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Preface

This addition to the SUMS series of textbooks is an introduction to various as-
pects of discrete mathematics. It is intended as a textbook which could be used
at undergraduate level, probably in the second year of an English undergradu-
ate mathematics course. Some textbooks on discrete mathematics are written
primarily for computing science students, but the present book is intended for
students following a mathematics course. The place of discrete mathematics in
the undergraduate curriculum is now fairly well established, and it is certain
that its place in the curriculum will be maintained in the third millennium.

Discrete mathematics has several aspects. One fundamental part is
enumeration, the study of counting arrangements of various types. We might
count the number of ways of choosing six lottery numbers from 1,2,... ,49, or
the number of spanning trees in a complete graph, or the number of ways of
arranging 16 teams into four groups of four. We develop methods of counting
which can deal with such problems.

Next, graph theory can be used to model a variety of situations — road
systems, chemical molecules, timetables for examinations. We introduce the
basic types of graph and give some indication of what the important properties
are that a graph might possess.

The third area of discrete mathematics to be discussed in this book is that of
configurations or arrangements. Latin squares are arrangements of symbols
in a particular way; such arrangements can be used to construct experimental
designs, magic squares and tournament designs. This leads us on to have a look
at block designs, which were discussed extensively by statisticians as well as
mathematicians due to their usefulness in the design of experiments. The book
closes with a brief introduction to the ideas behind error-correcting codes.

The reader does not require a great deal of technical knowledge to be able
to cope with the contents of the book. A knowledge of the method of proof by
induction, an acquaintance with the elements of matrix theory and of arithmetic
modulo 7, a familiarity with geometric series and a certain clarity of thought



vi Preface

should see the reader through. Often the main problem encountered by the
reader is not in the depth of the argument, but in looking at the problem in
the “right way”. Facility in this comes of course with practice.

Each chapter ends with a good number of examples. Hints and solutions to
most of these are given at the end of the book. The examples are a mixture of
fairly straightforward applications of the ideas of the chapter and more chal-
lenging problems which are of interest in themselves or are of use later on in
the book.

My hope is that this text will provide the basis for a first course in discrete
mathematics. Obviously the choice of material for such a course is dependent
on the interests of the teacher, but there should be enough topics here to enable
an appropriate choice to be made. The text has been influenced in countless
ways by the many texts that have appeared over the years, but ultimately
it is determined by my own preferences, likes and dislikes, and by my own
experience of teaching discrete mathematics at different levels over many years,
from masterclasses for 14-year-olds to final year honours courses.

1 would like to thank the Springer staff for their encouragement to write this
book and for their help in its production. Thanks is also due to Gail Henry for
converting my manuscript into a IWTEX file, and to Mark Thomson for reading
and commenting on many of the chapters.

University of Glasgow, June 2000
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1

Counting and Binomial Coefficients

In this chapter we introduce the basic counting methods, the factorial func-
tion and the binomial coefficients. These are of fundamental importance to the
subject matter of subsequent chapters. We start with two basic principles.

1.1 Basic Principles

(a) The multiplication principle. Suppose that an activity consists of k
stages, and that the ith stage can be carried out in «; different ways, irrespective
of how the other stages are carried out. Then the whole activity can be carried
out in @y s ... ways.

Example 1.1

A restaurant serves three types of starter, six main courses and five desserts.
So a three-course meal can be chosen in 3 x 6 x 5 = 90 ways.

(b) The addition principle. If A;,..., A are pairwise disjoint sets (i.e.
AiN A; = 0 wherever ¢ # j), then the number of elements in their union is

k
| A1 U U Ae] = 4]+ + Akl = S 1Al
i=1

Example 1.2

In the above example, how many different two-course meals (including a main
course) are there?

I. Anderson, A First Course in Discrete Mathematics
© Springer-Verlag London 2002
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Solution

There are two types of two-course meal to consider. Let A, denote the set of
meals consisting of a starter and a main course, and let Ay denote the set of
meals consisting of a main course and a dessert. Then the required number is

|A1 U As| |A1] + | Az| (by the addition principle)

I

(3 x6)+ (6 x5) (by the multiplication principle)
= 48.

1.2 Factorials

How many ways are there of placing a,b and ¢ in a row? There are six ways,

namely
abe, acb, bac, bea, cab, cba.

Note that there are three choices for the first place, then two for the second,
and then just one for the third; so by the multiplication principle there are
3 x 2 x 1 = 6 possible orderings. In general, if we define n! (“n factorial”) by

nl=nn-1)(n-2)...21

then we have

Theorem 1.1

The number of ways of placing n objects in order is n!.

Example 1.3

Four people, A, B, C, D, form a committee. One is to be president, one secretary,
one treasurer, and one social convener. In how many ways can the posts be
assigned?

Solution

Think of first choosing a president, then a secretary, and so on. There 4! = 24
possible choices.

The value of n! gets big very quickly:
5! =120, 10!= 3628800, 50'= 3.04 x 1054,

This is an example of what is called combinatorial ezplosion: the number of
different arrangements of n objects gets huge as n increases. The enormous size
of n! lies behind what is known as the travelling salesman problem which will
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be studied further in Chapter 4. A traveller sets out from home, has to visit n
towns and then return home. Given the mileages between the towns, how does
the traveller find the shortest possible route? The naive approach of considering
each of the n! possible routes is impracticable if n is large, so another approach
is needed.

In certain problems, only some of a given set of objects are to be listed.

Example 1.4

A competition on the back of a cereal packet lists ten properties of a car, and
asks the consumer to choose the six most important ones, listing them in order
of importance. How many different entries are possible?

Solution

There are ten possibilities for the first choice, then nine for the second, and so
on down to five for the sixth. So, by the multiplication principle, the number
of possible lists is

|
10x9x8x7x6x5=%:151200.

In general, we have:

Theorem 1.2

The number of ways of selecting r objects from n, in order but with no repeti-
tions, is
nn-1)...n-r+1)=

(n=r)t

Example 1.5

A committee of 4 is to be chosen, as in Example 1.3, but this time there are 20
people to choose from. The number of choices of president, secretary, treasurer,
social convener is

1
20x 19 x 18 x 17 = f—g' = 116 280.

1.3 Selections

Suppose that in Example 1.5 we wanted just the number of ways of choosing
four people for a committee, not bothering about the positions they might fill.
Denote by (240) (and read as 20-choose-4) the number of ways in which we can
choose 4 from 20 where order does not matter.
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Each such choice of four from 20 can be ordered in 4! ways to give an assign-
ment to particular positions within the committee, so, by Example 1.5,

20 20!
! =
4‘x<4) 6

Thus 90 20!
( ) 20 g5,

4/~ 416!

n

This argument is general: (n_—'ﬂ‘ = r! x (), so we have the following general

formula.

Theorem 1.3

Let () denote the number of unordered selections of r from n where repetitions

are not allowed. Then
n n!
<r> Trln =) (11

Since some students find the idea of turning ordered selections into unordered
selections confusing, here is another way of deriving the formula (1.1).

Suppose we have to choose a team of r players from a pool of n, one of them
to be appointed captain. This can be done by first choosing the team - and
there are (f) ways of doing this - and then choosing the captain - there are r
ways of doing this. So there are r(7) choices altogether. But we could, instead,
first choose the captain - there are n ways of doing this - and then choose the
r — 1 other members of the team - and there are ("~]) ways of doing this. So
the number of choices is also n(?~}). Thus

(1) =n(221)
()=:(2) 12)

") =20

n\ _n n—-1(n-2
r) r r=1\r-2)°

Continuing in this way we obtain

()~ 22 (),

Since (7) is clearly always m, we obtain finally

<n)=n(n—l)...(n—r+1) n!

T

so that

But similarly, ( ), on replacing n by n— 1 and r by r — 1, so we

get

r! ri(n —7)!
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as before.
[Note in passing that this is a good example of the technique of counting
the same thing in two different ways.|

Example 1.6

In the UK National Lottery, a participant chooses six of the numbers 1 to 49;
order does not matter. So the number of possible choices is

(49)=4QX4SX47X4GX4SX44=13983816.

6 6!

So there is roughly one chance in 14 million of winning the jackpot!

Example 1.7

How likely is it that next week’s lottery winning numbers will be disjoint from
this week’s?

Solution

There are (469) possible selections next week. The number of these which are

disjoint from this week’s must be (%), since six of the 49 numbers are ruled

out. Since all (469) selections are equally likely, the required probability is
43 49
()% <o

Example 1.8

Binary sequences. There are 2" n-digit binary sequences since each of the n
digits is 0 or 1. For example, the eight binary sequences of length three are

000 001 010 011 100 101 110 111.

(a) How many binary sequences of length 12 contain exactly six 0s?

(b) How many have more Os than 1s?

Solution

(a) The six Os occupy six of the 12 positions. There are (7) = 924 choices of
these six positions, and this gives the number required.

(b) There are 2'2 — 924 = 3172 sequences with unequal numbers of Os and 1s.
By symmetry, exactly half of these, i.e. 1586, will have more 0s than 1s.
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We close this section with two simple properties of the numbers (:) which arise
out of the fact that (7) is the number of ways of choosing r from n. From now
on, we follow the conventions that 0! = 1 and that (j) = 1 for all n > 0.

Theorem 1.4

(i) (:) = (niT) forallr, 0 < r < n.
(ii)(n+1>=(n>+<n)forallr,0<r§n.
T T r—1

Proof

(i) This follows immediately from the formula (1.1); alternatively, simply ob-
serve that choosing r from n is just the same as selecting the n — r which
are not to be chosen!

(i) A choice of r of the n + 1 objects z1,... ,Zpy1 may or may not include
Zny1. If it does not, then 7 objects have to be chosen from z,,... ,z, and
there are (’r') such choices. If it does contain =41, then r—1 further objects
have to be chosen from zi,...,Tn, and there are ( rfl) such choices. The
result now follows from the addition principle.

Alternatively we can use the formula (1.1):

(:) + (7‘ ! 1) = r!(nn—!— TR 1)!(:!—r+ 1!

_ nlln-r+1) nlr

Torlln-r+ 1! rln—-r+1)

_ n! (1) n+1
- r!(n—r+1)!{n_r+1+r}_r!(n+1—r)!—( T )

1.4 Binomial Coefficients and Pascal’s Triangle

The choice numbers (’r‘) are known as binomial coefficients. In this section
we find out why. Note that

0 —
1+y)° =1 coefficients: 1
(1+y)' = 1+y 11
(1+y)? = 1+2y+y? 1 2 1
(1+y)?® = 1+3y+3y°>+¢° 11436341
(1+y)* = 1+4y+6y>+4y° +y*
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Note the triangular array of coefficients, known as Pascal’s triangle. Each
row consists of the choice numbers: e.g. the bottom row shown consists of

() (=0 ()= (=0 ()

Pascal (1623-1662) certainly studied these numbers, making use of them in his
work on probability, but the triangle was known to Chinese mathematicians
long before.

Theorem 1.5

The binomial theorem

n
n o __ n n n n—1 n n-2,2, . n n _ n n--r,r
(z+y)" = (O)z +(1>z y+(2)z Y+ +<n>y §)<r)z y'.

Proof

(z+y)"=(z+y)(@+y) - (z +y) (nbrackets). So the coefficient of z*~"y"
in the expansion is the number of ways of getting 2™~ "y" when the n brackets
are multiplied out. Each term in the expansion is the product of one term from
each bracket; so 2~ "y" is obtained as many times as we can choose y from r
of the brackets (and z from the remaining n — r brackets). But this is just the

number of ways of choosing r of the n brackets, which is (7).

Corollary 1.6

A+ =7 (v

Example 1.9

1+ (110)2 + (120)22 4t (13)210 — (1 + 2)10 — 310,
Pascal’s triangle

1 ¢« row 0
1 1 + row 1

1 7 21 35 35 21 7 1 — row 7
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In the nth row, n > 0, the entries are the binomial coefficients (7),0 < r < n.
The triangle displays the two properties of Theorem 1.4: (i) is shown in the
reverse symmetry of each row, and (ii) is shown by the fact that each entry in
the triangle is the sum of the two entries immediately above it (e.g. 21 = 6+15).
Note also the entries in each row add up to a power of 2.

Theorem 1.7

Proof
(i) Put y = 1 in Corollary 1.6. (ii) Put y = —1.

The next result establishes a pattern relating to the diagonals in Pascal’s
triangle. Note, for example, that in a line parallel to the left side of the triangle,
we have 1 +3+ 6 + 10+ 15 = 35.

Theorem 1.8
Forallm >0andn > 1,

)+ (") oo (70) = (0)

Proof
m+n+l = (mtn +<m+n by Theorem 1.4(ii)
m+1 m +1
m+n m+n—1 m+n-—1 . ..
_( m )-4-( m >+< mt 1 )agambyl.él(u)
_ (m+n>+(m+n~l>+m+(m+1)+(m+1)
m m m m+1
(m-{-n) (m+n~1) (m+1> (m)
= + ot + :
m m m m

since (25 = (7) = 1.

Identities

The binomial theorem can be used to obtain other identities involving binomial
coefficients.
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Example 1.10
Consider the identity
1+2)"Q+2)"=1+z)"

ie.

(- Qe N 00 (-5

Equating the coefficients of ™ on each side of this identity gives

G) @)+ )G+ ()6 - ()

which, by Theorem 1.4(i) can be rewritten as

2 2 2
"N (Y +(" = 2n
0 1 n n)'
For example, with n = 4 we get

P+446°+42+1°=70= (i)-

A similar type of argument enables us to obtain a corresponding result for
alternating sums.

Example 1.11

Use the identity (1 — %) = (1 — 2)*(1 + 7)™ to sum
2 2 2
M (Y 4 () L
() - () + )

Solution

Consider the coefficient of ™ on both sides of the given identity.
Since the right-hand side is

(1= (e ()= v (o) (4 (Do (),

the coefficient of z" is

= () -5 - @)

r+s=n r=0
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The coefficient of ™ on the left of the given identity is 0 if n is odd (why?) but
is (=1)% ( Z ) if n is even. So we have

2

R R S W B

To illustrate:

DR A G R R
)7 e eseen )
BRI ARG R0 )

1.5 Selections with Repetitions

We have already seen that there are 2™ binary sequences of length m. Here we
are choosing m digits in order, and there are two choices (0 or 1) for each.

Example 1.12

The number of subsets of a set of m elements is 2™. For each subset corresponds
to a binary sequence of length m, in which the ith digit is 1 precisely when the
ith element is in the subset. For example, the subset {2,3,5} of {1,2,3,4,5}
corresponds to 01101. Which subsets are represented by (a) 11100, (b) 000007
[{1,2,3},0].

Example 1.13

Each weekend in February I can visit any one of three cinemas. How many
different sequences of visits are possible, repeat visits of course being allowed?
Solution

Each weekend I have 3 choices, so by the multiplication principle the total
number of visiting sequences is 3* = 81.
Clearly we have
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Theorem 1.9

The number of ways of choosing r objects from n, in order and with repetitions
allowed, is n".

Suppose now that we have to choose r objects from n, where repetitions are
allowed, but where order does not matter.

Example 1.14

There are ten ways of choosing two objects from {1,2,3,4} unordered, with
repetitions allowed. They are:

1,1 1,2 1,3 1,4 2,2 2,3 2,4 3,3 3,4 4,4.

Theorem 1.10

The number of unordered choices of r from n, with repetitions allowed is

()

Any choice will consist of z; choices of the first object, x> choices of the second
object, and so on, subject to the condition z; + -+ + z, = r. So the required
number is just the number of solutions of the equation z; + -+ z, = 7 in
non-negative integers z;.

Now we can represent a solution z,,... ,z, by a binary sequence:

Proof

z10s,1,20s,1,230s,1,...,1,2,0s.

Think of the 1s as indicating a move from one object to the next. For example,
the solution z; = 2,z2 = 0,23 = 2,24 = 1 of 21 + Z2 + 23 + T4 = 5 corresponds
to the binary sequence 00110010. Corresponding to z; + -+ + =, = r, there
will be n — 1 1s and 7 0s, and so each sequence will be of length n + r — 1,
containing exactly r 0s. Conversely, any such sequence corresponds to a non-
negative integer solution of x; + - + =, = r. Now the r Os can be in any of
the n + r — 1 places, so the number of such sequences, and hence the number
of unordered choices, is ("*77'), the number of ways of choosing r places out
of n+r—1.
This proof also establishes the following result.

Theorem 1.11

The number of solutions of z; + -+ + z,, = r in non-negative integers z; is

!
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Example 1.15

The number of solutions of z + y + 2 = 17 in non-negative integers is
17+3-1 19 19
(") ()= () -m

Example 1.16

How many solutions are there of £ 4+ y + 2z = 17 in positive integers?

Solution

Here werequirez > 1,y > 1,z2>1,soweput z=14+u,y=1+v,z2=1+w.
The equation becomes u + v + w = 14, and we seek solutions in non-negative
integers u, v, w. The number of solutions is therefore

14+3-1 16
(“i )= (3)=m=

Example 1.17

How many binary sequences are there containing exactly p Os and ¢ 1s,¢ > p—1
with no two Os together?

Solution

Imagine the ¢ 1s placed inarow:...1...1...1.... They create ¢ + 1 “boxes”
(spaces) in which to put the 0s (¢ — 1 boxes between the 1s, and one at each
end). The p Os have to be places in different boxes, so the number of choices
is (":1).

Alternatively, we could first place the p Os in a row. They create p + 1 boxes
in which to place the ¢ 1s. But the p — 1 internal boxes must receive at least
one 1. If we let x; denote the number of 1s placed in the ith box, we want
the number of solutions of z; + -+ + zp41 = ¢, where z; > 0, 2,4, > 0, and
all other x; > 1. Putting 2, = y1, Tpt1 = Yp41, Ti = 1 + y; otherwise, the
equation becomes y; + - +yp+1 =¢— (p—1) = ¢—p+1, and the number of
non-negative integer solutions is

(q—p+l+p+1—l)_( g+1 )_<q+1)
g-p+1 g+1-p p )

We summarise the selection formulae in Table 1.1.
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Table 1.1 Summary of formulae for choosing r from n.

choose r
from n ordered unordered
no
. n! n
repetitions
(n—r)! r
allowed

n+r—1
repetitions n" < + )

allowed

1.6 A Useful Matrix Inversion

In this final section we present an elegant and useful matrix result which will be
of use later. It enables us to deduce, from a relation of the form a, =}, (:)bk,
an expression for b, in terms of the a;.

To begin, first consider the matrix

—_
W = O O
= o O O

w N = O

which is clearly constructed from the first four rows of Pascal’s triangle. Re-
markably, its inverse is

1 0 00
-1 1 00
1 -2 10
-1 3 =31

since the product of these two matrices is easily checked to be the identity. This
result generalises in the obvious way. Before proving this, we need a couple of
lemmas.

Lemma 1.12
For all 1,5, k, j < k <1,

(:)(5)=0G) 05
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Proof
N\ (R Ko i!
(k)(j) TORG-R) k-5 T (- R)l(k - )
_ il (i =)
G- DG - k) (k- )
NAYIET
- ()G5)
Lemma 1.13

Yi<k<i (1) (5) (=1)F = 0 whenever j < i.

Proof

W0 = 26

-

- . )
(l p ]) (-1)*  on putting £ =k — j
=0

= (-1) (]) (1-1)"7=0 sincej <.
We extend the definition of (;) to cases where i < j by putting (;) = 0. This
makes sense, since there is no way of choosing j objects from i < j without
repetitions.

Theorem 1.14

Let A be the (n + 1) x (n + 1) matrix, with rows and columns labelled by
0,1,...n, defined by a;; = (;) Let B be the (n + 1) x (n + 1) matrix defined
by b,‘j = (—I)H'j (;) Then BA = 1.

Proof

The (i,¢)th entry of BA is the product of the ith row of B and the ith column
of A, and so is Y biraki = Zk(—l)“"‘(i) ('f) There is only one value of &
for which (;) and (':) are both nonzero, namely k = 7, so the sum reduces to
(-1)%(}) () = 1. So all diagonal entries of BA are 1.
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Ifi # j, the (i, j)thentry of BAis 32, (-1)"**(}) (§) = (-1)* T, (1) (5) (-D)*.
This is 0, by Lemma 1.12, whenever ¢ > j. But if i < j then every term (,:) (;‘)
is 0, so again the sum is 0.

So, now that Theorem 1.14 is established, suppose we are given two sequences
(ao,a1,az,...) and (b, by, b2, ...) related by

a, = z": (Z) b
k=0

for all n > 0. We then have the matrix identity

ap bo

a; bl
=A|

an bn

so by Theorem 1.14 we can deduce that

bo bo Qg

b1 b] a;
. |=BA| . |=B| .

bn bn Qn

The bottom row then gives

n

b= 3 (-1 (:)ak.

k=0

We therefore have the following useful inversion.

Corollary 1.15
If an = Y g (7) & for all n > 0, then by = 35 _o(—1)" ¥ () ax.

We shall use this inversion result in Sections 2.4 and 5.3.

Exercises

Exercise 1.1

The 10 cabinet ministers of Newland sit around a circular table. One seat
is reserved for the Prime Minister. In how many ways can the remaining
nine seat themselves?
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Exercise 1.2

An 8-person committee is to be formed from a group of 15 women and
12 men. In how many ways can the committee be chosen if

(a) the committee must contain four men and four women?

(b) there must be at least two men?

(c) there must be more women than men?

Exercise 1.3

An eccentric, Mr. Leuben, is reported to have bet that if he shuffled
a pack of cards long enough the cards would eventually appear in a
given order. He tried for 10 hours a day for 20 years before eventually
succeeding after 4 146 028 shuffles. Was he lucky?

Exercise 1.4

Find the probabilities of getting exactly (a) 3, (b) 4, (c) 5 numbers
correct in the UK National Lottery.

Exercise 1.5

Estimate your chances of picking the winning numbers in the following
lotteries:

(a) Sweden - choose 7 from 35; (b) Hungary - choose 5 from 90.

Exercise 1.6

In the Thunderball variation of the lottery, you choose five from 1 to
34, and one from 1 to 14. Compare your chance of winning Thunderball
with your chances of winning the UK Lottery.

Exercise 1.7

What is the probability of getting exactly 5 heads in 10 tosses of a coin?

Exercise 1.8

Give an induction proof of the binomial theorem. (You will need to use
Theorem 1.4(ii).)
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Exercise 1.9
Deduce from Theorem 1.7 that (3) + (3) + (3 +---=2n"1

Exercise 1.10

Use the identity (1+z)"(1+x)® = (1+z)"** to derive the Vandermonde
identity, 3, (1) (2%4) = (2°)-

Deduce that 37 () (e2) = (727)-

Exercise 1.11
(a) Check that () — (7) -(0)=-20=-(3).
1)+

(b) Generalise this result to( ) J+(G) =+ (EDEE) = (DR
by replacing each (%) by ( l) +(%7})-

(c) Give an alternative proof by considering the coefficient of z* on both
sides of the identity (1 +z)*~! = (1 +z)*(1 +z)~ L.

Exercise 1.12
Use (1.2) to prove that 3°, k() (}) = n(™71).
Exercise 1.13

Find the number of solutions of the equation £ + y + z + w = 15 (a) in
non-negative integers, (b) in positive integers, (c) in integers satisfying
z>2,y>-2,2>0w>-3.

Exercise 1.14

Find the number of non-negative integer solutions of z; +z2+z3+2z4 < 6.

Exercise 1.15

Show that more than half of the selections of 6 from 49 in the UK Lottery
have no two consecutive numbers.

Exercise 1.16

Find the number of ways of placing 4 marbles in 10 distinguishable boxes
if
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(a) the marbles are distinguishable, and no box can hold more than one
marble;

(b) the marbles are indistinguishable, and no box can hold more than
one;

(c) the marbles are distinguishable, and each box can hold any number
of them,;

(d) the marbles are indistinguishable, and each box can hold any number
of them.

Exercise 1.17

Using (1.2), prove that Y7, r(") = n2"~'. Why is this result obvious
when we consider the average size of a subset of a set of n elements?

Exercise 1.18

Establish the formula 12 + 2% + --- + n? = In(n + 1)(2n + 1) by the
following methods.

(a) Prove that ("}%) — () = r?, and sum over r.

(b) Prove that (}) + ("1') =72, and sum over r, using Theorem 1.8.

Exercise 1.19

(For those who know de Moivre’s theorem.)

Letw = 1(~1+iv/3),s0that w® = land w?+w+1 =0.Putz =1L,y =w
in the binomial theorem to show that

(066 =3 et

xi

(Hint: 1 +w=1¢€73.)
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Recurrence

It often happens that, in studying a sequence of numbers a,, a connection
between a, and a,_1, or between a, and several of the previous a;,7 < n, is
obtained. This connection is called a recurrence relation; it is the aim of this
chapter to illustrate how such recurrences arise and how they may be solved.

2.1 Some Examples

Example 2.1 (The towers of Hanoi)

We begin with a problem made famous by the nineteenth century French math-
ematician E. Lucas. Consider n discs, all of different sizes, with holes at their
centres (like old gramophone records), and three vertical poles onto which the
discs can be slipped. Initially all the discs are on one of the poles, in order of
size, with the largest at the bottom, forming a tower. It is required to move the
discs, one at a time, finishing up with the n discs similarly arranged on one of
the other poles. There is the important requirement that at no stage may any
disc be placed on top of a smaller disc. What is the minimum number of moves
required?

Let a, denote the smallest number of moves required to move the n discs.
Then clearly a; = 1. Also, a; = 3: move the top disc to one pole, the bottom
to the other, and then place the smaller on top of the larger. What about a,?
It should be clear that, to be able to move the bottom disc, there has to be an
empty pole to move it to, and so all the other n — 1 discs must have been moved
to the third pole. To get to this stage, a,,—1 moves are needed. The largest disc
is then moved to the free pole, and then another a,_; moves can position the
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other n — 1 discs on top of it. So
an = 2an-1 + 1.

This recurrence relation, along with the initial condition a; = 1, enables
us to find a,. We have ap =2.1+1=3,a3 =23+1="7,a4 =27+ 1= 15,
and it appears that a, = 2" — 1. This can be confirmed by induction, or by
iteration:

an 142a,-1 =1+2(142a,_2)=1+2+2%a,_»

1+2+22(1+2ap-3) =1+2+2%+2%,_3

il

142+22 4+ 2772 42771

1+2+22+ ... 42071 =21,

In the mythical story attached to the puzzle, n was 64 and priests had to move
discs of pure gold; when all was accomplished, the end of the world would
come. But 264 — 1 = 18446 744073709551 615, and at one move per second
the process would take about 5.82 x 10'! years; so we have nothing to worry
about! This is another good example of combinatorial explosion.

Example 2.2

There are 3™ n-digit sequences in which each digit is 0,1 or 2. How many of
these sequences have an odd number of 0s?

Solution

Let b,, denote the number of such sequences of length n with an odd number
of 0s. Each such sequence ends in 0,1 or 2. A sequence ending in 1 has any
of the b,_; sequences of length n — 1 preceding the 1; and similarly there are
bn_1 sequences ending in 2. If a sequence ends in 0, the 0 must be preceded
by a sequence of length n — 1 with an even number of 0s; but the number of
such sequences is 3”71 (the total number of sequences of length n — 1) minus
bp—1 (the number of sequences of length n — 1 with an odd number of 0s); thus
there are 3"~ ! — b,_; sequences ending in 0. So, by the addition principle,

bn=bpo1 +bpo1 +3" = byy e by = by + 377
Again we can find b, by iteration:
b =3"" by =37+ (3" b bpn) = .
=371 43" 24 3+ by
But b; =1 (why?), so

1
bn=1+3+-~~+3"—1=§(3"—1).
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Example 2.3 (Paving a garden path)

A path is 2 metres wide and n metres long. It is to be paved using paving
stones of size Im x 2m. In how many ways can the paving be accomplished?

Solution

Let p, denote the number of pavings of a 2 x n path. Clearly p; = 1 since one
paving stone fills the path. Also, p, = 2, the two possibilities being shown in
Figure 2.1(a), and p3 = 3 (Figure 2.1(b)).

(a) (b)
Figure 2.1

It might appear that p, = n for all n, but check now that ps = 5. What is p,?
For a 2 x n path, the paving must start with one of the options shown in
Figure 2.2.

Figure 2.2

In the first case it can be completed in p,_; ways; in the second it can be
completed in p,_» ways. So, again by the addition principle,

Pn = Pn—1 + Pn-2 (ﬂ- > 3)

This is a second order recurrence relation, since each p, is given in terms of
the previous two. We obtain ps =5+3 =8,ps ==8+5=13,py =13+ 8 =
21, etc; the sequence (p,) thus turns out to be the well-known Fibonacci
sequence (Fy):

1,2,3,5,8,13,21, 34,55, 89, ... .

Fibonacci, or Leonardo of Pisa (c. 1200 AD) introduced this sequence when
investigating the growth of the rabbit population (see Exercise 2.5); it crops
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up amazingly frequently in diverse mathematical situations. We shall obtain a
formula for F, in the next section.

Example 2.4 (Flags)

A flag is to consist of n horizontal stripes, where each stripe can be any one
of red, white and blue, no two adjacent stripes having the same colour. Under
these conditions, the first (top) stripe can be any of three colours, the second
has two possibilities, the third has two, and so on (each stripe avoiding the
colour of the one above it); so there are 3 x 2"~! possible designs.

Suppose now that, in order to avoid possible confusion of flying the flag
upside-down, it is decreed that the top and bottom stripes should be of different
colours. Let a, denote the number of such flags with n stripes. Then a; = 0
(why?) and a; = 6. Further, since there is a one-to-one correspondence between
flags of n stripes with bottom stripe same as top, and flags of n — 1 stripes with
bottom stripe different from top,

an = 3x2" 1 — (no. of flags with bottom colour same as top colour)

3 x 2771 — (no. of flags of n — 1 stripes with bottom colour

different from top).
Thus
a, =32"""1—a,_,. (2.1)
We could iterate again (try it!), but here is another method. Since
an +ap_; = 3.277!

we also have
Gn-1 + Gp_g = 3.2"72

whence
2(an-1 + an-2) =3.2"" " =a, +an_;.

Thus
ap = Aap-1 + 2an_2. (2.2)

This again is a second order recurrence relation; we now show how to solve it.
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2.2 The Auxiliary Equation Method

In this section we concentrate on recurrence relations of the form
an = Aan_1 + Bap_2 (n>3) (2.3)

where A, B are constants, B # 0, and where a; and a; are given. Equation (2.3)
is called a second order linear recurrence relation with constant coefficients; it
turns out that there is a very neat method of solving such recurrences.

First, we ask: are there any real numbers a # 0 such that a, = o™ satisfies
(2.3)? Substituting a, = a™ into (2.3) gives @™ = Aa™"! + Ba""?, ie. a® =
Aa + B. Thus a, = a" is a solution of (2.3) precisely when « is a solution of
the auxiliary equation

z? = Az + B. (2.4)

Thus if a and § are distinct roots of (2.4),a, = o™ and a, = 8" both satisfy
(2.3). If the auxiliary equation has a repeated root a, then

?~Az~B=(z-a)? =122 -20r+a®
so that A = 2a and B = —c?. In this case a, = no™ also satisfies (2.3), since
Aan-1 + Bay_3 = A(n — 1)a™ ! + B(n — 2)a™ 2
=2(n—-1)a" — (n - 2)a™ =na™ = a,.

We now prove

Theorem 2.1

Suppose (a,) satisfies (2.3), and that a; and a; are given. Let a, 3 be the roots
of the auxiliary equation (2.4). Then

(i) if a # B, there are constants K, K, such that a, = K a™ + K4 for all
n>1;

(ii) if @ = B, there are constants K3, K, such that a, = (K3 + nK,)a™ for all
n > 1.

Proof
(i) Choose K1, K, so that a; = Kya + K3f8,a; = K10? + K22, i.e. take

_aBf—a ajo —ap

k=2 5@ p

af—a)’ (2.5)
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Then the assertion that a, = K;a™ + K»8" is certainly true for n = 1,2. We
now proceed by induction. Assume the assertion is true for all n < k. Then

ak+1 = Aay + Bay—, = A(K1a* + Ky8%) + B(K of ™! + K85 1)
= K10F "' (4a + B) + K281 (AB + B)
= K o*t! 4 K, 85
so the result follows.

(ii) Choose K3, K4 so that A; = (K3 + Ky)a, az = (K3 + 2K4)a?, i.e. take

2 —
Ky= 2me—az g

ay — g
a? '

- (2.6)

Then the assertion that a, = (K3 + nK4)a™ is certainly true for n = 1,2.
Assume it is true for all n < k. Then

ak+1 = Aay, + Bag_1 = A(K3 + kKy)oF + B(Ks + (k — 1) Kq)a* !
= K3a* (Ao + B) + K401 (Aka + B(k — 1))
= K3oft! 4 Ko* 1 (2k — o?(k — 1))
= K3a*! 4+ Ky(k + 1)af+!,

as required.

Example 2.4 (continued)

In the flag problem we obtained the recurrence relation a, = an—-1 + 2a,_2,
where a; = 0,a; = 6. The auxiliary equation 22 — £ — 2 = 0 has solutions
a=-1,8=2,s0

an = Kl(—l)n + K22n

where 0 = —K; + 2K5 and 6 = K; + 4K, ie. K1 =2,K, =1. So

an = 2(-1)" + 2™

Example 2.3 (continued)

The Fibonacci sequence (F},) is given by
FL=1 F,=2 F,=F, 1+ F,_2 (n > 3).
The auxiliary equation 22 — z — 1 = 0 has solutions %(1 +/5), so

F, = K\a" + K"
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where a = (1 + Vv5), B = 1(1 — V/5). The initial condition F; = 1, F, = 2,

B
along with (2.5), yield K, = \/lg, K, = _—\/g, so that

n+1 n+1
1, 1 o 1 (1445 1 (1-5
F,=—a«a +1___B+ _ﬁ(—b—) _%< 2 ) . (27)

This result may seem rather odd since F, is to be an integer. Check that
expansion by the binomial theorem leads to a cancellation of all terms involving
V5, giving

s {1) o) 901 )

This again is a surprise since it is by no means obvious that the sum of binomial
coefficients should be divisible by 2.
Note that, since |8| < 1, the second term in (2.7) tends to 0 as n — oo, giving

Fap 1+v5
F, 2

, the golden ratio.

Example 2.5

Solve the recurrence relation a,, = 4a,—1 — 40,5 (n > 3),a1 =1,a; = 3.

Solution
The auxiliary equation is 22 — 4z +4 =0, i.e. (z —2)2 =0, so
an = (K1 +nK,)2".

The initial conditions give 1 = 2(K; + K3), 3 = 4(K) + 2K>), whence K; =
K, = ;. Thus
a, = (n+1)2"n72,

The auxiliary equation method extends to higher order recurrences in the ob-
vious way.

Example 2.6
Suppose that a; = 3,a2 = 6,a3 = 14 and, for n > 4,

ap, =6ap—1 — 1lla,_o + 6an—3.

