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Preface

For more than one century complex analysis has fascinated mathematicians since
Cauchy, WeierstraB and Riemann had built up the field from their different points
of view. Richness, beauty and fascination originate from the coincidence of analytic,
algebraic and geometric methods. While the theory of meromorphic functions cul-
minated in value distribution theory, for several decades geometrical function theory
flourhished, and complex approximation theory was developed. For recent books in
these topics sée [Gaie80], [Laga86], [Pomm92] and also the survey article [Gaie90].
An excellent presentation of classical complex analysis including many historical facts
and remarks are the two volumes [Remm92]. There are many other facets of complex
analysis e.g. analytic number theory and complex ordinary differential equations.
And there is the wide field of complex analysis of scveral variables.

But complex analysis is not any more in the center of mathematical interest neither
in one nor in several variables. Nevertheless there is a branch which just recently
became quite active: complex analysis in partial differential equations. In the last
ten years more than 20 monographs appeared in this area as well as several collec-
tions of articles, sec the list of references, part a. Although already classical via
the theory of harmonic functions this area becamne very lifely through the investiga-
tions of I.LN. VEKUA, N.I. MUSKHELISHVILI, L. BERS, F.D. GAkHov, W. HAACK,
R.P. GILBERT and others. While some of these considerations develop the theory of
boundary value problems for analytic functions others are concerned with building up
some theories for classes of complex partial differential equations and systems.

The present book gives sorne introduction in complex methods for partial differential
equations and systems mainly of first and second order. Classical natural bound-
ary value problems are considered, which in general are reduced to singular integral
equations by utilizing proper integral representation formulas. The basic boundary
conditions are of RIEMANN and RIEMANN-HILBERT type. Several generalizations
and extensions are presented as e.g the POINCARE problem and discontinuous bound-
ary value problems. But in general we stay with stronger assumptions in order to
keep the introductory character of the book. After the reader has become acquainted
with the material he can pass to other secondary literature or even to original research
papers.

On the basis of a first course in complex analysis chapter 1 introduces the neces-
sary background of function and potential theory. Properties of CAUCHY integrals,
GREEN and NEUMANN functions and SCHWARZ operators, fundamental boundary
value problems for analytic functions are extensively discussed. The RIEMANN map-
ping theorem often used to reduce boundary value problems for simply connected
domains to the case of the unit disc is presented with proof. It also serves to moti-
vate the introduction of the GREEN function. For multiply connected domains the
BERGMAN kernel serves to find operators of SCIWARZ type. These representation
formulas were recently developed by A. DZHURAEV. In chapter 2 beyond analytic
functions solutions to nonlinear CAUCHY RIEMANN systems and later on in chap-
ter 3 to generalized BELTRAMI equations are studied. The classical GAUSS theorem
leads to a generalization of the CAUCHY representation for analytic functions, the
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so-called CAUCHY~POMPEIU formula. The area integral added here is the celebrated
T-operator in the VEKUA theory of generalized analytic functions. Its z-derivative is
a singular integral operator of CALDERON-ZYGMUND type which serves to transform
boundary value problems for the functions just mentioned to singular integral equa-
tions. They can be solved and lead to a priori estimates of the solutions as well. This
T-operator and its first order z—-derivative are just two particular operators of a whole
bunch of integral operators useful for first and higher order complex partial differential
equations. They were only recently systematically worked out by G.N. HILE and the
author after one and the other have occasionally been used before. The section on dis-
contiunuous boundary value problems is technically involved and might be skipped at
a first reading of the chapter. For nonlinear BELTRAMI equations the related integral
equations become nonlinear. In chapter 4 as an example entire solutions are studied.
In principle this leads to the solution of the RIEMANN boundary value problem for
these nonlinear equations. Here as well pseudoparabolic equations as first order com-
posite type systems are considered, where the methods developed before turn out to
be useful, too. In the final chapter 5 some special boundary value problems for elliptic
second and higher order equations are discussed in multiply connected domains and
the unit disc, respectively. The singular integral operators involved are expressed by
the BERGMAN and related kernel functions. They transform the problem to a singular
integral equation to which the FREDHOLM alternative applies.

Boundary value problems in the theory of analytic functions of several variables are
difficult in principle because of the complicated structure of the integral representation
formulas. In case when analytic functions satisfy some partial differential equations
it is possible to solve boundary value problems. Some results of A. DZHURAEV and
the author on first order systems in two complex variables with analytic coefficients
are presented. Here the DOUGLIS algebra of hypercomplex variables proves to be use-
ful. The SCHWARZ—-POISSON formula which turns out as essential for the DIRICHLET
problem for analytic functions in chapter 1 can be extended to several variables. This
formula was just recently published by A. KUMAR and the author. Its deduction is
included here, too.

The main parts of the first three chapters were distributed as Lecture Notes at the
University of Assiut, Egypt in 1991 during a short time visitorship granted by the
German Academic Exchange Service (DAAD Kurzzeitdozentur). Moreover, the ma-
terial was presented in special courses at the Freie Universitat Berlin. I appreciated
the support through DAAD and the scientific discussions with the colleagues and stu-
dents in Assuit, in Qena and in Berlin very much.

I am much indebted to my secretary Barbara M. Wengel for her careful preparation
of the camera-ready copy of the manuscript. The figures were prepared by Ute
Fuchs. Thanks to her as well as to the staff of World Scientific for their patience
and cooperation.

Berlin, May 1994 Heinrich Begehr
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1. Function theoretical tools

1.1 CAUCHY integrals

In this section the behaviour of CAUCHY integrals along smooth curves or systems of

curves in the complex plane € will be reported on.
A smooth curve " is a closed or open JORDAN arc with continuously varying tangent.

It thus may be represented as
F={z:2=2(7),0<r <1}

by a continuously differentiable function z mapping the segment [0, 1] of the real line
IR injectively into € and satisfying z'(7) # 0 on [0,1] . This kind of curves has some
properties which will be important in the future (see [Musk53], Chapter 1).

Lemma 1. Let I' be a smooth curve. Then for any ap < 7_2r there ezists a positive

Ro = Ro(ao) depending only on ag such that for anyt € T

i. TN{¢: )¢ —t| < R,R < Ro} consists of a single open arc ab,
ii. the non-obtuse angle a between the tangents of I' at two points from the arc ab
ts less than or equal to aq.
Remark. R, is called the standard radius of T'.

Proof. Let for (,,(z € T the length of the arc on I" between ¢, and (; be denoted
by 0 = 0((1,(2).- f T is a closed curve o is understood to be the shorter of the two

arc lengths. The distance between (, and (; is
r=r((,6) =G -Gl

L is the total length of I', s the arc length parameter , (x = ((sx), k = 1,2.
For any 09,0 < 20¢ < L the subset

M = {((1,() €T xTI':ap < a(Gr,(2)}

of I' x I is compact. On this set the continuous function r((;, ;) attains its minimum,
i.e. there exists a pair (7, (?) € M such that

= 0(0p) := min — G| = -¢Y.
o = ¢(0o) (()’“)GMI(I Gl =4 -G

This minimum is positive; for if o were 0 then (¥ = (2 while go < 0((),(2). Hence
(? = (2 is a double point of I'. But T is a JORDAN curve, i.e. without multiple points.
For any ¢’ with 0 < ¢’ < g and (o € T then

{C:IC—Gl<e'}N{¢:C€T, 00 < (0, ()} =0.
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(1) Proof of ii.  There exists a go = oo(ao) > 0 such that the angle a between the
tangents at (;,(; € [ with 0((i,(2) < oo satisfies

la| < ao.
This follows from the smoothness of I' by a continuity argument. We may assume
20’0 S L.

Remark. Let (1,(; € I satisfy ¢((1,(z) < 0o and t;,t; € I be two points between
¢; and (; (on the shorter arc). Then the absolute value of the non-obtuse angle
between the straight line through t; and t; and the tangent of I' at (; (and at (3) is
less than or equal to 0¢. This is true because there is always a tangent of I' parallel
to the line through ¢, and ¢, touching I' at a point lying between t; and t,.

(2) Proof ofi.  Consider for fixed (o € I' the subarc
Fo:={C:C€T,a(C,lo) < oo}

We at first assume that none of the end points of I' belongs to 'y if ' is an open
curve. Then (o splits I'g into two parts corresponding to s < sp and sp < s, where
{o = ((so)- Introducing polar coordinates in {, we have

C=C+re®,  ds=|d(| = |dr+irdp|.

Hence, dr = +dscos a where |a] < ap according to the preceding remark where the
+ sign holds for s > so and the - sign for s < sq.

s< s so<s

Figure 1.
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Because 1 > cosa > cosap =: kg > 0 this means that r is monotone increasing as
well on the right as on the left-hand side of (o on I's, when moving away from (o on
I'. Moreover,
kols — so| < |¢ — o] < |s — 50l
holds for { = ((s) € I'p. Let
Ry := min{g(00), kooo}-

Then T intersects the circle | — (o] = R for 0 < R < Ry in exactly two points, one
on the right and one on the left of (o on I'o. This is true because when s monotoni-
cally varies from sq¢ to sp & 0o then |¢ — (o] monotonically increases from 0 to some
r1 > kooo 2 Ro 2 R.

If an end point on I' belongs to I’y there might be only one intersection point of T
with the circle |( — (o| = R which e.g. will happen if {; coincides with this end point.

Definition 1. A function f of a real or complex variable z is said to satisfy a
HOLDER condition or to be HOLDER continuous on a set D if there ezists 0 < H and
0 < a <1 such that
|f(21) — f(2z2)| < H|z1 — 2|*

for all 21,22 € D. H = H,(f) = H(f; D, ) is called the HOLDER constant, o the
HOLDER ezponent. In case a = 1 the condition is called LIPSCHITZ condition. The
set of HOLDER continuous functions on D is denoted by C*(D). C*(D; € ) means the
complez valued HOLDER continuous functions in D,C°(D; IR) the real valued ones.

Obviously, if D is bounded set then a HOLDER condition with exponent a implies
HOLDER continuity with any 8 < a.
Let T be a rectifiable curve in the complex plane and ¢ be integrable along I'. Then

é(z) := %i/v(()cd_(z (1.1.1)
r

is an analytic function in @ \I' - where ¢ denotes the RIEMANN sphere € U {oo}
- vanishing at oo. In general ¢ does not exist for points of I'. Consider e.g. a real
segment [a, b] and let a < ¢ < b. Then the improper integral

dr
/z_c (1.1.2)

does not exist because

c—€y

b
d d _
lim —/ i +/ = lim [logb c+1ogz—']
2

€3 —0,e2—0 cC—Z rT—-cC €3 —0,e2—0 c—a
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in general does not exist. But if the limits are taken symmetrically, i.e. &, =€, — 0

then _ \
. dz dz b—c
lim / + = log .
e~0 z—c¢ z—-c c—a

a cte

This value is called the CAUCHY principal value of the singular integral (1.1.2).

Definition 2.  Let T be a smooth curve in € . For a fized c € T let (-;c) be an
integrable function on I'\{c} having a singularity at {( = c. Denote for 0 < ¢

Fe:=T\{(:[(—c] <e}.

if
tng [ o(cic)ec
r‘

ezxists this value is denoted as the CAUCHY principal value of the singular integral,
written as

C.P. [ o(¢e)d(
/

or shortly as

[t

r
Similarly, if D C € is a domain, say and o(-;c) a function in D\{c} for some point
¢ € D such that

/tp(z;c)dzdy, D.:=D\{z:|z—c| <€},
Dl
exists for any small enough € > 0 then
/go(z;c)dzdy = liu(}/cp(z;c)dzdy
D D,
is called CAUCHY principal value of the singular integral if the limit exists.

Theorem 1.  Let I' be a simply closed (piecewise) smooth curve in € and ¢ €
€ 2(T'), then ¢ given by (1.1.1) exists as CAUCHY principle integral on T.

Proof. 1€Tl,0<¢ . =T\{(:|¢(-7|<e}

¢ _ [ —e(r) _d¢
/w(o(_r-r/ ot “‘*‘P")rfc_r-

3 [3
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From |p(¢) — @(7)] < H|¢ — 7|* we have with ¢ = ((s), T = {(s0)

L
e(¢) —#(7) C(s) = C(s0)|°"  ds
[/—C_T ¢ 5110/ Lol

. , a=1 d 2 ) , a-1
<ot (min 06) [ o5 = 2aee (gin o)

0

Moreover, if " has a tangent in z then

. e Gle)—71 _ .
Jim (—-r_ll—r}c}l()g(,(e)—r_m’
|

where (,(¢) is the first intersection point of I' with [( — 7| = ¢ starting from 7 in the
positive direction of I' and (z(¢) is the second. Here we may take any branch of the
log—function. In case of a piecewise smooth I' there might be a corner in 7 with inner

angle pm,0 < p < 2.

Then i
/< = = pmi.
r
Hence, we have for the CAUCHY principle integral (p = 1)
1 ¢ 1 [e(¢)—e(r) 1
o [ 702 =5 [ a4 2o, (113)
r r

where the integral on the right-hand side exists as an improper integral.

Remark. (1.1.1) can be considered for open curves I, too when z is different from
the end points of I".

Theorem 2. Take I’ and @ as before. Then

)= B2y e, (1.1.4)
[7=
satisfies
limy(z) = ¥(7), (1.1.5)

if the limit is taken non-tangentially from any of the two sides of T.
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Proof. Decompose the integral

we) - vn) = [ LA ey
r

into the sum of two integrals along the curves I, and I'\I'; where

Po:=T\{¢:|¢-7|<e}.

According to

ds
< —
dr ko
(see the proof of Lemma 1) and taking a non-tangential limit so that 0 < wo < w,
z—T smﬂ < 1 - K
(-z| sinw smwo

we have

(z = 7)(@(0) — 9(7)) YT
‘/ C—a(-7) "‘””‘/n( r[i-

HK [ dr 2HK
<2—— — o
2 ko rl-a ako €
°

>

Figure 2.

Because on I'. we have |( — 7| > ¢ for the second integral taking |z — 7| < %e then

(z=1)(e({) = #(7)) ,
(¢-2)¢~7)

d¢j <

lz—fl
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Remark. The above estimations do not depend on 7 € I'. Hence, ¥(z) tends uni-
formly with respect to the position of 7 on I to ¥(7) if z tends to 7 non-tangentially.
Thus, ¥ - and hence ¢ - is continuous on I, too: for 7,72 € I close to one another
choose z ¢ T close to 7, and 7. Then

[$(n1) = ()] < |(n1) — $(2)] + [$(2) - $(72)]

shows the smallness of ¥(m) — ¥(72).

With this in mind one can show that (1.1.5) also holds for taking the limit tangentially.
Because if z tends tangentially to 7 € I choose some 7, € T" arbitrarily close to 7 and
a non-tangential curve through z and 7. As ¥(2z) — ¥(n) and ¥(7) — (7)) are small
this is true also for 1(z) — ¥(7) (see [Musk53],§14 and §16).

Theorem 3. (PLEMELJ-SOKHOTZKI).  Under the above conditions the CAUCHY
integral (1.1.1) has boundary values

¢*(r) = lim 4(z), ¢7(7):= lim ¢(z),

€D+ 2€D—

where D* is the bounded domain with 9D* =T and D~ = @ \(D* UT). Moreover,
forr el

#4(r) = 30r) + 9(), $7(r) = —aplr) + 6(7) (1.16)

where ¢(7) is understood as CAUCHY principal value.

Remark. Formulae (1.1.6) are called the PLEMELI-SOKHOTZKI formulae. They
equivalently can be written as

¢*(r) -7 (r) = (1), ¢*(T)+¢ (r)=2¢(7), T€T. (1.1.7)
Proof. Rewriting for z ¢ T’

2rid(z) = wiz)+olr) [ 25
r

and observing (T is assumed to be smooth)

27i, z € Dt

d¢ .
/(_z— nt, z€Tl
r 0, z€ D
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we get ) 1
$t(r) = (M) +e(r) = #(r)+30(r),
5() = pp)+0 = glr) = Jelr).

Theorem 4. (PLEMELI-PRivaLov). ¢%,¢~ € C*(T).

Proof. It is enough to show the function %(7) from Theorem 2 to belong to C*(T').
For 1;, 72 € ' we have

$(r2) - 9(n) = / {v’(O — () _ w(cg = fl(rz)} .

r (=m
In order to decompose this integral let |r; — 7] < § where § > 0 is so small that
rn{¢ ¢ —nl=6}={d,¥}

which is possible for I' is smooth. Let k > 1 be defined by § = k|r2 — ;|. As before
o(n, ;) denotes the length of the shorter of the two subarcs of I' between 7, and .
We have

1
o(n,m2) L +—In—r
(l 2) koll 2|

(see proof of Lemma 1). Let 4 be that arc on I’ consisting of two subarcs intersecting
at the point 7, and each having the total arc length 20(1, 72). Let the end points of 4
be denoted by a and b. , is the midpoint of 4 and 7, lies on ¥ between but different
from a and b. The two points a’ and &’ are lying on v and are different from a and b.
We now write (72) — ¥(71) as the sum of the following four integrals

L= / POy poo /v(()—tp(n) &,

(—n (—n
e(n) — p(12) (‘P(O—‘P(‘fz))(fz 1)
L= [ ™)y dc .
: / (—n © C—C-m)  ©
M\~ I\~
I o S
s s 2 3«
< < = —H— —_
i< / (o <H= ) w=cg= [ s=Tefgh
0 (1]
Zin-ml
ld¢| °H ds e .
”2|<H/|( Tll-" S ké"a :’r;— HIT]-T;'
0

d
|| < Hn — 72)* /( ¢ = H|n —n|*

log

< 2H(k° +1r)|f. e
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For the last estimation we may assume without loss of generality |a — 7| > |b — 7]

Then

llog a:rl < logl%:—:-l + |arg(a — 1) — arg(b—711)|,
a—1 a—n | < a—b o(a,b) _ 4o(7(,12)
log b—m| T |b—7 T lb—mn| " kyo(r,8)  2koo(mi,T2)’
so that
b—T| 2
bl Y P )
loga_Tll < ko+27r
s < H|my = 7 / e = Him — 7| / ¢ = 22 (-n|"™ ld¢| -
- ¢ = nll¢ — 7= (-
A r\y

To estimate the integrand we observe for ( € I'\y

—nl~n-n<[{-7l, kn-nl=6<|-n],

so that
¢-mnj . 1 k
(=rl| = T3 SF 1
Hence, .
k - _
< 8 (27) il f 1= niad,
My
L
[ 16 = np=riact < k52 [ s
'\~ 20(71,m2)
20—1 2a-lka-2 _
< ka’"l _QU(TJ, )7 < ﬁlﬁ -,

H 1 k 1-e .
”‘Isl—az(%‘,(k—l)) i —mf*.

These estimates give
[#(r2) = (1)l < CH|rp ~ 1|*,

where C is a constant depending on a, k and k.

Theorem 4 ensures the HOLDER continuity of the boundary values of the analytic
function ¢ from inside and outside I'. In the next theorem ¢ extended by ¢+ and ¢-,
respectively to the closure D¥ and D- of D* and D, respectively will be shown to
be HOLDER continuous, too. For the proof we need the following lemmas.
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Lemma 2. Let Ry = Ro(aqg) be the standard radius of T and 0 < p < Ro,

T €Tl,2¢ T, |z~ 7| < p. The non-obtuse angle between the straight line Tz fromT
to z and the tangent of I' at 7 is assumed to be not less than By > ao > 0. Then there
ezists a posttive constant M = M(a, p,T’) such that for any ¢ € C*(T)

4'(2)] < Mz — 7|°~ [max |¢(2)| + H(p; T, @)] -
Proof. Consider the subarc
v:={¢:¢ €T,|{ — 7| < Ro}

having endpoints a and b. In order to estimate
o~ L / d¢
¢(Z)— 2re ‘r”(()(c_z)g
r

we decompose the integral in a sum of ¢, and ¢; corresponding to v and I'\7, respec-
tively. We have

¢,(z)=l./"’(0“"’(r)d(+"’(r) 11 ]

2mi (¢ —2)? 2ri |z-b z-—a
Y

L U |__lb-a __ 2R _ 2Ry ot
z=b z-a| |z-bllz—a] = (Ro~p)? ~ (Ro~p)?

K—2=l(-7+7—-2P=[( -7+ 2Re(( —7)(T=2) + |7 — 2?

’

=r?4+2r6cosw+6%, (€7,

with r := |(—7|,6 := |z— 7|,w := | arg({ — 7) —arg(7 — z)|. Because the angle between
the line from 7 to z and the tangent at 7 is greater than or equal to B and the angle
between this tangent and the secant from 7 to ( is less than or equal to ap we can
estimate
w>PBo—ap=:wp>0.
Thus, for ( € v
[¢ = z|* > r? — 2r6cos wo + 62 = (r — 6 cos wp)? + 62sin’wp ,

Ro
e(¢) — (1) 2H rodr _
/ (¢—2)? £l < ko o/‘(r — 6 coswp)? + 62 sin’ wp (r=24t)
2 00
2H _,_, tedt todt
s _k:6 L/ sinwp + J (t- coswo)z]

2H6°'-1 2I+a + 2l+a
ko (1+a)sin’wy 1-—a
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where for 2 < t we used ¢t < 2(t — 1). Hence,

Rg-a 4oy 1 1 ] a1
B S (o ma ol + S (g 1) |

L L 1—-a o
b2(2)] < -‘—maxnsa(c)l(ﬁo_p),szr(Rf"_p),r?ea_,xlso(ow .

2r (el

Altogether we have

1#'(z)l < C67t

where the constant C depends on ¢, a, p , Ro, wo and

C < M(a,p,1) [ maxlo(Q)] + H(g:T,0)

Lemma 3. For any non-negative z and y and 0 < a < 1
|.1:° — yal S lz — yla, za + ya S 2)—a(z + y)a
hold.

Proof. We only prove the first inequality leaving the second as an exercise. As-
suming without restrictions £ < y and setting t = ; the first inequality is seen to be
equivalent to
1-te<(1-t)°, 0<t<l.
Because the derivative of Lo
t) = —r
g(t) TG

10gY — a(l _ta-l)
e

the function g is monotone non-increasing, i.e.

<0, 0<t<1,

o a0 Sa0=1.

Theorem 5. ¢ € C*(D¥),¢ € C*(D-).

Proof. = We only prove the first part, the second can be shown in a similar way.
This will be done in three steps. At first the HOLDER condition is verified when one
point lies on I, secondly when one point is in a neighborhood of I' and lastly for both
points outside this neighborhood. The case when both points are on I' was considered
in the preceding theorem already.
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reTl,ze Dt
For 0 < B < « we consider a branch ¥ of the multi-valued function

. 8(z) - ¢*(7)
U(z):= G-
This branch is single-valued analytic in D*. Its boundary values

$* () — ¢*(7)
(¢-7)

are continuous on I' because ¢* € C(I'). Moreover,

) =

e ()] < HIG - 71°7.

From the CAUCHY representation formula we have for z € D* with 0 < ¢ <
lz -7l

1 d¢
W= [ v,

3(D\K.(7))
where
K (r):={z:|z—7| <€}
and

¥(z), z€ Dt

¥t(z), z€l=0aD*
In order to show that the limit of the right-hand side of this representation
formula exists when ¢ tends to zero we observe

C

Jz -8
with a proper positive constant C. This holds because ¢(z) tends to ¢*(7) when
z € D* tends to 7 (see Theorem 3.). Hence, for |z — 7| > ¢

€'~Pd 2xCe! P
\Il+(() C/Iee"" ' xCe .

+1—2] Ir—zl—e

|[¥(2)| K —— for z€ D* |z—-7| <2

8(Kc(r)nD*+)

Therefore, in D

W(z)=§;—i/w

aD+
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where the improper integral exists in the ordinary sense. Thus from Theorems
2 and 3 we see that ¥+ € C(D+).

From the maximum principle for analytic functions, see [Burc79], p. 128 or
[Tsuj59], p. 2 then

$(2) — ¢*(r)
(z—71)°

where H(¢*;T,a) is the HOLDER constant (see Definition 1) of ¢* and

< max]¥*(Q)] < H(¢+;P,a)r?§2< I¢=7I°" < H(¢*:T,@)d(D),

d(T) := max{l,diamT}, diamT := Jmax, |6 = G2 -

Setting H, := H(¢*;T,a)d(T’) which is independent of 8 we get from the last
estimate

[6(z) ~ ¢* ()| < Hh|z = 7[*
by letting 8 tend to a.
2,20 € D*,dist (20,1') < p < Ro.
Here Ry = Ry(ao) is the standard radius of I'. Let 7 € " be such that

|z0 — 7| = dist (2o,T) := l&réilglzo -l .-
Consider the function
#(2) — ¢(20)
(z — zo)

which we want to show to be bounded in D*. In order to obtain a single-valued

\I’o(z) =

branch of W, we consider a branch of W, in D¥\ 7zp , where 7zg is the
straight line from 7 to z. In order to estimate Wy on (both sides of) the line

Tzo Lemma 2 is applied. For z € Tzg we have
2) — dlao) = [ #(00ac.
20

Because the line 7z, is perpendicular to the tangent of I at 7 Lemma 2 may
be applied giving

lz=7(

1#(2) — 6(z0)] < ck/ c=r i = 2| [ e

lzo~7|

v

C
aky

llz = 71— Jz0 — 7J°] < (%;z ~ o).
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Here for the last estimate Lemma 3 is used. Thus, ¥¢ is bounded on the line
Tzo as it is on I via part 1 of this proof.
Again applying the maximum principle to Wo in D*\ Tz together with the

estimate of ¥oon Tzg we have
C
|¢(2) — #(20)| < max {H;, ;;k;}lz — zo|”
for 2,29 € D*,dist (20,T') < p < Ro.

2,29 € D*,p < dist(2,T),p < dist (2,T),0 < p < Rp.

1 .
If |z — 20| < %p then {( 1 |¢ = 2z0) < Ep} C D*. Integrating along the line 7zo

we have

)~ ote0) = [ 6O, 60 =5 [ 0055
20 r

From .
(01 < 5 ms |¢+(<)| . (eD* zp<disy(,T),
then
14(2) ~ H(z0)] < 25 max |6+ O]}z = ).

If |z — 20| 2 %p then

6(2) - 80| < 2max|6%(0)| < 4maxler (=21

Therefore

16) - 8ol < Zmax { £.2} max 4% QMDY ol

In connection with the HOLDER continuity of CAUCHY integrals we mention a result

from PRIVALOV, see [Cohi53/62], p. 380, 401-403.

Theorem 6. (PRIVALOV).  Let w = u +1v be analytic in the unit disc D, where v
is continuous in the closure D and HOLDER continuous on the boundary 8D satisfying

[v(Q) —v() < HI(—7]", (,T€dD.
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Then w is HOLDER continuous in D with the same exponent and the constant kH
where k only depends on a, i.e.

lw(z) — w(z0)] < kH|z — 2zo|*, 2,20€ D .

Proof.  For |r| = 1 the function (1 — z7)* is multi-valued analytic in z € D.
Choosing the branch which at the origin z = 0 is equal to 1 leads to a single-valued
analytic function in D the real part of which

f(z) :=Re(1 -27)%, f(0)=1,
is harmonic in D. Obviously,

f(z) = |7 — z|? cos(a| arg(T — z) — arg 7|)

and .
|arg(r — 2) —arg 7| < 3
because 7 is perpendicular to 3D . Therefore
- 2o < L8
cos 2

so that for |2z| =1

fo(2) = o(r)] < HJz = 7l < HLEL

COs =

Applying the maximum principle for harmonic functions, see [Burc79], p. 128,

[Tsuj59), p. 2, to
H

an
cos 2

£(v(z) —v(7)) - f(2)

leads to

() - o) < HLEL <o =1

cos &’
In order to estimate the first order derivatives of v we observe that with 0 < r < 1
H 22H

a
— (|7 - - <
p %!(l‘r 7|+ |r7 — 2])* <

IL—r*

H
lo(z) —v(r)| S —z I —2|" < 7
cos & cos &
for [rr — z| < 1~ r. The PoIsson formula, see p. 31, or e.g. [Burc79], p. 134, applied

to the disc |z — r7| < 1 ~ r for the function v(z) — v(r) gives for |z —r7| < 1 ~r

£+—z_zzlda,rg(( —r7).

o) =vn) =g [ Q) - vir)Re

|{—r7|=1-r
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Differentiating with respect to z, interchanging the order of differentiation and inte-
gration gives

o) = 5 [ 0@ -srReg (EET 1) dargc - )

2:'(-'1'|=I—r 2(( )
= 2—”'<- rl/-_—l- (v(¢) — v(7))Re————~ e o Ldarg(¢ - r7),

especially for z = r7

1
i) =g [ 0V = r)ReZ—darg(¢ ~rr).
|¢=rr|=1~-r
Thus,
< 21+a 1 -
st S St =l
Similarly,
2l+aH
< _ pla—1
()] S S = vl
From
w'(z) = (uz +1v:)(2) = (v, +iv2)(2)
we find .
2ite
’ < — a=1
W) S (e, el <1

Let now z, 20, 2 # 2o, be two points on D. Integrating w’ along the straight line form
zg to 2z gives

z

w(z) — w(20) = /w’(()d( = /w'(zo +t(z — 20))(2 — 20)dt ,
0

z0

1
23+ey |z — zo|dt
_ < '
|w(z) — w(z)| < cos &% 0/(1 = |20 + t(z = 2)|)'==

For zo = 0 the integral becomes

1

|z|dt 1 o | .
[ = s =k < Lere
0o
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The last inequality is an application of Lemma 3.
P . . .
Let therefore zo # 0. Then putting ( := = and without loss of generality assuming
0

Ki<1
zo(l +t(( - 1)),

20 + t(z - Zo)

11+ t(¢~ 1) 1 + 2tRe(¢ — 1) + t3|¢ — 1)?

1—2tI¢ — 1fcos + £2¢ — 12,

where ¢ = 7 —arg(¢ — 1). As |{] <1 we know for ( # 1
T <arg((-1)< 3
2 arg(¢ ) < 37

_ll

. m
e Jp| < 3 Moreover, for || < 1,{ # 1, we have |p] < g, where cos po = S

Figure 3.

So
M+t -DP<1=t)C~1P+ ¢ =12 =1—t(1 —t)|¢ - 1]?

=1 ll( ll? 12 1 :

|1+t(c—1)|s\/1—}|<—1|2+|c—1|]%—t}.
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Therefore

i
dt dt
2
o/(l — Jzoffl + t(¢ — 1)) < o/ (1 — |2l /T =t =D - llz)l_°

<2 dt
o/ el (1 - 317+ =115 - )

2 1 1 1 :
=;E,m_—”[l—lzol(\/l—;lc-llz+(§—t)lc—ll)]
2 1 1 ¢
“a ol [(1 = leoly1 = 5lC - 1")
1 , 1 :
—|1- |zl \1—1|C—1f+§|(—1|

PR e e
T a |z -z 20

1
3

]

IZ - Zola_l N

where again Lemma 3 was used. Thus

1

|z — zo|dt 2t-e
&K —_— — -4
/ T Teo + 1z =)= = a 177 =l
0

and .\
22 H

- <
[0(e) ~ w0l < oo

|z — zo|*

for any z,29 € D.

1.2 GREEN functions and SCHWARZ operators

Theorem 7. (RIEMANN mapping theorem).  Any simply connected domain D
of the complez RIEMANN sphere € having at least two boundary points is conform
equivalent to the unit disc D.

Remark. Two domains are called conforin equivalent if there is a bijective mapping
from one onto the other domain being analytic. Functions of this kind are called
schlicht or univalent. The mapping function in the RIEMANN mapping theorem is
uniquely given if for some zo € D f(20) = 0 and f'(zp) > 0 is prescribed.
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Proof. Let a,b be two points of 3D distinct from one another and
S:={w:w:D— D schlicht}

be the class of schlicht mappings from D into D.

1. S # 0: Consider the multi-valued function wy(¢) := 1—:—:—2. in the neighbor-
hood {/(0) of the origin and choose that branch satisfying

Jim | L=9¢

(=0 l—b(=1

which is single~valued and analytic in U(0). We will show

ORI

being single-valued and analytic in the neighborhood of infinity to be single-
valued and schlicht in D. That w is single-valued follows from a,b € 8D, that
w is analytic is obvious . In order to prove schlichtness let for z,,2, € D

Z)—a 22 —a
Zl“b Zg—b.

w(z)) = w(zg), i.e.

Because a # b from here z, = z, follows.
Let now w(zp) = wp for some 29 € D. Then

w(z) # —wo = |wol exp(i(arg wo + 7)) .

This holds because w is one of the branches of the square root. Hence, there
exists a ¢ € € satisfying w(z) # ¢ in D. Moreover, because we may assume
¢ € —w[D] and becanse —w[D] is an open set there exists an > 0 such that

0<n<|w(z)—¢c in D.

Then we may choose A, B such that

A
wy(z) 1= -u—)—(;-)-w"_c + B,
wy(21) = 0,|w(2)] < 1 for some fixed z; € D and all z € D. 1t is easy to see
that w, € S.
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2. In order to show the existence of a schlicht function mapping D onto D choose

20 € D arbitrarily and consider the class

Sozz{f:f(z)=—w,w65} .

1 — w(zo)w(z)

Any f € S, satisfies f(z0) = 0 and |f(2)| < 1. The function f € S, is holomor-
phic in

Ko:={z:]|z— 20| <ro(z0)} C D,
where ro(z) is the holomorphy radius of 2o, i.e. maximal such that Ko C D.
Because in Ko we have |f(z)] < 1 and f(20) = 0 the SCHWARZ Lemma (see
{Burc79],p. 191) implies

N < B =l <o),
and
If(zo)l = (Z )
Hence,

1
C:= ! E—— <+
[s:Spo 'f (Zo)’ - rO(ZO) oo

Let (fa) be a sequence in Sy satisfying
Jim_1f3(z0)| = C

where because of the schlichtness of f and the fact that So # @ we have 0 <
C. Because |f,(z)] <1 in D by the Theorem of ARzZELA-AscoLl-MONTEL
(see e.g. [Burc79], p. 254) there exists a subsequence (fa,) of (f.) converging
uniformly on any compact subset of D. The limit f either being constant or a
schlicht function (see [Ding61], p. 256) satisfies | f'(z0)] = C > 0. Hence, f is
schlicht in D.

It remains to show f[D] = D. Assume this is not true. Then there exists a
d € D\f[D] # 0 satisfying d # 0 because f(2) = 0. Then any branch of the

function
o /f(z)—d g
fi(2) = —_I—Hf(z)’ fi(z0) = d

is single-valued and schlicht in D different from 0 and co. Choosing one of the
branches we consider

— fl(z)—fl(zo)
Jole) 1 - fi(z0)fi(2)’

,
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which is in So as f) € S. Now

ooy filz0)  _ fi(20) _Ll=ldP
fo(zo)"‘l_lf|(2o)|2_l_|d|) fl( 0) 2\/—3 f(0)7

s that 1+ d] 1+ d]
0 0 = c>C
fo(zo) \/—d-f( 0) lfO(ZO)I 9 |d'
But |f}(20)] > C is a contradiction to fo € So and the definition of C.
Hence, f[D] =

3. To show the mapping function f being uniquely given by f(20) = 0,
f(20) > 0 let f and ¢ be two schlicht mappings from D onto D with
f(z0) = @(20) = 0, f'(20) = ¢'(20) > 0. Let z(yp) be the inverse mapping of
¢ = @(z) mapping D schlicht onto D. Then w = f o z is a schlicht mapping
from D onto D satisfying w(0) = 0 and

w(0) = —f(z(so)) o = P(z0)(0) = L E; -1,

Applying the SCHWARZ Lemma gives
we)=¢ (p€P), ief(z)=¢(z) (z€D).
Theorem 8. Let w(z,20) be the RIEMANN mapping function from the domain D
onto the unit disc D for fizred zo € D, satisfying
w(z20,20) =0, w'(20,20) > 0.

Then
9(z,20) := —loglw(z,20)|, z€ D,

has the following properties.

1. 9(z,20) ts harmonic in z € D\{20},
it. log|z — 20| + g(2, 20) is harmonic in the neighborhood of zo,
. zI_i‘r‘;’mbg(z, 20) =0
Remark. This result can be reverted. If g(z,z0) is the GREEN function of a sim-
ply connected domain D, see Definition 3, and h(z,zp) its harmonic conjugate, see

p- 32, then w(z, 29) := exp[—(g + th)(z, 20)] is the RIEMANN mapping function for D,
satisfying liﬂ'(l lw(z, 20)] = 1 for { € 8D and w(2,20) = 0, w’(20,20) # 0.
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Proof.

i. Applying the LAPLACE operator

ii.

8? 9? 8?
322 T oy 5.7

9 _1(9 .90 _Q._l(i{ﬁ)
9z "2\az ‘dy) & 2\oz oy

gives in D\{zo}

A=

where

Ag(e,0) = —A-2 Liog ju(z, )
g\2,20) = 92022 g » 20

= daa' (log w(z, 20) + log w(z, zo)) 0.

zZ—2 -2
- ,20) = | = Re log——— .
tog = = z0] + (51 20) = log w(z,Zo)| © % w(z,20)
w(z, 20) . . Ce . .
Because ———= is analytic and non-vanishing in the neighborhood of zo the

_0

is harmonic there.

function log

(z zo)

Let (2,) be a sequence in D with all its accumulation points on the boundary dD.
Then all accumulation points of the image sequence (wy), ws = w(zn,2) € D,
are lying on 9. For if otherwise @, |@| < 1 would be an accumulation point of
(w,) there would exist a subsequence (wy, ) of (w,) with limitw € D.Letz € D
be the preimage of W, w = w(Z, zo) and z,, those of w,,,wn, = w(za,,20). The
inverse mapping of w = w(z, z0) which will shortly be denoted by z = z(w) is
analytic in the neighborhood of z, too. By continuity we have

z=2(w) = khfﬂo 2(wn,) = kETw zn, €T .

This contradicts z € D. Therefore all accumulation points of (w,) are on 9D.
This proves property iii.

Definition 3. A real-valued function in a domain D of € having properties i.

to i1,

of Theorem 8 is called the GREEN function of D, more ezactly the GREEN

function of D for the LAPLACE operator.
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Theorem 9. The GREEN function of D has the additional properties

1. 0 < ¢(z, 20),

2. g(2,20) = 9(20,2),

3. It is uniquely given by properties i. to . ,
4. If ¢ is any schlicht mapping from D onto D, then the GREEN function is
$(z) — ¢(20)

1 — 6(20)¢(2)

g(Z, 20) == lOg

Proof.

1. This property of g follows from the maximum principle for harmonic functions
applied to g(-, 20) in the domain D\{z : |z — 2] < €} for small enough positive
€.

2. We prove the symmetry only in the case when g(z, z0) = — log jw(z, 20)| as in
Theorem 8. The function

w((, z0) — w(z, 2
f(() .= (C 0) ( ) 0)
1- w(z, Zo)ll)((, Zo)

maps D onto D for any fixed 2,20 € D with z # 2z9. Moreover, f(z) = 0 and

the function }((C,)z ) has a removable singularity at {( = z with
H w((az) w'(z9z) 2
—_— 7 = =1 <
Emzl iG) ) 1—Jw(z,2)]* <1,

where for z # 2o, we have a strong inequality. Applying the maxiinum principle
by observing
w((, z)

f(©)
lw(¢,2) < 1f(¢), ¢eD,

¢{—aD

we find

especially for { = z
[w(zo,2)| < Iw(Z,ZO)I .

By interchanging the roles of z and 2o the inverse inequality can be proved in
the same way. Hence, equality holds in the last relation giving
9(2, 20) = g(20,2) -

For a proof in the general case see e.g. [Tsuj59], p. 17, [Ding61], p. 267, [Cour50],
p. 250.
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3. Let g1, g2 be two functions with properties i. to iii., then g, — g, is a harmonic
function in the entire domain D with vanishing boundary values of @D. Thus
g1 — g2 = 0 in D by the maximum principle.

4. Together with ¢ the linear transformation ml maps 1) onto D. Obvi-

1 — ¢(20)¢
ously,
- log —I¢ —f(ﬁ) l
[1 = #(20)4|

has the properties i. to iii., so it is the GREEN function of D.

Remark. The existence of the GREEN function for a given domain D can be proved
if the DIRICHLET problem for harmonic functions can be solved for D. The DIRICHLET
problem demands us to find a harmonic function in ) attaining prescribed boundary
values on the boundary dD. In case of continuous boundary values this problem can
be shown to be (uniquely) solvable for a wide class of domains by the method of
PERRON-RADO-RIESZ. If then u(z, z0) is the harmonic function in D satisfying

linz u(z,20) =log){ — 20|, ¢(€9D,

for z9 € D fixed then

1
9(z,20) := log el t u(z, 20)

is the GREEN function for D. See [Tsuj59], p. 4, [Ding61], p. 263.

There are domains without a GREEN function. If e.g. D has an isolated boundary
point a GREEN function should vanish at this point but would be positive in a neigh-
borhood which is impossible because of the minimum principle, see [Tsuj59], p. 2.
Another class of domains having no GREEN function are domains whose boundary
has vanishing capacity, see [Ding61], p. 281, [Tsuj59], p. 54.

Definition 4. A real-valued function N in D is called NEUMANN function (for the
LAPLACE operator) if it satisfies

i. N(z,20) is harmonic in z € D\{z0},20 € D,
. N(z,20) + log|z — zo| is harmonic in the neighborhood of 2o,

.. 0 2 .
. —nN(z,zo) = __L7_r on 3D, where L is the total length of D and n is the outer

normal direction.
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—;/En—IN(Z,Zo)dS, =1
aD
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follows. N is not uniquely defined by i. to iii., it is only given up to an arbitrary
additive constant. This constant can be fixed by asking

iv. /N(z,zo)ds, =0 for all zo € D,

aD

so that with iv. N is uniquely given, see [Cour50], p. 261.
If ¢ is a conformal mapping from D onto P then

N(z,20) = — log |(#(2) — ¢(20))(1 — (20)(2))] -

We only verify i. to iii. in the special case where D = D, i.e.

N(z,20) = —log|(z — 20)(1 — %52)]| .

Because i. and ii. are obvious we only consider iii. On the boundary 9 the outward
normal direction coincides with the radial direction, so that

/)
6—nN(z’ 20) = —Elog [(z = z0)(1 — Z2)] for
In general
H _0:0 Oyd _z0 yo _:z39
Or Ordz Ordy roz ray_ra-"
e 8 9.0 _ 8 _0
ar E:“'-y@—y zb—z'-i-?a—f=2Rez

where the last equality holds for real-valued functions only. Thus, on |z| = 1

on

N(z,20)

2] =1.

/]
—Rez—log(|z — 20/*|1 — Zz|?)

0z

—Re( d
Z2—=2

202

1 - %2

)
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We also can verify iv.,

/N(z,zo)ds =- / log|l — Zoz|*dargz = -2 / log|l1 — ¢|darg{ =0.
ab Jzl=1 Ki=lzl

The last equality holds because of the mean value property, see [Ding6l], p. 202,

[Tsuj59], p. 1,
2

1 .
u(zo) = o /u(zo + re'?)dy
o

for harmonic functions. Obviously log |1 — ¢ is harmonic for [{| < |z| < 1.
Condition iii. of Definition 4 may be replaced by

.., 0

i’ %N(z, 20) = —%8), z=12(s)€ 0D, z € D,
where s is the arc length parameter of z € dD,0 < s < L, and o is a positive

normalizing function with
L

Y= /a(s)ds >0.
0
In order to get N uniquely defined instead of iv. now

L
iv'. /N(z(s),zo)a(s)ds =0, 2€D,
o

is demanded, see [Hawe72], p. 113, [Wend79], p. 5.
The NEUMANN function is sometimes called the second GREEN function, g(z, 29) the

first GREEN function and G!(z, z0) := ¢(z, 20), G!!(2, 20) := N(z, 2o) used.
Remark. A regular curve is an open or closed continuously differentiable curve
={z:2=2(t),0<t<1}

given by a continuously differentiable parameter representation z = z(t) with 2’(t) #
0. Let

s =s(t) = /Iz'(r)ldr, 0<s<L:= /lz'(r)ldr
o °

be the arc length parameter, where L is the total length of I'. Then the tangent of I’
at the point z(s) is represented by

dz dz .dy

ds ds + z@
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which is a unimodular number for any s, i.e.
vy | _

dz .dy z'(t) +i

& Vs e ol T

This complex number represents a unit vector pointing into the direction of I" at the
point z = z(s). We here consider z as a function of the arc length parameter rather

than of the originally given parameter ¢.
The normal vector to the curve I' at 2(s) is a vector perpendicular to the tangent
vector. There are two possibilities. The inner normal v is a unit vector originating

n . .
from the tangent unit vector by a rotation about 90° or — counterclockwise while the
opposite direction is called the outer normal direction n. Hence, if

E—d—:':+ Q = cosa + tsin
ds ~ ds zds—co @

then the inner normal vector is
oos( +”)+isin(a+”)— sina+icosa—i£
“T3 2/ = ='ds

which means

9z 0z Oy 9z 9y .0z
(%_('hi.“a_v_tas_ ds t(‘33

or

0z _ 9y Oz 0Oy

ov~ 9s’ 3s v’

We here prefer to use partial derivative symbols because now directional derivatives
are involved with respect to normal and tangential directions, respectively. This
system reminds us of the CAUCHY-RIEMANN system. In fact this system not only
holds for the z and y axes directions but also for any other two directions originated
by a rotation of this axes system.

Let w = u + tv be an analytic function, so that the CAUCHY-RIEMANN system

du Ov Ou ov

9z 8y’ oy 0z

holds. Then
B _ O | by _ way |, woe _ o
s Oz 0s Jy Os dy ov 9z Ov ov’
Ou _ Quds | oudy _ _wdy oz _ B
ov Oz ov Oy Ov 8y 0s 8z s = s’

Both the GREEN and NEUMANN functions are so-called fundamental solutions (to
the LAPLACEian) used for solving boundary value problems via integral representa-
tion formulas for solutions. These integral formulas originate from GREEN integral
formulas.
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Theorem 10. (Gauss) Let f € C'(D;IR?) be a continuously differentiable vector-
valued function from D into IR?, where D C IR? is a bounded domain with smooth

boundary, then
/V-fdzdy:/f.nds.
D 8D

This theorem holds in JR™ too with m > 2 for proper domains. Here dzdy is to be
replaced by dz = dz,dz;...dz,. The nabla operator V (sometimes called gradient

operator) is
o 0 a
V= (E-I',a—xz,...,m) N

n is the outward normal unit vector given by

n=(X,...,Xn),
(=1)* 1 O(z1y. s Tty Tty -2 Ty)
X, = <u<
“ J A(t1, - tme1) » Ispsm,
ds = thdtz. ..dtm_‘ )
23
i 6(:.,...,1,,_.,1‘,“,...,:rm))
J:= .
I ey
V-f=divf=i?—é‘~ f-n:f:fx
oz,’ gl
=1 p=l
The variable ¢ = (¢,,...,t,_1) is a parametrization of the (m — 1)-dimensional mani-
fold D and
a(yl’---,ym) _

()
61‘“ 1<v,usm

is the determinant of the functional matrix called JACOBIan functional determinant.
In order to handle these integrals it is convenient to use the calculus of alternating
differential forms given by E. CARTAN, see e.g. [Spiv65], p. 89.

The proof of this so-called divergence theorem is based on the exhaustion of D by
sets of axes parallel net cubes

a(x.,...,xm) -

Q:={x=(x1,...,2m) @y <z,<b,,1<u<m}CD.
The projection of @ in the z,-direction (1 < u < m)is

Qp) = {(z1s- -+ Tu-1, Tus15- -, Tm) 10 < 2, S by, 1 S Smv # p} C R™.
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If g € C'(Q; IR) is a real continuously differentiable function in @ then

/g’ﬁdz,/\.../\dzm
oz,
Q

bu

= / (—1)»-! / a;iz)dz“ Adzy A ... Adzyy Az A ... Adzn
Qw o

= / (—])M‘l (g(z)l:“.__bu - g(z)lz“._.a”)dzl A A dl.‘“_] A d$“+1 A...Ndz,
Q(u)

= /g(z)X“ds .
3Q

Replacing g by f,,1 < g < m, and adding we get

/V-fd:cl/\.../\dzm=/f-nds,
Q aQ

i.e. the GAUSS theorem for cubes Q.
Theorem 11. (GREEN) Foru € CY(D;R),v € C*(D; IR)

on

/(uAv + Vu-Vu)de = /u@ds .
D aD

This formula is called the first GREEN formula.
Proof.  Apply the Gauss formula to f = uVv and observe

V.f=Vu-Vv+vAu

d
an .

