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Preface

Graphs are important structures in mathematics, computer science and several other
research and application areas. The concepts of graph transformation and graph
grammars started in the late 1960s and early 1970s to become of interest in pic-
ture processing and computer science. The main idea was to generalise well-known
rewriting techniques from strings and trees to graphs. Today, graph transformation
techniques are playing a central role in theoretical computer science, as well as in
several application areas, such as software engineering, concurrent and distributed
systems, and especially visual modelling techniques and model transformations.

The state of the art of graph transformation techniques was presented in the
“Handbook of Graph Grammars and Computing by Graph Transformation” in 1997,
and later, especially for algebraic graph transformation, in the EATCS monograph
“Fundamentals of Algebraic Graph Transformation” in 2006. In that monograph,
called the FAGT-book, the important application area of model transformations was
presented as a detailed example only. Since then, the algebraic approach of triple
graph grammars has been developed and is presented in this book, which allows not
only model transformation, but also model integration and synchronisation as well
as analysis techniques, including correctness, completeness, functional behaviour
and conflict resolution. Moreover, the theory of algebraic graph transformation pre-
sented in the FAGT-book is extended in this book with regard to the abstract frame-
work based on M-adhesive categories, and by multi-amalgamated transformations,
including the powerful concept of (nested) application conditions. The theory is
applied in this book to self-adaptive systems and enterprise modelling, and it is sup-
ported by various tools, extending the tool AGG, well-known from the FAGT-book.
Altogether this new book can be considered as a continuation of the FAGT-book,
leading to a new state of the art of graph and model transformation in 2014.

The material of this book was developed by the groups in Berlin and Luxem-
bourg in close cooperation with several international partners, including Gabriele
Taentzer, Karsten Ehrig, Fernando Orejas, Reiko Heckel, Andy Schiirr, Annegret
Habel, Barbara Konig, Leen Lambers, and Christoph Brandt. Many thanks to all of
them. Chap. 10 on self-adaptive systems is co-authored by Antonio Bucchiarone,
Patrizio Pelliccione, and Olga Runge.
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Finally, we thank Grzegorz Rozenberg and all other editors of the EATCS Mono-
graphs series, and those of Springer, especially Ronan Nugent, for smooth publica-
tion.

Berlin, Spring 2015 Hartmut Ehrig
Claudia Ermel

Ulrike Golas

Frank Hermann
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Transformation



3

This first part of the book provides a general introduction to graph transforma-
tion and model transformations. After a general introduction in Chap. 1, we present
in Chap. 2 graphs, typed graphs and attributed graphs in the sense of [EEPT06] and
graph transformation with application conditions. In contrast to basic application
conditions in [EEPT06] we introduce the more powerful nested application condi-
tions in the sense of [HPOS] and present the following main results in this more
general framework: Local Church—-Rosser and Parallelism Theorem, Concurrency,
Amalgamation, Embedding and Extension Theorem as well as Critical Pair Anal-
ysis and Local Confluence Theorem. All these results have been shown without
application conditions in [EEPTO06], except amalgamation, which is an important
extension in this book. These theorems are carefully motivated by running exam-
ples, but they are stated without proofs in Chap. 2, because they are special cases of
corresponding results in the general framework of M-adhesive transformation sys-
tems presented in Part II. In Chap. 3, we introduce model transformations in general
and model transformation based on graph transformation as motivated in Sect. 1.1.4.
Especially, we introduce triple graph grammars and show how they can be used to
define model transformation, model integration and model synchronisation. More-
over, the main results concerning analysis of model transformations are illustrated
by running examples, while the full theory, including proofs, is given in Part III.



Chapter 1
General Introduction

1.1 General Overview of Graph and Model Transformation

In this general introduction we give a general overview of graph and model trans-
formation and a short overview of the parts and chapters of this book. The main
questions are the following:

e What is graph transformation?

e What is the algebraic approach to graph transformation?

e What is model transformation?

e How can algebraic graph transformation support model transformation?

1.1.1 What Is Graph Transformation?

Graphs are important structures in mathematics, computer science and several other
research and application areas. A graph consists of nodes, also called vertices;
edges; and two functions assigning source and target nodes to each edge. In fact,
there are several variants of graphs, like labelled, typed, and attributed graphs, which
will be considered in this book, because they are important for different kinds of ap-
plications. Properties of graphs, like shortest paths, are studied within graph theory,
where in general the structure of the graph is not changed. Graph transformation,
in contrast, is a formal approach for structural modifications of graphs via the ap-
plication of transformation rules. A graph rule, also called production p = (L, R),
consists of a left-hand side graph L, a right-hand side graph R, and a mechanism
specifying how to replace L by R as shown schematically in Fig. 1.1.

© Springer-Verlag Berlin Heidelberg 2015 5
H. Ehrig et al., Graph and Model Transformation, Monographs in Theoretical
Computer Science. An EATCS Series, DOI 10.1007/978-3-662-47980-3 1
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Fig. 1.1 Rule-based modification of graphs

This graph replacement mechanism is different in each of the following main
graph transformation approaches presented in Volume 1 of the Handbook of Graph
Grammars and Computing by Graph Transformation [Roz97]:

Node Label Replacement Approach
Hyperedge Replacement Approach
Algebraic Approach

Logical Approach

Theory of 2-Structures

Programmed Graph Replacement Approach

In all approaches, a graph transformation system consists of a set of rules; more-
over, a graph transformation system together with a distinct start graph forms a
graph grammar.

1.1.2 What Is the Algebraic Approach to Graph Transformation?

In this book, we present the algebraic approach of graph transformation, where a
(basic) graph G = (V, E, s, t) is an algebra with base sets V (vertices), E (edges), and
operations s: E — V (source) and t: E — V (target). Graph morphisms are special
cases of algebra homomorphisms f = (fy: Vi — V,, fg: Ei — E;). This means
that a graph morphism is required to be compatible with the operations source and
target. It is important to note that graphs and graph morphisms define a category
Graphs, such that categorical constructions and results are applicable in the alge-
braic approach of graph transformation. In fact, an important concept is the gluing
construction of graphs, which corresponds to the pushout construction in the cate-
gory Graphs. Pushouts are unique up to isomorphism and have useful composition
and decomposition properties. The main conceptual idea of gluing is the following:
Given graphs G; and G, with common intersection Gy, the gluing G; of G| and
G, along Gy, written Gz = G +¢, G2, is given by the union Gz of G; and G, and
shown in the gluing diagram in Fig. 1.2, which is a pushout diagram in the category
Graphs.
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G ——— G,

]

G ————>G;

Fig. 1.2 Gluing (pushout) diagram of graphs

1L,
L @
G

Fig. 1.3 Direct graph transformation

2

O<—==
T<—>

A production p = (L « K — R) in the algebraic approach is given not only
by left- and right-hand side graphs L and R, but, in addition, by a gluing graph K
and (injective) graph morphisms from K to L and R. Given a context graph D with
morphism K — D, a direct graph transformation from a graph G to a graph H via
a production p, written G = H via p, is given by two gluing (pushout) diagrams as
shown in Fig. 1.3. This means that G is the gluing of L and D along K, and H the
gluing of R and D along K. In other words, L is replaced by R, while the context
D remains unchanged. This definition of direct graph transformation is elegant, be-
cause it is well defined (up to isomorphism) and symmetric. However, it leaves open
how to apply a production p to a given host graph G and how to calculate the host
graph H. In order to apply a production p = (L « K — R) to a graph G, we first
have to find an occurrence of L in G, given by a graph morphism m: L — G, called
match morphism. Then, we have to construct D and H in such a way that (1) and (2)
become gluing (pushout) diagrams in Fig. 1.3. Roughly spoken, D is constructed by
deleting from G all parts of L which are not in K, written G\ (L\ K). In order to avoid
that D becomes a partial graph, where some edges have no source or target, a certain
gluing condition (see Chap. 2) has to be satisfied, which makes sure that D becomes
a well-defined graph, and diagram (1) in Fig. 1.3 is a pushout diagram. This means,
given a production p = (L < K — R) and a match m: L — G satisfying the gluing
condition, we obtain in a first step the context graph D and gluing (pushout) diagram
(1) and in a second step diagram (2) by gluing (pushout) construction. The first step
corresponds to the deletion of L \ K from G and the second step to the addition of
R\ K leading to H, written G = H via p and m. This algebraic approach is called
double pushout (DPO) approach, because a direct transformation consists of two
pushouts in the category Graphs (see Fig. 1.3). An important variant of the alge-
braic approach is the single pushout (SPO) approach, where a direct transformation
is defined by a single pushout in the category PGraphs of graphs and partial graph
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morphisms. In this book, we mainly present the algebraic DPO approach of graph
transformation. Moreover, we allow replacing the category of graphs by a suitable
axiomatic category (see M-adhesive categories in Chap. 4). This leads to the con-
cept of M-adhesive transformation systems in the algebraic approach, which can be
specialised to transformation systems for different kinds of graphs, Petri nets, and
other kinds of high-level replacement systems.

1.1.3 What Is Model Transformation?

Model-driven software development (MDD) has been used successfully within the
last two decades for the generation of software systems. Especially, UML dia-
grams [UML15] are useful for modelling different views of systems on an abstract
level independently of specific implementations. In this case, models are UML di-
agrams, but in general models can be any kind of visual or textual artefacts. This
culminates in the well-known slogan “Everything is a Model” stated in [Bé&z05].
Model transformation means defining transformations between (different) models. It
plays a central role in MDD and several other applications. Model transformations in
MDD are especially used to refactor models, to translate them to intermediate mod-
els, and to generate code. According to [CHO06], we distinguish between endogenous
and exogenous transformations. Endogenous transformations take place within one
modelling language and exogenous ones are translations between different model
languages. Moreover, model-to-model transformations are usually distinguished
from model-to-text transformations. Typical examples of model-to-model transfor-
mations are the transformation S2P from statecharts to Petri nets in [EEPT06] and
CD2RDBM from class diagrams to relational database models in this book. Impor-
tant properties for most kinds of model transformations are type consistency, ter-
mination, syntactical and semantic correctness, completeness, functional behaviour
and information preservation. We will discuss this topic in the next subsection and
in Part III of this book.

1.1.4 How Can Algebraic Graph Transformation Support Model
Transformation?

In [CHO6], an overview of various model transformation approaches is given fol-
lowing object-oriented, rule-based, constraint-based and imperative concepts. In
the following, we show how algebraic graph transformation can support the defini-
tion and analysis of rule-based model transformations [Tae10]. Especially for visual
models, graph transformation is a natural choice for manipulating their underlying
graph structures. The double pushout (DPO) approach introduced above can be in-
terpreted as a kind of in-place transformation, where the source graph is transformed
step by step into the target graph. Using the DPO approach for typed graphs—with
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different type graphs for source and target domain—allows us to ensure type con-
sistency by construction [EEPTO06]. The rich theory of the DPO approach provides
support for the verification of other properties of model transformations discussed
above [EEOS8]. Even better support for the verification of these properties is given
by the triple graph grammar (TGG) approach [KS06, EEE*(07] presented in Chap. 3
and Part III of this book. A triple graph consists of a source graph, a target graph, and
a correspondence graph. The last one is mapped to the source and the target graph
in order to establish a correspondence between elements of these graphs. The TGG
approach is closely related to the DPO approach, in the way that graphs are replaced
by triple graphs and TGG rules are usually nondeleting. The main additional idea is
the following: From each TGG rule, a forward and a backward rule can be derived
automatically, which allows us to construct type-consistent and syntactically correct
forward and backward transformations between the source model and target model
domains.

1.1.5 Historical Notes

Historically, graph grammars and transformations were first studied as “web gram-
mars” by Pfalz and Rosenfeld [PR69] in order to define rule-based image recogni-
tion. Pratt [Pra71] used pair graph grammars for string-to-graph translations, similar
to the concept of the triple graph grammar approach. The historical roots of the al-
gebraic approach were presented by Ehrig, Pfender, and Schneider [EPS73]. The
first introduction to the DPO approach—including the well-known Local Church—
Rosser Theorem—was presented by Ehrig and Rosen in [ER76, Ehr79]. The first
book on graph grammars was published by Nagl [Nag79] with its main focus on the
Chomsky hierarchy, implementation and applications. The concept of graph trans-
formation has at least three different historical roots:

1. from Chomsky grammars on strings to graph grammars,
2. from term rewriting to graph rewriting,
3. from textual description to visual modelling.

Motivated by these roots, the concept of “Computing by Graph Transforma-
tion” was developed as a basic paradigm in the ESPRIT Basic Research Actions
COMPUGRAPH and APPLIGRAPH, and continued in the TMR Networks GET-
GRATS and SEGRAVIS in the period 1990-2006. The state of the art of graph
transformation and their applications of 15 years ago is documented in three vol-
umes of the “Handbook of Graph Grammars and Computing by Graph Transforma-
tion” [Roz97, EEKR99, EKMR99], where [R0z97] includes an introduction to the
algebraic SPO and DPO approaches. A first detailed part of the theory of the DPO
approach was published in the EATCS Monographs in TCS [EEPTO06], while the
newer developments are presented in this book. We present its main concepts, based
on the extended theory of M-adhesive transformation systems [EGH10], including
results for parallelism, concurrency and amalgamation [EGH™ 14]; results for sys-
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tems with nested application conditions concerning embedding, critical pairs and
local confluence [EGH*12]; characterisations of constructions based on the notion
of finitary M-adhesive categories [GBEG14]; multi-amalgamation [GHE14]; con-
currency based on permutation equivalence [HCE14]; and model transformation and
model synchronisation based on triple graph grammars [HEGO14, HEO*13].

1.2 The Chapters of This Book and the Main Results

1.2.1 Part I-Introduction to Graph and Model Transformation

Part I of this book is an introduction to graph and model transformation based on the
algebraic approach to graph grammars in the classical sense of [Ehr79] and triple
graph grammars introduced in [Sch94], respectively. After a general introduction
in Chap. 1 we present in Chap. 2 graphs, typed graphs and attributed graphs in the
sense of [EEPT06] and graph transformation with application conditions. In contrast
to basic application conditions in [EEPT06] we introduce the more powerful nested
application conditions in the sense of [HP05] and present the following main results
in this more general framework: Local Church—Rosser and Parallelism Theorem,
Concurrency, Amalgamation, Embedding and Extension Theorems as well as Criti-
cal Pair Analysis and Local Confluence Theorem. All these results have been shown
without application conditions in [EEPT06], except amalgamation, which is an im-
portant extension in this book. All these results are carefully motivated by running
examples, but they are stated without proofs in Chap. 2, because they are special
cases of corresponding results in the general framework of M-adhesive transforma-
tion systems presented in Part II. In Chap. 3, we introduce model transformations
in general and model transformation based on graph transformation as motivated
in Sect. 1.1.4. In particular, we introduce triple graph grammars and show how they
can be used to define model transformation, model integration and model synchroni-
sation. The main results concerning analysis of model transformations are illustrated
by running examples, while the full theory including proofs is given in Part III.

1.2.2 Part II- M-Adhesive Transformation Systems

The algebraic approach to graph transformation is not restricted to graphs of the
form G = (V,E, s,1), as considered in Sect. 1.1.1, but has been generalised to a
large variety of different types of graphs and other kinds of high-level structures,
such as labelled graphs, typed graphs, hypergraphs and different kinds of low and
high-level Petri nets. The extension from graphs to high-level structures was intro-
duced in [EHKP91a, EHKP91b], leading to the theory of high-level replacement
(HLR) systems. In [EHPP04] the concept of HLR systems was joined to that of
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adhesive categories of Lack and Sobocinsky in [LS04], leading to the concepts
of adhesive HLR categories used in [EEPT06] and M-adhesive categories in this
book, where all these concepts are introduced in Chap. 4. Moreover, this chapter
includes an overview of different adhesive and HLR notions and several results
concerning HLR properties, which are used in the general theories of Chapters 5
and 6 and for the construction of M-adhesive categories. In fact, M-adhesive cat-
egories and transformation systems constitute a suitable general framework for an
abstract theory of graph and model transformations, which can be instantiated to
various kinds of high-level structures, especially to those mentioned above. All the
concepts and results—introduced for graph transformation in Chap. 2—are care-
fully presented and proven in Chap. 5 for M-adhesive transformation systems and
in Chap. 6 for multi-amalgamated transformations. Finally it is shown in Chap. 6
how multi-amalgamation can be used to define the semantics of elementary Petri
nets.

1.2.3 Part III-Model Transformation Based on Triple Graph
Grammars

Following the informal introduction to model transformation in Chap. 3 of Part I, we
present the formal theory of graph transformation based on triple graph grammars
in Part III. In Chap. 7, we give the foundations of triple graph grammars leading
to model transformation and model integration. It is important to note that trans-
formation and integration are based on operational rules, which can be generated
automatically from the triple graph grammar rules. A flattening construction allows
us to show the equivalence of model transformations based on triple graph grammars
and plain graph grammars. In Chap. 8, we present several analysis techniques for
model transformations, which are supported by tools discussed in Part II. Important
properties, which can be guaranteed or analysed in Chap. 8, include correctness and
completeness, functional behaviour and information preservation, as well as con-
flict resolution and optimisation. In Chap. 9 model transformation techniques are
applied to model synchronisation, which is an important technique to keep or gain
consistency of source and target models after changing one or both of them. This
leads to unidirectional and concurrent model synchronisation, respectively.

1.2.4 Part IV-Application Domains, Case Studies and Tool Support

In Part IV we present different application domains and case studies according to
different parts of the theory given in Parts II and III, respectively. Moreover we
give an overview of different tools, which support modelling and analysis of sys-
tems using graph transformation techniques presented in this book. In Chap. 10, we
introduce self-adaptive systems and show how they can be modelled and analysed
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using graph transformation systems in Chap. 2, including a case study concerning
business processes. The application domain of enterprise modelling is considered in
Chap. 11, based on Chapters 3, 7 and 8, together with a case study on model trans-
formation between business and IT service models. Chap. 12 includes a discussion
of the following tools :

1. The Attributed Graph Grammar System AGG 2.0

2. ActiGra: Checking Consistency between Control Flow and Functional Be-
haviour

. Controlled EMF Model Transformation with EMF Henshin

4. Bidirectional EMF Model Transformation with HenshinTGG

W

1.2.5 Appendices A and B

Appendix A presents basic notions of category theory and provides a short summary
of the categorical terms used throughout this book. We introduce categories, show
how to construct them, and present some basic constructions such as pushouts and
pullbacks. In addition, we give some specific categorical results which are needed
for the main part of the book. For a more detailed introduction to category theory
see [EMS85, EM90, AHS90, EMC*01]. Appendix B provides different properties as
well as some more technical proofs and additional properties for Parts IT and III.

1.2.6 Hints for Reading This Book

For a gentle introduction to graph transformation from an application point of view
we propose starting with Chap. 2 and continuing with Chapters 10 and 11. The
general framework in Part II requires some knowledge in category theory as given
in Appendix A. For readers interested mainly in model transformation, we propose
starting with Chap. 3 and continuing with Chapters 7, 8 and 11, where some parts re-
quire basic knowledge of graph transformation presented in Chap. 2. Finally model
synchronisation in Chap. 9 should be studied after Chapters 3, 7 and 8.

The main parts of the theory for graph transformation systems without applica-
tion conditions were presented already in our first book [EEPTO06]. This first book
includes also a discussion and case study for model transformations, but the theory
based on triple graph grammars in Part III is not included in [EEPTO06].



Chapter 2
Graph Transformation

In this chapter, we introduce graphs and graph transformation. In Sect. 2.1, we de-
fine graphs, typed graphs, and typed attributed graphs with their corresponding mor-
phisms. Transformations of these graphs are introduced in Sect. 2.2, together with
application conditions and two shift properties. In Sect. 2.3, important results for
graph transformations are motivated and explained.

2.1 Graphs, Typed Graphs, and Attributed Graphs

Graphs and graph-like structures are the main basis for (visual) models. Basically, a
graph consists of nodes, also called vertices, and edges, which link two nodes. Here,
we consider graphs which may have parallel edges as well as loops. A graph mor-
phism then maps the nodes and edges of the domain graph to those of the codomain
graph such that the source and target nodes of each edge are preserved by the map-

ping.

Definition 2.1 (Graph and graph morphism). A graph G = (Vg, Eg, sg,tc) con-
sists of a set V; of nodes, a set E; of edges, and two functions sg,?; : Eg — Vi
mapping to each edge its source and target node.

56,
Given graphs G| and G», a graph morphism f : G1 = G, | E6, = Vg,
f = (fv, fe). consists of two functions fy : Vg, = Vg,, f& : o
EGl - EG2 such that SG, ofg = fVOSGl and thofE = fv otg, - fe
Graphs and graph morphisms form the category Graphs, B — vV
together with the componentwise compositions and identi- i T i
ties. A

fv

SG,

An important extension of plain graphs is the introduction of types. A type graph
defines a node type alphabet as well as an edge type alphabet, which can be used to
assign a type to each element of a graph. This typing is done by a graph morphism
into the type graph. Type graph morphisms then have to preserve the typing.

© Springer-Verlag Berlin Heidelberg 2015 13
H. Ehrig et al., Graph and Model Transformation, Monographs in Theoretical
Computer Science. An EATCS Series, DOI 10.1007/978-3-662-47980-3 2
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Fig. 2.1 Example typed graph and typed graph morphism

Definition 2.2 (Typed graph and typed graph morphism). A rype graph is a
distinguished graph T'G. Given a type graph TG, a tuple G' = (G, typeg) of a graph
G and a graph morphism typeg : G — TG is called a typed graph.

Given typed graphs G1 and GJ, a typed graph morphism

f
f: G| — G} is a graph morphism f : G| — G, such that Gl B G2
typeg, © f = typeg,. Given a type graph TG, typed graphs - pec\‘ A o
and typed graph morphisms form the category Graphsrg, e
together with the componentwise compositions and identi-
ties. A

If the typing is clear in the context, we may not explicitly mention it and consider
only the typed graph G with implicit typing typeg.

Example 2.3. To illustrate our definitions and results in the following sections, we
introduce an example describing a mutual exclusion algorithm closely following
Dijkstra’s work [Dij65] and extending our example in [EGH*14]. In our system,
we have an arbitrary number of processes P and resources R. To each resource, a
turn variable T may be connected assigning it to a process. Each process may be
idle or active and has a flag with possible values 0, 1, 2, initially set to O, which
is graphically described by no flag at all at this process. Moreover, a label crit
marks a process which has entered its critical section actually using the resource.
Thus, the type graph used for our example is TG = (Vyg, Erg, St6, Irg) With Vrg =
{P,T,R,F1,F2} and E7¢ = {active,idle, crit}, as shown in the right of Fig. 2.1.
In the left of this figure, a system S is modelled containing a resource and two idle
processes, where one of them is connected via a turn variable to the resource. There
is an injective graph morphism g : S — G extending S by another active process
with a flag and a turn to an additional resource. Both S and G are typed over TG.
In drawings of graphs, nodes are drawn by circles and edges by arrows point-
ing from the source to the target node. The actual mapping of the elements can be
concluded by positions or is conveyed by indices, if necessary. A

Attributed graphs are graphs extended by an underlying data structure given by
an algebra (see [EEPTO06]), such that nodes and edges of a graph may carry attribute
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values. For the formal definition, these attributes are represented by edges into the
corresponding data domain, which is given by a node set. An attributed graph is
based on an E-graph that has, in addition to the standard graph nodes and edges, a
set of data nodes as well as node and edge attribute edges.

Definition 2.4 (Attributed graph and attributed graph morphism). An E-graph

Gt = (VE, VS, ES ES  ES . (s9,1%)icic.va.Ea)) consists of graph nodes V¢, data
G

nodes V§, graph edges EZ, node attribute edges ES,, and edge attribute edges E¥,,

according to the following signature. G

For E-graphs G and G%, an E- Eg/(;—\‘vg
graph morphism f : GE — GE is a tu- ——
G G g 5¢ € 52
ple f = ((fv, : V;"" = V.®)ietc.p)» (fE; £ i
EJG' - EJC-;Z)jE{G,NA,EA}) such that f | Eg, < -V = < E§,
commutes with all source and target
functions.

An attributed graph G over a data signature DSIG = (S p, OPp) with attribute
value sorts S/, C S p is given by G = (G, D), where G is an E-graph and Dg is
a DSIG-algebra such that Uses; Dg. s = V.

For attributed graphs G| = (G¥, Dg,) and G, = (G%, Dg,), an attributed graph
morphism f : Gy — Gy is apair f = (fg, fp) with an E-graph morphism f; : Gf -
Gf and an algebra homomorphism fp : Dg, — Dg, such that f; v, (x) = fp (x) for
all x € Dg, 5, s € S,

Attributed graphs and attributed graph morphisms form the category AGraphs,
together with the componentwise compositions and identities. A

As for standard typed graphs, an attributed type graph defines a set of types which
can be used to assign types to the nodes and edges of an attributed graph. The typing
itself is done by an attributed graph morphism between the attributed graph and the
attributed type graph.

Definition 2.5 (Typed attributed graph and morphism). An attributed type
graph is a distinguished attributed graph ATG = (T'G, Z), where Z is the final DSIG-
algebra.

A tuple GT = (G, typeg) of an attributed graph G together with an attributed
graph morphism typeg : G — ATG is then called a typed attributed graph.

Given typed attributed graphs G = (G, typeg,) and G = (Ga, typeg,), a typed
attributed graph morphism f : G| — G7 is an attributed graph morphism f : G| —
G, such that typeg, o f = typeg,.

For a given attributed type graph ATG, typed attributed graphs and typed at-
tributed graph morphisms form the category AGraphsarg, together with the compo-
nentwise compositions and identities. A

Example 2.6. Considering the model from Ex. 2.3, we may also use attributes to
model the state of a process instead of the connected loop. In addition, a Boolean
attribute of the resource can describe if it is currently in use. Moreover, only one type
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P : process

R : resource

P : process
>

R : resource

state : String

inUse : bool

: !