Then the auxiliary equation is 23 -6z +112—6 = 0, i.e. (z—1)(z—2)(z—3) = 0,
so an = K + K32™ + K33". Using the initial conditions, we get

@, =1+2""1 4371
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Non-homogeneous recurrence relations

The auxiliary equation method has been used for recurrence relations such as
An = Gn_1 + 2an_s. These are homogeneous linear recurrences with constant
coefficients: a, is a linear combination of some of the previous a;. We now
briefly consider the non-homogeneous case, e.g.

an = Aapn_1 + Ban_3 + tp,

where t,, is some function of n. One example of this was (2.1), which we solved
by manipulating it into a second order homogeneous recurrence; but now we
give an alternative method of solution. For we can obtain a solution by first
finding the solution of the recurrence relation obtained by replacing ¢, by 0, and
then adding to it any particular solution of the non-homogeneous recurrence.

Example 2.4 (again)

We solve a, = —an_1 +3.2"71, a; = 0.

Solution

First we solve a, = —an—1. We could use the auxiliary equation z = -1,
but it is easy just to spot that a, = (-1)""lay, ie. a, = K(~1)" For a
particular solution of @, = —an-; + 3.2""!, we try something sensible such
as a, = A2". Substituting gives A2" = —A2""! 4+ 3.2"! whence A = 1. So
we have a, = K(—1)" + 2". Since a; = 0, we need K = 2; so we have finally
an = 2(—1)" + 2", as before.

Note that the initial conditions are not applied until the final stage of the
procedure.

2.3 Generating Functions

The generating function of a sequence a1, az,as, ... is defined to be

[oo]
f(z) = Z a;z’.
=1
For example, the generating function of the Fibonacci sequence is

z+2c%+323 + 524+,

If a sequence starts with ag we take f(z) = Y ;o a;z’; for example, the gener-
ating function of the sequence a, = 2" (n > 0) is

1427+ 222% 4. =

1-2z°
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Sometimes, given a recurrence relation, it is possible to find the generating
function of the sequence and then to find a, by reading off the coefficient of
™.

Example 2.4 (yet again!)

Consider the recurrence relation a, = 3.2"! —a,_; (n > 2), a; = 0. Let
f(z) = a1z + azz® + - - -. Then

flz) =a1z+ (32 —a;)z? + (3.22 —ap)z® + - --
=az+322% + 2223 + ) — (a12® + az® + )
=0+6z%(1 +2z+2%2% +...) — zf(z).

Thus (1 + z) f(z) = 622 5o that

1-2z
1 2 1
= 6z? = 22?2
He) =6 i o = 2 G oa Y 114
on using the method of partial fractions. Thus
f(@) =421+ 22+ 222 + - )+ 28°(1 -z + 22 —---).

Reading off the coefficient of z™ gives
an =4.2""2 4 2(-1)"% = 2" 4 2(-1)",

as before.

Example 2.5 (again)
an =4ap_1 —4ap—2 (n > 3),a) = 1,0, = 3.

f(x) = a1z + a2z? + azz® + agzt + - -

z + 32? + (4az — 4a,)z® + (daz — 4az)z? + -+

T+ 32% + 4(a22® + a3z + ) — 4(a12° + apzt + - )

I

z + 32% + 42(f(z) — arz) — 422 f (),

so that
(1 -4z +47%) f(z) = = + 3% — 42 = z — 2.
Thus )
T—-z

&= a0y
Now, since

1 2

—=1l+z4+2°+---,

l1-z
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differentiating gives

—3=1+2x+3x2+---,

5 =1+220+32%% + ...

f(z) = (z - 2%)(1 + 2.2z + 3.2%22 + 4.2%28

1

inl+22x+---

— coefficient of 2" % in 1+ 2.2z + - .

=n2""1 — (n—-1)2""2 = (n+1)2"2

1
(1-=)

so that 1

(1-2z)
Thus
whence

a, = coefficient of 2"~

as before.

2.4 Derangements

Suppose that n people at a party leave their coats in the cloakroom. After the
party, they each take a coat at random. How likely is it that no person gets the

correct coat?

A derangement of 1,... ,n is a permutation 7 of 1,... ,n such that «(i) # 4
for each i. For example, there are nine derangements of 1,2,3,4 :

2

[\

s R W W w

4
1
3

3
3

1

Lo NN

1
2

3
3
1

N W N

1

In each of these 1 is not in the first place, 2 is not in the second, and so on.
Let d,, denote the number of derangements of 1,... ,n. Then (check!)

dy =0,

dy =1,

ds =2,

dg =9.
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QOur aim is to obtain a recurrence relation for the d; and then use it to obtain
a formula for d,,. Before proceeding to the recurrence relation, note that d, is
the number of ways of assigning n objects to n boxes, where, for each object,
there is one prohibited box, and where each box is prohibited to just one object.
Above, the objects and boxes are both labelled by 1,. .. ,n, with box (position)
i prohibited to object (number) ¢, but the labelling of the boxes and objects is
of course arbitrary and does not affect the problem.

Next note that in three of the nine derangements of 1,2,3,4 listed above,
4 swaps places with another number: this happens in 2143,3412 and 4321. In
the remaining derangements 4 does not swap places with another. With this
in mind, we put

dn = en + f n

where ey, f, denote the numbers of derangements of 1,... ,n in which n swaps,
does not swap, places with another. Now if n swaps places with 7 (and there are
n — 1 possible choices for ¢), the remaining n — 2 numbers have to be deranged,
and this can be done in d,_» ways; so

en=(n—1)d,_2.

If n does not swap places with any other, then some r goes to place n (and
there are n — 1 choices of r), while n does not go to place r. So we have to assign
places to 1,... ,n, excluding r, where the places available are 1,... ,n— 1, and
where each has precisely one forbidden place (for ¢ # r,n, place i is forbidden;
for i = n, place r is forbidden). So there are d,_; possible arrangements, and
SO

fan=(n—1dn_1.

Thus by the addition principle, we have

[d =(n—1)(dn_, +d,.,2).| (2.8)

Using this recurrence we get
ds =4(9+2) =44,  dg = 5(44+9) = 265,

and so on.

The recurrence (2.8) does not permit the use of the auxiliary equation
method, since the coefficients of d,_; and d,—, are not constants. However,
we can manipulate (2.8) into a more manageable form. Equation (2.8) can be
rewritten as

dp —ndp_y = —(dn-1 — (n — 1)dn_2),

where the expression on the right is the negative of the expression on the left,
with n replaced by n — 1. So iteration gives

dn —ndp_) = —(dn—y — (n — 1)dn_)

(=1)*(dn-2 — (n — 2)dn—3)
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= (=1)""(dz - 2d1) = (-1)"(1 - 0) = (-1)",

1.e.

ldn —ndp_ = (—1U (2.9)

Thus
d, oy (=1)"

. (n-1)!" n!

If we now sum the identities
dm dm-1 _ (=D™

ml m-1!  m
over m = 2,3,... ,n, we get cancellations on the left, giving
dn _di _ (=1 (=1)° GV S G VG S N G Vi
a1 + 3! oot n! :Z m! ‘_Z m!
m=2 m=0
But d; = 0, so we obtain
n
(-1 o L1 ="
d, = T =pil- — . 2.1
=n! Z:: =nl{ +2! + - } (2.10)
One interesting consequence of (2.10) is that, as n — oo,
dn 1
n! e’

so the probability of no one getting their own coat back after the party tends

to é = 0.367 88 as n — co. Indeed, for n as small as 6,

dg _ 265
=—= 806,
6 720 =036
. 1 .
agreeing with - to 3 decimal places.
Example 2.7
(a) Find the number of permutations of 1,...,n in which exactly k of the

numbers are in their correct position, and deduce that
n n
= dy. 2.11
=30 o

(b) What is the average number of numbers in their correct position in a random
permutation of 1,--- ,n?
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Solution

(a) There are (}) ways of choosing the k numbers to be fixed. The remaining
n — k have to be deranged, and this can be done in d,—; ways. So there are
(Z) dn— permutations with exactly k fixed numbers.

But any of the n! permutations fixes ¥ numbers for some k between 0 and n.

So . .
L (e -x ()

on putting £ =n — k.

(b) The average number of fixed numbers in a permutation of 1,... ,n is
LS k(M de = 23 k(™)
H Z k n—k = m Z k n—k
k=0 k=1
1 (n-1
== ;n(k B l)dn_k by (1.2)
1 |
a2 (k)
1 Hm-1
= m; ( ¢ )dl (on putting £ =n — k)
1
= oy V! by(2.11)

So the average number of fixed numbers is 1.

Alternative proofs of (2.10)

A proof of (2.10) using the inclusion-exclusion principle will be given in Chapter
6. Here we give yet another proof, a simple application of the inversion principle,
as in Corollary 1.15, applied to (2.11).

In (2.11), put a, for n! and b, for d,. Then (2.11) is

n

an = Z (Z) bx,

k=0

so that, by Corollary 1.15,

R LIy

k=0 k=0
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:"!Z (—f'_ (on putting £ =n — k)

2.5 Sorting Algorithms

Given a pile of exam scripts, we might want to sort them, i.e. put them in
increasing or decreasing order of marks. Are there any efficient ways of doing
this? We start with a simple but not very efficient procedure.

Bubblesort

Take a list of n numbers, in random order. Compare the first two, swapping
them round if they are not in increasing order. Then compare the second and
third numbers, again swapping if necessary. In this way proceed up the se-
quence; the largest number will then be at the end. Next repeat the whole
process for the first n — 1 numbers: this will take the second largest to the
second last position. Repeat for the first n — 2, and so on.
The total number of comparisons involved in this procedure is
2

1 1 1
-1 _ e 424 1=n(n—-1)= -n?— =
m=-1)+Mn-2)+--+2+1 2n(n ) 5" = 5M

so we say that the bubblesort algorithm has O(n?) complexity.

Example 2.8

Start with 7,10, 4,6, 3.

After the first 4 comparisons we have 7,4, 6, 3, 10.
After the next 3 comparisons we have 4, 6,3, 7, 10.
After the next 2, we have 4,3,6,7, 10.

After the final comparison we have 3,4,6, 7, 10.

Mergesort

The idea here is to split the given list into two (roughly) equal parts, sort each
separately, and then merge (combine) them.

The process of combining two sorted lists of lengths £ and m into one list can
be accomplished by £ +m — 1 comparisons. For suppose we have two such lists,
both in increasing order. Compare the first (smallest) numbers in the lists, and
take the smaller as the first member of a new list L, crossing it out of its original



2. Recurrence 33

position. Repeat the process to find the second member of L, and so on. The
number of comparisons is clearly £ + m — 1, since when only one number from
the two original lists is left no comparison is necessary.

Before the merging takes place, the two halves of the original list can be
sorted by a similar method. Let ¢, denote the number of comparisons needed
to sort a list of n members by this method. If we split n into £ + k, then
th=te+tpr+€+k—1=t;+tp +n—1.

Thus, if we consider the particular case where n = 2™, so that the lists can
be bisected at each stage, we have

tam = 2tgm-1 + (2™ —1).
Put a,, = tam; then the recurrence relation becomes
Am = 2am-1 + (2™ = 1). (2.12)

Using the method of Section 2.2, first solve the homogeneous recurrence a,, =
2a,,—1. The solution is clearly a, = A2™ for some constant A. We then have
to find a particular solution of (2.12). Try

a, = Bn2™ + C.

(Trying an = B.2"™ + C would not work, since a, = 2" is already a solution of
the homogeneous recurrence; so we take the hint given by Theorem 2.1(ii) and
insert n.) We then require

Bn2"+C =2B(n—-1)2""1+2C+2" -1

0=-B2"+2"-1+C.

So take B = C = 1 to obtain finally a, = A2" +n2" + 1. But a; = 1, so
A = -1, giving
a, =2"(n-1)+1.

Thus tgm =14 2™(m — 1). On putting n = 2™, we get
tn =1+ n(logyn — 1),

so the mergesort method has complexity O(nlogn), an improvement on the
O(n?) of bubblesort.
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2.6 Catalan Numbers

In this section we introduce a well-known sequence of numbers known as the
Catalan numbers, which arise as the counting numbers of a remarkable number
of different types of structure. They are named after the Belgian mathematician
E.C. Catalan (1814-1894) who discussed them in his publications, but they had
been studied earlier by several mathematicians, including Euler in his work on
triangulating polygons (to be discussed shortly).

We describe fully one of the occurrences of Catalan numbers, and begin with
the following easy problem.

Example 2.9
How many “up-right” routes are there from A to B in Figure 2.37

B(5,3)

A(0,0)
Figure 2.3

Solution

By an “up-right” route we mean a path from A to B following edges of squares,
always moving up or to the right. Any path must consist of 8 moves, 5 of which
must be to the right, and 3 up. So the total number of possible routes is (§).

More generally, the number of up-right routes from the bottom left vertex to
the top right vertex of an m x n array is ("").

Suppose we now have a square n x n array, and ask for the number p,
of up-right paths from bottom left to top right which never go above the
diagonal AB. In the case n = 3, shown in Figure 2.4, there are 5 such routes
represented by RURURU, RURRUU, RRUURU, RRURUU, RRRUUU where
R, U stand respectively for right, up. Thus p3 = 5. What is p,?

Any qualifying route (let’s call it a good route) from A to B must “hit”
the diagonal at some stage before B, even if it is only at A. So consider any
good route from A to B, and suppose that, prior to reaching B, it last met
the diagonal at the point C(m,m) where 1 < m < n. Then there are pp,
possibilities for the part of the route between A and C. The route must then
proceed to D(m + 1,m), and eventually to E(n,n — 1), but it must never go
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Figure 2.4

above the line DE, since otherwise C would not have been the last hit before
B. But D and E are opposite vertices of a square of side length n —m — 1, so
there are p,_m,_1 good routes from D to E. See Figure 2.5.

Figure 2.5

By the multiplication principle, the number of good routes from A to B, with
(m,m) as the last contact with the diagonal before B, is therefore pmpn—m-—1-
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Since m can take any value from 0 to n — 1, it now follows from the addition
principle that, with pg = 1,

n—1
Pn = Z PmPn-m-1- (213)
m=0

This recurrence relation differs from the ones met so far, but we can use gen-
erating functions to solve it. Let f(z) be the generating function:

f@) =po+piz+paz® +--.
Then

fAz) = (po+pz+pz®+ ) (po+prz+pea’+-)

o0
= Y 2(popn + P1Pn-1 + - + Pnpo)

n=0

[o0]
= ) papiz® by (213).
=0

Thus zf%(z) = Yoo o Prt12™t! = f(z) — 1, whence
zf%(z) — f(z) +1=0.
Solving this quadratic, we obtain

f(z)zl:t\/l—4z: 1

o ol - (1-42)1).

. . . 1.
We have to take the negative sign to avoid having a term of the form — in
z

f(z). So

1 1 1 1 42%z2 1 1 3 4328
f@) = g i-(-5d-g5 S5r-555 3 )}
= 1 gl 1 #2113 &7 }
2z "2 2 2 2 2 2 2 3
1 40 1 3 4222 1 3 5 4328
= 14 =4 o —F-z-=- - 4+

Thus, for n > 1,

135....2n—1) , 2"
2" (n +1)! T (n+ 1)V
. AM_;(2”>
(n+1)! 22n! n+l\n/’
1

Thus, for example, p; = +(5) =5 and ps = é(i) = 14. Note also that pg = 1
fits in with the convention that (8) =1

I
—
@
o

—
o
S

|
—

=

Pn
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The numbers p, are the Catalan numbers, usually denoted by C,. Thus

Cp= — (2") (2.14)
n

n+1

The sequence (Cr)n>0 begins
1,1,2,5,14,42,139,429, ... .
From (2.13) we have
Cm = CoCm—-1 + C1Crm—2 + -+ -+ Cp1Co. (2.15)

As remarked earlier, the Catalan numbers appear in many situations. One im-
mediate interpretation, obtained by replacing R and U by 0 and 1 respectively,
is:

C,, = number of binary sequences of length 2n containing exactly n 0s and n
1s, such that at each stage in the sequence the number of 1s up to that point
never exceeds the number of 0Os.

Euler’s interest was in the following:

Cr_2 = number of ways of dividing a convex n-gon into triangles by drawing
n — 3 non-intersecting diagonals. For example, the C3 ways of triangulating a
pentagon are shown in Figure 2.6.

PADVAVANAY,

Figure 2.6

See Exercise 2.16 for this problem and Exercise 2.17 for another appearance
of Cp,.

Another derivation of the formula (2.14)

We close this section by pointing out that there is an alternative ingenious
method of counting good up-right routes, due to D. André (1887). It avoids
the rather awkward recurrence relation (2.13), instead making use of a clever
mirror principle.

The number of good routes from A(0,0) to B(n,n) which do not cross the
diagonal AB is the total number (*7) of up-right routes from A to B minus
the number of routes which do cross AB. Let’s call routes which cross AB bad
routes.
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_F _B(n,n)

[ ]

v Lol

A(0,0)

[ ]

Figure 2.7

Consider any bad route. There will be a first point on that route above the
diagonal AB; suppose this is the point R(m,m + 1). If we replace the part of
the route from A to R by its image in the “mirror” GF (see Figure 2.7) then
we get an up-right route from H(—1,1) to B(n,n). Conversely, any up-right
route from H to B must cross GF somewhere, and arises from precisely one
bad route from A to B. So the number of bad routes is just the number of
up-right routes from (—1,1) to (n,n), which is

n+l+n-1\ 2n
n+1 T \n+1)’

So finally the number of good routes from A to B is
2n\ 2n \ _ (2n _n 2n\ 1 2n
n n+1)  \n n+1\n/) n+l\n)’

Exercises

Exercise 2.1

Solve the recurrence relations
(a) an = %a,._l +1,a =1;
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(b) an =5an_1 —6an_3,01 = —1,a2 = 1;
(C) an =60n_1 —9an_2,01 = 1,02 = 9;
(d) an =4an_1 — 3an_2 +2",a; = 1,02 = 11.

Exercise 2.2

Let b, denote the number of n-digit binary sequences containing no two
consecutive 0s. Show that b, = bp—1 + bp—2 (n > 3) and hence find b,.

Exercise 2.3

Let d,, denote the number of n-digit sequences in which each digit is 0, 1
or 2, and containing no two consecutive 1s and no two consecutive 2s.
Show that d, = 2d,_; + d,,_2. Solve this recurrence and deduce that
dn=1+2("3) +22("F) +23(") + -

Exercise 2.4

Use generating functions to solve Exercise 2.1(a) and 2.1(b).

Exercise 2.5

Fibonacci’s rabbits. Start with 1 pair of rabbits, and suppose that each
pair produces one new pair in each of the next two generations and
then dies. Find f,,, the number of pairs belonging to the nth generation

(i=1=fa).

Exercise 2.6

Solve the recurrence relation (2.1) for the flags by iteration.

Exercise 2.7

The Lucas numbers L, are defined by L; =1,Ly =3,L, = Ly +L,_»
(n > 3). Obtain a formula for L,,.

Exercise 2.8

Solve the recurrence (2.12) by using the method given in Example 2.4,
first eliminating 1 and then eliminating powers of 2. You should obtain
an — 5an_1 + 8ap.2 —4a,_3 =0.
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Exercise 2.9

Verify that if a], and a], are two solutions of the recurrence a,, = Aa,_,+
Bay,_» then aj, + a;, is also a solution.

Exercise 2.10

Show that the generating function for the Fibonacci sequence is 1_1_(%_:;)5
Hence obtain (2.7).

Exercise 2.11

Let M = (3}).

(a) Prove that M2 = (£:+1 ?::;) where F), is the nth Fibonacci num-
ber.

(b) By taking determinants show that F,F,1, — F2, | = (=1)".

(c) By considering the identity M™*n+2 = M™+LIpfn+l prove that
Frn+n = EnFn + En—an-L

Exercise 2.12
Prove that F} + Fo + -+ + F,, = Fpqpo — 2.

Exercise 2.13

For each of the following, work out the values for the first few values
of n and make a guess at the general case. Then prove your guesses by
induction.

(a) F1 +F3 +F5 ‘+‘"'+F2”_1;

(b) Fo+ Fy+ Fg+ -+ + Fap;

((3) F1 - F2 + F3 IR (‘l)n_an.

Exercise 2.14

In bellringing, successive permutations of n bells are played one after
the other. Following one permutation 7, the next permutation must be
obtained from 7 by moving the position of each bell by at most one
place. For example, for n = 4, the permutation 1234 could be followed
by any one of 2134, 2143, 1324, 1243. Show that if a,, denotes the number
of permutations which could follow 12...n, then a, = an—1 + a2 + 1.
Hence find a,.
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Exercise 2.15

(a) Let g, denote the number of subsets of {1,...,n} containing no two
consecutive integers. Thus, for example, g; = 2 (include the empty
set!) and g, = 3. Find a recurrence relation for g,,, and deduce that
gn = Faya.

(b) A k-element subset of {1,...,n} can be considered as a binary se-

quence of length n containing k 1s and n — & 0s (see Example 1.12).

Use Example 1.17 to show that the number of k-subsets of {1,... ,n}

containing no two consecutive integers is ("~ F!).

Deduce that Fr, = 37,1, ("*). How does this relation show up in

Pascal’s triangle?

(c

~

Exercise 2.16

Let ¢, denote the number of ways of triangulating a convex (n + 2)-gon
by drawing n — 1 diagonals. Show that t, = C, as follows. Label the
vertices 1,...,n + 2, and consider the triangle containing edge 12. If it
contains vertex r as its third vertex, in how many ways can the remaining
two parts of the interior of the (n + 2)-gon be triangulated? Deduce that
tn = Y t;t; where summation is over all pairs 4,5 with i + j = n — 1.

Exercise 2.17

Show that if 2n points are marked on the circumference of a circle and if
an is the number of ways of joining them in pairs by n non-intersecting
chords, then a,, = Cj.

Exercise 2.18

Derive Euler’s formula C,, = % for the Catalan numbers, and
note that (n + 1)C,, = (4n — 2)Cp_;.

Exercise 2.19
Prove that d, > (n — 1)! for all n > 4.

Exercise 2.20

Insertionsort. Sort a list z1,... ,z, into increasing order as follows. At
stage 1, form list L, consisting of just z;. At stage 2, compare z; with
T2 and form list Ly consisting of z; and z, in increasing order. At stage
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i, when x1,...,7;_; have been put into list L;_ in increasing order,
compare z; with each z; in L;_; in turn until its correct position is
obtained; this creates list L;. Repeat until L, is obtained. Compare the
efficiency of this method with that of bubblesort.

Exercise 2.21

In a mathematical model of the population of foxes and rabbits, the
populations z, and y, of foxes and rabbits at the end of n years are

related by (37+!) = (ode 1))

Show that 5,42 — 9Tny1 + 4z, = 0, and hence find z,, in terms of o
and Yo-

Deduce that z, — %yo — 1z as n — oo, provided zo < gyo. What
happens to y,?

Exercise 2.22

In a football competition, there are n qualifying leagues. At the next
stage of the competition, each winner of a league plays a runner up in
another league. In how many ways can the winners and the runners up
be paired?
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Introduction to Graphs

We introduce the idea of a graph via some examples, and concentrate on two
types of graph, namely trees and planar graphs. Further graph-theoretic topics
will be covered in the next chapter.

3.1 The Concept of a Graph

Example 3.1 (The seven bridges of Kdnigsberg)

In the early eighteenth century there were seven bridges over the River Pregel
in the Eastern Prussian town of Konigsberg (now Kaliningrad). It is said that
the residents tried to set out from home, cross every bridge exactly once and
return home. They began to believe the task was impossible, so they asked
Euler if it were possible. Euler’s proof that it was impossible is often taken to
be the beginning of the theory of graphs. What Euler essentially did (although
his argument was in words rather than pictures) was to reduce the complexity
of Figure 3.1(a) to the simple diagram of 3.1(b), where each land mass is
represented by a point (vertex) and each bridge by a line (edge). If the desired
walk existed, then each time a vertex was visited by using one edge, then
another edge would be used up leaving the vertex; so every vertex would have
to have an even number of edges incident with it. Since this is not the case, the
desired walk is impossible.

The diagram of Figure 3.1(b) is an example of a graph. It has four vertices
and seven edges.

43
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A A

(a) Figure 3.1 (b)

Example 3.2 (The utilities problem)

An old problem concerns three houses A, B,C which are to be joined to each
of the three utilities, gas, water and electricity, without any two connections
crossing each other. In other words, can the diagram of Figure 3.2 be redrawn
so that no two lines cross? The diagram is another example of a graph.

A B c

G w E
Figure 3.2 The utilities graph

Definition 3.1

A graph G consists of a finite set V' of vertices and a collection E of pairs of
vertices called edges. The vertices are represented by points, and the edges by
lines (not necessarily straight) joining pairs of points. If an edge e joins vertices
z and y then z and y are adjacent and e is incident with both z and y. Any
edge joining a vertex z to itself is called a loop.

Note that we say E is a collection of pairs, not a set of pairs. This is to
allow repeated edges. If two or more edges join the same two vertices, they are
called multiple edges. For example, the graph of Figure 3.1(b) has two pairs
of multiple edges. The graph of the utilities problem is simple, i.e. it has no
loops or multiple edges.

The number of edges incident with a vertex v in a graph without loops
is called the degree or valency of v and is denoted by d(v). The second
name recalls one of the early occurrences of graphs, as drawings of chemical
molecules. For example, ethane (C2Hg) can be represented by the graph of
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Figure 3.3, where the two “inside” vertices, of valency 4, represent the two
carbon atoms (carbon has valency 4), and the six other vertices, of valency
1, represent hydrogen atoms. Vertices of degree 1 are called pendant or end
vertices.

Figure 3.3 Ethane

When a graph contains a loop, the loop is considered to contribute twice to
the degree of its incident vertex. This convention enables us to establish the
following useful result.

Theorem 3.1

The sum of the degrees of the vertices of a graph is twice the number of edges.

Proof
Each edge contributes twice to the sum of the degrees, once at each end.

This result is sometimes called the handshaking lemma: at a party, the total
number of hands shaken is twice the number of handshakes. It has an immediate
corollary.

Corollary 3.2

In any graph, the sum of the vertex degrees is even.

Example 3.3

The complete graph K, is the simple graph with n vertices, in which each
pair of vertices are adjacent. Since each of the n vertices must have degree n—1,
the number ¢ of edges must satisfy 2g = n(n — 1), so that ¢ = {n(n — 1). This
of course is as expected, since ¢ is just the number of ways of choosing two of
the n vertices, i.e. ¢ = (3) = in(n - 1).

K, K K; K,
Figure 3.4
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The graphs Kp,n < 4, are shown in Figure 3.4. The notation K,, is in hon-
our of the Polish mathematician K. Kuratowski (1896-1980) whose important
theorem on planarity will be mentioned in Section 3.6. Note that K4 contains
K3 within it; this idea of one graph being contained in another is formalised in
the next definition.

Definition 3.2

A graph H is said to be a subgraph of a graph G if the vertex set of H is a
subset of the vertex set of G, and the edge set of H is a subset of the edge set
of G.

Thus, for example, K, is a subgraph of K,, wherever m < n; simply restrict
K, to m of its vertices.

Finally in this section, we establish some standard notation. From now on,
we shall use p and ¢ to denote the numbers of vertices and edges respectively,
and by a (p, ¢)-graph we shall mean a graph with p vertices and ¢ edges. Thus,
for example, K4 is a (4,6)-graph.

3.2 Paths in Graphs

Many important applications of graph theory involve travelling round the
graph, in the sense of moving from vertex to vertex along incident edges. We
make some definitions related to this idea.

Definition 3.3
A walk in a graph G is a sequence of edges of the form
VoV1, V1V2, V2V3,... y,Un—~1Un.

This walk is sometimes, in a simple graph, represented more compactly by
vp = V) — U2 = - -+ = v,. Note that there is an implied direction to the walk.
vg is called the initial vertex and v, the final vertex of the walk; the number
(n) of edges is called the length of the walk.

A walk in which all the edges are distinct is called a trail. A trail in which
all vertices vy, ... ,Vn are distinct (except possibly v, = vp) is called a path; a
path vg = ... = v, with v, = vp is called a cycle.

Example 3.4

In the graph of Figure 3.5,
ZoU—Y VU is a trail but not a path;
UDSY SWDU is a path of length 3;

T TR R R T ) is a cycle of length 4.
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It seems natural to consider the cyclesu >y 2 v s uvandy 2 v >u—>y

z Y
z u v w
Figure 3.5

to be the same; so often we identify a cycle with the set of its edges. We use
the notation (for n > 1)

C, = cycle of length n (i.e. with n edges and vertices);

P, = path of length n — 1 (i.e. with n vertices).
Thus, for example, P, = K and C3 = Kj3.

Definition 3.4

A graph is connected if, for each pair z,y of vertices, there is a path from
z to y. A graph which is not connected is made up of a number of connected
pieces, called components.

3.3 Trees

Definition 3.5

A tree is a connected simple graph with no cycles.

For example, the ethane graph in Figure 3.3 is a tree, as is each P,. Note that
the ethane graph has p = 8 and ¢ = 7, while P, hasp=n and ¢ =n — 1;in
each case, p—q = 1. This property in fact characterises those connected graphs
which are trees. Our proof of this depends upon the following useful result.

Theorem 3.3
If T is a tree with p > 2 vertices then T contains at least two pendant vertices.

Proof

Since T has p vertices, all paths in T must have length less than p. So there
must be a longest path in T, say v; — v, = ... = v,. We claim that v; and
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v, both have degree 1. Suppose v; has degree > 1; then there is another edge
from vy, say v1vg, where vg is none of v, ... ,v, (otherwise there would be a
cycle), so vg = v1 = ... = v, would be a longer path. So v; has degree 1, and
a similar argument holds for v,.

Theorem 3.4

Let T be a simple graph with p vertices. Then the following statements are
equivalent:

(i) T is a tree;
(if) T has p — 1 edges and no cycles;

(iii) T has p — 1 edges and is connected.

Proof

(i) = (ii) We have to show that all trees with p vertices have p — 1 edges.
This is certainly true when p = 1. Suppose it is true for all trees with k¥ > 1
vertices, and let T' be a tree with k + 1 vertices. Then, by Theorem 3.3, T
has an end vertex w. Remove w and its incident edge from T to obtain a tree
T' with k vertices. By the induction hypothesis, 7' has k — 1 edges; so T has
(k —1) + 1 = k edges as required.

(ii) = (iii) Suppose T has p — 1 edges and no cycles, and suppose it consists
of t > 1 components, 11, ... ,T}, each of which has no cycles and hence must
be a tree. Let p; denote the number of vertices in T;. Then ), p; = p, and the
number of edges in T'is ) ;(p; —1) =p—t. Sop—t =p—1,ie t =1, so that
T is connected.

(iii) = (i) Suppose T is connected with p — 1 edges, but is not a tree. Then T'
must have a cycle. Removing an edge from a cycle does not destroy connect-
edness, so we can remove edges from cycles until no cycles are left, preserving
connectedness. The resulting graph must be a tree, with p vertices and ¢ < p—1
edges, contradicting (ii).

This theorem can be used to establish the tree-like nature of certain chemical
molecules.

Example 3.5

Show that the alkanes (paraffins) C,Ha,42 have tree-like molecules.

Solution

Each molecule is represented by a graph with n + (2n + 2) = 3n + 2 vertices.
Of these, n have degree 4 and 2n + 2 have degree 1, so, by Theorem 3.1,

2q=4n+2n+2=6n+2
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whence ¢ = 3n +1 = p— 1. Since molecules are connected, the graphs must be
trees, by Theorem 3.4.

The first few alkanes are shown in Figure 3.6.

+ A T

methane ethane propane
L1 l’_—'l
T T
butane isobutane

Figure 3.6 Alkanes

Note that there are two “different” trees corresponding to C4H;o.

Definition 3.6

Two graphs G, G2 are isomorphic if it is possible to label the vertices of both
graphs by the same labels, so that, for each pair u,v of labels, the number of
edges joining vertices v and v in G; is equal to the number of edges joining u
and v in Gs.

Example 3.6

(i) The graphs portrayed by the last two diagrams in Figure 3.4 are isomorphic.
(ii) The butane and isobutane graphs (Figure 3.6) are not isomorphic. The
second graph has one vertex of degree 4 joined to all the other vertices of
degree 4, but this does not happen in the first graph.

Tree diagrams such as those in Figure 3.6 were introduced in 1864 by the
chemist A. Crum Brown in his study of isomerism, the occurrence of molecules
with the same chemical formula but different chemical properties. The problem
of enumerating the non-isomorphic molecules C,Hs, 2 was eventually solved
by Cayley in 1875, but his solution is beyond the scope of this book.

A related problem was: find T'(n), the number of non-isomorphic trees with
n vertices. We have T'(1) = T(2) = T'(3) = 1, and, as the reader should check,
T(4) = 2,T(5) = 3,T(6) = 6. No simple formula for T'(n) exists, although
T(n) is the coefficient of z™ in a known but very complicated series. However,
there does exist a very nice formula for the number of trees on n given labelled
vertices. For example, although T'(3) = 1, there are three labelled trees with



50 Discrete Mathematics

vertices labelled 1,2, 3 as shown in Figure 3.7. It was established by Cayley in
1889 that the number of labelled trees on n vertices is n"~2. A proof of this
will be given in Chapter 6.

1 1 1

Figure 3.7 Labelled trees.

3.4 Spanning Trees

Suppose that a connected graph represents a railway system, the vertices rep-
resenting the towns and the edges the railtracks. Suppose also that the gov-
ernment wishes to get rid of as much track as possible, nevertheless retaining
a rail system which connects all the towns. What is required is a tree which is
a subgraph of the given graph, containing all the vertices.

Definition 3.7

A spanning tree of a connected graph G is a tree which contains all the
vertices of G and which is a subgraph of G.

Example 3.7

(i) K3 has three spanning trees, as shown in Figure 3.7.

(ii) K4 has 16 = 42 spanning trees. Draw them. Do you see how this relates to
Cayley’s 1889 result?

(iii) In the graph of Figure 3.5, the edges zu,zu,uy,yv,yw form a spanning
tree.

In the case of a weighted graph G, i.e. when each edge e of G has a weight w(e)

assigned to it, where w(e) is a positive number such as the length of e, then it

may be desired to find a spanning tree of smallest possible total weight. There

are several different algorithms which find such a minimum weight spanning

tree of G.

The greedy algorithm

This is often known as Kruskal’s algorithm.
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Procedure
(i) Choose an edge of smallest weight.

(i) At each stage, choose from the edges not yet chosen the edge of smallest
weight whose inclusion will not create a cycle.

(iii) Continue until a spanning tree is obtained.

(If the given graph has p vertices, the algorithm will terminate after p— 1 edges
have been chosen.)

Example 3.8
Apply the greedy algorithm to the graph of Figure 3.8.

A 4 B
6
2 5 3 c
8
E 6 D
Figure 3.8

Solution

First choose AE (weight 2). Then choose BD(3), then AB(4). We cannot now
choose AD(5) since its inclusion would create a cycle ABDA. Similarly we
cannot choose DE. So choose BC(6). The edges AE, AB, BD, BC then form
a minimum weight spanning tree of weight 2+ 3 +4 + 6 = 15.