Theorem 12. (GREEN)  For u,v € C*(D; IR)

Ov Ou
/(uAv — vAu)dze = / (u‘—arl - v%) ds .
D aD

This is the second GREEN formula.

Proof.  Substract the first GREEN formula for v and u from that for « and v.
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Remark. It is enough to assume u,v € C*(D;IR)NC'(D;IR) for the second Green
formula.

In the sequal we return to the two-dimensional case although the next theorem holds
in higher dimensions, too and again use complex variables.

Theorem 13. (GREEN). Let D C @ be a bounded domain with (piecewise) smooth
boundary and having a GREEN function g(z,20). Then for any harmonic function u
which on 9D is still continuous

d9(¢,
u(e) = - / u(o—%fki’ds( (ze D).
aD

This is the GREEN representation formula for harmonic functions.

Proof.  Applying the second GREEN formula to u(() and g((, 2) for z € D fixed in
the domain D\ K,(z) where again K,(z) is the open disc with small enough radius ¢
and center 2 gives

- / 9(C, 2)Au(()ddn = / (c)ag“’z’d<
D\K.(z) ap

- [ (0% G as, = v,
K-2l=e

Observing that n is the outer normal and that
w((,2) = g(¢, 2) + log |¢ — 2|

is harmonic in D we get

2r '
J w02 = [ e 2liteeny
[(=z|=¢ 4

2n Py .

1 . ()
‘/“(z+5€'V)d¢+5/u(z+se“’)g“ﬂ"a€“—'z)d¢p
0 0

Letting ¢ tend to zero the first integral tends to 2ru(z) while the second term tends to
zero by a continuity argument. Moreover, for a harmonic function u the first integral
equals 27u(z) for small enough € by the mean value property of harmonic functions.
Because

2n

[ 61602 = [lote s e, ) - toge) ML eE Ty,

{¢~z|=¢ o




Function theoretical tools 31

also tend to zero together with € and because
tim [ ol 2au0)dedn = [ ol )au(C)den
D\K.(z) b

for any u € C*(D) we arrive at

u(z)= o ] w02 Das - - [ a(¢ Iaurdgan, €D
D

If in particular u is harmonic the last term vanishes. Introducing polar coordinates
about the point z it is not difficult to show that the singularity of g((, z) is weak with
respect to area integrals. Therefore

/ 9(C., 2)Du(()ddn

D
exists as a proper integral.

This representation formula for harmonic functions gives the unique solution to the
DIRICHLET problem for harmonic functions. Let o € C(9D; IR) be given. Then

1 (¢,
u(z) i= 5= /a(()—galf‘(—z)dsc, :eD,
aD

is a harmonic function with boundary values o on 8D, see [Tsuj59], p. 22.
Let us consider the special case D = D. Then

1<) = -1 <
9(¢,z) = Og — C
Applying on {[¢| = p = 1}
d a 0] 8 -0 9
e = 3 = 1 = 5 * g ey

we get

59161 5) = 2Re  Slog |1 — 3] ~log I — =)

- % ¢ Yo _pe(Z ¢ Yo 1=k
= Re(l—zc’“c—z)‘ Re(z-z+<—z)“‘|c-z|2'

Therefore in D any harmonic function being continuous in D may be represented by

) =5 [ =

I(I—

darg(
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This is the POISSON formula with the POISSON kernel
2

C+z 1=z _ 1—r et
RNC‘Z_K—ZP_l—2rcos(x9—-(p)+r2’ P

which for an arbitrary circle [( — a| < p is
C+Z—2a P—Y‘ z=a+re'.¢,(=a+pe"",

(-2 p? —2rpcos(d — ) + 12’
Solving the CAUCHY-RIEMANN equations with a given harmonic function the conju-
gate harmonic function can locally be calculated. This conjugate harmonic function
in general is not a single—valued function. But it is when the domain D under con-
sideration is simply connected.
The conjugate harmonic function to the GREEN function locally, say in the neighbor-
hood of a point @ € D is given by

h(z,20) = /( 09((’20)(1{+ 3g(g€,zo)dn) + const.

[d s 2
= / gé;n(o)dsc + const.

because for g = g(z,20) on some smooth curve v in D we have

dg ag dg 9z dg 6y) dg 0y 0g Oz ag
Tt W= (‘a?&*’a‘i% B=\5yont 9:n)® = "

Observe that n is the outer normal while above, p. 27, the CAUCHY-RIEMANN system

for the function (z,y) was written with respect to s and the inner normal v. The
h h
CAUCHY-RIEMANN system for the function (g, k) leads to ai o -, 99 = o

9 on
The integral in the above representation of h can be taken along sthesstraxght Ilne
from a to 2. k is determined up to an arbitrary additive constant. It is a multi-valued
function. The so-called complex GREEN function [Mikh35], see [Gakh66], p. 209,
M(z,20) = g(z, 20) + 1h(2, 20)
in the neighborhood of zo behaves like — log(z — 29)+ analytic function.
Remark.  For simply connected domains the function f(z, 2) := exp(—M(z, z))

is a single-valued analytic function mapping D conformally onto D with f(zo, z0) = 0.
For more details see [Gakh66], pp. 209, 332.

Lemmad4. The conjugate harmonic function to a function u which is harmonic in
D and continuous in D is

1 oh
o) =5 [0 g,ij’ds(, €D,
8D
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and
w(z) := (u+iv)(z) = j ({)BM(C )ds(, z€D,

aD
is analytic in D.

Proof. As above for kh(z,29) we have for v the representation
z 2z 6"
v = [(cun(de +ucrin +e= [Giddsere, cem.

Using Theorem 13 and interchanging the orders of integrations and differentiations
gives

h
v(z):—%r[u(t angfag(t Od ¢ds st +c=—o- / (C)a (C'z)d9(+
)

where the symmetry g(z, zo) = g(zo, z) of the GREEN function D was applied.

Remark. If in these integrals u(() is replaced by a continuous function o(¢) on
8D then w is an analytic function in D satisfying

Rew(() =0o(¢), (€dD.

See also Lemma 8, p. 51, where the DIRICHLET problem is handled as a special
RIEMANN-HILBERT problem for simply connected domains. If D is multiply con-
nected w in general is multi-valued and the DIRICHLET problem for single-valued
functions is not always solvable, see 1.4.

Defintion 5. An operator
S:C(dD;IR) — A(D)NC(D; )

from the space of real-valued continuous functions on 8D into the space of analytic
functions in D being continuous on the closure D of D satisfying

ReSo =0 on 0D

ts called SCHWARZ operator.

Remark. If D has a GREEN function then S is given by

(So)(2) := —2% /a(()-a—)‘;(n%’i)ds( . (1.2.1)
8D
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Moreover, it is clear that S is given only up to an imaginary additive constant. This
constant can be fixed by demanding

Im(So)(a) =

for some fixed a € D.
In case of D = D the SCHWARZ operator with the SCHWARZ-POISSON kernel is

(So)(2) = / (0} ”ﬁw, 2eD, (12.2)
I(I

where c € IR is arbitrary and
Im(Sa)(0) =c.

The SCHWARZ operator can be given another form, see [Dzhu92a]. If {(s) = £(s) +
1(s) is the parameter representation of 3D then the outer normal derivative is

a wad a0 (0 =0
sz = 1) =€) = =i () ~ T -
Thus the GREEN representation formula (Theorem 13) becomes

(() [ay(c,z) 09(6,2)«]

u(z) = —

Differentiating with respect to z gives by the symmetry of g(z,()

u(z) = = / u(z) [L(z, Q)¢ — K(z,0)dT]

aD
where Loy 2THR0 o 2 Pe(a)
Z,C '_—71' azac ’ (ZvC -——7‘_ azaz: .

Definition 6.  For a domain D C € with GREEN function g(z,() the function

2 9%(2,0)
T 920

is called the BERGMAN kernel function of D.

K(z,C) = —

It was introduced by St. BERGMAN, see [Berg50,Besc53,Cour50).
Because g(z,() vanishes for ¢ € 8D identically in 2 € D

0G0 = o, Z9C D) 4 L8505 20, (= sy eam,

0z =0 020¢ oto¢
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so that for z € D,( € 8D
L(z,4)¢'(s) + K(2,0)("(s) = 0.
Hence,

we) = 5 [WOU=OK .
aD

As u is harmonic u, is analytic. Realizing that u is real so that uz = u; this leads to

z

/ {uc(Q)dC + ug(()al} = 2 / Reu(¢)d¢

Re{%/u(()jL(t,()dtd(} .

aD

]

u(2) — u(a)

Il

Introducing

Jul,0) = / L(t,C)dt , J(z0) = / K(t,7)dt

this becomes
u(z) = Re { +f JL(z,c)u(o«ic} +u(a).
8D

Here a is an arbitrarily chosen fixed point in D. It also can be chosen on the boundary
AD if u is continuous in D. Integration is taken along an arc connecting a with z.
Thus the functions J.(-,¢), Jk(-,{) being analytic in D\{¢} are multi-valued.

Let v be the harmonic conjugate to u. Then by the CAUCHY~RIEMANN system

Uy = Uy, Uy = —V,

we have

v(2)

/ {~un(C)dE + u(¢)dn} + v(a)

2Im { / “c(()df} +v(a)

a

Im {%/u(()JL(z,C)d(} +v(a).

aD
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Hence, the analytic function w = u + iv is representable as

we) =} [ u(QMuta, ) + wla) (123)

aD

In general v and w, too are multi-valued functions.

Remarks.
1. If the solution to the DIRICHLET problem
Rew(z) =0(z), z€aD,

exists it is given by

w(z) = —/JL(z Qa(()d¢ - o— / o(¢) 39(4,0)

39(( a)

d¢ — dC] + ic

with an arbitrary real c and a € D fixed.
For a € D

w(z) = %/Jﬂz,()a(()d( +o(a) +ic.
oD
2. For the unit disc D = D

1 1
yL(2,¢) = TSR

= _ 1 1 1 1 1
K(Z,C)-_‘;(—l‘_TZ);, JL(Z,():; ((—z_(_—_a) .

To verify the two preceding representation formulas observe for a € D

/ I, Qo0 = 5 [ (2 -2 0%
ap

9(2,¢) = log lz—_zf

ag( C,a) _9g(¢,a) 1 (+ad
= (O[ o dc] e [0OFELE
D
so that d
w(z) = —/ (c)“’ "
with
g=c L
(
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If a € 8D then the same formula holds, since

/mz Oo(0)dc = o /(c)“”" ()——/ o(¢)Im ” ?‘

3. For a general domain D

1 1 2 d%w(z,()
= —-— l = —
L(z,() 7 (C — 2)? {(z,(), ¥z,() T 020C

Obviously ¢ is an analytic function of both variables z and ¢ in D. Integrating
gives

B0 =+ (2 - 2 ) = dl=0)

L\z, = p (. — 2 C —a (<,
where

z

Jdz,0) = / (t,¢)dt

a

is multi-valued in general. While L(z,() has a second order pole in z = ( the
BERGMAN kernel K(z,() is analytic in z and ¢ for z and ( in D,

28%(2,0) _ 2 0%w(20)
T 8200 7 dz0(

having a singularity for z = ( € dD. Here, as before

UJ(Z,() = !I(Za() + ]Og IZ - (I

K(Z,E) =

is harmonic for z and for ¢ in D.

Lemma 5. As a function of ( the kernel L(z,{) is orthogonal to all bounded
analytic functions f in D for any fized z € D, i.e.

(f, L(z,)) = / (O L(z O dedn = 0
D

Proof. Let f be bounded and analytic in D. Then

1 dédn
(fi L(z,7)) = = | f({)==
=

- / £ Tz ) dedy .
D

Applying the GREEN formula for the domain
D, := D\{¢:|¢ — 2| < ¢}
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to the integral f(¢)L(2,() gives

[ 107wk = [ 10%82 D aean
D‘
- = / e (G
laD. 6( 0 Ic-lzl—e
w\ 2,
- —%K_/I_ 102429 - | «.

Letting ¢ tend to zero this last integral tends to

2n
f(z) 25 —_
vl dp=0.
0

Thus (f, L(z,-)) = 0. Observing £(z,¢) = £(¢, z) which follows from the symmetry of
the GREEN function then

! _dedn_ _ ) 2
: D/ 1022 D/ FORG 7)dedn, =€ D,

follows.

Repeating the preceding proof with K(z,() instead of L(z,() the respective limit by
letting € tend to zero instead of becoming zero is f(z). This result is called the repro-
ducing property of the BERGMAN kernel in the space of bounded analytic functions

in D.

Lemma 6. For any bounded analytic function f in D

f(2) = / FQ)K(z0)dedn, z€D.
D

From the symmetry of the GREEN function
K(z,() = K((,7)

follows immediately.

1.3 RIEMANN boundary value problem

Let I' be a smooth simple closed curve (or a set of finitely many such curves) in
the complex plane € . In the following for simplicity we mainly will consider simply
closed curves. In that case D* denotes the bounded domain with boundary I' and
D~ := T \D+.
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Definition 7. Let G € C(I';€) and G({) # 0 on T. Then the indez & of G with
respect to T is the mean variation of arg G(¢) while { varies on T' in the positive
direction passing any point once,

. 1 L ,
k = indG = 27r/dargG(()— 27r',r/dlog(z(().

Because I is closed and G is continuous & is an entire number. The index has the
following properties.
1. ind (G1G;) = ind Gy + ind Gs, ind(1/G) = —indG = ind G .

2. If D is a domain with smooth boundary and G is an analytic function in D up
to isolated poles with continuous non-vanishing boundary values on 3D then

indG = n(0) — n(oo) ,

where n(0) is the number of zeroes and n(co) the number of poles of G each
counted with respect to its multiplicity. This follows from the argument prin-
ciple, in the case of an unbounded domain D applied to D N {|z| < R} for
sufficiently large R and then passing with R to infinity.

Riemann problem. Let T be a smooth simply closed curve and G,g €
C(I;€),0 < a < 1, with G(¢) # 0 on I'. Find analytic functions ¢* in D* and ¢~

in D~ such that
#* () =G () +9(¢), (€T.

Remark. This problem is sometimes called the problem of linear conjugacy.

Theorem 14. For 0 < Kk the homogeneous RIEMANN boundary value problem
(g =0) has k + 1 linearly independent solutions
$i(z) = ), zeD*,
0<k<k,
b:(s) = Her), ze D

W) = 5 r/ log{¢ "GO} 72, 2 ¢ T

(-2’

The general solution contains k+1 arbitrary complez constants. The space of solutions
vanishing at infinity contains x linearly independent solutions, namely the preceding
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ones for 0 < k < k — 1. To fizx a solution & + 1 side conditions are necessary.
For k < 0 the homogeneous problem (g = 0) is unsolvable.

Proof.

i. 0< k.
Let ¢*, ¢~ be a solution and N* the number of zeroes of ¢* in D*. Then

Nt =ind¢* =ind(G¢~) =indG +ind¢~ =k - N~

0<k=N+t+N—.

If xk = 0 then N* = N~ = 0 and log ¢* is a single-valued analytic function in
D#*. The function log G(¢) is single-valued too because

/dlogG':O.
r

From the PLEMELI-SOKHOTZKI formulae (1.1.7) we see that the solution to

the problem
log¢* =logG +log¢™ on T

is given by the Cauchy integral

log ¢(z) = %/log G(()% =:9(z), z¢Tl. (1.3.1)
r

Hence ¢(z) = €', i.e. ¢%(z) = e7*(), z € D*, satisfies

$*=G¢~ on I, ¢ (c0)=1,
and ¢*(z) = ae”*() satisfies

¢* =G4~ on T, Z'(oo)=a,
For a = 0 there is only the trivial solution.
If 0 < x then (7*G(¢) is a function continuous on @D, because 0 € D* i.e.
0 ¢ I, with vanishing index

ind(("*G(¢)) = ind¢™" + indG({) = —« + indG({) = 0.

Rewriting the boundary condition as

¢t () =C*(¢""G([)¢™(¢) on T
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and using

1 - d¢
7(0)i= g [ 1B G0N 2
r
satisfying
o e =(*G(()e™ @ on T
with
Xt(z):= €' (z€ DY), X (z):=2"""
find
- SO _ 0 o p
X+ X*(¢)
While ;1((22)) is analytic in D¥, %(-(i-))

Because both functions coincide on T' they are analytic continuations from one
another forming together an entire analytic function with pole at infinity of
order at most k. From the general LIOUVILLE theorem this function is seen to

be a polynomical Py of degree at most . Thus,
$(z) = Pu2)e™®, e D*,

27 "P.(2)e""?) e D-.

$7(2)

k<0

There is no solution in this case because of the relation xk = Nt + N~. But the

functions X% in D?* satisfy on I' the RIEMANN condition

X*(¢)=G()X(Q)

(z€ D7)

41

is analyticin D™ up to a pole at infinity.

in this case too. It does not form a solution because X~ fails to be analytic at

infinity where it rather has a pole of order —x.

Defintion 8.  The function

{ X*(2), z€ Dt
X(2) =

X-(z), z€ D™

ts called canonical function of the RIEMANN problem.

The canonical solution will be important for solving the inhomogeneous problem.

Dividing ¢ by X gives
¢t ¢ g

F—F"'F on I'.
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As g € C*(T') and X* € C*(I') by Theorem 4, we have ——
to this jump problem is

1 9(¢) d¢
¢(Z)~—mr/7:(—63_—2, z¢l,

X* € C*(T'). The solution

namely 3 satisfies

- 9(¢)
) =9 (O+X+(C) on

Hence i — 1 is continuous on I’

X

¢+ —yt = d’- —¢~ on T.

Again 2_ ¥ is an analytic function having a pole of order < x if 0 < « but a zero if

k < 0 at infinity.

In order that ¢ = X4 for k < 0 is a solution i.e. behaves regular at infinity it is
necessary and sufficient that 1~ has a zero of order x. From its series representation
near oo

_ g(¢) d¢ X 1 [ gQ) ke
( ) 27‘ X"’(()(-—z —Z;ckz k’ Ck 1= 27rir X+(C)Ck ldc (1 Sk)

these solvability conditions are seen to be

9 rryr _ .
J X*(()( 'd¢=0, 1<k<-x-1.

In case when solutions vanishing at oo are looked for moreover c_, has to vanish.
Thus we have the following result.

Theorem 15. For 0 < « the general solution to the inhomogeneous RIEMANN
boundary value problem is

#(2) = X(2)[¥(2) + Pu(2)]

where Py is a polynomial of order at most k with arbitrary coefficients.
For k < 0 it is solvable if and only if the above solvability conditions are satisfied.
Then

#(z) = X(2)¥(2)

ts the solution.
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Remark. HASEMAN, a Ph.D. student from HILBERT in Gottingen, solved the
following problem.

Haseman problem. Let I' be a smooth simply closed curve, G,g,€ C#(T'),0 <
B <1,9(¢) #0 onT,a € CY(I;T) a bijective mapping from T onto itself, preserving
the orientation and satisfying o'(() # 0 on I'. Find an analytic function in é\r
satisfying

¢*(2(¢)) =G(()¢7(¢)+9(¢) on T.

This problem is called RIEMANN problem with shift or delay, too. For a solution
see [Gakh66), p. 121. 1t is solved by reducing the problem to the RIEMANN problem.
There is still a lot of new research done on RIEMANN and related boundary value
problems.

Next we will consider the RIEMANN problem for a multiply connected domain. Let
I',,0 < 4 £ m, be m + 1 mutually disjoint smooth simply closed curves such that
'y positively oriented surrounds the other I',(1 < 4 < m) being negatively oriented.
Denote by D* the bounded domain with T as its boundary and assume without loss
of generality 0 € D*,

- .=@\D¥.

The solution of the simple jump condition, G = 1,
¢*(()=9¢"(¢()+9(¢) on T,

is again given by the CAUCHY integral

1
¢(Z)—27H z¢P,

which is true just because of the local behaviour. For arbitrary G the index x with
respect to I', obviously, is the sum of the indices «, of G with respect to T,,,

1. k,=0forall0 < p <m.
Then for an a € €

d
¢(Z) = ae’r(l)’ 7(2) = 511;; /]og G(C)'C _Cz
r

is a solution to the homogeneous problem.
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2. K, arbitrary.
This case again is reduced to case 1. Denote by D, the bounded domain with
boundary dD; = —T, and let z, € D; be an arbitrary point, 1 <y < m. Then

( s -1, for u=v
— [ dlog(¢ — z,) = =6, :=
/ B¢ = %) g 0, for p#v

/dlog{ C)H(C—z,,)"“}=, 1<v<m,
/dlog{ C)H(C—zu)‘”}=~o+z'°u=~,

u=1 u=1

/dl =4 1, for p=0
— Og = = ,
2’“[, » 0, for p#0

1 - - 3
o r/ dlog{c g(c- 24) »G(o} =

Proceeding as in the case of a simply connected domain the homogeneous jump
condition is written as

$*©) = ¢ [I€ - 2™ {c-*H(c—zu)“G(o} $7(¢) on T.

u=1 p=1

Using

Ye) o= o= / log {c'“ I« - zuwGw} 2¢r,

u=1

and ~
X*(2) = H(z —2,)"e"?), 2 € DY,

p=1
X (2) = z%e"® e D,
wesee Xt = GX~ on . X again is called canonical function. In the case k < 0
it has a pole of order —« at 0o. From the condition

+ -
%:% on T

the analytic function 4 is seen to be a polynomial P, as before if 0 < x. The
general solution is given by ¢ = X P,. For £ < 0 the homogeneous problem is
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unsolvable corresponding to the fact that then ¢—_ would vanish at oo so that ¢

only could be identically zero, i.e. being the trivial solution to the homogeneous
problem. By the canonical function the inhomogeneous condition is reduced to

O _ 90, 90 o

X+ - X T xro "

Hence Theorem 15 holds for multiply connected domains of the above type too
if the canonical function is changed as above.

Remark. The same is true if Dt is an unbounded domain. Let in the above
notation [y = @ so that oo € P*. Then the index of

m

[I¢-2)"G(©), cer,

u=1

with respect to any I',(1 < g < m) is zero. Therefore if in the above considerations
the factor (= is cancelled everything holds again.

1.4 RIEMANN-HILBERT boundary value problem

Let D be a simply connected bounded domain with (piecewise) smooth boundary.
Contrary to the RIEMANN problem here the simple connectivity of D is important.
Although the RIEMANN-HILBERT problem may be solved even for multiply con-
nected domains as for simply connected ones, the solution in general is a multi-valued
function and further considerations are necessary to find single-valued solutions, see
[Gakh66], p. 326. Because this problem does not occur for simply connected domains,
here we stay with these.

Riemann—Hilbert problem. For given A, € C*(0D; ' ),0 < a < 1, with A({) #0
on 0D find an analytic function w in D such that

Re{A(Qw(()} = ¢((), (€dD.
Remark. With A = g+ iv,w = u + iv we have

Re{Aw} =pu+wvw=¢ on aD.

While the DIRICHLET problem, coinciding with the RIEMANN-HILBERT problem if
A =1 just prescribes the real part of the analytic function on the boundary in the
RIEMANN-HILBERT boundary condition a linear combination of the real and imagi-
nary parts of the function looked for is given. Although this problem is more general
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the solution will be found by reducing it to the DIRICHLET problem. This latter
problem is solvable via the SCHWARZ operator, see Definition 5 in 1.2. Principally,
the domain D can be mapped conformally onto the unit disc mapping 3D onto 9D,
see [Golu69], p. 44, so that it is enough to study the case D = D. The solution then
is found by combining the solution of the transformed problem with the inverse con-

formal mapping.

In the sequel we always will assume |A(¢)] = 1 on @D which is no loss of generality as
can be seen by dividing the boundary condition by |A()|. At first we prove a connec-
tion of the RIEMANN problem with the RIEMANN-HILBERT problem, see [Gakh66],

p. 228.
Theorem 16.  The solution of the RIEMANN problem

() =G () +9(O) LKI=1,

with
(9 _ 200

is a solution of the RIEMANN-HILBERT problem

Re{X(()¢*(O)} = #(¢), I¢I=1,
if the free complez parameters of this solution are chosen properly.

Proof. Let x:=ind), then indG = 2«.

1. k=0.
The solution to (1.4.1) is

d
#(z) = X(2) 5% /\%2)(_{2+c , ceq,
Ki=1
where
mw=aw—/MW%——m1/mmF—

Ki=1

|

o

*

o
¥~
~

(

KI=1 I(l—l

a /umm%

(1.4.1)

(1.4.2)
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= €Ce?) | y(2) = — / d((
|C| 1
1 di
C:= o / arg/\(()—g- eER.

Kl=1
We remark that y = Sarg A, where S is the SCHWARZ operator (1.2.2) for D
satisfying Re Sarg A = arg A on 8P and Im(S arg A)(0) = 0. Thus

; 1 g(¢) d¢

+ — 2§ ATk T

$H(z)=e Qm./e..,«,(,zw L lel <1,
I¢i=1

where ¢ € € is arbitrary

/g(() ¢ _/ 20(¢) _d¢ _ v(¢) ((+z+l)£

) (—z ()i —z (el - )
i e (—=z A MQ)e )¢ —z i A(¢)e© ¢ ¢

/\(C)e"(c) = ,\(()eiﬂn«)-hn-v(() = e—hnv((),\(()einrsm) = e-lmv(o, iCl=1.

d d
[ e S P R S
KKl=1 Kl=1 KKI=1

Thus
s = d L [ pgemot 2L igh
Ici=1

where € € € is imaginary if and only if ¢ is chosen such that
1 Im~(¢) ¢ =
T
Kl=1

That this ¢*(z) is a solution to (1.4.2) follows by direct calculation. We have
for || =1

(Oei‘v(() = e~ Im(¢) ,
so that

Re {X()¢*(()} = e™™Re {(Spe™)() +} = 9(¢) -
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2. 0 <«

We proceed as in 1. The solution to (1.4.1) is

6(2) = X(2) { : ngz) Ci 4 Poc(z )}
|(| 1

where for |2| < 1

Xt(z) = expfjﬁ / {C-z,u\(()} _d¢
e A(Q)
= exp— / {arg A(¢) — karg (} {<+ z l} % = eCe?)
|(I—
with
1(2) = 12 % = S(rg Q) - rarg()(s)
|(|—l
Cim g [ (o130 - rarg ) F € IR
|(| 1
On (=1

/\(Oen(() = ,\(()e-‘Rev(()-lm'r(() - ,\(C)ei(a.rg»\(()—Ka.rg()—lm'y(() - (—ne—lm'y((),

Thus for |z] < 1

Ki=1

RS tmo(¢) < § + 2 dC
g7 | Qe iEE %

e'(2)

Il

#*() = (){é [ a2 +P2n(2)}

I¢]=1

+o p(()etmm ¢ — f + Ph(z)}

21
KI=1
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with an arbitrary polynomial P, of degree at most 2«. Because

(+z (-2 S e
F4 Cz _ (1+§)Z< 1-k k

-z

~

k=0
x—1 x—-1
= Yo 3 = p(2,)
k=0 k=0

is a polynomial in z of degree £ we can write

Er2 & 4 Qua)

i 1
#7@) = 08 oo [ pl0em0x it
Ki=1

Here Q« has the form

Qx(2) = EK: arz*

k=—r

with coefficients depending among others on those of Py.. If
ReQu(¢() =0 on [{|=1

then ¢% is a solution to (1.4.2) as is seen immediately. For |{(| = 1 we have
Re{MC)¢*e 0} = ¢~ lml0

and hence

Re{A(C)$*(()} = e ™Re{p(¢)e™ ) +Q,(()}

= ¢(¢) +e ™ OReQu(C) -
The condition Re Q«(¢) =0 on |{| = 1 imposes conditions on Py (¢).

. £<0.
Problem (1.4.1) is solvable if
9(€) ks _ < _
X+(<)C dC—O, l_ks 2&—1,

Ki=1

1.e.
@(()e™O¢H-1dc =0, 1<k<-2c-1,

Kl=1

49
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or equivalently
P(C)e™ ¢ *1d¢ =0, k+1<k<-x—1.

KI=1

The solution then especially for |z] < 1, similarly as before is

+ (z)
s = X0 / 9() _d¢ _ et /v(oelm(c)(n (é_g +1)£.
S

Xt (-2 2mi ¢
=1

Kl=1

As
(+z¢ -2z  (+2 “"( )y =)
(-2 ¢ T ¢ (-2 I-1
CHz =\
< § (2) (‘)
= -i-:(c-k x+k C-k—l n+k+l)
k=0
and
1V—x _ (1\-« -x—1
¢ z k=0
we find because of the solvability conditions
( +z d(
Imy(¢) o=
e(¢)e™ (¢ 37T
KI=1
=5 [ oem0lt2 L s [ gL
Ki=1 <=1
PO
KI=1
- / ¢((~)clm‘7(()%+zn+l / (P(C)elmy(()(-l% .
I=1 KI=1

Here in both formulas the last integral vanishes if £ < —1, for k = —1 it might

not. But adding both formulas we get

evr(2) o=
w0 =5 [ egemoitid
Kl=1
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which as before can be shown to solve (1.4.2).

Because the SCHWARZ integral is an analytic function especially in z = 0, from
the above solvability conditions only those for 0 < k < —x — 1 are important for
¢% to be regular in z = 0. But because ¢ is a real function taking the complex

conjugate of

% ‘P(C)em(()(_k% = 0, 0 S k S -k—1 ’

Ki=1
this leads to the same conditions for k + 1 < k < 0.
The RIEMANN-HILBERT problem will now be studied using the SCHWARZ operator

directly. At first we modify the DIRICHLET problem by allowing the solution to have
an isolated pole of order not greater than a given natural number n > 0 at the origin.

Lemma 7.  The general solution to the DIRICHLET problem

Rew(() =¢(¢) on [¢|=1
in the space of functions analytic in D\{0} having a pole at most of order n € IN at

z2=01s
w(z) =557 [ 0%

KI=1
with arbitrary coefficients co € IR,c, € T (1 < k < n).

C+zd(

+ico + Z(Ckz —&z¥)

Proof. We only need to consider the homogeneous problem. If it is solvable the
solution has the form

+00
P(z) = E azf (2] <1), a=ar+ibel (-n< k),
k=-n
and satisfying at z = e*

+00 +00
ReP(e) =Re ) cxe™ = Y {arcos kd — by sin k9}

k=-n k=-n

n 400
=ao+ Y _{(ar +a_k)coskd + (b_y — b)sin k9} + D" {arcoskd — bsinkd} =0.

k=1 k=n+1

Thus
a0=0 ar+a_,=0, by—b=0 (1<k<n),ax=b=0 (n+1<#k),
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C_p = —Ck (OSkSn), ¢ =0 (n+l$k)

and "
P(z) =1iby + Z{ckz" -Gy
k=1
This function, obviously, has a pole at most of order n at z = 0 and its real part
vanishes at |z| = 1. A special solution to the inhomogeneous problem is given by
(1.2.2) withc=0

Remark. P(z) is a solution to the homogeneous DIRICHLET problem for €\ D,
too. In that case oo is a pole at most of order n. The homogeneous DIRICHLET
problem in the class of analytic functions which vanish at the origin (infinity) only is
trivially solvable. Moreover, this result is true for any point of D (of € \ D) replacing
z = 0. Let w(z) be a conformal mapping froin P onto itself mapping zo onto 0. Then

P(z2): zco+Z{ckw (2) —Gw*(2)}, cw€RceC,1<k<n,

is a solution of the homogeneous DIRICHLET problem with a pole at zo, and zo cannot
be a zero of P if P is not identically zero. This even holds when w is the conformal
mapping from some domain onto D.

Corollary 1.  The general solution to the DIRICHLET problem for analytic functions
in the unit disc D is

w(z)=%i/tp(()(_z?€+zco, w€lR.

iKl=1

Lemma 8. Let D be a simply connected domain in € with GREEN function g(z, zo).
Then the solution of the DIRICHLET problem for analytic functions is

w(z) = /(C)aMC’ ds¢ +ico, co € IR,

where M(z, z0) = g(z, 20) + 2h(2, 20) is the complex GREEN function.
Proof. From the DIRICHLET condition
u=Rew=¢ on 4D

the function u is known as

u(Z)=‘2i_’r/‘P(Oag;i’ )d s¢, 2€D.
oD
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The conjugate harmonic function v related to u by the CAUCHY~RIEMANN system

o o o
oz~ 0y’ Oy 0Oz ’

is locally given by

z z
v v ou Oou
= Pz + %4 = ——dz + —d , IR .
N TCRE NI & RTINS

a a
If D is simply connected then the integral on the right-hand side is path-independent
because the integrability condition
8w O%u
922 T 92 =
0z? 0Oy
is satisfied. Introducing the integral representation for u into this integral and inter-
changing differentiation and integration with one another leads to

1

h
o) = =g [ ol T s+ an
aD

Au = 0

with, see p. 32,

¢
dg(t,
h(C,2)=/ y;ntz)da+c, celR.

Thus w = u + {v is representable as claimed in the lemma.

Theorem 17.  The general RIEMANN-HILBERT problem for a simply connected
domain D,0 € D with SCHWARZ operator S is solvable for non—negative indez x > 0.
The general solution then ts

w(z) = %O [(5@(2) +ico+ Y (cwH(z) —Gw ()|, zeD,

k=1
where
Y(z) = (Sarg((T"M¢)))Nz), ze€D,
P(¢) = em)c|==p((), (edD,

and w is a conformal mapping from D onto D,w(0) = 0,co € R,c, € T,1 < k < &,
are arbitrary constants.

For negative index k < 0 the problem is solvable if and only if the analytic function
S has a zero of order —x at z = 0. If these —k conditions are satisfied then

w(z) = 2°"(SP)(z), (€D,

is the solution.



54 Complex Analytic Methods for Partial Differential Equations

Remark. When the SCHWARZ operator is explicitly known then the conditions for
the problem to be solvable in the negative index case can be written down explicitly.
For the unit disc for example, they are

o dC
(P(C)E"—ﬁ=0’ OS’CS—K—I.
Ki=1

Proof. Because 0 ¢ 8D and /dlog{(""A(()} = 0 then log{¢{~*A({)} is a single-
valued continuous function on BaB and
7(2) := (S arg(¢T"M(()))(2)
is an analytic function in D satisfying
Rev(() = arg{¢™"A(¢)} = arg A(¢) — karg{ on 8D.

Thus on 8D
e~ ) = Im(Q)-i arg M¢) +inarg( A(()C&'(I—&elm(()

and for a solution w

Re {(~"e=Ow(()} = e™|¢|~*Re {A(Q)w(()}

eI p(C) = () -

As z7%e~""(*)y(z) will be an analytic function in D with the possible exception of
2 = 0, where eventually in the case x > 0 there will be a pole of order not greater
than x. Using Lemma 7 for £ > 0 we get the above form of the solution. If x < 0 we
have to find the solution within the class of analytic functions having a zero of order
—« in z = 0. But the solution of the DIRICHLET problem

Re{¢™e " w(()} = 3(¢), ¢€dD,

then is uniquely given by S@. This leads to the solvability conditions. If they are

satisfied then, obviously, '
w(2) = 2"e")(5§)(2)

is an analytic function in all of D satisfying

Re {M(Q)w(¢)} = ¢(¢), ¢€dD.

In order to get a uniquely given solution in case k > 0 we impose some side conditions
on the solution.
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Corollary 2.  For nonnegative indez the RIEMANN—-HILBERT problem together with
the side conditions

Im{Mar)w(ax)} = b, 0< k<26,
is uniquely solvable. Here ay € 8D,ay # a; (k # 1), are given points and by € IR are
prescribed, 0 < k < 2x.
Proof. It has to be shown that the free coefficients ¢g € IR,cx € €' ,1 < k < &, are
uniquely given by the side conditions. We have

b = Im{(au(er) = Im{age e X@{(5)(er) + Qu(a)])
— el | Im S3an) + co + 3 Im{ey(ar) - S e} | |
where )
Qu(2) i=ico + Y _lerwt(2) — Tw™*(2)] -
Thus =
o =i 3 {euH(@) = TH(an)) = bee ™ ag| % — Im Spla) = b

u=1
or with z; := w(ax) € D,z # z,k # 1,d, := —ic,, 1 < p <k,
co+Z{d,,zf+¢_l:z;“} =b, 0<k<2.
=1

The determinant of this linear system is

1 20 ... 28 z3' ... " 1 2z ... 2%
2%
z M . . . . 2
—_(— =x+1 -
= (—1)v==+ .o . ”z,,
. . . . . . v=0
-1 -
1 226 ... 25 250 ... 234 1 2z ... 22
32 2
L3 L3
p— -
=(~-1)"7 [1 (zi—2) [[ s~ #0
0<i<k<2x v=0

and hence the system is uniquely solvable. From the fact |2,] = 1 and b € IR by
using the CRAMER rule the solution ¢; can be shown to be the complex conjugate of
Cy.

In order to handle the solvability conditions for & < 0 the boundary condition is
modified.
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Definition 9.  The RIEMANN-HILBERT problem
Re (\(Qw(()} = #(() + h((), (€aD,
where h is identically zero if k 2 0 and for x < 0
he)= Y htz), z€D,
k=x+1

is called the modified RIEMANN—HILBERT boundary value problem. The coefficients
hy are restricted to

hoy=he, Jk|<-x-1, (1.4.3)

and have to be determined properly so that the solvability conditions are satisfied.

Theorem 18. The modified RIEMANN-HILBERT problem is uniquely solvable for
& <0.

Remark. Together with w the ki have to be determined. Because for z € D we
have w(z) € 8D, so that for z € 0D

-r=1 I
h(z) = ho + z {hkw"(z) + h_kw"‘(z)} = Reho + 2Re Z hkw"(z)
k=1 k=1

is real. Observe hg = ho = Re ho.
If the h; are found then the solution w to the RIEMANN--HILBERT problem

Re (X(()w(¢)} = ¢(¢) + A(¢) on oD,
is uniquely given by

w(z) = 25 (™)1 (0(¢) + R(O))(=), z€D.

Proof. The solvability conditions for the modified problem in the case D = D are

MmHOIC(p(¢) + A(())( T 1dC =0, 0<I< k1.
Kl=1

We will only consider this case. It has to be shown that the h; are uniquely determined
by these equations. Taking the complex conjugate of

—-x—1
Yo b f (He™Ode = - / P(Q)e™¢Mde, o< -k,
k=mtl iz IKl=1
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and replacing k by —k gives

—-x-1
Do b [ e = - / P(Q)emO¢Nde, 0SS -k -1
k=l = Ki=1

Hence, we have to solve the linear system

—-x—1
3 b [ ¢oiremdg = = [ poemOciag, < -n-1
e = Ki=1

The determinant of this system is the GRAM determinant of the system
{¢¥e™ @ : |y < —2x — 2} .

Because this system is linearly independent its GRAM determinant does not vanish,
see [Cohi53], p. 62. We will give another function theoretic proof for this system to
be uniquely solvable. Consider the homogeneous system

-x—1
S b [ Okl =0, 0<I< k-1,
et =

and assume it is not trivially solvable. Then

-x-1
h(z) := ) hz*#0 in D, Imh(()=0 on 8D,

k=x+1

™ OR(()¢Md¢ =0, 0<I<-k-1,

Ki=1
such that
= L [ gm0 Stzdl _ " «_d¢
H) =g [ @mOnEEEE =20 [ amonqen L
Kl=1 Kl=1

is an analytic function in D having a zero at the origin at least of order —«. Hence,
Re H(z) = 0 describes near the origin —« level lines. To see this rewrite

H(z) = z"‘ﬁ(z), ﬁ(z) analytic, z=re",
and note

Re H(z) = r™* cos(—kp)Re H(re) — r~* sin(—xp)Im H(re*) =0,
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from which R
Im H(z)

Re H (z)
Letting r tend to 0 and assuming that the right-hand side tends to some finite limit
we get

cot(—kyp) =

1<k< 2.

"The assumption on the existence of the limit is no restriction of generality because
H (0) # 0 may be assumed or we may factor out another power of z from I (z). If then
Re H(O) 0 we know Imn H(O) # 0 and instead of cot(—xy) we pass to tan(—xyp)

leading to the same result.
Consider now these at least —2x level lines. They cannot intersect themselves in

D, because otherwise H(z) = 0 would follow by the maximum principle and the
CAUCHY-RIEMANN equations. Thus the level lines meet D in points different from
one another. As on 3D

Re H(¢) = €™ h((), Imh(¢) =

in these at last —2« points we have k(¢) = 0. But 27*~! k(z) is a polynomial of degree
at most —2«x — 2. Having at least —2« zeroes this forces k to vanish identically. Thus
the homogeneous linear system is only trivially solvable, £y = 0, k] < —x — 1. This
also shows the inhomogeneous system to be uniquely solvable.

Remark. If 0D is HOLDER continuous, i.e. consists of finitely many HOLDER
continuous simple closed JORDAN curves, and if A and ¢ are HOLDER continuous
functions then the solution to the RIEMANN--HILBERT problem is HOLDER continuous
too when it exists. This can immediately be seen for the unit disc, see Theorem 5. If
D is simply connected and w is the conformal map from D into D and w the solution
to the RIEMANN-HILBERT problem then w o w™?! satisfies

Re {AM(w™(2))w(w™'(2)} = p(w™'(2)), z€0OD.

From Kellogg’s result, see [Golu69], chap. X, §1, which asserts the continuity of
d/dzw™(z) in D and of d/d¢w(¢) in D, the coefficients of this boundary condi-
tion are seen to be HOLDER continuous. Therefore w o w™! is HOLDER continuous
and thus w is too by the boundedness of d/d{ w({) in D.

If D is multiply connected w can be represented by the CAUCHY integral

W) = 5 / w7 = 3w wo): 2," ==,

u=0

0<u<<m.

While wp is analytic in the bounded domain Do with Do = o, w,,1 < p < m, is
analytic in the unbounded domain 1), containing z., with dD, = I',. Because these
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domains are simply connected and contain the curves T, for 0 < v < m,v # p,w, is
HOLDER continuous not only on I', but also in the other T',, i.e. on all of I'. Thus w
is HOLDER continuous on T and hence on D.

For multiply connected bounded domains only two simple RIEMANN-HILBERT prob-
lems will be considered, the DIRICHLET problem and a problem which turns out to
be “adjoint” to the DIRICHLET problem, see [Veku62], p. 228.

Definition 10.  The adjoint RIEMANN-HILBERT boundary condition to
Re (\(QJw(()} = #(¢), (€dD,
is the homogeneous RIEMANN-HILBERT boundary condition
Re {A(()('(s)w(()} =0, (=((s)eadD,
where s is the arc length parameter of 0D.

In order to motivate this definition let w and w be solutions to the respective
RIEMANN-HILBERT problems, i.e. w and w are analytic functions satisfying the
above conditions, respectively. From the CAUCHY theorem then especially

Res / w(C)w(¢)de = 0 .
8D

Observing .
AOI=1, AMOw(C) = »(¢) +iu((), ¢€dD,

with a proper real function y we get

Re / (8(€) — i O)MON(C)C! (5)ds

8D
- / w(O)Re (A(Q)w(C)¢(s)}ds + / P (O)Im {A(Q)w(C)C'(s) }ds
8D 8D
- / PN (s)ds -
8D

This partly gives the following result.

Theorem 19. A necessary and sufficient condition for the inhomogeneous
RIEMANN~HILBERT problem for analytic functions to be solvable is that

/ POMOAQ)dC = 0 (1.4.4)

aD

for any solution w to the adjoint problem.
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Proof. The consideration from before shows that (1.4.4) is a necessary condition.
In order to show this condition to be sufficient the theory of singular integral equations
is needed, see [Veku62], pp. 230-236, where generalized analytic rather than just
analytic functions are treated. Here these considerations are exploited for the case of
analytic functions.

From Re {Aw} = ¢, Re {\{'w} = 0 on 3D it follows Aw = ¢ + ig and A\('w = iy, i.e.
w = Ap + 1Ag and w = iA(’y on AD with real functions x and x. From the CAucHY
formula

/ (<)<p(<) —— / A (o— = wy(2)+ wa(z),z € D,

w(z) 27i

w(z) = — / NOT(s )x(C) z€D,

and by the PLEMELJ-SOKHOTZKI formula

WHE) = FMOQ) i) +w(Q) + wal() = € 9D,
Q) = FNOTEN) + 5 [FOFEZ,
aD

= POTENQ+ g [TOx;2, (= ¢(s) € 00,1 = 1(0).
aD

Here the respective integrals are CAUCHY principal value integrals. From the bound-
ary conditions then

¢ = Re{Tut} = Re(p+in) + Re (uwy +ws))
=%¢+Re{iw,}+nc{xw,},
0 = Rt =Refr [ f L XOLTDY,
aD

Setting

1 MOt(@)A)

Kl(c’t) = Re 2 (-t
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then

Re (30w} = ~ [ K¢, Outt)do = 30(0) = Re (KO ()

aD
= 300 - Re {50 [u() - 0010}
= #(0) - Re (Wi (0)}

= —Re {(M(Qwi (¢)} =: vo -

This is a singular integral equation for u

- / Ki(G,)(t)do = po. (1.4.5)
aD

The preceding equation for x is of the same kind, namely

/K,(t,()x(t)da:O. (1.4.6)
8D

For treating these equations the following excerpt from the theory of singular integral
equations is given, see [Veku62], p. 230-236, {Mipr86], chapter 3, [Musk53], chapter 2.
For given a, f € C*(0D;C ), K € C*(dD xdD;C ), 0 < a <1,

K = al00(0) + = [ (Gl 25 = £(0), C € 9D,
aD

is called a singular integral equation.

K= a(O¥(0) ~ 77 [ K(tOwO 27 =0, ¢ 0D,
aD

is called adjoint to Ky = f. If
a(¢) + K(¢,¢) #0,a(¢) — K(¢,¢) #0on 8D
then
=_/ a(¢) — K(¢:¢)
BAQ)+ K0

is an entire number which is called the index of K. If Ky = 0 has k and K'yp = 0
has k' linearly independent solutions then both k£ and &’ are finite numbers related by
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k — k' = k with one another. The inhomogeneous equation Ky = f is solvable if and
only if f satisfies

[row@a=o01<isw,

8D
for any basis {; := 1 < j < k'} for the solution space to the adjoint equation
K'p = 0.
Applying this result for the above equations (1.4.5), (1.4.6), observing |A({)| =
[¢'(s)] = 1, and & = 0 we see that (1.4.5) is solvable if and only if

/%(C)x;(()ds =0,1<j<k, (1.4.7)
aD

for a basis {x; : 1 < j < k} for the solution space to (1.4.6). If it can be shown that
these conditions are equivalent to the conditions (1.4.4) then it is evident that (1.4.5)
has a solution 4 determining the solution w via w = A@ +iAu on 8D. From here w is
uniquely given in D by the CAUCHY formula, see the remark below.

We consider some x;, and observe

w(s) = 57 [ NOTEMC) 2 = 21“8/ M7= 1S5Sk,
aD D

Let us assume there is a function ¢, analytic in the bounded domain D, with 8D, =
I'y,1 < p < m,and ¢ analytic in the unbounded domain Do with Dy = I'y vanishing
at infinity, go(00) = 0, such that ¢,(¢) = M(¢)¢'(s)x;(¢) on I', for 0 < y < m. Then
by the Cauchy formula

REWENGY $(0)
o= g5 [ £ Z / LLUPEY

in D, so that w; is the tnvxal solutlon to the homogeneous adjoint boundary value
problem. Let xy,...,xs, 0 < £ < k, be those elements of the above basis correspond-
ing to linearly independent solutions wy, . . .,w;. For the remaining x; the related w; is
identically zero and hence by the PLEMELJ- SOKHOTZKI formula we have an analytic
function ¢; in w\D satisfying ¢;(c0) = 0 and ¢; (¢) = —z/\(()(’(s)x_,(() on D, i.e.
x;(¢) = tA(¢)¢'(s)$;(¢) on OD. Thus ¢, is a solutlon to the so—called concomitant
problem

Re {A(¢)('(s)$7(¢)} =0 ondD

in the class of analytic functions in @\5 vanishing at infinity. It has k — £ linearly
independent solutions because the x; are linearly independent.
Let us now consider the conditions (1.4.7). Inserting

(¢ _{ =) (s)wi(¢) , 1S5 <,
’ NOC()45(0) + L+1<5 <k,

on 90D
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leads for 1 < j < {to

/ wo(QOxs(Q)ds = —i / P(OMO)C ()w; (C)ds

aD aD

i / Re {(NOw? (O} M) (s)w;(()ds
aD

—i/¢(()/\(C)wj(C)dC+ Re {z‘/wl’“(()wj(()d(} .

aD aD

Because wjw; is analytic in D the last integral vanishes so that (1.4.4) for w = w;
implies

[etemomon=0,1<j<e.

aD
Similarly, for £+ 1 < j < k we get

/ co(QOxs()ds = —i / Re (X(Q)wi (O}A(C)¢' ()65 (C)ds
aD oD
= —Re {z‘ / wr(c)as;(odc} =0
D

again by the CAUCHY theorem, this time applied to the function wy ¢; analytic in

&\D and vanishing at infinity.
Thus (1.4.4) together with these last & — £ conditions imply (1.4.7) and hence (1.4.5)
is solvable for u.