( P : process W_»( F : flag W
L state = “crit” J L value = 2 J G ATG

Fig. 2.2 Example with typed attributed graphs

of flag connects P and T with an integer value of 1 or 2. The corresponding typed
attributed graphs G and ATG are shown in Fig. 2.2 in a UML class diagram-like
style. A

2.2 Graph Transformation with Application Conditions

In [EEPTO6], transformation systems based on a categorical foundation were in-
troduced which can be instantiated to various graphs and graph-like structures. In
this section, we present the implementation of this theory for transformations of
typed graphs using rules extended with application conditions. Those have been
introduced in [EEPT06], but no full theory was developed there.

Basically, a condition describes whether a graph contains a certain structure as a
subgraph.

Definition 2.7 (Graph condition). A (nested) graph condition ac over a graph P
is of the form ac = true, ac = —ac’, ac = A (a,ac”), ac = ANicrac;, or ac = Vicrac;,
where ac’ is a graph condition over P, a : P — C is a morphism, ac” is a graph
condition over C, and (ac;);c;y with an index set 7 are graph conditions over P. A

For simplicity, false abbreviates —true, 3 a abbreviates 3 (a, true), and V (a, ac)
abbreviates — 3 (a, —ac).

A graph condition is satisfied by a morphism into a graph if the required structure
exists, which can be verified by the existence of suitable morphisms.

Definition 2.8 (Satisfaction of graph conditions). Given a graph condition ac over
P, amorphism p : P — G satisfies ac, written ac D p @ c < ac’
ac = true,

p E ac, if
ac = —ac’ and p ¢ ac’, G

ac = 3 (a,ac’) and there exists an injective morphism g with g o @ = p and
qFac,
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o ac = ANiyac;and Yie I : pkE ac;,or
e ac=Virac;and i€ I : pE ac;. A

A rule is a general description of local changes that may occur in graphs. Mainly,
it consists of a deletion and a construction part, defined by the rule morphisms / and
r, respectively. In addition, an application condition restricts the application of this
rule to certain graphs.

Definition 2.9 (Rule). A rule p = (L & K 5 R, ac) consists of graphs L, K,
and R, called left-hand side, gluing, and right-hand side, respectively, two injective
morphisms / and r, and a graph condition ac over L, called application condition.

A

A transformation describes the application of a rule to a graph via a match. It can
only be applied if the match satisfies the application condition.

Definition 2.10 (Transformation). Given a rule p = (L <l— K s R, ac), a graph
G, and a morphism m : L — G, called ! p
match, such that m [ ac, a direct trans- ac D L~ K "R
formation G 2= H from G to a graph "{ (1) 1{ (2) Jﬂ
H is given by the pushouts (1) and (2).

Agsequen)c/e of Ic;irect trargsgormafio)ns 7 b e A
is called a transformation. A

Remark 2.11. Note that for the construction of pushout (1) we have to construct the
pushout complement of mol, which is only possible if the so-called gluing condition
is satisfied (see [EEPTO06]). Intuitively, gluing points are all elements in L that are
preserved in K. A dangling point is a node x in L such that m(x) in G is the source
or target of an edge with no preimage in L. In addition, identification points are
elements in L that are mapped noninjectively by m. The gluing condition is fulfilled
if all dangling and identification points are also gluing points. A

Example 2.12. Now we introduce the rules for the mutual exclusion algorithm. Its
main aim is to ensure that at any time at most one process is using each resource.
A different variant of this algorithm implemented by graph transformation can be
found in [EEPT06], where the lack of application conditions induces a much more
complex model including more types and additional rules for handling a single re-
source. Using application conditions we can simplify the models, forgo additional
edges representing the next executable step of the system, and extend the context
to an arbitrary number of resources. This example is based on and extends the one
presented in [EGH* 14].

Initially, each process is id1le and for each resource the turn variable is connected
to an arbitrary process, enabling it to use that resource. If a process P wants to use
some resource R it becomes active and points the flag F1 to R. If, in addition, it
has the turn for R, it may proceed to use it, which is described by an F2-flag to
the resource and a crit loop at the process. Otherwise, if the turn for R belongs to
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Fig. 2.3 The rules for the mutual exclusion algorithm
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setFlag
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Fig. 2.4 A rule application

another process P/, P must wait until P’ is not flagging R. At this point the process
may get the turn for R and start using it. When P has finished using R, the flag and
crit are removed, and the process is idle again. As an extension of this normal
behaviour, a resource may be disabled, denoted by eliminating its turn variable, if
there is no flag present for it. Moreover, a resource may be enabled again if all other
resources have at least two requests waiting.

The rules setFlag, setTurn, enter, and exit in Fig. 2.3 describe the standard
behaviour of the system. With setFlag, a process becomes active and sets its F1-
flag to a resource. Note that this rule has a positive application condition requiring
that the resource has a turn variable noting it as enabled. If a process has set an
F1-flag to a resource whose turn variable points to another process with no flag to
the resource, the turn variable can be assigned to the first process via setTurn.
Here, the application condition forbids the process having the turn of the resource
from flagging it. The rule enter describes that, if a process has the turn of and
points to a resource R with an F1-flag, then this flag is replaced by an F2-flag, and
aloop crit is added to the process. When the process is finished, the rule exit is
executed, deleting the loop and the flag, making the process idle again. Moreover,
with the rules disableR and enableR, a resource can be disabled or enabled if the
corresponding application conditions are fulfilled.

In the figures, the application condition true is not drawn. Application conditions
O(a,ac), with Q € {3,-~3, V}, are drawn by the morphism a marked by Qa
and combined with a drawing of ac, and conjunctions of application conditions are
marked by A between the morphisms.

Consider the rule setFlag with the match m; depicted in the left of Fig. 2.4. Note
that m; matches the process and resource of the rule setFlag to the middle process
and lower resource in G, respectively, as indicated by the small numbers, such that
my satisfies the gluing condition as well as the application condition 3 a;. This
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leads to the direct transformation G setflagm H, inserting an F1-flag from the
now active process to the resource, as shown in Fig. 2.4. The graph H; is obtained
from G by removing m;(L; — K;) and adding R| — K].

Note that we could easily have a rule setFlag without any application condition.
In particular it is enough to include in the left-hand side of the rule the turn variable
pointing to R. In contrast to that, the application condition V (bs, I c¢) of the rule
enableR cannot be removed, although it is also a positive application condition. In
particular, this condition is nested twice, which is needed to specify that every other
enabled resource has two waiting processes. A

Graph conditions can be shifted over graph morphisms into equivalent conditions
over the codomain [HP09, EHL10]. For this shift construction, all surjective over-
lappings of the codomains of the shift and condition morphisms have to be collected.

Here, we only explain this construction and give [ . a P
P A
an example; for the full definition see Def. 5.3. D & <ac

The shift construction is recursively defined. b b
For a graph condition ac = 3 (a,ac’) and > P’ i C’
a shift morphism b we construct the set # = | Shifi(b, ac) ¢ Shift(b’, ac’)

{(@,b") | (', D) jointly surjective, b’ injective,
b’ o a = a’ o b} and define Shift(b, ac) = V( p)er I (@', Shift(d’, ac’)).

Example 2.13. Consider the application condition VY (bg, 1 cg) of the rule enableR,
which is an application condition over the left-hand side of this rule. We want to
shift this condition over the morphism v shown at the top of Fig. 2.5. The first
step of the construction is shown in the upper part of Fig. 2.5, it results in the in-
termediate application condition Shift(v, V (bg, c¢)) = V (dy, Shift(vy, I ce)) A
Y (d», Shift(v,, I cg)). Since v; has to be injective and the resulting graph has to be
an overlapping of the codomains of v and be such that the diagram commutes, only
these two solutions are possible. In a second step, the second part of the application
condition has to be shifted over the two new morphisms v; and v,. The result is
shown in the lower part of Fig. 2.5, leading to the resulting application condition
Shift(v, Y (bg, dcg)) = Y (dy, ey vV ex) A Y (dy, Je3). A

Similarly to the shift construction, we can also merge a graph condition over a
graph morphism. The difference lies in different injective morphisms to be required,
with @’ being injective instead of ’. Additionally, b’ has to be a match morphism for
the merge construction, which is no restriction at all if the class of match morphisms
contains all morphisms. Again, here we only explain this construction and give an
example; for the fulll de.ﬁnition .see Def. 5.5. ac > p i C Qac’
The merge construction is recursively defined.

For a graph condition ac = 3 (a,ac’) and a b (=) v
merge morphism b we construct the set ¥/ = P C’

{(@’,b") | (@', 0) jointly surjective, a’ injective, | Merge(b, ac) “ Merge(b', ac’)
b’ match, b’ o a = a’ o b} and define Merge(b,
ac) = Vg per A (a’, Merge(d’, ac’)).
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idle idle

S=z o

Fig. 2.5 Shift of the application condition Y (bg, J c¢¢) over a morphism

Intuitively, the constructions “merge” and “shift” differ in the directions of iden-
tifications. If the merge construction yields the depicted diagram, it means that iden-
tifications along the given graph morphism b : P — P’ must subsume the identi-
fication performed via a : P — C. Further identifications along " may occur on
elements in C\a(P), if the class of matches permits those. In contrast to that, the
shift construction requires that the identifications along b be subsumed by those via
a, and it generally permits identifications along a’ on elements in P’\b(P).

Example 2.14. On the left of Fig. 2.6, the shift of the graph condition ac = (3 a :
P — C,true) along the graph morphism b : P — P’ is depicted. The shift con-
struction yields a graph condition over P’ with Shift(b,ac) = V=,
Ci,true). The four graphs C7, with corresponding graph morphisms a; : P* — C}
and b} : C — C}, are obtained by all jointly surjective pairs ensuring that the dia-
gram commutes with injective b;. In particular, C} is the pushout object of a and b,
while for the graphs C and C’ the node 4 is glued together with both nodes 1 and
2 without or with additional gluing of both edges. For the graph C/, node 4 is glued
together with node 3.

Consider the class of match morphisms given by all morphisms. On the right
of Fig. 2.6, the merge of the graph condition ac along the graph morphism b is de-
picted. The merge construction yields a graph condition over P’ with Merge(b, ac) =
graph morphism b is transferred to the graph morphisms b}’ : C — C?’. The three
graphs C/’, with corresponding graph morphisms a;: P* — C; and b): C — C}, are
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Fig. 2.6 Comparison of shift and merge construction

obtained by all jointly surjective pairs making the diagram commute with injective
a;. In this case, CJ is the pushout object of (a, b), while for the graphs C|" and CY
the node 3 is glued together with nodes (1, 2) or 4, respectively. A

Remark 2.15. In the context of model transformations based on typed attributed
graphs with inheritance in Part III, we may consider match morphisms that are in-
jective on the graph part, but may refine types and may identify data values. In this
case, the merge construction yields conditions where node types can be refined via
b’, but only on nodes that do not occur in P due to the requirement that a’ has to be
injective. This choice of match morphisms allows us to identify only graph nodes
via b that are also identified via a. But note that identifications on data values would
still be possible via b. A

The satisfaction of a graph condition ac = (da : P — C,ac’) is defined for arbi-
trary matches p: P — G. This general definition is important, because a restriction
to injective matches would be problematic for several application domains. For ex-
ample, if objects are attributed graphs and a condition contains variables, it should
be possible to evaluate some of these variables to the same value, which is forbidden
by injectivity.

More specifically, in the category AGraphs,;;, graph conditions are often at-
tributed via a term algebra with variables Top(X) and instance graphs are attributed
via a concrete data algebra A. In most cases, Top(X) is not isomorphic to A and non-
injective matches p may refine types along a type inheritance relation. This means
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value = x
size =y

C
Ainj.g:qoa=m
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value = 5 ‘
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Fig. 2.7 Nonsatisfaction of a condition for a noninjective match

that the required injective graph morphism ¢ : C — G according to Def. 2.8 does
not exist and a graph condition of the formac = (da : P — C,ac’) is never satisfied
if Top(X) is not isomorphic to A.

Example 2.16. Consider the graph condition ac = (3 a : P — C, true) shown in the
top row of Fig. 2.7. It specifies that for any node of type T (graph P) there has to be
a second node of the same type with the same value for the attribute value (graph
C). The graphs of the condition are attributed via the term algebra Top(X) with
variables x and y. In contrast to that, the instance graph AG = (G, D) is attributed
via a data algebra D using integers for the values of the attributes value and size.
For the node 1 of type T in AG, both attributes are assigned the same value, 5.
Therefore, the variables x and y in C have to be evaluated to 5 for any morphism
q : C — AG. This means that ¢ is not injective, and therefore the graph condition
ac is not satisfied by AG. A

In order to overcome this general problem for the satisfiability of graph condi-
tions for noninjective matches, we need to derive sub-conditions that handle each of
the specific cases of possible noninjective matches p : P — G. Instead of specifying
these sub-conditions explicitly, we will provide the general concept of AC schemata,
where we specify a base condition and provide a general construction from which
the induced concrete conditions can be derived. Such an AC schema consists of the
disjunction of all merges of an application condition along surjective morphisms
starting from its domain.

Definition 2.17 (AC schema). Given a condition ac over P and the set &p =
{e | e surjective,dom(e) = P} of all surjective morphisms with domain P, the AC
schema ac over P is given by ac = \/ scg, 3 (f, Merge(f, ac)). A

>G

The satisfaction of an AC schema by a graph [ __ »
morphism p only depends on the satisfaction of ac D P /
one component of the corresponding epi—-mono N, acg D > m
factorisation m o e = p, i.e., p = ac if and only
if m = Merge(e, ac) (see Fact 5.8). Although Def. 2.17 specifies that an AC schema
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Fig. 2.8 Satisfaction of an AC schema for a noninjective match

induces a possibly infinite disjunction, this means that only one of these elements
has to be constructed for checking satisfaction of the condition for a concrete match.
The epi—mono factorisation of this match yields the epimorphism that is used for the
merge construction. Intuitively, AC schemata are a way to specify a graph condition
that allows for further identifications by the match, because these identifications are
transferred recursively to the subcomponents of the graph condition. Moreover, if p
is injective, then the satisfaction of an AC schema coincides with classical satisfac-
tion, because the factorisation is trivially p = p o id.

Example 2.18. From the graph condition ac = (3 a : P — C,true) in Fig. 2.7 we
construct the AC schema ac = Vg, 3 (f, 3 (ay,true)), where all f € Ep are
surjective and represent different instantiations of the variables x and y. Moreover,
the graph condition 3 (ay, true) represents the corresponding instantiation for the
additional node, 2.

To check if the graph morphism p : P — AG satisfies ac, we construct the epi—
mono factorisation p = m o e in Fig. 2.8, where the morphism e € &Ep is used for
the merge construction. The graphs P’ and C’ share the same algebra with AG. The
graph constraint ac’ = 1 (a., true) represents an instance of the AC schema ac
that is used for checking satisfiability. The identification of the variables x and y is
transferred to this instance, and we find an injective graph morphism ¢g : C' — AG
such that g o a, = m. This means that the AC schema ac is satisfied by p, while the
underlying graph condition ac is not satisfied by p, as shown in Ex. 2.16. A

Similarly to an application condition over the left-hand side L, which is a pre-
application condition, it is also possible to define post-application conditions over
the right-hand side R of a rule. These application conditions over R can be translated
to equivalent application conditions over L (and vice versa) [HP09] using a shift
construction. Therefore, we can restrict our rules to application conditions over L.
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Fig. 2.9 Shift of the application condition from the left- to the right-hand side

As for the shift over morphisms, here we only motivate the construction and give an
example; for the complete definition see Def. 5.15.

The shift of a graph . ! - ~
condition ackg = 3 (a, Lp: ace)[> 1 K R <acr

acy) over a rule p is re- b 2) { (D a

cursively defined by L(p, L(p*, ac, ,
pr.acy) >y~ 5 Z —X

acg) = 3 (b,L(p*,acy)) > ! ! D i

if a o r has a pushout complement (1) and p* = (¥ <[— AREN X) is the derived rule

by constructing pushout (2), or L(p, acg) = false otherwise,

Example 2.19. Suppose we want to translate the application condition Y (bg, 3 c¢)
of the rule enableR to the right-hand side. Basically, this means applying the rule
to the first graph of the application condition, leading to a span which is applied
as a rule to the second graph. The result is shown in Fig. 2.9, i.e., the translated
application condition is V (bg, d cp). A

A set of rules constitutes a graph transformation system, and, combined with a
start graph, a graph grammar. The language of such a grammar contains all graphs
derivable from the start graph.

Definition 2.20 (Graph transformation system and grammar). A graph trans-
formation system GS = (P) consists of a set of rules P.
A graph grammar GG = (GS, §) consists of a graph transformation system GS
and a start graph S'.
The language L of a graph grammar GG is defined by
L ={G| 3 transformation S = G via P}. A



26 2 Graph Transformation

2.3 Results for Graph Transformations

In [EEPTO06], important results for transformation systems without application con-
ditions were proven. Here, we motivate and state the results and as far as necessary
the underlying concepts for the corresponding theorems with application conditions,
based on graphs. For the full definitions, results, and proofs in the more general set-
ting of M-adhesive categories see Chap. 5.

2.3.1 Local Church—Rosser and Parallelism Theorem

This first result is concerned with parallel and sequential independence of direct
transformations. We study under what conditions two direct transformations applied
to the same graph can be applied in arbitrary order leading to the same result. This
leads to the Local Church—Rosser Theorem. Moreover, the corresponding rules can
be applied in parallel in this case, leading to the Parallelism Theorem.

First, we define the notion of parallel and sequential independence. Two direct
transformations G = H, and G == H, are parallel independent if p; does
not delete anything p, uses and does not create or delete anything to invalidate ac;,
and vice versa.

Definition 2.21 (Parallel independence). Two direct transformations G % H,

and G % H, are parallel independent if there are morphisms dy, : L1 — D, and
dy1 : L, — Dy suchthat frod, = my, fiody = my, gr0d)s = acy,and gy0dy; | ac,.

@ 7 G 7 Dy——H,

Analogously, two direct transformations G 20 7 2 G are sequentially

independent if p; does not create something p, uses, p, does not delete something
p1 uses or creates, p; does not delete or create anything, thereby initially validating
ac,, and p, does not delete or create something invalidating ac;.

Definition 2.22 (Sequential independence). Two direct transformations G LU
H, L G are sequentially independent if there are morphisms dj» : Ry — D»
and dy; : Ly — D such that f, odyy = ny, g1 o doy = my, fi ody E acy, and

[
g odp E LR <= K| =5 L)), acy).
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81 f D2 [3) -G’

setFlag,m; exit,m’

Example 2.23. The pair H; < G » G’ of direct transformations in
Fig. 2.10 is parallel independent. The left rule application is the one already con-
sidered in Fig. 2.4, while m’ matches the process of the rule exit to the uppermost
process in G. The morphisms d), and d,; exist such that by ody; = m’, byodjp = my,
and Cpy © d12 IZ E| a.

The sequence H, setlurmm, H, setrlagm H; of direct transformations in
Fig. 2.11 is sequentially dependent. Note that m, matches the processes of the
rule setTurn to the lower processes in Hj, but in reverse order, while m3; maps
the process of the rule setFlag to the lowest process in H,. The morphisms d|,
and d,; exist such that ¢y o dby = m3, by odjp = m;, and by o dy; E Ja,, but
¢ o dip £ R(setTurn,—~ day A = 1 by). The transformations are sequentially de-
pendent, since the rule setFlag adds a second flag, which is forbidden by the appli-
cation condition — 3 a, of the rule setTurn. Note that the transformations without
application conditions would be sequentially independent. A

The idea of a parallel rule is, in case of parallel independence, to apply both rules
in parallel. For two rules p; and p,, the parallel rule p; + p, is constructed as the
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Fig. 2.10 Parallel independent transformations
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disjoint union of all three components of the rules, denoted by +. For the application
conditions we have to make sure that both single rules can be applied in any order.

l r
Definition 2.24 (Parallel rule). Given rules p; = (L; — K, AN Ry,acy) and

12 r l]+l2 ri+r
p2 = (L, «— K; — Ry, acy), the parallel rule p1 + pr = (L1 + Ly, «— K; + K, —
R, + Ry,ac) is defined by I .
the componentwise disjoint | ¢! >L- e =i
unions of the left-hand iql ikll likl
sides, gluings, and right- A G

ac Li+ Ly~ K + K R +R
hand sides including the D 1™ ! 2 ! 2
morphisms, and ac = "LzI iKzI )
Sh%ft(l:L|’aC1) A L(p1 + pa, acy >L2 5 K> - R,
Shift(ig,, R(p1,aci))) A
Shift(ir,, acz) A L(p1 + pa, Shift(ig,, R(p2, ac2))). A

Example 2.25. The parallel rule setFlag + exit is shown in the upper row of
Fig. 2.12, where we have only depicted those application conditions which are rea-
sonable in our system, while we have ignored illegal ones like turn variables point-

ing to multiple resources or processes that are simultaneously idle and active. The
setFlag+exit,m;+m’

application G H’ of this parallel rule is shown in Fig. 2.12 and
combines the effects of both rules to G leading to the graph H’, where both the upper
process became idle and the middle process became active. A
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With these notions of independence and parallel rule, we are able to formulate
the Local Church—Rosser and Parallelism Theorem. Note that this theorem is the
instantiation of Theorem 5.26 to graphs.

Theorem 2.26 (Local Church-Rosser and Parallelism Theorem). Given two

. . . pr.m o
parallel independent direct transformations G ——= H, and G ——= H,, there

is a graph G’ together with direct transformations H; % G’ and H, % G’
p1.my P2y DP2.m2 pim .
such that G —— H), —= G’ and G =—=—= H, ——= G’ are sequentially
independent.
Given two sequentially independent direct

’ pr.m G P2,my
. pism P2,y ’
transformations G —— H, —= G’, there

2, H2

is a graph H, together with direct transfor- | Hi i
mations G , H> , G’ such that P2y pimy

Gl

G % H, and G % H; are parallel in-

dependent.
pi1tp2.m

Gl
. ; . pi+pam .

and, vice versa, a direct transformation G —=——=s G’ via the parallel rule p\ + p»

can be sequentialised both ways. A

In any case of independence, there is a parallel transformation G
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2.3.2 Concurrency Theorem

In contrast to the Local Church—Rosser and Parallelism Theorem, the Concurrency
Theorem is concerned with the execution of sequentially dependent transformations.
In this case, we cannot commute subsequent direct transformations, as done for
independent transformations, nor are we able to apply the corresponding parallel
rule. Nevertheless, it is possible to apply both transformations concurrently using
a so-called E-concurrent rule and shifting the application conditions of the single
rules to an equivalent concurrent application condition.

Given an arbitrary sequence G 20, H 2%, G of direct transformations it
is possible to construct an E-concurrent rule p; *g p,. The graph E is an overlap
of the right-hand side of the first rule and the left-hand side of the second rule. The
construction of the concurrent application condition is again based on the two shift
constructions.

I
Definition 2.27 (Concurrent rule). Given rules p; = (L, — K, AN Ry, acy)

l 2
and p, = (I, < K AN Ry,ac,), a graph E with jointly surjective morphisms
e1 : Ry » Eand e, : L, — E is an E-dependency relation of p; and p, if the
pushout complements (1) of e; o r; and (2) of e; o [, exist.

acy acy

V

jp— K P 2 K, 2R,

e on L
MIJ (3) Vll ey e\ /2 2 l"z “) Juz
ac D L+—7 C, 7 >FE < 5 &) n R
x@ /
K

Given an E-dependency relation (E, eq, e;) of p; and p,, the E-concurrent rule
sjowy how,

p1*¥ep2 = (L «— K — R, ac) is constructed by pushouts (1), (2), (3), (4), and pull-
back (5), with ac = Shift(u;,ac;) A L(p*, Shift(e,, acy)) for p* = (L S C N E).

acy acp
Vo V
Ly~ ! K, il K, 2 >R,

1 L
v/
> F <

\ n zmz /
m k| C 7 ( 5 5 Cy |k ny
RAVER

G h Dy 81 ~H f D; 82 G
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P1m P2,m2 , - . .

A sequence G —— H —= G’ is called E-related if there exist h : E — H,

c1: Cy = Dy, and ¢; : C; — D5 such that 4 is injective, h o e; = ny, h o e; = my,

c1 ovy = ky, ¢ o vy = ky, and (6) and (7) are pushouts A

Example 2.28. In Fig. 2.13, the E-concurrent rule construction is depicted, leading

setTurn,m setFlag,m;s .
to the E-related sequence H, 2 H, y H3 of the direct transforma-

tions already considered in Fig. 2.11. Note that ¢; matches the processes of setTurn
to the two processes in the same order and e, matches the process of setFlag to the
upper process. Moreover, acy, = Shift(u;, acy) A L(p*, Shift(e,, acy)) is not depicted
explicitly. Leaving out invalid models like idle processes with flags, it evaluates to
true. A

p1,my P2, . .
For a sequence G ——= H =——= G’ of direct transformations we can con-

struct an E-dependency relation such that the sequence is E-related. Then the E-

. . P1*EDP2
concurrent rule p; *g p, allows us to construct a direct transformation G —= G’
. . . . P1*EP2 .
via p; =g py. Vice versa, each direct transformation G ———= G’ via the E-

concurrent rule p;*gp, can be sequentialised, leading to an E-related transformation

sequence G 2, g 2™, G of direct transformations via p1 and p;. Note that
this theorem is the instantiation of Theorem 5.30 to graphs.
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Fig. 2.13 E-concurrent rule construction
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Theorem 2.29 (Concurrency Theorem). For rules py and p, and an E-concurrent
rule py =g p, we have:
e Given an E-related transformation sequence

N
G % H % G’, there is a synthesis "

construction leading to a direct transforma- %*EPN
tion G 222 G’ via the E-concurrent rule | G ’ G’
P1 *E P2-

e Given a direct transformation G

P1I*ED2,M . . .
G’, there is an analysis construction

. . p1.m pa.m
leading to an E-related transformation sequence G ——— H —— G'.
o The synthesis and analysis constructions are inverse to each other up to isomor-

phism. A

2.3.3 Amalgamation

With amalgamation, we synchronise a number of rule applications. The idea is to
model a certain number of actions which are similar for each step with a subrule,
while corresponding complement rules describe the effects of each rule application
outside this subrule.