Justification of the greedy algorithm

Suppose that the greedy algorithm produces a tree T', but that there is another
spanning tree U which has smaller weight than T'. Since T # U, and both have
the same number of edges, there must be an edge in 7" not in U: let e be such
an edge of minimum weight. The addition of e to U must create a cycle C,
and this cycle must contain an edge e’ which is not in T. Now w(e') > w(e),
since if w(e’) < w(e) then ¢’ would have been chosen by the greedy algorithm
rather than e. So if we remove e’ from C' we obtain a spanning tree V such that
w(V) < w(U), and V has one more edge in common with T than U had. By
repeating this process we eventually change U into T, one edge at a time, and
conclude that w(T) < w(U) < w(T'), a contradiction. So no such U can exist.
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The greedy algorithm is so called because it greedily minimises the weight at
each step, ignoring possible future complications; fortunately it gets away with
this strategy. The disadvantage of the algorithm, however, lies in the difficulty
of determining at each stage whether or not a cycle would be created by the
inclusion of the smallest weighted edge available (this is particularly true when
the graph is large). This problem can be overcome by using a slightly different
algorithm, due to Prim (1957). In Prim’s algorithm, the graph constructed is
connected (and hence a tree) at each stage of the construction (unlike the greedy
algorithm, which chose BD immediately after AE in the above example), and
at each stage the smallest weight edge is sought which joins the existing tree
to a vertex not in the tree. Clearly the inclusion of this edge cannot create a
cycle.

Prim’s algorithm
(i) Select any vertex, and choose the edge of smallest weight from it.

(i) At each stage, choose the edge of smallest weight joining a vertex already
included to a vertex not yet included.

(iii) Continue until all vertices are included.

Example 3.8 (revisited)

Use Prim’s algorithm starting at B. Choose BD(3), then BA(4), then AE(2),
then BC(6) to obtain the same spanning tree as before.

A third algorithm operates by removing edges from the given graph, de-
stroying cycles, until a spanning tree is left. At each stage remove the largest-
weighted edge whose removal does not disconnect the graph. In Example 3.8,
we could remove DC, then DE, then AD. Clearly this approach would be
quicker than the others if the graph has “few” edges.

3.5 Bipartite Graphs

Definition 3.8

A graph is bipartite if its vertex set V' can be partitioned into two sets B, W
in such a way that every edge of the graph joins a vertex in B to a vertex in
W. The partition V = BUW is called a bipartition of the vertex set.

Example 3.9

Labellings show that the graphs in Figure 3.9 are bipartite. In both graphs,
each edge joins a B toa W.
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B B B w B

w w w B w

Figure 3.9 Bipartite graphs

If we interpret B and W as black and white, we see that a graph is bipartite
precisely when the vertices can be coloured using two colours so that no edge
joins two vertices of the same colour. For this reason, bipartite graphs are
sometimes called bichromatic.

Example 3.10

The cycle C, is bipartite if and only if n is even.

Theorem 3.5

A connected graph is bipartite if and only if it contains no cycle of odd length.

Proof

If a graph G contains an odd cycle (i.e. a cycle of odd length) then it cannot
possibly be bipartite. So suppose now that G contains no odd cycle; we shall
show how to colour its vertices B and W.

Choose any vertex v of G, and partition V as BU W where

B = {u €V : shortest path from v to u has even length },

W = {u € V : shortest path from v to u has odd length }.

We have u € B since 0 is even; we have to check that no edge of G' has both
ends in B or both ends in W.

Suppose there is an edge zy with z € B and y € B. Then, denoting the
length of the shortest path from vertex v; to vertex ve by d(vi,wv2), we have
d(v,z) = 2m and d(v,y) = 2n for some integers m,n. But there is a walk from
v to y via z of length 2m + 1, so 2n < 2m+ 1. Similarly 2m < 2n+1,som = n.

Denote the shortest paths from v to z and y by P(z) and P(y) respectively.
Then, since m = n, both P(z) and P(y) have equal lengths. Let w be the last
vertex on P(z) which is also on P(y) (possibly w = v). Then the part of P(z)
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from w to z and the part of P(y) from w to y must be of equal length, and,
since they have only w in common, they must, with edge zy, form an odd cycle.
But G has no odd cycles, so the assumption of the existence of the edge zy
must be false. So there is no edge with both edges in B; similarly there is no
edge with both edges in W.

Corollary 3.6

All trees are bipartite.

Definition 3.9 (Complete bipartite graphs)

A simple bipartite graph with vertex set V = B U W is complete if every
vertex in B is joined to every vertex in W. If |B| = m and |W| = n, the graph
is denoted by K, or by Ky, . For example, the utilities graph of Figure 3.2
is K33, and the methane graph of Figure 3.6 is K} 4.

Clearly, K » has m +n vertices and mn edges; m of the vertices have degree
n, and n of the vertices have degree m.

The complete graphs K, and the complete bipartite graphs Ky, , play im-
portant roles in graph theory, particularly in the study of planarity to which
we now turn.

3.6 Planarity

A graph is planar if it can be drawn in the plane with no edges crossing. The
concept of planarity has already appeared in the utilities problem, which can
be restated as: is K33 planar? If a graph is planar, then any drawing of it
with no edges crossing is called a plane graph. For example, K4 is planar, as
was shown in Figure 3.4; the second drawing of K4 there was a plane graph,
establishing its planarity.

Planar graphs occur naturally in the four-colour problem. In colouring a
map, it is standard procedure to give adjacent countries different colours. It
became apparent that four colour always seemed to be sufficient to colour any
map, and a general proof of this statement was attempted by A.B. Kempe in
1879. Ten years later, Heawood discovered that Kempe’s “proof” was flawed,
and instead of the four-colour theorem we had the four-colour conjecture. Even-
tually, in 1976, the truth of the conjecture was established by two mathemati-
cians, K. Appel and W. Haken; as the postmark of the University of Illinois
asserted, “four colours suffice”.

The problem of colouring a map can be transformed into one of colouring the
vertices of a planar graph. Given a map, we can represent each region by a ver-
tex, and join two vertices by an edge precisely when the corresponding regions
share a common boundary. For example, Figure 3.10 shows a map and a planar
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graph representing it. So the problem reduces to that of colouring the vertices

Figure 3.10

of a planar graph with four colours, so that no two adjacent vertices receive
the same colour. Colourings of graphs will be discussed further in Chapter 5.

Any plane graph clearly divides the plane into disjoint regions, one of which
is infinite. The basic result about plane graphs is known as Euler’s formula;
Euler initially studied it in the context of polyhedra, and we shall look at this
in the next section.

Theorem 3.7 (Euler's formula)

Any connected plane (p, ¢)-graph divides the plane into r regions, where

p—q+r=2.

Proof

If there is a cycle, remove one edge from it. The effect is to reduce ¢ and r by 1
(since two regions are amalgamated into one), and to leave p unchanged. So the
resulting graph has p' =p,¢' =q¢— 1,7 =r—1, wherep' — ¢’ +r' =p—q+r.
Repeat this process until no cycles remain. The final graph must be a tree,
withp’ —¢" +r" =p—-(p-1)+1=2.

Example 3.11
The plane graph in Figure 3.10 has
p—q+r=5-8+5=2.
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There are four finite regions and one infinite region.

We now define the degree of a region of a plane graph to be the number of
encounters with edges in a walk round the boundary of the region.

Example 3.12
In Figure 3.11 regions 3 and 4 have degree 3, the infinite region 1 has degree
1
| 2
Figure 3.11

5, and region 2 has degree 9 (note that one edge is encountered twice, once on

each side).
Parallel to the handshaking lemma we have:

Theorem 3.8

In a connected plane graph, 2¢ = sum of degrees of the regions.

Theorem 3.9
K, is planar only if n < 4.

Proof

It is enough to show that Ks is non-planar. (Why?) Now K has p =5,¢ = 10,
so if a plane drawing of Kj exists it must have r = 2 — 5 + 10 = 7 regions.
Each of the seven regions must have degree > 3, so, by Theorem 3.8, 20 = 2¢ >
7 x 3 = 21, a contradiction.

Theorem 3.10

K3 3 is not planar.

Proof

K33 has p = 6 and ¢ = 9, so if a plane drawing exists it must have r =
2 — 6+ 9 = 5 regions. Since K33 is bipartite, with no odd cycles, each region
must have degree > 4, so we must have 18 =2¢ >4 x 5= 20, a contradiction.
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Corollary 3.11
Ko n is planar & min(m,n) < 2.

The technique of counting the sum of the degrees of the regions is a useful
one. We can apply it to the famous Petersen graph, shown in Figure 3.12. (See
Section 4.1 and Exercise 5.17 for more about this graph.)

Figure 3.12 The Petersen graph

Example 3.13

The Petersen graph is not planar.

Solution

Suppose a plane drawing exists. Since p = 10 and q¢ = 15, we would have
r =2-10+ 15 = 7. Now the shortest cycle in the graph clearly has length
5, so every region must have degree > 5. So we would have a contradiction,
30=2¢>7x5=35.

Kuratowski’s theorem

What makes a graph non-planar? Clearly, if it contains K5 or K33 as a sub-
graph, then it cannot possibly be planar. It was proved in 1930 by the Polish
mathematician Kuratowski that, essentially, it is only the presence of a K3 or
a K33 within a graph that can stop it being planar.

To clarify this statement, we first make the following observation. Since K
is not planar, the graph shown in Figure 3.13 cannot be planar either. For if it
were, we could make a plane drawing of it, erase b from the edge ac, and obtain
a plane drawing of K. Inserting a new vertex into an existing edge of a graph
is called subdividing the edge, and one or more subdivision of edges creates
a subdivision of the original graph.
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a b c
Figure 3.13

Theorem 3.12 (Kuratowski's theorem)

A graph is planar if and only if it does not contain a subdivision of K5 or K33
as a subgraph.

The proof of this deep topological result is beyond the scope of this book. But
we exhibit the result’s usefulness by using it to prove that the Petersen graph
is non-planar.

Example 3.13 (again)

In Figure 3.14, Petersen’s graph is on the left. On the right is the same graph
with two edges removed. This subgraph is a subdivision of K33 as shown by
the labelling of the vertices.

Another test for planarity will be given in Section 4.2.

B

Figure 3.14

Chords of a circle

We close this section on planarity with an application of Euler’s formula to a
well-known problem concerning chords of a circle.

Suppose we have n points spaced round a circle, and we join each pair of
points by a chord, taking care to ensure that no three chords intersect at the
same point. Into how many regions is the interior of the circle divided? The
cases n = 3,4,5 are shown in Figure 3.15. It would appear that n = 6 should
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n=3 n=4 n=>5
4 regions 8 regions 16 regions
Figure 3.15

give 32 regions. But it does not! (Check!)

Suppose we have n points and have drawn the (}) chords. There will be n
regions with a circular arc as a boundary - let’s lay them aside and concentrate
on the remaining regions. Turn the geometrical picture into a graph by putting
a vertex at each of the n given points, and at each crossing point of chords.
How many crossing points are there? There is one for each pair of chords which
cross. But any pair of crossing chords is obtained by choosing 4 of the given
n points and drawing the “cross” chords between them; so there must be (7)
crossing points. So the resulting graph has p = n + (Z) vertices. Each of the n
original vertices has degree n — 1, and each of the new (;‘) vertices has degree
4. So by the handshaking lemma

2q=n(n—1)+4<2‘), i.e.q=(g>+2<z>,

r = 2-p+gq
2-n—(5)+ () +2(9)
2-n+(3) +(3).

Here r includes a count of 1 for an infinite region, so there are 1 - n + ('2‘) + (2)

finite regions. We have to add the n boundary regions which we put aside earlier,
so finally the number of regions is

e (5)+ (3):

Check that this gives 4, 8,16 for n = 3,4, 5, and 31 for n = 6.

Thus

Il
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3.7 Polyhedra

A polyhedron is a solid bounded by a finite number of faces, each of which is
polygonal. For example, the pyramid in Figure 3.16(a) is a polyhedron with
five vertices, five faces (four triangular, and one square base), and eight edges.

(a) (b)
Figure 3.16 A pyramid and its plane graph

As was mentioned earlier, Euler’s formula arose first in the study of polyhedra,
relating the numbers of vertices, faces and edges in a convex polyhedron. (A
polyhedron is convex if the straight line segment joining any two of its vertices
lies entirely within it.) Such a polyhedron can be represented by a plane graph,
obtained by projecting the polyhedron into a plane. The graph in Figure 3.16(b)
represents the pyramid; think of the internal vertex as the top of the pyramid,
and think of the base of the pyramid as being represented by the infinite region
(of degree 4).

The cube is an example of a regular polyhedron. A polyhedron is regular
if there exist integers m > 3,n > 3 such that each vertex has m faces (or m
edges) meeting at it, and each face has n edges on its boundary. For a cube,
m = 3 and n = 4. Convex regular polyhedra are known as Platonic solids;
they were discussed at great length by the ancient Greeks who knew that there
were only 5 such solids. In the next theorem we use the terminology of graphs,
moving from a polyhedron to its corresponding graph.

Theorem 3.13

Suppose that a regular polyhedron has each vertex of degree m and each face
of degree n. Then (m,n) is one of (3,3), (3,4), (4,3), (3,5), (5,3).
Further, there exist Platonic solids corresponding to each of these pairs.

Proof
We have p — g+ r = 2, where

2q = sum of vertex degrees = mp

and 2¢ = sum of face degrees = nr.
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So (3 -1+ 2)q = 2, whence
m n
(2m + 2n — mn)q = 2mn. (3.1)

Thus, trivially, 2m+2n—mn > 0,i.e. (m—2)(n—2) < 4. So (m—2)(n—2) = 1,2
or 3, and the five possibilities arise.

For each possible pair (m,n), we can find ¢ from (3.1) and then deduce the
values of p and r. We tabulate these values in Table 3.1, and give the name of
the corresponding Platonic solid.

Table 3.1
m|n| qg p r | Name
3|36 4 4 | tetrahedron
3 |4|12 8 6 | cube
41312 6 8 | octahedron
3 15|30 20 12 | dodecahedron

513|130 12 20 | icosahedron

Note that the names reflect the number 7 of faces. The five solids, and their
plane graphs, are shown in Figure 3.17.

As well as the five regular polyhedra just discussed, there exist the semireg-
ular polyhedra known as the Archimedean solids. Although they may well
have been known to the Greeks, the first known listing of them is due to Ke-
pler in 1619. These solids have more than one type of face, but they have the
property that each vertex has the same pattern of faces around it. For example,
the truncated cube, obtained by slicing off each of the eight vertices, has eight
triangular faces and six octagonal faces, and, at each vertex, two octagons and
one triangle meet.

Example 3.14

A polyhedron is made up of pentagons and hexagons, with three faces meeting
at each vertex. Show that there must be exactly 12 pentagonal faces.

Solution

We have p—gq+r = 2 and 2¢ = sum of vertex degrees = 3p. Thus 2q = 6r—12.
Now suppose there are z pentagonal and y hexagonal faces. Then r = z + y
and 2¢ = sum of degrees of faces = 5z + 6y. Substituting into 2q = 6r — 12
gives 5z + 6y = 6z + 6y — 12, whence z = 12.

The case x = 12,y = 0 corresponds of course to a dodecahedron. The case
T = 12,y = 20 corresponds to the pattern often seen on a soccer ball. The
corresponding Archimedean solid is a truncated icosahedron; the reader
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tetrahedron ‘

cube

@ e
X

icosahedron m

Figure 3.17

should be able to see how to obtain one by slicing vertices off an icosahedron.
This solid aroused great interest in the 1990s when it was discovered that a
third form of carbon existed (as well as diamond and graphite).

This form is denoted by Cgo; the molecular structure is that of 60 carbon
atoms situated at the vertices of a truncated icosahedron. The discoverers of
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this molecule called it Buckminsterfullerine (it is commonly known as a
Buckyball) since they considered it as similar to a geodesic dome created by
the architect R. Buckminster Fuller. But, as we have pointed out, it has been
known to mathematicians for a long time.

The graphite form of carbon has the carbon atoms arranged in a flat hon-
eycomb pattern of hexagons. Hexagons tile the plane, so need the addition of
n-gons with n < 6 to enable a 3-dimensional form to take place. It turns out
that 12 pentagons are just right to enable a complete closing up to take place.
See Exercise 3.14 for the corresponding problem when pentagons are replaced
by squares.

There are other fullerine molecules, such as Cyo which has 12 pentagons and
25 hexagons; its shape is more like a rugby ball.

Exercises

Exercise 3.1

Prove that the number of vertices of odd degree in a given graph is even.

Exercise 3.2

Show that all alcohols C,Ha,+1 OH have tree-like molecules. (The valen-
cies of C, 0, H are 4, 2,1 respectively.)

Exercise 3.3

Show that if G is a simple graph with p vertices, where each vertex has
degree > % (p — 1), then G must be connected. (Hint: how many vertices
must each component have?)

Exercise 3.4

How many spanning trees do the graphs in Figure 3.18 have?

(a) (b) »

Figure 3.18
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Exercise 3.5

How many edges must be removed from a connected (p, ¢)-graph to ob-
tain a spanning tree?

Exercise 3.6

Let K> 3 have bipartition BUW where B = {a,b}, W = {z1,z2,23}.

(a) Explain why, in a spanning tree of K> 3, there must be precisely one
of the vertices z; joined to both a and b.

(b) How many spanning trees does K3 3 have?

(c) How many spanning trees does K3 100 have?

Exercise 3.7

Use (a) the greedy algorithm, (b) Prim’s algorithm to find a minimum
weight spanning tree in the graph shown in Figure 3.19.

Figure 3.19

Exercise 3.8

The distances between 5 Lanarkshire towns are given in Table 3.2. Find
the shortest length of a connecting road network.

Table 3.2

|G H A M EK
Glasgow 0 100 11 13 9
Hamilton 10 0 8 3 6
Airdrie 1 8 0 & 13
Motherwell 13 3 8 0 8
East Kilbride | 9 6 13 8 0
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Exercise 3.9

Pan Caledonian Airways (PCA) operates between 12 towns whose coor-
dinates referred to a certain grid are (0, 2), (0, 5), (1,0), (1,4), (2, 3), (2,4),
(3,2),(3,9), (4,4), (4,5),(5,3),(6,1). What is the minimum number of
flights necessary so that travel by PCA is possible between any two of
the towns? Find the minimum total length of such a network of flights.

Exercise 3.10

Determine which of the graphs in Figure 3.20 are planar.

L~
(a) (b)
L~
(c) (d) *
Figure 3.20

Exercise 3.11

A complete matching of a graph with 2n vertices is a subgraph con-
sisting of n disjoint edges. How many different complete matchings are
there in the graph of Figure 3.20(a)?

Exercise 3.12
The graph G, (n > 1) is shown in Figure 3.21.
(a) Is Gy, (i) bipartite? (ii) planar?

(b) Let a, denote the number of complete matchings of G,,. Show that
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o ) T2 I3 Tn—1 Tn
Yo Y1 Y2 Y3 Yn-1 Yn
Figure 3.21

a; = 3 and ap = 5. Show that a, = an—1 + 2an-2 (n > 3) and hence
obtain a formula for a,.

Exercise 3.13

(a) Show that if G is a simple planar (p, q) graph, p > 3, then ¢ < 3p—6.
Deduce that K5 is not planar.

(b) Show that if G is a simple planar (p,q) graph, p > g, where g
is the girth of G, i.e. the length of the shortest cycle in G, then

< ;50-2).
(c) Deduce from (b) that K33 and the Petersen graph are both nonpla-
nar.

Exercise 3.14

A convex polyhedron has only square and hexagonal faces. Three faces
meet at each vertex. Use Euler’s formula to show that there must be ex-
actly six square faces. The cube has no hexagonal faces: give an example
with six square faces and at least one hexagonal face. (Try truncating
an octahedron.)

Exercise 3.15

Suppose n cuts are made across a pizza. Let p, denote the maximum
number of pieces which can result (this happens when no two cuts are
parallel or meet outside the pizza, and no three are concurrent).

Prove that pp, = (§) + (}) + (3)-

Exercise 3.16

Let h,, denote the number of spanning trees in the fan graph shown in
Figure 3.22. Verify that hy = 1,ho = 3,h3 = 8.
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Find a recurrence relation for h, and hence show that h, = Fp,_1.

z T2 z3 Tp—1 Tn

Zo

Figure 3.22
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Travelling Round a Graph

In this chapter we consider various problems relating to the existence of certain
types of walk in a graph. The reader should recall the definitions of walk, path,
cycle and trail given in Section 3.2. The Kénigsberg bridge problem concerns
the existence of a trail which is closed and contains all the edges of the graph.
We study such (Eulerian) trails in more detail, but first we look at a related type
of problem associated with the name of the Irish mathematician Sir William
Rowan Hamilton (1805-1865).

4.1 Hamiltonian Graphs

The dodecahedron is shown at the end of Chapter 3. Hamilton posed the prob-
lem: is it possible to start at one of the 20 vertices, and, by following edges, visit
every other vertex exactly once before returning to the starting point? In other
words: is there a cycle through all the vertices? You should have no problem
finding such a cycle (turn to Figure 4.3 if you get stuck), so it is perhaps not
surprising that the commercial exploitation of this problem as a game was not
a financial success.

Definition 4.1

A hamiltonian cycle in a graph G is a cycle containing all the vertices of G.
A hamiltonian graph is a graph containing a hamiltonian cycle.

The name hamiltonian is, as often happens in mathematics, not entirely just,
since others such as Kirkman had studied the idea before Hamilton.
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Example 4.1

(a) The octahedral graph is hamiltonian: in Figure 4.1(a) take the hamiltonian
cycle 1234561.

(b) The graph of Figure 4.1(b) is not hamiltonian. The easiest way to see this
is to note that it has 9 vertices so that, if it is hamiltonian, it must contain a
cycle of length 9. But, being a bipartite graph, it contains only cycles of even
length.

\/
32

(a) (b)

Figure 4.1

Theorem 4.1

A bipartite graph with an odd number of vertices cannot be hamiltonian.

Example 4.2
(a) K, is hamiltonian for all n > 3.
(b) Ky, is hamiltonian if and only if m =n > 2.

(See Exercise 4.1.)

Example 4.3
The Petersen graph is not hamiltonian.
1
: A ,
~L
ﬁ
4 3

Figure 4.2
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Solution

Label the vertices as shown in Figure 4.2, and suppose there is a hamiltonian
cycle. Every time the cycle goes from the outside along one of the “spokes”
la,2b, 3c,4d, 5e, it has to return to the outside along another spoke. So the
hamiltonian cycle must contain either 2 or 4 spokes.

(a) Suppose there are 4 spokes in a hamiltonian cycle: we can assume 5e is the
one spoke not in it. Then 51 and 54 must be in the cycle, as must eb and
ec. Since la and 15 are in the cycle, 12 is not, so 23 is. But this gives the
cycle 23 ceb? as part of the hamiltonian cycle, which is clearly impossible.

(b) Suppose there are just two spokes in the hamiltonian cycle. Take la as one
of them. Then ac or ad is in the cycle - say ad. Then ac is not, so ¢3 is. So
spokes b2, d4, e5 are not in the cycle. Since b2 is not in the cycle, 23 must
be. Similarly, since d4 is not in, 34 must be in the cycle. So all three edges
from 3 are in the cycle, a contradiction.

There is no straightforward way of characterising hamiltonian graphs. Perhaps
the best known simple sufficient condition is that given by Dirac in the following
theorem, but it must be emphasised that the condition given is not at all
necessary (as can be seen by considering the cycle C,,, n > 5).

Theorem 4.2 (Dirac, 1950)

If G is a simple graph with p vertices, each vertex having degree > %p, then G
is hamiltonian.

Proof

Outlined in Exercise 4.6.

4.2 Planarity and Hamiltonian Graphs

There are some interesting connections between planar graphs and hamiltonian
graphs. The first arose in connection with the Four Colour Conjecture (FCC),
when it was realised that the presence of a hamiltonian cycle in a plane graph
makes the colouring of its regions (faces) with four colours very easy. For exam-
ple, consider the problem of colouring the faces of a dodecahedron using four
colours. Figure 4.3 shows a hamiltonian cycle which divides the regions into an
internal chain of regions, and an external chain. Colour the internal chain with
colours A and B, and the external chain with colours C and D.

Early on in the history of the FCC, Tait conjectured that every polyhedral
map in which every vertex has degree 3 has a hamiltonian cycle. (A map is
polyhedral if any two adjacent regions meet in a single common edge or a
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Figure 4.3 Dodecahedron

single point.) The truth of Tait’s conjecture would have implied that every
such map is 4-colourable; however, the conjecture was finally proved false in
1946, when Tutte constructed a counterexample.

Another connection between hamiltonicity and planarity occurs in the follow-
ing algorithm which can be used to determine whether or not a given hamilto-
nian graph is planar. The basic idea is that if a graph G is both hamiltonian
and planar, then, in a plane drawing of G, the edges of G which are not in the
hamiltonian cycle H will fall into two sets, those drawn inside H and those
drawn outside.

The planarity algorithm for hamiltonian graphs

1. Draw the graph G with a hamiltonian cycle H on the outside, i.e. with H
as the boundary of the infinite region.

2. List the edges of G not in H: ey, ... ,e,.

3. Form a new graph K in which the vertices are labelled e, ... ,e, and where
the vertices labelled e;,e; are joined by an edge if and only if e;, e; cross
in the drawing of G, i.e. cannot both be drawn inside (or outside) H (such
edges are said to be incompatible).

4. Then G is planar if and only if K is bipartite.

(If K is bipartite, with bipartition BU W, then the edges e; coloured B can be
drawn inside H, and the edges coloured W can be drawn outside.)
In practice, we introduce the edges one by one, as follows.

Example 4.4
Test the graph shown in Figure 4.4 for planarity.

Solution

1. The graph is already drawn with hamiltonian cycle abcdefa on the outside.
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f e
Figure 4.4

2. Edges not in the hamiltonian cycle are ad, be, bf, ce, df .
3. Start with ad; it is incompatible with bf, be, ce:
bf
ad be

ce

Now consider bf. It crosses only ad. Next consider be; it crosses df, so we
get:

bf

ad be

df ce

Now consider ce. It also crosses df, so we get:
bf

ad be

df ce

4. By now we have the full graph K. (Check: the number of edges in K is
the number of crossings of edges in G.) Since K is bipartite, we conclude
that G is planar, and we can draw it with ad and df inside, and bf, be, ce
outside (Figure 4.5).

Example 4.5

Show that K3 3 is not planar.
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b
f e

Figure 4.5

a b
| @ |
e d
Figure 4.6

Solution

1. In Figure 4.6 we have K33 drawn with hamiltonian cycle on the outside.

2. Edges not in hamiltonian cycle are ad, be,cf.

3. Obtain:
be
cf

4. This is not bipartite, so K3 3 is not planar.

4.3 The Travelling Salesman Problem

A sales representative of a publisher of mathematical texts has to make a round
trip, starting at home, and visiting a number of university bookshops before
returning home. How does the salesman choose his route to minimise the total
distance travelled?
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Here we consider a weighted graph, in which the vertices represent the book-
shops and his home, and the edges represent the routes between them, each
edge being labelled by the length of the route it represents. The salesman wishes
to find a hamiltonian cycle of minimum length, i.e. of minimum total weight.

A complete graph K, has (n — 1)! different hamiltonian cycles (or F(n—-1)
if we do not distinguish between a cycle and its “reverse”), so finding the one
of minimum weight by looking at each in turn is out of the question when n is
large. Even for n = 10, 1(n—1)! = 181 440. There is no really efficient algorithm
yet known for solving the travelling salesman problem (TSP), so “good” rather
than “best” routes are sought, as are estimates, rather than exact values, of
the shortest total length.

Lower bounds

Lower bounds can be found by using spanning trees. First observe that if we
take any hamiltonian cycle and remove one edge then we get a spanning tree,
so

Solution to TSP > minimum length of a spanning tree (MST). (4.1)

But we can do better. Consider any vertex v in the graph G. Any hamiltonian
cycle in G has to consist of two edges from v, say vu and vw, and a path from
u to w in the graph G — (v) obtained from G by removing v and its incident
edges. Since this path is a spanning tree of G — {v}, we have

sum of lengths of two MST of
+ . (42

Solution to TSP >
G - {v}

shortest edges from v

Example 4.6
Apply (4.2) to the graph of Figure 4.7.

Figure 4.7

Solution

Choose vertex a. The two shortest edges from a have lengths 3 and 6. The
minimum weight spanning tree of G — {a} consists of edges bc, cd and ec, and
has length 14. So, by (4.2), a lower bound for the TSP is 3 + 6 + 14 = 23.
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Instead, we could have started with b. The two shortest edges from b have
lengths 4 and 7, and the minimum weight spanning tree of G — {b} has length
13, so we obtain the lower bound 4 + 7 + 13 = 24. This second bound gives us
more information than the first.

Upper bounds

Assume that the weights are distances, satisfying the triangle inequality
d(z,2) < d(z,y) +d(y, 2)

where d(z,y) denotes the shortest distance along edges from z to y. In this
case the following method gives upper bounds for the TSP in K.

Find a minimum spanning tree of K,, say of weight w. We can then find a
walk of length 2w which visits every vertex at least once, and which returns to
its starting point, by going “round” the tree as shown in Figure 4.8.

a

Figure 4.8

We now try to reduce the length of this walk by taking shortcuts. Start at one
vertex and follow the walk round. When we reach an edge which will take us
to a vertex already visited, take the direct route to the next vertex not yet
visited. For example, in Figure 4.8, which shows the minimum spanning tree
of the graph of Example 4.6, we could start at a and obtain aecbda, which has
length 26.

Since this method yields a hamiltonian cycle of length no greater than twice
MST, we have

MST < solution to TSP < 2 MST, (4.3)

and, since MST < solution to TSP, by (4.1), we have constructed a hamiltonian
cycle of length at most twice the minimum possible length. In Section 4.5 we
shall improve this to at most % times the minimum.

4.4 Gray Codes

A Gray code of order n is a cyclic arrangement of the 2™ binary sequences of
length n such that any pair of adjacent sequences differ in only one place. For
example, Figure 4.9(a) shows a Gray code of order 3.
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000 000
001 010 010
011 110 110
111 100 100
101 101
(a) (b)
Figure 4.9

The industrial use of Gray codes is on account of their ability to describe
the angular position of a rotating wheel. As in Figure 4.9(b), 0 and 1 are
represented by white and black (off and on), and are read by electrical contact
brushes. The fact that adjacent sequences differ in only one place reduces errors
when the contact brushes are close to a boundary between segments. (Compare
with 1999 changing to 2000 in a car milometer.)

Note that the code above corresponds to a hamiltonian cycle in a 3-dimensional
cube (follow the arrows in Figure 4.10). Note also that the cycle involves going

z
001 011
101 111
000 010
Y
100 110
z
Figure 4.10

round the bottom of the cube (i.e. round a 2-dimensional cube!) with third
coordinate 0, then moving up to change the third coordinate to 1, and then
tracing out the 2-dimensional cube at the top, in the opposite direction. This
idea generalises. So to obtain a Gray code of order 4, write down a Gray code
of order 3 with 0 appended to each binary word, then follow it with the same
Gray code of order 3, in reverse order, with 1 at the end of each word. This
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gives
0000 — 0100 — 1100 — 1000 — 1010 — 1110 — 0110 — 0010 — 0011—
0111 — 1111 - 1011 — 1001 — 1101 — 0101 — 0001 — 0000.

4.5 Eulerian Graphs

The driver of a snow plough wishes to set out from the depot, travel along each
road exactly once, and return to the depot. When is this possible? Similarly,
the citizens of Konigsberg wished to cross every bridge exactly once and return
home. Both problems ask for a closed trail of a particular type.

Definition 4.2

An eulerian circuit is a closed trail which contains each edge of the graph. A
graph which contains an eulerian trail is called an eulerian graph.

It was observed in Section 3.1 that a necessary condition for the existence of an
eulerian circuit is that all vertex degrees must be even. It turns out that this
condition is also sufficient in connected graphs. Qur proof will use the following
lemma.

Lemma 4.3

Let G be a graph in which every vertex has even degree. Then the edge set of
G is an edge-disjoint union of cycles.

Proof

Proceed by induction on ¢, the number of edges. The lemma is true for ¢ = 2,
so consider a graph G with k edges and suppose that the lemma is true for all
graphs with ¢ < k. Take any vertex vp, and start a walk from vp, continuing
until a vertex already visited is visited for the second time. If this vertex is v;,
then the part of the walk from v; to v; is a cycle C. Remove C to obtain a graph
H with < k edges and in which every vertex has even degree. By induction, H
is an edge-disjoint union of cycles, so the result follows.

Theorem 4.4

Let G be a connected graph. Then G is eulerian if and only if every vertex has
even degree.
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Proof
=. Already shown.

<. Suppose every vertex has even degree. Then the edges fall into disjoint
cycles. Take any such cycle C;. If C; does not contain all the edges of G then,
since G is connected, there must be a vertex v; € C1 and an edge v;v; not in
C;. Now v,v; is in some cycle, say C», disjoint from Cj. Insert C» into C; at
vy to obtain a closed trail. If this trail does not contain all edges of G, take a
vertex vz in C; U C3 and edge vsv4 not in C; U Cs2. Then vzvy is in some cycle
C3 which we insert into C; U C,. Continue in this way until all edges are used
up.

Example 4.7

e
<o

Figure 4.11

In Figure 4.11, first take cycle abcdefa. Then insert cycle agea at a, and finally
insert cycle bdhb at b to obtain eulerian trail

ageabdhbcde fa.
Definition 4.3

An eulerian trail is a trail which contains every edge of the graph, but is
not closed. A non-eulerian graph which contains an eulerian trail is called a
semi-eulerian graph.

The following result follows immediately from Theorem 4.4.

Theorem 4.5

A connected graph G is semi-eulerian if and only if it contains precisely two
vertices of odd degree.

Example 4.8

In the Konigsberg bridge problem, suppose that one further bridge is built.
The resulting graph will then have two vertices of odd degree and hence will
contain an eulerian trail.
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An upper bound for the TSP

The following method yields a hamiltonian cycle in a complete graph whose
length is at most % times the length of the minimum hamiltonian cycle. This
improves the bound in Section 4.3.

Given K, labelled by the length of the edges, first find a minimum spanning
tree T. T must, by Exercise 3.1, have an even number 2m of vertices of odd
degree. It is then possible to join these 2m vertices into m pairs by using m
edges of K,. Such a set of disjoint edges is called a matching. There will
be many ways of choosing such a matching, so we choose a matching M of
smallest total length. If we now add the edges of M to T', we obtain the new
graph M U T in which every vertex has even degree: thus M U T possesses an
eulerian circuit.

For example, with the graph of Example 4.7, T has length 17 (as in Figure
4.8) and T has four vertices of odd degree. Take M = {ad, bc} to obtain MUT
as shown in Figure 4.12. An eulerian circuit is aecbeda.

a

Figure 4.12

Starting at a, we can take aecb and, to avoid visiting ¢ twice, go directly from
b to d, and then to a, obtaining the hamiltonian cycle aecbda which has length
26.

We now show that the eulerian circuit obtained by this method always has
length < %MST. Let TSP, EC, MST, M denote respectively the lengths of the
minimum hamiltonian cycle, the eulerian circuit, the minimum spanning tree
and the matching. Then

EC=MST+ M, TSP > MST.

The 2m vertices of M will occur, in some order, say zi,... ,ZT2m, in the mini-
mum length hamiltonian cycle. If for each i < 2m, we replace the part of the
cycle between z; and z;4; by the edge z;z,41, and we replace the part between
Zom and 7 by the edge zome1, we obtain

Uz, 22) + Uz, x3) + - - + L(Tom, z1) < TSP
where £(z1,z;41) denotes the length of the edge z;z;41. Thus we have

(U(z1, x2)+l(z3,4)+ - +l(Tam—1,Tam))+(€(z2,23)+- - - +€(Tom, 1)) < TSP.
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So we obtain two matchings of z,... , T2, whose lengths sum to < TSP. One
of these matchings must have total length < %TSP, so that
1
M < §TSP.