Remark. Having determined y as a solution to (1.4.5) it has to be verified that
()= 577 [ MO + 8072 = wi(e) 4 wa(z) , 2 € D
w(z) = 5 7] (¢ C_z-w,z+wgz),z€ ,
3D

indeed solves the RIEMANN-HILBERT problem. (1.4.5) can be written as
Re X(O)(wf (€) +w2(9) = 9(¢) -

This and the formula

wF(6) = SMOMC) + walC)

show

Re {(A(Q)wt(¢)} = 9(¢) -
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The index of the adjoint problem to the RIEMANN—-HILBERT problem is
1 TR 1 _ L ,
o [ 10BN = ~5; [ 1o A0) — 57 [ dlogc's).
3D 8D 8D

Here the first term on the right-hand side is the negative index of the original problem,
—«k, while the second term is m — 1 where m + 1 is the connectivity of the multiply
connected bounded domain D. ((s) is the tangent unit vector on dD. When ( varies
along 1 in the positive direction the argument of {’(s) increases from a starting angle
o to po + 27. Because of the negative orientation of the I';,1 < g < m, similarly
on I', the tangent vector starting with some angle ¢, ends up with ¢, — 2r after a
revolution of ¢ around T',,.

Later on we will be interested in the adjoint problem to the DIRICHLET problem i.e.
where A({) = 1. Then the index of the adjoint problem is m — 1 and the solution
space to this special RIEMANN-HILBERT problem has dimension m, see [Veku62], p.
259. To show this m over IR linearly independent solutions are constructed which
span the solution space.

Let u,,1 < p < m, be the so—called harmonic measure of the boundary curve T,
with respect to the domain D, i.e. the uniquely given harmonic function satisfying
the boundary condition

0, v
u,,=6,,,,:={ s on I,,0<v<m.
1, v=yu

Obviously, . 80(¢.2)
,z
uy(z) = o gaTds( .

“

On any level set {z : u,(z) = const.}, especially on D we have

d“;:z) = u,e(2)2(s) + w,3(2)2'(s) = 2Re {2(8)uus(2)} = 0

when s denotes the arc length parameter. Thus the function (see section 1.2)

1
¢M(Z) = 2“#:(2) == L(z, C)d<
-/

which because of u, being harmonic is analytic, is a solution for the problem adjoint
to the DIRICHLET problem.

Let @, € IR be such that 357 a,4,(2z) = 0in D. From 8/3z3 7. | a,u,(z) =
0 it follows that the real function 37, a,u,(z) must be antiholomorphic i.e. a
holomorphic function of Z and hence constant. But this constant has to be equal to
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any of the @, and at the same time equal to zero as can be seen by restricting z to
I,,0 < v < m. It can be shown that the number of linearly independent solutions is
at most m, [Veku62}, p. 259. Thus any solution to the adjoint problem is a real linear
combination of the ¢,,1 < g < m. This can be shown directly. Let w be a solution
to the adjoint problem Re {z'(s)w(z)} = 0 to the DIRICHLET problem. Let u be a
harmonic function in D such that 2u, = w. For some fixed point a € I) we have

u(z)

J 0t + 5O} + uta)
= 3 / {w(Q)d( +w(()dl} + u(a) = Re / w(¢)d¢ + u(a) .

This functions single-valued. To see this let f,, be some simply closed curve in D
homological to I',. From the CAUCHY theorem

/ w(()d( = / w(¢)d¢

Tu

we have

/{“c(C)dC + ug(¢)d(} = /{ud()d( +uz(¢)dC} = /d“(((s))d

l",.

because
225D _ (0)¢(5) + WIQITE) = 2Re (¢S} =0 on T,

This last equation also shows u(() to be constant on any I',,. Let u({) = a, € R for 0 <
# < m. Then ug := u — ap is a harmonic function in D satisfying uo = (a, — ap)u, on
T, for 0 < p < m and hence, obviously, uo = 37" (@, — ao)u, in D as a consequence
of the maximum-minimum principle. Thus w = 2u, = 2uo, = 37, (, — @0)¢,. The
harmonic functions u, give some insight into the nature of the multi-valuedness of
the harmonic conjugate k(z,() to the GREEN function g(z,{) of D. This multi-valued
function defined as

h(z,20) = /@;i’—:o)dq + const.

acquires an increment equal to 2xu,(zo) as z describes a closed curve f‘,, homological
to I', which does not contain the point zo. To see this apply the first GREEN formula,
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Theorem 11, to u = 1 and the harmonic function v = g(-,20) in the ring domain
D, c D with 8D, =T, UT, giving

9g(¢, 20) 9g(¢, z0)
0= [ Acgl¢, dn = [ 29520 4 [ 99\8,20) 40
5’{ ¢9(¢, z0)dédn [[ on, * [{ ong %

If on the other hand z describes a simply closed curve f,. bounding a subset of D to
which zp belongs then h(z, z9) acquires an increment equal to 2. This can be seen by
observing that g(¢, 20) + log | — 20| is harmonic in the subset of D bounded by L,
see the proof of Theorem 13.

Corollary 3. I. The DIRICHLET problem for analytic functions w in D
Rew(z) = ho(z) on 9D

ts solvable if and only if with the basis elements ¢,,1 < u < m, of the solution space
to the adjoint problem
Re{z'(s)4(z)} = 0

the conditions

/ ho(2)bu(z)dz =0, 1<pu<m,
8D

are satisfied.
2. The RIEMANN-HILBERT problem for analytic functions ¢ in D

Re {2'(s)¢(2)} = h°(z) on 8D
is solvable if and only if
/ho(z)ds, =0.
aD
Remark. The solution to the DIRICHLET problem is given in connection with

(1.2.3). The homogeneous DIRICHLET problem has the solution ic,c € IR . If the
RIEMANN-HILBERT problem

Re{Z'(s)¢(2)} = k°(z) on OD

is solvable the general solution has the form

¢(2)=¢0(z)+z7p¢m WEIR, 1<um,

u=1

with the particular solution

4
1 1
#o(2) := — £ (2,0) + = | B°(()ds¢, £(2,() =7 [ {(z,t)dt.
ma,[ ( ¢ z) /
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Compare p. 37 for the definition of ¢(z,(). To verify this representation formula the
form of the particular solution has to be deduced. Let a € 'y be that boundary point
corresponding to s = 0,a = z(0). Define the multi-valued analytic function

Bo(2) = / $o(¢)d¢

for a particular solution ¢o. On 9D it satisfies

d
E‘DO(Z) = 2'(s)¢o(2) .
Defining H(z(s)) such that H(ap) = 0 and
d

——H(z(s)) = h%(2(s))
then @ satisfies the DIRICHLET problem
Re®o(z) = H(z),z € 0D .

Applying the representation formula for the solution to this DIRICHLET problem gives

®(2) = - / Jo(2, ) H(Q)d( +ic
aD

Differentiating this and using

1

L(z,() = ( <

)2 - I(Z’C) )

shows

/ L(z, QH()d( = = / o - / Uz OH()C

/ 5 (860~ 72 ) How

L (,t;(z,o+<%z) W4,

e
aD

$o(2)

n

which is the above formula.






2. Inhomogeneous CAUCHY--RIEMANN systems

2.1 Integral representations

If w = u + tv is analytic then u,v satisfy the CAUCHY -RIEMANN system. If u,v €
C'(D) satisfy this system, then w is analytic in D. Let

Uy = Vy, Uy = —Vg.

Introducing the partial complex derivatives

then
2w, = uy + v —iuy + vy =2, +1v;) =, 2ws = u + v, +iuy — vy =0.
Thus the complex form of the CAUCHY-RIEMANN system is

w;=0.

Lemma 9. Letu,v € C'(D;IR),w = u +iv. Then

/w(z)dz + /w;dzdi = 0,
D

aD

/w(z)di~b/wz(z)dzd§ = 0.

8D

Proof. From the GAuss Theorem (Theorem 10) we have

/(uz + v, )dzdy = /(udy —vdz) .
D aD

From
wdz = (u+w)(dz+idy) =udr —vdy +i(udy + vdz),
wdz = (u+iv)(dz —idy) = udr + vdy — i(udy — vdz)
and d(z,7)
z,z |11 _ .
dzdz = d(z,y)dzdy = ' i dzdy = —2idzdy

both formulas follow.

69
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Remark. If w is analytic then from the first formula of Lemma 7 the CAUCHY
integral theorem

/ w(z)dz =0

8D

follows.

Theorem 20. w € C'(D;C). Then

w(z)=%/w(c)<dfcz 1/ (()dﬁd", (=¢+inzeD.  (211)
D

z
aD

Proof. For zp € D let

K.(20) :={z:|z2— 2| <e}c D, D,:= D\K.(2).

d¢ dédy
/ WO - / w5 =0

aD. D.

Applying Lemma 7,

follows. From

/ - 20 / (C —— l/w(zo + €€e™*)dyp

aD.

letting & tend to zero (2.1.1) is obtained because the area integral exists as can be
seen by introducing polar coordinates about zo,

[ =

Ke(z)

dEdn

//w—(zo + te™)e " dpdt .

Remark. (2.1.1) is called CAUCHY-POMPEIU formula, see [Pompl3]. Similarly,
from the second formula of Lemma 7

w(z) = / (c)— - / (=L % ep, @2.11)
D

follows. (2.1.1) can be deduced from (2.1.1) by applying (2.1.1) to @ and taking
complex conjugation. In a similarly way the SCHWARZ-POISSON formula can be
extended.
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Theorem 21. w € CY(D;C). Then

we) = o [ Rew(@EEE
Ki=1
+—-/1 (c)——— / {"”f‘z) ’l“f(fz)}dgdn, Ll<l. (212
Kl=1 |(|<l

Proof. Adding formula (2.1.1) for D = D and the complex conjugate of

21rz T
Kl=1 [{f<}

L[ w02 -1 / wlOpZgpdedn, o<1,

which follows directly from Lemma 7 for D = D we get

w(g) | _=zw(Q)
we)= 2m/{<—z C(C—z)}d‘

Kl=1

welQ) | Q)
-;/{c-z+1:z}“f" <t

Kl<1
when using ( d¢ = —(d( on |¢| = 1. From

11 2 i((-i-z l)
(-z ¢ ((¢C-2) 2A\¢ ’

then
(), ww(Q) d
/{ ““c«—z)}dC [ {Rreut0Z im0} 7
Kl=1 Kl=1
follows.
Remark.

%/lmw(()%:iq}, w€lR.
KI=1

If w is analytic in D then (2.1.2) is the SCHWARZ-POISSON formula. (2.1.2) may
be called SCHWARZ—POISSON-POMPEIU formula. It may be given a more symmetric
form by subtracting : Im w(0) from both sides giving, see [Behi93],
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w(z) — i Imw(0)

1 (+zd( 1 we(C) ¢+2 , wil$) 1+2C ,
_.2?/ w2 F 210{ e T ey (21)

In order to show that this formula will give a solution to the DIRICHLET problem for
the equation w; = f for some given f in D we have to consider the area integral in
(2.1.2). Generally we will study

dédn

Tf(z):=

Before doing this we will generalize the representation formula (2.1.2) to any simply
connected smoothly bounded finite domain D,0 € D. Let w be the conformal mapping
from D onto D with w(0) = 0,u'(0) > 0. We will transform formula (2.1.2) for
functions in D. In order to do so we use the first and second GREEN function of D,

see section 1.2,

R P e
G'(z,¢) = _ZIOS l_w(()m
G(2,0) = 5 log|((¢) ~ ()1 ~ w(O)(E))

where here we add the factor %. We have

G'(2,0)+ G"(2,0) = —5logh(() (=),

G'(2,¢) - G"(z,¢)

5z 10811~ (eI
IR (Y
21 w(() —w(z)’

_ 1 _w(Qwlz)
27 1 - w(Qw(z) ’

a%(c'(z, ¢) +G'(z,0))

0
a—C(G'<z,c) -G'"(z,0))
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dG"(2,¢) = G{(z,()d( + Gf'(z,0)d( = 2Re[G{(2,¢)d(]

_ 1 (O w(z)w(§)dg
w(() ~w(z) 1 -w(()w(z)

d.G'"(z,¢) = —i [Gg'(z,C)d(—G%’(z,()dZ] =2Im [Gé’(z,C)d(]
_ [ eode | el ]
2r [w(() —w(z)  1-w(w(z)]
4G'(2,0) = i [GH(2,0)d( — GL(z,()dC] = 21m[G(z,O)dc]

[ ’ N ]
_ o [Lwod | aEwod

2 [w(() —w(z) 1 - w()wlz)]

d.G'(2,¢) —1dG"(2,() = 52; [w(‘z;(i)ic(z) - w(z)wl(od(] ;

,

1 - w(Q)e(2)
1 z -1 e = ——1_ 1 W(Z) ’
0050 ~46"6.0) = =51 [yl + et YO

1 w(() + w(z) dw(()
"2 () —w(z) wQ) ¢ €9P

i, () = _L w'(€)d¢ w(z)'(¢)dC __ 1 W(¢)dd
d.G"(2,() lm[w(c)—w(z)J’l—mw(z)] 5 Im (0
1 dw(()
Tomi w(() » (€oD.

Theorem 22.  Let D be a simply connected bounded domain with smooth boundary,
0€ D, andw € C*(D; ). Then forz € D

w(z) = - / Rew((){daG'(z,() — §dG™(z,()} i / Imw()da G (2, C)
8D aD
(2.1.3)
+2 [ {welO [l + G112, 0] + w0 Gz ) — GH(2,0)] e
D

Proof.  Applying (2.1.2) to w(w™(2)) in D and transforming the integrals by
¢ = w(() we arrive at (2.1.3).
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Remark. Let ¢ € C(3D;IR),co € IR, and f be integrable over D then

wlz) = - ] (0) (daG! = 1dGM) (2,) = ica
aD

+2 / F6) (GL+GH) (2,0) + T (GL — GIY) (¢, ) }dédn, z€ D,
on 8D satxsﬁes Rew = ¢ because on 8D

{70161+ 611 2.0+ 7@ (64 - 64') (2.0} et

D

- R~ 4 (I
- /{f(c) ) O }dfn

o() - w(0)
} FOW(0)
= 5im 2(0) —w(z) X

aD

Later we will show w; = f so that the above formula gives a solution to the DIRICHLET
problem for the inhomogeneous CAUCHY-RIEMANN system.

2.2 Properties of integral operators

Definition 11.  For f € L\(D) Tf is given by

(1)) = M) = -1 [ 10E2, sec.
D

Theorem 23. (LN. VEKUA).  Let D be a bounded domain, f € L,(D),2 < p.
Then
ITf(2)] < M(p, D)fllp, 2 € €;ITf(2)| < M(p, D)lIfllp|27",0 < 2R < |2 ;
-2
ITf(z1) = Tf(z2)| < M@ lpler — 22, a0 =2=Z 2, €€ .

Here || f]|, is the L,~norm

1l := Qlf(z)!”dzdy) , 1<p.

M(...) always denotes a nonnegative constant, depending on the quantities in the
parentheses.
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Proof. Applying the HOLDER inequality

1 falle < flls 1 f2llss

1 1 —
_+—_Sl‘) veLuD7 ”‘_']721
=<1 L€ L, D)

ITf(2)] < uf,u(D/ ,"f“") , "-,+§=1.

Let d = diam D := sup |{ — z| denote the diameter of D, then from
¢.z€D

gives

-_P_ _g=P=2_
_p—l<2’ 2 ‘I—p_l—aoq
we see
f 2
Jic=srdeans [ ¢~ alraan=or [0-vir= 2 ame.
D Ik-2l<d 0 !
Thus ,
1 /27 \+
= 2 0
M(p, D) : - (aoq) d*
- dtd:
ITf) - Tfl = (222 [ 28
Y (SRS
71—z
<Ey, ( Jac-aiic- Zzl)"°d£dn)
D
Consider more generally for a < 2, < 2,2),20 € T, 2, # 22
J(e,B) = /I( — 2)|7%|¢ — 25| Pdtdy .
D
Let po > 0 be so large that
Dc{z:|z—=z| <200} .
Then
200
= I€—z1|7%|¢ - zgl'ﬁdqu < By =By

2"] —32|S|(‘zll<21’0 zlzl—zzl

75
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because for these ¢ in question
200~z 22— nl-2zn—2|22(-al-{-al=|{-2l.

Thus the HADAMARD estimate is shown, see [Veku62], p. 39:

22—0-[] .
mlz‘ - 22|2’°_ﬁ, if 2<a+8,
Ji<2%x { log Tz.'io_zzl‘ it at+f=2,
2-a~f
Eza—_ﬂpg_aﬁa, if a+8<2.
B [ k-l - alPdedn = - e [ 1ereic + 1agan
I(-z11<2z1 - 2] Ki<2

because for those ¢ in question

¢ — 22| _

lzs — 22| ~

(~=

2y — 22

(— 2 21 — 22
Z1—22 21— 2

+1]

Hence, for 2 < a+ 8
J(e,B) < Ji + J2 < M(e, B)|21 — z|*>77

where
22-—0—[]

M(e,B) = Py

+ / ICI=1¢ + 1]-%dedy .

Ki<2
From this estimate applied fora = f=¢,1 < ¢ <2(2 < 2q)

(7 5(22) = TSl < 22 (Mg, @l — 2203

= M(p)|fllplz1 — 22|,

where
-2 2p-2 2
ao:=p—-=p —1l==--1.
p p q
For 0 < 2R < |2| the estimates is obvious.

Theorem 23 shows that T is a completely continuous linear operator from L,(D) into

C"’°(¢')if2<pandao=p

. Moreover, the HOLDER norm of T'f

ColT£:@) = sup(Tf( + sup TIEVL=TICEN < pyip, pyppy, . (22

21,02€C |21 = 2g|%0
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Definition 12. A complez function f is said to belong to L, ,(C) if f € L,(D) and
f, € Ly(D), where f,(z) := |z|~*f (%) Here 1 < p and v € IR . The norm for
f €L, (C) is defined as

M llp := lfllp + W follpm -

()
/)

I3
near 0 does not increase

Remark. Integrability of |f,|° means that

too much, namely weaker than |z]|72, i.e. near 0 behaves as |z|™* where

p< £2—_upl This means |f(z)| near infinity increases not more than |z|¢"’.
From
» »
[ 1sovaen = [ 1| ()] aean= [ (1er4]1(3)]) deen
1<Kl |(l KI1

we see L,(T') = LP‘%(G' )

Theorem 24. (ILN. VEKUA). f€ L,2(T),2< p,ap := p_%g Then

TN = Te @) = -5 [1OFEL, zee,
a

satisfies
ITf(z)] < M(P)Iflp2 zel ,
ITf(z1) = T(22)] < MP)fllp2lzs — 22|, 21,22€ €,
ITf(2)] < M(p,R)|fllp2lzl™, 1<R<Z|z].
Proof. . itd itd
T =~ [10FEL -1 [ (g) £
Kig1 |(|<l
Rewriting

1 z 1 1

1
=20 1-207¢ T-¢7¢
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the second integral can be written as

w0 -0 (1), w@=-t [T (1) 2L,

I(l<l

Setting | dedy
o)== -1 [ HOFL = Tof(z)
Ki<t

we have

Tf(z) = () + 6:(0) — 2 G) .

Therefore from Theorem 23 we have for z € €

()

lg1(21) — g1(22) < M(P)Ilf"p.b|21 = 22| < M)l fll,.2lz1 = 22|,

()= Gl= 2 [ s () =i

To estimate the last integral we dlstmgmsh three cases.

} S M@ Slpa »

ITf(2) < M(p) {l!f 2 +

»BD

i. |z1],|22] < 1. For [¢[ < 1 then

= ¢l < 1= Cail

()

I\DI'—-

so that because of |z; — z3| < 1
1 1
g2{—)—9{— )<
21 22

i, |z] < 2 < |24|. Then

|21 — 22| < M(P)Ifllp,2l21 — 22| .

p.D

jz) — zzl‘: — 22

|22

2 (:)-=(3)

< g |2

2
+1) <2,

2
P < 200 ﬂ
= 23

<2 e )

< M@l f llp.z|21 =zl

22

so that
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1 .
iii. 3 < |21|, }22|. Then from step i.

() - G- [ (e
1 1

< M@ fllpa |- -

22

= M@ fllp2lz1r — 221

In order to prove the last estimation of the theorem consider 1 < |z|. Then

0(6)| < =y [ V©Mdedn < M@l
Ki<t

Applying the second estimate of Theorem 23 gives

on-n(3)] < ol (b
< M) lpalel ™
Thus
16N < MO (g + 1447 < Mo, Ol =,

because for 1 < R < |z|
o
el R
l2)]-1 7 |z|-1~ R-1

Remark. For f € L, (€ ) the function Tf € C*(€'), T f(z) vanishes at infinity as
{z]7¢. T again is a completely continuous operator on L, (€ ) into C**(€ ). More-

over,
Coo(Tf,€) < M(P)lIfllp.2 -

We are now interested in differentiability properties of T f. For that reason we need
the concept of weak derivatives, that are in other word generalized derivatives in the
distributional or SOBOLEV sense.

Lemma 10. f € L,(D),2 < p,D a bounded domain, f = 0 in @ \D. Then for

A<2<p(2-1)
dédn dtdy
9(z) = | Q)5 = [ f((+2)=x
D/ =P ¢/ [

is continuous in € .
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Proof. Let z; € € be arbitrarily fixed and |22 — z;] < 1. Let R > 0 be suchl that
the supports of f({ + z1) and of f(¢ + z2) are in {z : |2| < R}. Then with - + p =1

déd
e~ el = | [ ¢+ ) llﬁlj’
IKI<R
; :
< / (¢ + 21) = F(C + z2) Pdedn / I dedn |
ICI<R [KI<R

R
2T
—-Aq _ 1-)g = 2—- g
|¢)|="dédn = 27r/t dt —2_’\qR ,
0

KI<R
Ap 2

M= <A sy =t

We have to show
/ [£(¢ + 21) = f(¢ + 22)[PdEdn = / [£(C) = f(C + 22 — 21)|Pdédn
IKI<R ICI<R+)z1]

becomes small if z; — 2, does, i.e. that

[£(Q) = f(C + 2)[Pdédn, Ry:= R+ [z],
IKI<Ry

becomes small if z does, see [Sobo63], p. 12.

If f would be uniformly continuous the assertion would hold. Because f is integrable

m the LEBESGUE sense there exists for any & > 0 a closed set F in the open disc
= {2z : |z| < Ry} such that f is continuous on F and hence uniformly continuous

there and m(K\F) < 15 where m is the LEBESGUE measure. Because F C K is
compact 0 < dist (F,3K) =: d. For |z| < d the set

F—z:={(-z:(€eF}CK.

Let
F* = PO{F -2},

then ( € F* means ( € F and ( + z € F. Let now |z| < §(¢) such that for all ( € F*.

1F(¢) = f(C +2)] < e(2rRE) 5 .
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Moreover, from

K\F* = {K\F}U{K\{F - z}}
we see
m(K\F*) < m(K\F) 4+ m(K\{F — z}) = 2(mK — mF) = 2m(K\F) < § .

Hence, from the property of the LEBESGUE integral

[ 1roraean <5 (5)°

K\F*

follows if & is small enough, & = §(¢). Thus,
S5 = 5+ Pdean < [150) - £(¢ + 2)paan
K P
: ok

|| [ 1roraan | +| [ i ardean] | < Zmmr S <o

K\F* K\F*

Theorem 25. Let D be a bounded domain, f € Ly(D). Then T f € L,(Dq) for any
bounded domain Dy and 1 < p < 2.

a(e) = / lg(c)ll“‘d”,

is continuous according to the preceding lemmaif g € L,(Dy) for some p > 2. There-
fore fg1 € Ly(D) for f € Ly(D). Applying the FUBINI theorem, see [Rogo52], p. 121

dfdn
|f(2)lgr(z)dzdy = [ |f(2)| Iy(()l dzdy

Proof. The function

/ 19(C)! / lf(z)ll"”"” oY ey = / l9(Q)12(()dzdy ,

where

fi(z) = / £l l“f""

From |g|fy € Li(Do) and g € L,(Dy) it follows f; € Ly(Dy) for Il’+ L. 1ie.

— q
1< ¢ <2 From |Tf]| < fy then Tf € Ly(Do).
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Definition 13. A function ¢ is said to have a compact support if there ezists a
compact set such that ¢ vanishes outside this set. The closure of {z : ¢(2) # 0}
then is called the support of p denoted by supp ¢. The set of functions in C™(D) with
compact support in D are denoted by C§(D).

Theorem 26. If f € Ly(D) then for all ¢ € C}(D)

/Tf(z)w(z)da:dy + /f(z)tp(z)dzdy =0. (2.2.2)
b D

Proof. From the CAUCHY-POMPEIU formula (Theorem 20)

/ O L0 _ ep)z)

follows, so that

[rr@etntots = -1 [ 160) [ oxterz=hagan = - [ 100(00dean . @223)
D D D D

Definition 14. (SOBOLEV). f,g € Ly(D). Then f is called generalized derivative
of g with respect to % (z) if for all p € C4(D)

/ o(=)ps(e)dedy + / f(2)p(z)dzdy
D

D

( / 9()ps(2)dedy + / f(2)p(z)dzdy
D

D

I
o

1
o
——

This derivative is denoted by f = gz = g_f (f =g, = ?) .
z 2z

Remark. For ¢ € C!(D) and f = g; we have for ¢ € C}(D) by the Gauss
Theorem in complex form (see Lemma 7)

[tateonta) + 1e1o(e)dsdy = [(atelptaedsdy = =3 [ atelptais =0
D D aD

This means that if g is differentiable in the classical sense it is differentiable in the
SOBOLEYV sense and its generalized derivative is the classical one.

Definition 15. Ds3(D) is the set of functions having generalized derivatives with
respect to Z in D. Similarly, D,(D) is defined. Moreover, Dy(D) := Dz(D) N D,(D).
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Obviously, ¢ € Dz(D) implies § € D,(D) and vice versa. Theorem 26 shows

Tf € Dy(D) for f € L,(D) and
0Tf -7

Theorem 27. Ifg € Dz(D) and g; =0 in D then g is analytic in D.

Proof. It is enough to prove g to be analytic in the neighborhood of some arbitrary
20 € D. Without loss of generality we assume 2o = 0 and for proper R

={z:]z|]<R}CD.

Let for z,( € K
2(2,¢) i= 2|z = ([log |R| z<|| (R -] )( lcI? ) ,

which is the GREEN function for K with respect to A?, i.e. as a function of z is a
biharmonic function,

A22(z,¢)=0 in K\{().

Z € C'(K) as can be seen by direct calculations, and
Z(Z, () = Z:(Z,() = Zy(Z,C) = 0! |Z[ = R) ICI < R M

Hence,

{ Z(z,(), z€K
p(2) := ,( € K fixed,
0, z¢ K

belongs to C3(D). From f := gz = 0 we have
[ sterextardody = / o022 dsay = - [ 122, 00doty = 0.
D K

This result holds for any ¢ € K.

92(2,0) #2(2,0)
8(3(/() =dy K/()acaca-dd

when we used that Z € C*(D) is at least three times continuously differentiable.
Because

82Z(z,() _ 1! + R?z — 2R*( +2(? 2%

oz -z (R —%()? R(R? — 2()
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we find
T0) = -~ ] (=) "“"i =60+ 00)
with 2R c+ (2
¥4
8(() = ——/ (o) 2 = 2R+ 3¢ A dady
1 2(
hi(Q) = IO ot drdy .
sz’_(/ R? —%(

Obviously, ¢ and ¢, are analytic functions in K. Thus, differentiating the last equation
in the weak sense with respect to { gives

#¢) = ( 9(C) = Z(Tv)(c)=3(_c—)=g(o, CeK.

Hence, ¢ is analytic in K.
Theorem 28. Ifg € Dy(D) and f = g; € Ly(D) then

d{dn zeD,

9(2) = #(z) + (Tof)(2) = ¢(2)——

where ¢ is an analytic function in D. The reverse of this statement is true, too: If ¢
is analytic and f € L,(D) then g = ¢+ Tpf € Dz(D) and g; = f.

Proof.

a
S 9-Tof)=ge—f=0,
79— Tof)=g:—-f=0
so that by Theorem 27 the function g — Tp f is analytic in D.

gr= 2@+ Tof)= gt = ]

because ¢ is analytic.

Theorem 29. Let D be a C'** domain, 0 < a < 1, and f € C*(D). Then
Tf € C**(D),T is a completely continuous operator from C*(D) into C™*=(D).
Moreover,

0 a ey
21 =f+1, 3_ny = —if +:i1f
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with

1)z / 1O

I1f is singular integral to be taken in the CAUCHY principal sense, I1f € C2(D) for
f € C*(D),1 is a bounded linear operator from C*(D) into itself.

Corollary 4. Under the conditions of Theorem 29
T f(= T f(=
Iy, OTIE)

These equations hold for z € € if for z ¢ D the function value f(z) is replaced by 0.

=1f(2).

Corollary 5. If f(z) =0, f € C*(D) then Tf is complez differentiable and

B 20) = @)(z0),

where the integral I1 f ezists in the ordmary sense as an improper integral.

Remark. D € C'** or D a C'** domain means D is bounded and the boundary
is a finite set of smooth curves with HOLDER continuous tangent with exponent a.

Proof.

1. At first the [I-operator is studied,

my(z) = - / 10 "“’;’)ﬁ ~lim / s
iy [ L1 ey 1) [ S
!'E&,r/ ey KTy /(c—z)”

D, = D\K,(z), Ke(2):={¢:|¢ - z| <e}.
Since f € C*(D)

10 = 1) g gy — / OB G

(¢ —=2)?
exists. l ded
_acan  _
J T /dcc dedn
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By integration by parts

B ¢,
i (—z_é;z: ((—z)z_¢(z)’
8D aD
where (d(
#(z2): —5;; —

aD

is seen to be an analytic function in D and in @ \D.
Especially, when D = K, (R) for |z — zo| < R

_ 1 =
¢(z)_—2; / ¢ - 21rz (—z

K-z0l=R lK-z0|=R

_E S
RZE / T2

(—zl=R

R? 1 1 1 _
_% / Z—Zo((—z—(—ZO)dC+zo_z

I¢~20|=R
so that ¢/(z) = 0 in |z — 20| < R in that special case. Moreover,

1
2 / ( 27rz (( - 2)3 h

[¢-zl=¢ I¢—z|=¢

Thus, in general for any 0 < €
1 dédn

) Cep =90
D,

so that
(¢—-2)

This proves that I1f(z) exists as a CAUCHY principal value integral in D. For
z ¢ D the integral, obviously, exists as an ordinary integral. In fact as was

mentioned earlier it is analytic as T'f.
2. Next we will prove I1f € C*(D) if f € C*(D). Let 2,2, € D,z # 2z;. Then
1f(z2) = 11f(21)

gy = -1 [ LI geay — jipge) .
D



Inhomogeneous CAUCHY—-RIEMANN systems 87

(-2 ((~-z)(-2) (-z){-2z) ((-=2)

_ 1 f(¢) f(€) f(6) f(©)

= —;B/{ - + - }d{dq
_ _nm-—=a F(Q) = f(z2) . _22—21 fQ) = flz)

= Ik dédn /(c dedn

J @=ec— = — )~ 22)
- A f(zz) f(zl)
/ T —m™ J == oy X

Y T e ,,/ {(c —lzm‘zxizz (5 -c) e

Applying the CAUCHY—-POMPEIU formula (2.1.1) (Theorem 20) to % gives

__ 1 [Td 1 [ dedn dgdn
T om —z ) (-2 =4(z) - (——z'
aD b
Moreover, observing
/ 1 dédn
#'(z) = P (T_—z)z
b
we see
(zl - 22) dfdf] — ! — —
" D/ T )t ) mm  dl=)

In order to see ¢' € C*(D) rewrite

, _ {(s) d( _ i
(=) = 21rz/( 2m (’(s)( 21rz,/(

Here s is the arc length parameter on 3D. As ('(s) € C*(3dD) we have, see proof
of Lemma 1, with {x = ((sx),k = 1,2,

I¢'(81) = ¢'(s2)] < Hlsy — s2]* < FH'C‘ —Gl*.

Hence, ¢ € C'**(D) (and ¢ € C'**({ \ D)) follows from Theorern 5.

/ O -f2)
(¢

<& (f ) d{dn
—2)(( - Zo) / i¢

1 bl [ |

< Ha(f)M(a)lz = 2™
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(see Proof of Theorem 23). Hence,

ITLf(22) — [f(21)|

IN

M(e)Ha(f)|22 — 2|*

+{1(ea) [(22) + (55 = ble2) — 7 + 6(1))
2— 2

(5 - 6(a) T + ()

S [¢(2) + <
M(e)Ha(f)|z2 = 211° + |f(z2)l1¢(22) — #(20)

IA

+f(22) - f(21)] :: : : - ¢(Z:z : fl(Zl)

+ ¢'(z1)

< [(M(a)+ Ci(¢; D)) Ha(f)+ Co(f; D) Ha(#)]|22 — 21|
= M(e, D)Co(f; D)lz2 — 21[* .
In other words I1f € C*(D) and
Ca(I1f; D) < M(e, D)Cal(f; D) . (22.4)

3. For differentiating T f we consider

Tf(20) - Tf(2)

20— <2

= —w(zol— z) ./{ —lzo B Ci z (z°_-z;2}f(()d§dn

= / (e Zo)(( 2)2

__m [ JQ-f2)
T D/ (SRR

+1(2) [#0) + 222 ) 8z

- 11f(2)

- 29 z—2zo
so that Tf(z0) - Tf(2)
29) — F4

l———ZO —HIE) gy 22 pg,)

< M(@)Hal(Hlz0 ~ 4° + 1) IM -4
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Taking the directional limit from this equation

i { PRI - 22 gy o

J2g —2|—0
29 —-z=|z9—z|e'¥

follows for any direction ¢, i.e.

lim Tf(Zo) - Tf(Z) — Ilf(z) + f(z)e-h';p .
o stei® o=z

For<p=0and<p=%weget

6Tf(z) =1f(2) + f(2), 3Tf(z) =illf(z) —if(2),

respectively, or

oT 0 E_ = z
f(z) = _l. (_ +1 ) fl'f(z) f( ) ’

ar z 6 T = IIf(z
f( ) —_ _.1 (__1—) f(Z) f( )

Remark. From Theorems 23 and 29 we have
Ci+a(Tf; D) := Co(Tf; D) + Co((T£):; D) + Cu((T f)z; D)
< M(a,D)Cq(f; D) .

Hence T is a completely continuous operator from C*(D) into C'*°(D).

Theorem 30. Let D be @ C'*™*+ domain, f € C™**(D),m € INo,0 < o < 1.
Then T f € C'*™**(D) and

Cvn+a(nf§ ﬁ) < Cot14a(T f; Tj) <M(m,aq, D)Cm-}-a(f; ﬁ) .

Remark. The norm of f € C™t*(D) is defined by

0“f(z - o
CIRTTE 53 e E A A ECR S

u=0 v=0 31““"6}/ v=

Here, obviously, the derivatives with respect to z and y may be replaced by those
with respect to z and Z.
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Proof. We only consider m = 1. Similarly, by induction we can proceed to the
general case. As

Ci+a(Tf; D) < M(a, D)Cal(f; D)

just was shown and %Tf = f it is enough to estimate %Tf = IIf. For this aim we

rewrite

2 lim / 102 = iy / FCYgg sdedn

__nm[ o1 dein 1, dc}

%) e ¢-: Tl -.o
’2%5 / f(o(d_cz-_—/(f(z+ee'”)-f(z))e-h«pdv f(z )/ 0dy

[K-z|=¢

)}

If(2)

Now

tends to zero when ¢ does. Thus,

11) = (15) ) - =

Because of the line integral being an analytic function

_Hf 3‘(ng)=%’ ('?z nf= H 2m/f(0((

From here because of f € C'+*(D) and thus

1 i 1 o 1
%5[’(()(?_—2)2 = -%a{f(ob—cc—_z‘df

1 AOTG) 4
27t a (-2’
aD

which is HOLDER continuous in D with exponent a because f € C***(D) and D €
C'te, we see If € C'*o(D).
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Moreover,

IN

ca( n?, )+M(a D)H, (gf)

M) [c. (3D) + 1 (3)]

M(a, D)Chya(f; D),

Ca (%n fi E)

IN

IN

¢ (205D = G (3LiD) < CualsiD),

Co(Tif;D) < Cu(If;D) < M(a, D)Ca(f; D)

< M(a,D)Cia(f; D).
This, obviously, proves the assertion of Theorem 30 in the case m = 1.

Remark. While Tf is continuous in the whole plane € (Theorem 23) even if
f € Ly(D),2 < p, this is not true for IIf in general. As was just shown IIf is
continuous in D under proper assumptions on f and D. It is analytic and hence
continuous in & \D. But it is discontinuous in general by passing through points of
dD. Let f € C'**(D) and let dD be C*** . For 2 € D

_(0f 1 d¢
/) = (1%4) () - = [ 1072,

If z ¢ D then the same relation holds where IIf is a proper integral. This can be
shown as for the domain D,. Hence, for ( € 3D, ( = ((s), s arc length parameter,

(ILH*() = ()(©) = =A()TT) - (2:25)
Next we study differentiability properties of the T operator when D = @'.
Theorem 31. If f € L,(€)NC*(CT) then
TfeL,(C)nC™*(C), NfeC*C).

#(z) := ¢d¢ = R? /(Zl——%>d(=0, 0<|z|<R,
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R [ d
9(0) o ; Id =0
Ki=
d
Mef)c) = -7 [ f(O«d%’,’)av U= gl Me/ -
KI<R

As in the proof of Theorem 29, step 2, {I1pf(z2) — [Irf(z1)| can be estimated. Because
¢ = 0 in |z| < R the essential difference here is that the constant M is independent
of the domain i.e. of R. We have

Mrf(z2) — Mrf(z1)] < M()Ca(f; € )22 — 1%, |21, |22l < R,
Letting R tend to infinity yields
Mf(22) - Mf(21)] < M(@)Ca(f; T )22 = 21]°, 21,22 € C .

From
Maf(e) = -5 [ L0 Ddean - joar, i<,
I(I<R
where ¢'(z) = 0 it follows

1(s) < UESEN CIOMEEY  (£3 s
I(I<l 1<i¢)
because
dfd( -2wd _ _0
I -/ /
Hence,

2
< 2N+ 710 | [ K dean

1<Kl

p .
= 250+ 5 (757) 1Al < M@ pXisl, + 7)) -
Together with the above estimate of H,(IIf) this gives
Ca(l1f; @) < M(a,p)(fllp + Ha(f)) < M(a, p)([I Il + Calf;€)) .

From (see proof of Theorem 29, step 3)
Trf(20) — Trf(2)

20— 2

- rf(2) - f(Z) < M(e)Ha(f)lzo0 — 2|
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where ¢ = 0 is again observed, letting R tend to infinity we see for z € €
D116 = 1) 2TH2) = f(2)
0z - > 9z - )

At last we will extend the operator II to a linear mapping from L,(D) into itself.
Lemma 11. For f,g € C§(€) we have
(1f,9) = (f,Tlg) .

Remark. The TT-operator is defined by

(TIf)(z) = —2 / ores ddn

(-2

and (f, g) denotes the inner product

(f,9) = [ f(2)g9(z)dzdy .
/

IT and TT are adjoint operators in Cg°(€' ). This is what Lemma 11 says.
Proof. For f € C°(€') and 0 < R big enough
nf = 07;f T(af) al'If of

a 9z 0z’
_OTef .. (0f =1 dédn
Mpf = s =Tr (dc),TRf(z).— ”“/RI(C)(_z.
C[<

The first of these formulae follows from (see Proof of Theorem 30)
a d
Nrf(2) = ( f) (

because f vanishes on |(| = R for big enough R. For the same reason for those R by
interchanging the order of integrations

311 fdzdy / TS Gavdy - [ 7B dray
0z 9z
lzi<R lzl<R lzl<R

6_‘§ _ R
!fTR (64) dzdy a/fl'lnydzdy = (f,NRg) .

27rz
Ki=R
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Letting R tend to infinity then (I1f,g) = (f,TIg) follows.
Lemma 12. For f € CP(C ) we have TITIf = f.
Proof. Again we choose R so large that

suppf C {z:]z| < R}

and observe
= 8=(90
==T(=Tf) .
iy Jz (33 f)
From the CAUCHY—POMPEIU formula (2.1.1') applied to T f,

3 aT
Tf(s) = ~5rs / Tf(()=‘i<-§ -1 afc(o 2’%‘"% ’

Ki=R Ki<h
by letting R tend to infinity we get

. OTf(() dfdn _ = (ITf\ =
If()——; % T(a )-T(l'[f).

[

This holds because for R < |z|

R2
= |zl - e

rran=|3 [ rof ax /()]

IKI<R

so that 2T f(z) is bounded at infinity and hence

hm / Tf(()—— =0.

I( I=R

From oTS
Tf= T( 0z )

by differentiating we get

9 OF(9Tf\ _q
f'a‘Tf‘azT(a()‘""f'

z

(2.2.6)

Remark. IT1I is the identity operator on CS°(€). In other words the adjoint
operator II is the inverse operator of Il and hence II is a unitary operator in this
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space endowed with the L;-norm.

Lemma 13. For f,h € CP(C ) we have (I1f,11h) = (f, k).

Proof. If we could apply Lemma 11 to f and ITh then we would have
(ILf,ITh) = (f,TIMA) .

But in general I1h ¢ C§°(€ ). On the other hand for A € Cg°(€') we have (observe
supph C Kg,(0))

d{dr, MR}

el < - /Ro MO < e Ro<lal,
1 dfdrl MR}

(Th(:)] < ".c.!a., MOLETD < 2T Ro<lal,

with |h(z)| £ M. This is enough to show

. 1
Jim / (() =0 for |2|<R
lz|=R

and
. a —_— . 1 _
nl—l.Too / &-(Tfl'lh)dzdy = _R]-l.TooZ / Tfllkdz =0 .
|z|[<R |zi=R

Hence, similarly as in the proof of Lemma 11 we have II(TIA) = (ail'l ) as well as
0— 0— — =
(Tf, k) = —/Tf;,’:l'lhdzdy =/fT ;9—zllh dédn =/fl'I(Hh)d§dr, = (f, IIIR).
c c c

Applying then Lemma 12 to h proves Lemma 13.
Corollary 6.  For f € C°(€') we have ILf||2 = || fll2-
Proof. For f=h Lemma 13 reads

(If,1f) = (£, £,)
which is the assertion.

Remark. The L;—norm of the linear operator II is defined by

Il
Iy = sup =1.
e ST
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Because CZ°(C ) is a subset of Ly(€' ) which is dense there, IT as well as I are uniquely
continuable onto all of L,(C ) (see any book from functional analysis e.g. [Tayl58] or

[Dusc66]).
Theorem 32. For f € L,(€ ) we have I1f € L,(C ) and

LA, < Av"f”p (1< p)-

Ap being the smallest such constant has the following property. A? is a logarithmically
convez function of p for 1 < p satisfying A, = 1.

For the proof we refer to [Veku62], p. 66-72.
Corollary 7.  For any € > 0 there exists a 6 = 6(¢) > 0 such that

[Ap — 1| <e for |p—2|<é(c).

Remark. A, = ||Ilj|, is the L,—norm of the I-operator. f(z) is called logarithmi-
cally convex if log f(z) is convex, i.e.

T
~ log f(z2) +
T

T — Io—z
<
log f(z) < — o,z e /(=)

log f(z2) — logf(-‘tl)(z -

T2 —I)

7)), T1<z<zy.

= log f(z1) +

In Corollary 3 we have seen %T[ = IIf holds for f € C*(D). Now this result is
extended to L,(D).

Theorem 33. For f € L,(C),1 < p, then Tf has a generalized derivative with
respect to z being equal to I1f.

Remark. ai_z_Tf = f for f € L,(D) is shown in Theorem 26.

Proof. It has to be proved that for all p € CP(C)
0
(Tf)zso + olIlf )dzdy = 0.
z
Let f, € C§°(€ )(n € IN) such that n_lirpoo IIf = fallp = 0. Because with D := supp ¢

0
! (Tf%v + vﬂfn) dzdy = 0
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1
and with -l- +-=1
P 9

|76 - 2020+ on(s - 1) dody
[

IA

IT(f = fa)llo.0

+ (S = f)llsollels

4

9
6299

IN

+ Al = fallolllle

Mip, DS — fulls | 2
9

which becomes small for fixed ¢ when n is large, the assertion holds.
Theorem 34. For f € L,(C),1 < p,

dfdn
! 1=

ezists in the CAUCHY principal value sense almost everywhere in € and

dfdn
(C—2)"

s = -1 [ 10 (227)
4

The proof is based on involved results of CALDERON-ZYGMUND [Cazy52,56], see
[Veku62], p. 72.






3. Boundary value problems for generalized BELTRAMI equa-
tions

3.1 Generalized BELTRAMI equation

The CAUCHY-RIEMANN system, in complex form written as w; = 0 is a special form
of an elliptic system of two real first order partial differential equations. The BEL-
TRAMI system is a more general system of the same type and has in complex notation
the form

wy = pw; ,

where p is a measurable function satisfying
(z) < g <1.

This condition guaranteeing strong ellipticity of the system is called ellipticity con-
dition. Solutions to the BELTRAMI equation are quasiconformal mappings, a central
subject in geometrical function theory. The inain part of a general first order elliptic
system is in complex form
Wz + w; + P,
with
Im(2)| + pa(2) S @ < 1.

Admitting lower order terms we get the equation
wr + w, + po0; +aw + b +c=0 (3.1.1)
which is the general form of the generalized BELTRAMI equation. For equations
wyt+aw+ bw=0

the theory of pseudoanalytic and of generalized analytic functions is developed. If
a,b € C°(D) then w is pseudo-analytic, see [Bers53). For a,b € L,(D) the solutions
are generalized analytic, see [Veku62]. Basic research of this equation is done by
HAACK, too, see [HaweT2).

In this chapter results on RIEMANN, on RIEMANN-HILBERT and on related bound-
ary value problems will be discussed. Before doing this some results on generalized
BELTRAMI equations are reported on but not all of them will be proved here.

Theorem 35. Let p be a measurable function on € ,pu € L,(C ),2 < p, satisfying
[#(2)] € go < 1,90A, < 1. Then there exists a homeomorphism of ((z) of € onto itself
being a solution of the BELTRAMI equation

G+u.=0

and being HOLDER continuous in €.

99
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Remark. A homeomorphism of € onto itself is called a complete homeomorphism.
The proof of this theorem can be found in [Veku67], Chapter II, 5.

Proof. The existence of a solution w(z) for g € L,(C ) for p close enough to 2 can
easily be shown. One is looking for a solution ¢ in the form

((z) = 2 + To(2)

with an unknown function ¢ € L,(€') to be determined. Using the differentiability
properties of T gives the integral equation for ¢

o(z) + u(2)lp(z) = —p(z) .

If p is so close to 2 that
gA, <1, Ap:= |||,

then uIl is a contractive mapping on L,(C' ). Hence, this equation is uniquely solvable.
The solution ¢ may be found as a NEUMANN series

+0o0
=) u(-Tip)"
n=0
and satisfies

lelle < goAsllells + il

"‘{7“;: <1 "/ ”P

Obviously, ((00) = oo and zlirg 2 1(2) =1, whxch follows from (see Theorem 23)

ITe(2) — To(0)) < M(p)llpllsl2l ">

These conditions determine the homeomorphism up to an arbitrary additive constant
uniquely. That { takes every value of the complex plane exactly once follows from the
argument principle. In order to prove this the following result is needed.

Lemma 14. If w is a solution to the BELTRAMI equation
w; + pw, =0

for p € L,(D) in a domain D and { a homeomorphism of it then w(z) = W(((2))
with an analytic function W.

