tion is known, and therefore sampling needs to be increased 
beyond local refinement. Toward this goal, we developed the 
extended Rosetta FlexPepDock ab-initio protocol [22] for simul-
taneous docking and de-novo folding of peptides on a specific 
region on a receptor. An initial approximate description of a 
peptide- protein interaction site can be obtained either from 
 experiments or from prediction (e.g., with PeptiMap [23], PepSite 
[44, 45], PEP-SiteFinder [21]).

Starting with a coarse-grained structural representation of the 
peptide and the receptor, FlexPepDock ab-initio efficiently samples 
the space of possible peptide backbone conformations and rigid- body 
orientations using the Rosetta fragments library and various torsional 
sampling moves [22, 46]. The resulting coarse-grained models are 
subsequently refined into high-resolution models using the 
FlexPepDock Refinement protocol [25]. Models are selected after 

3.1 Refinement 
of Peptide- Protein 
Structures Using 
Rosetta FlexPepDock 
Refinement (Fig. 1a)

3.2 Simultaneous 
Docking and De-Novo 
Peptide Folding Using 
FlexPepDock Ab-Initio 
(Fig. 1b)

Modeling Peptide-Protein Interactions with Rosetta FlexPepDock
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clustering of the top-scoring models and selecting best scoring cluster 
representatives (using the reweighted score measure, see Table 3).

In a benchmark, this protocol identifies near-native peptide 
conformations among the top ten clusters in 7/14 cases [22].

The FlexPepDock ab-initio and refinement protocols have 
significantly impacted the docking field: By extending the scope 
of state-of-the-art methods for high-resolution peptide model-
ing, they have motivated the development of a range of new 
approaches for peptide-protein docking (reviewed in [13], and 
presented in other chapters in this book). Together, these have 
enabled detailed, structure-based studies and manipulation of 
many more interactions.

The FlexPepDock protocols have been applied by users to a 
large variety of different applications, among them to model MHC-
peptide antigen complexes for assessment of tumorigenic mutations 
and other applications [47, 48], modeling of protease substrates 
[49–52] and the design of protease inhibitors [53], to study host-
pathogen interactions [54, 55], and a variety of other interactions 
between peptides and peptide-binding domains (e.g., [56–61]). 
As an example, we used this protocol, together with loop modeling, 
to characterize the activation mechanism of myosin II heavy chain 
kinase A of Dictyostelium: We first modeled how the c-terminal tail 
binds to the kinase active site for autophosphorylation, and then 
how this phosphorylated tail binds into a putative allosteric site to 
subsequently activate the kinase [62]. A similar approach was used 
by others to model the phosphorylation- dependent interaction of 
the α-synuclein tail with Rab8a [63]. FlexPepDock was also used to 
generate a plausible starting model for a molecular dynamics simula-
tion of a glycogen synthase kinase 3β kinase/substrate peptide inter-
action [64]. In Subheading 3.6 we describe in detail a specific 
example, the study of the peptide EDF (Fig. 3).

Below we provide a detailed description about the various input 
files needed and runline command for running refinement and ab- 
initio modeling using FlexPepDock. The various command line 
options and scoring measures are summarized in Tables 2 and 3, 
respectively. We refer the reader also to the extensive documenta-
tion available online (see Subheading 2).

 1. Starting structure: An initial approximate structure of a 
peptide- protein complex with or without side-chain coordi-
nates. In ab-initio mode, the starting backbone conformation 
of the peptide may be arbitrary (e.g., extended). The exact way 
in which the starting conformation is created may vary depend-
ing on the specific application (see Notes 1 and 5). Multichain 
receptors: In order for FlexPepDock to correctly handle mul-
tichain receptors, the PDB file must contain first the receptor 
chains in a consecutive manner, followed by the peptide chain 
and ligand chains that come last.

3.3 How to Run 
FlexPepDock 
Refinement 
and FlexPepDock 
Ab-Initio Protocols

3.3.1 Input Files Needed 
to Run FlexPepDock 
Simulations
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 2. Native structure (optional): This is a reference structure for 
RMSD comparisons and statistics of final models, in case a 
native structure is available. If a native structure is not sup-
plied, the starting structure is used for reference instead.

 3. Constraint file (optional): This file specifies conditions to be 
met for final models. Constraints are incorporated as additional 
terms into the Rosetta energy function during the simulation 
(for detailed description on the Rosetta resfile format visit 
www.rosettacommons.org/docs/latest/rosetta_basics/file_
types/constraint-file for more information). They are mainly 
used to generate a starting model of a peptide in a given bind-
ing site for further FlexPepDock refinement, and to restrict 
sampling to relevant conformations for FlexPepBind (see 
Subheadings 3.4, 3.5 and Table 1A).

 4. Fragment files (for ab-initio docking): 3-mer, 5-mer, and 
9-mer Rosetta fragment files should be provided for the 
peptide sequence when using the ab-initio protocol (see 
Subheading 3.3.3). If the peptide length is smaller than 9, 
use 3-mer and 5-mer libraries.

Below we list the runline commands of the different steps. For 
more details about the different parameters used, see Table 2.

 1. Prepack your initial complex to optimize the side-chains of 
each monomer according to the Rosetta energy function (see 
Note 2):

$FlexPepDocking.{ext} -database ${ro-
setta_db} -s start.pdb -native native.pdb 
-flexpep_prepack -ex1 -ex2aro [-unboundrot 
unbound_receptor.pdb]

Here start.pdb is the input structure. This will generate 
start_0001.pdb, which is the input for refinement or ab initio 
modeling in the next step. The last three parameters define the 
receptor side chain flexibility in this and the following simula-
tion steps (see Note 3c).

 2. Refine the structure using FlexPepDock refinement (see Note 9): 
Generate 100 (or more) models with the -lowres_preoptimize 
flag (see Note 3b), and additional 100 models (or more) with-
out this flag, by two separate runs:

$FlexPepDocking.{ext} -database ${ro-
setta_db} –s start_0001.pdb -native na-
tive.pdb -out:file:silent decoys.silent 
-out:file:silent_struct_type binary -pep_re-
fine -ex1 -ex2aro -use_input_sc –unboundrot 
unbound_receptor.pdb -nstruct 100 [-lowres_
preoptimize]

3.3.2 Steps to Run 
FlexPepDock Refinement 
and Analyze the Results

Modeling Peptide-Protein Interactions with Rosetta FlexPepDock
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Table 2  
Runline options for FlexPepDock simulations. (A) Common FlexPepDock flags; (B) Relevant Common 
Rosetta flags; and (C) Expert flags

(A) Common FlexPepDock flags

Flag Description Default

-receptor_chain Chain id of receptor protein First chain

-peptide_chain Chain id of peptide protein Second chain

-lowres_abinitio Low-resolution ab-initio folding and docking 
mode

False

-pep_refine Refinement mode False

-lowres_preoptimize Perform a preliminary round of centroid 
mode optimization before Refinement

False

-flexpep_prepack Prepacking mode. Optimize the side-chains of 
each monomer separately (no docking)

False

-flexpep_score_only Read in a complex, score it and output 
interface statistics

False

-flexPepDocking 
MinimizeOnly

Minimization mode: Perform only a short 
minimization of the input complex

False

-ref_startstruct Alternative start structure for scoring statistics 
(useful as reference for rescoring previous 
runs with the -flexpep_score_only flag)

N/A

-peptide_anchor Set the peptide anchor residue manually. Only 
recommended if one strongly suspects the 
critical region for peptide binding to be 
remote from its center of mass

Residue nearest to 
the peptide center 
of mass

(B) Relevant Common Rosetta flags

Flag Description

-in::file::s
-in:file:silent

Specify starting structure (PDB or silent format, respectively)

-in::file::silent_
struct_type

-out::file::silent_
struct_type

Format of silent file to be read in/out. For silent output, use the 
binary file type since other types may not support ideal form

Models can be extracted using extract_pdbs

-native Specify the native structure for which to compare in RMSD 
calculations. When the native is not given, the starting structure 
is used as reference

-nstruct Number of models to create in the simulation

-unboundrot Add the position-specific rotamers of the specified structure to the 
rotamer library (usually used to include rotamers of unbound 
receptor)

(continued)

Nawsad Alam and Ora Schueler-Furman



151

Table 2
(continued)

(A) Common FlexPepDock flags

Flag Description Default

-use_input_sc Include rotamer conformations from the input structure during 
side-chain repacking. Unlike the -unboundrot flag, not all 
rotamers from the input structure are added each time to the 
rotamer library, only those conformations accepted at the end of 
each round are kept and the remaining conformations are lost

-ex1/-ex1aro -ex2/-
ex2aro -ex3 -ex4

Adding extra side-chain rotamers (highly recommended). The -ex1 
and -ex2aro flags are recommended as default values

-database The Rosetta database

-frag3
-flexPepDocking:frag5
-frag9

3mer/5mer/9mer fragments files for ab-initio peptide docking 
(9mer fragments for peptides longer than 9)

(C) Expert flags

Flag Description Default

-rep_ramp_cycles The number of outer cycles for the protocol. 
In each cycle, the repulsive energy of 
Rosetta is gradually ramped up and the 
attractive energy is ramped down, before 
inner-cycles of Monte-Carlo with 
Minimization (MCM) are applied

10

-mcm_cycles Number of inner-cycles for both rigid-body 
and torsion-angle Monte-Carlo with 
Minimization (MCM) procedures

8

-smove_angle_range Defines the perturbation size of small/sheer 
moves

6.0

-extend_peptide Start the protocol with the peptide in 
extended conformation (neglect original 
peptide conformation; extend from the 
anchor residue)

false

-frag3/5/9_weight Relative weight of different fragment libraries 
in ab-initio fragment insertion cycles

1.0/0.25/0.1

Note that in this and following runs we used a binary silent 
output to save disk space. Selected models can be extracted from 
the decoys.silent file using the following command:

$extract_pdbs.{ext} -database ${ro-
setta_db} -in:file:silent decoys.silent 
-in:file:fullatom -in:file:tags decoy_tag

Modeling Peptide-Protein Interactions with Rosetta FlexPepDock
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where the Rosetta executable extract_pdbs is used, and 
decoy_tag is the tag(s) of the desired decoy(s) to be extracted 
(e.g., -in:file:tags start_0001 start_0002).

 3. Select model(s): sort the score files of both runs (score.sc by 
default) and choose the top-scoring models as candidate mod-
els for further inspection (sort according to reweighted score 
or interface score; see Note 4 and Table 3 for how to choose 
the scoring term).

 1. Prepack your initial complex (see Subheading 3.3.2, step 1).
 2. Generate fragment files needed for ab initio sampling of 

peptide conformations.
$perl make_fragments.pl -verbose -id 

xxxxx xxxxx.fasta

where xxxxx is the name of the peptide (needs to be five dig-
its) and the fasta file contains the sequence. This will generate 

3.3.3 Steps to Run 
FlexPepDock Ab-Initio 
and Analyze the Results

Table 3  
Description of the various scoring and quality assessment measures

Total_scorea Total score of the complex

reweighted_sc Reweighted score of the complex, in which interface residues are given double 
weight, and peptide residues are given triple weight

I_bsa Buried surface area of the interface

I_hb Number of hydrogen bonds across the interface

I_pack Packing statistics of the interface

I_sc Interface score (sum over energy contributed by interface residues of both 
partners)

pep_sc Peptide score (sum over energy contributed by the peptide to the total score; 
consists of the internal peptide energy and the interface energy)

pep_sc_noref Peptide score without an amino acid dependent reference energy term Eaa, 
originally introduced to bias for natural protein sequences during protein 
design

I_unsat Number of buried unsatisfied HB donors and acceptors at the interface

rms (ALL/BB/CA) RMSD between output model and the native structure, over all peptide 
(heavy/backbone/C-alpha) atoms

rms (ALL/BB/CA)_if RMSD between output model and the native structure, over all peptide 
interface (heavy/backbone/C-alpha) atoms

startRMS(all/bb/ca) RMSD between start and native structures, over all peptide (heavy/
backbone/C-alpha) atoms

For the common Rosetta scoring terms, please also see www.rosettacommons.org/docs/latest/rosetta_basics/scor-
ing/score-types
aFor all interface terms, the interface residues are defined as those whose C-beta atoms (C-alpha for Glycines) are up to 
8 Å away from any corresponding atom in the partner protein

Nawsad Alam and Ora Schueler-Furman
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the input files for the fragment picker below (xxxxx.psipred_
ss2, xxxxx.checkpoint along with other files):

$fragment_picker.{ext} -data-
base ${rosetta_db} -in:file:vall vall.
jul19.2011 -in:file:checkpoint xxxxx.check-
point -frags:describe_fragments frags.
fsc -frags:frag_sizes 3 5 9    -frags:n_
candidates 2000 -frags:n_frags 500 
-frags:ss_pred    xxxxx.psipred_ss2 
psipred -frags:scoring:config psi_L1.cfg 
-frags:bounded_protocol true

where vall.jul19.2011 is the Rosetta fragment database, 
the psi_L1.cfg file provides the fragment scoring weights (e.g., 
for different secondary structure and profile scores). For more 
details about the other command line parameters, see www.
rosettacommons.org/docs/latest/application_documenta-
tion/utilities/app-fragment-picker

The fragment files should be re-indexed to the positions of 
the peptide in the structure (using the script scripts/frags/shift.
sh in the demo abinitio_fold_and_dock_of_peptides_using_
FlexPepDock; e.g., for a receptor of 100 residues, the first resi-
due index in the fragment file for the peptide should be 101). 
 Fragments are not required for the receptor. See Note 6 for 
tips for reinforcing a specific secondary structure of the 
peptide.

 3. Optimize the structure using FlexPepDock ab-initio: Generate 
50,000 models (see Note 3a for how to determine this num-
ber, and Table 2 for a description of the individual runline 
parameters):

$FlexPepDocking.{ext}  -database ${roset-
ta_db} -s start_0001.pdb -native native.pdb 
-out:file:silent decoys.silent -out:file:silent_
struct_type binary -lowres_abinitio -pep_re-
fine -ex1 -ex2aro -use_input_sc -unboundrot 
unbound_receptor.pdb -frag3 <frag3 file> 
-flexPepDocking:frag5 <frag5 file> -frag9 <frag9 
file> -nstruct 50000

 4. Cluster the top-scoring models: To maximize the diversity of 
the final models, and to estimate the size of the local energy 
basin, we suggest clustering the results (using the Rosetta clus-
tering application (for detailed clustering command line 
options visit www.rosettacommons.org/docs/latest/applica-
tion_documentation/utilities/cluster). We recommend clus-
tering the top-1 % models (either based on reweighted score or 
interface score) and choosing the clusters with lowest-energy 
representatives. We have found that a clustering radius of 2.0 Å 
(peptide CA atoms only) provides a diverse and representative 
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set of conformations, among which good solutions are often 
found within the top 1–10 clusters. Note that the RMSD 
values need to be modified to reflect RMSD of the whole 
complex as the clustering is performed on the whole complex 
and in that context the clustering radius will change. Use the 
clustering scripts provided in the demo “abinitio_fold_and_
dock_of_peptides_using_FlexPepDock” that will automatically 
adjust the RMSD (alternatively, it is possible to exclude resi-
dues during the clustering process). See Note 4 for additional 
model selection options after clustering.

Local minimization finds a similar structure in the nearby mini-
mum of the Rosetta Energy landscape. This protocol is embed-
ded inside the refinement and the ab initio sampling cycles. As 
stand- alone, this protocol is used in the FlexPepBind framework 
(see Subheading 3.5.2). It simply minimizes all the peptide dihe-
dral angles and its rigid-body orientation, as well as the receptor 
side- chains (the receptor backbone is not changed).

 1. Prepack your initial complex (see Subheading 3.3.2, step 1; 
make sure to include the side chain conformations of the initial 
complex; not needed if you start from a model; see Note 2).

 2. Optimize the structure using FlexPepDock minimization:
$FlexPepDocking.{ext} -database ${rosetta_

db} -s start_001.pdb -native native.pdb -flex-
PepDockingMinimizeOnly –ex1 –ex2aro -unboundrot 
unbound_receptor.pdb

One of the major applications of FlexPepDock is the extension 
from the modeling of peptide-protein complex structures to the 
modeling of peptide-protein binding. While a structure of a pro-
tein complex, whether solved by experiment or modeled by an 
accurate protocol, can provide important insights into the interac-
tions, unfortunately, despite community-wide attempts and prog-
ress, the development of general protocols for the prediction of 
binding and binding affinity based on structure is only at its begin-
ning [65, 66]. Luckily however, for specific cases, we and others 
have made considerable progress in defining the range of peptide 
substrates for a given receptor [33–35, 67] (see Fig. 2, Table 1, and 
other chapters in this book).

The Rosetta FlexPepBind protocol is based on the observation 
that structure-based prediction of binding is particularly successful 
when critical features of an interaction with a given receptor can be 
identified and reinforced. The core strategy of Rosetta FlexPepBind 
for the prediction of peptide-binding specificity for a given protein 
receptor is to use an existing template structure of a peptide- 
receptor complex, onto which we model each of the investigated 
peptide sequences with constraints that reinforce defined critical 

3.3.4 Steps to Run 
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features, such as conserved hydrogen bonds between specific side 
chains in the receptor and the peptide backbone. These models are 
then used to distinguish binders from nonbinders based on their 
energies. This section contains an overview of FlexPepBind; the 
following Subheading 3.5 provides the details of how to run the 
protocol and analyze the obtained data.

Rosetta FlexPepBind consists of the following steps (Table 1 
and Fig. 2, upper panel): Step 1—Prepare a starting template struc-
ture of a peptide-receptor complex: The binding of each of a list of 
peptides of interest will be modeled onto that template structure 
(see Step3 below) (see Note 7); Step 2: Derive features that are criti-
cal for binding: Conformational sampling will be biased toward 
relevant conformations, by implementation of constraints that 
reproduce these conserved structural features; Step 3: Model each 
peptide sequence on the peptide-receptor complex template: Each pep-
tide sequence of interest is threaded onto the template and opti-
mized under the constraints defined in Step2. Depending on the 
system, either simple minimization [33, 35] or extensive optimiza-
tion using the FlexPepDock refinement protocol might be needed 
[34]. Step 4: Rank the optimized peptide-receptor models based on 
binding energy and identify binders: different scoring measures may 
be used to rank the optimized peptide-receptor complex struc-
tures, to select the peptides predicted to bind the strongest (see 
Table 3 and Subheading 3.5.3).

Rosetta FlexPepBind needs to be tailored to each specific sys-
tem to work well [33–35] (see Table 1 and Subheading 3.5.3). 
However, these system-specific changes are rather minor. In order 
to adapt the protocol to the specific system, the protocol is first 
calibrated on a training set with known binders and nonbinders. 
This involves selection of the optimal template structure (Step 1 
above), and the identification of conserved features specific to that 
system, which are then defined as constraints (Step 2 above) (see 
Fig. 2a, left panel). Furthermore, we test which optimization per-
forms best—if minimization only works well, we opt for this option 
as it is much faster and makes it easy to apply the final protocol on 
large scale (Step 3 above). Finally, we investigate which scoring 
function performs best for the identification of binders (binary dis-
tinction), as well as for predictions that correlate best with experi-
mental data (quantitative predictions) (Step 4 above).

The protocol can be applied to characterize peptide-binding 
specificity, as well as to understand peptide substrate specificity of 
enzymes. For the latter, the underlying assumption is that the abil-
ity of a peptide substrate to bind to the catalytic site in a catalysis- 
competent conformation is critical, and that therefore binding 
can be taken as a useful approximate to substrate strength. The 
catalysis- competent conformation is enforced using a set of con-
straints identified in Step 2 above.
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After rounds of calibration (Fig. 2a, middle panel), the opti-
mized protocol can be applied to novel potential substrates 
(Fig. 2a, right panel). These are then tested by experiment. If nec-
essary, feedback from these validations can be used to further 
improve the protocol.

We have applied Rosetta FlexPepBind to investigate several 
biological systems, including the (a) discovery of novel prenylation 
targets of Farnesyltransferase (FTase) [33], based on the peptide 
sequence of the four c-terminal residues of a protein; (b) identifica-
tion of Histone Deacetylase 8 (HDAC8) non-histone substrates 
[35]; and (c) elucidation of BH3 binding specificity toward Bcl-2 
like proteins [34]. A general overview of these applications, includ-
ing details about the specific modification of FlexPepBind for each 
system, is presented in Table 1 and Fig. 2b, and the background 
and main findings for each are summarized below.

Background: The addition of a farnesyl moiety by FTase to a cysteine 
residue near the c-terminus is critical for the function of many pro-
teins involved in signal transduction, e.g., by targeting the modified 
protein substrates to the membrane. Until recently, it was believed 
that a C-terminal CaaX′ motif is required for farnesylation (i.e., the 
modified cysteine is followed by two aliphatic residues and an addi-
tional c-terminal residue). However, farnesylation experiments have 
suggested broader substrate diversity [69, 70]. Sequence-based 
methods such as PrePS allowed indeed to generate a more general 
profile of FTase substrates, but were restricted to the pool of 
sequences of known substrates [71]. By calibrating FlexPepBind for 
FTase substrate detection, we were able to discover a wide range of 
new in vitro FTase peptide substrates that do not confer to previ-
ously reported sequence motifs [33]. Identification of many poten-
tial substrates in pathogenic proteomes suggests that pathogens 
hijack the host farnesylation machinery for their needs [72].

Results: Table 1, left column provides details of FTase 
FlexPepBind calibration, assessment on known substrates, and 
application for the detection of new substrates. This study vali-
dated our assumption that the assessment of binding ability in a 
catalysis-competent conformation is a good approximation for 
substrate strength, allowing modeling of substrates based on bind-
ing, without the need to explicitly model the catalysis. Importantly, 
prospective in vitro experiments validate that 26/29 predicted 
novel substrate peptides indeed undergo farnesylation. Other than 
the discovery of putative novel farnesylation targets in the human 
genome, as well as possible inhibitors, we provide insights into the 
main determinants of farnesylation.

Background: Histone Deacetylases (HDAC) catalyze the deacety-
lation of specific acetyl lysine residues in histones. Recent studies 
however have identified a range of additional non-histone substrate 
proteins. By calibrating FlexPepBind for HDAC8 substrate 
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detection, we were able to discover a wide range of new in vitro 
HDAC8 peptide substrates, defining an expanded HDAC8 
acetylome.

Results: The results are summarized in Table 1, middle column. 
In this study, the challenge was to obtain an appropriate template 
structure that could be used to model efficiently the binding of 
different peptide substrates. After an initial calibration round, we 
chose as template a structural model of the strongest substrate in 
the training set, GYKacFGC, bound to HDAC8. This structure 
was generated using Rosetta FlexPepDock, starting from a solved 
structure of HDAC8 bound to a p53-derived peptide [73]. 
Calibration and validation involved first optimal binary distinction 
of substrates/non-substrates, and later correlation between 
predicted binding affinity and experimental substrate efficiency. 
We identified in this study the strongest HDAC8 peptide substrate 
yet reported (FGKacFSW, kcat/KM = 4800 M−1 s−1), and highlight 
the relevance of structure-based substrate identification and its 
complementarity to sequence-based approaches and proteomic 
 experiments [74] toward a comprehensive picture of the HDAC8 
deacetylome.

Background: Interactions between Bcl-2-like proteins and BH3 
domains play a key role in the regulation of apoptosis. Despite the 
overall structural similarity of their interaction with helical BH3 
domains, Bcl-2-like proteins exhibit an intricate spectrum of 
binding specificities whose underlying basis is not well understood. 
We used the FlexPepBind protocol to predict the BH3-only 
peptide- binding specificity Bcl-2 like proteins.

Results: Table 1, right column provides details of Bcl FlexPepBind 
calibration, assessment on known binders, and application for the 
detection of new binders. This study characterized the distinct pat-
terns of binding specificity of BH3-only derived peptides for the 
Bcl-2 like proteins Bcl-xL, Mcl-1, and Bcl-2 and provided insight 
into the structural basis of determinants of specificity. Since this 
involved the modeling of a longer, helical peptide, without any con-
straints, considerable more sampling was necessary to obtain good 
correlation between prediction and experiment.

The successful application of Rosetta FlexPepBind to three 
very different systems (summarized in Table 1 and Fig. 2b) pro-
vides a framework for the extension to additional systems charac-
terized by a few known substrates/non-substrates and a solved 
template structure of a peptide-protein complex. It also highlights 
specific features that need to be taken into account, depending on 
the system studied.

Below we provide a detailed description about the various input 
files needed and runline command for running the FlexPepBind 
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protocol. We refer the reader also to the extensive documentation 
available online (see Subheading 2).

 1. Template structure: A solved structure of the receptor bound 
to a substrate is required. In cases where only the structure of 
the receptor is available, a template can be created by extensive 
modeling of a substrate peptide (using FlexPepDock protocols 
described in Subheadings 3.1–3.4). The template structure has 
to be prepacked to remove internal clashes (see step 1 in 
Subheading 3.3 and Note 2 on preparing the structure). If the 
template is an enzyme then it is important that the active site 
residues will not move much during repacking.

 2. Constraint file (optional): Constraints critical for binding of 
the peptide to the receptor can be extracted from the solved 
structure to bias docking simulations.

 3. Calibration and Validation sets: A known set of substrates 
and non-substrates can be used to calibrate and validate the 
protocol before it can be applied at large scale.

 1. Thread various peptide sequences onto the template to gen-
erate a starting structure for each of the peptides to be tested. 
We use the Rosetta fixbb protocol [68]. The fixbb design pro-
tocol can be run as

$fixbb.{ext} -database ${rosetta_db} –s 
template.pdb -resfile peptide_resfile –ex1-
ex2aro –use_input_sc –unboundrot unbound_re-
ceptor.pdb -nstruct 1

Where template.pdb is the template peptide-protein com-
plex; peptide_resfile contains instruction regarding threading 
of the peptide sequence onto the template peptide backbone 
(for detailed description of the resfile format, visit www.roset-
tacommons.org/docs/latest/rosetta_basics/file_types/res-
files). Detailed run line options of the Rosetta fixbb design 
protocol can be found here: www.rosettacommons.org/docs/
latest/application_documentation/design/fixbb.

 2. Optimize each starting structure (using one of the FlexPepDock 
protocols). In our previously studied systems we have used 
both FlexPepDock refinement (Subheading 3.3.2) for exten-
sive optimization of the threaded peptide, as well as simple 
FlexPepDock minimization only (Subheading 3.3.4).

Given an initial training and test set of substrates and non- substrates 
(i.e., binders and nonbinders), the aim is to optimize the protocol 
for optimal distinction of the substrates. This is done by running a 
(simplified) version of FlexPepBind on the training set using differ-
ent parameter combinations.

3.5.1 Input Files Needed 
to Run FlexPepBind

3.5.2 Running 
FlexPepBind
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The following parameters can be calibrated toward this aim 
(see Table 1 for a concise summary of which parameter combina-
tion has worked best in previous applications [33–35, 40]):

 1. Template structure: If multiple template structures are available, 
we recommended first selecting the best template by a quick 
initial assessment of performance on the calibration set, or a 
small set of peptides, using simple FlexPepDock minimization 
only (Subheading 3.3.4).

 2. Constraints: The careful definition of binding constraints will 
reduce the False Positive Rate by preventing the sampling of 
nonrelevant conformations that would nevertheless score well. 
In addition, it will speed up the protocol by efficiently restrict-
ing sampling to the relevant conformation space. Different sets 
of constraints can be used to calibrate the optimum set of con-
straints (see Table 1 for different type constraints for different 
systems [33–35, 40]).

 3. Ranking the peptides: In our previous studies we found that 
for different biological systems under investigation, different 
scoring measures provide best distinction of binders (see 
Table 3 for a description of the scoring measures, and Table 1 
for the scoring measures selected for different systems). To 
select the best performing term for a specific system, it is there-
fore advised to assess the performance of these scoring mea-
sures on a calibration set.

 4. Sampling: Either simple minimization (see Subheading 3.3.4) 
or extensive refinement (see Subheading 3.3.2) might be 
necessary after threading the peptide sequences into the 
template backbone. It is recommended to check both in the 
calibration step.

The E. coli external death factor, EDF, was first detected as a sub-
stance secreted to the medium that leads to bacterial death, and then 
characterized as a short peptide with the sequence NNWNN [39]. 
Below we detail how the modeling of the structure and binding of 
peptide-protein interactions has contributed to the elucidation of 
some of the details of the controlled generation of this peptide, as 
well as its mode of action (Fig. 3). These mechanistic details help also 
to shed more light on the functional importance of EDF.

The mode of action of EDF involves the manipulation of the 
MazF-MazE toxin-antitoxin interaction, and by this the regulation 
of bacterial cell death. In turn, the generation of EDF is regulated 
by the MazF toxin, a specific RNase. A series of experiments have 
shed light on the details of these mutual regulations. We describe 
below how these have been assisted and guided by FlexPepDock- 
based modeling tools.

3.6 Study of Diverse 
Aspects of a Peptide 
Using Rosetta 
FlexPepDock Tools: 
Bacterial External 
Death Factor (EDF) 
as Example
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The MazF-MazE toxin-antitoxin system consists of a bicistronic 
joint operon encoding for an unstable MazE antitoxin that binds 
to and thereby inhibits the stable RNAse toxin MazF. Toxin- 
antitoxin pairs have been implied in programmed cell death that 
can be invoked by different types of stress, and they play crucial 
regulatory roles within a bacterial community [75]. One of the 
main regulators of the toxin-antitoxin interaction is EDF. We 
describe here how we generated a detailed structural model of 
the interaction of EDF with MazF using Rosetta FlexPepDock, 
and what this model has taught us about its form of action [39] 
(Fig. 3a).

Our starting point was the solved structure of the MazE/
MazF complex [PDB id: 1ub4 [76]], which shows how the MazE 
antitoxin wraps around a MazF toxin dimer. Our underlying 
assumption was that EDF would use a local mimic of the MazE 
antitoxin to outcompete its binding to the toxin. We therefore 
searched for the EDF-binding site by scanning each overlapping 
penta-peptide derived from MazE in the complex structure as a 
candidate target-binding site of EDF. For each such pentapeptide 
backbone “window,” we generated a starting structure by chang-
ing the sequence to that of EDF (NNWNN), and subsequently 
optimized this starting structure using FlexPepDock refinement. 
The MazE c-terminal pentapeptide sequence, IDWGE 71–75, 
produced the model with the lowest interface energy and was 
selected as predicted binding site (Fig. 3a, left panel).

Our model suggests how EDF can mimic MazE and outcom-
pete its interaction with MazF (Fig. 3a, middle and right panels): 
Crucial interactions of this region in the MazE-MazF complex are 
mimicked by EDF, including (1) the conserved buried trypto-
phan: W3 is buried in the hydrophobic pocket of MazF that 
accommodates corresponding MazE residue W73, and (2) con-
served hydrogen bonds and electrostatic interactions: In particular, 
rearrangement of the peptide allows superposition of the side 
chain tip of N5 in EDF to the tip of E75 in MazE, conserving a 
hydrogen bond with MazF R86. EDF residues N2 and N4 do not 
interact with their side chains with MazF. This model explains the 
effect of various EDF point mutations on EDF activity: While 
mutants NNGNN and GNWNG are predicted to affect binding 
most significantly, single N replacements, or a double mutant 
NGWGN do not significantly affect binding. These results strongly 
support a possible mechanism in which EDF displaces MazE by 
mimicking its binding to MazF.

In addition to the study of the mode of action of the EDF peptide, 
models generated using FlexPepDock have also helped to elucidate 
part of the process of EDF generation (Fig. 3b).

EDF generation is very complex and tightly regulated. In 
short, EDF is derived from the gene encoding for glucose 
6- phosphate dehydrogenase, zwf. Under specific conditions, Zwf 

3.6.1 How Does EDF 
Lead to Cell Death? 
Modeling of the Structural 
Details of the EDF–MazF 
Toxin Interaction [39]

3.6.2 How Is EDF 
Generated? Specific 
Cleavage of EDF Precursor 
from Glucose 6-Phosphate 
Dehydrogenase (Zwf) 
by ClpP Protease [40]

Nawsad Alam and Ora Schueler-Furman



161

mRNA is cut by the MazF toxin RNase to produce a leader-less 
mRNA specifically translated under stress conditions. The EDF 
precursor peptide is cleaved out from this translation product 
(generating peptide NNWDN from its positions 199–203, which 
is subsequently modified to NNWNN). While the ClpP/ClpA 
protease was known to be involved, no structural details about the 
cleavage step were available.

We describe here how we used Rosetta FlexPepDock to generate 
a detailed structural model of the interaction of the Zwf region 
that contains the EDF precursor peptide with the ClpP protease, 
and what this model has taught us [40]. Our underlying assump-
tion was that the EDF-spanning region of Zwf contains strong 
signals for ClpP protease cleavage, and therefore, that we should 
be able to identify these cleavage sites based on a structural model 
of the protein-ClpP interaction. This is based on our working 
hypothesis that binding estimates can be used as predictor for 
enzymatic activity on a given substrate.

In a first step, we calibrated FlexPepBind to successfully identify 
known ClpP substrates. Based on the solved structure of ClpP 
[covalently bound to a peptide Chloromethyl Ketone at the active 
site, pdb id: 2fzs [77]], we predicted substrates among a set of 
peptides with reported catalytic activity for ClpP/ClpA, namely 
the known ClpP substrate MAPMALPV and several mutants of 
this sequence [78]. To generate an initial template structure for 
further modeling of mutants, we first modeled the structure of 
ClpP bound to the MAPMALPV peptide: we added peptide resi-
dues not resolved in the template structure in an extended confor-
mation, and optimized the whole peptide by constraining the 
cleaved residues to the adjacent active sites during optimization 
using the FlexPepDock ab initio protocol [22]. Active site residue 
S97 was mutated to G97 (to avoid severe steric clash, since we did 
not model the covalent bond of the peptide to the protease in the 
template structure) and a distance constraint of 3.6 Å between the 
C atom of the residue preceding the cleaving bond and the Cα 
atom of active site residue 97 was used to enforce catalytic C=O 
bond position at the active site. The standard setup of ab initio 
FlexPepDock was used to generate a starting structure to be used 
as template for optimization (see Subheading 3.2; in brief, out of 
50,000 structures generated using the FlexPepDock ab initio 
protocol, the top ranking 1 % were clustered with a 2.0 Å RMSD 
cutoff, and the best scoring model in the largest cluster was selected; 
the reweighted score was used for ranking). We modeled hexamer 
peptide sequences (P3-P2-P1-P1′-P2′-P3′), assuming that the influ-
ence of more distant residues is negligible. The excellent correspon-
dence between good predicted score and high experimental rate/
amount of degradation allowed us to derive a score threshold to be 
used to predict ClpP cleavage sites (Fig. 3b, left panel).

