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Preface

This addition to th e SUMS series of textbooks is an introduction to vari ous as­
pect s of discrete mathematics. It is intended as a textbook which could be used
at undergradu at e level , prob ably in the second year of an En glish und ergradu­
ate math ematics course . Some textbooks on discrete mathematics are written
primarily for comput ing science students , bu t the pr esent book is int end ed for
students following a mathematics cour se. The place of discret e mathematics in
the und ergraduate cur ricu lum is now fairly well established , and it is cer tain
that its place in the cur riculum will be maintain ed in th e third millennium.

Discrete math ematics has severa l aspects. One fundamental part is
enumeration, th e st udy of count ing arra ngements of various types. We might
count th e numb er of ways of choosing six lottery numbers from 1,2, . . . , 49, or
the number of spanning tr ees in a complete gra ph, or the number of ways of
arranging 16 team s into four groups of four . We develop methods of counti ng
which can deal with such problems .

Next , graph theory can be used to model a variety of situations - road
syste ms, chemical molecules, tim et ables for exa minations . We int roduce the
basic typ es of graph and give some indi cat ion of what th e impo rt ant properties
are th at a graph might possess.

Th e third area of discret e mathematics to be discussed in this book is that of
configurations or a rrangements. Latin squares are arrangement s of symbols
in a par ticular way; such ar rang ement s can be used to cons tr uct experimental
designs, mag ic squares and tournament designs. This lead s us on to have a look
at block designs, which were discussed extens ively by stat ist icians as well as
mathematicians due to their usefulness in the design of exper iments . The book
closes with a brief introduction to the ideas behind error-correct ing codes .

Th e reader does not require a great deal of techni cal knowledge to be able
to cope with the contents of the book. A knowledge of the method of proof by
induction, an acquaintance with th e elements of matrix th eory and of arithmetic
modulo n , a famili ari ty with geometric series and a certain clari ty of thought

v



vi Preface

should see the reader th rough. Often the main problem encountered by the
reader is not in the depth of the argument , but in looking at the probl em in
the "right way" . Facility in this comes of course with practi ce.

Ea ch chapter ends with a good number of exam ples. Hints and solutio ns to
most of these are given at the end of th e hook. Th e examples are a mixture of
fair ly str aightforward app lications of the ideas of the chapte r and more cha l­
lenging problems which are of interest in themselves or are of use later on in
th e hook.

My hope is th at this text will provide the bas is for a first course in discrete
math ematics. Obviously th e choice of material for such a course is dependent
on th e interests of the teac her , but th ere should be enough topics here to enable
an appropriate choice to be made. Th e text has been influenced in count less
ways by the many texts th at have appeared over the years , but ultimatel y
it is det ermined by my own preferences, likes and dislikes, and by my own
experience of teaching discrete mathemati cs at different levels over many years,
from masterclasses for 14-year-olds to final year honours courses .

I would like to th ank th e Sprin ger staff for th eir encoura gement to write this
book and for their help in its product ion. Thanks is also due to Gail Henry for
convert ing my manuscript into a ~TEX file, and to Mark Thomson for readin g
and comment ing on many of t he chapters.

University of Glasgow, June 2000
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1
Counting and Binomial Coefficients

In t his cha pte r we introduce th e basi c count ing metbods , th e factorial func­
tion and th e binomial coefficient s. These ar e of fundamental imp ortance to the
subject mat ter of subsequent chapte rs . We start wit h two basic principles.

1.1BasicPrinciples

(a) The multiplication principle. Suppose that an act ivity consists of k
stages, and that the ith stage can be carried out in Q; different ways, irr espective
of how the ot her stages are carried out . Then th e whole activity can be ca rried
out in QIQ2 •.•Q k ways.

Example1.1

A rest auran t serves three types of star ter, six main courses a nd five desse rts .
So a three-cour se meal can be chosen in 3 x 6 x 5 = 90 ways.

(b) The addition principle. IfAI , . .. ,Ak are pairwise disjoint sets (i.e.
A ; n A j = 0whereve r i l'j ), t hen the number of elements in th eir union is

k

IAIu ..·u Ak l = IAII+..+ IAkl =LIA;I.
i= l

Example 1.2

In the ab ove exa mple, how many different two-cour se meals (including a main
course) ar e th ere?

 I. Anderson, A First Course  in Discrete  Mathematics
© Springer-Verlag London 2002
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Solution

Discrete Mathemati cs

There ar e two ty pes of two-cour se mea l to consider . Let Al denote the set of
meals consist ing of a sta rter and a main course, and let A2 den ote the set of
mea ls consisti ng of a main course and a dessert . Th en the required number is

IAII+ IA2 1 (by the add it ion pr inciple)

(3 x 6) + (6 x 5) (by the multiplication principle)

48.

1.2 Factorials

How ma ny ways are there of placing a, b and c in a row? Th ere are six ways,
nam ely

abc, acb, bac, bca, cab, cba.

Note that there are three choices for th e first pla ce, then two for the second,
and then just one for the third; so by the multiplication principle th ere are
3 x 2 x 1 = 6 possible orderings . In genera l, if we define n! ("n factori al" ) by

n! = n (l1 - 1)(n - 2) . . . 2.1

then we have

Theorem 1.1

T he number of ways of placing 11 objects in order is n1.

Example1.3

Four people, A , B, C, D , form a committee. One is to be pr esident , one secretary,
one t reasu rer , and one social convener . In how many ways can the posts be
ass igned?

Solution

T hink of first choos ing a pr esident , then a secret ary, and so on . There 4! = 24
possible choices.

Th e value of n! get s big very quickly:

5! = 120, 1O! = 3 628 800 , 50! ~ 3.04 x 1064
.

This is an example of what is called com binatori al explosion : t he number of
different arrangements of 11 objects get s huge as 11 increases. The enormous size
of 11! lies beh ind wha t is known as the travelling salesm an problem which will
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be st udied fur ther in Cha pte r 4. A traveller sets out from home, has to visit n
towns and then retu rn home. Given the mileages between the towns, how does
the traveller find th e shortest possible rou te? Th e naive approach of considering
each of th e n! possible routes is imp racti cable if n is large, so anot her approach
is needed .

In certain probl ems, only some of a given set of obj ects are to be listed.

Example 1.4

A compet itio n on the back of a cereal packet list s ten prop erties of a car , and
asks the consumer to choose th e six most imp ort ant ones , list ing them in order
of imp ortance. How many differen t ent ries are possible?

Solution

Th ere are ten possibilities for th e first choice, then nine for th e second, and so
on down to five for the sixth. So, by th e multiplication pr incipl e, th e numb er
of possible list s is

10!
10 x 9 x 8 x 7 x 6 x 5 = I""= 151200.

4.

In genera l, we have:

Theorem 1.2

T he number of ways of selecti ng r objects from n , in order but with no repeti­
tions, is

n!
n(n - 1) . . . (n - r + 1) = (n _ r)! ·

Example 1.5

A commi ttee of 4 is to be chosen, as in Exam ple 1.3, but thi s tim e th ere are 20
people to choose from. The numb er of choices of president , secretary, tr easurer ,
social convener is

20!
20 x 19 x 18 x 17 = 16! = 1162 80.

1.3Selections

Suppose that in Example 1.5 we want ed just th e numb er of ways of choosing
four people for a comm ittee, not bothering about th e position s they might fill.
Denote by e40)(and read as 20-choose-4) the number of ways in which we can
choose 4 from 20 where order does not matter.



4 Discrete Math ematics

Each such choice of four from 20 can be ordered in 4! ways to give an assign­
ment to particular positi ons within the committee, so, by Example 1.5,

4! x (
20) = 20!.
4 16!

T hus

(1.1)

(
20) 20!
4 = 4!l 6! = 4845.

This argument is genera l: (n~'r )! = r! x G),so we have the following genera l
formula .

Theorem 1.3

Let ( ~) denote the numb er of unordered select ions of r from n where repet it ions
are not allowed. Th en

(;)= r!(nn~r)!'
Since some st udents find the idea of turn ing ordered selections into unordere d
selections confusing, here is another way of derivin g the formul a (1.1).

Suppose we have to choose a team of r players from a pool of n , one of them
to be appointed captain. Thi s can be done by first choosing the team - and
there are (~) ways of doing th is - and then choosing th e cap tain - there are r
ways of doing this. So there are r (;) choices altogether. But we could , instead ,
first choose the captain - there are n ways of doing thi s - and then choose the
r - 1 other members of the team - and th ere are G=:)ways of doing this. So

the number of choices is also n(;=:) .Thus

so that

(n)= ~ (n- 1) .
r r r - 1

(1.2)

(n)= ~ .~ (n -2) .
r r r-lr-2

But similarly, ( ~=:J = ;=:C:::D,on replacing n by n - 1 and r by r - 1, so we
get

Continuing in thi s way we obtain

(
n ) = ~ .~ ...n - (r - 2) . ( n - (r

1
- 1) ) .

r r r-l 2

Since (';') is clearl y always m , we obtai n finally

(
n ) = n(n - 1) . . . (n - r + 1)
r r!

n!
r!(n - r )!
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as before.
[Not e in passing t hat thi s is a good example of th e tech nique of cou nt ing

the same thing in two different ways.]

Example 1.6

In th e UK National Lot tery, a parti cipant chooses six of the numbers 1 to 49;
order does not matter. So th e numb er of possible choices is

(
49) = 49 x 48 x 47 x 46 x 45 x 44 = 13983 816.
6 6!

So th ere is roughly one chance in 14 million of winning th e jackpot!

Example 1.7

How likely is it th at next week's lot tery winnin g numb ers will be disjoint from
this week 's?

Solution

The re are (~) possible select ions next week . The numb er of th ese which are
disjoint from this week's mus t be ( ~3) , since six of the 49 numbers are ruled
out. Since all (~9) selections are equa lly likely, the requi red probability is

Example1.8

Binary sequences. Th ere are 2n n-digit binary sequences since each of the n
digits is 0 or 1. For exampl e, the eight binary sequences of length t hree are

000 001 010 011 100 101 110 111.

(a) How many binary sequences of length 12 contain exactly six Os?

(b) How many have more Os th an Is?

Solution

(a) T he six Os occupy six of th e 12 positions. Th ere are Cln = 924 choices of
th ese six positions , and this gives th e number required .

(b) Th ere are 212 - 924 = 3172 sequences wit h unequal numb ers of Os and Is.
By symmetry, exac tl y half of these, Le. 1586, will have more Os than Is.
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We close this sect ion with two simple proper ties of the numb ers (~) which ari se
out of the fact that (~) is the number of ways of choosi ng r from n. From now
on, we follow the convent ions tha t O' = 1 and that (~) = 1 for all n ~ o.

Theorem 1.4

(i) (~) (n:r) for all r , O~r~n.

(ii) (n ~l) (~) + (r:l) forallr , O <r ~n .

Proof

(i)This follows imm ediately from the formula (1.1); alternatively, simp ly ob­
serve th at choosing r from n is just the sam e as select ing the n - r which
are not to be chosen!

(ii) A choice of r of the n + 1 objects X l, . . . , X n +I mayor may not include
X n + l . If it does not , then r objec ts have to be chosen from X l , . . . , X n and
there ar e (~) such choices. If it does contain Xn+ l , then r-l further object s
hav e to be chosen from Xl ,". , X n, and there ar e ( r ~l) such choices . The
result now follows from the addition principle.

Alternatively we can use th e formu la (1.1):

n! n !
--,-,----,,.,, +-,---~---,----:-:

r!(n - r )! (r - 1)!(n - r + I)!

n!(n - r + 1) n !r
~--~+ ---;-;------:-:-;
r!(n - r+ I )! r!(n - r + I )!

n! (n+ 1)! __ (n +r 1) .....,...,.--- -,.,,{n - r + 1+ r} = __:_:-'--- -'--ccc
r!(n - r + I)! r!(n + 1 - r) !

1.4BinomialCoefficientsand Pascal'sTriangle

4
3

2

6

3
4

coefficient s:

The choice numbers C) are known as binomialcoefficients. In this section
we find out why. Note that

(1 + y )O 1

(1 + y ) l 1+ Y

(l+y)2 1 + 2y + y2

(l + y)3 1 + 3y + 3y2 + y3

(1 + y)4 1 + 4y + 6y2+ 4y3 + y4
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Note th e trian gular array of coefficients, known as Pascal's triangle. Each
row cons ists of th e choice numbers: e.g. th e bo t tom row shown consists of

(~) = 1, G) = 4, G)= 6, G) = 4, G) = 1.

Pascal (1623- 1662) certa inly studied these numbers , making use of th em in his
work on probabilit y, but the t riangle was known to Chinese math em ati cian s
long before.

Theorem 1.5

The binomi al th eorem

(x + y )n = (~) xn + (7) x n- 1y+ G) Xn- 2y2+ . . .+ (~)yn =~ (~)xn--ryr .

Proof

(x + y )n = (x + y )(x + y) . . . (x + y) (n brac kets) . So the coefficient of xn-ryr
in t he expansion is the number of ways of getting xn-ryr when the n brackets
are mul tiplied out . Each term in th e expansion is th e product of one term from
each bracket ; so xn -r yr is obtained as man y times as we can choose y from r
of the bracket s (and x from the remaining n - r brackets) . But this is just the
numbe r of ways of choosing r of the n bracket s, which is (;) .

Corollary 1.6

(1+ y )n = L ;=o(; )yr.

Example 1.9

1+ (\°)2 + C20) 22 + ...+ G~)21 0 = (1 + 2)10 = 310.

Pascal's triangle

+- row 0
+- row I

4

2
3 3

6 4

7
6

5

21
15

10

35
20

10

35
15

5

21
6

7 +- row 7
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In the nth row, n ~ 0, th e ent ries are the binomial coefficients (;) ,0::; r ::; TI.
T he t rian gle displays the two properti es of Theorem 1.4: (i) is shown in the
reverse sym met ry of each row, and (ii) is sh own by the fact t hat each ent ry in
th e triangle is the su m ofthe two ent ries immedia te ly above it (e.g. 21 = 6+15).
Note a lso the ent ries in each row ad d up to a power of 2.

T heorem 1.7

(i) (~) +(7) +(;)+ +(~) = 2";

(ii) (~) - (7) + (;)_ + ( - 1)" (~) =0 (n > 0) .

Proof

(i) Put y = 1 in Corollary 1.6. (ii) P ut y = - 1.

The next result establishes a patt ern relating to the diagonals in Pascal 's
t riangle. Note , for example, that in a line par allel to the left side of the triangle,
we have 1+ 3 + 6 + 10 + 15 = 35.

T heorem 1.8

For all rn ~ 0 and TI ~ 1,

Proof

(m+ n +I) (m+TI)+(m+n) by T heorem 1.4(ii)
m + l m m + l

( m m+ n) +(m +rn
Tl

- 1)+r:+n-II) aga in by 1.4(ii)

(m+n) +(m +n- 1) +... +(m +I) + (m + 1)
m m m m+l

since (;;:~ :) = (;;:) = 1.

Identit ies

T he binomial theorem ca n he used to obtain ot her identi ti es involving bin om ial
coefficients .
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Example1.10
Consider t he identity

Le.

9

Equating the coefficients of x n on each side of this identity gives

which , by Theorem 1.4(i) can be rewritten as

For exam ple, with n = 4 we get

A similar type of arg ument enables us to obtain a corresponding result for
alternat ing sums.

Example1.11

Use the identi ty (1 - x2)n = (1 - x)n(1+ z)" to sum

Solution

Consider the coefficient of z " on both sides of th e given ident ity.
Since th e right -hand side is

th e coefficient of x n is
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Th e coefficient of xn on th e left of the given identity is 0 if n is odd (why?) but

is (- 1 )~ ( ¥ ) if n is even. So we have

n even

n odd .

To illustrate:

G) 2 - G) 2 + G) 2 - G) 2 + G) 2 - (:) 2 = 0 (obviously!);

(~r -Gr + Gr -Gr + Gr = 1 - 16+ 36 - 16+ 1 = 6 = G)
(~) 2 _ (~) 2 + (~) 2 _ (~) 2 + (~) 2 _ (~) 2 + G) 2 = - 20 = _ (~) .

1.5SelectionswithRepetitions

We have already seen th at th ere are 2m binary sequences of length m . Here we
are choosin g m digits in order , and th ere are two choices (0 or 1) for each.

Example 1.12

The number of subs et s of a set of m elements is 2m . For each subset corresponds
to a binary sequence of length m , in which the ith digit is 1 precisely when the
it h element is in the subset. For example, th e subset {2, 3, 5} of {I, 2, 3, 4, 5}
corresponds to 01101. Which subsets are represented by (a) 11100, (b) OOOOO?
[{1,2,3},0].

Example 1.13

Each weekend in February I can visit any one of three cinem as. How many
different sequences of visits are possible, repeat visit s of course being allowed?

Solution

Each weekend I have 3 choices, so by the multipli cation prin ciple th e total
number of visiting sequences is 34 = 81.

Clearly we have
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Theorem1.9

11

Th e number of ways of choosing T objects from n , in order and with repetitions
allowed, is n" .

Suppose now that we have to choose T objects from n , where repetitions are
allowed , but where order does not matter.

Example1.14
There are ten ways of choosing two obj ects from {1,2 ,3 ,4} unord ered, with
repet itions allowed. They are:

1,1 1,2 1,3 1,4 2,2 2,3 2,4 3,3 3,4 4,4 .

Theorem1.10
The numb er of unordered choices of T from n , with repet it ions allowed is

Proof

Any choice will consist of X l choices of th e first object, X2 choices of the second
object , and so on, subject to the condition Xl + ...+ X n = r. So the required
number is just the number of solutions of th e equation Xl + ...+ X n = T in
non-negat ive integers Xi ·

Now we can represent a solut ion Xl , ...,X n by a binar y sequence:

Think of the Is as indicating a move from one object to th e next . For example,
the solution X l = 2, X2 = 0, X3 = 2, X4 = 1 of Xl +X 2 +X 3 + X 4 = 5 corresponds
to the binary sequence 00110010. Corresponding to Xl + ...+ X n = T , there
will be n - 1 Is and T Os, and so each sequence will be of length n + r - 1,
containing exact ly T Os. Conversely, any such sequence corresponds to a non­
negative int eger solution of Xl + ...+ X n = r . Now the T Os can be in any of
t he n +r - 1 places , so the number of such sequences , and hence the number
of unordered choices, is (n+;-l), the number of ways of choosing T places out
of n + T - 1.

This proof also establishes the following result .

Theorem1.11
Th e numb er of solutions of X l +...+ X n = T in non-negative integers Xi is
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Example 1.15
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The number of soluti ons of x + Y + z = 17 in non-negati ve integers is

Example 1.16

How man y solu t ions are there of x + Y + z = 17 in positive intege rs?

Solution

Her e we require x ~ 1, Y ~ 1, z ~ 1, so we put x = 1 + u ,Y = 1+ v , z = 1 + w.
The equat ion becomes u + v + w = 14, and we seek solut ions in non-negat ive
integers u , v , w. The number of solut ions is th erefore

Example 1.17

How many binary sequences are there cont aining exa ct ly p Osand q Is , q ~ p-l
with no two Os together?

Solution

Imagine th e q Is placed in a row: .. . 1 . . . 1 . . . 1 . . . . They create q+ 1 "boxes"
(spaces) in which to put t he Os (q - 1 box es between t he Is, and one at each
end ). The p Os have to be places in different boxes, so the numb er of choices
is ( q~ l ) .

Alt ernat ively, we could first place the pOs in a row. They create p + 1 boxes
in which to place the q I s. But the p - 1 inte rn al boxes must receive at least
one 1. Ifwe let Xi den ote th e number of I s placed in the ith box , we want
the number of solutions of X l + ...+ X p+ l = q, where Xl ~ 0, Xp+l ~ 0, and
all other Xi ~ 1. Putting Xl = Y l, X p+l = Y p+l , X i = 1 + Yi ot herwise, th e
equation becomes YI +...+Yp+ l = q - (p - 1) = q - p+ 1, and the number of
non-negative integer solut ions is

(
q - p +1+P+1-1) = ( q +1) = (q + 1) .

q-p +l q +l-p P

We summarise the select ion for mulae in Table 1.1.
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unorderedordered

Table 1.1 Summary of formulae for choosing r from n.

choose r

from n

no

repetitions
n! G)(n - r)!

allowed

repetitions n r (n+;-I)
allowed

1.6A UsefulMatrix Inversion

In this final section we present an elegant and useful matrix result which will be
of use later . Itenables us to deduce, from a relation of the form an = L::k(~)bk '

an expression for bn in terms of the a i .

To begin, first consider the matrix

[ ~ ~ ~~]
1 2 1 0
1 3 3 1

which is clearly const ructed from the first four rows of Pascal 's t riangle. Re­
mar kably, its inverse is

[.: ~ ~ ~]
1 -2 1 0

- 1 3 -3 1

since the product of t hese two matrices is easily checked to be the identi ty. This
result generalises in t he obvious way. Before proving this, we need a couple of
lemmas.

Lemma 1.12

For all i.i,k, j :$ k :$ i,

( k ) ( ~ ) = ( ; ) (
i- j )
k -j .
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Proof
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i ! k! i!
k!(i - k)! j !(k - j)! (i - k)!j !(k - j )!

i! (i - j )!
j !(i - j) ! (i - k)!(k - j)!

Lemma 1.13

Lj99 (~)(;)(_l)k = 0 whenever j < i.

Proof

(-1 )J G)~ ( i ~ j) (_l )l on pn t t ing e= k - j

= (- I )j G) (1- l )i - j = 0 since j < i .

We extend the definiti on of (j)to cases where i < j by pn t ting (~) = O. This
makes sense, since there is no way of choosing j objects from i < j without
repetitions.

Theorem 1.14

Let A be th e (n + 1) x (n + 1) matrix, with rows and columns labelled by
0, 1, . . . n , defined byaij = (j).Let B be th e (n + 1) x (n + 1) matrix defined

by b,j = (-I) i+j(j). Then B A = I ,

Proof

The (i, i)th entry of B A is th e product of the ith row of B and the ith column
of A, and so is Lkb'kak, = Lk ( -l )'+k(~)(~) . There is only one value of k
for which (~) and (~) are both nonzero, nam ely k = i , so the sum reduces to
(-1)2'G)(;) = 1. So all diagonal ent ries of BA are 1.
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Ifiofi .the (i,j)th entry of BA is L:k( _l)i+k G)(~) = (_l)i L:k (k)(~)(_l)k .

This is 0, by Lemma 1.12, whenever i > i- But if i < j then every term U) (~)

is 0, so again the sum is 0.

So, now that Theorem 1.14 is established, suppose we are given two sequences
(ao,ai, a2, " ') and (bD, bl,b2,".) related by

for all n ~ 0. We then have the matrix identity

so by Theorem 1.14 we can deduce that

The bottom row then gives

bn = f(-l)n+k(~)ak '
k=O

We therefore have the following useful inversion.

Corollary 1.15

Ifan = L:~=o (~)bk for all n ~ 0, then s;= L:~=o(-W+k(~)ak '

We shall use this inversion result in Sections 2.4 and 5.3.

Exercises

Exercise 1.1

The 10 cabinet ministers of Newland sit around a circular table. One seat
is reserved for the Prime Minister. In how many ways can the remaining
nine seat themselves?
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Exercise 1.2

An 8-person committee is to be formed from a group of 15 women and
12 men. In how many ways can the committee be chosen if
(a) the committee must contain four men and four women?
(b) ther e must he at least two men?
(c) there must be more women th an men?

Exercise 1.3

An eccentric, Mr. Leuben, is reported to have bet t hat if he shuffled
a pack of cards long enough the cards would eventua lly appear in a
given order. He t ried for 10 hours a day for 20 years before eventually
succeeding after 4 146 028 shuffles. Was he lucky?

Exercise 1.4

Find the probabilit ies of getting exac tly (a) 3, (b) 4, (c) 5 numb ers
correct in the UK Natio nal Lot tery.

Exercise 1.5

Est imate your chances of picking the winning numbers in t he following
lot teries:

(a) Sweden - choose 7 from 35; (b) Hungar y - choose 5 from 90.

Exercise 1.6

In th e Thunderball varia tion of the lottery, you choose five from 1 to
34, and one from 1 to 14. Compare your chance of winning Thunderb all
with your chances of winning the UK Lottery.

Exercise 1.7

Wh at is the pro bab ility of get t ing exactly 5 head s in 10 tosses of a coin?

Exercise 1.8

Give an indu ct ion proof of the binomial theorem. (You will need to use
T heorem 1.4(ii).)
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Exercise 1.9

Deduce from Theorem 1.7 that (~) + G) + G) + ...= 2n
- l .

Exercise 1.10

17

Use the identity (l+x)"(I+x) S= (l+x)"+s to derive the Vandermonde
identity, Lk (~)(n~k) = (r ~s) .

Deduce that Lk m(k~l) = C~D·

Exercise 1.11

(a) Check that (~) - (i)+ G) -G) = -20 = -(~) .

(b) Generalise this result to (~)_(~)+(;)_ " '+(_I)k(~) = (-I)k("k 1
)

by replacing each (7) by (n~l) + (7~n .

(c) Give an alternative proof by considering the coefficient of x k on both
sides of the identity (1 + x)n-I = (1 + x)n(1 + x)-I .

Exercise 1.12

Use (1.2) to prove that Lk k(';,') (~) = n(m+~-I) .

Exercise 1.13

Find the number of solutions of the equation x + y + z +w = 15 (a) in
non-negative integers, (b) in positive integers, (c) in integers satisfying
x> 2,y > -2 ,z > O,W> -3.

Exercise 1.14

Find the number of non-negative integer solutions of XI +X2 +X3 +X4 :s6.

Exercise 1.15

Show th at more than half of the selections of 6 from 49 in the UK Lottery
have no two consecutive numbers.

Exercise 1.16

Find the number of ways of placing 4 marbles in 10 distinguishable boxes
if
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(a) the marbles are distinguishable, and no box can hold more than one
marble;

(b) the marbles are indistinguishable, and no box can hold more than
one;

(c) the marbles are distinguishable, and each box can hold any number
of them ;

(d) the marbles are indistinguishable, and each box can hold any number
of them.

Exercise 1.17

Using (1.2), prove that L:~=o r(;) = n2n - 1
• Why is this result obvious

when we consider the average size of a subset of a set of n elements?

Exercise 1.18

Establish the formula 12 + 22 + . . . + n 2 = in(n + 1)(2n + 1) by the
following methods.

(a) Prove that (r~2) - (;) = r 2 , and sum over r .

(b) Prove that (;) + (rt1) = r 2 , and sum over r, using Theorem 1.8.

Exercise 1.19

(For those who know de Moivre's theorem.)

Let w = ~(-1+iV3), so that w3 = 1 and w2+w+1 =O. Put x =1,Y =w
in the binomial theorem to show that

(Hint: 1+ w = e¥ .)
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Recurrence

Itoften happens that, in studying a sequence of numbers an, a connection
betwe en an and an-I , or between an and several of the previous ai ,i< n, is
obtained. This connect ion is called a recurrence relation; it is the aim of this
chapter to illustrate how such recurrences arise and how they may be solved.

2.1SomeExamples

Example 2.1 (The towers of Hanoi)

We begin with a problem made famous by the nineteenth century French math­
ematician E. Lucas. Consider n discs, all of different sizes, with holes at their
centres (like old gramophone records) , and three vertical poles onto which the
discs can be slipped. Initially all th e discs are on one of the poles , in order of
size, with the largest at the bottom, forming a tower .Itis required to move the
discs, one at a time, finishing up with the n discs similarly arranged on one of
the other poles. Th ere is the important requirement that at no stage may any
disc be placed on top of a smaller disc. What is th e minimum number of moves
required?

Let an denote the smallest number of moves required to move the n discs.
Th en clearly al = 1. Also, a2 = 3: move the top disc to one pole , the bottom
to the other, and then place the smaller on top of the larger. What about an?
Itshould be clear that , to be able to move the bottom disc , there has to be an
empty pole to move it to, and so all the other n - 1 discs must have been moved
to the third pole . To get to this stage, a n -l moves are needed . Th e largest disc
is then moved to th e free pole , and then another an-l moves can position the
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other n - 1 discs on top of it . So

Discrete Mathematics

This recurrence relation, along with th e initial condition a l = 1, enables
us to find an ' We have a 2 = 2.1+ 1 =3, a 3 = 2.3+ 1 = 7, a4 = 2.7 + 1 = 15,
and it appears that a n = 2n - 1. Thi s can be confirmed by induct ion, or by
iteration:

an 1+ 2an - l = 1+ 2(1 + 2an - 2 ) = 1+ 2 + 22a n _ 2

1+ 2 + 22 (1 + 2an _ 3 ) = 1+ 2+ 22 + 23a
n _ 3

1 + 2 + 22 + + 2n - 2 + 2n - 1a l

1+ 2+ 22 + + 2n - 1 = 2n - 1.

In th e mythical story attached to the puzzle, n was 64 and priests had to move
discs of pur e gold; when all was accomplished, the end of th e world would
come. But 264 - 1 = 18446744073 709 551615, and at one move per second
the process would take about 5.82 x lOll years; so we have nothing to worry
about! Thi s is another good example of combina torial explosion.

Example 2.2

T here are 3n n-digit sequences in which each digit is 0, 1 or 2. How many of
these sequences have an odd numb er of Os?

Solution

Let bn denote th e numb er of such sequences of length n with an odd numb er
of Os. Each such sequence ends in 0,1 or 2. A sequence ending in 1 has any
of th e bn - I sequences of length n - 1 preceding th e 1; and similarly th ere are
bn - I sequences endin g in 2. Ifa sequence ends in 0, th e 0 must be preceded
by a sequence of length n - 1 wit h an even number of Os; but th e number of
such sequences is 3n - 1 (the total numb er of sequences of length n - 1) minus
bn - 1 (the numb er of sequenc es oflength n -1with an odd numb er of Os) ; thu s
there are 3n -

1 - bn _ 1 sequences ending in O. So, by th e addition pr inciple,

bn = bn - I + bn - 1 + 3n
-

1
- bn - 1 i.e . bn = bn - 1 + 3n -

l
.

Again we can find bn by iterat ion:

b.; = 3,,-1 + bn - I = 3,,-1 + (3" -2 + b,,- 2) = '"

But b. = 1 (why?) , so

b« = 1+ 3 + ... +3,,- 1 - ~(3" - 1)-2 .
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Example 2.3 ( Paving a garden path)

21

A path is 2 metres wide and 11 metres long. It is to be paved using paving
sto nes of size l m x 2m. In how many ways can th e paving be accomp lished ?

Solution

Let Pn denot e th e number of pavings of a 2 x 11 path . Clearly PI = 1 since one
paving st one fills the pa th . Also, P2 = 2, th e two possibilities being shown in
Figure 2.1(a) , an d P3 = 3 (Figure 2.1(b)).

Bm
(a)

ITIJ[EBJ
(b)

Fig ure 2.1

It might appear th at Pn = 11 for all n , but check now that P4 = 5. What isPn?
For a 2 x 11 path, the paving must st art with one of the options shown in

Figur e 2.2.

0,-1 1 1_
n - l

Figure 2.2

2 11-2

In the first case it can be completed in Pn-I ways; in the second it can be
completed in Pn- 2 ways. So, again by the addition principle,

Pn = Pn-l + Pn-2 (11 ~ 3) .

This is a second order recurrence relation, since each Pn is given in te rms of
the previous two. We obtain Ps = 5 + 3 = 8, P6 '"8 + 5 = 13,P7 = 13 + 8 =
21, etc; the sequence (Pn) thus turns out to be th e well-known Fibona cci
sequence (Fn ) :

1, 2, 3, 5, 8,1 3, 21, 34, 55,89, . . ..

Fibonacci, or Leonardo of P isa (c. 1200 AD) introduced this sequence when
investi gatin g the growth of the rabbit popu lation (see Exercise 2.5); it crops
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up amaz ingly frequentl y in diverse mathematical situat ions. We shall obtain a
formula for Fn in t he next sect ion.

Example 2.4 (Flags)

A flag is to consist of n horizontal stripes, where each st ripe can be anyone
of red, whit e and blue, no two adjacent stripes having the same colour. Under
th ese conditions , th e first (top) st ripe can be any of three colours , the second
has two possibilities, the thi rd has two, and so on (each st ripe avoiding the
colour of th e one above it) ; so there are 3 x 2n

-
l possible designs.

Suppose now th at, in order to avoid possible confusion of flying the flag
upside-down, it is decreed th at th e top and bottom st ripes should be of different
colours. Let a n denote the numb er of such flags with n st ripes . Then a l = 0
(why?) and a 2 = 6. Furth er , since th ere is a one-to-one corr espondence between
flags of n stripes with bottom st ripe same as top , and flags of n - 1 stripes with
bot tom stripe different from top ,

an = 3 x 2n - l

3 X 2n - l

Thus

(no. of flags with bottom colour same as top colour)

(no. of flags of n - 1 st ripes with bottom colour

different from top).

(2.1 )

We could iterate again (try it !), but here is another method . Since

we also have
an - I + a n-2 = 3.2n

-
2

whence

Thus

(2.2 )

This aga in is a second order recurrence relation; we now show how to solve it.
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2.2The AuxiliaryEquationMethod

In this section we concentrate on recurrence relations of the form

23

(n 2: 3) (2.3)

where A, B are constants, B i 0, and where al and a2 are given. Equation (2.3)
is called a second order linear recurrence relation with constant coefficients; it
turns out that there is a very neat method of solving such recurrences.

First, we ask : are there any real numbers a i ° such that an = an satisfies
(2.3)? Substituting an = an into (2.3) gives an = Aan- l + Ban- 2, i.e. 0 2 =

Aa + B . Thus an = an is a solution of (2.3) precisely when a is a solution of
the auxiliary equation

x2=Ax+B. (2.4)

Thus if a and f3 are distinct roots of (2.4), an = an and an = /3n both satisfy
(2.3) . Ifthe auxiliary equation has a repeated root a , then

x 2 - Ax - B = (x - a)2 =x 2 - 2ax + a 2

so that A = 2a and B = _a2. In this case an = nan also satisfies (2.3) , since

Aan-l +Ban-2 = A(n - l)an- l + B(n - 2)an-2

We now prove

Theorem 2.1

Suppose (an) satisfies (2.3) , and that al and a2 are given. Let a , f3 be the roots
of the auxiliary equation (2.4) . Then

(i) if a i f3, there are constants Ks , K2 such that an = Kso" + K 2f3n for all
n 2: 1;

(ii) if a = f3, there are constants K 3 , K 4 such that an = (K3 + nK4)a
n for all

n2:l.

Proof

(i) Choose K l , K 2 so that Ul = Kla + K 2f3,a2 = K la2 + K 2f32 , i.e. take

K _ ad3 - U2

1 - a(f3 - a)'
ala - U2

K 2 = fJ(a - fJr (2.5)
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Th en the asserti on th at an = K 1an + K2 /3n is certainly true for n = 1, 2. We
now proceed by induction . Assum e th e assertio n is t rue for all n ::; k . Th en

ak+1 = Aa k + Bak _1 = A(K1a k + K 2 /3k) + B (K1a k- 1+ K 2/3k-l )

= K 1ak- 1(A a + B )+ K 2 /3k-I (A/3 + B )

so the result follows.

Th en th e assertion that an = (K3 + n K4)a
n is certainly true for n = 1, 2.

Assume it is true for all n ::; k. Then

ak+1 = Aa k + Bak _1 = A(K 3+ kK4 )ak + B(K3+ (k - I )K4 )ak- 1

= K 3a
k- I(Aa + B )+ K 4a k- I(Aka + B (k - 1))

= K3a k+J + K 4a
k- 1(2k - a 2 (k - 1))

=K 3a
k+1 + K 4(k + l )a k+ 1 ,

as required.

Example 2.4 (continued)

In the flag problem we obtained th e recurrence relati on an = an-l + 2an- 2 ,

where a l = 0, a2 = 6. Th e auxiliary equat ion x 2 - x - 2 = 0 has solutio ns
a=-I , /3=2,so

an = K 1 (-I )n + K 2 2n

where 0 = -K1 + 2K2 and 6 = K 1 + 4K2 , i.e. K 1 = 2, K 2 = 1. So

Example 2.3 (continued)

The Fibonacci sequence (Fn ) is given by

F1 = 1, F2 = 2, Fn = Fn- 1 + Fn- 2 (n ~ 3).

The auxiliary equation x 2
- x - I =0 has solut ions ~ ( 1 ± J5 ), so
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where et = ~( 1 + v5),fJ = ~( 1 - v5).Th e init ial condit ion F I = 1, F2 = 2,
along with (2.5), yield K 1 = :/S'K 2 =~ , so th at

(2.7)

This result may seem rather odd since Fn is to be an integer. Check that
expansion by the binomial theore m leads to a cancellatio n of all term s involving
v5,giving

F: = 2-{(n + 1) 5(n + 1) - 2 (n + 1) ...}
n 2n 1 + 3 + o 5 + .

Th is again is a surprise since it is by no means obvious th at th e sum of binomial
coefficients shou ld be divisible by 2n .

Not e that , since I,BJ< 1, the second term in (2.7) tends to 0 as n --t 00, giving

Fn+1 1 +v5
F

n
--t - -2- ' the golden rat io.

Example 2.5

Solve th e recurrence relation an = 4an _ 1 - 4an - 2 (n ~ 3) , a ) = 1, a 2 = 3.

Solut ion

The auxiliary equat ion is x 2 - 4x + 4 = 0, Le. (x - 2)2 = 0, so

an = (K ) + nK2)2
n

.

Th e initial condit ions give 1 = 2(K I + K 2 ) , 3 = 4(K1 + 2K 2 ) , whence K ) =
K 2 = ~ . Thus

an = (n + 1)2n
-

2
.

Th e auxiliary equation method extends to higher order recur rences in the ob­
vious way.