Proof.

w;s + pw; WG + Wil + (Wl + Wis)

((z + p(:) + We ((z +/-‘Cz) = (l - |l‘) )Cz =0,
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compare [Mona83], p. 268. Because (, # 0 (the JACOBIan of ( is |(.[*(1 — |u|*) # 0)
and |u| < 1 we see Wz = 0.

Remark. What is said about the solvability of the BELTRAMI equation and the
representation of the solutions holds for the generalized equation
w5+ﬂlwz+l‘2w_z=0 »
too, if 1, p2 € L,(€') and
l(2) + |p2(2)| S < 1.
We immediately see that
Iy := mIlp + poIlp

is a contraction on L,(C') for p close to 2. If w is a solution, then it satisfies

wy +pw, =0,

sy | TS i) #0,

#1(2) + pa(2) w,(z) =0,

where again  is measurable and |p(2)| < go < 1 but now depends on the solution w.
But still w(z) = W(({(z)) where ( is a complete homeomorphism of (7 + u{, = 0 and
W is analytic. The homeomorphism now depends on the solution w.

Continuation of Proof of Theorem 35. The proof is completed in the following
three steps.

i. At first the argument principle is shown to hold for solutions to the BELTRAMI
equation when u € L,(€) is HOLDER-continuous. Applying this result { can
be shown to take every value of € just once.

ii. Assuming pu € L,(€) having compact support and approximating g by
HOLDER-continuous functions the existence of a complete homeomorphisin be-
ing HOLDER~-continuous itself is shown.

iii. The general case u € L,(€ ) finally is treated by reduction to case ii.

Step i. In order to prove the argument principle the zeroes of solutions to the BEL-
TRAMI equation have to be shown to be isolated. For this purpose we first prove
the existence of a local homeomorphism { € C'*2(U) for the BELTRAMI equation
wz = pw, where p € C*(Up),0 < a < 1. Here Uy is a given neighborhood of some
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point zo € € and U C Up is a proper neighborhood of z. This is done as follows.

Denote uo = p(z0) and
t:=2— 20+ po(z — 20) .

Then W(t) := w(2(t)), z(t) := zo + (t — pot)/(1 — |po|?), satisfies
ws = pw, = Witz = pts) + Wil = pT3) = (1~ Fiom) (Wz - %w) =0,
(=(1)
p(2(t)) = po
Wi—qW, =0, q(t)= P :
e 1) = Rz
From |u(2)| < go < 1 it follows
) B = o B = Ho
1 ~Hop| (95— Hop
Let a := figp and observe |a| < ¢Z, then
g5 — af” = lgo(1 — a)* = (1 = g3)(laf® — ) < —gd(1 — ¢3)*.

% —Fop| . 1

1 —Hop | ~ g0

93 — Fop
1 — fop

Hence,
lgg —ol” | _a(1-4) _ _(1-g)__ 4q
@gll—al? = gll-a = (1+¢3)* (1+¢)?’
so that

24, ~
lq(t)] < T+_Oq§ =@p<l.

Moreover, from
(1 = p2)(1 = |mol®) | _ lita = p2|(1 — |pol®) _ |1 — pa
q(t1) — q(t2)| = — —| < <
t) = at )l = o )T | < (- ol = 1-a
where pi := pu(z(t)), k = 1,2, it follows g € C°(Up), Up := t[Uo]. Because ¢(0) = 0
thus [g(¢)] < M|t|* as well as |q(ts) — q(t2)| < M|t, — ta* for [t], |ta], |ta] < 6 < 1 and
0 < M with § and M properly chosen. Then defining gs(t) by ¢(t) for 2Jt| < &, by 0
for 6 < |t] and by 2¢(t)(1 — |t]/6) for & < 2}t| < 26 this function belongs to C(C)
satisfying
19s(t)] < M|t |gs(t1) — Gs(t2)] < 3M |ty — to)™ .
~ ~ 1
7s(t1) — @5(t2)| < la(ta) — g(t2)] + gl — ta] < 3Mltz — 1]
for /2 < [ta], [tz < 6,

176(t1) — @s(t2)] < la(ta) — q(t2)| + |q(2)I(2[t2/8 — 1) < 3M |ty — 84|
for [th| < 8/2< |t)] <6,

195(t1) — Gs(t2)| = la(t2)] < Mita|* < M(6/2)° < Mtz — s for 2|ta| < § < |ta] ,

~ ~ t
(t0) = alea)] = 2Da(e1 — 1) < oMol - a0 < 2Mll ~ 4]
for 6/2 < ,t‘, S 6 < ,tz, .
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Denoting the set of HOLDER-continuous functions in € with compact support in
Ks := {|t] < 8} by C§(Ks) the operator Il5 defined by

I £(t) := gs()I1f(2), f € C5(Ks)

maps C§(K5) linearly into itself. Moreover, Il is a bounded operator there because
for f € C§(Ks)

1 —_
R ECRRRY (S

irnplies

YOI AT) / 2 <2 < L,

[TLf(t) = If(t2)] < M(a)Ha(f)lts — ta|*,
see p. 88. Let now § > 0 be chosen so small that

Ca(@11S; Ks) < M(6,0)Ca(f; Ks)

with M(6,a) < 1.
We are now looking for a solution W = W (t) to the BELTRAMI equation W;—gsW, = 0
in the form

W(t)=,_%/zf(—_(ltd§dq=t+Tf,f€C&’(Ks)-
Ks

Then f satisfies the singular integral equation
f-gllf=gs.

As Ils is a contractive mapping on C§(Ks) this equation is uniquely solvable. As

g5(0) = q(0) = 0 also f(0) = 0. Moreover, the solution satisfies the estimate

Colsi Ks) _1 _a

1-M(6,a) 4(28)

Ca(f; Ks) <
where the last inequality can be achieved by choosing § > 0 small enough. Therefore

W(t) = t + T f belongs to C'**(Kj5). For the JACOBIan

W2 — IW3* = (1 [gs")l1 + I0fP?

(25)"

v

(1-g)a- Ca(f; Ks))* > 0
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the function W (t) is one-to-one in some neighborhood Kj, of the origin, 0 < § < .
Hence, because t = t(z) is an affine transformation

((2) := W(z = 20 + p(20)(z — 2))

is a bijective mapping in some neighborhood U C Up of 29, mapping U onto ([U] and
satisfying (z = p(,.

On the basis of this result the zeroes of a non-constant solution to the BELTRAMI
equation w; — pw, = 0 in a domain D can be shown to be isolated when p € C*(D).
Moreover, if w(zp) = 0 for some zo € D then locally - in the neighborhood of 2o - w
can be represented as

w(2) = [z = 20 + p(20)(z = 20)]"W(2) , W(20) #0,

where n € IN is uniquely given and % is some proper HOLDER-continuous function.
To show this we utilize a local homeomorphism ( in the neighborhood of 29 and apply
Lemma 14. This guarantees the representation w(z) = ¢({(z)) in the neighborhood
of zg where ¢ is some analytic function. Hence, w has isolated zeroes. Denoting the
order of the zero of ¢ in ((20) by n we have

w(2) = (¢(2) — {(20))"$0({(2)), $o({(20)) # 0,

with some proper analytic function ¢o in the neighborhood of ((2). Using the above
notations

((z) =¢(20) = W(z =20+ p(20)(z = 20)) - W(0) = W(t(z)) - W(0)

(2) + TS(t()) = TH(0) = (2) (1 1 / I(C)C((dfdtz )))

H)W(4(2)) -
From the HOLDER condition | f(t)] < H,(f)|t]* - observe f(0) = 0~ we have t=1 f(t) €
Ly(€) for 1 < p < 2(l —a)™!, so that W(t) € Co(€) with ao := 2—= for 2 < p.

Because
Colf; Ks) [ dEd7
1-- >1- =
/ O 21l K/ o

W (0)|

v

. (26)°

a(vaJ) 2 1/2

for small enough é > 0 it follows W(0) # 0. On the basis of this local behaviour the
argument principle can be proved.

Argument Principle. Any non-constant solution w to w; + pw, = 0 in D,y €
C°(D), being continuous on D and non-vanishing on 8D has only finitely many zeroes
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in D. Counting with respect to multiplicities their total number in D is

1
N= —é;/dargw(z).
aD

Because the zeroes are isolated there are only finitely many. Let w(z,) = 0,1 < v < N,
where any zero is listed with respect to its multiplicity. The local behaviour of w near

z, shows .
w(z) = wo(2) [[lz - 2 + w(z) (7= 2.)]
v=1

with some continuous function wy not vanishing in D. Therefore

N
1 1 1 —_
o /darg w(z) = o /darg wo(z) + E_l P /darg[z —z,+p(z)z=2)]=N.
3D 3D =1 4p

We are now in the position where we are able to prove that the non-constant solution
((z) = z + Typ(z) to the BELTRAMI equation with HOLDER-continuous coefficient u
takes any complex value once. Obviously, from the properties of the T-operator, see
Theorem 23, ((z) = z(1 + O(|z|~%/?)) as z tends to infinity. This estimation holds too
for {(2) — (o for any finite complex (o, this function being a solution to w; — pw, =0
as is {(z) . For sufficiently large R > 0 we have

1 1
5 / darg({(z) — (o) = o / dargz=1.
|z|=R lzI=R
By the argument principle thus ( is seen to have just one (o-point in |z| < R for

sufficiently large R i.e. for any R > Rp with a proper Ry > 0. From the asymptotic
behaviour at infinity we also see ((00) = 0o and lim 27!((z) = 1.
zZ—00

Step ii. Let us assume pu € L,(€') satisfies u(z) = 0 in |z| > R but is not necessarily
HOLDER-continuous in Kg := {|z] < R}. From

1/p

1/p'
( / lﬂ(Z)I”'dxdy) sun’)"*”/”'( / I#(Z)lpdxdy) <P,

|zI<R |zl<R

it follows u € L(€) for 1 < p’ < p, which only holds because of u having compact

support in €. As C§(KR) is a dense subset in L, (Kg), see [Adam75], p. 31, there

is a sequence (fn), in € C§(KR) such that lim u, = p in Ly(KR) for any 1 < p'.
N—00

Although (u.) may depend on the space L,(Kpg) considered, from

lin = sllyr < M(P', 2, R)l|ptn = pllp, M(P, p, R) := (x R?) PP
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it follows that it converges to p in any Ly(KR) if it does in L,(Kgr),1 < p’' < p. Let
us now assume (pn) converges to u in Ly(Kg) where 2 < p < p,gand 1/p=1/p+
1/3,90A; < 1. Denote (a(2) := 2+ T'pn(2) where @, is the solution to pn —pnllpn = pn
i.e. (, is a homeomorphism to the BELTRAMI equation (3 = pn(y;, see step i. Then

llnlls o golxR?)'/P

) A 1,
T—qoh, = 1—goh, > 2% <

leall, =

On—Pm = pall(Pn — ¥m) + (n = )1 + ptn = o

1
lon —emlly < (k2 = ) Mpomlp + Jltn — Bmll5)
1 — goA,
1 ~
S T= ek, B » 7 - Pm
s 1z qu,,["”" I‘m“p"n%n”q + M(p,p, R)"#n f ";]

1 goAz(mR)VT
1- qu,, 1- qu;

+ M(p,p, R)} ll#n — tomlly -

Hence, (p,) is a CAUCHY-sequence in L,(Kgr) which because of the completeness of
this space converges to ¢ € L,(KRr), say. This limit function turns out to satisfy
¢ — pllp = p. Setting {(z) := z + Tp(2), then ( — {, = T(p — ¢n) and

-2
Cao(C = Gni €) < M(P, @o)ll@ — @nllpr 0 = ”T .

Therefore (¢») converges uniformly on Kg to { € C*°(€'). It remains to show that ¢
is a homeomorphism from € onto € . We know already that (, is such a homeomor-
phism. Let z,(¢) denote its inverse mapping. From z,({.(z)) = z we see

zn((ni + Z,QZ;: =2z = 0 ) zn((nz + Z”EG =2p, =1 )
so that

(n—z (ni

2, = T —— J = 2_ _|2
Sl v o R g Yoo e o AR Rl S

i.e.
zet Bn(zn(())Znc = 0.

This is a quasilinear special generalized BELTRAMI equation for z,({). But when 2,({)
is known it satisfies a linear BELTRAMI equation

g+ Fning = 0, Fl) 1= n(an N2 O S o <1
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Next (z,) will be shown to be compact. From
¢a(2) — 2] = |Tn(2)] < M(p, R)llpnlls < M(p, g0, R) for |z| <R
we have with ¢ = (,(2),z = za(() for those { for which {z.(¢)| < R the estimate
I¢ = 2n(¢)] < M(p, g0, R) -
For these { then
Il < 1zl + ¢ — 2a(O)l < R+ M(p, g0, R) =: Ry .

If now R, < |(| then R < |2,({)|. But there 2,z = 0 because y, vanishes outside Kg,
so that z, is analytic outside Kr. Denote z,z by $n. Then ¢,(() := 24(¢) — ( — Tpn
is analytic in the complex plane. Moreover, from the boundedness of z,(¢) — ( in
[¢| < R and that of T@, in € and

Jim () = ¢] = lim [z~ Go(2)] = 0, Jim T(C) = 0

it follows ¢,, = 0. Hence zn({) = ¢ + T$a(¢) where $n(¢) = 0 outside Kpg,.
Inserting 2,5 = @n, zo¢ = 1411, in the differential equation for z, we get the singular
integral equation

@n = —pn(2a(¢))1Pn — pn(2n(C)) -
With [gn(24(¢))] < g0 < 1 and goA, < 1 this equation shows

qo(xR})\/?

Pnll, < .
"¢ "P 1-— qup

Because T is a compact operator on L,(KRg,),2 < p, za(() = ¢ + Tén(¢) is compact.
Let (2,,) be a convergent subsequence with limit z({) € C*(C ),ap := 1 — 2/p.
From (n, (20, (€)) = €, 20 (¢na(2)) = 2, lim €, (2) = ((2), lim 2, (¢) = 2(() it follows
¢(2(¢)) = ¢,2(¢(z)) = 2. Hence, ( is invertible with inverse z(() and thus a homeo-
morphism from € onto € with infinity as fixed point as is its inverse z((), too. As
{(2) = nhryo {n(2) the entire sequence (z.(()) converges to z(().
Step iii. Let now u € L,(€') be arbitrary, |u(z)| < go < 1. Define
@) {p(Z) » l2l<R
pr(z) =
0 , R<|z

and let wg be the complete homeomorphism of the BELTRAMI equation wgz+prwr: =
0,wgr € C*(C), see step ii. Then ((z) := {wr(z) — wr(0)]™*,¢(0) = 0o0,{(c0) =0
is a homeomorphism of the same BELTRAMI equation too, mapping the complex
sphere onto itself. Let 2({) be its inverse. Then the transformation w({) := w(z(¢))
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converts a solution w to the BELTRAMI equation w; + pw, = 0 into a solution @ to

2
—mw = 0,4 := ]"__".‘_ig‘ where |p1] < ¢ < 1 with ¢§ := ]:02 < 1, see step
— ERp

z
i. This can be seen from
wz = G((? + lT'ECza w, = t;(Cz + ’TTG

which implies

PR ol PR Sl 3
4 Kx |2 — IC;IZ IC:lz — |(7|2 CWs
5 wes — il K~ KR
- = W,
" CFTGF ~ F-1GR
As
() { 0 , [s/<R
m(z) =
uz) , R<|2|

the function u(2({)) vanishes in the neighborhood R; < |(| of infinity because the
inverse mapping z(¢) to {(z) maps neighborhoods of infinity onto vicinities of zero
and vice versa as ((z) does, too. Again the result from step ii guarantees the existence
of a complete homeomorphlsm w; = w;(() of the BELTRAMI equatxon Wy = Wy

Then w(z) := w;({(z)) is a homeomorphism too, satisfying iw; = pi, as follows from

W, = Wl + ﬁlzC_f, Wy = W1z + ﬁ?lz(_, .

Namely, for R < |z| where ug, = 0 we have (z = 0 so that

e ~ A
wz = wl((z > w|(<z : w‘ l‘l_wz = pw, ,

C:
and for |z| < R where u; = 0 we have @,z = 0 so that
W, = Wi((;, Wy = WieGs : Wz = pRW, = pid, .
But as w(00) = w,(0),w(0) = wy(00) = 0o we again take the reciprocal
w(z) := [@1({(2)) — @ (0)] " .
This function is a complete homeomorphism of the BELTRAMI equation w; = pw;,,
leaving infinity fixed and being HOLDER-continuous.

Remark. Let ((z) be a particular homeomorphism of the BELTRAMI equation
w; = pw, mapping € onto itself then any homeomorphism ( of the same kind is a
linear transformation of {(z)

af(2)+8

W@ +e 0T PE

(=)=
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This follows from the representation formula E.—- ¢ o ¢ with an analytic function ¢
which has to be a schlicht mapping of the RIEMANN sphere onto itself i.e. a linear
transformation. If both ¢ and ¢ leaving infinity fixed then ((z) = af(z) + 8. The
condition hm z7(2) = hm 27'¢(z) = 1 forces a to be 1. Finally if, moreover, {

coincides w1th ¢ in some ﬁmte point e.g. { (0) ¢(0) then 8 = 0. These two conditions
lim z7¢(z) = 1,{(0) = 0 prescribe the homeomorphism of the BELTRAMI equation

uniquely.

Lemma 15. For f € L,p)(D) := L,(D)N L, (D) where D is an unbounded domain
and 1 < p' <2 < p we have

ITf) < M@p)fll+1fll) . z€€,
ITf(21) =Tf(z2)l < M@, 2)(Ifllp + IS llp) |22 = 22l ,

-2
@ =222, snec.

IA

A

Definition 16.  For f € L, (D) we understand
I ey == 1 fllp + 111l -

I— o1 1 1 1
Proof. Letf:OoutsxdeD.Thenwnth;+E=; q—-l ,4<2<¢,
L[ fC+2) . 1 [ f(C+2)
rie) = -5 [ Haan - o [ Kt Daga,
KI<1 1<Kl
1/p i/q
2@ < 2| [ 15+ pagan [ ici-edgan
KI<1 K11
1/p’ 1/¢’
[ 15+ 2 agan / IC|~ déds
1<[¢| 1<Kl
1 9 1/q 1 2 1/q’
< 2(FE) W+ 2 () W S MG

The second inequality of the lemma follows from that one in Theorem 23.
Theorem 36. Suppose py, py are satisfying

(2| + ()i <@ <1, z€C,
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1 < p’' <2< p such that
gomax{A, Ap} <1,

and a,b € L(y (€ ) . Then any solution w to the homogeneous generalized BELTRAMI
equation (8.1.1) with ¢ = 0 is representable in the form

w(z) = W(((z)e?), z€C .

Here ¢ is a complete homeomorphism of a BELTRAMI equation, W is analytic and ¢
is a HOLDER-continuous function.

Proof. Let w be a solution to (3.1.1) with ¢ = 0.

Define R
e ] P =D, ) £0,
m(z) + pa2(2) if w(z)=0,
and R
R ECE b(z):::g; i w(e) £0,

a(z) + b(z) , if w(z)=0.
Then obviously |u(2)| < ¢ <1 and h € L, (C) and
wy+pw, +hw=0.
Consider the integral equation
wtpllw+h=0.

It is uniquely solvable in L, n(€ ) because ull is a contraction in this space. The

function
W = wexp(~Tw)

then is a solution to a BELTRAMI equation,

Wi+ uW. = exp(-Tw)[ws + pw; — (v + pllw)w|

exp(—Tw)[wz + pw, + aw + biw] = 0.

Using Lemma 14 this proves the assertion.

Lemma 16. 1. If f is bounded and measurable on € and
f(z2) =0(lz]7"*) as z = o0

for some €,0 < e < 1, then
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() £ € Lal@) for 1 Sp< T,

2 <
Tre P

(i) f € Ly(T) for

2. If p is measurable on @' satisfying

[#(2)] < g0 <1lon @,p(z) = O(lz]*) as 2 = o0
and g € L,(C) for some p,1 <p < 2—1; then pg € L,(C )N L,y o(T).

Proof. 1. There exist constants K and R,0 < K,1 < R such that

2| f(2)] < K for R < |z] or |z|""‘|f(§)| < Kfor || < li{ <1.

1
»
f (%) ] dzdy < K? / lz|¢¢~VPdzdy + R”’/'f (%)
l21S & %

where the last integral is bounded, because f is bounded, while the first is less than
or equal to

Hence,

o e

lz1<1

»
dzdy ,

1
“P
21rK”/t"““)”dt = 2—_-2(’;—1‘_?)’) ,
0
G)  [UPdsdy= [ 11GIPaody+ K [ o0 asdy
c JzI<R R<|z|
where the first integral is bounded, because f is bounded, while the last is less than

or equal to
+o0

ox KP / 1-O+elrgy —
1
2. There exist constants K and R,0 < K,1 < R, such that

|z]|u(z)] < K for 1 < R < |2].

2r KP
(I+ep-2-

Hence,

(1) 1)

i

P
dzdy [ 1226(2)f(2)IP)z]~dzdy

1<f2|

ke [ 161001 (o) dady < K7 [ 112 Pdody

1<12) 1<z]

lzI<1

IA
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Remark. The integrals
|f(2)Pdzdy, / |u(2)g(z) Pdzdy
|21 12]<1

not considered under 1 (i) and 2, respectively are obviously finite under the assump-
tions.

Theorem 87. Suppose uy, p2 satisfy
()] + lp2(2)] < o<1 (z€0),
lp1(2)] + |m2(2)] 0(lz[™*) (2 — o)

for some €,0 <€ <1 and a,b,c € Lipp)(C )N Ly (T ) with

2, 4
—_ A , .
N E<p<2<p<2 S gomax{A,, Ay} <1

Then there ezists a unique solution of the generalized BELTRAMI equation (8.1.1)
vanishing at infinity. Moreover, for this solution w,,w; € L )(T ), ws € L,2(T)
and

Co(w; @) + [|w:ll(p,p1) + llwszllpt)
< M(p,p', g0) exp { M(p, 7', 90) (llallipy + 18ll(5.09) } Nl (o) - (3.1.2)
Proof.

1. At first the case @ = b = 0 is considered.

Uniqueness of the solution in this case is clear, since the difference of two solu-
tions would satisfy the homogeneous equation

wr + pw, + @ w; =0
and vanish at infinity and hence would vanish identically in € by the remark
behind Lemma 14.
In order to prove existence we look for a solution of the form
w=Tw, wE€Lypy(T).

The differential equation then leads to the integral equation

w+ﬁw+c=0, ﬁw::p,ﬂw+pgm.
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Because I is a contraction in Lpp)(€ ) under the above assumptions this in-
tegral equation is uniquely solvable in this space. The solution satisfies the
estimate

lollpen < (1= q0A@e) " el »

from which by estimating Tw and Ilw
Co(w; @) + [lwall ) + lwzllp.py < M(p, P, 90)llcll(p1 -

Since also ¢ € Ly 2(€ ) and because of the growth condition on p;, 42 and Ilw €
Ly p) (€ ) we have pillw € Ly 5(€ ), k = 1,2, see Lemma 16. Thus w € L, 2(C)
follows from the integral equation. Therefore w = Tw vanishes at infinity.

Uniqueness of the solution for the general equation follows similarly as in step
1, this time from Theorem 36 rather than from Lemma 14.
In order to prove existence we again look for it in the form w = Tw leading to
the integral equation

w+ mllw + pllw + aTw + bTw + c = 0. (3.1.3)

To this equation the FREDHOLM alternative holds, see [Cohi53], p. 116. In fact
denoting the inverse operator to I + II by R we get

w + R(aTw) + R(6Tw) + Rc =0

which we rewrite as
w+ Rw+ Rc=0.

Here [ is the identity operator and
Riw := R(aTw) + R(bTw) .

Because T is completely continuous R, is too and hence the FREDHOLM theory
applies to our equation, see [Dusc67], p. 609.

We therefore have to show that the homogeneous equation, ¢ = 0, only has the
trivial solution. Then the inhomogeneous equation is uniquely solvable. But
a solution w € Ly (T ) of the homogeneous problem turns out to belong to
L, 2(C') too, because pillw € L, (T )(k = 1,2) by the conditions on the u; and
p and p’ and aTw,bTw € L, (€ ) because a and b are, and Tw is bounded for
w € L(y,p)(€ ). Therefore w = Tw being a solution of the homogeneous equation
(3.1.3) vanishes at infinity. By the representation of w given in Theorem 36 then
it follows that w vanishes indentically.

What remains to be proved is the a priori estimates (3.1.2) for the solution.
Let w be the solution. Then we rewrite the equation as before as

wrtpw, +hw+c=0.
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The case h = 0 was considered in step 1 already. We now apply this result to

the equation
vs+pv,+h=0, v(co)=0

giving the estimate
Co(v; €) + lv:llp) + lvellon < M(p, P2 g0)Ihllo1 -
The function f := w exp(—v) turns out to be a solution to
S+ pfe = [ws + pw; — w(vz + pv.)] exp(—v) = —cexp(-v)

satisfying f(o0) = 0.
Again applying the result of step 1 we receive

Colf; @) + fellpoy + 1 fellwsy < M(, P, go)llcexp(—v)llpp)
< M(p,p',90)e® el (pp) -
Then (3.1.2) follows from w = fexpuv,
w: = (fz + fvr)expv, w, = (f; + fv.)expv.
Remark. The uniqueness of the solution follows at once from the a priori estimate

(3.1.2). The difference of two solutions would solve the equation with ¢ = 0 and hence

would be 0 by (3.1.2).
A more detailed consideration shows that (3.1.2) holds even if Co(w; €') is replaced

by the HOLDER norm Coo(w; € ), ag := L

3.2 RIEMANN boundary value problem
We are interested in finding a solution to
wy + w; + pw; +aw+bw+c=0 in C\I',

wt=Gw +g on I, w(c0)=0,

where I is a smooth curve or a system of smooth curves in the complex plane without
multiple points. The coefficients are assumed to satisfy with 0 < e < 1

Jm(2) + |u2(2)] £ @<1,2€0@,

1(2)| + lpa(2)] = O(lz| ) as z — o0,

2 , 4
a,b,ce L(,,,:,(a')nL,,z((l'),m <p<2<p< 2—_; ,

G,geC"(I‘),%+§-<a<l, G(¢)#0,¢ceT.
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Lemma 17. Fory € C"(I‘),% < a <1 the CAUCHY integral

1 d¢
¢(Z) = ‘p(C) — 2’ z ¢ r )
21”! ¢

with the dertvative

oy 1 d¢
#'(2) = %r/‘P(O(Z—_Z—),, z¢Tl,
satisfies ¢' € Lo(€),1 <7 < ﬁ Moreover,
I¢'ll- < M(e,r,T)Ca(p;T) .

Remark. Obviously,
[8(2)l = O(lzI"), 14'(z)| = O(lz|®) as z—oco.
In more detail we have for R < |z|

Co(p;T)L R? Co(p;T)L
’ < < —
|¢'(2)] < 2n(|z} = R+ p)? — p* 2m|z|?

where I' C {|z] < R~ p},0 < p < R, and L = L(I') is the total length of T.

Proof. In Lemma 2 it is shown that
|¢'(2)l < M(e,p,T)Ca(p; )8!

where
6§ = 6(z) = dist(2,T) = r(nelp [z—¢| <p.

Here Ry is the standard radius of I and 0 < p < Rp. The set
s:=Jte: o=l <}

cer
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is a strip around I'. Assuming I’ to be closed we denote by S* the part of S inside I’
and by S~ that outside I'. In S* as well as in S~ we introduce a rectangular coordinate
system (s, §) where 6§ = §(2) and s := min{o : |((¢) — 2| = 6,0 < 0 < L}. Then there
is a one-to—one relation between (s,6) and z = z + iy in $* UT. Moreover, with the

inner normal direction » on I’

Ys Ys

dzdy = dsdb = dsdbé = dsdé .

T, Yo —Ys T,
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Thus we have with M = M(a,r,T)

L »
- 2MCa(p; 1)) Lp* 7 7%)
’ r . r r(a—1) —_
S/|¢ (2)["dzdy < 2(MCa(p;T)) 0/0/5 R

Let now S C Ko(R) := {z : |z| < R}. Because for z ¢ S we have p < §(z) then

Co(p;T)L ’ 2
/ T NV
|$(2)rdzdy < ( WiL) are,
Ko(R)\S o
/ r Co(‘/”F)L " R r 1-2r
/|¢(z)| dzdy < 2 (T () /z dt
R<|z| R

T Co(p;T)L\" R?
r—1 2n pr
Altogether this proves Lemma 17.
Let X be the analytic factorization of G i.e. X is analytic in @ \I' satisfying
Xt = GX~ on T and eventually having a pole at infinity. Then @ := Y satisfies a
generalized BELTRAMI equation and a simple jump condition. We have

0= w; + mw, + 20, + aw + 50 + ¢

~ ~ TX ~ =
=X [w;+mw,+mw,7+aw+bw

||

] +C+ mX't'B+ [lgx'ﬁ

i.e.

. ~ X~ X'\ . X X"\ = .
w;+p.w,+pziw,+(a+#1y)w+(b7+p27)w+%=0 in ¢\l

and

o+

0 =G‘+i on T.

X+
But @ does not necessarily vanish at infinity. It does for sure if the index £ < 0 while
for £ > 0@ vanishes only if w has a zero at infinity at least of order « + 1.
The coefficients of the equation for @ satisfy the same conditions as those of the
equation for w eventually up to the inhomogeneous term. This follows from

b'd 7'(2), in D%,
X Y(z)— k27!, in D™,

where

1) 1= 57 [ legl¢m GO
r
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and from the properties of u; and p,. More precisely, we have

I
#1 X l O(|z]"'¢), z— 00,

1
-, so that these
@

1
and, moreover, v’ € L,,;1 <r < = by Lemma 17, where 2 < T

4
functions are in L,(€ )N L,»(C ) for 1 < p< 7=

The problem
wr + mw, + pw;, taw+bw+c=0 in C\I',

wt=w +g on T, w(oco)=0

can easily be reduced by the transformation

1
G=w-¢ #e)=5 [
r

to

17);+p|t32+#2§z+aﬁ+b§+C+#1¢'+#2E+a¢+b$=0 in @C\I',

wt=w" on I', w(oo)=

Because of Lemma 16 the inhomogeneous coefficient again is in L, (€ ) N L, o(T').
The solution to this problem is continuous in I'. Thus we have reduced the RIEMANN
problem for the generalized BELTRAMI equation to the case of finding the entire
solution to an equation of the same kind vanishing at infinity. In the case when the
coefficients vanish quickly enough when 2 tends to infinity then one can find solutions
behaving asymptotically as a given complex polynomial, see section 4.3 and [Behi83).

Applying the a priori estimate (3.1.2.) to w leads to an estimation of w. Analysing
the proofs of Theorems 4 and 5 we see

Co(#;€ ) := Co(¢; DF) + Co(#; D7) < M(T, @)Ca(g; T).

4
From Lemma 17 and % + 2 <a<l<p <p< — Ve find ¢’ € L, (€ ) and

2
o' Nwwry < M(p,P',€,T,)Ca(g;T) .

Hence, with |lallpp) + [bllpp) < K

Co(w; @) + lwellipp) + lwzllpeny < M(p, 7', 90,6, 1, K){Ca(giT) + licllppn}, (3-2.1)

see section 4.3 and [Behi83].
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3.3 RIEMANN-HILBERT boundary value problem

In 2.1 for w € C*(D) the complex form of the GAUSS theorem

%5[ w(z)dz =D/w;(2)dxdy

was proved. In the same way as the CAUCHY formula for analytic functions from here

('d—(z 71‘/1115(2)(13:(13/ (3.3.1)
D

can be deduced. In what follows (3.3.1) will be adjusted to the RIEMANN-HILBERT
boundary conditions. At first we are doing this with regard to the DIRICHLET condi-
tion in the same way as the POISSON formula was deduced. Let us therefore consider
the case where the domain D is the unit disc D. Applying for z € D fixed the GAuss

(C)

we get

1 zd( Zwe(()
O_E;/w((:}l—?(- -3 dédn .
D

Z(
o

theorem to

Taking the complex conjugate and adding it to (3.3.1) gives for z € D
_ b fw@) | w(©C ) 1 [ fwel§) | zwel()
w(z) = 2:8[( +((l—zf))dc w!{(—z+l—z( dedn

w(z) =

1 we(() | 2we(()
+gall (C) "'b/{c_z + m}d{d (3.3.2)

5 9(¢) | =g9(¢)
Ty(z):= “3/{( l_(}d{d

has similar properties as T, see [Veku62], p. 210. Especially

ofg _ 3Tg(z) ng(z):_%/{ 90 , 9 }d{dq
D

oy

The operator

oz (€-2)? " (120



Boundary value problems for generalized BELTRAMI equations 119
where
Ap = (ITI]l,
has the same properties as A, = |{[I||,. This last fact follows directly from Mg = g

with
9(2), lzl <1,

9(2) =9 T 71V
729 (;)a 1< 2.

To show II is a unitary operator in L,(D) observe
29(¢) 1 (1 ) dédn / (l ) dédn
——Zd¢dn =gl=})=—- a4
/1—2( ¢ ¢«\£ Zzg (/(—z a‘\Dy ¢/ ¢c

so that
d{dvl

To) =130+ 7 [ FOELT3) = -1 [307
c

AV 4

Differentiating with respect to z gives ﬁg = lIg and thus
IMgllz,c = INgll2e = llgll2e -

Because
INgli3e = 20gll3p , I91I3.e = 21913,

[l

which follow from

dzdy
|z[4

/ Ifig(z)[dedy
c\p

1

1 [ 90 , 9@ ] dedn dzdy
) C-2

(1-%¢)?

/ [fig(z) dedy ,
D

Y=
()
~/
N =
N—r
Q_N
=
3
Il

/ l9(C)Pdedn |
D

we have
ITgllz.0 = llgll2.0 -
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Formula (3.3.2) can be directly transformed to more general domains by utilizing the
GREEN functions G!,G!!, see 1.2. In the sequel a more general form is needed. To
get this formula let 0 € C(9D; IR) be a positive function with

- / o(C)ldC] # 0
oD
and

SN d¢
o(2) := 2m,a-‘[a(C)——((C =2’

which is analytic in c \dD. By

2 2 _2_(4“_1)1

((¢-2) ¢-z ¢ \(-= ¢
then

220(z) = (C -éz—;,

and

2Re {¢3(0)} = o(0) - % =1,

where on 0D the function & is understood as o+.
Applying the GAUSS theorem to w we find

= / w(()3(¢)dC = / we(C)3(C)dedy .
oD D

Hence

[ {20950 - €157} dedn

4

= 2itmg [w(@F(0)d = itm [ w(o)ca ()]
apD aw

3 b)) z
-: / tm(¢) (o(6) - 2 ) 1461 + 3 / Rew(()5 / a(0im 7 L
- —/sz(c)_/a(t)l gl /1 w(Qo(0)F - 3 tm ()
ap
or

5 [ {w05(0) - w1507} dean
} 4
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2 Loade 1 ¢ 1 d¢
-3, [ Rew(Q)Im(¢5(O1F + gl mw(Q)o(0)F - ;,;8[ Imu(¢) -

Remark. For ¢(¢) =1 we have 6(z) =0in D.
If we add this formula for general o to (3.3.2) then

w(z) = ——/R (c)“’“’(

2 LadC 1 d¢
5, Z Rew(()lm[¢G(O1F + 58[ Imu(¢)o(0) %

1 4

This formula can be given a simplified form by introducing the first and the second
GREEN function. We saw in 1.2

1 1 (—z 11 __1 _ _=
G1(5,0) = 55 log {2 | €"1(5.0) = =5 log (¢ — 2)(1 = 0)]
are these functions for D . But here we want to apply G!! related to the condition
11 a(z)

2o Gl(2,0) =

rather than to 3 .
9 A -
an,G (24 2r

. . 1.
Remark. For convenience we here incorporate the factor o into G! and G,
2

From the properties of G!! one can find

G (2,) = - log (¢ — 2)(1 ~ 2| + V(=,0) .

Va0 = 75 [ oto)logl(e = 2)(e = et
-2 4

1
—E;//a(t)a('r) log [t — 7||dt||dT],

oD om
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see [Hawe72], p. 119. Instead of deducmg this form for V we just verify the appropri-

ately modified properties i, ii, iii’, iv’ for G | see Definition 4. Because V is harmonic
everywhere in z and (, we only have to Iook at the last two conditions. The outward
normal derivative on 8D applied to real functions is just

a a

or <6< (oZ el

We here prefer to consider ( as variable and z as fixed. Obviously G!! is symmetric
in z and ( as defined above. Now

9 i __rr ¢ E( Cldt|
(6= [ - o]+ 22/()

Again rewriting

we have Cldtl ey
/ O / s LS 4

Hence for (| =1

ﬁu z t+( dt 1
2Re(5:G"(2,() = —Re [2,[<_z -_,] 2,,2/ o)y 47‘5]

o) 1]_ o)
[2_«+ T 2_«]‘" T

Property iv', i.e.
[ 0n01aci -
-2 4

follows immediately by direct integration. In order to express the representation
formula (3.3.3) by the GREEN functions we calculate

9 ; 18 d
ac [C'(2:0+6"(2,0) = —5- Frlog|C — 2" + 5 V(=)
__1 d 11 50

- 21r(—z 271'2_/ (t) -t 2(-z % °

ki)
5.(—. [G'(2,¢) - G"(2,¢)] = 5- —log |1 —%()* ~ %V(z,c)
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_ 1 /()ldtl = 59
T T am1-2( z( 73 T-1 2e1-2 T’

and for ¢ € AP with (d( = —(d( and

c"’“ z"" n (ac 4 - az“‘)

daG'(2,¢) —idG"(z,()

BG'(z ¢) aGl(z ¢) aG"(z ¢) 3G"(z ¢)
[ R dc]

(GH(z,¢) + G (z,))dC —_(G'(z, ¢) - GH(z, o)df]

=iz
-4 301_4_ . Zdiz < [o(0ac +5100)
=[5+ 5 [(a(c)~23(—o] a
-_2_"(_{%{—"‘(—‘—311 mc «)1
el e
_ z d¢
e {29 ]
= —-21—1rlm {i [1 + Ciz - Zi‘f] } f—é - %Rz{cé(C)};f
o LK (e L] Qo)
i (| Ti i| ¢ e z '

Thus (3.3.3) can be rewritten as

w(z) = - / Rew(() [dnG' (2, () — idC"(z,()] - i / 1m w(¢)dnG"(2,C)
D E:

2 [ {10 (642 0) + G112, 0) + 00 [GH:0) - GH(:,0)] Y dedn . (3.3.4)

D
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The function

0(z) := —/Rew(() [d,.G'(z,() - idG”(z,()] - i/lmw(()d,.G”(z,()
3D ap

is an analytic function in D satisfying

Re®(() = Rew((), € 8D, / ImO(()o(¢)ld¢] = / Imw(C)o(¢)ld¢] -
D D

This is immediately seen from (3.3.3) rather than from (3.3.4).
Moreover, for z € D

2t (612104 611(3,0)) = = 22 (2,0) = G1(2.)
so that the area integral in (3.3.4) on 9P equals

ti [ 1m {uz(0) (642, + G112, O] ded
D

Hence

w(z) := O(z2)
+2 [ {10 (6120 + GI1(2,0)) + TO [GH2.0) - G (2, 0)] } deet
4

where

0)i= = [ WO [daG'(2,0) ~ 146" (2,0)] - iy
EY )
is a solution to the problem

wz=f inD,Rew=19 onab,%/lmw((')o(()ldd:co.
oD

(3.3.5)

Here ¥ is a real continuous function on 99 and f is a complex integrable function in
D. That w; = f follows again from (3.3.3) from where we see that w is equal to T f

up to an additive analytic function in D.

Remark. Formula (3.3.4) holds for any domain D which is conformally equivalent
to D. If w is a conformal map from D onto P then the GREEN functions of D, G?(z,(¢)

are given by those for D,éj(i,z), via

G'(2,¢) = G (w(z),w(()), j=1,11.
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See in this regard [Hawe72], section 10.4 and [Wend79], section 1.1.

In order to get a representation formula of the above kind related to the RIEMANN-
HILBERT rather than to the DIRICHLET boundary condition we consider that condi-
tion in the case of non-negative index x > 0 together with some side conditions:

Re {mw(()} =¢(() on 9D, (3.3.6a)

5 [1m {TTw(O} o0dcl = , (3:3.60)
op

w(zg) =be, 1<k<k, (3.3.6¢c)

where |A({)] = 1,A € C*(0D;C ),p € C*(0D;IR),0 < a < 1,0 € C(D; IR*) with
Y= /a((’)|d('| >0,c0 € R,z € D,z # 2z, for k # 1,b € € ,1 < k,l < &k where

1)
& :=ind A > 0,w € Dz(D) N C*(D;C), to be determined in connection with a dif-

ferential equation.
At first we study homogeneous point conditions by = 0,1 < k < «. These conditions
can be taken care of by the transformation

w(z) = [J(z — z)i(z) .

k=1
But this would mean that also w; vanishes at the z; which by no means is justified
by (3.3.5). To correct this we define @ by

w(z) = [ (= - 2e) + Z w(2x) Pe(2) (33.7)
k=1
where P, are polynomials of degree 2« uniquely defined by
P(z)=0, Pl(z1)=6bu, 1<k 1<k,
For & we find

Re {X(Qa(0)} =& onop, 5 [1m {001} 5(0)1ac1 = 2,
aD

where

50=x0]I %{—i ,

ind X = ind A — Zmd =0,

az

I¢ - Zkl
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50 = TIc - ado(@), £:= [s0lacl >0,
k=1

ap

#¢) = o [[I¢ - 2l — Re {WH (€=l 3wt (c)} ,
k=1 k= =
¥ / Im { @) Z u»(zk)ﬂ(c)} o()ldq] -

We thus arrive at a condition of vanishing index. In order to get rid of the factor A
we consider | (+zdg
S = e i(2) - 2
B(2) 1= e i(a), 1(s) = 5 [arg KO F

ap

Eo:=

Mtl

which satisfies

Re@(¢) = e ORe {X(()i(¢)} = €™ 95(¢) on oD,

M)I M<

1 / Im ()3 (¢)ld¢] =

where on 0D
5(() = e ™ 05(¢), §:= / 3(OldC) > 0.
oD

We now may apply the representation formula (3 3.4) where we have to adjust the
second GREEN function to the weight function . This GREEN function will be
denoted by G"(z ¢). Applying (3.3.4) to

900 = %9 ute) - 3o B9 (e - 0
v=1 k=1

and multiplying this formula by e")I5_, (2 — z:) yields

M)I M<

w(z) = Zw—(zk )Pi(z) + i) H(z — z)

—e O ]z = ) [ em70p(0) [0 (2,¢) = 16" (2,0)]
k=1 oD

34(2,0) + Gl (2,0)|

+2 / { =70 ["’Z(() -3 wy( zk)%} ﬁ Z: k
D k=1 k=1
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+ea(‘v(z)+’1(()) [“’E(O E w'(zk)Pk(()] H z2— 2 [Gl( ,0) - G’”(z, ()] } dédn .

k=1
The analytic function on the right-hand s:de of thls formula is

&2 fI(z — 2)0k(2)
k=1

with
Ox(2) := 0(2)
+ f e CIRe {Tol'[ =zl w;(zv)’?(_f—)} [6"(2.0) — §6"(2, )
ap k=1 =t

—%/lm {)T((’)Zw;(zk)ﬁT(—)} a()ld¢| ,
Y ) =1

o(z) := — / =y (¢) T I = 241! [d,.G’(z,() - id@"(z,()] +iZe. (338)
Py k=1 2

Hence, we have the representation formula

w(z) = z wi(2k) Pe(z) + Ox(2)e™) ]'[(z - z)

k=1

+2 / {e‘h(*)-*“” [w(o Eu»(zk)P'(c)]l]( * 6= 0) + Gl (0]

D

4l [F((T)—Z w;(zl)mo] i 22 [G1=,0)-GH, o]} dedn  (33.9)
k=1

for z € D. At last we have to get rid of the restriction w(zx) = 0,1 < k < «. For
w(zx) = by, 1 < k < &, the function

w(z) — Zb,,H T

k=1 £k

vanishes at the z;’s. Applying (3.3.9) to this function leads to a representation formula
for w(z).

We are interested in the properties of the area integral operator in (3.3.9). Using the
above expressions for the GREEN functions it can be written as

T.g(z) := ——/{ é«)]

£
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O[] = [1 —% —2w5“—’]}d<dn.

k=1

It, obviously, satisfies the boundary and side conditions

{H - T,‘g(z } =0 on J9D,

/ Im { == ~y<z)} ) ldz] =

as well as (Tg); = g and (T.g). = Il.g, where

L =Te(2) 1 9(2) z-z 90 yrz-
nny(z)._Z—z_Zk—;!{(C_Z,H(_z: 1_24)2H k} dedy .

k=1

This operator Il. is a linear operator from L,(D) into itself but unfortunately the
L,—norm A, of 11, is greater than 1 for 1 < «. Only for x = 0, where I, = II,
we have |[Tlo||l; = 1, see [Veku62], p. 210. Again the RIESZ convexity theorem, see
[Dusc66], p. 525, assures the continuity of A., by the logarithmic convexity of A?
for1 < p.

Lemma 18. For2<p

ITeg(2)| < M(p, o, 2k, D)llglly , [ITeglly < M(p, 0,2k, D)|lgll, -

Proof. The first estimation follows from

z— 2z 1 - zZ—2 1
H(-—zk(—z=(—z_znzk—z,(—zk

and

L3 L3 L3 —
HZ_Zk z _l-‘[zwz,t z ZHz—z,z—zk( z z
1 2% 1 —2( Zr—ZL,Z-Z%1-2((-%

ke $— % 1 —2( k=1 vk

and ——— on the right-hand
-2 -2

because of the boundedness of the coefficients of

=<

= in D x D and because of the related estimation

sides and the boundedness of lz
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of the T-operator, see Theorem 23.
For the second inequality we observe

- 1 z2—-2z,
[zz—zk_ —z] —zH(—-z,,

k=1

z—2z, 1
ZZHz,,——z,,zk—Zu[C-z ]’

-2
k=1 v#k p#v.k v

L3 L3

Z z—2z,
z— 2z

=1 vlc-z"l_z(

I-% 1
Z-% |(-Z > Il s—=7

g —
vk vk 2k (-7

I
x
~
|
~
<
-
|
—_
~
~I
1
o~

and

ﬁz—zk 1

k=1 (- (l - ZZ)2

z— 2z z2—2z, z2— 2 Z—E 2 1 1
-.l_IZ—Zk(l—z({)2 ZHZk—Z?—Z_/;(I—zZ) ¢ (-2

k=1 v#k (_z_k(_

together with the appropriate property of the Il-operator, see Theorem 32, and the
boundedness of the coefficients in D.
Lemma 19. 1 < A.; = ||llk)|2. For 0 < , moreover, 1 < A,2.

Proof. The proof only needs the following properties of Il,.

-9 0.9 _
1 ngg - azTngy az - g
2. Re{AT.g} =00n D0 <indA = «,A(z) := [}, %

_llz /tl N
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From the Gauss formula, Theorem 10, for g € C§°(D)

aTs .
(eg,Tl.g) := / g yd dy /[a_(
/—3 "gdz—/T,g —dzdy
2

_—3 % —— _
= / ngz + = % /gT‘ng+ /ggdzdy
ap D

= E/ngTxg+(y,g)=l+(y,y)-

<9 —6T,‘g
z) T.g 95205 dzdy

Because on 9D _ _
ATg+ A\Tg =0

we have

/ TogdT.g = — / MTogdT,g = —— / NT.gdT, g = —— / X d(Teg)?