3.6.2.1 Calibration 
of FlexPepBind ClpP
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With the calibrated protocol in hand, we proceeded to predict 
potential ClpP cleavage site(s) in the region of interest of Zwf, 
192FANSLFVNNWDNRTIDH208 (which contains the EDF pre-
cursor sequence, highlighted in italics). For each overlapping hexa-
peptide, we optimized a structural model based on the template 
generated above, and ranked different peptides according to their 
predicted binding energy. The results suggest that L196 (peptide 
NSL-FVN) and N203 (peptide WDN-RTI) are strong ClpP cleav-
age sites (Fig. 3b, middle panel). ClpP cleavage is thus predicted to 
generate a heptapeptide encompassing residues 197–203.

Given the distance of approximately seven residues between 
the consecutive active sites in the solved crystal structure, and the 
processive nature of ClpP-mediated cleavage [79], we propose that 
L196 (L196FVNNWDNR) is anchored in the first active site, allow-
ing the C-terminal N203 (NNWDN203R) to be located in the next 
active site in the proteolytic chamber (Fig. 3b, right panel). The 
resulting heptamer FVNNWDN would then be further cleaved 
either by ClpP, or other exo-proteases, to generate the NNWDN 
pentamer EDF precursor.

4 Notes

Even though we have made every effort to generate with 
FlexPepDock a general protocol that is broadly applicable to a 
range of different systems, performance and sample size are still 
dependent on the number of degrees of freedom of a given system 
and should be evaluated with care. Below are several tips that we 
have found to work well in a wide variety of different systems that 
we and others have analyzed using FlexPepDock and the related 
FlexPepBind application.

 1. How to generate a starting structure for FlexPepDock. (a) 
from a structure of a homolog complex: If similar structures exist 
(this is common for peptide binders with multiple specificity, as 
for example for PDZ domains and many domains that bind 
signaling peptides), the initial structure can be constructed 
from a homology model of a similar structure using the Rosetta 
tool for comparative modeling, or any other homology model-
ing tool. (b) given a binding site: If only the binding site is 
known, an initial peptide chain conformation (either extended 
or alpha- helical) can be created from a FASTA file, using the 
BuildPeptide Rosetta utility (for detailed description on this 
protocol, visit www.rosettacommons.org/docs/latest/appli-
cation_documentation/utilities/build-peptide), or using 
external tools such as PyMOL (www.pymol.org) Builder. The 
chain can then be positioned manually in the vicinity of the 
binding site using external tools such as PyMOL and Chimera 
(www.cgl.ucsf.edu/chimera). Alternatively, the peptide may be 
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positioned manually in an arbitrary orientation relative to the 
receptor protein, and guided to the binding site with Rosetta 
FlexPepDock (or RosettaDock), by enforcing appropriate 
distance constraints to the binding site (as specified in a con-
straint file; see Subheading 3.3.1).

 2. Prepack the receptor to remove internal clashes: Always 
prepack the receptor structure (using the prepacking mode; see 
step 1 in Subheading 3.3.2) before running a docking proto-
col, to remove potential internal clashes in the structure and 
generate a uniform energy background in non-interface 
regions. This removes irrelevant energy differences between 
models and allows better comparison and ranking of different 
models. Prepacking is not needed if the simulation is started 
from a model generated in a previous FlexPepDock run using 
the same parameters.

For FlexPepBind applications, it is especially important to 
make sure that for an enzyme the active site residues do not 
rearrange too much (e.g., Histidine side-chain flipping). Resfiles 
can be provided to prevent repacking of selected residues (for 
the description of the resfile format, see www.rosettacommons.
org/docs/latest/rosetta_basics/file_types/resfiles).

In certain cases, it might be advisable to also pre-optimize 
the backbone of the receptor (using, e.g., the Rosetta Relax 
protocol; for detailed instructions on how to prepare an input 
structure using the Relax protocol, see www.rosettacommons.
org/docs/latest/rosetta_basics/preparation/preparing- 
structures). In this case, it is recommended to use both back-
bone and side-chain constraints to restrict the extent of 
structural rearrangement.

 3. Selection of sampling parameters
(a) Determination of adequate amount of sampling needed: 

The amount of sampling (e.g., number of models generated) 
depends on the complexity of the problem. The optimal 
parameters of the different FlexPepDock protocols depend 
on the amount of available information about the interaction 
studied. If no accurate information about the binding mode 
is available, then it is advised to use FlexPepDock ab-initio to 
generate a considerably larger number of models (e.g., 
50,000) to sample a larger space, and to guarantee conver-
gence of the protocol. This helps to identify reliable low-
energy conformations in the energy landscape. In turn, when 
information about the binding mode is available, the refine-
ment protocol can be used to generate a relatively smaller 
number of model (e.g., 200–1000), and even better, when 
constraints can be defined that characterize peptide interac-
tions with a given receptor, less models need to be gener-
ated, and the results for, e.g., binding predictions will be 
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more reliable. It is important to note that the refinement 
protocol can refine models that are close to the correct solu-
tion both in terms of Cartesian, as well as dihedral φ/ψ dis-
tance. Even if the peptide is placed in the correct rigid body 
orientation, but needs to undergo significant dihedral 
changes (e.g., transition from extended conformation to 
helix), it is advised to use the ab-initio protocol that will use 
fragments to sample large dihedral changes more efficiently.

(b) Boost local refinement with the -lowres_preoptimize 
flag: This flag will add a preemptive centroid-mode opti-
mization step, before performing full-atom, high-resolu-
tion  refinement. As a rule of thumb, it is recommended to 
use this flag when the quality of the initial starting struc-
ture is less well defined (roughly more than 3A peptide 
backbone-RMSD), and thus sampling an extended range 
makes sense.

(c) Receptor side chain flexibility—not too much but not 
too rigid: (a) Include information about the interface side 
chain conformations in the free receptor structure (-unbound-
rot). In many cases, the unbound receptor (or peptide) may 
contain side-chain conformations that are more similar to 
the final bound structure than those in the rotamer library. 
In order to save this useful information, it is possible to 
specify a structure whose side-chain conformations will be 
appended to the rotamer library during prepacking or dock-
ing, and may improve the chances of a well-scoring near-
native result. This option was originally developed for the 
RosettaDock protocol. (b) Add extra rotamers: It is highly 
recommended to use the Rosetta extra rotamer flags that 
increase the number of rotamers used for repacking (we 
recommend using at least the -ex1 and -ex2aro flags). It is 
important to choose the same parameters for both pre-
packing and model production runs.

 4. Selection of the final model: The final model should be 
selected based on score (and cluster size). For refinement it is 
recommended to inspect the top 5–10 scoring models in addi-
tion to the best-ranked model. For ab-initio peptide docking, 
we recommend first clustering the results and then selecting 
top-scoring representatives. The clusters can be ranked either 
by energy or size; though we recommend going for the energy 
criteria for most applications.

Ranking of models: Different scoring measures may be 
used to rank and select models (see Table 3). For structure pre-
diction, ranking according to the reweighted score (reweighted_
sc) provides, at least for ab-initio peptide docking, in our hands 
best results. We therefore suggest using this term for ranking in 
structure prediction, unless indicated otherwise. For binding 
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prediction using the FlexPepBind protocol, the optimal scoring 
measure for the identification of binders is determined for each 
system separately (see Subheading 3.5.3 and Table 1A).

 5. Do NOT use FlexPepDock for fully blind docking (i.e., 
without a specified binding site): Neither of the provided 
protocols is intended for fully blind docking. The ab-initio 
protocol assumes that the peptide is located in the vicinity of 
the binding site, but does not assume anything about the ini-
tial peptide backbone conformation. The Refinement protocol 
is more restricted—it is intended for obtaining high-resolution 
peptide models given a coarse-grain starting structure, which 
should resemble the native solution to some extent (up to 5A 
backbone-RMSD for the native peptide, even though in some 
cases, the protocol works well for starting structures with up to 
12A bb-RMSD from the native). See Note 1 for a description 
of how to generate an appropriate starting structure.

 6. Include information about the secondary structure of the 
peptide in FlexPepDock simulations: The FlexPepDock 
Refinement protocol is designed to allow substantial peptide 
backbone flexibility, but not enough to switch well between sec-
ondary structures (e.g., from strand to helical conformation). 
Hence, it may be useful to initially assign a canonical secondary 
structure to the peptide based on prior information (e.g., from 
secondary structure prediction algorithms, from homolog struc-
tures, or experimental information, such as CD experiments, 
etc.). Formally, FlexPepDock does not require initial secondary 
structure assignment, and can therefore be applied in cases 
where no confident information on the secondary peptide 
structure is available. However, the ab-initio FlexPepDock pro-
tocol may benefit implicitly from accurate secondary structure 
prediction when building the fragment libraries.

 7. The receptor backbone is not moved in the current 
FlexPepDock implementations: Our protocol allows full recep-
tor side-chain flexibility, and was shown to perform quite well 
when docking to unbound receptors or to alternative conforma-
tions. However, it is assumed that the receptor backbone does 
not change too much at the interface, as we do not yet model 
receptor backbone flexibility. To overcome this current restric-
tion, it is advised to use different available structural models of 
the receptor and select models from different simulations.

For FlexPepBind, where the binding site is known, a short 
precalibration step can identify the template receptor structure 
that will provide the best signal to distinguish substrates from 
non-substrates.

 8. Peptide length: Our benchmarks consist of peptides of length 
5–15, and our protocols performed well on this benchmark. 
Specific larger peptides have also been modeled successfully, 
but we do not have elaborate benchmark results for these.
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 9. Use a cluster to obtain results quickly: In our tests, producing 
200 models with the Refinement protocol typically takes 3–10 
CPU hours (approximately 1–3 min per model). Substantial 
speedup gain is obtained by running parallel processes using 
appropriate job-distributor flags (e.g., for using MPI; for 
details visit https://www.rosettacommons.org/docs/latest/
rosetta_basics/Rosetta-Basics). The ab-initio protocol requires 
a much larger number of models (we experimented with 50,000 
models), but the running time per model is similar (3–4 min). 
The running time may increase or decrease, depending mainly 
on the receptor size (for peptides of length 5–15).
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Chapter 10

Flexible Backbone Methods for Predicting and Designing 
Peptide Specificity

Noah Ollikainen

Abstract

Protein–protein interactions play critical roles in essentially every cellular process. These interactions are 
often mediated by protein interaction domains that enable proteins to recognize their interaction partners, 
often by binding to short peptide motifs. For example, PDZ domains, which are among the most common 
protein interaction domains in the human proteome, recognize specific linear peptide sequences that are 
often at the C-terminus of other proteins. Determining the set of peptide sequences that a protein interac-
tion domain binds, or it’s “peptide specificity,” is crucial for understanding its cellular function, and pre-
dicting how mutations impact peptide specificity is important for elucidating the mechanisms underlying 
human diseases. Moreover, engineering novel cellular functions for synthetic biology applications, such as 
the biosynthesis of biofuels or drugs, requires the design of protein interaction specificity to avoid crosstalk 
with native metabolic and signaling pathways. The ability to accurately predict and design protein–peptide 
interaction specificity is therefore critical for understanding and engineering biological function. One 
approach that has recently been employed toward accomplishing this goal is computational protein design. 
This chapter provides an overview of recent methodological advances in computational protein design and 
highlights examples of how these advances can enable increased accuracy in predicting and designing pep-
tide specificity.

Key words Protein interactions, Protein design, Sampling algorithms, Backbone flexibility, 
Conformational ensembles, Specificity prediction, Designing specificity

1  Computational Protein Design Predicts Sequences that Are Optimal for a Given 
Structure

In general, the goal of computational protein design is to predict 
protein sequences that fold into a particular three-dimensional 
structure and perform a desired function. For example, one might 
want to design an enzyme to catalyze a chemical reaction or design 
a protein therapeutic to bind to and inhibit the function of a viral 
protein [1–3]. While a variety of computational protein design 
methods exist, they generally share two basic components: (1) a 
search algorithm that will sample different protein sequences and 
(2) an energy function that will evaluate the energy of each protein 
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sequence when modeled onto the desired target structure. In early 
computational protein design work, the goal was typically to iden-
tify the lowest energy protein sequence for a fixed protein back-
bone structure [4] (Fig. 1a). The lowest energy sequence for a 
given structure is assumed that is most likely to fold into that struc-
ture. The problem of finding the lowest energy sequence can be 
challenging due to the enormous number of possible protein 
sequences of a given length. For example, there are 20100 (or ~10130) 
possible sequences for a protein that is 100 amino acid residues long. 
Moreover, most amino acid residues have flexible side chains that are 
often modeled as discrete conformations called “rotamers” [5]. If, 
for example, 10 rotamers are used for each amino acid side chain, 
then there are 200100 (or ~10230) possible side-chain conformations 
for a 100 amino acid protein.

To identify the lowest energy amino acid sequence and side- 
chain conformation in such a massive search space, an approach 
called Dead End Elimination (DEE) can be used to eliminate side- 
chain rotamers from the search space if they are provably not part 
of the global minimum energy conformation [6]. After pruning 
the search space with DEE, the remaining conformations can then 
be enumerated to find the protein sequence with the global mini-
mum energy conformation. While deterministic approaches like 
DEE were typically employed in early computational protein 
design work [4], recent efforts have taken advantage of stochastic 

Fig. 1 Computational protein design methods take a protein backbone structure as input and return 
low- energy sequences for that structure. Fixed backbone protein design (a) does not allow the input backbone 
structure to change, whereas flexible backbone protein design (b) allows slight conformational changes in the 
input structure while maintaining the same overall fold
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approaches such as [7, 8]. These methods start with a random pro-
tein sequence and side-chain conformation, iteratively make ran-
dom changes to the sequence and conformation called “moves,” 
and then accept or reject these moves based on whether or not 
they result in a decrease in energy. While stochastic methods do 
not guarantee finding the global minimum energy sequence, they 
are often much faster than deterministic methods and therefore can 
be run numerous times to identify many different low-energy 
sequences [9].

2  Beyond the Global Minimum: Predicting Sequence Tolerance

The ability to find a large number of low-energy protein sequences 
for a desired structure, rather than just the global minimum energy 
sequence, can be tremendously useful for many protein design 
applications. One reason for this is that the energy functions used 
to evaluate designed proteins are not perfect. Consequently, the 
probability that any given designed protein will adopt its desired 
structure or perform its desired function can be quite low for chal-
lenging protein design applications such as enzyme design or the 
design of protein–protein interactions [1–3]. Fortunately, it is 
becoming increasingly feasible to experimentally screen hundreds 
or even thousands of designed proteins for a given function, which 
increases the likelihood of obtaining at least one successful design. 
As a result, the goal of computational protein design is beginning 
to toward the identification of a large set of sequences that will 
likely adopt the desired structure, as the set of “tolerated” sequences 
for a given structure. Both deterministic and stochastic methods 
can be applied to predict sequence tolerance, since deterministic 
approaches can be extended to enumerate all sequences within a 
given energy of the global minimum sequence [10, 11] and sto-
chastic approaches can be run many times to identify diverse local 
minima sequences [12].

In addition to aiding protein design applications, the accurate 
identification of tolerated sequences for a protein structure is criti-
cal for applying computational protein design to predict the set of 
peptide sequences that a protein can bind with high affinity, as a 
protein’s “peptide specificity.” For example, one approach for pre-
dicting peptide specificity is to obtain a crystal structure of a pro-
tein–peptide complex and then perform computational protein 
design on the peptide. The resulting designed peptide sequences 
will represent a set of peptides that are likely to have high affinity 
interactions with the protein. One major challenge with this 
approach is that proteins are often promiscuous and capable of bind-
ing a highly diverse set of peptide sequences [13]. Traditional 
computational protein design methods make the assumption that 
the protein backbone remains fixed in its 3D structure; however, 
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this assumption is not valid for flexible peptides with diverse 
sequences that can adopt a variety of backbone conformations 
when bound to a protein. Additionally, the region of the protein 
that interacts with the peptide may undergo changes in protein 
backbone conformation that could be important for peptide 
binding [14]. Consequently, modeling protein backbone flexibility 
during computational protein design can be crucial for accurately 
predicting and designing peptide specificity [15].

3  Modeling Backbone Flexibility Can Improve the Accuracy of Computational 
Protein Design

Computational protein design methods that model protein backbone 
flexibility are referred to as “flexible backbone design” methods in 
contrast to traditional “fixed backbone design” methods that do 
not allow the protein backbone to change conformation (Fig. 1). 
One major advantage of flexible backbone design methods is their 
ability to identify a diverse set of tolerated sequences for a given 
protein structure (Fig. 1b). This is because changes in backbone 
conformation can allow the protein to achieve energetically favor-
able amino acid side-chain conformations that would otherwise be 
incompatible with the initial backbone conformation. On a large 
scale by directly comparing fixed and flexible backbone design 
methods performed on 40 diverse protein folds. The sequences 
designed with flexible backbone methods were much more diverse 
and exhibited greater similarity to naturally occurring protein 
sequences with the corresponding protein folds compared to 
sequences generated with fixed backbone design. This study 
revealed instances where backbone movements were necessary to 
enable optimal packing of hydrophobic residues or precise side- 
chain geometries required for hydrogen bonding.

To model backbone flexibility, flexible backbone design meth-
ods perform moves that alter the protein backbone conformation 
in addition to the traditional moves that change amino acid 
sequence and side chain conformations. For example, one type of 
backbone move, called a “backrub,” moves a local segment of the 
backbone as a rigid body by rotating it about an axis defined by the 
first and last atoms of the segment (Fig. 2a). This type of motion 
was originally described by the Richardson group and initially 
observed via alternate conformations in ultra-high resolution pro-
tein crystal structures [17]. Since its initial observation, this move 
has been implemented into protein modeling and design tools 
[18, 19], enabling improvements in the ability to recapitulate 
properties of natural proteins. For example, backrub moves were 
implemented into the Rosetta protein structure prediction and 
design software [20] and demonstrated to improve the accuracy of 
predicting point mutant side-chain conformations relative to fixed 
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backbone sampling alone [18]. These moves have also been shown 
to allow protein modeling and design methods to better recapitu-
late natural properties of proteins including conformational 
heterogeneity, sequence entropy, and amino acid covariation 
[16, 21–23]. Finally, a recent study described a method to couple 
backrub moves to changes in amino acid sequence and side-chain 
conformation and showed that this approach significantly improved 
both the prediction of ligand binding site sequence tolerance and 
the prediction of mutations that alter enzyme substrate specificity 
compared to fixed backbone design [24].

Backrub moves provide a simple way to make small, subtle 
backbone motions, but other types of backbone motions can be 
helpful to model larger conformational changes. For example, a 
robotics-inspired move called kinematic closure (or KIC) was used 
to achieve sub-angstrom accuracy in modeling protein loop con-
formations (Fig. 2b) [25, 26]. While originally applied to protein 
loops, KIC moves can be performed on any segment of the back-
bone that is at least three residues long. Once a segment has been 
defined by starting and ending residues, a KIC move can be per-
formed with two steps: (1) randomize a set of phi and psi back-
bone torsions between the start and end residues, thus creating a 
“chain break” in the protein backbone, (2) select six of the phi/psi 
torsions and analytically solve for a set of angles that will close the 
chain [27]. Because KIC moves allow the simultaneous change of 
many backbone degrees of freedom, they enable a potentially 
larger range of motion that is particularly useful for modeling 

Fig. 2 Many different types of backbone moves can be used to model protein backbone flexibility. These 
include backrub moves (a), kinematic closure (KIC) moves (b), random phi/psi perturbations called “small” 
moves (c), shear moves (d), homology-based moves like fragment insertion (e), and all-atom minimization of 
backbone phi and psi torsions (f)
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backbone regions with high intrinsic flexibility like protein loops. 
In addition to previous work showing that KIC moves can improve 
the accuracy of protein loop modeling compared to other 
approaches, flexible backbone design methods that employ KIC 
moves have been shown to increase sequence tolerance compared 
to fixed backbone design [16].

Like the backrub motion, KIC moves only perturb a local seg-
ment of the backbone between a start and end residue and are 
therefore useful for modeling and design applications where the 
overall protein fold must be maintained. Similarly, although not 
strictly a local move, “shear” moves randomly perturb a phi torsion 
angle followed by a compensating rotation of the preceding psi tor-
sion with the same magnitude (Fig. 2c) [28]. In addition to these 
types of localized motions, other backbone moves can be performed 
to achieve more global changes in conformation. For example, 
“small” moves rotate a phi or psi torsion of a single residue by a 
random small angle, resulting in a potentially large downstream 
change in structure (Fig. 2d) [28]. Additionally, homology-based 
approaches like fragment insertion can be used to sample backbone 
conformations from protein structures with homologous sequences 
(Fig. 2e) [29]. Finally, torsion angle minimization can be used to 
globally relax a protein structure into a local minimum conforma-
tion by simultaneously altering all torsion angles while minimizing 
the total energy of the protein (Fig. 2f) [30, 31].

4  Predicting Peptide Specificity Using Conformational Ensembles

Given the variety of different types of backbone motions, integrat-
ing them into a protein design algorithm that must also sample 
amino acid sequences and side-chain conformations can be chal-
lenging. A simple approach for incorporating backbone flexibility 
into design involves first generating a “conformational ensemble” 
[21]. Given an input structure, this approach performs many 
Monte Carlo simulations that iteratively apply backbone moves 
throughout the structure, resulting in an ensemble of structures 
that closely resemble the input structure but have differing back-
bone conformations (Fig. 1b). Computational protein design can 
then be performed on each structure in the conformational ensem-
ble to identify low-energy sequences. Conformational ensembles 
generated using backrub moves, called “backrub ensembles,” were 
shown to recapitulate the native conformational heterogeneity of 
ubiquitin, and sequences designed using these backrub ensembles 
had higher similarity to ubiquitin family sequences compared to 
sequences designed with fixed backbone design [21]. Since these 
observations, many studies have used backrub moves to generate 
conformational ensembles for the purpose of modeling or design 
[15, 16, 21, 32, 33], and the Kortemme lab provides a web server 
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that allows users to generate backrub ensembles for a given input 
structure [34].

One key aspect of computational protein design approaches 
that use conformational ensembles is that they are capable of 
generating highly diverse sequences with variable backbone con-
formations (Fig. 1b), making them well suited for the problem of 
predicting protein–peptide specificity. Prediction of protein–pep-
tide specificity can be formulated as the problem of identifying the 
set of tolerated sequences for a peptide in its protein bound state. 
By generating backrub ensembles for peptide-bound PDZ domains 
and then using computational protein design to sample and score 
approximately 10,000 peptide sequences for each backbone struc-
ture in the ensemble. These sequences were weighed by their 
scores and used to create a “specificity profile” for each PDZ 
domain, which reflects the likelihood of observing each amino acid 
at each position in the peptide sequence (Fig. 3a). The authors first 
used this protocol to predict specificity profiles for 17 human PDZ 
domains that each had (1) a crystal structure with a bound peptide 
available from the [35] to use as input and (2) a specificity profile 
that was previously determined by phage display experiments to 
use as validation [36]. Overall, the predicted specificity profiles 

Fig. 3 Computational protein design methods can predict and design the peptide specificity of a protein given 
its peptide-bound structure. Predicting peptide specificity (a) involves generating a conformational ensemble 
of the complex and then performing computational protein design on the peptide to identify a set of low-energy 
peptide sequences. Designing peptide specificity (b) involves predicting a mutation in the protein that desta-
bilizes the interaction with the wild-type peptide and then predicting a compensating mutation on the peptide 
that stabilizes the interaction with the mutant protein

Flexible Backbone-Based Peptide Specificity Prediction and Design 



180

were highly similar to the experimentally determined specificity 
profiles, demonstrating successful predictions of PDZ peptide 
binding specificity.

In addition to predicting the specificity profiles of wild-type 
PDZ domains, predict the specificity of 153 mutants of the Erbin 
PDZ domain, including 92 point mutants [36] and 61 mutants 
with 4–10 mutations [37]. While the prediction performance for 
Erbin point mutants was better on average than for the wild-type 
proteins (since the wild-type Erbin specificity is well predicted and 
most point mutations did not significantly alter specificity), predic-
tion of specificity profiles for PDZ domains with 4–10 mutations 
was less accurate. One possible explanation for why these addi-
tional mutations make predicting specificity more difficult is that 
they introduce changes into the PDZ domain structure that are 
not accurately captured by the backrub ensemble, which is based 
on the wild-type crystal structure. This highlights a caveat with this 
approach for predicting specificity, which is that it requires a crystal 
structure of the protein–peptide complex as input. However, this 
structural information may not always be available, and therefore 
additional methods may be required to first build a model of the 
protein–peptide complex.

5  Modeling Protein–Peptide Interactions When Structural Information Is Missing

While predicting a protein’s peptide specificity without knowing 
the exact structure of the bound peptide is challenging, a compu-
tational approach has been developed to specifically address this 
problem. That only needs an approximate location of a single resi-
due on the peptide to predict peptide specificity [38]. In this 
method, the remainder of the peptide is assembled by a Monte 
Carlo simulation that iteratively appends residues with backbone 
conformations sampled from the PDB until the desired peptide 
length is reached. Once the peptide backbone is built, computa-
tional protein design can then be used to predict tolerated peptide 
sequences. This approach was further extended to predict peptide 
specificity for proteins without any available structural informa-
tion. To accomplish this, generated homology models using 
Modeller [39] and then performed the pepspec protocol to predict 
peptide specificity starting from these models. To evaluate the 
accuracy of their predictions, the authors applied their protocol 
using varying amounts of structural information on four proteins 
with experimentally determined peptide specificity profiles. Overall, 
the authors found that but even with limited structural informa-
tion they were able to recapitulate the major features of the speci-
ficity profiles for three of the four proteins using their homology 
model and peptide assembly approach.
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The above methods for predicting specificity use computational 
protein design to sample and score different peptide sequences and 
conformations in complex with a bound protein. An alternative 
approach formulates peptide specificity prediction as the problem of 
screening a predefined set of peptide sequences to distinguish bind-
ers from. In this strategy, specific peptide sequences are docked 
onto the protein and then scored to estimate binding affinities. 
Docking of each peptide sequence can be performed using an 
approach such as FlexPepDock, which optimizes the rigid-body 
orientation of the peptide relative to the protein while incorporat-
ing peptide backbone flexibility using small and shear moves [40]. 
This technique has been used to successfully identify both known 
and novel peptide substrates of the enzyme Farnesyltransferase [41] 
and to predict the specificity of helical peptides for the apoptosis 
regulating proteins Bcl-xL, Mcl-1, and Bcl-2 [42]. FlexPepDock 
has been further extended to perform ab initio docking, which 
simultaneously folds and docks a peptide onto the surface of the 
protein and can therefore be used in cases where no information is 
available about the peptide backbone conformation when bound to 
the protein [43]. The Furman lab provides a web server that allows 
users to perform their own FlexPepDock simulations to model 
protein–peptide interactions [44].

6  Redesigning Peptide Specificity Using the Second-Site Suppressor Approach

Given the development of computational methods that predict the 
binding partners for a given peptide-binding domain, a natural 
extension of these methods is the redesign of protein–protein inter-
action specificity for synthetic biology applications. An example 
application is the engineering of metabolic or signaling pathways 
that do not interfere with the function of native proteins. The 
design of novel, “orthogonal” protein–protein interactions that 
avoid cross-talk with existing proteins has been of considerable 
interest in the field of protein design [45–48]. A common way to 
accomplish this is to use the “computational second-site suppres-
sor” approach. Given an existing protein–protein interaction, this 
strategy aims to predict mutations in both proteins that would 
destabilize the interaction when only one protein is mutated, but 
stabilize the interaction if both proteins are mutated simultaneously 
(Fig. 3b).

The computational second-site suppressor technique has 
previously been applied to redesign the specificity of a number of 
 protein–protein interactions [45–48], and recently it was used to 
redesign the peptide specificity of a PDZ domain [49]. To redesign 
PDZ specificity, used computational protein design to predict a 
single mutation in PDZ domain of α1-Syntrophin that altered its 
peptide specificity. This mutation changed a histidine on the PDZ 
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domain, which formed a hydrogen bond to a serine or threonine 
on the peptide, into a phenylalanine (Fig. 3b). This new PDZ 
domain exhibited both decreased affinity with serine/threonine 
peptides and increased affinity with methionine peptides, demon-
strating a switch in its peptide specificity. To determine how trans-
ferable this specificity switch mutation was between homologous 
domains, the authors made the same mutation in five other PDZ 
domains and measured peptide- binding preferences of the wild-
type and mutant PDZ domains using fluorescence anisotropy. 
Despite the high structural similarity between the homologous 
domains, the specificity switch could only be transferred to three of 
the five PDZ domains tested. However, the authors were able to 
accurately recapitulate the energetic effects of the mutations in all 
homologous domains by performing flexible backbone simulations 
that use minimization to simultaneously optimize backbone and 
side-chain degrees of freedom. These simulations were subse-
quently used to predict mutations that further improved the speci-
ficity of the initial design. This study demonstrates both the 
challenge of generalizing the determinants of peptide specificity 
across related proteins and the success in computational models to 
capture the energetic consequences of subtle structural differences 
in protein–peptide interactions between homologous domains.

7  Designing Novel Peptide Ligands Using Flexible Backbone Design

Another useful application of computational methods that can 
model and predict peptide specificity prediction is the rational 
design of peptides that bind a given protein target. For example, 
one might want to design a therapeutic peptide or peptide-mimetic 
drug to inhibit a disease-associated protein–protein interaction. To 
accomplish this goal, Roberts et al. [50] applied computational 
protein design to engineer a peptide that competitively inhibits the 
interaction between the cystic fibrosis transmembrane conductance 
regulator (CFTR) and the PDZ domain of the CFTR-associated 
ligand (CAL). In cystic fibrosis patients, CFTR is mutated and 
forms a variant called ΔF508-CFTR, which is rapidly degraded via 
a lysosomal pathway involving its interaction with CAL. Inhibiting 
the interaction between ΔF508-CFTR and CAL could therefore 
potentially rescue its activity in cystic fibrosis patients and be used 
as a treatment. To design peptides that bind the PDZ domain of 
CAL and thus block CFTR binding, used an algorithm called K*, 
which first prunes rotamers using minDEE [51] that are not part 
of the lowest energy conformation for a given sequence and then 
performs a branch-and-bound search called A* [52] to enumerate 
the remaining low-energy conformations. To account for peptide 
flexibility, minimization was performed on the peptide backbone, 
side chains and rigid body orientation, generating an ensemble of 
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conformations for each sequence. Finally, these conformational 
ensembles were Boltzmann-weighted and used to compute an 
approximate binding constant for each sequence. The best designed 
peptide, called kCAL01, bound to CAL with 170- fold higher 
affinity than CFTR and was shown to increase ΔF508- CFTR activ-
ity in human cells to a similar extent as an inhibitor drug identified 
experimentally by high-throughput screening [53].

In the previous example, the goal was to identify a peptide 
with the highest binding affinity to the target protein. However, 
some applications may require the design of a diverse set of peptide 
sequences that can form interactions across a wide range of affini-
ties. For example, engineering novel metabolic or signaling path-
ways could necessitate designing proteins with transient interactions 
rather than stable, obligate interactions. To design diverse peptides 
that bound the apoptosis regulating protein Bcl-xL, Fu et al. [54] 
used a conformational ensemble-based approach that took advan-
tage of two observations: (1) Bcl-xL binds peptides with α-helical 
secondary structures and (2) normal mode analysis of α-helical 
structures from the PDB showed that two bend modes and one 
twist mode can model alpha helical backbone flexibility [55]. 
used normal mode calculations to deform the backbone of the 
helical peptide bound to Bcl-xL in a crystal structure complex and 
used these backbone conformations as templates for design. 
Seventeen designed peptides with diverse sequences were selected 
to test experimentally, and among these, eight peptides bound 
strongly to Bcl-xL and four others showed weak but detectable 
binding. This study demonstrates the utility of flexible backbone 
approaches for designing diverse peptide sequences that exhibit a 
broad range of binding affinities.

8  Future Directions

Significant progress has been made during the past two decades in 
computational protein design. Early work focused on identifying 
low-energy sequences and amino acid side-chain conformations on 
a fixed protein backbone, and more recent work has demonstrated 
the substantial benefit of modeling protein backbone flexibility and 
the number of techniques for sampling different backbone confor-
mations has grown dramatically. There are now more options for 
incorporating backbone flexibility into modeling and design than 
ever before; however, this comes with the cost of uncertainty in 
deciding which method should be used for a given application. It 
is likely that the types of backbone motions that work best in one 
context might not be the best for another context. For example, 
peptides bound to PDZ domains adopt β-strand conformations 
and therefore may exhibit different backbone dynamics compared 
to α-helical peptides bound to Bcl-2 family proteins. Understanding 
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which types of motions work best in specific contexts will require 
computational benchmarks that evaluate the accuracy of many dif-
ferent flexible backbone methods using standardized datasets [56].

