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TO
PROFESSOR RICHARD SKEMP

whose theories on the learning of mathematics have been
a constant source of inspiration





PREFACE TO THE SECOND EDITION

Theworld has moved on since the first edition of this book was written
on typewriters in 1976. For a start, the default use of male pronouns
is quite rightly frowned upon. Educationally, research has revealed

new insights into how individuals learn to thinkmathematically as they build
on their previous experience (see [3]).1 We have used these insights to add
comments that encourage the reader to reflect on their own understanding,
thereby making more sense of the subtleties of the formal definitions. We
have also added an appendix on self-explanation (written by Lara Alcock,
Mark Hodds, and Matthew Inglis of the Mathematics Education Centre,
Loughborough University) which has been demonstrated to improve long-
term performance in making sense of mathematical proof. We thank the
authors for their permission to reproduce their advice in this text.
The second edition has much in common with the first, so that teachers

familiar with the first edition will find that most of the original content and
exercises remain. However, we have taken a significant step forward. The
first edition introduced ideas of set theory, logic, and proof and used them
to start with three simple axioms for the natural numbers to construct the
real numbers as a complete ordered field. We generalised counting to con-
sider infinite sets and introduced infinite cardinal numbers. But we did not
generalise the ideas of measuring where units could be subdivided to give an
ordered field.
In this edition we redress the balance by introducing a new part IV that

retains the chapter on infinite cardinal numbers while adding a new chapter
on how the real numbers as a complete ordered field can be extended to a
larger ordered field.
This is part of a broader vision of formal mathematics in which certain

theorems called structure theorems prove that formal structures have natural
interpretations that may be interpreted using visual imagination and sym-
bolic manipulation. For instance, we already know that the formal concept of
a complete ordered field may be represented visually as points on a number
line or symbolically as infinite decimals to perform calculations.

1 Numbers in square brackets refer to entries in the References and Further Reading
sections on page 383.
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Structure theorems offer a new vision of formal mathematics in which for-
mal defined concepts may be represented in visual and symbolic ways that
appeal to our human imagination. This will allow us to picture new ideas
and operate with them symbolically to imagine new possibilities. We may
then seek to provide formal proof of these possibilities to extend our theory
to combine formal, visual, and symbolic modes of operation.
In Part IV, chapter 12 opens with a survey of the broader vision. Chap-

ter 13 introduces group theory, where the formal idea of a group—a set with
an operation that satisfies a particular list of axioms—is developed to prove
a structure theorem showing that elements of the group operate by permut-
ing the elements of the underlying set. This structure theorem enables us to
interpret the formal definition of a group in a natural way using algebraic
symbolism and geometric visualisation.
Following chapter 14 on infinite cardinal numbers from the first edition,

chapter 15 uses the completeness axiom for the real numbers to prove a sim-
ple structure theorem for any ordered field extension K of the real numbers.
This shows that K must contain elements k that satisfy k > r for all real
numbers r, which we may call ‘infinite elements’, and these have inverses
h = 1/k that satisfy 0 < h < r for all positive real numbers r, which may be
called ‘infinitesimals’. (There are corresponding notions of negative infinite
numbers k satisfying k < r for all negative real numbers r.) The structure
theorem also proves that any finite element k in K (meaning a < k < b for
real numbers a, b) must be of the form a+hwhere a is a real number and h is
zero or an infinitesimal. This allows us to visualise the elements of the larger
field K as points on a number line. The clue lies in using the magnification
m : K → K given by m(x) = (x – a)/h which maps a to 0 and a + h to 1,
scaling up infinitesimal detail around a to be able to see it at a normal scale.
This possibility often comes as a surprise to mathematicians who have

worked only within the real numbers where there are no infinitesimals. How-
ever, in the larger ordered field we can now see infinitesimal quantities in a
larger ordered field as points on an extended number line by magnifying the
picture.
This reveals two entirely different ways of generalising number concepts,

one generalising counting, the other generalising the full arithmetic of the
real numbers. It offers a new vision in which axiomatic systems may be de-
fined to have consistent structures within their own context yet differing
systems may be extended to give larger systems with different properties.
Why should we be surprised? The system of whole numbers does not have
multiplicative inverses, but the field of real numbers does have multiplica-
tive inverses for all non-zero elements. Each extended system has properties
that are relevant to its own particular context. This releases us from the
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limitations of our real-world experience to use our imagination to develop
powerful new theories.
The first edition of the book took students from their familiar experience

in school mathematics to the more precise mathematical thinking in pure
mathematics at university. This second edition allows a further vision of the
wider world of mathematical thinking in which formal definitions and proof
lead to amazing new ways of defining, proving, visualising, and symbolising
mathematics beyond our previous expectations.

Ian Stewart and David Tall
Coventry 2015
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PREFACE TO THE FIRST EDITION

This book is intended for readers in transition from school math-
ematics to the fully-fledged type of thinking used by professional
mathematicians. It should prove useful to first-year students in uni-

versities and colleges, and to advanced students in school contemplating
further study in pure mathematics. It should also be of interest to a wider
class of reader with a grounding in elementary mathematics seeking an
insight into the foundational ideas and thought processes of mathematics.
The word ‘foundations’, as used in this book, has a broader meaning than

it does in the building trade. Not only do we base our mathematics on these
foundations: theymake themselves felt at all levels, as a kind of cement which
holds the structure together, and out of which it is fabricated. The founda-
tions of mathematics, in this sense, are often presented to students as an
extended exercise in mathematical formalism: formal mathematical logic,
formal set theory, axiomatic descriptions of number systems, and technical
constructions of them; all carried out in an exotic and elaborate symbolism.
Sometimes the ideas are presented ‘informally’ on the grounds that complete
formalism is too difficult for the delicate flowering student. This is usually
true, but for an entirely different reason.
A purely formal approach, even with a smattering of informality, is psy-

chologically inappropriate for the beginner, because it fails to take account of
the realities of the learning process. By concentrating on the technicalities, at
the expense of the manner in which the ideas are conceived, it presents only
one side of the coin. The practising mathematician does not think purely
in a dry and stereotyped symbolism: on the contrary, his thoughts tend to
concentrate on those parts of a problem which his experience tells him are
the main sources of difficulty. While he is grappling with them, logical rig-
our takes a secondary place: it is only after a problem has, to all intents and
purposes, been solved intuitively that the underlying ideas are filled out into
a formal proof. Naturally there are exceptions to this rule: parts of a prob-
lem may be fully formalised before others are understood, even intuitively;
and some mathematicians seem to think symbolically. Nonetheless, the basic
force of the statement remains valid.
The aim of this book is to acquaint the student with the way that a practis-

ing mathematician tackles his subject. This involves including the standard
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‘foundations’ material; but our aim is to develop the formal approach as a
natural outgrowth of the underlying pattern of ideas. A sixth-form student
has a broad grasp of many mathematical principles, and our aim is to make
use of this, honing his mathematical intuition into a razor-sharp tool which
will cut to the heart of a problem. Our point of view is diametrically opposed
to that where (all too often) the student is told ‘Forget all you’ve learned up
till now, it’s wrong, we’ll begin again from scratch, only this time we’ll get it
right’. Not only is such a statement damaging to a student’s confidence: it is
also untrue. Further, it is grossly misleading: a student who really did forget
all he had learned so far would find himself in a very sorry position.
The psychology of the learning process imposes considerable restraints on

the possible approaches to a mathematical concept. Often it is simply not
appropriate to start with a precise definition, because the content of the def-
inition cannot be appreciated without further explanation, and the provision
of suitable examples.
The book is divided into four parts to make clear the mental attitude re-

quired at each stage. Part I is at an informal level, to set the scene. The first
chapter develops the underlying philosophy of the book by examining the
learning process itself. It is not a straight, smooth path; it is of necessity a
rough and stony one, with side-turnings and blind alleys. The student who
realises this is better prepared to face the difficulties. The second chapter ana-
lyses the intuitive concept of a real number as a point on the number line,
linking this to the idea of an infinite decimal, and explaining the importance
of the completeness property of the real numbers.
Part II develops enough set theory and logic for the task in hand, looking in

particular at relations (especially equivalence relations and order relations)
and functions. After some basic symbolic logic we discuss what ‘proof ’ con-
sists of, giving a formal definition. Following this we analyse an actual proof
to show how the customary mathematical style relegates routine steps to a
contextual background—and quite rightly so, inasmuch as the overall flow
of the proof becomes far clearer. Both the advantages and the dangers of this
practice are explored.
Part III is about the formal structure of number systems and related con-

cepts. We begin by discussing induction proofs, leading to the Peano axioms
for natural numbers, and show how set-theoretic techniques allow us to con-
struct from them the integers, rational numbers, and real numbers. In the
next chapter we show how to reverse this process, by axiomatising the real
numbers as a complete ordered field. We prove that the structures obtained
in this way are essentially unique, and link the formal structures to their in-
tuitive counterparts of part I. Then we go on to consider complex numbers,
quaternions, and general algebraic and mathematical structures, at which
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point the whole vista of mathematics lies at our feet. A discussion of infinite
cardinals, motivated by the idea of counting, leads towards more advanced
work. It also hints that we have not yet completed the task of formalising our
ideas.
Part IV briefly considers this final step: the formalisation of set theory.

We give one possible set of axioms, and discuss the axiom of choice, the
continuum hypothesis, and Gödel’s theorems.
Throughout we are more interested in the ideas behind the formal façade

than in the internal details of the formal language used. A treatment suitable
for a professional mathematician is often not suitable for a student. (A series
of tests carried out by one of us with the aid of first-year undergraduates
makes this assertion very clear indeed!) So this is not a rigidly logical
development from the elements of logic and set theory, building up a
rigorous foundation for mathematics (though by the end the student will
be in a position to appreciate how this may be achieved). Mathematicians
do not think in the orthodox way that a formal text seems to imply. The
mathematical mind is inventive and intricate; it jumps to conclusions: it
does not always proceed in a sequence of logical steps. Only when everything
is understood does the pristine logical structure emerge. To show a student
the finished edifice, without the scaffolding required for its construction, is
to deprive him of the very facilities which are essential if he is to construct
mathematical ideas of his own.

I.S. and D.T.
Warwick
October 1976
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PART I
The Intuitive Background

The first part of the book reflects on the experiences that the reader will have
encountered in school mathematics to use it as a basis for a more sophisti-
cated logical approach that precisely captures the structure of mathematical
systems.
Chapter 1 considers the learning process itself to encourage the reader to

be prepared to think in newways tomake sense of a formal approach. As new
concepts are encountered, familiar approaches may no longer be sufficient to
deal with them and the pathway may have side-turnings and blind alleys that
need to be addressed. It is essential for the reader to reflect on these new
situations and to prepare a new overall approach.
Using a ‘building’ metaphor, we are surveying the territory to see how we

can use our experience to build a firm new structure in mathematics that will
make it strong enough to support higher levels of development. In a ‘plant’
metaphor, we are considering the landscape, the quality of the soil, and the
climate to consider how we can operate to guarantee that the plants we grow
have sound roots and predictable growth.
Chapter 2 focuses on the intuitive visual concept of a real number as a

point on a number line and the corresponding symbolic representation as an
infinite decimal, leading to the need to formulate a definition for the com-
pleteness property of the real numbers. This will lead in the long term to
surprising new ways of seeing the number line as part of a wider programme
to study the visual and symbolic representations of formal structures that
bring together formal, visual, and symbolic mathematics into a coherent
framework.





chapter 1

Mathematical Thinking

Mathematics is not an activity performed by a computer in a vac-
uum. It is a human activity performed in the light of centuries of
human experience, using the human brain, with all the strengths

and deficiencies that this implies. You may consider this to be a source of
inspiration and wonder, or a defect to be corrected as rapidly as possible, as
you wish; the fact remains that we must come to terms with it.
It is not that the human mind cannot think logically. It is a question of

different kinds of understanding. One kind of understanding is the logical,
step-by-step way of understanding a formal mathematical proof. Each indi-
vidual step can be checked but this may give no idea how they fit together, of
the broad sweep of the proof, of the reasons that lead to it being thought of
in the first place.
Another kind of understanding arises by developing a global viewpoint,

from which we can comprehend the entire argument at a glance. This in-
volves fitting the ideas concerned into the overall pattern of mathematics,
and linking them to similar ideas from other areas. Such an overall grasp of
ideas allows the individual to make better sense of mathematics as a whole
and has a cumulative effect: what is understood well at one stage is more
likely to form a sound basis for further development. On the other hand,
simply learning how to ‘do’ mathematics, without having a wider grasp of its
relationships, can limit the flexible ways in which mathematical knowledge
can be used.
The need for overall understanding is not just aesthetic or educational.

The human mind tends to make errors: errors of fact, errors of judgement,
errors of interpretation. In the step-by-step method we might not notice
that one line is not a logical consequence of preceding ones. Within the
overall framework, however, if an error leads to a conclusion that does not
fit into the total picture, the conflict will alert us to the possibility of a
mistake.
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For instance, given a column of a hundred ten-digit numbers to add up,
where the correct answer is 137568304452, we might make an arithmetical
error and get 137568804452 instead. When copying this answer we might
make a second error and write 1337568804452. Both of these errors could
escape detection. Spotting the first would almost certainly need a step-by-
step check of the calculation. The second error, however, is easily detected
because it does not fit into the overall pattern of arithmetic. A sum of 100
ten-digit numbers will be at most a twelve-digit number (since 9999999999×
100 = 999999999900) and the final proposed answer has thirteen.
It is a combination of step-by-step and overall understanding that has the

best chance of detecting mistakes; not just in numerical work, but in all areas
of human understanding. The student must develop both kinds, in order
to appreciate the subject fully and be an effective practitioner. Step-by-step
understanding is fairly easy; just take one thing at a time and do lots of ‘drill’
exercises until the idea sinks in. Overall understanding is much harder; it
involves taking a lot of individual pieces of information and making a coher-
ent pattern out of them. What is worse is that having developed a particular
pattern which suits the material at one stage, new information may arise
which seems to conflict. The new information may be erroneous but it often
happens that previous experiences that worked in one situation no longer
operate in a new context. The more radical the new information is, the more
likely that it does not fit, and that the existing overall viewpoint has to be
modified. That is what this first chapter is about.

Concept Formation

When thinking about any area of mathematics, it helps to understand a little
about how we learn new ideas. This is especially true of foundational issues,
which involve revisiting ideas that we already think we know. When we dis-
cover that we do not—more precisely, that there are basic questions that we
have not been exposed to—we may feel uncomfortable. If so, it’s good to
know that we are not alone: it happens to nearly everyone.
All mathematicians were very young when they were born. This platitude

has a non-trivial implication: even the most sophisticated mathematician
must have passed through the complex process of building up mathematical
concepts. When first faced with a problem or a new concept, the mathem-
atician turns it over in the mind, digging into personal experiences to see if
it is like something that has been encountered before. This exploratory, cre-
ative phase of mathematics is anything but logical. It is only when the pieces
begin to fit together and the mathematician gets a ‘feel’ for the concept, or
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the problem, that a semblance of order emerges. Definitions are formulated
in ways that can be used for deduction, and there is a final polishing phase
where the essential facts are marshalled into a neat and economical proof.
As a scientific analogy, consider the concept ‘colour’. A dictionary defin-

ition of this concept looks something like ‘the sensation produced in the eye
by rays of decomposed light’. We do not try to teach the concept of colour to
a child by presenting them with this definition. (‘Now, Angela, tell me what
sensation is produced in your eye by the decomposed light radiating from
this lollipop . . . ’) First you teach the concept ‘blue’. To do this you show a
blue ball, a blue door, a blue chair, and so on, accompanying each with the
word ‘blue’. You repeat this with ‘red’, ‘yellow’, and so on. After a while the
child begins to get the idea; you point to an object they have not seen be-
fore and their response is ‘blue’. It is relatively easy to refine this to ‘dark
blue’, ‘light blue’, and so forth. After repeating this procedure many times,
to establish the individual colours, you start again. ‘The colour of that door
is blue. The colour of this box is red. What colour is that buttercup?’ If the
response is ‘yellow’ then the concept ‘colour’ is beginning to develop.
As a child develops and learns scientific concepts they may eventually be

shown a spectrum obtained by passing light through a prism. This may lead
to learning about the wavelength of light, and, as a fully fledged scientist,
being able to say with precision which wavelength corresponds to light of a
particular colour. The understanding of the concept ‘colour’ is now highly
refined, but it does not help the scientist to explain to a child what ‘blue’ is.
The existence of a precise and unambiguous definition of ‘blue’ in terms of
wavelength is of no use at the concept-forming stage.
It is the same with mathematical concepts. The reader already has a large

number of mathematical concepts established in their mind: how to solve a
quadratic equation, how to draw a graph, how to sum a geometric progres-
sion. They have great facility in arithmetical calculations. Our aim is to build
on this wealth of mathematical understanding and to refine these concepts
to a more sophisticated level. To do this we use examples, drawn from the
reader’s experience, to introduce new concepts. Once these concepts are es-
tablished, they become part of a richer experience upon which we can again
draw to aim even higher.
Although it is certainly possible to build up the whole of mathematics

by axiomatic methods starting from the empty set, using no outside infor-
mation whatsoever, it is also totally unintelligible to anyone who does not
already understand the mathematics being built up. An expert can look at
a logical construction in a book and say ‘I guess that thing there is meant
to be “zero”, so that thing is “one”, that’s “two”, . . . this load of junk must
be the integers, . . . what’s that? Oh, I think I see: it must be “addition”. . . ’.
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The non-expert is faced with an indecipherable mass of symbols. It is never
sufficient to define a new concept without giving enough examples to ex-
plain what it looks like and what can be done with it. Of course, an expert
is often in a position to supply their own examples, and may not need
much help.

Schemas

Amathematical concept, then, is an organised pattern of ideas that are some-
how interrelated, drawing on the experience of concepts already established.
Psychologists call such an organised pattern of ideas a ‘schema’. For instance,
a young child may learn to count (‘one, two, three-four-five, once I caught a
fish alive’) progressing to ideas like ‘two sweets’, ‘three dogs’, . . . and eventu-
ally discovers that two sweets, two sheep, two cows have something in com-
mon, and that something is ‘two’. He or she builds a schema for the concept
‘two’ and this schema involves the experience that everyone has two hands,
two feet, last week we saw two sheep in a field, the fish-alive rhyme goes ‘one,
two, . . . ’, and so on. It is really quite amazing how much information the
brain has lumped together to form the concept, or the schema.
The child progresses to simple arithmetic (‘If you have five apples and you

give two away, how many will you have left?’) and eventually builds up a
schema to handle the problem ‘What is five minus two?’ Arithmetic has very
precise properties. If 3 and 2 make 5, then 5 take away 2 leaves 3. The child
discovers these properties by trying to make sense of arithmetic. It then be-
comes possible to use known facts to derive new facts. If the child knows that
8 plus 2 makes 10, then 8 plus 5 can be thought of as 8 plus 2 plus 3, so the
sum is 10 plus 3, which is 13. Over time the child can build up a rich schema
of whole number arithmetic.
At this point, if you ask ‘What is five minus six?’ the response is likely

to be ‘You can’t do it’, or perhaps just an embarrassed giggle that an adult
should ask such a silly question. This is because the question does not fit
the child’s schema for subtraction: when thinking about ‘five apples, take
six away’, this simply cannot be done. At a later stage, experiencing nega-
tive numbers will give the answer ‘minus one’. What has happened? The
child’s original schema for ‘subtraction’ has been modified to accommodate
new ideas—perhaps by thermometer scales, or the arithmetic of banking, or
whatever—and the understanding of the concept changes. During the pro-
cess of change, confusing problems will arise (what does minus one apple
look like?) which may eventually be resolved satisfactorily (apples don’t
behave like thermometer readings).
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A large part of the learning process involves making an existing schema
more sophisticated, so that it can take account of new ideas. This process,
as we have said, may be accompanied by a state of confusion. If it were
possible to learn mathematics without becoming confused, life would be
wonderful.
Unfortunately, the human mind does not seem to work that way. More

than 2000 years ago, Euclid supposedly told King Ptolemy I that ‘There is no
royal road to geometry’. The next best thing is to recognise not just the con-
fusion, but also its causes. At various stages in reading this book the reader
will be confused. Sometimes, no doubt, the cause will be the authors’ slop-
piness, but often it will be the process of modifying personal knowledge to
make sense of a more general situation. This type of confusion is creative,
and it should be welcomed as a sign that progress is being made—unless
it persists for too long. By the same token, once the confusion is resolved,
a sudden clarity can appear with a feeling of great pleasure that the pieces
fit together perfectly like a jigsaw. It is this feeling of perfect harmony that
makes mathematics not only a challenge, but also an endeavour that leads to
deep aesthetic satisfaction.

An Example

This way to develop new ideas is illustrated by the historical development of
mathematical concepts—itself a learning process, but involving many minds
instead of one. When negative numbers were first introduced, they met con-
siderable opposition: ‘You can’t have less than nothing’. Yet nowadays, in
this financial world of debits and credits, negative numbers are a part of
everyday life.
The development of complex numbers is another example. Like all math-

ematicians, Gottfried Leibniz knew that the square of a positive number or
of a negative number must always be positive. If i is the square root of minus
one, then i2 = –1, so i cannot be a positive or a negative number. Leibniz be-
lieved that it should therefore be endowed with great mystical significance:
a non-zero number neither less than zero nor greater than zero. This led to
enormous confusion and distrust concerning complex numbers; it persists
to this day in some quarters.
Complex numbers do not fit readily into many people’s schema for ‘num-

ber’, and students often reject the concept when it is first presented. Modern
mathematicians look at the situation with the aid of an enlarged schema in
which the facts make sense.
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Imagine the real numbers marked on a line in the usual way:

Fig. 1.1 The real numbers

Negative numbers are to the left of zero, positive to the right. Where does i
go? It can’t go to the left; it can’t go to the right. The people whose schema
does not allow complex numbers must argue thus: this means that it can’t
go anywhere. There is no place on the line where we can mark i, so it’s not a
number.
However, there’s an alternative. We can visualise complex numbers as the

points of a plane. (In 1758 François Daviet de Foncenex stated that it was
pointless to think of imaginary numbers as forming a line at right angles to
the real line. Fortunately others disagreed.) The real numbers lie along the
‘x-axis’, the number i lies one unit above the origin along the ‘y-axis’, and the
number x+iy lies x units along the real line and then y units above it (change
directions for negative x or y). The objection to i (‘it can’t lie anywhere on the
line’) is countered by the observation that it doesn’t. It lies one unit above the
line. The enlarged schema can accommodate the disturbing facts without any
trouble.

x

x + iy

Fig. 1.2 Putting i in its place

This happens quite often in mathematics. When a particular situation is
generalised to a new context, some properties operate in the same way as be-
fore, such as addition and multiplication both being commutative. But other
properties (such as the order properties of real numbers) that work well in
the original schema are no longer relevant in the extended schema (in this
case the schema of complex numbers).
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This is a very general phenomenon; it has happened not only to stu-
dents, but to mathematicians throughout history, up to the present day. If
you work in an established situation where the ideas have been fully sorted
out, and the methods used are sufficient to solve all of the usual prob-
lems, it is not that difficult to teach an apprentice the trade. All you need
is to grasp the current principles and develop fluency in the methods. But
when there is a genuine change in the nature of the system, as happened
when negative numbers were introduced in a world that only used natural
counting numbers, or when complex numbers were encountered solving
equations, then there is a genuine period of confusion for everyone. What
are these newfangled things? They certainly don’t work the way I expected
them to!
This can cause deep confusion. Some conquer it by engaging with the ideas

in a determined and innovative fashion; others suffer a growing feeling of
anxiety, even revulsion and rejection.
One such major occasion began in the final years of the nineteenth cen-

tury and transformed the mathematics of the twentieth and twenty-first
centuries.

Natural and Formal Mathematics

Mathematics began historically with activities such as counting objects
and measuring quantities, dealing with situations in the natural world.
The Greeks realised that drawing figures and counting pebbles had
more profound properties, and they built up the method of Euclidean
proof in geometry and the theory of prime numbers in arithmetic. Even
though they developed a Platonic form of mathematics that imagined
perfect figures and perfect numbers, their ideas were still linked to na-
ture. This attitude continued for millennia. When Isaac Newton studied
the force of gravity and the movement of the heavenly bodies, science
was known as ‘natural philosophy’. He built his ideas about calculus on
Greek geometry, and on algebra that generalised the natural operations of
arithmetic.
The reliance on ‘naturally occurring’ mathematics continued until the late

nineteenth century, when the focus changed from the properties of objects
and operations to the development of formal mathematics based on set-
theoretic definition and logical proof. This historical transition from natural
to formal mathematics involved a radical change of viewpoint, leading to
far more powerful insights into mathematical thinking. It plays an essential
role in the shift from school geometry and algebra to formal mathematics at
university.
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Building Formal Ideas on Human Experience

As mathematics becomes more sophisticated, new concepts often involve
some ideas that generalise, but others that operate in new ways. As the
transition is made from school mathematics to formal mathematics, it may
seem logical to start anew with formal definitions and learn how to make
formal deductions from first principles. However, experience over the last
half-century has shown that this is not a sensible idea. In the 1960s, schools
tried a new approach to mathematics, based on set theory and abstract def-
initions. This ‘new math’ failed because, although experts might understand
the abstract subtleties, learners need to build up a coherent schema of know-
ledge to make sense of the definitions and proofs. We now knowmore about
how humans learn to think mathematically. This lets us give examples from
practical research to show how students have interpreted ideas in ways that
are subtly different from what is intended in the printed text. We mention
this to encourage you to think carefully about the precise meanings involved,
and to develop strong mathematical links between ideas.
It is helpful to read proofs carefully and to get into the habit of explaining

to yourself why the definitions are phrased as they are and how each line of a
proof follows from previous lines. (See the Appendix on Self-Explanation on
page 377.) Recent research [3] has shown that students who make an effort to
think through theorems for themselves benefit in the long run. Eye-tracking
equipment has been used to study how students read pages from the first edi-
tion of this very book. There is a strong correlation between spending longer
considering significant steps in a proof and obtaining higher marks on tests
administered at a later stage. It’s a no-brainer really. A stronger effort at mak-
ing personal links gives you a more coherent personal schema of knowledge
that will be of benefit in the long run.
You need to be sensible about how to proceed. In practice, it is not always

possible to give a precise, dictionary definition for every concept encoun-
tered. We may talk about a set being ‘a well-defined collection of objects’,
but we will be begging the question, since ‘collection’ and ‘set’ mean the same
thing.
When studying the foundations of mathematics, we must be prepared to

become acquainted with new ideas by degrees, rather than by starting from
a watertight definition that can be assimilated at once. As we continue along
that path, our understanding of an idea can become more sophisticated. We
can sometimes reach a stage where the original vague definition can be refor-
mulated in a rigorous context (‘yellow is the colour of light with a wavelength
of 5500 Å’). The new definition, seemingly so much better than the vague
ideas that led to its formulation, has a seductive charm.
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Wouldn’t it be so much better to start from this nice, logical definition?
The short answer is ‘no’.
In this book, we begin in Part I with ideas that you have met in school.

We consider the visual number line, and how it is built up by marking
various number systems, such as the whole numbers, 1, 2, 3, . . . ; then frac-
tions between adjacent whole numbers; then signed numbers to the right
and left of the origin, including signed whole numbers (the integers) and
signed fractions (the rationals); then expanding to the real numbers includ-
ing both rational and irrational numbers. In particular, we focus on natural
ways to perform operations such as addition, multiplication, subtraction,
and division, using whole numbers, fractions, decimals, and so on, to high-
light properties that can be used as a basis for formal axioms for the various
number systems.
Part II lays the foundations for set theory and logic, appropriate to the

concept of proof used by mathematicians, with a sensible balance of logical
precision andmathematical insight. In particular, the reader should note that
it is essential to focus not only on what the definitions actually say, but also
to be careful not to assume other properties that may arise not from the def-
inition but from mental links set up by previous experience. For instance,
students in school meet functions such as y = x2 or f (x) = sin 3x, which
are always given by some kind of formula. However, the general notion of a
function does not require a formula. All that is needed is that for each value
of x (in a specified set) there is a single corresponding value of y. This broader
definition applies to sets in general, not just to numbers. The properties that a
defined concept must have are deduced from the definition by mathematical
proof.
Part III develops the axiomatic structures appropriate for the succes-

sion of number systems, starting with axioms for natural numbers and
proof by induction. The story continues by demonstrating how successive
systems—integers, rationals, and real numbers—can be constructed from
first principles using set-theoretic techniques. This process culminates in a
list of axioms that defines the system of real numbers, with two operations
(addition and multiplication) that satisfy specified properties of arithmetic
and order, together with a ‘completeness axiom’ that states that any increas-
ing sequence bounded above must tend to a limit. These axioms define a
‘complete ordered field’, and we prove that they specify the real numbers
uniquely. Real numbers may be pictured as points on a line with the defined
operations of addition, multiplication, and order, where the line is filled out
to include irrational numbers such as

√
2 or π as infinite decimals that may

be computed to any required accuracy as a finite decimal. For instance,
√
2

is 1·414 to 3 decimal places, π is approximately equal to the fraction 22/7,
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or may be calculated to any desired accuracy as a decimal, say 3·14 to two
decimal places or 3·1415926536 to ten places.

Formal Systems and Structure Theorems

This sequence of development, building a formal system from a carefully
chosen list of axioms, can be generalised to cover a wide range of new situ-
ations. It has a huge advantage compared to dealing with naturally occurring
systems that are encountered in everyday life. The theorems that can be de-
duced from a given list of axioms using formal proof must hold in any system
that satisfies the axioms—old or new. Formal theorems are future-proofed.
The theorems apply not only to systems that are already familiar, but also
to any new system that satisfies the given axioms. This releases us from the
necessity of re-checking our beliefs in every new system we encounter. This
is a major step forward in mathematical thinking.
Another more subtle development is that some theorems deduced within

a formal system prove that the system has specific properties that allow it to
be visualised in a certain way, and other properties that allow its operations
to be carried out using symbolic methods. Such theorems are called structure
theorems. For example, any complete ordered field has a unique structure
that may be represented as points on a number line or as decimal expansions.
This shifts formal proof to a new level of power. Not only do we devote

lengthy resources to develop a consistent approach to formal proof, ultim-
ately we can develop new ways of thinking that blend together formal, visual,
and symbolic ways of operation that combine human ingenuity and formal
precision.

Using Formal Mathematics More Flexibly

In Part IV we show how these more flexible methods can be applied in vari-
ous contexts, first by applying the ideas to group theory and then to two quite
different extensions of finite ideas to infinite concepts. One is the extension
of counting from finite sets to infinite sets, by saying that two sets have the
same cardinal number if all their elements can be paired so that each elem-
ent in one set corresponds to precisely one element in the other. Cardinal
numbers have many properties in common with regular counting numbers,
but they also have new and unfamiliar properties. For instance, we can take
away an infinite subset (such as the even numbers) from an infinite set (such
as the natural numbers) to leave an infinite subset (the odd numbers) with
the same cardinal number of elements as the original set. By the same token,
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subtraction cannot be uniquely defined for infinite cardinal numbers, nor
can division, so the reciprocal of an infinite cardinal number is not defined
as a cardinal number.
The second extension places the real numbers, which form a complete or-

dered field, inside a larger (but not complete) ordered field. Here, an element
k in the larger field may satisfy the order property ‘k > r for every real num-
ber r’. In this sense, k is infinite: in the formally defined order, it is greater
than all real numbers. Yet this k behaves quite differently from an infinite
cardinal number, because it has a reciprocal 1/k. Moreover, 1/k is smaller
than any positive real number.
Upon reflection, we should not be surprised by these apparently contra-

dictory possibilities, where an infinite number has a reciprocal in one system
but not in another. The system of whole numbers that we use for counting
does not provide reciprocals, but the systems of rational and real numbers
do. If we select certain properties to generalise different systems, we should
not be surprised if the generalisations are also different.
This brings us to an important conclusion. Mathematics is a living subject,

in which seemingly impossible ideas may become possible in a new formal
context, determined by stating appropriate axioms.
Writing over a century ago, when the new formal approach to mathemat-

ics was becoming widespread, Felix Klein [4] wrote:

Our standpoint today with regard to the foundations is different from that
of the investigators of a few decades ago; and what we today would state
as ultimate principles, will certainly be outstripped after a time.

On the same page he noted:

Many have thought that one could, or that one indeed must, teach all
mathematics deductively throughout, by starting with a definite number
of axioms and deducing everything from these by means of logic. This
method, which some seek to maintain on the authority of Euclid, certainly
does not correspond to the historical development of mathematics. In fact,
mathematics has grown like a tree, which does not start from its tini-
est roots and grow merely upward, but rather sends its roots deeper and
deeper at the same time and rate that its branches and leaves are spread-
ing upwards. Just so—if we may drop the figure of speech—mathematics
began its development from a certain standpoint corresponding to normal
human understanding and has progressed, from that point, according to
the demands of science itself and of the then prevailing interests, now in
one direction toward new knowledge, now in the other through the study
of fundamental principles.
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We follow this development throughout the book by starting from the ex-
periences of students in school, digging deeper in Part II to find fundamental
ideas that we use in Part III to build into formal structures for number
systems, and expanding the techniques to wider formal structures in Part
IV. In Part V, we close this introduction to the foundations of mathematics
by reflecting on the deeper development of fundamental logical principles
that become necessary to support more powerful mathematical growth in
the future.

Exercises

The following examples are intended to stimulate you into considering your
own thought processes and your present mathematical viewpoint. Many of
them do not have a ‘correct’ answer, however it will be most illuminating
for you to write out solutions and keep them in a safe place to see how your
opinions may change as you read the text. Later in the book (at the end of
chapters 6 and 12) you will be invited to reconsider your responses to these
questions to see how your thinking has changed. Don’t be afraid at this time
to say that some of the ideas do not make sense to you at the moment. On
the contrary, it is to your advantage to acknowledge any difficulties you may
have. The intention of this book is that the ideas will become much clearer
as you develop in sophistication.

1. Think how you think about mathematics. If you meet a new problem
which fits into a pattern that you recognise, your solution may follow
a time-honoured logical course, but if not, then your initial attack may
be anything but logical. Try these three problems and do your best to
keep track of the steps you take as you move towards a solution.
(a) John’s father is three times as old as John; in ten years he will only

be twice John’s age. How old is John now?
(b) A flat disc and a sphere of the same diameter are viewed from the

same distance, with the plane of the disc at right angles to the line
of vision. Which looks larger?

(c) Two hundred soldiers stand in a rectangular array, in ten rows of
twenty columns. The tallest man in each row is selected and of
these ten, S is the shortest. Likewise the shortest in each column
is singled out and T is the tallest of these twenty. Are S and T one
and the same? If not, what can be deduced about the relative size
of S and T?

Make a note of the way that you attempted these problems, as well as
your final solution, if you find one.
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2. Consider the two following problems:
(a) Nine square metres of cloth are to be divided equally between five

dressmakers; how much cloth does each one get?
(b) Nine children are available for adoption and are to be divided

equally between five couples; howmany children are given to each
couple?

Both of these problems translate mathematically into:

‘Find x such that 5x = 9’.

Do they have the same solution? How can the mathematical formula-
tion be qualified to distinguish between the two cases?

3. Suppose that you are trying to explain negative numbers to someone
who has not met the concept and you are faced with the comment:

‘Negative numbers can’t exist because you can’t have less than
nothing.’

How would you reply?
4. What does it mean to say that a decimal expansion ‘recurs’? What

fraction is represented by the decimal 0·333 . . .?What about 0·999 . . .?
5. Mathematical use of language sometimes differs from colloquial us-

age. In each of the following statements, record whether you think
that they are true or false. Keep them for comparison when you read
chapter 6.
(a) All of the numbers 2, 5, 17, 53, 97 are prime.
(b) Each of the numbers 2, 5, 17, 53, 97 is prime.
(c) Some of the numbers 2, 5, 17, 53, 97 are prime.
(d) Some of the numbers 2, 5, 17, 53, 97 are even.
(e) All of the numbers 2, 5, 17, 53, 97 are even.
(f ) Some of the numbers 2, 5, 17, 53, 97 are odd.

6. ‘If pigs had wings, they’d fly.’
Is this a logical deduction?

7. ‘The set of natural numbers 1, 2, 3, 4, 5, . . . is infinite.’ Give an
explanation of what you think the word ‘infinite’ means in this context.

8. A formal definition of the number 4 might be given in the following
terms.
First note that a set is specified by writing its elements between curly
brackets { } and that the set with no elements is denoted by ∅. Then we
define

4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}.
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Can you understand this definition? Do you think that it is suitable for
a beginner?

9. Which, in your opinion, is the most likely explanation for the equality

(–1)× (–1) = +1?

(a) A scientific truth discovered by experience.
(b) A definition formulated by mathematicians as being the only

sensible way to make arithmetic work.
(c) A logical deduction from suitable axioms.
(d) Some other explanation.
Give reasons for your choice and retain your comments for later
consideration.

10. In multiplying two numbers together, the order does not matter,
xy = yx. Can you justify this result
(a) when x, y are both whole numbers?
(b) when x, y are any real numbers?
(c) for any numbers whatever?
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chapter 2

Number Systems

The reader will have built up a coherent understanding of the arith-
metic of the various number systems: counting numbers, negative
numbers, and so on. But he or she may not have subjected the pro-

cesses of arithmetic to close logical scrutiny. Later, we place these number
systems in a precise axiomatic setting. In this chapter we give a brief re-
view of how the reader may have developed their ideas about these systems.
Although constant use of the ideas will have smoothed out many of the dif-
ficulties that were encountered when the concepts were being formed, these
difficulties tend to reappear in the formal treatment and have to be dealt with
again. It is therefore worth spending a little time to recall the development,
before we plunge into the formalities.
The experienced reader may feel tempted to skip this chapter because of

the very simple level of the discussion. Please don’t. Every adult’s ideas have
been built up from simple beginnings as a child. When trying to understand
the foundations of mathematics, it is important to be aware of the genesis of
your own mathematical thought processes.

Natural Numbers

The natural numbers are the familiar counting numbers 1, 2, 3, 4, 5, . . . .
Young children learn the names of these, and the order in which they come,
by rote. Contact with adults leads the children to an awareness of the mean-
ing that adults attach to phrases such as ‘two sweets’, ‘four marbles’. Use of
the word ‘zero’ and the concept ‘no sweets’ is more subtle and follows later.
To count a collection of objects, we point to them in turn while reciting

‘one, two, three, . . .’ until we have pointed to all of the objects, once each.
Next we learn the arithmetic of natural numbers, starting with add-

ition. At this stage the basic ‘laws’ of addition (which we can express
algebraically as the commutative law a+ b= b+ a, and the associative law

2 NUMBER SYSTEMS | 17



a+ (b+ c) = (a+ b) + c) may or may not be ‘obvious’, depending on the ap-
proach used. If addition is introduced in terms of combining collections of
real-world objects and then counting the result, then these two laws depend
only on the tacit assumption that rearranging the collection does not alter the
number of things in it. Similarly, one modern approach using coloured rods
whose lengths represent the numbers (which are added by placing them end
to end) makes commutativity and associativity so obvious that it is almost
confusing to have them pointed out. However, if a child is taught addition
by ‘counting on’, the story is quite different. To calculate 3 + 4, he or she
starts at 3 and counts on four more places: 4, 5, 6, 7. The calculation 4 + 3
starts at 4 and counts on three places: 5, 6, 7. That the two processes yield the
same answer is now much more mysterious. In fact children taught this way
often have difficulty doing a calculation such as 1+ 17, but find 17+ 1 trivial!
Next we come to the concept of place-value. The number 33 involves two

threes, but they don’t mean the same thing. It must be emphasised that this
is purely a matter of notation, and has nothing to do with the numbers
themselves. But it is a highly useful and important notation. It can represent
(in principle) arbitrarily large numbers, and is very well adapted to calcula-
tion. However, a precise mathematical description of the general processes
of arithmetic in Hindu-Arabic place notation is quite complicated (which is
why children take so long to learn them all) and not well adapted to, say,
a proof of the commutative law. (This can be done, but it’s harder than we
might expect.) Sometimes a more primitive system has some advantages. For
instance, the ancient Egyptians used the symbol | to represent 1, a hoop

⋂
to represent 10, the end of a scroll for 100, with other symbols for 1000,
etc. A number was written by repeating these symbols: thus 247 would have
been written

Adding in Egyptian is easy: all we do is to put the symbols together. Now
the commutative and associative laws are obvious again. But the notation
is less suited to computation. To recover place-notation from Egyptian we

must supply some ‘carrying rules’, such as and insist that we
never use any particular symbol more than nine times.
Before proceeding, we introduce a small amount of notation. We write N

for the set of all natural numbers. The symbol ∈ will mean ‘is an element of ’
or ‘belongs to’. So the symbols

2 ∈ N

are read as ‘2 belongs to the set of natural numbers’, or in more usual
language, ‘2 is a natural number’.
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Fractions

Fractions are introduced into arithmetic to make division possible. It is easy
to divide 12 into 3 parts: 12 = 4 + 4 + 4. It is not possible to divide, say, 11
into 3 equal parts if we insist that these parts are natural numbers. Hence we
are led to define fractions as m/n where m, n ∈ N and n �= 0. This intro-
duces a new idea, that different fractions such as 2/4 and 3/6 can involve two
different processes, where the first divides an object into 4 equal pieces and
takes 2 of them to get 2 fourths while the second would divide the object into
6 equal pieces and take 3 to get 3 sixths. The processes are different, but the
quantity produced is the same (a half ). These fractions are said to be equiva-
lent. Equivalent fractions, when marked on a number line, are marked at the
same point.
This observation proves to be seminal throughout this book: equivalent

concepts at one stage are often reconsidered as single entities later on. In this
case equivalent fractions are considered as a single rational number.
Operations of addition and multiplication on the set F of fractions can be

defined algebraically by the rules

m
n

+
p
q
=
mq + np

nq
,

m
n
× p

q
=
mp
nq

.

It is straightforward (but somewhat tedious) to prove that if the fractions
are replaced by equivalent fractions, these formulas for the operations yield
equivalent results.

Integers

What fractions do for division, integers do for subtraction. A subtraction
sum like 2 – 7= ? cannot be answered in N. To do so, we introduce negative
numbers. Children are often introduced to negative numbers in terms of a
‘number line’: a straight line with equally spaced points marked on it. One of
them is called 0; then natural numbers 1, 2, 3, . . . are marked successively to
the right, and negative numbers –1, –2, –3, . . . to the left.

Fig. 2.1 The integers
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This gives an extended number system called the ‘integers’. An integer is
either a natural number n, or a symbol –n where n is a natural number, or 0.
We use Z to denote the set of integers. (Z is the initial letter of ‘Zahlen’, the
German for integers.)
In your own learning, you met counting numbers N before the integers

Z were introduced. This step is usually motivated by thinking of a negative
number as a ‘debt’. Then we can see why we have the rule that ‘minus times
minus makes plus’, because taking away a debt has the same result as giving
the corresponding credit.
Sometimes in school mathematics, a distinction may initially be made be-

tween counting numbers, 1, 2, 3, . . ., and positive integers +1, +2, +3, . . .with
their negative counterparts –1, –2, –3, . . . . There are times when this distinc-
tion is useful or necessary. Indeed, later we start with counting numbers and
show how to construct integers formally. In this process there is a difference
between the two. However, if we carry on maintaining such distinctions,
we will only be making unnecessary work for ourselves. For example, the
symbolic statement 4 – (+2) (taking away +2 from 4) involves a different op-
eration from 4 + (–2) (adding –2 to 4). However, it is clearly sensible to say
that both equal 4 – 2.
In the same way, later we start with counting numbers and use set the-

ory to construct integers. This process leads to a different symbolism for
counting numbers and positive integers; however, they clearly have the same
properties, so it is sensible to think of them as being the same.
In set-theoretic notation, the symbol ⊆ means ‘is a subset of ’. We then

have

N ⊆ Z,
where every natural number is also a (positive) integer. Similarly

N ⊆ F.

Rational Numbers

The system Z is designed to allow subtraction in all cases; the system F allows
division (except by zero). However, in neither system are both operations
always possible. To get both working at once we move into the system of
rational numbersQ (for ‘quotients’). This is obtained from F by introducing
‘negative fractions’ in much the same way that we obtained Z from N.
We can still represent Q by points on a number line, by marking fractions

at suitably spaced intervals between the integers, with negative ones to the
left of 0 and positive ones to the right. For example, 4/3 is marked one third
of the way between 1 and 2, like this:
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Fig. 2.2 Marking a rational number

The rules for adding and multiplying rational numbers are the same as for
fractions, but now m, n, p, q are allowed to be integers rather than natural
numbers.
Both Z and F are subsets of Q. We can summarise the relations between

the four number systems so far encountered by the diagram:

N Q
Z

F

Fig. 2.3 Four number systems

Real Numbers

Numbers can be used to measure lengths or other physical quantities.
However, the Greeks discovered that there exist lines whose lengths, in
theory, cannot be measured exactly by a rational number. They were
magnificent geometers, and one of their simple but profound results was
Pythagoras’ theorem. Applied to a right-angled triangle whose two shorter
sides have lengths 1, this implies that the hypotenuse has length x, where
x2 = 12 + 12 = 2.

Fig. 2.4 Pythagoras and
√
2

However, x cannot be rational, because there is no rational numberm/n such
that (m/n)2 = 2. To see why, we use the result that any natural number can
be factorised uniquely into primes. For instance, we can write

360 = 2× 2× 2× 3× 3× 5

or

360 = 5× 2× 3× 2× 3× 2,
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but however we write the factors we will always have one 5, two 3s, and three
2s. Using index notation we write

360 = 23 × 32 × 5.

We shall prove this unique factorisation theorem formally in chapter 8 but
for the moment we assume it without further proof.
If we factorise any natural number into primes and then square, each

prime will occur an even number of times. For instance,

3602 = (23 × 32 × 5)2 = 26 × 34 × 52,

and the indices 6, 4, 2 are all even. A general proof is not hard to find.
Now take any rational numberm/n and square it. (Sincem/n has the same

square as –m/n, we may assume m and n positive.) Factorise m2 and n2 and
cancel factors top and bottom if possible. Whenever a prime p cancels, then
since all primes occur to even powers it follows that p2 cancels. Hence, after
cancellation, all primes still occur to even powers. But (m/n)2 is supposed to
equal 2, which has one prime (namely 2) which only occurs once (which is
an odd power).
It follows that no rational number can have square 2, so the hypotenuse of

the given triangle does not have rational length.
With a little more algebraic symbolism we can tidy up this proof and

present it as a formal argument, but the above is all that we really need. The
same argument shows that numbers like 3, 3/4, or 5/7 do not have rational
square roots.
The implication is clear. If we want to talk of lengths like

√
2, we must

enlarge our number system further. Not only do we need rational numbers,
we need ‘irrational’ ones as well.
Using Hindu-Arabic notation this can be done by introducing decimal

expansions. We construct a right-angled triangle with sides of unit length,
and using drawing instruments transfer the length of its hypotenuse to the
number line. We then obtain a specific point on the number line that we call√
2. It lies between 1 and 2 and, on subdividing the unit length from 1 to 2

into ten equal parts, we find that
√
2 lies between 1·4 and 1·5.

Fig. 2.5 Marking
√
2

By further subdividing the distance between 1·4 and 1·5 into ten equal
parts we might hope to obtain a better approximation to

√
2.
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Fig. 2.6 Marking more accurately

Already in a practical situation we are reaching the limit of accuracy in
drawing. We might imagine that in an accurate diagram we can look suf-
ficiently close, or magnify the picture, to give the next decimal place. If we
were to look at an actual picture under amagnifying glass, not only would the
lengths be magnified, but so would the thickness of the lines in the drawing.
This would not be a very satisfactory way to obtain a better estimate for

√
2.

Fig. 2.7 Using a magnifying glass

Practical drawing is in fact extremely limited in accuracy. A fine drawing
pen marks a line 0 ·1millimetres thick. Even if we use a line 1metre long as a
unit length, since 0·1mm = 0·0001metres, we could not hope to be accurate
to more than four decimal places. Using much larger paper andmore refined
instruments gives surprisingly little increase in accuracy in terms of the num-
ber of decimal places we can find. A light year is approximately 9 ·5 × 1015

metres. As an extreme case, suppose we consider a unit length 1018 metres
long. If a light ray started out at one end at the same time that a baby was
born at the other, the baby would have to live to be over 100 years old before
seeing the light ray. At the lower extreme of vision, the wavelength of red
light is approximately 7 × 10–7 metres, so a length of 10–7 metres is smaller
than the wavelength of visible light. Hence an ordinary optical microscope
cannot distinguish points which are 10–7 metres apart. On a line where the
unit length is 1018 metres we cannot distinguish numbers which are less than
10–7/1018 = 10–25 apart. This means that we cannot achieve an accuracy of
25 decimal places by a drawing. Even this is a gross exaggeration in practice,
where three or four decimal places is often the best we can really hope for.

Inaccurate Arithmetic in Practical Drawing

The inherent inaccuracy in practice leads to problems in arithmetic. If we
add two inaccurate numbers, the errors also add. If we cannot distinguish

2 NUMBER SYSTEMS | 23



errors less than some amount e, then we cannot tell the difference, in prac-
tice, between a and a + 3

4 e and between b and b + 3
4e. But adding, we can

distinguish between a + b and a + b + 3
2 e. When we come to multiplication,

errors can increase even more dramatically. We cannot hope to get answers
to the same degree of accuracy as the numbers used in the calculation.
If we use arithmetic to calculate all answers correct to a certain number

of decimal places, the errors involved lead to some disturbing results. Sup-
pose, for example, that we work to two decimal places (‘rounding up’ if the
third place is 5 or more and down if it is less). Given two real numbers a
and b, we denote their product correct to two decimal places by a ⊗ b. For
example, 3·05⊗ 4·26 = 12·99 because 3·05× 4·26 = 12·993. Using this law
of multiplication we find that

(1·01⊗ 0·5)⊗ 10 �= 1·01⊗ (0·5⊗ 10).

The left-hand side reduces to 0·51 ⊗ 10 = 5·1, whilst the right-hand side
becomes 1·01 ⊗ 5 = 5·05. This is by no means an isolated example, and it
shows that the associative law does not hold for⊗.
If we further define a⊕ b to be the sum correct to two decimal places, we

will find other laws that do not hold, including the distributive law

a⊗ (b⊕ c) ?= (a⊗ b)⊕ (a⊗ c).

A Theoretical Model of the Real Line

We have just seen that if our measurement of numbers is not precise, then
some of the laws of arithmetic break down. To avoid this we must make our
notion of real number exact.
Suppose we are given a real number x on a theoretical real line, and we try

to express it as a decimal expansion. As a starting point, we see that x lies
between two integers.

Fig. 2.8 Marking a real number

In the above example x is between 2 and 3, so x is ‘two point something’.
Next we divide the interval between 2 and 3 into ten equal parts.
Again, x lies in some sub-interval. In the picture, x lies between 2·4 and

2·5, so x is ‘2·4 something’. To obtain a still better idea, we divide the interval
between 2·4 and 2·5 into ten equal parts and repeat the process to find the
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next figure in the decimal expansion. Already, in a practical situation, we are
reaching the limit of accuracy in drawing.

Fig. 2.9 Marking more accurately

For our theoretical picture we must imagine that we can look sufficiently
closely, or magnify the picture, to read off the next decimal place. If we
looked at an actual picture under a magnifying glass, not only would the
lengths be magnified, but so would the thickness of the lines.

Fig. 2.10 Magnifying

This is not very satisfactory for getting a better estimate. We must, in the
theoretical case, assume that the lines have no thickness, so that they are
not made wider when the picture is magnified. We can represent this as a
practical picture by drawing the magnified lines with the same drawing im-
plements as before, and making them as fine as possible. In this case x lies
between 2·43 and 2·44, so x is ‘2·44 something’.

Fig. 2.11 Magnifying more accurately

Using this method we can, in theory, represent any real number as a deci-
mal expansion to asmany figures as we require. If we are careful to define this
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expansion to avoid ambiguity, two numbers will be different if, by calculating
sufficiently many terms, we eventually obtain different answers for some
decimal place.
We can express this theoretical method as follows in more mathematical

terms.

(i) Given a real number x, find an integer a0 such that

a0 ≤ x < a0 + 1.

(ii) Find a whole number a1 between 0 and 9 inclusive such that

a0 +
a1
10
≤ x < a0 +

a1 + 1
10

.

(iii) After finding a0, a1, . . . , an–1, where a1, . . . , an–1 are integers between
0 and 9 inclusive, find the integer an between 0 and 9 inclusive for
which

a0 +
a1
10

+ · · · + aṅ
10n

≤ x < a0 +
a1
10

+ · · · + an + 1
10n

.

This gives an inductive process which at the nth stage determines x to n
decimal places:

a0 · a1a2 . . . an ≤ x < a0 · a1a2 . . . an + 1/10n.

The theoretically exact representation of the number x requires a decimal
expansion

a0 · a1a2a3a4a5a6 . . .
that goes on forever. (Of course, if all an from some point on are zero, we
omit them in normal notation; instead of 1066·31700000000 . . . we write
1066·317.) An infinite decimal is called a real number. The set of all real
numbers is denoted by R.
In most practical situations we will need only a few decimal places. Earlier

we saw that 25 decimal places are sufficient for all ratios of lengths within
human visual capacity, and that two or three places are usually sufficient for
many practical purposes.

Different Decimal Expansions for Different
Numbers

If we expand a number x as above in an endless decimal, we say that
a0 · a1a2 . . . an is the expansion of x to the first n decimal places (without
‘rounding up’). If two real numbers x and y have the same decimal expansion
to n places then
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a0 · a1 . . . an ≤ x< a0 · a1 . . . an + 1/10n,
a0 · a1 . . . an ≤ y< a0 · a1 . . . an + 1/10n.

The second line of inequalities can be rewritten as

–a0 · a1 . . . an – 1/10n < –y ≤ –a0 · a1 . . . an.
Adding this to the first line we obtain

–1/10n < x – y < 1/10n.

In other words, if two real numbers have the same decimal expansion to n
places, then they differ by at most 1/10n.
If x and y are different numbers on the line and we wish to distinguish

between them, all we need do is find n such that 1/10n is less than their dif-
ference: then their expansion to n places will differ. This again exposes the
deficiencies of practical drawing, where x and y might be too close to dis-
tinguish. In our theoretical concept of the real line, this distinction must
always be possible. It is so important that it is worth giving it a name. The
great Greek mathematician Archimedes stated a property that is equivalent
to what we want, so we shall name our condition after him:

Archimedes’ Condition: Given a positive real number ε, there exists a
positive integer n such that 1/10n<ε.

Rationals and Irrationals

As we have seen, the real number
√
2 is irrational: so are many others.

It is not always easy to prove a given number irrational. (It’s moderately
easy for e, less so for π , and there are many interesting numbers which
mathematicians have been convinced for centuries are irrational, but have
never proved them to be.) But just the fact that

√
2 is irrational implies

that between any two rational numbers there exist irrational numbers. First
we need:

Lemma 2.1: If m/n and r/s are rational, with r/s �= 0, then m/n + (r/s)
√
2

is irrational.
Proof: Suppose that m/n + (r/s)

√
2 is rational, equal to p/q where p, q are

integers. Solve for
√
2 to obtain

√
2 = (pn –mq)s/qnr

which is rational, contrary to the irrationality of
√
2. �
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Proposition 2.2: Between any two distinct rational numbers there exists
an irrational number.
Proof: Let the rational numbers bem/n and r/s, wherem/n < r/s. Then

m/n < m/n +
√
2
2

(r/s –m/n) < r/s

(because
√
2/2< 1), and the number in the middle is irrational by the

lemma. �

There is a corresponding result with ‘rational’ and ‘irrational’ inter-
changed:

Proposition 2.3: Between any two distinct irrational numbers there exists
a rational number.
Proof: Let the irrational numbers be a, bwith a < b. Consider their decimal
expansions, and let the nth decimal place be the first in which they differ.
Then

a = a0 · a1 . . . an–1an . . . ,
b = a0 · a1 . . . an–1bn . . . ,

where an �= bn. Let x = a0 · a1 . . . an–1bn. Then x is rational and a < x ≤ b.
But since b is irrational, x �= b, so we must have a < x < b. �

In fact, the exercises at the end of this chapter show that the rational and
irrational numbers are mixed up in a very complicated way. One should not
make the mistake of thinking that they ‘alternate’ along the real line.
The rational numbers may be characterised as those whose decimal ex-

pansions repeat at regular intervals (though we shall omit the proof ). To be
precise, say that a decimal is repeating if, from some point on, a fixed se-
quence of digits repeats indefinitely. For example, 1·5432174174174174 . . .
is a repeating decimal. We shall write it as 1·54321̇74̇, with dots over the end
digits of the block that repeats.

The Need for Real Numbers

TheGreeks’ belief that all numbers are rational (enshrined in themystic phil-
osophy of the cult of Pythagoreans) led them to a logical impasse. Viewing
the real numbers as infinite decimals helps to overcome this mental block,

28 | 2 NUMBER SYSTEMS



because it makes it clear that rational numbers, whose expansions repeat, do
not exhaust the possibilities.
However, we have also seen that for practical purposes we do not need in-

finite decimals, nor even very long finite ones.Why go to all the trouble? One
reason we have already noted: the arithmetic of decimals of limited length
fails to obey the familiar laws which integers and rational numbers obey. A
perhaps more serious reason arises in analysis.
Consider the function f given by

f (x) = x2 – 2 (x ∈ R).

This is negative at x = 1, positive at x = 2. In between, it is zero at x =
√
2.

However, if we restrict x to take only rational values, the function

f (x) = x2 – 2 (x ∈ Q)

is also negative at x = 1, positive at x = 2, but is not zero at any rational x in
between, because x2 = 2 has no rational solution.

Fig. 2.12 No rational solution

This is a nuisance. A fundamental theorem in analysis asserts that if a
continuous function is negative at one point and positive at another, then
it must be zero in between. This is true for functions over the real numbers,
but not for functions over the rationals. A civilisation such as that of the an-
cient Greeks, with no satisfactory method for handling irrational numbers,
cannot build a theory of limits, or invent calculus.

2 NUMBER SYSTEMS | 29



Arithmetic of Decimals

The idea of infinite decimals representing real numbers is a useful one,
but it is not well suited to numerical manipulations, nor to theoretical
investigations beyond an elementary level. We add two finite decimals by
starting at the right-hand end, but infinite decimals do not have right-hand
ends, so there is nowhere to start.
We can instead start at the left-hand end, adding the first decimal places,

then the first two, then the first three, and so on. To see what happens, try
adding 2/3 = 0·6 and 2/7 = 0·2̇85714̇ in this way.

·6 + ·2 = ·8
·66 + ·28 = ·94
·666 + ·285 = ·951
·6666 + ·2857 = ·9523
·66666 + ·28571 = ·95237
·666666 + ·285714 = ·952380.

The actual answer is 2/3 + 2/7 = 20/21 = ·9̇52380̇. Notice that adding the
first decimal places does not give the answer to one decimal place, nor does
adding the first two places give the first two places of the answer. This is pre-
cisely because of the possibility of ‘carried’ digits from later places affecting
earlier ones.
However, in this example, successive terms increase and get closer

and closer to the actual answer. The sequence of numbers ·8, ·94, ·951,
·9523, . . . is an increasing sequence of real numbers, and it ‘tends to’ 20/21
in the sense that the error can be made as small as we please by calculating
enough decimal places.
In the next few sections we shall examine in detail the ideas required to

make this concept precise. For theoretical purposes it is often easier to use in-
creasing sequences (of approximations to a real number) rather than decimal
expansions.

Sequences

A sequence of real numbers can be thought of as an endless list

a1, a2, a3, a4, . . . , an, . . .

where each term an is a real number. (Using set theory we shall give a more
formal definition in chapter 5.)
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Examples 2.4:

(1) The sequence of squares: 1, 4, 9, 16, . . . where an = n2.
(2) The sequence of decimal approximations to

√
2 is 1·4, 1·41,

1·414, . . . where an = √2 to n places.
(3) The sequence 1, 11

2 , 1
5
6 , . . . where an = 1 + 1

2 +
1
3 + . . . +

1
n .

(4) The sequence 3, 1, 4, 1, 5, 9, . . .where an = the nth digit in the decimal
expansion of π .

We often use the shorthand notation

(an)

for the sequence a1, a2, . . ., where the nth term is placed in round brackets.
Thus example (1) could be written (n2).
Notice how general the concept of a sequence is. We can consider any

endless list of numbers. It is not necessary that the nth term be defined by a
‘nice formula’, as long as we know what each an is supposed to be.
Sequences can be added, subtracted, or multiplied. It is necessary to de-

fine what we mean by this: the simplest way is to perform the operations on
each pair of terms in corresponding positions. In other words, to add the
sequences

a1, a2, . . .

and

b1, b2, . . .

means to form the sequence

a1 + b1, a2 + b2, . . . .

For example, if an = n2 and bn = 1+ 1
2 +· · ·+ 1

n , then the nth term of (an)+(bn)
is

n2 + 1 + 1
2 + · · · + 1

n .

Since the nth term of the sequence (an) + (bn) is an + bn, we can express the
rule for addition as

(an) + (bn) = (an + bn).

Similarly the rules for subtraction and multiplication are

(an) – (bn) = (an – bn),
(an)(bn) = (anbn).
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In the case of division we put

(an)/(bn) = (an/bn),

noting that this division can be carried out only when all terms bn are
non-zero.

Example 2.5: If an =
√
2 to n decimal places, and bn = the nth decimal

place in π , then the first few terms of (an)(bn) are

1·4× 3 = 4·2
1·41× 1 = 1·41
1·414× 4 = 5·656
1·4142× 1 = 1·4142.

If you were given the sequence 4·2, 1·41, 5·656, 1·4142, could you have
guessed the rule for the nth term? This drives home the point that in order
to specify a sequence we must know in principle how to calculate all of its
terms. In general, it is not enough to write down the first few terms and a
few dots. The sequence 3, 1, 4, 1, 5, 9, . . . certainly looks as if it consists of the
digits of π . However, it might just as well be the sequence of digits of the
number 355/113, which starts off the same way. This is why, in example (4),
we specify the general rule for finding the nth term.
Nevertheless, you will often find mathematicians writing things like

2, 4, 8, 16, 32, . . . and expecting you to infer that the nth term is 2n. One as-
pect of learning mathematics is to understand how mathematicians actually
work, and what their idiosyncrasies are: you should be prepared to accept
slight differences in notation provided that the idea is clear from the context.

Order Properties and the Modulus

We digress to introduce an important concept. If x is a real number we define
the modulus or absolute value of x to be

|x| =

⎧⎨⎩x if x ≥ 0,
–x if x < 0.

The graph of |x| against x looks like:
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Fig. 2.13 The modulus function

The value of |x| tells us how large or small x is, ignoring whether it is
positive or negative. Perhaps the most useful fact about the modulus is the
triangle inequality, so called because its generalisation to complex numbers
expresses the fact that each side of a triangle is shorter than the other two put
together. It is:

Proposition 2.6 (Triangle Inequality): If x and y are real numbers, then

|x + y| ≤ |x| + |y|.

Proof: The visual idea is that |x+ y| says how far from the origin x+ y is, and
this is at most the sum of the distances |x| and |y| of x and y from the origin,
being less if x and y have opposite sign. (Draw some pictures to check this.)
The easiest way to prove it logically is to divide into cases, according to the
signs and relative sizes of x and y.

(i) x ≥ 0, y ≥ 0. Then x + y ≥ 0, so

|x + y| = x + y = |x| + |y|.

(ii) x ≥ 0, y < 0. If x + y ≥ 0 then

|x + y| = x + y < x – y = |x| + |y|.

On the other hand, if x + y < 0 then

|x + y| = –(x + y) = –x – y < |x| + |y|.

(iii) x < 0, y ≥ 0 follows as in case (ii) with x and y interchanged.
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(iv) x < 0, y < 0. Then x + y < 0, so

|x + y| = –x – y = |x| + |y|. �

Be on the lookout for variations on this theme, such as

|x – y| + |y – z| ≥ |x – z|,

which follows since x – z = (x – y) + (y – z), so that |x – y| + |y – z| ≥ |x – z|.
The modulus is most useful for expressing certain inequalities succinctly.

For example,

a – ε < x < a + ε

can be written

–ε < x – a < ε,

which translates into

|x – a| < ε.

Convergence

Now we are ready to consider the general notion of representing a real num-
ber as a ‘limit’ of a sequence, rather than just being a particular decimal
expansion. As an exercise, the reader should mark, to as large a scale and
as accurately as possible, the numbers 1·4, 1·41, 1·414, 1·4142, √2, on the
interval between 1 and 2.
The numbers 1·4, 1·41, 1·414, 1·4142, get closer and closer together, un-

til they become indistinguishable from each other and from
√
2, up to the

accuracy of the drawing. By drawing a more accurate picture we must go
further along the sequence of decimal approximations to

√
2 before this hap-

pens. If we work to an accuracy of 10–8, then from the eighth term onwards
all points of the sequence are indistinguishable from

√
2.

This observation motivates the theoretical concept of convergence. Let ε
be any positive real number (ε is the Greek letter epsilon, for ‘e’, and may
be thought of as the initial letter of ‘error’). For practical convergence of a
sequence (an) to a limit l, if we are working to an accuracy ε, we require
there to be some natural numberN such that the difference between an and l
has size less than ε when n > N. In other words, |an – l| < ε. In the following
diagram we cannot distinguish points less than ε apart; in this case N = 7
and an is indistinguishable from l when n > 7.
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Fig. 2.14 Practical convergence

For theoretical convergence we ask that a similar phenomenon should oc-
cur for all positive ε. This is on the explicit understanding that smaller values
of εmay require larger values ofN. In this sense,N is allowed to depend on ε.
Thus we reach:

Definition 2.7: A sequence (an) of real numbers tends to a limit l if, given
any ε > 0, there is a natural number N such that

|an – l| < ε for all n > N.

Mathematicians use various pieces of shorthand notation to express this
concept. To say ‘the sequence (an) tends to the limit l’ we write

lim
n→∞ an = l,

or

an → l as n→∞.

The symbol ‘n → ∞’ is read as ‘n tends to infinity’ and is meant to remind
us that we are interested in the behaviour of an as n becomes large (namely
n > N for an appropriately large number N).
The symbol∞ has historical connotations that can have a variety of differ-

ent meanings. We will return to these in chapters 14 and 15 to see that ideas
that occurred in history and in the minds of growing students can be inter-
preted formally in very interesting ways. Until then, we will usually refrain
from using the symbol and just write

lim an = l.

Example 2.8: The sequence 1·1, 1·01, 1·001, 1·0001, . . . , for which an =
1 + 10–n, tends to the limit 1. For, given ε > 0, we have to make

|1 + 10–n – 1| < ε for n > N
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by finding a suitable N. But this follows from Archimedes’ condition: if we
find N to make 10–N < ε, then for all n > N we have 10–n < 10–N < ε. (If
the theory of logarithms is available, we take N > log10(l/ε).)

Definition 2.9: A sequence (an) which tends to a limit l is called convergent.
If no limit exists, it is said to be divergent.

A convergent sequence can tend to only one limit. For suppose an → l
and an → m, where l �= m. Take ε = 1

2 |l –m|. For large enough n,

|an – l| < ε, |an –m| < ε.

From the triangle inequality,
∣∣l –m∣∣ < 2ε =

∣∣l –m
∣∣ , which is not the case.

In other words, if all the terms an must eventually be very close to l, they
cannot also be very close to m, because this requires them to be in two
different places at the same time.

Completeness

Definition 2.10: A sequence (an) is increasing if each an ≤ an+1, so that

a1 ≤ a2 ≤ a3 ≤ . . . .

Suppose that (an) is an increasing sequence. Either the terms an increase
without limit, eventually becoming as large as we please, or else there must
be some real number k such that an ≤ k for all n. An example of a sequence
of the first type is 1, 4, 9, 16, 25, . . . ; one of the latter type is the sequence
of decimal approximations to e: 2·7, 2·71, 2·718, 2·7182, . . . , every term of
which is less than 3.

Definition 2.11: If there exists a real number k such that an < k for all n
we say that (an) is bounded.

If we draw the points of a bounded increasing sequence on a part of the
real line we need only draw the interval between a1 and k, since all the other
points lie inside this. So a typical picture is:

Fig. 2.15 A bounded increasing sequence
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It seems visually evident that the terms become increasingly squashed to-
gether, and tend to some limit l ≤ k. This intuition is correct if we consider
sequences of real numbers and real limits, but it is wrong for sequences of
rational numbers and rational limits. In fact the sequence of decimal ap-
proximations to

√
2 is an increasing sequence of rational numbers with no

rational number as limit.
The fact that every bounded sequence of real numbers tends to a real num-

ber as limit as known as the completeness property of the real numbers. The
origin of the name is that the rational numbers are ‘incomplete’ because
numbers like

√
2 are ‘missing’. As we consider a formal approach to the real

numbers, we will see this idea in a new light.
We can make the completeness property of the reals very plausible in

terms of our ideas about decimals. Let (an) be an increasing sequence of real
numbers, with an ≤ k for all k.
The set of integers between a1 – 1 and k is finite, so there is an integer b0

that is the largest integer for which some term an0 of the sequence is ≥ b0.
Now all terms an are less than b0 + 1.

Fig. 2.16 Later terms between successive integers

We subdivide the interval from b0 to b0 + 1 into ten parts, and find b1 so
that some term an1 ≥ b0+b1/10, but no term an ≥ b0+(b1+1)/10. Continuing
in this way we get a sequence of decimals

b0, b0 · b1, b0 · b1b2, . . .
such that for n> nr the term an lies between b0 · b1b2 . . . br and
b0 · b1b2 . . . br + 1/10r . Then the real number

l = b0 · b1b2 . . .
has the property that |an– l| < 1/10r for all n > nr . Hence an → l as n→∞.
It is easy to check that this l is less than or equal to k.

Decreasing Sequences

There is no need to be obsessed with increasing sequences.
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Definition 2.12: A sequence (an) is decreasing if an ≥ an+1 for all n. If
it satisfies an ≥ k for all n then k is a lower bound and the sequence is
bounded below. (To avoid ambiguity with increasing sequences we can now
say ‘bounded above’ instead of ‘bounded’.) There is a similar theorem con-
cerning decreasing sequences, but instead of copying out the proof again and
changing the inequalities we use a trick. If (an) is decreasing, then (–an) is in-
creasing. If an ≥ k for all n then –an ≤ –k for all n, so (–an) is bounded above,
hence tends to a limit l. It follows easily that an → –l. Hence any decreasing
sequence of real numbers bounded below by k tends to a limit –l ≥ k.

Different Decimal Expansions for the Same Real
Number

Previously we expanded a real number x as an infinite decimal,
x = a0·a1a2 . . ., by using the inequalities

a0 +
a1
10

+ · · · + an
10n

≤ x < a0 +
a1
10

+ · · · + an + 1
10n

,

where a0 is an integer and an is an integer from 0 to 9 for n ≥ 1. This
condition can be written

a0 · a1a2 . . . an ≤ x < a0 · a1a2 . . . an + 1/10n. (2.1)

This, used successively for n = 1, 2, 3, . . ., gives a unique decimal expan-
sion for any real number, and different real numbers have different decimal
expansions. However, this is not quite the whole story since certain deci-
mal expansions do not occur when we use condition (2.1). For example the
expansion 0·999999 . . . , where a0 = 0 and an = 9 for all n ≥ 1, does not
occur.
Why does this happen? Suppose there were a real number x with decimal

expansion (according to (2.1)) 0·999999 . . . . Then
0 · 999 . . . 9 ≤ x < 0 · 999 . . . 9 + 1/10n,

where there are n 9s each time. Therefore

1 – (1/10n) ≤ x < 1,

or

0 < 1 – x ≤ 1/10n

for all n ∈ N. But this is impossible by Archimedes’ condition: since 1–x > 0
there must exist n with 1/10n < 1 – x.
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The reason why this sequence of 9s cannot occur is our choice of inequal-
ities in (2.1). If instead we use

a0 · a1a2 . . . an < x ≤ a0 · a1a2 . . . an + 1/10n (2.2)

then we get an equally useful definition of the decimal expansion, and it is
easy to see that the expansion of the number x = 1 now takes the form
0·999999 . . . .
However, the second rule (2.2) will now never give us the expansion

1·000000 . . . .
These are the only possibilities. For example, if a number x has two

different decimal expansions, then, without loss in generality, we can take

x = a0 · a1 . . . an–1an . . . = a0 · a1 . . . an–1bn . . . where an < bn.

Multiply through by 10n to get

a0a1 . . . an–1an · an+1 . . . = a0a1 . . . an–1bn · an+1 . . . where an < bn.

Subtracting the whole number a0a1 . . . an–1an gives

0 · an+1 . . . = k · bn+1 . . . where k = bn+1 – an+1 > 0 is a positive integer.

But the first decimal is 0 · an+1 . . . < 0 · 999 . . . ≤ 1 and the second exceeds
the positive integer k. So they can be equal only if k = 1 and both decimals
represent the same limiting value 1. In this case, an+1 = an+2 = · · · = 9,
bn+1 = bn+2 = · · · = 0 and bn = an + 1.
For example, 3·14999 . . . equals 3·15000 . . . .
This proves that an infinite decimal expansion is unique, except when

one representation is finite, given by (2.1), and the other ends in an infinite
number of 9s, given by (2.2).
It is important not to think that 0·99 . . . 9 . . . is a number ‘infinitely

smaller’ than 1. They are just two different ways of writing the same real
number.
It is convenient to allow both notations because under certain circum-

stances a calculation may give rise to the infinite sequence of 9s. This will
happen using the method given earlier to find the decimal expansion of the
limit of a bounded increasing sequence.

Example 2.13: Suppose a1 = 1 and in general an+1 = an+( 12 )
n–1, then trivi-

ally (an) is increasing and a calculation gives an = 2–
( 1
2

)n–1 , so the sequence
is bounded above by 2. Using the same method to calculate the decimal ex-
pansion using definition (2.2) instead of (2.1), the limit of the sequence (an)
is then found to be
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b0 · b1b2 . . . bn . . . = 1 · 99 . . . 9 . . . .

To cover all cases, we introduce the following:

Definition 2.14: The value of an infinite decimal a0 · a1a2 . . . an . . . is
the limit l of the sequence (dn) of decimals to n decimal places, where
dn = a0 · a1a2 . . . an.

Using this definition, 0·333 . . . is 1/3, and 0·999 . . . is 1.
Comment. Research has shown that most people initially believe that
0.999 . . . is ‘just less than 1’. The psychological reason seems to be that we
think of a sequence (an) not as a list of numbers but as a ‘variable quantity’
that varies as n varies. For example, if an = 1/n, then we tend to think of
the nth term as varying with n and becoming dynamically smaller and smal-
ler. The variable term in this case gets closer and closer to zero, but never
equals zero. This dynamic intuition makes us believe that 0·999 . . . is ‘just
less than one’ rather than equal to one. It can lead to resistance to accepting
the definition of an infinite decimal being defined as the limiting value.
One of us taught an introductory course [5] on convergence using com-

puters for students to investigate the numerical convergence of sequences to
get the sense that if a sequence converged, then, to a given number of places,
the sequence stabilised onto a fixed value. They were introduced to the idea
that the limit was the precise value that the sequence stabilised on, leading to
the formal definition of the limit l of a sequence (an), including the specific
example that if an = 1 – 1/10n then the limit l equals 1. Before the course, as
expected, 21 out of 23 stated that 0·9̇ was just less than one and only two said
that it was equal to 1. After the course, the students remained of the same
opinion. In a class discussion, the general opinion of the students was that
they knew that the repeating decimal never reached 1, so trying to define it
equal to one was not possible.
In order to make sense of formal mathematics, it is essential to get to know

the definitions and to be aware of precisely what they say. Only then will it
become possible to build up a coherent formal theory. In this case, the limit
of a sequence (an) is defined to be the fixed number l that it approaches, as
formulated in the definition.

Bounded Sets

By drawing the picture of a bounded increasing sequence we can actually
see the limit process in action, as later terms in the sequence pack together
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inside a rapidly decreasing space. We now consider not just a sequence, but
an arbitrary subset S ⊆ R which is bounded above by some k. This means
that s ≤ k for all s ∈ S. Is there some concept analogous to the limit?

Fig. 2.17 A set S bounded above

The naive thing to expect is that S has a greatest element, a number s0 ∈ S
such that s0 ≥ s for every s ∈ S. Unfortunately, this is not quite right. For
example, if S is the set of all elements of R that are strictly less than 1, then S
is bounded above—for example by k = 1. However, there is no element in S
that is greater than all the others. For suppose that y were a greatest element.
Then y ∈ S so y < 1, and then

y < 1
2 (y + 1) < 1.

So 1
2 (y + 1) ∈ S, but is greater than the supposedly greatest element y.
However, all is not lost: we just have to be more subtle.
We need some terminology:

Definition 2.15: A non-empty subset S ⊆ R is bounded above by k ∈ R if
s ≤ k for all s ∈ S. The number k is called an upper bound for S.

In the previous example the set S hasmany upper bounds: in fact any k ≥ 1
is an upper bound for S. Now the set of all upper bounds does have a least
element. In fact in this example it is 1. In other words, not only is 1 an upper
bound, but every other upper bound is bigger.

Definition 2.16: A subset S ⊆ R has a least upper bound λ ∈ R if:

(i) λ is an upper bound for S,
(ii) if k ∈ R is any other upper bound for S, then λ ≤ k.

Although upper bounds are ten a penny, a least upper bound must be
unique. For if λ and μ are least upper bounds for S, then (ii), applied to
each of them, tells us that λ ≤ μ and μ ≤ λ, so that λ = μ.
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Examples 2.17:

(1) If S is the set of all integers, then S has no upper bounds, so certainly
no least upper bound.

(2) If S is the set of all real numbers less than or equal to 49, then 49 is the
least upper bound of S.

(3) If S is the set of all decimal approximations 1·4, 1·41, 1·414, . . . to√2,
then the least upper bound of S is

√
2.

(4) If S is the set of all rational numbers r such that r2 < 2, then
√
2 is the

least upper bound of S.

In example (2) the least upper bound is an element of S, but in examples
(3) and (4) it is not. So even when least upper bounds exist, they may not be
members of the original set.
There is once more a parallel set of concepts.

Definition 2.18: A subset S is bounded below if there exists k ∈ R with
k ≤ s for all s ∈ S, and k is then called a lower bound. The number μ ∈ R is
a greatest lower bound for S if:

(i) μ is a lower bound for S,
(ii) if k is another lower bound for S, then μ≥ k.

A similar trick to that used on decreasing sequences allows us to refer all
problems on greatest lower bounds back to least upper bounds. In fact all the
basic properties of upper bounds hold for lower bounds, provided that we
interchange ≥ and ≤.
Comment. One student, who continued to think that ‘zero point nine re-
peating is just less than one’ despite all efforts to convince him otherwise,
also believed that the least upper bound of a set was always a member of the
set. He was invited to consider the set S of real numbers less than one. He
declared that this proved his point because the least upper bound of S was,
in his view, equal to zero point nine repeating, which is just less than one [1].
This belief may prove to be very difficult to overcome. As another student
commented at the end of his first course: ‘I understand it should be 1 . . . and
that the limit of the sequence is actually 1. It’s down to notation. It’s just a bit
hard to let go of 0·9999 recurring. . . ’ [6].
Strong beliefs based on human intuition can impede the appreciation

of a more formal approach using definitions. However, you will not make
progress in formal mathematics unless you build carefully on the defin-
itions as given. The limit is the fixed value to which the terms of the
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sequence approximate. For example, the notation 1·414. . . in the context of
the sequence of decimal expansions of ‘

√
2 to n decimal places’ denotes the

limit of the sequence, which is the fixed real number
√
2.