1 1 [ -
= — 2 = —— A 2 = — 2 A =
/(T g) ax’ 2i/ |T.gl?dA % /I\IT,‘yl d
EY ) D
Hence, I is real. Moreover, because

XdA=idarg A:=1i)_darg(z — 2x)
k=1

we see that / is non-negative. In order to show A2 = 1 we ought to have I vanishing
for arbitrary g € C(D). But because |Tkg| > 0 in general not identically vanishing
I will not be zero for all g € C$°(P). Therefore 1 < Agz and 1 < Aga for 0 < x. In
case A =1 i.e. Kk =0 we have ] = 0 and then A; = Ag2 = 1.
That the relation

(9,9) < (Ileg, Icg)
proved for g € C°(D) holds in L2(D), too follows from the fact that C°(P) is dense
in 1/2(3)
As 1 < A for 0 < k we cannot treat the boundary value problem in the same way
as for £ = 0. Demanding

qAcp <1

would put restrictions on the coefficients p,, g2 of the differential equation. But then
the proof from the case x = 0 could be repeated here, see [Behs83)].
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Theorem 38. Let0 < g <1<2a<2<p<lf(l-a)a :=min{a,1-2/p},0 <
K, py, p2 be measurable functions in D,a,b,c € L,(D),

[m(2) + pa(2)l S qo < 1, lallp + lIbll, < K, goAp <1,

#, A € C*(8D),0 € C(3D),c0 € IR,

. -—/darg/\>0 5 —/ads>0 AOI=1, ¢e€ab,

ap

2y € Dyax € € (1 £ k < «). Then there ezist constants f,7,,72,6 depending on
a, p,qo, A, 0, 2k, K but not on uy, p2,a,b,c,9,co,ar,w such that any solution of

wy + w; + pW; +aw+ bw+c=0 inD,

R»e{Xw} =¢ ondD, %/Im{iw}ads =c,w(zx)=ar, 1<k <k,
satisfies the a priori estimate

Cay (; D) + ||w.|lp + [[wzlly < BCale; OD) + mlcol + 72 Y lak| + 8llcll, - (3.3.10)
k=1

Proof. Before proving this estimate we reduce the problem to a special one.

i. Taking

A = oII ()——/argi(o%_—z?,

by

5(¢) = o(¢)e ™) 1= / 5(C)ds
ap

as before we see that &(2) := w(z)e™"?) satisfies
Oz + 1o, + pae” BG4 (a+ i)

+(b—ipay)e TG 4 e =0 in D,

{HK Z((O} =e™y(() on oD,

‘ / {H w(c)} 5(Q)ds =

M‘I v}
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O(zk) = ae” ") 1<k <k.
The coefficients of this problem have the same properties as those of the original
problem. Obviously,
Cay(w; D) < M(, 24)Co,(@; D) ,
lw:llp < M(A, 2¢)([|@: ]l + Co(@; D)), [lwzlly < M(A, 2e) |zl -

ii. Subtracting from w the analytic function © satisfying the same boundary and
side conditions we arrive at the homogeneous boundary problem. © is explicitly
given as

z2—2z

)
2%k — 2

6(z) := 0(2)e™ [[(2 — z) + Y _ bulligs
k=1 k=1
with © as given in (3.3.8). For & :=w — 6 we get
B+ s + oo + a0+ 5+ 110 4 128 +a® + O +¢c=0 in D,
Re{d3} =¢ —Re{38)} =0 ondD,

%/lm{xa}ads=co—%/lm{X§}ads=0,w(zk)=0,l <k<«k.
oD oD

Using PRIVALOV’s theorem (Theorem 6) and Lemma 17 we see
Ca(®; D) < M(a, A, 24)Ca(O; D) + M(a, z) i I5k]
k=1
Ca(0; D) < M(e, A, 2k)Ca(p; OD) + M(), 0, 2)col ,
18 < MO, 2161, + Co(8; B)) + M(2) 3 [bu]

k=1
"eI"P < M(aa P, ’\’ zk)Ca(‘P; aD) .

iii. Let now w be a solution to the homogeneous boundary problem for the inho-
mogeneous equation where especially

i Y
10 =1l

Then as before introducing

u(z) = { m(z)+m(z)$jfj;, i wi(z) #0,
m) +m(z), i wi(z)=0,
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Ez_)_ if w(z
’e) :={ ole) + 82, it ulz) £0,

a(z)+b(z), i w(z)=0,

the differential equation reads

wr+pw, +hw+c=0.

a. h=0
Let w be a solution of the equation

wy+pw, +¢c=0 in D

with w,,w; € L,(D) where |u(z)| < g0 < 1,¢ € Ly(D) and let w satisfy
the above homogeneous boundary and side conditions. Then

w— Tiw;

is an analytic function satisfying homogeneous boundary and side condi-
tions. Hence it vanishes identically, i.e.

w=Taw;, w, =Il,w;s.

From the properties of T, we get
-2

Cay(0; D) < M(e,p)Cay(w; D) < M(a,p,0, z8)l[welly, @0:= ‘i;— :
[[w:llp < Axpllwsllp -

If we have shown

lwzll, < Mcll,

for some proper constant M then in this special case we are done. The
existence of M is shown by reductio ad absurdum. Assuming such a con-
stant M does not exist. Then there exist sequences (p,), (cn), (ws) with
the same properties as u,c, w, especially

|[l,‘(2)| < qo < 1,

satisfying

]

o
5
L

Wnz + fnWn: + Cn

e e,
—>
~|~
11
N
_7"
§
[ —
|
(=]
]
=
QD
()

—
E]
PR N—
"ﬂ*
|~
N
_a"
g
2
)
Q
—
N
o
&
]
)

Il
=
—
IA
a—
A
x

wn(2k)
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and
nllenlly < lwazlly .

Assuming 0 < ||wnz||, and setting

L S
wazllp ’ llwnzlly
such that ]
ol =1, leallp <+ (n€ M)
one has

Wnz + Pnwnz: +€n = 0 in D,

{H T w..(()} = 0 on 0D,
/ Im {H wn(c)}a(o‘is = 0,

w(zg) = 0, 1<k<x«.

Let ¥ = T'x» be a special solution of this inhomogeneous problem. Using
the representation given in Theorem 36 then

wa(2) = Qn((a(2)) + ¥n(2)
where (, is a complete homeomorphism of
Cnz + pnlnz =0
of the form
a(2) =24+ T0,(z), On+ p 116, + p, =0
so that for any compact set K C @

Conli K) < M(K), a0:= 222

The function x, € Ly(D) has to satisfy
Xn+ pnllxn + €, =0 in D.
Hence xn is the unique solution to this equation satisfying

llenlls
" ﬁ"P =1- % A N
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From this estimate

1 1 A 1
< nz <—’...’
I'¢n§|lr =1= qup n ) "'/’ "P =1-= qup n
M(p) 1
ao('/’mD)_l__qu n’

Furthermore, Q, is analytic in (,[D] satisfying

re {11 122000

{H t— '/’n(t)} =:pa(t) on 9D,

—
/ Im {,,I=I, It_—Tle"(("(t))} o(t)ds

abp
- Tt -
_/Im {;[I. = zkl./;,.(t)} o(t)ds =: pn ,
ap =

Qn(Calzr)) = —¥n(zx), 1<k<«k.

135

Using the inverse homeomorphism z,({) of (a(2) , see [Veku62], p. 95, we

find
{H l:ng:; 2k Q,,(T)} = @n(2a(7)) on (,[0D],
k=1 1°"
/[m {H I:"E:; LNy} (-r)} a(za(7)) z,,,(-r) + zm(,,.)
¢al2D) "

Qn((nk) = _'/’n(zk)s (nk = (n(zk)’ 1<k <k.
We have for the right-hand sides

Cag((Pn(Zn(')); (n[aD]) < M(ar ps zk)COo(wn; D) ’

lonl < M(0, 26)Co(¥n; OD),  |¥n(2k)] < Co(¥n; D) -

Hence, for the analytic function ), we have

= 1
CO(Qm(n[D]) S M(Q,P, 40,0, zk)Cao('/’n;aD) S M; .

The sequence ((,) satisfying
Cas(6n; K) < M(K)

ds = Pny
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for any compact K C € may, by the ARZELA-ASCOLI -MONTEL theorem,
be assumed to converge uniformly on compact subsets of € to, say (o. By
the argument principle, (o is a homeomorphism of €', too. Because (f2,)
converges uniformly on compact subsets of (o[D] to zero as for any compact
K C (o[ D) there exists an n € IN such that KcC (a[D), so does the sequence
(92,,) of the derivatives. Therefore, from

wnz(2) = R (Ca(2))6nz(2) + nz(2)
we obtain for any compact set K C D

llwnzllox < Co(Ri Gal KDIOnllpic + lixnlloc

< M(p,0)Col®%i GlK]) + M(pr)

As (a[K] converges to (o[K] and for compact K C D the set (o[K] is com-
pact, (.[K] C Ko C (o[ D] with compact Ko for large enough n. Therefore

Jim o = 0
for any compact K C D. This contradicts

llwnzllp.0 = 1

for all n. Hence, there exists a constant M such that for any solution of the
special inhomogeneous BELTRAMI equation with homogeneous boundary
and side conditions satisfies

llwsll, < Milell, -

Ch#0

This last estimate shall now be generalized to the equation
wi;tpw, +hw+c=0 in D

with again homogeneous conditions.
Let v be a solution of

vs+pv,+h=0 inD, Imv=0 onaD,/Revad.s:O.
D

Then from the above considerations

Cao(v; B) + J|v:|lp + llvzli, < M]J]]5 .



Boundary value problems for generalized BELTRAMI equations

Let fo be a solution of

fo;+pfo,=-aﬁo<p:, in D,

EE

k—'l

/ fm {H = fo(c)} o(¢)ds =0
k=1

fo(ze) =0, 1<k<k,

fo(()}=0 on 9D,

with

ools) = £ [ = w0, 3(0) = [T 1¢ = ulot0), 5= [ aas,
k=1 k=1

-2

ag :—/ ef* g (()ds [ZiM/ R"“)U(C)ds]

ab
Again applying the above estimate we get

Coo(fo; D) + || fo:llp + "fOinp <M.

Consider now
f = we™" — A(aofo + wo)

A= / Im {H,C w(c)} e e g(()ds ,

with

satisfying
f;+pf,+ce“‘=0 in D,

Re{

C-Zk _
/lm {E I—C-—zd‘f«)} a(¢)ds =0
op

f(zk)=01 lSkSK"

Once more applying the estimate from before

}:0 on 9P,

Coo(f3 D) + || follp + | follp < Mllce™llp < MeM"h”’“c"p .

137
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From the definition of f we find

=B / Im {IIK f(()} eRe"Io(()ds

k=1

-1
= Rev 1 Rev(¢) 5
B:=lap /Im = f (C)}C (00(0‘134'7 e «)0(()‘13 )
[ 05,/, {,E €= 2l ™ 28’[

and

I AI 9¢Co(viP)

IA

/ lm{H f(()} eMa(()ds

226’0"(""”00( 5D).

IN

Combining these estimates gives

Coo(w; D) + |lw,lp + [lwsll, < MeM"""’"cN, < MeM(lla‘I'+llbll')||c||v .

Theorem 39. The RIEMANN--HILBERT problem formulated in Theorem 38 is
uniquely solvable.

Proof. From the a priori estimate (3.3.10) at once the RIEMANN-HILBERT problem
of non-negative index for the generalized BELTRAMI equation is seen to be uniquely

solvable if any solution exists at all.
Finally we will prove the existence of a solution. As was mentioned before it is enough
to consider homogeneous boundary and side conditions. With these conditions in mind

we are looking for a solution to the equation
wr+ pw, + p0; +aw + bw+c=0
Introducing a real parameter t,0 < ¢ < 1, by
w; + t{pw, + p,W; +aw + bw} +c=0 (3.3.11)

the solution then depends on this parameter too, w = w(z,t). For ¢t = 1 the original
equation is attained. For ¢ = 0 the equation is the inhomogeneous CAUCHY-RIEMANN
system, the solution of which is given by w(2,0) = T.c(z) in the case of A being
specified as above. We may assume that for some t5,0 < to < 1 there exists a solution
w(z,t) to (3.3.11). Taking w(z,%o) as a first approximation for a solution to (3.3.11)
for some t > to we can inductively construct a sequence of approximate solutions
wy(2,t) by asking wny(2,t) for wa(z,t) given to be a solution to

Wnp1z + lo[p1Wns1z + B2Wngi1z + CWnyy + 6nya)
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+(t — to)[#1Wns + p2Wn; + aw, + bW;] +c=0.

As w, € W,}(i) where especially w, € C°°(i),u_1:, € L,(D),a0 = 1-2/p,2 < p,
the factor of (¢ — o) as well as ¢ belong to Ly(P). By assumption this equation
has a solution wn41(2,t). In order to prove convergence consider wn4) 1= Wp41 — Wy
satisfying for n € IN

Wr1z + to[1Wni1z + B2@ntiz + Gwnyr + Bont]

+(t — to) 1wz + P2z + awn + bn] = 0.
Applying the a priori estimate (3.3.10) to this equation with homogeneous boundary
and side conditions gives

lwnsall < (¢ = o) [lmrwns + pa@ns + awn + biomllp]

< (t—to)(g + llally + lIbllp] llwnll ,

where
flwll := Cay (w; B) + || |lp + lJwzllp -

Choosing now t — to > 0 so small that
(t —to)8 g+ llall, + llblls] < 1 (3.3.12)

this inequality guarantees convergence of (w,) in the norm ||-||. Denoting the limit by
w(z, 1) it is seen to be a solution to (3.3.11) for ¢ > o satisfying (3.3.10). Because the
bound in (3.3.12) to the step-width t — ¢, is independent of ¢, repeating this procedure
finitely many times serves to find a solution to (3.3.11) for ¢t = 1 giving a solution to
the original equation.

Remark. The restriction to homogeneous boundary and side conditions are un-
necessary for the above reasoning because in the convergence proof we would in any
case be involved with homogeneous data. Inhomogeneous data only change the upper
bound of the solutions.

One easily figures out
llorll < (¢ = to)8llwoll, lfwoll < 8llclly, 8 = &[q+ lially + (15l

where in the case of nonhomogeneous data the bound for ||we|| has to be altered.
From

n
wa=wo+ Y wr, flwell < (t— to)* 18wl < (t — to)*8* Juwol]
k=1

for (¢ — to)g < 1 convergence follows.
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Theorem 40. The modified RIEMANN-HILBERT problem

Re{lw}=¢p+h on D

where

¢, A € C(8D),|A¢)|=1 ondD,k:= 51; /dargA <0,
D

-K-1
h(z):= 3 hee* how=he, [kK|S k-1,
k=x+1

with undetermined coefficients h; for the generalized BELTRAMI equation

ws+ pw, + poW; +aw+ W +c=0 in D

satisfying
() + lp2(2)] S go < 1, llallpy + lIBllpe < K
where
0<qp<lati=—P coaco4<p, 0<K,
a  po—2

is uniquely solvable. The solution satisfies the a priori estimate
Caaz(w; D) + lw:l; + l[wsll; < BCa(w; P) + bllcllp, (3.3.13)
when B and 6 are nonnegative constants depending on a,p,po, 90, K,A,2 < p < po
2

P
2(p-1)

Proof. Let 3 be the solution to

such that oA, < 1, and p:= ,2<p<p.

vrtms+pat, +oap+bp+c=0 inD,

Imy =0 on 6D,/Rc¢(()ds=0.
D

Applying Theorems 38 and 39 to % := iyh shows that ¢ is uniquely given and satisfies

Cao (¥, D) + [|¥:llp + ll9zlly < bllcllps 90Ap < 1,2p < po -

Let w be a solution to the problem formulated in the theorem for a proper function
h. Then v := w — ¥ satisfies

vs+ v, +pa; +av+ =0 inD,

Re{lv} =9+ h~Relyp ondbD.
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Rewriting this differential equation as

vs+pv,+av=0 in D

where -
m+p— , if v, #0
Bi= V. ,
B! , if v, =0
a+ b2 , if v#0
a) = v
a , if v=0

and similarly as before utilising the solution x to

xztpx:+a=0 inD,

Imx=0 ondD, /Rex(()ds =0
oD
satisfying
Cao (X D) + lIX:llp + lIxzlly < Sllasllpy < 6K,

then f := ve™ is a solution to
f+pf:=0 inD,
Re{Af} = {p+h—Rerp}eRX =3 +h ondD

with

-x-1
g:={p—ReXple®X, h(z) = Y hez*, by i= hye Rex)

k=x+1
By Lemma 14 f can be represented as f = ¢ o { where ( is a homeomorphism of the
BELTRAMI equation (7 + (., = 0 and ¢ is analytic in {[D).
We may assume ([D] = D. An arbitrary complete homeomorphism maps D onto a
simply connected domain ([D}. Let w be a conformal mapping from ([D] onto D, see
Theorem 7, then (; := w o ( is a homeomorphism from P onto D satisfying

Gz+plz:=0.

The inverse mapping z = 2({) of { = ((z) is a solution to the BELTRAMI equation
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From the estimates in the proof of Theorem 35 and the respective property of the
T—-operator, see Theorem 23,

-2
Cao((; D) + "(z"? + “C?"P S M= M(P,Po, 90)»00 = 'p%")—’? < p S Po, qOAP <1.

Similarly,
Cao(2 D) + [lzcllp + llzgll < M .

Thus, ¢ is an analytic function of ( in D satisfying
Re {(A(z(0))#()} = &(=(¢)) + h(=(¢)). ¢ € 9D .

By Theorem 18 this problem is uniquely solvable when fixing the yet undetermined
coefficients hy, |k|] < —k — 1, by the system

/[&(z(z)) + h(2(2))e™ O 1dt =0, 0<€<—k—1,

where dt
7H0) = 5 / g (oA =O)} {1 §0 (e D

Then ¢ is given by the SCHWARZ integral

3 : ~v(¢) t d
o = & / [Ble(e) + Rlate e
— lnw(t)
Cdt, (eb.
For the last equality
AHCL ¢ R
CrerT TRl et

is used. From the estimates in the proof of Theorem 5
Caao(¢; D)< M(a, ao)Caao(ei"; D)Caao(la(z(t)) + z(z(t))]elm‘y(‘)t“; aD)

follows so that

Caao($; D) < M(a, po, K, 2)Ca(p; OD) .
Therefore f = ¢ o ( € C*(D) satisfies
Coat(f; D) < M(a,po, K,A)Ca(p; 0D) .
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Moreover, by Lemma 17
6, < M(A)Caao(@(2(+) + A(2(-)); D)

S M(av Po, Ka ’\) [Caa°(¢(2(')); D) + "c"P]
S M(O"Po, Ka A) [Ca(‘P; D) + "c"m] )
2
where 2 < p < —l—,qu,, < 1. Hence, for p := -——p—,2 < p < p, we have with
1 — aag 2(p-1)
,_2p-1) ,_2p-1)
L
ILIE = 18GENGIE= [18PICE (P 1) dédn
D
1 -
= 12 [ 8PPy
3
1/p' 1/q'
l et} -~ ’
Sia ( / I6(C)P dcdn) ( / |G, F-2e d€dn) ,
D D
where

z((|(,|2 -1GP) =G, zz(|(,|2 — G = -

is used. Because pp’ = p and

/ 1G24 dgay = / 1o -2 (1C, 2 — ¢of?)dzdy
D D

—(-¢) / 1G22 dzdy = (1 — %) / \G.[Pdzdy
) /] D

we have
/ 22
If:0l7 < N6 NaNE:lR" -

By a similar procedure or from the differential equation for f we can estimate || {5

Thus
Cooz(f; P) + || f:ll7 + Il f2llz < M(a, p, o, 90, K, A)[Ca(ip; §) + lcllpo) -

From w = feX + 3 we find by the preceding estimates and from || - || < || - ||, for
1<p<p

Co(w; D) + [w. Iz + llwsll; £ M(a,p, po, g0, K, A)[Ca(; D) + lcllp,) »
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where Co(w; D) can be replaced by C,,2(w; D), too.

3.4 POINCARE boundary value problem
If in the RIEMANN-HILBERT boundary condition
Re {(MQw(()} = »(¢).¢ €D,

the function w is replaced by its z-derivative w, this problem is called the oblique
derivative or POINCARE problem. We will treat this problem for the linear generalized

BELTRAMI equation, i.e. the problem
wr+ pw, + pW; taw+bw+c=0 inD,
Re{dw.} =¢+h ondD,
w(l)=0,

where we assume 1 € D. For simplicity again D is assumed to be the unit disc. This
can always be achieved by a conformal mapping if D is a bounded simply connected

domain.
Introducing u := w, and observing

wz = —[pu + pou + aw + bw + ¢

we see

w(z) = / {u(t)dt — [mu(t) + pau(t) + aw(t) + lnm + c]d?} . (3.4.1)

1

This integral is path-independent because
up = ws = ~[mu+pi+taw+bw +d, .

Obviously, we have to assume that the coefficients of the differential equation are
(weakly) differentiable. Differentiating the generalized BELTRAMI equation leads to

Uz + iy, + p2tz + au + b7 + pyu + pr i e, w+ bW+, =0
and its complex conjugate
G+EG U+ a0+ bus + LU+ FRu + T 0+ bw+ G =0,
Solving this system with the two unknowns u; and %3 for u; gives

uz + quu; + q2U; + Au+ Bu+ H(w) =0, (34.2)
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where

[ad] . ”2”] |

= 3 = ’ QI|+|‘12|<¢10<1
BTl T T P
PO Ul T TR SO #28 — pafhz

' 1—|pg* 1 — |p2f?

1 - — —— —
H(w) := e [—pabws + b7 + (a: — paba)w + (b — 2@ )W + ¢ — o) -

- 2

Together with the boundary condition
Re{du} =¢+h (34.3)

this is just a RIEMANN-HILBERT problem for u where in H the unknown function w
and its derivative w; is incorporated.
Introducing the side conditions

-;- / {(Im X O)u(0)}o(¢)ds = co, u(zx) = ar1 <k < x, (3.4.4)
apD

or alternatively, see Corollary 2,
Im{\(ai)u(ar)} = b, 0< k< 2k,

in the case where the index is nonnegative (0 < x) and assuming there is a solution
(w, u) for problem (3.4.1) - (3.4.4) the a priori estimate (3.3.10) from Theorem 38 for
the first set of side conditions in case 0 < x and (3.3.13) from Theorem 40 for x < 0
gives

Coaz(4; D) + [luzll; + lluslly < B Cale; D) + milcol + 72 }: |ak| + 8]LH (w)llp, ,
k_

where for 0 < x p = p = po and for £ < 0 the constants v; and 9, formally are
replaced by 0. Here the constants $,v;,72,6 depend among others especially on p, py
and the constant K, satisfies

lAllso + I Bl < [Il#uIlm + l1#2:lls0 + llallpo] < K -

1 (@)llpo < 37— 1Co(b: D)lwzllpo + (llazllpo + 1:llpo)Colw; D) + iz lyo]

and from the integral equation for w

Co(w; D) < 2(1 + o)Co(u; D) + 2(Co(a; D) + Co(b; D))Co(w; P) + 2Co(c; D)
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we have under the assumption
2(Co(a; D) + Co(b; D)) < n,  2(lla:llpo + l1bellpe) <, n <1,

the estimates

Colw; D) < 2(:—:':"-)00@; D)+ fﬂco(c;p)
and
(1+qo)n ) 1 n .
lHlp < mco(“, D)+ 20— ||w'||po =)= ﬂ)Co(C, D).

From the generalized BELTRAMI equation

A

1
Co(ws; D) < quo(u;D)+§nCo(w;D)+Co(0;D)

(qo + #—;—;IL)) Co(u; D) + (l + -——-——) Co(c; D) ,

IA

so that because of JJwz|l, < 2Co(wz; D) for 2 < p

L (o L) o

1 1l

IA

141 1
o (1 + 1_) Coe; B) + 7= llel

7 2¢0+1+7, 2n 1
i D)+ ——C D .
1 - o l _ 0( ) ( — 90)(1 _ ) o(C )+ - qo "C "Po

Inserting this into the a priori estimate and neglecting ||u. |5 + [|uzll; gives

76(2g0 + 1 + 1)
[l_m Co(u; D) < BCa (‘P,ap)+71|co|+72§|ak|

216 )
+—n———Co(c; D .
(l — qo)(l '7) o(C )+ "C "Po

Assuming
76(290 + 1+ 1) < (1 — qo)(1 —n)

which is satisfied for example for

]_
25(1+qo)+l—qo




Boundary value problems for generalized BELTRAMI equations 147

then
Co(u; P) < BCa(; D) + Fileol + 52 Y. lax] + 6[Co(c; D) + l|cllyo) -
k=1
Collecting the respective estimates leads to the a priori estimate

Co(w; P) + Co(wy; D) + Co(ws; D) < BCa(p; OD) + Fulcol + 52 Y _ la|

k=1
+8[Colc; D) + |lcalpo] - (3.4.5)

Of course the maximum norms for the first order derivatives for w can be replaced by
the L,(D)-norms. Moreover, on the left-hand side |lw..||; + ||w::||; may be added.
We even may add ||w:z|[;, too if

lezllso + lluzzllee < K, llazllpo + llbzllee < K

is assumed and on the right-hand side 3||c;||,o is added. This follows just from the
differential equation and the preceding estimates. Thus

Co(w; D) + Co(w:; D) + Co(wz; D) + |lweslly + llwz:|l; + lw=:|l;

< BCul(¢i0D) + Fuleol + 2 3~ las] + HCulci B) + lcal + llesl] -(3:46)
=1
It remains to show that the POINCARE problem is solvable at all. From the a priori

estimates it then follows that the solution is unique.
Let wo € CO(D) satisfy Co(wo; §) < K where K is a constant not less then

2(1 + go) . 3 ,
T (rram ﬂCa(‘P.ap)+71|Co|+‘72§|dk|+5(llcz"p.,+Co(Cy D))]

and 1 + (1 + go)8]n < 1 is assumed. Let u be a solution to
uz + qu; + qzu_, + Au+ Bu + H(‘wo) =0 inD (347)

satisfying the boundary condition
Re{du} =¢p+h ondbD

and in case of nonnegative index x the side conditions (3.4.4). Moreover, let w be
defined by

z

w(z) == / {(t)at — [ma(0)u(t) + pa(t)ul®) + a(t)ewo(t) + () wold) + e(t))dE}
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for z € . Then from the above estimates

BCa(; D) + mlcol + 12 lar] + Sllc:llp

k=1

1
+360[Colwoi D) + lwealle] ,

Co(u; D)

IN

Co(w; ) < 21+ go) {BCalg; 3B) + mlcol + 72 3 lax] + lczllpo + Colc; P)

k=1

+(1+ (1 + go)é)nCo(wo; P) < K .

In this way a mapping L is defined from Co(D) into itself which, obviously, is linear
and will be shown to be a contraction. For this purpose let wo, wf € Co(D) be given
and w = Lwo,w’ = Lw). Then the related functions u and u’ as solutions to (3.4.7)
and the boundary (and side -) conditions lead to a solution u — u' of

(u-u)s+q(u—v):+g(u—v). +A(u-v)+Bu - v)+ Hw)-H(w') =0 in D,
Re{A(u—u)}=h ondD
and eventuelly homogeneous side conditions. Hence,
1
Co(u — u'; D) < 561 [Co(wo — wp; D) + ||(wo — wo)zlip)
and

Co(w—w'; D) < (1 + (1 + g0)8)n Co(wo — wy; D) .

Because the coefficient on the right-hand of the last inequality is less than 1, this
estimate shows L being a contraction. Hence, the BANACH fixed point theorem proves
the existence of a unique solution w € C°(D) to the equation w = Lw. From (3.4.1)
then w(1) = 0 and by the continuity of the integrand

wz=u,u)5+“lu+/“2ﬁ+aw+m+c,

follow in D. Because u satisfies the modified boundary and the side-conditions w is
a solution to the POINCARE problem.
Thus the following result is proved.

Theorem 41. The modified POINCARE boundary value problem for the generalized
BELTRAMI equation is uniquely solvable under the following assumptions.

s P2, a,b,c € Co(i) n Dz(D)y Pz, B2z € Lm(ﬁ) )

Hurellos + llbz:llpo +llallpe < Koy la(2)] + l12(2)l S g0 <1, goAp <1,
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where -
2<p = p=p for 0<k,

P
2(p-1)
2 (|lazllpo + [18:llp) < 7, 2[Co(a; P) + Co(b; D)) < 1.

Here qo,n, K, are nonnegative constants and 7 is so small that
1- 90
<
TS T g0 +2(1 + q0)8
where 6 is the constant appearing in the a priori estimate (3.3.10) and (3.3.13), re-
spectively, depending among others especially on py and K, rather than on p and K.
The solution satisfies the a priori estimate (8.4.5) where B,7),72,6 are nonnegative
constants depending on a,p, po, o, A, 0, K1, and also on 0,2,(1 < k < &) for nonneg-
ative indez.
If, moreover, py, u2,a,b,c € Dz(D), and

llrzllpe + N2zlipe < Ky llazllpe + 10z]lpe < K

the solution then satisfies (8.4.6). In case of negative indezx again formally
Nn=7%=0

A basic paper for the POINCARE problem for generalized BELTRAMI systems espe-
cially for generalized analytic functions is [Dani 62].

<p<pyp,4<p, for k<0,

2<p =

3.5 Discontinuous boundary value problems

The conditions on the coefficients of the RIEMANN-HILBERT boundary conditions
can be weakened. They might have discontinuities of first kind (A) or even of se-
cond kind (¢). For analytic functions this discontinuous RIEMANN-HILBERT problem
was investigated by MUSKHELISHVILI, see [Musk53]. The discontinuous POINCARE
problem for generalized BELTRAMI equations was studied in [Bewe88,89]. In this sec-
tion a priori estimates for solutions to these discontinuous problems for generalized
BELTRAMI equations are developed. Again we will deal with the unit disc D. The
coefficients of the boundary condition

Re{dw} =¢ ondbD
are assumed to satisfy the following conditions. There are finitely many consecutively

ordered points {c, : 1 < u < m} on 8D subdividing P into m disjoint open arcs
{T, : 1 < p < m} such that

AeCPT,),1<su<m0<B<1,

i 1 1
Meu —0) = eA(c, + 0), @, := ;0“ —ku, k= [;0“] + 1L,
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where

Mc, £0) := :l-i.To’\(c“e“)’ I,€{0,1} suchthat —1<gp,<1,

o(2) = @o(2) [[ Iz = cul ™, 0< Bupu+ Bu <1, 1S p<m,
pu=1

with o € C#(T,), 1<p<m.
The index & of this discontinuous problem is defined by the equation

2k :=Em:k,,.

u=1

Later on the entire part [«] of , i.e. the largest entire number less than or equal to
« will be used. In case when no discontinuities at the points ¢,(1 < g < m) occur we
m

have ¥, = 2x,7, I, = 0,p, = 0 with £, € Z. Hence, k = Z Ky € Z coincides with

u=1
1
i / dlog A(¢) .
-2 4

If A is discontinuous in ¢, then I, can be chosen in such a way that k, is an even
number. But this will influence the behaviour of the solution near c,. We thus have
to consider the two cases when 2« is an even or an odd number. If k, is even then
Au(2) := M2)(z = ¢,)¥#|2 — c,|™¥* is continuous at z = ¢, as a function of z € 9D.
Here (z — c,)¥* on 0D is considered as the boundary values of an analytic branch of
this function for z € D. If k, is odd then the function X,, has different signs on the
two sides of ¢, on @D. This can be seen from

uleFit — 1%
lim A(z)I z =)™ = hm)\(c,,e*")u

z—rcy 0 —c |vu 0 |e*" — 1en

= Acu £ 0)5 (FeiF)*

from which
llm+o /\,,(z) = Mc, +0)c,,We 7o = A(c, — O)ﬂuetéﬂwet(wu-%)

(=1)* Lim X,(2)
z2=cu—0
follows. We therefore distinguish two kinds of points of discontinuity,

Cri={c,: k,+1€2Z}, C;:={c,: k., €2Z} .



Boundary value problems for generalized BELTRAMI equations 151

m (Z - cl‘)w“
5=z = cyulem

it undergoes a sign jump. In order to transform A into a continuous function on 8D

In ¢, € C, the function A(z) := A(2)II is continuous while in ¢, € C;

consider
Cir={cu:1<v<n}, p<pu(l<v<n<m).

It now is appropriate to distinguish two cases

ii ne€2IN, sothat ke Z,
ii. n+1€2IN, sothat 2x+1€2Z.

In case i. denote

[, :={z:z€ 0D arge,, <argz<argc,, 1}, 1<v<n,

T,.:={2:2€0D,argc,, <argz < argc,, +2r}
and define
z):=(~1)""1,2€T,, 1<v<n.

In case ii. choose ¢g € D\ {c),...,cn} and proceed as in case i. with K; U {co}.
Then

z(z)i(z) , in case i.

Ao(2) := _
(2 - )
y2) F = o

is continuous on 3 where ¢ is defined with respect to C; and to C1U{co}, respectively.
The discontinuous boundary condition

Re {X(z)w(z)} = ¢(z) ondD

X(z) , in case ii.

therefore can be transformed into the continuous one
Re {Xo(2z)wo(2)} = @o(z) on D

for

m
H(z — ), in case i.
1

wo = X;lw, X :=

m
(2 - ) H(z —cu)¥, in case ii.
1

with —

X] 3
Ao 1= tA\— =
R ARG |X1|(P
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the index of which in both cases is x — ln €EZ.
In the following ¢ is assumed to be identically 1 and therefore n = 0 or n = 1 which
can be achieved just by relabeling A and ¢. Thus the two cases are

i. Kk€EZ, i x—%GZ.

The solution w to the discontinuous RIEMANN-HILBERT problem for generalized
BELTRAMI cquations in both cases is looked for in the space C(D) N Dy(P).

Lemma 20. For A € C#(T,) the function Ao € CP(T,,).

Proof. Any factor of X;|X;|~! turns out to be LIPSCHITZ-continuous. This shows
Ao € CP(T,). To prove (z—c)*|z—c|™¥ for fixed ¢, |c| = 1, and ¢ real to be LIPSCHITZ-
continuous on dP\{c} let zy,22 € D,z # c,z; # c. Then

(2 — €)%|zk — |7 = e*P2m8la—9) f=1,2,
22 = €)1z — el = (21 = )y — cf ] = [eielestr=a)-artes o _
< lpll arg(zz — ) — arg(z1 = c)|elellarstzaal-arslza =2l
< lple* | arg(z; — c) — arg(z1 — )] -
From the triangle 0,1, '™ we see arg(e'® — 1) = %(a + «). Hence

) ) 1
arg(e'™ —e'®) = ap + E(a —ap+ ), arg(z; —c) —arg(z; — ¢) = %(arg zp—arg 1) .

Applying the cosine theorem for the triangle with corners 0, z,,2;, we see since
|argz; —argz| <

2 .1
- |arg z2 — arg z;| < 2sin 3 larg z; — arg z;| < 4/2(1 — cos(arg z; — arg z;)) = |21 — 22|
Thus .

|arg(z2 — ¢) — arg(z1 — ¢)| < le. — 2.

This esgl:mate holds even if say 2, tends to ¢ when arg(z; — c) is replaced by its limit
arg c+ —. Therefore z, and 2, may take the value ¢ when arg(z; — c) both for k = 1,2

is replaced by the tangent direction or both by the opposite directions. Hence, Ao
satisfies for any z),z; € ', a HOLDER condition

IAo(21) = Xo(22)l < Hlzr — 22f°
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with a HOLDER constant H independent of the location of z; and 2z, with respect to
the end points of I',. As Ao(2) is continuous, we may pass with 2z, to any endpoint
c€ {cu,Cut1} , Cmi1 = €1, getting

[Xo(c) = Mo(22)| < Hle — za)° .

Remark. Later we will see by Lemma 24 that Ay € C?(D) because of its continu-
ity at the ¢,’s

Theorem 42. Let )\ and ¢ satisfy the above conditions. Then the modified discon-
tinuous RIEMANN-HILBERT problem for analytic functions ¢,

Re{}¢}=9+h ondD,
Im{Az)d(2)) =ar, 1<k<2x+1, if0<x,
where 2z, € 3D\{c, : 1 < u<m}, ar € €, 1 < k < 2« + 1, are given points and
h=0i0<k and

thz’ hk=t;1 Ikls_n'—la if —-k€N,

x+l

=lz)

S o mat b me=hl, kI<[-x], if i-xeN,

[=]+2

if K < 0 with undetermined coefficients hy, is uniquely solvable. The solution has the
form

iX(2) [ Mt)(e(t) + h(t)) t+ 2 dt

W= [ TR T 09, (35.1)

where
X(z) := izl X, (2) ,
@)= 5 / {arg ha(t) ~ ] arg 1) H2 5
2) = Az (Z)
and
0, if x € INg ,

]

Q(z) = dez" + +
™ d'ﬁ——:, ifx—1€ N,
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0, if —k€elIN,
Q(2) =

a2l e,

with coefficients satisfying
d_= _d_k’ Ikl < [K‘]’d‘ =d )

being uniquely defined by the side conditions for 0 < k and d* being undetermined for
£ < 0 an odd multiple of (—1/2). (3.5.1) is the solution for —x € IN if the hy are

determined by

—r=1 1 elmr(t)

A = By, A th-k14dt,
“_2, kb = By Anu 2m J )
lm'r(t)
= - ) =1 <k <—-k-—1 )
Bei=—35 / DA ):w lul < o 0s g

and for 1/2 — k € IN if the by and d° are determined by

% a 1 M keag2
Apuhy + 5 = By Aey = —— / puok-3izgy
u=[x]+2 < 27”80 |X1(t)|

1 l.rn‘r(t)

T 2mi |z (t),‘P( )t"'“ , Bl £ [=«), 0<k< [-«].
D

Proof.  Because ¢, + B, < 1 the integral in (3.5.1) exists and ¢ will be seen to
satisfy the boundary condition in dD\{c, : 1 < p < m}. Near the c,’s ¢ in general
will turn out to be unbounded. This last assertion will be proved in the following
lemmas. We first concentrate on proving formula (3.5.1).

For z € 0D we have

Re {A(2)X(2)} = Re {i\(z)do(2)e ™" X, (2)} = 0,

so that X is a canonical solution to the homogeneous boundary problem. A solution
¢ to the inhomogeneons boundary problem then would satisfy

Re 2 = Re A = Ap Ap on 8D

iX Ze X | T he X T iX

because on 9D
X =ide™™"|X,].



Boundary value problems for generalized BELTRAMI equations 155

But iX~1¢ is analytic in D up to a pole of order at most [«] at the origin if 0 < &,
and a pole of order one in z = co if 2« is odd, and with a zero at z = 0 of order at
least |[«]| if £ < 0. Thus ¢ has the form (3.5.1) at least if ¢ is continuous. This is
clear from section 1.4, proof of Lemma 7, for k € INp. If x —1/2 € IN, then Q having
the same singularities as - iX !¢ has a pole of order at most [«] at the origin and a
pole of order one at ¢y on 3D. Moreover, Re Q vanishes on . From

Z di2*

k=-[x)
we find on 3D
—d
Q)+ = —2 4 Z (diz* + dpz7]
k=~[x}
[x) =[x]-1
d d
— c°z+do+do+2(dk+d 0k + Z dt+ Y At =0.
k=1 k=(x])+1 k=—o00

Hence, dy = 0 for [x] < k,di + d_; = 0 for 1 < k < [&],d = (do + do)co so that

)

do+doZ+Co do — do k —k
Qz) = ot 3 +k2=j[dkz +d27"]

which is of the above form. The coefficients are determined by the side conditions
which give

[x) Im
;2 +co agel™ (@) ] p(t)e™ )t 4z dt
&+ Y izd, =2 / I J1<k<
Y > i Xi(erl 2mi ) 1XG@O] t—z t k<2etl,

v==|x)

where formally d* = 0 if kK € Ny. The determinant of this system of linear equations
is

2x+1
+1 -1_-
2‘:1[)“I H (20— )7z *hgucvcantr (2, — 2.) -
v=1

If x € INy the determinant of the system is

2x+1

M= JI G-2).
v=1

1<u<r<2x+1

Thus the coefficients of @ and d* are uniquely given if x > 0 and being the solutions
to the above system of linear equations can be estimated by
J . (3.5.2)

/(,o(t)el""(‘) N t+2z,dt
i ] G Mozt

2x+1
ld, ], 1d*| < M(zx,¢400) D [Jaul +

u=1




156 Complex Analytic Methods for Partial Differential Equations

For k < 0 coefficients of h and d* too, if 2x is odd, are determined by means of
the solvability conditions. They arise because the solution ¢ is demanded to behave
regular at the origin where X has a pole of order |[]|. In order to show that the linear

systems

——1 ["‘] 03

d
> Awh,=Bi, 0<k<-x-1; ) Ak,,h,+g=3k, 0<k<[-x],
p=x+1 p=[x]+2

are uniquely solvable the related homogeneous systems are shown to be only trivially

solvable.
Let6 sa.tlsfy6_,— ,,,lp|< —x—1,and 6, and § satisfy 6_, = §,11,6 = &, |u| < [—«],

and

—r—1 [-x])

3 A8 =0,0<k<-x-1; Y Ak,6,+é=0,05k5[—n].

w=x+1 w=[x]+2
Then
~K=1 [-#] N
92)= Y 825 g(x)i= Y. buh
s=r+1 u=[x]+2

are satisfying
Img(z) =0; Img(z) =0 ondD

a Im 7(t) d
1 elmr ¢
2’"/IX HPOFT = 6 0Sk<—n-1;
1 elm(t) dt 5
= —— < _
2’"/|X(t)l()t"“ cs,O_ksl K] .

Using in the last case the first equality k = 0 to express § through g the other equations
of this system become

(- t-e rerata

From the first system we see that
1 elmri) : t+zdt  z7" elm7(®)
2ri J FAO AT J X (0l =9t )

G'(z) =

is an analytic function having a zero of order at least —« at z = 0. Hence, at least
—2k level curves Re G(z) = 0 of its real part which coincides with

lm()



Boundary value problems for generalized BELTRAMI equations 157

on 0D pass through z = 0, see the proof of Theorem 18. These level lines cannot
intersect one another within D\ {0} if G is not vanishing identically. They therefore
intersect D in different points. Thus a(z) and hence g(z) have at least —2x zeroes
on 8D. But z7*"g(z) is a polynomial of degree at most —2x — 2. Hence g(z) = 0.
From the second of the above two systems we see that

1 elm7() ot) t+z cot+z]dt
27” |X(t)| -z c-—2z]t

G(2)

z[—n]-f-l elm(t) 1=+ c;["" dt
wi IX,(t)[g t—z c-—z|t
ap

is an analytic function in D with a zero of order at least [~x] + 1 at z = 0. Therefore
at least 2[—x] + 2 level lines Re G(z) = 0 of its real part passing through the origin
intersect 8D in 2[—«] + 2 points if G does not vanish identically. But on 3D

Im7(z2) z Im7(t)
ReG(z) = I%(mg( 2)+6 Reco t l} (Z)Ig( z),

so that g has 2[—«] + 2 zeroes on dD. This is only possible if g(z) = 0 because
27""1g(2) is a polynomial of degree at most —2x — 2 = 2[—«] — 1. This proves that
the homogeneous systems are only trivially solvable. The unique solution to the
inhomogeneous systems can be estimated by

l-+-3) I
1 [ op(t)e™® di
< —_—
[hl,1d*| < M(cy, ) k§=o o / TAOIE (3.5.3)

We are now looking for an a priori estimate for the solution ¢ in (3.5.1) which will
charaterize the behaviour near the c,’s , too. In order to prove this a priori estimate
the behaviour of CAUCHY integrals with discontinuous density has to be studied. The
results are due to N.I. MUSKHELISHVILI, see [Musk53], p. 83 and [Mona83], p. 21. In
the following I',;, denotes a smooth bounded curve in the complex plane € with end
points @ and b. The proofs of the next lemmas follow the argumentation in [Musk65],
§23 - §25.

Lemma 21. ¢* € C*(l),0<a<pu<bé<l-aa+p<bdora<pu=4,

_1 o' (t)dt
P(to) : %r C=ori—t)’

N(a) a neighborhood of a,T := Lo N N(a). Then (to — a)’p(to) € Co(T) and
Cal(t = a)’(t);T) < M(a, 1,6, Tas, N(a))Ca("; Tas)-
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Proof. Decompose ¢ into the form

— ¥(to dt
e(to) = (¢ (a) + ¥(t0))to) + # ¢(t3 - :f)(t ) (t—a)

Fap

where ¥(to) = ¢"(to) — ¢*(a) and

(to—a)’ [¥(t)—9(to) dt  _ 1 fPt) —P(t) , s
i ) t—t - (z_a)u“"(‘°)+27ri/ o e

2e) = 5 / (tza)™,

The function
t—2z
satisfies by the PLEMELJ-SOKHOTZKI formula
O (to) — N (to) = (to — @)™, to € Tus\{a} .
Choose the branch of (z — a)™* being single valued analytic in N\T' satisfying

((z—a)™)* = (to —a)™, to € '\{a} .

Then '
((z—a)™)" = e ™¥(ty — a) ™", tp € T'\{a},
so that ( - i
z—a)” e
—_ = - —p
T 1—e-2ms T 24sin 1rp(z a)
satisfies

w*(to) —w™(to) = (to — a)*, to =€ T'\{a} .
Hence, ! — w is continuous on I'\{a} and thus analytic there. In order to show a to
be a removable singularity let 4 < v < 1. Then

—al — 4 — alv — p|v—#p—inarg(t—a)
Iz = a]"Q(z) = 1 |z—al’ - |t —a L |t —al|*"#e
omi (t — a)x(t — 2) 2mi t—z
Fap Fab

Because the numerator of the integrand in the second integral is HOLDER-continuous,
see [Musk53), p. 18, this integral is bounded, see Theorem 5. The first integral is
bounded by

1 dt]| 1 / dr
2r J |t —al#lt — 2!~ = 2xk2 ) rE|r — |t
o

ab
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where ko is the constant from the proof of Lemma 1, r := |t — a|, 0 := |2 — a| and
|r = ro} < |t — 2]. Assuming ro < R one sees

re/2
v—p
dr < 1 (1'2) ’
TH|r — ro|?-¥ 1—p \2
)

To

dr 1 To\V™#
¥ < (2
/ lr —ro-v T v ( 2 ) ’

ro/2
R
dr < 1 (R—ro)
rhlr —rol'v T w Ty ?

To

so that the first integral is bounded, too. Using a weakened form of the RIEMANN
theorem for removable singularities, see [Ding61], p. 45, [Ash71], p. 78, h:=Q —w is
analytic in N. Therefore

iuz

Qz) =

—a)*
21'sin;nr(Z a) " +h(z), 2€N,

where h(z) is some analytic function in N. Moreover, from
20(to) = Q*(to) + Q7 (o), to €T,

it follows )
Nto) = 2; ot Tpu(to — a)™" + A(to), to € I'\{a} .

Therefore (to — a)’Q(ty) is HOLDER-continuous on I' with exponent a where a < p
ifé=pora<é—pif p <é, and in the latter case

Cal(t —a)*Qt)T) < M(a i, 8,Tub)Coos((t — @) Qt); T)
< M(a,[l,s,[‘ahN(a))1

while in the first case the C,(+;T') norm has to be used leading to the same estimate.
The proof of the estimate

Ca(ll‘; Pab) S M(a) 22 6’ Pnb)”a(()")

for

, ¥(t) = ¥(to) (to~a)’ —(t—a)’
¥(to) := / t—to (t—a)
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technically involved and lengthy is given in [Musk65], p. 84-88. Finally

C. (._l... Y(t) — ¥(to) dt ; [‘) < M(a,1,6,Tap)Ca(¢";Tas)

27 t—ty (t—a)-+
Tas
follows from the proof of Theorem 4. In order to apply this result we supplement I'y
with a curve Iy, such that T'yy UT,, is a smooth simply closed curve and extend ¥
on this curve such that it becomes a HOLDER-continuous function coinciding with ¥
on Iy, and vanishing identically on T's,. This is possible because ¥(a) = 0 and N is
assumed to be a small neighborhood of a. These estimates give the estimate in Lemma
21.

Lemma 22. ¢ €CTa),0<a<p<é<l-a,a+p<s,

p(t)dt
21rt [t —al#(t —to)’
r

ab

®(to) :=

I := T N N(a), N(a) the closure of N(a). Then (to — a)*®(to) € C*(T') and
Ca((t — a)°®(t);T) < M(a, p,6,Tas, N(a))Ca(p; Tas) -

Proof. Decompose & into

p*(t)dt ¥(a)
B(to) = / T=au(t—to)  omi / |t—a|"(t—to)

©"(t) = [o(t) — p(a))et =)
is a C*(L'sp)-function, see [Musk65],§6. Moreover,

where

/ #i(t) — ¢i(a)
ori (t — a)4(t — to) a)"(t - to) 21n (t - a)“"'%"'(t — 1)

with '
Pi(t) == e *sl-A(t —a)*/? | 4i(a) =0

in C4%(T',;). As in the preceding proof

pa— a 6 -
Ca ((tozxi ) (t -Z)Ef()td t—t 0)’ ) = M6 v N@D (')
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where H,(¢*) < Ca(yp;Tab) and

(to=a) [ _wi)-via) )
C"( i (t—a)“*‘;"”(t—to)dt’r)'<‘M(°"/"6’Fab,N( ).