Example 2.6

Supp ose that al = 3, a 2 = 6, a 3 = 14 and , for n ~ 4,

T hen the auxili ary equation is x 3 - 6x 2 + l1 x-6 = 0, Le. (x - 1)(x -2)(x - 3) = 0,
so a n = K) + K 22

n + K 33
n . Using t he initial conditions, we get.
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Non-homogeneous recurrence relations

The auxiliary equation method has been used for recurrence relations such as
an = an-l + 2an_ 2 . These are homogeneous linear recurrences with constant
coefficients: an is a linear combination of some of the previous ai . We now
briefly consider the non-homogeneous case, e.g .

where tn is some function of n . One example of this was (2.1), which we solved
by manipulating it into a second order homogeneous recurrence; but now we
give an alternative method of solution. For we can obtain a solution by first
finding the solution of the recurrence relation obtained by replacing t« by 0, and
then adding to it any particular solution of the non-homogeneous recurrence.

Example 2.4 (again)

We solve an = - a n - l + 3.2n - l , al = O.

Solution

First we solve an = -an-I · We could use the auxiliary equation x = -1,

but it is easy just to spot that an = (_1)n-l a 1, Le. an = K(-1)n . For a
particular solution of an = -an-l + 3.2n - 1, we try something sensible such
as an = A2n. Substituting gives A2n = _A2n-1 + 3.2n-1 , whence A = 1. So
we have an = K (_1)n + 2n. Since al =0, we need K = 2; so we have finally
an = 2(_ 1)n + 2n, as before .

Note that the initial conditions are not applied until the final stage of the
procedure.

2.3 GeneratingFunctions

The generating function of a sequence ai, a2,a3, . . . is defined to be

f(x) = L:aixi.
i=l

For example, the generating functi on of the Fibonacci sequence is

x + 2x 2 + 3x 3 + 5x4 + ....

Ifa sequence starts with ao we take f(x) = I:~o a;x i ; for example, the gener­
ating function of the sequence an = 2n (n ~ 0) is

1+ 2x + 22x2 + ...= _1_.
1- 2x
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Sometimes, given a recurrence relat ion , it is possible to find the generating
function of the sequence and th en to find an by reading off the coefficient of
z " .

Example 2.4 (yet again!)

Consider th e recurrence relation an = 3.2 n- 1 - an- l (n 2: 2), al = O. Let
f (x ) = a lX + a2x 2+ ....Then

f( x ) = a l X + (3.2 - adx2+ (3 .22 - a2)x 3+ ...

= 0 + 6x 2(1 + 2x + 22x2+ ...)- xf (x ).

Thus (1 + x) f(x) = 1~;X so tha t

()
2 1 2 2 1

f x =6x (1+x )(1 - 2x ) = 2x ( 1 - 2x + l+ x )

on using the method of partial fract ions. Thus

Reading off t he coefficient of z " gives

an = 4.2n- 2+ 2(_ 1)n-2 = 2n + 2(_l )n ,

as before.

Example 2.5 (again)

an = 4a n-l - 4an-2 (n 2: 3) ,al = 1, a2 = 3.

f( x ) = al X+ a2x 2+ a3x3 + a4x 4 + ...

x + 3x2+ 4x(f (x ) - alx) - 4x 2f (x) ,

so that

T hus
x - x2

f (x ) = (1 _ 2X)2 '

Now, since
1 2--= I + x + x + ...

I- x
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different iating gives

__1_ _ = 1+ 2x + 3x 2 + ...
(1 - X)2 '

so that
1 2 2

( )
2 = 1+ 2.2x + 3.2 x + ....

1- 2x

T hus
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whence

an = coefficient of x n - J in 1+ 2.2x + ...

- coefficient of x n - 2 in 1+ 2.2x + ....

=n .2n -
j

- (71 - 1)2n - 2 = (n + 1)2n - 2

as before.

2.4Derangements

Suppose that n people at a party leave their coats in th e cloakroom . After the
par ty, they each take a coat at random. How likely is it t ha t no person gets the
correct coat?

A derangement of 1, . . . , n is a perrnu t at ion n of 1, ... , n such th at 1r(i) l'i
for each i . For example, th ere are nine derangement s of 1, 2,3 ,4 :

2 43

2 4 3

23 4

3 4 2

3 4 2

3 4 2

42 3

4 3 2

432

In each of these 1 is not in the first place, 2 is not in th e second, and so on.
Let d.; denote the number of derang ements of 1, . .. ,n. Then (check!)

dj =O, d2=1 , d3= 2, d4 = 9.
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Our aim is to obtain a recurrence relation for th e d, and then use it to obtain
a formul a for dn . Before pro ceeding to the recurrence relation , note that dn is
the number of ways of assigning n objects to n boxes, where, for each obje ct,
there is one prohib ited box, and where each box is prohibite d to just one object.
Above, th e obj ect s and boxes are both labelled by 1, . . . , n , with box (posit ion)
i proh ibit ed to object (number) i , but th e labelling of th e boxes and objects is
of course arbit ra ry and does not affect th e problem.

Next not e th at in three of t he nine derangements of 1,2 ,3,4 listed above,
4 swaps places with another number: this happ ens in 2143,3412 and 4321. In
th e remaining derangement s 4 does not swap places with another. With th is
in mind , we put

dn =en + I n

where en, I n denote th e numbers of derangements of 1, .. . , n in which n swaps,
does not swap, places with anot her. Now if n swaps places with i (and there are
n - 1 possible choices for i ), the remainin g n - 2 numbers have to be deranged ,
and t his can be done in dn - 2 ways; so

e n = (n - l)dn - 2 .

Ifn does not swap places with any other, then some r goes to place n (and
there are n - 1choices of T), while n does not go to place r, So we have to assign
places to 1, . .. ,n , excluding T , where th e places available are 1, .. . ,n - 1, and
where each has precisely one forbidden place (for ii r, n, place i is forbidden ;
for i= n , place r is forb idden). So there are dn - 1 possible arra ngement s, and
so

In = (n - l)dn_1 •

Thus by the addition principle, we have

Idn = (n - 1)(dn - 1 + dn - 2 ).1

Using th is recurrence we get

(2.8)

ds = 4(9 + 2) = 44, d6 = 5(44 + 9) = 265,

and so on.
Th e recurrence (2.8) does not permi t th e use of th e auxiliary equation

meth od , since th e coefficients of dn - 1 and dn - 2 are not constants . However ,
we can manipulate (2.8) into a more manageable form . Equat ion (2.8) can be
rewritten as

dn - ndn - 1 = -(dn - 1 - (n - l )dn - 2 ) ,

where th e expression on the right is the negative of the expression on the left ,
with n replaced by n - 1. So iteration gives
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(2.9)

T hus
a; dn- 1

n! - (n- I)!

If we now sum the identi ties

(_I )n

~

over m = 2,3, . .. , n , we get cancellations on the left , givin g

dn _ dl = (_ 1)2 + (_ 1)3 + ...+ (- w = -.2-- (_ I )m = -.2-- (_1) m .
n! I ! 2! 3! n ! L... m! L... m!

m =2 m =O

But dl =0, so we obtain

n (- 1)'" 1 1 (_I)n
d = n 1'"--= n l{I - - + - -...+--}

n . L... m! . I ! 2! n ! ·
711 = 0

One interesti ng consequence of (2.10) is tha t, as n -+00 ,

dn -+~
n! e'

(2.10)

so the probability of no one get t ing their own coat back after t he par ty tends
1

to - = 0.367 88 as n -+00 . Indeed , for 11 as small as 6,
e

~ = 265 = 0.36806
6! 720 '

agreeing wit h ~ to 3 decim al places.
e

Example 2 .7

(a ) Find the numb er of per mutations of 1, . . . , 11 in which exac tly k of th e
numbers are in their corr ect posit ion , and deduce that.

(2.11)

(b) Wh at is th e average number of numbers in th eir corr ect position in a random
permutati on of 1, ···,n?
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(a) Th ere are (~) ways of choosing th e k numbers to be fixed. The remaining
n - k have to be deranged, and thi s can be done in dn-k ways. So th ere are
(~)dn-k permutations with exactly k fixed numbers.

But any of th e n! permutations fixes k numbers for some k between 0 and n .
So

on puttin g e= n - k.

(b) T he average number of fixed numb ers in a permutation of 1, . . . , n is

1 n (n) 1 n (n)niI> k dn - k = niI> k dn - k

k=O k=l

1 ~ (n- l)= niL..n k _ 1 dn-k by (1.2)
k=l

1 Ln (n -1)= --- dn k
(n - I )! n - k -

k=l

1 n-l(n-1)
= (n _ I)! L e de (on putting e= n - k)

e=o

1
= (n _1) !(n -I)!

= 1.

by(2 .11)

So th e average number of fixed numb ers is 1.

Alternative proofs of (2.10)

A proof of (2.10) using the inclusion-exclusion prin ciple will be given in Chapter
6. Here we give yet another proof, a simple applicat ion of th e inversion prin ciple,
as in Corollary 1.15, applied to (2.11) .

In (2.11), put an for n ! and bn for d.; Th en (2.11) is

so t ha t , by Corollary 1.15,

n ( ) n ,a; = L (_l)n+k n k! = L(_I)n+k_n_. _
k=O k k=O (n - k) !
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n (_ 1)2n-(
=n! L e! (on putt ing e=n - k)

(=0

n (_ 1)1
- n l

" - -- .L.J e! .
(=0

2.5SortingAlgorithms

Given a pile of exam scripts, we might want to sort th em, i.e. put them in
increasing or decreasing order of marks. Are th ere any efficient ways of doing
this? We start wit h a simple but not very efficient proced ure.

Bubblesort

Take a list of n numb ers, in random order. Compare the first two, swapping
th em round if they are not in increasing ord er. Th en compare the second and
third numbers, again swapping if necessary. In th is way proceed up th e se­
quence; the largest number will then be at th e end. Next repeat th e whole
process for th e first n - 1 num bers: this will take the second largest to the
second last posit ion . Repea t for the first n - 2, and so on.

The total number of compariso ns involved in this proced ure is

1 1 2 1
(n - 1) + (n - 2) + ...+ 2 + 1 = 2n(n - 1) = 2 n - 2 n,

so we say that the bubblesort algorithm has O(n 2 ) complexity.

Example 2.8

Start with 7,10,4 ,6 , 3.
After the first 4 compa risons we have 7,4 ,6 , 3,1 0.

After the next 3 compa risons we have 4,6 ,3 ,7 , 10.
After the next 2, we have 4,3 ,6 ,7,10 .
After th e final comparison we have 3,4,6, 7,10.

Mergesort

Th e idea here is to split the given list into two (roughly) equa l parts, sort each
separately, and then merge (combine) them.

The process of combining two sorted list s of lengths eand m into one list can
be accomplished by e+m - I comparisons. For suppose we have two such lists,
both in increasing order. Compare the first (smallest ) numbers in th e lists, and
take the sma ller as the first member of a new list L , cross ing it out of its original
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position. Repeat the pro cess to find the second member of L , and so on. Th e
number of compa risons is clearl y e+m -I , since when only one number from
the two original lists is left no comparison is necessary.

Before th e merging takes pla ce, the two halves of the original list can be
sorted by a similar method. Let tn denote the number of comparisons needed
to sor t a list of n members by thi s method . Ifwe split n into e+ k, t hen

t.; = t{ + tk + e+ k - 1 = te + tk + n - 1.
Thus, if we consider the particular case where n = 2m , so th at the lists can

be bisected at each stage, we have

Put am = t2~ ; t hen the recur rence relation becomes

am = 2am - l + (2m - 1). (2.12)

Using the method of Secti on 2.2, first solve the homogeneous recurrence am =
2am- l . The solution is clearly an = A2" for some constant A . We then have
to find a particular solution of (2.12). Tr y

(Trying an = B .2n +C would not work , since an = 2n is alr eady a solution of
the homogeneous recur rence ; so we t ake th e hint given by Theorem 2.1(ii) and
insert n .) We then requi re

Bn2n + C = 2B (n - 1)2n - 1 + 2C + 2n - 1

Le.

0= - B .2" + 2n - 1+ C .

So take B = C = 1 to obtain finally an = A .2n + n 2n + 1. But all , so
A = - 1,giving

an = 2fl(n - 1) + 1.

Thus t2~ = 1 + 2m (m - 1). On putting n = 2m , we get

t« = 1+ n(log2 n - 1),

so th e mergesort method has complexity O(n log n) , an improvement on the
O(n 2 ) of bubblesort.
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In thi s section we introduce a well-known sequence of numbers known as th e
Catalan numbers , which arise as the counting numbers of a remarkable number
of different types of structure. They are named after the Belgian mathematician
E.C. Catalan (1814-1894) who discussed th em in his publications , but they had
been studied earli er by several mathematicians, including Euler in his work on
t riangulating polygons (to be discussed short ly) .

We describe fully one of the occurr ences of Catalan numbers , and begin with
the following easy probl em .

Example 2.9

How many "up-right" routes are there from A to B in Figure 2.3?

.-_,--_,--_,--_,-------,B(5 ,3)

A(O,O)
Figur e 2.3

Solution

By an "up-right" route we mean a path from A to B following edges of squa res,
always moving up or to th e right. Any path must consist of 8 moves, 5 of which
must be to th e right , and 3 up. So th e total number of possibl e routes is (~).

More generally, th e number of up-right routes from the bottom left vert ex to
th e top right vertex of an m x n array is (m~n) .

Suppose we now have a square n x 11 array, and ask for th e number Pn
of up-right paths from bottom left to top right which never go above the
diagonal AB. In th e case n = 3, shown in Figure 2.4, there are 5 such routes
repres ent ed by RURURU, RURRUU, RRUURU, RRURUU, RRRUUUwhere
R , U stand respecti vely for right , up . Thus P3 =5. What is Pn?

Any qualifying route (let 's call it a good route) from A to B must "hit "
th e diagonal at some stage before B , even if it is only at A. So consider any
good route from A to B , and supp ose that , prior to reaching B , it last met
the diagonal at the point C(m ,m) where 1 ::::: m < n. Then th ere are Pm
possibil ities for th e part of the route between A and C . The route must th en
proceed to D(m + 1, m) , and eventually to E(n ,n - 1), but it must never go
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A

Figure 2.4

B
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a bove the line DE, since ot herwise C would not have been the last hit before
B . But D and E are opposite vertices of a square of side length n - m - I , so
t here are P n - m - lgood routes from D to E . See Figure 2.5.

B

E

C-;,f-----L..- -----'
D

A

Figure 2.5

By th e mult iplication prin ciple, the number of good routes from A to B , with
(m ,m ) as t he last contact with th e diagonal before B , is therefore pmPn- m- l .
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Since m can take any valu e from 0 to n - 1, it now follows from the addit ion
principle that , with Po = 1,

n- I

Pn = L PmPn-m- l ·
m =O

(2.13)

This recurren ce relation differs from the ones met so far , but we ca n use gen­
erat ing functions to solve it . Let f( x) be th e generating function:

Then

j2(x ) (Po +PIX +P2X2 + ...)(Po +PIX +P2X2+ ...)

L Xn(PoPn + PIPn-l + ...+ PnPO)
n= O
00

L Pn+IXn by (2.13).
n= O

Thus xj2(x) = L:~=oPn+I Xn+l = f( x) -1,when ce

Xf2(X) - f(x) + 1 = O.

Solving this quadratic, we obtain

f( x ) = 1± J1=4X =~ {1 - (1- 4x)~}.
2x 2x

We have to take the negative sign to avoid having a term of the form ~ in
x

f(x) . So

f(x)
1 1 1 1 42x 2 1 1 3 43x 3

-{1 - (1 - - . 4x - - . - . - - - . - . - . - - ... )}
2x 2 2 2 2! 2 2 2 3!
1 1 1 1 42 x 2 1 1 3 43 x 3

- {- . 4x + -.-.- + -.-.-.- +...}
2x 2 2 2 2! 2 2 2 3!

1 4x 1 3 42x2 1 3 5 43x3

1+ 2,21+2 ' 2 ' ~ + 2' 2'2·41+ ····

Pn

T hus, for n ~ 1,

1.3.5. . . . (2n - 1) n 2n
( )

( )
, 4 = -(--)' .1.3.5.... 2n - 1

2nn+1 . n+1 .
_ 2_n _ . (2n)! _ _ 1_ (2n)
(n+1) ! 2n.n' - n+1 n .

T hus , for example, P3 = ±( ~) = 5 and P4 = t-m= 14. Note also that Po = 1
fits in with the convent ion that (~) = 1.
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The numbers Pn are the Catalan numbers, usually denoted by C«. Thus

(2.14)

The sequence (Cn)n~O begins

1,1 ,2 , 5,14 ,42,139 ,4 29, ....

From (2.13) we have

(2.15)

As remarked earlier, th e Catalan numbers appea r in many situations. One im­
mediate interpret ation, obtained by replacing Rand U by 0 and 1 resp ectively,
is:

Cn = number of binary sequences of length 2n containing exactly n Osand n
Is , such th at at each stage in th e sequence the number of Is up to that point
never exceeds th e number of Os.

Euler 's inte rest was in the following:
Cn - 2 = number of ways of dividing a convex n-gon int o tri angles by drawing

n - 3 non-intersecting diagonals. For exam ple, th e C3 ways of t riang ulat ing a
pen tagon are shown in Figure 2.6 .

Figure 2.6

See Exercise 2.16 for t his problem and Exerc ise 2.17 for anoth er app earance
of c.;

Another derivation of the formula (2.14)

We close this sect ion by pointing out that th ere is an alt ernative ingenious
method of count ing good up-right routes, due to D. Andr e (1887). It avoids
the rather awkward recurrence relation (2.13) , instead makin g use of a clever
mirror prin ciple.

Th e number of good routes from A (O ,O) to B (n,n) which do not cross th e
diagonal A B is the to tal number e:lof up-right routes from A to B minus
the numb er of routes which do cross AB. Let's call routes which cross AB bad
rou te s.
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,---- ......F=----.B(n, n )

R

Figure 2.7

Consider any bad route. T here will be a first point on that route above th e
diagona l AB; sup pose this is the poin t R(m,m + 1).Ifwe replace the part of
the route from A to R by it s image in th e "mirror" GF (see Figure 2.7) th en
we get an up-ri ght route from H(-I, 1) to B(n,n). Conversely, any up-r ight
route from H to B must cross GF somewhere, and ari ses from precisely one
bad route from A to B . So the numb er of bad routes is ju st the number of
up-ri ght routes from (- 1,1)to (n, n), which is

(
n +1+ n - 1) = ( 2n ) .

n+ 1 n + 1

So finally the num ber of good routes from A to B is

( 2n ) _ ( 2n ) = ( 2n) _ _ n (2 n) = _1(2n) .
n n+I n n+ 1 n n+1 n

Exercises

Exercise 2.1

Solve the recurrence relations

(a) a n = ~an- l + 1, al = 1;
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(b)an = 5an-l - 6an- 2,al = -1,a2 = 1;

(c) an = 6an-l - 9an-2, al = 1,a2 = 9;
(d) an = 4an_l - 3an- 2+ 2n,al = l ,a2 = 11.

Exercise 2.2

39

Let bn denote th e numb er of n-digit binary sequences containing no two
consecutive Os. Show that b., = bn- 1 + bn-2 (n 2: 3) and hence find bn.

Exercise 2.3

Let dn denote th e numb er of n-digit sequences in which each digit is 0, 1
or 2, and containing no two consecut ive Is and no two consecutive 2s.
Show that dn = 2dn- 1 + dn- 2. Solve this recurrence and dedu ce that
dn =1 + 2(nn + 22(nt 1

) + 23(nt 1
) + ... .

Exercise 2.4

Use generating functions to solve Exercise 2.1(a) and 2.1(b) .

Exercise 2.5

Fibonacci's rabbits . Start with 1 pair of rabbits, and supp ose that each
pair produces one new pair in each of the next two generations and
then dies. Find fn , the number of pairs belonging to the nth generation
(h = 1 = h) .

Exercise 2.6

Solve the recurrence relation (2.1) for the flags by iteration .

Exercise 2. 7

The Lucas numbers Ln are defined by L 1 =1, L2 = 3, Ln = Ln - 1 +Ln - 2

(n 2: 3) . Obtain a formula for L n ·

Exercise 2.8

Solve the recurrence (2.12) by using the method given in Example 2.4,
first eliminating 1 and then eliminating powers of 2. You should obtain
an - 5an-l + 8an-2 - 4an- 3 = O.
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Exercise 2.9

Verify tha t if u;, and u~ are two solut ions of the recurrence an = Aan_1+
Ba ll - 2 t hen a;, + a;; is also a solution.

Exercise 2.10

Show tha t the generating function for the Fibonacci sequence is ti~~:~ .
Hence obtain (2.7).

Exercise 2.11

Let M = (~i) .
(a ) Prove that M n+2 = ( ~n FFn +' ) wbere Fn is the nth Fi bonacci num-

r ,, + l 0 + 2
ber.

(b) fly taking det ermi na nt s show that FnFn+2 - F~+ I = (_ I) n.
(c) By considering the ident ity M m+n+2 = M m+!M n+l , prove tha t

Fm+n = FmFn + Fm- IFn- l .

Exercise 2.12

Prove tha t FI + F2+ ...+ Fn = Fn+2 - 2.

Exercise 2.13

For each of tbe following, work out the values for the first few values
of " and make a guess at the general case. T hen prov e your guesses by
induct ion.
(a) F 1 + F3 + Fs + + F2n- l ;

(b) F2+ F4 + F6 + + F2n;
(c) F; - F2 + F3 - + (- l)n- IFn.

Exercise 2.14

In bellringing , successive permutati ons of n bells are played one afte r
the ot her. Following one permutation n , the next permutation must be
obt ained from tr by moving the posit ion of each bell by a t most one
place. For example, for n = 4, th e perm utation 1234 could be followed
by any one of 2134, 2143, 1324, 1243. Show tha t if an denotes the number
of permutat ions which could follow 12 . . . n , then an = Un- I +Un - 2 + l.
Hence find an .
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(a) Let 9n denote th e number of subsets of {I , . . . , n } containing no two
consecut ive int egers . Thus, for exam ple, 91 = 2 (include the empty
set !) and 92 = 3. Find a recurrence relati on for 9n, and dedu ce th at

9n = Fn+ l ·

(b) A k-element subset of {I , .. . , n } can be considered as a binary se­
quence of length n containing k Is and n - k Os (see Example 1.12).
Use Example 1.17 to show that the number of k-subset s of {I , . .. , n }
cont aining no two consecut ive int egers is (n-:+l).

(c) Dedu ce that Fn = Lk< ' n (n -k k) . How does this relati on show up in
- ~

Pascal' s triangle?

Exercise 2.16

Let tn denote the number of ways of t riangulating a convex (n + 2)-gon
by drawing n - 1 diagonals. Show that tn = Cn as follows. Lab el the
ver ti ces 1, . .. , n + 2, an d consider the triangle containing edge 12. Ifit
cont ains vertex r as its third vertex, in how many ways can th e remaining
two parts of the inte rior of th e (n + 2)-gon be triangulate d? Deduc e that
t n = L t itj where summation is over all pairs i , j with i+ j = n - 1.

Exercise 2.17

Show that if 2n points are marked on the circumference of a circle and if
an is th e number of ways of joining them in pairs by n non-intersecting
chords, then an = Cn.

Exercise 2.18

Derive Euler 's formul a Cn = 2.4 '~;;J~ ~-2) for t he Catalan numbers , and
note that (n + I )Cn = (4n - 2)Cn _ l.

Exercise 2.19

Prove th at d.; > (n - 1)1for all n 2': 4.

Exercise 2.20

Insertionsort . Sort a list X l , • . . ,Xn into increasing order as follows. At
stage 1, form list L, consist ing of ju st Xl ' At stage 2, compare Xl with
X 2 an d form list L 2 consisting of Xl and X2 in increasing ord er. At stage
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i, when Xl, .. . , Xi - l have been put into list L i - l in increasing ord er ,
compare Xi wit h each X j in L.- 1 in tu rn until its corr ect position is
obtai ned; this creates list L i . Repeat unt il L n is obtained . Compa re the
efficiency of this meth od with th at of bubblesort .

Exercise 2.21

In a mathematical model of the popula t ion of foxes an d rabbits, th e
populat ions Xn and Yn of foxes and ra bbits at the end of n years are
related b (Xn+l) = ( 0 .6 0 .5) (Xn).y Yn+ l - 0.16 1.2 Yn

Show th at 5Xn+2 - 9Xn+l + 4x n = 0, and hence find X n in terms of Xo

and Y o .

Dedu ce that Xn ~ ~Yo - Xo as n ~ 00, provided Xo < ~ YQ . What
happens to Yn?

Exercise 2.22

In a football competition, there are n qualifying leagues. At the next
st age of the compet ition, each winner of a league plays a runner up in
another league. In how many ways can the winners and the runners up
be pa ired?
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Introduction to Graphs

We introduce th e idea of a graph via some examples, and concent rate on two
types of graph, namely tre es and planar graphs. Fur th er graph-theoretic topics
will be covered in the next cha pter.

3.1 The Concept of a Graph

Example 3.1 (The seven bridges of Konigsberg)

In the early eighteent h century there were seven bridges over th e River P regel
in the Eastern Prussian town of Kiinigsberg (now Kalini ngrad ). It is said tha t
the residents t ried to set out from home , cross every brid ge exac tly once and
return home. Th ey began to believe the tas k was impossible, so th ey asked
Euler if it were possible. Euler 's proof that it was impossible is often taken to
be th e beginning of the theory of gra phs. What Euler essent ially did (although
his argument was in words ra ther than pictu res) was to redu ce the complexity
of Figure 3.1{a) to the simple diagr am of 3.1(b), where each land mass is
represented by a poin t (vertex ) and each br idge by a line (edge) . If the desired
walk existed , then each t ime a vert ex was visit ed by using one edge, then
another edge would be used up leaving the vertex; so every vertex would have
to have an even number of edges incident with it. Since this is not th e case" the
desir ed walk is impossible.

The diagram of Figure 3.1{b) is an example of a graph . It has four vertices
and seven edges .
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(a)

D

Figure 3.1

Discrete Mathematics

A

B'tE----.... C

D

(b)

Example 3.2 (The utilities problem)

An old problem concerns three houses A, B , C which are to be joined to each
of the three utilities, gas , water and electricity, without any two connections
crossing each other. In other words , can the diagram of Figure 3.2 be redrawn
so that no two lines cross? The diagram is another example of a graph .

Definition 3.1

A

G

B

w
Figure 3.2 The utilities graph

E

A graph G consists of a finite set V of vertices and a collection E of pairs of
vertices called edges. The vertices are represented by points, and the edges by
lines (not necessarily straight) joining pairs of points. Ifan edge e joins vertices
x and y then x and y are adjacent and e is incident with both x and y. Any
edge joining a vertex x to itself is called a loop.

Note that we say E is a collection of pairs, not a set of pairs. This is to
allow repeated edges . Iftwo or more edges join the same two vertices, they are
called multiple edges. For example, the graph of Figure 3.1(b) has two pairs
of multiple edges . The graph of the utilities problem is simple, i.e. it has no
loops or multiple edges .

The number of edges incident with a vertex v in a graph without loops
is called the degree or valency of v and is denoted by d(v) . The second
name recalls one of the early occurrences of graphs, as drawings of chemical
molecules . For example, ethane (C2H6 ) can be represented by the graph of
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Figure 3.3, where the two "inside" verti ces, of valency 4, represent th e two
carbon atoms (car bon has valency 4), and t he six other vert ices, of valency
1, repr esent hydr ogen atoms. Verti ces of degree 1 are called pendant or end
vertices.

Figure 3.3 Eth ane

When a graph contains a loop, the loop is considered to cont ribute twice to
the degree of its incident vert ex. Thi s convent ion enables us to establish th e
following useful result.

Theorem 3.1

Th e sum of the degrees of th e vertices of a graph is twice th e numb er of edges.

Proof

Each edge cont ributes twice to the sum of th e degrees, once at each end .

This result is sometimes called th e handshaking lemma: at a party, th e total
number of hand s shaken is twice the numb er of handshakes.Ithas an immedi at e
corollary.

Corollary 3.2

In any grap h, th e sum of th e vertex degrees is even.

Example 3.3

The complete graph K" is th e simple graph with n vertic es, in which each
pair of vertices are adja cent . Since each of th e n vertices must have degree n -I ,
th e number q of edges must sat isfy 2q = n(n - 1), so that q = ~n (n - 1). This
of course is as expected, since q is just the numb er of ways of choosing two of
the n vertices, Le. q = G)= !n(n - 1).

• I
K 3

Figure 3.4
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The graphs K n , n :::; 4, are shown in Figure 3.4. The notation K n is in hon­
our of th e Polish mathematician K. Kuratowski (1896-1980) whose important
theorem on planarity will be mentioned in Section 3.6. Note th at K 4 contains
K a within it ; this idea of one graph being contained in another is formali sed in
the next definition.

Definition 3.2

A graph H is said to be a subgraph of a graph G if the vertex set of H is a
subs et of th e vertex set of G, and the edge set of H is a subset of th e edge set
ofG.

Thus, for example, Km is a subgraph of K n wherever m < n; simply restrict
K n to m of its vertices.

Finally in this section, we establish some standard notation. From now on,
we shall use p and q to denote th e numbers of vertices and edges respectively,
and by a (P,q)-graph we shall mean a graph with p vertices and q edges. Thus,
for example, K 4 is a (4, 6)-graph.

3.2 Paths in Graphs

Many important applications of graph theory involve travelling round the
graph, in the sense of moving from vertex to vertex along incident edges. We
make some definitions related to thi s idea.

Definition 3.3

A walk in a graph G is a sequence of edges of the form

Thi s walk is sometimes, in a simple graph, repr esent ed more compac t ly by
Vo ~ Vi ~ V2 ~ ...~ Vn · Note th at there is an implied dire ction to the walk .
Vo is called the initial vertex and Vn the final vertex of the walk; the number
(n ) of edges is called the length of the walk.

A walk in which all the edges are distin ct is called a trail. A trail in which
all vertices Vo , . • . , V n are distinct (except possibly Vn = v o) is called a path; a
path Vo ~ ...~ Vn with Vn =Vo is called a cycle.

Example 3.4

In the graph of Figure 3.5,

z ~ u ~ Y ~ v ~ u

u~y~ w~ v

U ~ Y ~ W ~V ~ U

is a trail but not a path;

is a path of length 3;

is a cycle of length 4.
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Itseems natural to consider the cycles u ~ y ~ v ~ u and y ~ v ~ u ~ y

x

u

Figure 3.5

y

v w

to be the same ; so often we identify a cycle with th e set of its edges . We use
the notation (for n > 1)

Cn = cycle of length n (Le. with n edges and vertices) ;

Pn = path of length n - 1 (Le. with n vertices) .

Thus, for example, P2 = K 2 and Ca = K a.

Definition3.4

A graph is connected if, for each pair x, y of vertices, there is a path from
x to y . A graph which is not connect ed is made up of a number of conne cted
pieces, called components .

3.3 Trees

Definition3.5

A tree is a conne cted simple graph with no cycles.
For example, the ethane graph in Figure 3.3 is a tree, as is each Pn . Note that
the ethane graph has p = 8 and q = 7, while Pn has p = n and q = n - 1; in
each case, P- q = 1. This property in fact characterises those connected graphs
which are trees. Our proof of this depends upon the following useful result.

Theorem 3.3

IfT is a tree with p ~ 2 vertices then T contains at least two pendant vertices.

Proof

Since T has p vertices, all paths in T must have length less than p. So there
must be a longest path in T, say VI ~ V2 ~ •• • ~ vr • We claim that VI and
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Vr both have degree 1.Suppose Vl has degree> 1; then there is another edge
from Vl , say Vl VO, where Vo is none of V2 , ... ,Vr (otherwise there would be a
cycle), 50 Vo --+Vl --+ . .. --+Vr would be a longer path . So Vl has degree 1, and
a similar argu ment holds for vc.

Theorem 3.4

Let T be a simp le graph with P vert ices. T hen the following statements are
equivalent :

(i) T is a tr ee;

(ii) T has P - 1 edges and no cycles;

(iii) T has P - 1 edges and is connected.

Proof

(i) ~ (ii) We have to show that all trees with P vert ices have P - 1 edges .
This is certainly t rue when P = 1. Sup pose it is true for all tr ees with k ~ 1
vertices, and let T be a t ree with k + 1 vert ices. Then, by Theore m 3.3, T
has an end vertex w . Remove w and its incident edge from T to obtain a tree
T' wit h k vert ices. By th e induct ion hypoth esis, T ' has k - 1 edges; 50 T has
(k - 1) + 1 = k edges as requir ed .

(ii) ~ (iii) Sup pose T has P - 1 edges and no cycles, and sup pose it consists
of t ~ 1 component s, Ts, . . . ,Tt, each of which has no cycles and hence must
be a tr ee. Let Pi denote the number of ver tices in Ti. Then L i Pi = P, and the
number of edges in T is L i (Pi - 1) = P - t . So P - t = P -1 , Le. t = 1, so that
T is connected.

(iii) ~ (i) Supp ose T is connected with p - 1 edges, but is not a t ree. T hen T
must have a cycle . Removing an edge from a cycle does not dest roy connect­
edness , 50 we can remove edges from cycles until no cycles are left , preserving
connectedness . The resulting gra ph must be a tr ee, with p vert ices and q < p - 1
edges, cont radicting (ii).

This th eorem can be used to establish the t ree-like nature of certai n chemical
molecules.

Example3.5

Show that the alkanes (pa raffins) Cn H2n+2 have tree-like molecules.

Solution

Each molecule is repr esented by a graph with n + (2n + 2) = 3n + 2 vertices.
Of these, n have degree 4 and 2n + 2 have degree 1, so, by Th eorem 3.1,

2q = 4n + 2n + 2 = 6n + 2
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whence q = 3n + 1 = p - 1. Since molecules are connected , the gra phs must be
t rees, by Theorem 3.4.

Th e first few alkan es are shown in Figure 3.6.

+
methane ethane propane

butane isobutane

Figure 3.6 Alkanes

Note th at th ere are two "different" trees corre sponding to C4H IO .

Definition3.6

Two graphs Cl , C2 are isomorphic if it is possible to label the vert ices of both
graphs by th e same lab els, so that , for each pair u,v of labels , th e numb er of
edges joining vert ices u and v in Cl is equa l to the numb er of edges joining u
and v in C2 .

Example 3.6

(i) The graphs portrayed by the last two diagrams in Figure 3.4 are isomorphic.
(ii) Th e butane and isobutane graphs (Figure 3.6) are not isomorphic. T he
second graph has one vertex of degree 4 joined to all th e other vertices of
degree 4, but thi s does not happen in the first graph.

Tree diagrams such as th ose in Figur e 3.6 were introduced in 1864 by th e
chemist A. Crum Brown in his study of isomerism, the occurrence of molecules
with the same chemical formula but different chemical propert ies. Th e problem
of enumerating the non-i somorphic molecules CnH2n+2 was eventually solved
by Cayley in 1875, but his solut ion is beyond the scope of this book.

A relat ed problem was: find T(n), th e number of non-isomorphic tr ees with
n vertices. We have T(l) = T(2) = T(3) = 1, and , as th e reader should check,
T(4) = 2,T(5) = 3,T(6) = 6. No simple formula for T(n) exists, although
T(n ) is th e coefficient of z" in a known but very complicate d series. However ,
there does exist a very nice formula for th e numb er of trees on n given labelled
vertices. For exa mple, alt hough T (3) = 1, t here are three labelled t rees with



50 Discrete Mathematics

vertices labelled 1,2,3 as shown in Figure 3.7. It was established by Cayley in
1889 that the number of labelled trees on n vertices is nn-2 . A proof of this
will be given in Chapter 6.

1

L /\
323232

Figure 3.7 Labelled trees .

3.4 Spanning Trees

Suppose that a connected graph represents a railway system, the vertices rep­
resenting the towns and the edges the railtracks. Suppose also that the gov­
ernment wishes to get rid of as much track as possible, nevertheless retaining
a rail system which connects all the towns. What is required is a tree which is
a subgraph of the given graph, containing all the vertices .

Definition3.7

A spanning tree of a connected graph G is a tree which contains all the
vertices of G and which is a subgraph of G.

Example 3.7

(i) K 3 has three spanning trees, as shown in Figure 3.7.

(ii) K 4 has 16 = 42 spanning trees. Draw them. Do you see how this relates to
Cayley's 1889 result?

(iii) In the graph of Figure 3.5, the edges zu, xu ,uy , yv, yw form a spanning
tree.

In the case of a weighted graph G, i.e. when each edge e of G has a weight w( e)
assigned to it, where w(e) is a positive number such as the length of e, then it
may be desired to find a spanning tree of smallest possible total weight. There
are several different algorithms which find such a minimum weight spanning
tree of G.

The greedy algorithm

This is often known as Kruskal's algorithm.
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Procedure
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(i) Choose an edge of smallest weight.

(ii) At each stage, choose from the edges not yet chosen the edge of smallest
weight whose inclusion will not create a cycle .

(iii) Continue until a spanning tree is obtained.

(If the given graph has p vertices, the algorithm will terminate after p-l edges
have been chosen.)

Example 3.8

Apply the greedy algorithm to the graph of Figure 3.8.

A 4 B

6

Solution

2

E 6

5

D

Figure 3.8

C

First choose AE (weight 2). Then choose BD(3), then AB(4) . We cannot now
choose AD(5) since its inclusion would create a cycle ABDA. Similarly we
cannot choose DE. So choose BC(6) . The edges AE, AB, BD, BC then form
a minimum weight spanning tree of weight 2+ 3 + 4 + 6 = 15.

Justification of the greedy algorithm

Suppose that the greedy algorithm produces a tree T, but that there is another
spanning tree V which has smaller weight than T . Since T l'V, and both have
the same number of edges, there must be an edge in T not in V : let e be such
an edg e of minimum weight. The addition of e to V must create a cycle C ,
and this cycle must contain an edge e' which is not in T. Now wee') ~ wee),
since if wee') < wee) then e' would have been chosen by the greedy algorithm
rather than e. So if we remove er from C we obtain a spanning tree V such that
w(V) ~ w(V) , and V has one more edge in common with T than V had. By
repeating this process we eventually change V into T, one edge at a t ime, and
conclude that weT) ~ w(U) < weT), a contradiction. So no such V can exist .
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Th e greedy algorithm is so called because it greedily minimises the weight at
each step, ignoring possible fut ure comp licat ions ; fortunately it gets away wit h
thi s st rategy. The disadvant age of the algorithm, however , lies in th e difficulty
of determining at each stage whet her or not a cycle would be created by the
inclus ion of t.he smallest weighted edge available (t his is part.icularly true when
the graph is large). Th is problem can be overcome by using a slightly different.
algorithm , due to P rim (1957). In Prim 's algorithm, the graph constructed is
connected (and hence a t ree) at each st.age of the construct ion (unl ike the greedy
algorit hm, which chose B D immediate ly after AE in th e above example), and
at each stage the sma llest weight. edge is sought which join s th e existi ng tree
to a vertex not in the tree . Clearly the inclusion of this edge cannot create a
cycle.