To make progress in building mathematics from definition and proof, it is
important to know the definition and how to make deductions from it. Only
then will formal mathematics build into a coherent structure. For example,
using formal definition and deduction, the completeness property of the real
numbers can be used as a foundation to prove more general properties of the
real numbers, such as:

Proposition 2.19: Every non-empty subset ofR that is bounded above has
a least upper bound.

Note the careful use of the adjective ‘non-empty’. This is necessary because
any number is an upper bound for a set with no elements. The proof of the
above proposition can be made plausible by using decimal expansions in the
same sort of way that we dealt with increasing sequences. It is more straight-
forward to deal with lower bounds and then use the trick to convert to upper
bounds. This means we look at:

Proposition 2.20: Every non-empty subset of R which is bounded below
has a greatest lower bound.
Proof: Let S ⊆ R and let a0 be the largest integer that is a lower bound for S.
Let a1 be the largest integer between 0 and 9 for which a0 · a1 is a lower bound
for S. Then, generally, let an be the greatest integer between 0 and 9 for which
a0 · a1a2 . . . an is a lower bound for S. We claim that

λ = a0 · a1a2 . . .
is the greatest lower bound. The proof is mainly a matter of unravelling
decimal notation, and is complicated by the occurrence of ‘carry digits’ in
arithmetic.
First, we show that λ is a lower bound. If not, there exists s ∈ S such that

s<λ. By Archimedes’ condition there exists n ∈ N such that 10–n < λ – s.
Therefore an can be reduced by 1 in the definition of λ; or, if an = 0, some
earlier am > 0 can be reduced by 1. But this contradicts the definition of λ.
Then we show that every lower bound μ is less than or equal to λ. If

not, μ > λ, so by Archimedes’ condition there exists n ∈ N such that
10–n < μ – λ. Therefore an can be increased by 1 in the definition of λ; or,
if an = 9, some earlier am < 9 can be increased by 1. But this contradicts the
definition of λ. �
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We have remarked that it is not possible to make a drawing sufficiently
accurate to distinguish rational numbers from irrational ones. But questions
of upper and lower bounds expose a vital theoretical difference between real
and rational numbers. Examples (3) and (4) above are bounded sets of ra-
tionals with no rational least upper bound. In this sense, R is complete butQ
is not. It is this property that will play a vital role when we come to a formal
definition of the real numbers later in this book.

Exercises

1. Assuming any results you need about prime factorisation of natural
numbers, show that every positive rational number can be written in
exactly one way as a product

r = pα11 pα22 . . . pαss
where p1 = 2, p2 = 3, . . . are the primes in increasing order and each αk
is an integer (positive, negative, or zero).
Write the following rationals in this manner: 14/45, 3/8, 2, 20/45.
Show that

√
r is rational precisely when all of the powers α1, α2, . . .

are even. Deduce that for a positive integer n,
√
n is irrational if and

only if n is not the square of an integer.
2. Extend the result of exercise 1 to find those rational numbers r such

that 3
√
r (cube root of r) is irrational. Show that n

√
3
8 is irrational for all

natural numbers n ≥ 2.
3. Which of the following statements are true?

(a) If x is rational and y is irrational, then x + y is irrational.
(b) If x is rational and y is rational, then x + y is rational.
(c) If x is irrational and y is rational, then x + y is rational.
(d) If x is irrational and y is irrational, then x + y is irrational.
Prove the true ones and give examples to disprove the false ones.

4. Prove that between any two distinct real numbers there exist infinitely
many rational numbers and infinitely many distinct irrational num-
bers. (Here, ‘infinitely many’ means that given any natural number n,
there exist at least n numbers with the required property.)

5. For real numbers a, r and natural number n, let sn = a + ar + · · · + arn.
Show that rsn – sn = a(rn+1 – 1) and deduce that∣∣∣sn – a

1 – r

∣∣∣ = ∣∣∣∣ rn+11 – r

∣∣∣∣ for r �= 1.

For |r| < 1 deduce that sn → a/(1 – r) as n→∞.
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6. Prove that an infinite decimal x = a0 · a1a2a3 . . . is a rational number
if and only if it is ‘eventually recurring’, that is, after some n onwards it
repeats the same block of digits indefinitely.

x = a0 · a1 . . . an an+1 . . . an+k︸ ︷︷ ︸ an+1 . . . an+k︸ ︷︷ ︸ an+1 . . . an+k︸ ︷︷ ︸ . . . .
(Hint: One way round, use question 5 with a = an+1 . . . an+k/10n+k with
r = 1/10k.)

7. Let

y = 0·1234567891011121314151617181920 . . . ,
whose digits are the natural numbers in decimal form, strung end to
end. Prove that y is irrational.
Is

0·101001000100001 . . . ,
where each successive string of 0s has one more digit, rational or
irrational?

8. Say whether each of the following sequences (an) tends to a limit, and
if so, what the limit is. Use the ε – N definition to prove your answers
are correct.
(a) an = n2
(b) an = 1/(n2 + 1)
(c) an = 1 + 1

3 +
1
9 + · · · +

( 1
3

)n
(d) an = (–1)n
(e) an = (– 1

2 )
n
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PART II
The Beginnings of Formalisation

The next five chapters develop the techniques we need to place mathematical
reasoning on a firmer logical basis. We still permit the use of our intuitive
ideas, but now only asmotivation for the concepts introduced, and no longer
as an integral part of the reasoning.
In the ‘building’ metaphor, we are getting together the bricks, cement,

timber, tiles, pipes, and other materials, and assembling a workforce of brick-
layers, plasterers, joiners, and plumbers to put them together in the right
way. In the ‘plant’ metaphor, it is a question of flowerpots, stakes, forks, and
trowels, and a good stock of insecticide to keep the bugs off.
We concentrate on two main ideas: the use of set theory as a source of

raw material, and the use of mathematical logic to ensure that the proofs
of theorems are rigorous and sound. There are three chapters on sets and
related topics, followed by two on logic. We approach both from the point
of view of a practical mathematician who is more interested in using them to
do mathematics than in their own internal workings.





chapter 3

Sets

In accordance with the point of view stated in chapter 1, we make no at-
tempt to give a precise definition of the concept ‘set’. This will not prevent
us from explaining what a set is. A set is any collection of objects what-

soever. The word ‘collection’ is not intended to imply anything about the
number of objects in the set: it may be finite or infinite; there may be just one
object, or even none. Nor is there any intention to imply any uniformity in
the type of object used to make up the set: a perfectly good set might consist
of three numbers, two triangles, and a function. Obviously such a broad con-
cept allows vast scope for whimsical examples. However, the sets of interest
in mathematics consist only of mathematical objects. At an elementary level
we encounter sets of numbers, sets of points in the plane, sets of geometrical
curves, sets of equations. In more advanced mathematics, there is an enor-
mous variety of sets; in fact almost all the concepts of interest are built up
from a set-theoretical standpoint.
Nowadays the concept ‘set’ is considered to be fundamental to the whole

of mathematics—even more fundamental than the concept ‘number’, which
earlier ages plumped for. There are many reasons for this. One is that the
solution of equations usually yields a set of solutions, rather than just one;
quadratic equations, for example, usually have two solutions. Again, modern
mathematics places emphasis on generality. Interesting theorems tend to
apply to a variety of cases. Pythagoras’ theorem is important, not because it
applies to one particular right-angled triangle, but because it applies to all of
them. It thereby expresses a property of the set of all right-angled triangles.
The concept of a ‘group’ (which we describe later, particularly in chapter 13)
appears in many guises throughout the whole of mathematics. The language
of sets helps us formulate general properties of a group, which therefore
apply to all of its realisations. It is this power of expression of general
concepts using set-theoretic language that gives modern mathematics its
distinctive flavour.
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To deal with all of the sets that arise in mathematics, it is easiest to develop
first those general properties common to all sets, and then to apply them in
more special situations. For the rest of this chapter we concentrate on various
natural ways to combine and modify sets to form other sets. The systematic
study of these methods leads to a kind of ‘algebra’ of sets, in the same way
that a systematic study of the general properties of numbers and operations
such as addition, subtraction, multiplication, and division leads to an algebra
of numbers.

Members

The objects that together make up a given set are called themembers or elem-
ents of the set. The members themselves are said to belong to the set. To
express symbolically that an element x belongs to a set S, we write

x ∈ S.

If x does not belong to S, we write

x /∈ S.

In order to know which set is under consideration, we must know exactly
which objects are members. Conversely, if we know the exact membership,
we know which set the members form. Being pedantic about this is not as
silly as it might seem, because we often describe the same set in different
ways; we can be sure that we are dealing with the same set by looking at its
members. For example, if A is the set of solutions of the equation

x2 – 6x + 8 = 0,

and B is the set of even integers between 1 and 5, then A and B both have
precisely two members, 2 and 4. This means that A and B are the same set.
It is sensible, therefore, to say that two sets are equal if they have the same
members. Equality of two sets S and T is expressed in the usual way by

S = T,

and if S and T are not equal, we write

S �= T.

This apparently trite criterion for equality of sets has some interesting
consequences, as we see in a moment.
The simplest way to specify a set is to list its members (if that is possible).

The standard notation is to enclose the list in braces { }. So

S = {1, 2, 3, 4, 5, 6}
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means that S is the set whose members are the numbers 1, 2, 3, 4, 5, 6, and
only these. As another example, if

T = {79,π2,
√
(5 +

√
7), 45 }

then the members of T are the numbers 79,π2,
√
(5 +

√
7), and 4

5 .
Two features of this notation should be emphasised; both are conse-

quences of our notion of equality of sets. First, it is immaterial in which order
we write the list of members. The set {5, 4, 3, 2, 6, 1} is the same as the set S
above, and so is the set {3, 5, 2, 1, 6, 4}. Why? Because in all three cases, we
have the same members, namely 1, 2, 3, 4, 5, and 6. The order within the
braces arises not from any mathematical cause, but from our conventions
about writing from left to right. Second, if elements are repeated in the list,
this does not alter the set either. For instance, {1, 2, 3, 4, 6, 1, 3, 5} is just
our old friend S again. Once more, there is a reason for this seemingly pe-
culiar convention. We might combine two lists to give the set consisting of,
say, all the proper divisors of 12, namely 1, 2, 3, 4, 6, together with the odd
numbers less than 6, which are 1, 3, 5. Just writing one list after the other
gives precisely what we have written. In this case it would have been quite
easy to go through and cross out repeats, but in general, it is better to retain
flexibility of notation and allow repeats. Our convention about a set being
specified by its members implies that all of the various ways of specifying S
have precisely the members 1, 2, 3, 4, 5, 6 and no others.
These peculiarities of notation have no great conceptual significance. We

are used to the fact that when writing fractions, we can get different symbols
for the same number: 1

2 = 2
4 = 3

6 and so on. In fact this is one of the most
common usages of the equality sign: when we write x = y we mean that the
two symbols on either side of the sign are two different names for the same
thing. For instance, 2 + 2 = 12 ÷ 3 = 5 – 1 = +

√
16 = 4. We use the same

convention when we write S = T for equality of sets. Having understood
this, there is no essential difficulty here; we have just raised these questions
in order to dispose of them.
When specifying a set, it may not be convenient, or even possible, to write

down a complete list of all the members. The set of prime numbers is better
described precisely by that phrase, rather than by the list

{2, 3, 5, 7, 11, 13, 17, 19, . . .}.

Indicating a few terms of an infinite set in this manner is open to the same
sort of misinterpretation as writing the first few terms of a sequence, only
slightly worse. A sequence is thought of in order, but according to our
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conventions about sets, the elements inside braces are not in any specific
order. So the list above might also be written

{7, 17, 37, 47, 2, 11, 3, 5, . . .}.

Who could sort out this jumble and say, with hand on heart, that this is the
set of all primes? We admit that there are occasions when mathematicians
do use the bracket notation for infinite sets. We do so ourselves sometimes.
In such cases, it is always clear what is intended.
In the given case we could be more precise by writing

P = {all prime numbers},

which is self-explanatory. A slight variation on this, which is very useful, is

P = {p | p is a prime number}.

Here the braces are read as ‘the set of all . . . ’, the vertical line as ‘such that’,
and the whole symbol reads ‘the set of all p such that p is a prime number’,
which obviously means ‘the set of all prime numbers’. In general a definition
of the type

Q = {x | something or other involving x}

means that Q is the set of all x for which the something or other involving x
is true.
To see how useful this notation is, suppose we want to define S to be the

set of solutions of the quadratic equation

x2 – 5x + 6 = 0.

We could, of course, solve, and define S = {2, 3}. Much easier, since it avoids
solving the equation, is to write

S = {x | x2 – 5x + 6 = 0}.

This gives a precise and unequivocal definition of S. Of course it is no help
in solving the equation! But that is the point of the whole exercise: we can
specify the set S without actually doing any calculations.
There is room for ambiguity in this notation. If we are thinking about

integers only, then the set

{x | 1 ≤ x ≤ 5}

consists of the numbers 1, 2, 3, 4, 5. But if we are thinking about real num-
bers, all the other real numbers between 1 and 5 are included as well. The
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best way out of this impasse is to specify a set Y from which the elements are
to be chosen. The notation

X = {x ∈ Y | something or other involving x}

means that X is the set of those members x of the given set Y such that
something or other involving x is true. This is the same as

X = {x | x ∈ Y and something or other involving x},

but the first notation is preferable because it emphasises the role of Y .
If Z is the set of integers and R the set of real numbers, then

{x ∈ Z | 1 ≤ x ≤ 5}

has members 1, 2, 3, 4, 5, while every a ∈ R satisfying 1 ≤ a ≤ 5 is a
member of

{x ∈ R | 1 ≤ x ≤ 5}.

There is an even more serious reason for specifying a set Y from which the
members of the set X are chosen: to make sure that the ‘something or other
involving x’ makes sense for all x ∈ Y . The ‘something or other’ needs to be
a property that is clearly true or false for every x ∈ Y . Then the set X selected
by this property comprises those members of Y for which the property is
true.
In English grammar, a sentence is divided into two parts: the subject of the

sentence, and the rest, called the predicate, which tells us about the subject.

Fig. 3.1 Subject and predicate

A mathematician who customarily uses a symbol like x to denote an un-
known might say that the predicate in the first sentence is

x is a satellite of the earth
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and the predicate in the second is

Because he defied the waves, x got his feet wet.

The beauty of this description is that it specifies the position of the subject
in the sentence. To get the original sentence back again, we simply substitute
the appropriate subject in place of x.
This motivates the mathematical definition:

Definition 3.1: A predicate is a sentence involving a symbol x so that when
we substitute an element a ∈ Y for x, the resultant statement is clearly either
true or false. We say that the predicate is ‘valid for the set Y ’ if this is so.

For instance, the sentence

1 ≤ x ≤ 5

is a predicate which is valid for the set Z. It is also valid for the set R. Substi-
tute any integer or real number and we get a statement that is either true or
false.

1 ≤ 3 ≤ 5 is true,
1 ≤ 57 ≤ 5 is false,

and so on.
The set {x ∈ Z | 1 ≤ x ≤ 5} is just the set of x ∈ Z such that the predicate

1 ≤ x ≤ 5 is true.
A predicate need not be restricted just to sets of numbers. For instance, if

T is the set of triangles in the plane, then the sentence

x is right-angled

is a predicate valid for the set T and

{x ∈ T | x is right-angled}

is just the set of right-angled triangles in the plane.
We could go on giving examples galore of predicates, but plenty will turn

up in the text anyway. The reader should make it clear in their own mind
that whenever the symbolism

{x ∈ Y |P(x)}

is used, then P(x) is a predicate in x which is valid for all x ∈ Y .
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Subsets

Within any given set A there exist other sets, obtained by omitting some of
the elements of A. These are called subsets of A. More formally:

Definition 3.2: B is a subset of A if every element of B is an element of A.
We write

B ⊆ A

or

A ⊇ B.

We also say that B is contained in, or included in, A and that A contains or
includes B. With this definition we have A ⊆ A, for trivial reasons. If B ⊆ A
and B �= A then we say that B is a proper subset of A and write

B � A.

Manymathematicians use⊂where we have used⊆ and others write⊂where
we have chosen �. We use⊆ because it is unambiguous.
The criterion for equality of sets leads to a trivial but useful result:

Proposition 3.3: Let A and B be sets. Then A = B if and only if A ⊆ B and
B ⊆ A.
Proof: If A = B then, since A ⊆ A, it follows that A ⊆ B and B ⊆ A.
Conversely, suppose that A ⊆ B and B ⊆ A. Then each element of A is an
element of B, and each element of B is an element of A. Hence A and B have
the same elements, so A = B. �

In practice this proposition is used to prove equality of two sets when each is
defined by a predicate. We start with a typical element in A (given in terms
of the appropriate predicate) and show that this element is also a member
of B. This verifies that A ⊆ B. Then we carry out a similar argument to
show that B ⊆ A. We will see plenty of examples of this procedure soon (in
propositions 3.8, 3.9, and 3.10, for instance).
A basic property of subsets is that a subset of a subset is itself a subset:

Proposition 3.4: If A, B, C are sets with A ⊆ B and B ⊆ C, then A ⊆ C.
Proof: Every element of A is an element of B and every element of B is an
element of C. Therefore every element of A is an element of C, so A ⊆ C. �
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Warning: It is important not to confuse subsets and members: the two con-
cepts are quite different. The members of {1, 2} are 1 and 2. The subsets of
{1, 2} are {1, 2}, {1}, {2}, and a fourth subset which for the moment is best
written as { }.
Further, proposition 3.4 becomes false if we change ‘⊂’ to ‘∈’. Mem-

bers of members need not be members. For example, let A= 1, B= {1, 2},
C = {{1, 2}, {3, 4}}. Then A ∈ B and B ∈ C. But the members of C are {1, 2}
and {3, 4}, so A = 1 is not a member.
Now let us return to that set { }.

Definition 3.5: A set is empty if it has no members.

For instance, the set

{x ∈ Z | x = x + 1}

is empty, because the equation x = x + 1 has no solutions in Z.
An empty set has remarkable properties (remarkable at first sight, that is)

by default. For instance, if E is an empty set and X is any set whatsoever,
then E ⊆ X. Why? We have to show that every element of E is an element of
X. The only way that this can fail is if E has some element e which does not
belong to X. But E, being empty, has no elements at all, so cannot contain
any such element.
This (curious but logical) argument is an example of ‘vacuous reasoning’,

because it discusses properties of something that does not exist. Vacuous
reasoning is rarely encountered in everyday argument. However, for math-
ematicians, it has a unifying feature that allows logical arguments to be used
in cases where everyday intuition may not apply. Really, we are discussing
properties that something would have if it did exist, with the aim of obtain-
ing a contradiction. Then we conclude that it does not exist. So it is useful to
allow statements about non-existent objects.
For instance, suppose we have two empty sets E and E′. The above tells us

that E ⊆ E′ and E′ ⊆ E. Then proposition 3.3 tells us that E = E′. All empty
sets are equal. Hence there is a unique empty set.We therefore give it a special
symbol: we write

∅

to denote the empty set.
This is hardly surprising. In the absence of any elements whatsoever, we

have no way to distinguish two empty sets. In the words of [31]: ‘the contents
of two empty paper bags are equal’.
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Is There a Universe?

Just as there is an empty set ∅ that contains no elements, we might ask
whether there is a very large set � that includes absolutely everything. This
turns out to be far too fanciful. Such a set would have to be an incredibly vast
rag-bag; if it contained everything it would include all numbers, all elements
of every set, all sets, all places in the universe, the Declaration of Independ-
ence,Winston Churchill, the year 1066, the wit of OscarWilde, . . . If we dare
contemplate such an �, then � itself must be an acceptable concept and we
would have to include it in the collection of absolutely everything. So� ∈ �.
Most sensible sets do not belong to themselves; in fact you could while away
an interesting half an hour trying to find such a set.
However, there is a nastier problem. If we select from the putative set �

the subset comprising everything that is a set but does not belong to itself,
we get:

S = {A ∈ � |A /∈ A}.

Now ask the key question: is S ∈ S?

If S ∈ S, then, according to the defining predicate, S /∈ S.
If S /∈ S, then S satisfies the defining predicate, so S ∈ S.

Our flight of fancy in assuming the existence of a universe � has led to a
paradox. Therefore there cannot be a universal set.
Can we salvage the situation by removing all the whimsical things and

concentrating on a universal set for the realm of mathematics? No: this too
has its pitfalls. If we try to contemplate a set �M of all mathematical ob-
jects (whatever that means), then we reach the same contradiction when we
consider the subset of �M consisting of all mathematical objects that do not
belong to themselves.
To avoid such paradoxes, it is essential for the sets we consider to be clearly

defined, in the sense that in principle we know precisely which objects are
members and which are not.
The non-existence of a universal set is another reason why the notation

{x ∈ Y |P(x)},

where Y is a known set and P(x) is a predicate, is preferable to

{x | P(x)}.

Having specified the set Y , we can investigate the predicate P(x) and make
sure it is valid for all elements of Y before selecting those elements in Y for
which the predicate is true. Used indiscriminately, the notation {x | P(x)},
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which allows us to try absolutely any object x to see if it is a member, is like
considering {x ∈ � | P(x)}. But there is no universal set�. If we don’t specify
a set Y , then we have unlimited choice of objects x to try in P(x). We might
consider an element that had not been intended at the outset, and end up
with a paradox again.
Here is an example. If Z is the set of integers, R the set of real numbers,

and T the set of all triangles in the plane, then Z /∈ Z,R /∈ R,T /∈ T. If Y is
the set whose members are Z, R, T, then

{x ∈ Y | x /∈ x} = {Z, R, T}.

On this set Y , the property x /∈ x is a perfectly acceptable predicate. However,
if we consider

{x | x /∈ x}

with no restrictions on x, imagination can run riot. Considering
S = {x | x /∈ x} itself, we end up with the same contradiction as before: S ∈ S
if and only if S /∈ S.
The moral is that set theory is a system of notation, not a magical pre-

scription. As such, it is as good as the manner in which it is used. When used
sensibly, it behaves well. But if you use it badly, things can go wrong.

Union and Intersection

Two important methods for combining sets are known as the union and
intersection.

Definition 3.6: The union of two sets A and B is the set whose elements are
those of A together with those of B. We write A∪ B to denote the union of A
and B. Now

A ∪ B = {x | x ∈ A or x ∈ B (or both)}.

For example, if

A = {1, 2, 3}
B = {3, 4, 5}

then the union is {1, 2, 3, 4, 5}.

Definition 3.7: The intersection ofA and B is the set whose elements belong
both to A and to B. The symbol for the intersection is A ∩ B. In this case,

A ∩ B = {x | x ∈ A and x ∈ B}.
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For example, with A and B as above, their intersection is {3}, because only 3
belongs to both of them.
The intersection can also be written as

A ∩ B = {x ∈ A | x ∈ B},

so we can think of it being the subset of A selected using the predicate x ∈ B.
(Equivalently we could think of it as being the subset of B which satisfies
the predicate x ∈ A.) The union, on the other hand, involves constructing
a new set which is (usually) bigger than both A and B, so here we have an
example of a set construction that does not select elements from a previously
prescribed set Y .
The operations of union and intersection obey certain standard laws. Most

of them are obvious, but for convenience we list them in the next three
propositions.

Proposition 3.8: Let A, B, C be sets. Then

(a) A ∪∅ = A
(b) A ∪ A = A
(c) A ∪ B = B ∪ A
(d) (A ∪ B) ∪ C = A ∪ (B ∪ C).

Proof: Only (d) is remotely difficult, so we leave the first three as an exercise.
Before trying them, however, read the proof of (d).
Suppose that x ∈ (A∪B)∪C. Then either x ∈ A∪B or x ∈ C. If x ∈ C, then

x ∈ B∪C, so x ∈ A∪(B ∪ C). If not, then x ∈ A∪B, so either x ∈ A or x ∈ B.
In either case x ∈ A ∪ (B ∪ C). So we have proved that if x ∈ (A ∪ B) ∪ C
then x ∈ A ∪ (B ∪ C), that is:

(A ∪ B) ∪ C ⊆ A ∪ (B ∪ C).

A similar argument shows that

A ∪ (B ∪ C) ⊆ (A ∪ B) ∪ C.

Using proposition 3.3 we obtain equality. �

This proof is more complicated than the situation really warrants, because it
is obvious that (A ∪ B)∪C is the set whose members are those of A, those of
B, and those of C together. Clearly this is the same set as A ∪ (B ∪ C). Once
we know this, it is possible to omit the brackets altogether and write just

A ∪ B ∪ C.
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Similar results hold for intersections:

Proposition 3.9:

(a) A ∩∅ = ∅
(b) A ∩ A = A
(c) A ∩ B = B ∩ A
(d) (A ∩ B) ∩ C = A ∩ (B ∩ C).

The proofs are analogous to those in proposition 3.3. �

Finally, there are two equations that mix up unions and intersections:

Proposition 3.10:

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof: Let x ∈ A ∪ (B ∩ C). Then either x ∈ A or x ∈ B ∩ C. If x ∈ A
then certainly x ∈ A ∪ B and x ∈ A ∪ C, hence x ∈ (A ∪ B) ∩ (A ∪ C).
Alternatively, x ∈ B ∩ C gives x ∈ B and x ∈ C. Hence x ∈ A ∪ B and
x ∈ A ∪ C, so x ∈ (A ∪ B) ∩ (A ∪ C). This proves that

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C). (3.1)

Conversely, suppose y ∈ (A ∪ B) ∩ (A ∪ C). Then y ∈ A ∪ B and y ∈ A ∪ C.
There are two cases to consider: when y ∈ A and when y /∈ A. If y ∈ A, then
certainly y ∈ A ∪ (B ∪ C). On the other hand, if y /∈ A then, since y ∈ A ∪ B,
we must have y ∈ B; similarly y ∈ C. Thus y ∈ B ∩ C, which again implies
y ∈ A ∪ (B ∩ C). Therefore

(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

Together with (3.1), this yields the desired result.
The proof of (b) is analogous. �

Proposition 3.10 is a pair of ‘distributive laws’, which should be compared
with the way that multiplication of numbers is distributive over addition:

a× (b + c) = (a× b) + (a× c).

With numbers, however, the interchange of the two operations does not give
a new rule:

a + (b× c) = (a + b)× (a + c)

is not true in general.

60 | 3 SETS



The operations ∪ and ∩ on sets behave in a much more symmetrical way:
each is distributive over the other.
One way to visualise these various set theoretic identities is to draw Venn

diagrams. The identity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

can be represented by drawing three overlapping discs, supposed to repre-
sent the sets A, B, C, and proceeding as follows:

Fig. 3.2 Three overlapping sets

B ∩ C is the shaded region common to B and C:

Fig. 3.3 B ∩ C

and the union of this with A is:

Fig. 3.4 A ∪ (B ∩ C)
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On the other hand, A ∪ B is:

Fig. 3.5 A ∪ B

and A ∪ C is:

Fig. 3.6 A ∪ C

so (A ∪ B) ∩ (A ∪ C) is the region common to both, which is:

Fig. 3.7 (A ∪ B) ∩ (A ∪ C)

This is the same as before.
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You may wish to try your hand at illustrating the other identities in pro-
positions 3.8, 3.9, and 3.10 by drawing Venn diagrams. Such pictorial devices,
if well chosen, help most people to get a coherent idea of what is going on. To
obtain the most general picture, the diagram must be drawn with care. With
one set A, there are two distinct regions involved, inside A and outside A:

Fig. 3.8 Inside and outside a set

With two sets A and B there are four regions, (1) outside both, (2) inside A
but not B, (3) inside B but not A, and (4) inside both of them:

Fig. 3.9 Two sets, four regions

With three sets, A, B, and C, there are eight regions:

Fig. 3.10 Three sets, eight regions

If we add a fourth set D so that D meets each of these eight regions and the
area outside D meets each of the regions, then we get sixteen regions in all.
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There is no way that this can be achieved if A,B,C, and D are all drawn as
circles. Try to draw a fourth circle in the last diagram above to meet this
prescription, and you will see what we mean. It can be done, but not with a
circle:

Fig. 3.11 Four sets, . . .

Many more elegant diagrams, which in principle can handle any finite num-
ber of sets, have been devised (see [2]). Venn himself was aware of such
limitations when he first drew the diagrams. They can be ironed out by us-
ing more complicated shapes to represent the sets. This problem illustrates
the need to shift from the use of pictures as an aid to mental processes, to a
general proof that works in all cases in a manner analogous to those in pro-
positions 3.8, 3.9, and 3.10. This is an important aspect of the journey in this
book, from intuitive beginnings that may be imagined as pictures, to formal
definitions and proofs that work in general. Initially, proofs should be verbal-
ised in terms of definitions, to establish relationships that can be used with
confidence in new settings.
There is a general connection between unions, intersections, and subsets:

Proposition 3.11: If A and B are sets, the following are equivalent:

(a) A ⊆ B
(b) A ∩ B = A
(c) A ∪ B = B.

Proof: Equation (b) says that the elements common to A and B are all the
elements of A, so every element of A belongs to B, which implies A ⊆ B. The
converse is obvious, so (a) and (b) are equivalent.
Equation (c) says that if we add to B the elements ofA, we still get B. There-

fore no element of A can fail to belong to B, and again A ⊆ B. The converse
is once more obvious, so (a) and (c) are equivalent. �
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Complements

Let A and B be sets.

Definition 3.12: The set-theoretic difference A\B is defined to be the set of
all those elements of A that do not belong to B. In symbols,

A\B = {x ∈ A | x /∈ B}.

In a Venn diagram, A\B is the shaded region in:

Fig. 3.12 The set-theoretic difference

If B is a subset of A, then we call A\B the complement of B relative to A.

Fig. 3.13 The complement of B relative to A

It would be nice to forget about A entirely, thus defining the complement of
B to consist of everything not belonging to B. However, this is too much to
ask, because it would mean that B and its supposed complement would make
up a set� which contains absolutely everything, and we have already shown
that such a set cannot exist.
In a particular piece of mathematics, however, there may be a set U that

includes all of the elements that we wish to consider. We call this set the uni-
verse of discourse or universal set (universal, that is, for current purposes).
When dealing with the set of integers, for example, we might take the uni-
versal set to beU = Z. Of course,U = Rwould do just as well. The important
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thing is that the universal set should be sufficiently all-embracing to include
all of the elements under discussion. As one of us says elsewhere, ‘In a dis-
cussion about dogs, when thinking about all non-sheepdogs, it is pointless to
worry about camels’.

Definition 3.13: Having agreed upon U, we define the complement Bc of
every subset B of U by

Bc = U\B.
Thus Bc is the complement of B relative to U . But because U is agreed upon,
we can omit it from the notation, which is the object of the exercise.
Of course, the operation c obeys some simple laws. They include:

Proposition 3.14: If A and B are subsets of the universal set U, then

(a) ∅c = U
(b) Uc = ∅
(c) (Ac)c = A
(d) If A ⊆ B then Ac ⊇ Bc. �

In view of (c) we can write Acc = (Ac)c = A. Less elementary, but highly
interesting, are:

Proposition 3.15 (De Morgan’s Laws): If A and B are subsets of the
universal set U , then

(a) (A ∪ B)c = Ac ∩ Bc,
(b) (A ∩ B)c = Ac ∪ Bc.

Proof: Let x ∈ (A ∪ B)c. Then x /∈ A ∪ B. This implies that x /∈ A and
x /∈ B, so x ∈ Ac and x ∈ Bc, so x ∈ Ac ∩Bc. Therefore (A ∪ B)c ⊆ Ac ∩Bc.
To obtain the reverse inclusion, reverse the steps in the argument. This
proves (a).
Equation (b) can be proved similarly. Alternatively, we can replace A by

Ac and B by Bc in (a), which gives(
Ac ∪ Bc)c = Acc ∩ Bcc = A ∩ B.

Taking complements,
Ac ∪ Bc =

(
Ac ∪ Bc)cc = (A ∩ B)c ,

and this is (b). �

These laws explain a phenomenon that the alert reader may have observed
already: set-theoretic laws come in pairs, so that if we start with one and
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change all unions to intersections and all intersections to unions, we obtain
another. We could formulate this as follows:

Theorem 3.16 (De Morgan Duality Principle): If in any valid set-
theoretic identity involving only the operations ∪ and ∩ the operations ∪
and ∩ are interchanged throughout, the result is another valid identity.
Proof: To prove this in general is not hard, but it needs an induction
argument. The following example is a typical case. Start with the identity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Take complements of both sides and use De Morgan’s laws to get

Ac ∩ (B ∩ C)c = (A ∪ B)c ∪ (A ∪ C)c ,

then use De Morgan again to get

Ac ∩ (Bc ∪ Cc) = (Ac ∩ Bc) ∪ (Ac ∩ Cc).
Already we have interchanged ∪ and ∩. Now systematically replace A by
Ac, B by Bc,C by Cc. Since the equation is true for any sets A, B, C, this is
legitimate. We get

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

This is the original law, with ∪s and ∩s interchanged. �

Question: How does the presence of the operation c affect the argument?
(Try the identity

B ∪ (A ∩ Ac) = B

and use the same approach. What happens?)

Sets of Sets

It may happen that all the elements of a given set S are themselves sets. In-
deed, it is often a useful device to consider a set of sets. For instance, we may
have S = {A,B} where A = {1, 2}, B = {2, 3, 4}. A more sophisticated example
is to take any set X and let P(X) be the set of all subsets of X. This is called
the power set of X and satisfies the property:

Y ∈ P(X) if and only if Y ⊆ X.

For example, if X = {0, 1}, then P(X) = {∅, {0}, {1}, {0, 1}}. In cases
like these, where every member of S is itself a set, we can go a level fur-
ther and consider the elements belonging to these members. This gives us
generalisations of the notions of union and intersection:
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⋃
S = {x | x ∈ A for some A ∈ S}⋂
S = {x | x ∈ A for every A ∈ S}.

The taller versions of the symbols remind us that these are related to the
operations ∪ and ∩ but now apply to sets of sets. We call

⋃
S the ‘union of S’

and
⋂

S the ‘intersection of S’. Put into words, the union of S consists of all
the elements in the members of S and the intersection of S consists of those
elements common to all members of S. For instance,⋃

{{1, 2}, {2, 3, 4}} = {1, 2, 3, 4}⋂
{{1, 2}, {2, 3, 4}} = {2}.

In general, for any set X, ⋃
P(X) = X⋂
P(X) = ∅.

Although this notation may seem a little strange at first, it is extremely
economical and it does act as a genuine extension of the usual concepts. For
instance, given two sets A1, A2, let S = {A1, A2}. Then⋃

S = A1 ∪ A2⋂
S = A1 ∩ A2.

More generally, ⋃
{A1, A2, . . . ,An} = A1 ∪ A2 ∪ . . . ∪ An⋂
{A1, A2, . . . ,An} = A1 ∩ A2 ∩ . . . ∩ An.

Alternative (and much more used) notations for these last two concepts are

A1 ∪ A2 ∪ . . . ∪ An =
n⋃
r=1

Ar

A1 ∩ A2 ∩ . . . ∩ An =
n⋂
r=1

Ar .

We return to generalised unions and intersections at the end of chapter 5.

Exercises

1. Which of the following sets are the same?
(a) { – 1, 1, 2}
(b) { – 1, 2, 1, 2}
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(c) {n ∈ Z | | n | ≤ 2 and n �= 0}
(d) {2, 1, 2, –2, –1, 2}
(e) {2, –2} ∪ {1, –1}
(f ) {–2, –1, 1, 2} ∩ {–1, 0, 1, 2, 3}.

2. Prove that for all sets A, B,

(A\B) ∪ (B\A) = (A ∪ B) \ (A ∩ B).

If A is the set of even integers, and B is the set of integers that are
multiples of 3, describe (A\B) ∪ (B\A).

3. Write out the proofs of propositions 3.8(a), 3.8(b), 3.8(c), and all of
proposition 3.9. Draw Venn diagrams to illustrate these results.

4. Draw a Venn diagram suitable for all formulas involving five different
sets.

5. If S = {all subsets X ⊆ Z such that 0 ∈ X}, find
⋂

S,
⋃

S.
6. If S = S1 ∪ S2, prove that

⋃
S =

(⋃
S1
) ∪ (⋃ S2

)
.

7. If A has n elements (n ∈ N), calculate the number of subsets of A. If
you are acquainted with proof by induction, prove your result by this
technique.

8. If A, B, C are finite sets and |A| denotes the number of elements in A,
show that

|A ∪ B ∪ C| = |A|+|B|+|C|–|A ∩ B|–|B ∩ C|–|C ∩ A|+|A ∩ B ∩ C| .
Draw a Venn diagram.

9. In each of the following statements, if we replace S by one of N, Z,
Q, R, then we get a true statement. Find the appropriate set in each
case:
(a) {x ∈ S | x3 = 5} �= ∅
(b) {x ∈ S | – 1 ≤ x ≤ 1} = {1}
(c) {x ∈ S | 2 < x2 < 5}\{x ∈ S | x > 0} = {–2}
(d) {x ∈ S | 1 < x ≤ 4} = {x ∈ S | x2 = 4} ∪ {3, 4}
(e) {x ∈ S | 4x2 = 1}\{x ∈ S | x < 0} =

{x ∈ S | 5x2 = 3} ∪ {x ∈ S | 2x = 1} �= ∅.
10. The equation x + y = z has many solutions x, y, z ∈ N; the equation

x2 + y2 = z2 has solutions including x = 3, y = 4, z = 5.
Let F = {n ∈ N | xn + yn = zn has a solution where x, y, z ∈ N}.
Whatmust be done to show F = {1, 2}?What does this tell us about

verifying equality between sets in general?
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chapter 4

Relations

The aim of this chapter is to introduce one of the most important
concepts in set theory. The notion of a relation is found through-
out mathematics and applies in many situations outside the subject

as well. Examples of relations involving numbers include ‘greater than’, ‘less
than’, ‘divides’, ‘is not equal to’; examples from the realms of set theory in-
clude ‘is a subset of ’, ‘belongs to’; examples from other areas include ‘is the
brother of ’, ‘is the son of ’. What all these have in common is that they refer
to two things, and the first is either related to the second in the manner de-
scribed, or not. Thus the statement a > b, where a and b are integers, is
either true or not true (2 > 1 is true, 1 > 2 is false).
The two things that are related must be taken in a specific order, for in-

stance the statement a > b is quite different from b > a. So the first thing we
do in this chapter is to set up some machinery about ordered pairs.
Relations can occur between elements in different sets; that is, we can have

a relation between elements in a set A and those in a set B. Most of the ex-
amples we mentioned concern objects from the same set, but we slipped one
into the set-theoretic list which was ‘belongs to’. IfA is a set of elements and B
is a set whose members are themselves sets, then we can determine whether
x ∈ Y for each member x ∈ A and each member Y ∈ B. Since x ∈ Y is
either true, or not true, for every x ∈ A and Y ∈ B, this defines a relation be-
tween A and B in the sense to be described in this chapter. The beauty of the
description given is that it can be formulated entirely in set-theoretic terms.
In the latter part of the chapter we develop a detailed theory of two

particularly important types of relation: equivalence relations and order
relations.

Ordered Pairs

We have said that for sets, the order in which we write the elements in a list
makes no difference, so that for a set with two elements, {a, b} = {b, a}. This

70 | 4 RELATIONS



is all very well, but there are occasions on which it is essential to distinguish
the order. For instance, in coordinate geometry we think of all the points of
the plane as being represented by pairs (x, y) of real numbers. The order is
crucial; for example the points (1, 2) and (2, 1) are different:

Fig. 4.1 Order matters

We are thus led to the concept of an ordered pair (x, y), round brackets
being used to make a distinction from {x, y}. The important property that
we require of this new concept is:

The Ordered Pair Property:

(x, y) = (u, v) if and only if x = u and y = v. (OPP)

This notion is used throughout set theory.
This is all very well; the only problem is that we haven’t actually said pre-

cisely what we mean by an ordered pair. What is (x, y)? If A = B = R, then
we can think of an ordered pair (x, y) as a point in the coordinate plane, us-
ing Cartesian coordinates. This, indeed, is where the notion of ordered pair
arose. In this sense we can refer to the plane as R×R (or, in more usual
mathematical shorthand, as R2). But what happens if A is a set like {apple,
orange, grapefruit} and B is {knife, fork}, what then is A × B? It certainly
consists of the ordered pairs:

(apple, knife), (apple, fork), (orange, knife), (orange, fork),
(grapefruit, knife), (grapefruit, fork).

However, that doesn’t answer the question: what is the ordered pair
(apple, knife)?
The solution lies not in ‘what is it?’, but in ‘how do we get it?’. The answer

is that to obtain (x, y) in general, we first select x from A, then we select y
from B. That’s all.
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The mathematician Kasimierz Kuratowski saw in this process a possible
abstract definition of (x, y) using only set-theoretic notions that we have al-
ready described. Having selected x fromA, we have the singleton set {x}; then
selecting y from B we arrive at the set {x, y}. Kuratowski defined the ordered
pair (x, y) to consist of these sets:

Definition 4.1 (Kuratowski): The ordered pair (x, y) of two elements x, y
is defined to be the set

(x, y) = {{x}, {x, y}}.

Notice that we get a set here. This peculiar-looking definition has the
advantage that it satisfies the ordered pair property (OPP):

Proposition 4.2: With Kuratowski’s definition,

(x, y) = (u, v) if and only if x = u and y = v.

Proof: If x = u, y = v, then the definition gives (x, y) = (u, v). In the other
direction, suppose that (x, y) = (u, v). If x �= y, then (x, y) = {{x}, {x, y}}
has two distinct members, {x} and {x, y}, which must each belong to (u, v) =
{{u, }, {u, v}}. This means that the members {u} and {u, v} must be different
also, implying u �= v. Now we must have {x} = {u} or {x} = {u, v}, and the
latter is clearly impossible (because it would mean that u, v both belonged to
{x}, implying u = x = v, contradicting u �= v). So {x} = {u} and x = u. In
a similar fashion, {x, y} = {u, v}, and since x = u, x �= y and y ∈ {u, v}, we
deduce that y = v. Thus x = u and y = v, as required.
If x = y, the set-theoretic construction collapses somewhat to give

(x, y) = {{x}, {x, y}} = {{x} , {x, x}} = {{x} , {x}} = {{x}} ,

so (x, y) has only one member, namely {x}. If (x, y) = (u, v), then (u, v) has
only one member also, implying {u} = {u, v}, so u = v and (u, v) = {{u}}. The
equality (x, y) = (u, v) then becomes {{x}} = {{u}}, which reduces successively
to {x} = {u} and then x = u. Thus this case reduces to x = y = u = v and the
proof is complete. �

By being a little more sophisticated, we can prove this result much more
quickly. In the notation of the last section of chapter 3,⋂

{{x} , {x, y}} = {x} and
⋃

{{x}, {x, y}} = {x, y}.
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So
⋂
(x, y) = {x},

⋃
(x, y) = {x, y}. If (x, y) = (u, v), then comparing intersec-

tions and unions, {x} = {u}, {x, y} = {u, v}. The first gives x = u and from
this (whether x = y or not), the second gives y = v.
Where does this get us? First the good news: we have a definition of the

ordered pair (x, y) involving only established set-theoretic concepts. Then
the bad news: the definition does not correspond to the intuitive notion of
ordered pairs in coordinate geometry. Indeed, if any mathematician were
asked to visualise (2, 1), he or she would, like as not, think of it as a point in
the plane; it is most unlikely that their thoughts would revolve around the
idea {{2}, {2, 1}}.
The pragmatic solution is to let Kuratowski’s definition fade into the

background, safe in the knowledge that it is there should we ever be asked
to give a rigorous foundation. The important notion is the ordered pair
property (OPP).
Here we meet a fundamental idea that underpins the whole of formal

mathematics. What is important is not what a mathematical object is, but
what its properties are. Formal mathematical concepts are specified by def-
initions that state their required properties in terms of set theory. Other
properties of a given concept are then deduced by mathematical proof as
theorems. This principle has the powerful consequence that the theorems
proved must be valid in any context that satisfies the specified definitions.
This is true not only of situations that are familiar, but also in any situation
we meet in the future where the definitions are satisfied.

Mathematical Precision and Human Insight

The situation occurring for ordered pairs happens throughout formal math-
ematics. Essentially the same underlying mathematics can be expressed in a
variety of different ways. For example we now have (at least) three differ-
ent ways of thinking about an ordered pair (x, y) for elements x, y ∈ S. We
can represent it symbolically as (x, y), visually as a point in the plane (when
S is the set of real numbers), and formally as the Kuratowski definition. All
of these have the same property that (x, y) = (x′, y′) if and only if x = x′
and y = y′. When we think about ordered pairs in our everyday working,
we almost always use a visual or symbolic representation rather than the
Kuratowski definition.
More generally, we often write the same thing in different ways. For in-

stance, we can write the fraction 1/2 as 2/4 or 3/6 and say that all these
fractions are ‘equivalent’. As processes of calculation, these fractions are dif-
ferent, but they all produce the same result. There are many other instances
where ‘equivalent’ things are essentially the same. For instance, the algebraic
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expressions 3(x + 2) and 3x + 6 are different processes (‘treble the result of
adding x and 2’ and ‘three times x plus 6’), but they have the same result.
If we use the concept of a function, the two functions f (x) = 3(x + 2) and
g(x) = 3x+ 6 are the same function, according to the set-theoretic definition.
As mathematics gets more sophisticated, we realise that various ways of

thinking about a particular concept can be conceived as a single idea. The
Greeks sought ‘the essence’ of mathematical concepts in arithmetic and
geometry. For example, when considering a circle, they started from phys-
ical circles with different locations and different sizes. From these examples
they extracted a single Platonic object: the locus (now spoken of as the ‘set’)
of all points in a plane that are equidistant from a given point, the centre.
Likewise, equivalent fractions represent an underlying rational number,

and equivalent algebraic expressions represent the same algebraic object
written in different ways.
Something that we can hold in our minds in various different ways, all

of which essentially represent the same underlying idea, is called a crystalline
concept (see [35]). The term ‘crystalline’ does not mean that the concept looks
like a crystal with regular faces; it means that it has strong links that relate its
properties in a coherent and inevitable way. For instance, the sum of two
numbers is a crystalline concept in the sense that 2 + 3 is 5 in the context of
our usual number notation, and that if we take 3 from 5 then the result can
only be 2. In the same way, if we have a triangle drawn in Euclidean geometry
that has two equal sides, then it must have two equal angles. Nowwe have one
concept, isosceles triangle, defined in two ways. Not two differently defined
concepts that happen to be equivalent.
A ‘crystalline concept’ formulates how we think about sophisticated math-

ematical ideas, rather than offering a formal definition of a mathematical
concept. In the natural world, different concepts can have the same essen-
tial structure. For example, there is a huge difference between 3 ducks each
with 2 legs and 2 ducks with 3 legs. But in calculating the number of legs, the
products 2 × 3 and 3 × 2 both give the same result. Similarly, taking away
two $10 bills is different, as an operation, from adding two debts of $10, but
the effect on your finances is the same.
As we become more sophisticated, we do not say ‘–2 times –3 is equiva-

lent to 2 times 3’; we say ‘(–2) × (–3) equals 2 × 3’. Formal mathematics
takes these ideas to a higher level, defining the properties that a particular
formal structure must have and deducing all its other properties by mathem-
atical proof. Definitions that at one level are considered ‘equivalent’ concepts
may be imagined at a higher level as a single crystalline concept. For in-
stance, equivalent algebraic expressions become conceptualised as the same
function.
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The notion of ‘crystalline concept’ is a psychological term rather than a
mathematical one, so you will not find it in current mathematics textbooks.
However, it represents a breakthrough in cognitive psychology that enables
us to think about mathematics in a more powerful way. We could plough on,
always talking about ‘equivalence’ at every stage. However, it soon becomes
apparent that it is more useful for our human minds to build ideas on the
underlying crystalline concept. Mathematicians speak of this as ‘identifying’
equivalent concepts to create a single idea. This procedure will become more
apparent in later chapters as the mathematics becomes more sophisticated.

Alternative Ways to Conceptualise Ordered Pairs

Definition 4.3: The Cartesian product A× B is the set of all ordered pairs:

A× B = {(x, y) | x ∈ A, y ∈ B}.

In the case of R× R, visualising ordered pairs as points in the plane remains
a most useful one; it certainly satisfies the ordered pair property (OPP). This
interpretation of A × B is also useful when A and B are subsets of R. For
instance, if A = {1, 2, 3}, and B = {5, 7}, then A× B is the set

{(1, 5), (1, 7), (2, 5), (2, 7), (3, 5), (3, 7)}.

Thinking in terms of Cartesian coordinates, we can draw a picture:

Fig. 4.2 The Cartesian product

When A and B are not subsets of R this sort of picture is less appropriate,
but it can still be useful. For example, if A = {a, b, c) and B = {u, v}, then

A× B = {(a, v), (a, v), (b, u), (b, v), (c, u), (c, v)}

and the structure is represented by

Fig. 4.3 Amore general Cartesian product
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In general, A× B �= B× A. For example, with A and B as above,

B× A = {(u, a), (u, b), (u, c), (v, a), (v, b), (v, c)}

which is not the same as A × B. However, the Cartesian product does obey
some general laws:

Proposition 4.4: For any sets A, B, C,

(a) (A ∪ B)× C = (A× C) ∪ (B× C)
(b) (A ∩ B)× C = (A× C) ∩ (B× C)
(c) A× (B ∪ C) = (A× B) ∪ (A× C)
(d) A× (B ∩ C) = (A× B) ∩ (A× C).

Proof: All are easy, and the argument is similar in each case, so we prove
only (a), leaving the remainder as an exercise. Let (u, v) ∈ (A ∪ B)×C. Then
u ∈ A ∪ B, v ∈ C. So u ∈ A or u ∈ B. If u ∈ A then (u, v) ∈ A× C; if u ∈ B
then (u, v) ∈ B× C. Either way, (u, v) ∈ (A× C) ∪ (B× C). Therefore

(A ∪ B)× C ⊆ (A× C) ∪ (B× C) .

Now let x = (y, z) ∈ (A× C) ∪ (B× C). Either x ∈ A × C or x ∈ B × C.
In the first case, y ∈ A and z ∈ C. In the second, y ∈ B and z ∈ C, so
x = (y, z) ∈ (A ∪ B)× C. This shows

(A× C) ∪ (B× C) ⊆ (A ∪ B)× C.

Putting the two parts together finishes the proof. �

This can be illustrated by the following diagram:

Fig. 4.4 A× B ∩ C = (A× B) ∩ (A× C).

Proposition 4.5: For all sets A, B, C, D,

(A× B) ∩ (C × D) = (A ∩ C)× (B ∩ D) .
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Proof: Let x= (y, z)∈ (A×B)∩ (C×D). Then y ∈ A, z ∈ B, and y ∈ C, z ∈ D.
So y ∈ A ∩ C, z ∈ B ∩ D, so x ∈ (A ∩ C)× (B ∩ D). Hence

(A× B) ∩ (C × D) ⊆ (A ∩ C)× (B ∩ D) .

Conversely let x = (y, z) ∈ (A ∩ C)× (B ∩ D). Then y ∈ A and y ∈ C, z ∈ B,
and z ∈ D, so x ∈ (A× B) ∩ (C × D). Therefore

(A ∩ C)× (B ∩ D) ⊆ (A× B) ∩ (C× D) . �

Pictorially:

Fig. 4.5 The intersection of Cartesian products

The same picture should make it clear why a theorem like this does not
hold for unions in place of intersections.
Having got ordered pairs, it is easy to go on to define ordered triples,

quadruples, etc. by setting

(a, b, c) = ((a, b), c)
(a, b, c, d) = (((a, b), c), d)

and so on. These are elements of repeated Cartesian products, defined by

A× B× C = (A× B)× C
A× B× C × D = ((A× B)× C)× D.

Later we find a better way to formulate the general concept of an ordered
n-tuple

(a1, a2, . . . , an)

for any natural number n. At our present stage we can do this for any
particular n by repeating the process used for triples or quadruples. These
generalisations have similar properties to the main property (OPP) of pairs.
For example, (a, b, c) = (u,υ ,w) if and only if a = u, b = υ, c = w. The proof
of this follows from repeated use of (OPP).
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Relations

Intuitively a relation between two mathematical objects a and b is some con-
dition involving a and b that is either true or false for particular values of
a and b. For example ‘greater than’ is a relation between natural numbers.
Using the usual symbol> we have

2 > 1 is true
1 > 2 is false
3 > 17 is false

and so on. The relation is some sort of property of the pairs of elements a, b.
In fact we must use the ordered pair (a, b), since, for instance, 2 > 1 but not
1 > 2.
If we know for which ordered pairs (a, b) that a > b is true, then, to all

intents and purposes, we have specified exactly what we mean by the relation
‘greater than’. In other words, a relation may be defined by using a set of
ordered pairs:

Definition 4.6: Let A and B be sets. A relation between A and B is a subset
R of A× B.

If A = B we talk of a relation on A, which is a subset of A× A.
This definition requires elucidation. For example, the relation ‘greater

than’ on N is the set of all ordered pairs (a, b) where a, b ∈ N and (in the
usual sense) a > b. We might illustrate this set as follows:

Fig. 4.6 a > b for a, b ∈ N

If R is a relation between sets A and B, then we say that a ∈ A and b ∈ B
are related by R if (a, b) ∈ R. More commonly we use the notation

a R b
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to mean (a, b) ∈ R. Then (a, b) /∈ R will be written aR
/
b. This allows some

sleight of hand. If we denote the relation ‘greater than’ by the usual symbol
>, then, letting R be >, we find that a > b (in the above sense) means the
same as (a, b) ∈>, and this by definitionmeans that a > b in the usual sense.
On the other hand, if

(
a, b
)
/∈> we write a ≯ b, which again corresponds to

normal usage. Thus we ‘recover’ the standard symbolism by an unscrupulous
trick of notation. This is an excellent idea—at least, mathematicians seem
pleased by it—and in future we use the a R b notation.
We consider more examples. The relation≥ on N:

Fig. 4.7 a ≥ b for a, b ∈ N

The relation = on N:

Fig. 4.8 a = b for a, b ∈ N

In fact, the relation = on N is the set {(x, x) | x ∈ N}.
For a final example, let X = {1, 2, 3, 4, 5, 6} and let ‘|’ be the relation ‘is a

divisor of ’, so that a|bmeans ‘a is a divisor of b’. As a set of ordered pairs,

| = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4),
(2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}.
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In pictures:

Fig. 4.9 a|b for numbers up to 6

Given a relation R between sets A and B, and subsets A′,B′ of A and B
respectively, we can define a relation R′ between A′ and B′ by

R′ = {(a, b) ∈ R | a ∈ A′ and b ∈ B′}.

In fact, set-theoretically,

R′ = R ∩ (A′ × B′).

We call R′ the restriction of R to A′ and B′. As far as the elements of A′ and
B′ go the relations R and R′ say the same thing. The only difference is that R′
says nothing about elements not in A′ and B′.

Equivalence Relations

The odd integers are those of the form 2n + 1 for an integer n, namely . . . ,
–5, –3, –1, 1, 3, 5, . . . and the even integers are those of the form 2n, namely
. . . , –4, –2, 0, 2, 4, . . . . In both elementary and advanced mathematics, the
distinction between odd and even integers is often important. The set Z of
all integers splits into two disjoint subsets

Zodd = {all odd integers}
Zeven = {all even integers}.

We can summarise this statement as

Zodd ∩ Zeven = ∅, Zodd ∪ Zeven = Z.

There is another way to splitZ into these two pieces, using a relation, which
for the moment we call by the noncommittal name ‘∼’. Define, form, n ∈ Z,

m ∼ n if and only ifm – n is a multiple of 2.

Then
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all even integers are related by∼,
all odd integers are related by∼,
no even integer is related to an odd integer,
no odd integer is related to an even integer.

These statements are a consequence of some general properties of∼, and we
shall analyse the situation in general to see what is required.
Imagine a set X broken up into a number of disjoint pieces.

Fig. 4.10 A set divided into disjoint pieces

We can define a relation∼ by

x ∼ y if and only if x and y are both in the same piece.

Fig. 4.11 Defining a relation

Conversely, we can reconstruct the pieces from the relation∼: the piece to
which x ∈ X belongs is

Ex = {y ∈ X |x ∼ y}.

If we try this with a different relation∼, all sorts of things can go wrong. In
particular we may not get disjoint pieces. Consider the relation | on integers
for which a|b means ‘a divides b without remainder’. If we take ∼ to be the
relation | on {1, 2, 3, 4, 5, 6}, then
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E1 = {1, 2, 3, 4, 5, 6}
E2 = {2, 4, 6}
E3 = {3, 6}
E4 = {4}
E5 = {5}
E6 = {6} .

So the set splits up according to:

Fig. 4.12 What happens if the pieces overlap

If instead we use the relation > on N, we do not even get x ∈ Ex, so Ex is
in no sense ‘the piece to which x belongs’.
What is it that makes the original relation ∼ work, whereas the others go

wrong? We must take account of three very simple statements:

(i) x belongs to the same piece as x;
(ii) if x belongs to the same piece as y then y belongs to the same piece

as x;
(iii) if x belongs to the same piece as y and y belongs to the same piece as

z, then x belongs to the same piece as z.

Clearly any relation ∼ with the property that x ∼ y if and only if x and
y belong to the same piece must have the three corresponding properties,
which we formalise as (E1), (E2), (E3) of the next definition.

Definition 4.7: A relation ∼ on a set X is an equivalence relation if it has
the following properties for x, y, z ∈ X:

(E1) x ∼ x for all x ∈ X (∼ is reflexive),
(E2) If x ∼ y then y ∼ x (∼ is symmetric),
(E3) If x ∼ y and y ∼ z then x ∼ z (∼ is transitive).
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If we break X into disjoint pieces, the relation ‘is in the same piece as’ is an
equivalence relation. We now show that every equivalence relation arises in
this way from a suitable choice of pieces. In fact, there is an intimate connec-
tion between the two concepts. First we need a formal definition of ‘breaking
into disjoint pieces’.

Definition 4.8: A partition of a set X is a set P whose members are non-
empty subsets of X, subject to the conditions

(P1) Each x ∈ X belongs to some Y ∈ P,
(P2) If X,Y ∈ P and X �= Y , then X ∩ Y = ∅.

The elements of P are our ‘pieces’. Condition (P1) says that X is the union
of all the pieces, so that each element of X lies in some piece; (P2) says that
distinct pieces don’t overlap. It follows that no element of X can belong to
two distinct pieces.
Given an equivalence relation∼ on X we define the equivalence class (with

respect to∼) of x ∈ X to be the set

Ex = {y ∈ X |x ∼ y}.

Theorem 4.9: Let ∼ be an equivalence relation on a set X. Then
{Ex |x ∈ X} is a partition of X. The relation ‘belongs to the same piece as’
is the same as∼.
Conversely, if P is a partition of X, let ∼ be defined by x ∼ y if and only

if x and y lie in the same piece. Then ∼ is an equivalence relation, and the
corresponding partition into equivalence classes is the same as P.

PRE-PROOF REMARK: This theorem lets us pass at will from an equiva-
lence relation to a partition or back again, by a procedure which, when done
twice, leads back to where we started.
Proof: Since x ∈ Ex, condition (P1) is satisfied. To verify (P2), suppose that
Ex ∩ Ey �= ∅. Then we can find z ∈ Ex ∩ Ey. Then x ∼ z and y ∼ z.
By symmetry z ∼ y, and then transitivity implies x ∼ y. We show that
this implies Ex = Ey. For if u ∈ Ex then x ∼ u and y ∼ x, so y ∼ u;
hence Ex ⊆ Ey. Similarly Ey ⊆ Ex. This shows that Ex = Ey. Thus we have
proved that Ex ∩Ey = ∅ or Ex = Ey. But this statement is logically equivalent
to (P2).
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Now define x ≈ y to mean ‘x and y are in the same equivalence class’. Then
x ≈ y if and only if x, y ∈ Ez for some z

if and only if z ∼ x and z ∼ y for some z
if and only if x ∼ y.

Hence≈ and∼ are the same.
The second part of the theorem is proved in a similar manner, but is easier.

We leave that to you. �

Example: Arithmetic Modulo n

Weuse the equivalence relation concept to generalise the distinction between
odd and even integers, and to set up what is often called (in schools) ‘modular
arithmetic’ or (in universities) ‘the integers mod n’.
To begin with, we specialise to n = 3. Define the relation≡3 of congruence

modulo 3 on Z by
m ≡3 n if and only ifm – n is a multiple of 3.

Proposition 4.10: ≡3 is an equivalence relation on Z.
Proof:

(E1):m –m = 0 = 3·0.
(E2): Ifm – n = 3k then n –m = 3(–k).
(E3): Ifm – n = 3k, n – p = 3l, thenm – p = 3(k + l). �

We know that the equivalence classes (known as congruence classesmod 3)
partition Z. What are they? It is easiest to see this with the help of examples.

E0 = {y |0 ≡3 y}
= {y |y – 0 is a multiple of 3}
= {y |y = 3k for some k ∈ Z}.

E1 = {y |1 ≡3 y}
= {y |y – 1 = 3k}
= {y |y = 3k + 1 for some k ∈ Z}.

E2 = {y |2 ≡3 y}
= {y |y = 3k + 2 for some k ∈ Z}.

E3 = {y |y = 3k + 3 for some k ∈ Z}.

However, 3k+3 = 3(k + 1), so E3 = E0. Similarly, E4 = E1, E5 = E2, E–1 = E2,
E–2 = E1, and so on. Every integer is either of the form 3k, 3k + 1, or 3k + 2
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(according as it leaves remainder 0, 1, or 2 on division by 3) so we get exactly
three equivalence classes:

E0 = {. . . , –9, –6, –3, 0, 3, 6, 9, . . .}
E1 = {. . . , –8, –5, –2, 1, 4, 7, 10, . . .}
E2 = {. . . , –7, –4, –1, 2, 5, 8, 11, . . .} .

So much for the equivalence relation. More intriguing is the possibility of
doing arithmetic with these equivalence classes.
To make the notation more transparent in general, we denote the equiva-

lence class of n by n3 instead of En. In this notation, the three classes above
become 03, 13, and 23. Let Z3 = {03, 13, 23} and define operations of addition
and multiplication on Z3 by

m3 + n3 = (m + n)3, (4.1)
m3n3 = (mn)3. (4.2)

For example, 13 + 23 = 33 = 03; 2323 = 43 = 13.
This may look pointless: such an impression is erroneous, as will soon be

seen. It may also look harmless: certain subtleties must be noticed before
worrying that something may go wrong, and a little hard thinking put in to
see that, after all, it doesn’t.
Here is the subtle problem: the same class has several different names; thus

13 = 43 = 73 = . . . , 23 = 53 = 83 = . . .. For all we know at the moment,
the definitions (4.1), (4.2) might give different answers to the same question,
depending on which names we use. Thus we have seen that 13 + 23 = 03. But
since 13 = 73, 23 = 83, we also have 13 + 23 = 73 + 83 = 153. By a stroke of
good fortune, 153 = 03, and we can breathe again.
What happens in general? If i3 = i′3 then i– i′ = 3k for some k, and if j3 = j′3

then j – j′ = 3l for some l. Now rule (4.1) gives two possible answers:

i3 + j3 = (i + j)3, i′3 + j′3 = (i′ + j′)3.

However,

i + j = i′ + 3k + j′ + 3l = (i′ + j′) + 3(k + l),

so

(i + j)3 = (i′ + j′)3.

Hence we get the same answer both ways, and (4.1) makes sense as a
definition of addition.
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Similarly wemust check that themultiplication rule is unambiguous.With
i, j, i′, j′ as above, we have

i3j3 = (ij)3, i′3j
′
3 = (i′j′)3.

But

ij = (i′ + 3k)(j′ + 3l) = i′j′ + 3(i′l + j′k + 3kl),

so

(ij)3 = (i′j′)3,

which is what we want.
This problem always arises when we try to define operations on sets by a

rule of the type ‘select elements from the sets, operate on these, then find the
set to which the result belongs’. When, as here, the notation conceals such a
process, we must be careful to think what the notationmeans rather than just
manipulating symbols blindly. We must check that different choices give the
same answer.
It might appear that such checks can be dispensed with, on the grounds

that everything nice will work. But consider defining powers in Z3. The
natural way to do this is to mimic (4.1) and (4.2) to define

mn3
3 = (mn)3 .

For example, 2233 = (22)3 = 43 = 13. Using this ‘definition’ we can even prove
theorems about the laws of exponentiation, for example

mn3+p3
3 = (mn+p)3 = (mnmp)3 = (mn)3(mp)3 = mm3

3 mp3
3 . (4.3)

However, we would be living in a fool’s paradise. For, since 23 = 53, rule (4.3)
also tells us that

2233 = 2533 = (25)3 = (32)3 = 23.

Since 13 �= 23 this shows that (4.3) is nonsense—but clever and plausible
nonsense, the most dangerous kind.
In common parlance, we must check that the operations are ‘well defined’.

Really this is over-polite: what we are checking is that they are ‘defined’ at all!
Having digressed at length, let us return to the arithmetic of Z3. We can

write out addition and multiplication tables:

+ 03 13 23 × 03 13 23
03 03 13 23 03 03 03 03
13 13 23 03 13 03 13 23
23 23 03 13 23 03 23 13
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It can be verified that many of the usual laws of arithmetic hold (such as
x + y = y + x, x(y + z) = xy + xz), although there are some surprises such as

((13 + 13) + 13 + 13) = 13.

Instead of 3, we can use any integer n and do arithmetic modulo n. We define
a relation≡n on Zn by

x ≡n y if and only if x – y is a multiple of n.1

We get n distinct equivalence classes 0n, 1n, 2n, . . . , (n – 1)n; while
nn = 0n, (n + 1)n = 1n, and so on; now xn consists of those integers that
leave remainder x on division by n. The set Zn of equivalence classes admits
operations of arithmetic defined in the same way as (4.1) and (4.2).
We discuss these ideas further in chapter 10.

Subtle Aspects of Equivalence Relations

Although the definition of equivalence relation seems simple, and in our ex-
perience virtually all students can write down the three properties, there are
subtle aspects that are not apparent without deeper consideration.
For instance, (E1) requires that x ∼ x for all x ∈ X. Some examples, such

as lines being parallel in Euclidean geometry, seem to be equivalences, but
they do not satisfy (E1) because technically a line cannot be parallel to itself.
(Parallel lines have no point in common.) Parallel lines satisfy (E2), and if
x, y, z are all different (E3) is satisfied. We could, if we wished, define the
relation x ∼ y for lines in the plane to mean ‘x is parallel to y or x = y’. In
this case we would have an equivalence relation.
In general, we must check the full meaning of a definition very carefully.

The precise meaning of a definition is a recurring theme in the rest of this
book. A definition means what it says, no more and no less.

Non-Example 4.11: The following question was set in a first-year univer-
sity examination:
Given a set S with three distinct elements a, b, c, is the relation where only

the following hold

a ∼ a, b ∼ b, a ∼ b, b ∼ a

an equivalence relation?

1 The standard notation is x = y (mod n). The symbol =3 is used here for consistency
with our notation for a relation.
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Think about it and write down your response before you read the next
paragraph.
You may very likely get the correct answer ‘no’. The reason is that we are

not told that c ∼ c, so (E1) is not satisfied. However, when this question
was given to well-qualified students, many did not notice this. Instead, they
focused on (E3), which says

If x ∼ y and y ∼ z then x ∼ z,
and many declared it to be false claiming that it requires three elements, x, y,
z, while the set S has only two: a, b. However, in set theory different letters
may represent the same element. So we could take x = a, y = b, z = b, or any
other combination to show that, in every case, (E3) is true.
It is also easy to come to the belief that the equivalence relations met in

mathematics, such as the integers modulo n, have equivalence classes that are
similar in some way. For instance the equivalence classes for the relation of
integers modulo 3 are all infinite sets with a natural mapping between them.
Examples like this may lead unconsciously to the expectation that equiva-
lence classes are all like this in some way. In general, however, the partition
theorem shows that equivalence relations break a set up into (non-empty)
subsets of any size. The subsets chosen in a set do not need to have any spe-
cial properties, other than every element in the set must lie in precisely one
of the subsets in the partition.
An interesting example is equivalence of infinite decimals. Two infinite

decimals lie in the same equivalence class if they have the same value. As we
have shown in chapter 1, each decimal expansion is either unique, or it is a
finite decimal that can be written in exactly two ways: as an infinite number
of nines or zeros (such as 3·47 = 3·46999 . . .). Here some equivalence classes
contain one element, and all others contain two.

Order Relations

A second kind of relation, whose properties are quite different from those
of an equivalence relation, arises when dealing with the order between
numbers, as exemplified by the statements 4 < 5, 7 > 2π , x2 ≥ 0, 1 – x2 ≤ 1
for any real number x.
Fortunately, the various relations <,>,≤,≥ are all connected with each

other:
x < ymeans the same as y > x,
x ≤ ymeans the same as y ≥ x,
x ≤ ymeans the same as x < y or x = y,
x < ymeans the same as x ≤ y and x �= y.
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Therefore we need study only one of them and translate the results to the
others.
When handling numbers, it might be preferable to consider one of the

strict relations < or >. In general we would not write 2 + 2 ≥ 4, simply be-
cause we know something more precise: 2+2 equals 4. Likewise, we normally
write 2+2 > 3, because that contains more exact information than 2+2 ≥ 3.
But when passing to general statements, the situation changes. For instance,
it is true that if an → a, bn → b and an ≥ bn, then a ≥ b, but an > bn does
not imply a > b. (A counterexample is given by an = 1/n, bn = 0.) Here
there is a slight preference towards the weak inequalities ≤ and ≥.
We begin with the latter.

Definition 4.12: A relation R on a set A is a weak order if

(WO1) a R b and b R c imply a R c
(WO2) either a R b or b R a (or both)
(WO3) a R b and b R a imply a = b.

These properties evidently hold for both relations ≤ and ≥ on the set of
real numbers, which may seem rather strange since one means ‘bigger’ and
the other ‘smaller’. But looking at the real numbers as points on a line, we
see that, by a reflection, we can turn the order round, interchanging left and
right, and this interchanges ≤ and ≥. It is only when we start doing arith-
metic, and require a ≥ 0, b ≥ 0 to imply ab ≥ 0, that we find a property
of ≥ that does not hold for ≤. We will postpone this consideration until we
study arithmetic in chapter 9.
Weak order relations naturally come in pairs. Given a weak order R, we

can define R′, the reverse of R, by

a R′b means b R a.

The reverse R′ is also a weak order relation, and reversing again we get
R′′ = R.

Example 4.13: If A = {a, b, c}, where a, b, c are all distinct, then a weak
order on A can be defined by a R b, a R c, b R c, a R a, b R b, c R c. We can
visualise this by considering a, b, c in a row, with x R y meaning x is to the
left of y or x = y.

a b c
◦ ◦ ◦

The reverse of R simply puts the elements in order c, b, a.
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Example 4.14: Define an order relation R on the plane by:
(x1, y1)R (x2, y2) means

either y1 = y2 and x1 ≤ x2 (both together),
or y1 < y2.

This at first looks bizarre, but in a picture we see that (x1, y1)R (x2, y2) means
that either (x1, y1) and (x2, y2) are on the same horizontal line with (x1, y1)
to the left of (or equal to) (x2, y2), or (x1, y1) is on a horizontal line strictly
below the one through (x2, y2).

Fig. 4.13 An order on the plane

Example 4.15: A = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}},

x R y means x ⊆ y for x, y ∈ A.

Here {0} ⊆ {0, 1} ⊆ {0, 1, 2} ⊆ {0, 1, 2, 3}.

Inclusion of sets satisfies

X ⊆ Y and Y ⊆ Z implies X ⊆ Z,
X ⊆ Y and Y ⊆ X implies X = Y ,

but for arbitrary sets X, Y we may have X �� Y and Y � X. This means that
set inclusion in general satisfies (WO1), (WO3), but not (WO2). A relation R
on a set A satisfying (WO1) and (WO3) is said to be a partial order, and A a
partially ordered set, or, with some loss in dignity, a poset. Given any set A of
sets, then inclusion always yields a partial order.
Let R be a weak order on a set A; then the corresponding strict order S is

given by:

x S y means precisely x R y and x �= y.

For example if R is ≤, then S is<.
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Proposition 4.16: A strict order S on a set A satisfies:

(SO1) a S b and b S c imply a S c
(SO2) Given a, b ∈ A, then precisely one of the following hold (and not
the other two):

a S b, b S a, a = b.

Proof: Suppose that a S b and b S c. Then a R b and b R c, and (WO1) implies
that a R c. We cannot have a = c, for substituting in b R c we get b R a, and by
(WO3) this and a R b gives a = b, contradicting a S b. This verifies (SO1). By
(WO2) a, b ∈ A implies a R b or b R a, so a S b or a = b or b S a. But no two
of these can hold simultaneously because a = b contradicts the definitions of
both a S b and b S a, and were a S b, b S a to hold simultaneously, then a R b,
b R a would hold, so (WO3) gives a = b, contradicting a S b once more. This
verifies (SO2). �

Condition (SO2) in proposition 4.16 is usually referred to as the trichotomy
law. (Just as a dichotomy is twomutually exclusive possibilities, a trichotomy
is three, in this case a S b, b S a, or a = b.) For the strict order < on the real
numbers the three mutually exclusive possibilities are a < b, b < a, a = b.
We remarked earlier that we could return to the weak order ≤ from <

through the connection

a ≤ b means precisely a < b or a = b.

The same happens for any strict order. Given a relation S on a setA satisfying
(SO1) and (SO2), define

a R b to mean a S b or a = b.

It is easy to verify that R satisfies (WO1)–(WO3), and that we can pass freely
from a weak order to the corresponding strict order and back again. In this
manner the notions of weak and strict order are interchangeable. Although
we have taken (WO1)–(WO3) as the basic axioms and proved the proper-
ties (SO1), (SO2), we could just as easily reverse their status by taking (SO1),
(SO2) as basic axioms and deducing (WO1)–(WO3).

Exercises

1. Write out the proofs of propositions 4.4(b), 4.4(c), and 4.4(d).
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2. Prove that

(∪S)× (∪T) ⊆ ∪{X × Y |X ∈ S, Y ∈ T}
(∩S)× (∩T) = ∩{X × Y |X ∈ S, Y ∈ T}

for all sets S, T of sets. Show that in the first formula we cannot replace
‘⊆’ by ‘=’.

3. If A = ∅, show that A× B = ∅ = B× A for every set B. When A �= ∅,
show that A × B = A × C implies B = C. Given A × B = B× A, what
can be deduced about A and B?

4. Let A = N×N. Define the relation R on A by

(m, n) R (r, s) means m + s = r + n.

Show that R is an equivalence relation.
If B = {(x, y) ∈ Z× Z | y �= 0}, and S is the relation on B given by

(a, b)S(c, d) if and only if ad = bc,

is S an equivalence relation? Prove your assertion.
5. How many distinct equivalence relations exist on {1, 2, 3, 4}?
6. Recall the properties (E1), (E2), (E3) of an equivalence relation. Which

of these properties is satisfied by the relation between x, y ∈ R given
by:
(a) x < y
(b) x ≥ y
(c) |x – y| < l
(d) |x – y| ≤ 0
(e) x – y is rational
(f ) x – y is irrational
(g) (x – y)2 < 0.

7. Is there a mistake in the following proof that (E2) and (E3) imply (E1)?
If so, what is it?

Let a ∼ b.
By (E2), b ∼ a. By (E3), if a ∼ b and b ∼ a, then a ∼ a.
This proves (E1).

8. Give examples of relations (the more elegant, the better) satisfying
(a) none of the properties (E1), (E2), (E3)
(b) (E1) but not (E2) or (E3)
(c) (E2) but not (E1) or (E3)
(d) (E3) but not (E1) or (E2)

92 | 4 RELATIONS



(e) (E2) and (E3) but not (E1)
(f ) (E1) and (E3) but not (E2)
(g) (E1) and (E2) but not (E3).

9. Write out addition and multiplication tables for the integers mod 4,
mod 5, and mod 6.
Find all a, b ∈ Z12 such that ab = 012.

10. Define a relation R onN by

a R bmeans a divides b,

that is, b = ac for some c ∈ N. Is R an order relation? If so, is it a weak
order or a strict order?

11. Let X = {1, 2, 6, 30, 210} and define a relation S on X by

a S bmeans a divides b.

Is S an order relation? If so, is it a weak order or a strict order?
12. Let A be a set with a (strict) order relation S and B a set with (strict)

order relation T. Define the lexicographic relation L on A× B by

(a, b) L (c, d) means: either a S c, or a = c and b T d.

Is this an order relation? What is the connection between this and a
dictionary?
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chapter 5

Functions

Functions are of enormous importance throughout the whole of mod-
ern mathematics, at all levels. The concept first became prominent in
calculus, which is about functions: how to differentiate them or inte-

grate them. Early attempts to develop a general concept of functions were
somewhat confused and unsatisfactory, largely because they tried to do too
much at once. The function concept as it is now understood evolved grad-
ually from these attempts: it has great generality and great simplicity. In
fact, the current concept is so general that when doing calculus, extra condi-
tions must be imposed to restrict the class of functions under consideration
to those that can be differentiated or integrated. Thus the desired object is
achieved by taking a very general definition of ‘function’ and then selecting
more special types of function by imposing extra conditions.
In this chapter we develop the general concept of a function gradually,

starting from familiar examples and extracting general principles.We discuss
some general properties that functions can have. We introduce the graph
of a function, and relate it both to the formal definition and the traditional
picture.

Some Traditional Functions

Traditionally, a function is defined by introducing a ‘variable’ x, usually sup-
posed to be a real number, and talking of a ‘function f (x) of x’. The most
significant feature of such a definition is that in principle we should be able
to work out the value of f (x) for any given x (possibly under restrictions such
as x �= 0, x > 0, depending on the function involved). Here are some familiar
examples:

• The exponential function takes value ex for any real number x (where
e = 2·71828 . . . ).
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• The sine, cosine, and tangent functions take values sin(x), cos(x), tan(x)
for all real x, except that for the tangent we have to assume x is not an odd
integer multiple of π /2 in order for the definition tan(x) = sin(x)/ cos(x) to
make sense. (Often the parentheses are omitted and we write sin x, cos x,
and so on.)

• The logarithmic function takes the value log(x) when x is real and x > 0.
(The notation log x is also common.)

• The reciprocal function takes value 1/x for real x �= 0.
• The square function takes value x2 for any real x.
• The factorial function x! is defined only for x a positive integer.

What do all of these examples have in common? It is our ability, in principle,
to calculate the value of the function corresponding to the relevant values
of x. In other words, a function associates to each relevant real number x a
value f (x) which is also a real number. In the above examples, respectively,
f (x) = ex, sin(x), cos(x), tan(x), log(x), 1/x, x2, x!.
We should not confuse the values of the function with the function itself.

It is not log(x) that is the function: it is the rule ‘take the logarithm of’, which
allows us to work out the value. In a sense, the function itself is the symbol
‘log’. So we think of a function f as some ‘rule’ which, for any real number x
(perhaps subject to restrictions), defines another real number f (x). The def-
inition of f (x) should be unique; a rule that gives two different answers to
the same question is not especially useful. This means we must be careful
with such functions as ‘square root’, specifying whether we mean the posi-
tive square root or the negative one. Don’t worry about this now; we’ll return
to it later when the basic ideas are established.