Modeling backbone flexibility can be helpful for predicting and 
designing peptide specificity, but there is still much room for 
improvement in how backbone flexibility is incorporated into com-
putational protein design methods. In the conformational ensem-
ble-based approaches described here, two separate simulations are 
performed: one where backbone moves are applied to generate an 
ensemble, and one where computational protein design is performed 
to identify low-energy sequences. In this scheme, changes in back-
bone conformation and changes in amino acid sequence occur inde-
pendently of each other. However, in reality, these changes are 
coupled because mutations will alter a protein’s backbone confor-
mation. Although conformational ensembles are useful for increas-
ing the diversity of sequences sampled by computational protein 
design, they may provide inaccurate predictions in cases where 
sequence-dependent changes to the backbone conformation occur. 
This may explain why predicting the specificity of PDZ domains 
with 4–10 mutations using the wild-type structure to generate 
ensembles was the most challenging test case Smith and Kortemme 
[15]. To overcome this challenge, backbone moves could be cou-
pled to changes in side-chain conformation and changes in amino 
acid sequence. This type of “coupled move” has already been applied 
to couple backrub motions with amino acid mutations and this 
approach enabled the successful prediction of mutations that alter 
protein–ligand specificity [24]. Coupling other types of backbone 
motions to changes in side-chain conformation and amino acid 
sequence may further improve accuracy in predicting and designing 
peptide specificity in future studies.
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Chapter 11

Simplifying the Design of Protein-Peptide Interaction 
Specificity with Sequence-Based Representations 
of Atomistic Models

Fan Zheng and Gevorg Grigoryan

Abstract

Computationally designed peptides targeting protein-protein interaction interfaces are of great interest as 
reagents for biological research and potential therapeutics. In recent years, it has been shown that detailed 
structure-based calculations can, in favorable cases, describe relevant determinants of protein-peptide rec-
ognition. Yet, despite large increases in available computing power, such accurate modeling of the binding 
reaction is still largely outside the realm of protein design. The chief limitation is in the large sequence 
spaces generally involved in protein design problems, such that it is typically infeasible to apply expensive 
modeling techniques to score each sequence. Toward addressing this issue, we have previously shown that 
by explicitly evaluating the scores of a relatively small number of sequences, it is possible to synthesize a 
direct mapping between sequences and scores, such that the entire sequence space can be analyzed 
extremely rapidly. The associated method, called Cluster Expansion, has been used in a number of studies 
to design binding affinity and specificity. In this chapter, we provide instructions and guidance for applying 
this technique in the context of designing protein-peptide interactions to enable the use of more detailed 
and expensive scoring approaches than is typically possible.

Key words Interaction specificity, Computational protein design, PDZ-peptide interactions, Cluster 
expansion, Flexible peptide docking

1 Introduction

It is estimated that a large fraction of cellular protein-protein 
interactions is mediated by peptide-recognition domains (PRDs) 
interacting with short amino-acid stretches on partner proteins 
[1]. Many families of PRDs are known [2, 3], with domains 
belonging to the same family closely related in sequence and struc-
ture but often with divergent functions. Selective inhibition of 
PRD-peptide interactions by means of designed reagents (e.g., 
inhibitor peptides) is an attractive strategy for the targeted func-
tional modulation of cellular processes [4]. However, the achieve-
ment of selectivity in such systems—i.e., interaction with the 
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desired PRD (target) and not similar domains of divergent func-
tion (competitors)—appears to be a fundamental challenge, due to 
the similarity shared by PRD family members.

The experimental engineering of PRD-targeting peptides is 
complicated in several ways: (1) for each considered peptide 
sequence, the binding to multiple PRDs (the target and competi-
tors) should ideally be evaluated; (2) selective sequences are likely 
much rarer than simply those with appreciable binding affinities to 
the target, so the sequence space should be investigated rigorously; 
and (3) high-throughput experimental approaches detect positive 
interactions, but often cannot confirm noninteractions. For these 
reasons, it is highly desirable to have robust computational means 
of designing selective PRD-peptide recognition, which, in turn, 
requires effective models for quantifying PRD-peptide binding.

A range of computational methods for predicting PRD-peptide 
binding strengths has been proposed in recent years: reduced mod-
els emergent from training on high-throughput experimental data 
[5, 6], methods based on structural sampling and energy calcula-
tions [7–13], or hybrid approaches [14, 15]. Structure-based 
methods are particularly attractive due to their potential to gener-
alize across different PRDs. However, the use of detailed atomistic 
modeling in designing specific recognition is severely limited by 
the need to consider a large number of sequence candidates. To 
mitigate this problem, we have previously suggested that when 
using a computationally expensive method of sequence evaluation 
in protein design, it is not necessary to repeat the calculation from 
scratch for every sequence considered. Instead, upon performing 
the calculation on a relatively small number of sequences, it is pos-
sible to effectively parameterize the computed property directly as 
a simple function of sequence, making further estimations of the 
property for new sequences many orders of magnitude faster. The 
associated method, called cluster expansion (CE) [16, 17], has 
been used in a number of design studies [18–21]. In the case of 
PRD-peptide recognition, the CE framework states that for a fixed 
PRD the binding score (no matter how it is calculated) is a func-
tion of the peptide sequence only and, in agreement with physico-
chemical intuition, should be the result of contributions from 
individual amino acids and amino-acid groups. Thus, if E

s( )  rep-
resents the predicted binding score for a peptide sequence 

s  and a 
given domain, it can be expressed as a sum of contributions 
from constellations of amino acids at clusters of peptide positions 
(i.e., cluster functions or CFs):
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where L is peptide length, 


r  is a reference peptide sequence, s i  
and ρi are the amino acids in the ith position of 

s  and 


r , 
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respectively. fi(σi) is the point CF capturing the effective contribu-
tion of amino acid s i  at position i , fij (σi, σj) is the pair CF captur-
ing the additional joined contribution due to having s i  at position 
i  and σj at position j simultaneously, and all higher-order CFs (sim-
ilarly defined) are also present in the summation. The significance 
of the reference sequence is that for a given 

s , the expression only 
sums over those clusters (i.e., combinations of positions) for which 
all of the occupying amino acids are different from the correspond-
ing ones in 



r . Thus, C  represents the binding score of 


r  (the 
reference CF), whereas the remaining terms indicate the additional 
contributions due to the amino acids in 

s  differing from those in 


r . Although the expansion is exact when all CFs are included, the 
importance of higher-order terms is expected to drop dramatically 
for most physical systems, so that an appropriately truncated CE, 
with only selected lower-order CFs (e.g., all up to pair), can effec-
tively balance speed of calculation and accuracy. The particular set 
of clusters to include, and the optimal values of involved CFs, can 
be determined after the full structure-based calculation is explicitly 
run on a set of training sequences to derive their scores, by means 
of data fitting methods. The result of the CE framework is a simple 
expression that drastically speeds up the further evaluation of 
sequences, while retaining close agreement with the underlying 
explicit structure-based method. This, in turn, enables the efficient 
consideration of the specificity design problem, identifying optimal 
tradeoff between the affinity to the targeted PRD and the selectiv-
ity against competitors. Further, the linear dependence of 
CE-computed scores on sequence variables makes powerful algo-
rithms like integer linear programming (ILP) applicable toward 
sequence optimization [18], further simplifying the search over 
large sequence spaces using potentially complex objective func-
tions. While the details of the framework have been published and 
reviewed previously [22], below we outline practical aspects of 
applying it toward the design of selective PRD-peptide 
recognition.

2 Materials

The following resources are needed to apply our framework:

 1. A linear algebra engine (e.g., the proprietary MathWorks 
MATLAB or the open-source GNU Octave).

 2. A structure-based simulation tool (e.g., the macromolecular 
modeling suite Rosetta [23]).

 3. Highly desirable: access to a high-performance computing 
cluster that is able to perform hundreds of jobs in parallel.

Design of Protein-Peptide Interaction Specificity
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3 Methods

In this section, we outline how the task of designing PRD-binding 
peptides can be simplified using our CE framework, enabling the 
application of more sophisticated (and potentially more accurate) 
structure-based scoring models than is otherwise easily possible. 
Although we will frequently refer to our experience with designing 
PDZ-targeting peptides [19], where Rosetta FlexPepDock ab ini-
tio [24] was used as the underlying scoring method, the presented 
guidelines should be applicable to a wide variety of complex simu-
lation techniques and model systems. In what follows, we assume 
that the goal is to design a peptide that interacts with a particular 
targeted domain T, and avoids interactions with n undesired 
domains U1 through Un. It is further assumed that a structure- 
based scoring method (SSM) exists, one that is possibly quite com-
plex, that is known (or expected) to perform reasonably well at 
quantifying interactions between T, U1 … Un and arbitrary pep-
tides. The existence of such an SSM generally means that experi-
mental structures (or high-quality homology models, see refs. 19, 
25 for more info) must be available for T, U1 … Un (or sufficiently 
close homologues). A peptide with optimal affinity and selectivity 
for T is then desired, but the direct application of the SSM toward 
design is impossible/difficult in light of its computational com-
plexity and the sequence space to consider.

Much of the subsequent effort is reduced when fewer amino-acid 
options are allowed. It is thus practical to reduce choices based on 
any strong positional preferences in peptides known to bind the 
PRD family of interest or T specifically. However, unnecessarily 
limiting the design alphabet can make it difficult to design specific-
ity, so only preferences with strong experimental evidence should 
be considered. In our PDZ study, we used previously reported 
phage display data [26] to define a “permissive” sequence space 
with 2–8 amino acids allowed at six peptide positions. This was 
sufficient to achieve the desired level of selectivity in our applica-
tion [19], but other scenarios may require a more liberal choice of 
amino-acid options.

As mentioned earlier, a truncated CE model (e.g., one with only 
constant, self, and pair CFs) can drastically reduce computational 
complexity while retaining accuracy relative to the underlying SSM 
being expanded. For a more succinct model, we can further restrict 
pair clusters to those pairs of peptide positions that are likely to 
influence each other’s amino-acid identity—e.g., by interacting 
directly or through a common site on the PRD. For example, in 
the case of designing PDZ-binding peptides, since the peptide 
binds as a β-strand, we only considered i–i + 2 pairs that map onto 

3.1 Define a Set 
of Allowed Amino 
Acids for Each Peptide 
Position: i.e., 
the Design Alphabet

3.2 Frame 
the CE Model
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the same side of the binding interface [19]. Each cluster to be 
included gives rise to a numbers CFs, each representing a unique 
combination of non-reference amino acids at the corresponding 
positions. The total number of CFs is thus related to the size of the 
design alphabet. For example, if N1 point and N2 pair clusters are 
included, and n  amino acids are allowed per site, then the number 
of CFs is 1 1 11

2
2+ -( ) × + -( ) ×n N n N . Note that not all of these 

considered CFs will end up in the final CE model (see below), so 
this initial set is referred to as candidate CFs.

Each sequence in the training set will be subjected to the SSM 
calculation, so to keep the time to train a CE model manageable, it 
is important to keep the training set only as large as necessary. We 
recommend building a training set that (1) has at least twice as 
many sequences as the number of candidate CFs (NCF

0), and (2) 
reasonably covers each of the candidate CFs (e.g., includes at least 
three instances of each CF). Thus, a good strategy is to first gener-
ate a set of 2 NCF

0 random sequences, then check for the coverage 
of each candidate CF, and add sequences containing the under- 
represented CFs (but otherwise random) as necessary.

Extract the final binding score from each simulation. It is impor-
tant to select a predictive simulation technique and optimize any 
parameters/options in the protocol for accuracy on the PRD of 
interest (see detailed discussion in [25]). Though tradeoffs between 
speed and accuracy are still relevant here (as in typical design scor-
ing functions), it is important to remember that the SSM need 
only to be fast enough to enable the scoring of the training set in 
an acceptable amount of time. Additionally, scoring the training set 
is embarrassingly parallel, as every sequence can be treated inde-
pendently, so the availability of a computer cluster drastically sim-
plifies this task and further expands the possible field of practically 
admissible SSMs. For example, in the Rosetta FlexPepDock ab ini-
tio method of domain-peptide interaction modeling, the accuracy 
is associated with the degree of sampling [24], which is propor-
tional to the invested running time. In our PDZ-peptide study 
[19], the preferred protocol took approximately 400 CPU hours 
for each PRD-peptide—this produced an acceptable level of accu-
racy, but the running time was far beyond what would be feasible 
in a design calculation. On the other hand, given that our CE 
training set was on the order of ~100 sequences, and the availabil-
ity of a 1000-core cluster, the method was perfectly suitable for our 
CE-based approach.

Given a training set of sequences with precomputed SSM scores, a 
CE model can be easily derived for each domain using the freely 
available package CLEVER—a rigorous statistical framework we 
previously described [21, 22]. To demonstrate the training 

3.3 Generate a CE 
Training Set 
by Randomly Drawing 
Sequences 
from the Design 
Alphabet

3.4 Run the SSM 
for All Sequences 
in the Training Set 
in Complex with T, U1 
… Un

3.5 Train the CE 
Model to Find Optimal 
Values for Each CF
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procedure transparently, here we describe a simplified implementa-
tion within a linear algebra engine (e.g., MATLAB or Octave), 
which we have found to work well in PRD-peptide binding designs 
(the advantages of statistical rigor offered by CLEVER become 
evident in more complex cases with larger numbers of candidate 
CFs and possibly higher-order CFs). First, create an m × n matrix 
M (m > n), where m is the number of training sequences, and n is 
the number of candidate CFs, such that M(i, j) is 1 if the ith 
sequence contains the amino acids specified by the jth CF at the 
corresponding positions, and 0 otherwise (note, in systems with 
symmetry it is possible for a single CF to be present within a 
sequence more than once, in which case M(i, j) can take on integer 
values above 1). Create also an m × 1 vector E, in which the ith ele-
ment is the SSM score of the ith sequence calculated in 
Subheading 3.4. Optimal CF values can be attained by finding an 
n × 1 vector b that minimizes the mean square difference between 
E M b^ = ×  (CE-predicted scores) and E, where the jth element in 
b represents the value of the jth CF (we refer to this as training the 
CE model). This least-square solution can be easily calculated 
using the method of pseudo-inverse, as M M M ET T( )-1 . In 
MATLAB or Octave, this is simply:

b = (M'*M)^(-1)*M'*E;

(also, function calls regress(E, M) and ols(E, M) in Matlab and 
Octave, respectively, perform analogous calculations more effi-
ciently for large matrices). To reduce overtraining, rather than 
including all candidate CFs into M at once, we recommend the 
following previously described procedure that selects a subset of 
the most statistically justifiable CFs [16]. First train a CE model 
with all candidate CFs (reference, point, and pair), the all-inclusive 
model, which is likely over-trained. Then train another model only 
including the reference and point CFs—the current model. Next, 
consider pair CFs, one at a time, in the decreasing order of their 
magnitudes in the all-inclusive model. For a given pair CF, train a 
new model in which the CF is added to the current model, and 
compare the cross-validation root-mean square errors (CV-RMS) 
between these two models. CV-RMS is the average error of pre-
dicting the score of each sequence when it is left out of the training 
set. If the new model has a lower CV-RMS, then update the  current 
model to include the pair CF; otherwise, discard the pair CF. Move 
onto the next candidate pair CF until all are exhausted. Importantly, 
CV-RMS can be efficiently computed in a closed form:
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where Mi represents the ith row of matrix M, and Ei and E
^

i are the 
ith elements of vectors E and E

^
, respectively. In MATLAB or 

Octave, this corresponds to the following expression:
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sqrt(sum(((E-M*b)./(1-sum(M.*(M*((M’
*M)^(-1))’),2))).^2)/length(E))

Again, we recommend drawing from the design alphabet ran-
domly. This set need only be sufficiently large to enable a reliable 
estimation of true CE error. We thus recommend for the test set to 
be 2–5 times smaller than the training set. Run the same SSM pro-
tocol for these sequences (for each PRD). Estimate true CE error 
as the root-mean-square difference between the SSM and 
CE-predicted scores (test-set RMS). In an acceptable CE model 
this error, which is usually slightly higher than CV-RMSD esti-
mated from the training set, should be at least lower than the typi-
cal score differences that discriminate between binders and 
nonbinders (Fig. 1a). Importantly, if the underlying SSM is sto-
chastic, one should generally expect the CE error to be bound 
from below by the associated random error in the SSM. On the 
other hand, we have previously observed CE to reduce the effect 
of noise in the SSM due implicit averaging in the training proce-
dure (Fig. 1b) [19]. Though we do not expect this to be the case 
with PRD-peptide systems, if the estimated CE error is neverthe-
less deemed too high, the following can be attempted to improve 
it: (1) consider whether important clusters are missing from the list 
of candidates and add them, repeating the training procedure; con-
sider adding select higher-order CFs (e.g., triplet CFs); (2) if many 
CFs you believe to be important are discarded in the training 

3.6 Randomly 
Generate a Test Set 
Containing Sequences 
Not in the Training Set
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Fig. 1 CE model robustly estimates results of the SSM. Here, we show an example of a CE model from our 
previous study [19], which estimates the scores of Rosetta FlexPepDock ab initio for NHERF-2 PDZ2 with 
training and test peptide sequences. (a) CE predictions correlate well with Rosetta scores for peptide sequences 
in both training and test sets. For nearly all sequences, the prediction error is below 1.5 Rosetta energy units 
(eu), which is the typical score difference that discriminated between binder and nonbinder peptides for a 
given PDZ domain [19]. (b) CE reduces the effect of noise in the SSM calculations. The Rosetta scores of the 
sequences in the training set were perturbed by a normally distributed noise with zero mean and standard 
deviation of 0.5 eu, and the perturbed scores were used to train a new CE model. The standard deviation of 
CE-computed scores from 100 independent trials is significant lower than that of the Rosetta scores used to 
derive to CE model. Figures are adapted from Fig. 3b and Fig. S5 in ref. 19
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procedure, you may need to increase the number of training 
sequences to increase statistical strength; (3) if large prediction 
errors are associated with specific sequence biases (e.g., a particular 
combination of amino acids at specific sites) consider either adding 
CFs to describe such scenarios more specifically (e.g., triplet CFs, 
see ref. 16) or eliminate such sequences from estimating error if 
they are not of interest in the context of the design problem (e.g., 
score poorly on the target). A more principled statistical approach 
for choosing appropriate CFs and training set size to maximize the 
CE accuracy has been described previously [22].

With an established CE model, evaluating the affinity of a PRD- 
peptide interaction typically takes less than 1 μs—many orders of 
magnitude faster than a typical underlying SSM approach. Thus, if 
the sequence space to consider is only moderately large (i.e., ≤1010 
sequences), it is straightforward to simply enumerate all possible 
peptides against all PRDs of interest (T, U1 … Un), deriving pre-
dicted target affinity and selectivity scores for each. On the other 
hand, for larger sequence spaces, CE enables the application of 
Integer Linear Programming (ILP) for rapid optimization of 
affinity for T, with constraints on specificity against U1 … Un [27]. 
To this end, a CE model can be represented as a graph, where 
point clusters are vertices and pair clusters are edges. Specifically, 
the vertex set V  is a union of subsets V Vp1 È È¼ , where set Vi 
contains vertices associated with amino-acid choices at position i. 
Each vertex u is assigned a weight Euu, which is the value of the 
corresponding point CF (or zero if no corresponding point CF 
exists). Similarly, pair CFs are represented by the edges set D, 
where an edge exists between two vertices u and v if 
u V v V i ji jÎ Î ¹and ,  and there is a pair CF associated with the 
amino-acid choices implied by u and v. The edge is assigned the 
weight Euv according to the value of the corresponding pair 
CF. Then the binding energy of a designed sequence toward the 
targeted PRD is expressed as:

 
e T T T= +

Î Î
å å
u V

uu uu
u v D

uv uvE x E x
,  

where xuu and xuv are binary variables (0, 1) determined by vertices 
and edges (point and pair CFs) involved in the specific binding 
sequence. The goal of design can then be expressed as optimizing 
the affinity for the target domain T, under the constraint of selec-
tivity against all undesired competitors U1, … , Uk, with the follow-
ing simple ILP:
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Here D  indicates the required energy gap between the target 
domain and any of the competitors (here lower scores are assumed 
to be more favorable, so a positive D  means that the design pep-
tide is required to bind T better than any of U1 … Un by at least D  
score units). We have previously described this framework, called 
CLASSY, having applied it do design selective coiled-coil inhibi-
tors [18, 21].

Regardless of whether the design sequence space is enumer-
ated explicitly, or via CLASSY, the goal is to identify sequences on 
the pareto-optimal frontier of the affinity/selectivity space—i.e., all 
those sequences that cannot be simultaneously improved in both 
affinity and selectivity. This is done either by solving the above ILP 
for progressively increasing D  (as in [18]) or by explicitly identify-
ing the frontier having enumerated all sequences (as in [19]). 
Conveniently, all other sequences can be considered inferior with 
respect to the pareto-optimal ones, as the former can be improved 
in both affinity and selectivity simultaneously and thus need not be 
considered. Therefore, the entire sequence landscape is reduced to 
(usually) a handful of sequences than can be manually inspected. 
Further, pareto-optimal sequences outline the minimal cost in 
affinity that is required for any incremental gain in specificity—i.e., 
they make optimal affinity/specificity tradeoffs.

Run the original SSM protocol to rescore each of the pareto- 
optimal sequences. First, this verifies that CE error is not abnor-
mally high around the pareto frontier. Second, this generates 
structural models of each candidate design, which should be man-
ually inspected to verify that the predicted affinity and selectivity 
meet with biophysical/structural intuition. If CE error from train-
ing is high, it is advisable to rescore by SSM all/some sequences 
within a certain distance threshold from the pareto-optimal fron-
tier. For further confirmation, one may apply more detailed simu-
lations (e.g., explicit-solvent molecular dynamics) to generate 
further insight in support or against specific designs. The relevant 
timescales of MD may vary depending on systems, but 10–100 ns 
simulation will provide some information of the local stability of 
the peptide in the binding site. Final sequences for experimental 
characterization should be chosen by considering all of the above 
evidence. Some additional issues are discussed in Note 2.

3.8 Select Final 
Design Sequences 
for Experimental 
Characterization

Design of Protein-Peptide Interaction Specificity
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4 Notes

 1. Graph representation of CE models can help interpret optimal 
design selections. An example from our PDZ study [19] is 
shown in Fig. 2, where candidate amino acids at each peptide 
position (P−5–P0) are shown as vertices ordered (from left to 
right) by their increasing point CF contribution, and edges 
represent pair CFs. The colors of the vertices and edges indi-
cate the sign and the magnitude of each CF value. Although 
the graph is complicated by the choice of reference amino acids 
(i.e., some physicochemical interactions are not evident as 
edges, such as those involving the reference amino acids), one 
can still infer that the favorable binding to the targeted domain 
can be achieved either by selecting amino acids with most 
favorable point CFs, or by balancing self and pair contributions 
where strongly favorable edges exist. This enables the “leeway” 
needed to design for selectivity. In our example, two of the 
sequences emergent from our specificity design framework 
(SGSTRF and TGETTF) corresponded to these two strategies, 
respectively, with both exhibiting low-micromolar affinities to 
the targeted domain [19].

 2. The number of candidate sequences on the pareto-optimal 
front of the affinity-specificity space depends on the specific 
problem and the size of design alphabet. When it is difficult to 
experimentally characterize all candidates, carefully selecting 
the sequences to test can maximize the interpretability of 
results. We recommend choosing sequences with a range of 

Fig. 2 Graph representation of a CE model. See the detailed description in 
Note 1. The arrows indicate a choice of a high affinity peptide alternative to 
using the left- most amino acids on every position (i.e., the one most favorable 
by point CF). The figure is adapted from Fig. 3A in ref. 19, demonstrating the 
model for NHERF-2 PDZ2

Fan Zheng and Gevorg Grigoryan
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predicted specificities (i.e., points spanning the pareto-optimal 
frontier), as this may provide insight into the accuracy of the 
predicted affinity/specificity tradeoffs. Also, when possible, 
choosing sequences representing different structural strategies 
toward achieving affinity or specificity is advisable.
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Chapter 12

Binding Specificity Profiles from Computational  
Peptide Screening

Stefan Wallin

Abstract

The computational peptide screening method is a Monte Carlo-based procedure to systematically characterize 
the specificity of a peptide-binding site. The method is based on a generalized-ensemble algorithm in 
which the peptide sequence has become a dynamic variable, i.e., molecular simulations with ordinary 
conformational moves are enhanced with a type of “mutational” move such that proper statistics are 
achieved for multiple sequences in a single run. The peptide screening method has two main steps. In the 
first, reference simulations of the unbound state are performed and used to parametrize a linear model of 
the unbound state free energy, determined by requiring that the marginal distribution of peptide sequences 
is approximately flat. In the second step, simulations of the bound state are performed. By using the linear 
model as a free energy reference point, the marginal distribution of peptide sequences becomes skewed 
towards sequences with higher binding free energies. From analyses of the sequences generated in the 
second step and their conformational ensembles, information on peptide binding specificity, relative binding 
affinities, and the molecular basis of specificity can be achieved. Here we demonstrate how the algorithm 
can be implemented and applied to determine the peptide binding specificity of a PDZ domain from the 
protein GRIP1.

Key words Protein–peptide interaction, Binding free energy, Affinity, PDZ domains, Monte Carlo 
simulations, Generalized-ensemble techniques

1 Introduction

The interactions between relatively short polypeptide segments, 
often found within longer regions of structural disorder or in loops 
in proteins, and domains with well-ordered structures, are wide-
spread in cellular processes [1] and in signaling and regulation in 
particular [2]. Examples of protein domains that specialize on rec-
ognizing linear peptide sequences include well-characterized and 
prevalent domains such as SH2, WW, and PDZ. Peptide–protein 
interactions have been estimated to mediate a large fraction (up to 
around 40 %) [3] of all protein–protein interactions in many 
genomes, and additional domains with peptide-binding functions 
are likely to be discovered [4].
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There are several reasons to explore the molecular basis of pro-
tein–peptide interactions. Because short peptide segments usually 
cannot assume a specific structure on their own, it is typically 
assumed that they undergo a disorder-order process as they bind 
their targets [5]. Interestingly, this coupled folding and binding 
process provides these protein interactions with biophysical prop-
erties that can be functionally advantageous [6, 7]. Two examples 
with particular relevance for regulatory processes are the ability of 
a single flexible peptide to bind structurally different targets, [8] 
and the ability of peptides to achieve highly specific but short-lived 
interactions [9]. Even after binding, some peptides may retain 
some degree of conformational heterogeneity. For example, a pep-
tide from the C terminal region of the tumor suppressor p53 
remains partially dynamic even after binding to its target [7, 10]. 
Conformational heterogeneity in protein–peptide interactions may 
be more common than previously thought and it is unclear how it 
impacts specificity and affinity [11, 12].

The computational peptide screening procedure [13] is an 
algorithm that in a single enhanced simulation generates a large 
number of sequences biased according to their binding free ener-
gies. More precisely, if N ( )s  denotes the number of generated 
sequences, then N e F k T( ) ( )/s sµ -D B , where DF ( )s  is the binding 
free energy of sequence s  at temperature T and kB is Boltzmann’s 
constant. This property of the algorithm makes it useful for a few 
different purposes. First, to estimate relative binding free energies 
for a large number of sequences, by using the fact that 
D DF F k T N N( ) ( ) ln[ ( ) / ( )]s s s s¢ ¢- = B . This usage requires a 
good coverage of sequence space, i.e., N ( )s  1  for the s ’s of 
interest. Second, to determine the specificity profiles of a given 
peptide-binding site, i.e., the preference for different amino acid 
types at different positions on the peptide chain. Third, to provide 
insight into the structural basis of specificity, including the role of 
conformational heterogeneity. This is possible because the algo-
rithm generates not only a large number of binding competent s ’s, 
but also their bound state equilibrium conformational ensembles. 
Finally, the algorithm may be used as a tool to discover unknown 
binding sites on a given protein surface [13], although the feasibil-
ity of this usage has not yet been fully explored.

In this chapter, we demonstrate how the computational pep-
tide screening can be implemented and applied to determine the 
specificity profile of the 6th PDZ domain of the protein GRIP1 [14]. 
Like most other PDZ domains [15], this GRIP1 PDZ domain 
consists of a conserved fold with 6 β-strands and two α-helices, as 
shown in Fig. 1. Peptides bind by β-sheet augmentation [16], i.e., 
the β-sheet of the PDZ domain is extended by a further strand 
from the tail of the peptide. The focus of this chapter is, in particu-
lar, on the technical challenges that come with performing simula-
tions with updates that can alter the amino acid type at dynamic 
positions on the peptide, while still generating conformational 
ensembles with proper statistics.

Stefan Wallin
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2 Materials

A prerequisite of the computational peptide screening method, as 
currently formulated, is that the underlying physical protein model 
describes (1) the solvent in an implicit manner and (2) the protein 
chain using only torsional angles, i.e., bond lengths and angles are 

2.1 Computational 
Model

Fig. 1 (a ) X-ray structure of the 6th PDZ domain of GRIP1 in complex with a C-terminal peptide from human 
liprin-α1 (PDB ID 1N7F) [14]. The peptide (amino acid sequence TVRTYSC) is shown in stick representation and the 
PDZ domain is shown in green cartoon. In this work, the peptide screening method is applied to the 6 most 
C-terminal peptide positions, numbered in the figure such that position 6 is the C-terminal amino acid. (b) 
Comparison between the experimental structure 1N7F (green) and the initial model start conformation (salmon) of 
the PDZ–peptide complex. (c) Example of part of a multisequence Monte Carlo simulation trajectory of the isolated 
peptide showing the evolution of the amino acid type in position 4 and the root-mean-square deviation (RMSD) 
from the liprin-α1 peptide structure in (a), calculated over Cα coordinates. (d) Example of a multisequence Monte 
Carlo simulation trajectory of the bound state. RMSD is measured in the same way as in (c )

Computational Peptide Screening
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held fixed at standard values. To this end, our method is imple-
mented together with the all-atom, implicit solvent model devel-
oped in refs. [17, 18]. In this model, the potential energy function 
can be written as E r( , )s , where s s= { }i i=1

N  and r N= { }f y ci i i i=1
, ,  

are the sequence and chain conformation of an N-amino acid pro-
tein chain, respectively, and σi is the amino acid type at position i, 
ϕi and ψi are the backbone dihedral angles, and c i  is a set of side-
chain torsional angles. The model was initially developed for pro-
tein folding [19] and thereafter adapted for protein–peptide 
interactions [17, 18]. Its potential energy function E r( , )s  is based 
on effective hydrophobic attractions, context-dependent hydrogen 
bonding, and electrostatic interactions. In refs. [17, 18], it was 
tested on the blind docking of peptides to both bound and 
unbound PDZ domain structures.

The computational peptide screening method is based on multi-
sequence Monte Carlo, a generalized-ensemble simulation tech-
nique in which s  is treated as a dynamical parameter [20, 21]. 
More precisely, our method relies on simulating the joint probabil-
ity distribution 

 P r Z e E r g( , ) ,( , ) ( )s b s s= - - +1
 (1)

 
Z dre

r

E r g= åò - +

s

b s s( , ) ( ),
 

 where the sum should be taken over all allowed s  and the integral 
over all possible r . Importantly, the model parameters g( )s  con-
trol the marginal distribution P ( )s  and must be chosen. The pep-
tide screening method works by choosing g F( ) ( )s b s= U , where 
FU( )s  is the free energy of the unbound state, U, at temperature T 
and β = 1∕kBT. With this choice of g( )s , and upon sampling the 
probability distribution in Eq. 1 over the restricted part of confor-
mational space corresponding to the bound state, B, sequences will 
be generated according to 

 P e eF F F( ) ,( ( ) ( )) ( )s b s s b sµ =- - -B U D
 (2)

 where FB( )s  is the free energy of the bound state. This is the 
desired distribution.

If there are M amino acid positions on the peptide that are allowed 
to change during the multisequence simulations, the number of 
parameters g(σ) to be determined is, in principle, 20M. To reduce 
this number, construct the linear approximation 

 
g h( ) ( ),s s= å

i
i i

 
(3)

 where the sum goes over the M dynamic amino acid positions on 
the peptide, and the hi(σi)’s are discrete functions of the amino acid 

2.2 Multisequence 
Monte Carlo

2.3 Linear 
Approximation 
of the Unbound State 
Free Energy FU( )s

Stefan Wallin



205

type at position i, σi. Because each hi(σi) can be tabulated with 20 
values, the total number of parameters to be determined is reduced 
to 20M from 20M (see Note 1 ).

To simulate the probability distribution in Eq. 1 using Monte 
Carlo methods, two different types of updates are necessary: (1) 
conformational updates, r r® ¢ , and (2) mutational updates, 
s s® ¢ . Perform relatively frequent mutational updates, around 1 
attempt every 103 − 104 MC step. Below, R is a uniformly distrib-
uted random number between 0 and 1.

Conformational updates:

 1. Use two types of conformational moves: (1) Biased Gaussian 
Step (BGS; an approximately local chain update) with bias 
parameter b = 300 [22], and (2) sidechain rotations (pick a ran-
dom χ angle and assign a new value between −π and π).

 2. Select a random move type and perform the move, i.e., calcu-
late the updated atomic coordinates.

 3. Calculate the change in energy DE E r E r= -¢( , ) ( , )s s .
 4. Accept new state if 

 ln ,R E< -bD  (4)

which is the ordinary Metropolis condition [23].
 5. If rejected, restore the conformational state r .

Mutational updates:

 1. Randomly select a dynamic amino acid position i and a new 
amino acid type σ′.

 2. Build the new sidechain σ′ at position i, i.e., calculate the side-
chain atom positions from the torsional angles c i  (see Note 2 ).

 3. Calculate the change in energy DE E r E r= -¢( , ) ( , )s s , where 
s ¢  is the new sequence.

 4. Accept move if 

 ln ,R E h< - +bD D  (5)

 where Dh h h= -¢i i i( ) ( )s s .
 5. If move is rejected, restore the state by performing the reverse 

mutation s s¢ ® .

In the second step of the peptide screening method, constraints are 
needed to keep the peptide chain in place in its bound state. This 
is necessary because even though sequences are generated predom-
inantly with good binding properties, sequences with poor binding 
properties will also be sampled although they are statistically sup-
pressed. This can cause the peptide to unbind and diffuse away 
from the binding pocket.

2.4 Monte Carlo 
Updates

2.5 Bound State 
Constraints

Computational Peptide Screening



206

Bound state constraints:

 1. To the potential energy function of the model, E r( , )s , add 
the term E f x xconstr

k
k k

1N7F= - -å10 5( )Å , where the sum runs 

over all amino acids k in the protein and peptide chains, xk  and 
xk

1N7F  are the Cα atom positions in the current conformation r  
and the 1N7F structure, respectively, and f(a) = max(0, a) 
(see Note 3 ).

3 Methods

Unless otherwise indicated, all simulations refer to multisequence 
Monte Carlo simulations carried out at kT = 0. 45 (model units).

 1. Select the dynamic positions on the peptide. Here, we choose 
to designate the 6 most C terminal positions on the liprin-α 
peptide as dynamic, i.e., simulations will be carried out on the 
peptide TX6, where T is threonine and X denotes a dynamic 
amino acid position.