Prim's algorithm

(i) Select any vertex , and choose the edge of sma llest weight from it .

(ii) At each stage, choose th e edge of smallest weight joinin g a verte x alrea dy
included to a vertex not yet. include d.

(iii) Contin ue until a ll vertices are included.

Example 3.8 (revisited)

Use Prim's algorithm st.art.ing at B . Choose BD(3), th en B A(4 ), t hen AE(2) ,
t.hen B C(6) t.o obtain t.he same span ning tree as before.

A third algor ithm operates by rem ovin g edges from the given graph , de­
stroying cycles, un til a span ning tr ee is left . At each stage remove the la rgest­
weighted edge whose removal does not disconn ect th e graph . In Example 3.8,
we could remove DC , t.hen DE, then AD. Clearly t.his approach would be
qu icker tha n the others if the gra ph has "few" edges .

3.5 Bipartite Graphs

Definit ion 3.8

A graph is bipartite if it s vertex set V can be partitioned int o two sets B , TV
in such a way tha t every edge of t.he graph joins a vertex in B t.o a vertex in
TV . The part it ion V = B U TV is called a bipartition of the vertex set..

Example 3.9

Labellings show tha t the gra phs in Fig ure 3.9 are bipar tite. In both graphs ,
each edge joins a B to a TV.
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B B B W B

W

B

W W W B W

Figure 3.9 Bipartite graphs

Ifwe interpret Band W as black and white, we see that a graph is bipartite
precisely when the vertices can be coloured using two colours so that no edge
joins two vertices of the same colour. For this reason, bipartite graphs are
sometimes called bich romatic.

Example 3.10

The cycle en is bipartite if and only if n is even.

Th eorem 3.5

A conne cted graph is bipartite if and only if it contains no cycle of odd length.

Proof

Ifa graph G contains an odd cycle (i.e. a cycle of odd length) th en it ca nnot
possib ly be bipartite. So suppose now that G contains no odd cycle; we shall
show how to colour its vertices Band W .

Choose any vertex v of G , and partition V as B U W where

B = {u E V : shorte st path from v to u has even length },

W = {u E V : shortest path from v to u has odd length }.

We have u E B since 0 is even; we have to check that no edge of G has both
ends in B or both ends in W .

Suppose there is an edge xy with z E Band y E B. Th en, denoting the
lengt h of th e shortest path from vertex VI to vertex V2 by d( VI , V2) , we have
d(v , z ) = 2m and d(v , y) = 2n for some int egers m , n . But there is a walk from
v to y via x of length 2m + 1, so 2n :s 2m + 1. Similarly 2m :s 2n + 1, so m = n .

Denote the shortest paths from v to x and y by P(x) and P (y) respectively.
Then, since m = n , both P(x) and P(y) have equal lengths. Let w be the last
vertex on P(x) which is also on P(y) (possibly w = v) . Then the par t of P(x)
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from w to x and the part of P ly ) from w to y must be of equal length, and,
since they have only w in comm on, they must , wit h edge xy, form an odd cycle.
But G has no odd cycles, so the assumpt ion of the existence of th e edge x y
must be false. So there is no edge with both edges in B ; similarly th ere is no
edge with both edges in W .

Corollary 3.6

All trees are bipartite.

Definition 3.9 (Complete bipartite graphs)

A simple bipar tite graph with vertex set V = B u W is complete if every
vertex in B is joined to every vertex in W . IfIBI= m and IWI = n , the graph
is denoted by K m,n or by K n,m. For example, th e utili ties graph of Figure 3.2
is K 3,3 , and the methane graph of Figure 3.6 is K 1,4 .

Clear ly, K m,n has m +n vert ices and mn edges; m of the vert ices have degree
n , and n of the vertices have degree m .

T he complete grap hs K n and th e complete bipar t ite graphs Km,n play im­
portant roles in graph th eory, par ti cularly in the study of planarity to which
we now turn.

3.6Planarity

A gra ph is planar if it can be drawn in t he plane with no edges crossing. The
concept of plan arity has alread y appeared in th e utilities problem, which can
be restated as : is K 3 ,3 planar ? Ifa gra ph is planar , then any dr awing of it
with no edges crossing is called a plane graph. For example, K 4 is plan ar , as
was shown in Figure 3.4; the second dr awing of K 4 th ere was a plane gra ph ,
establishing its planarit y.

Planar graphs occur naturally in the four-colour problem. In colour ing a
map, it is standard procedure to give adjace nt countries different colours. It
became appa rent th at four colour always seemed to be sufficient to colour any
map , and a genera l proof of thi s statement was attemp t ed by A,B. Kemp e in
1879. Ten years later, Heawood discovered that Kempe' s "proof ' was flawed ,
and inst ead of th e four- colour theorem we had the four-c olour conjecture. Even­
tu ally, in 1976, t he truth of the conjecture was established by two math emati­
cians , K. Appel and W. Haken; as the postmark of the University of Illinois
asserted , "four colours suffice" .

The problem of colour ing a map can be transformed into one of colouri ng the
vertices of a plan ar gra ph. Given a map , we can represent each region by a ver­
tex , and join two vertice s by an edge precisely when the corresponding regions
share a common boundary. For example, Figure 3.10 shows a ma p and a plana r



3. Introduction to Graphs 55

graph representing it. So the problem reduces to that of colouring the vertices

Figure 3.10

A

D

c

B

E

of a planar graph with four colours, so that no two adjacent vertices receive
the same colour. Colourings of graphs will be discussed further in Chapter 5.

Any plane graph clearly divides the plane into disjoint regions, one of which
is infinite. The basic result about plane graphs is known as Euler's formula;
Euler initially studied it in the context of polyhedra, and we shall look at this
in the next section.

Theorem 3.7 (Euler's formula)

Any connected plane (p,q)-graph divides the plane into r regions, where

p - q+ r = 2.

Proof

Ifthere is a cycle, remove one edge from it . The effect is to reduce q and r by 1
(since two regions are amalgamated into one), and to leave p unchanged. So the
resulting graph has p' = p, q' = q - 1, r' = r - 1, where p' - q' + r' = p - q+ r .
Repeat this process until no cycles remain. The final graph must be a tree ,
with p" - q" + r" = p - (p - 1) + 1 = 2.

Example 3.11

The plane graph in Figure 3.10 has

p - q +r = 5 - 8 + 5 = 2.
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There are four finite regions and one infinit e region .

We now define th e d egree of a region of a plane graph to be the number of
encounte rs with edges in a walk roun d the boundary of the region.

Example 3.12

In Figu re 3.11 regions 3 and 4 have degree 3, th e infinite region 1 has degree

3
2

Figure 3.11

4

5, and region 2 has degree 9 (note that one edge is encountered twice, once on
each side).

Parallel to th e handshaking lemma we have:

Theorem 3.8

In a connect ed plane graph , 2q = sum of degrees of the regions .

Theorem 3.9

tc; is planar only if n ~ 4.

Proof

It is enough to show tha t Ks is non-planar. (Why?) Now Ks has p = 5, q = 10,
so if a plan e dr awing of Ks exists it must have r = 2 - 5 + 10 = 7 regions.
Each of the seven region s must have degree 2: 3, so, by Theorem 3.8, 20 = 2q 2:
7 x 3 = 21, a contrad ict ion.

T heorem 3.10

K 3•3 is not planar.

Proof

K 3,3 has p = 6 and q = 9, so if a plan e drawing exists it must have r =
2 - 6 + 9 = 5 regions . Since K 3 ,3 is bipartite, with no odd cycles, each region
must have degree 2: 4, so we must have 18 = 2q 2: 4 x 5 = 20, a cont radict ion.
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Corollary 3.11

K m •n is plan ar {o} min (m , n) :S 2.

The tec hnique of counting the sum of the degrees of the regions is a useful
one. We can apply it to the famous Pet ersen graph, shown in Figure 3.12. (See
Section 4.1 and Exercise 5.17 for more about this graph.)

Figure 3.12 Th e Petersen graph

Example 3.13

The Petersen graph is not planar.

Solution

Suppose a plane dr awing exist s. Since p = 10 and q = 15, we would have
r = 2 - 10 + 15 = 7. Now the shortest cycle in the graph clearl y has length
5, so every region must have degree ~ 5. So we would have a cont radiction,
30 = 2q ~ 7 x 5 = 35.

Kuratowski's theorem

Wh at makes a graph non-plan ar ? Clea rly, if it contains K« or K 3•3 as a sub­
graph , then it can not possibly be planar. Itwas prov ed in 1930 by the Polish
math ematician Kurat owski th at, essent ially, it is only the presence of a K« or
a K 3 •3 within a graph that can stop it being planar.

To clarify this st ate ment , we first make the following observation. Since K s
is not plan ar , the gr aph shown in Figure 3.13 cannot be plan ar either. For if it
were, we could make a plane dr awing of it , erase b from th e edge ac, and obtain
a plane drawing of K«. Insert ing a new vertex into an existi ng edge of a graph
is called subdividing the edge , and one or mor e subdivision of edges creates
a subdivision of the original graph.
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a b c
Figure 3.13
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Theorem 3.12 (Kuratowski's theorem)

A graph is planar if and only if it does not contain a subdivision of Ks or K 3 ,3

as a subgraph.

T he proof of th is deep topologi cal result is beyond the scope of this book. But
we exhibit the result 's usefulness by using it to prove that the Petersen graph
is non-planar.

Example 3.13 (again)

In Figure 3.14, Petersen 's graph is on th e left. On th e right is the same graph
with two edges removed . This subgraph is a subdivision of K 3 ,3 as shown by
the labelling of the vert ices.

Another test for planarity will be given in Section 4.2.

B

w w

Chordsofa circle

Figure 3.14

We close this section on planarity with an application of Euler's formula to a
well-known problem concerning chords of a circle.

Suppose we have n points spaced round a circle, and we join each pair of
points by a chord , taking care to ensure th at no thr ee chords intersect at th e
same point . Into how many regions is the interior of the circle divided? The
cases n = 3,4,5 are shown in Figure 3.15. Itwould appear that n = 6 should
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11= 3

4 regions

11=4

8 regions

Figure 3.15

11=5

16 regions
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give 32 regions . But it does not! (Check!)
Suppose we have 11 points and have drawn the (;) chords . T here will be 11

regions with a circular arc as a boun dary - let 's lay them aside and concent rate
on the remain ing regions. Tur n the geomet rica l picture into a graph by put ting
a vertex at each of the 11 given points , and at each crossing point of chords.
How many crossing points are there? Th ere is one for each pair of chords which
cross . But any pa ir of crossing chords is obtained by choosing 4 of t he given
11 points and drawing the "cross" chords between th em; so there must be G)
crossing points. So the resu lting graph has p = 11+ (~) vertices. Each of the 11

origina l vertices has degree 11 - 1, and each of the new G) vertices has degree
4. So by the hand shaking lemm a

2q = 11( 11 - 1) +4(:) ,
T hus

T 2-p+ q

2- 11 - ( ~) + (;)+ 2 (~)

2 - 11 + (;)+ (~) .

Here T includes a count of 1 for an infinite region, so th ere are 1 -- 11+ (;)+ ( ~)

finite regions. We have to add the 11 boundary regions which we put aside earlier ,
so finally the number of regions is

Check that this gives 4,8, 16 for 11 = 3, 4, 5, and 31 for 11 = 6.
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3.7Polyhedra

Discrete Mathematics

A polyhedron is a solid bounded by a finite number of faces, each of which is
polygona l. For example, th e pyramid in Figure 3.16(a) is a polyhedron with
five vertices, five faces (four triangular , and one square base) , and eight edges.

(a) (b)

Figure 3.16 A pyr amid and its plane graph

As was ment ioned earlier, Euler 's formula arose first in th e study of polyhedra,
relating the numbers of vertices, faces and edges in a convex polyhedron. (A
polyhedron is convex if th e straight line segment joining any two of its vertices
lies entirely within it .) Such a polyhedron can be represented by a plane graph,
obtained by proj ectin g th e polyhedron into a plane . The graph in Figure 3.16(b)
represents th e pyramid; think of th e internal vertex as the top of th e pyramid,
and think of th e base of the pyr amid as being represented by the infinite region
(of degree 4).

Th e cube is an example of a regular polyhedron. A polyhedron is regular
if th ere exist integers m 2: 3, n 2: 3 such th at each vertex has m. faces (or m
edges) meeting at it , and each face has n edges on its boundary. For a cube ,
III = 3 and n = 4. Convex regular polyhedra are known as Platonic solids;
th ey were discussed a t grea t length by the ancient Gr eeks who knew that there
were only [) such solids. In the next th eorem we use the terminology of graphs,
movin g from a polyhedron to its corr esponding graph.

Theorem 3.13

Suppose t.hat a regular polyhedron has each vertex of degree m and each face
of degree n . Then (rn , n) is one of (3,3) , (3,4), (4,3), (3,5 ), (5 , 3) .

Further , th ere exist Pl at onic solids corresponding to each of these pairs.

Proof

We have p - q -t-I' = 2, where

2q = sum of vert ex degrees = trip

and 2q = sum of face degrees = nr.
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2 2
So ( - - 1+ - )q = 2, whence

m n

(2m + 2n - mn)q = 2mn.
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(3.1)

Thus, t rivially, 2m+2n-mn > 0, Le. (m - 2)(n -2) < 4. So (m -2)(n -2) = 1,2
or 3, and the five possibilities arise.

For each possible pa ir (m , n) , we can find q from (3.1) and th en deduce th e
values of p and r . We tabulate t hese values in Table 3.1, and give th e nam e of
the corresponding Platonic solid .

Tabl e 3.1

m n q p r Name

3 3 6 4 4 tetrahedron

3 4 12 8 6 cube

4 3 12 6 8 octahedron

3 5 30 20 12 dodecahedron

5 3 30 12 20 icosahedron

Not e that th e names reflect the num ber r of faces. The five solids , and t.heir
plane gra phs , are shown in Figure 3.17.

As well as the five regular polyhedra just discussed , there exist the semireg­
ular polyhedra known as the A rchimedean solids. Alth ough they may well
have been known t.o the Gre eks, t.he first known list ing of them is due to Ke­
pier in 1619. T hese solids have more tha n one ty pe of face, but they have the
property that each vertex has th e same pat te rn of faces around it . For example,
th e t ru ncated cub e, obtained by slicing off each of the eight vertices , has eight
triangu lar faces and six octagonal faces, an d, a t each vertex, two octa gons an d
one tri ang le meet .

Example 3.14

A polyhedron is made up of pentagons and hexagons, with three faces meeting
at each ver tex. Show th at th ere must be exactly 12 pentagonal faces.

Solution

We have p - q+ r = 2 and 2q = sum of ver tex degrees = 3p. Th us 2q = 6r - 12.
Now suppose there are x pentagonal and y hexagona l faces. T hen r = x + y
and 2q = sum of degrees of faces = 5x + 6y . Sub st ituti ng into 2q = 6r - 12
gives 5x + 6y = 6x + 6y - 12, whence x = 12.

Th e case x = 12, y = 0 corresponds of course to a dodecahedron . The case
x = 12, y = 20 corresponds to the pat tern often seen on a soccer ball . The
corresponding Archimedean solid is a tru ncated icosahedron; the reader
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~
tetrahedron

~

D2J cube UJ

W octahedron ~

dodecah edron

icosahedron

Figure 3.17

sho uld be able to see how to obtain onc by slicing vertices off an icosa hedron.
This solid aroused great interest in the 1990s when it was discovered that a
third form of carbon existed (as well as diam ond and gra phite) .

This form is denoted by C60 ; the molecular st ru ct ure is that of 60 carbon
atoms sit uated a t the vertices of a trun cated icosah cdron. The discoverers of
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this molecule called it Buckminsterfullerine (it is commonly known as a
Buckyball) since th ey considered it as similar to a geodesic dome created by
t he ar chitect R. Buckmin ster Fuller . But , as we have point ed out , it has been
known to math emat icians for a long tim e.

T he graphite form of carbon has the carbon at oms ar ranged in a flat hon­
eycomb pat tern of hexagons. Hexagons tile the plane, so need the addit ion of
n-gons with Tt < 6 to enable a 3-dime nsional form to take place. It turns out
that 12 pent agons are just right to enab le a complete closing up to take place.
See Exercise 3.14 for th e corr esponding problem when pentagons are replaced
by squa res.

Th ere are other fullerine molecules, such as C70 which has 12 pentago ns and
25 hexagons; it s shape is more like a rugby ba ll.

Exercises

Exercise 3.1

P rove th at th e numb er of vertices of odd degree in a given graph is even.

Exercise 3.2

Show th at all alcohols CnH2n+lOH have tr ee-like molecules. (The valen­
cies of C, 0 , H are 4,2 ,1 resp ectively.)

Exercise 3.3

Show that if G is a simple graph with p vertices, where each vertex has
degree ~ ~(p - 1), then G must be connected. (Hint : how many vertices
must each component have?)

Exercise 3.4

How ma ny spanning t rees do th e gra phs in Figur e 3.18 have?

(a) (b)

Figure 3.18
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Exercise 3.5

How many edges must be removed from a connected (p,q)-graph to ob­
tain a spanning tree?

Exercise 3.6

Let K 2 •3 have bipar tition BuW where B = {a,b}, W = { Xl , X2,X 3}.

(a) Explain why, in a spanning tr ee of K 2 •3 , th ere must be precisely one
of the vertices Xi jo ined to both a and b.

(b) How many spanning trees does K 2 ,3 have?
(c) How many spanning tr ees does K 2 ,I OO have?

Exercise 3.7

Use (a) th e greedy algorithm, (b) Prim's algorithm to find a minimum
weight spanning tr ee in the graph shown in Figure 3.19.

A

cD

E.c----f-+---"--O'B

Figure 3.19

Exercise 3.8

The distances between 5 Lanarkshire tow ns are given in Table 3.2. Find
th e shortest length of a conne cting road network.

Table 3.2

G H A M EK
Glasgow 0 10 11 13 9
Hamilton 10 0 8 3 6
Airdrie 11 8 0 8 13
Motherwell 13 3 8 0 8
East Kilbride 9 6 13 8 0
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P an Caledonian Airways (P CA) operates between 12 towns whose coor­
dinates refer red to a certain grid are (0,2), (0,5), (1,0), (1, 4), (2, 3), (2, 4),
(3, 2),(3,5) ,(4 , 4) ,(4, 5) , (5,3),(6, 1). Wh at is th e minimum number of
flights necessary so th at t ravel by PC A is possible between any two of
the towns? Find the minimum total length of such a network of flights.

Exercise 3.10

Determine which of t he gra phs in Figure 3.20 are planar.

la)% (b)

(c) (d)

Exercise 3.11

Figur e 3.20

A completematchingof a graph with 2n vertices is a subgraph con­
sisti ng of n disjoint edges . How many different complete ma tchings are
there in the gra ph of Figur e 3.20(a) ?

Exercise 3.12

T he graph Gn( n :::: 1) is shown in Figure 3.21.

(a) Is Gn (i) bipar tite? (ii) planar?

(b) Let an denote the number of complete mat chings of G« . Show that



66 Discrete Mathematics

XQ X l X 2 X 3 Xn-l X n

r><r><I><J••••••••••••••18J
Yo Yl Y2

Figur e 3.21

Y3 Y,,-I Y"

al = 3 and a2 = 5. Show th at an = an-I + 2a ,,_2 (n 2: 3) and hence
obtain a formula for an '

Exercise 3.13

(a ) Show th at if G is a simple planar (PIq) gra ph, P 2: 3, then q ~ 3p- 6.
Deduce that Ks is not plan ar.

(b) Show that if G is a simple planar (p,q) graph, p 2: 9 I where 9
is the girth of G, i.e. the length of the shortest cycle in G, then
q ~ ~(p - 2).

(c) Deduce from (b) that K 3 •3 and the Petersen graph ar e both nonpla­
nar.

Exercise 3.14

A convex polyhedron has only square and hexago na l faces. T hree faces
meet at each vertex. Use Euler 's formula to show that there must be ex­
ac tly six squa re faces. Th e cube has no hexagonal faces: give an example
with six square faces and at leas t one hexagonal face. (Try t ru ncating
an octahedron.)

Exercise 3.15

Suppose n cuts are mad e across a pizza . Let Pn denote the maximum
number of pieces which can result (thi s ha ppens when no two cuts are
par allel or meet outs ide the pizza , and no three are concur rent ).

P rove that Pn = (~) + (~) + (~) .

Exercise 3.16

Let h n denote the number of spanning t rees in th e fan gra ph shown in
Figure 3.22. Verify that hi = 1, h2 = 3, h3 = 8.
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Find a recurr ence relation for hn and hence show th at hn = F2n - l .

X Q

Figure 3.22

67



4
Travelling Round a Graph

In this chapter we consider various problems relating to the existence of certain
types of walk in a graph. The reader should recall the definitions of walk, path,
cycle and trail given in Section 3.2. The Konigsberg bridge problem concerns
the existence of a trail which is closed and contains all the edges of the graph.
We study such (Eulerian) trails in more detail, but first we look at a related type
of problem associated with the name of the Irish mathematician Sir William
Rowan Hamilton (1805-1865) .

4.1HamiltonianGraphs

The dodecahedron is shown at the end of Chapter 3. Hamilton posed the prob­
lem: is it possible to start at one of the 20 vertices, and , by following edges, visit
every other vertex exactly once before returning to the starting point? In other
words : is there a cycle through all the vertices ? You should have no problem
finding such a cycle (turn to Figure 4.3 if you get stuck), so it is perhaps not
surprising that the commercial exploitation of this problem as a game was not
a financial success.

Definition 4.1

A hamiltonian cycle in a graph G is a cycle containing all the vertices of G.
A hamiltonian graph is a graph containing a hamiltonian cycle.

The name hamiltonian is, as often happens in mathematics, not entirely just ,
since others such as Kirkman had studied the idea before Hamilton.
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Example 4.1

(a) The octahedral graph is hamiltonian : in Figure 4.1(a) take the hamiltonian
cycle 1234561.

(b) T he graph of Figure 4.1(b) is not hamiltonian . Th e easiest way to see this
is to note that it has 9 vertic es so that , if it is hamil tonian , it must cont ain a
cycle of length 9. But , being a bipartite graph , it contains only cycles of even
length.

3 ~----~2

(a)

Theorem 4.1

Figure 4.1

(b)

A bipartite graph with an odd number of verti ces cannot be hamiltonian .

Example 4.2

(a) Kn is hamiltonian for all n 2': 3.

(b) Km ,n is ham iltonian if and only if m = n 2': 2.

(See Exercise 4.1.)

Example 4.3

The Petersen graph is not hamiltonian .

5 2

4

Figure 4.2

3
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Lab el th e vert ices as shown in Figure 4.2, and suppose there is a harni lto nian
cycle. Every tim e th e cycle goes from the outside along one of the "spokes"
la, 2b, 3c, 4d , 5e , it has to return to t he outs ide along anoth er spoke. So th e
harniltonian cycle must contain eit her 2 or 4 spokes .

(a) Suppose th ere are 4 spokes in a hamiltonian cycle: we can assume 5e is th e
one spoke not in it . Th en 51 and 54 must be in the cycle, as must eb and
ec. Since l a and 15 are in the cycle, 12 is not , so 23 is. But this gives the
cycle 23 c e b 2 as par t of the hamiltonian cycle, which is clearly impossible.

(b) Suppose th ere are just two spokes in the harnilt onian cycle. Take la as one
of them. Th en ac or ad is in th e cycle - say ad . T hen ac is not , so c3 is. So
spokes b2, d4 , e5 are not in th e cycle. Since b2 is not in th e cycle, 23 must
be. Similarl y, since d4 is not in , 34 must be in the cycle. So all three edges
from 3 are in the cycle, a contradict ion.

Th ere is no st ra ightforward way of chara cterising hamiltonian gra phs. Perhaps
the best known simple sufficient condition is tha t given by Dirac in the following
theorem, but it must be emphasise d tha t the condit ion given is not at all
necessary (as can be seen by considering the cycle Cn , n ~ 5) .

T heorem 4.2 (Dirac, 1950 )

IfG is a simple graph with p vertices, each vertex having degree ~ ~P, then G
is hamiltonian.

Proof

Outlined in Exercise 4.6.

4.2 Planarity and HamiltonianGraphs

There are some interestin g connections between planar graph s and hamiltonian
graphs. Th e first aro se in connect ion with the Four Colour Conjecture (FCC ),
when it was realised that th e presence of a hamiltonian cycle in a plane graph
makes th e colouring of its regions (faces) with four colours very easy. For exam­
ple, consider the probl em of colouring th e faces of a dod ecahedron using four
colours . Figure 4.3 shows a hamil tonian cycle which divides t he regions into an
internal chain of region s, and an external chain. Colour th e internal chain with
colours A and B , and the extern al chai n with colours C and D .

Early on in the history of the FC C, Tait conjectured th at every polyhedral
map in which every vertex has degree 3 has a hamiltonian cycle. (A map is
polyhedral if any two adj acent regions meet in a single common edge or a
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Figure 4.3 Dod ecahedron
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single point.) The truth of Tait's conjecture would have implied th at every
such map is 4-colourable; however, the conjecture was finally proved false in
1946, when Tu tte const ructed a counterexample.

Another connection between hamiltonicity and planarity occurs in the follow­
ing algorithm which can be used to det ermine whether or not a given hamilto­
nian graph is planar. The basi c idea is that if a graph G is both hamiltonian
and planar , th en , in a plane drawing of G, t he edges of G which are not in the
hamiltonian cycle H will fall into two set s, those drawn inside H and those
drawn outside .

The planarityalgorithmfor hamiltoniangraphs
1. Draw th e graph G with a hamiltonian cycle H on the outside, i.e. with H

as the boundary of the infinite region .

2. List th e edges of G not in H : el , ' " ,er '

3. Form a new graph K in which the vertices are lab elled Cl , . . . .e, and where
the vert ices lab elled e. , ej are joined by an edge if and only if e. , e j cross
in th e drawing of G, i.e. cannot bo th be drawn inside (or outside) H (such
edges are sa id to be incompatible) .

4. T hen G is planar if and only if K is bipartite.

(IfK is bipartite, with bipartition B uW , then the edges e, coloured B can be
drawn inside H , and the edges coloured W can be drawn outside.)

In practice, we introduce the edges one by one, as follows.

Example 4.4

Test the graph shown in Figure 4.4 for planarity.

Solution

1. The graph is already drawn with hamiltonian cycle abcdefa on th e outside.
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a eE-----+---T--+------:::;,. d

I e

Figure 4.4

2. Edges not in the hamiltonian cycle are ad, be, b] ,ee , dJ.

3. Star t with ad; it is incom patible with b] , be, ee:

bJ

ad eE:::=------ - __ be

ee

Now consider b] , Itcrosses only ad. Next consider be; it crosses dJ, so we
get :

bJ

ad - ===-- - - - - :=.. be

dJ ee

Now consider ee. Italso crosses dJ, so we get :

bJ

ad-~------c:=4 be

dJ ....,,=--------=~ ee

4. By now we have the full graph K. (Check: th e number of edges in K is
the number of cross ings of edges in G.) Since K is bipartite, we conclude
that G is planar , and we can draw it with ad and dl inside, and b] , be, ee
outside (Fi gure 4.5) .

Example 4.5

Show th at K 3•3 is not planar.
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c

Figur e 4.5

a b

f ~---------;*-._---~ c

Solution

e

Figure 4.6

d

1. In Figure 4.6 we have K 3•3 drawn with hamiltonian cycle on t he outsi de .

2. Edges not in hamiltonian cycle ar e ad,be, cf .

3. Obtain;

ad~be

~Cf
4. Th is is not bipa rt ite , so K 3 ,3 is not planar .

4.3The TravellingSalesmanProblem

A sales representat ive of a publisher of mathematical texts has to make a round
trip, start ing at home, and visiti ng a num ber of un iversity boo kshops before
ret urni ng hom e. How does the salesman choose his route to minimise the total
distance t rave lled?
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Here we consider a weighted graph, in which the vert ices repres ent the book­
shops and his home, and the edges represe nt the routes between them, each
edge being lab elled by th e length of the rout e it represents . Th e salesman wishes
to find a hamiltonian cycle of minimum length, Le. of minimum tot al weight .

A complete graph K n has (n - 1)1different hamiltonian cycles (or ~(n --I )!
if we do not distinguish between a cycle and its "reverse") , so finding the one
of minimum weight by looking at each in turn is out of th e question when n is
large. Even for n = 10, ~ (n- l) ! = 181 440. The re is no really efficient algorithm
yet known for solving th e travelling salesman proble m (TSP), so "good" rather
than "best" routes are sought, as are estimates, rather than exact values , of
the shortest to tal length .

Lower bounds

Lower bounds can be found by using span ning t rees. Firs t observe that if we
take any hamilt onian cycle and remove one edge then we get a spanning t ree,
so

Solut ion to TSP > minimum length of a spann ing t ree (MST ). (4.1)

But we can do better. Consider any vertex v in the graph G. Any hamil tonian
cycle in G has to consist of two edges from v, say vu and vw, and a path from
u to w in t he graph G - (v) obt ained from G by removing v and its incident
edges. Since this pa th is a spanning tree of G - {v}, we have

{
SUm of lengths of two } + ( MST of ).

Solut ion to TSP ~ (4.2)
shortest edges from v G - {v}

Example 4.6

Appl y (4.2) to th e graph of Figure 4.7.

a

cd

e ~--f--+--'''--'''' b

Figure 4.7

Solution

Choose vertex a. Th e two shortest edges from a have length s 3 and 6. Th e
minimum weight spanning tree of G - {a} consists of edges bc,cd and ec, and
has length 14. So, by (4.2) , a lower bound for the TSP is 3+ 6+ 14 = 23.
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Instead , we could have started with b. The two shortest edges from b have
lengths 4 and 7, and the minimum weight spanning tree of G - {b} has length
13, so we obtain the lower bound 4 + 7 + 13 = 24. This second bound gives us
more information than the first.

Upperbounds
Assume that the weights are distances, sat isfying the triangle inequality

d(x ,z) ~ d(x,y) + d(y, z)

where d(x ,y) denot es the shortest dist ance along edges from x to y. In th is
case th e following method gives upper bounds for the TSP in K n .

Find a minimum spanning tr ee of K n , say of weight w. We can then find a
walk of length 2w which visits every vertex at least once, and which returns to
its starting point, by going "round" the tree as shown in Figure 4.8.

c

Figure 4.8

We now try to reduce the length of this walk by taking shortcuts. Start at one
vertex and follow the walk round . When we reach an edge which will tak e us
to a vertex already visited, take the direct route to the next vertex not yet
visited . For example, in Figure 4.8, which shows the minimum spanning tr ee
of the graph of Example 4.6, we could start at a and obtain aecbda, which has
length 26.

Since this method yields a hamiltonian cycle of length no greater than twice
MST, we have

MST < solution to TSP ~ 2 MST , (4.3)

and, since MST < solution to TSP, by (4.1), we have constructed a hamiltonian
cycle of length at most twice th e minimum possible length. In Section 4.5 we
shall improve this to at most ~ times the minimum .

4.4Gray Codes

A Gray code of order n is a cyclic arrangement of the 2n binary sequences of
length n such that any pair of adjacent sequences differ in only one place. For
example, Figure 4.9(a) shows a Gray code of order 3.
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110011110

100

000 000

001 010

101 101

(a) (b)

Figure 4.9

The industrial use of Gray codes is on account of their ability to describe
the angular position of a rotating wheel. As in Figure 4.9(b), 0 and 1 are
represented by white and black (off and on), and are read by electrical contact
brushes. The fact that adjacent sequences differ in only one place reduces errors
when the contact brushes are close to a boundary between segments. (Compare
with 1999 changing to 2000 in a car milometer.)

Note that the code above corresponds to a hamiltonian cycle in a 3-dimensional
cube (follow the arrows in Figure 4.10). Note also that the cycle involves going

z

001 011

000 010
y

100 110

x

Figure 4.10

round the bottom of the cube (i.e. round a 2-dimensional cubel) with third
coordinate 0, then moving up to change the third coordinate to 1, and then
tracing out the 2-dimensional cube at the top , in the opposite direction. This
idea generalises . So to obtain a Gray code of order 4, write down a Gray code
of order 3 with 0 appended to each binary word, then follow it with the same
Gray code of order 3, in reverse order, with 1 at the end of each word. This
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0000 - 0100 - 1100 - 1000 - 1010 - 1110 - 0110 - 0010 - 0011­

0111 - 1111 - 1011 - 1001 - 1101 - 0101 - 0001 - 0000.

4.5 Eulerian Graphs

The driver of a snow plough wishes to set out from the depot , travel along each
road exactly once, and return to the depot. When is this possible? Similarly,
the citizens of Konigsberg wished to cross every bridge exactly once and return
home. Both problems ask for a closed trail of a particular typ e.

Definition4.2

An eulerian circuit is a closed trail which contains each edge of the graph. A
graph which contains an eulerian trail is called an eulerian graph.

It was observed in Section 3.1 that a necessary condit ion for the existence of an
eulerian circuit is that all vertex degrees must be even. It turns out that this
condition is also sufficient in connected graphs. Our proof will use the following
lemma .

Lemma 4 .3

Let G be a graph in which every vertex has even degree. Then the edge set of
G is an edge-disjoint union of cycles.

Proof

Proceed by induction on q, the number of edges. The lemma is true for q = 2,
so consider a graph G with k edges and suppose that the lemma is true for all
graphs with q < k. Take any vertex Vo , and start a walk from vo, continuing
until a vertex already visited is visited for th e second time. Ifthis vertex is Vj ,

then the part of the walk from vj to vj is a cycle C . Remove C to obtain a graph
H with < k edges and in which every vertex has even degree . By induction, H
is an edge-disjoint union of cycles, so the result follows.

Theorem 4.4

Let G be a connected graph. Then G is eulerian if and only if every vertex has
even degree.
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=} . Already shown .

<=: . Suppose every vertex has even degree. Then the edges fall into disjoint
cycles. Take any such cycle Cl . IfCl does not contain all the edges of G then,
since G is connected, there must be a vert ex VI E Cl and an edge VI V2 not in
Cl . Now Vt V2 is in some cycle, say C2 , disjoint from Cl . Insert C2 into Cl at
VI to obtain a closed trail. Ifthis trail does not contain all edges of G, take a
vertex V3 in Cl U C2 and edge V3V4 not in Cl U C2 . Then V3V4 is in some cycle
C3 which we insert into Cl U C2 . Continue in this way until all edges are used
up.

Example 4.7

f

a

e

9 h

b

d

c

Figure 4.11

In Figure 4.11, first take cycle abcdeja. Then insert cycle agea at a, and finally
insert cycle bdhb at b to obtain eulerian trail

age a bd h bed e f a.

Definition 4.3

An eulerian trail is a trail which contains every edge of the graph, but is
not closed. A non-eulerian graph which contains an eulerian trail is called a
semi-eulerian graph.

The following result follows immediately from Theorem 4.4.

Theorem 4.5

A connected graph G is semi-eulerian if and only if it contains precisely two
vertices of odd degree .

Example 4.8

In the K6nigsberg bridge problem, suppose that one further bridge is built .
The resulting graph will then have two vertices of odd degree and hence will
contain an eulerian trail.
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T he following method yields a hamiltonian cycle in a complete graph whose
length is at most ~ times the length of the minimum hamiltonian cycle . This
improves the bound in Section 4.3.

Given K n , lab elled by th e length of th e edges, first find a minimum spanning
tree T . T must , by Exercise 3.1, have an even number 2m of vertices of odd
degree. It is th en possible to join th ese 2m vertices into m pai rs by using m
edges of K n . Such a set of disjoint edges is called a matching. There will
be many ways of choosing such a matching, so we choose a matching M of
smallest total length. Ifwe now add the edges of M to T , we obtain the new
gra ph M u 7' in which every vertex has even degree: thus Mu T possesses an
eulerian circuit.

For example, with th e graph of Example 4.7, 7' has length 17 (as in Figure
4.8) and 7' has four ver tices of odd degr ee. Take M = {ad, be} to obtain MU T
as shown in Figure 4.12 . An eulerian circuit is aecbcda .

e

Figure 4.12

Starting at a, we can take aecb and, to avoid visiting c twice , go directly from
b to d, and th en to a, obtaining the hamiltonian cycle aecbda which has length
26.

We now show that the eulerian circuit obt ained by this method always has
length s: ~MST . Let TSP , EC, MST , M denote respectively the lengths of th e
minimum hamiltonian cycle, the eulerian circuit, th e minimum spanning tr ee
and th e matching. T hen

EC = MST + M, TSP > MST .

The 2m vertices of IvI will occur, in some ord er, say Xl , . .. , X 2m, in th e mini­
mum length hamiltonian cycle. Iffor each i< 2m, we replace th e part of the
cycle between X i and Xi +l by th e edge Xi Xi +l , and we replace the part between
X 2m and Xl by th e edge X2 mXI , we obtain

where ( (Xl , Xi +! l denot es th e length of the edge X i Xi+ l· Thus we have
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So we obtain two matchings of Xl , . •. , X 2m whose lengths sum to :s TSP. One
of these matchings must have total length :s ~TSP, so that

M :S ~TSP .

Thus EC = MST + M :s TSP + ~TSP = ~TSP . Thus, on using shortcut s in
the eulerian circuit to avoid repeat ing vertices, we obtain a hamiltonian cycle
whose length is :s ~TSP .

