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Introduction

Over the last fifteen years or so, there has emerged a satisfactory and coherent
theory of orthogonal polynomials in several variables, attached to root systems,
and depending on two or more parameters. At the present stage of its develop-
ment, it appears that an appropriate framework for its study is provided by the
notion of an affine root system: to each irreducible affine root system S there are
associated several families of orthogonal polynomials (denoted by Eλ, Pλ, Qλ,
P (ε)
λ in this book). For example, when S is the non-reduced affine root system

of rank 1 denoted here by (C∨
1 ,C1), the polynomials Pλ are the Askey-Wilson

polynomials [A2] which, as is well-known, include as special or limiting cases
all the classical families of orthogonal polynomials in one variable.

I have surveyed elsewhere [M8] the various antecedents of this theory: sym-
metric functions, especially Schur functions and their generalizations such as
zonal polynomials and Hall-Littlewood functions [M6]; zonal spherical func-
tions on p-adic Lie groups [M1]; the Jacobi polynomials of Heckman and
Opdam attached to root systems [H2]; and the constant term conjectures of
Dyson, Andrews et al. ([D1], [A1], [M4], [M10]). The lectures of Kirillov [K2]
also provide valuable background and form an excellent introduction to the
subject.

The title of this monograph is the same as that of the lecture [M7]. That report,
for obvious reasons of time and space, gave only a cursory and incomplete
overview of the theory. The modest aim of the present volume is to fill in the
gaps in that report and to provide a unified foundation for the theory in its
present state.

The decision to treat all affine root systems, reduced or not, simultaneously
on the same footing has resulted in an unavoidably complex system of notation.
In order to formulate results uniformly it is necessary to associate to each affine
root system S another affine root system S′ (which may or may not coincide
with S), and to each labelling (§1.5) of S a dual labelling of S′.

vii



viii Introduction

The prospective reader is expected to be familiar with the algebra and
geometry of (crystallographic) root systems and Weyl groups, as expounded
for example by Bourbaki in [B1]. Beyond that, the book is pretty well
self-contained.

We shall now survey briefly the various chapters and their contents. The
first four chapters are preparatory to Chapter 5, which contains all the main
results. Chapter 1 covers the basic properties of affine root systems and their
classification. Chapter 2 is devoted to the extended affine Weyl group, and
collects various notions and results that will be needed later.

Chapter 3 introduces the (Artin) braid group of an extended affine Weyl
group, and the double braid group. The main result of this chapter is the duality
theorem (3.5.1); although it is fundamental to the theory, there is at this time of
writing no complete proof in the literature. I have to confess that the proof given
here of the duality theorem is the least satisfactory feature of the book, since it
consists in checking, in rather tedious detail, the necessary relations between
the generators. Fortunately, B. Ion [I1] has recently given a more conceptual
proof which avoids these calculations.

The subject of Chapter 4 is the affine Hecke algebra H, which is a deforma-
tion of the group algebra of the extended affine Weyl group. We construct the
basic representation of H in §4.3 and develop its properties in the subsequent
sections. Finally, in §4.7 we introduce the double affine Hecke algebra H̃, and
show that the duality theorem for the double braid group gives rise to a duality
theorem for H̃.

As stated above, Chapter 5, on orthogonal polynomials, is the heart of the
book. The scalar products are introduced in §5.1, the orthogonal polynomials
Eλ in §5.2, the symmetric orthogonal polynomials Pλ in §5.3, and their variants
Qλ and P (ε)

λ in §5.7. The main results of the chapter are the symmetry theorems
(5.2.4) and (5.3.5); the specialization theorems (5.2.14) and (5.3.12); and the
norm formulas (5.8.17) and (5.8.19), which include as special cases almost all
the constant term conjectures referred to earlier.

The final Chapter 6 deals with the case where the affine root system S has
rank 1. Here everything can be made completely explicit. When S is of type A1,
the polynomials Pλ are the continuous q-ultraspherical (or Rogers) polynomials,
and when S is of type (C∨

1 ,C1) they are the Askey-Wilson polynomials, as
mentioned above.

The subject of this monograph has many connections with other parts of
mathematics and theoretical physics, such as (in no particular order) alge-
braic combinatorics, harmonic analysis, integrable quantum systems, quan-
tum groups and symmetric spaces, quantum statistical mechanics, deformed
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Virasoro algebras, and string theory. I have made no attempt to survey these
various applications, partly from lack of competence, but also because an ade-
quate account would require a book of its own.

Finally, references to the history and the literature will be found in the Notes
and References at the end of each chapter.
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Affine root systems

1.1 Notation and terminology

Let E be an affine space over a field K : that is to say, E is a set on which a
K -vector space V acts faithfully and transitively. The elements of V are called
translations of E , and the effect of a translation v ∈ V on x ∈ E is written
x + v. If y = x + v we write v = y − x .

Let E ′ be another affine space over K , and let V ′ be its vector space of
translations. A mapping f : E → E ′ is said to be affine-linear if there exists a
K -linear mapping D f : V → V ′, called the derivative of f , such that

f (x + v) = f (x)+ (D f )(v).(1.1.1)

for all x ∈ E and v ∈ V . In particular, a function f : E → K is affine-linear if
and only if there exists a linear form D f : V → K such that (1.1.1) holds.

If f, g : E → K are affine-linear and λ,µ ∈ K , the function h = λ f +
µg : x 
→ λ f (x)+ µg(x) is affine-linear, with derivative Dh = λD f + µDg.
Hence the set F of all affine-linear functions f : E → K is a K -vector space, and
D is a K -linear mapping of F onto the dual V ∗ of the vector space V . The kernel
of D is the 1-dimensional subspace F0 of F consisting of the constant functions.

Let F∗ be the dual of the vector space F . For each x ∈ E , the evaluation
map εx : f 
→ f (x) belongs to F∗, and the mapping x 
→ εx embeds E in F∗

as an affine hyperplane. Likewise, for each v ∈ V let εv ∈ F∗ be the mapping
f 
→ (D f )(v). If v = y− x , where x , y ∈ E , we have εv = εy − εx by (1.1.1),
and the mapping v 
→ εv embeds V in F∗ as the hyperplane through the origin
parallel to E .

From now on, K will be the field R of real numbers, and V will be a real vector
space of finite dimension n > 0, equipped with a positive definite symmetric

1



2 1 Affine root systems

scalar product <u, v>. We shall write

|v| = <v, v>1/2

for the length of a vector v ∈ V . Then E is a Euclidean space of dimension n,
and is a metric space for the distance function d(x , y) = |x − y|.

We shall identify V with its dual space V ∗ by means of the scalar product
<u, v>. For any affine-linear function f : E → R, (1.1.1) now takes the form

f (x + v) = f (x)+ <D f, v>(1.1.2)

and D f is the gradient of f , in the usual sense of calculus.
We define a scalar product on the space F as follows:

< f, g> = <D f, Dg>.(1.1.3)

This scalar product is positive semidefinite, with radical the one-dimensional
space F0 of constant functions.

For each v �= 0 in V let

v∨ = 2v/|v|2

and for each non-constant f ∈ F let

f ∨ = 2 f/| f |2.
Also let

H f = f −1(0)

which is an affine hyperplane in E . The reflection in this hyperplane is the
isometry s f : E → E given by the formula

s f (x) = x − f ∨(x)D f = x − f (x)D f ∨.(1.1.4)

By transposition, s f acts on F : s f (g) = g ◦ s−1
f = g ◦ s f . Explicitly, we have

s f (g) = g − < f ∨, g> f = g − < f, g> f ∨(1.1.5)

for g ∈ F .
For each u �= 0 in V , let su : V → V denote the reflection in the hyperplane

orthogonal to u, so that

su(v) = v − <u, v>u∨.(1.1.6)
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Then it is easily checked that

Ds f = sD f(1.1.7)

for any non constant f ∈ F .
Let w : E → E be an isometry. Then w is affine-linear (because it pre-

serves parallelograms) and its derivative Dw is a linear isometry of V , i.e., we
have <(Dw)u, (Dw)v> = <u, v> for all u, v ∈ V . The mapping w acts by
transposition on F : (w f )(x) = f (w−1x) for x ∈ V , and we have

D(w f ) = (Dw)(D f ).(1.1.8)

For each v ∈ V we shall denote by t(v) : E → E the translation by v, so
that t(v)x = x + v. The translations are the isometries of E whose derivative
is the identity mapping of V . On F , t(v) acts as follows:

t(v) f = f − <D f, v>c(1.1.9)

where c is the constant function equal to 1. For if x ∈ E we have

(t(v) f )(x) = f (x − v) = f (x)− <D f, v>.

Let w: E → E be an isometry and let v ∈ V . Then

wt(v)w−1 = t((Dw)v).(1.1.10)

For if x ∈ E we have

(wt(v)w−1)(x) = w(w−1x + v) = x + (Dw)v.

1.2 Affine root systems

As in §1.1 let E be a real Euclidean space of dimension n > 0, and let V be its
vector space of translations. We give E the usual topology, defined by the metric
d(x , y) = |x − y|, so that E is locally compact. As before, let F denote the
space (of dimension n + 1) of affine-linear functions on E .

An affine root system on E [M2] is a subset S of F satisfying the following
axioms (AR1)–(AR4):

(AR 1) S spans F, and the elements of S are non-constant functions.
(AR 2) sa(b) ∈ S for all a, b ∈ S.
(AR 3) <a∨, b> ∈ Z for all a, b ∈ S.



4 1 Affine root systems

The elements of S are called affine roots, or just roots. Let WS be the group
of isometries of E generated by the reflections sa for all a ∈ S. This group WS

is the Weyl group of S. The fourth axiom is now

(AR 4) WS (as a discrete group) acts properly on E.

In other words, if K1 and K2 are compact subsets of E , the set of w ∈ WS such
that wK1 ∩ K2 �= Ø is finite.

From (AR3) it follows, just as in the case of a finite root system, that if a and
λa are proportional affine roots, then λ is one of the numbers ± 1

2 , ±1, ±2. If
a ∈ S and 1

2 a �∈ S, the root a is said to be indivisible. If each a ∈ S is indivisible,
i.e., if the only roots proportional to a ∈ S are ±a, the root system S is said to
be reduced.

If S is an affine root system on E , then

S∨ = {a∨ : a ∈ S}

is also an affine root system on E , called the dual of S. Clearly S and S∨ have
the same Weyl group, and S∨∨ = S.

The rank of S is defined to be the dimension n of E (or V ). If S′ is another
affine root system on a Euclidean space E ′, an isomorphism of S onto S′ is
a bijection of S onto S′ that is induced by an isometry of E onto E ′. If S′ is
isomorphic to λS for some nonzero λ ∈ R, we say that S and S′ are similar.

We shall assume throughout that S is irreducible, i.e. that there exists no
partition of S into two non-empty subsets S1, S2 such that <a1, a2> = 0 for all
a1 ∈ S1 and a2 ∈ S2.

The following proposition ([M2], p. 98) provides examples of affine root
systems:

(1.2.1) Let R be an irreducible finite root system spanning a real finite-
dimensional vector space V, and let <u, v> be a positive-definite symmetric
bilinear form on V, invariant under the Weyl group of R. For each α ∈ R and
r ∈ Z let aα,r denote the affine-linear function on V defined by

aα,r (x) = <α, x>+ r.

Then the set S(R) of functions aα,r , where α ∈ R and r is any integer if 1
2α /∈ R

(resp. any odd integer if 1
2α ∈ R) is a reduced irreducible affine root system

on V.
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Moreover, every reduced irreducible affine root system is similar to either
S(R) or S(R)∨, where R is a finite (but not necessarily reduced) irreducible root
system ([M2], §6).

Let S be an irreducible affine root system on a Euclidean space E . The set
{Ha : a ∈ S} of affine hyperplanes in E on which the affine roots vanish is locally
finite ([M2], §4). Hence the set E −⋃a∈S Ha is open in E , and therefore so
also are the connected components of this set, since E is locally connected.
These components are called the alcoves of S, or of WS , and it is a basic fact
(loc. cit.) that the Weyl group WS acts faithfully and transitively on the set of
alcoves. Each alcove is an open rectilinear n-simplex, where n is the rank of S.

Choose an alcove C once and for all. Let xi (i∈I ) be the vertices of C ,
so that C is the set of all points x = ∑ λi xi such that

∑
λi = 1 and each λi

is a positive real number. Let B = B(C) be the set of indivisible affine roots
a ∈ S such that (i) Ha is a wall of C , and (ii) a(x) > 0 for all x ∈ C . Then B
consists of n + 1 roots, one for each wall of C , and B is a basis of the space F
of affine-linear functions on E . The set B is called a basis of S.

The elements of B will be denoted by ai (i∈I ), the notation being chosen
so that ai (x j ) = 0 if i �= j . Since xi is in the closure of C , we have ai (xi ) > 0.
Moreover, <ai , a j > ≤ 0 whenever i �= j .

The alcove C having been chosen, an affine root a ∈ S is said to be positive
(resp. negative) if a(x) > 0 (resp. a(x) < 0) for x ∈ C . Let S+ (resp. S−)
denote the set of positive (resp. negative) affine roots; then S = S+ ∪ S− and
S− = −S+. Moreover, each a ∈ S+ is a linear combination of the ai with
nonnegative integer coefficients, just as in the finite case ([M2], §4).

Let αi = Dai (i∈I ). The n + 1 vectors αi ∈ V are linearly dependent, since
dim V = n. There is a unique linear relation of the form∑

i∈I

miαi = 0

where the mi are positive integers with no common factor, and at least one of
the mi is equal to 1. Hence the function

c =
∑
i∈I

mi ai(1.2.2)

is constant on E (because its derivative is zero) and positive (because it is
positive on C).

Let

 = {Da : a ∈ S}.
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Then is an irreducible (finite) root system in V . A vertex xi of the alcove C is
said to be special for S if (i) mi = 1 and (ii) the vectors α j ( j∈I, j �= i) form
a basis of . For each affine root system S there is at least one special vertex
(see the tables in §1.3). We shall choose a special vertex once and for all, and
denote it by x0 (so that 0 is a distinguished element of the index set I ). Thus
m0 = 1 in (1.2.2), and if we take x0 as origin in E , thereby identifying E with
V , the affine root ai (i �= 0) is identified with αi .

The Cartan matrix and the Dynkin diagram of an irreducible affine root
system S are defined exactly as in the finite case. The Cartan matrix of S is the
matrix N = (ni j )i, j∈I where ni j = <a∨i , a j >. It has n + 1 rows and columns,
and its rank is n. Its diagonal entries are all equal to 2, and its off-diagonal
entries are integers ≤0. If m = (mi )i∈I is the column vector formed by the
coefficients in (1.2.2), we have Nm = 0.

The Dynkin diagram of S is the graph with vertex set I , in which each pair
of distinct vertices i, j is joined by di j edges, where di j = max(|ni j |, |n ji |). We
have di j ≤ 4 in all cases. For each pair of vertices i, j such that di j > 0 and
|ai | > |a j |, we insert an arrowhead (or inequality sign) pointing towards the
vertex j corresponding to the shorter root.

If S is reduced, the Dynkin diagram of S∨ is obtained from that of S by
reversing all arrowheads. If S = S(R) as in (1.2.1), where R is irreducible
and reduced, the Dynkin diagram of S is the ‘completed Dynkin diagram’ of
R([B1], ch. 6).

If S is reduced, the Cartan matrix and the Dynkin diagram each determine
S up to similarity. If S is not reduced, the Dynkin diagram still determines S,
provided that the vertices i ∈ I such that 2ai ∈ S are marked (e.g. with an
asterisk).

1.3 Classification of affine root systems

Let S be an irreducible affine root system. If S is reduced, then S is similar to
either S(R) or S(R)∨ (1.2.1), where R is an irreducible root system. If R is of type
X , where X is one of the symbols An, Bn,Cn, Dn, BCn, E6, E7, E8, F4,G2,
we say that S(R) (resp. S(R)∨) is of type X (resp. X∨).

If S is not reduced, it determines two reduced affine root systems

S1 = {a ∈ S : 1
2 a /∈ S}, S2 = {a ∈ S : 2a /∈ S}

with the same affine Weyl group, and S = S1 ∪ S2. We say that S is of type
(X, Y ) where X, Y are the types of S1, S2 respectively.



1.3 Classification of affine root systems 7

The reduced and non-reduced irreducible affine root systems are listed below
((1.3.1)–(1.3.18)). In this list, ε1, ε2, . . . is a sequence of orthonormal vectors
in a real Hilbert space.

For each type we shall exhibit
(a) an affine root system S of that type;
(b) a basis of S;
(c) the Dynkin diagram of S. Here the numbers attached to the vertices of the

diagram are the coefficients mi in (1.2.2).

We shall first list the reduced systems ((1.3.1)–(1.3.14)) and then the non-
reduced systems ((1.3.15)–(1.3.18)).

(1.3.1) Type An (n ≥ 1).

(a) ±(εi − ε j )+ r (1 ≤ i < j ≤ n + 1; r ∈ Z).
(b) a0 = −ε1 + εn+1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n).

(c) 11 1

1

1

1

1

1

(n � 1) (n � 2)

…

…

(1.3.2) Type Bn (n ≥ 3).

(a) ±εi + r (1 ≤ i ≤ n; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

(c) 2 2 2 2

1

1

…

(1.3.3) Type B∨n (n ≥ 3).

(a) ±2εi + 2r (1 ≤ i ≤ n; r ∈ Z); ± εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
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(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = 2εn.

(c) 2 2 2 1

1

1

…

(1.3.4) Type Cn (n ≥ 2).

(a) ±2εi + r (1 ≤ i ≤ n; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −2ε1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = 2εn.

1 2 2 2 2 1
…

(c)

(1.3.5) Type C∨
n (n ≥ 2).

(a) ±εi + 1
2r (1 ≤ i ≤ n; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).

(b) a0 = −ε1 + 1
2 , ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

1 1 1 1 1 1
…(c)

(1.3.6) Type BCn (n ≥ 1).

(a) ±εi + r (1 ≤ i ≤ n; r ∈ Z); ±2εi + 2r + 1 (1 ≤ i ≤ n; r ∈ Z);

±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).

(b) a0 = −2ε1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.
(c)

1 2

(n � 1)

1 2 2 2 2 2
…

(n � 2)

(1.3.7) Type Dn (n ≥ 4).

(a) ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z)
(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn−1+ εn.
(c)

2 2 2 2

1

1

1

1

…
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These are the “classical” reduced affine root systems. The next seven types
((1.3.8)–(1.3.14)) are the “exceptional” reduced affine root systems. In (1.3.8)–
(1.3.10) let

ωi = εi − 1

9
(ε1 + · · · + ε9) (1 ≤ i ≤ 9).

(1.3.8) Type E6.

(a) ±(ωi − ω j )+ r (1 ≤ i < j ≤ 6; r ∈ Z);
±(ωi + ω j + ωk)+ r (1 ≤ i < j < k ≤ 6; r ∈ Z);
±(ωi + ω2 + · · · + ω6)+ r (r ∈ Z).

(b) a0 = −(ω1 + · · · + ω6)+ 1, ai = ωi − ωi+1 (1 ≤ i ≤ 5),
a6 = ω4 + ω5 + ω6.

(c) 1 2

O 2

O 1

123

(1.3.9) Type E7.

(a) ±(ωi − ω j )+ r (1 ≤ i < j ≤ 7; r ∈ Z);
±(ωi + ω j + ωk)+ r (1 ≤ i < j < k ≤ 7; r ∈ Z);
±(ω1 + · · · + ω̂i + · · · + ω7)+ r (1 ≤ i ≤ 7; r ∈ Z).

(b) a0 = −(ω1 + · · · + ω6)+ 1, ai = ωi − ωi+1 (1 ≤ i ≤ 6),
a7 = ω5 + ω6 + ω7.

(c) 21 3

2

2 134

(1.3.10) Type E8.

(a) ±(ωi − ω j )+ r (1 ≤ i < j ≤ 9; r ∈ Z);
±(ωi + ω j + ωk)+ r (1 ≤ i < j < k ≤ 9; r ∈ Z).

(b) a0 = ω1 − ω2 + 1, ai = ωi+1 − ωi+2 (1 ≤ i ≤ 7),
a8 = ω7 + ω8 + ω9.

(c) 4321 5

3

246
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(1.3.11) Type F4.

(a) ±εi + r (1 ≤ i ≤ 4; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ 4; r ∈ Z);
1
2 (±ε1 ± ε2 ± ε3 ± ε4)+ r (r ∈ Z).

(b) a0 = −ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = ε3 − ε4, a3 = ε4,

a4 = 1
2 (ε1 − ε2 − ε3 − ε4).

(c) 21 3 24

(1.3.12) Type F∨4 .

(a) ±2εi + 2r (1 ≤ i ≤ 4; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ 4; r ∈ Z);
±ε1 ± ε2 ± ε3 ± ε4 + 2r (r∈Z).

(b) a0 = −ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = ε3 − ε4, a3 = 2ε4,

a4 = ε1 − ε2 − ε3 − ε4.

(c) 21 3 12

(1.3.13) Type G2.

(a) ±(εi − 1
3 (ε1 + ε2 + ε3))+ r (1 ≤ i ≤ 3; r ∈ Z);

±(εi − ε j )+ r (1 ≤ i < j ≤ 3; r ∈ Z).
(b) a0 = ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = ε3 − 1

3 (ε1 + ε2 + ε3).

(c) 1 2 3

(1.3.14) Type G∨
2 .

(a) ±(3εi − (ε1 + ε2 + ε3))+ 3r (1 ≤ i ≤ 3; r ∈ Z);
±(εi − ε j )+ r (1 ≤ i < j ≤ 3; r ∈ Z).

(b) a0 = ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = 3ε3 − (ε1 + ε2 + ε3).

(c) 1 2 1

We come now to the non-reduced affine root systems. In the Dynkin diagrams
below, an asterisk placed over a vertex indicates that if ai is the affine root
corresponding to that vertex in a basis of S, then 2ai ∈ S.

(1.3.15) Type (BCn,Cn) (n ≥ 1).

(a) ±εi + r, ±2εi + r (1 ≤ i ≤ n, r ∈ Z);
±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
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(b) a0 = −2ε1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

(c) * *
1 2 1 2 2

O
2 2 2

(n � 1) (n � 2)

…

(1.3.16) Type (C∨
n , BCn) (n ≥ 1).

(a) ±εi + 1
2r, ±2εi + 2r (1 ≤ i ≤ n; r ∈ Z);

±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −ε1 + 1

2 , ai = εi − εi+1, an = εn.
(c) * *

1 1 1 1 11 1 1

(n � 1) (n � 2)

…

(1.3.17) Type (C2,C∨
2 ), (Bn, B∨n ) (n ≥ 3).

(a) ±εi + r, ±2εi + 2r (1 ≤ i ≤ n; r ∈ Z);
±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).

(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n − 1); an = εn.

(c)

2 2

*
1 2 1

*

(n � 2) (n � 3)

2 2 2

1

1

…

(1.3.18) Type (C∨
n ,Cn) (n ≥ 1).

(a) ±εi + 1
2r, ±2εi + r (1 ≤ i ≤ n; r ∈ Z);

±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −ε1 + 1

2 , ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

(c) * ** *
1 1 1 1 11 1 1

(n � 1) (n � 2)

…

For each irreducible affine root system S, let o(S) denote the number of WS -
orbits in S. If S is reduced, the list above shows that o(S) ≤ 3, and that o(S) = 3
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only when S is of type Cn,C∨
n or BCn(n ≥ 2). If S is not reduced, the maximum

value of o(S) is 5, and is attained only when S is of type (C∨
n ,Cn) (n ≥ 2). The

five orbits are O1, . . . , O5 where, in the notation of (1.3.18) above,

O1 = {±εi + r : 1 ≤ i ≤ n, r ∈ Z}, O2 = 2O1, O3 = O1 + 1
2 ,

O4 = 2O3 = O2 + 1, O5 = {±εi ± ε j + r : 1 ≤ i < j ≤ n, r ∈ Z}.
Finally, the list above shows that all the non-reduced irreducible affine root

systems of rank n are subsystems of (1.3.18), obtained by deleting one or more
of the WS-orbits; and so are the “classical” root systems (1.3.2)–(1.3.7).

1.4 Duality

In later chapters, in order to formulate conveniently certain dualities, we shall
need to consider not one but a pair (S, S′) of irreducible affine root systems, to-
gether with a pair (R, R′) of finite root systems and a pair (L , L ′) of lattices in V .

Let R be a reduced finite irreducible root system in V , and let P (resp. P∨)
denote the weight lattice of R (resp. R∨), and Q (resp. Q∨) the root lattice of
R (resp. R∨). Fix a basis (αi )i∈I0 of R, and let ϕ be the highest root of R relative
to this basis. In (1.4.1) and (1.4.2) below we shall assume that the scalar product
on V is normalized so that |ϕ|2 = 2 and therefore ϕ∨ = ϕ. (This conflicts with
standard usage, as in § 1.3, only when R is of type Cn (1.3.4).)

The pairs (S, S′), (R, R′), (L , L ′) to be considered are the following:

S = S(R), S′ = S(R∨); R′ = R∨; L = P, L ′ = P∨.(1.4.1)

Then S (resp. S′) has a basis (ai )i∈I (resp. (a′i )i∈I ) where ai = αi (i �= 0), a0 =
−ϕ + c; a′i = α∨i (i �= 0), a′0 = −ψ∨ + c, where ψ is the highest short
root of R.

S = S′ = S(R)∨; R′ = R; L = L ′ = P∨.(1.4.2)

Then S = S′ has a basis (ai )i∈I = (a′i )i∈I , where ai = a′i = α∨i if i �= 0, and
a0 = a′0 = −ϕ + c.

(1.4.3) S = S′ is of type (C∨
n ,Cn); R = R′ is of type Cn; L = L ′ = Q∨. We

shall assume that S is as given in (1.3.18), so that ai = αi = εi − εi+1 (1 ≤ i ≤
n − 1) and αn = 2an = 2εn, and L = Zn.

For each α ∈ R, let α′(= α or α∨) be the corresponding element of R′. Then
<λ′, α> and <λ, α′> are integers, for all λ ∈ L , λ′ ∈ L ′ and α ∈ R.
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In each case let

�′ = L ′/Q∨,(1.4.4)

a finite abelian group. Also let

<L , L ′> = {<λ, λ′> : λ ∈ L , λ′ ∈ L ′}.
Then we have

<L , L ′> = e−1Z(1.4.5)

where e is the exponent of �′, except in case (1.4.2) when R is of type Bn or
C2n , in which case e = 1.

Anticipating Chapter 2, let W = W (R, L ′) be the group of displacements of
V generated by the Weyl group W0 of R and the translations t(λ′), λ′ ∈ L ′, so
that W is the semidirect product of W0 and t(L ′):

W = W (R, L ′) = W0 � t(L ′).(1.4.6)

Dually, let

W ′ = W (R′, L) = W0 � t(L).(1.4.6′)

By transposition, both W and W ′ act on F .

(1.4.7) W permutes S and W ′ permutes S′.

This follows from the fact, remarked above, that <λ′, α> and <λ, α′> are
integers, for all λ ∈ L , λ′ ∈ L ′ and α ∈ R.

Now let

� = L ⊕ Zc0(1.4.8)

where c0 = e−1c. We shall regard elements of � as functions on V : if f ∈ �,
say f = λ+ rc0 where λ ∈ L and r ∈ Z, then

f (x) = <λ, x>+ e−1r

for x ∈ V . Then � is a lattice in F .

(1.4.9) � is stable under the action of W.
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Proof Let w ∈ W , say w = vt(λ′) where v ∈ W0 and λ′ ∈ L ′. If f =
λ+ rc0 ∈ � and x ∈ V , we have

w f (x) = f (w−1x) = f (v−1x − λ′)
= <λ, v−1x − λ′>+ e−1r
= <vλ, x>+ e−1r −<λ, λ′>

so that

w f = vλ+ (r − e <λ, λ′>)c0

is in �, since e<λ, λ′> ∈ Z by (1.4.5). �

1.5 Labels

Let S be an irreducible affine root system as in §1.4 and let W = W (R, L ′). A
W -labelling k of S is a mapping k : S → R such that k(a) = k(b) if a, b are in
the same W -orbit in S.

If S = S(R) where R is simply-laced (types A, D, E), all the labels k(a)
are equal. If S = S(R) or S(R)∨ where R �= R∨, there are at most two labels,
one for short roots and one for long roots. Finally, if S is of type (C∨

n ,Cn) as
in (1.4.3), there are five W -orbits O1, . . . , O5 in S, as observed in §1.3, and
correspondingly five labels k1, . . . , k5, where ki = k(a) for a ∈ Oi .

Given a labelling k of S as above, we define a dual labelling k ′ of S′, as
follows:

(a) if S = S(R), S′ = S(R∨) (1.4.1) and a′ = α∨ + rc ∈ S′, then
k ′(a′) = k(α + rc).

(b) If S = S′ = S(R)∨ (1.4.2), then k ′ = k.
(c) If S = S′ is of type (C∨

n ,Cn) (1.4.3), the dual labels k ′i (1 ≤ i ≤ 5) are
defined by

k ′1 = 1
2 (k1 + k2 + k3 + k4),

k ′2 = 1
2 (k1 + k2 − k3 − k4),

k ′3 = 1
2 (k1 − k2 + k3 − k4),(1.5.1)

k ′4 = 1
2 (k1 − k2 − k3 + k4),

k ′5 = k5,

and k ′(a) = k ′i if a ∈ Oi .
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In all cases let

ρk ′ = 1

2

∑
α∈R+

k ′(α∨)α,

(1.5.2)

ρ ′k =
1

2

∑
α∈R+

k(α′∨)α′.

where R+ is the set of positive roots of R determined by the basis (αi ). Explicitly,
when S = S(R) (1.4.1) we have

ρk ′ = 1

2

∑
α∈R+

k(α)α,

ρ ′k =
1

2

∑
α∈R+

k(α)α∨;

when S = S(R)∨ (1.4.2) we have

ρk ′ = ρ ′k =
1

2

∑
α∈R+

k(α∨)α;

and when S is of type (C∨
n ,Cn) (1.4.3), so that R is of type Cn ,

ρk ′ =
n∑

i=1

(k ′1 + (n − i)k5)εi ,

ρ ′k =
n∑

i=1

(k1 + (n − i)k5)εi .

For each w ∈ W0, we have

w−1ρ ′k =
1

2

∑
α∈R+

σ (wα)k(α′∨)α′,

(1.5.3)
w−1ρk ′ = 1

2

∑
α∈R+

σ (wα)k ′(α∨)α,

where σ (wα) = +1 or−1 according aswα ∈ R+ or R−. In particular, if i ∈ I ,
i �= 0 we have

siρ
′
k = ρ ′k − k

(
α′∨i
)
α′i ,

(1.5.4)
siρk ′ = ρk ′ − k ′

(
α∨i
)
αi .

(1.5.5) If the labels k(α′∨i ), k ′(α∨i ) are all nonzero, then ρ ′k and ρk ′ are fixed
only by the identity element of W0. �
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Notes and references

Affine root systems were introduced in [M2], which contains an account of
their basic properties and their classification. The list of Dynkin diagrams in
§1.3 will also be found in the article of Bruhat and Tits [B3] (except that
both [M2] and [B3] omit the diagram (1.3.17) when n = 2). The reduced
affine root systems (1.3.1)–(1.3.14) are in one-one correspondence with the
irreducible affine (or Euclidean) Kac-Moody Lie algebras, and correspondingly
their diagrams appear in Moody’s paper [M9] and Kac’s book [K1].
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The extended affine Weyl group

2.1 Definition and basic properties

Let S be an irreducible affine root system, and let (ai )i∈I be a basis of S, as
in §1.2. For each i ∈ I let si = sai be the reflection in the hyperplane Hai on
which ai vanishes. These reflections generate the Weyl group WS of S, subject
to the relations si

2 = 1 and

(si s j )
mi j = 1

for i, j ∈ I such that i �= j , whenever si s j has finite order mi j . In other words,
WS is a Coxeter group on the generators si , i ∈ I [B1].

Since WS rather than S is the present object of study, we may assume that S
is reduced, and indeed that S = S(R) where R is a reduced irreducible finite
root system spanning a real vector space V of dimension n, as in (1.2.1). We
shall say that WS is of type R.

Let <u, v> be a positive-definite symmetric scalar product on V , invariant
under the Weyl group of R. We shall regard each root α ∈ R as a linear function
on V , by the rule α(x) = <α, x> for x ∈ V . Then the elements of S are the
affine-linear functions a = α + rc, where α ∈ R and r ∈ Z, and c is the
constant function equal to 1.

Let (αi )i∈I0 be a basis (or set of simple roots) of R, and let R+ (resp. R−)
denote the set of positive (resp. negative) roots of R determined by this basis.
Each α ∈ R+ is a linear combination of the αi with non-negative integer
coefficients, and there is a unique ϕ ∈ R+ (the highest root), say

ϕ =
∑
i∈I0

miαi

for which the sum of the coefficients attains its maximum value. The affine

17
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roots ai = αi (i ∈ I0) and a0 = −ϕ + c then form a basis of S = S(R), and
we have ∑

i∈I

mi ai = c(2.1.1)

in conformity with (1.2.2), where I = I0 ∪ {0}, and m0 = 1.
The alcove C consists of the points x ∈ V such that <x, αi> > 0 for all

i �= 0, and <x, ϕ> < 1. It follows that

S+ = {α + rc : α ∈ R, r ≥ χ (α)}(2.1.2)

where χ is the characteristic function of R−, i.e.,

χ (α) =
{

0 if α ∈ R+,
1 if α ∈ R−.

(2.1.3)

For any λ ∈ V , let t(λ) : x 
→ x + λ denote translation by λ. In particular, if
α ∈ R we have

t(α∨) = sα · sα+c ∈ WS

whereα∨ = 2α/|α|2. It follows that WS contains a group of translations isomor-
phic to the lattice Q∨ spanned by R∨, and in fact WS is the semi direct product

WS = W0 � t(Q∨)

where W0 is the Weyl group of R, and is the subgroup of WS that fixes the origin
in V .

As in §1.4, let P∨ be the weight lattice of R∨ and let L ′ be either P∨ as in
(1.4.1) and (1.4.2), or Q∨ if R is of type Cn , as in (1.4.3). The group

W = W (R, L ′) = W0 � t(L ′)(2.1.4)

is called the extended affine Weyl group. It coincides with WS when R is of type
E8, F4 or G2, and in the situation of (1.4.3); in all other cases W is larger than WS .
It contains WS as a normal subgroup, and the quotient W/WS

∼= L ′/Q∨ = �′
(1.4.4) is a finite abelian group.

Dually we may define

W ′ = W (R′, L) = W0 � t(L)(2.1.4′)

and everything in this chapter relating to W applies equally to W ′.
Each w ∈ W is of the form w = vt(λ′), where λ′ ∈ L ′ and v ∈ W0. If

a = α + rc ∈ S we have

(wa)(x) = a(w−1x) = a(v−1x − λ′) = <α, v−1x − λ′>+ r

= <vα, x>+ r −<λ′, α>
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for x ∈ V , so that

vt(λ′)(a) = v(a)−<λ′, α>c(2.1.5)

which lies in S because <λ′, α> ∈ Z. It follows that W permutes S.

For each i ∈ I, i �= 0, let

<L ′, αi> = {<λ′, αi> : λ′ ∈ L ′},
a subgroup of Z. Since α∨i ∈ L ′ it follows that 2 ∈ <L ′, αi>, and hence that
<L ′, αi> = Z or 2Z. If <L ′, αi> = 2Z then <α∨j , αi> is an even integer for
all j �= 0, and a consideration of Dynkin diagrams shows that

(2.1.6) We have <L ′, αi> = 2Z only in the following situation: R is of type
Cn, L ′ = Q∨, and αi is the unique long simple root of R (i.e., αi = 2εn in the
notation of (1.3.4)). In all other cases, <L ′, αi> = Z.

2.2 The length function on W

For each w ∈ W let

S(w) = S+ ∩ w−1S−(2.2.1)

so that a ∈ S(w) if and only if a(x) > 0 and a(w−1x) < 0 for x ∈ C , that is
to say if and only if the hyperplane Ha separates the alcoves C and w−1C . It
follows that S(w) is a finite set, and we define the length of w ∈ W to be

l(w) = Card S(w).

From (2.2.1) it follows that

S(w−1) = −wS(w)(2.2.2)

and hence that l(w−1) = l(w).
In particular, we have

S(si ) = {ai }(2.2.3)

for all i ∈ I , and hence l(si ) = 1.
Since W permutes S, it permutes the hyperplanes Ha(a ∈ S) and hence also

the alcoves. Hence for eachw ∈ W there is a unique v ∈ WS such thatwc = vc,
and therefore u = v−1w stabilizes C and so permutes the ai (i∈I ). We have
l(w) = l(v) and l(u) = 0.
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Let

� = {u ∈ W : l(u) = 0}.

From above it follows that W = WS ��, so that (1.4.4)

� ∼= W/WS
∼= L ′/Q∨ = �′

is a finite obelian group. Later (§2.5) we shall determine the elements of �
explicitly.

(2.2.4) Let v,w ∈ W . Then

l(vw) ≤ l(v)+ l(w)

and the following conditions are equivalent:

(i) l(v)+ l(w) = l(vw),
(ii) S(vw) = w−1S(v) ∪ S(w),

(iii) w−1S(v) ⊂ S+,
(iv) S(w) ⊂ S(vw),
(v) w−1S(v) ⊂ S(vw).

Proof Let

X = S+ ∩ w−1S+ ∩ w−1v−1S−,
Y = S+ ∩ w−1S− ∩ w−1v−1S+,
Z = S+ ∩ w−1S− ∩ w−1v−1S−.

The four sets X, Y,−Y and Z are pairwise disjoint. (For example, X is contained
in w−1S+ and Y in w−1S−.) We have

w−1S(v) = X ∪ −Y, S(w) = Y ∪ Z , S(vw) = X ∪ Z .

Hence

l(v)+ l(w)− l(vw) = 2 Card Y ≥ 0

and each of the conditions (i)−(v) is equivalent to Y = ∅. �

From (2.2.4) it follows in particular that

S(uw) = S(w), S(wu) = u−1S(w)(2.2.5)

if w ∈ W and u ∈ �.
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(2.2.6) Let v,w ∈ W . Then S(v) = S(w) if and only if vw−1 ∈ �.

Proof If vw−1 ∈ �, (2.2.5) shows that S(v) = S(w). Conversely, replacing
w by w−1, we have to show that S(v) = S(w−1) implies vw ∈ �. From the
proof of (2.2.4) we have

X ∪ −Y = w−1S(w−1) = −S(w) = −Y ∪ −Z

so that X = −Z and therefore X = Z = ∅, since both X and Z are subsets of
S+. Hence S(vw) = ∅, i.e., vw ∈ �. �

For a ∈ S, let

σ (a) =
{+1 if a ∈ S+,
−1 if a ∈ S−.

(2.2.7)

(2.2.8) Let w ∈ W, i ∈ I . Then

(i) l(siw) = l(w)+ σ (w−1ai ),
(ii) l(wsi ) = l(w)+ σ (wai ).

Proof (i) From (2.2.4) with v = si we have l(siw) = l(w)+ 1 if and only if
w−1S(si ) ⊂ S+, i.e. if and only if σ (w−1ai ) = 1. By replacing w by siw, it
follows that l(w) = l(siw) if and only if σ (w−1ai ) = −1.
(ii) Since l(wsi ) = l(siw

−1) and l(w) = l(w−1), this follows from (i). �

Let l(w) = p > 0. Then w �∈ �, hence wai ∈ S− for some i ∈ I . By (2.2.8)
we have l(wsi ) = p− 1. By induction on p it follows that w may be written in
the form

w = usi1 · · · si p

where i1, . . . , i p ∈ I and u ∈ �. Such an expression (with p = l(w)) is called
a reduced expression for w.

(2.2.9) For w as above,

S(w) = {b1, . . . , bp}

where

br = si p · · · sir+1 (air ) (1 ≤ r ≤ p).



22 2 The extended affine Weyl group

Proof If p = 0, then w ∈ � and S(w) is empty. If p ≥ 1 let v = wsi p , then
as above l(v) = p − 1 and therefore

S(w) = si p S(v) ∪ {ai p

}
by (2.2.4). Hence the result follows by induction on p. �

2.3 The Bruhat order on W

Since WS is a Coxeter group it possesses a Bruhat ordering, denoted by v ≤ w
(see e.g. [B1] ch.5) We extend this partial ordering to the extended affine Weyl
group W as follows. If w = uv and w′ = u′v′ are elements of W , where
u, u′ ∈ � and v′, v′ ∈ WS , then we define

(2.3.1) w ≤ w′ if and only if u = u′ and v ≤ v′.

Thus the distinct cosets of WS in W are incomparable for this ordering.
From standard properties of the Bruhat ordering on a Coxeter group (loc.

cit.) it follows that

(2.3.2) Let v,w ∈ W and let w = usi1 · · · si p be a reduced expression for w
(so that u ∈ � and p = l(w)). Then the following conditions are equivalent:

(a) v ≤ w;
(b) there exists a subsequence ( j1, . . . , jq ) of the sequence (i1, . . . , i p) such

that v = us j1 · · · s jq ;
(c) there exists a subsequence ( j1, . . . , jq ) of the sequence (i1, . . . , i p) such

that v = us j1 · · · s jq is a reduced expression for v.

(2.3.3) Let w ∈ W, a ∈ S+. Then the following are equivalent:
(a) a ∈ S(w); (b) l(wsa) < l(w); (c) wsa < w.

Proof Let w = usi1 · · · si p be a reduced expression. If wa ∈ S−, then a = br

for some r , in the notation of (2.2.9), so that sa = si p · · · sir+1 sir sir+1 · · · si p , and
therefore

wsa = usi1 · · · sir−1 sir+1 · · · si p < w.

It follows that (a)⇒ (c)⇒ (b). Conversely, ifwa ∈ S+ then (wsa)a = −wa ∈
S−, and hence l(w) < l(wsa) by the previous argument applied to wsa . Hence
(b)⇒ (a). �
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2.4 The elements u(λ′), vv(λ′)

We shall first compute the length of an arbitrary element of W . As before (2.1.3),
let χ be the characteristic function of R−.