 2. Choose a random initial peptide sequence and conformation, 
i.e., set each torsional angle to a random number between −π 
to π and each dynamic σi to a random amino acid type.

 3. Set hi(σ) = 0 for all positions i, all amino acid types σ.
 4. Thermalize the system by carrying out 106 elementary MC 

steps, with mutational updates turned off.

 1. In an iterative procedure, perform increasingly longer multi-
sequence simulations of the isolated peptide, up to runs of around 
1010 elementary MC steps. Continue until the probability distri-
butions pi(σ) are approximately flat for all positions i, where pi(σ) 
is the probability of observing amino acid σ at position i.

 2. In between each run, update the h parameters according to 
hi(σ) → hi(σ) − lnpi(σ) for all i and σ. Around 5–10 iterations 
may be necessary (see Note 4 ).

 3. Carry out a final simulation of the unbound peptide with 1010 
elementary steps using the final choice of hi(σ) parameters. 
This will take around 4 days on a standard desktop computer. 
The deviation from the ideal pi(σ) = 0. 05 is at most a few per-
cent, as can be seen in Fig. 2.

 1. Having obtained appropriate h-parameters, prepare an initial 
model conformation of the protein–peptide complex 
(1N7F [14]). In a protein model with only torsional degrees of 
freedom, the coordinates of an experimental structure cannot be 
used as a starting conformation. Instead, construct a model con-
formation that as closely as possible resembles the experimental 

3.1 Step 1: 
Reference Simulations 
of the Isolated Peptide

3.1.1 Preparation

3.1.2 Simulate 
the Unbound State

3.2 Step 2: 
Simulation of Protein- 
Peptide Bound State

3.2.1 Prepare an Initial 
Structure of the Complex

Stefan Wallin
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coordinates, while still not exhibiting any major clashes between 
atoms. For each chain, this can be done by following the steps 
2–5 below, which involves building a model conformation in 
stages from the N terminus, maximizing the similarity to the 
experimental structure in each step.

 2. Use the atom coordinates of the experimental structure 
(1N7F) to determine the torsional angles f y ci i i i=1

, ,{ }N .
 3. Calculate the cartesian coordinates of the model conformation 

with these angles. This structure will relatively accurately 
reproduce the local chain features of the experimental struc-
ture, but will deviate significantly globally and may contain 
severe atomic clashes.

 4. In an iterative process, minimize the root-mean-square devia-
tion, RMSD(n), between the model conformation and the 
experimental coordinates, 1N7F, calculated over the first n 
amino acids. Perform the minimization using 10,000 BGS 
Monte Carlo updates at kT = 0 (accept moves that decrease 
RMSD, reject otherwise). Apply only conformational updates 
that affect the torsional angles of the first n amino acids.

 5. Start with n = 4 and, following each minimization, increase n 
by two units (repeat from step 4) until the entire chain is 
included.

 6. To remove potential clashes in the structure, perform a short 
(fixed-s ) simulation with 10,000 BGS Monte Carlo steps at 
kT = 0. 45, using the ordinary energy function E. To keep 
structural changes very small, accept new states only if 
RMSDnew ≤ 1. 01 × RMSDold.

Fig. 2 Probability distribution of amino acid types, pi(σ), at peptide positions 1 through 6 as obtained from 
simulations of the peptide in isolation with the final choice of method parameters g(σ)

Computational Peptide Screening
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 7. The initial model conformation obtained is shown in Fig. 1. It has 
RMSD = 0. 28 Å calculated with respect to the 1N7F structure, 
taken over all non-H atoms of the protein and peptide.

 1. Add structural constraints to keep conformations restricted to 
the bound state (see Subheading 2.5).

 2. Thermalize the system by performing 106 MC steps, with 
sequence updates turned off.

 3. Perform a set of 5 independent simulations, each of 2 × 109 
MC steps. Each simulation takes around 9 days on a standard 
desktop computer.

 4. Save snapshots of the system state, i.e. conformation r  and 
sequence s , every 105 MC steps, for analysis.

 1. Using the saved sequences s , calculate pi(σ), i.e., the probabil-
ities of different amino acids types at the dynamic positions i. 
Figure 3 shows that pi(σ) have become heavily skewed as com-
pared to the unbound state. At positions 4 and 6, there is a 
strong preference for hydrophobic amino acids, in line with 
the known specificity profile of this protein domain [4]. The 
other positions, 1–3, and 5, reveal a predicted preference for 
lysine. Although more work is needed to explore this result, we 
note that several polar and negatively charged amino acids are 
lining the peptide-binding pocket on the GRIP1 PDZ 
domain [14]. Flexible lysine sidechains on the peptide might 
therefore be able to provide favorable interactions with the 
protein through a combination of sidechain–sidechain hydrogen 
bonding and electrostatic attraction.

3.2.2 Simulate 
the Bound State

3.3 Data Analysis

Fig. 3 Probability distributions of amino acid types, pi(σ), at the peptide positions 1 through 6 as obtained from 
simulations of the bound state. The distributions have become heavily skewed compared to those obtained in 
the unbound state (cf. Fig. 2)

Stefan Wallin
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 2. To visualize the probabilities pi(σ), pick a representative sample 
of around 1000 generated sequences (the total number of gen-
erated snapshots is 105 in the 5 simulations). Use the freely 
available Weblogo tool (http://weblogo.berkeley.edu/logo.cgi) 
to construct a sequence profile of pi(σ), as shown in Fig. 4. 
The column height indicates the sequence conservation at 
each position. Accordingly, Fig. 4 shows that the strongest bind-
ing preference of the PDZ domain is at positions 4 and 6.

4 Notes

 1. For simulations with very few dynamic positions on the peptide 
(M = 1 or 2), it is easier to skip the construction of a linear model 
and instead work directly with the model parameters g( )s .

 2. There are two ways to deal with the fact that the number of 
sidechain torsional angles, q, is different for different amino 
acid types (from q = 0 for glycine to q = 5 for lysine). The most 
rigorous way is to explicitly introduce 5 χi angles for all dynamic 
amino acid positions on the peptide. These 5 angles should be 
updated with sidechain rotational moves as any other degree of 
freedom in the model. However, when an amino acid type σ 
with q < 5 is assigned to position i, one or more of the 5 χi 
angles will behave as “ghost” angles because their values do 
not affect the potential energy E. Therefore, these angles will 
always accept sidechain rotations and thus tend towards a uniform 

Fig. 4 The specificity profile of the GRIP1 PDZ6 domain, as predicted by the peptide screening method. The 
size of each letter is proportional to the probability of the corresponding amino acid type at the respective 
positions, pi(σ), as found from the second step of the peptide screening procedure, and the overall size of each 
letter column is determined by the sequence conservation expressed in bits (the maximum possible height is 
log2 20 ≈ 4. 32 bits). The figure is produced using the freely available Weblogo tool [24]

Computational Peptide Screening
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probability distribution. An alternative way that avoids the 
introduction of extra χ-angles is the following: For a muta-
tional update with qnew ≤ qold, i.e., when the new amino acid 
type has fewer or the same number of χ angles, simply discard 
any unmatched angles. For a mutational update in which q 
increases, i.e. qnew > qold, let the new amino acid inherit the first 
qold angles and assign new, random values to the remaining 
(qnew − qold + 1) χ-angles. Both ways will realize the distribution 
in Eq. 2, and thus give the same results, but will lead to differ-
ent numerical values of the g( )s  model parameters.

 3. This constraint is designed to keep the peptide (and protein) 
Cα atoms close to the native coordinates while still allowing 
for some flexibility. In some cases, it may be important to make 
the constraints on the peptide looser, e.g., when the peptide 
exhibits significant conformational heterogeneity in the bound 
state. A looser constraint can be implemented, e.g., by letting 
the summation over k in Eq. 6 include only 1 or a few of the 
peptide Cα atoms.

 4. In the iterative process, some probabilities pi(σ) may be 
extremely small or identically zero (especially in the early steps) 
due to a lack of sampling in sequence space, and the correction 
of the corresponding hi(σ) may become too big or diverge. To 
get around this issue, use instead the update rule hi(σ) → hi(σ) 
− ln[max(pi(σ), 0. 01∕20)], i.e., assume there is always a small 
but finite minimal probability for every σ.
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Chapter 13

Enriching Peptide Libraries for Binding Affinity 
and Specificity Through Computationally Directed  
Library Design

Glenna Wink Foight, T. Scott Chen, Daniel Richman, and Amy E. Keating

Abstract

Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for 
many important applications. Optimization of peptide binding by screening large libraries is a proven and 
powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have 
desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We 
present a library optimization method in which the choice of amino acids to encode at each peptide posi-
tion can be guided by available experimental data or structure-based predictions. We discuss how to use 
analysis of predicted library performance to inform rounds of library design. Finally, we include protocols 
for more complex library design procedures that consider the chemical diversity of the amino acids at each 
peptide position and optimize a library score based on a user-specified input model.

Key words Library design, Integer linear programming, Peptide engineering

1 Introduction

The increasing use of peptides as reagents for diagnostic, therapeu-
tic, and basic research purposes highlights the need for engineered 
molecules with particular affinity and specificity profiles. Natural 
peptide interaction partners often do not have the high affinity or 
specificity required for such applications. Two main approaches 
exist for developing peptide reagents with desired binding charac-
teristics: screening of large peptide libraries and computational 
design of peptide sequences [1].

Library screens that use cell surface display, phage display, 
mRNA or ribosome display, and smaller, synthetic peptide libraries 
screened on beads are powerful techniques for discovering peptide 
reagents [2–5]. High-throughput screening technologies can 
 routinely survey 108 (yeast display)–1015 (mRNA display) DNA 
sequences, but the enormous theoretical sequence spaces of pep-
tides greater than ~6–8 residues exceeds even those large numbers. 
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Thus, randomly generated sequences may not sample the best 
molecules. A common alternative approach to identifying opti-
mized peptide binders is to mutagenize a known interaction part-
ner. When using random mutagenesis, whether by error-prone 
PCR or the use of NNK or other degenerate codons, the muta-
tional load per sequence may be difficult to tune because different 
protein positions have different sensitivities to mutation. Too high of 
a mutagenesis load will yield many nonbinders, whereas low muta-
genesis may not achieve sequences sufficiently diverged from the 
original sequence to meet challenging affinity or specificity goals [6].

Meanwhile, computational modeling of protein–peptide inter-
actions is advancing. Several methods have used structural infor-
mation to successfully predict interacting peptide sequences in the 
proteome [7–11]. Physical detail in the models used ranges from 
high, in methods based on molecular mechanics calculations, to 
low in methods that use simple distance tabulations. However, 
relatively few examples of purely computational design of novel 
peptide binding partners have been reported [12–15]. This is in 
contrast to the field of protein–protein interaction design, in which 
computational design of novel interaction partners is becoming 
increasingly common [16–18]. It remains difficult to achieve ade-
quate conformational sampling of peptide conformations, and 
inaccuracies in standard energy functions limit the accuracy of 
scoring complexes that involve only a small number of residue con-
tacts [19].

In recent years, the strengths of computational design and 
library screening technologies have been combined in methods 
that utilize computational algorithms to design libraries that 
reflect predictions about stability or binding made by a computa-
tional or data-based model [1]. Designing a large library that can 
be screened by high-throughput technologies, rather than just a 
small handful of sequences, overcomes the requirement for 
detailed and accurate information on all peptide positions. 
Researchers can make the best use of their screening capabilities 
by limiting variation to a productive sequence space, e.g., to pep-
tide positions at which models predict affinity or specificity-
enhancing mutations.

In the laboratory, libraries can be made using degenerate 
codons to include variation at different protein positions, can 
incorporate mixtures of defined codons at different positions, or 
can be composed of members of defined protein sequence. Libraries 
made with degenerate codons are the most economical and are the 
focus of this methods paper; such libraries are widely used. 
Degenerate codons include mixtures of nucleotides at each codon 
position that, collectively, encode a set of amino acid residues. 
There are conventions for naming such codons, e.g. NNK stands 
for a codon with a mixture of A, C, G, T at the first and second 
positions, and a mixture of G and T at the last position. The NNK 
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degenerate codon can code for any amino acid or a single stop 
codon. See the standard IUPAC nomenclature for definitions of 
other degenerate codons (http://www.bioinformatics.org/sms/
iupac.html).

Much of the published work on computationally directed 
library design has been done in the context of enriching libraries 
for functional sequences of single-domain proteins such as green 
fluorescent protein (GFP), cytochrome P450, and β-lactamase 
[20–24]. A common general approach is to use a list of sequences 
(e.g., a multiple sequence alignment (MSA) or the output of 
protein design calculations) thought to be enriched in functional 
proteins and then try to match the amino acid preferences at posi-
tions of interest by intelligently choosing degenerate codons. 
Several different algorithms and methods have been developed to 
guide the choice of degenerate codons, or, for directly synthesized, 
defined-sequence libraries, the choice of amino acids. Existing 
methods for optimization of degenerate codon choice have recently 
been well summarized by Jacobs et al. [25]. Relatively simple 
methods have used brute force enumeration of all possible libraries 
composed of degenerate codons that approximate an amino acid 
distribution found in an MSA or ranked list of protein designs [26, 
27]. This leaves the choice of an individual library design to be 
made by the user based on library size or score. The OCoM 
method of Parker et al. also requires an MSA as input, but chooses 
degenerate codons based on dynamic programming and integer 
programming. This method considers pairwise frequencies, and 
also allows design of defined-sequence libraries [20]. The optimi-
zation method balances a quality objective (matching the MSA fre-
quencies) with a novelty objective (minimizing sequence identity 
to individual members of the MSA) to meet the goal of a library 
enriched in beneficial mutations. In a further advancement, Jacobs 
et al. used dynamic programming to choose degenerate codons to 
represent the amino acid distributions in a sequence list, but 
allowed multiple degenerate codons at each position in the library 
design phase. This additional flexibility can be used to minimize 
how much the size of the library in DNA space exceeds the number 
of protein sequences encoded [25].

Alternative methods used for library design have borrowed 
from techniques used in protein structure design. An early method 
by Hayes et al. generated a ranked list of sequences based on a 
Monte Carlo search around the calculated global minimum energy 
sequence and conformation [28]. This list of sequences was then 
converted to an amino acid probability table, and a  defined- sequence 
library was constructed to meet certain size and score cutoffs. 
Treynor et al. created libraries encoding GFP variants by several 
different methods including methods based on Hayes et al., 
error-prone PCR, and a new method, DBIS (diversity benefits 
applied to interacting sets) [23]. The DBIS method used dead end 
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elimination to optimize degenerate codon choices based on average 
rotamer interaction energies for the amino acid sets encoded by 
the degenerate codons. Comparison of the success rate of different 
library design methods in generating functional, fluorescent GFP 
variants revealed that structure-based design methods had greater 
success rates than methods based on an MSA, and all intelligent 
library design methods performed better than error-prone 
PCR. Additionally, Treynor et al. showed that the success rate 
when screening designed libraries increased with the mutational 
load in the library, but this was not true for the error-prone PCR 
libraries. Guntas et al. also found that a naïve library that randomly 
mutated protein interface residues failed to produce binders in the 
design of a novel protein–protein interaction, while Rosetta-based 
libraries were successful [29]. These studies underscore the advan-
tages of intelligently designed libraries over random mutagenesis in 
increasing the probability of success for diverse protein function 
and binding goals. Another recent example of structure-based 
library design used cluster expansion to convert structure-based 
Rosetta energies of variants to sequence-level scores [24]. The 
authors then used integer linear programming to optimize the 
library composition, with options to use pairwise energies and out-
put a degenerate codon or defined-sequence library.

For the design of peptide libraries, flexibility in the ability to 
use many different types of input information is advantageous. 
Multiple sequence alignments, which are the preferred input for 
many previous library design methods, may not be useful for all 
protein–peptide interaction families, due to either too few vali-
dated binding partners, or extreme diversity in the binding site 
sequences. For many systems, there may also exist experimental 
data of varying types (SPOT arrays, alanine mutagenesis, deep 
sequencing data from single point mutant libraries, etc.) that a 
researcher would like to take into account. To incorporate diverse 
information sources that include both experimental and computa-
tionally derived data, we present a method for the computational 
design of peptide libraries enriched in sequences with a desired 
affinity or specificity profile. The basic method presented here was 
first used by Chen et al. to design libraries of Bcl-xL variants with 
enhanced specificity for binding to BH3 peptides. Library design 
in that instance was based on Rosetta energies [30]. The method 
was then adapted to design BH3 peptide libraries enriched in spe-
cific binders of Bfl-1 based on SPOT array data, with a constraint 
imposed to ensure sampling of chemical diversity [31]. We have 
further demonstrated the utility of the method by designing two 
more BH3 peptide libraries with specificity for other Bcl-2 family 
members using SPOT array data and computational predictions 
from STATIUM [32]. Diverse, quantifiable experimental data or 
computational predictions can be used as input to this general 
framework, which applies integer linear programming to optimize 
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library composition based on an easily modified set of parameters. 
The output is a degenerate codon library with size and characteris-
tics tuned to the desired experimental screening strategy and end 
goal defined by the researcher.

2 Materials

The library optimization method presented here can be run with a 
simple set of scripts in a terminal environment on a Mac or Linux 
machine. Two Perl scripts, writeCodon.pl and runILP.pl imple-
ment the complete design process. Two additional files are needed 
to run these scripts. File codon_combos.txt includes a database of 
codons used by writeCodon.pl. File library_design.mod is the file 
formatted for use with the ILP solver, glpsol, and it is edited and 
run by the runILP.pl script. These files are included in file 
LibraryDesignScripts.tar.gz. All scripts and example files are avail-
able on the GitHub KeatingLab/LibraryDesign repository.

Additionally, example input and output files are included: file_
pref, file_req, codons_output, library_design_output. The files are 
referred to by these names throughout Subheading 3, and they are 
included in the file LibraryDesignExample.tar.gz. The tar files can 
be opened using the Archive Utility on a Mac or the command “tar 
–xvzf LibaryDesignExample.tar.gz” in the terminal.

The ILP problem is solved using the glpsol solver in the GNU 
Linear Programing Kit (GLPK). This is available as a free download 
from https://www.gnu.org/software/glpk/. Install on a Linux or 
Mac machine by following the installation instructions included 
with the software. You may need to use the command “sudo make 
install” to install in the default location. Make note of the path where 
the glpsol solver is installed, as you will need to direct the runILP.pl 
script to its location (default is /usr/local/bin/glpsol).

Finally, for the advanced multi-option method presented in 
Subheading 3.5, scripts and example input and output files are 
included in MultiOption.tar.gz. File names are as given in 
Subheading 3.5.

3 Methods

The method for library design presented here proceeds through 
the three steps outlined in Fig. 1, followed by optional analysis of 
predicted library performance and further rounds of design. 
Because the available input information will vary for every protein–
peptide interaction study, we present a general framework for for-
malizing various input datasets. Likewise, library design objectives 
will vary. We describe and provide a basic framework for optimiz-
ing a library to include peptides with high affinity or specificity for 
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one target interaction partner. After a library design is output by 
the ILP code, a researcher can analyze it for its predicted behavior 
based on any experimental or computational models available. 
The results of these analyses can then be used to manually alter the 
allowed substitution and codon choices to improve output for fur-
ther rounds of design. We have found this iterative process of 
design and evaluation very useful in exploring the tradeoffs that a 
protein designer inevitably faces when devising a screen.

In deciding which positions to mutate, a researcher should use all 
information available (Note 1). This may include SPOT arrays, in 
which peptide positions are mutated to all 20 amino acids and 
binding is semi-quantitatively measured to the peptides synthe-
sized on a membrane. Similarly, alanine scanning or hydrophile 
scanning can provide information on which positions are most 
important for binding [33]. Deep sequencing data from random 
mutagenesis libraries or deep mutational scanning experiments can 
provide similar positional information [34, 35]. Lacking any exper-
imental binding data, a structure of the peptide bound to the tar-
get is a valuable source of information (Note 2). Computational 
methods such as STATIUM or Rosetta can be used to generate 
scores for all possible peptide point mutants based on a structure 
of the complex, in effect generating a virtual SPOT array [36, 37]. 
In this section, we cover how to convert SPOT array intensities or 
deep sequencing data to a position-specific scoring matrix (PSSM). 
We also discuss the use of computational tools for mutational scor-
ing [37].

 1. SPOT array intensities can be quantified using imaging soft-
ware. Several wild-type peptide spots (ideally distributed 
throughout the array to control for variation in exposure) can 

3.1 Formalization 
of Prior Knowledge 
of Binding Preferences

3.1.1 Generation 
of a PSSM from SPOT 
Array Data

Fig. 1 Flowchart of the library design process. The first two steps of gathering information from binding experi-
ments or structure-based models and prioritizing substitutions will depend on the information available for the 
protein–peptide interaction of interest, so we present some general guidelines. The optimization of a degenerate 
codon library to encode the desired substitutions then proceeds in two parts: initial trimming of the codon choices 
based on codon size and score, followed by ILP library optimization to yield a library of a desired size with an 
optimal score. Finally, suggestions are given for analysis of the predicted behavior of the library based on input 
models, which can inform further rounds of library design to improve predicted library characteristics
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be used for normalization. In our protocols, we average the 
intensity of all wild-type peptide signals.

 2. To compute a PSSM score for a mutation, use the following 
equation where M is the mutant SPOT array intensity, and W 
is the average wild-type intensity

 
PSSM score = log10

M
W  

Mutants showing weaker binding than wild type will have 
scores below zero, and mutants with tighter binding will have 
positive scores.

 3. If SPOT arrays are available for the target and a competitor, a 
difference PSSM score can be calculated for use in a library 
designed for specificity. Because the range of intensities 
observed on SPOT arrays is likely to vary for different binding 
partners, each SPOT array-derived PSSM should be normal-
ized and a Z-score calculated. The Z-score difference can then 
be used as a metric of specificity for each possible substitution. 
The equation below can be used to calculate the standardized 
PSSM difference, where μ is the mean intensity across each 
array (target, T or competitor, C), and σ is the standard devia-
tion across each array.

 
D

m
s

m
s

m
s

m
s

PSSM logT C
T C

10- =
-

-
-æ

è
ç

ö
ø
÷ -

-
-

-æ
è
ç

ö
ø
÷

ì
í
î

ü
ý
þ

M W M W

 

The type of metric generated from deep sequencing data will 
depend on the type of experiment that it was produced from. For 
a single mutant dataset in which both the input and selected librar-
ies were sequenced, variant frequencies can be converted into a 
PSSM-like matrix via a variety of previously published methods 
[38–40]. If multiple positions were mutated at once, a PSSM can 
be generated based on the frequencies of substitutions in unique 
sequences. Using unique sequences limits the biases that can arise 
in cell surface display or phage display datasets, e.g. from growth 
rate differences or background mutations. To further improve the 
quality of the dataset used for generating a sequencing-based 
model, one can limit the sequences included to those that had 
some minimum number of counts in the sequencing. This mini-
mizes noise from sequencing errors. If similarly generated datasets 
are available for multiple binding partners, a difference PSSM score 
can be calculated and used as a specificity metric.

When a structure of the protein-peptide complex of interest is 
available, or a homology model built on a close homolog, a variety 
of computational scoring methods can be used to provide predic-
tions of the effect of mutations on binding affinity. Scoring 

3.1.2 Generation 
of a PSSM from Deep 
Sequencing Data

3.1.3 Use of Structure- 
Based Scores
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methods that can easily score all possible mutations in a peptide 
include STATIUM, Rosetta, FoldX, and Discovery Studio [41]. 
The effect of each point mutation can be calculated as the differ-
ence from the wild-type peptide score (e.g., ΔSTATIUM = STATI
UMwt − STATIUMmutant). If structures are available for the peptide 
bound to the target protein and competitors, a specificity score can 
be computed as the difference between these relative scores (e.g., 
ΔΔSTATIUM = ΔSTATIUMtarget − ΔSTATIUMcompetitor). As dis-
cussed above for the PSSM specificity scores, the range of scores 
for different structures may be different. Therefore, it is advisable 
to compute the positional scores for all 20 amino acids at each 
peptide position and then normalize these scores for each struc-
ture. A Z-score difference can then be calculated as in 
Subheading 3.1.1. If the wild- type peptide binds to the target and 
competitors with different affinity, the score difference will be a 
difference in the effect on binding relative to wild-type.

Before designing a library on the DNA level, a researcher must first 
choose which peptide positions to vary and which amino acid sub-
stitutions to favor. These choices will depend on the goal for the 
library screening experiment, particularly whether the goal is sim-
ply to obtain high-affinity peptides for one protein target, or to 
obtain peptides that show both high affinity for the target and 
much lower binding to other proteins (competitors), in other 
words, specificity for the target. The length of the region to mutate 
can depend on physical considerations, such as how much of the 
peptide comes in contact with its binding partner, as well as on 
practical considerations, such as the length of oligonucleotides 
required for library assembly and the length of sequencing reads if 
the enriched library pools will be deep sequenced. Given advances 
in DNA synthesis and sequencing in recent years, most peptides 
will be well within standard length limits.

In our protocol, two categories of substitutions must be cho-
sen: required and preferred. Substitutions categorized as required 
will always be included in the library design. Wild-type residues are 
generally included as required. Additional required residues may 
include substitutions for which there is strong evidence (experi-
mental or computational) suggesting that they will have the desired 
effect on affinity or specificity. Preferred substitutions are included 
in the library as space and other criteria permit, as determined by 
the optimization algorithm. For a library designed to optimize 
binding affinity, preferred residues could include all residues pre-
dicted to be nondisruptive for binding to the target (neutral to 
beneficial). For specificity library design, the preferred set might be 
further narrowed to require that residues also weaken binding to 
competitors, according to some metric. Choices of how to define 
sets of required and preferred residues will depend on the data 
available for the protein–peptide interaction system and are 

3.2 Categorization 
of Mutations
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ultimately made by the user. For example schemes used to desig-
nate preferred and required residues, please see refs. 30–32. 
The number of positions input into the design process can exceed 
the number that will be varied in the output library design. Thus, 
a designer can be generous at this stage and provide information 
on more positions than they ultimately want to vary.

The following steps will define the two required sets of 
residues:

 1. Make a plain text file for the required residues (see example 
file_req). Each line should include the wild-type residue and 
peptide position number followed by a list of the one-letter 
amino acid codes of the residues that the designer wants to 
require at that position. For example, the line I4 IRY, would 
mean that in place of the wild-type isoleucine at position 4, the 
designer wants to require sampling of isoleucine, arginine, and 
tyrosine.

 2. Make a plain text file for the preferred residues (see example 
file_pref). Each line lists the wild-type residue and position 
number followed by a list of the one-letter amino acid codes of 
the preferred residues, each followed by the number 1. The 
preferred residues must include all of the required residues. 
For example, I4 I 1 K 1 R 1 T 1 A 1 V 1 L 1 M 1 Y 1.

The choice of degenerate codons used to encode the library pro-
ceeds through two steps. First, for each peptide position, a list of 
all degenerate codons capable of encoding all of the required resi-
dues is output. This list is narrowed to exclude codons that encode 
fewer preferred residues but more trinucleotides than another 
codon in the list. Second, the list of possible degenerate codons at 
each position is fed into an ILP solver and a codon is chosen for 
each position such that the library score is maximized and the 
library size restraint is met. The default library score is the number 
of protein sequences encoded by the library that are composed 
entirely of preferred residues (i.e., the product of the number of 
preferred amino acids encoded by the chosen codons at each 
position). Users can define other scores that are linear functions of 
the codon choices, see Subheading 3.5.

 1. Put four files into one directory: the two files specifying the 
preferred and required residues (e.g. file_pref and file_req), a 
file containing all codons (codon_combos.txt), and the Perl 
script that makes the initial codon choices (writeCodon.pl).

 2. In a terminal, in the directory with the four files, run the script 
with the following command:

perl -w writeCodon.pl file_req file_pref codons_output,
where “codons_output” is any name the designer chooses 

for the output file. This file (e.g. codons_output) lists each 

3.3 Library 
Optimization

3.3.1 Initial Trimming 
of Codons
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peptide position specified in the required file (file_req) 
followed by a list of the degenerate codon choices for each 
position (Fig. 2a). Each degenerate codon line includes the 
following information: degenerate codon, amino acids 
encoded, the number of trinucleotides encoded (codon size), 
the number of preferred residues encoded, and the percentage 
of trinucleotides that encode for preferred amino acids. 
Standard IUPAC nomenclature is used for the degenerate 
codons (http://www.bioinformatics.org/sms/iupac.html). 
Thus, the line: DNK ACDEFGIKLMNRSTVWYZ 24 9.00 
0.50, is interpreted as the degenerate codon DNK encodes the 
amino acids ACDEFGIKLMNRSTVWYZ (Z is a stop codon) 
using 24 trinucleotides. This codon encodes nine preferred 
amino acids, with 50 % of the 24 trinucleotides encoding pre-
ferred amino acids. Note that some positions may have differ-
ent codons encoding different amino acid sets that have the 
same number of preferred residues and same size. The designer 
should look through the codons_output file for such examples 
and manually choose one codon to keep based on criteria such 
as chemical diversity or scores in the input models. If this is not 
done, the ILP script in the next step will simply use the first 
codon listed of a given size and score.

The script runILP.pl reads in the codons_output file created by the 
step above and writes out a text file with the degenerate codon 
chosen for each peptide position and information on the library 
score and size (Note 3). To make the codon choices, the ILP 
solver is instructed by the file library_design.mod to optimize the 

3.3.2 ILP Library 
Optimization

Fig. 2 Output of the initial codon trimming step and the ILP library optimization step. (a) An example of the 
degenerate codon choices for one position as output by writeCodon.pl. The columns are labeled with their 
corresponding properties. (b) An example library design output by runILP.pl. The three columns are position, 
degenerate codon, and amino acids encoded. The total size in DNA sequences is under the limit set by the user 
(in this case 107). The total size in protein sequences is the product of the number of amino acids encoded by 
each chosen codon. The score is the optimized value, the number of protein sequences composed entirely of 
preferred amino acids. The useful fraction is the product of the fraction of trinucleotides encoding preferred 
amino acids for each chosen codon

Glenna Wink Foight et al.
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library score, with the constraint that the library be smaller than a 
specified size. The library score is the number of sequences that are 
entirely composed of preferred residues.

 1. Put the following three files into your design directory: the 
codons_output file created in the step above, library_design.
mod, and runILP.pl, the Perl script that directs the ILP solver 
and creates the output file.

 2. Edit the following line in runILP.pl to include the correct path 
to where the ILP solver, glpsol, was installed on your com-
puter (replace path/to):
my $glpsol = "/path/to/glpsol";

If the GLPK package was installed on your local computer 
using default installation settings, it will likely be located in /
usr/local/bin/glpsol.

 3. Edit library_design.mod to set the library size constraint 
(Note 4). This file contains the constraints that go into the 
ILP solver. Find the line “subject to totalsize: sum {v in V} 
costVTOT[v] * X[v], <= 7.0;”, and change 7.0 to another 
number (e.g. for a library size constraint of 105 change to 
5.0). This library size is the size in DNA sequences. A good 
rule-of-thumb is to set this tenfold lower than the maximum 
transformation efficiency or screening throughput of the 
library-screening platform to be used, in order to sample most 
of the library.

 4. Run the ILP optimization:
perl -w runILP.pl codons_output library_design_output

The file “library_design_output” is whatever the designer 
chooses to name their output file, and codons_output is the 
file output by writeCodon.pl.

If a solution is found, the standard output will say “Optimal 
solution found”, and a text file with the library design will be cre-
ated (e.g. library_design_output_example). An example library 
design output is shown in Fig. 2b, with an explanation of the 
outputted metrics given in the figure legend. This is a very fast 
process, completed in <1 s on a standard laptop. If a solution is 
not found, there is no solution possible that encodes all of the 
required residues within the library size constraint. The standard 
output will say “Problem has no feasible solution”. In this situa-
tion, the designer will need to go back to the categorization of 
mutations step and reduce the number of required mutations, or 
increase the library size constraint and run the codon trimming 
and ILP steps again.

Once a library design is output, the basic process is complete, 
and the designer can order oligonucleotides encoding the library 
from a DNA synthesis company using machine mixing of nucleo-
tides to encode the degenerate codons. Below, we present further 
steps that a designer can take to analyze the predicted 
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characteristics of the library to inform modifications for further 
rounds of the library design process. Additionally, we provide a 
more complex protocol that allows consideration of chemical 
diversity and optimization based directly on a user-defined scoring 
system, rather than on the number of preferred residues.

Designed libraries can be evaluated on several levels to get an idea 
of the predicted performance for the affinity or specificity objec-
tive. Adjustments can be made to the inputted lists of preferred 
and required residues, as well as the initial codon lists, in order to 
improve predicted performance. Predictors of performance or 
library quality include the simple statistics output by the library 
design script, or more in-depth analysis of the scores of all theoreti-
cal library sequences based on quantitative models available for the 
peptide interaction system.

A first-pass library design analysis would look at the statistics 
output by the library design script including the library score, the 
number of protein sequences encoded, and the percent of the library 
that is predicted to be useful (i.e., the percentage of the DNA 
sequences that encode only preferred residues). To maximize these 
statistics, you can change the amino acids you list as preferred and 
required, or alter the codon choices by manually editing the codons_
output file before running the ILP script. Some combinations of 
required amino acids may necessitate the choice of large codons, 
which may include many amino acids that could be disruptive for 
binding, lowering the fraction of the library that is predicted to be 
useful. Consider whether all of the required residues are necessary, 
or if you can require a chemically similar residue that allows the 
choice of a smaller codon. Alternatively, if you are willing to use 
multiple oligonucleotides to construct your library, you can use 
more than one codon at a position, as done by Chen et al. [30].

