

OPTIMIZATION THEORY

This page intentionally left blank

OPTIMIZATION THEORY

Hubertus Th. Jongen
Aachen University of Technology

Aachen, Germany

Klaus Meer
University of Southern Denmark

Odense, Denmark

Eberhard Triesch
Aachen University of Technology

Aachen, Germany

by

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

http://www.springerlink.com

eBook ISBN: 1-4020-8099-9
Print ISBN: 1-4020-8098-0

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2004 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

http://www.ebooks.kluweronline.com
http://www.springeronline.com

v

Contents

Preface

I Continuous Optimization

ix

1 Optimality Criteria on Simple Regions
1.1
1.2
1.3

Basic Definitions, Examples, Existence of Global Minima
Optimality Criteria of First and Second Order
Diffeomorphisms, Normal Forms (Morse Lemma)

3
3
7

1

14

2 Constraints, Lagrange Function, Optimality
2.1
2.2
2.3

Constraints, Standard–Diffeomorphism
Lagrange Function, Optimality Criteria
Symmetric Matrices

19
19
23
28

3 Parametric Aspects, Semi–Infinite Optimization
3.1
3.2
3.3

Parametric Aspects: The Unconstrained Case
Parametric aspects: The Constrained Case
Semi–Infinite Optimization, Chebyshev Approximation

35
35
40
44

4 Convex Functions, Duality, Separation Theorem
4.1
4.2
4.3

Convex Sets, Convex Functions
Primal Problem, (Wolfe–) Dual Problem
Separation Theorem, Subdifferential

49
49
55
59

5 Linear Inequalities, Constraint Qualifications
5.1
5.2
5.3

Linear Inequalities, Farkas’ Lemma
Constraint Qualifications, Optimality Criteria
Polyhedral Sets

67
67
71
76

6 Linear Programming: The Simplex Method
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Preliminaries, Vertex Theorem, Standard Problem
Basis/Vertex Exchange
Revision: The Appearing Systems of Linear Equations
The Simplex Method in Tableau Form
Anticycling: Strategy of Bland
The Determination of an Initial Vertex
Running Time Analysis

81
81
86
90
91
93
95
96

vi

7 The Ellipsoid Method
7.1
7.2
7.3
7.4

Introduction
The One-Parametric Family of Ellipsoids
The Khachiyan Algorithm with Integer Data
Proof of Theorems 7.3.1, 7.3.2

97
97
99

105
107

113
113
115
117
120

125
125
128
135
138

141
141
144

153
153
154
159

173

173
176

183

191

193
193
200
202
214
223
224

8 Karmarkar’s Method for Linear Programming
8.1
8.2
8.3
8.4

Introduction
Geometric Interpretation of Karmarkar’s Algorithm
Proof of Theorem 8.1.2 (Polynomiality)
Transformation of a Linear Optimization Problem into KSF

9 Order of Convergence, Steepest Descent
9.1
9.2
9.3
9.4

Introduction, Steepest Descent
Search for Zeros of Mappings, Newton’s Method
Additional Notes on Newton’s Method
Lagrange–Newton Method

10 Conjugate Direction, Variable Metric
10.1
10.2

Introduction
Conjugate Gradient-, DFP-, BFGS-Method

11 Penalty–, Barrier–, Multiplier–, IP-Methods
11.1
11.2
11.3

Active Set Strategy
Penalty–, Barrier–, Multiplier–Methods
Interior Point Methods

12 Search Methods without Derivatives
12.1

12.2

Rosenbrock’s Method and
Davies–Swann–Campey’s Method
The Simplex Method (Nelder–Mead)

13 One–Dimensional Minimization

II Discrete Optimization

14 Graphs and Networks
14.1
14.2
14.3
14.4
14.5
14.6

Basic Definitions
Matchings
The bipartite case
Nonbipartite matching
Directed Graphs
Exercises

15 Flows in Networks

16 Applications of the Max-Flow Min-Cut Theorem
16.1
16.2
16.3
16.4
16.5

The Gale-Ryser-Theorem
König’s Theorem
Dilworth’s Theorem
Menger’s Theorem
The Minimum Cost Flow Problem

17 Integer Linear Programming
17.1
17.2
17.3

Totally unimodular matrices
Unimodularity and integer linear programming
Integral polyhedra

18 Computability; the Turing machine
18.1
18.2
18.3

Finite Alphabets
The Turing machine
Decision problems; undecidability

19 Complexity theory
19.1
19.2
19.3
19.4

Running time; the class P
Some important decision problems
Nondeterministic Turing machines
The class NP

20 Reducibility and NP-completeness
20.1
20.2
20.3
20.4

Polynomial time reductions
NP-completeness
Cook’s theorem
A polynomial time algorithm for 2-SAT

21 Some NP-completeness results

22 The Random Access Machine

23 Complexity Theory over the Real Numbers
23.1
23.2
23.3
23.4
23.5

Motivation
The Blum-Shub-Smale machine; decidability
Complexity classes over the reals
Further directions
Exercises

vii

227

239
239
242
242
246
248

257
257
258
263

271
272
273
279

283
283
286
291
294

301
301
303
304
310

313

329

333
333
336
341
348
349

viii

24 Approximating NP-hard Problems
24.1
24.2
24.3

Combinatorial optimization problems; the class NPO
Performance ratio and relative error
Concepts of approximation

25 Approximation Algorithms for TSP
25.1
25.2

A negative result
The metric TSP; Christofides’ algorithm

26 Approximation algorithms for Bin Packing
26.1
26.2

Heuristics for Bin Packing
A non-approximability result

27 A FPTAS for Knapsack
27.1
27.2

A pseudo-polynomial algorithm for Knapsack
A fully polynomial time approximation scheme

28 Miscellaneous
28.1
28.2
28.3
28.4

The PCP theorem
Dynamic Programming
Branch and Bound
Probabilistic Analysis

Index

Index of Symbols

References

353
353
357
359

365
365
366

375
375
380

383
383
387

391
391
393
395
398

409

421

427

ix

Optimization theory is the mathematical study of problems which ask for
minimal or maximal values of an objective function on a given domain. This
includes the study on existence of solutions, structural properties as well as
algorithmic aspects. The importance of dealing with optimization theory is
permanently increasing. This is due to the large variety of fields where opti-
mization comes into play, including applied mathematics, computer science,
engineering, economics, just to mention only a few.

The structure of (deterministic) optimization problems as they appear in
different disciplines can be of quite a diverse nature, and so are the techniques
for studying them. One crucial criterion influencing the approaches used is
the topological structure of the domain over which the optimization prob-
lem is defined. If an extremal point is searched for in a finite or countable
infinite set, one ends up with a discrete optimization problem. Strategies
are then often of combinatorial nature, a reason why the term combinatorial
optimization has become popular for that kind of problems. For uncountable
domains like the real numbers the used techniques many times are based on
concepts from calculus and continuous mathematics, depending on specific
properties of the functions involved (e.g. differentiability).

Of course, the above sketched distinction only reflects very unprecisely
the huge variety of different optimization problems. Moreover, it is not a
strict one; problems might share several different aspects and so might do
the techniques to solve them as well.

Whereas in many textbooks dealing with optimization only the one or
the other of these streams is taken up, it is the main intention of our book
to present concepts and methods both in continuous and discrete optimiza-
tion jointly. We believe that the study of problems under different points of
view are of major importance for better understanding an entire field. This
view is especially true if, like in the area of optimization, there is a huge in-
teraction between such different approaches. We just mention the historical
development from the Simplex Method (both involving combinatorics and lin-
ear algebra) to Interior Point methods (basically a path-following approach),
which was influenced by the (discrete) complexity theoretic considerations as
to whether polynomial time algorithms exist for Linear Programming with
rational data.

This book presents an extensive introduction into the theory of optimiza-
tion under these different points of view. It is a result of about 12 years of

Preface

lectures in optimization theory given by the authors at Aachen University of
Technology, the University of Southern Denmark and the University of Bonn.
The first part treats optimization over the real numbers. After dealing with
unconstrained optimization (including the Morse Lemma) in Chapter 1, we
study the Lagrange theory for constrained problems in Chapter 2. Here, we
introduce the concept of a standard diffeomorphism in order to transform a
nonlinear problem to a problem with simple linear constraints. Chapter 3
gives an insight into parametric optimization and semi-infinite problems. We
then turn to the study of convex functions, duality, linear inequalities and
constraint qualifications. Chapters 6,7, and 8 give three of the main solu-
tion algorithms for Linear Programming: The Simplex Method , the ellipsoid
method and Karmarkar’s original Interior Point Algorithm. Non-linear opti-
mization problems build the scope of Chapters 9, 10 and 11. This includes
steepest descent, Newton’s method, the Lagrange-Newton and the conjugate
gradient method, the algorithms by Davidson-Fletcher-Powell and Broyden-
Fletcher-Goldfarb-Shannon as well as penalty, barrier and multiplier meth-
ods. Chapter 11 also contains a more general discussion of Interior Point
Methods. At the end of Part I derivative-free methods and one-dimensional
optimization are studied.

In Part II we turn to discrete optimization.

After introducing some basic graph theoretical notions, we study match-
ing problems, followed by the theory of flows in networks with its many
applications. A chapter on integer programming treats Linear Programming
problems with integrality constraints for the variables which can successfully
be solved by the usual Linear Programming algorithms. We discuss total
unimodularity and totally dual integral systems of linear inequalities.

Having spoken already a lot of times about algorithms we then begin
the study of what an algorithm precisely is. Towards this end we use the
Turing machine concept which is introduced in Chapter 18. The concept
is used to define a complexity measure for algorithms in Chapter 19. Two
of the most important complexity classes, P and NP, are defined together
with some decision problems being studied later on. Chapter introduces the
concept of NP-completeness together with Cook’s fundamental proof of the
completeness of the 3-Satisfiability problem. Next, we show several further
completeness results. Another way to formalize computability, the Random
Access Machine, is sketched in Chapter 22 The next chapter presents an
introduction into real number complexity theory. We outline the approach
by Blum, Shub, and Smale and give an idea about the different aspects

x

xi

coming up if a problem is studied under several complexity measures. The
final five chapters of the book deal with approximation algorithms for NP-
hard optimization problems. Having classified a problem to be NP-hard does
not remove the necessity to solve it. Different concepts of approximation
will be investigated. Optimization versions of many previously introduced
NP-complete problems are then studied with respect to the possibility of
approximating their solutions.

The book is intended as a textbook for students on an advanced under-
graduate and a graduate level who wish to learn the most important methods
in optimization theory. It is therefore equipped with a lot of examples and
exercises on different levels of difficulty. The material included built the
content of several courses the authors have given at different places. A two
semester course schedule seems reasonable for us in order to cover the most
important parts.

Last, but not least, we would like to thank the following people for help-
ing us in a substantial way during the preparation of this book: PD Dr.
Yubao Guo, PD Dr. Harald Günzel, Dr. Frank Jelen, PD Dr. Oliver Stein
and Frau Hannelore Volkmann.

This page intentionally left blank

Part I

Continuous Optimization

This page intentionally left blank

1 Optimality Criteria on Simple Regions

1.1 Basic Definitions, Examples, Existence of Global Minima

Definition 1.1.1 (Local minimum, maximum) Let be a
real valued function and A point is called a local minimum
(respectively, a strict local minimum) for if there exists an open subset

such that (respectively,) for all

If the set U above can be chosen to be then is called a global
minimum (respectively, strict global minimum) for

A point is called a (strict) local (respectively, global) maximum for
if is a (strict) local (respectively, global) minimum for

Remark 1.1.2 In literature the word optimum is used to indicate minimum
and maximum, respectively.

The nonnegative orthant of will be denoted by

Example 1.1.3 Let be defined by where
Consider the origin for for various values of (see Figure

1.1). If both and then is a strict local (and global)
minimum for If both and then is a local (and
global) minimum for However, if or then is not a
local minimum for

4

Example 1.1.4 In Figure 1.2 several level lines of two typical nonlinear real
valued functions on are sketched. It is transparent that — locally and
up to continuous coordinate transformations — the set of level lines can
be classified into four types. These types correspond to the “elementary”
functions (+ constant); see Figure 1.3 and
compare also Section 1.3.

Exercise 1.1.5 Sketch several level lines of a function having
several local minima and maxima; patch continuous deformations of elemen-
tary figures as depicted in Figure 1.3 together to this aim.

Exercise 1.1.6 Consider the sphere and the torus (see Figure 1.4).
Locally and up to a continuous deformation, both and look like
Sketch — as in Exercise 1.1.5 — several level lines of a function
where M equals or Put E(M) = # (local minima) – # (saddle
points) + # (local maxima), where # stands for cardinality. Verify in your

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

sketches that and The number E(M) is called the
Euler characteristic of M; it depends only on the structure of M (cf. also
[124], [126],[171]).

Exercise 1.1.7 Sketch — in an analogous way as in Exercise 1.1.5 — several
level sets of a function

Regarding the existence of global minima (maxima) the following well–
known theorem of Weierstraß is of fundamental importance. Recall that a
subset of is compact if and only if it is closed and bounded.

Theorem 1.1.8 (K. Weierstraß) Let be continuous and let
be nonempty and compact. Then, has a global minimum and

global maximum.

Proof. We only show the existence of a global minimum. Put

Choose a minimizing sequence for L, i.e. and
for Since M is bounded, the sequence contains a converging
subsequence its limit, say belongs to M since M is closed. Finally,
the continuity of implies that The latter implies
i.e. the point is a global minimum for

Remark 1.1.9 Note that the assertion of Theorem 1.1.8 remains valid if we
replace “ be continuous” by “ be continuous”.

51.1 Basic Definitions, Examples, Existence of Global Minima

6

Remark 1.1.10 The existence of a global minimum for is also guar-
anteed if we replace “ be continuous” in Theorem 1.1.8 by “all
lower level sets of be closed”. For the corresponding lower
level set is For the proof, choose the minimizing
sequence such that the values decrease monotonically. The
crucial point then is to conclude that the point belongs to all lower level
sets where A function for which all lower level
sets are closed, is called lower semi–continuous.

Exercise 1.1.11 Sketch the graph of a continuous function for
which the lower level set is nonempty and bounded, and for which the
lower level set is unbounded for some

Definition 1.1.12 A subset is called convex if for all and
the point belongs to K; see Figure 1.5.

The Euclidean norm in will be denoted by i.e.

Exercise 1.1.13 Let be nonempty and closed. Moreover, let
be fixed and put Show that has a global minimum. Show
that the global minimum is unique if, in addition, K is convex.

Exercise 1.1.14 The norms in are defined as follows:

Sketch the unit balls and in case
Replace in Exercise 1.1.13 the norm by and respectively.
Show that again has a global minimum; however, even if K is convex,
the global minimum need not be unique.

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

7

Exercise 1.1.15 Let be convex and nonempty. Put
Show that is convex. Show that

is closed if is closed and is compact. Is closed if
and both are closed ?

1.2 Optimality Criteria of First and Second Order

Let be (Fréchet–) differentiable at We denote by the row

vector of partial derivatives evaluated at With

we denote the space of continuously differentiable functions from
to In this notation, respectively, stands for the space
of continuous functions from to For open, the
space is defined in an analogous way. We will simply write
if U and V are known.

Theorem 1.2.1 Let be a local minimum for If is
differentiable at then

Proof. Suppose that Then, there is a vector with
(for example, Define

see also Figure 1.6. The chain rule yields The Taylor
expansion of around gives:

where is a function for which as Hence, there exists

a such that for Consequently, for we
have in particular, i.e.
But then cannot be a local minimum for

Remark 1.2.2 In the above proof we mainly showed that the inequality
is not solvable, i.e. for all

Definition 1.2.3 Let be differentiable at Then, the point
is called a critical (or stationary) point if

Exercise 1.2.4 Which points are critical points in Figure 1.2 ?

1.2 Optimality Criteria of First and Second Order

8

Theorem 1.2.5 Let be differentiable at the origin and let
be a local minimum for Then,

Proof. (Exercise).

Theorem 1.2.6 Let be differentiable at the origin and let
be a local minimum for where Then,

and

Proof. (Exercise).

Theorems 1.2.1, 1.2.5 and 1.2.6 are the simplest necessary optimality cri-
teria of first order (i.e. only derivatives of first order play a role). Next, we
consider a sufficient optimality criterion of first order. For we
define the balls

Theorem 1.2.7 Let and Then there
exist a neighborhood U of 0 and such that

In particular: is a strict local minimum for

Proof. All functions are continuous. Hence, there exist

such that for Put For

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

1.2 Optimality Criteria of First and Second Order 9

we have Moreover, we have

For we obtain The assertion of the
theorem now follows with

Remark 1.2.8 (Hessian) For define the Hessian to

be the matrix From Schwarz’s Theorem we know that

the order of partial differentiation is irrelevant, i.e. is a symmetric
matrix. Note that Recall that a symmetric

A is called positive definite (respectively, positive semi–definite) if for
all (respectively,).

Theorem 1.2.9 Let and let be a local minimum for
Then, and is positive semi–definite.

Proof. From Theorem 1.2.1 we know that Suppose that
is not positive semi–definite. Then, there exists a vector with

Put The Taylor expansion of around
yields:

The chain rule yields and hence,
In particular, and From

(1.2.2) we obtain

As in the last part of the proof of Theorem 1.2.1 we get the existence of
such that for all But then, cannot be a local

minimum for

10

Theorem 1.2.10 Let and let be a
local minimum for Then,

Proof. (Exercise).

In Theorem 1.2.7 we obtained a linear growth estimate. Now, we consider
a quadratic growth estimate.

Theorem 1.2.11 Let and suppose that the con-
ditions are fulfilled:

Then, there exist a neighborhood U of 0 and such that:

In particular, the origin is a strict local minimum for

The proof of Theorem 1.2.11 needs some preparation.

Lemma 1.2.12 Let be continuous and let be
nonempty and compact. The general point will be partitioned
into where Then, the functions and are
continuous, where

Proof. We only show the continuity of Let be an arbitrary sequence
in converging to We have to show that converges to
By Theorem 1.1.8 we can choose for each a point with

in fact, is continuous in and M is compact and nonempty.

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

1.2 Optimality Criteria of First and Second Order 11

Suppose that does not converge to Then, there exist and
a subsequence of such that

The corresponding subsequence has an accumulation point
since M is compact. Without loss of generality we may assume that
converges to Note that now converges to The continuity
of yields However (1.2.3) implies that
Consequently, there exist and with It
follows that for Since
we have for But then, cannot
converge to This contradiction proves the lemma.

Lemma 1.2.13 Let and let be a
continuous mapping from into the linear space of symmetric
matrices (i.e. each matrix element is a continuous function in
Moreover, let A (0, 0) be positive definite. Put Then,
there exist a neighborhood of (0, 0) and such that

Proof. Note that the point satisfies (1.2.4), independently from
Now suppose that It follows that

The mapping is continuous and the set
is compact. According to Lemma 1.2.12, also the mapping

is continuous. Since A(0, 0) is positive definite,

it follows that The continuity of yields the existence of a
neighborhood of (0, 0) such that for all
Inequality (1.2.4) then follows with

Lemma 1.2.14 Let be continuous and Then, for
every there exists a neighborhood of 0 such that for all

12

Proof. (Exercise).

Proof of Theorem 1.2.11 From (1.2.1) we have

Since it follows From (1.2.6) we have and
hence (recall condition). In an analogous way as in
(1.2.5) we obtain

where

where and Note that

Finally, the desired quadratic estimate immediately follows by applying
Lemma 1.2.13, 1.2.14 to (1.2.8), thereby using (1.2.9) and condition

Exercise 1.2.15 Let and suppose that is the only
critical point of Suppose, in addition, that is a local minimum of
Show, in case that is a global minimum of Show, in case
that needs not be to a global minimum.

A combination of (1.2.5) and (1.2.7) yields

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

1.2 Optimality Criteria of First and Second Order 13

Exercise 1.2.16 (a) Show: if is not a strict local minimum for
then there exists a sequence for all with

and

(b) Next, suppose and Now, prove
indirectly that is a strict local minimum Recall that

where is some point on the line segment
with and as endpoints. The reasoning goes as follows: if 0 is not a
strict local minimum for then there exists a sequence

for all with and
Hence, etc.

We conclude this section with a short explanation of another idea for
obtaining optimality conditions: the variational principle of I. Ekeland ([58],
[59]). We merely state the main result for real-valued functions on (see
also Figure 1.7); for a proof and further reading we refer to [60], [76].

Theorem 1.2.17 (Variational Principle of I. Ekeland) Let
be lower semi–continuous (cf. Remark 1.1.10) and bounded from below. Let

be given and be a point such that

Then, there exists a point with satisfying

In the proof of Theorem 1.2.17 only the completeness of the underlying
space and the lower semi-continuity of play a role. Consequently, the
Euclidean norm can be replaced by another one, say with
In that case (1.2.10) becomes:

When tuning one of the inequalities in (1.2.11) becomes better, but the
other one worse. For we obtain:

Now, suppose that and that is a global minimum
for We show that

14

In fact, choose a sequence of positive reals with In virtue
of Ekeland’s principle — using (1.2.12) — there exists, for each a point

with and

From (1.2.13) it follows that We finally show that
which implies To see the latter inequality, use Taylor expansion
around

Substituting (1.2.14) into (1.2.13) yields

Recall that (1.2.15) holds for all If we are done.
Otherwise, substitute for in (1.2.15) and take the
limit for

1.3 Diffeomorphisms, Normal Forms (Morse Lemma)

In this section we consider the transition to the “elementary” linear and
quadratic functions as introduced in Example 1.1.4 more precisely. These
functions are also called (local) normal forms.

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

1.3 Diffeomorphisms, Normal Forms (Morse Lemma) 15

Definition 1.3.1 Let be open sets and let be a
bijective mapping (denoting the inverse mapping). The mapping F
is called a if both and

In case that F and are continuous, the mapping F is called a
homeomorphism.

Diffeomorphisms and homeomorphisms can be interpreted as coordinate
transformations. In fact, let be a real valued mapping, and let

be bijective. Then, the composite function

can be interpreted as the function in new coordinates.

Exercise 1.3.2 Let be open and let be a
Show that

Exercise 1.3.3 Let U, V, F be as in Exercise 1.3.2. Show: is a critical
point for is a critical point for Is the
latter also true if F is a homeomorphism and

Exercise 1.3.4 Let be open and a homeomorphism.
Show: is a local minimum for is a local minimum
for

The next theorem provides the first normal form (linear function). See
Figure 1.8 for an illustration.

Theorem 1.3.5 Let and suppose that
Then there exist open neighborhoods U and V of and 0, respectively, as
well as a with such that

16

Proof. Without loss of generality we may assume Define
as follows:

Note that Hence, the Jacobian Matrix is
nonsingular. In virtue of the inverse function theorem the mapping F is
locally and the assertion of the theorem follows.

Exercise 1.3.6 Let and suppose that Show, by
using Theorem 1.3.5 and Exercise 1.3.4 that is not a local minimum of

The next theorem provides the second normal form (quadratic function).
It is well–known by the name “Morse Lemma” (M. Morse). There are several
proofs of it. One of them is a proof based on the diagonalisation of symmetric
matrices (cf. [124], [171]); it should be assumed that the underlying function

is of class We will give a sketch of another proof which is applicable
for the idea is basic in singularity theory and can be interpreted as
a deformation (or homotopy–) method (cf. [33], [124], [208]).

Theorem 1.3.7 (Morse Lemma) Let and
nonsingular. Suppose that exactly eigenvalues of are nega-

tive. Then, there exist open neighborhoods U and V of and 0, respectively,
as well as a with such that

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

1.3 Diffeomorphisms, Normal Forms (Morse Lemma) 17

Sketch of the proof. Without loss of generality we may assume that
0 and that Firstly, we treat the quadratic case, where
A is a nonsingular symmetric According to Exercise 2.3.3 we
can diagonalize A with an orthogonal matrix Q (composed of eigenvectors
of A): where are the
eigenvalues of A. Put Then, in the the function

becomes An additional stretching of the coordinate axes, by
putting yields (1.3.4) when renaming by Now we turn to
the general case. The Taylor expansion of around gives (recalling

and

The main idea is to transform into the quadratic function by means
of a homotopy H:

Note that and See Figure 1.9.

18

In an open neighborhood of the interval we define a
vector field of the form

If we can integrate it and the solutions depend on the initial
data ([39]). From (1.3.7) we see that the origin remains fixed; moreover,
the level is transformed into the level in integration time 1. The
general point in the level is shifted – in time 1 – to the point

This defines the (local) mapping F which is of class moreover
F is invertible, since we can integrate backwards in time. Now, the
vector field in (1.3.7) is chosen in such a way that the homotopy function
H (cf.(1.3.6)) remains constant on the integral curves of In that case we
have, in particular, and, hence, i.e.

and F is the local we are looking for.
A natural candidate for is (see below):

where stand for the corresponding partial derivatives. If
we have i.e. H is constant along the integral curves of In
fact,

The remaining problem is that Hence, in (1.3.8) a singularity
of type appears. From the fact that is nonsingular it can
be deduced that is of the same order as On the other hand,
we have So, in (1.3.8) we have a singularity of order

which is compensated by means of a term of order Altogether
it then follows that is of class This completes (the sketch of) the proof.

1 OPTIMALITY CRITERIA ON SIMPLE REGIONS

2 Constraints, Lagrange Function, Optimality
Criteria

2.1 Constraints, Standard–Diffeomorphism

Let be finite index sets and let
The constraint functions define the following

subset

In the above notation, and stand for and
respectively. The functions represent the equality constraints, whereas the
functions define the inequality constraints. In case that no confusion can
occur, we write M instead of See Figure 2.1 for some pictures.

In order to indicate which inequalities are vanishing (active, binding)
at we introduce the activity map

Theorem 2.1.1 Let be continuous. Then, is a
closed set. Moreover, for each there exists a neighborhood U of

such that for all

Proof. (Exercise).

In general the set might have a bizarre structure, even if the
functions are smooth. This follows from the following theorem of H.
Whitney (cf. [33]).

Theorem 2.1.2 Let be a closed set. Then, there exists
with

In order to obtain a reasonable structure for the set we have to
impose additional assumptions. The simplest one is the linear independence
of the derivatives of the active constraints.

Definition 2.1.3 Let The set
is said to fulfil the Linear Independence Constraint Qualification (shortly,
LICQ) at if the row vectors are
linearly independent. We say that LICQ is fulfilled on M if LICQ is fulfilled
at each point of M.

20

Remark 2.1.4 If LICQ is fulfilled at then we have
where stands for the cardinality.

Exercise 2.1.5 Consider Figure 2.1. At which points is LICQ violated ?

Exercise 2.1.6 Suppose that LICQ is fulfilled at Show that LICQ
is also fulfilled in where U is some neighborhood of

The next theorem shows that has a very simple structure (in new
differentiable coordinates) around a point at which LICQ holds.

Theorem 2.1.7 Let and suppose that
LICQ holds at Put Then, there exist open neigh-
borhoods U and V of and respectively, and a

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.1 Constraints, Standard–Diffeomorphism 21

such that

where denotes the origin in

Proof. Without loss of generality we may assume Choose
vectors which form — together with the vectors

— a basis for Next we put

or, shortly,

Note that and that the Jacobi–matrix
is nonsingular (in virtue of LICQ and the choice of). By the
theorem on implicit functions there exist open neighborhoods U of and V
of 0 such that is a By shrinking U we can
guarantee that for all In the the
set is described by means of the linear equalities
(reduction of dimension) and the linear inequalities
(appearance of corners).

Definition 2.1.8 We will refer to the diffeomorphism defined by (2.1.4),
(2.1.5) as standard–diffeomorphism.

Note that the nonlinear (in-)equalities are replaced by linear ones in
(2.1.4). In particular, the whole nonlinear structure of M is locally hidden
in the standard–diffeomorphism see Figure 2.2.

Definition 2.1.9 A subset is called a cone if implies that
for all

Definition 2.1.10 Let and let
Put

The sets and are called tangent space and tangent cone of M at
the point

22

The name tangent cone (space) refers to approximation via linearization;
it makes sense under additional assumptions, e.g. LICQ. See Figure 2.3.

Theorem 2.1.11 Let and let
If LICQ holds at then we have the following character-

ization of

(a)

(b)

A vector belongs to if and only if there exist an and a
with the properties:

A vector belongs to if and only if there exist an and a
with the properties:

Proof. For the proof of this direction LICQ needs not to be fulfilled.

(a)

(b)

From the chain rule yields hence, we
have For we similarly obtain
Consequently, we have

Again we have Let Then,
for all Consequently,

Hence,

We restrict ourselves to (b). Let be the standard–diffeomorphism.
With we obtain, using (2.1.4) and (2.1.5), that

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.2 Lagrange Function, Optimality Criteria 23

For the vector also belongs to

Next, define Then, we have and,
moreover: for small and

Exercise 2.1.12 Under the assumptions of Theorem 2.1.11 show, using the
standard-diffeomorphism

Exercise 2.1.13 Put In LICQ is violated.
Show that Assertion (a) of Theorem 2.1.11 is not valid at

2.2 Lagrange Function, Optimality Criteria

With the aid of the Standard–diffeomorphism defined by (2.1.4), (2.1.5)
we will transfer the simple local optimality criteria from Section 1.2 to the
more general case thereby assuming LICQ. For optimality criteria of
first order the next lemma is fundamental.

Lemma 2.2.1 Let and suppose that
LICQ is fulfilled at Moreover, let be the standard–diffeo-
morphism as in (2.1.4), (2.1.5). Then, there exist satisfying

24

Proof. The vectors
form a basis for This yields the representation (2.2.1).

We show the first relation of (2.2.2). The others are proved similarly. Put
Then, With

it follows that Consequently,
and is orthogonal to Multiplying (2.2.1) from the right with

then gives

Theorem 2.2.2 Let and let LICQ be
fulfilled at Suppose that is a local minimum for Then,
there exist with the properties:

The numbers in (2.2.3) are unique

Proof. Let be the standard–diffeomorphism from (2.1.4), (2.1.5). Note
that is a local minimum for
Finally, apply Theorem 1.2.6, using Lemma 2.2.1.

Definition 2.2.3 Let and let
The point is called critical point for if there exist real numbers

satisfying (2.2.3). The numbers are called Lagrange
multipliers and the function

is called Lagrange function. If the numbers can be chosen such that
(2.2.3) and (2.2.4) hold, then is called Karush–Kuhn–Tucker point, (KKT–
point).

(b)

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.2 Lagrange Function, Optimality Criteria 25

Exercise 2.2.4 If LICQ is violated at a local minimum, then this point is
not necessarily a KKT–point. In fact, consider with respect to the
data Sketch the
feasible set

Exercise 2.2.5 Let and suppose that
LICQ is fulfilled at Show:

(1)

(2)

is a critical point for

is a KKT–point for

Theorem 2.2.6 Let and let LICQ be
fulfilled at Moreover, suppose that the following holds:

(a)

(b)

(c)
Then the point is a strict local minimum for

Proof. (Exercise: use Theorem 1.2.7 and Lemma 2.2.1).

The next two lemmas enable us to transfer the simple local optimality
criteria of second order from Section 1.2 to the constrained case (under as-
sumption of LICQ).

Lemma 2.2.7 Let and U, V open neighborhoods of
Let be a with If then
we have:

Proof. Put The chain rule yields
and once again we obtain

Since and formula (2.2.6) reduces to (2.2.5) at

26

Exercise 2.2.8 Show that (2.2.5) remains valid if

Exercise 2.2.9 Let A be a nonsingular and
Show that (2.2.5) remains valid even if

Lemma 2.2.10 Let and let LICQ be
fulfilled at Moreover, let be a critical point for and let
L be the corresponding Lagrange function. Define where

is the standard–diffeomorphism from (2.1.4), (2.1.5). Then, we have:

where denotes the unit vector.

Proof. The proof follows from Lemma 2.2.7 and the subsequent observa-
tions:

(1)

(2) whenever

Hence,

Remark 2.2.11 Concerning (2.2.8) note that
form a basis for the tangent space

Definition 2.2.12 Let be a linear subspace and A a symmetric
A is called positive definite on T (positive semi–definite on T)

if for all

Theorem 2.2.13 Let and let LICQ be
fulfilled at Moreover, let be a local minimum for
Then, is a KKT–point and is positive semi definite on the tangent
space where L is the corresponding Lagrange function.

Proof. (Exercise: use Theorem 2.2.2, Lemma 2.2.10 and Theorem 1.2.10).

Theorem 2.2.14 Let and let LICQ be
fulfilled at Let be a critical point for with Lagrange
multipliers and corresponding Lagrange function L.
Moreover, suppose that

–

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.2 Lagrange Function, Optimality Criteria 27

(1)

(2) is positive definite on the tangent space

Then, the point is a strict local minimum for

Proof. (Exercise: use Theorem 1.2.11 and Lemma 2.2.10).

Exercise 2.2.15 Replace (1) and (2) in Theorem 2.2.14 by

(1*)

(2*) is positive definite on the linear subspace

where

Show that is a strict local minimum for

Exercise 2.2.16 Formulate all theorems on optimality criteria in this chap-
ter by replacing the word “minimum” by “maximum”.

For local optimality criteria of second order without any constraint qual-
ifications in which the sufficient conditions merely differ from the necessary
ones by strengthening to > we refer to [107].

Exercise 2.2.17 Let and Let LICQ be
fulfilled on Moreover, let and Define

Let be a critical point for and let T be the
straight line through and Put Show: is a critical
point for for all Is a local minimum for for all
Interpret the latter geometrically (focal point !).

Exercise 2.2.18 Let be a finite index set, and let
Put Show that — in general — is not differentiable.

Now, consider the following optimization problem in

What is the relation between the local minima of and those of (P) ? Define
LICQ for (P) and deduce local optimality criteria of first and second order
for (P) (and, hence, for). Interpret the results geometrically !

28

Exercise 2.2.19 Establish the inequality between the arithmetic and geo-
metric mean: i.e. for

Hint: Without loss of generality we may assume and

Next, consider the following optimization problem:

Maximize subject to

Exercise 2.2.20 Establish the Cauchy–Schwarz inequality:

Hint: Without loss of generality we may assume and
Now, consider the following optimization problem:

2.3 Symmetric Matrices

Symmetric matrices appear in a natural way in optimization problem, e.g.
as Hessian matrices. This section is dedicated to some relevant aspects of
symmetric matrices. The next theorem is important regarding to sensitivity
and perturbation analysis of constrained optimization problems. The crucial
point in such an analysis is the applicability of (some variant of) the implicit
function theorem.

Around a solution point a (smooth) system locally
defines as a function of (the so–called implicit function) if the ma-
trix of partial derivatives is nonsingular. Hence, in general, some
quadratic matrix of partial derivatives should be nonsingular. A typical such
matrix appearing in constrained optimization problems is the subsequent
matrix Q in (2.3.1). For further details we refer to Chapter 3.

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.3 Symmetric Matrices 29

Theorem 2.3.1 Under the assumptions of Theorem 2.2.14 the following ma-
trix Q is nonsingular:

where B is a matrix whose columns are the vectors

Proof. (Exercise: use Theorem 2.3.2 below).

Theorem 2.3.2 Let A be a symmetric let B be an
with and V an with

and Then, Q is nonsingular iff is nonsingular, where

Proof. We partition a vector in as with
Suppose that Q is singular. Then, the system

has a solution From (2.3.3) we see that some
Substitution in (2.3.2) yields

Multiplication of (2.3.4) from the left with gives If
we have and (2.3.4) gives hence But then,
would vanish ! Consequently and is singular.

Next, suppose that is singular. Then, we have with
some From we obtain some

The vector solves (2.3.2) and (2.3.3). Moreover,
since and since the column of V are linearly independent.

Hence, Q is singular.

Exercise 2.3.3 Let A be a symmetric Then, there exists
an orthogonal Q (i.e. with where

30

The numbers are the eigenvalues of A and the
column of Q is a normalized corresponding eigenvector. Show the latter

via optimization theory.
Hint: Put Note that the

is compact and LICQ is fulfilled on it. Maximize on Inter-
prete the optimal point and the corresponding Lagrange multiplier. Next,
take a suitable linear equality constraint function into account
and maximize on an etc.

Remark 2.3.4 Let A be a symmetric From Exercise 2.3.3
we see that there exists a basis of consisting of eigenvectors of A. All
eigenvalues are real. Moreover, and
whenever are eigenvectors belonging to eigenvalues with

Exercise 2.3.5 Let A be a symmetric Show: A is positive
(semi–) definite iff all eigenvalues of A are positive (nonnegative).

The space of matrices represents the space of linear mappings from
to Each vector norm in induces a norm on the linear space of

the latter norm indicates how much the unit ball in is
deformed. In particular, the so called spectral norm of A is induced by
the Euclidean vector norm:

Exercise 2.3.6 Let A be a symmetric Show that
where are the eigenvalues of A.

Exercise 2.3.7 Let A be a (not necessarily symmetric) Show
that where are the eigenvalues of

Exercise 2.3.8 Let A be a symmetric positive definite Give
a geometric interpretation of the set The condition
number of A (induced by the Euclidean norm) is the number

Give an expression of in terms of the eigenvalues of A. Show
that Give a geometric interpretation of and
large”.

Definition 2.3.9 Let A be a symmetric matrix. The index of A,
Ind (A) , is defined to be the number of negative eigenvalues (multiplicity
counted). The coindex of A, Coind(A), is the number of positive eigenvalues.

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.3 Symmetric Matrices 31

Theorem 2.3.10 Let A be a symmetric and let T be a linear
subspace of Then, if A is positive definite on T, we have

Proof. Let V denote the subspace of spanned by all eigenvectors of A
corresponding to nonpositive eigenvalues. Then, and

for all Suppose that Then, we
have Consequently,

contains at least a 1–dimensional subspace. Choose
We have and since and respectively.
Contradiction.

Theorem 2.3.11 Let A be a symmetric Then, A is positive
definite iff there exist linear subspaces of with

and where is a matrix whose
columns form a basis for

Proof. trivial.
The space is 1–dimensional, hence is a positive num-

ber. Consequently, A is positive definite on Theorem 2.3.10 implies
that The matrix is a (2, 2)–matrix. Note that

since A is positive definite on and The
determinant of a quadratic matrix equals the product of the eigenvalues. Let

be the eigenvalues of Then Since
at least one of the eigenvalues must be positive.

But then, the other one is positive as well, and we conclude that is
positive definite, or A is positive definite on and, hence,
The rest of the proof is left as an exercise.

Exercise 2.3.12 Let A be a symmetric Show: A is positive
definite iff

where stands for determinant.

Exercise 2.3.13 Let A be a symmetric and positive definite
Show that there exists a symmetric, positive definite matrix P with

32

Exercise 2.3.14 Let A be a symmetric Show:

Exercise 2.3.15 Let A be a symmetric and let B be a non-
singular Show:

Exercise 2.3.16 Let be a continuous mapping from in
the space of symmetric (i.e. each matrix element is
continuous). Let and be the smallest and largest eigenvalue
of Show: are continuous.

Theorem 2.3.17 Let A be a nonsingular symmetric Then,
we have:
A is positive definite iff there exists a linear subspace such that A
positive definite on T and positive definite on where

is the orthogonal space.

Proof. Let V, W be matrices whose columns form a basis for Define
the matrix Q := (AV|W). Then, it follows

The rest of the proof is left as an exercise.

Exercise 2.3.18 Let and let be nonsin-
gular. Let be a where U, V open and
Put and Show: exists and
is nonsingular, and Compare also Lemma
2.2.7, Exercise 2.2.8 and Theorem 1.3.7.

Exercise 2.3.19 Let A be a symmetric and positive definite
Consider the linear system Show that the solution of (*) is the
(global) minimum of the function

2 CONSTRAINTS, LAGRANGE FUNCTION, OPTIMALITY

2.3 Symmetric Matrices 33

Exercise 2.3.20 Let A be a nonsingular Consider the linear
system Construct a symmetric positive definite matrix C and
a vector such that the solution of (**) is precisely the (global) minimum
of the function

Exercise 2.3.21 (Overdetermined system) Consider the linear system
where A is an with and

Of course, in general, system (* * *) has no solution. The only possibility is to
“minimize” the difference Define and calculate the
minimum Instead of the Euclidean norm one could also choose another
norm, e.q. Does this make any difference ?

Exercise 2.3.22 Let A be a nonsingular Show the existence
of an orthogonal and a symmetric, positive definite

P such that A = Q . P.
Hint: Choose P such that (see Exercise 2.3.13). Then, show

that is orthogonal.

Exercise 2.3.23 Let A be a symmetric Show: A is positive
definite iff Can above be substituted by a different

norm, say

Exercise 2.3.24 Let and let A be a symmetric,
positive definite Define Show:

Give a geometric interpretation.

This page intentionally left blank

3 Parametric Aspects, Semi–Infinite
Optimization

3.1 Parametric Aspects: The Unconstrained Case

In this section we study the dependence of local minima and their corre-
sponding functional values on additional parameters. The appearance of
parameters may represent perturbations of an optimization problem. The
crucial tools in such investigations are theorems on implicit functions. For a
basic reference see [65].

We start with unconstrained optimization problems. Let
The general point will be represented as

where is the state variable and where plays the role of a parameter.
In this way we may regard as being an family of functions
of variables. Let be a local minimum for The necessary
optimality condition of first order reads

where denotes the row vector of first partial derivatives with respect to

Formula (3.1.1) represents equations with variables. In case that
the Jacobian matrix an has full rank
in virtue of the implicit function theorem we can choose variables such
that the equation defines these variables as an implicit function
of the remaining variables. With respect to the chosen variables the
corresponding of should be nonsingular. For
example, let be a local minimum for which is nondegenerate, i.e.

is nonsingular (and, hence, positive definite). Then, the implicit
function theorem yields the existence of open neighborhoods of
and a mapping such that for all we have:

Consequently, in a neighborhood of we can parametrize the set of critical
points of by means of the parameter (see Figure 3.1); if
then we have and, hence,

Exercise 3.1.1 Show — under the above assumptions — that the point
is a local minimum for for near use Theorem 1.2.11 and Exercise
2.3.16.

36 3 PARAMETRIC ASPECTS, SEMI–INFINITE OPTIMIZATION

The sensitivity of the critical point in dependence of the parameter
is represented by the Jacobian matrix

In order to obtain (3.1.3), differentiate the equation which
yields

Exercise 3.1.2 Define Discuss the sensitivity
of the minimum of in dependence of (for near 0).

Define the marginalfunction

Although for the implicit function is of class the
marginal function is of class i.e. is as smooth as In fact, for

we obtain

Note that the mapping is of class Consequently,
(3.1.5) shows that and, hence,

The shift of the local minimum at is an effect of second order. In
order to show this, we calculate the second derivative using (3.1.5).

where Substituting (3.1.3) into (3.1.6) at yields

3.1 Parametric Aspects: The Unconstrained Case 37

Definition 3.1.3 Let A,B,C,D,E be matrices, A,B,E quadratic, B non-
singular, and let

The Schur–complement S of the submatrix B in A is

Exercise 3.1.4 Let Show that is a local minimum
for if (1), (2) or (1*), (2*) hold:

(1)

(2) positive definite, and the Schur-complement of in
positive definite.

(1*)

(2*)

positive definite,

positive definite, as in (3.1.4).

Hint: Use the following relation:

where denote the matrices.

In the foregoing we discussed the dependence of nondegenerate local min-
imum on additional parameters. In the degenerate case the behaviour might
be very unstable and complicated. In order to get some control on the de-
generate case we have to impose additional assumptions. Let us consider the
one–parametric case, i.e. In the remaining part of this section we
suppose Let denote the unfolded set of
critical points,

The first assumption we make is (A1):

(A1) The Jacobi–matrix has rank at each point

38 3 PARAMETRIC ASPECTS, SEMI–INFINITE OPTIMIZATION

In terms of Chapter 2 we have where and
Since we have Assumption (A1) implies that

LICQ is fulfilled on and that at at most one eigenvalue of
vanishes.

Regard the one-dimensional parameter as a function of
and consider the restriction of to the critical set Then, we have (under
(A1)): is a critical point for iff is singular.

Next, suppose that is a critical point for and let
be an eigenvector corresponding to the vanishing eigenvalue of

Suppose that the next assumption (A2) holds:

Then, it follows (exercise):

(a) The point is a local minimum or maximum for (Theorem 2.2.14
is applicable).

(b) Put Then, and for

From (a) we see that the (1–dimensional) set exhibits a turning point
at the point with respect to the parameter Locally around the
set can be approximated by means of a parabola; therefore, is called
a quadratic turning point. See Figure 3.2.

From (b) we see that the determinant of changes sign when passing
a quadratic turning point. In particular, exactly one eigenvalue of shifts
through zero. This may result in a “catastrophical” behaviour of a system.
In fact, let us start with a system in a stable position (nondegenerate local

3.1 Parametric Aspects: The Unconstrained Case 39

minimum). Now, we change a specific 1–dimensional parameter (say time
in positive direction. When meeting a turning point along at some

particular parameter value the system would become instable and seek
for a new stable position; the latter results in a “jump”, see Figure 3.3. A
standard type of a quadratic turning point (normal form) is given by the
parametric family

Exercise 3.1.5 Let Define the mapping

Show that assumptions (A1), (A2) are fulfilled iff for all with
we have is nonsingular.

Exercise 3.1.6 Let Then, we obtain a
feasible set depending on a parameter

At some values of the LICQ might break down at some points of In
order to study the behaviour of around such points, one may proceed
in an analoguous way as in the study of the set above. For simplicity,
assume that So, Consider
the unfolded set and suppose that LICQ
holds on Then show that LICQ is violated at iff is a
critical point for In analogy to Exercise 3.1.5 define the mapping

40 3 PARAMETRIC ASPECTS, SEMI–INFINITE OPTIMIZATION

Note that LICQ is violated at iff Now, suppose that
is nonsingular whenever Discuss the local behaviour of

around at which LICQ is violated for near For further
details, see [121].

3.2 Parametric aspects: The Constrained Case

In this section we take constraints into account and again we define the
concept of a nondegenerate local minimum. This yields a (stable) system
of nonlinear equations which enables us to study the sensitivity of a local
minimum with regard to data pertubations.

Let and and
For each we have as an objective function and as a feasible
set, where

Definition 3.2.1 Let be as above. A (feasible) point is
called nondegenerate local minimum for if the following conditions
are satisfied:

(1) LICQ holds at

(2) The point is a critical point for

Let be the corresponding
Lagrange multipliers and L the Lagrange function, i.e.

(3)

(4) is positive definite on where (cf. (2.1.6))

3.2 Parametric aspects: The Constrained Case 41

Condition (3) above is also called the strict complementary condition. The
latter comes from the fact that (3.2.2) can be written as follows:

From (3.2.6) it follows for Formula (3.2.6) represents
the so called complementarity condition, i.e. vanishes or vanishes.
Strict complementarity then reads: either vanishes or vanishes,

Exercise 3.2.2 Compare the conditions (1)–(4) in Definition 3.2.1 with The-
orem 2.2.14. In particular, a nondegenerate local minimum is also a strict
local minimum for

Let be a nondegenerate local minimum for Consider
the following mapping

where is an and is a
vector.

Consequently, is a from to where
As an abbreviation we put

and we have the critical point relation

The Lagrange parameters are also called the dual variables, whereas
are the primal variables. For the partial derivatives we obtain (cf.
(2.3.1)):

42 3 PARAMETRIC ASPECTS, SEMI–INFINITE OPTIMIZATION

where the columns of B are the vectors
in some fixed order. From Theorem 2.3.1 it follows that the

matrix is nonsingular. Now we can apply the implicit function
theorem. Consequently, in a neighborhood of we can solve the
system (critical point system)

for This yields the function

which satisfies the equation

Note that the functions remain positive for in some neighborhood
of Moreover, it follows that and

By shrinking if necessary, we also have
for In particular, it follows that for

Altogether we obtain the following theorem.

Theorem 3.2.3 Let and
Let be a nondegenerate local minimum for

Let be the corresponding Lagrange
multipliers and the Lagrange function. Then there exist open neigh-
borhoods of and mappings on of class with
the following properties:

(1) and

(2) for all

(3) For we have and LICQ is satisfied for all

(4) For the point is the unique critical point for in the
set Moreover, and are the corresponding Lagrange
multiplier vectors.

(5) For the point is a nondegenerate local minimum for

3.2 Parametric aspects: The Constrained Case 43

(6) The marginal function

is a and it holds

where B is defined as in (3.2.10), and where A is the matrix
the order of correspond-

ing to the order in B.

Proof. We only show that is of class The rest of the proof remains
as an exercise. Since we have

It follows:

Consequently, we have

Since and it follows that
and, hence,

44 3 PARAMETRIC ASPECTS, SEMI–INFINITE OPTIMIZATION

Remark 3.2.4 (Lagrange multipliers as shadow prices) Now we’ll
give an interesting (economical) interpretation of the Lagrange multipliers.
To this aim we consider a special family of optimization problems:

In (3.2.19) the vectors play the role of
additional parameters. For we obtain our standard problem.
So, we consider righthandside perturbations. Now, let be a
nondegenerate local minimum for i.e. and According
to Theorem 3.2.3, for sufficiently small, we obtain a local minimum

for (3.2.19). Let be the Lagrange multipliers
corresponding to the local minimum for From (3.2.15) we then
obtain (exercise):

From (3.2.20) we see that a righthandside perturbation has a large influence
on the marginal value if the corresponding Lagrange multiplier is large. If we
interpret the righthandside perturbation as a change in investment for some
enterprise and the marginal value as the outcome (measured in money) of
the enterprise, then a large positive Lagrange multiplier gives rise to make
an additional investment. This is the reason for calling Lagrange multipliers
shadow–prices.

One–parametric families of constrained optimization problems are stud-
ied quite intensively. For further reading we refer to [82], [89], [122], [123],
[124], [125], [127]. For two different approaches (via piecewise differentiable
mappings, and via bifurcation theory) see [143], [186]. For general references
on perturbation theory see [14], [151]. For recent developments in parametric
optimization we refer to [91], [92], [93].

3.3 Semi–Infinite Optimization, Chebyshev Approximation,
Semi–Definite Optimization

Up to now we considered optimization problems with a finite number of (in)–
equality constraints. In case that the cardinality of the inequality constraints

3.3 Semi–Infinite Optimization, Chebyshev Approximation 45

is not finite anymore, we are dealing with a semi–infinite optimization prob-
lem (SIP). In this section we study the following typical example:

The set Y is a compact subset of defined as follows:

Moreover, we assume and

Exercise 3.3.1 (Chebyshev approximation) Let
and let Y be as above. The problem of Chebyshev approx-

imation is to approximate — uniformly on Y — by means of the family
So, we have to minimize where

The latter is — in general — not a differentiable problem. Recall Exercise
2.2.18 and formulate the minimization of into a differentiable semi–infinite
optimization problem.

With regard to (SIP) we define the “activity set”

Note that — in general — for near Compare Theorem
2.1.1.

Exercise 3.3.2 (Semi-Definite Optimization)semi-definite optimization
problem (SDP) For let be symmetric
matrices. The set

is called a . The problem of semi-definite programming is to minimize a linear
functional over S, i.e., with we have

46 3 PARAMETRIC ASPECTS, SEMI–INFINITE OPTIMIZATION

Linear optimization problems as well as a large class of non-linear problems,
like multi-quadratic optimization, eigenvalue problems, etc., can be refor-
mulated in the form (SDP). For an introduction, cf. [219]. In Section 11.3
it is shown that interior point methods can be used to solve semi-definite
optimization problems.

Show that S is a closed and convex set. Show that (SDP) can not only
be reformulated as a non-differentiable finite optimization problem, but also
as a differentiable semi-infinite optimization problem.

Exercise 3.3.3 Describe the by means of
infinitely many tangential halfspaces; see Figure 3.4.

Example 3.3.4 The disc in Exercise 3.3.3 can, of course, be described sim-
ply by means of one inequality The next situation is essentially
different. Define

The corresponding set is sketched in Figure 3.5.a. The set is convex
(exercise) and, in a neighborhood of it is the upper part of the so
called “swallowtail” S, well–known from singularity– and catastrophe theory
(Figure 3.5.b),

For further details see [129].

Essential in the study of (SIP) is the following simple observation for

3.3 Semi–Infinite Optimization, Chebyshev Approximation 47

With (3.3.7) in mind we may apply methods from sensitivity analysis, as
formulated in the next two exercises.

Exercise 3.3.5 Let Show: if for all then there
exists a neighborhood O of that is entirely contained in

Exercise 3.3.6 (Reduction Ansatz) Let and suppose that
Moreover, suppose that each is a nondegenerate

(local) minimum for Show: there exist an open neighborhood
of and a finite number of functions with the
property:

Compute and derive local optimality criteria of first and
second order for (SIP). Finally, derive such local optimality criteria for the
Chebyshev approximation problem in Exercise 3.3.1. See also [108], [226];
for a different approach see [138].

For futher reading in semi–infinite optimization and Chebyshev approxi-
mation see [34], [41], [80], [110], [147].

This page intentionally left blank

4 Convex Functions, Duality, Separation Theorem

4.1 Convex Sets, Convex Functions

We recall (see Definition 1.1.12) that a subset is called convex if for
all and the point belongs to K.

Definition 4.1.1 Let be convex and The function is
called convex if for all and the following inequality holds

If (4.1.1) is satisfied with a strict inequality (<) for all and
we say that is strictly convex. The function is called (strictly)

concave if the function is (strictly) convex.

A geometric interpretation is given in Figure 4.1. For a general reference
on convexity we refer to [192], [205].

Exercise 4.1.2 Show: is convex if and only if for every finite subset

the point belongs to K, where and

(We say that with as above, is a convex combination

of

Exercise 4.1.3 (Jensen inequality) Let be convex and

Show that is convex if and only if for every

finite subset where and

50 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

Theorem 4.1.4 Let be convex and let be convex. Then,
a local minimum for is also a global minimum.

Proof. (Exercise: let be a local minimum for and let be a
point with Deduce a contradiction, using Figure 4.2).

Exercise 4.1.5 Let be convex and Show: if is
convex, then for every the lower level set is
convex. Is the converse also true ?

Theorem 4.1.6 Let be convex and let be convex. Then
the set of global minima for is convex.

Proof. (Exercise).

Theorem 4.1.7 Let Then the
following two assertions are equivalent:

(1) is convex.

(2)

Proof. (1) implies (2): We have

For it follows Now, take the
limit as

4.1 Convex Sets, Convex Functions 51

(2) implies (1): With we obtain from (4.1.2):

See Figure 4.3 for a geometric interpretation of (4.1.2).

Theorem 4.1.8 Let be convex. Then, the following three
assertions are equivalent:

(1) is a global minimum.

(2) is a local minimum.

(3) is a critical point (i.e.

Proof. We only show that (3) implies (1). In fact, (4.1.2) implies

for all If it follows that for all

Theorem 4.1.9 Let Then the
following two assertions are equivalent:

(1) is convex.

(2) is positive semi–definite for all

52 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

Proof. (1) implies (2): Choose and define as follows:

(Interprete geometrically; exercise). Now, is convex and
is convex. Consequently, is convex. Moreover, and Theorem

4.1.8 implies that is positive semi–definite. However,
and we are done.

(2) implies (1): We have
where is some point on the line segment between and Since

is positive semi–definite it follows that Theorem
4.1.7 now shows that is convex.

Theorem 4.1.10 Let and suppose that is positive
definite for all Then, is strictly convex.

Proof. (Exercise).

Exercise 4.1.11 Show that, in general, the converse of Theorem 4.1.10 is
false; consider

Exercise 4.1.12 Show that in Theorem 4.1.7, Theorem 4.1.8, Theorem 4.1.9
the space may be replaced by any open convex subset of

Exercise 4.1.13 Show that the following functions are convex:

Show the validity of the inequality and deduce once

more the inequality between the arithmetic and geometric mean (cf. Exercise
2.2.19).

Another characterization of convex functions can be given in terms of the
epigraph.

Definition 4.1.14 The epigraph of a function is the set

Theorem 4.1.15 Let be convex and Then is convex
iff is convex.

4.1 Convex Sets, Convex Functions 53

Proof. (Exercise).

Definition 4.1.16 Let The convex-hull of A is defined to
be the set consisting of all convex combinations from elements of A (i.e.
finite sums with and Let

and suppose that are linearly independent; then,
is called a

Exercise 4.1.17 Show that an in has a nonempty interior.

Exercise 4.1.18 Let Show that is convex. Moreover, show
that A is convex iff

Theorem 4.1.19 (Continuity Theorem) Let be an open, convex
set and let be convex. Then, is continuous.

Proof. Choose and an containing
in its interior. Put Then, for all

Now, choose such that the ball is contained in S. With
to be determined later on, we have

where (cf. Figure 4.5):

In particular, it follows

Moreover, and

54 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

From (4.1.4), (4.1.5) and the convexity of it follows that

and, hence,

Finally, given we choose such that and From
(4.1.6) we obtain and the theorem is proved.

Definition 4.1.20 Let be a nonempty convex set; furthermore, let
be a in K with maximal. Then, the dimension

of K is defined to be the latter number The barycenter of a

is the point Let K be of dimension A point

is called a relative interior point of K if is the barycenter of some
simplex in K. The set of relative interior points is called the relative interior
of K.

As a generalization of Theorem 4.1.19 we have the following result and
the proof is left as an exercise.

Theorem 4.1.21 Let be convex and let be convex.
Then, is continuous on the relative interior of K.

Exercise 4.1.22 Let for and
Show that is convex. Is continuous? Compare with

Theorem 4.1.21.

Exercise 4.1.23 Let be convex and let be continuous.
Show that is convex if for all there exist with

4.2 Primal Problem, (Wolfe–) Dual Problem 55

Hint: Indirect proof: suppose that for some it holds:

Now choose a maximal interval around such that the above
inequality is satisfied with fixed (use the continuity of Put

and consider the behaviour
of on the segment between and

Exercise 4.1.24 Let be convex and let be continuous.
Show that is convex if for all the midpoint inequality

holds.
Hint: First show that the following inequality holds:

Then, approximate by rational combinations

and use (4.1.7) together with the continuity of In order to show (4.1.7)
start with and show (backwards induction) that the validity of (4.1.7)
for implies the validity of (4.1.7) for

4.2 Primal Problem, (Wolfe–) Dual Problem

Definition 4.2.1 A function is called affine linear if has the
following form: where

As a partial generalization of Theorem 4.1.8 we mention the following
theorem.

Theorem 4.2.2 Let Moreover, let
be convex and let be affine linear. Then it holds: if is a
KKT–point, then is a global minimum for

Proof. Let be a KKT–point. Then, there exist real numbers
with the property:

56 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

Now, let be arbirarily chosen. Theorem 4.1.7 yields

Substituting (4.2.1) into (4.2.2) gives

(*): hence and
Consequently (*) follows, since

(**): From Theorem 4.1.7 we get

hence,
Using (*), (**) and the nonnegativity of we obtain from

(4.2.3) that

With as in Theorem 4.2.2, the minimization problem of on
is called the primal problem. Corresponding to the primal problem

(minimization) we may define a dual problem (maximization). Before stating
the dual problem we give a motivation in the next intermezzo.

Intermezzo 4.2.3 For simplicity we omit the inequality constraints (i.e.
and we assume and affine linear, Moreover,

let be positive definite for all (in particular, is strictly
convex) and suppose that LICQ holds on and put

Let be a local (hence, global) minimum for
Note that is a nondegenerate local minimum. If we vary the righthandside
of by putting with we obtain a parametrization of an

of by means of the sets (see Figure 4.6 for
the general non-linear case).

In virtue of the implicit function theorem, for near 0, we obtain a
(unique) minimum near with Lagrange multiplier vector on the

In particular, satisfy the critical point equa-
tions:

4.2 Primal Problem, (Wolfe–) Dual Problem 57

Next, consider the Lagrange function with as additional variable,

and define as the corresponding marginal function,

We pretend:

From (4.2.8) we see that has a local maximum at Ignoring
(4.2.5) (i.e. the specific value of and noting that (4.2.4) is nothing else
than we see that the function takes a local maximum
subject to at the point The maximiza-
tion of subject to is called the (Wolfe–) dual problem.

In order to conclude this intermezzo we check (4.2.8). From (4.2.6), (4.2.7)
we obtain, together with (4.2.4), (4.2.5):

From (4.2.9) we see and, moreover,

Finally we can compute from (4.2.4), (4.2.5), using the fact that
It follows, omitting as argument:

58 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

where is the matrix.
Recall that is positive definite. Hence, the first line from (4.2.11)

gives and, inserting the latter into the second
line yields:

From (4.2.12) we see that is (symmetric) positive definite, and, hence,
is negative definite.

Now, let be as in the assumption of Theorem 4.2.2. Put

The (Wolfe–) dual problem is defined to be the following maximization prob-
lem:

Theorem 4.2.4 Let be as in the assumptions of Theorem 4.2.2.
Let be a KKT–point for with Lagrange multipliers

Put Then, the point is a solution of the
dual problem and

Proof. Obviously, we have Note that — for fixed and
— the function is a convex function of Let satisfy

and (cf. (4.2.14)). Then, we have, using Theorem
4.1.7:

Exercise 4.2.5 Consider the primal (linear programming) problem:

where A an Show that the corresponding
dual problem becomes:

(The inequality is understood componentwise).