(2.4.1) Let λ′ ∈ L ′, w ∈ W0. Then

(i) l(wt(λ′)) =
∑
α∈R+

|<λ′, α>+ χ (wα)|,

(ii) l(t(λ′)w) =
∑
α∈R+

|<λ′, α>− χ (w−1α)|,

Proof (i) Let a = α + rc ∈ S. From (2.1.5) we have

wt(λ′)(a) = wα + (r −<λ′, α>)c,

so that by (2.1.2) a ∈ S(wt(λ′)) if and only if

(1) χ (α) ≤ r < χ(wα)+<λ′, α>.
For each α ∈ R, let

f (α) = <λ′, α>+ χ (wα)− χ (α).

Then it follows from (1) that the number of roots a ∈ S(wt(λ′)) with gradient α
is equal to f (α) if f (α) ≥ 0, and is zero otherwise. Since f (α)+ f (−α) = 0,
we have

l(wt(λ′)) = 1

2

∑
α∈R

| f (α)| =
∑
α∈R+

| f (α)|

=
∑
α∈R+

|<λ′, α>+ χ (wα)|.

(ii) This follows from (i), since l(t(λ′)w) = l(w−1t(−λ′)) by (2.2.2). �

For each λ′ ∈ L ′, let λ′+ denote the unique dominant weight in the orbit W0λ
′.

Then it follows from (2.4.1) that

l(t(λ′)) = l(t(λ′+)) =
∑
α∈R+

<λ′+, α>.(2.4.2)

Letw0 be the longest element of W0, and let λ′− = w0λ
′
+ be the antidominant

weight in the orbit W0λ
′. Let v(λ′) be the shortest element of W0 such that

v(λ′)λ′ = λ′−, and define u(λ′) ∈ W by u(λ′) = t(λ′)v(λ′)−1. Thus we have

t(λ′) = u(λ′)v(λ′), t(λ′−) = v(λ′)t(λ′)v(λ′)−1 = v(λ′)u(λ′).(2.4.3)
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We have

S(v(λ′)) = {α ∈ R+ : <λ′, α> > 0}.(2.4.4)

Proof Let v(λ′) = si1 · · · si p be a reduced expression. By (2.2.9), S(v(λ′)) =
{β1, . . . , βp}, where βr = si p · · · sir+1 (αir ) for 1 ≤ r ≤ p. Let

λ′r = sir+1 · · · si pλ
′ = sir · · · si1λ

′
−

for 0 ≤ r ≤ p, so that λ′0 = λ′− and λ′p = λ′.
Suppose that λ′r−1 = λ′r for some r . Then

λ′− = si1 · · · sir−1λ
′
r−1 = si1 · · · sir−1λ

′
r = wλ′

where w = si1 · · · sir−1 sir+1 · · · si p is shorter than v(λ′). It follows that λ′r �=
λ′r−1 = sirλ

′
r , so that <λ′r , αir> �= 0. But

<λ′r , αir> = <λ′, si p · · · sir+1αir> = <λ′, βr>

and <λ′, βr> = <λ′−, v(λ′)βr> is ≥ 0, because v(λ′)βr ∈ R−. Hence
<λ′, βr> > 0 for 1 ≤ r ≤ p.

Conversely, if β ∈ R+ and <λ′, β> > 0, we have <λ′−, v(λ′)β> > 0 and
therefore v(λ′)β ∈ R−, i.e., β ∈ s(v(λ′)). �

(2.4.5) u(λ′) is the shortest element of the coset t(λ′)W0, and

l(t(λ′)) = l(u(λ′))+ l(v(λ′))

for all λ′ ∈ L ′.

Proof It follows from (2.4.1) (ii) that, for fixed λ′ ∈ L ′ and varying w ∈ W0,
the length of t(λ′)w−1 will be least if, for each α ∈ R+, χ (wα) = 1 if and only
if<λ′, α> > 0, i.e. (by (2.4.4)) if and only if S(w) = S(v(λ′)). By (2.2.6), this
forcesw = v(λ′) and proves the first statement. It now follows from (2.4.1) (ii)
and (2.4.4) that

l(u(λ′)) = l(t(λ′)v(λ′)−1) =
∑
α∈R+

|<λ′, α>− χ (v(λ′)α)|

= l(t(λ′))− l(v(λ′)). �

From (2.4.4) it follows that, for all α ∈ R

(2.4.6) χ (v(λ′)α) = 1 if and only if χ (α)+<λ′, α> > 0. �
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(2.4.7) Let α ∈ R, β = v(λ′)−1α, r ∈ Z. Then

(i) α + rc ∈ S(u(λ′)) if and only if α ∈ R− and 1 ≤ r < χ(β)+<λ′, β>.
(ii) α + rc ∈ S(u(λ′)−1) if and only if χ (α) ≤ r < −<λ′, α>.

Proof (i) Since u(λ′) = v(λ′)−1t(λ′−) (2.4.3), it follows from (2.1.5) that
α + rc ∈ S(u(λ′)) if and only if

χ (α) ≤ r < χ (β)+<λ′, β>,
since<λ′−, α> = <λ′, β>. Hence χ (β)+<λ′, β> > 0 and therefore χ (α) =
1 by (2.4.6).
(ii) We have u(λ′)−1 = v(λ′)t(−λ′), hence α + rc ∈ S(u(λ′)−1) if and only if

χ (α) ≤ r < χ (v(λ′)α)−<λ′, α>.
Hence χ (α)+<λ′, α> ≤ 0 and therefore χ (v(λ′)α) = 0 by (2.4.6). �

(2.4.8) Let a ∈ S+. Then a ∈ S(u(λ′)−1) if and only if a(λ′) < 0.

This is a restatement of (2.4.7) (ii).

(2.4.9) Let w ∈ W0, λ
′ ∈ L ′. Then

l(u(λ′)w) = l(u(λ′))+ l(w).

Proof By (2.2.4) it is enough to show thatw−1S(u(λ′)) ⊂ S+, and this follows
from (2.4.7) (i). �

(2.4.10) Let w ∈ W , w(0) = λ′. Then w ≥ u(λ′).

Proof We have u(λ′)(0) = λ′, hence w ≥ u(λ′)v for some v ∈ W0. Now
apply (2.4.9). �

(2.4.11) Let ϕ be the highest root of R. Then u(ϕ∨) = s0, and v(ϕ∨) = sϕ .

Proof We have t(ϕ∨) = s0sϕ, and l(s0) = 1. Hence s0 is the shortest element
of the coset t(ϕ∨)W0, hence is equal to u(ϕ∨) by (2.4.5). It then follows that
v(ϕ∨) = sϕ . �

(2.4.12) Let λ′ ∈ L ′, v ∈ �, µ′ = vλ′. Then u(µ′) = vu(λ′).
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Proof Since vu(λ′)(0) = µ′ we have u(µ′) ≤ vu(λ′) by (2.4.10), hence
l(u(µ′)) ≤ l(u(λ′)) Replacing (λ′, v) by (µ′, v−1) gives the reverse inequality
l(u(λ′)) ≤ l(u(µ′)). Hence u(µ′) = vu(λ′). �

(2.4.13) Let w ∈ W. Then S(w) ∩ R = ∅ if and only if w = u(λ′), where
λ′ = w(0).

Proof We have w = u(λ′)v with v ∈ w0. From (2.4.9) and (2.2.4) it follows
that S(w) = v−1S(u(λ′)) ∪ S(v). By (2.4.7) (i), S(u(λ′)) ∩ R = ∅; hence
S(w) ∩ R = ∅ if and only if S(v) = ∅, i.e., v = 1. �

(2.4.14) Let λ′ ∈ L ′, i ∈ I, µ′ = siλ
′.

(i) If ai (λ′) �= 0, then u(µ′) = si u(λ′) and v(µ′) = v(λ′)sαi .
(ii) If ai (λ′) < 0, then u(λ′) > u(µ′), and v(λ′) < v(µ′) if i �= 0.
(iii) If ai (λ′) = 0, then si u(λ′) = u(λ′)s j for some j �= 0, and v(λ′)αi = α j .

Proof (i) By interchangingλ′ andµ′ if necessary, we may assume that ai (λ′) <
0, so that u(λ′)−1ai ∈ S− by (2.4.8). Ifw = si u(λ′) we have l(w) = l(u(λ′))−1,
hence l(u(λ′)−1) = l(w−1) + l(si ) and therefore si S(w−1) ⊂ S(u(λ′)−1) by
(2.2.4) (v). It follows that for each b ∈ S(w−1) we have (si b)(λ′) < 0 by
(2.4.8), that is to say b(µ′) < 0 and therefore b ∈ S(u(µ′)−1). Hence S(w−1) ⊂
S(u(µ′)−1) and therefore l(w) ≤ l(u(µ′)). But w(0) = siλ

′ = µ′, so that
w = u(µ′) by (2.4.5), i.e. u(µ′) = si u(λ′). Consequently

v(µ′) = u(µ′)−1t(µ′) = u(µ′)−1si t(λ
′)sαi

= u(λ′)−1t(λ′)sαi = v(λ′)sαi .

(ii) From above we have u(λ′) = si u(µ′) and l(u(λ′)) = l(u(µ′)) + 1, so that
u(λ′) > u(µ′). If i �= 0, l(t(µ′)) = l(t(λ′)) by (2.4.2), so that l(v(λ′)) =
l(v(µ′)) −1 and therefore v(λ′) < v(µ′).
(iii) If ai (λ′) = 0 then si u(λ′)(0) = siλ

′ = λ′, and therefore si u(λ′) =
u(λ′)w for some w ∈ W0. By (2.4.9), l(si u(λ′)) = l(u(λ′)) + l(w), hence
l(w) = 1 and therefore w = s j for some j ∈ I, j �= 0. It follows that
si t(λ′)v(λ′)−1 = t(λ′)v(λ′)−1s j . Now si t(λ′)sαi = t(siλ

′) = t(λ′), and hence
sαi v(λ′)−1 = v(λ′)−1s j , so that v(λ′)αi = ±α j . But v(λ′)αi ∈ R+ by (2.4.4),
hence v(λ′)αi = α j . �
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2.5 The group Ω

We shall now determine the elements of the finite group

� = {w ∈ W : l(w) = 0}.
For this purpose let π ′i (i ∈ I0) be the fundamental weights of R∨, defined by
the relations

<π ′i , α j> = δi j(2.5.1)

for i, j ∈ I0; also, to complete the notation, let π ′0 = 0. We define

ui = u(π ′i ), vi = v(π ′i )(2.5.2)

(so that in particular u0 = v0 = 1). Next, let J be the subset of I defined by

(2.5.3) j ∈ J if and only if π ′j ∈ L ′ and m j = 1,

where the positive integers m j are those defined in (2.1.1), so that m0 = 1 and
m j = <π ′j , ϕ> for j �= 0, where ϕ is the highest root of R. We have 0 ∈ J in
all cases.

With this notation established, we have

� = {u j : j ∈ J }.(2.5.4)

Proof Let u ∈ �. Clearly u is the shortest element of its coset uW0, so that
u = u(λ′) where λ′ = u(0). Hence u = t(λ′)v(λ′)−1 and it follows from (2.4.1)
(ii) that <λ′, α> = χ (v(λ′)α) for each α ∈ R+. Hence λ′ is dominant and of
the form λ′ =∑i �=0 ciπ

′
i , where the coefficients ci are integers ≥ 0. Hence

<λ′, ϕ> =
∑
i �=0

ci mi .(1)

On the other hand, <λ′, ϕ> = χ (υ(λ′)ϕ) = 0 or 1. If <λ′, ϕ> = 0 it follows
from (1) that each ci = 0, hence λ′ = 0 and u = 1; if <λ′, ϕ> = 1 it follows
that λ′ = π ′j for some j �= 0 such that m j = 1. Hence u = u j for some j ∈ J .

Conversely, let us show that u j ∈ � for each j ∈ J . Each root α ∈ R+ is of
the form

α =
∑
i �=0

m ′
i αi

where 0 ≤ m ′
i ≤ mi . Hence 0 ≤ <π ′i , α> ≤ <π ′i , ϕ>. In particular, if j ∈ J

(and j �= 0) we have <π ′j , α> = 0 or 1 for each α ∈ R+, and from (2.4.6) it
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follows that <π ′j , α> = χ (v jα) for each α ∈ R+. Hence by (2.4.1) (ii)

l(u j ) = l
(
t(π ′j )v

−1
j

) = ∑
α∈R+

|<π ′j , α>− χ (v jα)| = 0

and therefore u j ∈ �. �

(2.5.5) Let j ∈ J . Then u j (a0) = a j .

Proof Since u j has length zero, it permutes the simple affine roots ai . Hence
u j (a0) = ar for some r ∈ I , and therefore

v−1
j a0 = t(π ′j )

−1ar = ar +<π ′j , αr>c(1)

(where α0 = −ϕ if r = 0).
Evaluating both sides of (1) at the origin gives

ar (0)+<π ′j , αr> = 1.

If r �= 0 we have <π ′j , αr> = 1 and hence r = j . If r = 0 we obtain
<π ′j , α0> = 0, hence j = 0. �

For j, k ∈ J we define j + k and − j by requiring that

uj+k = uj uk, u− j = u−1
j(2.5.6)

thereby making J an abelian group with neutral element 0, isomorphic to �.
Likewise, for i ∈ I and j ∈ J we define i + j ∈ I by requiring that

u j (ai ) = ai+ j .(2.5.7)

(If i ∈ J , the two definitions agree, by virtue of (2.5.5).) Thus J acts on I as a
group of permutations.

(2.5.8) Let i ∈ I , j ∈ J . Then v jαi = αi− j .

Proof We have

u jv j ai = t(π ′j )ai = ai −<αi , π
′
j>c

by (2.1.5). Hence

v j ai = u− j ai −<αi , π
′
j>c

= ai− j −<αi , π
′
j>c,

so that D(v j ai ) = D(ai− j ), i.e. v jαi = αi− j . �
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From (2.5.6) it follows that if j, k ∈ J

t(π ′j+k)v−1
j+k = t(π ′j )v

−1
j t(π ′k)v−1

k

= t(π ′j + v−1
j π

′
k)v−1

j v
−1
k

and therefore

π ′j+k = π ′j + v−1
j π

′
k = π ′k + v−1

k π
′
j ,(2.5.9)

v j+k = v jvk = vkv j , v− j = v−1
j .(2.5.10)

More generally, if i ∈ I and j ∈ J we have

π ′i+ j = miπ
′
j + v−1

j π
′
i .(2.5.11)

Proof This is clear if i = 0 or j = 0, so we may assume that i �= 0 and j �= 0.
Let k ∈ I, k �= 0. From (2.5.8) we have v jαk = αk− j , so that

<v−1
j π

′
i , αk> = <π ′i , v jαk> = <π ′i , αk− j>

is zero unless k = j or k = i + j . If k = i + j it is equal to 1, and if k = j it
is equal to <π ′i , α0> = −mi . Hence

v−1
j π

′
i = π ′i+ j − miπ

′
j . �

Finally, let w0 be the longest element of W0, and for each j ∈ J let w0 j be
the longest element of the isotropy subgroup W0 j of π ′j in W0. Then we have

v j = w0w0 j .(2.5.12)

For w0w0 j is the shortest element of W0 that takes π ′j to w0π
′
j .

2.6 Convexity

Let

Q∨
+ =
∑
i �=0

Nα∨i

denote the cone in Q∨ spanned by the simple coroots α∨i , and let L ′++ denote
the set of dominant weights λ′ ∈ L ′, satisfying <λ′, αi> ≥ 0 for i �= 0. As in
§2.4, for each λ′ ∈ L ′ let λ′+ denote the unique dominant weight in the orbit
W0λ

′.
A subset X of L ′ is said to be saturated if for each λ′ ∈ X and each α ∈ R

we have λ′ − rα∨ ∈ X for all integers r between 0 and<λ′, α> (inclusive). In
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other words, the segment [λ′, sαλ′]∩ (λ′ + Q∨) is contained in X . In particular,
sαλ′ ∈ X , so that a saturated set is W0-stable.

The intersection of any family of saturated sets is saturated. In particular,
given any subset of L ′, there is a smallest saturated set containing it.

(2.6.1) Let X be a saturated subset of L ′, and let λ′ ∈ X. If µ′ ∈ L ′++ is such
that λ′ − µ′ ∈ Q∨

+, then µ′ ∈ X.

Proof Let ν ′ = λ′ − µ′ =∑ riα
∨
i . We proceed by induction on r = r (ν ′) =∑

ri . If r = 0, then λ′ = µ′ and there is nothing to prove. Let r ≥ 1, then ν ′ �= 0
and therefore

∑
ri<ν

′, α∨i > = |ν ′|2 > 0. Hence for some i �= 0 we have ri ≥ 1
and<ν ′, αi> ≥ 1. Since<µ′, αi> ≥ 0 it follows that<λ′, αi> ≥ 1 and hence
that λ′1 = λ′ −α∨i ∈ X . Consequently µ′ = λ′1−ν ′1, where ν ′1 = ν ′ −α∨i ∈ Q′

+
and r (ν ′1) = r − 1. By the inductive hypothesis it follows that µ′ ∈ X . �

Let λ′ ∈ L ′++ and let (λ′) denote the smallest saturated subset of L ′ that
contains λ′. Let C(λ′) denote the convex hull in V of the orbit W0λ

′, and let

1(λ′) = C(λ′) ∩ (λ′ + Q∨),

2(λ′) =
⋂
w∈W0

w(λ′ − Q∨
+).

Then we have

(λ′) = 1(λ′) = 2(λ′).(2.6.2)

Proof (a)(λ′) ⊂ 1(λ′). Since λ′ ∈ 1(λ′), it is enough to show that1(λ′)
is saturated. Now both C(λ′) and λ′ + Q∨ are W0-stable, hence 1(λ′) is W0-
stable and therefore contains sαλ′ for eachα ∈ R. By convexity,1(λ′) contains
the interval [λ′, sαλ′] ∩ (λ′ + Q∨), hence is saturated.
(b) 1(λ′) ⊂ 2(λ′). Each set w(λ′ − Q∨

+) is the intersection of λ′ + Q∨ with
a convex set, hence the some is true of 2(λ′). Moreover, 2(λ′) contains the
orbit W0λ

′, since λ′ − wλ′ ∈ Q∨
+ for all w ∈ W0. Hence 2(λ′) contains

1(λ′).
(c) 2(λ′) ⊂ (λ′). If µ′ ∈ 2(λ′), let λ′+ be the dominant element of the
orbit W0µ

′. Then µ′+ ∈ λ′ − Q∨
+, hence µ′+ ∈ (λ′) by (2.6.1). Since (λ′) is

W0-stable, it follows that µ′ ∈ (λ′). Hence 2(λ′) ⊂ (λ′), and the proof is
complete. �

(2.6.3) Let λ′, µ′ ∈ L ′++. Then the following conditions are equivalent:
(a) λ′ − µ′ ∈ Q∨

+; (b) µ′ ∈ (λ′); (c) (µ′) ⊂ (λ′).
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Proof (2.6.1) shows that (a) implies (b), and it is clear that (b) and (c) are
equivalent. Finally, if (µ′) ⊂ (λ′) then µ′ ∈ (λ′) = 2(λ′), hence µ′ ∈
λ′ − Q∨

+, so that (c) implies (a). �

If λ′, µ′ ∈ L ′++ satisfy the equivalent conditions of (2.6.3) we write

λ′ ≥ µ′.(2.6.4)

This is the dominance partial ordering on L ′++.

2.7 The partial order on L′

Recall (§2.4) that for λ′ ∈ L ′ the shortestw ∈ W0 such thatwλ′ = λ′− is denoted
by v(λ′). Also let v̄(λ′) denote the shortest w ∈ W0 such that wλ′+ = λ′. Here
λ′+ is the dominant weight and λ′− = w0λ

′
+ the antidominant weight in the orbit

W0λ
′, and w0 is the longest element of W0. We have

v(λ′)−1 = w0v̄(µ′)w0 = v̄(−λ′), where µ′ = w0λ
′.(2.7.1)

Proof Since λ′ and µ′ are in the same W0-orbit we have µ′+ = λ′+ and µ′− =
λ′−. Hence w0v̄(µ′)w0λ

′
− = w0v̄(µ′)µ′+ = w0µ

′ = λ′, and w0v̄(µ′)w0 is the
shortest element of W0 with this property. It follows thatw0v̄(µ′)w0 = v(λ′)−1.

Next, let ν ′ = −λ′. Then−ν ′+ = λ′−, and again by minimality it follows that
v̄(ν ′) = v(λ′)−1. �

(2.7.2) (i) S(v(λ′)) = {α ∈ R+ : <λ′, α> > 0},
(ii) S(v̄(λ′)−1) = {α ∈ R+ : <λ′, α> < 0}.

Proof (i) is a restatement of (2.4.4), and (ii) follows from (i) and (2.7.1), since
v̄(λ′)−1 = v(−λ′). �

(2.7.3) Let λ′ ∈ L ′. Then v(λ′)v̄(λ′) = v(λ′+).

Proof Since v(λ′) v̄(λ′) sends λ′+ to λ′−, it follows that v(λ′)v̄(λ′) ≥ v(λ′+).
On the other hand, by (2.7.2) we have

l(v(λ′+)) = Card {α ∈ R+ : <λ′+, α> > 0}
= Card {α ∈ R+ : <λ′, α> �= 0}
= l(v(λ′))+ l(v̄(λ′)) ≥ l(v(λ′)v̄(λ′)).

Hence v(λ′)v̄(λ′) = v(λ′+). �
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(2.7.4) Let λ′, µ′ ∈ L ′ be in the same W0-orbit. Then v̄(λ′) ≥ v̄(µ′) if and
only if v(λ′) ≤ v(µ′).

Proof Letw be the longest element of W0 that fixes λ′+, so thatw = w−1, and
v(λ′+) = w0w. From (2.7.3) we have v(λ′)v̄(λ′) = v(µ′)v̄(µ′) = w0w. Since
l(v̄(λ′)w) = l(v̄(λ′))+ l(w), and likewise for µ′, we have

v̄(λ′) ≥ v̄(µ′) ⇐⇒ v̄(λ′)w ≥ v̄(µ′)w

⇐⇒ v(λ′)−1w0 ≥ v(µ′)−1w0

⇐⇒ v(λ′)−1 ≤ v(µ′)−1

⇐⇒ v(λ′) ≤ v(µ′). �

We shall now extend the dominance partial ordering (2.6.4) on L ′++ to a
partial ordering on L ′, as follows: for λ′, µ′ ∈ L ′,

(2.7.5) λ′ ≥ µ′ if and only if either (i) λ′+ > µ′+, or (ii) λ′+ = µ′+ and
v(λ′) ≤ v(µ′) (or equivalently (2.7.4) v̄(λ′) ≥ v̄(µ′)).

Observe that for this ordering, in a given W0-orbit the antidominant weight
is highest.

(2.7.6) Let v,w ∈ W0. If v ≤ w then vλ′ − wλ′ ∈ Q∨
+ for all λ ∈ L ′++.

Proof We may assume that w = vsα where α ∈ R+ and vα ∈ R+. Hence

vλ′ − wλ′ = v(λ′ − sαλ
′) = <λ′, α>vα∨

which is in Q∨
+ because <λ′, α> ≥ 0. �

(2.7.7) Let λ′, µ′ ∈ L ′ lie in the same W0-orbit. If λ′ ≥ µ′ then µ′ −λ′ ∈ Q∨
+.

Proof We have µ′ − λ′ = v̄(µ′)λ′+ − v̄(λ′)λ′+. Hence the result follows from
(2.7.6). �

Remark The converse of (2.7.7) is in general false, if the rank of R is greater
than 2. (For example, if R is of type A3 let λ′ = −ε2 − 2ε3 + 3ε4, µ

′ =
3ε1− 2ε2− ε3, in the notation of (1.3.1). Here λ′+ = µ′+ = 3ε1− ε3− 2ε4 and
µ′ − λ′ = 3ε1 − ε2 + ε3 − 3ε4 = 3α1 + 2α2 + 3α3 ∈ Q∨

+. But v(λ′) = s1s2s1

and v(µ′) = s3s2s1 are incomparable for the Bruhat order.)
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(2.7.8) Let λ′, µ′ lie in the same W0-orbit. Then the following are equivalent:
(a) λ′ ≥ µ′; (b) −µ′ ≥ −λ′; (c) w0µ

′ ≥ w0λ
′.

This follows from (2.7.1). �

(2.7.9) Let λ′ ∈ L ′, α ∈ R+. Then <λ′, α> > 0 if and only if sαλ′ > λ′.

Proof Let µ′ = sαλ′. if <λ′, α> > 0 then α ∈ s(v(λ′)) by (2.7.2), hence
v(λ′)sα < v(λ′) by (2.3.3). Now v(λ′)sα takes µ′ to λ′− = µ′−, hence v(λ′)sα ≥
v(µ′) It follows that u(λ′) > u(µ′), i.e., µ′ > λ′.

If on the other hand<λ′, α> < 0, we have<µ′, α> > 0 and hence λ′ > µ′

by the previous paragraph. Finally, if <λ′, α> = 0 then µ′ = λ′. �

(2.7.10) (i) Let λ′ ∈ L ′, let v(λ′) = si1 · · · si p be a reduced expression, and let
λ′r = sir+1···si p

(λ′), for 0 ≤ r ≤ p. Then

λ′− = λ′0 > λ′1 > · · ·> λ′p = λ′.

(ii) Let v̄(λ′) = s jq · · · s j1 be a reduced expression, and let µ′r = s jr+1 · · ·
s jq (λ′), for 0 ≤ r ≤ q. Then

λ′+ = µ′0 < µ′1 < · · ·< µ′q = λ′.

Proof (i) Let βr = si p · · · sir+1 (αir ) for 1 ≤ r ≤ p, so that s(v(λ′)) =
{β1, . . . , βp} by (2.2.9). Hence <λ′r , αir> = <λ′, βr> > 0 by (2.7.2), and
therefore λ′r−1 = sirλ

′
r > λ

′
r by (2.7.9).

(ii) Let γr = s jq · · · s jr+1 (α jr ) for 1 ≤ r ≤ q , so that s(v̄(λ′)−1) = {γ1, . . . , γq}
by (2.2.9). Hence<µ′r , α jr> = <λ′, γr> < 0 by (2.7.2), and thereforeµ′r−1 =
s jrµ

′
r < µ

′
r by (2.7.9). �

(2.7.11) Let v,w ∈ W and let v(0) = λ′, w(0) = µ′. Then

v ≤ w⇒ u(λ′) ≤ u(µ′) ⇒ λ′ ≤ µ′.

Proof We havew = u(µ′)w′, wherew′ ∈ W0 and l(w) = l(u(u′))+ l(w′), by
(2.4.9). Since v ≤ w, it follows that v = v1v2, where v1 ≤ u(µ′) and v2 ≤ w′,
so that v2 ∈ W0. Hence v1(0) = v(0) = λ′, and so v1 ≥ u(λ′) Consequently
u(λ′) ≤ u(µ′).

We shall next show that v ≤ w implies λ′ ≤ µ′. For this purpose we may
assume that v = wsa where a ∈ S(w), by (2.3.3). Let a = α + rc and let
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w = t(µ′)w′ where w′ ∈ W0. From (2.1.4) we have

wa = β + (r −<µ′, β>)c

where β = w′α, and

λ′ = v(0) = t(µ′)wsa(0) = µ′ − rβ∨.

Since a ∈ S(w) we must have

χ (α) ≤ r < χ(β)+<µ′, β>(1)

from which it follows that <µ′, β> ≥ 0. If <µ′, β> = 0 then r = 0 and
λ′ = µ′. If <µ′, β> > 0 and 0 < r < <µ′, β>, then λ′ lies in the interior
of the line segment [µ′, sβµ′], so that (λ′) is strictly contained in (µ′) and
therefore λ′ < µ′ by (2.6.3). Finally, if r = <µ′, β>, so that λ′ = sβµ′, we
must have χ (β) = 1 by (1) above, hence β ∈ R− and therefore sβµ′ < µ′ by
(2.7.9). Hence λ′ < µ′ in this case also.

Finally, by taking v = u(λ′) and w = u(µ′), it follows that u(λ′) ≤ u(µ′)
implies λ′ ≤ µ′. �

(2.7.12) Let w ∈ W, µ′ ∈ L ′. If w < u(µ′) then w(0) < µ′.

Proof Let w(0) = λ′. Then λ′ ≤ µ′ by (2.7.11), and λ′ �= µ′, hence λ′ < µ′.
�

(2.7.13) Let λ′ ∈ L ′, i ∈ I . Then siλ
′ > λ′ if and only if ai (λ′) > 0.

Proof This follows from (2.7.9) if i �= 0. If i = 0 and a0(λ′) = r > 0 let
µ′ = s0λ

′ = λ′ −a0(λ′)α∨0 = λ′ +rϕ∨, and sϕµ′ = λ′ −ϕ∨, so that λ′ lies in the
interior of the segment [µ′, sϕµ′] and therefore λ′ < µ′. Finally, if a0(λ′) < 0,
interchange λ′ and µ′. �

2.8 The functions rk′, r ′
k

Let S, S′ be as in §1.4 and let k be a W-labelling of S as defined in §1.5, and k ′

the dual labelling of S′. For each λ′ ∈ L ′ let u(λ′) be the shortest element of the
coset t(λ′)W0, as in §2.4, and define

r ′k(λ′) = u(λ′)(−ρ ′k)(2.8.1)

where ρ ′k is given by (1.5.2).
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Dually, if λ ∈ L let u′(λ) ∈ W ′ be the shortest element of the coset t(λ)W0,
and define

rk ′ (λ) = u′(λ)(−ρk ′ ).(2.8.1′)

Then we have

r ′k(λ′) = λ′ + 1

2

∑
α∈R+

η(<λ′, α>)k(α′∨)α′,(2.8.2)

rk ′ (λ) = λ+ 1

2

∑
α∈R+

η(<λ, α′>)k ′(α∨)α,(2.8.2′)

where for x ∈ R

η(x) =
{

1 if x > 0,
−1 if x ≤ 0.

(2.8.3)

Proof Since u(λ′) = t(λ′)v(λ′)−1, we have

r ′k(λ′) = λ′ − v(λ′)−1(ρ ′k)

= λ′ − 1

2

∑
α∈R+

σ (v(λ′)α)k(α′∨)α′

by (1.5.3), and σ (v(λ′)α) = −η(<λ′, α>) by (2.4.4). �

(2.8.4) Let λ′ ∈ L ′.
(i) If u j ∈ � then r ′k(u jλ

′) = u j (r ′k(λ′)).
(ii) If i ∈ I and λ′ �= siλ

′, then si (r ′k(λ′)) = r ′k(siλ
′).

(iii) If i ∈ I and λ′ = siλ
′, then si (r ′k(λ′)) = r ′k(λ′)+ k(α′∨i )α′i .

Proof (i) follows from (2.4.12), and (ii) from (2.4.14) (i).
(iii) From (2.4.14) (iii) we have si u(λ′) = u(λ′)s j and v(λ′)αi = α j for some
j �= 0, so that

si (r
′
k(λ′)) = si u(λ′)(−ρ ′k) = u(λ′)s j (−ρ ′k)

= u(λ′)(−ρ ′k + k(α′∨j )α′j )

= u(λ′)(−ρ ′k)+ k(α′∨j )v(λ′)−1α′j
= r ′k(λ′)+ k(α′∨i )α′i . �

For the rest of this section we shall assume that k(α′∨) ≥ 0 for each α ∈ R.

(2.8.5) The mapping r ′k ; L ′ → V is injective.
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Proof Let λ′, µ′ be such that r ′k(λ′) = r ′k(µ′). We have

v(λ′)(r ′k(λ′)) = v(λ′)u(λ′)(−ρ ′k) = λ′− − ρ ′k
by (2.4.3), where λ′− is the antidominant element of the orbit W0λ

′. Hence (as
the labels are all≥0) λ′−−ρ ′k is the antidominant element of the orbit W0r ′k(λ′).
So if r ′k(λ′) = r ′k(µ′) we must have λ′− − ρ ′k = µ′− − ρ ′k , hence λ′− = µ′− and
v(λ′) = v(µ′), whence λ′ = µ′. �

(2.8.6) Let λ′ ∈ L ′. If siλ
′ = λ′ for some i ∈ I , then si (r ′k(λ′)) �∈ r ′k(L ′).

Proof Suppose that si (r ′k(λ′)) = r ′k(µ′) for some µ′ ∈ L ′. Then as in (2.8.5)
we have

siv(λ′)−1(λ′− − ρ ′k) = v(µ′)−1(µ′− − ρ ′k)

from which we conclude that λ′− = µ′− and siv(λ′)−1 = v(µ′)−1. Consequently
µ′ = v(µ′)−1µ′− = siv(λ′)−1λ′− = siλ

′ = λ′. But si (r ′k(λ′)) �= r ′k(λ′) by (2.8.4)
(iii). �

Notes and references

The extended affine Weyl groups occur in [B1], p. 176, and probably earlier.
The elements u(λ′), v(λ′) were defined by Cherednik in [C2], and the partial
order on L ′ was introduced by Heckman (see [O4], Def. 2.4).



3

The braid group

3.1 Definition of the braid group

We retain the notation of Chapter 2. The braid group B of the extended affine
Weyl group W is the group with generators T (w), w ∈ W , and relations

T (v)T (w) = T (vw) if l(v)+ l(w) = l(vw).(3.1.1)

There is an obvious surjective homomorphism

f : B → W(3.1.2)

such that f (T (w)) = w for each w ∈ W .
We shall write

Ti = T (si ), U j = T (u j )

for i ∈ I and j ∈ J .
Let i, j be distinct elements of I such that si s j has finite order mi j in W .

Then we have

si s j si · · · = s j si s j · · ·
with mi j factors on either side. Since both sides are reduced expressions, it
follows from (3.1.1) that

Ti Tj Ti · · · = Tj Ti Tj · · ·(3.1.3)

with mi j factors on either side.
These relations (3.1.3) are called the braid relations.
Next, let j , k ∈ J . Then u j uk = u j+k (2.5.6), and all three terms have length

zero, so that

U jUk = U j+k .(3.1.4)

37
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Finally, let i ∈ I and j ∈ J . Then u j (ai ) = ai+ j (2.5.7), so that u j si = si+ j u j ,
and therefore U j Ti = Ti+ jU j by (3.1.1), i.e.,

U j TiU
−1
j = Ti+ j .(3.1.5)

(3.1.6) The braid group B is generated by the Ti (i∈I ) and the U j ( j∈J )
subject to the relations (3.1.3), (3.1.4), (3.1.5).

Proof Eachw ∈W may be written in the formw = u j si1 · · · si p , where i1, . . . ,

i p ∈ I, j ∈ J and p = l(w). It follows from (3.1.1) that T (w) = U j Ti1 · · · Ti p ,
and hence that the Ti and the U j generate B.

Now let B′ be a group with generators Ti (i ∈ I ) and U j ( j∈J ) and relations
(3.1.3), (3.1.4), (3.1.5). For w as above, define

T ′(w) = U j Ti1 · · · Ti p .

The braid relations (3.1.3) guarantee that this definition is unambiguous. Next,
if w′ = uks j1 · · · s jq is a reduced expression (so that q = l(w′)) we have

T ′(w′) = Uk Tj1 · · · Tjq

and

ww′ = u j si1 · · · si p uks j1 · · · s jq

= u j+ksi1−k · · · si p−ks j1 · · · s jq .

If now l(w)+ l(w′) = l(ww′), we have

T ′(ww′) = U j+k Ti1−k · · · Ti p−k Tj1 · · · Tjq

which is equal to T ′(w)T ′(w′) by use of the relations (3.1.4) and (3.1.5). It
follows that the relations (3.1.1) are consequences of (3.1.3)–(3.1.5), and hence
B′ is isomorphic to B. �

(3.1.7) Let w ∈ W, i ∈ I. Then

T (wsi ) = T (w)T σ (wai )
i ,

T (siw) = T σ (w−1ai )
i T (w)

where (2.2.7) σ (a) = +1 or −1 according as a ∈ S+ or a ∈ S−.

Proof This follows from (2.2.8). �
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(3.1.8) Let w ∈ W and i, j ∈ I . If wsi = s jw then T (w)Ti = Tj T (w).

Proof We have swai = wsiw
−1 = s j , hence wai = εa j where ε = ±1.

Hence, from (3.1.7),

T (w)T εi = T (wsi ) = T (s jw) = T εj T (w)

and therefore T (w)Ti = Tj T (w). �

(3.1.9) Let u, v ∈ W and let u−1v = u j si1 · · · si p be a reduced expression
(so that l(u−1v) = p). Let br = u j si1 · · · sir−1 (air ) for 1 ≤ r ≤ p. Then

T (u)−1T (v) = U j T
ε1

i1
· · · T εp

i p

where εr = σ (ubr ) (1 ≤ r ≤ p).

Proof This is by induction on p. If p = 0 we have v = uu j and therefore
T (v) = T (u)U j by (2.2.5). If p ≥ 1 we have

u−1vsi p = u j si1 · · · si p−1

and hence by the inductive hypothesis

T (u)−1T (vsi p ) = U j T
ε1

i1
· · · T εp−1

i p−1

with ε1, . . . , εp−1 as above. Since

vai p = uu j si1 · · · si p (ai p ) = −ubp,

it follows from (3.1.7) that T (vsi p ) = T (v)T
−ε p

i p
. Hence

T (u)−1T (v) = U j T
ε1

i1
· · · T εp

i p
. �

3.2 The elements Yλ′

Let λ′ ∈ L ′. If λ′ is dominant we define

Y λ
′ = T (t(λ′)).(3.2.1)

If λ′ and µ′ are both dominant, we have l(t(λ′ + µ′)) = l(t(λ′)) + l(t(µ′)) by
(2.4.2), and hence

Y λ
′+µ′ = Y λ

′
Yµ

′ = Yµ
′
Y λ

′
.(3.2.2)
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Now let λ′ be any element of L ′. We can write λ′ = µ′ −ν ′, whereµ′, ν ′ ∈ L ′

are dominant, and we define

Y λ
′ = Yµ

′
(Y ν

′
)−1.(3.2.3)

This definition is unambiguous, because if also λ′ = µ′1 − ν ′1 with µ′1, ν ′1
dominant, we have µ′ + ν ′1 = µ′1 + ν ′ and therefore Y ν

′
1 Yµ

′ = Yµ
′
1 Y ν

′
by

(3.2.2). The relation (3.2.2) now holds for all λ′, µ′ ∈ L ′, and the set

Y L ′ = {Y λ′ : λ′ ∈ L ′}

is a commutative subgroup of B, isormorphic to L ′. For the homomorphism
f : B → W (3.1.2) maps Y L ′ onto t(L ′).

(3.2.4) Let λ′ ∈ L ′ and i ∈ I0 be such that <λ′, αi> = 0 or 1. Then

T εi Y siλ
′
Ti = Y λ

′

where

ε =
{
+1 if <λ′, αi> = 1,

−1 if <λ′, αi> = 0.

When <λ′, αi> = 0, so that siλ
′ = λ′, (3.2.4) says that

Ti Y
λ′ = Y λ

′
Ti .(3.2.5)

When <λ′, αi> = 1 we have siλ
′ = λ′ − α∨i , and (3.2.4) takes the form

Ti Y
λ′−α∨i Ti = Y λ

′
.(3.2.6)

Proof We begin with (3.2.5). We may write λ′ = µ′ − ν ′ with µ′, ν ′ both
dominant and <µ′, αi> = <ν ′, αi> = 0. Then si commutes with t(µ′)
and t(ν ′), hence by (3.1.8) Ti commutes with both Yµ

′
and Y ν

′
, hence also

with Y λ
′
.

Next, to prove (3.2.6), suppose first that λ′ is dominant. Thenµ′ = λ′+siλ
′ is

also dominant, and<µ′, αi> = 0. Let w = t(λ′)si t(λ′) = si t(µ′). If l(t(λ′)) =
p we have

l(t(µ′)) = 2p − 2, l(w) = 2p − 1, l(t(λ′)si ) = p − 1,

by use of the length formula (2.4.1). Hence

Ti Y
siλ

′+λ′ = Ti Y
µ′ = T (w) = T (t(λ′)si )T (t(λ′)) = Y λ

′
T−1

i Y λ
′
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which gives (3.2.6) for λ′ dominant. If now λ′ is not dominant, let ν ′ = λ′ −π ′i ,
so that <ν ′, αi> = 0. Then we have

Y λ
′ = Y π

′
i Y ν

′ = Ti Y
siπ

′
i Ti Y

ν ′ = Ti Y
siπ

′
i+ν ′Ti = Ti Y

siλ
′
Ti ,

since Ti commutes with Y ν
′
by (3.2.5). �

(3.2.7) Remark If (3.2.6) is not vacuous, that is to say if there exists λ′ ∈
L ′ such that <λ′, αi> = 1, then (3.2.5) is a consequence of (3.2.6). (For if
<µ′, αi> = 0 then <λ′ + µ′, αi> = 1, and hence

Ti Y
λ′+µ′−α∨i Ti = Y λ

′+µ′ = Ti Y
λ′−α∨i Ti Y

µ′

giving Yµ
′
Ti = Ti Yµ

′
.)

However, there is one case in which (3.2.6) is vacuous, namely (2.1.6) when
R is of type Cn , L ′ = Q∨ and αi is the long simple root of R. In that case
<λ′, αi> is an even integer for all λ′ ∈ L ′.

As in Chapter 2, let ϕ be the highest root of R and recall (2.5.2) that u j =
t(π ′j )v

−1
j for j ∈ J . We have then

T0 = Y ϕ
∨
T (sϕ)−1,(3.2.8)

U j = Y ′j T (v j )
−1(3.2.9)

for j ∈ J , where Y ′j = Y π
′
j . (In particular, U0 = 1.)

Proof We have s0sϕ = t(ϕ∨), and sϕ(a0) = ϕ + c ∈ S+, so that by (3.1.7)
Y ϕ

∨ = T0T (sϕ), which gives (3.2.8).
Next, t(π ′j ) = u jv j and l(u j ) = 0, so that Y ′j = U j T (v j ), giving (3.2.9). �

(3.2.10) Let λ′ ∈ L ′ and let u(λ′) = u j si1 · · · siq be a reduced expression. Then

Y λ
′ = U j T

ε1
i1
· · · T εq

iq
T (v(λ′))

where each exponent εr is ±1.