It is also important to consider the mutational load of your 
library, or how many positions are varied. Previous studies have 
found that a higher mutational load in intelligently designed librar-
ies correlates with a greater chance of success [23]. If some posi-
tions turn out to not contribute as much to affinity or specificity as 
predicted by an input model, then allowing a few amino acid 
choices at many positions will provide a better chance of success 
than allowing a large diversity of amino acids at a few positions. 
However, it is also important to consider how many potentially 
disruptive mutations you are including. For example, if a given 
position includes a choice between just two amino acids, and one 
of these disrupts binding, then half of the library will not bind. To 
spread the diversity of your library across many positions, you can 
adjust the size of codons chosen. Manually edit the writeCodons.
pl output (codons_output) to remove large codons (particularly 
codons that encode stop codons or potentially disruptive amino 
acids) at positions where a large amount of diversity is not a high 

3.4 Analysis 
of Library Designs
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priority, and then re-run the ILP optimization on the edited file. 
Focus diversity on positions that are most likely to impart high 
affinity or specificity, based on the information available for the 
peptide system.

If quantitative scoring models are available for your peptide 
system (e.g., PSSMs based on SPOT arrays, or fast-to-evaluate 
structure-based scores), these models can be used to score the the-
oretical library and predict how many sequences are likely to have 
the desired affinity or specificity characteristics. First, write out the 
theoretical library by creating sequences for all possible combina-
tions of the amino acids at each position in the library design. 
Then, compute the score for each sequence as the sum of the scores 
for each position in the peptide. If you are designing a library for 
specificity and have models for competitor interaction partners, 
you can score the theoretical library on those models for compari-
son and analysis of predicted specificity. The score of the wild-type 
peptide sequence that the library is based upon can be used as a 
cutoff to calculate the proportion of the library that has wild-type- 
like or greater affinity. For analysis of a library designed for affinity, 
a simple histogram can be used to visualize the distribution of 
library scores. For specificity library design, we use two- dimensional 
histograms (density plots) to compare the library sequence scores 
for the target and competitor interaction partners [31].

We recently designed and enriched a BH3 peptide library for 
specific binding to the viral Bcl-2 homolog KSBcl-2 over the com-
petitor human Bcl-2 homologs [32]. In evaluating different library 
designs, we scored the libraries using PSSMs derived from SPOT 
arrays for KSBcl-2 or human Bcl-2 homologs binding to BH3 

Fig. 3 Analysis of sequence scores for a library designed and then screened for specificity. Predicted KSBcl-2 
binding is shown on the x-axis. Predicted binding to competitors Mcl-1 (a) or Bcl-xL (b) are shown on the y-axis. 
A density plot of scores for the theoretical library is shown in gray scale. Scores for sequences from a library 
pool enriched for binding specificity to KSBcl-2 are overlaid in red. The blue points are for peptides that were 
tested in solution binding experiments and showed at least some margin of specificity for KSBcl-2 binding
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peptide mutants. Figure 3 shows the scores for the theoretical 
library in gray scale density plots. The wild-type peptide scores are 
marked with lines, creating quadrants. The proportion of the 
library that was predicted to have both greater affinity than wild 
type for KSBcl-2 and weaker binding to one of two human homo-
logs (Mcl-1 in panel 3a and Bcl-xL in panel 3b) falls in the lower 
right quadrant. We went through several rounds of refinement of 
our choice of preferred and required residues, and additionally 
edited the codons_output file in order to maximize the number of 
sequences that fell in this quadrant. Sequences from clones that 
survived experimental enrichment for KSBcl-2-specific binding are 
overlaid in red, and a small selection of peptides that were directly 
tested in solution binding assays and shown to bind preferentially 
to KSBcl-2 are shown in blue. These pools that are enriched in 
specific sequences cluster near the lower right quadrant lending 
support for this approach to library design optimization. For more 
details, see Foight and Keating [32].

More complex library optimization strategies can be envisioned. 
In this section we present an additional set of scripts and example 
files (in MultiOption.tar.gz) that follow the same basic approach 
as in Subheading 3.3, but allow consideration of chemical 
diversity and permit optimization based directly on positional 
scores. Chemical diversity criteria were used to favor codons with 
more chemically diverse sets of amino acids in the design of a 
peptide library to bind specifically to Bfl-1 [31]. In analogy to 
optimizing the number of sequences that contain only preferred 
residues, optimization can be done using any score that can be 
converted to a PSSM, i.e., a table with peptide positions as col-
umns and scores for all 20 amino acids as rows. In the example 
that we present here, we use a table with the frequencies of the 
20 amino acids at 21 peptide positions in a multiple sequence 
alignment (MSA) of BH3 peptides. This library design favors 
sequences composed of residues with high frequencies, as out-
lined below, but users can choose their own PSSM. The library 
design protocol can be run in six different modes: there are three 
scoring modes, each of which can be used with or without con-
sideration of chemical diversity. The scoring modes are: (1) the 
count of sequences composed entirely of preferred amino acids 
(“preferred score”, i.e., that used in Subheading 3.3), (2) the 
MSA frequencies-based score (here referred to as the MSA score), 
or (3) a sum of the preferred and MSA scores. The scripts included 
require input of four criteria (chemical diversity classes, preferred 
and required amino acids, and another score) regardless of which 
mode is being used.

 1. Make input files for writeCodon_MOp.pl, which does the ini-
tial trimming of codons based on size and score(s). Make two 

3.5 Alternative 
Library Optimization 
Protocols

3.5.1 Initial Trimming 
of Codons
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files of preferred and required residues as in Subheading 3.2 
(example files file_pref_MOp, file_req_MOp). Make a comma- 
separated value file (csv) of your PSSM-formatted scores 
(example file BSA_MSA_table.csv). This can be constructed in 
Excel and saved as a .csv file. The position names in the column 
header of the .csv file should be of the format: number, lower-
case letter (e.g., ‘2a’). The position names in the required and 
preferred files should be of the format: capital letter of wild-
type amino acid, number, lowercase letter (e.g. ‘E2a’). The 
regular expressions that recognize the position names in both 
Perl scripts need to be changed if a different position naming 
convention is used.

 2. Edit the chemical diversity classes set in writeCodon_MOp.pl. 
Open the file in a text editor and go to the section with the 
header “# settings for chemical diversity classes”. Replace the 
example positions and sets with your own position names and 
amino acid sets. Create a line for each peptide position, again, 
using the same position nomenclature as used in step 1. When 
using the chemical diversity criteria, the ILP solver will count 
the number of “misses” in chemical diversity classes for each 
codon. The user will set a constraint on the maximum number 
of misses to allow across all positions, and the solver will fail if 
it can not find a solution that meets the library size and chemi-
cal diversity misses constraints.

 3. Put all of the input files and the script into the same directory 
(file_pref_MOp, file_req_MOp, BSA_MSA_table.csv, codon_
combos.txt, and writeCodon_MOp.pl). In a terminal, in that 
directory, run:

perl –w writeCodon_MOp.pl file_req_MOp file_pref_
MOp BH3_MSA_table.csv codons_output_MOp

The file codons_output_MOp is the outputted list of posi-
tions and codon selections. An example codon line is: NDS 
CDEFGHIKLMNQRSVWYZ 24 15.00 0.80 0 0.88. The 
information included is, from left to right: degenerate codon, 
amino acids encoded, number of trinucleotides, number of 
preferred amino acids, the sum of the MSA scores for all of the 
amino acids included, number of chemical diversity class 
misses, and the fraction of trinucleotides encoding preferred 
amino acids.

The library optimization script runILP_MOp.pl can be run in the 
six modes described above. As in Subheading 3.3, it outputs library 
design that maximizes the score while meeting the library size con-
straint set by the user, with an optional constraint of number of 
chemical diversity class misses. The “score” output by runILP is 
the raw score optimized by the ILP, which varies depending on the 
mode that you are running. For preferred score only, the score is 

3.5.2 Run the ILP 
Optimization
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the same as in Subheading 3.3, log10(number of sequences com-
posed of preferred residues). For MSA score only, the score is 
log10(product of MSA score for each codon). The MSA score for 
each codon is the sum of the MSA scores for all amino acids 
included in that codon. When using both scores, “score” is the 
sum of both, each on a log10 scale. Note that the MSA score and 
preferred score may be on different scales, which will affect which 
score dominates the optimization when using both. If possible, 
rescale so that the magnitudes are similar, or only use one scoring 
method at a time.

 1. Set up the runILP_MOp.pl script according to the mode you 
want to run it in. Six lines in the script are preceded by the 
header “###EDIT###”.
(a) The first line includes the name of the library_design.mod 

file, which contains the library size and chemical diversity 
misses constraints; this directs the glpsol. Change this file 
name to library_design_CD_enabled.mod if using chemi-
cal diversity, or library_design_CD_disabled.mod if not 
using chemical diversity.

(b) The second line to edit tells the script to use chemical 
diversity or not. Set the variable “$use_chemical_diversity” 
equal to 1 if using chemical diversity, or 0, if not.

(c) Edit the third line to contain the correct path to the glpsol 
on your machine.

(d) Set the scoring mode. A set of three lines preceded by 
“###EDIT###” start at line number 120 in the script. 
Comment out (add a “#” at the beginning of the line) the 
two scoring modes that you do not want to use. The 
choices from top to bottom are: preferred score only, MSA 
score only, or both.

 2. If using chemical diversity, edit library_design_CD_enabled.
mod to set the constraint on the maximum number of chemi-
cal diversity class misses to allow. Go to the line “subject to trs: 
sum {v in V} costVTRS[v] * X[v], <= 5.0;” and set the number 
at the end to the number of misses to allow. For example, for a 
peptide in which ten positions are being varied, 5–10 misses 
would be a reasonable place to start. The number of misses will 
depend on how many chemical diversity classes you set in the 
writeCodon_MOp.pl script.

 3. Run the ILP optimization. Include the following files in the 
directory you are working in: codons_output_MOp, library_
design_CD_enabled/disabled.mod, and runILP_MOp.pl. In 
a terminal enter:

perl -w runILP_MultiOp.pl codons_output_MOp 
library_design_output_MOp

If the ILP solver finds a solution, the library design will be 
output to library_design_output_MOp (or whatever you 
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decide to name the output file). If no solution is possible, the 
library size constraint, the chemical diversity misses constraint, 
or the numbers of positions varied and required residues 
should be adjusted. The format of the library design output is 
the same as shown in Fig. 2, with the exception that the 
“Score” value will correspond to one of the log10 values as 
described above, depending on which scoring method is used. 
The number of sequences composed entirely of preferred 
amino acids (the “Score” for the original optimization method 
presented in Subheading 3.3) is given as a separate value. 
Running this protocol without considering chemical diversity 
and using only the preferred score is equivalent to the protocol 
described in Subheading 3.3.

4 Notes

 1. When the objective is to obtain a peptide with binding specific-
ity for a target protein over competitor proteins, careful 
 consideration of affinity and specificity trade-offs must be made 
at both the library design and experimental screening stages. 
To obtain specificity between very similar target and competi-
tor proteins, you may need to include residues that impart 
specificity but are predicted to be somewhat disruptive for 
binding the target. However, at the screening stage, if the 
stringency for binding to the target is too great, these muta-
tions may not make it through the screen.

 2. Computational models can provide hypotheses about binding 
at positions for which there is no experimental data. Modeling 
can be especially valuable for specificity predictions, because 
experimental data may be limited to the peptide positions 
that are most important for affinity. However, positions 
other than such conserved “motif” residues, including resi-
dues near peptide termini, are often important for specificity 
[32, 42].

 3. The runILP.pl script creates temporary input and output files 
that are deleted at the end of the script. The temporary input 
file contains the codon scores and is used by the glpsol. The 
temporary output file generated by glpsol contains the infor-
mation that is processed by runILP.pl to create the library 
design output. If you would like to see these files, comment 
out the line in runILP.pl below “#Include to delete temporary 
input and output files”.

 4. The library_design.mod script is based on a script for integer 
linear programming optimization of rotamer choice by 
Kingsford et al. [43].
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Chapter 14

Investigating Protein–Peptide Interactions Using 
the Schrödinger Computational Suite

Jas Bhachoo and Thijs Beuming

Abstract

The Schrödinger software suite contains a broad array of computational chemistry and molecular modeling 
tools that can be used to study the interaction of peptides with proteins. These include molecular docking 
using Glide and Piper, relative binding free energy predictions with FEP+, conformational searches using 
MacroModel and Desmond, and structural refinement using Prime and PrimeX. In this review we provide 
a comprehensive overview of these tools and describe their potential application in the identification and 
optimization of peptide ligands for proteins.

Key words Peptides, Docking, Glide, Prime, Piper, Free Energy, Conformational search, Molecular 
dynamics, Protein refinement

1 Introduction

The interest in oligo- and polypeptides as therapeutics has 
reemerged in recent years, as a result of the rising need to inhibit 
protein–protein interactions and other difficult targets, coupled 
with advances in screening and synthesis technologies that have 
made peptides increasingly viable as drug candidates. Over recent 
years, the discovery of small-molecule therapeutics has benefited 
from the availability of accurate computational methods that pre-
dict the binding mode and affinity of ligands to their protein tar-
gets. With increasing focus on the development of peptide-based 
therapeutics, including peptidomimetics and macrocycles, there is 
a growing need to extend computational technologies to include 
these types of molecules as well, which tend to be larger and more 
conformationally flexible than traditional drug-like molecules. The 
Schrödinger software platform provides a plethora of methods for 
the identification and optimization of small molecules against pro-
tein targets, and many of these can be applied and/or adapted for 
use in peptide drug discovery. In this review we will describe 
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several of those tools, including molecular docking, conforma-
tional analysis, and QSAR. The tools described here are summa-
rized in Table 1.

2 Methods

Structure-based modeling of novel ligands requires the prediction 
of binding modes for these ligands against their putative targets 
using molecular docking, which can provide information about key 
interactions and targets for optimization. In addition, docking cal-
culations can be used to separate actives from inactives in virtual 
screening campaigns. The program Glide is among the most widely 
used and validated small-molecule docking algorithms [1]. In a 
recent paper, we described how peptide-specific modifications of 
the docking algorithm can expand the applicability of Glide to 
oligo-peptides, and demonstrated that this modified approach per-
forms promisingly when applied to a peptide docking benchmark 
set [2]. Below, we provide a step-by-step description of how the 

2.1 Docking

Table 1 
Compendium of tools in the Schrödinger suite that can be used for investigating protein–peptide 
interactions

Category Name Function

Data preparation Protein Preparation 
Wizard

Assignment of protein and peptide bond orders, 
tautomeric and ionization states

Docking Glide Rigid receptor docking

Induced Fit Docking Flexible receptor docking

Piper Protein–Protein Docking

Scoring GlideScore Docking and virtual Screening

MM/GBSA Implicit solvation model for accurate scoring of 
congeneric and diverse peptides

WaterMap Scoring using explicit water, comparing congeneric 
peptides

WM/MM Hybrid of MM/GBSA and WaterMap

FEP+ Free Energy Perturbation

Conformational 
searches

MacroModel Molecular Mechanics based peptide conformations

Desmond Explicit solvent Molecular Dynamics simulations

Prime Rapid prediction of tethered peptides

Statistical methods Peptide QSAR/Canvas Descriptor-based modeling of peptide activity
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Glide docking process is applied to peptides, including protein and 
peptide preparation steps, and docking postprocessing calculations 
that can be used to refine the results.

A typical peptide docking workflow using Glide consists of the fol-
lowing sequential steps: (1) protein and peptide preparation, (2) 
grid setup, (3) peptide docking, and (optionally) (4) docking 
postprocessing.

 1. Protein and peptide preparation: Accurate prediction of peptide- 
binding modes requires accurate representation of both the pep-
tide and the protein, which is handled using the Protein 
Preparation Wizard in Maestro [3, 4]. A crucial step in this prep-
aration is the assignment of rotameric states for peptide residues 
with polar hydrogen atoms, such as Ser, Thr, Tyr, Asn, and Gln, 
as well as the orientations of water molecules, to optimize the 
hydrogen bonding network in the protein structure. In addition, 
tautomeric/ionization states of His residues are evaluated using 
the same criteria, and the protonation states of ionizable residues 
are predicted using the PROPKA algorithm [5]. Extensive 
benchmarking studies have shown the importance of adequate 
preparation of the protein structure for accurate small molecule 
virtual screening results [4]. In addition to preparation of the 
protein, the tautomeric and ionization states of the peptide needs 
to be enumerated, and in the case of peptides containing His resi-
dues it may be advisable to dock multiple versions of the same 
peptide with different tautomeric states. Finally, the user needs to 
decide whether to treat the peptide termini as zwitter-ionic, 
capped, or neutral. Preparation is required even for proteins 
where a crystal structure is available, since the positions of the 
hydrogen atoms are rarely observable in such structures.

 2. Grid setup: Glide docking is a two-step process, with the initial 
step the setup of a protein grid, which represents pre-calcu-
lated properties of the protein, primarily those related to elec-
trostatics and the van der Waals nonbonded interactions. This 
grid representation of the protein significantly speeds up the 
docking calculations, but reflects a mostly rigid model of the 
protein—hence the importance of properly predicting the 
hydrogen bonding network in the protein preparation step.

The grid is generated to enclose the expected binding region 
(typically inferred from the location of a known ligand in a crys-
tallographic structure). There are numerous advanced options 
that can be applied during the process of grid generation. These 
include: scaling back of the van der Waals radii in order to 
approximate the induced fit effect by allowing a small amount 
of overlap between the docked peptide and protein; the defini-
tion of multiple and diverse receptor-constraints; the flexible 
treatment of hydroxyls; the control of parameters in the Glide 

2.1.1 Docking 
Using Glide

Investigating Protein-Peptide Interactions Using the Schrödinger Suite



238

filtering funnel; and, finally, control over the output, in terms of 
the number and quality of final poses delivered. For an average 
sized protein (5000–6000 atoms) a grid generation step typi-
cally takes 2–3 min and produces a .zip file that contains all of 
the relevant receptor information for docking. For docking of 
larger molecules (e.g. peptides) using Glide, it is recommended 
one prepare a grid file specifically generated for docking of pep-
tides, which increases the dimensions of the grid box to be more 
appropriate for larger molecules.

 3. Glide Sampling and Scoring Precision: The underlying docking 
methodology in Glide has been described in several papers 
[6–8]. In short, running Glide involves initial generation of a 
conformational ensemble for the ligand followed by filtering of 
millions of possible poses using crude geometric and energetic 
criteria. Next, the evaluation of successively smaller sets of 
poses is performed using scoring functions of increasing com-
plexity and accuracy. The protein is kept fixed during the entire 
protocol and only peptide orientational and torsional spaces 
are sampled.

Input for a typical peptide docking calculation requires the 
following components: the grid file prepared in the previous 
stage and one or more prepared peptides to dock. Once again, 
numerous advanced options can be specified, such as the choice 
of scoring function (HTVS, SP, XP, or the peptide-specific SP- 
Peptide mode—described below), optional protein–ligand con-
straints, reducing the van der Waals radii specific to the ligands, 
etc. The time required for docking each ligand is dependent on 
the chosen scoring function, as well as the size and flexibility of 
ligands being studied.

For the traditional application of Glide to small molecules, 
there are three main levels of scoring precision in Glide that can 
be deployed depending upon the numbers of compounds to 
screen, the available computational resources, and the desired 
turnaround time. Glide is highly parallelized, to the point where 
each ligand can be run on a separate processor. Glide has been 
successfully run on more than 1000 processors simultaneously 
using the Amazon Cloud. The High Throughput Virtual 
Screening (HTVS) mode is designed to screen the most com-
pounds (typically in the millions for in-house pharmaceutical 
databases or commercially available compounds), while the 
Standard Precision (SP) mode is about ten times slower than 
HTVS and therefore suitable for fewer compounds while Extra 
Precision (XP) is even more precise and more computationally 
intensive and so is suitable for more narrow screening, typically 
near the end of a virtual screening campaign. The SP scoring 
function (called GlideScore) has been optimized using virtual 
screening data and is also used in the HTVS mode of Glide, 
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while the XP GlideScore includes a number of penalties and 
rewards to capture specific protein–ligand recognition motifs. 
The inclusion of penalty terms in the XP scoring function, 
which is important for eliminating false positives (inactives), 
requires additional sampling, thereby increasing the computa-
tional costs. Considering these factors, the HTVS mode typi-
cally takes 1–2 s per ligand, SP takes 10–20 s per ligand and XP 
takes 5–10 min per ligand, with the range depending primarily 
on the number of rotatable bonds in the ligand. Finally, it is 
worth noting that Glide uses the so-called “Emodel” scoring 
function to compare poses for the same ligand, while the 
GlideScore is used to compare different compounds based on a 
rough predicted affinity.

For the docking of peptides, a version of the SP scoring func-
tion was developed that significantly increases the nature and 
extent of sampling. Several internal parameters that control the 
Glide funnel width (specifically the number of conformations that 
enter and exit the rough-scoring stage of Glide) were systemati-
cally changed and optimized to maximize docking accuracy for a 
set of 19 non-α helical peptides [2]. Those optimized parameters 
are exposed to the end-user in the SP- peptide mode of Glide. 
Examples of such peptides are shown in Fig. 1, and show varying 
degrees of accuracy with which they have been docked.

Docking multiple input conformations: Glide results depend 
on the bond length and bond angles of the input conformation 
of the ligand [9], since these degrees of freedom are not sam-
pled with the docking algorithm (torsions are the only internal 
degree of freedom sampled). Hence, it is possible to increase 
the extent of sampling by running Glide multiple times using 

Fig. 1 Three examples of peptide docked using Glide, as described previously [2]. The protein structure is 
shown in cyan ribbons, peptide structures in orange, and predicted binding modes in green. (a) Typical exam-
ple of a well-docked peptide using the Glide SP-Peptide mode. The interaction between the C-terminal peptide 
of Liprin with the sixth PDZ domain of GRIP1 (PDB 1N7F) is predicted with high accuracy. (b) The central portion 
of the predicted HIV-1 capsid protein binding to cyclophilin A (PDB 1AWR) is predicted accurately, while there 
are differences for the termini. This is partially due to the intrinsic flexibility of these peptides as revealed by 
their high B-factors. (c) Peptides containing poly-proline motifs are difficult to dock due to a high degree of 
internal symmetry
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different input conformations and aggregating the results. If 
the user wants to remove the input-dependence, it is possible to 
run Glide with a canonicalization option to regularize the input 
geometry.

 4. Docking postprocessing: In the case of docking peptides, it has 
been demonstrated that one can significantly improve docking 
results by postprocessing each pose using a Molecular 
Mechanics Generalized Born Surface Area (MM-GSBA) 
approach [2]. A more detailed description of the MM-method 
is given below in Subheading 2.2.1. In the Schrödinger suite 
this functionality can be accessed from the command line or via 
the MM-GBSA GUI.

 5. A convenient workflow for docking of peptides in the BioLuminate 
module: The BioLuminate Suite provides a dedicated set of 
tools for the application of computational chemistry to biolog-
ics systems, including peptides, antibodies, and others. The 
peptide docking GUI in BioLuminate can be used to carry out 
the various steps of the docking workflow outlined above, 
including (1) grid generation, (2) peptide preparation (includ-
ing directly from sequence data), (3) generation of multiple 
conformers, and (4) postprocessing using MM-GBSA.

 6. Retrospective docking accuracy and regime of applicability for 
docking of peptides using Glide: A recent publication described the 
application of the Glide peptide docking protocol to a bench-
mark set of peptide data. This study demonstrated that Glide 
does reasonably well in docking small (up to eight residues), lin-
ear, and relatively nonpolar peptides [2]. Glide produces docked 
poses of significantly lower accuracy when docking peptides that 
are larger, nonextended (e.g. peptides with an internal hydrogen 
bond or significant degree of folding) or highly charged. α-helical 
peptides can be docked, but require constraints in the conforma-
tion generation stage to ensure relevant poses are produced. In 
general, success for peptide docking still has to be measured in 
terms of its ability to reproduce the correct pose in an ensemble 
of solutions (i.e. the best pose appears among the top ten results) 
rather than by examining the accuracy of the top pose only, as is 
standard for small molecules.

 7. Induced Fit Docking: The Glide-based methodologies outlined 
below are based on sampling of the peptide in the context of a 
rigid receptor structure. Treatment of receptor flexibility can 
be performed using the Induced-Fit Docking (IFD) workflow 
[10]. This protocol consists of an initial docking stage with a 
softened van der Waals potential to generate an ensemble of 
poses, followed by receptor optimization around each of the 
initial ligand/protein complexes using the Prime protein struc-
ture prediction program [11], and finally another round of 
docking using standard Glide settings into these optimized 
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protein- binding sites. Select side chains can also be removed in 
the initial docking stage to allow for greater exploration of 
poses within the receptor-binding site. The IFD method has 
been shown to correctly model induced-fit effects in a large 
number of small molecule docking cases where rigid receptor 
docking fails [10]. The IFD approach is significantly slower 
than rigid receptor Glide docking, and is typically used for 
pose prediction and generating induced-fit receptor structures, 
and not for high-throughput applications such as virtual 
screening. The SP- Peptide scoring function in Glide is com-
patible with the IFD workflow.

Background: Glide imposes an upper limit in terms of number of 
atoms and rotatable bonds that can be handled with conforma-
tional flexibility, and as such is appropriate only for docking of 
small peptides up to a length of around 12 residues (depending on 
the number of rotatable bonds in the side chains). For larger pep-
tides or even protein domains, the rigid protein–protein docking 
algorithm Piper should be employed [12]. For peptides for which 
an accurate structure is not available, conformational variability can 
be introduced into the process by docking a peptide multiple times 
with different pre-generated conformations. The conformational 
ensemble can be generated by various means, such as with 
MacroModel [13].

Piper is a highly regarded program for the docking of peptides 
and proteins, with a reputation built on blinded-competitions such 
as CAPRI [14, 15], where the automated version of Piper (ClusPro) 
consistently outperforms all other fully automated approaches to 
protein docking. Within the Schrödinger Suite, Piper powers the 
Protein–Protein Docking panel of the BioLuminate program and 
can be used to perform rigid docking of two proteins, or of a pep-
tide to a protein. Because Piper docks the proteins as rigid bodies, 
it is capable of docking peptides or proteins of significant size, and 
unlike Glide, is not limited to relatively modest oligo-peptide 
chains. However, since Piper only samples the relative orientation 
of the input peptide (in a fixed conformation) with respect to the 
protein it requires either (1) knowledge of the peptide structure 
from experimental techniques such as NMR or X-ray crystallogra-
phy (and then only if the peptide can be reasonably described by a 
single conformer) or (2) docking of multiple pre-calculated pep-
tide conformations and aggregating the results. While the Piper 
methodology has not been benchmarked for accuracy in retrospec-
tive docking calculations of peptides, it currently provides the only 
possible method for docking large peptides (i.e. with more then 
500 atoms) using the Schrödinger suite, and as such a brief descrip-
tion is included here.

Methodology: Piper is carried out in two steps: conformational 
sampling, followed by structural clustering to identify and rank 

2.1.2 Docking 
Using Piper
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likely docked protein poses. For the first step, Piper employs an 
efficient FFT (Fast Fourier Transform) approach that makes it pos-
sible to evaluate a large number of poses in a computationally effi-
cient manner—reducing the required compute time (on a single 
processor) from days to a few hours. Relative poses are generated 
and scored using a simple atomistic energy function that can effi-
ciently separate potentially acceptable poses from those that are 
very unlikely. Typically, 70,000 poses are evaluated, and from 
these, the 1000 best scoring poses are kept for the second step. In 
the second step, the 1000 poses are clustered on the basis of struc-
ture. Then, from each cluster, the member of the cluster with the 
most near neighbors is taken as representative of that cluster. 
Finally, the selected poses from the clusters are presented to the 
user, and rank ordered based on the size of the cluster from where 
they were obtained (so the highest ranked pose comes from the 
largest cluster). Piper also allows for the addition of a biasing term 
to reflect any knowledge that the user may have regarding residues 
that, either, are, or, are not believed to be region at which the pro-
teins interact. This biasing term is applied when scoring the gener-
ated poses, so it will influence the reduced set of 1000 structures 
which are ultimately clustered, but it does not affect the efficiency 
of the sampling itself.

The Prime program contains a number of tools for sampling and 
scoring of peptide-protein complexes [11]. Indeed, the problem of 
predicting the interactions of peptides with proteins can be thought 
of to be similar to prediction of loop structures, a demonstrated 
strength of Prime [16–18]. In this context, it is possible to perform 
an ab initio loop prediction on a portion of peptide, keeping part of 
the structure fixed (e.g. the N- or C-terminal residue) while allow-
ing sampling of the remainder. This can be useful in the case of 
peptides interacting with protein domains where parts of the peptide 
interact with the protein in a highly conserved manner, i.e. the coor-
dination of the C-terminus of peptides by the GLGF loop in PDZ 
domains [19]. In that case one would orient the C-terminal residue 
by superposition on a suitable complex template, and sample all 
other residues using Prime loop prediction. Protein flexibility, 
including binding-site loop movements, can also be easily incorpo-
rated into any Prime sampling strategy. In cases where a relatively 
good model for the starting conformation is available, Prime offers 
facilities for focused local optimization starting with that model—
including hybrid Monte Carlo and rigid body optimizations.

An interesting extension of Prime (PrimeX) allows incorpora-
tion of X-ray crystallographic density during structure determina-
tion. PrimeX [20] is an all-atom (including hydrogens) crystal 
structure refinement package. The PrimeX objective function for 
optimization combines a weighted sum of the force field energy 
and the experimental density, with the weight varying depending 

2.1.3 Structural 
Refinement Using Prime 
and PrimeX
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on the quality of the electron density. All-atom refinement with 
PrimeX has been shown to produce improved crystal structure 
models with respect to nonbonded contacts and yields changes in 
structural details that can dramatically impact the interpretation of 
some protein–ligand interactions [20]. PrimeX features maximum- 
likelihood reciprocal-space minimization, simulated-annealing 
refinement, ligand placement, loop building, and side-chain place-
ment. PrimeX is integrated with the Maestro molecular graphics 
program, which provides an easy-to-use graphical interface. In 
addition, command-line access to PrimeX tools provides for their 
scripting into complex workflows.

MM-GBSA is a popular scoring approach that can be used to pre-
dict relative binding free energies of small molecules to proteins, 
providing in many cases an acceptable level of accuracy for ranking 
ligands to a protein target [21, 22]. Unlike more rigorous and 
time-consuming methods such as molecular dynamics or free- 
energy perturbation (see below), MM-GBSA allows one to profile 
potential molecules for future rounds of synthesis with limited 
computational resources. Data sets that can be evaluated by 
MM-GBSA can range from tens to thousands of ligands in a lead 
optimization campaign. Since MM-GBSA energies are evaluated 
for a static model, each ligand must be pre- oriented prior to run-
ning MM-GBSA. Typically, molecular docking using Glide is suf-
ficient to obtain reasonable poses for MM-GBSA postprocessing.

The basic form of the MM-GBSA calculation is described 
below: the free energy of binding is related to the difference in the 
free energy of the complex, minus that of the free receptor, minus 
that of the free ligand.

 
D D D DG G G Gbinding complex free receptor free ligand( ) = ( ) - ( ) - ( )  

These energetic terms are approximated by a summation over EMM, 
EGB, and ESA, where EMM is the sum over the bonded (internal) and 
nonbonded electrostatic energies, and EGB + ESA represent the polar 
and nonpolar components of the solvation free energy, respectively. 
EGB is evaluated using the generalized Born model [23, 24], while 
ESA is determined from the solvent accessible surface area.

MM-GBSA incorporates an advanced solvation model, the 
variable dielectric model VSGB [23, 24], which reflects heteroge-
neous polarization in the protein environment. Rather than treat-
ing the protein with a single internal dielectric constant (traditionally 
set to 1, 2, or 4), it auto-assigns distinct dielectric contributions to 
different polar residues. While in practice MM-GBSA energies are 
typically evaluated using the default implicit water solvent model, 
additional models for solvents such as chloroform are also avail-
able. Over time, additional terms have been included to the basic 
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form of the equation in order to augment it with the finer details 
of protein–ligand interactions, including physics-based corrections 
for hydrogen bonding, π–π interactions, self-contact interactions 
and hydrophobic interactions [25].

MM-GBSA can be easily setup from the GUI in Maestro. The 
prerequisite is a set of pre-docked ligands and a single receptor 
structure. The protocol can be run in a minimization mode or a 
conformational searching mode, and one can include the ligands 
alone and or parts of the receptor as part of the search. The user 
has the option to adjust the level of protein flexibility desired and 
to select the sampling method deemed necessary.

As described above, rescoring docked poses using MM-GBSA 
has been shown to improve pose prediction accuracy in a recent 
comprehensive peptide docking benchmark [2]. In addition, 
MM-GBSA can be used to predict the effect of amino acid substi-
tutions on the affinity of a peptide for a protein [26]. For that 
purpose, the Residue Scanning functionality in the BioLuminate 
modeling platform allows for the rapid set up and analysis of many 
simultaneous mutations [27].

The most rigorous approaches to the prospective estimation of 
protein–ligand affinity are free energy simulations, including free 
energy perturbations (FEP). In drug discovery lead optimization 
projects, the calculation of binding affinities relative to a lead or 
reference ligand with experimental data is sufficient (i.e. absolute 
energies are not needed once one reference activity is known), and 
affords significant reduction in computational effort as compared 
to absolute binding free energy calculations. We recently reported 
a FEP protocol called FEP+, that achieves an unprecedented level 
of accuracy across a broad range of target classes, with validation 
results encompassing more than 200 ligands and a variety of 
chemical perturbations, many of which are large by the standards 
of prior relative binding free energy calculations and involve major 
changes in ligand chemical structures [28, 29]. Furthermore, in 
this same study, the method was applied in a prospective fashion 
in two drug discovery projects; the results are consistent with 
those obtained from the retrospective studies and show the ability 
of this approach to drive decisions in lead optimization. While 
FEP has been applied to molecular systems for nearly three 
decades, it is only recently that this approach has become both 
reliable and fast enough to be generally useful for drug discovery. 
Recent improvements have included faster computers, massive 
parallelization, improved force fields, and algorithmic improve-
ments that improve sampling efficiency. While the traditional 
application of FEP has been for predicting the relative free energy 
of binding of small molecules to proteins, the FEP method is 
equally applicable to peptide-protein complexes.