The General Function Concept

The most general definition of a function comes from the traditional one by
relaxing the requirement that x and f (x) should be real numbers. In fact, even
in traditional mathematics, complex numbers are permitted; indeed, a wide
variety of non-numerical things as well. For example, the area of a triangle is
a function defined on triangles. The easiest andmost satisfactory assumption
is not to impose restrictions of any kind on the nature of x or f (x). How-
ever, we must then be more precise about what we mean by a rule, because
traditional formulas are too limited in scope.
In our examples of functions, x ranges over some set of possible choices,

and so does f (x). The natural choices for these sets are often different; for
example the logarithmic function requires x > 0, whereas log(x) can be any
real number.
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We therefore begin with two arbitrary sets A and B. As a preliminary
definition we formulate:

Preliminary Definition 5.1: A function f from A to B is a rule that assigns
to each a∈A a unique element f (a) ∈ B.

This definition is very broad. It includes all of the previous examples: take A
to be a suitable subset of R and B to be R. Thus:

For the exponential: A = R, B = R, and f (x) = ex.
For the logarithm: A = {x ∈ R | x > 0}, B = R, and f (x) = log(x).
For the reciprocal: A = {x ∈ R | x �= 0}, B = R, and f (x) = 1/x.
For the factorial: A = {x ∈ R | x > 0}, B = N, and f (x) = x!.

Examples of rather different types of function that this definition allows
include:

A= {all circles in the plane}, B = R, f (x) = the radius of x.
A= {all circles in the plane}, B = R, f (x) = the area of x.
A= {all subsets of {0, 2, 4}}, B = N, f (x) = the smallest element of x.
A= {all subsets of {0, 1, 2, 3, 4, 5, 6, 7}}, B = {0, 1, 2, 3, 4, 5, 6, 7, 8},

f (x) = the number of elements of x.
A=N, B = {0, 1, 2}, f (x) = the remainder on dividing x by 3.
A= {camel, lion, elephant}, B = {January, March},

f (camel) = March, f (lion) = January, f (elephant) = March.1

Definition 5.2: We call A the domain of f and B the codomain. We write

f : A→ B

to mean ‘f is a function with domain A and codomain B’.

The main item still on the agenda is that troublesome word ‘rule’. We
obtain a formal definition in exactly the same way that we obtained one
for ‘relation’ in chapter 4, by judicious use of ordered pairs. We want to
associate to each x∈A an element f (x)∈ B. One way to do this is to stick
them together in an ordered pair (x, f (x)). The ‘rule’ is then the entire

1 This is of course a pretty silly function, with no mathematical importance. It illus-
trates that quite arbitrary definitions of f (x) may be made. Actually, this one isn’t quite so
arbitrary as it may seem. A certain zoo has three animal-houses: the camel-house, the lion-
house, and the elephant-house. Once a year the houses are redecorated: the lion-house in
January, the others in March. Now f (x) = the month in which the x-house is redecorated.
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set of ordered pairs (x, f (x)) as x runs through A, and this is of course a
subset of the Cartesian product A× B.
In the previous chapter, we defined a subset of A× B to be a relation from

A to B. This means that a function can be viewed a special kind of relation: it
relates x to f (x).
The requirement that f (x) is defined for every x ∈ A translates as the

requirement that for any x ∈ A there is some element (x, y) in the set.
Uniqueness of f (x) translates as the requirement that for each x, the cor-
responding element y should be unique. Now we see how a set of pairs can
capture a rule: to find f (x), look in the set for a pair (x, y). This exists and is
unique, so we put f (x) = y.
Formally:

Definition 5.3: Let A and B be sets. A function f :A → B is subset f of
A× B such that

(F1) If x ∈ A there exists y ∈ B such that (x, y) ∈ f .
(F2) Such an element y is unique: in other words, if x ∈ A and y, z ∈ B are
such that (x, y) ∈ f and (x, z) ∈ f , it follows that y = z.

A function is also called amap ormapping.

In terms of this definition, the ‘square’ function with domain R is the
subset

{(x, x2) | x ∈ R}
of R× R. The curious function above is the set

{(camel, March), (lion, January), (elephant, March)}.

We recover the usual notation by defining f (x) to be the unique element
y ∈ B such that (x, y) ∈ f .
The definition of a function in terms of a set of ordered pairs is formally

very neat, because it states everything in terms of sets. But it is pedantic and
pointless to use ordered pairs when we wish to define a specific function.
Instead, we use a form of words along the following lines:

‘Define a function f : A→ B by f (x) = whatever for all x ∈ A.’

An alternative notation, often employed, is

‘Define a function f : A→ B, x �→ whatever.’

In any particular case, ‘whatever’ is replaced by a specific prescription to find
f (x) given x. These statements are interpreted formally as:

‘f is the subset of A× B consisting of (x, f (x)) ∈ A.’
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Then we must check that the prescription defines f (x) uniquely, and that
f (x) ∈ B, for all x ∈ A.

Example 5.4: Define the function f : N→ Q by

f (n) =
√
2 to n decimal places.

Then

f (1) = 1·4,
f (2) = 1·41,
f (3) = 1·414,

and so on. This rule defines f (n) uniquely because
√
2 is irrational, so it is

not one of the decimals that can either end in lots of 0s or lots of 9s. Also,
f (n) is always rational since it is a terminating decimal.
The formal function is the subset of N×Q comprising all ordered pairs

(n,
√
2 to n decimal places),

namely

{(1, 1·4) , (2, 1·41) , (3, 1·414) , . . .} .
The advantage of the informal usage is manifest. But knowing how to
translate it into formal terms means that the informality is safe.

Non-Examples 5.5: Here are a number of statements that look as if they
define functions, but on closer inspection fail in some respect.

(1) Define f : R→ R by f (x) =
x2 + 17x + 93

x + 1
.

This does not define a function since when x = –1, 1/ (x + 1) is not
defined, so f (–1) has not been specified as a real number. If we change
the definition to start ‘f : R\{–1} . . .’ then we’re all right.

(2) Define f : Q→ Q by f (x) =
√
x (positive square root).

This does not define a function because for some x, for instance x = 2,
the value f (x) =

√
2 does not belong to Q. If we change the second Q

to an R then all will be well.
(3) Define f : R→ Q by f (x) = the rational number nearest x.

This does not define a function: the supposed f (x) does not exist.
(4) Define f : R→ N by f (x) = the integer number nearest x.

This almost works: the trouble is that both 0 and 1 are equidistant
from 1

2 , so f
( 1
2

)
is not defined uniquely.

98 | 5 FUNCTIONS



General Properties of Functions

Next we introduce an important subset associated with a function.

Definition 5.6: If f : A→ B is a function, then the image of f is the subset

f (A) = { f (x) | x ∈ A}

of B. Another common notation is im( f ).

The image of f is the set of values obtained by working out f (x) for all x in
the domain. It need not be the whole codomain; for example if f : R → R
has f (x) = x2 then the image is the set of positive reals, and is not the whole
codomain R.
The lack of symmetry in the definition of a function may seem disturbing.

We require f (x) to be defined for all x ∈ A, yet we do not require every b ∈ B
to be of the form f (x). The reason is pragmatic. When we use a function,
we want to be sure that it is defined, so knowledge of the precise domain is
essential. However, it is less crucial to know exactly where the values f (x) lie,
so we can choose the codomain to be whichever set is convenient.
For instance, if we define

f : N→ R

by

f (n) = 3
√
n!

then the image of f is the set of cube roots of factorials

{1, 3
√
2, 3
√
6, 3
√
24, 3
√
120, . . .}

which is not a very nice set. Images in general can be pretty revolting. So it
makes sense to define a function in terms of a codomain, and to leave aside
the calculation of exactly which part of the codomain we really require, in
the hope (often fulfilled) that it is not needed. If it is, we can work it out.
This brings us to another minor point. Strictly speaking, we cannot talk of

‘the’ codomain of a function. Consider

f : R→ R f (x) = x2,
g : R→ R+ g(x) = x2,

where R+ = {x ∈ R | x ≥ 0 }. The first has codomain R and the second R+,
yet the formal definition of a function as a set of ordered pairs leads to
the same set {(x, x2) | x ∈ R} in both cases. The functions f and g are equal.
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So ‘the’ codomain of a function is ambiguous. Any set that includes the range
of the function will do as a codomain. The domain, on the other hand, is
unique.
We can remove this ambiguity by being more pedantic, and defining a

function to be a triple ( f , A, B) rather than just a set of ordered pairs f . But at
this stage, the definition as a triple is off-putting and not worth the effort, and
in any case the notation f : A→ B tells us which of the possible codomains
is intended in any particular instance.
A familiar way to picture a function f : R → R is to draw its graph; we

say more about this topic in the next section. For sets other than R it is often
better to think of a function in terms of a picture like this:

Fig. 5.1 A picture of a function

For each x∈A the value of f (x) is to be found at the far end of the
corresponding arrow.
The definition of a function, expressed in pictorial terms, becomes:

(F1′) Every element of A is at the tail end of a unique arrow.
(F2′) All the arrowheads end up in B.

This type of diagram is a pictorial device, on a par with Venn diagrams,
but it is useful as a source of motivation and simple examples.
Using such a picture, the range of f is the set of elements of B that lie on

the sharp ends of the arrows:

Fig. 5.2 Domain, codomain, and image

The range of f is the whole codomain B if every element of B is at the end
of some arrow. This motivates a more formal definition:

100 | 5 FUNCTIONS



Definition 5.7: A function f : A → B is a surjection (to B) or is onto B if
each element of B is of the form f (x) for some x ∈ A.

Whether a function is a surjection depends on the choice of codomain.
So the statement ‘f is a surjection’ can be made only if it is clear from the
context which codomain is intended—as will be the case in a phrase such
as ‘f : A→B is a surjection’, where the codomain is B. The next examples
clarify this.

Examples 5.8:

(1) f : R → R where f (x) = x2. This is not a surjection to R, since no
negative real number is the square of a real number; in particular,
–1 ∈ R but is not of the form x2 for any x ∈ R.

(2) f : R → R+ where f (x) = x2. This is a surjection to R+, since every
positive real number has a square root, which is real.

(3) f : A → B where A = {all circles in the plane}, B = R+, and
f (x) = the radius of x. This is a surjection to R+, since given any
positive real number we can find a circle with that number as radius.

If no element of B lies at the end of two different arrows, we have another
important type of function:

Definition 5.9: A function f : A → B is an injection, one-one, or one-to-
one, if for all x, y ∈ A, f (x) = f (y) implies x = y.

This time the precise choice of codomain does not lead to any problems.
If f is an injection for one choice of codomain, it is also an injection for any
other choice. Here are some examples.

Examples 5.10:

(1) f : R→ Rwhere f (x) = x2. This is not an injection, since f (1) = f (–1)
but 1 �= –1.

(2) f : R+ → R where f (x) = x2. This is an injection: if x and y are
positive real numbers and x2 = y2, then 0 = x2 – y2 = (x – y)(x + y).
Therefore either x – y = 0 and x = y, or x + y = 0 which is impossible
with both x and y positive unless x = y = 0. Either way, x = y.

(3) f : R\{0}→ Rwhere f (x) = 1/x. This is an injection, since if 1/x = 1/y
then x = y.

Nicest of all are functions with both of these properties:
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Definition 5.11: A function f : A→ B is a bijection if it is both an injection
and a surjection (to B).

Again, this property depends on the choice of codomain. Another com-
mon term for the same property is one-to-one correspondence. However, it is
easy to confuse this with ‘one-to-one’, so we shall avoid them both. Instead
of saying that f is a bijection (injection, surjection), we often say that f is bi-
jective (injective, surjective). Clearly f : A → B is a bijection if and only if
every b ∈ B is of the form b = f (x) for a unique x ∈ A.
All combinations of injectivity and surjectivity can occur, as the following

pictures illustrate:

Fig. 5.3 Various kinds of function

One very important, though trivial, function can be defined on each set A.

Definition 5.12: The identity function iA : A→ A is defined by iA(a) = a
for all a ∈ A.

This is obviously a bijection.

The Graph of a Function

There are two competing ways to picture a real function, by which wemean a
function whose domain and range are subsets of R: the graph, and the blobs-
and-arrows diagram. There are interesting connections between the two. A
blobs-and-arrows picture of the function f (x) = x2 (x ∈ R) looks something
like this:
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Fig. 5.4 An arrow diagram from R to R

We can disentangle the arrows better if we place A horizontally and let it
overlap B at 0:

Fig. 5.5 Arrow diagram from horizontal to vertical

However, it is more interesting to use arrows that run only vertically or
horizontally:
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Fig. 5.6 Same diagram with vertical and horizontal arrows

This makes it clear that the important thing is where the corner occurs. If
we vary x, all the corners lie on a curve:

Fig. 5.7 The corners of the arrows are on a curve

Now we can eliminate the arrows, and what we get is the usual graph:
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Fig. 5.8 Eliminate the arrows to get the graph

Conversely, given this graph, we can put the arrows back. Starting at x ∈ A
we move vertically until we hit the graph, then horizontally until we hit B.
This point will be f (x).

Fig. 5.9 Recovering the arrows from the graph

What is the graph set-theoretically? The plane is R× R, and the corner in
the arrow from x to f (x) occurs at (x, f (x)). So the graph of f is the set

{(
x, f (x)

)
| x ∈ R

}
.
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But this, in formal terms, is the same as f . By drawing R × R as a plane, we
are led to the graph as the natural picture for f .
For a general function f : A → B we need a corresponding picture. Now

we have a way to draw A× B, and we use this instead of the plane. Thus the
camel-lion-elephant function we met earlier has the ‘graph’:

Fig. 5.10 Picturing a more general situation

By analogy with the previous function, suppose that we draw vertical ar-
rows from elements of A, until we hit the graph, and then horizontal arrows
until we hit B. The result is:

Fig. 5.11 Recovering the arrows

A little distortion recovers the blobs-and-arrows picture:

Fig. 5.12 The blobs-and-arrows picture
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Strictly speaking, the graph picture for a function f : R → R should
look like:

Fig. 5.13 The picture from R to R

The traditional picture, with A and B drawn on the plane as ‘axes’, is more
familiar and convenient:

Fig. 5.14 Drawing the axes on the picture

But it should be remembered that these ‘axes’ are not part of the graph,
but act as labels for the points (x, y) of the plane.

Composition of Functions

If f : A→ B and g : C→ D are two functions, and the image of f is a subset
of C, then we can compose f and g by ‘first doing f , then g’.
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Fig. 5.15 The composition of functions

In formal terms, we define:

Definition 5.13: If f : A→ B and g : C→ D are functions and f (A) ⊆ C,
the composition g ◦ f is the function

g ◦ f : A→ D

for which

g ◦ f (x) = g( f (x)).

Of course we must verify that g ◦ f is a function from A to D, but this is easy.
It is a pity that g ◦ f corresponds to ‘first f , then g’, since a more natural

notation would seem to be f ◦ g. But the latter would make the definition
read f ◦ g(x) = g(f (x)), which looks wrong. One way out is to write (x)f in-
stead of f (x) and let composition be given by (x)f ◦ g = ((x)f )g. But this looks
odd too!
Composition of functions has a very useful property: it is associative, in

the following sense:

Proposition 5.14: Let f : A → B, g : C → D, h : E → F be functions
such that the image of f is a subset of C and the image of g is a subset of E.
Then the two functions

h ◦ ( g ◦ f ) : A→ F
(h ◦ g) ◦ f : A→ F

are equal.
Proof: By ‘equal’ here we mean that the two subsets of A× F that define the
functions are equal; this in turn means that for each x ∈ A the two functions
take the same value. Now
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h ◦ (g ◦ f )(x) = h(g ◦ f (x)) = h(g( f (x)));
(h ◦ g) ◦ f (x) = h ◦ g( f (x)) = h(g( f (x))),

which proves the theorem. �

Identity functions have nice properties under composition:

Proposition 5.15: If f : A→ B is a function, then

f ◦ iA = f , iB ◦ f = f .

Proof: This is a routine verification from the definitions. �

Inverse Functions

We think of a function f : A → B as a rule that takes x ∈ A and does some-
thing to it; namely, the rule produces f (x) ∈ B. Sometimes we can find a
function g that ‘undoes’ f . We call g an inverse function to f . However, some
care is needed because inverse functions need not exist, and the order in
which we perform f and g sometimes matters.

Definition 5.16: Let f : A → B be a function. Then a function g : B → A
is called a

left inverse for f if g( f (x)) = x for all x ∈ A,
right inverse for f if f ( g(y)) = y for all y ∈ B,
inverse for f if it is both a left and a right inverse for f .

The three conditions may be stated in equivalent terms:

g ◦ f = iA,
f ◦ g = iB,
g ◦ f = iA and f ◦ g = iB.

Here are some illustrations, using single arrows for f and double arrows
for g.

Fig. 5.16 Left inverse
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Fig. 5.17 Right inverse

Fig. 5.18 Inverse

These pictures suggest a useful criterion:

Theorem 5.17: A function f : A→ B has a:

(a) left inverse if and only if it is injective
(b) right inverse if and only if it is surjective
(c) inverse if and only if it is bijective.

Proof: (a) Suppose f has a left inverse g. To prove f injective, suppose that
f (x) = f (y). Then x = g( f (x)) = g( f (y)) = y, so f is an injection. Conversely,
suppose that f is injective. If y ∈ B and y = f (x), define g(y) = x. By injectiv-
ity, this x is unique. If y is not an element of the range of f , no such x exists;
we then pick any a ∈ A and define g(y) = a. Now g(y) is defined for all y ∈ B
and g : B → A is a function. But g( f (x)) = x by the definition of g, so g is a
left inverse.
(b) Suppose that f has a right inverse g. If y ∈ B then y = f ( g(y)), so is of

the form f (x) for x = g(y). Hence f is a surjection to B. Conversely, suppose
that f is surjective. Let y ∈ B. Then y = f (x) for some x ∈ A, not necessarily
unique. For each y ∈ B define g(y) to be one particular choice of an element
in A for which f (g(y)) = y. Then g is a function, and a right inverse to f .
(c) The function f has an inverse if and only if it has a left inverse g that is

also a right inverse. Therefore f is both injective and surjective, hence bijec-
tive. If f is bijective, it has a left inverse g, and it is easy to verify that this g is
also a right inverse. Hence f has an inverse. �

Example 5.18:

(1) f : R → R, f (x) = x3. This is bijective and has inverse g : R → R,
g(x) = 3

√
x.
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(2) f : R → R, f (x) = x2. As it stands this is neither injective nor surjec-
tive, so it has neither kind of inverse. So what has happened to square
roots? We can make f surjective by taking R+ =

{
x ∈ R | x ≥ 0

}
as

codomain. Now f : R → R+ is surjective, and g(x) =
√
x (positive

square root) is a right inverse since f (g(x)) = (
√
x)2 = x. But it is not

a left inverse, since
√
x2 = x if x ≥ 0,√

x2 = –x if x < 0.

(3) We assume for this example properties of exponentials and loga-
rithms that we have not proved rigorously in this book. Let f : R→ R
be given by f (x) = ex. Then f is injective, for if ex = ey then ex–y = 1
so x – y = 0 so x = y. Moreover, the function f has a right inverse,
defined by (say)

g(y) = log y(y > 0)
g(y) = 273(y ≤ 0).

For g(f (x)) is calculated as follows: f (x) = ex which is positive, so
g(f (x)) = g(ex) = log ex = x. The arbitrary 273 does not enter into
this calculation—it is there merely to define g on the whole of R. Any
other definition would do for negative real numbers, because of the
way the calculation works.

(4) More sensibly, consider f : R → R# where R# = {x ∈ R | x > 0} and
f (z) = ex. Now f is a bijection, and g : R# → R, with g(y) = log y, is
an inverse:

elog y = y,
log ex = x.

(5) In this example we assume properties of trigonometric functions.
Consider f : R → R, f (x) = sin x. This is neither injective nor sur-
jective, so it has neither kind of inverse. But what about sin–1 x (or
arcsin x), as found in trigonometric tables?
The answer depends on exactly what we are trying to achieve.

If sin–1(x) is defined to be the unique y with –π/2 ≤ y ≤ π /2
such that sin y = x, then this is a right (but not left) inverse to
f :R→ {x ∈ R |–1 ≤ x ≤ 1 }. However, it is not a left inverse; for
instance

sin–1(sin 6π) = sin–1 0 = 0 �= 6π .

Sometimes it is said that sin–1 is ‘multivalued’. According to our
definition, it cannot then be a function in the legal sense of the term.
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(6) The most satisfactory procedure is as follows. Let

f : {x ∈ R | – π/2 ≤ x ≤ π/2}→ {x ∈ R | – 1 ≤ x ≤ 1}

be defined by f (x) = sin x. Then f is a bijection, and sin–1 is an inverse
function for this f.

Left and right inverses need not be unique—one reason why their con-
struction involves arbitrary choices. But inverses are unique.

Proposition 5.19: If a function has both a left inverse and a right inverse,
then it has an inverse. This inverse function is unique, and every left or right
inverse is equal to it.
Proof: If f : A → B have both a left and a right inverse. Then by theorem
5.17, f is a bijection, and has an inverse F. If g is any left inverse, then

g = g ◦ iB = g ◦ ( f ◦ F) = (g ◦ f ) ◦ F = iA ◦ F = F.

Similarly, if h is any right inverse then h= F. Since an inverse is in particular
a left inverse, this also proves F unique. �

The notation for an inverse function to f :A→ B, provided it exists, which
occurs precisely when f is a bijection, is

f –1 : B→ A.

Warning. Don’t confuse f –1(x) with the reciprocal 1/f (x). (For example, if
f (x) = x2, then f –1(x) =

√
x and 1/f (x) = 1/x2.)

Proposition 5.20: If f : A → B and g: B → C are bijections, then g ◦ f :
A→ C is a bijection, and

(g ◦ f )–1 = f –1 ◦ g–1.
Proof: It is clear that g ◦ f is a bijection. It is also easy to verify directly that
f –1 ◦ g–1 is a left inverse, since

( f –1 ◦ g–1) ◦ ( g ◦ f ) = f –1 ◦ ( g–1 ◦ ( g ◦ f ))
= f –1 ◦ (( g–1 ◦ g) ◦ f )
= f –1 ◦ (iB ◦ f )
= f –1 ◦ f
= iA.

Hence, by theorem 5.17, it is an inverse. �
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This calculation is illustrated below: it is much less horrendous than it may
appear.

Fig. 5.19 Composing inverse functions

Restriction

Definition 5.21: If f : A→ B is a function and X ⊆ A, the restriction of f
to X is the function

f |X : X → B

for which

f |X(x) = f (x) (for x ∈ X).

This function differs from f only in that we forget about those x that do not
lie in X.
For example, if f : R→ R has f (x) = sin x, and X = {x ∈ R | 0 ≤ x ≤ 6π},

then the graphs of f and f |X are like this:

Fig. 5.20 The restriction of a function
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Restriction is a relatively trivial operation. Its main use is to concentrate at-
tention on how f behaves on the subset X. Sometimes this is useful: we noted
above that sin : R→ I is not a bijection when I = {x ∈ R | – 1 ≤ x ≤ 1}. If

I = {x ∈ R | – π /2 ≤ x ≤ π/2},
however, then sin |X : X→ I is a bijection.

Definition 5.22: Restricting the identity function iA : A → A to a subset
X ⊆ A gives the inclusion function

iA |X : X → A

for which iA |X(x) = x (x ∈ X).

This is therefore the same function as iX , but with a different choice of
codomain which leads to a different emphasis: it provides a formal statement
of how X sits inside A.

Sequences and n-tuples

We can now use functions to tidy up some questions that arose earlier. In
particular we can give precise definitions of sequences and n-tuples. Earlier
we gave definitions of ordered pairs, triples, quadruples, and so on, but no
general prescription.

Definition 5.23: Let Xn be the set {1, 2, 3, . . . , n} =
{
x ∈ N | 1 ≤ x ≤ n

}
. If

S is a set then an n-tuple of elements of S is defined to be a function

f : Xn → S.

This function specifies elements f (1), f (2), . . . , f (n) of S. If we change no-
tation to ( f1, f2, . . . , fn) we see that two n-tuples ( f1, . . . , fn) and (g1, . . . , gn)
are equal if and only if f1 = g1, f2 = g2, . . . , fn = gn. This is what an n-tuple
should look like.
Similarly, a sequence a1, a2, . . . , described earlier as an ‘endless list’, may

be rigorously defined as a function

f : N→ S

where now we think of f (n) as an.
In the case of ordered pairs, the new definition of ( f1, f2) turns out not to

be the same as the one given by Kuratowski, chapter 4. However, it has the
same key property for ordered pairs: ( f1, f2) = (g1, g2) if and only if f1 = g1
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and f2 = g2. This is really all we need, so once again we see that if we focus on
the property in a formal definition, rather than the object defined, we get the
same fundamental mathematical idea. It is another example of a crystalline
concept.

Functions of Several Variables

In calculus we encounter ‘functions of two variables’, such as

f
(
x, y
)
= x2 – 3y3 + cos xy

(
x, y ∈ R

)
.

It is not necessary to go through the whole rigmarole again to make these
functions precise. The notation makes it clear that f is just an ordinary
function defined on the set of ordered pairs (x, y), that is,

f : R× R→ R.

In general, if A and B are sets then a function of two variables a ∈ A, b ∈ B is
a function f :A×B→ C. Similarly, functions of n variables are just functions
defined on a set of n-tuples.

Binary Operations

In many areas of mathematics, it is common to combine two numbers to-
gether to get another number, or two objects of a given kind to get another
object of the same kind. This leads to the concept of a binary operation on a
set A, which can be formally defined as:

Definition 5.24: A binary operation on a set A is a function f : A×A→ A.

Examples 5.25: Familiar examples include:

(1) Addition on N : α : N×N→ N, α(x, y) = x + y.
(2) Multiplication on N : μ : N×N→ N, μ(x, y) = xy.
(3) Subtraction on N : σ : N×N→ N, σ (x, y) = x – y.
(4) Division on the non-zero elements ofQ. Here we let

Q∗ = {x ∈ Q | x �= 0} and define δ : Q∗ ×Q∗ → Q∗ by δ(x, y) = x/y.
(5) Union of sets. Let A = P(X), the set of all subsets of a given set X.

Define u : A× A→ A by u (Y1,Y2) = Y1 ∪ Y2.
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(6) Composition of functions. For any set X, let M be the set of all
functions from X to X, so that f ∈ M means f : X → X. Define

c : M ×M→ M by c(g, f ) = g ◦ f .

Most occurrences of binary operations inmathematics do not use function
notation f (x, y). Instead, they appear in the form x ∗ y for some symbol ∗. In
the above examples we have x+ y, xy, x – y, x/y, x∪ y, x ◦ y. For this reason we
usually denote a binary operation by ∗: A×A→ A and the image ∗(x, y) by
x ∗ y. After examples (2) and (6), x ∗ y is called the product, or composite, of x
and y. In example (2), there is no intervening symbol at all. This economical
notation is used often in other mathematical situations where there is no
danger of confusion. For instance the composite of functions in (6) is usually
written as gf instead of g ◦ f . You have already become accustomed to such
conventions when you learned to read

2π as 2 times π ,
21
2 as 2 plus

1
2 ,

21 as 2 times ten plus 1.

Using x ∗y notation, we do not usually expect x ∗y and y ∗ x to be the same.
For example, if ∗ is subtraction, then 2 – 1 �= 1 – 2. However, when they are
the same, the algebra of ∗ can be simplified, so we are led to:

Definition 5.26: If x ∗ y = y ∗ x for all x, y ∈ A, then ∗ is commutative.

In examples (1), (2), and (5), the binary operation is commutative; in
examples (3) and (4), it is not. The operation in example (6) is non-
commutative if X has more than one element. In fact, if a, b ∈ X, a �= b,
we define f (a) = f (b) = a, g(a) = g(b) = b, and f (x) = g(x) = x otherwise.
Then g ∗ f (a) = b, but f ∗ g(a) = a, so g ∗ f �= f ∗ g.
Unless we know that a binary operation is commutative, it is essential to

maintain the order of elements in a product. Such a product can be extended
to three (and more) elements. Given x, y, z ∈ A, then x ∗ y ∈ A, so we can
form the product of this with z. Brackets are introduced at this stage, writing
(x ∗ y) ∗ z to denote the result and to distinguish it from x ∗ (y ∗ z). Although
the latter has x, y, z taken in the same order, it is the product of x and y ∗ z,
and might conceivably be different. For instance, (3 – 2) – 1 �= 3 – (2 – 1).

Definition 5.27: If (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ A, then ∗ is
associative.
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The operations in examples (1), (2), (5), and (6) are associative, but those
in (3) and (4) are not.
When developing the number concept, commutative and associative bin-

ary operations (such as addition and multiplication) are essential building
blocks. Elementary algebra makes repeated use of these properties, but when
we first encounter algebraic ideas the properties are seldom made explicit,
because the algebraic symbols stand for numbers. In more advanced algebra,
where the symbols can be far more general, commutativity and associativity
may or may not be valid, so we have to pay proper attention to them.
Just as we have binary operations f : A× A → A, we can go on to define

ternary operations t : A × A × A → A, and so on. It is even possible to
think of a function g : A→ A as a ‘unary operation’ to begin this hierarchy.
Such concepts do arise from time to time, but they do not have the central
importance of binary operations in mathematics.

Indexed Families of Sets

At the end of chapter 3 we considered sets S whose elements are themselves
sets, such as S = {S1, . . . , Sn} where each Sr is a set. Using the function
concept, we can extend this notation. If Nn = {1, 2, . . . , n}, then there is a
bijection f : Nn → S given by f (r) = Sr . There is no reason to restrict
attention to Nn here.

Definition 5.28: If A is any set, every element of S is a set, and f : A → S
is a bijection, then we say that S is an indexed family of sets, and write

S = {Sα | α ∈ A}.

In this situation A is called the index set.

The union ⋃
S = {x | x ∈ Sα for some α ∈ A}

of such an indexed family is alternatively denoted by⋃
α∈A

Sα ,

and the intersection ⋂
S = {x | x ∈ Sα for all α ∈ A}
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by ⋂
α∈A

Sα .

When A=Nn, these are often denoted by
n⋃

r = 1
Sr and

n⋂
r = 1

Sr . When A=N,

the notation is sometimes written
∞⋃
r = 1

Sr ,
∞⋂
r = 1

Sr . The ‘∞’ symbol in these ex-

pressions is part of the historical development of the subject; using modern
set-theoretic notation, these are written as

⋃
r ∈N

Sr and
⋂
r ∈N

Sr .

Exercises

In these exercises, any required properties of exponential, logarithmic, and
trigonometric functions may be assumed without proof.

1. Find the images of the following functions f : R→ R:
(a) f (x) = x3
(b) f (x) = x – 4
(c) f (x) = x2 + 2x + 2
(d) f (x) = x3 + cos x
(e) f (x) = 1/x if x �= 0, f (0) = 1
(f ) f (x) = |x|
(g) f (x) = x2 + x – |x|2
(h) f (x) = x16 + x.

2. For each of the functions f : R→ R defined above, state whether it is
(a) injective, (b) surjective, (c) bijective.

3. The following functions are to be defined so that their codomain is R,
and their domains are certain subsets of R. Say in each case what the
largest possible domain is.
(a) f (x) = log x.
(b) f (x) = log log cos x
(c) f (x) = –x
(d) f (x) = log (1 – x2)
(e) f (x) = log(sin2 (x))
(f ) f (x) = ex2

(g) f (x) = 1/
(
x2 – 1

)
(h) f (x) =

√
(x – 1)(x – 2)(x – 3)(x – 4)(x – 5)(x – 6) (positive square

root).
Find the image of f in each case.
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4. Let S be the set of circles in the plane, and let f : S→ R be defined by

f (s) = the area of S.

Is f injective? Surjective? Bijective?
Now let T be the set of circles in the plane whose centre is the origin,

R+ =
{
x ∈ R | x ≥ 0

}
, and define g : T → R+ by

g (T) = the length of the circumference of T.

Is g injective? Surjective? Bijective?
5. If A has two elements and B three, how many different functions are

there fromA to B? From B toA? Howmany, in each case, are injective?
Surjective? Bijective?

6. If A has n elements and B hasm elements (n,m ∈ N), find the number
of functions from A to B.

7. Show that if A=∅,B �=∅, then, according to the set-theoretic def-
inition, there is precisely one function from A to B. Show that if
A �=∅,B=∅, there are none. How many functions are there from ∅
to ∅?

8. Give examples of functions f : Z→ Z that are:
(a) neither injective nor surjective
(b) injective but not surjective
(c) surjective but not injective
(d) surjective and injective.

9. If f : A→ B show that, for X ⊆ A and Y ⊆ B, the formulas
f̂ (X) = { f (x) | x ∈ X},

f̂ (Y) = {x ∈ A | f (x) ∈ Y}

define two functions f̂ : P(A) → P(B), f̃ : P(B) → P(A), where P(X)
denotes the set of all subsets of X. Prove that for all X1,X2 ⊆ A and
Y1,Y2 ⊆ B,
(a) f̂ (X1 ∪ X2) = f̂ (X1) ∪ f̂ (X2)
(b) f̂ (X1 ∩ X2) ⊆ f̂ (X1) ∩ f̂ (X2), but equality need not hold
(c) f̃ (Y1 ∪ Y2) = f̃ (Y1) ∪ f̃ (Y2)
(d) f̃ (Y1 ∩ Y2) = f̃ (Y1) ∩ f̃ (Y2).
Can we improve (b) to equality if f is known to be surjective? Injective?
Bijective?
In textbooks the usual notation is f̂ (X) = f (X) , f̃ (Y) = f –1 (Y) ; for

clarity we have used the notation above.
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10. Define binary operations ∗ on Z by
(a) x ∗ y = x – y
(b) x ∗ y = |x – y|
(c) x ∗ y = x + y + xy
(d) x ∗ y = 1

2 (x + y + 1
2 ((–1)

x+y + 1) + 1).
Verify that these are binary operations. Which are commutative?
Associative?
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chapter 6

Mathematical Logic

The essential quality of mathematics that binds it together in a co-
herent way is the use of mathematical proof to deduce new results
from known ones, building up a strong and consistent theory. These

techniques include some that are unusual in everyday life. Perhaps the most
interesting of them is the method of proof by contradiction (or ‘reductio ad
absurdum’ as it was called inmore classically oriented times). To show some-
thing is true by this method, we assume that it is false and then demonstrate
that this assumption leads to a contradiction. For example:

Proposition 6.1: The least upper bound of s = {x ∈ R | x < 1} is 1.
Proof: Certainly 1 is an upper bound. Let K be another upper bound.
Suppose K< 1; then, by simple arithmetic, K< 1

2 (K + 1)< 1. This means
that K < 1

2 (K +1) ∈ S, contradicting the fact that K is an upper bound. Thus
the assumption K< 1must be false, so K≤ 1, and 1 is the least upper bound.

�

This is a typical case of this kind of reasoning. To analyse it more closely,
let P stand for the statement ‘If K is an upper bound for S then K ≥ 1’. The
major part of the given proof is to establish the truth of P. We assumed P false
(that is, there does exist an upper bound K< 1 for S) and a simple argument
led to a contradiction. If the argument is correct, then P cannot be false—so
it must be true.
To carry through a proof of this nature, and to be certain of its validity, we

must make sure of two vital ingredients.
In the first place, the statement P (and all other statements in the course

of the proof, for that matter) must be clearly true or clearly false, although
at the time we may not always know which. In everyday conversation we
meet comments like ‘Almost all drivers exceed the speed limit at some time
or other.’ This sort of remark would be useless for a contradiction argument.
To refute it, is it enough to find just one person who always obeys the speed
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limit? Do we need to find a ‘substantial number’ (whatever that means) or
even amajority? Everyday language is full of generalities that are vaguely true
in most cases, but perhaps not all. Mathematical proof is made of sterner
stuff. No such generalities are allowed; all the statements involved must be
clearly true or false.
The second essential factor in a proof by contradiction is that the argu-

ments used in the course of a proof must have no flaws. Only if this is so
can we be sure in a proof by contradiction that the false link in the chain of
argument is the initial assumption: P is false.
An old music hall joke goes something like this:

comedian: You’re not here.
straight man: Don’t be silly, of course I am.

comedian: You’re not, and I’ll prove it to you . . . Look, you’re not
in Timbuktu.

straight man: No.
comedian: You’re not at the South Pole.

straight man: Of course I’m not.
comedian: If you’re not in Timbuktu or at the South Pole, you

must be somewhere else.
straight man: Of course I’m somewhere else!

comedian: Well, if you’re somewhere else, you can’t be here!

We are amused by this sort of thing, and we all see the logical flaw. But for
beginners in mathematical proof techniques it exposes a deep-seated distrust
of proof by contradiction. What if some similar ambiguity of terminology
happens by accident or sleight of hand in the middle of the proof? When
you were first confronted with a proof by contradiction that

√
2 is irrational,

were you convinced straight away that it was correct, without any degree of
suspicion? Such distrust is fully justified, and the only way to allay it is to
make sure that our mathematical logic is flawless.
In the rest of this chapter we concentrate on the precise use of mathem-

atical language and basic terminology in logic. In the following chapter we
return to techniques of mathematical proof.

Statements

As we have just seen, it is essential that every statement in a mathematical
proof is clearly either true or false. Typical instances are:
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Examples 6.2:

(i) 2 + 3 = 5.
(ii) The least upper bound of a bounded non-empty subset of R is

unique.
(iii) There is an upper bound K for S = {x ∈ R | x < 1} such that K < 1.
(iv)

√
2 is irrational.

Here (i), (ii), and (iv) are true, but (iii) is false. In mathematics we are nat-
urally more interested in true statements than false ones, but contradiction
arguments make it convenient to allow both types of statement.
To distinguish between true and false statements we say that each state-

ment has a truth value denoted by the letters t or f , with the obvious
interpretation of these symbols: t = true, f = false. Saying that a statement
has truth value t is just a fancy way of saying that it is true.
Given a statement P, the sentence ‘P is false’ is also a statement, and it

has the opposite truth value to P. For example, if P is the false statement
‘2 + 2 = 5’, then ‘2 + 2 = 5 is false’ is a true statement. In logical terminology
‘P is false’ is usually written

¬P.
This is also called ‘the negation of P’ and may be read simply as ‘not P’. It
is a convenient shorthand notation; however, when an actual statement is
substituted for P it may not read grammatically. In the above example, ‘not P’
would read ‘not 2+2 = 5’, which sounds peculiar. The equivalent statements
‘2 + 2 = 5 is false’ or ‘2 + 2 �= 5’ are more euphonious. When translating ‘not
P’ into words, it is customary to rephrase it in a suitable way to make it read
smoothly.

Predicates

A particularly important type of assertion in mathematics is the predicate,
introduced in chapter 3. Recall that a predicate is a sentence involving a sym-
bol, such as x, which is either clearly true or clearly false when we replace x
by any element of a set X. For instance, a typical mathematical predicate is
‘the real number x is not less than 1’. If we denote this by P(x), then P(2) is
true, P(0) is false, P(π /4) is false, and so on. If we find the truth value of P(a)
for every a ∈ R, we get a truth function TP : R→ {t, f } for which TP(a) = t
if P(a) is true, and TP(a) = f if P(a) is false.
This concept dovetails very nicely with our ideas about set theory. The

predicate P(x) partitionsR into two non-overlapping subsets, one containing
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the elements for which P(x) is true, the other containing the elements for
which P(x) is false. The first of these is denoted {x ∈ R | P(x)}. For example
{x ∈ R | x ≥ 1} is the set just described. The other is written {x ∈ R |¬P(x)},
which in the example becomes {x ∈ R | x < 1}.
This situation mirrors what happens in general. For any predicate P(x) we

get a truth function as above. Then, for a ∈ S, we have

a ∈ {x ∈ S | P(x)} if and only if P(a) is true,
a ∈ {x ∈ S |¬P(x)} if and only if P(a) is false.

Rather than using vague remarks like ‘a predicate is some sort of state-
ment . . . ’ we could use truth functions to give a set-theoretic definition.
Suppose we define a truth function TP on a set S to be any function
TP : S→ {t, f }. Then we could propose the definition: ‘a predicate P(x) as-
sociated with TP is any sentence equivalent to “TP(x) = t”’. The only trouble
with this approach is that predicates that appear different may have the same
truth function. For example,

P1(x): ‘x is an upper bound for {s ∈ R | s < 1}’,
P2(x): ‘x ≥ 1’.

It is a major part of a mathematician’s job to show that such predicates are
equivalent, or, more generally, that the truth of one implies the truth of the
other. Therefore the predicates dealt with by practising mathematicians have
the structure just described. Explaining this is a bit like explaining colour by
pointing to something and saying ‘that’s blue’. A formal definition needs a
lot to set it up; this would be appropriate in a formal course on mathematical
logic, but it seems pointless here.
If more than one variable occurs in a sentence, we talk about a ‘predicate

in two variables’, or ‘three variables’, and so on. For example the sentence
‘x > y’ is a predicate (which we will denote byQ(x, y)) in two variables. If real
numbers are substituted for x and y then we get a statement. For instance,
Q(3, 2) is true, but Q

(
71
4 , 10 +

√
2
)
is false. Here the truth function can be

considered as

TQ : R× R→ {t, f }

where

TQ(x, y) = t if Q(x, y) is true and TQ(x, y) = f if Q(x, y) is false.

In the same way we can consider ‘x2 + y2 = z’ as a predicate in three
variables x, y, z ∈ R which we denote by P(x, y, z). The truth function is
TP : R× R× R→ {t, f }, where
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TP(x, y, z) =
{
t if x2 + y2 = z
f if x2 + y2 �= z .

In practice, mathematicians do not always mention explicitly the set to
which a predicate refers, assuming that it is implied by the context. For
example, the predicate ‘x> 3’ is evidently meant to apply to real num-
bers x, whereas ‘n> 3’ refers to integers n. This follows from the standard
convention that unless otherwise stated symbols x, y, z refer to real numbers.
In particular, when we write ‘x > 3’ we assume that no one would dream

of substituting something for x that doesn’t make sense. In the same way,
it is a time-honoured convention that certain letters normally stand for
elements from a specified set. For example, n is usually used to denote a nat-
ural number, or perhaps an integer. In this context the predicate ‘n > 3’
would be taken to refer only to natural numbers. We have already seen
cases of this earlier in the book, for instance in the definition of convergence
(Definition 2.7 on page 35) we wrote:

A sequence (an) of real numbers tends to a limit l if, given any ε > 0, there
is a natural number N such that

∣∣an – l∣∣ < ε for all n > N.

Nowhere in this definition do we actually mention that n is a natural number,
but it is clearly implied by the context. In fact, since (an) is a sequence, nmust
be a natural number.
There is a good reason for conventions of this kind, although at first sight

they may seem a little sloppy stylistically. The more explicit we are in math-
ematics, the more symbols we need. If making everything explicit is taken to
ridiculous lengths, the page gets so cluttered with symbols that it gets difficult
to read the overall meaning because of the mass of detail. It then becomes a
question of judgement and mathematical style to select symbols that express
the ideas as clearly and succinctly as possible. On some occasions it may be
appropriate to ignore standard conventions. For example, in a given context
it may be appropriate to use the letter x for an integer.

All and Some

Given a predicate P(x) that makes sense for elements in a set S, we can ask
whether it is true for all elements in S, or whether it is true for at least some
elements in S. We can then make the statements ‘for all x ∈ S,P(x) is true’ or
‘for some x ∈ S, P(x) is true’. These statements can, of course, themselves be
true or false. We write them in symbols using the ‘universal quantifier’ ∀ and
the ‘existential quantifier’ ∃.
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∀x ∈ S : P(x) is read ‘for all x ∈ S, P(x)’
∃x ∈ S : P(x) is read ‘there exists (at least) one x ∈ S such that P(x)’.

If the predicate P(x) is true for all x ∈ S, then the statement ∀x ∈ S : P(x)
is true; otherwise it is false. On the other hand, when P(x) is true for at least
one x ∈ S, then the statement ∃x ∈ S : P(x) is true, otherwise it is false.
The symbols ∀x ∈ S : P(x) can be read as ‘for every x ∈ S, P(x)’ or ‘for each

x ∈ S : P(x)’, or any grammatically equivalent way. Similarly, ∃x ∈ S : P(x)
can be translated as ‘there is an x ∈ S such that P(x)’, ‘for some x ∈ S : P(x)’
and so on.
In ordinary language there are subtle overtones in a statement like ‘some

politicians are honest’. We get the message that some are honest, but we also
tend to assume that some are not, because otherwise the statement would
have been ‘all politicians are honest’. Mathematical usage carries no such
implication. The statement ‘for some x ∈ S, P(x)’ does not have the connota-
tion that there exist certain other x ∈ S for which P(x) is false. Consider the
statement:

‘some of the numbers 3677, 601, 19, 257, 11119, are prime’.

Since 19 is prime, the statement is true. The other numbers are also prime,
but this does not invalidate the conclusion. At the other end of the scale,
‘some’ may mean only one; for instance

‘some of the numbers 2, 3, 5, 7, 11 are even’

is also true, because 2 is even. This convention greatly simplifies the task of
verifying the truth of ‘∃x ∈ S : P(x)’. We need only find a single value of x
for which P(x) is true.

Examples 6.3:

(i) ∀x ∈ R : x2 ≥ 0 means ‘for every x ∈ R, x2 ≥ 0’ or ‘the square of
any real number is non-negative’, or some grammatical equivalent.
This is a true statement.

(ii) ∃x ∈ R : x2 ≥ 0 reads ‘for some x ∈ R, x2 ≥ 0’ or ‘there exists a real
number whose square is non-negative’. This is also true.

(iii) ∀x ∈ R : x2 ≥ 0 is false (since 02 ≯ 0).
(iv) ∃x ∈ R : x2 ≥ 0 is true (since 12 > 0. In this case there are a lot of

other elements of R besides 1 which would do just as well.)
(v) ∃x ∈ R : x2 < 0 is false.
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If the symbol x is replaced throughout a quantified statement by another
symbol, then we regard the new statement as being equivalent to the old.

∃x ∈ S : P(x) means the same as ∃y ∈ S : P(y).

For instance, ∃x∈R : x2 > 0 is equivalent to ∃y∈R : y2 > 0. Both statements
say ‘there exists a real number whose square is positive’.

More Than One Quantifier

Given a predicate in two or more variables, we can use a quantifier for each
variable. For example, if P(x, y) is the predicate ‘x + y = 0’, then the statement
∀x ∈ R ∃y ∈ R : P(x, y) is read as ‘for every x ∈ R there is a y ∈ R such that
x+y = 0’. It is standard logical practice to put all the quantifiers at the front of
the predicate and read them in order; for instance, ∃y ∈ R ∀x ∈ R : P(x, y)
reads as ‘there is a y ∈ R such that for all x ∈ R, x + y = 0’.
The order matters. Of the two statements given, ∀x ∈ R ∃y ∈ R : P(x, y)

is true, because for each x ∈ R, we can take y = –x to get x + y = 0. However,
∃y ∈ R ∀x ∈ R : P(x, y) is false, because it asserts the existence of y ∈ R that
satisfies x + y = 0 for every x ∈ R. No single value of y will do.
Getting the order of the quantifiers right in such a statement is a vital part

of clear mathematical thinking. It is a common error to get it wrong (and
not just among beginners). This problem can arise when we try to write a
clear but formal logical statement in flowing prose. The word order may be
changed around to give a more euphonious sound to the language, some-
times at the expense of logical clarity. In particular the quantifiers may be
embedded in the middle of the sentence instead of all coming at the be-
ginning. We have already done this a few lines above when we wrote ‘. . . it
asserts the existence of y ∈ R which satisfies x + y = 0 for every x ∈ R.’
Consider the statement ‘every non-zero rational number has a rational in-

verse’. What we mean here is ‘given x ∈ Q where x �= 0 there is an element
y ∈ Q such that xy = 1’. This is, of course, true; if x = p/q where p, q are
integers with p �= 0, then we can take y = q/p. Written in logical language,
the statement becomes

∀x ∈ Q (x �= 0) ∃x ∈ Q : xy = 1.

A mathematician might change the order and say ‘There’s a rational inverse
for every non-zero rational number’ to convey the same idea, even though
this kind of statement could bemisinterpreted. You can helpmatters bymak-
ing sure that the meaning of your written mathematics is as clear as you can
possibly make it.

6 MATHEMATICAL LOGIC | 127



The ambiguity only arises when the quantifiers involved are different. If
they are the same, there is no such problem. For instance, given the predicate
P(x, y): ‘(x + y)2 = x2 + 2xy + y2’, the two statements

∀x ∈ R ∀y ∈ R : P(x, y)

and

∀y ∈ R ∀x ∈ R : P(x, y)

both amount to the same thing: ‘for all x, y ∈ R, (x + y)2 = x2 + 2xy + y2’,
which is of course a true statement.
If the variables involved come from the same set, as in this case, we usually

simplify the notation, writing ∀x, y ∈ R : P(x, y). The same happens with the
existential quantifier. For instance if P(x, y) is ‘x, y are irrational and x + y is
rational’, then ∃x∈R\Q ∃y∈R\Q :P(x, y) and ∃y∈R\Q ∃x ∈ R\Q : P(x, y)
both say ‘there exist two real numbers x, ywhich are irrational but whose sum
is rational’. (This is a true statement since

√
2 and –

√
2 are irrational, but 0

is rational.) It may also be written as ∃x, y ∈ R\Q : P(x, y).
There is anotherminor pitfall in writtenmathematics. The universal quan-

tifier is not always explicitly written; often it is implied by the context. Take
another look at the definition of convergence of a sequence on page 34:

A sequence of real numbers tends to a limit l if, given any ε > 0, there is a
natural number N such that |an – l | < ε for all n > N.

This is quite a mouthful, and is often cut down to make it as brief as possible.
A more precise definition should begin ‘for all ε ∈ R, ε > 0 . . .’. One of the
little words that often gets lost is ‘all’. A typical shortened statement is:

Given ε > 0, ∃N such that n > N implies | an – 1 | < ε.

You will find a lot of minor variations on this definition, but in essence they
all mean the same thing. If you understand this, you are a long way along
the road to understanding the nature of the problem of communicating
mathematics with the appropriate degree of precision.

Negation

On page 123 we introduced the negation¬P of a statement P. The truth value
of ¬P can be represented in the following table (called a truth table):
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P ¬P
t f
f t

Reading along the rows, this says that when P is true, ¬P is false, and con-
versely. The symbol ¬ is called a modifier because it modifies a statement,
changing its meaning and its truth value.
In the same way, a predicate can be modified using ¬. If P(x) is ‘x > 5’,

then ¬P(x) is ‘x > 5 is false’ or equivalently, ‘x ≯ 5’.
The negation of a statement involving quantifiers leads to an interesting

situation. It is easy to see that the statement ‘∀x ∈ S : P(x) is false’ is the same
as ‘∃x ∈ S : ¬P(x)’. (If it is false that P(x) is true for all x ∈ S, then there must
exist an x ∈ S for which P(x) is false, in which case ¬P(x) is true.) That is,

(1) ¬∀x ∈ S : P(x)means the same as ∃x ∈ S : ¬P(x).

Similarly,

(2) ¬∃x ∈ S : P(x) means the same as ∀x ∈ S : ¬P(x).

Statement (2) tells us that ‘there is no x for which P(x) is true’ is the same as
‘for every x ∈ S, P(x) is false’. An example of (2) is:

¬∃x ∈ R : x2 < 0 . . . there is no x ∈ R such that x2 < 0.
∀x ∈ R : ¬(x2 < 0) . . . every x ∈ R satisfies x2 ≮ 0.

These two principles are vital in mathematical arguments. Freely trans-
lated, (1) says ‘to show that a predicate P(x) is not true for all x ∈ S, it is only
necessary to exhibit one x for which P(x) is false’. Similarly, (2) asserts ‘to
show no x ∈ S exists for which P(x) is true, it is necessary to prove P(x) false
for every x ∈ S’.
As rules of thumb for negating statements involving quantifiers, these

ideas come into their own when several quantifiers are involved. A typical
instance is the definition of convergence of a sequence:

∀ε > 0 ∃N ∈ N ∀n > N
(
|an – l | < ε

)
.

To show that (an) does not tend to the limit l, we have to prove the negation
of this statement:

¬ [∀ε > 0 ∃N ∈ N ∀n > N
(
| an – l | < ε

)]
.
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Using principles (1) and (2) this becomes

∃ε > 0¬ [∃N ∈ N ∀n > N
(
| an – l | < ε

)]
,

then

∃ε > 0 ∀N ∈ N¬ [∀n > N
(
| an – l | < ε

)]
,

then

∃ε > 0 ∀N ∈ N ∃n > N ¬ (| an – l | < ε
)
,

which translates finally into:

∃ε > 0 ∀N ∈ N ∃n > N
(
| an – l | ≥ ε

)
.

Therefore, to verify that (an) does not converge to l, we have to prove that
there is some specific ε > 0 such that for any natural number N there is
always a larger natural number n > N with | an – l | ≥ ε.
Much of the difficulty in a subject like mathematical analysis is in manipu-

lating statements like this. Doing so becomes much easier with a little experi-
ence and practice, keeping the principles for negating quantifiers in mind.

Logical Grammar: Connectives

In mathematics we give standard conjunctions ‘and’, ‘or’, and so on very spe-
cific meanings. For instance, ‘or’ is used in the inclusive sense: if P, Q are
statements then P or Q is a statement that is regarded as true provided that
one or both of P, Q is true. We can represent this by a truth table:

P Q P or Q

t t t
t f t
f t t
f f f

This is read along the horizontal rows. For example, the second row says that
if P is true, Q is false, then P or Q is true.
Other conjunctions in regular use in mathematics are ‘and’, ‘implies’, and

‘if and only if ’. The symbols are & (and),⇒ (implies),⇔ (if and only if ).
They have the following truth tables:
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P Q P&Q

t t t
t f f
f t f
f f f

P Q P⇒ Q

t t t
t f f
f t t
f f t

P Q P⇔ Q

t t t
t f f
f t f
f f t

These tables are read in the same way as the table for ‘or’. The first and last
of these are fairly obvious: P&Q is regarded as true only when both P and Q
are true; P ⇔ Q is regarded as true only when P and Q each have the same
truth value.
The interesting table is the one for P ⇒ Q. If P is true, then the first and

second lines say that the implication P ⇒ Q is true when Q is true and false
when Q is false. This shows that the truth of P ⇒ Q means that if P is true,
then Q must be true. This is the normal interpretation of the implication
sign⇒, and for this reason P⇒ Q is often interpreted as ‘if P, then Q’.
What of the situation when P is false? The third and fourth lines say that

whether Q is true or false, P⇒ Q is always regarded as true. In many places
a lot of philosophical nonsense is talked about this. ‘How can the falsehood
of P imply the truth of Q?’
The reason for this situation can be seen in the standard mathematical

practice of using connectives with predicates rather than statements. If P(x)
and Q(x) are predicates both valid for x ∈ S, then we can use the connect-
ives in the manner above to get predicates P(x) or Q(x), P(x) &Q(x), etc. In
particular, the predicate P(x) ⇒ Q(x) has the stated truth table. Sometimes
P(x)⇒ Q(x) is true for all x ∈ S. This is where the truth table comes into its
own. For example when P(x) is ‘x > 5’ and Q(x) is ‘x > 2’ then every math-
ematician would agree that P(x) ⇒ Q(x) is true, although some would read
this as ‘If x > 5, then x > 2’, they would not be interested in what happens
when x ≯ 5.
Let us substitute some different values for x and see what happens:

If x = 4, then P(4) is false and Q(4) is true.
If x = 1, then P(1) is false and Q(1) is false.

These are precisely lines three and four of the truth table for ‘⇔’ and il-
lustrate how the truth table is arrived at. With this interpretation, the truth
table can best be described as follows:

‘P⇒ Q is true’
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means that

(a) ‘If P is true, then Qmust be true’;

however,

(b) ‘If P is false then Q may be either true or false, and no conclusion
may be drawn in this case’.

Other connectives are possible; for example the ‘exclusive or’ (denoted
here by OR) with truth table:

P Q P OR Q

t t f
t f t
f t t
f f f

P OR Q is true when one, but not both, of P, Q is true.
We could write down truth tables for many other connectives, but these

can all be manufactured by combining the given ones. For instance, exclusive
OR can also be described by (P or Q) & ¬(P & Q). We discuss these ideas in
greater detail below in the section on Formulas for Compound Statements.
Mathematicians do not restrict themselves stylistically to the connectives

just described. They may also use grammatical connectives like ‘but’, ‘since’,
or ‘because’, as fancy takes them. These words are interpreted as grammat-
ical equivalents for the technical words. For instance the truth table for ‘P
but Q’ is the same as that for ‘P & Q’. The statement ‘

√
2 is irrational but

(
√
2)2 is rational’ means the same thing as

√
2 is irrational and (

√
2)2 is ra-

tional’. Similarly, ‘P because Q’ and ‘P since Q’ have the same truth table as
‘Q ⇒ P’. You can make yourself familiar with these variants by looking at a
few examples. (See the exercises at the end of the chapter.)

The Link with Set Theory

If we apply connectives and the modifier ¬ to predicates in one variable, we
find a simple relationship with set-theoretic notation. Suppose P(x) andQ(x)
are predicates valid on the same set S, and look at the subsets for which the
various compound statements are true. For ‘&’ we obtain:
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{x ∈ S |P(x) &Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S |Q(x)}.

Fig. 6.1 P(x) &Q(x)

Similarly,

{x ∈ S |P(x) orQ(x)} = {x ∈ S |P(x)} ∪ {x ∈ S |Q(x)}.

Fig. 6.2 Inclusive P(x) or Q(x)

This is one reason for using the ‘inclusive or’, corresponding to set-
theoretic union, rather than the ‘exclusive OR’ which corresponds to the
‘symmetric difference’ in set theory, represented by the shaded area in the
diagram:

Fig. 6.3 Exclusive P(x) OR Q(x)
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The modifier ¬ applied to a single predicate P(x) corresponds to the set-
theoretic complement:

Fig. 6.4 Not P(x)

When we consider the implication P(x)⇒ Q(x) we look at the situation a
little differently. We are really interested only in the case where P(x)⇒ Q(x)
is true for all x.
In this case, if P(x) is true, so must Q(x) be; that is, if a ∈ {x ∈ S | P(x)}

then a ∈ {x ∈ S |Q(x)} which means {x ∈ S |P(x)} ⊆ {x ∈ S |Q(x)}. The
truth of the statement P(x)⇒ Q(x) for all x ∈ S corresponds to set-theoretic
inclusion:

Fig. 6.5 P(x)⇒ Q(x)

In the same way, P(x)⇔ Q (x) is true for all x ∈ S if and only if

{x ∈ S |P(x)} = {x ∈ S |Q (x)}.

Formulas for Compound Statements

Using connectives and modifiers we can formmore complex statements and
predicates from given ones, for instance (P & Q) or R. This involves three
statements, so the truth table has 23 = 8 lines:
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Intermediate
calculation

P Q R P & Q (P & Q) or R

t t t t t
t t f t t
t f t f t
t f f f f
f t t f t
f t f f f
f f t f t
f f f f f

The symbol ‘(P & Q) or R’ is really a recipe for forming a new statement
or predicate out of three given ones P, Q, R. To emphasise this, we call it a
compound statement formula when P, Q, R stand for unspecified statements
or predicates. When we replace P, Q, R by specific statements, for instance

(2 > 3& 2 > 6) or 2 > 1,

we call it a compound statement. If instead we use specific predicates, we call
the result a compound predicate. For example,

(x > 3& x > 6) or x > 1

is a compound predicate.
Most mathematical proofs involve manipulating compound statements

and predicates. Brackets are often essential to show how these statements
and predicates are constructed. For instance P & (Q or R) is different from
(P& Q) orR. In fact, looking at the seventh line in the above truth table, if P is
false,Q is false, and R is true, then (P&Q) or R is true; but a calculation shows
that in this case P& (Q orR) is false. The same goes for predicates. So we
must take care to put the brackets in the right places whenever ambiguities
would arise.
Sometimes, however, it is permissible to omit brackets. For instance,

(P&Q) &R has the same truth table as P& (Q&R), so it would not cause
any problem to write just P&Q&R.
When we build up compound statement formulas using connectives and

modifiers, we often find formulas that look different but have the same truth
table. An example is the two statements P⇒ Q and (¬Q)⇒ (¬P):
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P Q P⇒ Q

t t t
t f f
f t t
f f t

Intermediate
calculations

P Q ¬P ¬Q (¬Q)⇒ (¬P)
t t f f t
t f f t f
f t t f t
f f t t t

We can summarise the result as

P Q (¬Q)⇒ (¬P)
t t t
t f f
f t t
f f t

and the final column for both formulas is t f t t.
In this case the compound statement formulas are said to be logically

equivalent. Denoting two compound statement formulas by S1, S2, we write

S1 ≡ S2

for logical equivalence. For instance, our result above can be expressed as

P⇒ Q ≡ (¬Q)⇒ (¬P) .
Sometimes two compound statement formulas can be considered to be

logically equivalent, even though they are composed of different symbols.
This happens when changing the truth value of a particular symbol does
not affect the final result. For instance, P& (¬P) is always false. The truth
table for (P& (¬P)) or (¬Q) has the same truth value as (¬Q), regardless of
the truth value of P. One way of looking at this, typical of the mathematical
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fraternity, is to think of (¬Q) as a function of both P and Q, so that its truth
table becomes

P Q (P& (¬P)) or (¬Q)
t t f
t f t
f t f
f f t

P Q ¬Q
t t f
t f t
f t f
f f t

By this formal device we can legitimately write

¬Q ≡ (P& (¬P)) or (¬Q) .

Definition 6.4: A compound statement formula is a tautology if it is true
regardless of the truth values of its constituent statement symbols.

Typical examples of tautologies are:

(i) P or (¬P)
(ii) P⇒ (P or Q)
(iii) (P&Q)⇒ P
(iv) (P⇒ Q)⇔ ((¬Q)⇒ (¬P)) .

Check that the truth tables for these always yield the value t.

Definition 6.5: If a compound statement formula always takes truth value
f , regardless of the truth values of its constituent statement symbols, then it
is a contradiction.

For example, P& (¬P) is a contradiction.
Any two tautologies are logically equivalent, and any two contradictions

are logically equivalent. Moreover, a compound statement formula S is a
tautology if and only if ¬S is a contradiction.
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It is useful to use the symbol T for a tautology and C for a contradiction.
We then get some interesting results. For example, (¬P) ⇒ C is logically
equivalent to P. The truth tables are

P (¬P)⇒ C

t t
f f

P P

t t
f f

When calculating the first table, remember that C always has truth value f .
If we replace C by a specific contradiction, say Q& (¬Q) , we will still get

the same result:

P Q (¬P)⇒ (Q& (¬Q))
t t t
t f t
f t f
f f f

P Q P

t t t
t f t
f t f
f f f

You should check all the intermediate calculations in the first table to get a
feeling for what is happening.
Instead of comparing the truth tables of two compound statement formu-

las S1 and S2 to check logical equivalence, we can look at the single table for
S1 ⇔ S2. If S1 is logically equivalent to S2, then S1 ⇔ S2 is a tautology, and
vice versa. For example, the logical equivalence of P⇒ Q and (¬Q)⇒ (¬P)
corresponds to the fact that [P⇒ Q]⇔ [(¬Q)⇒ (¬P)] is a tautology.

Logical Deductions

The overall strategy behind a proof often arises by proving not the truth
of a given statement, but the truth of a logically equivalent one. Important
examples are as follows.
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Examples 6.6:

(1) The contrapositive P ⇒ Q ≡ (¬Q) ⇒ (¬P). To prove P ⇒ Q, we
establish the truth of (¬Q)⇒ (¬P) .

(2) Proof by contradiction P ≡ (¬P)⇒ C where C is a contradiction. To
prove P, we establish the truth of (¬P)⇒ C.

(3) ‘If and only if ’ proof P ⇔ Q ≡ (P⇒ Q) & (Q⇒ P) . To prove
P⇔ Q, we prove both P⇒ Q and Q⇒ P.

(4) ‘If and only if ’ version II P⇔ Q ≡ (P⇒ Q) & ((¬P)⇒ (¬Q)) .
To prove P ⇔ Q, we establish the truth of both P ⇒ Q and (¬P)⇒
(¬Q) .

We establish the truth of a given statement from known ones by seeing
how the new statement is made up, and using truth tables. For instance, we
might know that P is true and that (¬Q)⇒ (¬P) is true. From these facts we
can deduce that Q must be true. The given statements might be compound
ones, like (¬Q) ⇒ (¬P), and although we know that the total statement is
true, we may have no information on the truth of its constituents. Thus we
might know that (¬Q) ⇒ (¬P) is true, but have no knowledge of the truth
values of P or ofQ. This still allows us to make some deductions; for example
if (¬Q)⇒ (¬P) is true, then we know that the equivalent statement P⇒ Q
is true.
Here are a few situations in which we can deduce the truth of the statement

in the second column from those in the first.

If these statements are true . . . . . . then this must be true
P, (¬Q) ⇒ (¬P) Q
(¬P)⇒ C (contradication) P
P, P⇒ Q Q
P⇒ Q, Q⇒ R P⇒ R
P orQ, ¬P Q
P&Q P orQ
P⇒ Q, Q⇒ P P⇔ Q
P1, . . . , Pn P1 & . . .& Pn
P1, . . . , Pn, (P1 & . . .&Pn)⇒ Q Q

This table can be continued indefinitely. To obtain a new entry, write a
number of compound statement formulas S1, . . . , Sn in the left-hand col-
umn. In the corresponding position in the right-hand column, put any
compound statement formula D whose truth is ensured when S1, . . . , Sn are
true. This involves looking at the truth tables for S1, . . . , Sn,D, but we can
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formulate the condition in one composite table by considering the formula
(S1& . . .& Sn)⇒ D. If this is a tautology then the truth of S1, . . . , Sn ensures
the truth of D, as required.
A tautology of the form (S1& . . .& Sn) ⇒ D is called a rule of inference.

Given such a rule of inference, and substituting actual statements into the
compound statement formulas involved, if S1, . . . , Sn are true then we may
infer that D is true.
When the statements concerned involve quantified predicates we must

look at how they are composed to see if the truth of one statement is a natural
consequence of given ones. In a simple case we might know that ∀x∈ S :P(x)
is true, and infer that ∃x∈ S : P(x) is also true. Given the truth of ∀x∈ S :P(x)
and ∀x∈ S :Q(x) we can deduce a whole host of statements, including

∀x ∈ S : P(x) &Q(x),
[∀x ∈ S : P(x)] or [∀x ∈ S : Q(x)] ,
P(a) &Q(b) where a, b ∈ S,

and so on. Again, we can make a list of deductions that can be made from
statements involving quantified predicates.

If these statements are true . . . . . . then this must be true
∀x ∈ S : P(x), ∀x ∈ S : Q (x) ∀x ∈ S : [P(x) &Q(x)]
∀x ∈ S : P(x) ∃x ∈ S : P(x)
∀x ∈ S : P(x) P(a) (a ∈ S)
P(a) (a ∈ S) ∃x ∈ S : P(x)
¬ [∀x ∈ S : P(x)] ∃x ∈ S : [¬P(x)]
¬ [∃x ∈ S : P(x)] ∀x ∈ S : [¬P(x)]
∃x ∈ S∀y ∈ S ∀z ∈ M : ¬ [P(x, y, z)] ¬ [∀x ∈ S ∃y ∈ S ∃z ∈ M : P

(
x, y, z

)]
Again, this list could easily be extended. In the left-hand column we put

statements S1, . . . ,Sn, which may involve quantified predicates; in the right-
hand column we put a statementDwhose truth follows when all of S1, . . . ,Sn
are true. Again this can be formulated as the requirement that the single
statement (S1& . . .&Sn)⇒ Dmust be true.
In this book our main aim is not to proliferate more and more complex

logical statements, it is to seek simpler ways of expressing complicated ideas
to make proofs easier to read and write.
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Proof

In practice, when seeking a proof of some mathematical statement, we start
from a number of statements H1, . . . ,Hr (called the hypotheses) and attempt
to deduce the truth of a statement D. The process may become quite in-
volved, with the introduction of other subsidiary statements. For this reason
we perform the process in a number of steps by writing down a sequence of
statements L1, . . . , Ln, where Ln = D and each Lm is either one of the hypoth-
eses H1, . . . ,Hr , or a statement whose truth can be deduced from the truth
of L1, . . . , Lm–1 for each m = 1, 2, . . . , n. Therefore L1 must be one of the
hypotheses, and each successive statement L2, . . . , Ln must either be a true
deduction from previous Lj or a hypothesis. These conditions clearly imply
that the last line D is true.
The truth of the deduction of Lm from previous Lj is checked, as be-

fore, by verifying the truth of the statement (L1 & . . .& Lm–1) ⇒ Lm. If
Lm is a hypothesis, it follows immediately from the truth table for ⇒ that
(L1 & . . .& Lm–1) ⇒ Lm is true; but when Lm is not a hypothesis we need to
check more fully.
When the final deduction D is of the form P ⇒ Q, mathematicians often

vary the prescription by writing down lines L1, . . . , Ln with P as the first line
L1 and Q as the last line Ln. Here each intermediate line must either be a
hypothesis, or its truth must follow from previous lines, as before. Some
lines may well be predicates; again the important thing is to ensure that
(L1 & . . .& Lm–1)⇒ Lm is always true.

Example 6.7: Given hypotheses

H1: 5 > 2
H2: ∀x, y, z ∈ R : (x > y) & (y > z)⇒ (x > z) ,

we can write down the proof that (x > 5)⇒ (x > 2) as

L1: x > 5
L2: 5 > 2
L3: ∀x, y, z ∈ R : (x > y) & (y > z)⇒ (x > z)
L4: x > 2.

Although this particular deduction is not exactly mind-boggling, it em-
bodies the general prescription for a proof, which we crystallise as follows:
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Definition 6.8: Let P and Q be statements or predicates. A proof of the
statement P ⇒ Q, given the statements H1, . . . ,Hr , consists of a finite
number of statements

L1 = P
L2
...

Ln = Q

where each Lm (2 ≤ m ≤ n) is either a hypothesis Hs (1 ≤ s ≤ r) or a state-
ment or predicate, such that

(L1& . . .& Lm–1)⇒ Lm

is a true statement for allm ≤ n.
We call the Lj the lines of the proof.

Under these conditions, if P is true, then each succeeding line must also be
true, so in particular Q is true. The truth table for⇒ then shows that P⇒ Q
is true.
It is worth looking at what happens when P is false. This could easily

occur if P is a predicate, when substituting a particular value for the variable
renders the predicate false. Thus in the above example, x > 5 is false when
x = 1, in which case line L4 becomes 1 > 2, which is also false. On the
other hand, if x = 3 then L1 is false, but L4 is 3 > 2 which is true. In short,
if P is false we can draw no conclusions about the validity of succeeding
statements Lj: the only thing we are certain of is that the compound state-
ment P ⇒ Q is true. This happens because, although we know that the
deduction (L1& . . .& Lm–1) ⇒ Lm is true, the falsity of L1 = P can lead to the
falsity of Lm.
This is the most important factor in proof by contradiction. Such a proof

has exactly the same format as the one above. To establish P we prove an
equivalent statement (¬P)⇒ C, where C is some contradiction. So we start
with the first line L1 as (¬P), and end up with the last line Ln being C. On
the assumption that (¬P) is true, each succeeding line must also be true. But
Ln is manifestly false, being a contradiction. Hence (¬P) cannot be true, so P
must be true. In this way we establish the truth of P ‘by contradiction’.
The proof of P ⇒ Q by establishing the logically equivalent statement

(¬Q)⇒ (¬P) also has the same basic structure, starting with the line (¬Q),
and ending with the line (¬P).
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This is the formal definition of the logical steps in a proof. What do we
actually need to write down in practice? The next chapter provides a possible
answer.

Exercises

1. Write down truth tables for the following compound statements:
(a) P⇒ (¬P)
(b) ((P⇒ R) & (Q⇒ R))⇔ ((P& Q)⇒ R)
(c) (P&Q)⇒ (P orQ)
(d) (P⇒ Q) or (Q⇒ P) or (¬Q) .
Which are tautologies?

2. Write the following statements using quantifiers ∀, ∃ and state which
of them are true:
(a) For every real number x there exists a real number y such that

y3 = x.
(b) There exists a real number y such that for every real number x, the

sum x + y is positive.
(c) For each irrational number x, there is an integer n satisfying

x < n < x + 1.

(d) The square of every integer leaves remainder 0 or 1 on division
by 4.

(e) The sum of the squares of two prime numbers which are not equal
to 2 is an even number.

3. Translate the following statements into prose:
(a) ∀x ∈ R ∃y ∈ R : x2 – 3xy + 2y2 = 0.
(b) ∃y ∈ R ∀x ∈ R : x2 – 3xy + 2y2 = 0.
(c) ∃N ∈ N ∀ε ∈ R : [(ε > 0) & (n > N)]⇒ (1/n < ε) .
(d) ∀x ∈ N ∀y ∈ N ∃ z ∈ N : x + z = y.
(e) ∀x ∈ Z ∀y ∈ Z ∃z ∈ Z : x + z = y.
Read your translations carefully, and if you think they sound stilted,
rewrite them in amore flowing style (but don’t change their meaning!).
State which of (a)–(e) are true and which are false, giving a reason in
each case.

4. In each of the following cases, write out truth tables and say whether
the two statements are equivalent or not.
(a) ¬ [P& (¬P)] , P or (¬P)
(b) P⇒ Q, (¬P) & Q
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(c) P⇒ Q, (¬Q) & P
(d) (P⇒ Q) & R, P⇒ (Q&R)
(e) [P& (¬Q)]⇒ [R& (¬R)] , P⇒ Q.

5. Use truth tables (where possible) to verify the rules of inference listed
in the section ‘logical deductions’.

6. Which of the following are logically correct deductions?
(a) If an International Weapons Limitation Agreement is signed, or

the United Nations approve a disarmament plan, then shares in
the arms industry will slump. But armament shares will not slump,
so an International Weapons Limitation Agreement will not be
signed.

(b) If Britain leaves the European Union or if the trade deficit is re-
duced, the price of butter will fall. If Britain stays in the European
Union exports will not increase. The trade deficit will increase
unless exports are increased. Therefore the price of butter will
not fall.

(c) Some politicians are honest. Some women are politicians. There-
fore some women politicians are honest.

(d) If I do not work hard I will sleep. If I am worried I will not sleep.
Therefore if I am worried I will work hard.

7. Consider the statement

x ≤ y but y > z

in the following cases:
(a) x = 1, y = 2, z = 0
(b) x = 1, y = 2, z = 3
(c) x = 2, y = 1, z = 0
(d) x = 2, y = 1, z = 3.
Which cases yield a true statement? Use this information to draw up a
truth table for ‘but’ and check that

(P butQ)⇔ (P&Q)

is a tautology.
Do the same for ‘since’ and ‘therefore’ and compare with ‘implies’.

What happens for ‘unless’?
8. What are the negations of the following statements?

(a) ∀x : (P(x) &Q (x))
(b) ∃x : (P(x)⇒ Q (x))
(c) ∀x ∈ R ∃ y ∈ R : x ≥ y
(d) ∀x ∈ R ∀y ∈ R ∃z ∈ Q : x + y ≥ z.
Are (c) and (d) true or false?
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9. Prove by contradiction the following theorems:
(a) If x, y ∈ R and y ≤ x + ε for all ε > 0 (ε ∈ R) , then y ≤ x.
(b) For all real numbers x, either

√
3 + x is irrational or

√
3 – x is

irrational.
(c) There is no smallest rational number greater than

√
2.

10. Consider the connectives ¬, &, or,⇒. Show that

P⇒ Q ≡ (¬P) orQ
P orQ ≡ ¬ [(¬P) & (¬Q)]

and hence that any compound statement can be written in terms of
the connectives ¬, & alone. Is it possible to write every compound
statement in terms of just one of the connectives ¬, &, or,⇒?
Define the stroke connective | by the truth table

P Q P |Q

t t f
t f t
f t t
f f t

and show that

P |P ≡ (¬P) or (¬Q).
Show further that
(a) (¬P) ≡ P | P
(b) (P&Q) ≡ (P |Q) | (Q | P)
(c) (P orQ) ≡ (

P | P
)
|
(
Q |Q

)
(d) (P⇒ Q) ≡ P |

(
Q |Q

)
.

Hence deduce that any compound statementmay be written using only
the stroke connective.
Remark: this may be economical in terms of connectives, but is(((

P |P
)
|Q
)
|
((
P | P

)
|Q
))
|
(
Q |Q

)
easier to read than ((¬P) &Q)⇒ Q? They are equivalent . . .

11. Look back at your responses to the questions at the end of the first
chapter and reflect on any change in sophistication that has occurred.
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chapter 7

Mathematical Proof

In the last chapter we looked at the logical use of language in mathemat-
ics and how the truth of a statement can be deduced from given ones.
We showed how a proof may be thought of as a sequence of logical

deductions. In practice this formal definition of ‘proof ’ does not provide
a satisfactory way of writing proofs: to include every single step leads to
a stereotyped format and is usually unbearably long-winded (see [8]). In
this chapter we look at how proofs are actually written by practising math-
ematicians. In addition to the underlying logical skeleton, the writing of
mathematical proofs needs a sense of judgement about how much detail is
appropriate: what must be included and what may safely be left out. Too little
detail may omit vital portions of the argument; too much may obscure the
overall story.
We begin by taking an actual proof, written in normal mathematical style,

and comparing it with the formal structure of the previous chapter.

Theorem 7.1: If (an), (bn) are sequences of real numbers such that an → a
and bn → b as n→∞, then an + bn → a + b.
Proof: Let ε > 0. Since an → a there exists N1 such that

n > N1 ⇒ |an – a| < 1
2ε.

Since bn → b there exists N2 such that

n > N2 ⇒ |bn – b| < 1
2ε.

Let N = max (N1, N2) . If n > N then |an – a| < 1
2ε and |bn – b| < 1

2ε, so, by
the triangle inequality,

|(an + bn) – (a + b)| ≤ |an – a| + |bn – b|
≤ 1

2ε +
1
2ε

= ε.

Hence an + bn → a + b, as required. �
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To analyse the structure of this proof, let us break it down line by line,
adding a few words here and there to make the construction clearer.
First look carefully at the statement of the proof and note the hypotheses

that are given and the consequence that is to be proved. The theorem is in
the form P⇒ Q where the P involves two given hypotheses:

Hypotheses:

H1. (an) is a sequence of real numbers and an → a.
H2. (bn) is a sequence of real numbers and bn → b.

The consequence Q to be proved states that:

Consequence to be Proved: Q : an + bn → a + b.

The proof, as given, consists of the following lines:
Proof:

L1. Let ε > 0.
L2. Since an → a there exists N1 such that n > N1 ⇒ |an – a| < 1

2ε.
L3. Since bn → b there exists N2 such that n > N2 ⇒ |bn – b| < 1

2ε.
L4. Let N = max (N1,N2).
L5. If n > N then |an – a|< 1

2ε and |bn – b|< 1
2ε.

L6. So |(an + bn) – (a + b) ≤ |an – a| + |bn – b| by the triangle inequality.
L7. |an – a| + |bn – b|< 1

2ε +
1
2ε.

L8. 1
2ε +

1
2ε = ε.

L9. (There exists N = max (N1, N2) such that)
n>N⇒ |(an + bn) – (a + b)|< ε.