Proof Let λ′ = µ′ − ν ′ with µ′, ν ′ ∈ L ′ both dominant, and let v(λ′) =
siq+1 · · · si p be a reduced expression. Take u = t(ν ′) and v = t(µ′) in (3.1.9):
we have

u−1v = t(λ′) = u(λ′)v(λ′) = u j si1 · · · si p
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which is a reduced expression, since l(u(λ′)) + l(v(λ′)) = l(t(λ′)) by (2.4.5).
Hence by (3.1.9)

Y λ
′ = T (u)−1T (v) = U j T

ε1
i1
· · · T εp

i p

where εr = σ (t(ν ′)br ) and br = u j si1 · · · sir−1 (air ). We have to show that
εr = +1 for each r > q , i.e. that t(ν ′)br ∈ S+.

If r > q then ir �= 0, hence air = αir and therefore

br = u(λ′)siq+1 · · · sir−1 (αir )

= t(λ′)si p · · · sir (αir ) = −t(λ′)βr ,

where βr = si p · · · sir+1 (αir ) ∈ S(v(λ′)) by (2.2.9), so that <λ′, βr> > 0 by
(2.4.4). Hence

t(µ′)br = −t(λ′ + ν ′)βr = −t(µ′)βr

= −βr +<µ′, βr>c

and <µ′, βr> = <λ′, βr> + <ν ′, βr> ≥ 1, since βr ∈ R+ and ν ′ ∈ L ′ is
dominant. Hence t(ν ′)br ∈ S+, as required. �

3.3 Another presentation of B

Let B0 be the subgroup of B generated by the Ti , i �= 0. In this section we shall
show that

(3.3.1) B is generated by B0 and Y L ′ , subject to the relations (3.2.4).

It follows from (3.1.6), (3.2.8) and (3.2.9) that B is generated by B0 and Y L ′ .
Let B′ denote the group generated by B0 and Y L ′ subject to the relations (3.2.4).
In B′ we define elements T0, U j ( j∈J ) by means of (3.2.8) and (3.2.9). We
have then to show that with these definitions the relations (3.1.3)–(3.1.5) hold
in B′. We remark that (3.1.7)–(3.1.9), restricted to elements of W0, hold in B′

(because they hold in B0).

(3.3.2) Let λ′ ∈ L ′ and w ∈ W0 be such that <λ′, α> = 0 or 1 for all
α ∈ S(w−1). Then in B′ we have

T (v(λ′)w)−1T (v(λ′))Y−λ
′
T (w) = Y−w

−1λ′ .

Proof We shall apply (3.1.9) with u = v(λ′)w and v = v(λ′), so that w =
v−1u = si p · · · si1 and therefore T (w) = Ti p · · · Ti1 . In this way we obtain

T (v(λ′)w)−1T (v(λ′))Y−λ
′
T (w) = T ε1

i1
· · · T εp

i p
Y−λ

′
Ti p · · · Ti1(1)
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where, in the notation of (3.1.9), εr = σ (ubr ) and

ubr = v(λ′)wsi1 · · · sir−1 (αir ) = v(λ′)si p · · · sir (αir )

= −v(λ′)γr ,

where γr = si p · · · sir+1 (αir ), so that {γ1, . . . , γp} = S(w−1) by (2.2.9). If
<λ′, γr> = 1 then γr ∈ S(v(λ′)) by (2.4.4) and hence εr = 1. If on the
other hand <λ′, γr> = 0 then γr /∈ S(v(λ′)) and so εr = −1.

Now let λ′r = sir+1 · · · si p (λ′) for 0 ≤ r ≤ p, so that λ′p = λ′ and λ′0 = w−1λ′.
To complete the proof it is enough to show that T εr

ir
Y−λ

′
r Tir = Y−λ

′
r−1 for

1 ≤ r ≤ p; now this follows from (3.2.4), since λ′r−1 = sirλ
′
r and<λ′r , αir> =

<λ′, γr> = 1 or 0 according as εr = +1 or −1. �

We shall apply (3.3.2) when λ′ = π ′j ( j∈J ) and when λ′ = ϕ∨. We have
<π ′j , α> = 0 or 1 for all α ∈ R+, and<ϕ∨, α> = 0 or 1 for all α ∈ R+ except
α = ϕ. When λ′ = π ′j , we have v(λ′) = v j (2.5.2) and when λ′ = ϕ∨, v(λ′) =
sϕ by (2.4.11). Hence (3.3.2) gives

U j = T (w)Yw
−1π ′j T (v jw)−1(3.3.3)

for all w ∈ W0, and

T0 = T (w)Yw
−1ϕ∨T (sϕw)−1(3.3.4)

for all w ∈ W0 such that w−1ϕ ∈ R+. In particular,

T0 = T (w)Y α
∨
i T−1

i T (w)−1(3.3.5)

if w ∈ W0 is such that ϕ = wαi , i �= 0.

In (3.3.4) let v = sϕw, so that v−1ϕ = −w−1ϕ ∈ R−. We have then

T0 = T (sϕv)Y−v
−1ϕ∨T (v)−1

and therefore, for all w ∈ W0,

T ε0 = T (w)Yw
−1ϕ∨T (sϕw)−1(3.3.6)

where ε = σ (w−1ϕ).
In particular, let w = v j ( j∈J ). Then w−1ϕ = −v−1

j α0 = −α j by (2.5.8),

so that T (sϕw) = T (ws j ) = T (w)T−1
j by (3.1.7), and therefore

T0 = T (v j )T
−1
j Y α

∨
j T (v j )

−1.(3.3.7)

We shall now show that the relations (3.1.3)–(3.1.5) hold in B′.
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Proof of (3.1.3). We need only consider the braid relations that involve T0,
which are

(a) T0Ti = Ti T0 if <ϕ∨, αi> = 0,
(b) T0Ti T0 = Ti T0Ti if <ϕ∨, αi> = <ϕ, α∨i > = 1,
(c) T0Ti T0Ti = Ti T0Ti T0 if <ϕ∨, αi> = 1, <ϕ, α∨i > = 2.

(The list in §1.3 shows that <ϕ, α∨i > = 3 does not occur.)

(a) If <ϕ∨, αi> = 0 then Ti commutes with Y ϕ
∨

by (3.2.5) and with T (sϕ) by
(3.1.8), hence with T0.

(b) If<ϕ∨, αi> = <ϕ, α∨i > = 1, then sϕ(αi ) = αi−ϕ ∈ R−, hence by (3.1.7)

T (si sϕ) = T−1
i T (sϕ) = T−1

i T−1
0 Y ϕ

∨
.(1)

Let w = si sϕsi = w−1. Since si sϕ(αi ) = −ϕ ∈ R−, we have T (w) =
T (si sϕ)T−1

i = T−1
i T−1

0 Y ϕ
∨
T−1

i , and hence by (3.2.6)

T (w) = T−1
i T−1

0 Ti Y
siϕ

∨
.(2)

Next, since wαi = ϕ, (3.3.4) gives

T (w) = T0T (sϕw)Y−wϕ
∨
.(3)

Since sϕw = si sϕ , it follows from (1) and (3) that

T (w) = T0T−1
i T−1

0 Y ϕ
∨−α∨i .(4)

Comparison of (2) and (4) now shows that T−1
i T−1

0 Ti = T0T−1
i T−1

0 , hence that
T0Ti T0 = Ti T0Ti .

(c) Now suppose that<ϕ∨, αi> = 1 and<ϕ, α∨i > = 2. The relations (1)–(3)
above still hold, since now si sϕ(αi ) = αi − ϕ ∈ R−, and w−1ϕ = ϕ ∈ R+. Let
v = sϕw = (sϕsi )2 = (si sϕ)2. From (2) and (3) we have

T (v) = T−1
0 T−1

i T−1
0 Ti Y

ϕ∨+siϕ
∨
.(5)

We need one more relation, which we obtain by takingw = si sϕ in (3.3.4): this
is legitimate, since (si sϕ)−1ϕ = siϕ ∈ R+. We obtain

T (sϕsi sϕ) = T−1
0 T (si sϕ)Y siϕ

∨
.(6)

Now vαi = −αi and therefore T (sϕsi sϕ) = T (siv) = T−1
i T (v), so that (1) and

(6) give

T (v) = Ti T
−1

0 T−1
i T−1

0 Y ϕ
∨+siϕ

∨.(7)

Comparison of (5) and (7) now shows that T0Ti T0Ti = Ti T0Ti T0. �
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Proof of (3.1.4). Let j, k ∈ J . We may assume that j �= 0 and k �= 0, since
U0 = 1. Take w = vk in (3.3.3); since v jvk = v j+k and v−1

k π
′
j = π ′j+k −π ′k by

(2.5.9) and (2.5.10), we obtain

U j = T (vk)Y ′−1
k Y ′j+k T (v j+k)−1 = U−1

k U j+k

and hence UkU j = U j+k . �

Proof of (3.1.5). We have to show that U j TiU
−1
j = Ti+ j for i ∈ I and j ∈ J .

As before, we may assume that j �= 0.
(a) Suppose that i �= 0 and i + j �= 0. Then v−1

j αi = αi+ j (2.5.8) and
<π ′j , αi+ j> = 0, hence by (3.1.8) and (3.2.5)

U j TiU
−1
j = Y ′j T (v j )

−1Ti T (v j )Y
−1
j = Y ′j Ti+ j Y

′−1
j = Ti+ j .

(b) Suppose now that i = 0. By (3.3.7) we have

T0 = T (v j )T
−1
j Y α

∨
j T (v j )

−1 = U−1
j Y ′j T

−1
j Y α

∨
j −π ′j U j

= U−1
j TjU j

by (3.2.6), since <π ′j , α j> = 1. The proof of (3.3.1) is now complete. �

3.4 The double braid group

We have seen in the previous section that the braid group B is generated by its
subgroups B0 and Y L ′ , subject to the relations (3.2.4). We shall now iterate this
construction. For this purpose, let R′, L , and� = L⊕Zc0 be as defined in §1.4,
and for each α ∈ R let α′(= α or α∨) be the corresponding element of R′. Let

X� = {X f : f ∈ �}
be a multiplicative group isomorphic to�, so that X f X g = X f+g and (X f )−1 =
X− f for f, g ∈ �.

The double braid group B̃ is the group generated by B and X� subject to
the relations

Ti X f T εi = Xsi f

for all i ∈ I and f ∈ � such that < f, α′i> = 1 or 0, where ε = +1 or −1
according as < f, α′i> = 1 or 0 ; and

U j X f U−1
j = Xu j f

for all j ∈ J and f ∈ �. (As in §1.4, the elements of � are regarded as affine-
linear functions on V .)
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Let q0 = Xc0 and let q = Xc = qe
0 , where e is given by (1.4.5). The relations

above show that q0 commutes with each Ti and each U j , and hence that q0 is
central in B̃. Also let

X L = {Xλ: λ ∈ L}.
Then B̃ is generated by the groups B0, X L , Y L ′ and a central element q0, subject
to the following relations (3.4.1)–(3.4.5):

T εi Y−λ
′
Ti = Y−siλ

′
(3.4.1)

for i ∈ I, i �= 0 and λ′ ∈ L ′ such that either <λ′, αi> = 1 and ε = 1, or
<λ′, αi> = 0 and ε = −1;

Ti XλT εi = Xsiλ(3.4.2)

for i ∈ I, i �= 0 and λ ∈ L such that either <λ, α′i> = 1 and ε = 1, or
<λ, α′i> = 0 and ε = −1;

T0 XλT0 = q−1 Xsϕλ(3.4.3)

where λ ∈ L is such that <λ, ϕ′> = −1;

T0 Xλ = XλT0(3.4.4)

where λ ∈ L is such that <λ, ϕ′> = 0;

U j XλU−1
j = q−<λ,v jπ

′
j>Xv

−1
j λ(3.4.5)

for λ ∈ L and j ∈ J .
Here T0 and U j are defined by

T0 = Y ϕ
∨
T (sϕ)−1,(3.4.6)

U j = Y ′j T (v j )
−1,(3.4.7)

where Y ′j = Y π
′
j .

If J = {0}, the relations (3.4.5) are absent. If J �= {0}, the relations (3.4.3)
and (3.4.4) are consequences of (3.4.2) and (3.4.5). For if j ∈ J and j �= 0, we
have T0 = U−1

j TjU j by (3.1.5), and therefore (3.4.3) and (3.4.4) come from

(3.4.2) by conjugating with U−1
j and using (3.4.5).

We observe next that (3.4.2) is obtained from (3.4.1) by replacing Y λ
′

by
X−λ and reversing the order of multiplication. It follows that the results of
§3.3, being consequences of (3.4.1) and the braid relations not involving T0,



3.5 Duality 47

have their counterparts, involving B0 and the Xλ, in B̃. Thus, corresponding to
(3.3.2) and (3.3.5) we have respectively

(3.4.8) Let λ ∈ L and (as in §2.4) let v(λ) be the shortest element in W0 such
that v(λ)λ is antidominant. Let w ∈ W0 be such that <λ, α′> = 0 or 1 for all
α ∈ S(w). Then

XwλT (wv(λ)−1)T (v(λ)−1)−1 X−λ = T (w).

(3.4.9) Let ψ ′ be the highest root of R′. If w ∈ W0 is such that ψ ′ = w−1α′i ,
where i �= 0, then

T (sψ )−1 X−ψ
′∨ = T (w)T−1

i X−ai T (w)−1.

Let πi (i∈I, i �= 0) be the fundamental coweights for R′, defined by
<πi , α

′
j> = δi j . Also define π0 = 0. Let m ′

i (i∈I ) be the integers attached to
the nodes of the Dynkin diagram of S(R′), as in §1.3. As in §2.5, define a subset
J ′ of I by

(3.4.10) k ∈ J ′ if and only if πk ∈ L and m ′
k = 1.

Let Xk = Xπk for k ∈ J ′, and recall that Y ′j = Y π
′
j for j ∈ J . Then we have

the commutator formula

X−1
k Y ′−1

j XkY ′j = qr T
(
w−1

k

)
T
(
v jw

−1
k

)−1
T (v j )(3.4.11)

where v j = v(π ′j ), wk = v(πk), and r = <π ′j , πk>.

Proof We have

Y ′−1
j XkY ′j = T (v j )

−1U−1
j XkU j T (v j )

= qr T (v j )
−1 Xv jπk T (v j ) by (3.4.5)

= qr Xk T
(
w−1

k

)
T
(
v jw

−1
k

)−1
T (v j )

by (3.4.8) with w = v j and λ = πk . �

3.5 Duality

Let B̃′ be the group obtained from B̃ by interchanging L and L ′.

(3.5.1) There is an anti-isomorphism ω of B̃′ onto B̃ in which Xλ
′
(λ′∈L ′),

Y λ (λ∈L), Ti (i �= 0) and q0 are mapped respectively to Y−λ
′
, X−λ, Ti and q0.
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Let ψ ∈ R be such that ψ ′ is the highest root of R′. Thus ψ = ϕ if R′ = R,
and ψ is the highest short root of R if R′ = R∨ �= R. In B̃′, T0 is replaced by

Yψ
′∨

T (sψ )−1

and U j ( j ∈ J ) by

Y πk T (wk)−1

where k ∈ J ′ and wk = v(πk). The images of these elements under ω are
respectively

T ∗0 = T (sψ )−1 X−ψ
′∨
,(3.5.2)

Vk = T
(
w−1

k

)−1
X−1

k .(3.5.3)

Hence to prove (3.5.1) we have to show that in B̃ we have

T ∗0 Y λ
′
T ∗0 = q−1Y sψλ′(3.5.4)

for λ′ ∈ L ′ such that <λ′, ψ> = 1;

T ∗0 Y λ
′ = Y λ

′
T ∗0(3.5.5)

for λ′ ∈ L ′ such that <λ′, ψ> = 0 ; and

VkY λ
′
V−1

k = q−<λ
′,πk>Ywkλ

′
(3.5.6)

for λ′ ∈ L ′ and k ∈ J ′.

We remark that, as in the proof of (3.3.1), the defining relations (3.4.2) imply
that T ∗0 satisfies the appropriate braid relations (for the affine Weyl group of
type R′) and that

Vj Vk = Vj+k(3.5.7)

for j, k ∈ J ′, and

V−1
k Ti Vk =

{
Ti+k if i + k �= 0,

T ∗0 if i + k = 0
(3.5.8)

for i ∈ I, i �= 0 and k ∈ J ′.
Finally, it follows from the commutator formula (3.4.11) that

VkY ′−1
j V−1

k = qr Y−wkπ
′
j(3.5.9)
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for j ∈ J and k ∈ J ′, where r = <π ′j , πk>, i.e. that (3.5.6) is true for λ′ =
−π ′j . For

VkY ′−1
j V−1

k = T
(
w−1

k

)−1
X−1

k Y ′−1
j Xk T

(
w−1

k

)
= qr T

(
v jw

−1
k

)−1
T (v j )Y

′−1
j T
(
w−1

k

)
= qr Y−wkπ

′
j

by (3.3.2) with λ′ = π ′j and w = w−1
k . �

In §3.6 we shall prove (3.5.1) in the case R′ = R, and in §3.7 in the case
R′ �= R.

3.6 The case R′ = R

In this section we shall assume that R′ = R, so that ψ = ϕ. Then either
L = L ′ = P∨ (1.4.2) or L = L ′ = Q∨ and R is of type Cn (1.4.3).

(a) Proof of (3.5.4) and (3.5.5)

When J ′ �= {0}, (3.5.4) and (3.5.5) are consequences of (3.5.6) and the defining
relations (3.4.1), since T ∗0 can be conjugated into Tk , where k ∈ J ′ and k �= 0,
by use of (3.5.8). Hence we may assume that J = J ′ = {0}, so that R = R′ is
of type E8, F4,G2 or Cn . Assume for the present that R is not of type Cn and
(as in §1.4) that |ϕ|2 = 2, so that

T ∗0 = T (sϕ)−1 X−ϕ = Y−ϕT0 X−ϕ.

The Dynkin diagrams in §1.3 show that in each case there is a unique long
simple root α1 such that<ϕ, α1> �= 0 and<ϕ, αi> = 0 for all i �= 0, 1. Hence
it is enough to show that

T ∗0 Y α1 T ∗0 = q−1Y α1−ϕ,(3.6.1)

T ∗0 Y α
∨
i = Y α

∨
i T ∗0(3.6.2)

for all i �= 0, 1.

Proof of (3.6.1). From (3.4.1) and (3.4.2) we have

T1 XϕT1 = Xϕ−α1 ,(a)

T0 X−α1 T0 = q−1 Xϕ−α1 ,(b)

T1Y−ϕT1 = Y−ϕ+α1 .(c)
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Hence

T ∗0 Y α1 T ∗0 = T ∗0 Y α1−ϕT0 X−ϕ

= T ∗0 T1Y−ϕT1T0 X−ϕ

= T ∗0 T1T ∗0 XϕT−1
0 T1T0 X−ϕ

= T1T ∗0 T1 XϕT1T0T−1
1 Xϕ

by use of (c) and the braid relations. This last expression is equal to q−1Y α1−ϕ

by successive application of (a), (b), (a), and (c). �

Proof of (3.6.2). Let D be the Dynkin diagram of S = S(R), with vertex set I .
Since D is a tree in the cases (E8, F4,G2) under consideration, there is a unique
path in D from 0 to any other vertex i . We proceed by induction on the length
d of this path. The induction starts at d = 2, where we have <ϕ, αi> = 0,
<ϕ, α1> = 1 and <α1, αi> = −1. It follows that T ∗0 and Ti commute, and
therefore

Ti T
∗

0 Y α1 T ∗0 Ti = T ∗0 Ti Y
α1 Ti T

∗
0 .

By evaluating either side by use of (3.6.1) and (3.4.1), we see that T ∗0 commutes
with Y α

∨
i .

Now let d > 2 and let j ∈ I be the first vertex encountered on the path from
i to 0 in D. We have <αi , α

∨
j > = −1, since either αi and α j are roots of the

same length, or αi is short and α j is long. Hence by (3.4.2) we have

Ti Y
α∨i Ti = Y α

∨
i +α∨j .(1)

Since T ∗0 commutes with Y α
∨

j by the inductive hypothesis, and with Ti by the

braid relations, it follows from (1) that T ∗0 commutes with Y α
∨
i .

There remains the case where R = R′ is of type Cn , and L = L ′ = Q∨. In
this case the relations (3.5.4) are absent. In the notation of (1.3.4), we have to
show that T ∗0 commutes with Y εi for 2 ≤ i ≤ n. From (3.4.1) we have

Y εi+1 = T−1
i Y εi T−1

i (1 ≤ i ≤ n − 1).(1)

Now

t(ε1) = s0s1 · · · sn · · · s2s1

is a reduced expression, so that

Y ε1 = T0T1 · · · Tn · · · T2T1.(2)



3.6 The case R′ = R 51

From (1) and (2) we have

Y εi = T−1
i−1 · · · T−1

1 T0T1 · · · Tn · · · Ti+1Ti .

Since T ∗0 commutes with T2, T3, . . . , Tn , it is enough to show that T ∗0 commutes
with T−1

1 T0T1, or equivalently that T0 commutes with T1T ∗0 T−1
1 . But T ∗0 =

Y−ε1 T0 X−ε1 , hence(
T1T ∗0 T−1

1

)−1 = T1 X ε1 T−1
0 Y ε1 T−1

1

= T1 X ε1 T1T2 · · · Tn · · · T3T2

= X ε2 T2T3 · · · Tn · · · T3T2

by (2) above and (3.4.2). Since X ε2 , T2, T3, . . . , Tn all commute with T0, so also
does T1T ∗0 T−1

1 . �

(b) Proof of (3.5.6)

Since L is generated by the π j ( j∈J ) and the coroots α∨i (i∈I, i �= 0), it is
enough by (3.5.9) to show that

VkY α
∨
i V−1

k = q−<πk ,α
∨
i >Y vkα

∨
i(3.6.3)

Suppose first that i = k. By (3.3.7) we have

Y α
∨
k = Tk T (vk)−1T0T (vk)

and

Vk = V−1
−k = X−k T (vk).

Since Vk Tk V−1
k = T ∗0 by (3.5.8), it follows that

VkY α
∨
k V−1

k = T ∗0 X−k T0 X−1
−k = q−1T ∗0 XϕT−1T0 by (3.4.3)

= q−1Y−ϕ

which proves (3.6.3) in this case, since vkα
∨
k = α0 = −ϕ.

Now suppose that i �= 0, k. As in the proof of (3.6.2) we proceed by induction
on the length of a shortest path from i to 0 in the Dynkin diagram D of S(R).
Let j be the first vertex encountered on this path. We have <αi , α

∨
j > = −1

(the only exception to this statement is when R is of type Cn and αi is the long
simple root; but in that case i = k, which is excluded). By (3.5.8) we have

Vk Ti Y
α∨j Ti V

−1
k = Ti−k VkY α

∨
j V−1

k Ti−k .

On evaluating either side by use of (3.4.1) and the inductive hypothesis, we
obtain (3.6.3). �
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3.7 The case R′ �= R

In this section R′ = R∨ �= R, so that R has two root lengths, and is of one
of the types Bn,Cn, F4,G2. As in §1.4 we shall assume that L (resp L ′) is the
lattice of weights of R (resp. R∨). As before, it is enough to verify (3.5.4) and
(3.5.5) when J ′ = {0} (i.e., when R is of type F4 or G2) and (3.5.6) when R is
of type Bn or Cn .

Let ϕ be the highest root and ψ the highest short root of R. We have
<ψ, α∨> = 0 or 1 for all α ∈ R+ except α = ψ , so that <ψ, ϕ∨> = 0 or 1.
Moreover,

ϕ∨ =
∑

m ′
iα
∨
i

where each m ′
i is a positive integer (they are the labels for the affine root system

S(R)∨), and hence

<ψ, ϕ∨> =
∑

m ′
i<ψ, α

∨
i > > 0.

It follows that <ψ, ϕ∨> = 1, and hence that sϕψ and sψϕ are negative roots.

T ∗0 Y ϕ
∨
T ∗0 = q−1Y ϕ

∨−ψ∨(3.7.1)

(i.e., (3.5.4) is true for λ = ϕ∨).

Proof In our present situation we have

T ∗0 = T (sψ )−1 X−ψ.

From (3.3.6) with w = sψ we obtain

T0 = T (sϕsψ )Yψ
∨−ϕ∨T (sψ )−1,

and from (3.4.8) with w = sϕsψ and µ = ψ we have

T ∗0 = T (sϕ)−1 Xψ−ϕT (sϕsψ ).

Hence

Y ϕ
∨
T ∗0 = Y ϕ

∨
T (sϕ)−1 Xψ−ϕT (sϕsψ )

= T0 Xψ−ϕT0T (sψ )Y ϕ
∨−ψ∨

= q−1 XψT (sψ )Y ϕ
∨−ψ∨

by (3.4.3), and therefore

T ∗0 Y ϕ
∨
T ∗0 = q−1Y ϕ

∨−ψ∨ . �
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(a) Proof of (3.5.4) and (3.5.5)

Let L ′ψ = {λ′ ∈ L ′ :< λ′, ψ> = 0}. In view of (3.7.1) it is enough to prove

that T ∗0 commutes with Y λ
′
for λ′ ∈ L ′ψ .

(i) When R is of type G2, L ′ψ is generated by α∨1 = 2ϕ∨ −ψ∨ (1.3.13). From
(3.7.1) we have

T ∗0 Y ϕ
∨
T ∗0 Yψ

∨−ϕ∨ = q−1 = T ∗0 Yψ
∨−ϕ∨T ∗0 Y ϕ

∨
.

Hence T ∗0 commutes with Y 2ϕ∨−ψ∨ .
(ii) When R is of type F4, L ′ψ is generated by α∨1 , α

∨
2 and α∨3 , in the notation

of (1.3.11). Since by (3.4.1)

T2Y α
∨
1 T2 = Y α

∨
1 +α∨2 , T3Y α

∨
2 T3 = Y α

∨
2 +α∨3

and since T ∗0 commutes with T2 and T3, it is enough to verify that T ∗0 commutes
with Y α

∨
1 . Let

λ = ϕ∨ = ε1 + ε2, µ = ϕ∨ − ψ∨ = −ε1 + ε2, ν = s4µ = −ε3 − ε4

in the notation of (1.3.11) Then by (3.7.1) we have

T ∗0 Y λT ∗0 = q−1Yµ, T4YµT4 = Y ν

and therefore

T ∗0 Y ν = qT ∗0 T4T ∗0 Y λT ∗0 T4 = qT4T ∗0 T4Y λT ∗0 T4

= qT4T ∗0 Y λT ∗0 T4T ∗0 = Y νT ∗0

by use of the braid relations and the fact that T4 commutes with Y λ. Hence T ∗0
commutes with Y ν . Finally, we have

T1Y νT1 = Y ν−α
∨
1 ,

and since T ∗0 commutes with Y ν and T1, it follows that T ∗0 commutes with Y α
∨
1 .
�

(b) Proof of (3.5.6)

As remarked above, we need only consider the cases where R is of type Bn or
Cn (n ≥ 2).
(i) When R is of type Bn we have J ′ = {0, n} in the notation of the list in §1.3,
and it is enough to verify (3.5.6) when λ = −εi (1 ≤ i ≤ n), i.e. that

VnY−εi V−1
n = q1/2Y εn+1−i (1 ≤ i ≤ n).(3.7.2)
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When i = 1, this follows from (3.5.9), since π1 = ε1. Using Ti Y−εi Ti =
Y−εi+1 (1 ≤ i ≤ n − 1), (3.7.2) now follows by induction on i .
(ii) When R is of type Cn we have J ′ = {0, 1} in the notation of §1.3. In view
of (3.5.9), it is enough to show that

V1Y ε1 V−1
1 = q−1Y ε1 ,(3.7.3)

V1Y εi V−1
1 = Y εi (2 ≤ i ≤ n).(3.7.4)

We have ϕ∨ = ε1, hence

T0 X−ε1 = Y ε1 T (sϕ)−1 X−ε1 = Y ε1 V−1
1 = Y ε1 V1

Hence

(Y ε1 V1)2 = (T0 X−ε1 )2 = q−1

which proves (3.7.3). Finally, from (3.7.1) we have

T ∗0 Y ε1 T ∗0 = q−1Y−ε2 ,

and since V1T ∗0 V−1
1 = T1, it follows from (3.7.3) that

V1Y−ε2 V−1
1 = T1Y−ε1 T1 = Y−ε2 .

(3.7.4) now follows by induction on i , since Ti Y−εi Ti = Y−εi+1 . �

The proof of (3.5.1) is now complete.

Notes and references

The braid group (also called the Artin group) associated to an arbitrary Coxeter
group was studied by Brieskorn and Saito in [B2], and in van der Lek’s
thesis [V1]. The double braid group was introduced by Cherednik [C1], and
the duality theorem (3.5.1) stated (in the case that B̃′ = B̃). The commutator
formula (3.4.11) is also due to Cherednik (private communication).
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The affine Hecke algebra

4.1 The Hecke algebra of W

We retain the notation of the previous chapters: W = W (R, L ′) is an extended
affine Weyl group, and B is the braid group of W .

The objects to be studied in this and subsequent chapters will involve certain
parameters q, τi , and rational functions in these parameters. It would be pos-
sible to regard these parameters abstractly as independent indeterminates over
Z, but we shall find it more convenient to regard them as real variables. So let
q be a real number such that 0 < q < 1, and let τi (i∈I ) be positive real
numbers such that τi = τ j if si and s j are conjugate in W . Let K be a subfield
of R containing the τi and q0 = q1/e, where e is the integer defined in (1.4.5).

The Hecke algebra H of W over K is the quotient of the group algebra K B
of the braid group B by the ideal generated by the elements

(Ti − τi )
(
Ti + τ−1

i

)
for i ∈ I . The image of Ti (resp. T (w),U j ) in H will be denoted by the same sym-
bol Ti (resp. T (w),U j ). Thus H is generated over K by Ti (i∈I ) and U j ( j∈J ),
subject to the relations (3.1.3)–(3.1.5), together with the Hecke relations

(Ti − τi )
(
Ti + τ−1

i

) = 0 (i ∈ I )(4.1.1)

or equivalently

Ti − τi = T−1
i − τ−1

i .(4.1.1′)

(4.1.2) Let i ∈ I, w ∈ W . Then in H we have

Ti T (w) = T (siw)+ χ (w−1ai )
(
τi − τ−1

i

)
T (w),

T (w)Ti = T (wsi )+ χ (wai )
(
τi − τ−1

i

)
T (w),

where χ is the characteristic function of S−.

55
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Proof If w−1ai ∈ S+ then Ti T (w) = T (siw) by (3.1.7). If w−1ai ∈ S− then

T (siw) = T−1
i T (w) = (Ti − τi + τ−1

i

)
T (w)

by (3.1.7) and (4.1.1′). This proves the first of the relations above, and the
second is proved similarly. �

(4.1.3) The elements T (w), w ∈ W , form a K-basis of H.

Proof Let H1 denote the K -subspace of H spanned by the T (w), w ∈ W .
From (4.1.2) it follows that Ti H1 ⊂ H1 for all i ∈ I , and since U j T (w) =
T (u jw) ∈ H1, we have Uj H1 ⊂ H1 for all j ∈ J . Hence HH1 ⊂ H1, and since
1 ∈ H1 it follows that H = H1, i.e. the T (w) span H as a K -vector space.

To show that the T (w) are linearly independent, we proceed as follows. Let
K W be the group algebra of W over K , and for each i ∈ I define K -linear
maps Li , Ri : K W → K W by

Liw = siw + χ (w−1ai )
(
τi − τ−1

i

)
w,

Riw = wsi + χ (wai )
(
τi − τ−1

i

)
w

for all w ∈ W (compare (4.1.2)). Also, for each u ∈ � define Lu, Ru by

Luw = uw, Ruw = wu.

(4.1.4) Each L commutes with each R.

Proof It is clear that Lu commutes with each R, and that Ru commutes with
each L . It remains to verify that Li and R j commute (i, j ∈ I ). From the
definitions we calculate that

(Li R j − R j Li )w = (χ (wa j )− χ (siwa j ))
(
τ j − τ−1

j

)
siw

+ (χ (s jw
−1ai )− χ (w−1ai )

(
τi − τ−1

i

)
ws j .

Suppose first that siw �= ws j . Then wa j �= ±ai and therefore χ (wa j ) =
χ (siwa j ) and χ (w−1ai ) = χ (s jw

−1ai ). Hence (Li R j − R j Li )w = 0 in this
case.

Suppose now that siw = ws j , so that τi = τ j andwa j = εai , where ε = ±1.
Then

χ (wa j )− χ (w−1ai ) = χ (εai )− χ (εa j ) = 0

and

χ (siwa j )− χ (s jw
−1ai ) = χ (−εai )− χ (−εa j ) = 0,

so that (Li R j − R j Li )w = 0 in this case also. �



4.2 Lusztig’s relation 57

Next we have

L2
i =
(
τi − τ−1

i

)
Li + 1(4.1.5)

by a straightforward calculation.

Now let H′ denote the K -subalgebra of End(K W ) generated by the L’s, and
let f : H′ → K W be the linear mapping defined by f (h) = h(1) for h ∈ H′.

(4.1.6) f : H′ → K W is an isomorphism (of K-vector spaces).

Proof Let w ∈ W and let w = usi1 · · · si p be a reduced expression (so that
u ∈ � and p = l(w)). Since Liw = siw if l(w) < l(siw) it follows that

f
(
Lu Li1 · · · Li p

) = usi1 · · · si p = w
and hence that f is surjective.

Suppose now that h ∈Ker( f ). Then h(1) = 0, and we shall show by induction
on l(w) that h(w) = 0 for all w ∈ W . Suppose first that l(w) = 0, i.e. that
w = u ∈ �. From (4.1.4), Ru commutes with h, so that h(u) = h(Ru(1)) =
Ruh(1) = 0. Now let l(w) = p > 0 and choose i ∈ I so that l(wsi ) < p. Since
Ri commutes with h, we have

h(w) = h(Ri (wsi )) = Ri h(wsi ) = 0

by the inductive hypothesis. Hence h = 0 and f is an isomorphism. �

We can now complete the proof of (4.1.3). From (4.1.6) it follows that
L(w) := f −1(w) is well-defined for all w ∈ W , and L(w) = Lu Li1 · · · Li p

if w = usi1 · · · si p is a reduced expression. Hence L(v)L(w) = L(vw) if
l(v) + l(w) = l(vw), i.e. the L(w) satisfy the defining relations (3.1.1) of
the braid group B. From (4.1.5) it follows that H′ is a homomorphic image of
H, i.e. that there is a surjective K -algebra homomorphism g : H→ H′ such that
g(T (w)) = L(w) for all w ∈ W . Hence f ◦ g : H→ K W maps T (w) to w for
each w ∈ W , and therefore the T (w) are linearly independent over K . �

4.2 Lusztig’s relation

We introduce the following notation: let

b(x) = b(t, u; x) = t − t−1 + (u − u−1)x

1− x2
,(4.2.1)
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c(x) = c(t, u; x) = t x − t−1x−1 + u − u−1

x − x−1
(4.2.2)

= (1− tux)(1+ tu−1x)

t(1− x2)
= c(t−1, u−1; x−1).

where t, u are nonzero real numbers, and x is an indeterminate. When t = u,
(4.2.1) and (4.2.2) take the simpler forms

b(x) = t − t−1

1− x
, c(x) = t x − t−1

x − 1
.

(4.2.3) We have

(i) c(x) = t − b(x) = t−1 + b(x−1),
(ii) c(x)+ c(x−1) = t + t−1,

(iii) b(x)+ b(x−1) = t − t−1,
(iv) c(x)c(x−1) = 1+ b(x)b(x−1).

Proof (i) is clear, and (ii), (iii) follow directly from (i). As to (iv), we have

c(x)c(x−1) = (t − b(x))(t − b(x−1))

= t2 − t(t − t−1)+ b(x)b(x−1)

= 1+ b(x)b(x−1)

by use of (i) and (iii). �

The following relation, due to Lusztig [L1], is fundamental.

(4.2.4) Let λ′ ∈ L ′, i ∈ I0. Then

Y λ
′
Ti − Ti Y

siλ
′ = b(τi , υi ; Y−α

∨
i )(Y λ

′ − Y siλ
′
)

where υi = τi or τ0 according as <L ′, αi> = Z or 2Z (2.1.6).

Proof If this formula (for fixed i ∈ I0) is true for λ′ and for µ′, then it is
immediate that it is true for λ′ + µ′ and for −λ′. Hence it is enough to prove it
for λ′ belonging to a fixed set of generators of L ′.

If <L ′, αi> = Z (resp. 2Z), there exists µ′ ∈ L ′ such that <µ′, αi> = 1
(resp. 2), and L ′ is generated by thisµ′ and the λ′ ∈ L ′ such that<λ′, αi> = 0.

If <λ′, αi> = 0, (4.2.4) reduces to Y λ
′
Ti = Ti Y λ

′
, i.e. to (3.2.5).

If <λ′, αi> = 1, from (3.2.6) and (4.1.1′) we have

Ti Y
siλ

′ = Y λ
′
T−1

i = Y λ
′(

Ti − τi + τ−1
i

)
,
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so that

Y λ
′
Ti − Ti Y

siλ
′ = (τi − τ−1

i

)
Y λ

′
,

which establishes (4.2.4) in this case, since siλ
′ = λ′ − α∨i .

Finally, suppose that <L ′, αi> = 2Z. From above, it is enough to verify
(4.2.4) when λ′ = α∨i . By (2.1.6) αi is a long root, hence αi = w−1ϕ for some
w ∈ W0, where as usual ϕ is the highest root of R. From (3.3.5) we have

T0 = T (w)Y α
∨
i T−1

i T (w)−1,

and hence Y α
∨
i T−1

i is conjugate to T0. It follows that

Y α
∨
i T−1

i − Ti Y
−α∨i = τ0 − τ−1

0

by (4.1.1′), and hence

Y α
∨
i Ti − Ti Y

−α∨i = (τ0 − τ−1
0

)+ (τi − τ−1
i

)
Y α

∨
i

= b(τi , τ0; Y−α
∨
i )(Y α

∨
i − Y−α

∨
i )

which completes the proof. �

(4.2.5) The right-hand side of the formula (4.2.4) is a linear combination of
the Y ’s. Explicitly, if <λ′, αi> = r > 0 it is

r−1∑
j=0

u j Y
λ′− jα∨i

and if <λ′, αi> = −r < 0 it is

−
r∑

j=1

u j Y
λ′+ jα∨i

where u j = τi − τ−1
i if j is even, and u j = υi − υ−1

i if j is odd.

(4.2.6) In view of (4.2.3)(i), the formula (4.2.4) can be written in the equivalent
forms

(Ti − τi )Y
λ′ − Y siλ

′
(Ti − τi ) = c(τi , υi ; Y−α

∨
i )(Y siλ

′ − Y λ
′
),(

Ti + τ−1
i

)
Y λ

′ − Y siλ
′(

Ti + τ−1
i

) = c(τi , υi ; Y α
∨
i )(Y λ

′ − Y siλ
′
).

(4.2.7) The elements T (w)Y λ
′

(resp. the elements Y λ
′
T (w)), where λ′ ∈ L ′

and w ∈ W0, form a K-basis of H.
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Proof Suppose that there is a relation of linear dependence

r∑
i=1

ui T (wi )Y
λ′i = 0

with distinct pairs (wi , λ
′
i ) ∈ W0 × L ′, and nonzero coefficients ui . By multi-

plying on the right by a suitable Yµ
′
, we may assume that each λ′i is dominant,

and then by (2.4.1) we have l(wi t(λ′i )) = l(wi ) + l(t(λ′i )), so that the relation
above takes the form

r∑
i=1

ui T (wi t(λ
′
i )) = 0

contradicting (4.1.3). Hence the T (w)Y λ
′
are linearly independent over K , and

a similar argument shows that the same is true of the Y λ
′
T (w).

Now let H1 (resp. H2) be the vector subspace of H spanned by the T (w)Y λ
′

(resp. by the Y λ
′
T (w)). By (4.2.4) and induction on l(w), we see that Y λ

′
T (w) ∈

H1 and T (w)Y λ
′ ∈ H2, for all w ∈ W0 and λ′ ∈ L ′. Hence H1 = H2. Now H1

is stable under left multiplication by each T (w) and (since H1 = H2) also by
each Y λ

′
. But these elements generate B (3.3.1) and therefore also generate H

as K -algebra. Hence HH1 ⊂ H1, and since 1 ∈H1 it follows that H = H1 = H2.
�

Let A′ = K L ′ be the group algebra of the lattice L ′ over the field K . For
each λ′ ∈ L ′ we denote the corresponding element of A′ by eλ

′
, so that

eλ
′ · eµ′ = eλ

′+µ′ , (eλ
′
)−1 = e−λ

′
, e0 = 1

for λ′, µ′ ∈ L ′, and the eλ
′
form a K -basis of A′. The finite Weyl group W0 acts

on L ′ and hence on A′:

w(eλ
′
) = ewλ

′

for w ∈ W0 and λ′ ∈ L ′.

If f ∈ A′, say

f =
∑

fλ′e
λ′

with coefficients fλ′ ∈ K , almost all zero, let

f (Y ) =
∑

fλ′Y
λ′ .

By (4.2.7) the Y λ
′
, λ′ ∈ L ′, are linearly independent over K and span a com-

mutative K -subalgebra A′(Y ) of H, isomorphic to A′. In this notation we may
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restate (4.2.4) as follows: for i �= 0 and f ∈ A′ we have

f (Y )Ti − Ti (si f )(Y ) = b(τi , υi ; Y−α
∨
i )( f (Y )− (si f )(Y )),(4.2.8)

and the right-hand side is an element of A′(Y ).
By replacing f by si f in (4.2.8), we see that Ti f (Y ) is of the form

Ti f (Y ) = (si f )(Y )Ti + g(Y )

for some g ∈ A′. By induction on l(w), it follows that for each w ∈ W0 and
f ∈ A′, T (w) f (Y ) is of the form

T (w) f (Y ) =
∑
v≤w

fv(Y )T (v)(4.2.9)

where fv ∈ A′, and is particular fw = w f .