2.2.2 Free Energy 
Perturbation Using FEP+
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A major contribution to the free energy of binding comes from the 
displacement of water from the surfaces of the protein and the 
ligand. The magnitude of this effect depends highly on the ther-
modynamic properties of the water molecules prior to displace-
ment. These properties in turn depend on the environment of the 
bound water molecules. For example, water molecules evacuated 
from a largely hydrophobic environment have an enthalpically 
favorable effect on binding, while water molecules tightly con-
strained by a number of hydrogen bonds can produce a strongly 
favorable entropic effect. The WaterMap algorithm [30] has been 
developed to quantify this effect using explicit molecular dynamics 
simulations (MD). In brief, water molecules from an MD trajec-
tory are spatially clustered into hydration sites and their interaction 
free energies are determined using inhomogeneous solvation the-
ory [31, 32].

WaterMap has been shown to accurately predict the affinities of 
peptides for several PDZ domains [33]. For example, the high affin-
ity of a peptide with Trp at the P−1 position in Erb2 for the Erbin 
PDZ domain was shown to be due to an effective displacement of a 
hydration site from the surface of the peptide-binding sub-pocket 
(Fig. 2a). Peptides with a smaller residue at P−1 were not able to 
displace this water from the sub-pocket. A quantitative analysis 
showed that the energetics of hydration sites in the peptide- binding 
pocket were highly correlated with peptide affinity (Fig. 2b). Finally, 
the equivalent hydration site in the HTRA family of PDZ domains 
was shown to be a mediator of peptides selectivity (Fig. 2c).

Conformational searching is a key method for generating ensem-
bles of 3D structures and obtaining energies associated with struc-
tures in that ensemble. The usual aim is to attain the low energy 
minimum equivalent to the bioactive conformation, or to attain a 
collection of conformations that provide information on the degree 
of flexibility/motion of a molecule. In the context of predicting 
peptide- or peptidomimetic-binding modes using docking, it is 
often necessary to perform a conformational search using 
MacroModel [13] prior to docking. For instance in the case of 
large, flexible complex cyclic peptides or synthetic macrocycles 
there are high energy barriers that cannot be sampled adequately 
within Glide itself, and require additional sampling outside of the 
docking workflow.

Depending on the application, there are a wide variety of dif-
ferent searching modes available within MacroModel, which can 
be applied to many types of molecules: small drug-like molecules; 
peptides of varying length; macrocycles of varying complexity; 
protein active sites, entire protein domains, or a combination of 
the above in the case of protein/ligand complexes. Search meth-
ods fall into two categories, the first a search in torsional space, 
randomly or systematically varying torsions in the molecule of 
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interest, and the second a low-mode-based search, where the 
intrinsic vibrational modes of the molecule are used to generate 
alternative conformations. Importantly, a combination of the two 
methods (alternating between torsional sampling and low-mode 
sampling) is a powerful combination for jumping on the potential 
energy surface, and has been shown to be extremely effective in 
generating a representative ensemble of structures for many types 
of ligands [35]. MacroModel conformational searches are typically 
performed using an implicit representation of the solvation using 
generalized Born methods. In addition, a wide range of force fields 
are supported, including the recent OPLS3 force field [36], which 
has improved parameters for proteins relative to previous versions 
of the OPLS force field (see below). Finally, the ConfGen algo-
rithm [37, 38] is a type of MacroModel conformational search that 
has been developed to generate drug-like (i.e. extended) confor-
mations of small molecules. If one is reasonably certain that the 
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Fig. 2 WaterMap explains peptide affinity and selectivity for PDZ domains [33]. Red and orange spheres cor-
respond to high-energy hydration sites on the protein surface, leading to high-affinity binding when displaced 
by a ligand. (a) In the Erbin PDZ domain, several high-energy hydration sites in the P-1 pocket are effectively 
displaced by a Trp in the phage-display optimized peptide [34]. (b) WaterMap scores correlate well with mea-
sured peptide affinities for a series of Erbin-binding peptides. (c) The presence or absence of these sites in 
HTRA proteins explains relative preference for Trp residue in HTRA2 (right) but not HTRA1 (left)
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bioactive conformation of a peptide is extended (i.e. in the case of 
PDZ domains), the ConfGen algorithm provides a convenient and 
rapid conformational search solution.

Within MacroModel, various types of calculations are avail-
able, ranging from simple tasks like “current energy” and “coordi-
nate scan” to more complex procedures such as conformational 
sampling and dynamics. Options for the Potential present a choice 
of force fields, solvents, and atomic charge model, while constraint 
options allow users to easily place atom, distance, angle, and tor-
sional force constants as needed. MacroModel also allows force 
constants to be applied over selected parts of a protein–ligand 
complex in order to build up shells of varying flexibility. The sub-
structure facility in MacroModel can be used to easily define 
regions as flexible, fixed, and frozen atoms for use in various 
molecular mechanics simulations.

Sampling Macrocycles: Of late, considerable effort has been 
expended to determine how to better explore the conformational 
spaces of macrocycles. There is growing commercial interest in 
macrocycles as potential drugs, particularly as inhibitors of pro-
tein–protein interactions. Macrocycles are both diverse and highly 
flexible, and benefit from “cyclizing” to restrict conformational 
space. A dedicated search protocol for these complex systems has 
been developed based on a unique combination of large-scale low- 
mode search steps with simulation cycles composed of alternating 
stochastic dynamics and minimization calculations. All of these 
options are available separately in MacroModel, but for ease of use 
have been combined into one convenient script (macrocycle_con-
formational_sampling.py). In addition to being the method of 
choice for sampling macrocycles, this process can also be used very 
effectively for sampling peptide structures. Thorough conforma-
tional exploration of a macrocycle can be useful for characterizing 
the internal hydrogen bond networking for the macrocycle, and 
this can be tied to such phenomena as cell permeability [39]. 
Extensive conformational exploration is also relevant to docking 
macrocycles, because Glide uses a look-up table for ring conforma-
tions, rather than performing an ab initio search as it does for 
rotatable torsions, and as such docking macrocycles into protein 
structures requires ring conformations to be precomputed, ideally 
with the custom protocol described above.

To illustrate the complexity of these molecules, Fig. 3a shows an 
example of a macrocycle found to bind to BACE-1 (PDB code 
2QZK), with the computed conformation (purple) superimposed 
onto the crystal structure (green). The native ligand buries the mac-
rocycle ring into a mostly enclosed pocket, which in turn requires a 
particular ring conformation that forms key interactions to ligand 
carbonyl and protonated amine moieties. With MacroModel derived 
ring templates, a suitable macrocycle conformation is found and the 
docked pose has a low RMSD of 0.22 Å. Without the ring 
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templates, even with a visually similar ring conformation (of 
RMSD = 0.71 Å for macrocycle ring atoms), the old protocol posi-
tions the ring outside the pocket leading to a very large RMSD of 
10.23 Å (data not shown). Another example of the power of the 
augmented macrocycle ring templates is the correct conformational 
prediction (Fig. 3b, left) and subsequent docking of a macrocycle 
bound to α-β tubulin (PDB code 1JFF) (Fig. 3b, right).

The Desmond program [40] is a state-of-the-art explicit solvent 
Molecular Dynamics (MD) program that can be used for a variety 
of different simulations, in addition to being the driver for 
MD-based solutions such as FEP+ and WaterMap. In the case of 
peptides, MD can be used to effectively study conformational 
properties when implicit solvent search techniques, as implemented 
in MacroModel, are insufficient.

A recently described application for MD is the prediction of 
α-helical content of so called “stapled” peptides [41, 42]. These 
synthetically rigidified α-helical peptides have promising pharma-
cokinetic, metabolic stability, and cell-penetrating properties, 
which has sparked some interest in their development for a pleth-
ora of therapeutic targets that have otherwise been deemed 
“undruggable” by more conventional small-molecule strategies. 
Determining the stability of these α helical peptides is important 
for their use as therapeutic agents.

Desmond replica exchange simulations [43] were employed to 
study a series of stabilized stapled α-helical peptides over a range of 
temperatures in solution. In such a calculation, multiple simultane-
ous simulations of a single system are performed, using small varia-
tions in simulation conditions (e.g. temperature). Swapping 
conformations among the different replicas allows for very effec-
tive crossing of high-energy barriers.

2.3.2 Analyzing Peptide 
Secondary Structure Using 
Molecular Dynamics

Fig. 3 Conformation and docking of macrocycles. (a) 2QZK. A computed macrocycle conformation (purple) of 
2QZK overlaid with the crystal structure (green) showing a low RMSD of 0.22 Å. (b) Comparison of the 1JFF 
protein with the crystallographic ligand conformation (green) overlaid with Glide’s top-ranked docked confor-
mation (blue). On the right is the top-ranked pose obtained without a suitable template while on the left is the 
much more accurate top-ranked pose with a template
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The predicted α-helical propensities derived from the simula-
tions were in good agreement with the experimentally observed cir-
cular dichroism (CD) melting curves. The local flexibility of key 
residues could be related to differences in relative affinities of the 
stapled peptides for MDM2. These simulations provided new 
insights into the design of α-helical stapled peptides and the devel-
opment of potent inhibitors of α-helical protein–protein interfaces.

Another enhanced sampling technique to model experimental 
melting temperatures is Simulated Annealing (SA) [44]. The 
“Alpha Helical Stability Tool” as implemented in BioLuminate 
allows for the automatic setup of such SA simulations, as well as the 
analysis of the resulting secondary structure of peptide over the 
course of a simulation.

Good quality force fields are imperative to the accurate modeling 
of molecules. The goal of a force field is to accurately represent the 
systems’ chemistry, with distinct force fields suitable for different 
systems. For example, the well-known force fields Amber [45] and 
CHARMM [46] have been popular choices to model large mole-
cules such as peptide and proteins in long time scale MD simula-
tions. Force fields in the OPLS and MMFF families have been 
traditionally used to model small drug-like or fragment 
molecules.

There is continued development of force fields as part of 
Schrödinger research, with the OPLS3 force field the most recent 
version [36]. While earlier version of the algorithm (e.g. OPLS2) 
have focused on fully covering chemical space for small molecules, 
current modifications have been made to improve accurate  behavior 
of proteins in MD simulations, resulting in improved predictions 
of protein–ligand binding.

A number of studies have been done to demonstrate the ability 
of OPLS3 to preserve the stability secondary structure elements in 
proteins. For example, the CLN025 β-hairpin and the K19 and 
(AAQAA)3 α-helical peptides, all maintained correct second struc-
ture over the course of several microseconds of MD simulations 
(see Table 2). This correlation with experimental observations is in 
line with results from CHARMM and Amber. In addition, a num-
ber of globular proteins were simulated for several hundred nano-
seconds, with average RMSD values remaining within an acceptable 
level of 1.5 Å in all cases, a significant improvement over 
OPLS_2005 and OPLS2.1 force fields, and comparable with the 
stability observed with CHARMM and Amber force fields (see 
Table 3). The predominant factor attributed to this improvement 
over earlier OPLS force fields is the better representation of the 
Chi1 rotamer angle in Asp, Glu, and Asn side-chains.

Quantitative Structure Activity Relationships (QSAR) is typically 
used to quantify the relationship between the structures of small 
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drug-like molecules with experimental observables such as activity or 
cytotoxicity. If a predictive relationship can be determined, this can 
be used to design new molecules within the same series with better 
optimized physical properties. Usually a Multiple Linear Regression 
or similar statistical method is used, where the experimental measure-
ments represent the Y response variable, and these are modeled as a 
function of the independent predictor X-variables, typically repre-
sented by physicochemical descriptors such as simple counts of struc-
tural elements (the number of donors or acceptors for example) or a 
measure of properties, such as log P or cell permeability.

A very similar approach can be applied to peptides—in this 
case one attempts to predict the property of a peptide based on its 
sequence of amino acids alone. This, similar to the application of 
QSAR in small molecules, can be useful when designing and select-
ing peptides for application as therapeutics. In peptide QSAR, the 
Y response variable can be properties of the peptide such as bind-
ing affinity or solubility, and this is modeled as a function of the 
X-variables, which include measured and observable properties of 
the amino acids that form the peptide sequence.

Table 2 
Secondary structure propensities of peptides in long microsecond MD simulations

Protein Experiment (%) OPLS3 (%) CHARMM (%) Amber (%)

K19 50 74 62 21

(AAQAA)3 43 51 30 9

CLN025 91 91 90 80

See ref. 36 for details

Table 3 
Protein structural stability: Average RMSD values of the simulated protein with respect to the X-ray 
or NMR Structure

Protein name PDB code OPLS3 CHARMM Amber

Trpcage 1L2Y 1.2 1.7 1.7

GB3 1P7E 0.8 0.7 0.8

Ubiquitin 1UBQ 0.9 0.8 0.9

SUMO2 1WM3 1.3 1.3 1.4

BPT1 1BPI 1.2 1.1 1.1

Crambin 1CRN 0.8 0.7 0.8

Lysozome 6LYT 1.3 1.1 1.1

Average 1.1 1.1 1.1

See ref. 36 for details
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Peptide QSAR can be run in the Schrödinger Suite using the 
Peptide QSAR panel in the BioLuminate module. It requires a 
sequence file with multiple peptides with an experimental measure-
ment provided for each of them. A CSV or FASTA file format is 
acceptable but data can also be loaded directly from the Maestro 
project table as well. The panel allows one of two options for the 
statistical method that is used to generate the QSAR model, namely, 
Partial Least Squares (PLS), or Kernel-based PLS, with the number 
of factors user-defined depending on the size of the data. Typically, 
in order to avoid over-fitting, the maximum number of factors 
should to be no more than the number of sequences divided by 10.

The most important option in the panel is the “peptide descrip-
tor type” and offers a choice of the type of X-variables that can be 
used to describe the properties of the amino acids. Three sets of 
descriptors described in the literature have been included (see 
Table 4). These include the Z-value [47]; EZ-value [48]; and DPPS 
[49] sets of descriptors in the model. In addition, it is possible to 
use a combination of all the three sets using the “All” option.

One example in the literature of successful application of such 
an approach is the development of a QSAR model for ACE- 
inhibitory peptides, using an Artificial Neural Networks statistical 
method [50]. In this study it was demonstrated how good activity 
is governed by hydrophobic amino acids in the C-terminal tail of 
the peptide. A second example is a PLS model of the MHC protein 
and its peptide ligands [49]. Here it was demonstrated how anti-
gen recognition is governed by hydrophobic interactions and 
hydrogen bonds, especially exerting effects on anchor residues of 

Table 4 
Peptide descriptor sets used in the Peptide QSAR approach

Peptide 
descriptor set Described by Dataset Descriptors

Z value [47] Three Z variables 29 physicochemical 
variables for the 20 
coded amino acids

MW, pKa, pI, side-chain vdW volumes, 
NMR shifts, retention times, partition 
coefficients, solvent exposure

EZ value [48] Five extended Z 
variables

26 physicochemical 
descriptors for 87 
amino acids 
(including the 20 
coded amino acids)

MW, NMR shifts, partition 
coefficients, side-chain vdW 
volumes, HOMO and LUMO 
energies, heats of formation, 
polarizabilities, surface areas, 
hardness, TLC retention times, 
hydrogen-bond donor and acceptor 
counts, side chain charges

DPPS [49] Ten divided 
physicochemical 
property scores

20 coded amino acids 23 electronic, 54 hydrophobic, 37 
steric, and 5 H-bond properties
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peptides. Neural Networks, PLS, and several other statistical model 
building facilities (e.g. Bayesian Models, PCA) are all available 
through the Canvas program in the Schrödinger Suite [51].

3 Summary

The past decade has seen a tremendous shift in pharmaceutical drug 
discovery efforts from small molecules toward peptides and proteins. 
This has lead to increasing need for structure-based computational 
tools focused on such biopharmaceuticals. Schrödinger has imple-
mented a large number of tools that can be applied in this area, and 
many of those have been described in this article. Structure-based 
design of biologics is still rather young compared to small molecule 
design. Despite this, there is an increasing recognition that struc-
ture-based design of biologics can make real, substantive contribu-
tions to drug discovery. The field is still rapidly changing, and 
adoption of tools such as those described here is currently increasing 
quite rapidly. We expect that in the next few years the majority of 
new biopharmaceuticals will be designed incorporating structure-
based methods, such as those available from Schrödinger, just as has 
long been the case for small molecules.
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Chapter 15

Identifying Loop-Mediated Protein–Protein  
Interactions Using LoopFinder

Timothy R. Siegert, Michael Bird, and Joshua A. Kritzer

Abstract

Peptides are an increasingly useful class of molecules, finding unique applications as chemical probes and 
potential drugs. They are particularly adept at inhibiting protein–protein interactions, which are often dif-
ficult to target using small molecules. The identification and rational design of protein-binding epitopes 
remains a bottleneck in the development of bioactive peptides. One fruitful strategy has been using struc-
tured scaffolds to present essential hot spot residues involved in protein–protein recognition, and this 
process has been greatly advanced by computational tools that can identify hot spot residues. Here we 
discuss LoopFinder, a program that uses structures from the Protein Data Bank to comprehensively search 
for protein–protein interactions that are mediated by nonhelical, nonsheet loop structures. We developed 
LoopFinder to identify these “hot loops” and to assist in the design of cyclic peptides that mimic these 
important structures. In this article, we provide all key files, outline step-by-step methods for users to 
conduct independent LoopFinder searches, and provide guidance on additional potential applications for 
the LoopFinder program.

Key words Protein–protein interactions, Macrocycles, Cyclic peptides, Peptide design, Inhibitors, 
Chemical biology

1  Introduction

Protein–protein interactions (PPIs) are a quickly expanding class of 
drug targets [1]. PPIs play essential roles in intercellular and intra-
cellular signaling. PPIs have been dismissed as “undruggable” 
because they often have lower-affinity interactions, large interac-
tion surface areas (1500–3000 Å2), and a flat surfaces lacking deep 
binding pockets [2]. All of these features make it difficult to target 
these interactions with small molecules [1]. With some notable 
exceptions, traditional approaches to drug discovery have failed to 
develop potent, selective inhibitors for most PPIs [3]. Thus, new 
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chemical space must be applied to the problem, specifically 
molecules capable of binding a large and flat surface area with max-
imal ligand efficiency. One class of molecules particularly suited for 
this task is peptides. Many naturally occurring peptides are used by 
cells to control intracellular and intercellular signaling, including 
potent hormones, growth factors, and other ligands for cell surface 
receptors [4]. Like many other biomolecules, they also have the 
advantages of high target specificity and good safety properties [5].

An initial bottleneck in the design of peptide inhibitors of PPIs 
is the identification of regions on protein surfaces that are suitable as 
peptide binding sites. A major breakthrough in this area came with 
the understanding that PPIs are mediated by hot spot residues, 
which are amino acids at the interface that are particularly important 
for the affinity of the PPI. Hot spots were originally defined as resi-
dues for which an alanine substitution resulted in a change in bind-
ing free energy of ≥2.0 kcal/mol [6]. Regions on the protein 
surfaces containing multiple hot spots are the most critical binding 
epitopes [7]. To further expedite the process of hot spot identifica-
tion, several computational methods have been developed to per-
form alanine scanning in silico. These include the FOLDEF 
algorithm, which systematically substitutes residues with alanine and 
calculates the change in binding energy using FoldX complex energy 
functions that include terms for desolvation, van der Waals forces, 
hydrogen bonding, Coulombic interactions, entropy change, and 
dipole interactions [8]. Another computational alanine scanning 
engine, developed by Kortemme and Baker, uses the Rosetta soft-
ware package [9, 10]. Rosetta’s combination of explicit terms for 
Lennard-Jones energies, solvation energies, protein repacking, sol-
vation, and hydrogen bonding are used to account for protein 
repacking while calculating changes in free energy when side chains 
are systematically substituted by alanine [9, 10]. These computa-
tional methods require only the PDB information for each PPI in 
question, and can accurately identify side chains at the interface that 
are critical for the binding interaction.

Some additional approaches to uncovering critical binding 
sites have been developed that examine protein surfaces rather 
than performing computational alanine scanning. The Camacho 
lab developed a tool called ANCHOR that identifies “anchor” 
residues at protein interfaces [11]. These anchor residues are iden-
tified by measuring changes in the solvent-accessible surface area 
(ΔSASA) of side chains upon receptor binding. This tool, available 
at the PocketQuery website, is effective in identifying small hydro-
phobic pockets suitable for developing small molecule ligands 
[12]. Other computational methods probe protein surfaces by 
introducing small organic probes or molecule fragments such as 
ammonium cations, carboxyl groups or methane, to identify pock-
ets suitable for direct targeting using small molecule or peptide 
inhibitors [13, 14].
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Beyond identifying potential binding sites for inhibitors, struc-
tural information can more directly inform inhibitor design. 
Recently, multiple techniques have been developed that identify 
peptide epitopes that can be directly translated into peptide-based 
inhibitors of PPIs. For example, the Schueler-Furman lab devel-
oped a method called Rosetta PeptiDerive to identify “hot seg-
ments,” defined as stretches of ten amino acids within a protein 
that contributes most of the binding energy to complex formation 
[15]. This program breaks protein chains involved in PPIs into all 
possible ten-amino acid segments, and then uses Rosetta energy 
functions to calculate the binding energy of each peptide segment 
to the receptor protein. The total binding energy of each individ-
ual peptide segment is then compared to the estimated energy of 
the entire PPI to identify hot segments. Using a small starting set 
of 151 PPIs, it was found that about 60 % of PPIs possessed a sin-
gle ten-mer peptide segment that contributed over half of the 
interaction energy of the whole complex [15]. This method was 
used to predict a peptide segment from myeloid differentiation fac-
tor 2 (MD2) that should bind and activate MD2’s binding partner, 
Toll-like receptor 4 (TLR4) [16]. The linear peptide was synthe-
sized and tested for its ability to activate TLR4 signaling as mea-
sured by increased production of nitric oxide in macrophages, but 
the linear peptide showed no activation. In order for activity to be 
observed, further computational modeling was required to intro-
duce a disulfide constraint that would better stabilize the native 
loop structure. This macrocyclic peptide showed some activation 
of the inflammatory response, inducing nitric oxide production in 
macrophages [16]. These results reveal a key limitation of ignoring 
structure when identifying linear segments for the design of PPI 
inhibitors, because structural stabilization is often required for 
high-affinity binding by short peptides.

One of the most comprehensive programs that combines hot 
spot identification with structural analysis is the helix interfaces in 
protein–protein interactions (HIPP) program developed by Arora 
and coworkers [17, 18]. HIPP identified alpha-helical regions at 
protein interfaces that are critical for mediating PPIs. Alpha-helical 
regions were structurally identified via Rosetta secondary structure 
calculations of ϕ and φ angles, and computational alanine scanning 
was used to determine the energy contribution of each residue 
within each helix. Helices were then analyzed with respect to their 
binding pockets, with some binding into deeper clefts and others 
binding over more extended surfaces. Helices were also sorted 
based on the proportion of hot spots residing on the helix com-
pared to the overall chain [17]. These helical binding epitopes are 
important because they can be effectively stabilized using a variety 
of scaffolds and cross-linking strategies [19, 20]. Recently, Arora 
and coworkers adapted this strategy to beta-strands, identifying 
strands that are responsible for a large proportion of the binding 
energy of their associated PPIs [21]. Together, these tools identify 
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PPI-mediating epitopes that contain common secondary struc-
tures. Existing and novel strategies for mimicking these structures 
can then be used to translate these epitopes into real-world PPI 
inhibitors [22–24].

While linear segments, alpha-helices, and beta-strands are all 
effective starting points for inhibitor design, we were inspired by the 
rich diversity of cyclic peptide natural products to ask whether epit-
opes that do not fall into these structural categories were being over-
looked. Many cyclic peptide natural products, such as cyclosporine A 
and the amanitins, lack these common secondary structure elements 
[25, 26]. Instead, these molecules have intramolecular hydrogen 
bonds that are rare in protein structures, and their unique conforma-
tions are critical for their high potency and bioavailability [27, 28]. 
We reasoned that, to look for epitopes that could be mimicked by 
similar classes of cyclic peptides, we should examine loop regions at 
PPI interfaces. We developed LoopFinder with the hypothesis that, if 
we can identify loops that are critical for PPIs, they will more easily be 
translated into natural-product-like cyclic peptides.

LoopFinder was heavily inspired by the computational methods 
discussed above, but was designed to identify loop regions. Fully 
50 % of PPI interfaces are regions without a common secondary 
structure [29]. Many of these are nonsheet extended regions that 
are not optimal starting points for macrocycle design, so we chose to 
define “loops” using custom-defined size and shape criteria (see 
Note 3). In biochemistry, loops are defined as segments that lack 
secondary structure, and are often found connecting discrete sec-
ondary structure elements. For LoopFinder, we were seeking short 
segments that have their N- and C-termini in close proximity (some-
times called “omega loops”), to allow for their effective cyclization 
using a variety of different chemistries. Specifically, loops were 
defined as stretches of four to eight amino acids in which the Cα 
carbons of the N- and C-terminal residues are within 6.2 Å (though 
these parameters can be changed; see Note 3) [30]. Such loops will 
be the most straightforward epitopes to translate into cyclic peptides 
or other macrocycles as potential PPI inhibitors.

Our first implementation of LoopFinder was reported in 2014 
[30], and since then we have streamlined its use and expanded its 
capabilities. In this Methods paper, we provide detailed instruc-
tions for comprehensive applications of LoopFinder, as well as a 
link to a website that automates some of the simpler tasks.

2  Materials

To perform comprehensive loop identification and energy calcula-
tions on a large set of protein structures, LoopFinder requires the 
programs and files listed below. These are provided in the online 
supporting material to this article, in the directory structure indi-
cated in Fig. 1.
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Fig. 1 A specific directory structure, shown here, is required to properly execute LoopFinder and run the com-
putational alanine scan. As provided in online materials, the /LoopFinder_Package directory contains the Unix- 
compatible LoopFinder executable file as well as a simple shell script to run LoopFinder with loops defined by 
the user (see Note 3 for details on custom loop definition). Input PDB files must be sorted into separate direc-
tories based on the total number of chains in the assembly. LoopFinder will then search these PDB files for 
loops and produce a /results directory containing the identities of the loops and the necessary information to 
run the computational alanine scan. The loop data and energy data are combined using conglomerate.py to 
produce a conglomerated file containing all loops with their associated computational alanine scan data. 
Descriptions of each of the executable files and scripts (shown in green) and the data files (shown in black) are 
provided in Subheading 2
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 1. PyRosetta: A prerequisite for running LoopFinder is installa-
tion of PyRosetta [31]. PyRosetta is a Python-based scripting 
interface that allows custom molecular modeling using the 
Rosetta conformational sampling and energy calculation algo-
rithms. PyRosetta is instrumental in the application of Rosetta 
computational alanine scanning to the identified interface 
loops. This program is freely available at www.pyrosetta.org

 2. pdb_download.py: A useful script for downloading large lists of 
PDB files, freely available from the Harms Lab at github.com/
harmslab/pdbtools

 3. LoopFinder_Unix: the Unix-compiled version of LoopFinder, 
which is provided in the /LoopFinder_Package directory. This 
is the program that reads in PDB files, carries out measure-
ments to locate loops at interfaces based on custom parame-
ters, and compiles the resulting list of interface loops.

 4. LF_run.sh: A simple shell script for running LoopFinder. This 
file can be edited using a text editing program to define the 
specific loop parameters of interest to the user. See Fig. 2 for an 
example LF_run.sh script.

 5. /2chains, /3chains, /4chains, and so on: These directories con-
tain the input set of PDB files for LoopFinder. The PDBs need 
to be organized into separate directories, segregated based on 
the number of chains in the molecular assembly.

Fig. 2 Workflow for the entire LoopFinder process. From the input set of PDB files (blue), LoopFinder will search 
for loops based on a customizable set of loop size parameters provide by the user (purple). Once the loop set 
is generated, computational alanine scanning is carried out in Rosetta to identify hot spot residues (yellow). 
Finally, the loop data is consolidated with the corresponding energy values for each residue in each loop 
(orange). Using customizable “hot loop” thresholds, the best loops for cyclic peptide inhibitor design (or any 
other desired application) can be identified (red)
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 6. Ala_scan.py: The computational alanine scanning script, run 
using PyRosetta [9, 32].

 7. int_eng_run.sh: A simple shell script that loads the PyRosetta 
module and runs computational alanine scans on each inter-
face for which an interface loop was found by LoopFinder.

 8. conglomerate.py: A python script that integrates the loop data gen-
erated by LoopFinder and the energy data generated by the com-
putational alanine scan. This program compiles overall energy 
data for each loop (see Note 5) and adjusts some problematic 
Rosetta-derived energy values (see Note 6). This generates a new 
conglomerated output text file called conglomerated.txt.

 9. CSVconverter.py: A program that converts the output text file 
to a .csv format that is more readily read into common data-
base programs.

 10. GapExcisor.py: A program that removes loops with large num-
bers of unknown residues due to jumps that sometimes occur 
in the numbering systems of PDB files.

 11. RemoveRedundantBeforeHot.py: If the loops of the same 
sequence occur multiple times in a single PDB file due to 
homomultimerism, this script can be used to remove all but 
the one with the highest average ΔΔG per residue.

 12. HotLoopAssignment.py: A script that allows for the identifica-
tion of hot loops using the user-defined criteria (see Note 8).

 13. LoopCulling.py: A simple script that removes redundant loops in 
the loop set in two ways. First, if one hot loop is contained inside 
another, only the longer is kept. Second, if two hot loops from 
the same structure have identical hot spots, only the one with 
higher average ΔΔG per residue is kept (see Note 9 for details).

During the LoopFinder calculations, several files are created that 
contain data and/or scripts for later steps in the process. We list 
these here to help clarify the workflow of LoopFinder and to sim-
plify troubleshooting.

 1. PDBID.pdb: LoopFinder generates a scrubbed version of each 
PDB file in question, removing headers and comments and 
leaving only the atom information. PDBID refers to the PDB 
ID of each individual PDB file.

 2. PDBID_AB_c.pdb: For each pdb file, LoopFinder creates a 
new pdb file that contains only two chains that form an inter-
face (in the example filename here, A and B are the chains that 
form an interface). Multiple of these binary interaction files 
may be created for each input PDB, depending on how many 
chains are found to have a binary interface.

 3. PDBID _AB_res.txt: LoopFinder generates a list of residues 
found to reside at the interface between the two chains (here, 
chains A and B).
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 4. Loops.txt: This is the major results file from LoopFinder. It con-
tains information on all the loops found to fit the desired user 
definitions. This process is described in more detail in Note 2.

 5. cmd_line_input.txt: LoopFinder also generates cmd_line_
input.txt which contains command line instructions for run-
ning the ala_scan.py script (for PyRosetta-based computational 
alanine scanning) on the loops described in Loops.txt.

 6. /PyRosettaResults: Once int_eng_run.sh is used to run 
PyRosetta, the output data will be deposited into directories 
named for each PDB. These will be in a parent directory called 
/PyRosettaResults

 7. PDBID_ddg_A_B1.txt: PyRosetta’s alanine scan program cre-
ates a new text file containing a list of all residues located at the 
interface (in this case, between chains A and B) along with 
their corresponding change in binding free energy value upon 
mutation to alanine. These are numbered for each trial, with 
20 trials recommended for each binary interface.

 8. PDBID_mean_A_B.txt: All the multiple independent trials are 
used to calculate a mean energy value for each residue, which 
are stored in this file.

 9. conglomerated.txt: The conglomerate.py script produces con-
glomerated.txt, which is its main results file (though additional 
removal of redundant loops can still be performed). It is a con-
glomeration of the Loops.txt data and the energy values associ-
ated with each loop residue, as specified by the corresponding 
PDBID_mean_A_B.txt alanine scan energy results file.

 10. conglomerated.csv: Applying CSVconverter.py to conglomerated.
txt produces this CSV file that can be more easily read by data-
base management software.

 11. conglomerated_Gapless.csv: Applying GapExcisor.py to conglom-
erated.csv produces this file, which has all gap artifacts removed 
(see Note 7).

 12. conglomerated_Gapless_NonRedundant.csv: Applying 
RemoveRedundantBeforeHot.py to conglomerated_Gapless.csv 
produces this file, which effectively eliminates identical loops 
prior to hot loop identification (see Note 7).

 13. conglomerated_Gapless_NonRedundant_Hot_%_#.csv: 
Running HotLoopAssignment.py then produces a new file con-
taining only loops that meet the user specified hot loop crite-
ria. In the filename shown, % is the percent interface energy 
and # is the minimum value defined as a hot spot (REUs*100) 
(see Note 8 for details).

 14. cong lomerated_Gaple s s_NonRedundant_Hot_%_#_
NonRedundant.csv: Following hot loop identification, further 
redundant loops are removed and are deposited in this file by 
LoopCulling.py (see Note 9).
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 15. cong lomerated_Gaple s s_NonRedundant_Hot_%_#_
NonRedundant_NonOverlapping.csv: LoopCulling.py also pro-
duces this file, which has nested and overlapping loops removed 
as well (see Note 9).

3  Methods

The overall process for identifying hot loops is summarized in Fig. 2. 
As detailed in Subheading 2, the required resources for a LoopFinder 
search are: one or more PDB files (the input set), the LoopFinder 
program, and the Rosetta-enabled alanine scanning engine. The 
LoopFinder program completes three distinct tasks. The first task is 
a measurement process that locates loops at protein interfaces based 
on user-defined loop size and proximity parameters. The second task 
is computational alanine scanning calculations using PyRosetta [9, 
10] on each PPI that contains one or more of the identified loops. 
Once the computational alanine scan is complete, this data is then 
merged with the list of identified loops to assign energy values to 
each residue within each interface loop. The third task is to sort 
through all interface loops to identify “hot loops” that are particu-
larly promising starting points for inhibitor design.

An overview of the LoopFinder process for identifying hot loops 
that mediate PPIs is shown in Fig. 2. The /LoopFinder_Package 
directory contains all the key elements for successfully running the 
program, most importantly the LoopFinder_Unix executable file. 
The online materials included with this chapter contain the entire 
LoopFinder package listed in Subheading 2, except for PyRosetta, 
which is freely available. For analyzing large input sets of PDB files, 
it is advisable to install this package on a computer cluster to enable 
the concurrent running of multiple calculations as each alanine scan 
run takes about 10–20 min depending on the size of the interface. 
The process described in this section reflects the use of scripts for 
cluster submission of large batches of calculations.

Step 1. Download PDB files of interest.