Thus EC = MST + M < TSP + $TSP = $TSP. Thus, on using shortcuts in
the eulerian circuit to avoid repeating vertices, we obtain a hamiltonian cycle
whose length is < 3TSP.

4.6 Eulerian Digraphs

A digraph or directed graph is a graph in which each edge is assigned a
direction, indicated by an arrow. In place of the degree of a vertex we have the
indegree, the number of edges directed towards the vertex, and the outde-
gree, the number of edges directed away from the vertex.

Example 4.9
b c
a
d
f e
Figure 4.13

In Figure 4.13, the indegrees of a, ... , f are respectively 1,2,2,1,2,0, and the
outdegrees are 1,1,1,0,2,3. It should be clear why the sum of the indegrees
equals the sum of the outdegrees.

An eulerian circuit in a digraph is exactly what we would expect; it has to
follow the directions of the arrows at each stage. If every vertex has its indegree
equal to its outdegree then, as in Lemma 4.3, the edge set can be partitioned
as an edge-disjoint union of directed cycles, and, as in Theorem 4.4, we obtain:

Theorem 4.6

A connected digraph has an eulerian circuit if and only if each vertex has its
indegree and outdegree equal.

Memory wheels

It is said that the meaningless Sanskrit word
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yamadtdrdjabhdnasalagdm

has been used as a memory aid by Indian drummers. It has in it every 3-tuple of
accented and unaccented vowels, each 3-tuple appearing once. We can display
this by replacing unaccented vowels by 0 and accented vowels by 1, to obtain

0111010001. (4.4)

The 3-tuples 011,111,110, 101, 010, 100, 000, 001 appear in it in this order. Note
that the last two digits of (4.4) are the same as the first two, so we can obtain
a “memory wheel” by overlapping the ends as shown in Figure 4.14.

Figure 4.14

Now this arrangement achieves what a Gray code achieved, but much more
efficiently. A sensor placed at the edge of the wheel can read off triples of
digits and thereby determine how far the wheel has rotated. A Gray code for
8 positions would require three circles of 8 digits, i.e. 24 digits, whereas the
memory wheel uses only 8.

We now try to generalise this idea: can a circular arrangement of 2" binary
digits be found which includes all 2™ n-digit binary sequences? One approach
might be via hamiltonian cycles. Since, in the above example, 110 is followed
by 101, and 101 by 010, we could take the triples zyz as the vertices of a graph
and join zyz and yzw by an edge to obtain the directed graph of Figure 4.15.

001 011
010
000 111
101
100 110
Figure 4.15

The directed hamiltonian cycle

000 — 001 — 011 — 111 - 110 — 101 — 010 — 100 — 000
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yields the memory wheel of Figure 4.14. The trouble with this approach, how-
ever, is that it is not at all easy to see how to obtain a hamiltonian cycle in the
corresponding digraph when n > 4.

The problem was however solved by 1.J. Good, in a 1946 paper in number
theory. Instead by taking the triples as the vertices, Good took the triples as
the edges of a graph, in which the vertices corresponded to the overlapping
2-tuples. So, for n = 3, we form the digraph of Figure 4.16.

01
001 011
100 110
10

Figure 4.16

Now in this digraph all vertices have indegree and outdegree equal, so the
digraph contains an eulerian circuit. Once such circuit consists of the edges

000 - 001 — 011 — 111 - 110 — 101 — 010 — 100 — 000,

and this gives the same memory wheel as before.

In general, take as vertices the (n — 1)-digit binary sequences, and draw a
directed edge from 13 ... Tp—1 tO T2 ... Tn_1Zn, labelling the edge z1z5 . . . 5.
The resulting digraph has an eulerian circuit which yields a memory wheel.

Example 4.10

Obtain a memory wheel containing all 16 4-digit binary sequences.

Solution

Construct a digraph with 8 vertices labelled by the eight 3-digit binary se-
quences, and draw a directed edge from z1z2z3 to 22230 and to zoz31. The
digraph of Figure 4.17 is obtained.

An eulerian circuit is (in terms of vertices)

000 - 000 — 001 — 011 — 111 — 111 — 110 — 101
—011 - 110 — 100 — 001 — 010 — 101 — 010 — 100 — 000
i.e. in terms of edges,
0000 — 0001 — 0011 — 0111 — 1111 — 1110 — 1101 — 1011
~0110 — 1100 — 1001 — 0010 — 0101 — 1010 — 0100 — 0000.
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001 011

010 101
000 111

100 110
Figure 4.17

The corresponding memory wheel is as shown in Figure 4.18.

Figure 4.18

The problem of constructing memory wheels is also known as the rotating drum
problem. The circular binary sequences are often called maximum length
shift register sequences, or de Bruijn sequences after the Dutch mathe-
matician N.G. de Bruijn who wrote about them in 1946 (although it turned out
that they had been constructed many years before by C. Flye Sainte-Marie).
They have been used worldwide in telecommunications, and there have been
recent applications in biology.

Exercises

Exercise 4.1

(a) Strengthen Theorem 4.1 to: if a bipartite graph, with bipartition
V = BUW, is hamiltonian, then |B| = |W]|.
(b) Deduce that K, is hamiltonian if and only if m =n > 2.
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Exercise 4.2

For each graph in Figure 4.19, determine whether (a) it is hamiltonian,
(b) it is eulerian, (c) it is semi-eulerian.

0 (i)

(i)

Figure 4.19

Exercise 4.3

Which of the platonic solid graphs are (a) hamiltonian, (b) eulerian?

Exercise 4.4

Use the planarity algorithm to determine whether or not the graphs in
Figure 4.20 are planar.

Exercise 4.5

Construct a Gray code of order 5.

Exercise 4.6

Dirac’s theorem. Prove Theorem 4.2 as follows. Suppose G is not
hamiltonian. By adding edges we can assume that G is “almost” hamil-
tonian in the sense that the addition of any further edge will give a
hamiltonian graph. So G has a path v; = v2 = -+ = v, through every
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(a) (b)

(©)

Figure 4.20

vertex, where v; and v, are not adjacent. Show that there must be a ver-
tex v; adjacent to vy, with v;_; adjacent to v,. This gives a hamiltonian
cycle vy = -+ 5 v D vy S D U4 U Uy

Exercise 4.7

(a) Ore’s theorem. Imitate the proof of Dirac’s theorem to show that
if G is a simple graph with p > 3 vertices, with deg(v) + deg(w) > p
for each pair of non-adjacent vertices v, w, then G is hamiltonian.

(b) Deduce that if G has 2+ 1 (p—1)(p—2) edges then G is hamiltonian.

(c¢) Find a non-hamiltonian graph with 1 + %(p —1)(p — 2) edges.

Exercise 4.8

By removing vertex A , find a lower bound for the TSP for the graph of
Exercise 3.7. Repeat, removing vertex B. Then obtain an upper bound
by the method of Section 4.5.

Exercise 4.9

Find upper and lower bounds for the TSP for the situation in Exercise
3.8. How do your results compare with the exact solution?
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Exercise 4.10

Construct a memory wheel containing all 32 5-digit binary sequences.

Exercise 4.11

Use digraphs to construct a memory wheel of length 9 containing all
2-digit ternary sequences (formed from the digits 0, 1,2). Then find one
for all 3-digit ternary sequences.

Exercise 4.12

Dominoes. Can you arrange the 28 dominoes of an ordinary set in a
closed loop, so that each matches with its neighbour in the usual way?
Can you do so if all dominoes with a 6 on them are removed? Can you
state a general theorem about dominoes with numbers 0,1,...,n on
them? (Hint: consider each domino as an edge of a graph with vertices
labelled 0,1,... ,n.)

Exercise 4.13

Figure 4.21 shows an arrangement of the numbers 1,. .. , 5 round a circle,
so that each number is adjacent to every other number exactly once. Can
you produce a similar arrangement for 1,... ,7? Use Euler’s theorem to
show that there is a solution for n numbers if and only if n is odd. Can
you salvage a similar type of result when n is even?

3
Figure 4.21
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Partitions and Colourings

In this chapter we consider partitions of a set, introducing the Stirling numbers
and the Bell numbers. We then consider vertex and edge colourings of a graph,
where the vertex set and the edge set are partitioned by the colours.

5.1 Partitions of a Set

A partition of a set S is a collection of non-empty subsets S;,...,S, of S
which are pairwise disjoint and whose union is S. The subsets S; are called
the parts of the partition. For example {1,2,4} U {3,6} U {5} is a partition
of {1,...,6} into three parts. Note that it does not matter in what order the
parts appear.

Example 5.1

In a game of bridge, the 52 cards of a standard pack are distributed among
four people who receive 13 cards each. In how many ways can the pack of 52
cards be partitioned into four sets of size 137

Solution

We can choose 13 cards in (32) ways. From the remaining 39 we can choose a

further 13 in (fg) ways, and then from the remaining 26 we can choose 13 in

(%%) ways. This leaves a final set of 13 cards. So we have

13
52) (39 (26 _ 52! 39! 26! 52!
13/\13/\13/ 7 13139! 13126! 13!113! ~ (13!)4
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ways of partitioning the pack. But these partitions are not all distinct, since
each distinct partition arises in 4! ways, depending on which of the four sets in
it is chosen first, which is chosen second, and so on. So the required number is

52!

(1304l
(a vast number, greater than 1027).

There is another way of approaching this counting problem. Consider a row of
52 spaces grouped into four groups of 13:

The cards can be placed in the spaces in 52! ways. Within each group there are
13! ways of arranging the same 13 cards, and these different arrangements are
irrelevant since they give rise to the same part of the partition, so we have to
divide by (13!)*, one 13! for each group. Then the four groups themselves can
be arranged in 4! ways, so we have to divide by 4!, giving the same answer as
before.

This argument easily generalises, to give the following result.

Theorem 5.1
A set of mn objects can be partitioned into m sets of size n in
(mn)!
(nhYymm!

different ways.

Corollary 5.2

A set of 2m objects can be partitioned into m pairs in
(2m)!
2mm/!

different ways.

Example 5.2

The number of ways of pairing 16 teams in a football cup draw is
16!
7581 = 2027025.

The same type of argument can be applied when the parts of the required
partition are not all of the same size.

Example 5.3

In how many ways can a class of 25 pupils be placed into four tutorial groups
of size 3, two of size 4 and one of size 57
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Solution

Consider the following grouping of 25 spaces

(== == (== =) (- )

The 25 pupils can be placed in the spaces 25! ways. To count distinct partitions
we have to take into account the ways of ordering the pupils within the groups -
so we divide by (3!)%(41)25! - and also the ways of ordering the groups themselves
- so we divide by 4! on account of the four groups of size 3 and by 2! on account
of the two groups of size 4. So the required number is

25!

~ 15
@)i(@)5mm - S0 x 107

Definition 5.1

A partition of an n-element set consisting of a; subsets of size 7, 1 <t<mn,
where 3 | ia; = n, is called a partition of type 141292 . pon,

Generalising Example 5.3 gives the following result.

Theorem 5.3
The number of partitions of type 121222 ... n® of an n-element set is
n!

Example 5.4

The number of ways of grouping 10 people into two groups of size 3 and one
group of size 4 is the number of partitions of type 324! and so is

10!
(N2 ~ 2100

5.2 Stirling Numbers

In this section we think about partitioning a set into a given number of parts.

Definition 5.2

Let S(n, k) denote the number of ways of partitioning an n-set into exactly k
parts. Then S(n, k) is called a Stirling number of the second kind.
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These numbers are named after the Scottish mathematician James Stirling
(1692-1770), who is also known for his approximation of n!:

n! ~V2rnn"e ",

Stirling also has numbers of the first kind named after him - see Exercise 5.10.
We now study S(n, k). Clearly, for all n > 1,

S(n,1) = S(n,n) = 1. (5.1)

Example 5.5

We show that S(4,2) = 7. Here are the seven ways of partitioning {1, 2, 3,4}
into two parts: {1}U{2, 3,4}, {2}U{1, 3,4}, {3}U{1,2,4}, {4}u{1,2,3},{1,2}U
{3,4},{1,3}U{2,4} and {1,4} U {2,3}.

Clearly, for large n, we need a better way of evaluating S(n, k) than just writing
down all possible partitions. Such a method is given by the following recurrence
relation.

Theorem 5.4
S(n,k) = Sn—1,k—1)+k S(n - 1,k) (5.2)

whenever 1 < k < n.

Proof

In any partition of {1,...,n} into k parts, the element n may appear by itself
as a l-element subset or it many occur in a larger set. If it appears by itself,
then the remaining n — 1 elements have to form a partition of {1,...,n — 1}

into k — 1 subsets, and there are S(n — 1,k — 1) ways in which this can be done.
On the other hand, if the element n is in a set of size at least two, we can think
of partitioning {1,...,n — 1} into k sets - this can be done in S(n — 1, k) ways
- and then of introducing n into one of the k sets so formed - and there are k
ways of doing this. So, by the addition and multiplication principles, we have
S(n,k)=S(n-1,k-1)+kSn-1k).

Example 5.5 (again)
S(4,2) = 5(3,1) + 2 5(3,2)

= 1 +2(5(2,1)+25(2,2)

1 +21+2) =7
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Theorem 5.5
For alln > 2, S(n,2) = 2" - 1.

Proof

We use induction on n. The result is true for n = 2, so suppose it is true for
n =k > 2. Then

S(k+1,2) = S(k,1) + 2 S(k,2) (by 5.2)
=1+2(2F1-1)
=142k —2=2(+1)-1_ 1

Table 5.1 gives the first few Stirling number S(n, k).

Table 5.1

n\k|1 2 3 4 5 6 7 8&|B(n
1 1 1
2 1 1 2
3 |1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 15 1 203
7 1 63 301 350 140 21 1 877
8 1 127 966 1701 1050 266 28 1 | 4140

Note the number 277! — 1 in the column k = 2. On the right of the table
are the sums B(n) of all the Stirling numbers in the rows. B(n) is the total
number of partitions of an n-set, and is called a Bell number, after another
Scot, E.T. Bell, who emigrated to the USA. and wrote several popular books
on mathematics, including Men of Mathematics, an idiosyncratic two-volume
collection of “biographies” of famous mathematicians. We have, for n > 1,

B(n) = i S(n, k). (5.3)
k=1

If we define B(0) = 1 = S(0,0) (accept this as a useful convention, like (g) = 1),
we can obtain a recurrence relation for the Bell numbers.
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Theorem 5.6

n—-1
Foralln>1, B(n)= <Tl;1>B(k).
k=0

The nth element of the set being partitioned will appear in one of the sets of
the partition along with j > 0 other elements. There are ("J_.l) ways of choosing
these j elements. The remaining n — 1 — j elements can then be partitioned in
B(n — 1 - j) ways. So

B(n) rf("]".l)Bm—l—j)

=0
1

I

<.

3

(n ; 1) B(k) (on puttingn—1-—j=k).
0

k=i

Example 5.6
8
BO9)=>" (2)3(1@
k=0

1+8.1+282+56.5+70.15 + 56.52 + 28.203 + 8.877 + 1.4140

= 21147.

For an interesting (but useless!) formula for B(n), see Exercise 5.9.

5.3 Counting Functions

The Stirling numbers arise naturally in the enumeration of all functions
f + X = Y which can be defined from an m-set X to an n-set Y. There
are n™ such functions since, for each z € X, there are n possible values for
f(a).

Recall that the image of f : X — Y is the set of elements of Y which actually
arise as a value f(z) for some z € X:

imf ={ye€Y :y= f(z) for some z € X}.

Each function f : X — Y has as its image a subset of ¥. How many such
functions have an image of size k? If f takes precisely k values then X can be
partitioned into k parts, the ith of which will consist of those elements of X
which are mapped onto the ith member of im(f). So a function f : X - Y
with image of size k can be constructed as follows:
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(i) partition X into k parts X;,..., X} (this can be done in S(m, k) ways);
(ii) choose the image set of size k in Y (this can be done in (}) ways);
(iii) pair off each X; with one of the members of the image set (this can be done
in k! ways).

So the number of functions f : X — Y with image of size k is S(m, k) (})k!
Thus, since k can take any value from 1 to n, and since there are n™ functions
f: X =Y altogether, we obtain:

Theorem 5.7
Let |X| =m and |Y| = n where m,n > 1.

(a) The number of functions f : X — Y with image of size k is S(m, k) (}) k!
(b)

= j S(m, k) <Z)k!. (5.4)

k=1

Note as a special case that the number of surjections from X to Y, i.e. func-
tions whose image set is the whole of Y, is n!S(m,n).

Example 5.7
We check (5.4) in the case n = 4,m = 5.

4
3 5(5,k) (i) k! = 45(5,1) + 125(5,2) + 245(5,3) + 245(5,4)

k=1
=4 + 180 + 600 + 240 = 1024 = 45.

Note that if we define S(m,0) = 0 for all m > 1, and S(0,0) = 1, then we can
rewrite (5.4) as

n™ = ICZ::S(m, k) (:) k!

0
This identity can be inverted.

Theorem 5.8

Forallm >1,n>0,m >n,

nlS(m,n) = S (=1)n=k (™) k., (5.5)
m,n Eo (k)
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Proof We can use Corollary 1.15, putting ay = k™ and by = S(m,k)k!.

Alternatively we shall be able to use the inclusion-exclusion principle in the
next chapter: see Section 6.2.

Example 5.8

3
56.:3) = 3 (Z(—UH (2) ks) = £(-043-32 439 =25

5.4 Vertex Colourings of Graphs

To colour the vertices of a graph G is to assign a colour to each vertex in such
a way that no two adjacent vertices receive the same colour. If we define an
independent set of vertices of G to be a set of vertices no two of which are
adjacent, then a vertex colouring can be thought of as a partition of the set V'
of vertices into independent subsets. Often we are concerned with the smallest
number of colours required, i.e. the smallest number of independent sets which
partition V; we call this number the chromatic number of G.

Definition 5.3

The chromatic number x(G) of a graph G is the smallest value of k for which
the vertex set of G can be partitioned into k& independent subsets.

We have met the idea of colouring vertices already; in Section 3.5 we noted that
bipartite graphs are bichromatic; so if G is bipartite with at least one edge then
Xx(G) = 2. Also, the four colour theorem asserts that x(G) < 4 for all planar
graphs G.

Theorem 5.9

(i) x(Kn) =n.
(i1) x(Cn) =2 if n is even; x(Cn) = 3 if n is odd.

Proof
(i) No two vertices can receive the same colour since they are adjacent.

(ii) If n is even, we can alternate colours round the cycle; if n is odd we need
a third colour for the “last” vertex coloured.
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Example 5.9

The graph of Figure 5.1(a) has chromatic number 3; it needs at least three
colours since it contains C3, and three colours are sufficient, as shown in Fig-
ure 5.1(b).

1 1
3
(a) (b) 3 (9
2 2
Figure 5.1

Note that the case of C,,n odd, contradicts the belief of some amateur four-
colour-theorem-provers, that a graph needs m colours only if it contains K, as
a subgraph. Another counterexample to this belief is the graph of Figure 5.1(c)
which needs four colours (why?) although it does not contain Kj.

There is no easy way of finding x(G) for a given graph G. The greedy algo-
rithm, which we now describe, will give an upper bound for x(G) related to the
maximum vertex degree. In our description of the algorithm we denote colours
by C1,C2,Cs,... and call C; the ith colour.

The greedy algorithm for vertex colouring

1. List the vertices in some order: v, ... , vp.
2. Assign colour C) to v;.

3. At stage ¢ + 1, when v; has just been assigned a colour, assign to v;,; the
colour C; with j as small as possible which has not yet been used to colour
a vertex adjacent to v;41.

Example 5.10

We use the greedy algorithm to colour the graph of Figure 5.2 for each of the
two vertex orderings shown.
With vertices listed as in (a), we assign colours as follows:

v: 1 2 3 4 5 6 7
cC: 1 2 1 3 4 1 2

This colouring uses four colours. However, with the vertices labelled as in (b),
we get:
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(a) (b)
Figure 5.2

This second colouring shows that x(G) < 3; in fact x(G) = 3 since G is not
bipartite.

Clearly, the bound for x(G) obtained by the algorithm depends on the par-
ticular order in which the vertices are considered. But note that, if a vertex v
has degree d then, when it is the turn of v to be assigned a colour, at most d of
the colours are ineligible, so it must be given some colour C; where i < d + 1.
Thus we have the following bound.

Theorem 5.10

If G has maximum vertex degree A, then the greedy algorithm will colour the
vertices of G using at most A + 1 colours, so that x(G) < A+ 1.

Example 5.11 (A timetabling problem)

The University of Central Caledonia has nine vice-principals, Professors
A,B,...,I, who serve on eight committees. The memberships of the com-
mittees are as follows.

Committee 1: A, B, C, D 5: A, H, J
2: A, C, D, E 6: H, I, J
3: B, D, F, G 7: G, H, J
4: C, F, G, H 8: E, I

)

Each committee is to meet for a day; no two committees with a member in
common can meet on the same day. Find the smallest number of days in which
the meetings can take place.

Solution

Represent each committee by a vertex, and join two vertices by an edge precisely
when the corresponding committees have overlapping membership. Then the



5. Partitions and Colourings 99

7
Figure 5.3

minimum number of days required is the chromatic number of the graph G,
shown in Figure 5.3. Note that vertices 1,2,3,4 form a Ky, so at least four
colours (days) are needed. But four colours are sufficient: e.g.

{1,7,8}U{3,5} U {2,6} U {4}

is a partition of {1,...,8} into independent sets. So x(G) = 4, and four days
are enough.

5.5 Edge Colourings of Graphs

An edge colouring of a graph G is an assignment of colours to the edges of
G so that no two edges with a common vertex receive the same colour. The
minimum number of colours required in an edge colouring of G is called the
chromatic index of G and is denoted by x'(G).

Thus to edge colour a graph is to partition the edge set into subsets such that
no two edges in the same subset have a vertex in common, i.e. so that all edges
in any part of the partition are disjoint. A set of disjoint edges in a graph is
often called a matching. Clearly, in an edge colouring, all edges at a vertex v
must receive different colours, so x'(K,) > n — 1 for each n.

Example 5.12

(a) x'(K4) =3, since x'(K4) > 3 and three colours suffice, as shown in Figure
5.4(a).

(b) x'(Ks) = 5. Here, A = 4 colours are not enough. For there are 10 edges and
no more than two edges in any matching. However, 5 colours are enough,
as shown in Figure 5.4(b).
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Figure 5.4

Theorem 5.11
(i) x'(Kn) =nif n is odd.

(i) x'(Kn) =n—1if nis even.

Proof

(i) Ifnis odd, any matching in K, can have at most £ (n—1) edges. So at most
1 1

3(n —1) edges can be given any one colour. But there are n(n — 1) edges
in K, so at least n colours are needed. Now we can colour the edges using
n colours in the following way. Represent K, as a regular n-gon, with all
diagonals drawn. Colour the boundary edges by 1,... ,n; then colour each
diagonal by the colour of the boundary edge parallel with it. This gives an
edge colouring using n colours. The case n = 5 is as in Figure 5.4(b).

(ii) Now suppose n is even. Certainly x'(K,) > n—1; we show how to use only
n—1 colours. Since n— 1 is odd, we can colour K,,—; using n—1 colours, as
described above. Now take another vertex v and join each vertex of K,_;
to v, thus obtaining K,. At each vertex of K,,_;, one colour has not been
used. The colours missing at each vertex of K,_; are all different, so we
can use these n — 1 colours to colour the added edges at v. This gives an
edge colouring of K, using n — 1 colours.

The appearance of A(=n—1) and A+ 1(= n) as the chromatic indices of K,

according as n is even or odd, is in accordance with the following result.

Theorem 5.12 (Vizing, 1964)

If G is a simple graph with maximum vertex degree A, then x'(G) = A or
A+1.

We omit the proof of this result; a proof can be found in [9]. But we include the
statement of the result because it has led to a great deal of work on determining
which graphs are class one graphs, i.e. satisfy x'(G) = 4, and which are class
two, i.e. satisfy x'(G) = A+ 1.
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Example 5.13

The Petersen graph is class 2. Here A = 3, so we have to show that x'(G) # 3.
So suppose an edge colouring using only three colours exists. Then the outer
5-cycle uses three colours, and, without loss of generality, we can assume that
it is coloured as in Figure 5.5(a). The spokes are then uniquely coloured, as in

Figure 5.5

Figure 5.5(b). But this leaves two adjacent inside edges which have to be given
colour 2. So there is no edge colouring with three colours.

We close this section by establishing that all bipartite graphs are class 1. This
result is due to Konig, the Hungarian author of the first major book on graph
theory [14].

Theorem 5.13 (Konig)
X'(G) = A for all bipartite graphs G.

Proof

Proceed by induction on ¢, the number of edges. The theorem is clearly true
for graphs with ¢ = 1; so suppose it is true for all bipartite graphs with &
edges, and consider a bipartite graph G with maximum vertex degree A and
with k& + 1 edges. Choose any edge vw of G, and remove it, thereby forming a
new bipartite graph H. H has k edges and maximum vertex degree < A, so,
by the induction hypothesis, H can be edge coloured using at most A colours.

Now, in H, v and w both have degree < A — 1, so there is at least one colour
missing from the edges from v, and at least one missing from the edges of w.
If there is a colour missing at both vertices then it can be used to colour edge
vw. If there is no colour missing from both, then let C; be a colour missing at
v, and Cy a colour missing at w. Now there is some edge, say vu, coloured Cy;
if there is an edge coloured C; from u, go along it, and continue along edges
coloured C; and C alternately as far as possible. The path so constructed will
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never reach w since if it did it would have to reach w along an edge coloured
C) and so would be a path of even length, giving, with edge vw, an odd cycle
in a bipartite graph. So the connected subgraph K, consisting of vertex v and
all vertices and edges of H which can be reached by a path of edges coloured
C, and Cz, does not contain w. So we can interchange the colours C; and C,
in K without interfering with the colours in the rest of H. This gives a new
edge colouring of H in which v and w have no edge coloured C2, and we can
use Cy to colour vw.

This idea of swapping colours along a path was used by Kempe in his unsuc-
cessful 1879 attempt to prove the four colour theorem. Despite the fact that
it did not work there as Kempe had hoped, it nevertheless has proved to be a
very useful technique in graph theory.

Example 5.14

Eight students require to consult certain library books. Each is to borrow each
required book for a week. The books B; required by each student S; are as
follows:

Sy : By, B3, By S2: B2, B4, Bs,Bs  S3: B, B3, Bs,Br
Sy : B3, Bs Ss : By, Bs, By Se : Bz, By, Bs
S7:B4,Bs,Br  Ss: Bs, Bs.

What is the minimum number of weeks required so that each student can
borrow all books required?

Solution

Draw a bipartite graph G with vertices labelled B,,...,B7,51,...,Ss, and
with S; joined by an edge to B; precisely when student S; has to consult
book B;. Then G has maximum vertex degree A = 4, so, by Konig’s theorem,
X'(G) = 4. Thus four colours (weeks) are required. You should be able to
partition the set of edges into four disjoint matchings.

Exercises

Exercise 5.1

How many ways are there of arranging 16 football teams into four groups
of four?
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Exercise 5.2

A class contains 30 pupils. For a chemistry project, the class is to be put
into four groups, two of size 7 and two of size 8. In how many ways can
this be done?

Exercise 5.3

In the early versions of the Enigma machine, used in Germany in the
1930s, the plugboard swapped six pairs of distinct letters of the alphabet.
In how many ways can this be done (assuming 26 letters)?

Exercise 5.4

Any permutation is a product of cycles. For example, the permutation
351642 (3 —» 1,56 = 2,1 — 3,6 —» 4,4 — 5,2 — 6) can be written
as (31)(2645). How many permutations of 1,...,8 are a product of a
1-cycle, two 2-cycles and a 3-cycle?

Exercise 5.5
Prove that (a) S(n,n ~1) = (3), (b) S(n,n—2) = (3) +3(}).

Exercise 5.6

Prove by induction that S(n,3) > 3"~2 for all n > 6.

Exercise 5.7

Show that S(n,k) = Yom__, ("~')S(m, k — 1) and hence given another
proof of Theorem 5.6.

Exercise 5.8
Find B(10).

Exercise 5.9

Use Theorem 5.6 and induction to prove that B(n) = 1 772, &7
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Exercise 5.10

The (signless) Stirling numbers s(n, k) of the first kind are defined by:
s(n, k) is the number of permutations of 1,...,n consisting of exactly
k cycles. Verify that s(2,1) = 1,5(3,1) = 2,5(3,2) = 3,5(4,2) = 11 and
that s(n,1) = (n —1)!. Prove that s(n,k) = (n—1)s(n — 1,k) + s(n — 1,
k — 1), and deduce the value of s(6,2).

Exercise 5.11
Find x(G) and x'(G) for each of the graphs of Exercise 4.2.

Exercise 5.12

Let G be a graph with p vertices and let a(G) denote the size of the
largest independent set of vertices of G. Show that x(G)a(G) > p.

Exercise 5.13

Apply the greedy vertex colouring algorithm to the graph of Figure 5.3,
taking the vertices (a) in the order 1,...,8, (b) in order 8,...,1. Do
you get a colouring using four colours?

Exercise 5.14

As Exercise 5.13, but this time choose vertices in (a) increasing, (b)
decreasing order of vertex degrees. Which approach would you expect to
require fewer colours in general?

Exercise 5.15

Explain why there is always an ordering of the vertices for which the
greedy algorithm will lead to a colouring with x(G) colours.

Exercise 5.16

Find the chromatic index of each of the five Platonic solid graphs.
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Exercise 5.17

A graph in which every vertex degree is 3 is called a cubic graph. Prove
that all hamiltonian cubic graphs have chromatic index 3. (Note how-
ever that not all cubic graphs have chromatic index 3, e.g. the Petersen

graph.)

Exercise 5.18

Let G be a graph with an odd number p = 2k + 1 of vertices, each of

which has the same degree 7.

(a) Show that G has (k + )r edges.

(b) Explain why no more than k edges can have the same colour in any
edge colouring, and hence show that x'(G) = r + 1. Thus every reg-
ular graph with an odd number of vertices is class 2. (This includes
K,,n odd, as shown in Theorem 5.11.)

Exercise 5.19

Let f,(G) denote the number of ways of colouring the vertices of G using

A given colours.

(a) Show that fA(K,) =AA-1)(A=2)...(A-n+1).

(b) Show that f\(T) = A(A — 1) for all trees T with n vertices.

(c) Let zy be any edge of G. Let G’ be the graph obtained from G by
removing the edge zy, and let G be the graph obtained by identi-
fying vertices z and y. Then fx(G) = fA(G') — fA(G"). Deduce that
fr(G) is a polynomial in \: it is called the chromatic polynomial
of G.

(d) Note that the solution a, = 2" + (—1)"2 of Example 2.4 can be
interpreted as: f3(C,) = 2™ + (—1)"2. By replacing 3 colours by A
colours, show similarly that f(C,) = (A—1)"+ (-=1)"(A —1). Note
that this gives f2(C,) = 0 whenever n is odd, as expected!
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The Inclusion—Exclusion Principle

In this chapter we discuss a method of counting which has been used for at
least 300 years. One of its first uses was in the study of derangements; as well
as this, we give many applications including labelled trees, scrabble and the
ménage problem.

6.1 The Principle

The principle is essentially a generalisation of the following simple observation.
Suppose we are given two sets A and B, and are asked for the number of
elements in their union. A first attempt might be |A| + |B|, but elements in
both A and B are counted twice; so the corrected estimate is

|AUB| =|A| +|B|-]ANB. (6.1)
Note that we first include, and then exclude all those which have been in-

cluded too often.
Even this simplest form of the principle can be useful.

Example 6.1

In a class of 50, there are 30 girls, and there are 35 students with dark hair.
Show that there are at least 15 girls with dark hair.

Solution

Let A denote the set of female students, and B the set of students with dark
hair. Then
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|AN B |A|+|B| - |[AUB| =30+35—|4AU B|

> 65-50=15  since |AUB| < 50.

The next application of (6.1) is much less trivial.

Example 6.2

We look for the smallest possible value of m such that if G is a graph on 60
vertices, each vertex having degree at least m, then G must contain K4 as a
subgraph.

It is not hard to see that m must be greater than 40. For if we take G to be
the graph K9 20,20, with vertex set V = V; UV, U V3, |V;| = 20 for each ¢, all
vertices of V; being joined to all vertices of V; whenever i # j, then each vertex
will have degree 40; but no K, exists in G since any K4 in G would have to
have two vertices in the same V;. We now show that m = 41. Let G be any
graph on 60 vertices, each of degree > 40. Choose any vertex v, and let S; be
the set of vertices G adjacent to v;. Then |S;| > 40. Take any vertex v, in Sj,
and let S, be the set of all vertices adjacent to v2. Then

1S1NSa] = |Si]+[S2] —|S1 US|
> 40440 — Sy US| > 80 — 60 = 20.

So |S1 N Sa| > 20. Next take any vs € S; NSz, and let S3 be the set of all
vertices of G adjacent to v3. Then

|51052053|=|(51052)053| = |S1052|+|S3|—|(51052)US3|
> 20+40-60=0.

Thus there exists a vertex vy in S; N Sz N S3. But then vy,v2,v3,v4 are all
adjacent to each other in G, so that G contains a Kj.

We now extend (6.1) to three sets A, B,C as shown in Figure 6.1. Our first
estimate for [A U B U C| might be |A| + |B| + |C|. But elements in more than
one set will have been included more than once, so a second estimate might
be |A| + |B| + |C] — |AN B| — |BNC| — |CNA|. But elements in all three sets
A, B,C will have then been included thrice and excluded thrice, and so have
to be included once more. So finally we get

[AUBUC| = |A| + |B| + |C| - |ANB| - |BNC| — |CNA| + |[ANBNC|. (6.2)

Note that we include, then exclude, then include again.

The general formulation is as follows.
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Figure 6.1

Theorem 6.1 (The inclusion-exclusion principle)

Let S be a set of objects, and let P,... , P, be properties which the elements
of S may or may not possess. Let N (i, j, ... ,k) denote the number of elements
of S which possess properties P;, P;,... , Py (and possibly some others as well).
Then the number of elements of S possessing at least one of the properties is

SING-SING )+ Y NG k) — .+ (-)TIN(,2,.. 7). (6.3)
i i<y i<j<k
Proof
Any element of S which has none of the properties contributes 0 to each term
of (6.3) and hence contributes 0 to the sum.
Now consider an element of S which possesses ¢t > 1 of the properties, where

¢ < r. It contributes to ¢ of the terms N (i), to (£) of the terms N (i, 5), and so
on. So its total contribution to (6.3) is

() (- () ()

=1-(1-1)t=1

Example 6.3
Find the number of positive integers < 100 which are divisible by 3 or 7.

Solution

Take S = {1,...,100}, let P, be the property of being divisible by 3 and let
P, be the property of being divisible by 7. Then N(1) is the number of integers
< 100 which are divisible by 3, so N(1) = 33. Similarly N(2) = 14. Finally
N(1,2) is the number of such integers divisible by both 3 and 7, i.e. divisible
by 21; so N(1,2) = 4. Thus the required number is 33 + 14 — 4 = 43.
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The principle is in fact more often used in a slightly different form. Instead of
asking how many elements have at least one of the properties, we ask how
many have none of the properties.