Let A′0 = (A′)W0 be the subalgebra of W0-invariants in A′.

(4.2.10) The centre of H is A′0(Y ).

Proof Let z ∈ H be a central element, say

z =
∑
w∈W0

fw(Y )T (w)

with fw ∈ A′. Let λ′ ∈ L ′ be regular (i.e., λ′ �= wλ′ for all w �= 1 in W0). Since
z commutes with Y λ

′
we have∑

v∈W0

Y λ
′
fv(Y )T (v) =

∑
w∈W0

fw(Y )T (w)Y λ
′
.(1)

Now by (4.2.9), T (w)Y λ
′
is of the form

T (w)Y λ
′ =
∑
v≤w

gvw(Y )T (v)(2)

with gvw ∈ A′ for each v ≤ w, and gww = ewλ
′
. From (1) and (2) we have∑

v∈W0

Y λ
′
fv(Y )T (v) =

∑
v,w∈W0
w≥v

gvw(Y ) fw(Y )T (v)

and hence by (4.2.7)

eλ
′
fv =
∑
w≥v

gvw fw(3)

for each v ∈ W0.
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The matrix G = (gvw), with rows and columns indexed by W0, is triangular
relative to any total ordering of W0 that extends the Bruhat order. Its eigenval-
ues are therefore its diagonal elements, namely ewλ

′
(w∈W0). If f denotes

the column vector ( fv)v∈W0 , the equation (3) shows that f is an eigenvector
of G for the eigenvector eλ

′
. Since the eigenvalues of G are all distinct (be-

cause λ′ is regular), f is up to a scalar multiple the only eigenvector of G
for the eigenvalue eλ

′
. It follows that fv = 0 for all v �= 1 in W0, and hence

z = f1(Y ) ∈ A′(Y ).
Since z commutes with Ti , it follows from (4.2.8) that

Ti ( f1(Y )− (si f1)(Y )) = g(Y )

for some g ∈ A′. Hence by (4.2.7) we have f1 = si f1 for each i �= 0, and
therefore z ∈ A′0(Y ).

Conversely, if f ∈ A′0 it follows from (4.2.8) that f (Y ) commutes with Ti

for each i �= 0, and hence f (Y ) is central in H. �

4.3 The basic representation of HH

Let H0 be the K-subalgebra of H spanned by the elements T (w), w ∈ W0 (so
that H0 is the Hecke algebra of W0). From (4.2.7) we have

H ∼= A′ ⊗K H0(4.3.1)

as K-vector spaces, the isomorphism being Y λ
′
T (w) 
→ eλ

′ ⊗ T (w) (λ′∈L ′,
w ∈ W0).

If M is a left H0-module, we may form the induced H-module

ind
H
H0

(M) = H⊗H0
M ∼= A′ ⊗K M

by (4.3.1), the isomorphism being

f (Y )T (w)⊗ x 
→ f ⊗ T (w)x

for f ∈ A′, w ∈ W0 and x ∈ M . From (4.2.8) it follows that the action of H0

on A′ ⊗K M is given by

Ti ( f ⊗ x) = si f ⊗ Ti x + ( f − si f )b(τi , υi ; e−α
∨
i )⊗ x .(4.3.2)

In particular, let us take M to be the 1-dimensional H0-module K x for which
Ti x = τi x for each i ∈ I0. Then A′ ⊗K M may be identified with A′ (namely
f ⊗ x 
→ f ) and from (4.3.2) the action of H0 on A′ is given by

Ti ( f ) = τi si f + ( f − si f )b(τi , υi ; e−α
∨
i ).
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Hence

(4.3.3) There is a representation β ′ of H0 on A′ such that

β ′(Ti ) = τi si + b(τi , υi ; X−α
∨
i )(1− si )

for all i ∈ I0, where X−α
∨
i is the operator of multiplication by e−α

∨
i , and υi = τi

or τ0 according as <L ′, αi> = Z or 2Z.

In other words, the linear operators β ′(Ti ) : A′ → A′ satisfy the braid rela-
tions (3.1.3) and the Hecke relations (4.1.1) that do not involve T0. In fact, this
representation is faithful (see below).

From now on we shall assume that the conventions of §1.4 are in force, so
that we have affine root systems S and S′, finite root systems R and R′, and
lattices L and L ′, defined by (1.4.1)–(1.4.3). As in §1.4 the elements µ ∈ L are
to be regarded as linear functions on V : µ(x) = <µ, x> for x ∈ V . If w ∈ W
we shall denote the effect of w on µ so regarded by w · µ. Thus if w = t(λ′)v,
where λ′ ∈ L ′ and v ∈ W0, then

(w · µ)(x) = µ(w−1x) = <µ, v−1(x − λ′)> = <vµ, x>−<λ′, vµ>
so that

w · µ = vµ−<λ′, vµ>c(4.3.4)

is an affine-linear function on V .
Let A = K L be the group algebra of L over K , and for each µ ∈ L let

eµ denote the corresponding element of A. More generally, if f = µ+ rc we
define

e f = qr eµ(4.3.5)

(i.e. we define ec to be q). For f as above, let X f : A → A denote multiplication
by e f :

X f g = e f g (g ∈ A).(4.3.6)

The group W acts on A: if w = t(λ′)v as above then

w(eµ) = ew·µ = q−<λ
′,vµ>evµ(4.3.7)

by (4.3.4).

(4.3.8) W acts faithfully on A.
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For if w = t(λ′)v fixes eµ for each µ ∈ L , then (4.3.7) shows that vµ = µ and
<λ′, vµ> = 0, so that v = 1 and λ′ = 0. �

When S is of type (C∨
n ,Cn) (1.4.3), we shall require two extra parameters

τ ′0, τ
′
n . For uniformity of notation we define

τ ′i = τi

for all i ∈ I when S is reduced ((1.4.1), (1.4.2)) and when i �= 0, n in case
(1.4.3).

Let

bi = b(τi , τ
′
i ; eai ),

(4.3.9)
ci = c(τi , τ

′
i ; eai )

and for ε = ±1 let bi (X ε) (resp. ci (X ε)) denote the result of replacing eai by
X εai in bi (resp. ci ).

(4.3.10) There is a faithful representation β of H on A such that

β(Ti ) = τi si + bi (X )(1− si ),
β(U j ) = u j ,

for all i ∈ I and j ∈ J , where as above Xai is multiplication by eai .

Proof We saw above that the operators β ′(Ti ), i �= 0, defined in (4.3.3) satisfy
the braid relations and the Hecke relations not involving T0. Now H0 depends
only on W0 (and the parameters τi ), not on the particular root system R with
W0 as Weyl group. We may therefore replace (R, L ′) in (4.3.3) by (R′, L), and
the basis (αi ) of R by the opposite basis (−α′i ) of R′. It follows that for i �= 0
the operators β(Ti ) satisfy the braid relations and the Hecke relations.

Now the fact that β(Ti ) and β(Tj ) (where i, j �= 0 and i �= j) satisfy the
appropriate braid and Hecke relations is a statement about the root system of
rank 2 generated by ai and a j . It follows from this remark that the braid and
Hecke relations involving β(T0) will also be satisfied. Moreover, it is clear from
the definitions of β(Ti ) and β(U j ) = u j that the relations (3.1.4) and (3.1.5)
are satisfied. Hence β is indeed a representation of H, and it remains to show
that it is faithful. This will follow from �

(4.3.11) The linear operators Xµβ(T (w)) (resp. β(T (w))Xµ), where µ ∈ L
and w ∈ W , are linearly independent over K.
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Proof Let w ∈ W and let w = u j si1 · · · si p be a reduced expression. Then

β(T (w)) = u jβ
(
Ti1

) · · · β(Ti p

)
and it follows from the definition (4.3.10) of β(Ti ) that β(T (w)) is of the form

β(T (w)) =
∑
v≤w

fvw(X )v(1)

where fvw ∈ �, the field of fractions of the integral domain A, and fvw(X ) is
the operator of multiplication by fvw.We have fww �= 0 for each w ∈ W .

Now suppose that the operators Xµβ(T (w)) on A are linearly dependent.
Then there will be a relation of the form∑

w∈W

gw(X )β(T (w)) = 0(2)

with gw ∈ A not all zero (but only finitely many nonzero). From (1) and (2) we
have ∑

v,w∈W
v≤w

gw(X ) fvw(X )v = 0.

Now the automorphisms v ∈ W of A extend to automorphisms of the field �,
and as such are linearly independent over �, since automorphisms of any field
are linearly independent over that field. Hence it follows from (4.3.8) that∑

w≥v
fvwgw = 0(3)

for each v ∈ W . Now choose v to be a maximal element, for the Bruhat ordering,
of the (finite) set of w ∈ W such that gw �= 0. Then (3) reduces to fvvgv = 0,
and since fvv �= 0 it follows that gv = 0. This contradiction shows that the
operators Xµβ(T (w)) are linearly independent.

For the operators β(T (w))Xµ, the proof is similar. �

In particular, taking µ = 0 in (4.3.11), it follows that the operators β(T (w))
(w ∈ W ) are linearly independent over K . Hence the representation β is faith-
ful, completing the proof of (4.3.10). �

This representation β is the basic representation of H.

In view of (4.3.10), we may identify each h ∈H with the linear operator β(h)
on A. Since by (4.3.10)

Ti = τi si + bi (X )(1− si )
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for each i ∈ I , it follows from (4.2.3) that

Ti − τi = ci (X )(si − 1),(4.3.12)

Ti + τ−1
i = (si + 1)ci (X−1),(4.3.13)

T εi = εbi (X ε)+ ci (X )si ,(4.3.14)

where ε = ±1.
From (4.3.14) it follows that

Ti Xµ − XsiµTi = bi (X )(Xµ − Xsiµ)(4.3.15)

for all µ ∈ L . In particular, we have

Ti Xµ = XµTi(4.3.16)

if <µ, α′i> = 0, and

Ti Xµ = Xsiµ
(
Ti − τi + τ−1

i

) = XsiµT−1
i(4.3.17)

if <µ, α′i> = 1 (which implies that τ ′i = τi ). Thus the Xµ satisfy the relations
(3.4.2)–(3.4.5) for the double braid group B̃.

Recall that A′0 = (A′)W0 , and likewise let A0 = AW0 .

(4.3.18) Let f ∈ A′0. Then f (Y ) maps A0 into A0.

Proof By (4.2.10), f (Y ) commutes with Ti for each i ∈ I . Let g ∈ A0 and
let h = f (Y )g. By (4.3.12) we have Ti g = τi g, and hence

Ti h = Ti f (Y )g = f (Y )Ti g = τi h

for all i �= 0. By (4.3.12) it follows that si h = h for all i �= 0, hence h ∈ A0. �

In the case (1.4.3), let

T ′n = X−an T−1
n , T ′0 = X−a0 T−1

0(4.3.19)

(where a0 = −ε1 + 1
2 c, so that X−a0 = q−1/2 X ε1 ). Then we have

(T ′n − τ ′n)
(
T ′n + τ ′−1

n

) = (T ′0 − τ ′0)
(
T ′0 + τ ′−1

0

) = 0.(4.3.20)

Proof We calculate

T ′n − T ′−1
n = X−an T−1

n − Tn Xan

= X−an
(
Tn − τn + τ−1

n

)− Tn Xan

= bn(X )(X−an − Xan )− (τn − τ−1
n

)
X−an

= τ ′n − τ ′−1
n
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by (4.3.15) and (4.2.1); and likewise

T ′0 − T ′−1
0 = τ ′0 − τ ′−1

0 . �

(4.3.21) From (4.3.12) it follows that, for λ ∈ L and i �= 0,

(i) if <λ, α′i> = r > 0, then

Ti e
λ = τ−1

i esiλ −
r−1∑
j=1

u j e
λ− jαi ;

(ii) if <λ, α′i> = −r < 0, then

Ti e
λ = τi e

siλ +
r−1∑
j=0

u j e
λ+ jαi ,

where (as in (4.2.5))

u j =
{
τi − τ−1

i if j is even,

τ ′i − τ ′−1
i if j is odd.

We shall make use of the following terminology. If f ∈ A is of the form

f =
∑
µ≤λ

uµeµ

where the partial ordering is that defined in §2.7 (with L ′ replaced by L), we
shall often write

f = uλe
λ + lower terms.

With this terminology we have

(4.3.22) Let λ ∈ L , i �= 0. Then

T−1
i eλ = τ εi esiλ + lower terms,

where ε = −1 if <λ, α′i> ≥ 0, and ε = +1 if <λ, α′i> < 0.

Proof Since T−1
i = Ti − τi + τ−1

i , it follows from (4.3.21) that

T−1
i eλ = τ−1

i esiλ −
r−1∑
j=0

u j e
λ− jαi

if <λ, α′i> = r > 0. In this case we have siλ > λ, by (2.7.9).



68 4 The affine Hecke algebra

Next, if <λ, α′i> = −r < 0 we have, using (4.3.21) again,

T−1
i eλ = τi e

siλ +
r−1∑
j=1

u j e
λ+ jαi

which gives the result in this case.
Finally, if <λ, α′i> = 0 then siλ = λ and T−1

i eλ = τ−1
i eλ. �

For the remainder of this section, we need to switch to additive notation. We
shall write

τi = qκi/2

and for α ∈ R we define

κα = κi if α ∈ W0αi .

With this notation we have

(4.3.23) Let w ∈ W0, λ ∈ L. Then

T (w−1)−1eλ = q f (w,λ)ewλ + lower terms,

where

f (w, λ) = 1

2

∑
α∈R+

η(−<λ, α′>)χ (wα)κα

and χ is the characteristic function of R−, and η is given by (2.8.3).

Proof Let w = si1 · · · si p be a reduced expression, so that

T (w−1)−1 = T−1
i1
· · · T−1

i p
.

From (4.3.22) it follows that

T (w−1)−1eλ =
(

p∏
r=1

τ
εr
ir

)
ewλ + lower terms,

where

εr = η(−<sir+1 · · · si pλ, α
′
ir
>)

= η(−<λ, β ′r>)

and β ′r = si p · · · sir+1α
′
ir

, so that β ′1, . . . , β
′
p are the roots α′ ∈ R′+ such that

wα′ ∈ R′−. It follows that
p∏

i=1

τ
εr
ir
= q f (w,λ)
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where

f (w, λ) = 1

2

p∑
r=1

η(−<λ, β ′r>)κβr

= 1

2

∑
α∈R+

η(−<λ, α′>)χ (wα)κα. �

If w ∈ W0 and w = si1 · · · si p is a reduced expression, as above, let

τw = τi1 · · · τi p .

This is independent of the reduced expression, and we have

τw = qg(w)(4.3.24)

where

g(w) = 1

2

∑
α∈R+

χ (wα)κα.

This follows from (4.3.23) when λ is antidominant (so that <λ, α′> ≤ 0 for
all α ∈ R+).

In particular:

(4.3.25) Let λ ∈ L. Then

g(v(λ)) = 1

4

∑
α∈R+

(1+ η(<λ, α′>)κα.

For by (2.4.4) v(λ)α′ ∈ R′− if and only if <λ, α′> > 0, so that χ (v(λ)α′) =
1
2 (1+ η(<λ, α′>).

4.4 The basic representation, continued

We shall use the parameters τi , τ
′
i to define a labelling k of S as follows. Define

κi , κ
′
i (i∈I ) by

τi = qκi/2, τ ′i = qκ
′
i /2.(4.4.1)

Recall (§1.3) that

S1 =
{
a ∈ S : 1

2 a /∈ S
} =⋃

i∈I

Wai



70 4 The affine Hecke algebra

(so that S1 = S if S is reduced, and S1 = S(R)∨ where R is of type Cn in the
situation of (1.4.3)). Then for a ∈ S1 we define

k(a) = 1
2 (κi + κ ′i ), k(2a) = 1

2 (κi − κ ′i )(4.4.2)

if a ∈ Wai . Note that k(2a) = 0 if 2a /∈ S.
Thus if S is reduced we have k(a) = κi for a ∈ Wai , and if S is of type

(C∨
n ,Cn) the labels k1, . . . , k5 are given by

(k1, k2, k3, k4, k5)(4.4.3)

= ( 12 (κn + κ ′n), 1
2 (κn − κ ′n), 1

2 (κ0 + κ ′0), 1
2 (κ0 − κ ′0), κ

)
where κ = κ1 = κ2 = · · · = κn−1. Passing to the dual labelling (k ′1, . . . , k

′
5)

(1.5.1) corresponds to interchanging κ0 and κ ′n .

For each a ∈ S1, if a = wai (w∈W, i ∈ I ) we define

τa = τi , τ
′
a = τ ′i(4.4.4)

and

ba = ba,k = b(τa, τ
′
a ; ea),

(4.4.5)
ca = ca,k = c(τa, τ

′
a ; ea)

so that ba = wbi and ca = wci . Also, for each w ∈ W , let

c(w) = cS,k(w) =
∏

a∈S1(w)

ca,k .(4.4.6)

Let A[c] denote the K -subalgebra of the field of fractions of A generated by
A and the ca, a ∈ S.

(4.4.7) Let u, v ∈ W . Then (as operators on A)

T (u)−1T (v) =
∑
w≤u−1v

fw(X )w

where fw ∈ A[c], and in particular

fu−1v = cS,k(v−1u).

Proof Let u−1v = u j si1 . . . si p be a reduced expression. From (3.1.9) we have

T (u)−1T (v) = u j T
ε1

i1
· · · T εp

i p
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where each of ε1, . . . , εp is ± 1. By (4.3.14) it follows that

T (u)−1T (v) = u j
(
ci1 (X )si1 + ε1bi1 (X ε1 )

) · · · (ci p (X )si p + εpbi p (X εp )
)

which on expansion is of the stated form, with leading term

u j ci1 (X )si1 ci2 (X )si2 · · · si p−1 ci p (X )si p

so that

fu−1v = cb1 cb2 · · · cbp

where br = u j si1 · · · sir−1 (air ) for 1 ≤ r ≤ p. From (2.2.2) and (2.2.9) it follows
that {b1, . . . , bp} = S1(v−1u). �

(4.4.8) Let λ′ ∈ L ′. Then (as operators on A)

(i) Y λ
′ = c(u(λ′)−1)(X )u(λ′)T (v(λ′))+

∑
w∈W
w(0)<λ′

gw(X )w,

(ii) Y−λ
′ = T (v(λ′))−1c(u(λ′))(X )u(λ′)−1 +

∑
w∈W
w(0)<λ′

g′w(X )w−1,

where gw, g′w ∈ A[c], and u(λ′), v(λ′) are as defined in §2.4.

Proof (i) Let u(λ′) = u j si1 · · · si p be a reduced expression. From (3.2.10) we
have

Y λ
′ = u j T

ε1
i1
· · · T εp

i p
T (v(λ′))

where each exponent εr is ± 1, so that as in (4.4.7)

u j T
ε1

i1
· · · T εp

i p
=
∑
w≤u(λ′)

fw(X )w

with fw ∈ A[c], and leading term

fu(λ′)(X )u(λ′) = c(u(λ′)−1)(X )u(λ′).

Hence

Y λ
′ = c(u(λ′)−1)(X )u(λ′)T (v(λ′))+

∑
w∈W
w<u(λ′)

fw(X )wT (v(λ′)).

Now T (v(λ′)) is of the form

T (v(λ′)) =
∑
v≤v(λ′)

hv(X )v
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with hv ∈ A[c]. Hence

Y λ
′ = c(u(λ′)−1)(X )u(λ′)T (v(λ′))+

∑
w∈W

gw(X )w

summed over w ∈ W of the form w = w′v, where w′ < u(λ′) and v ≤ v(λ′)
(so that v ∈ W0). For each such w we have w(0) = w′(0) < λ′ by (2.7.12).
(ii) We have

Y−λ
′ = T (v(λ′))−1T

−εp

i p
· · · T−ε1

i1
u−1

j

and

T
−εp

i p
· · · T−ε1

i1
u−1

j =
∑
w≤u(λ′)

f ′w(X )w−1

with f ′w ∈ A[c], and leading term

f ′u(λ′)(X )u(λ′)−1 = c(u(λ′))(X )u(λ′)−1.

Hence

Y−λ
′ = T (v(λ′))−1c(u(λ′))(X )u(λ′)−1 +

∑
w<u(λ′)

T (v(λ′))−1 f ′w(X )w−1.

Now T (v(λ′))−1 is of the form

T (v(λ′))−1 =
∑
v≤v(λ′)

h′v(X )v−1

with h′v ∈ A[c], and therefore

Y−λ
′ = T (v(λ′))−1c(u(λ′))(X )u(λ′)−1 +

∑
w∈W

g′w(X )w−1

summed over w ∈ W of the form w = w′v, where w′ < u(λ′) and v ≤ v(λ′).
For each such w we have w(0) = w′(0) < λ′, as before. �

In particular:

(4.4.9) Let λ′ ∈ L ′ be antidominant (i.e., w0λ
′ dominant). Then

Y λ
′ = c(t(−λ′))(X )t(λ′)+

∑
w(0)<λ′

gw(X )w

with gw ∈ A[c].

For in this case v(λ′) = 1 and u(λ′) = t(λ′). �
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For λ′ ∈ L ′ antidominant, let (λ′) be the smallest saturated subset of L ′

that contains λ′, as in §2.6, and let

0(λ′) = (λ′)−W0λ
′.(4.4.10)

Also let

mλ′ =
∑

µ′∈W0λ′
eµ

′
.(4.4.11)

By (4.3.18), mλ′ (Y ) maps A0 into A0. Let mλ′ (Y )0 denote the restriction of
mλ′ (Y ) to A0. Then

mλ′ (Y )0 =
∑
w∈W λ′

0

(wc(t(−λ′)))(X )t(wλ′)+
∑

µ′∈0(λ′)

gµ′ (X )t(µ′)(4.4.12)

where gµ′ ∈ A[c], and W λ′
0 is a transversal of the isotropy group of λ′ in W0.

Proof Let µ′ ∈ W0λ
′. If µ′ �= λ′ then µ′ < λ′ and therefore, by (4.4.8)

(i), t(λ′) does not occur in Yµ
′
. Hence by (4.4.9) the only term in mλ′ (Y ) that

contains t(λ′) is c(t(−λ′))(X )t(λ′), and (4.4.12) therefore follows from (4.4.9).
�

There are two cases in which (4.4.12) leads to an explicit formula. The first
is when w0λ

′ is a minuscule fundamental weight (i.e., λ′ = w0π
′
j for some

j ∈ J, j �= 0), in which case 0(λ′) is empty. The second is when λ′ = −ϕ∨,
in which case 0(λ′) = {0}. These two cases provide precisely the operators
used in [M5] to construct orthogonal polynomials.

4.5 The basic representation, continued

We shall regard each element f of A (or of A′) as a function on V , as follows:
if x ∈ V and

f =
∑

fλe
λ

with coefficients fλ ∈ K , we define

f (x) =
∑

fλq
<λ,x>.(4.5.1)

Likewise, if h is an element of the field of fractions of A (or A′), say h = f/g,
we define h(x) = f (x)/g(x) at all points x ∈ V where g(x) �= 0. Thus for
example ci (x) is well-defined at all points x ∈ V such that ai (x) �= 0.
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We shall assume until further notice that the labels k(a), a ∈ S, are nonzero.
Recall (2.8.1) that for λ′ ∈ L ′,

r ′k(λ′) = u(λ′)(−ρ ′k).

(4.5.2) Let λ′ ∈ L ′, i ∈ I . If λ′ = siλ
′, then ci (r ′k(λ′)) = 0.

Proof From (2.8.4) (iii) it follows that

ai (r
′
k(λ′))+ k(α′∨i ) = 0

and therefore ci (r ′k(λ′)) is well-defined.
If <L ′, αi> = Z, then k(α′∨i ) = κi (4.4.2) and

ci = q−κi/2(1− qκi eai )/(1− eai ).

Hence ci (r ′k(λ′)) = 0.
If <L ′, αi> = 2Z, we are in the situation of (1.4.3), so that i = 0 or n and

L = L ′ = Zn . If i = n we have k(α′∨n ) = k1, and

cn = (1− qk1 ean )(1+ qk2 ean )

q (k1+k2)/2(1− e2an )

so that again cn(r ′k(λ′)) = 0. Finally, if i = 0 we have λ′ �= s0λ
′ for all λ′ ∈ L ′

(since <λ′, α0> is an even integer), so this case cannot arise. �

(4.5.3) Let h ∈ H, say

h =
∑
w∈W

hw(X )w−1

as an operator on A, where hw ∈ A[c]. If λ′ ∈ L ′ is such that hw(r ′k(λ′)) �= 0
for some w ∈ W , then w(r ′k(λ′)) = r ′k(wλ′).

Proof Since the T (w), w ∈ W , form a K -basis of H, we have

h =
∑
v∈W

avT (v)(1)

with coefficients av ∈ K . For each v ∈ W , by (4.4.7) we can write

T (v) =
∑
w

fvw(X )w−1(2)

with fvw ∈ A[c]. From (1) and (2) we have

hw =
∑
v

av fvw
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for eachw ∈ W , by (4.3.8). Hence if hw(r ′k(λ′)) �= 0 we must have fvw(r ′k(λ′)) �=
0 for some v ∈ W , and therefore we may assume that h = T (v). We proceed
by induction on l(v).

If l(v) = 0, then v ∈ � and fvw = 1 if w = v−1, and fvw = 0 otherwise.
By (2.8.4) (i) we have v−1(r ′k(λ′)) = r ′k(v−1λ′), which proves the result in this
case.

If l(v) > 0, let v = v′si where l(v′) = l(v)− 1. Then

T (v) = T (v′)Ti =
(∑

w

fv′w(X )w−1

)
(ci (X )si + bi (X ))

by (4.3.14), so that

fvw(X ) = fv′,siw(X )(w−1si ci )(X )+ fv′w(X )(w−1bi )(X )

and therefore

fvw(r ′k(λ′)) = fv′,siw(r ′k(λ′))ci (siw(r ′k(λ′)))+ fv′w(r ′k(λ′))bi (w(r ′k(λ′))).

Now suppose that fvw(r ′k(λ′)) �= 0. Then either fv′w(r ′k(λ′)) �= 0, in which case
w(r ′k(λ′)) = r ′k(wλ′) by the inductive hypothesis; or fv′,siw(r ′k(λ′)) �= 0 and
ci (siw(r ′k(λ′))) �= 0.

Let µ′ = siwλ
′. Then we have

siw(r ′k(λ′)) = r ′k(µ′)(3)

by the inductive hypothesis, and hence ci (r ′k(µ′)) �= 0, so that by (4.5.2) µ′ �=
siµ

′ and therefore

r ′k(siµ
′) = si (r

′
k(λ′))(4)

by (2.8.4) (ii). From (3) and (4) it follows that w(r ′k(λ′)) = r ′k(wλ′) as required.
�

Let w ∈ W0 and let w = si1 · · · si p be a reduced expression. Define

τw = τi1 · · · τi p(4.5.4)

which is independent of the reduced expression chosen. Since Ti (1A) = τi 1A

for each i , where 1A is the identity element of A, it follows that

T (w)(1A) = τw1A.(4.5.5)
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(4.5.6) Let w ∈ W0 and let

T (w) =
∑
v

fv(X )v−1

with fv ∈ A[c]. Then fv(−ρ ′k) = 0 if v �= 1, and f1(−ρ ′k) = τw.

Proof We shall apply (4.5.3) with λ′ = 0, so that r ′k(λ′) = −ρ ′k . If fv(−ρ ′k) �=
0, then

v(−ρ ′k) = r ′k(v(0)) = r ′k(0) = −ρ ′k
whence v = 1 by (1.5.5).

Now evaluate both sides at 1A. By (4.5.5) we obtain

τw =
∑
v

fv.

Evaluating at −ρ ′k now gives f1(−ρ ′k) = τw. �

(4.5.7) Let f ∈ A′0 and let f (Y−1)0 denote the restriction of f (Y−1) to A0.
Let

f (Y−1)0 =
∑
µ′∈L ′

fµ′ (X )t(−µ′).

Suppose that ν ′ ∈ L ′ is antidominant (i.e., <ν ′, α> ≤ 0 for all α ∈ R+), and
that fµ′ (ν ′ − ρ ′k) �= 0. Then µ′ + ν ′ is antidominant.

Proof Let

f (Y−1) =
∑
µ′∈L ′
v∈W0

gµ′,v(X )t(−µ′)v−1

so that

fµ′ =
∑
v∈W0

gµ′,v.

By (2.8.2), r ′k(ν ′) = ν ′ − ρ ′k since ν ′ is antidominant. Hence fµ′ (r ′k(ν ′)) �= 0
and therefore gµ′,v(r ′k(ν ′)) �= 0 for some v ∈ W0. By (4.5.3) we have

vt(µ′)(r ′k(ν ′)) = r ′k(vt(µ′)ν ′).(1)

Let π ′ = v(µ′ +ν ′). Then the left-hand side of (1) is equal to vt(µ′)(ν ′ −ρ ′k) =
π ′ − vρ ′k , and the right-hand side is

r ′k(π ′) = u(π ′)(−ρ ′k) = t(π ′)v(π ′)−1(−ρ ′k) = π ′ − v(π ′)−1ρ ′k .
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Hence vρ ′k = v(π ′)−1ρ ′k and so by (1.5.5) v = v(π ′)−1. Consequentlyµ′+ν ′ =
v−1π ′ = v(π ′)π ′ is antidominant. �

(4.5.8) Let f ∈ A[c]. If f (λ′ + ρ ′k) = 0 for all regular dominant λ′ ∈ L ′ (i.e.,
such that <λ′, α> > 0 for all α ∈ R+), then f = 0.

Proof By clearing denominators we may assume that f ∈ A, say

f =
r∑

i=1

fi e
µi

where fi ∈ K and µi ∈ L . Let λ′ ∈ L ′ be dominant regular and such that the
r numbers <λ′, µi> are all distinct (we have only to avoid a finite number of
hyperplanes <λ′, µi − µ j> = 0). Then

r∑
i=1

fi q
<mλ′+ρ ′k ,µi> = f (mλ′ + ρ ′k) = 0

for all integers m ≥ 1, and hence the polynomial

F(x) =
r∑

i=1

fi q
<ρ ′k ,µi>x<λ

′,µi>

vanishes for infinitely many values of x , namely x = qm,m ≥ 1. Hence F(x)
is identically zero and so f1 = · · · = fr = 0, i.e., f = 0. �

4.6 The operators Yλ′

For each a ∈ S1, let

Ga = τa + ba(X−1)(sa − 1) = ca(X−1)+ ba(X−1)sa(4.6.1)

so that in particular Gai = si Ti by (4.3.14). Clearly we have

wGaw
−1 = Gwa(4.6.2)

for all w ∈ W , and

G−1
a = ca(X )− ba(X−1)sa(4.6.3)

by use of (4.2.3) (iv).
Let w ∈ W and let w = u j si1 · · · si p be a reduced expression. As in (2.2.9)

let

br = si p · · · sir+1 (air )

for 1 ≤ r ≤ p, so that S1(w) = {b1, . . . , bp}. Then we have

T (w) = wGb1 · · · Gbp .(4.6.4)
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Proof From (4.6.2) it follows that

Gbr = si p · · · sir Tir sir+1 · · · si p

and therefore

T (w) = u j Ti1 · · · Ti p = wGb1 · · ·Gbp . �

Recall (2.8.3) that for x ∈ R, η(x) = 1 if x > 0 and η(x) = −1 if x ≤ 0.

(4.6.5) Let a ∈ S1 be such that α = Da is positive. Then for all µ ∈ L we
have

Gaeµ = τ−η(<µ,α∨>)
a eµ + lower terms.

Proof We have

Gaeµ = τaeµ + b(τa, τ
′
a ; e−a)(esa ·µ − eµ).(1)

If <µ, α∨> = r > 0, then sa · µ = µ − ra, and the right-hand side of (1) is
equal to

τaeµ −
r−1∑
j=0

u j e
µ− ja

where

u j =
{
τa − τ−1

a if j is even,

τ ′a − τ ′−1
a if j is odd.

Since µ− jα < µ for 1 ≤ j ≤ r − 1, it follows that the leading term of Gaeµ

is τ−1
a eµ, which establishes (4.6.5) in this case.

If on the other hand <µ, α∨> = −r < 0, the right-hand side of (1) is now

τaeµ +
r∑

j=1

u j e
µ+ ja .

We haveµ+ jα ∈ 0(µ) for 1 ≤ j ≤ r−1 andµ+rα = sαµ < µ by (2.7.9),
since α is positive. Hence µ+ jα < µ for 1 ≤ j ≤ r , and the leading term of
Gaeµ is now τaeµ.

Finally, it<µ, α∨> = 0 then saeµ = eµ, and hence Gaeµ = τaeµ by (4.6.1).
�

(4.6.6) Suppose thatw ∈ W is such that Da is positive for all a ∈ S(w). Then

w−1T (w)eµ = τ (w,µ)eµ + lower terms,
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where

τ (w,µ) =
∏

a∈S1(w)

τ−η(<µ,Da∨>)
a(4.6.7)

Proof This follows from (4.6.4) and (4.6.5). �

For each a ∈ S1 define

κa = κi

if a ∈ W ai , so that τa = qka/2. Then

τ (w,µ) = q f (w,µ)(4.6.8)

where

f (w,µ) = −1

2

∑
a∈S1(w)

η(<µ, Da∨>)κa .(4.6.9)

(4.6.10) Let λ′ ∈ L ′++, µ ∈ L. Then

f (t(λ′), µ) = <λ′, µ− rk ′ (µ)>.

Proof Suppose first that S = S(R) (1.4.1). Then for α ∈ R

t(λ′)(α + rc) = α + (r −<λ′, α>)c

so that

S(t(λ′)) = {α + rc : α ∈ R+, 0 ≤ r < <λ′, α>}
and therefore

f (t(λ′), µ) = −1

2

∑
α∈R+

η(<µ, α∨>)<λ′, α>k(α)

= <λ′, µ− rk ′ (µ)>

by (2.8.2), since α∨ = α′ and k(α) = k ′(α∨).
Next, suppose that S = S(R)∨ (1.4.2). Then

S(t(λ′)) = {(α + rc)∨ : α ∈ R+, 0 ≤ r < <λ′, α>}
and hence

f (t(λ′), µ) = −1

2

∑
α∈R+

η(<µ, α>) <λ′, α>k(α∨)

= <λ′, µ− rk ′ (µ)>

since now α′ = α and k ′(α∨) = k(α∨).
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Finally, suppose that S is of type (C∨
n ,Cn) (1.4.3), so that S1 = S(R)∨ where

R is of type Cn . If α ∈ R is a long root, then (α + rc)∨ is in the W -orbit of
an = α∨n if r is even, and in the W -orbit of a0 if r is odd; moreover, in this
case <λ′, α> is an even integer. It follows that if α ∈ R+ is a long root, the
contribution to f (t(λ′), µ) from the roots (α + rc)∨ in S1(t(λ′)) is

−1

4
η(<µ, α>) <λ′, α>(κn + κ0) = −1

2
η(<µ, α′>) <λ′, α>k ′(α∨),

since κn + κ0 = k1 + k2 + k3 + k4 = 2k ′1 = 2k ′(α∨). Hence again we have

f (t(λ′), µ) = <λ′, µ− rk ′ (µ)>. �

(4.6.11) Let λ′ ∈ L ′, µ ∈ L. Then

Y λ
′
eµ = q−<λ

′,rk′ (µ)>eµ + lower terms.

Proof Suppose first thatλ′ is dominant. Then Y λ
′ = T (t(λ′)) and t(λ′) satisfies

the conditions of (4.6.6), and therefore

t(λ′)−1Y λ
′
eµ = q<λ

′,µ−rk′ (µ)>eµ + lower terms(1)

by virtue of (4.6.6), (4.6.8) and (4.6.10). Since

t(λ′)eµ = q−<λ
′,µ>eµ,

it follows from (1) that (4.6.11) is true when λ′ is dominant.
If now λ′ is not dominant, then λ′ = λ′1 − λ′2 with λ′1, λ

′
2 both dominant.

Hence

Y λ
′
eµ = Y λ

′
1 (Y λ

′
2 )−1eµ

= q<λ
′
2−λ′1,rk′ (µ)>eµ + lower terms

= q−<λ
′,rk′ (µ)>eµ + lower terms. �

If we regard each f ∈ A′ as a function on V as in (4.5.1), we may restate
(4.6.11) as follows:

(4.6.12) Let f ∈ A′ and µ ∈ L. Then

f (Y )eµ = f (−rk ′ (µ))eµ + lower terms.

(4.6.13) Let f ∈ A′0 and µ ∈ L++. Then

f (Y )mµ = f (−µ− ρk ′ )mµ + lower terms.

For −rk ′ (w0µ) = −w0µ+ ρk ′ = −w0(µ+ ρk ′ ). �
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4.7 The double affine Hecke algebra

Suppose first that S is reduced ((1.4.1), (1.4.2)). Then the double affine Hecke
algebra H̃ is the quotient of the group algebra K B̃ of the double braid group
B̃ by the ideal generated by the elements

(Ti − τi )
(
Ti + τ−1

i

)
(i ∈ I ).

Thus H̃ is generated over K by H and X L = {Xλ : λ ∈ L}, subject to the
relations (3.4.2)–(3.4.5).

Suppose now that S is of type (C∨
n ,Cn) (1.4.3). Let

T ′n = X−an T−1
n , T ′0 = X−a0 T−1

0(4.7.1)

as in (4.3.19). Then in this case the double affine Hecke algebra H̃ is the quotient
of K B̃ by the ideal generated by the elements

(Ti − τi )
(
Ti + τ−1

i

)
(0 ≤ i ≤ n), (T ′0 − τ ′0)

(
T ′0 + τ ′−1

0

)
, (T ′n − τ ′n)

(
T ′n + τ ′−1

n

)
.

Thus H̃ is generated over K by H and X L subject to the relations (3.4.2)–(3.4.5)
and

(T ′0 − τ ′0)
(
T ′0 + τ ′−1

0

) = (T ′n − τ ′n)
(
T ′n + τ ′−1

n

) = 0.(4.7.2)

Let f ∈ � = L ⊕ Zc0 (1.4.8). Then in H̃ we have

Ti X f − Xsi f Ti = bi (X )(X f − Xsi f )(4.7.3)

for all i ∈ I ,

Proof If <L , a∨i > = Z, this follows from the relations (3.4.2)–(3.4.4) in the
same way that (4.2.4) was a consequence of (3.2.4).

If <L , a∨i > = 2Z, so that we are in the situation of (1.4.3) and i = 0 or
n, then just as in the proof of (4.2.4) it is enough to verify (4.7.3) for a single
f ∈ � such that < f, a∨i > = 2. We take f = ai (i = 0 or n) and calculate

Ti Xai − X−ai Ti = Ti Xai − X−ai
(
T−1

i + τi − τ−1
i

)
= T ′−1

i − T ′i −
(
τi − τ−1

i

)
X−ai

= −(τ ′i − τ ′−1
i

)− (τi − τ−1
i

)
X−ai

= bi (X )(Xai − X−ai )

by use of (4.7.1) and (4.7.2). �
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From (4.7.3) and (4.3.15) it follows that the representation β of H on A
(4.3.10) extends to a representation (also denoted by β) of H̃ on A, such that
β(Xµ) is multiplication by eµ for µ ∈ L .

(4.7.4) (i) The representation β of H̃ on A is faithful
(ii) The elements T (w)Xµ (resp. the elements XµT (w)), where w ∈ W and
µ ∈ L, form a K-basis of H̃.

Proof As in the proof of (4.2.7), it follows from (4.7.3) that the elements
T (w)Xµ (resp. XµT (w)) span H̃ as a K -vector space. On the other hand, by
(4.3.11), their images under β are linearly independent as linear operators on
A. This proves both parts of (4.7.4). �

(4.7.5) The elements Y λ
′
T (w)Xµ (resp. the elements XµT (w)Y λ

′
) where λ′ ∈

L ′, µ ∈ L and w ∈ W0, from a K -basis of H̃.

This follows from (4.2.7) and (4.7.4). �

Now let H̃’be the algebra defined as follows. If S is reduced ((1.4.1), (1.4.2)),
H̃’ is obtained from H̃ by interchanging R and R′, L and L ′. If S is of type
(C∨

n ,Cn) (1.4.3), H̃’ is obtained from H̃ by interchanging the parameters τ0 and
τ ′n (which affects only the relations (4.7.2)).

(4.7.6) The K-linear mapping ω: H̃’→ H̃ defined by

ω(Xλ
′
T (w)Yµ) = X−µT (w−1)Y−λ

′

(λ′ ∈ L ′, µ ∈ L , w ∈ W0) is an anti-isomorphism of K -algebras.

Proof In view of the duality theorem (3.5.1) we have only to verify that ω
respects the Hecke relations in H̃’ and H̃.
(a) In the case where S is reduced ((1.4.1), (1.4.2)) we have to show that T ∗0
defined by (3.5.2) satisfies

(T ∗0 − τ0)
(
T ∗0 + τ−1

0

) = 0.

From (3.4.9) it follows that T ∗0 is conjugate in B̃ to T−1
i X−ai for some i �= 0

such that τi = τ0. Hence it is enough to show that

T−1
i X−ai − Xai Ti = τi − τ−1

i
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or equivalently that

Ti X−ai − Xai Ti =
(
τi − τ−1

i

)
(1+ X−ai ).