Before the program can be run, the PDB files of interest to the 
user need to be downloaded. As discussed in Note 1, there are 
many useful tools for downloading large sets of PDB files from the 
RCSB database, most notable the RCSB bulk download tool at 
www.rcsb.org/pdb/search/advSearch.do [33]. The input PDBs 
must be organized into separate directories based on the total num-
ber of chains in the molecular assembly, which we accomplished 
using the simple Python script pdb_download.py (see Note 1).

Step 2. Execute the LoopFinder program.

The LF_run.sh shell script should be edited using a simple text 
editing software to include the directory of the input PDB files, the 
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interface distance definition, the loop size definitions (maximum 
and minimum loop size), the percent of the loop required to be at 
the interface, the termini distance measurement, loop size scaling 
factor, and the number of chains in the PDB files to be considered 
(as mentioned above, LoopFinder works on sets of PDBs that all 
have the same number of protein chains). Note 3 discusses consid-
erations for setting the loop definition parameters, as well as our 
rationale for the parameters we have used to date. Execution of 
LF_run.sh submits the parameters to the LoopFinder_Unix pro-
gram and generates a /results directory (Fig. 1). LoopFinder pro-
duces several files within /results, most importantly Loops.txt, 
which contains information on all the loops that fit the given 
parameters, and cmd_line_input.txt, which contains the informa-
tion required for the computational alanine scan. Examples of each 
type of output file are shown in Note 2. At this step, all loops have 
been identified and can be analyzed using Loops.txt, but their ener-
gies have not yet been calculated.

Step 3. Execute the computational alanine scan.

The computational alanine scan is executed using the int_eng_
run.sh script. This script loads the PyRosetta module and submits 
each interface listed in cmd_line_input.txt for computational ala-
nine scanning. The int_eng_run.sh script generates a directory 
called /PyRosettaResults (Fig. 1), in which a new directory is gen-
erated for each PDB being analyzed with the title being the 
PDBID. Within the directories named for each PDBID, PyRosetta 
deposits text files containing energy data from each individual ala-
nine scan (for example, 2flu_ddg_X_P1.txt), as well as the final file 
containing the mean energy data among all trials run for that inter-
face (for example, 2flu_mean_X_P.txt). A more detailed descrip-
tion of this process is outlined in Note 4. At this step, computational 
alanine scanning data has been calculated for all PPIs with loop- 
mediated interfaces, but the loop data has not yet been combined 
with the energy data to provide energy values for individual loops.

Step 4. Combine the loop data with the energy data.

Executing the conglomerate.py script will combine the 
LoopFinder loop data generated in step 2 with the alanine scan 
energy values generated in step 3. A new output file that contains 
the conglomerated data set for analysis, conglomerated.txt, will be 
generated in the /results directory (Fig. 1). These files can be con-
verted into a CSV format using CSVconverter.py for more fluid 
compatibility with database management software, producing a file 
named conglomerated.csv.

Step 5. Identify hot loops and remove redundancies.

Before hot loops can be identified, some preliminary cleanup 
and redundancy removal should be done. First, run GapExcisor.py 
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on conglomerated.csv to remove any loops that contain amino acids 
for which energies could not be calculated. These loops are 
removed and the new list is saved as conglomerated_Gapless.csv. 
These rare gaps occur because of errant numbering in some PDB 
files (for example, if residue 260 follows immediately after residue 
254 with no actual break in the protein backbone). Next, initial 
redundancy removal using RemoveRedundantBeforeHot.py, as 
described in Note 7, yields the file conglomerated_Gapless_
NonRedundant.csv. This file can be used to identify hot loops 
using HotLoopAssignment.py. As described in Note 8, user-defined 
criteria for hot loop identification are used to produce a list of hot 
loops called conglomerated_Gapless_NonRedundant_Hot_%_#.csv. 
Note that two of the criteria are denoted in the filename, the per-
cent total interface energy (%) and hot spot cutoff (#, in REUs*100). 
Following hot loop identification, further redundancies from loop 
overlap are culled using LoopCulling.py (see Note 9). LoopCulling.
py first removes redundant loops, and then removes overlapping 
loops to yield two files, conglomerated_Gapless_NonRedundant_
Hot_%_#_NonRedundant.csv and conglomerated_Gapless_
NonRedundant_Hot_%_#_NonRedundant_NonOverlapping.csv. 
These final lists of hot loops can then be manually sorted, filtered, 
and organized for specific applications, for instance to identify tar-
gets for cyclic peptide design.

4  Notes

 1. Downloading and organizing the PDB input set.
The RCSB is a vast resource for protein structure data, and 

searching for PDB files that fulfill specific criteria is easily done 
with the advanced search tool www.rcsb.org/pdb/search/
advSearch.do [33]. In our implementation of LoopFinder 
focused on finding loop-mediated interactions that could be 
inhibited by macrocycles, we used the advanced search tool to 
find and download all PDB files that had between two and ten 
chains in the biological assembly. We excluded structures with 
90 % sequence identity to avoid redundancy. The RCSB search 
tool can conveniently output the list of PDBIDs matching 
your criteria into a text file, and the text file can then be used 
to download PDB files into the proper folder using the pdb_
download.py script. Using these criteria we downloaded 27,715 
PDB files as a comprehensive input set. We chose to start with 
a very inclusive input set, but it would be simple to conduct a 
more focused search of the PDB by using input sets based on 
function or structure. Future implementations could also 
include structures with high sequence identity, allowing the 
identification of subtle differences in how highly homologous 
proteins use loops to mediate PPIs. No matter the input set, it 
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is necessary to place the PDB files in separate folders based on 
the number of chains in the biological assembly because 
LoopFinder needs to be run separately for assemblies with dif-
ferent numbers of chains.

 2. Executing LoopFinder to identify interface loops.
The LoopFinder program can be run using the LF_run.sh 

script (Fig. 3). Several parameters within this script can be edited 
to customize the loop parameters (see Note 3). The first param-
eter is the distance for categorizing which chains within a multi-
chain assembly are in contact, and thus make up a binary 
interface. In the LF_run.sh script, this is the bdist parameter. 
To date, we have defined interfaces using a 6.5 Å distance mea-
surement (bdist 6.5), whereby if any atom within a chain is 
≤6.5 Å away from any atom within another chain, the chains are 
characterized as having an interface. This value was chosen 
based on the similar distance term used by PyRosetta’s ala_scan.
py program to define interface residues [9, 10].

LoopFinder locates all interface loops based on the speci-
fied parameters, and then outputs a number of files. First, 
scrubbed versions of each PDB file that have the header and 
remarks removed are produced. Next, LoopFinder saves indi-
vidual PDB-style files for each binary protein–protein inter-
face. For example, the interaction between Nrf2 and Keap1 
(PDBID 2FLU) has two chains denoted P and X [34]. 
LoopFinder finds a loop on chain P that contacts chain X, and 
makes a new file called 2flu_XP_c.pdb. If an input PDB file 
(PDBID.pdb) contains chains A, B, and C and each shares an 
interface with each other chain, LoopFinder outputs separate 
PDB files that contain only chains A and B, only chains B and 
C, and only chains A and C (PDBID_AB_c.pdb, PDBID_
BC_c.pdb and PDBID_AC_c.pdb). This simplifies and acceler-
ates the computational alanine scanning performed in later 
steps. In addition to the new PDB files, a text file is produced 
that identifies each residue and assigns a binary value based on 

Fig. 3 The LF_run.sh script is shown above. Each command-line parameter in the LoopFinder program is 
customizable. The directory containing the PDB files (red) should be organized by the number of chains in the 
assembly and correspond to the nchain value (gray). The bdist parameter specifies the maximum dis-
tance that characterizes an interface (orange). The number of residues within the loop is specified by the 
minres and maxres parameters (green and purple, respectively). The minperc parameter (pink) cor-
responds to the requirement for how many atoms in the loop within bdist from the corresponding partner 
chain. The maximum termini distance of the loop in Å (yellow) is an essential parameter for identifying loops 
and not extended regions. The final parameter, lfactor (blue), is used to scale the maxdist value for 
loops of 5 and fewer residues to avoid identifying α-helical turns
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whether the residue resides at the interface (PDBID_AB_res.
txt, PDBID_BC_res.txt, PDBID_AC_res.txt). The third file 
produced is a text file called Loops.txt, which contains informa-
tion on all identified loops. The Loops.txt file is the primary 
output of LoopFinder, and contains all interface loops for fur-
ther analysis. Loops.txt includes the following data, in the fol-
lowing order: PDBID, the chain on which the loop resides, 
the number of residues within the loop, termini distance, the 
total number of residues on the chain, the identity of each resi-
due in the loop, the identity of the partner chain, and the 
percent of the loop at the interface. The percent of the loop at 
the interface is the percentage of the atoms within the loop 
that are within the specified bdist distance to any atom on 
the partner protein. A representative excerpt from a Loops.txt 
file is shown in Fig. 4. The binary interface PDB files, the lists 
of residues that indicate which are at the interface, and the 
Loops.txt files are all outputted into directories in a manner 
that is ready for direct input into PyRosetta for computational 
alanine scanning. LoopFinder also produces a separate file to 
use as a command line input file for running PyRosetta, called 
cmd_line_input.txt. This file, an excerpt of which is shown in 
Fig. 5, contains all information required by PyRosetta for run-
ning computational alanine scanning on all loop-containing 
interfaces, including their PDBIDs, the chains involved in 
each interaction, the interface cutoff value and the number of 
trials for each calculation.

 3. Considerations for setting loop definition parameters.
Loop definitions are provided by the user to the LoopFinder 

program, allowing for custom definitions for loop size and 
proximity parameters. In addition to setting the bdist param-
eter described in Note 2, users can define three parameters that 
dictate the size and shape of the loop itself. These three param-
eters are loop length, which allows the user to specify a mini-
mum and maximum length in residues (for example minres 

Fig. 4 The Loops.txt file gives data on all of the loops for a given PDB file that fit the loop definition parameters. 
The file has two lines per loop. The first line contains the PDB ID (red), chain on which the loop resides (orange), 
number of residues in the loop (green), distance from Cα to Cα of N- and C-terminal residues (purple), number of 
residues at the interface (pink), and each residue of the loop itself (yellow). The second line has the interface (blue) 
and the percentage of the loop atoms that reside within the given distance parameter of the partner chain (gray)
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4 and maxres 8), proportion of the loop at the PPI interface, 
which allows the user to specify the percentage of the residues 
with at least one atom within the bdist distance of the bind-
ing partner (for example minperc 80), and the distance 
between the termini of the loop, which allows the user to spec-
ify a maximum distance in Å from the Cα of the first residue to 
the Cα of the last residue (for example maxdist 6.2). A scal-
ing factor is also used for smaller loop sizes (for example lfactor 
1) as described below. This Note discusses important factors 
for setting each of these parameters. All of these parameters are 
contained in the LF_run.sh script for execution of the 
LoopFinder program as discussed in Subheading 3. LoopFinder 
searches the input set of PDBs for loops that match the speci-
fied parameters, and while our initial parameters (described 
below) were designed to identify loops suitable as starting 
points for designing macrocycles that inhibit PPIs, other sets of 
parameters can be used to apply LoopFinder to other problems 
in biochemistry and drug design.

Setting the minres and maxres parameters. In our applica-
tions to date, we have limited loop lengths to between four and 
eight amino acids, in order to focus on starting points for the 
design of small cyclic peptides. Loops with lengths less than 
four are not particularly meaningful, so setting minres to 4 is 
effectively setting the minimum loop size as small as possible. 
Maximum loop length can be defined differently depending on 
the specific questions being asked. Our upper limit of eight 
amino acids was informed by our goal to design cyclic peptides 
of similar size to potent natural products and known peptide 
inhibitors of PPIs [27]. LoopFinder can certainly be applied to 
discover larger loops, or even whole protein domains with their 
termini near each other. Such loop sets would be useful for a 
variety of applications. For instance, sets of loops ranging from 
7 to 20 amino acids would be useful for protein grafting onto 
loop DARPins [35]. Also, antibodies use their hypervariable 
regions to facilitate protein binding with loops of 5–17 amino 
acids, so searching for loops in this size range would produce a 

Fig. 5 The LoopFinder program generates a cmd_line_input.txt file that can be used for the submission of jobs 
for PyRosetta alanine scanning mutagenesis. The information contained within this file is the PDB file name 
(red), the partner proteins (orange), the interface cutoff distance (green), number of trials to run for each inter-
face (purple), and the name of the file for data output (yellow). The int_eng_run.sh script will execute each line 
of cmd_line_input.txt using PyRosetta’s ala_scan.py program
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set of antibody and antibody-like loops [36]. Setting even 
larger maximum loop lengths could identify entire protein 
domains with termini near each other, which could assist in the 
design of tandem repeat proteins or circularly permuted pro-
teins [37–39]. Users can set minres and maxres to match 
their ultimate goals for peptide and protein design.

Setting the minperc parameter. In early development of 
LoopFinder, we noticed a significant proportion of loops that 
were not major contributors to the interface, but happened to 
have one hot spot that was within interaction distance (6.5 Å) 
of the binding partner. We regarded these as hot spots that 
happened to be on loops, rather than hot loops suitable for 
macrocycle design. Thus, to ensure that most loop residues 
are in close proximity to the binding partner, an interface dis-
tance requirement minperc 80 was introduced as a loop 
definition parameter. This requires at least 80 % of the residues 
within the loop to have at least one atom residing within 6.5 Å 
of the binding partner. This parameter can be changed based 
on the user’s goals and expectations. We set the 80 % limit 
empirically, to best identify only those loops that make 
extended contact with the binding partner. Ultimately, this 
focused our loop searches on epitopes with high ligand effi-
ciency [2, 40, 41]. Reducing minperc below 80 also identi-
fies some internal loops that contribute to the hydrophobic 
core of their parent proteins. Computational alanine scanning 
of these internally-facing loops would likely produce residues 
with high ΔΔGres values, but these would be due to 
 destabilization of overall protein structure and not due to 
direct contacts with the binding partner. Thus, for cyclic pep-
tide design, we recommend keeping this limit high. For larger 
loop sizes, however, it might be necessary to reduce min-
perc. For instance, if the ultimate goal is grafting loops onto 
antibodies or DARPins, setting minperc too high may rule 
out loops that would nonetheless have sufficient surface expo-
sure once grafted onto the scaffold. Thus, for larger loops we 
anticipate that minperc will likely need to be relaxed.

Setting the maxdist parameter. The third criterion for defin-
ing a loop in LoopFinder is the termini cutoff distance. While 
this is not a classic requirement for a “loop” structure, it was 
critical for the identification of loops that are optimal targets for 
macrocycle design. For this calculation, we used a maximum 
termini distance maxdist 6.2, denoting that loops must 
measure ≤6.2 Å from the Cα of the first loop residue to the Cα 
of the last loop residue. The 6.2 Å value was estimated as the 
approximate length of a dipeptide-sized linker, which could 
readily be introduced to cyclize loop epitopes. Importantly, set-
ting maxdist to 6.2 also avoids α-helices (α-helices of length 
5–8 amino acids have end-to-end distances of 6.3–10.8 Å) and 
β-strands (β-strands of length 4–8 residues have end-to-end dis-
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tances of 9.8–22.7 Å). The cutoff of 6.2 Å was applied to loops 
of length 6, 7, and 8 amino acids, but was too long for shorter 
loops. For loops of length 4 and 5, we empirically adjusted the 
termini distance parameter to 3.92 Å and 4.9 Å, respectively. 
This was done using the lfactor value. The specified value for 
lfactor is divided 3.5 Å (an estimate for the average length of 
an amino acid in extended conformation) to yield a fraction. 
This fraction is the limit for loop length compared to a fully 
extended structure, which allows for identification of shorter 
fragments with particularly closed conformations. For example, 
an lfactor of 1 yields a fraction of 0.28. If the maximum 
linear length of a five-amino acid peptide would be estimated at 
17.5 Å, the lfactor would limit the length to 0.28 times 
17.5 Å, or 4.9 Å. An lfactor of 1 was used because it limits 
the loop length for shorter loops to less than one-third of the 
total length of the segment if it were in an extended conforma-
tion. For less stringent end-to-end distances of small loops, the 
lfactor value can be increased.

Overall, the end-to-end distance parameter is one of the 
main attributes that allows LoopFinder to uncover unique 
PPIs and interaction epitopes, providing a more structure- 
specific epitope search than the Schueler-Furman’s PeptiDerive 
approach [15, 42] and a completely orthogonal search com-
pared to the Arora lab’s search algorithms for α-helix and 
β-strand PPI epitopes [17, 21, 43] .

 4. Details of computational alanine scanning.
LoopFinder’s output files are formatted so they can be 

directly submitted to PyRosetta v2.012 computational alanine 
scanning mutagenesis [31]. This program calculates the 
changes in binding free energy when residues at a protein 
interface are changed to alanine using the ala_scan.py script. 
Briefly, PyRosetta mutates each residue located at the interface 
on a given chain to alanine, repacks the side chains of sur-
rounding residues, and calculates the binding free energy of 
the mutant chain [9]. Binding energy in PyRosetta is calcu-
lated using score functions. The contribution of each residue 
at the interface to the overall PPI energy, denoted ΔΔGres, is 
calculated in Rosetta Energy Units (REUs). The score func-
tion used in this project was a modified version of the standard 
Rosetta score function with modifications that were found to 
better suit general alanine scanning on a wide range of pro-
tein–protein interfaces, but lacks environment-dependent 
hydrogen-bonding terms [9, 10]. For each interface, PyRosetta 
runs 20 trials and these results are averaged to calculate the 
mean energy contribution for each residue. The results of ala-
nine scanning for each PPI of interest are output to separate 
files, PDBID_ddg_A_B1.txt (where A and B are the chains 
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forming this binary interface, for example 2flu_ddg_X_P1.txt, 
2flu_ddg_X_P2.txt … 2flu_ddg_X_P20.txt) and averaged 
results are output into PDBID_mean_A_B.txt (for example, 
2flu_mean_X_P.txt).

To execute the PyRosetta alanine scan on cluster-based 
computing systems in batch format for large sets of interfaces, 
the int_eng_run.sh script is included. This script loads the 
PyRosetta module and calls each line from the cmd_line_input.
txt file to submit individual interfaces for computational ala-
nine scanning using the ala_scan.py program. As mentioned 
above, this simple shell script should be edited to contain the 
proper directory containing PDB input files, and these should 
all have the same number of protein chains (Fig. 1). Running 
cmd_line_input.txt on large batches of PDB files can be time 
intensive, as each interface energy calculation requires approx-
imately 10–15 min.

 5. Combining the loop sets and energy data.
The conglomerate.py script is used to combine the computa-

tional alanine scanning mutagenesis data in PDBID_mean_A_B.
txt files (for example, 2flu_mean_X_P.txt) with the lists of 
interface loops in the Loops.txt file. This script compiles energy 
information for each loop in Loops.txt, including ΔΔGres for 
each residue in the loop, the sum of all ΔΔGres for the loop, and 
the z-score, which is a measurement that assesses the error over 
the 20 iterations for each interface. It then  outputs the data 
into conglomerated.txt, which can be converted to a CSV file 
using CSVconverter.py, producing conglomerated.csv.

 6. Modifications to Rosetta-generated alanine scanning energies.
During LoopFinder development, we examined how raw 

values from the computational alanine scans affected our over-
all analysis of loop energies. We noticed two problems that, in 
a minority of cases, seemed to prevent the accurate interpreta-
tion of ΔΔGres values as realistic side chain binding energies. 
First, some ΔΔGres values were unreasonably large. To prevent 
extreme effects of such ΔΔGres values on our overall analysis, 
we reduced all energy values ≥4.5 REUs to 4.5 REUs. This 
“cap” on hot spot energies ensured that the effects of indi-
vidual hot spots on overall loop energies would not be overes-
timated. The second issue was that the PyRosetta computational 
alanine scan sometimes produces negative values for ΔΔGres [9, 
10]. Previous applications ignored these negative values [15, 
17, 21], but we attempted to minimize their effects on our 
analysis of overall loop energies, and even to use them to 
inform hot spot identification. A subset of residues in interface 
loops that PyRosetta assigned negative ΔΔGres values were 
manually inspected, and it was observed that highly negative 
values (ΔΔGres ≤ −2.0 REUs) nearly always made important 
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hydrogen bonding interactions with the binding partner. This 
is consistent with prior interpretations of negative ΔΔGres val-
ues, which were interpreted as the removal of one partner in a 
buried hydrogen bond [9]. Large, negative ΔΔGres values were 
thus corrected such that all ΔΔGres values below −2.0 REUs 
were set to 1 REU. This ensured that these were counted as 
hot spot residues in subsequent analyses. All energies that 
were only slightly negative (−2.0 REUs ≤ ΔΔGres ≤ 0.0 REUs) 
were set to 0.0 REUs based on our empirical observations that 
such residues do not typically have obviously important con-
tacts within the interface. This adjustment effectively ignores 
any contributions by these residues, and prevents the possibil-
ity of underestimating total loop energies and total interface 
energies due to negative ΔΔGres values, or in some cases, hav-
ing a total interface energy sum with a negative value. These 
conversion parameters are built into the conglomerate.py script.

 7. Removal of artifacts from the loop list.
After combining the loop data with the ΔΔGres data and 

modifying overlarge and negative ΔΔGres values, the interface 
loops can be processed to check for errors and remove redun-
dancies. GapExcisor.py acts on conglomerated.csv to remove 
gaps that arise from nonsequential numbering in some PDB 
files, and yields the file conglomerated_Gapless.csv. 
RemoveRedundantBeforeHot.py takes conglomerated_Gapless.
csv as an input, locates identical loops, and retains only the 
loop with the highest average ΔΔGres. This predominantly 
serves to remove redundant loops from homomultimer struc-
tures where multiple, identical protein chains are assembled 
symmetrically. All together, these redundancy checks typically 
winnow the overall number of interface loops by roughly 60 %. 
The data within the conglomerated_Gapless_NonRedundant.
csv file is now the input for the next step: identifying the loops 
of greatest interest based on “hot loop” criteria.

 8. Identifying hot loops using custom criteria.
The overall interface loop set can be very large. For example 

our most recent LoopFinder run identified 83,170 nonredun-
dant interface loops using the parameters described in Note 3. 
Thus, it is critical to rank loops according to criteria important 
for your specific application, and to set these criteria using the 
compiled information on loops and their ΔΔGres values. To 
identify loops of interest, we developed “hot loop” criteria for 
the identification of loops that are strongly involved in the 
binding interaction between protein partners. Our initial hot 
loop criteria, as reported in 2014, were: having an average 
ΔΔGres (the sum of all ΔΔGres values for the loop divided by 
total number of residues in the loop) of at least 1.0 REUs, 
having at least three hot spots (defined as individual residues 
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with ΔΔGres ≥ 1.0 REUs) within the loop, or having at least 
two consecutive hot spot residues [30].

Upon further analysis of the hot loops that arise from these 
criteria, it was apparent that there was a large overlap between 
hot loops with two consecutive hot spots and the hot loops 
with three or more hot spots overall. We also concluded that 
hot loops with two consecutive hot spot residues may be ame-
nable to inhibition by small molecules, since two adjacent hot 
spots form a contiguous epitope that is unlikely to require loop 
structure for target binding. Thus, we developed a new set of 
requirements that more accurately reflect our primary goal of 
developing cyclic peptides. First, we relaxed the standard for 
the strength of a hot spot to ≥0.6 REUs. This was informed by 
an analysis of peptide–protein interactions from the PDB, in 
which we observed that many high-affinity peptides did not 
have many hot spot residues with ΔΔGres ≥ 1.0 REUs but did 
have hot spots with ΔΔGres ≥ 0.6 REUs. We discarded the con-
secutive-hot-spot criterion for reasons described above, and 
replaced it with an estimation of the proportion of the total 
binding energy attributable to the loop. This was enabled by 
adding to all LoopFinder runs the calculation of the total inter-
face energy. Since total loop ΔΔG energies were calculated by 
summing up individual ΔΔGres values, we estimated total inter-
face energy by adding up ΔΔGres values for all residues at the 
interface. This produced a relevant measure of the percent con-
tribution of the loop to the total interface energy. Using this 
most recent parameter, we can identify as particularly promis-
ing any hot loops that comprise a large proportion of the total 
interface energy, from 25 % contribution to 100 % contribu-
tion. Different users with different applications can consider 
these and other criteria. Ultimately, for the development of 
cyclic peptides and macrocycles, we chose to identify hot loops 
as those that have either an average ΔΔGres ≥ 0.6 REUs, those 
with three or more hot spots, or those that comprise ≥50 % of 
the total interface energy. This identified 7225 hot loops from 
the total interface loop set of 83,170. Figure 6 shows a Venn 
diagram that illustrates how these criteria identified these loops. 
As the diagram shows, we recommend using three or more 
criteria to sort through a large interface loop set, in order to 
identify those interface loops with multiple desired properties 
for the desired application. The python script 
HotLoopAssignment.py utilizes the user-defined hot loop crite-
ria of interface energy percentage (%) and hot loop cutoff (#, in 
terms of REUs*100) to output a file containing loops that 
meet those criteria (conglomerated_Gapless_NonRedundant_
Hot_%_#.csv). For example, if the percent total interface energy 
of the loop is set for 70 %, and the hot spot cutoff is set at 60 
(≥0.6 REUs) a file will be produced named conglomerated_
Gapless_NonRedundant_Hot_70_60.csv.
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 9. Removal of nested and overlapping loops.
After hot loop identification, LoopCulling.py performs a sec-

ond redundancy check to remove any hot loop that is entirely 
contained within another, thereby keeping only the longest pos-
sible version of a given hot loop in the output file conglomer-
ated_Gapless_NonRedundant_Hot_%_#_NonRedundant.csv. 
While both versions of the loop may be useful starting points for 
peptide design, retaining only the longest loop greatly minimizes 
the numbers of redundant, “nested” loops, while maximizing 
the useful information provided to the user. LoopCulling.py also 
provides a second output file that removes overlapping loops 
(conglomerated_Gaple s s_NonRedundant_Hot_%_#_
NonRedundant_NonOverlapping.csv). When two loops overlap 
in sequence but one is not completely nested within the other, 
the locations of hot spot residues (as defined by the user, as 

Fig. 6 The hot loop criteria are used to identify those interface loops with the 
most favorable properties for a specific application. While other criteria are pos-
sible, for identifying starting points for macrocycle design we currently use three 
adjustable criteria: average ΔΔGres of the loop, the number of hot spots con-
tained within the loop (the threshold for defining hot spots can also be custom-
ized by the user), and the percent contribution of the loop to total interface 
energy. In the Venn diagram shown here, we suggest hot loop criteria of average 
ΔΔGres ≥ 0.6 REUs, number of hot spots with average ΔΔGres ≥ 1.0 REUs is at 
least 3, and percentage of total interface energy contained within the loop is 
≥50 %. We expect the central overlapping region to contain hot loops that are the 
best starting points for cyclic peptide design
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described in Note 8 we have lowered this threshold to 
ΔΔGres ≥ 0.6 REUs) are used to decide which to keep. If two 
overlapping loops have the same hot spots, LoopCulling.py keeps 
the loop with higher average residue energy. When one loop 
contains all the hot spots of the other as well as additional hot 
spots, the loop with more hot spots is kept. In the case that each 
loop contains at least one hot spot that is not in the other, they 
are both kept, since these overlapping loops represent potentially 
independent epitopes for translation to macrocyclic inhibitors.

 10. Using the LoopFinder website for simple tasks.
In order to make LoopFinder available for wider use, we 

built loopfinder.tufts.edu, a website where people can submit 
their own LoopFinder jobs and query the large loop databases 
we have already produced. LoopFinder’s web app allows users 
to check a single PDB entry of their choice for hot loops 
according to custom loop definition parameters for minres, 
maxres, maxdist, and minperc (see Note 3) and our cur-
rent default hot loop criteria (see Note 8 and Fig. 6). However, 
users receive the unfiltered list of loops matching their loop 
definitions and all alanine scanning data, so analysis beyond 
our criteria for defining hot loops can be performed as desired.

In addition to searching single PDBs for hot loops, all of 
our own hot loop databases are available through the website. 
These can be downloaded for analysis using database software, 
or queried on the website by users for specific proteins, func-
tions, or primary sequences. At present, the hot loop database 
(7225 hot loops, Fig. 6) is available, and it will be joined soon 
by databases of hot loops from LoopFinder searches with 
expanded parameters, including larger loops suitable for pro-
tein and antibody grafting (see Note 3). In the near future, the 
website will also feature a tool for computational grafting of 
single hot loops onto a library of scaffold proteins, with a data-
base of scaffolds available for queries and user submission. 
Finally, data based on clustering analysis of our large loop sets 
will be made available online. Future publications will describe 
these grafting and clustering tools in greater detail.

 11. Translating LoopFinder data into cyclic peptide inhibitors of 
PPIs.

The careful calculations and judiciously chosen parameters 
described for our current implementation of LoopFinder has 
produced a unique set of loop-mediated PPIs. The hot loops 
within these PPIs, especially those loops that fulfill all three 
hot loop criteria (Fig. 6, central region), will provide excellent 
starting points for the design of cyclic peptide inhibitors. In 
the context of the native PPI, these loops are conformationally 
stabilized by the global protein structure. To develop the 
loops into inhibitors, conformational constraints can be 
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applied to synthetic peptides in order to mimic the hot loop. 
A variety of chemistries are available for this purpose, includ-
ing head-to-tail cyclization, lactam-bridge cyclization, olefin 
stapling, disulfide cyclization, and cysteine bis-alkylation [44–
46]. We are currently using these synthetic strategies to 
develop constrained peptides to block loop-mediated PPIs. 
We also note that these loops can be grafted onto a wide vari-
ety of protein scaffolds, with the same goal of stabilizing the 
hot loop epitope in a manner that allows for high-affinity 
binding and inhibition of the associated PPI [47].
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Chapter 16

Protein-Peptide Interaction Design: PepCrawler 
and PinaColada

Daniel Zaidman and Haim J. Wolfson

Abstract

In this chapter we present two methods related to rational design of inhibitory peptides: 

●● PepCrawler: A tool to derive binding peptides from protein– 
protein complexes and the prediction of protein–peptide com-
plexes. Given an initial protein–peptide complex, the method 
detects improved predicted peptide binding conformations which 
bind the protein with higher affinity. This program is a robotics 
motivated algorithm, representing the peptide as a robotic arm 
moving among obstacles and exploring its conformational space in 
an efficient way.

●● PinaColada: A peptide design program for the discovery of  
novel peptide candidates that inhibit protein–protein interactions. 
PinaColada uses PepCrawler while introducing sequence muta-
tions, in order to find novel inhibitory peptides for PPIs. It uses the 
ant colony optimization approach to explore the peptide’s sequence 
space, while using PepCrawler in the refinement stage.

Key words Peptides, Protein–protein interaction inhibitors, RRT, Ant colony optimization, Inhibitor 
design, Computer aided drug design

1 Introduction

Protein–protein interactions (PPIs) play a crucial role in many 
 cellular processes and pathways. Thus, development of small mol-
ecules that affect PPIs has become an intensive research field in 
Structural Bioinformatics and Computer Aided Drug Design. The 
task is to discover small molecules that will block a specific PPI, 
without harming the function (e.g., catalytic activity) of the target 
proteins [1, 2]. Some of those desired inhibitors include 
 small- molecule inhibitors and especially short peptide inhibitors. 
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An interaction between two proteins usually consists of a large 
interface without a well-characterized binding pocket [3, 4]. 
Peptides, could be good starting points for new leads in rational 
design of inhibitory drugs by mimicking part of the interacting 
surface of one of the proteins [5–9]. Peptides both natural and 
non-natural, have been used to inhibit PPIs. Some experimental 
studies have investigated inhibitory peptides as competitive dock-
ing partners [10]. Here we will present two methods related to 
peptide modeling and peptide ligand design.

PepCrawler [11] is a tool for the prediction of protein– peptide 
complexes at high resolution as well as the derivation of binding 
peptides out of protein–protein complexes’ interface. This method 
exploits the RRT (Rapidly exploring Random Tree) robotics moti-
vated methodology. It represents the peptide as a robotic arm, with 
degrees of freedom at the rotational atomic bonds. Thus, the pep-
tide has m+6 degrees of freedom, where m is the number of rota-
tional bonds, and 6 degrees of freedom are for the spatial position 
of the peptide. The RRT explores this multi-dimensional confor-
mational space, and tries to quickly determine its boundaries and 
obstacles. Obstacles include clashes between the peptide and the 
protein, and clashes between the residues of the peptide. In cases 
of clashes, it tries different side chain conformations for the clash-
ing amino acids, and if it still cannot resolve them, the explored 
docking solution is considered part of the unfeasible space. The 
exploration is done in a tree like fashion.

The output is a protein–peptide complex depicting the final 
predicted peptide conformation (the one with the best computa-
tional energy score). It also outputs a funnel score (the slope of the 
Energy/RMSD plot) which is a measurement of the peptide likeli-
hood to achieve the predicted conformation. It was established  
on experimental benchmarks that there is a positive correlation 
between the steepness of the funnel score and the affinity of the 
peptide binding. In practice, a funnel slope steepness of 5 and 
above indicated binding of the peptide. For a detailed account of 
PepCrawler see [11].

PinaColada [12] is a method for computational screening of 
peptides in order to find novel inhibitors for PPIs. It uses the ant 
colony optimization method to explore the peptide sequence 
space. PepCrawler is being used to refine and calculate the energy 
and funnel score for each tested peptide sequence. The peptide 
sequence space is the size of 20n where n is the number of residues 
(usually 5–15). Thus, there is a need for an efficient way to explore 
this large space, avoiding getting stuck in local minima. The opti-
mization step of our method is based on the Ant Colony Opti-
mization algorithm, introduced in [13], which has been applied 
for various tasks including the traveling salesman problem, protein 
folding [14–16], scheduling, etc. Ant colony optimization is one 
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example of the more general set of swarm algorithms. In nature, 
ants try to find the shortest path to a food source by spreading 
pheromones. This is called stigmergic communication. Ants which 
choose better paths will return faster, and more pheromones will 
accumulate on their path. The newly arriving ants choose their 
path based on the pheromone levels on the ground. Thus, they 
soon converge to the shortest path, or a very good local minimum.