Theorem 6.2 (Second version of the inclusion-exclusion principle)

With the same notation as in Theorem 6.1, the number of elements of S pos-
sessing none of the properties is

1S| - Z NG+ Y NG G) =+ (-1)'N(1,2,...,7). (6.4)

i<j

Example 6.4

How many positive integers < 100 are divisible by none of 2,3, 5,77

Solution

Here again S = {1,...,100} and Py,. .., P, are the properties of being divisible
by 2,3, 5,7 respectively. Then N (1) = 50, N(2) = 33,N(3) = 20 and N(4) =
14. Next, N(1,2) is the number of elements of S divisible by 2 and 3, i.e. by
6, so N(1,2) = 16. Similarly, for example, N(1,3,4) is the number of positive
integers < 100 divisible by 2,5 and 7, i.e. by 70, so that N(1,3,4) = 1. Thus
the required number is

100—(50+33+20+14)+(16+10+7+6+4+2)—(3+2+1) = 100—-117+45-6 = 22.

What is the significance of this result? Observe that any number < 100 which
is not prime must possess a factor < v/100 = 10, and so must be divisible by
a prime < 10, i.e. by 2,3,5 or 7. The answer 22 just obtained is not quite the
number of primes < 100 since it does not include the primes 2, 3, 5, 7 themselves,
and it also includes 1 which is not prime. So the number of primes < 100 is
22 + 4 — 1 = 25. Check it!

Example 6.5

In one version of the Enigma machine used for encoding secret messages, three
“rotors” were chosen from a set of five, and were placed in order in the machine.
On each day a different ordered set of three was chosen, such that no rotor was
in the same position as on the previous day. Given the arrangement for one
day, how many possible ordered choices are there for the next day?

Solution

Let us suppose that the rotors are labelled 1,...,5, and that on a given day
rotors 1,2,3 are chosen, in that order. Let S denote the set of all possible
ordered sets of three rotors; then |S| = 5 x 4 x 3 = 60. For each i < 3, let
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P; denote the property that rotor ¢ is in position i. Then we want the number
of members of S possessing none of the properties P, P, P3. So the required
number is

IS| =Y NG)+ D NG,j) - N(1,2,3).
Now N (i) =4 x 3 for each i < 3, and each N(i,j) = 3; so the answer is
60 -3x(4x3)+3x3—-1=232.

(Later on the number of rotors used by the German navy was increased to 8;
see Exercise 6.9.)
The next example deals with derangements, already met in Chapter 2.

Example 6.6

Recall that a derangement of n objects is a permutation of them with the
property that no object is in its original place. We now show how to use the
inclusion—exclusion principle to derive the formula (2.10) for d,,, the number of
derangements of n objects.

Take S to be the set of all permutations of 1,... ,n and, for each i < n, let
P; be the property: 7 is in the ith position. Then d,, is the number of members
of S possessing none of the properties P;. Now, for each i, N(i) = (n—1)! since
i is fixed and the remaining n — 1 numbers can be permuted in any way we
like. Similarly, N (i, j) = (n — 2)!, and so on. Note also that there are (}) terms
N (i), (3) terms N(3, ), etc., so that, by (6.4),

d, = |S] - ZN(i) +Y N(i,j) — -+ (<)"N(1,... ,n)

i<j
=n! - <?)(7L—1)|+ <Z)(n—2)|_+(_l)ﬂ(2)01
:n!—zll—!!+72l—;_...+(_1)n%:
1 1 —-1)"

The next example introduces ideas which will be useful in section 6.4.

Example 6.7

How many non-negative integer solutions are there of the equation z+y+2z = 20
satisfying the conditions z < 10,y < 5,z < 157

Solution

Let S denote the set of all non-negative solutions of z+y+z = 20. By Theorem
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1.11, |8} = (22) = (¥). Let P, be the property z > 11; let P, be the property
y > 6, and P3 the property z > 16. Then we want the number of members of
S possessing none of the properties P;. This number is

(222) - ZN(:‘) +§N(i,j) - N(1,2,3). (6.5)
Consider N(1). If z > 11,z = 11 +u for some u > 0, and the equation becomes
u+y + 2z = 9. The number of non-negative integer solutions of this equation
is N(1) = (}}) = (). Similarly, N(2) = (¥), N(3) = (§). Next, N(1,2) is the
number of solutions satisfying z > 11 and y > 6; putting z = 11+ u,y =6+v
changes the equation into v + v + z = 3, and the number of non negative
solutions is N(1,2) = (3). Since N(1,3) = N(2,3) = N(1,2,3) are all clearly
zero, we find that (6.5) becomes

(0)-C)-(9-()+ )=

6.2 Counting Surjections

Let | X| = m and |Y| = n, and consider functions f : X — Y. The image of f
was defined in Section 5.3 to be the set of all elements of Y which arise as f(z)
for some z € X. We say that f is surjective if the image of f is the whole of
Y. How many surjections f : X — Y are there?

Let S denote the set of all functions f : X = Y, where Y = {y1,... ,yn}, and
let P; be the property: y; is not in the image of f. Then N(1) = (n—1)™, since
each of the m elements of X can be mapped by f onto any of the n — 1 other
elements of Y. Similarly, N(¢1,...,ix) = (n — k)™. So by (6.4), the number of
surjections from X to Y, i.e. the number of members of S possessing none of
the properties P; is

S| =Y NG+ 3 NG, 5) =+ (=1)"N(L,... ,n)

i<j

=n" - (T)(n—l)’w (g)(n—2)’"—--~+(—1)"<Z>(n—n)”‘

n—1
= }:(_1)"(’;) (n —i)™.
=0
One immediate consequence of this result arises from the observation that, if

n > m, there are no surjections f : X — Y since there are not enough elements
in X to be mapped onto the n elements of Y. So we obtain:

ni(—l)i (?) (n=i)™=0 whenever m < n. (6.6)

=0
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Another consequence arises from the fact that the number of surjections from
X to Y is n!lS(m,n) (as in Theorem 5.7); so we obtain another proof of (5.5).

6.3 Counting Labelled Trees

It was mentioned in Section 3.3 that Cayley proved that the number of labelled
trees on n vertices is n" 2. The three trees on 3 points were shown in Figure
3.7. Many proofs of Cayley’s result have been given. Most of these proofs are
quite tricky; the most common one, due to Priifer, depends upon constructing
a one-to-one correspondence between the trees and ordered (n — 2)-tuples of
numbers each of which can be any of 1,...,n. However, we are here going to
use ideas of J. Moon and employ the inclusion-exclusion principle and (6.6).

Let S denote the set of all spanning trees on the vertices labelled 1,... ,n,
and let |S| = T'(n). For each i < n, let P; be the property: vertex 7 is an end
vertex. Since, by Theorem 3.3, every tree with p > 2 vertices has an end vertex,
every member of S must possess at least one of the properties P;. Further, if
n > 3, no tree on n vertices can have every vertex an end vertex, so no member
of S can possess all n properties. So, by (6.3), for n > 3,

T(n) = ZN(i) =SNG+ DY Y N, in)-

i<j i< <1

Now N (i) = (n — 1)T(n — 1), since if vertex 7 is an end vertex, its edge can go
to any of the other n — 1 vertices, and these n — 1 vertices are joined by a tree.

2 labelled tree
on n — 2 vertices
Figure 6.2 N(1,2) = (n — 2)2T(n ~ 2)

Similarly, as illustrated in Figure 6.2, N(i,j) = (n — 2)2T(n — 2), and so on.
So, for n > 3,

T(n) = (’1‘) (n—1)T(n—1) - (’;) (n - 2)*T(n - 2)

+---+(—1)"(n’_’1):r(1)
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n—1
= Z(_l)i-l (") (n —i)'T(n —1). (6.7)
i=1 t
However, putting m =n — 2 in (6.6) and rearranging slightly, we get
n—1
"2 = Z(—l)"‘l (7:) (n=i)i(n -9 2 (6.8)
=1

Compare (6.7) and (6.8). If the formula T'(k) = k*~2 is known to be true for
all k£ up to n — 1, then the right-hand sides of (6.7) and (6.8) coincide, and it
therefore follows that T'(n) = n™~2. Thus, since the result is true for n = 3, it
follows by induction that T'(n) = n™~2 for all n > 3.

6.4 Scrabble

Scrabble is a word game in which players take turns to use the letters in their
possession to form new words. At each stage of the game, each player has 7
tiles, each tile having on it a letter or being blank. The distribution of letters
is as follows.

A B CD EF G HI1I J KL M
9 2 2 4 12 2 3 2 9 1 1 4 2

N OPQ RS TUV W XY Z bank
6 8 2 1 64 6 4 2 2 1 2 1 2

At the start of the game, each player chooses 7 tiles. How many ways are there
of choosing 7 tiles?

If we let a denote the number of As, b the number of Bs, ..., z the number
of Zs, and w the number of blanks, then the number of possible choices of 7
tiles is just the number of solutions of the equation

a+b+... +z4+w="7 (6.9)

in non-negative integers, with a < 9,b < 2, and so on. So, to apply the inclusion-
exclusion principle, take S to be the set of all non-negative integer solutions
of (6.9), take P, to be the property that a > 10, P, to be the property that
b > 3, and so on: then we want the number of members of S with none of the
properties, as given by (6.4). We proceed as in Example 6.7.

By Theorem 1.11, |S| = (**7~1) = (¥).

Next consider N(a), the number of solutions of (6.9) with a > 10. This is
clearly 0.
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Now consider N (b). This is the number of solutions of (6.9) with b > 3. If we
put b=b"+3,(6.9) becomes a+(b'+3)+...+z+w="T7,ie.a+b +...+w =4,
and so N(b) = (*"H}71) = (%).

In the same way, we obtain

N(b) = N(c)=N(f)=N(h) = N(m) = N(p) = N(v) = N(w)
= N(y)=Nw) = (),

N(j) = N(k)=N(g)=N(z) = N(2) = (%),

N@g) = (}), N@d=N@l)=N(s)=N@) = (%),

N(n) = N(r)=N(t) = (?) =1, and all others are zero.

We next have to deal with terms such as N(c, d). There are (%) such terms, but

fortunately many are zero; for example N(c,d) is zero since the requirements
¢ > 3 and d > 5 are incompatible with (6.9).

There are (')') terms equal to N(b,c). Putting b= '+ 3 and ¢ = ¢’ + 3 leads
to the equation a + b’ +¢' +d+...+w = 1, which has (¥') solutions. Similarly
there are 5 terms equal to N(g, 7). Putting g = ¢’ + 4 and j = j' + 2 leads to
the equation a + ...+ ¢' +h+i+j' +...+ = 1, again with (") solutions.
There are (g) = 10 terms equal to N(j,k),50 = 10 x 5 terms equal to N (b, j);
10 like N (b, g), 20 like N(d, 7).

Finally, there are (}) terms equal to N(j, k,q), and (3) x 10 terms equal to

N (b, j, k). So the required number is
() - 5) +10(D) + (3) +4(3) (O}
AG)E) +20(3)+ () () +=(7) + ()
{6 () =0}

=3199724.

6.5 The Ménage Problem

The ménage problem was posed by the French mathematician E. Lucas in 1891.

Problem. In how many ways can n married couples sit round a table (with
labelled seats) so that men and women alternate, and no husband and wife sit
next to each other?
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Solution

Let us be gentlemanly, and seat the ladies first. Observe that the wives
Wi, ..., W, will occupy either the odd numbered seats or the even numbered
seats; so the number of ways of seating the wives is twice n!. Then for each
of these 2(n!) arrangements, there will be the same number g(n) of ways of
seating the husbands. The problem is now to evaluate g(n). Without loss of
generality, we can suppose that the wives are seated as shown in Figure 6.3,

Figure 6.3

with the vacant seats now labelled 1,... n, seat ¢ being between wives W; and
Wit1 (1 <n), and seat n being between W,, and W;.

Let S be the set of all possible ways of arranging the husbands in the n seats,
so that |S| = n!. Then consider the following properties that elements of S may
Or may not possess:

P; . H; is in seat t;
Q;:H;isinseat i —1(2<1i<n);
(1 : Hy is in seat n.

Then g(n) is just the number of elements of S possessing none of these proper-
ties. In applying (6.4), not every possible combination of properties is available;
for example, P, and ()2 cannot both be satisfied together. Properties which can
be satisfied simultaneously are called compatible. Let 7, denote the number
of ways of choosing k compatible properties from the P; and the @;. Then, for
each such choice, the number of arrangements of the husbands into seats so
that these k properties are satisfied will be (n — k)!. Thus by (6.4),

gn)=nl—rin - +ra(n—-2) — ...+ (=1)"r,0.

To find ri, imagine the properties to be arranged in a circle as shown in
Figure 6.4.

Properties are then compatible precisely when no two are adjacent; so r is
just the number of ways of choosing k elements from a circular arrangement
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Q1 Q2
Pn P2

Qn Q3
P

Q4

Figure 6.4

of 2n elements, no two of the chosen k being adjacent. Now it was shown in
Exercise 2.15(b) that the number of ways of choosing k non-adjacent elements
from 1,...,2n is (2"‘:*1); so 7 is this number minus the number of such
choices which contain both 1 and 2n. But if 1 and 2n are chosen then 2 and 2n—1
are not, and so k —2 non-adjacent numbers are chosen from 3,. .. ,2n—2. Since
there are 2n — 4 = 2(n — 2) numbers here, there are (2""4;(_*2"2)“) = (k)
such choices. So finally

= 2n—k+1 _ 2n—k-1\ _ 2n 2n -k
k= k k=2 ) 2n—-k\ k

and the answer M (n) to the ménage problem is 2(n!)g(n), where g(n) is

2n 2n —1 2n 2n — 2 2n (n
|- = —1)! N = 1" — 1
n! 2n—1< 1 )(n 1)'+2n—2( 9 )(n 20— +(-1) - (n)O..

For example, M(5) = 2 x 5! x 13 = 3120.
Looking ahead, there is a nice alternative way of interpreting g(n); it is the
" number of ways of choosing a third row of an n X n latin square whose first two

TOWS are
23 -+ n-1 n
3 4 n 1.

1
2

Exercises

Exercise 6.1
Extend (6.2) to four sets A, B,C, D.
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Exercise 6.2

Each student in a class of 100 reads at least one of mathematics and
computing; 67 read mathematics and 44 read both. How many read
computing?

Exercise 6.3

Each of the 100 students at a music school play at least one instrument,
string, woodwind or brass. 70 play a string instrument, 49 woodwind and
49 brass. 20 play both string and woodwind; 25 play string and brass,
and 35 play both woodwind and brass. How many play all three types
of instrument?

Exercise 6.4

How many positive integers < 1000 are divisible by none of 7,11 or 137

Exercise 6.5

(a) Imitate the argument of Example 6.2 to show that if G is a graph
with 100 vertices, each of degree > 75, then G must contain K as
a subgraph.

(b) Generalise to the following. If G is a graph with mn vertices, each
of degree > m(n — 1), then G must contain K, as a subgraph.

Exercise 6.6

Show that the number of solutions of the equation z + y 4+ z = 100 in
non-negative integers z,y, z with < 50,y < 40,z < 30 is 231.

Exercise 6.7

How many permutations are there of 1,...,8 in which none of the pat-
terns 12, 34,56, 78 appears?

Exercise 6.8

How many permutations of 1,...,8 are there in which no even number
appears in its natural position?
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Exercise 6.9

Repeat Example 6.5 on the Enigma machine, with 5 replaced by 8.

Exercise 6.10

How many permutations of 1,1,2,2,3,3,4,4,5,5 are there in which no
two adjacent numbers are equal?

Exercise 6.11

The Euler phi function. Let n = p{* ... p2 be the prime factorisation
of n and let ¢(n) denote the number of positive integers < n which are
coprime to n (i.e. which are divisible by none of py,...,p,). For exam-
ple, ¢(10) = 4, the numbers being 1,3,7,9. Use the inclusion—exclusion
principle to show that ¢(n) = nJ],(1 - pl-') Hence find ¢(100), ¢(200).

Exercise 6.12

Let G be a graph with n vertices and m edges. Let S be the set of all
possible colourings of the vertices using A colours, ignoring adjacencies:
so |S| = A™. For each i < m, let P; denote the property that the end-
points of edge e; receive the same colour. Then f)(G), the number of
vertex colourings of G using A colours (see Exercise 5.19), is the number
of elements of S possessing none of the properties P;. Deduce that

AR =2+ X" +a X" 2+ tap A +a,

where a; = —m and a3 = (%) — ¢, where ¢ denotes the number of
subgraphs of G isomorphic to Kj.

Exercise 6.13

(An example from Abraham de Moivre’s book Doctrines of Chance, pub-
lished in 1717.) If 12 throws of a die are made, what is the probability
that all six numbers appear?

Exercise 6.14

Use the inclusion-exclusion principle to find the number of partitions of
{1,...,10} into four parts, none of which is a singleton set.
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Latin Squares and Hall's Theorem

In this chapter we study latin squares and their orthogonality, and construct
magic squares. We also discuss Hall’s theorem on systems of distinct represen-
tatives and apply it to latin squares and bipartite graphs. Finally, we show how
complete sets of orthogonal latin squares lead to affine planes.

7.1 Latin Squares and Orthogonality

Definition 7.1

A latin square of order n is an n x n array in which each row and each column
contains each of n given symbols exactly once.
Here, for example, are two latin squares of order 4, based on the set {1, 2, 3,4}

1 2 3 4 12 3 4
3 41 2 4 3 21
Li=lgs321|" 25|21 43
2 1 4 3 3 41 2

Much interest in latin squares arose through their use in statistical experimental
design, but they crop up in many different areas of discrete mathematics and
algebra; a trivial example is the fact that the composition table of a finite group
is a latin square.
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Example 7.1

Suppose that 2n teams play in a league, with each team playing one game on
each of 2n — 1 consecutive weekends. Altogether each team has to play every
other team once. Label the teams by 1,...,2n, write a;; = k if teams ¢ and j
play each other on the kth weekend (i # j) and put a;; = 2n for each i. Then
A = (a;;) is a latin square of order 2n. For example, the games

weekend 1: 1v2, 3v4
weekend 2: 1v3, 2v4
weekend 3: 1v4, 2v3

give the latin square

Note that this latin square is symmetric about the main diagonal: a;; = aj;
for all i, j. Conversely, any symmetric latin square of order 2n with a constant
main diagonal can be interpreted as the fixture list for a league of 2n teams.

Many applications of latin squares make use of the concept of orthogonality.
This idea goes back to Euler. In 1779 he discussed a problem concerning 36
officers. These officers were from six different regiments, six from each; among
the six from each regiment was one officer of each of six different ranks. Euler
asked if it were possible to arrange the 36 officers in a 6 x 6 array, so that
each row and each column contained one officer of each regiment and one of
each rank. He believed (correctly, although he couldn’t prove it) that such an
arrangement is impossible.

Instead, consider the corresponding problem of 16 officers, from four regi-
ments a, 3,7,d, with one officer of each of the ranks a,b,c,d from each regi-
ment. This problem can be solved. Here is a solution; in it, for example, yd
stands for an officer from regiment v and of rank d:

aa Bb ~yc 4d
vd édc ab fa
0b ~va Bd ac
fe ad da b

Since there is to be one officer from each regiment in each row and column,
the letters a, 3,7,d must form a latin square; similarly for a,b,c,d. Further,
since there is just one officer of each rank from each regiment, the pairs (Greek
letter, Latin letter) must all be distinct. This is achieved in the given solution,
and the reader can check that the Greek letters correspond to the latin square
L, and the Latin letters to the latin square L.
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Definition 7.2

(i) If A = (ai;) and B = (bi;) are n X n arrays, the join (A4, B) of A and B is
the n x n array whose (¢, j)th entry is the pair (aj;, bij).

(ii) Latin squares A, B are orthogonal if all the entries in their join (A4, B) are
distinct.

If A and B are orthogonal, we call each of A and B an orthogonal mate
of the other. Thus, for example, L, and L, are orthogonal mates. Note that
the requirement that all the entries in (4, B) are distinct is equivalent to the
requirement that each of the n? possible pairs occurs exactly once. Note also
that the condition for orthogonality of A and B can be expressed as:

if ai; = ajry and bij =byytheni=1and j=J. (71)

The join of two latin squares is called a Graeco-Latin square because of
Euler’s use of Greek and Latin letters, as above. The name latin square for
a single array was a later introduction. Euler’s officer problem has a solution
only if there exist two orthogonal latin squares of order 6; eventually, in 1900,
it was proved beyond doubt that no such squares exist.

More generally, latin squares A4,... , A, of order n are mutually orthogo-
nal if they are orthogonal in pairs, i.e. if, for all ¢ # j, A; and A; are orthogonal.
We shall use the abbreviation MOLS for mutually orthogonal latin squares.

For a given n, there is a limit to the number of MOLS of order n that can
exist. We let N(n) denote the largest value of r for which r MOLS of order n
exist.

Theorem 7.1
N(n)<n-1foralln>2.

Proof

Suppose Li,...,L, are 7 MOLS of order n. By relabelling the elements of
each (which does not affect the orthogonality condition) we can suppose that
each square has first row 1,2,... ,n. Concentrate on the entries in the (2,1)
position. Since each square already has a 1 in the first column, none of these
(2,1) entries can be 1. But, further, no two of them can be equal, for the join
of any two of the squares already has each repeated pair in the first row. So
r<n-—1.

A set of n —1 MOLS of order n, if it exists, is called a complete set of MOLS.

Example 7.2
Here is a complete set of 3 MOLS of order 4:
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1 2 3 4 1 2 3 4 1 2 3 4

21 4 3 4 3 2 1 3 4 1 2
A/[] = y ]ug: 5 M3:

3 4 1 2 21 4 3 4 3 2 1

4 3 2 1 3 41 2 21 4 3

The next theorem establishes that complete sets exist wherever n is prime.

Theorem 7.2
N(p) = p—1 for all primes p.

Proof

We define square arrays A,...,Ap_1 as follows. For the (¢, j)th entry of Ay,
take agf) = ki + j, reduced modulo p to lie in the set {1,...,p}.

(i) We first check that each Ay is a latin square. First, the entries in the
ith row are all different; for if alf) = a{*) then ki +j = ki + J(mod p)
whence j = J. Secondly, the entries in the jth column are all distinct;
for if agf) = “(1’;) then ki + j = kI + j(modp) whence k(i — I) =
0(mod p). Thus p divides k(i — I), whence p divides ¢ — I, so that ¢ = I
(mod p) and ¢ must equal I.

(ii) We now use (7.1) to check that Ay and Ay are orthogonal whenever k # h.
Suppose a&jf’ = a{¥) and a%l) =a\"). Then ki+j = kI+J and hi+j = hl+
J (mod p). Subtracting one from the other gives (h—k)i = (h—k)I(mod p),
and, as above, this gives i = I. Substituting back now gives j = J(mod p)
whence j = J.

Example 7.3
Here is a complete set of 4 MOLS of order 5:
2 3 451 345 1 2
34 5 1 2 51 2 3 4
Air=14 51 2 3|[,4=]123 45 1],
5 1 2 3 4 4 51 2 3
1 2 3 4 5 1 2 3 4 5
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4 51 2 3 (5 1 2 3 4
2 3 4 51 4 51 2 3
Az3=|5 1 2 3 4|,A4=(3 451 2
3 4 5 1 2 23 451
1 2 3 45 L1 2 3 4 5 ]

It should be noted here, for those readers who know about finite fields, that a
similar type of argument establishes that N(q) = g — 1 whenever ¢ is a prime
power. (See Exercise 7.9.)

7.2 Magic Squares

A magic square of order n is an n x n array containing each of the numbers
1,...,n?, and such that each row, each column and the two main diagonals all
have a common sum (which in fact must be $n(n? + 1); see Exercise 7.3).

Example 7.4

Here is a magic square of order 3:
8 1 6
3 56 7
4 9 2

Magic squares of all orders n > 3 exist. If n is odd, the method brought
back from Siam by de la Loubere in the seventeenth century can be used, as
in Example 7.4. Start with 1 in the centre of the top row; in general, travel
northeast, and put the next number in the next square if the square is free; if
you go off one edge, reappear at the opposite edge; if travelling northeast takes
you to an occupied square, go south instead.

Example 7.5
Check that de la Loubére’s method in the case n = 5 gives the following:
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
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Methods of constructing magic squares of even order are more complicated.
Some squares can be constructed by a general method due to Euler, involving
MOLS.

Example 7.6

Take the join of the second and third latin squares of Example 7.2:
11 22 33 44 ]
43 34 21 12
24 13 42 31

32 41 14 23

Reduce the first number in each pair by 1 to obtain
01 12 23 34

33 24 11 02
(7.2)
14 03 32 21

22 31 04 13

and then interpret the entries as “base 4” representations of the numbers 1 to
16 (zy standing for 4z + y). This gives the following magic square:

1 6 11 16
15 12 5 2
g8 3 14 9
10 13 4 7

Why this is a magic square is easy to see from (7.2); each row, column and
main diagonal in (7.2) contains each of 0,1,2,3 once in the first position and
each of 1,2,3,4 once in the second position, and therefore have equal sums.

This method will work in general provided we can find two MOLS in which
both diagonals contain each element exactly once. It should now be clear why
we did not take the first latin square of Example 7.2.

The following Indian magic square, dating back to the twelfth century, has
the extra property that every (broken) diagonal has the same sum:

7012 1 14
2 13 8 11

(7.3)
16 3 10 5

9 6 15 4
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For example, 12+ 8 + 5+ 9 = 12+ 2 + 5 + 15 = 34. Such a magic square is
called pandiagonal or diabolic. If we want to use Euler’s method to construct
diabolic magic squares, then we have to choose two orthogonal latin squares
such that every broken diagonal has the same sum (or, in particular, contains
all the elements exactly once). This can be achieved in many cases.

Example 7.7

Take Az and Az in Example 7.3. Reducing each element of A by 1 and inter-
preting the pair (z,y) in the join by 5z + y, we obtain

( 14 20 21 7 131
22 3 9 2 21
10 11 17 23 4
18 24 5 6 12

1 7 13 19 25 |

More generally, if n is odd and is not divisible by 3, we can take 4 = (a;;) and
B = (bs;) where a;; = 20+ j — 2(mod n), b;; = 3i + j — 2(mod n). Then the join
of A and B leads to a diabolic latin square. The details are left to the reader
in Exercise 7.6.

7.3 Systems of Distinct Representatives

Latin squares can be constructed a row at a time. Given the first row, the second
row has to be a derangement of the first; but, in general, if the first r rows of
a hoped-for n x n latin square have been constructed, is it always possible to
find a suitable (r + 1)th row? Since r elements have so far appeared in each
column, the set X; of available entries for the ith position in the (r + 1)th row
has size n — r. The problem is: can a different element be chosen from each
of X1,...,Xn? If so, then these elements will form an (r + 1)th row.

Example 7.8
Suppose we have the first 2 rows as follows:
1 23 45

31 4 5 2



128 Discrete Mathematics

Here X, = {2,4,5}, Xy = {3,4,5},X; = {1,2,5},Xa = {1,2,3},Xs =
{1,3,4}. We could choose 2,3,5,1,4 from X, ..., X5 respectively to get

1 2 3 4 5
31 4 5 2
2 3 51 4
Definition 7.3
A system of distinct representatives (SDR) for the sets A;,..., A, con-
sists of distinct elements zy,... ,z,, such that z; € A; for each i.
Example 7.9

(a) 3,1,4,2 form an SDR for the sets {1, 3,5}, {1,2}, {3,4}, {2,3,4}.

(b) The sets {1,2,4},{2,4},{1,4},{1,2},{1,5},{3,4,5} do not possess an
SDR since the first four of the sets contain only three elements in their
union, not enough to provide distinct representatives of each.

This example illustrates the only situation which can stop a collection of sets

having an SDR. We shall say that sets Ay, ..., A, satisfy the Hall condition

if

for all £ < n, the union of any & of the sets
’ (7.4)
A; contains at least k elements.

Theorem 7.3

The sets A;,..., A, possess an SDR if and only if they satisfy the Hall condi-
tion (7.4).

Proof

[We give a proof based on ideas of R. Rado. It uses the simplest form of the
inclusion-exclusion principle: | X UY| = |X|+|Y| - | X NY]]

If the sets possess an SDR they clearly must satisfy (7.4). So now suppose
that Ay,..., A, satisfy (7.4); we show they possess an SDR. We begin by re-
moving, if possible, an element from one of the sets A4; so that the resulting
sets still satisfy the Hall condition. We then continue to remove elements in
this way, one at a time, until we obtain sets Bi,... , Bp, v-".1 B; C A; for each
i, such that the removal of any further element from any b; would cause the Hall
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condition for the B; to be violated. If we can show that each B; is a singleton
set (i.e. |B;| = 1 for each 7), then the sets B; themselves must be disjoint and
hence provide an SDR for the A;.

So suppose B; has two elements z,y. If either is removed, Hall’s condition
for the Bj; is violated, so there are two sets P, Q of indices such that if

X=B -{zhuoUB:, Y=B-{sphuJB:

iepP i€Q
then |X| < |P| and |Y] < |Q|. But

xuy=Bu |J B, xnv2 | B,
1EPNQ iEPNQ

and the Hall condition gives
IXUY|>1+[PUQl, |XNY|>[PNQ|.
Thus the inclusion-exclusion principle gives

IPl+1Q = [X|+[Y]=[XUY|+|XNY]

\

1+|PUQ|+|PNQ|
1+|P[+1Q],

a contradiction. So B; must have just one element. A similar argument can be
applied to each B;, so |B;| = 1 for all ¢, as required.

We now establish an important consequence of Theorem 7.3 (or Hall’s
theorem, as it is called), which will be particularly useful.

Theorem 7.4

Let Ay,..., A, be subsets of S such that, for some m,
(i) |Ai| = m for each 4, and

(i1) each element of S occurs in exactly m of the 4;.
Then A,,..., A, possess an SDR.

Proof

We show that the sets A; satisfy (7.4). Consider the union of k of the A;.
Including repetitions, the union contains km elements. But, by (ii), no element
can occur in this union more than m times; so the number of distinct elements
in the union is at least &2 = k.

The first use of Theorem 7.4 is to confirm that latin squares can be built up
row by row.
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Definition 7.4

If » < n, an r x n latin rectangle on an n-element set S is an r x n array
of elements of S such that no element occurs more than once in any row or
column.

Theorem 7.5

Any r x n latin rectangle with 7 < n can be extended to an (r + 1) x n latin
rectangle.

Proof
Let L be an r x n latin rectangle on {1,... ,n}. For each ¢ < n let A; denote
the set of elements of {1,... ,n} which do not occur in the ith column of L.

Then |A4;| = n —r for each 1. Further, for each j < n, j occurs in each row of L
and hence has appeared in 7 of the columns; so j must occur in precisely n —r
of the A;. Thus we can take m = n — r in Theorem 7.4 and conclude that the
sets A; possess an SDR which can be taken as the (r + 1)th row of the required
rectangle.

Our second application of Theorem 7.4 is really just a reformulation of the
result in terms of bipartite graphs.

Definition 7.5

A set of disjoint edges in a graph G is called a matching. If G has 2n vertices
a matching with n edges is called a complete or perfect matching of G.

Theorem 7.6
Let G be a bipartite graph with vertex set bipartition V = B U W where
|B| = |W| = n, and where every vertex of G has the same vertex degree m.

Then G possesses a perfect matching.

Proof
Suppose that B = {uy,... ,un} and W = {vy,... ,v,}. For each i < n let
A; = {j : u; and v; are adjacent }.

Then the sets A; satisfy the conditions of Theorem 7.4, and so the A; possess
an SDR. The SDR gives a perfect matching in which u; is adjacent to v; where
Jj represents A;.

For regular bipartite graphs such as those in Theorem 7.6 we immediately
obtain an alternative proof of Konig’s result that x'(G) = A for bipartite
graphs. For we can first find a perfect matching and colour its edges with
one colour. The graph obtained by removing this matching then satisfies the
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conditions of the theorem with m = A — 1, so we can repeat the argument and
obtain a second perfect matching which we then colour with another colour.
Continuing in this way we partition the edge set into A perfect matchings and
thus obtain an edge colouring using A colours.

Theorem 7.6 was in fact proved first by Steinitz in 1893 and then indepen-
dently by Konig in 1914. It is, of course, a special case of Theorem 5.13, since
the edges of any one colour form a matching.

7.4 From Latin Squares to Affine Planes

In this section we show how complete sets of MOLS give rise to an important
family of designs.

We start with three MOLS of order four, as given in Example 7.2, along with
the following “natural” array N:

1 2 3 4
5 6 7 8
N =
9 10 11 12
13 14 15 16

From them, we construct 20 4-element sets as follows.
(a) The rows of N give four sets:

{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16},
and the columns of N given another four sets:
{1,5,9,13}, {2,6,10,14}, {3,7,11,15}, {4,8,12,16}.
(b) The first of the three MOLS, namely M;, gives four sets:
{1,6,11,16}, {2,5,12,15}, {3,8,9, 14}, {4,7,10,13}.

Here the first set consists of the entries in N in the positions in which 1
appears in M;, the second consists of the entries in n in the positions in
which 2 appears in M;; and so on.

(c¢) In the same way, M, gives rise to the following four sets:

{1,8,10,15}, {2,7,9,16}, {3,6,12,13}, {4,5, 11, 14}.
(d) Finally, M3 similarly gives rise to:
{1,7,12,14}, {2,8,11,13}, {3,5,10,16}, {4,6,9,15}.
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We now have 20 sets, each of size four; we call these sets blocks. The blocks
possess an important property: no pair of elements from {1,...,16} occurs in
more than one of the blocks. Certainly, the blocks in (b), (c), (d) each contain
one element from each row and each column of N, and so they will contain no
pair in the same row or column of N; such pairs will occur precisely once in the
blocks of (a). Consider now any pair not in the same row of column of N. Such
a pair cannot occur in more than one block of (b), since the blocks in (b) are
disjoint; and similarly it cannot occur in two blocks of (c) or of (d). Suppose a
pair occurs in a block of (b) and a block of (c). Then there are two positions
in which M; has the same entries and M> also has the same entries. But this
contradicts orthogonality of M; and M;. So we have indeed established that
no pair occurs in more than one block.

Now each block contains (3) = 6 pairs, so the 20 blocks contain altogether
6 x 20 = 120 pairs. But the total number of pairs of elements of {1,...,16} is
(%%) = 120; so every pair must occur in a block!

Thus the 20 blocks have the property that each pair of elements occurs in
exactly one of the blocks. This is the balance property that is the basis of the
study of balanced incomplete block designs which we shall look at in Chapter
9.

More generally, if we start with n — 1 MOLS M,,... ,M,_, of order n on
{1,...,n}, and take N to be the n x n array with entries 1,2,... ,n2 in order,

we construct blocks as follows:
(o) n blocks from the rows of N
(a2) n blocks from the columns of N

(B1) n blocks from Mj, the ith block consisting of the entries in N
in the positions in which ¢ appears in My,

(Bn-1) n blocks from M,_,, similarly obtained.