4.6EulerianDigraphs

A digraph or di r ected grap h is a grap h in which each edge is assigned a
direct ion , indicated by an arrow. In place of the degree of a vertex we have t he
indegr ee , the numb er of edges directed towards the vert ex, and th e outde­
gree, th e number of edges directed away from the vert ex.

b c

"<1 :0,
Example 4.9

f e

Figure 4.13

• d

In Figure 4.13, t he indegrees of a, .. . ,f are respect ively 1,2 ,2 ,1 ,2,0, and the
outdegrees are 1,1 ,1 ,0,2 ,3 . Itshould be clear why the sum of the indegrees
equa ls the sum of the out degrees.

An eulerian circuit in a digraph is exactly what we would expect; it has to
follow the directions of th e ar rows at each st age. Ifevery vertex has its indegree
equa l to its out degree th en, as in Lemma 4.3, the edge set can be par ti tioned
as an edge-disjoint un ion of directed cycles, and, as in Theorem ·1.4, we obtain:

Theorem 4.6

A connected digrap h has an eulerian circuit if and only if each vertex has its
indegree and outdeg ree equal.

Memory wheels

It is said tha t the mean ingless Sansk rit word



82 Discrete Mathematics

yamatarajabhrinasalagam

has been used as a memory aid by Indian drummers .Ithas in it every 3-tuple of
accented and unaccented vowels, each 3-tuple appearing once. We can display
this by replacing unaccented vowels by 0 and accented vowels by 1, to obtain

0111010001. (4.4)

The 3-tuples 011, 111, 110, 101,010,100,000,001 appear in it in this order. Note
that the last two digits of (4.4) are the same as the first two, so we can obtain
a "memory wheel" by overlapping the ends as shown in Figure 4.14.

o
o

o

o

Figure 4.14

Now this arrangement achieves what a Gray code achieved, but much more
efficiently. A sensor placed at the edge of the wheel can read off triples of
digits and thereby determine how far the wheel has rotated. A Gray code for
8 positions would require three circles of 8 digits, Le. 24 digits, whereas the
memory wheel uses only 8.

We now try to generalise this idea: can a circular arrangement of 2n binary
digits be found which includes all 2n n-digit binary sequences? One approach
might be via hamiltonian cycles. Since, in the above example, 110 is followed
by 101, and 101 by 010, we could take the triples xyz as the vertices of a graph
and join xyz and yzw by an edge to obtain the directed graph of Figure 4.15.

001 011

~000 111

101

100 110

Figure 4.15

The directed hamiltonian cycle

000 - 001 - 011 - 111 - 110 - 101 - 010 - 100 - 000
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yields the memory wheel of Figure 4.14. The trouble with this approach, how­
ever , is that it is not at all easy to see how to obtain a hamiltonian cycle in the
corresponding digraph when n ~ 4.

The problem was however solved by I.J. Good, in a 1946 paper in number
theory. Instead by taking the triples as the vertices, Good took the triples as
the edges of a graph , in which the vertices corresponded to the overlapping
2-tuples. So, for n = 3, we form the digraph of Figure 4.16.

01

000

10

111

Figure 4.16

Now in this digraph all vertices have indegree and outdegree equal , so the
digraph contains an eulerian circuit. Once such circuit consists of the edges

000 - 001 - 011 - 111 - 110 - 101 - 010 - 100 - 000,

and this gives the same memory wheel as before.
In general , take as vertices the (n - I)-digit binary sequences, and draw a

directed edge from XjXz •. . Xn-j to Xz •••Xn-jXn , labelling the edge XjXz • • • X n .

The resulting digraph has an eulerian circuit which yields a memory wheel.

Example 4.10

Obtain a memory wheel containing all 16 4-digit binary sequences .

Solution

Construct a digraph with 8 vertices labelled by the eight 3-digit binary se­
quences , and draw a directed edge from XjXZX3 to XZX30 and to xzx31. The
digraph of Figure 4.17 is obtained.

An eulerian circuit is (in terms of verti ces)

000 - 000 - 001 - 011 - 111 - 111 - 110 - 101

- 011 - 110 - 100 - 001 - 010 - 101 - 010 - 100 - 000

i.e. in terms of edges,

0000 - 0001 - 0011 - 0111 - 1111 - 1110 - 1101 - 1011

-0110 - 1100 - 1001 - 0010 - 0101 - 1010 - 0100 - 0000.
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001 011

.~,

100 110

Figure 4.17

Th e corres ponding memory wheel is as shown in Figure 4.18.

o
o

o

o

o

Figure 4.18

o
o

o

The probl em of const ruc ting memory wheels is also known as th e rot ating drum
problem. Th e circular binary sequences are often called maximumlength
shiftregister sequences , or de Bruijn sequences after the Dut ch mathe­
mat ician N.G. de Bruijn who wrote about them in 1946 (although it turne d out
that th ey had been constru cted man y years before by C. Flye Sainte-Mari e) .
T hey have been used worldwide in telecommunications, and there have been
recent applications in biology.

Exercises

Exercise 4.1

(a) Strengthen Th eorem 4.1 to: if a bipart ite graph , with bipartition
V = BUW, is hamiltonian , then IBI = \WI.

(b) Deduce th at Km ,n is hamiltonian if and only if m = n 2: 2.
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Exercise 4.2
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For each graph in Figure 4.19, determine whether (a) it is hamiltonian,
(b) it is eulerian, (c) it is semi-eulerian.

(ii)

(iii)

Figure 4.19

Exercise 4.3

Which of the platonic solid graphs are (a) hamiltonian , (b) eulerian?

Exercise 4.4

Use the planarity algorithm to determine whether or not the graphs in
Figure 4.20 are planar.

Exercise 4.5

Construct a Gray code of order 5.

Exercise 4.6

Dirac's theorem. Prove Theorem 4.2 as follows. Suppose G is not
hamiltonian. By adding edges we can assume that G is "almost" hamil­
tonian in the sense that the addition of any further edge will give a
hamiltonian graph. So G has a path VI --t V2 --t . . . --t V p through every
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(a) (b)
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(c)

Figure 4.20

vertex, where VI and vp are not adjacent . Show that th ere must be a ver­
tex V , adj acent to V I, with Vi - I adjacent to Vn . Thi s gives a hamiltonian
cycle V I -+...-+Vi - I --tVn -+'" -+Vi +l -+V i -+VI ·

Exercise 4.7

(a) Ore's theorem. Imitate the proof of Dirac's th eorem to show that
if G is a simple gra ph with p 2:3 vertices, with deg(v) +deg(w) 2:p
for each pair of non-adjacent vertices v ,w, th en G is hami ltonian .

(b) Dedu ce tha t if G has 2+ ~ (p - l)(p - 2) edges then G is hamiltonian .
(c) Find a non-hamiltonian graph with 1 + ~ (p - l )(p - 2) edges.

Exercise 4.8

By removing vertex A ,find a lower bound for the TSP for the gra ph of
Exercise 3.7. Repeat , removin g vertex B. Then obtain an upper bound
by th e method of Section 4.5.

Exercise 4.9

Find upp er and lower bounds for th e TSP for th e situat ion in Exercise
3.8. How do your results compare with the exac t solution?
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Exercise 4.10
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Const ruct a memory wheel contai ning all 32 5-digit binary sequences.

Exercise 4.11

Use digraphs to construct a memory wheel of length 9 containing all
2-digit ternary sequences (formed from th e digits 0,1,2). Then find one
for all 3-digit tern ary sequences.

Exercise 4.12

Dominoes. Can you arra nge the 28 dominoes of an ordinary set in a
closed loop, so th at each matches with its neighbour in the usual way?
Can you do so if all dominoes with a 6 on them are removed? Can you
state a genera l theorem about dominoes with numb ers 0,1 , .. . , n on
th em? (Hint : consider each domino as an edge of a gra ph with vert ices
labelled 0, 1, . . . ,n .)

Exercise 4.13

Figure 4.21 shows an arra ngement of the numbers 1, . . . ,5 round a circle,
so th at each numb er is adjacent to every oth er number exactly once. Can
you produce a similar ar rangement for 1, . . . , 7? Use Euler 's t heorem to
show that th ere is a soluti on for n numbe rs if and only if n is odd. Can
you salvage a similar type of result when n is even?

5 2

2 3

4 4

5
3

Figure 4.21



5
Partitions and Colourings

In this chapter we consider partitions of a set, introducing the St irling numbers
and the Bell numbers . We th en consider vert ex and edge colourings of a graph,
where the vertex set and the edge set are partitioned by th e colours .

5.1 Partitionsofa Set

A parti t ionof a set S is a collection of non-empty subsets SI , . . . , S; of S
which are pairwise disjoint and whose union is S . The subsets Si are called
the part s of th e partition. For example {1,2,4} U {3,6} U {5} is a partition
of [ L, . . . , 6} into three parts. Note that it does not matter in what order the
par ts appear.

Example 5.1

In a game of bridge, the 52 cards of a standard pack are distributed among
four people who receive 13 cards each. In how many ways can the pack of 52
cards be partition ed into four sets of size 13?

Solut ion

We can choose 13 cards in (~D ways. From the remaining 39 we can choose a
further 13 in (:~) ways, and th en from the remaining 26 we can choose 13 in
(i~) ways. This leaves a final set of 13 cards. So we have

(
52) (39) (26) 52! 39! 26! 52!
13 13 13 = 13!39! . 13!26! . 13!l3! = (13!)4

89
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ways of partitioning th e pack . But these partitions are not all distinct , since
each distinct partition arises in 4! ways, depending on which of th e four sets in
it is chosen first , which is chosen second , and so on. So th e required number is

52!
(13!)44!

(a vast numb er , greater th an 1027 ) .

Th ere is another way of approaching this counting problem. Consid er a row of
52 spa ces grouped into four groups of 13:

( )( ) ( ) ( ).

The cards can be placed in the spaces in 52! ways. Within each group there are
13! ways of arranging the same 13 cards, and th ese different arrangements are
irrelevant since they give rise to the same part of th e partition, so we have to
divide by (13!)4, one 13! for each group. Th en the four groups th emselves can
be arranged in 4! ways, so we have to divide by 4!, giving the same answer as
before.

This argument easily generalises, to give the following result .

Theorem 5.1

A set of mn obj ect s can be partitioned into m sets of size n in

(mn )!
(n!)mm!

different ways.

Corollary 5.2

A set of 2m objects can be partitioned into m pairs in

(2m )!
2m m!

different ways.

Example 5.2

The number of ways of pairing 16 teams in a football cup draw is

~ = 2027025 .
288!

Th e sam e type of argument can be applied when the parts of th e required
partition are not all of the same size.

Example 5.3

In how many ways can a class of 25 pupils be placed into four tutorial groups
of size 3, two of size 4 and one of size 5?
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Solution

Consider th e following grouping of 25 spaces

(- - -)(- - - ) (- - -)(- - -)(-- -- )(- - --)(- - - - -).

91

Th e 25 pup ils can be placed in the spaces 25! ways. To count di stinct partiti ons
we have to take into account t he ways of ordering the pupil s within the groups ­
so we divide by (3!)4(4!)25! - and also th e ways of ordering th e groups themselves
- so we divid e by 4! on account of the four groups of size 3 and by 2! on account
of th e two groups of size 4. So the required numb er is

25! ~ IS

(3!)4(4!)25!4!2! = 3.6 x 10 .

Definition 5.1

A partition of an n-element set consist ing of Q; subsets of size i , 1 ::; i ::; n ,
where 2:~= 1 ia, = n, is called a pa rti t ion of type 10 1 20

, •• •nO• .

Generalising Example 5.3 gives the following result .

Theorem 5.3

Th e numb er of partitions of type 10 120
, . • • nO. of an n-element set is

n!

Example 5.4

Th e number of ways of group ing 10 peop le into two groups of size 3 and one
group of size 4 is the number of partitions of type 3241 and so is

ID!
(3!)22!41 = 2100.

5.2 Stirling Numbers

In this sect ion we think about par ti t ioning a set into a given numb er of parts.

Definition 5.2

Let S(n, k ) denote th e number of ways of par ti t ioning an n-set into exact ly k
par ts. Th en S(n , k ) is called a Stirling number of the second kind.
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Th ese numb ers are named after th e Scottish mathematician James Stirling
(1692-1770) , who is also known for his approximation of n! :

Stirling also has numbers of the first kind named after him - see Exercise 5.10.
We now study 8(71, k ). Clearly , for all 71 ~ 1,

8 (71 , 1) = 8(71 ,71 ) = 1. (5.1)

Exam ple 5.5

We show that 8(4,2) = 7. Here are th e seven ways of partitioning {I , 2, 3, 4}
into two parts: {I} U{2, 3, 4}, {2}Up , 3,4}, {3}U p , 2, 4}, {4}U{1,2 , 3}, {I , 2}U
{3,4}, {1,3} U {2,4} and {l,4} U {2, 3}.

Clearl y, for large 71 , we need a better way of evaluating 8(71, k) th an just writing
down all possible partitions . Such a method is given by th e following recurrence
relation .

T heorem 5.4

8( 71 , k) = 8 (71 - 1, k - 1) + k 8(n - 1, k)

whenever 1 < k < n .

Proof

(5.2)

In any par ti tion of {I , . . . ,n} int o k parts , the element 71 may appear by itself
as a l- element subset or it man y occur in a larger set. Ifit appears by itself,
th en th e remainin g n - 1 elements have to form a partition of {I , . . . , 71 - I}
int o k - 1 subsets, and the re are 8(n - 1, k - 1) ways in which this can be don e.
On the other hand, if th e element 71 is in a set of size at least two , we can think
of partitioning {I, . . . , n - I} into k sets - this can be done in 8(n - 1, k) ways
- and then of introducing 71 into one of the k sets so formed - and there are k
ways of doing this . So, by the addit ion and multiplic ation principles, we have
S(n,k) = 8(n - 1, k - 1) + k S(n - 1, k) .

Example 5.5 (again)

8(4,2) = 8 (3,1) + 2 8 (3,2)

+ 2 (8(2, 1) + 2 8(2 ,2) )

+2(1 +2) =7.
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Theorem 5.5

For all n ~ 2, S(n , 2) = 2n - 1 - 1.

Proof

93

We use indu ction on n . T he result is true for n = 2, so suppose it is t rue for
n = k ~ 2. T hen

S(k + 1,2 ) = S(k, 1) + 2 S(k, 2) (by 5.2)

= 1+ 2 (2k - 1
- 1)

= 1+ 2k - 2 = 2 (k +l) -1 - 1.

Table 5.1 gives the first few Stirling number S(n, k).

Table 5.1

n\k 2 3 4 5 6 7 8 B (n)

2 1 2

3 3 5

4 7 6 15

5 15 25 10 52

6 31 90 65 15 203

7 63 301 350 140 21 877

8 127 966 1701 1050 266 28 4140

Note th e num ber 2n -
1

- 1 in the column k = 2. On the right of the t able
are th e sums B (n ) of all the St irling numb ers in the rows. B( n) is th e total
numb er of partitions of an n-set , and is called a Bell number, afte r anot her
Scot , E .T . Bell, who emigra ted to th e USA. and wrote severa l popular books
on math ematics, including Men of Math ematics, an idiosyncrat ic two-volume
collect ion of "biographies" of famous math emat icians. We have, for n ~ 1,

n

B (n) = L S(n , k).
k= l

(5.3)

lfwe define B (O ) = 1 = S(O,O) (accept this as a useful convention, like (g)= 1),
we can obtain a recurrence relation for the Bell numb ers.
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Theorem 5.6

For all n 2:1,

Discrete Mathematics

The nth element of the set being partitioned will appear in one of the sets of
the partition along with j 2:0 other elements. There are (nj 1) ways of choosing
these j elements. The remaining n - 1 - j elements can then be partitioned in
B(n - 1 - j) ways. So

B(n) =~ (n -:-1) B(n _ 1_j)
j=O J

= ~ (n ~ l)B(k) (on putting n-1-j = k).
k=O

Example 5.6

B(9) = t G) B(k)
k =O

= 1+ 8.1 + 28.2 + 56.5 + 70.15 + 56.52 + 28.203 + 8.877 + 1.4140

= 21147.

For an interesting (but uselessl) formula for B(n), see Exercise 5.9.

5.3CountingFunctions

The Stirling numbers arise naturally in the enumeration of all functions
f :X --t Y which can be defined from an m-set X to an n-set Y . There
are n m such functions since, for each x EX , there are n possible values for
f(x) .

Recall that the image of f :X --t Y is the set of elements of Y which actually
arise as a value f(x) for some x E X :

imf = {y E Y : y = f(x) for some x EX} .

Each function f :X --t Y has as its image a subset of Y . How many such
functions have an image of size k? Iff takes precisely k values then X can be
partitioned into k parts, the ith of which will consist of those elements of X
which are mapped onto th e ith member of im(f) . So a function f :X --t Y
with image of size k can be constructed as follows:
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(i) par ti ti on X into k par ts Xl , . .., X k (th is can be done in S(m , k) ways) ;

(ii) choose t he image set of size k in Y (this can be done in (~) ways);

(iii) pair off each Xi with one of the members of th e image set (this can be done
in k! ways).

So th e number of functions f :X --+Y with image of size k is 8(m, k)(~)k!.
Thus, since k can take any value from 1 to n , and since th ere are nrn funct ions
f :X --+Y altoge ther, we obtai n:

Theorem 5.7

Let IXI= m and IYI= n where m, n 2 1.

(a ) The number offunctions f :X --+Y with image of size k is 8(m, k)(~) k !.

(b)

nrn
= t8(m, k)(~)k!.

k=l

(.').4)

Note as a special case that the number of surjections from X to Y , i.e, func­
t ions whose image set is th e whole of Y , is n!8 (m,n).

Example 5.7

We check (5.4 ) in the case n = 4, m = 5.

i: 8 (5, k)G) k! = 48 (5,1 ) + 128(5,2) + 248 (5, 3)+ 248 (5, 4)
k=l

= 4 + 180 + 600 + 240 = 1024 = 45
.

Note that if we define Si m ,0) = 0 for all m 2 1, and 8(0,0 ) = 1, then we can
rewrite (5.4) as

This identity can be inverted.

Theorem 5.8

For all m 2 l ,n 2 O, m 2 n ,

(5.5)
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ProofWe can use Corollary 1.15, putting ak == km and bk == S(m , k) kL

Alternatively we sha ll be ab le to use the inclusion-exclusion prin ciple in the
next chap ter : see Section 6.2.

Example 5.8

5.4 Vertex Colourings of Graphs

To colour t he vertices of a graph G is to assign a colour to each vert ex in such
a way that no two adjacent vert ices receive the same colour. Ifwe define an
independent set of verti ces of G to be a set of vertices no two of which are
adjace nt , then a vert ex colour ing can be thou ght of as a pa rtition of the set V
of vert ices int o independent subsets. Often we are concerned with the smallest
numb er of colours required , i.e. the smallest numb er of independent sets which
part it ion V ; we call thi s number th e chromatic number of G .

Definition5.3

Th e chromatic number X(G) of a graph G is the small est value of k for which
the vertex set of G can be partitioned into k independent subsets.

We have met the idea of colouring verti ces already; in Section 3.5 we noted that
bipar tite gra phs are bichromatic; so if G is biparti te with at least one edge th en
x(G) == 2. Also, the four colour theorem asserts th at X(G) :oS 4 for all plan ar
grap hs G.

Theorem 5.9

(i) X(K,,) == 7! .

(ii) X(C,,) == 2 if 7! is even; X(C,,) == 3 if n is odd.

Proof

(i) No two vertices can receive the same colour since they are adja cent .

(ii) Ifn is even, we can alternate colours round th e cycle; if n is odd we need
a t hird colour for the "last" vertex coloured .
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(0)I><>

Example 5.9

The graph of Figure 5.1(a) has chromatic number 3: it needs at least th ree
colours since it contai ns C3 , and three colours are sufficient, as shown in Fig­
ure 5.1(b).

Ib) V(>3 1<)*
2 2

Figure 5.1

Note th at th e case of Cn,11 odd , cont radicts th e belief of some amateur four­
colour- th eorern-provers, that a graph needs m colours only if it contains K m as
a subgraph. Anoth er counte rexample to thi s belief is th e graph of Figure 5.1(c)
which needs four colours (why?) alt hough it does not contain K 4 •

Th ere is no easy way of finding X(G) for a given gra ph G. Th e greedy algo­
rithm, which we now describe, will give an upp er bound for X(G) related to th e
maximum vertex degree. In our description of the algorithm we denote colours
by CI,C2,C3 , . .. and call C, the it h colour.

The greedyalgorithmfor vertexcolouring

1. List t he vertices in some orde r: V I , ... ,vp '

2. Assign colour Cl to VI '

3. At stage i+ I , when Vi has just been assigned a colour , assign to Vi+ l the
colour Cj with j as small as possible which has not yet been used to colour
a vertex adjace nt. to Vi + l .

Example 5.10

We use th e greedy algorithm to colour the gra ph of Figur e 5.2 for each of th e
two vertex orderings shown.

With vert ices list ed as in (a) , we assign colours as follows:

V: 2 3 4 5 6 7

C : 2 3 4 2

T his colouri ng uses four colours. However , with the vertices lab elled as in (b),
we get :

V: 2 3 4 5 6 7

C : 2 3 3 2
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1 2

'Eft'6

(a)

7

Figure 5.2

6

(b)

7

This second colouring shows that X(G) ~ 3; in fact X(G) = 3 since G is not
bipartite.

Clearly, the bound for X(G) obtained by the algorithm depends on the pa r­
ticular order in which the vertices are considered. But note that, if a vertex v
has degree d then, when it is the turn of v to be assigned a colour, at most d of
the colours are ineligible, so it must be given some colour C, where i~ d+ 1.
Thus we have the following bound.

T heorem 5.10

IfG has maximum vertex degree .1, then the greedy algorithm will colour the
vertices of G using at most .1 + 1 colours , so that X(G) ~ .1 + 1.

Example 5.11 (A timetabling problem )

The University of Central Caledonia has nine vice-principals, Professors
A, B , . . . ,I, who serve on eight committees. The memberships of the com­
mittees ar e as follows.

Committee 1 : A, B , C, D 5: A, H, J

2 : A, C, D , E 6 : H, I , J

3 : B , D , F , G 7 : G, H , J

4 : C, F , G, H 8 : E, I .

Each committee is to meet for a day ; no two committees with a membe r in
common can meet on the same day. Find the smallest number of days in which
the meetings can take place.

Solut ion

Repr esent each committee by a vertex, and join two vertic es by an edge precisely
when the corresponding committees have overlapping membership. Then the
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2

99

6

7
Figure 5.3

3

minimum number of days required is th e chromatic number of th e graph G,
shown in Figure 5.3. Note th at vert ices 1,2 ,3 ,4 form a K 4 , so at least four
colours (days) are needed . But four colours are sufficient: e.g.

{l , 7,8 } U {3,5 } U {2,6} U {4}

is a partition of {l , .. . , 8} into independent sets. So X(G) =4, and four days
are enough.

5.5 EdgeColouringsofGraphs

An edge colouring of a graph G is an assignment of colours to the edges of
G so t hat no two edges with a common vertex receive the same colour. The
minimum number of colours required in an edge colouring of G is called the
chromatic index of G and is denoted by X' (G).

Thus to edge colour a grap h is to parti tion the edge set into subsets such that
no two edges in the same subset have a vertex in common, i.e. so that all edges
in any par t of the partition are disjoint . A set of disjoint edges in a graph is
often called a matching. Clearly, in an edge colour ing, all edges at a vertex v
must receive different colours, so X'( K n ) ~ n - 1 for each n .

Example 5.12

(a) X'( K 4 ) = 3, since X'( K 4 ) ~ 3 and three colours suffice, as shown in Figure
5.4(a) .

(b) X'( K s) = 5. Here,.d = 4 colours are not enough. For there are 10 edges and
no more than two edges in any matching. However , 5 colours are enough,
as shown in Figure 5.4(b) .
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(a)

Theorem 5.11

(i) X'(Kn ) = n if n is odd.

(ii) X'(K n ) = n - 1 if n is even.

Figure 5.4
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(b)

Proof
(i) Ifn is odd , any matching in K n can have at most ~ (n - 1) edges . So at most

~(n - 1)edges can be given anyone colour. But th ere are ~n(n -1)edges
in K n , so at least n colours are needed . Now we can colour the edges using
n colours in the following way. Represent K n as a regular n-gon , with all
diago na ls draw n. Colour the boundary edges by 1, . . . , n ; then colour each
diagonal by the colour of the boundary edge pa rallel with it. This gives an
edge colouring using n colours. The case n =5 is as in Figure 5.4(b ).

(ii) Now suppose ti is even. Certai nly X'( K n ) ::::: n- I ; we show how to use only
n - 1 colours . Since n - 1 is odd, we can colour K n - l using n - 1 colours, as
descr ibed above . Now ta ke anot her vert ex v and join each vertex of K n - 1

to v, thus obtaining K n . At each vertex of K n - 1 , one colour has not been
used . Th e colours missing at each vertex of K n - 1 are all different , so we
can use these n - 1 colours to colour the added edges at v . This gives an
edge colouring of K n using n - 1 colours .

The ap pea rance of .d (= ti - 1) and .d + 1(= n) as the chromatic indices of K n ,

according as n is even or odd, is in accordance with the following resul t .

Theorem 5.12 (Vizing, 1964)

IfG is a simple graph with maximum vert ex degree .d , th en x'(G) .d or
.d+ 1.

We omit th e pro of of this result; a proof can be found in [9]. But we include the
statement of t he result because it has led to a great deal of work on det ermining
which graphs are class one grap hs, Le. sat isfy X'( G) = .d , and which are class
two, Le. satisfy X'(G) = .d + 1.
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Example 5.13

The Petersen graph is class 2. Here Ll = 3, so we have to show tha t X'( G) i 3.
So suppose an edge colour ing using only three colours exists . Th en th e oute r
5-cycle uses th ree colours , and, without loss of generalit y, we can assume that
it is coloured as in Figure 5.5(a) . Th e spokes are then uniquely coloured, as in

(a) (b)

Figure 5.5

Figur e 5.5(b) . But this leaves two adjacent inside edges which have to be given
colour 2. So there is no edge colouring with three colours.

We close this sect ion by est ablishing that all bipartit e gra phs are class 1. This
resul t is du e toKonig, t he Hungar ian aut hor of th e first maj or book on graph
th eory [14).

Theorem 5.13 (Konig)

x' (G) = Ll for all bipar t it.e gra phs G.

Proof

Proceed by induction on q, the number of edges. Th e th eorem is clearly true
for graphs with q = 1; so suppose it is true for all bipartite graphs with k
edges, and consider a bipartite graph G with max imum vertex degree Ll and
with k + 1 edges. Choose any edge vw of G, and remove it , thereby forming a
new bipartite gra ph H . H has k edges and maximum vertex degree S ,1,so,
by th e inducti on hyp othesis, H can be edge coloured using at most ,1 colours.

Now, in H , v and w both have degree S ,1-1,so there is at least one colour
missing from th e edges from u, and at least one missing from the edges of w .
Ifth ere is a colour missing at both ver tices th en it can be used to colour edge
vw. If there is no colour missing from both , th en let Cl be a colour missing at
u, and C2 a colour missing at w. Now th ere is some edge, say vu, coloured C2;
if there is an edge coloured Cl from u , go along it , and cont inue along edges
coloured Cl and C2 alte rnately as far as possible. The path so const ruc te d will



102 Discrete Mathematics

never reach w since if it did it would have to reach w along an edge coloured
Cl and so would be a path of even length, giving, with edge vw, an odd cycle
in a bipartite graph. So the connected subgraph K, consisting of vertex v and
all vertices and edges of H which can be reached by a path of edges coloured
Cl and C2 , does not contain w. So we can interchange the colours Cl and C2

in K without interfering with the colours in the rest of H . This gives a new
edge colouring of H in which v and w have no edge coloured C2 , and we can
use C2 to colour vw.

This idea of swapping colours along a path was used by Kempe in his unsuc­
cessful 1879 attempt to prove the four colour theorem. Despite the fact that
it did not work there as Kempe had hoped, it nevertheless has proved to be a
very useful technique in graph theory.

Example 5.14

Eight students require to consult certain library books. Each is to borrow each
required book for a week. The books B, required by each student Si are as
follows:

What is the minimum number of weeks required so that each student can
borrow all books required?

Solution

Draw a bipartite graph G with vertices labelled Bl , • . . , B7 , SI, ...,Ss, and
with Si joined by an edge to B j precisely when student Si has to consult
book B j • Then G has maximum vertex degree .1= 4, so, by Konig's theorem,
X'(G) = 4. Thus four colours (weeks) are required . You should be able to
partition the set of edges into four disjoint matchings.

Exercises

Exercise 5.1

How many ways are there of arranging 16 football teams into four groups
of four?
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Exercise 5.2
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A class contains 30 pupils. For a chemist ry pro ject, th e class is to be pu t
into four gro ups, two of size 7 and two of size 8. In how many ways can
this be done?

Exercise 5.3

In th e ear ly versions of the Enigma ma chine, used in Germany in the
1930s, the plugboard swapped six pairs of distinct letters of the alphabet .
In how many ways can this be don e (assuming 26 let ters)?

Exercise 5.4

Any permutation is a product of cycles. For example, th e permutation
351642 (3 -t 1,5 -t 2, 1 -t 3,6 -t 4, 4 -t 5,2 -t 6) can be writ ten
as (31)( 2645). How many permutat ions of 1, . .. ,8 are a product of a
l -cycle, two 2-cycles and a 3-cycle?

Exercise 5.5

P rove that (a) S(n , n - 1) = (;), (b) S(n ,n - 2) = (;)+ 3 (~ ) .

Exercise 5.6

Prove by induction that S(n,3 ) > 3" - 2 for all n ~ 6.

Exercise 5.7

Show that S(n, k ) = E::'~lk_1 (";;;1)S(m ,k - 1) and hence given another
proo f of Theorem 5.6.

Exercise 5.8

Find B(lO).

Exercise 5.9

Use Theorem 5.6 and indu ction to prove that B (n) = ~ E; o7'
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Exercise 5.10

T he (signless) Stirling numbers s(n , k) of the first kind are defined by:
s(n, k) is th e number of permutations of 1, . .. ,n consist ing of exact ly
k cycles. Verify tha t s(2, 1) = 1, s( 3, 1) = 2, s(3, 2) = 3, s( 4 , 2) = 11 and
that s(n , 1) = (n - 1)1. Prove that s (n, k) = (n - 1)s(n - 1, k )+ s(n - 1,
k -1), and ded uce the value of 8(6,2 ).

Exercise 5.11

Find X(G) and X'(G) for each of t he graphs of Exercise 4.2.

Exercise 5.12

Let G be a graph with p vertices and let a( G) denote the size of t he
largest inde pendent set of vertices of G. Show tha t x(G)a (G) ~ p .

Exercise 5.13

Apply t he greedy vertex colouring algorithm to the grap h of Figure 5.3,
taking the vertices (a) in th e order 1, . . . ,8 , (b) in order 8, ... , 1. Do
you get a colouring using four colours?

Exercise 5.14

As Exercise 5.13, but th is t ime choose vert ices in (a) increasing, (b)
decreasing order of vertex degrees. Which approach would you expect to
require fewer colours in general?

Exercise 5.15

Exp lain why there is always an ordering of the vertices for which the
greedy algorith m will lead to a colour ing with X(G) colours .

Exercise 5.16

Find the chromatic index of each of the five Plat onic solid grap hs.
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Exercise 5.17
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A graph in which every vertex degree is 3 is called a cubicgraph. Prove
th at all hamiltonian cubic graphs have chromatic index 3. (Note how­
ever that not all cubic graphs have chromat ic index 3. e.g. the Petersen
graph.)

Exercise 5.18

Let G be a graph with an odd number p = 2k + 1 of vertices, each of
which has the same degree T .

(a) Show that G has (k + !)r edges.
(b) Explain why no more th an k edges can have th e same colour in any

edge colouring, and hence show that x'(G) = r + 1. Thus every reg­
ular graph with an odd number of vertices is class 2. (This includes
K n , n odd , as shown in Theorem 5.11.)

Exercise 5.19

Let!>. (G) denote the number of ways of colouring the vertices of G using
A given colours.
(a) Show that !>.(Kn ) = A(A - l)(A - 2) . . . (A - n + 1).
(b) Show that f>,(T) = A(A - l)n-l for all trees T with n vertices.
(c) Let xy be any edge of G. Let G' be th e graph obtained from G by

removing the edge xy, and let G" be the graph obtained by identi­
fying vertices x and y . Th en !>.(G) = !>.(G') - !>.(G") . Deduce that
!>.(G) is a polynomial in A: it is called the chromaticpolynomial
ofG.

(d) Note that the solution an = 2n + (-1)n2 of Example 2.4 can be
interpr eted as: fs(Cn) = 2n + (-1)n2. By replacin g 3 colours by A

colours, show similarly that !>.(Cn) = (A_l)n + (-l)n(A -1).Note
that this gives h(Cn ) = 0 whenever n is odd, as expected!



6
The Inclusion-Exclusion Principle

In this chapter we discuss a method of counting which has been used for at
least 300 years . One of it s first uses was in the study of derangements ; as wel1
as thi s, we give many applicat ions including label1ed tr ees, scrabble and the
menage problem .

6.1 The Principle

Th e prin ciple is essentially a generalisation of the fol1owing simple observation.
Suppose we are given two sets A and B , and are asked for the numbe r of
elements in their union . A first attempt might be IAI + IBI,but elements in
both A and B are counted twice; so th e corrected estimate is

IAUBI = IAI + IBI-IAnBI· (6.1)

Note that we first include, and then exclude all those which have been in­
cluded too often .

Even th is simplest form of the principle can be useful.

Example 6.1

In a class of 50, there are 30 girls , and there are 35 students with dark hair.
Show that there are at least 15 girls with dark hair.

Solution

Let A denote the set of female students, and B the set of students with dark
hair. Then
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IAI+ IBI- lA U BI == 30 + 35 - lA uBI
~ 65 - 50 == 15 since lA uBI~ 50.

Th e next appli cation of (6.1) is much less trivial.

Example 6.2

We look for the smallest possible value of rn such that if G is a graph on 60
vertices, each vertex having degree at least rn, then G must contain K4 as a
subgraph .
Itis not hard to see that rn must be grea ter than 40. For if we take G to be

the graph K20 .20.20 , with vertex set V == VI U V 2 U Va, lVil == 20 for each i, all
vertices of Vi being joined to all verti ces of Vj whenever i=P i. th en each vertex
will have degree 40; but no K 4 exists in G since any K 4 in G would have to
have two vertices in the same Vi. We now show that rn == 41. Let G be any
graph on 60 vertices, each of degree > 40. Choose any vertex VI, and let SI be
the set of vertices G adjacent to VI . Th en IS11> 40. Take any vertex V2 in SI ,

and let S 2 be the set of all verti ces adjacent to V2. Then

IS1n S21 IS11+ IS21 - IS1u S21

> 40+ 40 -IS1uS21 ~ 80 - 60 == 20.

SO IS1n S21 > 20. Next take any Va E SI n S2 , and let Sa be the set of all
vertices of G adjacent to Va. Th en

IS1 nS21+ ISal-I(SIn S 2) u Sal

> 20+ 40 - 60 == O.

Thus there exists a vertex V4 in SI n S2 n Sa.But then V1 , V2 , Va,V4 are all
adjacent to each other in G, so that G contains a K 4 .

We now extend (6.1) to three sets A,B, C as shown in Figure 6.1. Our first
estimate for lAU BUClmight be IAI+ IBI +ICI.But elements in more than
one set will have been included more than once, so a second estimate might
be IAI + IBI + ICI- lA nBI -IBncl -ICnAI.But element s in all three sets
A,B ,C will have then been included thric e and excluded thrice, and so have
to be included once more. So finally we get

lA U B U Cl == IAI+ IBI+ ICI- IAnBI-IBnCl- ICnAI+ IAnBnq (6.2)

Note that we include, then exclude, then include again.

The general formulation is as follows.
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B

Figure 6.1

c

Theorem 6.1 (The inclusion-exclusion principle)

Let 5 be a set of objects , and let PI, ...,P; be properties which the elements
of 5 mayor may not possess. Let N (i ,i ,. . . ,k) denote the number of elements
of 5 which possess properties Pi , Pj , • • • ,Pk (and possihly some others as well).
Th en the number of elements of 5 possessing at least one of the properties is

L N(i) - L N(i,j) + L N(i ,j, k) - ...+ (_1)"-1N(I ,2, ... , r ). (6.3)
i< i i<i<k

Proof

Any element of 5 which has none of the properties contributes (Ito each term
of (6.3) and hence contributes 0 to th e sum .

Now consider an element of 5 which possesses t ~ 1 of the properties, where
t :S r . Itcontributes to t of the terms N(i) , to m of th e terms N (i,j) , and so
on . So its total contribution to (6.3) is

t - G) + G) _.. .+ (_I)t-1G) == 1- {l-t + G) _... + (_I)t G)}
== 1 - (1 - l)t == 1.

Example 6.3

Find th e number of positive integers :S 100 which are divisibl e by 3 or 7.

Solution

Take 5 == {I , . . . ,lOO}, let PI be the property of being divisibl e by 3 and let
P2 be the property of being divisible by 7. Then N(I) is the number of integ ers
:S 100 which are divisibl e by 3, so N(I) == 33. Similarly N(2) = 14. Finally
N(I ,2) is the number of such int egers divisible by both 3 and 7, Le. divisible
by 21; so N(I , 2) == 4. Thus the required number is 33+ 14 - 4 == 43.
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The principle is in fact more often used in a slightly different form. Instead of
asking how many elements have at least one of the properties, we ask how
many have none of the properties.

Theorem 6.2 (Second version of the inclusion-exclusion principle)

With th e sam e notation as in Th eorem 6.1, the numb er of elements of 8 pos­
sessing none of the properties is

181- LN(i) + LN(i ,j) - ... + (-lrN(I ,2 , ... , r ). (6.4)
i <j

Example 6.4

How many positive integers x 100 are divisible by none of 2,3 ,5, 7?