The main idea of ant-colony optimization is having many dis-
tributed artificial “ant” processes, which try to complete a given 
task in a pseudo-random fashion. It also keeps a pheromone net-
work (weighted graph), which the ants update after their life cycle 
is finished. Ant colony optimization (ACO) fits our problem very 
well due to its nature of combining good partial solutions to better 
global solutions as well as due to its inherent balance between 
exploration (searching the space) and exploitation (drilling down 
good solutions to minimize them as much as possible). The algo-
rithm is executed in parallel for M ants (in our experiments M = 40). 
For a detailed account of PinaColada, see [12].

2 Materials

PepCrawler has two modes of action. These are the two kinds of 
input it accepts (all in PDB format): 

●● A protein–peptide complex.
●● A protein–protein complex, from which you would like to 

extract a strongly binding peptide.

PinaColada has three modes of action. These are the three 
kinds of input it accepts: 

●● A protein–peptide complex.
●● A protein–protein complex.
●● A protein and its binding site (the exact format will be given in 

Methods).

Note: In both methods, you only need to have one of the 
above options.

3 Methods

PepCrawler can be found at the following URL: <http://bioinfo 
3d.cs.tau.ac.il/PepCrawler/>. There is a possibility to download 
the PepCrawler executable to your computer and apply it locally. 
We shall focus on the web server application of PepCrawler. The 
server home is depicted in Fig. 1.

3.1 PepCrawler

Protein-Peptide Interaction Design: PepCrawler and PinaColada
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Protein-Peptide (default) —the instructions are following the 
blue lines:

 1. Check that the protein–peptide option is chosen in the first 
line.

 2. Upload the protein–peptide complex file (in a PDB format).
 3. Write down the receptor chains (the chains must appear in the 

PDB file), without spaces.
 4. Write down the peptide’s chain. Usually the peptide is repre-

sented as a single chain, and the program requires it. If it is not 
the case, you could use software like Chimera [17], to save the 
peptide as a single PDB chain.

 5. Determine the program parameters, which govern the energy 
function. Use the default option, unless your  protein is an 
enzyme, then, the enzyme-inhibitor option is recommended.

 6. Determine how wide the RRT exploration is. Use “full” for 
large exploration area (slower) or “restricted” for a small explo-
ration area (faster).

 7. Email address, which the results will be sent to.

Fig. 1 The web server of the PepCrawler algorithm
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283

Protein-Protein —the instructions are following the blue lines:

 1. Check that the protein–protein option is chosen in the first 
line.

 2. Upload the protein–protein complex file (in a PDB format).
 3. Write down the receptor chains (the chains must appear in the 

PDB file), without spaces.
 4. Write down the chain of the second protein of which you want 

the peptide to be extracted from.
 5. Determine the program parameters, which govern the energy 

function. Use the default option, unless your protein is an 
enzyme, then, the enzyme-inhibitor option is recommended.

 6. Determine how wide the RRT exploration is. Use “full” for 
large exploration area (slower) or “restricted” for a small explo-
ration area (faster).

 7. Email address, which the results will be sent to.

PinaColada can be found at the following URL:: <http://bioin-
fo3d.cs.tau.ac.il/PinaColada/>. We will go over the steps to use 
PinaColada server. The server home is depicted in Fig. 2.

●● Protein-Protein (default) —the instructions are following 
the blue lines:
1.  Check that the protein–protein option is chosen in the first 

line.
2. Normal or extended options.
3. Upload the protein–protein complex file (in a PDB format).
4.  Write down the receptor chains (the chains must appear in 

the PDB file), without spaces.
5.  Write down the chain of the second protein of which you 

want the peptide to be extracted from.
6. Binding site isn’t relevant for this mode.
7. Specify the peptide’s length.
8. Extended options: 

 – Number of rounds (reduce to increase speed).
 – Ants per round (reduce to increase speed).
 – Number of output peptides.
 – Upload biological constraints (format in the help 

section).
 9. Email address, which the results will be sent to.

3.2 PinaColada

Protein-Peptide Interaction Design: PepCrawler and PinaColada
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●● Protein-Peptide —the instructions are following the blue 
lines:
 1. Check that the protein-peptide option is chosen in the first 

line.
 2. Upload the protein–peptide complex file (in a PDB 

format).
 3. Write down the receptor chains (the chains must appear in 

the PDB file), without spaces.
 4. Write down the peptide’s chain. Usually the peptide is rep-

resented as a single chain, and the program requires it. If it 
is not the case, you could use software like Chimera, [17] to 
save the peptide as a single PDB chain.

 5. Binding site isn’t relevant for this mode.
 6. Specify the peptide’s length.
 7. Extended options: 

 – Number of rounds (reduce to increase speed).
 – Ants per round (reduce to increase speed).
 – Number of output peptides.
 – Upload biological constraints (format in the help 

section).
 8. Email address, which the results will be sent to.

Fig. 2 The web server of the PinaColada algorithm
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●● Protein-Binding Site:
 1. Check that the protein + binding site option is chosen in 

the first line.
 2. Upload the single protein file (in a PDB format).
 3. Write down the receptor chains (the chains must appear in 

the PDB file), without spaces.
 4. Ligand chain isn’t relevant for this mode.
 5. Upload the binding site information, as specified in the help 

section.
 6. Specify the peptide’s length.
 7. Extended options: 

 – Number of rounds (reduce to increase speed).
 – Ants per round (reduce to increase speed).
 – Number of output peptides.
 – Upload biological constraints (format in the help 

section).
 8. Email address, which the results will be sent to.

4 Example of Web Server Applications

Input:
entry: 1ZUK (Fig. 3)—a complex of a homo-dimer and a 

peptide.
Output:

When the algorithm has finished, the user receives a mail with 
the following output. We’ll go over the main files:

 1. FunnelScore.txt: Final funnel score is: 17.8798721437.

4.1 PepCrawler

Fig. 3 Case study for PepCrawler. 1ZUK homo dimer of the Yeast BBC1 Sh3 
domain complexed with a peptide from Las17. This is the input we used for the 
example run of PepCrawler

Protein-Peptide Interaction Design: PepCrawler and PinaColada
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This is the funnel score. Any number above 5 indicates high 
chances of binding to the protein.

 2. EnergyChartOfMin.png: Fig. 4 shows the funnel shape of the 
conformations’ energy scores. This graph is shown in Fig. 4a

 3. LowerEnvOfMin.png: This shows the funnel slope of the 
energy/RMSD graph. This graph is shown in Fig. 4b

 4. StartConfAll, Lig, Prot: These are the starting conformations 
of both the ligand, the receptor and the whole complex, as 
shown in Fig. 3.

 5. MinEnrgAll, Lig: These are the output peptide in complex 
with the receptor protein as well as by itself.

 6. Sol0, 1, 2, 3, 4-Lig: Fig. 5 shows the best five solutions of pep-
tide conformations, according to the energy score.

Fig. 4 Funnel plot of PepCrawler conformations. On the left (a ), the graph of computational energy/rmsd of the 
sampled conformations. This graph is later referred as the funnel graph. On the right (b ) we see the slope of 
the funnel graph. The slope is later referred to as the funnel score. The funnel score is used to assess the likeli-
hood of the peptide to bind to the receptor. If the funnel score is > 5, we consider the peptide as likely to bind

Fig. 5 Five highest scoring conformations of PepCrawler

Daniel Zaidman and Haim J. Wolfson
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Input:
PDB entry: 2PL9 (only one of the three units) is depicted in 

Fig. 6.

Output:
When the algorithm has finished, the user receives a mail with 

the following output. We’ll go over the main files:

 1. Best.log: Fig. 7 shows the file containing the peptide sug-
gestions with several parameters including: sequence, energy, 
funnel score, and interface size. Specifically, energy is the com-
putational energy computed by PepCrawler, which is similar to 
FireDock energy function, funnel score is the slope of the 
Energy/RMSD plot, which is used as a measure for affinity, 
and the interface size is the number of peptide amino acids in 
the active site of the interaction. One could see a pattern in  
the results. By running the algorithm a few times (due to its 
 random nature), one could get an idea about the receptor 
binding specificity profile as done in [12].

 2. PinaColada.log: This is the overall log file of the algorithm, 
including all the ants in each round and their appropriate score. 
This is more useful in case you want to see what happened at 
which round. Otherwise, Best.log will be more useful, con-
taining all the best overall suggestions.

 3. Best Ants: This is the folder, containing all the predicted PDB 
of the protein–peptide complexes in the output of PinaColada. 
You could open them with every software which can handle 
PDB format like.

4.2 PinaColada

Fig. 6 Case study for PinaColada. 2PL9: Crystal Structure of CheY-Mg(2+)-BeF(3)
(-) in Complex with CheZ(C19) Peptide solved from a P2(1)2(1)2 Crystal. For the 
example run of PinaColada we used only one of the three proteins which com-
prise the complex

Protein-Peptide Interaction Design: PepCrawler and PinaColada
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 4. For example, Fig. 8 shows one of the five best overall 
suggestions.

 5. The highest scoring five peptides in PinaColada’s output are 
depicted in Fig. 9.

5 Conclusions and Future Work

We presented two algorithms dealing with peptide design and 
binding conformation prediction.

PepCrawler receives an initial protein–peptide structure or a 
protein–protein structure from which to derive a binding peptide. 
Its output is a refined model of the protein–peptide interaction at 
high resolution, after searching the vast space of possible confor-
mations. It is very efficient and can predict a peptide conformation 
in a matter of minutes. PinaColada is a peptide design algorithm. 
It receives an initial protein–peptide, protein–protein, or protein+ 
binding site. Its output is a list of suggested peptide sequences for 
inhibition of a specific protein–protein interaction. This method 
uses the efficient ant colony optimization scheme, and the fast 
PepCrawler, in order to explore the computational energy of 
numerous peptides and suggest those most likely to bind. In the 
future we plan to explore several ideas for future work, involving 

Fig. 7 PinaColada’s results file. Best.log is the result file, including the best scoring peptide sequences, their 
score, funnel score, and the surface with the receptor

Daniel Zaidman and Haim J. Wolfson
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both improving the existing methods and developing new ones. 
Some of them include improving the ant colony exploration by 
using several starting points (both with and without an initial pep-
tide, or using several initial peptides at the same time). A promising 
development could the simultaneous combination of sequence and 
conformation exploration. It is very challenging because of the 
exponential nature of both, and the necessity to find a solution in 
reasonable time.
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Chapter 17

Modeling and Design of Peptidomimetics to Modulate 
Protein–Protein Interactions

Andrew M. Watkins, Richard Bonneau, and Paramjit S. Arora

Abstract

We describe a modular approach to identify and inhibit protein–protein interactions (PPIs) that are medi-
ated by protein secondary and tertiary structures with rationally designed peptidomimetics. Our analysis 
begins with entries of high-resolution complexes in the Protein Data Bank and utilizes conformational 
sampling, scoring, and design capabilities of advanced biomolecular modeling software to develop 
peptidomimetics.

Key words Peptidomimetics, Protein–protein interactions, Inhibitor design, Computational design

1 Introduction

Recent advances in computational chemistry and structural biol-
ogy have enabled the systematic targeting of recalcitrant protein–
protein interfaces that have traditionally been neglected as 
inaccessible targets. Protein–protein interaction (PPI) inhibitors 
are sought as probes to reversibly induce a desired cell state, to 
examine signaling pathways in vitro, and as potential leads to mod-
ulate disease states in vivo. Here we describe a successful rational 
design approach for the development of PPI inhibitors that uses 
computational methods to identify protein secondary and tertiary 
structures critical for binding interactions followed by the mimicry 
of these domains by synthetic scaffolds for the generation of potent 
inhibitors [1–3].

Several classes of synthetic scaffolds that mimic the backbone 
or side chain geometries of protein secondary and tertiary struc-
tures have been described [4–10]. Elegant strategies for computa-
tional evaluation of protein interfaces have also been developed. 
These include methods that predict functional sites, such as 
InterProSurf [11], those that construct maps of residue contacts, 
such as COCOMAPS, and approaches that integrate this 
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information with evolutionary conservation data [12, 13]. Analysis 
of evolutionary conservation is a reliable tool to infer key binding 
residues and can be especially valuable when high-resolution struc-
tures of protein complexes are not available [14]. Public webserv-
ers provide useful starting points for such analyses [15–19].

We have used Rosetta for the identification of hot spot residues 
found on interfacial helices [20–23], β-strands [24], and helix 
dimers [25]. In combination with the helix [26, 27], β-strand [28–
30] and helix dimer [31] scaffolds developed in our group, these 
computational studies have provided a streamlined approach to 
discovery of inhibitors for a range of protein–protein interactions 
(Fig. 1) [31–39]. In this Chapter, we discuss methods that we have 
found most useful for development of protein-interface disrupting 
mimetics.

Fig. 1 Protein–protein interactions possess diverse interfacial structures and may thereby be inhibited by a 
variety of peptidomimetics, which mimic motifs such as the α-helix, β-strand, or helical dimer

Andrew M. Watkins et al.
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2 Theory

We have used the Rosetta software package [40], as well as numer-
ous public servers implementing Rosetta protocols, to analyze pro-
tein–protein interfaces and to optimize peptidomimetic compounds 
[17–19]. Code for analyzing alanine scanning output is available at 
https://github.com/everyday847/protein-interface-analysis, and 
Rosetta is available at https://rosettacommons.org/software.

Both alanine scanning and calculation of solvent accessible surface 
area (SASA) burial upon binding (ΔSASA) are classic methods of 
interface analysis that produce useful conclusions about the relative 
importance of different residues. Alanine scanning mutagenesis 
results may be computed by many methods, from MM/GBSA and 
MM/PBSA [41, 42] to specially trained energy functions [43]; 
they may employ only the bound structure or they may explicitly 
sample bound and unbound state ensembles [44]. The results will 
vary widely with the choice of force field and sampling level. We 
perform alanine scanning with Rosetta’s talaris2014 scoring func-
tion, which combines statistical potentials to describe rotamer and 
backbone single-body energies with explicit evaluation of multi-
body Lennard-Jones, electrostatic, hydrogen bonding, and desol-
vation interactions, and we choose to repack the bound and 
unbound states. Similarly, multiple algorithms are available for 
accessible surface area computation [45–47], but the variance 
between methods is considerably smaller, and the quantity is typi-
cally faster to compute. Though SASA is easier to calculate, it is 
more distantly related to the objective of developing better bind-
ers, while an alanine scanning measurement offers an expression of 
the importance of a particular residue side chain to an interaction’s 
[48]. Alanine scanning can be used directly to estimate a change in 
binding free energy. SASA and other geometric quantities provide 
empirical models, along with explicit energetic features [49]. Even 
though measures like ΔSASA cannot account for the value of polar 
contacts and hydrogen bonding that contributes to interface sta-
bility, they afford an accurate approximation to the overall ques-
tion of what residues matter most.

Many peptidic and peptidomimetic scaffolds that possess the 
approximate backbone and side chain local conformation of par-
ticular secondary structure motifs have been described [50–52]. A 
peptidic scaffold stabilizes the conformation of a peptide composed 
of natural and nonnatural amino acid residues with structural con-
straints [5, 6, 8, 27, 31, 53–56]. These compounds are useful 
starting points if many residues, or residues spanning a large range 
of sequence space or Cartesian space, are necessary for mimicry. 
We have extensively used hydrogen bond surrogate (HBS) helices 

2.1 Alanine 
Scanning and Solvent- 
Accessible Surface 
Area Calculation as 
Methods to Designate 
Key Binding Residues

2.2 Selecting 
Appropriate 
Peptidomimetic 
Scaffolds

Peptidomimetic Modulators of Protein-Protein Interactions
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to mimic interfacial helical domains and inhibit protein–protein 
interactions [32, 35, 36, 38, 57]. The development and properties 
of HBS helices have been previously reviewed [27, 54]. A nonpep-
tidic scaffold or a peptidomimetic is often a small molecule where 
the backbone features an amide bond isostere in the expected 
binding mode [26, 30, 52, 58–66]. Peptidomimetics often repro-
duce the surface of a peptide, i.e. the side chain residues, rather 
than the backbone conformation [2]. We have developed topo-
graphical mimics of strands (triazolamers [28–30]) and helices 
(oxopiperazine helix mimetics or OHMs [26, 33, 34]) to develop 
PPI inhibitors mediated by these secondary structures. 
Peptidomimetics may be more desirable than peptides if the hot 
spot residues are localized in a small region of protein. A nonpep-
tidic scaffold might also be preferable if the best binders to an 
interface are predicted to require highly unusual noncanonical 
side-chains, for which the conformational repercussions on a pep-
tidic backbone may be hard to predict.

The systematic variation of free scaffold (i.e. nonsidechain) torsions, 
followed by energy minimization at a QM level of theory, is a robust 
but time-consuming method [50]. This method is appropriate for 
scaffolds one anticipates using repeatedly. For unfamiliar or complex 
mimetics, software such as OpenEye’s OMEGA can rapidly produce 
libraries of conformers [67]. Care is needed to appropriately filter 
out conformers that are too similar to efficiently sample conforma-
tional space. Of course, whatever in silico sampling method is to be 
used for subsequent design may be able to produce a set of peptido-
mimetic conformers in the absence of a target. For example, molec-
ular dynamics codes can simply be run on the solvated inhibitor 
scaffold in isolation; in Rosetta, Monte Carlo simulations can pro-
duce an ensemble of energetically reasonable conformers. This is 
frequently a reasonable middle ground between the rigor of QM 
and the rapidity of OMEGA; furthermore, it has the added advan-
tage that the conformers generated are sure to be compatible with 
the subsequent computational system as well.

For the purpose of peptidomimetic design, obtaining an ensemble 
of native conformations is critical to understand both the error 
in the protein model and the protein’s intrinsic flexibility. When 
available, both features are partially captured by B-factors or, bet-
ter, anisotropic B-factors. Thus, protein structural models are 
 contingent on experimental conditions (and, indeed, the experi-
ment in question) and at best represent an estimate given the 
data—for example, electron density maps from diffraction studies 
or distance restraints from NMR experiments. High-quality struc-
tures contain invaluable information about molecular conforma-
tion, but it is essential not to overestimate our certainty in these 
conformations. Using protein structure prediction and molecular 

2.3 Conformational 
Sampling of 
Peptidomimetic 
Structures

2.4 The Target 
Protein Structure
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dynamics codes to sample likely near-native conformations can 
provide us with an ensemble for further work that properly repre-
sents the protein and its site-specific uncertainty.

Algorithms can describe whole-protein motions statistically, in 
terms of normal modes [68] or the RMSF of individual residues 
[69], which can be treated analogously to a crystallographic 
B-factor to describe mobility [70]. To provide a set of starting 
conformations, it is essential for subsequent design and optimiza-
tion to draw explicit samples from those ensembles. In addition to 
algorithms like Rosetta’s FastRelax and molecular dynamics simu-
lation, the Hilser lab’s COREX algorithm provides a conforma-
tional ensemble based on local unfolding events that fits well to 
deuterium exchange data [71].

Particular attention must be given to the nature of the various 
structures available of a target protein. If apo and holo structures of 
the target protein are highly similar, then the structures bound by 
peptidomimetics are likely similar to both. If they diverge consider-
ably, aggressive sampling in the presence of an example mimetic may 
be necessary to recover a realistic structure. Appreciable work in mul-
tiple computational frameworks attempts to address this issue [72].

3 Methods

Here we describe a rational design process that progresses from 
target discovery and complex analysis to the design and evaluation 
of particular peptidomimetic inhibitors (Fig. 2). Typically in our 
lab, we begin with the classical methodology of interface alanine 
scanning [73] to discover hot spot residues by the systematic anal-
ysis of entries in the Protein Data Bank. These studies provide 
novel targets for protein–protein interaction inhibitors. 
Subsequently, we use dock-design algorithms in Rosetta to model 
diverse peptidomimetic scaffolds and noncanonical functionality 
[34, 74]. Given its modular design and the demonstration of key 
components in other settings we expect that this methodology will 
be general, yielding multiple potential approaches to interface 
analysis and inhibitor design (Fig. 3).

 1. Designate residues at the interface that are critical to the inter-
action based on the data available.

 (a)  If there is limited structural data on the macromolecule to 
be mimicked, machine learning techniques to infer critical 
binding residues from sequence [14] or structure features 
[75] are frequently quite effective.

 (b)  The PocketQuery server permits the identification of clusters 
of anchor residues (high ΔSASA) whose mimicry might be 
essential to small molecule development (see Note 1) [76].

3.1 Isolating Key 
Structural Features 
at the Protein 
Interface

Peptidomimetic Modulators of Protein-Protein Interactions



Fig. 2 An example of a peptidomimetic design workflow. We begin with all multichain biological assemblies 
from the Protein Data Bank with only protein components. Subsequently, we identify all those complexes of 
good resolution without common defects. We pair all chains from these complexes and perform alanine scan-
ning. Analysis of the resulting data produces high-affinity interfaces with key helices, strands, or helical dimers

Fig. 3 Different modalities of starting point analysis (gray) may be used interchangeably with alternative con-
structions of an initial pose (brown) and, ultimately, inhibitor design (green)
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 (c)  The InterProSurf program may be used to perform patch 
and cluster analyses on interfacial residues to predict func-
tional sites (see Note 2) [11].

 (d)  Interface alanine scanning may be performed manually 
(i.e. by direct truncation of residues to alanine, followed 
by scoring in some force field) or with specialized tools.

●● Alanine scanning can be done with AMBER; within 
this broad framework for molecular modeling and sim-
ulation, MM/PBSA and MM/GBSA are molecular 
mechanics methods that differ only in solvation model.

●● Several Rosetta-based computational protocols can be 
used: The Robetta webserver, RosettaScripts AlaScan 
filter, and ddg_monomer application all permit inter-
face alanine scanning analysis (see Note 3).

 (e)  If there is no protein–protein complex available, the sur-
face of the protein to be inhibited may be analyzed to find 
viable binding pockets.

●● Docking side chain fragments (e.g. benzyl for phenyl-
alanine, isobutyl for leucine) may produce starting 
points that could be used, in rather forced analogy, like 
hot spot or anchor residues (see Note 4).

●● Absent an obvious choice of fragments, methods for 
interpreting a protein surface as a collection of pockets 
like Fpocket [77], AlphaSpace [78], and Pocket V.3 
[79] provide analogous starting points to identify key 
regions of the surface with favorable chemical and 
topological properties.

 2. Analyze the protein interface with the secondary structure 
analysis programs DSSP [47] or STRIDE [80] to determine if 
multiple critical residues reside on the same secondary struc-
ture element: groups of spatially proximal residues, groups of 
sequence proximal residues, and high-affinity elements are all 
possible handles for further analysis.

 3. Contextualize the energetic role of the high-affinity secondary 
structure element (or other residue groupings) in question.

 (a)  The percentage of the protein’s total ΔΔG contributed by 
that element can help ascertain whether it is worth 
mimicking.

 (b)  The number of helical faces employed for recognition can 
affect what inhibitor classes are appropriate choices for its 
mimicry.

 4. Address the possibility that the interface in question has mul-
tiple high-affinity secondary structure elements or residue 
clusters.

Peptidomimetic Modulators of Protein-Protein Interactions
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 (a)  In general, only discard an element from consideration if 
there are more than three in all and if it only contributes 
10 % or less of the interaction’s total ΔΔG. Otherwise, 
eliminating it from consideration will not save enough 
computation to be worth the risk of prematurely discard-
ing a potential inhibitor binding site.

 (b)  Key geometric measures can indicate if multiple secondary 
structure elements may be used for joint mimicry by a 
complex molecule (see Note 5).

 1. Select an appropriate set of peptidomimetic scaffolds from 
those synthetically available and suited to the problem (with 
conformation matching the identified secondary structure 
backbone structure).

 2. From this set of scaffolds of interest, obtain a conformational 
ensemble representative of low-energy structures.

 3. Map scaffold conformers onto some subset of the array of criti-
cal binding residues to obtain a starting pose.

 (a)  Because a peptidic scaffold typically involves the mimicry of 
every residue in primary sequence, the problem of scaffold 
alignment is trivial: every peptidic scaffold may be aligned 
almost atom-by-atom to the peptide mimicked (see Note 6).

 (b)  In circumstances with a small number of binding residues 
and a conformationally well-resolved scaffold, simple 
RMSD minimization of the alpha and beta carbons versus 
those of the native protein may suffice, and it is certainly 
the most generally applicable procedure. Other methods 
may be preferred:

●● If there are many reasonable conformers, many bind-
ing residues, and/or many scaffold residue isosteres, 
the combinatorics of RMSD-aligning all possible con-
former alignments explode and manual alignment is 
unreasonably laborious.

●● If the expected optimal rotamers on a particular scaf-
fold differ from those of a native peptide, the best 
Cα-Cβ aligned scaffolds may not be physically realiz-
able with the binding residue rotamers grafted on.

 (c)  Even in situations where a complex parameterization of a 
peptidomimetic is available, it is entirely possible to treat 
that molecule as a small molecule ligand [81] or as a protein 
chain and to subject it to global docking [82]. Such meth-
ods are not particularly suitable for obtaining a high-resolu-
tion orientation of a peptidomimetic in a binding pocket, 
but they would deliver a critical piece of information: if a 
peptidomimetic might competitively bind elsewhere on a 
protein surface and be unsuitable for that reason.

3.2 Obtaining 
a Starting Pose 
with a Peptidomimetic 
Molecule

Andrew M. Watkins et al.
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 (d)  Alternatively, one may take advantage of codes initially 
built to match catalytic residues to novel protein scaffolds 
as part of Rosetta’s enzyme design framework [83, 84]. 
The enzyme design code provides constraints that could 
be used in combination to require that desired peptidomi-
metic conformations present the same rotamers, in the 
same location, as the native protein.

 (e)  Reasonable biomolecular conformations can also be 
assembled stepwise, either using an enumerative or Monte 
Carlo approach [85]. The scoring function would be 
biased using the aforementioned restraints to present key 
binding residues.

This strategy is preferred if a general conformational ensemble—
without a protein target—is difficult or impossible to generate, 
since the stepwise approach would permit the concurrent creation 
and evaluation of a compatible conformational ensemble.

 1. Select an appropriate framework for scoring designs and their 
conformations (see Note 7).

 (a)  Determine the portion of the protein–inhibitor complex 
to which the scoring function ought to be applied.

●● First, attempt to score all residues, but be aware that 
implicit in this decision is the assumption that the 
entire complex has been sampled adequately.

●● If there is reason to suspect that only the interface has 
truly converged, then the scores of distant residues will 
contribute more noise than signal, and these should be 
discounted. Thus, choose a definition of the protein–
protein interface and score only those residues.

●● Finally, for an ad hoc definition of what residues are at 
the interface, explicitly sample both bound and 
unbound states of the complex in question and take the 
difference as a putative binding energy. On average, 
residues that are far from the interface will contribute 
less to this difference than residues at the interface 
(although one should check that this is the case).

 – Doing so opens the question of what degree of 
unbound state sampling is appropriate: it is per-
haps far different for an intrinsically disordered 
protein than for a helix bundle.

 – Since this method requires strictly more sampling, 
it is only ideal if the above methods do not pro-
duce satisfactory results.

 (b)  Choose a criterion to determine the subset of trajectory 
results that will be ranked by the selected scoring function 
and selected for downstream design runs.

3.3 Core Design: 
Shopping 
for Sidechains

Peptidomimetic Modulators of Protein-Protein Interactions
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●● Many structures will have flaws that should disqualify 
them. Top among these flaws are violation of experi-
mental or biological constraints: for example, perhaps 
it is known that a particular hydrogen bond is critical. 
Those decoys lacking it could be excluded.

●● Additional filters such as overall score, buried surface 
area, and so forth might help separate the most physi-
cally realistic structures from the chaff (see Note 8).

●● Exclusively analyzing the metrics of single structures is 
not ideal for assessing their collective physical plausi-
bility. Clustering the structures that result from such a 
trajectory provides considerable insight into the nature 
of the conformational minima they might inhabit.

 (c)  Select a method to proceed from such a set of resulting 
structures or other simulation results to concrete design 
recommendations (see Note 9).

●● Typically, exclude any compounds that appear only 
once or twice in a set of trajectories (see Note 10).

●● Take the best-scoring compounds that also come up 
frequently (Fig. 4).

●● If there is no top-scoring compound that also comes 
up substantially more than any other, or if the very 

Fig. 4 An example result set from a study of tetrapeptides that might inhibit a 
target protein. Of 1000 physically reasonable resulting structures, three 
sequences appear one, two, and three times. Even though they score better on 
average than LWKF and LWKY, those two designs are likely superior due to their 
appreciably higher frequency

Andrew M. Watkins et al.
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best few compounds all appear with comparable but 
unremarkable frequency, it will be necessary to per-
form parallel simulations, starting with the completed 
structures of interest, holding the chemical structure 
of each compound constant (see Note 11).

 2. Obtain and optimize a satisfactory target protein structure (as 
described in Subheading 2.4). Being able to compare crystal 
structures of both apo and holo is best, but a holo complex alone 
can be perfectly suitable, and even an apo structure alone can 
be addressed. An NMR ensemble presents a considerably 
greater challenge but is by no means prohibitive by careful and 
extensive sampling.

 3. For a subset of starting poses—combinations of protein target 
structures and scaffold conformers—optimize the peptidomi-
metic structure.

 (a)  To make possible changes in sequence, molecular dynamics 
permits alchemical simulations where a continuously varied 
parameter governs the degree to which a given residue’s 
identity of e.g. leucine or isoleucine interacts with its sur-
roundings [86, 87]. Low-energy snapshots from such simu-
lations can constitute an ensemble of peptidomimetic designs.

 (b)  Rotameric approximations of side chain conformation per-
mit the inclusion of rotamers of different amino acids in 
their rotamer sets, and Monte Carlo methods can sample 
from or anneal these configurations to approximate the 
minimum energy configuration.

 (c)  Alternatively, dead end elimination can prove categorically 
that particular rotamers cannot be part of the global mini-
mum energy configuration, or GMEC [88, 89].

 (d)  Other conformational degrees of freedom must be sam-
pled concurrently.

●● Rosetta, for example, employs a “relax” algorithm that 
performs repeated sidechain packing and minimiza-
tion while ramping the repulsive weight of the scoring 
function.

●● Molecular dynamics simulations can employ simulated 
annealing for a similar effect [90].

●● The RosettaScripts framework [91] permits the seam-
less integration of the particular sampling modalities 
necessary for Monte Carlo simulations of special pep-
tidomimetic scaffolds with those needed for e.g. 
remodeling a flexible loop (see Note 12).

 4. According to the scoring criteria determined in step 1, select a 
set of compounds to synthesize and evaluate.

 5. Employ the results to better inform subsequent rounds of 
design for this and other targets.
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4 Notes

 1. PocketQuery (and other methods that find clusters of perti-
nent residues) might be of particular use if the interface con-
tains many loops distant from each other in primary sequence, 
i.e. in circumstances where few sets of consecutive residues 
would be useful.

 2. InterProSurf is particularly useful if the protein–protein inter-
face is large and there exist multiple distinct areas that might 
plausibly be targeted; it permits the elimination of entire irrel-
evant interface regions.

 3. Of these options, submitting a job to the Robetta webserver 
requires none of one’s own computing resources and is reason-
ably fast. The AlaScan filter is reasonably accurate and more 
customizable in its application than Robetta (in terms of scor-
ing function selection and convergence criteria). The ddg_
monomer application was the result of a systematic study 
comparing different levels of sampling sophistication and scor-
ing functions to optimize the speed versus accuracy tradeoff 
and is the best choice to evaluate a handful of mutations if accu-
rate energies are desired. For merely identifying whether resi-
dues are important, the AlaScan filter is more than adequate.

 4. Since these moieties are handles for complex analysis, rather 
than literal representations of a bound structure, some of the 
challenges of fragment docking are not pertinent; mostly, the 
aim is finding shape complementarity and considerable contact 
surface area [92, 93].

 5. For example, we anticipate that pairs of α-helices with inter- 
helical axes separated by angles of less than 30° and a distance 
of at most 15 Å are likely amenable to inhibition by a designed 
helical dimer mimetic [25]. Similar analysis might govern 
β-hairpins or other arrangements of elements, such as particu-
lar arrangements of key loop anchors [94].

 6. Aligning a hybrid scaffold (e.g. a mostly peptidic scaffold with 
a set of residue isosteres grafted on in a nonpeptidic sense) 
simply reduces to the challenge of aligning the nonpeptidic 
portion given an atom-by-atom peptidic alignment obtained 
from the peptidic section.

 7. Even beginning from a particular framework—for example, a 
molecular mechanics force field or Rosetta’s all-atom scoring 
function talaris2013—there still remain meaningful choices to 
describe interfaces and rank different ligands [95–97]. Be 
comfortable beginning with a well-understood and well vali-
dated scoring function, but be equally prepared to modify it to 
suit the system at hand—in doing so, be sure to have a bench-
mark to quantifiably support that the modified scoring func-
tion treats your system more appropriately.

Andrew M. Watkins et al.



303

 8. It is important to distinguish the notions of an overall score—a 
combined metric of physical realism—and of an interface or 
binding score. This way, one may differently judge the physical 
realism of an entire structure versus the expected binding affin-
ity or biological activity of a designed mimetic.

 9. The only chemically manipulable choice, following a set of sim-
ulations thus described, is the actual structure of the peptidomi-
metic—not the particular bound structure, to which such a 
simulation can assign a score. So, given that an identical pepti-
domimetic structure, in slightly different bound conformations, 
will be assigned many different scores over a set of simulations, 
how ought one to decide what compounds to synthesize?

 10. Such a result suggests that the bound conformation that passed 
initial filters and has an excellent interface score is not at a par-
ticularly stable equilibrium: if small perturbations from that 
conformation also scored comparably well, then there would 
likely be more instances of that compound in the post- 
simulation data.

 11. In doing so, one guarantees the same number of structures will 
be generated for each compound of interest, and the potential 
fragility of a given scoring function’s preference for one com-
pound or another will be made plain.

 12. No particular programming experience is necessary to compose 
a protocol using RosettaScripts. The previously developed 
OopDockDesign and HbsDockDesign protocols [74] have 
been incorporated into the RosettaScripts framework which 
enables biologists with no programming expertise to compose 
their own complex protocols. Furthermore, these protocols—
which were developed to work on particular scaffolds synthe-
sized in the Arora lab—were generalized into a mover to handle 
the docking and design of arbitrary noncanonical backbones.
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