This gives (n + 1) x n = n? + n blocks of size n, with the property that no
two elements lie in more than one block. But these blocks contain altogether
nn+1)(3) = in*n+1)(n-1) = (";) pairs; so every pair of elements of
{1,...,n?} occurs in precisely one block.

We thus obtain a collection of n(n + 1) subsets (blocks) of a set of size n?
such that

(i) each block contains n elements;
(ii) each element is in n + 1 blocks;
(iii) each pair of elements lies in exactly one block;

(iv) each pair of blocks intersect in at most one element.
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(To check (ii), note simply that each element is in precisely one of the blocks
of each of ay,az,f1,...,Bn—1. To check (iv), suppose that blocks 3, 32 have
two elements z,y in common. Then the pair {z,y} would occur in two blocks,
contradicting (iii)).

Such a system is called an affine plane of order n. Compare the elements
with points, and the blocks with lines in ordinary geometry. The property
(iii) corresponds to the fact that any two points determine a unique line, and
(iv) corresponds to the fact that any two lines intersect in at most one point.
Lines which do not intersect are usually called parallel; we can think of each

of (a1),...,(Bn-1) as consisting of a set of n parallel lines, each forming a
partition of {1,...,n%}.
Example 7.10

Take the two MOLS of order 3 given by
1 2 3 1 2 3
Mi=]2 3 1|, My=|3 1 2

31 2 2 31
and take
1 2 3
N=1|4 56
7 8 9

Then we obtain 12 blocks of size 3:
{1,2,3},{4,5,6}, {7,8,9}, ¢« rowsof N

{1,4,7},{2,5,8},{3,6,9}, <« columns of N
{1,6,8},{2,4,9},{3,5,7}, +« from M;
{1,5,9},{2,6,7},{3,4,8}. +« from M.

Each of these four sets of three blocks partitions {1,...,9}, and can be
thought of as a set of “parallel lines”. Any two elements occur together in a
unique block. Thinking of the blocks as lines, we represent the set-up by Figure
7.1, where eight of the lines are drawn straight, and four are drawn as arcs.
From orthogonal squares we have got to the verge of design theory. We shall
take up the thread in the final chapter.
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Exercises

Exercise 7.1

Write down two orthogonal squares of order 3 as given by Theorem 7.2.

Exercise 7.2

Write down the schedules of games given (as in Example 7.1) by the
latin square

6 12345
165423
25613 4
34165 2
42356 1
|53 421 6|

Exercise 7.3

Verify that each row and each column of a magic square of order n must
sum to 3n(n? +1).
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Exercise 7.4

Use de la Loubere’s method to construct a magic square of order 7.

Exercise 7.5

Use Euler’s method to construct a diabolic magic square of order 7.

Exercise 7.6

Verify that if n is odd and not divisible by 3, then A = (a;;) and B =
(bij), where a;; = 2i + j — 2,b;; = 3i + j — 2 (mod n), are orthogonal
latin squares of order » and that, in both, every diagonal contains each
of1,...,n.

Exercise 7.7

A latin square A is self-orthogonal if it is orthogonal to its transpose

AT (This is the usual matrix transpose.)

(a) Verify that, in Example 7.2, M; is self-orthogonal.

(b) Are My, M3 self-orthogonal?

(c) Show that, if (n,6) = 1, the latin square A of Exercise 7.6 is self-
orthogonal.

Exercise 7.8

(a) A symmetric latin square on {1,...,n} has 1,...,n in its main
diagonal. Show that n must be odd.

(b) Let n = 2m + 1 and define a;; to be the member of {1,...,n}
for which ai; = (i + j)(m + 1)(mod n). Show that A = (a;;) is a
symmetric latin square with 1,... ,n on the main diagonal. Find 4
in the case n = 5.

Exercise 7.9

Show that N(q) = ¢ — 1 for all prime power g, using the finite field
GF(q). Let GF(q) = {A1,A2,... ,Ag—1,A = 0}, and define the squares
Ak, 1<k <g—1,by alY = XA, + A;. (Imitate the proof of Theorem
7.2))
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Exercise 7.10

Apply Euler’s diabolic square construction method to the square My of
Example 7.2 and its transpose MJ . Compare your answer with (7.3).

Exercise 7.11

1 2 3 4 5

Extend [ ] to a latin square of order 5.

4 31 5 2

Exercise 7.12
Find an SDR for the sets {1,3,5},{1,4,5},{2,3,4},{1,2,4}.

Exercise 7.13

Explain why the sets {1,2,3,4},{2,5,6},{1,4,5},{2,6}, {5,8},{1,4,7},
{2,5},{5,6} do not possess an SDR.

Exercise 7.14

The 52 cards of an ordinary pack, consisting of four suits of 13 different
values, are arranged in a 4 x 13 array. Prove that 13 cards of different
values, one from each column, can be chosen.

Exercise 7.15

A set S of mn elements is partitioned into m sets of size n in two different
ways: S = A;U...UA,, = By U...U B,,. Show that the sets B; can be
relabelled so that A; N B; # P for each 1 = 1,... ,m. [Hint: consider the
sets S; = {j: AiN B; # 0}.]

Exercise 7.16

Starting with the four MOLS of order 5 given in Example 7.3, construct
an affine plane of order 5.

Exercise 7.17

An n x n matrix is called a permutation matrix if all entries are 0 or
1, and there is precisely one 1 in each row and each column. Show that,
if M is an n X n matrix with all entries 0 or 1, with exactly m 1s in each
row and column, then M can be written as the sum of m permutation
matrices. Illustrate in the case where M is the matrix given by (9.2) in
Chapter 9.
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Schedules and 1-Factorisations

This chapter deals with the construction of league schedules for sports com-
petitions or, equivalently, experimental designs involving comparisons of pairs
of varieties. The subject matter provides nice connections with latin squares
and edge colourings of graphs, and also provides an introduction to the ideas
of block designs and resolvability which will be studied further in the final
chapter. So the chapter is an exposition of interrelations between apparently
different combinatorial ideas.

8.1 The Circle Method

Suppose that a football league contains eight teams, each of which plays every
other team once. The games are to be arranged for seven Saturdays, with four
games each Saturday, each team playing in one game each Saturday. How can
a fixture list be constructed?

Suppose also that a biology researcher wishes to compare eight types of treat-
ment, comparing each pair of treatments once. During the first week she will
carry out four comparisons, using all eight treatments; then during the second
week another four comparisons, and so on. Construct a suitable schedule of
comparisons for seven weeks.

These two problems are clearly equivalent. Indeed, they are both equivalent to
partitioning the set of edges of K into seven sets of four disjoint edges (i.e. into
seven complete matchings), four edges for each of seven weeks. If we replace
weeks by colours, we see that both problems are equivalent to finding an edge
colouring of K using seven colours.
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Example 8.1

The edge colouring of K4 shown in Figure 5.4(a) shows a 3-colouring using
colours 1,2, 3. It corresponds to the league schedule:

roundl: AvB, CvD
round2: AvC, BvD
round3: AvD, BvC.

For 2n teams, we have to find an edge colouring of K3, using 2n — 1 colours.
We have already seen how to do this in Theorem 5.11. We describe the method
again, in slightly different language.

The circle method

Label the teams by o0, 1,2,...,2n—1, and place 1,2, ... ,2n—1 equally spaced
round a circle with oo at the centre. The case 2n = 8 is shown in Figure 8.1.
In Figure 8.1(a) we have the fixtures for the first day, and Figure 8.1(b) gives
the fixtures for the second day. By rotating the chords we obtain the games

1
7 2
0o
6 3
5 4
(a)
Figure 8.1
for each of the 2n — 1 days. In general, for 2n teams oco,1,...,2n — 1, on day

i we play the games
ivoo,(t—1)v(Ei+1),i-2)v(Ei+2),...,¢-(n-1)v(i+(n-1))

where each integer is reduced (mod 2n — 1) to lie in the set {1,...,2n — 1}.
Example 8.2
Fixture list for eight teams constructed by the circle method.

Dayl oovl 7v2 6v3 5v4

Day2 oov2 1v3 7v4 6v5

Day3 oov3 2v4 1v5 7v6

Day4 oov4 3v5 2v6 1v7

Day5 oovd 4v6 3v7 2vl

Day6 oov6 5v7 4v1l 3v2
Day 7 oov7 6v1 5v2 4v3
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Note that, on day ¢, teams u and v play each other where u+v = 2i(mod 2n-1).
Note too that the schedule is cyclic in the sense that each round is obtained
by adding 1(mod 2n — 1) to each entry in the previous round (oo earning itself
its name: oo + 1 = 00).

The circle method yields a partition of the edge-set of K, into n edge disjoint
perfect matchings (1-factors). The name 1-factor reminds us that each vertex
in a perfect matching has degree 1 in that matching. For example, the edge
colouring of K, in Figure 5.4(a) gives a partition of the edge-set of K4 into
three 1-factors.

Definition 8.1

A 1-factorisation of a graph G with 2n vertices is a partition of the edge-set
into 1-factors.

Thus the circle method establishes the following result.

Theorem 8.1
K, has a 1-factorisation.

Not all graphs with an even number of vertices have 1-factorisations. Indeed,
it should be clear that a graph can have a 1-factorisation only if it is regular,
i.e. if every vertex has the same degree. If each vertex has degree r, then the 1-
factorisation, if it exists, will consist of r 1-factors. Since a 1-factorisation clearly
gives an edge colouring of the graph with the minimum possible number of
colours, and, conversely, an edge-colouring of a graph, regular of vertex degree
A, using A colours, clearly gives a 1-factorisation, we have:

Theorem 8.2

A regular graph G with 2n vertices has a 1-factorisation if and only if it is class
1.

Thus, by Example 5.13, the Petersen graph does not have a 1-factorisation.

Example 8.3

How many 1-factorisations does K have? Let K¢ have vertices a, ..., f, and
suppose that one of the 1-factors in a 1-factorisation is ab, cd, e f. In some other
1-factor we must have edge ac. There are only two possibilities:

ac,be,df or ac,bf,de.
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But the 1-factorisation including

ab cd ef
ac be df
ad
ae
af
can be completed in only one way (check this!) as can
ab cd ef
ac bf de
ad
ae
af

So there are only two 1-factorisations containing the 1-factor ab,cd,ef. Simi-
larly there are only two 1-factorisations containing any other 1-factor. But the
total number of 1-factors is just the number of ways of partitioning a set of six
elements into three pairs, and so, by Corollary 5.2, is 53% = 15. For each of the
15 choices of 1-factor, there are two ways of extending it to a 1-factorisation,
giving 30 1-factorisations altogether. But each distinct 1-factorisation arises
five times in this way, depending on which of the five 1-factors in it is taken
first. So the number of distinct 1-factorisations is % =6.

Thus K¢ has six different 1-factorisations. The number of 1-factorisations of
K, rises dramatically with n: for Kg there are 6240, and for Ko there are
1255 566 720.

Schedules for 2n + 1 teams

If a league schedule is to be arranged for 2n+1 teams, then there can be at most
n games on any one day, with one team resting. Such a schedule corresponds
to an edge colouring of K341 using 2n + 1 colours, as in Theorem 5.11. The
easiest way to obtain such a schedule is use the circle method to construct a
schedule for 2n + 2 teams and then omit all the games involving oo.

Example 8.4

Suppose we want a schedule for five teams. Take the schedule for six teams
given by the circle method:

ocovl 5v2 3v4

ocov2 1v3 4vd

ocov3d 2v4 5Svl

oov4d 3vs 1v2

ocovb 4vl 2v3.
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Omit all the games involving oo, to obtain

5v2 3v4
1v3 4v5
2v4 5v1
3vd 1v2
4v1 2v3.
This is in fact the schedule used in recent years for the Five Nations Rugby

championship involving England, France, Ireland, Scotland and Wales. For ex-
ample, in the final year of that championship (1999), the key was:

1 = England, 2 = France, 3 = Scotland, 4 = Wales, 5 = Ireland.

In the year 2000 the championship became the Six Nations championship with
the inclusion of Italy. The schedule used was that obtained above for six teams,
with the first round oo v 1,2v 5,4 v 3 and with the games involving co being
given suitable home and away orientations. This gave

ocovl 2v5 4v3

2voo 3v1l bHv4

Jvoo 4v2 1vh

oov4d 5v3 2vl

S5voo 1v4 3v2
with the key oo = Italy, 1 = Scotland, 2 = Wales, 3 = Ireland, 4 = England, 5 =
France. In the Five Nations championship the schedule automatically arranged
for each team to alternate home and away games. This is not possible for an
even number of teams (see Exercise 8.10); in the above, each team has one

“break” in the alternating of venues.
Summing up, we have the following theorem.

Theorem 8.3

(i) Foralln > 1, there exists an arrangement of the (%') = n(2n—1) 2-element
subsets of {1,...,2n} into 2n — 1 classes, each class consisting of n disjoint
pairs.

ii) For all n > 1, there exists an arrangement of the (*!) = n(2n + 1) 2-
2

element subsets of {1,...,2n + 1} into 2n + 1 classes, each consisting of
n disjoint pairs, with each element being absent from the pairs in exactly
one class.

There is a natural generalisation of (i). Can the (33") = in(3n - 1)(3n - 2)
3-element subsets (triples) of {1,...,3n} be arranged into 1(3n — 1)(3n — 2)
classes each consisting of n disjoint triples? The case n = 2 is trivial, since
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every triple can be paired with its complement. The case n = 3 was solved by
Sylvester. Here is an elegant solution.

Example 8.5

To put the 84 3-element subsets of {1,...,9} into 28 groups of three triples
such that the triples in each group form a partition of {1,...,9}.

Solution
Consider the following seven square arrays.

123 372 234 318 531 912 261
456 156 756 426 486 453 459
789 489 189 759 729 786 783

For each array we get four groups of 3 triples, from the rows, the columns,
the forward leading “diagonals” and the backward leading diagonals. The first

array gives

123, 456, 789 rows)

159, 267, 348

(

147, 258, 369 (columns)
(forward diagonals)
(

168, 249, 357

Similarly we obtain four partitions of {1,...,9} from each of the other six
arrays. Altogether we obtain 28 groups of three triples, containing between
them all the 84 3-element subsets.

backward diagonals).

There is a remarkable theorem due to Baranyai (1973) which we state without
proof. A proof can be found in [18].

Theorem 8.4
The set of all (%¥) k-element subsets of {1,...,nk} can be partitioned into
L(»*) = (")) classes, each class consisting of n disjoint k-element subsets.

8.2 Bipartite Tournaments and 1-Factorisations
of Ky

Example 8.6

Two schools, Alpha Academy and Beta High School, arrange a tennis match
in which each school is represented by 4 players. Each player is to play each
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player in the opposing team once, and the games are to be arranged in four
rounds, everyone playing in each round. Arrange a schedule.

Solution

Let the players of Alpha Academy be A, ... , A4, and those of Beta High School
be Bl,... ,B4.

Round 1 A;vB;,A; v By, A3 v B;3,Ayv B,
Round 2 A; v B;, Ay v B3, A3 v By, Ay v By
Round 3 A; vBj3, Ay v By,A3v B;,A4v B;
Round 4 A; v By, A; v B;,A3 v By, Ay v Bs.

Note that this schedule can be represented by a latin square M: in the ith
column of M list the subscripts of the opponents of A4; in order:

1 2 3 4
2 3 41
M =
341 2
4 1 2 3
Conversely, any latin square on 1,...,4 can be interpreted as a schedule for

a bipartite tournament by reversing this process. Thus bipartite tournaments
(i.e. tournaments between two teams in which each player of one team plays
every player of the other team) are equivalent to latin squares.

Note also that the solution to Example 8.6 can be re-expressed in terms of a
1-factorisation of the graph Ky 4. In Figure 8.2, the edges of K44 are coloured
using four colours, corresponding to the rounds in which the games (represented
by edges) are played. Thus a 1-factorisation of K, , is equivalent to a bipartite
tournament for two teams of size n.

Figure 8.2
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Since there is a latin square of order n for all n > 1, we have the following
result.

Theorem 8.5

For all n > 1, K,, ,, has a 1-factorisation.

There is another way of representing a bipartite tournament by a latin square.
Define the latin square N = (n;;) by

ni; = k if A; plays B; in round k.

For the schedule in Example 8.5 we obtain

3 4
2 3
N = 1 2
41

W ok =N

1
4
3
2

The square N is conjugate to the square M : n;; = k & my; = j. Other
conjugates of M are obtained similarly by permuting i,j, k. Note that the
transpose M T of M is a conjugate of M : miTj =k & my =k

Another 1-factorisation of K,

The existence of a 1-factorisation of Ky, enables us to give another general
method of constructing a 1-factorisation of Ky, different from the one arising
from the circle method. We describe it in terms of a league schedule.

Given 2n teams, label them z,,... ,z,,y1,...,ysn. We can then construct a
bipartite tournament involving n rounds, in the course of which every z; plays
every y; once. Without loss of generality, we can assume that, for each i,z;
plays y; in the first round.

We now consider two cases.

(i) If n is even, we can then play a league of n — 1 rounds involving the z; in
parallel with a league involving the y;. This will give n — 1 further rounds,
thus completing the required tournament. Here is an example with n = 4.

Example 8.7

T1 VY1 T2VYyz T3Vyz T4VYy
Ty VyY: T2VY3 T3VyYs ZTgVY
Ty VY3 T2VYs T3VYL TaVY2
TiVyYs T2VYr T3VYzs T4VYs
Ty VT2 T3VITy Y1VYz Y3V
T3 VI3 T2VIs Y1VYs Y2VY
Ty VTy To2VI3 Y1VY4 Y2VYyYs
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(ii) If n is odd, this idea does not work; the bipartite tournament cannot
be extended to a full schedule since the games involving the odd number
of z; require n further rounds. But we can adapt the idea. Introduce two
new teams 0o, 00y, and use the circle construction to obtain two schedules
Sz, Sy on {00z, Z1,... ,2Zn} and {00y, y1,. .. ,Yn} respectively, in which oo,
plays z; and oo, plays y; in round 4. For the ith round of the required
schedule, take the ith round games of S; and S, but replace the games
005 Vi and 0oy vy; by the one game z; vy;. The resulting » rounds, along
with all but the first round of the bipartite tournament, give the required

schedule.

Example 8.8

We construct a schedule for n = 3. Here S, is

Qg VI, T2VI3
Qg VI2, T1 VI3
Oz VI3, T3 VI
and a bipartite tournament is
Ty Vy, T2VY2, T3VY3
Ty VY2, T2VY3, T3VY
Ty VY3 T2VY, IT3VY2.
The final schedule is
Ty VY, T2VI3, Y2VY3
T2 VY2, Z1VI3 Y1Vys
I3Vys, T1VZIT2, Y1VYy2
T1VYyY2, T2VY3, T3Vy
VY3, T2VY, T3VyY2.

8.3 Tournaments from Orthogonal Latin

Squares

Court balance

Suppose now that, in the tennis match of Example 8.6, four courts are available,
of differing quality, and it is requested that the games should be arranged so
that, not only does every A; play every B; once, but each player plays once on

each court.

One way to solve this problem is to take the join of two MOLS of order 4,

say
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11 22 33 44
24 13 42 31
32 41 14 23
43 34 21 12

Take the rows as corresponding to the rounds, and the columns as correspond-
ing to the courts. The latin property ensures that each player plays once in
each round and once on each court; orthogonality ensures that every A; plays
every B; once. So we obtain the solution given in Table 8.1.

Table 8.1
Court 1 Court 2 Court 3 Court 4

Round 1 A1 v B] Az v B2 A3 v B3 A4 v 34
Round 2 A2 v B4 A1 v B3 A4 v Bg A3 v Bl
Round 3 A3 v Bg A4 v B] Al v B4 A2 v Bg

Round 4 A4 v B3 A3 v B4 A2 v Bl A1 v Bz

Mixed doubles

Another use of orthogonal latin squares is in the construction of mixed doubles
tournaments. Suppose that Alpha Academy and Beta High School now decide
to play mixed doubles: each school provides four boys and four girls, and each
player is to play in four games, partnering each person of the opposite sex
once, and opposing each player of the other team once. The 16 games have to
be arranged in four rounds, each of four games, each player being involved in
one game in each round.

Let us denote Alpha’s boys by Bj,...,Bs and Beta’s boys by by,... ,bs;
similarly we denote Alpha’s girls by Gi,...,G4 and Beta’s by g; ... , g4. Take
also the MOLS M;, My, M3 of Example 7.2.

We interpret M; as giving the partners of the Alpha boys: if the (z,j)th
entry is k, then B; partners Gx when playing against b;. Similarly M, gives
the partners of the Beta boys: if the (z,j)th entry of M, is £ then b; partners
g¢ when playing against B;. Since My, M, are latin squares, no repetition of
partners occurs. Since the squares are orthogonal, no girl opposes another girl
more than once.

Having obtained the games of the required schedule, it now remains to arrange
them into four rounds. This is achieved by using M3: if the (i, j)th entry of M3
is k, place the game involving B; and b; in round k. Suppose this resulted in girl
G; playing two games in round k. Then we would have two games B,G; v byg;
and B,G; v bzg, in round k. But then the (r,s)th and (u,z)th entries of M3
are both k and the (7, s)th and (u, z)th entries of M, are both i, contradicting
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orthogonality of M; and M3. Similarly the orthogonality of M, and M3 prevents
any girl g; playing twice in one round.

Thus, for example, since the (3,2) entries of M; and M, are 4 and 1, one of
the games will be B3G4 v bag;. Since M3 has 3 in the (3, 2) position, we assign
this game to round 2. In this way we obtain the following schedule:

Round 1 B1Gi1vbigi BaGyvbzgs B3Gavbygs BsG3vbygy
Round 2 B1Gavbegs BaG3zvbygy B3Givbsgs BsGyvbigs
Round 3 B G3vbzgs BasGavbigs B3Gyvbygy BsGpvbsge
Round 4 B1G4vbygs BaGyvbegs B3G3zvbiga ByGyvbzgy

Exercises

Exercise 8.1

Use the circle method to construct a league schedule for 10 teams. Deduce
a league schedule for 9 teams.

Exercise 8.2

Use the method of Example 8.8 to construct a league schedule for 10
teams.

Exercise 8.3

Suppose that the first 7 rounds of a bipartite tournament between two
teams of size n have been constructed (r < n). Can these r rounds always
be extended to a full bipartite tournament?

Exercise 8.4

Find a 1-factor, if one exists, for (a) the Petersen graph, (b) the ethane
graph (Figure 3.4), (c) the graph of an octahedron, (d) the graph of a
cube.

Exercise 8.5

Partition the edges of the graph of an octahedron into two disjoint hamil-
tonian cycles. Deduce that the graph has a 1-factorisation.
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Exercise 8.6

Which of the platonic graphs have a 1-factorisation?

Exercise 8.7

Prove that any hamiltonian graph in which each vertex has degree 3 has
a 1-factorisation.

Exercise 8.8

(a) Imitate Example 8.6 for teams of 5 players.
(b) Obtain a schedule in which each player plays once on each of 5 courts.

Exercise 8.9

(a) Construct a mixed doubles tournament between Gamma Grammar
School and Delta District Comprehensive, with 5 boys and 5 girls in
each team.

(b) Suppose there are 5 courts available. Construct a schedule in which
each player plays exactly once on each court.

Exercise 8.10

In a league schedule for 2n teams it is desired that each team should

alternate home and away fixtures as much as possible. A repetition of

home (or away) fixtures in two consecutive games is called a break.

For example, in Example 8.2, team 6 plays HHAAAAH and so has 4

breaks.

(a) Show that any schedule for 2n teams can have at most two teams
with no breaks, and deduce that there must be at least 2n — 2 breaks
altogether.

(b) Show that a schedule with exactly 2n — 2 breaks can be constructed.
(In Figure 8.1, take the home teams as those alternately at left, right
ends of chords, and alternate co home and away throughout.)

Exercise 8.11

Suppose a league schedule has been constructed for 2n teams, but venues
have not yet been assigned. Show that it is possible to assign venues so
that, in each round, precisely one of the two teams of each first round
game is at home.
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Introduction to Designs

We introduce the idea of a balanced incomplete block design, and look at some
special families of such designs, namely finite projective planes, affine planes,
Steiner triple systems and Hadamard designs. The connection between finite
projective planes and complete sets of MOLS is established. We also describe
the usefulness of difference systems in the construction of designs. Finally we
give a brief introduction to some of the ideas behind error-correcting codes.

9.1 Balanced Incomplete Block Designs

Example 9.1

Seven golfers are to spend a week’s holiday at a seaside town which boasts two
splendid golf courses. They decide that each should play a round of golf on
each of the seven days. They also decide that on each day they should split
into two groups, one of size 3 to play on one course, and the other of size 4
to play on the other course. Can the groups be arranged so that each pair of
golfers plays together in a group of 3 the same number of times, and each pair
plays together in a group of 4 the same number of times?

Solution

Here is one solution: the groups for each day are shown. It can be easily checked
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that each pair plays together once in a group of 3 and twice in a group of 4.

Day1 {1,2,4) {3,5,6,7}
Day 2 {2,3,5} {4,6,7,1}
Day 3 {3,4.6} {5,7,1,2}
Day4 {4,5,7} {6,1,2,3}
Day5 {5,6,1} {7,234}
Day 6 {6,7,2} {1,3,4,5}
Day 7 {7,1,3} {2,4,5,6}

What we have done is to make use of the configuration known as the seven-
point plane, shown in Figure 9.1. In it, there are seven points and seven
lines, with each line containing three points, and each pair of points being in
exactly one line. The groups of size 4 are the complements of the lines of this
configuration.

1

L 4 —

4 5
Figure 9.1 The seven-point plane

~ ¢

Example 9.2

The following subsets of {1,...,6} have the property that each subset has 3
elements and each pair of elements occurs in two of the subsets:

{1,2,3},{1,2,4},{1,3,5},{1,4,6},{1,5,6},
{2,3,6},{2,4,5},{2,5,6},{3,4,5},{3,4,6}.

This example was given by the statistician F. Yates in 1936 in a paper which
discussed the use of balanced designs in the construction of agricultural exper-
iments. Many examples of such designs had been discussed by mathematicians
over the previous hundred years, but his paper crystallised the idea and lead
to much work on the subject by both statisticians and mathematicians.

Definition 9.1

A (v,k,\) design is a collection of k-element subsets (called blocks) of a v-
element set S, where k < v, such that each pair of elements of S occur together
in exactly A blocks. Such a design is also known as a balanced incomplete
block design (BIBD).
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The adjective “balanced” refers to the existence of A, and “incomplete” refers
to the requirement that k < v (so that no block contains all the elements). We
have already seen some examples of balanced designs.

Example 9.3

(i) League schedules. The games of a league schedule for 2n teams form a
(2n,2,1) design; if each team plays each other twice in a season, the games
form a (2n,2,2) design.

(ii) The seven point plane (Figure 9.1) is a (7,3,1) design.
(iii) The design of Example 9.2 is a (6, 3,2) design.

(iv) An affine plane of order n, described at the end of Section 7.4, is a (n2,7n,1)
design.

In particular, an affine plane of order 3 is a (9,3,1) design. It consists of 12
blocks of size 3, such that every pair of elements occur together once in a block.
Block designs with £ = 3 and A = 1 were among the first designs to be studied.

Definition 9.2

A (v,3,1) design is called a Steiner triple system of order v and is often
denoted by STS(v).

Steiner triple systems can exist only for certain values of v. To prove this, we
first obtain the following general result.

Theorem 9.1

Suppose that a (v, k, ) design has b blocks. Then each element occurs in pre-
cisely r blocks, where

AMv—-1)=r(k—-1) and bk=or. 9.1)
Proof

Choose any element z, and suppose it occurs in r blocks. In each of these
r blocks it makes a pair with ¥ — 1 other elements; so altogether there are
r(k — 1) pairs in the blocks involving z. But z is paired with each of the v — 1
other elements A times, so the number of pairs involving z is also A(v — 1). So
A(v — 1) = r(k — 1). This shown that r is independent of the choice of z, since
it is uniquely determined by v, k and A.

To prove that bk = vr, note first that each block has k elements, and so the b
blocks contain bk elements altogether (including repetitions). But each element
z occurs r times in the blocks, so we must have bk = vr.
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Example 9.4

In an affine plane of order n, i.e. a (n?,n, 1) design, we have 1.(n?—1) = (n—~1)r,
so T =n + 1. Also bn = n’r, so b = n(n + 1) = n? + n, as in Section 7.4.

Example 9.5

No (11, 6,2) design can exist, since it would require 2(11 — 1) = 5r, i.e. r = 4,
and 6b = 44, which is clearly impossible.

Theorem 9.2
A STS(v) can exist only if v = 1 or 3(mod 6).

Proof

Suppose a (v, 3, 1) design exists. Then v—1 = 2r and 3b = vr, so that v = 2r+1
(which is odd) and b = §v(v — 1). If v = 6u + 5 then b = £(6u + 5)(6u + 4) is
not an integer; so we must have v = 1 or 3(mod 6).

Note that v = 7 and 9, already dealt with, are of this form. Steiner systems are
so named because Steiner discussed them in an 1853 paper, having come across
them in a geometrical setting. But it had already been shown by Kirkman in
1847 that not only was the condition v = 1 or 3(mod 6) necessary, but it was
also sufficient. So STS(v) exists if and only if v = 1 or 3(mod 6).

Example 9.6

The sets {1,2,5},{2,3,6},...,{9,10,13},{10,11,1},...,{13,1,4,} and the
sets {1,3,9},{2,4,10},...,{5,7,13},{6,8,1},...,{13,2,8} form a STS(13).
Note that the blocks are obtained from {1,2,5} and {1,3,9} by adding 1 suc-
cessively to each element, and working modulo 13. This is similar to the STS(7)
of Figure 9.1 which is obtained from the initial block {1, 2,4} and working mod-
ulo 7. Why this works will be explained in Section 9.5.

Further progress on designs is assisted by the representation of designs by
matrices.

Definition 9.3

The incidence matrix of a (v, k, A) design is the bx v matrix A = (a;;) defined
by
{1 if the 7th block contains the jth element,
aij =

0 otherwise.
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For example, the incidence matrix of the seven-point plane of Figure 9.1, with
blocks {1,2,4},{2,3,5},...,{7,1,3} is

110100 0]
0110100
0011010
0001101 9.2)
1000110
01000011
101000 1]

The first row has 1 in positions 1,2,4 since the first block is {1,2,4}. Note
that the rows correspond to the blocks and the columns correspond to the
elements. Note too that the matrix A depends on the order in which the
blocks and the elements are taken. However, it turns out that the important
properties of A do not depend on the particular orders chosen.

Theorem 9.3

If A is the incidence matrix of a (v, k, A) design, then
ATA=(r=MNI+)J (9.3)

where 7 is as in (9.1), and where J is the v X v matrix with every entry equal
to 1.

Proof

The (i, j)th entry of AT A is the scalar product of the ith row of AT and the jth
column of A, i.e. of the ith and jth columns of A. Thus the (%,7) diagonal entry
is the scalar product of the ¢th column of A with itself, and so is the number
of 1s in the ith column. But this is just the number of blocks containing the
ith element, which is r.

If ¢ # j, the scalar product of the ¢th and jth columns is just the number of
places in which both columns have a 1. This is the number of blocks containing
both the ith and jth elements, which is A. So all diagonal entries of AT A are
r, and all non-diagonal entries are A.

An important consequence of this result is the fact that a (v, k,\) design
cannot contain fewer blocks than elements. This result was first obtained by
the statistician R.A. Fisher in 1940.

Theorem 9.4
In any (v, k, ) design, b > v.

Proof

We give a matrix proof, using Theorem 9.3 and basic properties of determinants
(a purely combinatorial proof is outlined in Exercise 9.21).
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Let A be the incidence matrix of the design. Then, denoting the determinant
of a matrix M by |M|, we have

A A A r A A A
AroA LA A=1T r=2A 0 0
A AT o A= A=T 0 r—A 0
A A A oo A—-r 0 0 e T—=A

on subtracting the first row from each of the other rows. We now add to the
first column the sum of all the other columns to obtain

r+(v-1)A A A A

0 r—A 0 0

|ATA| — 0 0 r—A ... 0
0 0 0 e T =

{r+ (= DA}(r = N)!

rk(r — A\)v7!

since, by (9.1), 7+ (v - 1)A=7+r(k~-1) = rk. Now k < v so, by (9.1),7 > },
and so |ATA| # 0. Now AT A is a v x v matrix and so its rank p(AT A) must
be v. But p(AT A) < p(A), where p(A) < number of rows of A; so p(ATA) < b.
Thus v < b as required.

Example 9.7

We can show that no (25, 10, 3) design can exist. If it did, then (9.1) would give
72 = 9r and 10b = 257, whence r = 8 and b = 20. But this gives b < v.

A (v, k, ) design with b = v is called a symmetric design. Note that if b = v
it follows from (9.1) that r = k and

A(w —1) = k(k - 1). (9.4)
Also, (9.3) reduces to
ATA = (k- NI+ AJ. (9.5)

A symmetric design is not so named because its incidence matrix is symmetric
- usually it is not! - but because of a symmetry between some of the properties
of the blocks and the elements. In a symmetric design we have, since r = k,

every block contains k elements;
every element is in k blocks.
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We also have
every pair of elements is in A blocks
and we are now going to establish that

every pair of blocks intersect in A elements.

Theorem 9.5

If A is the incidence matrix of a symmetric design then AAT = AT A.

Proof

Since AJ = kJ and JA = rJ, it follows from r = k that AJ = JA. Thus
A commutes with J, and so A commutes with (k — \)I + AJ = AT A. Thus
AAT = A{(k= NI +AJ}A™ = {(k= AT+ AJ}AA™ = (k= AT+ )] = AT A.

Corollary 9.6

In a symmetric (v, k, \) design, every pair of blocks intersect in A elements.

Proof

The (3,j)th entry of AAT is the product of the ith row of A and the jth
column of AT, i.e. the product of the ith and jth rows of A. But this is just the
number of columns in which the ith and jth rows both have 1, i.e. the number
of elements in both the ith and jth blocks. By Theorem 9.5 this number is A
whenever ¢ # j.

Once consequence of these symmetry properties is that if we take the incidence
matrix A of a symmetric design and interchange rows and columns (to obtain
AT), the AT is also the incidence matrix of a symmetric design, called the dual
design. For example, the transpose of the incidence matrix of the seven-point
plane of Figure 9.1 is

1000101
1100010
0110001
1011000
0101100
0010110
(00010 1 1]

which is the incidence matrix of the seven-point plane with blocks {1,5,7},
{1,2,6}, {2,3,7},{1,3,4},{2,4,5},{3,5,6}, {4,6,7}. (Note however that the
relabelling 1 =+ 7,2 = 6,...,7 — 1 reveals that this second plane is in fact the
original one in disguise!)
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Complementary designs

Given a (v, k, ) design D, we can obtain another design D from it in which the
blocks are the complements of the blocks of D. D is called the complementary
design of D. In Example 9.1, the blocks of size 4 form such a design which is
complementary to the seven-point plane.