4.3 Separation Theorem, Subdifferential 59

Theorem 4.2.6 Let be as in the assumptions of Theorem 4.2.2 and
suppose that Then,

Proof. (Exercise).

Exercise 4.2.7 The dual problem might be solvable if the primal problem
has no feasible points (i.e. In fact, consider the primal problem:

Construct and solve the corresponding dual problem.

4.3 Separation Theorem, Subdifferential

Definition 4.3.1 A hyperplane in is a set having the form

A hyperplane in is a shifted linear subspace of dimension It
divides into two parts: Under
certain assumptions it is possible to separate two nonempty convex subsets
of by means of a hyperplane (cf. Figure 4.7). The next theorem is of this
type.

Theorem 4.3.2 (Separation Theorem) Let be nonempty
convex subsets. Moreover, suppose that and that is open.
Then there exist and with the property:

where and

60 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

Proof. Step 1. Let be a convex set. then
In fact, choose and an having as its
barycenter. Then, there exist neighborhoods of such
that for each choice of the set is an

having as an interior point. Now, if we can choose
But then, belongs to K.

Step 2. Let be a nonempty, open, convex set with
Then there is a with for all In fact, put

Then, K is an open, convex cone with (since
Consequently in view of Step 1. With K convex we have

convex as well. Choose From Exercise 1.1.13 we know that there
exists a unique with for all Put
Then, we have for all and for all (recall
that K is open). Hence, for all since It remains
to show (*): for all we have

From (4.3.2) it follows

For fixed and Formula (4.3.3) yields
Consequently, But then, we have since

for all whenever

Step 3. Now, let be as in the assumption of the theorem. Put
Then, is open and convex.

Since it follows that Step 2 guarantees the existence of
a with for all or, in terms of

Finally, put Since is open, there is no with

A convex function is not necessarily differentiable everywhere, as the ex-
ample shows. On the other hand, a convex function is always
subdifferentiable (as a consequence of the separation theorem).

4.3 Separation Theorem, Subdifferential 61

Definition 4.3.3 Let A vector is called subgradient of
in if the following inequality holds:

The subdifferential is defined to be the set of all subgradients of at
The function is said to be subdifferentiable at if

Exercise 4.3.4 Let be a convex function. Show that

Exercise 4.3.6 Give an example of a function which is not
subdifferentiable in

Theorem 4.3.7 Let be subdifferentiable in Then,
is a compact, convex set.

Proof. Convexity of Exercise.
We show that is closed. In fact, let be a sequence

with limit We have to show that For fixed we have
and, taking the limit for yields

It follows
Next, we show that is bounded: suppose that there exists a sequence

with Without loss of generality we may assume that

for all and that converges to Consequently,

We have Put It follows:

From (4.3.5) we conclude: for all M > 0 there exists a with
for all The latter cannot be, since So, we showed that

is closed and bounded, hence, compact.

Theorem 4.3.8 Let be convex. Then is subdifferentiable in
every point.

Exercise 4.3.5 Put Show:

62 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

Proof. Look at Figure 4.8 for the geometric idea.
Consider the epigraph and define

Note that the function
is convex and, hence, continuous (cf. Theorem 4.1.19). Therefore,

the set is an open set; moreover it is nonempty and convex. Choose
and define The sets satisfy the

assumptions of Theorem 4.3.2. Consequently there exist a vector
with

From (4.3.6) it follows that

If then for all and, hence, This, however,
contradicts (4.3.6), and we have If the lefthandside
in (4.3.6) could be made arbitrarily negative. Again, a contradiction, and
it follows that Now, dividing the inequality (4.3.7) by and
putting yields for all in other

words and, hence,

Exercise 4.3.9 Let be convex. Show: is a global
minimum for iff

Exercise 4.3.10 Let be convex for all
Put

(a) Show:

4.3 Separation Theorem, Subdifferential 63

(b) Show that is convex.

(c) Put Show:

(d) Show: if with then is a

global minimum for

Definition 4.3.11 Suppose that M is convex and is called a
vertex or extremal point of M if the following condition holds:

Exercise 4.3.12 Show that is an extremal point if and only if one
of the following conditions holds:

(i)

(ii) is convex.

Definition 4.3.13 Suppose that The hyperplane
is called a supporting hyperplane of M if

and there exists some in the topological closure of M such that

Theorem 4.3.14 If M is convex and a boundary point of M, then there
exists a supporting hyperplane of M containing

Proof. If M has interior points, apply the separating theorem with
of M.

Otherwise, M and are contained in a hyperplane which is, by definition,
supporting.

Concerning the existence of vertices, we have the next lemma.

64 4 CONVEX FUNCTIONS, DUALITY, SEPARATION THEOREM

Lemma 4.3.15 Let M be nonempty, convex and compact. Then M has a
vertex.

Proof. By the Theorem of Weierstraß, there exists with

Suppose there were with From we
infer that

hence Similarly, From
we obtain

Addition of the inequalities yields and thus
It follows that is a vertex of M.

We can sharpen this result as follows:

Theorem 4.3.16 Let M be nonempty, convex and compact. Then each
supporting hyperplane of M contains a vertex of M.

Proof. Let H denote a supporting hyperplane and A is convex,
compact and nonempty and thus contains a vertex of A. We show that
is also a vertex of M.

Suppose and with Then
and implies that

Thus and we have as desired.

The following important result was first proved by Minkowski. Infinite–
dimensional analogues were proved by Krein and Milman.

Theorem 4.3.17 Suppose is compact and convex. Then M is the
convex hull of its vertices.

Proof. We use induction on and assume M to be nonempty. For
M is a compact interval which is the convex hull of its endpoints.

Now assume We are going to apply the induction hypothesis to
compact and convex subsets of hyperplanes. This is possible since each such
hyperplane can be mapped bijectively onto by some affine–linear map.
The reader should check the details.

4.3 Separation Theorem, Subdifferential 65

Suppose first that is a boundary point of M. Choose a supporting
hyperplane H of M containing As in the proof of Theorem 4.3.16, each
vertex of is a vertex of M. By the induction hypothesis, is in
the convex hull of the vertices of A and the result follows.

Now suppose that is an interior point of M and consider a vertex
which is clearly a boundary point of M. Since M is bounded, there is some

such that is a boundary point of M. By what we
proved, is in the convex hull of the vertices of M. Since is also a vertex,
our result follows.

Exercise 4.3.18 Show that the proof of Theorem 4.3.17 actually yields the
following stronger result: If M is a convex and compact subset of then
each is in the convex hull of at most of its vertices.

Exercise 4.3.19 Each family o f points in can
be decomposed into two subfamilies

such that the convex hulls
have nonempty intersection.

Hint: Since is affinely dependent, there exist coefficients

not all zero, such that and Let

and

Exercise 4.3.20 Suppose is a family of convex subsets of
where I is finite. If the intersection is nonempty for each

then is nonempty.
Hint: Proceed by induction on observing that the result is trivial if

For choose points for all by induction.

Decompose the family as in the previous exercise and show
that the nonempty intersection of is contained in

This page intentionally left blank

5 Linear Inequalities, Constraint Qualifications

5.1 Linear Inequalities, Farkas’ Lemma

In this section we study the solvability of systems of linear (in–)equalities.
This will give another approach to optimality criteria of first order.

Theorem 5.1.1 Consider the following system of linear (in-)equalities in-
volving vectors

Then, exactly one of the possibilities (I), (II) holds:

The system (5.1.1) is solvable.

There exist not all vanishing, such that

(I)

(II)

In case that (II) holds, equation (5.1.2) can be realized with at most
nonvanishing

The proof of Theorem 5.1.1 needs some preparation.

Definition 5.1.2 Let The cone gener-
ated by is defined as follows:

Theorem 5.1.3 (Caratheodory) Let and define the set
Then, for each there exist a subset

and real numbers such that are linearly independent
and

In particular, each can be represented as a nonnegative linear combi-
nation of at most elements from the set

68 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

Proof. For we have

Without loss of generality we may assume and
If are linearly dependent, there exist

not all vanishing such that Hence, for all we

Adding (5.1.5) to (5.1.4) it follows that

By means of a suitable choice of we can annihilate some coefficient(s) in
(5.1.6) under the additional condition that all coefficients remain
nonnegative. This reduction can be repeated until linear independence is
met.

Exercise 5.1.4 Let Show: each can
be represented as a convex combination of at most elements from

Hint: Note that with Now,

apply Theorem 5.1.3.

Hint: Let be a sequence converging to Now, use
minimal representations of the elements

In particular, let and Sketch A
and K(A). Is K(A) closed ?

Theorem 5.1.7 (Farkas’ Lemma) Let and Then,
exactly one of the possibilities (I), (II) holds:

The system is solvable.(I)

(II)

obtain

Exercise 5.1.5 Show: is a closed set.

Exercise 5.1.6 For let K(A) denote the set of all finite nonnegative
linear combinations of elements from A.

5.1 Linear Inequalities, Farkas’ Lemma 69

Proof. The validity of (II) implies the violation of (I). In fact, put

with If then we have

and, hence,

The violation of (II) implies the validity of (I). In fact, suppose
The set is closed (cf. Exercise 5.1.5).

Consequently, there exists an such that the open ball has an

empty intersection with K. Put and apply Theorem
4.3.2. Consequently, there exist with

If then also for all From (5.1.7) we then conclude
that Since it follows that Altogether, we obtain

for all and But, and the validity
of (I) follows.

The “Farkas’ Lemma” has a simple geometric interpretation. With the
notation we have: either or If
then has a positive distance to K (since K is closed !). Let be
the unique point from K which minimizes the Euclidean distance to (see
Exercise 1.1.13). The vector then solves the system

See Figure 5.1.

70 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

Proof of Theorem 5.1.1 Consider the following system:

The system (5.1.8) is solvable iff system (5.1.1) is solvable. In fact, if
is a solution of (5.1.8), then solves (5.1.1). On the other hand, if

solves (5.1.1), then the vector with solves

(5.1.8). Now we can apply Theorem 5.1.7 in with
Consequently, system (5.1.8) has no solution iff there exist
and such that

From (5.1.9), relation (5.1.2) follows. From the last row in (5.1.9) we
see that i.e. not all the vanish. Finally, the last assertion
in Theorem 5.1.1 is a consequence of the Caratheodory Theorem (Theorem
5.1.3) in

all

is solvable.

is solvable.

(I)

(II)

is solvable.(I)

Remark 5.1.8 For we write if for

Exercise 5.1.9 Let A be an and Show
that either (I) or (II) is valid:

Exercise 5.1.10 Let A be an and Show
that either (I) or (II) is valid:

5.2 Constraint Qualifications, Optimality Criteria 71

(II) is solvable.

Exercise 5.1.11 Let A be an and Show
that either (I) or (II) is valid:

is solvable.

is solvable.

(I)

(II)

A pair of vectors and is called admissible for
if and

Show that the set of admissible pairs for is a closed, convex
set in

Suppose that is admissible for Show: the set of admis-
sible pairs is compact iff both and the system

is solvable.

5.2 Constraint Qualifications, Optimality Criteria

Systems of linear inequalities can be used in order to derive optimality criteria
of first order. The first result is the following theorem of F. John. Let I, J
again denote finite index sets.

Theorem 5.2.1 (F. John) Let More-
over, let be a local minimum for Then there exist
real numbers and not all vanishing, such
that

In case that are linearly independent, then at least one of the
numbers is unequal to zero. Finally, (5.2.1) can be realized
with at most numbers nonvanishing.

Proof. In case that are linearly dependent, (5.2.1) can be
realized with Now, let be linearly
independent. Then, the following system is not solvable (at):

(a)

(b)

Exercise 5.1.12 Let A be an B an and let

72 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

In fact, let be a solution of (5.2.2). Since are linearly
independent, there exists a with the properties:

(Compare the proof of Theorem 2.1.11). For every we obtain:

But then, for some Consider along

Now, for all near zero (5.2.4) implies This is in con-
tradiction with the fact that is a local minimum for Consequently,
system (5.2.2) is not solvable and the assertion of the theorem follows from
Theorem 5.1.1.

In case that in (5.2.1) is unequal to zero (hence,), we can divide
equation (5.2.1) by and obtain that is a KKT–point (cf. Definition 2.2.3).
In order to guarantee we have to make an additional assumption on the
constraints (a so-called constraint qualification); see also Exercise 2.2.4. Such
constraint qualifications are described in the next definition (Conditions A,
B, and C).

Definition 5.2.2 (Contraint Qualifications A, B, C) Let the functions
and let

Condition A: For all satisfying
there exists a with:

Condition B (Mangasarian–Fromovitz Constraint Qualification)

(1)

(2)

are linearly independent.

There exists a satisfying

5.2 Constraint Qualifications, Optimality Criteria 73

Condition C (Slater Condition)

(1) is affine linear,

(2) where

(i) is affine linear for and

(ii) is not affine linear, but is convex for

(3) There exist with

Condition B (Mangasarian–Fromovitz Constraint Qualification) is basic
for the topological stability of feasible sets (cf. [94]) and for structural
stability in nonlinear optimization (cf. [90], [128]).

Theorem 5.2.3 Let and let
be a local minimum for If, in addition, Condition A, B, or C

holds, then is a KKT–point.

Proof. Suppose that Condition A holds. Then the following system is
unsolvable at (exercise), and apply Theorem 5.1.1

Suppose that Condition B holds. Since, are linearly inde-
pendent, (5.2.1) holds with not all vanishing. Suppose that

Then, at least one of the numbers is unequal to zero.
Multiplication of (5.2.1) from the right with a vector solving (5.2.5) yields
a contradiction.

Suppose that Condition C holds. Then, at the following system
(5.2.7) and (5.2.8) are not simultaneously solvable (exercise):

If the desired result follows from Theorem 5.1.1. If
then the vector solves (5.2.8). In fact, from Theorem

4.1.7 we obtain for

74 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

hence, Moreover,
(exercise). From the fact that (5.2.8) is solvable, but (5.2.7) and

(5.2.8) are not simultaneously solvable, the desired result again follows via
application of Theorem 5.1.1.

Theorem 5.2.4 (a) Let and suppose that

If are affine linear, then Condition A is fulfilled at
all points of

Proof. (Exercise).

Exercise 5.2.5 Consider once again Exercise 5.1.12, but now in relation
with KKT–point, Lagrange–multipliers and the Mangasarian–Fromovitz con-
straint qualification.

Exercise 5.2.6 Is there a relation between Condition B and Condition C ?

Exercise 5.2.7 Let be a function in Put
and Show: if is

a local minimum for then Compare also
Exercise 2.2.18 and Exercise 4.3.9. Firstly, show that Condition B is fulfilled
at for the corresponding problem in

Theorem 5.2.8 (Characterization Theorem Linear Programming)
Let A be an matrix, and Consider the following linear
optimization problem (L):

Then, with is a global minimum for (L) iff there exists a
satisfying:

Proof. (Exercise, note that is a KKT–point).

LICQ is fulfilled at Then, Conditions A, B are satisfied.

(b)

5.2 Constraint Qualifications, Optimality Criteria 75

Theorem 5.2.9 (Duality Theorem of Linear Programming) Consider
the following optimization problem, (A an matrix,):

The problem (P) is called the primal problem and (D) is called the dual
problem. Then it holds: (P) is solvable iff (D) is solvable, and in case of
solvability the optimal values of (P) and (D) coincide.

Proof. (Exercise: rewrite as and apply Theorem 5.2.8.)

Exercise 5.2.10 Show that Problem (D) in Theorem 5.2.9 is the Wolfe dual
problem corresponding to (P) (cf. (4.2.14)).

Exercise 5.2.11 Show that exactly one of the following statements is true:

Both problems (P) and (D) are feasible and bounded.

Exactly one of the problems (P) and (D) is feasible and unbounded,
the other one is infeasible.

Both problems are infeasible.

(a)

(b)

(c)

Exercise 5.2.12 (i) Show that that the dual problem to

(ii) (“Complementary Slackness”) Suppose that and are solutions of
(P) and (D), respectively. Show that implies

Moreover, if and are feasible points of (P) and (D), respectively,
satisfying (5.2.9), then both are optimal solutions.

Hint: Consider the equality

76 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

5.3 Polyhedral Sets

Let us revisit Farkas’ Lemma (Theorem 5.1.7) once more. In Figure 5.1
Farkas’ Lemma is represented geometrically. However, cones of the type

become interesting for dimension three and higher. In fact, in
order to generate a cone in a closed interval is sufficient;
however, in arbitrary come into play. See Figure 5.2.

Let If then the point
minimizing the Euclidean distance to needs not to lie on a 2–dimensional
face of K; see Figure 5.3.

However, there always exists a 2–dimensional face of K, the affine hull of
which separates the vector from K; see Figure 5.4. This observation can be
generalized and yields an interesting refinement of Farkas’ Lemma. On the
other hand, the construction of such a hyperplane can be performed by means
of a simple exchange algorithm, which correspond to the so–called pivoting
strategy of R. G. Bland at degenerate points in the Simplex Algorithm for
solving linear programming problems (see also [199]).

5.3 Polyhedral Sets 77

Theorem 5.3.1 Let and Then, exactly one of the
possibilities (I), (II) holds:

(I) The system is solvable, and there
exists a solution satisfying: The null space
contains linearly independent vectors from where

(II)

Proof. Apparently, (I) and (II) cannot be fulfilled simultaneously. Moreover,
we may assume without loss of generality, that the vectors span the
whole space (exercise). In order to decide which of the possibilities (I) or
(II) is fulfilled, the following algorithm can be used.

Initialization: Choose linearly independent vectors from
and put

We have If then possibility
(II) is fulfilled.

If not, choose the smallest from with Let
be the hyperplane spanned by the vectors from

Let be scaled such that (In particular, we have

If then (I) is satisfied.

(1)

(2)

(3)

78 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

(4) If not, choose the smallest such that Then, replace D by
and goto (1).

It remains to show that the above iteration terminates after a finite num-
ber of steps. Let be the set D in the iteration. If the process doesn’t
terminate, we must have for some (since there is only a finite
number of possible sets D). Let be the largest index having the property
that is deleted from D at the end of one of the iterations
say in iteration Since the element has to be taken into D also
in some iteration with Consequently, we have

Put

and let be the vector from (2) which is generated in the iteration.
Then, we obtain the following contradiction:

The left inequality in (5.3.2) follows from (2). The right inequality follows
from the following observations:

Iteration (2): is the smallest index from with It follows:
implies and

Iteration (4): is the smallest index from with It fol-

lows: implies and For we

have (cf. (2) and (5.3.1)).

For a geometric interpretation of the exchange algorithm in the above
proof see Figure 5.5.

Definition 5.3.2 A cone is finitely generated if
with A cone is called polyhedral if

Theorem 5.3.3 A cone is finitely generated iff K is polyhedral.

Proof. (Exercise; use Theorem 5.3.1).

5.3 Polyhedral Sets 79

Definition 5.3.4 A subset is called a polytope if
with

A subset is called a polyhedron if
for some

Theorem 5.3.5 Let M be a subset of Then, M is a polyhedron if and
only if

Proof. Suppose that with A an
Consider the cone Then M is the
“ section” of K; see Figure 5.6.

From Theorem 5.3.3 we have Without loss of

generality we may assume that for all Let and
denote the vectors with corresponding and respectively.
Note that

On the other hand, suppose that Again

80 5 LINEAR INEQUALITIES, CONSTRAINT QUALIFICATIONS

we have

From Theorem 5.3.3 we have that K is polyhedral, hence,

Consequently,

6 Linear Programming: The Simplex Method

6.1 Preliminaries, Vertex Theorem, Standard Problem

Let be a polyhedron of the form

where

Let denote again the set of active indices and let denote
the rank of the matrix where

Lemma 6.1.1 A point is a vertex of M if and only if

Proof. Assume first that such that the rank condition is satisfied. If
with then clearly and

However, the equations determine uniquely and we
have

Now suppose that is a vertex of M. If there
is some with for all Choose an
with for all Then and

contradicting the assumption that is a vertex.

Example 6.1.2 (Stochastic matrices)

Let Then the

set M is called the polyhedron of stochastic matrices.
Contention: is a vertex iff for all there exists an index

such that

Proof. We only show one direction. In fact, let and suppose that
there exist such that and Choose

such that and put with
except for the entries and Then,

and Note that Hence, X is the
midpoint of a segment contained in M. In particular, X cannot be a vertex.

82 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

For each we consider the set

In case that is a vertex we have It is obvious that is a
convex set; however, needs not to be a closed set (see Figure 6.1).

Let The set admits degrees of
freedom, so it has dimension equal to We call also a stratum of
M of dimension One can think about the set M as being built up of
a finite family of strata of dimensions (a so-called stratification of
M). To each there corresponds a unique stratum of M to which
belongs. In particular, a vertex is a stratum of dimension zero.

Theorem 6.1.3 Let with If attains its minimum
in then is constant on

Proof. From Theorem 5.2.8 we obtain Let It

follows and hence, The above
representation of the vector then yields

Theorem 6.1.4 For some let for all
If then it holds:

Proof. Put and suppose that Then we have
and

Let and choose linearly independent vectors from the
set say Moreover, suppose
Then we have We are done if we can show that

are linearly independent.

6.1 Preliminaries, Vertex Theorem, Standard Problem 83

Now, if are linearly dependent we have

Note that hence

For it holds Together with (6.1.4) the latter yields a
contradiction to (6.1.5).

Note that the orthant does not contain any straight line; it contains at
most the half of a straight line. The latter trivial remark and the Theorems
6.1.3, 6.1.4 give rise to the following important theorem.

Theorem 6.1.5 (Vertex Theorem) Let

If M is nonempty and bounded, then attains its minimum in some
vertex of M.

If is unbounded and if attains its minimum, then
attains its minimum in some vertex of M.

(a)

(b)

Proof. (a) Since M is compact and continuous, there exists a global
minimum for (cf. Theorem 1.1.8). If is a vertex, we are
done. If not, then dim and there exists a vector such that

for sufficiently small Since M is bounded, there exists
a such that and for From
Theorem 6.1.3 and the continuity of we have and Theorem
6.1.4 yields: If is not a vertex, we can
proceed as above and in a finite number of steps we arrive at a vertex with

(b) Exercise (Use the fact that does not contain a straight line).

The forestanding Vertex Theorem is the germ of the idea of the Simplex
Method (of G.B. Dantzig, 1947): Start at some vertex, walk along a one-
dimensional stratum to an adjacent vertex, thereby lowering the value of
the objective function (see Figure 6.2). For additional reading
we refer to [38], [41], [48], [131], [172], [180], [199], [230]; for a semi-infinite
approach see [80], and for stochastic aspects see [132].

84 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

There is an interesting geometric relation between the Characterization
Theorem for linear programming (Theorem 5.2.8) and the Vertex Theorem.
We will explain it in To this aim let be a bounded polyhedron
of the form (6.1.1). To each vertex we associate the so-called polar
cone The union of these polar cones then forms
a partition of underlying space Every vertex belongs to (at least)
one of these polar cones. Now, the problem “maximize on M” consists
in finding a polar cone to which belongs (see Figure 6.3).

The starting point for the description of the Simplex Method is the fol-
lowing “standard” linear optimization problem (SLOP):

where and A an
Any linear optimization problem can be put in the above standard form,

see also Exercise 6.1.6. Note that an additional constant in the objective

6.1 Preliminaries, Vertex Theorem, Standard Problem 85

function does not play any significant role.

Exercise 6.1.6 Consider the problem “minimize subject to
Rewrite this problem to the standard form.

Hint: Note that is equivalent with (is an
of socalled slack variables). With define

and Then, and As
variables for (SLOP) take

Exercise 6.1.7 Rewrite (SLOP) in the form P from Theorem 5.2.9 and
define the corresponding dual problem.

Exercise 6.1.8 (Overdetermined System) Consider the linear system
where A is an with Rewrite the optimization

problem “minimize in a linear optimization problem in
(see Exercises 2.2.18, 2.3.21, 3.3.1). Here we are dealing with a so-called

linear discrete Chebyshev approximation problem.

In the following let M be the feasible set of (SLOP):

Moreover we assume throughout:

Let be a vertex. In virtue of (6.1.7) at least of the linear
“coordinate inequalities” must be active. This means
that at least of the components must vanish. Otherwise
stated: at most components of are unequal zero.

Exercise 6.1.9 Suppose the problem (SLOP) has a solution. Show that the
dual problem

has a solution which is a vertex.
Hint: By the Duality Theorem, (D) has a solution. Choose a solution

such that is minimal. By Theorems 6.1.3 and 6.1.4, either is a
vertex or contains a line. Show that the latter case is impossible since
the rank condition holds.

86 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

Definition 6.1.10 A vertex is called nondegenerate if precisely
components of are nonvanishing. A vertex is called degenerate if less than

components of are nonvanishing.

Note that a degenerate vertex has the following property: there are more
inequalities active as would needed to be active in order
to fix the degrees of freedom in the system

Theorem 6.1.11 A point is a vertex iff those column vectors of A
which belong to the positive components of are linearly independent.

Proof. Without loss of generality let and
The system is equivalent with the system

Hence, is a vertex iff the matrix
has rank equal to The latter holds iff the following matrix has rank

This completes the proof.

6.2 Basis/Vertex Exchange

We proceed with the standard linear optimization problem (SLOP) and recall
(6.1.6) and (6.1.7).

In view of the rank condition (6.1.7) we can parameterize the solution set
of by means of parameters. This means that we can prescribe
certain coordinates, whereas subsequently the other coordinates are
fixed in virtue of the equations So, we can differentiate between
dependent variables (also called basic variables) and independent variables
(non-basic variables).

Let be a vertex and Let us denote the column
vectors of A by consequently, the vectors are linearly
independent (cf. Theorem 6.1.11). In view of the rank condition (6.1.7) and

we can associate linearly independent column vectors
to the point Such a system is called a basis

at the vertex and Z is called a basis index set.
Note: if the vertex is nondegenerate, then Z is unique.

6.2 Basis/Vertex Exchange 87

Let be a vertex and let be a basis at With the aid of
the basis index set Z we can partition a vector into
where is an and an Note that is the
vector of independent variables. In a similar way, the vector and the matrix
A are partitioned. The system turns over into
and the is nonsingular. Now, we can solve for and
obtain:

With (6.2.1) the objective function becomes on the solution set of the
system

As an abbreviation we put

Remark 6.2.1 Suppose that the vertex is nondegenerate. Then
and for near zero, the corresponding remains positive (cf. (6.2.1)).
Consequently, in a neighborhood of the feasible set M is transformed
into a neighborhood of the origin in The objective function is
transformed into the (affine) linear function on where

Now, the origin in is a local minimum for the latter
function on iff all its partial derivatives are nonnegative, i.e. iff
In case that is degenerate, the feasible set M might locally be transformed
into a proper neighborhood of the origin in see Figure 6.4 for a picture
in

Theorem 6.2.2 A vertex solves (SLOP) iff there exists a basis at
with where is formed according to (6.2.3).

Proof. Suppose that the vertex solves (SLOP). By Exercise 6.1.9, a vertex
solution of the dual problem exists. By complementary slackness (5.2.9),

implies Choose linearly independent column vectors
such that implies and implies

Since the last condition implies

hence

88 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

Exercise 6.2.3 Complete the following proof of Theorem 6.2.2:
Without loss of generality suppose Then, is optimal

iff we have

where I denotes the matrix. If is nondegenerate, then
If is degenerate, choose an V with
and Multiply (6.2.4) from the left with and put

Since is nonnegative, we have where
Choose a minimal representation of (cf. Theorem

5.1.3). The rest of the proof remains as an exercise.

In order to proceed our discussion, we assume now that not all components
of the vector in (6.2.3) are nonnegative, i.e. for some
(we could choose for example the smallest or, as another option, the small-
est index for which). Now, let the index be chosen. We try to
walk over some distance along the positive coordinate axis and put with

noting and recalling (6.2.1):

Note that
If for all then for all and

Since we see that is not bounded from below on M and, hence,

6.2 Basis/Vertex Exchange 89

the optimization problem (SLOP) has no solution.

From now on, we assume that for some We consider two
cases (nondegenerate/degenerate).

Case I. The vertex is nondegenerate.
In this case we have for all and, consequently,

for small positive The question now arises: how far can we walk without
leaving the feasible set M ? In fact, none of the is allowed to
become negative. Clearly, (the maximal becomes

Put Then since and
In particular, we have lowered the objective functional value.

Let be an index at which the minimum in (6.2.6) is attained. If
is unique, then has exactly positive components; otherwise, has less
than positive components.

Next we show that the column vectors are linearly
independent. Then, the point is vertex and the set is a
basis index set at (cf. Theorem 6.1.11). So, assume that the vectors

are linearly dependent. Then, we have:

Since the vectors are linearly independent, we can write as
a linear combination of them. The appearing coefficients are precisely the
components of the vector and, hence, using (6.2.3) we obtain:

Substitution of (6.2.8) into (6.2.7) yields

In virtue of linear independence, all coefficients in (6.2.9) vanish, in par-
ticular However, from the very choice of we have Contra-
diction!

90 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

The exchange has as a consequence that a new vertex is found
with a lower value of the objective function. The set is a basis
index set at Moreover, the vertex is nondegenerate iff is the unique
index at which the minimum in (6.2.6) attained.

Case II. The vertex is degenerate.
In this case, some of the components vanish. Consequently,

in (6.2.6) might be zero (compare Figure 6.4). Let again be an index at
which the minimum in (6.2.6) is attained. As in Case I, the exchange
results in a basis index set at namely the set
In case the point is a new vertex with a lower value of the
objective function. However, in case we have and we merely
formed a new basis index set at If vanishes several times, it might
happen (theoretically) that a new basis appeared before, and we got stuck in
a cycle. So, we have to take care that always a new basis is produced which
did not appear before. Consequently, in case we need an additional
strategy. For example, when choosing (the column which enters the basis)
as well as when choosing (the column which leaves the basis), always the
smallest possible index is chosen (the Bland strategy, see Section 6.5). For
another strategy (based on lexicographic order) we refer to [41].

Exercise 6.2.4 By means of the exchange
the matrix changes into Show: with some
(a so-called rank 1 update).

Exercise 6.2.5 Let A be an and Suppose that A
and are nonsingular. Show:

The latter is called the Sherman-Morrison formula.

6.3 Revision: The Appearing Systems of Linear Equations

Recall the exchange in Section 6.2. In order to determine we
must know the vector (cf. (6.2.3)):

When the index is determined, we have to compute

6.4 The Simplex Method in Tableau Form 91

Since the actual vertex is known, we subsequently
can determine an index at which the minimum in (6.2.6) is attained.

Altogether, we have to compute and This results in solving
the following two systems of linear equations:

Let us consider once more the strategy to choose the smallest index
for which As soon as the vector in (6.3.3) is computed, we can
examine the columns of step by step and test whether the corresponding
component of is negative (see (6.3.1)); this gives rise to socalled column
generation techniques.

6.4 The Simplex Method in Tableau Form

For small systems one can perform the simplex method with the aid of a
socalled tableau. The underlying optimization problem is again (SLOP).
Without loss of generality let be the basis index set at the
starting vertex The first tableau has the following form:

With we have

with as defined in (6.2.3).
By means of elementary operations on the rows of (multiplication with

a real number, addition), applied to A, and we arrive at the following
tableau (perhaps after permutation of the columns of):

Note that where consequently, we
have that

92 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

Next, we choose an index with Let be the column
of (=Q; see (6.2.3)). On the right of we write the
quotients as far as Choose an index at which the
minimum of the latter quotients is attained. Now, the socalled pivot element

is known, and we can transform the column of by means of
elementary operations into the unit vector (where the latter operations
are applied to the whole matrix in the upper row, is
transformed to zero).

Now, a new tableau is formed, and we may proceed until the corresponding
vector is nonnegative. The columns of the identity matrix are distributed
over the tableau during the computations; therefore it is useful to denote on
the left of the tableau the basic variables For further details we
refer to [41].

Example 6.4.1 Let

Tableau 1:

6.5 Anticycling: Strategy of Bland 93

Tableau 2:

etc.

6.5 Anticycling: Strategy of Bland

As we have seen in Section 6.2, at degenerate vertices we need an additional
strategy in order to avoid cycling. Here we will discuss the strategy of R. G.
Bland ([23]).

Definition 6.5.1 (Index strategy of Bland) When choosing the index
(the corresponding column enters the basis) and the index (the correspond-
ing column leaves the basis), always choose the smallest possible index.

Theorem 6.5.2 The use of the index strategy of Bland at a degenerate
vertex avoids cycling of the simplex method.

Proof. Let be a degenerate vertex. Suppose that the simplex method
cycles at when using Bland’s strategy. Then there exists a basis index set
that appears twice during the simplex iteration, say
All these basis index sets belong to the vertex Let be the largest index
that enters in one of the latter basis index sets, and denote a corresponding
tableau by

Tableau
Basis index set

94 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

We have and for all Let A, denote the original
data. It follows with defined by

The vector used here, corresponds to the vector in (6.2.3) enlarged with
zero entries at the position of

For every with we have:

Let be the first tableau after at which leaves the basis index set; let
be the index that enters. Note that in view of the very choice of

Tableau
Basis index set

Let be the column of We now define
a special vector

Note that Consequently, and Then, (6.5.1)
and an analogous formula with yield (noting that):

Next, we show that and this yields a contradiction in
view of (6.5.2), and the theorem is proved. In fact,

Now, for in particular, If then
Otherwise, (see (6.2.6)) is attained at the index But

then, wouldn’t leave the basis index set (apply Bland’s rule !).

6.6 The Determination of an Initial Vertex 95

If or if then and, hence,
Putting things together gives

This completes the proof.

6.6 The Determination of an Initial Vertex

In order to start the simplex method, we need to determine an initial vertex.
For some problem this is obvious. For example, let the constraints be

With “slack variables” we obtain the feasible set in standard form:

In case that the point is a vertex.

Now, consider the standard feasible set described by:
where A is an with Without loss of generality
we may assume Consider the following auxiliary problem (AP):

The point is a vertex for (AP). Start the simplex method for
(AP) and let be the solution vertex for (AP). If then the system

has no solution. If then is a vertex for the system
In case that is a degenerate vertex for (AP), the set

of vectors in the basis corresponding to components of can be completed
with further columns of A in order to obtain a basis at the vertex for the
system

Exercise 6.6.1 Show that the problem (AP) is solvable.
Hint: There are only a finite number of vertices and the objective function

is bounded from below on the feasible set; let the simplex method run !

96 6 LINEAR PROGRAMMING: THE SIMPLEX METHOD

6.7 Running Time Analysis

For all known pivoting strategies it is possible to construct an example in
for which the simplex iteration needs an exponential (in) number of

steps in order to reach the optimal vertex. These examples are constructed
by means of deformations of the unit cube together with an
appropriate objective function (cf. [140]). It then turns out that the simplex
method runs through all vertices. The number of vertices of a unit cube is

For further details we refer to [199].
We will give the geometric idea in two dimensions, using the strategy

“choose the smallest ” (cf. (6.2.3)). In Figure 6.5 we see that the simplex
method runs through all 4 vertices (the last vertex is situated outside of the
picture).

Although the exponential feature appears in the “worst case”, the simplex
method performs in practice rather good. For a probabilistic consideration
of the latter phenomenon we refer to [29].

7 The Ellipsoid Method

7.1 Introduction

When solving a linear optimization problem by means of the simplex method,
it might happen, in the worst case, that one has to run through all vertices
of the feasible region; compare also Section 6.7. Consequently, the number
of computational steps for solving the problem may increase exponentially
with respect to the space dimension

In 1979 L. G. Khachiyan [139] showed that another algorithm only needs
steps; here, is a polynomial and L is a number which — roughly

speaking — denotes how many binary positions are needed in order to record
the initial data of the problem. The latter algorithm is called the ellipsoid
method.

Definition 7.1.1 Let B be a symmetric, positive definite and
let The set E,

is called an ellipsoid with center and with generating matrix B.

Consider the inequality system

where and A an The ellipsoid method tries to find a so-
lution of (7.1.2) by means of a certain sequence of ellipsoids
whose volumes shrink by fixed factor (only depending on the dimension
Let denote the solution set of (7.1.2). The method is organized in
such a way that the inclusion holds. If,
in addition, both and volume hold, then by
means of the volume shrinking factor one can easily estimate the number of
steps needed for finding a solution of (7.1.2).

We first explain the idea of the ellipsoid method by means of a two-
dimensional example.

Let be a triangle as sketched in Figure
7.1.

Let us suppose that M is contained in the ball of radius with center at
the origin. Choose as the initial ellipsoid having

98 7 THE ELLIPSOID METHOD

its center at the origin. If we are ready. If then at least
one of the inequality constraints is violated, say,

Construction of the next ellipsoid. Consider the straight line L through
which is parallel to the set The line L intersects the

boundary of at two points Next, we shift the line L in the
direction until we meet the tangent point The shifted line L will
be denoted by L*. Consider the following family of ellipsoids: iff

and L* is tangent to E at the point It can be shown (cf.
Section 7.2) that can be described by means of one parameter. Moreover,
the family contains precisely one element, say E*, with minimal volume.
We put Let be the center of If we are done.
Otherwise, an analogous construction is performed with instead of
etc. See Figure 7.2, where several elements of the family are depicted,
and pay attention to form of the ellipsoids with smaller and larger volumes,
respectively.

The linear optimization problem as a system of inequalities. In order to
make the ellipsoid method work for linear optimization problems, we have

7.2 The One-Parametric Family of Ellipsoids 99

to show that every linear optimization problem can be written in the form
(7.1.2). To this aim the primal and dual are combined. We will restrict
ourselves to the following standard form (see also Chapter 5):

Let and be feasible points for P and D, respectively. Then, we always
have the inequality In particular, problem P is solvable if and
only if the following system of inequalities has a solution

In fact, every solution of (7.1.3) yields and as optimal solutions
for P and D, respectively.

7.2 The One-Parametric Family of Ellipsoids

With vol(·) and det(·) we denote the volume and determinant, respectively.
Let stand for the volume of the unit sphere in the Euclidean space

100 7 THE ELLIPSOID METHOD

Theorem 7.2.1 Let be the ellipsoid defined by (7.1.1). Then, we
have:

Proof. Without loss of generality we may assume that the center of E is
the origin. Put where Q is an orthogonal matrix and a di-
agonal matrix (spectral decomposition). Put where
Consequently, we have and the ellipsoid E transforms into
the unit sphere (in the Application of the transformation
formula for multiple integrals yields:

In (7.2.2) stands for the Jacobian matrix of the coordinate trans-
formation in this particular case we have Since

the assertion of the theorem follows from (7.2.2).

Exercise 7.2.2 Let be an affine coordinate transformation,
i.e. with A nonsingular. Let be ellipsoids. Show that

and are ellipsoids, too. Moreover, show the following volume
relation:

Lemma 7.2.3 Let the set be defined as follows: iff the E1–E4 hold,
where (with fixed

(E1) and E is an ellipsoid.

(E2) where is the boundary of E.

(E3) The tangent hyperplane to E at is given as

(E4) With we have

7.2 The One-Parametric Family of Ellipsoids 101

Then, the set has the following properties:

(a)

(b)

(c)

is a one-parametric family of ellipsoids.

There exists exactly one with minimal volume.

According to (7.1.1), the ellipsoid is defined by:

where

(d)

Proof. Let We have to
determine and B. Put and we have

Consider the Then (7.2.4) becomes:

From (7.2.5) we obtain with (E4) and

For we obtain in a similar way:

Subtracting (7.2.6) from (7.2.7) yields An analogous calcu-

lation in the gives finally:

forand

102 7 THE ELLIPSOID METHOD

Let denote the unit vector. From (E3) it
follows:

or, equivalently,

Substitution of (7.2.8) into (7.2.10) yields:

Consequently, the symmetric matrix A has the following form:

Substitution of (7.2.12) into (7.2.9) yields:

implying

and it follows

7.2 The One-Parametric Family of Ellipsoids 103

Consequently, the coordinate will be the parameter we are seeking for.
With (7.2.12) and (7.2.13) Formula (7.2.4) becomes:

From (E4) we see that Substitution into (7.2.14) yields:

Again from (E4) we see that Substi-
tution into (7.2.14) gives:

and together with (7.2.15) it follows:

From (E2) and (7.2.14) it follows: hence,

Altogether, we see that an ellipsoid is determined by one parameter,
say and we have

Property (E4) implies Let denote the ellipsoid with data
from (7.2.18). From (7.2.1) we obtain

For and for we have Hence attains its
minimum in the interval A short calculation shows:

Now the assertion (a), (b), (c) of the lemma are proved. Assertion (d) is
immediate from (7.2.19) and (7.2.20).

104 7 THE ELLIPSOID METHOD

Theorem 7.2.4 Let be an ellipsoid with center and generating
matrix B. Moreover, let be the boundary of E and let be a
nonzero vector.

There exists a unique solution, say of the optimization problem:

Minimize subject to

Let be the following family of ellipsoids: iff (i) and (ii) are
satisfied, where

(a)

(b)

The point (from (a)) solves the optimization problem:

Minimize subject to

(i)

(ii)

Then, (b1)–(b5) hold:

(b1)

(b2)

(b3)

The set is a one-parametric family.

There exists a unique with minimal volume.

The ellipsoid in (b2) is defined by

(b4)

(b5)

Proof. (Exercise).
Hint: First show that with some Without

loss of generality let Next, find an appropriate linear coordinate
transformation that leads to the situation in Lemma 7.2.3. To this aim,
write as the direct sum of the line generated by the vector and the
linear space orthogonal to the vector

Exercise 7.2.5 Let be a bounded polyhedron and E an ellipsoid
with minimal volume that contains P. Show that the center of E is contained
in P.

7.3 The Khachiyan Algorithm with Integer Data 105

7.3 The Khachiyan Algorithm with Integer Data

Let us return again to the basic linear inequality system:

where and A an
In case that all entries in A and are integers, the solvability of (7.3.1)

is equivalent with the solvability of a (slightly blown up) strict inequality
system. For the latter one — in case of solvability — a certain minimal
volume of the solution set can be guaranteed in terms on overall measure of
the input data.

For integer data we define

Here, is the smallest integer greater than or equal to Note that the
number L basically counts the number of binary digits which are necessary
to record the input data.

Theorem 7.3.1 Let Then the inequality system with
integer entries in A, is solvable iff the strict inequality system

is solvable.

The proof of Theorem 7.3.1 as well as the proof of the subsequent Theorem
7.3.2 will be given in the next section.

From Theorem 7.3.1 it follows that checking the solvability of the system
can be replaced by checking the solvability of the strict (integer)

inequality system where (Discuss the influence
of the factor on the new factor Consequently, we can investigate, from
the beginning on, a strict inequality system

Theorem 7.3.2 Let and suppose that the system with
integer entries in A, is solvable. Then, we have:

where solves (7.3.4) and

106 7 THE ELLIPSOID METHOD

For checking the solvability of the system with integer entries in
A, the so-called Khachiyan Algorithm defines a sequence
of points from and a corresponding sequence of sym-
metric following the subsequent steps:

Khachiyan’s algorithm (integer data)
Step 1:

Step 2:

Step 3:

(I stands for the
matrix).
If solves (7.3.4), then stop. Otherwise, if
then go to Step 3. If then stop: System
(7.3.4) is not solvable.
Let denote the rows of the matrix A . Choose
an index with and put

go to Step 2.

Exercise 7.3.3 Show that it can be decided with the Khachiyan Algorithm
whether the system with integer entries in A and is solvable.

Hint: Use Theorem 7.2.4, 7.3.2 and the inequality

Moreover, use that the volume of the ball in with radius can be esti-
mated from above by

Note that the above inequality for can be shown as follows:

Remark 7.3.4 In the above representation of the Khachiyan Algorithm we
tacitly assumed that computations can be done arbitrarily precise. However,
this is not realizable in general; recall especially the appearing square root
in (7.3.4). However, polynomiality still can be shown by rounding-off and
taking the corresponding ellipsoid a bit larger.

7.4 Proof of Theorems 7.3.1, 7.3.2 107

Exercise 7.3.5 Discuss the solvability decision of systems of the form
with rational entries in A,

Exercise 7.3.6 Let a polynomial algorithm be given which decides whether
a system is solvable or not. Show: there also exists a polynomial
algorithm which either finds a solution of the system or shows the
unsolvability of the former system.

Hint: Let and let be the rows of the matrix
A. For consider the following systems of (in)equalities:

For one can find a solution with the Gauss-algorithm in case of solv-
ability of Now consider the following: if is solvable, but is
unsolvable, then the equality in is redundant.

7.4 Proof of Theorems 7.3.1, 7.3.2

In this section we use Cramer’s rule for solving a linear system of equations:
Given a nonsingular A and the linear equation then
the component of is determined by the formula:

where the matrix is obtained from A by replacing the column by the
righthandside vector

Lemma 7.4.1 Let A, be as in (7.3.1) and L as in (7.3.2). Let C be any
square submatrix formed from A with perhaps one column having corre-
sponding entries of Then, we have

Proof. Suppose that is a with columns
Then, the following inequalities hold:

108 7 THE ELLIPSOID METHOD

Consequently,

From the latter it follows

Proof of Theorem 7.3.1 If solves the system then solves
(7.3.3). Now, suppose that x solves (7.3.3). We shall construct a solution
for (7.3.1).

Later on in the proof, the integer entries allow us to apply the following
simple idea: if and is an integer, then Put

Hence, we have

If we are done. If not, we may assume that
Let denote the rows of the matrix A. Without loss of generality

we may assume that form a maximal linearly independent subset of

Assuming (7.4.5), we have in particular:

where det in (7.4.6) corresponds to the determinant of some fixed nonsingular
of the matrix Without loss of generality we may

assume that det > 0. Moreover, from Lemma 7.4.1 it follows:

Now, suppose that solves the system: We contend
that solves (7.3.1). In fact, for we have (cf. (7.4.6)):

7.4 Proof of Theorems 7.3.1, 7.3.2 109

It follows from (7.4.8) that for the integer
hence and finally, since det > 0.
In order to finish the proof we have to guarantee the validity of the ad-

ditional assumption (7.4.5). This can be accomplished by means of a finite
number of preparation steps, starting with one initial vector x that solves
(7.3.3).

Put If (7.4.5) is violated, then we construct a new
vector satisfying (7.4.9):

Note that (a) in particular shows that solves (7.3.3). Without loss of
generality we assume Suppose that is
not contained in Then , the system

has a solution
Put Then, for we see

Next, put and define Note,

in particular, that for some index we have both
and Now, it is not difficult to verify that (7.4.9) is satisfied. If
the additional assumption (7.4.5) with respect to is not satisfied, we have
to repeat the forestanding procedure again, etc. A finite number of steps (cf.
(7.4.9) (b)) then yields the desired additional assumption.

Proof of Theorem 7.3.2 Without loss of generality we may assume that
some solves (7.3.4). It follows that the polyhedron has a nonempty
interior, where

Let be a vertex of Then, the component of can be written

as the quotient of two determinants with entries from A, say
(exercise).

Note that det is a nonvanishing integer, hence Consequently,
we obtain — using (7.4.2) — :

The line segment from the vertex to an interior point of exists –
except for itself – of interior points. Consequently, there exists an interior
point of with With we put

Now, is a compact polyhedron with nonempty interior. But then,
contains at least vertices not all of them lying on a common
hyperplane (exercise). In particular, contains the simplex spanned by the
vertices and with the volume formula for simplices we obtain:

Each component of the above vertices, say can be represented as the
quotient of two determinants,

110 7 THE ELLIPSOID METHOD

7.4 Proof of Theorems 7.3.1, 7.3.2

where for again the estimate (7.4.2) holds, in particular:

From (7.4.13), (7.4.14) and (7.4.15) we then obtain

Finally, for we have Hence,

Note that the set is contained in the set from Theorem 7.3.2.
This completes the proof.

111

This page intentionally left blank

8 The Method of Karmarkar for Linear
Programming

8.1 Introduction

Another polynomial method for solving linear optimization problems was
introduced by N. Karmarkar in [134]; a first nice description was given by C.
Roos in [193]. This is an “inner point” method in contrast with Khachiyan’s
algorithm which can be seen as an “outer point” method (the method of
shrinking ellipsoids). In Chapter 11 we will return to inner point methods.

Starting point is a linear optimization problem of the following form, Kar-
markar’s Standard Form (KSF):

where A is an and
The following additional assumptions (A1), (A2) are assumed to be sat-

isfied:

(A1)

(A2) The optimal value of (KSF) equals zero.

Let denote the special simplex in the nonnegative
orthant of

Consequently, the feasible set of (KSF) is the intersection of with a linear
subspace. Assumption (A1) means that the barycenter of is a feasible point
for (KSF) (see Figure 8.1).

In Section 8.4 we will show that every solvable linear optimization problem
can be transformed into the standard form (KSF) such that in addition (A1)
and (A2) are satisfied.

Let denote the ball in the affine hull of
with center and radius Note that there exist two extremal such balls:
one of them is the smallest containing whereas the other one is
the largest one contained in Put

114 8 KARMARKAR’S METHOD FOR LINEAR PROGRAMMING

Exercise 8.1.1 Show:

Let denote the relative interior of

Karmarkar’s Algorithm generates a sequence of points in For

each let denote the following diagonal matrix:

Karmarkar’s Algorithm (with given parameters and

begin

end

while do
begin

Step 1: determine

Step 2:
Step 3:

end

the unique point that minimizes the co-
ordinate on

Theorem 8.1.2 (Polynomiality) Karmarkar’s Algorithm with
stops after at most steps.

The proof of Theorem 8.1.2 will be given in Section 8.3.

Exercise 8.1.3 Show: the optimal point in Step 1 above is

where is the orthogonal projection of the vector on the linear
subspace

Exercise 8.1.4 Let A be an with and
having rank equal to Show that the matrix B has rank too, where

and as in (8.1.4) (all entries positive). Show that the

orthogonal projection from Exercise 8.1.3 can be computed by solving the
following linear system (I =identity matrix):

or, equivalently,

Exercise 8.1.5 Put Show, as an extension of Exercise 8.1.3,
that it holds:

Hint: Use the equation

8.2 Geometric Interpretation of Karmarkar’s Algorithm

Recall Karmarkar’s Algorithm and suppose that the iterate has been
generated.

The simplex will be transformed into itself and the point is shifted
into the barycenter, all by means of the transformation

8.2 Geometric Interpretation of Karmarkar’s Algorithm 115

116 8 KARMARKAR’S METHOD FOR LINEAR PROGRAMMING

Note that maps each stratum of into itself; in particular, all vertices
of are fixed points of (exercise).

The inverse of is easily computed (instead of dividing by we now
have to multiply by

The equation becomes in the From
(8.2.2) it follows (after multiplication with

with as defined in (8.1.4).
The function to be minimized, becomes a nonlinear

function in the

On the other hand, the function in (8.2.4) is nonnegative on and vanishes
iff vanishes. We are only interested in minimizing the function from (8.2.4)
on the transformed feasible set. Its minimal value is zero, hence it coincides
with the minimization of Consequently, Karmarkar’s Standard Form
(KSF) transforms in terms of the into the equivalent linear
optimization problem (KSF)*:

Instead of minimizing the coordinate on the intersection of the whole
set and the nullspace of the minimization in Karmarkar’s Algorithm
takes place on a smaller set; in fact, the set is replaced by the ball
Let be the optimal point. In the next step, the point is shifted
into the barycenter of and the whole procedure repeats. Note that the
equation transforms into the equation See
also Figure 8.2.

Suppose that some iterate is close to the boundary of i.e. at least
one of the components of is close to zero. Then, the ball in the

8.3 Proof of Theorem 8.1.2 (Polynomiality) 117

original coordinates, i.e. the set is a very thin and stretched
ellipsoid that is squeezed against the boundary of (cf. Figure 8.3). From
this it can be concluded that Karmarkar’s Algorithm is a method with vari-
able metric (cf. Chapter 10 for a definition). Of course, one would like to
avoid such a (numerically instable) squeezing. A possible strategy could be
to delete such components of during the iteration process of which one has
the idea that they anyway will vanish at the end (cf. [109]). However, one has
to be careful, since there is no guarantee that a component which becomes
small during the iteration (“locally”) eventually vanishes (“globally”). The
forestanding strategy can be seen as a dynamic dimension reduction.

8.3 Proof of Theorem 8.1.2 (Polynomiality)

In order to prove Theorem 8.1.2 we have to estimate how much the objective
function decreases in each step of the algorithm. Recall that the linear func-
tion transforms awkwardly under the transformation

118 8 KARMARKAR’S METHOD FOR LINEAR PROGRAMMING

(cf. (8.2.4)). Therefore, a comparable function is chosen that transforms
nicely under

The function is well defined on On we obviously have
and, consequently,

For the following interesting transformation formula holds:

Lemma 8.3.1 For it holds:

Proof. (Exercise)

Note that and, hence,

where is the minimizer in Step 1 of Karmarkar’s Algorithm in the
iteration. If then we will show:

Proof of Theorem 8.1.2: From (8.3.4) and (8.3.5) it follows with initializa-
tion that Substitution in (8.3.2)

8.3 Proof of Theorem 8.1.2 (Polynomiality) 119

yields the inequality: In order that holds, it
suffices that is satisfied, or

It remains to show the inequality (8.3.5). This is a bit technical, and it
will be accomplished in several steps.

Exercise 8.3.2 Show the inequality:
Hint: Let be the vector from Exercise 8.1.3. From (8.1.5) we obtain that

where The ball contains (compare
(8.1.2)). Then, a geometrical consideration yields It follows

Now, use Exercise 8.1.1.

From Exercise 8.3.2 we obtain the following inequality:

Exercise 8.3.3 Let If solves the problem

and if in addition holds, then show:
Hint Replace by hence, we may assume that But

then, the minimum value is negative, and, hence, With
problem (8.3.7) becomes:

At the optimal point we must have hence, Consider
Figure 8.4, where the behaviour of the function and the set M are depicted.

Exercise 8.3.4 Let If solves the problem

and if in addition holds, then show:
Hint: Use Exercise 8.3.3 by fixing coordinates from

respectively.

120 8 KARMARKAR’S METHOD FOR LINEAR PROGRAMMING

Exercise 8.3.5 Show: the function takes its minimum
on the ball at the point

With the aid of Exercise 8.3.5 it follows, taking (8.3.6) into account:

For the inequality holds (exercise). Consequently, (8.3.9)
yields:

Substitution of into (8.3.10) finally yields the desired inequality
(8.3.5).

Remark 8.3.6 Recall Step 1 in Karmarkar’s Algorithm. When minimizing
the function from (8.3.1) instead of the coordinate function one gets a
variant of the algorithm, called the “deep-step version”.

8.4 Transformation of a Linear Optimization Problem into
Karmarkar’s Standard Form

In order to make this chapter on Karmarkar’s Algorithm complete, we have
to show how a given linear optimization problem can be transformed into the
standard form (KSF), satisfying the additional assumptions (A1) and (A2).

8.4 Transformation of a Linear Optimization Problem into KSF 121

Starting point is a pair of problem as in the duality theorem of linear
programming (Theorem 5.2.9), consisting of a primal problem P and its dual
D:

We assume that P is solvable (hence D is solvable, too). Let and be
feasible points for P and D, respectively. Then, we have
and P, D are solvable iff the following linear system has a solution:

Let be arbitrarily chosen vectors of appropriate
dimensions. Then, system (8.4.2) is solvable iff the minimal value of
in the subsequent linear optimization problem vanishes:

Note that the choice is feasible for
(8.4.3).

After the latter reformulation, we may assume that our starting problem
has the following form:

satisfying (A1)*, (A2)* in addition:

(A1)* A feasible point is known.

(A2)* The optimal value of (8.4.4) vanishes.

Next, we transform the nonnegative orthant into the simplex
here, the vector is transformed into the barycenter, the origin

is mapped onto the point and the “points at infinity” in

122 8 KARMARKAR’S METHOD FOR LINEAR PROGRAMMING

correspond to points with in The
transformation we are looking for is the following mapping
(see Figure 8.5):

Note that Moreover, it is easy to see
that is bijective with inverse mapping

The equation transforms into by putting
using (8.4.6) with multiplication by yields:

The objective function becomes the nonlinear function

Altogether, problem (8.4.4) transforms into the following:

8.4 Transformation of a Linear Optimization Problem into KSF 123

Since the starting problem (8.4.1) (and, hence, also problem (8.4.4)) has
a (finite) solution (corresponding in (8.4.8) with a point having its
component unequal zero), and since the optimal value of (8.4.4) vanishes, we
see that problem (8.4.8) has the same solutions as the following simplified
(linear) problem:

Now it is clear that problem (8.4.9) is of Karmarkar’s Standard Form and
that the additional assumptions (A1), (A2) are satisfied.

Remark 8.4.1 Without proof we note the following. If all data in (KSF)
are integers and if the validity of (A2) is not assumed a priori, then it is
possible to decide by means of Karmarkar’s Algorithm – in polynomial time
– whether the optimal value of (KSF) is zero or not. In fact, put

Then, it can be shown that all nonvanishing coordinates of vertices of the
polyhedron lie in the interval Setting

in the Karmarkar’s Algorithm, the algorithm yields after steps
an approximative solution of (KSF) with or with In
the first case the optimal value of (KSF) vanishes, whereas in the second case
it does not vanish. In analogy as in the Khachiyan setting, one can conclude
that rational linear optimization problems can be solved in polynomial time
by means of Karmarkar’s Algorithm (compare also Exercise (7.3.6)).

This page intentionally left blank

9 Order of Convergence, Steepest Descent,
(Lagrange -) Newton

9.1 Introduction, Steepest Descent

The simplex method for solving linear optimization problems stops after a
finite number of steps. In general, however, algorithms for solving optimiza-
tion problems will generate an infinite sequence and one hopes
that, as tends to infinity, an acceptable solution will be produced. In case
of convergence, it is natural to ask how fast the sequence acturally converges.
There are several orders of convergence, and we will discuss linear, super-
linear and quadratic convergence. We will always assume that for a
sequence that converges to

Definition 9.1.1 Let be a sequence converging to With regard
to the order of convergence, we define:

Linear Convergence : if lim

Superlinear Convergence : if L = 0,

Quadratic Convergence : if lim

As a first optimization method we discuss the method of steepest descent.
To this aim let For minimizing one might proceed as
follows. Starting at a point with minimize the following
function of one variable for

Let be a point at which is minimized for Then,
is replaced by the point and the procedure is repeated.

The name steepest descent method comes from the fact that the directional
derivative of at is minimized in the direction of i.e.

solves the following problem (exercise):

For the steepest descent method only linear convergence can be expected.
In fact, a so called zig–zagging effect can occur; this can be easily seen with
the function (representing a long, but narrow valley);
see Figure 9.1.

We will consider the zig–zagging effect more precisely with the aid of
special class of functions.

126 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

Definition 9.1.2 A function is called uniformly convex if a
real number exists, satisfying

Exercise 9.1.3 Reformulate uniform convexity in terms of the eigenvalues
of the matrix

Exercise 9.1.4 Let be uniformly convex, and let
Show that the lower level set is compact.

Exercise 9.1.5 Let be uniformly convex. Show that has
exactly one global minimum.

We will study the behaviour of the steepest descent method for uni-
formly convex functions, thereby taking a fixed steplength parameter. Let

be uniformly convex, and let be its global minimum (cf.
Exercise 9.1.5). Moreover, let be an arbitrary starting
point. With a fixed parameter to be determined later on) we con-
sider the following iteration:

Without loss of generality we always assume Put

Then, there exist real numbers such that (exercise):

For fixed we consider the following mapping

9.1 Introduction, Steepest Descent 127

We have and

It follows:

where the norm under the integral is the induced matrix norm

Now, let Then we also have for all
From (9.1.7) it follows (exercise):

where

Hence, if then implies In order that
it suffices to require This immediately yields possible values for
Consider the graph of see Figure 9.2.

128 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

The global minimum of is taken at and we have

For the next inequalities hold for the convergence factor

Note that, in case we have (cf. (9.1.8)):

Consequently, the sequence converges linearly to
If then is close to 1, and a slow convergence can be expected

(zig–zagging).

Exercise 9.1.6 Interpret with the aid of the eigenvalue distribution
of on the ball B.

9.2 Search for Zeros of Mappings, Newton’s Method

The search for a local minimum of might be weakened by
searching for points satisfying the necessary optimality condition of first or-
der: This leads to the determination of zeros of the associated
mapping

We will study iterative methods for finding zeros in a more general frame-
work. Let be a mapping for which we are interested to
find the zeros. We consider iterative methods of the following form:

where is a nonsingular depending on (steering matrix).
In our convergence considerations we tacitly assume that when
coverges to For an A, let be again the induced matrix
norm, i.e.

Exercise 9.2.1 Let A be an with Show, that the
matrix I – A is invertible (I = matrix).