But this is the case f = −ai of (4.7.3).
(b) When S is of type (C∨

n ,Cn) (1.4.3) we have to show that

(ω(T0)− τ ′n)
(
ω(T0)+ τ ′−1

n

) = 0,(1)

(ω(T ′0)− τ ′0)
(
ω(T ′0)+ τ ′−1

0

) = 0,(2)

(ω(T ′n)− τ0)
(
ω(T ′n)+ τ−1

0

) = 0,(3)

By (3.4.9),ω(T0) = T ∗0 is conjugate in B̃ to T−1
n X−an , hence also to X−an T−1

n =
T ′n , which proves (1). Next, we have

ω(T ′0) = ω(q−1/2 X ε1 T−1
0

) = q−1/2ω(T0)−1Y−ε1

= q−1/2(Y−ε1 T0 X−ε1 )−1Y−ε1 = q−1/2 X ε1 T−1
0 = T ′0,

which proves (2). Finally, by (3.3.7),ω(T ′n) = T−1
n Y εn is conjugate to T0, which

gives (3). �

By (4.7.4) we may identify H̃ with its image under β, and regard each h ∈ H̃
as a linear operator on A. We define a K -linear map θ : H̃→ K as follows:

θ(h) = h(1A)(−ρ ′k),(4.7.7)

where 1A is the identity element of A. Dually, we define θ ′ : H̃’→ K by

θ ′(h′) = h′(1A′ )(−ρk ′ ).(4.7.7′)

Suppose that h = f (X )T (w)g(Y−1), where f ∈ A, g ∈ A′ and w ∈ W0. By
(4.6.12) we have

g(Y−1)(1A) = g(−ρk ′ )1A.(1)

If w = si1 · · · si p , let τw = τi1 · · · τi p . Since Ti (1A) = τi 1A, it follows that

T (w)1A = τw1A.(2)

From (1) and (2) we have

θ ( f (x)T (w)g(Y−1)) = f (−ρ ′k)τwg(−ρk ′ ).(4.7.8)

Since

f (X )T (w)g(Y−1) = ω(g(X )T (w−1) f (Y−1))
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it follows from (4.7.5) and (4.7.8) that

θ ′ = θ ◦ ω.(4.7.9)

Next, if h ∈ H̃ and h′ ∈ H̃’, we define

[h, h′] = θ ′(ω−1(h)h′),(4.7.10)

[h′, h] = θ (ω(h′)h).(4.7.10′)

From (4.7.9) it follows that

[h′, h] = [h, h′].(4.7.11)

Also, if h1 ∈ H̃ we have

[h1h, h′] = [h, ω−1(h1)h′](4.7.12)

because θ ′(ω−1(h1h)h′) = θ ′(ω−1(h)ω−1(h1)h′).
In particular, if f ∈ A and f ′ ∈ A′ we define

[ f, f ′] = [ f (X ), f ′(X )] = θ ′( f (Y−1) f ′(X )) = ( f (Y−1) f ′)(−ρk ′ )(4.7.13)

and dually

[ f ′, f ] = [ f ′(X ), f (X )] = ( f ′(Y−1) f )(−ρ ′k).(4.7.13′)

From (4.7.11), this pairing between A and A′ is symmetric:

[ f ′, f ] = [ f, f ′].(4.7.14)

Notes and references

The fundamental relation (4.2.4) is Lusztig’s Prop. 3.6 of [L1]. The basic repre-
sentation β of the affine Hecke algebra H and its properties are due to Cherednik
[C2], as is the double affine Hecke algebra H̃. The mappings θ, θ ′ and the pairing
(4.7.10) are also due to Cherednik [C4].
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Orthogonal polynomials

5.1 The scalar product

Let S be an irreducible affine root system, as in Chapter 1. Fix a basis (ai )i∈I

of S, and let S+ be the set of positive affine roots determined by this basis. Let

S1 =
{
a ∈ S : 1

2 a �∈ S
}

as in §1.3, so that S1 = S if S is reduced, and in any case S1 is a reduced affine
root system with the same basis (ai ) as S.

As in §1.2 there is a unique relation of the form∑
i∈I

mi ai = c

where the mi are positive integers with no common factor, and c is a positive
constant function. Fix an index 0 ∈ I as in §1.2 (so that m0 = 1).

We shall in fact assume that S is as in (1.4.1), (1.4.2) or (1.4.3). This as-
sumption excludes the reduced affine root systems of type BCn (1.3.6) and the
non-reduced systems other than (C∨

n ,Cn). The reason for this exclusion will
become apparent later (5.1.7).

As in §1.4, let

� = L ⊕ Zc0

and let

�+ = L ⊕ Nc0.

The affine roots a ∈ S lie in �, and the positive affine roots in �+. If f ∈ �,

85
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say f = µ+ rc0, where µ ∈ L and r ∈ Z, let

e f = qr
0eµ = qr/eeµ

as in §4.3 (where q0 = q1/e).

For each a ∈ S let ta be a positive real number such that ta = tb if a, b are in
the same W -orbit in S, where W is the extended affine Weyl group of S. The ta
determine a labelling k of S as follows: if a ∈ S1,

qk(a) = tat1/2
2a , qk(2a) = t1/2

2a(5.1.1)

where t1/2
2a is the positive square root, and t2a = 1 (so that k(2a) = 0) if 2a �∈ S.

For each a ∈ S let

 a =  a,k = 1− t1/2
2a ea

1− tat1/2
2a ea

.(5.1.2)

If a ∈ S1 we have

 a 2a =
(
1− t1/2

2a ea
)
(1− e2a)(

1− tat1/2
2a ea
)
(1− t2ae2a)

= 1− e2a(
1− qk(a)ea

)(
1+ qk(2a)ea

)
so that

( a 2a)−1 = τac(τa, τ
′
a ; ea)(5.1.3)

in the notation of (4.2.2), where

τa = (tat2a)1/2 = qκa/2, τ ′a = t1/2
a = qκ

′
a/2(5.1.4)

(so that τa = τ ′a if 2a �∈ S), and

κa = k(a)+ k(2a), κ ′a = k(a)− k(2a)(5.1.5)

as in §4.4. Let

τi = qκi/2 = τai , τ
′
i = qκ

′
i /2 = τ ′ai

.(5.1.6)

for each i ∈ I , so that κi = κ ′i for all i ∈ I except when S is of type (C∨
n ,Cn)

and i = 0 or n.
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We now define the weight function

 =  S,k =
∏

a∈S+
 a =

∏
a∈S+

1− t1/2
2a ea

1− tat1/2
2a ea

.(5.1.7)

We may remark that if S0 is a subsystem of S, then S0,k is obtained from S,k

by setting ta = 1 for all a ∈ S− S0. Thus if S is of type (C∨
n ,Cn) and S0 is one

of the non-reduced systems (1.3.15)–(1.3.17), or one of the “classical” reduced
systems (1.3.2)–(1.3.7),  S0,k is obtained from  S,k by setting some of the ta
equal to 1.

On expansion, is a formal power series in the exponentials eai (i ∈ I ), with
coefficients in the ring of polynomials in the ta and t1/2

2a : say

 =
∑

b∈�+
ubeb =

∑
λ∈L
r≥0

uλ+rcqr eλ.

If f ∈ A, say

f =
∑
λ∈L

fλe
λ,

the constant term of f is defined to be

ct( f ) =
∑
r≥0

(∑
λ∈L

uλ+rc f−λ

)
qr ,(5.1.8)

a formal power series in q .
Let

 1 =  /ct( ) =
∑
µ∈L

vµ(q, t)eµ(5.1.9)

so that v0(q, t) = 1.

(5.1.10) (i) The coefficientsvµ(q, t) are rational functions of q and the ta, t
1/2
2a .

(ii) vµ(q, t) = v−µ(q−1, t−1) for all µ ∈ L.

Proof We shall give the proof when S is reduced. As in §1.4 we shall assume
that |ϕ|2 = 2, where ϕ is the highest root of R. For each i ∈ I , since si permutes
S+ − {ai }, we have

si 1

 1
= 1− e−ai

1− ti e−ai

1− ti eai

1− eai
= 1− ti eai

ti − eai
(5.1.11)
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where ti = tai . Hence

(1− ti e
ai )
(∑

vµeµ
)
= (ti − eai )

∑
vµesiµ.(1)

Suppose first that i �= 0. Then by comparing coefficients of eµ+ai on either side
of (1) we obtain

vµ+ai − tivµ = tivsiµ−ai − vsiµ.(2)

Suppose next that i = 0. Since a0 = −ϕ + c (because |ϕ|2 = 2) we have
s0 · µ = sϕµ+<µ, ϕ>c and therefore∑

µ

vµes0·µ =
∑
µ

q−<µ,ϕ>vsϕµeµ.

Hence by equating coefficients of eµ−ϕ on either side of (1) we obtain

vµ−ϕ − qt0vµ = q−<µ,ϕ>+2t0vsϕµ+ϕ − q−<µ,ϕ>+1vsϕµ.(3)

Let � denote the field of rational functions in q and the ti . We proceed by
induction on µ, and assume that vν ∈ � for all ν in a lower W0-orbit than µ.
Let λ be the dominant element of the orbit W0µ, and suppose first that µ �= λ.
Then for some i �= 0 we have<µ, a∨i > = −r < 0, so that siµ = µ+ rai < µ

by (2.7.9). From (2) we obtain

vµ − t−1
i vsiµ ∈ �

and hence by iteration, for all µ ∈ W0λ,

vµ − t−1
w vλ ∈ �,(4)

where w ∈ W0 is the shortest element such that wµ = λ, and tw = ti1 · · · ti p if
w = si1 · · · si p is a reduced expression.

Next, we have<λ, ϕ> = r ′ ≥ 1 since λ is dominant. Hence from (3) applied
to λ we obtain

vλ − t−1
0 q−r ′vsϕλ ∈ �.(5)

From (4) (with µ = sϕλ) and (5) it follows that vλ ∈ � and hence that vµ ∈ �
for all µ ∈ W0λ.

This proves (5.1.10) (i) and shows that  1 is uniquely determined by the
relations (5.1.11), together with the fact that the constant term of 1 is 1. Now
these relations are unaltered by replacing ti and eai by t−1

i and e−ai . Hence the
same is true of  1, which establishes (5.1.10) (ii).
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Finally, when S is not reduced, the argument is essentially the same: (5.1.11)
is replaced by

si 1

 1
= (1− ti eai )(1+ t ′i e

ai )

(ti − eai )(t ′i + eai )

where ti = tai t
1/2
2ai

and t ′i = t1/2
2ai

, and the recurrence relations (2) and (3) are
correspondingly more complicated. �

(5.1.12) When S = S(R) with R reduced, we have

 =
∏
α∈R+

(eα; q)∞(qe−α; q)∞(
qk(α)eα; q

)
∞
(
qk(α)+1e−α; q

)
∞

where we have made use of the standard notation

(x ; q)∞ =
∞∏

i=0

(1− xqi ).

Since (x ; q)∞/(qk x ; q)∞ → (1 − x)k as q → 1, for all k ∈ R (see e.g. [G1],
Chapter 1), it follows that

 →
∏
α∈R

(1− eα)k(α)

as q → 1.
Next, if the labels k(α) are non-negative integers, is a finite product, namely

 =
∏
α∈R+

(eα; q)k(α)(qe−α; q)k(α)

where

(x ; q)k =
k−1∏
i=0

(1− xqi )

for k ∈ N. Equivalently,

 =
∏

a∈S(k)

(1− ea)

where

S(k) = {a ∈ S : a(x) ∈ (0, k(a)) for x ∈ C}
and C is the fundamental alcove (§1.2) for WS .

(5.1.13) Suppose next that S = S(R)∨, where R is reduced and R∨ �= R. As
in §1.4, we assume that |α|2 = 2 if α ∈ R is a long root. Let uα = 2/|α|2 for



90 5 Orthogonal polynomials

α ∈ R; then uα = 1 if α is long and uα = d if α is short, where d (= 2 or 3)
is the maximum bond-strength in the Dynkin diagram of R. Let qα = quα for
each α ∈ R, and let k∨(α) = u−1

α k(α∨). Then we have

 =
∏
α∈R+

(
eα

∨
; qα
)
∞
(
qαe−α

∨
; qα
)
∞(

qk∨(α)
α eα∨ ; qα

)
∞
(
qk∨(α)+1
α e−α∨ ; qα

)
∞
,

and  →∏α∈R(1− eα
∨
)k∨(α) as q → 1.

If each k∨(α) is a non-negative integer,

 =
∏
α∈R+

(eα
∨
; qα)k∨(α)(qαe−α

∨
; qα)k∨(α)

=
∏

a∈S(k)

(1− ea)

with S(k) as defined in the previous paragraph (5.1.12).

(5.1.14) When S is of type (C∨
n ,Cn) and W = WS is the affine Weyl group of

type Cn , the orbits O1, . . . , O5 of W in S were described in §1.3. In the notation
of (1.3.18) let

R1 = {±ε1, . . . ,±εn}, R2 = {±εi ± ε j : 1 ≤ i < j ≤ n},
R+1 = {ε1, . . . , εn}, R+2 = {εi ± ε j : 1 ≤ i < j ≤ n},

and let

(u1, . . . , u4) = (qk1 ,−qk2 , qk3+ 1
2 ,−qk4+ 1

2
)
,

(u′1, . . . , u
′
4) = (qk1+1,−qk2+1, qk3+ 1

2 ,−qk4+ 1
2
)

where ki = k(a) for a ∈ Oi , as in §1.5. Then  =  (1) (2), where

 (1) =
∏
α∈R+1

(e2α; q)∞(qe−2α; q)∞
4∏

i=1
(ui eα; q)∞(u′i e−α; q)∞

,

and

 (2) =
∏
α∈R+2

(eα; q)∞(qe−α; q)∞
(qk5 eα; q)∞(qk5+1e−α; q)∞

.

When q → 1 we have

 (1) →
∏
α∈R1

(1− eα)k1+k3 (1+ eα)k2+k4 ,

 (2) →
∏
α∈R2

(1− eα)k5 .
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If each of k1, . . . , k4 is a non-negative integer, then

 (1) =
∏
α∈R+1

4∏
i=1

(vi e
α; q)ki (v

′
i e
−α; q)ki

where

(v1, . . . , v4) = (1,−1, q1/2,−q1/2
)
,

(v′1, . . . , v
′
4) = (q,−q, q1/2,−q1/2

)
.

Let K be the field generated over Q by the τa, τ
′
a (a ∈ S) and q0 = q1/e, and

as in Chapter 4 let A = K L and A′ = K L ′ denote the group algebras of L and
L ′ over K . We define an involution f 
→ f ∗ on A and on A′ as follows: if

f =
∑
λ

fλe
λ

with coefficients fλ ∈ K , then

f ∗ =
∑
λ

f ∗λ e−λ(5.1.15)

where f ∗λ is obtained from fλ by replacing q0, τa, τ
′
a by their inverses q−1

0 , τ
−1
a ,

τ ′−1
a respectively. Thus for example

(ea)∗ = e−a

for all a ∈ S.

If the labels k(α) in (5.1.12), k∨(α) in (5.1.13) and ki in (5.1.14) are non-
negative integers, so that  is a finite product and hence an element of A,
then

 ∗ = q−N (k) ,(5.1.16)

where

N (k) =




∑
α∈R+

k(α)2 if S = S(R),

∑
α∈R+

uαk∨(α)2 if S = S(R)∨,

n
(
k2

1 + · · · + k2
4

)+ n(n − 1)k2
5 if S = (C∨

n ,Cn
)
.

Proof This is a matter of simple calculation. For example, if S = S(R), then
by (5.1.12)

 =
∏
α∈R+

k(α)−1∏
i=0

(1− qi eα)(1− qi+1e−α)
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so that

 ∗ =
∏
α∈R+

k(α)−1∏
i=0

q−2i−1(1− qi eα)(1− qi+1e−α)

= q−N (k) ,

where

N (k) =
∑
α∈R+

k(α)−1∑
i=0

(2i + 1) =
∑
α∈R+

k(α)2.

Similarly in the other cases. �

We now define a scalar product on A as follows:

( f, g) = ct( f g∗ )(5.1.17)

where f, g ∈ A and  =  S,k , and as before ct means constant term. This
scalar product is sesquilinear, i.e.

(ξ f, g) = ξ ( f, g), ( f, ξg) = ξ ∗( f, g)

for ξ ∈ K . We shall also define the normalized scalar product

( f, g)1 = ct( f g∗ 1) = ( f, g)/(1, 1).(5.1.18)

This normalized scalar product is K -valued and Hermitian, i.e.,

(g, f )1 = ( f, g)∗1(5.1.19)

for f, g ∈ A. For if

f =
∑

fλe
λ, g =

∑
gµeµ,  1 =

∑
vλe

λ

then vλ = v∗−λ ∈ K by (5.1.10), and

(g, f )1 =
∑
λ,µ

f ∗λ gµvλ−µ =
(∑
λ,µ

fλg∗µvµ−λ

)∗

= ( f, g)∗1. �

Dually, we define a scalar product on A′ by

( f, g)′ = ct( f g∗ ′)(5.1.17′)

where f, g ∈ A′ and  ′ =  S′,k ′ , and S′, k ′ are as defined in §1.4 and §1.5.
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(5.1.20) Let f ∈ A, f �= 0. Then ( f, f ) is not identically zero.

Proof Let

f =
∑
µ

fµ(q, t)eµ.

As functions of q0, each coefficient fµ has only finitely many zeros and poles.
Hence we can choose labels k(a) ∈ N for which f is well-defined and nonzero.
By multiplying f by a suitable power of 1 − q0, we may further assume that
f is well-defined and nonzero at q0 = 1. The coefficients fµ are now rational
numbers. Now when q0 = 1 it follows from (5.1.12)–(5.1.14) that  = F F∗,
where F is the product of a finite number of factors of the form 1± eα, α ∈ R.
Let

g = F f =
∑

gλe
λ

with coefficients gλ ∈ Q. Then

( f, f ) = ct(gg∗) =
∑

g2
λ > 0

and so ( f, f ) is not identically zero as a function of q0 and the t’s. �

From (5.1.20) it follows that

(5.1.21) The restriction of the scalar product ( f, g) to every nonzero subspace
of A is nondegenerate.

If F : A → A is a linear operator, we denote by F∗ the adjoint of F (when
it exists), so that

(F f, g) = ( f, F∗g)

for all f, g ∈ A.
Let H̃ be the double affine Hecke algebra (§4.7), identified via the repre-

sentation β (4.7.4) with a ring of operators on A. We recall that the elements
T (w) f (X ) (w∈W, f ∈ A) form a K -basis of H̃.

(5.1.22) Each F ∈ H̃ has an adjoint F∗. If F = T (w) f (X ) then F∗ =
f ∗(X )T (w)−1.

Proof It is clear from the definitions that the adjoint of f (X ) is f ∗(X ), and
that the adjoint of U j (= u j ) is u−1

j ( j∈J ). Hence it is enough to show that
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T ∗i = T−1
i for each i ∈ I . If f, g ∈ A we have

(si f, g) = ct((si f )g∗ )

= ct( f (si g)∗si )

and by (5.1.3)

si = ci (X )

ci (X−1)
 

where ci (X±1) = ci (τi , τ
′
i ; X±ai ). It follows that the adjoint of si is

s∗i =
ci (X )

ci (X−1)
si .(5.1.23)

Since (4.3.12)

Ti = τi + ci (X )(si − 1)

it follows that Ti has an adjoint and that (since c∗i = ci )

T ∗i = τ−1
i + (s∗i − 1)ci (X )

= τ−1
i +
(

ci (X )

ci (X−1)
si − 1

)
ci (X )

= τ−1
i + ci (X )(si − 1) = T−1

i . �

In particular:

(5.1.24) If f ∈ A′, the adjoint of f (Y ) is f ∗(Y ). �

Later we shall require a symmetric variant of the scalar product (5.1.17). Let

S0 = {a ∈ S : a(0) = 0},
which is a finite root system, let S+0 = S0 ∩ S+, and define

 0 =  0
S,k =
∏

a∈S+0

 −a,k,(5.1.25)

∇ = ∇S,k =  S,k 
0
S,k .(5.1.26)

If i ∈ I, i �= 0, we have

si 
0

 0
=  ai 2ai

 −ai −2ai

=  

si 

and hence



5.1 The scalar product 95

(5.1.27) ∇ is W0-symmetric. �

(5.1.28) (i) When S = S(R) with R reduced, we have

∇ =
∏
α∈R

(eα,q)∞(
qk(α)eα; q

)
∞
.

(ii) When S = S(R)∨ we have

∇ =
∏
α∈R

(
eα

∨
; qα
)
∞(

qk∨(α)eα∨ ; qα
)
∞

in the notation of (5.1.13).

(iii) When S is of type (C∨
n ,Cn) we have

∇ = ∇ (1)∇ (2)

where, in the notation of (5.1.14),

∇ (1) =
∏
α∈R1

(e2α; q)∞∏4
i=1(ui eα; q)∞

,

∇ (2) =
∏
α∈R2

(eα; q)∞
(qk5 eα; q)∞

.

For f, g ∈ A we define

< f, g> = 1

|W0|ct( f ḡ∇)(5.1.29)

where g 
→ ḡ is the involution on A defined as follows: if g =∑ gµeµ then

ḡ =
∑

gµe−µ.(5.1.30)

Since ∇ = ∇̄, it follows that the scalar product (5.1.29) is symmetric:

< f, g> = <g, f>.(5.1.31)

The restrictions to A0 = AW0 of the two scalar products are closely related.
For each w ∈ W0 let

k(w) =
∑

a∈S(w)

k(a)(5.1.32)

where, as in Chapter 2, S(w) = S+ ∩ w−1S−, and let

W0(qk) =
∑
w∈W0

qk(w).(5.1.33)
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(In multiplicative notation,

qk(w) =
∏

a∈S(w)

ta = tw

since tat2a = qk(a)+k(2a) by (5.1.1).)
For g =∑ gµeµ ∈ A, let

g0 =
∑

g∗µeµ = ḡ∗.(5.1.34)

Then for f, g ∈ A0 we have

( f, g) = W0(qk)< f, g0>.(5.1.35)

Proof We have

( f, g) = ct( f g∗ )

= 1

|W0|ct

(
f g∗
∑
w∈W0

w 

)

and ∑
w∈W0

w = ∇
∑
w∈W0

w( 0)−1,

since ∇ =   0 is W0-symmetric (5.1.27). Hence (5.1.35) follows from the
identity ∑

w∈W0

w( 0)−1 = W0(qk)(5.1.36)

which is a well-known result ([M3], or (5.5.16) below). �

Finally, for f, g ∈ A we define

< f, g>1 = < f, g>/<1, 1>.(5.1.37)

Then it follows from (5.1.35) that for f, g ∈ A0 we have

( f, g)1 = < f, g0>1(5.1.38)

and hence by (5.1.19)

< f 0, g>1 = < f, g0>∗1.(5.1.39)

We conclude this section with two results relating to the polynomial W0(qk):

W0(qk) = ( 0
S,k(−ρ ′k)

)−1
,(5.1.40)

W0(qk) = W0(qk ′ ).(5.1.41)
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Proof (5.1.40) follows from (5.1.36) by evaluating the left-hand side at−ρ ′k ,
which kills all the terms in the sum except that corresponding to w = 1 [M3].

As to (5.1.41), we may assume that S is of type (C∨
n ,Cn) (1.4.3), since k ′ = k

in all other cases. In that case,

k(w) = l1(w)(k1 + k2)+ l2(w)k5

where, in the notation of (5.1.14),

li (w) = Card {α ∈ R+i : wα ∈ R−i }.
Since k ′1 + k ′2 = k1 + k2 and k ′5 = k5, it follows that k ′(w) = k(w) for all
w ∈ W0, which gives (5.1.41). �

5.2 The polynomials Eλ

(5.2.1) For each λ ∈ L there is a unique element Eλ ∈ A such that
(i) Eλ = eλ + lower terms,

(ii) (Eλ, eµ) = 0 for all µ < λ,
where “lower terms” means a K -linear combination of the eµ, µ ∈ L, such
that µ < λ.

Proof Let Aλ denote the finite-dimensional subspace of A spanned by the eµ

such that µ ≤ λ. By (5.1.21) the scalar product remains non-degenerate on
restriction to Aλ. Hence the space of f ∈ Aλ orthogonal to eµ for each µ < λ
is one-dimensional, i.e. the condition (ii) determines Eλ up to a scalar factor.
Condition (i) then determines Eλ uniquely. �

Let f ∈ A′. Then we have

( f (Y )Eλ, e
µ) = (Eλ, f ∗(Y )eµ) = 0

if µ < λ, by (5.1.24) and (4.6.12). It follows that f (Y )Eλ is a scalar multiple
of Eλ, namely

f (Y )Eλ = f (−rk ′ (λ))Eλ(5.2.2)

by (4.6.12) again. Hence the Eλ form a K -basis of A that diagonalizes the action
of A′(Y ) on A.

Moreover, the Eλ are pairwise orthogonal:

(Eλ, Eµ) = 0(5.2.3)

if λ �= µ.
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Proof Let ν ′ ∈ L ′. Then

q<ν
′,rk′ (λ)>(Eλ, Eµ) = (Y−ν

′
Eλ, Eµ) = (Eλ, Y

ν ′ Eµ)

= q<ν
′,rk′ (µ)>(Eλ, Eµ),

by (5.2.2) and (5.1.24). Assume first that k ′(α∨) > 0 for each α ∈ R; if
λ �= µ we have rk ′ (λ) �= rk ′ (µ) by (2.8.5), hence we can choose ν ′ so that
<ν ′, rk ′ (λ)> �= <ν ′, rk ′ (µ)>, and we conclude that (Eλ, Eµ) = 0 if all the
labels k ′(α∨) are positive.

Now the normalized scalar product (Eλ, Eµ)1 (5.1.18) is an element of K ,
that is to say a rational function in say r variables over Q (where r ≤ 6). By the
previous paragraph it vanishes on a non-empty open subset of Rr , and hence
identically. �

Dually, we have polynomials E ′µ ∈ A′ for each µ ∈ L ′, satisfying

E ′µ = eµ + lower terms,(5.2.1′)

f (Y )E ′µ = f (−r ′k(µ))E ′µ(5.2.2′)

for each f ∈ A, and

(E ′µ, E ′ν)
′ = 0(5.2.3′)

if µ, ν ∈ L ′ and µ �= ν.

Next we have

(5.2.4) (Symmetry). Let λ ∈ L , µ ∈ L ′. Then

Eλ(r
′
k(µ))E ′µ(−ρk ′ ) = Eλ(−ρ ′k)E ′µ(rk ′ (λ)).

Proof From (4.7.13) we have

[Eλ, E ′µ] = (Eλ(Y
−1)E ′µ)(−ρk ′ )

= Eλ(r
′
k(µ))E ′µ(−ρk ′ )

by (5.2.2′). Hence the result follows from (4.7.14). �

We shall exploit (5.2.4) to calculate Eλ(−ρ ′k) and the normalized scalar prod-
uct (Eλ, Eλ)1. When ta = 1 for all a ∈ S, we have  = 1, so that Eλ = eλ for
each λ ∈ L; also ρ ′k = 0, so that Eλ(−ρ ′k) = 1. It follows that Eλ(−ρ ′k) is not
identically zero, so that we may define

Ẽλ = Eλ/Eλ(−ρ ′k)(5.2.5)



5.2 The polynomials Eλ 99

for λ ∈ L , and dually

Ẽ ′µ = E ′µ/E ′µ(−ρk ′ )(5.2.5′)

for µ ∈ L ′. Then (5.2.4) takes the form

Ẽλ(r
′
k(µ)) = Ẽ ′µ(rκ ′ (λ)).(5.2.6)

(5.2.7) Let λ ∈ L. Then

(i) Y−λ =
∑
w

fw(X )w−1,

(ii) Y λ =
∑
w

wgw(X )

as operators on A′, where fw, gw ∈ A′[c] and the summations are overw ∈ W ′

such that w ≤ t(λ).

Proof Let λ = π − σ where π, σ ∈ L++, so that Y λ = T (t(σ ))−1T (t(π )).
Both (i) and (ii) now follow from (4.4.7). �

(5.2.8) Let λ,µ ∈ L. Then

(i) eλ Ẽµ =
∑
w

fw(rk ′ (µ))Ẽwµ

with fw as in (5.2.7) (i); the summation is now overw ∈ W ′ such thatw ≤ t(λ)
and w(rk ′ (µ)) = rk ′ (wµ).

(ii) e−λ Ẽµ =
∑
w

gw(w−1rk ′ (µ))Ẽw−1µ

with gw as in (5.2.7) (ii); the summation is now overw ∈ W ′ such thatw ≤ t(λ)
and w−1(rk ′ (µ)) = rk ′ (w−1µ).

Proof Let ν ∈ L ′. Since

Y−λ Ẽ ′ν = q<λ,r
′
k (ν)> Ẽ ′ν

by (5.2.2′), it follows from (5.2.7) (i) that

q<λ,r
′
k (ν)> Ẽ ′ν =

∑
w�t(λ)

fww
−1 Ẽ ′ν .

Now evaluate both sides at rk ′ (µ) and use (5.2.6). We shall obtain

q<λ,r
′
k (ν)> Ẽµ(r ′k(ν)) =

∑
w

fw(rk ′ (µ))Ẽwµ(r ′k(ν))

summed over w ∈ W ′ as stated above, since w(rk ′ (µ)) = rk ′ (wµ) if
fw(rk ′ (µ)) �= 0 by (4.5.3). Hence the two sides of (5.2.8) (i) agree at all points
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r ′k(ν) where ν ∈ L ′, and therefore they are equal, by (4.5.8). The proof of (5.2.8)
(ii) is similar. �

When µ = 0, so that Ẽµ = Eµ = 1, (5.2.8) (i) gives

eλ =
∑
w

fw(−ρk ′ )Ẽw(0)

summed over w ∈ W ′ such that w ≤ t(λ) and w(−ρk ′ ) = rk ′ (w(0)). Let us
assume provisionally that the labelling k ′ is such that

ρk ′ is not fixed by any element w �= 1 of W ′.(*)

If w(0) = µ then rk ′ (w(0)) = u′(µ)(−ρk ′ ) and it follows that w = u′(µ), so
that

eλ =
∑
µ�λ

fu′(µ)(−ρk ′ )Ẽµ.(5.2.9)

Hence, considering the coefficient of eλ on the right-hand side, we have

Eλ(−ρ ′k) = fu′(λ)(−ρk ′ ).(5.2.10)

Next, when µ = λ, (5.2.8) (ii) gives

e−λ Ẽλ =
∑
w

gw(w−1rk ′ (λ))Ẽw−1λ,

summed over w ∈ W ′ such that w ≤ t(λ) and w−1(rk ′ (λ)) = rk ′ (w−1λ). In
particular, if w−1λ = 0 we have w−1(rk ′ (λ)) = rk ′ (0) = −ρk ′ , so that w =
u′(λ). Hence the coefficient of Ẽ0 = 1 in e−λ Ẽλ is equal to gu′(λ)(−ρk ′ ), and
therefore by (5.2.9)

(Ẽλ, Ẽλ)1 = fu′(λ)(−ρk ′ )
−1(eλ, Ẽλ)1

= fu′(λ)(−ρk ′ )
−1(1, e−λ Ẽλ)1

so that

(Ẽλ, Ẽλ)1 = gu′(λ)(−ρk ′ )
∗/ fu′(λ)(−ρk ′ ).(5.2.11)

It remains to calculate f and g explicitly. From (5.2.7) and (4.4.8) we have

T (v(λ))
∑
w∈W ′
w(0)=λ

fw(X )w−1 = cS′,k ′ (u
′(λ))(X )u′(λ)−1(i)

and ∑
w∈W ′
w(0)=λ

wgw(X ) = cS′,k ′ (u
′(λ)−1)(X )u′(λ)T (v(λ)).(ii)
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Since S′(w−1) = −wS′(w) (2.2.2), it follows that

w−1(cS′,k ′ (w
−1)) = cS′,−k ′ (w)

(since c(t, u; x−1) = c(t−1, u−1; x)), so that

cS′,k ′ (w
−1) = w(cS′,−k ′ (w)).(5.2.12)

Hence (ii) above may be rewritten as∑
w∈W ′
w(0)=λ

wgw(X ) = u′(λ)cS′,−k ′ (u
′(λ))(X )T (v(λ)).(iii)

Now let

T (v(λ)) =
∑
w≤v(λ)

hw(X )w.

By (4.5.6) we have hw(−ρk ′ ) = 0 if w �= 1, and h1(−ρk ′ ) = τv(λ). Hence we
obtain from (i)

fu′(λ)(−ρk ′ ) = τ−1
v(λ)cS′, k ′ (u

′(λ))(−ρk ′ )

and from (iii)

gu′(λ)(−ρk ′ ) = τv(λ)cS′,−k ′ (u
′(λ))(−ρk ′ ).

Let

ϕ±λ = cS′,±k ′ (u
′(λ)−1).

By (2.4.8) we have

ϕ±λ =
∏

a′∈S′+1
a′(λ)<0

ca′,±k ′(5.2.13)

and from (5.2.12) we have

cS′,±k ′ (u
′(λ)) = u′(λ)−1ϕ∓λ ,

so that

fu′(λ)(−ρk ′ ) = τ−1
v(λ)ϕ

−
λ (rk ′ (λ)),

gu′(λ)(−ρk ′ ) = τv(λ)ϕ
+
λ (rk ′ (λ)),

and hence finally

Eλ(−ρ ′k) = τ−1
v(λ)ϕ

−
λ (rk ′ (λ)),(5.2.14)

(Eλ, Eλ)1 = ϕ+λ (rk ′ (λ))ϕ−λ (rk ′ (λ)).(5.2.15)
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These relations have been derived under the restriction (∗) on the labelling
k ′. Since each of them asserts that two elements of K are equal, they are true
identically.

5.3 The symmetric polynomials Pλ

For each λ ∈ L++ let

mλ =
∑
µ∈W0λ

eµ,

the orbit-sum corresponding to λ.

(5.3.1) For each λ ∈ L++ there is a unique element Pλ ∈ A0 such that
(i) Pλ = mλ + lower terms,

(ii) <Pλ,mµ> = 0 for all µ ∈ L++ such that µ < λ.

Here “lower terms” means a K -linear combination of the orbit-sums mµ such
that µ ∈ L++ and µ < λ.

The proof is the same as that of (5.2.1).

Next, recall (5.1.33) that if f ∈ A, say

f =
∑
λ

fλe
λ

with coefficients fλ ∈ K , then

f 0 =
∑
λ

f ∗λ eλ.

(5.3.2) P0
λ = Pλ for each λ ∈ L++.

Proof By (5.1.37),

<P0
λ ,mµ>1 = <Pλ,mµ>

∗
1 = 0

if µ < λ. Hence P0
λ satisfies conditions (i) and (ii) of (5.3.1), and is therefore

equal to Pλ. �

Let f ∈ A′0. Then f (Y )Pλ ∈ A0, by (4.3.18). Hence, by (5.1.24) and (5.1.37),

< f (Y )Pλ,mµ>1 = <Pλ, ( f ∗(Y )mµ)0>1.
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By (4.6.13), ( f ∗(Y )mµ)0 is a linear combination of the mν such that ν ∈ L++
and ν ≤ µ. It follows that < f (Y )Pλ,mµ> = 0 if µ < λ, and hence that
f (Y )Pλ is a scalar multiple of Pλ. By (4.6.13) again, the scalar multiple is
f (−λ− ρk ′ ):

f (Y )Pλ = f (−λ− ρk ′ )Pλ(5.3.3)

for all f ∈ A′0 and λ ∈ L++.
From (5.3.3) it follows that

<Pλ, Pµ> = 0(5.3.4)

if λ �= µ. The proof is the same as that of (5.2.3).

Dually, we have symmetric polynomials P ′µ′ ∈ A′0 for µ′ ∈ L ′++, satisfying
the counterparts of (5.3.1)–(5.3.4).

Next, corresponding to (5.2.4), we have

(5.3.5) (Symmetry) Let λ ∈ L++, µ′ ∈ L ′++. Then

Pλ(µ
′ + ρ ′k)P ′µ′ (ρk ′ ) = Pλ(ρ

′
k)P ′µ′ (λ+ ρk ′ ).

Proof From (4.7.13) we have

[Pλ, P ′µ′ ] = (Pλ(Y
−1)P ′µ′ )(−ρk ′ )

= Pλ(µ
′ + ρ ′k)P ′µ(−ρ ′k)

by (5.3.3),
= Pλ(µ

′ + ρ ′k)P ′µ′ (ρk ′ )

since −ρk ′ = w0ρk ′ , where w0 is the longest element of W0. Hence (5.3.5)
follows from (4.7.14). �

As in §5.2, we shall exploit (5.3.5) to calculate Pλ(ρ ′k) and the normalized
scalar product <Pλ, Pλ>1. The same argument as before shows that Pλ(ρ ′k) is
not identically zero, so that we may define

P̃λ = Pλ/Pλ(ρ
′
k)

for λ ∈ L++, and dually

P̃ ′µ′ = P ′µ′/P ′µ′ (ρk ′ )
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for µ′ ∈ L ′++. Then (5.3.5) takes the form

P̃λ(µ
′ + ρ ′k) = P̃ ′µ′ (λ+ ρk ′ ).(5.3.6)

Let λ ∈ L++. By (4.4.12) the restriction to A′0 of the operator mλ(Y−1) is of
the form

mλ(Y
−1)0 =

∑
π∈(λ)

gπ (X )t(−π)

in which

gwλ = w(c′λ)(5.3.7)

for w ∈ W0, where c′λ = cS′,k ′ (t(λ)).
Let ν ′ ∈ L ′++. Then mλ(Y−1)P̃ ′ν ′ = mλ(ν ′ + ρ ′k)P̃ ′ν ′ , by (5.3.3), so that

mλ(ν
′ + ρ ′k)P̃ ′ν ′ =

∑
π

gπ t(−π)P̃ ′ν ′ .

We shall evaluate both sides at w0(µ+ ρk ′ ) = w0µ− ρk ′ , where µ ∈ L++. We
shall assume provisionally that

k ′(a′) �= 0 for all a′ ∈ S′(*)

so that we can apply (4.5.7), which shows that gπ (w0µ − ρk ′ ) = 0 unless
π + w0µ is antidominant, i.e. unless w0π + µ is dominant. We have then

(t(−π )P̃ ′ν ′ )(w0µ− ρk ′ ) = P̃ ′ν ′ (π + w0µ− ρk ′ )

= P̃ ′ν ′ (w0π + µ+ ρk ′ )

= P̃w0π+µ(ν ′ + ρ ′k)

by (5.3.6), and therefore

mλ(ν
′ + ρ ′k)P̃µ(ν ′ + ρ ′k) =

∑
π

gπ (w0µ− ρk ′ )P̃w0µ+π (ν ′ + ρ ′k)

for all dominant ν ′ ∈ L ′. Hence by (4.5.8) we have

mλ P̃µ =
∑

gπ (w0µ− ρk ′ )P̃µ+w0π(5.3.8)

summed over π ∈ (λ) such that µ+ w0π is dominant.
In particular, when µ = 0, (5.3.8) expresses mλ as a linear combination of

the P̃π , π ≤ λ:

mλ =
∑
π≤λ

gw0π (−ρk ′ )P̃π
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in which the coefficient of P̃λ is

gw0λ(−ρk ′ ) = (w0c′λ)(−ρk ′ ) = c′λ(ρk ′ )

by (5.3.7). It follows that

Pλ(ρ
′
k) = c′λ(ρk ′ ).(5.3.9)

Next, let λ̄ = −w0λ, and replace (λ,µ) in (5.3.8) by (λ̄, λ). Since m λ̄ = m̄λ,
it follows that

m̄λ P̃λ =
∑
π

gπ (−λ̄− ρk ′ )P̃λ+w0π

in which the coefficient of P̃0 = 1 is

gλ̄(−λ̄− ρk ′ ) = c′̄
λ
(−λ̄− ρk ′ ) = c′λ(−λ− ρk ′ )

since ρ̄k ′ = ρk ′ . Hence

<P̃λ, P̃λ>1 = c′λ(ρk ′ )
−1<mλ, P̃λ>1

= c′λ(ρk ′ )
−1<1, m̄λ P̃λ>1

= c′λ(−λ− ρk ′ )/c′λ(ρk ′ )

and therefore, by (5.3.9),

<Pλ, Pλ>1 = c′λ(−λ− ρk ′ ) c′λ(ρk ′ ).(5.3.10)

We have derived (5.3.9) and (5.3.10) under the restriction (∗) on the labelling
k ′. For the same reason as in §5.2, they are identically true.

The formulas (5.3.9) and (5.3.10) can be restated, as follows.
Let

 +S,k =
∏

a∈S+
Da>0

 a,  −S,k =
∏

a∈S+
Da<0

 a(5.3.11)

and define  +S′,k ′ , analogously. Then

Pλ(ρ
′
k) = q−<λ,ρ

′
k> +S′,k ′ (λ+ ρk ′ )/ 

+
S′,k ′ (ρk ′ ),(5.3.12)

<Pλ, Pλ>1 =
 +S′,k ′ (λ+ ρk ′ ) 

−
S′,−k ′ (−λ− ρk ′ )

 +S′,k ′ (ρk ′ ) 
−
S′,−k ′ (−ρk ′ )

.(5.3.13)
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Proof We shall verify these formulas when S = S(R) (1.4.1); the other cases
are similar. We have S′ = S(R∨) and k ′(α∨) = k(α), so that

 +S′,k ′ =
∏
α∈R+

(eα
∨
; q)∞(

qk(α)eα∨ ; q
)
∞
.

Since λ is dominant, we have

S′(t(λ)) = {α∨ + rc : α ∈ R+ and 0 ≤ r < <λ, α∨>}.
Hence

c′λ = cS′,k ′ (t(λ)) =
∏
α∈R+

<λ,α∨>−1∏
r=0

q−k(α)/2 1− qk(α)+r eα
∨

1− qr eα∨

and therefore by (5.3.9)

Pλ(ρ
′
k) = q−<λ,ρ

′
k>
∏
α∈R+

(
qk(α)+<ρk′ ,α∨>; q

)
<λ,α∨>(

q<ρk′ ,α∨>; q
)
<λ,α∨>

which gives (5.3.12).
Next, we have

c′λ(−λ− ρk ′ ) =
∏
α∈R+

<λ,α∨>−1∏
r=0

q−k(α)/2 1− qk(α)+r−<λ+ρk′ ,α∨>

1− qr−<λ+ρk′ ,α∨>

=
∏
α∈R+

<λ,α∨>−1∏
r=0

qk(α)/2 1− q<λ+ρk′ ,α∨>−r−k(α)

1− q<λ+ρk′ ,α∨>−r

=
∏
α∈R+

<λ,α∨>−1∏
r ′=0

qk(α)/2 1− q<ρk′ ,α∨>+1+r ′−k(α)

1− q<ρk′ ,α∨>+1+r ′

(where r ′ = <λ, α∨>− 1− r in the last product above). Since

 −S′,−k ′ =
∏
α∈R+

(qe−α
∨
; q)∞(

q1−k(α)e−α∨ ; q
)
∞

it follows that

c′λ(−λ− ρk ′ ) = q<λ,ρ
′
k> −S′,−k ′ (−λ− ρk ′ )/ 

−
S′,−k ′ (−ρk ′ )

which together with (5.3.12) gives (5.3.13). �

To conclude this section we shall consider some special cases.