L10. an + bn → a + b, as required. �

Lines L1 and L2 are the definition of the limit an → a while lines L1 and L3
are the definition of the limit bn → b. These involve the implicit step that if
ε > 0 then 1

2ε > 0 so 1
2ε can be used in the definition of limit. In principle

we ought to write out these short deductions explicitly, but in practice the
steps are omitted when they are known parts of our technique.
Line L4 is something new: a definition of the symbol N in terms of N1

and N2. This definition could be omitted if we desired, and each occurrence
of N in the proof replaced by max(N1, N2) without any real change in the
proof. In practice, however, it is common to use new symbols to stand for
complex concepts built up from known ones, in order to keep the notation
looking simple.
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Line L5 follows from L2, L3, and L4, although the statement that n > N
implies n > N1 and n > N2 is taken for granted.
Line L6 subsumes some simple algebraic manipulations rearranging

|(an + bn) – (a + b)| to give |(an – a) + (bn – b)|, before using the triangle in-
equality to get the final result. This statement looks like a predicate in n, but
tacitly we regard it as coming under the implied quantifier ∀n > N in L5.
Line L7 follows from L5 and L6, again using an implicitly understood

algebraic result, this time addition of inequalities.
Line L8 is trivial algebra.
Line L9 follows from lines L2 to L8. This is precisely the formal definition

of the convergence of an + bn to a+ b, which gives the final conclusion in L10.
This analysis shows that mathematicians do not write out proofs in pre-

cisely the manner described in the previous chapter. Steps are omitted, both
when hypotheses are introduced and when deductions are made; new def-
initions are brought in; the whole package is wrapped up in a flowing prose
style in total contrast to a formal sequence of statements.
Why is this? In the first place, mathematicians were writing proofs long

before they were logically analysed, so the prose style came first and con-
tinues to be used. The main reason is that the omission of trivial detail and
the use of new symbols for complicated constructions are part of the process
of attempting to make the deductions more comprehensible. The human
mind builds up theories by recognising familiar patterns and glossing over
details that are well understood, so that it can concentrate on the new ma-
terial. In fact it is limited by the amount of new information it can hold at
any one time, and the suppression of familiar detail is often essential for
a grasp of the total picture. In a written proof, the step-by-step logical de-
duction is therefore foreshortened where it is already a part of the reader’s
basic technique, so that they can comprehend the overall structure more
easily.
When working out a new theory, practising mathematicians tend to dis-

tinguish between well-established facts that are part of their technique, and
those that are in the new material they are developing. They take the estab-
lished ideas very much for granted, telescoping several steps into a single
line where their technique is fluent, often without giving explicit references
to where a proof of these results can be found. This is done in the confidence
that, if they were challenged, they would be able to fill in the details (though
it might tax their memory to recall them straight away!).
Newly established results constitute the heart of the theory that is being

developed, and are therefore treated with greater care. They will be stated
clearly as hypotheses when they are needed, and references to their proofs
will be given.
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When to omit logical steps or references in a proof, and when to give
them in full, is part of that elusive quality: mathematical style. Different
mathematicians will differ in their opinion. The clue is to look at the con-
text of a proof and see for whom it is intended. Thus the present reader
is most probably a student whose experience comes mainly from explana-
tory textbooks and lectures. Here the balance is likely to lean towards fuller
exposition. On the other hand communication between two experts might
comprise very sketchy outlines concentrating on the important new details.
Nevertheless, both extremes have in common the feature of omitting de-
tail when it may be considered as part of the basic technique in the given
context.
As a specific example, when studying analysis, the rules of arithmetic

might be subsumed as part of the basic toolkit, but new ideas such as lim-
its, continuity, and so on would be treated with greater respect. Theorems
about these new ideas would be proved carefully, and later theorems would
refer back explicitly to results established earlier on. In the proof above, arith-
metical results were used without comment, though the triangle inequality
was mentioned because it was felt to be sufficiently new to be worth re-
minding the reader about. In more advanced work the triangle inequality
would become part of the underlying technique, and be used without special
reference.
In principle, a proof as used by practising mathematicians has an under-

lying structure like the one described in the previous chapter, but the proof
occurs in a context where certain results have become a standard part of the
technique. So a proof of a statement D from explicit hypotheses H1, . . . , Hn
now consists of a number of statements L1, . . . , Ln, where Ln is D, and each
Lm is either:

(i) a known truth, which is either a simple deduction from the hypotheses
or from the contextual technique,

or

(ii) a deduction from the previous lines L1, . . . , Lm–1 using formal logic
and known truths from the contextual technique.

The proof is written in a mixture of prose and mathematical symbolism that
makes the logical structure clear. Steps are omitted if the deductions are clear
from the context, and new symbols may be introduced to simplify nota-
tion. Similarly, an actual proof of a statement P ⇒ Q will have the same
underlying structure as the formal, logical one, but making tacit use of the
contextual technique.
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Sometimes the context may be so clear that no explicit hypotheses are
mentioned. For example:

Theorem 7.2 (Euclid): There exist infinitely many primes.
Proof: Suppose that there exist only a finite number of primes, say p1, . . . ,
pn. The number

N = 1 + p1 . . . pn

is divisible by some prime p. But p cannot be any of p1, . . . , pn since the
latter all leave remainder 1 on dividing N.This contradicts our assumption
that p1, . . . , pn is the complete list of primes. �

This proof depends on the context of arithmetic of whole numbers, includ-
ing factorisation of numbers into primes. It is given in the form of a proof
by contradiction. Let P be the statement ‘there exist infinitely many primes’.
The first line is ‘suppose ¬P’, and the proof thereafter follows the usual line
of argument in search of a contradiction. Then ¬P must be false, so P must
be true.
In a proof like this we must keep a careful eye on our contextual mater-

ial for the presence of logical flaws in the parts of the proof that have been
omitted, as well as on the actual symbols on the paper. For instance, what is
wrong with the following ‘proof ’?

Theorem(?) 7.3: The largest integer is 1.
Proof(?): Suppose not. Let n be the largest integer. Then n> 1. Now n2 is
also an integer, and n2> n× 1 = n. So n2> n, which contradicts n being the
largest integer. Therefore our initial assumption is false, so 1 is the largest
integer. �

Where is the flaw? Think about it before reading on.
The flaw is in the statement ‘Let n be the largest integer’. This is not the

correct negation of ‘1 is the largest integer’. It should be ‘1 is not the largest
integer’, which pulls apart into ‘n> 1 is the largest integer or there is no largest
integer’. With this statement substituted, the contradiction fails to material-
ise, since n2> n does not contradict the phrase italicised above. This logical
flaw is disguised by the informality of the proof. It needs a lot of experience
to avoid traps like these.
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Axiomatic Systems

To provide a firm basis for the contextual material used, we must start some-
where. We do this by taking certain explicit statements as axioms, which are
assumed to be true; all other results in the theory are deduced from these. Ac-
cording to taste, these deductions are called theorems, propositions, lemmas,
corollaries, and so on. The words ‘theorem’ and ‘proposition’ are often re-
garded as being interchangeable, some authors sticking exclusively to one
or the other. We prefer to use the word ‘proposition’ to describe an ordinary
run-of-the-mill result, reserving ‘theorem’ for somethingmore important. In
this way the structure of the theory can be seen more clearly, with important
theorems standing out in relief from the background of propositions.
To give even more shape to the contours of the theory, and to reduce

the strain in particularly long proofs, constituent parts of a proof may be
separated out and proved before using them in the proof of a theorem or
proposition. Such a preliminary result is called a lemma. There may be sev-
eral lemmas preceding a major theorem, so that when the proof of the main
result is reached, all the spadework has been done, and all that is left is to put
the pieces together. In this way it is possible to make the proof of the theorem
itself a much more streamlined affair, with its salient features clearly delin-
eated and not concealed by the details, which have been subordinated to the
lemmas.
The complement of a lemma, which precedes a theorem, is a corollary,

which follows it. A corollary is a result that can be deduced very simply from
a theorem (or proposition) and immediately follows it. Sometimes the proof
is so obvious, because of the context, that the proof of a corollary is omitted,
or ‘left to the reader’.
In chapter 2 we looked at intuitive ideas of the real numbers and proved

results in that context. To treat the subject formally, we will have to select
certain properties of arithmetic as basic axioms and then build logically on
these. (If we are sensible, we will use all the guile we have developed in in-
tuitive arithmetic to suggest to us which way we should go in our formal
development.) In chapter 8 we will look at suitable axioms for the natural
numbers, before moving on to other number systems. Once we have a firm
foundation for arithmetic, we can use it as contextual material to go on to
more advanced theories. When handling vector spaces, or analysis, or geom-
etry, arithmetical results can be subsumed and we can concentrate on the
next level of deduction. At each stage it must be made clear which type of
result may be used without comment, and which must be documented care-
fully. Sometimes the author of a textbook, or a lecturer, may fail to mention
this explicitly because it is inherent in the context.
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Proof Comprehension and Self-Explanation

The question now arises: how can you make sense of a proof when the writer
of the proof has made various stylistic decisions to express the essential ideas,
but has glossed over details that are assumed to be implicitly well known?
The answer is that when you read a proof, it is essential to consider each line
in turn and to explain to yourself why each successive line is justified. This
process is called self-explanation and you can practise what it means by work-
ing through the appendix at the end of this book. It involves mentally giving
a mathematical reason why each successive line follows from earlier ones.
You can do this silently in your own mind, or by making written comments
on the page. It requires more than simply repeating or paraphrasing what is
written in the proof. By making a mental effort to justify the status of each
successive line in a proof, you are much more likely to make firmer links in
your brain than you would by passively reading one line after another.
To see self-explanation in the context of this chapter, consider the follow-

ing proof that was given earlier:

Theorem: If (an), (bn) are sequences of real numbers such that an → a and
bn → b as n→∞, then an + bn → a + b.
Proof: Let ε > 0. Since an → a there exists N1 such that

n > N1 ⇒ |an – a| < 1
2ε.

Since bn → b there exists N2 such that

n > N2 ⇒ |bn – b| < 1
2ε.

Let N = max (N1, N2) . If n > N then |an – a| < 1
2ε and |bn – b| < 1

2ε, so, by
the triangle inequality,

|(an + bn) – (a + b)| ≤ |an – a| + |bn – b|
≤ 1

2ε +
1
2ε

= ε.

Hence an + bn → a + b, as required. �

Read each line in turn and explain to yourself why the successive lines can
be justified. Why does the first line simply state ‘Let ε > 0’? (The reason
relates to the fact that you are asked to prove that an + bn → a + b. This is
expressed mathematically by the statement that begins ‘given ε > 0’ and you
have to find an N such that if n > N, then |(an + bn) – (a + b)| ≤ ε.) Having
written down ‘Let ε > 0’, you must use what you are given to find such
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an N, which must have the properties required to establish that an → a and
bn → b. Now explain to yourself how this information is used in lines 2 and
3 and why you use 1

2ε rather than ε. Then go on to reflect on each line in turn
to see where it comes from. Is it a definition? Is it a new symbol introduced
to make the argument look simpler? Are there implicit assumptions that are
easily justified and can be omitted? Is it a deduction from previous lines? If
so, precisely which lines?
Do this now, and do it seriously.
Then read the appendix in this book on How to Read Proofs: The ‘Self-

Explanation’ Strategy. Research using eye-tracking devices to find out what
the reader is looking at when they read a proof shows that students using
self-explanation techniques are more successful in making sense of the proof
and retaining the ideas over a period of time (see [3]). If you make meaning-
ful links between ideas, they are more likely to be manipulated easily in the
mind. If you don’t, then the ideas are more likely to be diffuse and less likely
to form a basis for making sense in the longer term.

Examination Questions

One situation that is of great concern to students is what constitutes a proof
acceptable in an examination. To a certain extent, the answer depends on the
examiner, but part of the anxiety is due to uncertainty about the context. In
a book, the context of a statement is usually clear from its position. A proof
in chapter 7 is obviously allowed to assume results from chapters 1–6. But in
an examination it may not be clear at which level a proof is required. Do all
the steps have to be included? What can safely be missed out?
If the question is well posed, it will make the context clear. The phrase

‘show from first principles . . . ’ asks for a careful proof from the basic defin-
itions and axioms. A question on the more advanced parts of a subject will
not expect this kind of answer, and it is safe to assume any preceding mater-
ial that is well established as contextual material for that level, never going
into greater detail than is appropriate for the concepts used in the question.
In particular, if a question is asked in a manner that makes familiar use of
certain ideas, then they can be used at the same level of familiarity in the so-
lution. This avoids long-winded answers that include proofs of elementary
material that ought to be subsumed into the context.
Levels may vary within a single question, with the first part being elemen-

tary and later parts more advanced. The wise student will sensibly increase
the power of their reasoning to the appropriate context, freely using ideas
commensurate with the new situation.
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Exercises

1. Is the following a proof? If not, why not? Read it through and carefully
explain to yourself how each line follows (or fails to follow) from the
assumptions and the previous lines in the proof.

Theorem: For all real numbers x, y, 1
2 (x + y) ≥ √xy.

Proof: Squaring and multiplying through by 4,

x2 + 2xy + y2 ≥ 4xy,

so subtracting 4xy from each side,

x2 – 2xy + y2 ≥ 0.

But x2 – 2xy + y2 = (x – y)2 which is always ≥ 0, so the theorem is
proved. �

2. Is the following a proof? If not, why not?

Theorem: The base angles of an isosceles triangle are equal.
Proof: Let 
ABC be an isosceles triangle with sides AB = AC. Then

ABC is congruent to 
ACB because the corresponding sides are
equal: AB = AC, BC = CB,AC = AB. Here, corresponding angles
are equal: in particular � ABC = � ACB.
(You may assume the usual geometrical properties of congruent
triangles.) �

3. Are the ‘proofs’ given in chapter 2 of this book genuine proofs within a
suitable context? If so, what is the context? If not, what are the proofs?

4. Analyse the proof of proposition 3.10 from chapter 3, showing how
each statement follows from previous ones. What must be added
to the proof as written to make it fit the logical definition of a
proof?
Repeat the exercise for other proofs from chapter 3.

5. Find a mathematics textbook, select a theorem (whose proof is neither
too long nor too short) and analyse its structure. Which results are
assumed as contextual background?
Repeat the exercise for several other theorems, preferably from

different texts and in different branches of mathematics.
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6. The following are axioms for a (hitherto undefined) mathematical
structure known as a bureaucracy. This consists of:

a set B of bureaucrats,
a set C of committees,
a relation S between B and C (read serves on),

satisfying the following axioms:
(B1) Every bureaucrat serves on at least three different committees.
(B2) Every committee is served on by at least three different bureau-

crats.
(B3) Given two distinct committees, exactly one bureaucrat serves on

both.
(B4) Given two distinct bureaucrats, there is exactly one committee

on which they both serve.
Prove from these axioms that if the number of bureaucrats is finite, so
is the number of committees. Prove that there are always at least seven
bureaucrats in a bureaucracy, and find a bureaucracy with exactly
seven bureaucrats.

7. The following proof fits the logical definition. Analyse it to find out
what is really going on.

Theorem: If A, B, C are sets then (A ∩ B) ∩ C = A ∩ (B ∩ C) .

Proof:

L1: Let a ∈ (A ∩ B) ∩ C.
L2: a ∈ A ∩ B.
L3: Let b ∈ A ∩ (B ∩ C).
L4: a ∈ C.
L5: b ∈ B ∩ C.
L6: b ∈ B.
L7: a ∈ B.
L8: b ∈ C.
L9: {a, b} ⊆ B.
L10: b ∈ A.
L11: a ∈ A.
L12: b ∈ A ∩ B.
L13: a ∈ A ∩ B.
L14: {a, b} ⊆ A ∩ B.
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L15: a ∈ B ∩ C.
L16: a ∈ A ∩ (B ∩ C).
L17: (A ∩ B) ∩ C ⊆ A ∩ (B ∩ C).
L18: b ∈ (A ∩ B) ∩ C.
L19: (A ∩ B) ∩ C ⊇ A ∩ (B ∩ C).
L20: (A ∩ B) ∩ C = A ∩ (B ∩ C). �
Rewrite it in a sensible style to reveal the structure of the argument.
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PART III
The Development
of Axiomatic Systems

Now we turn to the number systems themselves, analysing their structure
and aiming to find a formal list of axioms that will describe them precisely.
We also show how to construct systems that satisfy these axioms, using the
raw materials of set theory. This places our intuitive ideas on a firm basis,
and lets us use them without logical qualms.
Metaphorically, we are now constructing our building, or growing our

plant: the important thing is to take as much care as is required to make
sure that nothing goes wrong. This means a certain amount of attention to
detail, and the result can look rather tortuous and pedantic.
The attitude of mind demanded of the reader is now a little different. Al-

though intuitive ideas may be used as a source of inspiration, nothing may
be used as part of a proof unless it has been given a rigorous logical dem-
onstration. It therefore becomes necessary to give rigorous proofs, from the
axioms, of properties that, on an intuitive level, we already accept. We must
do this in order to be sure that, in this axiomatic sense, they really are true
and can be proved logically from the axioms. By doing so, we put our ideas
on a sound basis.
In chapter 8 we give highly detailed proofs, even of statements that may

seem obvious. However, from chapter 9 onwards, having established a rich
schema of ideas proven rigorously from the axioms of a theory and from
definitions made within that context, we use proven results from the con-
text without revisiting the detail, which you could check for yourself, should
that be necessary. This avoids the danger of losing track of the main out-
line beneath an accumulation of ever more elaborate detail. The step-by-step
method, if carried too far, obscures the overall picture.





chapter 8

Natural Numbers and Proof
by Induction

What is a number? It took mathematicians a long time to get round
to wondering what the answer was, and a lot longer to find one.
The first step was to characterise natural numbers. It turned out

that their most important defining feature wasn’t counting, or arithmetic: it
was the possibility of proving theorems using mathematical induction. But
at first sight, proof by induction does not seem to fit the pattern of proof
described in the previous chapter. Look at a typical instance:

Proposition 8.1: The sum of the first n natural numbers is 1
2n(n + 1).

Proof: This is trivially true for n = 1. If it is true for n = k,

1 + 2 + · · · + k = 1
2k(k + 1),

then adding k + 1 to each side we obtain

1 + 2 + · · · + (k + 1) = 1
2k(k + 1) + (k + 1) = 1

2 (k + 1)(k + 2).

This is the sum of the first k + 1 natural numbers, and the formula is true for
n = k + 1. By induction, the formula is true for all natural numbers. �

Many people regard this type of proof as an ‘and so on . . . ’ sort of ar-
gument. The truth of the statement is established for n= 1; then, having
established the general step from n = k to n = k + 1, this is applied for k = 1
to get us from n = 1 to n = 2, then used again to go from n = 2 to n = 3,
and so on, as far as we wish to go. For instance, we could reach n = 593 after
592 applications of the general step. The only trouble with thinking this way
is that reaching large values of n requires a large number of applications of
the general step. We can never actually cover all natural numbers in a finite
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number of deductions if we proceed one number at a time. But a proof, by
definition, comprises a finite number of lines.1
The way out of this dilemma is to remove the ‘and so on . . . ’ part from the

proof and place it squarely in the definition of the natural numbers. Proof by
induction then fits naturally into the type of mathematical proof described
in the last chapter.

Natural Numbers

The natural numbers form a highly non-trivial set, because we cannot write
down a complete list of elements: they go on forever. Describing them
satisfactorily needs a different approach. Fortunately, the intuitive idea of
counting can easily be modelled in a set-theoretic way. We begin with 1,
then comes 2, then 3, and we carry on in this way, naming each successive
number as far as we wish.
To grasp the concept of the set of natural numbers ‘all in one go’, we regard

this succession as a function on the setN of natural numbers. That is, we seek
a function s : N → N with suitable properties. Here s stands for ‘successor’
and s(1) = 2, s(2) = 3, and so on. Two obvious properties that we need are:

(i) s is not surjective (because s(n) �= 1 for any n ∈ N),
(ii) s is injective (s(m) = s(n) implies thatm = n).

There is a third vital property, giving rise to induction proofs, as follows:

(iii) Suppose that S ⊆ N is such that 1∈ S; and for all n ∈ N if n ∈ S then
s(n) ∈ S. Then S = N.

In words, (iii) says that a subset containing 1, which includes s(n) when-
ever it contains n, exhausts the whole set of natural numbers.
Surprisingly, these three properties are all that are required to describe the

natural numbers. An axiomatic basis for arithmetic requires only that we
postulate the existence of a set with these three properties.
For technical reasons, it is more profitable to start with 0 rather than 1.

Although in counting we usually start with 1, the empty set has 0 elements
and it is useful to be able to say so. Again, in arithmetic it is convenient to
have the zero element. For these and other reasons we start with 0 in our
axiomatic system, and to avoid confusion with our intuitive concept N of
the natural numbers we use N0 to denote the formal system. The ‘black-
board bold’ font N distinguishes the formal concept of the natural numbers
from the informal one, and the subscript 0 reminds us that 0 is included.

1 Textbooks would become very expensive if not, for a start.
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We then obtain the Peano Axioms for the natural numbers, named after Gi-
useppe Peano, the Italian mathematician responsible for this approach at the
end of the nineteenth century:

Peano Axioms: Suppose that there exists a set N0 and a function
s : N0 → N0 such that

(N1) s is not surjective: there exists 0∈N0 such that s(n) �= 0 for any
n ∈ N0.

(N2) s is injective: if s(m) = s(n) thenm = n.
(N3) If S ⊆ N0 is such that 0 ∈ S and n ∈ S ⇒ s(n) ∈ S for all n ∈ N0,

then S = N0.

There is no guarantee that any such set N0 exists, so we take its existence
as a basic axiom for mathematics:

Existence Axiom for Natural Numbers: There exists a set N0 and a
function s : N0 → N0 satisfying (N1)–(N3).

From these slender beginnings we can develop all the usual properties of
arithmetic, then later build up the other number systems including real and
complex numbers. We will also see how axiom (N3) enshrines the idea of
proof by induction, as in the following simple case:

Proposition 8.2: If n ∈ N0, n �= 0, then there exists a uniquem ∈ N0 such
that n = s(m).
Proof: Let S = {n ∈ N0 | n = 0 or n = s(m) for some m∈N0}. Certainly
0 ∈ S. If n ∈ S then either n= 0, in which case s(n) = s(0) so s(n) ∈ S; or
n = s(m) and s(n) = s(s(m)) where s(m) ∈ N0, so s(n) ∈ S. Hence, by axiom
(N3), S = N0. This shows that the required m exists. Uniqueness follows
from (N2). �

Proposition 8.2 tells us that 0 is the only element that is not a successor, a
property that distinguishes it from all other elements. The set N = N0\ {0}
will be called the natural numbers. We shall denote s(0) by 1. This element
lies in N and will prove of paramount importance.
Look at the proof of proposition 8.2 once more. Its essential structure

consists of defining a set S, then

(i) showing that 0 ∈ S,
(ii) showing that n ∈ S⇒ s(n) ∈ S,
(iii) invoking axiom (N3) to deduce that S = N0.
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A proof by induction always has this format.
In practice S is of the form

S = {n ∈ N0 | P(n) }
where P(n) is a predicate known to be true or false for each n ∈ N0. The
statements (i), (ii), (iii) translate into

(i)′ showing P(0) is true,
(ii)′ showing that if P(n) is true then P(s(n)) is true,
(ii)′ invoking (N3) to deduce that P(n) is true for all n ∈ N0.

Axiom (N3) finishes the proof without a breath of an ‘and so on . . . ’ type of
argument.
The reader will recognise the basic skeleton of this method in propos-

ition 8.1, except that we began at 1 instead of 0 and wrote n+1 instead of s(n).
Later we show that the same method applies starting at any k ∈ N0, in par-
ticular at k = 1, so the proposition at the beginning of the chapter is just a
simple example of an induction proof depending on the use of axiom (N3).
In practice, axiom (N3)may not bementioned explicitly. The proofmay be

phrased entirely in terms of a predicate P(n), and, when steps (i)′ and (ii)′ are
established, the conclusion ‘P(n) is true for all n’ is said to be established ‘by
induction’. You should always interpret this as an implicit use of axiom (N3),
which is referred to as the induction axiom for this very reason. During the
course of such a proof, the assumption that P(n) is true is called the induction
hypothesis and the proof that P(n)⇒ P(s(n)) is called the induction step. For
the moment, we make the set S explicit.

Definition by Induction

Themost important task is to set up arithmetic inN0. To get started, wemust
define the basic operations of addition and multiplication.
We can define addition by setting

m + 0 = m (8.1)

for all m ∈ N0, and then, once we have calculated m + n, we can calculate
m + s(n) by

m + s(n) = s(m + n). (8.2)

The induction axiom seems tailor-made for definitions, as well as proofs. If
S is the set n ∈ N0 for which m + n is defined, then 0 ∈ S (by (8.1)), and, if
n ∈ S thenm+n is defined and by (8.2) we can use s(m+n) to definem+ s(n)
so that s(n) ∈ S.
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However, there is a subtle point here, which involves a difference be-
tween proof and definition. In an induction proof, the induction step
n∈ S⇒ s(n) ∈ S involves only a demonstration that if n ∈ S is true then
so is s(n) ∈ S. But when making an inductive definition of addition, in order
to be able to define the sum m + s(n) as s(m + n), it is essential first to know
the value ofm + n.
Our intuitive model N0 tells us that for any n∈N0 we can start at 0, count

on 1, 2, 3, . . . , and eventually reach n. For instance, if n = 101 we can start
from the definition (8.1) at 0 and use step (8.2) 101 times to find m + n.
Unfortunately we have not established any such principle for N0; indeed,
givenm ∈ N0, we don’t yet know that if we start with 0 and form successors
1 = s(0), 2 = s(1), and so on, we eventually reach m. Moreover, our long-
term objective is to eliminate ‘and so on . . . ’ arguments. To remove this flaw
we prove a general principle about the validity of such definitions based only
on the Peano axioms. It helps to formulate the theorem in the general case of
the repeated composition of any function f in any set X and then apply it to
the successor function s to make definitions by recursion. The proof is quite
technical (probably one of the most intricate in the whole book). It may help
to use the self-explanation technique to slowly consider each step to seek to
explain it to yourself.

Theorem 8.3 (Recursion Theorem): If X is a set, f : X→X a func-
tion, and c∈X, then there exists a unique function φ : N0→X such
that

(i) φ(0) = c,
(ii) φ(s(n)) = f (φ(n)) for all n ∈ N0.

Pre-Proof Discussion. Essentially, we start with a function f : X → X and
c ∈ X and apply f again and again to get

φ(0) = c,φ(1) = f 1(c) = f (c), φ(2) = f 2(c) = f (f (c)), and so on,

to give the function φ(n) = f n(n) (where we can consider f 0(c) to be c). To
eliminate the ‘and so on’ argument, we use the set-theoretic definition of a
function φ : N0 → X as a set of ordered pairs and consider those subsets U
of N0 × X satisfying

(a) (0, c) ∈ φ,
(b) (n, y) ∈ φ ⇒ (s(n), f (x)) ∈ φ.

There are many such subsets, including the whole set U = N0 ×X. We show
that the one we require is the intersection of all such subsets.
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Proof: Let φ be the intersection of all subsets U of N0 × X satisfying

(0, c) ∈ U, (8.3)
(n, c) ∈ U ⇒ (s(n), f (x)) ∈ U. (8.4)

Let

S = {n ∈ N0 | (n, x) ∈ φ for some x ∈ X}.

Then 0 ∈ S by (8.3). And by (8.4), n ∈ S⇒ s(n) ∈ S. By induction, S = N0.
So every n∈N does have some x such that (n, x) ∈ φ for some x ∈ S.

However, to show that φ is a function, we also need to prove that x is unique.
Let

T = {n ∈ N0 | (n, x) ∈ φ for a unique x ∈ X}.

We seek to prove that T = N0 by induction.
Starting with n= 0, we know that (0, c)∈ φ. If also (0, d)∈φ with c �= d, let

φ– = φ\{(0, d)}. Then φ– satisfies (8.3); and if (n, x) ∈ φ– then (s(n), f (x)) ∈ φ
and is not (0, d) because s(n) �= 0 by axiom (N1). So (s(n), f (x)) ∈ φ– and φ–

satisfies (8.4). Since φ is the smallest set satisfying (8.3) and (8.4) this is a
contradiction, hence no such d exists, so 0 ∈ T.
The induction step that n ∈ T implies s(n) ∈ T uses a similar argument,

as follows.
If n ∈ T then (n, x) ∈ φ for precisely one x ∈ X. From (b) in the pre-proof

discussion we have (s(n), f (x)) ∈ φ, so to establish that s(n) ∈ T we must
show that no other ordered pair (s(n), y) ∈ φ with y �= f (x). If there were
such a pair, consider φ∗ = φ\{s(n), y)}. Again, since 0 �= s(n), we know that
φ∗ satisfies (8.3).
To check (8.4) we need to prove that

(m, z) ∈ φ∗ ⇒ (s(m), f (z)) ∈ φ∗ for allm ∈ N0.

This is true for m = n, since there is a unique x ∈ X such that (n, x) ∈ φ,
and for this x, (s(n)), f (x)) ∈ φ by (b) and is not (s(n), y) since y �= f (x).
For m �= n we have (s(m), f (z)) ∈ φ by (b), and s(m) �= s(n) by (N2). Hence
(s(m), f (z)) �= (s(n), y), so (s(m), f (z)) ∈ φ∗. Either way, φ∗ satisfies (8.4) and
again we have a contradiction.
By induction, T = N0. �

Definitions that employ this theorem are said to be recursive. The recur-
sion theorem opens the floodgates to give a wide range of examples. These
include:
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(1) Addition. αm : N0 → N0, αm(n) = m + n, defined by

αm(0) = m
αm(s(n)) = s(αm(n)).

Here c = m, f = s.
(2) Multiplication. μm : N0 → N0, μm(n) = mn, defined by

μm(0) = 0
μm(s(n)) = μm(n) +m.

Here c = 0, f (r) = r +m.
(3) Powers. πm : N0 → N0, πm(n) = mn, defined by

πm(0) = 1
πm(s(n)) = mπm(n).

Here c = 1, f (r) = rm.
(4) Repeated composition of a map f : X→ X, defined by

f 0(x) = x
f s(n)(x) = f ( f n(x)) for all x ∈ X.

Laws of Arithmetic

With addition and multiplication properly defined by recursion, it is now
relatively easy to prove the usual laws of arithmetic using induction. The
proofs are not always easy to find without guidance, and you are encouraged
to follow through the arguments and explain the proof to yourself. By build-
ing up your own knowledge schemas, you may be able to find slicker proofs
than ours.
For reference, we note the definitions:

(α1)m + 0 = m, (α2)m + s(n) = s(m + n),

(μ1)m0 = 0, (μ2)ms(n) = mn +m.

Now from (α2) and (α1) we see that m + s(0) = s(m + 0) = s(m). We have
already denoted s(0) by 1, so s(m) = m + 1.

Lemma 8.4: For allm ∈ N0,

(a) 0 +m = m,
(b) 1 +m = s(m),
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(c) 0m = 0,
(d) 1m = m.

Proof: In each case, use induction on m. We verify (a) and leave the rest as
an exercise for you to explain for yourself. Let

S = {m ∈ N0 |0 +m = m}.

Trivially 0 ∈ S by (α1). Ifm ∈ S then 0 +m = m, so by (α2),

0 + s(m) = s(0 +m) = s(m).

Therefore s(m) ∈ S.
By (N3), S = N0. �

Theorem 8.5: For allm, n, p ∈ N0,

(a) (m + n) + p = m + (n + p)
(b) m + n = n +m
(c) (mn)p = m(np)
(d) mn = nm
(e) m(n + p) = mn +mp.

Proof: (a) is proved by induction on p, using

S = {p ∈ N0 | (m + n) + p = m + (n + p)}.

First

(m + n) + 0 = m + n by (α2)
= m + (n + 0) by (α1),

so 0 ∈ S. Second, if p ∈ S then

(m + n) + p = m + (n + p), (8.5)

so

(m + n) + s(p) = s((m + n) + p) by (α2)
= s(m + (n + p)) by (8.5)
= m + s(n + p) by (α2)
= m + (n + s(p)) by (α2)

implying s(p) ∈ S. By induction, S = N0.
(b) is proved by induction on n using

S = {n ∈ N0 |m + n = n +m}.
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Lemma 8.4(a) shows that 0 ∈ S. If n ∈ S then

m + n = n +m (8.6)

and then
m + s(n) = s(m + n) by (α2)

= s(n +m) by (8.6)
= n + s(m) by (α2)
= n + (1 +m) by lemma 8.4(b)
= (n + 1) +m by theorem 8.5(a)
= s(n) +m,

hence s(n) ∈ S. By induction S = N0, establishing (b).
It is convenient to deal with (e) next, using induction on p. Let

S = {p ∈ N0 |m(n + p) = mn +mp}.

Then
m(n + 0) = mn by (α1)

= mn + 0 by (α1)
= mn +m0 by(μ1),

implying 0 ∈ S. If p ∈ S, then

m(n + p) = mn +mp (8.7)

so
m(n + s(p)) = ms(n + p) by (α2)

= m(n + p) +m by (μ2)
= (mn +mp) +m by (8.7)
= mn + (mp +m) by theorem 8.5(a)
= mn +ms(p) by (μ2).

Therefore s(p) ∈ S, and induction gives S = N0.
The proof of (c) is now relatively straightforward and of the same nature

as previous proofs. This leaves (d), which turns out to be a little trickier. Let

S = {n ∈ N0 |mn = nm}.

Now 0 ∈ S by lemma 8.4(c). If n ∈ S then

mn = nm (8.8)

And
ms(n) = mn +m by (μ2)

= nm +m by (8.8).
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If we could show that this equalled s(n)m we would have finished, but un-
fortunately we don’t know this yet. However, we can prove it by a second
induction onm. Let

T = {m ∈ N0 |nm +m = s(n)m}.

Then 0 ∈ T, and ifm ∈ T then

nm +m = s(n)m (8.9)

So

ns(m) + s(m) = n(m + 1) + (m + 1)
= (nm + n) + (m + 1) by (e)
= nm + (n + (m + 1)) by (a)
= nm + ((n +m) + 1) by (a)
= nm + ((m + n) + 1) by (b)
= nm + (m + (n + 1)) by (a)
= (nm +m) + (n + 1) by (a)
= s(n)m + s(n) by (8.9)
= s(n)s(m) by (μ2).

Hence s(m) ∈ T and T = N0. Returning to where we left off, s(n) ∈ S and
S = N0. This proves (d). �

Having performed this massive induction exercise we can now use these
arithmetic results freely to provide a coherent context in which we can prove
more sophisticated ideas without overburdening the proof with too much
detail. To simplify notation and make it look more familiar, we replace s(n)
by n + 1. The induction axiom now becomes:

If S ⊆ N0, 0 ∈ S, and n ∈ S ⇒ n + 1 ∈ S, then S = N0.

Axiom (N2) translates into

m + 1 = n + 1 ⇒ m = n,

and this can be extended by induction to give:

Proposition 8.6: For allm, n, q ∈ N0,

(a) m + q = n + q ⇒ m = n
(b) q �= 0, mq = nq ⇒ m = n.

Proof: (a) Use induction on q. Let

S = {q ∈ N0 |m + q = n + q ⇒ m = n}.
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Trivially 0 ∈ S. If q ∈ S, suppose that

m + (q + 1) = n + (q + 1).

By theorem 8.5(a),

(m + q) + 1 = (n + q) + 1,

hence by (N2)

m + q = n + q,

and since q ∈ S,

m = n.

Hence q + 1 ∈ S and by induction S = N0.
(b) Let

S = {m ∈ N0 |q �= 0, mq = nq ⇒ m = n}.

To show 0 ∈ S, suppose that q �= 0, and

nq = 0q = 0.

Then q = p + 1 for some p. If n �= 0 then n = r + 1. Then nq = (pr + p + r) + 1
so cannot be 0. Hence n = 0, so 0 ∈ S.
Now supposem ∈ S and q �= 0, with

(m + 1)q = nq.

As before, n �= 0, so n = r + 1 for some r ∈ N0. Thenmq + q = rq + q. By part
(a),mq = rq; by hypothesism = r. Thereforem + 1 = n. �

We now discuss subtraction. Suppose that p = r + q. By proposition 8.6, r
is determined uniquely by p and q. We may therefore denote r by p – q. For
m, n ∈ N0 we define a relation ≥ by

m ≥ n ⇔ ∃r ∈ N0, m = r + n.

Given m, n ∈ N0, the difference m – n is defined only when m ≥ n. This
being so, we can verify various rules of subtraction, such as

m – (n – r) = (m – n) + r form ≥ n ≥ r,
m + (n – r) = (m + n) – r for n ≥ r,
m(n – r) = mn –mr for n ≥ r.

All are routine; for instance the last follows by considering

n = s + r (since n ≥ r),
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whence
mn = m(s + r) = ms +mr.

Thus by definition,
mn –mr = ms = m(n – r)

since s = n – r.
We may also consider division, and in the casem = rn (n �= 0) we denote r

bym/n. We discuss when division is possible in a later section.

Ordering the Natural Numbers

We have already defined the relation ≥ on N0. The other order relations are
given by

m > n⇔ m ≥ n&m �= n,
m ≤ n⇔ n ≥ m,
m < n⇔ n > m.

Wemust prove that these are indeed order relations in the sense of chapter 4.
For example:

Proposition 8.7: m ≥ n, n ≥ p⇒ m ≥ p for allm, n, p ∈ N0.
Proof: There exist r, s ∈ N0 such that m = r + n, n = s + p. Hence m =
r + (s + p) = (r + s) + p, som ≥ p. �

A second property of order relations is also easy:

Proposition 8.8: Ifm, n ∈ N0 andm ≥ n, n ≥ m, thenm = n.
Proof: There exist r, t ∈ N0 such thatm = r + n, n = t +m, som = r + t +m.
By proposition 8.5(a), r + t = 0. We cannot have t �= 0, since this would
imply t = q + 1 for some q ∈ N0 by lemma 8.4, and then 0 = (r + q) + 1,
contradicting axiom (N1). Therefore t = 0, so n = m. �

The third property of an order relation requires a more technical proof,
which is postponed until proposition 8.13. However, it is a simple mat-
ter to see that the relations behave as expected, relative to the arithmetical
operations of N0:

Proposition 8.9: For allm, n, p, q∈N0,

(a) ifm ≥ n, p ≥ q, thenm + p ≥ n + q,
(b) ifm ≥ n, p ≥ q, thenmp ≥ nq.
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Proof: (a) There exist r, s ∈ N0 such that m = r + n, p = s + q. Hence, after
simplification, we find thatm + p = (r + s) + (n + q).
(b) Similarly,mp = nq + (rs + ns + rq). �

The zero element 0 is the smallest element of N0, in the following sense:

Lemma 8.10: Ifm ∈ N0 thenm ≥ 0.
Proof: m = 0 +m. �

The element 1 is the next smallest:

Lemma 8.11: Ifm ∈ N0 andm > 0 thenm ≥ 1.
Proof: By proposition 8.1, if m �= 0 then m = q + 1 for some q ∈ N0. Hence
m ≥ 1. �

We could go on to show that 2 = 1 + 1 is the next smallest after 1, then
3 = 2 + 1 is the next smallest after 2, and so on. It is more efficient to prove a
general proposition:

Proposition 8.12: Ifm, n ∈ N0 andm > n thenm ≥ n + 1.
Proof: We have m = n + r for some r ∈ N0, and r �= 0 since m �= n. By
proposition 8.2, r = q + 1 for some q ∈ N0, hence m = (n + 1) + q, and
m ≥ n + 1. �

Now we can complete the proof that ≥ is an order relation in the sense of
chapter 4.

Proposition 8.13: The relation≥ is a (weak) order relation on N0.
Proof: Wemust prove that for allm, n, p ∈ N0,

(WO1) m ≥ n& n ≥ p⇒ m ≥ p,
(WO2) Eitherm ≥ n or n ≥ m,
(WO3) Ifm ≥ n and n ≥ m thenm = n.

We have already established (WO1) and (WO3) in propositions 8.7 and 8.8.
To verify (WO2), let

S(m) = {n ∈ N0 |m ≥ n or n ≥ m}.

We aim to prove that S(m) = N0 for allm ∈ N0. Now for a givenm, we have
0 ∈ S(m) since m ≥ 0. Next suppose that n ∈ S(m). Eitherm ≥ n or n ≥ m.
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If n ≥ m then n + 1 ≥ m. If n ≥ m then either n = m, and m ≤ n + 1, or
m > n, in which case m ≥ n + 1 by proposition 8.12. Thus n + 1 ∈ S(m). By
induction, S(m) = N0. �

As remarked in chapter 4, it follows that > is a strict order relation. That
is, for allm, n, p ∈ N0,

m > n& n > p⇒ m > p.

Exactly one of m> n, m= n, m< n is true (trichotomy law). The next result
is almost a converse to proposition 8.6.

Proposition 8.14: For allm, n, p, q ∈ N0,

(a) m + q > n + q⇒ m > n,
(b) q �= 0,mq > nq⇒ m > n.

Proof: (a) If m ≯ n then m ≤ n by trichotomy. But m ≤ n impliesm + q ≤
n + q by proposition 8.9(a). This contradicts the hypothesis, so part (a) is
proved. Part (b) follows a similar format. �

Proposition 8.14 is of course valid when> is replaced by≥, and is then an
exact converse to proposition 8.6.

Uniqueness of NNN0

The set N0, its arithmetic, and order are essentially unique in a very precise
sense. As a down-to-earth illustration, the French counting system ‘un, deux,
trois, . . . ’, while undeniably different from the English ‘one, two, three, . . . ’,
possesses the same arithmetical structure. To see this, we observe that trans-
lating from French to English by replacing ‘un’, by ‘one’, ‘deux’ by ‘two’,
and so on, turns valid French arithmetic into valid English arithmetic, and
conversely. It is the same with N0.
Suppose that we can find another set N′0 with a function s′ : N′0 → N′0 sat-

isfying the corresponding axioms (N′1)–(N′3). Then we define φ : N0 → N′0
by

φ(0) = 0′

φ(s(n)) = s′(φ(n))

for all n ∈ N0. This function exists by the recursion theorem, as does
ϕ : N′0 → N0 given by
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ϕ(0′) = 0
ϕ(s′(m)) = s(ϕ(m))

for allm ∈ N′0. A simple induction proof now shows that φ and ϕ are mutual
inverses. Let S = {n ∈ N0 |ϕφ(n) = n} to show that ϕφ = 1N0 , and similarly
prove that φϕ = 1N

′
0
. Induction on n also shows that

φ(m + n) = φ(m) + φ(n)

φ(mn) = φ(m)φ(n)

and

m ≥ n⇒ φ(m) ≥ φ(n).
Thus the bijection φ between N0 and N′0 preserves the arithmetic and order:
we can use it to ‘translate’ valid results in one into valid results in the other.
Such a bijection is called an order isomorphism. The word ‘isomorphism’

alone is normally used for a bijection that preserves all relevant arithmet-
ical (algebraic) operations. The word ‘order’ is used to emphasise that the
ordering is also preserved. This usage extends to a variety of mathematical
systems.
In this sense there is only one possible structure for a system satisfying

(N1)–(N3): all such systems are order isomorphic. The whole ethos of the
natural numbers is encapsulated in three simple axioms.
One system that we expect to satisfy these axioms is our intuitive concept

N ∪ {0}, so this ought to correspond in the obvious way to N0. The vital
difference is that the properties we expect of N ∪ {0} have been built up by
example and experience, whereas those of N0 have been deduced logically
from the axioms. Thus all of the usual properties that we expect of N ∪ {0}
can be given a rigorous justification in N0. We could, for example, name the
elements of N0 using decimal notation and calculate addition and multipli-
cation tables. At this stage it is more profitable to omit such technicalities on
the understanding that they are routine.

Counting

As in real life, we can count using natural numbers. Let

N(n) = {m ∈ N | 1 ≤ m ≤ n}

for n ∈ N, and let

N(0) = ∅.
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A set X is said to have n elements (n ∈ N0) if there is a bijection

f : N(n)→ X.

This models the primitive idea of counting. If we point to the elements f (1),
f (2), . . . , f (n) in turn and call out ‘1, 2, . . . , n’ then this is precisely how we
count.

Fig. 8.1 Counting

The useful notational device N(0) = ∅ lets us apply the process to the
empty set as well. If a set has n elements for some n ∈ N0 then it is said to be
finite; otherwise it is infinite.
This manner of counting does not depend on the order in which we count

the elements of the set. That is, given a bijection f :N(n)→X and a bijec-
tion g :N(m)→X, we always have m = n. To see this, let ϕ = f –1g. Then
ϕ :N(m)→N(n) is a bijection. We prove by induction that if there is a
bijection between N(n) and N(m), thenm = n.
This is certainly true for m = 0. Suppose it is true for some m ∈ N0, and

consider a bijection

θ : N(m + 1)→ N(k).

Now k �= 0, or else m + 1 = 0 which contradicts (N1). Hence k = n + 1 for
some n ∈ N0. We now construct a bijection θ∗ : N(m + 1) → N(n + 1) for
which θ∗(m + 1) = n + 1. If it is already the case that θ(m + 1) = n + 1 then
we take θ∗ = θ . If not then θ(q) = n + 1 for some q ≤ n, and we define

θ∗(q) = θ(m + 1)
θ∗(m + 1) = n + 1
θ∗(r) = θ(r) otherwise.

Restrict θ∗ to a map

θ∗|N(m) : N(m)→ N(n).
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This is clearly a bijection, so by induction m = n. Hence m + 1 = n + 1 = k,
completing the induction step.
This validates the intuitive idea of counting within the formal system.

Von Neumann’s Brainwave

As a diversion, we now mention John von Neumann’s brilliant method of
describing natural numbers, announced in 1923. It is particularly suitable for
counting, the number n being defined as a specific set with n elements.
To start, there is only one choice for a set with 0 elements, so we put

0v = ∅.

(Here the suffix v stands for von Neumann.) We now have one object,
namely 0v, so we define

1v = {0v},

manifestly a set with 1 element. Now we have two objects 0v and 1v, so we
define

2v = {0v, 1v}.

It is now clear how to continue. Note that

{0v, 1v} = {0v} ∪ {1v} = 1v ∪ {1v}.

Having described

nv = {0v, 1v, . . . , (n – 1)v}

we define

(n + 1)v = nv ∪ {nv}
= {0v, . . . , (n – 1)v} ∪ {nv}
= {0v, . . . , nv}.

This procedure can be made more formal as follows. For any set X we let

σ (X) = X ∪ {X}

be the successor of X. This has the bizarre property

X ∈ σ (X) and X ⊆ σ (X).
Now a set� whose elements are sets is called inductive if

∅ ∈ �
X ∈ �⇒ σ (X) ∈ �.
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To avoid an ‘and so on . . . ’ definition, von Neumann postulated:

Axiom of Infinity: There exists an inductive set �.

This set � may be bigger than we require. But if we let Nv be the inter-
section of all inductive subsets of �, then it is the smallest inductive subset.
Hence if S ⊆ Nv and S is inductive, it follows that S = Nv.
Since Nv is inductive, we have ∅∈Nv, and X ∈Nv ⇒ σ (X) ∈ Nv, so

σ : Nv → Nv is a function. Also ∅ �= σ (n) for any n ∈ Nv, since n ∈ σ (n).
We shall prove σ is injective.
First note that ifm, n ∈ Nv andm ∈ n, thenm ⊆ n. For let

S = {n ∈ Nv |m ∈ n⇒ m ⊆ n}.

Trivially ∅ ∈ S. Suppose n ∈ S and m ∈ σ (n). Then either m ∈ n or m = n.
In either case m ⊆ n ∪ {n} = σ (n). Hence S is an inductive subset of Nv, so
S = Nv.
Now suppose that σ (m) = σ (n) . Thenm∪ {m} = n∪ {n}. Thusm ∈ n∪ {n}

and either m ∈ n or m = n. By the above remark, m ⊆ n. Similarly n ⊆ m,
hencem = n and σ is injective.
Gathering together these remarks, we find that Nv is a set, σ : Nv → Nv is

a function, ∅ ∈ Nv, and

(i) ∅ �= σ (n) for any n ∈ Nv,
(ii) σ (m) = σ (n)⇒ m = n,
(iii) if S ⊆ Nv,∅ ∈ S, and n ∈ S⇒ σ (n) ∈ S, then S = Nv.

These are the same as the Peano axioms, with Nv in place of N, σ in place of
s, and∅ in place of 0. So von Neumann’s idea gives an alternative foundation
for the natural numbers, and his axiom of infinity acts as a substitute for the
existence axiom for the natural numbers. We could have used this approach
instead. However, the simplest way to count in von Neumann’s system is to
say that a set X has n elements if there is a bijection f : nv → X, that is,

f : {0v, 1v, . . . , (n – 1)v}→ X.

This corresponds to counting ‘0v, 1v, . . . , (n – 1)v’ rather than the more
primitive ‘1, 2, 3, . . . , n’ to which we are accustomed.

Other Forms of Induction

Sometimes the induction step in a proof by induction needs more than the
assumption that P(n) is true in order to deduce P(n + 1). For example, we
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may need to know the truth of P(1), P(2), . . . , P(n) before being able to pass
to P(n + 1). This situation is governed by the so-called General Principle of
Induction. If

(GP1) P(0) is true,
(GP2) the truth of P(m) for all m ∈ N0 with m ≤ n implies the truth of

P(n + 1),

then P(n) is true for all n ∈ N0.
At first sight this seems to be a genuine extension of the induction prin-

ciple, because the second statement seems to use more information. But if we
let Q(n) be the predicate

P(0) & P(1)& . . .& P(n),

or more formally,

‘for allm ∈ N0, m ≤ n,P(m) is true’,

then we find that (GP1) and (GP2) become

(i) Q(0) is true,
(ii) the truth of Q(n) implies the truth of Q(n + 1).

Thus the disguise of the ‘general’ principle is exposed: it is just the ordinary
principle forQ(n), and in theory it is nomore general than the usual principle
of induction. In practice, of course, it sometimes leads to simpler proofs.
With it we can prove a highly useful variant of the induction principle. First,
we say that a set S has a least element a if a ∈ S and a ≤ s for all s ∈ S. Then
we can state:

Theorem 8.15 (Well Ordering Principle): Every non-empty subset
S ⊆ N0 has a least element.
Proof: We have to show that if ∅ �= S ⊆ N0 then there exists a ∈ S such that
for all s ∈ S we have a ≤ s. For a contradiction, suppose no such a exists. Let
P(n) be the predicate n /∈ S. Then P(0) is true, for 0 ∈ S would imply that
0 is the least element of S by lemma 8.10. Now suppose that P(m) is true for
all m ≤ n, so that if m ≤ n then m /∈ S. If s ∈ S then s > n, so s ≥ n + 1
by proposition 8.12. We could not have n + 1 ∈ S since it would then be a
least element, so n + 1 /∈ S and P(n + 1) is true. By the general principle of
induction P(n) is true for all n, that is, S is empty. This is a contradiction. �

Another variation of the induction principle starts not at 0 but at some
other k ∈ N0. If
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P(k) is true, and
the truth of P(m) form ≥ k implies the truth of P(m + 1),

then we may deduce that P(n) is true for all n ≥ k.
This reduces to the usual induction principle on puttingQ (n) = P

(
n + k

)
.

Most often we meet this with k = 1. But in the next proposition, which we
shall need elsewhere, we require k = 3.

Proposition 8.16 (General Associative Law): If a1, . . . , an ∈ N0, then
the sum a1 + · · · + an takes the same value independently of the manner in
which brackets are inserted.
Proof: If n = 3, there are only two methods of bracketing, namely (a1 +a2)+
a3 and a1 + (a2 + a3). These are equal by theorem 8.5(a). Suppose the prop-
osition is true for some n. Then without ambiguity we may omit all brackets
from a sum of n or fewer numbers. We must therefore consider

(a1 + · · · + ak) + (ak+1 + · · · + an+1)

and show that the value of this is independent of k. Let

a = a1 + · · · + ak
b = ak+1 + · · · + an
c = an+1.

Then the expression is equal to

a + (b + c) = (a + b) + c
= (a1 + · · · + an) + an+1

which does not depend on k. This completes the induction step. �

A similar proof works when addition is replaced by multiplication.

Division

Given m, n ∈ N0 with n �= 0, it is not always possible to divide n into m and
obtain a solution in N0. For this to happenmmust be a multiple of n, that is
m = qn for some q ∈ N0. If it does not happen, then the division process will
yield a remainder.

Theorem 8.17 (Division Algorithm): Given m, n∈N0 with n �=0, there
exist unique elements q, r ∈ N0 such thatm = qn + r and r < n.
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Proof: Use induction onm. Let

S = {m ∈ N0 |m = qn + r for q, r ∈ N0, r < n}.

Since 0 = 0n+ 0, we have 0 ∈ S. Supposem ∈ S. Thenm = qn+ r with r < n,
and

m + 1 = qn + r + 1. (8.10)

Now r < n implies r + 1 ≤ n. So either r + 1 = n, when (8.10) becomes

m + 1 = (q + 1)n + 0,

or r + 1 < n, when (8.10) becomes

m + 1 = qn + (r + 1) with r + 1 < n.

In either case,m + 1 ∈ S, so by induction S = N0.
To show that q, r are unique, suppose that

m = qn + r = q′n + r′

where r, r′< n. Then

qn ≤ m < (q + 1)n
q′n ≤ m < (q′ + 1)n.

Hence, by transitivity of the order relation, qn < (q′ + 1)n, so by propos-
ition 8.13, q < q′ + 1. Then proposition 8.12 implies that q ≤ q′. Similarly
q′ ≤ q, so q = q′. Proposition 8.6(a) now implies that r = r′. �

Factorisation

We can now discuss factorisation into primes, and in particular prove
uniqueness. Only non-zero numbers are of interest, so for the remainder of
this chapter we work in N = N0\ {0} . First some straightforward definitions
are required.
We say that k∈N is a factor or divisor of m∈N if there exists s ∈ N such

thatm= ks. We write k |m. Trivially 1 and m are factors of m; any other fac-
tor is called a proper factor. We call m prime if m �= 1 and m has no proper
factors. (We exclude 1 for convenience, for example in the unique factorisa-
tion theorem which follows.) It is easily seen that a factor k of m must lie in
the range 1 ≤ k ≤ m, for if k > m then since s ≥ 1 we find that ks > m. A
proper factor therefore lies in the range 1 < k < m.
If k is a factor of two numbersm, n ∈ N, it is called a common factor. Now

1 is always a common factor; if it is the only one we say that m and n are
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coprime. Rather than characterising the highest common factor as the largest
of the common factors (which indeed it is) we choose to define it in a more
useful way.

Definition 8.18: We say that h ∈ N is the highest common factor of m, n ∈
N if h is a common factor with the property that any other common factor k
must be a factor of h. We write

h = hcf (m, n) .

The Euclidean Algorithm

The simplest way to prove that any two non-zero natural numbers have a
highest common factor is to calculate it explicitly. There is a method for do-
ing this, called the Euclidean algorithm for historical reasons, which depends
on the following two facts:

(i) If r1 = q1r2 then r2 = hcf (r1, r2) .
(ii) If r1 = q1r2 + r3 with r3 �= 0, then hcf (r1, r2) = hcf (r2, r3) .

The proofs are easy exercises using the definition of hcf, and in particular (ii)
is true since the equation r1 = q1r2 + r3 shows that any common factor of
r1 and r2 must also divide r3, and any common factor of r2 and r3 must also
divide r1.
To find the hcf of r1 and r2, use the division algorithm repeatedly to find

qi, ri such that

r1 = q1r2 + r3 (r3 < r2)
r2 = q2r3 + r4 (r4 < r3)

. . .

ri = qiri+1 + ri+2 (ri+2 < ri+1)
. . .

Since r2 > r3 > r4 > . . . the process cannot continue indefinitely, for the
well-ordering principle tells us that the set of numbers concerned has a least
element. Therefore at some stage ri+2 = 0, ri+1 �= 0. This value of ri+1 is a
highest common factor for r1 and r2. This is a consequence of statements (i)
and (ii) above, which show that

hcf (r1, r2) = hcf (r2, r3) = · · · = hcf (ri, ri+1) = ri+1.

As an example, we find the hcf of 612 and 221 (allowing the usual operations
of arithmetic as part of our contextual technique, since we have seen that
they may be formalised within N0):
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612 = 2× 221 + 170
221 = 1× 170 + 51
170 = 3× 51 + 17
51 = 3× 17

Hence hcf(612, 221) = 17.
Note that this method yields the hcf without factorising the numbers into

primes, unlike the method often taught in schools.

Proposition 8.19: If h is the hcf of r1, r2 ∈ N, and n ∈ N, then the hcf of
nr1 and nr2 is nh.
Proof: If we take the steps in the Euclidean algorithm for hcf (r1, r2),
as written out above, and multiply through by n, we obtain a system of
equations

nr1 = q1nr2 + nr3 (nr3 < nr2)
nr2 = q2nr3 + nr4 (nr4 < nr3)

. . .

nri = qinri+1
(
recalling that ri+2 = 0

)
.

Uniqueness of the remainder at each stage implies that this is the Euclidean
algorithm for hcf (nr1, nr2) , so the result is

nri+1 = n× hcf (r1, r2) . �

From this follows a crucial result:

Lemma 8.20: If m, n ∈ N and p is a prime dividing mn, then either p
dividesm or p divides n.
Proof: Suppose that p does not divide m. Since p is prime, its only factors
are 1, p; so the hcf of p and m must be 1. By proposition 8.19 the hcf of nm
and np is n. But p divides nm and np, so the definition of hcf implies that p
divides n. �

Corollary 8.21: Ifm1, . . . ,mr ∈ N and a prime p dividesm1, . . . ,mr , then
p divides at least one ofm1, . . . ,mr .
Proof: Use induction on r ≥ 2. �

The final theorem of this chapter states, in formal terms, that the factor-
isation of a natural number into primes is unique, except for the possibility
of writing the factors in a different order.
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Theorem 8.22 (Uniqueness of Prime Factorisation): Suppose that
m ∈ N,m ≥ 2, and

m = pe11 . . . perr = q f1
1 . . . q fs

s

for primes pi, qj and natural numbers ei, fj ≥ 1. Then r = s, and there is a
bijection

ϕ : {1, . . . , r}→ {1, . . . , s} such that pi = qϕ(i) and ei = fϕ(i) for each i.

Proof: Use induction on k = e1 + · · ·+ er . If k = 1 thenm = p1, r = 1, e1 = 1.
Now p1 divides the product of the qj’s; hence, by corollary 8.21, p1 divides qi
for some i. Since qi is prime, p = qi. Using proposition 8.6(b) we may divide
through by p1, obtaining

1 = q f1
1 . . . q

fi–1
i . . . q fs

s

which is possible only if s = 1, f1 = 1. Hence the two factorisations are given
bym = p1 = q1, and ϕ may be taken to be the identity.
Now suppose the result true for k, and suppose e1 + · · · + er = k + 1. As for

k = 1, we have p1 = qi for some i. It follows that e1 = fi, or else, dividing out
powers of p1 using proposition 8.6(b), one side would be divisible by p1 and
the other not. Now we can divide out all powers of p1 that occur, to get

pe22 . . . perr = q f1
1 . . . q

fi–1
i–1 q

fi+1
i+1 . . . q fs

s .

By induction, r – 1 = s – 1, and there is a bijection ϕ : {2, . . . , r} → {1, . . . ,
i – 1, i + 1, . . . , s} such that pj = qϕ(j) and ej = fϕ(j) for j = 2, . . . , r. It remains
only to extend ϕ to the full set {1, . . . , r} by defining

φ(1) = i
φ(j) = φ(j) for j = 2, . . . , r,

and the induction step is proved. �

Reflections

In this chapter we have made significant progress towards a formal approach
to mathematics based on set-theoretic definitions and proof. At the begin-
ning of the book you will have had a natural view of the arithmetic of whole
numbers based on your experience. You knew all kinds of things, such as
the idea that it didn’t matter how many terms you were adding together,
you could perform the addition in any order and you would always get the
same result. Essentially, your experience convinced you of this general prop-
erty. However, in this chapter we have been able to reduce the whole of
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arithmetic to a system that satisfies just three axioms (N1), (N2), (N3) and,
on the assumption that such a system exists, we have been able to prove all
the usual properties of arithmetic from these three axioms. On occasion the
journey may have been tortuous, because we needed to base all our argu-
ments on the explicit formal properties that are either axioms, definitions,
or theorems proved logically from the axioms and definitions. Now we have
established a rich collection of properties of natural numbers that we can use
as a foundational context to build new theory.
In future chapters we will use the same techniques to formulate set-

theoretic axiomatic structures and further definitions within those struc-
tures, safe in the knowledge that properties proved in a given axiomatic
structure will continue to hold in new situations which satisfy the given ax-
ioms and definitions. We will also use previously established results as part
of our technique without explicitly revisiting the detail already proven wher-
ever we are safe in the knowledge that the detail could be filled in as required.
This enables us to focus on new ideas and produce increasingly sophisticated
theories without obscuring the big picture with established detail.

Exercises

1. Definemn form, n ∈ N0 by

m0 = 1,mn+1 = mnm.

Prove by suitable induction arguments that

mn+r = mnmr

mnr = (mn)r
(mn)r = mrnr .

2. A sequence of natural numbers is a function s : N → N0. Write sn
instead of s(n) and denote s by (sn). Given a sequence (sn), the nth
partial sum σn of (sn) is defined recursively by

σ1 = s1, σn+1 = σn + sn+1.

The sum σn is also written as σn = s1 + s2 + · · · + sn.
Prove by induction that

(a) 1 + 2 + · · · + n = 1
2n (n + 1)

(b) 12 + 22 + · · · + n2 = 1
6n (n + 1) (2n + 1)

(c) 13 + 23 + · · · + n3 = 1
4n

2 (n + 1)2 .
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3. Define n! for n ∈ N0 by

0! = 1, (n + 1)! = n! (n + 1) .

Prove by induction on n that (n – r)!r! divides n! for all 0 ≤ r ≤ n.

For all n, r ∈ N0, 0 ≤ r ≤ n, define
(
n
r

)
∈ N to be

n!
(n – r)!r!

.

Show that (
n
0

)
= 1,

(
n
1

)
= n,

(
n
r

)
=
(

n
n – r

)
and (

n
r

)
+
(

n
r – 1

)
=
(
n + 1
r

)
.

Use the last equality to prove by induction that for all a, b, n ∈ N0 :(
a + b

)n = an + nan–1b + · · · +
(
n
r

)
an–rbr + · · · +

(
n
n

)
bn.

4. Prove by induction, or otherwise,
(a) 1× 1! + 2× 2! + · · · + n× n! = (n + 1)! – 1,

(b)
(
n
0

)
+
(
n
1

)
+ · · · +

(
n
n

)
= 2n,

(c)
(
n
1

)
+ 2

(
n
2

)
+ · · · + n

(
n
n

)
= 2n–1n.

5. Calculate the highest common factor of 2244 and 2145
(a) by the Euclidean algorithm,
(b) by factorising 2244 and 2145 into prime factors.

6. The Fibonacci numbers (un) are defined recursively by

u1 = 1, u2 = 2, un+1 = un + un–1.

Calculate u3, u4, u5, u6, and u7. Prove that every natural number is a
sum of Fibonacci numbers. Is this expression unique?

7. lf x1, . . . , xn are real numbers, prove that

|x1| + · · · + |xn| ≥ |x1 + · · · + xn| .
8. Let p/q be a fraction in lowest terms such that

1
n + 1

<
p
q
<

1
n
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for a natural number n. Show that p
q – 1

n+1 is a fraction which, in its
lowest terms, has numerator less than p. Hence, by induction, prove
that every proper fraction p/q, where p < q, can be written as a finite
sum of distinct reciprocals

p
q
=

1
n1

+ · · · + 1
nk

where n1, . . . , nk are natural numbers.
For example, 14

15 = 1
2 +

1
3 +

1
10 .

Use the technique developed in this question to express 5
7 as a sum

of reciprocals.
9. State and prove analogues of the division algorithm and the Euclidean

algorithm for polynomials

P(x) = anxn + an–1xn–1 + · · · + a0

with real coefficients. (Hint: If an �= 0, then the degree of P(x) is an
element of N0.)

10. The Tower of Hanoi is a puzzle consisting of n discs, of different sizes,
which can be placed in three heaps A, B, C. A disc may be ‘legally’
moved from the top of one pile to the top of another provided that it
is not placed on top of a smaller disc. Initially all the discs are placed
in one pileA, with the largest at the bottom and in decreasing order of
size up the pile; the other two piles are empty. Prove that there exists
a sequence of legal moves which will transfer all of the discs to pile B.

11. Are the following valid induction proofs?
(a) Everybody is bald.

Proof: By induction on the number n of hairs. A man with no
hairs is clearly bald. Adding one hair to a bald man is not enough
to make him not bald, so if a man with n hairs is bald, so is a man
with n + 1 hairs. By induction, however many hairs a man has, he
is bald. �

(b) Everybody has the same number of hairs.
Proof: By induction on the number of people. If this is 0 or 1,
the statement is clearly true. Assume it for n. Take n + 1 people,
remove one, then by the induction hypothesis the remaining n
people have the same number of hairs. Remove a different one:
the remaining n people again have the same number of hairs, so
the first one removed has the same number of hairs as the rest.
Hence all n + 1 people have the same number of hairs. �
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(c) If n straight lines are drawn across a circular disk, such that no
three meet in the same point, then they divide the disc into 2n

parts.
Proof: For n = 1, 2, the number of parts is 2, 4. Assume the re-
sult true for n. Adding another line divides each region it passes
through into two, making 2n+l in all. By induction, the statement
is proved. �

(d) n2 – n + 41 is a prime number (positive or negative) for every
natural number.
Proof:

12 – 1 + 41 = 41, 22 – 2 + 41 = 43,
32 – 3 + 41 = 47, 42 – 4 + 41 = 53,
52 – 5 + 41 = 61, 62 – 6 + 41 = 71, . . . �

(e) 1 + 3 + 5 + · · · + (2n – 1) = n2 + 1.
Proof: If this is true at n, then add 2n + 1 to each side to get

1 + 3 + 5 + · · · + (2n – 1) + (2n + 1) = n2 + 1 + (2n + 1)
= (n + 1)2 + 1.

This is the same formula with n replaced by n+1, so by induction
the formula is true for all natural numbers. �

(f ) 2 + 4 + · · · + 2n = n(n + 1).
Proof: If 2 + 2 + · · · + 2n = n(n + 1) then

2 + 4 + · · · + 2n + 2(n + 1) = n(n + 1) + 2(n + 1)

so

2 + 4 + · · · + 2(n + 1) = (n + 1)(n + 2).

By induction the formula is true for all n. �
12. Induction with a difference. The arithmetic mean of the n real num-

bers. a1, . . . , an is (a1 + . . .+an)/n and the geometric mean (if they are
all non-negative) is n

√
(a1a2 . . . an). Prove that if a1, a2, . . . , an ≥ 0,

then

(a1 + a2 + · · · + an) /n ≥ n
√
(a1a2 . . . an).

You may find that a direct induction proof does not work. Try the
approach of Cauchy: Let P(n) be the statement ‘(a1 + · · · + an) /n ≥
n
√
(a1 . . . an) for all real numbers a1, . . . , an ≥ 0’.
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First establish by a standard induction that 0 ≤ a ≤ b⇒ 0 ≤ an ≤
bn, and deduce that for a, b ≥ 0, an ≤ bn ⇒ a ≤ b. If n√x denotes the
positive nth root of x ≥ 0, deduce that x, y ≥ 0, x ≥ y⇔ n√x ≥ n√y.
P(l) is trivial, and P(2) may be established by considering the sign

of 1
4 (a1 + a2)2 – a1a2. Now prove P(n) ⇒ P(2n). (Hint: Use P(n)

for a1, . . . , an and also for an+1, . . . , a2n and fit them together us-
ing P(2).) Then prove P(n) ⇒ P(n – 1). (Given a1, . . . , an–1, let
an = (a1 + · · · + an–1) / (n – 1) and use P(n) to show that

n
√
(a1 . . . an–1an) ≤ an.

Raise to the nth power and simplify to get P(n – 1).)
Now deduce that P(n) is true for all n ∈ N.

13. Proving a statement P(n) true for all n ∈ N cannot always be achieved
by a simple induction argument. For example, Goldbach’s Conjecture
that every even integer is the sum of two primes, 2 = 1 + 1, 4 = 2 + 2,
6 = 3 + 3, 8 = 5 + 3, 10 = 7 + 3, . . . seems plausible (provided that 1 is
considered as a prime). Verify Goldbach’s Conjecture for every even
integer 2n ≤ 50. Can you see any pattern that might be amenable for
an induction proof? It is not known whether the conjecture is true or
false, but the related Odd Goldbach Conjecture—every odd number
≥ 7 is a sum of three primes—was proved by Harald Helfgott in 2013.
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chapter 9

Real Numbers

Our intuitive model R of the real numbers motivates the properties
that are desirable in a rigorous formulation. There should be two
binary operations, addition and multiplication, with arithmetical

properties that let us define subtraction and division. There should also be an
order relation, appropriately related to addition and multiplication, tailored
to take account of negative numbers. Finally, we should include the prop-
erty that distinguishes the real numbers from other number systems like Z
and Q: completeness. This property, which is distinctly more technical, was
introduced informally in chapter 2. We show that when these three types of
property—arithmetic, order, completeness—are formulated precisely, they
specify the real numbers uniquely, much like (N1)–(N3) specify N0.
There are several ways to express the required properties. The experience

of the past century’s mathematics is that the following system of axioms is
one of the best. We define the formal system R of real numbers as a com-
plete ordered field. We introduce the axioms in order of difficulty: field, then
order, then completeness.

Axioms for the Reals: Let R be a set, equipped with two binary oper-
ations + and . (called addition and multiplication). If a, b ∈ R we call a + b
the sum of a and b and a.b the product. For traditional reasons we usually
omit the dot and write ab for the product.

(a) Arithmetic
A set R with binary operations + and . is said to be a field if for all
a, b, c ∈ R

(A1) a + b = b + a
(A2) a + (b + c) = (a + b) + c
(A3) There exists 0 ∈ R such that a + 0 = a for all a ∈ R
(A4) Given a ∈ R there exists –a ∈ R such that a + (–a) = 0
(M1) ab = ba
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(M2) a(bc) = (ab)c
(M3) There exists 1 ∈ R, such that 1 �= 0, and 1a = a for all a ∈ R
(M4) Given a ∈ R, a �= 0, there exists a–1 ∈ R such that aa–1 = 1
(D) a(b + c) = ab + ac.

The elements 0 and 1 are called the zero and unit elements of R. By
(A1) and (M1) we also have 0 + a = a, (–a) + a = 0, a1 = 1, and
(a + b)c = ac + bc.
We define subtraction by

a – b = a + (–b)
and division by

a/b = ab–1 provided that b �= 0.

(b) Order
A field R is ordered if there exists a subset R+ ∈ R such that
(O1) a, b ∈ R+ ⇒ a + b, ab ∈ R+

(O2) a ∈ R ⇒ a ∈ R+or – a ∈ R+

(O3) (a ∈ R+) & (–a ∈ R+)⇒ a = 0.

These axioms are designed to relate the order to the arithmetic in a
sensible way. The set R+ corresponds to our intuitive idea of the sub-
set of positive elements (recall that ‘positive’ includes 0). The usual
order relation is then defined by

a ≥ b⇔ a – b ∈ R+.

We check later that this really is an order relation.
(c) Completeness

Recall the following properties, defined for the intuitive concept R in
chapter 2:
An element a ∈ R is an upper bound for a subset S ⊆ R if a ≥ s for

all s ∈ S.
A set S with an upper bound is said to be bounded above. An

element λ of R is a least upper bound (lub) for S if
(i) λ ≥ s for all s ∈ S (λ is an upper bound)
(ii) a≥ s for all s ∈ S ⇒ a ≥ λ (λ is the least among the upper

bounds).

We can now state the final completeness axiom:

(C) If S is a non-empty subset of R and S is bounded above, then S
has a least upper bound in R.
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A structure R satisfying all 13 of the above axioms, (A1)–(A4), (M1)–(M4),
(D), (O1)–(O3), and (C), is called a complete ordered field. (Later we prove
that such a structure is essentially unique.)
We could introduce a new axiom, the existence of a complete ordered field.

However, we do not wish to proliferate axioms unnecessarily. It turns out
that once we postulate the existence of a systemN0 satisfying Peano’s axioms,
we can derive from it a related system R that is a complete ordered field. We
first extend N0 to construct a formal version Z of the integers Z; then we
extend Z to construct a formal version Q of the rational numbers Q. Finally
we develop R from Q. This final construction is technically more difficult,
mainly because of that vital completeness axiom, but also because we have
13 axioms to check. Each extension is inspired by the intuitive development
that we have already encountered at school level.
This sequence of constructions is a part of our mathematical heritage,

and all mathematicians should see it at least once in their lives. When first
discovered, these constructions resolved frontier questions about the foun-
dations of mathematics, and in particular answered the question ‘what is a
number?’ In retrospect, however, the main importance of these construc-
tions today is to demonstrate that the existence of N0, plus set theory, implies
the existence of R.
The main point to appreciate is that this construction is possible. Once

it has been performed, everything else can be based on the properties
(A1)–(A4), (M1)–(M4), (D), (O1)–(O3), and (C). The construction itself is
a hangover from the nineteenth century, when the natural numbers were
accepted as the basis of mathematics without enquiring about their logical
justification, but real numbers were imperfectly understood and therefore
seemedmysterious. At that time, it was important to prove that the real num-
bers are genuine mathematical objects. That demonstration was effected by
constructing R from N0. Nowadays, having seen that this can be done, the
psychological and philosophical problems involved seem less serious: it is
logically equivalent to postulate the existence of R, rather than that of N0. In
fact, it is much more convenient to start with R, because it is straightforward
to locate within it a chain of subsets

R ⊇ Q ⊇ Z ⊇ N0

that provides the rationals, integers, and natural numbers. On the other
hand, the Peano axioms seem very simple and natural, and we find it easy
to believe that such a system exists, whereas the 13 axioms for a complete
ordered field are harder to swallow.
Chapter 10 explores this alternative approach to the inner constituents of

R, and should make its advantages clear. We begin in this chapter with the
construction of R from N0.
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Preliminary Arithmetical Deductions

Before we begin to build an axiomatic structure Z for the integers, we can
obtain some useful clues. Our intuitive model Z shows that we should not
expect all of the properties of a field to hold. Specifically, not all elements of
Z have multiplicative inverses (reciprocals) in Z, axiom (M4). However, we
expect all of the other arithmetical axioms to hold.
Some standard algebraic terminology helps us keep track of which prop-

erties are under consideration.

Definition 9.1: A set R having two binary operations satisfying (A1)–(A4),
(M1)–(M3), and D is a ring; more accurately a commutative ring. (The word
‘ring’ is usually applied to any system satisfying a less restrictive set of axioms
omitting (M1). Since we rarely deal with non-commutative rings in this text,
we omit ‘commutative’.)
If, further, there exists a subset R+ of R satisfying (O1)–(O3), R is an

ordered ring.

We now make some elementary deductions from these axioms, which, as
well as being useful in their own right, are good practice in the axiomatic
style.

Proposition 9.2: If R is a ring and for some x ∈ R, a + x = a for all a ∈ R,
then x = 0. If xa = a for all a ∈ R, then x = 1.
Proof: Put a = 0, so that 0 + x = 0. But 0 + x = x by (A3) and (A1), so x = 0.
Similarly x = x1 = 1. �

This proposition shows that the zero and unity elements of R are unique:
no other elements have similar properties. In the same way the negative –a
of an element a is uniquely determined:

Proposition 9.3: If x + a = 0 for elements x, a of a ring R, then x = –a.
Proof:

x = x + 0 by (A3)
= x + (a + (–a)) by (A4)
= (x + a) + (–a) by (A2)
= 0 + (–a) since x + a = 0
= –a by (A1) and (A3). �
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If R is a field then multiplicative inverses are uniquely determined (for
non-zero elements) and the proof is analogous.

Proposition 9.4: If R is a ring, then for all a ∈ R, –(–a) = a.
Proof: By definition, a + (–a) = 0. By proposition 9.3, a = –(–a). �

Proposition 9.5: If R is a ring then a0 = 0a = 0 for all a ∈ R.
Proof:

a0 = a(0 + 0) by(A3)
= a0 + a0 by(D).

Adding –(a0) to each side, we obtain

0 = a0 + (–a0) = (a0 + a0) + (–a0) by (A1)
= a0 + (a0 + (–a0) by (A2)
= a0 + 0 by (A1)
= a0 by (A3).

Then 0a = 0 by (M1). �

Proposition 9.6: If R is a ring and a, b ∈ R then –(ab) = (–a)b = a(–b).
Proof:

ab + (–a)b = (a + (–a)) b by (D) and (M1)
= 0b by (A4)
= 0 by proposition 9.4.

Hence (–a)b = –(ab) by proposition 9.3. The rest follows by (M1). �

From here it is easy to make further deductions, such as

(–a)(–b) = ab, (–1)a = –a.

If R is a field we may also prove that (a–1)–1 = a when a �= 0.
Defining subtraction and division as indicated above, we may also verify

the expected properties, for example

(–a)/b = a/(–b) = –(a/b)
(a/b) + (c/d) = (ad + bc)/(bd)

(a/b)(c/d) = (ac)/(bd).

The details are left as exercises which will make more sense if you think them
through and explain them to yourself.
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Next we look at order properties. At this point we take advantage of the
discussion of proof in chapter 7, focusing on the new elements of the theory.
The arithmetical properties of addition andmultiplication will be considered
sufficiently well established that we no longer need to quote chapter and
verse when using them. We work in a context where the properties of arith-
metic can be used without the need for explicit proof, and focus on the new
properties of order.

Comment. It is common for students to be very successful in manipulating
expressions using the operations of arithmetic, but to make unexpected er-
rors when dealing with order relations. For instance, if we know that ab > c,
we may be tempted to divide by b to get a > c/b. That looks plausible, but it
is false if b is negative or zero. In the sections that follow, it is important to
operate carefully with order relationships using the formal definitions.

Preliminary Deductions about Order

In this section, R is any ordered ring. Its order relation is defined by

a ≥ b⇔ a – b ∈ R+. (9.1)

It follows that a ≥ 0⇔ a ∈ R+, so

R+ = {a ∈ R | a ≥ 0}. (9.2)

Using (O1)–(O3) we now establish:

Proposition 9.7: The relation≥ is a weak order on R.
Proof: Wemust verify the three properties

(WO1) a ≥ b & b ≥ c⇒ a ≥ c,
(WO2) Either a ≥ b or b ≥ a,
(WO3) a ≥ b & b ≥ a⇒ a = b.

For (WO1), a ≥ b& b ≥ c⇒ a–b, b– c ∈ R+. By (O1), (a–b) + (b– c) ∈ R+,
so a – c ∈ R+ so a ≥ c. (This is our first taste of ‘arithmetic without tears’: an
axiomatic proof that (a – b) + (b – c) = a – c takes several steps, all omitted
here.)
For (WO2), (O2) implies that either a – b ∈ R+ or b – a = –(a – b) ∈ R+.

Therefore a ≥ b or b ≥ a.
For (WO3), if both a – b and b – a ∈ R+ then a – b = 0 by (O3), so a = b.

�
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The order relation behaves appropriately with respect to the arithmetic:

Proposition 9.8: For all a, b, c, d ∈ R,

(a) a ≥ b& c ≥ d⇒ a + c ≥ b + d,
(b) a ≥ b ≥ 0& c ≥ d ≥ 0⇒ ac ≥ bd.

Proof: Translate the definition of ≥ using (9.1), and do the arithmetic. �

In the definition of an ordered field (or ordered ring) we can replace
(O1)–(O3) by the properties stated in propositions 9.6 and 9.7, and use the
relation ≥ to define the set R+ by working (9.2) the other way round. Which
approach we use is a matter of taste.
The modulus can be defined in an ordered ring by setting

|a| =
{
a if a ∈ R+

–a if – a ∈ R+.