Hint: Show that

9.2 Search for Zeros of Mappings, Newton’s Method 129

For our discussion we need the next two lemmas.

Lemma 9.2.2 Let A, B be and suppose that
Then it holds:

(a)

(b)

(c)

Both A and B are nonsingular,

Proof. Assertion (a) being an exercise, we turn to Assertion (b).

Assertion (c): Put C = AB and choose such that
Put i.e. Moreover, define

hence Now, the following estimates hold:
and

From (9.2.2) it follows and, conse-
quently, Finally,

Lemma 9.2.3 (Taylor Formula in Integral Form) For it
holds:

where the error E satisfies

Proof. (Exercise).

130 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

Theorem 9.2.4 Let be a sequence which is generated according
to (9.2.1), and suppose that converges to If, in addition, the
sequences and are bounded, then it holds:

(a)

(b)

Proof. For the proof, we firstly note:

Hence, and Assertion (a) follows.
Next, we turn to Assertion (b). The Taylor Formula at (cf. Lemma

9.2.3) yields, recalling that

Substitution of (9.2.6) into (9.2.1) and substracting on both sides gives:

Next, we put as an abbreviation,

It follows that hence,

From the convergence of to and from the continuity
of it follows that But then,

since is bounded. So, we obtain

Assertion (b) now follows from (9.2.9) and (9.2.10).

9.2 Search for Zeros of Mappings, Newton’s Method 131

Theorem 9.2.5 Let be a sequence generated according to (9.2.1)
and suppose that converges to If, in addition

then the following holds:

(a)

(b)

(c)

(d)

(e)

is nonsingular,

converges linearly to

L = 0 iff

L = 0 implies: converges superlinearly to

Proof. The proof of Assertions (a), (b), (c), (e) is left as an exercise (note
that (9.2.11) implies the boundedness of the sequences and

Assertion (d): Put Then, we have

From (9.2.12) it follows iff
iff

In order to obtain quadratic convergence we have to sharpen the assump-
tions on the mapping

Definition 9.2.6 A mapping is called Lipschitz continuous on
a subset if there exists an such that
for all The mapping is called locally Lipschitz continuous, if for
every a neighborhood exists with Lipschitz continuous on

Exercise 9.2.7 Let Show that is locally Lipschitz con-
tinuous.

Exercise 9.2.8 Show that the 1-dimensional mapping is not Lip-
schitz continuous on V, where V is an arbitrary neighborhood of the origin.

132 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

Theorem 9.2.9 Let be a sequence generated according to (9.2.1)
and suppose that converges to If, in addition, is nonsin-
gular and Lipschitz continuous on a neighborhood of then the following
holds:

(a) The sequence converges quadratically to if the subsequent in-
equality holds:

(b) If (Newton Method), then (9.2.13) is satisfied.

Proof. From (9.2.13) it follows in particular that converges to
and, hence, (exercise). With as in (9.2.8), i.e.

it follows, as in the proof of Theorem 9.2.4 (b):

and, moreover

The idea now consists in extracting a factor from both terms in
the righthandside of (9.2.16).

According to the assumptions, there exists a such that is Lips-
chitz continuous on a of i.e.

For compare (9.2.4), we now obtain:

Next, choose such that for Furthermore, choose
such that for all (compare

(9.2.13)). The sequence is bounded since converges to

9.2 Search for Zeros of Mappings, Newton’s Method 133

Consequently, we can choose K such that for all
Substitution of all these estimates into (9.2.16) yields

Together with (9.2.15) the estimate (9.2.19) yields:

which implies the quadratic convergence.
Next, we turn to Assertion (b). Let From

it follows:

The latter inequality follows from the Lipschitz continuity of on a neigh-
borhood of

In the Theorems (9.2.4), (9.2.5) and (9.2.9) we assumed that the sequence
converges to Now, we will state a convergence criterion.

Theorem 9.2.10 Let and let be nonsingular. Moreover, let
U be a neighborhood of and let H be a mapping from U into the space of

satisfying:

Then, there exists a neighborhood O of with the property: if
then the sequence defined by

is contained in O, and converges to

Proof. In analogy with (9.2.8) we define

134 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

Note that and that is bounded on some neighborhood
of (exercise). Consequently, from (9.2.22) it follows:

Now, choose Then, there exists a O of such
that for all with

Next, choose an arbitrary point and define according to
(9.2.21). If then also

Consequently, the whole sequence is contained in O, and the following
estimate

implies the convergence since

Definition 9.2.11 The Newton Method for finding a zero of a function
is defined as follows:

Exercise 9.2.12 Let and let be nonsingular. Show that
there exists a neighborhood of in which the sequence generated by the
Newton Method converges to Discuss the order of convergence.

Exercise 9.2.13 Let and let be nonsingular. Let H be an
which is near to to be precise:

Consider the following iteration:

Show that there exists a neighborhood of in which the sequence generated
by (9.2.24) converges to Discuss the order of convergence.

9.3 Additional Notes on Newton’s Method 135

9.3 Additional Notes on Newton’s Method

Newton’s Method for finding a zero of a mapping
mainly solves the linearized equation in each iteration step. In fact, a Taylor
expansion of first order around the iterate gives:

Suppose that is nonsingular. Then the zero of the linearization is
precisely the point see Figure 9.3 for the case

Now, suppose that Let be a local minimum
for with positive definite. Newton’s Method for the determination
of (as a zero of the mapping minimizes in each step the
quadratic approximation of In fact, a Taylor expansion of second order
around the iterate gives:

For close to the Hessian is also positive definite; then, the min-
imum of the quadratic approximation is taken in the point

(exercise).
From a geometric point of view this is an ellipsoid method: consider in

the ellipsoid tangent to the level surface having the same
curvature as that level surface in The new iterate is precisely the
center of this ellipsoid (see Figure 9.4).

136 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

Remark 9.3.1 Let and let be
nonsingular. The Newton iteration (9.2.23) can be read as follows:

Note that is a fixed point of the iteration map i.e. and
that Hence, This means that — close to

— quadratic terms determine the behaviour of the iteration map

Remark 9.3.2 Quadratic convergence also implies doubling of precision. In
fact, let A > 0, and suppose that for all
(compare the definition of quadratic convergence). Then, by induction, we
have

Now, suppose that and Then, we obtain from (9.3.4):

i.e. etc.:

9.3 Additional Notes on Newton’s Method 137

Next, we consider Newton’s Method with step length controlled by means
of a parameter

For the iteration (9.3.5) becomes an autonomous differential equation:

Along a (local) solution curve of (9.3.6), in a region where is
nonsingular, we obtain from (9.3.6):

Let be the starting time of the solution. Equation (9.3.7) yields:

and we see that along a solution of (9.3.6) we have for increasing

(a) The direction of remains constant.

(b) The norm decreases exponentially.

Suppose that is nonsingular at all zeros of Then, the zeros of
are attractors of the differential equation (9.3.6). Of course, (9.3.6) is not
defined at points where is singular, i.e. points where the determinant

vanishes. One can extend (9.3.6) on the whole space by multiplying
the righthandside by (cf. [32]). In this way we obtain the following
differential equation:

138 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

where is the adjoint matrix corresponding to (if A is a nonsin-
gular then The trajectories of (9.3.9) corre-
spond to those of (9.3.6) up to the traversing sense and speed. In particular,
the zeros of with positive (negative) determinant of become attractors
(repellors) for the differential equation (9.3.9). The fact that (9.3.9) is de-
fined on the whole space forces the appearance of new singularities (zeros
of the righthandside of (9.3.9)), apart from the zeros of These additional
singularities are called extraneous singularities. For these extraneous
singularities (generically) are centers and saddle points for (9.3.9); the cen-
ters prevent trajectories to tend to zeros of the mapping For a typical
behaviour of the trajectories of (9.3.9) see Figure 9.5.

In higher dimensions, the set of extraneous singularities will typically be
of higher dimension, too (codimension 2); cf. [125]. The idea of using tra-
jectories of the differential equation (9.3.6), respectively (9.3.9), for finding
all zeros of a given system of equations, is extended and studied in [51], [52],
[53].

9.4 Lagrange–Newton Method

For optimization problems with constraints one can also apply Newton’s
Method in order to find a local minimum. To this aim, the optimization
problem is reformulated into a problem of finding a zero of an associated
mapping. Then, as in the unconstrained case, one recognizes that a Newton

9.4 Lagrange–Newton Method 139

step is equivalent with solving a quadratic optimization problem; the latter
then can be carried over to problems with inequality constraints.

As usual, let be given. Here,
is the objective function and

is the feasible set. We assume that LICQ is satisfied at each point of M.

First we discuss the case without inequality constraints, i.e. Let
be a critical point for with Lagrange multiplier vector

Then, is a zero of the associated mapping

The Jacobian matrix has the following structure (compare with
(3.2.7) and (3.2.10)):

where L the associated Lagrange function, and where B consists
of the vectors

With and defined in an analogous way,

we obtain a Newton–iteration step, here called Lagrange–Newton–iteration
step:

where The term
in the righthandside of (9.4.3) can be carried over to the lefthandside,

and we obtain the system:

140 9 ORDER OF CONVERGENCE, STEEPEST DESCENT

Now, let be a nondegenerate local minimum (cf. Definition 3.2.1). Then,
is the unique solution of the following linear-quadratic optimization problem
(exercise):

The appearing Lagrange multiplier vector for (9.4.5) is precisely the vector

Exercise 9.4.1 Let be a nondegenerate local minimum for
with Show: the Lagrange-Newton Method
converges superlinearly in case the convergence is quadratically if

Now we discuss the case without equality contraints, i.e. (The
case and is meant as an exercise). Let a Karush-
Kuhn-Tucker point with corresponding Lagrange multiplier vector is a

The additional assumption now becomes (compare Exercise
(2.2.15)):

Consider instead of (9.4.5) the following linear-quadratic optimization
problem:

where and where are defined in an analogous way
as before.

In this way we obtain the so-called SOLVER-Method (of R. B. Wilson).

Exercise 9.4.2 Let Show under the above as-
sumptions (including (A) in particular), that the SOLVER-Method converges
superlinearly in case and quadratically in case

Hint: Note that the SOLVER-Method consists of choosing among a finite
number of problems with equality contraints only.

For further reading see also the references given at the end of Chapter 10.

10 Conjugate Direction, Variable Metric

10.1 Introduction

As a motivation we consider the minimization of a function
having the following special form:

Note that each function in (10.1.1) is a function of only one variable. Then,
it is easily seen that minimizes iff the component minimizes

Consequently, the minimization of can be achieved by
successively minimizing along the coordinate axes.

Next, consider a quadratic function

where A is a symmetric, positive definite Let

be a basis for Putting we obtain:

If then it follows:

and, hence, is a function of the type (10.1.1). This gives rise to (or
motivates) the following definition.

Definition 10.1.1 Let A be a symmetric, positive definite
Two nonvanishing vectors are called conjugate with respect to A
if

For a general reference see [105], [106].

142 10 CONJUGATE DIRECTION, VARIABLE METRIC

Exercise 10.1.2 Let A be a symmetric, positive definite and
suppose that the vectors are pairwise conjugate with
respect to A . Show that form a basis for

We consider the following algorithm

Algorithm Let be a quadratic function according to (10.1.2). More-
over, let be a given starting point and let be
given. Define as follows:

(1)

(2)

Determine such that is minimized.

Put

Theorem 10.1.3 Suppose that are pairwise conjugate
with respect to A. Then, the point in Algorithm minimizes on the
linear manifold

Proof. (Exercise).

Example 10.1.4 Let be an orthogonal system of eigenvectors of
A; then are pairwise conjugate with respect to A (A is in Definition
10.1.1).

Theorem 10.1.5 Let A be a symmetric, positive definite and
let be pairwise conjugate with respect to A.
Then, there exist vectors such that the vectors
are pairwise conjugate with respect to A.

Proof. Choose such that are linearly independent. With
a still unknown we put:

Multiplication of (10.1.5) from the left with and requiring that to
be conjugate to gives (recall that

10.1 Introduction 143

and, consequently:

If we can repeat the procedure with the vectors etc.

The construction in the proof of Theorem 10.1.5 is the basic idea of the so-
called Gram-Schmidt orthogonalization procedure. The next theorem shows
how the inverse of A can be represented as the sum of matrices of rank
one.

Theorem 10.1.6 Let A be a symmetric, positive definite and
let be pairwise conjugate with respect to A. Then it
holds:

Proof. (Exercise).
Hint: Show, that (10.1.7) is correct when multiplied from the right with

A geometrically interesting construction for obtaining conjugate vectors
is presented in the following theorem; see also Figure10.1.

Theorem 10.1.7 Let be a quadratic function according to (10.1.2). More-
over, let be linearly independent, and define the linear
manifolds through given

Suppose that minimizes on Then, the vector
is conjugate to with respect to A,

Proof. (Exercise).
Hint: Derive the equation and use the following relation:

The concept of conjugacy is principally nothing else than orthogonality
with respect to a specific scalar product, also called metric.

144 10 CONJUGATE DIRECTION, VARIABLE METRIC

Theorem 10.1.8 Let be a scalar product on and let denote
the unit vector Then, the following A
(generating matrix) is symmetric and positive definite:

and it holds

Conversely, let A be symmetric, positive definite Then,
is a scalar product on where

Proof. (Exercise).

10.2 Conjugate Gradient-, DFP-, BFGS-Method

For practical applications of the idea of conjugate directions it is important
to construct algorithms that automatically generate new conjugate directions
from the data known at a specific step in the optimization procedure. This
will be studied in the present section.

Lemma 10.2.1 According to Algorithm let be gen-
erated, where are pairwise conjugate with respect to
A. Then, it holds:

10.2 Conjugate Gradient-, DFP-, BFGS-Method 145

Proof. Obviously, we have It follows:

Let Since minimizes we have Hence,
it follows for

Finally, the equation follows from the fact that minimizes
the function

Theorem 10.2.2 According to Algorithm let
be pairwise conjugate with respect to A, and let be

generated. Moreover, suppose that Put

Then, is conjugate to with respect to A iff the fol-
lowing equations are fulfilled:

Proof. Note that (cf. (10.1.9)). Together with
we obtain that Note that

and the proof is complete.

The preceding theorem is important in the sense that it enables the com-
putation of conjugate directions only with the aid of the derivatives
without explicit knowledge of the matrix A. Now, we combine Theorem
10.2.2 with the idea of Formula (10.1.5) in the proof of Theorem 10.1.5.

Theorem 10.2.3 According to Algorithm let
be pairwise conjugate with respect to A, and let be generated
with Choose Then, the
vector

146 10 CONJUGATE DIRECTION, VARIABLE METRIC

is conjugate to iff the real numbers satisfy:

Proof. From Theorem 10.2.2 we see that is conjugate to iff

Substituting (10.2.4) into (10.2.6) yields:

Using (10.1.9) gives:

Noting that we see that (10.2.7) reduces to (10.2.5).

In the so-called Method of Conjugate Gradients (Fletcher–Reeves) the vec-
tors and are chosen in such a way that the first terms of (10.2.5)
vanish, i.e. this results in a very simple computation
of

According to Algorithm we put and
If are generated using the directions

according to (10.2.4) and (10.2.5), then we have (exercise):

From (10.2.8) it follows:

Substituting (10.2.9), (10.2.10), (10.2.11) into (10.2.5) yields, together
with (10.2.4), the Update Formula of R. Fletcher and C. M. Reeves:

10.2 Conjugate Gradient-, DFP-, BFGS-Method 147

Exercise 10.2.4 Let and let and be the or-
thogonal projection of onto and respectively. Show, that — up to
a positive scalar — the vector coincides with the vector
from (10.2.12).

Hint: Write

Exercise 10.2.5 Again in connection with the update formula of Fletcher-
Reeves, consider the following optimization problem:

Show that the solution of (10.2.13) coincides — up to a positive scalar —
with the vector from (10.2.12).

Exercise 10.2.6 As in Exercise 10.2.4, let be the orthogonal projection
of onto Show the validity of the rank 1-update formula:

Hint: Let be a basis for An arbi-
trary point now can be written as follows:

In Formula (10.2.14) we have (Identity). Instead of one
might — as a generalization — start with any symmetric, positive definite
matrix. On the other hand, one might take a rank 2 update by adding
at the righthandside of (10.2.14) an additional suitable rank 1-term. To

148 10 CONJUGATE DIRECTION, VARIABLE METRIC

this aim recall Formula (10.1.7) for the inverse matrix Substituting
yields, together with (10.1.9):

The idea now is to add the term from the righthandside of (10.2.15)
as the additional rank 1-term. This leads to the Update Formula of W.
C. Davidon, R. Fletcher and M. J. D. Powell (DFP):

With Formula (10.2.16) we define the following general iteration scheme:

Theorem 10.2.7 Let A, be symmetric, positive definite
and define with given Let be arbitrarily
chosen. Iterate according to the scheme (10.2.17) with the DFP-Update
Formula. Suppose that Then it holds:

(a) For and we have:

(i)

(ii)

(b)

(c)

The matrix is symmetric and positive definite,

The iterate minimizes

Remark 10.2.8 Assertion (i) in Theorem 10.2.7 means that the matrix
approximates the inverse of A step by step. From (ii) we see that we are
dealing with a method of conjugate directions. From (b) and (10.2.17) it fol-
lows that it is a Variable Metric Method. This can be seen from the following
background: Let be a scalar product on (also called metric). The
gradient of a differentiable function at a point (notation:)

10.2 Conjugate Gradient-, DFP-, BFGS-Method 149

connects the scalar product with directional derivatives, and it is defined as
follows:

Let B be the generating matrix for according to (10.1.10). Then,
we have for all and, hence:

Hence, in the iteration scheme (10.2.17), a step is generated in the direction
of the negative gradient of with respect to the metric generated by the
symmetric, positive definite matrix Note, that

Consequently, the direction in (10.2.17) is a direction of descent for and,
hence, is positive.

Exercise 10.2.9 Let A be a symmetric, positive definite
and put Show that the Newton step for solving

is a special (negative) gradient step.

Proof of Theorem 10.2.7 We’ll prove Assertion (a) by induction on
Note:

First, let Then, we have:

From (10.2.20) it further follows:

150 10 CONJUGATE DIRECTION, VARIABLE METRIC

since minimizes the function
Now, suppose that Assertion holds for For it

holds:

From the induction assumption we have and, in vritue of the
symmetry of we obtain (using (ii) for):

From (10.2.22) we see that (10.2.21) reduces to
(induction assumption). For Assertion (i) follows as in the case

In order to show Assertion (ii), it remains to show that
From the telescope sum

it follows

Since minimizes the function we have
From the induction assumption and the equality it then
follows

which finally shows Assertion (ii).
For the proof of Assertion (b) we put

10.2 Conjugate Gradient-, DFP-, BFGS-Method 151

Let and suppose that is positive definite. We have to show that
is positive definite, too.
The one-dimensional optimization step yields: Conse-

quently, we have:

Hence, is positive semidefinite; in particular, if
Note that generates the scalar product In virtue

of Schwarz’s inequality we know and equality holds iff
and are linearly dependent. Together with

it follows with

where equality holds iff In the latter case we have:

Hence, in the latter case we have and Assertion (b) is proved.
Assertion (c) is obvious, since we are dealing with conjugate directions.

Another very important update formula is the Formula of C. G. Broyden,
R. Fletcher, D. Goldfarb and D. F. Shanno, the socalled BFGS-Formula.
The analogous version of Theorem 10.2.7 is also valid in the BFGS-case.
The BFGS-update seems to work very well in practice; it is less sensitive
with regard to inexact one-dimensional optimization steps as performed in
(10.2.17).

The BFGS-Formula is complementary to the DFP-Formula in the follow-
ing sense. Let be the inverse of With the aid of the Sherman-Morrison
formula (cf. Exercise 6.2.4) one can express by means of and

152 10 CONJUGATE DIRECTION, VARIABLE METRIC

Substituting in the latter expression by by and
by yields the BFGS-Formula:

In Theorem 10.2.7 (a) we have the equations With
and A • it follows:

From (10.2.24) it follows that the DFP-method and the BFGS-method are
examples of so-called quasi-Newton methods:

Definition 10.2.10 An minimization procedure for (not necessary qua-
dratic) with iteration step

is called a quasi-Newton method if it holds:

For further reading we refer to [50], [67], [68], [78], [79], [87], [146], [161],
[174], [204] and [231].

For global features see [112].

11 Penalty–, Barrier–, Multiplier–, Interior Point–
Methods

11.1 Active Set Strategy

The so-called Active Set Strategy is used in order to solve optimization prob-
lems with inequality constraints via a sequence of problems with equality
constraints only. During the optimization procedure the latter equality con-
straints are chosen from inequality constraints according to a certain rule. In
order to explain the main idea, we consider for simplicity a linear–quadratic
optimization of the following form:

The problem (LQ) can be solved as follows. Let be given with
active index set Solve the following subproblem:

Let be the solution point of (11.1.1). Then, there are three possible cases:

Case 1.

Case 2.

Case 3.

The point does not belong to

The point belongs to and all Lagrange multipliers for
problem (11.1.1) are non-negative.
The point belongs to but at least one Lagrange mul-
tiplier for problem (11.1.1) is negative.

In Case 1 we walked too far: determine on the half–ray from to the
first point at which an inequality constraint is violated, say Replace by

and solve again the corresponding problem (11.1.1). Note that in this case
the active index set is augmented with at least one element.

In Case 2 we are done, since the point solves the problem (LQ).
In Case 3 we choose an index with minimal Lagrange multiplier say

Note that The inequality constraint is removed from the index set

154 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

Subsequently, the following optimization problem is solved, with as
a starting point:

At the solution point of (11.1.2) again one of the cases 1–3 is valid. See
Figure 11.1 for a sketch.

11.2 Penalty–, Barrier–, Multiplier–Methods

Consider an optimization problem with equality constraints only:

The idea of Penalty–Methods consists in penalizing the violation of the
equality constraints. This can be done by adding a positive term — repre-
senting the intensity of violation — to the objective function A possible
choice for such a term is

Now, one minimizes a sequence of unconstrained problems with objective
functions

where for

11.2 Penalty–, Barrier–, Multiplier–Methods 155

Assume that and that solves (11.2.1).
Moreover, let LICQ be valid at and suppose that the solutions of the
subproblems, say converge to Then, we have

and, moreover it follows

where is the Lagrange multiplier to at the point corresponding to the
problem (11.2.1).

Note in (11.2.3) that whereas If is large, then the
product gives rise to numerical instability as tends to infinity.
The latter motivates to split of the Lagrange multipliers (or estimates of
them) and this leads to the idea of Multiplier–Methods; here, one considers
functions of the following type:

where
Optimization problems with inequality constraints can be treated with

Barrier–Methods:

The main assumptions are: the interior of is not empty and

Now we add in positive terms to the objec-
tive function these terms become more dominant as one approaches the
boundary of Some of the possible choices for the latter terms are:

Starting with a point one solves — as in the case of Penalty–
Methods — a sequence of unrestricted problems, say with objective function

156 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

where as Equivalently, we might take

see also Section 11.3.
It should be noted that Multiplier–Methods can also be used in case of

inequality constrained optimization problems.

Example 11.2.1 Consider the problem: minimize subject to the
constraint As Barrier–Method we minimize

for In Figure 11.2 the function is sketched for
0.5 and 0.1.

Now, we discuss Multiplier–Methods. The following theorem from linear
algebra will be crucial (cf. Lemma 4.4.3 in [124]).

Theorem 11.2.2 Let A and B be symmetric Moreover, let
B be positive semidefinite, and let A be positive definite on

Then, there exists a real number such that the matrix
is positive definite for all

Proof. Let W be an whose columns form a basis for
KerB. Moreover, let V be an whose columns form a basis for
the orthogonal complement of A · [KerB].

First we show that (V|W) is nonsingular. In fact, let for
some Then, we have

11.2 Penalty–, Barrier–, Multiplier–Methods 157

But, is positive definite and, hence, But then, and
it follows that Consequently, the matrix (V|W) is nonsingular.

Next, we have:

Note that and thus,
is nonsingular. In particular, is positive definite, since B is positive
semidefinite. The rest of the proof is left as an excercise.

Now, consider again problem (11.2.1) with only equality constraints
We assume in addition

LICQ is fulfilled for all

is a local minimum for with Lagrange multi-
plier vector

The matrix is positive definite on the tangent space

where is the corresponding
Lagrange function.

Note that, under the point is a nondegenerate local minimum
for (cf. Definition 3.2.1) and we can apply the ideas from Chapter 3.

Theorem 11.2.3 Let be fulfilled and put (cf. (11.2.4)):

Then, there exists a real number such that for all the point is
a nondegenerate local minimum for the function

Proof. Note that and

Application of Theorem 11.2.2 completes the proof.

158 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

From now on, let be fixed. We can regard as a parameter,
and application of the implicit function theorem yields: There exist open
neighborhoods and of and respectively, and there exists a
mapping such that is the unique minimum for on

Next, we define the marginal function

Recall that is of class (cf. Chapter 3). Moreover, for all we
have:

From (11.2.10) we see that is the maximum of the function on the open
set The idea of the Multiplier–Method now consists in finding a better
approximation for from a previous approximation
The main point is the maximization of the function from (11.2.9) (exercise
!). The maximization of can be achieved by means of gradient steps, or
better, Newton steps. However, it turns out that here — asymptotically for

— a Newton step corresponds to a gradient step with a special step
length.

Multiplier–Method: Let the iterate be given. Minimize the func-
tion on This yields the point and we have (if near

that Moreover, Next, perform a
maximization step for This yields the point and, consequently, we
have arrived at the iterate

For the maximization step of we need the derivative and — for a
Newton step — the Hessian (compare (3.1.5), (3.1.7)):

In (11.2.11), (11.2.12) the arguments are omitted for abbreviation. If we
made a Newton step for maximizing we would obtain

Now, let tend to infinity in (11.2.13): From (11.2.12) and from the
of (cf. proof of Theorem 11.2.3) it follows that

11.3 Interior Point Methods 159

asymptotically, as The latter motivates the following update:

Multiplier–Methods for problems with equality- and inequality constraints
can be obtained via a transformation into higher dimensions with slack–
variables. For example, the problem

transforms into the problem

The coordinates in (11.2.16) represent the augmentation of dimen-
sion.

For further reading we refer to [21] and [66].

11.3 Interior Point Methods

Since Karmarkar’s work ([134], see Chapter 8) the interest in interior point
methods for solving linear programs is strongly revived. Although barrier
methods are classical tools in nonlinear optimization ([65], [66]), a first poly-
nomial time algorithm, based on Newton’s method, was proposed by J. Rene-
gar ([188]). Consider the following linear programming problem (LP):

where A an
Throughout this section we assume:

(A) The feasible set M is compact with nonempty interior

The principle of an interior point method is simple. Put

160 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

Let denote the optimal value of (LP). For we consider the
“center” of (e.g. analytic center; see below). This results into a curve

(“central path”; see also below). The idea now is to follow this curve
as tends to In this way the corresponding center is pushed to an
optimal point of (LP); see Figure 11.3. The principle of the method of
centers traces back to P. Huard ([115]).

We will discuss the interior point approach via the logarithmic barrier
function

where

Exercise 11.3.1 Show, for

where

Exercise 11.3.2 Show that Assumption (A) implies that and,

hence, that the Hessian is positive definite on

For we introduce the one–parametric family

Let denote the set of minimal points.

11.3 Interior Point Methods 161

Exercise 11.3.3 Let Show that is strictly convex on (use
Exercise 11.3.2). Next, show that has precisely one global minimum,

say i.e. is a singleton. Similarly, it follows that

is a singleton, say Prove that the map
is smooth on the interval

Hint: Consider the critical point equation and use the
implicit function theorem.

Definition 11.3.4 The points and are called the analytic center of
M and the analytic respectively. The curve is called the
central path.

Exercise 11.3.5 Consider the set of analytic centers generated by the sets
from (11.3.2). Show that this set coincides with the central path.

The main problem now consists in following the central path as the barrier
parameter tends to zero (see also [104], [194] for further details). Of course,
we first have to ensure that tends to an optimal solution of (LP):

Theorem 11.3.6 The analytic converges to an optimal solution
of (LP) as tends to zero.

Proof. Let and
For any value let denote the unique point in

From the Karush-Kuhn-Tucker relation at
and the critical point relation we obtain a diffeomor-

phism of the and the Consequently,
each accumulation point of each sequence with 0 lies in In
particular, if is a singleton (hence, a vertex of M), it follows that
converges to the optimal point of (LP).

Now, suppose that Put

and define the linear subspace It is easy to
see that and that V is parallel to Next, define the
(perhaps unbounded) polyhedron with

the interior We consider the parametric
family of polyhedra generated by the intersection of N with parallel shifts of

162 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

the smallest affine space containing As a parametric set we choose the

set where stands for the orthogonal projection of to the
linear subspace orthogonal to V (see Figure 11.4).

For define In particular, we
have where Let

Now, we define the analytic center of to be the unique point in

the set The point is called the
analytic center of The map is smooth and it defines a smooth
parameterization of the (manifold) set C of analytic centers,

see Figure 11.5. Note that the central path is contained in the
manifold C. The proof that as tends to zero, is left as an
exercise (consider the intersection near

Theorem 11.3.7 Recall from the proof of Theorem 11.3.6 the definition of
as the analytic with chosen such that satisfies

We state that the curve extends analytically through its endpoint.

Proof. We give two proofs of the theorem: one applying an advanced tool
from real algebraic geometry, and another elementary one. One way to prove
the latter theorem is the application of the so-called curve selection lemma

11.3 Interior Point Methods 163

from real algebraic geometry, see [26], Propositions 8.1.17. To apply the
curve selection lemma one has to verify that the central path can be defined
by a system of algebraic equations. In fact the minimization of can be
substituted by the minimization of where the critical point condition turns
out to be algebraic. Now, the curve selection lemma states that any analytic
curve with endpoint extends analytically through the endpoint. However it
does not say anything about the parameterization to choose. In fact, always
a space coordinate can be used, but which one? The answer is given in [167],
where it is shown that the limit direction of the central path (at its endpoint)
coincides with the direction of the straight line which appears as central path
if all constraints are deleted which are not active at the endpoint. The latter
straight line can obviously parameterized by the objective function value
which completes the proof.

Beside the use of this rather advanced tool there are recently also elemen-
tary proofs available. The papers [95] and [96] deal with linear optimization
problems as we are concerned with here, and [206] even covers the more gen-
eral case of linear complementarity problems. To emphasize the significance
of the question under consideration we remark at the elementary proofs cited
above have been found independently at the same period.

In our second (elementary) proof we follow the geometrical approach given
in [95]. After an affine coordinate transformation we may assume that

that the origin is the endpoint of the central path, and that,
moreover, the optimal face is contained in the plane with

We only treat the easiest case where the optimal face is a
vertex, i.e. The general situation can be reduced to this case, which

164 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

can be checked by the reader by doing Exercise 11.3.8 at the end of this proof.
Assuming that we consider the central path in new (partially

projective) coordinates. Writing an element in the form
where is the first coordinate and denotes the vector of
remaining coordinates, we introduce the following coordinate transformation:

Let I denote the index set of those constraints which are active at the origin,
i.e. Put Then a point belongs
to the of the central path if and only if where

are defined by setting

Here, is decomposed into a vector from in the same
way as above. The proof of the latter equivalence is left to the
reader. (Hint: Start with setting and divide the defining system
G + H = 0 by) The following facts can now be easily verified:

G and H are analytic functions from an appropriate neighborhood of
the origin in to

is positive definite for any (This follows from the
assumption that the origin is a vertex of M.)

Altogether, the implicit function theorem (for analytic functions) yields an
analytic curve Recalling the curve is
the desired analytic extension of the central path.

Exercise 11.3.8 Prove Theorem 11.3.7 in the case that
To this end use the central manifold C (see the proof of Theorem 11.3.7).
Consider another set, namely the union W of the central paths generated

11.3 Interior Point Methods 165

by restricted to the intersection of with the affine planes orthogonal to
Apply the arguments from the vertex case to prove that W constitutes

an analytic manifold which can be parameterized by
Then you finally come out with two manifolds. The manifold W contains

(locally at the origin) and is therefore called wing manifold (see [95]),
and the central manifold C can be parameterized by the orthogonal com-
plement of Prove that the intersection of W and C is an
analytic curve containing the central path. (The intersection above is just
the situation to speak of transversal intersection, see [125].)

Corollary 11.3.9 [96] The parameterization of the central by (by the du-
ality gap variable where is according to (11.3.16))
extend analytically through its endpoint.

Proof. The proof refers to a result stated only later in this monograph,
nevertheless its assertion fits better here. In order to follow the proof the
reader should first read a little further in this chapter (up to Lemma 11.3.13
and then return to this point again. The graph of extends an-
alytically through its endpoint by the curve selection lemma. Again, the
parameterization remains unknown. Now Lemma 11.3.13 applies. It states
that lim is bounded from above by Consequently, is a good
parameter for an analytic extension of the graph. Finally, Theorem 11.3.7
yields the desired result. Since in the proof of Lemma 11.3.13 in fact the
gap variable gap is used (instead of), the analogous assertion holds for the
parameterization by the gap variable.

Now we have to make the approximate pathfollowing of the central path
more precise. The idea is to make an update of followed by an update of
consisting of one Newton step towards the central path. Of course, in order
that such an iteration works, we have to start sufficiently close to the central
path.

Given a Newton step means a Newton step for finding a
zero of the mapping (see (9.2.23), (11.3.4) and (11.3.6)):

Define (to be clarified later on) as follows:

166 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

With the update formula:

we can state the following complexity result with respect to given accuracy
of the optimal value of (LP):

Theorem 11.3.10 Let denote the optimal value of (LP); furthermore,

let be given with Then, the sequence

given by (11.3.9), is well–defined and contained in
Moreover, given we have for

The proof of Theorem 11.3.10 will be given via several intermediate steps.
First, we give a geometric interpretation of from (11.3.8). Recall that
the dual problem (DP) corresponding to (LP) is the following linear opti-
mization problem (cf. Exercise 4.2.5):

and, hence,

It follows from (11.3.12) that the point is a feasible point for the
dual problem (DP).

Next, let be a point different from The difference between
and can be expressed as follows: “how badly is the critical point relation
(11.3.11) violated”, or, “how much violates the point the dual
feasibility”? We will see that is the distance between the point
and the affine space where the distance corresponds to a specific
metric (depending on and). In fact, define the scalar product (see
(10.1.12)) depending on and as follows:

For let denote the global minimum of Then, we

have the critical point relation:

11.3 Interior Point Methods 167

The corresponding norm becomes:

It follows (see Figure 11.6):

Let be the point at which the minimum in (11.3.15) is attained. Then,
we have, using (11.3.7):

and, consequently:

Exercise 11.3.11 Derive (11.3.16) and (11.3.17).
Hint: In order to derive (11.3.16), consider the optimization problem:

Note that Condition A from Definition 5.2.2 is fulfilled, and apply Theorem
5.2.3.

Remark 11.3.12 We have derived two geometric interpretations for
The first one refers to the distance of the point to the feasible set
of the dual problem (DP), the distance being measured in a special variable
metric. On the other hand, (11.3.17) shows that measures the length
of the Newton step at in the variable metric generated by the Hessian of
the barrier function

168 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

With the aid of we can express the distance from the functional
value to the optimal value

Lemma 11.3.13 For the following estimate holds:

Proof. Recall that the point in (11.3.16) is a feasible point for the dual
problem (DP). It follows that and, consequently:

On the other hand, we have

where stands for the 1-norm (cf. Exercise 1.1.14). It follows:

Now,

Formulas (11.3.19), (11.3.20) and the latter inequality together yield the de-
sired inequality (11.3.18).

Recall the quadratic convergence of Newton’s method (cf. Theorem 9.2.9,

Definition 9.2.11 and Remark 9.3.2). Consequently, if is sufficiently
close to then for the Newton iterate we have:

for some The latter inequality transfers to the function
as it is stated in the next lemma (note that

Lemma 11.3.14 Let and Then, we have

and, moreover:

11.3 Interior Point Methods 169

Proof. Put
and

We have since

Consequently, belongs to
Recall that the minimum in (11.3.15) is attained in With (11.3.16),

evaluated at it then follows:

where Consequently,

Since we finally obtain from (11.3.22):

The subsequent corollary relates with where is a certain
update of

Corollary 11.3.15 Let and
Then, it holds:

In particular, for and the following implication holds:

Proof. Let be again the point at which the minimum in (11.3.15) is
attained. It follows:

At the specific values of and we obtain:

170 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

Application of Lemma 11.3.14 yields

Proof of Theorem 11.3.8 From Corollary 11.3.15 it follows that
for all Then, (11.3.18) implies (note that

According to (11.3.9) we see that where It follows:

Since we obtain from (11.3.26) for

Inserting the latter inequality into (11.3.25) yields:

This completes the proof.

We close this section by a few further remarks.

Remark 11.3.16 In the meanwhile, there has been developed a lot of fur-
ther variants based on the interior point approach. One such are primal-dual
interior point methods, which we want to outline briefly here. Consider the
primal formulation on with its
dual on Here,

is assumed to have rank We assume furthermore that the
sets and s.t.

are non-empty. Define a map where denotes
the strictly positive orthant, by Then

Theorem 11.3.17 is a bijection.

The map can be used to define the central path as the set of (unique)
pairs such that where

In primal-dual methods one tries to follow this path, but this
time taking into account the dual variables as well. Assume to be a
point computed during such an algorithm, where and Most
likely, is not lying on the central path, i.e.

11.3 Interior Point Methods 171

In the next iteration step, we choose a for an appropriate and try
to approach the corresponding target point on the central path sat-
isfying This can be done using a Newton step for the nonlinear
function

The solution of the system

is called a primal-dual Newton direction. The analysis of such primal-dual
methods follows the same lines as the one presented above for purely primal
methods. For details see [195, 229].

Remark 11.3.18 From the above analysis of the convergence behavior of
a special interior point method, the question arises which properties in fact
imply the rapid convergence. Is it the special choice of the logarithmic barrier
function from (11.3.3); do we need affine linearity of the constraints? Recall
the crucial role of the function it measures the length of a Newton step
in terms of a variable metric generated by the Hessian cf. (11.3.17).
Regarding the above question, Yu.E. Nesterov and A.S. Nemirovsky intro-
duced the concept of self–concordance of a strictly convex smooth barrier
function ([177]). The self–concordance implies that the Hessian is
(relatively) Lipschitz continuous [119]. A barrier function is called self–
concordant if the following inequality holds for all

where does not depend on Note that in (11.3.27), and
stand for the third and second derivate of in the direction

of respectively. The logarithmic barrier function from (11.3.3) satisfies
(11.3.27) with (exercise). With the concept of self–concordance and
the corresponding variable metric generated by the Hessian one can
estimate the region of quadratic convergence of Newton’s method and one
can make comparisons in the sense of (11.3.23).

We finally need an estimate for the update of the value of the objective
function. This can be obtained via an additional property of the barrier
function, called self–limitation. The self–limitation is expressed in a formula
as follows:

172 11 PENALTY–, BARRIER–, MULTIPLIER–, IP-METHODS

for all with independent from
Note that the logarithmic barrier function satisfies the self–limitation in-

equality (exercise).
With the aid of properties self–concordance and self–limitation it is possi-

ble to obtain a of the optimal functional value in
steps for a broader class of optimization problems. Self–concordance and self–
limitation are geometrically related to inner ellipsoidal– and outer ellipsoidal–
approximation of polytopes, respectively. See also [119] for an interesting ex-
position.

Remark 11.3.19 An important example of a self-concordant barrier func-
tion comes from semidefinite programming. A typical semidefinite optimiza-
tion problem is the following

where and are symmetric For a symmetric ma-
trix C the expression stands for C being negative semidefinite
(definite). Define the slack-matrix by setting
Provided the existence of a strongly feasible point (i.e. with

) it is natural to choose as barrier function. The impor-
tant point is that turns out to be self-concordant (with parameters
and). Thus interior point methods such as introduced for linear pro-
gramming can be applied. The self-concordance implies that the distance of
the value of the objective function to the optimum is reduced by a constant
factor in each iteration step. In fact some further conditions should be satis-
fied to make everything work, meanly conditions to guarantee the existence
and uniqueness of the analytic For
further reading on this recent branch in optimization theory and its applica-
tions we refer to the survey papers by Alizadeh [4] and Vandenberghe, Boyd
[219].

Remark 11.3.20 In earlier work ([54]), I.I. Dikin used an interior point
method corresponding to the logarithmic barrier function (cf. (11.3.3)). In

fact, for define the ellipsoid Let mini-
mize the objective function on the ellipsoid E. Then, the next iterate is
some point on the half-ray emanating from in the direction Compare
the latter direction with the Newton direction from (11.3.7) (exercise).

12 Search Methods without Derivatives

12.1 Rosenbrock’s Method and
Davies–Swann–Campey’s Method

The motivation of Rosenbrock’s method is the following. Given pairwise
orthonormal directions a certain line search along these
directions is performed. After that, an update of these old directions by
means of Gram–Schmidt orthonormalization is made. The idea is that these
new directions tend to the eigendirections (i.e. normalized eigenvectors) of
the approximating Hessian of the function which has to be minimized (as-
suming that is twice continuously differentiable and that is
positive definite). Recall the link with conjugate directions (Example 10.1.4).

Rosenbrock’s Method:

Start: Choose pairwise orthonormal vectors and
real numbers (all nonvanishing),
For one might choose Furthermore, choose two natural
numbers J, K (emergency break).

Step Given compute

Phase 1: Search in the directions Put and
For put

compute

(a) put
If set If start substep

otherwise STOP.

(b) If put If set If

goto Phase 2. If not, start substep in case that otherwise
STOP.

Phase 2: New orientation of directions. Define If

or then STOP; otherwise, for define

174 12 SEARCH METHODS WITHOUT DERIVATIVES

Phase 3: is obtained via Gram–Schmidt orthonormal-
ization of (in that order). If start step otherwise
STOP.

Remark 12.1.1 (Gram–Schmidt orthonormalization) Let
be linearly independent vectors. The Gram–Schmidt orthonormaliza-

tion produces pairwise orthonormal vectors with
as follows:

Require that It follows that Then,
put Now, repeat the process, this time starting with

Compare also with the proof of Theorem 10.1.5 with A =identity matrix.

Remark 12.1.2 a) The control parameters have the following meaning.
Phase 1 is left only if in each direction a successful step is
followed by an unsuccessful one
Note that success here means: where is a small positive real
number.

b) The number denotes how much the last point in Phase 1 is shifted
in direction with respect to the first point. In case that in Phase 2 the
numbers then the vectors are linearly independent.
The vector denotes the total shift of the first point from Phase 1. See
Figure 12.1 for a geometric interpretation.

In Rosenbrock’s Method no one-dimensional optimization is performed.
This might be seen as an advantage. However, performing one-dimensional
optimization in a “good” direction might save many steps. This is the idea
behind the Method of Davies–Swann-Campey (DSC–Method).

Put Suppose that are already constructed,
Put

12.1 Rosenbrock’s Method and Davies–Swann–Campey’s Method 175

The DSC–Method:

Phase 1: For Determine as the minimum of
and put

Phase 2: Reorder such that

Define in an analogous way as in Phase 2
of Rosenbrock’s Method.

Phase 3: Determine by means of Gram–Schmidt
orthonormalization of and put

Remark 12.1.3 Search methods as those above should be used in case that
the function to be minimized has no special “structural properties”; they are
also useful as a starting procedure in order to reach the neighborhood of local
minimum from several starting points.

176 12 SEARCH METHODS WITHOUT DERIVATIVES

12.2 The Simplex Method (Nelder–Mead)

We recall the concept of a simplex. Let be linearly indepen-
dent vectors. With and the convex hull

is called an in The segment connecting
and is called an edge; its length is equal to If all edges
in a simplex have equal length, the simplex is called regular.

A regular in with edge length 1 is easy to construct. In fact,
consider the following matrix whose columns are supposed to be
the vertices of the regular simplex:

Clearly, and in (12.2.1) should satisfy the following relations:

It follows:

See Figure 12.2 for a picture in case

The linear independence of columns of the matrix in (12.2.1),
with and according to (12.2.3), follows from the following exercise.

Exercise 12.2.1 Let A be the obtained by deleting the first
column of the matrix in (12.2.1). Show:

12.2 The Simplex Method (Nelder–Mead) 177

Let be an Then the
is called the face of

with barycenter

The simplex reflected via

The transition from to is called a reflec-
tion via see Figure 12.3.

The transition from to with
for some is called a uniform

contraction with respect to for it is called a uniform expansion with
respect to see Figure 12.4.

is defined to be the

178

The idea of the simplex method consists in moving a starting simplex —
by means of reflections and uniform contractions — into a neighborhood of
a (local) minimum of a function

The Simplex Method:

Choose a starting point

Choose the edge length of the regular starting simplex.

Compute and

Put

component

Choose the contraction factor (e.g.

Set number of reflections.

Set number of contractions.

Set K (“rotation number”, empirical recommendation:

Compute

Put E = -1, Z1 = Z2 = 0 (control variables).

Proceed according to the flowchart of the simplex method (see at the
end of this chapter).

Remark 12.2.2 A stopping criterion which can be motivated from statis-
tics, is the following: Here, is given, and is the standard
deviation:

Remark 12.2.3 The control variable E takes care that a reflection is not
reflected back in the next step (because that would induce an oscillation).

Remark 12.2.4 The actual value of the control variable denotes since
how many steps the point did not change. Consequently, a large value of

means that the simplices rotate in a certain sense around the point It
can be suspected that there is a local minimum near the latter motivates
the performance of a contraction; see Figure 12.5.

12 SEARCH METHODS WITHOUT DERIVATIVES

12.2 179The Simplex Method (Nelder–Mead)

The regularity of simplices proves to be troublesome in practice, especially
when walking along narrow valleys. The following version of Nelder–Mead
(the method of flexible polyhedrons) is much more flexible. Apart from uni-
form contractions, there also appear contractions and expansions in certain
directions: in fact, transitions of the following form (see Figure 12.6):

where

The Simplex Method of Nelder–Mead:

Choose a starting simplex, for example a regular simplex, with vertices
Choose

expansion factor (for example
contraction factor (for example
stopping criterion with as in (12.2.6).

Proceed according to the flowchart of the simplex method of Nelder–Mead
(see the end of this chapter).

180 12 SEARCH METHODS WITHOUT DERIVATIVES

12.2 The Simplex Method (Nelder–Mead) 181

Flowchart of the Simplex Method

182

Flowchart of the Simplex Method of Nelder–Mead

Reorder := order according to with

12 SEARCH METHODS WITHOUT DERIVATIVES

13 One–Dimensional Minimization

In this chapter we consider the minimization of a function of one variable.
In fact, many optimization methods rely on on successive line searches, i.e.
one–dimensional optimization steps. We distinguish two types of methods:

I. Interpolation Methods. Here, the function is successively interpo-
lated by means of polynomials of degree two or three; the minima of the
latter polynomials produce new approximations for the desired minimum. In
general, these methods are favourable with respect to smooth functions. We
will describe the following interpolations:

Hermite–interpolation (first derivatives are required)

Quadratic–interpolation without using derivatives

Quadratic–interpolation using derivatives

II. Search Methods. They are based on successively shrinking a certain
interval in which the function is unimodal; the function is called unimodal
in if has a unique local optimum in the open interval We will
mention the following:

Golden Section Method

Fibonacci–Search

Armijo’s Rule

Hermite–interpolation

The idea is contained in the following theorems.

Theorem 13.1 Let be given, where Then,
there exists a unique polynomial of degree at most 3 (the so-called Hermite–
interpolation Polynomial) satisfying:

Proof. (Exercise).

184

Theorem 13.2 Let be given and suppose that
0 and Then, the Hermite–Interpolation Polynomial corre-
sponding to (13.1) — with — has a unique
minimum in and it holds:

where

Proof. (Exercise).
Hint: First reduce the problem to the case Next, put

Compute and choose the root of having a
positive second derivative for

Exercise 13.3 Describe a possible optimization algorithm in which Her-
mite–interpolation is used. A combination with interval halving might be
favourable.

Quadratic–interpolation without using derivatives

The idea is contained in the following theorem. In part (a) only the derivative
is used: the latter is known in optimization methods that use gradients.

Theorem 13.4 (a) Let and for some Then,
there exists a unique polynomial of degree at most two satisfying

Moreover, the polynomial has a minimum

Let and suppose that and that
are not equal, where Then, the quadratic polyno-
mial satisfying has a minimum
where

(b)

where

13 ONE–DIMENSIONAL MINIMIZATION

13 One–Dimensional Minimization 185

Proof. (Exercise).

Quadratic–interpolation using derivatives

The idea goes as follows (see Figure 13.1): Suppose that and
If respectively then compute

the point with a formula analogous to (13.4), using the data
respectively

Golden Section Method

Theorem 13.5 Let and suppose that is continuous
and unimodal in Let be the minimum for Then, we
have: if if

Proof. Consider the case that Suppose hence,
Then, there exists a point satisfying

Consequently, is a local optimum for in Since
the latter is not possible in view of the unimodality of The case that

can be treated in a similar way.

Now, suppose that and are given. In virtue
of Theorem 13.5 we can reduce the interval to or to

186

We require that in both cases the interval–length is reduced by the same
factor. It follows The reduction factor becomes:

In the remaining (reduced) interval we have to insert a point in such a way
that in the next step again a reduction is possible with the same factor
From symmetry we may assume that is the remaining interval (see
Figure 13.2).

Since can become the next remaining interval, we obtain the fol-
lowing requirement:

With (13.6) it follows, using the equality

Consequently, is the positive root of the equation and we
have

Exercise 13.6 Describe a possible optimization algorithm using the Golden
Section Method; note that only one new function value has to be computed
after each reduction step.

Fibonacci–Search

This is based on the question which maximal interval reduction can be ob-
tained in steps (i.e. by computing function values). Otherwise stated,
what is the maximal interval length that can be reduced in steps to an
interval of length 1.

Let and Suppose that is the minimum of
the (unimodal) function and that are known.

13 ONE–DIMENSIONAL MINIMIZATION

13 One–Dimensional Minimization 187

If then for further reduction there are only functional
values available, hence:

If then for further reduction there are functional values
included) available, hence:

Summing up yields:

Since it follows that the maximal satisfying (13.8) satisfies the
inequality where the Fibonacci numbers are recursively defined
by:

Now, let and suppose that are known and that
is unimodal in with minimum in For given compute the
Fibonacci numbers Put

In (13.11) we have in both cases (exercise):

From (13.10), (13.11) it follows (exercise):

From (13.13) we see that for only one new functional value has to
be computed (for the values at have to be computed).

From (13.12) it further follows:

188 13 ONE–DIMENSIONAL MINIMIZATION

Note that Formula (13.14) gives a relation between the desired accuracy
in interval reduction and the number of functional values to be computed.

Exercise 13.7 Derive an explicit formula for the Fibonacci numbers
Hint: We sketch several possible solution ideas.

(a)

(b)

(c)

With we have Consequently,

Now, diagonalize the matrix A.

Put Show, using (13.9) that

Decompose F as follows: Compute the
derivatives at the origin of the series for F and the latter decomposition.

Put From (13.9) it follows: Let the zeros be
Show that solves the problem for specific

Armijo’s Rule

An inexact one-dimensional minimization method which is widely used in
numerical optimization practice is Armijo’s Rule. In its basic form, it can be
stated as follows.

Let be continuously differentiable on a neighborhood of with
We search for some value such that By Taylor’s
theorem, such a exists.

The idea of Armijo’s Rule is as follows. Consider the tangent
of in The function obviously has negative slope. If the

graph of this tangent is rotated counterclockwise around the center
we will certainly find a value so that the point lies
below this new graph (compare Figure 1.6, where corresponds to the value

Now let play the role of the rotation parameter. Then the
function associated to the rotated tangent is

and we have to find such that

13 One–Dimensional Minimization 189

Each value that satisfies (13.15) is considered to be acceptable as a
descent step for the function In particular, note that in this setting is
not assumed to be unimodal on some search interval.

With a second parameter Armijo’s Rule proceeds as follows:
Set and In step check (13.15) with If the inequality
holds, stop, else set and continue with step

This method clearly stops after finitely many steps. Usual choices for the
parameters are and

Exercise 13.8 Let let be contained in a sufficiently small
neighborhood of a non-degenerate local minimizer (i.e. and

is positive definite) and let the search direction in be given by a
Newton step. Show that Armijo’s Rule for a descent in the function
with yields the step if the rotation parameter satisfies

This page intentionally left blank

Part II

Discrete Optimization

This page intentionally left blank

14 Graphs and Networks

We are now going to study optimization problems where the underlying sets
are finite. In order to be able to formulate such problems, we have to in-
troduce some notions from discrete mathematics, in particular from graph
theory.

14.1 Basic Definitions

A graph G is a pair G = (V, E) of disjoint finite sets where

V = V(G) is called the vertex set of G, its elements vertices or nodes or
points, E = E(G) its edge set. If we usually omit the brackets
and write In this case, and are called the endvertices of We
also say that and are adjacent or that they are joined by The edge
is incident to its endvertices and the number of edges incident to is

called the degree of A graph G with is

called complete. If it is denoted by G is called if
all degrees equal

Graphs are visualized by drawing diagrams such that the vertices corre-
spond to distinguished points in the plane and two such points are joined by
a line if and only if the corresponding vertices are adjacent. We emphasize
that Graph-theoretical terminology is still far from being unified. Here we
essentially follow Bollobás, whose introductory text is highly recommended
(see [27]).

194

Some authors allow different edges joining the same endpoints (multiple
edges) and/or edges joining a vertex to itself (loops). We call such objects
multigraphs, but they will not appear too often in this book. Usually, the
definitions we give for graphs carry over to multigraphs in an obvious way.

Two graphs G and are isomorphic iff there exists a bijection
such that

Figure 14.2 shows the pairwise nonisomorphic graphs on four vertices. Note
that two lines (corresponding to edges) may intersect in points not corre-
sponding to vertices of a graph.

In Harary’s book (see [97]), a graph is what we would call an isomorphism
class of graphs.

Exercise 14.1.1 Let Show that there exist exactly graphs
with vertex set V.

Exercise 14.1.2 (i) In each graph G = (V,E),
(ii) In each graph, the number of vertices with odd degree is even.

We call a subgraph of G = (V , E) iff and
If the subgraph is called spanning. If

the subgraph is induced by Clearly, not every subgraph is
induced by its vertex set, see Figure 14.3.

14 GRAPHS AND NETWORKS

14.1 Basic Definitions 195

For we denote by G – W the induced subgraph G[V \ W], for
let G – F := (V, E \ F) and It is convenient

to omit the set brackets if W or F are one-element sets.
Unions and intersections of graphs are defined “componentwise”:

and

One of the most fascinating aspects of Graph Theory is that there are
many open problems which can be stated easily. At this point, we mention
Ulam’s Reconstruction Conjecture from 1960 which is still unresolved:

Let G = (V, E) and be graphs with vertices
Suppose that for some numbering of the vertex sets and

we have that for all Then G
and are also isomorphic.

A walk in G is an alternating sequence where
the are vertices and The number is called the
length of W, its starting point and its endpoint. We say that W joins

and Note that a walk of length 0 is just a point. If W is a walk of
minimal length joining and then is called the distance of and

in
A walk W as above is closed if it is a trail if all the are different

and a path if even all the are different. A closed walk W with and
all different is a cycle. In the case of a path (resp. cycle), we also call

196

the subgraph (resp. a
path (resp. cycle). This will not cause any confusion, see Figure 14.4.

Writing iff and are joined by some walk in G, it is clear that
“~” defines an equivalence relation on V(G). Its classes induce the connected
components of G. G is connected if it has only one connected component.

Exercise 14.1.3 iff and are joined by some path in G.

If a path P joins a vertex in U with a vertex in W, (U, we also
say that P joins U and W or that P is a U – W -path. Assume that some

is given. If every U – W-path contains a vertex or an edge from X,
we say that X separates U and W (in particular, we must have
X is called a separating set if it separates two vertices in V – X. A vertex
(resp. edge) separating two points of the same component of G is called a
cutvertex (resp. bridge).

Exercise 14.1.4 (i) An edge is a bridge iff it separates its endpoints
and
(ii) An edge is a bridge iff it is not contained in a cycle.

G is called if and each separating vertex
set has at least elements. Equivalently, G – X is connected for each
with By we denote the maximal for which G is

14 GRAPHS AND NETWORKS

14.1 Basic Definitions 197

Similarly, a graph G with |V| > 1 is called connected if G – F is
connected for every with The maximal for which G is

connected is denoted by
Now suppose that G is a connected multigraph. G is called Eulerian

iff there exists a closed trail in G containing all the edges of G (a so-called
Eulertrail). Euler proved in 1735 the following result which may be considered
to be the first theorem in Graph Theory:

Theorem 14.1.5 (Euler) A connected multigraph G is Eulerian iff all its
degrees are even.

Proof. The easy proof is left as an exercise.

A Hamiltonian cycle is a cycle in G containing all the vertices of G. If
G has a Hamiltonian cycle, the graph is also called Hamiltonian. In 1859,
Sir William R. Hamilton invented a kind of puzzle called “Peter around the
world”. The task of the player was to find a Hamiltonian cycle in the graph
of Figure 14.5, which corresponds to a dodecahedron.

Exercise 14.1.6 Find a Hamiltonian cycle in the graph of Figure 14.5.

Despite the (superficial) similarity of Eulertrails and Hamiltonian cycles,
there is no analogue of Euler’s Theorem characterizing Hamiltonian graphs
in such a way that it is easy to check whether a graph is Hamiltonian or not.
In our chapter on Computational Complexity, we will see that there is a deep
reason for this fact.

The following exercise gives a sufficient condition for Hamiltonicity:

198 14 GRAPHS AND NETWORKS

Exercise 14.1.7 Suppose that G is a graph whose degrees satisfy the con-
dition

for each nonadjacent pair Then G is Hamiltonian.

Hint: If the theorem is false‚ there exists a counterexample G which
becomes Hamiltonian if we add any edge from Consider a path of
maximal length in G. What is its length? Look at its endpoints and at
the following figure.

A graph without cycles is called a forest. A tree is a connected forest. It
is clear that a forest is a graph all of whose components are trees. Observe
that omitting an arbitrary edge from a tree yields a forest with exactly two
components. By induction on the number of edges‚ we see that in a forest‚
the number of edges plus the number of its components equals the number
of vertices.

Theorem 14.1.8 Suppose that G = (V‚E) is a graph with vertices and
edges. Then the following conditions are equivalent:
(i) G is a tree
(ii) G is a minimal connected graph (meaning that G is connected but

is not for every
(iii) G is a maximal forest (meaning that G is a forest but the addition of

any new edge introduces a cycle).
(iv) For any two vertices there exists a unique path joining them.
(v) G is connected and
(vi) G is a forest and

Proof. (i) implies (iv) since the union of two different paths joining the
same pair of vertices obviously contains a cycle. Furthermore, it is clear that
(iv) implies each of the conditions (i), (ii) and (i i i) . The implications (ii)
(iii) and (iii) (i) are trivial as well. We have thus seen that the conditions
(i) to (iv) are all equivalent.

14.1 Basic Definitions 199

By the remarks preceding our theorem‚ trees satisfy (v) and (vi). Con-
versely‚ a forest with has exactly one component and is thus
connected‚ hence (vi) implies (i). Now‚ if G satisfies (v)‚ it contains a mini-
mal connected graph which must be a tree by the equivalence of (i) and (ii).
Since any tree has edges‚ G is that tree and (v) implies (i).

Exercise 14.1.9 Show that each tree on vertices has at least two
vertices of degree 1. (Such vertices are called leaves).

Exercise 14.1.10 Suppose that some set V is given‚ Prove that
there are exactly trees with vertex set V.

Hint (Prüfer-Code): Let To each tree T on V ‚ we
assign a sequence as follows:

1. Delete the leaf with minimal and let be the index of the vertex
adjacent to (Note that is a tree.)

2. If the trees and the numbers are defined and
delete the leaf with minimal index in and let be the index

of the vertex adjacent to in If STOP.
Show that in this way we get a bijection between the trees on V and the

set of satisfying for and

We are now in a position to state and solve one of the oldest problems in
Combinatorial Optimization: Suppose we are given some connected graph G
and a cost function on its edges. Find a minimal spanning tree
MST‚ i.e.‚ a spanning tree T of G with minimal cost. Here the cost of a tree
is the sum of the costs of its edges:

The following algorithm is due to Kruskal:

Kruskal’s Algorithm
Input: A connected graph G = (V‚E) and a cost function

Step 1: Sort such that

200 14 GRAPHS AND NETWORKS

Step 2: Let For test whether the graph
contains a cycle or not. If so‚ let If not‚ let

Output: The graph

Theorem 14.1.11 The graph is a minimum (cost) spanning
tree of G.

We leave the proof as an exercise:

Exercise 14.1.12 Prove Theorem 14.1.11.