Remark. Both these results hold with respect to the end point b , too. The only
difference is that in this case € has to be replaced by

_ b
2: sin uw (2= 6)7 + h(z)

and the boundary values Q(¢o) by
—% cot um(to — b)™* + h(to) .

Lemma 23. ¢ € C*(I'),0 < a < 1,0 < g < 1,v := min{a,p}. Then the

boundary values of
e
= o / |t —c|u(t — 2) dt, c€{ab},

on
Fs :={¢: ¢ € Tap, b0 < |{ —al,b0 < I¢—bl}, 0<4é<|b-a,
belong to C¥(I's,) and
Cv(Qt; r26o) S M(a» K, 601 Fab)Ca(‘P; rcb) .

Proof. Decompose ® by splitting I'ss into I's, and [a\I's,. Denote the integral over
I's, by ®; and ®; := & — ®,. Let a’, b be the end points of I's, and

P (t) == |t — | p(t) .

P(t) —¢*(to) ,, , (L), z—V
/ t—z at+ 2r4 Ing—a” to € sy

Then

®y(2) == o=
Ty

where we choose the branch of log : : :, in @ \I's, which vanishes at infinity. Letting

z tend to to from each side of I's we see from Theorem 2 and

z=0 +
(Ing—a') = log

] z—=b0\" = 1 to —
ogz—a' = 8 to —

to —
to —

¥ ‘ + i[arg(d’ — to) — arg(a’ — to)] ,

LA
a" + t[arg(¥ — to) — 27 — arg(a’ — to)]
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that on I's,
1 t t ot ¥l
®f(to) = '2—15-/ (2_:(0)"‘4‘ 2(0)18 _a,=§¢(‘o)+‘1’t(to),
L™
- 1 [o(t)—p(t wt) to—b
®7 () = ﬁ:/ (:_to(o)dt-i- 2(0 Sto a,—‘P(to)
T
1
= —Ecp‘(to)-l-@](to).

From ¢* € C¥(T's,) and the proof of Theorem 4
C.(®%;Ts) < M(a, 60, Tab)Calw; Ts,)

follows. But Theorem 4 applies to closed curves. We therefore again as in the pre-
ceding proof supplement Iy, by some Iy, define ¢* by zero on I'y, and as a linear
function on T[4\, so that ¢* extended in this way becomes HOLDER-continuous
with exponent v on the closed curve I'yp U I'y,.

For 2,29 € Fzso

1 t
2l < o [ 2 < MG b0 Pa)Calii ),
ﬂ’&o It I
Fao\roo
_ e(t)(z — zo)dt
|92(2) = Ba(z0)| 21n / ’lt — cl#(t — z)(t — 20)
ob 60
S M([l, 60, ab)CO(‘p; Fab)lz - ZOI 9
i.e.
C1(®2;T25,) < M(ps,60,Tas)Colp; Tas)
such that

Co,(Qz; F“o) S M(a, I 60’ Fab)CO(‘P; Fab) .

Lemma 24. Let T',. and Ty be two smooth curves with endpoints a and c and c
and b, respectively. Let 'ye N Ty = {c},Tap := Fae UL and the nonobtuse angle ap
between Ty, and 'y at the point c satisfy0 < ag < 7. If p € C*(T,.) and p € C*(T'as)
then ¢ € C*(T's).

Proof. It is enough to estimate the HOLDER coefficient of ¢ in the neighborhood of
con ;. Let Ry be the common standard radius for Iy, and T, related to ag/4,

Ry = Ro(ao/4), see section 1.1. Let t € I',.,t' € Ty with |t — ¢|,|t' — c| < Rp. Then
the angle between the tangent of I';c in ¢ and the straight line through c and ¢ is less
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than ao/4. The same statement holds for ¢’ and I's. Hence, the angle at the corner ¢
of the triangle t,c,t is at least ag/2. The cosine theorem then gives

[t=t'P > |t—cP+|t' — > = 2|t — ||t — c| cosao/2 > 2[It — c|* + |t' = || sin® a0 /4 .

Thus

() — o)l le(t) = (o)l lt—c  lo(c) = o(t)] [~ ¢
=t = fji—c J-tF " Je-tl [t—tf
t—cl — e

= % max{H(V’; Fnc: O'), H((P; Fd" O')} :

Applying Lemma 3 and the above estimate to get
[t —c|* 4 |c—t']* < 2!t — ¢|* + [c — ¢'|7]*/? < 2'~*|t — /| sin~* ao/4

shows that  is HOLDER-continuous on I, near c. Therefore ¢ is HOLDER-continuous
on Ig.

Lemma 25. ¢ € C*(T'as),0<a < px <8 <1 —a,a+ px < bk, k =1,2. Then the
boundary values of
1 (t)dt
() = 2ni J |t —alm|t — blu2(t — 2)

ab

on Iy, are HOLDER-continuous with possible ezceptions of the end points a and b and
Cal(t — a)®(t — b)2®%(t); Tas) < M(a, 61,62, Tas)Cal; Tap) -

Proof. Applying Lemma 23 for a fixed §o > 0 small enough, e.g. 46p = |b— a|, one
finds
Cc(d)*; F6o) S M(O, 6]7 621 609 Fcb) Cc(v; Fnb)

and from Lemma 21 applied to ¢(t)|t — b]7#? in N(a) and to p(t)|t — a|™* in N(b)
Cal((t — a)®(t — )2 ®(2); Tas\I's,) < M(, 61,63, 80, Tas) Ca(; Tas) -
Using Lemma 23 then
Ca((t — @)’ (t — 5)"®(t); Tas) < M(ex, 61,62, 60, Tab) Ca(; Ta) -

Lemma 26. Letc, € 0D(1 < p < m),argc, < argcu1(l < p < m),
argc, < argce; + 2w,

Ly i= {ICl = 1,argc, < arg( S argeum}, 1 Su<m,

T i= {I{| = 1,arg cm < arg( < arger + 27},
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peC(T),0<a<sp,<é<1l-a,atp, <8(1 <p<m) Then

1 N o dt
#l2) = g | O Il - al™
oD

satisfies .
Ca (H(t - cu)“‘w*(t);al’) < M(a,9,,646,) Calp)
1
where
Calp) == Jnax Ca(p;Ty) -
Proof. From Lemma 25 for (cm1 := €1, Pm+1 := 1 etc.!)
u(2) =5 / = cp|w..1:(_t)cy+,|w+n td_tz 1Pu(t) := 1"(‘)#[!+l It — ce|™*
one gets
Cal(t = cu)’(t = cus1)®*1 0} (t); L) < M(a, a0, ) Ca(p; Ta)
so that

Ca (ﬁ(to - Ck)5*¢I(to);Fu) < M(a,px,62,Ty) Ca(p;T) -
1
In order to estimate ¢, on dD\T',, we proceed as in the proof of Lemma 23 considering
2,20 € Tugy := {¢ € AD\Tg, 80 < |¢ — cul, 80 < I¢ — cunal}
where I denotes ', without the end points and & > 0 is small enough. We get
Ci(puiTus) < M(pa,cr,60) Co(p; L) ,
Ca(puiTus) < M(a,1,02,60) Co(p; L) -

For z € @D\TI') with |z —c,| < 8 decompose T, at its middle point into the two parts
T, and T2, let the middle point belong to both, and ¢, = .1 + .2 with

[ pa( _ .
o2 = on [ iTem—n = pOIlglt —al™,
i
1 puz(t)dt

= = — “Pk
vua(s) = 5o [t=copr[owti(t - 2) Pur(t) := (1) [ligu It — il
Fuz
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Obviously,
Ci(pu2; (OP\IS) N {[z — cu| £ 0}) < M(pr,cr,60,T,) Calpi L)

IA

Co(Pu2; (3D\Fﬁ) N {IZ —-cl < 60}) M(a,pz,cr,60,T,) Calps r,).

Arguing as in the proofs of Lemma 21 and Lemma 22 using
eimr

1 dt o
2 / (t—cu)e»(t—2) 2isin ;m(z = )™+ hu(2)
o

with h, analytic in N(c,)\I', one can find
Cal(t ~ €)**0u(t); (OP\L,) N {|z — | < 6o}) < M(e,8,,80, 02,6, T4) Ca(p;T,) -

The same argumentation for the other part in |z — c,41| < & finishes the estimation
of ¢,. From

Ca (H(t - ck)"m(t);an) < M(c,03,63,80,80,T) Ca(pT.)

1

because ¢ = i , by summation
1
Co (H(to - cﬂ)dp‘P(tO); ap) < M(a, PusCu,y 6m 60) Ca(P) .
1

Corollary 8.  Under the assumptions of the preceding lemma

Co (ﬁ(z - Cu)‘»(P(Z);i) < M(a, 4, €, 6,) Calp; D) .
1

This follows from the PRIVALOV theorem for analytic functions, see Theorem 5.

Lemma 27. Letc,,T', and p be as in Lemma 25 and |p,| < 1. If then a and §,, are
chosen according to

< minf mi ——
0 < 2a < min{min p,l, min(1 - ¢,)} ,
a+(p,$6“$l—a, if 0<op,,
a<5u31"0, 'f tp,,=0,

6,=0 or a<é,, if ¢,<0,
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then m

Ca (H(Z - cu)’"w(Z);i) < M(a, puscu,64) Calp) -
1

Proof.

1. Let some p be zero. In the situations of Lemma 21 and 22 then instead of 2

1 dt 1 b—2z

— [ = = =0

2nt J L — 2z 2m,loga_z(logl 0!)
rob

occurs. This function is single-valued in @ \I',, with boundary values

+
1 dt 1 b-—to 1F1
(21fi/t—to) - 271 IOga_to - 2 l € Fab\{a,b} N

ab

holds. Moreover,

(to—a)®, bty o
omi loga__to €eC*(l),a<é,

and

27 t—t

Fab

c. ((to—a)‘ L;p) < M(a, 6w, N(a)
0

Again by the PLEMELJ-PRIVALOV theorem, Theorem 4, observing that the
numerator vanishes at ¢ = a it follows

c. (% / ""(‘t)_;:'(“)dt; r) < M(a,Tw)Ha(9") -
Fas

Lemma 23 holds for u = 0 too if v is replaced by a. Namely, for 4 = 0 one has
¢* € C*(T's,) so that

Ca(®¥;Ts,) < M(a,80,Tas) Cal; Ts,) -
Moreover, for z, 20 € I,

1
#:a) < o / o(£)][dt] < M(bo, Tas)Ca(i Tus)
rab\rbo

|z = 2ol / le(t)] |dt]
® -0 <
l 2(2) 2(Zo)| = o lt — Zl |t — zOl
Fap\ls,
< M(b0,Tas)Co(9; Tap)|z — 2o -
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Obviously, Lemma 25 may be reformulated where in the case gy = p2 = 0 the
number a > 0 is less than 1/2 and &, is chosen according to a < & < 1 — a for
k=1,2.If gy = 0,u, # 0 then o has to be restricted by 0 < a < u, and §, and
6, are chosensothat a < § < 1—aanda+p; <6 <1—-a. For gy #0,u, =0
corresponding conditions hold.

These arguments allow the ¢, in Lemma 26 to vanish. For a vanishing ¢, the
conditions from Lemma 26 have to be changed to a < §, <1 — a. Moreover, a

is restricted by
0<ac< 1:51.1.'5’3.,"0“’ a<l1/2.

<¥u

This condition is no restriction on the function p because if p € C*'(T',) then
p€ C*(,) for any a,0 < a < o', and

Co(p;iTy) < M(a,a',T,) Car(p; L) -

. Let a particular y be negative. For ¢ € C*(I'ss) and @ < —pu from the PLEMELJ—

PRIVALOV theorem ol |
@(t)|t —a|™*
to) = Sl b

®(to) = 2ri / t—to dt

rcb

is seen to be HOLDER-continuous on T’ = I';, N N(a) and
Ca(Q; F) < M(a’ By Pab1 N(a)) Ca(‘P; Fcb) -
Moreover,

Ca((b; P5o) < M(ar My 60a Fab) Ca(¢; I‘ab) .

This estimation can also be achieved from

Q(to) Q(a) / (t — ;P)‘f:lzt ) 'P‘(t) = (p(t)eiparg(!-a) ,

by applying Lemma 20 to Lemma 21.
If in the situation of Lemma 24 one exponent, say u, is negative then with
0<a-p2a<v+a<é<l-a

1 (t)dt
o(t) = 2mr/ = aFlt= (=2

satisfies
CO((‘ - b)GQ(t); Fob) < M(O, BV, 69 Fab) Ca(Y’; Pab) .
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If both p and v are negative then with 0 < a < min{—u, —v}
Ca(®;Tas) < M(c,pt,7,Tas) Ca(p; Tas) -
But then for any &; > a(k = 1,2)

Cﬂ((t - a)sl(t - b)hQ(t); Fﬂb) S M(aa BV, 6lv 62, Fub) Ca(SQ; Fab) .

Remark. If in the case 0 < ¢, (1 < p < m) instead of 6, > ¢, we would take
8, = ¢, and would not restrict a then we only would get an estimation of the form

Cu-e (H(to - cu)%“P(to); aD) S M(a’ €,<P“,C‘.) Ca(p) ’

1

where v := min{a,¢1,...,9m} and 0 < ¢ is arbitrarily small as follows from the
consideration in [Musk65), §25. But this estimation is not good enough for the kind
of problems we are involved with.

On the basis of Lemma 26 the solution (3.5.1) to the modified discontinuous
RIEMANN-HILBERT problem for analytic functions can be estimated.

Theorem 43.  There ezist constants 6, and 6; independent of p,ax (1 < k < 2x+1)
if 0 < Kk, hi(lk] £ —x — 1) if & < 0, and of ¢ itself such that with 8+ B, < v, and
0<B<Bu+vu <Tutpu <1-B(1 £ p < m) the analytic solution ¢ to the modified
discontinuous RIEMANN-HILBERT problem satisfies the a prior: estimate

m 2541
Cs (Il(z - cu)w(z);i) < 8:Calpo; D) + 63 o],

p=1 k=1

where the second term does not occur for x < 0.

Proof. 1. Applying Lemma 26 to the representation (3.5.1) of ¢, i.e. to

() + h(t) ot + 2 dt

4 = e, (o) [ERELD mr 22 S i, ) Q)
- 4

with

Xi(z) = ﬁ(z — ¢u)p, if 2k is even, X, (2) = (2 — «) ﬁ(z —¢,)** if 2k is odd

p=1 w=1
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gives for 2« even and nonnegative
Cs (H(z —cu)™9; i) < Cp (e, D)

pu=1
O o wo(t) 2 1\ . =
xcﬂ(H(z_c“)w +o 2,,-/ (t_z _?) dt,D)

u=1 oD l'I |t _ c“'ﬁ,&w
u=1
+Cp(e "), D)Cy (H(z — )" Qe 7)
u=1
2541
< 6Ca(w0;OD) + 62 laul -
k=1

Here for the last estimate (3.5.2) is used and

@o(t)e™T®) t+ z dt

1
< .
2«:’/ T lt—cPre " t—a t < MCj(po; D)
ap

which follows from Lemma 22 because zx # c,,1 < k <2x+1,1 < g < m. The same
estimate holds for 2« odd and nonnegative. The only difference is the additional
factor z — ¢o in X;. In this case it is more convenient to rewrite the second term in

the sum on the right-hand side of (3.5.2) as

o[ [0 i
2mi J thleir X, (t) t — 2, ¢

ap

1 At)t-We T Opt) [ 2 ( 1 1 )+ 1 (_l_ _1)] dt

%an [T, It = culPuten |2k — co t—z t—oco o\t—co ¢

Integrals appearing here are of the same kind as before and we just have to observe
zZrFcfor 1<k<2x+1,0< pu<m.
2. If k < 0 the estimates (3.5.3) and the same argumentation as before show that

Co (H(z - cp)’mo(z);i) < M(c,, \)Cilsp0; OD)
u=1
and k being a trigonometric polynomial satisfies especially

Cp(h; D) < M(B, cu, A\)Cp(wo; D).
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Therefore in this case

Cs (H(Z - cu)“"‘¢(z);5) < 6:C5(po; OD) .

=1

Using the representation of solutions to generalized BELTRAMI equations by analytic
functions as given in the proof of Theorem 38 on the basis of Theorems 42 and
43 the discontinuous RIEMANN-HILBERT problem can be solved for the generalized
BELTRAMI equation. For the proof the following lemma is needed.

Lemma 28. Let D be a bounded domain and f € C""’(ﬁ) and 0 < a < ag < 2a.
Then for any fized to € D the function (t) := (lt tf]("O) belongs to C*~>(D)
satisfying Coy-a(p; D) < (1 + 2072 + (diamD)*°=*) Hoo(f)-

Proof. From

it can be seen that ¢(to) = 0, ||cp||o,p < Ha,(f)(diam D)*-= and

le(®) — et _ 1S~ )l _ gy

[t = tol@o== T |t = to|oe

Let now ¢, and ¢, be two different points from D. Then

l(th) = p(t2) f(t) = f(t2) + f(t2) — f(to) Jta — to]* — |ty — tol“’

|ta — tafo=e [ty = ta]oo=ty — tol* [ty — ta]®om= |ty — to|°|t2 — to|*

IA

) [t: — t2|° Itz = to]*° [t; — to|*
ao 't _ tola Itl — t2|a°-a ltl —_ tola

We distinguish three cases.

(i) lf 'tz - tol S ltl - tzl S |t] et tol, then
le(t:) — o(t2)]
W < 2H,,(f) .
(i) If |ty — t2] < |ta — tol, |t2 — to|, then
[tz — to| < [tz — ta] + |ts — to] < 2|ty — ¢t

so that

- tolao—2a

le(t) — P(t2)] < Hao(f) [l 4 9oo0—a ‘tl

[tr — ta]o=e [t1 — tz|o0=2e

] S (1 +2%7%)Hao(f) -
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(lll) If Itl d to,, Itz bt tol s Itl - tzl then
le(t1) — @(t2)] < 1f(t:) = f(2o)] + |£(t2) = f(to)|

[t —taloo=e = |ty — ta[romfty —tol* T [ty — ta|*0= [ty — 2ol
Lf(t1) = f(to)l | f(22) — S(2o)]
< <2H, .
S TR AT o e S o(f)

Theorem 44. The discontinuous RIEMANN—HILBERT problem
Re {A\(z)w(2)} = ¢(2) + h(z) on 8D, Im {X(zi)w(z)} = as, 1 Sk <26 +1if 0 <k,
for the generalized BELTRAMI equation
wy + W, + P, taw+bw+c=0 inD
is uniquely solvable. The solution satisfies the a priori estimate

m 2x+1
Cetto (H(z —cm"w(zﬁ) S ECap0i D) + 8 Y laul + &allelly (354

=1 k=1

where 81,82, 63 are nonnegative constants not depending on w, py, p2,6, b, ¢, po, i, 62 =
0 formally if k < 0, fp := min{ao, B} and

20280 < 4B, + 2009, < a3 + 2000, < 2a0(1 — aofo), 20380 + 4B, < a3,
Proof. Proceeding as in the proof for Theorem 38 w is represented as
w(z) = $(¢(2)e) +9(2)

where

2
Cao(¥, D) + 1¥:Alp + lIzll, < Slicllpy » @0:= Popo »2<p<po,goh, <1,

Cao(x; ) +lIx:llp + lIxzlle < 6(llallao + lI0ino) »

¢ is a homeomorphism of a BELTRAMI equation mapping P onto itself satisfying
together with its inverse mapping z

Cao($; D) + 121l + Gl < M (P, Pos 90), Cao (25 D) + [ 2|l + "2?"7 < M(p, po, 90)
and ¢ is analytic in D satisfying

Re {X(z(())$(¢)} = #(¢) + h(¢) on oD
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with
{(2(¢)) — Re A(2(¢))(2(¢)) e~ Rex(=( |

e(¢) :

k() h(z(¢))eRexCEN

Im {A(z(Ci))#(Ck) } = {ar—Im A(ze)p(2x) }eRoX), (o = ((2e), 1 S k < 2641, if 0 < & .
Let ¢}, := ((c,) be the points corresponding to the points of discontinuity for A(z(-))
and o(2(+)). Obviously, Ao z,¢0 0 2,7 0 z € C*P(T';) where I}, := ([[,),1 < p < m,
and Y oz,x02z € C%(D). Aoz has the same discontinuity at c, as A has at ¢,
characterized by ¢,. As o := min{ag, } then instead of C"'°”(I‘_;),C°3(ﬁ) we may
work with C2%(T%) and C**%(D). Then @ € C*%(T;) and e.g.

Caoo (00 2;0D) < M(ao, Bo, B)Cays(po0 z;0D) < M(ao, Po, B, P, Po, 90)Cp(po; OD) .

By Lemma 27, ¢ € C*°(T,) implies ((l z) = ((Iz") C*~(T3) and

((Z) - ((C“) (- cl‘l € C(ao—a)ao(r\_;)

=l | ., FO-=cF
and
( _ C‘ Bula

€ C(co-a)ﬂ,.ao/a (’F—.)
"

[2(¢) — z("")l"'
where 0 < a < ag < 2a. Choosing 2a = ag then (ap — a)B,a0/a = agB,. Then
zﬁplco

IZ(C ) I

Assuming Bo < gun {8, : 0 < B,} then P € C>P(T%). Observing $(c;) = 0 even
Po € C*5(3D) is seen. Applying Theorem 43 then the a priori estimate

Coaotio (H(c— ;)‘w(c);ﬁ)

s=1

(2(¢)) = $o(C) H ¢ = LI/, Bo(C) := wo(2(C)) H

p=1

< 61Canse ({ao(o -k~ ;I”""""Rez\(z(())'l)(z(o)} e~Rex(=(O); c'w)

u=1
2x+1
+62 Z l{a,, —Im /\(zk)'p(zk)} Re x(zx)
k=1

2x41
< 6:C(po; OD) + 62 Y _ lax + Sslicllpe

k=1
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where 6,, 62, 63 are nonnegative constants not depending on ¢, ¢, jn, fi2, @, b, ¢, a and
the 7, satisfy

0< aﬁﬂo < 2B, + a0y, < agYu + agp, < ao(l — Goﬂo),ﬁgﬂo + 28, < a0V, -

Thus setting aoy, = 29,

Cazpo (1-[(z - cu)"“¢(C(2));3)

pu=1

O z—c, Bulao - B
= Cu, (H (rr=orm) ) (ORI D)

n=1
m z—c, 25,u/a0 _ m > _
< Cogo <“=. (W) :D) Ca3po (g I ~cl™e(() D).
Because
Cazge (l](c - c;)'”'w(o;i) < M(ao, Bo)Caoo (H(c - c;m(c);i)
pu=1 p=1

these estimations and the representation
w(z) = $(¢(2))e + ¥(2)

lead to the a priori estimate stated in the theorem.

Remark. These estimates are only of qualitative value because the bounds for the
v, seem not to be sharp. The function @ is constructed in such a way that it vanishes
in the critical points c;. This is much more than is needed to apply the estimate from
Theorem 43. In (3.5.4) just a weighted subnorm for the solution is estimated. This
estimate can be completed by adding weighted L,-norms of the first derivatives of w.
Because this will again be involved we stay with (3.5.4).

Combining these results with the POINCARE problem the discontinuous POINCARE
problem can be studied. This is done in [Bewe89), see also [Bewe88] for the related

nonlinear problem.






4. Other equations and systems related to the BELTRAMI
equation

4.1 Initial boundary value problem for pseudoparabolic equations

If L is an elliptic differential operator with respect to the space variable z, M a dif-
ferential operator with respect to = of lower order than L, and t is a time variable
then Li + M is called a pseudoparabolic operator. Besides pseudoparabolic also
metaparabolic operators are investigated. A metaparabolic operator has the form
L + M . In this section a pseudoparabolic equation will be studied which is related
to the generalized BELTRAMI equation,

Wiz + 1 Wiz + P2 Wi + 1w + a2W; + bywz + bz + bsw, + 04T, + qow+ W +d = 0.(4.1.1)

A related metaparabolic equation would be
wy + W, + pW; + ayw + @ +qw+ W +d=0.

There is not too much known about metaparabolic equations, see [Gisc78], [Obol85].
The coefficients in (4.1.1) as well as the unknown w are functions of z in some domain
D of the complex plane € and of t € I with a finite closed real intervall I = [0, T.
For simplicity we restrict ourselves to the special case of the unit disc ) = D. The
BANACH space of the continuous and of the continously differentiable mappings of I
into a BANACH space V is denoted by C(I; V) and C'(I; V) respectively, their norms
are

I fllowv = sup I Olvs Il = 1 fllow + 1f low

respectively. Here || f(¢)|lv denotes the norm of f(t) in V. As vector spaces V there
will appear C*(9D),C' (1), L,(D), W, (D) of complex valued functions. W}(D) is the

space of functions in D with weak first order derivatives in L,(D),
1wz = Iflloy + 1t gz, + 15l -

These notations differ slightly from those used before.

Lemma 29. Let the real numbers a and p satisfy 1 < 2a < 2 < p < ] ,
—a

let A € Co(dD),A(z) # 0 on OD,x = %/dlog MNz) € Z, pop €
oD

C(I; Leo(D)),a1,az,c € C(I; L,(D)),

leats Moy + o2t Mewm < ¢<1,

IA

laa(ts M,y + laz(t, )y, ) K,

175
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e €C(I,C*(8D)),zx € OD,ar € C(I) for 1 <k<2x+140<«.
Then the problem

w?(t, z) + I‘l(tv z)wz(tv z) + #2(t) Z)w:(t, z) + al(ta z)w(t, z)
+ay(t, 2)w(t,z) +c(t,z) =0 inlIx D,

Re {(A(z2)w(t,z)} = o(t,2) + h(t,2) in Ix 3D (4.1.2)

Im {M(zi)w(t,zx)} =au(t) , 1 <k<2c+1, if 0<«k,inl
is uniquely solvable. Here h(t,2) =0 if0 < k and for x <0

-x-1

h(t,2):= Y k)2, hou() = B(D), VI S = — 1,

v=x+l

with coefficients h, € C(I) to be determined properly together with the unknown w.
The solution w € C(I; W, (D)) satisfies the a priori estimate

2541
llo(t, Mliwypy < Blle(t, Nica@my + 7 Y low(®)l + 8lic(t, Mo, @)

k=1

with nonnegative constants depending only on t,a,p,q,zk, A\, K. The second term on
the right-hand side does not appear if k < 0.

Proof. The existence of the solution together with the a priori estimate follows
from Theorem 37 applied for fixed ¢ € I. It remains to prove w € C(I; W,(D)). Let
w(z) := w(t, z) — w(to, z) for t,to € I. Then

wz + (8, 2)w; + pa(t, 2)@ + ar(t, 2)w + aa(t, 2)@

+H(m(t, 2) = m(to, 2))ws(to, ) + (a(t, 2) = pa(to, 2))w:(to, 2)
+(a1(t, z) — a(to, 2))w(to, z) + (az(t, 2) — as(to, ) w(to, z)
+c(t,2) — c(to,z) =0 in Ix D,

Re {A(2)w(z)} = ¢(t, z) — (o, 2) + h(t,2) inI x 3D

Im {A(ze)w(2k)} = aw(t) — ak(to), 1 <k <2c+1, if 0<«, in 7.
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Applying the a priori estimate from Lemma 29 to this problem gives

2x+1
llwllwamy < Blle(t,-) — wolts)licam) + 7 kz_:l |ex(t) — ax(to)l

+6 { (Ilm(t, ) = #1(to, *)llLoo(m)
Hla(t, ) = palto, M) Nws(to, i, m)
+ (llas(t, ) - an(to, )z, m)

Hlaa(t, ) = axlto, M, ) Iw(to, Nlogm)

+le(t, ) — cl(to, ')llz,,(i)} .

From the continuity of the involved coefficients as functions of ¢ in the respective spaces
and the boundedness of [|w(to,-)||wy(p) the continuity of the mapping w : I — W)(D)
follows.

Lemma 30. There ezists a constant M = M(p,T) such that

t

t l/P
/ w(r,)dr <M ( / llw(’f)"fv,'m"’)
) w3(D)

0

for any w € C(I; W;(D)).

Proof.
t t t i/p
w(r,-)dr < / (T, le@)dr < T'-V7 ( / llw(r, ~)II’C(5,df)
° c(®) o °
t l/P
< T\ (/ ""’("v’)ufvg(n)d') ,
(1]

t P 1/p
/w,(‘r,-)d‘r (/w,('r, z)dr dzdy)
D

0 Ly(B)
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t 1/p
(! T”"/lw,(f, z)|Pdr dzdy)
o

<
‘ 1/p
< Tv-p (/ ||w,(7,')"7,,(3)d1)
o
‘ 1/p
< TP (/ ||w(T,')":v;(3)dT) ’
°

The last inequality holds for wz, too. Hence
t 1/p
<33TV (/ ||w(r,-)||f,,,1(,,)df) :
°

Lemma 31. (GRONWALL Lemma). Let f be a continuous nonnegative function
on I = [0, T] satisfying the integral inequality

t

/ w(r,-)dr

)

w3(Pp)

f)<ate / f(r)ydr, tel,
1]

with nonnegative constants cx,k = 1,2. Then
f(t) S c,ec", te I.

Proof. Introducing
t
Fit):=a+ cg/j(‘r)d'r
0

oue sees
F'(t) < e F(2)
so that by integration
f(t) < F(t) = F(0)e™* = cie™" .
Theorem 45. If the coefficients of equation (4.1.1) satisfy
ll#1llo.Looim) + b2llo.L @) < 4 < 1, larllo,r @) + llazllor,@ < K »

4

D lbkllo s < K, llesllo,r,@) + lleallo,r,@) < K
k=1
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and those from the boundary condition (4.1.2)
¢ € CNI;C*(0P)),ax €C'(I),1 <k <2x+1, f0<k,
if, moreover, with do € W}(D) w satisfies the initial condition
w(0,z) =do(z) in D (4.1.3)

and the compatibility conditions

Re{A(z)do(z)} = ¢(0,2)+h(0,z) ondD,
Im {A(zx)do(z)} = ex(0),1<k<2c+1, if0<«,

are fulfilled then problem ({.1.1) - (4.1.8) is uniquely solvable. The solution belongs
to c'(1; W) (D)) and satisfies the a priori estimate

2541

lellswiy < Bllellice@ny +7 Y llewllcrn + éilldllo,, @) + Salidoll wym) (4.1.4)
k=1

with coefficients independent of the solution w as well as of the coefficients of the
equation and the right-hand sides of the boundary, the side, and the initial condition.

Proof.
(1) A priori estimate. Let w € C'(I; W)(D)) be a solution to the initial boundary
problem (4.1.2) then applying Lemma 28 to w, we have

2x+1
lhoet, Mwawy < Blleelt, Mosomy +7 Y lai(®)]
. k=

+6]|brwz + bWz + baw, + beW; + 1w + B + d|| (5

2r+1

< Blledt, )llcaomy + Z lek (t)]
k=1

+8K||lw(t, Ylwym) + 8lld(t, )|l By -

Taking (4.1.3) into account w can be represented as

w(t,z) = do(z) + / w, (7, z)dT

0
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so that by Lemma 30

t 1/p
llw(t, Mwywy < ldoliwzmy + M | | llwe(7, )i}ysmydr . (4.1.5)
3(D)
1]

Inserting this on the right-hand side of the preceding estimate taking the pth
power and observing, see Lemma 3,

(01 + 02)? < 2P (0} + o)

for 0 < 0y,02,1 < p, then

2541
llwe(t, Moymy < 2”"'{ﬂ||¢:("')||ca(an) +7 ) lay(®)l

k=1

14
+6ld(t, )l @) + 6K lldollw,'(n)}

t
121 (6K MY / o (7, myr -
o
Applying now Lemma 31 thus

2x+1
lwe(t, iwzmy < 2"'/’{/9"%0»')||0°(an) +7 ) leh(®)l

k=1

+6||d(t, -)||L,(3) + JK"d‘,“wg(D)}e%”-l(SKM)Pt

so that
2x+1
et Mowzmy < 217 'e”_)(&KM)'T{ﬂ"‘l’"l.ce(an) +7 ) llakllesqn
k=1

Slidllo ., @) + 6K lldo"w,l(n)} .

Using again (4.1.5) the a priori estimate (4.1.4) follows.
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(2) Existence. In order to prove existence of a solution successive approximation is
used. Let wo(t, z) = do(2) and wn41(t, z) for n € Ny be a solution to

Wntiz +  M1Wn41ez + B2 Wniiez
+ a1Wp41e + QWopt + biw,z + byWnz + b3wn: + by,

+ c.w,.+czw_,.+d=0 inlxD,
Re {(A(2)was1(t, 2)} p(t,2z)+ h(t,2z) inIxaD,

Im {(AZ)was1(t,2)} = a(t),1<k<2c+1, if0<k,inl,
w,41(0,2) = do(z) in D .

Differentiating the boundary and side conditions with respect to ¢ Lemma 29
shows that w,4q € W,,'(D) exists and is uniquely given. Thus by the initial
condition wu4; € C'(I; W, (D)) is unique. By the a priori estimate in Lemma

29
25+1

lwnsrets Mwzmy < Bliedts Yico@my +7 Y lai(®)]
k=1

+68[1d(t, ), @) + 6K llwn(t, )llwy (P) ,
where the constants are independent of n. As in step (1) using Lemma 3 form
here

2541
lwasret, sy < 277 {ﬁllvlh.ca(an) +7 ) lowlicrn)
k=1

1 4
+6)ldllo,,m) + 6K ||do]| wg(n)}

t
42 KM [ e, W
o

where within the brackets the supremum-norms have been introduced. By in-

duction
2x+1
lwnsrelt, Mypy < 27 { Bllelh.caom +7 Y llarllcr + Slidllo ., @)
k=1
1 4
E\ p-1)(§K M)vPev
+6K||dollw;(n)} Y —
v=0

1

e

2(n+])(p-l)(6KM)(ﬂ+\)Pt"+l "dou’:v;(m
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or
" 2641
o
lwnsr (8, Mowymy < 2¢* ’(GKM"T{ﬂIItplln.oc(an) +7 Y llaxller
k=1

+6lldllo, 1,y + 5K||do||w;’(n)} .

By (4.1.5) we again deduce

2x+1
lwnsrllswim) < Bllelhcoem +7 Y llaxllera
k=1
+61lldllo, ., ) + b2lldollwp(m) - (4.1.6)

Hence, (wy) is a bounded sequence in C'(1; W}(D)). In order to prove its con-
vergence, wp := Wy, — Wn_1,n € IN, is considered. Besides the boundary, side,
and initial conditions

Re {m“’l(tv z)}

o(t,z) — p(0,z) + h(t,z) inlx oD,

Im {A(ze)wi (t1, 2)} or(t) —ax(0), 1 <k<2x+1, if0<«k, inl,
w(0,2)=0 inD,
and forn > 1

Re {A(z)wn(t,z)} = 0 inlxdD,

Im {A(2k)} 0,1<k<2c+1, if0<«k, inl,

wn(0,2) =0 inD,
the function wy for n € IN in I x D satisfies the linear equation
Wiz + Wiz + Bz + agwie + a2y
+b1woz + baWoz + bawo. + baWo; + crwo + ;W +d =0
and for n > 1
Wnez + f1Wntz + PoWniz + G1wne + G2nt

+biwn_1z + baon_1z + b3wno1: + biwn_1; + Qwn-1 + w1 =0.
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Again by the a priori estimate of Lemma 29

241

lwre(ts Mwzmy < Bliee(ts licaemy + 7 E o ()] + lld(t, )l ,m)
k=1

+6K||do||w; (m)
2x+1

< Blielhc-om) +7 Y llellcra + dilldllo,., @)
k=1

+62(|do)lwz (m)

and for n > 1
llwne(t, Mlwymy < 6K llwn-1llw (o) »

or observing w,(0,2) = 0 and (4.1.5)
t
lenets Wiy < GKMY [ lmoso(r, Ywyemer
o

By iteration thus

2x+1
llwne(ts My my < {ﬂll‘Plll.c«(an) +7 ) llewllern)
k=1

p
5K M)n-pgn-1
+8uldll ) + 5zlldollw;(n)} T

Integrating and applying Lemma 30 gives

2x+1
llwn(t, Mwpmy < M{ﬂll‘Ple,m(an) +7 ) llewllern

k=1

SK M)mrem\ 177
+éilldllo By + 52"‘10””’3(0)} (( n!) ) :

These last two estimates give

(6K M)n=1pTn-1\ /7
IIwnIh.w,;(n) <C ((n)fl)'
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with
2x+1

C:=MQ1+ (6KM)’T)‘/’{ﬂllwlll.Co(an) +7) laklleray

k=1
+61||dollo,., ) + 5z||dollw,lw)} .

From here convergence of (ws) in C'(1; W, (D)) follows. Passing to the limit in
the equation and the conditions for wn4; shows that w = liT wy, is a solution
n—+4+00

to problem (4.1.1) - (4.1.3).

(3) Uniqueness. Let wy,w; € C'(I; W} (D)) be two solutions to (4.1.1) ~ (4.1.3)
then w := w; — w, satisfies the homogeneous problem

Wiz + 1w + P2 + 81wy + 20 +biws + bz +baw, + b +iw+Cow = 0in Ix D ,
Re {A(z)w(t,z)} = 0 inIxdD,
Im{A(z)w(t,zx)} = 0, 1<k<2c+1,if0<«,inlT,

w(0,z) = 0 inD,

and hence by the a priori estimate from step (1) ||w||,,w(p) = 0. Hence, wy and
w; are identical.

Remark The assumption p(1—a) < 1is unnecessary . Incase when1 <2a<2<p
are arbitrary the estimation (4.1.4) holds if the norm on the left-hand side is replaced
by ”w“l'w’;o(p) with any po,2 < pp < min {p, 1/(1- a)}. The considerations hold too
for any simply connected bounded smooth domain D. Quasilinear as well as nonlinear
pseudoparabolic equations were investigated in [Plus87], [Dai90] and [Beda92], see also
[Bege85a,b] and [Begi78] where the RIEMANN problem is solved, or [Bege93], chap.
VIII, §4.

4.2 Initial boundary value problem for a composite type system

Systems of first order partial differential equations in two real variables of composite
type were independently from one another at first introdnced by A. DZHURAEV and
Ch. VIDIC, see [Dzhu72], [Vidi69)]. A system

n
Zauuuv: + buvuvy = fu(z)yaul"' : 1un) , 1< p<n

v=1
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of n first order partial differential equations with real coeflicients, real variables and
real unknowns is called elliptic if

A(k) := det[ayk + b,,] , det[a,] #0,

does not vanish for real . It is called hyperbolic if A(x) has n real zeroes different
from each other and it is called of composite type if A(x) has real as well as non real
roots. Obviously, the system can be elliptic only if n is even. The simplest cases of
composite type systems occur if n = 3 and n = 4. They are extensively studied in
[Dzhu72]. [Vidi69], [Bege77,79] studied the case n = 3, [Gisc79) the case 2n + 1 where
A(x) has one real and n complex roots, see also [Begi93] chap. VI, §3. For further

references see [Dzhu72].

A motivation for considering composite type systems is the fact that any elliptic
second order equation can at least be reduced to a first order system of composite
type of three equations. The second order equation

6ss + 2bdzy + ey + f(2,, 6, 62, 4,) = 0
is called elliptic if 0 < ac — b? where without loss of generality 0 < a. Introducing
ui= ¢y, vi= 6,
the equation can be written as the first order system
¢-—v=0,
u:—v, =0,

avz + 2bv, + cuy + f(z,y,6,v,u) = 0.

Here
k 0 0 2
_ 2
Ak):={0 « 1 =a,¢[(n—f) +acﬁb]
a a
0 —c ak-2b

which obviously only has the real zero £ = 0. In case f is independent of ¢ only the
last two equations of the first order system have to be solved. They form an elliptic
first order system. Having solved them for u and v then ¢ is determined up to an
additive constant locally or in simply connected domains by

(z,v)
{vdz + udy} .

(zo.v0)

This curve integral is path-independent because the integrability condition is just
uz; —v, =0.
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In this section only the case n = 3 will be investigated. The system

3
Zauuuu: + b;wuvy = fn(zvy,uh u2, u3) , (421)

v=1
in matrix form written as Au, + Bu, = f where
D(k) := detfauk + buJocup<s =0

has the only real root x3 and the pair of complex conjugate roots k¢ := &) + iK2,Kg =
Ky — ik, with real x,x2 and x; # 0. The eigenvectors associated to xo,%g, K3 say
¢o, Co, €3 are linearly independent over IR. Writing them as row vectors the respective
column vectors form a regular matrix CT = [c], ¢}, cI] and satisfy

(ATrc,,+BT)cf=0, u=0,3.

Here the upper index T denotes transposition of matrices. The equation for %7 is the
complex conjugate of that for ¢J. Hence,

Kk 0 0
ATCT |0 ® 0 [(+BTCT=0
0 0 k3
or
k 0 O
0 % 0 |CA+CB=0.
0 0 «;3

We introduce the new unknown U := C Au the components of which are
Uy = Au, U; = Au, Uz = c3Au .

Obviously, U; = U; and Us = Us. Moreover, u = A~'C~'U. Multiplying the system
for u in matrix form from the left by C gives

CAu, +CBuy,=Cf

or in the new unknown U

Us + CBA™'C™'U, = Cf +[(CA), + CBA™\C™ (CA),JA"'C'U

that is
ko 0 O ko 0 O

U.-|0 % 0 U,=Cf+[(CA),— 0 % 0 |(CA),|A'CcU=:F.
0 0 &3 0 0 &3
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Because the second component of this system is the complex conjugate of the first the
system is reduced to a complex and a real scalar equation,

U] bl ICoU]v = f| N U3: - K3U3y f3 (422)
Introducing complex variables z := z +1y,Z = z — iy the first equation can be written
as
uco 1 ~
Uz U 2 = -
13 l Tira ! g me 1
1—1ixkg

where y = # 1. We have |u| < 1if k3 < 0 and 1 < |g| if 0 < x3. This

equation thereforte'c:)s elliptic and in fact for x; < 0 a BELTRAMI equation. For 0 < x;
it can be written as a BELTRAMI equation, too by introducing the complex variables
2= —1y,Z = T + 1y, in other words just by reversing the roles of z and Z. In order
to rewrite the second equation in (4.2.2) as an equation for a directional derivative of
Us the ordinary differential equation

% + k3(z,y) =0

is considered. Its solutions are the real characteristics of system (4.2.1). Because
the reduction of (4.2.1) to the normal form (4.2.2) is only possible if the coeffi-
cients are differentiable their differentiability is assumed. Thus x3 is differentiable
too and even continuous differentiability is assumed. Then x3 is LIPSCHITZ con-
tinuous at least on compact subsets so that initial value problems for this erdinary

differential equation are uniquely solvable. Consider a characteristic curve . If ¢ is

. L e . dz d
some parameter for this curve the direction on it is given by (-d_::’ d—f) .Fort=1z

this vector is (1, —x3(z,y)). Rewriting this vector in complex form and normaliz-

. o e — 1K . . . g . .
ing it gives 2 as the direction on v. If this direction is denoted by & then

1+ «2

cos(o,z) = 1 cos(o,y) = —r3
’ V1+x2 ’ V1+42

tional derivative is

are the direction cosines and the direc-

) 9 4
% = cos(a,:c)a—z + cos(a,y)a—y

Therefore the second equation in (4.2.2) can be written as

0U3 1 f
3.
d0 V14«2
Under some geometrical assumptions on the domain in this normal form systems of

composite type of three equations are handled in [Vidi68],(Bege79]. There is another
transformation of (4.2.2) by a transformation of the independent variables which maps
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the real characteristics onto lines parallel to the imaginary axis. This can be achieved
at least locally i.e. in the neighborhood of any point in the domain under consider-
ation. The first equation remains of the same kind with the new variables and thus
again may be written as a BELTRAMI equation. To do this let {(z,y) = const. be a
parameter—free representation of a real characteristic of (4.2.1), that is the solution
y = y(z) to this implicit equation satisfying £, # 0 is a solution to our ordinary
differential equation and hence

£z — %36y =0.
Choose an arbitrary continuously differentiable function n(z,y) such that the
JACOBIan d(Em)
_|den|_, . _
- d(.t, y)l §=’7v E!lﬂt > 0 -
Then (z,y) — (£,7) is a diffeomorphism such that
o _ 0, 0 0 _ 0. 0
az - zaf ’haﬂ’ay_ yaf nvan’
17] 0 7] 0 a a 7] a
Ja—f = 'Iya,;-’ha—y’ Ja—n-fza_y—fya—"fy(g—xai_’;) .

With this change of variables (4.2.2) becomes
(éz — ko€y)Ure + (nz — Kkomy) Uy = ]: » (€2 — #3&y)Us¢ + (nz — wany)Usy = ];

or

Nz — Koty ]; .Ei
U + Uy, = , Ugg = ——— . 4.2.
1 (3 — "O)fv M (k3 — "O)fv o Nz — K3Ty ( 3

Note that

J = &(xany —n:) > 0.
Treating the first equation as that from (4.2.2) by introducing the complex variables
{:=€+1in,{ = £ — in, again a BELTRAMI equation is attained. This in fact is the
case because the coefficient is not real. We have

Nz — Kofly

|x3 — Kol?f"(xa —ro)E = K3nz + |'°0|2’7v — KoK3T)y — Koz
v

and therefore with kg = & + ik3, k2 # 0,

— Kon

|3 — nolzlmq’ Kov = Ka(n: — kany) #0 .

K3 —

The reason that this transformation in general is possible only locally is that ¢, # 0
may hold only in some neighborhood of a point (z¢,yo) of the domain. The normal



Other equations and systems related to the BELTRAMI equation 189

form (4.2.3) is due to DZHURAEYV, see [Dzhu72], [Bege93]. Methodically there is no
difference in treating initial boundary value problems for systems in form (4.2.2) or
(4.2.3). We will for simplicity deal with (4.2.3) in complex form and again will consider
the unit disc D, see [Bewz91a,b].

Lemma 32. Let c;,d, € C°(D; IR ),T := {z = z+1iy : |z]| = 1,y < 0} and
¥ € C*(T; IR),0 < @ < 1. Then the solution to the initial value problem

wytcw+d,=0 inD,
w=v¢Y onl
is uniquely given in C**(D; R) N CJ(_ﬂ; IR) satisfying
Cu(w; D) := Coy(w; D) + Co(wy; D) < BrCa(¥;T) + 6:Ca(d; D), (4.2.4)

1 , ,
where a; := min 7@ and B, and é; are nonnegative constants depending on a and

some upper bound K for C,(cy; D).

Proof. Asis known from the theory of ordinary differential equations, see any text-
book, the solution to the initial value problem is

w(z) = [wm —i/T= o)

- / dg(m+it)exp{ / cz(z+ir)dr}dt] exp{ - /cz(a:+it)dt}.

Ve e i

This can be easily verified by direct calculations. From here we see
Co(w; D) < {Co(#;T) + 2Co(dy; D)} e2C0lc=:P)

Co(wy; i)

A

00(62; D-)Co(w; 3) + Co(dg; i)

IA

Co(cz; D)e2Co(xP)Co(; T) + (1 + 2co(c,;‘ﬁ)ewo<c==5)) Co(dy; D).

To show w to be HOLDER-continuous we observe that with f € C*(D) the integral

v
F(z) = / fle+it)dt, z=z+iye D,
i
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is HOLDER-continuous with exponent a3 := min {1/2,a} . We verify this by estimat-
ing

2

F(z) - F(zo) = / f(z+itydt+ / [f(z +it) — f(zo+it)]dt + / Fzo+it)dt .
-Vi-z% -1-2 w

Assuming f is vanishing identically outside D we do not have to distinguish different
cases assuring 7o + iy, —iy/1 —z3 € D.

IF(z)- F(zo)l < Co(f; D) [VT=22 = T =3+ Iy - wol|
+Ha(f)lz - zol*ly + T 23|
2V2Co(f; D)|z — zol'/? + 2Ha(f)]z — 20|

IN

6Co(f; D)|z — zo|™m2)

Applying this estimate to each of the factors in the integral representation for w shows

w € C**(D; R) and
C.(w; D) := Co,(w; D) + Co(wy; P) < BoCa(¥;T) + 6;Ca(d2; D)

where 3, and 6, are constants depending on the upper bound K for C,(c;; D) and on
a.