Solution

Here again 8 = {I , . . . , lOO} and PI,...,P4 are the properties of being divisible
by 2,3,5,7 respectively. Then N(l) = 50, N(2) = 33, N(3) = 20 and N(4) =
14. Next , N (l , 2) is th e number of elements of 8 divisible by 2 and 3, Le. by
6, so N (1,2) = 16. Similarl y, for example, N(l, 3, 4) is the number of positive
integers j,100 divisible by 2,5 and 7, Le. by 70, so that N(l , 3, 4) = 1. Thus
th e required number is

100-(50+33+20+14)+(16+10+7+6+4+2) -(3+2+1) = 100-117+45-6 =22.

What is th e significance of thi s result ? Observe th at any number j;100 which
is not prime must possess a factor :::; v'IOO = 10, and so must be div isible by
a prime j;10, Le. by 2,3,5 or 7. The answer 22 just obtained is not quite th e
number of primes g 100 since it does not include the primes 2,3,5,7 themselves,
and it also includes 1 which is not prim e. So th e number of primes :::; 100 is
22 + 4 - 1 = 25. Check it!

Example 6.5

In one version of th e Enigma machine used for encoding secret messages , three
"rotors" were chosen from a set of five, and were placed in order in the machine.
On each day a different ordered set of three was chosen, such that no rotor was
in th e same position as on th e previous day. Given the arrangement for one
day, how many possible ordered choices are th ere for the next day ?

Solution

Let us suppose that the rotors are labell ed 1, . . . , 5, and that on a given day
rotors 1,2,3 are chosen, in that order. Let 8 denote the set of all possible
ordered sets of three rotors; then 181 = 5 x 4 x 3 = 60. For each i :::;3, let
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Pi denote the property that rotor i is in position i. Then we want the number
of members of 8 possessing none of the properties PI, P2 , Pa. So the required
number is

ISI- L N(i) + L N(i,j) - N(I, 2, 3).

Now N(i) = 4 x 3 for each i ::; 3, and each N(i ,j) = 3; so the answer is

60 - 3 x (4 x 3) + 3 x 3 - 1 = 32.

(Later on the number of rotors used by the German navy was increased to 8i

see Exercise 6.9.)
The next example deals with derangements, already met in Chapter 2.

Example 6.6

Recall that a derangement of n obje cts is a permutation of them with the
property th at no object is in its original place. We now show how to use the
inclusion-exclusion principl e to derive the formula (2.10) for dn , the number of
derangements of n objects.

Take 8 to be the set of all permutations of 1, . . . ,n and, for earn i ::; n, let
Pi be the property: i is in the ith position. Then dn is the number of members
of 8 possessing none of the properties Pi . Now, for each i, N(i) = (n -1)!since
i is fixed and the remaining n - 1 numbers can be permuted in any way we
like. Similarly, N(i , j) = (n - 2)!, and so on. Note also that there are (~) terms
N( i) , G) terms N(i,j) , etc ., so that , by (6.4),

dn = 181-LN(i) +LN(i,j) - ...+ (-WN(I, . . . ,n)
i i<j

=n!- (~)(n-1)!+ (;)(n-2)!- . .. +(-I)n(:)0!
n! n! nn!= n'- - + - _...+ (-1)-

. I! 2! n!

1 1 (_I) n
= n!{I- -1'+ -21 - . . •+ --,-}.. . n .

The next example introduces ideas which will be useful in section 6.4.

Example 6.7

How many non-negative integer solutions are there of the equation x+y+z = 20
satisfying the conditions x ::; 10, y ::; 5, z ::; 15?

Solution

Let 8 denote the set of all non-negative solutions of x+y+z = 20. By Theorem
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1.11,181 = G~) = e;)·Let PI be the property x 2: 11; let P2 be the property
Y 2: 6, and Pa th e property z 2: 16. Th en we want th e numb er of memb ers of
8 possessing none of the prop erties Pi . This numb er is

C2
2)

- L N(i ) + L N (i ,j) - N(1 ,2 ,3).
t t< )

(6.5)

Consider N (1). Ifx 2: 11, x = 11+u for some u 2: 0, and th e equat ion becomes
u + Y + z = 9. Th e numb er of non-negative integer solutions of this equa t ion
is N(l) = (191) = Ci) . Similarl y, N(2 ) = C26 ), N(3) = (~). Next , N(1 ,2) is th e
numb er of solution s satisfying x 2: 11 and Y 2: 6; putting x = 11+ u , Y = 6+ v
change s the equat ion into u + v + z = 3, and the number of non negative
solutions is N (1,2) = (~) . Since N(1 ,3) = N(2 ,3) = N(1 ,2 ,3) are all clearl y
zero, we find that (6.5) becomes

6.2 CountingSurjections

Let IXI= m and IYI= n , and consider functions f :X -t Y . T he image of f
was defined in Section 5.3 to be the set of all elements of Y which arise as f( x)
for some x EX . We say that f is surjective if th e image of f is th e whole of
Y . How many surjections f :X -t Y are th ere?

Let 8 denote the set of all functions f :X -t Y , where Y = {Yl ' . . . ,Yn}, and
let Pi be th e property: Yi is not in the image of f . Then N (1) = (n - l )?", since
each of the m elements of X can be mapped by f onto any of the n - 1 other
elements of Y. Similarly, N (i] , .. . , i k) = (n - k)m . So by (6.4) , the numb er of
surjections from X to Y , i.e. the number of members of 8 possessing none of
th e properties Pi is

181- L N(i) + L N (i ,j) _ .. .+ (- l) nN (l , . .. , n)
i < j

= ~(-1)i(7)(n-i)m.

One immediate consequence of thi s result arises from the observation that , if
n > m , there are no surjections f :X -t Y since there are not enough elements
in X to be mapped onto the n elements of Y. So we obtain:

whenever m < n . (6.6)
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Another consequence ari ses from the fact th at th e numb er of surjections from
X to Y is n!8(m,n) (as in Th eorem 5.7); so we obtain another proof of (5.5).

6.3CountingLabelledTrees

Itwas mentioned in Section 3.3 tha t Cayley proved that the number of labelled
trees on n vert ices is nn-2. The three trees on 3 points were shown in Figure
3.7. Many proofs of Cayley 's result have been given . Most of th ese proofs are
quite tricky; th e most common one, due to Prtifer, depends upon constructing
a one-to-one correspondence between the tr ees and ordered (n - 2)-tuples of
numbers each of which can be any of 1, . . . , n . However, we are here going to
use ideas of' J . Moon and employ the inclusion-exclusion principle and (6.6) .

Let 8 den ote the set of all spanning trees on the vert ices labelled 1, . .. , n,
and let 181 = T(n) . For each i :S n, let Pi be the property: vertex i is an end
vertex. Since, by Theorem 3.3, every tree with p ~ 2 vertices has an end vertex,
every member of 8 must possess at least one of the properties Pi . Further, if
n ~ 3, no tree on n vertices can have every vertex an end vertex, so no member
of 8 can possess all n properties. So, by (6.3) , for n ~ 3,

T(n)=2: N(i)-2: N(i,j)+ .. ·+ (- W 2: N(i1, ... ,in-d·
i < j h<...<in_ l

Now N(i) = (n - I)T(n - 1), since if vert ex iis an end vertex, its edge can go
to any of th e other n - 1 vertices , and these n - 1 vertices are joined by a tree.

2 labelled tree
on n - 2 vertices

Figure 6.2 N(I ,2) = (n - 2)2T(n - 2)

Similarly , as illustrated in Figure 6.2, N(i ,j) = (n - 2)2T(n - 2), and so on.
So, for n ~ 3,

T(n) = (~) (n - I)T(n - 1) - (~) (n - 2)2T(n - 2)

+ " ' + (- W ( n )T(l)n-l
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n-1 ( )
= ~) _1) i-1 7 (n - i )iT (n - i ).
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(6.7)

However, putting m = n - 2 in (6.6) and rearranging slightly, we get

(6.8)

Compare (6.7) and (6.8) . Ifth e formula T(k) = kk-2 is known to be true for
all k up to n - 1, then the right-hand sides of (6.7) and (6.8) coincide , and it
therefore follows that T(n) =nn-2. Thus, since the result is true for n = 3, it
follows by induction that T(n) = nn -2 for all n ~ 3.

6.4 Scrabble

Scrabble is a word game in which players take turns to use the letters in their
possession to form new words . At each stage of the game , each player has 7
tiles , each tile having on it a letter or being blank. The distribution of letters
is as follows.

A B C D E F G H I J K L M

9 2 2 4 12 2 3 2 9 4 2

N 0 P Q R 5 T U V W X Y Z blank

6 8 2 6 4 6 4 2 2 2 2

At the start of the game, each player chooses 7 tiles . How many ways are there
of choosing 7 tiles?
Ifwe let a denote the numb er of As, b th e numb er of Bs , . .. , z the number

of Zs , and w the number of blanks, then th e number of possible choices of 7
tiles is just the number of solutions of the equation

a+b+ . . . +z+w=7 (6.9)

in non-negative integers, with a ::; 9, b ::; 2, and so on . So, to apply the inclusion­
exclusion principle, take 5 to be the set of all non-negative integer solutions
of (6.9), take Pa to be the property that a ~ 10, Pb to be the property that
b ~ 3, and so on: then we want th e number of members of 5 with none of the
properties, as given by (6.4) . We pro ceed as in Example 6.7.

By Theorem 1.11 , 151 = (27+;-1) = ei).
Next consider N(a), th e number of solutions of (6.9) with a ~ 10. This is

clearly O.
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Now consider N(b) . This is the number of solutions of (6.9) with b ~ 3. Ifwe
put b = b' +3, (6.9) becomes a+(b' +3) + . . .+z+w = 7, i.e. a+b' + .. .+w =4,
and so N(b) = e7+44- 1) = e40) .

In the same way, we obtain

N(b) N(c) = NU) = N(h) = N(m) = N(P) =N(v) = N(w)

N(y) = N(w) = e40) ,

N(j) N(k) = N(q) = N(x) = N(z) = (351),
N(g) (2:), N(d) = N(l) = N(s) = N(u) = e28) ,
N(n) N(r) = N(t) = (206) =1, and all others are zero.

We next have to deal with terms such as N (c, d). Th ere are en such terms , but
fortunately many are zero; for example N (c, d) is zero since the requirements
c ~ 3 and d ~ S are incompatible with (6.9).

There are C20) terms equal to N(b,c) . Putting b = b' +3 and c =c' +3 leads
to the equation a + b' + cl+ d + ... + w = 1, which has (217) solutions. Similarly
there are S terms equal to N(g,j). Putting 9 = g' + 4 and j =i' + 2 leads to
the equation a + .. . + g' + h + i+ j' + . . . + = 1, again with (217) solutions.
There are G) = 10 terms equal to NU, k), SO = 10 x S terms equal to N(b,j);
10 like N(b, g) , 20 like N(d,j).

Finall y, there are m terms equal to N(j, k, q), and G) x 10 terms equal to
N(b,j ,k). So the required number is

C73
) - {SCSI) + lOC40) + c:) +4C28

) +3(~6)}

+ {G) c:) + Socn + C20) (~7) + scn + 30C06)}

-{G) cn + 100(~) }

= 3199724.

6.5The MenageProblem

The menage problem was posed by the French mathematician E. Lucas in 1891.

Problem.In how many ways can n married couples sit round a table (with
labelled seats) so that men and women alternate, and no husband and wife sit
next to each other?
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Let us be gent lemanly, and seat t he ladi es first . Obs er ve th at th e wives
lVI , . . . , IVn will occupy eit her th e odd numbered seats or th e even numbered
seat s; so th e number of ways of seati ng th e wives is twice n !. Then for eac h
of t.hese 2(11, 1) arrangements , th ere will be t.he same number g(n ) of ways of
seat ing th e husbands. The probl em is now to evaluate g(n ). Without loss of
generality, we can suppose th at the wives a re seated as shown in Figure 6.3,

IV,
n

~Vn IV2

n-l 2

IV3

3

Figure 6.3

wit h the vacant seats now lab elled 1, . . . ,11" sea t ibeing between wives IVi and
lVH I (i < n) , and seat n being bet ween IVn and lVl .

Let S be the set of all possible ways of arranging th e husbands in th e n seats ,
so that 151= n !. T hen conside r the following properties t hat elements of 5may
or may not possess:

Pi : H i is in seat i ;

o.:Hi is in sea t i-I (2 :S i:S 11,) ;

QI :H I is in seat n .

T hen g(n ) is ju st th e num ber of elemen ts of 5 possessing none of these proper­
ties. In ap plying (6.4), no t every possib le combina tion of properties is ava ila ble;
for example , PI and Q2 cannot both be satisfied to gether. Properties wh ich can
be sati sfied simultaneously are called co mpatible . Let rk denote th e number
of ways of choosing k compat ible prop er ties from t he Pi and t he Qi . Then, for
each such choice , th e number of arrangements of th e husbands into seats so
th at these k properties are satisfied will be (n - k)!. Thus by (6.4) ,

g( n ) = n! - 1'1 (n - I) !+ 1'2(11, - 2)! - . . .+ (- I) n1'nO!.

To find 1' k , imagine t he properties to be arrang ed in a circl e as shown in
Fi gure 6.4.

Properties are t hen compat ible pr ecisely when no two are adjace nt; so 1'k is
ju st t he number of ways of choosing k element s from a circ ula r ar range ment
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Figur e 6.4
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of 2n elements, no two of th e chosen k being adjacent . Now it was shown in
Exercise 2.15(b) that the number of ways of choosing k non-adjacent elements
from 1, . . . , 2n is (2n -kk+l); so Tk is this number minus the number of such
choices which contain both 1 and 2n . But if 1 and 2n are chosen then 2 and 2n-1
are not , and so k - 2 non-adjacent numbers are chosen from 3, . . . , 2n - 2. Since
there are 2n - 4 = 2(n - 2) numb ers here, there are en-4k~k2-2)+I) = e nk-:.k2-1)

such choices. So finally

Tk = (2n - k + 1) _(2n - k - 1) =~ (2n -- k)
k k-2 2n-k k

and the answer M(n) to the menage problem is 2(n!)y(n) , where yen) is

2n (2n - 1) 2n (2n - 2) n 2n (n)n!--- (n - 1)!+ - - (n-2)!- oo .+(-1) - 01.
2n-11 2n -22 nn

For example, M(5) = 2 x 5! x 13 = 3120.
Looking ahead, there is a nice alternative way of interpreting yen ); it is the

number of ways of choosing a third row of an n x n latin square whose first two
rows are

Exercises

Exercise 6.1

123
234

n -1 n
n 1.

Extend (6.2) to four sets A, E , C, D .
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Exercise 6.2

Each student in a class of 100 reads at least one of mathematics and
compu tin g; 67 read mathematics and 44 read both. How many read
computing?

Exercise 6.3

Each of the 100 students at a music school play at least one instrument,
string, woodwind or brass. 70 play a string instrument, 49 woodwind and
49 brass. 20 play both string and woodwind; 25 play string and brass,
and 35 play both woodwind and brass . How many play all three types
of instrument?

Exercise 6.4

How many positive integers j;1000 are divisible by none of 7, 11 or 13?

Exercise 6.5

(a) Imitate the argument of Example 6.2 to show that if G is a graph
with 100 vertices, each of degree> 75, then G must cont ain Ks as
a subgraph.

(b) Generalise to the following. IfG is a graph with mn vertices, each
of degree > m(n - 1), then G must contain Kn+l as a subgraph.

Exercise 6.6

Show that the number of solutions of the equation x + y + z = 100 in
non-negative integers x , y, z with x :::; 50, y :::; 40, z :::; 30 is 231.

Exercise 6.7

How many permutations are there of 1, . . . , 8 in which none of the pat­
terns 12,34,56 ,78 appears?

Exercise 6.8

How many permutations of 1, .. . , 8 are there in which no even number
appears in it s natural position ?
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Exercise 6.9

Repeat Example 6.5 on the Enigma machine, with 5 replaced by 8.

Exercise 6.10
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How many permutations of 1,1,2,2,3,3,4,4 ,5,5 are there in which no
two adjacent numbers are equal?

Exercise 6.11

The Eulerphi function.Let n = pr' . . .p~r be the prime factorisation
of n and let ljJ(n) denote the number of positive integers x n which are
coprime to n (i.e. which are divisible by none of PI, .. . ,1Ir)' For exam­
ple, 1jJ(10) = 4, the numbers being 1,3,7,9 . Use the inclusion-exclusion
principle to show that 4J(n) = nTIi(1 - f;;) . Hence find 1jJ(100) , 41(200) .

Exercise 6.12

Let G be a graph with n vertices and rn edges. Let 5 be the set of all
possible colourings of the vertices using>. colours, ignoring adjacencies:
so 151 = An. For each i :::;rn, let Pi denote the property that the end­
points of edge e, receive the same colour. Then !>,(G), the number of
vertex colourings of G using A colours (see Exercise 5.19), is the number
of elements of 5 possessing none of the properties Pi. Deduce that

where al = -rn and a2 = (';) - t, where t denotes the number of
subgraphs of G isomorphic to Ka.

Exercise 6.13

(An example from Abraham de Moivre's book Doctrines of Chance, pub­
lished in 1717.) IT 12 throws of a die are made, what is the probability
that all six numbers appear?

Exercise 6.14

Use the inclusion-exclusion principle to find the number of partitions of
{l , .. . ,1O} into four parts, none of which is a singleton set .



7
Latin Squares and Hall's Theorem

In this chapter we study latin squares and their orthogonality, and construct
magic squares. We also discuss Hall's theorem on systems of distinct represen­
tatives and apply it to latin squares and bipartite graphs. Finally, we show how
complete sets of orthogonallatin squares lead to affine planes.

7.1Latin Squaresand Orthogonality

Definition 7.1

A latin square of order n is an n x n array in which each row and each column
contains each of n given symbols exactly once.

Here, for example, are two latin squares of order 4, based on the set {1, 2,3,4}

[
1 2 3 4]
3 4 1 2

L 1 = 4 3 2 1 '

2 143

Much interest in latin squares arose through their use in statistical experimental
design, but they crop up in many different areas of discrete mathematics and
algebra; a trivial example is the fact that th e composition table of a finite group
is a latin square.
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Example 7.1

Suppose that 2n teams play in a league , with each team playing one game on
each of 2n - 1 consecutive weekends . Altogether each team has to play every
other team once. Label the teams by 1, . .. ,2n, write aij = k if teams i and j

play each other on the kth weekend (i # j) and put aii = 2n for each i. Then
A = (aij ) is a latin square of order 2n . For example, the games

weekend 1 : 1 v 2, 3 v 4

weekend 2 : 1 v 3, 2 v 4

weekend 3 : 1 v 4, 2 v 3

give the latin square

[l :1n
Note that this latin square is symmetric about the main diagonal: aij = aji

for all i,j. Conversely, any symmetric latin square of order 2n with a constant
main diagonal can be interpreted as the fixture list for a league of 2n teams.

Many applications of latin squares make use of the concept of orthogonality.
This idea goes back to Euler. In 1779 he discussed a problem concerning 36
officers. These officers were from six different regiments, six from each ; among
the six from each regiment was one officer of each of six different ranks. Euler
asked if it were possible to arrange the 36 officers in a 6 x 6 array, so that
each row and each column contained one officer of each regiment and one of
each rank. He believed (correctly, although he couldn't prove it) that such an
arrangement is impossible.

Instead, consider the corresponding problem of 16 officers, from four regi­
ments Cl, /3, i, 0, with one officer of each of the ranks a,b,e,d from each regi­
ment. This problem can be solved. Here is a solution ; in it , for example, id
stands for an officer from regiment i and of rank d:

aa /3b iC od

i d Oc ab (3a

ob ia /3d oc

(3e ad oa ib.

Since there is to be one officer from each regiment in each row and column,
the letters a , /3 ,i, 0 must form a latin square; similarly for a, b,c, d. Further,
since there is just one officer of each rank from each regiment , the pairs (Greek
letter, Latin letter) must all be distinct. This is achieved in the given solution,
and the reader can check that the Greek letters correspond to the latin square
£, and the Latin letters to the latin square £2 .
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Definition7.2

(i) If A = (aij) and B = (bij) are n x n arrays, the join (A , B) of A and B is
the n x n array whose (i ,j)th entry is the pair (aij ,b ij) .

(H) Latin squares A, Bare orthogonal if all the entries in their join (A, B) are
distinct.

IfA and Bare orthogonal, we call each of A and B an orthogonal mate
of the other. Thus, for example, L I and L 2 are orthogonal mates. Note that
the requirement that all the entries in (A ,B) are distinct is equivalent to the
requirement that each of the n2 possible pairs occurs exactly once. Note also
that the condition for orthogonality of A and B can be expressed as:

if aij = aIJ and bij = bIJ then i= I and j = J. (7.1)

The join of two latin squares is called a Graeco-Latin square because of
Euler 's use of Greek and Latin letters, as above . The name latin square for
a single array was a later introduction. Euler's officer problem has a solution
only if there exist two orthogonallatin squares of order 6; eventually, in 1900,
it was proved beyond doubt that no such squares exist .

More generally, latin squares AI ,... ,Ar of order n are mutually orthogo­
nal if they are orthogonal in pairs, Le. if, for all ii'i, Ai and A j are orthogonal.
We shall use the abbreviation MOLS for mutually orthogonal latin squares.

For a given n, there is a limit to the numb er of MOLS of order n that can
exist . We let N(n) denote the largest value of r for which r MOLS of ord er n
exist.

Theorem 7.1

N(n) :sn - 1 for all n 2: 2.

Proof

Suppose L1 , • . • .E; are r MOLS of order n. By relabelling the elements of
each (which does not affect the orthogonality condit ion) we can suppose that
each square has first row 1,2, ... , n. Concentrate on the entries in the (2,1)
position. Since each square already has a 1 in the first column , none of these
(2,1) entries can be 1.But, further, no two of th em can be equal, for the join
of any two of th e squares already has each repeated pair in the first row. So
r:Sn-1.

A set of n - 1 MOLS of order n , if it exists, is called a complete set of MOLS.

Example 7.2

Here is a complete set of 3 MOLS of order 4:
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2 3 4 2 3 4 2 3 4

2 4 3 4 3 2 3 4 2
Iv!] ]0.12 = M3 =

3 4 2 2 4 3 4 3 2

,1 3 2 3 4 2 2 4 3

The next th eorem establishes th a t complete sets exist wherever n is prime.

Theorem 7.2

N(p) = p - 1 for all primes p,

Proof

We define square arrays AI, ...,Ap _ 1 as follows. For the (i, j) th ent ry of Ab
take a~J) = ki + j , reduced modu le p to lie in the set {I , . . . . p}.

(i) We first check t hat each Ak is a la tin square. First , t he ent ries in th e
ith row are all different; for if a~J ) == al~ th en ki + j == ki + J(mod p)
whence j = J . Second ly, t he entries in the j th column are all dist inct ;
for if a ~J ) == a}~ ) t hen ki + j == kl + j(mod p) whence k (i - 1) ==
O(mod p). T hus p divides k (-i - T) , whence p divides i - I , so t ha t i == I
(mod p) and i must equa l I .

(ii) We now use (7.1) to check th at Ak and Ah are orthogona l whenever k # h.
Sup posea\J) = lL }1 and a ~; ) = alii) ·Th en ki +j == kI + J and hi + j == hI +
J (mod p). Subtracting one from th e ot her gives (h- k )i == (h - k) J(mod p),
and , as above , thi s gives i= I . Substi tuting back now gives j == J (mod p)
whence j : J .

Example7.3

Here is a complete set of 4 MOLS of order 5:

2 3 4 5 3 4 5 2

3 4 5 2 5 2 3 4

A I: 4 5 2 3 , A2 = 2 3 4 5 1

5 2 3 4 4 5 2 3

2 3 4 5 2 3 4 5
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4 5 2 3 5 2 3 4

2 3 4 5 4 5 2 3

A3 = 5 2 3 4 ,A4 = 3 4 5 2

3 4 5 1 2 2 3 4 5

2 3 4 5 2 3 4 5

It should be not ed here , for tho se readers who know about finite fields, that a
similar type of argument establishes that N( q) = q - 1 whenever q is a prime
power . (See Exercise 7.9.)

7.2MagicSquares

A magic squa re of order n is an n x n array containing each of the numbers
1, . . . , n 2 , and such that each row, each column and the two main diagonals all
have a common sum (which in fact must be ~n(n2 + 1); see Exerc ise 7.3) .

Example7.4

Here is a magic square of order 3:

Magic squa res of all orders n :::: 3 exist. If n is odd, the met hod brou ght
back from Siam by de la Loub ere in t he seventeenth century can be used , as
in Example 7.4. St ar t with 1 in the centr e of the top row; in genera l, travel
northeast, and put th e next number in th e next square if th e square is free; if
you go off one edge, reapp ear at the oppos ite edge; if tr avelling northeast take s
you to an occupied square, go south instead.

Example 7.5

Check tha t de la Loubere's meth od in the case n = 5 gives the following:

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9
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Methods of constructing magic squares of even order are more complicated.
Some squares can be constructed by a general method due to Euler, involving
MOLS.

Exam ple7.6

Take th e join of the second and third latin squares of Example 7.2:

11 22 33 44

43 34 21 12

24 13 42 31

32 41 14 23

Reduce the first number in each pair by 1 to obtain

01 12 23 34

33 24 11 02
(7.2)

14 03 32 21

22 31 04 13

and then interpret the entries as "base 4" representations of the numbers 1 to
16 (xy standing for 4x + y) . This gives the following magic square :

6 11 16

15 12 5 2

8 3 14 9

10 13 4 7

Why this is a magic square is easy to see from (7.2); each row, column and
main diagonal in (7.2) contains each of 0, 1,2,3 once in the first position and
each of 1,2 ,3,4 once in the second position, and therefore have equal sums.

This method will work in general provided we can find two MOLS in which
both diagonals contain each element exactly once . Itshou ld now be clear why
we did not take th e first latin square of Example 7.2.

The following Indian magic square, dating back to the twelfth century, has
the extra property that every (broken) diago nal has the same sum:

7 12 14

2 13 8 11

16 3 10 5

9 6 15 4

(7.3)



7. Latin Squares and Hall' s Th eorem 127

For example, 12 + 8 + 5 + 9 = 12 + 2 + 5 + 15 = 34. Such a magic squ are is
called pandiagonal or diabolic. If we want to use Euler 's meth od to construct
diab olic mag ic squar es, th en we have to choose two orthogonal latin squares
such that every broken diagonal has the same sum (or, in particular , contains
all the elements exactly once) . T his can be achieved in many cases.

Examp le7.7

Take A2 and Aa in Example 7.3. Redu cing each element of A2 by 1 and inter­
preti ng the pair (x , y) in the jo in by 5x + y , we obtain

14 20 21 7 13

22 3 9 20 21

10 11 17 23 4

18 24 5 6 12

7 13 19 25

More generally, if n is odd and is not divisible by 3, we can take A = (aij) and
B = (bij) where aij == 2i +j- 2(mod n), bjj == 3i +j- 2(mod n). Then th e join
of A and B leads to a diabolic lat in square . The detail s are left to the reader
in Exercise 7.6.

7.3 Systems ofDistinctRepresentatives

Latin squares can be const ructed a row at a tim e. Given th e first row, the second
row has to be a derangement of the first ; but, in general, if t he first T rows of
a hoped-for n x n latin squar e have been const ruc ted, is it always possible to
find a suitable (T + l )th row? Since T elements have so far appeared in each
column, the set Xi of available entries for the ith position in the (T+ l )th row
has size n - T . The problem is: can a different element be chosen from each
of Xl ,..., X n? Ifso, the n these elements will form an (T+ 1)th row.

Example 7.8

Suppose we have the first 2 rows as follows:

2 3 4 5

3 4 5 2



128 Discrete Mathemati cs

Here Xl = {2,4, 5},X2 = {3,4 ,5} ,X3 = {1,2,5} ,X4 = {1, 2,3},Xs
{I, 3, 4}. We could choose 2,3 , 5, 1,4 from Xl , ' .. , Xs respectively to get

2 3 4 5

3 4 5 2

2 3 5 4

Definition 7.3

A system of distinct r epres entatives (SDR) for the sets AI , ' .. ,Am con­
sists of distinct elements Xl , . . . , Xm such t hat Xi E Ai for each i.

Example 7.9

(a) 3, 1,4 ,2 form an SDR for the sets {l , 3, 5}, {I , 2}, {3, 4}, {2,3, 4}.
(b) The sets {l , 2,4}, {2, 4},{1 ,4 },{1 , 2},{1 , 5},{ 3,4 ,5} do not possess an

SDR since the first four of the sets contain only three elements in their
un ion , not enough to provide distinct represent at ives of each.

This example illust rates the only situation which can stop a collect ion of sets
having an SDR. We shall say that set s AI ,...,An satisfy th e Hall condition
if

Theorem 7.3

for all k :::; n , th e union of any k of the sets
Ai contains at least k elements .

(7.4)

The sets AI ,...,An possess an SDR if and only if t hey satisfy th e Hall condi­
tion (7.4) .

Proof

[We give a proof based on ideas of R. Rado. It uses the simplest form of the
inclusion-exclusion principle: IXU YI=IXI+ IYI-IXn YI·J
Ifthe sets possess an SDR they clearly must satisfy (7.4). So now suppose

that A I, .. .,An sat isfy (7.4); we show they possess an SDR . We begin by re­
moving, if possible, an element from one of the sets A i so that the resulting
set s st ill sat isfy the Hall condition. We then cont inue to remove elements in
this way, one at a t ime, until we obtain sets B I , . . . ,B,,, '-.:'.:\B , c:;; A i for each
i, such that the removal of any furth er element from any E i would cause the Hall
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condition for th e B, to be violated, Ifwe can show that each B , is a singl eton
set (i.e . IB;I= 1 for each i) , then th e sets B ; th emselves must bc disjoint and
hence provide an SDR for the A;.

So suppose B I has two element s x , y . Ifeither is removed, Hall' s condit ion
for th e B, is violate d, so there ar e two sets P, Q of indices such that if

X =(BI-{x})UUB;,
iEP

th en IXI::;IPIand IYI::;IQI.DuI.

XUY =B,U UBi,
i EPnQ

and the Hall condit ion gives

Y=(BI-{y}) UUBi

i EQ

X nY2 UBi ,
iE P n Q

IXuYI2:1+ IPuQI,IXnYI2:IPnQI·

Thus t he inclu sion-exclusion principle gives

IPI+ IQI > IXI+ IYI=IXuYI+ IXnYI
2: 1+ lPuQI+ IPnQI

1+ IPI+ IQI,

a cont radict ion. So B, must have jus t one element. A similar argument can be
applied to each Bi, so IB;I= 1 for all i , as required .

We now establish an imp ortant consequence of Th eorem 7.3 (or Hall's
theorem, as it is called) , which will be particularly useful.

Theorem 7.4

Let A I , ...,An be subsets of S such that , for some rn,
(i) lAd= m for each i , and

(ii) each element of S occur s in exa ctly TT!of th e Ai.
Then AI ,. ,.,An possess an SDR.

Proof

We show that the sets A; satisfy (7.4). Consider the union of k of th e A i.
Including repeti tions, th e union contains km elements , But, by (ii) , no element
can occur in this union more th an m tim es; so the number of distinct elements
in the union is a t least ~ = k ,

T he first use of Theorem 7.4 is to confirm that latin squares can be buil t. up
row by row .
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If r ::::n , an r x n latin rectangle on an n-element set S is an r x n array
of elements of S such that no element occurs more than once in any row or
column .

Theorem 7.5

Any r x n latin rectangle with r < n can be extended to an (r + 1) x n latin
rectangle.

Proof

Let L be an r x n latin rectangle on {I, . . . , n} . For each i :::: n let Ai denote
the set of elements of {l , . . . ,n } which do not occur in the ith column of L .
Then IAil= n - r for each i . Further, for each j ::::n, j occurs in each row of L
and hence has appeared in r of the columns; so j must occur in precisely n - r

of the Ai. Thus we can take m = n - r in Th eorem 7.4 and conclude that the
sets Ai possess an SDR which can be taken as the (r + l)th row of the required
rectangle.

Our second application of Theorem 7.4 is really just a reformulation of the
result in terms of bipartite graphs.

Definition 7.5

A set of disjoint edges in a graph G is called a matching. IfG has 2n vertices
a matching with n edges is called a complete or perfect matching of G.

Theorem 7.6

Let G be a bipartite graph with vertex set bipartition V = B U W where
IBI= IWI= n, and where every vertex of G has the same vertex degree m.
Then G possesses a perfect matching.

Proof

Suppose that B = {UI,. ' . , un} and W = {VI, .. . ,vn}. For each i:::: n let

Ai = {j : Ui and Vj are adjacent }.

Then the sets Ai satisfy the condit ions of Theorem 7.4, and so the Ai possess
an SDR . The SDR gives a perfect matching in which Ui is adjacent to Vj where
j represents A, .

For regular bipartite graphs such as those in Theorem 7.6 we immediately
obtain an alternative proof of K6nig 's result that X'(G) = Ll for bipartite
graphs. For we can first find a perfect matching and colour its edges with
one colour. The graph obtained by removing this matching th en satisfies the
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conditions of the theorem with m = 4 - 1, so we can repeat the argument and
obtain a second perfect matching which we then colour with another colour.
Continuing in this way we partition the edge set into 4 perfect matchings and
thus obtain an edge colouring using 4 colours.

Theorem 7,6 was in fact proved first by Steinitz in 1893 and then indepen­
dently by Konig in 1914, It is, of course, a special case of Theorem 5.13, since
the edges of anyone colour form a matching.

7.4 From Latin Squaresto AffinePlanes

In this section we show how complete sets of MOLS give rise to an important
family of designs .

We start with three MOLS of order four, as given in Example 7.2, along with
the following "natural" array N:

N=

234

5 6 7 8

9 10 11 12

13 14 15 16

From them, we construct 20 4-element sets as follows.
(a) The rows of N give four sets:

{I , 2,3, 4}, {5, 6, 7,8}, {9, 10, 11, 12}, {13, 14, 15, 16},

and the columns of N given another four sets:

{1,5,9,13}, {2,6 ,1O,14}, {3,7 ,11 ,15}, {4,8 ,12 ,16} .

(b) The first of the three MOLS, namely M 1 , gives four sets:

{1,6,11,16}, {2,5,12,15}, {3,8 ,9,14} , {4,7 ,1O,13} .

Here the first set consists of the entries in N in the positions in which 1
appears in M 1• the second consists of the entries in n in the positions in
which 2 appears in M 1 ; and so on.

(c) In the same way, M 2 gives rise to the following four sets:

{l,8,1O,15}, {2, 7,9,16}, {3,6,12,13} , {4,5,11,14} ,

(d) Finally, M 3 similarly gives rise to :

{l ,7, 12, 14}, {2,8,11,13}, {3,5,10,16},{4,6,9,15} ,
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We now have 20 sets, each of size four ; we call th ese sets blocks . Th e blocks
possess an important prop erty; no pair of elements from {I , . . . , 16} occurs in
more t han one of the blocks. Certainly, th e blocks in (b), (c), (d) each contain
one element from each row and each column of N , and so they will contai n no
pair in the same row or column of N ; such pai rs will occur precisely once in the
blocks of (a). Consider now any pair not in t he same row of column of N . Such
a pair cannot occur in more than one block of (b), since the blocks in (b) are
disjoint ; and similarly it cannot occur in two blocks of (c) or of (d) . Suppose a
pair occurs in a block of (b) and a block of (c). Th en there are two positions
in which M 1 has th e same entr ies and M 2 also has the same ent ries. But this
cont ra dicts orthogonality of M] and M 2 . So we have indeed established th at
no pair occurs in more th an one block.

Now each block contains (D = 6 pair s, so the 20 blocks contain altogether
6 x 20 = 120 pair s. But the total numb er of pair s of elements of {I, .. . ,16} is
C26) = 120; so every pair must occur in a block!

Thus th e 20 blocks have the property that each pair of elements occurs in
exactly one of th e blocks. Th is is the balance property tha t is th e basis of the
st udy of balan ced incomplete block designs which we shall look at in Chapter
9.

More general ly, if we start wit h n - 1 MOL5 M 1, • • • ,M n - I of order n on
{I , . . . , n }, and t ake N to be the n x n array with ent ries 1, 2, . .. •n2 in order ,
we const ruct blocks as follows:

(01) n blocks from th e rows of N

(02) n blocks from th e columns of N

(.81) n blocks from M 1 , the it h block consist ing of the ent ries in N
in the posit ions in which i appears in M ] ,

(.8n- r) n blocks from M n - I , similarly obtained.

Th is gives (n + 1) x n = n2 + n blocks of size n , with th e prop erty that no
two elements lie in more than one block . But these blocks contain altogether
n(n + 1)(;) = ~n2(n + l )(n - 1) = ('~2) pair s; so every pair of elements of
{I , . . . , n2 } occurs in precisely one block.

We thus obta in a collection of n (n + 1) subsets (blocks) of a set of size n 2

such th at

(i) each block contai ns n elements;

(ii) each element is in n + 1 blocks;

(Hi) each pair of elements lies in exactly one block;

(iv) each pair of blocks intersect in at most one element.
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(To check (ii), not e simpl y tha t each element is in precisely one of the blocks
of each of a1,a2,131, . . . ,l3n- l . To check (iv) , sup pose that blocks 131 ,132 have
two elements x, y in common. Th en th e pair {x , y} would occur in two blocks,
contradicting (iii)) .

Such a system is called an affine plane of order n . Compare th e elements
with points, and th e blocks with lines in ordinary geometry. Th e propert y
(iii) corresponds t o th e fact that any two points determ ine a unique line, and
(iv) corresponds to th e fact tha t any two lines intersect in at most one point .
Lines which do not int ersect are usuall y called parallel; we can think of each
of (all, ... , (I3n-1) as consisti ng of a set of n par allel lines, each forming a
partition of {1, . . . , n2 } .