Theorem 9.7

Let D be a (v,k, ) design on a set S, with blocks By, ..., B,. Then the sets
B; = S\B; form a (v,v — k, \') design where X' = b — 2r + A, provided X’ > 0.
Proof

Since |B;| = k for each 1, it is clear that |B;| = v — k for each i. We have to
show that every pair of elements of S lie in exactly A’ of the blocks B;. Now if
T,y € S, then z,y € B; precisely when neither z nor y belongs to B;. But by
the inclusion-exclusion principle, the number of blocks B; containing neither x
nor y is

b — (no. of blocks containing ) — (no. of blocks containing y)
+ (no. of blocks containing both z and y)
=b—-2r+ A

Example 9.8

The complementary design to the seven-point plane is a (7,4, 2) design since
AN =b—-2r+A=7-6+1=2. The blocks of this design are the groups of size
4 in Example 9.1.

Theorem 9.8

The complement of a symmetric design is also symmetric.

Proof

If D is symmetric, b = v, and so D also has b = v blocks.

9.2 Resolvable Designs

Example 9.9 ( The Kirkman schoolgirls problem)

In 1850, Kirkman posed the following problem: “Fifteen young ladies in a school
walk out three abreast for seven days in succession: it is required to arrange
them daily, so that no two shall walk twice abreast”.
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If such an arrangement exists, the triples of girls will form a STS(15). Accord-
ing to the proof of Theorem 9.2, any such design has b = %.15.14 = 35 blocks;
the problem is to group these blocks into seven groups of 5 blocks, the blocks
in each group forming a partition of the set of 15 schoolgirls. This requirement
is similar to that for the games in a league schedule for 2n teams, where the
games (pairs) are arranged into 2n — 1 groups of n games, the pairs in each
group forming a partition of the set of 2n teams.

Definition 9.4

A (v,k, ) design on a set S is resolvable if the blocks can be arranged into r
groups so that each group forms a partition of S. The groups are then called
the resolution or parallel classes.

(Note why there have to be r groups: each element occurs in r blocks, and
has to occur in precisely one block of each group. Note too that a resolvable
design can only exist when k|v.)

Here, for example, is a solution to the Kirkman schoolgirls problem. In this
resolvable (15,3, 1) design the blocks are grouped into seven groups of 5 blocks,
each group partitioning {1,...,15}. Read the groups horizontally.

1,8,15 2,4,10 3,7,12 5,6,9 11,13,14
2,9,15 3,5,11 4,1,13 6,7,10 12,14,8
3,10,15 4,6,12 5,2,14 7,1,11 13,8,9
4,11,15 5,7,13 6,3,8 1,2,12 14,9,10
5,12,15 6,1,14 7,4,9 2,3,13 8,10,11
6,13,15 7,2,8 1,5,10 3,4,14 9,11,12
7,14,15 1,3,9 2,6,11 4,58 10,12,13.

Affine planes

Affine planes were constructed in Section 7.4. Starting with a complete set of
MOLS of order n, we constructed an affine plane with n2 points and n? + n
lines. We also saw that the lines could be grouped into n + 1 groups of n
parallel lines: in other words, the affine plane so obtained was resolvable. We
now show that all (n?,n, 1) designs, no matter how they are obtained, must be
resolvable.

Theorem 9.9

Every (n%,n,1) design is resolvable.

Proof

From (9.1), we have r = n + 1 and b = n? + n. We first show that, given
any block B = {b1,... ,bn} and any element z ¢ B, there is a unique block
containing z which does not intersect B. (Compare this with the following:
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given a line £ and a point P not on ¢, there is a unique line through P which
does not meet £ (i.e. which is parallel to £).)

For each b; € B, there is a unique block B; containing both b; and . Clearly
B; # B; whenever i # j, for otherwise b; and b; would be contained in both B
and Bj;, contradicting the fact that A = 1. So we get n blocks B; containing x
and intersecting B. But altogether there are r = n + 1 blocks containing z; so
there must be exactly one block containing z and disjoint from B.

Next we note that if C; and C, are any two blocks disjoint from B then C;
and C> do not intersect. For suppose z € Cy N Cy; then z would be in more
than one block which is disjoint from B, contrary to what we have just proved.

So consider the n? — n elements not in B. For each such z, there is a unique
block containing z and disjoint from B. Since each block has size n, we therefore
have %=1 — n _ 1 blocks disjoint from B and disjoint from one another, and
thus forming a resolution class with B. So each block is contained in a resolution
class of n blocks, and so the design is resolvable, two blocks being in the same
class if and only if they are disjoint.

We can now use resolvability to get back from affine planes to MOLS.

Theorem 9.10

An affine plane of order n exists <& a complete set of n — 1 MOLS of order n
exists.

Proof

The proof of <= was given in Section 7.4, so we now consider the reverse impli-
cation. Suppose that a (n2?,n,1) design exists. It is necessarily resolvable, and
it has 7 = n + 1 resolution classes. Select two such classes, say {Bi,..., B}
and {C1,...,Cy}. Since each point of the plane lies in exactly one B; and one
C; we can give it unique “coordinates” (i, j).

There remain n — 1 other resolution classes, and we construct a latin square
for each. For the resolution class {Ej, ... , E,}, define an n xn matrix E = (e;;)
by

eij =k where the point (i, j) lies in Ej.

First we check that E is a latin square. If e;; = e;y with j # J then (¢,) and
(i, J) lie in Ej but also in B;, contradicting A = 1. So no row of E has repeated
elements, and a similar argument applies to columns.

Finally we check that if {F},...,F,} is another resolution class then E and
F are orthogonal. So suppose e;; = ery(= k) and fi; = frs(= €). Then (i, j)
and (I, J) both lie in Ex and also in Fy, again contradicting A = 1.

So we obtain n — 1 mutually orthogonal latin squares, as required.
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Example 9.10
Take the affine plane constructed in Example 7.10. Take

B, ={1,2,3}, B, = {4,5,6}, B3 = {7,8,9},
Cy ={1,4,7}, Cy ={2,5,8}, Cs = {3,6,9},
E, ={1,6,8}, E, ={2,4,9}, E; ={3,5,7},
F ={1,5,9}, F, ={2,6,7}, F; = {3,4,8}.

Then, for example, the point (1,1) is 1,(1,2) is 2,(2,3) is 6. Since 1 € Ey,e;; =
1; since 2 € E9,e12 = 2; since 6 € Ep,eq3 = 1. In this way we obtain

1 2 3 1 2 3
E=12 31 and F=131 2|.
3 1 2 2 31

9.3 Finite Projective Planes

In searching for symmetric designs it is natural to look for such designs with
A = 1. The seven-point plane is one such design. In general, if we have a design
with k =n+1and A = 1 then A(v —1) = k(k —1) gives v — 1 = n? +n, so that
the design is a (n2+n+1,n+1,1) design. Conversely, any (> +n+1,n+1,1)
design must, by (9.1), have n? + n = rn and b(n + 1) = (n® + n + 1), so that
r=n+1=kandb=n?+n+1=u;so0 the design must be symmetric.

Definition 9.5

For n > 2, a finite projective plane (FPP) of order nis a (n?+n+1,n+1,1)
design.

Thus in a FPP there are equal numbers of blocks and elements. They mimic the
lines and points of a geometry: any two blocks (lines) intersect in one element
(point), and any two points lie on a unique line. The seven-point plane is a
FPP of order 2.

Example 9.11

The blocks {1,2,4,10},{2,3,5,11},{3,4,6,12},{4,5,7,13}, {5,6,8,1}, ...,
{10,11,13,6},{11,12,1,7},{12,13, 2,8}, {13,1, 3,9} are the lines of a FPP of
order 3, i.e. the blocks form a (13,4,1) design. Note the cyclic nature of the
design (modulo 13). It is now known that such a cyclic FPP of order p exists
for all primes p (modulo p? + p + 1).

We now show the fundamental connection between projective and affine planes.
An artist does not draw parallel lines as parallel; the two sides of a road converge
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as the road disappears into the distance. The artist is using projective geometry
to represent euclidean (affine) geometry. So let us follow this idea, and, for each
of the n + 1 resolution classes of an affine plane of order n, add a “point at
infinity” to each block of that class. Thus, for each i < n + 1, we add a new
point 0o; to each block of the ith class. The blocks now have size n + 1, there
are n? +n + 1 points, and it should be clear that the property of any two points
lying on a unique line is preserved, except that there is no line containing any
two of the new points oo;. So if we introduce one new line {oo1,... ,00n41}
we have a (n? + n + 1,n + 1,1) design, i.e. a FPP of order n. The line thus
introduced is sometimes called the line at infinity.

Example 9.12

Take the affine plane of order 3 used in Example 9.10, and introduce four
“points at infinity”, which we denote by 10,11,12,13. We obtain a FPP of
order 3 with the following lines:

{1,2,3,10} {4,5,6,10} {7,8,9,10}
{1,4,7,11} {2,5,8,11} {3,6,9,11}
{1,6,8,12} {2,4,9,12} {3,5,7,12}
{1,5,9,13} {2,6,7,13} {3,4,8,13}
{10,11,12,13}.

We have thus established one half of the following theorem.

Theorem 9.11

There exists a FPP of order n < there exists an affine plane of order n.

Proof

We have dealt with < above. So now suppose there exists a FPP of order n.
Take any line £ = {p1,... ,pnt+1} of the plane. (We are going to treat it as if
it were the line at infinity.) Since ¢ intersects every other line in exactly one
point, each other line contains exactly one of the p;. So if we throw away £ and
remove its points wherever they occur, we end up with n? + n lines each with
n points. Any two points lie in exactly one line, namely the remnant of the line
of the FPP on which they lay. So we have an affine plane of order n, in which,
for each i, the remnants of the lines of the FPP containing p; form a resolution
class.

Combining Theorems 9.10 and 9.11 together, we obtain the following remark-
able result.

Theorem 9.12

The following statements are equivalent.
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(i) There exists a complete set of n — 1 MOLS of order n.
(if) There exists an affine plane of order n.
(iii) There exists a finite projective plane of order n.

In view of Theorem 7.2 and the note following, FPPs of prime power order
exist. It is conjectured that if n is not a prime power then no FPP of order n
exists. This has been confirmed for n = 6 and 10, but the case n = 12 is still
open.

9.4 Hadamard Matrices and Designs

We begin this section by introducing a family of matrices all of whose entries
are +1. From these matrices an important family of designs will be obtained.

Two vectors will be called orthogonal if their scalar product is 0. For ex-
ample, any two row vectors in the matrix

1 1 1 1
1 -1 1 -1
C
1 1 -1 -1 (96)
1 -1 -1 1

are orthogonal, as are any two columns.

Definition 9.6

A (+1,-1) matrix is a matrix all of whose entries are £1. An n x n (+1, -1)
matrix H is a Hadamard matrix of order n if HHT = HTH = n].

Note that HHT = nl is essentially saying that H is invertible with inverse
L HT. Since a matrix commutes with its inverse, either of the properties HHT =
nl and HTH = nI follows from the other. Note too that HHT = n[ is precisely
the property that any two rows of H are orthogonal, and similarly HTH = nl
is equivalent to demanding that the columns of H are orthogonal. Hadamard
matrices are so named after Jacques Hadamard who, in 1893, showed that any
real n x n matrix H, whose entries h;; all satisfy |hij| < 1, has determinant
at most n"/2, equality occurring only if HHT = nI. But since then Hadamard
matrices have cropped up in many areas of combinatorics, and have even been
behind the sending of photographs from Mars to Earth. This will be explained
in the final section.

There is a straightforward way of constructing Hadamard matrices of order
2m,

Let

H(]:{].], Hl:’:l 1]
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and, for each m > 1, define H,, inductively by

Hm—l Hm-l

H =
m Hm—l —dIm-—1

Then it is straightforward to check that H,, is a Hadamard matrix of order
2™; consider the scalar product of any two of its rows. Thus, for example, H,
is just the matrix (9.6).

But for other values of n does a Hadamard matrix of order n exist?

We shall show that if n > 2 then n has to be a multiple of 4. Before proving
this, it is helpful to note that if we have a Hadamard matrix and we multiply any
row or column by —1 then the resulting matrix is still Hadamard; orthogonality
of the rows and columns is preserved. So we can always normalise a Hadamard
matrix, i.e. make every entry in the first row and the first column equal to +1.

Theorem 9.13

If there exists a Hadamard matrix H of order n > 2, then n must be a multiple
of 4.

Proof

Assume that H has been normalised, so that the first row has +1 in each
position. Since the rows are orthogonal, the second row must have the same
number of +1s and —1s; so there must be 3 +1s and § —1s, so that n is
necessarily even. By rearranging the order of the columns, we can suppose that

H has first two rows

11 .+ 1 1 1 -

11 -+ 1 -1 -1 .- -1
If n > 2, consider the third row of H. Suppose that h of its first % entries are
+1, and k of its second % entries are +1. Then § — h of its first Z entries are
~1,and % —k of its second # entries are —1. Since the first and third rows are
orthogonal, n n

h—(g—h)‘i"k—(i—k)zo,

i.e. h+k = %. Also, since the second and third rows are orthogonal,
n n
h—(§—-h)—k+(§—k)—0,
i.e. h=k. Thus h = k = %, and n has to be a multiple of 4.

Since a similar argument can be applied to the columns, we have:

Corollary 9.14

In any normalised Hadamard matrix of order 4m, any two columns other than
the first have +1s together in exactly m places.
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Hadamard designs

If a Hadamard matrix of order 4m exists, we can obtain a design from it.
The basic idea is to take a normalised matrix, remove its first row and column,
replace each —1 by 0, and interpret the resulting matrix as the incidence matrix
of a design.

Theorem 9.15

If a Hadamard matrix of order 4 exists, then a (4m —1,2m —1,m — 1) design
exists.

Proof

Let H be a normalised Hadamard matrix of order 4m. As in the proof of
Theorem 9.13, each row and column of H, apart from the first, must have
2m +1s and 2m —1s. Remove the first row and column of H, and replace each
—1in the resulting matrix by 0. This results in a (4m—1) x (4m--1)(0, 1)-matrix
A in which every row and every column has 2m 0s and 2m — 1 1s.

We interpret A as the incidence matrix of a (necessarily symmetric) design.
It has 4m — 1 blocks and 4m — 1 elements; each block contains 2m — 1 elements
and each element lies in 2m — 1 blocks. Consider now any two elements. The
columns of A corresponding to these two elements have (by Corollary 9.14)
m — 1 1s together, i.e. these two elements occur together in exactly m — 1
blocks. So the design is balanced with A = m — 1.

Definition 9.7
A (4m —1,2m — 1,m — 1) design is called a Hadamard design.

Example 9.13

The doubling construction gives, from (9.6), a normalised Hadamard matrix of
order 8. Removing the first row and column and changing every —1 to 0 gives
the following matrix:

0101010
1001100
0011001
1110000 (9.7)
0100101
1000011
0001011 0]

This is the incidence matrix of a (7,3, 1) design, i.e. a FPP of order 2, whose
blocks are:

{2,4,6},{1,4,5},{3,4,7},{1,2,3},{2,5,7}, {1,6,7}, {3,5,6}.
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There is, in fact, essentially only one FPP of order 2. The plane just found
can be “converted” into the plane of Figure 9.1 by replacing 1,2,3,4,5,6,7 by
1,6,5,4,2,3,7 respectively.

The construction presented in the proof of Theorem 9.15 can be reversed:
given a Hadamard design, replace each 0 in the incidence matrix by —1 and add
a first row and column with all entries +1. The resulting matrix is Hadamard.
So we have the following result.

Theorem 9.16

A Hadamard matrix of order 4m exists < a Hadamard (4m —1,2m —1,m —1)
design exists.

This result enables us to construct Hadamard matrices of order 4m provided
that we can construct the corresponding design. Many methods of constructing
Hadamard designs have been found, but we give only the simplest of these
constructions.

Let p be any prime of the form p = 4m — 1, and take the squares of
1,2,...,4(p — 1) (mod p). For example, if p = 7, the squares of 1,2,3 are
1,4,2 (mod 7) since 9 = 2 (mod 7). So we obtain the set {1,2,4} which we
observe is precisely the set used to generate the seven-point plane in Exam-
ple 9.1. In general, starting with any prime p = 4m — 1, the set of squares
of 1,2,...,3(p — 1) (mod p) acts as a starting block for a cyclic Hadamard
(4m —1,2m — 1,m — 1) design. This will be justified in the next section (The-
orem 9.18). See the appendix for details of squares (mod p).

Example 9.14

Take p = 11. The squares of 1,...,5 (mod 11) are 1,4,9,5,3. So take the
set {1,3,4,5,9} as the starting block and obtain other blocks by successively
adding 1 (mod 11) to each entry of the block. The resulting (11,5, 2) design has
incidence matrix

rr o111000 10 07
01011100010
00101110001
10010111000
01001011100
00100101110 (9.8)
00010010111
10001001011
11000100101
11100010010

Lo 11100010 0 1]
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and from this we obtain the following Hadamard matrix of order 12 (where
+, — stand for +1, —1 respectively)

4+ + + + + + o+ A+ 4+
4+ -+t + - - =+ - -
+ -+ -+ + + - = - + -
+ - -+ -+ + + - - -+
+ 4+ - =+ -+ 4+ + - - -
+ -+ - - 4+ - + + + - -
+ - -+ - -+ - 4+ 4+ + -
+ - - -+ - - 4+ - + + +
+ + - - = + - = 4+ - 4+ 4+
+ + + - - -+ - - 4+ - +
+ 4+ + + - - =+ - =+ -
[+ -+ + + - = - + - - + |

It is conjectured that a Hadamard matrix of order 4n exists for all positive
integers n. But this is far from being proved.

9.5 Difference Methods

The seven-point plane can be constructed by starting with {1,2,4} and obtain-
ing further blocks by adding 1 (mod 7) successively, to obtain {2, 3,5}, {3,4,5},
etc. What is special about the choice of 1,2,4 which makes the method
work? Similarly, the block {1,3,4,5,9} was used in Example 9.14 to obtain
a Hadamard design; what is special about this choice?

Consider the differences between elements of {1,2,4} modulo 7. They are
+(2-1),+(4 - 2),£(4 - 1), i.e. £1,42,43,i.e. 1,2,3,4,5,6, i.e. all the non-
zero numbers (mod 7), each occurring once. Similarly, consider the differences
between elements of {1, 3,4, 5,9} (mod 11); they are +£2, +3, +4, +8, +1, +2, +6,
+1,+5,+4,ie. +1,£2, £3, +4, +5 twice, i.e. all the non-zero numbers (mod 11)
each occurring twice. Note that the first gives rise to a design with A = 1, and
the second gives rise to a design with A = 2.

Definition 9.8

(i) Let Z, denote the integers modulo v. A k-element subset D = {d, ... ,di}
of Z, is called a cyclic (v, k,\) difference set if A > 0,2 < k < v, and
every non-zero d € Z, can be expressed as d = d; — d; in exactly A ways.

(ii) If D is a difference set, the set D +a = {d; +a,...,di -+ a} is called a
translate of D.

Thus the seven-point plane of Example 9.1 consists of the translates of {1,2,4}.
This is a special case of the following general result.
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Theorem 9.17

If D = {di,...,dc} is a cyclic (v,k,\) difference set then the translates
D +1,0 <17 <wv-—1, are the blocks of a symmetric (v, k, ) design.

Proof

Here D + ¢ = {dy +1,...,dr +1}. Clearly there are v translates, each of size
k. So we have only to check the balance property. Two elements z,y are in the
same translate D + a if and only if r = a + d;,y = a + d; for some i # j, i.e.
z—-a=d;,y—a=djie (r—a,y—a)is one of the X pairs (d;, d;) such that
di - dj =Tr—Yy.

We can now see why the “starter” block {1,2,4,10} in Example 9.12 gives rise
to a FPP of order 3. The differences are +1,+3,+9,+2, 48,46, i.e. all the
non-zero numbers (mod 13), each once, so {1,2,4,10} is a (13,4,1) difference
set.

Example 9.15

(i) {1,2,5,15,17}is a (21,5,1) difference set in Zy;, and its translates form a
FPP of order 4.

(i) {1,2,7,19,23,30} is a (31,6, 1) difference set, leading to a FPP of order 5.

(iii) {1,3,4,5,9}is a (11,5, 2) difference set and its translates form a (11,5, 2)
design as in Example 9.14.

(iv) The set {2,6,7,8,10,11}, which is the complement of the difference set
of (iii), is itself a (11,6, 3) difference set, the translates of which are the
blocks of a (11,6, 3) design. This design is the complementary design (The-
orem 9.7) of the Hadamard (11,5, 2) design of Example 9.14.

It is now known that a (p? +p+1,p+1,1) difference set exists for all primes p,
leading to a cyclic FPP in each case. It cannot be emphasised too strongly how
useful this difference set technique is in the construction of symmetric designs.
Of course the method is useful only if difference sets can be constructed. One
method of construction was mentioned in the previous section in connection
with Hadamard designs, so we now show why that method of construction
works.

The number-theoretic facts required for the proof can be found in the ap-
pendix.

Theorem 9.18

Let p = 4m — 1 be prime. Then the non-zero squares in Z, form a
(p, 3(p— 1), ;(p — 3)) difference set.
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Proof

Since (—z)? = z?, each square arises twice; as shown in the appendix, exactly
half of the non-zero elements of Z, are squares. Thus there are %(p— 1) non-zero
squares.

Let w be any non-zero square, say w = t?(mod p). Then for each represen-
tation 1 = z? — y? as a difference of squares, there corresponds the repre-
sentation w = (tx)? — (ty)2. Conversely, if s is the inverse of t(mod p), then
corresponding to each representation w = z2 — 32 we have a representation
1 =t = sw = (sz)? — (sy)2. So all non-zero squares w in Z, have the same
number of representations as a difference of squares.

Further, since p = 3(mod 4), —1 is not a square in Z, and the non-squares are
precisely the negatives of the squares. So, corresponding to any representation
z = % — y? of the non-square z, we have the representation —z = y2 — z2 of
the square —z. So all non-squares and squares have the same number, say ),
of representations as a difference of squares. The value of ) is obtained from
A(v=1) = k(k—1): we have A(p—1) = 5(p—1)- ;(p—3), whence A = }(p-3).

This difference method can be extended to non-symmetric designs. For example
consider the construction of a league schedule for 2n teams as described in
Section 8.1. Apart from the game involving oo, the first round games were

1v(2n-12),2v(2n-3),...,(n - 1) vn.

The pairs {1,2n — 2},{2,2n — 3},...,{n — 1,n} have differences £(2n —
3),£(2n —5),...,+£1, i.e. every non-zero member of Zg,_;.

Again, consider the STS of order 13 presented in Example 9.7. The blocks are
the translates of the two initial blocks {1,2,5} and {1,3,9}. These two blocks
have differences +1, +3, +4 and +2,+6,+8, i.e. all the non-zero members of
Z13, each exactly once.

Example 9.16

The blocks {1,2,9}, {1,3,17}, {1,5, 14} have differences +1, 7, £8, +2, +14,
+16, +4, +9, +13 (mod 19), i.e. each non-zero element of Zy once. So the
translates will form a STS(19).

9.6 Hadamard Matrices and Codes

A binary code is a collection of n-digit binary sequences, called codewords.
If codewords are transmitted then it is possible that errors will arise due to
interference, and so the received codewords may differ in some places from
those that were sent. The basic idea behind an error-correcting code is to choose
the codewords to be sufficiently different from each other so that even if some
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errors in transmission occur, each received word is “closer” to the transmitted
codeword than to any other. We have here the concept of the distance between
two codewords, namely the number of places in which they differ. If all the
codewords are chosen so that each pair differ in at least 2¢ + 1 places, then,
even if ¢ errors are made in the transmission of a codeword, the received binary
sequence will still be closer to the original than to any other, and hence can be
correctly decoded as the codeword nearest to it.

Definition 9.9

A binary code of length n is a set C of n-digit binary sequences, called code-
words. The (Hamming) distance d(x,y) between any two codewords x,y is
the number of places in which they differ. If d(x,y) > 2t + 1 for all codewords
X,¥,X # Yy, the code C is said to be a t-error-correcting code.

Example 9.17

The four codewords 0000000,1111111,1010101,0101010 differ from each other
in at least 3 places, and so form a l-error-correcting code. For example, if
1010101 is sent, and due to interference 1110101 is received, 1110101 is closer
to 1010101 than to any other codeword and hence will be decoded correctly.

There are two conflicting aspects of a code. Given n, it would be desirable
to have the minimum distance between any two codewords as big as possible
(to enhance error correction) but it would also be desirable to have as many
codewords as possible. But these properties conflict: you cannot have too many
codewords which are all a large distance apart. So we have a fundamental
problem: given n and k, how many binary sequences of length n can we find
such that each pair of binary sequences differ in at least k places?

We shall look at a particular case of this problem, namely when k = [3].
First we consider the case when n is odd.

Lemma 9.19

Suppose that there are N binary sequences of length n = 2m — 1, any two of
which differ in at least m places. Then N <n + 1.

Proof

Consider the N sequences as the rows of an N x n (0, 1)-matrix. Let S denote
the sum of all the distances d(x,y) between the sequences:

S=>dxy).

x#y

Here the sum is over all (2’ ) pairs of distinct sequences x,y.
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We shall count S in two different ways. For each pair x,y,d(x,y) > m; so
we obtain immediately that

S> (1;’ )m (9.9)

Now consider the jth column of the matrix. If it contains a; Os and b; 1s, then
aj +bj = N and, since each of the a; 0s gives a difference with each of the b;
Ls, there is a contribution of a;b; to S from this column. So § = 37, a;b;.
Now it is easily checked (e.g. by calculus) that if z+y = N, then the maximum
possible value of zy is &-. So each a;b; is at most NT2, and we have:

2
Sgn-l—i—. (9.10)

From (9.9) and (9.10) we obtain
N(N —-1) _nN?
< -

2 4’
whence
(2m —n)N < 2m,

i.e. (since n = 2m — 1)
N<n+1.

Example 9.18

How many codewords of length 11 can be found, such that each pair differ in
at least 6 places?

Solution

By Lemma 9.19, we cannot hope to find more than 12 such codewords. But,
further, we can find as many as 12 by using the Hadamard design of Example
9.14. The 11 rows of the incidence matrix (9.8) each have 5 1s; but any two
rows share only two 1s; so any two rows differ in 2 x (5 —2) = 6 places. So if we
take the 11 rows as codewords, along with the row of all 1s (which will differ
from the other 11 in 6 places), we obtain 12 codewords as required.

Corollary 9.20

Let C be a code of length n = 2m, containing N codewords, each pair of which
differ in at least m places. Then N < 2n. Further, if a Hadamard matrix of
order n exists, then there exists such a code with 2n codewords.

Proof

Consider the codewords of C which begin with 0. Omitting this 0 from them,
we obtain codewords of length 2m — 1 differing in at least m places. By Lemma,
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9.19 there can be at most 2m such codewords. Similarly, there can be at most
2m codewords of C beginning with 1; thus C has at most 4m = 2n codewords.

If n = 2, then € = {11,10,01, 00} satisfies the requirements. So suppose now
that there exists a Hadamard matrix H of order n > 2. Then n = 4u for some
u. Any two rows of H differ in exactly 2u = 7 places, and agree in exactly %
places.

Let A denote the matrix obtained from H by replacing —1 by 0, and let A
denote the matrix obtained from A by interchanging Os and 1s. Then any two
rows of A differ in at least % places, as do any two rows of A and a row of A
and a row of A differ in either  or all n places. So the rows of A and A give
the required 2n codewords.

Example 9.19

Take the Hadamard matrix Hy constructed by the duplication method of Sec-
tion 9.4. It has 32 rows and columns. Let A denote the matrix obtained from
Hjs by replacing each —1 by 0, and let 4 be obtained from A by interchanging
0s and 1s. Then the rows of A and A form a code of 64 codewords of length
32, each differing in at least 16 places; so the code is 7-error-correcting. Such
a code was used in the 1972 Mars Mariner 9 space probe to Mars, to send
photographs back to Earth. Each photograph consisted of lots of dots of dif-
ferent shades of grey (64 shades needed 6-digit binary sequences to represent
them, since 26 = 64), and the sequence of coded shades was encoded using the
7-error-correcting code which we have just described. The resulting pictures
were remarkably good!

More recent spaces probes have used much more sophisticated codes, as do
compact discs and other modern gadgets. We refer the reader to Hill [12] for a
good introduction to coding theory.

There is one final connection between codes and Hadamard designs with
which we shall bring this chapter to a close. Before describing it, we need first
to find a bound on the number of codewords in a t-error-correcting code.

Theorem 9.21

If C is a binary t-error-correcting code of length n, then
n n n
. e <™ .
e-{(6) + (1) ¢+ ()= o
Proof

Any two codewords of C differ in at least 2t + 1 places. Thus any sequence
differing from a codeword x in at most t places will be corrected to x.

Now, for each ¢, 0 < ¢ < ¢, there are (7) binary sequences of length n differing
from x in i places; so the number of sequences correctable to x is Y¢_g (7).
Thus, since there are |C| possible choices of x, there must be at least |C| 3¢_, (7)
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binary sequences of length n. Since there are precisely 2" binary sequences of
length n, the result follows.

A code C is said to be perfect if there is equality in (9.11). For such a code C,
every binary sequence is correctable to a codeword of C, i.e. every sequence is
at distance at most ¢ from a unique codeword. Note that for equality to hold

in (9.11), we must have () +--- + (7) equal to a power of 2.

Example 9.20

A perfect 1-error-correcting code C of length n can exist only when
IC]- (1 +n)=2™

Consider the case n = 7, so that |C| = 16. We can construct such a code by
taking the seven rows of the matrix (9.7), the seven codewords obtained from
these by interchanging Os and 1s, and the row of all Os and the row of all 1s.
This gives 16 codewords as follows.

01 01010 1010101
1001100 0110011
0011001 1100110
1110000 0001111
0100101 1011010
100 0011 0111100
0010110 1101001
00 0O0O0TO OO 1111111

Another way of obtaining these codewords is to take four of them which are
linearly independent over Zs, and to take all linear combinations of them over
Zsy. In other words, we choose four linearly independent codewords cy, ... ,c4
and take all linear combinations Aje; + Aaca + Azc3 + A\gcq where each \; is 0
or 1. For example, if we take the first four codewords above,

c; = 0101010, cp =1001100, ¢3 =0011001, ¢4 = 1110000,

we then have
0100101 = c2 +c¢3 +cq,

1010101 = C2 + C3,

etc. Thus C consists of all linear combinations (mod 2) of the rows of the matrix

0

[N o]
SO O -
o = OO

1
1
1
0

= =)
—_ O O

0
1
1

which is called a generator matrix for C. C is called a linear code. Lin-
ear codes have special advantages over other codes. They all include 0 as a
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codeword, and the minimum distance between any two codewords is just the
minimum distance of codewords from 0, i.e. the minimum number of 1s in a
non-zero codeword (see Exercise 9.19). In the above example, this number is
clearly 3, so the code is 1-error-correcting. For each n of the form 2™ — 1 there
is a perfect linear 1-error-correcting code of length n whose generating matrix
has k rows, where k = n — m. These Hamming codes are described in [12].

For t > 1, perfect t-error correcting codes are rare. But there is one jewel
corresponding to the identity

)+ )+ () (3) -

A perfect 3-error-correcting code of length 23 was presented by Golay in 1949,
and our final task is to explain what this code is.

Example 9.21 (The perfect Golay code Ga3)

Recall from Example 9.15(iv) that {2,6,7,8,10,11} is a (11,6,3) difference
set (mod 11) whose translates form the design complementary to a Hadamard
(11,5,2) design. Let A denote the incidence matrix of this (11, 6,3) design:

010007111011
10100011101
A=l11010001110
Then define the matrix
1 0
1 I” 0 A
B = :
1 0
0fo oj1 1 o 1

Then B is a 12 x 24 (0, 1)-matrix. The code Gas is then obtained by removing
the first column of B and taking all linear combinations of the rows of the
resulting 12 x 23 matrix. The reason for first including the first column of B
is that it makes the arithmetic of the argument simpler. It is clear that, since
the rows of A differ in 6 places, any two rows of B differ in at least 8 places.
Qur aim is to show that any two linear combinations of rows of B differ in at
least 8 places, and so any two codewords of Ga3 will differ in at least 7 places.
We have to show that, if x is a non-zero linear combination of rows of B, then
w(x) > 8 where w(x), the weight of x, is the number of 1s in x. We do this
by a sequence of observations. Let V denote the set of linear combinations of
rows of B.
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(i)

(it)
(iii)

(iv)

(vi)

wx+y)=wkx)+w(ly)—2x-yforalx,yeV.

This follows since w(x) + w(y) counts twice any 1s in the same place in
x and y, but these 1s add to 0 (mod 2) and hence have to be subtracted
twice.

Every row of B has weight 8 or 12.

If x and y are any two rows of B, x -y is even.

This follows since any two rows of A have 1s together in exactly 3 places.
If x and y are any two rows of B,w(x +y) is a multiple of 4.

This follows from (i), (ii) and (iii).

If x €V and y is a row of B, then x - y is even.

This is proved by induction. For the induction step consider x = z+r where
r is a row of B and z is the sum of k rows of B. Thenx-y = (z+7r) -y =
z-y+r-y (mod 2), which is even since z -y is even by induction hypothesis
and r -y is even by (iii).

If x € V then w(x) is a multiple of 4.

Again, this follows by induction. For the induction step take x = z +r as
in (v). Then w(x) = w(z) + w(r) — 2z - r. But w(z) is a multiple of 4 by
hypothesis, w(r) is a multiple of 4 by (ii), and z - r is even by (v).

Since each x € V has weight a multiple of 4, it follows that, to prove w(x) > 8,
we need only show that w(x) = 4 is impossible. This is achieved by considering
the left half and the right half of each x € V. Denote by wy(x) and wg (x) the
weights of the left and right halves of x respectively.

(vii)

(viii)

(x)

wy,(x) is even for all x € V. This follows since if x is the sum of an even
number of rows of B then the 1s in the first column sum to 0(mod 2),
leaving an even number of 1s from I;;, while if x is the sum of an odd
number of rows, x has 1 in the first position and an odd number of 1s from

wr(x) = 0,wr(x) = 4 is impossible.

For if wy,(x) = 0 then x is either 0 (in which case wgr(x) == 0) or the last
row of B (in which case wg(x) = 12).

wr(x) = wr(x) = 2 is impossible.

For if wy,(x) = 2 then x must be the sum of one or two of the first 11 rows
of B, possibly together with the last row of B. But the weight of the sum
of one or two rows of A is 6 > 2, and if the last row of B is added the
resulting x has wgr(x) =6 > 2.

wy, (x) = 4,wr(x) = 0 is impossible.
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Here x must be the sum of 3 or 4 of the first 11 rows of B. If x is the
sum of 3 rows, let r be any other of the first 11 rows. Then, since wg (x) =
0,wr(x+r) =6, and wy(x+r) = 4, giving w(x+r) = 10, contrary to (vi).
If x is the sum of 4 rows of B, let t be one of them. Then x = z + t where
z is the sum of 3 rows of B. Then wy,(z) = 4, and wr(z) = wr(x +t) =
wgr(t) = 6 since wgr(x) = 0. So w(z) = 10, again contradicting (vi). So
wy,(x) = 4, wr(x) = 0 is impossible.

Thus the minimum weight of non-zero sums x € V is indeed 8, and the minimum
weight of a non-zero codeword of Go3 is indeed 7. Thus Gaj is a 3-error-correcting
code as required.

The code G23 has remarkable connections with Steiner systems; the reader is
referred to [2] for further details.

Exercises

Exercise 9.1
Show that no (a) (17,9,2), (b) (21,6,1) design exists.