IA

Lemma 33.  Let the coefficients of the generalized BELTRAMI equation
WE+ﬂ1W;+F2w_z+alw+b]E+d1 =0 inD
and the boundary and side conditions

Re{Aw}=¢+h ondD,
Im{A(zx)w(z)} =ar, 1 <k<2c+1,if0< «,

satisfy py, p2 measurable in D, |u(2) + |p2(2)| < go < 1 in D,a1,by,d; € Ly (D; T ),
lla1lles + llBrllpe < K, A € C*1(3D; €' ),[A(2)] = 1 on 8D, € C*1(OD; IR), 2 € 3D,

-x~1
2 # zefork #6a, € R\1 S k<2 + 1,k :=ind)h(z) := 3 heak by =
—_ k=x+1
hi, k| < —k =1, if k < 0,h =0, if 0 < k. Then the solution w is uniquely given in
W2(D) satisfying
2541

Ca(w; D) + |lwsl5 + Jjwelly < AiCa,(;0P) +m Z laxl + il|dallpy - (4.2.5)

k=1
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2
Here5:=p =po ifOS:cand2<5<p$po,§:=ﬁ,4<po,qol\p<l,l<

20109 if K < 0, where ag := Po ,and0 < ay:=a<agif0 <K0< o) := aa;’ <

1 if k < 0. The nonnegatvie constants By, 11,6 depend on all the constants especially
on an upper bound for ||ay||p, + ||B1]lp, but not on the particular coefficients up to A
and not on the solution w;~y, = 0 formally if x < 0.

This result is just a conclusion of Theorems 38 and 39, see also section 3.5.

Theorem 46.  Let the coefficients of the composite system

w; + mw, + T taw+ LT+ w+d =0,

inD (4.2.6)
wytaw+aw+cowtd=0
and of the boundary, side, and initial conditions
Re{dw}=p+h ondbd,
ImAzo)w(z)) =ar, 1< k<2 +1, if0<k, (4.2.7)

w=y onT

besides the conditions in Lemma 32 and 33 satisfy
¢ € Lm(i; HZ), az € Ca(ﬁ; c ), "ﬁﬂpo < ﬂhca(a'ﬁ D) < n2

where 7;,7; are nonnegative constants satisfying with 8,,8, appearing in the a priori
estimates (§.2.4) and (4.2.5)

2618;mn2 < 1.
Then this problem is uniquely solvable in W) (D; € ) x C*(D;IR) satisfying the a priori
estimate

Ca(w; D) + Cay(w; D) + [[w:lz + |lwzllz + Co(wy; D) (4.2.8)
2541 _
< BiCa,(9;0D) + B2Ca(¥: ) + Z [ak] + 81 ld1 |l + 62Ca(d2; D) .
k=1

Here instead of W} (D) the notation W) (D; € ) is used and C*(D;IR) is the set of real
functions in D being continuously differentiable with respect to y and in C°*(D; R).

Proof.

i. From (4.2.4) and (4.2.5) C.(w; D) and
flwll. := Calw; D) + . i; + llwzll;
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are seen to satisfy

2x+1
llwll. < BiCay(9;0D) +m Y lakl + &illdillpy + S1llcrllpo Colw; D)

k=1

Co(w; D) < Cu(w; D) € BrCa(¥;T) + 62Ca(d2; D) + 26,Ca(az; D)Ca(w; D) .

Inserting the last into the first inequality shows

2r+2

flwlfs < BiCa,(p;0D) +m Z [ak] + &1lldillpo + 81mB2Ca(¥;T)
k=1
+6162m Ca(dz; D) + 818,mm2||w]|.

and the first into the last
C.(w; D) < BiCo(¥;T) + 62Cald2; D) + 621281 Ca, (; OD)

2x4+1
+62mm Z lakl + 6:182m2|dh |lpo + 8162mm2Ca(w; D)
k=1
Because of §,6,m1n2 < 1 this gives

2x+1

lells < BiCay (#50B) + BiCal$sT) + 11 3 lasl + 81lldillpy + 6Ca(ds; D)

k=1

and

Cu(w; D) < BriCo,(9;0D) + By Ca(¥;T)

2x+1
+911 z lak| + 811lldr|lpo + 87,Ca(d2; D)

k=1

and hence (4.2.8).
From this estimate again the uniqueness of the solution follows at once.

ii. The existence of a solution is shown with the method used in the proof of

Theorem 39 already. Instead of (4.2.6) we consider the composite system
wr + w: + 2T + aw+ b+ tew+dy =0,
wy +taw+tazw+cw+d; =0 (4.2.9)

in D with a real parameter t,0 < t < 1, together with the conditions (4.2.7).
For t = 0 the system is uncoupled and hence solvable in W} (D; €' ) x C*(D;IR)
as follows by Lemmas 32 and 33.
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Let the problem be solvable for some to,0 < to < 1, and (wo,wo) € W} (D; T ) x
C*(D; IR) be a solution. With this initial element a sequence of approximative
solutions (Wn,wn) € W}(P,€) x C*(D; IR),n € IN, to the problem for some
t,to <t <1 is constructed as solutions to the systems

Wn1z + P1Wnt1z + P20ntiz + G1Wnt1 + B Wngy + toCiwngr + (1 — to)crwn +dy =0

Wntly + L0@2Wnt1 + L8z Wagt + Cowng1 + (L ~ to)aswn + (t — to)azWn +d2 =0,

in D satisfying (4.2.7). For (wn,wn) € W)(D; € ) x C*(D;IR) given this problem

is solvable for (wp41,wn+1) by the Lemmas 32 and 33. Using the notation
(@)l := l[wll. + Cu(w; ) , (w,w) € WA(D; @) x C*(B; R)

(Wn41,wn+1) can be shown to be bounded by some constant independent of n.
From (4.2.8) it follows
2541

I(@nst,wne)lle < BiCey(i0P) + BeCaltiT) + 71 3 lasl + Silldalye

k=1
+6:Ca(d2; D) + (t ~ to)[6rm + 2612] (wn,wn )l -
Rewriting this inequality as
I(wni1,wns)ll < M + 6(t — to)l|(wn,wa)|l.
one can show inductively
(wast,wasn)lle S MY 85t — to)* + 6*+1(t — to)™* | (wo, wo)l.
k=0
1 — (8 — o) H?
1—6(t—to)

Let (t — to) be so small that §(t — o) < 1, then

= M + 6™ (t — o)™l (wo, wo)|l -

M
ntt)lls £ ——— , .-
"(w”'f'l?w +l)" 1= 6(t _ tO) + "(U)o wo)"
In order to show (wn,w,) converges, we apply (4.2.8) t0 (upy1,Vny1) :=
(Wn41 ~ WnywWny1 — wys),n € [Ny, getting

(415 va41)lle < E1(t — to)m Co(va; D) + 265(t — to)12Ca(un; D)

< (61m + 262m2)(t — to)ll(n, va)| -

Again choosing 0 <t —to < §~' = (617, + 26212) ! the sequence (u,,v,) can be
seen to converge in W) (D; €' ) x C*(D; IR), the limit being a solution to system
(4.2.9) for to < t < 1. Hence, by the same reasoning as in the proof of Theorem
39 problem (4.2.6), (4.2.7) turns out to be solvable in W}(D;€) x C*(D, R).
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4.3 Entire solution to nonlinear generalized BELTRAMI equations

In the preceding sections and chapters repeatedly a priori estimates were developed
for different kinds of equations and boundary conditions. They all serve to solve
related nonlinear equations under the same linear or even related nonlinear bound-
ary conditions. Side and initial conditions if appearing may be nonlinear, too, see
e.g. [Behi82,83], [Behs80,81,82,83,87], [Bewz9la,b], [Bewe88,89], [Beda92], [Dai90],
[Plus87), [Wend78], [Wen80a,b,85a], [Vino58a,b], [Webe90], [Tuts76,78], [Wols72],
[Waro70]. But the results concerning nonlinear boundary conditions are minor satis-
factory. The nonlinearity is always assumed to be LIPSCHITZ—continuous and - and
this is the point — its LIPSCHITZ constant has to be small enough.

The aim of this section is just to introduce the method, a combination of SCHAUDER’s
imbedding method and the NEWTON approximation procedure providing a construc-
tive method for solving nonlinear problems (see [Wack70]). It can be applied to
nonlinear problems related to any of the problems studied in this book. In connec-
tion with RIEMANN- HILBERT problems it was at first used in [Wend74], see also
[Wend78,79]. In order to concentrate on the equation, we neglect any boundary con-
ditions and just study nonlinear equations in the entire plane. Solutions which exist
in the entire complex plane are called entire solutions which does not mean that they
are entire functions in the sense of complex function theory. In principal we are thus
treating the RIEMANN problem for the nonlinear equation because we have seen that
the RIEMANN condition can be always transformed using proper analytic functions
to entire solutions to a differential equation of the same kind of course under proper
assumptions. And even for entire solutions we have to observe a kind of boundary
behaviour namely the asymtotic behaviour at infinity. We thus have to prescribe some
growth condition the simplest of which would be to ask the solution to have a certain
limit or just be bounded at infinity. We also will allow polynomial growth asking the
solution to grow not faster than some fixed power of z. Other growth restrictions as
for example functions of finite order or of finite lower order etc. have not yet been
studied. The following results are given in [Behi83).

Theorem 47. Let H be a measurable complez valued function of three complez
variables (z,w,v) € €3 satisfying
|H(z,w1,v) — H(z,wp,v)| < K(2)|lw) —wyl,

|H(z,w,0] — H(z,w,v3)] < q(2)|vs —vo|,

where K and q are nonnegative functions. Suppose
4

2 ;
H(-,0,0),K EL(,,,,a,(a')ﬂL,,z((l'), m <p <2<P<2—_—6 y

0<49()<q<1,q(2)=0(z]) asz— o0,

with some 0 < € < 1 and gomax{A,, A} < 1. Then there is one and only one solution
to
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w; = H(zjw,w,) (4.3.1)

vanishing at infinity. it satisfies the a priori estimate

where

Co(w, €) + ||w:llp.p) + llwsllpp) < Ko,

Ko := M(p,p', 90)l| H(2,0,0)||(5.5) exp[M (p, ', q0) | K [[(p.p1)] -

Proof.

i

In order to prove existence of a solution a real parameter t,0 < t < 1, is
introduced. With

R(z,w,v) := H(z,w,v) — H(2,0,0)

the equation
w; = tR(z,w,w,) +C (4.3.2)

is studied for any C' € L{(p,)(€ ) N Lo ). If C = H(2,0,0) and ¢ =1 this is
just the equation to be solved. We are looking for solutions vanishing at infinity.
Hence, we can do this in the form

w=Tp,p€ L(,,,,y)(a’ ) N Ly.z(a') )

observing that by Theorem 23 this function vanishes at infinity. For t = 0 this
is easily done by taking p = C.

We assume that (4.3.2) is solvable for any ¢t,0 < ¢ < #p < 1, and any function
C € Lpp)(C)NL, (T ). Let po be a solution of (4.3.2) corresponding to t = to.
We construct a sequence of successive approximations according to the scheme

Prny1 = toR(Z, Tpn+hnpn+l) + (t - tO)R(ZsTPm npn) +C,n€lNg.

As
|R(2, Tpn, lp,)| < K(2)|Tpal + q(z)|1pa|

and since pn, [Ip, € Ly (€ ) and Tp, is bounded by the assumptions on K and
q it follows via Lemma 16 that R(z,Tpn,[1ps) € L(pp)(€ ) N Ly2(€ ). Thus, by
the assumption that (4.3.2) is solvable for t = o and any C € Lpp)(€ )N L, 2T )
a solution pn4, exists. The difference rny1 := pny1 — pn,n € IV, satisfies

Tapt = tofi(2,Tpn, Mpayr, Mpa)lreyy + to/i\(Z, Tpns1,Tpn,pn1) T o

+(t - to)[R(Z, TPn, npn) - R(z1 Tpa-1, ﬂpn-l)l y
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R(z,w,v1) — R(z,w,v;)

, if v ?é vz,
A(z,w,v1,v2) := non
0 s if v =02,
X R(z,wl,v) — R(zy w2av) , if w) # wsa ,
A(Z, wy, w2, v) = T
0 , ifw =w,.

Applying the a priori estimate (3.1.2) to T'rn41 observing for wy := Tpn4,

wy := Tpy,,
I[?(Z,WQ,U)]Z,U)zz)I S q(z) S 9o < 1 ’

'Z(z)whwhwlz)l S K(Z) )

we get

Ira+1lleon < M(p, P, g0) exp[M(p, P, o)1 K [l(5.0)](t — to)gnll(p.p)

with
gn = R(Z, TPm npn) - R(Z, Tpﬂ—h np"-l) .
From
lgn| < q(2)|ra| + K(|Tra|, Co(Tra; @) < M(p, P')"rn”(mv’) ’
we see

||9n||(p.p') < qu(p.p’)""'n"(pm’) + "K "(p.v')M (P: Pl)“"n"(pm') .
Inserting this into the preceding inequality leads to

lIras1llewn < 8(t = to)llraliesr)

with some positive constant § depending on p,p', go, and || K || 7). If (1 —20) < 1
the sequence (pn) converges in L, (T ) to a function p. In order to show p to

satisfy
p=1tR(z,Tp,llp)+C

we observe

lp—tR(z,Tp,lp) = C| < |p— patrl +t|R(z,Tpn,lps) — R(2,Tp,Ip)|

+to|R(2, Tpns1, pasr) — R(zv Tpa, "Pn)l

A

|0 — pat1| + qlll(pn — p)| + K|T(pa — p)|

+4(pat1 = pa)| + K(T(past1r — pa)l
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so that
lle =t R(z,Tp,Mp) — Cllps)
<o = prsrllps) + 90A o) Pnt1 = Pullps + lo = Pall o]
+H1K .oy M (2, P')lllPntr = prllps) + lo = Pallpe)]

< lle = prsrllipa)
+goA o) + 1K ooy M (2, P)ll[Pnt1 = Pallipsry + 1P = pallpn] -
Since ¢ € L,y 3(€ ) and from
|R(2,Tp,1lp)| < q|Tlp| + K|Tp|

in view of Lemma 16 we have R(z,Tp,Ilp) € L, 2(€ ), the function p belongs
to L,2(€ ), too. w = Tp satisfies (4.3.2) and vanishes at infinity. This holds for
any ¢ such that 0 < ¢ — ¢, < 6. Thus after finitely many steps from ¢ = 0 one
will end up at a solution to (4.3.2) for ¢t = 1 vanishing at infinity.

ii. For a uniqueness proof assume there are two solutions w;, w; to (4.3.1) vanishing
at infinity. Then w := w; ~ w; would vanish at infinity and satisfy

ws = (2, w2, Wiz, Wa.)w, + Az, w1, w2, wy,)w .

This is a linear equation to which Theorem 37 and hence (3.1.2) may be applied
showing w vanishing identically.

iti. The a priori estimate follows at once from (3.1.2) because the solution to (4.3.1)
satisfies the quasilinear equation

wz = fi(2,0, w;, 0)w, + A(z, w,0,w,)w + H(z,0,0) .

Corollary 8.  The difference between the exact solution w to (4.5.1) and the ap-
prozimative solution w, = Tpn,n € INy, for some t,0 < tog <t <1 can be estimated

by
Co(w —wn; €) + ||(w - wn):"(pm’) + ||(w - wn)?"(pm')

<ok [T 0 4 (-t w0

with
v 1= M(p, 7', 90)[90 + || K |l(p.0] exp[M (P, ', 20)I1 K || (p.5)]

for y(t —to) < 1.
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Proof. Choosing C = H(-,0,0) in (4.3.2) we abreviate w, := w — wp,n € INo. It
satisfies
waprz = (1 — t)R(z, w,w;) + to|R(z,w,w;) — R(z, Wnt1, Wnilz)]

+(t — to)[R(z,w, w;) — R(z,wn, Wy, )]

toﬁ(z, Wn41, Wz, wn-{-lz)‘*’n-{-lz + toA(Z, W, Wn41, wz)wn-{-l

+(1 = t)R(z,w,w;) + (t — to)[R(z, w, w:) — R(z, wn, wn:)]
and vanishes at infinity. Again using (3.1.2) we find
Nwntalle < (1 = llwll. + (¢ = to)llwall. ,
where for f € W, ,(C) = W}(C)NW,(C), f(o0) =0,
Ifll == Co(£; @) + Nlw:ll oy + llwsllper -

By iteration one has

1— (y(t = to))™*!

1 - 7(t —t) + Jlwoll- (v(t — to))™** .

lwnsrlle < (1 = t)yllell.

For estimating wo we observe

(1 - tO)R(Z’ w, wz) + tO[R(z, w, wz) - R(Z, wo, sz)]

woz
= tofi(2,wo, w,, Wo;)wo, + to;f(z,w,wo,w,)wo + (1 = to)R(z, w,w,) ,
so that by 3.1.2 and the a priori estimate of Theorem 47
llwoll < (1 = to)vllwll. < (1~ to)vKo -

Combining these last two estimates proves the inequality from the corollary.
Since ¢t — to can be chosen so small that 4(¢ — ¢y) < 1 the error w, becomes small for
big enough n and t close enough to 1.

On the basis of the result of Theorem 47 the general RIEMANN problem can be treated
for nonlinear BELTRAM!I systems. The solutions are admitted to have polynomial
growth at infinity.

Theorem 48. Suppose H satisfies both HOLDER -conditions from Theorem {7 and
H(-,0,0) € Loosoc(T), |H(2,0,0)] =O(|z}""*"") asz— o0,
K(-) € Loojoc(C), K(z)=0(lz}*™) asz— o0,

0<4q(z2)< g <1, q(z) =0(|z|™) asz— o0,
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for some m € INy. Suppose further G,g € Ca(I'),1 < 2a < 2,G(z) # 0 on I', where
T is a finite set of simply closed smooth bounded curves dividing the complez plane €
in a bounded domain Dt,0 € D* and 8D* =T, and D~ := @' \D*,x := indG. Let
P be a complez polynomial of degree < m. Then there ezists a unique solution w of

the problem
wr = H(z,w,w,) in@\T,

wt=Gw +¢g onTl,
lim {X~1(2)u(z) - P(2)} =0.

Here X is the canonical function of the RIEMANN problem defined by G, see Definition
8.

Proof. If wis a solution then

d
r

has the following properties:

l?(z,w,w,) in@\TI',

wyz

wt w~ onTl,

w(o)

-

where R
H(z,w,u) := X~'(2)H(z,3,8) ,

= X(2)w + P(2) + 9(2)]

= X'(2)lw+ P(2) + 9(2) + X(2)[u + P'(2) + ¥'(2)]

It has to be shown that the nonlinear differential equation for w holds throughout €
instead of just in € \T'. Since w; = X~ 'w;z and wz € L(yp)(€) C Ly(€) - for this
argumentation wz € L, joc(C') for some 2 < r would be sufficient, see [Behi83] - we
also have w; € Ly({l2| < R}) for any 0 < R. Choose R so large that T' C {|z] < R}

and define .
H(z,w,w,) , for|z| <R,
F(z)=
0 , forR < |z|.
Then F € L,(€) and ¢ := w — TF satisfies

€)

&)

pr=ws—F=0 in{|z|<RN\T.
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But w as well as T'F are continuous functions in |z| < R hence, continuous especially
across I'. Therefore ¢ is analytic in |z| < R and then we have
we = gz + (TF)z =
This proves that the differential equation for w holds in € ,w being continuous across
I' and vanishing at infinity.
Conversely, from a function w having just these properties it can be shown that
w:i=X(w+ P+1¢)

is a solution to the above RIEMANN problem with polynomial growth at infinity. In
order to apply Theorem 47 to the problem for w the function H has to be shown to
satisfy the corresponding properties for H. We find

|H(z,w1,u) — H(z,w3,u)| < K(2)|un — wn ,
X(e)|
IX (=)l
Lemma 16 shows K € L, (@) N L, 2(C ) provided p and p' satisfy the appropriate
restrictions from Theorem 47.

1X'(z)| [7'(2)] , inD*,
| X (2)] - ¥(z) - k27! , inD-.

K(2):= K(2) + q(2)

By Lemma 17 4" € L. (€) for 1 < r < (1 — a)™'. Because 1 < 2a < 2 we have
2 < (1-a)7'. Again Lemma 16 serves to see K € L(p)(€ )N Ly2(C ) for <2< p
both, p and p’ close enough to 2.

We also have N -
|H(z,w,u1) — H(z,w,u2)| < q(2)|u; — u,| .
Finally, N
|H(2,0,0)| < Fi(2) + Fa(2) + F3(2) + Fi(2) ,
with
' F(z) = IX()7H(z0,0),
F(z) = K(2)[|P(2) + 19(2)]],
9 = g,
Fy(z) = Q(Z)IIP'(Z)I +19'(2)l] -

All these functions can be seen to belong to L, ,n(€ ) N L,2(€ ) for p' < 2 < p, and
p, P close enough to 2. This follows again via Lemma 16 and the observations

X(2) = O(l2I™),[¥(2)] = O(Iz]™), |P(2)] = O(lzI"™)
¥(z) = O(Iz7?), P'(z) = O(|z|™") asz— o0
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and ¢ € L,(C)forl<r<(l1=-a).
Remark. From the representation
w=Xw+P+7y)

and w(o0) = P(00) =0, X(z) = O(|z]™*) as z tends to oo, one can see when bounded
solutions may occur. For negative index £ < 0 one cannot conclude that bounded
solutions exist and we know from Theorems 14, 15 that they need not exist. For
nonnegative index 0 < « one obtains a bounded solution for each polynomial the
degree of which is less than or equal to .






5. Higher order complex differential equations and equations
in several complex variables

5.1 Elliptic second order equations

The theory of complex elliptic second order equations is not yet far developed. Of
course the LAPLACE equation
5
Aw=4_—w=0
Y= 5702

is extensively studied in close connection to the theory of analytic functions but more
real methods are applied because they are available for higher dimensions than 2,
too. Harmonic functions, i.e. solutions to the LAPLACE equation, are known to be
uniquely defined by their boundary values. In other words the homogeneous DIRICH-
LET problem (with vanishing boundary data) for the LAPLACE equation is only triv-
ially solvable. BITSADZE [Bica48] pointed out that this is a particular property of the
LAPLACE equation and will not hold in general. His counterexample is the equation

5

—w=0

Fra

in the unit disc . There are countably many over € linearly independent solutions
vanishing at dD. They are

wk:=(l—zE)z",k€ﬂVo,

as one can easily verify.

Some early papers where complex methods were applied to second order equations are
[Hou58], [Boja60]. Several members of a research group at the Fudan University e.g.
[Li78], [Xu81] draw their attention to this subject and in [Wen85], [Weta83] involved
boundary conditions in multiply connected domains are handled. In [Dzhu87] the
theory of the BERGMAN kernel function was applied to treat some natural boundary
value problems for complex second order equations in multiply connected domains.
This seems to be the adequate method for these kinds of problems and will be intro-
duced here.

An arbitrary complex second order equation is of the form

awz + bwz, + cw,, + oWz + 5 + YWL; + f(2, w,w,,wz) =0.

Since here only some special second order equations will be studied, we restrict our
attention at first to equations where a = =~y =0.

Definition 17. A second order differential operator with main part of the form

# o  »
“57 b, t o

203
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is called elliptic if the symbol
aC? + BT+ #0 for( #0.

Lemma 34. The main part of any second order elliptic differential operator L can
2

be transformed to a multiple of the LAPLACE operator ﬁ or to a multiple of

i o? 8? 8?
o Fatac ™ a¢ T Hatac
where |u| # 1.
62
Proof 1. a=c=0,b;£0:L=baEaz.

2. a # 0. Consider the symbol of L
4)’ ¢ ¢
alz) +b=+c=alp—p)(p—p2),p:==.
(8) +et+c=ato-pto-pupi=
The ellipticity condition shows |p;| # 1, |p2| # 1. Moreover,
(2, BN (2,0, (0, 00\ 0
L= “{(az ”'az) (62 "”az) + (az ""az) 62} '

Let ( = ((z) be a complete homeomorphism of

a_ 9 _,
oz P57
then if 1 — p1p7 # 0
_ (B[22, &
L = a(1-1ps)(1 ~ p1p2) (E) [( T e 30‘(]

3p, 8p2\ fOC 8 _OC 9
*“(az E)(éza'c*"’aa‘z)

where

P2 — P
= =, 1.
17=1C M’C,H96

If 1 — pypz = 0 then

02
L = a(p; — p1)|C:1*(1 = |p2l*) =

(%5, % o
acac“(

7z "%9:)\o: 6( P5: oc
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3. If ¢ # 0 the operator
2 9 5
IR

570: T %82
can be transformed as L was before.
Thus there are two main cases:

L:=

62 i
.u = --__ , 1,
L= e <
.. 2
il. L=Eb—c——2+;"az—ac,05551<lpl.

As in the case of the generalized BELTRAMI equation where the solutions were ex-
pressed through Tw; we are looking for an integral operator playing the same role
for second order equations as T does for first order. At once we realize that there
will be more than just one such operator. Already for first order equations there
are two operators; for the BELTRAMI operator w; + pw;, |u] < 1, the T-operator is
appropriate while if 1 < |u| the T-operator has to be used, see (2.1.1) and (2.1.1').
This symmetry does occur for second order operators, too, as is seen from the two

operators
il i liig o2
57 50z 5 T FEes oM<

2
But now there is a third case, namely of 1 < |u| where the leading term is 7
Z0z

The basic idea in finding these operators is iterating the T-operator. We start from
the CAUCHY-POMPEIU formula (2.1.1) in Theorem 20 applied to w as well as to ws
under proper assumption on w,

w(e) = 5 / W)z
1
o ] wr(O) 72 + Tz
aD

Inserting the last in the former gives

1 d déd
" %al w0755 wz/ “*(‘)/ T T

%D/(t_?ffg_z)=,(tl_z)0/(giz‘ = )‘“""‘t_f:

ws(2)

Since
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we get

w(z) = o /[w(C) =2 ur(o)] ac+ 1 / (e

Here the boundary integral represents a polyanalytic function of the form (z) +z4(2)
with analytic functions ¥ and ¢ while the area integral

1 (-2
Sp(2) := Tozp(z) = =
wD/(_

represents the integral operator, we were looking for. Obviously, ¥ +Z¢ is the general
solution to the homogeneous equation ws; = 0, Tp2p being a particular solution to

the inhomogeneous equation w;z = p in D.
In order to find the second integral operator we are iterating the T- with the 7T-

operator, i.e.

w(z) = / w72 + T,
1
wie) = =g [0 4 T,
oD
leading to
ddn =
w(z) = 2m / wi(t )/(t D=2 )d_+TTwz(.

Applying (2.1.1) to log|z —t)*in D\{|z -t < e} for 0 < € small enough, we see

1 d{dr] 2 / 2 2
/C = tog z—tf—5 [logl¢—tf 2o [ toglg-ep 2.

K—t|=¢

As

1 d¢ €
— 1 —tP—| < - -
21!1][ og |¢ IC—Z "2IOg€|z—-t|—e fore < |z —t|
(—t|=e

the limit vanishes in the last equation and

di 1 _
w(z) = 5 g [ O gl = <P - . [1ogl¢ - P (c)dgan.
aD D

Rewriting the second boundary integral as the sum

1 R
%8[ we()log( — ) — 5. [ QT log(¢ — 2)dc
aD
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the function w is represented as the sum
w= ¢+$+T1.1wz( )
where ¢ and 1 are analytic functions in D, again forming the general solution to the

homogeneous - LAPLACE - equation, and

Tusalz) = 2 [logIC - 2lo(C)dgdn
D

is a particular solution to the inhomogeneous - POISSON - equation wz, = p in D.
One can proceed in this manner to higher order equations, see the next section and
[Behi93), compare [Dzhu87), too. We get an equivalent operator to T ; by introducing
the GREEN function

9(2,¢) = —log ¢ — z| + w(2,()

where w is harmonic in 2z and (,

Turs) = —2 [ o 0)p(Odedn + 2 [ (s, )p(Odedn
D D

S1p(2)

~2 [ sz 0nCratan
D

represents a particular solution to wz, = p, the second integral is a harmonic function
in D and as such can be represented by an analytic function ¢ in the form ¢ + . We
collect these results in the next theorem.

Theorem 49. Anyw € C’(E'd’) can be represented as
w(z) = o / (22 4+ i) a4 L / o e(Oedn, z€ D,

= / [“’(O d + we(() log |¢ ~ zl’dc]—— / log |¢ — zlwgcdtdn, 2 € D.(5.1.1)

Corollary 10. Anyw € C*(D; € ) can be represented as
¥(2) +Z¢(2) + (Sweg)(z) in D,

w(z)

w(z) = P(z)+ é(2) + (Srwg)(z2) inD,
where ¢ and i are analytic functions tn D.
We are going to determine these arbitrary analytic functions by some boundary con-
ditions on w. Only one particular set of two natural boundary conditions will be in-

vestigated which were in this combination introduced in [Dzhu87], see also [Bege93).
For more general conditions see [Dzhu92].
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Boundary value problem. Let D be a smooth multiply connected bounded
domain, 8D = U ,T',,m € INo, where the T, are mutually disjoint smooth curves
and Ty is surrounding to other I',. Find w as a solution to a second order elliptic
equation in D satisfying

Rewz(z) =0, Re{z'(s)w(z)} =0 ondD.

Before approaching this boundary value problem some lemmas preparing for later
calculations will be proved.

Lemma 35. Let D be a C* domain and w(z,() the regular part of the GREEN
function for D. Then for ¢ € C*(D)

Pz) = 2 / wer (2, C)p(C) dedn

b
belongs to C*(D) and satisfies
Ca(#; D) < M(a,D)Ca(y; D) .

Proof.
i. D= D. Then -2
1<
-1 .,/ e Cdedn.
Because
¢ -
! = =0 and /(l Ozdfdr]—o
we have 2
- 1
2:) = 1 [ G 916) - wln
P
and

s —ae) = L [{T@O o)  Tiwl) - ela)
o) -pe) = 2 { =207 (- 20)0 - 0)

LD -0l2) T~ () } dédn.

(1= =20)(1 - 2() (1-=()?
Using

<1 ofor fzf,[¢] <1

=
1-—-
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and the estimate for J(a, ) from the proof to Theorem 23 thus
18(21) = @(2)l < M(a)Ha(p)l21 - 2| .

Therefore

Ho(P) < M(a)Ha(ep) -

Similarly,
Co(#; D) := max|p(2)| < M(a)Ha(p)

follows. In the same way
c. ( MO Sl agan D) < M(a)Ha(p)

can be proved.

D simply connected. Let o be a conformal mapping from D onto P. Assuming
the domain being C*, this means that the boundary 9D is four times continu-
ously differentiable, then o together with its derivatives up to the fourth order
can be continuously extended on &D mapping 8D onto 9D, see [Golu69], p.
417. The GREEN function of D is

9(2,¢) 1= log % = —log|z — (] +w(z,)
with
w(z,(') —lOg ( ) (()[ U(Z)m] i
We have
) = LoD @0

=0 -0 1—0(2)o(’
P B O O OB
a0 = CTm YT o) - eOF
_ [P + (o1 = o(2)aTE)
1= o(z)o(Q)F
TP "o
M- o@e@F 1-0(2)o(Q)

hz(z, () -
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with a function

o) = el6) "“ )~ o/(e)? + o(5)lo(z) - o(¢ >l

ha(2:0) == [a(z)—a(c)] T2
._ l 6”(2) -l_ alll(z)
ha(z,2) = 4 [a'(z) "6 o'(2)

analytic in z and ¢ from D, bounded in D x D together with its first derivatives.
Hence,

Bi(z) 1=~ / ha(z, () (C)dedn
D

satisfies
Ca($1; D) < M(a; D)Ca(y; D) .

Since o’ and 0” both belong to Co(D; € ) what follows from the boundedness
of 6" in D, it remains to estimate

/ o(C) ¢({)
(1-o(z )cr(C)]2

and

VRS B (3 (Y
()= o ! 1— a(z);mdfdn .

Let ¢ = ((o) be the inverse mapping from o = o((). Then

7’p(¢(2))

P2(z) = = [1 a(z)ﬁ]’lcl(a)zda'da2 , 0:=0y+103.

As in step i. writing

_ 3’lp(C(2))I¢'(9)) — ¢(2)I¢'(a(2))F]
Pa(z) = _./ (1= o(z)a)? do,do,

shows
Ca($2; D) < M(a)Hq((¢ 0 O)I¢'1)Hi(0)* = M(a; D)Ha(yp) -

Function @; is treated in the same way.
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iii. D multiply connected. Let N, C D be a neighborhood of I, in D for any
0<u<mN, ﬂN,—Oforﬂ#u,andN := D\ Uyg, N, . Let D, denote the
simply connected domain with boundary T, and containing D and hence N
The GREEN function of D, is denoted by

9u(2,€) = ~log |z ~ (| + wu(2,() -

Then
gn(zy Q) —9(2,¢) = wu(z, ¢) —w(z,¢)

is harmonic in D and vanishing at T',. From

6g(t z)

wnle,) =l = =5 [ laut.0) - a(e, NG,

aD\T,,

see Theorem 13, we see

2 z
olnte ) (e Ol = —5 [ 25Eg, (0,0 - g0, Olds:,

aD\T,,
1.e. 1 6g"(t, z)
w,,(z, () = wuz:(Z, C) + ‘2_71’ / T[g}l(tv () - g(t’ C)]ng .
aD\T,, '
Thus

#e) = =2 [onale,OplO1dedn

D
1 6 z2z\Yy
5[ [ 25000 - s, Ol dsddedn
D aD\r,

The first form satisfies an estimate as is claimed in the lemma. This follows by
the estimations from step ii. applied to w,... We just have to realize D C D,,.
The last term, say J(z), being analytic in the closure of N, since t € D\T,,

and (@D\T',) N ﬁ,, = @ and g,(¢,{) — g(¢,¢) is bounded on (3D\T,) x D, is
LIPSCHITZ continuous there. Hence, this integral is LIPSCHITZ continuous in

N, satisfying
Ca(J; N,) < M(a, D, N,)Ca(; D) .

Since D = UL"__.DIV,, we have

Ca(® D) < max Ca( N,) < M(a, D)Cal¥; D) .
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To verify this let 2,2’ € D with 2|z — 2| < dp := min(osxvsm) dist(N,,N,). If

z € N, then z,2' € N, and hence

18(2) — &(=')]| N ;
S < M(a,N,)Ca(p; D) .

Ifz ¢ U’;;om then 2,2’ € F,, for at least one u,0 < u < m and the same
estimate hold.

Corollary 11. The statement of the lemma holds if in the definition of @ the
function w,, is replaced by either £ . or by 2w., — £ ..

Proof.
i. D=D. Then £(2,()=0.

ii. D simply connected. Then

<

£(2¢) = 2/w,.(z,t)dt
_ 7 1 d(2) _ 1 o'(2)
‘2C—c dnﬂmo 2C—m dn—dm)’
Lym o 1 A ()
2 420 = Ty Y G = oOF " 70 - 0(0)
1 o'(2) a"(2)

T =2l 0@ - o) | a() - o(0)

= hZ(Z)C) - h?(z7 zO) ’ 2“’::(27 () - £,(Z,()

wmﬂﬁ)i.fwaﬁn
1-0(z)a(¢) 1 - a(z)a(()

Following the proof for the lemma and observing the HOLDER continuity of
ha(z, z0) for z € D the integral @ is seen to satisfy the desired estimation.

= —hy(2,¢) + 2ha(2, 20) — (

iii. D multiply connected. The proof based on the argumentation under step ii. can
be given as in the proof for the lemma.

In the same manner the next lemma is proved.
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Lemma36. Let D be a bounded domain with g‘ boundary. Then there ezist positive
constants C and C) such that for (z,{) € D x D

l6(z, Q)] < C,I¢ = zllws(2, ) < C, [¢ = 2wz (2,¢)| < C

and if the path of integration has a winding number between —1 and 1 with respect to

any point in € \D
| £(z’()| <Gyl ,{,z(z,()l <G.

Proof.
i. D=D. Then
“(0) = gl (0= -3
w00 = T 0=t = L0 =0

2 (1-2()

The functions w, and w,, become singular for z = ( € 3P and in this case
2C =1and C, = 0.

ii. D simply connected with C* boundary. Let o be a conformal mapping from D
onto P as in the preceding proof.
From there we know

2r(2,0) = h.(z,o—%
(0 =~ cg = ;(z) a(¢) - 0(&)::)'2(7:)(( )
) = -3 S - T
20 = 2 e O
Y A Ol R
- (a«)—a(z)) =2y :
v« B 58
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and an expression for w,, given in the last proof. Since 8D is C3 the functions
hy, ks and w,¢ are continuous on D x D while the remaining terms in 2w, and
2w, are singular. For ( € dD

N (> 002 (VP O (=)
YT 1 —e(2)e(@) 9@ -a(2)’
(¢ = 2)lo'(2)7(Q))* - a"@(l ~ o(2)7(0))]
(1 —a(2)a(C)]?
(€ = 2P’[(¢'(2))* = a"(2)(e(§) — o(2))]
[0(¢) — a(2)?]

Iz =

For ¢ € D, moreover,

a(¢) = a(2) (€ —2)o'(2)o(Q)
1- a(z)m o(¢) — a(2)

L= [o«)—o(z) ’[af(z)m«_,)}’ 7(¢) = o(2) T"()o0)(¢ = =)*,

I|=

1 -o(2)a(C) o(¢) —a(2) 1-a(z)0(¢) o(¢)—o(2)

These expressions are bounded on D x D. From the boundedness of £(z,() that
of £(z,() follows with the restriction made on the path of integration. In order

to estimate £ .(z,() consider

(e, = L1 @) (@) (C)
22(\ %, (¢C=2)® 2(a(¢)—o0(2))? (0(¢)-o(2))?

["“’ )] L a)o(0lo(0) - o) - (@0
[o(o—az)] C—F

(=)0 (z) + 3(o"(2))°
wu((zvz) 24(0’(2))3

This is an analytic function in D x D, continuous on D x D.

iii. D multiply connected with C* boundary. With the notations from the last proof
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besides the formulas from there we have

Ze0-uln0l = -5 [ Z5E00 - sl

) 3D\T, 3 P

sl —we0) = —go [ 22D S0 - ot 0lds,
aD\r,

s, 0~ (a0 = g [ 20200 Do 1.6y gt s
aD\I',,

For z and ( near ', or on T, itself the integrands are continuous, even continu-
ously differentiable since t € D\I',,. Thus the functions on the left-hand sides
are bounded for z and ¢ on or near I',. Because w, and its respective derivatives
satisfy the above inequalities in D, x D, as follows from the considerations un-
der ii. they hold for w and its derivatives, too. Since u,0 < u < m, is arbitrary
the estimates hold on the entire boundary 3D and hence on D.

Theorem 50.  Let D be a bounded smooth multiply connected domain and p €
L,(D),2 < p, satisfying

[ (0 + D)) bu(Cedn =0, 1 < <,
D

where {1, : 1 < p < m} is a basts for the solution space of the boundary value problem

Re {2'(s)¥} =0 ondD
for analytic functions, and
Sp(z) 1= = / (-2

Then there ezists a unique solution w to the boundary value problem
Rew; = Re {Z/(s)w} =0 ondD
within the set of functions representable in the form
w=9P+z2¢+Sp
;m'th in D analytic functions ¢ and 1 being continuous in D . The solution w is given
Y

w(z) = 2 Yu¥u(2) + T(é+ Tp)(2)

u=1

_71: /{3(2,C)(¢(C) +Tp(Q) + (2w:(2,0) = £(2,€))((C) + To(())}dédn ,
D
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where 4,,1 < p < m, are arbitrary real constants and

#z) = ~To(z)- / {J,(z 00(0) + Jx (2 0T} dedn

+ ilmg / / {9105, 000(€) + Jx(2,D)2(0) } dedndady

Proof. Differentiating w = ¥ + Z¢ + Sp leads to

di
ws = ¢+Tp,Tp —~——//)(C)‘ﬂf 1
D
 oiea, O 4. 1 (
1 déd
w;, = ¢ +1p,0lp:= ——/p(C)((E "), ,
b
" 1" az 62 - g
w,, = YP'+7¢"+ a 25/’16 2Sp D/ (C)(( ) dfd” )
Wz = p.
Inserting w; into the boundary condition Rew; = 0 gives

Re¢ = —ReTp=:hy ondD. (5.1.2)

This problem for analytic ¢ is solvable if and only if

/ ho(C)bu(C)dC =0, 1< p < m,
aD

see Corollary 3.1. Applying GREEN’S theorem these conditions become

[eo+Tomac

aD

. f 0 —_—
2 D/ 00+ Toyb,dcdn

2i/(p+n_p)¢ud<dn=o,15p5m.
D

If they are satisfied the solution is by Remark 1 on p. 36 with some fixed 2z, € 9D

& = ¢do + ico, do(2) := —% /JL(z,()ReTp(()d( — ReTp(z0). (5.1.3)



Higher order equations and equations in several variables 217

We have

o(z )*2," / / [JL(z :4) () - C( ;) c((s))”(o d(¢dédii — ReTp(zo) ,

where the integral version
Ji(2,0)¢'(s) + I (2,0)('(s) = 0

of o
L(2,€)¢'(s) + K(2,0)'(s) =

is used. With

Je0) = £ = 1 = 5, ), Jel5,0) / 0, 0)dt

and the CAUCHY formula then

#o(s) = [ {2 00(0) — In(=,0P0)} dédn ~ ReTi(ao),

D

#o(2) + To(2) = = [ {9002, 00(0) + I(s, 00 dedn + ImTp(zo) . (5.14)

D

This is just w; up to the additive constant icy.
Inserting the above representation for w into the second boundary condition

Re{z'(s)w} = 0 leads to
Re {2'(s)¥} = —Re {2(s)[z¢ + Sp]} =: k° on 4D.
The solvability condition
/ ho(¢)ds =0
oD

see Corollary 3.2, serves to determine ¢o and hence to satisfy this condition just by
the proper choice for cg. We have with |D| := measD the area of D

0

I

Re /{z¢(z) + Sp(z)}dz = Re2: / 6_{¢(z) + Sp(z)}dzdy

aD

Re2i / {6(2) + Tp(z)}dzdy
D

Rei [ [ (J,(z,o;:(z) — Ik(=D)0) - %ﬁ’z)) dédndzdy —2|Dico ,
D D
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so that

1 1 o
| | D./{(Jl(z 0= - 2) + x(( - 20)) p(¢)-Jk(z,() P(()}dfdndxdy

/ / (T Op(€) + J(z, )p(Q)}dedndady — ImTp(z0) . (5.1.5)

The solution to the boundary value problem then is

b=t t 3 b olz) = / (g;(z,q) + (le) K(C)dsme € R, 1 < p<m,
aD

wu=1

see Remark on p. 66 . Although
<
£(2,0):= w/l(z,t)dt
20

is a multi-valued function for multiply connected domain D condition

/ KO(C)ds = 0

éD
guarantees the single-valuedness of 1o. Because if £ (2,() for fixed z € D is replaced
by £(z,¢) plus a linear combination of the modules of periodicity this will result in

the same value for 1o(2).
Inserting A° in the integral representation for 1, gives

o) == [ (725 + £ ) [@80) + S0t + (RO + SN, (5:1.)

271
aD

where ¢ is given in (5.1.3). Applying the GREEN formula with respect to the domain
D, := D\{( : |¢ — 2| < €} this function can be written as

Yo(z) = I +lim Ji(e)

;o= L / {a%[((—+ £(:.0) @0 + SO
7 [(5+ £0.0) @0+ 50|} dean
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2 {(F+ £420) 60 + 700 - 70 - To0)

+ (g~ oa.0) (T + S9(0))} dedr

il

2 (4 460) 1m0 + To)dedr

. ¢—
D
- / L(z, ¢)(CH(C) + S(0))dedn
D

because
1

l(za () = 77—(3__—6; - L(z$ C) -

From the definition of L(z,() the last term on the right-hand side turns out as

¥9(2,¢)
+— 523 —=222(C4(C) + Spl())dedn

— / 0:(2, GH) + SAONE
aD

=2 [ 00(a, @0 + TR + iy )

D

= / (2‘” (=0 - -—) (B(0) + To(0))dedn ,
D

since

ne) = 55 [ (2ata o+—) O + SAO)E

2xt
I¢=z|=¢

2%
= _2i7l' /(2&),(2,()66"’ + l)(Ca(—(—j + SP(C))CZ‘.Vd‘P y (i=z+ €e' ’
o

tends to zero with €.

nev= g [ (5 £60)IE80+ Spl6)de + (FE + SHONE).

I¢—-z|=¢

Similarly as Ja(¢) the second term here tends to zero with ¢, so that only j;(e) has
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to be considered where

RO = [ (F 460) @0+ sHoN
I¢-z2|=¢

2r
- / (146 £(2,0)THC) + SpQ))dp , € = 2 + ™,
(1)

—(z¢(2) + Sp(2)] -

fimg h(e)

Hence,

wie) = -3 D] { (554 £60) @@ +Ta0)

HunlesO) — £, 0)FD + m>}asdn 360 - Spl)

Yo(z) +Z¢(2) + Sp(2) = Té(2) + TTp(2)

~ [ { L0060 + Tol0) + (02,0 — £ O)FTO + TolO) e - (5.17)

D

This formula represents w up to the additive term 37, v,%,. For the derivatives of
w the derivatives of ¢ and ¥ are needed.

¢'(2)

/ {8, 0)p(C) — K (2, D)p(0)}dedn »

D
(¢ + Tp)(2)

Val2) +36(2) + -S0(2)
~ [ {4 0@+ THO) + (2220 = £u(2, )BT+ THO) Y (5.1.8

D

This last expression is w, up to the term 377, 7,4, For w; . we see it coincides with

= ¢ +Tlp= ! {20 - 2 255] ot0) - K0 00T  dear

=- / {L(2,0)0(¢) + K (2, 0)p(C) }dedn . (5.19)
D
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Because of Lemma 34 there is no need in finding w,,. In fact up to the additive term
o) ¥ the function w;, is equal to

Vi) +797() + 23Sp(2) = Y + Tp)(2) — o / [#(0)+ Tl Ol 2 s
2 [ { £ OO + THOI+ on(216) = e, NGO + Tp(c»} den
D

The operator on the right-hand side acting on p is involved. Its L,—norm is not likely
to be 1. For this reason the term w,, is excluded from the differential operator to
be considered later on. But $° can be shown to have L,-norm 1, see [Dzhu92]. We
reproduce the proof from [Bege93].

Lemma 37.
||S°||L,(D) =1.
Proof. Let p € C§°(D) and denote

Tp:=¢o+Tp = Je( o——— p() = Ji(2,0)p(()  ded
[ [4 D/{( (2, ) K 4 } n
= [ {960,001 + I, T} dédn + Totz)
D
Then

— ] 0 —
1S°6I2, = D/ §°pSdady = / 2 T2 Topdzdy
/{a-(azTo) asz}d:cdy

or° 0, —
= 2:/ pT° dz —/{E;(pTop) —pﬁ} dzdy

T
= o [ 5L et / Fpdz + [ ppdzdy = ol
aD D

since 9 P
5. L P=S"5Tr=0.

In order to verify the last equality we observe p = 0 on dD and show

% / 5; [pdz=0
8D
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L[] {0 -

{(e( Q- ( a ‘ ),) o(0) - K(z, ?)E} dedndE dijds

0 = / 2,07z, C)ds = / 58, T, () dody = / t(z, {2z, Cdady

= /(i(i gzd zdy = aﬁc%/g (z—EJl(z ()) da:dy

)1 1
ag{?m -[ . _EJ¢(z ,()dz — hm =— / . _EJ,(z, ()dz}

Iz-(l-c
1

0——=—
= E; (z — C)z ————Te(2,{)dz — ~Jt(( ()= 2m | - ~) ———Ji(z,()dz .

To obtain here the third equality
/l(z,z)mdzdy = 1 / i)—zdzdy ,2€D,
J )

see proof of Lemma 5, is applied for f(z) = €(z,(). Hence,

/ (e(z O-1 . ),) Je(z,Odz = 0

oD
1 [z0) 3 £z, c) z,0)
%/=dz a,. (_z zd!/ (( z)’ zdy

which follows from applying the GREEN formula to D On the other hand from the
definition of ¢(z,()

1 e(z,E) 1 [L(2¢) C)
27riaD m 21r21 / (z- C)’(C-Z) 21rz (_z

follows and by L(z,()d( + K(z,()d( =0for(€dD,z€D, K(z,C) = K((,Z) and
the analyticity of K(-, E)

1 L(Z () K(Z,()
| T / dz = ~K((,0) = -K (..
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Hence,

- /i (J,(z,()+% 1 )K(z,?)dzdy

J 0z z—(
- [(@0- ; =) K= Dasay =0,
D

where again Lemma 5 is applied.