(5.3.14) When k(a) = 0 for all a ∈ S,we have∇ = 1 and Pλ is the orbit-sum
mλ, for all λ ∈ L++.
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(5.3.15) Suppose that S = S(R), with R reduced, and that k(α) = 1 for all
α ∈ R. Then

∇ =
∏
α∈R

(1− eα) =
∏
α∈R

(
eα/2 − e−α/2

) = δδ̄,
where

δ = δR =
∏
α∈R+

(
eα/2 − e−α/2

) = ∑
w∈W0

(−1)l(w)ewρ

by Weyl’s denominator formula, where

ρ = 1

2

∑
α∈R+

α.

For λ ∈ L++, let

χλ = χR,λ = δ−1
∑
w∈W0

(−1)l(w)ew(λ+ρ) ∈ A0.

Then

χλ = mλ + lower terms,

and

<χλ, χµ> = 1

|W0| ct (χλδ · χµδ)

is zero if λ �= µ, and is equal to 1 if λ = µ. It follows that Pλ = χR,λ in this
case.

When S = S(R)∨ and k∨(α) = 1 for all α ∈ R, in the notation of (5.1.13),
the conclusion is the same: Pλ = χR∨,λ.

Finally, when S is of type (C∨
n ,Cn) and k1 = k2 = k5 = 1, k3 = k4 = 0, we

have ∇ = δR δ̄R where R is of type Cn , and consequently Pλ = χR,λ.

(5.3.16) Consider next the case where q → 0, the ta being arbitrary. Then

∇ =
∏
a∈S0

1− t1/2
2a ea

1− tat1/2
2a ea

where S0 = {a ∈ S : a(0) = 0}. In this case there is an explicit formula for Pλ,
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namely

Pλ = W0λ(t)
−1
∑
w∈W0

w


eλ
∏

a∈S+0

1− tat1/2
2a e−a

1− t1/2
2a e−a


,

where W0λ is the subgroup of W0 that fixes λ, and

W0λ(t) =
∑
w∈Woλ

tw

with tw as defined in §5.1. Moreover

<Pλ, Pλ> = W0λ(t)
−1

in this case. (For details see [M5], §10.)

(5.3.17) Finally, when S = S(R) with R of type An−1, the Pλ are essentially
the symmetric polynomials Pλ(x ; q, t) of [M6], Ch. 5.

When S is of type (C∨
n ,Cn), the Pλ are Koornwinder’s orthogonal polyno-

mials [K3]. In particular, when n = 1 they are the orthogonal polynomials (in
one variable) of Askey and Wilson [A2].

5.4 The HH-modules Aλ

As in §5.3, we shall assume provisionally that

k ′(a′) �= 0 for all a′ ∈ S′.(∗)

(5.4.1) Let f ∈ A, f �= 0 be a simultaneous eigenfunction of the operators
Y λ

′
(λ′ ∈ L ′), so that Y λ

′
f = gλ′ f for all λ′ ∈ L ′ and scalars gλ′ . Then f is a

scalar multiple of Eµ for some µ ∈ L, and gλ′ = q−<λ
′,rk′ (µ)> for all λ′ ∈ L ′.

Proof Since the Eµ form a K -basis of A we have

f =
∑
µ∈L

fµEµ

with coefficients fµ ∈ K . Hence

Y λ
′
f =
∑
µ

fµq−<λ
′,rk′ (µ)>Eµ
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by (5.2.2). But also

Y λ
′
f =
∑
µ

gλ′ fµEµ

and therefore

fµ
(
gλ′ − q−<λ

′,rk′ (µ)>
) = 0

for all λ′ ∈ L ′ and µ ∈ L . Since f �= 0 we have fµ �= 0 for some µ ∈ L , and
therefore gλ′ = q−<λ

′,rk′ (µ)> for all λ′ ∈ L ′. If ν �= µ then rk ′ (ν) �= rk ′ (µ) by
(2.8.5), and therefore fν = 0; consequently f is a scalar multiple of Eµ. �

(5.4.2) Let λ ∈ L , i ∈ I, i �= 0, and let

b′i = b(τi , υi ; ea′i )

where (as in (4.2.4)) υi = τi or τ0 according as <L , α∨i > = Z or 2Z. Then

E = Ti Eλ − b′i (rk ′ (λ))Eλ

is a scalar multiple of Esiλ, and is zero if λ = siλ.

Proof Let

Fi = Ti − b′i (Y
−1)

as operator on A, so that E = Fi Eλ by (5.2.2). By (4.2.4) we have

Y λ
′
Fi = Fi Y

siλ
′

for λ′ ∈ L ′, hence

Y λ
′
E = Y λ

′
Fi Eλ = Fi Y

siλ
′
Eλ = q−<λ

′,si rk′ (λ)>E .

If λ �= siλ then sirk ′ (λ) = rk ′ (siλ) by (2.8.4), and hence E is a scalar multiple of
Esiλ by (5.4.1). If λ = siλ then si (rk ′ (λ)) �∈ rk ′ (L) by (2.8.6), and hence E = 0
by (5.4.1). �

(5.4.3) Let λ ∈ L , i �= 0. If <λ, α′i> > 0 then

Ti Eλ = τ−1
i Esiλ + b′i (rk ′ (λ))Eλ.

Proof Since<λ, α′i> > 0, we have siλ > λ (2.7.9) and hence it follows from
(4.3.21) that

Ti e
λ = τ−1

i esiλ + lower terms.(1)
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On the other hand, by (5.4.2),

Ti Eλ = uEsiλ + b′i (rk ′ (λ))Eλ

for some u ∈ K , and u is the coefficient of esiλ in Ti Eλ. If µ < λ then Ti eµ

contains only eµ and esiµ from the W0-orbit of eµ, and since siλ > λ > µ we
have µ �= siλ and siµ �= siλ. Hence it follows from (1) that u = τ−1

i . �

(5.4.4) If λ = siλ then Eλ = si Eλ.

Proof If λ = siλ we have b′i (rk ′ (λ)) = τi , by (4.2.3) (i) and (4.5.2). Hence
Ti Eλ = τi Eλ by (5.4.2) and therefore Eλ = si Eλ by (4.3.12). �

Let λ ∈ L++ and let Aλ denote the K -span of the Eµ for µ ∈ W0λ.

(5.4.5) (i) Aλ is an irreducible H-submodule of A.
(ii) Aλ = H0 Eλ.

Proof (i) By (5.2.2) and (5.4.2), Aλ is stable under the operators Y λ
′
(λ′∈L ′)

and Ti (i∈I, i �= 0), hence is an H-submodule of A.
Let M be a nonzero H-submodule of Aλ and let

E =
r∑

i=1

ai Eµi

be a nonzero element of M , in which the µi are distinct elements of the orbit
W0λ, the coefficients ai are �= 0, and r is as small as possible. Then

Y−λ
′
E =

r∑
i=1

ai q
<λ′,rk′ (µi )>Eµi ∈ M

for all λ′ ∈ L ′, and hence if r > 1

q<λ
′,rk′ (µ1)>E − Y−λ

′
E =

r∑
i=2

ai
(
q<λ

′,rk′ (µ1)> − q<λ
′,rk′ (µi )>

)
Eµi

is a nonzero element of M , contradicting our choice of r . We therefore conclude
that r = 1, i.e. that Eµ ∈ M for someµ ∈ W0λ. But then it follows from (5.4.2)
that Esiµ ∈ M for all i �= 0, and hence that Eν ∈ M for all ν ∈ W0λ, so that
M = Aλ. Hence Aλ is irreducible as an H-module.
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(ii) Let w ∈ W0 and let µ = wλ. It follows from (5.4.2) and (5.4.3) that
T (w)Eλ is of the form

T (w)Eλ =
∑
ν≤µ

aµνEν

with aµµ = τ−1
w �= 0. Hence the T (w)Eλ, w ∈ W0, span Aλ. �

(5.4.6) If λ ∈ L++ is regular, then Aλ is a free H0-module of rank 1, generated
by Eλ.

This follows from (5.4.5) (ii), since dim Aλ = |W0| = dim H0. �

Now let w ∈ W0, let w = si1 · · · si p be a reduced expression, and let βr =
si p · · · sir+1 (αir ) (1 ≤ r ≤ p), so that {β1, . . . , βp} = S(w). Also, for each
α ∈ R, let b′α = wb′i if α = wαi .

(5.4.7) Let w ∈ W0, x ∈ rk ′ (L). Then

Fw(x) = (Ti1 − b′β1
(x)
) · · · (Ti p − b′βp

(x)
)

is independent of the reduced expression si1 · · · si p of w.

Proof Let λ ∈ L be regular dominant and let λr = sir+1 · · · si pλ for 0 ≤ r ≤ p.
Then <λr , α

∨
ir
> = <λ, β∨r > > 0 and therefore by (5.4.3)

τ−1
ir

Eλr−1 =
(
Tir − b′ir

(rk ′ (λr ))
)
Eλr

= (Tir − b′βr
(rk ′ (λ))

)
Eλr(1)

since

<rk ′ (λr ), α∨ir
> = <sir+1 · · · si p (rk ′ (λ)), α∨ir

> = <rk ′ (λ), β∨r >.

Let

Fi1···i p (x) = (Ti1 − b′β1
(x)
) · · · (Ti p − b′βp

(x)
)
.

Then it follows from (1) that

Fi1···i p (rk ′ (λ))Eλ = τ−1
w Ewλ.

If w = s j1 · · · s jp is another reduced expression, then likewise

Fj1··· jp (rk ′ (λ))Eλ = τ−1
w Ewλ
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and therefore Fi1···i p (rk ′ (λ)) = Fj1··· jp (rk ′ (λ)) by (5.4.6). So (5.4.7) is true when-
ever x = rk ′ (λ) = λ + ρk ′ with λ ∈ L regular dominant, and hence for all
x ∈ rk ′ (L) by (4.5.8). �

Finally, the results in this section have been obtained under the restriction
(∗) on the labelling k ′. For the same reason as before, this restriction can now
be lifted.

5.5 Symmetrizers

From (5.1.23), the adjoint of si is

s∗i =
ci (X )

ci (X−1)
si .(5.5.1)

Let ε be a linear character of W0, so that ε(si ) = ±1 for each i �= 0, and
ε(si ) = ε(s j ) if si and s j are conjugate in W0. (If R is simply-laced, there are
just two possibilities for ε, namely the trivial character and the sign character.
In the other cases there are four possibilities for ε.) Define

sεi =
{

si if ε(si ) = 1,

s∗i if ε(si ) = −1.

(5.5.2) Let w ∈ W0 and let w = si1 · · · si p be a reduced expression for w.
Then

w(ε) = s(ε)
i1
· · · s(ε)

i p

depends only on w (and ε) and not on the reduced expression chosen. Hence
w 
→ w(ε) is an isomorphism of W0 onto a subgroup W (ε)

0 of Aut (A).

Proof This is a matter of checking the braid relations for the s(ε)
i . Hence we

may assume that R has rank 2, with basis {αi , α j }. One checks easily, using
(5.5.1), that

(
s(ε)

i s(ε)
j

)m = (si s j )
m = 1,

where m = Card(R+). (Here the nature of the factors ci (X )/ci (X−1) in (5.5.1) is
immaterial: they could be replaced by any fi (X ) such that fi (X )si = si fi (X )−1.)

�
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Since si Xµ = Xsiµsi and hence also s∗i Xµ = Xsiµs∗i , it follows that

w(ε) Xµ = Xwµw(ε)(5.5.3)

for all w ∈ W0 and µ ∈ L .
Next, let

τ
(ε)
i =
{
τi if ε(si ) = 1,

−τ−1
i if ε(si ) = −1,

(5.5.4)

and for w ∈ W0 let

τ (ε)
w = τ (ε)

i1
· · · τ (ε)

i p
(5.5.5)

where as above w = si1 · · · si p is a reduced expression. From (5.5.2) it follows
that τ (ε)

w is independent of the reduced expression chosen.
We now define the ε-symmetrizer Uε by

Uε =
(
τ (ε)
w0

)−1 ∑
w∈W0

τ (ε)
w T (w),(5.5.6)

where as usual w0 is the longest element of W0. When ε is the trivial character,
we write U+ for Uε, so that

U+ = τ−1
w0

∑
w∈W0

τwT (w),(5.5.7)

and when ε is the sign character we write U− for Uε, so that

U− = (−1)l(w0)τw0

∑
w∈W0

(−1)l(w)τ−1
w T (w).(5.5.8)

(5.5.9) We have (
Ti − τ (ε)

i

)
Uε = Uε

(
Ti − τ (ε)

i

) = 0

for all i ∈ I, i �= 0.

Proof Let w ∈ W0. If l(siw) > l(w) then

(
Ti − τ (ε)

i

)
τ (ε)
w T (w) = τ (ε)

w T (siw)− τ (ε)
siw

T (w).

If on the other hand l(siw) < l(w), then

T (siw) = T−1
i T (w) = (Ti − τ (ε)

i + (τ (ε)
i

)−1)
T (w)
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so that again (
Ti − τ (ε)

i

)
τ (ε)
w T (w) = τ (ε)

w T (siw)− τ (ε)
siw

T (w).

Hence (
Ti − τ (ε)

i

)
Uε =
(
τ (ε)
w0

)−1 ∑
w∈W0

(
τ (ε)
w T (siw)− τ (ε)

siw
T (w)
) = 0.

Likewise Uε(Ti − τ (ε)
i ) = 0. �

Conversely:

(5.5.10) (i) Let h ∈ A(X ) H0 be such that h(Ti − τ (ε)
i ) = 0 for all i �= 0 in I .

Then h = f (X )Uε for some f ∈ A.
(ii) Let h ∈ A(X ) H0 be such that (Ti − τ (ε)

i )h = 0 for all i �= 0. Then
h = Uε f (X ) for some f ∈ A.

Proof We shall prove (i); the proof of (ii) is analogous. We have T (w)Ti =
T (wsi ) if l(wsi ) > l(w), and

T (w)Ti = T (wsi )+
(
τ

(ε)
i − (τ (ε)

i

)−1)
T (w)

if l(wsi ) < l(w). Let h = ∑
w∈W0

fw(X )T (w). Then

hTi =
∑
w∈W0

fw(X )T (wsi )+
(
τ

(ε)
i − (τ (ε)

i

)−1)∑
w

fw(X )T (w),

where the second sum is over w ∈ W0 such that l(wsi ) < l(w). Since hTi =
τ

(ε)
i h it follows that τ (ε)

i fw = fwsi if l(wsi ) > l(w), and hence that fw = τ (ε)
w f1

for all w ∈ W0.
Consequently h = τ (ε)

w0
f1(X )Uε. �

Now let

ρεk ′ = 1

2

∑
α∈R+

ε(sα)k ′(α∨)α.(5.5.11)

Then we have

Uε = Fw0 (ρεk ′ ).(5.5.12)

where Fw is defined by (5.4.7).
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Proof Let i ∈ I, i �= 0. Then there exists a reduced expression for w0 ending
with si . From (4.5.2) we have ci (−ρ ′k) = 0 and hence, by (4.2.3) (i), bi (ρ ′k) =
−τ−1

i . Dually, therefore,

b′i (ρεk ′ ) = −
(
τ

(ε)
i

)−1
,

Hence Fw0 (ρεk ′ ) is divisible on the right by Ti+(τ (ε)
i )−1, and therefore Fw0 (ρεk ′ )

(Ti − τ (ε)
i ) = 0. It now follows from (5.5.10) that Fw0 (ρεk ′ ) is a scalar multiple

of Uε. Since the coefficient of T (w0) in each of Uε and Fw0 is equal to 1, the
result follows, �

Next, let

Vε = ε(w0)
∑
w∈W

ε(w)w(ε).(5.5.13)

Then we have

Uε = Vεc+
(
X−ε
)

(5.5.14)

where

c+(X−ε) =
∏

a∈S+0

ca
(
X−ε(sa )

)
(5.5.15)

in which S0 is the reduced root system with basis {ai : i ∈ I0}.

Proof From (4.3.12), (4.3.13) and (5.5.1) we have, for i ∈ I0,

Ti +
(
τ

(ε)
i

)−1 = (s(ε)
i + ε(si )

)
ci
(
X−ε(si )
)

(which is precisely (5.5.15) in rank 1). Hence

Vεc+(X−ε)
(
Ti +
(
τ

(ε)
i

)−1) = Vεc+(X−ε)
(
s(ε)

i + ε(si )
)
ci
(
X−ε(si )
)

= ε(si )Vεc+(X−ε)ci
(
X−ε(si )
)+ Vεs

(ε)
i c+(X−ε)ci

(
X ε(si )
)

= ε(si )Vεc+(X−ε)
(
τi + τ−1

i

)
,

by (4.2.3) (ii), since Vεs
(ε)
i = ε(si )Vε. It follows that

Vεc+
(
X−ε)(Ti − τ (ε)

i

) = 0

for all i ∈ I0, and hence by (5.5.10) that

Vεc+(X−ε) = f (X )Uε
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for some f ∈ A. It remains to show that f = 1, which we do by considering
the coefficient of w(ε)

0 on either side. Since by (4.3.14)

Ti = bi (X )+ s(ε)
i ci (X−ε(si )),(1)

the coefficient of w(ε)
0 in Uε comes only from T (w0); also from (1) it follows

that

T (w0) = w(ε)
0 c+(X−ε)+ lower terms.

Hence f = 1 as required. �

In particular, let us take ε to be the trivial character of W0, and evaluate both
sides of (5.5.14) at 1A, the identity element of A. We shall obtain

W0(t) =
∑
w∈W0

w( 0)−1(5.5.16)

in the notation of §5.1.

(5.5.17) (i) T (w)Uε = UεT (w) = τ (ε)
w Uε for all w ∈ W0.

(ii) U 2
ε = (τ (ε)

w0
)−1W0(t (ε))Uε, where W0(t (ε)) =∑w∈W0

(τ (ε)
w )2.

(iii) U ∗
ε = Uε.

(iv) Uε = c+(X−ε)V ∗
ε .

(v) Let f, g ∈ A. Then

(Uε f,Uεg) = (τ (ε)
w0

)−1
W0
(
t (ε)
)
(Uε f, g).

Proof (i) follows from (5.5.9), by induction on l(w).
(ii) follows from (i).
(iii) By (5.1.22) we have

U ∗
ε = τ (ε)

w0

∑
w∈W0

(
τ (ε)
w

)−1
T (w)−1

and since T (w0) = T (w0w
−1)T (w), we have

T (w)−1 = T (w0)−1T (w0w
−1)

giving

U ∗
ε = T (w0)−1

∑
w∈W0

τ
(ε)
w0w−1 T (w0w

−1)

= τ (ε)
w0

T (w0)−1Uε = Uε
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by (i) above.
(iv) follows from (5.5.14) and (iii), since c+(X−ε) is self-adjoint.
(v) follows from (ii) and (iii). �

5.6 Intertwiners

(5.6.1) Let i ∈ I . Then Ti − bi (X ) is self-adjoint.

Proof Since bi = τi − ci (4.2.2) we have

Ti − bi (X ) = Ti − τi + ci (X )

and by (5.1.22) both Ti − τi and ci (X ) are self-adjoint (since c∗i = ci ). �

Dually, if i ∈ I0,

Ti − b′i (X )

as operator on A′, is self-adjoint for the scalar product (5.1.17′).
By (4.3.14),

Ti − b′i (X ) = c′i (X )si = si c′i (X−1)

(where c′i = τi − b′i ), so that

si = c′i (X )−1(Ti − b′i (X ))

= (Ti − b′i (X )) c′i (X−1)−1

as operators on A′, and hence the adjoint of si for this scalar product is

s∗′i = (Ti − b′i (X )) c′i (X )−1

= c′i (X−1)−1(Ti − b′i (X )).

As in §5.5, let ε be a linear character of W0, and define

s(ε)′
i =
{

si if ε(si ) = 1,
s∗′i if ε(si ) = −1.

Then we have

s(ε)′
i = (Ti − b′i (X )) c′i

(
X−ε(si )
)−1
,

(5.6.2)
= c′i
(
X ε(si )
)−1

(Ti − b′i (X )).
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Let η(ε)
i = ω(s(ε)′

i ), where ω: H̃
′ → H̃ is the anti-isomorphism defined in

(4.7.6). From (5.6.2) we have

η
(ε)
i = c′i

(
Y ε(si )
)−1

(Ti − b′i (Y
−1))

(5.6.3) = (Ti − b′i (Y
−1)) c′i
(
Y−ε(si )
)−1

for i ∈ I0.
It follows from (5.5.2) that ifw ∈ W0 andw = si1 · · · si p is a reduced expres-

sion, then w(ε)′ = s(ε)′
i1
· · · s(ε)′

i p
and

η(ε)
w = η(ε)

i1
· · · η(ε)

i p
(5.6.4)

are independent of the reduced expression chosen; and from (5.5.3) that

η(ε)
w Y λ

′ = Ywλ
′
η(ε)
w(5.6.5)

for w ∈ W0 and λ′ ∈ L ′.

The η(ε)
w are the Y-intertwiners. Whereas the elements w(ε) act as linear oper-

ators on all of A, the same is not true of the η(ε)
w ; since by (4.5.4) c′i (rk ′ (λ)) = 0

if λ = siλ, it follows that η(ε)
i acts only on the subspace of A spanned by the

Eλ such that siλ �= λ.

(5.6.6) Let λ ∈ L , i ∈ I0 and suppose that <λ, α∨i > = r �= 0. Then

η
(ε)
i Eλ =

{
τ−1

i c′i (ε(si )rk ′ (λ))−1 Esiλ if r > 0,

τi c′i (−ε(si )rk ′ (λ))Esiλ if r < 0.

Proof Suppose first that r > 0. Then

η
(ε)
i Eλ = (Ti − b′i (Y

−1)) c′i
(
Y−ε(si )
)−1

Eλ

= c′i (ε(si )rk ′ (λ))−1(Ti − b′i (rk ′ )λ)))Eλ

= τ−1
i c′i (ε(si )rk ′ (λ))−1 Esiλ

by (5.2.2) and (5.4.3).
If now r < 0 then <siλ, α

∨
i > > 0 and hence from above

η
(ε)
i Esiλ = τ−1

i c′i (ε(si )rk ′ (siλ))−1 Eλ.

Since rk ′ (siλ) = si (rk ′ (λ)) by (2.8.4), it follows that

η
(ε)
i Eλ = τi c′i (−ε(si )rk ′ (λ))Esiλ. �



5.6 Intertwiners 119

(5.6.7) Let λ ∈ L. Then

η
(ε)
v(λ) Eλ =

(
ξ

(ε)
λ

)−1
Eλ−

where

ξ
(ε)
λ = τv(λ)cS′,εk ′ (v(λ))(rk ′ (λ)).

Proof Let v(λ) = si1 · · · si p be a reduced expression, so that

η
(ε)
v(λ) = η(ε)

i1
· · · η(ε)

i p
.

Let

βr = si p · · · sir+1 (αir ), λr = sir+1 · · · si p (λ)

for 0 ≤ r ≤ p, so that S′1(v(λ)) = {β∨1 , . . . , β∨p } and

<λr , α
∨
ir
> = <λ, β∨r > > 0

by (2.4.4). Hence by (5.6.6)

η
(ε)
v(λ) Eλ = ξ−1 Eλ−

where

ξ =
p∏

r=1

τir c′ir

(
ε
(
sir

)
rk ′ (λr )
)
,

and since rk ′ (λr ) = sir+1 · · · si p rk ′ (λ) by (2.8.4), we have

c′ir

(
ε
(
sir

)
rk ′ (λr )
) = c
(
τir , υir ; qε(sir )<rk′ (λr ),α∨ir>

)
= c
(
τ
ε(sir )
ir

, υ
ε(sir )
ir

; q<rk′ (λ),β∨r >
)
.

= cβ∨r ,εk ′ (rk ′ (λ)).

Hence

ξ = τv(λ)cS′,εk ′ (v(λ))(rk ′ (λ)). �

Finally, let

V ′
ε = ε(w0)

∑
w∈W0

ε(w)w(ε)′,

(5.6.8)
Vε = ω(V ′

ε ) = ε(w0)
∑
w∈W0

ε(w)η(ε)
w .
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As in (5.5.14) we have

Uε = V ′
εc
′
+(X−ε),(5.6.9)

where

c′+(X−ε) =
∏
α∈R+

cα∨,k ′
(
X−ε(sα)

)
.(5.6.10)

Applying ω to (5.6.9) gives

Uε = c′+(Y ε)Vε = V
∗
εc
′
+(Y ε)(5.6.11)

since ω(Uε) = Uε and U ∗
ε = Uε by (5.5.17). From (5.6.3) we have

(
η

(ε)
i

)∗ = (Ti − b′i (Y
−1)
)
c′i
(
Y ε(si )
)−1

since both Ti − b′i (Y
−1) and c′i (Y

ε(si )) are self adjoint. Thus(
η

(ε)
i

)∗ = η(−ε)
i(5.6.12)

where −ε is the character w 
→ (−1)l(w)ε(w) of W0. Hence

V
∗
ε = ε(w0)

∑
w∈W0

ε(w)η(−ε)
w .(5.6.13)

The operators c′+(Y ε)η(ε)
i are well-defined as operators on A. We have

c′+(Y ε)η(ε)
i Eλ = η(−ε)

i c′+(Y ε)Eλ = 0(5.6.14)

if λ = siλ. For c′+(Y ε)η(ε)
i Eλ is of the form f (Y )(Ti − b′i (Y

−1))Eλ which is
zero by (5.4.2).

5.7 The polynomials P (ε)
λ

As before, let ε be a linear character of W0. For each λ ∈ L we define

F (ε)
λ = UεEλ.

(5.7.1) Let i ∈ I0. If ε(si ) = −1 and λ = siλ, then F (ε)
λ = 0.

Proof By (5.4.4) and (5.5.9) we have

τi F (ε)
λ = τiUεEλ = UεTi Eλ = TiUεEλ = −τ−1

i F (ε)
λ . �
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(5.7.2) If <λ, α′i> > 0 then

F (ε)
siλ
= ε(si )τi c′i (ε(si )rk ′ (λ))F (ε)

λ .

Proof By (5.4.3) and (5.5.9) we have

τ
(ε)
i F (ε)

λ = UεTi Eλ

= Uε(τ
−1
i Esiλ + b′i (rk ′ (λ))Eλ)

= τ−1
i F (ε)

siλ
+ b′i (rk ′ (λ))F (ε)

λ ,

so that

F (ε)
siλ
= τi
(
τ

(ε)
i − b′i (rk ′ (λ)

)
F (ε)
λ

= ε(si )τi c′i (ε(si )rk ′ (λ))F (ε)
λ .

by (4.2.3). �

In view of (5.7.2), we may assume that λ ∈ L is dominant, since F (ε)
µ for

µ ∈ W0λ is a scalar multiple of F (ε)
λ and hence UεAλ has dimension at most 1.

Also, in view of (5.7.1), we shall assume henceforth that

(5.7.3) ε(w) = 1 for all w ∈ W0λ,

where W0λ is the subgroup of W0 that fixes λ.
When ε is the trivial character, this is no restriction. On the other hand, when

ε is the sign character, (5.7.3) requires that λ is regular dominant.

(5.7.4) (i) F (ε)
λ is W0λ-symmetric.

(ii) When ε is the trivial character, F (ε)
λ is W0-symmetric.

Proof If ε(si ) = 1 we have (Ti − τi )F (ε)
λ = 0 by (5.5.9), and hence si F (ε)

λ =
F (ε)
λ by (4.3.12). �

Each coset wW0λ has a unique element of minimal length, namely v̄(µ) in
the notation of §2.7, where µ = wλ. Let

W λ
0 = {v̄(µ) : µ ∈ W0λ}.
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Then every element of W0 is uniquely of the form vw, where v ∈ W λ
0 and

w ∈ W0λ, and l(vw) = l(v)+ l(w). Hence

Uε =
(
τ (ε)
w0

)−1


∑
v∈W λ

0

τ (ε)
v T (v)



( ∑
w∈W0λ

τwT (w)

)
,

and since T (w)Eλ = τwEλ for w ∈ W0λ, it follows that

F (ε)
λ = (τ (ε)

w0

)−1
W0λ(τ

2)
∑
v∈W λ

0

τ (ε)
v T (v)Eλ,(5.7.5)

where

W0λ(τ
2) =
∑
w∈W0λ

τ 2
w.(5.7.6)

The only term on the right-hand side of (5.7.5) that contains ew0λ is that
corresponding to v = v(λ), the shortest element of W0 that takes λ to w0λ. By
(5.4.3) the coefficient of ew0λ in T (v(λ))Eλ is τ−1

v(λ), and hence the coefficient of

ew0λ in F (ε)
λ is τ−1

w0
W0λ(τ 2), since by (5.7.3) τ (ε)

v(λ)/τv(λ) = τ (ε)
w0
/τw0 .

Accordingly we define (always for λ ∈ L dominant)

P (ε)
λ = τw0 W0λ(τ

2)−1 F (ε)
λ(5.7.7)

= ew0λ + lower terms.

In terms of the Eµ we have

(5.7.8) P (ε)
λ =

∑
µ∈W0λ

ε(v(µ)) ξ (−ε)
µ Eµ

where ξ (−ε)
µ is given by (5.6.7) (with −ε replacing ε).

Proof From (5.7.2) it follows that P (ε)
λ is proportional to

UεEw0λ = ε(w0)
∑
w∈W0

ε(w)η(−ε)
w c′+(Y ε)Ew0λ

by (5.6.11) and (5.6.13). By (5.6.14), only the elements of W0 of the form
v(µ)−1, where µ ∈ W0λ, contribute to this sum. Since c′+(Y ε)Ew0λ is a scalar
multiple of Ew0λ, it follows that P (ε)

λ is proportional to∑
µ∈W0λ

ε(v(µ))
(
η

(−ε)
v(µ)

)−1
Ew0λ

which by (5.6.7) is equal to ∑
µ∈W0λ

ε(v(µ))ξ (−ε)
µ Eµ.
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Since the coefficient of Ew0λ in this sum is equal to 1 (because v(µ) = 1 when
µ = w0λ), (5.7.8) is proved. �

(5.7.9) Let f ∈ A′0. Then

f (Y )P (ε)
λ = f (−λ− ρk ′ )P (ε)

λ .

Proof Since f (Y ) commutes with T (w) for each w ∈ W0 by (4.2.10), it
commutes with Uε. Hence

f (Y )UεEw0λ = Uε f (Y )Ew0λ

= f (−λ− ρk ′ ) UεEw0λ

by (5.2.2). Since UεEw0λ is proportional to P (ε)
λ , the result follows. �

From (5.7.9) and (5.7.4) it follows that when ε is the trivial character of W0,

P (ε)
λ = Pλ(5.7.10)

as defined in §5.3. Also from (5.7.9) it follows, exactly as in §5.2 and §5.3, that
the P (ε)

λ are pairwise orthogonal:(
P (ε)
λ , P (ε)

µ

) = 0(5.7.11)

if λ �= µ.

(5.7.12) Let λ ∈ L++. Then(
P (ε)
λ , P (ε)

λ

)
/(Pλ, Pλ) = ξ (−ε)

λ

/
ξ

(−1)
λ

where −1 denotes the sign character of W0.

Proof From (5.7.7) and (5.5.17) (v) we have

(
P (ε)
λ , P (ε)

λ

) = (UεEλ,UεEλ)

W0λ(τ 2)W0λ(τ−2)

= W0
((
τ (ε)
)2)

(UεEλ, Eλ)

τ
(ε)
w0 W0λ(τ 2)W0λ(τ−2)

= W0
((
τ (ε)
)2)(

P (ε)
λ , Eλ
)

τw0τ
(ε)
w0 W0λ(τ−2)

= ε(v(λ))W0
((
τ (ε)
)2)
ξ

(−ε)
λ (Eλ, Eλ)

τw0τ
(ε)
w0 W0λ(τ−2)
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by (5.7.8) and orthogonality of the Eµ. Hence(
P (ε)
λ , P (ε)

λ

)
(Pλ, Pλ)

= ε(v(λ))W0
((
τ (ε)
)2)
τw0

W0(τ 2)τ (ε)
w0

· ξ
(−ε)
λ

ξ
(−1)
λ

.

Let

R1 = {α ∈ R : ε(sα) = +1},
R−1 = {α ∈ R : ε(sα) = −1},

and let W1 (resp. W−1) be the subgroup of W0 generated by the si such that
ε(si ) = +1 (resp.−1). Then the kernel of ε is the Weyl group of R1, and is the
normal closure W̄1 of W1 in W0; and W0 is the semidirect product

W0 = W̄1 � W−1.

Hence

W0
((
τ (ε)
)2) = W̄1(τ 2)W−1(τ−2)(1)

in an obvious notation; also w0 = w1w−1 where w1 (resp. w−1) is the longest
element of W̄1, (resp. W−1) so that

τ (ε)
w0
= ε(w0)τw1τ

−1
w−1
.(2)

Finally,v(λ) = w0w0λ, wherew0λ is the longest element of W0λ. Since ε(w) = 1
for w ∈ W0λ (5.7.3), it follows that

ε(v(λ)) = ε(w0).(3)

From (1), (2) and (3) it follows that

ε(v(λ))W0
((
τ (ε)
)2)
τw0

W0(τ 2)τ (ε)
w0

= 1,

completing the proof of (5.7.12). �

Suppose in particular that ε is the sign character of W0. In that case we write

Qλ = P (ε)
λ(5.7.13)

for λ ∈ L regular dominant. Then we obtain from (5.7.12) and the definition
(5.6.7) of ξ (ε)

λ

(Qλ, Qλ)

(Pλ, Pλ)
=
∏
α∈R+

cα∨,k ′ (λ+ ρk ′ )

cα∨,−k ′ (λ+ ρk ′ )
(5.7.14)

since v(λ) = w0 and rk ′ (λ) = λ+ ρk ′ , by (2.8.2′).
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5.8 Norms

As before, S is an irreducible affine root system as in (1.4.1)–(1.4.3). Recall
that

S0 = {a ∈ S : a(0) = 0}, S1 = {a ∈ S : 1
2 a /∈ S}.

Let ε be a linear character of W0, and let l be the labelling of S such that
l(a) = 1 if sa is conjugate in W to si , where i �= 0 and ε(si ) = −1; and
l(a) = 0 otherwise. Let k + l denote the labelling a 
→ k(a) + l(a), and as
before let (εk)(a) = ε(sa)k(a) for a ∈ S0.

For each a ∈ S1, let

δa = δa,k = qk(a)/2ea/2 − q−k(a)/2e−a/2(5.8.1)

= (ea/2 − e−a/2
)
ca,k

if 2a /∈ S, and

δa = δa,k =
(
qk(a)/2ea/2 − q−k(a)/2e−a/2

)
(5.8.2)

× (qk(2a)/2ea/2 + q−k(2a)/2e−a/2
)

= (ea − e−a)ca,k

if 2a ∈ S.
Let

δε,k =
∏

a∈S+01
l(a)=1

δa,k(5.8.3)

where S+01 = S0 ∩ S1 ∩ S+. Then we have

δε,kδ
∗
ε,k S,k = ∇S,k+l/ 

0
S,εk .(5.8.4)

Proof Suppose that S = S(R) as in (1.4.1). Then

 S,k+l/ S,k =
∏
α∈R+
l(α)=1

(
1− qk(α)eα

)(
1− qk(α)+1e−α

)

= δε,kδ∗ε,k
∏
α∈R+
l(α)=1

1− qk(α)+1e−α

1− q−k(α)e−α

= δε,kδ∗ε,k
∏
α∈R+

1− qk(α)+l(α)e−α

1− q (εk)(α)e−α

= δε,kδ∗ε,k 0
εk/ 

0
k+l .

Likewise in the other two cases (1.4.2), (1.4.3). �
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If k is any labelling of S and τi (i∈I ) are defined as in (5.1.6), and τw (w∈W0)
as in (4.5.4), we shall write

W0(qk) =
∑
w∈W0

τ 2
w.(5.8.5)

We shall also denote the scalar product (5.1.17) by ( f, g)k :

( f, g)k = ct( f g∗ S,k)

since from now on several labellings will be in play.

(5.8.6) Let f, g ∈ A0. Then

( f, g)k+l = W0(qk+l)

W0(qεk)
(δε,k f, δε,k g)k .

Proof We have

(δε,k f, δε,k g)k = ct( f g∗δε,kδ∗ε,k S,k)

= ct
(

f g∗∇S,k+l
(
 0
ε,k

)−1)
= W0(qεk)< f, g0>k+l

= W0(qεk)

W0(qk+l)
( f, g)k+l

by (5.8.4) and (5.1.34). �

(5.8.7) For each i ∈ I0 we have
(i) (Ti − τ (ε)

i )δε,k(X ) = (siδε,k)(X )(Ti − τi ),
(ii) (Ti − τi )δε,k(X−1) = (siδε,k)(X−1)(Ti − τ (ε)

i ).

Proof (i) By (4.3.15) we have

Tiδε,k(X )− (siδε,k)(X )Ti = bi (X )(δε,k(X )− (siδε,k)(X )).

If ε(si ) = 1 this is zero, since si permutes the a ∈ S+01 such that l(a) = 1 and
hence fixes δε,k . If on the other hand ε(si ) = −1, then by (4.2.3)

Tiδε,k(X )− (siδε,k)(X )Ti

= (ci (X−1)− τ−1
i

)
δε,k(X )+ (ci (X )− τi

)
(siδε,k)(X )

= −τ−1
i δε,k(X )− τi (siδε,k)(X )

because δε,k/siδε,k = δai ,k/δ−ai ,k = −ci/c̄i .
The proof of (ii) is similar. �
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Next we have

(5.8.8) UεA = δε,k A0.

Proof Let f ∈ UεA. By (5.5.9), (Ti − τ (ε)
i ) f = 0 for all i �= 0. Hence (5.8.7)

(i) shows that g = δ−1
ε,k f is killed by Ti − τi for each i �= 0, and hence is

W0-symmetric. Consequently w0(δ−1
ε,k f ) = δ−1

ε,k f , i.e.,

δε,kw0( f ) = w0(δε,k) f.

Now δε,k and w0(δε,k) are coprime elements of A. Hence δε,k divides f in A,
so that g ∈ A0 and f ∈ δε,k A0.

Conversely, if f ∈ δε,k A0, then (Ti − τ (ε)
i ) f = 0 for all i �= 0 by (5.8.7) (i),

and therefore f ∈ UεA by (5.5.10) (ii). �

(5.8.9) Let λ ∈ L++. Then

P (ε)
λ+ρl ,k

= ε(w0)qn(k,l)/2δε,k Pλ,k+l ,

where

n(k, l) = 1

2

∑
a∈S+0

k(a)l(a)

and

ρl = 1

2

∑
a∈S+01

l(a)uaa

where ua = 1 if 2a �∈ S, and ua = 2 if 2a ∈ S.

Proof Since P (ε)
λ+ρl ,k

∈ UεA, it follows from (5.8.8) that P (ε)
λ+ρl ,k

= δε,k g
for some g ∈ A0. The leading term in P (ε)

λ+ρl ,k
is ew0λ−ρl , and in δε,k is

ε(w0)q−n(k,l)/2e−ρl . Hence

g = ε(w0)qn(k,l)/2mλ + lower terms.(1)

Let µ ∈ L++, µ < λ. The highest exponential that occurs in δε,kmµ is
ew0(µ+ρl ). Since P (ε)

λ+ρl ,k
is a linear combination of the Ew(λ+ρl ), w ∈ W0, it

follows that

(δε,k g, δε,kmµ)k = 0
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and hence by (5.8.6) that

(g,mµ)k+l = 0(2)

for all µ ∈ L++ such that µ < λ. From (1) and (2) we conclude that g =
ε(w0)qn(k,l)/2 Pλ,k+l . �

In particular, when λ = 0 we have

P (ε)
ρl ,k
= ε(w0)qn(k,l)/2δε,k(5.8.10)

and therefore, for any λ ∈ L++,

Pλ,k+l = P (ε)
λ+ρl ,k

/P (ε)
ρl ,k
.(5.8.11)

Thus when ε is the sign character of W0 we have

Pλ,k+1 = Qλ+ρ,k/Qρ,k(5.8.12)

where k + 1 is the labelling a 
→ k(a)+ 1 of S, and

ρ = 1

2

∑
a∈S+01

uaa.(5.8.13)

(In the cases (1.4.1) and (1.4.3), ρ = 1
2

∑
α∈R+ α; in the case (1.4.2), ρ =

1
2

∑
α∈R+ α

∨.)

Remark (5.8.12) may be regarded as a generalization of Weyl’s character
formula, which is the case k = 0 : for then Eλ = eλ for all λ ∈ L , and
Qλ+ρ,0 = ε(w0)

∑
w∈W0

ε(w)ew(λ+ρ).

From (5.8.6) and (5.8.9) we have(
P (ε)
λ+ρl ,k

, P (ε)
λ+ρl ,k

)
k
= (δε,k Pλ,k+l , δε,k Pλ,k+l)k

= W0(qεk)

W0(qk+l)
(Pλ,k+l , Pλ,k+l)k+l

and therefore, by (5.7.12),

(Pλ,k+l , Pλ,k+l)k+l

(Pλ+ρl ,k, Pλ+ρl ,k)k
= W0(qk+l)ξ (−ε)

λ+ρl

W0(qεk)ξ (−1)
λ+ρl

,

Equivalently, by (5.1.34) and (5.3.2),

|Pλ,k+l |2k+l

|Pλ+ρl ,k |2k
= W0(qk)ξ (−ε)

λ+ρl

W0(qεk)ξ (−1)
λ+ρl

,(5.8.14)
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where

| f |2k = < f, f>k

for f ∈ A.