Definition 2.30 (Subrule and complement rule). A rule p, is a subrule of a
rule p; if there are injective morphisms s;; : Ly — Li, s;x : Ko — Kj, and
sir : Ro — R; such that diagrams (1) and (2) are pullbacks, the pushout com-
plement (1") of Ky — Ly — L, exists, and the application conditions acy and

acy are compatible, i.e., there is some application condition ac| over Lo such that

acy = Shift(sy 1, aco) A L(p?, Shift(vi, ac})), where pi = (L <— Ljy — E,) and
(3) is a pushout.

aco > Lo< o Ky L0 >R Lo< lo Ky L >Ry

sl,Ll (1) s,‘,{ ) l"ﬁ ml 1) lwl 3) l@n

ClClD Ll 1 Kl 2] ‘Rl Ll ) LIO
ac) A

A rule p, is a complement rule of p; with respect to p if p1 = po*g, p; for some
E/-dependency relation. A

Vi El

Example 2.31. We want to model some additional behaviour of the system. A pro-
cess with an F1-flag to this resource can be redirected to a different resource (rule
p7), and a resource may be disabled and marked for update if the process having its
turn is not active (rule pg). Note that we also have to adapt the type graph, adding
the update-loop for a resource.
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Fig. 2.15 The complement rules p; and pg

Rule p7 is depicted at the top of Fig. 2.14 and shows the redirection of the F1-flag
of the process. Rule pg is shown at the bottom of this figure and adds the update-
marker. In the middle row of Fig. 2.14, the subrule p, is shown which disables the
resource. This rule is actually a valid subrule of p; and pg, because the given squares
are pullbacks, in both cases the pushout complements exist, and for the application
conditions we have that ac; = Shift(s; ;, aco) A L(p}, Shift(v;, ac)) fori = 7,8.

The complement rules p; and pg are given in Fig. 2.15. Note, that the application
condition — 3 ¢7 is translated into an application condition = 3 ¢7, while we do not
need an application condition for pg. A

The construction of an amalgamated rule generalises the one of a parallel rule,
where all rules are glued together along the subrule. Here, we only give the construc-
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tion for two rules, but in general an arbitrary number of rules can be amalgamated
iteratively (see Def. 6.9).

Definition 2.32 (Amalgamated rule). Given a common subrule py of rules p; and

D2, the amalgamated rule p

0 aco Ly Ky 0 Ry
p1 69!70 p2is given by p = (L «— . \sle /\SIK /\:I'R
K -5 R, dc), where L, K, and R ac j ppa— m; K, - m; R,
are the pushouts of the left-hand | 4, > Ly b LK, — R
sides, gluings, and right-hand tu\ /ll.L ? fz,K\ /ll.K tz’k\ /fm
sides, respectively, / and 7 are the . .y Y Y
uniquely existing morphisms, and ac L= i K F "R
dc = Shift(tl,L, acy) A Shift(lZ,L,
acs). A

Example 2.33. The amalgamated rule p = p7 ®,, ps is shown in the upper rows of
Fig. 2.16. It combines the effects of p; and pg, where both rules disable the same
resource. The application of this amalgamated rule to the graph H’ from Fig. 2.12 is
shown in Fig. 2.16. Note that mm maps the left-hand side of the rule to the lower part
of H’, but in reverse order. Simultaneously, the resource is disabled, its update-flag
is set, and the F1-flag of the process is redirected. A
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Two direct transformations of the same graph are amalgamable if both matches
agree on the subrule and are independent outside. In this case, the amalgamation
theorem states that we can apply the amalgamated rule to realise the effects of both
rules in one step. Note that this theorem is the instantiation of Theorem 6.17 to
graphs for two amalgamable rules.

Theorem 2.34 (Amalgamation Theorem). For rules p, and p, with amalgamated
rule p = p1 @, p2, consider the complement rules g; of p w.r.t. p;, i.e., p = p1 *g
q1 = P2 *E, 42 Then we have:

. . . pr.mi
e Given amalgamable direct transformations G ——

G;
G and G LN G,, there is an amalgamated trans- y \
il G H

. p.n . .

formation G = H and direct transformations P
q q pramn q

G AN H and G, = H such that G == G, AN

Hand G % G, qé H are decompositions of G % H.

. . . poin

e Given an amalgamated direct transformation G = H, there are transforma-
. pim q pa.m @ .

tions G —=— G| — H and G == G, —» H such that the direct transfor-

. pi,m p2.m
mations G —— Giand G =2, G, are amalgamable.
o The synthesis and analysis constructions are inverse to each other up to isomor-
phism. A

2.3.4 Embedding and Extension Theorem

For the Embedding and Extension Theorem, we analyse under what conditions a
transformation ¢ : Gy = G, can be extended to a transformation ¢’ : Gj = G,
via an extension morphism kg : Go — G (see Fig. 2.17). The idea is to obtain an
extension diagram (1), which is defined by pushouts (2,)-(5;) for alli = 1,...,n,
where the same rules py, ..., p, are applied in the same order in 7 and .

It is important to note that this is not always possible, because there may be some
elements in G, invalidating an application condition or forbidding the deletion of
something which can still be deleted in Gy. But we are able to give a necessary and
sufficient consistency condition to allow such an extension. This result is important
for all kinds of applications where we have a large graph G, but only small subparts
of G, have to be changed by the rules p, ..., p,. In this case, we choose a suitable

small subgraph G, of G|, and construct a transformation ¢ : G = G, viapi,...,pn
first. Then we compute the derived span of this transformation, which we extend in a
second step via the inclusion kg : Go — Gj, to a transformation ¢’ : G = G, via the
same rules py, ..., p,. Since we only have to compute the small transformation from
Gy to G, and the extension of G, to G, this makes the computation of G; = G,
more efficient.

The derived span connects the first and the last graph of a transformation and
describes in one step, similarly to a rule, the changes between them. Over the derived
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span we can also define a derived application condition which becomes useful later
for the Local Confluence Theorem.

Definition 2.35 (Derived span and application condition). Given a transforma-

tiont : Gy N G, viarules py, ..., p,, the derived span der(t) is inductively defined
by

G0<f—lD1i>G1f0rt'Go%G
d d " n n
der(t) = G0<_Dg_’ G, fort: Gy = G,- 1p=G with

d
n 1

der(Go = G,-1) = (Go &pty Gn-1)
and pullback (PB)

d d
GO‘ 0 n] 'Gn | < n 'Gn

NE

Moreover, the derived application condition ac(t) is defined by
pi.mi

Shift(m,, ac) forz: Gy :> Gy
ac(t) =% ac(Gy = Gp_1) fort: Gy = Gy p:"“:> G,
AL(p;,, Shift(m,,, ac,)) with p;, = der(Gy = Gp1)
A
Example 2.36. Consider the transformation G e H 1 settum, H, setrlag,

Hj; from Figs. 2.4 and 2.11. The derived span of this transformation and its derived
application condition are shown in Fig. 2.18 and combine all changes applied in
the single transformation steps. Note that the derived application condition actually
forbids matching both resources or idle processes noninjectively. A

For the consistency condition, we need the concept of initial pushouts. This is a
categorical formalisation of boundary and context leading to the smallest pushout
over a morphism. Intuitively, the boundary contains all elements of the domain new
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Q

elements in the codomain are connected to. All these new elements and their con-
nections are then collected in the context.

For ky to be boundary-consistent, we have to find a morphism from the boundary
to the derived span, which means that no element in the boundary is deleted by
the transformation. Moreover, we need AC consistency; therefore ko has to fulfill a
summarised set of application conditions collected from all rules and shifted to Gy.
We say that kg is consistent with respect to ¢ if it is both boundary-consistent and
AC-consistent. Consistency of ky is both necessary and sufficient for embedding a
transformation ¢ : G = G, via k. Note that this theorem is the instantiation of
Theorem 5.34 to graphs.

Theorem 2.37 (Embedding and Extension Theorem). Given a transformation t :
Gy = G, and a morphism ko : Go — G, which is consistent with respect to t, there

exists an extension diagram (1) D -
over t and k. ) & / o \
Vice versa, given a transfor- B ~Go Gn
mation t : Gy = G, with an ex- al (6) lko @)) knl
tension diagram (1) and an initial G’ * ,
. ’ c c >0 Gn
pushout (6) over ky : Go — G}, L Y,

as motivated above, we have that:

1. kg is consistent with respect to t : G ;> G,.

2. There is a rule p* = (der(t), ac(t)) leading to a direct transformation G, p=> G,
3. G,, is the pushout of the context C and G, along the boundary B, i.e., G, =
G, +pC. A

Example 2.38. We embed the graph Gp = G from Fig. 2.4 into a larger context
graph G}, where an additional process has an F1-flag pointing to the lower resource.
The boundary B and context graph C are shown in the left of Fig. 2.19, where the
boundary only contains the lower resource to which the new process is connected.
Since this resource is not deleted, the extension morphism kj is boundary-consistent.
Moreover, it is AC-consistent, because the derived application condition is fulfilled.
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Fig. 2.19 The embedding and extension of G into Gj

Therefore, we have consistency and can construct the transformation G, =" G as
shown in Fig. 2.19, where G is the pushout of H3 and C along B. A

2.3.5 Critical Pairs and Local Confluence Theorem

A transformation system is called confluent if, for all transformations G = H 1
and G = H,, there is an object X together with transformations H; = X and
H> = X. Local confluence means that this property holds for all pairs of direct

p1.my G 2,1M2
H, H, H,
\* * /
ism concerning the appli- X
cation of a rule, we have

global determinism for confluent transformation systems. Global determinism
means that, for each pair of terminating transformations G S Hand G = H’

transformations G _’:l__i> H,and G % H,.
Confluence is an impor-
tant property of a transfor-

*/
mation system, because, in H,

spite of local nondetermin- * % /

G
X
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with the same source object, the target objects H and H’ are equal or isomorphic. A
transformation G = H is called terminating if no rule is applicable to H anymore.
This means that each transformation sequence terminates after a finite number of
steps.

The Local Church—Rosser Theorem shows that, for two parallel independent di-
rect transformations G —e—sy H ; and G LEUEN H,, there is a graph G’ together
with direct transformations H, p_——z_”;z::, G’ and H, 2—_@: G’. This means that we can
apply the rules p; and p, with given matches in an arbitrary order. If each pair of
rules is parallel independent for all possible matches, then it can be shown that the
corresponding transformation system is confluent.

In the following, we discuss local confluence for the general case in which

G 2% H and G £ H, are not necessarily parallel independent. According
to a general result for rewriting systems, it is sufficient to consider local confluence,

provided that the transformation system is terminating [PIu95].

The main idea is to study critical pairs. For a pair P &4 g B2y p, of di-

rect transformations to constitute a critical pair, the matches o, and o0, are allowed
to violate the application conditions, while they induce new ones that have to be
respected by a parallel dependent extension of the critical pair. These induced ap-
plication conditions make sure that the extension respects the application conditions
of the given rules and that there is indeed a conflict.

Definition 2.39 (Critical pair). Given rules p; = (L; <— K, —5 Ry,ac;) and

12 r . P1,01 2,02 . .
p2 = (Lp «— Ky — Ry, acy), a pair Py —— K === P, of direct transformations

without application conditions is a critical pair (for transformations with applica-
tion conditions) if (01, 07) are jointly surjective and there exists an extension of the
pair via an injective morphism m : K — G such that m |= acg = ack A ac$, with

acq acy

VoV

Ry +— K h 1, Ly+—2" K> 2—R,

2] 22
t 1l ull o1 0 luz lfz

Pl Wi Nl Vi ~K+ V2 N2 W2 'P2
acg
extension application condition: acIE( = Shift(o;, acy) A Shift(o,, ac,) and

conflict inducing application condition: acg = =(ac,, A acg,), with

if Az :v1 02z =0y then ac,, = L(pj], Shift(w o z1,ac)) else ac,, = false,
with p? = (K <= Ny =5 Py)

if 4z : vy 025 = 0 then ac,, = L(p;3, Shift(w; o 2, ac)) else ac,, = false,

with p} = (K &= Ny —> Py) A
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Fig. 2.20 The critical pairs of setFlag and disableR

Example 2.40. In Fig. 2.20, the two critical pairs of the rules setFlag and
disableR are shown, together with the application conditions ack and ack . Both
critical pairs overlap the resources of the two rules, leading to a dependency, since
activating the idle process by setflag forbids the disabling of the resource by
disableR. Note, that acg and aci, evaluate to true, meaning that whenever we find
amatch from K or K’ respecting the application condition ack or ac%,, respectively,

we definitely have a conflict of this sort. A

Every pair of parallel dependent direct transformations is an extension of a criti-
cal pair. Note that this theorem is the instantiation of Theorem 5.41 to graphs.

Theorem 2.41 (Completeness Theorem). For each pair of parallel dependent

P2,y

. . pr,m
direct transformations H) ——= G H, o ron
. .. . P1,01 P2,02
there is a critical pair Py —— K — P> P K P,

with induced application condition acg and an l ) ml 2) i
injective morphism m : K — G with m | acg H &
leading to extension diagrams (1) and (2). A prm P22

In order to show local confluence it is sufficient to show strict AC confluence of
all its critical pairs. As discussed above, confluence of a critical pair P} & K = P,

means the existence of an object K’ together with transformations P; = K’ and
P, — K’. Strictness is a technical condition which means, intuitively, that the parts
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which are preserved by both transformations of the

e . . . P1,01 D2,02
critical pair are also preserved in the common object / \

K’. For strict AC confluence of a critical pair, the trans-

formations of the strict solution of the critical pair must \* * /
be extendable to G, which means that each application
condition of both transformations must be satisfied in
the bigger context.

Definition 2.42 (Strict AC confluence). A critical pair P; e——e K 2224 P, with
induced application conditions ack is strictly AC confluent if it is

1. confluent without application conditions, i.e., there are transformations P, = K’
and P, — K’ eventually disregarding the application conditions
2. strict, i.e., given derived spans der(K; === P;) = (K «— N; —> P;) and

Vi Wis2

der(P; = K') = (P; «— N;j;p — K’) for i = 1,2 and pullback (1), there exist
morphisms z3, z4 such that diagrams (2), (3), and (4) commute, and

3.fort; : K ﬁ'—u_'> P; = K’ it holds that acg = ac(t;) for i = 1,2, where ac(t;) is

the derived application condition of .

o
/\ \
\/ /
5

A

Using this notion of strict AC confluence we can state a sufficient condition for a
transformation system to be locally confluent. Note that this theorem is the instanti-
ation of Theorem 5.44 to graphs.

Theorem 2.43 (Local Confluence Theorem). A transformation system is locally
confluent if all its critical pairs are strictly AC confluent. A

Example 2.44. The critical pairs in Ex. 2.40 as well as all other critical pairs of
our mutual exclusion example are strictly confluent. Therefore, the transformation
system is locally confluent. Although it is not terminating, it is also confluent. A



Chapter 3
Model Transformation

This chapter is an introduction to model transformation, which is a key compo-
nent of model-driven development. Sect. 3.1 describes the relevance and concepts
of model transformations in general. Using the notions of typed attributed graphs
in Chap. 2, Sect. 3.2 presents the main aspects of model transformations based on
graph transformation on a general level. As a specific instantiation of these con-
cepts, Sect. 3.3 introduces triple graph grammars (TGGs) as a powerful technique
for bidirectional model transformations. Sect. 3.3 provides an overview of how these
concepts are used as a foundation for Part III. This chapter is based on previous
work [Erm09, EE10, HHK10, EEE*07, HEGO14].

3.1 Introduction to Model Transformation

Model transformations are a key concept for modular and distributed model-driven
development (MDD). They are used thoroughly for model optimisation and other
forms of model evolution. Moreover, model transformations are used to map models
between different domains in order to perform code generation or to apply analysis
techniques.

In this multi-domain context, modelling languages are the primary way in which
system developers communicate and design systems. Many domain-specific mod-
elling languages (DSMLs) are visual modelling languages (that contain also textual
elements) providing a highly specialised set of domain concepts [CSWO08]. A visual
syntax presents a model in a diagrammatical (two-dimensional) way and is often
suitable for presenting models in an intuitive and understandable way.

In the MDD context, DSMLs are proposed whose type systems formalise the ap-
plication structure, behaviour, and requirements within particular domains. DSMLs
are described using meta models, which define the relationships among concepts
in a domain by class diagrams and specify language properties by constraints using
OCL [Obj14b] associated with these domain concepts. Graphical modelling features
enable the integration of concepts that are commonly used by domain experts. This

© Springer-Verlag Berlin Heidelberg 2015 43
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Fig. 3.1 Relations between meta model levels

helps flatten learning curves, eases the accessibility to a broader range of domain
experts, such as system engineers and experienced software architects, and helps
them to ensure that software systems meet user needs. A meta model describes the
various kinds of model elements of a DSML, and the way they are arranged, related,
and constrained. Notably, meta models are notated as class diagrams and hence are
visual models. Meta model elements provide a typing scheme for model elements.
This typing is expressed by the meta relation between a model element and its meta
element (from the meta model). A model conforms to a meta model if each model el-
ement has its meta element defined within the meta model, and the given constraints
are satisfied.

The growing number of meta models has emphasised the need for an integration
framework for all available meta models by providing a new item, the meta meta
model, dedicated to the definition of meta models. In the same way models are
defined in conformance with their meta model, meta models are defined by means
of the meta meta model language. An overview of different levels of meta modelling
is given in Fig. 3.1, where the sample model is a Petri net, the meta model is a
class diagram defining the structural knowledge of Petri net concepts (Place, tokens,
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Fig. 3.2 Model transformations in model-driven development

Transition and arc), and the meta meta model shows the key model elements for
modelling class diagrams (the meta model language).

Model transformations are the links between the artefacts of MDD. Different
kinds of model transformations are proposed that cover different application do-
mains and different steps of a sound software production process, including busi-
ness modelling, requirements engineering, conceptual modelling and model-based
code generation techniques. According to the taxonomy of model transformations
by Mens et. al. [MGO6], they can be categorised in two dimensions, as depicted in
Fig. 3.2.

First of all, exogeneous model transformations take as input a model of one lan-
guage and produce as output a model of another language, while input and output
models of an endogeneous model transformations belong to the same language. The
second dimension separates horizontal model transformations that do not change
the level of abstraction from vertical model transformations, which explicitly do
change the level of abstraction. Examples of model transformations in these dimen-
sions as listed in [MGO6] are: model refactoring (endogeneous, horizontal), formal
model refinement (exogeneous, horizontal), language migration (endogeneous, ver-
tical) and code generation (exogeneous, vertical).

In MDD, model transformations are (partially) automated. This automation re-
duces the required amount of manual work for software development, such that the
software engineering process is supposed to become less error-prone and more ef-
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Fig. 3.3 Basic principle of model transformations (from [CH06])

ficient. The issue is “the model is the code” rather than “the code is the model”
[PMO7]. The automated transformation process is also referred to as “correct-by-
construction”, as opposed to “construct-by-correction” [Sch06].

The vision of MDD proposes the following principles for the software devel-

opment process to reduce the complexity in designing and implementing modern
software [SelO8]:

Modelling at different abstraction levels

MDD promotes the extensive and systematic use of models from a very early
phase of the design cycle. System requirements and design are captured by
high-level (often visual) engineering models (using popular and standardised
modelling languages like UML [UMLI15], XML Schemes [WWW04], SysML
[Sys14] or BPMN [OMG14]) or by Domain-Specific Languages (DSLs) whose
concepts closely reflect the concepts of the problem domain at a suitable abstrac-
tion level abstracting away technological implementation detail. For the design
of DSLs in the context of MDD, meta modelling is used [CSWO0S8]. A meta model
is a model of the concepts expressed by a modelling language.

Automating model transformations

In MDD, the key idea is to automate model transformations. This includes (but is
not limited to) the ability to generate code, i.e., to transform models expressing
high-level domain-specific concepts into equivalent programs (e.g., Java code,
XML documents, XML schemes, etc.). Fig. 3.3 shows the basic principle under-
lying model transformations [CHO6].

Source as well as target models have to conform to their respective meta models.
Therefore, the definition of the transformation has to be compatible with the meta
models involved. The transformation definition is applied to a concrete model us-
ing a transformation engine. Model transformations between different modelling
languages are called exogenous. For certain model transformations (e.g., model
refactoring), the source and target meta models may be the same. Such model
transformations are called endogenous.
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A model-to-model transformation may also have the purpose of utilising anal-
ysis techniques available for the target domain. The formal analysis of design
models can be carried out by generating appropriate mathematical models using
automated model transformations. Problems detected by automated analysis can
be fixed by model refinement prior to investing in manual coding for implemen-
tation.
For executable modelling languages, automated model transformations can also
be used to simulate high-level models in order to validate the suitability of the
modelled system behaviour in an early development phase.

e Using tools that adhere to open industry standards
Model-Driven Architecture (MDA) [Sel08] is OMG’s initiative to support MDD
with a set of open industry standards, including the ability to exchange models
between different tools. Standards allow tool builders to focus on their specific
area of expertise. The basic OMG standards refer to modelling languages (UML
[UML15], MOF [MOF15]) and model transform definitions (QVT [QVT15]).

The promises of MDD are manifold [VSB*06]: development time will be re-
duced; the model becomes “timeless” and is never outdated since it changes with
the domain and not with the technology; the generated code is correct if the
model is; documentation may be generated from the model and is thus consistent
with the code (which is also generated); systems are easier adaptable (platform-
independent); tasks can be easier divided in complex projects; analysis and valida-
tion on model basis lead to earlier error detection before code is generated.

Model transformations appear in several contexts, e.g., in the various facets of
model-driven architecture [MDA15] encompassing model refinement and interop-
erability of system components. The involved languages can be closely related or
they can be more heterogeneous, e.g., in the special case of model refactoring, the
source language and the target language are the same. From a general point of view,
a model transformation MT : Ly = L7 transforms models from the (domain-
specific) source language L to models of the target language L.

In the following, we list main challenges for model transformations as presented
in [HHK10]. They concern functional as well as nonfunctional aspects. Some of
these challenges were initially presented by Schiirr et. al. [SKO8] for the specific
scope of model transformation approaches based on triple graph grammars (TGGs).

At first, we consider the dimension of functional aspects, which concern the re-
liability of the produced results. Depending on the concrete application of a model
transformation MT : Lg = Lr, some of the following properties may have to be
ensured.

1. Syntactical Correctness: For each model Mg € Lg that is transformed by MT
the resulting model M7 has to be syntactically correct, i.e., My € Ly.

2. Semantical Correctness: The semantics of each model Mg € Lg that is trans-
formed by MT has to be preserved or reflected, respectively.

3. Completeness: The model transformation M7 can be performed on each model
Mg € Lg. Additionally, it can be required that MT reaches all models My € L.
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4. Functional Behaviour: For each source model Mg € Lg, the model transforma-
tion MT will always terminate and lead to the same resulting target model M.

In the second dimension, we treat nonfunctional aspects. They concern usability
and applicability properties of model transformations. Depending on the applica-
tion domain, some of the following challenges may be required in addition to the
functional ones listed above.

1. Efficiency: Model transformations should have polynomial space and time com-
plexity. Furthermore, there may be further time constraints that need to be re-
spected, depending on the application domain and the intended way of use.

2. Intuitive specification: The specification of model transformations can be per-
formed based on patterns that describe how model fragments in a source model
correspond to model fragments in a target model. If the source (or target) lan-
guage is a visual language, then the components of the model transformation can
be visualised using the concrete syntax of the visual language.

3. Maintainability: Extensions and modifications of a model transformation should
only require little effort. Side effects of local changes should be handled and
analysed automatically.

4. Expressiveness: Special control conditions and constructs have to be available in
order to handle more complex models, which e.g., contain substructures with a
partial ordering or hierarchies.

5. Bidirectional model transformations: The specification of a model transforma-
tion should provide the basis for both a model transformation from the source to
the target language and a model transformation in the reverse direction.

The power of bidirectional model transformations is based on the simultaneous
support of transformations in both forward and backward direction. This way, mod-
els can be maintained in two repositories—one for diagrams in the source domain
and one for diagrams in the target domain. The modellers can work in separate
teams, and the specified model transformations are used to support the interchange
between these groups and their models. In particular, a modeller can generate mod-
els in one domain from models in another domain using the concepts for model
transformation in Chap. 7 and he can validate and ensure syntactical correctness
and completeness using the results and analysis techniques in Chap. 8.

In Sects. 3.2 and 3.3, we introduce suitable techniques for the specification of
model transformations based on graph transformation. Part III presents the for-
mal techniques for model transformations based on triple graph grammars (TGGs),
which provide validated and verified capabilities for a wide range of the challenges
listed above.

3.2 Model Transformation by Graph Transformation

While meta modelling provides a declarative approach to DSML definition, gram-
mars are more constructive, i.e., closer to the implementation. Due to their appeal-
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Table 3.1 Mapping meta modelling notions to graph terminology

Meta modelling notion ~ Graph terminology

Model Type graph TG

Inheritance Node type inheritance in TG

Class Node in type graph TG

Association Edge in type graph TG

Multiplicities Node and edge type multiplicities in TG

Class attributes Attribute types belonging to node types

Model instance TG-typed, attributed graph G with typing morphism G —» TG

Object Node in TG-typed graph G

Reference Edge in TG-typed graph G that must not violate certain multiplicity
constraints.

ing visual form, graph grammars can directly be used as high-level visual spec-
ification mechanism for DSMLs [BEALT04]. Defining the abstract syntax of vi-
sual models as graphs, a graph grammar defines directly the DSML grammar.
The induced graph language determines the corresponding DSML. Visual lan-
guage parsers can be immediately deduced from such a graph grammar. Further-
more, abstract syntax graphs are also the starting point for visual modelling of
model behaviour [Erm06, dLVAO4, Var02, HKTO02] and model transformations
[MVVKO05, MVDJO05, SAL*03, Sch94].

Meta modelling is closely related to graph typing, where a type graph takes the
role of the meta model, and an instance graph, typed over the type graph, corre-
sponds to a model conforming to a meta model. In order to better map meta mod-
elling concepts to typed, attributed graphs, the graph transformation theory has been
enhanced in [BEdLT04] with node type inheritance facilities, and it has been shown
how typed graph transformation with inheritance can be flattened to simple typed
graph transformation. Meta modelling and graph transformation can be integrated
by identifying symbol classes with node types and associations with edge types.