Hint: If T were not a minimum spanning tree (MST)‚ choose a MST
of G containing as many edges of T as possible. Choose
with minimal Drop an edge from the unique cycle in
Now show that to obtain a contradiction!

An admissible of G is a function such that
adjacent vertices get different function values:

The invariant there exists an admissible of
G} is called the chromatic number of G. G is called bipartite if
The sets are called the colour classes of

Exercise 14.1.13 Prove that G is bipartite if and only if all cycles in G
have even length.

14.2 Matchings

The first graph–theoretical topic we are going to study in depth is Matching
Theory. Let us motivate the concept by two examples:

Example 14.2.1 In a factory‚ there are workers and jobs. Each worker
can do only one job at a time and each job needs only one worker. According
to different qualifications‚ not every worker can do every job but we know
for each worker the set of jobs for which she or he is qualified. We wish
to maximize the number of jobs which can be done simultaneously by some
qualified workers.

14.2 Matchings 201

To formalize this problem‚ we first introduce a bipartite graph with one
colour class consisting of the workers (W) and the other of the jobs (U).
Worker and job are adjacent if and only if is qualified for An
assignment of workers to jobs for which they are qualified is now represented
by a set M of edges in the bipartite graph such that each worker and each
job is an endpoint of at most one edge in M. Such a set of edges is called
a matching.

Definition 14.2.2 Suppose G = (V, E) is a graph and M is called
a matching if each vertex in V is incident to at most one edge in M. In
this case, the edges in M are called independent. We denote by the
maximum cardinality of a matching in G. Any matching M with
is called a maximum matching. The vertices which are incident to matching
edges are said to be covered (by M). The other vertices are called exposed
(with respect to M). A matching covering all the nodes of G is called a
perfect matching.

Note that there are matchings which are maximal with respect to inclusion
but have fewer edges than Such matchings are called maximal (not
maximum). In our example, the graph we constructed was bipartite, cor-
responding to the natural partition of the “vertices” into workers and jobs.
This is in fact an important special case but the general matching problem
also arises in applications.

Example 14.2.3 An airline wants to form crews for their flights. There is
a certain set V of pilots and for each crew two of them have to be chosen.
For different reasons (like age‚ sympathy‚ local restrictions‚ etc.)‚ only certain
pairs of pilots are compatible in the sense that they can fly together. Form
a graph with vertex set V where two pilots are joined by an edge if it makes
sense to put them into the same crew. How many disjoint crews can be
formed?

It is immediately clear that a solution to the above problem is a maximum
matching and that the underlying graph could be any graph on V‚ not just a
bipartite one. Note also that it is natural to consider the following weighted
versions or cost versions of the matching problems: Suppose there is some
cost function assigning a nonnegative real number to each
edge of the underlying graph G = (V‚ E). (The cost of assigning job

to worker or of putting pilots and into the same crew in the
preceding examples). Task: Find a maximum matching of minimal costs. It

202 14 GRAPHS AND NETWORKS

turns out that there are “good” algorithms for each of the above mentioned
versions of the matching problem and that the algorithms for the weighted
case need the solutions of the unweighted special case as a subroutine. Hence‚
in what follows‚ the unweighted cases are treated first.

Finally‚ we remark that the matching problem can also appear as a sub-
problem of other combinatorial optimization problems‚ the most famous of
which is the Chinese Postman Problem‚ also called Traveling Salesman Prob-
lem‚ and first discussed by the Chinese mathematician Meigu Guan in 1962.

Example 14.2.4 A postman has to walk through all the streets in a town
on his daily tour which is supposed to end at its starting point. How can
he find a tour of minimal length? Viewing the street net of the town as a
connected (multi–)graph (with a nonnegative length function on the edges)‚
the problem is to find a closed walk of minimal length in G traversing each
edge of G at least once. Assume first that the length of each edge is one. If
the graph is Eulerian‚ then an Euler tour is obviously an optimal solution.
If not‚ the solution is to make the graph Eulerian by doubling as few edges
as possible. Since there is an even number of vertices with odd degree‚
we could try to connect pairs of odd vertices by paths
with endpoints and such that the sum of all the path lengths is minimal.
Such a set of paths can be found by solving a weighted matching problem
and does indeed solve the Chinese Postman Problem.

14.3 The bipartite case

We start with an observation which will be used over and over again in the
bipartite as well as in the general case.

Suppose that M is a matching in G = (V‚E)‚ G any graph. A path
in G is called alternating (with respect to M‚ or M–

alternating) if M contains either all the edges with even or all the with
odd P is called an M–augmenting path if both of its endpoints

are exposed nodes. In this case‚ is odd and
is a matching with In 1957‚ Berge proved

the following characterization of maximum matchings in terms of augmenting
paths:

Theorem 14.3.1 (Berge) A matching M in a graph G is maximum if and
only if there exists no M–augmenting path in G.

Proof. We did already explain why maximum matchings do not have
augmenting paths. Conversely‚ assume that M and are matchings with

14.3 The bipartite case 203

Denote by the symmetric difference of M and i.e.
the set of edges which belong either to M or to but not to both. Since
M and are matchings‚ the graph with edge set has all degrees
at most 2‚ hence all its components are either cycles of even length or M–
and paths. It is clear that the cycles and the paths of even
length all have the same number of M– and Since
at least one component must be an alternating path containing more edges
from than from M. This path is clearly M–augmenting.

By a similar argument we obtain the following result:

Lemma 14.3.2 Suppose B and are the sets of nodes covered by the
maximum matchings M and respectively. Then for each
there exists some such that is again covered by
some maximum matching

Proof. Consider again the components spanned by Since both
matchings are maximum‚ all paths have even length. The vertex
is an endpoint of one of the alternating paths‚ say of

Now it clearly suffices to choose

and

Focussing now on bipartite graphs‚ we first prove an important result of
König. Denote by the minimum cardinality of a subset such that
each edge has at least one endpoint in W. Such a subset W is called a vertex
cover‚ the invariant the vertex cover number of G. Since no two edges
of a matching have an endpoint in common‚ clearly

In general‚ as can be seen from the triangle the two numbers can
be different‚ but König proved that equality holds for bipartite graphs:

Theorem 14.3.3 (König) For all bipartite graphs G‚

Proof. The following beautiful proof is due to L. Lovász.
Let G be any bipartite graph. We only have to show that

Since the deletion of edges can only decrease the vertex cover number of G

204 14 GRAPHS AND NETWORKS

(by at most one)‚ we successively delete edges e from G as long as the vertex
cover number does not change. We arrive at a graph H = (V‚ F) in which
each edge is i.e. for every edge Can
we guess how H should look like?

Assume for a moment that König’s Theorem is correct. Then H contains a
matching M of cardinality at most It is clear that the subgraph (V ‚ M)
of H has vertex cover number This implies that no edge in F\M
is hence F = M and H should consist of independent edges. On
the other hand‚ if we can show that H consists of independent edges (without
using König’s Theorem)‚ then clearly and the
proof is complete.

So let us assume‚ to the contrary‚ that there are two incident edges
in F. Clearly the graphs and have vertex covers

and respectively‚ of cardinality Observe that
and Furthermore‚ each edge

must be incident to both sets and It follows that either is incident
to or it joins two points in and and thus belongs to
the induced subgraph which‚ by the observation
above‚ also contains and is bipartite with vertex set of cardinality

By considering the smallest colour class‚ we see that it has a vertex cover U
of cardinality at most The set has
cardinality and is‚ by the remarks above‚ a vertex cover for H.
Contradiction!

Our next aim is to find an effective algorithm to construct a maximum
matching as well as a minimum vertex cover in a bipartite graph. The pre-
ceding proof does not offer much help. It shows that our problem can be
reduced to finding an algorithm which tests an edge for but is
this really easier? A more promising approach might be to resort to Berge’s
Theorem and try to do the following: Start with an arbitrary matching M
which might be empty. Try to find an M–augmenting path. If such a path
exists‚ M is not maximum and we can use it to enlarge M as in the proof
of Berge’s Theorem. If no such path exists‚ then M is already a maximum
matching. We are thus left with the task to either find an M–augmenting
path or to prove that no such path exists in a reasonable amount of time. For
bipartite graphs‚ this is accomplished by the so–called Hungarian method (in
honour of the profound contributions which the Hungarian mathematicians
D. König and E. Egerváry made to this field). Our next result is the struc-
tural theorem underlying the Hungarian method. To motivate it‚ assume

14.3 The bipartite case 205

that is a bipartite graph with colour classes U‚ W and
that M is a matching in G. Denote by and the subsets of U and
W‚ respectively‚ which are not covered by M. For reasons of parity‚ every
M–augmenting path joins some vertex in to some vertex in In order
to find one starting at we choose any edge incident to

say. (If no such edge exists‚ then there is no augmenting path start-
ing at If then defines an augmenting path. If
then there is exactly one edge which every augmenting path
starting with must contain. If there is no edge such that
all the are different‚ then there is no augmenting path containing Oth-
erwise choose any such edge and proceed in the obvious way. Suppose you
generate a maximal path by this procedure where
is even. Then there is no augmenting path containing P. Go back to the
last where you had a real choice when choosing the edge and try to
enlarge the path by traversing an edge different from and so
on. Never choose a new edge leading to a vertex which was already visited‚
since this leads only to a situation you encountered in an earlier stage of the
algorithm. It is clear that the edges which you choose in this way span a tree

If you come back to without having found an augmenting path and
without a possible edge left‚ then there should be no augmenting path
starting at Hence we choose some and proceed in an analogu-
ous way to find an augmenting path starting at Note that we never need
to visit a vertex of since it was checked that there is no alternating

path. Proceeding in this way‚ we either find an augmenting path or
generate a forest F with the following two properties:

Each vertex of F in W has degree two in F and one of the two
F–edges incident to belongs to M (hence

Each component of F contains exactly one vertex of

We now state and prove the announced theorem:

Theorem 14.3.4 Let G‚V‚U‚W‚ M be as above and suppose that
is a maximal forest (with respect to inclusion) satisfying conditions

(*) and (**). Then M is a maximum matching if and only if no point of F
is joined (in G) to a vertex of

Moreover‚ if there is an edge between V(F) and then the unique
path between and in the forest is M–augmenting.

If not‚ then is a vertex cover for G of cardinality
|M|.

Before we prove the theorem consider

(*)

(**)

206 14 GRAPHS AND NETWORKS

Exercise 14.3.5 In the following bipartite graph let the dashed edges define
a matching M.

M is not a maximum matching. For instance‚ the edge can be deleted
and the edges and can be added.

This matching is now a maximum matching as proven by the forest

Proof. (i) Suppose first that there is an edge joining V(F) to
The F–component of contains exactly one vertex

(by (**)) and thus exactly one path P from to By property (*)‚ P is
M–alternating‚ hence is M–augmenting.

(ii) Now assume that no vertex in is joined to a point in F. Let

We have to show that is a vertex cover of G having cardinality |M |.
This is done in three steps: (1) and (2) show that and (3)
shows that it is indeed a vertex cover.

14.3 The bipartite case 207

(1) Since and M covers all points in
(2) If is an edge in M with then From (*) it follows

that and hence It is thus impossible that both endpoints
of an M–edge are in

(3) Suppose now that is an edge of G with no endpoint in
By definition‚ and Since no point in is joined to
V(F) by assumption‚ and there exists an edge
cannot be an element of V(F) since otherwise (by (*)) there were a path
from to which must begin (by (**)) with an edge of M. Since is the
only matching-edge incident to and follows. But then

is a forest with properties (*) and (**) which is larger than F.
Contradiction!

This theorem (and the remarks preceding it) suggest efficient algorithms
for solving the bipartite matching problem (which might differ in the way how
the forest F is constructed). We give here an elegant version due to Lawler
([150]) whose book contains many algorithms for combinatorial optimization
problems in a form such that they can easily be implemented.

Hungarian method: Lawler’s Algorithm

Input: We are given a bipartite graph with colour
classes U‚W and some matching M of G.

Step 1 (Labelling of the vertices):

Step 1.0: Each point in is labeled by “0”.

Step 1.1: If all labels have been scanned in Steps (1.2) or (1.3)‚ go
to Step 3. If not‚ choose a vertex with an unscanned label. Go
to (1.2) if and to (1.3) if

Step 1.2: The label of a vertex is scanned as follows: For
each edge such that has not got a label yet‚ we label

with Back to (1.1)!

Step 1.3: The label of a vertex is scanned as follows: If
then go to Step 2. If not‚ then choose the edge

and label with Back to (1.1)!

Step 2 (Augmentation of M): We arrive at this step from Step (1.3)
and find an augmenting path P from to as follows: The
first vertex is which has got some label Then is the second

208 14 GRAPHS AND NETWORKS

vertex of P. The third point is the label of and so on until a vertex
with label “0” is encountered. This vertex (in is the other endpoint
of P. Use P to form a larger matching as in the proof of Berge’s
Theorem, i.e.

and let Remove all labels and go back to (1.0).

Step 3: STOP. M is a maximum matching. The unlabeled points in
U together with the labeled points in W form a minimum vertex cover.

Exercise 14.3.6 Let G be the same graph as in Exercise 14.3.5 and start
with the matching M given by the dashed edges below:

The given labelling arises if the labels of
are scanned (in this order). According to the algorithm‚ now a label has
to be scanned‚ e.g. the label of Following (1.3)‚ we proceed with Step 2
and find the alternating path

Then is the new matching. We label
with respect to and obtain (by scanning the labels of
and in this order):

The corresponding forest F is:

14.3 The bipartite case 209

We leave it to the reader to prove the correctness of the algorithm which
is an immediate corollary of the last theorem. When the algorithm stops
at Step 3‚ consider the forest(!) F whose vertex set consists of all labelled
vertices and in which two vertices and are joined if and only if is
labelled or is labelled This forest is also called a Hungarian
forest.

Another remark is that the number of computational steps of the algo-
rithm is bounded by a constant times as can be shown by a thorough
analysis. In later chapters‚ we will explain what is meant by the number of
computational steps and which algorithms can be considered to be efficient.

An easy corollary of König’s Theorem is the so–called Marriage Theorem
of P. Hall. (Hall published his paper in 1935‚ but Frobenius had an equivalent
theorem already in 1912.) In graph-theoretical-terms it reads as follows:

Theorem 14.3.7 (Hall) Let be a bipartite graph
with colour classes U and W. For a subset let denote the set of
all which are adjacent to some Then G has matching number

210 14 GRAPHS AND NETWORKS

|U | if and only if Hall’s condition is fulfilled‚ namely

for all

Proof. The necessity of Hall’s condition is easy to see and we leave that
part of the proof to the reader. To prove sufficiency‚ assume that
By König’s Theorem‚ there exists a vertex cover Z for G with |Z| < |U|. Let
X := U \ Z. Then and thus

The marriage theorem got its name and became so famous because it
solves the following serious real–life problem: Suppose a group U of women
and a group W of men are given. Each of the women is acquainted with
some of the men but usually not to all of them. Under which conditions can
each woman marry one of the men she already knows (no bigamy!)? If we
join a woman and a man by an edge if and only if they are acquainted with
each other‚ then Hall’s Theorem says that this is possible if and only if each
group of women knows (collectively) at least men‚

As a more serious application of Hall’s Theorem‚ consider the polyhedron
of stochastic matrices‚ i.e.‚

The matrices with exactly one 1 in each row and column are called permuta-
tion matrices. They are obviously doubly stochastic. It turns out that they
are just the extremal points of This is the essence of the following result
which was proved independently by Birkhoff‚ König and von Neumann:

Theorem 14.3.8 Each is a convex combination of permutation
matrices.

Proof. We proceed by induction on the number of positive elements
in A. Clearly‚ with equality if and only if A is a permutation
matrix.

Now assume and construct a bipartite graph
by joining and if and only if

is positive. We show that G satisfies Hall’s condition:

14.3 The bipartite case 211

Suppose that some is given. Then

It follows that G has a perfect matching M. Define the permutation
matrix P by if and only if and let

Then and is doubly
stochastic and By the induction hypothesis we can write
as a convex combination of permutation matrices: hence

as desired.

Now assume that some cost function is given. We are
looking for a maximum matching M which minimizes the sum

We may assume from the outset that we are working with a complete
bipartite graph containing G because we can assign a very high cost
K to those edges in the complete bipartite graph which are not present in
G. A minimum cost matching of cardinality in will then consist of a
minimum cost maximum matching in G together with some edges of weight
K. Working with it is convenient to view the cost function as an
matrix where A maximum matching M‚ which is of
course perfect‚ can be described by a permutation
via

and its costs are

Denoting by the set of all permutations on we now want to
solve the following problem which is also known as the assignment problem:

Given some real find a permutation such
that for all

Observe that an equivalent formulation is the following: Minimize the sum
over all permutation matrices Since the permutation

matrices are just the extremal points of this is equivalent to minimizing
the objective function over all We can thus solve the
assignment problem by linear programming techniques. However‚ there is a
(usually) more efficient procedure which is based on Lawler’s Algorithm and
which we are going to describe now:

As a first step‚ we note

212 14 GRAPHS AND NETWORKS

Lemma 14.3.9 Let be a real and
real vectors. Assume further that solves the assignment

problem for the cost matrix C. Then also solves the assignment problem
for where

Proof. For each we have

The result follows immediately.

We are now going to construct a sequence of cost
matrices such that is obtained from by modifying the rows and
columns of as in the preceding lemma.

The first matrix arises from C by first subtracting from row the
amount and then from column the amount

Then for all and each row and each
column contains at least one zero. Form a bipartite graph by letting

if and only if and compute a maximum matching M
(as well as a minimum vertex cover by Hungarian Method. If M is a perfect
matching‚ then and M clearly solves the assignment problem
for hence (in view of the lemma) also for C. If M is not perfect‚ we
consider the vertex cover which was produced by Hungarian Method.
Consider and By construction‚
Now add to all rows with and subtract it from all other rows.
Then add to all columns with and subtract the same number
from all other columns. The resulting matrix is It can also be obtained
by adding to all positions with and and subtracting it
when and The resulting graph has the following properties:

1. All the edges of a Hungarian forest corresponding to
are also edges of (since F has no edges joining X to Y)‚ in particular‚

2. There is some edge with which means
that

We can now enlarge in order to become a maximal forest with
properties (*) and (**) for By property 2 above‚ or M
is also a maximum matching for but contains and thus
strictly contains

14.3 The bipartite case 213

Now we proceed in an analogous manner to generate The
procedure stops as soon as we obtain a graph with But

since can grow larger only times in succes-
sion. It follows that the method terminates after at most
iterations.

We list here some exercises. By G we always denote a bipartite graph
with colour classes U‚ W and edge set E.

Exercise 14.3.10 Prove the Mendelsohn–Dulmage Theorem: Let and
be matchings in G. Then there exists a matching covering

all the nodes of U which are covered by and all the nodes of W covered
by

Exercise 14.3.11 Deduce the following result from Hall’s Theorem:
where

Exercise 14.3.12 (i) G is called if all vertices in G have degree
If G is show that E is the union of disjoint matchings.

(ii) More generally: If all degrees of G are at most show that E is the
union of at most matchings.

Exercise 14.3.13 Prove the following quantitative refinement of Hall’s The-
orem: Suppose Hall’s condition is fulfilled and that‚ for every we have

Then there are at least matchings of cardinality
|U | if and at least such matchings if

Exercise 14.3.14 Show that and for all nonempty
if and only if G is connected and each edge is contained in a

perfect matching.

Exercise 14.3.15 Suppose that and is an
with entries in such that no number is contained twice in a row or
column of A. (A is called a Latin rectangle). Show that each Latin
rectangle can be extended to an Latin square.

Hint: In order to obtain one more row‚ apply Hall’s Theorem to an
appropriate bipartite graph!

Exercise 14.3.16 In the algorithm for the assignment problem‚ show that
the sum of all matrix entries in the cost matrix is strictly smaller than
the corresponding sum for has no perfect matching).

214 14 GRAPHS AND NETWORKS

14.4 Nonbipartite matching

We now turn our attention to general graphs‚ starting with the description
of the so-called Gallai-Edmonds Structure Theorem.

Theorem 14.4.1 (Gallai-Edmonds Structure Theorem) Let a graph
G = (V‚ E) be given. Denote by the set of all vertices of G which are
not covered by all maximum matchings of G. Let and

Then the following conditions hold:
(i) and for all
(ii) Each maximum matching of G contains a perfect matching of

and a maximum matching of each component of
(iii) Each component H of is factor-critical‚ which means that

has a perfect matching for each vertex of H.
(iv) where denotes the number

of components of

Example 14.4.2 The graph in Figure 14.12 might clarify the objects used
in the Gallai-Edmonds Structure Theorem.

Proof. (i) Suppose is given. Since is covered by each maximum
matching‚ We conclude that for each there
exists some maximum matching of missing hence
To prove the reversed inclusion‚ we assume that a vertex
exists which is an exposed node of the maximum matching of
We choose some neighbour of in and a maximum matching M of G
avoiding Now consider again the graph The component of
in this graph is obviously some alternating path P starting with an M-edge
at its endpoint If P had even length‚ the matching

would be a maximum matching of G avoiding which is impossible in view
of The length of P is thus odd. Since admits no augmenting
path in the other endpoint of P must be But then

is again a maximum matching of G avoiding Contradiction! The equation
is now easy.

(ii) This follows readily from (i) by applying part (i) successively for all
The details are left to the reader.

14.4 Nonbipartite matching 215

(iii) If H is a component of it is a component of as well.
Since the edges of a maximum matching of belonging
to H form a maximum matching of H and for each there is some
maximum matching of H avoiding
For short: for all
We now show:

(*) If is a connected graph with for all
then H is factor-critical.

To prove this, assume that H satisfies the assumption of (*). We may
assume that H is saturated with respect to i.e. for each

edge

Now we show that H is a complete graph. Assume, indirectly, that

Choose such that but Since

there exists a maximum matching of H avoiding
both and We also have a matching of the same size avoiding

216 14 GRAPHS AND NETWORKS

Consider the graph Since is maximal‚ it covers both
and Denote by and the components of containing

and respectively. Clearly‚ and are paths with and as one
of their endpoints. They have to be different because otherwise we had an
augmenting path for Similarly‚ the component of is a path and we
assume w.l.o.g. that Now‚

is a matching with edges in H‚ contradiction! It follows that H is
complete and thus

(iv) It follows from (ii) and (iii) that each maximum matching of G joins
the points of to points in in such a way that different points in are
joined with different components of The number of exposed nodes is
thus hence

which was to be shown.

Exercise 14.4.3 Denote by the number of odd components of G.
(i) Prove Tutte’s Theorem:
G has a perfect matching if and only if for all
(ii) Prove Berge’s Formula: For all graphs G = (V‚ E) we have:

Exercise 14.4.4 Describe the structure of graphs, i.e., graphs

G with for each new edge

Exercise 14.4.5 In the situation of the Gallai-Edmonds Structure Theorem
construct a bipartite graph as follows:

W consists of all components of Join to in
H if is joined to in G (by some edge).
Prove: If then for all

14.4 Nonbipartite matching 217

Exercise 14.4.6 Prove Petersen’s Theorem: Each 3-regular‚ 2-connected
graph has a perfect matching.

We now present an algorithm for constructing a maximum matching in
an arbitrary graph. It is due to Lovász and Plummer and was motivated by
the Gallai-Edmonds Structure Theorem.

Let G = (V‚E) be the underlying graph and suppose that some (non-
empty) set of matchings is given where each has
exactly edges. We define the following subsets of V:

The following lemma gives the optimality criterion for the algorithm of
Lovász and Plummer:

Lemma 14.4.7 Let be a system of matchings as above and
suppose Assume that the following conditions hold:

No edge of M joins a vertex from to a vertex in

For each component H of the edges of M contained in H
cover all but one vertex of H‚ i.e.‚ they form a near-perfect matching
of H.

(i)

(ii)

Then M is a maximum matching of G.

Proof. By condition (ii)‚ each component H of is odd. If is
any matching of G‚ either at least one point of H is not covered by or
at least one point of H is matched with a vertex in by It follows
that leaves at least vertices of G uncovered‚
where denotes the number of components of On
the other hand‚ the matching M is easily seen to leave exactly elements
uncovered in view of conditions (i) and (ii).

The algorithm proceeds as follows:
Start with where consists of the empty set only.

If is given‚ check whether satisfies conditions (i) and
(ii) of the lemma. If it does‚ is a maximum matching and we stop.
Otherwise we show that we can either find a matching M with edges

218 14 GRAPHS AND NETWORKS

and proceed with or that we can enlarge our list by some
matching For the latter case‚ we need some estimate for
the maximum cardinality of during the algorithm.

Case 1: Condition (i) fails for some i.e.‚ there is an edge
joining a vertex to Denote by

some vertex in adjacent to

If is not covered by let Then
and is not covered by hence
Otherwise‚ there is some which does not cover Consider the
component P of in the graph
P is an alternating path with as one endpoint. If |E(P)| is odd‚ then P
is an augmenting path and we obtain a matching. So we
assume that |E(P)| is even. If then

is a matching which is missing Hence‚ once again
Finally‚ if deletion of

from P produces two paths and where w.l.o.g. contains Then

is again a matching missing either or
Summarizing Case 1‚ we can say that if there is a matching which does
not satisfy condition (i)‚ then we can either find a matching
or a matching such that strictly contains

Case 2: Condition (i) holds for all matchings in however‚ condition
(ii) fails for each

2.1: Suppose that H is a component of and misses
at least two points of H where is missed by the other edges of as
well.
If and is not covered by is a
matching. If and then and

is a matching which does not cover hence
So suppose and are not adjacent.

Since they are in the same component H‚ there is a shortest in
H joining them. Denote by the neighbour of on the path and choose a

14.4 Nonbipartite matching 219

matching missing Of course we may assume that covers
since otherwise we could argue as in the case where and were adjacent.
Consider the alternating path P with as one endpoint. If the
other endpoint of P is different from then either P or is an
augmenting path with respect to or respectively‚ so we assume that
P is a If P contains as a vertex‚ then P contains an edge

with We then use the path to
construct a matching missing Otherwise‚ we add

to misses and is not covered by The distance
between and in H is smaller than the distance between and
Continuing in this way‚ we arrive at one of three possible cases: we obtain a

matching or we find a matching whose addition to
increases or we get a matching M missing such that

misses and a case which was already treated.
2.2: Suppose now that we are neither in the situation of Case 1 nor Case

2.1. In particular‚ each matching from misses at most one point in
each component H of and‚ if so‚ all the other points in H are
covered by edges in For a fixed matching‚ say‚ there are
three types of components H of

Type 1: There is some point in H which is missed by and the edges
of form a near-perfect matching of H.

Type 2: covers all points of H and exactly one joins H to

Type 3: covers all points of H and more than one joins H to

By the optimality criterion‚ if there is no Type 3-component we are done.
So assume that H is a Type 3-component and is a point in H which
is not covered by Choose an missing and consider the
path P in containing P has as one endpoint and‚ if P is
no augmenting path‚ the other endpoint must be the node in
some Type 1-component It follows that is a Type 2-component for

and that the Type 2-components for are also Type 2
for We add to the list The vertex in H is not covered by
and thus either Case 2.1 applies again or H is Type 1 for Iterating the
argument with instead of we finally obtain an augmenting path or
return to Case 2.1 or find that our matching is optimal.

220 14 GRAPHS AND NETWORKS

It should be clear from the description above‚ that the algorithm stops
after a finite number of computational steps. We further observe‚ that the
cardinality of is bounded by since each time we add some matching
to either increases or the distance between and the uncovered
vertex or in Case 2.1 decreases or the number of Type 2-components
increases in Case 2.2. ¿From this observation‚ it is easy to see that the algo-
rithm can be implemented to work in polynomial time. It is‚ however‚ not
as fast as the classical algorithm by Edmonds which is described now.

We begin with an easy lemma:

Lemma 14.4.8 (Contraction Lemma)
Suppose G is a graph‚ a matching in G and C a cycle of length
containing edges of and one node. Let be obtained from
G by “contracting C to a point”‚ i.e.‚

Then the following holds:
is a maximum matching in G if and only if is a maximum

matching in

Proof. (i) Assume first that is not an maximum matching in
Then there is some matching in with corresponds
canonically to a matching in G which covers at most one vertex of
C. can be enlarged by edges from E(C) to a matching with

(ii) Now assume‚ conversely‚ that is a maximum matching in We
consider the sets and of the Gallai-Edmonds Theorem and use
Exercise 14.4.3. Clearly‚ by assumption and thus is in some odd
component of Let The cycle C is also contained in some
odd component of and we have:

We now obtain (using Exercise 14.4.3)

14.4 Nonbipartite matching 221

is thus a maximum matching in G.

The following theorem is the heart of Edmonds’ Algorithm:

Theorem 14.4.9 (Edmonds) Let G be a graph‚ a matching of G and
suppose that F is a maximal forest (maximal as a subgraph of G) with the
following properties:

(*) Each component of F contains exactly one vertex which is
(We call this vertex the root of the component. The vertices with an odd
distance from the root are called inner vertices‚ those with an even distance
outer vertices).

(**) Each inner vertex has degree 2 in F and one of the two incident edges
belongs to

Then the following statements are true:
(i) No edge joins an outer point of F to V(G) \ V(F).
(ii) If two outer points in different components of F are adjacent‚ then
is not a maximum matching.

(iii) If two outer points in the same component of F are adjacent‚ there is
some cycle C in G and some matching with such that the
Contraction Lemma can be applied to C and

(iv) If no two outer points of F are adjacent‚ then is a maximum
matching.

Proof. (i) There always exists some forest F with properties (*) and (**)‚
for example the forest consisting of all vertices and no edges.
Now suppose F to be maximal (as a subgraph) with properties (*) and (**)
and assume that there is some edge joining the outer point
to The maximality of F implies that each vertex in
V(G) \ V(F) is covered by If then (*) and (**) imply that

as well. Applying this to yields some matching edge
Now we add the vertices and the edges

to F and obtain a larger forest satisfying (*) and (**). Contradiction.
(ii) Let and denote outer points in different components of F and

There are unique paths P and Q from the roots of the components
of and to and respectively. Then P and Q together with form an
augmenting path for

222 14 GRAPHS AND NETWORKS

(iii) Let and denote adjacent outer points in the same component of F
with root and denote the first common point on the paths from and
to Clearly‚ is an outer point‚ too. The paths from and to together
with form an odd cycle C containing edges from In
case we let Otherwise‚ let P denote the path from to
Then is a matching as required.

(iv) Assume that there are no edges between points in W‚ the set of outer
vertices. In (i)‚ we saw that there are no edges between W and V(G) \ V(F)
and that induces a perfect matching on V(G) \ V(F). Denoting by A the
set of inner points of F‚ we see that the points in W are isolated points in
the graph G – A and that Now we have:

hence

We can now describe the Edmonds Matching Algorithm:

Edmonds Matching Algorithm
In each step of the algorithm‚ we have some matching of G and some

forest satisfying (*) and (**) which contains all vertices.
(We start with Then we consider all edges incident
to outer points of F and distinguish 4 cases:

If some edge joins an outer point to V(G) \ V(F)‚ we enlarge F as in
Theorem 14.4.9‚ (i).

If some edge joins two outer points in different components of F‚ we
enlarge as in Theorem 14.4.9‚ (ii).

If some edge joins two outer points in the same component of F‚ we
form and C as in Theorem 14.4.9‚ (iii) and contract G to as in
the Contraction Lemma. Then we apply the algorithm to

If there are no edges between outer points‚ we stop. is a maximum
matching.

1.

2.

3.

4.

14.5 Directed Graphs 223

Remark 14.4.10 (i) Our description of the algorithm is rather crude. For
details‚ see [156]‚ Chapter 9.
A rather straightforward implementation of the algorithm would lead to a
running time of It is‚ however‚ possible to get down to

(ii) We also have a weighted matching algorithm working in polynomial
time. It is also due to Edmonds and uses the algorithm above as subroutine
together with tools from Linear Programming. See also [145].

14.5 Directed Graphs

A directed graph (or: digraph‚ network) is a pair (V‚ A) where V is the (finite)
set of vertices (or: nodes‚ points) and is the set of arcs (or: directed
edges).
If is called the head of and its tail.

is the tail of is called the outdegree of
is the head of its indegree.

Directed graphs are visualized similar to graphs by diagrams. The direction
of the edges is indicated by arrows on the edges.

An arc of type with is called a loop. In what follows‚ we
always assume that our digraphs have no loops.
If D = (V‚ A) is a digraph‚ we obtain a (multi-)graph G = G(D) by forgetting
the orientations of all the arcs: G = (V‚ E) with
This gives us a method to carry over many notions from graphs to digraphs:
D is called connected iff G(D) is connected or a tree if G(D) is a tree and

224 14 GRAPHS AND NETWORKS

so on. Similarly‚ a sequence with
is called a walk in D if forgetting the orientations of the

yields a walk in G(D). The walk is called a directed walk if
for The notions of a directed path and a directed cycle are defined
similarly. D is strongly connected if for each pair there exists
a directed path from to
Assume that D = (V‚A) with The

with

is called the incidence matrix of D.

For readers being more interested in the theory of digraphs we refer to the
recent textbook [13].

14.6 Exercises

Exercise 14.6.1 If B is the incidence matrix of D‚ then
rank of (number of connected components of D).

Hint: Consider a spanning tree in each component.

Exercise 14.6.2 Assume that D is a connected digraph and B its incidence
matrix.

Interprete the entries of the matrix in terms of D. K is
called the Kirchhoff-matrix (or: Laplacian) of the digraph.

The number of spanning trees of D is det where is obtained
from B by deleting an arbitrary row.

Hint: Use the formula of Cauchy-Binet for computing the determinant
of products:
det where the summation is over all

submatrices C of

Use (ii) to prove that the number of trees on vertices is

Hint: Apply (ii) to an arbitrary orientation of the complete graph.

(i)

(ii)

(iii)

14.6 Exercises 225

Exercise 14.6.3 A digraph D with vertex set V is called a tournament if for
each pair of different vertices‚ exactly one of the arcs
belongs to A.

In each tournament D‚ there is some vertex which can be
reached from each other vertex by a directed path of
length at most two.

Hint: Consider a vertex of maximal indegree.

Each tournament has a directed Hamiltonian path‚ i.e.‚ a directed path
visiting all nodes in V.

(i)

(ii)

This page intentionally left blank

15 Flows in Networks

Suppose D = (V‚ A) is a connected network with incidence matrix B and
two distinguished nodes The node s is called the source of the
network‚ its sink‚ the nodes from are called intermediate nodes.
We assume that the rows of B are ordered in such a way that the first row
corresponds to and the second to The arc is assumed to be in A
and corresponds to the first column of B.

Definition 15.1 (i) Each satisfying is called a flow
in D.
(ii) A vector is called a capacity function for if

In this case‚ the Linear Programming problem (MF):

is called a maximum flow problem.
A flow with is called admissible for (or just admissible). The
quantity is also called the value of
(iii) A subset is a cut for if and If some capacity
function is given‚ then the number

is called the capacity of the cut C. A cut of minimal capacity is called a
minimum cut.
Note that in the definition of cap(C)‚ the components of are indexed by
elements of A and not by numbers. This means of course that if arc
 corresponds to the column of B.

Lemma 15.2 Assume that is a capacity function for an admis-
sible flow and C is a cut. Then we have:

(i)

(ii)

228 15 FLOWS IN NETWORKS

Proof. (i) In the system we sum all equations corresponding to
nodes in C. This yields:

Since the result follows‚
(ii) Immediate from (i) since

For the solution of problem (MF)‚ the following definition is crucial:

Definition 15.3 Let D = (V‚ A) denote a network‚ and
a capacity function for

is called augmenting (with respect to and if for all

Edge is called a forward (resp. backward) edge in case (ii) (resp. (iii)).

Theorem 15.4 (Ford and Fulkerson‚ 1956) Let be as above.
An admissible flow is maximum if and only if there is no augmenting
path.

Proof. (i) Assume that is an augmenting
Define

as well as

Then‚ by the definition of an augmenting path‚ is an admissible flow
with contradicting the maximality of

(i)

(ii)

(iii)

15 Flows in Networks 229

(ii) Assume that there is no augmenting Let
V : There is an augmenting in D}. By assumption‚ and
hence is a cut. If with and then must
hold‚ since otherwise an augmenting could be extended to an
augmenting contradicting the definition of Similarly‚ for arcs

with we must have From our lemma‚ it follows
that

and that is maximum.

The following corollary was shown by Ford and Fulkerson (1956) and by
Elias‚ Feinstein and Shannon (1956):

Corollary 15.5 (Max-Flow Min-Cut Theorem) Let be given
as above. Then there always exists an admissible flow and cut C satisfying

Proof. The existence of a maximum flow follows from Weierstraß’ Theo-
rem. Part (ii) of the proof of the preceding theorem shows how to obtain a
cut C satisfying

from

Exercise 15.6 (i) C is a minimum cut if and only if for (some or each)
maximum flow and each we have:

If C and are minimum cuts‚ then and are minimum
cuts as well‚ i.e.‚ the minimun cuts form a distributive lattice.

In the proof of the theorem above‚ the minimum element of the
lattice of minimum cuts is constructed.

(ii)

(iii)

The proof of the last theorem suggests a procedure for constructing a
maximum flow which we call the

230 15 FLOWS IN NETWORKS

Algorithm of Ford and Fulkerson

Step 1: Let is an admissible flow for each capacity
function.

Step 2: Try to find an augmenting with respect to (and
). If you find such a path‚ modify as in part (i) of the proof of the

above theorem and restart Step 2. If no path exists‚
stop the algorithm: is optimal.

We are going to discuss the search for an augmenting path below. Our
formulation of the algorithm of Ford and Fulkerson does not care about the
particular augmenting path used in Step 2. Any augmenting path is allowed.
If all capacities are integral then the value of increases by at least
one during each execution of Step 2. It follows‚ that the algorithm stops after
finitely many steps with some optimal (and integral!) maximum flow.

The case of rational capacities can be reduced to the integer case
by multiplication with the least common multiple of all the denominators of
the
It is surprising that there are examples with irrational capacities where the
algorithm does not stop nor even produces a sequence of flows whose values
converge to the optimum:

Example 15.7 (Ford and Fulkerson (1962)) Let D = (V‚A) be the
following network:

Denote by the positive root of the equation i.e‚

We have and satisfies the

recursion We define the capacity function for as
follows:

15 Flows in Networks 231

It is easy to see that the maximal value of an admissible flow is
We are now going to construct a sequence of flows which arises by repeated
application of the Algorithm of Ford and Fulkerson and show that

It follows that

If is admissible for the difference is called the residual capacity
of arc
Recursive construction of the flows

arises from by using the augmenting path hence

Assume that are defined such that we can find a per-
mutation of (1‚2‚3‚4) such that the arcs
have residual capacities 0‚ (in this order). Use the path

to obtain Then
and have residual capacities 0‚

1.

2.

232 15 FLOWS IN NETWORKS

with respect to
For the construction of we use the augmenting path

(see Figure 15.2).

It is easy to check that the residual capacities of with
respect to
We let and start
again with 2.
In the second step‚ the value of is first increased by and

15 Flows in Networks 233

then by If then

Note that and are the only “backward edges” in our augmenting
paths where the flow is decreased through the augmentation proce-
dure. In particular, if then

and all the are admissible.

The following result shows that the algorithm of Ford and Fulkerson can
be modified in order to yield a maximum flow by a polynomial number of
steps independent of the capacities.

Theorem 15.8 (Edmonds and Karp (1970‚ 1972)) If in Step 2 of
the algorithm of Ford and Fulkerson‚ an augmenting path with a minimum
number of edges is used‚ then the algorithm terminates after at most

augmentations with a maximum flow.

Before we prove this result‚ we discuss the question how we can find a
shortest augmenting path efficiently.

Suppose that and some admissible flow are given. The residual
network is a digraph where

It is clear from the construction that to each directed we
can find an augmenting in D with respect to and of the same
length. We are thus led to study the following slightly more general problem:

Shortest Path Problem:
Input: Some digraph D = (V‚ A) with a distinguished vertex and

some length function
Problem: For each find some directed of minimal

length or prove that no directed exists.
(The length of the path is the sum of the lengths of its arcs).

234 15 FLOWS IN NETWORKS

The problem is solved by Dijkstra’s Algorithm (from 1959) which uses
two functions dist: and pred: During the algorithm‚

is the length of the shortest directed found up to now
and gives the predecessor of on that path. As long as no path was
found‚ we let and The algorithm also uses some
set T of those nodes for which and might change during the
further execution of the algorithm.

Dijkstra’s Algorithm:

Step 1: We let (pure formality!)‚ if
and if Furthermore‚

and for

Step 2: Determine the following subset

and let T:=T \U.

Step 3: For each determine successively the arcs
with and check whether If yes‚ let

and

Step 4: Check whether or not. If not‚ go to Step 2. If yes‚ the
algorithm stops.

Exercise 15.9 Show that Dijkstra’s Algorithm uses at most a constant
times computational operations.

Theorem 15.10 After execution of Dijkstra’s Algorithm‚ for each
the length of a shortest directed is (where
means that no such path exists). The digraph with

has the following properties

1.

15 Flows in Networks 235

F is a tree

For each there is exactly one directed in F.
This path is a shortest in D.

2.

3.

Proof. We leave the proof of this result to the reader‚ see also [2].

Exercise 15.11 How can Dijkstra’s Algorithm be simplified if for
all ?

Proof of Theorem 15.8:
We denote by the flow after augmentation steps and define

(resp. as the minimum number of edges in an augmenting
path (resp. after augmentations (with the convention that

is if no such augmenting path exists).
Claim: For each

and

Proof of the Claim:
We only prove the first inequality‚ the proof of the second one is similar.

Suppose and assume that is chosen such that is
minimal among all satisfying Consider the last edge

of some minimal augmenting after augmentations.
Case 1:

Then and‚ by our choice of hence

It follows that a minimal augmenting with respect to cannot
be extended along to a (minimum) augmenting hence
But then‚ must be used as a backward edge in the augmentation
step which obviously implies contradicting the inequality

from above.
Case 1:

Again we have and implying the
inequality
Similarly‚ we conclude that and that must occur as a forward edge
in the augmentation step‚ which obviously leads to the same
contradiction as in Case 1.

We call an edge critical in the augmentation step if
either was used as a forward edge in the augmentation step and

236 15 FLOWS IN NETWORKS

or it was used as a backward edge in the same step and
Assume that is critical in steps and but not in
any of the steps with
From the definition of and shortest augmenting for
step has length If was used as a
forward edge in step and a backward edge in step we obtain

and hence‚ by our claim‚

It follows that a shortest augmenting in step contains at
least two more edges than a corresponding path in step

It follows that each of the edges can be critical in at most augmentation
steps. Since each augmenting path contains at least one critical edge, the
number of augmentations is bounded from above by

Before we discuss the applications of the Max-Flow Min-Cut Theorem‚ we
consider for later applications the Shortest Path Problem where the length
function is not necessarily positive. Without further restrictions‚ this problem
is very difficult (NP-hard in the language of complexity theory) but it can
be treated if the length function admits no cycles of negative (total) length.
This case is usually solved by a very simple algorithm due to Moore‚ Bellman
and Ford:

Algorithm of Moore‚ Bellman and Ford

Step 1: Let for all

Step 2: Check for each arc whether

If so‚ let and
If not‚ proceed to the next arc.

Step 3: Step 2 is repeated times.

Similarly‚ if is a backward edge in step and a forward edge in
step we arrive at the same conclusion. Since and

we have

15 Flows in Networks 237

Theorem 15.12 If the Moore-Bellman-Ford Algorithm is executed on a di-
graph D with length function admitting no negative cycles‚ then the same
conclusions as in Theorem 2.1.10 hold.

Proof. Exercise.

This page intentionally left blank

16 Applications of the Max-Flow Min-Cut Theo-
rem

The Max-Flow Min-Cut Theorem has many important applications some of
which we are going to describe in this section.

16.1 The Gale-Ryser-Theorem

Suppose we are given two vectors

Is there some such that

We are thus looking for a zero-one-matrix with given row- and column-sums.
Since a permutation of rows or columns does not change the column- or row-
sums of a matrix‚ respectively‚ we may w.l.o.g. assume that

and
For each such we define by

Lemma 16.1.1 Let and be as above. Then the following inequalities
hold:
For

Equality holds if and only if and (where

Proof. Define some as follows:

240

Then and We further have:

In the first inequality‚ equality holds if and only if for all
and i.e. if and only if while in the second inequality
equality holds if and only if for all and i.e. if and only
if

Remark 16.1.2 The cases yield:

Theorem 16.1.3 (Gale (1957)‚ Ryser (1957)) Let
There exists some

satisfying (*) if and only if for all we have

Proof. We construct a network D = (V‚A) as follows: V is the disjoint
union of the sets

A consists of all arcs from to U‚ all arcs from U to W and all arcs from W
to as well as

We also define a capacity function for as follows:

16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

16.1 The Gale-Ryser-Theorem 241

We have the equivalence:

and there is some admissible flow with

there exists some matrix satisfying (*).

Exercise 16.1.4 Prove the above equivalence!
Hint: X and correspond to each other via if is an

integral flow.

Now let and suppose to be a maximum flow in our

network. As is a cut‚ we have the trivial inequality

Now assume C to be any cut and let From
and our lemma‚ we conclude:

If all inequalities

are valid‚ then it follows that

and is a min cut.
Now suppose that one of the inequalities does not hold‚ e.g.

Then and we can find with
Now let The equality conditions

242

in the preceding lemma yield:

thus

The theorem is proved.

16.2 König’s Theorem

We can easily deduce König’s Theorem from the Max-flow Min-cut Theorem
as follows: Suppose G = (V‚ E) is a bipartite graph with bipartition

Construct a network D = A) as follows:
with two new elements and and

As a capacity function, we let for
large, e.g. |A |(|U | + |W |). the integrality

of the capacities, we have an integral max flow Clearly, for all arcs
It follows that the set

is a matching in G whose cardinality equals
On the other hand‚ suppose that C is a cut satisfying

Then no arc can join some to some
since It follows‚ that is a vertex cover
for G with cardinality equal to cap (C).
This proves König’s Theorem and gives us another algorithm to compute
maximum matchings in bipartite graphs.

16.3 Dilworth’s Theorem

We are now going to consider a famous theorem about chain decompositions
of partially ordered sets (posets) and need a few definitions:

Definition 16.3.1 Assume that is a poset‚ i.e.‚ is irreflexive and
transitive.
A chain in P is a subset such that any two elements in K

16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

16.3 Dilworth’s Theorem 243

are comparable‚ i.e. either or holds. An antichain in P is
a subset such that no two elements in L are comparable‚ i.e.‚

never holds. A chain decomposition of P is a set partition of

such that each is a

chain‚

Theorem 16.3.2 (Dilworth (1950)) For each finite poset we have

Proof. We use König’s Theorem. Construct a bipartite graph
 as follows: The colour classes are the poset P and some disjoint copy

of P. The edge set is

(i) Assume that M is a matching in G. We obtain a chain decomposition
of P with as follows: Let

Enumerate by the elements of P such that is not an end-
point of some edge in M. Let and are in the same
component of
It is easy to check that is indeed a chain decompo-
sition of P and that the component of in G’ contains exactly
edges from M‚ hence

(ii) Now let be some vertex cover for G. We construct an
antichain L in P with as follows:
Let or
Then and is an antichain by definition of W‚ hence

(iii) By König’s Theorem‚ and we may choose some matching
and some vertex cover of G with

Using (i) and (ii)‚ we obtain a chain decomposition and an antichain
satisfying

hence

244

The reverse inequality is‚ however‚ trivial: Each element of an antichain must
occur in a chain decomposition and no two elements of an antichain can occur
in the same chain. The theorem is proved.

Exercise 16.3.3 Give a proof of Dilworth’s Theorem by induction on |P|.
Hint: Prove only the nontrivial inequality. For the induction step‚ study

the following two cases:

There is some antichain L of maximal cardinality which neither contains
all maximal nor all minimal elements of P. In this case let

(i)

Apply the induction hypothesis to I and F and merge the chain de-
compositions of I and F in an appropriate way.

(ii) The only candidates for a maximum antichain in P are the sets of all
maximal or minimal elements of P. Choose such that is
minimal in P‚ maximal and Apply the induction hypothesis to

Exercise 16.3.4 Deduce König’s Theorem from Dilworth’s Theorem.
Hint: If the bipartite graph G = (V‚E) with bipartition is

given‚ let with

Exercise 16.3.5 If is a poset‚ let

For let

for all there is some with

Show:

16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

16.3 Dilworth’s Theorem 245

(i) is a distributive lattice.

Hint: Let for all : if and then
denote the set of order ideals of P. Then is a distributive
lattice which is order-isomorphic to via

(ii) is a sublattice of

Hint: If L‚ are maximum antichains‚ let be a
chain decomposition of P with
We may assume w.l.o.g. that

and

Now show that

and

Exercise 16.3.6 Let be as above.

(i) Assume that some permutation group on P is given which respects
Show that there exists some which is a union of

orbits of

Hint: acts on in a canonical way and respects the order
Since is a finite lattice, it contains a

maximal element has the desired property.

(ii) Let P denote the lattice of all subsets of ordered by inclusion.
Let
Show that

Hint: Apply (i) where is the symmetric group on acting
on P.

of

246 16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

Exercise 16.3.7 Show that

Exercise 16.3.8 Suppose that different numbers are written
on a blackboard from left to right: Show that some of
the numbers can be wiped out such that

either numbers remain such that
and or

numbers remain such that
and

Hint: Let with and
By Dilworth’s Theorem‚ you either have a chain decomposition containing at
most chains or an antichain of cardinality

Exercise 16.3.9 Suppose that intervals on the real line are
given. Prove that there are either intervals with a common point or

pairwise disjoint intervals.
Hint: Assume that the intervals are Let

if and only if

16.4 Menger’s Theorem

The theorem was first proved in 1927 and is a basic result in the theory of
connectivity of graphs. There are essentially four versions (graphs-digraphs‚
points-lines) and we start with the case of digraphs:

Theorem 16.4.1 (Menger’s Theorem for digraphs) Assume that D =
(V‚ A) is a digraph with two distinguished vertices and

The maximum number of (pairwise) edge-disjoint directed
equals the minimum cardinality of a set of arcs such that (V‚ A \
F) contains no directed

(i)

(ii) If the maximum number of (pairwise) independent directed
equals the minimum cardinality of a set

such that D – W contains no directed

16.4 Menger’s Theorem 247

Here‚ two are called independent if their only common vertices
are and

Proof. (i) Apply the Max-Flow Min-Cut Theorem to the network
with capacity function Each integral maximum-flow with a minimal
number of edges decomposes into edge-disjoint directed
Now let C denote some cut with Since cap(C) is the number
of edges with head in V \ C and tail in C‚ each directed must
use one of those edges. It follows that the maximum number of edge disjoint

is at least as large as the minimum cardinality of some set
such that D \ F = (V‚ A \ F) contains no directed The reverse
inequality is trivial.

(ii) This case may be reduced to case (i) by modifying D as follows:
for each intermediate node introduce two nodes and

Now join to and replace arcs of type and by and
respectively:

It is easy to see that (ii) follows by applying part (i) to

Now the undirected case:

Theorem 16.4.2 (Menger’s Theorem‚ undirected case) Assume that
G = (V‚ E) is a graph with two distinguished vertices

The maximum number of (pairwise) edge-disjoint equals
the minimum cardinality of a set F such that G – F contains no
path.

(i)

248 16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

(ii) If and are not adjacent‚ the maximum number of (pairwise) indepen-
dent equals the minimum cardinality of a set
such that G – W contains no

Proof. The proof is by applying the directed version to the digraph D =
(V‚ A)‚ where

Assume that we are given a maximum number of pairwise edge-
disjoint directed in D‚ such that the total number of edges
used by the system of paths is minimal. The minimality condition
assures that not both arcs between and are used by the paths. We
thus obtain a system of edge-disjoint in G by forgetting
the orientation of all arcs. In the proof of the directed edge version‚ we
showed that there is a cut C such that there are exactly edges with
tail in C and head in V \ C. Again forgetting the orientation of those
arcs‚ we get a system of edges in G whose removal separates from

(i)

Follows trivially from the directed node version ((ii) of the preceding
theorem).

(ii)

16.5 The Minimum Cost Flow Problem

This is the Linear Programming problem

where B is the incidence matrix of some network. As in the context of max
flow problems‚ we usually assume that the underlying network is D = (V‚ A)‚
where and Since each column of B sums

to zero‚ (MCF) can only have feasible solutions if is called the

supply/demand vector‚ the cost function and the capacity function. The
capacity function may be infinite on some arcs. We always assume that
By using an algorithm for the Max Flow problem‚ we can determine whether
(MCF) has a feasible solution as follows:

16.5 The Minimum Cost Flow Problem 249

Choose two new vertices and and let

Now solve the Max Flow problem for and It is easy to
see that (MCF) has a feasible solution if and only if is a minimum
cut. Of course‚ (MCF) can be solved by a standard Linear Programming
algorithm. It is the purpose of this section to develop a so-called strongly
polynomial algorithm for (MCF)‚ i.e.‚ an algorithm where the number of
computational steps performed is bounded by a polynomial in which does
not depend on the numbers in and Of course‚ this is only possible if we
assume that the elementary arithmetical operations like addition‚ subtrac-
tion‚ multiplication and division count as one computational step.
In what follows‚ it is convenient to assume that for each pair of vertices
there is a directed without capacity restrictions on its edges.
This can be achieved by introducing extra arcs with huge costs which will
not appear in an optimal solution. We further assume that our problem has
a feasible solution. The algorithm we are going to describe relies on the con-
cept of residual networks. Given some feasible flow first replace each arc

by two arcs and of costs and respectively. The
residual capacity is for and for

To obtain the residual network eliminate all arcs of zero residual
capacity. We start by deriving some optimality criteria:

Theorem 16.5.1 Assume that is some feasible solution for (MCF). Then
is optimal if and only if one (or all) of the following three equivalent con-

ditions is satisfied:

(i) (Complementary Slackness)
There exist numbers such that for each arc

if

if

if

then

then

then

(ii) (Reduced costs)
There exist numbers such that for each arc from
the inequality

250 16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

(The numbers are called the reduced costs with
respect to

(iii) (Negative cycle)
The residual network contains no directed cycle with negative
costs.

Proof. We first show that is optimal if and only if (i) holds. This follows
from the complementary slackness conditions of Linear Programming:
If we introduce dual variables and then the
dual of (MCF) can be written as:

under the constraints

Thus is optimal if and only if there exist as above satisfying:

(a)

(b)

It is now an easy exercise to check that (a) and (b) are equivalent to the
three conditions in (i).

(i) (ii): If is in and in D‚ then
and is impossible. If comes from

then and is again impossible.
(ii) (i): Suppose If then is impossible

since otherwise would be an arc in with reduced cost

The other two conditions follow similarly.
(ii) (iii): Switching to reduced costs does not change the costs of a cycle.
(iii) (ii): If contains no directed cycle with negative costs‚ we

choose some node and solve the shortest path problem. Let be the
minimum cost of an Then‚ for each arc in

for all

for all

16.5 The Minimum Cost Flow Problem 251

we have Now‚ condition (ii) follows with
The negative cycle criterion (iii) above suggests an algorithm for solving
(MCF):

Cycle-Cancelling Algorithm

Step 1: Construct some feasible flow as described above.

Step 2: Look for some negative cycle in
If no such cycle exists‚ is optimal and we are done.
Otherwise‚ suppose that are the vertices of some
negative directed cycle in in the right order. Use C in the obvious
way to obtain a feasible flow with smaller cost from
Denote by the arc in D which induces in

where

Then the cost of is by · (cost of C in smaller than the cost of

Step 3: Replace by and repeat step 2.

Similar to the case of augmenting paths in network flow problems‚ it turns
out to be helpful to restrict the choice of C in step 2.
We always choose a minimum mean cycle‚ i.e. a cycle C sucht that

is a minimum.
So our first task is to describe an algorithm for finding such a cycle. Denote
by the minimum mean cost of a cycle in Choose some
arbitrary vertex and let

is the minimum cost of an of length exactly in
and can be computed by the recursion

252 16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

if we initialize

We can now show:

Theorem 16.5.2 (Karp‚ 1978)

Proof. Since addition of a constant to all arc costs changes both sides of
the equation we want to prove by the same constant‚ we may assume that

In particular‚ D contains no negative cycles and the shortest path
problem can be solved efficiently.
Denoting by the minimum cost of an we get the optimality
conditions

How does our problem change when we replace the cost function by the
so-called reduced costs defined by

Since and the cost of a cycle does not change‚ we have that all arc
costs in a minimum mean cycle are zero. The same holds for all arcs in some
shortest (i.e.‚ mimimum cost) path from to
Now consider a directed walk from to realizing the cost (with

as cost function)‚ e.g.

We have

which means that the cost changes by some amount depending only on and
not on
This implies that if denotes the

16.5 The Minimum Cost Flow Problem 253

minimum cost (under of a directed using exactly arcs. If we
fix a vertex then there is a shortest with edges, hence

and we see that It remains

to be shown that there is one vertex satisfying

Choose some minimum mean cycle with arc set and let denote some
node of the cycle. Construct a walk with edges as follows: Start with a
shortest and then follow the edges of C until a total of edges
is used. Assume that the walk ends in some point
By our previous observations about reduced costs‚ the walk only uses edges
with zero reduced costs. It follows that and the theorem is proved.

With Karp’s Theorem‚ it is easy to design an algorithm which actually
finds a minimum mean cycle: Compute subtract it from the cost of each
arc‚ compute the reduced costs and detect a cycle with zero reduced costs.
This can all be done in computational steps. There are many other
algorithms for computing a minimum mean cycle.
For a survey with tests of the performance of these algorithms in practice‚
see ([49]).
We can now prove the following

Lemma 16.5.3 Assume that is a sequence of feasible flows for
(MCF) such that results from by the Cycle-Cancelling Algorithm
where in each iteration a minimum mean cycle is used. Then we have:

(i)

(ii)

Proof. Denote by the circuit used for obtaining from in
Each arc in is the reverse of an arc in Hence‚ if
does not contain the reverse of an arc of then is a cycle in
and clearly Otherwise‚ construct a multidigraph
where is obtained by first forming the union and then deleting all
pairs of reverse edges. Here‚ the union is understood as a union of multisets:
If and are joined in both and then and are joined in by
two arcs. Since at least two arcs out of at most are deleted as a pair of

for all

for all

254 16 APPLICATIONS OF THE MAX-FLOW MIN-CUT THEOREM

reverse arcs‚ we have

hence

But is a multidigraph with equal in- and outdegrees at every vertex‚ and
can thus be decomposed into cycles. Since each of the cycles is in
they have mean cost at least and it follows that

Finally‚ since the costs of pairs of reverse arcs sum to zero‚

Let
Since is negative‚ the inequality

implies that
We can now estimate:

We have thus proved (i) and (ii) if and contain a pair of reverse
arcs. Exactly the same reasoning shows that if
and contain a pair of reverse arcs, but and do not for
Now consider the cycles Each contains an arc

whose residual capacity is changed to zero and which is thus removed from
the residual network in the iteration. Since the original network D has

arcs, there exist such that and join the same pair of vertices
and minimal. If is the reverse of we have found a pair of

hence

16.5 The Minimum Cost Flow Problem 255

reverse arcs in and If then must have been restored to the
residual network in some earlier step‚ contradicting the choice of and
Summarizing‚ we have

and the proof is complete.

The lemma shows that decreases by a factor with every
iterations.
It follows that after iterations‚

Denoting by the maximum cost of an arc‚ we obtain the inequality

If all costs are integral‚ it follows that and we are done. For general
real cost functions‚ it can be shown that after every iterations‚
at least one additional arc becomes fixed‚ i.e.‚ the flow through the arc will
not be changed by later iterations. This yields the bound
for the number of iterations which does not depend on the cost function (see
[81]‚ 1989).

This page intentionally left blank

17 Integer Linear Programming

So far we have mainly dealt with optimization problems where the solutions
we searched for could be real or rational vectors. For a huge part of opti-
mization problems‚ however‚ one is interested in more restrictive solutions‚
f.e. in feasible vectors with all components being integers or belonging to the
set {0‚1}. Such problems are called integer programming or 0-1 programming
problems‚ respectively.

In this section we shall study integer linear programming problems‚ i.e.
LP-problems where solutions are searched for in some Even though at
a first sight it might be a bit surprising these problems are conjectured to
be much more difficult to solve than problems over We substantiate this
remark later on after we have introduced the notion of NP-completeness‚ see
Theorem 21.7.

Having in mind that the general integer linear programming problem is
hard to solve (under some standard complexity theoretic assumptions) it is
useful to look for at least some subclasses of instances for which one can
do better. In particular‚ it would be helpful to find instances for which the
algorithms we already studied work as well when we restrict the space of
feasible solutions to integer vectors.

17.1 Totally unimodular matrices

Of major importance in relation with subclasses of integer linear program-
ming instances that allow efficient algorithms is the notion of total unimod-
ularity.