It can then be proved that |a|≥ 0 for all a∈R and, by repeating the argument
of chapter 2 in this formal context, that

|a + b|≤ |a| + |b|,
|ab| = |a| |b|.

Now we have enough technique to carry out the construction of the integers,
rationals, and reals.

Construction of the Integers

To get from N0 to the integers we must introduce negative elements. In fact,
we consider differences m – n of natural numbers. These differences are de-
finable as natural numbers whenm ≥ n, but not when m < n. Our task is to
givem – n a meaning no matter which ofm or n is larger.
The idea is to relate subtraction to addition, which of course is how we

were taught about subtraction in the first place. Ifm, n, r, s ∈ N0 andm ≥ n,
r ≥ s, then

m – n = r – s⇔ m + s = r + n.

The right-hand side makes sense without restrictions onm, n, r, s. This gives
a clue. To construct things that behave like differences m – n, take the set
N0 × N0 of ordered pairs (m, n), where m, n ∈ N0, and define a relation ∼
on this set by

(m, n) ∼ (r, s)⇔ m + s = r + n.
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It turns out that ∼ is an equivalence relation, and the proof requires only
arithmetic in N0. We can then define the integers Z to be the set of equiva-
lence classes for ∼. The equivalence class of (m, n) corresponds to our
intuitive concept of the differencem–n, and the formal proof runs as follows.
Let 〈m, n〉 denote the equivalence class of (m, n). By the definition of∼,

〈m, n〉 = 〈r, s〉 ⇔ m + s = r + n.

Define addition and multiplication on Z by

〈m, n〉 + 〈 p, q〉 = 〈m + p, n + q〉,
〈m, n〉〈 p, q〉 = 〈mp + nq,mq + np〉. (9.3)

These definitions are motivated by thinking of 〈m, n〉 as ‘m – n’ and translat-
ing the sum and product into expressions involving such differences:

(m – n) + (p – q) = (m + p ) – ( n + q),
(m – n)(p – q) = (mp + nq) – (mq + np).

We need to check that the operations (9.3) are well defined in the sense
of chapter 4. So suppose that 〈m, n〉 = 〈m′, n′〉 and 〈 p, q〉= 〈 p′, q′〉. Then
m + n′ =m′ + n, p + q′ = p′ + q. Now

(m + p) + (n′ + q′) = (m + n′) + (p + q′)
= (m′ + n) + (p′ + q)
= (m′ + p′) + (p + q)

Hence 〈m + p, n + q〉 = 〈m′ + p′, n′ + q′〉, and addition is well defined.
Multiplication is treated in the same way.
It is now a simple but long-winded exercise to show that Z is an ordered

ring, taking

Z+ = {〈m, n〉 ∈ Z |m ≥ n in N0}.

Proposition 9.9: With the above operations, Z is an ordered ring.
Proof: We must check the axioms (A1)–(A4), (M1)–(M3), (D), and
(O1)–(O3). In all cases we use the definition of Z to restate the required
property in N0, and verify it by arithmetic.

(A1) Let a = 〈m, n〉, b = 〈 p, q〉. Then
a + b = 〈m + p, n + q〉

= 〈 p +m, q + n〉 by arithmetic in N0

= b + a.
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(A2) To prove ab = ba, we need to show 〈m, n〉 〈 p, q〉 = 〈 p, q〉〈m, n〉. This
requires showing that

〈m, n〉〈 p, q〉 = 〈mp + nq,mq + np〉
= 〈 p, q〉〈m, n〉 = 〈 pm + qn, qm + pn〉,

which follows because mp + nq = pm + qn and mq + np = qm + pn
in N0.

(A3) The simplest way to express 0 as a difference is to form 0 – 0. So we
consider the element 〈0, 0〉 of Z. Now

〈m, n〉 + 〈0, 0〉 = 〈m + 0, n + 0〉 = 〈m, n〉.
Thus 〈0, 0〉 acts as a ‘zero’ element.

(A4) The additive inverse ofm – n ought to be n –m, so we compute:

〈m, n〉 + 〈n, m〉 = 〈m + n, n +m〉 = 〈m + n, m + n〉.
Are we in trouble? No, because (m + n, m + n) is equivalent, under
∼, to (0, 0). Therefore 〈m + n, m + n〉 = 〈0, 0〉, and we have proved
that

〈m, n〉 + 〈n,m〉 = 〈0, 0〉,
which is what we want. Now∼ is starting to make its presence felt.

Proofs of the remaining axioms for arithmetic follow similar lines. We
could easily write them out for you. But if we did, you might simply read
them through and commit them to memory to pass a test. To make sense
of them, it is time to work through them for yourself. The effort of deriv-
ing and explaining the links to yourself is more likely to set up a coherent
schema of connections in your mind, which you can build on in the future.
Mathematics involves active thinking. It is not a spectator sport. �

The next step is to recover the usual notation for integers as positive or
negative natural numbers.
Any element of Z+ is of the form 〈m, n〉 wherem ≥ n, so can be written as

〈m – n, 0〉 . Thus every element of Z+ is of the form 〈r, 0〉 for r ∈ N0. Now
axiom (O2) tells us that for any a ∈ Z, either a ∈ Z+ or –a ∈ Z+, hence either
a = 〈r, 0〉 or a = – 〈r, 0〉 = 〈0, r〉 .
Define a map f : N0 → Z+ by f (n) = 〈n, 0〉. It is easily seen that f is a

bijection, and that
f (m + n) = f (m) + f (n),

f (mn) = f (m)f (n),
m ≥ n ⇔ f (m) ≥ f (n).

That is, f is an order isomorphism, in the sense of chapter 8.
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This leads to a technical problem, which we have met before. We do not
have N0 ⊆ Z, as we might have hoped: instead, N0 is order isomorphic to
the subset Z+ ⊆ Z. The elements of N0 and Z+ are definitely different math-
ematical objects: the first is a set of numbers, the second is a set of equiva-
lence classes of ordered pairs. However, they behave in exactly the same
manner.
There are various ways to get round this problem. One is to replace the

elements of Z+ by the corresponding elements of N0, creating a hybrid sys-
tem with the elements 0, 1, 2, . . . in N0 as the non-negative integers and
the ordered pairs 〈m,m + n〉 as the negative integers –n. The diagram below
should make the idea clear.

Fig. 9.1 N0 as a subset of Z

This hybrid system containsN0 as a genuine subset, and extends to include
elements of the form 〈m,m + n〉. Such an element is the additive inverse of n,
so we can change notation to –n without getting into trouble.
However, this method is inelegant and lacks the aesthetic simplicity de-

sired in mathematics. This kind of complication will escalate as we go on
to construct the rational numbers Q from Z and then the real numbers R
from Q. At each stage the smaller number system is isomorphic to a subsys-
tem of the larger system, but it is not actually a subset as such. We could use
a similar trick to replace a subset of Q by Z, and a subset of R by Q, but the
elegance of the constructions gets lost.
Mathematicians take a more pragmatic route. They ‘identify’ N0 and Z+,

that is, they ignore the technical set-theoretic distinction between them for
purposes of arithmetic and order. This causes no harm because these two
systems have exactly the same mathematical structure as regards arithmetic
and order. If we ignore the distinction, we can consider N0 to be a subsys-
tem of Z. This fits with how the human mind simplifies the situation by
thinking of N0 and Z+ as different ways to represent the same underlying
mathematical concept.
The mathematical justification of this approach will become clear when

we construct the rational numbers and the real numbers. We will then
prove that the axioms for a complete ordered field define the real numbers
uniquely, in the sense that any two systems that satisfy all the axioms are
order isomorphic. Therefore, up to isomorphism, there is only one complete
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ordered field. Inside it—genuinely inside as subsets—are systems that corres-
pond to the natural numbers, the integers, and the rational numbers. We can
then mentally ‘throw away’ the set-theoretic scaffolding that we are build-
ing in this chapter, by replacing the systems we have constructed by these
isomorphic subsystems of R.
In case you’re wondering why any of this is necessary: actually, you’ve

encountered similar problems before. When you did fractions, at some
stage you had to sort out that 2/1 is the same as 2: some fractions can be
whole numbers. Similarly, when you did decimals, you got used to replacing
1·0000 . . . by 1. Technically the first is an infinite decimal that just happens
to have lots of zeros. It behaves like the whole number 1, but it’s not written
that way. But clearly, thinking of it as being equal to 1 does no harm.
From a psychological viewpoint, the real numbers are conceived by the

human mind as a unique ‘crystalline concept’ that has specific properties yet
can be represented flexibly in different equivalent forms. In this case the real
numbers can be defined axiomatically as a list of 13 axioms, represented geo-
metrically as points on a number line, or symbolically as infinite decimals. If
the distinction actually matters, you can always sort it out; usually, it doesn’t.
Once we have this coherent overall structure, we have a perfect platform
fromwhich to view ‘the’ real numbers as a unique, but flexible, mathematical
entity.
To reach that stage, however, we must first go through the technicalities of

constructing the rationals from the integers and the reals from the rationals.
This process shows that all of these number systems are consequences of the
Peano axioms, which characterise the natural numbers.

Construction of Rational Numbers

We construct the rational numbers from the integers by following a similar
strategy to the one used to construct the integers from the natural num-
bers. But what matters now is not the difference m – n between two natural
numbers, but the quotientm/n of two integers. So, starting from Z, we must
introduce a larger set Q for which quotientsm/n are defined.
To do this, let S be the set of all ordered pairs (m, n) where m, n ∈ Z and

n �= 0. Define a relation∼ by

(m, n) ∼ (p, q)⇔ mq = np.

This is inspired by the property that m/n = p/q if and only if mq = np. Now
define Q to be the set of equivalence classes for ∼. Anticipating the final
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result, we use the notation m/n for the equivalence class of (m, n). Define
operations by

m/n + p/q = (mq + np)/nq,
(m/n)(p/q) = mp/nq.

Theorem 9.10: These operations define the structure of a field on Q.
Proof: The details are left to the reader (offering an opportunity to build up
the mental links to create a coherent personal schema for these ideas). First,
check that the operations are well defined; then go through the whole list of
axioms, one by one. Use the proof of proposition 9.8 as a model.
Once more, it really is important to think this proof through for yourself.

We could put it in, but it is seldom helpful to read through someone else’s
long calculations when they are routine. To help, here’s a hint: if n �= 0 the
multiplicative inverse ofm/n is n/m. �

We have now set up the arithmetic of Q, but not its order relation. We
define an ordering by specifying the positive elements:

Q+ = {m/n ∈ Q |m, n ∈ Z+, n �= 0}.

Theorem 9.11: With the above definition, Q is an ordered field.
Proof: Once more we want you to construct the idea in your own mind, by
thinking through the proof for yourself. �

We want the integers to be a subset of the rationals, but once again this
is true only up to isomorphism. It’s the old problem of n/1 being technically
different from n, but behaving in exactly the same way. We solve it by prov-
ing that the map g : Z → Q defined by g(n) = n/1 preserves the arithmetical
operations:

g(m + n) = g(m) + g(n)
g(mn) = g(m)g(n)
m ≥ n⇒ g(m) ≥ g(n)

for all m, n ∈ Z. All three are straightforward. Therefore g is an order
isomorphism from the natural numbers to the elements ofZ of the formm/1.
Since every rational m/n can be written as (m/1)(1/n) = (m/1)(n/1)–1,

identifying n with n/l does not lead to any conflict in notation, and
corresponds to the usual intuitive model. This identification lets us think
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of Z as a subsystem of Q, just as the natural numbers can be thought of as a
subsystem of the integers.

Construction of Real Numbers

The construction of the real numbers is more complicated, and it can be
carried out in several different ways. It is possible, though technically awk-
ward, to construct them as infinite decimals, along the lines of chapter 2.
However, we saw there that the use of approximating sequences of rationals
has technical advantages. Monotonic sequences are especially easy to han-
dle, but we shall use more general ‘Cauchy sequences’, which we will define
in a moment. As in previous sections, many routine details will be omit-
ted, and for the same reason: the broad outline becomes more easily visible
when the details merge into the conceptual background. It remains essential
for you to think through the relationships for yourself; to understand them
in a coherent way that helps to build up a flexible personal insight into the
mathematical structure.

Sequences of Rationals

The main idea when constructing the real numbers is to associate each real
number with an infinite sequence of rational numbers, which in some sense
form better and better approximations to the real number concerned. Trun-
cating an infinite decimal further and further to the right is one way to do
this, but the mathematics is simpler if we avoid being that specific.
As in chapter 5, but replacing the informal N by the formal version N, a

sequence of rationals may be formally defined as a function

s : N → Q.

We write sn for s(n) and denote the sequence by (sn)n∈N or by (s1, s2, s3, . . . ),
or just by (sn).
Let S be the set of all sequences of rationals. We define addition and

multiplication within S by

(an) + (bn) = (an + bn),
(an)(bn) = (anbn).

Lemma 9.12: With these operations, S is a ring.
Proof: The identity is (1, 1, 1, . . . ), the zero (0, 0, 0, . . . ), and the additive
inverse of (an) is (–an). All verifications are routine. �
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We say ‘ring’ because S is not a field. If all sn are non-zero, then (sn) has a
multiplicative inverse (1/sn). But if any term sn = 0, then this does not work.
For example, (0, 1, 1, . . . ) cannot have an inverse (b1, b2, b3, . . . ) since

(0, 1, 1, . . .)(b1, b2, b3, . . .) = (0, b2, b3, . . .) �= (1, 1, 1, . . .).

As we saw in chapter 2, every real number may be viewed as the ‘limit’ of a
sequence of rationals. In the present context, we can take over the definition
of convergence given in that chapter, provided that we insist that the ε in the
definition is rational.

Definition 9.13: A sequence of rationals (sn) converges to l ∈ Q if, given
any ε ∈ Q, ε > 0, there exists N ∈ N such that

n > N ⇒ |sn – l|<ε.

This definition is not yet satisfactory, however: convergence to a rational
limit is not what really interests us. It fails to deal with real numbers like

√
2,

for example. We need a replacement for ‘convergent’ that does not specify
the limit as such.
For the sake of argument, assume that it makes sense to talk of a sequence

of rationals converging to a real limit. Certainly this is so in our intuitive
models Q ⊆ R. The catch is that formally we do not know what the limit
is. Nonetheless, if (sn) were to converge to a real number l, then there would
exist some N such that

|sn – l|<ε for all n>N.

Hence also

|sm – l|<ε for allm > N.

Combining the two inequalities we obtain

|sm – sn|< 2ε for allm, n > N.

Now this statement does not involve the hypothetical real number l. But it
still captures the idea of convergence.
To tidy things up, we start again with 1

2ε instead of ε, and thereby obtain
the essential idea:

Definition 9.14: A sequence (sn) of rational numbers is a Cauchy sequence
if for any rational ε > 0 there exists N such that

m, n > N ⇒ |sm – sn| < ε.
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Intuitively, the terms of such a sequence get closer and closer together.
This concept is named after Augustin-Louis Cauchy, a prolific nineteenth-

century French mathematician who made extensive use of such sequences.
However, it was Georg Cantor who first realised how to use such sequences
to construct the real numbers using the method presented here.
Cauchy sequences may be considered intuitively as sequences of rational

approximations to a real number and this provides the rawmaterial for a for-
mal construction of the real numbers starting from the rationals. The proof
requires several lemmas. For the first, we say that a sequence (sn) is bounded
if there exists a fixed numberM such that |sn| ≤ M for all n.

Lemma 9.15: Every Cauchy sequence is bounded in Q.
Proof: Taking ε = 1 in the definition of a Cauchy sequence, there exists N
such that |sn – sm|< 1 form, n>N. Thus for all n>N we have |sn – sN+1|< 1;
that is, |sn| < |sN+1| + 1. Hence, for all n ∈ N,

|sn| ≤ max
{
|s1|, |s2|, . . . , | sN |, |sN+1| + 1

}
. �

Lemma 9.16: If (an) and (bn) are Cauchy sequences, then so are (an + bn),
(anbn), and (–an).
Proof: If ε > 0 is rational, there exist N1 and N2 such that

m, n > N1 ⇒ |am – an| < 1
2ε,

m, n > N2 ⇒ |bm – bn| < 1
2ε.

So form, n > N = max(N1, N2) we have

|
(
am + bm

)
–
(
an + bn

)
| = | (am – an) +

(
bm – bn

)
|

≤ |am – an| + |bm – bn|

< 1
2ε +

1
2ε

= ε,

so (an + bn) is Cauchy.
To show that (anbn) is Cauchy, use lemma 9.15 to show that there exist

A, B ∈ Q such that |an|<A and |bn|<B for all n ∈ N. Using a little foresight
(the authors have seen this proof before!), given ε ∈ Q, ε > 0, observe that
ε/ (A + B) ∈ Q, ε/ (A + B) > 0. Therefore there exist N1, N2 such that

202 | 9 REAL NUMBERS



m, n > N1 ⇒ |am – an| <
ε

A + B
,

m, n > N2 ⇒ |bm – bn| <
ε

A + B
.

Ifm, n > N = max(Nl, N2) then both inequalities hold, so

|ambm – anbn| = |(am – an)bm + an(bm – bn)|
≤ |am – an||bm| + |an||bm – bn|

<
ε

A + B
B + A

ε

A + B
= ε.

Therefore (anbn) is Cauchy.
Finally, (–an) may be proved Cauchy either by a direct calculation, or by

putting bn = –1 for all n in the above. �

Letting C denote the set of all Cauchy sequences, we have:

Proposition 9.17: With addition and multiplication of sequences as de-
fined, C is a ring.
Proof: If (an), (bn) ∈ C then lemma 9.16 says that (an) +(bn),(an)(bn), and
–(an) ∈ C. Clearly the zero sequence (0, 0, . . . ) and unit sequence (1, 1, . . . )
∈ C. Looking at the axioms for a ring we see that this takes care of (A3), (A4),
and (M3). The remaining axioms hold since, by lemma 9.12, they hold for all
sequences of rationals. �

However, we still do not have a field, for a sequence like (0, 1, 1, 1, . . . )
is Cauchy, non-zero, and has no inverse. To overcome this we take note
of another problem: intuitively speaking, different Cauchy sequences can
converge to the same limit. We have already encountered this in decimal
notation:

(1, 1, 1, 1, 1, . . .)

and

(0·9, 0·99, 0·999, 0·9999, 0·99999, . . .)
both converge to 1.
Both difficulties evaporate when we introduce one further concept:

Definition 9.18: A sequence (sn) of rationals is a null sequence if it con-
verges to 0. That is, for all rational ε > 0 there exists N such that |sn| < ε

whenever n > N.
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If two sequences (an) and (bn) tend to the same limit l, then it is easy to see
that the sequence (an –bn) is null. This inspires an equivalence relation on C:

an ∼ bn ⇔ (an – bn) is null.

To check that this is an equivalence relation, observe that the properties
(an) ∼ (an) and an ∼ bn ⇒ bn ∼ an are trivial. If an ∼ bn and an ∼ cn then
(an–bn) and (bn–cn) are null, that is they converge to 0. So ((an–bn)+(bn–cn))
converges to zero, that is, (an – cn) is null, so (an) ∼ (cn).

Definition 9.19: R is the set of equivalence classes of Cauchy sequences,
and the equivalence class containing (sn) is denoted by [sn] or [s1, s2, . . . ,
sn, . . . ]. For q ∈ Q, [q, q, . . . , q, . . . ] will also be denoted by q̂ ∈ R.

The alternative notation allows us to distinguish clearly between the
equivalence class [sn] corresponding to a given Cauchy sequence (sn) and
the equivalence class ŝn corresponding to the specific element sn for a fixed
value of n. For instance, for sn = 1/n,

[sn] = [1, 1/2, 1/3, . . . , 1/n, . . .]

while

ŝn = [1/n, 1/n, . . . 1/n, . . .].

Definition 9.20: The operations of addition and multiplication are trans-
ferred to R by defining

[an] + [bn] = [an + bn],
[an][bn] = [anbn].

By now, you should, as a reflex, be wondering whether these operations are
well defined. Yes, they are. For if [an] = [a′n] and [bn] = [b′n] then (an–a′n) and
(bn – b′n) are null. Hence ((an + bn) – (a′n + b′n)) is null, so [an + bn] = [a′n + b′n].
Multiplication is a little less straightforward. By lemma 9.15 there exist

rationals A, B such that

|an| < A, |b′n| < B, for all n ∈ N.

Given ε > 0 we can find N1, N2 such that

n > N1 ⇒ | an – a′n |<ε/ (A + B),
n > N2 ⇒ | bn – b′n |<ε/ (A + B).

204 | 9 REAL NUMBERS



If n > N = max(N1,N2) then

|ambm – a′nb
′
n| = |am(bn – b′n) + (am – a′n)b

′
n|

≤ |am||bn – b′n| + |am – a′n||b′n|

< A
ε

A + B
+

ε

A + B
B

= ε.

Thus (anbn – a′nb′n) is null, so [anbn] = [a′nb′n].
To show that these operations make R an ordered field, we need to verify

all the field axioms (A1)–(A4), (M1)–(M3), (D) and define an order on R
that satisfies the order axioms (O1)–(O3). Most of these are straightforward,
but when we attempt to define the subset R+ of non-negative elements, we
need to take care of the possibility that an equivalence class [an] may be non-
negative even though some of the individual terms an are not. (For instance,
wemay have a1 = –1, an = 1 for n> 1.)We deal with this problem by showing
that if a sequence (an) is not null, then after a certain stage (say for some
N0 ∈ N) later terms an (for n>N0) are either all strictly positive or all strictly
negative. We make this idea precise through the following definition:

Definition 9.21: A Cauchy sequence (an) is strictly positive if there is a
rational number ε > 0 and an N0 ∈N such that an>ε for all n>N0. It is
strictly negative if there is a rational number ε > 0 and an N0 ∈ N such that
an< – ε for all n>N0.

We can then prove:

Lemma 9.22: If (an) is a Cauchy sequence then it is precisely one of the
following:

(i) a null sequence
(ii) strictly positive
(iii) strictly negative.

Proof: Because (an) is a Cauchy sequence,

∀ε ∈ Q, ε > 0 ∃N0 : m, n > N0 ⇒ |am – an| < ε (9.4)

A Cauchy sequence may be null, as in (i).
If not then (an) does not tend to zero, and (taking a positive rational

value, 2ε), the statement

∃N ∈ N ∀m ∈ N : m > N ⇒ |am| < 2ε
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is false, so that the following is true:

∀N ∈ N ∃m ∈ N,m > N : |am| ≥ 2ε.

In particular,

∃m > N0 : |am| ≥ 2ε, (9.5)

and combining this with (9.4) gives

n > N0 ⇒ |am – an| < ε. (9.6)

From (9.5), either am ≥ 2ε, and (9.6) implies

n > N0 ⇒ an > ε,

which gives (ii), or am ≤ –2ε and (9.6) implies

n > N0 ⇒ an < –ε,

and this gives (iii).
Summing up, if the Cauchy sequence (an) does not satisfy (i), it must

satisfy precisely one of (ii) or (iii), as required. �

Proposition 9.23: With the given operations for [an] + [bn], [an][bn], R
is a field.
Proof: Verification of axioms (A1)–(A4), (M1)–(M3), and (D) is straightfor-
ward. The zero element is [0, 0, 0, . . . ], the unit element [1, 1, 1, . . . ], and
the negative of [an] is [–an].
However, the inverse 1/[an] requires a little ingenuity. By lemma 9.22,

if [an] �= [0] then it must be strictly positive or strictly negative, and, in
particular, for n > N0, we must have an �= 0. We can then define (bn) by

bn =
{
0 if n ≤ N0

1/an if n > N0
,

so that

anbn =
{
0 if n ≤ N0
1 if n > N0

.

Then (anbn) is a sequence whose terms equal 1 for n > N0, so that
[anbn] = [1, 1, 1, . . .] and [bn] is the inverse of [an]. This completes the proof
that R is a field. �
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The Ordering on R

Lemma 9.22 lets us define an order on R in which [an] < 0 if (an) is strictly
negative, [an] is zero if (an) is null, and [an] > 0 if (an) is strictly positive.
The equivalent weak order can then be defined as follows:

Definition 9.24: [an]∈R+ if and only if either (an) is null or strictly
positive.

Proposition 9.25: R is an ordered field.
Proof:

(O1) Suppose that [an], [bn]∈R+. Then by considering the cases where
each of [an], [bn] is null or strictly positive, it is an exercise to prove
that [an + bn] ∈ R+, [anbn] ∈ R+.

(O2) If [an] ∈ R, then by lemma 9.20, the sequence (an) is either null,
strictly positive, or strictly negative. If it is null or strictly positive
then [an] ∈ R+; otherwise (an) is strictly negative, in which case
(–an) is strictly positive and –[an] ∈ R+.

(O3) If [an] ∈ R+ and –[an] ∈ R+, then by lemma 9.20 the only
possibility is [an] = [0]. �

Completeness of R

The trickiest property is completeness. Recall that Q is embedded in R by
defining

q̂ = [q, q, . . . , q, . . .] for q ∈ Q.

Then Q is order isomorphic to the subset Q̂ = {q̂ ∈ R | q ∈ Q} of R, an
assertion that is readily checked.
Our plan of attack is to show that any non-empty subset X ⊆ R bounded

above by k∈R can be shown to have a least upper bound. We first show that
we can find l, r ∈Q so that l̂∈R is not an upper bound for X but r̂ ∈R is
an upper bound. Then we perform a bisection argument to get an increas-
ing sequence (ln) of rationals which are not upper bounds and a decreasing
sequence (rn) which are upper bounds where

0 < rn – ln < (r – l)/2n

so that the two Cauchy sequences (ln) and (rn) tend to the same limit

[ln] = [rn],
which is the required least upper bound for X.
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We get the proof started with a simple lemma:

Lemma 9.26: If x ∈ R, then l̂ < x < r̂ for some l̂, r̂ ∈ Q̂.
Proof: Let (an) be a Cauchy sequence such that [an] = x. By lemma 9.15,
|an| < A for some A ∈ Q. Choose l ∈ Q where l < –A and r ∈ Q where
r > A then l̂ < [an] < r̂. �

Theorem 9.27: R is a complete ordered field.
Proof: By proposition 9.25, R is an ordered field.
To establish completeness, let X be a non-empty subset of R bounded

above by k ∈ R.
Because X is nonempty, Xmust contain an element x ∈ R. By lemma 9.26,

we have l̂ ∈ Q̂ where l̂ < x so l̂ is not an upper bound of X.
By lemma 9.26 for the upper bound k ∈ R, we have k < r̂ for r̂ ∈ Q̂ and

so r̂ is also an upper bound of X.
Start with l0 = l and r0 = r. Suppose that for n ≥ 0, we have found ln ∈ Q

where l̂n ∈ R is not a least upper bound for X and rn ∈ Q where r̂n ∈ R is a
least upper bound for X. This is already true for n = 0.
Letmn = (ln + rn)/2 ∈ Q be the midpoint between ln and rn. If m̂n is not a

least upper bound for X, set

lm+1 = mn, rm+1 = rn,

otherwise set

lm+1 = ln, rm+1 = mn.

By induction, this gives:

an increasing sequence (ln) where ln ∈Q and l̂n ∈R is not an upper bound
of X,

and

a decreasing sequence (rn) where rn ∈Q and r̂n ∈R is an upper bound
of X.

Figure 9.2 shows a particular case where the set X is marked on R and
the sequences of rational numbers l0 = l, l1, . . . , ln, . . . and r0 = r, r1, . . . ,
rn, . . . are marked on the rational line Q.
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X

l1

l2

l3

ln

r1

r2

r3

rn

[ln] = [rn]

r3l2 = l3
r1 = =r2l0 = l r0 r

l̂ r̂

Fig. 9.2 Homing in on the least upper bound of X

Let d = r – l. Then the length of the interval from ln to rn is d/2n, and for
m, n > N, we have

|lm – ln| < d/2N , |rm – rn| < d/2N , |rn – ln| < d/2n.

Both (ln) and (rn) are Cauchy sequences and their difference is a null
sequence, so they represent the same equivalence class:

u = [ln] = [rn] ∈ R.

The element u ∈ R is an upper bound of X ⊆ R. (If not, then there would
be an element x ∈ X where u < x. Because (r̂n) tends down to u, we could
find r̂n that is not an upper bound satisfying u < r̂n < x, contradicting the
fact that u is an upper bound.) It is also the least upper bound, for if kwere an
upper bound where k < u then because (l̂n) tends up to the limit u, we could
find an element k < l̂n < u where l̂n is not an upper bound, contradicting
the fact that u is an upper bound. �

As before, we have an order isomorphism between the elements q ∈ Q
and the elements q̂ = [q, q, . . . , q, . . .] ∈ R so that we may identify Q as a
subset of R.
Finally we have a chain of number systems

N ⊆ N0 ⊆ Z ⊆ Q ⊆ R

as intended.

Exercises

1. First, some bookkeeping.
(a) Write out a full proof of proposition 9.7.
(b) Complete the proof of proposition 9.9.
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(c) Prove theorem 9.10.
(d) Prove theorem 9.11.

2. If R is a ring with zero element 0R and unit element 1R, for n ∈ N0

define nR recursively by

0R = 0R, (n + 1)R = nR + 1R,

and for x ∈ R, n ∈ N0 define xn ∈ R recursively by

x0 = 1R, xn+1 = xnx.

If
(
n
r

)
is the binomial coefficient n!/ [r! (n – r)!] , prove that for all x,

y ∈ R (
x + y

)n = xn + nRxn–1y + · · · +
(
n
r

)
R
xn–ryr + · · · + yn.

3. If p ∈ N is a prime and pR = 0R in R, (as is the case, for instance, in
Zp), show that (

x + y
)p = x p + y p.

Give an example of a ring R where nR = 0R for n �= 0, but
(
x + y

)n �=
xn + yn.

4. If R is an ordered ring, use the definition of order in this chapter to
show that

x2 – 5Rx + 6R ≥ 0R

if and only if x ≥ 3R or x ≤ 2R.
5. Use the Euclidean algorithm to prove that if m, n ∈ N are coprime,

that is, have no common factor in N greater than 1, then there exist
a, b ∈ Z such that

am + bn = 1.

Find a, b whenm = 1008, n = 1375.
6. Prove formally that every positive rational number can be written

uniquely in the form m/n for coprime m, n ∈ N. This is called ‘ex-
pressing a fraction in its lowest terms’. If two rationals p/q, r/s are in
lowest terms, is (ps + qr)/(qs)? What about (pr)/(qs)?
Show that if p/q is in lowest terms, so is p2/q2. Use the uniqueness

of expression in lowest terms to give a streamlined proof that
√
2 is

irrational.
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7. Prove the following results in any ordered field.
(a) a ≤ b⇔ –b ≤ –a,
(b) a < b⇔ –b < –a,
(c) –1 < 0 < 1,
(d) if a �= 0, then a2 > 0,
(e) 0 < a ≤ b⇒ 0 < b–1 ≤ a–1,
(f ) If a < 0 and b < 0, then ab > 0.

8. Prove that every non-empty finite subset X of an ordered field con-
tains a smallest element and a largest element. (A smallest element is
an element x ∈ X such that x ≤ y for all y ∈ X; a largest element is
defined similarly.) Is the same true if we drop the condition that X be
finite?

9. In the definition of the order relation on R, why is it not a good idea
to define

[an] ≥ 0 if ∃ N ∈ Z, such that an ≥ 0 for all n > N?

10. Let an = 1
2 –

1
6 + · · · + (–1)n+1/(n + 1)!. Prove that (an) is Cauchy, so

tends to some limit l. Prove that each an is rational, but l is not.
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chapter 10

Real Numbers
as a Complete Ordered Field

In this chapter we show how to reverse the process used in the previous
chapter. There we postulated the existence of a set satisfying the basic
properties (N1)–(N3) of natural numbers, and eventually constructed a

set R that is a complete ordered field. Here we start by postulating the exist-
ence of a complete ordered field, and work down until we reach the natural
numbers. This approach is basically simpler from a technical point of view;
for example, we really do get N ⊆ Z ⊆ Q ⊆ R without any fudging with
order isomorphisms. However, as remarked in the previous chapter, we have
to accept a rather lengthy set of axioms, all interacting with each other, and
some are distinctly complicated.
We begin with examples of fields, rings, ordered fields, and ordered rings,

to show that a wide variety of such structures exists. Any system that obeys
a formal set of axioms is called a model for those axioms, and the power
of the axiomatic method is that any deduction from the axioms is true in
any model for those axioms. So any valid deduction from the axioms for an
ordered field will hold in the models Q, R constructed in the last chapter;
indeed in any system satisfying the axioms. Therefore we need only perform
the deductions once, rather than over again for each model.
The axiomatic method has another kind of power: the ability to single

out (up to isomorphism) a unique model. For example, this happened with
axioms (N1)–(N3) for the natural numbers: all systems satisfying them are
order isomorphic, so to all intents and purposes the same. The same holds
for the axioms for a complete ordered field: they define a unique system, up
to order isomorphism. It is therefore permissible to call such a system the
real numbers.
As we think about the system of real numbers, we can now imagine it as

a unique crystalline concept whose properties hold together in a coherent
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manner. It may be represented mentally in many ways: as a system satisfying
the 13 axioms for a complete ordered field; symbolically, as infinite decimals;
and visually, as points on a number line that satisfy all 13 axioms including
completeness. However, there is essentially just one such system that can be
represented in different ways.
This is the end of our quest: starting from intuitive ideas about points on a

line and decimal expansions we have formulated a set of axioms that defines
the required system uniquely. Moreover, within this unique system of real
numbers, we can obtain equally simple descriptions of integers and rational
numbers at the same time.

Examples of Rings and Fields

Not every system of axioms defines a unique structure, even if isomorphisms
are permitted. For example, Z and Q are both rings, but they are not iso-
morphic since Q is a field and Z is not. To motivate the narrowing down of
possibilities by imposing extra axioms, we describe some further examples.

Example 10.1: Zn, the ring of integers modulo n. Let n be an integer> 0,
and for r, s ∈ Z define

r ñ s⇔ r – s = kn for some k ∈ Z.

It is easy to show that ñ is an equivalence relation, and we call the set of
equivalence classes Zn. We denote the class containingm bymn.
The division algorithm implies that if m, n ∈ Z and n > 0, then there

exist q, r ∈ Z, with 0 ≤ r < n, such that m = qn + r. Thus m – r = qn, so
every integer is equivalent under ñ to an integer r with 0 ≤ r < n. Thus the
elements of Zn are 0n, 1n, . . . , (n – 1)n. As in chapter 4 (where we treated the
special case n = 3), we can define operations on the equivalence classes by

rn + kn = (r + k)n,
rnkn = (rk)n.

These operations are well defined and satisfy the axioms for a ring with zero
element is 0n and unity 1n.
If n is not prime, then Zn is not a field. For if n = rk with 0 < r < n,

0 < k < n, then

rnkn = nn = 0n.

Say that an element x of a ring is a zero-divisor if x �= 0, but xy = 0 for
some y �= 0, y in the ring. Then rn and kn are zero-divisors. But a field has no
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zero-divisors, for if xy = 0 in a field and y �= 0, then x = xyy–1 = 0y–1 = 0.
Thus Zn is not a field for composite n.
For instance, in Z6 we have 2636 = 06, where 26 �= 06, 36 �= 06. These elem-

ents do not have multiplicative inverses in Z6, as we can check bare-handed
by trying all six possibilities: 2606 = 06, 2616 = 26, 2626 = 46, 2636 = 06,
2646 = 26, 2656 = 46. Nowhere do we get an answer 16.
However, if n is prime then Zn is a field. There are several ways to see this,

of which the following is the least sophisticated but the most direct. Given
rn �= 0n, we look for an inverse by calculating all the products

rn0n = 0n, rn1n = rn, . . . , rn(n – 1)n =?

All of these elements are different, for if

rnkn = rnln

where 0 ≤ k < l < n, then

rn(l – k)n = 0n

so that n divides r(l–k). But each factor lies between 0 and n, and n is prime—
a contradiction.
Now this list of products contains exactly n elements, all different, and

since Zn only has n elements, each must occur precisely once. In particular,
1n occurs somewhere, say at rnkn = ln; and now kn is the required inverse.
Hence Zn is a field if n is prime.
For instance, in Z5, we look for an inverse for 35 by working out 3505 = 05,

3515 = 35, 3525 = 15, 3535 = 45, 3545 = 25, and the products are precisely
the elements of Z5 in the order 05, 35, 15, 45, 25. Among them is 15, and the
inverse of 35 is 25.

Example 10.2: Q(
√
2) = {a + b

√
2 ∈ R | a, b ∈ Q}. This is a field with

zero element 0 + 0
√
2 and unity 1 + 0

√
2. The additive inverse of a + b

√
2 is

–a – b
√
2, and if a + b

√
2 �= 0, its multiplicative inverse is

1
a + b

√
2
=

a – b
√
2

(a + b
√
2)(a – b

√
2)

=
a

a2 – 2b2
+

–b
a2 – 2b2

√
2.

(It is an easy exercise to show that if one of a, b is not 0, then a2 – 2b2 �= 0; in
fact it is the same as proving

√
2 irrational.)

Example 10.3: This will provide a useful counterexample later. It is the
field R(t) of rational functions in an indeterminate t. An element of R(t) is
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most easily described as a quotient of two polynomials,

antn + · · · + a0
bmtm + · · · + b0

,

where a0, . . . , an, b0, . . . , bm ∈ R and not all bs are zero. We can think of
such an expression as giving rise to a function f : D→ R where

D = {x ∈ R | bmxm + · · · + b0 �= 0}

and

f (x) =
anxn + · · · + a0
bmxm + · · · + b0

.

This is a quotient of polynomials in the same way that a rational number is a
quotient of integers, hence the name ‘rational function’.
A formal definition of R(t) can be given as follows. First, a polynomial is

determined by its coefficients a0, . . . , an, so we can define a formal polyno-
mial to be a sequence s :N0→R such that for some n∈N0 we have s(m) = 0
for m > n. Write s(m) = sm and denote s by the sequence (s0, s1, . . . , sr ,
. . . ) on the understanding that sm = 0 from some point on. Addition and
multiplication are defined by

(s0, s1, . . . , sr , . . .) + (p0, p1, . . . , pr , . . .) = (s0 + p0, s1 + p1, . . . , sr + pr , . . .),
(s0, s1, . . . , sr, . . .)(p0, p1, . . . , pr , . . .) = (s0p0, s0p1 + s1p0, . . . , qr , . . .),

where qr = s0pr + s1pr–1 + · · · + srp0.
The sequence (0, 1, 0, 0, . . . ) can be denoted by t, and then

(s0, s1, . . . , sr , . . .) = s0 + s1t + · · · + srtr + · · ·

so we recover the usual notation for a polynomial in t, as long as we identify
s ∈ R with the sequence (s, 0, 0, . . . ). The formal polynomials constitute
a ring.
Using equivalence classes of ordered pairs, in exactly the way that we

constructed Q from Z, we can construct R(t) from the ring of formal poly-
nomials. The sum and product of rational functions are defined in the
customary fashion, and the resulting structure is a field. Finally, we identify
R with the subset of R(t) consisting of functions a0/1, where a0 ∈ R.

It would be possible to exhibit many other interesting rings and fields;
however, those listed above are especially pertinent to this chapter.
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Examples of Ordered Rings and Fields

Next we try to introduce orderings. We say ‘try to’ because the attempt
doesn’t always succeed, and the reasons for the failure are instructive.

(Non-)Example 10.4: Zn cannot be ordered in a way that makes it into
an ordered ring. (Of course it can be ordered in a way that does not fit the
arithmetic, for example,

0n < 1n < 2n · · · < (n – 1)n.

But this does not lead to an ordered ring, for 1n > 0n, (n – 1)n > 0n would
then imply 0n = 1n + (n – 1)n > 0n, which is absurd.)
More generally, suppose we could give Zn an order relation making it into

an ordered ring. Then there is a subset Z+
n of positive elements satisfying

axioms (O1)–(O3). By (O2) either 1n ∈ Z+
n or –1n ∈ Z+

n . Since 1n = 1n× 1n =
(–1n)(–1n), either possibility implies that 1n ∈ Z+

n using (O1). Now (O1) and
induction lead to 2n = 1n+1n ∈ Z+

n , 3n ∈ Z+
n , . . . , (n–1)n ∈ Z+

n . But this gives
the same contradiction as before. Hence Zn cannot be given the structure of
an ordered ring.

Example 10.5: Q(
√
2) can be given the structure of an ordered field in two

different ways.
The first way is to note that Q(

√
2) ⊆ R, and to restrict the usual order

relation on R to Q(
√
2): clearly this gives Q(

√
2) the structure of an ordered

field.
The second way is more subtle. There is a map θ : Q(

√
2) → Q(

√
2)

defined by

θ(a + b
√
2) = a – b

√
2.

Now θ is an isomorphism fromQ(
√
2) to itself (usually called an automorph-

ism), that is, θ is a bijection, and for all x, y ∈ Q(
√
2)

θ(x + y) = θ (x) + θ(y),
θ(xy) = θ (x).

(Check this!) Denoting the first order relation, defined above, by≥, we define
a new relation  by

x  y⇔ θ (x) ≥ θ(y).
You should check that this, too, gives Q(

√
2) the structure of an ordered

field. For example, if x, y  0 then θ (x), θ(y) ≥ θ(0) = 0, so θ(x) θ(y) ≥ 0,
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so θ(xy) ≥ 0, so xy  0. The remaining axioms are proved in the same way.
Note that in this ordering

√
2 ≺ 0.

Remark: This example should be offset against the following fact: Z and Q
can be given the structure of ordered rings (or ordered field in the case of Q)
in only one way. Here is a quick sketch of the reasoning. As we argued for Z+

n ,
we always have 1 > 0 because 1 = 12 = (–1)2. Inductively it follows that the
ordering on Z must have all natural numbers positive, hence using (O2) the
usual negative integers must be negative in the given ordering. So for Z, only
the usual ordering works. Since everything in Q is a quotient of integers, the
same goes for Q (after a little work).

The same holds for R, but the proof requires the fact that every positive
real number has a square root, a fact which needs verifying. It is an easy
consequence of completeness. If x ∈ R and x > 0, let

L = {y ∈ R | y > 0& y2 < x}.

Then L is easily seen to be bounded above and non-empty. By completeness L
has a least upper bound u; a quick contradiction argument shows that u2 = x.
For any ordering making R an ordered field, all elements of the form

y2 (y ∈ R) must be positive, and all elements –y2 must be negative. By what
we have just said, the positive and negative elements ofR (in the usual sense)
must also be positive and negative respectively in any other ordering, since
they are precisely the elements in the required forms. Thus only one ordering
exists making R into an ordered field.

Example 10.6: We can give the field of rational functionsR(t) an ordering
with interesting properties. (This does not give a notion of size to a function,
but it does not prevent us from imposing an ordering that satisfies axioms
(O1)–(O3).) Define

R(t)+ = { f (t) ∈ R(t) | ∃K ∈ R : x ∈ R, x > K ⇒ f (x) ≥ 0},

which means that f (t) is considered positive if and only if f (x) is positive for
all sufficiently large x. (For instance, (t2 – 17)/(5t3 + 4t) is positive in this
sense, but (t + 1)/(3t – t2) is negative.) This, it may be verified, makes R(t)
into an ordered held. If we identify R with the set of constant functions, as
above, then the ordering on R(t) restricts to the usual ordering on R.
Surprisingly, R ⊆ R(t) is now bounded above. In fact, the function f (t) = t

is an upper bound. For if k ∈ R then the function g(t) = f (t) – k = t – k has
the property that g(x) > 0 for all x > k, hence g(t) ∈ R(t)+. This proves that
t is an upper bound for R in R(t).
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This possibility of having ordered fields that contain the real numbers
opens up new avenues in formal mathematics that we will explore later in
chapter 15.

Isomorphisms Again

We have already made use of the concepts ‘isomorphism’ and ‘order iso-
morphism’ in special cases, and we now discuss them in general. Recall that
if R, S are rings then θ : R→ S is an isomorphism if it is a bijection and if for
all r, s ∈ R

θ(r + s) = θ (r) + θ(s),
θ(rs) = θ(r)θ(s). (10.1)

Various axiomatic structures have been proved unique up to isomorphism.
You may wonder why we can’t do better and actually make them unique.
The reason is that this is just too much to ask; in any case, it would present
no real advantages. An isomorphism, after all, is just a change of name (from
r to θ(r)); so given a ring R, we can find lots of isomorphic rings by finding
lots of ways changing the names. In formal terms, let S be any set for which
there exists a bijection θ :R→ S (we don’t assume S is a ring) and use (10.1)
back-to-front, to define ring operations on S by

θ(r) + θ(s) = θ(r + s)
θ(r) θ(s) = θ(rs).

Then S is isomorphic to R.
How do we know that sets S with suitable bijections exist? Take any elem-

ent t whatever, and let S = R × {t}; define θ by θ(r) = (r, t). This is always a
bijection; and different choices of t lead to different choices of S. This shows
how wide a variety of sets S can be found—and this is just one very simple
way to find them.
Since it is the algebraic operations on a ring that are important, not the

elements themselves, an isomorphic ring is just as good as the ring we
start from. So it is too restrictive to expect to specify an algebraic structure
uniquely. On the other hand, uniqueness up to isomorphism is the most that
we ever require.
The same goes for an order isomorphism between two ordered rings R

and S, which in addition to (10.1) satisfies the condition

r ≥ s ⇒ θ(r) ≥ θ(s).
We cease philosophising to point out some useful, simple consequences

of (10.1).
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Lemma 10.7: If θ :R→ S is an isomorphism of rings, then for all r ∈ R,

(a) θ(0) = 0
(b) θ(1) = 1
(c) θ(–r) = –θ (r)
(d) θ(1/r) = 1/θ(r), provided 1/r exists.

Proof: For all r ∈ R, we have r = 0 + r. Applying θ ,

θ (r) = θ(0 + r) = θ (0) + θ (r).

Now θ is onto, so every element of S is of the form θ(r) for some r ∈ R.
Hence

s = θ(0) + s

for all s ∈ S, so by proposition 9.2 of chapter 9, θ(0) = 0. This proves (a), and
(b) is similar. To prove (c),

r + (–r) = 0

so

θ(r) + θ(–r) = θ(0) = 0.

By proposition 9.3 of chapter 9, θ(–r) = –θ(r). This proves (c), and (d) is
similar. �

Definition 10.8: If R is a ring, then a subring of R is a subset S such that

(i) r, s ∈ S⇒ r + s ∈ S
(ii) r, s ∈ S⇒ rs ∈ S
(iii) s ∈ S⇒ –s ∈ S
(iv) 1 ∈ S.

From (iv), (iii), (i) it also follows that 0 = 1 + (–1) ∈ S. For example, Z is a
subring of Q and Q is a subring of R.
As with isomorphisms between rings, it is often sufficient to have a subring

isomorphic to something, instead of actually being that thing.

Definition 10.9: If R is a field, then a subfield S is a subring that satisfies
(i)–(iv) and also satisfies

(v) s ∈ S, s �= 0⇒ s–1 ∈ S.

For example, Q is a subfield of R. These ideas are applied in the next
section.
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Some Characterisations

Proposition 10.10: Every ring R contains a subring isomorphic either to
Z or to Zn for some n.

Remark: Here we must insist that 0 and 1 are different. If we don’t, there is
also the ring {0} in which all operations lead to 0.
Proof: Define θ :Z→R by θ(0) = 0, θ(1) = 1, θ(n + 1) = θ(n) + 1 (using
the recursion theorem) for n > 0, then let θ(–n) = –(θ (n)) for n > 0. An
induction argument shows that

θ(m + n) = θ(m) + θ(n)
θ(mn) = θ(m) θ(n).

If θ is an injection, we’ve finished, for then θ(Z), the image of Z under θ , is a
subring isomorphic to Z.
However, θ might not be injective. In this case there exist r > s ∈ Z such

that θ(r) = θ(s). Therefore θ(r – s) = θ (r) – θ(s) = 0. Using the well ordering
property, let n be the smallest natural number such that n �= 0, θ(n) = 0. It
follows that θ(0), θ (1), . . . , θ(n – 1) are all different, for if θ(r) = θ(s) with
0 < r < s < n, then θ(s – r) = 0 and this contradicts the definition of n.
Also, if

u – v = qn (u, v, q ∈ Z),

then

θ (u) – θ(v) = θ(u – v) = θ(qn) = θ(q) θ(n) = θ (q)0 = 0.

Hence, using our notation for Zn, if un = vn then θ(u) = θ(v).
Wemay therefore define amap ϕ : Zn → R by ϕ(un) = θ(u). The previous

remark shows that ϕ is well defined. Now

ϕ(un + vn) = ϕ((u + v)n) = θ(u + v) = θ (u) + θ (v) = ϕ(un) + ϕ(vn),
ϕ(unvn) = ϕ((uv)n) = θ(uv) = θ(u)θ(v) = ϕ(un)ϕ(vn).

Since θ(0), . . . , θ(n – 1) are all different, ϕ(0n), . . . ,ϕ((n – 1)n) are all
different, so ϕ is an injection. Thus ϕ(Zn) is a subring of R isomorphic
to Zn. �

For fields we get a similar result:

Proposition 10.11: Every field F contains a subfield isomorphic either to
Q or to Zp where p is prime.
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Proof: Using proposition 10.10, F contains a subring S isomorphic to Z or
to Zn.
Suppose that S is isomorphic to Z, with θ :Z→ S an isomorphism. Define

ϕ : Q → F by

ϕ(m/n) = θ(m)/θ(n) (m, n ∈ Z, n �= 0).

Notice that n �= 0 ⇒ θ(n) �= 0, since θ is injective, so the right-hand side
makes sense. Now ϕ is injective, for if ϕ(m/n) = ϕ(r/s) then

θ(m)/θ(n) = θ(r) / θ(s)

so

θ(ms) = θ(m)θ(s) = θ(r)θ(n) = θ(rn),

hencems = rn and thereforem/n = r/s. It is now easy to check that ϕ(Q) is a
subfield isomorphic to Q.
Now suppose that S is isomorphic to Zn. If n is composite, n= qr, then

ϕ(qn), ϕ(rn) are zero-divisors in F. But a field F has no zero-divisors
(if xy = 0 and y �= 0, then x = xyy–1 = 0y–1 = 0). Therefore n is a prime,
say n = p; and since Zp is a field we have found a subfield of F isomorphic
to Zp. �

Next we bring in the order relation.

Proposition 10.12: Every ordered ring contains a subring order iso-
morphic to Z.
Proof: By proposition 10.10 it contains a subring isomorphic to Z or to Zn.
The proof that Zn cannot be made an ordered ring also shows that it cannot
be a subring of an ordered ring. The proof that the ordering on Z is unique
shows that the subring isomorphic to Z is also order isomorphic to Z. �

Similarly:

Proposition 10.13: Every ordered field contains a subfield order iso-
morphic to Q.
Proof: Eliminate the possibility Zp as in proposition 10.11; then use unique-
ness of the order on Q. �

These two propositions give simple axiomatic characterisations of Z
and Q :
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Z is a minimal ordered ring (that is, Z is an ordered ring with no proper
subring);
Q is a minimal ordered field (that is, Q is an ordered field with no proper
subfield).

These properties define Z and Q uniquely up to isomorphism. For by
proposition 10.12, any minimal ordered ring must be isomorphic to Z, and
by proposition 10.13, any minimal ordered field must be isomorphic to Q.
Finally, we turn to complete ordered fields. To deal with these we must

extend to them notions such as ‘limit’ and ‘Cauchy sequence’. Thus let F be
an ordered field. By proposition 10.13 it contains a subfield order isomorphic
to Q, and by change of notation we may assume without loss of generality
that this subfield is Q itself. We say that a sequence (an) of elements of F is
Cauchy if:

for every ε > 0, ε ∈ F, there exists N ∈ N0 such that |am – an| < ε for m,
n > N.

The sequence (an) tends to a limit λ ∈ F if

for every ε > 0, ε ∈ F, we can find N ∈ N0 such that |an – λ| < ε for all
n > N.

These are the previous definitions in a broader context. As before, we write

lim
n→∞ an = λ or lim an = λ.

The key result is:

Lemma 10.14: In a complete ordered field, every Cauchy sequence has a
limit.
Proof: Let (an) be a Cauchy sequence in F. By the argument of lemma 9.15
of chapter 9 (carried out in F) the sequence is bounded. Hence so is every
subset of elements in the sequence. Define

bN = the least upper bound of {aN , aN+1, aN+2, . . .}.

This exists by completeness. Clearly

b0 ≥ b1 ≥ b2 ≥ · · ·
and the sequence (bn) is bounded below—say, by any lower bound for (an).
Hence we can define

c = the greatest lower bound of (bn).
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We claim that c is the limit of the original sequence (an).
To prove this, let ε > 0. Suppose that there exist only finitely many values

of n with

c – 1
2ε < an < c + 1

2ε.

Then we may choose N such that for all n > N,

an ≤ c – 1
2ε or an ≥ c + 1

2ε.

But there exists N1 > N such that ifm, n > N1 then |am – an| < 1
2ε. Hence

for all n>N1, an ≤ c – 1
2ε,

or

for all n>N1, an ≥ c + 1
2ε.

The latter condition implies that there exists some m with an > bm for all
n > N1, which contradicts the definition of bm. But the former implies that
we may change bN1 to bN1 – 1

2ε, which again contradicts the definition of bN1 .
It follows that for anyM there existsm > M such that

c – 1
2ε < am < c + 1

2ε.

Since (an) is Cauchy, there exists M1 > M such that |an – am| < 1
2 ε for

m, n > M1. Hence for n > M1,

c – ε < an < c + ε.

But this implies that lim an = c as claimed. �

The next step is:

Lemma 10.15: Let F ⊇ Q be a complete ordered field. If x ∈ F then there
exists p ∈ Z such that p – 1 ≤ x < p.
Proof: Suppose n ≤ x for all n ∈ Z. Then Z is bounded above by x, so by
completeness has a least upper bound k. Hence n + 1 ≤ k for all n ∈ Z,
because also n+ 1 ∈ Z. This implies that n ≤ k – 1, so k – 1 is a smaller upper
bound for Z. This contradicts the definition of k. Therefore x < n for some
n ∈ Z Similarly m < x for some m ∈ Z. Since there are only finitely many
integers between m and n, we can find an integer p that is the smallest such
that x < p. Then p – 1 ≤ x < p. �
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As a final preparatory step:

Lemma 10.16: Let F be a complete ordered field, and let (an) and (bn) be
two sequences with limits a and b respectively. Then

(a) lim (an + bn) = a + b
(b) lim (anbn) = ab.

Proof: For (a), copy the proof of theorem 7.1 in chapter 7 and check that for-
mally it still makes sense. For (b), use the argument of lemma 9.15, chapter 9,
to show that for all n ∈ N0, |an| < A, |bn| < B for some A, B ∈ F. Then if
ε > 0 we have ε/(A + B) > 0. Hence there exists N1 such that for n > N1,

|an – a| < ε/(A + B)

and there exists N2 such that for n > N2

|bn – b| < ε/(A + B).

Hence for n > N = max(N1,N2),

|an bn – ab| = |(an – a)bn + a(bn – b)|
< (ε/(A + B))B + Aε/(A + B)

= ε.

This proves (b). �

For R we get an even stronger statement than propositions 10.12 and 10.13.

Theorem 10.17: Every complete ordered field is order isomorphic to R.
Proof: Let F be a complete ordered field. By proposition 10.13 it has a subfield
order isomorphic to Q. As usual, for notational convenience we identify this
subfield with Q, so that without loss of generality Q ⊆ F.
Elements of R are equivalence classes [an] of Cauchy sequences (an) of

rationals. Define a map θ :R→ F by

θ([an]) = lim
x→∞ an.

First we need to check that this makes sense. The reason for this is that, in
the construction of R from Q, we defined a Cauchy sequence (an) to have
terms an ∈ Q and in the definition we used only rational values for ε. When
we speak of the limit in F, we need to allow any ε > 0 that belongs to F. We
claim that given ε > 0 where ε ∈ F, there is a rational ε′ with 0 < ε′ < ε.
To prove this, note that 1/ε ∈ F and, by lemma 10.15, 1/ε < p for some
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p ∈ Z. Then p > 0, and 0 < 1/p∈Q. Take ε′ = 1/p∈Q. Now because (an)
is Cauchy in Q, it follows that there exists N ∈ N0 such that for allm, n > N

|am – an| < ε′.

Hence for allm, n > N,

|am – an| < ε,

and (an) is Cauchy in F. By lemma 10.14, lim an exists in F.
It is easy to see, using similar arguments, that θ is well defined and inject-

ive; and lemma 10.16 proves that θ(R) is a subring of F isomorphic to R. It is
easy to check that θ preserves the order relation.
It remains to prove that θ is surjective. Let x ∈ F. By lemma 10.15 there

exists an integer a0 with a0 ≤ x < a0 +1. Inductively (and using lemma 10.15
again) we can find integers ai between 0 and 9 such that

a0 +
a1
10

+ · · · + an
10n

≤ x < a0 +
a1
10

+ · · · + an + 1
10n

.

Then if bn = a0 + a1
10 + · · · + an

10n we have

|bn – x| < 1/10n

and it follows easily (using a similar argument to that in the second para-
graph of this proof ) that

lim bn = x.

Also (bn) is Cauchy in Q, hence [bn] ∈ R, and

θ(bn) = lim bn = x.

Therefore θ is surjective. �

The Connection with Intuition

We can now tidy up our ideas a little more. We have two types of model of
the relevant axiom systems: formal models N0,Z,Q,R, and informal models
N, Z, Q, R. Now we explain, plausibly and intuitively, why R is a complete
ordered field. Then on this intuitive level theorem 10.17 tells us that R and R
are isomorphic. That is, the formal construction vindicates intuition, and can
be used to justify all of the properties that we expect in R. We have therefore
reached the stage where it doesn’t greatly matter whether we use the informal
R or the formal R. The work we have done renders both equally safe, and
there is now no essential difference between them.
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Why, then, did we bother? Because we don’t know this until we’ve gone
through the constructions.
To summarise: this chapter and the last show between them that we can

build up the number systems in two ways. Either we

(a) postulate the existence of N0 and construct Z,Q,R in turn;

or we

(b) postulate the existence of R and construct Q,Z,N0 in turn.

By judicious combination of the two methods we can therefore start any-
where, such as Z, or Q, and obtain the remaining systems by using chapter 9
to work upwards and this one to work downwards. And the uniqueness
theorems proved in this chapter show that it makes no essential difference
which method we use: the results are always isomorphic and agree with our
intuitive ideas. Precisely where we start has now become a matter of taste ra-
ther than a matter of urgency. From any of the different starting points we
can provide an equally logical development of all of the usual number sys-
tems, and recover all of the standard results of elementary arithmetic, from
an axiomatic basis.

Exercises

1. Write out a full proof of proposition 10.13.
2. Prove that in any ordered field F,

a2 + 1 > 0 for all a ∈ F.

Deduce that if the equation x2 + 1 = 0 has a solution in a field, that
field cannot be ordered. Find all the solutions of x2+1 = 0 in the fields
Z2, Z3, Z5.

3. Use the Euclidean algorithm to show that given m, n ∈ N, there is a
technique for calculating a, b ∈ Z such that am + bn = h, where h is
the highest common factor of m, n. Deduce that if m, n are coprime,
then there exist integers a, b such that am + bn = 1. Find a, b when
m = 1008, n = 1375. Calculate the multiplicative inverse of 10081375
in Z1375.
Show thatmn has a multiplicative inverse in Zn if and only ifm and

n are coprime.
4. In an ordered ring, prove that for all x, y

||x| – |y|| ≤ |x + y| ≤ |x| + |y|.

226 | 10 REAL NUMBERS AS A COMPLETE ORDERED FIELD



5. From the axioms of a complete ordered field, prove that every posi-
tive element a of R has a unique positive square root. (Hint: consider
{x ∈ Q | x2 ≤ a}.)

6. Prove by induction that 0 ≤ a ≤ b⇒ an ≤ bn in an ordered ring R.
Given a ∈ R, a ≥ 0, show that if there exists an element r ∈ R such
that r ≥ 0 and rn = a, then it is unique.

7. Show that every positive element in a complete ordered field has a
unique nth root. (Hint: Consider {x | xn ≤ a}.)

8. Use exercise 7 to define xp/q for a positive element x in a complete
ordered field and a rational number p/q.

9. Define a fieldQ(
√
3) analogous toQ(

√
2) and show that there are two

different ways of making it into an ordered field.
10. Show that the two orderings mentioned forQ

(√
2
)
are the only order

relations under which it is an ordered field.
11. Find a field with exactly four different orderings which make it an

ordered field.
12. Let R [t] be the ring of polynomials p(t) = antn + an–1tn–1 + · · · + a0

with real coefficients. Define the relation≥ by

p(t) ≥ q(t)⇔ p(0) ≥ q(0).

Does this make R[t] into an ordered ring?
13. Cauchy sequences in a general ordered field

In our construction of R from Q we started with Cauchy sequences
in Q and defined a Cauchy sequence using a value of ε ∈Q. In lemma
10.6, we were able to show that in a complete ordered field F a Cauchy
sequence using any value of ε ∈ F will also converge. But what
happens in an ordered field that is not complete?
Consider the relationship between the following definitions in any

ordered field F:

A sequence (an) in F is said to converge to the limit a ∈ F if given
ε ∈ F ∃N ∈ N such that n > N ⇒ |an – a| < ε.
A sequence (an) in an ordered field F is said to be a Cauchy se-
quence in F if given ε ∈ F ∃N ∈ N such thatm, n > N ⇒ |am–an|
< ε.

The field F is said to be Cauchy complete if all Cauchy sequences in F
tend to a limit in F.
(a) Prove using the completeness axiom (C) that a complete ordered

field is Cauchy complete.
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(b) Prove that a complete ordered field satisfies Archimedes’ condi-
tion:

if e ∈ F, e > 0, then 1/10n < e for some n ∈ N.

14. Let F = R(t) be the field of example 10.3, page 214. Let ε = 1/t.
(a) Show that 0 < ε < 1/n for all n ∈ N.
(b) Using the general definition of limit (from question 13), prove

that the sequence (1/n) does not tend the limit 0 in F.
(c) Show that in a complete ordered field, the sequence 1/n → 0.
(d) Prove that an ordered field F is complete if and only if it satisfies

both Cauchy completeness and Archimedes’ condition.
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chapter 11

Complex Numbers
and Beyond

Complex numbers are still regarded by some with a mixture of suspi-
cion and awe, but to a modern mathematician they are just a simple
set-theoretic extension of the real numbers. In this chapter we show

how to construct them fromR, completing the standard hierarchy of number
systems N0 ⊆ Z ⊆ Q ⊆ R ⊆ C.
We could go on to look for an extension of C. The nineteenth century

mathematician Sir William Rowan Hamilton found one, which he named
the quaternions. We describe this briefly, just to show what’s involved. How-
ever, themoral ofmodernmathematics is that wemust broaden our horizons
and look to axiomatic systems that describe more general mathematical
structures. The concept of number is but a part of this study.
Modern algebra concerns itself with axiomatic systems which, broadly

speaking, consist of sets with various operations on them.We’ve already met
two, namely rings and fields, but there are many others. This is not an alge-
bra book, so we won’t study any of them in detail, but it’s worth mentioning
the important ones. Looking beyond complex numbers, the more fruitful
direction is not towards Hamilton’s quaternions, but to the generalised al-
gebraic structures of modern algebra. However, quaternions do have their
place, and in some areas of today’s mathematics they are important in their
own right.

Historical Background

In chapter 1 we mentioned the problems associated with the acceptance
of complex numbers as a genuine concept. It’s worth pausing briefly to
look at a historical outline, because it may help you to become aware of
misconceptions that often occur.
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At the beginning of the sixteenth century there was much interest in
solving algebraic equations, one of which was:

Find two numbers whose sum is 10 and product is 40.

In modern notation this problem leads to the equations

x + y = 10,
xy = 40.

Substituting for y from the first equation into the second, we find

x (10 – x) = 40,

so

x2 – 10x + 40 = 0,

with solutions

x =
+10±√ (100 – 160)

2
= 5±√ (–15).

If x = 5 +
√

(–15) then y = 5 –
√

(–15), so the solution is the pair of
expressions

5 +
√

(–15) , 5 –
√

(–15).

Sixteenth-century mathematicians realised that these expressions could
not be real numbers. The square of any real number is positive, so –15 is
not the square of a real number, and

√
(–15) cannot be real. Neverthe-

less, manipulating these expressions, as if they were numbers, they found
that whatever

√
(–15) might be, when they added the solutions, the terms

±√ (–15) cancelled, giving

(5 +
√
(–15)) + (5 –

√
(–15)) = 10,

and when they multiplied them, they got

(5 +
√
(–15))(5 –

√
(–15)) = 52 – (

√
(–15))2

= 25 – (–15)
= 40.

In short, by treating
√

(–15) as an ‘imaginary’ number and manipulating it
algebraically as if its square is –15, the expressions 5 +

√
(–15), 5 –

√
(–15)

solve the problem.
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Any positive real number a has a positive square root
√
a. The square root

of a negative real number –a (a > 0), if there were such a thing, could be writ-
ten

√
(a) =

√
(–1)

√
a. The eighteenth-century mathematician Leonhard

Euler introduced the symbol i for
√

(–1) , so that
√

(–a) = i
√
a. An ex-

pression of the form x + iy where x, y ∈ R was called a complex number,
though it was still not clear what this really was. Using complex numbers,
any quadratic equation

ax2 + bx + c = 0 (a, b, c ∈ R)

has solutions of the form

x =
–b±√b2 – 4ac

2a
for b2 ≥ 4ac,

and

x =
–b ± i

√
4ac – b2

2a
for b2 < 4ac.

In other words, if b2 ≥ 4ac then the equation has real solutions, but if
b2 < 4ac it does not—but it does have complex ones.
At the time, this discovery set up a dichotomy between real (in the sense of

genuine) and imaginary (in the sense of non-existent) solutions to equations.
Complex numbers were saddled with the psychological overtones associ-
ated with the word ‘imaginary’. (‘Complex’ did not mean ‘complicated’; it
meant ‘composed of several parts’, namely x and y. It still means that, but the
psychological overtones get worse if you think it means ‘complicated’.)
In 1806 the French mathematician Jean-Robert Argand described a com-

plex number x + iy as a point in the plane:

Fig. 11.1 A complex number as a point in the plane
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The horizontal axis became the real axis, the vertical axis the imaginary
axis, and the number i was seen as the point one unit up on the imaginary
axis.

Fig. 11.2 The real and imaginary axes

This description was given the name ‘Argand diagram’, and it is by this
name that the picture of complex numbers as points in the plane is often
known today, although the idea was put forward earlier in the doctoral
thesis of the great German mathematician Carl Friedrich Gauss (1799), and
even this was predated by the little-known work of the Danish surveyor
CasparWessel (1797)—such are the vagaries of historical acknowledgement.
Although the complex numbers were now described concretely as points
in the plane, the mystification of earlier eras still shrouded them for most
people. Gauss realised that the description could be made even simpler: he
clearly regarded a complex number as a pair (x, y) of real numbers. In the
1830s, the Irish mathematician Hamilton canonised complex numbers as
‘couples of real numbers’ (a couple being his name for an ordered pair). This
is the heart of the matter and the key to the modern description: a point in
the plane is an ordered pair (x, y), and the symbol x + iy is just another name
for that point or that pair. The mysterious expression i is none other than
the ordered pair (0, 1).

Construction of the Complex Numbers

We often describe Argand’s representation of complex numbers as the ‘com-
plex plane’, but as a set it is precisely the same as the ‘real plane’ R2.1
However, in this context, it is useful to introduce a special notation C as
an alternative name for R2, the set of ordered pairs (x, y) for x, y ∈ R2. We
then define addition and multiplication on C by

1 Modern algebraic geometers call C the complex line. To them the complex plane is
C2 = C× C. You just have to get used to this kind of thing.
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(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (11.1)
(x1, y1)(x2, y2) = (x1x2 – y1y2, x1y2 + x2y1). (11.2)

It is a simplematter to check thatC is a field under these operations with zero
(0, 0) and unit (1, 0). The negative of (x, y) is (–x, –y) and if (x, y) �= (0, 0),
the multiplicative inverse of (x, y) is(

x
x2 + y2

,
–y

x2 + y2

)
.

Define f : R → C by f (x) = (x, 0). Then

f (x1 + x2) = (x1 + x2, 0) = (x1, 0) + (x2, 0) = f (x1) + f (x2)

and

f (x1x2) = (x1x2, 0) = (x1, 0) (x2, 0) = f (x1) f (x2) .

The function f is clearly an injection and so is an isomorphism of fields, from
R onto the subfield f (R) ⊆ C. This subfield f (R) is none other than the ‘real
axis’ of Argand’s description.
As usual, we consider R to be a subset of C via this isomorphism, which

amounts to regarding the real numbers as the real axis in the complex plane
and replacing the symbol (x, 0) by x.
Define i to be the ordered pair (0, 1). Using (11.2),

i2 = (0, 1)2 = (–1, 0) .

Thinking of (–1, 0) as the real number –1, this gives i2 = –1.
More generally, using (11.1) and (11.2),

(x, 0) + (0, 1)(y, 0) = (x, 0) + ( 0, y) = (x, y).

Replacing (x, 0), (y, 0) by x, y ∈ R respectively, we get

x + iy = (x, y).

The complex number x + iy is another name for the ordered pair (x, y).

Comment There is an occasional misconception that a complex number is
x + iy where x, y are real and y �= 0, reserving the name ‘real number’ for
x + iy where y = 0. Mathematicians regard all expressions x + iy

(
x, y ∈ R

)
as

complex numbers, and this includes real numbers.
Returning to the definitions of addition andmultiplication, (11.1) and (11.2)

in this notation, we find
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(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),
(x1 + iy1) + (x2 + iy2) = (x1x2 – y1y2) + i(x, x2 + x2y1).

We thus recover the usual addition and multiplication rules for complex
numbers, which is why definitions (11.1), (11.2) were set up in the first place.
Historically, in the expression x + iy, x is referred to as the ‘real part’ and

y as the ‘imaginary part’. Both x and y are real numbers, being the first and
second coordinates of the ordered pair (x, y) ∈ R2. If

x1 + iy1 = x2 + iy2

then

(x1, y1) = (x2, y2),

and by the usual properties of ordered pairs,

x1 = x2, y1 = y2.

Historically this deduction was referred to as ‘comparing real and imagin-
ary parts’; we now see it as an application of the set-theoretic definition of
ordered pairs.
A modern interpretation of the solution of the quadratic x2 – 10x + 40 = 0

is that there are no solutions in R, but if we consider this as an equation in
C, there are solutions 5 ± i

√
15. This behaviour is no more ‘complex’ than

what happens with the equation 2x = 1 in N and Q. There is no solution in
N, but in Q there is the solution x = 1

2 .
Time and again in mathematics, a problem has no solution in a given

context, but it does have one when interpreted in a wider context. Don’t be
surprised by this phenomenon, or give it unwarranted mystical significance.
More gadgets to solve something may lead to more solutions.

Complex Conjugation

A complex number x + iy is also denoted by a single symbol z (or any other
suitable letter, for that matter). When we write z = x + iy, we always suppose
that x, y ∈ R, unless something is stated to the contrary.
If z = x + iy, with x, y ∈ R, then the real part of z is

Re(z) = x

and the imaginary part of z is

Im(z) = y.
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We also define the conjugate of z = x + iy to be

z̄ = x – iy.

For instance, 3 + 2i = 3 – 2i, 1 – 2i = 1 + 2i, and so on. Conjugation has
certain elementary properties, which we collect together as:

Proposition 11.1:

(a) z1 + z2 = z̄1 + z̄2
(b) z1z2 = z̄1z̄2
(c) ¯̄z = z
(d) z = z̄⇔ z ∈ R.

Proof: Elementary checking of definitions. �

If we define c : C → C by c (z) = z̄, then proposition 11.1 tells us that c is an
automorphism of the field C, and that it is the identity when restricted to R.

The Modulus

If z = x + iy where x, y ∈ R, then x2 + y2 ≥ 0. Any positive real number has a
unique positive square root. Themodulus or absolute value of z ∈ C is

|z| =
√
x2 + y2.

For instance, |3 + 2i| = √32 + 22 =
√
13, |–5| = √25 = 5. In particular, for

any real number x, |x| = √x2 and, since the positive square root is taken, this
reduces to the usual definition of modulus in the real case,

|x| =
{
x for x ≥ 0
–x for x < 0 for x ∈ R.

In geometric terms, the modulus is the distance from the origin to the
point x + iy in the complex plane.

Fig. 11.3 The distance from the origin
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If z1 = x1 + iy1, z2 = x2 + iy2, then

|z1 – z2| = |(x1 – x2) + i(y1 – y2)| =
√
(x1 – x2)2 + (y1 – y2)2.

This is the distance from the point z1 to the point z2 in the plane:

Fig. 11.4 The modulus of a complex number

Proposition 11.2:

(a) |z| ∈ R, |z| ≥ 0 for all z ∈ C
(b) |z| = 0⇔ z = 0
(c) |z|2 = zz̄
(d) |z1z2| = |z1||z2|
(e) |z1 + z2| ≤ |z1| + |z2|.

Proof: Parts (a) and (b) are straightforward. Part (c) follows from the
definitions, for if z = x + iy then

zz̄ = (x + iy)(x – iy) = x2 – (iy)2 = x2 + y2 = |z|2 .
(d) Since |z| ≥ 0 for all z ∈ C, it is sufficient to show

|z1z2|2 = |z1|2 |z2|2 .
But

|z1z2|2 = (z1z2) (z1z2) by 11.2(c)
= z1z2z̄1z̄2 by 11.1(b)
= z1z̄1z2z̄2
= |z1|2 |z2|2 .
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(e) A frontal attack on this equality leads to some intricate algebra, which
can be forced through. However, we can be more refined, but less direct, by
writing z1 = x1 + iy1, z2 = x2 + iy2 and considering the identity

(x21 + y21) (x
2
2 + y22) – (x1x2 + y1y2)2 = (x1y2 – x2y1)2,

which immediately tells us that

(x1x2 + y1y2)2 ≤ (x21 + y21)(x
2
2 + y22) = |z1|2|z2|2.

Taking square roots yields

x1x2 + y1y2 ≤ |z1| |z2| ,
which is valid even if x1x2 + y1y2 is negative. Hence

2(x1x2 + y1y2) ≤ 2 |z1| |z2|,
which gives

x21 + 2x1x2 + x22 + y21 + 2y1y2 + y22 ≤ x21 + y21 + 2 |z1| |z2| + x22 + y22;

this simplifies to

(x1 + x2)2 + (y1 + y2)2 ≤ |z1|2 + 2 |z1| |z2| + |z2|2 ,
which is

|z1 + z2|2 ≤ (|z1| + |z2|)2 .
Since the modulus is positive, we can take square roots to give

|z1 + z2| ≤ |z1| + |z2| . �

Part (c) of this proposition gives a nice description of the reciprocal of
z = x + iy when z �= 0, for then |z|2 = x2 + y2 �= 0, so the equation zz̄ = |z|2
implies

zz̄/ |z|2 = 1,

so

z–1 = z̄ / |z|2 .
It is also worth emphasising that, although part (e) of the proposition

involves an inequality, this is between two real numbers |z1 + z2| and
|z1| + |z2|.
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Although the subfield R is an ordered field, C is not an ordered field. We
can order C in the sense of chapter 4; for instance, we can define the relation
≥ by

x1 + iy1 ≥ x2 + iy2 ⇔ either x1 ≥ x2 or x1 = x2 and y1 ≥ y2.

This is certainly an order relation. However, it does not blend happily with
the arithmetic; for instance

z1 ≥ 0, z2 ≥ 0 � z1z2 ≥ 0,

as is demonstrated by the example

i ≥ 0, but i2 = –1 � 0.

There is no way to define an order on C which fits with the arithmetic on
C so as to make C an ordered field in the sense of chapter 9. Doing so would
require a subset C+ ⊆ C such that

(i) z1, z2 ∈ C+ ⇒ z1 + z2 ∈ C+ and z1z2 ∈ C+,
(ii) z ∈ C ⇒ z ∈ C+ or – z ∈ C+,
(iii) z ∈ C+ and – z ∈ C+ ⇒ z = 0.

But (ii) gives i ∈ C+ or –i ∈ C+; in the first case (i) implies i2 ∈ C+, in
the second (–i)2 ∈ C+, so in either case –1 ∈ C+. Applying (i) again we
find (–i)2 ∈ C+, so 1 ∈ C+. This contradicts (iii) because 1, –1 ∈ C+ but
1 �= 0. Because of this lack of an order on C, inequalities between complex
numbers like z1 > z2 are nonsense unless the numbers involved are real. A
formula like |z1| > |z2| is perfectly feasible, because |z1| , |z2| ∈ R and the
real numbers are an ordered field.

Euler’s Approach to the Exponential Function

In the next section we define the exponential ez of a complex number z us-
ing the real exponential and trigonometric functions. We establish the basic
property ez+w = ezew.We relate trigonometric functions to the complex expo-
nential, and prove De Moivre’s Theorem, an effective way to prove certain
basic trigonometric formulas. We use the results to give a geometric inter-
pretation of addition and multiplication of complex numbers. The complex
exponential will also be used in chapter 13 to study the symmetries of regular
polygons.
First, however, we make a few remarks about the history of the ideas con-

cerned. A lengthy historical development led to the remarkable insight that
in the world of complex numbers, trigonometric and exponential functions
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are intimately related; in fact, two aspects of the same idea. The relationship
was first discovered by Euler by manipulating the power series for the
complex exponential, sine and cosine functions.
His method was purely algebraic, dealing with infinite series. He wrote the

exponential function as

ez = 1 +
z
1!

+
z2

2!
+
z3

3!
+ · · · + zn

n!
+ · · ·

and assumed that the series worked for a complex number z. He then wrote
out the power series for sine and cosine (again for a complex number z) as

sin z = z –
z3

3!
+
z5

5!
· · · + (–1)n

z2n–1

(2n – 1)!
+ · · ·

and

cos z = 1 –
z2

2!
+
z4

4!
· · · + (–1)n

z2n

(2n)!
+ · · ·

and substituted z = iθ to give the remarkable equation

eiθ = cos θ + i sin θ .

He could then take θ = π , where cosπ = 0 and sinπ = –1, to get the
relationship

eiπ = –1.

You can bet that Euler was pleased with this!
In fact, if you multiply this equation by minus one, you get the equation

–eiπ = 1

in which four of the most problematic aspects of arithmetic—theminus sign,
the irrational numbers e and π and the complex number i—all combine
together to give the simple number 1.
In this book our goal is to focus on the mathematical foundations, so the

study of complex power series is postponed to a later course (see, for ex-
ample, [34]). In such a course, once the theory of power series has been
developed, we can provide very elegant proofs of these results, including the
formula for cos(A+B) and sin(A+B) for A, B not only real, but also complex.
However, at this point, it is instructive to attack the problem in a direct way
using only real exponential and trigonometric functions and their properties
derived in more elementary mathematics.
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Addition Formulas for Cosine and Sine

The most important properties of trigonometric functions, in this connec-
tion, are the addition formulas for cosine and sine:

cos(A+B) = cosA cos B – sinA sin B, (11.3)
sin(A+B) = sinA cos B + cosA sin B. (11.4)

You may have seen a geometric proof of these, but this may be in terms of
right-angled trigonometry in right-angled triangles where the angles con-
cerned are less than a right angle. In this case, we take an angle A and
consider a right triangle with one angle equal to A, as in figure 11.5 (left).
Then, with the triangle sides as shown, we define

cosA = x/r, sin A = y/r, (11.5)

and remark that by similar triangles these ratios do not depend on r. In par-
ticular, we could set r = 1 from the start. (The tangent is given by tan A = y/x,
but here we focus just on the cosine and sine.)