Table 3.1 shows a comparison of main meta modelling notions to their coun-
terparts in the terminology of typed graphs. Classes in a meta model correspond
to nodes in a type graph. Associations between classes can be seen as edges in a
type graph. Class inheritance and multiplicity constraints of association ends can
be defined in the type graph by node type inheritance and graph constraints for
specifying edge multiplicities. Objects as instantiations of classes of a meta model
are comparable to nodes in a graph which is typed over a type graph. Objects can
be linked to each other by setting reference values. Such references correspond to
edges in a typed attributed graph. The notion of being a model conforming to a meta
model can be adequately formalised for typed graphs by the existence of a typing
morphism from an instance graph to the type graph. OCL constraints can be trans-
lated to graph constraints or to graph transformation rules (syntax rules), as has been
shown in [WTEKO08, BKPPT00, AHRT14]. Thus, declarative as well as constructive
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Fig. 3.4 Syntax rule adding a Petri net arc

elements may be used for DSML definition based on typed graph transformation.
An example for a rule from the syntax grammar for Petri nets is shown in Fig. 3.4,
where an arc is inserted between a place node and a transition node. Note that the
graphs in this rule conform to the meta model (are typed over the type graph) shown
in the center of Fig. 3.1.

The classical approach to model

incs incr

transformation based on typed, attri- | 7GSC TGST >TGT
buted graph transformation [EEOS,

Erm09] does not require any spe- fypecs bPecy bypeer
cific structuring techniques or restric- G5 = =g, GT

tions on transformation rules. The
type graph is given by an integrated
type graph TGS consisting of the type graphs for the source and target language,
and, additionally, reference nodes with arcs mapping source elements to target ele-
ments. It constitutes a single graph, such that the division in source and target com-
ponents is not explicit. We express model transformations directly by 7G> -typed
graph transformation rules L « K — R where basically L contains relevant source
model elements and some context, while R \ K basically represents target model
elements that correspond to the relevant source model elements. The model trans-
formation starts with graph G* typed over TG®. As TG is a subgraph of TG®”, G°
is also typed over TG3T. During the model transformation process, the intermediate
graphs G5 = Gy;...;G, are all typed over TG . To delete all items in G, which
are not typed over TG”, we can construct a restriction (a pullback in the category
Graphsarg), which deletes all those items in one step. In addition to normal graph
transformation rules, we also use rule schemes to express parallel transformation
steps of arbitrary many similar model element patterns.

Remark 3.1 (Notation for domain components). In the context of model transforma-
tions, we always differentiate between source and target domains. For this reason,
we denote the specific domain of graphs and graph morphisms in superscript (e.g.,
source graph G¥). Thereby, that we can place all further information as index (e.g.,
the first graph of a sequence Gy). A

The following general concept of model transformations integrates the described
constructions and defines special properties that are relevant for model transforma-
tions. By 157 (G), we denote the retyping of G that is initially typed over 7G> to a
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model that is typed over the integrated type graph TG3”. Furthermore, " <(G) spec-
ifies a restriction of G typed over TG®” to a model G’ typed over TG” only, which
can be constructed as pullback of G — TG®T « TG”. The execution of the graph
transformation systems may be controlled via a control condition restricting the pos-
sible transformations. Such conditions will be explained exemplarily based on triple
graph grammars thereafter.

Definition 3.2 (General concept of model transformations based on graph
transformation). Let GRAPHS be the category of plain graphs Graphs or triple
graphs TrGraphs.

1. Given a source language Ls € GRAPHS,;s and a target language Lr C
GRAPHS 1, a model transformation MT : L(TG®) = L(TG") from L(TG")
to L(TG") is given by MT = (L(TG%), LITG"), TG , ts, tr, GTS) where TG"" is
an integrated type graph with injective type graph morphisms (TG %5 TGST 2
TGT), and GTS a graph transformation system with nondeleting rules R typed
over TG®T and a control condition for GTS-transformations. Moreover, a con-
sistency relation MT¢ C L(TGY) x L(TG") for MT defines all consistent pairs
(G5, GT) of source and target models.

2. A model transformation sequence via MT, in short, MT-sequence, is given by
(G%,G| = G,,G"), where G° € L(TG%),G" € L(TG") and G| =" G, is a
GTS-transformation satisfying the control condition of GTS with G; = 5 (G®)
and GT = 7<(G,), as defined above.

3. The model transformation relation MTg C L(TG®) x L(TG") defined by MT is
given by: (G5,G") € MTy & I MT — sequence (G°,G, =" G,,G").

4. MT : L(TG%) = L(TG) is called

a. syntactically correct, if for all (G5,G”) € MTk we have G5 € L5, G € Ly
and (G5,GT) e MT¢,

b. total, if for each G5 € L there is a pair (G%,G") € MTk,

c. surjective, if for each G € Ly there is a pair (G5, G") € MTk,

d. complete, if M Tk is total and surjective,

e. functional, if MTY, is right unique. A

Most examples of model transformations based on plain graph transformation
considered in the literature adhere to this general concept. A typical example is
the model transformation SC2PN from state charts to Petri nets (see Chapter 14
of [EEPTO06] with restriction construction instead of deleting rules): The control
condition is given by layers, where the rules with negative application conditions
are applied as long as possible in one layer, and suitable termination criteria have to
be satisfied before switching to the next layer. But also model transformations based
on triple rules adhere to this concept.

We implemented this approach in our tool AGG [AGG14, BEL*10, RET12] (see
also Chap. 12), supporting the definition of type graphs, typed attributed graph rules
and constraints. Further graph transformation systems for domain-specific model
transformations are VIATRA2 [BNS*05] and the Graph Rewriting and Transfor-
mation Language (GReAT) [SAL*03]. In VIATRAZ2, developers define graph pat-



52 3 Model Transformation

terns and graph transformation rules as components using a textual domain-specific
programming language. The components are assembled into complex model trans-
formations by abstract state machine rules. In GReAT, meta models of the source
and target models are used to establish the vocabulary of L and R and to ensure that
the transformation produces a well-formed target model.

The classical approach on graph transformation-based model transformation has
been extended to support the transformation of EMF models in EcLipsk, thus bridg-
ing the gap between MDD tools and those for graph transformation. The EcLipsE
Modeling Framework (EMF) [EMF14] has evolved to one of the standard technolo-
gies to define modelling languages. EMF is based on MOF [MOF15] and provides
a (meta) modelling and code generation framework for EcLipse applications based
on structured data models. Containment relations, i.e., aggregations, define an own-
ership relation between objects. Thereby, they induce a tree structure in instance
models, implying some constraints that must be ensured at runtime. As semantical
constraints for containment edges, the MOF specification states that “an object may
have at most one container”, and that “cyclic containment is invalid” .

A transformation framework for EMF models is presented in [ABJ* 10, BEK*06],
where containment edges are modelled as graph edges of a special containment
type. The problem is guaranteeing that EMF model transformations defined by
graph transformation always satisfy the EMF containment constraints. In [BET12],
these constraints are translated to special kinds of EMF model transformation rules
such that their application leads to consistent transformation results only. EMF
model transformation is supported by our tool Henshin (formerly called EMF Tiger)
[BEL*10, ABJ*10] and its extension HenshinTGG for handling model transforma-
tions based on triple graph grammars, which are introduced in the next section. The
tools AGG, Henshin and HenshinTGG are described in more detail in Chap. 12.

3.3 Introduction to Triple Graph Grammars

Triple graph grammars (TGGs) are a well established concept for the specifica-
tion and execution of bidirectional model transformations within model-driven soft-
ware engineering. They form a specific case of model transformation based on
graph transformation described in Sect. 3.2 before. Since their introduction by
Schiirr [Sch94], TGGs have been applied in several case studies and they have
shown a convenient combination of formal and intuitive specification abilities. In
addition to having the general advantages of bidirectional model transformations,
TGGs simplify the design of model transformations. A single set of triple rules
is sufficient to generate the operational rules for the forward and backward model
transformations. Thereby, TGGs enhance usability as well as consistency in MDD.
Furthermore, model transformations based on TGGs preserve a given source model
by creating a separate target model together with a correspondence structure. This
way, the given models are not modified, which is especially important for database-
driven model repositories. Moreover, TGGs specify model transformations based



3.3 Introduction to Triple Graph Grammars 53

on the abstract syntax of DSLs and are therefore not restricted to specific types of
modelling languages.

The key idea for the execution of model transformations via TGGs is to preserve
the given source model and to add the missing target and correspondence elements
in separate but connected components. For this reason, the transformation rules add
new structures and do not necessarily need to delete existing elements. The resulting
target model is obtained by type restriction. Indeed, nondeleting triple rules are suf-
ficient for many case studies. However, in general it may be very difficult, if not im-
possible, to specify a model transformation whose validity depends on some global
properties of the given models. An example may be automata minimisation, where
we transform a finite automaton into an automaton with the same behaviour, but with
the smallest possible set of states. In this case, the transformation should translate
any two states with the same behaviour into a single state. However, knowing if two
states have the same behaviour is a global property of the given automaton. Never-
theless, a possible way of simplifying the model transformation is performing some
additional preprocessing of the source model or postprocessing of the target model.
For this reason and as it is common praxis for TGGs, we consider transformation
rules that are nondeleting.

Triple graph grammars [Sch94] are a well-known approach for bidirectional
model transformations. In [KS06], the basic concepts of triple graph grammars are
formalised in a set-theoretical way, which is generalised and extended in [EEE*(07]
to typed attributed graphs. In this section, we present triple graph transformation
systems with application conditions. They form an instantiation of M-adhesive
transformation systems defined in Chap. 5, as we show in Chap. 7. We can use
any kind of graph inside triple graphs, as long as they form an M-adhesive category
(see Chap. 4). This means that we can have triple graphs (or, better, triple struc-
tures) consisting of many kinds of graphical structures. In this book, we use typed
attributed triple graphs.

Definition 3.3 (Triple graph). A triple graph G = (G° &¢ G¢ %5 GT) consists of
graphs GS, G€, and G7, called source, correspondence, and target graphs, and two
graph morphisms s¢ and #; mapping the correspondence to the source and target
graphs. A triple graph morphism m = (mgs, mc,

mr) : G — H matches the single graphs and | G = (G5 <%— G —%= GT)

preserves the correspondence part. Formally, " Sl Cl Tl
a triple graph morphism m consists of graph " " "
morphisms ms: Gs — Hs, mc: Gc — He | R=(H® <,—H¢ THT)

and my: Gt — Hy such that mgosg = syomc
and mr o tg = ty o mc.

A typed triple graph (G, types) is given by a typing morphism type;: G = TG
from the triple graph G into a given triple type graph TG. A typed triple graph
morphism f : (G1,typeg,) — (G2, typeg,) is a triple graph morphism f such that
npeg, o f = typeg, - A

Triple graphs and typed triple graphs, together with the componentwise com-
positions and identities, form the categories TrGraphs and TrGraphs;;, where
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Fig. 3.5 Triple type graph for CD2RDBM

Graphs is the category of graphs (see Def. 2.1). Using the category of attributed
graphs AGraphs (see Def. 2.4) for the triple components, we derive the categories
ATrGraphs and ATrGraphs,;; of (typed) attributed triple graphs.

Definition 3.4 (Category of typed attributed triple graphs). Typed attributed
triple graphs and typed attributed triple graph morphisms form the category
ATrGraphs, . A

Definition 3.5 (Base categories of triple graphs). Triple graphs and triple graph
morphisms form the category TrGraphs. Analogously, category ATrGraphs of at-
tributed triple graphs is given by attributed triple graphs and attributed triple graph
morphims. Moreover, given a triple graph 7G in TrGraphs, we obtain category
TrGraphs;; consisting of typed triple graphs typed over 7G. A

Example 3.6 (Triple type graph). Fig. 3.5 shows the triple type graph 7G of the
triple graph grammar 7GG for the running example of a model transformation
CD2RDBM from class diagrams to database models, which is based on the ex-
ample presented in [EEE*07, HEGO14]. The source component TGS defines the
structure of class diagrams while the target component TG” specifies the structure
of relational database models. Classes in the source component (node type Class)
correspond to tables in the target component, attributes correspond to columns, and
associations to foreign keys. Throughout the example, elements are arranged left,
center, and right according to the component types source, correspondence and tar-
get. Attributes of structural nodes and edges are depicted within their containing
structural nodes and edges. Note that the correspondence component is important
for the relation of the source elements to their aligned target elements. For this rea-
son, it is used in practical scenarios to navigate via the traceability links from source
structures to target structures and vice versa. The morphisms between the three com-
ponents are illustrated by dashed arrows. The depicted multiplicity constraints are
ensured by the triple rules of the grammar shown in Fig. 3.8. Moreover, the source
language contains only those class diagrams in which each class hierarchy has at
most one primary attribute. A
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Fig. 3.6 Triple graph instance for CD2RDBM

Example 3.7 (Triple graph). Fig. 3.6 shows an instance triple graph G = (G5 «
G — G7) that is typed over TG from Ex. 3.6. The lower part of the figure shows
the triple graph G that specifies the abstract syntax of the class diagram, the database
model and the correspondence links. The corresponding visualisation is provided
at the top of Fig. 3.6, where foreign keys are marked with FK and primary keys
are marked with PK. The triple graph specifies a company (class Company and ta-
ble Company) and its employees (class Person and table Person) as well as its
customers (class Customer and table Person). Customers have a dedicated ID (at-
tribute cust_id and column cust_id). A

Triple rules construct the source, correspondence, and target parts in one step.
Each triple rule specifies a pattern of consistent corresponding fragments in its re-
quired context. In Sect. 7.3, we derive the operational rules for model transformation
from these triple rules.
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Fig. 3.7 Triple transformation step
A triple rule tr is given by an M-morphism
tr = (trS,r, tr") : L — R (injective on the graph L=(5 <X [¢ T
component and an isomorphism on the data part), trl " i lrci trT\lz

and without loss of generality we assume #r to be
an inclusion. Since triple rules are nondeleting,
there is no need for the more general concept of

R=(R® <—R¢ —=R")
SR R

a span of morphisms for a rule p = (L &L K2 R)in an M-adhesive transformation
system (see Chap. 5). The morphism / can be chosen as [ = id and we omit the
intermediate object K.

Definition 3.8 (Triple rule and transformation). A triple rule tr = (tr : L —
R, ac) consists of triple graphs L and R, an M-morphism ¢r : L — R, and an appli-
cation condition ac over L. Given a triple graph G, a triple rule tr = (tr,ac) and a

match m: L — G with m  ac, a direct triple transformation G 2, H of G via
tr and m is given by pushout (1) in Fig. 3.7, which is constructed as the componen-
twise pushouts in the S-, C-, and T-components, where the morphisms sy and ty
are induced by the pushout of the correspondence component. In addition to H, we
obtain co-match n : R — H and transformation inclusion f : G — H. A direct
transformation is also called triple graph transformation (TGT) step. A

Application conditions of triple rules are used to restrict the application of the
rules to certain contexts as defined in Chap. 2. A triple rule tr: L — R with an
application condition ac over L is applicable if the match m: L — G satisfies the
application condition ac, i.e., m = ac. Roughly spoken, an application condition
is a Boolean formula over some additional context structure for the left-hand side
L (see Defs. 2.7 and 2.8). In our running example, we will exlusively use negative
application conditions (NACs) [HHT96]. A NAC has the formac = ~(3Ja: L — C)
and is used to avoid the application of a rule if the match for L can be extended to
the forbidden context C. A match m: L — G satisfiesa NAC ac = —(3a: L — C)
if there is no embedding g: C — G € M that is compatible with m, i.e., such that
q o a = m. From now on, a triple rule denotes a rule with application conditions,
while the absence of application conditions is explicitly mentioned.
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Fig. 3.8 Rules for the model transformation CD2RDBM

Note that, due to the structure of the triple rules, both double [EEPT06] and
single pushout approach [EHK*96] are equivalent in this case.

Example 3.9 (Triple rules and triple transformation step). The triple rules in Fig. 3.8
are the rules of the grammar 7GG for the model transformation CD2RDBM. They
are presented in short notation, i.e., left- and right-hand sides of a rule are de-
picted in one triple graph. Elements which are created by the rule are labelled with
“++” and additionally marked by green line colouring. Rule Class2Table syn-
chronously creates a class with name n together with the corresponding table in
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Fig. 3.9 Triple graph transformation step via rule Subclass2Table (without data values)

the relational database. Accordingly, subclasses are connected to the tables of its
superclasses by rule Subclass2Table. Note that this rule creates the new class
node together with an edge of type parent, implying that our compact case study
does not handle the case of multiple inheritance. Finally, rule Attr2Column creates
attributes with type t together with their corresponding columns in the database
component. Rule PrimaryAttr2Column extends Attr2Column by creating ad-
ditionally a link of type pkey for the column and by setting the attribute value
is_primary = true. This rule contains NACs, which are specified in short no-
tation. The NAC-only elements are specified by red line colouring and additionally
with a surrounding frame with label NAC. A complete NAC is obtained by compos-
ing the left-hand side of a rule with the marked NAC-only elements. The source
and target NACs ensure that there is neither a primary attribute in the class diagram
nor a primary key in the database model present when applying the rule. More for-
mally, the depicted NACs are actually NAC schemata (see Def. 2.17), such that the
NAC:s also forbid the cases when some of the specified variables are evaluated to the
same values. Rule Association2Table creates an association between two classes
and the corresponding table, together with two foreign keys, where the parameters
an,cnl,cn2,tl and t2 are used to set the names and types of the created nodes.

Fig. 3.9 shows a triple graph transformation step G LM, H via rule tr =
Subclass2Table, where we omitted the attribute values of the nodes and reduced
the node types to the starting letters. The top line shows the rule with its left- and
right-hand sides and the bottom line shows the given triple graph G and the resulting
triple graph H. The effect of this step is the addition of a new subclass that is related
to the existing table corresponding to the existing class. A

Remark 3.10 (Possible extensions of the example). The example CD2RDBM pro-
vides a simplistic view on the general problem to define an object relational map-
ping. A possible extension would be to take into account multiplicities on associ-
ations. In that case, the TGG could be extended by an additional rule that would
create an association with cardinality 1 —» (source multiplicity x..1 and destination
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Fig. 3.10 Violation of NAC and satisfaction of NAC for rule PrimaryAttr2Column

multiplicity y..n) together with a single foreign key in the target domain (database
model). The existing rule Association2Table would be refined to handle only the
case for associations with cardinality n — m (source multiplicity x..* and destination
multiplicity y..x) using attribute conditions. The example also simplifies that data
type names used for nodes of type Attribute (datatype = t) in class diagrams
and for nodes of type Column (type = t) in database diagrams coincide. There are
several ways to extend the TGG to define a mapping from certain data type names in
one domain to differently named ones in the other domain. For example, this could
be handled by specialising the rules for each pair of corresponding data type names
or by using a constant structural fragment from which the name mapping informa-
tion can be matched by the rules and used for the attribute assignments. Finally,
one could consider composed primary keys in the database domain, which would
require further extensions of the TGG. A

Example 3.11 (Triple transformation with NACs). The left component of Fig. 3.10
shows a violation of the target NAC for rule PrimaryAttr2Column, whose target
NAC forbids the presence of an existing primary key at the matched table. In its
right component, the figure shows a NAC consistent transformation step, where no
primary key is present and also the existing attribute is assumed to be not a primary
one. A

A triple graph transformation system TGS = (TR) is based on triple graphs and
a set of rules TR over them. A triple graph grammar TGG = (TR, S) contains in
addition a triple start graph S. For triple graph grammars, the generated language is
given by all triple graphs G that can be derived from the start graph S viarules in 7R.
The source language L(TGG)® contains all graphs that are the source component
of a derived triple graph. Similarly, the target language £(TGG)” contains all deriv-
able target components. A triple graph grammar generates the language L(TGG)
of integrated models, where each integrated model contains a source model and its
corresponding target model. This language induces the model transformation rela-
tion MTy that defines the set of all consistent pairs (G°,G") of source and target
models. Any other pair of models is seen to be inconsistent.
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Definition 3.12 (Triple graph grammar and triple language). A triple graph
grammar TGG = (TR, S) consists of a set TR of triple rules and a triple graph S
called triple start graph.

A language of triple graphs generated by TGG is given by L(TGG) = {G | 3
triple transformation S = G viarules in TR)}. The source language L(TGG)S =
(G5 | (G5 & G€ 9 GT) e L(TGG)) contains all graphs that are the source
component of a derived triple graph. Similarly, the target language L(TGG)T =
(GT | (G® & G€ % GT) € L(TGG)) contains all derivable target components.

The model transformation relation MTx = {(G%,G") € LITGG)® x LITGG)T |
3G = (G® « G¢ — GT) € L(TGG)} defines the set of all consistent pairs (G5, GT)
of source and target models. A

Example 3.13 (Triple language). The triple graph in Fig. 3.6 shows an instance triple

graph G = (G° « G® — G”) of the triple language L(TGG) for the language
CD2RDBM. It can be constructed via the transformation sequence @ ::;,Classnable

Class2Table SubClass2Table Attribute2Column PrimaryAttribute2Column

Gy > G > G Gy
Gs % Gg. The triple language contains all such triple graphs that
can be created via the triple rules. A

3.4 Model Transformation Based on TGGs

In Part III, we present the techniques and results for model transformation based
on TGGs (see Def. 3.2). We cover different execution and analysis techniques in
different transformation scenarios.

Part III starts with Chap. 7, which presents the automatic derivation of opera-
tional rules from a given TGG:

e operational rules for forward model transformations, i.e., transforming a model
of the source language into a corresponding one of the target language

e operational rules for backward model transformations, i.e., transforming a model
of the target language into a corresponding one of the source language

e operational rules for model integrations, i.e., taking a pair of existing source and
target models and extending them to an integrated model that is consistent (if
possible)

e operational rules for model synchronisation, i.e., taking and integrated model
together with updates on both domains and propagating the changes from one
domain to the other, including the handling of conflicts

e operational rules for consistency checking, i.e., checking whether a given inte-
grated model is consistent

Furthermore, Chap. 7 presents appropriate execution algorithms for forward/
backward model transformations and model integrations. We focus on both the for-
mal point of view based on category theory and the implementation point of view
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using an encoding of the formal control conditions via Boolean-valued attributes as
a kind of caching structure and a flattening construction to enable the use of plain
graph transformation tools. As the main result, we provide sufficient criteria for
ensuring the fundamental composition and decomposition result for TGGs that is
the basis for the results in Chapters 8 and 9. The decomposition result ensures that
a triple graph transformation sequence can be decomposed into two operational se-
quences, where one is used for a kind of parsing of the inputs and the other performs
the actual creation of the relevant elements for the output. Vice versa, the compo-
sition result ensures that two operational sequences can be composed if a certain
consistency condition is satisfied.

Chap. 8 provides results for the analysis of model transformations and model
integrations based on TGGs concerning the following three out of four properties
of the dimension of functional aspects presented in Sect. 3.1, which concerns the
reliability of the produced results:

1. Syntactical Correctness: For each model Mg € Lg that is transformed by MT
the resulting model M7 has to be syntactically correct, i.e., My € Ly.

2. Completeness: The model transformation M7 can be performed on each model
Mg € L. Additionally, it can be required that MT reaches all models My € Lr.

3. Functional Behaviour: For each source model Mg € Lg, the model transforma-
tion MT will always terminate and lead to the same resulting target model M.

As a general requirement, Chap. 8 assumes the validity of the (de-)composition
result for TGGs, for which Theorem 7.21 in Chap. 7 provides a sufficient condi-
tion. The main results show that model transformations and integrations based on
TGGs ensure syntactical correctness and completeness. Since some TGGs do not
show functional behaviour for the derived operations, we provide sufficient condi-
tions that ensure functional behaviour. These conditions are based on the notion of
critical pairs and can be analysed statically using the tool AGG. We also show how
the operational rules of a TGG can be extended by special application conditions
to remove conflicts, which is used to improve efficiency of the execution and for
showing functional behaviour in a more complex case. In addition, we show that
model transformations based on TGGs are always information preserving in a weak
sense and provide a sufficient condition for showing that they are completely infor-
mation preserving, i.e., that the input can be reconstructed from the output without
requiring any other information than the output model itself.

Chap. 9 presents the most complex case of model transformations—namely
model synchronisation—where several different operations have to be combined.
Model synchronisation is an important technique for keeping and gaining consis-
tency of source and target models after changing one or both of them. We provide
sufficient conditions and general results for ensuring

1. Syntactical Correctness: For each synchronisation of an integrated model M €
L(TG) with updates on the source and target domains, the result of the model
synchronisation is a consistent integrated model M’ € L(TGG) together with
corresponding updates on the source and target domains. Moreover, if no update
is required, then the synchronisation preserves the inputs.
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2. Completeness: The model synchronisation can be performed for any integrated
model M € L(TG).

3. Invertibility: The propagation of changes is symmetric in the following sense.
Propagating changes from the first domain and then propagating the obtained
changes back yields the initially given update on the first domain. If this prop-
erty is required for a restricted set of updates only, we use the notion of weak
invertibility.

In the basic case, model synchronisation is performed in a unidirectional way,
i.e., an update on one domain is propagated to the corresponding domain. The more
general cases handle concurrent updates on both domains, conflict resolution and
nondeterminism.
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M-Adhesive Transformation Systems



65

This second part of the book presents the algebraic approach to graph transfor-
mation in the general framework of M-adhesive categories, which instantiate to
graphs of the form G = (V, E, s,t) considered in Chap. 2, but also to a large va-
riety of further types of graphs and other kinds of high-level structures, such as
labelled graphs, typed graphs, hypergraphs and different kinds of low- and high-
level Petri nets. The extension from graphs to high-level structures was introduced
in [EHKP91a, EHKP91b], leading to the theory of high-level replacement (HLR)
systems. In [EHPPO4] the concept of HLR systems was joined to that of adhe-
sive categories of Lack and Sobocinsky in [L.S04], leading to the concepts of ad-
hesive HLR categories used in [EEPT06] and M-adhesive categories in this book,
where all these concepts are introduced in Chap. 4. Moreover, this chapter includes
an overview of different adhesive and HLR notions and several results concern-
ing HLR properties, which are used in the general theories of Chapters 5 and 6
and for the construction of M-adhesive categories. In fact, M-adhesive categories
and transformation systems constitute a suitable general framework for an abstract
theory of graph and model transformations, which can be instantiated to various
kinds of high-level structures,especially to those mentioned above. All the concepts
and results—introduced for graph transformation in Chap. 2—are carefully pre-
sented and proven in Chap. 5 for M-adhesive transformation systems and in Chap. 6
for multi-amalgamated transformations. Finally it is shown in Chap. 6 how multi-
amalgamation can be used to define the semantics of elementary Petri nets.