Definition 17.1.1 A matrix is totally unimodular iff
for each square submatrix B of A we have

Example 17.1.2 An important class of totally unimodular matrices are in-
cidence matrices of directed graphs. Given a directed graph G = (V‚ E)‚

we define its incidence matrix by

By induction on the dimension of a square submatrix B of A we can show
that A is totally unimodular: For it is clear that
because all entries of A belong to {–1‚0‚1}. Now for general note that

258 17 INTEGER LINEAR PROGRAMMING

each column in B has either no‚ one or two non-zero entries which either
are –1 or 1. If a column in B consists of 0 entries only the determinant
is 0. If a column has precisely one non-zero entry in {–1‚ 1}‚ then Laplace’s
expansion rule applied to that column together with the induction hypothesis
gives for a submatrix with
Finally‚ if all columns of B have two non-zero entries‚ then the structure of
A guarantees one to equal 1 and the other to equal –1. Adding all rows gives
the result 0‚ thereby showing that the rows are linearly dependent. Thus‚
det(B) = 0.

Exercise 17.1.3 a) Let be totally unimodular. Then so are
are –A, and where is the identity matrix in

Let be as in a) and Prove the following statement:
if every submatrix of has a determinant in { –1‚ 0‚ 1}‚
then A is totally unimodular.

Exercise 17.1.4 Let G = (V‚E) be an undirected graph and let
be its incidence matrix‚ i.e.

Show that A is totally unimodular iff G is bipartite.
Hint: For the if-part proceed similar to Example 17.1.2. In case of all

columns having precisely two non-zero entries conclude linear dependence of
the rows by partitioning them into two sets and subtracting the sum of the
rows in the two sets from each other. For the only-if-part consider a cycle of
odd length in G and confer Exercise 14.1.13.

17.2 Unimodularity and integer linear programming

Let us now turn to the role totally unimodular matrices play in connection
with optimization problems. Recall the Vertex Theorem 6.1.5 from Chapter
6. If a linear programming problem attains its infimum it attains it in some
vertex of the feasible set. In general‚ such a vertex of course is not integral.
However‚ if it were‚ then it would be as well a solution of the related inte-
ger linear programming problem. Therefore‚ if we could guarantee optimal
vertices (or all vertices) to be integral we could use general LP methods as
well for integer linear programming. As we shall see next totally unimodular
matrices provide such a guarantee.

17.2 Unimodularity and integer linear programming 259

Let with row vectors
Recall from Chapters 2 and 6 the definitions

of active indices in and
of the stratum generated by

Definition 17.2.1 For A‚ b‚ M‚ as above is a minimal stratum if its
dimension equals rank(A).

It is easy to see that if is minimal the rows span the
row-space of A. This will be useful in the following

Theorem 17.2.2 Let be totally unimodular. Then for every
and for every minimal stratum there

exists an integral point in M‚ i.e.

Proof. Let be such that is a minimal stratum. W.l.o.g.
assume that the first many rows are linearly independent and

where (otherwise reorder rows). It
follows that the submatrix of A‚ given by is regular.
Therefore‚ the linear system

has a unique solution which actually belongs to This follows
from integrality of the total unimodularity of A (which gives
{–1‚1}) and Cramer’s rule.

We extend by defining

If we show that we are done. Towards this end it is sufficient to
prove for all the indices are both active for and

Since span the row space of A there is a representation of as

260 17 INTEGER LINEAR PROGRAMMING

Now

It follows that in precisely the same inequalities are active as are in and
thus

The following converse of Theorem 17.2.2 holds as well.

Theorem 17.2.3 (Hoffman and Kruskal) Let Then A is
totally unimodular iff for every each vertex of the polyhedron

is integral.

Proof. For the only-if part let A be totally unimodular and define

where denotes the identity matrix. Clearly‚ has

rank and is totally unimodular‚ cf. Exercise 17.1.3. Moreover‚
for Due to the minimal

strata of are the vertices of i.e. each consists of a single point only.
According to Theorem 17.2.2 this point belongs to

For the converse suppose A is not totally unimodular. So there exists
a submatrix of A such that where

W.l.o.g. take as Since the
inverse exists. We use in order to find together with
a non-integral vertex of

Towards this end first note that because of
This implies that at least one row in say

contains a non-integral entry. It follows where
denotes the corresponding unit vector in

Given we construct a vector as follows: Find a
such that and define

Clearly‚ On the other hand the unique solution

of the linear system does not lie in We extend to

17.2 Unimodularity and integer linear programming 261

by adding zero components. Moreover‚ for we choose
such that and define

We now claim that is the right choice to obtain a contradiction: For
as above it is with the last components of vanishing as well as

and precisely the first inequalities hold as equalities.
If we define (as in the proof of the only-if part)

we can conclude where the first and the
last many inequalities hold as equalities and the corresponding many
rows of are linearly independent. It follows that is a vertex of that
is not integral‚ a contradiction.

A direct consequence of the previous theorem together with the Duality
Theorem 5.2.9 of Linear Programming is

Theorem 17.2.4 A matrix is totally unimodular iff for all inte-
gral vectors for which the following problems (P) and (D) are
(finitely) solvable‚ there exist integral solutions and

Here‚ as usual we define

Proof. By noting that A is totally unimodular iff is‚ the claim follows
from the Duality Theorem‚ the Vertex Theorem and Theorem 17.2.3.

The above theorem has some interesting applications; for example‚ it can
be used to prove once more some of the results we have seen already earlier.

262 17 INTEGER LINEAR PROGRAMMING

Example 17.2.5 This is another proof of König’s Theorem 14.3.3. Let G =
(V‚ E) be a bipartite graph and let be its incidence matrix‚ cf.
Exercise 17.1.4. According to that exercise A is totally unimodular. If we
choose vectors such that all components in and are 1
Theorem 17.2.4 implies

and the solutions are integral. It is easy to see that the left hand side describes
a minimal vertex cover whereas the right hand side describes a maximum
matching.

Exercise 17.2.6 Give another proof of Theorem 14.3.8. Use Theorem 17.2.3
in order to show that the vertices of the polyhedron of doubly stochastic
matrices are integral.

Exercise 17.2.7 Use Hoffman’s and Kruskal’s theorem to show the follow-
ing: An integral matrix is totally unimodular if and only if for all
vectors and for all vectors all vertices of the polyhedron

are integral.
Hint: For A totally unimodular consider which is

also a totally unimodular matrix; apply Theorem 17.2.2.
For the converse use Theorem 17.2.3 with the choice Now find

and such that all vertices of can be found among
the vertices of

Exercise 17.2.8 Show that the statement of Exercise 17.2.7 remains valid
if for the vector we allow entries from and for vector entries from

Exercise 17.2.9 Let Prove the following
statements:

a) If

17.3 Integral polyhedra 263

then

Use the Duality Theorem 5.2.9.

If in part a) all A ‚ are integral and A is totally uni-
modular‚ then the optimization problems in a) have integral solutions.

Use Exercise 17.2.7.

If and respectively‚ are solutions of the problems in a)
show that the following relations hold for all

b)

c)

i)

ii)
iii)

iii)

Use the Characterization Theorem 5.2.8 of Linear Programming.

17.3 Integral polyhedra

A polyhedron M is called rational if it can be defined as
for some matrix A and vector with rational entries. M is called

integral if it is the convex hull of all its integral points:

We start with some preparations:

Lemma 17.3.1 Let be a rational polyhedron. Then is
dense in each stratum of M.

Proof. Assume is any stratum of
Then

But it is clear by the usual Gaussian elimination
procedure that is dense in the affine subspace

Now is relatively open in W and the result follows.

264 17 INTEGER LINEAR PROGRAMMING

Recall from section 5.3 that each polyhedron M can be written as

with suitable points By using the previous
lemma and reconsidering the proofs in section 5.3‚ it is easy to see that M
is rational if and only if the and in the above representation can be
chosen as rational vectors. Since is a cone‚ may even
be chosen as integral vectors.
The following theorem is due to Meyer [168].

Theorem 17.3.2 is a rational polyhedron for each rational polyhedron
M.

Proof. Let where P is a polytope and are
integral vectors.
Consider P + L where

P + L is a bounded convex set and thus contains only finitely many integral
points. It follows that is an integral polytope.
We want to show that

which clearly implies the result.

Let be integral. We write with and

Then

Here‚ is clearly in P + L and‚ since and

are integral‚ is integral as well.
Conversely‚ if where and then

Since is clearly the convex hull of its integral points‚

17.3 Integral polyhedra 265

Corollary 17.3.3 A rational polyhedron M is integral if and only if

where all and are integral vectors‚

Proof. Exercise.

We also need some information about solving systems of linear diophan-
tine equations. The theory is closely related to the well-known structure
theorem for finitely generated modules over principal ideal domains (see‚ e.g.
[117]).
A matrix is called unimodular if its determinant is ±1. Equiva-
lently‚ U and transform onto Then the following theorem holds:

Theorem 17.3.4 Suppose There exist unimodular matrices
and such that U AV = D‚ where

is a diagonal matrix with entries in position and zeros
elsewhere such that and divides

Proof. For a proof‚ see [117] or [220].

Roughly speaking‚ elementary row and column operations are used to ob-
tain D‚ and U and V represent the compositions of these operations. Hence‚
U und V are not uniquely determined‚ but D is. D is called the Smith normal
form of A and can be computed in polynomial time (see‚ e.g. [133]).
The following result is well-known:

Theorem 17.3.5 Let and Then is solvable by
an integral vector if and only if for every rational vector such that A
is integral‚ the number is an integer.

Proof. If with and then clearly
To prove the converse‚ we may assume w.l.o.g. that A and

are integral. Choose unimodular matrices U and V such that U AV = D is
in Smith normal form. Consider the following conditions:

266 17 INTEGER LINEAR PROGRAMMING

If for some rational then

If for some rational then where

(i)

(ii)

Claim: (i) and (ii) are equivalent.

We have :

Since U is unimodular‚ Furthermore‚

and the claim follows.
Assume (ii) and let as above.
Clearly, (ii) implies that for i.e.,
For let where the i-th component is
nonzero. Then is integral and It follows that divides

and

thus
with

Now
It follows that is an integral solution of

We can now prove the following characterization of integral polyhedra:

Theorem 17.3.6 Let M be a rational polyhedron. Then the following state-
ments are equivalent.

M is integral.

Each minimal stratum contains integral points.

If is a vector such that

(i)

(ii)

(iii)

then the maximum is attained at some integral point

(iv) If is an integral vector such that

then the maximum is an integer.

17.3 Integral polyhedra 267

Proof. (i) (ii): Follows from
(ii) (iii): If for some then
for all (see Theorem 6.1.3). But contains a minimal stratum
which by assumption contains an integral point.
(iii) (iv): trivial
(iii) (i): Clearly‚
Assume that where and and that there
is some point By the separation theorem for convex sets‚ there
is some vector such that

and‚ since is a rational polyhedron‚ may be chosen as rational. If
then condition (iii) yields some integral point

of M outside which is a contradiction. It follows that the problem
is unbounded and hence the dual problem

is infeasible.
By the Farkas Lemma‚ this means that there is some vector satisfying

which‚ by applying our first lemma to may be chosen
to be rational.
Now choose some integral and consider the points
Clearly‚ for all and for infinitely many
It follows that is unbounded‚ a contradiction.
(iv) (ii): Let with A and integral and suppose that

is a minimal stratum. It
follows from the minimality of that it is an affine subspace‚ i.e.

If contains no integral points‚ there are
rational numbers such that is integral‚ but is not

(Theorem 4.3.5). Since the and are integral‚ this property does not
change if we add positive integers to the and we may thus assume that all

are positive. But then‚ is an integral vector such that

268 17 INTEGER LINEAR PROGRAMMING

for all where equality holds if and only if
Since we obtain the desired contradiction.

For applications in Discrete Optimization‚ the following notion‚ due to
Edmonds and Giles‚ has turned out to be important.

Definition 17.3.7 (Edmonds and Giles [57]‚ 1977)
A system of linear inequalitites is called totally dual integral (TDI)
if the minimum in the LP duality equation

has an integral optimum solution for each integral for which the minimum
exists.

It should be emphasized that being TDI is a property of systems of linear
inequalitites‚ not of polyhedra.

Example 17.3.8 (i) Consider the case of one inequality
TDI-ness means that each with

where
is an

integer.
This is true iff either and the greatest common divisor
of components of is one.

(ii) Let and

By considering the vector it is easy to check that is

not TDI. If we add the inequality (which follows from
the system becomes TDI. (Exercise).

The following result is useful:

Theorem 17.3.9 If is TDI where A is rational and is integral‚
then the polyhedron is integral.

Proof. We use condition (iv) of the above theorem. Suppose that is
integral such that is finite. Since is TDI‚

with integral. Since is integral as well‚ and the result follows.

So‚ if the assumptions of the previous result are true‚ we may use Linear
Programming Algorithmus to obtain an integral solution.

or

17.3 Integral polyhedra 269

Exercise 17.3.10 If is a TDI sysytem and implies the
inequality then the system is TDI as well.

Exercise 17.3.11 If is TDI‚ then is
TDI as well.

Theorem 17.3.12 (Giles and Pulleyblank [77]) If M is a rational poly-
hedron‚ then there exists some rational TDI system where A is inte-
gral and The vector can be chosen to be integral if and
only if M is integral.

Proof. Suppose that with U and rational. If is a
minimal stratum of M‚ then for some index set

and is attained on if and only if is in the polar
cone By corollary 4.3.3‚ for finitely
many integral vectors Let
and note that the are integral if M is. The TDI system arises by
choosing the vectors as rows of A and as the corresponding component
at the right hand side for each minimal stratum
It is now easy to check that isTDIand (Exercise!).
If M is integral‚ then is integral too as was noted above. If‚ conversely‚ is
integral‚ then integrality of M follows from the previous theorem.

Exercise 17.3.13 A (0‚ 1)-matrix A is called balanced if it does not contain
some square submatrix with exactly two ones in each row and column.

(i) If A is balanced‚ then the following polyhedra are integral:

Here 1 denotes the vector with all components equal to one.

Hint: To prove integrality for use induction on the number of rows
of A‚ see [72]‚ Lemma 2.1.)

(ii) The linear system representing is TDI‚ (see [42]‚ Lemma 5).

(iii) A hypergraph is a pair H = (V‚E)‚ where E is a system of subsets of
V. The incidence matrix of H is the (0‚ 1)-matrix whose rows are the
incidence vectors of the sets in E.
H is called balanced if its incidence matrix A is balanced. A perfect
matching for H is a subset of E which partitions the whole ground set
V of H.

270 17 INTEGER LINEAR PROGRAMMING

Prove the following result from [42]:

Theorem 17.3.14 A balanced hypergraph H = (V‚ E) does not have a
perfect matching if and only if there exist disjoint subsets
such that and every edge contains at least as many nodes
from R as from B.

Hint: If H has a perfect matching‚ then sets R and B as described above
cannot exist. To prove the converse‚ note that H has no perfect matching if
and only if

Now use (ii).)
We remark that there is a huge amount of literature on techniques for

solving Integer Linear Programs in practice. We recommend the interested
reader to consult [227].

18 Computability; the Turing machine

In the previous chapters we have already spoken a lot of times about al-
gorithms. In the area of continuous optimization the simplex algorithm,
Khachiyan’s ellipsoid method or the interior-point algorithms were explained.
For some optimization problems in graph theory we learned about the Hun-
garian method, the Edmonds’ matching algorithm, Dijkstra’s and Kruskal’s
shortest path algorithms and some more.

However, so far we did not present a precise definition of what an algorithm
should be. If issues like the inherent complexity of a problem should be
addressed such a precise concept of course must be settled. It is obvious
that our abilities of solving a problem strongly depend on the means we are
allowed to use, for example operations we might perform.

In this chapter we shall study the Turing machine concept, [218]. It has
turned out to be the main theoretical concept for defining the notion of an
algorithm for problems over finite alphabets and a complexity theory for the
latter.

Dealing with the complexity of algorithms and problems three main issues
arise. First, we might be interested in designing algorithms. Every algorithm
which solves a problem gives an upper bound for the complexity of the latter.
Second, after having solved a problem by constructing an algorithm we might
ask in how far the latter is optimal. This leads to the area of lower bounds:
what can we say about the running time any algorithm solving our problem
has to use? The optimal goal in complexity theory is to prove a lower bound
for a problem which is met by an algorithm we have designed. In this situation
we have arrived at an optimal algorithm for our problem. However, for many
problems treated here such optimal algorithms are not known. In many cases
one does not know the exact complexity of problems. Then we can often
solely make relative statements in the sense that we compare the difficulty
of different problems. This is the third area complexity theory deals with.
The main idea here is that of reducing problems to each other. It leads to
the notion of complete problems which is crucial for complexity theory.

In this and the following chapters we shall mainly deal with the first and
the third issue.

The literature on this field is immense. As a few text-books we refer to
[11], [12], [74], [181], [184].

272 18 COMPUTABILITY; THE TURING MACHINE

The Turing machine, introduced by Alan Turing in 1936, is one among the
theoretical concepts which were developed in the first half of the 20th century
in order to formalize a computability notion for problems defined over finite
alphabets. The latter means that all the data which specify a problem in-
stance can be expressed via a string (word) of letters which belong to a finite
set. Before explaining the ideas of a Turing machine we thus first introduce
some elementary facts about finite alphabets.

Definition 18.1.1 (Finite alphabets)

a) A finite set A is called a finite alphabet.

b) A finite string which is built using letters is a word over
A. We also consider the unique string consisting of no letter of A as a
word over A and denote it by It is called the empty word over A.

c) The set of all words over A is denoted by is a word over
A}. Sometimes, we also use

Whenever we deal with a finite alphabet we suppose that none of its
letters decomposes into a sequence of other letters. This general assumption
is necessary for the following obvious definition of the length of a word.

Definition 18.1.2 (Length of a word) Let A be a finite alphabet and
The length or size of is defined to be the number

The empty word has length

The operation of combining words will frequently occur in the following.

Definition 18.1.3 (Concatenation) For a finite alphabet A as above and
words in A* the concatenation of and
is the word Obviously, If has
the form for we call a prefix of and a suffix of

Exercise 18.1.4 a) Let and be finite alphabets with cardinalities
at least 2. Show that there is an injective function such
that where

b) Show by a simple counting argument that if then for any
injective function as in a) there is an infinite sequence

such that

18.1 Finite Alphabets

The above exercise substantiates the fact that a theory of computation
over finite alphabets does not depend strongly on the particular alphabet
which is chosen in order to encode problems. As long as the cardinalities of
the alphabets are at least 2 this extends (as we shall see) also to complexity
issues. The reason is that the length of a code in is at most a constant
factor of the length of the given word in

Whereas the Turing model is tailored to compute (partial) functions
for an arbitrary finite alphabet, one can thus think about com-

putability theory over finite alphabets as the theory of computing functions
from (actually, by using a further coding, from where any
natural number is coded over the finite alphabet {0,1} using its binary repre-
sentation. In Chapter 22 we shall briefly outline another machine model, the
Random Access Machine RAM, which computes functions over the natural
numbers and which is equivalent in its computational power to the Turing
machine (with respect to the above indicated way of coding problems in
different alphabets).

18.2 The Turing machine 273

18.2 The Turing machine

Let A be a finite alphabet. We are now going to describe the way a Turing
machine performs a computation over A. A precise definition will then follow.

A (one-tape) Turing machine M consists of a control unit, a head and a
plane tape. The latter is unbounded to both directions (left and right) and
divided into a countable number of cells.

Without loss of generality we assume A always to contain the elements
0,1 and #. Furthermore, we assume that a special symbol called blank, is
not member of A. We abbreviate the set

At any step of the computation each cell stores one element from More-
over, at any moment of a computation of M only finitely many cells store an
element from A (i.e. different from The head of M is positioned at one
cell of the tape. During a single computational step it can read the element
stored at this cell and might write another element from into the cell. Fi-
nally, the head may move to one of the neighboring cells (but does not have
to). The way the head behaves depends on a transition function, which is
stored in the control unit. This function can be considered as the program of
M. It depends on the current symbol read by the head as well as on one of
finitely many states of the control unit. These two objects determine which
new symbol is written down into the cell and how the head behaves after
writing something down. The computation starts in a distinguished state
called the initial state of M. There is a subset F of all states whose elements

274 18 COMPUTABILITY; THE TURING MACHINE

are final states. The machine M stops its computation as soon as it reaches
a final state. If no such state is reached M continues its computation forever.
As soon as we agree upon a way inputs are presented to a Turing machine
and outputs are taken from it, we can speak about the function computed
by M.

Here are the precise mathematical definitions.

Definition 18.2.1 (Turing machine) Let A be a finite alphabet,
A (one-tape) Turing machine M over A is a tuple

(Q, A, F) such that the following holds:

Q is a finite set of states of M;

is the transition function. If in state
the head of M reads the symbol and

then the head writes into the current cell, moves according to T (where
stands for move right, move left or do not move) and

the machine enters state

is the initial state of M;

is the set of final states of M.

18.2 The Turing machine 275

Definition 18.2.2 (Configuration)

a) Let M = (Q, A, F) be a Turing machine. A configuration of M
is an element Here, corresponds to a tape entry

where the head stands on the first symbol of and the state of the
control unit is The cells left to and right to are filled with blanks.
If then is called a final configuration of M.

b) For two configurations and of M we say that is the successor
configuration of in terms if is the configuration obtained by
applying to the configuration More precisely, for

we define

276 18 COMPUTABILITY; THE TURING MACHINE

Remark 18.2.3 Note that according to our definition of a configuration
there are several configurations representing all the current information about
a machine’s state and the tape entries. This holds because we did not rule
out those configurations where at the left end of or the right end of
unnecessary blanks are listed. However, this will not effect the further devel-
opment of the theory since once fixing the initial configuration gives a unique
sequence of configurations describing a computation.

The objects we want to compute using Turing machines are functions from
A* to A* . Towards this end it finally has to be defined how a computation
starts and what the output of a halting computation should be.

Definition 18.2.4 (Input-Output, computed function) Let M be given
as above and let be an input for M.

a) The configuration is called starting configuration.

b)

c)

A finite sequence of configurations such that
and is a final configuration, is called a finite compu-

tation of M on

If in part b) is of the form with then
the output of M is defined to be That is, the word computed
by M is the word we obtain by starting at the cell where head is
located and stopping at the first cell to the right which contains a

18.2 The Turing machine 277

If M does not stop on we write The partial function
is called the function computed by M. Vice versa, a partial function

is computable by a Turing machine if and only if there
exists a Turing machine M such that

Remark 18.2.5 a) Handling the input and output of a Turing machine
has not necessarily to be done as above. We just have to agree upon one way
doing it.

b) In the following examples has not to be completely defined. Some
missing translations have not to be specified because a corresponding config-
uration does not occur during a computation.

Example 18.2.6 a) Let M = (Q, A, F) be a Turing machine such that
A := {0,1} and The transition is given in

the following table:

278 18 COMPUTABILITY; THE TURING MACHINE

For input machine M orders the zeros and ones; in state it looks
for the first 1 and moves to state Now, if a 0 is seen the pair 10 is reordered
to 01 using state After each performed reordering of that type M runs to
the left end of the current word (using state and begins anew to look for
a pair 10. If no such pair is left the machine runs to the right end and stops.

Note that some transitions do not have to be written down because they
never have to be applied. In the above example, is only reached if M has
seen the combination 10. Thus, there will never be read a 0 if M is in

b) Let and contains the string We
want to describe a Turing machine which halts on an input if and
only if Define with initial state and final state

The transition function is defined as follows:

The different states code how much of a possible substring has already
been detected when parsing through from the left to the right. State
stands for the information that still has to appear; similarly, stands
for “one has been read”, for has been read” and indicates that

actually is a substring of

Exercise 18.2.7 Consider a Turing machine M = (Q, A, F), where the
transition is given by Describe the behavior of
M.

Exercise 18.2.8 A Turing machine over the finite alphabet {0,1} is given
by the following transition table:

18.3 Decision problems; undecidability 279

If is the only finite state, what does the machine compute on an input

18.3 Decision problems; undecidability

One class of problems we are interested in are decision problems. Here, for
a fixed subset and an input we want to decide whether
belongs to L or not.

Definition 18.3.1 (Decidability) Let A be a finite alphabet. A subset
L of A* is called a decision problem or a language, respectively. A Turing
machine M over A decides respectively recognizes L if and only if is the
characteristic function of L in A*, i.e.

In the latter case L is said to be decidable.

Exercise 18.3.2 Which of the problems treated so far in this book are de-
cision problems? What about the Linear Programming problem (duality
theorem!)?

The above definition of decidability implies that M halts for every input
A weaker notion than decidability is that of acceptance or semi-

decidability.

280 18 COMPUTABILITY; THE TURING MACHINE

Definition 18.3.3 (Acceptor; Semi-Decidability) An acceptor is a Tur-
ing machine M with only two final states If machine M for
an input stops its computation in then is accepted by M. If it stops
in it is rejected (but M does not have to stop at all!).

The set M accepts is the language accepted by
M. A language accepted by an acceptor is semi-decidable or recursively
enumerable.

Exercise 18.3.4 Prove that a language L is decidable if and only if both L
and its complement A* \ L are semi-decidable.

Example 18.3.5 We consider the finite alphabet A := {0,1,... ,9}. For a
word we want to decide whether is divisible by 3 if interpreted
as a natural number in decimal representation. According to Exercise 18.3.4
(work out!) it suffices to construct a Turing machine M with an accepting
state and two rejecting states such that M halts in the former for inputs
divisible by 3 and in one of the latter for non-divisible inputs.

The construction of M makes use of three different states They
indicate the cross sum mod 3 of that part of the input read so far. Thus,

and both and are rejecting.
The transition is given as follows:

Not all semi-decidable languages are decidable. The probably most promi-
nent example is the halting problem.

Theorem 18.3.6 (Halting problem) The halting problem is the language
is the code of a Turing machine M which halts on

input It is semi-decidable, but not decidable.

18.3 Decision problems; undecidability 281

We shall not prove this theorem (see, for example, [11]) as well as we do
not want to be more precise on how a Turing machine can be coded such
that the code can be treated as an input to another Turing machine. This is
done by constructing so called universal Turing machines.

Exercise 18.3.7 Prove semi-decidability of the halting problem.

Before closing this introductory part about Turing machines we want to
add some remarks concerning the way we shall describe algorithms for Turing
machines. Usually, it is extremely cumbersome (though not difficult) to write
down detailed Turing machine programs performing already simple tasks.
The reader can get an impression of that by writing down a program say for
binary addition.

From now on, we shall usually argue on a more advanced level assum-
ing that certain subtasks can be programmed on a Turing machine without
major difficulties. Readers who like to get a closer view to such elementary
programming issues are referred to one of the many textbooks on Turing
machines, for example [152].

For complexity theoretic purposes only decidable languages are of interest
because only if a problem is decidable it makes sense to look for efficient
algorithms. From now on we therefore shall only deal with decidable decision
problems.

This page intentionally left blank

Let A denote a finite alphabet.

Definition 19.1.1 (Running time) Let M be a Turing machine and
an input. The running time of M applied to is the number

of applications of the transition function of M until M enters a final state
(where M is starting from the configuration If M does not halt we
define

Definition 19.1.2 (Time boundedness) Let and M be a
Turing machine. We say that M is time bounded if for all we
have That is, for every input machine M halts on in a
number of steps which is bounded by the value of on the length of

Remark 19.1.3 Similarly the space used by a Turing machine as well as
space-bounded computations can be defined (see [11]). This plays a major
role in complexity theory. However, here we restrict ourselves to running
time considerations only (however, see Exercise 19.4.7).

Exercise 19.1.4 Determine the running time of the Turing machines in Ex-
ample 18.2.6 and Exercise 18.2.7.

It has turned out that a good formalization of what an efficient algorithm
should be is the requirement that its running time is bounded by a polyno-
mial. This idea leads to one of the most important notions in complexity
theory.

Definition 19.1.5 (Polynomial time computability) Let two finite al-
phabets and be given. A function is computable in
polynomial time if there exists a Turing machine M over
and a polynomial such that for all we have and

Exercise 19.1.6 Show that if and are polynomial
time computable, then so is

19 Complexity theory

Having introduced the way a Turing machine works it is straightforward to
define its running time. We consider time as discrete, i.e. a Turing machine
works stepwise in time units.

19.1 Running time; the class P

284 19 COMPLEXITY THEORY

If we apply the above definition to characteristic functions of languages we
obtain the important complexity class of problems decidable in polynomial
time:

Definition 19.1.7 (Polynomial time decidability; class P) A decision
problem (respectively a language) L belongs to the complexity class P of
problems decidable in deterministic polynomial time in the Turing model if
there is a Turing machine M deciding L which is time bounded by a polyno-
mial

Before we try to analyze the complexity of solving a problem a technical
detail has to be addressed. Problems in many situations are not directly
given in form of a language, i.e. a problem instance usually is not given as a
word over a finite alphabet. We first have to formalize it. There is some
ambiguity in the process of formalization which might have serious impact
on the size of a string representing a problem instance.

Example 19.1.8 Consider the following decision problem: Given a natural
number is a prime? How can we formalize an input to this problem
as a word over a finite alphabet A? If we choose A := {|}, then a natural
encoding of is the word which has the length If A = {0,1} a

natural encoding of is its binary representation which is of length

Of course, an exponential difference in the size can cause a non-polynomial
algorithm to turn into a polynomial one simply because the longer encoding.
This has to be avoided. In general, the way a problem should be coded
in a reasonable manner is obvious. Nevertheless, sometimes very different
encodings make sense as well and lead to different aspects of a problem
analysis.

Example 19.1.9 We want to encode a rational number over the alphabet
A := {0,1, #}. Suppose where and In order to
obtain an encoding of minimal length we require and not to have common
integer factors. We shall represent and by their binary expansions. This
can be done using many elements from {0,1}. Then we
use one additional bit for the sign of (i.e. 0 stands for negative 1 stands
for Finally, we use two # to separate the three parts. The encoding
thus is

Its length is

19.1 Running time; the class P 285

Example 19.1.10 Consider a polynomial where

with There are a lot of decision problems related to (for
example: is there an integer zero, does only attain positive values etc.),
but here we are interested in a reasonable encoding.

As underlying finite alphabet we consider A := {0, 1, #}. There are at
least two reasonable ways to encode such an

i) dense encoding: here, each of the many possible monomials is en-
coded, i.e. for every we encode the number in binary

together with the encoding of the rational coefficient
as it was done in Example 19.1.9. This encoding is called dense because
each coefficient is coded, in particular vanishing ones.

ii) sparse encoding: if only has many non-vanishing monomials
another encoding might be more reasonable. We could write down the
string for those indices which satisfy The size
of this sparse encoding is given as which might be

much less than the size of a dense encoding.

Both ways of representing polynomials can be extended to the multivariate
case.

The above example shows that together with a problem we have to specify
a size function. For every instance S of the problem, size(S) is a natural
number. A coding code(S) for S then is only considered if it is related to the
size function size through two polynomial bounds, i.e. there are polynomials

and such that

Instead of precisely writing down an encoding we shall often just address a
problem together with the corresponding function size. Any coding satisfying
(*) will then be called admissible.

Example 19.1.11 For a univariate polynomial with rational coefficients, an
appropriate size function for the dense encoding is given as

whereas for the sparse encoding one can choose

Example 19.1.12 We describe an appropriate encoding of a graph G =
(V, E) over the alphabet A := {0,1, #}. Let for an integer

286 19 COMPLEXITY THEORY

we again denote the binary expansion of by Thus, the
vertices can be represented by the string Any
edge for values can be coded via

Finally, the entire graph is coded by the string

As corresponding size function of a graph one therefore can choose
size(G) := |E| + |V|.

Remark 19.1.13 Note that in the above example our coding would as well
be admissible for size(G) := |V| or
Since at the moment we are not interested in polynomial factors, we do
not have to be more precise about the length of a chosen coding; the latter,
however, is more important if we are looking for the fastest algorithms solving
a graph theoretical problem and how they depend precisely on |V| and |E|.

19.2 Some important decision problems

We shall now introduce a first group of decision problems which we want to
study with respect to the complexity of algorithms solving them. In each
case a size function is added.

Definition 19.2.1 (Decision Problems I)

Hamiltonian Circuit. INSTANCE: A graph G = (V, E)

QUESTION: Does G contain a Hamiltonian circuit (cf. Chapter 14)?

SIZE: |V|

Maximum Matching. INSTANCE: A graph G = (V, E) and a natural

number

QUESTION: Does G contain a matching of cardinality

SIZE: |V| (note that

Traveling Salesman. INSTANCE: A graph G = (V,E), where the ver-
tices are together with weights indicating
the distance of to a bound satisfying

a)

b)

c)

19.2 Some important decision problems 287

QUESTION: Is there a permutation such that

SIZE:

Linear Programming. INSTANCE: Numbers an integer ma-
trix vectors and a

QUESTION: Is there an such that and

SIZE:

Quadratic Programming. INSTANCE: A natural number a sym-
metric integer

matrix a vector and a

QUESTION: Is there an (i.e. such that

SIZE: + max{bit-length of entries in A, and

The problem could also be defined with more general linear side con-
straints and an arbitrary bound on the function value. For our purposes
the above definition is sufficiently general.

Integer Linear Programming. INSTANCE: Numbers an inte-
ger matrix and a vector

QUESTION: Is there an such that

SIZE: + max{bit-length of entries in A and

0-1 Linear Programming. INSTANCE: Numbers an integer
matrix and a vector

QUESTION: Is there an such that

SIZE: + max{bit-length of entries in A and

d)

e)

f)

g)

Exercise 19.2.2 Consider once again Exercise 7.3.5. Show that, starting
from a LP problem with rational data, there can be constructed in polynomial
time an equivalent (w.r.t. the decision problem) LP problem with integer

data such that the latter has a size which is polynomial in the size of the
former. The same holds for problems c), e) and f) defined above as well.

Though formally stated as decision problems we observe a close relation
to optimization problems as well. Problems b) – e) all are decision versions of
optimization problems: Computing a maximum matching in a graph, com-
puting an optimal tour (i.e. one with minimal costs) through cities passing
each once and returning to the start, and computing the optimum of a linear
or quadratic objective function under linear constraints. The integer linear
programming and 0-1 linear programming problems result from the linear
programming problem by restricting the solutions to be in or re-
spectively, instead of being rational. As we shall see this has a (probably)
dramatic effect on the complexity of solving both problems.

Two of the above optimization problems have already been intensively
studied in this book. The algorithms presented earlier prove

Theorem 19.2.3 The optimization problems Maximum Matching and Lin-
ear Programming can be solved in polynomial time. Thus, the related deci-
sion problems belong to class P.

Algorithms with polynomial running time in the size of these problems
were Edmonds’ algorithm for Maximum Matching and Khachiyan’s ellipsoid
method as well as Karmarkar’s interior point method for LP.

They can obviously be used to solve the corresponding decision problems
as well.

Example 19.2.4 Since Edmonds’ algorithm computes a Maximum Match-
ing, it also gives the cardinality of a Maximum Matching in polynomial time.
The latter holds as well for any other polynomial time decision algorithm
for Maximum Matching. Simply perform it for all and output the
largest such that the decision algorithm answers “yes”.

For the LP problem a similar statement is true. Any decision algorithm for
LP which works in polynomial time can be used as well to design a polynomial
time algorithm computing an optimum. This was already studied in Exercise
7.3.6. Therefore, in case of LP optimization and decision is almost the same
from a complexity theoretic point of view (in the Turing model).

Another example of this type can be found in Exercise 21.9
In general, the relation between optimization problems and their decision

versions is far from being trivial. We shall not go further into details here
but refer to [149].

Here is a second group of decision problems important in the following.

288 19 COMPLEXITY THEORY

19.2 Some important decision problems 289

Definition 19.2.5 (Decision Problems II)

Hitting String. INSTANCE: A natural number and a finite set

QUESTION: Is there a word such that coincides with
every word in S in at least one position, i.e. such
that

SIZE:

Satisfiability We need some preparation in order to define this
problem.

Let be a countable set of Boolean variables (i.e. the
can get a Boolean value 0 or 1).

a)

b)

The set of Boolean expressions is the smallest set B such that

i)
ii)
iii) If then also and

A map is an assignment of the variables
Any assignment maps a Boolean expression to a value in {0,1}
in the straightforward manner by interpreting 0 as true, 1 as false
and as a formula in propositional calculus. The negation is
sometimes also denoted by
A Boolean expression is called satisfiable if there exists an as-
signment such that Such a is called a satisfying
assignment.

A Boolean expression of the form where is an element in
is called a literal. An expression

with literals is a clause with literals.

1)

2)

3)

Now we can define the problem for a fixed natural number

INSTANCE: A natural number together with finitely many clauses
with at most many literals in variables

QUESTION: Is there a satisfying assignment for the Boolean expression

is said to be an expression in conjunctive normal form.

SIZE:

290 19 COMPLEXITY THEORY

Exact Cover. INSTANCE: A finite set S and a set of subsets of S.

QUESTION: Is there a subset such that and

for all pairs C,

Such a is called an exact cover of S.

SIZE:

3-Dimensional Matching. INSTANCE: A natural number together
with three pairwise disjoint sets X, Y, Z having the same cardinality

a system of subsets of such that it is

QUESTION: Is there a set which precisely covers S?

Such a is called a 3-dimensional matching of S.

SIZE:

Subset Sum. INSTANCE: A finite set S; for every a natural
number a natural number B.

QUESTION: Is there a subset such that

SIZE:

Bin Packing. INSTANCE: A finite set S; for every a natural
number two natural numbers B and K.

QUESTION: Is there a partition of S into K many disjoint subsets
such that is true for all subsets

SIZE:

Because of its importance later on here is an example clarifying the defi-
nition of the problem.

c)

d)

e)

f)

So far we have introduced the complexity class P as a theoretical concept of
problems being decidable in an efficient manner. However, not all problems
one might think about are decidable by polynomial time algorithms. We
mentioned already the Halting problem as example of an even undecidable
problem. There are much more concrete problems (being decidable) where
polynomial time algorithms are at least not known to exist. Examples (as we
shall see) are given by a lot of the problems introduced in Definition 19.2.1
and Definition 19.2.5.

We shall now define a second complexity class including P. It is called
NP and captures all of the decision problems introduced earlier. The study
of this class will give a strong evidence why some of the decision problems so
far resisted the design of polynomial time algorithms.

The class NP is characterized by so-called non-deterministic algorithms,
even though the term algorithm is a bit misleading here. Non-determinism
is a theoretical tool which destroys the typical features of what we called
an algorithm so far. However, it has turned out to be a concept of great
importance and value. In order to grasp the main idea behind consider

Example 19.3.1 Let denote an instance of the prob-
lem, for simplicity say A natural and conceptually easy way to check
whether is satisfiable is the following:

19.3 Nondeterministic Turing machines 291

Example 19.2.6 Define three clauses over four variables each with at most
three literals:

The corresponding conjunctive normal form
is satisfiable. Under the assignment the
Boolean expression takes the value 1. Note here that is the usual negation
of a Boolean variable, i.e. and

19.3 Nondeterministic Turing machines

enumerate all possible assignments for the set of variables

plug into one assignment after the other and evaluate the result;

if you find one assignment which gives the result 1 stop and accept;
otherwise, continue till all assignments have been checked.

Though easy to describe there is one major drawback with this procedure:
in the worst case (for example, if no satisfying assignment exists) we have

292 19 COMPLEXITY THEORY

to check all possible assignments. Since the are Boolean variables, this
results in at least many steps - an exponential growing which causes the
above algorithm to be inefficient if is increasing.

Even though it is not clear how to design a polynomial time algorithm
for this problem, there is one structural aspect behind which is crucial in the
following.

Suppose we have a guess about an satisfying assignment (may be some-
body we know had to solve the problem earlier and now tells us a so-
lution). If, in addition, together with the formula also an assignment

is given we can at least verify in polynomial time
whether this particular assignment is a satisfying one. Of course, this only
gives a final answer to the initial problem if we were lucky and guessed a
satisfying assignment. If we did not guess one or if there is none at all we do
not gain sufficient additional information to solve the problem efficiently.

It is this guessing procedure which builds the core of non-deterministic
algorithms as defined next.

A formal definition of the class NP makes use of a generalization of the
Turing model to non-deterministic Turing machines.

Definition 19.3.2 (non-deterministic Turing machine) Let A be a fi-
nite alphabet, A non-deterministic Turing machine M
over A is a tuple (Q, A, F) such that the following holds:

Q is a finite set of states of M;

is the transition relation. If in state
the head of M reads the symbol then the machine may

non-deterministically take one element it then writes
into the current cell, moves according to and enters

the state

is the initial state of M;

is the set of final states of M.

The major new aspect is that now is a relation instead of a function.
This implies a non-deterministic behavior because any time the machine is
in a state where several operations are possible it chooses one among them.
The chosen operation, however, has not to be the same if the corresponding
state is reached at another step of the computation once more.

19.3 Nondeterministic Turing machines 293

Definition 19.3.3 (Configuration of a non-deterministic machine)
Let M be a non-deterministic Turing machine. A configuration of M is
defined in precisely the same manner as being done for deterministic machines
in Definition 18.2.2.

A configuration is a successor configuration of a configuration if it can
be reached from by a single application of one of the possible operations
determined by Formally, this can be defined by replacing in Definition
18.2.2, b) all conditions of the form “if

As in the deterministic case we are interested in the language accepted by
a non-deterministic Turing machine. Here, the new aspect is requiring only
one accepting computation of the machine.

Definition 19.3.4 (Non-deterministic acceptor)

A non- deterministic acceptor is a non-deterministic Turing machine
with precisely two final states and

Let M be a non-deterministic acceptor over a finite alphabet A. The
language accepted by M is given as

a)

b)

Since NP is a complexity class as well, we finally have to define the running
time of a non-deterministic machine.

Definition 19.3.5

Let M be a non-deterministic acceptor over A. For we define
the running time of M on as

The length of a computation again is defined to be the number of
applications of

For a function and a non-deterministic acceptor M we say
that M is if for all

a)

b)

Remark 19.3.6 There is an a bit delicate point in the above definition of
the running time. Only accepting computations are measured. Suppose M to
be if we follow a non-deterministic computation on input

in order to verify we do not know the outcome in advance.
Thus, we have to wait until M stops (if it does at all). But the question
whether M stops is undecidable in general. For many theoretical purposes it
is desirable to “clock” a machine in the following sense. If we could include
a subprogram into M counting the number of steps already performed we
could automatically stop a computation if the input has not been accepted
before the time limit is exceeded. To this aim the function must fulfill
an additional property: There must exist a Turing machine halting after
precisely many steps for any input of size Such functions are called
time constructible. Fortunately, most of the interesting time bounds like
polynomials or for fixed are time constructible. We therefore
use the definition as above having in mind that we can stop a computation
if the time limit is reached.

For details on time-constructible functions see [11].

294 19 COMPLEXITY THEORY

19.4 The class NP

We are now ready to define the second important complexity class playing
the central role throughout the rest of this and the next chapters.

Definition 19.4.1 (Polynomial time verifiability; class NP) A deci-
sion problem (resp. a language) L belongs to the complexity class NP of
problems verifiable in non-deterministic polynomial time in the Turing model
if there is a non-deterministic acceptor M which is time bounded by a poly-
nomial and satisfies L(M) = L.

Some elementary properties of the class NP are immediate.

Lemma 19.4.2 The class P is a subclass of NP. Any problem in NP is
decidable (by a deterministic Turing machine) in exponential time, that is by
a machine time-bounded by a function for a fixed constant and a
fixed polynomial

Proof. The first part is true just by definition of the classes. The transition
function of a deterministic acceptor by itself is a relation for the non-
deterministic definition.

The decidability of any language accepted by a non-deterministic device
in polynomial time can be established by a simple search algorithm checking

all possibilities. Let M be a non-deterministic acceptor for L working with a
polynomial time bound Let be an input of length If there must
be an accepting computation using at most many steps. Denote by
the maximal number of successor states M can choose for one of its states.
Note that is finite and only depending on M. Thus there are at most
many different computations possible until the time limit is reached. If we
simulate all of them one after the other on a deterministic machine we can
decide whether within the claimed time bound. If at least one of the
computations accepts we accept otherwise we reject.

The crucial question related to P and NP is whether the subset relation
is proper. The above theorem gives decision algorithms for all problems in
NP, but running in exponential time. Most researchers assume that at least
for some problems in NP one cannot do better. However, so far no one was
able either to prove this assumption or its opposite. The rest of this chapter
will introduce some problems in NP which are good candidates for proving

Let us first get a closer feeling for the property of a language being member
of NP.

Theorem 19.4.3 All decision problems from Definition 19.2.1 and Defini-
tion 19.2.5 are members of NP.

Proof. For those problems which have already been established to be mem-
bers of P the assertion follows by Lemma 19.4.2.

For the other problems we want to restrict ourselves to one complete
proof (i.e. giving a precise description of the non-deterministic acceptor);
the other decision problems are then treated in a more informal matter by
explaining how a NP verification procedure works (cf. the remarks after
Exercise 18.3.7).

Hitting string: Let a and the set being given,
where We shall code the set S by

A non-deterministic acceptor M accepting precisely the “yes”-instances
of Hitting string is now constructed:

We define where the set Q is given as

19.4 The class NP 295

and

296 19 COMPLEXITY THEORY

The transition relation is defined according to the following ideas: in a
first part of the computation M guesses a word and writes it onto
the tape on the left side of the input. This is done in states and Once
entering the deterministic verification procedure starts. Machine M reads
a letter from the guessed vector According to whether it reads a 0 or a 1
two different subprograms are entered (one described by the states
the other described by M runs to the first word (states and

resp.) and then through all of the words checking whether one of it
has the same letter as at the currently examined position. The outcome
of this test is marked by a + or by a –. After reaching the right end of the
input the machine runs back (state and repeats the same for the next
component of Finally, states and check whether at least one + can
be found at every part of the input string where an was written down.

Here is the transition table for the rightmost column indicates possible
successor states.

It should be clear from the description that M basically works in time
It should be also clear that M only accepts instances for which

the guessed vector satisfies the covering property. And finally, whenever
we deal with a “yes”-instance there exists an accepting computation. We
conclude Hitting String NP.

19.4 The class NP 297

For the other decision problems we argue on a more advanced level. In all
cases, however, it is not difficult (just tedious) to write down an acceptor as
we did above! The interested reader might wish to work out the one or other
example.

Hamiltonian Circuit: The acceptor guesses a sequence of dif-
ferent numbers in It then verifies whether for all
there is an edge in the graph. Finally, it checks whether also an
edge exists. If yes, the input is accepted.

Traveling Salesman: The acceptor guesses a permutation and evaluates
the tour along the edges determined by it. If the costs sum up to at most B
it accepts.

Quadratic Programming: This is a problem requiring more involved argu-
ments. For purposes related to real number complexity theory we shall post-
pone the proof to the next chapter, Theorem 23.3.13 and Corollary 23.3.14.

Integer Linear Programming: We shall not give details here. The prob-
lem is to assure that if such a system has an integer solution it has one of
polynomial size. This solution is then guessed, plugged into the system and
checked for indeed being a solution. For a theoretical result guaranteeing the
existence of small solutions see [31].

0-1 Linear Programming: The acceptor guesses a vector in and
verifies, whether it is a solution of all the inequalities. Since all components
are 0 or 1, the evaluation can be done in polynomial time.

This was already treated in Example 19.3.1 and the following
discussion.

Exact Cover: The acceptor guesses an exact cover and tries to verify its
defining properties. Checking disjointness of the elements in can be done
by taking the elements of S one after the other and figuring out whether they
belong to precisely one element in This also verifies the covering property.
Since in case that is an exact cover, it contains at most |S| many subsets
each of cardinality at most |S|, this algorithm runs in polynomial time with
respect to the size of an instance.

3-Dimensional Matching: The acceptor guesses a covering and ver-
ifies the defining conditions. Note that the number of elements in is
bounded by giving a polynomial time verification algorithm in case
is a 3-dimensional covering.

Subset Sum: The acceptor guesses the subset and sums up the values
for all Finally, the sum is compared to B. Since the bit size of

all the is included in the size of an instance, all intermediately computed
results remain of polynomial size.

Bin Packing: The verification algorithm works pretty much the same as
the one for the Subset Sum problem. The only difference is that instead of one
subset of S we guess K many. We then check their disjointness. Finally, we
have to verify for all K many subsets whether the sum of the corresponding

remains below B. Note that so K repetitions do not destroy
polynomiality.

Let us as well consider one further example of a decision problem not in
NP.

Example 19.4.4 Consider the following decision problem (see also Example
19.1.10):

INSTANCE: A polynomial
QUESTION: Is there an integer vector such that
SIZE: Sum of the bit sizes of all coefficients (dense encoding).
A first natural idea in order to prove membership in NP would be to guess

a zero and then plug it into evaluating the result and checking it for
vanishing. However, the problem here is to bound the size of the components
of a potential zero. If the size of is not polynomially bounded in the size
of then the verification procedure does not run in polynomial time. In
fact, it was a major result by Matiasevich [157] who proved that the above
decision problem over is not even decidable (thereby solving the 10th Hilbert
problem). Thus, by Lemma 19.4.2 it cannot be a problem in NP.

Exercise 19.4.5 In this exercise we want to show that non-determinism
can be modeled in a slightly different manner than it was done in Definition
19.3.2. Let M be a non-deterministic Turing machine. Show that there exists
a non-deterministic Turing machine equivalent to M (that is the answers
on all inputs are the same) working as follows:

298 19 COMPLEXITY THEORY

first moves one step to the left entering a special “non-deterministic”
state

in this non-deterministic state writes an arbitrary word in {0,1}*
to the left of the input. That is, the transition relation for is

Here, is a deter-
ministic state, i.e. has a uniquely defined behavior;

once entering the state the machine performs a deterministic com-
putation, i.e. for all the states reached from that time on the transition
relation is a function.

In the proof of Theorem 19.4.3 the NP-machine constructed for Hitting
String had precisely this structure. The exercise shows that instead of making
a non-deterministic choice at every step of a computation we can model non-
determinism as well in the following way: First, write non-deterministically
a “guess” onto the tape. Afterwards, perform a deterministic verification
procedure. This way of defining non-determinism later on easily can be
generalized to the real numbers as underlying structure, see Definition 23.3.2.

Exercise 19.4.6 Let be a finite alphabet. Show that the class NP over
can be defined as well in the following manner. A language belongs to
NP if and only if there is a polynomial and a problem
such that

Figure out the corresponding problems for the decision problems in NP
mentioned in the text.

Exercise 19.4.7 This exercise is related to Remark 19.1.3.

19.4 The class NP 299

We define two further language classes similar to P and NP and de-
noted by PSPACE and NPSPACE which are measuring the number
of tape cells used during a computation of a Turing machine which
decides a language.

Prove NP PSPACE NPSPACE. Actually, according to a theo-
rem by Savitch we have PSPACE = NPSPACE.

Show that any language in PSPACE is decidable in exponential time.
We shall see later on that for real number computations such a result
does not hold, cf. Remark 23.2.8.

a)

b)

c)

This page intentionally left blank

20 Reducibility and NP-completeness

So far we have introduced the two complexity classes P and NP and studied
membership of some problems in one of them. For those problems which
are already established to be in P from a theoretical point of view we are
satisfied. In principle, they allow efficient algorithms. Of course, it is an
important matter to design such algorithms also in practice; we have seen
how to do that, for example, for the Linear Programming problem.

On the other hand there are problems in NP for which we do not know
whether they can also be solved in polynomial time. We gave a very easy
algorithm for deciding such problems in exponential time; but that does not
tell us something about the best way of solving such a problem. This question
actually addresses the most important open problem in complexity theory.
As will be worked out in this and the next chapter there is a strong evidence
of the conjecture that However, so far nobody was able to prove
or disprove it.

The line along which the above conjecture will be substantiated is the
following. We do not know the absolute complexity of some of the decision
problems like 3-SAT or Traveling Salesman; that is, we do not know about
lower bounds any algorithm for one of these problems has to respect at the
same time where we can design an algorithm matching this lower bound.
However, we can compare problems in NP with, for example, the 3-SAT
problem. This means that we can make statements like: if there were a
polynomial time algorithm for the 3-SAT problem we could use it to derive
as well a polynomial time algorithm for any other decision problem in NP. In
this sense problems like 3-SAT represent the entire computational difficulty
of the class NP; they are in a particular sense complete for this class.

20.1 Polynomial time reductions

We shall now make the notion of completeness precise. The main idea is
that of polynomial time reducibility of one problem to another. Then, we
prove the completeness property for some of the decision problems mentioned
earlier.

Example 20.1.1 Let be a 3-SAT formula in variables which we want to
check for satisfiability. Suppose we have a computer software at hand which
tells us whether, given an and a polynomial this
polynomial has a zero in Can we use this software in order to solve our
initial question as well? Moreover, is it possible to do it with a complexity

302 20 REDUCIBILITY AND NP-COMPLETENESS

which is almost the same as solving the zero problem for a polynomial of
comparable size?

Suppose to be a clause in We can easily compute
the polynomial

The special structure of implies that any satisfying assignment of
gives a zero with components in {0, 1} for and vice versa. If we do the

same for all the other clauses and define we obtain in polynomial

computation time a polynomial such that is satisfiable if and only if
the polynomial has a zero in (actually in). We can now use
the software for the latter problem and solve the given one as well. The
additional amount of time is just the time we need to compute from

The above example involves the main idea about reducing one problem to
another.

Definition 20.1.2 (Polynomial time reducibility) Let and be
two finite alphabets and let and be two languages. is
polynomial time reducible to if there exists a function such
that

i)

ii)

is computable in polynomial time (see Definition 19.1.5) and

for all it is

We write

Some easily verified properties of are given in

Lemma 20.1.3 a) is a transitive relation among languages.

b) If and then The same holds for NP instead
of P.

Proof. Let and be finite alphabets.
ad a) Suppose Let and be the corresponding poly-

nomial time computable functions. According to Exercise 19.1.6 the com-
position is polynomial time computable as well and we have

20.2 NP-completeness 303

ad b) Let be a function realizing the reduction and let be
the polynomial time computable characteristic function for Then

is polynomial time computable and

Now let be in NP. Let be the (deterministic) Turing machine
performing the polynomial time reduction and let be a non-
deterministic machine witnessing We build an NP-machine M for
proving as follows. For input the machine M first simulates
deterministically the computation of on Next, it simulates on input

and accepts if and only if accepts Machine M clearly
works in polynomial time and verifies whether

Exercise 20.1.4 Call two languages and polynomially equivalent, in
terms if and

Show that polynomial equivalence is an equivalence relation.

20.2 NP-completeness

We turn now to the most important application of reducibility. It gives the
possibility to classify some problems in NP as being the most difficult ones.

Definition 20.2.1 (NP-completeness) A language L belonging to NP is
called NP-complete if, for all other languages we have

If L is not known to be member in NP but still satisfies the second
property above it is called NP-hard.

One meaning of complete problems lies in the fact that they allow us
to concentrate on particular problems if we want to deal with the question
whether or not.

Theorem 20.2.2 a) Let be in NP and be NP-complete. If
then is NP-complete.

b) P = NP if and only if there exists an NP-complete problem in P.
In that case, all problems such that would be NP-
complete.

Proof. ad a) The assumption implies for all decision problems
Because of and transitivity of (see Lemma 20.1.3) the

claim follows.

304 20 REDUCIBILITY AND NP-COMPLETENESS

ad b) First, suppose P = NP. Then any problem in NP is polynomially
time solvable. If and L has at least two elements and we can
reduce any other problem to L as follows. Take the polynomial time
decision algorithm for If for an input it answers 1, then we reduce to

otherwise we reduce it to (Of course, this is only a formal reduction
because if we have solved already there is no need to reduce it to another
problem afterwards).

Vice versa, let be a complete problem decidable in polynomial
time. Using once again transitivity of and the completeness, any other
problem in NP then can be decided in polynomial time as well by combining
the reduction and the decision procedure for L.

Remark 20.2.3 The hardness notion can also be generalized in order to
deal with computational problems instead of decision problems only. For
example, as we shall see later on, the Traveling Salesman decision problem
is NP-complete. Thus, if we cannot solve the related optimiza-
tion problem in polynomial time. This is true because if we were able to
solve the optimization problem we could solve the decision problem in only
polynomially many more steps.

However, here we shall concentrate on complete decision problems.

Exercise 20.2.4 In this exercise we want to study another way of reducing
a problem to another one We say that is Turing reducible to if
and only if there exists an oracle Turing machine M using as an oracle
and deciding in polynomial time. Here, an oracle machine is an ordinary
Turing machine with one additional type of operations resp. states, the oracle
call. If M enters such a state it can ask an oracle whether a string computed
during M’s previous actions and written on a predetermined part of the
Turing tape belongs to the language represented by the oracle (i.e. here to

The oracle answers this question correctly; the cost of an oracle call is
again one unit time step.

Show that the assertions of Lemma 20.1.3 and of Theorem 20.2.2 hold
as well if we replace polynomial time reducibility by Turing reducibility (i.e.
completeness is also understood w.r.t. Turing reducibility).

Can you say something about the relation between these two notions of
reducibility?

20.3 Cook’s theorem

In order to substantiate the notion of NP-completeness, our task is to show
that such complete problems do exist at all. This was the pioneering work

20.3 Cook’s theorem 305

of Cook [43]. We shall now present his result that the 3-SAT problem is
NP-complete. Note the difficulty in proving the existence of a “first” NP-
complete problem: One has to deal with all other problems in NP and present
a general way how each of them can be reduced to the problem under consid-
eration. One might do it in an easier way than in Cook’s proof if one is just
interested in the existence, see Exercise 20.3.2. However, Cook’s result shows
completeness for a very concrete problem. It is therefore extremely impor-
tant in order to derive further complete problems once a practical problem
having this property is at hand.

Theorem 20.3.1 (Cook, 1971) The decision problem 3-SAT is NP-
complete.

Proof. Membership in NP was shown in Theorem 19.4.3. Let L be a lan-
guage over a finite alphabet (including the blank) belong-
ing to NP. Let be a non-deterministic acceptor
running in polynomial time for inputs of size such that
Let W.l.o.g we assume

Our task is to compute for any input a 3-SAT formula in
polynomial time in such that is satisfiable if and only if belongs
to L.

We shall perform this task in three steps. Step 1 constructs a Boolean
formula which has all the desired properties but is not in conjunctive
normal form. This will be the major step of the proof. Step 2 computes a
formula which is equivalent to but is in conjunctive normal form. The
clauses in however, might have more than three literals. Finally, Step 3
produces a 3-SAT formula equivalent to

Step 1: Let be the input of length According to the assumptions
a non-deterministic computation of M on input verifying accepts
after at most many steps. If we number the tape cells with integers such
that the input is written into the cells with numbers then M
only visits cells with numbers in between and until it accepts.
We shall only deal with these many cells. If in the run of this proof
we speak about a configuration of M we always mean a description of these

many cells, cf. Remark 18.2.3.
The idea of this step is to describe such a computation of M on by

means of a Boolean formula. This includes several parts. For each time step
of such a computation we want to consider all the entries in the

306 20 REDUCIBILITY AND NP-COMPLETENESS

cells. For every possible configuration at time we build a Boolean formula
which is true if and only if this particular configuration is the one of M at
time This includes that we have to guarantee the configurations at time
and at time to fit together according to the transition relation In
addition, the first configuration (i.e. for time has to correspond to the
initial configuration for input and the final configuration (i.e.
must represent an accepting one. Again, these conditions will be expressed
by certain Boolean formulas. The conjunction of all constructed formulas
then is satisfiable if and only if they code an accepting computation of M on

Here are the details: First, we introduce three groups of Boolean variables.
The first group consists of variables

Their interpretation is a follows: a variable gets the Boolean
value 1 if and only if the entry in cell at time step is The second group
is Here, gets the value 1 if and only if at
time machine M is in state Last, the position of the head is described
by A variable gets the value 1 if
and only if M’s head is standing on cell after steps.

All together, these are
many variables. This number is polynomial in since and are constants
just related to the machine M.

At a time there is only one configuration representing the current in-
formation about M’s computation. This configuration can be described by
assigning Boolean values to all of the above variables involving the index

For Boolean variables the expression

is true if and only if exactly one of the variables has the value 1. We use U
in order to pick out precisely one configuration at time This can be done
using the formula

It should be clear from the above explanations that a satisfying assignment
for the variables in corresponds to a unique description of the cell entries
and the head position of M at time

20.3 Cook’s theorem 307

The next part of the construction deals with all pairs of configurations
represented by two formulas and in the above
manner. If they should represent part of M’s computation, the one given
by must be a successor configuration of the one related to This is
forced to be true if, in addition to and the following formulas
and are satisfied as well by the assignment:

treats those cells which are not covered by the head of M. A satisfying
assignment for implies that the corresponding entries of cells not covered
by the head at step will remain unchanged at the next computational step.