Fig. 11.5 Relationships in a right-angled triangle

This approach initially assumes that A is an acute angle: 0 ≤ A ≤ π/2.
If A is an obtuse angle, so that π /2 < A ≤ π , the natural right triangle lies
to the left of the y-axis, so x is negative. The internal angle of the triangle is
π – A. Using (11.5) in this new context, we see that

cos A = – cos(π – A) sinA = sin(π – A) (11.6)

for π /2 < A ≤ π .
It is possible to continue like this, extending to the ranges π < A ≤ 3π /2

and 3π /2 < A ≤ 2π . Then all other real values for A can be dealt with using
periodicity:

cos(A + 2π ) = cosA, sin(A + 2π ) = sinA.
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However, this approach involves a lot of cases and gets quite complicated.
Here we present an alternative approach, which takes a detour through com-
plex numbers. Along the way, we define cos A and sinA for all real A, and
deduce (11.3), (11.4) for all real A, B. Finally, we verify that the resulting ex-
tensions of cos and sin to the entire real line agree with those obtained by
extending the range of values for A on a case-by-case basis.

Theorem 11.3: If 0 ≤ A, B ≤ π/2 then (11.3), (11.4) are valid.

Fig. 11.6 The proof of the formula for sin(A+B)

Proof: Wemay assume that r = 1 for simplicity. Consider figure 11.6, which
tacitly assumes not only that 0 ≤ A, B ≤ π /2, but that 0 ≤ A+B ≤ π/2.
Assume for the moment that this is true.
In figure 11.6, the three important right triangles are

OWX, which tells us about sinA and cosA,
OPY, which tells us about sin B and cos B,
OSY, which tells us about sin(A+B) and cos(A+B).

By the definition of sine and cosine,

OW = cosA,
WX = sinA,
OP = cos B,
PY = sin B.

We also need to know that triangles OQP and AWX are similar. The scale
factor here is the ratio OP : OX, which is cos B : 1. So triangle OQP has the
same shape as AWX, but its size is multiplied by cos B.
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Now cos(A+B) = OS = OQ – QS.
By the remark on similar triangles, OQ : OW = cos B, so

OQ = OWcos B = cosA cos B.

Also, triangle YMP is similar to OWX with scale factor YP : OX = sin B, so

QS = PY sin B = sinA sin B.

Therefore

cos(A+B) = cosA cos B – sinA sin B,

which is (11.3). The proof for sin(A+B) is similar, based on sin(A+B) = YS =
YM +MS.
What if A+B > π /2? Now the picture is similar to figure 11.6, but Y is to the

left of the vertical axis. The same line of argument works, but it is necessary
to use (11.6) and be careful about signs. �

Wenow link the trigonometric functions to the complex exponential func-
tion, starting with an angle θ in the range 0 ≤ θ ≤ π /2. For such we
define

eiθ = cos θ + i sin θ . (11.7)

We can use (11.3), (11.4) to prove:

Lemma 11.4: If 0 ≤ θ , φ ≤ π /2, then
ei(θ+φ) = eiθeiφ .

Proof: From (11.7),

ei(θ+φ) = cos(θ + φ) + i sin(θ + φ).

Since 0 ≤ θ , φ ≤ π /2 we can appeal to (11.3), (11.4) to get

ei(θ+φ) = cos(θ + φ) + i sin(θ + φ)
= cos θ cosφ – sin θ sinφ + i(sin θ cosφ + cos θ sinφ)
= (cos θ + i sin θ)(cos φ + i sinφ)
= eiθeiφ . �

The next step is to extend the definition of the exponential of iθ to any real
number θ . The main point is that putting θ = π/2 in equation (11.7) tells us
that

eiπ/2 = cos(π/2) + i sin(π /2) = 0 + i.1 = i.
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We therefore define

ei(θ+π /2) = ieiθ . (11.8)

Initially, we know what eiθmeans only when 0 ≤ θ ≤ π/2. Use (11.8) with
θ in this range to define eiθ in the range π/2 ≤ θ ≤ π . Observe that there is
no contradiction at π/2 since (11.8) applied with θ = 0 gives eiπ /2 = i.
Inductively, we can now extend the range to all positive real θ by repeat-

edly multiplying by i. Moreover, if we replace θ by –θ in (11.8) and divide
through by i we get

ei(θ–π/2) = –ieiθ ,

so we can also extend the definition to negative real numbers θ . Again, the
definition is consistent whenever the endpoints of ranges of θ coincide.
A direct consequence of (11.8) is:

Lemma 11.5: For any θ ∈ R,

ei(θ+2π) = eiθ .

Proof: By (11.8) applied four times,

ei(θ+2π) = iei(θ+3π/2) = i2ei(θ+π ) = i3ei(θ+π/2) = i4eiθ = eiθ ,

since i4 = 1. �

Having defined the exponential of iθ for all real θ , we can use (11.7) in the
opposite direction to define cos and sin for all real θ :

Definition 11.6:

cos θ = Re eiθ , sin θ = Im eiθ .

This definition makes both sin and cos periodic with period 2π , as we
would expect:

Proposition 11.7: For any θ ∈ R,

sin(θ + 2π) = sin θ ,
cos(θ + 2π) = cos θ .

Proof: Use lemma 11.5 and equate real and imaginary parts. �

Using the formulae for sin(A+B) and cos(A+B), for real values we can then
establish:
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Proposition 11.8:

ei(x+y) = eixeiy for x, y ∈ R.

Proof:

ei(x+y) = cos(x + y) + i sin(x + y)
= cos x cos y – sin x sin y + i(sin x cos y + cos x sin y)
= (cos x + i sin y)(cos y + i sin y)
= eixeiy. �

The Complex Exponential Function

The final step in defining ez for all complex z is to remove the restriction that
z should be purely imaginary, that is, z = iθ .

Definition 11.9: Let z = x + iy ∈ C. Then

ez = ex cos y + iex sin y. (11.9)

Since x and y are real, this expression makes sense. If y = 0, so that
z = x ∈ R, it implies that

ez = ex cos 0 + iex sin 0 = ex,

since cos 0 = 1, sin 0 = 0. So the complex exponential reduces to the usual
real exponential when z is real, which goes some way towards justifying the
notation ez.
Moreover, (11.9) immediately implies that

ex+iy = exeiy.

We can now establish a basic property of the complex exponential
function:

Theorem 11.10: If z, w ∈ C then

ez+w = ezew.
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Proof: Let z = x + iy, w = u + iv, where x, y, u, v ∈ R. Then

ez+w = ex+iy+u+iv

= e(x+u)+i(y+v)

= ex+uei(y+v) by definition 11.9
= exeueiyeiv by proposition 11.8
= exeiyeueiv

= ex+iyeu+iv by definition 11.9
= ezew. �

We can now prove:

Theorem 11.11 (De Moivre’s Theorem): If n ∈ N then

(cos θ + i sin θ)n = cos nθ + i sin nθ .

Proof: By definition 9 this is equivalent to proving that (eiθ )n = einθ . Use
induction on n. If n = 1 both sides are identical. Suppose the result is true for
n, and consider:

(eiθ )neiθ = einθeiθ

= einθ+iθ by theorem 11.10

= ei(n+1)θ

which completes the induction. �

Examples 11.12: Let n = 2. Then (cos θ + i sin θ)2 = cos 2θ + i sin 2θ .
Expand the first expression as cos2 θ – sin2 θ + i(2 cos θ sin θ) and equate real
and imaginary parts to get

cos 2θ = cos2 θ – sin2 θ , sin 2θ = 2 cos θ sin θ ,

which are familiar trigonometric formulas.
Let n = 3. A similar calculation, expanding the cube of (cos θ + i sin θ),

yields:

cos 3θ = cos3 θ – 3 cos θ sin2 θ , sin 3θ = 3 cos2 θ sin θ – sin3 θ .

The method extends to larger multiples of θ .
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We can also express the sine and cosine using exponentials:

Theorem 11.13: If θ ∈ R then

cos θ =
eiθ + e–iθ

2
, sin θ =

eiθ – e–iθ

2i
.

Proof: Use the equations

eiθ = cos θ – i sin θ e–iθ = cos θ – i sin θ

and solve for cos θ and sin θ . �

The real and imaginary parts x, y of a complex number z = x + iy are
the Cartesian coordinates of z in the complex plane. Another useful system,
polar coordinates, leads to a different way to represent z:

Theorem 11.14: Every z ∈ C has a unique expression in the form z = reiθ ,
where r, θ ∈ R, r ≥ 0, and 0 ≤ θ < 2π .
Proof: Write reiθ = r cos θ +ir sin θ and then solve the equations r cos θ = x,
r sin θ = y with the stated conditions (see figure 11.7). �

Fig. 11.7 Representing a complex number z in the form eiθ

By Pythagoras’ theorem, the number r is equal to the modulus
|z| =

√
x2 + y2. The angle θ is called the argument of z, written arg z.

We can now interpret addition and multiplication of complex numbers
geometrically.
For addition, take a fixed but arbitrary complex number w = u + iv and let

z = x + iy be any number in C. Consider the map ‘add w’ from C to C:

αw(z) = z + w.
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Then

αw(z) = (x + iy) + (u + iv) = (x + u) + i(y + v).

Clearly the effect of this map is to translate z a distance u along the real axis
and y along the imaginary axis. So the entire plane slides rigidly so that the
origin moves to w.
Multiplication can be described using the Cartesian form, but it makes

more sense in the polar coordinate representation. Take a fixed but arbitrary
complex number w = seiθ and let z = reiφ be any number in C. Consider the
map ‘multiply by w’ from C to C:

μw(z) = zw.

Then

μw(z) = reiθ seiφ = rsei(θ+φ).

The effect of this map is to multiply all distances from the origin by a factor
s (known as dilation) and to rotate the entire complex plane anticlockwise
about the origin through and angle φ.
Complex numbers manage to combine both Cartesian and polar coordin-

ates in a single mathematical system. Cartesians are best for addition, polars
for multiplication. To fill in a final piece of the picture: complex conjugation,
mapping z = x + iy to z̄ = x – iy, reflects the complex plane in the real axis.
So the algebra of complex numbers involves the three basic types of rigid
motion of the plane (translation, rotation, reflection) and dilations in a nat-
ural manner. This makes complex notation a very efficient way to perform
calculations involving these transformations of the plane, as we will see in
chapter 13.

Quaternions

We might attempt to extend the number system N0 ⊆ Z ⊆ Q ⊆ R ⊆ C
further and look for an extension ofC. For years in the last century Hamilton
followed up his conception of complex numbers as ordered couples (x, y) of
real numbers, searching for a system of triples (x1, x2, x3) with similar prop-
erties to those of the complex numbers. He never found such a system; we
now know that none exists. But in 1843, in amarvellous piece of lateral think-
ing, he found a system of quadruples (x1, x2, x3, x4) that is ‘almost’ a field. It
satisfies all the field axioms, except for commutativity of multiplication.
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Definition 11.15: A division ring is an algebraic system consisting of a set
D and two binary operations +, × on D such that for all a, b, c ∈ D, and
writing ab for a× b as usual,

(A1) (a + b) + c = a + (b + c).
(A2) There exists 0 ∈ D such that for all a ∈ D, 0 + a = a + 0 = a.
(A3) Give a ∈ D, there exists –a ∈ D such that a + (–a) = (–a) + a = 0.
(A4) a + b = b + a.
(M1) (ab)c = a(bc).
(M2) There exists 1 ∈ D, 1 �= 0 such that for all a ∈ D, a1 = 1a = a.
(M3) Given a ∈ D, a �= 0, there exists a–1 ∈ D such that aa–1 = a–1a = 1.
(D) a(b + c) = ab + ac, (b + c)a = ba + ca.

Hamilton’s quaternions, as he called his system of quadruples, is an example
of a division ring. Its multiplication is not commutative: for some elements
a, b we have ab �= ba. His discovery can be explained in terms of three
symbols i, j, k multiplied according to the rules:

i2 = j2 = k2 = –1
ij = k, jk = i, ki = j
ji = –k, kj = –i, ik = –j.

The last six of these can be described by writing the symbols i, j, k in a
clockwise cycle:

Fig. 11.8 Hamilton’s quaternions

Then the product of any two in clockwise order is the third, and the
product anticlockwise is minus the third.
Hamilton thought of a quadruple of real numbers (x1, x2, x3, x4) as x1 +

ix2 + jx3 + kx4. He added them in the obvious way:

(x1 + ix2 + jx3 + kx4) + (y1 + iy2 + jx3 + ky4)
= (x1 + y1) + i(x2 + y2) + j(x3 + y3) + k(x4 + y4),
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and multiplied them using the above rules for multiplying i, j, k. Written out
in full this amounts to:

(x1 + ix2 + jx3 + kx4) (y1 + iy2 + jy3 + ky4)
= x1y1 – x2y2 – x3y3 – x4y4
+ i(x1y2 + x2y1 + x3y4 – x4y3)
+ j(x1y3 – x2y4 + x3y1 + x4y2)
+ k(x1y4 + x2y3 – x3y2 + x4y1).

This can be written in terms of ordered quadruples simply by replacing each
a1 + ia2 + ja3 + ka4 by (a1, a2, a3, a4) in the obvious manner. So formally we
can define addition and multiplication of such quadruples by

(x1, x2, x3, x4) + (y1, y2, y3, y4) = (x1 + y1, x2 + y2, x3 + y3, x4 + y4)
(x1, x2, x3, x4)(y1, y2, y3, y4) = (a1, a2, a3, a4)

where

a1 = x1y1 – x2y2 – x3y3 – x4y4,
a2 = x1y2 + x2y1 + x3y4 – x4y3,
a3 = x1y3 – x2y4 + x3y1 + x4y2,
a4 = x1y4 + x2y3 – x3y2 + x4y1.

We denote the set of all quadruples, with these operations, by H (for
Hamilton). These quadruples are called quaternions or (a more old-
fashioned term) hypercomplex numbers.

Proposition 11.16: The quaternions H form a division ring.
Proof: This is simply a matter of checking the axioms (A1)–(A4), (M1)–
(M3), (D) for H. They are all straightforward, although we will be the first
to admit that the associativity of multiplication (M1) is tedious to say the
least. The zero element in (A2) is (0, 0, 0, 0), the negative of (x1, x2, x3, x4)
in (A3) is (–x1, –x2, –x3, –x4), the unit element in (M2) is (1, 0, 0, 0), and the
inverse of (x1, x2, x3, x4) �= (0, 0, 0, 0) in (M3) is

(x1, x2, x3, x4)–1 = (x1/a, –x2/a, –x3/a, –x4/a),

where a = x21 + x22 + x23 + x24. �

Multiplication in H need not be commutative; for instance,

(0, 1, 0, 0)(0, 0, 1, 0) = (0, 0, 0, 1)
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but

(0, 0, 1, 0)(0, 1, 0, 0) = (0, 0, 0, –1).

Writing i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1), this amounts to ij = k,
ji = –k as explained previously. Hamilton’s other rules for multiplication of i,
j, k also follow, because we set up the rule of multiplication tomake it happen
that way.
If we look at the subset C = {(x, y, 0, 0) ∈ H | x, y ∈ R}, we find that multi-

plication on C reduces to

(x1, y1, 0, 0)(x2, y2, 0, 0) = (x1x2 – y1y2, x1y2 + x2y1, 0, 0),

and that this is commutative. The map f : C → H given by f (x + iy) =
(x, y, 0, 0) is easily seen to be an isomorphism of fields from C to C. Via this
isomorphism we can regard C as a subset of H. Writing (x1, x2, x3, x4) as
x1 + ix2 + jx3 + kx4 the function f : C → H becomes

f (x + iy) = x + iy + j0 + k0.

Inclusion C ⊆ H regards the complex number x + iy as the quaternion
x + iy + j0 + k0.
Many properties of C can be generalised to H, hence the name

‘hypercomplex numbers’. For instance the conjugate of a quaternion
q = x1 + ix2 + jx3 + kx4 is

q̄ = x1 – ix2 – jx3 – kx4.

This has some of the properties of the complex conjugate, but not all. In
particular,

q1 + q2 = q̄1 + q̄2
¯̄q = q
q = q̄⇔ q ∈ R.

However, the rule for the conjugate of a product becomes

q1q2 = q̄2q̄1,

as you can check by explicit calculation. Because multiplication is not
commutative, we can’t straighten this out by reversing the order of q̄2 and q̄1.
We can also define themodulus of a quaternion q = x1+ix2+jx3+kx4 to be∣∣q∣∣ = √x21 + x22 + x23 + x24.
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In this case, ∣∣q∣∣ ∈ R,
∣∣q∣∣ ≥ 0 for all q ∈ H,∣∣q∣∣ = 0⇔ q = 0,

qq̄ =
∣∣q∣∣2 ,∣∣q1q2∣∣ = ∣∣q1∣∣ ∣∣q2∣∣ ,∣∣q1 + q2
∣∣ ≤ ∣∣q1∣∣ + ∣∣q2∣∣.

The proofs of these formulas vary in difficulty, though none is truly hard. If
you are interested, you should seek to work them out for yourself. They are
analogous to the complex case, taking care with the non-commutativity ofH.
As with complex numbers, for q ∈ H, q �= 0, we find qq̄ =

∣∣q∣∣2 where∣∣q∣∣2 �= 0, so

qq̄ /
∣∣q∣∣2 = 1

and

q–1 = q̄ /
∣∣q∣∣2 .

Some properties of the quaternions are startling, to say the least. For in-
stance, we know that i2 = j2 = k2 = (–i)2 = (–j)2 = (–k)2 = –1, so the
equation x2 + 1 = 0 has at least six solutions in H, namely ±i, ±j, ±k.
In fact (ib + jc + kd)2 = –b2 – c2 – d2, so any quaternion ib + jc + kd where
b2 + c2 + d2 = 1 is a solution of x2 + 1 = 0. There are an infinite number of
solutions in H.
This is unlike our experience in all previous number systems. In R the

equation x2 + 1 = 0 has no solutions, in C it has two, and in general, in R or
C, an equation of degree n has at most n solutions. The sudden appearance
of more roots in the quaternions completely changes the game as a fondly
held belief fails in the new system.
The problem with intuition is that experience in one context need not lead

to expected properties in another. As we move through successively larger
number systems N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H, we gain some properties, but
we also lose others. In the natural numbers N, subtracting a number leaves
a smaller one, but not in the integers Z, where taking away a negative num-
ber gives more. In the real numbers R, the square of a non-zero number is
always positive, but not in the complex numbers C. Now we find that in the
quaternions H, the theorem that every equation of degree n has at most n
roots is no longer true.
This continual change ofmeaning asmathematical systems are generalised

can cause serious disorientation for the learner. But it is also the secret of
developing more powerful mathematical systems.
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Prior to the introduction of the quaternions, the idea that multiplication
of numbers is independent of their order was always considered to be a
self-evident, preordained law. The discovery of the quaternions revealed an
algebraic system worthy of study in its own right, but it also revealed that it
is possible to have algebraic systems in which ‘a times b’ need not equal ‘b
times a’. This led to the many new algebraic structures studied in modern
mathematics. For example, matrix multiplication is not commutative, and
the theory of vectors and matrices is an essential feature of advanced algebra.

The Change in Approach to Formal Mathematics

At this point we free ourselves from the mental block that mathematics must
work in a preordained natural way, by specifying new axiomatic systems in
terms of some set with various prescribed operations that have specific prop-
erties. We have already exemplified this process with rings, fields, ordered
rings, ordered fields, and so on. The rationals, reals, and complex numbers
are all examples of fields, so any theorem that we prove true for all fields will
be true in all of these specific systems. There may also be theorems that are
true in one field but not in another; for instance, that a Cauchy sequence in
R or C will converge to a limit, but not in Q, or the square of a non-zero
number is always positive in Q or R but not in C.
The formal approach, starting from a list of axioms for a system, may seem

complicated and abstract. However, once we have shifted to a formal ap-
proach, the reverse is often true. Any theorems we prove in a given axiomatic
system will remain true in any new system that satisfies the given axioms.
This enables us to build more sophisticated structures based on established
formal theories.
It may also happen that some of the theorems we prove offer new ways of

visualising and symbolising the ideas, giving us new ways of imagining the
structure and operating with the elements of a formal system. As we shall
see in the next part of the book, not only do intuitive ideas build into formal
concepts, the resulting formal concepts may take us back to natural ways
of visualising and operating symbolically with the axiomatic systems, now
supported by the power of formal proof.

Exercises

1. If z1, . . . , zn are complex numbers, prove that

|z1 + · · · + zn| ≤ |z1| + · · · + |zn|.
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2. Let ω be the complex number defined by ω = (1 +
√
–3)/2. Prove that

ω3 = 1 and 1 + ω + ω2 = 0.
3. Let ω = eiθ where θ = 2π /n for n ∈ N. Show that z = ωr satisfies

zn = 1 and draw a picture showing the positions of ω, ω2, . . . ,ωn

round the unit circle. (These numbers are called the nth roots of 1.)
Show that 1 + ω + · · · + ωn–1 = 0.
Factorise zn – 1 into linear factors over C. By showing that

(z – ωr)(z – ωn–r) = z2 – 2 cos θ + 1,

factorise zn – 1 into linear and quadratic factors.
In particular, factorise the real polynomial x5–1 into real linear and

quadratic factors:

x5 – 1 = (x – 1)(x2 – 2 cos(2π /5) + 1)(x2 – 2 cos(4π/5) + 1).

4. Use De Moivre’s theorem to find formulae for cos 4θ and sin 4θ in
terms of sin θ and cos θ .

5. For quaternions p, q verify
(a) p + q = p̄ + q̄
(b) p̄q̄ = q̄p̄
(c) ¯̄q = q
(d) q = q̄⇔ q ∈ R.

6. For a, b ∈ H, show (a + b)2 = a2 + ab + ba + b2. Give an example to
show that we cannot replace this by (a + b)2 = a2+2ab+b2 in general.
If a ∈ H, b ∈ R, prove that (a + b)2 = a2+2ab+b2. Solve the equation
x2 + 2x + 1 = 0 in R, C, and H. (Let x = y – 1 and solve for y.) By
the substitution x = y + 1, solve the equation x2 – 2x + 2 = 0 in R, C,
and H.

7. Solve the equation x
(
1 + j

)
+ k = 2 + i for the quaternion x.

8. Solve the equation ixj + k = 3 + 2j for the quaternion x.
9. Find x, y ∈ H such that 3ix – 2jy = –1, xk + y = 0.
10. Define complex quaternions HC to be quadruples (a1, a2, a3, a4) of

complex numbers, with the same addition and product rules as given
for H on page 249. Which of the axioms for a field does HC satisfy?

11. Prove that the complex numbers areCauchy complete, in the following
sense: if (an) is a sequence of complex numbers such that for all ε ∈ R,
ε > 0, there exists N ∈ N such tha t |am – an| < ε for all m, n > N,
then (an) tends to a limit in C. (Hint: Show that xn + iyn → x + iy⇔
xn → x& yn → y.)
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12. Define a binary operation ∧ on R3 (known as the vector product) as
follows:

(a, b, c) ∧ (d, e, f ) = (bf – ce, cd – af , ae – bd).

Prove for all x, y ∈ R3,

x ∧ y + y ∧ x = 0,
(x ∧ y) ∧ z + (y ∧ z) ∧ x + (z ∧ x) ∧ y = 0.

13. Consider the ordered pairs of complex numbers (z1, z2) with addition
and multiplication defined by

(z1, z2) + (w1,w2) = (z1 + w1, z2 + w2),
(z1, z2)× (w1,w2) = (z1w1 – z2w2, z1w2 + z2w1).

Show that this is isomorphic to the quaternions. (Hint: Consider how
the complex numbers were constructed by imagining x + iy as the
ordered pair (x, y) with an appropriate addition and multiplication,
and generalise this to ordered pairs of complex numbers.)

14. Look up the octonions on the internet and see how the above con-
struction might be extended to ordered pairs of quaternions. The
quaternions lack the axiom of commutative multiplication. What is
lost in extending to the octonions? Which is a more productive way
to develop: generalising from real to complex to quaternions to octo-
nions and so on, or to develop the general theory of vector spaces of
dimension n over a field F?
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PART IV
Using Axiomatic Systems

In part I we began by building on earlier experiences in mathematics. In part
II we used our experiences to build ideas of set theory, logic, and proof. Then
we used these principles in part III to give formal constructions of natural
numbers and successively larger number systems.
Our earlier metaphors of building houses and growing plants depend on

the foundations on which we base our activities. Building on intuition may
include implicit beliefs that cause our house to have weak foundations or our
plants to grow in unsuitable soil.
The way ahead is to specify clearly the foundations of set-theoretic axioms

and definitions being used in a particular theory and to focus only on proper-
ties that can be deduced from them by formal proof. These properties remain
true, not only in systems that are already familiar, but also in any future ex-
amples that satisfy the given axioms. This needs to be done with care to make
sure that we do not use any implicit ideas that have not been proved from the
axioms and definitions.
Having built up a framework of theorems proved from the foundational

axioms and definitions, some theorems, called structure theorems, may prove
that the system also has visual and symbolic properties, allowing us to im-
agine formal structures in more natural ways. This enables us to imagine
new possibilities that we may then seek to prove formally.
In the case of a complete ordered field, we were led to the visual structure

of a number line, and the symbolic structure of decimal arithmetic. Structure
theorems let us complement formal theory with natural visual and symbolic
models that we can use to imagine new possibilities.
The first chapter of this part examines these general ideas. The next three

chapters consider examples of formal systems and their natural interpret-
ations. The first deals with the notion of a group, a central idea in formal



mathematics. The other two describe extensions of the natural number sys-
tem N to infinite cardinal numbers, and of the real numbers R to larger
ordered fields. Both have structural properties that extend natural ideas to
give new intuitions now based on formal axioms and proof. This reveals the
great power of formal mathematics, with structures that may be imagined
visually and symbolically, now supported by formal proof.



chapter 12

Axiomatic Systems,
Structure Theorems,
and Flexible Thinking

As we construct successively larger number systems N ⊆ Z ⊆ Q ⊆
R ⊆ C ⊆ H, each stage gains by generalising some properties, but
other meanings change. We can talk of prime numbers and factor-

isation in the natural numbers, but this has no relevance for real numbers in
general. Fondly held beliefs may fail in more general structures as we found
when we shifted from the natural numbers to introduce negative or complex
numbers.
While the generalisation of ideas can give great power and pleasure,

changes in meaning can cause serious disorientation, not only for learners,
but also for research mathematicians. Even a change in a single property,
such as the loss of the commutative law in the quaternions, has unforeseen
consequences. For instance, we saw that a quaternionic polynomial can have
an infinite number of roots, and it is not immediately clear how the loss of
commutativity leads to that effect.
These long-term changes in meaning are not only problematic for you the

reader, they have also occurred in the beliefs of communities of mathemat-
icians as ideas evolve over the generations. Not only did they occur in the
past; they continue to occur in the present, and will undoubtedly continue
into the future as the boundaries of mathematics keep expanding.
When the Greeks began to formulate geometry, they imagined that points,

lines, and planes had subtle meanings more perfect than a particular picture
drawn on paper or scratched in sand. A point for the Greeks was not just
a mark on paper, it represented a unique location in the plane or in space.
A straight line was not just the practical result of drawing a pencil line by
hand guided by a ruler, it was a representation of a perfect straight line with
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a Platonic existence beyond any human capacity to represent it physically.
A circle was more perfect than a curve drawn physically using a pair of com-
passes: it was the locus of a sizeless pointmoving on a plane at a fixed distance
from its centre.
Likewise, whole numbers can be represented practically by counting

pebbles and placing them in patterns that reveal theoretical structures. For
example, given a number of pebbles, we can sometimes place them physically
as a rectangular array and sometimes we cannot, leading to the conceptions
of composite and prime numbers, and eventually to the formal proof that
there is an infinite number of primes, and that every whole number can be
uniquely represented as a product of primes.
The ancient Greek conception of mathematics was based on phenomena

that occur in nature, yet were imagined to have perfect Platonic properties
that were physically unattainable. In this sense, their mathematics is natural,
in that it is based on observed natural phenomena. Yet they sought a per-
fect theoretical foundation, arising in their imagination, which takes them
beyond what is physically attainable in nature.
As they contemplated more general numbers—which to their way of

thinking had to be done using geometry—they first imagined numbers as
magnitudes that measured lengths, areas, and volumes. They related these
magnitudes to ratios of whole numbers, based on experience in other areas,
such as music where causing a string to vibrate at a half, a third, or two thirds
of its length produces harmonics that provide the basis of musical theory. But
then they discovered that the hypotenuse of a right-angled triangle with unit
sides is not rational, so they had to take this into account in developing their
mathematical theories.
Subsequent communities of mathematicians broadened these ideas by

introducing new number systems, each of which was accompanied by lan-
guage that expressed concerns about the newmeanings: positive and negative
numbers, rationals and irrationals, real and complex numbers that have real
and imaginary parts. The italicised words all have negative connotations. At
every stage, these new number systems were initially imagined to be more
abstract than the old ones, and did not appear to relate to naturally oc-
curring phenomena. But at a later stage, as mathematicians became more
sophisticated, they found new ways of imagining negative numbers as points
on an extended number line and complex numbers as points in the plane.
Moreover, the familiar older concepts started to look just as puzzling as the
new ones. By the time mathematicians finally understood what a complex
number was, they had started to wonder about real numbers.
Geometric ideas continued to be based on imagining points as entities

that can be marked on lines and lines that go through points. Even when
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Descartes envisaged points in the plane using a pair of numbers (x, y), the
Greek view of points and lines continued as the natural basis of geometric
thinking.
Newton explained naturally occurring phenomena, such as gravity and

the movement of the planets, using a combination of Greek geometry and
symbolic algebra to build his ideas in the calculus. Leibniz imagined quan-
tities that could be infinitesimally small and produced a powerful symbolism
for the calculus that has stood the test of time, despite widespread concerns
about its logical foundation. Later giants in mathematical development fo-
cused on different aspects. Euler manipulated symbols algebraically using
power series and complex numbers, and Cauchy imagined infinitesimals
geometrically as variable quantities on the line or in the plane that be-
come arbitrarily small. His approach led to major advances, using a blend
of visual and symbolic methods in real and complex analysis, but it also
generated significant criticism about the precise meaning. The critics had
a point: the meaning had not then been fully worked out. What prevailed
was more an act of faith, that everything would work out much as it al-
ways had done. Many of Euler’s published papers would have caused him
to fail today’s examinations and Cauchy’s ideas of infinitesimal quantities
were later heavily criticised.
In the latter part of the nineteenth century and the early twentieth, a shift

occurred from natural mathematics to more formal methods. Mathematical
entities were introduced through set-theoretic definitions and their proper-
ties were deduced solely through mathematical proof. A seminal moment
occurred when David Hilbert, taking refreshment with colleagues in the Ber-
lin railway station after a lecture on the foundations of geometry, is reputed
to have said, ‘One must be able to say at all times—instead of points, straight
lines, and planes—tables, chairs, and beer-mugs’ [7]. The significance of his
insight was that mathematics did not need to refer only to naturally occur-
ring phenomena. The focus of attention changed from what the objects are
to focus on their formally defined properties.
Instead of thinking of points being marked on lines, the real number

line was seen to be a set that consisted of points. While natural mathem-
atics sensed points moving about smoothly on the line, formal mathem-
atics re-interpreted numbers as fixed entities that make up the set of real
numbers.
At this period in the history of mathematics, new ways of thinking were

introduced that would apply not only to naturally occurring situations but
also to systems described only in terms of their formally stated properties.
A range of possible developments occurred, with emphases on different
aspects of mathematics, including:
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Intuitionism: natural mathematics based on human perception and con-
struction; in particular, a construction must be performed explicitly by a
finite sequence of operations and proof by contradiction is not allowed.
Logicism: mathematics is based on formal logic without any reliance on

natural intuition.
Formalism: mathematics has a formal set-theoretic basis, which Hilbert

acknowledged could be inspired by natural intuitive experiences, but which
must be fully formulated in terms of set-theoretic definitions and formal
proof.
Subsequent mathematics has expanded into a diverse range of specialities

as mathematicians focus on particular areas of interest. Applied mathemat-
icians look at problems and formulate mathematical models that they use
to find solutions. Physicists consider natural phenomena such as gravity
or magnetism, and formulate mathematical models in terms of Newtonian
mechanics or the four-dimensional space-time of Einstein’s theory of rela-
tivity. They contemplate the origins of the universe in terms of the Big Bang,
a mathematical model of an expanding universe. They imagine the structures
of atoms, formulate models involving subatomic particles, perform sophis-
ticated experiments to see whether their model matches the physical world.
Climate scientists develop mathematical models of natural changes in long-
term patterns of weather. Economists model and predict the change and
growth of economies. Sometimes the models are good predictors, sometimes
not. If they prove to be inadequate, better models that make more accurate
predictions are sought.
Meanwhile, pure mathematicians seek to formulate precise theories that

work consistently in well-specified contexts. They allow their imaginations
to range over any phenomena that may intrigue them, seeking patterns
and relationships to solve problems. At various times, some may use exist-
ing theories to solve problems, some may build naturally on their previous
experience to suggest new possibilities, some may reflect on established the-
ories to seek new theorems, to make new formal definitions and establish
new formal theories. Many will use a combination of approaches depend-
ing on the context, as individuals develop their own preferences for ways of
operating mathematically.
Students taking courses in different topics are likely to encounter signifi-

cant differences in approach. You should take these differing approaches in
your stride. Diversity is an advantage. Mathematics is difficult: we need as
many different ways to think about it as we can find. The more tools and
methods you have at your fingertips, the more you can create.
To help you to develop from a ‘natural’ attitude to mathematics at

school to the wide variety of more sophisticated mathematics encountered
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at university, this book builds on natural experiences that are familiar to you
at the outset, and works towards a formalist approach while building links
with the underlying logic.
Once the formalist approach ismastered, two complementarymodes of op-

eration become available. You don’t have to choose one: you can use which-
ever seems most helpful or fruitful in a given context. A natural approach
builds formal structures inspired by intuition; a formal approach builds them
by proving their properties from set-theoretic definitions. You should be
flexible enough to use whichever approach is appropriate in a given context.
Agreed, a natural approach based on familiar mental images and symbolic

operations may be easier for the human mind to grasp as a whole, but it still
requires formal proof to show that the properties concerned do actually fol-
low from the formal definition. You may also find new possibilities that you
never dreamt of before. For instance, the complex numbers extend familiar
decimals to a new system that has a square root of minus one, and the exten-
sion from the complex numbers to the quaternions produces a system where
multiplication is no longer commutative and quadratic equations can have
an infinite number of roots. The formal approach will provide the structures
needed to place these new ideas on a sound foundation.
A formal approach pays attention to the precision of logical deduction

from specific assumptions and can be used to build subtle schemas of men-
tal relationships. It is helpful to give these schemas visual and symbolic
meanings that make natural sense. This may occur through proving certain
structure theorems that prove that a given formal structure has formally de-
ducible properties that may be used to picture the ideas or to represent them
as symbols that can be manipulated to solve problems.
This allows mathematics to expand in various ways, based on logical

deduction or thinking about formal systems naturally, using visual or op-
erational ideas, now supported by the power of formal proof.

Structure Theorems

We have already established the axiomatic properties of the familiar number
systems N, Z, Q, R, and their extensions to C and H. In chapter 8 we proved
a structure theorem for the natural numbers:

Any system that satisfies the Peano axioms is order isomorphic to the
natural numbers N.

This theorem tells us that the natural numbers are unique up to isomorph-
ism, and lets us use the word ‘the’. Indeed, for any systemwhere we start with
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a single element, thenmove on to another and another, always different from
any that came before, we have a potentially infinite set that is isomorphic to
the natural numbers.
In chapter 10 we introduced a number of axiomatic systems as sets with

various prescribed operations satisfying specified properties, including rings,
fields, ordered rings, ordered fields. A number of theorems were proved
characterising these structures as follows:

Every ring contains a subfield isomorphic either to Z or to Zn for some
natural number n (proposition 10.10).
Every field contains a subfield isomorphic either to Q or to Zp for some
prime number p (proposition 10.11).
Every ordered ring contains a subring isomorphic to Z (proposition 10.12).
Every ordered field contains a subfield isomorphic toQ (proposition 10.13).
Every complete ordered field is isomorphic to the real numbers R
(theorem 10.17) and so can be represented visually as points on a number
line and symbolically as infinite decimals.

All of these results are structure theorems. That is, they prove that each of
these structures contains a specific system up to isomorphism—here one of
Z, Zn, Q, R as appropriate. In such cases, this subsystem has a visual repre-
sentation as points on a number line (or round a circle in the case of Zn) and
corresponding symbolic representations as whole numbers, integers modulo
n, rationals, or infinite decimals.
Of course, when using visual representations, we need to be aware that the

visual picture alone, as seen with our finite human vision, does not provide
the full structure. For example, the rational numbers and the real numbers
can both be represented as a number line, yet structurally they have very
different symbolic and set-theoretic properties. Visual and symbolic thinking
offer us modes of operation that can inspire formal structures that have well-
defined consequences. On the other hand, using structure theorems, we can
think about systems in visual and or symbolic ways now supported by formal
deduction.
Structure theorems also tell us that we should relax. The human brain nat-

urally makes links between mental concepts. Structure theorems let us think
about formal systems in more brain-friendly visual and operational ways.
When we started with the natural numbers N0 and constructed Z, Q, and R,
we did so by setting up equivalence relations and showing that there is an iso-
morphism between each system and a subsystem of the next. Subsequently
we saw that we could start from the top with R, and then find Q, Z, and N0
as subsystems of R, without any need to talk about isomorphisms.
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Howwe ‘identify’ one systemwith an isomorphic copy is sometimes called
‘abuse of notation’. Far from this being an abuse of the process of mathem-
atical thinking, it uses notation in a flexible way, helping the human brain to
work more simply. Isomorphic systems represent the same underlying crys-
talline concept, which satisfies the required properties. In this way we obtain
more concise natural ideas, such as:

Every ring contains either Z or Zn for some natural number n.
Every field contains either Q or Zp for some prime number p.
Every ordered ring contains Z.
Every ordered field contains Q.

In terms of crystalline concepts, the natural numbers are the unique sys-
tem satisfying the Peano Axioms, and the real number system is the unique
complete ordered field.

Psychological Aspects of Different Approaches
to Mathematical Thinking

Just as mathematicians develop their own personal ways of operating math-
ematically, students also vary in their approach. On occasions theymay build
naturally on their previous experiences, formally through deduction from
set-theoretic definitions and formal proof, procedurally, based on commit-
ting proofs to memory to pass the examinations, or use a combination of
these and other techniques [6]. You may find it helpful to reflect on how you
make sense of formal mathematics to become aware of why you may have
certain difficulties and how you might work to improve your understanding.
You may prefer a natural approach based on your previous experiences.

This can work well, but it is wise to reflect on the changes of meaning as new
structures are encountered. It is helpful to develop a flexible understanding
how old ideas may need to be rationalised to work in a new context where
new ideas clash with previous experience and cause confusion. Some lec-
turers tell students to ‘forget all you know and start afresh from the formal
definitions’, but this is difficult for anyone whose mind is full of earlier ideas
with deeply embedded mental connections that behave subtly differently. It
is important to be resilient and think carefully about strange new ideas, to
make them your own by explaining to yourself how and why they work in
the new context.
You may prefer a formal approach, building a schema of ideas based only

on definitions and proofs. These may be motivated by intuition, but the
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proofs have to lead to a formal schema of theorems that builds up the en-
tire knowledge structure. Some students manage to do this successfully, but
many have trouble with new ideas that may either clash with previous experi-
ence or involve complicated quantifiers that prove too difficult to cope with.
You may prefer a procedural approach, learning specific procedures for

solving routine problems in the course, and remembering theorems by
heart to reproduce in examinations without being over-concerned about the
meaning.
You may use a combination of methods depending on the context.
In every case you can enhance your understanding by reflecting on the

proofs and explaining to yourself how and why the deductions work.
Each approach has subtle aspects that affect your understanding of the

mathematics. For example, when seeking to make sense of the convergence
of a real number sequence (an) to a limit a, a natural approachmight imagine
plotting the points an for n= 1, 2, . . ., with a horizontal line y= a representing
the limit value, and lines y = x–ε and y = a+ε above and below representing
the allowable range of values for a given ε > 0. The definition then says that
the sequence converges if for any ε the terms an lie within the allowable range
of values from some n = N onwards.

a
a+
a+

N

a1
a2

a3 aN an

Fig. 12.1 A natural limit

This diagram needs to be imagined dynamically. The values of the se-
quence are plotted first; then the horizontal line is placed in its appropriate
place with the range ±ε above and below, then the value of N is sought so
that the values of an for n>N lie in the desired range. Then imagine ε hav-
ing a smaller value, and repeat. The phenomenonmust occur for a fixed value
of a while ε is taken as small as is desired. So as ε shrinks towards zero, N
gets bigger, and the relevant terms are sandwiched between the two horizon-
tal lines. It’s as though the terms of the sequence are being sucked into an
ever-narrowing funnel.
While this natural approach may work well for some, it is problematic in

a number of ways. For example, many students have difficulty with nested
quantifiers. Instead of writing the definition of the limit as
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Given ε > 0 there exists N such that n > N implies |an – a| < ε,

one student wrote:

A sequence (an) tends to a limit a for ε > 0 if there existsN ∈ N such that
|an – a| < ε provided n ≥ N,

while another wrote:

If an→ a, then there exists ε > 0, such that |an – a| < ε for all n ≥ N,
where N is a large positive integer.

At the very least, it is essential to be able to reproduce the limit definition
correctly, and even then, there are subtleties. Many examples of limits in-
volve a formula, and this can give the impression that a sequence approaches
a limit, but is never equal to it. Some students taking a natural approach be-
lieve that a constant sequence cannot tend to a limit ‘because it is already
there’. Others may cope by separating convergence into two distinct ideas
where some sequences approach the limit while others are at the limit.
An alternative interpretation, showing real mathematical insight, occurred

when one student concentrated on the formal definition and realised that in
computing a value for N, some sequences get within a given value of ε for
smaller values of N than others, and so ‘converge at a faster rate’. This led
to the insight that a constant sequence is ‘the fastest converger of them all’,
because it is already there. Unlike his colleagues who saw a constant sequence
as an exceptional case, this student saw the constant sequence as the simplest
central example of all convergent sequences. It is amark of truemathematical
insight to include exceptional cases as part of the general theory.
Some professors introduce convergence by interpreting it as a numerical

calculation: given a numerical value of ε > 0, calculate a numerical value
of N. For instance, given the sequence (1/n) and ε = 1/1000, work out that
N = 1000 will do the job, then generalise this idea for general ε, by taking N
bigger than 1/ε.
A numerical approach can be a helpful first step, but only learning how to

perform a procedural solution can fail in a more general situation such as:

Given a sequence (an) that tends to 1, show that there exists a value of N
such that an > 3

4 .

In this case the numerical calculation is not appropriate since, as no formula
for an is specified, it is not possible to calculate a numerical value for N.
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A subtler problem arises when proving that a sequence is not convergent,
using here the idea of negating quantifiers by replacing ¬∀ (not for all) by
∃¬ (there exists not), and ¬∃ by ∀¬, as in chapter 6.
The statement that a sequence is not convergent takes the form

¬ (∀ε > 0∃N ∈ N : ∀n ≥ N |an – a | < ε) .

Successively moving the ‘not’ symbol ¬ past the quantifiers gives

∃ε > 0¬∃N ∈ N : ∀n ≥ N |an – a | < ε

∃ε > 0∀N ∈ N : ¬∀n ≥ N |an – a | < ε

∃ε > 0∀N ∈ N : ∃n ≥ N ¬ |an – a | < ε

and finally

∃ε > 0∀N ∈ N : ∃n ≥ N |an – a | ≥ ε.
This can now be expressed in words, as finding an ε > 0 such that, for all N,
we can find n ≥ N such that |an – a| ≥ ε.
Such a technique can be developed by natural thinking about the def-

inition, formal manipulation of the quantifiers, or procedural learning of
the rules manipulating quantifiers. However, the technique is enhanced by
making sense of how it operates, to overcome possible limitations of intui-
tive meanings and to develop flexible forms of reasoning that will support
coherent mathematical thinking.

Building Formal Theories

In the remainder of this chapter we offer an overview of how formal math-
ematical theories can be organised efficiently by focusing first on a small list
of related axioms to prove properties that can be deduced from them. These
proven properties can then be used in new contexts that satisfy the given
axioms, to build increasingly sophisticated theories.
Several axiomatic systems start from a set with a single operation: here

are a few.

Semigroups and Groups

Examples like the integers under addition or the non-zero integers under
multiplication suggest thinking about a set X and a binary operation ∗ on X.
Possible properties might include:
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(1) (a ∗ b) ∗ c = a ∗(b∗c) for all a, b, c ∈ X. In this case ∗ is associative.
(2) There exists an element e ∈ X satisfying a ∗ e = e ∗ a = a for all

a ∈ X. Such an element is an identity.
(3) If an identity e exists, then for all a ∈ X there exists b ∈ X such that

a ∗ b = b ∗ a = e. Such an element b is called an inverse for a.
(4) a ∗ b = b ∗ a for all a, b ∈ X. In this case ∗ is commutative.

A set X with a binary operation ∗ satisfying (1) and (2) is a semigroup. If
(3) is also satisfied, it is a group. If (1)–(4) all hold then it is a commutative (or
abelian) group.
Several of these properties are already familiar in various contexts.

Examples 12.1:

(i) N0 is a semigroup with identity 0 under the binary operation +.
(ii) N0 is a semigroup under multiplication with identity 1.
(iii) Z is a semigroup under multiplication.
(iv) Z is a group under addition. The identity is zero and the inverse of

n ∈ Z is –n because n + 0 = 0 + n = n and n + (–n) = (–n) + n = 0.
(v) The non-zero elements of Z form a semigroup under multiplication

with identity element 1.
(vi) The non-zero elements of Q (or of R or C) form a group with

identity 1, and the inverse of r is 1/r.
(vii) The non-zero elements of H form a group under multiplication. The

identity is 1, and the inverse of q ∈ H\{0} is q̄ / ∣∣q∣∣.
Examples (i)–(vi) are commutative; example (vii) is non-commutative.

We consider groups in greater detail in chapter 13 to show how they arise
naturally in number systems and in many other contexts. We include formal
deductions that reveal structural features of groups.

Rings and Fields

Rings and fields have already been introduced in chapter 9. They can be
described more succinctly using the notions of group and semigroup.
In these terms, a ring consists of a setR and two binary operations + and×,

such that R is a commutative group under +, a semigroup under × (where
a× b is written as ab), and the two operations are related by the distributive
laws a(b + c) = ab + ac, (b + c)a = ba + ca for all a, b, c ∈ R. If multiplication
is commutative then R is called a commutative ring. Thus Z, Q, R, and C are
commutative rings and H is a (non-commutative) ring.
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A field is a set F with two commutative operations + and × such that F is
a group under +with identity 0, F\{0} is a group (with identity 1) and the
two operations are related by the distributive law a(b + c) = ab + ac for all
a, b, c ∈ F.
Examples include Q, R, and C, but not Z (because there are non-zero

elements without multiplicative inverses) or H (because multiplication is
non-commutative).
However, all of these systems are also division rings, consisting of a set

D with operations +, × such that D is a commutative group under + with
identity 0, D\{0} is a group under × (not necessarily commutative) and the
distributive laws hold: a(b + c) = ab + ac, (b + c)a = ba + ca for all a, b, c ∈ D.
Examples include Q, R, C, and H.
Other formal systems can be designed based on our intuitive experiences,

inspiring set-theoretic definitions that may lead to interesting structures.
Such activities used to be quite an extensive industry when mathematicians
were coming to grips with axiomatic structures, but nowadays new axiom
systems have to prove their worth by helping to advance other areas of the
subject.

Vector Spaces

As an example of an axiomatic system that arises in a wide range of
situations, yet has a clear natural structure, we consider how points in three-
dimensional space can be described symbolically by selecting axes and using
coordinates x, y, z.

Fig. 12.2 Points in three-dimensional space

A point in three-dimensional space corresponds to an ordered triple of
real numbers (x, y, z). So we can regard space as being the set R3 of ordered
triples of real numbers. We add such triples using the obvious rule

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2).
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Addition is associative and commutative, the triple (0, 0, 0) is an identity, and
the additive inverse of (x, y, z) is (–x, –y, –z). Therefore R3 is a commutative
group under addition. We can also multiply a triple (x, y, z) by an element
a ∈ R to get a(x, y, z) = (ax, ay, az). This operation relates to addition and
multiplication on R according to the rules:

(a + b)(x, y, z) = a(x, y, z) + b(x, y, z),
(ab)(x, y, z) = a(b(x, y, z)),
1(x, y, z) = (x, y, z),

and to addition of vectors by:

a((x1, y1, z1) + (x2, y2, z2)) = a(x1, y1, z1) + a(x2, y2, z2).

Since we live in three-dimensional space—at least, that’s the natural image
on a human scale—it may seem strange to talk about higher dimensions.
However, Einstein’s theory of relativity uses time as a fourth variable, so
that a point (x, y, z) at time t is given by the ordered quadruple (x, y, z, t).
What is the fifth dimension? The answer is that this approach is a diver-
sion from the mainstream of mathematics. Time is a fourth dimension, not
the only one. ‘The’ fourth dimension is a misnomer, so the question makes
even less sense for ‘the’ fifth. Newtonian and relativistic physics both con-
strain us to live in three-dimensional space with time as some sort of fourth
dimension, but higher dimensions have genuine mathematical significance.
(If string theory—one of the most popular proposals to unify relativity with
quantum mechanics—is correct, space might really have 10 or perhaps 11
dimensions. For various reasons, the extra ones don’t show up in daily life.)
There are sound mathematical reasons for defining spaces with any number
of dimensions, even infinity. Such spaces arise naturally from mainstream
mathematics.
For instance, describing the positions of two independent points (x1, y1, z1)

and (x2, y2, z2) in three-dimensional space requires six real numbers. These
can be put in order as a single sextuple, (x1, y1, z1, x2, y2, z2) which now
describes the position of them both. So the ‘configuration space’ for the
two particles—the set of possible arrangements—has six dimensions, and it
makes sense to denote it by R6.
Now consider a rigid body in space—for example, an asteroid in the aster-

oid belt. To describe its position uniquely, we have to specify the positions of
three non-collinear points P, Q, R in the body.
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Fig. 12.3 A rigid body in space

Suppose that the distances PQ, QR, RP are a, b, c. Then we can
place P at the point (x1, y1, z1), move Q to any point (x2, y2, z2) subject
only to the restriction that the distance from (x1, y1, z1) to (x2, y2, z2)
is a. By Pythagoras’ theorem (in three dimensions, or applied twice in
two planes), the distance between (x1, y1, z1) and (x2, y2, z2) in R3 is√
(x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2. So the distance condition can be

stated as

(x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2 = a2. (12.1)

Finally we can rotate the body around the axis PQ to put R at a point
(x3, y3, z3) subject only to the restrictions QR = b, RP = c:

(x2 – x3)2 + (y2 – y3)2 + (z2 – z3)2 = b2, (12.2)

(x3 – x1)2 + (y3 – y1)2 + (z3 – z1)2 = c2. (12.3)

Thus the position of the rigid body is determined by the nine coordinates x1,
y1, z1, x2, y2, z2, x3, y3, z3, subject to the equations (12.1)–(12.3). It is possible,
and by no means bizarre, to consider this as an ordered 9-tuple

(x1, y1, z1, x2, y2, z2, x3, y3, z3) ∈ R9,

so that the rigid body’s position is a point in R9 subject only to
equations (12.1)–(12.3).
Examples like this in mathematics are legion. Far from restricting ‘spaces’

to R3, it is a positive advantage to consider the set Rn of all n-tuples of real
numbers, for any n ∈ N. It should now be obvious how to do this. Define
addition and multiplication by real numbers in Rn by:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)
a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn).
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These operations satisfy the same properties that we listed for R3. For con-
venience write v = (x1, x2, . . . , xn),w = (y1, y2, . . . , yn). Then these properties
can be stated as:

(a + b)v = av + bv
(ab)v = a(bv)

1v = v
a(v + w) = av + aw for all a, b ∈ R, v,w ∈ Rn.

This is the genesis of the idea of a vector space. Consider a set V with
a binary operation +. Then require a map m : R × V → V , where for
convenience we writem(a, v) as av. V is said to be a vector space over R if:

(VS1) V is a commutative group under +.
(VS2) For all a, b ∈ R, v, w ∈ Rn (a + b)v = av + bv

(ab)v = a(bv)
1v = v
a(v + w) = av + aw.

These axioms hold for Rn, but there are many other interesting examples
of vector spaces.
For instance, let V be the set of all functions from R to R. Then f ∈ V

means that f : R → R. We can add two functions f , g ∈ V to get f + g :
R → R by defining (f + g)(x) = f (x) + g(x) for all x ∈ R. For example, if
f (x) = x3+x2, g(x) = 3x+2, then f (x)+g(x) = x3+x2+3x+2. Multiplication by
a ∈ R is given by (af )(x) = a(f (x)) for all x ∈ R. An example is f (x) = x3+x2,
a = –3, in which case (af )(x) = –3(x3+x2). The setV is a vector space over R
according to the given definition. In this case the elements ofV are functions.
Vector spaces occur in unexpected places, too. Suppose, for example, we

try to find the solution y = f (x) of the differential equation

d2y
dx2

+ 95
dy
dx

+ 1066y = 0.

(Here we assume familiarity with calculus.) Then for differentiable functions
f : R → R, g : R → R and real numbers a, b ∈ R, we find

d
dx
(
af (x) + bg(x)

)
= a

df (x)
dx

+ b
dg(x)
dx

,

d2

dx2
(
af (x) + bg(x)

)
= a

d2f (x)
dx2

+ b
d2g(x)
dx2

.
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Therefore

d 2

dx2
(
af (x) + bg(x)

)
+ 95

d
dx
(
af (x) + bg(x)

)
+ 1066(af (x) + bg(x))

= a
{
d 2f (x)
dx2

+ 95
df (x)
dx

+ 1066f (x)
}
+ b

{
d 2g(x)
dx2

+ 95
dg(x)
dx

+ 1066g(x)
}
.

This implies that if y = f (x) and y = g(x) are solutions of the differ-
ential equation, then each of the expressions in curly brackets is zero, so
y = af (x) + bg(x) is also a solution.
Let S be the set of differentiable functions that are solutions of the

differential equation. Then (putting a = b = 1)

f , g ∈ S⇒ f + g ∈ S

and it is easily seen that S is a commutative group under +. Similarly (putting
b = 0),

a ∈ R, f ∈ S⇒ af ∈ S.

Checking axioms (VS1) and (VS2), we see that the set of solutions S of this
differential equation is a vector space over R. (There is a solution corres-
ponding to each initial condition x(0) = p, x′(0) = q, for any p, q ∈ R. So
there are plenty of solutions, and this statement is not vacuous.)
Our brief description of mathematical structures might give the impres-

sion that modern algebra is just an arid catalogue of axioms. To counteract
that impression, we mention some of the striking deductions that have been
made using this approach.
For two thousand years, since the time of the ancient Greeks, mathemat-

icians wondered whether it is possible to trisect any angle using ruler and
compass alone. It took an intriguing blend of vector space theory and field
theory to show that the angle 60◦ (and many others) cannot be trisected in
this way (for details, see [32]).
The method for solving a quadratic equation

ax2 + bx + c = 0

by a process that we now encapsulate in the formula

x =
–b±√b2 – 4ac

2a
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was, in effect, known to the ancient Babyloniansmore than 3000 years ago. In
the sixteenth century, Italian mathematicians developed more complicated
algebraic formulas for any cubic

ax3 + bx2 + cx + d = 0

and any quartic

ax4 + bx3 + cx2 + dx + e = 0.

For well over two centuries the search continued for an algebraic formula
for the solution of a quintic

ax5 + bx4 + cx3 + dx2 + ex + f = 0.

In the nineteenth century an intricate chain of deduction using field theory
and group theory showed that no algebraic formula for the quintic exists
(see [32]).
Various generalisations of the notion of vector space over R are possible.

For instance if in the definition of a vector space we replace R by a field F, we
get a vector space over F. If we replace it by a ring R, then we get the notion of
a module over R. The study of these systems and their applications is central
to modern algebra.
However, not only can we deduce properties formally: we can seek to

prove a structure theorem. Here is an example for a vector space V over a
field F.
Say that v = a1v1 + · · · + anvn where a1, . . . , an ∈ F is a linear combination

of the vectors v1, . . . , vn ∈ V . For example, (a, a, b) is a linear combination
of (1, 1, 0) and (0, 0, 1) for all a, b ∈ F, because (a, a, b) = a(1, 1, 0) +b(0, 0, 1).
More generally, any vector (x, y, z) ∈ R3 is a linear combination of the

three vectors i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1), because

(x, y, z) = xi + yj + zk.

If a vector space V has a set of vectors v1, . . . , vn so that every vector v ∈ V
can be written as a linear combination,

v = a1v1 + · · · + anvn where a1, . . . , an ∈ F,

then this set of vectors is called a spanning set for V .
For instance, the vectors i, j, k form a spanning set for R3. They have

another special property. A set of vectors v1, . . . , vn ∈ V is linearly inde-
pendent if

a1v1 + · · · + anvn = 0 implies a1 = · · · = an = 0.
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If a spanning set is also linearly independent, then the linear representation
is unique, for if a vector v ∈ V has two possible representations,

v = a1v1 + · · · + anvn = b1v1 + · · · + bnvn,

then

(a1 – b1)v1 + · · · + (an – bn)vn = 0

and, by linear independence,

a1 – b1 = 0, . . . , an – bn = 0,

so

a1 = b1, . . . , an = bn.

A set of vectors that is both a spanning set and linearly independent is
called a basis for the vector space V and the vector space is said to be finite
dimensional.
A first course in vector space theory (‘linear algebra’) usually concentrates

on finite-dimensional vector spaces over the fields R, C, or a general field
F, and proves that any two bases of a given finite-dimensional vector space
have the same number of elements. This number is called the dimension of
the vector space. Now, if v1, . . . , vn is a basis then any element v ∈ V can be
written uniquely as

v = a1v1 + · · · + anvn.

So the map f : V → Rn for which f (a1v1 + · · · + anvn) = (a1, . . . , an) is
a structure-preserving isomorphism. This leads to a structure theorem for
finite-dimensional vector spaces:

Theorem 12.2: Every finite-dimensional vector space V over a field F is
isomorphic to Fn.

We omit the proof since the theorem is for illustrative purposes only, but
the above discussion includes the key ideas.
This theorem provides a natural symbolic interpretation of a finite-

dimensional space, in which the vectors are given by coordinates. It then
turns out that linear maps between vector spaces are given by matrices. If
F = R and n = 2 or 3, the vectors can be represented visually in two- or
three-dimensional space.
The details can be found in any first course on vector spaces. They lay out

a template for later courses that study other axiomatic structures.
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The Way Ahead

In more sophisticated developments of algebra, the systems studied in-
variably consist of sets with various operations defined on those sets, with
functions from one system to another preserving the structure. These struc-
tures have many applications; indeed, the applications often dictate the most
profitable structures. Applications come from physics, engineering, biology,
chemistry, economics, statistics, computing, social science, psychology, and
many other areas. We now stand on a springboard, ready to leap into the
higher realms of mathematical thought. As examples of how formal systems
operate in mathematics, the next three chapters study three typical formal
structures: groups, infinite cardinal numbers, and infinitesimal quantities.
The notion of a group occurs naturally in many areas, including sym-

metries of geometric objects and permutations of sets. We prove a structure
theorem proving that any group can be viewed as a group of permutations of
a set.
The second example is a generalisation of finite counting to infinite sets,

using infinite cardinal numbers. These have an arithmetic of their own,
deriving from the arithmetic of finite counting but with some significant
differences.
The third concept generalises the idea of finitemeasurement by placing the

real numbers in an even larger ordered field K that contains R as an ordered
subfield. There are many possible candidates for K, but all of them share a
unique structure theorem. An element x ∈ K is said to be finite if a < x < b
for a, b ∈ R. It is said to be an infinitesimal if 0 < |x| < a for all positive
a ∈ R. The structure theorem says that if x is finite, then x is uniquely of the
form x = c + e where c ∈ R and e is zero or infinitesimal.
This has a profound consequence in the longer-term development of

mathematics. While formal mathematics tells us that there are no infini-
tesimals in the real numbers, it also tells us that any larger ordered field
must contain infinitesimals. It is possible to develop a theoretical framework
(called non-standard analysis) that allows the logical use of infinitesimals,
but this requires a strengthening of the logical foundations. (We said in chap-
ter 1 that mathematics grows like a tree, not only do its branches grow up, its
roots must also become stronger to support the larger structure.)
The existence of a structure with infinitesimals alongside a theory of infin-

ite cardinals which excludes infinitesimals is not contradictory because they
occur in two different contexts. Cardinal numbers generalise counting in N
and (apart from 1) the elements do not have inverses in N. Non-standard
analysis generalises measuring in R, where multiplicative inverses do ex-
ist. This is typical of what happens when we generalise familiar systems in
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different ways. In mathematical analysis within the real numbers there are
no infinitesimals, so the set-theoretic epsilon–delta method is appropriate.
In fields larger than the reals, infinitesimals occur and they can be used to
develop the theory of non-standard analysis. Meanwhile, applied mathemat-
icians can work well with ‘arbitrarily small numerical quantities’ in a natural
way. What matters is that the approach used is appropriate for the speciality
concerned.
The approach followed in this book is to offer a foundation for a full range

of mathematical thinking, combining natural visual and symbolic methods
with formal definitions and formal proof. It offers a preparation for various
future developments, be they in pure mathematics with a focus on mathem-
atical analysis, an alternative logical approach using infinitesimal methods,
or a more pragmatic approach that justifies the intuition of engineers and
physicists, clearly based on sound formal foundations.

Exercises

This chapter offers a broader picture of a formal approach to mathematics.
Given the broad sweep of ideas, we do not set a list of specific examples to
practise at this time. Far more important is to reflect and consider how your
ideas are progressing. A useful exercise is to re-read the opening chapter and
look at the notes you may have kept on the exercises in that chapter. How are
your views changing?
Look through this chapter again and write some notes to help you think

through the advantages and disadvantages of a formal approach to mathem-
atics. Don’t just take our word for it, explain to yourself the reasons in favour
of a formal approach, so that you grasp how the formal approach works for
you and make explicit any problems that may concern you. Share your in-
sights and concerns with others so that you can make better sense of the
reasons for a formal approach. Then you can use these insights to help make
sense of the ideas in the next part of the book.
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chapter 13

Permutations and Groups

In this chapter we develop some basic aspects of group theory to illus-
trate how axiomatic systems can be used to generalise features found in
concrete mathematical systems. Groups are absolutely fundamental to

modern mathematics. They originated from advanced areas of algebra and
geometry, but the underlying concept turned out to be very simple, though
sophisticated.
We begin with a practical example: the notion of a permutation. This is a

way to rearrange the elements of a set X. For example, if X = {1, 2, 3} then
we might rearrange the order 1, 2, 3 to 1, 3, 2. We formulate this concept as
a bijection σ :X → X. The set of all permutations of a fixed set X has several
pleasant algebraic properties, and from these and other examples we derive
a short list of axioms to define the formal notion of a group. We then prove
some basic theorems about groups, including a structure theorem showing
that every group can be considered as a group of permutations. This the-
orem tells us that a group is not merely an abstract concept: there are ways
to imagine groups visually and to manipulate their elements symbolically.
We can then build up new insights in the theory that involve both formal
proof of theorems and also natural ways of making sense of their structure.
These ideas will arise in a range of different situations in later mathematical
courses, so it is worth gaining experience of their general properties.

Permutations

In everyday life, we often find ourselves arranging some set of objects in
different ways, or choosing one arrangement out of many possibilities. For
example, several guests are coming to dinner and we have to decide who sits
where. Or we’re playing a game of cards and start by shuffling the pack. Ini-
tially, mathematicians thought of a permutation as one such arrangement.
For example, if the objects were the symbols x, y, z, then the permutations
were ordered triples like (z, y, x) or (y, x, z). There are six such triples:
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(x, y, z) (x, z, y) (y, x, z) (y, z, x) (z, x, y) (z, y, x).

However, mathematicians now focus not on the order of the numbers, but
on the way one arrangement is changed to get another one. For example,
when the order is reversed, so that the triple (x, y, z) is changed into (z, y, x),
the symbol in position 1 is initially x, but ends up as z. Similarly the symbol
in position 2 is initially y, and ends up as y, while the symbol in position 3 is
initially z, but ends up as x. This change can be described by a function

σ : {1, 2, 3}→ {1, 2, 3}

defined by

σ (1) = 3, σ (2) = 2, σ (3) = 1.

What matters here is the numbers that give the positions of the symbols
in the list. The symbols themselves tell us how to change these numbers.
The modern approach is more elegant, leading to a simple and precise
definition:

Definition 13.1: A permutation of a set X is a bijection σ :X → X.

When X is finite (and in practice not too large) there is a useful notation
for permutations, which rewrites a list of rules like σ (3) = 1 in a compact
form: (

1 2 3
3 2 1

)
(13.1)

The top row lists the elements of X. Beneath each element x is its image σ (x)
under σ .
In this notation, the elements of X can be listed in any order in the top

row. Provided we stick to the rule that σ (x) is written underneath x, chan-
ging the order of the elements makes no difference to σ . For example, the
permutation in (13.1) could be written as(

2 1 3
2 3 1

)
,

which conveys the same information. The possibility of changing the order in
this manner, which we will shortly see is very useful, is one of the reasons why
focusing on some specific ordering of the elements of X is not a good idea.
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First we note that the composition1 of functions σ ◦ τ is defined to be
σ ◦τ (x) = σ (τ (x)), which means, first do τ and then σ .
Permutations of a given set X have three basic properties:

Theorem 13.2:

(1) The identity iX is a permutation of X.
(2) Every permutation σ of X has an inverse σ –1, which is also a permu-

tation of X.
(3) If σ and τ are permutations of X, then so is their composition σ ◦ τ .

Proof:

(1) The identity is obviously a bijection, as remarked in chapter 5 when it
was defined.

(2) Since σ is a bijection, it has an inverse by theorem 5.17(c) of chapter 5.
Clearly σ –1 is also a bijection.

(3) This follows from proposition 5.20 of chapter 5. �

When X is finite, we can calculate the inverse of a permutation and the
composition of two permutations using the notation introduced above. For
example, suppose that X = {1, 2, 3, 4, 5, 6, 7} and

σ =
(

1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
,

τ =
(

1 2 3 4 5 6 7
5 7 3 1 4 6 2

)
.

To find τ –1, we just swap the two rows:

τ –1 =
(

5 3 6 1 4 7 2
1 2 3 4 5 6 7

)
.

If necessary, we can rearrange the columns so that the numbers in the first
row are in numerical order 1–7. Or we can observe that the number lying
above 1 is 4, the number lying above 2 is 7, the number lying above 3 is 2,
and so on. Either way, we get the equivalent expression

τ –1 =
(

1 2 3 4 5 6 7
4 7 2 5 1 3 6

)
.

1 Algebraists sometimes write σ (x) the other way round as (x)σ so that σ followed by
τ is written as (x)στ = ((x)σ )τ . This makes the rule for composition read more naturally,
so that στ means ‘first do σ , then τ ’. However, the notation σ (x) is much more widely
accepted, so we accept the minor irritation of composing permutations from right to left.
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To calculate the composition of functions σ◦τ we first do τ and then σ .
This involves running through the numbers x = 1, x = 2, . . . , x = 7, working
out what τ (x) is, and then what happens to that number when we apply σ .
For example,

τ (1) = 5 then σ (5) = 3
τ (2) = 3 . . . σ (3) = 5
τ (3) = 6 . . . σ (6) = 2
τ (4) = 1 . . . σ (1) = 7
τ (5) = 4 . . . σ (4) = 4
τ (6) = 7 . . . σ (7) = 1
τ (7) = 2 . . . σ (2) = 6

Therefore

σ◦τ =
(
1 2 3 4 5 6 7
3 5 2 7 4 1 6

)
.

Another way to see how to get this result is to rewrite σ so that the top row
is listed in the same order as the bottom row of τ , like this:

τ =
(
1 2 3 4 5 6 7
5 3 6 1 4 7 2

)
,

σ =
(
5 3 6 1 4 7 2
3 5 2 7 4 1 6

)
,

and then combine the top row of τ with the bottom row of σ , which gives
the same result. After a little practice you can do this by writing down the top
row in order 1, 2, 3, . . . and trace your finger along σ to find what is beneath
each successive τ (x), to write this down on the bottom line.

Permutations as Cycles

A permutation can be written in a more compact form by tracing where each
element goes. For example, in the case of the permutation

τ =
(
1 2 3 4 5 6 7
5 7 3 1 4 6 2

)
we have 1 goes to 5, 5 goes to 4, 4 goes to 1. At the same time 2 goes to 7
and 7 goes to 2, while both 3 and 6 remain unchanged. We can represent the
transformation as
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1→ 5→ 4→ 1, 2→ 7→ 2, 3→ 3, and 6→ 6.

Each of these short lists determines a permutation in its own right, and is
called a cycle. The first is written as (1 5 4) on the understanding that each
number in the cycle goes to the next and the last number returns to the first.
The product of these cycles is then written as

(1 5 4) (2 7) (3) (6).

Because cycles with only one element effectively do nothing, they can be
omitted to write the product as

(1 5 4) (2 7).

Remembering that composition reads from right to left, this notation oper-
ating on an element xmeans first see what happens in the cycle (2 7) then in
the cycle (1 5 4). For instance, operating on 4, the cycle (2 7) doesn’t change
it, but the cycle (1 5 4) takes 4 to 1.
In this case the cycles are disjoint; that is, they have no elements in com-

mon. In this case, the order does not matter. However, if two cycles have an
element in common, then the order doesmatter. The product

(1 2)(2 3)

operating on the element 2 first takes 2 to 3 in the cycle (2 3) and then 3 is
unchanged by the cycle (1 2), so 2 goes to 3 overall. But the product

(2 3)(1 2)

operating on the element 2 takes 2 to 1 in the cycle (1 2), then 1 is unchanged
in the cycle (2 3), so 2 goes 1 overall.
This means that the product of two permutations σ , τ need not be

commutative, so we may have σ◦τ �= τ◦σ .
On the other hand, it is easy to write down the inverse of a cycle. It operates

a cycle in reverse order. For example the inverse of (1 5 4) is (4 5 1). Check
this by working it through for yourself.

Group Properties for Permutations

Theorem 13.2 established three basic properties of the set of all permutations
of any set X, which we write as follows:

Definition 13.3: A set G of permutations of a set X is a permutation group
or has the group property if:
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(PG1) The identity iX ∈ G.
(PG2) If σ ∈ G then σ –1 ∈ G.
(PG3) If σ , τ ∈ G then σ◦τ ∈G.

Classically, X was always taken to be a finite set, and in this case the first
two properties are consequences of the third (exercise 12). This is why the
phrase ‘the group property’ came to be used.
This definition applies to the set of all permutations onX, which we denote

by SX . When X = {1, 2, 3, . . . , n} we use the simpler notation Sn. We can then
restate theorem 13.2 as:

Theorem 13.4: For any X, the set SX is a permutation group.

We have worded the definition of a permutation group onX carefully, so that
it does not have to be the whole set of permutations on X. For instance, if we
take the subset {iX , s} of the set S7 of all permutations of {1, 2, 3, 4, 5, 6, 7},
where s = (2 3), we find that (2 3)(2 3) is the identity, so s–1 = s. In fact, the
set consisting of iX and s satisfies all of the properties in the definition 13.3, so
it is itself a permutation group.
The following subsets of S3 are also permutation groups where i denotes

the identity:

{i}, {i, (2 3)}, {i, (3 1)}, {i, (1 2)}, {i, (1 2 3), (1 3 2)}, S3.

You can check that these satisfy definition 13.3 by hand.
To be able to operate fluently with permutation groups, it may be useful

to imagine them visually in a way that enables you to grasp the structure.
For example, we might visualise S3 by permuting the three corners of an
equilateral triangle ABC. Initially we mark the three vertices as lying at po-
sitions 1, 2, 3.

Fig. 13.1 Permuting the corners of an equilateral triangle
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Then we pick up the triangle and rotate it or turn it over to place the
corners in different positions to give six possible symmetries:

the identity i, which leaves the triangle unchanged.

Two are rotational symmetries:

clockwise rotation ρ by a third of a full turn is the permutation (1 2 3),
anticlockwise rotation λ by a third of a turn is the permutation (1 3 2).

Three are mirror symmetries:

flip μ over the line of symmetry through A, given by (2 3),
flip μB over the line of symmetry through B, given by (3 1),
flip μC over the line of symmetry through C, given by (1 2).

However, by performing various combinations of a rotation and amirror im-
age, we can obtain all of these symmetries. For instance, using combinations
of the rotation ρ and the mirror image μ, we can obtain:

the identity i
the rotation ρ as (1 2 3)
the rotation λ as (1 3 2) or ρ2
the flip μ as (2 3)
the flip μB as (1 3), which can also be written as μρ or ρ2μ
the flip μC as (1 2) or ρμ = μρ2.

You should all check these statements for yourself. Either write the permu-
tations as cycles and carry out the composition symbolically as explained
above, or cut out an equilateral triangle from paper or card and physically
carry out the sequences of rotations and flips.
This calculation shows that all six elements of the group S3 may be written

in the form ρpμq where 0 ≤ p ≤ 2 and 0 ≤ q ≤ 1. In fact, all we need are
the expressions

i, ρ,ρ2,μ, ρμ,ρ2μ.

This observation simplifies computations with the elements of S3. We can
think of them as being ‘generated’ by the two elements ρ, μ subject to the
‘relations’

ρ3 = i,μ2 = i,μρ = ρ2μ.

In general we can simplify any product of powers of ρ, μ to these six distinct
elements by using these relations. For instance, if we have a product such as

ρμρ
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then we can write it as

ρ(μρ) = ρ(ρ2μ) = ρ3μ = μ.

Not only do we haveμρ = ρ2μ, we also haveμ2ρ = ρμ. So manipulating the
symbols in this case is easy. The commutative law does not hold in general,
so we cannot change the order of the terms in a product, but we can pass a
term ρ over a term μ provided we replace ρ by ρ2 when we do it. In this way
we can reduce any product of powers of ρ and μ to the form ρpμq where
0 ≤ p ≤ 2 and 0 ≤ q ≤ 1.
This rule of thumb only works in this particular group, but it is fruitful

to think of various other groups in terms of generators and relations. For
instance, the group of symmetries of a regular polygon with n sides is gener-
ated by two symmetries, a rotational symmetry ρ shifting one corner round
to the next position and a mirror symmetry μ flipping the polygon over an
axis of symmetry through one of the corners.

Fig. 13.2 Symmetries of a regular polygon

This group is generated by ρ and μ subject to the relations

ρn = i,μ2 = i,ρμ = μρn–1.

In other groups, with many generators and relations, calculations like
these can become very complicated. It then becomes essential to give a for-
mal definition of the general concept of group, and to build up theorems
about its structure.

Axioms for a Group

The three conditions that define a permutation group prove to be good can-
didates for a more general mathematical structure. However, this generality
requires us to get rid of the condition that the elements being operated on
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are permutations. Indeed, we do not even require them to be functions.
Moreover, the operation concerned need not be composition.
Historically, many examples arose in various areas of algebra, complex

analysis, geometry, and topology that essentially satisfied properties like
those in the definition of a group of permutations.
For example, the set Z of integers has the following properties:

If n ∈ Z then 0 + n = n.
If n ∈ Z then n + (–n) = 0.
Ifm, n ∈ Z thenm + n ∈ Z.

The first states that the analogue of the identity element is the number 0, be-
cause adding 0maps n to itself. The second similarly states that the ‘inverse’
of n is –n. And the third is like the condition on composing two permu-
tations or rigid motions, except that now we add the numbers instead of
composing them.
The set of rational numbers has similar properties with respect to addition.

Moreover, the set Q\{0} of non-zero rational numbers has similar properties
with respect to multiplication:

If r ∈ Q\{0} then 1r = r.
If r ∈ Q\{0} then r(1/r) = 1.
If r, s ∈ Q\{0} then rs ∈ Q\{0}.

Now the ‘identity’ is 1, the inverse of r is its reciprocal 1/r (hence the restric-
tion to non-zero numbers), and we use multiplication instead of compos-
ition. We encountered these features of Q in chapter 9.
These examples are the tip of a gigantic iceberg. During the early part of

the twentieth century it became clear that it was pointless to keep proving
the same theorems over and over again in many different contexts, especially
since the proofs were often identical. The whole topic was crying out for an
axiomatic approach, which would bring all of these different systems under
one heading and define concepts and prove theorems with as much general-
ity as possible. The history is complicated, but the final outcome is amazingly
simple.
Less obvious—or perhaps too obvious, because it happens by default in all

of the above examples—is the associative law. This law holds for composition
of functions (chapter 5, proposition 5.14), and addition, and multiplication
(see chapter 9).
One part of the group property—the one that got the whole subject

started—is so basic that it is now incorporated directly into the definition
of a group. This is ‘closure’ under the operation: the idea that when you
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compose permutations, or add integers, or multiply non-zero rationals, you
get another object of the same kind. Recall from chapter 5 that a bin-
ary operation on a set A is a function f :A × A→A. As we stated when
defining a binary operation, examples include composition, addition, and
multiplication.

Definition 13.5: A group is a set G together with a binary operation ∗ on
G, satisfying the following conditions:

(G1) There exists an identity: an element 1G ∈ G such that for all g ∈ G

1G ∗ g = g, g ∗ 1G = g

(G2) For all g ∈ G there exists an inverse element g–1 ∈ G such that

g ∗ g–1 = 1G, g–1 ∗ g = 1G

(G3) The operation ∗ is associative: for all g, h, k ∈ G

( g ∗ h) ∗ k = g ∗ (h ∗ k).

If we want to be really formal, we can write the group as a pair (G, ∗) to
make it clear which binary operation is being considered.

Examples 13.6: All the following are groups:

• the set of all permutations SX on a set X with the binary operation ◦
• the set Z with the binary operation +
• the set Q with the binary operation +
• the set Q\{0} with the binary operation×
• the real numbers R under (that is, with respect to the operation of )
addition

• the complex numbers C under addition
• the integers Zn modulo n under addition
• the non-zero real numbers R\{0} under multiplication
• the non-zero complex numbers C\{0} under multiplication
• the non-zero integers Zp\{0} modulo p under multiplication when p is
prime.

Only the last of these needs any effort to check and we leave this as an
exercise.

Many of these examples satisfy the commutative law g ∗ h = h ∗ g and are
given a special name:
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Definition 13.7: If a group G satisfying (G1)–(G3) of definition 13.5 also
satisfies the commutative law:

g ∗ h = h ∗ g for all g, h, k ∈ G

then G is an abelian group (named after the mathematician Niels Hendrik
Abel).