Chapter 4
Adhesive and M-Adhesive Categories

In this chapter, we introduce adhesive and M-adhesive categories as the categorical
foundation of graph and model transformations and present various constructions
and properties. In Sect. 4.1, we introduce M-adhesive categories based on the notion
of van Kampen squares. Different versions of adhesive categories are compared to
the one we use in this book in Sect. 4.2. In Sect. 4.3, we introduce some additional
properties which are needed for results in M-adhesive categories, as well as derive
results that hold in any such category. A special variant of M-adhesive categories
using only finite objects is presented in Sect. 4.4. In Sect. 4.5, we show that M-
adhesive categories are closed under certain categorical constructions and analyse
how far several of the additional properties are also preserved. This chapter is based
on [EGH" 14, Gol10].

4.1 M-Adhesive Categories

For the transformation of not only graphs, but also high-level structures such as Petri
nets and algebraic specifications, high-level replacement (HLR) categories were es-
tablished in [EHKP91a, EHKP91b], which require a list of so-called HLR properties
to hold. They were based on a morphism class M used for the rule morphisms. This
framework allowed a rich theory of transformations for all HLR categories, but the
HLR properties were difficult and lengthy to verify for each category.

Adhesive categories were introduced in [L.S04] as a categorical framework for
deriving process congruences from reaction rules. They require a certain compati-
bility of pushouts and pullbacks, called the van Kampen property, for pushouts along
monomorphisms in the considered category. Later, they were extended to quasiad-
hesive categories in [JLSO07], where the van Kampen property has to hold only for
pushouts along regular monomorphisms.

Adhesive categories behave well also for transformations, but interesting cate-
gories as typed attributed graphs are neither adhesive nor quasiadhesive. Combin-
ing adhesive and HLR categories leads to adhesive HLR categories in [EHPP04,
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EPTO04], where a subclass M of monomorphisms is considered and only pushouts
over M-morphisms have to fulfill the van Kampen property. They were slightly
extended to weak adhesive HLR categories in [EEPTO06], where a weaker version
of the van Kampen property is sufficient to show the main results of graph and
HLR transformations also for transformations in weak adhesive HLR categories.
Not only many kinds of graphs, but also Petri nets and algebraic high-level nets
are weak adhesive HLR categories, which allows to apply the theory to all these
kinds of structures. In [EEPTO06], the main theory including all the proofs for trans-
formations in weak adhesive HLR categories can be found, while an introduction
including motivation and examples for all the results is given in [PEO7].

In this book, we use a slightly different version, the so-called M-adhesive cat-
egories. The differences between several variants of adhesive categories are anal-
ysed in detail in the following section. Their main property is (a variant of) the van
Kampen property, which is a special compatibility of pushouts and pullbacks in a
commutative cube. The idea of a van Kampen square is that of a pushout which is
stable under pullbacks, and, vice versa, where pullbacks are stable under combined
pushouts and pullbacks.

Definition 4.1 (Van Kampen square). A commutative cube (2) with pushout (1)
in the bottom face and where the back faces are pullbacks fulfills the van Kampen
property if the following statement holds: the top face is a pushout if and only if
the front faces are p A

pullbacks. m / \
A pushout (1) is i i B
a van Kampen | ¢ (1 8

square if the van

Kampen property | C 7 D \

holds for all com-
mutative cubes (2)
with (1) in the bot-
tom face.

Given a morphism class M, a pushout (1) with m € M is an M-van Kampen
square if the van Kampen property holds for all commutative cubes (2) with (1) in
the bottom face and b, ¢, d € M. A

It might be expected that, at least in the category Sets, every pushout is a
van Kampen square. Unfortunately, this is not true, but at least pushouts along
monomorphisms are van Kampen squares in Sets and several other categories.

For an M-adhesive category, we consider a category C together with a morphism
class M of monomorphisms. We require pushouts along M-morphisms to be M-
van Kampen squares, along with some rather technical conditions for the morphism
class M called PO-PB compatibility, which are needed to ensure compatibility of
M with pushouts and pullbacks.

Definition 4.2 (PO-PB compatibility). A morphism class M in a category C is
called PO—PB compatible if
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1. Mis a class of monomorphisms, contains all identities, and is closed under com-
position (f:A > BeM,g:B—>CeM=gofeM).

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are
closed under pushouts and pullbacks. A

Remark 4.3. From Items 1 and 2, it follows that M contains all isomorphisms and
is also closed under decomposition, i.e., go f € M, g € M implies f € M. In
fact, isomorphisms can be obtained by pushouts or pullbacks along identities, and
the pullback of (g o f, g) is (id, f) such that the pullback closure of M implies that
f e M[HeilO]. A

Definition 4.4 (M-adhesive category). A category C with a PO-PB compatible
morphism class M is called an M-adhesive category if pushouts in C along M-
morphisms are M-van Kampen squares. A

Examples for M-adhesive categories are the categories Sets of sets, Graphs of
graphs, Graphsyg of typed graphs, Hypergraphs of hypergraphs, ElemNets of el-
ementary Petri nets, and PTNets of place/transition nets, all together with the class
M of injective morphisms, as well as the category Specs of algebraic specifications
with the class Mg,;.; of strict injective specification morphisms, the category PTSys
of place/transition systems with the class Mg, of strict morphisms, and the cat-
egory AGraphsarg of typed attributed graphs with the class Mp_;;, of injective
graph morphisms with isomorphic data part. The proof that Sets is an M-adhesive
category is shown in [EEPTO06], while the proofs for most of the other categories
can be done using the Construction Theorem in the following Sect. 4.5.

4.2 Overview of Different Adhesive and HLR Notions

Several variants of HLR and adhesive categories have been introduced in the litera-
ture as categorical frameworks for graph transformation and HLR systems based on

C Adhesive ﬁ Adhesive HLR )
I L

: : . Horizontal weak
Partial dh
C artial map a eswe) Weak adhesive HLR ) adhesive HLR )
Partial van Kam- Vertical weak
pen square adhesive : adhesive HLR
= M-adhesive

Fig. 4.1 Hierarchy of adhesive categories
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the DPO approach. In this section, we compare and relate different relevant notions
and build up a hierarchy between them, as shown in Fig. 4.1.

4.2.1 From Adhesive to M-Adhesive Categories

Adhesive categories have been introduced by Lack and Sobocinski [LS04] as a cat-
egorical framework for graph transformation systems, which allows to verify the
variety of axiomatic HLR properties required for the theory of high-level replace-
ment systems in [EHKP91b]. Adhesive categories are based on the property that
pushouts along monomorphisms are van Kampen squares.

Definition 4.5 (Adhesive category). C is an adhesive category if:

1. C has pushouts along monomorphisms.
2. C has pullbacks.
3. Pushouts in C along monomorphisms are van Kampen squares. A

Important examples of adhesive categories are the categories Sets of sets, Graphs
of graphs, and Graphsyg of typed graphs, while the category AGraphsarg of
typed attributed graphs is not adhesive. But in the latter case, pushouts along M-
morphisms are van Kampen squares for the class M,pn0-iso Of all monomorphisms
which are isomorphic on the data type part. In fact, AGraphsarg is an adhesive
HLR category.

Definition 4.6 (Adhesive HLR category). A category C with a PO-PB compat-
ible morphism class M is called an adhesive HLR category if pushouts along M-
morphisms are van Kampen squares. A

It can be shown that the class My, of all monomorphisms in an adhesive
category C fulfills these properties [LS04], such that (C, M,,,,) is also an adhe-
sive HLR category, leading to the implication “adhesive implies adhesive HLR”
in Fig. 4.1. This implication is proper, because AGraphsarc is not adhesive, but
(AGraphsarg, Miono-iso) 1s an adhesive HLR category [EEPTO06].

However, there are important examples, like the category (PTNets, M,,,,,) of
place/transition nets with the class M., of all monos, which are not adhesive HLR,
but only weak adhesive HLR categories. This means that the corresponding van
Kampen property holds for van Kampen cubes, where all horizontal or all vertical
morphisms are M-morphisms. We call these two cases horizontal or vertical weak
adhesive HLR.

Definition 4.7 (Weak adhesive HLR category). Consider a category C with a PO-
PB compatible morphism class M.

o (C, M) is horizontal weak adhesive HLR if pushouts in C along m € M are
horizontal weak van Kampen squares, i.e., the van Kampen property holds for
commutative cubes with f,m € M (see Def. 4.1).
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o (C, M) is vertical weak adhesive HLR if pushouts in C along m € M are vertical
weak van Kampen squares, i.e., the van Kampen property holds for commutative
cubes with b, ¢,d € M (see Def. 4.1).

e (C, M) is a weak adhesive HLR category if it is horizontal and vertical weak
adhesive HLR. A

Remark 4.8. In the horizontal case, the closure of M under pushouts and pullbacks
implies that all horizontal morphisms are in M. Similarly, in the vertical case it
follows that a € M. A

Using this definition, we have the implications on the right-hand side of Fig. 4.1
between the different variants of “adhesive HLR”. The category (PTNets, M,;0)
shows that the implication from “adhesive HLR” to “weak adhesive HLR” is proper.

Recently, we recognised by inspection of the proofs for weak adhesive HLR
categories that it is sufficient to consider vertical weak adhesive HLR categories
in order to obtain all the important properties. For this reason, we use the short
name M-adhesive category for this important class of categories. Note, that this is in
contrast to some other work like [BEGG10], where weak adhesive HLR categories
are called M-adhesive.

Fact 4.9. An M-adhesive category is a vertical weak adhesive HLR category. A

Proof. This follows directly from Defs. 4.4 and 4.7. O

4.2.2 Partial Map and Partial Van Kampen Square Adhesive
Categories

Another variant of adhesive categories has been introduced by Heindel [HeilO],
called partial map adhesive categories. They are based on the requirement that
pushouts along M-morphisms are hereditary [Ken91]. Hereditary pushouts in a cat-
egory C are those pushouts that are preserved by the embedding into the associ-
ated category Par((C) of partial maps over C. Heindel has shown that hereditary
pushouts can be characterised by a variant of van Kampen squares, called partial van
Kampen squares, which are closely related to weak van Kampen squares in weak
adhesive HLR categories. This leads to the new concept of partial map adhesive
categories, which are equivalent to partial van Kampen square adhesive categories.

The concepts in this section are based on an admissible class M of monomor-
phisms according to [HeilO], which we call PB compatible in analogy to PO-PB
compatibility in Def. 4.2.

Definition 4.10 (PB compatibility). A morphism class M in a category C is called
PB compatible if

1. Mis a class of monomorphisms, contains all identities, and is closed under com-
position (f:A > BeM,g:B—>CeM=>gofeM).
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2. C has pullbacks along M-morphisms, and M-morphisms are closed under pull-
backs. A

A partial map category is constructed by the objects of a given category and spans
of morphisms within this category.

Definition 4.11 (Partial map category). Given a category C with a PB-compatible
morphism class M, the partial map category Par p((C) of M-partial maps over C is
defined as follows:

e The objects are all objects in C.

e The morphisms from A to B are (isomorphism classes of) spans (A A L B)
with f,m € C, m € M, called M-partial maps (m, f) : A — B.

o The identities are identical spans and the composition of spans is defined by
pullbacks. A

For any partial map category, we find an inclusion functor from its underlying
category. If this functor preserves a pushout, this pushout is called hereditary. This
leads to the definition of a partial map adhesive category, where all pushouts along
M-morphisms are hereditary.

Definition 4.12 (Hereditary pushout). Given a category C with a PB-compatible
morphism class M, the inclusion functor / : C — Par (C), called graphing functor
in [Heil0], is defined by the identity on objects, and maps each morphism f : A — B
in C to the M-partial map I(f) = (id, f) : A — B in Par(C).

A pushout in C is called hereditary if it is preserved by 1. A

Definition 4.13 (Partial map adhesive category). A category C with a PB-
compatible morphism class M is a partial map adhesive category if pushouts along
M-morphisms exist and are hereditary. A

Remark 4.14. If C has pushouts along M-morphisms, a sufficient condition for
(C, M) to be partial map adhesive is the existence of a cofree construction lead-
ing to a right adjoint functor R for the inclusion functor /. In this case, [ is left
adjoint and preserves all colimits, especially pushouts along M-morphisms, such
that these pushouts are hereditary.

In the case of sets and monomorphisms, the partial map category Par ,,, (Sets)
is isomorphic to the category of sets and partial functions, where R(X) is the ex-
tension of a set X by one distinguished (“undefined”) element. In this and several
other examples, the construction of a right adjoint R is much easier than the explicit
verification of the van Kampen property. A

For hereditary pushouts, we find an equivalent property using so-called partial
van Kampen squares. These are closely related to vertical weak van Kampen squares
in Def. 4.7, but the assumption and conclusion concerning d € M is different.

Definition 4.15 (Partial van Kampen square). Given a morphism class M, a com-
mutative cube (2) with pushout (1) in the bottom face and where the back faces are
pullbacks with b, ¢ € M fulfills the partial van Kampen property if the following
statement holds: the top face is a pushout if and only if the front faces are pullbacks
with d € M.
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A pushout (1) - A

with.m € Mis a A m B / \
partial van Kam- B
pen square if the _fJ (1) g

partial van Kampen

property holds for | C 0 D \

all commutative
cubes (2) with (1)
in the bottom face.

Definition 4.16 (Partial van Kampen square adhesive category). A category C
with a PB-compatible morphism class M is a partial van Kampen square adhesive
category if pushouts along M-morphisms exist and are partial van Kampen squares.

A

The following theorem shows that partial van Kampen square and partial map
adhesive categories are in fact equivalent.

Theorem 4.17 (Equivalence of partial map and partial van Kampen square ad-
hesive categories). Given a category C with a PB compatible morphism class M
such that C has pushouts along M-morphisms. Then pushouts along M-morphisms
are hereditary if and only if they are partial van Kampen squares. A

Proof. The proof is sketched in [Heil0] based on results in [Hei09]. a

Remark 4.18. As indicated in [HeilO], the statement and proof remains valid if
“pushouts along M-morphisms” is replaced by arbitrary “pushouts”. A

In [Heil0], it is shown that adhesive categories are also partial map adhesive for
the morphism class M,,,,,. Moreover, an example of a category ISet of list sets is
given, which is partial map adhesive, but not adhesive. Together with Theorem 4.17
this leads to the implication and equivalence on the left-hand side of Fig. 4.1.

In the following, we will analyse the relationship between partial map adhesive
categories and the different adhesive HLR notions. As a first step, it is shown in
[HeilO] that PB compatibility already implies PO-PB compatibility in partial van
Kampen square adhesive categories.

Theorem 4.19 (Equivalence of PB and PO-PB compatibility). Given a partial
van Kampen square adhesive category (C, M), we have that PB compatibility is
equivalent to PO—PB compatibility. A

Proof. 1t suffices to show that M is closed under pushouts in partial van Kampen
square adhesive categories.
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Consider a pushout with m € M in

A
the bottom of the commutative cube on C / \'d\A

the right, which has pullbacks in the back
squares with id, f € M and a pushout in

the top. The partial van Kampen property \
implies that the front squares are pull- | C
backs with n € M; hence M is closed \ /

under pushouts. O

Using this result, we can show that partial van Kampen square adhesive cate-
gories are also M-adhesive.

Theorem 4.20 (Partial van Kampen square adhesive categories are M-adhe-
sive). Given a partial van Kampen square adhesive category (C, M), (C, M) is an
M-adhesive category. A

Proof. Given a partial van Kampen square adhesive category (C, M), M is already
PO-PB compatible by Theorem 4.19. Moreover, pushouts along M-morphisms sat-
isfy the vertical weak van Kampen square property, because we only have to con-
sider commutative cubes with a,b,c,d € M, in contrast to partial van Kampen
squares, where the equivalence holds under the assumption that a, b, c € M. Hence,
(C, M) is a vertical weak adhesive HLR and therefore an M-adhesive category by
definition. O

By Theorem 4.20, we have the implication from “partial van Kampen square
adhesive” to “M-adhesive” in Fig. 4.1. Up to now it is open whether also the reverse
direction holds.

In [HeilO] it is shown that the category 1Set of list sets is partial map adhesive—
and hence partial van Kampen square adhesive—but violates the property that
pushouts over M-morphisms are van Kampen squares. Therefore this category is
not horizontal weak adhesive HLR, and also not weak adhesive HLR. This implies
that there is no implication from “partial van Kampen square adhesive” to “weak ad-
hesive HLR” in Fig. 4.1. It follows that there are no implications from “M-adhesive”
to “weak adhesive HLR” and to “horizontal weak adhesive HLR”.

4.3 Results and Additional HLR Properties for AM-Adhesive
Categories

In this section, we collect various results that hold in M-adhesive categories and
follow from the M-van Kampen property, as well as additional HLR properties that
are needed and have to be required. These results and properties are used to show
the main theorems of graph transformation in [EEPTO06] as well as various results
in the following chapters.
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4.3.1 Basic HLR Properties

In [EHKP91b], the following HLR properties were required for HLR categories.
In the following, we call them basic HLR properties to distinguish them from the
additional ones introduced later. All basic HLR properties are valid in M-adhesive
categories and can be proven using the M-van Kampen property.

Definition 4.21 (Basic HLR properties). The following properties are called basic
HLR properties:

1. Pushouts along M-morphisms are pullbacks. Given the above pushout (1) with
k € M, then (1) is also a pullback.

2. M-pushout—pullback decomposition. Given the above commutative diagram—
where (1)+(2) is a pushout, (2) is a pullback, w € M, and (I € Mork € M)—(1)
and (2) are pushouts and also pullbacks.

3. Cube pushout—pullback property. Given the above commutative cube (3)—where
all morphisms in the top and bottom faces are M-morphisms, the top face is a
pullback, and the front faces are pushouts—the following statement holds: the
bottom face is a pullback if and only if the back faces of the cube are pushouts:

4. Uniqueness of pushout complements. Givenk : A > Be Mand s : B - D,
there is, up to isomorphism, at most one C with/: A —» Cand u : C — D such
that (1) is a pushout. A

All these HLR properties are valid in M-adhesive categories.

Theorem 4.22 (HLR properties in M-adhesive categories). Given an M-
adhesive category (C, M), the following HLR properties are valid:

1. Pushouts along M-morphisms are pullbacks,

2. M-pushout—pullback decomposition,

3. Cube pushout—pullback property,

4. Uniqueness of pushout complements. A

Proof. See [EEPTO06], where these properties are shown for weak adhesive HLR
categories, but the proofs only use the vertical van Kampen property, i.e., are also
valid in M-adhesive categories. O
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4.3.2 Additional HLR Properties

The following additional HLR properties are essential to prove the main results for
graph transformation and HLR systems in [EEPTO06]. For the Parallelism Theorem
(see Theorems 2.26 and 5.26), binary coproducts compatible with M are required
in order to construct parallel rules. Initial pushouts are used in order to define the
gluing condition and to show that consistency in the Embedding Theorem (see The-
orems 2.37 and 5.34) is not only sufficient, but also necessary. In connection with
the Concurrency Theorem (see Theorems 2.29 and 5.30) and for completeness of
critical pairs (see Theorems 2.41 and 5.41), an &-M’ pair factorisation is used
such that the class M’ satisfies the M—AM’ pushout—pullback decomposition prop-
erty. Moreover, a standard construction for &—M’ pair factorisation uses an E-M’
factorisation of morphisms in C, where &’ is constructed from & using binary co-
products. For the Amalgamation Theorem (see Theorems 2.34 and 6.17), we need
effective pushouts.

As far as we know, these additional HLR properties cannot be concluded from
the axioms of M-adhesive categories; at least we do not know proofs for nontrivial
classes &, &', M, and M'.

Note that for M’ = M, the M—M’ pushout—pullback decomposition property is
the M pushout—pullback decomposition property, which is already valid in general
M-adhesive categories.

Definition 4.23 (Additional HLR properties). An M-adhesive category (C, M)
fulfills the additional HLR properties if all of the following items hold:
1. Binary coproducts: C has binary coproducts. 7
2. &M factorisation: Given a morphism class &, for A B

each f : A — B there is a factorisation overe : A — X\ /

Ke&andm: K - Be Msuchthatmoe = f, and K

this factorisation is unique up to isomorphism.

A
N,

B, f» : A, — B there is a factorisation over e; :
Al > K,es: Ay > K, m: K - Bwith (¢],e,) € & /
and m € M’ suchthatmoe; = fiand mo e, = f. Ay
4. Initial pushouts over M’: Given a morphism class
M, foreach f : A —

3. &-M’ pair factorisation: Given a morphism class
. b
D € M’ there exists an Bﬂ b*

M’ and a class of morphism pairs with common
codomain &', for each pair of morphisms f; : A} —

... . ~A - E B E
initial pushout (1) with

b,c € M. (1) is an ini- l (D Jf 2 Jg l 3 lg
tial pushout if the fol- | & > D)< F C F

lowing condition holds: w ‘
for all pushouts (2) with
m,n € Mthere exist unique morphisms b*, ¢* € M such that mob* = b, noc* = ¢,
and (3) is a pushout.
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5. Effective pushouts: Given a
pullback (4) and a pushout (5)
with all morphisms being M- { 4) ld’ { &) dJ
morphisms, also the induced | &

morphism e : D — D’ is an ¢ X
M-morphism. A <
Remark 4.24. In the setting of effective pushouts, the morphism e has to be a

monomorphism [L.S05a]. But up to now we were not able to show that it is actually
an M-morphism if the class M does not contain all monomorphisms. A

4.3.3 Finite Coproducts and & - M’ Pair Factorisation

For the construction of coproducts, it often makes sense to use pushouts over M-
initial objects in the following sense.

Definition 4.25 (M-initial object). An initial object I in (C, M) is called M-initial
if for each object A € C the unique morphism iy : I — A is in M. A

Note that if (C, M) has one M-initial object then all initial objects are M-initial
due to M being closed under isomorphisms and composition.

In the M-adhesive categories (Sets, M), (Graphs, M), (Graphsyg, M),
(ElemNets, M), and (PTNets, M) we have M-initial objects defined by the empty
set, empty graphs, and empty nets, respectively. But in (AGraphsarg, M), there is
no M-initial object. The initial attributed graph (@, Tps;c) with term algebra Tpg;g
of the data type signature DSIG is not M-initial because the data type part of the
unique morphism (@, Tpsic) — (G, D) is, in general, not an isomorphism.

The existence of an M-initial object implies that we have finite coproducts.

Fact 4.26 (Existence of finite coproducts). For each M-adhesive category (C, M)
with M-initial object, (C, M) has finite coproducts, where the injections into co-
products are in M. A

Proof. Tt suffices to show this for the binary case.

ia
The coproduct A + B of A and B can be constructed by the I A
pushout (1), which exists because of i4,ip € M. This also il}l (1) li”A
implies iny, ing € M, since M-morphisms are closed under

. . . - A+ B
pushouts in M-adhesive categories. O Ul

Note that an M-adhesive category may still have coproducts even if it does not
have an M-initial object. For example, the M-adhesive category (AGraphsarg, M)
has no M-initial object, but finite coproducts, as shown in [EEPT06].

For the construction of parallel rules in [EEPT06] the compatibility of the mor-
phism class M with (finite) coproducts was required. In fact, finite coproducts (if
they exist) are always compatible with M in M-adhesive categories, as shown in
[EHL10].
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Fact 4.27 (Finite coproducts compatible with M). For each M-adhesive category
(C, M) with finite coproducts, finite coproducts are compatible with M, i.e., f; € M
fori=1,...,nimpliesthat fi +---+ f, € M. A

Proof. 1Tt suffices to show this for the binary case n = 2. For f : A - B € M, we
have pushout (1) with (f + id¢) € 7

g
M, since M-morphisms are closed 4 B c D
under pushouts. Similarly, we have l (1) 2) l
(idg + g) € M in pushout (2) for

g:C — D.Hence, (f+g) = (idp+ A+CgemB+C B+ C—ggB+D

g) o (f +idc) € Mby composition
of M-morphisms. 0

Based on an &M’ factorisation and binary coproducts, we obtain a standard
construction for an &-M'’ pair factorisation with & induced by &.

Fact 4.28 (Construction of &'-M'’ pair factorisation). Given a category C with an
E-M factorisation and binary coproducts, C has also an & —M' pair factorisation
forthe class & ={(ea : A > C,eg: B— C) | es,ep € Cwith inducede : A+ B —
Ceé&l A

Proof. Given fy : A — D and fgp : B —» D with induced f : A+ B — D, we

consider the &~M'’ factorisation f = m o e of f with e € & and m € M’, and define

eq =eoinyg and eg = e o ing.  A+B .
Then (e4,ep) € & and m € M’ defines an &-M’ Ay le =g

pair factorisation of (f4, f) which is unique up to iso- & % B
morphism, since each other &-M’ pair factorisation A ¢ 4
also leads to an &M’ factorisation via the induced mor- ‘ lm ‘
phism in &, and &M’ factorisations are unique up to D
isomorphism. O

4.4 Finitary M-Adhesive Categories

Although in most application areas of graph and model transformations only finite
models are considered, the theory has been developed for general graphs, including
also infinite graphs. It is implicitly assumed that the results can be restricted to finite
graphs and to attributed graphs with a finite graph part, where the data algebra may
be infinite. Obviously, not only Sets and Graphs are M-adhesive categories, but
also the full subcategories Setsg, of finite sets and Graphsg, of finite graphs. In this
section, we consider the general restriction of an M-adhesive category (C, M) to
finite objects, leading to a category (Cgn, Msn), where Mg, is the restriction of M
to morphisms between finite objects. This section is based on [GBEG14].
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4.4.1 Basic Notions of Finitary M-Adhesive Categories

Intuitively, we are interested in those objects where the graph or net part is finite.
An object A is called finite if A has (up to isomorphism) only a finite number of
M-subobjects, i.e., only finite many M-morphisms m : A” — A up to isomorphism.