Exercise 9.2

How would you construct a (13,9,6) design?

Exercise 9.3

Use (9.1) to show that (a) vr(k — DA = r2(k — 1)? + r(k — 1)),
(b) (k—DA=(k—=1)r—(v—k)A

Exercise 9.4
Show that, in a symmetric (v, k, ) design, k — 1 < Vv < k.

Exercise 9.5

Deduce from the proof of Theorem 9.3 that if a (v, k, A) symmetric design
exists then its incidence matrix A satisfies |[A|> = k2(k — A)*~!. Hence
show that if a symmetric design exists with v even then k — A must be
a perfect square. Hence show that no (34,12,4) or (46,10, 2) design can
exist.
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Exercise 9.6

Write down the parameters (b,v,r, &, A) for the complementary design
of (a) an affine plane of order n, (b) a (4m —1,2m —1,m ~ 1) Hadamard
design.

Exercise 9.7

How would you construct a (15,7, 3) design?

Exercise 9.8

How would you construct a Hadamard matrix of order 24?

Exercise 9.9

Show that if D = {d,,... ,dx} is a (v,k,A) difference set in Z; then
—D = {~dy,... ,—di} and all translates of D are also (v, k, A) difference
sets.

Exercise 9.10
Verify that {1,2,3,5,6,9,11} yields a (15, 7, 3) design.

Exercise 9.11

Verify that {1,2,8,20,24,45,48,50} is a difference set (mod 57) which
yields a FPP of order 7.

Exercise 9.12
Verify that {1,8,11,12,24} and {1,6,15,21,23} yield a (41,5, 1) design.

Exercise 9.13

Verify that the translates of {1,2,13},{1,4,9},{1,3,10}, {1,5, 11} form
a STS(25).
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Exercise 9.14

Verify that the sets {1,2,7},{1,3,14},{1,5,13}, {1,4, 11} have as differ-
ences all non-zero elements of Z47 except 9 and 18. Deduce that their
translates, along with nine translates of {1,10,19}, form a STS(27).

Exercise 9.15

Take a 6 x6 latin square L, and the 6 x6 “natural” array N with 1,... ,36
in natural order (cf. the 4 x 4 N at the beginning of Section 7.4). Call
1, ] associates if they are in the same row or column of N or if they are
in positions in N where the corresponding entries in L are equal. Let
B; = {j <36 :1 and j are associates}. Show that By, ..., B3¢ are the
blocks of a symmetric (36,15, 6) design.

Exercise 9.16

(a) Show that if A is a square (0,1) matrix and B is obtained from A
by replacing each 0 by —1 then B =24 — J.

(b) Show that if A is the incidence matrix of a symmetric (v, k, A) design
then B = 2A — J is a Hadamard matrix if and only if v = 4(k — A).

(c) Deduce that Exercise 9.15 enables a Hadamard matrix of order 36
to be constructed.

Exercise 9.17

Can you construct a Hadamard matrix of order 4m for all m up to 127

Exercise 9.18

By following the proof of Lemma 9.19, show that if a code has N code-
words of length n, each differing in at least d places, where d > %, then
N < %. (This is called Plotkin’s bound.)

Exercise 9.19

Show that in a linear code the minimum distance between two non-equal
codewords is the minimum weight of a non-zero codeword.

Exercise 9.20

Show that if a perfect 1-error-correcting code of length n exists then a
STS(n) exists.
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Exercise 9.21

(A non-matrix proof of Fisher’s inequality.) Choose any block B, and
let z; denote the number of blocks intersecting B in exactly ¢ elements.

Show first that (a) 3=, zi(3) = (5)(A = 1), (b) 3,4z = k(r — 1).

Let m denote the average value of |B N C| taken over all blocks C' # B.
Thus (c) m(b—1) = Y, iz;.

Show that 3_,(i — m)2z; > 0 yields

(d) (0— Dk(k—1)(A=1)+ (b— Dk(r — 1) > k%(r — 1)2.

Now use (9.1) and Exercise 9.3 to deduce that (r — k)(r — A)(v — k) > 0.
This implies r > k, whence b > v.

(By now you will be glad of the matrix proof!)
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Arithmetic modulo n

Let n > 2 be an integer. If a,b are integers, we say that a is congruent to b
modulo n (and we write a = b(mod n)) whenever a and b differ by a multiple
of n, i.e. whenever n divides a — b. Thus, for example,

8=3(mod5), 2=10(mod4), 20001= —99 (mod 100).

Let Z,, denote the set {0,1,...,n — 1} in which addition and multiplication
are carried out mod n. (Sometimes 0 is replaced by n.) For example, in Zjg,
7 x 8 = 2 since 56 = 2 (mod 9).

Here are the addition and multiplication tables for Zs.

+]0 1 2 3 4 x|0 1 2 3 4
oo 1 2 3 4 0o 0 0 0 0
1(1 2 3 40 10 1 2 3 4
2|12 3 4 01 210 2 4 13
313 401 2 30 3 1 4 2
414 01 2 3 410 4 3 2 1

If p is prime, Z, has the properties that characterise a field. Note that if p|ab
then pla or p|b, i.e. if ab = 0 (mod p), then @ = 0 or b = 0. Thus the multi-
plication table for Z, — {0} has no 0s. (This is unlike the situation in Zg, for
example, where 2 x 3 = 0.) Next observe that if p { ¢t (i.e. p does not divide
t) then ¢,2¢,...,(p — 1)t are all distinct (mod p): for if ta = tb (mod p) then
plt(a — b) whence p|(a — b), i.e. a = b(mod p). Thus t,2t,...,(p — 1)t are just
the same as 1,2,... ,p — 1, but in a different order. The first consequence of
this is that there must be some s,1 < s < p—1, such that st = 1 (mod p). Thus
each nonzero member ¢ of Z, has an inverse which we can denote by t~1. For
example, since 2 x 3 = 1 in Zs, the inverse of 2 is 3, i.e. 271 = 3 in Zs.
The second consequence arises from the congruence

t2t...(p—1)t=12....(p—1) (modp)

179
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ie.
*"Y(p—1)! = (p— 1)! (mod p).

Multiplying by the inverse of (p — 1)! gives Fermat’s theorem
tP~! = 1 (mod p) whenever ptt.

For example,
3571 = 3% =81 = 1 (mod 5).

There is a further consequence of the existence of inverses. First note that
the only two numbers (mod p) which coincide with their inverse are 1 and
~1. (Forz? =14 (r—-1)(z+1) =0 z=1lor —1 (modp).). Consider
(p-1!'=1.23...(p—2).(p—1). The numbers from 2,...,p — 2 must consist
of 1(p — 3) pairs of numbers and their inverses; and so the product of all these
numbers must be 1. So (p — 1)! = 1.1.(p — 1) = —1 (mod p). Thus we obtain
Wilson’s theorem:
(p—-1)!= -1 (mod p).

Squares and non-squares in Z,

Let p be an odd prime: p = 2k + 1. Then the numbers 12,22,...  k? are all
distinct (mod p); for if 22 = y? then (z — y)(z +y) = 0 (mod p) so that z = y
or z = —y (mod p). But z = —y is impossible, so z = y.

Since (p—z)? = (—z)? = 22 (mod p), it follows that, of the p— 1 = 2k nonzero
numbers (mod p), exactly half are squares and half are non-squares. Note that:
(A1) if z and y are squares in Z, then so is zy (for if z = u? and y = v? then

zy = (w)?);
(A2) if z is a square and y is a non-square in Z, then zy is a non-square (for
if £ = u? and zy = w? then y = (u"'w)? would be a square).
Further, note that if —1 is a square then —1 = 22 (mod p) for some z € Z,,.
Raising both sides to the power 1(p—1) = k gives (—1)¥ = zP~!. But zP~! = 1
by Fermat’s theorem, so (—1)* = 1(mod p). Thus k must be even and so p =
1 (mod 4). Thus:
(A3) if p= 3 (mod 4), —1 is a non-square.
It then follows from (A2) that:

(A4) if p = 3 (mod 4) then z is a square & —z is a non-square.

Example. Take p = 11. The squares (mod 11) are 1,4,9,16 = 5 and 25 = 3.
The negatives of 1,3,4,5,9 are 10,8,7,6,2, i.e. the non-squares.

Now consider p = 1 (mod 4); here we show that —1 is a square (mod p).
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Note that, if p =4k + 1,

(p-1) 1.2....2k.(2k+1)...4k
1.2....2k.(—-2k)...(~1) (mod p)

(=1)2%(2K)1(2k)! = ((2k)!)?,

So that (p — 1)! is a square. But, by Wilson’s theorem, (p — 1)! = —1 (mod p),
so —1 is a square. Thus we have:
(A5) if p=1(mod 4) then —1 is a square (mod p), and z is a square & —z is a
square.

Example. Take p = 13. The squares (mod 13) are 1,4,9,16 = 3,25 = 12 =
—1,36 = 10, and their negatives are 12,9,4,10, 1, 3, i.e. the squares.

Further number theoretic results can be found in the recent book by Jones
and Jones [13].
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Chapter 1

1.1 9!
12 @) (5)(2), 0 () - ()~ (), © T2 (92
1.3 Yes, since 52! > 10°6.
(49)(©)/ (%) = 0.1765...
) () (©)/(%) =0.00097....
o) ((©)/(%) =0.00002....
1.5 1in (a) 6724520, (b) 43949268
1.6 1in 14(34) = 3895 584; so about 4 times as likely.
1.7 (30)/25.
1.9 Add (i) and (ii) of Theorem 1.7.
1.10 Equate coefficients of ™ on both sides. Then put n = s + 1.

1.11 (b) In resulting sum, terms cancel in pairs. (c) (";1) = coefficient of z* in
(14 2)"(CZo(-12*) = Tppomie ()17 = (CDF T (=17 (D).
112 LHS = n Y, (7)(R71) = n(™"1") by Exercise 1.10.

113 (a) (457 = (). (b) (&) on putting z = 1+u, etc. (c) Put z = 3+a,y =
—1+bz2=1+4+c,w=-2+dto get (137).

1.14 Solve 1 + ...+ x4 + 75 = 6 with each z; > 0 : (140).

1.15 Consider a choice of 6 from 49 as a binary sequence of length 49 with exactly
six 0s. Want no two Os adjacent. By Example 1.17, number is (%) > 1 (%)

6 6/
1.16 (a) 10 x 9 x 8 x 7, (b) ('{), (c) 10, (d) (***-1).

183
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1.17 Z or(?) = n 17 (") = n2n=! by Theorem 1.7(i). Average size is
3 = 2L Zr T(:)

1.18 (a) Summing gives 12 + ...+ n? = ("¥?) + ("}) = %n(n +1)(2n +1).
(b) Summing gives 12 +...+n2=3"_ () + >, (71 = "M+ (")
by Theorem 1.8.

1.19 Let S = (2) + (3) + .... Then de Moivre gives ei"™ = (1 + w)* =
(3) + -} +w{(3) + (}) + - }. Taking real parts gives
cos B =S—{(+ R+ @D+ G+ }=5-32"-9).

Chapter 2

21 (@) an=1+3+.. . +mr+mma =1+5+.. + 57 =2(1 - ),
(b) 3n —2n-1,
(C) (2n_1)3n71a

(d) an = 4an_1 —3an_2 has solution a, = A+ B3". For particular solution
try a, = K2". Get K = —4. So try a, = A + B3" — 2"*2, Get

an = 371 — 272,
22 bn = L'nt1-

2.3 Let ¢, = number ending in 1 = number ending in 2. Then d,, = d,,_; + 2¢p.
But ¢, = dp—1 — cp—1, s0 get dn = 2d,,—1 + dp—o. Since d; = 3 and
dp = T7,dn = 3(1+ V2?1 + 1 (1 - V2)+L,

2.4 (a) f(x) —z+(2a1+1)x +(a+ )z’ + - = Lz f(z)+a(1+a+2%+- ),
so f(z)(1-32) = £, ie. f(:c) = m = 2(%-—1—_15) whence
a, =2(1- 2%)

(b) f(z) = (6z—1)(1255 — 1=5z) whence a, = 6(3"1 —2n~1) — (37 —27),
2.5 fn = fn—l +fn_2, SO Jp = LFpn—1 (n > 2)
26 an =327 - 2724 4 (=1)"722) = 6(= 1) (1 = 2+ -+ + (—2)""2) =
2"+ 2(-1)™.
2.7 Ln — (1i2¥5)n + (1v2¥5)n'
2.10 f(z) =Pz + PR+ (FL+ R)® + (F+ Bzt + - = Fiz + Fox? +
22 (Fiz+ ) + o(Fa? + ) =z + 222 + 2?2 f(z) + z(f(x) — ), whence
f( )(1-z-2%) = z+2% Thus f(z) = e — 1 = J(25 — 557) - 1
whence F, = —=(a™*! + gott).

2.11 (a) By induction. (b) FpFri2F2, | = detM™?2 = (detM)"+2 = (-1)"+2 =
(—=1)™. (c) Write all three matrices as in (a) and then equate top left entries.

2.12 Induction step: Fy + -+ + Fi + Fyy1 = (Fiy2 — 2) + Fyq1 = Frqps — 2.
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2.13 (a') F2n - 17 (b) F2n+1 - l, (C) (—1)n_1Fn—1~

2.14 ap, = no. in which 1 stays put + no. in which 1 and 2 change places
=ap-1+an-2+1.Soa, = F, - 1.

2.15 (a) There are gn_; such subsets of {1,...,n} not containing n, and gn_»
containing n; SO gn = gn—1 + gn—2. (b) Take p =k, g=n —k. (c) Frt1 =
e (7).

2.17 Label points 1,...,2n. If 1 is joined to 2r + 2, circle is divided into two
parts, one with 2r vertices 2,...,2r + 1 and the other with 2(n —r — 1)
vertices. So ap = Y, arGn_r—1. Check that a; = 1,a; = 2.

2.18 Use (2.14).
2.19 Induction step: diy1 = kdy + kdk—1 > kdy > k.(k — 1)! = k.

2.20 Number of comparisons is < 142+ -+ + (n — 1) = in(n — 1): same as
bubblesort.

2.21 Eliminate y, from two given equations. Auxiliary equation has roots 1 and
i sox,=A+($)"B,soz, + A Butzg=A+Band A+ iB =1z =
%zo + 1yo. Eliminate B to get A = %yo — Zo.

2.22 dj.

Chapter 3

3.1 Use Corollary 3.2.

32p=3n+3,2¢g=4n+2+2n+2=6n+4,s0qg=p— 1. Apply Theorem
3.4(ii).

3.3 Each component must have > 1 + %(p — 1) > £ vertices, so there can be
only one component.

3.4 (a) 4, (b) 40.

35 ¢g—(p—-1).

3.6 (a) Spanning tree has 4 edges, so one of the z; must have 2 edges from it.

(b) The z; joined to both a and b can be chosen in 3 ways; there are then
2 choices of edge from each of the other z,: so 3 x 22 = 12.

(c) 100 x 29.
3.7 (a) Choose in order AE,DC, AC, AB. (b) Choose AE, AC,DC, AB.
3.8 Using Prim, choose HM,HEK,HA,GEK.
3.9 11 flights required. 4 + 4v/2 + 3v/5.
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3.10 (a) Suppose planar; p = 6,g = 9 gives r = 5. Bipartite, so get 18 = 29 >
4r = 20, contradiction.

(b) Yes - draw 2 edges “outside”.
(c) No.Ifso,p=8,¢=19,7r = 13,5038 = 2¢ > 3r = 39.
(d) No. If so, p=11,¢ = 10,7 = 11, s0 40 = 2¢ > 4r = 44.
3.11 6.
3.12 (a) (i) No. (ii) Yes (draw edges y;zi+1 “outside”).

(b) @n = no. using Tpy,+ no. not using Tnyn = an-1 + 2an—2. S0 ap, =
L@ — (=1)"),

313 (a) p—g+7=2and 2¢ > 3r,502¢>3(2+q—p),ie g<3p-6. For
K;5,3p-6=9<10=gq.

(b) p—gq+r =2and2q > gr,s02g>g(2-p+q),ie (9-2)g<g(p-2)
(c) Use g = 4 for K33 and g = 5 for Petersen graph.

3.14 Follow Example 3.14. 29 = 3p,r = s + h,2q = 4s + 6h,p— g +r = 2 yield
s =6.

3.15 The lines of cut and circular arcs form a graph with 2n vertices of degree
3 on outside and (3) vertices of degree 4 inside. So p = 2n + (3),2¢ =
6n+4(3),sor=n+ (3) + 2, including infinite region.

3.16 If g, denotes the number containing edge ZoZn, then h, = 2hp—1 + gn-1
and gn = hp — hp—1; thus by = 3hp—1 — hp_sa.

Chapter 4

4.1 (a) B and W must alternate. (b) m = |B| = |W| = n if hamiltonian.
4.2 (a) (i) and (ii) are hamiltonian. (iii) is not by Exercise 4.1(a).
(b) None.
(c) (iii).
4.3 All hamiltonian; only octahedron is eulerian.
4.4 Only (a) is planar.

4.5 00000 — 01000 — 11000 — 10000 — 10100 — 11100 — 01100 - 00100 — 00110 —
01110 — 11110 — 10110 — 10010 — 11010 — 01010 — 00010 — 00011 — 01011 —
11011 — 10011 — 10111 —11111-01111 - 00111 — 00101 — 01101 — 11101 -
10101 — 10001 — 11001 — 01001 — 00001 — 00000.

46 Let A = {j : v; and v; are adjacent} and B = {j : vj-1 and v, are
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adjacent}. Then A C {2,...,p—1},|A| > E,B C {3,....p},|B| > &; 50
ANB#4.

4.7 (a) Imitate proof of Dirac. |A| = deg(v;), |B| = deg(vp). Since deg(vy) +
deg(vp) > p, get AN B # 0 again.
(b) If there are non-adjacent vertices u, w such that deg(u)+deg(w) < p—1,
then G has at most (°;%) + (p— 1) = 1(p~1)(p - 2) + 1 edges.
(c) Take a vertex v in K}, and remove all but one edge from v.

4.8 Remove A: (2 +4) + 13 = 19. Remove B: (6 + 6) + 9 = 21. Upper bound:
the spanning tree AE, EC,CD, AB give upper bound 23(AECDBA).

4.9 Exact value is 37.

4.11 (i) Take vertices 0,1,2, and all possible directed edges. Eulerian circuit
gives 001122021 in cyclic order.

(ii) Take vertices 00,01,...,22, and draw directed edge from ij to jl. One
solution is 000101112122210220120200211.

4.12 K7, with a loop at each vertex, is eulerian. With vertices 0,... ,n, K41
with loops is eulerian & n even. So arrangement is possible & n even.
For n = 6, one eulerian circuit is 00112233445566024613503625140, giving
cyclic arrangement of dominoes (0, 0), (0,1),(1,1),(1,2),... etc.

4.13 K, eulerian < n odd. Required arrangement corresponds to eulerian cir-
cuit. For n even, duplicate each edge to get an arrangement with every pair
adjacent twice.

Chapter 5

16!

5.1 ans-
52 iy
5.3 (2%) %
54 58 x 2.
n

5.5 (a) One of the parts must have two elements: choose it in (}) ways.

(b) There is either one set with 3 elements or two sets with two. In second
case choose 4 elements and then partition into two pairs. Alternatively
use (5.2) and iteration.

5.6 Induction step: S(k + 1,3) = S(k,2) + 3S(k,3) > 3S(k,3) > 3.3%2 =
glk+1)=2

5.7 nis in a part with € others, 0 < £ < n — k; 0 S(n, k) = Y02+ ("7%)S(n -
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5.8
5.9

5.10

5.11
5.12
5.13

5.14

5.15

5.17

5.18

5.19

1-4k—1).Putm=n—-1-¢

B(n) = 1+3p,SMmk) =1+, Yn  ("-1)S(m, k- 1)
1+ 02 () Sy S(m, k- 1)
1+ Z?n_zll (nr;l)B(m)’

I

Use Theorem 5.6. B(10) = 115975.
B(k+1) = ¥y (%)B(m) = iyno(n) X Jyr':
= IS, kT ()5 k
= 1Y, R+t = i1y, G
n either forms a 1-cycle on its own or can be slotted into a cycle in one of
the s(n,k — 1) permutations of 1,... ,n — 1 (think of n inserted after one

of the other n — 1 elements). s(5,2) = 50, s(6,2) = 274.

x =3,3,2. x' =4,5,4.

Each colour can be used at most a(G) times.

(a) Vertices 1,...,8 get colours 1,2,3,4,3,1,2,3.

(b) Vertices 8,...,1 get colours 1,1,2,3,4,2,5,1.

(a) Vertices 8,1,3,6,7,2,5,4 get colours 1,1,2,2,1,3,4,5.
(b) Vertices 4,5,2,7,6,3,1,8 get colours 1,2,3,3,4,2,4,1.

Colour the vertices with colours ¢y, ... ,cs. Then order vertices so that all
coloured ¢; come first, then those coloured c3, etc.

All are class 1.

Colour edges of hamiltonian cycle using 2 colours. Remaining edges get a
third colour.

(a) Use Theorem 3.1. (b) Any matching can have at most k edges so
X(G) 2 bk + Yyr >

(b) Induction step. Remove a pendant vertex v: T — {v} can be coloured
in A(A — 1)¥=2 ways, and then v can be coloured in (A — 1) ways.

(¢) In a colouring of G', = and y may get same colour, so subtract f\(G").
For deduction, use induction on the number of edges.

(d) Recurrence a, = A(A — 1)""! —a,_; gives ap — (A — 2)apn-1 — (A —
1)an—» = 0. Auxiliary equation is (z + 1)(z — A+ 1) = 0.
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Chapter 6

6.1 |[AUBUCUD| = |A|+|B|+I|C|+|D|-|ANB|-|ANC|-|AND|
—-|BNC|-|BND|-|CND|+|ANnBNC|
+|ANBND|+|ANCND|
+BNCND|-|ANBNCND|.

6.2 100 = 67 + z — 44 gives z = 77.

6.3
6.4
6.5

6.6
6.7

6.8
6.9
6.10

6.11

6.12

6.13

6.14

100 =70 + 49 4+ 49 — 20 — 25 — 35 + z gives ¢ = 12.

1000 — 142 -90 — 76 + 12+ 10+ 6 — 0 = 720.

(a) |S1] > 75,]81NS,| > 150—100 = 50, |S; N S2NSs| > 75-+50—100 = 25,
(b) [S1] =m(n —1),|S1 NS2| > 2m(n — 1) — mn = m(n — 2), etc.
Imitate Example 6.7: (') - (%) = (%) - (1) + () + () + (%) = 281,
Take P;: pattern 12 occurs,. .., Py: pattern 78 occurs. N(i) = 7!, N(i,5) =
6!, etc. Obtain 8! — 4.7! + 6.6! — 4.5! + 4! = 24 024.

Take P; : 2i is in position 27 (1 <17 < 4). Get 24024 again.

S| = 8 x 7 x 6 = 336. Get 336 — 3(7 x 6) + 3(6) — 1 = 227.
Let S = set of all permutations; then |S| 1%, Take P;: the two is are
adjacent Then N(1) = —;,N(l 2) = %, etc. Get 10' 59' = +10- 8' -10-
n+5. —- ! _ 51 = 39480.
(n>=n—z,,—':+zﬁ—- =l (1- 1),
#(100) = 40, $(200) = 80.
AG)=A" =Y N@E)+ X N(i,5) — . N(&) = A*~! (both ends of edge e;

get same colour). Also N(i,j) = A"~2. (There are two cases: e;,e; may or
may not have a common vertex - get A"~ in both cases.) Also, N (i, j, k) =
A"~2if e;,e;, ey, form a 3-cycle, and is A"~3 otherwise.

S = {(z1,...,212) : 1 < z; < 6}. P; : no x; has the value ;. Number of
throws in which all numbers appear = |S| — S N(i) + 3 N(3,5) -

62— (3)52+ (5)412— (5)3'2+(§)2'2 - () = 953029 440. To get probability,
divide by 6'2

If S = set of all partitions into 4 parts, [S| = S(10,4). Let P; : {i} is a
singleton set. So N (i) = S(9, 3) N(i,7) = S(8,2), etc. Answer is S(10,4) —
(1)509,3) + (*0)S(8,2) - (S(7,1) = 9450 Alternatwely, want number
of partitions of type 234! or 2232 ie gign + W
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Chapter 7

7.1
2 31 3 1 2
3 1 2 and 2 3 1
1 2 3 1 2 3.

7.2 Round 1: 1v2,3v4,5v6. Round 2: 1v3,2v 5,4v6, etc.

7.3 157 i< ln(n? +1).

76 a;j=0iyg=>2i+j-2=2i+J-2=>j=J=>j=J.
aij=a5;=>2i+j-2=2I+j-2=2i=2I(mod n) =i =1 since n is
odd. So A is a latin square. Similarly for B.

Orthogonality: a;; = ary and b;; = bry = 2i+j=2I+Jand 3i+j =
AI+J=i=I=j=J.

Broken diagonal of A starting at a;; consists of j,j +1+2,7+2+4,...,
ie j,j+3,7+6,....Butj+3u=j+3v=>3u=3v=>u=vsince 3{n.
So all entries in diagonal are different.

7.7 (b) M; is.

(c) Suppose ai; = ary and a; = af;. Then 2 +j =2/ + J and 2j +i =
2J + I. Subtracting gives i — j = I — J whence J = I — ¢ + j. Thus
2i+j=2I+I-i+j,iedi=3ls0i=1j=J.

7.8 (a) 1 appears an even number of times off the diagonal in symmetrically
placed positions. So it appears an odd number of times altogether, so
n is odd.

(b) aij =aigy = jm+1)=Jm+1)=22m+1)j =2m+1)J = j =
J(mod 2m + 1). Similarly for columns. Since 2(m + 1) = 1(mod n),
ith diagonal entry is 2(m + 1)i = ¢. Form = 2,4 is

1 4 2 5 3
4 2 5 31
2 5 31 4
5 3 1 4 2
3 1 4 2 5.

7.9 Orthogonality. Suppose Mg +A; = ArAg + Ay and Midg +Xj = ArAn+ Ay,
Subtracting gives Ai(Ax — Ap) = Ar(Ax — An), i.e. A; = A since Ap # A,
soi=1I. Thus \; = Ay, ie j=J.

7.10 The rows are the columns of (7.3) in a different order.
7.12 For example 3,4,2, 1.
7.13 {2,5,6},{2,6},{2,5}, {5,6} have only 3 elements in their union.
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7.14

Ignore suits; there are 4 cards of each value. Any k columns contain 4k
cards which must have at least “4—’° = k different values among them. Apply
Hall’s theorem.

7.15 Any k A; contain kn elements in their union. These kn elements must be
distributed among at least %" = k sets B;, so the union of any k S; contains
at least k elements.

7.16 Take the 5 x 5 array N with 1,...,25 in natural order. The 5 rows
and 5 columns give 10 blocks. Corresponding to A;, get {5,9,13,17,21},
{1,10, 14,18, 22},{2,6,15,19, 23}, {3, 7,11, 20, 24}, {4, 8,12, 16, 25}.
Similarly for Aa,... ,As.

7.17 Take A; = {(¢,7) : ms; = 1} and B; = {(j,7) : mj; = 1} where M = (my;).
Apply Exercise 7.15 to obtain a permutation matrix Pj. (Alternatively
apply Theorem 7.6 or Theorem 5.13.) Then repeat argument applied to
M — Py, to get another permutation matrix P,. Then consider M — P; — P,,
etc.

Chapter 8
8.1 First round has games cov1,9v2,8v3,7v4,6v5. For 9 teams omit games
involving co.
8.2
T1VY2, T2VY3, T3VYs, T4VYs, IT5VY1
T1VYs, T2VY4, T3VYs, T4VY, T5VY2
T1Vys, T2VYs, T3VYy, T4VY2, T5VY3
T1VYs, Z2VY, T3VY2, T4VY3, T5VY4
1 VY, T2VTs, T3VIT4, Y2VYs5, Y3VY4
T2VY2, T3V, T4VITs, YsVyYi, Y4VYs
T3 VY3, T4VZT2, T5VI1, YsVY2, YsVY1
T4VYs, T5VI3, T1VIT2, YsVyYs, Y1VYy2
T5VYs, T1VIT4, T2VI3, Y1VYs, Y2VY3
8.3 Yes, by Theorem 7.5.
8.4 (a) The spokes, (b) none, (c) edges 12, 34, 56 in Figure 4.1(a), (d) “vertical
edges”.
8.5 In Figure 4.1(a) take 1236451 and 1652431. Each gives two 1-factors.
8.6 All.
8.7 Hamiltonian cycle gives two 1-factors; remaining edges form another.
8.8 (a) A; v Biyk—1 in round k, where suffixes are reduced (mod 5) to lie in

{1,....,5}.
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8.9

8.10

8.11

(b) Use the join of the first two MOLS of Example 7.3 to get first round
Ay v Bs on court 1, A3 v By on court 2, Ay v Bs on court 3, As v B; on
court 4, Ay v By on court 5, etc.

Follow the method of Section 8.3, using the first 3 MOLS A;, As, A3 of
Example 7.3. Then use A4 to determine the courts. Get following schedule
where rows give rounds and columns correspond to courts.

BsG1vbigyr BiGyvbsgs BaGavbsgs B3Gsvbags ByGsvbsgy
ByG4vbsgs BsGavbaga B1Gsvbygr BaG3vbigs BsGhvbsgy
BgGg v b4g5 B4G5 N b1g4 35G3 A\ b3g3 BlGl v b5gz B2G4 A\ b2g1
B,Gs vbsgs B3Gzvbsgi BsGivbags BsGavbags B1Gavbigs
B1G3vbagy BaGivbsgs BsGyvbige BsGavbzgr BsGsvbsgs

(a) Only sequences with no breaks are HAHA...H and AHAH .. A.
But no two teams can have the same venue sequence (otherwise they
couldn’t play each other).

(b) oo and 0 have no breaks. Each other has a break next to its game
against oco.

Draw a bipartite graph with n black vertices labelled by the first round
pairs and n white vertices labelled by the kth round pairs. Join a black
to a white when the labelling pairs are not disjoint. By Theorem 7.6 with
m = 2 there is a perfect matching, in which each edge represents a team.
Play these teams at home in kth round.

Alternatively, apply Exercise 7.15 to the pairs of the first and kth rounds:
choose a common SDR and play these teams at home in round k.

Chapter 9

9.1
9.2
9.3

9.4
9.5

9.6

(a) b not an integer. (b) b =14 < v.

Complement of a (13,4, 1) design.

(@) vr(k — DA—r(k—DA=Av—-1Dr(k-1) =r%(k - 1)
) (k=DA+@w=-kA=Av-1)+7r(k-1).

Use v\ = k% — k + A

(k —1)"~! must be a square, so, dividing by (k — A\)*~2, which is a square,
k — X\ must be a square. For final parts must check that the two designs
would be symmetric.

(@) n*+n,n%n?-1,n2-—n,n?>—n-1),

(b) (4m —1,4m — 1,2m, 2m, m).
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9.7
9.8
9.9
9.10
9.15

9.16

9.17

9.18
9.19

9.20

9.21

Use Hy and Theorem 9.15.

Use Theorems 9.18 and 9.16.

In each case the differences are +(d; — d;).
- 9.14 Check differences.

Given %, there are 10 associates in same row or column, and 5 associates
given by L. So each block has 15 elements. Given ¢ and j in the same row
of N, they are in 4 By where k is in the same row as ¢ and j, and in By
and By, where h(f) is the element of NV in same row as i(j) such that h(¢)
and j(¢) have equal corresponding entries in L. Similarly for other cases.

(a) B=2A— J has 1 where A has 1 and —1 where A has 0.
(b) BTB (24T = J) (24 — J) = 4ATA - 24TJ — 2JA + J?

4(k = NI + 4\ = 2(JA)T = 2JA + J?
4k =N+ (@4r—dk+v)J =vl S 4(k-)) =v.

(c) v =36,k =15,\ = 6 satisfy 4(k — 1) = v.

Orders 4, 8,16,32 by doubling; 12,20, 24, 44,48 by Theorem 9.18; 36 by
Exercise 9.16; 40 by doubling 20; 28 by extending Theorem 9.18 to prime
powers, using the finite field of 27 elements.

(9.9) becomes S > (¥)d; (9.10) unchanged.

If d(x,y) = e then x + y has weight e; so min. weight < min. distance.
Conversely, if w(x) = w then d(x,0) = w; so min distance < min weight.

Can assume 0 is in code. All sequences of weight 1 get corrected to O.
There are no codewords of weight 2 (by perfectness) so all sequences of
weight 2 must get corrected to a codeword of weight 3. Use correspondence
between subsets A of {1,...,n} and binary sequences x4 = z; ...z, where
z; =1 & i € A The 3-element subsets corresponding to codewords of
weight 3 form an STS(n): if |B| = 2,B C {1,...,n}, B is in C where x,
corrects Xp.

(a) Count in two different ways the pairs (A, P) where P is a pair of
elements of B and A is a block other than B containing P.

(b) Count in two different ways the number of pairs (A4,y) where y is an
element of B and A is a block other than B containing y.

(d) Expanding 3-,(i — m)?z; > 0 gives 3_é%z; — 2m Y izi + m* Yz > 0.
Write i% as 2(3) +1; then (a) and (b) give k(k—1)(A—-1)+m?(b—1) >
(2m — 1)k(r — 1). Replacing m(b — 1) by k(r — 1) gives (d).

Next, in (d) replace (b— 1)k by vr — k to get (vr — k)(k — 1)A +vr(r —
k) + k? —rk > k*(r — 1)2. Now use Exercise 9.3(a) and take r — k out
as a common factor to get (r — k)(r — 2rk + (k — 1)A+vr) > 0. Finally
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use Exercise 9.3(b) to deduce that (r — k)(v — k)(r — A) > 0, whence
r>k,ie b>v.



Further Reading

The main ideas of the first two chapters are covered by most of the standard
textbooks on combinatorics, e.g. Brualdi [5], Cameron [6] and the remarkably
extensive book by Graham, Knuth and Patashnik [11]. Chapters 3 to 5 cover
some of the basic ideas in graph theory; further details can be found in the
many textbooks now available, of which we particularly note those of Diestel
[9], Wilson [20], Wilson and Watkins [21], and the English translation [15] of
the ever-fresh classic of K6nig [14]. The reader who is interested in the history
of graph theory is directed to the recent reissue of the book by Biggs, Lloyd
and Wilson [4].

The inclusion-exclusion principle has excellent expositions in [5] and in van
Lint and Wilson [18]. The proof of Cayley’s theorem on labelled trees, using
inclusion-exclusion, is due to J.W. Moon [19], and there is a very nice article
by J. Dutka on the ménage problem in [10].

Latin squares are covered in great detail by Dénes and Keedwell [7], [8], and
are the central theme of a recent book by Laywine and Mullen [16]. There is
also material on latin squares in [1], [5], [6] and [18]. Connections between latin
squares and tournaments are described in [1], where the topics of Chapters 7-9
are dealt with more fully. [1] also deals with block designs, as do [16] and [18],
and there are good accounts of coding theory in the books by Baylis [3], Hill
[12] and Van Lint [17].

Another important source of information is the web. Search for Fibonacci
numbers or derangements or latin squares, and you will be lead to many fasci-
nating and informative sites. Also freely available on the web is a short course
on designs [2].
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