The definition of a group is clearer if we introduce an unambiguous and
general notation, such as ∗, for the binary operation. However, its continued
use is clumsy, and we normally replace f ∗ g by fg unless there is a serious
danger of this being confused with some other meaning of the product. We
also replace 1G by 1, which usually causes no problem when the operation
is thought of as a ‘product’, although we realise that in some of the above
examples 1 is an identity map, in others it may be 1 and in others it is 0. In
contexts where the main groups that arise are all abelian, it is common to
use + for the binary operation and 0 for the identity element. We reserve the
right to use whatever notation is appropriate in any given context.
We do not require the set G to be finite. It is when G = Sn for finite n, but

Z and Q are infinite.
In the early stages of an axiomatic theory, quite a lot of effort has to be

expended to sort out basic book-keeping issues: making sure that results that
seem obvious are actually true. The commutative law is an instructive ex-
ample, because it is often false. So any deduction that tacitly makes use of the
commutative law must be viewed with suspicion unless there is another way
to get the same result, or the group is known to be abelian. For example, our
algebraic instincts could easily lead us to write

( fg)2 = f 2g2

for two elements f , g of some group G. But this equation is not always
correct—as can be seen by working out the operations (ρμ)2 and ρ2μ2 in
the group G = S3.
Our next task is to sort out a number of useful properties that are true. We

collect them in one jumbo package:

Theorem 13.8: Let G be a group. Then:

(1) The identity element is unique. That is, if fg = g for all g ∈ G, or just
for one such g, then f = 1. The same goes if gf = g.

(2) The inverse of any element of G is unique.
(3) If f , g ∈ G then ( fg)–1 = g–1f –1.
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(4) General associative law: If brackets are inserted into any product
g1g2 . . . gn so that it makes sense, the result is always the same.We can
therefore omit the brackets and write this unique value as g1g2 . . . gn.

(5) General commutative law: If the elements g1, g2, . . . , gn ∈ G commute,
that is, gigj = gjgi for all 1 ≤ i, j ≤ n, then the product g1g2 . . . gn has
the same value if the elements are permuted in any way.

Proof: We prove parts (1)–(3) and outline inductive proofs for (4)–(5), with
discussion and examples.

(1) If fg = g then

f = f 1 = f (gg–1) = ( fg)g–1 = gg–1 = 1.

Similarly if gf = g.
(2) Suppose that gh = 1. Then

g–1 = g–11 = g–1( gh) = ( g–1g)h = 1h = h,

and similarly if hg = 1.
(3) For all f and g,

( g–1f –1)( fg) = g–1( f –1( fg)) = g–1(( f –1f )g) = g–1(1g) = g–1g = 1.

Now use the uniqueness of inverses to conclude that g–1f –1 = (fg)–1.
(4) We already know that we can write the product of three terms f , g,

h as fgh (without brackets) by the associative law. Suppose that we
can write the product of n terms without brackets for some n ≥ 3.
Then, if we have a product of n + 1 terms g1, g2, . . . , gn, gn+1, it may
either be of the form (g1 . . . gn)gn+1, where the product of the n terms
g1, . . . , gn is the same whatever the position of the brackets, or it is of
the form (g1 . . . gr)(gr+1 . . . gn+1) where r < n. Since each bracket has
fewer than n terms, it is independent of the order of bracketing and
we may write

g = g1 . . . gr
h = gr+1 . . . gn
k = gn+1

and use the associative law g ∗ (h ∗ k) = (g ∗ h) ∗ k to write
(g1 . . . gr)(gr+1 . . . gn+1) = ( g1 . . . gn)gn+1,

so the associative law holds for n+ 1 terms and, by induction, it holds
for all n ≥ 3.

(5) Again, the general case can be formulated for elements g1, g2, . . . , gn
in any order, and proved using induction on n ≥ 2. As the elements
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commute in pairs, this is true for n = 2. For the induction step, use a
series of swaps to move g1 to the front; then the induction hypothesis
shows that the rest can be arranged in the order g2g3 . . . gn and the
proof is complete. �

From now onwe use all of the above facts without further comment as part
of the context of building the theory of groups. They are basic reflexes for
every group-theorist. If you’re wondering why we’ve bothered with, say, the
general associative law, find out what calculations look like when the associa-
tive law is false. Look up ‘non-associative algebra’ on the internet, or borrow
a suitable book.We can tell you themain point now: it gets very complicated.
With enough motivation, you can learn to love it, and some special kinds
of non-associative operation are actually very useful, although they usually
satisfy some weaker version of associativity. Non-associative algebra is an
acquired taste.

Subgroups

Recall that we discovered that several subsets of S3 also form permutation
groups under the same operation, which in this case is composition. This
phenomenon is very common, so we give it a name:

Definition 13.9: Let G be a group. A subset H ⊆ G is a subgroup of G if:

(1) 1G ∈ H.
(2) If h ∈ H then h–1 ∈ H.
(3) If h, k ∈ H then hk ∈ H.

That is, H contains the identity and is closed under inverses and products.

There is a more efficient way to verify that a subset is a subgroup:

Theorem 13.10: A subset H ⊆ G is a subgroup if and only if H is non-
empty and hk–1 ∈ H whenever h, k ∈ H.
Proof: Suppose that H is a subgroup. Then 1G ∈ H so H is non-empty.
Moreover, k–1 ∈ H so hk–1 ∈ H.
Conversely, suppose H is non-empty and hk–1 ∈ H whenever h, k ∈ H.

Since H is non-empty there exists h ∈ H. Set k = h: then 1G = hh–1 ∈ H.
Then set h = 1G to get k–1 ∈ H. Finally, observe that hk = h(k–1)–1. �

Proposition 13.11: Suppose thatH is a subgroup of G. Then H is a group
under the operation ∗ of G, restricted to H × H. It has the same identity
element and inverses as G.
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Proof: Check the axioms systematically and verify the properties required
for identity and inverses. All are straightforward. �

One important way to obtain subgroups of G is to pick an element g and
see what else the subgroup must contain. There’s 1, of course, but also

g2 = gg
g3 = ggg
. . .

g–1

g–2 = g–1g–1

g–3 = g–1g–1g–1,

and so on. This motivates the definition of powers gn of g, for any integer n
(positive, negative, or zero):

Definition 13.12: Let G be a group and g ∈ G. For any n ∈ Z define gn
inductively by:

(1) g0 = 1
(2) gn+1 = ggn (n > 0)
(3) g–n = (gn)–1 (n < 0).

We would be astonished if the following theorem were not true. Fortu-
nately it is.

Theorem 13.13: Let G be a group, g ∈ G, and m, n ∈ Z. Then gmgn =
gm+n.
Proof: Use induction on n. �

We introduce the notation

〈g〉 = {gn | n ∈ Z}

because the set of all powers of g is always a subgroup:

Theorem 13.14: Let G be a group and let g ∈ G. Then 〈g〉 is a subgroup.
Proof: Take any two elements gm, gn ∈ 〈g〉. Then gm(gn)–1 = gm–n ∈ 〈g〉.
Now appeal to theorem 13.10. �

Definition 13.15: Let G be a group and g ∈ G. We call 〈g〉 the subgroup
generated by g.
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Clearly any subgroup that contains g must contain 〈g〉, so 〈g〉 is the
unique smallest subgroup that contains g. Moreover, it is commutative by
theorem 13.13.
If we throw in an extra element, not a power of g, nothing as simple can

be proved. The possibilities are very complicated, except for commutative
groups.
What does 〈g〉 look like? Let’s try a few examples. Suppose G = S3 and

g = ρ. The powers of ρ are ρ0 = i, ρ1 = ρ, ρ2 = ρρ. But ρ3 = i, and from
here on, the powers of ρ just cycle repeatedly through i, ρ, ρ2. Moreover,
ρ–1 = ρ2 so negative powers provide nothing new. In short, in this case

〈ρ〉 = {i, ρ,ρ2}.

This should not be a great surprise since we already know that {i, ρ,ρ2} is a
subgroup, so it must contain all powers of ρ. What drives this phenomenon
is the fact that ρ3 = i.
In contrast, suppose that G = Z under addition and g = 1. Then gn = n

because the group operation is addition. Now all the ‘powers’ gn are distinct,
and the subgroup generated by 1 is 〈1〉 = Z. This is an infinite group.
A group 〈g〉 generated by a single element g is called a cyclic group. It

consists of all the powers of g. Its structure is easy to classify:

Proposition 13.16: A cyclic group 〈g〉 generated by a single element g is
either finite with n distinct elements {1, g, g2, . . . , gn–1} where gn = 1, or it is
infinite of the form {gn | n ∈ Z} where gm �= gn form �= n.
Proof: Either there are two distinct values of m and n for which gm = gn, or
all powers of g are distinct. In the first case we may take n ≤ m. If k = m – n
then gk = (gm)(gn)–1 = 1. Now let n be the smallest power such that gn = 1.
All powers gr for 0 ≤ r < n must then be different, for if gr = gs for 0 ≤
r < s < n, then gs–r = 1, where s – r < n, contrary to n being the smallest
power of g with this property. In this case we therefore have the cyclic group
〈g〉 with n distinct elements {1, g, g2, . . . , gn–1} where gn = 1.
On the other hand, if all the powers are distinct, then 〈g〉 is {gn | n ∈ Z}

where gm �= gn form �= n. �

Isomorphisms and Homomorphisms

Sometimes two technically different groups have essentially the same struc-
ture. For example, the subgroups {i, (2 3)}, {i, (3 1)}, {i, (3 2)} of S3 all
consist of two elements, the identity and a second element whose square
is the identity.
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In these examples, the groups concerned work in the same way, except for
a change of notation. This preserves the operations in the sense that changing
notation for two elements and then multiplying them has the same effect as
multiplying them and then changing notation. This motivates the following
definition:

Definition 13.17: An isomorphism between two groups G,H is a bijection

φ : G→ H

such that

φ( g1g2) = φ(g1)φ( g2) ∀g1, g2 ∈ G.

If such a bijection φ exists, we say that G is isomorphic toH. Symbolically, we
write G ~= H.

If two groups are isomorphic, all of their abstract properties—those that
do not depend on the notation—are the same. Moreover, corresponding
elements have the same abstract properties. The next theorem lists some
examples.

Theorem 13.18: Let G, H be groups and suppose that there is an iso-
morphism φ : G→ H. Then:

(1) φ(1G) = 1H .
(2) If g ∈ G then φ( gm) = (φ( g))m.
(3) If g ∈ G then φ( g–1) = (φ( g))–1.
(4) If K is a subgroup of G then φ(K) is a subgroup ofH.

Proof: We leave the proofs, which are straightforward, as exercises. �

More generally, we can consider a map φ : G→ H between groups which
preserves the operation but need not be bijective.

Definition 13.19: A homomorphism φ between two groups G, H is a map
φ : G→ H such that

φ( g1g2) = φ(g1)φ( g2) ∀g1, g2 ∈ G.

If φ is injective, then it is a monomorphism. If φ is surjective then it is an
epimorphism.

For example, inclusion i : Z → Q from the integers under addition to
the rationals under addition is a monomorphism. The map φ : Z → Zn
from the integers under addition to the integers modulo n under addition,
mapping an integer to its remainder modulo n, is an epimorphism.
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Monomorphisms and epimorphisms are important concepts in group the-
ory. For example, a monomorphism φ : G→ H is an isomorphism between
G and the image φ(G) = {φ(g) ∈ H | g ∈ G}. This lets us identify G with the
subgroup φ(G) of H, because there is a bijection between the elements and a
precise correspondence between the operations.
Now our careful definition of a permutation group pays off. Recall that a

permutation group on a set X was defined to be a set G of permutations of X
satisfying:

(1) the identity iX ∈ G
(2) if σ ∈ G then σ –1 ∈ G
(3) if σ , τ ∈ G then σ ◦ τ ∈ G.

This can now be seen to be a subgroup of the permutation group SX . More
generally, we can prove:

Theorem 13.20 (Structure Theorem for a Group as a Group of
Permutations): Every group is isomorphic to a permutation group.
Proof: Let G be a group. For fixed but arbitrary g ∈ G define

πg : G→ G

by

πg(x) = gx (x ∈ G).

Informally, this map is ‘left multiplication by g’.
This map is clearly injective: if πg(x) = πg(y) then gx = gy, so g–1gx = g–1gy

and x = y. It is also surjective: if y ∈ G then, for x = g–1y, πg(x) = g(g–1y) = y.
So πg is a bijection and therefore a permutation of the set G.
Define the map φ : G → SG by φ(g) = πg . We claim that φ is a mono-

morphism.
The map φ is injective: if φ(g) = φ(h), then gx = hx, so gxx–1 = hxx–1

and g = h. To show that it is a homomorphism, observe that φ(hg) maps x to
(hg)x, and

(hg)x = h( gx) = πh(πg(x)) for all x ∈ G,

so

φ(hg) = φ(h)φ(g)

and φ is a homomorphism.
An injective homomorphism is a monomorphism from G to SG. It

is therefore an isomorphism from G to its image, the subgroup φ(G)
of SG. By definition, this is an isomorphism between G and a permutation
group. �
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This theorem shows us that any abstract group can be viewed as a per-
mutation group. In particular, for finite groups, every group is isomorphic
to a subgroup of Sn. In principle, this means that we can derive properties
of groups from permutation groups, particularly for small values of n. For
example, we can gain insight by exploring the properties of permutations as
cycles. But in practice, for larger values of n, the possibilities become farmore
complicated, and for infinite groups even more possibilities occur.

Partitioning a Group to Obtain a Quotient Group

So far we have introduced the notion of subgroup: a subset of a group that
is itself a group. It is also possible to define a group structure by clumping
group elements together and defining an operation on the set of clumps. We
have already seen this idea in action when defining Zn, the integers mod-
ulo n. The clumps are equivalence classes of integers, where two integers are
equivalent if they are congruent modulo n. To add two clumps, we choose
an element from each, add those, and see which clump the result belongs
to. This construction provides a second way to analyse a group in terms of
simpler groups, and it turns out to be intimately related to homomorphisms.
We formalise the clumps by working with a partition of a group. By ana-

logy with integers modulo n, we take a partition P of a group G and try to use
the group operation to define an operation on the equivalence classes of the
partition P. However, this procedure can run into trouble, because different
choices of elements from the clumps may lead to inconsistent results. The
construction of Zn works because the clumps have a very regular structure:
elements in the same clump differ by a multiple of n. If we try the same trick
with a less regular partition, it may not work.
For example, suppose we partition Z into {0, 1}, {2, 5, 6}, {3, 8}, and

various other disjoint pieces. What should {0, 1} + {2, 5, 6} be? If we choose
representative elements 0 and 2, then 0 + 2 = 2 so the sum ought to be the
clump {2, 5, 6}. But if we choose elements 1 and 2, then 1 + 2 = 3 so the sum
ought to be the clump {3, 8}. Therefore ‘sum’ is not well defined in this case,
and the attempt fails.
Working with a general group G, we want to divide the set G into subsets

that themselves operate as a group. When this is possible, the result is called
a quotient group. The reason for this name will become clearer later.
A partition P of G is a set of disjoint (non-empty) subsets of G, so that

every element of G lies in precisely one of the subsets in the partition.
These subsets are called equivalence classes, and theorem 4.9 of chapter 4
provides a structure theorem for partitions: every partition corresponds to
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an equivalence relation∼ in which a∼ b if and only if a, b belong to the same
equivalence class. We denote this equivalence class by Ea, where Ea = Eb if
and only if a∼ b.
For this partition P to inherit a product from the group, we obtain the

product ST of two equivalence classes S, T in P by taking elements x ∈ S and
y ∈ T and defining ST to be the subset that contains xy. This may also be
written by defining ExEy to be the subset Exy.

S

T
ST

x

y
xy

x

y x y

Fig. 13.3 Defining a product on a partition of a group

To be able to do this independently of the choice of the individual elem-
ents, we need to know that if we take other elements x′ ∈ S and y′ ∈ T then
the product x′y′ needs to be in the same subset ST as xy. Another way of say-
ing the same thing is to assert that if x′ ∈ Ex and y′ ∈ Ey then x′y′ ∈ Exy, or if
x′ ∼ x and y′ ∼ y then x′y′ ∼ xy. Only then can the product of elements in
the group be used to define a product on the equivalence classes as elements
of the group P.
If we can define a group structure on the partition, this must have the

properties we have proved about groups in general. For instance, the iden-
tity of any group is unique and the inverse of any element is unique. This
immediately restricts how a group structure can be defined on a partition.
For example, there is only one candidate for the identity. The equivalence

class I contains the identity 1G, so I2 must contain (1G)2 = 1G which implies
I2 = I. Therefore I must be the identity element.

S = E x

x
I

1G
h
k

Fig. 13.4 The identity element for a partition

We can prove more:
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Theorem 13.21: If a partition P of a group G has a group structure in
which the product of equivalence classes Ex and Ey is defined to be Exy, then
the identity element of the partition I is the equivalence class containing 1G
and I is a subgroup of G.
Proof: If h, k ∈ I, then

Ehk = EhEk = I,

so hk ∈ I, so I is closed under the group operation.
Also, for any g ∈ G,

EgEg–1 = Egg–1 = I.

If g ∈ I then Eg = I, so this reduces to

IEg–1 = I

which implies that

Eg–1 = I.

Therefore g–1 ∈ I. So I must be a subgroup of the whole group G. �

These conditions are therefore necessary to set up a group structure on P
in the stated manner. However, they are still not sufficient. The other equiva-
lence classes must also have a special structure. To state what it is we require
a new construct: the notion of a coset of a subgroup.

Definition 13.22: Let H be a subgroup of G and let x ∈ G. Then

the left coset of x is xH = {xh ∈ G | h ∈ H}

and

the right coset of x is Hx = {hx ∈ G | h ∈ H}.

Proposition 13.23: Let G be a group, and let H be a subgroup of G. The
left cosets of H partition the set G. The right cosets of H also partition
the set G.
Proof: First consider the left cosets {xH | x ∈ G}. Each coset is non-empty,
since it contains x1G = x. Every element g ∈ G lies in at least one coset,
namely gH. If two cosets xH, yH contain a common element g = xh1 = yh2,
then x = yh2h–11 = yh where h = h2h–11 ∈ H, because H is a subgroup.
Any element g ∈ xH is therefore of the form g = xk where k ∈ H, so
g = xk = yhk. Because H is a subgroup, hk ∈ H, giving g = yhk ∈ yH. Thus
xH ⊆ yH.
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A corresponding argument shows that yH ⊆ hH, hence the left cosets xH
and yH are the same.
The proof for right cosets follows the same pattern. �

The Number of Elements in a Group
and a Subgroup

When we partition a group G into left and right cosets of a subgroup H, it is
clear that the map between two (left) cosets xH and yH which maps xh to yh
for all h ∈ H is a bijection. If G is finite, then all the cosets will be the same
size.2 This means that G is subdivided into a number of equal-sized subsets,
which leads to a direct relationship between the number of elements inG and
the number of elements in H.

Definition 13.24: The order of a finite group G is the number of elements
in the group and is denoted by the symbol |G|.

The use of the term ‘order’ should not be confused with its use in other
contexts, such as an order relation or the order of elements in a permutation.
It is part of the traditional theory of groups and you should just get used to it.

Proposition 13.25: If H is a subgroup of a finite group G then the order
of H divides the order of G.
Proof: Let n = |H| be the order of H. Then every left coset has n elem-
ents, and the cosets are disjoint subsets of the same size that include all the
elements of G. If there are m distinct cosets, the number of elements in G is
thereforemn. �

This result is very helpful when seeking subgroups of a given group. For
a subset to be a subgroup, its order must divide the order of the group.
For example, when considering the possible subgroups of the permutation
group S3, which has six elements, the subgroups must have order 1, 2, 3, or
6 and there are no others. So the subgroups must either be the identity (order
1), the whole group (order 6), or subgroups of order 2 or 3, which have all
been identified earlier.
This proposition has an important consequence for elements of the

group. Let H = 〈g〉, the cyclic subgroup generated by g. This is of the form
{1, g, g2, . . . , gn–1}, where gn = 1 and all listed elements are distinct. Therefore
the order of this cyclic subgroup is n. This leads to:

2 This property also holds for infinite groups, but to explain this requires us to define
what we mean by ‘the number of elements in an infinite set’. We consider this in chapter 14.
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Definition 13.26: An element g ∈ G is said to be of finite order if there
exists n ∈ N such that gn = 1. The smallest such n is said to be the order of g.

An immediate consequence is:

Theorem 13.27: If g is an element of a finite group G then the order of g
divides the order of G. �

Partitions that Define a Group Structure

Now that we can partition a group G using left or right cosets, we ask when it
is possible to define a group operation on the partition, using the operation

xH ∗ yH = xyH (13.2)

for left cosets, or

Hx ∗Hy = Hxy (13.3)

for right cosets. We show that this is possible if and only if the left and right
cosets are the same. In such a case we would have

xH = Hx for all x ∈ G,

and the two rules (13.2) and (13.3) will give the same result.
We make the following definition:

Definition 13.28: A subgroup H of a group G is a normal subgroup if the
left and right cosets gH and Hg are equal for all g ∈ G.

The condition gH = Hg does not mean that gh = hg for every h ∈ G. It
simply requires that gh = kg for some k ∈ H. This means that the element
k = ghg–1 lies in H, which gives rise to the following:

Alternative Definition 13.29: A subgroup H of a group G is a normal
subgroup if for every h ∈ H and g ∈ G, the element ghg–1 ∈ H.

Symbolically, if H is normal, we write H # G.

Example 13.30: Consider our old friend S3 and the two subgroups

H = {i,μ},K = {i, ρ,ρ2},

where the mirror symmetry μ satisfies μ2 = i and the rotation ρ satisfies
ρ3 = i.
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Case 1: the subgroup H = {i,μ}.
Here the left coset ρH is {ρi,ρμ} = {ρ,μρ2}. But the right coset Hρ is

{iρ,μρ} = {ρ,μρ}. These cosets are not equal. If we take the six elements
of S3 and partition them into left and right cosets of H, then we get the
following:

i

μ

ρ ρ2

μρ μρ 2

HρH H  2ρ

also … Hμ H    2μρ Hμρ

i

μ

ρ ρ 2

μρμρ 2

HρH 2Hρ

also … Hμ 2Hμρ Hμρ

Left cosets of H: Right cosets of H:

Fig. 13.5 Different left and right cosets

Using the relations μρ = ρ2μ and ρμ = μρ2, we see that ρH �= Hρ
and ρ2H �= Hρ2 so the subgroup H is not normal. If we try to define the
product of two left cosets, say H and ρH, by selecting an element in each
and multiplying them together, the results may lie in different cosets. For
instance, if we select i ∈ H and ρ ∈ ρH, then their product iρ = ρ ∈ ρH,
but if we choose μ ∈ H, and ρ ∈ ρH, then their product μρ ∈ ρ2H.
On the other hand, subgroup K is different:

Case 2: the subgroup K = {i,ρ, ρ2}.
The left coset ρK is

ρK = {ρi,ρρ, ρρ2} = {ρ,ρ2, i},

and the right coset Kρ is

Kρ = {iρ,ρρ, ρ2ρ} = {ρ,ρ2, i}.

Using the element μ instead, the left and right cosets are still the same. The
left coset μK is

μK = {μi,μρ,μρ2},

and the right coset Kμ

Kμ = {iμ,ρμ,ρ2μ} = {μ,μρ2,μρ}.

In this case, the partition of S3 has two equivalence classes, K and μK, which
can be written in different ways as follows:
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i

μ

ρ ρ2

2μρ μρ

K = K = 2K = K   = K  2ρρ ρ ρ

K =    K =      2 K = K    = K      = K     2μ μρ μρ μ μρ μρ

Fig. 13.6 Identical left and right cosets

Now H is a normal subgroup, and the set of cosets forms a group with
elements K and μK where K is the identity element and (μK)2 = K.

This is true in general for normal subgroups:

Theorem 13.31: If G is a group and N is a normal subgroup, then the
partition P consisting of the subset N and the cosets gN for all g ∈ G forms a
group under the product

gN hN = ghN.

Proof: It is essential in this proof to build on the formal definition of a group
and to ascertain that the operations are all well defined.
First, suppose that xN = x′N and yN = y′N, then x′ = xh, y′ = yk for h,

k ∈ N. So

x′y′ = xhyk = x(yy–1)hyk = xy(y–1hy)k = xyn where n = (y–1hy)k.

Because N is normal, y–1hy ∈ N, and because k ∈ N and N is a subgroup,

n = (y–1hy)k ∈ N.

Therefore

x′y′ = xyn ∈ xyN

and the cosets x′y′N and xyN are the same.
The remainder of the proof is simple. The identity element is N and the

inverse of xN is x–1N. Associativity for multiplication of equivalence classes
follows from associativity in G. �

Now we can see why this is called a quotient group. This theorem shows
that for any normal subgroupN ofGwe can partition the groupG into its co-
sets and define a group structure on them. The partition is denoted by G/N.
These cosets are all the same size, in the sense that there is a one-to-one cor-
respondence between any two of them. In particular, if G is a finite group of
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order |G|, then each coset has the same number of elements as the order |N|
of the normal subgroup. The order of G/N is therefore

|G/N| = |G|/|N|.

Theorem 13.31 tells us that if N is a normal subgroup of a group G, then the
group operation on G naturally leads to a group structure on the quotient
group G/N. We can say something stronger: that this is the only way that a
partition of G can be given a group structure inherited from that of G.
To understand why, we introduce a more general notation for multiplying

any two subsetsX, Y of a groupG. (We do not assume any further properties;
they need not be subgroups, for example.) The product is

XY = {xy ∈ G | x ∈ X, y ∈ Y}.

For example, in S3

{ρ,μ}{i,ρ2} = {ρi,μi,ρρ2,μρ2}.

Similarly, if X ⊆ G and g ∈ G, we define

X–1 = {x–1 ∈ G | x ∈ X}
gX = {g}X = {gx ∈ G | x ∈ X}
Xg = X {g} = {xg ∈ G | x ∈ X}.

Multiplication of subsets is obviously associative, and the general associative
law applies. Therefore, if g, h ∈ G then gNh is defined unambiguously (as
either g(Nh) or (gN)h, which are equal). If N is a normal subgroup, we can
now write:

(gN)(hN) = g(Nh)N = g(hN)N = ghN2 = ghN.

Now it is evident why multiplication of cosets works for a normal sub-
group N. Multiplication of elements in the group may not be commutative,
but multiplication of any element g ∈ G by N does commute. So the
operation on cosets given by

(gN)(hN) = ghN

is well defined.
This leads to the major structure theorem for quotient groups and normal

subgroups:

Theorem 13.32 (Structure Theorem for a Partition of a Group):
If G is a group and P is a partition of the underlying set G, then P is a group
with the operation inherited from G if and only if N is a normal subgroup
and P is the quotient group G/N.
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Proof: Theorem 13.31 proves that if N is a normal subgroup, then the
partition G/N is a group under the operation (gN)(hN) = ghN.
Conversely, we have shown above that whenever a partition P inherits a

group structure, the identity element in P must be a normal subgroup, and
the other equivalence classes must be its left (and right) cosets. �

The Structure of Group Homomorphisms

We now prove a structure theorem for group homomorphisms, relating
them to normal subgroups. Suppose that φ : G → H is a homomorph-
ism. A homomorphism need not be injective, and it need not be surjective.
Not being injective makes homomorphisms worth studying, because this can
partition a complicated group G into simpler pieces. But not being surjective
makes very little difference, as the image

im(φ) = {φ( g) | g ∈ G}

(which we previously denoted by φ(G)) is simply a subgroup ofH:

Proposition 13.33: If G, H are groups and φ : G → H is a homomorph-
ism, then im(φ) is a subgroup of H.
Proof: If g, h ∈ G then, by theorem 13.18(3), φ(h–1) = (φ(h))–1, so

φ(g)(φ(h))–1 = φ( g)(φ(h–1)) = φ( gh–1) ∈ im(φ).

By theorem 13.10, im(φ) is a subgroup. �

The homomorphism φ also gives rise to a special subgroup in G:

Definition 13.34: Let φ : G→ H be a homomorphism. The kernel of φ is

ker(φ) = {g ∈ G | φ(g) = 1H}.

We can then prove:

Theorem 13.35: Let φ : G→ H be a homomorphism. Then the kernel of
φ is a normal subgroup of G.
Proof: If h ∈ ker(φ), then φ(h) = 1H , so for any g ∈ G,

φ( ghg–1) = φ( g)φ(h)φ( g–1) = φ(g)1Gφ( g–1) = φ(g)φ(g–1) = 1G.

Therefore ghg–1 ∈ ker(φ), and ker(φ) is a normal subgroup. �

This leads immediately to:
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Theorem 13.36 (Structure Theorem for Group Homomorph-
isms): Let G and H be groups and φ : G → H be a homomorphism.
Then

G/ker(φ) ~= im(φ).

Proof: Let N = ker(φ), which is a normal subgroup of G. Then G/N con-
sists of the left cosets gN for g ∈ G, and the group operation is setwise
multiplication. Define the map μ : G/N → im(φ) by

μ( gN) = φ( g).

This is certainly well defined, for if gN = hN then g = hn for n ∈ I, so
φ(n) = 1H and

φ(g) = φ(hn) = φ(h)φ(n) = φ(h)1H = φ(h).

μ is a homomorphism because

μ(xN yN) = φ(xy) = φ(x)φ(y) = μ(xN)μ(yN).

It is injective because given μ(gN) = μ(hN), then φ(g) = φ(h), so

φ(gh–1) = φ(g)φ(h–1) = φ(g)φ(h)–1 = 1H .

So g–1h ∈ N, implying g–1hN = N, so gN = hN and μ is injective.
It is also surjective, because, given any k ∈ im(φ), then k = φ(g) for some

g ∈ G and so

k = φ(g) = μ(gN).

Hence μ is an isomorphism. �

Example 13.37: For the additive group of integers Z, the set
nZ = {nm ∈ Z |m ∈ Z} of all multiples of n is a subgroup of Z under add-
ition. Here the operation is addition and the cosets should be written as
k + nZ. For instance, if n = 3, then the cosets are

3Z = { . . . , –6, –3, 0, 3, 6, . . . }

1 + 3Z = { . . . , –5, –2, 1, 4, 7, . . . }
2 + 3Z = { . . . , –4, –1, 2, 5, 8, . . . }.

For n ≥ 1, we have

Z/nZ ~= Zn.

For n = 0, we have 0Z = {0} and Z/0Z ~= Z. For negative n, we have
nZ = (–n)Z.
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The Structure of Groups

Now we have structure theorems that enable us to think about groups not
just as a list of axioms and subsequent theorems but as a crystalline concept
that we can imagine in our minds. As we saw in theorem 13.20, a group G
is precisely a group of permutations of a set of objects. In particular, it is a
subgroup of the permutation group SG permuting the underlying set G.
If we attempt to take a partition of a group G into subsets and define a

group structure on the partition, then this can be done if, and only if, one of
the subsets in the partition is a normal subgroupK ofG and the other subsets
in the partition are cosets of K.
If we have a homomorphism (a function preserving the group operation)

φ : G → H from a group G to another group H, then ker(φ) (the elements
in G mapping onto the identity in H) is a normal subgroup of G, the image
im(φ) is a subgroup of H, and the quotient group G/ker(φ) is isomorphic to
im(φ).
In general, a groupG formulated in terms of a set-theoretic definition may

be seen as a group of permutations on a set X.
We saw earlier that the permutation group S3 can be considered as the

group of symmetries of an equilateral triangle, where ρ is a rotation through
an angle 2π/3, μ is a mirror reflection in a line of symmetry through one of
the vertices, and the permutations are of the form ρpμq where and 0 ≤ p ≤ 2,
0 ≤ q ≤ 1.
In the same way, other geometric figures have a group of symmetries. For

instance, a square has eight symmetries: four rotations (one being the iden-
tity) and four reflections. A regular n-gon has 2n symmetries; a circle has
infinitely many.
The theory of groups can be used to formulate properties of symmetries,

particularly in geometry. Historically, however, the first developments in
group theory arose in algebra in the early nineteenth century. In the next sec-
tion we consider the broader evolution of mathematical ideas as part of an
overall vision without being encumbered by the step-by-step detail of that
development. This is intended to give you an overall picture of the use of
group theory in courses you may encounter later in your studies.

Major Contributions of Group Theory throughout
Mathematics

The abstract notion of a group developed from groups of permutations,
which were first made explicit by Évariste Galois in connection with
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solutions of polynomial equations using algebraic formulas. By this we mean
formulas that are constructed from the coefficients using addition, subtrac-
tion, multiplication, and division, but also pth roots for integers p. (We may
assume p is prime here, since, for example, 15

√
a = 3

√
5
√
a and so on.)

Niels Henrik Abel had proved that no such formula exists for the quintic
equation, but Galois placed his result in a more general context: when can a
polynomial equation be solved by a formula, and when not? His answer was
that there is a group G of permutations associated with any such equation—
basically, those permutations of its roots that preserve all algebraic relations
between them—and there is a formula if and only if this group has a very
special kind of structure. Namely, G has a sequence of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ . . . ⊇ Gk = {1},

where each Gj+1 is a normal subgroup of Gj and the quotient group Gj/Gj+1
has prime order. Roughly speaking, each piece corresponds to part of the
formula that takes the pth root of something, where p is the prime concerned.
Galois observed in particular that when the equation is a general quintic,

the group G consists of all permutations of the five roots, so it is S5. This
has order 120, and it has only three normal subgroups: S5 itself, the trivial
subgroup {1}, and a subgroup calledA5 with order 60. Since 120 is not prime,
we have to start the sequence with G1 = A5. But Galois also observed that
the only normal subgroups of A5 are A5 and {1}. (A normal subgroup of a
normal subgroup ofG need not be a normal subgroup ofG, so this also needs
proof.) Since neither 1 nor 60 is prime, the sequence gets stuck at A5; that
is, there is no sequence of the required kind. Therefore the quintic can’t be
solved by a formula.
A similar algebraic technique resolved the classic problems of whether one

could duplicate a cube or trisect an angle in Euclidean geometry. The answer
is a resounding ‘No!’ Using algebra to interpret the intersections of lines and
circles essentially involves finding the solution of successive quadratic equa-
tions which each have two solutions, and the permutation group of each
successive quadratic equation involves groups of order 2, 22, and so on. But
duplicating a cube with sides of length 1 involves constructing a cube side x
whose volume satisfies x3 = 2. This equation has 3 complex roots and the
corresponding group of permutations is of order 3, not a power of 2. So it is
not possible to duplicate the cube in Euclidean geometry.
If there were a technique for trisecting an angle, then we could apply it to

trisect 30◦, which would lead to the construction of the angle θ = 10◦ and,
in particular, to the value of x= sin 10◦. But using the formulae for sin 3θ
it can be shown that x= sin θ satisfies a cubic equation whose solutions
have a permutation group of order 3, not a power of 2. Again, an algebraic
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proof using permutations solved a geometric problem that had puzzled
mathematicians for 2000 years.
It took about 40 years after Galois’ death in a duel for his ideas to be prop-

erly appreciated. For instance, Klein realised their implications in geometry.
In 1872, he published a unified framework (called the Erlanger Programme)
for classifying different forms of geometry. For two millennia, geometry had
focused on Euclidean geometry in the plane and in three-dimensional space,
using concepts such as congruent triangles and the parallel property, but over
time, new forms of geometry had occurred.
During the Renaissance, painters had developed the idea of representing

scenes on a canvas by imagining they were looking through a glass with their
eye in a fixed position and painting the scene on the canvas to represent what
they saw. This gave rise to projective geometry, projecting three dimensions
onto a two-dimensional plane. The picture could be transformed by moving
the position of the eye to look at the scene from a different viewpoint. Un-
der such a transformation, points remained points, straight lines remained
straight, but angles could change and circles could be transformed into ellip-
ses. FromKlein’s viewpoint, points and straight lines were invariant concepts
in projective geometry but angles and circles were not.
Klein realised that different forms of geometry could be described by gen-

eralising the algebraic language of permutations introduced by Galois, with
each form of geometry operating on a set and focusing on properties that
remained invariant under the transformations available in the theory.
The notion of symmetry could now be interpreted in a more general sense

as a bijection on a set that preserves some specified kind of structure. It could
be a shape (rigid motions), it could be an algebraic formula (Galois group),
it could be a property like ‘being a solution of a specific differential equa-
tion’. In this way, groups are ‘really’ about symmetry and offer powerful new
principles in mathematics (See [33]).
For instance, we have already seen that the group of permutations S3

can be represented as the group of symmetries of an equilateral triangle,
consisting of a rotation ρ through a third of a full turn, a flip μ over a
line of symmetry through a vertex, together with combinations of these
permutations where ρ3 = μ2 is the identity and μρ = ρ2μ.
We have also already seen that if we replace the equilateral triangle by

other subsets of the plane, we obtain similar results: a square has eight sym-
metries (four rotations including the identity and four reflections), a regular
n-gon has 2n symmetries, a circle has infinitely many.
These ideas can be further generalised to the entire plane. For instance,

a tiling of the plane by congruent squares, like an infinite chessboard, has
infinitely many translational, rotational, and reflectional symmetries.
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This leads to a new way of viewing Euclidean geometry as the study of
rigid motions of the plane that preserve the distance between points. These
include translations that shift all points in a fixed direction, rotations through
an angle about a fixed point, and reflections, which flip the plane over a fixed
line to produce a mirror image. We can show that all rigid motions of the
plane arise by combinations of translations, rotations, and reflections.
Formally, the rigid motion of the plane can be described as a map

f : R2 → R2 where the distance between two points x and y is the same as
the distance between f (x) and f (y). This means that if we pick three non-
collinear points A, B, C forming a triangle then the transformed triangle
A′B ′C ′ will have the lengths of the sides maintained: AB = A′B′, BC = B′C′,
CA = C′A′. We can show that any rigid motion can then be constructed by
using a translation, a rotation, and a reflection, as follows.
First translate the plane so that Amoves to A′. Then, because AB and A′B′

are the same length, rotate the plane around A′ so that the rotated line co-
incides with A′B′. At this stage the rotated triangle may coincide with the
triangle A′B′C′, or it may be a reflection in the line A′B′. The rigid motion
of the plane is then seen as a successive application of a translation, then a
rotation, and, if needed, a reflection.

A

B
C

rotate ABC about A
(to align AB, A B  )

A

B
C

reflect ABC in AB
(if necessary)

B

C

C

A

B

start

A A

B

C

translate ABC
(moving A to A )

Fig. 13.7 A rigid transformation as a translation, rotation, and perhaps a reflection

Formally, the successive transformations can be written as follows. The
first translation takes any point (x, y) to (x + a, y + b) and can be written as

T(a,b)(x, y) = (x + a, y + b),

or more compactly as

Tu(z) = z + u, (13.4)

where z = (x, y) is a general point in the plane and u = (a, b) is the specific
vector representing the translation.
The same expression can also be interpreted as addition of complex

numbers where z = x + iy and u = a + ib.
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The rotation Rv,θ around a fixed point v = (c, d ) through an angle α can
be expressed in Cartesian coordinates. However, it has a more compact ex-
pression using complex numbers, where multiplying by eiα turns a complex
number through the angle α to give:

Rv,α(z) = v + (z – v)eiα . (13.5)

Finally, reflecting the plane in the horizontal axis can be expressed simply
in complex numbers by taking z = x + iy to z̄ = x – iy. To perform a general
reflection of a point z in a line that is at an angle β to the horizontal through a
point v = (c, d) is more sophisticated, but it can be done in successive moves,
first by moving z to z – v (to move the point z to the origin), then turn the
plane through an angle –β to move the line horizontal to z – v to (z – v)e–iβ ,
then flipping the plane over the horizontal axis to (z – v)e–iβ = (z – v) e–iβ =
(z – v) eiβ , and finally, turning the plane back through an angle +β to return
the line to its original position. This gives the final mirror position of the
original point z as

Mv,β(z) = (z – v) eiβeiβ = (z – v) e2iβ . (13.6)

The full transformation to shift the triangle ABC to the position A′B′C′
can therefore be performed by a translation Tv, followed by a rotation Rv,α ,
and then, if it is necessary to flip the triangle over, to performMv,β . Any rigid
motion of the plane can be written as a composite function taking z to

(Mv,β)k ◦ Rv,α ◦ Tv(z) for v ∈ R2, 0 ≤ α < 2π , 0 ≤ β < 2π and k = 0 or 1.

This shows that translations, rotations, and mirror images generate the
whole of the group of rigid transformations. To complete the descrip-
tion of the group we need to identify the relations between these rigid
transformations. These include relationships such as:

T0 = i

Tu ◦ Tv = Tu+v

Rv,0 = i

Rv,θ ◦ Rv,φ = Rv,θ+φ

(Mv)2 = i

and all possible pairwise combinations of Tu, Rv,α , Mw,β for different values
of u, v,w ∈ R2, α, β ∈ R. The details include the possible combinations
of translations, rotations, reflections in different directions, rotations round
different points, or reflections in different lines. They could be generalised
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to rigid motions in R3, and even move on to higher dimensions in Rn.
Such activities take us beyond the goals of a focus on the foundations of
mathematics and are postponed for possible study in later courses.

The Way Ahead

The theory of groups developed in this chapter can be extended to apply in
many areas of mathematics using the notion of symmetry as a bijection of
a set that preserves certain kinds of structure. A symmetry could relate to a
shape (rigid motion), to an algebraic formula (Galois group), it could be a
property like ‘being a solution of a specific differential equation’.
In many applications of mathematics, the symmetries of a system tell us

a lot about the system itself. For example, the symmetries of a drum impose
constraints on its vibrational frequencies, and the symmetries of a growing
organism affect the shapes it can take up. Deep areas of physics turned out to
be governed by the symmetries of the basic equations of relativity and quan-
tum mechanics. Modern particle physics, up to and including the recently
discovered Higgs boson, builds on the study of such symmetries.
Pure mathematics also benefits from generalising the ideas of this chapter

to more general algebraic structures. Algebraic structures may have sev-
eral operations, some of which have a group structure relating to theorems
proved here. For example, rings, fields, and vector spaces include a commu-
tative operation of addition and this may interact with other operations such
as multiplication in a ring or field or operations by scalar quantities in vector
spaces.
In all these cases, the additive structure is commutative, so additive sub-

groups are normal and have additive quotient structures, such asZ/nZ ~= Zn.
In this particular case, multiplication also works in Zn to make it a ring
(and also a field if p is prime). In this example, we not only have nZ closed
under multiplication, we can also multiply any element nk ∈ nZ by any
element m ∈ Z to get the product mnk, also in nZ. This turns out to
be the fundamental property for introducing quotient structures in ring
theory.

Definition 13.38: If R is a ring and I is a subgroup under addition then I
is an ideal if x ∈ R, y ∈ I implies xy ∈ I.3

3 Here, as elsewhere in this book, when we don’t say otherwise, we speak of a ring with
commutative multiplication. In a non-commutative ring, we would require both xy and yx
to belong to I.
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An ideal is not only closed under multiplication of elements within it, but
also by multiplication by an element from the whole ring.
Combining the properties of addition and multiplication, we have

Equivalent Definition 13.39: If R is a ring and I is a non-empty subset
of R, then I is an ideal if

(i) x, y ∈ I implies x – y ∈ I
(ii) x ∈ R, y ∈ I implies xy ∈ I.

Example 13.40: nZ is an ideal in Z.

In ring theory, it is possible to define quotient structures R/I for a ring R
and an ideal I in R using the same techniques as for a group and a normal
subgroup. For example, if I is an ideal in the ring R, then because addition is
commutative, the cosets written additively as x + I or I + x are equal and, by
the structure theorem for groups, addition may be defined on R/I by

(x + I) + (y + I) = (x + y) + I (13.7)

so that R/I is an additive group.
We can also define multiplication by

(x + I)(y + I) = xy + I. (13.8)

Theorem 13.41: If R is a ring and I is an ideal in R, then R/I is a ring
where addition and multiplication are given by (13.7) and (13.8).
Proof: Because R is a commutative group under addition, R/I is already
known to be a commutative group under addition. We need to check that
multiplication is well defined and satisfies the associative, commutative, and
distributive laws. These are all straightforward.
If x + I = x′ + I and y + I = y′ + I, then

xy – x′y′ = xy – x′y + x′y – x′y′ = (x – x′)y + x′(y – y′).

By the definition of an ideal,

x – x′ ∈ I, y′ ∈ R⇒ (x – x′)y′ ∈ I, x′ ∈ R, (y – y′) ∈ I ⇒ x′(y – y′) ∈ I.

Hence xy – x′y′ ∈ I and so xy + I = x′y′ + I.
Thus multiplication is well defined. The multiplicative identity is 1 + I
and the associative, commutative, and distributive laws follow from the
corresponding properties in R. �
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Example 13.42: Zn = Z/nZ is a ring and if p is prime, then it is a field.
You should verify these properties for yourself.

This use of quotient rings will prove to be insightful in chapter 15.

Exercises

1. Express the following permutations in disjoint cycle form:

(i)
(

1 2 3 4 5
3 2 5 1 4

)
(ii)

(
1 2 3 4 5 6
6 5 4 3 2 1

)

(iii)

(
1 2 3 4 5 6 7 8 9
5 9 7 4 1 3 6 2 8

)
(iv) (12)(12)(145)(23).

2. Express the following permutations in standard form:
(i) (1234)(23)(12)
(ii) (1235)(43)
(iii) (43)(34)(123)
(iv) (12)(13)(12)(143)(2).

3. Find σ –1 in both standard and disjoint cycle form where σ is:

(i)
(

1 2 3 4
2 4 3 1

)
(ii) (1234)(56)
(iii) (12)(12)(12)(13)(14).

4. Calculate the product στ and τσ , using the convention that permu-
tations are written on the left (i.e. στ is τ followed by σ ):

(i) σ =
(

1 2 3 4 5
4 2 3 1 5

)
, τ =

(
1 2 3 4 5
3 4 1 5 2

)
(ii) σ = (123), τ = (23)

(iii) σ = (1234), τ =
(

1 2 3 4
1 4 3 2

)
.

5. Prove that if X is a finite set with n elements, then the number of
bijections from X to itself is n! = n(n – 1)(n – 2) . . . 3.2.1.
Hint: Prove by induction the slightly more general theorem that

if X, Y are finite sets, each having n elements, then the number of
bijections from X to Y is n!.
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6. Write out the axioms for a group. Which of the following sets is a
group under the given operation? If it is, specify the identity element
and the inverse of each element; if not, give one reason why it fails.
(i) Z under addition
(ii) Z under multiplication
(iii) R under addition
(iv) R under multiplication
(v) R+, the positive real numbers, under multiplication
(vi) R5, the integers modulo 5 under addition
(vii) R5, the integers modulo 5 under multiplication.

7. Show that the set {15, 25, 35, 45} forms a group under multiplication
modulo 5. Show that {18, 38, 58, 78} forms a group under multiplica-
tion modulo 8. Find the largest subset of the integers modulo 12 that
is a group under multiplication modulo 12. In each case, write out the
multiplication table.

8. The set {13, 23} of non-zero integers modulo 3 form a group under
multiplication modulo 3, but the set {14, 24, 34} of non-zero integers
modulo 4 do not form a group under multiplication modulo 4. Ex-
plain why, and investigate what happens to the set {1n, 2n, . . . , (n–1)n}
of non-zero integers modulo n.

9. Show that Z∗7 , the set of non-zero elements modulo 7, is in the form
{17, a, a2, . . . , a5} for a = 37. Deduce that, for any integer n, either
n6 ≡ 0mod 7, or n6 ≡ 1mod 7.

10. Show that for any 1≤ k< n, the elements 1nkn, 2nkn, . . . , (n–1)nkn are
all different. Hence, or otherwise, prove that the non-zero elements
in Zn form a group if and only if n is a prime.

11. Find all subgroups of S4.
12. Prove that the complex nth roots of unity satisfying ωn = 1 form a

cyclic group of order n under multiplication. Relate this fact to the
rotational symmetries of a regular n-gon.

13. Let S be a non-empty set of permutations of a finite set X satisfying
the closure property:

If σ , τ ∈ S then σ ◦ τ ∈ S.
Prove that if X is finite then the following properties also hold:

The identity iX ∈ S.
If σ ∈ G then σ –1 ∈ S.

Hence deduce that a non-empty set S of permutations of a finite set X
satisfying the closure property is a group.
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14. Let A be a finite set and P be the set of subsets of A. Let the operation
$ on P be the symmetric difference: X$Y = {x ∈ X ∪Y | x /∈ X ∩Y}.
Show that P is a group under the operation $, with identity element
Ø. What is the inverse of X? What happens if A = Ø?

15. If a, b are any two elements of a group, show that a–1b–1 = (ba)–1.
Hence, or otherwise, show that ifG is a group such that x2 is the iden-
tity for every x ∈ G, then G is abelian (i.e. that ab = ba for all a,
b ∈ G).

16. Prove that H is a subgroup of G if and only ifH �= ∅ and HH–1 = H.
17. Find an example to show that if a subgroup H is not normal then the

product of two cosets gH and kH of H need not be a coset of H.
18. Suppose that M, N # G and M is a subgroup of N. Prove that M # N

and (G/M)/(N/M) ~= G/N.
Hint: Prove that the composition of two homomorphisms is a

homomorphism, and then consider the corresponding quotient
groups.

19. Using complex numbers, define the rotation ρα around the origin
turning through an angle α moving z = x + iy to ρα(z) = eiαz.
Define the mirror image μβ in a line through the origin making an

angle β with the horizontal axis by μβ(z) = e2iβ z̄.
Prove that these definitions agree with the ones given in chapter 11,

and prove the following properties:

R0 = i
Rθ ◦ Rφ = Rθ+φ
M0(x, y) = (x, –y)
Rθ ◦Mφ = Rφ+θ /2
Mφ ◦ Rθ = Rφ–θ /2.
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chapter 14

Cardinal Numbers

What is infinity?
When some first-year university students were asked this ques-
tion, the consensus answer was ‘something bigger than any

natural number’. In a precise sense, this is correct; one of the triumphs of
set theory is that the concept of infinity can be given a clear interpretation.
However, there is a surprise: when we compare the sizes of sets, we find not
one infinity, but many—a vast hierarchy of infinities. This discovery came
about by reformulating the question. Instead of asking ‘how many’ elements
there are in a given set and using counting, it is much more profitable to
compare two sets, and ask if there are as many elements in one of them as
there are in the other. This idea can be made precise by saying that sets A
and B have ‘the same number of elements’ if there is a bijection f : A→ B.
Rather than beginning with the full hierarchy of infinities, let’s begin with

what turns out to be the smallest. Here the standard set, for comparison
purposes, is the natural numbers N. It is useful to consider N rather than
N0 = N∪{0} because a bijection f : N → B organises the elements of B into a
sequence; we can call f (1) the first element of B using this bijection, f (2) the
second, and so on. Using this process we set up a method for counting B. Of
course, if we actually say the elements one after another using this bijection,
‘f (1), f (2), . . .’, we never reach the end, but we do know that if b ∈ B then
b = f (n) for some n ∈ N, so we reach that particular element eventually.
Recall from chapter 8 that we defined N(0) = ∅, and for n ∈ N,

N(n) = {m ∈ N | 1 ≤ m ≤ n}.

Definition 14.1: A set X is finite if there exists a bijection f : N(n) → X
for some n ∈ N0. A set X is countable if either X is finite or there exists a
bijection f : N → X. If there is a bijection f : N(n)→ X, then we say that X
has n elements.
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Finding such a bijection for a finite set is just the usual process of counting.
Why not generalise to infinite sets too? We can get started:

Definition 14.2: If there is a bijection f : N → X then X has ℵ0 elements.
We say that X is countably infinite.

The symbol ℵ is the first letter ‘aleph’ of the Hebrew alphabet, and ℵ0 is our
first example of a new concept of number, used to state how big an infinite
set is. If there is a bijection betweenN and X, it makes sense to say that ‘X has
the same (cardinal) number of elements as N.’ That number is given a new
symbol, ℵ0.
Before discussing cardinal numbers in general, we take a closer look at the

notion of countability.

Example 14.3: N0 is countable. Define f : N → N0 by f (n) = n – 1;
then f is a bijection. This is the first fascinating property of this method of
‘counting infinite sets’.N is a proper subset ofN0, so intuitively it should have
fewer elements, yet in the sense of a bijection between the sets, they have the
same size.

Galileo gave an even more graphic example in 1638:

Example 14.4 (Galileo): There is a correspondence between the natural
numbers and the perfect squares:

1 2 3 4 . . . n . . .

↓ ↓ ↓ ↓ ↓
1 4 9 16 . . . n2 . . .

In modern set-theoretic terms, if S = {n2 ∈ N | n ∈ N}, the map f : N → S
given by f (n) = n2 is a bijection.

This result is very curious, because we get the squares from N by remov-
ing all of the numbers that are not square. There are infinitely many of
these; moreover, squares get thinner on the ground as we progress to larger
numbers. Intuitively, a ‘random’ natural number is probably not a perfect
square.
For over two centuries, this seeming contradiction blighted any attempt

to contemplate infinity in a precise sense. Leibniz went as far as to suggest
that we should only ever consider finite sets—that the apparent contradiction
arose because the natural numbers are infinite. His resolution of the conflict
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was that if we consider only finite sets of natural numbers—say the numbers
less than 100—there is no correspondence between these natural numbers
and those of them that are squares. Indeed, of the 100 numbers in this range
exactly 11 are squares.
This is a bit retrictive. It rules out any sensible concept of ‘number’ for

infinite sets. Georg Cantor realised that we can do better. His solution of the
paradox in the 1870s was evenmore dramatic. He showed that if we interpret
‘as many’ to mean that there is a bijection between two sets, then any infinite
set has ‘as many’ elements as a proper subset! Here ‘infinite’ is interpreted
in the technical sense that B is infinite if there is no bijection f :N(n)→B
for any n ∈ N0. From Cantor’s point of view, there is no paradox; just a
counterintuitive theorem. As we have said many times: when you generalise
a mathematical concept, some of its original properties may no longer be
true.

Proposition 14.5 (Cantor): If a set B is infinite, then there exists a proper
subset A⊂

�=
B and a bijection f : B→ A.

Proof: First, choose a countably infinite subset X of B. Since no bijection
exists between N(0) and B, B is non-empty and there exists some element in
B which we call x1. Define g : N → B inductively by g(1) = x1, and if distinct
elements x1, x2, . . . , xn have been found, then since g cannot give a bijection
g : N(n)→ B, there must be another element, which we name xn+1 ∈ B, that
is distinct from x1, . . . , xn. Define g(n + 1) = xn+1. Let

X = {xn ∈ B | n ∈ N}.

Let A = B\{x1}, define f : B→ A by

f (xn) = xn+1 for xn ∈ X

and

f (b) = b for b /∈ X.

Then f is a bijection. �

We can do better than this. We can start with an infinite set B and re-
move an infinite subset to leave a subset C with a bijection from B to C. For
example, if we take the set N of natural numbers, then the sets E of even
numbers and O of odd numbers allow us to define bijections
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f : N → E where f (n) = 2n
g : N → O where g(n) = 2n – 1.

If we start with the infinite set N and remove the infinite subsetO then this
leaves the infinite subset E and a bijection f : N → E.
More generally, for any infinite set B, we can remove an infinite subset and

still be left with a subset A with a bijection f : B → A. To do this, choose a
countably infinite subset X of B as in the proof of proposition 14.5. Let Y be
the subset {xn|n is odd} and let A be the subset of B with the elements of Y
removed:

A = B\Y .

Define f : B→ A by

f (xn) = x2n for xn ∈ Y , and f (x) = x for x /∈ Y .

Then f is a bijection which maps all of B onto A.
We can therefore start with any infinite set B, remove a (countably) infinite

subset Y and still be left with a subset A which has ‘as many elements’ as B!

Cantor’s Cardinal Numbers

Cantor’s solution to the problem ‘how many elements?’ for infinite sets was
to introduce the concept of a cardinal number. For the moment we assume
that for every set X, there is a concept, more briefly called a cardinal, with
the property that if there is a bijection f :X→Y , then X and Y have the
same cardinal, and if there is no bijection, then the cardinals concerned are
different. We denote the cardinal of X by |X|.
We haven’t yet said what cardinals are, just what they do. To place them

on a firm basis, we have to construct them set-theoretically. Cantor didn’t get
that far, and neither will we. However, it can be done.
In the case of finite sets, a convenient candidate for the cardinal number

is close at hand. If there is a bijection f :N(n)→X, the cardinal of X is n.
Likewise, given a bijection f :N→X, the cardinal of X is ℵ0. For other in-
finite sets, we may have to invent new symbols for their cardinals. In general
we denote the cardinal of X by |X|, on the understanding that if there is a
bijection f : X → Y , then |X| = |Y|. If there exists an injection f :X→Y ,
we say that |X| ≤ |Y|. As usual, we define |X| < |Y| to mean |X| ≤ |Y| and
|X| �= |Y|.
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In general, if X is a subset of Y , then the inclusion i : X → Y , i (x) = x, is
an injection, so we have

X ⊆ Y ⇒ |X| ≤ |Y| .
Proposition 14.5 says that for any infinite set B there exists a proper subset A
such that |A| = |B|. Thus for infinite sets,

X⊂
�=
Y� |X| < |Y| .

The dilemma posed by Galileo’s example is not so much mathematical as
psychological. When we extend the system of natural numbers and counting
to embrace infinite cardinals, the larger system need not have all of the prop-
erties of the smaller one. However, familiarity with the smaller system leads
us to expect certain properties, and we can become confused when the pieces
don’t seem to fit. Insecurity arose when the square of a complex number vio-
lated the real number principle that all squares are positive. This was resolved
when we realised that the complex numbers cannot be ordered in the same
way as their subset of reals. Likewise we resolve the seeming contradiction
that Galileo discovered by realising that when we interpret ‘same cardinal’ in
terms of a bijection between sets, proper inclusion ofA in B does not prevent
A and B from having the same infinite cardinal.
We return to the notion of countability. Given any infinite set B, as in the

proof of proposition 14.5, we can select a countably infinite subset X ⊆ B.
This means that ℵ0 = |X| ≤ |B| , so ℵ0 is the smallest infinite cardinal.
Surprisingly, many familiar sets that seem much bigger than N also have
cardinality ℵ0.

Example 14.6: The integers are countable. Define f : N → Z by:

f (2n) = n, f (2n – 1) = 1 – n for n ∈ N,

then we get the bijection

1 2 3 4 5 6 7 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 –1 2 –2 3 –3 . . . .

Although f is a bijection, it doesn’t preserve the order (in the sense that
m < n does not imply f (m) < f (n); for instance f (2) > f (3)). When we set
up bijections between sets with an order on them, we may have to do it in a
very higgledy-piggledy way, as the next example shows.
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Example 14.7: The rationals are countable.
We’ll prove this in stages, first by counting the positive rationals. A positive

rational is p/q, where p and q are natural numbers. One way of counting the
rationals is to think of them written out as an array:

1/1 1/2 1/3 1/4 . . .
2/1 2/2 2/3 2/4 . . .
3/1 3/2 3/3 3/4 . . .
4/1 4/2 4/3 4/4 . . .
· · · · . . .

· · · · . . .

· · · · . . .

Now read them off along the ‘cross diagonals’, first 1/1, next 1/2, 2/1, then
1/3, 2/2, 3/1, and so on:

Fig. 14.1 Counting the positive rationals

This process strings the positive rationals out as a list 1/1, 1/2, 2/1, 1/3, 2/2,
3/1, . . . . However, this list includes repeats, because 1/1 = 2/2 and later on
we get 3/3, 4/4, and so on. Similarly 1/2 = 2/4 = 3/6 = . . . . That prevents
the construction of a bijection. So we consider each element in the list in
turn, and delete it if it has occurred before. That leaves 1/1, 1/2, 2/1, 1/3,
3/1, . . . . Suppose that the nth rational in the remaining sequence is an. Then
the function f from the natural numbers to the positive rationals for which
f (n) = an is a bijection. Now we include negative rationals as well: the list 0,
a1, –a1, a2, –a2, . . . , an, –an, . . . includes every rational precisely once. So the
map g : N → Q given by

g(1) = 0, g(2n) = an, . . . , g(2n + 1) = –an for n ∈ N

is a bijection, as required.
Although we have not given an explicit formula for g(n), we have given an

explicit prescription for it. The first few terms are
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1 2 3 4 5 6 7 8 9 10 11 ...
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 –1 1

2 – 1
2 2 –2 1

3 – 1
3 3 –3 ...

and you should be able to continue as far as you wish. Later we develop a
more powerful result, the Schröder–Bernstein theorem, which lets us prove
that two sets have the same cardinal without constructing an explicit bi-
jection. By invoking the theorem, we can deal with the rationals more
cleanly.

The reason why we allowed ‘countable’ to include ‘finite’ as well as
‘countably infinite’ is the next result:

Proposition 14.8: A subset of a countable set is countable.
Proof: Given a bijection f : N → A and B ⊆ A, either B is finite, or we can
define g : N → B by

g(1)is the leastm such that f (m) ∈ B,

having found g(1), . . . , g(n), then

g(n + 1) is the leastm such that f (m) ∈ B\{g(1), ..., g(n)}.
Informally, this just amounts to writing out the elements of A as a list

f (1), f (2), f (3), . . . , f (n), . . . ,

deleting those terms not in B, and leaving the terms in B listed in the same
order. �

The remarkable fact about countable sets is that we can build up sets from
them that seem a lot bigger, but once more are countable, in the following
precise sense:

Proposition 14.9: A countable union of countable sets is countable.
Proof: Given a countable collection of sets, we can useN as the index set and
write the sets as {An}n∈N. (If there is only a finite number of sets, A1, . . . , Ak,
put An = ∅ for n > k.) Since each An is countable, we can write the elements
of An as a list an1 , an2 , . . . , anm , . . ., which terminates if An is finite but is an
infinite sequence if An is countably infinite. Now tabulate the elements of⋃
n∈N

An as a rectangular array, and read them off along the cross diagonals as

in the previous example:
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Fig. 14.2 Counting down successive cross diagonals

There may be gaps in the array because some of the sets are finite (as in
row three of the above illustration) or because there is only a finite number of
sets. There may be repeats when two sets An, Am have elements in common,
so an element in row n is repeated in row m. We just pass over the gaps and
delete elements that have occurred earlier. The list is then either finite, or an
infinite sequence with no repeats. This shows that

⋃
n∈N

An is countable. �

Proposition 14.10: The cartesian product of two countable sets is
countable.
Proof: If A and B are countable, write the elements of A as a sequence
a1, a2, . . . , an, . . . (which terminates if A is finite). Similarly, write the elem-
ents of B as b1, b2, . . . , bm, . . .. Now write the elements of A × B as a
rectangular array and read them off along the cross diagonals:

Fig. 14.3 Counting ordered pairs
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If either A or B is finite, there are gaps that should be passed over; if
both are finite, then A × B is finite. If both are infinite, an explicit bijec-
tion f : N → A× B is not hard to write down. There is one element in the
first cross diagonal, two in the second, and, in general, n in the nth. So there
are 1 + 2 + · · · + n = 1

2n(n + 1) elements in the first n. The rth element in
the next cross diagonal is (ar , bn+2–r), so an explicit formula for the bijection
f : N → A× B is

f (m) = (ar , bn+2–r) form = 1
2n(n + 1) + r (1 ≤ r ≤ n + 1). �

An instance of proposition 14.10 in action is:

Example 14.11: The set of points in the plane with rational coordinates is
countable.

At this stage of the game, the reader may be forgiven for thinking that
every infinite set is countable, but that is not so, as we see by looking at the
real numbers.

Example 14.12: The real numbers are not countable. We prove this by
contradiction, by showing that no map f : N → R can be surjective, so there
cannot be a bijection f : N → R. Given a map f : N → R, express each
f (m) ∈ R as a decimal expansion,

f (m) = am · am1am2 . . . amn . . . (am ∈ Z, amr ∈ N0, 0 ≤ amr ≤ 9)

where, for definiteness, if the decimal terminates, we write it that way, ending
in a sequence of zeros, not a sequence of nines. Now we write down a real
number, different from all the f (m). Let

β = 0 · b1b2...bn...

where

bn =
{
1 if an = 0
0 if an �= 0.

Then β is different from f (n) because it differs in the nth place. We have
avoided the possible ambiguity that might arise from an infinite sequence
of nines in the expansion, by making sure that the expansion of β doesn’t
have any.
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Let ℵ be the cardinal number of R. Since N ⊆ R we have ℵ0 ≤ ℵ, and the
last example shows that ℵ0 �= ℵ. So at last we have found a cardinal strictly
bigger than ℵ0.
In fact, for any cardinal we can find a strictly bigger one. The cardinal must

be associated with some set A. We show that the power set of A always has
strictly bigger cardinality:

Proposition 14.13: If A is a set then |P(A)| > |A|.
Proof: Evidently the map f : A → P(A) given by f (a) = {a} is an injection,
so |A| ≤ |P(A)| . It remains to show that |A| �= |P(A)| . To do so, we prove
that no map f : A→ P(A) can be a surjection. For such a map, f (a) ∈ P(A)
for each a ∈ A, so f (a) is a subset of A. We ask ‘does a belong to the subset
f (a)?’ The answer is always ‘yes’ or ‘no’. We select those elements for which
the answer is ‘no’ to get the subset

B =
{
a ∈ A | a /∈ f (a)

}
.

We claim that B is not mapped onto by any element of A under the function
f . For if B were equal to f (a) for some a ∈ A, the question ‘does a belong to
B?’ leads to a contradiction:

a ∈ B⇒ a /∈ f (a) = B,
a /∈ B⇒ a ∈ f (a) = B.

So B is not mapped onto by f and f is not surjective. Even more so, it cannot
be a bijection. �

Proposition 14.13 leads us to a hierarchy of infinities. We begin with ℵ0 =
|N| . Then |P (N)| is strictly bigger, then |P (P (N))| , and so on.

The Schröder–Bernstein Theorem

An obvious question to ask concerning the relation≤ between cardinals is

if |A| ≤ |B| and |B| ≤ |A| , can we conclude that |A| = |B|?
The answer to this question is in the affirmative, and the content of this state-
ment is the Schröder–Bernstein theorem. The proof is trickier than might
seem necessary for such a simple-looking proposition. The main problem is
that |A| ≤ |B| tells us that there is some injection f : A → B, and |B| ≤ |A|
tells us that there is some injection g : B → A, but these injections need not
be related in any useful way. Nevertheless, somehow we must use them to
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construct a bijection between A and B. This requires some ingenuity, and it
took a while to find the proof.

Theorem 14.14 (Schröder–Bernstein): Given sets A, B, then |A| ≤ |B|
and |B| ≤ |A| implies |A| = |B|.
Proof: We have injections f : A→ B, g : B→ A. We can use f to pass from
A to B or g to pass from B to A. Repeating the process, we can pass to and fro
obtaining f (a) , g

(
f (a)

)
, f
(
g
(
f (a)

))
, . . ..

Fig. 14.4 Tracing a chain forwards

The key to the proof is to try to trace such a chain backwards. Start with
b ∈ B and see if there exists a ∈ A such that f (a) = b; if such an a exists, it is
unique. Then see if there is a b1 ∈ B such that g

(
b1
)
= a, then a1 ∈ A such

that f (a1) = b1, attempting to build up a chain, b, a, b1, a1, . . . , bn, an, where
f (rr) = br , g

(
br
)
= ar+1. In tracing back a chain of elements in this fashion,

three things can happen:

Fig. 14.5 Tracing a chain backwards

(i) we reach aN ∈ A and stop because there is no b∗ ∈ B with
g(b∗) = aN ;

(ii) we reach bN ∈ B and stop because no a∗ ∈ A satisfies f (a∗) = bN ;
(iii) the process goes on forever.

This partitions B into three sets:

(1) BA, the subset of elements in B whose ancestry originates in A, as in
(i).
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(2) BB, the subset of elements in B whose ancestry originates in B, as in
(ii).

(3) B∞, the subset of elements in B whose ancestry can be traced back
forever, as in (iii).

Note that BA,BB,B∞ are disjoint and their union is B, so they do indeed
give a partition. Similarly we can partition A into AA,AB,A∞ whose ancestry
originates in A, B, or goes back forever, respectively.
It is easily seen that the restriction of f toAA gives a bijection f : AA → BA,

the restriction of g to BB gives a bijection g : BB → AB, and the restrictions
of f , g both give bijections f : A∞ → B∞, g : B∞ → A∞. Using the first two
and one of the third, we concoct a bijection F : A→ B by setting

F(a) =

⎧⎨⎩
f (a) if a ∈ AA
g–1(a) if a ∈ AB
f (a) if a ∈ A∞

Fig. 14.6 Where does tracing back end?

This completes the proof. �

As an example of this theorem, we give an alternative proof that the ration-
als are countable. The inclusion i : N → Q shows that |N| ≤ |Q|, and since
any rational can be written uniquely in its lowest terms as (–1)n p/q where
n, p, q ∈ N, by unique factorisation the function f : Q → N, f

(
(–1)n p/q

)
=

2n3p5q, is an injection, so |Q| ≤ |N|.
A more interesting example shows that |P (N)| = ℵ. An injection

f : P (N)→ R can be obtained by

f (A) = 0 · a1a2...an...
where

an =
{
0 if n /∈ A
1 if n ∈ A.

For each subset A ⊆ N, this gives a unique decimal expansion and f is an
injection.
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To get an injection g : R → P(N) requires a little more cunning. Instead
of writing a real number as a decimal expansion, we express it as a bicimal,1
which means that we write it as the limit of fractions of the form

a0 + a1/2 + a2/4 + · · · + an/2n

where a0 is an integer and an is 0 or 1 for n ≥ 1. If we exclude such
expressions concluding with an infinite sequence of 1s (the bicimal equiva-
lent of the decimal problem involving an infinite sequence of 9s), then such a
bicimal expansion is unique. Now express the integer a0 in binary notation as

a0 = (–1)m bk . . . b2b1

where m and the digits b1, b2, . . . , bk are all 0 or 1, then we have a unique
bicimal expansion for each real number x in the form

x = (–1)m bk . . . b2b1 · a1a2 . . . an . . .
where m and each digit b1, . . . , bk, a1, . . . , an, . . . is 0 or 1. For convenience,
in this case write bn = 0 for n > k. Now write the terms out as a sequence in
the order m, a1, b2, a2, b2, . . . , an, bn, . . .. This is a sequence of 0s and 1s and
defines a unique subset A of N according to the rule

r ∈ A if and only if the rth term of the sequence is 1.

In this way we obtain a function g : R → P(N) by defining g(x) to be the
subset A determined in this manner. This is an injection, and the Schröder–
Bernstein theorem shows that |R| = |P(N)| .

Cardinal Arithmetic

Just as we can add, multiply, and take powers of finite cardinals, we can
mimic the set-theoretic procedures involved and define corresponding op-
erations on infinite cardinals. Some, but not all, of the properties of ordinary
arithmetic carry over to all cardinals, and it is most instructive to see which
ones. First of all the definitions:

Definition 14.15: The operations on cardinal numbers are as follows:
Addition: Given two cardinals α, β (finite or infinite), select disjoint sets A,
B such that |A| = α, |B| = β . (This can always be done. If A and B are not
disjoint, replace them by A′ = A × {0} and B′ = B× {1}. Obvious bijections

1 Classical scholars will be horrified, but the word seems unavoidable because of its
connotations with ‘binary’ and ‘decimal’.
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show that
∣∣A′∣∣ = ∣∣B′∣∣, and it is clear that A′ and B′ are disjoint.) Define α + β

to be the cardinal of A ∪ B.
Multiplication: If α = |A| , β = |B| , then αβ = |A× B|.
Powers: If α = |A| ,β = |B| , then αβ =

∣∣AB
∣∣ where AB is the set of all

functions from B to A.

You should check that when the sets concerned are finite, these definitions
correspond to standard arithmetic. In particular, when |A| = m and |B| = n,
then on defining a function f : B → A, each element b ∈ B has m possible
choices of image, givingmn functions in all. Addition and multiplication are
quite easy in the finite case.
Notice that the sets in the definition of addition have to be disjoint, but

this is not necessary for the other two operations. For addition, the reason
is that if |A| = m, |B| = n, and A ∩ B �= ∅, then |A ∪ B| < m + n. The
most important fact to check about these definitions is that they are well
defined. Starting with cardinals α, β , we must choose sets A, B with |A| =
α, |B| = β : it is essential to check that if different sets A′,B′ were used, then
the cardinal found in each case would be the same as before. In the case of
multiplication, for instance, if |A| = ∣∣A′∣∣ , |B| = ∣∣B′∣∣, then there are bijections
f : A→ A′, g : B→ B′, which induce a bijection

h : A× B→ A′ × B′

given by
h(a, b) = (f (a), g(b)).

Thus |A× B| = ∣∣A′ × B′
∣∣, and the product cardinal is well defined. There are

corresponding proofs for addition and powers of cardinals.
If we investigate the properties of these arithmetic operations, we find that

many properties of finite numbers continue to hold for cardinals:

Proposition 14.16: If α, β , γ are cardinals (finite or infinite), then

(i) α + β = β + α,
(ii) (α + β) + γ = α + (β + γ ),
(iii) α + 0 = α,
(iv) αβ = βα,
(v) (αβ)γ = α(βγ )
(vi) 1α = α,
(vii) α(β + γ ) = αβ + αγ ,
(viii) αβ+γ = αβαγ ,
(ix) αβγ = (αβ)γ ,
(x) (αβ)γ = αγ βγ .
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Proof: Let A, B, C be (disjoint) sets with cardinals α, β , γ , respectively. 0 is
the cardinal of ∅ and 1 is the cardinal of any one-element set, say {0}.
(i)–(iii) follow trivially because A ∪ B = B ∪ A, (A ∪ B) ∪ C = A ∪ (B ∪ C),
and A ∪∅ = A.
(iv)–(vi) follow because there are obvious bijections f : A×B→ B×A given
by f ((a, b)) = (b, a), g : (A× B)× C→ A× (B× C) given by g(((a, b), c)) =
(a, (b, c)), and h : {0}× A→ A given by h((0, a)) = a.
(vii) results from the equality A× (B ∪ C) = (A× B) ∪ (A× C) .
If the last three seem harder, it is because we are less familiar with the set

of functions AB from B to A. It is enough to set up the appropriate bijections.
(viii) Define f : AB∪C → AB × AC by starting with a map φ : B ∪ C → A,
defining φ1 : B → A to be the restriction of φ to B, φ2 : C → A to be the
restriction of φ to B, then put f (φ) = (φ1, φ2) . This function f is a bijection.
(ix) Define g : AB×C → (AB)C by starting with a function φ : B × C → A,
then defining the function g(φ) : C → AB by [g(φ)] (c) : B → A as the
function that takes b ∈ B to

([g(φ)](c))(b) = φ((b, c)).

As this is less familiar, it is worth demonstrating that g is a bijection. It is
injective, for if g (φ) = g (ψ) for two maps φ,ψ from B× C to A, then

([g(φ)](c))(b) = ([g(ψ)](c))(b) for all b ∈ B, c ∈ C

so, by definition,

φ((b, c)) = ψ((b, c)) for all b ∈ B, c ∈ C,

which means that φ = ψ .
To show that g is surjective, start with a function θ ∈ (AB)C . That is,
θ : C→ AB.Then define φ : B× C→ A by

φ(b, c) = [θ(c)](b) for all b ∈ B, c ∈ C.

We have g (φ) = θ , as required.
(x) The final equality between cardinals follows from the bijection
h : (A× B)C → AC × BC given by writing any φ : C→ A× B in terms of

φ(c) = (φ1(c), φ2(c)) for c ∈ C,

and then setting h (φ) = (φ1,φ2) . Checking the details is left to you. �
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Now we perform some explicit calculations with cardinals. As a corollary of
proposition 14.9, we find that

n + ℵ0 = ℵ0 + n = ℵ0 for any finite cardinal n,
ℵ0 + ℵ0 = ℵ0.

This shows that there is no possibility of defining subtraction of cardinals
where infinite cardinals are involved, for what would ℵ0 – ℵ0 be? According
to the above results it could be any finite cardinal or ℵ0 itself, so subtraction
cannot be defined to ensure that

ℵ0 – ℵ0 = α ⇔ ℵ0 = ℵ0 + α.

From proposition 14.10 it is easy to deduce that

nℵ0 = ℵ0n = ℵ0 for n ∈ N,
ℵ0ℵ0 = ℵ0.

It is interesting to calculate 0ℵ0. This turns out to be zero. In fact

0β = 0 for each cardinal number β .

This is because

A = ∅ ⇒ A× B = ∅ for any other set B,

for if A has no elements, then there are no ordered pairs (a, b) for a ∈ A, b ∈
B. This means that, in terms of cardinal numbers, zero times infinity is zero,
no matter how big the infinite cardinal is.
Likewise, it is instructive to calculate α0 and α1 for any cardinal α. By

definition, if |A| = α, then α0 is the cardinal number of the set of functions
from ∅ to A. You might be forgiven for thinking that there are no functions
from ∅ to A, but the set-theoretic definition of a function f : ∅ → A as a
subset of ∅× A exhibits just one such function, the empty subset of ∅× A.
So α0 = 1. Since |{0}| = 1,α1 is the cardinal number of the set of functions
from {0} to A. A function f : {0}→ A is uniquely determined by the element
f (0) ∈ A, so there is a bijection g : A{0} → A given by g(f ) = f (0) , showing∣∣A{0}

∣∣ = |A| , or α1 = α. By induction using proposition 14.16(viii), we get

(ℵ0)0 = 1, (ℵ0)n = ℵ0 for n ∈ N.

If we calculate 2α for any cardinal α, we get an interesting result in terms of
the power set. Suppose that |A| = α, then, since |{0, 1}| = 2, we have∣∣{0, 1}A∣∣ = 2α .
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But a function φ : A→ {0, 1} corresponds precisely to a subset of A, namely

{a ∈ A |φ(a) = 1}.

Define f : {0, 1}A → P(A) by f (φ) = {a ∈ A |φ (a) = 1}, then f is a bijection,
so |P (A)| = 2α . From proposition 14.13 we see that

2α > α for all cardinal numbers α.

Order Relations on Cardinals

We have already proved a number of results concerning the order of car-
dinals at various points in this chapter. It is now an opportune moment to
collect these together and make the list more comprehensive by filling in
the gaps:

Proposition 14.17: If α,β , γ , δ are cardinals (finite or infinite) then

(i) α ≤ β ,β ≤ γ ⇒ α ≤ γ ,
(ii) α ≤ β ,β ≤ α ⇒ α = β ,
(iii) α ≤ β , γ ≤ δ⇒ α + γ ≤ β + δ,
(iv) α ≤ β , γ ≤ δ ⇒ αγ ≤ βδ,
(v) α ≤ β , γ ≤ δ ⇒ αγ ≤ βδ .

Proof: Select sets A, B, C, D with cardinals α, β , y, δ.

(i) If f : A → B, g : B → C are injections, then gf : A → C is an
injection.

(ii) This is the Schröder–Bernstein theorem.
(iii) Given injections f : A→ B, g : C→ DwhereA∩C = ∅,B∩D = ∅,

define h : A ∪ C→ B ∪ D by

h (x) =
{
f (x) for x ∈ A
g(x) for x ∈ C.

Since A ∩ B = ∅, this is well defined, and since B ∩ D = ∅, the fact that f , g
are injections implies h is an injection.

(iv) Given injections f : A→ B, g : C → D, define p : A × C → B× D
by

p((a, c)) = ( f (a), g(c)) for all a ∈ A, c ∈ C.
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Clearly p is an injection (for if p((a1, c1)) = p((a2, c2)) , then(
f (a1) , g(c1)

)
=
(
f (a2) , g(c2)

)
, so f (a1) = f (a2) , g(c1) = f (c2) , and

the injectivity of f , g implies a1 = a2, c1 = c2).
(v) This is best visualised by considering A ⊆ B,C ⊆ D. (If we are given

injections f : A → B, g : C → D, replace A by f (A) ⊆ B, and C by
g (C) ⊆ D in the argument that follows.)