Definition 4.29 (M-subobject and finite object). Given an object A in an M-
adhesive category (C, M), an M-subobject of A is an iso- A
morphism class of morphisms m : A” —» A € M, where lw‘
my: Al — Aandm;,: A, — A belong to the same M-subobject li /A
of A if there is an isomorphism i: A]>A} withm; = m;oi. By A, 2
MSub(A), we denote the set of all M-subobjects of A.

A is called finite if it has finitely many M-subobjects. A

Finitary M-adhesive categories are M-adhesive categories with finite objects
only. Note that the notion “finitary” depends on the class M of monomorphisms
and “C is finitary” must not be confused with “C is finite” in the sense of having a
finite number of objects and morphisms.

Definition 4.30 (Finitary M-adhesive category). An M-adhesive category (C, M)
is called finitary if each object A € C is finite. A

In (Sets, M,.0n0), the finite objects are the finite sets. Graphs in (Graphs, M,,,)
and (Graphsytg, M,.0n0) are finite if the node and edge sets have finite cardinal-
ity, while TG itself may be infinite. Petri nets in (ElemNets, M,,,,,) and (PTNets,
Muono) are finite if the number of places and transitions is finite. A typed attributed
graph G' = ((GE7 D), type) in (AGraphSATG’ Mmono—iso) is finite if the graph part
of GT, i.e., all vertex and edge sets except the set V) of data vertices generated from
D, is finite, while the attributed type graph AT'G or the data type part Dg may be
infinite, because M-morphisms are isomorphisms on the data type part.

Finite M-intersections are a generalisation of pullbacks to an arbitrary but finite
number of M-subobjects and, thus, a special case of limits.

Definition 4.31 (Finite M-intersection). Given an M-adhesive category (C, M)

and morphisms m; : A; - B € M with the same A’

codomain object B and i € 7 for a finite set 7, a > I

finite M-intersection of (m;)cy is an object A with \

morphisms n; : A — A;, such that m; o n; = m; o " l
A

n; for all i, j € I and for each other object A" with
morphisms (1] : A" — A;)icr with m; o n} = m; o n;
for i, j € I there is a unique morphisma : A’ —» A
withnjoa =n! forallie 1. A

Remark 4.32. Note that finite M-intersections can be constructed by iterated pull-
backs. Hence, they always exist in M-adhesive categories. Moreover, since pull-
backs preserve M-morphisms, the morphisms »; are also in M. A
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4.4.2 Additional HLR Properties in Finitary M-Adhesive
Categories

In the case of a finitary M-adhesive category (C, M), we are able to show that the
additional HLR properties from Def. 4.23 are valid for suitable classes & and &',
and M’ = M.

4.4.2.1 Binary Coproducts

For finitary M-adhesive categories with an M-initial object, we directly obtain bi-
nary coproducts.

Fact 4.33 (Binary coproducts). Given a finitary M-adhesive category (C, M) with
M-initial object, C has binary coproducts. A

Proof. This follows directly from Fact 4.26. O

4.4.2.2 E&-M Factorisation

The reason for the existence of an &M factorisation of morphisms in finitary
M-adhesive categories is the fact that we only need finite intersections of M-
subobjects, and no infinite intersections as required for general M-adhesive cate-
gories. Moreover, we fix the choice of the class & to extremal morphisms w. r. t. M.

Definition 4.34 (Extremal &-M factorisation). Given an M-adhesive category

(C, M), the class & of all extremal morphisms w.r.t. M is de- /A .

finedby & :={e e C| YVmge Cmog=e:me M=

m isomorphism}. \_%
For a morphism f : A — B in C, an extremal E&E~M fac-

torisation of f is given by an object B and morphisms ¢ : A — B € & and

m: B— Be Msuchthatmoe = f. A

B

A

Remark 4.35. In several example categories, the class & consists of all epimor-
phisms. But this is not necessarily the case for extremal morphisms w.r.t. M, as
shown below.

If we require M to be the class of all monomorphisms and consider only epimor-
phisms e, g in the definition of &, then & is the class of all extremal epimorphisms
in the sense of [AHS90]. A

Fact 4.36 (Existence of extremal &-M factorisation). Given a finitary M-ad-
hesive category (C, M), we can construct an extremal E-~M factorisation for each
morphism in C. A
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Construction 4.37. For f : A — B consider all M-subobjects m; : B; — B such that
there exists ¢; : A — B; with f = m; o e, leading A
to a suitable finite index set 7. Now m: B — Bis e /
constructed as an M-intersection of (m;),cy and | — o “

e : A — Bis the induced unique morphism with B mi
m;oe=¢;forallie 1. A

Proof. See Appendix B.2.1. O

Fact 4.38 (Uniqueness of extremal &M factorisation). In an M-adhesive cate-
gory (C, M), extremal E~M factorisations are unique up to isomorphism. A

Proof. See Appendix B.2.2. |

In the categories (Sets, M), (Graphs, M), (Graphsyg, M), (ElemNets, M), and
(PTNets, M) with the classes M of all monomorphisms, the extremal E&-M fac-
torisation is exactly the well-known epi—-mono factorisation of morphisms which
also works for infinite objects, because these categories have not only finite but also
general intersections.

For (AGraphs,rg, M), the extremal &M factorisation of (f5, fp) : (G,D) —
(G’, D) with finite (or infinite) G and G’ is given by (fg, fp) = (mg, mp) o (eg, ep),
where e is an epimorphism, mg a monomorphism, and mp an isomorphism. In
general, ep, and hence also (eg,ep), is not an epimorphism, since ep has to be
essentially the same as fp, because mp is an isomorphism. This means that the class
&, which depends on M, is not necessarily a class of epimorphisms.

4.4.2.3 &'—-M Pair Factorisation

For finitary M-adhesive categories, we consider the special case M’ = M and use
the extremal &M factorisation to construct an &—M pair factorisation in a standard
way.

Fact 4.39 (Existence and uniqueness of &'—M pair factorisation). Given a fini-
tary M-adhesive category (C, M) with an M-initial object (or finite coproducts),
we can construct a unique E'—M pair factorisation for each pair of morphisms in
C with the same codomain, where & = {(es: A — C,eg: B — C) | es,ep € C with
inducede: A+ B — C e &)L A

Proof. This follows directly from Fact 4.28. O

4.4.2.4 Initial Pushouts

As with the extremal &M factorisation, we are able to construct initial pushouts in
finitary M-adhesive categories by finite M-intersections of M-subobjects.
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Fact 4.40 (Initial pushouts). A finitary M-adhesive category has initial pushouts.
A

Construction 4.41. Givenm : L — G, we consider all those M-subobjects b; : B; —
Lof Land ¢; : C; = G of G such that there is a pushout (P;) over m. Since L and G
are finite this leads to a fi-

nite index set 7 for all (P;) m b

b
i B B L
with i € 7. Now construct
b : B — L as the finite M- “J Q) l"" (Pi) J’” “J (1) l’”
C G

intersection of (b;);c;y and _ ‘
¢ : C — G as the finite \c_/"
M-intersection of (¢;)jer.
Then there is a unique a: B — C such that (Q;) commutes for all i € 7 and the outer
diagram (1) is the initial pushout over m. A

Proof. See Appendix B.2.3. O

4.4.2.5 Additional HLR Properties

The following theorem summarises that, except for effective pushouts, the additional
HLR properties from Def. 4.23 are valid for all finitary M-adhesive categories.

Theorem 4.42 (Additional HLR properties in finitary M-adhesive categories).
Given a finitary M-adhesive category (C, M), the following additional HLR prop-
erties hold:

1. (C, M) has initial pushouts.
2. (C, M) has a unique extremal E-M factorisation, where & is the class of all
extremal morphisms w. r.t. M.

If (C, M) has an M-initial object, we also have that:

3. (C, M) has finite coproducts.
4. (C, M) has a unique & -M' pair factorisation for the classes M' = M and &
induced by &. A

Proof. Ttem 1 follows from Fact 4.40, Item 2 follows from Facts 4.36 and 4.38,
Item 3 follows from Fact 4.33, and Item 4 follows from Fact 4.39. O

For a concrete finitary M-adhesive category, we still need to show that it has
effective pushouts to ensure all additional HLR properties from Def. 4.23.

4.4.3 Finitary Restriction of M-Adhesive Categories

In this subsection, we show that for any M-adhesive category (C, M) the restriction
(Cfin, Msn) to finite objects is a finitary M-adhesive category, where My, is the
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corresponding restriction of M. In this case, the inclusion functor / : Cq, — C
preserves M-morphisms, such that finite objects in Cq, W.1.t. Mg, are exactly the
finite objects in C w.r.t. M.

Definition 4.43 (Finitary restriction of M-adhesive category). Given an M-ad-
hesive category (C, M) the restriction to all finite objects of (C, M) defines the
full subcategory Cg, of C, and (Cgy, Mgn) with Mg, = M N Cy, is called finitary
restriction of (C, M). A

Remark 4.44. Note that an object A in C is finite in (C, M) if and only if A is fi-
nite in (Cgp, Mgn). Even if M is the class of all monomorphisms in C, Mg, is not
necessarily the class of all monomorphisms in Cgp,. A

In order to prove that (Cgpn, Mgy,) is an M-adhesive category, we show that the
inclusion functor I, : Cq, — C creates and preserves pushouts and pullbacks along
M and M, respectively.

Definition 4.45 (Creation and preservation of pushouts and pullbacks). Given
an M-adhesive category (C, M) and a full subcategory C’ of C with M’ = MnC’,
an inclusion functor I : C' — C creates pushouts along M if for each pushout (1)
in C with f,h € C’ and f € M’ we have that D € C’ such that (1) is a pushout in
C.

I creates pullbacks along M if for each pullback (1) in C
with g,k € C’ and g € M’ we have that A € C’ such that (1) is
a pullback in C".

I preserves pushouts (pullbacks) along M’ if each pushout
(pullback) (1) in C” with f € M’ (g € M’) is also a pushout
(pullback) in C with f € M (g € M).

Fact 4.46 (Creation and preservation of pushouts and pullbacks). Given an M-
adhesive category (C, M), the inclusion functor Ig, : Cgn — C creates pushouts
and pullbacks along M and preserves pushouts and pullbacks along Mgp. A

Proof. 1. I, creates pushouts along M. Given pushout (1) in C with A, B, C € Cg,
and f € M, also g € M. It remains to show that D € Cgj,.
For any subobjectd : D" - D € M

. A’
we obtain subobjects b : B — B € C’/ \
Mand ¢ : C" - C € M by pull- / a B
. . K
back constructions in the front faces . A
\

of the cube. Now we construct the h
back faces as pullbacks with subob- | C d
jecta: A’ - A € M, and the M-van \ /B
Kampen property implies that the top D
face is a pushout.

Consider the M-subobject function @ : MSub(D) — MSub(B) X MSub(C)
defined by @([d]) = ([b],[c]) in the construction above. @ is injective since
pushouts are unique up to isomorphism. MSub(B) and MSub(C) are finite, hence
also MSub(B)xMSub(C) is finite, and injectivity of @ implies that also MSub(D)
is finite. This means that D € Cg,,.
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2. Ig, creates pullbacks along M. Given pullback (1) in C with B,C, D € Cg, and
g € M, also f € M. Moreover, each M-subobject of A is also an M-subobject
of B, because f € M. Hence B € Cg, implies that A € Cg, and (1) is also a
pullback in Cg, with f € Mg,.

3. Iy, preserves pushouts along Mg,. Given pushout (1) in Cgq, with f € Mgy, also
f € M. Since I, creates pushouts along M by Item 1, the pushout (1") of f € M
and 4 in C is also a pushout in Cg,. By uniqueness of pushouts this means that
(1) and (1”) are isomorphic and hence (1) is also a pushout in C.

4. Similarly, we can show that Iy, preserves pullbacks along My, using the fact that
I, creates pullbacks along M, as shown in Item 2. |

Using this result we are able to show that the finitary restriction of an M-adhesive
category leads to a finitary M-adhesive category.

Theorem 4.47 (Finitary restriction). The finitary restriction (Cqn, Msn) of an M-
adhesive category (C, M) is a finitary M-adhesive category. A

Proof. An object A in C is finite in (C, M) if and only if it is finite in (Cgy, Mgn).
Hence, all objects in (Cgp, Msy,) are finite. Moreover, Mg, is a class of monomor-
phisms, contains all identities and is closed under composition, because this is valid
for M. (Cgn, Msn) has pushouts along Mg, because (C, M) has pushouts along M
and Iy, creates pushouts along M by Fact 4.46. This also implies that Mg, is pre-
served by pushouts along Mg, in Cgy,. Similarly, (Cgn, Mg,) has pullbacks along
Mg, and Mg, is preserved by pullbacks along Mg, in Cg,. Finally, the M-van
Kampen property of (C, M) implies that of (Cgn, Msn) using the fact that Ig, pre-
serves pushouts and pullbacks along Mg, and creates pushouts and pullbacks along
M. O

A direct consequence of Theorem 4.47 is the fact that finitary restrictions of
(Sets, M), (Graphs, M), (Graphsyg, M), (ElemNets, M), (PTNets, M), and
(AGraphsayg, M) are all finitary M-adhesive categories satisfying not only the
axioms of M-adhesive categories, but also the additional HLR properties as stated
in Theorem 4.42, except for effective pushouts.

For an adhesive category C, which is based on the class of all monomorphisms,
there may be monomorphisms in Cg, which are not monomorphisms in C. Thus it
is not clear whether the finite objects in C and Cg, are the same. This problem is
avoided for M-adhesive categories, where finitariness depends on M. For adhesive
categories, the restriction to finite objects leads to an adhesive category if the inclu-
sion functor I : Cq, — C preserves monomorphisms. Currently, we are not aware of
any adhesive category failing this property, or whether this can be shown in general.

4.4.4 Functorial Constructions of Finitary M-Adhesive Categories

Similarly to general M-adhesive categories, also finitary M-adhesive categories are
closed under product, slice, coslice, functor, and comma categories under suitable
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conditions [EEPTO06]. It suffices to show this for functor and comma categories,
because all others are special cases.

Fact 4.48 (Finitary functor category). Given a finitary M-adhesive category (C,
M) and a category X with a finite class of objects, also the functor category
(Funct(X, C), Mr) is a finitary M-adhesive category, where My is the class of
all M-functor transformations t : F' — F, i.e., t(X): F'(X) — F(X) € M for all
objects X in X. A

Proof. (Funct(X, C), M) is an M-adhesive category (see [EEPT06]) and it re-
mains to show that each F : X — C is finite. W.1. 0. g. we have objects X, ..., X,
in X. We want to show that there are only finitely many M-functor transformations
t : F’ — F up to isomorphism. Since F(X;) € C and C is a finitary M-adhesive
category we have i, € N different choices for #(Xy) : F'(X;) — F(X;) € M. Hence,
altogether we have at mosti = iy - ... - i, € N different t : F’ — F up to isomor-
phism. O

For infinite, even discrete, X, the functor category is not finitary. For example,
consider C = Setsg,. The object (2;);eny With 2; = {1,2} has an infinite number of
subobjects (1;);ien With 1; = {1}, because in each component i € N we have two
choices of injective functions fi,» : {1} — {1,2}. Hence (2;)iciy is not finite and
Funct(X, C) is not finitary.

Fact 4.49 (Finitary comma category). Given finitary M-adhesive categories (A,
M), B, M) and functors F : A — C, G : B — C, where F preserves
pushouts along M, and G preserves pullbacks along My, the comma category
ComCat(F, G; 1) with M = (M xMy)NComCat(F, G; 1) is a finitary M-adhesive
category. A

Proof. ComCat(F,G; I) is an M-adhesive category (see [EEPTO06]). It remains to
show that each object (4, B, op = [opk . F(A) > G(B)]kd) is finite.

By assumption, A and B are finite with a finite

opk.
number of subobjects m;; : A; — A € M, fori e I F(Ai)i’G(Bj)
and my; : Bj - B € M, for j € I,. Hence, we have F(mml (1) G(ma)
atmost |7 |-|7,| M-subobjects of (A, B, op), where for
each i, j, k there is at most one opfj such that diagram F(A) ok G(B)
(1) commutes. This is due to the fact that G preserves
pullbacks along M,, and therefore G(m ;) is a monomorphism in C. |
Remark 4.50. Note that 7 in ComCat(F, G; 7) is not required to be finite. A

4.5 Preservation of Additional HLR Properties

Similarly to the special case of finitary M-adhesive categories, also M-adhesive
categories are closed under different categorical constructions. This means that we
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can construct new M-adhesive categories from given ones. In this section, we anal-
yse how far also the additional HLR properties for M-adhesive categories defined
in Def. 4.23 can be obtained from the categorical constructions if the underlying
M-adhesive categories fulfill these properties. This work is based on [PELO8] and
extended to general comma categories and subcategories. Here, we only state the
results; the proofs can be found in Appendix B.4, and for examples, see [PELOS].

4.5.1 Binary Coproducts

In most cases, binary coproducts can be constructed in the underlying categories,
with some compatibility requirements for the preservation of binary coproducts.
Note that we do not have to analyse the compatibility of binary coproducts with M,
as done in [PEL08], since this is a general result in M-adhesive categories, as shown
in Fact 4.27.

Fact 4.51. If the M-adhesive categories (C, My), D, My), and (C;, M) for j € J
have binary coproducts then also the following M-adhesive categories have binary
coproducts:

1. the general comma category (G, (X jeg M;) N Morg), if for alli € 1 F; preserves
binary coproducts,
2. any full subcategory (C’, M|c/) of C, if

(i) the inclusion functor reflects binary coproducts or
(ii) C’ has an initial object I and, in addition, we have general pushouts in C" or
irn:l—>AeMforallAecC,

9%

. the comma category (F,(M; X My) N Morg), if F : C — X preserves binary
coproducts,

4. the product category (C x D, M; x M,),
5. the slice category (C\X, M; N Morc\x),
6. the coslice category (X\C, M; N Morx\c), if C has general pushouts,
7. the functor category ([X, C], M;-functor transformations).
A
Proof. See Appendix B.4.1. |

4.5.1.1 Epi-M Factorisation

For epi—M factorisations, we obtain the same results as for &—M’ pair factorisa-
tions by replacing the class of morphism pairs & by the class of all epimorphisms
and M’ by M. We do not explicitely state these results here, but they can be easily
deduced from the results in the following subsection.
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4.5.1.2 &-M’ Pair Factorisation

For most of the categorical constructions, the &—AM’ pair factorisation from the
underlying categories is preserved. But for functor categories, we need a stronger
property, the &M’ diagonal property, for this result.

Definition 4.52 (Strong &-M’ pair factorisation). An &—-M'’ pair factorisation
is called strong if the following &-M'’ diagonal property

A e
holds: B T K
Given (e,e’) € &, m € M’, and morphisms a, b,n as p €
shown in the following diagram, with n o e = m o a and b / l"
noe = mo b, there exists a unique d : K — L such that
mod=n,doe=a,anddoe =b. A

Fact 4.53. In an M-adhesive category (C, M), the following properties hold:

1. If (C, M) has a strong & —M' pair factorisation, then the &' —M' pair factorisa-
tion is unique up to isomorphism.

2. A strong &-M' pair factorisation is
functorial, i.e., given morphisms a, b, c,
fi,81, >, 82 as shown in the right di-
agram with c o fj = fpoa and c o
g1 = g o b, and E-M' pair factori-
sations ((e1,e}), m1) and ((ez, €}), my) of
fi,81 and f>, g, respectively, there ex-
ists a unique d : K; — K, such that

doe = eoa doe| = e, 0b, and
com; =mpod. A
Proof. See [PELOS]. O

Fact 4.54. Given M-adhesive categories (C;, M;), (C, My), and (D, M) with 8’].—
M, E-M, and E,~M; pair factorisations, respectively, the following M-adhesive
categories have an &'—M' pair factorisation and preserve strongness:

1. the general comma category (G, (Xjeq M;) N Morg) with M' = (Xjeg M;.) and
& = {((e},), (e;.)) | Cej, e;.) € 8;.} N (Morg X Morg), ifG,‘(M}/_) C Isos for all
iel,

2. any full subcategory (C’, Mi|c) of C with M = Mi|c: and & = E!|c'xcry, if
the inclusion functor reflects the & —M pair factorisation,

3. the comma category (F, (M, x My) N Morg) with M = (M} x M) N Morg
and & = {((e1,e2),(e],€))) | (e1,¢e]) € &), (ez,€)) € E} N (Morg X Mory), if
GM)) C Isos,

4. the product category (C x D, My x My) with M’ = M| x M, and & =
((e1.e2), (€} )] (e1.€}) € E). (e2.¢)) € E)

5. the slice category (C\X, M; N Morc\x) with M = M| 0 Morc\x and & =
8'1 n (MO}”C\X X MOVC\X),
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6. the coslice category (X\C, My N Morx\c) with M’ = M| N Morx\c and & =
& N (Morx\c X Morx\c), if M| is a class of monomorphisms,

7. the functor category ([X, C], M;-functor transformations) with the class M’ of
all M -functor transformations and & = {(e,€’) | e, e’ functor transformations,
(e(x), €' (x)) € & for all x € X}, if &|-M is a strong pair factorisation in C. A

Proof. See Appendix B.4.2. |

4.5.1.3 Initial Pushouts

In general, the construction of initial pushouts from the underlying categories is
complicated since the existence of the boundary and context objects have to be
ensured. In many cases, this is only possible under very strict limitations.

Fact 4.55. If the M-adhesive categories (C, M;), (D, My), and (Cj, M;) for j € J
have initial pushouts over M, M'z, and M;., respectively, then also the following
M-adhesive categories have initial pushouts over M’-morphisms:

1. the general comma category (G, (X jeg Mj)NMorg) with M' = Xjeg M;ﬂMor(;,
iffor alli € I F; preserves pushouts along My,-morphisms and G;(My,) C Isos,

2. any full subcategory (C’, Mi|c/) of C with M’ = M|, if the inclusion functor
reflects initial pushouts over M’-morphisms,

3. the comma category (F, (M X My) N Morg) with M" = M x M., if F preserves
pushouts along M-morphisms and G(M;) C Isos,

4. the product category (C x D, M| x My) with M' = M| x M.,

. the slice category (C\X, My N Morc\x) with M’ = M| N Morc\x,

6. the coslice category (X\C, My N Morx\c) with M’ = M| 0 Morx\c, if for [ :
A,d') - (D,d)e M

n

(i) the initial pushout over f in C can be extended to a valid square in X\C or
(ii)a’ : X - A € M and the pushout complement of a’ and f in C exists,

7. the functor category ([X, C], M;-functor transformations) with M’ = M -func-
tor transformations, if C has arbitrary limits and intersections of M;-subobjects.
A

Proof. See Appendix B.4.3. O

4.5.1.4 Effective Pushouts

Effective pushouts are also preserved by categorical constructions. Using Rem. 4.24,
we already know for the regarded situation that the induced morphism is a monomor-
phism. We only have to show that it is indeed an M-morphism. This is the case if
pullbacks, pushouts, and their induced morphisms are constructed componentwise.
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Fact 4.56. If the M-adhesive categories (C, M;), (D, My), and (C;, M;) for j €
have effective pushouts then also the following M-adhesive categories have effective
pushouts:

. the general comma category (G, (Xjeq M;) N Morg),

. any full subcategory (C’, M;|¢/) of C,

. the comma category (F, (M; X M) N Mory),

. the product category (C X D, M; x M,),

. the slice category (C\X, M; N Morc\x),

. the coslice category (X\C, M; N Morx\c¢),

. the functor category ([X, C], M,-functor transformations). A

N O AN W N~

Proof. See Appendix B.4.4. |



Chapter 5
M-Adhesive Transformation Systems

In this chapter, we introduce M-adhesive transformation systems based on the M-
adhesive categories introduced in Chap. 4. They describe a powerful framework for
the definition of transformations of various models. By using a very general variant
of application conditions we extend the expressive power of the transformations. For
this chapter, we assume we have an M-adhesive category with initial object, binary
coproducts, an E&~M factorisation and an &—M pair factorisation (see Sect. 4.3).

In Sect. 5.1, we give a short introduction to conditions and constraints and de-
fine rules and transformations with application conditions. This is the generali-
sation of the theory presented in Sect. 2.2 for graphs to M-adhesive categories.
Various results for transformations with application conditions, which were mo-
tivated on an intuitive level in Sect. 2.3, are presented in the general setting of
M-adhesive transformation systems in Sect. 5.2. As a running example, we use
a model of an elevator control and analyse its behaviour. Application conditions in-
duce additional dependencies for transformation steps. In Sect. 5.3, we show that
the notion of equivalence for transformation sequences with application conditions
can be described and analysed adequately using the notion of permutation equiv-
alence, which generalises the notion of switch equivalence. This chapter is based
on [EGH" 14, EGH" 12, Gol10, HCE14].

5.1 Rules and Transformations with Application Conditions

Nested conditions were introduced in [HP0OS5, HP09] to express properties of objects
in a category. They are expressively equivalent to first-order formulas on graphs.
Later, we will use them to express application conditions for rules to increase the ex-
pressiveness of transformations. We only present the general theory for M-adhesive
categories in this section; for examples of conditions and their constructions, see
Sect. 2.2.

Basically, a condition describes the existence or nonexistence of a certain struc-
ture for an object.

© Springer-Verlag Berlin Heidelberg 2015 91
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Computer Science. An EATCS Series, DOI 10.1007/978-3-662-47980-3_5
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Definition 5.1 (Condition). A (nested) condition ac over an object P is of the form

ac = true,

ac = A (a,ac’), where a : P — C is a morphism and ac’ is a condition over C,
ac = —ac’, where ac’ is a condition over P,

ac = Nieraci, where (ac;);cy with an index set I are conditions over P, or

ac = Vicrac;, where (ac;);ey with an index set I are conditions over P.