The position of the head is treated using the formulas They are defined
as

where

and

with

From the above given interpretations of the variables it follows that a
satisfying assignment of the formula corresponds to two
configurations of M at times and such that the latter is a successor
configuration of the former.

Finally, the initial configuration has to be expressed and the final configu-
ration has to be an accepting one. The latter requirement is easily described
by the truth of The beginning of a computation on is expressed
via

308 20 REDUCIBILITY AND NP-COMPLETENESS

The input is written into the cells with numbers 0 till the head
is positioned on cell 0 and the first state is

All together, we obtain the formula as

Clearly, is satisfiable if and only if there exists an accepting computa-
tion of M on input in many steps.

The size of is polynomially bounded in because

the size of U if evaluated on many variables is During the
construction process U is evaluated in many variables, in
many variables and in many variables. Each of these formulas arise

many times in the construction of Thus, the size of is

the size of formula B is

the sizes of formulas and are

Therefore, the formula size of is of order This implies to
be computable in polynomial time in

Step 2: is not yet in conjunctive normal form. Though B and the
are, the formluas and are not.

The formulas can be replaced by equivalent formulas in conjunctive
normal form as follows. Every is a conjunction of formulas
This is equivalent to If we replace all the
corresponding terms in using the above idea we obtain an equivalent
formula in conjunctive normal form. Note that the size of is within a
constant factor of the size of

For the we note that each of it is a disjunction of conjunctions. Thus,
using the distributive law for and formulas can be replaced by equiv-
alent formulas in conjunctive normal form. The size of again is within
a constant factor of that of the formulas and are of size
O(1), and so is the equivalent counterpart in conjunctive normal form.

The formula

20.3 Cook’s theorem 309

is equivalent to and again of size

Step 3: In the final step we replace clauses with more than 3 literals in
by clauses with three literals. Suppose

to be a clause in many literals. Introducing many new variables
we can replace K by the clause

Then any satisfying assignment for K can be extended to a satisfying
assignment of at least one has to get the value 1. Let be the
minimal index such that If we assign to all the value 0.
Since all clauses in except the first contain a negated this assignment
satisfies If we assign the value 1 to the with and the
value 0 to the remaining (i.e. for Again, this yields a satisfying
assignment for

To show the converse, if is a satisfying assignment for the assign-
ment is satisfying for K. Otherwise, if all components in were 0, then we
could conclude But then the final clause is not
satisfied, a contradiction.

The size of is at most four times the size of K and the number of
newly introduced variables remains polynomially bounded. Thus, can be
constructed in polynomial time in This concludes the proof.

Exercise 20.3.2 Consider the following decision problem:
INPUT: The code of a non-deterministic Turing machine M, an input

for a computation of M and a natural number in unary notation.
Here, the code is a word over an extended alphabet which gives a de-

scription of M, its finite alphabet, its states, its initial state, its final states
and the transition relation. The natural number is supposed to be given in
unary in order to guarantee the input size to be at least

QUESTION: Is there an accepting computation of M on input which
stops after at most many steps?

Show that this problem is NP-complete by reducing an arbitrary problem
in NP to it in polynomial time.

310 20 REDUCIBILITY AND NP-COMPLETENESS

20.4 A polynomial time algorithm for 2-SAT

Considering once again the third step in the above proof one realizes that
the main idea in reducing the number of literals per clause is by transferring
informations from one clause to another using the additional variables
A natural question thus is whether the same could be done by using two
literals per clause only. This leads to the question: is the parameter
the smallest possible in order to obtain NP-completeness for the
problem. In fact, if then we cannot do better. A reference for the
following theorem is [63].

Theorem 20.4.1 The problem 2-SAT belongs to P.

Proof. Let be a 2-SAT formula in variables
The thus are clauses with at most 2 literals.

We describe part of a decision algorithm which allows to eliminate at least
one variable in polynomial time, i.e. we show how the problem can be reduced
in polynomial time to another 2-SAT instance with fewer variables. Applying
this idea at most times we obtain a polynomial decision procedure.

The precise procedure is as follows. For one of the variables, say
choose the value 0. Plug into all clauses which either contain the literal or
its negation the corresponding value. If is such a clause there are three
possible effects. Either, is satisfied in which case we can remove it. Or
only contains the literal in which case the choice cannot lead to
a satisfying assignment. Or for another literal In that case the
variable related to can only be assigned with one particular value satisfying

We take that assignment and repeat the procedure with those variables
which are forced to be assigned with a particular value. This results in the
following situation. Either there appears a contradiction between different
clauses. In that case, the initial choice will not lead to a satisfying
assignment. If there is any at all it must fulfill We repeat the same
steps with that choice.

Or we end up with a 2-SAT formula in at most many variables.
Then, is satisfiable if and only if is. Note that once is obtained a
potential unsatisfiability of cannot be caused by the choice This is
true because all the clauses in are clauses which previously appeared in

This way an iteration procedure can be set up. The above first step of
the iteration runs in polynomial time. For all variables whose values are
determined by the initial choice of we just have to parse once through all
the remaining clauses.

20.4 A polynomial time algorithm for 2-SAT 311

The entire algorithm therefore also works in polynomial time.

Exercise 20.4.2 Define is a finite alphabet,

a)

b)

c)

Show that

Think about the relation between NP and co–NP. Where lies the dif-
ficulty if one would like to prove Actually, the relation
between NP and co – NP is another open question in complexity the-
ory. Both classes are conjectured to be different. Another (unsolved)
conjecture is For more on these conjectures see
[198].

Even though part a) together with Theorem 19.2.3 tell us that
try to show it directly. That is, try to give an NP verifica-

tion procedure verifying in polynomial time that a LP instance is not
solvable.

Hint: Use the duality theorem for Linear Programming, Theorem
5.2.9.

This page intentionally left blank

21 Some NP-completeness results

In this chapter we want to become a bit more familiar with the techniques
of showing NP-completeness of a problem. For most of the problems men-
tioned above we prove their NP-completeness. Once having a NP-complete
problem like 3-SAT at hand we try to do these proofs in an easier way than
it was necessary for proving Cook’s theorem. The key point here is the appli-
cation of Theorem 20.2.2. To show completeness of a problem it is sufficient
to reduce another one, which is already known to be complete, to it. That
does not mean that it is easy to find a reduction in all situations. However,
the more problems we know to be NP-complete the more likely it is to find
at least one among them which is reducible to a new problem under con-
sideration (if the latter is complete at all). A list of NP-complete problems
from different fields was given in the Appendix of the book [74]. Some of the
completeness results presented in the following were first given in [135].

The way problems will be reduced among each other is indicated in Figure
21.1. An arrow from a box to another indicates that the first problem will be
polynomially reduced to the second one. Thus, at the root of this directed
tree we find the 3-SAT problem as an NP-complete one.

Some more reductions will finally be studied in the exercises.

We start with the left column of the figure.

Theorem 21.1 The problem Exact Cover is NP-complete.

Proof. We want to reduce the 3-SAT problem to Exact Cover in polynomial

time. Let be a 3-SAT formula, i.e. each is a clause with 3

literals. The variables in are
We shall first define an instance for the Exact Cover problem from
The way the construction works will then become evident if we show that
is satisfiable if and only if the constructed instance of the Exact

Cover problem admits an exact cover.

The set S is given via

Thus, the cardinality of S is

314 21 SOME NP-COMPLETENESS RESULTS

Next, the system of subsets of S is defined. It splits into three different
parts and More precisely,

contains many sets which all contain many elements;

contains as elements sets with 2 elements. Since for every literal in a
clause we have a corresponding set in the cardinality of the latter is at
most

21 Some NP-completeness results 315

Finally,

contains many elements all of which are subsets with
two elements from S.

The above considerations about the cardinalities show that the size of
is and therefore polynomially bounded in the size of

Note that the subsets constituting are not necessarily disjoint.

It remains to be shown that is satisfiable if and only if has an
exact cover.

For the if-part let be an exact cover for A satisfying as-
signment for can be constructed as follows. Since every is covered
precisely once, for every we either have
or In the first case we define in the lat-
ter We claim that is a satisfying assignment. Towards this
end, consider a clause and suppose or (or both) to
be a literal in If then all are already covered by elements

Therefore, cannot be covered by a set The only
remaining possibility to cover is through a set But this means
that is a literal in Thus, the assignment makes the clause

true. Similarly, if we conclude that is a literal in thus
satisfying it again.

Note that for this part of the proof the are not needed.

Turning to the only-if-part, let be satisfiable via an assignment
This assignment gives rise to choose subsets

as follows:

An element is covered by a set in if Its negation is covered
if

The sets in are defined in order to cover all clauses Under
the assignment each clause gets the value 1. Suppose, for example,

is made true via a literal which is assigned with Then
are already covered by We therefore include into

Similarly, if is a literal making true because of we include
into Finally, we see that among the many elements

precisely many are covered by and

316 21 SOME NP-COMPLETENESS RESULTS

many are covered by The remaining
many elements are covered by a subset of contains a set
resp. if and only if resp. was not already covered before.

The next problem whose completeness will be shown is the 3-Dimensional
Matching problem. We shall reduce the Exact Cover problem to it in poly-
nomial time.

Theorem 21.2 3-Dimensional Matching is NP-complete.

Proof. Having already shown membership in NP we concentrate on a poly-
nomial time reduction from a NP-complete problem to 3-Dimensional Match-
ing. As former we choose the Exact Cover problem.

Let be an instance of the Exact Cover problem. We have to con-
struct in polynomial time an instance of the 3-Dimensional
Matching problem such that has an exact cover if and only if

has a 3-dimensional matching.
Towards this end, let C be an element in say for

some elements For every such set C we introduce new elements
putting

Next, we define a set

Here and in the following we set The definition of the sets
is clarified in Figure 21.2.
Note that has many elements all of which are sets of cardinality 3.
In addition, we need three further sets. The sets are sets of new

elements. Both sets have the same cardinality as the initial set S from the
given Exact Cover instance. The third set is defined as

Now we are prepared to define the instance of 3-Dimensional
Matching. We put

21 Some NP-completeness results 317

Before we show that this instance has the required properties with respect
to its solvability we argue that it can be constructed in polynomial time in the
size of The cardinality of the set X is

The same holds for Y and Z, thus the union has cardinality

The set has many elements. Every set

has many elements. All together, the size of the instance is

318 21 SOME NP-COMPLETENESS RESULTS

bounded from above by which is polynomially bounded in
the size of The construction of the instance can be done in polynomial
time.

It remains to be shown that has an exact cover if and only if
has a 3-dimensional matching.

Let us first assume to be such a matching. Every element
has to be covered precisely once by an element from This is only possible
using elements of one of the sets Suppose that for a fixed element
and a fixed it holds Since as well has
to be covered by the matching, we conclude that the latter only is possible
when using the element Because if we would take the
element then would be covered twice. Repeating this
argument we see that for all elements the following
holds:

Either

or

We define the set by requiring that it contains precisely those
which satisfy the first of the above equations. Then is an exact cover
for This can be seen as follows: clearly, all the are disjoint.
Otherwise, an element would be covered twice by On the other hand,
all are covered by these C because an can only be covered by using
a set C satisfying the first equation above.

The reverse implication is settled in precisely the same manner. We start
from those sets giving an exact cover and use them to define a 3-
dimensional matching Further details are left to the reader.

The next problem we are dealing with is Hamiltonian Circuit. Among the
proofs we present in this section its NP-completeness proof is probably the
most delicate.

Theorem 21.3 Hamiltonian Circuit is NP-complete.

Proof. The reduction we are looking for is one from the 3-Dimensional
Matching problem. Thus, let be an instance of the latter. The

21 Some NP-completeness results 319

graph G := (V, E) we are going to define as an instance of the HC problem
will have many vertices.

Without loss of generality we can assume that Oth-

erwise, there cannot exist a matching in In this case the reduction could
simply produce an arbitrary graph without Hamiltonian circuit. Note that
the above condition on can be checked in polynomial time.

In a first step, for every and every we define new elements

For any element we define three new elements
and join all of them to obtain the set This leads to
the definition of the set V of vertices for G :

Since all the sets related to X and Z have cardinality |X | and since has
many elements, the above assertion concerning V’s cardinality follows.

Next, we define the edges in G. They are built from four different groups:

1.)

2.)

We connect all vertices in with all vertices in

For each and each the graph G contains edges

3.) For each we join edges

4.) For each we fix an order of all the elements
which contain Having fixed this order we join the edges

320 21 SOME NP-COMPLETENESS RESULTS

No more edges are contained in G.

The following observations w.r.t G are immediate. All vertices of the type
and have degree 2. The edges defined under item 4.) above for a

point together with those of type 3.) which are not incident with or
build a circuit inside G. The vertices of this circuit are (in that order)

Note that if we restrict G to the vertices in the components of this new
graph are precisely these circuits

We shall now assume that G has a Hamiltonian circuit H. Let
denote the connected components of the subgraph Every is a sub-
path of one cycle

Our aim is to show that the number of these paths equals the number
of elements in Z. Consider the neighbors of path in H. We denote them

21 Some NP-completeness results 321

by and According to the construction of G these neighbors belong to
the set Let us first assume In that case, the edge connecting

with path is of type 3.), that is for an The vertex
has the neighbor which is of degree two. This vertex actually is

also the neighbor of in H and respectively. Otherwise, would be
the second neighbor of But then would only be reachable through
in the Hamiltonian circuit H. This leads to a contradiction since in that case

would be covered twice by H.
If we suppose w.l.o.g that E is the first set in the ordering

chosen under 4.) we see that has to be a path of the form

for some The only way to continue the path as part of a
Hamiltonian circuit is to choose the next neighbor of on H to be in Z.
This is true because there exist only neighbors in Therefore,

In a completely similar fashion the assumption leads to the
conclusion Thus, we can assume w.l.o.g. and

Now we consider the continuation of in H. The only neighbor of in
G (and thus in H) which is not on is This implies that for

Similarly, for The desired relation between the number
of paths and the cardinality of Z follows: the number of components of
on the one hand side equals since for every there is a cycle
Since every is a sub-path of a and since the nodes of all are covered
by H, the number of different is at most the number of different paths

Finally, every path is precisely related to one vertex in Z, i.e.
We obtain

thus giving We conclude that contains all vertices from If is
connected with in H, then is connected with Therefore, uniquely
corresponds to the set The 3-dimensional
matching we are looking for is finally given by the set de-
fined that way. Note that and for we have

Vice versa, suppose to be a 3-dimensional matching for A
Hamiltonian Circuit H for G can be obtained as follows. Order the elements
in X, say Begin with a set which covers We

322 21 SOME NP-COMPLETENESS RESULTS

assume to be of the form We start the circuit in and
remark that there is an edge Using the notation of the first part of
the proof, in we start to run through the path which ends in The
latter vertex is connected with From we continue the path H along
and From here we go to look for the corresponding set and begin
the procedure again. This results in a Hamiltonian Circuit for G.

Once having established NP-completeness of the Hamiltonian Circuit
problem the following statement is an easy corollary.

Theorem 21.4 The Traveling Salesman problem is NP-complete.

Proof. We reduce Hamiltonian Circuit to the problem under consideration.
Let G = (V, E) be a graph with vertices. We define a new graph

together with weights on its edges. If we put
If is an edge not already present in G we add it with the weight

Finally, we put Clearly, G* can be constructed in
polynomial time in the size of G. It is as well easy to see that G has a
Hamiltonian circuit if and only if there exists a round-trip in G* of cost at
most B. On the one hand side, any Hamiltonian circuit in G is a round-trip
in G* passing only through edges of weight 1. Thus, the entire costs of such a
trip are bounded by Vice versa, if G* allows a round trip of costs at most
then all edges involved must have weight 1. Thus, this particular round-trip
is made of edges already present in G. Therefore, it is a Hamiltonian circuit
in G.

Now we shall turn back to optimization again. We have studied different
algorithms for the Linear Programming problem and seen that it belongs to
complexity class P in the Turing model. It is natural to ask how far we can
extend the property of being solvable in polynomial time to more complicated
optimization problems. Actually, we shall see that increasing the degree of
the polynomial objective function to 2 already gives NP-complete problems.
Thus, if the Quadratic Programming problem has a very different
complexity behavior than Linear Programming in the Turing model. The
major new difficulty lies in the already studied phenomenon that an objective
polynomial function of degree 2 has not to be convex any more. This causes
the “complexity jump” mentioned above.

Theorem 21.5 Quadratic Programming is NP-complete.

21 Some NP-completeness results 323

Proof. We restrict ourselves to show hardness of QP. The membership
in NP will be shown later on in Theorem 23.3.13 and Corollary 23.3.14,
respectively.

Consider a 3-SAT formula Suppose the
first clause has the form

From we can easily compute the polynomial

Here, the are new variables introduced just for the clause Note that
whenever we assign Boolean values to such that is made true,
then we can find such that Just
choose one among the which corresponds to an making true to be
1 and the others to be 0.

Vice versa, if we have a zero for whose components
are non-negative rationals (or even reals), then the Boolean vector given by

satisfies This is true because all addends of
on the non-negative orthant of take non-negative values only. There-

fore, at a zero of they all vanish. Now, the equation
implies at least one to be strictly positive. The corresponding satisfies

In the same way we can define polynomials for all the clauses and put

The polynomial has degree 3 and depends on many

variables.
Then is satisfiable if and only if there exists a non-negative zero of in

Note that can be computed in polynomial time in the size of i.e.
has a size polynomially bounded in the size of
Finally, we have to reduce the degree of to 2. This is done once again by

introducing new variables one for each Take again the above
example for Instead of considering the factor we replace it
by and add the additional addend Similarly, we replace
all the terms

324 21 SOME NP-COMPLETENESS RESULTS

Let P denote the new polynomial of degree 2 in the variables
Again, P can be computed in polynomial time from

and has a non-negative zero if and only if is satisfiable. Since P only takes
non-negative values on looking for a zero is equivalent to looking
for a value We conclude that is satisfiable if and only if the following
quadratic program is solvable:

Another (and perhaps more surprisingly) programming problem being
NP-complete is the 0-1 Integer Programming problem. In order to show
this we shall first settle NP-completeness of the Subset Sum problem.

Theorem 21.6 The Subset Sum problem is NP-complete.

Proof. An easy reduction can be given from the 3-Dimensional Matching
problem. Let be an instance of the latter. Suppose

Define We
construct an instance of Subset Sum as follows. We put For an
element let

and

Note that in a number representation with respect to basis the number
B is given as a vector of many 1s,

Let be a 3-dimensional matching. Consider the sum Since

covers the entire set S, every term appears precisely
once as a addend in one of the The corresponding sum thus gives
the value B and is the subset we are looking for.

If, on the other hand, is a subset of S such that we can

conclude that is a 3-dimensional matching. This is true because of
the uniqueness of the number representation of B with respect to basis
The exponents in the terms of the differing by guarantees that we can

21 Some NP-completeness results 325

achieve the sum B only if all exponents are somewhere present. Since no

size of the numbers is bounded by and the same holds for B.
Thus, the size of the Subset Sum instance is bounded by

and the reduction works in polynomial time.

Theorem 21.7 Both the 0-1 Linear Programming problem and the Integer
Linear Programming problem are NP complete.

Proof. Given an instance of the Subset Sum problem we
introduce |S| many variables and consider the 0-1 Linear Program-
ming problem: is there a solution in of the equation

It is straightforward that the relation between a subset satisfying the
Subset Sum problem and a solution of the 0-1 Linear Programming problem
is given through

As to the Integer Linear Programming problem note that adding side
constraints for all variables of a 0-1 Linear Programming instance
we can extend the allowed solutions from without changing the
actual set of solutions. This gives a polynomial time reduction from the 0-1
Linear Programming problem to Integer Linear Programming.

The previous theorem tells us that looking for {0, 1}-solutions even of a
linear equation seems to be of significantly higher difficulty than solving the
Linear Programming problem. Many other NP-complete decision problems
can actually be described through the 0-1 Integer Programming problem as
well.

The final completeness result we want to present here is

overlaps are possible, this means that all elements in are covered
precisely once.

The above Subset Sum instance can be computed in polynomial time. The

326 21 SOME NP-COMPLETENESS RESULTS

Theorem 21.8 The Bin Packing problem is NP-complete.

Proof. Since the Bin Packing problem looks very similar to the Subset
Sum problem, it is reasonable to search for a reduction of the latter to the
former.

Let be a Subset Sum instance. Without loss of gen-
erality we assume . Otherwise, there exists no solution for

Note that both weights satisfy

Define the new Bin Packing instance as Here,
and

First, suppose the existence of a set such that Define

a decomposition of by and An easy
calculation shows

as well as

Thus, is a solution of the Bin Packing instance constructed.
Now consider a decomposition of such that both

and Since both inequalities have to hold as

equalities. Furthermore, due to not both and

the Subset Sum instance (since all

checked in polynomial time.
We extend S by two new elements and put The new

weights attached to and are

The condition can be

21 Some NP-completeness results 327

belong to the same set of the decomposition. Suppose and
put Then

i.e. solves the Subset Sum instance.

It is finally clear that the construction of works in
polynomial time in the size of

Exercise 21.9 Supposing the existence of a polynomial time decision algo-
rithm M for the Traveling Salesman problem (that is supposing P = NP),
show that also an optimal round trip can be computed in polynomial time
using this decision algorithm.

Hints: 1.) If is the maximal weight in the TSP graph the costs B*
of an optimal tour are given by a natural number Perform a binary
search to compute B* by making use of polynomially many calls to M.

2.) W.l.o.g. let an optimal tour start in node 1. Knowing B* consider the
following decision problems:

is there an optimal trip including edge (1,2)?
is there an optimal trip including edge (1,3)?

is there an optimal trip including edge

Show that all these problems belong to NP. Use M in order to compute
a successor of 1 in an optimal tour. Construct similar decision problems to
compute further edges of an optimal tour.

Exercise 21.10 In this exercise we want to consider a few more decision
problems and show their NP-completeness. We start with a definition of the
problems we are interested in.

a) Knapsack. INSTANCE: A finite set S; for every element natural
numbers and natural numbers B and K.

QUESTION: Is there a subset such that and

SIZE:

328 21 SOME NP-COMPLETENESS RESULTS

b)

c)

d)

e)

Clique. INSTANCE: A graph G = (V, E) and a natural number

QUESTION: Does G contain a clique of cardinality i.e. a complete
subgraph with many vertices?

SIZE: |V | (note that

Independent Set. INSTANCE: A graph G = (V, E) and a natural num-
ber

QUESTION: Is there an independent set with many points, i.e. a set
of cardinality such that

SIZE: |V |

Partition. INSTANCE: A finite set S; for every element natural
numbers

QUESTION: Is there a subset such that

SIZE:

3-Colouring. INSTANCE: A graph G = (V, E);

QUESTION: Is there a 3-Colouring of G, i.e. a map
such that no two adjacent vertices get the same value in {1,2,3}?

SIZE: |V |

Coloring problems provide a source for many interesting questions both
in graph and complexity theory. For more on this topic see [120].

Show NP-completeness of the problems defined above. Membership in
NP is straightforward. For the completeness property consider the following
hints.

ad a) Use a reduction from the Subset Sum problem. The same for d).

ad b) Reduce 3-Dimensional Matching to Clique. More precisely, starting
from an instance of the latter define a graph G := (V,E)
by and if and only if and

ad c) Use a reduction from Clique.

ad e) Use a reduction from 3-SAT.

Exercise 21.11 Show the NP-completeness of Hitting String (cf. Definition
19.2.5) by constructing a reduction from 3-SAT.

22 The Random Access Machine

As we already mentioned in Chapter 18.1 there have been made several at-
tempts to formalize the notion of computability. Not being the main topic
of this book, we outline very briefly one further approach, the Random Ac-
cess Machine RAM. Its definition is much closer to a practical programming
language; however, the computational power is precisely the same as that of
the Turing machine. Similarly, the complexity theoretic developments of the
previous chapters could have been done as well in the RAM model. Here, we
define it mainly because of its use for a generalization to the computational
models over the real numbers treated in Chapter 23.

Definition 22.1 (Random Access Machine RAM)
Let i.e. the set of finite sequences of natural numbers
including 0. A Random Access machine M over with admissible input
set Y is given as follows: The machine has an infinite, countable number of
registers denoted by Every is able to store a natural num-
ber At each time of a computation only finitely many registers hold
numbers different from 0. There are three more registers storing natural num-
bers and These numbers are used as instruction counter and addresses,
respectively.

The RAM M has a finite set I of instructions labeled by 0,…, N for some
A configuration of M is a quadruple

Here, denotes the instruction to be executed next, and are used as
addresses (copy-registers) and is the actual content of the registers
of M. The remaining (infinitely many) registers contain a 0. The initial
configuration of computation on input If
and the actual configuration is the computation stops with output

The instructions M is allowed to perform are of the following types:

computation: where or

The register will either be increased or decreased by 1 or set to 0.
Here, the subtraction – is defined as usual except that 0 – 1 := 0.

All other register-entries remain unchanged. The next instruction will
be and the copy-registers are changed selectively according to

or and similarly for

330 22 THE RANDOM ACCESS MACHINE

branch: if goto else goto According to the answer
of the test the next instruction is determined (where All
other registers are not changed.

copy: i.e. the content of the “read”-register is copied into
the “write”-register The next instruction is all other registers
remain unchanged. There is also a kind of indirect addressing possible;
in that case, the content of the register with address is copied into
register

Remark 22.2 In general, if an input is given by a vector of many
natural numbers the number as well is given as part of the input to the
machine. This can be done for example using register for This demand
is similar to the fact that for a Turing machine we can get information about
the input length just by scanning through the input until we find the first A
similar procedure in the RAM model would require a special symbol not being
a natural number. In order to avoid the related formalism the above way is
chosen. The same information is given for an output: if
is the final assignment of the registers when M stops one can agree upon
interpreting as the dimension of the output. The latter then is given as

This is a very elementary definition for a RAM and we could easily extend
it, for example, by allowing multiplication and a kind of integer division as
well.

However, with respect to the power of computation the RAM model is
equivalent to the Turing machine. Clearly, in order to make such a statement
precise we have to define the function computed by a RAM; moreover, on the
Turing machine side we have to deal with functions over the natural numbers.
We skip the corresponding definitions and just point out that they can be
done in a completely parallel manner like Definition 18.2.4. With respect to
the (formal) restriction to natural numbers see Exercise 19.2.2. It follows

Theorem 22.3 The classes of partial functions computable
by RAMs and by Turing machines are the same.

A proof of the above theorem can be done by simulating all the operations
of one machine type by subprograms for the other.

As it is the case with respect to the computational power of a RAM
we can also compare the complexity of a computation of a RAM with the

22 The Random Access Machine 331

concepts previously studied. In order to do so we have to define the costs
for operations performed by a RAM. There are different ways to do that,
and the next chapter will show another approach which leads to a different
complexity theory. In this section we indicate such a definition which once
more turns out to be equivalent to the concepts introduced for the Turing
machine.

Definition 22.4 Logarithmic size and cost measure

a)

b)

An input for some has the logarithmic size

The logarithmic costs of performing a RAM operation are defined as
follows:

computation:

this operation has the logarithmic cost

branch: if goto else goto this operation has
the logarithmic cost

copy:
this operation has the logarithmic cost

For indirect addressing logarithmic costs are defined similarly, tak-
ing into account the logarithmic size of all addresses and the values
stored in the corresponding registers.

c) The logarithmic running time of a RAM on a given input is the sum
of the logarithmic costs of the operations performed until the machine
stops.

where or

332 22 THE RANDOM ACCESS MACHINE

Using these definitions of size and costs we can easily define complexity
classes for RAM computations as well. Moreover, non-deterministic compu-
tations can be introduced; we shall postpone the explanation of the under-
lying idea to the chapter on real number models. The crucial result is that
over the natural numbers all this gives (almost) the same complexity classes
as obtained when using the Turing machine and coding natural numbers over

For a closer analysis of the RAM model and simulation results
with respect to the Turing machine model see, for example, [197].

23 Complexity Theory over the Real Numbers

So far our complexity considerations were concerned with problems formu-
lated over finite alphabets. The algorithms we have studied followed the
Turing machine approach. However, in the first part of this book our main
interest was in continuous optimization problems, i.e. the objective functions
were defined over (subsets of) some

In the present chapter we want to outline briefly a different approach
to deal with the complexity of problems which is mainly devoted to the
treatment of problems with real data involved. The machine model for such
computations is an extension of the RAM model described in Chapter 22; in
this manner it was introduced by Blum, Shub, and Smale [25].

Our intention is to present a general outline of ideas rather than detailed
proofs of results. References for further reading are included at the appro-
priate places. For a general history on computations over the real numbers
we refer to the very interesting survey [217].

23.1 Motivation

In order to explain the main ideas of “real number complexity theory” let us
consider once more the Linear Programming problem. In Chapters 6, 7, and
8 we have learned about different algorithms for solving it, among them the
simplex method as well as Khachiyan’s algorithm. A closer analysis of their
running time complexities yields some interesting new aspects which we have
not considered so far.

Assume we only want to count the number of arithmetic operations
performed during an algorithm (i.e. the number of bit operations necessary
to perform such an operation is not longer taken into account).

Consider a Linear Programming instance, say

respectively

where A is an matrix. For the simplex method it turns out that
is bounded by an exponential function which only depends on the quantities

and This is basically due to the fact that is determined by the
number of vertices passed during the algorithm; and (an upper bound for)
the total number of vertices reflects the geometric structure of the feasible
region, but does not depend on the bit-sizes of entries in A, and

subject to

334 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

A quite different situation appears when analyzing the ellipsoid method.
As we have already shown its over-all running time (i.e. including the number
of bit operations) is bounded by a polynomial function in and the
maximum bit length L of the problem data. Thus, in terms of (discrete)
complexity theory we have see Theorem 19.2.3.

However, the ellipsoid method provides no time bound for all instances
of the same “geometric” dimension if the bit size L (or another suitable
measure) is not taken into account. Here, by geometric dimension we mean
the number of rationals (or of reals later on) specifying a problem instance.
For a Linear Program this dimension basically is The dependency of
Khachiyan’s algorithm on L can be seen as follows (cf. also [215]):

Example 23.1.1 Consider two Linear Programs in feasibility form

and

where and being an integer
parameter.

As problem sizes according to the notions of Chapter 19 we can choose

and

respectively. Obviously, is a solution for (23.2) if and only if solves

(23.1). Khachiyan’s algorithm now constructs families resp.

of ellipsoids; it stops as soon as ellipsoids resp. are
obtained such that

and

23.1 Motivation 335

Moreover,

(remember to denote the volume of the unit ball).
The factor by which the volume of two subsequent ellipsoids constructed

during the algorithm decreases only depends on the dimension of the un-
derlying space, but not on or (cf. Theorem 7.2.4). Thus, if tends
to infinity the same is true for the number of steps (even arithmetic ones)
performed by the ellipsoid method (note that and

The bit complexity measure absorbs this effect by increasing the input
size of system (23.2) when the value of increases. However, considering
the geometric problem size the above reasoning shows Khachiyan’s
algorithm not to work “in polynomial time” any longer (we are going to define
an appropriate notion of polynomial time algorithms in a few moments).
The same effect can be noted when dealing with Karmarkar’s interior-point
method.

One major open question related to the Linear Programming problem is
the following: does there exist an algorithm performing a number of arith-
metic steps which is bounded by a polynomial function in the geometric size

of the input? A lot of work into this direction has been done. Partial
results, for example, have been obtained by Megiddo [165] and Tardos [209].
Vavasis and Ye [222] have given precise results on the running time of interior-
point methods with respect to the so-called condition number of the input
instance as size measure. The latter can be defined for real number data as
well and covers the bit measure in case of rational data. Recently, Renegar
[190] has announced an interior point method whose number of arithmetic
operations is exponentially bounded in the dimension of the problem
and thus achieves the same (theoretical) worst case behavior as the simplex
method.

The general question whether there is an algorithm for Linear Program-
ming whose number of arithmetic operations is bounded by a polynomial
function in the quantity seems to remain open at the moment of writ-
ing this book.

A further important aspect related to the above discussion arises: in prin-
ciple, there is no need to restrict the Linear Programming problem to integer

336 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

or rational inputs only. For example, the simplex method works as well if
we deal with real data (and assume both exact representation of and exact
arithmetic for real numbers). Basic ideas of Khachiyan’s and Karmarkar’s
algorithms come from “continuous” mathematics as well.

One reason for considering the bit-size approach as in Chapter 19 is its
closeness to practical implementation on real life computers. Nevertheless, it
seems to be reasonable to relate questions from complexity theory to more
“classical” mathematical areas like analysis, numerics, algebra, topology etc.,
thereby getting new insights into problems from these domains. The under-
lying idea is to redefine the computational model for an algorithm in a way
that is more appropriate than discrete machines over finite alphabets. By
considering real numbers as basic entities this enables one to deal with “real
number” algorithms solving “real number” problems - just as it is done in
many well-known algorithms like Gaussian elimination or Newton’s method.
Moreover, this approach allows to address a variety of problems which cannot
be handled in a satisfactory way using the bit model (for example decidability
of structures like the Mandelbrot set).

Notions of real number algorithms have been investigated more intensively
at least during the last two or three decades; let us mention the real ran-
dom access machine which is a (non-uniform) extension of the RAM model
presented in Chapter 22 to real numbers, straight-line programs as well as
algebraic computation trees. This has led to the field of algebraic complex-
ity theory; here, numerous deep results and beautiful problems have been
obtained (for example the still unsolved question concerning the exponent of
matrix multiplication). For a broad survey on that field we refer to the book
by Biirgisser, Clausen and Shokrollahi [35].

Nevertheless, the according computational models do not directly fit to
transform main notions like P, NP, NP-completeness etc. from the discrete
setting. They are defined as non-uniform devices, i.e. for every class of
problem instances with a different input size there might be intrinsically
new algorithms There is no additional requirement in form of a uniformity
condition relating the different algorithms The latter in discrete
complexity is given through a Turing machine program and was necessary to
define complexity classes like P and NP.

23.2 The Blum-Shub-Smale machine; decidability

The approach we want to outline here was introduced in 1989 by Blum, Shub,
and Smale [25] . It extends the models used in algebraic complexity theory by

23.2 The Blum-Shub-Smale machine; decidability 337

defining uniform machines, thus being able to deal with problems of different
input sizes.

Readers being more interested in the corresponding theory should confer
the book [24]. An early survey on the subject together with a bibliography
can be found in [164].

The type of machines we are going to define is an extension of the RAMs
briefly described in Chapter 22. Only the data-structure of the register entries
is changed (from to together with an adaption of the related size- and
cost-measures. According to the underlying philosophy that any real number
is an entity its size is defined to be 1 (no concern of its numerical magnitude).
Moreover, any basic arithmetic operation with real numbers involved has unit
cost. It should be clear from what follows that similar computational models
could also be considered in a much more general framework (for example over
the complex numbers, ordered rings, groups ...). Indeed, we’ll also address
some results related to computations over

Let us now describe the Blum-Shub-Smale (shortly: BSS) model of com-
putation more precisely; compare it with Definition 22.1.

Essentially, a (real) BSS-machine can be considered as a Random Access
Machine over which is able to perform the basic arithmetic operations at
unit cost and whose registers can hold arbitrary real numbers.

Definition 23.2.1 ([25]) Let 1 i.e. the set of finite
sequences of real numbers. A BSS-machine M over with admissible input
set Y is given as follows: The machine has an infinite, countable number
of registers denoted by Each is able to store a real number

At each step of a computation only finitely many registers hold num-
bers different from 0. There are three more registers storing natural numbers

and These numbers are used as instruction counter and addresses,
respectively.

The BSS machine M has a finite set I of instructions labeled by 0 , . . . , N. A
configuration of M is a quadruple Here, denotes
the instruction to be executed next, and are used as addresses (copy-
registers) and is the actual content of the registers of M. The
remaining (infinitely many) registers contain a 0. The initial configuration of

computation on input is (1,1,1, . If and the actual
configuration is (N, the computation stops with output
The instructions which M is allowed to perform are of the following types:

1Following the literature we adopt the notion instead of

338 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

computation: where or
for some constant

The register will get the value or respectively. All other
register-entries remain unchanged. The next instruction will be
and the copy-registers are changed selectively according to or

and similarly for

branch: if goto else goto According to the answer
of the test the next instruction is determined (where All
other registers are not changed.

copy: i.e. the content of the “read”-register is copied into
the “write”-register The next instruction is all other registers
remain unchanged. There is also a kind of indirect addressing possible;
in that case the content of the register with address is copied into
register

All appearing among the computation-instructions constitute the (fi-
nite) set of machine constants of M .

Remark 23.2.2 a) The kind of operations allowed depends on the un-
derlying structure. A branch for example, does only make sense
in an ordered structure.
If, during a computation, a division by 0 is performed the computation
by convention enters into an endless loop.

b) Once more, for an input of real numbers the number usually
is also given as part of the input to M, cf. Remark 22.2. The same
holds for the size of an output.

In a first step we now want to consider recursion theoretic aspects of this
approach. Afterwards, we turn to complexity issues. The main definitions
of the previous chapters can be carried over without difficulty because they
just rely on the notion of an algorithm.

Definition 23.2.3 a) A language is a subset It is called decid-
able iff there exists a BSS-machine M which computes the characteristic
function of Y in here, the function computed by a machine M
is defined similarly to Definition 18.2.4.

b) The halting set of a BSS-machine M is is de-
fined }.

23.2 The Blum-Shub-Smale machine; decidability 339

c) The running time of a BSS machine M on input is the number
of steps M performs on until it stops (or otherwise). Here, a step
is one of the allowed operations described in Definition 23.2.1.

As in Exercise 18.3.4 it is easy to see that Y is decidable iff Y as well as
are halting sets of certain BSS-machines.

Exercise 23.2.4 Show that a set is decidable over if and only if
both Y and are halting sets.

A natural question arising is whether there are non-decidable halting sets.
As in the Turing approach (see Theorem 18.3.6) such sets do exist; the fol-
lowing easy example, however, shows their structure to be very different than
that of any set satisfying the according property within the bit-model.

Example 23.2.5 Any subset is decidable by a BSS algorithm. The
idea is to code the entire information about S in a single real value This
number is defined by its expansion say with respect to base 3. For
let

The machine to be constructed contains as a constant. For input it first
checks whether and then computes by comparing the values of

and (where denotes the integer part of a real number).
Fill in the details for this example!

Remark 23.2.6 The above way of coding infinite discrete information in a
single register has some further consequences. It turns out that the notion of
“space” used by a BSS machine (i.e. the number of registers involved during a
computation) is not any longer as important as in the discrete theory - at least
if it is used without further resource restrictions. More precisely, applying a
similar coding technique it can be shown that any decision problem over
is solvable by a machine using only a number of registers linearly bounded
in the input size (see [169]). Since we have not addressed space issues in
Chapter 19.1, we won’t do it here as well.

The previous example can be extended to any (effectively) countable set.
Furthermore, it proves any function to be computable over the
reals (by coding the set graph Thus, as long as we are only interested
in decidability, the possibility of using real constants makes purely discrete

340 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

problems very simple in the real setting. As will be indicated below, however,
the benefit of real constants in relation with complexity issues is a much more
sophisticated matter.

Exercise 23.2.7 a) Suppose we want to realize the function
i.e. for compute the integer part of

i) Write down a BSS program for

ii) Show that any BSS-machine which computes this function needs
at least many steps (see [25]).

b) Work out the above mentioned fact that any function is BSS
computable.

Remark 23.2.8 The previous exercise shows that over the reals there exist
computations taking inputs from a finite dimensional space (here which
only use a finite number of registers but are not time bounded in the input-
dimension (that is, there exists no function such that the running
time of the algorithm for all is bounded by This is not the case
for Turing machines and space bounds, cf. Exercise 19.4.7.

Returning to our above question there are non-decidable halting-sets also
in the BSS model. They can be obtained in a recursion theoretical way con-
structing a “real number halting problem” which asks whether a given BSS
machine halts on a given input and following the same approach indicated in
Theorem 18.3.6.

A more interesting way to obtain such problems uses topological argu-
ments. Let us briefly outline this second way; in addition, the argument
gives some useful information on the structure of halting sets. The compu-
tations of any BSS machine M can be splitted into a countable number of
different computation paths. These paths are related to the branches appear-
ing during a computation and the answers M replies. Using these paths the
halting set of M can be decomposed according to the path which is followed
by the machine. The special structure of the permitted operations implies the
sets realizing the decomposition to be semi-algebraic sets. These are subsets
of some given by a Boolean combination of polynomial equalities and in-
equalities. Consequently, any halting set can be decomposed into a countable
union of semi-algebraic sets. It is well known from semi-algebraic geometry
that semi-algebraic sets have only a finite number of connected components
(cf. [26]). Thus, if is decidable both A and must have at most

23.3 Complexity classes over the reals 341

countable many connected components (because they are halting sets). This
can be used to construct non-decidable halting sets by looking to the number
of such components. Typical examples are provided by certain Fatou sets
(for example the complement of the Mandelbrot set, cf. [25]). They are not
decidable in the BSS model of computation over or respectively.

23.3 Complexity classes over the reals

Let us now turn to complexity theory for real machines. The main concepts
can be taken directly from Chapters 19 and 20. However, one major change
is in the definitions of the size of an input and the cost of the used operations.

Definition 23.3.1 For a vector we define the real size of to be

As opposed to the Turing machine model, here we are not interested in
the numerical magnitude of a real number. Every real number is considered
as an entity. The algebraic size of a problem (i.e. of an input
is given by the number of reals needed to represent it.

Definition 23.3.2

i) A language is in class (decidable in deterministic poly-
nomial time) iff there exist a polynomial and a (deterministic) BSS
machine M deciding L such that

ii) is in (verifiable in non-deterministic polynomial time)
iff there exist a polynomial and a BSS machine M working on input
space such that

a)

b)

c) and the running time
satisfies

iii) is reducible in polynomial time to iff there exists a
BSS machine M working in polynomial time such that

342 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

iv) is iff any other language in can be
reduced to L in polynomial time.

Remark 23.3.3 Note the way nondeterminism is modeled in the real setting
(point ii): instead of allowing the machine to choose among several (finitely
many!) optional successor instructions it “guesses” a vector from then,
it proceeds with a deterministic computation. For Turing machines both
concepts are equivalent according to Exercise 19.4.5 , whereas in the BSS
model the former would yield a restricted search space. We shall come back
to the power of a restricted search later on.

Exercise 23.3.4 Show that both the Linear and the Quadratic Program-
ming decision problems with real input data are members of

The following example reflects the flavor of the new kind of problems
interesting within the BSS model.

Example 23.3.5 Let be fixed; consider the set of all polynomials in
variables with real coefficients and degree at most (the number can

vary with different polynomials). Denote by the set of those having a real
zero. Coding a polynomial as element of is straightforward, for example
by using the dense encoding mentioned in Example 19.1.10: enumerate all
monomials up to degree in variables; then the coding must contain the
number as well as the coefficients of each monomial. The size of such a
coding basically is given by the number of possible monomials. Thus, if we
fix the degree it is polynomially bounded in It is now easy to see that
all problems are members of given a polynomial in unknowns,
guess a vector plug it into and evaluate Then check whether
the result equals zero. This takes linear time in the number of monomials
and thus yields an for

Exercise 23.3.6 a) Work out the above example. Write down a BSS pro-
gram which for input and a vector computes

and checks whether the result is 0.

b) Consider the corresponding problem over the integers: here, the
input is an Does there exist an such that

Why does the verification algorithm from Example 23.3.5
not prove the problem to be in Where lies the difficulty? (Take
a look at Example 19.4.4 together with Exercise 23.2.7.)

23.3 Complexity classes over the reals 343

A first important question arising in order to substantiate the new notions
is that for existence and decidability of complete problems. This is the main
result in [25].

Theorem 23.3.7 (Blum-Shub-Smale) The problem is
Any problem in class is decidable in simply exponential time.

Proof. (Sketch) The proof of completeness mimics Cook’s proof of the cor-
responding result for the 3-SAT problem (see Theorem 20.3.1). Any compu-
tational step of an can be described by a solvable polynomial
equation which represents a move of the machine from one state into the
next. An accepting computation thus corresponds to a solvable system of
polynomial equations, which can be produced within polynomial time from
the given machine and its input. The degree 4 bound comes into play by
a substitution trick: given any high degree polynomial equation, it can be
reduced to a system of quadratic equations by introducing new variables (f.e.

can be replaced by Squaring and
summing up yields one polynomial equation of degree 4, see Exercise 23.5.2.

We remark that over the complex numbers the last step is not possible be-
cause no ordering is available. There, an problem is deciding
the solvability of a quadratic polynomial system. Dealing with the decidabil-
ity of (or, equivalently, all problems in is a much harder task than
the corresponding question for the 3-SAT problem. This is due to the fact
that in discrete complexity theory the search space for any instance of an
NP problem is finite; checking all possible guesses gives a decision method.
Obviously, we cannot guess all possible real zeros of a polynomial. The time
bound stated in the theorem arises from quantifier elimination procedures.
For a polynomial the is considered in the form:
“is a true formula”, where

Here, the free variables correspond to the coefficients of The
task then is to construct an equivalent sentence without any
quantifier. The (more general) problem of eliminating quantifiers in so-called
first-order formulas over real closed fields was first solved by Tarski [211].
Further work into this direction has been done by Collins; the stated simply
exponential time bounds for our special problem basically follow from
work independently done by Grigor’ev, Heintz-Roy-Solerno and Renegar (see
[86], [101], [189] and the literature cited there). More recent progress on this

344 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

issue is given in [16, 15]. Qualitatively, the same results hold over the field
of complex numbers.

If we assume then the degree bound 4 in Theorem 23.3.7 is
sharp. This follows from the existence of polynomial time algorithms for
and Recall that a similar relation between 3-SAT and 2-SAT has been
noted in Chapter 20.4, Theorem 20.4.1.

Theorem 23.3.8 (Triesch) The decision problems and both belong
to

Exercise 23.3.9 Prove Theorem 23.3.8 (cf. [216]).
Hints: For compare with the univariate case. For
perform a stepwise elimination of variables by writing as

and apply the univariate method to
solve a quadratic equation.

Theorem 23.3.7 substantiates the introduction of classes and
over the reals as well as the meaning of the problem in this
framework.

Until now nobody was able to establish a polynomial time algorithm for
the “4-feasibility” problem nor to disprove its existence. The latter task
leads into the area of proving lower bounds. This is an extremely interesting
and difficult matter, which forces to get deep insights into the structure of a
problem. The currently available techniques to a large extend are based on
restricting problems to a fixed input dimension, thereby loosing uniformity
conditions. Tools from (real) algebraic geometry then play an important part
(see [153], [154] and once again [35] for the kind of non-uniform methods being
useful). However, the best lower bounds known so far for problems still
are far away from proving even though the latter inequation is
thought to be true by most researchers in the field. To increase these lower
bounds seems to be an important research topic also in the future.

When compared with the NP-theory of Chapter 20 and the rich fund of
NP-complete problems, there are currently relatively few problems known
to be over the reals. They mainly are located in the area of
semi-algebraic geometry. On the other hand, most of the problems studied in
Chapter 20 can be naturally looked upon as or extended to real number prob-
lems. For example, take 3-SAT, Hamiltonian Circuit, Traveling Salesman,
and Knapsack with real weights; furthermore, different kinds of mathemati-
cal programming problems such as Linear Programming LP and Quadratic

23.3 Complexity classes over the reals 345

Programming QP, Integer Programming and many more. They all constitute
problems in class Then, a typical question arising is: do these problems
change their complexity behavior when the underlying model is changed?

Of course, as long as the question is unsolved we cannot
expect results like : “3-SAT is not However, we want to
outline briefly some progress been made w.r.t. such structural questions.

An interesting step to compare discrete and continuous complexity classes
was done by Koiran in [141]. He analyzed the use of real constants for discrete
problems by considering a variation of the cost-measure used in the BSS
model.

Example 23.3.10 Consider the following BSS algorithm:

input

for to

do

od;

next

It computes the function i.e. a polynomial of degree is computed
in steps.

The cost-measure used in the BSS model causes this cheap performance
of iteration-algorithms producing high degree polynomials. Koiran changed
it by weighting the cost of any operation also with respect to the degree of all
functions computed intermediately. Using this different cost-measure gives
an interesting way to analyze discrete problems as well as the use of such
kind of iteration algorithms. Here, some of the related results are indicated.
Koiran [141] himself studied the benefit of using real machine constants when
dealing with problems defined over Applying results from semi-
algebraic geometry it turns out that the different time complexity classes in
Koiran’s model recapture classical complexity classes in the discrete setting.
The main tool is to switch from BSS machines back to Turing machines over

replacing the real constants of the given machine by (small) rationals. This
passage forces the resulting Turing machine algorithm to be non-uniform: for
every input-dimension the rational constants taken are different; therefore,
the given problem can also be dealt with over but (probably) with different
algorithms for each dimension. For more details see [141].

346 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

In Chapter 23.1 we have seen at least some reason to conjecture the com-
plexity of LP to increase in the real number setting. Therefore, one might
get the feeling that the above mentioned problems all get more difficult if
analyzed in the BSS framework. However, the situation seems to be not that
clear.

Consider, for example, the Quadratic Programming problem QP (i.e. de-
cide whether the minimum of a non-convex quadratic polynomial is 0 on
the non-negative orthant, see Definition 19.2.1). It is NP-complete if re-
stricted to rational inputs according to Theorem 21.5 (the membership in
NP will be settled below). One might conjecture the real extension of QP
to maintain this completeness property. Nevertheless, it turns out that some
strong reasons contradict this conjecture. This is due to an intrinsically dis-
crete structure of the QP problem; it is hidden behind the nondeterministic
algorithms establishing membership of Quadratic Programming in

Definition 23.3.11 (digital non-determinism) Let be a lan-
guage in It belongs to the class (digital if the guess in
Definition 23.3.2, part ii) can be taken from {0,1}* instead of

Thus, for a problem in a discrete search space is sufficient for a
fast verification.

Exercise 23.3.12 Prove

None of the above inclusions is known to be proper. As can be checked
easily the “real” versions of combinatorial problems like 3-SAT, Hamiltonian
Circuit, Traveling Salesman or Knapsack belong to More interesting,
this also holds for Linear and Quadratic Programming. Whereas an

in general is allowed to guess real numbers, for QP it is sufficient
to reduce the search to a discrete space, i.e. the guesses can be located in
{0, 1}. We shall now sketch the proof of this result. It also closes a former
gap left in the proof of Theorem 19.4.3.

Theorem 23.3.13 The Quadratic Programming problem belongs to class

Proof. Suppose for a symmetric matrix
and (otherwise, already solves the problem). We shall

make use of the following theorem by Eaves [55]: either is unbounded from
below on on a half-ray starting in the origin or the infimum is attained
on

23.3 Complexity classes over the reals 347

The main idea of a verification algorithm now is as follows. Instead of
guessing directly a feasible point x such that we guess some digi-
tal information about such a potential minimal point. This information (if
correct) allows to compute such a minimum.

Our first guess indicates whether attains its infimum or not. If the
answer is “yes” we further guess informations about a minimal point. More
precisely, we guess a subset of maximal cardinality such that
there exists a minimum for which the components in S are active, i.e.
vanishing. Note that S can be coded by a bit vector of length
Next, we remove the vanishing variables according to our guess and consider
the necessary optimality criteria for the remaining problem. This results in
an LP problem whose data are taken from the original data.

If is unbounded from below we guess informations about the half-ray
existing according to Eaves’ result. Suppose w.l.o.g. that

(at least one component has to be different from 0). Then can be decom-
posed as

where and Furthermore, the limit for
tending to is If is non-negative on the above limit condition
leads to an LP problem with objective function and constraints

If takes negative values we have to find one. This is
a new QP problem in one variable less and the procedure can be repeated.
After at most many iterations we end up with an LP problem as well.

The proof so far shows that guessing a bit-vector a verification procedure
for QP can be reduced to a verification procedure for an LP instance whose
solution can be extended in order to compute a solution of the initial problem.
The entries in the LP instance are among the original entries of the QP
instance. All computations can be performed in polynomial time.

It remains to be shown that This is left to the reader as
Exercise 23.5.8. The full details can be found in [163].

Corollary 23.3.14 The QP problem with rational entries is in NP.

Proof. The proof of Theorem 23.3.13 only guesses bits. If all data are
rationals the construction works the same way. The LP instance can be
obtained in polynomial time since entries are only copied. The only tricky
point is the algorithm for LP. Here, from a digital guess a solution is

348 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

computed by means of Cramer’s rule. According to Chapter 7.4 this can be
done in polynomial time in the Turing model. The extension to a solution of
the given QP problem is just done by adding zero components.

Remark 23.3.15 The proof of Corollary 23.3.14 could have been done more
directly using the ideas of Chapter 7.4. However, in that case we would not
have obtained a result for real number models and real entries as well.

Theorem 23.3.13 has an interesting implication: If any problem with this
special nondeterministic structure is in the BSS model, then
resultant polynomials can be computed fast (in a certain sense, see [163]).
This again would be astonishing because resultant polynomials are widely
believed to be extremely hard to compute. It is therefore reasonable to con-
jecture some problems like LP to become more difficult, whereas some others
like QP seem to loose their completeness property. The latter especially
includes combinatorial problems like 3-SAT, Hamiltonian Circuit, Traveling
Salesman, and Knapsack!

23.4 Further directions

Besides analyzing the complexity of some special problems in different models
the considerations of Chapter 23.3 raise an even more general question: What
are the relations between the P versus NP problem in different structures?
NP-completeness results are known in very general settings ([103], [166]).
The strongest efforts with respect to the above question until now has been
made in algebraically closed fields. Here, basically only one P versus NP
problem exists in the following sense:

Theorem 23.4.1 P = NP over the complex algebraic numbers iff P =
NP over any algebraically closed field extension of

This is due to transfer principles from model theory (“only-if-part” , see
[170]) as well as number theoretic arguments (“if-part” , see [24]). The latter
are used to (uniformly) substitute complex machine constants by algebraic
rationals with polynomial time slow down only. Compare this result with the
above discussion concerning the problem of eliminating constants in the real
closed setting (see also [142]).

Over the real numbers, a similar result like Theorem 23.4.1 is not known.
Fournier and Koiran [70, 71] in two interesting papers have basically shown
that proving a result for some variation of the BSS model is of

23.5 Exercises 349

the same difficulty as settling major open problems in classical complexity
theory. The scope of these results, however, is beyond this book.

Let us close this brief survey by outlining some further research directions
related to the BSS model. As it was already mentioned, model theoretic
tools enter as soon as different data-structures, operations or cost-measures
are considered. The P versus NP problem is closely related to quantifier
elimination procedures for the according structures (cf. [185]). Another area
where model theory comes into play is that of descriptive complexity theory.
Here, the purpose is to describe complexity issues by purely logical means
without using any notion of algorithms and machines ([85]).

Just as in discrete complexity theory one can also incorporate probabil-
ity issues by analyzing randomized algorithms or dealing with average case
complexity. One further important direction is that of numerical analysis;
in fact, many of the well known numerical algorithms like Newton’s method
can be revisited in the BSS model by allowing the machines to make round
off errors. For the problem of approximating zeros of polynomial systems in
this context see [158], [201], [47]; confer also [203] and [228] for a more ex-
tensive discussion on the relation between numerical analysis and complexity
theory. Methods from approximation theory enter if the information about
a problem instance is supposed to be incomplete. This leads into the field of
Information Based Complexity, see [212]. The use of the BSS model in this
framework is discussed in [178] and [213].
Finally, a good impression of ongoing research can be obtained from the two
conference proceedings [191] and [45].

23.5 Exercises

Exercise 23.5.1 For let be the following decision problem: given
a polynomial in of degree at most is there a zero of

such that all components of are non-negative? Show that is
complete ([162]).

Exercise 23.5.2 i) Perform a polynomial time reduction (in the real num-
ber model) of the decision problem fixed, to the following problem:
given a system of polynomial equations
where all are of degree at most two; does there exist a common real zero?

ii) Reduce further to using i).
Hint for i): Let be a polynomial of degree

say where is a multi-index such that

350 23 COMPLEXITY THEORY OVER THE REAL NUMBERS

Now introduce as a new variable.

Take into account algebraic dependencies among the different ([25]).

Exercise 23.5.3 Let M be a BSS machine over with admissible input set
for some Let be its halting set. Show that is a countable

union of sets of the form where I
and J are finite (possibly empty) index sets and are polynomials.

Exercise 23.5.4 Consider the BSS model over (without division). The
inputs and machine constants thus are complex numbers. As operations we
can perform addition, subtraction and multiplication. Test instructions are
of the form Show that the reals are not decidable in this model, i.e.
there is no complex BSS machine which on input decides whether

Hint: use Exercise 23.5.3.

Exercise 23.5.5 Does the statement of Exercise 23.5.4 change if division is
allowed as well?

Exercise 23.5.6 Conclude from Exercise 23.5.4 that complex conjugation
is not computable in the BSS model over

Exercise 23.5.7 (cf. Exercise 20.3.2) For this exercise we assume the exis-
tence of a universal BSS machine which is able to simulate any BSS machine
on an arbitrary input. In particular, we can assign a codeword in to
any BSS machine M (for a proof of this fact see [25]).

Prove that the following decision problem is given a code
of a non-deterministic BSS machine M, an and a natural number

in unary notation (i.e. is given by many 1’s). Question: Is there a
guess such that machine M accepts the input in at most
many steps?

Exercise 23.5.8 Prove that the Linear Programming decision problem be-
longs to class

Hint: Use Exercise 7.3.6 in order to prove that if the initial LP system is
solvable there exists an index set such that the equation system

is solvable and every solution of the latter solves the
former. Now design a verification algorithm for LP (see [163]).

23.5 Exercises 351

Exercise 23.5.9 Fix a Show that the following decision prob-
lem is

INPUT: A real number B and a constrained optimization problem in the
general form of Chapter 2.1, where all the functions involved are polynomials
of degree at most That is, the input is an objective function
together with finitely many constraint functions defining the admissible
set for finite index sets
I and J. All are polynomials of degree at most

QUESTION: Is there an admissible point such that

Exercise 23.5.10 For input coefficients consider the existential
formula Write down a quantifier free
formula being equivalent to over (i.e.

What’s about the same problem if restricted to coefficients and solutions
over

What’s about the same question for

This page intentionally left blank

24 Approximating NP-hard Problems

We shall now focus again on the Turing machine model and problems for-
malized over finite alphabets. The theory of NP-completeness substantiates
the conjecture that some problems in NP cannot be solved by efficient algo-
rithms. As we have seen this holds as well for related optimization problems
such as the Traveling Salesman problem and many others. They are NP-
hard in the sense that an efficient optimization algorithm for one of these
problems would imply an efficient decision algorithm for their correspond-
ing (NP-complete) decision problem versions. However, having a problem
classified to be NP-complete or NP-hard does not resolve the necessity of
trying to solve it at least somehow. If we assume we cannot any
longer hope for an efficient algorithm. In order to be able to do at least
some progress within a polynomial amount of time we have to take distance
of the requirements we put on an algorithm. There are several possibilities
what could be neglected. One major branch of complexity theory deals with
the benefit of randomization . In this framework, algorithms are not any
longer deterministic but randomized. The purpose is then to compute effi-
ciently correct solutions with high probability. The prize we have to pay for
increasing the efficiency is the missing guarantee of success in all cases.

Another approach we want to present here is that of approximation algo-
rithms. It is used for optimization problems and we want to turn back again
to such problems from now on. The main idea is to weaken the condition
of computing the exact optimal value of a problem. Instead of requiring the
output of an algorithm to be the optimum, one attempts to approximate the
latter as good as possible. The hope is to obtain at least efficient approxi-
mation algorithms for hard problems. That is, we try to gain efficiency by
weakening the solution property from being optimal to being approximately
optimal.

Several different notions of approximability turn out to be meaningful.
We present here the basic concepts and some of the basic results related to
approximation algorithms. Excellent recent text books on this topic are [8],
[145] and [223], a collection of survey papers on approximation algorithms is
[111].

24.1 Combinatorial optimization problems; the class NPO

There are different notions of what a good approximation of an optimal solu-
tion should mean. They constitute a classification of optimization problems

354 24 APPROXIMATING NP-HARD PROBLEMS

determined by whether such a problem can be solved according to the corre-
sponding notion of approximability. In this and the next sections we define
these different notions and make the underlying ideas clear. We shall also
consider other concepts the reader might think about and figure out why
they are not used.

At the beginning of the theory we have to specify the type of problems
we are interested in, namely combinatorial optimization problems.

Definition 24.1.1 (Combinatorial optimization problems) A combi-
natorial optimization problem is a minimization or
a maximization problem and consists of three parts:

ii)

iii)

A set of instances for the problem;

for every instance a finite set Sol(I) of possible solutions. This
set is called the set of feasible solutions of the instance I;

a function Here, is the set of
positive rational numbers. The value is called the value of the
feasible solution

A feasible solution is called an optimal solution for an instance I of the
problem if for all feasible solutions we have

in case we are interested in a minimal solution
value. We call the problem a combinatorial minimization problem; or

in case we are interested in a maximal solution
value. We call the problem a combinatorial maximization problem.