For A ⊆ B, C ⊆ D, to define a map μ : AC → BD, all we need to do is
to show how to extend a function ∅ : C → A to a function μ(φ) : D → B.
(The function μ(φ) : D → B isn’t usually an injection; don’t confuse this
with the function μ : AC → BD.) The easiest way to do this is to select an
element b ∈ B, (any one will do, the exceptional case B = ∅ easily implies (v)
by a separate argument); then define μ(φ) ∈ BD by

[μ(φ)] (d) =
{
φ(d) for d ∈ C,
b for d ∈ D\C.

Then μ : AC → BD is an injection because μ(φ1) = μ(φ2) implies

[μ(φ1)] (d) = [μ(φ2)] [(d)] for all d ∈ D;

in particular, this means that

φ1(d) = φ2(d) for all d ∈ C,

so φ1 = φ2. �

Looking at this last proposition, there is a notable omission from the list
of properties we might expect of an order relation. We have not asserted
that any two cardinal numbers are comparable; that is, given cardinals α,β
then either α ≤ β or β ≤ α. What this would amount to is selecting sets
A, B with cardinals α, β respectively and showing that there is either an in-
jection f :A→B, or g :B→A, (or both). To be able to construct such an
injection, we would either have to know something about the sets A and B,
or we would need some general method of proceeding with the construc-
tion of a suitable injection. Given specific sets, we can proceed in an ad hoc
fashion and use our ingenuity to try to set up an injection from one to the
other. A general method that works for all sets requires us to be much more
precise about what we mean by a set. It strains the bounds of set theory.
Until we put specific restrictions on what we mean by the word ‘set’ we can-
not say how to compare two of them. The theory of sets has grown into a
large and living plant; to nourish it we must put down stronger roots into the
foundations.
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Exercises

1. Let X be the set of points (x, y, z) ∈ R3 such that x, y, z ∈ Q. Is X
countable?

2. Let S be the set of spheres in R3 whose centres have rational coordin-
ates and whose radii are rational. Show that S is countable.

3. Let [0, 1[ be the set of real numbers x such that 0 ≤ x < 1. By writing
each one as a decimal expansion, prove that [0,1[ is uncountable.

4. Which of the following sets are countable? (Prove or disprove each
case.)
(a) {n ∈ N | n is prime}
(b) {r ∈ Q | r > 0}
(c) {x ∈ R | 1 < x < 10–1,000,000}
(d) C
(e) {x ∈ R | x2 = 2a3b for some a, b ∈ N}.

5. If a, b ∈ R and a < b, the closed interval [a, b] is

[a, b] = {x ∈ R | a ≤ x ≤ b},

the open interval is

]a, b [= {x ∈ R | a < x < b},

and the half-open intervals are

[a, b [ = {x ∈ R | a ≤ x < b},
]a, b] = {x ∈ R | a < x ≤ b}.

Prove for a < b, c < d, that f : [a, b]→ [c, d] given by

f (x) =
(
b – x

)
c

b – a
+
(x – a) d
b – a

is a bijection. Deduce that any two closed intervals have the same
cardinal number.
Prove also that [a, b], ]a, b[, [a, b[, ]a, b] all have the same cardinal

number. (Hint: Show that [a, b] has the same cardinal number as any
one of the other three by choosing c, d such that a < c < d < b, and
then using the Schröder–Bernstein theorem.)

6. Prove that the cardinal number of a closed interval, an open interval,
and a half-open interval is ℵ.

7. Prove that between any two distinct real numbers there are a count-
able number of rationals and an uncountable number of irrationals.
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8. Construct an explicit bijection from [0, 1] to [0, 1[. (If all else
fails, try using the Schröder–Bernstein construction on the injections
f : [0, 1]→ [0, 1[ , f (x) = 1

2x, and g : [0, 1[→ [0, 1] , g (x) = x.)
9. If A1, A2 are arbitrary sets, prove

|A1| + |A2| = |A1 ∪ A2| + |A1 ∩ A2| .
Generalise to n sets A1, . . . ,An.

10. Find counterexamples which demonstrate that the following general
statements are false for cardinal numbers α,β , γ :
(a) α < β ⇒ α + γ < β + γ
(b) α < β ⇒ αγ < βγ

(c) α < β ⇒ αγ < βγ

(d) α < β ⇒ γ α < γ β .
11. (a) Define f : [0, 1[× [0, 1[→ [0, 1[ by

f (0 · a1a2 . . . an . . . , 0 · b1b2 . . . bn . . .) = 0 · a1b1a2b2 . . . anbn . . .
Deduce that ℵ2 = ℵ.

(b) Prove the result of (a) more elegantly by using 2ℵ0 = ℵ, and the
properties of cardinal arithmetic.

(c) Using 1ℵ ≤ ℵ0ℵ ≤ ℵℵ, or otherwise, find ℵ0ℵ.
(d) What is nℵ for n ∈ N?
(e) Prove ℵℵ0 = ℵ and ℵℵ = 2ℵ.
(f ) Find ℵℵ0 .

12. Given an infinite cardinal α, it may be shown that there exists a
cardinal number β such that α = ℵ0β . Use this to show that ℵ0α = α.

13. (The proof by which Cantor showed that there exist transcendental
numbers without actually specifying any!)
A real number is algebraic if it is a solution of a polynomial equation

anxn + · · · + a1x + a0 = 0

with integer coefficients. If not, it is transcendental.
(a) Show that the set of polynomials with integer coefficients is

countable.
(b) Show that the set of algebraic numbers is countable.
(c) Show that some real numbers must be transcendental.
(d) How many transcendental numbers are there?
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chapter 15

Infinitesimals

As an ongoing theme, we have built a formal model of the real num-
bers R as a complete ordered field. This construction reveals the real
numbers as the unique structure, up to isomorphism, that satisfies

the given axioms. Visually, the real numbers fill the geometric real line, so
it seems impossible to fit any more points between them. For instance, an
element x ∈ R cannot be arbitrarily small, in the sense that 0< x< r for
all positive r ∈ R. If we try to find such an x ∈ R, then r = 1/2 x would be
smaller—a contradiction.
Yet, in the historical development of the calculus, the idea arose of quan-

tities x, y that can vary by ‘arbitrarily small’ quantities dx and dy, and such
ideas remain today in practical applications. Given a relation such as y = x2,
when x changes to x + dx, then y changes to y + dy = (x + dx)2, and Leibniz
calculated

dy
dx

=
(x + dx)2 – x2

dx
= 2x + dx.

He went on to argue that if dx is infinitesimally small, it does not change
the value of 2x significantly, so the rate of change dy/dx can be taken to be
2x exactly. Newton used a physical image of ‘flowing’ quantities to justify a
similar calculation in different notation.
This proposal led to centuries of dispute over the legitimacy of such ar-

guments, focusing on the problem that if dx is not zero, then 2x + dx is not
precisely equal to 2x, but if dx is equal to zero then it cannot be used as the
denominator of the quotient dy/dx.
The problem was eventually resolved to the satisfaction of pure math-

ematicians by introducing the idea of limit and the modern definitions of
analysis. Replace ‘arbitrarily close’ by reformulating the question of how close
as a finite challenge. The limiting value is specified as a real number L that
satisfies:
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Tell me how accurate you want the result to be by specifying an error
ε > 0, and then I will specify δ > 0 so that when dx is non-zero and smaller
in size than δ then the difference between ( f (x + dx) – f (x))/dx and L is
less than the error ε you require.

This approach led to themodern formulation of analysis, but an accidental
by-product was the elimination of infinitesimals. First, when Cantor intro-
duced infinite cardinals he showed that they can be added andmultiplied, but
not subtracted or divided. As a consequence, an infinitesimal cannot exist as
the reciprocal of an infinite cardinal.
Second, he was also the first person to construct the real numbers using

Cauchy sequences of rationals and he proved the completeness axiom for
the real numbers. Introducing irrational numbers to ‘fill in the gaps’ between
the rationals did not leave any room on the number line for even smaller
infinitesimals.
Richard Dedekind formulated an alternative construction of the real num-

bers using ‘Dedekind cuts’. These divide the rational numbers Q into two
disjoint subsets, one subset to the left L and one to the right R, where every
element of the left subset is to the left of every element in the right subset.
There are two kinds of cut. The first occurs when there is a rational num-
ber a such that all rationals less than a are in L and all those larger than a
are in R; then a can be placed in either. The other is typified by the case
where R consists of all positive rationals r satisfying r2> 2 and L is every-
thing else. This ‘cut’ does not occur at a rational number; it corresponds to a
new phenomenon on the number line the square root of two.

0 4321–1–2–3

L R
cut

Fig. 15.1 An irrational cut

Dedekind cuts are an alternative method to construct a system of real
numbers containing the rational and irrational numbers.
The theories of Cantor and Dedekind supported the idea that the real

number line is complete—not only in the axiomatic mathematical sense that
all Cauchy sequences of rational numbers converge to a unique real number,
but in the intuitive sense that the extra irrational numbers fill up the number
line. This was later formulated as:

The Cantor–Dedekind Axiom: The real numbers are order isomorphic
to the linear continuum of geometry.
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According to this proposed axiom, the geometric real line corresponds
precisely with the arithmetic decimal number line up to order isomorphism:
the unique complete ordered field. Completeness of the real line was taken
to mean that there is no room on it to fit in infinitesimals.
This view was widely accepted in the early twentieth century, and in-

finitesimals were usually excluded from mathematical analysis. Yet applied
mathematicians continued to use ‘arbitrarily small’ quantities as a meaning-
ful way of thinking about the calculus. Infinitesimals seemed to be useful in
practice but problematic in theory.
We have seen that such a phenomenon is common when mathematical

systems have been successively generalised over centuries. Intuitive assump-
tions sometimes acquire iconic status, and can’t be questioned even in a new
context. To avoid this error we ask: if there are no infinitesimals in the real
numbers, could such quantities exist in a larger system than the reals? We
already know that we can place the real number line in the broader complex
plane. Is there any possible way that we could introduce an extension of the
real number line that incorporates infinitesimals?
For instance, can we imagine an ordered field K that contains a subfield

isomorphic to R, but in which there are elements x ∈ K such that 0 < x < r
for all positive r ∈ R? If we can, the earlier contradiction can no longer be
obtained by taking r = 1/2 x, because 1/2 x is not in R; only in K.
We therefore give a formal definition:

Definition 15.1: If K is a field with R as an ordered subfield, then x ∈ K is
said to be infinitesimal in K if x �= 0 and –r < x < r for all positive x ∈ R.

Such a possibility does not contradict Cantor’s theory of real numbers,
nor his theory of infinite cardinals. The infinitesimals in a field are not the
reciprocals of infinite cardinal numbers nor are they real numbers. They are
elements in the ordered field K.

Ordered Fields Larger than the Real Numbers

Many fields contain the real numbers as a subfield. An easy example is the
field R(x) of rational expressions with elements

anxn + · · · + a0
bmxm + · · · + b0

(where ar , br ∈ R, bm �= 0).

This forms a field in which elements of the form a0/1 correspond to the real
numbers. In this way we can consider R as a subfield of R(x).
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The fieldR(x) can be given an order in various ways. For example, on page
214, example 10.3, we showed how to order R(t) by saying that f (t) > g(t) if
the graph of f is higher than the graph of g for large real values of t. In this
sense t is larger than any real number k, so t is infinite in this order and 1/t is
infinitesimal.
For convenience we now consider the order using x = 1/t and speak of

the ordering on R(x) where x is to be infinitesimal. This involves comparing
graphs for small positive real values of x saying that f (x) < g(x) if the graph
of f is below the graph of f in a sufficiently small interval to the right of the
origin.
For instance, the following picture shows three such graphs, y = x, y = x2,

and y = 2.

y = x2

y = 2

y = x

A B

Fig. 15.2 Graphs of rational functions

At different values of x a vertical line meets these graphs at various points
and the comparative order may be different. For instance, marking the point
where the graph y= 2meets a vertical line with a circle•, y= xwith a triangle
� and y= x2 with a square,�, we can see that in positionAwe have the order
by height as � < � < •, but in position B, we have � < • < �. As the
vertical line varies, the constant elements in R (such as y = 2) remain in the
same place, but the others vary.
However, if we consider what happens as the line A moves to the left,

getting closer and closer to the vertical y-axis, the order settles down to
� < � < •, which suggests the order x2 < x < 2. This also happens
if the constant 2 is replaced by any real number r > 0: for all x in 0 < x < r
we have 0 < x2 < x < r.
This suggests a possible way to order the rational functions so that x is

positive and satisfies x < r for all positive real numbers r. To give the
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field R(x) the structure of an ordered field, we define a subset R(x)+ that
satisfies axioms (O1)–(O3) on page 189.

Definition 15.2: A rational function f (x) is in R(x)+ if it is either zero or
strictly positive on some interval 0 < x < k.

To prove that this makes R(x) into an ordered field in which x is infinitesi-
mal, note that a non-zero rational function a(x) = p(x)/q(x) has only a finite
number of places where the polynomial p(x) = 0, and only a finite num-
ber of places where q(x) = 0 and the rational function is undefined. Let k
be the smallest positive value among these points. Then a(x) is non-zero on
the interval 0< x< k, and it cannot be positive in one place and negative in
another because it would then be zero somewhere in between. (Here we are
assuming the intermediate value theorem, proved in any course on analysis.)

Proposition 15.3: The field R(x) is an ordered field, with R(x)+ as the set
of elements that are zero or positive.
Proof: (O1) If a(x), b(x) ∈ R(x)+, then each is a rational function that is
either zero or strictly positive in some interval to the right of the origin, so
their sum and product is either zero or strictly positive in the smaller of the
two intervals concerned.
(O2) If a(x) ∈ R(x) then either a(x) = 0 or a(x) is strictly positive or strictly
negative in an interval to the right of the origin, so either a(x) ∈ R(x)+ or
–a(x) ∈ R(x)+.
(O3) If a(x) ∈ R(x)+ and –a(x) ∈ R(x)+ then a(x) cannot be both strictly
positive and strictly negative, so it must be zero. �

The order on R(x) is defined in a technical manner, but it satisfies the
required axioms of an ordered field. When we try to imagine the elements of
this field, there are several possibilities. The first is to consider the field as a
purely symbolic set of quotients of polynomials in a single unknown x with
the usual algebraic operations on the elements. Another is to visualise the
elements as graphs of rational functions.
A third possibility is to imagine points where the graphs meet a vertical

line y = v as v is a variable real number that becomes smaller. This represents
the elements of R(v) as points on the vertical line where x is replaced by v.
Now we can think of the terms symbolically as rational functions in v where
v is a variable quantity.
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x = v

r

v
v2

Fig. 15.3 Elements of R(v) as variable quantities

The figure shows the vertical line with three points on it corresponding to
the values v, v2, and r, where r is a fixed real number. In an interval to the
right of the origin where x < r, the points are in ascending order v2, v, and r,
representing the order v < v2 < r.
This is an interesting idea as it reveals two kinds of quantity: constant quan-

tities which correspond to real numbers in R that remain in a fixed position,
and variable quantities corresponding to non-constant rational functions,
represented as points that vary as v becomes small.
In particular, a variable quantity like v, that becomes smaller than any fixed

real number as the line x = v moves towards the vertical axis x = 0, is an
infinitesimal in this ordered field. The point marked v satisfies 0 < v < r as
v gets smaller than r. And 0 < v2 < v for v < 1, which shows that v2 is an
even smaller infinitesimal than v.
Can we take v to be so small that it is infinitesimal? No. Mathematically

a complete ordered field cannot contain an infinitesimal. Furthermore, the
way in which Dedekind and Cantor completed the real line by introducing
the irrational numbers suggests that there is simply no room on the number
line to fit in infinitesimals. But is there another way of visualising infini-
tesimals? The answer is ‘Yes!’ We can achieve this, but not by restricting
ourselves to the real numbers. We simply work in a larger ordered field.

Super Ordered Fields

Formal mathematics lets us define new concepts with useful properties, and
then to use these new concepts as a basis for further proofs. In our search for
infinitesimals, we define a new concept:

Definition 15.4: A super ordered field is an ordered field K that contains
the real numbers R as a proper ordered subfield.
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You will not find this definition in any other texts at the moment. We have
taken the opportunity to formulate a new definition to show howmathemat-
ical theory evolves into the future. This definition proves to be precisely what
is needed to provide the precise formal structure for an infinitesimal in an
ordered field.

The Structure Theorem for Super Ordered Fields

Structure Theorem 15.5: LetK be super ordered field. Then an element
k ∈ K where k /∈ R satisfies precisely one of the following:

(a) k > r for all real numbers r,
(b) k < r for all real numbers r,
(c) there is a unique real number c so that k = c+ewhere e is infinitesimal.

Proof: Either k satisfies (a) or (b), or there exist a, b ∈ R with a < c < b.
Consider the set S = {x ∈ R

∣∣ x < k }. This is non-empty (because a ∈ S) and
bounded above by b, so it has a least upper bound c where a ≤ c ≤ b. Let
e = k – c, then k = c + e. The element e cannot be zero because k /∈ R. If e
is positive, either e is infinitesimal or there is r ∈ R such that 0 < r < e.
Adding c leads to c < c + r < c + e = k. This gives a real number c + r less
than k and therefore in S, contradicting c being an upper bound of S. Hence e
is infinitesimal.
On the other hand, if e is negative and not infinitesimal, then c < –r < 0

for some positive r ∈ R and k = c + e < c – r < c, giving a real number c – r
exceeding k. This is an upper bound, but less than the purported least upper
bound. So again, e is infinitesimal. �

This theorem gives information about the structure of any super ordered
field K. Such a field has properties that resonate with historical ideas of finite
and infinitesimal quantities.We choose to name the elements ofK quantities.
They are either

constant quantities: elements in R,
positive infinite quantities: elements k > r for all r ∈ R,
negative infinite quantities: elements k < r for all r ∈ R,

or

finite quantities of the form k = c + e where c ∈ R and e is infinitesimal.

This resonates strongly with the historical view of constant and vari-
able quantities. A super ordered field consists precisely of quantities that
are either constant, infinite (positive or negative), or a constant plus an
infinitesimal.
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In particular, a finite quantity k is either a constant real number or k = c+e
where c is a unique real number and e is an infinitesimal.

Definition 15.6: For any finite number x in a super ordered field, the
unique real number c such that x = c + e where e is zero or infinitesimal
is called the standard part of x and is denoted by

c = st(x).

This allows us to specify the unique real number that differs from a fi-
nite quantity by an infinitesimal. There are no infinitesimals in R, just as
Cantor asserted. However, they do occur in every super ordered field that
extends the real numbers. So formal mathematics guarantees the existence of
infinitesimals. We now have a choice: to restrict the study of calculus only
to real numbers, which leads to the standard and perfectly viable formula-
tion of analysis using epsilon–delta definitions, or to use infinitesimals in an
extended system.
In the applications of mathematics, infinitesimal quantities are often

considered as variable points on the real number line. Cauchy took this view-
point by defining an infinitesimal to be a variable quantity that becomes
arbitrarily small. In modern notation, this idea can be represented as a null
sequence, which is simply a sequence that tends to zero.
Cauchy considered such a sequence to be a variable quantity—an infini-

tesimal. From this he developed continuous functions and calculus. For
instance, he operated symbolically with a quantity α = (an) by defining
f (x + α) to be the sequence of values f (x + an). He defined a function f to be
continuous at x if f (x + α) – f (x) is infinitesimal whenever α is infinitesimal.
He then developed a theory of calculus using infinitesimals, even imagining
a number line with infinitesimal quantities upon it.
However, at his time in history, the notion of completeness of the real

numbers had yet to be formalised and there was no obvious way to represent
infinitesimals on a number line. The structure theorem for super ordered
fields offers a solution.

Visualising Infinitesimals on a Geometric
Number Line

To visualise an infinitesimal in a super ordered field, we use the structure
theorem to see infinitesimal quantities. In chapter 1, when we attempted to
draw a physical picture of the real number line, we realised that, on a given
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scale, two distinct points can be so close together that to the human eye they
are indistinguishable. A ruler marked with centimetres and millimetres lets
us distinguish between the mark at 1·4 cm and the next mark at 1·5 cm. If
we tried to mark

√
2 as accurately as possible, we could mark it at approxi-

mately 1·41 cm, between 1·4 and 1·5. But the difference between 1·414 cm
and 1·4142 cm with ordinary implements would be impossible to see. Our
response was to magnify the line, to distinguish between 1·414 and 1·415,
with 1·4142 nestling between them. When performing the magnification, we
redrew the lines without making them thicker.

0 1
1 4

magnify

2

1 414 1 415

1 4142

1 4142

. .

..

.

Fig. 15.4 Magnifying R

If we wish to see the difference between two extremely close numbers, say
1 and 1 + 1/10100, we magnify the difference by a factor of 10100. The map
m : R → R with m(x) = 10100(x – 1) gives m(1) = 0, m(1 + 1/10100) = 1.
Under this map the very close numbers 1 and 1 + 1/10100 are mapped to 0
and 1.

Fig. 15.5 Seeing two extremely close points on R

More generally, we can magnify part of the real line by a huge scale fac-
tor so that two very close real numbers can be seen as two separate points.
The same technique can be used in a super ordered field K by introducing
the map

m : K → K wherem(x) =
x – a
e

for any a, e ∈ K, e �= 0.
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Now m(a) = 0, m(a + e) = 1. Thus whatever the non-zero value of e, be it
finite, infinite, or infinitesimal, we can define the map m which maps a and
a + e onto the distinct points 0, 1.
Usually we take e> 0, so that a+e> a, because this maintains the direction

on the line so that for a< b we havem(a)<m(b).

Definition 15.7: The e-lens pointed at a is the mapm : K → K where

m(x) =
x – a
e

.

This map makes sense for any non-zero e; in particular, for infinitesimals.
If we take e to be a specific infinitesimal ε > 0, then an ε-lens can be used
to see infinitesimal detail on an extended number line. For instance, we may
imagine an extended number line K as a geometric number line, with the
origin, the natural numbers, the rationals, and reals all in their usual places.
Infinite quantities α < 0 and β > 0 are too far off to the left and right to see
on a normal scale, while the two points a, a + ε for a ∈ R and ε infinitesimal
are too close together to be marked separately. In figure 15.6 we have drawn
a to the right of 1, but it could be anywhere else on the extended number
line K.

Fig. 15.6 The line to a normal scale

Now usem(x) = (x – a)/ε to map the whole extended number line K onto
a second number line K.

0 1
a a +

m(a) m(a + )

K

K

m
to – ∞ to + ∞

p q

Fig. 15.7 Magnifying the whole extended line

This map sends a tom(a) = 0 and a + ε to the distinct pointm(a + ε) = 1.
Meanwhile, the image of a general point x is (x – a)/ε, which may be finite or
infinite.
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Definition 15.8: The field of view of the map m(x) = (x – a)/e where a,
a + e ∈ K and e �= 0 is the set {x ∈ K | (x – a)/e is finite}.

The field of view of m is precisely the set of elements that map onto the
finite part of K. Points outside the field of viewmap to infinite elements of K,
which are too far to the left or right to be seen in a finite picture.

Definition 15.9: If u, v ∈ K are both non-zero, then u is said to be of higher
order than v if u/v is infinitesimal. It is of lower order than v if u/v is infinite.
The two are the same order if u/v is finite but not infinitesimal.

Example 15.10: If ε is infinitesimal, then ε2 is higher order than ε, and
1/ε is lower order than any finite element. The element 17ε + 1066ε2 is the
same order as 5ε + πε2 + 10100ε5.

In general, when using the mapm(x) = (x – a)/e, points that differ from a
by a quantity of order greater than e are mapped to infinite quantities, points
differing by a quantity of the same order as e are mapped onto finite points
and points differing by a quantity of lower order are mapped onto points that
differ by an infinitesimal.
Because the human eye cannot see infinitesimal quantities, we can strip

away infinitesimal differences by taking the standard part of the image of the
mapm.

Definition 15.11: The optical lens o :K→R based on the e-lens m is
given by

o(x) = st(m(x)).

This maps the field of view onto the real line R.

a a +

o(a) o(a + )

K

stm

field of view

Fig. 15.8 An optical lens

344 | 15 INFINITESIMALS



Here we are interested in the case of an optical lens pointing at a ∈ R
where e is an infinitesimal ε. The field of view consists of points that differ
from a by infinitesimals of the same or higher order than ε. For any r ∈ R,
o(x + rε) = r, so the optical lens maps onto the whole of R. But lower-order
infinitesimal detail is lost because if δ is of lower order than ε, then the two
elements x, x + δ map to the same element of R.
One further technical convention makes the visual picture even simpler

to grasp. When we make geographical maps, we draw a representation of
a particular geographical region R on a map M. We can think of this as a
function s : R → M from the original region R to the physical map M. But
when wemark the position of a specific place, such as the position of London
on a map of the United Kingdom, we do not write s(London) on the map, we
write the original name ‘London’.
Using this convention, we modify the picture by naming the image points

in R with the same original names in K, on the understanding that what we
see in R is simply the standard part of the image of original. Now we are able
to ‘see’ points that are infinitely close in K by using an optical lens to move
them apart.

a a +

a

K

o

ield of viewf

a + +10100 2

a + +10100 2

a +

Fig. 15.9 Seeing infinitesimal detail

The field of view is magnified to fill the whole real line. The image of a is
distinct from the image of a + ε, yet the latter has the same image as a + ε +
10100ε2 even though the number 10100 is immense in human terms. Despite
its vast size, it is still finite and the quantity 10100ε2 is of smaller order than ε.
In this representation we are again ‘abusing notation’ by denoting the im-

age of an element x in the field of view by the same name x. However, by
using this notation while being fully aware that the picture represents not
only the physical image drawn on paper but the full meaning of the formal
theory, we are offering a natural view of a formal concept.
We can go even further. When we to attempt to draw a super ordered

field K as a line to an appropriate scale that allows us to distinguish between
real numbers, then all we can draw is (part of ) the line L consisting of the
finite elements. Let L be the subset of finite elements of K and I the subset of
infinitesimals.
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Theorem 15.12: The standard part map st : L→ R maps L to the whole
of R and is a ring homomorphism satisfying

st(x ± y) = st(x)± st(y), st(xy) = st(x)st(y)
st(x/y) = st(x)/st(y)(for st(y) �= 0).

Proof: This is left as an exercise. �

As a homomorphism of the additive group, st : L → R is a group homo-
morphism with kernel I, and maps onto the whole of R. By the structure
theorem for group homomorphisms (chapter 13, theorem 13.36) L/I is iso-
morphic to R as an additive group whose elements are cosets of the form
x + I for x ∈ L.
By defining the relation x ∼ y if and only if x – y ∈ I the equivalence

class x + I contains precisely one real number st(x). The equivalence class
containing a real number a is called the monad1 or ‘halo’ around a and will
be denoted byMa. This is the cluster of points around a including a and any
other element that differs from it by an infinitesimal.
The order on L satisfies x< y where x = a + ε and y = b + δ if and only if

either a < b or a = b and ε < δ. This allows us to see why a super ordered
field cannot be complete. In a negative sense we already know that a com-
plete ordered field cannot contain an infinitesimal. However, the notion of a
monad offers positive proof that completeness fails.

Theorem 15.13: A super ordered field K is not complete.
Proof: Every monad Ma for a ∈ R is non-empty (because a∈Ma) and
bounded above by any b ∈ R where b > a. However it cannot have a least
upper bound c ∈ R. For if c is a least upper bound ofMa, then either c ∈ Ma
or c ∈ Mb where b > a. It cannot lie inMa because there will be elements in
Ma that are bigger than c so it is not an upper bound. It cannot lie inMb for
b > a, for then there would be elements inMb that are upper bounds forMa
that are smaller than c. Hence a super ordered field K contains subsets that
are bounded above but have no upper bound in K. �

In our mind’s eye, we can imagine a super ordered field as a number line
in which the finite part is the field of real numbers with a halo around each

1 Leibniz used the term ‘monad’ in his philosophical theory to specify indivisible entities
that make up the entire universe of thought. While these equivalence classes consist of tiny
elements too small for the human eye to perceive, they are different from the notion of
Leibniz as each one consists of an infinite set of elements.
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number consisting of elements differing from it by an infinitesimal quan-
tity. The standard part map allows us to collapse the monads into single real
numbers to visualise the real number line in the usual mathematical repre-
sentation. Optical microscopes allow us to see infinitesimal detail magnified
to an appropriate visible level.
We can now see how the notion of infinitesimal quantities that evolved

over many centuries can be re-evaluated using the notion of super ordered
field. In developing the calculus, Leibniz conceived of the idea of an in-
finitesimal quantity that is arbitrarily small in size. Then Euler produced
remarkable results by thinking of an infinitesimal as a symbol that he could
manipulate using algebraic rules. The first example given in this chapter be-
gins with the field R(x) where elements are manipulated purely symbolically
and x is an infinitesimal, as in figure 15.10(1).

with general term:
expressions including k , x, x2,

anxn +…+ a0

bmxm +…+ b0

(b0 0)

3. as constants and variable quantities

y = x2

y = x

y = k

v2

x = v

v

k

elements of          as algebraic expressions(x)1. 2. as graphs

4. as points on an extended number line

0

0
μ

k

Fig. 15.10 Four isomorphic representations

Wemoved on from the algebraic manipulation of symbols inR(x) to visu-
alise the corresponding rational functions as graphs as in figure 15.10(2). Now
an infinitesimal is a whole graph and we compare the order of items by how
the graphs are ordered a little to the right of the origin.
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Next we considered where the graphs of rational functions meet the ver-
tical line x = v. As v gets small, constant functions meet the line in a fixed
point but variable functions meet the vertical line in a variable point where
the order is determined by what happens as v gets small as in figure 15.10(3).
This example is consistent with the idea of a number line including con-
stant quantities that are real numbers and variable quantities that can include
infinitesimals.
More generally, the structure theorem for any super ordered field reveals

how we can imagine an infinitesimal as a point on a number line that can be
visualised horizontally or vertically as a number line. Figure 15.10(4) shows
a vertical presentation as the ultimate form of the super ordered field R(ε)
where ε is an infinitesimal.
However, this visualisation of an infinitesimal now works not just in the

example of R(ε), but in any super ordered field K.

Magnification in Higher Dimensions

The idea of infinite magnification on the extended number line K can
be easily used in two or more dimensions by using e-lenses on each axis
separately.

Definition 15.14: The ε-δ-lens pointed at (a, b) ∈ K2 is the map
m : K2 → K2 given by

m(x, y) =
(
x – a
ε

,
y – b
δ

)
.

The optical ε-δ-lens pointed at (a, b) ∈ K2 is the map o : K2 → R2 given by

o(x, y) = (st((x – a)/ε, st((y – b)/δ).

The field of view of an optical ε-δ-lens pointed at (a, b) ∈ K2 is the set

{(x, y) ∈ K2 | (x – a)/ε, (y – b)/δ are both finite}.

The elements a, b, ε, δ may be any elements in K provided that ε and δ
are non-zero. For example, we can choose a or b to be infinite to view the
situation ‘at infinity’, or we can choose ε and δ to be infinitesimal to look at
‘infinitesimal detail’.

Example 15.15: Let f (x) = x2 and suppose that x ∈ R and ε is infinitesi-
mal. Then an optical ε-δ-lens with ε = δ, pointed at (x, x2), sees a nearby
point (x + h, (x + h)2).
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o(x + h, (x + h)2) =
(
st
(
x + h – x

ε

)
, st
(
(x + h)2 – x2

ε

))
=
(
st
(
h
ε

)
, st
(
2xh + h2

ε

))
=
(
st
(
h
ε

)
, st(2x + h)st

(
h
ε

))
.

If this is in the field of view, then st(x/ε) must be finite, so h is of the same
order as ε or less, so h is also infinitesimal and st(2x + h) = 2x. Writing
λ = st(x/ε), this gives

o(x + h, (x + h)2) = (λ, 2xλ).
So under the optical lens, the field of view is mapped precisely to the

whole real line, represented parametrically by λ(1, 2x) for any real num-
ber λ. In representing the picture of the map o from the field of view as
a subset of K2 to the real plane R2, we again use the convention that the
image o(x + h, f (x + h)) is also denoted by (x + h, f (x + h)) and the image
o(x + h, f (x + h)) is denoted by (x + h, f (x + h)). The optical lens magnifies
an infinitesimal part of the graph, centred on (x, f (x)), to an infinite straight
line in R2 passing through (x, f (x)).

real line in
slope

x

( , ( ))x f x

( , ( ))x h f x h+ +

graph in K2

2

optical microscope
( , ( ))x f x

( , ( ))x h f x h+ +

Fig. 15.11 Magnifying a locally straight graph to see a full straight line

Calculus with Infinitesimals

This experience suggests that we may be able to do calculus logically with in-
finitesimals. However, onemore step is needed tomake this fully operational.
When calculating the derivative of a function f (x), we form the ratio

f (x + h) – f (x)
h
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for infinitesimal h and take the standard part. To do this, we must be able to
calculate f not only for elements in R, but also for elements in the extension
field K.
For instance, if f (x) = x2 then, for infinitesimal h,

f (x + h) – f (x)
h

=
(x + h)2 – x2

h
= 3x2 + 3xh + h2

with standard part 3x2.
This calculation can be performed in the extension field R(ε) with the

infinitesimal h = ε because ((f (x + ε) – f (x))/ε is a rational function in ε.
However, if we are to consider functions other than rational functions, then
we need more powerful theory.
The standard functions in calculus such as sin x and cos x can be

represented as power series:

sin x = x –
x3

3!
+
x5

5!
– · · ·

cos x = 1 –
x2

2!
+
x4

4!
– · · ·

These can be handled in the field R((x)) consisting of power series in ε with
a finite number of negative powers:

akε–k + · · · + a1ε–1 + b0 + b1ε + · · · + bnεn + · · ·
for an integer k ≥ 0. This extension field serves for functions given by
rational functions or power series given as combinations of polynomials,
trigonometric functions, exponentials, logarithms, and so on, as encountered
in school calculus.
However, this still does not cope with all possible functions. For instance,

a sequence a1, a2, an, . . . is a function a : N → R where a(n) = an. How do
we extend this sequence to work in an appropriate extension field?
In calculus, if we wish to calculate the derivative of a general function

f : D→ R, we form the quotient

f (x + h) – f (x)
h

where x ∈ D and h is infinitesimal.
This was no problem for Leibniz as his functions were given by a for-

mula and he assumed that the same formula would work for infinitesimals.
But modern mathematical analysis works with general functions defined
set-theoretically that may not have a simple formula.
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Now we need to extend a set-theoretic function f :D→R to a larger
domain f : ∗D→K where the extended domain ∗D contains not only real
numbers but also elements x + h where h is infinitesimal. This is not all
that is required. For example, a sequence (sn) is a function s :N→R where
sn = s(n) and we need to consider how to extend such functions in an
appropriate way.

Non-standard Analysis

Abraham Robinson introduced a theory in 1966 [29], called non-standard
analysis. Whereas standard mathematical analysis only uses the real num-
bers, non-standard analysis works in a super ordered field called the
hyperreals, denoted by the symbol ∗R.
The techniques for constructing the extension fromR to ∗R are essentially

the same as those used in chapter 9 to construct the extension from Q to R.
This began with Cauchy sequences in Q and putting an equivalence relation
on them so that the equivalence classes became elements of R. To construct
∗R from R, we begin with the set S of all sequences (an) for an ∈ R. Such
a sequence is a function s : N → R where an = s(n), so the full set of such
sequences is S = RN.
We introduce an equivalence relation on S so that the equivalence classes

become the elements of ∗R. The equivalence class containing (an) is written
as [an] or as [a1, a2, . . . , an, . . . ] and we embed R in ∗R by identifying a ∈ R
with the element [a, a, . . . , a, . . . ].
The construction requires us to define a relation (an) ∼ (bn) on S satisfying

the usual properties of an equivalence relation:

(E1) (an) ∼ (an) for all (an) ∈ S
(E2) If (an) ∼ (bn) then (bn) ∼ (an)
(E3) If (an) ∼ (bn), (bn) ∼ (cn) then (an) ∼ (cn).

Then we need to define the usual operations of addition, multiplication,
and order on the equivalence classes as elements of ∗R to make it into an
ordered field extension of R.
We could begin by suggesting that (an) ∼ (bn) if (an), (bn) agree at all but

a finite number of places.

Definition 15.16: A subset T ⊆ N is said to be cofinite if its complement
Tc = N\T is finite.
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As a first step, we require that (an) ∼ (bn) if an = bn for n in a cofinite
set. For example, if we took a sequence (an) and changed a finite number of
terms to get a sequence (bn), then [an] = [bn]. In particular, ifN is the largest
element in N such that (an) �= (bn), then (an) = (bn) for all n > N, meaning
that the terms of the two sequences are identical from some point on.
However, we would need to decide what to do with sequences such as

(an) = (1, 0, 1, 0, . . .) and (bn) = (1, 1, 1, 1, . . .).

Do we claim that (an) ∼ (bn) or not? In this case they are equal for n ∈ O
(the odd numbers) and they are different for n ∈ E (the even numbers). To
make a decision requires us to make a choice. If we choose to focus only onO,
they are equal, but if we focus only on E, they are different.
The clever idea that Robinson conceived can be expressed in a simple way.

For every subset T ⊆ N, he decided that he must make the choice between
what happens on T and what happens on its complement Tc = N\T. His
approach amounts to assuming that it is possible to select a subset U of sub-
sets of N so that precisely one of T and its complement Tc is in U. Then a
statement such as [an] = [bn] would be declared to be true if T ∈ U, and false
if Tc ∈ U. This leads to the following definition:

Definition 15.17: (an) ∼ (bn) if and only if {n ∈ N | an = bn} ∈ U.

The choice of U may not be unique, for we may have one choice of U in
which the odd numbers O ∈ U, in which case

[1, 0, 1, 0, . . .] = [1, 1, 1, 1, . . .],

and another in which the even numbers E ∈ U, in which case

[1, 0, 1, 0, . . .] �= [1, 1, 1, 1, . . .].

This means that we may have different ways of constructing an appropriate
extension field and the choice may not be unique. However, what matters
is that the choice is fit for purpose. So we continue by asking what kind of
properties are required.
First, U is a set of subsets of N so U ⊆ P(N) and for every T ⊆ N we

require:

(U1) If T ⊆ N then either T ∈ U or N\T ∈ U , but not both.

We also require:

(U2) If T is cofinite, then T ∈ U.
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It is clear that if a statement is true on a set T ⊆ N, then it is also true on any
subset of T, which requires:

(U3) If T ∈ U and S ⊆ T then S ∈ U.

We must then check to confirm that we have an equivalence relation satis-
fying (E1)–(E3). In the proof that follows later, we will find that we require a
further condition:

(U4) T1,T2 ∈ U ⇒ T1 ∩ T2 ∈ U.

We will shortly see that these conditions are all that are required, so we
make the definition:

Definition 15.18: An ultrafilter on N is a collection U of subsets of N
satisfying:

(U1) if T ⊆ N then either T ∈ U or Tc ∈ U, but not both
(U2) if T is cofinite, then T ∈ U
(U3) If T ∈ U and S ⊆ T then S ∈ U
(U4) T1,T2 ∈ U ⇒ T1 ∩ T2 ∈ U.

We postpone the discussion of how to construct such an ultrafilter until
the next chapter where we discuss more sophisticated methods appropriate
for the task. For the rest of this chapter, we assume that we have an ultrafil-
ter satisfying (U1)–(U4) to consider how the theory works. We begin with a
lemma:

Lemma 15.19: If U is an ultrafilter on N, then the equivalence relation

(an) ∼ (bn) if and only if {n ∈ N | an = bn} ∈ U

given in definition 15.17 is an equivalence relation on the set S of all real
sequences.
Proof: To prove (E1), let (an) ∈ S, then

T = {n ∈ N | an = an} = N

so T is cofinite and, by (U3), T ∈ U and (an) ∼ (an) for all (an) ∈ S.
(E2) If (an) ∼ (bn), then an = bn for all n in some set T ∈ U, so bn = an for
all n ∈ T and (bn) ∼ (an).
(E3) If (an) ∼ (bn) and (bn) ∼ (cn) then

an = bn for all n in some set T1 ∈ U
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and

bn = cn for all n in some set T2 ∈ U.

So an = cn for all n in T1 ∩ T2 and, by (U4), T1 ∩ T2 ∈ U. �

Having proved that definition 15.17 gives an equivalence relation on S, we
define ∗R to be the set of equivalence classes. In particular, if the equivalence
class containing (an) is denoted by [an], then we have

[an] = [bn] if and only if {n ∈ N | an = bn} ∈ U.

Now we need to define the field operations on ∗R, check that they are well
defined, and prove that they satisfy the axioms for a field.

Proposition 15.20: The set ∗R with operations on equivalence classes
given by

[an] + [bn] = [an + bn], [an][bn] = [anbn]

is a field containing R as a subfield.
Proof: First the operations are well defined, because if [an] = [a′n] and [bn] =
[b′n] then the sets T1 = {n ∈ N | an = a′n} and T2 = {n ∈ N | bn = b′n} satisfy
T1,T2 ∈ U, so that an + bn = a′n + b′n for n ∈ T1 ∩ T2. By (U4), T1 ∩ T2 ∈ U,
so [an + bn] = [a′n + b′n].
The proof for the product is similar.
The proofs of commutativity, associativity, and distributivity of addition

and multiplication are straightforward. (You should explain them to your-
self.) The zero of ∗R is [0, 0, . . . , 0, . . . ], the unit is [1, 1, . . . , 1, . . . ], and
R can be embedded in ∗R by identifying a ∈ R with [a, a, . . . , a, . . . ]. The
additive inverse of [an] is [–an].
The only difficult part is to define the multiplicative inverse 1/[an] of [an]

because the simple solution defining 1/[an] to be [1/an] will not work if any
of the an are zero. To cope with this, we note that [an] = [0] if and only if
the set

T = {n ∈ N | an = 0} ∈ U.

If [an] �= [0], then T /∈ U and, by (U1), the set Tc = {n ∈ N | an �= 0} ∈ U.
Let

bn =
{
an if an �= 0
1 if an = 0.

Then bn �= 0 for all n. Because {n ∈ N | an �= 0} ∈ U, by definition [an] = [bn].
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Now define

1/[an] = [1/bn].

This completes the proof that ∗R is a field and R may be embedded as a
subfield by identifying a ∈ R with [a, a, . . . , a, . . .] ∈ ∗R. �

It is now only necessary to extend the order fromR to make ∗R an ordered
field.

Definition 15.21: ∗R+ = {[an] ∈ ∗R | [an] ≥ [0]} or, equivalently,

[an] ≥ [bn] if and only if {n ∈ N | an ≥ bn} ∈ U.

Theorem 15.22: ∗R is a super ordered field.
Proof: We first need to check that the order is well defined and then that it
satisfies the standard properties of order.
To check that it is well defined, we must show that if [an] = [a′n] and

[bn] = [b′n] then [an] ≥ [bn] is the same as [a′n] ≥ [b′n].
If [an] = [a′n] and [bn] = [b′n] then T1 = {n ∈ N | an = a′n},

T2 = {n ∈ N | bn = b′n} satisfy T1,T2 ∈ U. So

an = a′n and bn = b′n for n ∈ T1 ∩ T2.

By (U4), T1 ∩ T2 ∈ U.
If [an] ≥ [bn] and T3 = {n ∈ N | an ≥ bn}, then T3 ∈ U and by (U4) again

T = (T1 ∩ T2) ∩ T3 ∈ U .

For n ∈ T we have an = a′n, bn = b′n and an ≥ bn which gives a′n ≥ b′n for
n ∈ T and T ∈ U as required.
Now consider the standard properties of order:

(O1) [an], [bn] ∈ ∗R+ ⇒ [an] + [bn], [an] [bn] ∈ ∗R+

(O2) [an] ∈ ∗R ⇒ [an] ∈ ∗R+ or – [an] ∈ ∗R+

(O3) If [an] ∈ ∗R and –[an] ∈ ∗R+ then [an] = [0].

To prove (O1), suppose that [an], [bn] ∈ ∗R+; then, by definition 15.21,

T1 = {n ∈ N | an ≥ 0} ∈ U, T2 = {n ∈ N | bn ≥ 0} ∈ U

and, by (U4),

T = T1 ∩ T2 ∈ U

15 INFINITESIMALS | 355



so, for n ∈ T we have

an + bn ≥ 0 and anbn ≥ 0 where T ∈ U.

Using definition 15.21 again, this gives

[an] + [bn] = [an + bn] ∈ ∗R+, [an][bn] = [anbn] ∈ ∗R+

as required.
To prove (O2), suppose [an] ∈ R, and let

T = {n ∈ N | an ≥ 0}.

By (U1), either T ∈ U, in which case, by definition 15.21, [an] ∈ ∗R+, or

Tc = {n ∈ N | an < 0} ∈ U

in which case

{n ∈ N | – an ≥ 0} ∈ U

and so

–[an] = [–an] ∈ ∗R+.

To prove (O3), suppose that [an]∈ ∗R and –[an]∈ ∗R+; then by
definition 15.21,

T1 = {n ∈ N | an ≥ 0} ∈ U, T2 = {n ∈ N | – an ≥ 0} ∈ U.

Again, by (U4), we have

T = T1 ∩ T2 ∈ U

so we have

an ≥ 0 and – an ≥ 0 for n ∈ T,

which gives

an = 0 for n ∈ T where T ∈ U.

This completes the proof. �

Once ∗R has been shown to be a super ordered field, the floodgates open.
For example, we can define ω = [1, 2, 3, . . . , n, . . . ]; then clearly ω is
infinite because for any real number k, n ≥ k for all n ≥ k. Further-
more, 1/ω = [1, 1/2, . . . , 1/n, . . .] is an infinitesimal and ω + 1 = [1, 2, 3, . . . ,
n, . . . ] satisfies ω + 1 > ω where ω+ 1 �= ω because the nth terms n+ 1 and n
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are always different. Now these elements have a full arithmetic and you may
check to see that

ω – 2 < ω – 1 < ω < ω + 1 < . . . < . . . 2ω – 1 < 2ω < . . . < ω2 . . . ,

and so on.
You will be able to show that there are elements of different orders; for

example, ω2 = [1, 4, 9, . . . , n2, . . .] is a higher-order infinite element than ω,
and if ε = 1/ω then ε2 = [1, 1/22, . . . , 1/n2, . . .] is of lower order than ε.
The hyperreals ∗R are much more powerful than the original conception

of Leibniz, who imagined that infinitesimal elements were first order, second
order, and so on. This is true in the field of rational functions R(ε) where ε
is infinitesimal. If we take the order of ε to be 1, then εn is of order n. But
there is no element in R(ε) whose square is ε. However, in ∗R, the element
ε = [1, 1/2, . . . , 1/n, . . .] has square root

√
ε = [1, 1/√2 , . . . , 1/√n , . . .]

and every non-negative element in ∗R has a square root.
Furthermore, any real function f : D→ R can be extended very naturally

to a function on ∗R. The method is astonishingly simple. First, let ∗D be the
elements of the form [xn] where all the xn are in D, giving

∗D = {[xn] ∈ ∗R | xn ∈ D}.

Then extend f to ∗D by defining

f ([xn]) = [ f (xn)].

How breathtakingly beautiful this is! The extension ∗D of D is made up from
equivalence classes whose elements are sequences in D and the extended
function f : ∗D→∗R is defined in a natural way using these sequences whose
elements are already in D and so the definition is mind-bogglingly simple!

Amazing Possibilities in Non-standard Analysis

Once we have the ideas of the hyperreals, we can do amazing things.
Consider the extension ∗N of the natural numbers N. By definition, ∗N
includes all equivalence classes of sequences of natural numbers, so ω =
[1, 2, 3, . . . , n, . . .] ∈ ∗N. This shows us that ∗N contains infinite elements.
To calculate a limit of a sequence (xn), we consider the function f :N → R
given by f (n) = xn, extend it to f : ∗N → R and consider f (N) = xN for
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infiniteN ∈ ∗N. If xN is finite then we calculate st(xN) and, if we get the same
value for all infinite N, then this is the limit of the sequence. For instance, if

xn =
6n2 + n
2n2 – 1

then

xN =
6N2 + N
2N2 – 1

=
6 + 1/N
2 – 1/N2

and, as 1/N is infinitesimal,

st(xN) =
6 + 0
2 – 0

= 3.

Other definitions such as continuity or uniform continuity can be expressed
simply in terms of infinitesimals:

Definition 15.23: f : D→ R is continuous at x ∈ D if

∀y ∈ ∗D : x – y infinitesimal implies f (x) – f (x) is infinitesimal.

Definition 15.24: f : D→ R is uniformly continuous in D if

∀x ∈ ∗D, ∀y ∈ ∗D : x – y infinitesimal implies f (x) – f (x) is infinitesimal.

Essentially, the difference between the two is that continuity involves
x ∈ D, y ∈ ∗D and uniform continuity involves x, y ∈ ∗D.
These ideas extend to more general functions f : D→ Rn where D ⊆ Rm,

and all relationships involving such functions remain true when extended.
For instance, if D is the inside of a unit sphere x2 + y2 + z2 < 1 in R3 then D
generalises to the unit sphere ∗D in ∗R3 with the same formula.
Predicates P(x1,x2, . . . ,x1) in n variables such as the commutative law or

associative law for elements in R

x + y = y + x, x(y + z) = xy + xz,

extend to the same relationships in ∗R.
If we quantify relationships such as

∀x ∈ R∀y ∈ R : x + y = y + x
∃0 ∈ R∀x ∈ R : x + 0 = 0
∀x ∈ R ∃y ∈ R : x + y = 0
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then all these relationships generalise to

∀x ∈ ∗R∀y ∈ ∗R : x + y = y + x
∃0 ∈ ∗R∀x ∈ ∗R : x + 0 = 0
∀x ∈ ∗R ∃y ∈ ∗R : x + y = 0.

But, some properties do not generalise, for instance the completeness axiom.
If we look at the completeness axiom, it says

∀S ⊆ R : S non-empty and bounded above implies S has a least upper
bound.

This axiom quantifies a set S. All the other axioms for a complete ordered
field only quantify elements of a set. It is this observation that makes non-
standard analysis work.

Definition 15.25: A quantified predicate is said to be a first-order logical
statement if it only quantifies elements of sets.

All the axioms for a complete ordered field except the completeness axiom
are first-order statements. All the first-order axioms extend from R to ∗R.
The completeness axiom does not.
The axioms for the natural numbersN also exhibit the same phenomenon.

(N1) and (N2) are first-order statements. However, the induction axiom
(N3), which says

∀S ⊆ N : if (1 ∈ S and n ∈ S⇒ n + 1 ∈ S) then S = N,

is not. The extension ∗N satisfies (N1) and (N2), but not (N3). For example,
the set S = N is a subset of ∗N and satisfies 1 ∈ S and n ∈ S⇒ n+1 ∈ S but S
does not equal ∗N because ω ∈ ∗N and ω /∈ N.
Non-standard analysis can be shown to satisfy:

The Transfer Principle: Any true first-order logical statements involving
elements in R remain true when extended to ∗R.

If this principle is taken as an axiom, then it can be used as a basis for devel-
oping the theory of non-standard analysis. However, it is not our intention to
take these matters further: this is a book on foundations of mathematics, not
non-standard analysis. Our main reason for including material on infinitesi-
mal ideas is to show that, as mathematics evolves, new theories are developed
that change the way that we think about mathematics.
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At this stage in history, analysis is studied using standard epsilon–delta
techniques and there is a very good reason for this. To set up calculus using
infinitesimals can be pictured using super ordered fields that give us a natural
sense of ideas that have arisen in various forms in earlier generations.
To do non-standard analysis properly requires the construction of an ul-

trafilter U on the natural numbers. This requires deciding for every subset
T⊆N whether T or its complement is in U in a manner that fits the def-
inition of an ultrafilter. It involves making an infinite, even uncountable
number of choices. As human beings, we certainly can’t do this unaided in
our finite lifetime.
The definition of the natural numbers N requires a potential infinity of

elements but we can at least imagine that theoretically we can reach any
given element in the sequence, even if this may be utterly impracticable for
very large numbers. But to contemplate making an uncountable number of
choices to define an ultrafilter seems to demand more than the human brain
can take.
If we look back to the different strands of mathematics that emerged at

the beginning of the twentieth century in terms of intuitionism, logicism,
and formalism, we have a number of different options. An intuitionist would
reject non-standard analysis because the construction of an ultrafilter is be-
yond our human capacity to accomplish in a finite sequence of steps. Errett
Bishop took this position in his book on constructive analysis [14]. On the
other hand, a logicist may be happy to use first-order logic to formulate the
theory, and that is how Abraham Robinson developed the idea [29]. A for-
malist mathematician, who may use natural ideas to get initial inspiration,
subsequently requires theories formulated using set-theoretic definitions and
mathematical proof.
In today’s mathematical world, pure mathematics broadly follows the

formalist approach because the logical foundation required as a basis for
non-standard analysis has a high initial cost in terms of the logic required. In
this chapter we have shown how ideas about infinitesimals may be visualised
in a natural way on a number line using the idea of magnification based on
algebraic operations. We have also shown how this leads to a way of defining
the system formally in terms of an ultrafilter. This requires a further stretch
of imagination that some may be willing to accept as part of a more sophis-
ticated form of mathematics but others may consider to be unattainable.
In the final chapter of this book we will contemplate the next step,

strengthening the foundations of mathematics by axiomatising set theory it-
self. This allows us to include a further axiom—the axiom of choice—that,
if taken as an additional axiom for set theory, may be used to prove more
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powerful results, including the construction of the logical development of
infinitesimal calculus.

Exercises

1. In the field R(x) using the order specified in definition 15.2, which of
the following are positive:
(a) x3 – 2x
(b) 1/(x3 – 2x)
(c) x – 1000x2
(d) 1000x2 – x
(e) a + bx + cx2 for real values of a, b, c (taking all possible cases into

account)
(f ) 1/(a + bx + cx2) for various real values of a, b, c.

2. Place the following elements of R(x) in order:

x, 0, 2x2, –x3, 1/(1 – x), 25, –x, –x3/(1 – 3x).

3. How would you test whether a general rational function

anxn + · · · + a0
bmxm + · · · + b0

(where ar , br ∈ R, bm �= 0)

is
(a) infinite
(b) infinitesimal
(c) finite.
Write out a full explanation that makes sense to you in a way that you
can explain to someone else, taking care of every possible case.

4. Let F be any ordered field, which must contain the rational numbers.
An element k ∈ F is said to be positive infinite if k > x for all x ∈ Q.
Make similar definitions to say when an element k is
(a) negative infinite
(b) finite
(c) positive infinitesimal
(d) negative infinitesimal.
Prove the following:
(e) k is positive infinite if and only if 1/k is positive infinitesimal.
(f ) If k is infinitesimal, then k2 is infinitesimal.
(g) if k is infinite and h is finite, then k – h is infinite.
(h) If k ∈ Q and positive and h > k, then h cannot be infinitesimal.
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5. In proposition 15.20, write out in full detail the proof that the com-
mutative, associative, and distributive properties of the operations of
addition and multiplication on ∗R all hold.

6. Let K be a super ordered field. Write out a proof that the set I
of infinitesimals is bounded above but does not have a least upper
bound.

7. Let K be the super ordered field R(ε) where ε is infinitesimal and
ε > 0. Show that for any infinitesimal δ ∈R(ε), the element δ/ε is fi-
nite. Let F be the set of finite elements inR(ε). Show that the function
τ : F→ R× F given by

τ (a + δ) = (a, δ/ε)

is an order-preserving bijection in which

a + δ < b + γ ⇔ a < b or (a = b and δ < γ ).

In this bijection, show that the monad

Ma = {a + δ ∈ K | δ is infinitesimal} in F

corresponds to the vertical line through a ∈ R. This representation
should give you a better sense of why the monads are bounded above
but do not have upper bounds. Explain this in your own words.

8. Use the transfer principle with the statement

∀x ∈ R, x > 0 ∃y > 0 : y2 = x

to deduce that every positive x ∈ ∗R has a square root in ∗R and that
if ε > 0 is infinitesimal, then its square root δ =

√
ε is a higher-order

infinitesimal.
Show that the function τ (a + δ) = (a, δ/ε) maps the finite elements
a + δ to R ×∗R in which the image of the monad Ma lies in the ver-
tical line ∗R through the point a on the horizontal real line and that
a + δ < b + γ for real a, b and infinitesimal δ, γ if and only if a < b
or a = b and the elements are in the same monad with δ < γ .

9. Using the notation [an] to represent the equivalence class of the se-
quence (an) of real numbers, write down an element [an] which is:
(a) the sum of an infinite number and an infinitesimal
(b) the cube root of [an]
(c) a number equal to ω = [1, 2, . . . , n, . . . ] where (an) �= (1, 2, . . . ,

n, . . .)
(d) a number of higher order than ω.
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10. Reflect on the chapter as a whole, reading it through to explain the
ideas to yourself and to discuss these ideas with others. At this point
you may not be fluent in operating with the ideas, but it is import-
ant to gain a sense of how infinitesimal and infinite quantities can
be imagined visually and manipulated algebraically to lead to more
sophisticated possibilities in later developments.
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PART V
Strengthening the Foundations

Part IV showed how the material developed so far can lead into the main
body of mathematics, into ever higher realms. But this final part will lead in
the opposite direction: down into the depths.
There is a reason for this.
Having constructed such a fine building, it becomes prudent to re-examine

the ground on which it rests. We have replaced a very complicated system of
intuitions about numbers by a rather simpler system of intuitions about sets.
But our set-theoretic basis is still intuitive and informal. If we had built a bun-
galow, this might not have been important; but we have built a skyscraper—
and one that can be extended to much greater heights. It is time to dig a little
deeper into the foundations, to see whether they really can support all that
weight. Or, in a horticultural analogy, we must make sure that the roots of
our plant will support the fully grown organism, which may require us to
improve the soil, use higher quality fertiliser, and sow better seed.
In mathematical terms, as expressed by Klein’s quote at the end of the

opening chapter, the power of mathematics depends not only on building
ever more sophisticated branches of the mathematical tree, but also in
growing deeper roots to support the ever-growing branches that reach up to
the sky.
Our aim here is to indicate what can be done, but not actually to do it. So

we talk in an informal way about the possibility of a formal system of axioms
for set theory itself. It may seem that the argument has come full circle: here
we are, right back at the beginning, worrying about the same things as before.
In fact this is not so: we have come more in a spiral, returning to the same
point but at a higher level. We now understand the problems involved, and
their solutions, much better than before. The material we have covered so far
is quite adequate for almost all of a university course in mathematics. But we
should not imagine that we have reached a complete and final solution, or
that total perfection has now been attained.





chapter 16

Axioms for Set Theory

Up to this point, we have concentrated on deriving a formal struc-
ture for arithmetic based on set theory. This analysis has provided
a deeper understanding of the various number systems, how they

work, and their place in the scheme of things. It should also have sharp-
ened your critical faculties and your appreciation for logical rigour. It may
have sharpened them sufficiently to see that one fundamental ingredient is
still lacking. We have axiomatised everything we can lay hands on, with one
notable exception: set theory itself.
Having taken such pains with the structural detail of the number systems,

it would be a great pity if the basis on which we worked should turn out to be
defective—unable to support the weight of the superstructure erected on it.
In the ultimate analysis, it is hardly more satisfactory to base a formal theory
of numbers on an informal, intuitive, and naive theory of sets than it is to
start with an informal, intuitive, and naive theory of numbers themselves.
However, we may yet escape this criticism by returning to our starting

point and axiomatising set theory as well. (It would, indeed, have been pleas-
ant to have started off from an axiomatic basis for set theory, except that
there are enormous psychological barriers involved in doing something so
far removed from reality with no idea why it is needed.) We will not go into
the details very deeply (see Mendelson [27] if you want to do this), nor shall
we adopt an overly formal style in discussing them. Our aim is merely to
make clear the unconscious assumptions that have been made about sets, to
discard some over-optimistic ones that lead to paradoxes, and to list a system
of axioms that offers a stronger basis for formal mathematical theory.
Historically, some mathematicians hoped for more than this. At the turn

of the century a number of them, led by David Hilbert, embarked upon a
kind of Arthurian Quest for Truth: a firm and immutable basis for math-
ematics and a guarantee that the truths of mathematics can be rendered
absolute. In this impermanent and uncertain universe, it is hardly surprising
that the Holy Grail turned out, in the end, to be a mare’s nest.
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Some Difficulties

The problems with naive set theory are of two kinds. First, there are the para-
doxes: apparently contradictory results obtained by apparently impeccable
logic. Then there are purely technical difficulties: are infinite cardinals always
comparable? Is there a cardinal between ℵ0 and 2ℵ0?
By way of motivation, we consider two paradoxes. The first, due to

Bertrand Russell, was alluded to in chapter 3. If

S = {x | x /∈ x}

then is S ∈ S or S /∈ S? Either answer directly implies the other!
For the second, let U be the set of all things, defined (say) by

U = {x | x = x}.

Now X⊆U for every set X. In particular, the power set P(U)⊆U. Taking
cardinals,

|U| ≥ |P(U)| ,
but by proposition 12.5 of chapter 12,

|U| < |P(U)| .
This is a contradiction: what’s wrong?
Many responses are possible, among them:

The Ostrich. Ignore the difficulties and maybe they’ll go away.

The Drop-out. The paradoxes point to unavoidable defects in mathemat-
ics. Give up, and take up something more profitable such as knitting or
sociology.

The Optimist. Re-examine the reasoning, isolate the source of the difficulties,
and try to salvage what is worth saving while disposing of the paradoxes.

If you agree with the Ostrich, stop reading here. If with the Drop-out, burn
this book. If with the Optimist, read on . . .

Sets and Classes

In the next few sections we discuss one possible solution to the problems,
known as von Neumann–Bernays–Gödel set theory. This starts from the ob-
servation that a plausible source of trouble is the freedom to form weird and
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very large sets (for example, the two sets S and U defined above). All of the
known paradoxes seem to ‘cheat’ in this way.
We therefore distinguish two things: classes, which may be thought of as

arbitrary collections (what we hitherto have naively called ‘sets’), and sets,
which are respectable classes. Then we restrict our ability to define weird
or large creatures to classes only. This is the idea: the details are roughly as
follows.
Classes are introduced as a primitive, undefined term, along with a relation

∈ (corresponding to the intuitive idea of membership) and its negation /∈ . If
X and Y are classes, then one or other of

X ∈ Y ,X /∈ Y

is required to hold. We define equality of classes X = Y by

(∀Z)(Z ∈ X ⇔ Z ∈ Y).

We say that a class X is a set if X ∈ Y for some class Y . This is the crucial
definition: sets are those classes that can bemembers of other classes.
This is quite different from the intuitive feeing that sets are things of which

other things are members. The difference is what makes it hard to define
weird and large sets. To make this work, we agree that an expression like

{x | P(x)}

means ‘the class of all sets x for which P(x) is true’. This restriction is forced
upon us, because only sets can be members of classes anyway. It has the
beneficial effect of blocking paradoxes. For example, consider Russell’s class

S = {X |X /∈ X}.

In the new interpretation, this is the class of all sets X such thatX /∈ X. Let us
run through the usual argument for a contradiction, and see what happens.
Suppose that S ∈ S. Then S is a member of something, so it is a set, so S /∈ S,
a contradiction. Now suppose S /∈ S. If S is a set, then it satisfies the defining
property X ∈ X, so by the definition, S ∈ S. This is a contradiction too.
There remains, however, the possibility that S is not a set. In this case we
cannot deduce that S ∈ S; elements of S have to be sets as well as not being
members of themselves.
The upshot is that we don’t get a paradox. All we get is a proof that S is not

a set. Classes that are not sets are called proper classes; we have just proved
that they exist. Similarly U may be proved to be a proper class, and again
there is no paradox.
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The Axioms Themselves

The majority of the axioms required come as an anticlimax, because all they
do is state that things we obviously want to be sets are sets. For convenience,
we assume that the usual notation of set theory also applies to classes, in the
obvious way. For instance we define

∅ = {x | x �= x} ,
{x, y} = {x

∣∣ x = u or x = y},

and so on.
From now on we make the convention that small letters x, y, z, . . . stand

for sets, whereas capitals X, Y , Z, . . . stand for classes—which may or may
not be sets.

(S1) Extensionality. X =Y ⇔ (∀Z)(X ∈ Z ⇔ Y ∈ Z).

We have defined equality of classes as ‘having the same members’. This
purely technical axiom says that equal classes belong to the same things.

(S2) Null set. ∅ is a set.
(S3) Pairs. {x, y} is a set for all sets x, y.

We now define singletons by {x} = {x, x}, then ordered pairs using the Kur-
atowski definition (x, y) = {{x}, {x, y}}, then functions, relations, as before.

(S4) Membership. ∈ is a relation, that is, there exists a classM of ordered
pairs (x, y) such that (x, y) ∈ M ⇔ x ∈ y.

(S5) Intersection. If X, Y are classes, there is a class X ∩ Y .
(S6) Complement. If X is a class, its complement Xc exists and is a class.
(S7) Domain. If X is a class of ordered pairs, there exists a class Z such

that u ∈ Z ⇔ (u, v) ∈ X for some v.

Much more interesting is an axiom for defining a class by a property of
its elements, analogous to {x | P(x)}. We state here a general axiom: it can
be derived if desired from a small number of more specialised axioms of the
same type.

(S8) Class existence. Let φ(X1, . . . ,Xn, Y1, . . . ,Ym) be a compound
predicate statement in which only set variables are quantified. Then
there exists a class Z such that

(x1, . . . , xn) ∈ Z⇔ φ(x1, . . . , xn,Y1, . . . ,Ym).
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We write

Z = {(x1, . . . xn) |φ(x1, . . . xn), (Y1, . . .Ym)} .

Notice that the xs here are sets. In particular, the class

Z = {x | P(x) }
contains as members only those sets x for which P(x) is true. This, as we saw
above, allows us to avoid paradoxes.

(S9) Union. The union of a set of sets is a set.
(S10) Power set. If x is a set, so is P(x).
(S11) Subset. If x is a set and X a class, then x ∩ X is a set.

There is also an axiom that asserts a slight generalisation of the
following:

(S12) Replacement. If f is a function whose domain is a set, then its image
is a set.

These axioms suffice for almost all of the constructions we have made us-
ing set theory. However, they all hold good even if we restrict ourselves only
to finite sets. We therefore need an axiom to say that infinite sets exist, other-
wise we cannot construct any of our beloved number systems. We therefore
add an axiom introduced in chapter 8 (von Neumann’s brainwave):

(S13) Axiom of infinity. There exists a set x such that∅∈ x, and whenever
y∈ x it follows that y ∪ {y} ∈ x.

Using von Neumann’s definition of natural numbers, this axiom boils
down to the assertion that the natural numbers form a set. It is pretty clear
that without some such assertion, set theory would not be much use.
The thirteen axioms listed so far suffice for almost all of our previous work,

though a detailed proof is (as usual) somewhat involved and tedious. How-
ever, some of the problems in the chapters on cardinals and infinitesimals
require more delicate axioms yet.

The Axiom of Choice

Proposition 12.5 of chapter 12 used an argument that involved selecting an
element x1 from a set B, then x2 from B\{x1}, . . . , and in general an element
xn+1 from B\{x1, . . . , xn}. Although this looks like a recursion argument, it is
not covered by the recursion theorem (theorem 8.3 of chapter 8), since xn+1
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is found by an arbitrary choice and not in terms of a previously specified
function. Roughly speaking, the method asks us to make ‘infinitely many
arbitrary choices’. It turns out (though not easily!) that the list of axioms
we have so far produced is insufficient to justify this. We therefore state an
additional axiom:

(S14) Axiom of choice. If {xa}α∈a is an indexed family of sets (with an
index set a) then there exists a function f such that

f : a→
⋃
α ∈ a

xα

and

f (α) ∈ xα for each α ∈ a.

In other words, f ‘chooses’ for each α ∈ a an element of xα . This seems
quite reasonable. After all, it is essentially saying that if we have a family of
sets, we can choose an element from each one of them all at the same time.
But its logical status proves to be difficult to grasp, though it is now well
understood by mathematical logicians.
Neither its truth nor its falsity contradicts axioms (S1)–(S13) (in the same

way that neither the truth nor the falsity of the commutative law contradicts
the axioms for a group: there exist both commutative and non-commutative
groups). The first fact was proved by Kurt Gödel in 1940, the second (a long-
unsolved problem) by Paul Cohen in 1963. For this reason it is customary
in mathematics to point out whenever the axiom of choice is being used,
whereas the ordinary axioms (S1)–(S13) are not normally mentioned.
Assuming the axiom of choice allows us to tidy up two loose ends that

arose in the chapters on infinite cardinals and infinitesimals. It implies that
for any sets x, y, either |x| ≥ |y| or |y| ≥ |x|, so that any two infinite car-
dinals can be compared. (For a proof, seeMendelson [27] p. 198.) It also gives
a proof that an ultrafilter can be defined on the natural numbers, hence pro-
viding a proof of the existence of the hyperreal number system. This requires
considering each subset T ⊆ N and placing it into the setU of subsets so that
the conditions (U1)–(U4) are satisfied. We can start by placing every cofinite
set in U and every finite set into its complement Uc. Then we consider other
sets that have not yet been assigned and decide whether they should be placed
in U or not, while still maintaining the conditions (U1)–(U4). Since the sets
concerned are in the power set P(N), which has cardinal number greater than
that of N, it turns out that we cannot prove this by a regular induction proof
but we can prove it using the axiom of choice (see, for example, [9] on the
internet).
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As mathematics grows more sophisticated, it turns out that new possibil-
ities occur that need additional axioms. For example, Cantor formulated the
Continuum Hypothesis that

there is no infinite cardinal lying properly between ℵ0 and 2ℵ0 .

It happens that neither its truth nor its falsity contradicts (S1)–(S13), or
even (S1)–(S14). The proofs are again due to Gödel and Cohen. It is perhaps
surprising that so specific a problem should have such an unspecific answer;
but it shows how delicate the problems are.
Other, different, axioms have also been proposed at various times, and

many of the relations between them are now understood quite well. We refer
the reader to more specialised texts.

Consistency

However, there is one final problem.Having got our set of axioms, how dowe
know that no paradoxes arise? We certainly seem to have avoided them (for
instance, no one has ever been able to find any), but how can we be certain
there are no hidden contradictions? A firm, final answer to this question is
now known. Unfortunately, this is it: we can never be certain.
To explain this, we must go back to the time of Hilbert. Call a system of

axioms consistent if it does not lead to logical contradictions. Hilbert wanted
to prove that the axioms for set theory are consistent.
For some axiom systems this is easy. If we can find a model for the ax-

ioms, that is, a structure that satisfies them, they must be consistent—or else
the model could not exist. The trouble is, what materials do we allow for the
construction of the model? It is generally agreed that a finite model is unex-
ceptionable, because any assertion about it can be checked, in principle, in a
finite time. But the axiom of infinity, for example, means that we cannot find
a finite model for set theory.
Hilbert’s idea was that something less restricted should suffice: what he

called a decision procedure. This is, so to speak, a program consisting of a
finite sequence of decisions which, when fed a formula in set theory, can
decide whether it is true (like the truth-table method for propositions). If we
can find such a program, and prove that it always works, then we can feed it
the equation

0 �= 0

and see what it says. If it says ‘true’ then our axioms must be inconsist-
ent, since any contradiction implies the above proposition (use a vacuous
argument by contradiction: anything is true in an inconsistent system!).
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For a while it looked as if Hilbert’s idea might work.
Then Gödel dashed all hopes by proving two theorems. The first is that

there exist, in set theory, theorems that are true, but for which there neither
exists a proof nor a disproof.1 The second: that if set theory is consistent,
then there does not exist any decision procedure that will prove it to be.
The proofs of Gödel’s theorems are quite technical: they are sketched

in Stewart [32] pp. 294–5. But they demolish Hilbert’s hope of a complete
consistency proof.
Does this mean that it is, after all, pointless to seek greater logical rigour in

mathematics? After all, if at the end the whole thing hovers in limbo, it hardly
seems worth bothering in the first place. This is emphatically not themoral to
be drawn. Without a proper search for rigour, we would never have reached
Gödel’s theorems. What they do is pin down certain problems inherent in
the axiomatic approach itself.
They do not demonstrate it to be futile: on the contrary, it provides an ad-

equate framework for the whole of modern mathematics, and an inspiration
for the development of new ideas. But with Gödel’s theorems we can avoid
deluding ourselves that everything is perfect, and understand the limitations
of the axiomatic method as well as its strengths.

Exercises

1. Show that the axiom of choice implies that if f : A→ B is a surjection,
then |A| ≥ |B| . Conversely, in the context of the other axioms of set
theory, prove that the latter fact implies the axiom of choice.

2. Given a collection of sets {Xα }α∈A indexed by a set A, the cartesian
product is defined to be the set of all functions f : A → ⋃

α ∈A
Xα such

that f (α) ∈ Xα . Show that forA = {1, 2, . . . , n} this corresponds to the
usual definition of X1 × X2 × · · · × Xn.
Prove that the axiom of choice is equivalent to the assertion that

every cartesian product of non-empty sets is itself non-empty.
3. Show that there is a choice involved in the proof of proposition 12.1 of

chapter 12. Express it in terms of a function from a set of subsets of B
to B. Is it necessary in this case to include all the subsets of B in the
choice?

4. Reconsider Goldbach’s conjecture (exercise 13 at the end of chapter 8),
which postulates that every positive even integer is the sum of two

1 People always put it this way, but, interestingly, the negation of such a statement is also
‘true’. Both the statement and its negation are consistent with the other axioms.
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primes. Look at as many cases of this as you wish to see if there is any
pattern to the primes which occur. Convince yourself that Goldbach’s
conjecture might be true but there may be no single proof which will
work for every case. On the other hand, there is always the possibility
that the conjecture is false for some very large integer which we have
not yet found.

5. Given a predicate P(n) valid for all n ∈ N, such that a proof for each
P(n) exists in a finite number of lines as explained in chapter 6, is it
reasonable to expect that there is a proof of

∀n ∈ N : P(n)

in this sense?
6. Read chapter 1 again and the introductions to each of the five parts

into which the book is divided. Now review the exercises at the end of
chapter 1. If you still have the solutions that you wrote out at the time
you first read chapter 1, so much the better. If the book has achieved
its purpose, your view on many of these topics will have matured and
changed. You should now be in a position to appreciate the kind of
thinking used in more advanced mathematics, together with an idea
of the sort of problems in the foundations of the subject which are
worthy of further study.
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appendix

How to Read Proofs:
The ‘Self-Explanation’
Strategy

Prepared by Lara Alcock, Mark Hodds, Matthew Inglis,
Mathematics Education Centre, Loughborough University

The ‘self-explanation’ strategy has been found to enhance problem solving
and comprehension in learners across a wide variety of academic subjects.
It can help you to better understand mathematical proofs: in one recent
research study students who had worked through these materials before
reading a proof scored 30% higher than a control group on a subsequent
proof comprehension test (see [3]).

How to Self-Explain

To improve your understanding of a proof, there is a series of techniques you
should apply. After reading each line:

• Try to identify and elaborate the main ideas in the proof.
• Attempt to explain each line in terms of previous ideas. These may be ideas
from the information in the proof, ideas from previous theorems/proofs,
or ideas from your own prior knowledge of the topic area.

• Consider any questions that arise if new information contradicts your
current understanding.

Before proceeding to the next line of the proof you should ask yourself the
following:

• Do I understand the ideas used in that line?
• Do I understand why those ideas have been used?
• How do those ideas link to other ideas in the proof, other theorems, or
prior knowledge that I may have?

• Does the self-explanation I have generated help to answer the questions
that I am asking?
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On the next page you will find an example showing possible self-
explanations generated by students when trying to understand a proof (the
labels ‘(L1)’ etc. in the proof indicate line numbers). Please read the ex-
ample carefully in order to understand how to use this strategy in your own
learning.
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Example Self-Explanations

Theorem: No odd integer can be expressed as the sum of three even
integers.
Proof:

(L1) Assume, to the contrary, that there is an odd integer x, such that
x = a + b + c, where a, b, and c are even integers.

(L2) Then a = 2k, b = 2l, and c = 2p, for some integers k, l, and p.
(L3) Thus x = a + b + c = 2k + 2l + 2p = 2(k + l + p).
(L4) It follows that x is even; a contradiction.
(L5) Thus no odd integer can be expressed as the sum of three even

integers. �

After reading this proof, one reader made the following self-explanations:

• ‘This proof uses the technique of proof by contradiction.’
• ‘Since a, b, and c are even integers, we have to use the definition of an even
integer, which is used in L2.’

• ‘The proof then replaces a, b, and c with their respective definitions in the
formula for x.’

• ‘The formula for x is then simplified and is shown to satisfy the definition
of an even integer also; a contradiction.’

• ‘Therefore, no odd integer can be expressed as the sum of three even
integers.’
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Self-Explanation Compared with Other Comments

You must also be aware that the self-explanation strategy is not the same as
monitoring or paraphrasing. These two methods will not help your learning
to the same extent as self-explanation.

Paraphrasing

‘a, b, and c have to be positive or negative, even whole numbers.’

There is no self-explanation in this statement. No additional information
is added or linked. The reader merely uses different words to describe
what is already represented in the text by the words ‘even integers’. You
should avoid using such paraphrasing during your own proof comprehen-
sion. Paraphrasing will not improve your understanding of the text as much
as self-explanation will.

Monitoring

‘OK, I understand that 2(k + l + p) is an even integer.’

This statement simply shows the reader’s thought process. It is not the same
as self-explanation, because the student does not relate the sentence to add-
itional information in the text or to prior knowledge. Please concentrate on
self-explanation rather than monitoring.
A possible self-explanation of the same sentence would be:

‘OK, 2(k + l + p) is an even integer because the sum of 3 integers is an
integer and 2 times an integer is an even integer.’

In this example the reader identifies and elaborates the main ideas in the text.
They use information that has already been presented to understand the logic
of the proof.
This is the approach you should take after reading every line of a proof in

order to improve your understanding of the material.
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Practice Proof 1

Now read this short theorem and proof and self-explain each line, either in
your head or by making notes on a piece of paper, using the advice from the
preceding pages.

Theorem: There is no smallest positive real number.
Proof: Assume, to the contrary, that there exists a smallest positive real
number.
Therefore, by assumption, there exists a real number r such that for every

positive number s, 0 < r < s.
Considerm = r/2.
Clearly, 0 < m < r.
This is a contradiction because m is a positive real number that is smaller

than r.
Thus there is no smallest positive real number. �
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Practice Proof 2

Here’s another more complicated proof for practice. This time, a definition
is provided too. Remember: use the self-explanation training after every line
you read, either in your head or by writing on paper.

Definition: An abundant number is a positive integer n whose divisors add
up to more than 2n. For example, 12 is abundant because 1 + 2 + 3 + 4 +
6 + 12 > 24.

Theorem: The product of two distinct primes is not abundant.
Proof: Let n = p1p2, where p1 and p2 are distinct primes. Assume that 2 ≤ p1
and 3 ≤ p2.
The divisors of n are 1, p1, p2, and p1p2.
Note that p1+1

p1–1 is a decreasing function of p1.

So max
(
p1+1
p1–1

)
= 2+1

2–1 = 3.

Hence p1+1
p1–1 ≤ p2.

So p1 + 1 ≤ p1p2 – p2.
So p1 + 1 + p2 ≤ p1p2.
So 1 + p1 + p2 + p1p2 ≤ 2p1p2. �

Remember . . .

Using the self-explanation strategy has been shown to substantially improve
students’ comprehension of mathematical proofs. Try to use it every time
you read a proof in lectures, in your notes or in a book.
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