Moreover, false abbreviates —true, 3 a abbreviates 3 (a, true), and Y (a, ac) abbre-
viates = 3 (a, —ac). A

A condition is satisfied by a morphism into an object if the required structure
exists, which can be verified by the existence of suitable morphisms.

Definition 5.2 (Satisfaction of condition). Given a condition ac over P a mor-
phism p : P — G satisfies ac, written p E ac, if

® qc = true,
e ac = 1 (a,ac’) and there exists a mor-

phism g € M withgoa = pandqE ac,
e ac = -ac’ and p [ ac’, \ /
e ac = ANeraciand Vie I : pfEac,or
e ac=Vrac;and i€ : pkE ac;.

C<ac

Two conditions ac and ac’ over P are semantically equivalent, denoted by ac = ac’,
if p E ac © p k= ac’ for all morphisms p with domain P. A

As shown in [HP09, EHL10], conditions can be shifted over morphisms into
equivalent conditions over the codomain. For this shift construction, all & -overlap-
pings of the codomain of the shift morphism and the codomain of the condition
morphism have to be collected.

Definition 5.3 (Shift over morphism). Given a condition ac over P and a mor-
phism b : P — P’, Shift(b, ac) is a condition over P’ defined by

e Shift(b, ac) = true if ac = true,

o Shift(b,ac) = Ver I (@, Shift(y, ,
ac’))ifac = A (a,ac’) and F = {(d',}) € ac D P < <ac
E|b e M,b' oa=d ob}, b =) b’

e Shift(b, ac) = =Shift(b, ac’) if ac = —ac’, DP, Vou

o Shift(h,ac) = AierShift(b,ac;) if ac = | Shift(b, ac) ¢ Shift(¥’, ac’)
Nijeraci, or

e Shift(b, ac) = VcrShift(b, ac;) if ac = Vicrac;. A

Fact 5.4. Given a condition ac over P and morphisms b : P — P, b’ : P — P",
andp: P - G,

e p E Shift(b, ac) if and only if p o b = ac and
o Shift(d’, Shift(b, ac)) = Shift(b’ o b, ac).
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ac [> p——L—— p—L— p7 < Shift(b’ o b, ac)
Pobl 2 A A
G Shift(b, ac) Shift(d’, Shift(b, ac))
A

Proof. We show the first statement by structural induction.
Basis. The equivalence holds trivially for the condition ac = true.
Induction step. Consider a condition ac = 3 (a, ac’) with the corresponding shift

construction, Shift(b, ac), along morphism b.

“=” Suppose p E Shift(b, ac), i.e., there ex-
ists (a’,b") € F such that p = 3 (a’, Shift(d’,

ac[>p

a

c <ac'

ac’)). This means that there exists a morphism b b

qg: C — G e Mwithgqod = p and DP, i C’<
g E Shift(b’,ac’). By induction hypothesis, | ghift “ Shift
gob’ k= ac’,i.e., we have amorphismgob” € M | (pac) 7 (b, ac")

with go b oca = gqoa" ob = pob and

pobkE d(a,ac’) = ac.
“="1If pob E 3 (a,ac’) then there

ac[> p a

exists ¢ € M with pob = goaand g E ac’.

Now consider the &—M pair factorisation bl hl

((a',b"),q") of p and q. Since ¢q,q¢’ € M, by > p / B v §hift’
M-decomposition it follows that b € M, | gpift \(b ,ac’)
andqg oa’ob=pob=qgoa=q ob' oa (b, ac) P >\

implies thata’ ob = b’ oa,i.e., (a’,b’) € F. G
By induction hypothesis, g = ¢’ o b’ = ac’
implies that ¢’ = Shift(d’, ac’), and therefore p E 3 (¢, Shift(d’, ac’)), i.e., p E
Shift(b, ac).

Similarly, this holds for composed conditions.

The second statement follows directly from the first one: for a morphism ¢ :
P” — G, we have that ¢ E Shift(b’ o b,ac) © gob' ob E ac & go b kE
Shift(b, ac) & ¢ E Shift(d’, Shift(b, ac)). O

As with the shift construction, we can also merge a condition over a morphism.
The difference lies in different M-morphisms to be required, with a’ € M instead of
b’ € M. Additionally, b’ has to be from a distinguished morphism class O of match
morphisms.

Definition 5.5 (Merge over morphism). Given a condition ac over P and a mor-
phism b : P — P’, Merge(b, ac) is a condition over P’ defined by

e Merge(b, ac) = true if ac = true,
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e Merge(b,ac) = Vi b)eF 3 (a’, Merge(', o p -
ac))ifac = A(a,ac’) and F’' = {(a’, 1) € >p ¢ <lac

EladeMb eO,b oa=ad ob}, b =) b

e Merge(b, ac) = =Merge(b, ac’) if ac = —ac’, > P i C’

o Merge(b,ac) = AierMerge(b,ac;) if ac = | Merge(b, ac) ¢ Merge(b', ac’)
ANieraci,

e Merge(b, ac) = VieyMerge(b, ac;) if ac = Vicrac;. A

The merge construction is used to specify schemata of conditions, which are in-
spired by a construction proposed in [KHMO06] for negative application conditions.
An AC schema consists of the disjunction of all merges of a condition along &-
morphisms starting from its domain.

Definition 5.6 (AC schema). Given a condition ac over P and the set Ep = {e €
& | dom(e) = P} of all &-morphisms with domain P, the AC schema ac over P is

given by ac =V jeg, I (f, Merge(f, ac)). A

The satisfaction of an AC schema by a morphism only depends on the satisfaction
of one component of the corresponding &M factorisation of the morphism. To
prove this, we first show a slightly more general result for disjunctions over the set
Ep.

Lemma 5.7 (Satisfaction of disjunction). Consider the set Ep = {e € & | dom(e) =
P} of all &-morphisms with domain P, a condi- ,

. , acy[>, C

tion ac = \/feg, A (f, acf) over P, and a mor- / \
phism p : P — G with an &M factorisation aCDP fop G

moe = p. Then p | ac ifand only if m k= ac,. A \ /
ac,[>p’

Proof. The following equivalences prove this:

pEace Afe&p:pkE H(f,ac’f) (Def. 5.2)
@HfGSP,gEM:gszp/\gl:ac} (Def. 5.2)
o mEac,Amoe=p (Def. 4.23) O

Fact 5.8 (AC schema satisfaction). Given an AC schema ac over P and a mor-
phism p: P — G with an &M factorisation m o e = p, p = ac if and only if
m | Merge(e, ac). A

Proof. By Def. 5.6 we have that ac = ac[>p p/G

V eg, 3 (fs Merge(f, ac)). We can directly ap- e ,
ply Lem. 5.7, leading to the required result, 0 | Merge(e.ac) >p

Remark 5.9. If p : P — G is an M-morphism, then the satisfaction of an AC schema
coincides with classical satisfaction, because the factorisation is trivially p = p o
id. A
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In contrast to conditions, constraints describe global requirements for objects.
They can be interpreted as conditions over the initial object, which means that a
constraint 3 (i¢, true) with the initial morphism i¢ into C is valid for an object G if
there exists a morphism ¢ : C — G. This constraint expresses that the existence of
C as a part of G is required.

Definition 5.10 (Constraint). Given an initial object A, a condition ac over A is
called a constraint. A

The satisfaction of a constraint is that of the corresponding conditions, adapted
to the special case of a condition over an initial object.

Definition 5.11 (Satisfaction of constraint). Given a constraint ac (over the initial
object A), an object G satisfies ac, written G = ac, if

® qc = true,
e ac = 3 (ic,ac’) and there exists a mor- ic
8 ’
phism ¢ € M with ¢ E ac’, ac [> A ¢ < ac

ac = -ac’ and G } ac’,
ac = Nieraciand Yie I : G E ac;, or

ac = Vicraciand die I : G E ac;. A &

In [EEPTO6], transformation systems based on a categorical foundation using
weak adhesive HLR categories were introduced which can be instantiated to vari-
ous graphs and graph-like structures. In addition, application conditions extend the
standard approach of transformations. Here, we present the theory of transforma-
tions in M-adhesive categories for rules with application conditions in general.

A rule is a general description of local changes that may occur in objects of
the transformation system. Mainly, it consists of some deletion part and some con-
struction part, defined by the rule morphisms / and r, respectively. In addition, an
application condition restricts the application of this rule to certain objects.

Definition 5.12 (Rule). A rule p = (L é K - R, ac) consists of objects L,
K, and R, called left-hand side, gluing, and right-hand side, respectively, two mor-
phisms [ and r with [, r € M, and a condition ac over L, called application condi-
tion. A

A transformation describes the application of a rule to an object via a match. It
can only be applied if the match satisfies the application condition.

Definition 5.13 (Transformation). Given arule p = (L L K- R, ac), an object

G, and a morphism m : L — G, called /

match, such that m [ ac, a direct trans- ac D L~

formation G 2= H from G to an object ml (1) /{ (2) J"

H is given by the ppshouts (1) and (2). G~ D —H
A sequence of direct transformations

is called a transformation. A

r
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Remark 5.14. Note that for the construction of the pushout (1) we have to construct
the pushout complement of m o /, which is only possible if the so-called gluing
condition is satisfied (see [EEPT06]). A

In analogy to the application condition over L, which is a pre-application con-
dition, it is also possible to define post-application conditions over the right-hand
side R of a rule. Since these application conditions over R can be translated into
equivalent application conditions over L (and vice versa), we can restrict our rules
to application conditions over L.

Definition 5.15 (Shift over rule). Given arule p = (L «— K —> R,ac) and a
condition acg over R, L(p, acg) is a condition over L defined by

e L(p,acg) = true if acg = true,
e L(p,ack) = 3 (b,L(p*,acy)) if

3 (a, ac}), aorh hout | TP 2R) -
acg = A(a,acl), aor has a pushou - I P
R . > K R <]
complement (1), and p* = (Y «— bl ) CJ (1) Jﬂ
z X) is the derived rule by
constructing pushout (2); L(p, LG Zc’) ¥ z 7 X §
»acg

d(a, acy)) = false otherwise,

o L(p,acg) = ~L(p,acy) if acg = —acy,

o L(p,acg) = NerL(p, acg;) if acg = Ajcracg,, or

o L(p,acg) = VierL(p,acg;) if acg = Vicracg,.

Dually, for a condition ac; over L we define R(p,ac.) = L(ﬁ’l,acL), where the

— . .. .. . — /
inverse rule p ! without application conditions is defined by p V= (R — K —
L). A

: . !
Fact 5.16. Given a transformation G 22, H via a rule p=L—K R, ac)

and a condition acg over R, m = L(p, acg)

L(p, acr) acr
if and only if n | acg. pv .
Dually, for a condition acy over L we 1< ! K - R
have that m E acyp if and only if n E
R(p, acL). ml /{ Jﬂ
Moreover, for any transformation
fore f y form G+—F—D———H
G' —— H'’ we have that m" = Shift(m, ” v y
L(p, acg)) if and only if m’ = L(p’, Shift(n,
acp)) for p' = (G <= D =5 H), Al G D—F—H

Proof. We show the first statement by structural induction.

Basis. The equivalence holds trivially for the condition acg = true.

Induction step. Consider a condition acg = 1 (a, acy).

Case 1: a o r has a pushout complement (1) and L(p,acg) = 3 (b,L(p*, acy))
from the construction.
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“="” Suppose m E L(p,acg), i.e., there exists ¢ € M with g o b = m and
g E L(p*,acy). Now construct pullback (3") and obtain the induced morphism ¢’;
and by M-pushout—pullback decomposition (Theorem 4.22), both (2’) and (3") are
pushouts. By uniqueness of pushout complements (Theorem 4.22), (2”) and (2) are

equivalent such ! B / r

that there exists L K k R

a pushout (3) bl 2" C’l bl (2) { (1) l“
equivalentto (3") | ,, Y 7 oml ye—2= 7 r x|
and a decompo-

sition of G 222, ql (39 J ql L) l @) l”
H into pushouts G 7 D G+— D —H

(1)-(4). By PO-
PB compatibility of M, g € M implies that p € M, and by induction hypothesis,
p Eacy, ie., n acg.

“<"1If n E acg, there exists p € M with poa = nand p F acj. As above,

we can decompose G 2%, Hinto pushouts (1)—(4), with g € M, go b = m, and
q E L(px*, acy) such that m | L(p, acg).

Case 2: aor has no pushout complement and L(p, acg) = false. Suppose n = acg;
then we have, by the construction above, a pushout complement (1) of a o r, which
is a contradiction. Therefore, n £ acg and m [ false.

Similarly, this holds for composed conditions.

The second statement follows from the dual constructions.

For the third statement, we have that m’ = Shift(m, L(p,acg)) © m' om kE
L(p,acg) © n’ on = acg © n’ | Shift(n,acg) & m’ E L(p’, Shift(n, acg)), which
follows from the first statement, Fact 5.4, and the composition of pushouts. O

A set of rules constitutes an M-adhesive transformation system, and combined
with a start object an M-adhesive grammar. The language of such a grammar con-
tains all objects derivable from the start object.

Definition 5.17 (M-adhesive transformation system and grammar). An M-
adhesive transformation system AS = (C, M, P) consists of an M-adhesive cate-
gory (C, M) and a set of rules P.
An M-adhesive grammar AG = (AS, S) consists of an M-adhesive transforma-
tion system AS and a start object S.
The language L of an M-adhesive grammar AG is defined by
L ={G| 3 transformation S = G via P}. A

Example 5.18 (Elevator). Now we introduce our running example for this chapter,
an elevator control. The type of control we model is used in buildings where the
elevator transports people from or to one main stop; in our example this is the lowest
floor. This situation occurs, for example, in apartment buildings or multistory car
parks. Each floor in the building is equipped with a call button. Such external call
requests are served by the elevator only if it is in downwards mode in order to
transport people to the main stop. When inside the elevator, infernal stop requests
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down next_up! \ ,
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Fig. 5.1 The type graph TG and a model G of Elevator
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elevator | next_up elevator )next_up

~< _ L P
(Iposy”~~._ vIposy) .-~ A _.-7 dpos;

% A floor floor
on on

r d neg|
elevator | next_up «-- -7 elevator |next_up elevator | next_up
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down int
down elevator )| 3 pos
(P S R WD

Fig. 5.2 Three rules for processing internal requests in the Elevator example

for each floor can be delivered. These are served as soon as the elevator car reaches
the requested floor, both in upwards and in downwards mode. As long as there are
remaining requests in the running direction, the direction of the elevator car is not
changed. If the elevator car arrives at a floor, all requests for this floor are deleted.
We model this system using typed graphs (see Sect. 2.1). In the right of Fig. 5.1,
the type graph TG for our elevator example is depicted. This type graph expresses
that an elevator car of type elevator exists, which can be on a specific floor.
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(o) ione) |EomecE oo [Eoes® roae)

Fig. 5.3 Application of the rule moveDown

Moreover, the elevator can be in upwards or downwards mode. Floors are connected
by next_up edges expressing which floor is directly above another floor. Moreover,
higher_than edges express that a floor is arranged higher in the building than
another floor. Each floor can hold requests of two different types. The first type
is an external request expressing that an external call for the elevator car on this
floor is given. The second type is an internal request expressing that an internal
call from within the elevator car is given for stopping it on this floor.

In the left of Fig. 5.1, a graph G typed over this type graph T'G is shown, describ-
ing a four story building, where the elevator car is on the second floor in downwards
mode with an external call request on the ground floor. Note that G contains alto-
gether six higher_than edges from each floor which is higher than another floor
(corresponding to the transitive closure of opposite edges of next_up); these are
not depicted.

In Fig. 5.2, three rules are shown modelling part of the elevator control for in-
ternal stop requests. Note that only the left- and right-hand sides of the rules are
depicted—the gluing consists of all nodes and edges occurring in both L and R. The
morphisms map the obvious elements by type and position and are therefore not
explicitly marked.



100 5 M-Adhesive Transformation Systems

At the top of Fig. 5.2, we have the rule moveDown describing that the elevator
car moves down one floor. The combined application condition on L consists of
three positive application conditions ( d pos; for i = 1,2,3) and a negative one
(= A neg,). This combined application condition states that some request has to be
present on the next lower floor (pos;) or some other lower floor (pos,), no request
should be present on the elevator floor (neg,), and the elevator car is in downwards
mode (pos;). Note that both pos; and pos, are necessary because the satisfaction of
application conditions depends on injective morphisms.

As a second rule, intRequest describes that an internal stop request is made
on some floor under the condition that no internal request is already given for this
floor. The third rule processIntDown describes that an internal stop request is pro-
cessed for a specific floor under the condition that the elevator is on this floor and in
downwards mode.

In Fig. 5.3, the application of the rule moveDown to the graph G from Fig. 5.1 is
shown, where also the gluing graph of the rule is explicitly depicted. Note that the
match m; satisfies the application condition, because m; = 3 pos, for the request
on the lowest floor (remember the implicit higher_than edges between the floors),
my = 3 pos; since the elevator is in downwards mode, and m; = = 3 neg; with no
request on the current floor. A

5.2 Results for Transformations with Application Conditions

In this section, we present the main important results for M-adhesive transforma-
tion systems for rules with application conditions, generalising the corresponding
well-known theorems for rules without application conditions [EEPT06] and with
negative application conditions [Lam10]. The intuition and motivation for these re-
sults has already been given in Sect. 2.3—here we now state the full definitions,
results and proofs. Note that the Local Church—Rosser, Parallelism, Concurrency,
Embedding, Extension and Local Confluence Theorems are stated and proven in
[EGH" 14, EGH"12] for the case of rules with application conditions; in addition,
we present new examples.

Most of the proofs are based on the corresponding statements for rules without
application conditions and Facts 5.4 and 5.16, stating that application conditions
can be shifted over morphisms and rules. The idea is the following: We switch from
transformations with application conditions to the corresponding transformations
without application

transformations with ACs == result with ACs

conditions, use the

results for transfor- u ﬂ
mations without ap- | transformations without ACs == result without ACs
plication conditions,

and lift the results without application conditions to the corresponding ones with ap-
plication conditions.
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I; i . ..
In the following, let p; = (L; «— K; BN R;, ac;) be a rule with a left application
— li i . . .
condition and p; = (L; «— K; N R;) the underlying plain rule for i € N. For
every direct transformation G % H via such a rule p;, there is a direct trans-

formation G 22 H via the underlying plain rule p;, called the underlying plain
transformation.

5.2.1 Local Church—Rosser and Parallelism Theorem

The Local Church—Rosser Theorem is concerned with parallel and sequential in-
dependence of direct transformations. We study under what conditions two direct
transformations applied to the same graph can be applied in arbitrary order, leading
to the same result.

For parallel independence of two direct transformations H; é G L H,, the
first obvious condition is that the underlying plain transformations have to be paral-
lel independent. In addition, we have to require that the matches of p, and p; in H;
and H,, respectively, satisfy the application conditions of the corresponding rule.

Definition 5.19 (Parallel independence). Two direct transformations G 2 H 1
and G 22, H, are parallel independent if there are morphisms di; : Ly — D,
and dz] . L2 4 D] such that f2 ] d[z = my, f] ] dz] = my, g2 © D|2 '= acy, and
g10dy FE acy.

acy acy
); Jp— K, LI S PR E— R,
nll kll & m 'y de lkz lnz
H,« 7 D, I G+ I3 D, I3 ~H,

A

moveDown,m intRequest,m;

Example 5.20. The pair H; < G , H, of direct transfor-
mations in Fig. 5.4 is parallel dependent. The left rule application is the one al-
ready considered in Fig. 5.3, while m, matches the floor in the left-hand side of
intRequest to the current floor with the elevator. The morphisms dj, and d»| ex-
ist such that fi o dy; = my, o 0d;p = my, and m), = gy o dy; F - dneg. But
m| = grodyy F = dnegy, since the rule intRequest added a request at the current
floor with the elevator forbidding the application of the rule moveDown. Therefore,
the transformations are parallel dependent. Note that the underlying plain transfor-
mations are parallel independent.

For sequential independence of transformations G 2, H) £ G’ we need the
sequential independence of the underlying plain rules. Moreover, the match of p, in
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Fig. 5.4 Parallel dependent transformations

G has to satisty its corresponding application condition and the co-match of p; to G’
has to satisfy the shifted application condition R(py, ac;). The definition of sequen-
tial independence for transformation steps with NACs goes back to [HHT96] for
graph transformation, and is generalised to adhesive systems in [LEOP08, Lam10].

Definition 5.21 (Sequential independence). Two direct transformations G o

H, PR, G are sequentially independent if there are morphisms d : Ry — D,
and dz] : L2 4 D] such that fz (o] d]z =ni;, 81 ° d21 =mp, 82 © d]2 |= R(pl,acl), and
fiodsy F acy.

acy acy

V V

JR— K, R, Ly+—" K> 2——R,

d d
m,l kll 2 m o 12 lkz lnz

G+ I D, g1 ~H, % D, 22 ~G’

processIntDown,mg (; intRequest,ms

Example 5.22. The sequence H» S » Hj of direct
transformations in Fig. 5.5 is sequentially independent. Note that my matches the
floor in the left-hand side of processIntDown to the current floor with the elevator,
while m3 matches the floor of the left-hand side of intRequest to the floor one




5.2 Results for Transformations with Application Conditions 103
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Fig. 5.5 Sequentially independent transformations

level down. The morphisms d;, and d,; exist such that gy o dp; = m3, f3 o dj» = ny,
g3 ody» F R(processIntDown, d pos), and fy o dp; | — d neg. A

In the case of parallel independence of two direct transformations via rules p; and

D2, the parallel rule p; + p, can be defined by binary coproducts of the components
of the rules.

1 r
Definition 5.23 (Parallel rule). Given rules p; = (L P K, AN Ri,acy) and

! I+ s
P2 = (L <= K» — Ry, ac»), the parallel rule py + p> = (L + Ly ¢ Ky + Ky —5
Ry + Ry,ac) is defined by I "
the componentwise coprod- e DL L= i =l
ucts of the left-hand sides, ir, ixll li;e,

glueings, and right-hand Lt et mn T
sides including the mor- ac>Li + Ly 1+ 8 1+ Ry

phisms, and ac = Shift(i,, i1y iKZI I"Rz
acy) A L(p1 + pa, Shift(ir,, | acy P> 1y« K, R
R(p1,acy))) A Shift(ir,, acy) ’

A L(p1 + p2, Shift(ig,, R(p2, acy))).
A direct transformation via a parallel rule is called parallel transformation. A

The parallel rule is well defined and, in particular, its morphisms are actually
M-morphisms.

Fact 5.24. The morphisms |, +1; : K1 +Ky —» Li+L,andri+r;, : K1+K, —» Ri+R,
are in M. A

Proof. This follows directly from Fact 4.27. |
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Fig. 5.6 Parallel rule and transformation

Example 5.25. In the upper row of Fig. 5.6, the parallel rule processIntDown +
intRequest is shown. We have only depicted the relevant application conditions
and left out those which should not appear in a valid model, for example, graphs
with two floors holding the same request. The application conditions describe
for various overlappings of the two floors that there is an elevator in downwards

mode at the upper floor and no internal request at the lower one. The application
processIntDown+intRequest,my+m}

H, , H; of this parallel rule is shown in Fig. 5.6 and
combines the effects of both rules to H, leading to the graph Hj. A

Now we present the Local Church—Rosser and Parallelism Theorem, which is
an abstraction of Theorem 2.26, by replacing graphs by objects from a suitable M-
adhesive category.

Theorem 5.26 (Local Church—Rosser and Parallelism Theorem). Given two

parallel independent direct transformations

pi1.my G P2,1my
pi1,m p2,m2 .
G —— H, and G = H,, there is an / \

object G’ together with direct transformations | H; pi|p2.m H,
P2, , prmy ,
Hl — G and H2 _ G such that pz,m'2 , pl,m/l
p1amy P2,y p2.m pim G

G:Hl :G’andGszz
G’ are sequentially independent.
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Pp2,my
Given two sequentially independent direct transformations G om, H —

P m]

G', there is an object H, together with direct transformations G LN Hy — G’

such that G 225 H 1and G LN H, are parallel independent.

; . . pr+pam
In any case of independence, there is a parallel transformation G ———s

Gl
pitpam ,
and, vice versa, a direct transformation G ——= G’ via the parallel rule p| + p,

can be sequentialised both ways. A

Proof. Consider the parallel independent direct transformations G 2™, Hy and

G £, H,. Then the underlying plain transformations G Zl;m—]—> H, and G E;m—z—;,
H, are also parallel independent.

acq acy

VoV

R —- K h 1, Ly+—2" K, 2—R,

nll kll & m my & l 3 lnz

Hi+—4 D, 7 G % D, o>

By the Local Church—Rosser Theorem without apphcatlon condmons [EEPT06]

P
there are an object G’ and plain dlrect transformatlons H, : G’ <: H, such

that the plain transformations G :> H, :> G’ and G 1—2_n12—> H> —_——> G’ are

sequentially independent.

Since the two direct transformations are parallel independent, there are mor-
phisms di» : L1 — Dy and dp; : L, — D suchthatm; = f, odj, and my = fj ody;.
Moreover, we have that m1 = gr odj; and m’2 = g1 o dy from the proof of the
plain Local Church-Rosser Theorem. By assumption, g; o dio = m] F ac; and

. prm P2,
g1 0 dy = m) [ acy; therefore the transformations H, —— G’ and H —= G’

are well defined. - .
The plain transformations G 2N H, % G’ are sequentially independent,
with morphisms d>; : Ly — D such that g; o do; = mj, and &}, : R; — D), such that

, y
fyod, =n.

acy acy
Li—l K— " LR Ly~ g7 LR
7
mll k‘l e ny m, < l 2 ln/z
7
G h Dl g1 Hl le D2 gé G/
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By precondition, f; o dy; = my E acs. I

The proof of the plain Local Church-Rosser n= & 4
Theorem shows that the diagrams (1)—(4) are ldlz (1) J 2) dl]zl
pushouts, and therefore g,od), = ac; = L(R(py, D, D LD
acy)) implies that g} o d/, E R(pi,acy) using 2
Fact 5.16. Therefore, also the transformations lgz 3) J €] g’zl
G 2% Hy 25 6 are sequentially inde- | Hp-< D] -G’
pendent.