The right-hand side of (5.8.14) can be reformulated, as follows. Let µ =
λ+ ρl . Then we have, in the notation of (5.3.11),

W0(qk)ξ (−ε)
µ

W0(qεk)ξ (−1)
µ

=  
+
S′,k ′+l ′ (µ+ ρk ′ ) 

−
S′,−k ′−l ′ (−µ− ρk ′ )

 +S′,k ′ (µ+ ρk ′ ) 
−
S′,−k ′ (−µ− ρk ′ )

.(5.8.15)

Proof We shall verify (5.8.15) when S = S(R) (1.4.1); the other cases are
analogous. Consider first the right-hand side. From (5.1.12) we have

 +S′,k ′+l ′/ 
+
S′,k ′ =

∏
α∈R+
l(α)=1

(
1− qk(α)eα

∨)

and

 −S′,−k ′−l ′/ 
−
S′,−k ′ =

∏
α∈R+
l(α)=1

(
1− q−k(α)e−α

∨)−1
,

so that the right-hand side of (5.8.15) is equal to

∏
α∈R+
l(α)=1

1− qk(α)+<µ+ρk ,α
∨>

1− q−k(α)+<µ+ρk ,α∨>
.(1)

Next, consider the left-hand side of (5.8.15). From (2.4.4) we have

S′(v(µ)) = {α∨ ∈ (R∨)+ : <µ, α∨> > 0},

so that by (5.6.7)

ξ (−ε)
µ

ξ
(−1)
µ

=
∏
α∈R+

<µ,α∨>>0

cα∨,−εk(rk(µ))

cα∨,−k(rk(µ))
.

Since µ is dominant,

rk(µ) = w0µ(µ+ ρk)

by (2.8.7), where w0µ is the longest element of the isotropy group W0µ of µ in
W0. Since <µ,w0µα

∨> = <µ, α∨>, it follows that w0µ permutes the roots
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α∨ such that <µ, α∨> > 0. Hence

ξ (−ε)
µ

ξ
(−1)
µ

=
∏
α∈R+

<µ,α∨>>0

cα∨,−εk(µ+ ρk)

cα∨,−k(µ+ ρk)
.

The terms in this product corresponding to roots α ∈ R+ such that ε(sα) = 1
(i.e., l(α) = 0) are equal to 1. Hence we may assume that l(α) = 1, which by
(5.7.3) implies that <µ, α∨> > 0. Hence finally we have

ξ (−ε)
µ

ξ
(−1)
µ

=
∏
α∈R+
l(α)=1

q−k(α) 1− qk(α)+<µ+ρk ,α
∨>

1− q−k(α)+<µ+ρk ,α∨>
.(2)

As in §5.7 we have

W0(qεk) = W̄1(qk)W−1(q−k),

W0(qk) = W̄1(qk)W−1(qk),

so that

W0(qk)/W0(qεk) = W−1(qk)/W−1(q−k)

=
∏
α∈R+
l(α)=1

qk(α).(3)

From (2) and (3) we see that the left-hand side of (5.8.15) is equal to (1). �

From (5.8.14) and (5.8.15) we have

|Pλ,k+l |2k+l

|Pλ+ρl ,k |2k
=  

+
S′,k ′+l ′ (λ+ ρk ′+l ′ ) 

−
S′,−k ′−l ′ (−λ− ρk ′+l ′ )

 +S′,k ′ (λ+ ρk ′+l ′ ) 
−
S′,−k ′ (−λ− ρk ′+l ′ )

.(5.8.16)

This provides the inductive step in the proof of the norm formula:

|Pλ,k |2k =  +S′,k ′ (λ+ ρk ′ ) 
−
S′,−k ′ (−λ− ρk ′ ).(5.8.17)

Proof (a) Suppose first that S = S(R) (1.4.1). If k(α) = 1 for all α ∈ R, then
Pλ,k = χR,λ and |Pλ,k |2k = 1 for all λ ∈ L++ by (5.3.15). On the other hand, it
follows from the definitions that

 +S′,k ′ 
−
S′,−k ′ =

∏
α∈R+

(1− eα
∨
)/(1− e−α

∨
)

so that  +S′,k ′ (λ+ ρk ′ ) 
−
S′,−k ′ (−λ− ρk ′ ) = 1.

Hence (5.8.17) is true when all the labels k(α) are equal to 1. But now (5.8.16)
shows that the norm formula is true for (λ, k) if it is true for (λ + ρl , k − l).
Hence it is true whenever the labels k(α) are positive integers.
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(b) Suppose next that S = S(R)∨ (1.4.2). If k∨(α) = 1 for all α ∈ R, in the
notation of (5.1.13), then again Pλ,k = χR∨,λ and |Pλ,k |2k = 1 for all λ ∈ L++
(5.3.15), and the conclusion is the same as before: (5.8.17) is true whenever the
k∨(α) are positive integers.
(c) Finally, suppose that S is of type (C∨

n ,Cn) (1.4.3), and that the labels k(a) are
positive integers. By (5.1.28) (iii),∇S,k (and therefore also Pλ,k) is symmetrical
in u1, . . . , u4, where

(u1, u2, u3, u4) = (qk1 ,−qk2 , q
1
2+k3 ,−q

1
2+k4
)
.

Let l = (1, 1, 0, 0). Then (5.8.16) shows that the norm formula is true for the pa-
rameters (u1, u2, u3, u4) if and only if it is true for the parameters (q−1u1, q−1u2,

u3, u4). Hence by symmetry it is true for (u1, u2, u3, u4) if and only if it is true
when any two of the ui are replaced by q−1ui . In terms of the labelling k, this
means that the norm formula is true for k if and only if it is true for k − m,
where m ∈ Z5 is an element of the group M generated by the six vectors
in which two of the first four components are equal to 1 and the remaining
three are zero. This group M consists of the vectors (m1,m2,m3,m4, 0) ∈ Z5

such that m1 + · · · + m4 is even. Hence we reduce to the situation where
k2 = k3 = k4 = 0, i.e. to the case of S = S(R) with R of type Bn , already dealt
with in (a) above.

(d) We have now established the norm formula (5.8.17) for all affine root
systems S, under the restriction that the labels k(a) are integers≥ 0. To remove
this restriction we may argue as follows. First, in view of (5.3.13), we may
assume that λ = 0, so that we are required to prove that

<1, 1>k =  +S′,k ′ (ρk ′ ) 
−
S′,−k ′ (−ρk ′ )(5.8.18)

for arbitrary k. Both sides of (5.8.18) are meromorphic functions of q, where
|q| < 1, and r ≤ 5 other variables t1, . . . , tr , say (where {t1, . . . , tr } = {qk(a) :
a ∈ S}). As we have seen, the two sides of (5.8.18) are equal whenever each ti
is a positive integral power of q . Hence to complete the proof it is enough to
show that they are equal when t1 = · · · = tr = 0, i.e. when k(a) →∞ for all
a ∈ S.

From (5.1.35) we have in this situation

<1, 1>∞ = (1, 1)∞ = ct( S,∞)

and by (5.1.7)

 S,∞ =
∏

a∈S+
2a �∈S

(1− ea).
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From [M2], Theorem (8.1) (namely the denominator formula for affine Lie
algebras), it follows that the constant term of S,∞ when S = S(R) is (q; q)−n

∞
(where n is the rank of R). On the other hand, it is easily seen that the right-hand
side of (5.8.18) reduces to (q; q)−n

∞ when k = ∞. Hence when S = S(R), the
two sides of (5.8.18) are equal at t1 = · · · = tr = 0. Likewise, when S = S(R)∨,
both sides of (5.8.18) are equal to

∏
i∈I0

(qαi ; qαi )
−1 when t1 = · · · = tr = 0.

This completes the proof of the norm formula (5.8.17). �

Finally, we shall calculate (Eλ, Eλ) for λ ∈ L . The result is

(Eλ, Eλ) =
∏

a′∈S′(λ)

( a′,k ′ a′,−k ′ )(rk ′ (λ))(5.8.19)

where

S′(λ) = {a′ ∈ S′+ : χ (Da′)+<λ, Da′> > 0}.
In particular, when λ = 0:

(1, 1) = ( −S′,k ′ 
−
S′,−k ′ )(−ρk ′ ).(5.8.20)

Proof First of all, (5.8.20) follows from (5.8.18) by use of (5.1.35), (5.1.40)
and (5.1.41):

(1, 1) = W0(qk)<1, 1>

=  0
S′,k ′ (−ρk ′ )

−1 +S′,k ′ (ρk ′ ) 
−
S′,−k ′ (−ρk ′ )

=  −S′,k ′ (−ρk ′ ) 
−
S′,−k ′ (−ρk ′ ).

Next, from (5.2.15) we have

(Eλ, Eλ)1 =
∏

a′∈S′(u′(λ)−1)

(( a′,k ′ a′,−k ′ )(rk ′ (λ)))−1.(1)

Let b′ = −u′(λ)−1a′ ∈ S′+. Then a′(rk ′ (λ)) = −b′(−ρk ′ ), so that (1) becomes

(Eλ, Eλ)1 =
∏

b′∈S′(u′(λ))

(( b′,k ′ b′,−k ′ )(−ρk ′ ))
−1(2)

(since  −b′,k ′ −b′,−k ′ =  b′,k ′ b′,−k ′ ).
If b′ ∈ S′(u′(λ)) then Db′ < 0 by (2.4.7) (i). Hence from (2) and (5.8.20) we

obtain

(Eλ, Eλ) = (Eλ, Eλ)1(1, 1)

=
∏

b′
( b′,k ′ b′,−k ′ )(−ρk ′ )(3)
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where the product is over b′ ∈ S′+ such that u′(λ)b′ ∈ S′+ and Db′ < 0. Equiv-
alently, with a′ = u′(λ)b′,

(Eλ, Eλ) =
∏
a′

( a′,k ′ a′,−k ′ )(rk ′ (λ))(4)

where the product is now over a′ ∈ S′+ such that b′ = u′(λ)−1a′ ∈ S′+ and
Db′ < 0. If a′ = α′ + rc then

b′ = u′(λ)−1a′ = v(λ)α′ + (<λ, α′>+ r )c.

Now by (2.4.6) v(λ)α′< 0 if and only if<λ, α′>+χ (α) > 0. Hence if a′ ∈ S′+

and v(λ)α′ < 0 then

<λ, α′>+ r ≥<λ, α′>+ χ (α′) > 0

so that b′ ∈ S′+. Hence the set of a′ in the product (4) is precisely S′(λ). �

Suppose in particular that S = S(R) (1.4.1) and the labels k(α) are positive
integers. Then S′ = S(R∨) and α∨ + rc ∈ S′(λ) if and only if r ≥ χ (α) and
<λ, α∨>+ χ (α) > 0. If α ∈ R+ and <λ, α∨> > 0 we get a contribution

k(α)−1∏
i=0

1− q<rk (λ),α∨>+i

1− q<rk (λ),α∨>−i−1

to (Eλ, Eλ). If on the other hand α ∈ R+ and <λ, α∨> ≤ 0 then −α∨ + rc ∈
S′(λ) for r ≥ 1, and we get a contribution

k(α)−1∏
i=0

1− q−<rk (λ),α∨>+i+1

1− q−<rk (λ),α∨>−i
.

Hence in terms of

[s] = qs/2 − q−s/2

we obtain

(Eλ, Eλ) = q N (k)/2
∏
α∈R+

(
k(α)−1∏

i=0

[<rk(λ), α∨>+ i]

[<rk(λ), α∨>− i − 1]

)η(<λ,α∨>)

(5.8.21)

(where N (k) = ∑α∈R+ k(α)2 as in (5.1.16)), in agreement with [M7], (7.5).
(Note that Ck as defined in [M7] is equal to q−N (k)/2 k .)

Finally, we shall indicate another method of calculating (Eλ, Eλ) where λ ∈
L . This method uses results from §5.5–§5.7 to express (Eλ, Eλ) in terms of
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<Pµ, Pµ>, where µ = λ+ is the dominant weight in the orbit W0λ. (When λ
itself is dominant we have already done this, in the proof of (5.7.12).)

Recall from Chapter 2 that v(λ) (resp. v̄(λ)) is the shortest element w ∈ W0

such that wλ = w0µ (resp. wµ = λ). Thus v(λ)v̄(λ) takes µ to w0µ, and
w0 = v(λ)v̄(λ)w0µ, where w0µ is the longest element of W0 that fixes µ. We
have

l(w0) = l(v(λ))+ l(v̄(λ))+ l(w0µ)

and therefore

τw0 = τv(λ)τv̄(λ)τw0µ .(5.8.22)

Let

Fλ = U+Eλ

which by (5.7.2) is a scalar multiple of Fµ. In fact

Fµ = ϕλFλ

where

ϕλ =
∏
a′
 a′,k ′ (rk ′ (λ))(5.8.23)

and the product is over a′ ∈ S′−0 such that <λ, a′> > 0.

Proof Let i ∈ I0. From (5.7.2), if <λ, α′i> < 0 we have

Fλ = τi c−α′i ,k ′ (rk ′ (λ))Fsiλ.

Now by (2.7.2) (ii), if α′ is positive then v̄(λ)−1α′ is a negative root if and only
if <λ, α′> < 0. By taking a reduced expression for v̄(λ)−1, it follows that

Fλ =
(
τv̄(λ)

∏
α′∈R′−
<λ,α′>>0

cα′,k ′ (rk ′ (λ))
)

Fµ

which by (5.1.2) gives the stated value for ϕλ. �

Next we have

(Eλ, Eλ) = τ 2
w0

W0µ(τ−2)<Pµ, Pµ>/ϕ
∗
λξ

(−1)
λ(5.8.24)
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where

ξ
(−1)
λ = τ 2

v(λ)

∏
a′∈S′+0
<λ,a>>0

 a′,−k ′ (rk ′ (λ))−1.(5.8.25)

Proof From (5.7.7) and (5.7.10) we have

Pµ = τw0 W0µ(τ 2)−1 Fµ

and hence

(Pµ, Pµ) = ϕλϕ
∗
λ(U+Eλ,U+Eλ)

W0µ(τ 2)W0µ(τ−2)

= W0(qk)ϕλϕ∗λ(U+Eλ, Eλ)

τw0 W0µ(τ 2)W0µ(τ−2)
by (5.5.17),

= W0(qk)ϕ∗λ(Pµ, Eλ)

τ 2
w0

W0µ(τ−2)
.

Now by (5.7.8)

Pµ =
∑
λ∈W0µ

ξ
(−1)
λ Eλ

where (5.6.7)

ξ
(−1)
λ = τv(λ) cS′,−k ′ (v(λ))(rk ′ (λ))

which agrees with the value of ξ (−1)
λ stated above. Hence we obtain

(Pµ, Pµ) = W0(qk)ϕ∗λξ
(−1)
λ (Eλ, Eλ)

τ 2
w0

W0µ(τ−2)
.

Since

<Pµ, Pµ> = W0(qk)−1(Pµ, Pµ)

by (5.1.35) and (5.3.2), we obtain (Eλ, Eλ) as stated. �

It remains to recast the right-hand side of (5.8.24) in the form of (5.8.19).
Consider first <Pµ, Pµ>: by (5.8.17),

<Pµ, Pµ> =
∏

a′∈S′+
Da′>0

 a′,k ′ (µ+ ρk ′ )
∏

a′∈S′+
Da′<0

 a′,−k ′ (−µ− ρk ′ ).

This is unaltered by replacing µ by −w0µ, since −w0 permutes the factors in
each of the two products. We have

w0µ− ρk ′ = rk ′ (w0µ) = rk ′ (v(λ)λ) = v(λ)rk ′ (λ).
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Hence, putting a′ = α′ + rc and b′ = β ′ + rc, where β ′ = −v(λ)−1α′ in the
first product, and β ′ = v(λ)−1α′ in the second product, we shall obtain

<Pµ, Pµ> =
∏

b′∈0

 b′,k ′ (rk ′ (λ))
∏

b′∈1

 b′,−k ′ (rk ′ (λ))(1)

where

0 = {b′ = β ′ + rc ∈ S′ : v(λ)β ′ ∈ S′−0 and r ≥ 0},
1 = {b′ = β ′ + rc ∈ S′ : v(λ)β ′ ∈ S′−0 and r > 0}.

By (2.4.6), v(λ)β ′ ∈ S′−0 if and only if χ (β ′)+<λ, β ′> > 0. Hence

0 = S′(λ) ∪ {β ′ ∈ S′−0 : <λ, β ′> ≥ 0},
1 = S′(λ)− {β ′ ∈ S′+0 : <λ, β ′> > 0},

so that (1) above becomes

<Pµ, Pµ> = c1c2c3

∏
a′∈S′(λ)

( a′,k ′ a′,−k ′ )(rk ′ (λ)),(2)

where

c1 =
∏
β ′∈S′−0

<λ,β ′>>0

 β ′,k ′ (rk ′ (λ)) = ϕλ = τ−2
v̄(λ)ϕ

∗
λ(3)

by (5.8.23),

c2 =
∏
β ′∈S′+0

<λ,β ′>>0

 β ′,−k ′ (rk ′ (λ))−1 = τ−2
v(λ)ξ

(−1)
λ(4)

by (5.8.25), and

c3 =
∏
β ′∈S′−0

<λ,β ′>=0

 β ′,k ′ (rk ′ (λ)).

Now if β ′ ∈ S′−0 and <λ, β ′> = 0, we have

<rk ′ (λ), β ′> = <λ− v(λ)−1ρk ′ , β
′> = <ρk ′ , α

′>

where α′ = −v(λ)β ′ ∈ S′+0 . Also

<µ,−w0α
′> = <v(λ)λ,−α′> = <λ, β ′> = 0
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so that

c3 =
∏
α′∈S′+0

<µ,α′>=0

 α′,k ′ (ρk ′ ) = W0µ(τ 2)−1(5)

by (5.1.40).
If we now substitute (2)–(5) into the right-hand side of (5.8.24) and make

use of (5.8.22), we shall finally obtain

(Eλ, Eλ) =
∏

a′∈S′(λ)

( a′,k ′ a′,−k ′ )(rk ′ (λ))

as desired. �

5.9 Shift operators

In this section we shall give another proof of the relation (5.8.16), using shift
operators. Unlike the previous proof, it makes essential use of duality (§4.7).
We retain the notation of the previous sections.

For each indivisible a′ ∈ S′, let

δa′ = δa′,k ′ =
{

(ea′/2 − e−a′/2) ca′,k ′ if 2a′ �∈ S′,

(ea′ − e−a′ ) ca′,k ′ if 2a′ ∈ S′,
(5.9.1)

(so that δ∗a′ = −δa′ ), and let

δ′ε,k ′ =
∏

a′∈S′+01
l ′(a′)=1

δa′,k ′ ,(5.9.2)

where S′+01 = {a′ ∈ S′+ : a′(0) = 0 and 1
2 a′ �∈ S′}.

(5.9.3) For each i ∈ I0 we have

(i)
(
Ti − τ (ε)

i

)
δ′ε,k ′ (Y

−1) = (siδ
′
ε,k ′ )(Y

−1)(Ti − τi ),

(ii) (Ti − τi )δ′ε,k ′ (Y ) = (siδ
′
ε,k ′ )(Y )

(
Ti − τ (ε)

i

)
.

Proof These follow from (5.8.7) by taking adjoints (5.1.22) and then applying
duality (4.7.6). �

Now let

Gε = δε,k(X )−1δ′ε,k ′ (Y
−1),

Ĝε = δ′ε,k ′ (Y )δε,k(X ).
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(5.9.4) Gε and Ĝε each map A0 to A0.

Proof Let f ∈ A0. Then (Ti − τi ) f = 0 for all i �= 0, and hence by (5.9.3)(i)
δ′ε,k ′ (Y

−1) f is killed by Ti − τ (ε)
i , and hence lies in UεA = δε,k A0 (5.8.8).

Consequently Gε f ∈ A0.
Next, δε,k f ∈ UεA, hence is killed by Ti − τ (ε)

i , so that by (5.9.3)(ii) we have
(Ti − τi )Ĝε f = 0 for all i �= 0, and therefore Ĝε f ∈ A0. �

Next we have

δ′ε,k ′ (Y
−1)U+ = Uεδ

′
ε,k ′ (Y ).(5.9.5)

Proof By duality it is enough to show that

δε,k(X−1)Uε = U+δε,k(X ).

By (5.8.7) we have (Ti − τi )δε,k(X−1)Uε = 0 for all i �= 0, and hence by
(5.5.10)(ii)

δε,k(X−1)Uε = U+ f (X )

for some f ∈ A. Now Uε and U+ are both of the form T (w0) + lower terms,
i.e. of the form

c+(X )w0 + lower terms,

hence

δε,k(X−1) c+(X ) = c+(X )(w0 f )(X )

giving f (X ) = δε,k(X ) as required. �

(5.9.6) Let f, g ∈ A0. Then

<Gε f, g0>k+l = qk·l< f, (Ĝεg)0>k,

where k · l =∑a∈S+01
k(a)l(a).

Proof By (5.1.34) and (5.8.6) we have

<Gε f, g0>k+l = (Gε f, g)k+l/W0(qk+l)

= (δ′ε,k ′ (Y
−1) f, δε,k(X )g)k/W0(qεk).(1)
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Since f ∈ A0 we have

U+ f = τ−1
w0

W0(qk) f

and therefore

δ′ε,k ′ (Y
−1) f = τw0

W0(qk)
δ′ε,k ′ (Y

−1)U+ f

= τw0

W0(qk)
Uεδ

′
ε,k ′ (Y ) f

by (5.9.5). Since Uε is self-adjoint ((5.5.17)(iii)), it follows that (1) is equal to

τw0 (δ′ε,k ′ (Y ) f,Uεδε,k(X )g)k/W0(qk)W0(qεk).(2)

Now δε,k(X )g ∈ UεA by (5.8.8), hence by (5.5.17)(ii)

Uεδε,k(X )g = (τ (ε)
w0

)−1
W0(qεk)δε,k(X )g.

Since τw0/τ
(ε)
w0
= ε(w0)qk·l , it follows that (2) is equal to

ε(w0)qk·l(δ′ε,k ′ (Y ) f, δε,k(X )g)k/W0(qk)

which in turn is equal to

qk·l( f, Ĝεg)k/W0(qk) = qk·l< f, (Ĝεg)0>k

since the adjoint of δ′ε,k ′ (Y ) is ε(w0)δ′ε,k ′ (Y ) by (5.1.24). �

(5.9.7) Let λ ∈ L++. Then

GεPλ+ρl ,k = dk,l(λ)Pλ,k+l ,

ĜεPλ,k+l = d̂k,l(λ)Pλ+ρl ,k,

where

dk,l(λ) = qk·l/2δ′ε,−k ′ (λ+ ρk ′+l ′ ),

d̂k,l(λ) = ε(w0)q−k·l/2δ′ε,k ′ (λ+ ρk ′+l ′ ).

Proof Let µ ∈ L++, µ < λ. By (5.9.6) we have

<GεPλ+ρl ,k,mµ>k+l = qk·l<Pλ+ρl ,k, (Ĝεmµ)0>k .

Now the leading monomial in δε,kmµ is ew0(µ+ρl ), and therefore (Ĝεmµ)0 is a
scalar multiple of mµ+ρl+ lower terms. It follows that<GεPλ+ρl ,k,mµ>k+l = 0
for all µ ∈ L++ such that µ < λ, and hence that GεPλ+ρl ,k is a scalar multiple
of Pλ,k+l , say

GεPλ+ρl ,k = dk,l(λ)Pλ,k+l .



140 5 Orthogonal polynomials

Hence

δ′ε,k ′ (Y
−1)Pλ+ρl ,k = dk,l(λ)δε,k Pλ,k+l .(1)

Since Pλ+ρl ,k = Ew0(λ+ρl ),k + lower terms, it follows from (5.2.2) that the
coefficient of ew0(λ+ρl ) in the left-hand side of (1) is

δ′ε,k ′ (rk ′ (w0(λ+ ρl)) = δ′ε,k ′ (w0(λ+ ρk ′+l ′ ))

= ε(w0)δ′ε,−k ′ (λ+ ρk ′+l ′ )

(note that l ′ = l in all cases); whereas on the right-hand side of (1) the coeffi-
cient is

dk,l(λ)ε(w0)q−k·l/2.

This gives the stated value for dk,l(λ). For Ĝε, the proof is analogous and is left
to the reader. �

In view of (5.9.7), the operators Gε and Ĝε are called shift operators: Gε

shifts the labelling k upwards to k + l, and Ĝε shifts down from k + l to k.

From (5.9.6) and (5.9.7) we deduce

|Pλ,k+l |2k+l

|Pλ+ρl ,k |2k
= qk·l δ

′
ε,k ′ (λ+ ρk ′+l ′ )

δ′ε,−k ′ (λ+ ρk ′+l ′ )
.(5.9.8)

Proof Take f = Pλ+ρl ,k and g = Pλ,k+l in (5.9.6). By (5.9.7) we have

<Gε f, g0>k+l = dk,l(λ)|Pλ,k+l |2k+l

and

< f, (Ĝεg)0>k = d̂k,l(λ)0|Pλ+ρl ,k |2k .
Hence

|Pλ,k+l |2k+l

|Pλ+ρl ,k |2k
= qk·l d̂k,l(λ)0

dk,l(λ)

which gives (5.9.8). �

To reconcile (5.9.8) with (5.8.16), suppose for example that S = S(R) (1.4.1);
then S′ = S(R∨) and k ′ = k, so that

 +S′,k+l/ 
+
S′,k =

∏
α∈R+
l(α)=1

(
1− qk(α)eα

∨)
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and

 −S′,−k−l/ 
−
S′,−k =

∏
α∈R+
l(α)=1

(
1− q−k(α)e−α

∨)−1
.

Hence the right-hand side of (5.8.16) is equal to

∏
α∈R+

1− qk(α)+<λ+ρk+l ,α
∨>

1− q−k(α)+<λ+ρk+l ,α∨>
.(1)

On the other hand,

qk·lδ′ε,k ′/δ
′
ε,−k ′ = qk·l ∏

α∈R+
l(α)=1

qk(α)/2eα
∨/2 − q−k(α)/2e−α

∨/2

q−k(α)/2eα∨/2 − qk(α)/2e−α∨/2

=
∏
α∈R+
l(α)=1

1− qk(α)eα
∨

1− q−k(α)eα∨
,

and therefore the right-hand side of (5.9.8) is equal to (1). Similarly in the other
cases (1.4.2), (1.4.3).

5.10 Creation operators

The group W acts on V as a group of displacements, and by transposition acts
also on F , the space of affine-linear functions on V : (w f )(x) = f (w−1x) for
w ∈ W, f ∈ F and x ∈ V . Since we identify λ ∈ L with the function x 
→
<λ, x> on V , we have to distinguish wλ ∈ V and w · λ : x 
→ <λ,w−1x>.
When w ∈ W0 we have wλ = w · λ, but for example s0λ and s0 · λ are not the
same: we have

s0λ = ξ + sξ λ,(5.10.1)
s0 · λ = sξ λ+<λ, ξ>c

where ξ = ϕ (the highest root of R) in cases (1.4.1) and (1.4.2), and ξ = ε1 in
case (1.4.3).

From (4.7.3) we have

(Ti − bi (Xai ))Xλ = Xsi ·λ(Ti − bi (Xai ))(5.10.2)

for all i ∈ I and λ ∈ L , where

bi (Xai ) = b(τi , τ
′
i ; Xai )
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and in particular

Xa0 = qm X−ξ

where m = 1
2 in case (1.4.3), and m = 1 otherwise.

By applying ω−1 : H̃ → H̃
′
to (5.10.2) we shall obtain

Y−λ(Ti − bi (Y
−ai )) = (Ti − bi (Y

−ai ))Y−siλ

when i �= 0, and

Y−λ(ω−1(T0)− b0(qmY ξ )) = q<λ,ξ>(ω−1(T0)− b0(qmY ξ ))Y−sξ λ.

Hence if we define

αi = Ti − bi (Y
−ai )(5.10.3)

for i �= 0, and

α0 = ω−1(T0)− b0(qmY ξ )(5.10.4)

as operators on A′, we shall have

Y λαi = αi Y
siλ(5.10.5)

for i �= 0 and λ ∈ L , and

Y λα0 = q−<λ,ξ>α0Y sξ λ.(5.10.6)

Suppose first that i �= 0, and let µ ∈ L ′. Then we have

Y λαi E ′µ = αi Y
siλE ′µ = q−<siλ,r ′k (µ)>αi E ′µ

by (5.2.2′). Suppose that siµ > µ, then si (r ′k(µ)) = r ′k(siµ) by (2.8.4), and hence
αi E ′µ is a scalar multiple of E ′siµ

. To obtain the scalar, we need the coefficient
of esiµ in αi E ′µ. Now bi (Y−ai )E ′µ is a scalar multiple of E ′µ, hence does not
contain esiµ. Since siµ > µ we have <µ, αi> > 0 by (2.7.9) and hence

Ti e
µ = τ−1

i esiµ + lower terms

by (4.3.21). It follows that

αi E ′µ = τ−1
i E ′siµ

(5.10.7)

if i �= 0 and siµ > µ.
Next, consider the case i = 0. Then we have, using (5.10.6),

Y λα0 E ′µ = q−<λ,ξ>α0Y sξ λE ′µ

= q−<λ,ξ>−<sξ λ,r ′k (µ)>α0 E ′µ

= q−<λ,s0(r ′kµ)>E ′µ
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by (5.10.1). Suppose that s0µ > µ, then s0(r ′kµ) = r ′k(s0µ) by (2.7.13), and
hence α0 E ′µ is a scalar multiple of E ′s0µ

. We shall show that in fact

α0 E ′µ = τv(s0µ)τ
−1
v(µ) E

′
s0µ
.(5.10.8)

Proof Since s0sξ = t(ξ ) we have T0T (sξ ) = Y ξ and therefore T (sξ )ω−1(T0) =
X−ξ , so that

ω−1(T0) = T (sξ )
−1 X−ξ .

As before, we require the coefficient of es0µ in T (sξ )−1 X−ξeµ = T (sξ )−1eµ−ξ ,
which by (4.3.23) is q f (µ), where

f (µ) = 1

2

∑
α∈R+

η(<ξ − µ, α>)χ (sξα)κα.

Now if α ∈ R+, we have sξα ∈ R− unless <ξ, α> = 0. Hence

f (µ) = 1

2

∑
α∈R+

<ξ,α>>0

η(<ξ − µ, α>)κα.(1)

On the other hand, by (4.3.25),

τv(µ) = qg(µ)

where

g(µ) = 1

4

∑
α∈R+

(1+ η(<µ, α>))κα.

Now if <ξ, α> = 0 we have <s0µ, α> = <µ, α>. Hence

g(µ)− g(s0µ) = 1

4

∑
α∈R+

<ξ,α>>0

(η(<µ, α>)− η(<s0µ, α>))κα.

In this sum we may replace <s0µ, α> by

−<s0µ, sξα> = <ξ − µ, α>
and hence using (1) we obtain

f (µ)+ g(µ)− g(s0µ) = 1

4

∑
α∈R+

<ξ,α>>0

(η(<ξ − µ, α>)+ η(<µ, α>))κα.

In this sum, if α �= ξ∨ then <ξ, α> = 1, and

η(1−<µ, α>)+ η(<µ, α>) = 0.
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Finally, since s0µ > µ we have a0(µ) > 0 and hence <µ, ξ> ≤ 0, so that

η(<ξ − µ, ξ∨>)+ η(<µ, ξ∨>) = η(2−<µ, ξ∨>)+ η(<µ, ξ∨>)

= 1− 1 = 0.

It follows that

f (µ) = g(s0µ)− g(µ)

which completes the proof. �

Next, let j ∈ J and let

β j = ω−1
(
U−1

j

)
.(5.10.9)

Let λ ∈ L . Then by (3.4.5) we have

U−1
j XλU j = Xu−1

j ·λ

where u j = u(π ′j ) = t(π ′j )v
−1
j , so that

u jλ = π ′j + v−1
j λ,(5.10.10)

u−1
j · λ = v jλ+<λ, π ′j>c.

Hence

U−1
j Xλ = q<λ,π

′
j>Xv jλU−1

j

and therefore (with λ replaced by −λ)

Y λβ j = q−<λ,π
′
j>β j Y

v jλ(5.10.11)

Now let µ ∈ L ′. Then

Y λβ j E ′µ = q−<λ,π
′
j>β j Y

v jλE ′µ

= q−<λ,π
′
j+v−1

j r ′k (µ)>β j E ′µ

= q−<λ,u j (r ′k (µ))>β j E ′µ.

Since u j (r ′k(µ)) = r ′k(u jµ) by (2.8.4), it follows that β j E ′µ is a scalar multiple
of E ′u jµ

. In fact we have

β j E ′µ = τv(u jµ)τ
−1
v(µ) E

′
u jµ
.(5.10.12)

Proof We have U−1
j = Ui , where i = − j in the notation of §2.5. Since

uivi = τ (π ′i ), it follows that

Ui = T (ui ) = Y π
′
i T (vi )

−1
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and therefore

β j = ω−1(Ui ) = T
(
v−1

i

)−1
X−π

′
i

so that

β j e
µ = T
(
v−1

i

)−1
eµ−π

′
i .

Since v−1
i (µ− π ′i ) = u−1

i µ = u jµ, it follows from (4.3.23) that

β j e
µ = q f (µ)eu jµ + lower terms

where now

f (µ) = 1

2

∑
α∈R+

η(<π ′i − µ, α>)χ (viα)κα.

By (4.2.4), χ (viα) = 1 if and only if <π ′i , α>>0. Now π ′i is a minuscule
fundamental weight, so that <π ′i , α> = 0 or 1 for each α ∈ R+. Hence

f (µ) = −1

2

∑
α∈R+

<π ′i ,α>=1

η(<µ, α>)κα(1)

since η(<π ′i − µ, α>) = η(1−<µ, α>) = −η(<µ, α>).
On the other hand, by (4.3.25), we have

τv(µ) = qg(µ)

where

g(µ) = 1

4

∑
α∈R+

(1+ η(<µ, α>))κα

so that

g(µ)− g(u jµ) = 1

4

∑
α∈R+

(η(<µ, α>)− η(<u jµ, α>)κα.(2)

If <π ′j , α >= 0 let β = v jα ∈ R+. Then

<u jµ, α> = <π ′j + v−1
j µ, α> = <µ, β>

and

<π ′i , β> = <v−1
j π

′
i , α> = −<π ′j , α> = 0

by (2.5.9).
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If on the other hand <π ′j , α> = 1, let β = −v jα ∈ R+. Then

<u jµ, α> = 1−<µ, β>
so that η(<u jµ, α>) = −η(<µ, β>), and <π ′i , β> = 1.

Hence if we define

εβ =
{

1 if <π ′i , β> = 0
−1 if <π ′i , β> = 1

we have ∑
α∈R+

η(<u jµ, α>)κα =
∑
β∈R+

εβη(<µ, β>)κβ.(3)

From (1), (2) and (3) it follows that

f (µ)+ g(µ)− g(u jµ) =
∑
α∈R+

((εα − 1)+ 1− εα)η(<µ, α>)κα

= 0.

This completes the proof of (5.10.12). �

(5.10.13) Let µ ∈ L ′ and let

u(µ) = u j si1 · · · si p

be a reduced expression. Then

E ′µ = τ−1
v(µ)β jαi1 · · ·αi p (1).

Proof For each i ∈ I , if ai (µ) > 0 then si u(µ) = u(siµ) > u(µ), by (2.4.14).
Also, if i �= 0, we have v(µ)si = v(siµ) < v(µ), so that τv(siµ) = τ−1

i τv(µ).
Hence (5.10.13) follows from (5.10.7), (5.10.8) and (5.10.12). �

For this reason the operators αi (i ∈ I ) and β j ( j ∈ J ) are called ‘creation
operators’: they enable us to construct each E ′µ from E ′0 = 1. Dually, by
interchanging S and S′, k and k ′, we may define operators α′i ,β′j on A which
enable us to construct each Eλ (λ ∈ L) from E0 = 1.

Notes and references

The symmetric scalar product (5.1.29) was introduced in [M5], and the non-
symmetric scalar product (5.1.17) (which is more appropriate in the context of



Notes and references 147

the action of the double affine Hecke algebra) by Cherednik [C2]. The poly-
nomials Eλ were first defined by Opdam [O4] in the limiting case q → 1, and
then for arbitrary q in [M7] (for the affine root systems S(R) with R reduced),
and in greater generality by Cherednik in [C3]. The proofs of the symmetry and
evaluation theorems in §5.2 and §5.3 are due to Cherednik ([C4], [C5]), as is
indeed the greater part of the material in this chapter.

To go back in time a bit, the symmetric polynomials Pλ were first developed
for the root systems of type An in the 1980’s, as a common generalization of the
Hall-Littlewood and Jack symmetric functions [M6]. The symmetry theorem
(5.3.5) in this case was discovered by Koornwinder, and his proof is reproduced
in [M6], Chapter 6, which also contains the evaluation theorem (5.3.12) and the
norm formula (5.8.17) for S of type An , without any overt use of Hecke algebras.
(Earlier, Stanley [S3] had done this in the limiting case q → 1, i.e. for the Jack
symmetric functions.) What is special to the root systems of type A is that all
the fundamental weights are minuscule, so that the corresponding Y -operators
(4.4.12) can be written down explicitly; and these are precisely the operators
used in [M6].

From the nature of these formulas in type A it was clear what to expect should
happen for other root systems – all the more because the formula for |Pλ|2 when
λ = 0 delivers the constant term of ∇, which had been the subject of earlier
conjectures ([D1], [A1], [M4], [M11]). The preprint [M5] contained a construc-
tion of the polynomials Pλ for reduced affine root systems, and conjectured the
values of |Pλ|2 and Pλ(ρ ′k). Again, in the limiting case q → 1, Heckman and
Opdam ([H1], [H2], [O1], [O2]) had earlier constructed the Pλ (which they
called Jacobi polynomials); and then Opdam [O3] saw how to exploit the shift
operator techniques that he and Heckman had developed, to establish the norm
and evaluation formulas in this limiting case.

Cherednik [C2] now brought the double affine Hecke algebra into the picture,
as a ring of operators on A, as described in Chapter 4. He constructed q-
analogues of the shift operators, and used them to evaluate |Pλ|2 for reduced
affine root systems. His proof is reproduced in §5.9. The alternative proof of
the norm formula in §5.8 is essentially that of [M7], which in turn was inspired
by [O4].

Finally, the case where the affine root system is of type (C∨
n ,Cn) was worked

out by van Diejen [V2] in the self-dual situation (i.e., k ′ = k in our notation),
and then in general by Noumi [N1], Sahi ([S1], [S2]), and Stokman [S4]. The
constant term of ∇S,k (i.e., the case λ = 0 of the norm formula) had been
calculated earlier by Gustafson [G2].
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The rank 1 case

When the affine root system S has rank 1, everything can be made completely
explicit, and we are dealing with orthogonal polynomials in one variable. There
are two cases to consider:

(a) S = S′ is of type A1, and L = L ′ is the weight lattice;
(b) S = S′ is of type (C∨

1 ,C1), and L = L ′ is the root lattice.

We consider (a) first.

6.1 Braid group and Hecke algebra (type A1)

Here R = R′ = {±α}, where |α|2 = 2, and L = L ′ = Zα/2. We have
a0 = 1 − α and a1 = α, acting on V = R as follows: a0(ξ ) = 1 − ξ and
a1(ξ ) = ξ for ξ ∈ R. Thus the simplex C is the interval (0, 1), and WS is
the infinite dihedral group, freely generated by s0 and s1, where s0 (resp. s1) is
reflection in 1 (resp. 0). The extended affine Weyl group W is the extension of
WS by a group� = {1, u} of order 2, where u is reflection in the point 1

2 , so that
u interchanges 0 and 1, a0 and a1. We have s0 = us1u, so that W is generated
by s1 and u with the relations s2

1 = u2 = 1.
The braid group B has generators T0, T1,U with relations

U 2 = 1, U T1U = T0(6.1.1)

(there are no braid relations). Let Y = Y α/2, then

Y = T0U = U T1

so that B is generated by T1 and Y subject to the relation T1Y−1T1 = Y .
Alternatively, B is generated by T1 and U with the single relation U 2 = 1.

148
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The double braid group B̃ is generated by T1, X, Y and a central element
q1/2, with the relations

T1 XT1 = X−1, T1Y−1T1 = Y, U XU−1 = q1/2 X−1(6.1.2)

where U = Y T−1
1 = T1Y−1. The duality antiautomorphism ω maps

T1, X, Y, q1/2 respectively to T1, Y−1, X−1, q1/2. Thus it interchanges the first
two of the relations (6.1.2); and since U X = T1Y−1 X we have ω(U X ) =
Y−1 XT1 = T−1

1 (U X )T1, so that ω((U X )2) = T−1
1 (U X )2T1 = q1/2. Thus

duality is directly verified.
Next, the affine Hecke algebra H is the K -algebra generated by T1 and U

subject to the relations U 2 = 1 and

(T1 − τ )(T1 + τ−1) = 0(6.1.3)

where K is the field Q(q1/2, τ ). We shall write

τ = qk/2

and we shall assume when convenient that k is a non-negative integer (in which
case K = Q(q1/2)).

The double affine Hecke algebra H̃ is the K -algebra generated by T1, X, Y
subject to the relations (6.1.2) and (6.1.3), i.e. it is the quotient of the group
algebra of B̃ over K by the ideal generated by (T1 − τ )(T1 + τ−1). Since ω
fixes T1, it extends to an antiautomorphism of H̃.

Let x = eα/2 and let A = K [x, x−1]. Also let

b(X ) = τ − τ
−1

1− X2
, c(X ) = τ X2 − τ−1

X2 − 1
.(6.1.4)

Then H̃ acts on A as follows: if f ∈ A,

X f = x f, U f = u f, T1 f = (b(X )+ c(X )s1) f(6.1.5)

where (s1 f )(x) = f (x−1) and (u f )(x) = f (q1/2x−1).