We denote the optimal value by

If the set Sol(I) of feasible solutions is empty we define the optimal values
as OPT(I) := 1.

The following example clarifies the definition of a combinatorial optimiza-
tion problem.

i)

24.1 Combinatorial optimization problems; the class NPO 355

Example 24.1.2 a) The Traveling Salesman optimization problem (cf.
Definition 19.2.1): An instance I of this problem is given by a graph

together with a distance matrix

The set of feasible solutions Sol(I) is the set of all permutations of the
nodes in V. The function giving the value of a feasible solution is

defined as the sum of distances along the cycle given by that solution,
i.e.

The problem is a combinatorial minimization problem.

The Bin Packing optimization problem (cf. Definition 19.2.5):

An instance I of this problem is given by a finite set S, for every
a natural number and a natural number B.

The set of feasible solutions Sol(I) is the set of all partitions of S into
finitely many disjoint subsets (for some), such that
for all it is

The function giving the value of a feasible solution is
defined as the cardinality of the decomposition, i.e.

b)

The problem deals with the question how many bins of a given size are
needed in order to pack a number of objects. It is again a combinatorial
minimization problem.

The MAX-3-SAT optimization problem (cf. Definition 19.2.5):

An instance I of this problem is given by natural numbers and and
a finite set of clauses in the Boolean variables
each clause having at most three literals.

The set of feasible solutions Sol(I) is the set of all 0-1 assignments for
The function is given by the number of clauses among

the which are satisfied by the chosen assignment.

Asking for an assignment giving the maximal value of we obtain a
combinatorial maximization problem. Note that the answer for I is
if and only if the corresponding 3-SAT instance is satisfiable.

c)

356 24 APPROXIMATING NP-HARD PROBLEMS

d) The Knapsack optimization problem(cf. Exercise 21.10):
An instance I of this problem is given by a finite set S, for every
natural numbers and and a natural number B.

The set of feasible solutions Sol(I) is the set of all subsets of S such
that

The function giving the value of a feasible solution is defined as
the sum of all for the elements i.e.

The problem is considered as a combinatorial maximization problem,
i.e. we try to maximize the sum of the for feasible solutions.

Exercise 24.1.3 Write down versions of the Independent Set and the Inte-
ger Programming decision problems as combinatorial optimization problems,
cf. Exercise 21.10 and Definition 19.2.1.

Given the tight correspondence between optimization problems and the
related decision problems, it is natural to introduce an equivalent class like
NP for the former. This class is usually denoted by NPO.

Definition 24.1.4 (Class NPO) Let be a com-
binatorial optimization problem.

a) The problem II belongs to the class NPO if and only if the following
conditions hold:

There exists a polynomial such that for any instance
all feasible solutions in Sol(I) have a size which is bounded by

for any input and for any arbitrary string of length at most
it is decidable in polynomial time whether

the measure function is computable in polynomial time (in the
size of an instance I and a feasible solution

i)

ii)

iii)

A problem is polynomially bounded if there exists a polyno-
mial such that all values of the measure function are bounded from
above by i.e.

b)

24.2 Performance ratio and relative error 357

c) A problem is called NP-hard if the existence of a polynomial
time algorithm computing the optimal value OPT(I) for every instance
I of would imply P = NP.

It can be easily proved that optimization problems in NPO have a close
relationship to decision problems in NP, see Exercise 24.1.6 and Exercise
24.1.7.

Example 24.1.5 All the problems considered in Example 24.1.2 and Exer-
cise 24.1.3 are members of the class NPO. All of them are NP-hard. The Bin
Packing problem and the MAX-3-SAT problem are polynomially bounded.
It is recommended to the reader to figure out the necessary details.

Exercise 24.1.6 Consider a combinatorial minimization problem which
belongs to NPO, see Definition 24.1.4. The decision problem related to

is defined as follows:
INSTANCE: An instance I for together with a rational number
QUESTION: Does there exist a feasible solution with value

Show that belongs to the class NP.

Exercise 24.1.7 Following Definition 24.1.4 of NPO we can as well intro-
duce an analogue PO of the class P for combinatorial optimization problems.
A combinatorial optimization problem belongs to PO of optimization prob-
lems solvable in polynomial time if and only if it belongs to NPO and there
exists a polynomial time algorithm A which on input I computes an optimal
solution together with the optimal value OPT(I).

Show that P = NP if and only if PO = NPO.

Hint: The if part is easy; just consider a problem in NPO whose decision
version is NP-complete. For the only-if part note that the measure of a
problem in NPO is polynomially time computable. Thus, its values on an
input of size are bounded from above by an expression for some poly-
nomial Now, given such a problem in NPO consider its decision version
(see Exercise 24.1.6) and apply a binary search idea (cf. Exercise 21.9).

24.2 Performance ratio and relative error

As we already mentioned in the introduction the idea of attacking NP-hard
combinatorial optimization problems by algorithms working in (a particular

358 24 APPROXIMATING NP-HARD PROBLEMS

sense in) polynomial time is related to a weakening of the requirements such
an algorithm has to fulfill. Instead of asking for the exact computation of
the optimum, different concepts of approximating it are introduced. Towards
this end, we first define the basic quantities used for measuring the quality
of an approximation.

Definition 24.2.1 (Performance ratio; relative error)
Let be a combinatorial optimization problem

and let A be a (Turing machine) algorithm which, for every instance of
computes a feasible solution (if there is any, i.e. if).

We write and call A an approximation algorithm.
Furthermore:

i) For an instance I put

ii) The performance ratio of algorithm A is given as

The asymptotic performance ratio is defined as

Note that

iii) The relative error of a feasible solution is given as

Some immediate implications are listed below.

24.3 Concepts of approximation 359

Lemma 24.2.2 Let II be a combinatorial optimization problem and A an
approximation algorithm for it. Let I be an instance for and
the feasible solution computed by A. Then

is optimal

Let be a minimization problem. If such that then
for Similarly, if such that

then for

Proof. Parts i) and ii) are obvious from the definitions of and E.
For part iii) let and let denote an optimal (minimal) solu-

tion. By definition,

Thus,

The other assertion follows in the same manner.

Exercise 24.2.3 Prove a similar statement like iii) for maximization prob-
lems.

24.3 Concepts of approximation

We are now going to define three notions of approximability for combinatorial
optimization problems. Given the close relation between the relative error
and the performance ratio we use the latter for defining the concepts.

For the following definitions let denote a combi-
natorial optimization problem.

i)

ii)

iii)

360 24 APPROXIMATING NP-HARD PROBLEMS

Definition 24.3.1 a) Let be fixed. An approximation algorithm A
for is an algorithm if, for every input it is

b) The class of all combinatorial optimization problems in NPO for which
there exist an and an algorithm which runs in
polynomial time in size(I) is denoted by APX.

It is very important to point out the role of the error in this and the
following definitions. For different problems in APX the corresponding error
can be different. Moreover, it is fixed with the problem, i.e. we can in general
not guarantee to make smaller and smaller. Thirdly, the approximation
algorithm is required to run in polynomial time only with respect to size(I).
Its dependence on the error is not taken into account. Usually, it is more
desirable to be able to decrease the error more and more. This means that
the error is considered as well as part of the input for an algorithm.

Definition 24.3.2 a) An approximation scheme for is an algorithm
A which, on input and computes a feasible solution

such that If A moreover runs in polynomial
time with respect to size(I) it is called a polynomial time approximation
scheme (i.e. is considered as a constant here).

We write for the value of the solution computed
by A on input

b) The class of all combinatorial optimization problems in NPO for which
there exists a polynomial time approximation scheme will be denoted
by PTAS.

Even though can be changed the above definition still does not ask
for a (reasonable) dependence of the running time on the quality of the
approximation. Such a dependence is included in the next (and final) notion
of approximability.

Definition 24.3.3 a) An approximation scheme A for is called a fully
polynomial time approximation scheme if its running time on input

is polynomially bounded in

b) The class of all combinatorial optimization problems in NPO for which
there exists a fully polynomial time approximation scheme is denoted
by FPTAS.

24.3 Concepts of approximation 361

Corollary 24.3.4

Proof. Follows immediately from the definitions.

Before analyzing the above notions of approximation closer let us discuss
two other possible notions which at a first sight seem natural as well. We
shall, however, argue why they are not considered further. The reason in
both cases is once more the conjectured difference of the classes P and NP.

The first natural measure relating the optimal value of an optimization
problem to the value of an approximation is the absolute distance, i.e. the
value

One could search for algorithms which guarantee a fixed upper bound
for this difference, for all instances I of the problem under consideration.

The theorem below shows that for the Knapsack problem such a guaranteed
upper bound already would imply the problem to be solvable in polynomial
time. Thus, this notion of approximation is not meaningful for the NP-hard
Knapsack optimization problem unless P = NP.

Theorem 24.3.5 Suppose there exist a number and an algorithm
A which for any instance I of the Knapsack maximization problem (see Ex-
ample 24.1.2) computes a feasible solution such that

Suppose furthermore that A is running in polynomial time in size(I). Then
P = NP.

Proof. Let I be given by a finite set S, a natural number B and for all
natural numbers and We want to show that A can be used to

design a polynomial time algorithm solving the Knapsack decision problem
(see Exercise 21.10) exactly.

Towards this end, multiply all by M + 1 and obtain
Apply A to the new instance of the Knapsack maximization problem

obtained from I by replacing all by A computes a solution
such that

362 24 APPROXIMATING NP-HARD PROBLEMS

Calculation shows

Given the fact that values are integers we conclude that is already the
optimal solution for instance I. The size of the new instance is polynomially
bounded in the size of I because M is a constant independent of the particular
input. Thus, is computed by A in polynomial time.

We shall therefore not be interested in such a fixed absolute difference.
Actually, there are problems allowing a fully polynomial time approximation
scheme but no absolute difference guarantee for any bound We
shall establish the Knapsack optimization problem to be such an example
below in Chapter 27.

A second problem of a similar spirit addresses the definition of the class
FPTAS. A reasonable question concerning its definition is why we require
polynomiality in instead of (note that qualitatively the latter is
within an exponential factor less than the former; if for a then

whereas is). The answer to this question once more
lies in the consequences a stronger definition would imply.

Theorem 24.3.6 Consider a combinatorial maximization problem given by
with a measure taking values in only. Suppose A

to be an approximation algorithm which for a given instance and a
given error returns a feasible solution such that

Suppose furthermore that A runs in polynomial time with respect to
Then the maximization problem can be solved exactly in polynomial

time in size(I). A similar statement holds for minimization problems.

24.3 Concepts of approximation 363

Proof. The idea is to obtain an approximation which gives a value greater
than OPT(I) – 1. This implies that the computed approximation is optimal
since the values under consideration are integers. If A computes a solution

satisfying and if we are done; in that case, it
follows We thus have to find in polynomial time with
respect to size(I) an error bound This can be achieved using the
algorithm A : For an instance I we first apply A to the error and
obtain a result with

Next, define and apply algorithm A on input For
the solution computed by A calculation shows

that is

as required
Note that the bit-sizes of both and are polynomially bounded in

size(I). Thus, given the assumption on A the computation of the optimal
feasible solution runs in polynomial time with respect to size(I). The given
combinatorial maximization problem is solvable exactly in polynomial time.

Let us finally note where polynomiality “comes in” in the above proof.
If the bit-size of is polynomially bounded in size(I), then its numerical
value can depend exponentially on size(I). But when applying algorithm A
to the assumptions on the running time allow A to use polynomially
many steps in the numerical size of which can thus be an exponential
number of steps in size(I).

Remark 24.3.7 The requirement that the values of should be integers is
not too restrictive and can be satisfied for many optimization problems, cf.
Example 24.1.2 and Exercise 19.2.2.

For a NP-hard optimization problem a fully polynomial approximation
scheme with respect to therefore is the best we can hope for unless P = NP.

Exercise 24.3.8 Prove a similar statement like Theorem 24.3.5 for the In-
dependent Set optimization problem.

Exercise 24.3.9 Prove Theorem 24.3.6 for minimization problems.

This page intentionally left blank

25 Approximation Algorithms for TSP

The definition of the three classes of optimization problems implied the re-
lation

It is a natural question whether some of these inclusions are proper. There
is no big surprise in realizing that this question is strongly related to the
P versus NP problem, see Exercise 24.1.7. Assuming it can be
shown that all above classes are different, and we shall establish some of
these separations here.

25.1 A negative result

In the current chapter we shall study approximation algorithms for the Trav-
eling Salesman minimization problem introduced in Example 24.1.2. The
first result, given by Sahni and Gonzalez [196], shows that
unless P = NP.

Theorem 25.1.1 (Sahni, Gonzalez) Suppose that the Traveling Sales-
man minimization problem belongs to class APX. Then P = NP.

Proof. Assume there exists an and a polynomial time
algorithm A for the Traveling Salesman minimization problem. A can be used
as follows for deciding the Hamiltonian Circuit decision problem in polyno-
mial time. Let G := (V, E) be an input for the latter,

Define an instance I of the Traveling Salesman problem by introducing
weights

G has a Hamiltonian Circuit if and only if the instance I has the optimal
value this is true because any feasibly contains
edges and any weight for an edge is larger than the weight 1 taken
for edges in E. By the same reasoning, if G has no Hamiltonian Circuit we
can obtain a lower bound on OPT(I). In that case, an optimal
solution for I has at least one edge not in E, and therefore the total cost

must be at least

366 25 APPROXIMATION ALGORITHMS FOR TSP

(the standing for at most many edges from E in).
These two bounds are sufficient to conclude that A decides the initial

Hamiltonian Circuit instance. Apply A to I and use its
property

If G has a Hamiltonian Circuit, then if not, then
Since the error is considered to be fixed, the latter inequalities

can be checked in polynomial time with respect to size(I).

The previous result shows that efficient approximation, even in its weakest
form, can not at all be done for all problems in NPO. The Traveling Salesman
problem is not only NP-complete in its decision version but also forbids
approximations by any fixed ratio as optimization problem (if)
As we shall see this is not the case for all NPO problems which yield NP-
complete decision problems.

For Traveling Salesman we have thus reached again a dead end unless we
try to do better at least for an important subclass of Traveling Salesman
instances. Fortunately, there exists such a meaningful subclass which on the
one hand side captures a lot of instances appearing in practical applications
and on the other hand has better approximation properties. This subclass
is defined by assuming an additional property on the weight function of a
Traveling Salesman instance: it is supposed to be a metric.

25.2 The metric TSP; Christofides’ algorithm

Definition 25.2.1 (Metric TSP) The Metric Traveling Salesman prob-
lem is defined as a combinatorial minimization problem
where is an instance of the general Traveling Salesman problem, but
with the additional requirement that the function is a metric.
The latter means (for being the set of cities):

We denote this optimization problem by (in order to indicate that the
weights satisfy the triangle inequality).

25.2 The metric TSP; Christofides’ algorithm 367

In order to make the definition of interesting with respect to ap-
proximation algorithms, we should first analyze whether the restrictions on
the weights will cause a serious simplification of the entire problem. This
is not the case; the related decision problem still is NP-complete, see Ex-
ercise 25.2.6. In contrast to the general Traveling Salesman optimization
problem, allows polynomial approximation algorithms with a guaran-
teed performance ratio. The algorithm we want to present now was given by
Christofides [37] and provides the performance ratio

The basic idea underlying Christofides’ algorithm is as follows: given an
instance I of by a complete weighted graph G = (V, E), the edge set
is enlarged by allowing also different edges connecting the same vertices in
V. Such graphs are called multigraphs, cf. Chapter 14. The new edges are
weighted as well: the weights will be chosen to be the same for all edges
connecting the same pair of vertices. The advantage of dealing with the
multigraph constructed is that it will always contain an Eulerian trail whose
costs provide an upper bound OPT(I) for a feasible solution of I. And it
provides a way to construct such a solution in polynomial time.

Let us briefly recall the definition of a multigraph and an Eulerian trail
for it.

Definition 25.2.2 a) Let V be a finite set and E be a finite multiset
of edges over i.e. E contains pairs for and the
same pair can appear several times in E. Then G := (V, E) is called a
multigraph.

If there is a function associated with G the multigraph is
called weighted.

Let G = (V,E) , be a connected multigraph. An
Eulerian trail in G is an ordered sequence with

and

i)

ii)

iii) for any edge there is a such that

Thus, an Eulerian trail is a closed path in G which contains every
edge precisely once (where, of course, multiedges are considered to be
different).

b)

368 25 APPROXIMATION ALGORITHMS FOR TSP

The next Lemma is based on the attempt to relate the value of a feasible
solution of a instance to the sum of all weights in a specific multigraph
constructed from the input graph.

Lemma 25.2.3 Let be the complete graph with many
nodes, and let be a weight function satisfying the triangle
inequality. Furthermore, let be an Eulerian multigraph over
the same set of vertices extending G, i.e. all pairs of vertices are
connected by at least one edge in and edges connecting the same vertices
have the same weight given by

Then there is a polynomial time algorithm in the size of con-
structing a feasible solution of the instance such that

Proof. The multigraph is Eulerian, so there is an Eulerian trail

where the indices belong to and Note that all
vertices appear among the vertices of the trail since is connected. In
the above sequence we delete all vertices which appeared already earlier
(i.e. if there is an such that). This gives a new sequence

of vertices, where is a permutation of Thus, is
a feasible solution for with value

The latter inequality is true because all the edges appearing in are edges
in and does not contain multiedges. The construction of the Eulerian
trail can be done in polynomial time in (exercise: show this); the
deletion of multiple vertices runs in time linear in

Christofides’ algorithm now works as follows: starting from an instance
of it first constructs a multigraph in polynomial time in

size(G). This basically means that not too many multiedges are added. The
major point in the construction of is to add only that many edges that

25.2 The metric TSP; Christofides’ algorithm 369

is at most by a factor larger than the optimal value OPT(I) for

Finally, the construction of the above lemma is applied to compute
an approximate solution for

Here is the precise description of the algorithm:

Christofides’ algorithm for approximating

Step 1: Given a complete graph with weight function
construct a minimal spanning tree T = (V, F) of G (i.e.

for all spanning trees of G).

Step 2: Let is odd }, i.e. W is the set of all vertices
in V having an odd number of neighbors in T.

Compute a perfect matching M of minimal weight in the complete graph
(i.e. for all perfect matchings of).

Step 3: Use T and M to build a Eulerian multigraph as
follows:

contains all edges in F \ M and in M \ F precisely once and all edges
in precisely twice. The weights on these edges are given by the weight
function

Step 4: Apply the algorithm of Lemma 25.2.3 to compute a feasible so-
lution for from the Eulerian multigraph

Theorem 25.2.4 For every instance of Christofides’ algorithm
constructs a feasible solution whose value is at most within a factor of
the optimal solution. It is a polynomial time algorithm and thus implies

with a performance ratio of at most

Proof. There are several things to be shown, namely

The algorithm computes a feasible solution in polynomial time andi)

ii)

Let us start with i). For the problem to be solved in Step 1 one can
use Kruskal’s algorithm for computing a minimal spanning tree presented in
Chapter 14. In that chapter we have learned as well about algorithms for
finding a maximum matching in a graph. If, in addition, the graph is weighted
and we search for a maximum matching with minimal sum of the weights of

370 25 APPROXIMATION ALGORITHMS FOR TSP

Figure 25.1: Christofides’ algorithm for a complete graph over 8 vertices:
Suppose a minimal spanning tree being given by the black lines; it induces
the set W = {1,2,4,5,7,8}. Suppose a minimal perfect matching in W to
be {(1,2), (4,5), (7,8)}. An Eulerian trail in is given by the vertex-
sequence 1,2,3,4,5,6,7,8,6,2,1. A feasible solution for G is given by
1,2,3,4,5,6,7,8. Note that according to the triangle inequality in
is at most the sum of the weights of the corresponding edges in the Eulerian
trail in connecting 8 and 1, i.e.

the included edges, then Edmonds’ algorithm can be adapted. We do not
want to prove the existence of a polynomial time algorithm for this problem
here. It was first established by Edmonds; a recommendable presentation
can be found in [156], and [73] gives a primal-dual solution algorithm for the
same problem.

Note that according to Exercise 14.1.2 the cardinality of the set W used
in Step 2 is odd. Therefore, a maximum matching M in the complete graph

is a perfect matching. Furthermore, is obtained from the edge
set F in the minimal spanning tree T by adding new edges to T which connect
only vertices having an odd number of neighbors (and all these vertices are
incident with precisely one new such edge). Thus, the new edge increases
this number by 1, implying that all vertices in have an even
number of neighbors. It follows that is Eulerian. A Eulerian trail can be
computed in polynomial time in the size of G and since the number of edges
in is Lemma 25.2.3 now gives the correctness
of the algorithm and its polynomial running time.

25.2 The metric TSP; Christofides’ algorithm 371

by Suppose to be an optimal solution for the given instance
of where Without loss of

generality we assume the edges to appear in the order in We
obtain a spanning tree by putting

Furthermore,

Since the spanning tree T = (V, F) in Christofides’ algorithm is minimal, we
have

Next, let be the subset of V of odd-degree vertices in T.
We assume the to be ordered according to the order of their appearance
in the optimal tour (i.e. by increasing). Note that is even, so the
following two sets and provide perfect matchings of

and

Now because any edge in one of the two

sets is related to that path of the tour which connects the corresponding
vertices - and thus the weight of the edge by the triangle inequality is not
longer than the costs of that path. At least one of the two matchings gives a
total cost of at most Since the perfect matching M constructed
in Step 2 is minimal, we conclude as well

Altogether, the Eulerian tour of constructed has costs at most

Let us next show towards this end, we shall bound the cost of a
minimal spanning tree by OPT(I) and the cost of a minimal matching of W

372 25 APPROXIMATION ALGORITHMS FOR TSP

One might ask whether the performance ratio of is the best one can gain
with Christofides’ algorithm. Indeed, this is the case as we shall show now.

Theorem 25.2.5 The performance ratio of Christofides’ algorithm is given
by

Proof. The remaining part to be shown is This is done by
constructing a family of instances of graphs with many
vertices such that the ratio between the approximate value of the solution
for computed by Christofides’ algorithm and the optimal value
converges to for increasing The family will be defined for odd
only. We consider the complete graph for
and define a weight function as follows:

for we put

for we put Here,
is an arbitrary fixed constant;

for all other edges which are not already covered under i) or
ii) we define to be the minimal costs of a path from to
which consists of edges of types i) and ii) only.

Note that

i)

ii)

iii)

Before we analyze the performance of Christofides’ algorithm on these
instances, we have to make sure that actually is an instance of

i.e. that is a metric.

25.2 The metric TSP; Christofides’ algorithm 373

Suppose If the definition of implies any path from
to to include edges of positive weight. Therefore, implies

The symmetry of follows for edges of type i) and ii) directly from
the definition and for edges of type iii) from the fact that any path from
to is as well a path (of equal costs) from to Finally, the triangle
inequality has to be settled. Consider three different vertices and (if
two are equal the claim follows immediately). We have to show

If is an edge of type i) the claim follows since any path in has
at least cost 1; if it is of type ii) we remark that any path from to
not including the edge has at least length 2, which is larger than

Now suppose to be of type iii). Then is the value of the
shortest path from to using only edges of the two other types. The same
holds for and But the composition of the corresponding
paths from to and from to is a candidate for building the shortest
path from to We conclude that the triangle inequality holds as well in
this situation.

A minimal spanning tree of is given by where
Its weight is The corresponding set

only contains the two vertices and Thus, the only perfect matching
for is and has weight The graph has
no multiedges, so the algorithm by Christofides gives a feasible solution with
value

An optimal tour in is given by the permutation
It contains at the beginning many edges of weight

then the edge of weight 1, again many edges of weight
and finally the edge of weight 1. Altogether, we obtain as costs

This gives the estimation

for all If tends to zero it follows

374 25 APPROXIMATION ALGORITHMS FOR TSP

which for approaches arbitrarily close to thus yielding
as required.

A few further remarks concerning the Traveling Salesman problem are
appropriate. As it is the situation at the moment of writing this book, there
are no better performance ratios than known for It has been shown
that would imply P = NP (see for example [156]), but
a similar conclusion in case we assume the existence of an
algorithm for with is also not known.

Better approximation results can be established for a further restriction of
to the so called Euclidean Traveling Salesman optimization problem.

In this problem, the vertices of a graph are given as points in Their
distance then is defined as the usual Euclidean distance between these points.
Using ideas of Karp, Arora [5] was able to show Euclidean TSP to belong to
PTAS. For more details on this see [145].

We shall deal once again with the Traveling Salesman problem in Chapter
28 under a different point of view.

Exercise 25.2.6 Show that the decision problem which is related to the Me-
tric Traveling Salesman problem (see Exercise 24.1.6 for the definition
of the decision problem) is NP-complete.

Hint: Consider once again the proof of Theorem 21.4.

Exercise 25.2.7 Show that the following simplified variant (called the tree
algorithm for) of Christofides’ algorithm gives a performance ratio 2 for
the problem: Instead of computing the minimal perfect matching for

in Step 2 of the algorithm, the multigraph is given by doubling
the edges of the minimal spanning tree T. Show as well that the bound 2 is
tight.

26 Approximation algorithms for Bin Packing

The next NPO problem we want to study is the Bin Packing minimization
problem introduced in Example 24.1.2. We shall basically show two results:
The problem belongs to APX, but it does not allow polynomial approxima-
tion schemes (if).

26.1 Heuristics for Bin Packing

Let us first consider the positive result. Three easily obtained algorithms will
be presented: The Next-Fit heuristic, the First-Fit heuristic, and the First-
Fit-Decreasing heuristic. For applying NextFit to Bin Packing, a complete
proof for its performance is given.

In general terms, heuristics are methods which in practice work very well
but either resist (so far) a complete analysis of their behavior or have a bad
performance on some problem instances. Of course, such a behavior may also
depend on the actual problem treated by the heuristic, i.e. such a strategy
may also allow both a good performance and a complete analysis (as, for
example, the NextFit heuristic does in order to show BinPacking APX).
We shall mention some other heuristics like the branch-and-bound technique
or greedy algorithms below. For more about heuristics see [8], chapter 10.

We consider instances of the Bin Packing problem,
where for and Without loss of generality we assume

otherwise, there does not exist a solution.
The Next-Fit heuristic takes the objects in S in a fixed, but arbitrary

order and starts to fill the first bin by If

an element is reached which satisfies and the

next bin is taken for packing The previous bin is not used any
further: whenever the current next element does not fit any more into the
current bin, the next bin is started to be filled.

Next-Fit heuristic for BinPacking
Step 1: Take any order of the elements in the given finite

set S; initialize

Step 2: Compute one by one the unique natural numbers
defined by the conditions

376 26 APPROXIMATION ALGORITHMS FOR BIN PACKING

Step 3: Output the feasible solution of subsets of S, given
by

together with the value

We remark that the Next Fit heuristic does neither order the elements of
S according to the values nor does it reconsider an already used bin once
there was an element in S which could not be packed into Heuristics taking
into account these ideas as well are First-Fit and First-Fit-Decreasing.

The next result shows that NextFit guarantees a performance ratio 2 for
Bin Packing, thereby settling Bin Packing to belong to class APX.

Theorem 26.1.1 When applied to the BinPacking minimization problem,
the Next-Fit algorithm satisfies Moreover, it runs in polynomial
time thus giving BinPacking APX.

Proof. Consider an instance for BinPacking and sup-
pose the feasible solution produced by the Next-Fit heuristic to be
Denote by the sum of the weights of elements packed into bin

Then, for all it is

because otherwise we could have continued packing some of the elements in
into Adding all these inequalities for odd values of we obtain

in case was even and

in case was odd.
In order to compare with the optimal value OPT(I) we note that with

the optimal solution we cannot reach more than filling all bins completely,
i.e. with weight B. In that case, we need many bins, which implies

26.1 Heuristics for Bin Packing 377

Comparing both inequalities leads to

i.e.

respectively

Finally, the running time of the algorithm is polynomially bounded in
the input size; this can be seen from the fact that packing a new element
requires one addition and one comparison, both performed on numbers of
polynomially bounded size, namely the given weights or sums of them and
the bound B.

The ratio 2 is the best obtainable for the Next-Fit heuristic.

Lemma 26.1.2

Proof. Again, we provide an example consisting of a family of in-
stances such that approaches arbitrarily close to 2. With respect to
the assertion concerning the asymptotic ratio we note that the optimal
value for the instances is increasing to for increasing

The are defined for numbers divisible by 4, i.e. for an
Let we choose as weights

for a and

Finally, take
If Next-Fit is applied to S being ordered according to then

every bin is filled with two elements, the first of weight K and the second of
weight 1. Altogether, many bins are needed. The optimal solution
needs only N bins for the 2 · N many elements of weight K and one bin for
the remaining 2 · N many elements of weight 1, i.e. N + 1 bins at all. We
conclude

378 26 APPROXIMATION ALGORITHMS FOR BIN PACKING

which for increasing converges towards 2.

The First-Fit heuristic improves Next-Fit by allowing to place the next
element as well into bins already used previously if there was sufficient place
left.

First-Fit heuristic for BinPacking

Step 1: Initialize for
take any order of the elements in the given set S.

Step 2: For place the element as follows into a bin: Com-
pute the smallest index such that

and such that, for all

(Here, a sum over the empty set is defined to be 0.)
Then update

Step 3: Output the largest index such that together with
the sets

The First-Fit-Decreasing heuristic takes as order of the elements in S the
one induced by the numerical values of the

First-Fit-Decreasing heuristic for BinPacking

Step 1: Order the elements in S according to their numerical value, i.e.
if S is ordered as then

Step 2: Apply the First-Fit heuristic to the particular order computed in
Step 1.

Both heuristics give a better performance ratio than the Next-Fit heuris-
tic. Below, we shall give examples proving and
Without proof we mention that both bounds are optimal, i.e. in both cases
equality holds. For more information about these results see [40].

26.1 Heuristics for Bin Packing 379

Lemma 26.1.3 Applying the First-Fit and the First-Fit-Decreasing heuris-
tics to the Bin Packing problem gives the lower bounds and

Proof. Consider an instance with |S| = 37 and the
weights defined as follows:

The bound B is chosen as B := 101.
The First-Fit heuristic results in 17 bins: the first bin includes all the

elements of weight 6 and five elements of weight 10. The second bin includes
the remaining two elements of weight 10 and the three elements of weight 16.
The elements of weight 34 are then packed into five bins and those of weight
51 into ten bins.

The optimal value is ten bins which can be seen by a similar calculation
(either include in one bin elements of weights 6,10,34, and 51; or include
elements of weight 16,34, and 51).

For the First Fit Decreasing heuristic define a family of instances as
follows: For we assign weights to the
objects by

Here, K is an arbitrary natural number larger than 10; the bound B is chosen
as B := 4 · K.

The First Fit Decreasing heuristic uses 6 · N many bins for the elements of
weight 2 · K + 1 and K + 2. Then, 2 · N many bins are filled with the elements
of weight K + 1 and finally 3 · N bins all of which contain four elements of
weight K – 2. Note that this argument only holds for 5 · (K – 2) > 4 · K,
i.e. K > 10. The optimal solution needs 9 · N bins (check it!), implying the
result. The above instance also proves

Exercise 26.1.4 Analyze the running time of First Fit and First Fit De-
creasing when applied to the Bin Packing problem.

380 26 APPROXIMATION ALGORITHMS FOR BIN PACKING

26.2 A non-approximability result

Having seen that BinPacking APX the next question is whether one can
do better. One can improve the above results, but only when considering the
problems between PTAS and APX under a finer measure. We shall add
some remarks at the section’s end.

The negative result about Bin Packing is

Theorem 26.2.1 If then BinPacking PTAS.

Proof. We shall show that if there exists a polynomial time
algorithm for Bin Packing where then the NP-complete decision
problem Partition (see Exercise 21.10) could be solved in polynomial time.

Given an instance of the partition decision problem we
define and consider the instance for Bin

Packing.
The proof now has similarities to the one of Theorem 25.1.1 in that we

try to construct a gap between values for I corresponding to “yes”-instances
of Partition and those corresponding to “no”-instances. For the former we
know that there is a subset such that

so all the elements can be packed into two bins of size B, which is also
optimal: OPT(I) = 2. If Î is a “no”-instance precisely three bins are needed,
i.e. OPT(I) = 3 (without loss of generality we suppose all otherwise,
we can decide instance Î to yield the answer “no” in polynomial time). We
now claim that no algorithm can do better than unless
P = NP. Suppose there were such an algorithm A for an Given a
Partition instance Î we compute I as above and apply A to I. If Î is a
“no”-instance we obtain

otherwise A results in

OPT(I) is a natural number, so comparing A(I) with 2 we can decide in
polynomial time whether Î was a “yes”-instance for Partition. The above
computation of I is polynomial in the size of Î.

26.2 A non-approximability result 381

Corollary 26.2.2 If then

Proof. Obvious from Theorem 26.1.1 and Theorem 26.2.1.

Even though BinPacking PTAS unless P = NP, one can do bet-
ter than we did when showing BinPacking APX. The idea is to use
asymptotic approximation schemes instead of approximation schemes. More
precisely, asymptotic approximation is defined using the asymptotic perfor-
mance ratio instead of see Definition 24.2.1. One can then introduce
a class which is precisely defined as PTAS but using instead
of If there is a separation Fer-
nandez de la Vega and Lueker [64] showed that Bin Packing actually belongs
to

Let us mention that the Bin Packing problem in practice often appears
in a more sophisticated manner: instead of knowing all the elements to be
packed and their weights in advance, in many situations they are given one-
by-one and one wants to pack them online. The study of online algorithms
builds an own branch of computer science; with respect to the Bin Packing
problem more details concerning approximations by online algorithms can be
found in [40].

Exercise 26.2.3 In this exercise we extend the idea behind the proof of
Theorem 26.2.1. Suppose L to be a decision problem which is NP-complete
and suppose to be a minimization problem in NPO.
Let be a function computable in polynomial time which, given an instance

for the decision problem L, computes an instance for the optimization
problem such that the following holds: there are two numbers such
that

Then there is no polynomial time algorithm for for
unless P = NP.

Exercise 26.2.4 Consider the following algorithm A for MAX-3-SAT: gi-
ven a 3-SAT formula do

Step 1: Choose a literal that appears the most in all clauses. Let
denote the corresponding variable.

Step 2: If then set remove all clauses containing and
delete from all other clauses. Remove empty clauses.

382 26 APPROXIMATION ALGORITHMS FOR BIN PACKING

Step 3: If then set remove all clauses containing and
delete from all other clauses. Remove empty clauses.

Show that this algorithm runs in polynomial time and has a performance
ratio at most 2.

Exercise 26.2.5 Recall that an online algorithm for Bin Packing is an algo-
rithm which packs an item as soon as it has seen it and does not replace its
position once the item was packed into a bin. Show that there is no online
algorithm for Bin Packing that realizes a performance ratio

Hint: Consider the behaviour of a potential online algorithm on the
following two input sequences:

items with weight for

items with weight and thereafter items with weight for

Concerning better lower bounds for this problem see [40].

27 A FPTAS for Knapsack

So far, none of the NP-hard problems we have studied allowed a fully poly-
nomial time approximation scheme. This will be retrieved now by showing
Knapsack FPTAS. Not many NP-hard optimization problems share this
property. The way of proving the result for Knapsack is divided into two
parts. First, we deal with a non-polynomial algorithm solving Knapsack ex-
actly. Though we can easily give such algorithms (like the method which
checks all the possible subsets), the algorithm presented here has an addi-
tional important feature; it runs in pseudo-polynomial time. This notion
refers to algorithms working in polynomial time with respect to a size mea-
sure which assigns to a natural number its numerical value instead of
its binary length Even though such a measure is usually not chosen
in the Turing model approach (and neither in the real number setting), it
provides some interesting information. For example, we shall see that, as
long as the weights of a Knapsack instance remain polynomially bounded in
the number of items, we can solve the Knapsack optimization (and decision)
problem in polynomial time.

The pseudo-polynomial algorithm is then used in order to design a fully
polynomial time approximation scheme for Knapsack.

27.1 A pseudo-polynomial algorithm for Knapsack

Let be a Knapsack instance. Without loss of gen-
erality we assume otherwise, does not increase the sum of the

in a subset and will therefore always be excluded.
The underlying idea of the next algorithm is to build up iteratively sets

whose elements are pairs of subsets of together with
the values obtained when summing up the corresponding The point is to
keep track of all possible values for this sum, but of only one subset yielding
it. This subset will be one minimizing the sum of the related

Algorithm Knapsack-Pseudopol

Step 1: Initialize

Step 2: For

Step 2.1: Set

384 27 A FPTAS FOR KNAPSACK

Step 2.2: Add to all elements in as well as all pairs
such that and

Step 2.3: For all different values of remove all among the pairs
in sharing the second component except one with a

minimal sum

Step 3: Output an element with maximal second com-
ponent

Theorem 27.1.1 The above algorithm Knapsack-Pseudopol computes an
optimal solution for every instance I of the Knapsack optimization problem.
Its running time can be bounded by where is the optimal
value OPT(I) of the instance I. It is therefore a pseudo-polynomial time
algorithm.

Proof. Let us first prove correctness of the algorithm. It is obvious from Step
2.2 that all sets computed intermediately only contain feasible solutions
in Having finally fixed after performing Step 2.3, for every

it follows
We now claim that if such that then there is a

pair satisfying

(where denotes the final version of the set computed after step 2.3).

The claim is proved by induction on
for we either have depend-

ing on whether or In both cases the claim is true.
Suppose now to hold for a Let satisfy

If then by the induction hypothesis there is a pair

such that and Step 2 now guarantees

that either or an even better pair (with the same c but a lower sum of
the involved is an element of implying the claim.

27.1 A pseudo-polynomial algorithm for Knapsack 385

If the induction hypothesis yields the existence of a pair in
such that

Joining on both sides gives

together with

Therefore, either or another pair with an even smaller

sum of the is added to The claim follows again.

Concerning the algorithm’s running time Step 1 needs a constant number
of operations. Estimating the running time of Step 2 is more involved. The
above statement shows that the number of different sums for any

element in some is at most OPT(I) + 1 (the +1 results from a sum of
value 0). Thus, after performing Step 2.3 which finally fixes the latter
has at most OPT(I) + 1 many elements. If in the next application of Step
2 the first version of the set is computed in Step 2.2 we have to build
at most 2 · (OPT(I) + 1) many pairs for the intermediate result of
We can do this computation by listing as well the sums for all

pairs . Then we have to compute the final version of
Towards this end, we construct an array which for
every possible value of the measure lists a feasible solution giving cost
together with the sum of the We scan through the list of intermediate
results for If we find a pair with a pay out that has no
entry so far in the array we add it. If there was already an entry of pay
out we compare the former one with and maintain that pair with
the smaller value of

Scanning through the list we have to deal with a number of pairs being
of order O(OPT(I)); checking and replacing needs at most size(I) many

386 27 A FPTAS FOR KNAPSACK

operations, so the complexity of one round of Step 2 is O(size(I) · OPT(I)).
Since altogether many rounds are performed, we obtain a running time
bounded by which itself is

Remark 27.1.2 A more careful implementation using similar ideas results
in a bound see [145].

Pseudo-polynomiality of the above algorithm refers to the fact that the
running time is polynomial in size(I) and the numerical value of the optimum
(which is bounded by the sum of all Note that this is not the case for
that particular algorithm solving Knapsack by testing all possible subsets.

The technique underlying the above algorithm is known as dynamic pro-
gramming. It was introduced in the framework of continuous optimization
by Bellman, cf. [20]. It can be applied to other optimization problems as
well. Roughly speaking, the basic idea is to solve an optimization problem
by decomposing it into finitely many subproblems. We have then to make
a number of decisions in order to solve the subproblems and the
original one. The optimality principle in dynamic programming now states
that the decision sequence is optimal only if every subsequence

is optimal under the assumption that the decisions
have already been made.

The above algorithm uses the dynamic programming concept in the fol-
lowing way: The subproblems are defined for every index and every
possible pay out The algorithm finds a subset of

giving the pay out and minimizing the sum of the involved The op-
timality principle tells us in the current situation that the best subset over

with given pay out can be obtained by comparing the best subset
over of pay out and the best subset over of pay
out joined with item This is basically the updating rule performed
in Step 2 of the algorithm.

We shall see another application of the dynamic programming technique in
Chapter 28.2. Note that the applicability of the principle does not guarantee
a problem to be efficiently solvable (as the above Knapsack algorithm still is
an exponential time method).

Exercise 27.1.3 Explain in how far the dynamic programming approach is
involved in Dijkstra’s shortest path algorithm, see Chapter 15.

27.2 A fully polynomial time approximation scheme 387

27.2

Though the algorithm Knapsack-Pseudopol is an exponential time algorithm
it can be used to design a fully polynomial time approximation scheme for
the Knapsack optimization problem. Here is an outline of how the approx-
imation works: Suppose a Knapsack instance is
given together with a fault tolerance We know that as long as the
bit-length of all is logarithmically bounded in and the algorithm
Knapsack-Pseudopol provides a polynomial time solution method with re-
spect to In general, the might of course be independent of
and The idea is to consider only the first many bits of an defin-
ing the weights of a new instance. Then the pseudopolynomial algorithm is
applied to this new instance. Neglecting the lower bits causes the algorithm
to compute an approximate solution only, but is also implies a polynomial
running time.

A fully polynomial time approximation scheme

Algorithm Knapsack-FPTAS
Let be a Knapsack instance,

and let be given.

Step 1: Compute an index such that

Step 2: If put output and stop.
Otherwise, go to Step 3.

Step 3: Compute let and apply the
algorithm Knapsack-Pseudopol to the new instance

Output the solution of this algorithm.

Theorem 27.2.1 The algorithm Knapsack-FPTAS gives a fully polyno-
mial time approximation scheme for the Knapsack optimization problem.
Thus, Knapsack FPTAS.

Proof. First, suppose The subset is a feasible solution
because Furthermore,

and we are done.

388 27 A FPTAS FOR KNAPSACK

In case the solution computed in Step 3 satisfies

Let be a feasible solution giving the optimal value
for I; note that and are feasible both for I and Since is the optimum
for (this is guaranteed by Theorem 27.1.1), we can continue the above chain
of inequalities by

Therefore,

It remains to be shown that

The definition of together with implies

Since is optimal for and the set is a feasible solution, we obtain

27.2 A fully polynomial time approximation scheme 389

Altogether,

The polynomial running time performance with respect to the magnitude
follows by the fact that the sizes of the are bounded by

The computation of the needs time O(size(I)). The application of
algorithm Knapsack-Pseudopol to runs in time Since

the all over running time is bounded by

Among the separations announced in case we have not estab-
lished (and shall not do it) A proof of this proper inclusion
can partially make use of Exercise 27.2.2. One is then left with the task to find
an NP-hard, polynomially bounded problem in PTAS. An example of such a
problem is the maximization version of the decision problem Indepedent Set
(see Exercise 24.1.3), where the inputs are restricted to planar graphs. For a
detailed discussion of this fact see [8].

Exercise 27.2.2 Let be an NPO problem. Show
that if is NP-hard and polynomially bounded (cf. Definition 24.1.4), then

unless P = NP.
Hint: for a polynomial and all

apply a potential FPTAS algorithm to for Show that
this would give an exact algorithm.

390 27 A FPTAS FOR KNAPSACK

Exercise 27.2.3 Consider the following continuous version of the Knapsack
problem also known as Fractional Knapsack:

Given a set S of elements, integers and a find
real numbers such that

a) Suppose that the input elements are ordered such that

Define

Show that the point defined below is an optimal point:

b) Use a) to solve the Fractional Knapsack problem in polynomial time
(without using Linear Programming techniques).

c) Now consider the Knapsack problem in its original form (i.e. looking for
0-1-solutions). Suppose once more (*) to hold. Show that the follow-
ing algorithm approximates the optimal solution with the performance
ratio 2 :

Compute the larger of the values and together with the

corresponding subset of S.

28 Miscellaneous

In this final chapter we outline some further aspects of interest in relation
with algorithms for NPO problems. This includes the PCP theorem, the
dynamic programming technique, the branch-and-bound heuristic and the
probabilistic analysis of algorithms. The presentation will just briefly de-
scribe some ideas behind the corresponding issues, but not treat them in
full details. We shall once more focus on the Traveling Salesman optimiza-
tion problem to make things clear. Readers interested in a more detailed
discussion are referred to the cited literature.

28.1 The PCP theorem

A very powerful method to prove negative results concerning the existence
of certain approximation algorithms was invented about 10 years ago. It is
based on the so called PCP theorem, see [6],[7]. Here, PCP is standing for
probabilistically checkable proofs. The proof of the PCP theorem is beyond
the scope of this book; we shall just describe the general framework it is
settled in. Self contained descriptions can be found, for example, in [113, 8].
The letter also gives a description of the developments towards this result.

The theorem itself has not directly obvious relations to approximability
issues. It gives another characterization of the complexity class NP which is
based on the concept of probabilistic computations. Consider once again Ex-
ercise 19.4.6. Here, a slightly different characterization of languages
was given. An element belongs to L if and only if there exists an efficiently
verifiable “proof” which has polynomial length in Given the proof of

can be performed in polynomial time (since in the notation of
that exercise). The first new idea is to ask about whether all components of
the proof have to be taken into account in order to verify In fact, this
is the case if we believe in Therefore, if we want to consider veri-
fication procedures which might use only a part of the information provided
by the guess then we have to change (in the sense of allowing a new type
of operation) the abilities of our algorithms and the definition of acceptance
for these new algorithms. This is where randomization comes into play. A
probabilistic Turing machine is a Turing machine which, in addition to its
usual way of operating has a probabilistic state in which it can produce
a random bit at unit costs. The further computation takes into account the
randomly chosen bits as well. Probabilistic Turing machines are equipped
with new acceptance conditions. There are several ways to do that, thereby

392 28 MISCELLANEOUS

defining also several probabilistic complexity classes. We shall treat one such
example in Exercise 28.1.2. For more on probabilistic complexity classes see
[11].

The central objects of probabilistically checkable proofs are based on such
probability conditions. They are called verifiers and combine the ideas of
probabilistic machines with those of inspecting only partially proofs for mem-
bership of an instance in a NP-language. Let and be two functions from

and let L be a language. Informally, a verifier is a polynomial
time probabilistic Turing machine trying to verify correctness of a guessed
proof for At the beginning of its computation on an input and a
guess V produces many bits at random. The chosen bits determine

many components of the guess which the verifier is allowed to use
in order to prove This part of the procedure works exactly the same
as a verification of an NP-machine (except that not all parts of the guess
are taken into account). The acceptance condition of a verifier V(r,q) for a
language L then reads as follows:

for any input there exists a guess such that, no matter which
random string was chosen, the verifier accepts and

for any input and for any guess the probability that V produces
a random string such that the subsequent computation is an accepting
one is less than

Some remarks are of importance here. Firstly, note that the random bits
are chosen at the beginning of a computation. The positions of a that
are going to be inspected by the verifier then are chosen non-adaptively in
the sense that the process does not depend on intermediate results. It only
depends on and the generated random bits. Secondly, the distribution
over the random string is the uniform distribution over i.e. every
string has probability Finally, the constant is of no particular
importance and can be replaced by any other number in (0,1). Using the
above approach, different language classes can be defined by requiring the
functions and to belong to specific sets of functions. For function classes

and we say that if and only if L is accepted by a
verifier where and For example, it is easy to see that
NP = PCP(0,poly), where poly denotes the set of all polynomials; if the
verifier is allowed to see polynomially many bits of the proof we do not need
the power of randomization.

The surprising result concerning the above concept of probabilistically
checkable proofs is

i)

ii)

28.2 Dynamic Programming 393

Theorem 28.1.1 (PCP-theorem, see [7, 6]) The class NP can be char-
acterized as

The relation is easy to establish and will be considered in Exercise
28.1.3. The reverse inclusion, however, requires a long and intricate proof
and is omitted here.

Surprisingly enough by itself, the PCP theorem could be used to solve
some open problems in the area of approximation algorithms. One way of
applying it in order to obtain non-approximability results for a NPO problem

 can be outlined as follows: Consider a NP-complete language L and apply
the theorem to obtain a verifier for L. The verifier is used
in order to construct for any input for the decision problem represented
by L an instance of such that the optimal value for realizes a
gap between instances and those not belonging to L. Then the gap
technique presented in the proof of Theorem 26.2.1 can be applied to obtain
non-approximability results. A proof along these lines, for example, can be
given in order to show unless P = NP. For further
informations see the already cited literature.

Exercise 28.1.2 Define the probabilistic complexity class RP as follows:
a language L belongs to RP if and only if there is a probabilistic Turing
machine M running in polynomial time such that for any input the
computation of machine M on input leads to an accepting state with prob-
ability of at least For any input which is not in L the machine will reject
with probability 1.

Show that

A probabilistic algorithm which satisfies the above conditions (i.e accept-
ing a positive input with probability at least and rejecting all negative
inputs) is called a Monte-Carlo algorithm.

Exercise 28.1.3 Show

28.2 Dynamic Programming

We start with another example of a dynamic programming approach. The
previous discussion related to the algorithm Knapsack-Pseudopol presented
in Chapter 27.1 already described the general structure of a dynamic pro-
gramming heuristic. A further example is provided by the algorithm below,
this time for the Traveling Salesman optimization problem. It was invented
by Held and Karp in [102].

394 28 MISCELLANEOUS

Consider an instance for the Traveling
Salesman problem. We assume and denote the weights by

furthermore, we put for all
The idea of the Held-Karp algorithm is to start a tour in node 1 and first

measure all the distances for the neighbors of node 1. This
results in an initial set of pairs (the interpretation of this
notation will become clear soon) and a corresponding measure

for such a pair. Following the principle of dynamic programming given
in Chapter 27.1, corresponding values are computed for all subsets

and all These values are defined as optimal values of a
particular subproblem. More precisely, the goal is to give the meaning
of the minimal cost of a tour starting in node 1, ending in node and passing
through each node in S precisely once. Clearly, this interpretation holds for
the initial values defined above. For a general subset
of cardinality the values are computed by
falling back upon the values for a subset of cardinality
and elements For fixed we consider the set and
minimize over all elements the term This is where
the dynamic programming principle applies: The term sums
up the cost of a minimal tour from 1 to passing through all vertices in
and the cost for moving from to If we minimize over all we clearly
obtain as the minimal value of a tour from 1 to through S.

Here is the precise description of the algorithm:

Algorithm by Held and Karp for TSP
Step 1: Initialize values for all
Step 2: For for each subset of cardinality

and for each compute

Step 3: Compute

output C*.

Theorem 28.2.1 ([102]) For every instance of the TSP optimization prob-
lem the above algorithm computes an exact optimal solution. Its running
time is exponential in the number of vertices.

28.3 Branch and Bound 395

Proof. The correctness of the algorithm is clear from the remarks given
before the precise description of it.

There are many subsets of cardinality in for all
of them we can choose many different and for each choice of the
algorithm performs many additions. Therefore, the total number of
additions performed is

Remark 28.2.2 It is easy to modify the above algorithm in such a way that
also an optimal tour giving the optimal value C* is computed. Just keep
track of the order in which the optimal paths giving are constructed.

Note that even though the running time of the above algorithm is ex-
ponential, the dynamic programming technique gives a better performance
than the one obtained by a complete search where the costs of all
many roundtrips are computed. By Stirling’s formula it is

so the search algorithm results in a much worse running time.

The dynamic programming idea was introduced by Bellman, see [20]. A
recommendable introduction from a computer science point of view is [44].

28.3 Branch and Bound

Another heuristic being of great importance for practical solutions of op-
timization problems is the branch-and-bound method. For a combinatorial
minimization problem the general framework looks as
follows. There are three major aspects behind a branch-and-bound method:

396 28 MISCELLANEOUS

1.)

2.)

3.)

A branching rule: starting with the initial set S := Sol(I) of feasible
solutions for a problem instance I, this set is decomposed into finitely
many pairwise disjoint subsets i.e.

In the further steps of the method analog decompositions for all the
intermediately obtained subsets can be constructed by the algorithm if
required.

A relaxation: for the initial problem and an instance I a relaxation
is a minimization problem

where T is a supset of S = Sol(I), and extends the measure
from S to T, i.e. for all The existence of a

relaxated problem is as well required for all the subsets produced
during the algorithm (with a corresponding set

All the relaxated problems have to be solvable easily (i.e. easier than
the corresponding unrelaxated problems). Obviously, the optimal value
of a problem is a lower bound for the optimal value
of a problem for

A rule deciding which of the subproblems created is the next to deal
with.

In many applications of the branch-and bound principle there is also a
heuristic involved which produces feasible solutions of a subproblem and the
corresponding value of the measure function. This can be used as follows:
Suppose we have found a feasible solution with objective value

If is a subset constructed in the run of the algorithm and if the
corresponding relaxated problem gives an optimal value
which is at least as large as then all objective values resulting from
feasible solutions in (and therefore also all solutions in one of the subsets
of created when applying the branching rule) are worse than or at most
equally good as Thus, the set has not to be analyzed further. This
way of cutting the branch tree of subproblems resulting from the branching
and relaxation rules in many cases decreases the running time of complete
search algorithms considerably. Of course, in general we cannot guarantee
to obtain efficient algorithms for hard problems using a branch-and-bound
heuristic.

28.3 Branch and Bound 397

We outline the approach by an algorithm of Eastman [56] for the Traveling
Salesman problem. Consider once again an instance

for all We introduce Boolean variables
Each roundtrip in G can be expressed by a 0-1 assignment

for the just put if and only if node follows node in the
roundtrip (this is a different coding of a roundtrip than the one used in
Example 24.1.2).

Two necessary conditions for an assignment to represent a roundtrip are

and

(because in a roundtrip every follows precisely one and every precedes
precisely one).

These conditions are not sufficient to represent a roundtrip; they do not
rule out permutations of V with more than one cycle. The branch-and-bound
technique is used to avoid such permutations. In the Eastman algorithm one
first solves the linear program

Linear Programming theory tells us that an optimal solution can be found as a
vertex of the feasible set. The algorithm uses a method which computes such
a vertex (for example, the Network-Simplex method). According to Theorem
14.3.8 by Birkhoff, König and von Neumann all vertices of the feasible set are
permutation matrices if we represent a vertex by its corresponding matrix

This is true because the constraints imply X to be a
double stochastic matrix.

398 28 MISCELLANEOUS

Since the feasible set of is compact, a solution exists. Let be a
permutation of V representing such a solution. The previous remarks imply
that might contain several cycles, thus not giving a roundtrip. Because of

the permutation does not contain fixpoints. The problem is a
relaxation of the original Traveling Salesman instance since all permutations
instead of all permutations with only one cycle are considered. It is more-
over efficiently solvable (i.e. in polynomial time) by one of the algorithms
presented earlier. The solution of is as well optimal for I if and only
if has only one cycle. This leads to the branching rule: The algorithm
computes a cycle in i.e. numbers

If a branch has to be performed; for an optimal solution of I not all
variables

can get the value 1. The new many subproblems are obtained by adding to
one of the constraints The new problems are

treated similarly in an arbitrary order.

The literature on branch-and-bound methods is huge. An extensive dis-
cussion about branch-and-bound methods for solving the Traveling Salesman
problem can be found in [150]. Further references, for example, are [88, 67, 8].

28.4 Probabilistic Analysis

The final issue we want to address here in short is that of a probabilistic anal-
ysis of algorithms. Our study of the Simplex method for Linear Programming
showed that in a worst case scenario the running time of the Simplex algo-
rithm is exponential in the dimension of the variable space. However, for
many Linear Programming instances appearing in practice the method per-
forms pretty good. An explanation for this observation lies in a probabilistic
analysis of the method. In fact, it can be shown that in an average case
framework the Simplex method runs in polynomial time, see [28, 29, 202].

Here, we shall sketch the underlying idea of such a framework. Note that a
probabilistic study makes both sense for decision and optimization problems,
and in the latter both for exact and approximation algorithms.

In a first step, a probability distribution on the set of problem instances
has to be chosen. This distribution should reflect conditions as they appear

28.4 Probabilistic Analysis 399

in practice when dealing with a problem. As a further requirement the dis-
tribution has to be not too complicated in order to allow a mathematical
study. In general, the different parts of an algorithm can raise highly compli-
cated stochastic dependencies, a reason why for many algorithms a complete
probabilistic analysis turns out to be very difficult.

The Patching algorithm presented below gives an approximation algorithm
for the Traveling Salesman problem. The underlying probabilistic model
assumes that all the distances are taken independently of
each other as values in [0,1] according to the uniform distribution.

Patching Algorithm for TSP

Step 1: Solve problem defined above in the Eastman algorithm. Let
a permutation of be the solution. Set

Step 2: If has only one cycle go to Step 3.
Otherwise, compute a longest cycle and a second longest cycle

of
Find solutions of the minimization problem

Build a new permutation according to

Redefine and go back to Step 2.

Step 3: Output together with the value

The Patching algorithm starts as the Eastman algorithm by solving
Instead of then continuing with a branch-and-bound heuristic it joins two
longest cycles in the solution of to obtain one larger new cycle. This
is done by replacing one particular edge in each of the cycles by an edge
leading to the respective other cycle:

The minimization problem solved for determining and just asks for the
best way to replace two edges (one in each cycle) by two edges connecting
the two cycles.

400 28 MISCELLANEOUS

We have seen in Theorem 25.1.1 that unless P = NP. In
general, the Patching algorithm does not have to give the exact or a good
approximate solution. However, it can be performed efficiently for rational

weights and the expectation value of the term

is of order

Theorem 28.4.1 For Traveling Salesman instances I with rational weights
the Patching algorithm runs in polynomial time.

If A(I) denotes the value of the tour computed by the algorithm and if we
assume the to be taken by random according to the uniform distribution,

then the expectation value of the term is of order i.e.

Proof. The polynomial running time of the algorithm is easily established.
For the analysis of the expectation value see the article of Karp and Steele
[137] in chapter 6 of [150].

Our second and final example of an algorithm which has a good proba-
bilistic performance deals with the Euclidean Traveling Salesman problem.
For the Euclidean TSP the given vertices are points in the Euclidean plane

(or w.l.o.g. in), and the distances are given by the usual Euclidean

28.4 Probabilistic Analysis 401

distance, cf. the remarks following Theorem 25.2.5. This in particular implies
that the distance function satisfies symmetry and the triangle inequality.

Our probabilistic model is different from the one used for the Patching
algorithm. We assume to be a sequence of independent, on

uniformly distributed random variables. For every we con-
sider the instance of Euclidean TSP which is given by the many points

The following result was shown by Beardwood, Halton and Hammersley:

Theorem 28.4.2 (Beardwood, Halton, Hammersley) There is a con-
stant C > 0 such that under the above probabilistic model the optimal value

giving the minimal length of a tour for satisfies

with probability 1.

Proof. See [17].

We shall focus on this result in two ways. First, an upper bound
is proven for the constant C in the theorem. Thereafter, a decomposition
algorithm DEC given by Karp is presented. It computes a value
such that

with probability 1 and the same constant C.

Lemma 28.4.3 Let I be an instance for the Euclidean Traveling Salesman
problem with many points in Then

Proof. We construct a particular roundtrip of length at most
Towards this end, choose and divide the unit square into
horizontal stripes of height More precisely, we put

402 28 MISCELLANEOUS

and, in general,

for In addition, to I we add the points

and

where resp. is the greatest odd resp. even number smaller than (i.e.
we do neither include (0,1) nor (1,1)). The enlarged set of points is denoted
by

For each polygons are constructed as follows: if is odd is a
polygon connecting all points in from the left to the right (i.e. with
respect to a non-decreasing); in addition, the first of these points
is connected to in case If is even does the same from the
right to the left, this time joining the first point with if The
polygon connects all points in If we finally join
the first and the last point on P we obtain a roundtrip for

The length L of this tour can be estimated as follows: let denote the
number of points on assume these points to have coordinates

and Note that for we count the last point of
twice, namely once in and once in so it is

Then the length of can be bounded from above by

The distance between the last point on and the first one on is at most

the length of a diagonal in which is Since

we obtain as upper bound on the length of the roundtrip given by P :

28.4 Probabilistic Analysis 403

We finally note that, starting with the above roundtrip for one obtains
a roundtrip for I by replacing all parts in P for which

and by The triangle inequality guarantees that the
new roundtrip for I is not longer than the initial one for

In view of the result by Beardwood, Halton and Hammersley we would
like to know whether there are efficient algorithms which, at least in a prob-
abilistic sense, give reasonable approximations to instances of the Euclidean
Traveling Salesman problem. Such an algorithm was designed by Karp [136]
for (and generalized in [98] to arbitrary dimensions).

Karp’s algorithm uses a function which satisfies

i.e.