(iv) %a[ (t(z,f) -1 (%)) Tz, 0dz

=2 (G red+s E+) Tx(2,0)dz
aD

a¢ 2
= a—zlﬁ (; £(z0+ z) Jk(z,()dzdy
+£‘_‘,‘,}a—zg J (; £L(z, )+;E_Z)Jx(z,()dz

~, 1 1 = 0 — ==
=D/ (e(z)() - ; (C“'_ 2)2) K(z,()d:tdy - a_z:JK(C’C) =0

once more by applying Lemma 5 in complex conjugate form and because of the ana-
lyticity of Jk(z,().

i

/ 2 (K(e, Daw (=, D)dedy

D

/ (K(20) K(z0))dzdy
D

©) 5 [ KDl 0ds
D

/ K(z,OK((,7)dzdy = K((,0)
D
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in view of the reproducing property of the BERGMAN kernel K.
These estimates (i) to (v) show

5 [ 7Tz = - D/ D/ (K@ 000D ~ K(¢ Dp(0)o(D) ] dedndEdi=0.
aD

After these preparations we are leading our attention towards the differential equation
wsz + 1wz + P2z + 1wz + @20z + hw, + bW, + qqw + W +d = 0in D (5.1.10)
and combine this with the boundary value problem

Rew; = Re{Z'(s)w} =0 ondD.

Assuming this problem to have a solution w we set p := w;; and notice by the
preceding considerations that thus w is representable by analytic functions ¢ and
% in the form w = ¥ + Z¢ + Sp, where ¢ and ¢ are given as stated in Theorem
50. Inserting this representation into the differential equation gives us an integral
equation for the density p, namely

P+ u1S% + p2S% + K+ do = 0. (5.1.11)

Here S° is the singular integral operator from (5.1.9) and

a1(¢ +Tp) + (¢ +Tp) +by <¢6 +7¢'+ a—iSp) + bz(w_s +24+ a—azSp)

K% :=
+a1(vo + 26 + Sp) + ca(o + 26 + 5p) ,
do = d+ Y mlbit) + b, + crtu + 2]

u=1

Here we have to apply some results from the theory of integral equations the proof
of which cannot be reproduced here. A classical reference for the FREDHOLM theory
is [Cohi53]. Singular - one-dimensional - integral equations are studied in [Musk53],
[Mipr80], [Proe78]. For a reduction of a singular integral equation to some FREDHOLM
equation see [Musk53], p. 149. AThe operator in (5.1.11) turns out to be quasi~
FREDHOLM. The inverse to (I + S)p := Ip + 41 5% + p25%, where I is the identity
operator, exists in L,(D) for 0 < p—2 small enough so that go||S?| (D) < 1. Applying
this inverse to (3.5.4) reduces this singular integral equation to an equivalent integral
equation

p+K'p+(I+85)dy=0 (5.1.12)
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with a linear operator

+o00
K':=(I+5)7'K° = (-1)*§*K°

k=0

which maps L,(D) into L,(D) where 2 < p satisfies gof| S| L@y < 1.

Definition 18. A linear operator K from a BANACH space A into a BANACH space
B is called compact or completely continuous if the image K Ao of any bounded subset
Ap of A is a compact set in B.

- -2
Lemma 38.  Let a1, az,b1,b2,¢1,¢2 € C*(D;€). Then if 0 < @ < ag := ”T,Q <
p, K° is a compact operator from Ly(D) into C*(D).

Proof. The compactness of the T-operator on L,(D) follows from Theorem 23 by
the ARZELA-ASCOLI theorem, see [Tayl58]. From Sp = zTp — T((p) the S—operator
is compact, too. For showing ¢ to represent a compact operator let z;,2, € 3D both
lie on one continuum of dD. Then choosing the path of integration along 8D from z,
to 2,

22

Je(z2,0) = Je(21,0) / (. ¢)dt ,

z _ 2 9 z B
In(en Q)= Ixlan0) = [KeDa==-2 [Zo0a=2 [ Zowom

= 2 [ Gact.0d = - [ TE0 = 0,0 - Tutenr0)

1 1 1
= Jt(zz,C)—Jl(zn()+—(_— ) .
T\(—z1 (~z
Thus for 2,2, € 3D

#(22) — ¢(z1) = 2iIm /(Jz(zz,()—Jz(ZI,())P(()dCdﬂ
D

1 1 1
+;D/((—Zz —(-z])dfd'r]

~ %Im / / &t C)dtp(¢)dedn + Tp(z3) — To(z) -
D z
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From the boundedness of £(z,() and well known properties of the T—-operator, see

Theorem 23,
o -2
|#(22) — $(21)| < M(p, D)llpllL, pyl22 — 211, 00 = 2= =

follows. The PRIVALOV theorem, Theorem 6, then guarantees that ¢ satisfies the last
inequality on D rather than just on 8D. It also ensures that for smooth boundary 8D
the boundary integral (5.1.6) defining 1 satisfies an estimate of this kind, too. Since
¢ + Tp is HOLDER continuous and

Ca(1lf; D) < M(a, D)Ca(f; D) for fe€C*(D),

see proof of Theorem 29, the operator I1(¢ + T'p) is compact for p € L,(D),2 < p.
For the other term in (5.1.8) this follows from Corollary 11. That the operator on the
right-hand side of (5.1.7) is compact in L,(D) follows besides from properties of the
T-operator from analyticity. Thus

+Ca(bi D) + Calbi DICalbi + 36 + 5-55.D)
+CaleiD) + Cales D)Calto + 76+ 59 )

S M(G, P, I{I ) K2a D)"/’"L,(B) )
where K, K, are nonnegative constants such that

Ca(a1; D) + Ca(ay; D) < K, ,

Ca(bﬁﬁ) + Co,(bz,-ﬁ) + Ca(q;ﬁ) + Co,(Cz;ﬁ) S K2

-2
andaSao:=pT.

Lemma 39. Let ay,az,b,b2,¢1,¢; € L,(D),2 < p. Then K° is a compact operator
from Ly(D) into Ly(D).

Proof. For p € L,(D) we have

Kl B < ["01"1,,(‘0) + ||02||L,(5)] Ca(¢ + Tp; D)

A

1y = 2 B
+ [l[b, e, @ + Hbz“L,(B)] Ca(¥' +2¢' + 53/}; D)

+ [Hlexllz, @ + ezl )] Calbo + 26 + 5, D)

IA

M"P"L,(E) :
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Let (p,) be a bounded sequence in L,(D) then (¢n + Tpn) where ¢, = ¢(pa), is
bounded in C,(D) and hence by the ARZELA- ASCOLI theorem there is a convergent
subsequence (¢, + Tpn,). Then (a1(¢n, + Tpn,) + a2(¢n, + Tpn,)) is a convergent
sequence in Ly(D). The same argument holds for the other terms.

Lemma 40.  The operator K' := (I + §)"'K° is a compact operator from Ly(D)
into itself if K° is.

Proof. Let A C Ly(D) be a bounded subset i.e. {|fll, ) < M for all f € A. Then
K°A C C%(D) is compact, since K° is compact, see Lemma 38. Hence there exists
a sequence (K°f;) in K°A, fi € A,k € IN, which is convergent on C(D). Since
(I + S)~! is a bounded linear operator mapping C%(D) continuously into L,(D) the
sequence ((I + S)"'K°fy) is convergent in L,(D).

Hence equation (5.1.12) is a FREDHOLM equation, see [Cohi53], [Musk53], [Veku62],
{Mipr80] and the FREDHOLM alternative applies.

Fredholm alternative. Let Kp = f be a FREDHOLM equation and Ko = 0its
adjoint. Then

i. The homogeneous equation Kp = 0 has only finitely many linearly independent
solutions. The adjoint equation Ko = 0 has exactly the same number of linearly
independent solutions.

ii. The inhomogeneous equation Kp = f is solvable for any right-hand side f, if
and only if the adjoint equation Ko = 0 is only trivially solvable. Otherwise the
inhomogeneous equation is solvable if and only if f is orthogonal to the solution
space to the adjoint problem Ko = 0. There are as many solvability conditions
as the homogeneous problem has linearly independent solutions.

Theorem 51. Let the coefficients of the second order equation (5.1.10) satisfy
[11(2)] + [B2(2)] < @0 < L llarll ) + lla2llL,p) < Ko,
Neull, @) + Nall, ) + leull, @y + lealle, @) < K2,2 <p,godp < 1.
Then the homogeneous boundary value probelm
Rew; = Re{2'(s)w} =0 ondD
for equation (5.1.10) has the FREDHOLM property.

Proof. It was just explained that for the integral equation (5.1.12) the FREDHOLM
alternative does apply. Let p° € L,(D) be a solution to (5.1.12) in the homogeneous
case dg = 0 and denote by ¥3,¢° the related functions from (5.1.7) and (5.1.4),

respectively. Then
w® = ¢35 +7¢° + Sp°
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is a solution to the homogeneous problem d = 0. If the coefficients by, b;, ¢, ¢z, too
vanish identically (5.1.10) is just the generalized BELTRAMI equation for w;. Because
of the boundary condition Rew; = 0 by Theorem 38 it follows that w is the trivial
solution w = 0. In case when b, b;,¢), c; are small enough w can again be shown to
vanish identically. This can be done on the basis of the a priori estimate (3.3.10).
The same is true for the singular integral equation (5.1.12).

But in general the homogeneous problem (5.1.12), do = 0, has N > 0 nontrivial over
IR linearly independent solutions p,,1 < v < N, while the inhomogeneous problem is
solvable if and only if the right-hand side dy satisfies N orthogonality conditions

Re /do(z)a,,(z)d::dy =0,1<v<N.
D

Here 0, - -,0n are linearly independent solutions to the adjoint equation to 5.1.11.
These conditions lead to a linear algebraic system of N equations for the real coeffi-
cients 7,,1 < g < m, in the general solution .

Let the rank of the coefficients matrix of this linear system be r > 0. Then r of the v,,s
can be expressed by the remaining m — r ones leaving N — r equations as solvability
conditions on d and the remaining ~,,s. Together with the m conditions for (5.1.2) to
be solvable where p has to be replaced by

N
prt Y cpy

v=1

there are N — r + m solvability conditions. Here p, is a particular solution to the
inhomogeneous equation (5.1.11) expressed through dp.
The number of linearly independent solutions to the homogeneous problem is N+m—r,
too. This can be seen by considering (5.1.11) for d = 0 and 4, = §,. where v varies
over the indices of the remaining m — r coeflicients .

We are now turning to the second representation formula in Theorem 49 and Corollary
10.

Theorem 52.  Under the same assumption as in Theorem 50 there ezists a unique
solution to the boundary value problem

Rew; = Re {z'(s)w} = 0 on 8D
within the set of functions representable in the form

w=p 434575, Splz) = -2 / oz, O)o(¢)dédn ,

T
D
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with functions ¢ and ¥ analytic in D and continuous in D. The solution is given by

w(z) = ) wbu(z) + T(8 + Tp)(2)

u=1

D

where v, € IR,1 < u < m,g ts identical with ¢ from Theorem 50 and

#()= He)+ 2 [ onla, OplO)dedn.
D

Proof. Differentiating the representation formula for w gives

v / wa(z, )p(Q)dedn — - / A L4 _ G417,

w, =
D
—_ N d: =
wr = w—%/w;(z,c)p(c)dfdn—;/ "f” =3+T5,
D D
with
b= =2 [ onQtdn,
D
§ = =2 [anlanlerdgdn,
D
and
d =
e = P2 / e, OOt - - [ 02 =7+ T,
D
déd ~
wae = P2 / w2, e ~ - [ O s =+ 11,
D D
wg; = P.

The first boundary condition implies
Re$= —ReTp=:hoondD.
This is just (5.1.2) now for ¢ rather than ¢. Under the same conditions this problem

is solvable and ¢ is given by (5.1.3) again replacing ¢ there. The constant c; still has

to be determined.
The second boundary condition means

Re {z'(s)$} = ~Re {Z(s)(¢ + Sip)} = h°on 9D .
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This problem is solvable if and only if

] KO(Q)T(3)dC = / K(()ds =0,
3D

aD

~Re ] (6(C) + S1p(¢))dC = Re2i / g’zw«) + $1p(C))dedn = 0
aD D

or

Im / {3(¢) + To(¢)}dedn = 0
D

Because S)p is vanishing on D the term Sjp can be neglected in the boundary con-
dition. The advantage for keeping it is that then the solvability condition is expressed
through ¢ rather than through ¢’. Plugging in ¢ given as ¢ in (5.1.3) and (5.1.4) leads
to the same equation for co which therefore turns out to be (5.1.5). As before then

'/)=$O+Z7u¢uy

u=1

o= —%8[ [ + 40 [(640+ 510(0) & + (30 + 5im@)) ] (5119

Although ¢ only given through its derivative via éin the multliply connected' domain
D in general is multi-valued the sum ¢+¢o is uniquely defined single-valued function.
This follows from

1 - 8%h(2,¢) =
%3[ L0 = -2 / S dedn =—;8[ he(e, O = 5 ] =

and ]
2—/ 2,()d( =0.
F)

2,,/[ + £(z,<)] [ed{ +2d(] = .

Therefore for c € €

Thus, if ¢ is replaced by ¢ + ¢ for constant ¢ then 1o switches to ¢ — T. Again as
before by the GREEN formula applied for the domain D, = D\{( : |( — 2| < €} the

function 4 is rewritten as - N
Yo=J+ linng(e) .
e—
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L / { " [( 7 £(20) (400 +slp(c»]

-2 (E—_ + 4(2.0)) (B0 + 5:p(0)| } e

_ ! {(#e26)- s557) O+ 510t

+2 (5 + £6.0) G0 + 700 - FO - TH0) | dein

]
Il

- - / L(z,¢)($(C) + S1p(C))dédn

D
2t 1 _
+;b/ (—( 2 + ,{,(Z,C)) Im (¢(¢) + Tp(¢))dédn ,

/ Lz, 0)(8(0) + S1p(¢))dedn = 2 / 9 4(6) + ¢

-+ / 9:(2,C)($(C) + S19(0))dC
8D

=2 [ (2, 0B0) + Tot¢))dedn + im Tie)
D

I —) (3(C) + Tp(¢))dedn ,

x

since ; B 1 " ) _
=5 [ ( A(50) + ZT;) (8(0) + Sup(C))dE
K-sl=e
tends to zero with ¢.

Ji(e) = [-C-— +L(2 ()] [((0) + $1p(¢))dC

2n
|¢-2)=¢

+((0) + Sip(0)d(),

limJi(e) = —[6(z) +Sip(2)] -

Hence

B+ 70 + 5306 = 2 [{ (460~ 20u(a,00 + Totc)
D
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(e £:,0) @0 + ﬁ(ﬁ)} dédn

= 73+ TT3e) - + [ { £, 00 + To(0)
D

+(2w.(2,¢) — ,(,(2,0)(;5(()+'I'p(C))}d£dr;. (5.1.14)

This formula gives a particular solution to the boundary value problem in the desired
form. It is quite similar to (5.1.7). Differentiation and applying the formula, see the

proof of Theorem 30, of f(()
1= T(@() 2m (—z

gives

do(2) = .f; D/ wi(z,0)p(C)dédn — TH(z) + T ( ;CTP) ia l (#(¢) + T—/:(_O)Z‘-i_%
- / {;;,(z, OO + TAQ) + (2wi(2,0) — La(2,ONBC) + 7-,,(0)} dédn
D

=2 [, ot0dedn - o (@0 +TRONS
D aD

_%/{,!,1(21()(:(—54'%)1'(20)"(2,0— £=(ZYC))($(()+TP(O)}CI{J1; )
D

As is shown in the Lemmas 35, 36 the integral operators in the representations of
¢, ¢o,¢o are compact operators in L,,(D) for 2 < p.
If we are involved with a differential equation analogous to (5.1.10) namely

Wi, + 1wz + 205 + Qws + 60; + hw, + bW + aw + W+ d=0in D(5.1.15)
then we get a singular integral equation of the kind as (5.1.11) with the same singular

integral operator S° but for p instead of p. The compact operator K° is given by

K% = ai(+Tp)+ax(d+Tp)+b (J:, - ;2; / w(2,¢)p(C)dedn + Tﬁ)

D

+h (w, -2 [oa OOt + Tﬁ) +a(l+3+50)
D

+ea(Po+ 6 + Sip)
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and m
dO = d+ Z ‘7“[b]¢:‘ + b2$:-‘ + Cl'/’u + CZJM] .
u=1

Hence, the boundary value problem for (5.1.15) has the FREDHOLM property, too.

In [Bege93)] the case where D is the unit disc D is explicitly worked out.

5.2 Higher order equations

As in the preceding section where iteration of the T-operator with itself and the T-
operator, respectively led to the operators To; and Ty, further iterations will produce
a hierarchy of integral operators, see [Behi93]. They are related to the differential
operators 8™*"/9z™3z" in the same way as the T-operator is to 8/8z. While these
results for general domains just will be listed we will again concentrate on the unit
disc, see [Behi93]. For the disc D in (2.1.2') instead of the T-operator

appears which is the T-operator adjusted to the DIRICHLET boundary condition and
some normalization (side condition). For p € L,(D),1 < p, we have

BS.p
a9z

Sp(z) _ 1 (9] P9}
o ".,/{(C—zﬁ"(l—zz)*}d“"

=p, ReS1p=00n 0D, ImS p(0) =0,

and

Definition 19. Let p € L,(P),1 < p, and k € IN. Then for z € D

k
S"p(z)—2((kl)l)' /m (€= 2! [c+zp(c) +::§p((c)] dedy . (52.1)

Theorem 53. Sip=Sfp, ke IN.
Proof. For k =1 there is nothing to prove. Let 2 < k then

4 _ ( 1)"' (+2 (9]

[4(9)
? ded'/

= Sk-1p(2) .
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Moreover, since

Sep(0) = 2((k1)1)' /(mok_ [p«) p(c)] dedn

we have Im Sip(0) = 0, and since on 3D

( 1)" - (+z pO) 2+ Q)

L /[m« lm [g+zp(o] iin

thus Re Sxp(z) = 0 for z € AD. Applying the modified CAUCHY-SCHWARZ-POMPEIU
formula to Syp gives

_ 1 C+2 Sim1p(¢) 14 2C Si1p(€)
Skp(z) = o {(—z c +l—z( 3 }dfd

51(Sk-1p)(2) , €D .

Hence, for 2 < k
Sk = 515k .

Theorem 54. For p € L,(D,1 < p,k € IN, Sip has the following properties:

i .
5?5*!’ = Sk-ep, 1 S LSk, if Sop:=p,

rd
—_— = <l<k-
Re z,Skp OondD,0<¢<k-1,

i
lmﬁskp(0)=o,ostsk-1.

Moreover, & /3z'Sip is a weakly singular integral if 0 < £ < k ~ 1, while for £ = k it
is a singular integral,

SkP( )= - l)*k /{( z)k-‘ (CPE(:)z

¢(—2+C=z;_\"" w0
+( g (-l) - 208 dédn, z € D. (5.2.2)
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Proof. One can inductively show by the LEIBNIZ rule

i
% 775kP(2)

W p—
= '/ Z;( Jowaame (¢ [(( e R e R

1 (~1)* _ea [2O) | p(O) _
_2_",, (k__[.__.i..).ipRg(('—z)]k ¢ '[T+T]d§dq,ostsk L,z€e D,

—1)k- 2 (e = I\
where ayg = L;c)_——x(_ii)?—)
more gives 0*/0z*Syp in the above form. Obviously, the integral for the deriva-
tive 8°/02'Sip is weakly singular since k— A —1—-(£—-A+1)=k—-£€—-2 > —1
for 0 < € < k — 1, while for £ = k this expression becomes —2 so that 3*/9z*Sp is a
singular integral.

Differentiating this formula for £ = k£ — 1 once

In order to avoid running again into involved technical estimations, here only a simple
kth order equation will be considered, see [Behi93).

Theorem 55. The DIRICHLET problem

Rz%—ﬂonab 0<e<k-1, lm—(O) 0,0<f<k-1,
for the differential equation
Fw
il

has the only solution w = Sip.

Proof.  Similar to the first representation formula in Corollary 10 the general
solution to the differential equation is

k-1
w(z) = Y ¢e(2)7 + Sip(2) -
=0
Here the ¢, are analytic functions. While Sip is a particular solution the other part
is the general solution to the homogeneous differential equation §*/8z*w = 0. Such a
function is called polyanalytic see [Balk91]. From the boundary behaviour of Sip we
find
Re 2% _ Re (k- 1) Sip} = (k- 1!
T {(k=1)¢e—1 + S1p} = (k- 1)!Re sy =00n 3D .
Thus ¢x-1(z) = ick—) with a real constant ci_,. This constant is zero since from the
side condition Im ¢;_,(0) = 0 follows. Proceeding in this manner ¢¢(z) = 0 is shown
forany £,0 < €< k-1.
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The higher order operators for general domains are defined by means of some kernel
functions.
Definition 20. For m,n € Z with 0 < m + n but (m,n) # (0,0) the kernels

Komn(z) are

[ (=)™ (=m)!

prp— ™17 lifm <0,

Kmn(z) := ¢ (,,(—lm)n(_—l}.)- ™z lifn <0, (5.2.3)

zm-l;n—l 1 X
P § - § < )
m = Din = log|z| u] ifl <m,n

u—l v=1

Definition 21. Let D C € be a domain and w € Ly(D). Then for m,n + Z with
0<m+n

Toow(z) := w(z) if (m,n) = (0,0),

Tntlz) = / Knn(z — Qw(¢)dedn if (m,n) # (0,0) . (5.2.4)
D

Sometimes Trnnp is used instead of just Tp, .

Obviously, Toy = T, Tio = T,T-1, = I, Ty, =TI in the notation of chapter 2.
Analogously to the POMPEIU formulas (2.1.1) and (2.1.1') higher order representation
formulas are available [Behi93).

Lemma4l. Let D be a bounded domain with smooth boundary and w € C'(D; ).
Then for0 <m +n and z € € \8D

Tm,nw(z) = Tm.n+lu’?(z) - %/Km,n+l(z - C)w(C)dc ) (525)
aD

Tanw(z) = Trmpr aw:(2) + %/Km“,,,(z — QOw(¢)dC . (5.2.5")
8D

Proof. As in the proof of Theorem 20 for zo € D consider D, := D\ K,(zo) for small
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enough ¢ > 0. Applying Lemma 9 gives

/ Knmin(z — (w(¢)dédn
D,

= - [ e Kmnna(z = OulOMeey + / K (s = O) )
D'

=g [ Kmna(a - 001 / K (s = O) Q)
8D,

Passing with ¢ to zero and observing 0 < m +n formula (5.2.5) is obtained. If zo # D
then instead of D, we can just work with D in this argumentation.

Theorem 56. Let D be a bounded domain with smooth boundary and w €
C™(D; @) for 1 < m. Moreover, let (px,vx),0 < k < m, be a set of double indices,
satisfying

po=vo=0,pr-1 < pis V1 S Uk k1 + U1+l =prt v 1 Sk<m.

Then
al‘m“‘l’m
w(z) = Tymm Watf,(:)

m-1
1 (¢ vrsi—tnf T _
+ z 5 /Km-nm-n(z C) 3(“ 3( )d [(‘O 4 .(_'()““ “"] . (5.2.6)
=0 3D
Proof. For m =1 there are two possibilities (¢1,1) = (0,1) or (1, 1) = (1,0). In
these cases (5.2.6) coincides with (2.1.1) and (2.1.1’), respectively.

Assuming (5.2.6) holds for m, we will show it holds for m+1, too. Let w € C™+'(D; )
and choose gm41 = fm and V41 = Vm+1. From (5.2.5) applied to 3#m+mw/§*20"Z
we see

allm"‘l‘m OHm+1 +vm4a
Tllmwm 32“"'33""' = dpmirwmir az"mﬂa?’"'*‘

1 Gpmtvm
+3 [ Kumsomale = 0 mtic).
aD

Inserting this formula into (5.2.6) shows that it holds for m + 1, too in this particular
case. When pm41 = pm + 1 and vy 41 = vy, an analogue argument holds.

Corollary 12. In the particular case yp = 0,4, = k,0 < k < m, any w €
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C™(D; € ) is representable as

m-1
w(z) = Z o(2)z* + m— 1)'7r

k=0

with analytic functions ¢, in D.

Proof. From (5.2.6) it is seen
-1

w(z) Tc 6"‘_w_(_z_) _'"Z%/K k+|(z"()a w(()
k=0

= o,m o
1 (z— C)"‘" mw(()
(m—l)!wD/ 0 o A
z=0* 3"w(()
—§k’211 z-( ac —F X

The boundary integrals are obwously of the form as stated in the corollary.

In connection with the RIEMANN jump problem we only mention that for a system
of smooth curves I and f; € C*(I'),0 < k <m — 1,0 < a < 1 the function

m-1 =0
82) = Y 5o [ =L R0
k=0 r

is a polyanalytic function, 3™¢/3z™ = 0, in € \I satisfying

ko o\ T 3 -
(%) —(?_a_—f—k_w) =fk,0$k$m—l.

This follows from the fact that, see [Behi93],
(z-¢)
[ nou
r

is continuous on I' for 1 < k while for k = 0 it is just a CAUCHY-type integral.
Moreover,

3%2(2) sz(k e)|/(z Oz (05t sm-1.

Properties of the integral operators T, , similarly as for T = Tp, studied in section
2.2 are investigated in [Behi93] in detail. Besides continuity, differentiability, and be-
haviour at inifinity the norm of the singular operators T\, —m,m € Z, are considered.
They all turn out to be unitary operators in Ly(€') as is the I-operator, I = T_, ;.
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5.3 First order systems in two complex variables with analytic coefficients

In this section simple well-posed boundary value problems for systems of first order
partial differential equations in two complex variables are considered. The result then
is applied to solve a higher order equation again of simple type. In several complex
variables there is almost no theory for boundary value problems. Here the solutions
are determined by RIEMANN-HILBERT conditions on some complex one-dimensional
subset of the boundary. The basic idea is due to A. DZHURAEV, see [Bedz93b]. The
method is working only for equations and systems with analytic coefficients.

Let A be an N x N matrix function in a domain Dg of € 2 with analytic entries. The
multiplicities n, of the eigenvalues A,,1 < £ < k, }:iﬂ n, = N, are assumed to be
constant on Dy. Then there is a nonsingular matrix B with analytic entries such that
A := B~'AB has JORDAN normal form,

A - 0

A 1 A

The A, are n, x n, matrices with analytic entries. Let f be a given vector-function
in Do x € V. Then w = Bw transforms the first order system

w,, + Aw,, = f(2), 2, w) (5.3.1)

into the system

wz, +Aw; = Bf 4+ (B,, + AB;,)Bw =: f(z1,23,w) .
Let us at first assume that this system decomposes into the k systems
Wrzy + A"w"zl = f,‘(zl,ZQ,w“) ) 1 <k < k.

Any systemn of the form

w,, + sz, = f(zly Zz,ll’) )

where
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A

A= . , (5.3.2)

has the component form
w0:3+/\w0:| '_‘fO) wvzz+vaq +wv-lz| =fv ) 1 SVS"—I .

Here f and w are vectors in €™ and X is analytic in Do . In the following the
differential form dz; — Adz; is assumed to have an integrating factor u(z,, z;) different
from zero and analytic in Dy such that

d() := pdz; — prdz;

is a total differential i.e. an exact differential form. Such factor can be found by
finding a particular solution to the partial differential equation

(#A)zy + pz, =0

Let {; be a function with this total differential d(; such that (i, = p,(1,, = —pA.
Choosing (3(z1,22) = z; then the mapping ¢ = ({;,{2) maps Doy one-to-one onto a
domain G C @ 2. The JACOBIan of this mapping is

G Gz B —pA
= =p#0
(2:. (2:7 0 1
in Dy while the JACOBIan of its inverse is
1
G A6 - A 1
= ’l = —.
220 22¢; 0 1 K

Transforming an analytic vector w by z = z({) gives an analytic vector function w
of {,w(¢) = w(z({), satisfying

1
W, = W W, = ;wz:’

W, T Wi+ Wi, = Aw, +w,, .
Hence the above system is equivalent to

“’0(3=f0, wv(:+l“"’v-l(1 =fva ISVSﬂ—l,
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with £,({,w) := f.(2({), w).
Let us consider a system in this reduced form
Woz, = fO’ Wyz, + BWy—yzy, = fy’ 1<v<n-— 1 )

in a domain Dy of € 2. Assuming the hyperplane z; = 0 intersects Dp in the plane
domain Gy of €, Gy = Dy N {(21,22) € €2 : z; = 0}, integration leads to

23
wo(21,22) = wo(zl)+/fo(21,t,w)dt,
0

P
eu(21) + /{fu(zl,t, w) — p(21, )w,az(21,t)}dt , 1 <v<n—1,
0

wu(zh 22)

where the ¢,,0 < v < n — 1, are analytic functions in the domain Gy of € . In vector
form the system becomes

w,, + S w, =f. (5.3.3)

p 0
Introducing the nilpotent element, see [Doug53],

0

together with the hypercomplex quantities
n-1 n—-1
w=S e, 15 g
v=0 v=0

the system is

n-1 n-1 n—1
E w, e + pe E w,, e’ = E f.e¥
v=0

v=0 v=0
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e n-1 n-1 n-1
Ew.,,,e" + Z PW, € = E foe¥.
v=0 v=1 v=0

Defining the hypercomplex first order differential operator

a 0
D :=

35 Hon
the system can be written as
Dw=§f. (5-3.4)

Let the hypercomplex function ¢t = :;(', t,e” be a solution of the homogeneous
equation, f = 0, satisfying to(z1, z2) = z;. Then

t, = tu(zlyz2) = (_l)u"u(zlyZZ) ’ 1 S v S n—1 )

where
z
”0(21122) = zls”u(zlyz2) = /”(th)l‘v—ln(zht)dt ) 1 S v S n—1.
0

Let us denote this function in the sequel as ¢, rather than just ¢ and denote by ¢,
the formally hypercomplex function ¢;(z1,22) = z;. Introducing the hypercomplex
variables (£1,¢;) instead of the complex variable (21, z;) equation (5.3.4) can formally
be simplified. The JACOBIan of this transformation is

o tlz; tlzz _ _ = v
J:= . _t,,—l+§t,,,e #0.
Moreover from,
/] ;] 8 1/]
o tlznw“'tzz.a—tz—-]a—tl,
0 _ 0., 0 __ 5 B
922 B TR T et TR TR
find
e 2 _0 ., .0 _, 8 138
o, 0z  Mbnm ot J0n

Obviously, Dt; = 1, Dt, = 0 which just is 9t;/0t; = 1, dt,/dt; = 0. We also see
‘a_t_g 1 atg 1 aZz
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Thus, ¢,,t; are independent hypercomplex variables. With these hypercomplex vari-
ables (5.3.4) becomes

wlat b)) = flalt,t) ),

where f is assumed independent of the unknown w. A particular solution to this

equation is
¢t

wO(tl,tg) = /f(zl(tl,t), t)dt .

The general solution to the homogeneous equation, f = 0, is given by an arbitrary
analytic hypercomplex function ¢ as ¢(¢1(z1,22)). Hence, the general solution is

w(21, 22) = wo(ty(21, 22), 22) + @(t1(21, 22)) -

Thus the following result holds.
Theorem 57. Let u and f be analytic in Dy. Then

z2

w(z1,22) = p(ti(21,22)) + /,f(zl(tl(zl,zg),t)dt (5.3.5)

is the general solution to (5.5.8), where ¢ is an arbitrary analytic hypercomplex func-
tion in Go.

Proof. In order to show (5.3.5) to be a solution we differentiate w with respect to
2z and z;, getting

W, (Z],Zz) = [‘P’(tl(zlyz2)) + }/fx, (zl(tl(zl)zl)r t)rt)dt] J )
1 7
w,(21,22) = [?'(tl(zhzz»"' ’j/le(zl(tl(zl’z2)vt))t)dt:| [—p(21,22)eJ]

+f(zl ) 22) )

and hence (5.3.3). That (5.3.5) is the general solution follows from the above consid-
erations. Any solution to the homogeneous problem Dw = 0 is an analytic function
in ¢, in particular independent of ¢,.

Remark. In order to fix ¢ the RIEMANN-HILBERT boundary condition

Re {7(z1)w(21,0)} = g(21) on 8Go
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can be imposed where 7,9 € C*(8Go) and |r(z1)| = 1 on 8Go. For 2z, € Go,22 =0
then from (5.3.5)

w(21,0) = @(t1(21,0)) = ¢(21)
follows, so that o

Re {7(z1)¢(z1)} = g(z1) on G,
fixes ¢ eventually not uniquely or only under some solvability conditions, see section
1.4.
We are returning to our original problem which now will not be assumed to decompose

into subsystems independent from one another. The systems are now weakly coupled
and semilinear. According to the JORDAN normal form we get the system

wnzg“"Anwnz, =f,¢, 1 stk)

where

wT=(w{,w;,...,wZ)€ G’N,wz'= (Wkoy Wr1y -+ -y Whne=1) EC™, 1 <k <k,

and similarly for f. Here the upper index T denotes transposition of matrices. The
right-hand side f is assumed to be analytic in (21,22) € Do C €2 for any w € €V
and analytic in w, too. If f would be independent of w using the transformations

(21,22) - (Cm:(ﬁ) - (tld,tld)

as above for any of the subsystems and the respective inverse transformations the
general solution would have the form

wi(21,22) = @, (Ear(Car (21, 22), 22))
+/f,‘(zl((.nl(tsl((sl(zli 22), 22), t)’ t)v t)dtvl <«< k ) (536)
°

with arbitrary analytic hypercomplex or vectors ¢,. The changes of variables obey
the rules
tr = (2 =2,
6(,‘1 62, 1 6t,¢| 6(,‘1 1 0t,‘, 6( 1
=,¢,_=——=J,¢ ==, 7T =- —"-:—““

azl # 6(&1 /‘n’ a(sl a‘nl Jn 622 pets 622 # A
with

d(&l = l‘ndzl - ﬁ‘n’\ndz2 )

nk—1

tg = (lcl + Z tr €, tsv((sh (52) = (_l)kﬂlw((nh?d) 1/‘&0((::1)22) = (s, )

v=1

22

"Kv((nl,z2) = /ﬂ‘n(zl((nl’t)v t)ﬂ‘:w-—l(,d (Z]((,;],t),t)dt, 1<v<n.—-1.
1]
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For checking that w, is a solution again by differentiation we see

2
a
Wiz, = f‘dt + ey
]

2]
zgaf
W = SOt e) [ Fod- Ok et
[}

which gives

Wk, + (/\x + e)wnzx = f,g .
For the coupled system, f = f(z1, z2, w) equations (5.3.6) give a system of VOLTERRA
type integral equations

we(21,22) = @, (tar(Car(21, 22), 22))

+ / I (21(Ca (B (Cra(21, 22), 22), 8), t), 8, w(z1 (G (Brr (G (21, 22), 22), 8), 8), 8)) dt
0

1<k <k,(53.7)

which we shortly write in vector form as

z2
w(zhzZ) = ?(21122) + /?(zh 22)"{;’(21,22» t))dt
[)

where ' = (£, 1), 07 = (#T,.... D), ®" = (@],...,@]) and the ., o,
depend on (z), 22, ¢, ®)(21, 22) and (21, 22,t) respectively as indicated in (5.3.7). In
order to solve this nonlinear integral equation some condition on the domain Dy is
imposed.

Definition 22. A plane domain G C @ 1is called ko-quasi-starlike, 0 < ko, with
respect to zo € G if for any z € G there ezists a rectifiable arc v in G connecting 2z,

with zg such that on v
|dt| < kod|t| .

Obviously, any starlike domain is quasi-starlike with k =1 .

Because f is analytic in all of its variables it satisfies a LIPSCHITZ condition especially
with respect to the variable w. In general the LIPSCHITZ constant depends on the
distance of w from the boundary of the domain of definition. It increases when w
gets closer to the boundary. If this domain is the entire space €V then f is a linear
function of w, see [Scsc73].
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Theorem 58. Let Dy C €2 be a domain such that for any zey € proj., Do the
intersection of Do with the hyperplane z, = zq, is ko-quasi-starlike with respect to the
point (201,0). Let wo and @ be analytic functions in Do and f(z1, 22, w) be analytic

in
Q= Do x {w : |w — wo(2z1, 22)| < Ce*l2l}

with some positive constants C < +o0o, k,, satisfying the LIPSCHITZ condition
[£(z1, 22, w) — f(21, 22,w)| < L(z:1, 22)}w — w
for any (21, 22, w), (21, 22,w) € N and

22

sup |(p(z1, 22) + /?(Zh Zz,t, 1‘2’0(21, 22, t))dt - wo(z., Z’z)le-“‘1 =21 S C . (538)

,22)€D
(21,22)€Do 4

Here the integral is taken along an arc from (z1,0) to (1, 22) in the hyperplane z, =
const. satisfying |dt] < kod|t|. Moreover, if L is connected with L in the same manner
as f is with f,

z EP'osz Do

z3
sup 2ko/Z(z,,zg,t)e"“|‘|d|t| < ehlzl
o
ts assumed. Then the operator
22
(Tw)(21,22) := (21, 22) + / F(21, 22, t, (21, 22, ) )t
o

is bounded on
He(Dg) := {w : w analytic in Dy, |lw — wo|| < C},

mapping this set into itself and providing a contraction, where
lwll ;= sup |w(z1,z2)|e )
(21.22)€Do
Proof. Direct computation shows
(Tw)(21, 22) — wo(z1, 22)[| < C,

and

z
[(Tw — Tw)(21,22)] < ko/z(z.,zz,t)(ﬂ’(zz,zmt) — &(z1, 22, t)|d|t]
0

IA

22
= 1
0 = wllbs [ (o 22,068 Mal] < Fllw ~ ol
0o
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so that ]
ITw — Twll < 5w - wll.

Remark. If L is constant then (5.3.8) is satisfied and one may choose

ky=ko sup L(z,2).
(21.22)€Do

On the basis of this result the integral equation can be solved by successive approx-
imation. The sequence of approximative solutions converges in the norm stated in
the theorem, leading to an analytic vector function satisfying the integral equation.
This limit vector function is a solution to the semilinear coupled system of partial
differential equations satisfying

w(z1,0) = p(z1), 21 € Gy .

In order to explain the usefulness of this somewhat involved procedure a simple higher
order equation will be solved. The solution of course can be obtained in a different
way, too. Any higher order equation is reducible to some first order system. The
solution to this system leads to the solution of the original equation. We consider the
equation

™u  Ou

g’y _ou . 2 2
o7 " on Oin |z |* + [2]* < 1 (5.3.9)
for 2 < m. Introducing
gm#-ly du
= 0SS p S M 2wy =
e Bz T g=m ® 0z,
and wT := (wp,...,wn_,) equation (5.3.9) becomes
w,, — Aw,, - Bw =0
with the m x m matrices
001
0 --- 00 1 000
A= i |, B= SR
0 10 0 100
000

A has JORDAN form with the (m — 2) x (m — 2) and 2 x 2 block matrices, respectively,

0 --- 0
. ) [0 o]
: N ’ 10 .
0 --- 0
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Decomposing this equation into the two systems

where w!T := (wy, ..., Wn-3), T := (Wm—_2, Wm-1), and

0 ---00
1 00 00

Em—2:= 1. . . €@ =1, 9
0 --- 10

are nilpotent (m — 2) x (m — 2) and 2 x 2 matrices, respectively. For these systems
the systems of integral equations (5.3.7) become

zz Wp-1(21,1)
0
w'(z.,z,)=/ em_zw!(21,1) + : dt+ (z1) ,
° 0

22
‘wz(Z],Zz) = / [ wra—S ] (21 + ez29 — egt,t)dt + ¢(21 + 6222) . (5310)
/]

Here ¢7 = (o, ..., ¢m-3),®T = (Pm_2,Pm-1) are analytic vectors.

Replacing the complex variables z, in the power series expansion of ¢ and [w'a_s]
by the matrix variable z; + e;2; = [ ;' g ] we see
2 21
Pm-2(21)
21+ ez =
oo = [0 |

1l

el

Wm-3
ez, t
[ ](21+ ) Wm-3z (21, t)22

0
System (5.3.10) is solved by iteration starting with

“’(')(21»22) = ¢(z1), ‘“’3(21,22) = (21 + e222) .
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After u steps one gets

wl(z1,2,)
po(a1) + fmes(2) + ()2 - 4 A
$ol21 Pm-1121)22 T Ppm_2(21 2 T ‘Pm-,.-l(zl)m

23 , 3"
¢1(21) + po(21)22 + emar(21)5 4000 + ‘Pm-,.(zl)m

Pu-1(21) + pu-2(21)z2
= p—l Il'l'l ’

+- +‘P0(Zl)( 1)' +‘Pm-l(zl) +‘Pm—2( l)( ¥ l)'

u—l

‘PI‘(ZI) +‘Pu-l(zl)22 +- +‘P1(zl)( 1)| +‘P°( 1) '

zl‘
Pm-3(21) + Pm-a(z1)22+ - + <p,.._,,_3”—’,

zl‘
m-2(21) + Pm-3(z1)z2+ - + ‘Pm—u—zll—z'

2
w =
w(z,22) s

2
Pm-1(21) + ¢ _o(21)22 + - + ‘Pﬁn-p-zm

This can be shown inductively for 0 < u < m — 3. Iterating two or three more times
suggests the vector w, w” = (w!T, 2T) to be of the form

w(z, 22) (5.3.11)
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Applying the integral operators from (5.3.9) to this series this vector is seen to solve

this system.

If the ¢,(21),0 < g < m — 1, are analytic functions in the unit disc

J]z1] < 1 by the CAUCHY coefficient estimation the series is seen to converge for any
z2 € @' . The equations

Uz, = W2, Uzy = Wy,

then give the solution to (5.3.9) in the form

m+p—1
wenm) = DYoL
iy (Vm+;4 1)!
(v+l)m b7
+z;<ﬁm- (Zn)m +/¢m-1(t)dt+3m-1
v= [}
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with an arbitrary ¢,-; € €. Obviously, from here
s “u
u(z1,0) = /sp,,._l(t)dt +emtr 5g(21,0) = pnpi(@) 1S pSm—1, (5312)
2
0

follow. In order to determine the analytic functions ¢,,0 < ¢ < m — 1, the following
boundary conditions are prescribed.

Theorem 59.  The solution to (5.3.9) satisfying

Rezi——(zl, 0) = hm_y-1(z1)on|z]=1,0<pup<m -1,

928
s given by
ey d¢ z;""“‘_l
wonz) = 34D % [ el :
u=1 | v=0 1l't| ie1 (C—2)* (vm+p—1)!

1 2271 227!
‘m j m- u(() ¢ ( )+ 1Cm— u(_—_? (5-3~13)
KI=1
with arbitrary constants c, € R,0< p<m—2,¢c,_, €C.

Proof. The boundary conditions and the relations (5.3.12) imply DIRICHLET
boundary conditions on the analytic functions ¢,,

Re‘PIA(zl) = hl‘(zl) on 'Z], =1, 0< p<m-— 2,

so that these functions are given up to some purely imaginary constants by the
SCHWARZ~POISSON integral

z - ‘L (+Z| d(
(1) / m(E G e,

2mi
Kl=1
l 1 d .
= 5 [ W0 - [ MOF i ce Rial<1,
Ki=1 Ki=1

from which for 0 < v

v
Wi =% [ Ol <1,

Ki=1
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follows. For ¢,,_; one observes that with z; = e’
a .0 ) d
Re au(zl,O) = Re {121—52(21,0)} = Re {izipm-1(21)} = Ehm'l(z') .
Because

2x

d it —_
/ahm_,(e )dt =0
(1]

this problem is solvable; iz1pm-1 again is given by the SCHWARZ-POISSON formula
giving (¢ =€)

pmor(m2) = /dt Oz m/hm-.(c)« 0 lal <1,

I(I

and for 0 < v

‘PS:)-I( 2) =

m—l(()(c ),,+g7 Izll <l1.
I¢i=1

Inserting these representations in the formula for u gives (5.3.13), where

1Cm—1 := G 1+L / hm—l(()%{

21t
KI=1

As was mentioned before there is another way to treat (5.3.8) which is more common
for this type of equation. It is reduced to the integro—differential equation

m-1
w(zr,22) = ((T"’—)u ()it + 3 pulen)at
° p=0

where ¢, are arbitrary analytic functions. Solving this equation iteratively gives the
solution from Theorem 58 more easily.

5.4 The SCHWARZ~POISSON formula for polydiscs

The SCHWARZ—POISSON formula for analytic functions in the unit disc of the complex
plane was found in Chapter 1 - addressed as the SCHWARZ operator (1.2.2) for the unit
disc - by means of the complex GREEN function. A simple purely complex analytic
deduction only using the CAUCHY formula for analytic functions is contained in the
proof of formula (3.3.2) in the case where w is analytic.
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From this formula and the CAUCHY formula we can inductively get a SCHWARZ-
PoIsSON formula for analytic functions in the unit polydisc of € ™ for any n , see
[Beku93). For w € C(D; € ) analytic in D we have the CAUCHY formula

w(z) = /

D

which we rewrite as

2e) = 5 ful0) ($2241) %

8D

and the SCHWARZ--PoIssON formula

w(z) = —/ (C + ilmw(0) .
We also have
- _1_ - L _%  _o®
21n/ (O -z 2m [ 21riap w(O((l -%() w(0).

Theorem 60. Let w € C(D";€) be analytic in the polydisc D™ = {(21,...,2a) :
|2, < 1,1 v < n} of €". Then

ruonnm) = () [ 0 [ Rewldn- ,cn)IIg”:"d(” (5.41)
=t Kal=1 v b
+Z( 2t 3w, ,z,.)l ) 0—--[w(0 S0)+(=1)"w(0,...,0)).
k=2 gy =1 =St
u“#vAN#A

Proof. For n =1 the formula (5.4.1) is the known SCHWARZ-POISSON formula in
@ since the sum on the right-hand side does not occur. Assume (5.4.1) is valid for
some n > 1. Let w € C(D™;€) be analytic in D™*! then by the above CAUCHY
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formula and by (5.4.1)

2nw(zl)' <oy 20y zﬂ+l) = 2— / 2n_|w(zl)- s+ 2n, (n-H) (M'l + l) &

m' : 2Zpn—1 — Z2n41 (a1
(n41l=1
1 n+l n+1 L+ 2, d(,,
= (2_“_') / / R'ew(Cl’ )Cn+l)H( — 2 (
k=1 Kadal=2 =

+(L,)n+n/_.. / ng((,,...,(,,“)ﬁm&@

271 ey ¢ =z G Cor
[al=1  Kn4rl=1 -

+ Zn:(_l)kz"-k z": / w(z1,...,2n, (,‘“)l 2d(n 1

2y =0r=2 =0 -z
k=2 Vb1 =1 Knsal=1 v Vk—~1 Cn+l n+1

———— n d(ns1
_E;;Ic /| [w(O 0,(,,1.1)] +(—l) UJ(O,...,O,(,..H)m .

Here the second term on the right-hand side is

() [ [ vt [tz

lal=1  Kal=1 b=l
which by (5.4.1) can be replaced by

n

2 lw(a, ., 2,0) + Y (=12 Y w(z,,...,z,.,0)|
k=2 =

[ | n ==y, =0

[w(O 50 + (=1)"w(0, .. )]

n+1

=270z, 20,0+ 3o (-2 BT wla, . 2e)|
=3

YigeeaVio2=1

[w(O —20) + (=1)"w(0, .. )] :

T =Sty SIngd =0

The last term in the above formula for w(z,...,z,41) is

—w(0,...,0) + (=1)"""'w(0,...,0, zn4,) .
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Hence,

n+1

1\ ¢+ 2z, d(,
on yeeoyZngl =( ) C""r(n p i ek 14
w(z Zns1) / / w(G: +‘)VH_1

271 -2z ¢
Gl=1 Kngal=1 -
n+1 n
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l 7 Y n
-3 [w(O,...,0)+(~l) +'w(o,...,0)] .
Up to the first and last term this right-hand side is identical to
n+1 n+1 n
2! Z w(zy,... :zu+l)| + E(—l)krﬂ-k Z w(z1,-. ., Zn41)
v=1 2Zyy =0 k=3 Uiy =1 N =...=z.,k_, =0
n+1 n
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prt 2, =0
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n+l n+1
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k=2 Vo1 =1 2 =Sy, =0

This gives (5.4.1) for n + 1 rather than for n.
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