Example 7.10

Take th e two MOLS of order 3 given by

and take

Th en we obtain 12 blocks of size 3:

{l ,2 ,3} ,{4, 5,6},{7, 8,9} , +- rows ofN

{1,4, 7}, {2, 5, 8}, {3, 6, 9}, +- columns of N

{1, 6, 8}, {2, 4, 9}, {3, 5, 7}, +- from M 1

{l , 5, 9}, {2, 6, 7}, {3, 4, 8}. +- from M 2 ·

Each of these four sets of three blocks pa rti tions {l , . . . , 9}, and can be
th ought of as a set of "parallel lines". Any two elements occur together in a
unique block . Thinking of th e blocks as lines, we represent the set-up by Figure
7.1, where eight of th e lines are drawn straight , and four are drawn as arcs .
From orthogonal squares we have got to the verge of design t heory. We shall
take up th e thread in the final cha pte r.
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Exercises

7 8

Figure 7.1

9

Exercise 7.1

Write down two orthogonal squares of order 3 as given by Theorem 7.2.

Exercise 7.2

Write down th e schedules of games given (as in Example 7.1) by th e
latin square

6 2 3 4 5

6 5 4 2 3

2 5 6 3 4

3 4 6 5 2

4 2 3 5 6

5 3 4 2 6

Exercise 7.3

Verify that each row and each column of a magic square of order n must
sum to ~n(n2 + 1).



7. Lat in Squ ares and Hall's T heorem

Exercise 7.4

Use de la Loubere's method to construct a magic square of order 7.

Exercise 7.5

Use Euler 's meth od to const ruc t a diabolic magic square of order 7.

Exercise 7.6
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Verify that if n is odd and not divisible by 3, then A = (aij) and B =
(bij) , where aij =2i + j - 2, bij =3i + j - 2 (mod n), are orthogonal
lat in squares of order 11 and that, in both, every diagonal contains each
of 1, . . . ,n.

Exercise 7.7

A latin square A is se lf-o rthogonal if it is orthogonal to its transpose
AT . (T his is the usual matr ix t ran spose.)
(a) Verify that , in Examp le 7.2, M2 is self-orthogonal.
(b) Are M I , M3 self-orthogonal?
(c) Show that, if (n,6) = 1, the lat in square A of Exercise 7.6 is self­

orthogonal.

Exercise 7.8

(a) A symmet ric lat in square on {1, . .. , n } has 1, . .. ,n in its main
diagonal. Show that n must be odd .

(b) Let n = 2m + 1 and define aij to be the member of {1, ... , n}
for which aij =(i + j)(m + l )(mod n) . Show tha t A = (aij) is a
symmetric latin square with 1, . . . ,n on the main diago nal. Find A
in the case n = 5.

Exercise 7.9

Show t hat N (q) = q - 1 for all prime power q, using th e finit e field
GF( q). Let GF(q ) = PI,A2, . . . , Aq-l ,Aq = D} , and define the squar es
Ak, 1 ~ k ~ q - 1, by al7)= AiAk + Aj. (Imitate the proof of Theorem
7.2.)



136 Discrete Mathematics

Exercise 7.10

Apply Euler 's diab olic square const ruc tion method to th e squ are M 2 of
Exam ple 7.2 and its t ra nspose M'[. Compare your an swer with (7.3) .

Exercise 7.11

Extend [ ~ ~ 3 : : ] to a latin square of order 5.

Exercise 7.12

Find an SDR for th e sets {l , 3, 5},{1,4, 5},{2,3,4} , {1,2 ,4} .

Exercise 7.13

Explain why th e sets {I , 2, 3, 4}, {2, 5, 6} , {I , 4, 5}, {2, 6}, {5, 8} , {I , 4, 7},
{2, 5}, {5, 6} do not possess an SDR.

Exercise 7.14

T he 52 cards of an ordina ry pack, consist ing of four suits of 13 different
values , are arranged in a 4 x 13 array. Prove that 13 cards of different
values , onc from each column, can be chosen .

Exercise 7.15

A set S of mn elements is partit ioned into m set s of size n in two different
ways: S = Al U . . . U Am = BI U . .. U B m. Show th at t he sets B, can be
relabelled so t hat Ai n B, ¥ 0 for each i= 1, . .. , m . [Hint: consider th e
sets Si = {j : :1;n B, ¥ 0}.]

Exercise 7.16

Start ing wit h the four MOLS of orde r 5 given in Ex ampl e 7.3, construct
an affine plane of order 5.

Exercise 7.17

An n X n matri x is ca lled a p ermutation matrix if all ent ries are 0 or
1, and th ere is precisely onc 1 in each row and each column. Show that,
if AI is an n x n ma t rix with all ent ries 0 or 1, with exactly m Is in each
row and column, then /0,1 can be writ ten as the sum of m permutation
mat rices. lllu strat e in the case where M is th e matrix given by (9.2) in
Chapter 9.
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Schedules and l-Factorisations

This chapter deals with th e const ruction of league schedules for sports com­
petitions or, equivalently, experimental designs involving compar isons of pairs
of varieties . The subject matter provid es nice connections with latin squares
and edge colourings of graphs, and also provid es an introduction to the ideas
of block designs and resolvability which will be studied further in the final
chapter. So the chapter is an exposition of interr elations between apparently
different combinatorial ideas.

8.1 The Circle Method

Supp ose that a football league contains eight teams, each of which plays every
other team once. The games are to be ar ranged for seven Saturdays, with four
games each Saturday, each team playing in one game each Saturday. How can
a fixture list be constructed?

Suppose also that a biology researcher wishes to compare eight types of treat­
ment , comparing each pair of tr eatm ents once. During the first week she will
carry out four comparisons, using all eight treatments; then during the second
week another four comparisons, and so on. Construct a suitable schedule of
comparisons for seven weeks.

Th ese two problems are clearly equivalent . Indeed, th ey are both equivalent to
par titioning the set of edges of Kg into seven sets of four disjoint edges (Le. into
seven complete matchings) , four edges for each of seven weeks. Ifwe replace
weeks by colours, we see that both problems are equivalent to finding an edge
colouring of Kg using seven colours .
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Example 8.1

The edge colouring of K 4 shown in Figure 5.4(a) shows a 3-colouring using
colours 1,2 ,3 .Itcorresponds to the league schedule:

round 1 : A vB ,
round 2 : A v C,
round 3: A vD,

CvD
BvD
BvC.

For 211 teams, we have to find an edge colouring of K2n using 211 - 1 colours.
We have already seen how to do this in Theorem 5.11. We describe the method
again, in slightly different language.

The circlemethod

Label the teams by 00, 1, 2, .. . , 211 - 1, and place 1, 2, . .. , 211 - 1 equally spaced
round a circle with 00 at the centre. The case 211 = 8 is shown in Figure 8.1.
InFigure 8.1(a) we have the fixtures for the first day , and Figure 8.1(b) gives
the fixtures for the second day . By rotating the chords we obtain the games

1 1

7f1---I-----. 2

00

6._------__. 3

5~===:=;::::,'" 4
(a) (b)

3

Figure 8.1

for each of the 211 - 1 days . In general, for 211 teams 00,1 , . . . ,211 - 1, on day
iwe play the games

i v 00, (i - 1) v (i + 1), (i - 2) v (i + 2) , . . . , (i - (n - 1» v (i + (11 - 1»

where each integer is reduced (mod 2n - 1) to lie in the set {I , .. . ,211 - I}.

Example 8.2

Fixture list for eight teams constructed by the circle method .

Day 1 00 v I
Day 2 00 v 2
Day 3 00 v 3
Day 4 00 v 4
Day 5 00 v 5
Day 6 00 v 6
Day 7 00 v 7

7v2
Iv3
2v4
3v5
4v6
5v7
6vl

6v3
7v4
Iv5
2v6
3v7
4vl
5v2

5v4
6v5
7v6
Iv7
2vl
3v2
4v3
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Note th at , on day i , team s u and v play each other where u+v == 2i (mod 2n --I) .
Note too th at the schedule is cyclic in the sense that each round is obtained
by adding I (mod 2n - 1) to each ent ry in th e pr evious round (00 earn ing itself
it s nam e: 00 + I = 00).

T he circle method yields a partition of th e edge-set of K 2n int o n edge disjoint
perfect matchin gs (I- factors) . The name l-factor reminds us that each vert ex
in a perfect matchin g has degree I in th at matching . For example, the edge
colour ing of K 4 in Figure 5.4 (a) gives a partit ion of the edge-set of K 4 into
three l -factors ,

Definition 8.1

A I-factorisation of a graph G with 2n vertices is a partition of the edge-set
into I-factors.

Thus the circle method establishes th e following result .

Theorem 8.1

K 2n has a I-factorisation.

Not all graphs with an even num ber of vertices have I-factorisations. Indeed ,
it should be clear that a graph can have a I-factorisation only if it is regular,
i.e. if every ver te x has the sam e degree. Ifeach vertex has degree r,t hen the 1­

fact orisation, if it exists, will consist of r I-factors . Since a l -factorisation clearly
gives an edge colouring of the graph with th e minimum possible number of
colours , and, conversely, an edge-colouring of a graph, regular of vertex degree
,1 , using ,1 colours , clearl y gives a I-fact orisation, we have:

Theorem 8.2

A regular graph G with 2n vert ices has a I-factorisation if and only if it is class
1.

Thus, by Ex ample 5.13 , the Pet ersen graph does not have a I-factoris ation .

Example 8.3

How many l -factorisa t ions does K 6 have? Let K 6 have vertices a, . . . , j , and
suppose that one of th e I-factors in a l -factorisation is ab,cd,ef. In some other
l-factor we must have edge ac. There are only two possibilities:

aC,be,dj or aC,bj,de.
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But the I-factorisation including

ab cd ef
ac be df
ad
ae
af

can be completed in only one way (check thi s!) as can

ab cd e f
ac bf de
ad
ae
af

Discrete Mathematics

So there are only two l-factoris ations containing the l -factor ab, cd , e], Simi­
larly there are only two l -factorlsatlons containing any oth er l-factor . But th e
total number of l-factors is just the number of ways of partitioning a set of six
elements into three pairs , and so, by Corollary 5.2, ish = 15. For each of the
15 choices of l -factor, there are two ways of extending it to a l-factorisation,
giving 30 l-factorisations altogether. But each distinct l-factorisation arises
five times in th is way, depending on which of the five l-factor s in it is taken
first . So the number of distinct l-factorisations is ~ = 6.

Thus K 6 has six different l -factor isations. The number of l-factorisa tions of
K 2n rises dramatically with n : for Kg there are 6240, and for K lO there are
1 255566720.

Schedulesfor 2n + 1 teams

Ifa league schedule is to be arr anged for 2n+1 teams, then th ere can be at most
n games on anyone day, with one team resting. Such a schedule corresponds
to an edge colourin g of K 2n+l using 2n + 1 colours, as in Theorem 5.11. Th e
easiest way to obtain such a schedule is use the circle method to const ruct a
schedule for 2n + 2 teams and then omit all th e games involving 00 .

Example 8.4

Suppose we want a schedule for five teams . Take th e schedule for six teams
given by th e circle meth od:

00 v I 5v 2 3v 4

00 v 2 lv 3 4 v5

oo v 3 2v4 5 v I

oov 4 3v5 Iv2

oov 5 4vI 2 v 3.
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Omit all the games involving 00, to obtain

5v2 3v4

1v3 4v 5

2v4 5v1

3v5 1v2

4v1 2 v 3.
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This is in fact the schedule used in recent years for the Five Nations Rugby
champio nship involving England, France , Ireland, Scotland and Wales. For ex­
ample , in the final year of that championship (1999), the key was:

1 = England , 2 = France, 3 = Scotland, 4 = Wales, 5 = Ireland.

In the year 2000 the championship became the Six Nations championship with
the inclusion of Italy. The schedule used was that obtained above for six teams,
with the first round 00 v 1, 2 v 5,4 v 3 and with the games involving 00 being
given suitable home and away orientations. This gave

00 v 1 2v5 4v3

2v 00 3v1 5v4

3v 00 4v2 1v5

oov4 5v3 2v1

5 v 00 1v4 3v2

with the key 00 = Italy, 1 = Scotland , 2 = Wales, 3 = Ireland, 4 = England, 5 =
France . In the Five Nations champion ship the schedule automatically arranged
for each team to alternate home and away games . This is not possible for an
even number of teams (see Exercise 8.10); in the above, each team has one
"break" in the alternating of venues.

Summing up, we have the following theorem.

Theorem 8.3

(i) For all n 2 1, there exists an arrangement of the (22n) = n(2n- 1) 2-element
subsets of {1, . . . , 2n } into 2n -1 classes, each class consisting of n disjoint
pairs.

(ii) For all n 2 1, there exists an arrangement of the (2n2+1) = n(2n + 1) 2­
element subsets of {1, . . . ,2n + 1} into 2n + 1 classes, each consist ing of
n disjoint pairs, with each element being absent from the pairs in exactly
one class.

There is a natural generalisation of (i). Can the e3n
) = !n(3n - 1)(3n - 2)

3-element subsets (triples) of {I, . . . , 3n } be arranged into !(3n - 1)(3n - 2)
classes each consisting of n disjoint triples? The case n = 2 is trivial, since
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every triple can be pair ed with its complement . Th e case n = 3 was solved by
Sylvester. Here is an elegant solut ion.

Example 8.5

To put the 84 3-element subsets of {I , .. . , 9} into 28 groups of three triples
such th at th e triples in each group form a partition of {I , . .. , 9}.

Solution
Consid er th e following seven square arrays.

123 372 234 318 531 912 261
456 156 756 426 486 453 459
789 489 189 759 729 786 783

For each array we get four groups of 3 triples, from t he rows, the columns,
th e forward leading "diagona ls" and the backward leading diagonals. Th e first
array gives

123, 456, 789

147, 258, 369

159, 267, 348

168, 249, 357

(rows)

(columns)

(forward diagonals )

(backward diagonals).

Similarly we obt ain four parti tions of {I , . . . , 9} from each of the other six
arrays. Altogeth er we obt ain 28 groups of three triples, containing between
the m all the 84 3-element subsets.

There is a remarkable the orem due to Baranyai (1973) which we st at e without
proof. A proof can be found in [18].

Theorem 8.4

The set of all (~k) k-element subsets of {I , . . . , nk} can be partitioned into
~ (~k) = (~k~/) classes, each class consist ing of n disjoint k-element subset s.

8.2BipartiteTournamentsand I-Factorisations
of Kn,n

Example 8.6

Two schools, Alpha Academy and Bet a High School , arrange a tennis mat ch
in which each school is represent ed by 4 players . Ea ch player is to play each
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player in the opposing team once, and th e games are to be arranged in four
rounds, everyone playing in each round. Arrange a schedule.

Solution

Let the players of Alpha Academy be AI , ' .. , A4 , and those of Beta High School
be B l , . · . , B4 •

Round 1 Al v Bl ,A2 V B2,As V Bs,A4 v B4

Round 2 Al v B2, A2 V Bs, As V B4, A4 V B l

Round 3 Al v Bs,A2 V B4,As V Bl , A4 V B2

Note that this schedule can be represented by a latin square M: in the ith
column of M list the subscripts of th e opponents of Ai in order:

M=

1 234

234

342

423

Conversely, any latin square on 1, . .. , 4 can be interpreted as a schedule for
a bipartite tournament by reversin g this process. Thus bipartite tournaments
(i.e. tournaments between two teams in which each player of one team plays
every player of the other team) are equivalent to latin squares.

Note also that the solution to Example 8.6 can be re-expressed in terms of a
l-factorisation of the graph K 4 ,4 . In Figure 8.2, the edges of K 4 ,4 are coloured
using four colours, corresponding to the rounds in which the games (represented
by edges) are played. Thus a l -factorisation of Kn ,n is equivalent to a bipartite
tournament for two teams of size n.

Figure 8.2
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Since there is a latin squa re of order n for all n 2: 1, we have the following
result.

T heorem 8.5

For all n 2: 1, K n ,n has a l-factorisati on.

There is another way of repr esenting a bipartite tournament by a latin square.
Define th e latin squa re N = ( n ij ) by

n i j = k if Ai plays B j in round k .

For th e schedule in Exampl e 8.5 we obt ain

T he square N is conjugate to the square M : n ij = k ~ 1nki = j . Other
conjugates of 1'v1 are obtained similarly by permuting i,j,k. Note that th e
tr an spose M T of M is a conjugate of M : ml; = k ~ mji = k.

Another l-factorisatlon of K zn
The existence of a I-factorisation of K n ,n ena bles us to give another general
method of const ruc t ing a l-factori sation of K 2n , different from th e one ari sing
from th e circle method. We describe it in terms of a league schedule.

Given 2n teams, lab el them X l , . " , ;1:,,, Yl, • . . , Y n ' \Ve can th en construct a
bipartite tournament involving n rounds, in the course of which every Xi plays
every Yi once. Without loss of gener ality , we can assume that, for each i, X i

plays Yi in th e first round.
We now consider two cases.

(i) Ifn is even, we can th en play a league of n - 1 rounds involving th e Xi in
parall el with a league involving the Yi . Th is will give n - 1 further rounds,
thus complet ing the required tournament . Here is an example with n =4.

Examp le 8.7

X l v Y l X2 V Y2 X 3 V Y 3 X 4 V Y4

X l V Y 2 X2 V Y 3 X 3 V Y4 X 4 V Y l

X l V Y 3 X 2 V Y4 X 3 V Yl X 4 V Y2

X l V Y4 X2 V Yl X3 V Y 2 X 4 V Y3

X l V X2 X3 V X 4 Yl V Y2 Y 3 V Y4

X l v X3 X2 V X 4 Yl V Y 3 Y 2 V Y4

X l V X 4 X 2 V X 3 Yl V Y4 Y 2 v Y 3
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(ii) Ifn is odd, this idea does not work ; th e bipar t ite tournament cannot
be extended to a full schedule since the games involving the odd number
of Xi require n further rounds . But we can adapt the idea . Int roduce two
new teams OOz, OOy , and use the circle const ruct ion to obtain two schedules
S«, Sy on [oo.,, XI, ... , x n} and {OOy , Yl , • •. , Yn} respectively, in which OOz

plays Xi and OOy plays Yi in round i. For the ith round of the required
sched ule, take the ith roun d games of Sz and Sy, but replace the games
OOz v Xi and OOy v Yi by t he one game Xi v Yi. T he resulting n rounds, along
with all but the first round of the bipartite tournament , give the required
schedule.

Example 8.8

We const ruct a schedule for n = 3. Here Sz is

OOz V Xl , X2 V X 3

OOzVX2 , Xl VX3

OOz V X3 , Xl V X2

and a bipartite to urnament is

XlVYl, X2vY2, X3 vY3

Xl V Y2, X2 V Y3, X3 V Yl

Xl VY3 , X2 vYI , X3VY2 ·

The final schedu le is

Xl VYI , X2 V X3 , Y2 V Y 3

X2 V Y2 , X l V X3, u, V Y3

X 3 V Y3 , Xl V X2 , YI V Y2

Xl V Y2, X2 V Y3, X3 V Yl

X l V Y3 , X2 V Yl, X 3 V Y2·

8.3 Tournaments from OrthogonalLatin
Squares

Court balance
Suppose now that, in the tennis match of Example 8.6, four courts are availab le,
of differing quality, and it is requested that the games should be arranged so
that, not only does every Ai play every B j once, but each player plays once on
each court.

One way to solve th is problem is to take the join of two MOLS of order 4,
say
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[

11 22 33 44]
24 13 42 31
32 41 14 23 .
43 34 21 12
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Take the rows as corresponding to the rounds , and the columns as correspond­
ing to the courts. The latin property ensures that each player plays once in
each round and once on each court; orthogonality ensures that every Ai plays
every Bj once. So we obtain the solution given in Table 8.1.

Table 8.1

Court 1 Court 2 Court 3 Court 4

Round 1 Al V B l A2 v B 2 A3 v B3 A4 v B4

Round 2 A 2 vB4 Al vB3 A4 v B 2 A3 v B l

Round 3 A 3 v B 2 A4 VBl Al vB4 A 2 v B 3

Round 4 A4 y B 3 A 3 V B4 A2 V Bl Al vB2

Mixed doubles

Another use of orthogonallatin squares is in the construction of mixed doubles
tournaments. Suppose that Alpha Academy and Beta High School now decide
to play mixed doubles : each school provides four boys and four girls, and each
player is to play in four games, partnering each person of the opposite sex
once, and opposing each player of the other team once. The 16 games have to
be arranged in four rounds, each of four games , each player being involved in
one game in each round.

Let us denote Alpha's boys by B l , •. . ,B4 and Beta's boys by bl, · ·· ,b4 ;

similarly we denote Alpha's girls by G1, . .. ,G4 and Beta's by 91 . . . , 94. Take
also the MOLS M l,M2 , M3 of Example 7.2.

We interpret M: as giving the partners of the Alpha boys: if the (i ,j)th
entry is k , then B, partners Gk when playing against bj . Similarly M 2 gives
the partners of the Beta boys: if the (i ,j)th entry of M 2 is f. then bj partners
9t when play ing against B i . Since M 1 , M2 are latin squares, no repetition of
partners occurs . Since the squares are orthogonal, no girl opposes another girl
more than once.

Having obtained the games of the required schedule, it now remains to arrange
them into four rounds. This is achieved by using M3: if the (i,j)th entry of M3

is k, place the game involving B, and bj in round k . Suppose this resulted in girl
G, playing two games in round k , Then we would have two games BrG; v b.9t
and B uG i v bx9y in round k , But then the (r, s)th and (u ,x)th entries of M 3

are both k and the (r, s)th and (u,x)th entries of M l are both i , contradicting
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orthogonality of M I and M 3 • Similarly the orthogonalit y of M2 and M3 prevents
any girl 9i playing twice in one round.

Thus, for example, since th e (3,2) ent ries of MI and M2 are 4 and 1, one of
the games will be B3G4 v b29 1. Since M3 has 3 in the (3,2) position, we assign
thi s game to round 2. In this way we obtain th e following schedule:

Round 1 B I GI V bl 9 1 B 2G4 V b392 B3G2 V b493 B4G3 V b294

Round 2 B I G2 V b292 B2G3 V b49 1 B3G I V b394 B4G4 V bl 9 3

Round 3 B IG3 v b393 B 2G2 V bl 9 4 B3G4 V b29 1 B4GI V b492

Roun d 4 B IG4 v b494 B 2GI V b293 B3G3 V bl 9 2 B4G2 V b3 9 1

Exercises

Exercise 8.1

Use the circle method to const ruct a leagu e schedule for 10 teams. Deduc e
a leagu e schedule for 9 teams .

Exercise 8.2

Use th e meth od of Example 8.8 to const ruct a league schedule for 10
teams .

Exercise 8.3

Suppose that t he first r rounds of a bipartite tournament between two
teams of size n have been constructed (r < n) . Can th ese r rounds always
be extended to a full bipartite tournament?

Exercise 8.4

Find a l -factor , if one exists , for (a) the Petersen graph, (b) th e ethane
grap h (Figure 3.4), (c) th e gra ph of an octahedron, (d) th e graph of a
cube.

Exercise 8.5

Part ition th e edges of the graph of an octahedron into two disjoint hamil­
tonian cycles. Dedu ce th at the graph has a I-factorisation.
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Exercise 8.6

Which of th e platonic graphs have a 1-factorisation?

Exercise 8.7

Prove that any hamiltonian graph in which each vert ex has degree 3 has
a I-factori satio n.

Exercise 8.8

(a) Imitate Example 8.6 for teams of 5 players.
(b) Obtain a schedule in which each player plays once on each of 5 courts.

Exercise 8.9

(a) Const ruct a mixed doubles tournament between Gamm a Gramm ar
School and Delta Distr ict Comprehensive, with 5 boys and 5 girls in
each team.

(b) Suppose th ere are 5 courts available. Construct a schedule in which
each player plays exact ly once on each court.

Exercise 8.10

In a league schedule for 2n teams it is desired that each team should
alt ernate home and away fixtures as much as possible. A repetition of
home (or away) fixt ures in two consecut ive games is called a break.
For exa mple, in Example 8.2, team 6 plays H H AAAAH and so has 4
breaks.
(a) Show that any schedule for 2n teams can have at most two teams

with no breaks, and deduce that there must be at least 2n - 2 breaks
altogether.

(b) Show th at a schedule with exactly 2n - 2 breaks can be const ruc ted.
(In Figure 8.1, take the home tea ms as tho se alternately at left , right
ends of chords, and alternate 00 home and away throughout.)

Exercise 8.11

Suppose a league schedule has been constructed for 2n teams, bu t venues
have not yet been assigned. Show that it is possible to assign venues so
th at , in each round, precisely one of th e two teams of each first round
game is at home.



9
Introduction to Designs

We introduce the idea of a balanced incomplete block design , and look at some
special families of such designs , namely finite projective planes , affine planes,
Steiner triple systems and Hadarnard designs . The connection between finite
projective planes and complete sets of MOLS is established. We also describe
the usefulnes s of difference systems in the construction of designs. Finally we
give a brief int roduction to some of the ideas behind error-correcting codes .

9.1 BalancedIncompleteBlockDesigns

Example 9.1

Seven golfers are to spen d a week's holiday at a seaside town which boasts two
splendid golf courses. Th ey decide th at each shoul d play a round of golf on
each of th e seven days. They also decide that on each day they should split
into two groups, one of size 3 to play on one course, and the other of size 4
to play on the other course. Can t he groups be arranged so that each pair of
golfers plays together in a group of 3 the same number of t imes, and each pair
plays together in a group of 4 the same numb er of times?

Solution

Here is one solution: the groups for each day are shown . It can be easily checked
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that each pai r plays to gether once in a group of 3 and twice in a group of 4.

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7

{1,2 ,4}
{2,3,5}
{3, 4. 6}
{4. 5,7 }
{5,6,1}
{6,7,2}
{7, 1, 3}

{3,5 , 6, 7}
{4,6,7,1}
{5,7,1 ,2 }
{6,1 ,2 ,3}
{7,2 ,3 , 4}
{1,3, 4,5}
{2,4, 5,6}

Wh at we have done is to make use of th e configura t ion known as th e seven­
point plane, shown in Figur e 9.1. In it , th ere are seven points and seven
lines, with each line conta ining three point s. and each pair of point s being in
exac tly one line. The gro ups of size 4 ar e th e com p lem ent s of the lines of this
configuration.

4

3

5

Figure 9.1 The seven-point plane

7

Example 9.2

The following subset s of {I , . . . , 6} have the prope rty that each subset has 3
elements and each pair of elements occurs in two of the subsets:

{1, 2, 3} ,{1 ,2,4} ,{1 , 3,5} , {1,4 , 6},{1 , 5,6} ,
{2,3,6} ,{2 ,4,5} ,{2, 5,6},{3,4 , 5},{ 3,4,6} .

This example was given by th e st atistician F . Yates in 1936 in a paper which
discussed the use of balanced designs in th e const ruct ion of agricultural exper­
iment s. Many exam ples of such designs had been discussed by mathemat icians
over the pr evious hundred years, but his paper crystallised the idea and lead
to much work on th e subject by both statist icians and mathema ticians .

Definition 9.1

A (v , k,'\) design is a collection of k-element sub set s (called blocks) of a v­
element set S, where k < v , such th at each pair of elements of S occur toge ther
in exactly ,\ blocks. Such a design is also known as a balanced incomplete
block design (BIB D).
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Th e adje ctive "balanced" refers to the existence of A, and "incomplete" refers
to th e requir ement that k < v (so that no block contains all th e elements) . We
have alr ead y seen some examples of balanced designs .

Example 9.3

(i) League schedules. The games of a league schedule for 2n teams form a
(2n , 2,1) design ; if each team plays each other twice in a season, the games
form a (2n, 2, 2) design.

(ii) The seven point plane (Figure 9.1) is a (7, 3,1) design .

(iii) T he design of Example 9.2 is a (6,3 ,2) design.

(iv) An affine plane of order n, described at the end of Section 7.4, is a (n2 , n,1)
design.

In particul ar , an affine plane of order 3 is a (9,3,1) design. Itconsists of 12
blocks of size 3, such tha t every pair of elements occur together once in a block.
Block designs with k = 3 and A = 1 were among the first designs to be studied.

Definition 9.2

A (v, 3, 1) design is called a Steiner triple system of order v and is often
denoted by ST5(v).

Steiner tr iple systems can exist only for certain values of v. To prove thi s, we
first obtain th e following general result .

Theorem 9.1

Supp ose t hat a (v, k ,A) design has b blocks. Th en each element occurs in pre­
cisely T blocks, where

Proof

A(V - 1) = ri]: - 1) and bk = VT. (9.1)

Choose any element x , and suppose it occurs in r blocks. In each of these
T blocks it makes a pai r with k - 1 other elements ; so alto gether there are
r(k - 1) pair s in th e blocks involving x . But x is paired with each of th e v-I
ot her elements A times, so th e numb er of pairs involving x is also A(V - 1). 50
A(V - 1) = r (k - 1). Thi s shown that r is independent of th e choice of x, since
it is uniquely determined by v,k and A.

To prove th at bk = VT , note first th at each block has k elements, and so the b
blocks cont ain bk elements altogether (including repetitions). But each element
x occurs r tim es in th e blocks, so we must have bk = vr.
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Example 9.4

Inan affine plane of order n , i.e. a (n2 , n, 1) design, we have l.(n2-1) = (n-l)r ,
so r = n + 1. Also /m = n2r , so b = n(n + 1) = n2 + n, as in Section 7.4.

Example 9.5

No (11,6,2) design can exist , since it would require 2(11 - 1) = 5r, i.e, r = 4,
and 6b = 44, which is clearly impossible .

Theorem 9.2

A STS(v) can exist only if v=: 1 or 3(mod 6).

Proof

Suppose a (v, 3,1) design exists . Then v-I = 2r and 3b = vr, so that v = 2r+ 1
(which is odd) and b = lv(v - 1). Ifv = 6u + 5 then b = l(6u + 5)(6u + 4) is
not an integer; so we must have v ='1 or 3(mod 6).

Note that v = 7 and 9, already dealt with , are of this form. Steiner systems are
so named because Steiner discussed them in an 1853 paper, having come across
them in a geometrical setting. But it had already been shown by Kirkman in
1847 that not only was the condition v ='1 or 3(mod 6) necessary, but it was
also sufficient. So STS(v) exists if and only if v=' 1 or 3(mod 6).

Example 9.6

The sets {1,2,5} ,{2,3,6}, .. . , {9, 10, 13}, {10, 11, 1}, . .. , {13, 1, 4, } and the
sets {1,3,9},{2,4,1O}, .. . ,{5 , 7,13},{6,8,1}, ... , {13, 2,8} form a STS(13) .
Note that the blocks are obtained from {i, 2, 5} and {I, 3, 9} by adding 1 suc­
cessively to each element, and working modulo 13. This is similar to the STS(7)
of Figure 9.1 which is obtained from the initial block {l , 2, 4} and working mod­
ulo 7. Why this works will be explained in Section 9.5.

Further progress on designs is assisted by the representation of designs by
matrices.

Definition 9.3

The incidence matrix of a (v, k,,X) design is the bx v matrix A = (aij) defined
by

if the ith block contains the jth element,

otherwise.
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For example, the incidence matrix of the seven-point plane of Figure 9.1, with
blocks {1,2 ,4} , {2,3,5} , .. . , {7, 1,3} is

110 1 000
o 1 1 0 100
001 101 0
o 0 0 1 1 0 1 (9.2)
1 000 1 1 0
o 1 000 1 1
1 0 1 000 1

The first row has 1 in positions 1,2,4 since the first block is {l ,2 ,4} . Note
that the rows correspond to the blocks and the columns correspond to the
elements. Note too that the matrix A depends on th e order in which the
blocks and th e elements are taken. However , it turns out that the important
properties of A do not depend on the particular orders chosen.

Theorem 9.3

If A is th e incidence matrix of a (v, k, A) design, then

ATA = (r - A)I +U (9.3)

where r is as in (9.1) , and where J is the v x v matrix with every entry equal
to 1.

Proof

The (i ,j)th entry of ATA is the scalar product of the ith row of AT and the jth
column of A, Le. of the ith and jth columns of A. Thus the (i, i) diagonal entry
is the scalar product of the ith column of A with itself, and so is the number
of Is in t he ith column. But this is just th e number of blocks containing the
ith element, which is T.

Ifif. j, the scalar product of the ith and jth columns is just th e number of
pla ces in which both columns have a 1. This is the number of blocks containing
both the i th and jth elements, which is A. So all diagonal entries of ATA are
T , and all non-diagonal entries are A.

An important consequence of this result is the fact that a (v,k,A) design
cannot contain fewer blocks than elements. This result was first obtained by
the statistician R.A. Fisher in 1940.

Theorem 9.4

In any (v,k,>.) design , b ~ v.

Proof

We give a matrix proof, using Theorem 9.3 and basic properties of determinants
(a purely combinatorial proof is outlined in Exercise 9.21).
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Let A be the incidence matrix of the design. Then, denoting the determinant
of a matrix M by IMI,we have

'\'\'\ . . . r

r x x x
'\-r r-'\ 0 0
,\-r 0 r -'\ 0

'\-r 0 0 r-'\

on subtracting the first row from each of the oth er rows. We now add to the
first column the sum of all the other columns to obtain

r + (v - 1)'\ x x ,\

0 r-'\ 0 0

IATAI 0 0 r-'\ 0

0 0 0 r-'\

{r + (v - l)'\}(r _ ,\)v-l

rk(r _ ,\)V-l

since, by (9.1), r + (v -1)'\ = r + r(k -1) = rk , Now k < v so, by (9.1), r > '\,
and so IATAI 1= O. Now AT A is a v x v matrix and so its rank p(ATA) must
be v. But p(AT A) ~ p(A) , where p(A) ~ number of rows of A; so p(AT A) ~ b.
Thus v ~ b as required.

Example 9.7

We can show that no (25,10,3) design can exist . Ifit did , then (9.1) would give
72 = 9r and lOb = 25r , whence r =8 and b =20. But this gives b < v.

A (v, k,'\) design with b = v is called a symmetric d esign . Note that if b = v
it follows from (9.1) that r = k and

Also, (9.3) reduces to

'\(v - 1)= k(k - 1).

AT A = (k - '\)1 +U.

(9.4)

(9.5)

A symmetric design is not so named because its incidence matrix is symmetric
- usually it is not! - but because of a symmetry between some of the properties
of t he blocks and the elements . In a symmetric design we have, since r = k,

every block contains k elements;
every element is in k blocks.
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We also have

every pair of elements is in >. blocks

and we are now going to establish that

every pa ir of blocks intersect in >. elements.

Theorem 9.5

IfA is the incidence mat rix of a symmetric design then AAT = ATA.

Proof
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Since AJ = kJ and JA = rJ; it follows from r = k that AJ = JA. Thus
A commutes with J, and so A commutes with (k - A)l + AJ= ATA. T hus
AAT = A{(k- >' )l +>.J} A- 1 = { (k - >')l + >.J}AA- l = (k - A)l + >.J = ATA .

Corollary 9.6

In a symmetric (v, k,>.) design , every pair of blocks intersect in A elements .

Proof

The (i,j) th ent ry of AAT is the produ ct of the it h row of A and the jth
column of AT , i.e. the pr odu ct of th e ith and jth rows of A. But this is just th e
numb er of columns in which the ith and j th rows both have 1, i.e. th e numb er
of elements in both th e ith and jth blocks. By Th eorem 9.5 th is number is >.
whenever i "Ii -

Once consequence of th ese symm etry properties is that if we take the incidence
matrix A of a symmetric design and interchange rows and columns (to obtain
AT), the AT is also the incidence matrix of a symmetric design , called th e dual
design. For example, t he t ranspose of the incidence matrix of the seven-point
plane of Figure 9.1 is

1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

which is the incidence matrix of the seven-point plan e with blocks [I , 5, 7},
{I , 2, 6} , {2, 3, 7}, {l , 3, 4}, {2, 4, 5}, {3, 5, 6}, {4, 6, 7}. (Note however that the
relab elling 1 -t 7, 2 -t 6, . . . , 7 -t 1 reveals that this second plane is in fact t he
original one in disguise!)
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Comp lementary designs

Given a (v, k, >') design D , we can obtain another design 75 from it in which t he
blocks are the complements of the blocks of D . 75 is called the complementary
design of D . In Example 9.1, th e blocks of size 4 form such a design which is
complementary to the seven-poi nt plane.

Theorem 9.7

Let D be a (v, k , >') design on a set S , with blocks B l , • . . .Bi : Then th e sets
B; = S\B; form a (v , v - k , >.' ) design where>.' = b - 2r + >., provided >" > O.

Proof

Since IB;I= k for each i , it is clear th at IB;I= v - k for each i . We have to
show that every pair of elements of S lie in exac tly >.' of the blocks B;. Now if
x , yES, th en x, y E B; precisely when neith er x nor y belongs to B; . But by
the inclusion-exclusion principle, t he number of blocks B; containing neith er x
nor y is

b - (no. of blocks contai ning x) - (no. of blocks containing y)
+ (no. of blocks containing both x and y)

= b - 2r + >. .

Example 9.8

Th e complementary design to the seven-po int plane is a (7, 4, 2) design since
>" = b- 2r + >. = 7 - 6 + I = 2. Th e blocks of t his design are the gro ups of size
4 in Example 9.1.

Theorem 9.8

The complement of a symmet ric design is also symmetric.

Proof

IfD is symmetric, b = v, and so 15also has b = v blocks.

9.2ResolvableDesigns

Exam ple 9.9 ( The Kirkman schoolgirls problem)

In 1850, Kirkman posed the following problem: "Fifteen young lad ies in a school
walk out three abreast for seven days in succession : it is required to arrange
them daily , so that no two sha ll walk twice abreast" .
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Ifsuch an arrangement exists, the triples of girls will form a STS(1 5). Accord­
ing to the proo f of T heorem 9.2, any such design has b = ~ .15 . 14 = 35 blocks;
the problem is to group these blocks into seven groups of 5 blocks, t he blocks
in each group forming a par ti t ion of the set of 15 schoolgirls. Th is requirement
is similar to tha t for the games in a league schedule for 2n teams, where th e
games (pairs) are arranged into 2n - 1 groups of n games, the pairs in each
group forming a par t it ion of the set of 2n teams .

Definit ion 9.4

A (v , k , A) design on a set S is resolvable if t he blocks can be arranged into r
groups so that each group forms a partition of S . The groups are then called
t he r esolution or parallel classes .

(Note why there have to be r groups: each element occurs in r blocks, and
has to occur in precisely one block of each group. Note too that a resolvable
design can only exist when klv.)