We have s1 X = X−1s1, and

s1 = c(X )−1(T1 − b(X ))

as operators on A. Applying ω, we obtain

Y−1(T1 − b(Y−1)) c(Y−1)−1 = (T1 − b(Y−1)) c(Y−1)−1Y

so that if we put

α = T1 − b(Y−1) = UY − b(Y−1),(6.1.6)
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we have

Y−1α = αY.(6.1.7)

Again, we have U X = q1/2 X−1U and U = T1Y−1, so that

β = ω(U ) = XT1 = XUY(6.1.8)

and

Y−1β = q1/2βY.(6.1.9)

6.2 The polynomials Em

As in §5.1, the scalar product on A is

( f, g) = ct( f g∗ k)

where

 k = (x2; q)k(qx−2; q)k .

We shall assume that k is a non-negative integer. Then

 k = (−1)kqk(k+1)/2x−2k(q−k x2; q)2k

which by the q-binomial theorem is equal to

k∑
r=−k

(−1)r qr (r−1)/2

[
2k

k + r

]
x2r

where [
n

r

]
= (q; q)n/(q; q)r (q; q)n−r

is the q-binomial coefficient, for 0 ≤ r ≤ n. In particular, the constant term of
 k is [ 2k

k ], i.e.,

(1, 1) =
[

2k

k

]
.(6.2.1)

For each m ∈ Z, let Em = Emα/2 in the notation of §5.2. We have ρk ′ = 1
2 kα

and hence

rk ′ ( 1
2 mα) =

{
1
2 (m + k)α if m > 0,
1
2 (m − k)α if m ≤ 0,
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so that by (5.2.2) the Em are elements of A characterized by the facts that the
coefficient of xm in Em is 1, and that

Y Em =
{

q−(m+k)/2 Em if m > 0,

q (−m+k)/2 Em if m ≤ 0.
(6.2.2)

The adjoint of Y (for the scalar product ( f , g)) is Y−1, from which it follows that
the Em are pairwise orthogonal. If m > 0, Em is a linear combination of xm−2i

for 0 ≤ i ≤ m − 1, and E−m is a linear combination of xm−2i for 0 ≤ i ≤ m.

(6.2.3) If m ≥ 0 we have

E−m−1 = qk/2αEm+1,

Em+1 = q−k/2βE−m

where α, β are given by (6.1.6) and (6.1.8).

Proof By (6.1.7),

YαEm+1 = α Y−1 Em+1 = q (m+k+1)/2αEm+1,

so that by (6.2.2) αEm+1 is a scalar multiple of E−m−1. But

αEm+1 = UY Em+1 − b(Y−1)Em+1,

in which b(Y−1)Em+1 is a scalar multiple of Em+1, hence does not contain
x−m−1. Also in

UY Em+1 = q−(m+k+1)/2 Em+1
(
q1/2x−1

)
the coefficient of x−m−1 is q−k/2. It follows that αEm+1 = q−k/2 E−m−1,which
gives the first of the relations (6.2.3).

Next, by (6.1.9),

YβE−m = q−1/2βY−1 E−m = q−(m+k+1)/2βE−m,

so that by (6.2.2) βE−m is a scalar multiple of Em+1. But

βE−m = XUY E−m = q (m+k)/2x E−m(q1/2x−1),

in which the coefficient of xm+1 is qk/2. Hence βE−m = qk/2 Em+1. �

The operators α and β are ‘creation operators’: from (6.2.3) we have, for
m ≥ 0,

E−m = (αβ)m(1), Em+1 = q−k/2β(αβ)m(1),(6.2.4)

since E0 = 1.
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We shall now calculate the polynomials Em explicitly. For this purpose we
introduce

f (x, z) = 1/(xz; q)k(x−1z; q)k+1 =
∑
m≥0

fm(x)zm,

g(x, z) = x/(xz; q)k+1(qx−1z; q)k =
∑
m≥0

gm(x)zm .

By the q-binomial theorem we have

f (x, z) =
∑
i, j≥0

[
k + i − 1

i

] [
k + j

j

]
xi− j zi+ j ,

g(x, z) =
∑
i, j≥0

[
k + i − 1

i

] [
k + j

j

]
qi x−i+ j+1zi+ j ,

so that

fm(x) =
∑

i+ j=m

[
k + i − 1

i

] [
k + j

j

]
xi− j ,(6.2.5)

gm(x) =
∑

i+ j=m

[
k + i − 1

i

] [
k + j

j

]
qi x−i+ j+1.(6.2.6)

Since T1 = b(X )+ c(X )s1 (6.1.5), a brief calculation gives

T1 f (x, z) = qk/2 f
(
q1/2x−1, q1/2z

)
,

T1g(x, z) = q−(k+1)/2g
(
q1/2x−1, q1/2z

)
.

Since Y = U T1 it follows that

Y f (x, z) = qk/2 f
(
x, q1/2z

)
,

Y g(x, z) = q−(k+1)/2g
(
x, q1/2z

)
and therefore

Y fm = q (k+m)/2 fm, Y gm = q−(k+m+1)/2gm .

for all integers m ≥ 0.
From (6.2.2) it follows that fm (resp. gm) is a scalar multiple of E−m (resp.

Em+1). Since the coefficients of x−m in fm and of xm+1 in gm are each equal to
[ k+m

m ], it follows from (6.2.5) and (6.2.6) that

E−m =
[

k + m
m

]−1 ∑
i+ j=m

[
k + i − 1

i

] [
k + j

j

]
xi− j ,(6.2.7)
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Em+1 =
[

k + m
m

]−1 ∑
i+ j=m

[
k + i − 1

i

] [
k + j

j

]
qi x−i+ j+1(6.2.8)

for all m ≥ 0.

We shall now calculate Em(q−k/2),m ∈ Z. We have

f
(
q−k/2, z

) = 1/
(
q−k/2z; q

)
k

(
qk/2z; q

)
k+1

= 1/
(
q−k/2z; q

)
2k+1

=
∑
m≥0

q−mk/2

[
2k + m

m

]
zm,

and likewise

g
(
q−k/2, z

) = q−k/2/
(
q−k/2z; q

)
k+1

(
q (k+1)/2z; q

)
k

= q−k/2/
(
q−k/2z; q

)
2k+1

= q−k/2
∑
m≥0

q−mk/2

[
2k + m

m

]
zm,

from which it follows that

E−m
(
q−k/2
) = q−mk/2

[
2k + m

m

]/[
k + m

m

]
,(6.2.9)

Em+1
(
q−k/2
) = q−(m+1) k/2

[
2k + m

m

]/[
k + m

m

]
.

As in §5.2, we can express x Em and x−1 Em as linear combinations of the Er .
The formulas are

x Em = Em+1 − qm(1− qk)

1− qm+k
E1−m (m ≥ 1),(6.2.10)

x E−m = (1− qm)(1− q2k+m)

(1− qk+m)2
E1−m(6.2.11)

+ 1− qk

1− qk+m
Em+1 (m ≥ 0),

x−1 E1−m = E−m − 1− qk

1− qm+k
Em (m ≥ 1),(6.2.12)
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x−1 Em+1 = (1− qm)(1− q2k+m)

(1− qk+m)2
Em(6.2.13)

+ qm(1− qk)

1− qk+m
E−m (m ≥ 0).

Proof These may be derived as in §5.2, or proved directly. To prove (6.2.13),
for example, we observe that (x−1 Em+1, xm−2i ) = (Em+1, xm+1−2i ) = 0 for
1 ≤ i ≤ m, so that x−1 Em+1 is orthogonal to Em−2i for 1 ≤ i ≤ m − 1. But
x−1 Em+1 is a linear combination of Em−2i for 0 ≤ i ≤ m, and since they are
pairwise orthogonal it follows that

(1) x−1 Em+1 = λEm + µE−m

for scalars λ,µ to be determined. Here µ is the coefficient of x1−m in Em+1,
which by (6.2.8) is qm(1−qk)/(1−qk+m); and λ is determined by considering
the coefficient of xm on either side of (1), which gives

1 = λ+ µ(1− qk)/(1− qk+m)

and hence the stated value for λ. �

From (6.2.13) we obtain

(Em+1, Em+1) = (Em+1, xm+1) = (x−1 Em+1, xm)

= (1− qm)(1− q2k+m)

(1− qk+m)2
(Em, Em)

for m ≥ 1, since (E−m, Em) = 0. Hence

(Em, Em)

(1, 1)
=

m−1∏
i=1

(1− qi )(1− q2k+i )

(1− qk+i )2

and hence by (6.2.1)

(Em, Em) =
[

2k + m − 1
k

]/[
k + m − 1

k

]
(6.2.14)

for m ≥ 1.
Now Em+1 and E−m are related by

Em+1 = x E∗−m(6.2.15)

for m ≥ 0; this follows from comparison of (6.2.7) and (6.2.8), or by simple
considerations of orthogonality. Hence from (6.2.14)

(E−m, E−m) =
[

2k + m
k

]/[
k + m

k

]
.(6.2.16)



6.3 The symmetric polynomials Pm 155

6.3 The symmetric polynomials Pm

Let

A0 = { f ∈ A : f (x) = f (x−1)} = K [x + x−1].

As in §5.1, the symmetric scalar product on A0 is

< f, g> = < f, g>k = 1

2
ct( f g∇k)(6.3.1)

where f, g ∈ A0 and

∇k = (x2; q)k(x−2; q)k .

We shall assume as before that k is a non-negative integer when convenient.
From (5.1.40) we have

<1, 1>k = (1+ qk)−1(1, 1)k

so that by (6.2.1)

<1, 1>k =
[

2k − 1
k − 1

]
.(6.3.2)

For each integer m ≥ 0, let

Pm = Pm,k = Pmα/2,k

in the notation of§5.3. By (5.3.3) the Pm are elements of A0, pairwise orthogonal
for the scalar product (6.3.1), and characterised by the facts that the coefficient
of xm in Pm is equal to 1, and that

(Y + Y−1)Pm =
(
q (m+k)/2 + q−(m+k)/2

)
Pm .(6.3.3)

Let Z = (Y + Y−1) | A0. Since T1 f = τ f for f ∈ A0, we have

Z = (τ + T−1
1

)
U = (T1 + τ−1)U

= (b(X )+ τ−1)u + c(X )s1u

= c(X−1)u + c(X )s1u.(6.3.4)

To calculate the Pm , let z be an indeterminate and let

F(x, z) = Fk(x, z) = 1/(xz; q)k(x−1z; q)k .

By the q-binomial theorem, the coefficient of zm in F(x, z) is

Fm = Fm,k =
∑

i+ j=m

[
k + i − 1

i

] [
k + j − 1

j

]
xi− j .(6.3.5)
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We now have

Z F(x, z) = τ F
(
x, q1/2z

)+ τ−1 F
(
x, q−1/2z

)
.(6.3.6)

Proof From (6.3.4),

(x − x−1)Z F(x, z) = (τ x − τ−1x−1)F
(
q1/2x, z

)
+ (τ−1x − τ x−1)F

(
q−1/2x, z

)
On multiplying both sides by q (k−1)/2z(q−

1
2 xz; q)k+1(q−

1
2 x−1z; q)k+1, (6.3.6)

is equivalent to

(1) (δ − γ )αβ + (β − α)γ δ = (β − γ )αδ + (δ − α)βγ,

where α = (1 − q−1/2xz), β = (1 − q−1/2x−1z), γ = (1 − qk−1/2xz),
δ = (1− qk−1/2x−1z). Both sides of (1) are manifestly equal. �

From (6.3.6) it follows that

Z Fm =
(
q (k+m)/2 + q−(k+m)/2

)
Fm

for each m ≥ 0, and hence that Fm is a scalar multiple of Pm . Hence, from
(6.3.5), we have

Pm =
[

k + m − 1
m

]−1 ∑
i+ j=m

[
k + i − 1

i

] [
k + j − 1

j

]
xi− j .(6.3.7)

Next, we have

F
(
qk/2, z
) = 1/

(
q−k/2z; q

)
2k

so that

Fm
(
qk/2
) = q−mk/2

[
2k + m − 1

m

]

and therefore

Pm
(
qk/2
) = q−mk/2

[
2k + m − 1

m

]/[
k + m − 1

m

]
(6.3.8)

= q−mk/2
m−1∏
i=0

1− q2k+i

1− qk+i
.

The polynomials Fm are the continuous q-ultraspherical polynomials,
in the terminology of [G1]. They were first introduced by L. J. Rogers in
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the 1890’s [R1,2,3]. Precisely,

Cm(cos θ ; qk | q) = Fm(eiθ )

in the notation of [G1], p. 169.

The norm formula (5.8.17) in the present case takes the form

<Pm, Pm> =
k−1∏
i=1

1− qm+k+i

1− qm+k−i
(6.3.9)

=
[

2k + m − 1
k

]/[
m + k

k

]
.

In terms of the E’s, we have

Pm = E−m + qk(1− qm)

1− qk+m
Em .(6.3.10)

Finally, we shall consider the shift operator (§5.9) in the present situation.
Let

δk(x) = τ x − τ−1x−1.

Then δk(Y−1) = τT−1
1 U − τ−1U T1, so that for f ∈ A0

δk(Y−1) f = (τT−1
1 − 1

)
U f

= τc(X )(s1 − 1)u f.

The shift operator is

G = δk(X )−1δk(Y−1)

so that

G f = τ (x − x−1)−1(s1u − us1) f

for f ∈ A0. Apart from the factor τ = qk/2, this is independent of k, so we
define

G ′ = τ−1G = (x − x−1)−1(s1u − us1)(6.3.11)

as an operator on A0. Explicitly,

(G ′ f )(x) = (x − x−1)−1
(

f
(
q−1/2x

)− f
(
q−1/2x

))
for f ∈ A0. We calculate that

G ′Fk(x, z) = q−1/2(1− qk)zFk+1
(
x, q−1/2z

)
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so that

G ′Fm,k = q−m/2(1− qk)Fm−1,k+1

and therefore

G ′Pm,k =
(
q−m/2 − qm/2

)
Pm−1,k+1.(6.3.12)

It follows from (6.3.12) that

<G ′Pm,k, Pn−1,k+1>k+1 = 0(6.3.13)

for m �= n.
Let

θ = s1u − us1, �k+1 = (x − x−1)−1∇k+1.

Then (6.3.13) takes the form

ct(θ (Pm,k)�k+1 Pn−1,k+1) = 0

or equivalently

ct(Pm,kθ (�k+1 Pn−1,k+1)) = 0

for n �= m. This shows that Pm,k is a scalar multiple of

∇−1
k θ (�k+1 Pm−1,k+1) = �−1

k G ′(�k+1 Pm−1,k+1).

Consideration of the coefficient of xm+2k in ∇k Pm,k and in θ (�k+1 Pm−1,k+1)
now shows that

Pm,k = qm/2

1− q2k+m
�−1

k G ′(�k+1 Pm−1,k+1)(6.3.14)

(and hence that�k(X )−1◦G ′ ◦�k+1(X ) is a scalar multiple of the shift operator
Ĝ = δk(Y )δk(X )).

Iterating (6.3.14) m times, we obtain

Pm,k = cm,k�
−1
k G ′m(�k+m),(6.3.15)

where

cm,k = qm(m+1)/4/(q2k+m ; q)m(6.3.16)

(“Rodrigues formula”).
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6.4 Braid group and Hecke algebra (type (C∨
1 ,C1))

Suppose now that S = S′ is of type (C∨
1 ,C1), so that R = R′ = {±α}, where

|α|2 = 2, and L = L ′ = Zα. The simple affine roots are a0 = 1
2 − α and

a1 = α, acting on R : a0(ξ ) = 1
2 − ξ and a1(ξ ) = ξ for ξ ∈ R. The simplex C

is now the interval (0, 1
2 ), and W = WS is the infinite dihedral group, generated

by s0 and s1 where s0(ξ ) = 1− ξ and s1(ξ ) = −ξ .
The braid group B is now the free group on two generators T0, T1. Let

Y = Y α , so that

Y = T0T1,

and B is freely generated by T1 and Y .
The double braid group B̃ is generated by T1, X, Y , and a central element

q1/2, where X = Xα . Since <L , α> = 2Z the relations (3.4.1)–(3.4.5) are
absent, i.e., there are no relations between T1, X, Y, and B̃∼= Z×F3 where F3 is
a free group on three generators. The antiautomorphismω : B̃→ B̃ is defined by

ω
(
q1/2, T1, X, Y

) = (q1/2, T1, Y
−1, X−1

)
.

Let

T ′0 = q−1/2 XT−1
0 = q−1/2 XT1Y−1, T ′1 = X−1T−1

1 .(6.4.1)

Then we have

T ′0T0T ′1T1 = q−1/2,(6.4.2)

and

ω(T0, T ′0, T1, T ′1) = (XT ′1 X−1, T ′0, T1, Y
−1T0Y ).(6.4.3)

Let k = (k1, k2, k3, k4) be a labelling of S, as in §1.5, and let k ′ = (k ′1, k
′
2,

k ′3, k
′
4) be the dual labelling. Let

κ1 = k1 + k2 = k ′1 + k ′2, κ ′1 = k1 − k2 = k ′3 + k ′4,

κ0 = k3 + k4 = k ′1 − k ′2, κ ′0 = k3 − k4 = k ′3 − k ′4,
(6.4.4)

and let

τi = qκi/2, τ ′i = qκ
′
i /2 (i = 0, 1).(6.4.5)

Thus replacing k by k ′ amounts to interchanging τ0 and τ ′1.
Let K = Q(q1/2, τ0, τ

′
0, τ1, τ

′
1) and let A = K [x, x−1], where x = eα .

The affine Hecke algebra H is the K -algebra generated by T0 and T1
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subject to the relations

(Ti − τi )
(
Ti + τ−1

i

) = 0 (i = 0, 1).(6.4.6)

As in §4.2, let

bi (x) = b(τi , τ
′
i ; x) = τi − τ−1

i + (τ ′i − τ ′−1
i )x

1− x2
,

ci (x) = c(τi , τ
′
i ; x) = τi x − τ−1

i x−1 + τ ′i − τ ′−1
i

x − x−1

for i = 0, 1. Then H acts on A as follows:

Ti f = (bi (Xi )+ ci (Xi )si ) f(6.4.7)

for f ∈ A, where X1 = X and X0 = q1/2 X−1, and

X f = x f, (s0 f )(x) = f (qx−1), (s1 f )(x) = f (x−1).

The double affine Hecke algebra H̃ is generated over K by T1, X, Y subject
to the relations (6.4.6) and

(T ′i − τ ′i )(T ′i + τ ′−1
i ) = 0 (i = 0, 1)(6.4.8)

where T ′0, T ′1 are given by (6.4.1). More symmetrically, H̃ is generated over K
by T0, T ′0, T1, T ′1 subject to the relations (6.4.2), (6.4.6) and (6.4.8).

Dually, H̃′ has generators T1, X, Y subject to the relations derived from (6.4.6)
and (6.4.8) by interchanging τ0 and τ ′1. Since by (6.4.3) ω(T0) (resp. ω(T ′1)) is
conjugate in B̃ to T ′1 (resp. T0), it follows thatω extends to an anti-isomorphism
of H̃′ onto H.

6.5 The symmetric polynomials Pm

In the present case it is more convenient to consider the symmetric polynomi-
als Pλ before the non-symmetric Eλ. As in §6.3, let A0 = K [x + x−1]. The
symmetric scalar product on A0 is now

< f, g> = < f, g>k = 1

2
ct( f g∇k)(6.5.1)

where now, as in (5.1.25),

∇k = (x2; q)∞(x−2; q)∞
4∏

i=1
(ui x ; q)∞(ui x−1; q)∞
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and

(u1, u2, u3, u4) = (qk1 ,−qk2 , q1/2+k3 ,−q1/2+k4
)
.(6.5.2)

For each integer m ≥ 0, let

Pm = Pm,k = Pmα,k

in the notation of §5.3. The polynomials Pm are elements of A0, pairwise or-
thogonal for the scalar product (6.5.1), and are characterized by the facts that
Pm is a linear combination of xr + x−r for 0 ≤ r ≤ m, and that the coefficient
of xm + x−m is equal to 1. We have

(Y + Y−1)Pm = (qm+k ′1 + q−m−k ′1 )Pm .(6.5.3)

Let Z = (Y + Y−1) | A0. Since T1 f = τ1 f for f ∈ A0, we have

Z = τ1T0 + T−1
1 T−1

0

= τ1T0 +
(
T1 − τ1 + τ−1

1

)(
T0 − τ0 + τ−1

0

)
= (T1 + τ−1

1

)
(T0 − τ0)+ τ0τ1 + τ−1

0 τ−1
1

= (s1 + 1)c1
(
X−1

1

)
c0(X0)(s0 − 1)+ qk ′1 + q−k ′1 .

Now

τ1c1
(
X−1

1

) = (1− qk1 X−1)(1+ qk2 X−1)/(1− X−2)

and

τ0c0(X0) = (1− qk3+1/2 X−1
)(

1+ qk4+1/2 X−1
)
/(1− q X−2),

so that

Z ′ = qk ′1 Z = (s1 + 1) f (X−1)(s0 − 1)+ 1+ q2k ′1(6.5.4)

where

f (x) =
(

4∏
i=1

(1− ui x)

)/
(1− x2)(1− qx2).(6.5.5)

To calculate the polynomials Pm explicitly, we shall use the symmetric
polynomials

gm(x) = (u1x ; q)m(u1x−1; q)m (m ≥ 0)

as building blocks. They form a K -basis of A0.

We have

Z ′gm = λm gm + µm gm−1,(6.5.6)
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where

λm = q−m + qm+2k ′1 ,

µm = (1− q−m)(1− qm−1u1u2)(1− qm−1u1u3)(1− qm−1u1u4).

Proof Since s0x = qx−1 we calculate that

(s0 − 1)gm(x)

1− qx−2
= q−1u1x(qm − 1)(u1x ; q)m−1(qu1x−1; q)m−1

and hence that

f (X−1)(s0 − 1)gm(x) = q−1(qm − 1)u1h(x)gm−1(x),

where

h(x) = x2(1− qm−1u1x−1)(1− u2x−1)(1− u3x−1)(1− u4x−1)/(x − x−1).

Now we have

h(x)+ h(x−1) = q1−mu−1
1 (1− qm−1u1u2)(1− qm−1u1u3)(1− qm−1u1u4)

− q1−mu−1
1 (1− q2k ′1+m)(1− qm−1u1x)(1− qm−1u1x−1).

For both sides are linear in x + x−1 and agree when x = qm−1u1, hence are
proportional; moreover the coefficients of x + x−1 on either side are equal to
1− q2k ′1+m , since u1u2u3u4 = q2k ′1+1.

Hence

Z ′gm = (1− q−m)(1− qm−1u1u2)(1− qm−1u1u3)(1− qm−1u1u4)gm−1

+ (1+ q2k ′1 − (1− q−m)(1− q2k ′1+m))gm

= λm gm + µm gm−1. �

Since the gm form a K -basis of A0, Pm is of the form

Pm =
m∑

r=0

αr gr .

Hence by (6.5.3)

(1) Z ′Pm = λm Pm =
m∑

r=0

λmαr gr ,

and by (6.5.6)

(2) Z ′Pm =
m∑

r=0

αr (λr gr + µr gr−1)
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(where g−1 = 0). From (1) and (2) we obtain

λmαr = λrαr + µr+1αr+1,

so that

αr+1/αr = (λm − λr )/µr+1

= q(1− q−m+r )(1− q2k ′1+m+r )

(1− qr+1)(1− qr u1u2)(1− qr u1u3)(1− qr u1u4)
,

from which it follows that Pm,k is a scalar multiple of the q-hypergeometric
series

ϕm,k =
m∑

r=0

qr (q−m ; q)r (q2k ′1+m ; q)r (u1x ; q)r (u1x−1; q)r

(q; q)r (u1u2; q)r (u1u3; q)r (u1u4; q)r
(6.5.7)

and more precisely that

Pm,k = cm,k ϕm,k(6.5.8)

where

cm,k = u−m
1 (u1u2; q)m(u1u3; q)m(u1u4; q)m/(q

2k ′1+m ; q)m .

The polynomials Pm,k are (up to a scalar factor) the Askey-Wilson polynomials
[A2]. Since ∇k is symmetric in u1, u2, u3, u4, so are the Pm,k .

From (6.5.7) we have

ϕm,k(qk1 ) = ϕm,k(u1) = 1

so that

ϕm,k = P̃m,k(6.5.9)

in the notation of §5.3. Also from (6.5.7) we have

ϕm,k(qn+k1 ) =
∑
r≥0

qr (q−m ; q)r (q−n; q)r (q2k1+n; q)r (q2k ′1+m ; q)r

(q; q)r (u1u2; q)r (u1u3; q)r (u1u4; q)r

= ϕn,k ′ (q
m+k ′1 )

since k1 + ki = k ′1 + k ′i for i = 2, 3, 4. Hence

P̃m,k(qn+k1 ) = P̃n,k ′ (q
m+k ′1 )(6.5.10)

which is the symmetry law (5.3.5) in the present context.
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The norm formula (5.8.17) in the present case, when expressed in terms of
u1, . . . , u4 and q2k ′1 = q−1u1u2u3u4, takes the form

<Pm, Pm> = (q2m+2k ′1 ; q)∞(q2m+2k ′1+1; q)∞
(qm+1; q)∞(qm+2k ′1 ; q)∞

∏
i< j

(qmui u j ; q)∞
.(6.5.11)

Let G ′ be the operator on A0 defined by (6.3.11). Then we have

G ′Pm,k = (q−m/2 − qm/2)Pm−1,k+1/2.(6.5.12)

Proof We calculate that

G ′gr = u1q−1/2(qr − 1)
(
u1q1/2x ; q

)
r−1

(
u1q1/2x−1; q

)
r−1

from which and (6.5.7) it follows that G ′ϕm,k is a scalar multiple of ϕm−1,k+1/2,

and hence that G ′Pm,k is a scalar multiple of Pm−1,k+1/2, where

k + 1
2 = (k1 + 1

2 , k2 + 1
2 , k3 + 1

2 , k4 + 1
2 ).

Since

G ′(xm + x−m) = (q−m/2 − qm/2
)(

xm−1 + · · · + x1−m
)

we have (6.5.12). �

Let

�k = ∇k/(x − x−1).

Then

Pm,k = cm,k�
−1
k G ′(�k+ 1

2
Pm−1,k+ 1

2

)
(6.5.13)

where

cm,k = −qm/2/(1− q2k ′1+m).

Proof From (6.5.12) it follows that

<G ′Pm,k, Pn−1,k+ 1
2
>k+ 1

2
= 0

whenever m �= n, or equivalently

(1) ct
(
θ (Pm,k)�k+ 1

2
Pn−1,k+ 1

2

) = 0

where

(θ f )(x) = f
(
q−1/2x

)− f
(
q1/2x
)
.
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We may replace (1) by

ct
(
Pm,kθ
(
�k+1/2 Pn−1,k+1/2

)) = 0

i.e., by

<Pm,k,�
−1
k G ′(�k+1/2 Pn−1,k+1/2

)
>k = 0

whenever m �= n. Hence�−1
k G ′(�k+1/2 Pm−1,k+1/2) is a scalar multiple of Pm,k .

Now

�k+1/2
(
q1/2x
)
/�k(x) = −q−1/2x−2

4∏
i=1

(1− ui x) = −q1/2u(x),

say; and since �k(x−1) = −�k(x) we have

�k+1/2
(
q−1/2x

)
/�k(x) = −q−1/2u(x−1),

so that

(2) �−1
k G ′(�k+1/2 Pm−1,k+1/2

) = q1/2(p(x)− p(x−1))/(x − x−1),

where

p(x) = u(x)Pm−1,k+1/2
(
q1/2x
)
.

Since

u(x) = q2k ′1+1x2 + · · · + x−2.

we have

p(x) = q2k ′1+(m+1)/2xm+1 + · · · + q (1−m)/2x−m−1

and therefore the coefficient of xm + x−m in (2) is q−m/2(q2k ′1+m − 1). �

From (6.5.13) it follows that

Pm,k = dm,k�
−1
k G ′m(�k+m/2

)
,(6.5.14)

where

dm,k = (−1)mqm(m+1)/4/(q2k ′1+m ; q)m,

(since when k is replaced by k + 1
2 , k

′
1 is replaced by k ′1 + 1).
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6.6 The polynomials Em

To calculate the polynomials Em = Emα (m∈Z) we proceed as follows. The
symmetric polynomials Pm were defined with reference to x0 = 0 as origin;
they are stable under s1 (so that T1 Pm = τ1 Pm) and are eigenfunctions of the
operator Z = T0T1+ T−1

1 T−1
0 , with eigenvalues qm+k ′1 +q−m−k ′1 . Equally, they

are eigenfunctions of the operator

Z † = T1 Z T−1
1 = T1T0 + T−1

0 T−1
1

on A with the same eigenvalues. If we now take x1 = 1
2 as origin, the effect is to

interchange a0 and a1, T0 and T1, k1 and k3, and k2 and k4, so that the labelling
k is replaced by

k† = (k3, k4, k1, k2).(6.6.1)

We obtain polynomials

P†
m,k(x) = Pm,k†

(
q1/2x−1

) = Pm,k†
(
q−1/2x

)
,(6.6.2)

stable under s0 (so that T0 P†
m = τ0 P†

m) which are eigenfunctions of Z † and of
Z with eigenvalues qm+k ′1 + q−m−k ′1 .

In P†
m, (u1, . . . , u4) is replaced by(

q−1/2u3, q
−1/2u4, q

1/2u1, q
1/2u2
)
,

or equivalently, since P†
m is symmetric in these four arguments, by(

q1/2u1, q
1/2u2, q

−1/2u3, q
−1/2u4
)
.

Hence by (6.5.7) and (6.5.8) we have

P†
m,k = c†m,kϕ

†
m,k(6.6.3)

where

ϕ
†
m,k =

m∑
r=0

qr (q−m ; q)r (q2k ′1+m ; q)r (u1x ; q)r (qu1x−1; q)r

(q; q)r (qu1u2; q)r (u1u3; q)r (u1u4; q)r
(6.6.4)

and

c†m,k =
q−m/2u−m

1 (qu1u2; q)m(u1u3; q)m(u1u4; q)m

(q2k ′1+m ; q)m
(6.6.5)

= q−m/2 1− qmu1u2

1− u1u2
cm,k .
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Now for each m ≥ 0 the space

Vm =
{

f ∈ A : Z f = (qm+k ′1 + q−m−k ′1 ) f
}

is two-dimensional, spanned by Em and E−m . From above, Vm is also spanned
by Pmand P†

m . Hence each of Em , E−m is a linear combination of Pm and P†
m .

Since

Pm = xm + x−m + · · · , P†
m = q−m/2xm + qm/2x−m + · · · ,

and since Em does not contain x−m , it follows that

Em = Pm − q−m/2 P†
m

1− q−m
.(6.6.6)

Next, we have by (5.7.8)

Pm = λEm + E−m

where

λ = τ1c
(
τ1, τ0; q−(m+k ′1)

)
= (1− q−m)(1+ q−m−k ′1+k ′2 )

1− q−2m−2k ′1

= − (1− qm)(u1u2 − qm+2k ′1 )

1− q2m+2k ′1
.

From this and (6.6.6) we obtain

E−m = 1− qmu1u2

1− q2m+2k ′1
Pm + qm/2(u1u2 − qm+2k ′1 )

1− q2m+2k ′1
P†

m(6.6.7)

for m ≥ 0. These two formulas (6.6.6) and (6.6.7) give Em and E−m explicitly
as linear combinations of the two q-hypergeometric series ϕ†m,k (6.6.4) and ϕm,k

(6.5.7). Namely:

(6.6.8) For all m ∈ Z, Em is a scalar multiple of

(1− u1u2)ϕ|m|,k + (u1u2 − qk ′1−m̄)ϕ†|m|,k,

where

m̄ =
{

m + k ′1 if m > 0,

−m − k ′1 if m ≤ 0.

This follows from (6.6.5), (6.6.6) and (6.6.7). �
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Finally, we consider creation operators for the Em . From §5.2, the Em are the
eigenfunctions of the operator Y on A = K [x, x−1]:

Y Em =
{

q−m−k ′1 Em if m > 0,

qm+k ′1 Em if m ≤ 0.
(6.6.9)

From (4.7.3) we have

(Ti − b′i (X ))X−1
i = Xi (Ti − b′i (X )) (i = 0, 1)

in H̃′, where X1 = X, X0 = q1/2 X−1, and

b′0(X ) = b
(
τ ′1, τ

′
0; q1/2 X−1

)
,

b′1(X ) = b(τ1, τ0; X ).

Applying ω: H̃′→ H̃ gives

Y (T1 − b(τ1, τ0; Y−1)) = (T1 − b(τ1, τ0; Y−1))Y−1

and (since ω(T0) = T−1
1 X−1)

q−1/2Y−1
(
T−1

1 X−1 − b
(
τ ′1, τ

′
0; q1/2Y

) = q1/2
(
T−1

1 X−1 − b
(
τ ′1, τ

′
0; q1/2Y

)
.

So if we define

α0 = T−1
1 X−1 − b

(
τ ′1, τ

′
0; q1/2Y

)
,

α1 = T1 − b(τ1, τ0; Y−1)

we have

Yα0 = q−1α0Y−1, Yα1 = α1Y−1.(6.6.10)

The operators α0,α1 on A are ‘creation operators’: namely

(6.6.11) We have

α0 E−m = τ1 Em+1 (m ≥ 0),

α1 Em = τ−1
1 E−m (m > 0).

Proof Consider α1 Em . Since

Yα1 Em = α1Y−1 Em = qm+k ′1α1 Em,

it follows from (6.6.9) that α1 Em is a scalar multiple of Em . To find the scalar
multiple, consider the coefficient of x−m in α1 Em . Now b(τ1, τ0; Y−1)Em is a
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scalar multiple of Em , hence does not contain x−m ; also

T1xm = τ1xm + (τ1x − τ−1
1 x−1 + τ0 − τ−1

0

)
(x−m − xm)/(x − x−1)

in which the coefficient of x−m is τ−1
1 . Hence α1 Em = τ−1

1 E−m .
Next,

Yα0 E−m = q−1α0Y−1 E−m = q−(m+1+k ′1)α0 E−m,

so that by (6.6.9)α0 E−m is a scalar multiple of Em+1. As before, b(τ ′1, τ
′
0; q1/2Y )

E−m is a scalar multiple of E−m , hence does not contain xm+1; and

T−1
1 X−1x−m = τ−1

1 x−m−1

+(τ1x − τ−1
1 x−1 + τ0 − τ−1

0

)
(xm+1 − x−m−1)/(x − x−1)

in which the coefficient of xm+1 is τ1. Hence α0 E−m = τ1 Em+1. �

From (6.6.11) it follows that

E−m = (α1α0)m(1)(6.6.12)

for m ≥ 0, and

Em = τ−1
1 α0(α1α0)m−1(1)(6.6.13)

for m ≥ 1.
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[K2] A. A. Kirillov, Lectures on affine Hecke algebras and Macdonald’s conjectures,

Bulletin of the American Mathematical Society 34 (1997) 251–292.
[K3] T. Koornwinder, Askey-Wilson polynomials for root systems of type BC, Con-

temp. Math. 138 (1992) 189–204.
[L1] G. Lusztig, Affine Hecke algebras and their graded version, Journal of the

American Mathematical Society 2 (1989) 599–635.
[M1] I. G. Macdonald, Spherical functions on a group of p-adic type, Publications

of the Ramanujan Institute, Madras (1971).
[M2] I. G. Macdonald, Affine root systems and Dedekind’s η-function, Inv. Math. 15

(1972) 91–143.
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(1987); Séminaire Lotharingien de Combinatoire 45 (2000) 1–40.
[M6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition,

Oxford University Press (1995).
[M7] I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque
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Index of notation

A, A0 : 4.3
A′, A′0 : 4.2
A′(Y ) : 4.2
A[c] : 4.4
Aλ : 5.4
ai (i∈I ) : 1.2
a∨ = 2a/|a|2 : 1.2
a′i (i∈I ) : 1.4

B : 1.2
B : 3.1
B̃ : 3.4
B̃’ : 3.5
B0 : 3.3
b(t, u; x) : 4.2
bi : 4.3
ba,k : 4.4
b′i , b

′
α : 5.4

C : 1.2
c : 1.1
c0 : 1.4
c(t, u; x) : 4.2
ci : 4.3
ca,k : 4.4
c(w) : 4.4
c′λ : 5.3
c′+ : 5.6
ct : 5.1

D : 1.1
dk,l ,d̂k," : 5.9

E : 1.1
Eλ, E ′µ, Ẽλ, Ẽ ′µ : 5.2
e : 1.4

eλ
′

: 4.2
eµ, e f : 4.3

F, F0 : 1.1

Gε, Ĝε : 5.9
Ga : 4.6

H f : 1.1
H : 4.1
H̃, H̃’ : 4.7
H0 : 4.3

I : 1.2
I0 : 2.1

J : 2.5
J ′ : 3.4

K : 4.1, 5.1
k, k′ : 1.5, 4.4, 5.1
ki , k′i : 1.5
k(w) : 5.1
k∨(α) : 5.1

L , L ′ : 1.4
L++, L ′++ : 2.6
l : 5.8
l(w) : 2.2

mi (i∈I ) : 1.2
m′i (i∈I ) : 1.3
mλ : 5.3
mλ′ : 4.4

O1, . . . , O5 : 1.3
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P, P∨ : 1.4
Pλ, P ′µ, P̃λ, P̃ ′µ : 5.3
P (ε)
λ : 5.7

Q, Q∨ : 1.4
Q∨+ : 2.6
Qλ : 5.7
q, q0 : 3.4
qα : 5.1

R, R∨, R′ : 1.4
R+ : 1.5
rk′ , r

′
k : 2.8

S, S∨, S(R), S+, S− : 1.2
S1, S2 : 1.3
S′ : 1.4
S0 : 5.1
S(w) : 2.2
S(k) : 5.1
s f , su : 1.1
si (i∈I ) : 2.1
s(ε)

i : 5.5

Ti , T (w) : 3.1
T ′0, T ′n : 4.3
ta : 5.1
t(v) : 1.1

U j ( j∈J ) : 3.1
Uε,U+,U− : 5.5
u(λ′) : 2.4
ui : 2.5
u′(λ) : 2.8

V : 1.1
Vk (k∈J ′) : 3.5
Vε, V ′ε ,Vε : 5.6
v(λ′) : 2.4
vi : 2.5
v̄(λ′) : 2.7

W : 1.4, 2.1
W ′ : 2.1
W0 : 1.4, 2.1
WS : 1.2
W0(qk ) : 5.1, 5.8
W0(t (ε)) : 5.5
W0λ,W0λ(t) : 5.3
w0 : 2.4
wk : 3.4

w(ε) : 5.5

X f , X�, X L , Xk : 3.4
xi , x0 : 1.2
(x ; q)∞, (x ; q)k : 5.1

Y λ
′
, Y λ

′
: 3.2

Y ′j : 3.4

αi (i ∈ I ) : 1.2
α′i (i ∈ I ) : 1.4
αi (i ∈ I ) : 5.10
β : 4.3, 4.7
β ′ : 4.2
β j ( j∈J ) : 5.10
!,!S,k ,!′,!S′,k′ : 5.1
!±S,k : 5.3
!a,!a,k : 5.1
!1,!0 : 5.1
" : 5.1
δa, δa,k , δε,k : 5.8
δa′ , δ′ε,k : 5.9
ε : 5.5
η : 2.8
η

(ε)
i , η

(ε)
w : 5.6

θ, θ ′ : 4.7
ki , k′i , kα : 4.3, 4.4
ka, k′a : 4.6, 5.1
λ′+, λ′− : 2.4
�,�+ : 1.4, 5.1
ξ

(ε)
λ : 5.6
π ′i : 2.5
πi : 3.4
ρk′ , ρ

′
k : 1.5

ρεk′ : 5.5
(λ′) : 2.6
0(λ′) : 4.4
σ : 1.5, 2.2
τi , τ

′
i : 4.1, 5.1

τa, τ
′
a : 4.1, 4.4

τw : 4.3
τ

(ε)
i , τ

(ε)
w : 5.5

υi : 4.2
ϕ : 1.4
ϕ±λ : 5.2
χ : 2.1, 4.1
ψ : 1.4
� : 2.2
�′ : 1.4
ω : 3.5, 4.7



Index

affine Hecke algebra: 4.1
affine-linear: 1.1
affine root system: 1.2
affine roots: 1.2
affine Weyl group: 1.2
alcove: 1.2
Askey-Wilson polynomials: 6.5

basic representation: 4.3–4.5
basis of an affine root system: 1.2
braid group: 3.1
braid relations: 3.1
Bruhat order: 2.3

Cartan matrix: 1.2
classification of affine root systems: 1.3
constant term: 5.1
continuous q-ultraspherical polynomials: 6.3
creation operators: 5.10, 6.2, 6.6.

derivative: 1.1
dominance partial order: 2.6
double affine Hecke algebra: 4.7
double braid group: 3.4
dual affine root system: 1.2
dual labelling: 1.5
duality: 3.5, 4.7
Dynkin diagram: 1.2

extended affine Weyl group: 2.1

gradient: 1.1

Hecke relations: 4.1
highest root: 1.4
highest short root: 1.4

indivisible root: 1.2
intertwiners: 5.7

involutions f 
→ f ∗, f 
→ f̄ , f 
→ f 0: 5.1
irreducible affine root system: 1.2

Koornwinder’s polynomials: 5.3

labelling: 1.5
length: 2.2

negative affine root: 1.2
norm formulas: 5.8, 5.9
normalized scalar products: 5.1

orthogonal polynomials Eλ: 5.2

partial order on L ′: 2.7
positive affine root: 1.2

rank: 1.2
reduced affine root system: 1.2
reduced expression: 2.2
reflection: 1.1
Rodrigues formula: 6.3
root lattice: 1.4

saturated subset: 2.6
scalar product: 1.1, 5.1
shift operators: 5.9
special vertex: 1.2
symmetric orthogonal polynomials Pλ: 5.3
symmetric scalar product: 5.1
symmetrizers: 5.6
symmetry: 5.2

translation: 1.1

weight function: 5.1
weight lattice: 1.4
Weyl group: 1.2
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