404 28 MISCELLANEOUS

Decomposition algorithm DEC for Euclidean TSP
INSTANCE: A number and a finite set I of points in
Step 1: Decompose into many congruent squares all of

which have side length
Step 2: For each square construct an optimal roundtrip

for the point set (confer remark below).
The construction can, for example, be done using the Held-Karp algorithm

of Chapter 28.2.
Step 3: For every non-empty intersection choose a point

Then use the algorithm given in the proof of Lemma 28.4.3
to construct a roundtrip for the point set of all these

Step 4: Join the roundtrips computed in steps 2 and 3 to obtain a Eu-
lerian graph G with vertex set I. Use Christofides’ algorithm to compute a
roundtrip for I. Output its length as the result DEC(I) of the algorithm.

Remark 28.4.4 In Step 2 above there is no rule for dealing with points on
the borderline of different squares. We can neglect this situation because the
statement of Theorem 28.4.5 below is a probabilistic one; the situation where
points in I lie on such a border occurs with probability 0 in our probabilistic
model.

Theorem 28.4.5 Let be a sequence of random variables on
which are uniformly distributed and independent. Let denote the

instance for Euclidean TSP being given by the points
Then the value computed by the decomposition algorithm with
probability 1 satisfies

Here, C denotes the same constant as in Theorem 28.4.2.

Proof. Let W.l.o.g. we assume that no point in lies on the border
of several squares (cf. Remark 28.4.4). Note that We shall
prove the inequality

Taking into account as well as Theorem 28.4.2 will yield the
desired result.

28.4 Probabilistic Analysis 405

Let denote the length of the optimal roundtrip for
constructed in Step 2 of the decomposition algorithm. We put if

The tour computed in Step 3 has length at most
by Lemma 28.4.3 (we join at most one point for every and there are

many squares). Christofides’ algorithm guarantees that the roundtrip
constructed has at most the length of the sum of all weights in the used
Eulerian graph. Thus

Next, we want to bound Let P denote an optimal tour for For every
square we define to be the length of those parts of P lying completely
in This implies

Since no point in lies on the border of a square, there exist only finitely
many points lying both on P and on the border of

Define a graph with vertices Two vertices
in are connected by an edge if and only if the straight line between them
is part of the optimal roundtrip P.

We suppose all to be ordered clockwise along the border of (starting
with an arbitrary). The (possibly unconnected) graph is enlarged to a
Eulerian multigraph as follows:

a)

b)

We add all those among the edges for and
which are not yet present. Because of the triangle inequality

and the ordering of the the sum of the added edge-weights is at most
the perimeter of i.e. With the new edges the graph now is
connected.

If after step a) there are nodes with odd degree remaining they
are again ordered clockwise; additional edges
are added (cf. Christofides’ algorithm). We remark that has to be
even and that only vertices among the can have an odd degree after
applying step a), i.e.

Once more, the total sum of the added edge-weights is

406 28 MISCELLANEOUS

We obtain a Eulerian multigraph with weight sum for all its
edges.

Applying Chrstofides’ algorithm gives a roundtrip for all vertices in of
length By the triangle inequality the latter can be used to obtain
a roundtrip for the points in satisfying the same upper bound.

Altogether, the costs for an optimal tour in can be bounded by

Putting this together with (**) we obtain

28.4 Probabilistic Analysis 407

which gives (*).

It can be shown (cf. [137]) that the decomposition algorithm for
has an expected running time bounded by

Its variance can be bounded by

(for constants).

Thus, if we choose we end up with an expected poly-

nomial running time and a related variance

Once more, there exists a lot of literature dealing with the probabilis-
tic analysis of algorithms. For further aspects when studying optimization
algorithms in a stochastic setting see, for example, [30] and [8].

Some other aspects of interest in relation with approximation should be
mentioned at the end of this chapter. In accordance to the study of com-
plete decision problems for the class NP similar completeness notions can
be investigated for approximability of optimization problems. Of course, the
notion of a reduction has to be changed appropriately; instead of transfer-
ring a “yes” or “no” answer from one problem to another, approximability
properties have to be taken into account. This can be done; all the classes
APX, PTAS and FPTAS have complete problems in such a framework.

We mentioned already another notion of approximability in relation with
the BinPacking problem, cf. the remarks following Corollary 26.2.2. Asymp-
totic approximability as well is an important issue in relation with approx-
imability. For more on completeness and other criteria of approximation see
[8].

408 28 MISCELLANEOUS

Finally, approximation properties can also be studied under a logical point
of view. This is a branch of descriptive complexity (cf. the remarks at the end
of Chapter 23.4). Here, a problem instance is described as a logical structure.
A property is then given by a formula and the instance satisfies the property if
and only if the structure satisfies the formula. Approximability then is related
to the shape of the formula representing the problem. A general reference
for descriptive complexity is [116], descriptive complexity in relation with
approximation was first studied in [183], see also [159].

Index

accepted language, 280
accepting a word, 280
acceptor, 280
active set strategy, 153
activity map, 19
adjacent, 193
admissible

coding, 285
colouring, 200
flow, 227
vector, 71

affine linear function, 55
algebraic complexity theory, 336
algebraic computation tree, 336
algorithm

Christofides, 369
Cycle-Cancelling, 251
decomposition for Euclidean

TSP, 404
Dijkstra, 234
Eastman, 397
Edmonds Matching, 222
First-Fit-Decreasing heuristic,

378
First-Fit heuristic, 378
Ford and Fulkerson, 230
Held and Karp, 394
Karmarkar, 114
Khachiyan, 105, 334
Knapsack-FPTAS, 387
Knapsack-Pseudopol, 383
Kruskal, 199
Lawler (Hungarian

method), 207
Lovász and Plummer, 217
Moore, Bellman and Ford, 236

Next-Fit heuristic, 375
Patching, 399
tree algorithm for TSP, 374

alphabet, 272
alternating, 202
analytic center, 161
analytic 161
antichain, 243
approximation algorithm, 358

360
approximation scheme, 360

asymptotic, 381
fully polynomial time, 360
polynomial time, 360

arcs of a digraph, 223
arithmetic operations, 333
Armijo’s rule, 188
assignment, 289

problem, 211
asymptotic

approximation schemes, 381
performance ratio, 358

augmenting path, 202
in a network, 228

average case complexity, 349
balanced

hypergraph, 269
(0, 1)-matrix, 269

barrier methods, 155
barycenter of a simplex, 54, 177
basic variables, 86
basis, 86
basis index set, 86
Berge’s formula, 216
BFGS-Formula, 152
Bin Packing, 290, 326

410 INDEX

as combinatorial optimization
problem, 355

bipartite, 200
blank symbol, 273
Blum-Shub-Smale machine, 337
Boolean variables, 289
Boolean expressions, 289
branch-and-bound, 395
branching rule, 395
branch tree, 396
bridge, 196
Broyden-Fletcher-Goldfarb-

Shanno update, 152
50
51

15
7

capacity, 227
function, 227

Cauchy-Binet formula, 224
cell of a Turing tape, 273
center of an ellipsoid, 97
central path, 161
chain, 242

decomposition, 243
Characterization Theorem of Lin-

ear Programming, 74
Chebyshev approximation, 45

linear discrete, 85
Chinese Postman Problem, 202
Christofides’ algorithm, 369
chromatic number, 200
clause, 289
Clique, 327
closed walk, 195
coindex of A, 30
colouring, 200, 328
combinatorial optimization

problem, 354

as maximization problem, 354
as minimization problem, 354
Bin Packing, 355
Euclidean TSP, 374
Independent Set, 389
Knapsack, 356

Fractional, 390
MAX-3-SAT, 355
metric TSP, 366
polynomially bounded, 356
solvable in polynomial time,

357
TSP, 355

complementary condition, 41
complete graph, 193
complexity classes

APX, 360
co – NP, 311

346
FPTAS, 360
NP, 294

343
341

NPO, 356
NPSPACE, 299
P, 284

341
392

PO, 357
PSPACE, 299
PTAS, 360

381
computable

by a BSS machine, 339
by a RAM, 330
by a Turing machine, 277

computation
of a BSS machine, 337
of a RAM, 330

INDEX 411

of a Turing machine, 276
computation paths, 340
concatenation, 272
concave function, 49

strictly, 49
condition number, 30
cone, 21

finitely generated, 78
polyhedral, 78

configuration
of a BSS machine, 337

initial, 337
of a deterministic Turing ma-

chine, 275
final, 276
starting, 276
successor, 276

of a non-deterministic Turing
machine, 293

of a RAM, 329
initial, 329

conjugate
vectors, 141
gradients, 146

conjunctive normal form, 289
connected

component of a graph, 196
component of a semi-algebraic

set, 340
digraph, 223
graph, 196

connected, 197
196

constraint functions, 19
constraint qualification, 72

Mangasarian-Fromovitz, 72
Continuity Theorem, 53
Contraction Lemma, 220
control unit, 273

convergence
linear, 125
quadratic, 125
superlinear, 125

convex
combination, 49
function, 49

strictly, 49
uniformly, 126

hull, 53
set, 6

coordinate inequalities, 85
coordinate transformation, 15
cost function, 199
covered vertex, 201
critical point, 7, 24

204
cut, 227

minimum, 227
cutting the branch tree, 396
cutvertex, 196
cycle, 195

cancelling, 251
directed, 224
Hamiltonian, 197, 286

Davidson-Fletcher-Powell
update, 148

Davies-Swann-Campey
method, 175

decidable
in the BSS model, 338

polynomial time, 341
in the Turing model, 279

polynomial time, 284
deciding a language

in the BSS model, 338
in the Turing model, 279

decision problem, 279, 338
Bin Packing, 290, 326, 355

412 INDEX

Clique, 327
3-Colouring, 328
3-Dimensional Matching, 290,

316
Exact Cover, 290, 313
Feasibility 342
Hamiltonian Circuit, 286, 318
Hilbert’s 10th problem, 298
Hitting String, 289, 295, 328
Independent Set, 328
Integer Programming, 287,

325
Knapsack, 327
Linear Programming, 74ff,

287
Maximum Matching, 286
over a finite alphabet, 279
over the reals, 338
Partition, 328
0-1-Programming, 287, 325
Quadratic Programming, 287,

322, 346
related to a combinatorial op-

timization problem, 357
2-SAT, 289, 310f
3-SAT, 289, 305ff
Satisfiability SAT, 289
Subset Sum, 290, 324
Traveling Salesman, 286, 322,

355
degenerate vertex, 86
degree of a vertex, 193
dense encoding, 285
descriptive complexity, 408
deterministic polynomial time

in the BSS model, 341
in the Turing model, 284

DFP-Formula, 148
digital non-determinism, 346

digraph, 223
connected, 223
tree, 223

Dijkstra’s algorithm, 234
3-Dimensional Matching, 290, 316
dimension of K, 54
diophantine equations, 265
directed

cycle, 224
edge, 223
graph, 223
path, 224
walk, 224

distance, 195
doubly stochastic matrix, 210, 262
DSC-Method, 175
Duality Theorem of Linear

Programming, 75
dual problem, 57

of Linear Programming, 75
dual variables, 41
dynamic programming, 386, 393ff

optimality principle in, 386
Eastman algorithm, 397
edge, 139, 193

204
directed, 223
of a simplex 176

connected, 197
ellipsoid method, 97
ellipsoid, 97
empty word, 272
endpoint, 195
endvertex, 193
epigraph of 52

algorithm, 360
equality constraints, 19
Euclidean norm, 6
Euclidean Traveling Salesman op-

INDEX 413

timization problem, 290
Euler characteristic, 5
Eulerian graph, 197
Eulerian trail, 197, 367
Exact Cover, 290, 313
exponential time, 294
exponent of matrix multiplication,

336
exposed vertex, 201
extremal point, 63
face of an 176
factor critical, 213
false (as Boolean value), 289
Farkas’ Lemma, 68
feasible set of SLOP, 85
feasible solution of an instance of

a combinatorial optimiza-
tion problem, 354

Fibonacci numbers, 187
Fibonacci-Search, 186
final configuration of a Turing ma-

chine, 197
final state of a

non-deterministic Turing ma-
chine, 292

Turing machine, 274
finite alphabet, 272
finitely generated cone, 78
First-Fit-Decreasing heuristic, 378
First-Fit heuristic, 378
first-order logic, 343
Fletcher-Reeves

method, 146
update formula, 146

flow, 227
admissible, 227
maximum, 227
minimum cost problem, 248
value of, 227

Ford and Fulkerson, algorithm, 230
forest, 198

Hungarian, 209
fully polynomial time approxima-

tion scheme, 360
function computed by a

BSS machine, 338
RAM, 330
Turing machine, 277

generating matrix, 14, 144
of an ellipsoid, 97

geometric dimension, 334
global minimum, 3
Golden Section Method, 185
Gram-Schmidt orthonor-

malization, 174
graph, 193

bipartite, 200
complete, 193
connected, 196
directed, 223
Eulerian, 197
Hamiltonian, 197
regular, 193, 213

Hall’s condition, 210
halting problem

for the BSS model, 340
for the Turing model, 280

halting set of a BSS machine, 338
Hamiltonian

Circuit, 197, 286, 318
cycle, see Circuit
graph, 197

head of a Turing machine, 273
Hermite-interpolation, 183

polynomial, 183
Hessian matrix, 9
heuristics, 375
Hilbert problem, 10th , 298

414 INDEX

Hitting String, 289, 295, 328
homeomorphism, 15
homotopy method, 16
Hungarian

forest, 209
method, 204

hypergraph, 269
balanced, 269

hyperplane, 59
incidence matrix, 224
incident, 193
indegree, 223
index of A, 30
Independent Set, 328, 389
Index strategy of Bland, 93
induced subgraph, 194
inequality constraints, 19
Information Based Complexity

IBC, 349
initial configuration of a

BSS machine, 337
RAM, 329
Turing machine, 276

initial state of a
BSS machine, 213
Turing machine, 273f

non-deterministic, 292
inner vertex, 221
Integer Programming, 257, 287,

325
linear, 257

integral polyhedron, 263ff
intermediate nodes, 227
interior point methods, 159ff

primal-dual, 170
isomorphic, 194
Jensen inequality, 49
joined

by an edge, 193

by a path, 195
Karmarkar’s Algorithm, 113ff
Karmarkar’s Standard Form

(KSF), 113
Karush-Kuhn-Tucker point (KKT-

point), 24
Khachiyan Algorithm, 97ff, 334ff

for integer data, 105
Kirchhoff matrix, 224
Knapsack, 327

as combinatorial optimization
problem, 272

Fractional, 390
Kruskal’s algorithm, 199
Lagrange function, 24
Lagrange multipliers, 24
Lagrange-Newton Method, 138
Lagrange-Newton-iteration step,

139
language

accepted by an acceptor, 280
accepted by a non-deter-

ministic acceptor, 293
over a finite alphabet, 279
over the reals, 338

Laplacian, 224
Latin rectangle, 213
Lawler’s algorithm (Hungarian

method), 207
leaf, 199
length

of an alternating sequence, 195
of a word, 272

Linear Convergence, 125
linear discrete Chebyshev approxi-

mation problem, 85
linear function, 15
Linear Independence Constraint

Qualification (LICQ), 19

INDEX 415

Linear Programming, 74ff, 257,
287

Lipschitz continuous mapping, 131
literal, 289
local minimum, 3

nondegenerate, 40
locally Lipschitz continuous map-

ping, 131
logarithmic costs, 331
logarithmic running time, 331
logarithmic size, 331
loop, 194
lower bounds, 344
lower semi-continuous function, 6
machine constants, 338
Mandelbrot set, 341
Mangasarian-Fromovitz Con-

straint Qualification, 72
marginal function, 36, 158
Marriage theorem, 209
matching, 201

maximal, 201
maximum, 201
maximum cardinality of, 201
perfect, 201
weighted, 201

matching problem, 201
cost versions, 201
weighted versions, 201

matrix multiplication, 336
Max-Flow Min-Cut theorem, 229
maximum, 3
maximum flow problem, 227
Maximum Matching, 201, 286
MAX-3-SAT combinatorial

optimization problem, 355
method of Conjugate Gradients,

146
metric, 143, 148

Metric Traveling Salesman
problem, 366

minimal spanning tree, 199
minimal stratum, 259
minimum cost flow problem, 248
minimum cut, 227
Monte-Carlo algorithm, 393
Morse Lemma, 16
multigraph, 194, 367

weighted, 367
multiple edges, 194
Multiplier method, 158
negation, 290
network, 223

residual, 233
Next-Fit heuristic, 375
Newton direction, 171
Newton method, 134
node, see vertex
non-basic variables, 86
nondegenerate, 35

local minimum, 35, 40
vertex, 85

non-deterministic
acceptor, 293
digital, 346
polynomial time, 294
Turing machine, 293

normal forms, 14
first (linear functions), 15
second (quadratic func-

tions), 16
NP-complete, 303

342
NP-hard, 303, 357
online algorithms, 381
optimality criteria of first order, 8
optimality principle in dynamic

programming, 386

416 INDEX

optimal solution of a combinatorial
optimization problem, 354

optimum, 3
oracle call, 304
oracle Turing machine, 304
outdegree, 223
outer vertex, 221
output

of a BSS computation, 337
of a Turing computation, 276

overdetermined system, 33, 85
partially ordered sets, 242
Partition, 328
Patching algorithm, 399
path, 195

alternating, 202
augmenting, 202

in a network, 228
central, 161
computation, 340
directed, 224

PCP theorem, 393
penalty methods, 154
perfect matching, 201
performance ratio, 358
pivot element, 92
pivoting strategy of R.G. Bland, 76
point, see vertex
polyhedral cone, 78
polyhedron, 79

integral, 262
rational, 263
of stochastic matrices, 81

polynomially bounded optimi-
zation problem, 356

polynomially equivalent, 303
polynomial running time

for a BSS machine, 341
for a Turing machine, 283

polynomial space, 299
polynomial time approximation

scheme, 360
polynomial time reducibility

BSS model, 341
Turing model, 302

polytope, 79
posets, 242
positive definite matrix on T, 26
positive definite matrix, 9
positive semi-definite matrix, 9
positive semi-definite on T, 26
prefix, 272
primal-dual interior point

methods, 170
primal-dual Newton direction, 171
primal problem, 56

of Linear Programming, 75
primal variables, 41
probabilistically checkable proofs,

391
probabilistic analysis, 398
probabilistic Turing machine, 391
problem decidable in deterministic

polynomial time
in the BSS model, 341
in the Turing model, 205

problems verifiable in non-deter-
ministic polynomial time,
294

programming
integer, 257, 287, 325
linear, 74ff, 257
quadratic, 287, 322, 346
0-1, 257, 287, 325

program of a Turing machine, 273
propositional calculus, 289
Prüfer code, 198
pseudo-polynomial, 383

INDEX 417

53, 176
quadratic convergence, 125
Quadratic Programming, 287, 322,

346
quadratic interpolation

using derivatives, 185
without using derivatives, 184

quadratic turning point, 38
quantifier elimination, 343
quasi-Newton method, 152
Random Access Machine, 329
randomization, 353
randomized algorithms, 349
rank 1 update, 90
rank condition, 85
rational polyhedron, 263
real Random Access Machine, 336
real size of a vector, 341
recognizing a language, 279
recursively enumerable, 280
reduced costs, 252
reducibility

polynomial time, 302
Turing, 304

Reduction Ansatz, 47
reduction of dimension, 21
reflection, 177
regular

193, 213
simplex, 176

relative error, 358
relative interior, 54
relative interior point, 54
relaxation, 396
residual

capacity, 231
network, 233

resultant polynomials, 348
Rosenbrock’s Method, 173

running time
of a BSS machine, 339
of a non-determi-

nistic acceptor, 293
of a Turing machine, 283

Satisfiability k-SAT, 289
satisfiable Boolean expression, 289
satisfying assignment, 289
Schur-complement, 37
self-concordance, 171
self-concordant function, 171
self-limitation, 171
semi-algebraic, 340
semi-decidable, 280
semi-definite optimization problem

(SDP), 45
semi-infinite optimization problem

(SIP), 45
separating set, 196
Separation Theorem, 59
shadow prices, 44
Sherman-Morrison formula, 90
shortest path problem, 233
Simplex method, 83ff, 178

of Nelder-Mead, 179
simplex, 52, 176

barycenter of, 54, 177
edge, 176
face of, 176

176
regular, 176

sink, 227
size

of a problem, 285
of a vector of reals, 341
of a word, 272

slack variables, 85
Slater condition, 73
Smith normal form, 265

418 INDEX

SOLVER method, 140
source, 227
space, 283, 299, 339

polynomial, 299
space-bounded computations, 283
spanning subgraph, 194
spanning tree, 199
sparse encoding, 285
spectral norm, 30
standard linear optimization prob-

lem (SLOP), 84
standard-diffeomorphism 21
starting configuration, 198
starting point, 195
state of a

deterministic Turing machine,
273f

non-deterministic Turing ma-
chine, 292

stationary point, 7
steepest descent method, 125
stochastic matrix, 210

doubly, 210, 262
straight-line programs, 336
stratification, 82
stratum, 82

minimal, 259
strict complementary condition, 41
strict global minimum, 3
strict local minimum, 3
strictly concave function, 49
strictly convex function, 49
subdifferentiable function, 61
subdifferential 61
subgradient of a function, 61
subgraph, 194

induced, 194
spanning, 194

Subset Sum, 290, 324

successor configuration
of a deterministic Turing ma-

chine, 197
of a non-deterministic Turing

machines, 293
suffix, 272
superlinear convergence, 125
supporting hyperplane, 63
symmetric matrix, 9
tail, 223
tangent cone, 21
tangent space, 21
tape, 273
Taylor Formula in Integral Form,

129
theorem

Beardwood, Halton and Ham-
mersley, 401

Berge, 202
Blum, Shub, and Smale, 343
Caratheodory, 67
Christofides, 369
Cook, 305
Dilworth, 243
Edmonds, 221
Edmonds and Karp, 233
Euler, 197
Ford and Fulkerson, 228
Gale and Ryser, 240
Gallai and Edmonds

(structure theorem), 213
Giles and Pulleyblank, 269
Hall (Marriage Theorem), 209
Hoffman and Kruskal, 260
John, 71
Karp (minimum mean cycle),

253
König, 203, 242, 262
Mendelsohn-Dulmage, 213

INDEX 419

Menger for digraphs, 246
Menger, undirected case, 247
Meyer, 264
PCP, 393
Petersen, 217
Sahni and Gonzales, 365
Tarski, 343
Tutte, 216
Whitney, 19

5
time bounded, 283
time-boundedness of non-determi-

nistic acceptors, 293
time constructible functions, 294
totally unimodular, 257
totally dual integral, 268
tournament, 225
tree, 198

as a digraph, 223
minimal spanning, 199

trail, 195
transfer principle, 348
transition function, 273f
transition relation, 292
Traveling Salesman Problem, 202,

286, 322
as combinatorial optimization

problem, 355
Euclidean, 374
metric, 366

tree algorithm for 374
with triangle inequality , 282

true (as Boolean value), 289
Turing machine, 274
Turing reducibility, 304
turning point, 38

quadratic, 38
Ulam’s reconstruction conjecture,

195

unfolded set (of critical points), 37
uniform contraction, 177
uniform expansion, 177
uniformly convex function, 126
unimodal function, 183
universal Turing machine, 281
update formula of R. Fletcher and

C. M. Reeves, 146
value of a feasible solution, 354
variational principle of I. Ekeland,

13
verifiable in non-deterministic po-

lynomial time
over a finite alphabet, 294
over the reals, 341

guessing digits, 346
verification, 292
verifier, 392
vertex, 193

cover, 203
number, 203

covered, 201
degenerate, 86
in a digraph, 223
inner, 221
nondegenerate, 86
of a convex set, 63
outer 221

Vertex Theorem, 83
walk, 195

closed, 195
in a digraph, 224

weighted multigraph, 283
Wolfe-dual problem, 57
word, 272

empty, 272

Index of Symbols

non-negative orthant of the 3
cardinality of a set, 4

Euler characteristic of a set M, 5
lower level set of function w.r.t. level 6
Euclidean norm, 6

maximum norm, 6

sum norm, 6

vector of partial derivatives of in 7

of times continuously differentiable functions from to
7

space of times continuously differentiable functions from U
to V, 7
closed ball around of radius 8

open ball around of radius 8
Hessian matrix of in 9

set of points satisfying constraints given by and 19

set of active constraints in 19

standard diffeomorphism, 21
tangent space of M at point 21
tangent cone of M at point 21
Langrange-multipliers, 24
Lagrange function, 24

set of active constraints with positive Lagrange multiplier, 27
spectral norm of matrix A, 30

condition number of matrix A, 30
index of symmetric matrix A, 30
coindex of symmetric matrix A , 30

orthogonal space of T, 32
marginal function, 36
activity set of for a semi-infinite problem, 45
Epigraph of a function 52

#
E(M)

L

Ind(A)
Coind(A)

422 INDEX OF SYMBOLS

Z

NZ

V(G)
E(G)

convex hull of set A, 53

subdifferential of in 61

cone generated by 67

stratum of constraints active in 82

polar cone, 84

basis index set, 86

complement of a basis index set Z, 87

decomposition of a vector w.r.t. a basis index set Z, 87

decomposition of a matrix A w.r.t. a basis index set Z, 87

smallest integer greater than or equal to 105

matrices used in Khachiyan’s algorithm, 107
transformation used in Karmarkar’s algorithm, 115
logarithmic barrier function, 160

analytic center of feasible set M, 161

analytic 161
central path, 161

map defining the central path, 170

strictly positive orthant, 170

Fibonacci numbers, 187
vertex set of a graph G, 193

edge set of a graph G, 193

degree of vertex in graph G, 193

complete graph with vertices, 193

G is isomorphic to 194
subgraph of G induced by 194

subgraph induced by V \ W, 195

and are joined by some walk, 196
maximal s.t. G is 196

maximal s.t. G is connected, 197
chromatic number, 200

maximum cardinality of a matching in G, 201

symmetric difference of two matchings, 203
vertex cover number, 203

outdegree of vertex 223

INDEX OF SYMBOLS 423

A
A*

L(M)
HALT

P
size(S)
code(S)

NP

PSPACE

NPSPACE

co – NP

indegree of vertex 223
value of a flow, 227
capacity of a cut, 227
poset, 242

convex hull of integral points of polyhedron M, 263
a finite alphabet, 272

set of words over a finite alphabet A , 272

set of words of length 1 over a finite alphabet A, 272

the empty word in a finite alphabet, 272

length of a string, 272
concatenation of two strings, 272
blank symbol, 273
the set for a finite alphabet A, 273
transition function of a deterministic Turing machine, 274

is a successor configuration of 275
undefined function value for a machine that does not halt, 277

function computed by machine M, 277
language accepted by machine M, 280
halting problem, 280
running time of a machine M on input 283
class of problems solvable in polynomial time, 284
size of a problem instance S, 285
code of a problem instance S, 285

problem, 289
transition function of a non-deterministic Turing machine, 292

class of problems verifiable in non-deterministic polynomial
time, 294
problems solvable deterministically using a polynomial
amount of space, 299
problems verifiable non-deterministically using a polynomial
amount of space, 299

is polynomial time reducible to 302

is polynomially equivalent to 303
class of problems whose complement is in NP, 311

set of finite sequences of natural numbers (including 0), 329

424 INDEX OF SYMBOLS

Sol(I)

OPT(I)
MAX-3-SAT

NPO
PO

A(I)

set of finite sequences of real numbers, 337

function computed by a BSS machine M, 338
halting set of a BSS machine, 338
running time of a BSS machine M on input 339

real size of a vector 341
class of real number problems decidable in polynomial time
by a BSS machine, 341
class of real number problems verifiable in non-deterministic
polynomial time by a BSS machine, 341
decision problem whether a polynomial has a real
zero, 342
class of complex number problems verifiable in non-determi-
nistic polynomial time by a BSS machine, 343
problems verifiable in non-deterministic polynomial time by a
BSS machine only guessing digits, 346
complex algebraic numbers, 348
problem whether a polynomial has a non-negative
real zero, 349
a combinatorial optimization problem, 354
set of instances for a combinatorial optimization problem, 354

set of feasible solutions for an instance I of a combinatorial
optimization problem, 354

value of the feasible solution for instance I under measure
354

optimal value for instance I, 354
combinatorial optimization problem maximizing the number
of satisfying assignments for a 3-SAT formula, 355
analogue of NP for combinatorial optimization problems, 356
analogue of P for combinatorial optimization problems, 357

decision problem related to 357
value given by approximation algorithm A on instance I, 358
performance ratio of A on instance I , 358
performance ratio of approximation algorithm A, 358
asymptotic performance ratio of approximation algorithm A,
358
relative error of feasible solution of instance I, 358

INDEX OF SYMBOLS 425

APX

PTAS

FPTAS

class of combinatorial optimization problems having an ap-
proximation algorithm for some 360

class of combinatorial optimization problems having a poly-
nomial time approximation scheme, 360
class of combinatorial optimization problems having a fully
polynomial time approximation scheme, 360

Metric Traveling Salesman minimization problem, 366

performance ratio of Christofides’ algorithm, 372

performance ratio of the Next-Fit heuristic, 377

asymptotic performance ratio of the Next-Fit heuristic, 377
performance ratio of the First-Fit heuristic, 379
asymptotic performance ratio of the First-Fit heuristic, 379

performance ratio of the First-Fit-Decreasing heuristic, 379

asymptotic performance ratio of the First-Fit-Decreasing heu-
ristic, 379
class of combinatorial optimization problems having an
asymptotic polynomial time approximation scheme, 381
verifier producing many random bits and using
many bits of a guess, 392
class of problems solvable by a probabilistically checkable
proof using a verifier such that and 392

REFERENCES

References

Aho, A.V., Hopfcraft, J.E., Ullman, J.D.: The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading (1975).

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Al-
gorithms, and Applications. Prentice-Hall (1993).

Aigner, M.: Combinatorial Theory. Springer, New-York (1979).

Alizadeh, F.: Interior point methods is semidefinite programming with
applications to combinatorial optimization. SIAM J. Optimization, 5,
pp. 13-51 (1995).

Arora, S.: Polynomial time approximation schemes for Euclidean TSP
and other geometric problems. Proc. 37th Annual IEEE Symposium on
Foundations of Computer Science, pp. 554–563 (1996).

Arora, S.; Lund, C.; Motwani, R.; Sudan, M.; Szegedy, M.: Proof verifi-
cation and hardness of approximation problems. Proc. of the 33rd Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, pp. 14–23 (1992).

Arora, S.; Safra, S.: Probabilistic checking of proofs: A new character-
ization of NP. Journal of the ACM 45, pp. 70–122 (1998). Extended
abstract in: Proc. of the 33rd Annual IEEE Symposium on the Founda-
tions of Computer Science, IEEE Computer Society, pp. 2–13 (1992).

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spacca-
mela, A., Protasi, M.: Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer
(1999).

Bachem, A., Groetschel, M., Korte, B. (Eds.): Mathematical Program-
ming, The State of the Art. Springer (1983).

Bachem, A., Kern, W.: Linear Programming Duality. An Introduction
to Oriented Matroids. Springer (1992).

Balcázar, J.L., Diaz, J., Gabarró, J.: Structural Complexity I. Springer
(1988).

Balcázar, J.L., Diaz, J., Gabarró, J.: Structural Complexity II. Springer
(1990).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

428 REFERENCES

Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applica-
tions. Springer (2000).

Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Nonlinear
Parametric Optimization. Akademie Verlag, Berlin (1982).

Basu, S.: New Results on Quantifier Elimination over Real Closed Fields
and Applications to Constraint Databases. Journal of the ACM, Vol. 46,
No. 4, pp. 537–555 (1999).

Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic
complexity of quantifier elimination. Journal of the ACM, 43(6), pp.
1002–1045 (1996).

Beardwood, J., Halton, J.J., Hammersley, J.M.: The Shortest Path
Through Many Points. Proc. Cambridge Philos. Soc. 55, pp. 299–327
(1959).

Beckenbach, E.F., Bellman, R.: Inequalities. Springer (1961).

Beer, K.: Lösung grosser linearer Optimierungsaufgaben. VEB Deut-
scher Verlag der Wissenschaften, Berlin (1977).

Bellman, R.: Dynamic Programming. Princeton University Press,
Princeton (1957).

Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier
Methods. Academic Press (1982).

Birge, J.R., Murty, K.G.: Mathematical Programming, State of Art
1994. The University of Michigan (1994).

Bland, R.G.: New finite pivoting rules for the simplex method. Math.
Oper. Res., 2, pp. 103–107 (1977).

Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real compu-
tation. Springer (1997).

Blum, L., Shub, M., Smale, S.: On a theory of computation and com-
plexity over the real numbers : NP-completeness, recursive functions and
universal machines. Bull. Amer. Math. Soc., 21, pp. 1–46 (1989).

Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle.
Springer, Berlin (1987).

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES 429

Bollobas, B.: Graph Theory. An Introductory Course. Springer, New-
York (1979).

Borgwardt, K.H.: The Average Number of Pivot Steps Required by the
Simplex-Method is Polynomial. Zeitschrift für Operations Research, Vol.
7, No. 3, pp. 157–177 (1982).

Borgwardt, K.H.: The Simplex Method. Springer (1987).

Borgwardt, K.H.: Probabilistic Analysis of Optimization Algorithms.
Some Aspects from a Practical Point of View. Acta Math. Appl. 10,
pp. 171–210 (1987).

Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear
Diophantine equations. Proc. American Mathematical Society 55, pp.
299–304 (1976).

Branin, F.H.: A widely convergent method for finding multiple solutions
of simultaneous nonlinear equations. IBM Journal of Reseach and De-
velopment, pp. 504–522 (1972).

Bröcker, T., Lander, L.: Differentiable Germs and Catastrophes. Lon-
don Math. Soc. Lect. Note Series, Vol. 17. Cambridge University Press
(1975).

Brosowski, B.: Parametric Semi-infinite Optimization. Peter Lang Ver-
lag, Frankfurt (1982).

Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity
Theory., Grundlehren der mathematischen Wissenschaften, vol. 315,
Springer (1996).

Burkard, R.E.: Methoden der Ganzzahligen Optimierung. Springer,
New-York (1979).

Christofides, N.: Worst-case analysis of a new heuristic for the traveling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA (1976).

Chvátal, V.: Linear Programming. Freeman (1983).

Coddington, E.A., Levinson, N.A.: Theory of Ordinary Differential
Equations. McGraw-Hill (1955).

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

430 REFERENCES

Coffman, E.G.; Garey, M.R.; Johnson, D.S.: Approximation Algorithms
for Bin Packing: A Survey. In: Hochbaum, D.S. (ed): Approximation
Algorithms for NP-hard Problems. PWS Publishing Company, Boston,
pp. 46–93 (1995).

Collatz, L., Wetterling, W.: Optimierungsaufgaben. Heidelberger Ta-
schenbücher, Vol. 15, Springer Verlag (1971).

Conforti, M., Cornuéjols, G., Kapoov, A., Perfect match-
ings in balanced hypergraphs. Combinatorica 16, pp. 325-329 (1996).

Cook, S.: The Complexity of Theorem-Proving Procedures. Proc. of the
Annual ACM Symposium on Theory of Computing STOC, ACM,

pp. 171 – 158 (1971).

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms.
The MIT Press, Cambridge (1990).

Cucker, F., Rojas, J.M.: Foundations of Computational Mathematics.
Proceedings of the Smalefest 2000, Hong Kong, World Scientific (2002).

Cucker, F., Shub, M., Smale, S.: Separation of complexity classes
in Koiran’s weak model. Theoretical Computer Science, 133, pp. 3–14
(1994).

Cucker, F., Smale, S.: Complexity Estimates Depending on Condition
and Round-off Error. Journal of the ACM, 46 (1), pp. 113–184 (1999).

Dantzig, G.B.: Lineare Programmierung und Erweiterungen. Springer
Verlag (1966).

Dasdan, A, Irani, S.S, Gupta, R.K.: Efficient Algorithms for Optimum
Cycle Mean and Optimum Cost to Time Ratio problems. Proc. 36th
Design Automation Conf. (DAG), pp. 37-42 (1999).

Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations. Prentice-Hall (1983).

Diener, I.: Trajectory nets connecting all cutical points of a smooth func-
tion Mathematical Programming, 36, pp. 340–352 (1986).

Diener, I.: On the global convergence of pathfollowing methods to de-
termine all solutions to a system of nonlinear equations. Mathematical
Programming, 39, pp. 181–188 (1987).

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

REFERENCES 431

Diener, I., Schaback, R.: An extended continuous Newton method. Jour-
nal of Optimization Theory and Applications, 67, pp. 57–77 (1990).

Dikin, I.: Iterative solution of problems of linear and quadratic program-
ming. Soviet Math. Dohl. 8, pp. 674-675 (1967).

Eaves, B.C.: On Quadratic Programming. Management Science (The-
ory) 17, No. 11, 698–711 (1971).

Eastman, W.L.: Linear Programming with Pattern Constraints. Ph.D.
Thesis, Report No. BL20, The Computation Laboratory, Harvard Uni-
versity (1958).

Edmonds, J., Giles, R.: A min-max relation for submodular functions on
graphs. In: Studies in Integer Programming, Annals of Discrete Math-
ematics 1 (P.L. Hammer, E.L. Johnson.B.H. Korte, G.L. Nemhauser,
eds.), North-Holland, Amsterdam, pp. 185-204 (1977).

Ekeland, I.: Sur les problèmes variationnels. C.R. Acad. Sci. Paris 275,
pp. 1057–1059 (1972); 276, pp. 1347–1348 (1973).

Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, pp.
324–353 (1974).

Ekeland, I.: Nonconvex Minimization Problems. Bull. of the American
Math. Soc., Vol. 1, pp. 443–474 (1979).

Elster, K.-H. (Ed.): Modern Mathematical Methods of Optimization.
Akademie Verlag, Berlin (1993).

Even, S.: Graph Algorithms. Computer Science Press, Potomac, Mary-
land (1979).

Even, S., Itai, A., Shamir, A.: On the complexity of timetable and mul-
ticommodity flow problems. SIAM Journal on Computing , pp. 691–703
(1976).

Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within
in linear time. Combinatorica 1, pp. 349–355 (1981).

Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Non-
linear Programming. Academic Press (1983).

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

432 REFERENCES

Fiacco, A.V., McCormick, G.P.: Nonlinear Programming. John Wiley,
New York (1968).

Fletcher, R.: Practical Methods of Optimization, Volume 1. John Wiley
& Sons (1980).

Fletcher, R.: Practical Methods of Optimization, Volume 2. John Wiley
& Sons (1981).

Ford, L.R., Jr., Fulkerson, D.R.: Flows in Networks. Princeton Univer-
sity Press, Princeton (1962).

Fournier, H., Koiran, P.: Are lower bounds easier over the reals? Proc.
of the Annual ACM Symposium on Theory of Computing, pp. 507–
513 (1998).

Fournier, H., Koiran, P.: Lower Bounds Are not easier over the reals:
Inside PH. Proc. ICALP 2000, Lecture Notes in Computer Science 1853,
pp. 832–843 (2000).

Fulkerson, D.R., Hoffmann, A.J., Oppenheim, R.: On balanced matrices.
Math. Prog. Study, 1, pp. 120-132 (1974).

Gabow, H.N.: Data structures for weighted matching and nearest com-
mon ancestors with linking. Proc. 1st annual ACM-SIAM Symposium
on Discrete Algorithms, ACM-SIAM, pp. 434–443 (1990).

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979).

Garfinkel, R.S., Nemhauser, G.L.: Integer Programming. John Wiley &
Sons (1972).

Ghoussoub, N.: Duality and Perturbution Methods in Critical Point
Theory. Cambridge University Press (1993).

Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer poly-
hedra. Linear Algebra and its Applications, 25, pp. 191-196 (1979).

Gill, P.E., Murray, W. (Eds.): Numerical Methods for Constrained Op-
timization. Academic Press (1974).

Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic
Press (1981).

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

REFERENCES 433

Glashoff, K., Gustavson, S.-A.: Linear Optimization and Approxima-
tion. Springer, New-York (1983).

Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by
cancelling negative cycles. Journal of the ACM, 36, pp. 873-886 (1989).

Gomez, W., Guddat, J., Jongen, H.Th., Rückmann, J.-J., Solano, C.:
Curvas Criticas y Saltos en Optimizacion No Lineal. (to appear).

Gondran, M., Minoux, N.: Graphs and Algorithms. Wiley (1984).

Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press (1980).

Grädel, E., Meer, K.: Descriptive Complexity Theory over the Real Num-
bers, in: Proceedings of the AMS Summer Seminar on “Mathematics of
Numerical Analysis: Real Number Algorithms”, Park City 1995, Lec-
tures in Applied Mathematics, eds.: J. Renegar, M. Shub, S. Smale, pp.
381–404 (1996).

Grigor’ev, D.Y.: Complexity of Deciding Tarski Algebra. Journal of Sym-
bolic Computation, 5, pp. 65–108 (1988).

Grossmann, Chr., Terno, J.: Numerik der Optimierung. Teubner Verlag,
Stuttgart (1993).

Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and
Combinatorial Optimization. Springer (1988).

Guddat, J., Guerra Vasquez, F., Jongen, H.Th.: Parametric Optimiza-
tion: Singularities, Pathfollowing and Jumps. J.Wiley &; Sons (1990).

Guddat, J., Jongen, H.Th.: Structural stability in nonlinear optimiza-
tion. Optimization 18, pp. 617-631 (1987).

Guddat, J., Jongen, H.Th., Kummer, B., Nozicka, F. (Eds.): Parametric
Optimization and Related Topics. Akademie Verlag, Berlin (1987).

Guddat, J., Jongen, H.Th., Kummer, B., Nozicka, F.: Parametric
Optimization and Related Topics II. Mathematical Research, Vol. 62,
Akademie Verlag, Berlin (1991).

Guddat, J., Jongen, H.Th., Kummer, B., Nozicka, F.: Parametric Op-
timization and Related Topics III. In: Series Approximation and Opti-
mization, Pater Lang Verlag, Frankfurt a.M., Bern, New York (1993).

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

434 REFERENCES

Guddat, J., Jongen, H.Th., Rückmann, J.J.: On stability and station-
ary points in nonlinear optimization. Journal Australian Mathematical
Society, Ser.B, Vol.28, pp. 36-56 (1986).

Günzel, H.: Linear Programming: The Central Path Extends Analyti-
cally. Preprint 67, Lehrtsuhl C für Mathematik, RWTH Aachen (1996).

Halicka, M.: Analyticity properties of the central path at boundary point
in linear programming. Mathematics preprint No. M2-97, Faculty of
Mathematics and Physics, Comenius University, Bratislava (1997).

Hall, M. (jr.): Combinatorial Theory. Wiley (1986) (2nd edition).

Halton, J.H., Terada, R.: A fast Algorithm for the Euclidean Traveling
Salesman Problem with Probability One. SIAM Journal on Computing
11, pp. 28–46 (1982).

Harary, F.: Graphentheorie. Oldenburg, München (1974).

[94]

[95]

[96]

[97]

[98]

[99]

[100] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Uni-
versity Press (1952) (2nd edition).

[101] Heintz, J., Roy, M.F., Solerno, P.: On the complexity of semialgebraic
sets. Proceedings IFIP 1989, San Fracisco, North-Holland pp. 293–298
(1989).

[102] Held, M.; Karp, R.M.: A dynamic programming approach to sequencing
problems. Journal of SIAM 10, pp. 196–210 (1962).

[103] Hemmerling, A.: Computability and Complexity over Structures of Fi-
nite Type. E.M.Arndt-University Greifswald, Preprint nr. 2 (1995).

[104] Hertog, D.den: Interior Point Approach to Linear, Quadratic and Con-
vex Programming. Mathematics and its Applications, Vol.277. Kluwer
Academic Publishers, Dordrecht, The Netherlands (1994).

[105] Hestenes, M.R.: Conjugate Direction Methods in Optimization.
Springer (1980).

[106] Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case.
Krieger Publishing Company (1981).

[107] Hettich, R., Jongen, H.Th.: On first and second order conditions for
local optima for optimization problems in finite dimensions. Methods of
Operations Research, Vol. 23, pp. 82-97 (1977).

REFERENCES 435

[108] Hettich, R., Jongen, H.Th.: Semi-infinite programming: conditions of
optimimality and applications. In: Optimization Techniques, Part 2,
Lect.Notes in Contr. and Inform. Sciences 7 (Ed.: J.Stoer); Springer
Verlag, pp. 1-11 (1978).

[109] Hettich, R., Markgraff, G.: Some experiments with Karmarkar’s algo-
rithm for linear programming. Optimization 19, pp. 653–664 (1988).

[110] Hettich, R., Zencke, P.: Numerische Methoden der Approximation und
Semi-Infiniten Optimierung. Teubner Studienbücher, Stuttgart (1982).

[111] Hochbaum, D.S. (ed): Approximation Algorithms for NP-hard Prob-
lems. PWS Publishing Company, Boston (1995).

[112] Horst, R., Tuy, H.: Global Optimization, Deterministic Approaches.
2nd ed., Springer Verlag (1993)

[113] Hougardy, S., Prömel, H.J., Steger, A.: Probabilistically checkable
proofs and their consequences for approximation algorithms. Discrete
Mathematics 136, pp. 175–223 (1994).

[114] Hu, T.C.: Integer Programming and Network Flows. Addison Wesley
(1969).

[115] Huard, P., Liêu, B.T.: La méthode des centres dans un espace
topologique. Numerische Mathematik 8, pp. 56–67 (1966).

[116] Immerman, N.: Descriptive Complexity. Springer Graduate Texts in
Computer Science (1999).

[117] Jacobson, N.: Basic Algebra I. Freeman, San Francisco (1974).

[118] Jahn, J.: Introduction to the Theory of Nonlinear Optimization.
Springer (1994).

[119] Jarre, F.: Interior–Point Methods via Self–Concordance or Relative
Lipschitz Condition. Habilitationsschrift, Würzburg (1994).

[120] Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley Interscience
(1995).

[121] Jongen, H.Th., Jonker, P., Twilt, F,: On one-parameter families of
sets defined by (in)equality constraints. Nieuw Arch.Wisk.(3), XXX, pp.
307-322 (1982).

436 REFERENCES

[122] Jongen, H.Th., Jonker, P., Twilt, F.: One-parameter families of opti-
mization problems: equality constraints. Journal of Optimization Theory
and Applications, Vol.48, pp. 141-161 (1986).

[123] Jongen, H.Th., Jonker, P., Twilt, F.: Critical sets in parametric opti-
mization. Mathematical Programming 34, pp. 333-353 (1986).

[124] Jongen, H.Th., Jonker, P., Twilt, F.: Nonlinear Optimization in
Volume I: Morse theory, Chebyshev Approximation. Peter Lang Verlag,
Frankfurt a.M., Bern. New York (1983).

[125] Jongen, H.Th., Jonker, P., Twilt, F.: Nonlinear Optimization in
Volume II: Transversality, Flows, Parametric Aspects. Peter Lang Ver-
lag, Frankfurt a.M., Bern. New York (1986).

[126] Jongen, H.Th., Weber, G,-W.: Nonconvex optimization and its struc-
tural frontiers. In [148] , pp. 151–203 (1992).

[127] Jongen, H.Th., Weber, G.-W.: On parametric nonlinear programming.
Annals of Operations Research, Vol.27, pp. 253–284 (1990).

[128] Jongen, H.Th., Weber, G.-W.: Nonlinear Optimization: Characteriza-
tion of Structural Stability. Journal of Global Optimization, Vol.1, pp.
47–64 (1991).

[129] Jongen, H.Th., Zwier, G.: On the local structure of the feasible set in
semi-infinite optimization. Int. Series Num. Math., Vol.72, pp. 185-202
(1985).

[130] Jungnickel, D.: Graphen, Netzwerke und Algorithmen. BI-Wissen-
schaftsverlag (3. Auflage, 1994).

[131] Kall, P.: Mathematische Methoden des Operations Research. Teubner
Verlag, Stuttgart (1976).

[132] Kall, P., Wallace, S.W.: Stochastic Programming. J.Wiley & Sons
(1994).

[133] Kannan, R., Bachem, A.: Polynomial time algorithms to compute Her-
mite and Smith normal forms of an integer matrix. SIAM J. Comp., 8,
pp. 499-507 (1979).

[134] Karmarkar, N.: A new polynomial-time algorithm for linear program-
ming. Combinatorica 4(4), pp. 373–385 (1984).

REFERENCES 437

[135] Karp, R.M.: Reducibility among combinatorial problems. In: Miller,
R.E., Thatcher, J.W. (eds.), Complexity of Computer Computations,
Plenum Press, New York, pp. 85–103 (1972).

[136] Karp, R.M.: Reducibility among combinatorial problems. Mathematics
of Operations Research, vol. 2, no.3, pp. 209–224 (1977).

[137] Karp, R.M., Steele, J.M.: Probabilistic analysis of heuristics. In:
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.):
The Traveling Salesman Problem. Wiley, pp. 181–205 (1985).

[138] Kawasaki, H.: An envelope-like effect of infinitely many inequality con-
straints on second-order necessary conditions for minimization problems.
Mathematical Programming 41, pp. 73–96 (1988).

[139] Khachiyan, L.G.: A polynomial algorithm in linear programming. Dokl.
Akad. Nauk, 244, pp. 1093–1096 (1979).

[140] Klee, V., Minty, G.J.: How good is the simplex algorithm. In: Inequal-
ities III (ed.: O.Shish), Academic Press, pp. 159–175 (1972).

[141] Koiran, P.: A weak version of the Blum-Shub-Smale model. Proceedings
of the ACM Conference on Foundations of Computer Science FOCS’93,
pp. 486–495 (1993).

[142] Koiran, P.: Eliminations of Constants from Machines over Alge-
braically Closed Fields. Journal of Complexity 13, pp. 65–82 (1997)

[143] Kojima, M., Hirabayashi, R.: Continuous deformations of nonlinear
programs. Math. Programming Study 21, pp. 150–198 (1984).

[144] Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer (1991).

[145] Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algo-
rithms. Springer (2000).

[146] Kosmol, P.: Methoden zur numerischen Behandlung nichtlinearer Gle-
ichungen und Optimierungsaufgaben. Teubner Verlag, Stuttgart (1989).

[147] Krabs, W.: Optimierung und Approximation. Teubner Verlag, Stutt-
gart (1975).

[148] Krabs, W., Zowe, J.(Eds.): Modern Methods of Optimization. Lect.
Notes in Economics and mathematical Systems, Vol.378. Springer Verlag
(1992).

438 REFERENCES

[149] Krentel, M.W.: The complexity of optimization problems. Journal of
Computer and System Sciences 36, pp. 490 - 509 (1988).

[150] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.
(eds.): The Traveling Salesman Problem. Wiley (1985).

[151] Levitin, E.S.: Perturbation Theory in Mathematical Programming and
its Applications. J.Wiley & Sons (1994).

[152] Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Compu-
tation. Prentice Hall (1998).

[153] Lickteig, T.: On semialgebraic decision complexity. TR-90-052 ICSI,
Berkeley und Univesität Tübingen, Habilitationsschrift (1990).

[154] Lickteig, T.: Semi-algebraic Decision Complexity, the Real Spectrum
and Degree, Journal of pure and applied algebra 110, 2, pp. 131–184
(1996).

[155] Lovasz, L.: Combinatorial Problems and Exercises. North Holland,
New-York (1979).

[156] Lovasz, L., Plummer, M.D.: Matching Theory. North Holland, New-
York (1986).

[157] Matijasevich, Y.V.: Enumerable Sets are Diophantine. Dokl. Akad.
Nauk SSSR, 191, pp. 279–282 (1970).

[158] Malajovich, G.: On generalized Newton algorithms : quadratic conver-
gence, path-following and error analysis. Theoretical Computer Science,
133, pp. 65–84 (1994).

[159] Malmström, A.: Logic and Approximation. PhD Thesis, RWTH
Aachen, Shaker Verlag (1997).

[160] Martello, S., Toth, P.: Knapsack Problems. Wiley (1990).

[161] McCormick, G.P.: Nonlinear Programming: Theory, Algorithms and
Applications. Academic Press (1972).

[162] Meer, K.: Computations over and a comparison. Journal of Com-
plexity, 6, pp. 256–263 (1990).

REFERENCES 439

[163] Meer, K.: On the complexity of Quadratic Programming in real number
models of computations. Theoretical Computer Science, 133, pp. 85–94
(1994).

[164] Meer, K., Michaux, C.: A Survey on Real Structural Complexity The-
ory. Bulletin of the Belgian Mathematical Society - Simon Stevin, 4, pp.
113–148 (1997).

[165] Megiddo, N.: Towards a genuinely polynomial algorithm for linear pro-
gramming. SIAM Journal on Computing, 12, pp. 347–353 (1983).

[166] Megiddo, N.: A general NP-completeness Theorem. in : From Topology
to Computation, Proceedings of the Smalefest, pp. 432–442, Springer
(1993).

[167] Megiddo, N., Shub, M.: Boundary Behavior of Interior Point Algo-
rithms in Linear Programming. Mathematics of Operations Research,
14, pp. 97–146 (1989).

[168] Meyer, R.R.: On the existence of optimal solutions to integer and
mixed-integer programming problems. Mathematical Programming, 7,
pp. 223-235 (1974).

[169] Michaux, C.: Une remarque à propos des machines sur introduites
par Blum, Shub et Smale. C.R. Acad. Sci. Paris, t. 309, série I, pp.
435–437 (1989).

[170] Michaux, C.: over the nonstandard reals implies
over Theoretical Computer Science, 133, pp. 95–104 (1994).

[171] Milnor, J.: Morse Theory. Annals of Mathematics Studies, No. 51,
Princeton University Press (1963).

[172] Minoux, M.: Mathematical Programming, Theory and Algorithms.
J.Wiley & Sons (1986).

[173] Morlock, M., Neumann, K.: Operations Research. Hanser (1993).

[174] Murray, W. (Ed.): Numerical Methods for Unconstrained Optimization.
Academic Press (1972).

[175] Nemhauser, G.L.: Introduction to Dynamic Programming. Wiley
(1966).

440 REFERENCES

[176] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimiza-
tion. Wiley (1988)

[177] Nesterov, Yu.E., Nemirovsky, A.S.: Interior Point Polynomial Methods
in Convex Programming: Theory and Applications. SIAM Streches in
Applied Mathematics 13, Philadelphia (1994).

[178] Novak, E.: The real number model in numerical analysis. Journal of
Complexity, 11, pp. 57–73 (1995).

[179] Oberschelp, W., Wille, D.: Mathematischer Einführungskurs fuer In-
formatiker. Teubner Verlag, Stuttgart (1976).

[180] Padberg, M.: Linear Optimization and Extensions. Algorithms and
Combinatorics, Vol. 12, Springer (1995).

[181] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley
(1994).

[182] Papadimitriou, C.H., Steiglitz, K.S.: Combinatorial Optimization.
Prentice Hall, Englewood Cliffs (1982).

[183] Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation
and complexity classes. Journal of Computer and System Sciences 43,
pp. 425–440 (1991).

[184] Paul, W.: Komplexitätstheorie. Teubner Verlag, Stuttgart (1978).

[185] Poizat, B.: Les Petits Cailloux, une approche modèle-théorique de
l’Algorithmie. Aléas (1995).

[186] Poore, A., Tiahrt, C.A.: Bifurcation problems in nonlinear parametric
programming. Mathematical Programming 39, pp. 189–205 (1987).

[187] Recski, A.: Matroid Theory and its Applications. Springer (1989).

[188] Renegar, J.: A polynomial–time algorithm, based on Newton’s method,
for linear programming. Mathematical Programming, 40, pp. 59–93
(1988).

[189] Renegar, J.: On the computational Complexity and Geometry of the
first-order Theory of the Reals , I - III. Journal of Symbolic Computa-
tion, 13, pp. 255–352 (1992).

[190] Renegar, J.: Does there exist a genuinely polynomial algorithm for lin-
ear programming? Talk at the Smalefest 2000, 13.7.- 17.7.2000, City
University Hong Kong (2000).

[191] Renegar, J., Shub, M., Smale, S.: The Mathematics of Numerical Anal-
ysis. 1995 AMS-SIAM Summer Seminar in Applied Mathematics, Park
City, Utah, Lectures in Applied Mathematics Vol. 32 (1996).

[192] Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970).

[193] Roos, C.: On Karmarkar’s projective method for linear programming.
Report 85–23, Delft University of Technology (1985).

[194] Roos, C., Vial, J.-Ph.: A polynomial method of approximate centers
for linear programming. Mathematical Programming 54, pp. 295–305
(1992).

[195] Roos, C., Vial, J.-Ph.: Interior point methods. Beasley, J.E. (ed.): Ad-
vances in linear and integer programming. Oxford Science Publication,
pp. 47–102 (1996).

[196] Sahni, S.K., Gonzalez, T.F.: P-complete approximation problems. Jour-
nal of the ACM, 23, pp. 555–565 (1976).

[197] Savage, J.E.: Models of Computation. Exploring the Power of Comput-
ing Addison-Wesley (1998).

[198] Schöning, U.: A Low and a High Hierarchy in NP. Journal of Computer
and System Sciences, 27,pp. 14–28 (1983).

[199] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New-
York (1986).

[200] Shapiro, J.F.: Mathematical Programming. Wiley (1979).

[201] Shub, M., Smale, S.: Complexity of Bezout’s Theorem I : Geometric
aspects. Journal of the AMS, 6, pp. 459–501 (1993).

[202] Smale, S.: On the average number of steps of the simplex method of lin-
ear programming. Mathematical Programming 27, pp. 241–262 (1983).

[203] Smale, S.: Complexity Theory and Numerical Analysis. Acta Numerica,
6, pp. 523–551 (1997).

REFERENCES 441

442 REFERENCES

[204] Spelluci, P.: Numerische Verfahren der nichtlinearen Optimierung.
Birkhäuser Basel (1993).

[205] Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimen-
sions I. Springer (1970).

[206] Stoer, J., Wechs, M.: On the analyticity properties of infeasible-
interior-point paths for monotone linear complementarity problems.
Technical Report No. , Dept. of Appl. Math. and Statistics, University
of Würzburg, Würzburg (1996).

[207] Taha, H.A.: Integer Programming: Theory, Applications, and Compu-
tations. Academic Press (1975).

[208] Takens, F.: A note on sufficiency of jets. Invent. Math. 13, pp.225–231
(1971).

[209] Tardos, E.: A strongly polynomial algorithm to solve combinatorial lin-
ear programs. Operations Research, 34(2), pp. 250–256 (1986).

[210] Tarjan, R.E.: Data Structures and Network Algorithms. SIAM, Phila-
delphia, (1983).

[211] Tarski, A.: A decision method for elementary algebra and geometry.,
2nd edition, Univ. Calif. Press, Berkeley (1951).

[212] Traub, J.F., Wasilkowski, G.W., Information-based
complexity. Academic Press (1988).

[213] Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge
University Press (1998).

[214] Traub, J.F., A General Theory of Optimal Algo-
rithms. Academic Press (1980).

[215] Traub, J.F., Complexity of linear programming. Op-
erations Research Letters, 1(2), pp. 59–62 (1982).

[216] Triesch, E.: A note on a Theorem of Blum, Shub, and Smale. Journal
of Complexity, 6, pp. 166-169 (1990).

[217] Tucker, J.V., Zucker, J.I.: Computable functions and semicomputable
sets on many sorted algebras. In: Abramsky, S., Gabbay, D., Maibaum,
T. (eds.), Handbook of Logic for Computer Science. Volume V, Oxford
University Press, pp. 317-523, in press.

REFERENCES 443

[218] Turing, A.: On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Mathematical Society, Series 2 42,
pp. 230-265 (1936).

[219] Vandenberghe, L., Boyd, S.: Semidefinite programming, SIAM Review
38, pp. 49–95 (1996).

[220] van der Waerden, B.L.: Algebra II. Springer, Berlin (1967).

[221] Vavasis, S.A.: Nonlinear Optimization, Complexity Issues. Oxford Uni-
versity Press (1991).

[222] Vavasis, S.A., Ye, Y.: A primal-dual interior-point method whose run-
ning time depends only on the constarint matrix. Mathematical Pro-
gramming, 74, pp. 79–120 (1996).

[223] Vazirani, Z.Z.: Approximation Algorithms. Springer (2001).

[224] Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976).

[225] Werner, J.: Optimization-Theory and Applications. Vieweg, Braun-
schweig (1984).

[226] Wetterling, W.W.E.: Definitheitsbedingungen für relative Extrema bei
Optimierungs- und Approximationsaufgaben. Numer. Math. 15, pp. 122–
136 (1970).

[227] Wolsey, L.A.: Integer Programming. Wiley, N.Y. (1988).

[228] Why does information-based complexity use the real
number model? Theoretical Computer Science, 219 (1-2), pp. 451–465,
(1999).

[229] Wright, S.: Primal-Dual Interior Point Algorithms. SIAM Publica-
tions, Philadelphia (1997).

[230] Zimmermann, H.-J.: Operations Research Methoden und Modelle.
Vieweg (1987).

[231] Zoutendijk, G.: Mathematical Programming Methods. North Holland
Publ. Company (1976).