Here, for example, is a soluti on to the Kirkman schoolgirls problem. In this
resolva ble (15, 3, 1) design the blocks are grouped into seven groups of 5 blocks,
each group part it ioning {I , . . . , 15}. Read t he groups horizontally.

1, 8,1 5 2, 4,10 3,7 ,1 2 5,6 ,9 11,13 ,14
2,9, 15 3,5, 11 4,1 ,13 6, 7,10 12,1 4, 8
3,10,1 5 4,6 , 12 5,2, 14 7,1 , 11 13,8 , 9
4,11 ,15 5, 7, 13 6,3 , 8 1,2 , 12 14, 9, 10
5, 12, 15 6, 1,14 7, 4, 9 2,3 , 13 8,10 , 11
6, 13,15 7,2,8 1, 5, 10 3,4 ,14 9,11 ,12
7, 14,15 1,3,9 2, 6, 11 4,5 ,8 10, 12,1 3.

Affine planes

Affine planes were constructed in Sect ion 7.4. Starting with a complete set of
MOLS of order n , we const ructed an affine plane with n2 points and n2 + n
lines. We also saw that the lines could be grou ped into n + 1 groups of n
parallel lines: in other words. the affine plane so obtained was resolvable. We
now show t hat all (n 2 , n , 1) designs, no matter how t hey are obtained , must be
resolvable.

Theorem 9.9

Every (n 2 , n, 1) design is resolvable.

Proof

From (9.1), we have r = n + 1 and b = n 2 + n . We first show that , given
any block B = {bl , .. . ,bn } and any element x rf. B , there is a unique block
contai ning x which does not intersect B. (Compare th is with the following:
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given a line £ and a point P not on £, there is a unique line through P which
does not meet £ (Le. which is parallel to £).)

For each b, E B , there is a uniqu e block B , containing both b, and z . Clearly
B, ofBj whenever iofi. for oth erwise b, and bj would be contained in both B
and Bi , cont radict ing the fact that A = 1. So we get n blocks B, containing x
and intersecting B . But alt ogeth er there are r = n + 1 blocks containing x ; so
there must be exactly one block containing x and disjoint from B .

Next we note that if Cl and C2 are any two blocks disjoint from B th en Cl
and C2 do not intersect . For suppose z E Cl n C2 ; th en z would be in more
than one block which is disjoint from B , cont rary to what we have just proved .

So consider the n 2 - n elements not in B . For each such x , there is a unique
block containing x and disjoint from B . Since each block has size n , we therefore

2
have n;;-n=n - 1 blocks disjoint from B and disjoint from one another, and
thu s forming a resolution class with B . So each block is contained in a resolution
class of n blocks, and so the design is resolvable, two blocks being in the sam e
class if and only if they are disjoint.

We can now use resolvability to get back from affine planes to MOLS.

Theorem 9.10

An affine plane of order n exists {:} a complete set of n - 1 MOLS of order n
exists .

Proof

The proof of {=was given in Section 7.4, so we now consider the reverse impli­
cation. Suppose that a (n2 , n,1)design exists. It is necessarily resolvable, and
it has r = n + 1 resolution classes. Select two such classes, say {B l , ... , Bn }

and {Cl , . . . ,Cn } . Since each point of the plan e lies in exactly one B, and one
C, we can give it unique "coord inate s" (i, j ).

Th ere remain n - 1 oth er resolution classes, and we const ruct a latin square
for each . For the resolution class {El, ... , En} , define an n x n matrix E = (eij)
by

where the point (i ,j) lies in E k •

Fir st we check that E is a latin square. Ifeij = eiJ with j ofJ then (i ,j) and
(i , J) lie in Ek but also in B i , cont radict ing A = 1. So no row of E has repeated
elements, and a similar argument applies to columns.

Finally we check that if {F1 , . . . , Fn } is another resolution class then E and
Fare orthogonal. So suppose ei j = elJ(= k) and ! ij = !lJ(= f).Then (i,j)
and (I, J) both lie in Ek and also in Fe, again cont radict ing X= 1.

So we obtain n - 1 mutually orthogonal latin squares, as required.
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Example 9.10

Take the affine plane constructe d in Exampl e 7.10. Take
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E l = {1, 2, 3},

Cl = {I , 4, 7},

E l = {1,6 , S},

F, = {1, 5, 9},

E 2 = {4,5 , 6},

C2 = {2,5,S},

E2 = {2,4 ,9} ,

F2 = {2,6, 7},

E3 = {7,S ,9},

C3 = {3,6,9} ,

E3 = {3, 5, 7},

F3 = {3, 4,S}.

Th en , for example, the point (1, 1) is 1, (1, 2) is 2, (2, 3) is 6. Since 1 E El ,cu =
1; since 2 E E2 , e12 = 2; since 6 E El , e23 = 1. In thi s way we obtai n

and F=[~ ~ ~] .
231

9.3 Finite Projective Planes

In searching for symmet ric designs it is natural to look for such designs with
A = 1. Th e seven-point plane is one such design. In general, if we have a design
with k =n+ 1 and A = 1 then A(v-l ) =k(k-l) gives v-I =n 2 +n, so th at
th e design is a (n 2 +n + 1, n +1, 1) design. Conversely, any (n 2 +n +1, n +1,1)
design must, by (9.1), have n 2 + n = rn and b(n + 1) = (n 2 + n + l)r, so th at
r = n + 1 = k and b =n2 + n + 1 = v ; so th e design must be symmetric.

Definition 9.5

For n 2: 2, a finite projective plane (FPP) of order n is a (n2 +n+ 1, n+ 1,1)
design .

Th us in a FPP there are equal numb ers of blocks and elements. They mimi c the
lines and points of a geomet ry : any two blocks (lines) int ersect in one element
(point) , and any two points lie on a unique line. Th e seven-point plane is a
FPP of order 2.

Example9.11

T he blocks {1,2 ,4,10}, {2, 3,5 ,11} ,{3,4,6,12},{4,5,7,13} ,{ 5,6 ,S ,I} , . . . ,
{10, 11, 13, 6}, {11, 12, I , 7}, {12, 13,2 , S}, {13, 1, 3, 9} are the lines of a FPP of
orde r 3, Le. the blocks form a (13, 4, 1) design. Note the cyclic nature of the
design (modulo 13). It is now known th at such a cyclic FPP of order p exists
for all prim es p (module p2 +P + I ).

We now show the fund amental connect ion between pro jective and affine planes.
An artist does not draw par allel lines as parallel; th e two sides of a road converge
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as th e road disap pears into the distance. Th e art ist is using projective geomet ry
to repr esent euclidean (affine) geomet ry. So let us follow th is idea , and , for each
of the n + 1 resolut ion classes of an affine plane of order n , add a "point at
infinity" to each block of that class. Thus, for each i ~ n + 1, we add a new
point OCi to each block of th e it h class. Th e blocks now have size n + 1, there
are n 2 +n + 1 point s, and it should be clear th at th e propert y of any two points
lying on a uniqu e line is preserved , except tha t th ere is no line conta ining any
two of the new point s OCi . So if we introduce one new line { OCI , • • . , ocn+ d
we have a (n 2 + n + 1,n + 1,1 ) design , i.e. a FP P of order n . The line thu s
int roduced is sometimes called the line at infinity.

Example 9.12

Take th e affine plane of order 3 used in Exampl e 9.10, and introduce four
"points at infinity" , which we denote by 10,11 ,12 ,13. We obtain a FPP of
order 3 with the following lines:

{1,2 , 3, 1O}
{l ,4 ,7 ,l1}
{l ,6 , 8,1 2}
{1, 5,9 ,13}
{1O, 11,12 , 13}.

{4,5 ,6 ,1O}
{2, 5, 8,11}
{2,4 ,9 ,1 2}
{2,6 ,7 ,13}

{7, 8,9,1O}
{3,6 ,9 ,11}
{3, 5,7 ,1 2}
{3, 4, 8, 13}

We have thus established one half of the following th eorem.

Theorem 9.11

Th ere exists a FPP of order 11 ~ there exists an affine plane of order 11.

Proof

We have dea lt with {= above. So now suppose there exists a FPP of order n .
Take any line e= {Pi, . . . ,Pn+d of the plan e. (We are going to tr eat it as if
it were the line at infinity.) Since e intersects every other line in exactl y one
point , each ot her line contains exact ly one of the Pi . So if we throw away eand
remove its poin ts wherever th ey occur, we end up with 11

2 + 11 lines each with
11 point s. Any two points lie in exact ly one line, namely the remnant of the line
of the FPP on which they lay. So we have an affine plane of order n , in which,
for each i, the remnants of the lines of the FPP containing Pi form a resolution
class.

Combining Th eorems 9.10 and 9.11 together , we obtain th e following remark­
able result .

Theorem 9.12

Th e following statements are equivalent.
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(i) There exists a comp lete set of n - 1 MOLS of order n .

(ii) There exists an affine plane of order n.

(iii) There exists a finit e projective plan e of ord er 11.

In view of T heorem 7.2 an d the note following, FP Ps of prime power order
exist. Itis conj ect ured that if n is not a prime power then no FPP of order n
exists. This has been confirmed for n = 6 and 10, but the case n = 12 is st ill
open .

9.4HadamardMatrices and Designs

We begin t his section by introducing a family of matrices all of whose ent ries
are ±1. From these matrices an importan t family of designs will be obtained.

Two vectors will be cal led orthogonal if their scalar product is O. For ex­
amp le, any two row vectors in the mat rix

1
-1

1
- 1

1
1

- 1 ·

-1

.:]
- 1

1

(9.6)

a re ort hogona l, as are any two columns.

Definition 9.6

A (+ 1, - 1) matrix is a matrix all of whose ent ries are ±1. An n x n (+ 1, - 1)
matrix H is a Hadamard matrix of order n if H H T = H TH = n l .

Not e th at H H T = nl is essentially say ing that H is inver tible with inverse
~H T . Since a ma t rix commutes with its inverse, either of the pro perties H H T =
nl and H TH =nl follows from the ot her . Note too that H H T =nl is precise ly
th e property that any two rows of H are or thogonal, and simila rly H TH = nl
is equivalent to dem an ding that the columns of H are orthogonal. Hadamard
mat rices ar e so nam ed after Jacques Hadamard who, in 1893, showed tha t any
real n x n mat rix H , whose ent ries hij all sa tis fy Ihi jl :s 1, has determina nt
at most n n/2 , equality occurr ing only if H H T = nl . But since th en Hadam ar d
matrices hav e cropped up in man y areas of combinatorics , and have even been
behind t he sending of photograp hs from Mars to Earth. This will be explained
in the final section.

There is a straightfo rward way of const ru ct ing Had am ard matrices of order
2m .

Let

Ho = [1],
1

- 1
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and , for each m :::: 1, define Hn>, inductively by

s.; = [Hm- l H m- 1 ]
H m - 1 -Hm - I .

Th en it is st ra ight forward to check that H m is a Hadamar d matrix of order
2m ; consider t he scalar product of any two of its rows. Thus, for example, H 2

is jus t th e matrix (9.6).
But for other values of 11 does a Hadamar d matrix of order 11 exist ?
We sha ll show that if 11 > 2 then 11 has to be a multiple of 4. Before proving

this, it is helpful to note that if we have a Hadam ard matrix and we mult iply any
row Orcolumn by -1then the resultin g matrix is st ill Hadam ard; orth ogonality
of th e rows and columns is preserved . So we can always normalise a Hadam ard
matri x, i.e. make every entry in the first row and th e first column equa l to +1.

Theorem 9.13

Ifth ere exist s a Hadamard matri x H of order 11 > 2, then 11 must be a mult iple
of 4.

Proof

Assume that H has been normalised , so that th e first row has +1 in each
position . Since the rows are orthogona l, the second row must have th e same
numb er of +Is and -Is; so there must be ~ +Is and ~ - Is, so t hat 11 is
necessarily even. By rearra nging th e order of the columns, we can suppose tha t
H has first two rows

1 1 1

- 1 -1 - 1.

11 11
h - ('2- h) + k - ('2- k) = 0,

i.e. h + k = I ' Also, since the second and third rows are orthogonal,

If 11 > 2, consider the third row of H . Suppose that h of its first I ent ries are
+1 , and k of its second I ent ries are + 1. Then I-h of its first Ient ries are
- 1, and I-k of its second ~ ent ries are - 1. Since the first and third rows are
orthogona l,

n 11
h - ('2- h) - k + ('2- k) = 0,

i.e. h = k . Thus h = k = ~ , and 11 has to be a multiple of 4.

Since a similar argument can be applied to th e columns, we have:

Corollary 9.14

In any normalised Hadamar d matrix of order 4m, any two columns ot her than
th e first have +I s toge the r in exactly m places.
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Hadam ard designs

Ifa Had amard matrix of ord er 4m exists. we can obtain a design from it .
The basic idea is to take a normalised matrix. remove its first row and column .
replace each -1 by 0, and interpret the resulting matrix as the incidence matrix
of a design.

Theorem 9.15

If a Hadamard matrix of order 4m exists , then a (4m - 1. 2m - 1,m-I ) design
exists.

Proof

Let H be a normalised Hadamard matrix of order 4m. As in the proof of
Theorem 9.13, each row and column of H , apart from the first , must have
2m +ls and 2m -Is. Remove the first row and column of H, and replace each
-1 in the resulting matrix by O. This result s in a (4m -I) x (4m -I)(0, I )-matrix
A in which every row and every column has 2m Os and 2m - l Is .

We int erpret A as th e incidenc e matrix of a (necessa rily symmetric) design.
Ithas 4m - 1 blocks and 4m - 1 elements; each block conta ins 2m - 1 elements
and each element lies in 2m - 1 blocks. Consider now any two elements. Th e
columns of A corresponding to t hese two elements have (by Corollary 9.14)
m-I Is together , i.e. these two elements occur together in exactly m -I
blocks. So th e design is balanced with ,\ = m -I.

Definition 9.7

A (4m - 1, 2m - 1, m - I) design is called a Hadamard design.

Example 9.13

Th e doubling construct ion gives, from (9.6). a normalised Hadamard matrix of
order 8. Removing th e first row and column and changing every - 1 to 0 gives
th e following matrix:

0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0 (9.7)
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

This is th e incidence matrix of a (7, 3, I) design. i.e. a FPP of order 2, whose
blocks are:

{2,4,6} ,{1 ,4 , 5},{3,4 .7 },{I ,2 ,3} .{ 2,5 .7} ,{I .6 ,7} ,{3,5,6} .
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Ther e is, in fact , essentially only one FPP of or der 2. The plan e ju st found
can be "convert ed" into t he plane of Figure 9.1 by replac ing 1, 2, 3, 4,5,6,7 by
1,6, 5, 4, 2, 3, 7 respe ctively.

The const ru ct ion presented in t he proof of T heorem 9.15 can be reversed :
given a Hadamard design , replace each 0 in t he inc idence matrix by - 1 and add
a first row and column with all ent ries +1. The resu ltin g mat rix is Had amard .
So we have t he following result.

Theorem 9.16

A Had am ard matrix of order 4m exists {} a Hadamard (4m - 1,2m - 1,m - I )
design exists.

This resul t enables us to construc t Had am ar d matrices of order 4m provided
that we ca n const ruct t he cor res ponding design . Man y methods of cons t ructing
Had ama rd designs have been found, but we give only th e simplest of th ese
constr uct ions .

Let p be a ny prime of t he form p = 4m - 1, and take t he squares of
1, 2, . .. , ~(p - 1) (mod p). For example, if p = 7, t he squares of 1, 2, 3 a re
1, 4 , 2 (mo d 7) since 9 == 2 (mod 7) . So we obtain t he set {1,2,4} which we
obser ve is pr ecisely t he se t used to generate t he seven-point plan e in Exam­
ple 9.1. In general, st arting wit h any pri me p = 4m - I, t he set of squares
of 1, 2, .. . , ~(p - 1) (mo d p) ac ts as a st arting block for a cyclic Hadamard
(4m - 1, 2m - 1, m - I ) design. This will be justi fied in t he next section (T he­
ore m 9.18). See t he a ppe ndix for details of squares (mod p) .

Example 9.14

Take P = 11. T he squares of 1, .. . , 5 (mod 11) a re 1,4, 9, 5, 3. So take th e
set {I , 3, 4, 5, 9} as the start ing block and obtain ot her blocks by successively
adding 1 (mod 11) to each entry of t he block. The resulting (11,5, 2) design has
incidenc e ma trix

1 0 1 1 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0 (9.8)

0 0 0 1 0 0 1 0 1 1 1
1 0 () 0 1 0 0 1 0 1 I
1 1 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 I 0
0 1 1 1 0 0 0 1 0 0 1
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and from this we obtain the following Hadamard mat rix of order 12 (where
-l-, - stand for +1 ,-Irespect ively)

+ + + + + + + + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +

Itis conjectured that a Hadamard matrix of order 4n exists for all positive
integers n . But this is far from being proved .

9.5 Difference Methods

Th e seven-poi nt plane can be const ructed by starti ng with {l , 2, 4} and obt ain­
ing fur th er blocks by addi ng 1 (mod 7) successively, to obtain {2, 3, 5}, {3, 4, 5},
etc . Wh at is special about t he choice of 1,2 , 4 which makes th e meth od
work? Similarly, the block {l ,3, 4, 5, 9} was used in Example 9.14 to obtain
a Hadam ard design; what is special about this choice?

Consider the differences between elements of {I, 2, 4} modulo 7. Th ey are
± (2 - I ), ±(4 - 2), ± (4 - I ), i.e. ± I, ±2, ±3, Le. 1,2 ,3 ,4, 5,6, i.e. all the non­
zero numbers (mod 7), each occur ring once. Similarly, consider the differences
bet ween element s of {I , 3, 4, 5, 9}(mod 11); th ey are ± 2, ±3, ± 4, ± 8, ±I , ± 2, ±6,
± I , ± 5, ±4 , i.e. ±I, ± 2, ± 3, ±4, ±5 twice, i.e. all the non-zero numbers (mod 11)
each occur ring twice. Note th at the first gives rise to a design with ,\ = 1, and
the second gives rise to a design with A = 2.

Definition9.8

(i) Let Zv denote th e int egers modulo v . A k-element subset D = {d1 , .•. , dd
of Z v is called a cyclic (v, k, A) d ifference set if A > 0, 2 ::; k < v , and
every non-zero d E Z v can be expressed as d =di - dj in exactly A ways.

(ii) If D is a difference set, the set D + a = {d1 + a , . . . , dk + a} is called a
translate of D .

Thus the seven-point plane of Exampl e 9.1 consist s ofthe translates of {I , 2, 4}.
This is a special case of th e following general resul t .



166

Theorem 9.17
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IfD = {d" . . . ,dd is a cyclic (v, k, A) difference set then the translates
D + i , 0 ::; i :sv - I , are the blocks of a symmetric (v , k ; A) design.

Proof

Here D + i= {d, + i , . . . , dk + i} . Clearly there are v translates, each of size
k . So we have only to check the balance property. Two elements z , y are in the
same translate D + a if and only if x = a + d i , Y = a + d j for some if.i . i.e.
x - a = d;, y - a = dj , Le. (x - a , y - a) is one of the A pairs (di ,dj ) such that
d, - dj = x - y .

We can now see why the "start er" block {I, 2, 4, lO} in Example 9.12 gives rise
to a FPP of order 3. The differences are ±1, ±3, ±9, ±2, ±8, ±6, i.e. all the
non-zero numbers (mod 13), each once, so {I , 2,4 , 10} is a (13,4,1) difference
set .

Example 9.15

(i) {1,2 ,5, 15, 17} is a (21,5,1) difference set in Z2b and its translates form a
FPP of order 4.

(ii) {I, 2, 7, 19, 23, 30} is a (31,6 ,1) difference set , leading to a FPP of order 5.

(iii) {I, 3, 4, 5, 9} is a (11,5 ,2) difference set and its translates form a (11,5,2)
design as in Example 9.14.

(iv) The set {2,6,7 ,8 ,lO,1l}, which is the complement of the difference set
of (iii), is itself a (11,6,3) difference set , the translates of which are the
blocks of a (11,6,3) design . This design is the complementary design (The­
orem 9.7) of the Hadamard (11, 5, 2) design of Example 9.14.

Itis now known that a (p2+P+ 1,P+ 1, 1) difference set exists for all primes p,
leading to a cyclic FPP in each case. Itcannot be emphasised too strongly how
useful this difference set technique is in the construction of symmetric designs .
Of course the method is useful only if difference sets can be constructed. One
method of construction was mentioned in the previous section in connect ion
with Hadamard designs , so we now show why that method of construction
works.

The number-theoretic facts required for the proof can be found in the ap­
pendix .

Theorem 9.18

Let p = 4rn - 1 be prime . Then the non-zero squares in Zp form a
(p, ~(p - 1), t(P - 3)) difference set .
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Since (_X)2 = x 2, each square aris es twice; as shown in the appendix, exact ly
half of th e non-zero elements of Z p are squares. Thus there ar e ! (p-1) non-zero
squares.

Let ID be any non-zero square, say w == t2 (mod p). Then for each repr esen­
tation 1 = x2 - y2 as a difference of squares, there corresponds the repr e­
sentat ion w = (tx)2 - (ty )2. Conversely, if s is th e inverse of t(mod p), th en
corresponding to each represent ati on w = x2 - y2 we have a representation
1 = 82t2 = S2l1J = (SX)2 - (sy)2 . So all non-zero squares win Zp have the sam e
number of repr esentations as a difference of squares.

Further, since p == 3(mod 4) , - 1 is not a square in Zp and the non-squares are
precise ly th e negatives of the squares. So, corresponding to any representation
z = x2 - y2 of th e non-square z , we have the representation - z = y2 - x2 of
the square - z . So all non-squares and squares have th e same number, say A,
of repr esentations as a difference of squares. Th e value of A is obtained from
A(v -1) = k (k -I): we have>. (p-1 ) = ! (p- 1) . ! (P- 3), whence>. = ~(p - 3).

This difference method can be extended to non-symmetric designs. For example
consider the const ruction of a league schedu le for 2n teams as described in
Secti on 8.1. Apart from th e game involving 00, th e first round games were

1 v (2n - 2),2 v (2n - 3), . .. , (n - 1) v n.

The pair s {l,2n - 2}, {2, 2n - 3}, .. . , {n - 1, n} have differences ±(2n ­
3) , ±(2n - 5) , ... ,±1, Le. every non-zero member of Z2n-! '

Again , consider the STS of order 13 present ed in Example 9.7. Th e blocks are
th e translat es of the two initial blocks {I , 2, 5} and {I , 3, 9}. Th ese two blocks
have differences ±1 , ± 3, ±4 and ±2, ±6, ± 8, i.e, all th e non-zero members of
Z13, each exact ly once.

Example 9.16

Th e blocks {I , 2, 9}, {l , 3, 17}, {l ,5, 14} have differences ± 1, ±7, ±8, ±2, ±14,
±16, ±4, ± 9, ± 13 (mod 19), i.e. each non-zero element of Z w once . So the
translat es will form a STS (19) .

9.6HadamardMatricesand Codes

A binary code is a collection of n-digi t binary sequenc es, called co dewords.
Ifcodewords are tr ans mit ted then it is possible that errors will arise due to
interference, and so th e received codewords may differ in some places from
th ose that were sent . Th e basic idea behind an error-correct ing code is to choose
th e codewords to be sufficiently different from each other so that even if some
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errors in tr ansmission occur, each received word is "closer" to the transmitted
codeword than to any other. We have here the concept of th e distance between
two codewords, nam ely th e number of places in which they differ. Ifall the
codewords are chosen so t hat each pair differ in at least 2t + 1 places, t hen ,
even if t erro rs are made in the t ransmission of a codeword , th e received binary
sequence will st ill be closer to the original than to any other , and hence can be
correc tly decoded as t he codeword nearest to it.

Definition9.9

A binary code of length n is a set C of n-digit binary sequences , called code­
words. Th e (Ham ming) distance d(x,y) between any two codewords x ,y is
the numb er of places in which they differ. Ifd(x , y ) 2: 2t + 1 for all codewords
x , y , x i:y , the code C is said to be a t-er r or-cor r ectin g code.

Example 9.17

Th e four codewords 0000000,1111111 ,1010101 ,0101010 differ from each other
in at least 3 places, and so form a I-error-corre ct ing code. For example, if
1010101 is sent, and due to interference 1110101 is received , 1110101 is closer
to 1010101 than to any other codeword and hence will be decoded correctly.

Th ere are two conflicting aspects of a code . Given n, it would he desirable
to have the minimum distance between any two codewords as big as possible
(to enhance err or correction) but it would also be desirable to have as many
codewords as possible . But th ese proper ties conflict : you cannot have too man y
codewords which are all a large distance apart . So we have a fundamental
problem: given n and k ; how many binary sequences of length n can we find
such that each pa ir of bina ry sequences differ in at least k places?

We sha ll look at a particular case of t his problem, namely when k = r ~l .

Fir st we consider th e case when n is odd .

Lemma 9.19

Suppose th at th ere are N binary sequences of length n = 2m - 1, any two of
which differ in at least m places. Th en N ::;n + 1.

Proof

Consider the N sequences as th e rows of an N x n (0, I)-matrix. Let S denote
the sum of all the dist ances d(x , y) between the sequences :

5= L d(x ,y).
x#y

Here the sum is over all ( ~) pairs of distin ct sequences x , y .
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We sha ll count 8 in two different ways. For each pair x ,y,d(x ,y) ?:m ; so
we obtain immediat ely that

(9.9)

Now consider the jth column of the matrix. Ifit contains aj Os and bj I s, then
aj + bj = N and , since each of the aj Osgives a difference with each of the bj
Is, th ere is a cont ribution of ajb j to 8 from thi s column. So S = L7=1 ajbj .
Now it is eas ily checked (e.g. by calculus) that if x + y = N , th en the maximum
possib le value of xy is N..' .So each aj bj is at most N..' , and we have:

N 2

8< n ·- .- 4

From (9.9) and (9.10) we obtain

N(N - 1) nN2

m 2 s - 4- '

whence
(2m -n)N::; 21n,

Le. (since n = 2m - 1)
N::;n+l.

Example 9.18

(9 .. 10)

How many code words of lengt h 11 can be found, such that each pair differ in
at least 6 places?

Solution

By Lemma 9.19, we cannot hope to find more th an 12 such codewords . But,
fur ther , we can find as many as 12 by using the Hadarnard design of Example
9.14. The 11 rows of the incidence matrix (9.8) each have 5 Is; but any two
rows share only two Is; so any two rows differ in 2 x (5 - 2) = 6 places. So if we
take the 11 rows as codewords , along with the row of all Is (which will differ
from the other 11 in 6 places), we obtain 12 codewords as required.

Corollary 9.20

Let C be a code of length n = 2m, containing N codewor ds, each pai r of which
differ in at leas t TT! places. T hen N ::;2n. Fur ther , if a Hadamard matrix of
order n exists , then there exists such a code with 2n codewor ds .

Proof

Con sider the codewords of C which begin with O. Omitting this 0 from them,
we obtain codeword s of length 2m - 1 differing in at least m places. By Lemma
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9.19 there can be at most 2m such codewords . Similarly, there can be at most
2m codewords of e beginning with 1; thus e has at most 4m = 2n codewords .
Ifn = 2, then e = {11, 10, 01, OD} satisfies the requirements. So suppose now

that there exists a Hadamard matrix H of order n > 2. Th en n = 4u for some
u . Any two rows of H differ in exactly 2u = ¥- places, and agree in exact ly ¥­
places.

Let A denot e the matrix obtained from H by replacing -1by 0, and let A
denote the matrix obta ined from A by inte rchanging Os and Is. Th en any two
rows of A differ in at least % places, as do any two rows of A and a row of A
and a row of A differ in either % or all n places. So the rows of A and A give
the required 2n codewords.

Example 9.19

Take the Hadam ard matrix Ho const ructe d by the dupli cation method of Sec­
tio n 9.4. It has 32 rows and columns. Let A denote the matri x obtained from
Ho by replacing each -1by 0, and let A be obtained from A by interchanging
Os and Is. Th en the rows of A and A form a code of 64 codewords of length
32, each differing in at least 16 places; so the code is 7-error-correct ing. Such
a code was used in the 1972 Mars Mariner 9 space probe to Mars, to send
photograph s back to Earth . Each photograph consisted of lots of dots of dif­
ferent shades of grey (64 shades needed 6-digit binary sequences to represent
them , since 26 = 64) , and the sequence of coded shades was encoded using the
7-error-corr ecting code which we have just described. T he resultin g pictures
were remarkably good!

More recent spaces probes have used much more sophist icated codes, as do
compact discs and other modern gadgets . We refer the reader to Hill [12] for a
good introd uction to coding theo ry.

Th ere is one final connect ion bet ween codes and Hadamard designs with
which we shal l bring this cha pter to a close. Before describing it , we need first
to find a bound on the numb er of codewords in a t-error-correcting code .

Theorem 9.21

IfC is a binary t-err or-correcting code of length n, th en

(9.11)

Proof

Any two codewords of C differ in at least 2t + 1 places. T hus any sequence
differing from a codeword x in at most t places will be corrected to x.

Now, for each i , 0 ::; i ::;t , t here are (7) binary sequences of length n differing
from x in i places; so the numb er of sequences correctable to x is 2::=0 (7) .
Thus, since there are ICIpossible choices of x , there must be at least lel2::=0 (7)
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binary sequences of length n . Since there are precisely 2n binary sequences of
lengt h n, the result follows.

A code C is sa id to be perfect if there is equality in (9.11) . For such a code C,
every binar y sequence is correc table to a codeword of C, i.e. every sequenc e is
at distance at most t from a unique codeword . Note th at for equality to hold
in (9.11), we must have (~) +...+ (7)equal to a power of 2.

Exa mple 9.20

A perfect l -err or-correcting code C of length n can exist only when

ICI·(1+ n) = 2n
.

Con sider th e case n = 7, so th at ICI = 16. We can const ru ct such a code by
taking the seven rows of th e matrix (9.7), the seven codewords obt ained from
these by int erchanging Os and Is, and th e row of all Os and th e row of all Is .
This gives 16 codewords as follows.

0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1 0 1 1 0 1 I)

1 0 0 0 0 1 1 0 1 1 1 1 0 I)

0 0 1 0 1 1 0 1 1 0 1 0 0 I
0 0 0 0 0 0 0 1 1 1 1 1 1 1

Another way of obt aining these codewords is to take four of them which are
linearly independ ent over Z 2, and to take all linear combinations of them over
Z2' In other word s, we choose four linearl y independent codewords Cl , . . . , C4
and take all linear combinat ions Al Cl + A2c2+ A3c3+ A4c4 where each Ai is 0
or 1.For examp le, if we take t he first four codewords above,

Cl = 0101010, C2 = 1001100 , C3 = 0011001, C4 = 1110000,

we t hen have
010010 1

1010101

etc . Thus C consists of all linear combina t ions (mod 2) of th e rows of th e ma tr ix

9 =
[

0 1 0
100
0 0 1
I II

10 10]
1 1 0 0
1 0 0 1
o 0 0 0

which is called a generator matrix for C. C is called a linear co de. Lin­
ea r codes have specia l advantages over ot her codes. T hey all include 0 as a
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codeword, and the minimum distance between any two codewords is just th e
minimu m distance of codeword s from 0 , Le. the minimum number of Is in a
non-zero codeword (see Exercise 9.19). In the abov e example, this number is
clearly 3, so the code is l -error-cor recting. For each n of the form 2m - 1 there
is a perfect linear l- error-correct ing code of length n whose genera ting matrix
has k rows. where k =n - rn . Th ese H amming co des are described in [12].

For t > 1, per fect t-error correct ing codes are rar e. But there is one jewel
corresponding to the identi ty

e~) + C13
) + cn + cn = 2

11 = 2
2 3

-
12

.

A perfect 3-error-correcting code of lengt h 23 was presented by Golay in 1949,
and our final task is to exp lain what t his code is.

Exa mple 9.21 (T he perfect Golay code 923 )

Recall from Example 9.15(iv) that {2, 6, 7,8 , 10, 11} is a (11, 6, 3) difference
set (mod 11) whose translat es form the design compl ementary to a Had arnard
(11, 5, 2) design . Let A denote the incidence matr ix of this (11,6,3) design :

A{ 1 0 0 0 I I

0 1 0 0 0 1
1 0 1 0 0 0

Then define th e matrix

0
I II 0

B=

1 0
0 0 0 1

A

Th en B is a 12 x 24 (0, I )-matrix. T he code g 23 is th en obtained by removing
th e first column of B and taking all linear combin ati ons of the rows of the
result ing 12 x 23 matrix. Th e reason for first including the first column of B
is that it ma kes the ar ithmetic of the arg ument simp ler. It is clear that, since
the rows of A differ in 6 places. any two rows of B differ in at leas t 8 places .
Our aim is to show that any two linear combinat ions of rows of B differ in at
least 8 places, and so any two codewords of g 23 will differ in at least 7 places.
We have to show th at , if x is a non-zero linear combination of rows of B , th en
w(x ) 2: 8 where w( x), the wei ght of x , is th e numb er of Is in x . We do this
by a sequence of observat ions . Let V denote the set of linea r combinat ions of
rows of B .
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(i) w( x + y ) = w( x) +wry) - 2x · y for all x , y E V.

This follows since w(x) + wry ) counts twice any Is in the same place in
x and y , but th ese Is add to 0 (mod 2) and hence have to be subt rac ted
twice.

(ii) Every row of B has weight 8 or 12.

(iii) Ifx and y are any two rows of B , x · y is even.

Thi s follows since any two rows of A have Is together in exac tly 3 places.

(iv) Ifx and y are any two rows of B ,w(x + y) is a multiple of 4.

This follows from (i) , (ii) and (iii) .

(v) Ifx E V and y is a row of B , then x . y is even.

Thi s is proved by indu ction . For th e indu ction step consider x = z+r where
r is a row of Band z is th e sum of k rows of B . Then x -y = (z + r) . y ==
z ·y + r ·y (mod 2), which is even since z- y is even by induct ion hyp oth esis
and r . y is even by (iii).

(vi) Ifx E V then w( x) is a mult iple of 4.

Again , thi s follows by induct ion . For th e induction step take x = z + r as
in (v). T hen w(x) = wi z) +w(r) - 2z . r . But wiz) is a mult iple of 4 by
hypothesis, w(r) is a multiple of 4 by (ii), and z · r is even by (v).

Since each x E V has weight a mult iple of 4, it follows th at , to prove w( x) ;:::8,
we need only show that w( x) = 4 is imp ossible. This is achieved by considering
t he left half and th e right half of each x E V. Denote by wdx) and WR (X) th e
weights of the left and right halves of x respectively.

(vii) wdx) is even for all x E V. This follows since if x is the sum of an even
number of rows of B then the Is in the first column sum to O(mod 2),
leaving an even number of Is from Ill,while if x is the sum of an odd
number of rows, x has 1 in the first positi on and an odd number of Is from
111 .

(viii) wdx ) = O, WR (X) = 4 is impos sible.

For if wdx) = 0 th en x is eit her 0 (in which case WR(X) = 0) or th e last
row of B (in which case WR(X) = 12).

(ix) wdx) = WI{ (x) = 2 is impossible.

For if wLlx) = 2 th en x must be th e sum of one or two of t he first 11 rows
of B , possibly toget her with th e last row of B . But the weight of the sum
of one or two rows of A is 6 > 2, and if the last row of B is added th e
res ult ing x has WR (X) = 6 > 2.

(x) wdx) = 4, Wll(X) = 0 is impossible.
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Here x must be the sum of 3 or 4 of th e first 11 rows of B . Ifx is t he
sum of 3 rows, let r be any ot her of t he first 11 rows. Th en , since WR(X) =
O,wR(x + r) = 6, and wdx + r) = 4, giving w(x + r) = 10, cont rary to (vi) .
Ifx is the sum of 4 rows of B . let t be one of them. Th en x = z + t where
z is th e sum of 3 rows of B . T hen wdz) = 4, and WR(Z) = WR(X + t ) =
WR(t) = 6 since WR(X) = 0. So w( z) = 10, aga in cont ra dict ing (vi). So
wdx) = 4, WR(X) = 0 is impossible.

Th us the minimum weight of non-zero sums x E V is indeed 8, and th e minimum
weight of a non-zero codeword of 9 23 is indeed 7. Thus 9 23 is a 3-error-correctin g
code as required .

The code 9 23 has remarkabl e connections with Steiner systems; the reader is
referred to [2] for further details .

Exercises

Exercise 9.1

Show that no (a) (17,9, 2), (b) (21, 6,1 ) design exists .

Exercise 9.2

How would you construct a (13,9,6) design?

Exercise 9.3

Use (9.1) to show that (a) vr (k - 1)-\
(b) (k - 1)-\= (k - l )r - (v - k )-\.

Exercise 9.4

Show that , in a symmet ric (v ,k, -\) design , k -1 < J:\V < k .

Exercise 9.5

Deduce from the proof of Th eorem 9.3 that if a (v , k ,-\)symmetric design
exists t hen its incidence matrix A sat isfies IAI 2 = k2(k - -\)V-l . Hence
show that if a symmetric design exists with v even then k - -\ must be
a perfect square. Hence show tha t no (34, 12, 4) or (46, 10,2) design can
exist.
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Exercise 9.6

175

Write down th e parameters (b, u, r , k, A) for the complementary design
of (a) an affine plane of order n, (b) a (4m - 1, 2m - 1, m - I ) Hadamard
design.

Exercise 9.7

How would you const ruct a (15.7, 3) design?

Exercise 9.8

How would you const ruct a Hadamard matrix of order 24?

Exercise 9.9

Show that if D = {dJ , .. . ,dd is a (U, k, A) difference set in Zk then
-D = {-dJ , .. . , -dd and all t ran slat es of D are also (u,k, A) difference
sets .

Exercise 9.10

Verify that {1,2 ,3 , 5,6 ,9 , 11} yields a (15, 7,3 ) design.

Exercise 9.11

Verify that {1, 2,8,2 0, 24, 45,48, 50} is a difference set (mod 57) which
yields a FP P of order 7.

Exercise 9.12

Verify that {I , 8, 11, 12, 24} and {i ,6,15 , 21, 23} yield a (41,5, 1) design.

Exercise 9.13

Verify that th e translates of {I , 2, 13}, {l , 4, 9}, {I , 3, ID}, {I , 5, 11} form
a STS (25).
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Exercise 9.14

Verify that the sets {I, 2, 7}, {I, 3,I4}, {I , 5, 13}, {l ,4,11} have as differ­
ences all non-zero elements of 2.27 except 9 and 18. Deduce that their
translates , along with nine translates of {I , 10, 19}, form a STS(27) .

Exercise 9.15

Take a 6 x 6 latin square L, and the 6 x 6 "natural" array N with 1, . . . , 36
in natural order (cf. the 4 x 4 N at the beginning of Section 7.4). Call
i ,j associates if they are in th e same row or column of N or if they are
in positions in N where the corresponding entries in L are equal. Let
B, = {j ~ 36 : i and j are associates}. Show that B 1 , .. • , B 36 are the
blocks of a symmetric (36,15,6) design .

Exercise 9.16

(a) Show that if A is a square (0,1) matrix and B is obtained from A
by replacing each 0 by -1 then B = 2A - J .

(b) Show that if A is the incidence matrix of a symmetric (v, k, A) design
then B = 2A - J is a Hadamard matrix if and only if v = 4(k - A).

(c) Deduce that Exer cise 9.15 enables a Hadamard matrix of order 36
to be constructed .

Exercise 9.17

Can you construct a Hadamard matrix of order 4m for all m up to 12'1

Exercise 9.18

By following the proof of Lemma 9.19, show that if a code has N code­
words of length n, each differing in at least d places, where d > ¥, then
N ~ 2::~n' (This is called Plotkin 's bound.)

Exercise 9.19

Show that in a linear code the minimum distance between two non-equal
codewords is the minimum weight of a non-zero codeword.

Exercise 9.20

Show that if a perfect l-error-correcting code of length n exists then a
STS(n) exists.
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Exercise 9.21

177

(A non-m atrix proof of Fisher 's inequ ality.) Choose any block B, and
let Xi denote the number of blocks intersecting B in exactly i elements .
Show first that (a) L ; Xi (;) = (~ ) (>' - 1),(b) L ix i = k( r -1 ).

Let m denote th e average value of IB n Cl taken over all blocks C t-B .
Thus (c) m (b - 1) = Lii x ].
Show th at L ;(i - m)2x i 2: 0 yields
(d) (b - l) k( k - 1)(>'- 1)+ (b - 1)k (1' - 1)2: k 2 (r - 1)2.

Now use (9.1) and Exercise 9.3 to deduce that (r - k )(r - >.)(v - k) 2: O.
Thi s implies r :::: k ; whence b :::: v .

(By now you will be glad of the matrix proof!)
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Arithmeticmodulon

Let n :::: 2 be an integer. Ifa, b are inte gers, we say that a is congruent to b
modulo n (and we write a == b(mod n)) whenever a and b differ by a multiple
of n , i.e. whenever n divides a-b. Thus, for example,

8 == 3 (mod 5), 2 == 10 (mod 4), 20001 == -99 (mod 100).

Let Zn denote the set {O, 1, .. . , n - I} in which addition and multiplication
are carried out mod n . (Sometimes 0 is replaced by n .) For example, in Zg,
7 x 8 = 2 since 56 == 2 (mod 9).

Here are the addition and multiplication tables for Zs.

+ 0 1 2 3 4 x 0 1 2 3 4
0 0 1 2 3 4 0 0 0 0 0 0
1 1 2 3 4 0 1 0 1 2 3 4
2 2 3 4 0 1 2 0 2 4 1 3
3 3 4 0 1 2 3 0 3 1 4 2
4 4 0 1 2 3 4 0 4 3 2 1

Ifp is prime, Zp has the properties that characterise a field. Note that if plab
then pia or pJb, i.e. if ab == 0 (mod p), then a == 0 or b == O. Thus the multi ­
plication table for Zp - {O} has no Os. (This is unlike the situation in Z6, for
example, where 2 x 3 = 0.) Next observe that if ptt (i.e. p does not divide
t) then t, 2t , .. . , (P - I)t are all distinct (mod p): for if ta == tb (mod p) then
pJt(a - b) whence pl(a - b), i.e. a == b (mod p) . Th us t , 2t, . . . ,(p - I)t are just
the same as 1,2, . . . ,p - 1, but in a different order. The first consequence of
this is that there must be some s, 1 :::: s :::: p - 1, such that st == 1 (mod p) . Thus
each nonzero member t of Zp has an inverse which we can denote by t - 1 • For
example, since 2 x 3 == 1 in Zs, the inverse of 2 is 3, i.e. 2-1 = 3 in Zs .

The second consequence arises from the congruence

t .2t .. . (p - l)t == 1.2. . . . (p - 1) (mod p)

179
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Le.
tp - 1 (p - 1)1== (p - 1)1(mod p).

Discrete Mathematics

Multiplying by th e inverse of (p - I )! gives Fermat's theorem

tp - 1 == 1 (mod p) whenever p ft .

For example,
35

-
1 =31 =81 == 1 (mod 5).

Th ere is a further consequen ce of the existence of inverses. Firs t not e th at
the only two numb ers (mod p) which coincide with their inverse are 1 and
-1. (For x 2 == 1 <=> (x - l)(x + 1) = 0 <=> x == lor - 1 (modp) .). Consid er
(p - I)! = 1.2.3 .. . (p - 2).(p - 1). The numbers from 2, . . . , p - 2 must consist
of ~(P - 3) pairs of numbers and th eir inverses; and so the product of all thes e
numb ers must be 1. So (p - I )! == 1.1.(p - 1) == - 1 (mod p). Thus we obtain
Wilson's theorem:

(p - I)! == -1(mod p) .

Squaresand non-squaresin Zp

Let p be an odd prim e: p = 2k + 1. Th en th e numbers 12,22, . .. , k2 are all
distinct (mod p); for if x2 == y2 then (x - y)(x + y) == 0 (mod p) so that x == y
or x == -y (modp) . But x == -y is impossible, so x == y .

Since (p _X)2 == (_X )2 == x2(mod p) , it follows th at , of th e p-I = 2k nonzero
numbers (mod p) , exact ly half are squares and half are non-squares. Note that:

(AI) if x and y are squares in 'Lp th en so is x y (for if x == u2 and y == v2 th en
xy == (UV)2) ;

(A2) if x is a square and y is a non-square in 'Lp th en x y is a non-square (for
if x = u2 and xy = w2 then y = (U- 1W)2 would be a square) .

Further, not e that if -1 is a square th en -1 == x 2 (modp) for some x E'Lp•

Raising both sides to the power ~ (p- I ) = k gives (_I)k == x p - 1
• But xp - 1 == 1

by Fermat's theorem, so (_I )k == I(mod p) . Thus k must be even and so p ==
1 (mod 4). Thus:

(A3) if P == 3 (mod 4), -1is a non-square .

It th en follows from (A2) that :

(A4) if P == 3 (mod 4) then x is a square <=> -x is a non-square.

Example. Take p = 11. Th e squares (mod 11) are 1,4 ,9 ,16 == 5 and 25 == 3.
The negatives of 1,3,4, 5,9 are 10,8 ,7,6,2, Le. the non-squares.

Now consider p == 1 (mod 4); here we show that -1 is a square (modp).
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Note that , if p = 4k + 1,

(p -I)! 1.2 2k.(2k + 1) 4k
_ 1.2 2k.(-2k) (- 1) (mod p)
_ (- 1)2k(2k) !(2k) ! == ((2k)!) 2,

181

So that (p - I )! is a squa re. But , by Wilson's theorem, (p - I )! == -1 (mod p) ,
so -1 is a squa re. Thus we have:

(A5) if p == 1 (mod 4) then -1 is a square (modp) , and x is a squa re ~ - x is a
squa re.

Example. Ta ke p = 13. Th e squares (mod 13) ar e 1,4 ,9 ,16 == 3,25 == 12 ==
- 1, 36 == 10, and their negatives are 12, 9,4,10,1 ,3 , Le. th e squares.

Further numb er t heoret ic result s can be found in th e recent book by Jones
and J ones [13].
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Chapter 1

1.1 9!

1.2 (a) C;)C42
) , (b) e:)- C8S) - c.ncn,(c) L~=s C:)(8~r) '

1.3 Yes, since 52! > 1066
•

1.4 (a) (4]){~) / (~) = 0.1765 .

(b) (~3) (~) / (~) = 0.000 97 .

(c) en (:) /(~) = 0.00002 .

1.5 1 in (a) 6724520 , (b) 43949268

1.6 1 in 14 es4 ) = 3895584; so about 4 tim es as likely.

1.7 CSO) r».
1.9 Add (i) and (ii) of Theorem 1.7.

1.10 Equate coefficients of z" on both sides. Then put n = s + 1.

1.11 (b) In resulting sum, terms cancel in pairs. (c) (nkl ) = coefficient of x k in

(1+ X)n (L~o(-l) 'x' ) = Lr+s=k (~)(- 1)' = (_ l) k L~=o ( -1)' (~) .

1.12 LHS = n Lk (';;) ( ~::: D = n(m,;;:~ l) by Exercise 1.10.

1.13 (a) CSit l
) = C38

) . (b) C34 ) on putting x = l+u, etc . (c) P ut x = 3+a, y =
-1 + b,z = 1 + c, w = - 2 + d to get Cil .

1.14 Solve Xl + .. . + X4 + Xs = 6 wit h each X i ~ 0 : C40).

1.15 Consider a choice of 6 from 49 as a binar y sequence of length 49 with exa ctly
six Os. Want no two Os adjacent. By Example 1.17, number is (~4) > H~) .

1.16 (a) 10 x 9 x 8 x 7, (b) C40) , (c) 104 , (d) CO+44- 1
) .

183
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1.17 2::;=orC) = n2::~- 1 (~::D = n2n- 1 by Th eorem 1.7(i) . Average size is

~ = fn2::r r C)·
1.18 (a) Summing gives 12+ + n2 = (nj 2) + ("n = k n (n + 1)(2n + 1).

(b) Summing gives (2+ +n2 = 2::;=1(;) + 2::;=1(r;l) = (nn + (nj2)
by Th eorem 1.8.

1.19 Let 5 = (~) + (~) + ....Th en de Moivre gives elnn; = (1 + w)n =
5 + w{ (~) + ( ~) + ...}+ w2{(~) + (~) + ...}.Tak ing rea l par ts gives
cos n:t = 5 - H(7) + (;)+ G)+ (~) + ...}= 5 - ~(2n - 5) .

Chapter2

2.1 (a)an = 1+ ~ +...+~ + ~al = 1+ ~ + ...+ vb = 2(1- fn),

(b) 3n - 2n - 1 ,

(c) (2n - 1)3" - 1,

(d) an = 4an-l - 3a n-2 has solution an = A+B 3n. For par ticular solut ion
try an = K2n. Get K = -4. So try an = A + B 3n - 2n+2. Get
an =3n+1 - 2n +2 .

2.2 b., = Fn+l .

2.3 Let c., = numbe r ending in 1 = numb er ending in 2. Th en d., = dn - I +2cn .

But Cn = dn- 1 - en-I, so get dn = 2dn- 1 + dn- 2. Since d, = 3 and
d2 = 7,dn = ~(1 + J2)n+l + W- J2)n+l .

2.4 (a) f (x ) = x +(! al + 1)x2+(!a2+ 1)x3+ .. . = ! x f(x)+x( 1+ x+x2+ .. . ),

so f (x )(l- ! x ) = I': x ' i.e. f (x ) = ( I - X ) (I - ~ X ) = 2( I~x - 1_I! x ) whence

a n = 2(1 - fn )·

(b) f (x ) = (6x - 1)(1':3z - 1_12x ) whence an = 6(3n- 1 - 2n- l ) - (3n - 2n).

2.5 [« = f n- l + f n-2, so [« = Fn- I (n 2': 2).

2.6 an = 3(2n - 1 - 2n- 2+ ...+ (-1)n - 2 2) = 6( - 1)n(1 - 2 + ...+ ( _ 2) n-2) =
2n + 2(- 1)n.

2.7 i; = ev'5)"+e-2.,/[ )" ·

2.10 f (x ) = FIx + F2x
2 + (F1 + F2 ) X

3 + (F2 + F3) X
4 + ...= FIx + F2x

2 +
x 2(F lx + ...)+x( F2x 2 + ...)= X + 2x 2 + x 2 f (x ) + x (f( x) - x ), whence

f (x )(1- x- x 2
) = x +x2. Thus f (x ) = I- ; - X'-1= ~k~ox - 4)-1

whence Fn = Js-(Qn+1 + /3a+I).

2.11 (a) By induction . (b) FnFn+2F~+1 = detMn+2 = (detM )n+2 = (_ 1)n+2 =
(_ 1)n. (c) Write a ll thre e matrices as in (a) and the n eq uate top left ent ries .

2.12 Induct ion step: F l + ... +Fk + Fk+l = (Fk+2 - 2)+ Fk+l = Fk+3 - 2.
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2.13 (a) F2n -1 , (b) F2n +1 -1, (c) (_I)n-IFn-l-

2.14 an = no. in which 1 stays put + no. in which 1 and 2 change places
= an-l + an- 2 + 1. So an = F" - 1.

2.15 (a) There are g,,_! such subsets of {I , ... , n } not containing n , and gn-2
containing n ; so gn = gn-l + g,,-2' (b) Take p = k,q = n - k. (c) Fn+l =z. ("+k-k) .

2.17 Lab el points 1, . .. , 2n. If 1 is joined to 2r + 2, circle is divided into two
parts, one with 2r vertices 2, . .. , 2r + 1 and the other with 2(n - r - 1)
vertices . So a" = 2:raran-r-l ' Check that al = 1, a2 = 2.

2.18 Use (2.14) .

2.19 Induction st ep: dk+l = kdk + kdk _ l > kdk > k .(k - I)! = kL

2.20 Number of comparisons is :::; 1 + 2 + ...+ (n - 1) = !n(n - 1): same as
bubblesort.

2.21 Eliminate y" from two given equations. Auxiliary equation has roots 1 and
~ , so X n = A + (VnB, so X n -tA . But Xo = A + B and A + ~B = X l =
~xo + !Yo. Eliminate B to get A = ho - xo.

2.22 dn .

Chapter3

3.1 Use Cor ollary 3.2.

3.2 p = 3n + 3, 2q = 4n + 2+ 2n + 2 =6n + 4, so q =p - 1. Apply Theorem

3.4(iii).

3.3 Each component must have 2: 1+ Hp - 1) > ~ vertices, so there can be
only one component .

3.4 (a) 4, (b) 40.

3 .5 q - (p - 1).

3.6 (a) Spanning tree has 4 edges, so one of the Xi must have 2 edges from it.

(b) Th e X i joined to both a and b can be chosen in 3 ways; there are then
2 choices of edge from each of the other X. : so 3 X 22 = 12.

(c) 100 X 299•

3.7 (a) Choose in order AE, DC, AC, AB. (b) Choose AE, AC, DC, AB.

3.8 Using Prim, choose HM,HEK,HA,GEK.

3.9 11 flights required. 4 + 4J2 + 3v'5.
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3.10 (a) Suppose planar; p = 6, q = 9 gives r = 5. Biparti te, so get 18 = 2q 2:
4r = 20, cont radict ion.

(b) Yes - draw 2 edges "out side" .

(c) No. Ifso, p = 8, q = 19, r = 13, so 38 = 2q 2: 3r = 39.

(d) No. Ifso, p = 11, q = 10,r = 11, so 40 = 2q 2: 4r = 44.

3.11 6.

3.12 (a) (i) No. (ii) Yes (draw edges YiXHl "outside") .

(b) an = no. using xn Yn+ no. not using XnYn = an- l + 2an- 2 . So an =
k( 2n+2 _ (_ l)n) .

3.13 (a) p - q + r = 2 and 2q 2: 3r , so 2q 2: 3(2 + q - p), i.e, q :S 3p - 6. For
K 5 , 3p - 6 = 9 < 10 = q.

(b) p-q + r = 2 and 2q 2: gr , so 2q 2: g(2 -p+ q), Le. (g - 2)q :S g(p-2 ).

(c) Use 9 =4 for K3,3 and 9 =5 for Petersen graph.

3.14 Follow Example 3.14. 2q = 3p, r =8+ h, 2q =48+ 6h , p - q + r =2 yield
8 = 6.

3.15 Th e lines of cut and circular arcs form a graph with 2n vert ices of degree
3 on outside and G) vertices of degree 4 inside. So p = 2n + ( ~ ) , 2q =
6n + 4 (~) , so r = n + G)+ 2, including infinite region.

3.16 If9n denotes the numb er containing edge XOX n , th en hn = 2hn_ 1 + gn- l
and 9n = hn - hn- 1 ; thus !In = 3h n- 1 - hn- 2 ·

Chapter4

4.1 (a) B and W must alternate. (b) m =IBI= IW \ =n if hamilton ian .

4.2 (a ) (i) and (ii) are hamiltonian . (iii) is not by Exercise 4.1(a).

(b) None.

(c) (iii).

4.3 All hamiltonian ; only octa hedron is eulerian.

4.4 Only (a) is planar.

4.5 00000 - 01000 - 11000 - 10000 - 10100 - 11100 - 01100 - 00100 - 00110­
01110 - 11110 - 10110 - 10010 - 11010 - 01010 - 00010 - 00011 - 01011­
11011 - 10011 - 10111 - 11111 - 01111 - 00111 - 00101 - 01101- 11101­
10101 - 10001 - 11001 - 01001 - 00001 - 00000.

4.6 Let A. = {j : Vi and Vj are adjacent } and B = {j : Vj - l and vp are
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adjacent}. Then A ~ {2, oo . ,p-l},IAI ~ ~,B ~ {3, oo . ,p} , IB I ~~ ; so
AnB;f0.

4.7 (a) Imitate proof of Dirac, IAI == deg(vJl, IBI== deg(vp ) . Since deg(vt} +
deg(vp ) ~ p, get An B ;f0 again.

(b) Ifthere are non-adjacent vertices u ,w such that deg(u) +deg(w) ::;p-l,
then 9 has at most (P;2) + (p - 1) = !(P - l)(p - 2) + 1 edges.

(c) Take a vertex v in K p and remove all but one edge from v.

4.8 Remove A : (2 + 4) + 13 == 19. Remove B: (6 + 6) + 9 == 21. Upper bound :
the spanning tree AE,EC,CD,AB give upper bound 23(AECDBA).

4.9 Exact value is 37.

4.11 (i) Take vertices 0,1 ,2, and all possible directed edges. Eulerian circuit
gives 001122021 in cyclic order .

(ii) Take vertices 00,01 , .. . , 22, and draw directed edge from ijto jl. One
solution is 000101112122210220120200211.

4.12 K 7 , with a loop at each vertex, is eulerian. With vertices 0, . . . , n, K n+1

with loops is eulerian <=? n even. So arrangement is possible <=? n even.
For n == 6, one eulerian circuit is 00112233445566024613503625140, giving
cyclic arrangement of dominoes (0,0), (0, 1), (1, 1), (1,2), . .. etc .

4.13 K n eulerian <=? n odd . Required arrangement corresponds to eulerian cir­
cuit. For n even, duplicate each edge to get an arrangement with every pair
adjacent twice.

Chapter5

5.1~.

52 30!
. (7!)2(8!)2(2!)2 .

5 3 (26) 12!
. 12 2"6T'

5.4 ~ x 2.

5.5 (a) One of the parts must have two elements : choose it in (~) ways.

(b) There is either one set with 3 elements or two sets with two. Insecond
case choose 4 elements and then partition into two pairs. Alternatively
use (5.2) and iteration.

5.6 Induction step: S(k + 1,3) == S(k ,2) + 3S(k, 3) > 3S(k,3) > 3.3k - 2 ==
3(k+J)-2.

5.7 n is in a part with eothers, 0::; e::; n - k; so S(n ,k) == 'E.:;;;'; (n;I)S(n_
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1 -I', k - 1). Put m = n - 1 - I'.

B(n) 1+ I:~=2 S(n, k) = 1+ I:~=2 I:::'-:k-l (n~1 )S(m, k - 1)
1+ I:::'~\ (n~l) I:::'=-t;l S(m , k - 1)
1+ I:::'~\ (n~I)B(rn) .

5.8 Use Theorem 5.6. B(lO) = 115975 .

5.9 B(k + 1) I:~=o (~)B(m)
1 "'= 1 ",k (k) 'meL#j=O Jf L....Jm=O m J
~ I:~o ~(1 +N

1 ",k ( k) "'= L-e wm=O m L.Jj=O j !

5.10 n eith er forms a l -cycle on its own or can be slotted into a cycle in one of
the s(n , k - 1) permutations of 1, . . . ,n - 1 (think of n inserted after one
of the oth er ti - 1 elements). s(5 ,2) = 50, s(6 ,2) = 274.

5.11 X = 3,3,2. X' = 4,5,4 .

5.12 Each colour can be used at most a(G) times.

5.13 (a) Vertices 1, , 8 get colours 1,2,3 ,4,3,1 ,2,3.

(b) Vertices 8, , 1 get colours 1,1 ,2 ,3 ,4 ,2 , 5, l.

5.14 (a) Vertices 8,1 ,3 ,6 ,7 ,2 ,5 ,4 get colours 1,1,2,2,1,3,4,5 .

(b) Vertices 4,5 ,2,7,6 ,3 ,1 ,8 get colours 1,2,3 ,3 ,4,2 ,4 ,l.

5.15 Colour th e vertices with colours Cl , . . . , C4 . Then order vertices so that all
coloured Cl come first , then those coloured C2, etc .

5.16 All are class 1.

5.17 Colour edges of hamiltonian cycle using 2 colours. Remaining edges get a
third colour.

5.18 (a) Use Theorem 3.1. (b) Any matching can have at most k edges so
X/(G) ~ i-(k + ~)r > r.

5.19 (b) Induction step. Remove a pendant vertex v: T - {v} can be coloured
in A(A - Ijk-2 ways, and then v can be coloured in (A - 1) ways.

(c) In a colouring ofG' , x and y may get same colour , so subtract f>.(G") .
For dedu ction, use induction on the number of edges .

(d) Recurrence an = A(A - 1)"-1 - an -l gives a" - (A - 2)a"_1 - (A ­
l)a"_2 = O. Auxiliary equation is (x + l)(x - A+ 1) = O.
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6.1 IAu BuCu DI IAI + IBI+ ICI + ID I - lA n BI- 1,4 n Cl- lAn DI
- IB n c l- IB n DI - IC n D I+ IAn BnCI
+IAnB n DI+ /A n C n D/
+ IB n C n D I - IA n B n C n DI·

6.2 100 = 67 + x - 44 gives x = 77.

6.3 100 = 70 + 49 + 49 - 20 - 25 - 35 + x gives x = 12.

6.4 1000 - 142 - 90 - 76 + 12 + 10 + 6 - 0 = 720.

6.5 (a) 1511> 75,151n521 > 150-100= 50,15 I n 52n 531 > 75+50 - 100= 25,

(b) 151/ = m(n - 1), 151 n 521> 2m (n - 1) - mn = m(n - 2), etc .

6.6 Imitate Example 6.7: C~2) - e21) - (6;) - C21) + C20) + ei) + ei) = 23l.

6.7 Take PI: pat tern 12 occurs ,. .. , P4 : pattern 78 occurs. N (i ) = 7!, N(i, j ) =
6!, etc . Obtain 8! - 4.7! + 6.6! - 4.5! + 4! = 24024 .

6.8 Take Pi : 2i is in position 2i (1 ::; i ::; 4). Get 24024 again.

6.9 15 1= 8 x 7 x 6 = 336. Get 336 - 3(7 x 6) + 3(6) - 1 = 227.

6.10 Let 5 = set of all permutatio ns; then 151 = W.Take P;: the two is are
adjacent . Then N (l ) = ~ , N( l ,2) = ~ , etc . Get W -~ + 10 · ~ - 10 ·
~ + 5 . !!j - 5! = 39480 .

6.11 ljJ (n ) = n - " .!!. + " --.!!..- - ... = nIl I(1- 1).L p. L PiP j P n p

1jJ (100) = 40, 1jJ(200) = 80.

6.12 f>.(Q) = ,\ n - L:N(i ) + L:N(i ,j) _ . . . . N(i) = ,\ n -I (bot h ends of edge e,
get same colour). Also N(i, j) = ,\" - 2. (T here are two cases: ei ,ej mayor
may not have a common vertex - get ,\n-2 in both cases.) Also, N(i ,j, k) =
,\n- 2 if e;, ej , ek form a 3-cycle, and is ,\n- 3 otherwise.

6.13 5 = {(XI, . . . , X1 2) : 1 ::; Xi ::; 6}. Pi : no Xi has the value i . Number of
thro ws in which all numb ers app ear = 151- L:N(i) + L:N(i ,j) - . . . =
612- (~)5 12 + (~)412 - (~) 3 12 + (~) 21 2 - m= 953029440. To get probability,
divide by 612.

6.14 If5 = set of all par titions into 4 par ts, 151 = 5(10, 4). Let Pi : {i} is a
singleton set. So N(i) = 5(9 ,3) ,N(i , j) = 5(8,2) , etc. Answer is 5 (10, 4)­
(\°)5 (9,3) + Ci)5(8 ,2) - C30) 5(7, 1) = 9450. Alternatively, want numb er
of partitions of type 2341 or 2232, i.e. 2i~i4 ! + 222!\~h22 ! .
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7.1
2 3 1 3 1 2
3 1 2 and 2 3 1
1 2 3 1 2 3.

Discrete Mathematics

7.2 Round 1: 1 v 2,3v 4,5v6. Round 2: 1 v 3, 2 v 5, 4 v 6, etc .

7 3 I "n' . - I (2 1). n L..i=1 ~ - 'i n n + .

7.6 aij = aiJ :::} 2i + j - 2 == 2i + J - 2 :::} j == J :::}j = J .
aij = aI j :::} 2i + j - 2 == 21 + j - 2 :::} 2i == 2I(mod n) :::} i == 1 since n is
odd . So A is a latin square. Similarly for B .
Orthogonality: aij = aIJ and bij = bIJ :::} 2i + j == 2I + J and 3i + j ==
31 + J :::}i == 1 :::} j == J .
Broken diagonal of A start ing at al j consists of j ,j + 1+ 2,j + 2+ 4, . . . ,
Le. j ,j + 3,j + 6, . . . . But j + 3u == j + 3v :::}3u == 3v:::} u == v since 3 fn .
So all entries in diagonal are different.

7.7 (b)M 3 is.

(c) Suppose aij = aIJ and a'fj = aTJ' Then 2i + j == 2I + J and 2j + i ==
2J + 1. Subtracting gives i - j == 1 - J whence J = 1 - i + i - Thus
2i + j == 2I + 1 - i + j , Le. 3i == 31, so i == I ,j == J.

7.8 (a) 1 appears an even number of times off the diagonal in symmetrically
placed positions. So it appears an odd numb er of t imes altogether, so
n is odd.

(b)aij = aiJ :::} j(m + 1)== J(m + 1):::}2(m + l)j == 2(m + I)J :::}j ==
J(mod 2m + 1). Similarly for columns. Since 2(m + 1) == l(mod n) ,
ith diagonal entry is 2(m + l)i = i. For m = 2, A is

1 4 2 5 3
42531
25314
5 3 142
3 1 4 2 5.

7.9 Orthogonality. Suppose A;Ak+Aj = Al Ak+AJ and AiAh+Aj = Al Ah+AJ.
Subtracting gives Ai(Ak - Ah) = AI(Ak - Ah), Le. Ai = Al since Ah #- Ak,
so i = 1. Thus Aj = AJ, i.e. j = J .

7.10 The rows are the column s of (7.3) in a different order.

7.12 For example 3,4,2,1.

7.13 {2, 5, 6}, {2, 6}, {2, 5}, {5, 6} have only 3 elements in their union.
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7.14 Ignore suits; there are 4 cards of each value . Any k columns contain 4k
cards which must have at least ¥- = k different values among them. App ly
HaU's theorem.

7.15 Any k Ai contain kn elements in their union. T hese kn elements must be
distributed among at least ~ = k sets B i; so the union of any k Si contains
at least k elements.

7.16 Take the 5 x 5 ar ray N with 1, . .. ,25 in natural order. The 5 rows
and 5 columns give 10 blocks . Corresponding to AI, get {5,9, 13, 17,21},
{1,10,14, 18,22},{2,6, 15,19,23},{3,7, 11,20,24},{4,8, 12,16,25} .
Similarly for A2 , ••• ,As .

7.17 Take Ai = {(i ,j) : mij = I} and B, = W,i) : mji = I} where M = (mij) .
App ly Exercise 7.15 to obtain a permutation matrix PI . (Alternatively
apply Theorem 7.6 or T heorem 5.13.) T hen repeat argument applied to
M -PI, to get another permutation matrix P2 • Then consider M -PI-P2 ,

etc.

C hapter 8

8.1 First round has games 00 v l , 9 v 2, 8 v 3, 7 v 4,6 v 5. For 9 teams omit games
involving 00 .

8.2
Xl v Y2, X2 V Y3, X3 V Y4, X4 V Ys, Xs v Y I

Xl v Y3, X2 V Y4, X3 V Ys , X4 VYI, Xs vY2

Xl VY4, X2 V Ys, X3 V YI , X4 V Y2, Xs vYs
Xl V Ys , X2 V YI , X3 V Y2, X4 V Ys, Xs VY4

Xl VYI, X2 v XS , X3 V X4, Y2 v Ys, Y3 V Y4

X2 v Y2, x3 V Xl, X4 V xs, Y3 V YI, Y4 V Ys
Xs v Y 3, X4 V X2, Xs v Xl, Y4 V Y2, Ys V YI
X4 V Y4 , Xs V X3, Xl VX2, Ys V Y3, YI V Y2

Xs V Ys , Xl VX4, X2 V X3, YI V Y4, Y2 V Y3

8.3 Yes, by Theorem 7.5.

8.4 (a) The spokes, (b) none, (c) edges 12, 34, 56 in Figu re 4.1(a), (d) "vertical
edges" .

8.5 In Figure 4.1(a) take 1236451 and 1652431. Eac h gives two L-facto rs .

8.6 AU.

8.7 Hamiltonian cycle gives two l- factors; remaining edges form anot her .

8.8 (a) Ai v Bi+k-l in round k, where suffixes are reduced (mod 5) to lie in
{I , ... , 5}.
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(b) Use th e join of the first two MOLS of Example 7.3 to get first round
A2 v B 3 on court 1, A3 v B 4 on court 2, A4 v B s on court 3, As v B I on
cour t 4, AI v B2 on cour t 5, etc.

8.9 Follow the method of Section 8.3, using the first 3 MOLS AI , A2 , Al of
Example 7.3. Then use A4 to det ermine th e cour ts. Get following schedule
where rows give rounds and columns corr espond to cour ts.

BsG] V blYI B]G 4 v b3ys B2G2 V bSY4 B3GS V b2Y3 B4G3 V b4Y2

B4G4 v bs93 BSG2 v b292 B]G s v b4YI B2G3 v blYs B3GI v b394

B3G2 V b495 B1GS V b] g1 BSG3 v b393 B ]GI V bs92 B2G1 V b291

B2GS V b3Y2 B3G3 V bs9] B4G I V b2gS BSG4 V b494 B IG2 V bl93
B 1G3 v b29 1 B2G ] V b1Y3 B3G4 v b]92 B4G2 v b391 BsG s V bs9s

8.10 (a) Only sequences with no breaks are H AHA . .. Hand AHAH '" A.
But no two teams can have t he same venue sequence (otherwise they
couldn' t play each other).

(b) 00 and 0 have no brea ks. Each ot her has a break next to its gam e
against 00 .

8.11 Draw a bipartite graph with n black vertices labelled by the first roun d
pairs and n whit e verti ces labelled by th e kth round pairs. .Join a black
to a white when the labelling pair s are not disjoint. By Th eorem 7.6 with
m = 2 th ere is a perfect matching , in which each edge represents a team.
Play th ese teams at home in kth round.

Altern ativ ely, apply Exercise 7.15 to the pairs of the first and kth rounds :
choose a common SDR and play these teams at home in round k ,

Chapter 9

9.1 (a ) b not an integ er. (b) b = 14 < v .

9.2 Comp lement of a (13,4 ,1 ) design .

9.3 (a) vr( k - 1)>' - r(k - 1)>' = >.(v - l) r(k - 1) = r 2(k - 1)2

(b) (k - 1).\ + (v - k).\ = .\(v - 1) + r(k - 1).

9.4 Use v>. = k2
- k +.\.

9.5 (k - I )V-l must be a square, so, dividing by (k - .\) v-2, which is a square,
k - .\ must be a square. For final par ts must check that th e two designs
would be symmetric.

9.6 (a) (n2 +n, n2,n2 - 1,n2- n, n2 - n- 1),

(b) (4rn - 1,4rn - 1, 2rn,2m ,rn).
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9.7 Use H 4 and Th eorem 9.15.

9.8 Use Theorems 9.18 and 9.16.

9.9 In each case the differences arc ±(di - d j ) .

9.10 - 9.14 Check differences.

193

9.15 Given i , there are 10 associates in same row or column, and 5 associates
given by L . So each block has 15 elements. Given iand j in the same row
of N , they ar e in 4 Bk where k is in the same row as i and j , and in Bh
and Bt , where h(l) is the element of N in same row as i (j ) such that h(f)
and j(i) have equal corresponding entries in L. Similarly for other cases.

9.16 (a) B = 2A - J has 1 where A has 1 and -1 where A has O.

(b) BTB (2A T-J)(2A-J)=4ATA-2ATJ-2JA+J2

= 4(k - A)l +4AJ - 2(JA? - 2JA+ J 2
= 4(k - A)l + (4A- 4k + v)J = v I {o} 4(k - A) = v.

(c) v = 36,k = 15,A = 6 satisfy 4(k -1) = v .

9.17 Orders 4,8,16,32 by doubling; 12,20,24,44,48 by Theorem 9.18; 36 by
Exercise 9.16; 40 by doubling 20; 28 by ext ending Theorem 9.18 to prime
powers, using th e finite field of 27 elements.

9.18 (9.9) becomes 5 ~ (~)d; (9.10) unchanged.

9.19 Ifd(x, y) = e then x + y has weight e; so min . weight S; min. distance.
Conversely, if w(x) = w then d(x, 0) =w; so min distance S; min weight.

9.20 Can assume 0 is in code. All sequences of weight 1 get corrected to O.
There are no codewords of weight 2 (by perfectness) so all sequences of
weight 2 must get corrected to a codeword of weight 3. Use correspondence
between subsets A of {I , . . . , n} and binary sequences XA = Xl . . . X n where
X i = 1 {o} i E A. The 3-element subsets corresponding to codewords of
weight 3 form an STS(n) : if IBI= 2, B ~ {I , . . . , n} , B is in C where x,
corrects XB .

9.21 (a) Count in two different ways the pairs (A, P) where P is a pair of
elements of B and A is a block other than B containing P.

(b) Count in two different ways the number of pairs (A, y) where y is an
element of B and A is a block oth er than B containing y .

(d) Expanding L i(i - m)2x , ~ 0 gives L i 2x i - 2m L ix, +m2 LXi? O.
Write i2 as 2G) +i; th en (a) and (b) give k(k -1)(A -1) + m 2 (b - l ) ~
(2m - l)k(r - 1). Replacing m(b - 1) by k(r - 1) gives (d).

Next, in (d) replace (b - l)k by vr - k to get (vr - k)(k -1)A +vr(,'­
k) + k 2 - rk ~ k2(r - 1)2. Now use Exercise 9.3(a) and take r - k out
as a common factor to get (r - k)(r - 2rk+ (k - I)A+ vr) ~ 0, Finally
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use Exercise 9.3(b) to deduce that (r - k)(v - k)(r - ..\);::0, whence
r ;:: k, Le.b ;::v.



Further Reading

The main ideas of the first two chapte rs are covered by most of the standard
textbooks on combinatorics, e.g. Brualdi [5], Cameron [6] and the remarkably
extensive book by Graham , Knuth and Patashnik [11]. Chapters 3 to 5 cover
some of the basic ideas in graph theory; further details can be found in the
many text books now available, of which we particularly note those of Diestel
[9], Wilson [20], Wilson and Watkins [21], and the English translation [15] of
t he ever-fresh classic of Konig [14]. Th e reader who is interested in the history
of graph theory is directed to the recent reissue of th e book by Biggs, Lloyd
and Wilson [4].

The inclusion- exclusion prin ciple has excellent expositions in [5] and in van
Lint and Wilson [18]. The proof of Cayley 's t heorem on labelled trees , using
inclusion-exclusion, is due to J .W. Moon [19], and there is a very nice article
by J. Dutka on the menage problem in [10].

Latin squares are covered in great detail by Denes and Keedwell [7J, [8], and
are the central th eme of a recent book by Laywine and Mullen (16). There is

also material on latin squares in [1], [5J , [6] and [18]. Connections between latin
squares and tournaments are described in [1], where the topics of Chapters 7-9
are dealt with more fully. [1] also deals with block designs , as do [16] and [18],
and there are good accounts of coding theory in the books by Baylis [3], Hill
[12] and Van Lint [17].

Another important source of information is the web. Search for Fibonacci
numb ers or derangements or latin squares, and you will be lead to many fasci­
nating and informative sites. Also freely available on the web is a short course
on designs [2J.
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Permutation matrix 136
Pet ersen 's graph 57,70
Planarity algorithm 72
Platonic solid 60
Plotkin 's bound 176
Polyhedron 60
- regul ar 60
Prim's algorithm 52

Recurrence relation 20
Resolvable design 157

Scrabble 114
Self-orthogonality 135
Sorting algorithms 32
Spanning tre e 50
St einer triple system 151
Stirling numbers 91,104
Surj ection 95,112
Symmetric design 154
Syst em of distinct representatives 127

Towers of Hanoi 22
Trail 46
- eulerian 79
Translate 165
Travelling salesman problem 2,74,80
Tree 47
- labelled 50,113
- spanning 50

Ut iliti es problem 44

Vandermonde identity 17
Vert ex colouring 96
Vizing 's theorem 100

Wilson 's theorem 180