Similarly, the transformations G % H, % G’ can be shown to be sequen-
tially independent.

The second statement follows from the first one by using the inverse rule and
duality of parallel and sequential independence.

For parallelism, given sequentially independent transformations G 2 o

% G’, the Parallelism Theorem without application conditions [EEPTO06] states

. . Pi+P2. . . .
that there is a parallel transformation G i‘—if:;» G’ withm; = moiy, and n} = noig,.

i
rL[ +L2~ L+l K] + K2 At —R] +R2~ =2 Rz

” 7 -

By assumption, m; [ acy and m), | ac,. Using Facts 5.4 and 5.16 and Def. 5.23,
we have that m; F ac; & m | Shift(i,,ac)) and m} F ac; © n), = noig,
R(p2,acz) & n k Shift(ix,, R(p2, ac2)) & L(pi + pa, Shift(ig,, R(pa, ac»))). Sim-

ilarly, the sequentially independent transformation G 2 H, % G’ implies
that m | Shift(iy,, acy) and m | L(p; + po, Shift(ig,, R(p1, acy))). Thus, m E ac,

i.e., the parallel transformation satisfies the application condition.

. +p2, . .
Vice versa, let G 222 G’ be a parallel transformation. Then there is an under-

lying plain parallel transformation and, by the Parallelism Theorem without applica-
tion conditions [EEPTO6], there is a sequentially independent direct transformation

pimy D2 . . . .
G —— H; —= G’ withm; =moi; and nj = no ig,. By assumption, m |= acy.

From the equivalences above it follows that m; | ac; and m) | ac, i.e., the direct
transformations satisfy the application conditions. Similarly, this holds for the se-

. . . . . p1sm .
quentially independent direct transformation G % H, % G’ with my E ac,
and m] F ac. a

5.2.2 Concurrency Theorem

Sequentially dependent transformations G 2, H £, G’ cannot be combined
using the parallel rule. Instead, we use an E-dependency relation and construct
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an E-concurrent rule p; g p, for p; and p,. The resulting E-concurrent trans-
formation G % leads to the same result G’ as the E-related transformations

G £ H £, G’. The connection between E-related and E-concurrent transforma-
tions is established in the Concurrency Theorem.

The construction of an E-concurrent rule is based on an E-dependency relation
which guarantees the existence of suitable pushout complements. The application
condition of the E-concurrent rule guarantees that, whenever it is applicable, the
rules p; and, afterwards, p, can be applied.

Definition 5.27 (Concurrent rule). Given rules p; = (L4 <l—' K, -, Ry, acy)

and p, = (L <[i K> 2, Ry, acy), an object E with morphisms e; : R; — E and
ey : Ly — E such that (eq, e;) € & is an E-dependency relation of p, and p; if the
pushout complements (1) of e; o ; and (2) of e; o [, exist.

Given an E-dependency relation (E, ey, e;) of p; and p, the E-concurrent rule

spowy

pr*¥epr=(L «— K 2o R, ac) is constructed by pushouts (1)—(4) and pullback
(5), with ac = Shift(u;,ac;) A L(p*, Shift(e,, acz)) and p* = (L e N E).

acy acy

V V

L h K, LR ) Jp— K,—"2 +R,

1
Mll 3) Vll 1 \ / 2) Jvz “) luz
e \E/ -

A sequence G DM, H 2 G s called E-related if there existh : E — H,
:Cy > Dy,and ¢y : Co » Dysuchthat hoey = ny, hoey = my, ¢y ovy = ky,
02 o v, =k, and (6) and (7) are pushouts.

acy acy

V

) ppp— K, " LR, IL,~—%2 Kk 2 +R,

2
my ki C1 7 (\\EZB 5 C2 ky ny
P
G D D G’

- fi 1 81 ~H~ b 2 82 >

A direct transformation via an E-concurrent rule is called E-concurrent transfor-
mation. A

Example 5.28. In Fig. 5.7, a sequentially dependent transformation sequence is
shown applying first the rule inRequest, followed by the rule moveDown. Note
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down (down) (o)
down next_up down| next,upT down| next,upT
next,upT oo | next,upT % D“E"tf“
next,upT next,upT next_up
- - 5
1 2 3
Fig. 5.7 A sequentially dependent transformation
domn
- ) on
AN 4 F 4
Ss N ’ //
int S ’ ’
(3pos;™>< "V Tpos, K A Jpos ! .7
~o posy - A - dneg, .-
L P - e
floor floor floor
fﬁ Jneg intRequest ou !
i r <
[ E on
< . . . i
N - - ‘ ‘
> ~. Sog i i
RN - RSN J 4
oy floor oy oy floor
loor)|  |(FemesE e o)
~< T AN Ea
S :~\ next_up ;’—” o2=
floor

Fig. 5.8 E-concurrent rule construction

that these two rules cannot be switched because G| does not fulfill the application
condition 3 pos; V 3 pos,. The corresponding E-dependency relation and the con-
struction of the E-concurrent rule is depicted in Fig. 5.8. In this case, E results
from overlapping the floor of the right-hand side of the rule intRequest with the
lower floor of the left-hand side of the rule moveDown. The resulting rule is shown
in the upper part of Fig. 5.9. Note that the application condition is only depicted
for those graphs that may actually occur in valid models. Moreover, the transla-
tion L(p*, Shift(e;, I pos, vV 3 pos,)) evaluates to true and is therefore ignored. The
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Fig. 5.9 The application of the E-concurrent rule

application of the E-concurrent rule to G, is shown in Fig. 5.9, leading to the E-
intRequestxzmoveDown ——

concurrent transformation G A

&

. . 14 P2
For a given transformation sequence G — H — G’, we are able to compute

the corresponding E-dependency relation using the &'—M pair factorisation.
Fact 5.29. For a transformation G KLU 5 LN

p1.mi p2,m

relation E such that G —— H

G’, there is an E-dependency
G’ is E-related. A

Proof. Given a transformation G 20, g 2™,/ with co-match n; for the first

direct transformation, let (eq,e;) € &, h € M be an &—M pair factorisation of n;

acy

1

acy
JR—
m1|
GA

K,
k| Cy
D,

R, J R K> 2——R,
n
(D
5]
(6)
81

o
E , G |k n
7
H

S
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and my with ho e; = ny and h o e; = my. Now we construct (6) as the pullback of
h and g; and obtain an induced morphism v;. From h € M, (6) being a pullback,
and (1) + (6) being a pushout it follows that (1) and (6) are pushouts using the M-
pushout—pullback decomposition (see Theorem 4.22). Analogously, diagrams (2)
and (7) are pushouts. Thus, E with (e;,e;) € & is an E-dependency relation and

G pmi H pam G’ is E-related. N

Now we present the Concurrency Theorem, which is an abstraction of Theo-
rem 2.29 by replacing graphs by objects from a suitable M-adhesive category.

Theorem 5.30 (Concurrency Theorem). For rules p and p, and an E-concurrent
rule py *g p» we have:
o Given an E-related transformation sequence

H
pP1.my P2,z . .
G ——= H —— G/, there is a synthesis . ”
. . . Is 2
construction leading to a direct transforma- R
. P1*Ep2,m . » ,
tion G G’ via the E-concurrent rule | G G )

P1 *E P2
e Given a direct transformation G

P1*Ep2,m . . .
————= G’, there is an analysis construction

; . pi1,m p2,mz
leading to an E-related transformation sequence G — H =—= G’.
o The synthesis and analysis constructions are inverse to each other up to isomor-

phism. A

Proof. Let G 2%, H £, G be E-related. Then the underlying plain trans-

formation is E-related and, by the Concurrency Theorem without application con-

ditions [EEPTO06], there is an E-concurrent transformation G % G’ with

mou; =m.

By assumption, m; = ac; and m, E ac;. From Facts 5.4 and 5.16 it follows
that m; E acy A my E ac; © m E Shift(uy,aci) A h E Shift(ey,ac;) © m E
Shift(u;, acy) Am | L(p*, Shift(ey, acy)) & m | Shift(u;, acy) AL(px, Shift(e,, ac,))
= ac. Thus, m [ ac, i.e., the E-concurrent transformation satisfies the application
condition.

Vice versa, let G % G’ be an E-concurrent transformation. Then the under-
lying plain direct transformation is E-concurrent and, by the Concurrency Theo-
rem without application conditions [EEPTO06], there is an E-related transformation

G 25, g 22 o By assumption, m = ac. As shown above, this is equivalent

tom; E acy and my = acy, i.e., the E-related transformation satisfies the application
conditions.

The bijective correspondence follows from the fact that all constructions are
unique up to isomorphism. O

5.2.3 Embedding and Extension Theorem

The Embedding and Extension Theorem allows us to extend a transformation to a
larger context (see Fig. 5.10). An extension diagram describes how a transformation
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ac; > L« I' K; = > R;

’"'i () l (€D l"r

Gy=—=>G, Gij~—t _p— 8 g,
ko l )] lkn k,ll ) l (55 lk,
Gy=—==2G, Gyv—F7—Di——F——G

Fig. 5.10 Embedding and extension: sequence (left) and intermediate step (right)

t: Gy = G, can be extended to a transformation ¢’ : G, = G/ via the same
rules and an extension morphism kg : Go — Gj. For each rule application and
transformation step, we have two double pushout diagrams (2;)—(5;), where the rule
pi is applied to both G;_; and G|_,.

A sufficient and necessary condition for this extension is the consistency of an ex-
tension morphism. It is based on the notions of derived span and derived application
condition of a transformation. The derived span describes the combined changes of
a transformation by condensing it into a single span. The derived application condi-
tion summarises all application conditions of a transformation into a single one.

Definition 5.31 (Derived span and application condition). Given a transforma-
tiont : Gy = G, viarules py,..., p,, the derived span der(t) is inductively defined
by

Go <= D, 25 G, fort: Gy 225 G,

_ d(/)od gnody * P>ty .
der(t) ={ Gy «— D = G, fort: Gy = G,_| ——= G, with pullback (PB) and
&

n—1

* dj
der(Go = G,-1) = (G D' == G,1)

Gyt —p—2 G~ —D,—% G,
\PB/
d d,
D
Moreover, the derived application condition ac(t) is defined by
Shift(m,, ac;) fort: Gy =25y G,
ac(t) =3 ac(Gy = G,_1) for 1 : Go = Gt == G,
AL(p;, Shift(m,, ac,))  with p% = der(Gy = Gy_1) A

intRequest moveDown

G, Gs
G_4, where the first part of the transformation is shown in Fig. 5.9,
while the last direct transformation step deletes the request on the second lowest
floor. The derived span of this transformation and its derived application condition

Example 5.32. Consider the transformation G,
processIntDown
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Fig. 5.11 The derived span and derived application condition of G| — Gy

are shown in Fig. 5.11 and combine all changes applied in the single transformation
steps. Note that in the translation of the derived application condition, several parts
evaluate to true and are therefore not depicted. A

The notion of consistency combines that of boundary consistency, ensuring the
preservation of certain structures, and AC consistency, ensuring that the application
conditions hold.

Definition 5.33 (Consistency). Given a transformation 7 : Gy = G,, with derived

d d:

span der(t) = (Gy — D -5 G,) and derived application condition ac(t), and a
morphism ko : Go — G, € M":

ko is boundary-consistent with

[ ] ¥
respect to ¢ if there exists an B b éo 4 D d; G,
initial pushout (6) over kj (see
Def. 4.23) and a morphism "l (6) l"o
b* € Mwithdjob* =b. C . e

e ky is AC-consistent with
respect to ¢t if kg | ac(¢).

o k is consistent with respect to ¢ if ko is both boundary- and AC-consistent with
respect to f. A

The consistency condition is sufficient and necessary for the construction of
extension diagrams, provided that we have initial pushouts over A’-morphisms.
Moreover, we are able to give a direct construction of G, in the extension diagram,

which avoids constructing the complete transformation ¢’ : G, = G,,.
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Theorem 5.34 (Embedding and Extension Theorem). Given a transformation
t:Gy= G,anda morphism ko : Gy — G, € M’ which is consistent with respect
to t, there is an extension diagram over t and k.

Vice versa, given a transformation t : Gy = G, with an extension diagram (1)
and initial pushout (6) over ko : Go — G|, € M’ as above, we have that:

1. kg is consistent with respect to t : G = G,.

2. There is a rule p* = (der(t), ac(t)) leading to a direct transformation G, p=> G,
3. G, is the pushout of C and G, along B, i.e., G, = G, +5 C. A

Proof. Lett : Gy = G, be a transformation and ko : Go — G, € M’ consistent
with respect to t. Then kg is boundary-consistent with respect to the underlying
plain transformation 7 and, by the Embedding Theorem for rules without application
conditions [EEPT06], there is a plain extension diagram over 7 and k.

By assumption, kg = ac(?). It remains to show that the application condition
ac; is fulfilled for each single transformation step in the extension diagram, i.e.,
ki-y om; | ac; fori = 1,...,n. This is proven by induction over the number of
direct transformation steps 7.

Basis. For a transformation ¢ : Gy = Gy of length 0, kg = ac(t) = true. For a

transformation ¢ : Gy % G, of length 1, ky | ac(t) = Shift(m;, ac) if and only

if kg o my E acy. ‘ I &
Induction hypothesis. For a transfor- aci [> L;« Ki =it
mation 7 : Gy = G; of length i > 1, ’"Ii (2) l (3) l"f
k.o IT ac(t? © kj_y om; E ac; for Gy = fi D, S G,
j=1,...,10
Induction step. Consider now the k""l (4) l &) lk”
transformation  : Gy = G; = Gis1. Gi_, = 7 D; Fi ~G|

Then we have th*at:
ko E ac(Go = Giy1)
& ko E ac(Gy = G;) A L(der(Gy = G;), Shift(m;, 1, acis1)) Def. 5.31

& ko E ac(Gy = G;) A k; | Shift(my 1, acic1) Fact 5.16
& ko E ac(Gy = Gi) A ki o miyy E acis Fact 5.4
o kijomjkEacjforj=1,...,i+1 Induction hypothesis

This means that the resulting plain extension diagram is actually valid for all direct
transformation steps, i.e., it is an extension diagram over ¢ and k.

Vice versa, let ¢ : Gy = G, be a transformation with an P
extension diagram (1) and initial pushout (6) over ky € M’. Gy=——=>G,
By the Extension Theorem for rules without application kul (1) l %,
conditions [EEPTO06], ky is boundary-consistent with re-
spect to the underlying plain transformation # with mor-
phism 5" : B — D such that dj o b* = b. By assumption,

’ * ’
_p
Gy—G,

(1) is an extension diagram, i.e., ¢': G(’) = G, is a transformation via the rules
Pls--.sPn With ki_y o m; = ac; for i = 1,...,n. This means that ky = ac(t), and
hence it is consistent with respect to ¢t. Moreover, Items 2 and 3 are valid. which
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Fig. 5.12 The embedding of G; into G and H,

follows directly from the corresponding results for the underlying plain transforma-
tion. O

Example 5.35. We can embed the graph Gy = G, from Fig. 5.9 into the larger con-
text graph G = G from Fig. 5.3, where G contains an additional external request on
the lowest floor. The boundary B contains only this lowest floor, while the context
graph C adds the additional request to this floor, as shown in the left of Fig. 5.12.
Since this floor is not deleted, the extension morphism kj is boundary-consistent.
Moreover, it is AC-consistent—because there is no request on the second or third
floor, the derived application condition is fulfilled. Therefore, we have consistency
and can construct the transformation G, = G’, = Hi, where H, is constructed as
the pushout of G, and C along B.

In contrast, the morphism £ : G| — H, in the right of Fig. 5.12 is not consistent,
because it does not satisty the application condition — 3 neg;. A

5.2.4 Critical Pairs and Local Confluence Theorem

Confluence is the property ensuring the functional behaviour of transformation sys-
tems. A system is confluent if whenever an object G can be transformed into two
objects H| and H,, these can be transformed into a common object G’. A slightly
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/ Hy \ /
H, and H,. Confluence co-
incides with local conflu-

ence when the given transformation system is terminating, as shown in [New42].

For parallel independent transformations, the Local Church—Rosser Theorem en-
sures confluence (see, e.g., [EEPTO06]). In general, however, not all pairs of direct
transformations are parallel independent. It remains to analyse the parallel depen-
dent ones.

The intuition behind using critical pairs to check (local) confluence is that we do
not have to study all possible cases of parallel dependent pairs of rule applications,
but only some minimal ones which are built by gluing the left-hand sides of these

pairs. A critical pair for the rules py, p, is a pair of parallel dependent transforma-

. P1,01 P2,02
tions, P; <= K ——= P,, where 0; and 0, are in &. A completeness lemma,

showing that every pair of parallel dependent rule applications embeds a critical
pair, justifies why it is enough to consider the confluence of these cases.

As shown in [Plu93, Plu05], the confluence of all critical pairs is not a sufficient
condition for the local confluence of a general transformation system, as it is in the
case of term rewriting. Instead, a stronger notion of confluence is needed, called
strict confluence. In [Plu05, EEPTO06] it is shown for plain rules that strict conflu-
ence of all critical pairs implies the local confluence of a transformation system. In
the following we show how to extend these results to rules with application condi-
tions, which considerably complicate the confluence analysis. We introduce a new
notion of strict AC confluence of critical pairs for an adequate handling of applica-
tion conditions, leading to local confluence of the transformation system.

First, we present a new simple but weak notion of critical pairs. We know that all
pairs of rule applications are potentially nonconfluent, even if their underlying plain
transformations are parallel independent. Thus, we define as weak critical pairs all
the minimal contexts of all pairs of plain rule applications.

weaker property is local
confluence, where we only /
ask this property for direct

transformations of G into

Definition 5.36 (Weak critical pair). Given rules p; = (p;,ac;) and p, =

(p,,acs), a pair Py & K 2=02> P, of plain transformations is a weak critical
pair for (p1, p2), if (01,07) € &'.

acy acy
Rj~—"— K —1 ~Lv LVA b K—" R
1 1 1 2 2 2

Pr< W Ny I > K Vs N> W - P
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Every weak critical pair induces an application condition acg = acg A aci on K
with

extension application condition: acg = Shift(o;, acy) A Shift(o,, ac,) and

conflict-inducing application condition: aci = =(acy, A ac,), with

if (A z12 : v2 0 212 = 01 then ac,,, = L(p3, Shift(w; o z12, acy)) else ac,,, = false,
with p} = (K &= Ny = Py)

if (A z21 : vi 0 221 = 02 then ac,,, = L(p], Shift(wy o 221, acy)) else ac,,, = false,
with pt = (K <= Ny =5 Py) A

The two application conditions acﬁ and aci are used to characterise the exten-
sions of K that may give rise to a confluence conflict. If a morphism m : K — G
models ac,"; then m o 0y and m o 0, are two matches of p; and p,, respectively,
satisfying their associated application conditions. If these two plain transformations
are parallel independent then aci is precisely the condition that ensures that the two
transformations with application conditions are parallel dependent.

We can prove that each pair of parallel dependent transformations is an extension
of a weak critical pair.

Fact 5.37. For each pair of parallel dependent direct transformations
pP1,m p2.my ~

H, —— G ——= H, there is a weak critical pron pon
pair P PLALIRY QRN P, with induced appli- B K P
cation condition acg and morphism m : K — l €)) ml 2) l
G' e M with m E acg, leading to extension H, G H,
diagrams (1) and (2). A prm p2.m

Proof. Consider the parallel dependent transformations H £ 6 22 |,y For
m; and m; there exists an &'—M pair factorisation with an object K and morphisms
m e M, (01,0;) € & such that m; = m o 0y and my; = m o 0,. Using the Restric-
tion Theorem without application conditions [EEPT06] we obtain transformation

K 22 Py and K EEAEN P;, leading to the required plain extension diagrams.

; Jp— K, LI SR JP—- K,—"2  +R,

|| |}

Pi+—; N N> P2

Hi+— D, D, o>

By assumption, m; = moo; k= ac;. By Fact 5.4 it follows that m |= Shift(o;, ac;).
Similarly, m; | ac, implies that m = Shift(o,, ac,). Consequently, m | Shift(oy,
acy) A Shift(o,, acy) = ac?
It remains to show that m aci = =(ac,,, A ac,,) = —ac,, V -acg,). Since

H &2 6 22 H, are parallel dependent, we have at least one of the following

cases:
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1. Ady» : f> odyp = my. Then also Az, : v 0 2o = 01, because otherwise we could
define di» = uy o zj2. By definition, ac,,, = false. This means that m ¢ ac;,,, i.e.,
mE acg.

2. ddp: frodip = my,but gy odp E acy. If ﬂZlZ : vy 0712 = 01 then acg, =
false and m aci as in Case 1. Otherwise, ac,, = L(p;, Shift(w o z12,acy)).
Using Facts 5.4 and 5.16, we have that m |= L(p3, Shift(ws o z12,ac1)) & s F
Shift(w, o zj2,ac1) © s; owy 0z E acy. From f, € Mand f, ody; = m; =
mooy =movyozp = fr0u oz it follows that u, o 715 = dj,. Thus, using
grodip =grouyoziy = 50wy oz it follows that m |~ ac,,, i.e., m = acg.

. Adyy : fi 0 dyy = my. Similarly to Case 1, ac,,, = false and m [= ac;.

4. Ady; : fiody = my,but giodsy ¥ ac,. Similarly to Case 2, either Azp; : vioza) =

0y and ac;,, = false, or ac;,, = L(pj, Shift(w1ozz1,ac)) and g1ody; ¥ ac; implies

that m I ac.,,. In both cases, it follows that m k= ac$,. O

(O8]

It can be shown that the conflict-inducing application condition acg is character-
istic for parallel dependency.

Pi.m

Fact 5.38. Consider a pair of transformations H) —— G L, H, embedding

.. . P10 P2:0 . .
a weak critical pair P, el K =22 P, with morphism m € M and m acﬁ.

Then we have that H, L g 2B, H, is parallel dependent if and only if
mE aci. A

Proof. “=”. This follows from Fact 5.37.

“<”. If the pair of underlying plain transformations is parallel dependent, then also
H, PG % H, is parallel dependent. Otherwise, we have morphisms d,
and d» with f, odjp = m; =mo o and fj o dy; = my = mo 0,. Since N, is a pull-
back object we obtain a unique morphism zj, with v, 0 z;o = 0y and u; o zj» = dj».
Similarly, the pullback object N, induces a unique morphism z; with v; 0 231 = 0
and Uy 0231 = d21.

; Jp— K, LI S NP—- K,—"2  +R,

22 £12
tll l 01 02 l lt2
my my

Pl‘ Wi Nl Vi > K« V2 N2 W2 'P2
sll ull dyy ml dip l’lz lSZ
1+~ D 7 G % D, o2

As shown in the proof of Fact 5.37, in this case m | ac;» © g2 odis E acy and
m E ac,, & g ody E ac,. By assumption, m = ac$; and, by definition of ac$,
m lE ac;,, or m ¥ ac,,, . If m | ac,,, then g, o dy, ¥ acy, and similarly if m [ ac,,
then g; o d» £ ac,. Therefore, at least one of the application conditions is not ful-

P2,

filled and the pair H; LN 6 B2 Hy s parallel dependent. O
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floor floor floor
on on
intRequest
on
floor floor a floor
int
_ hold:
floor floor 4’—5 floor
moveDown jon intRequest y
on
floor floor floor
floor %floor %floor
next_up 4% next_up i’ o next_up
floor w floor

Fig. 5.13 Three weak critical pairs for moveDown and intRequest

Example 5.39. For the rules moveDown and intRequest, three weak critical pairs
moveDown,m

exist as shown in Fig. 5.13. As analysed in Ex. 5.20, the pair H;

G ZReauestm H, of direct transformations in Fig. 5.4 is parallel dependent. The
second weak critical pair can be embedded into this pair of transformations. Note
that this critical pair actually consists of plain transformations, but not valid trans-
formations with application conditions, because 3 pos; is not fulfilled by 0;. K co-
incides with the left-hand side of the rule moveDown. The application condition acg
is given by acg = acf‘; = (dpos; VvV A pos,)A I pos; A= d neg,. Actually, we had to
include neg’ : K — P, stemming from shifting the application condition of the rule
intRequest over the morphism 0,. But if any request on the upper floor is forbid-
den (= d neg,), so is an internal request (— 3 neg’), meaning — 3 neg; = — I neg’;
therefore this part of the application condition can be ignored. The conflict-inducing
application condition acg turns out to be equivalent to true. In particular, this means

. . D intR . .
that any pair of transformations H; < vl ¢ e, H, embedding this
weak critical pair is parallel dependent since the corresponding extension would
trivially satisfy aci. A

Not every weak critical pair may be embedded in a parallel dependent pair of rule
applications. Weak critical pairs without an extension m satisfying acg are useless
for checking local confluence, because no extension of parallel dependent transfor-
mation exists. Therefore, we extend our notion of critical pair in the sense that they
are also complete and each of them is embedded in at least one case of parallel de-
pendence. In particular, a critical pair is a weak critical pair such that there is at least
one extension satisfying acg.
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Definition 5.40 (Critical pair). Given rules p; = (p;,ac1) and py = (p,,acy), a

.. . P1,01 D2:02 . .. .. . .
weak critical pair P &= K —= P, is a critical pair if there exists an extension

of the pair via a morphism m : K — G € M such that m o 0y = my, m o 0y = my,
and m E acg. A

Note that this new notion of critical pairs is different from the one for rules with
negative application conditions in [Lam10]. The main difference is that critical pairs
in our sense may disregard the application conditions. In the case that all application
conditions are negative application conditions, the above notion of critical pairs does
not coincide with the notion defined in [Lam10], although they are in some sense
equivalent. In [Lam10], so-called produce—forbid critical pairs may contain, in ad-
dition to an overlap of the left-hand sides of the rules, a part of the corresponding
negative application conditions. In our notion, this additional part would be included
in acg.

Also, critical pairs as defined above are complete. Moreover, the converse prop-
erty also holds, in the sense that each critical pair can be extended to a pair of parallel

dependent rule applications.
Theorem 5.41 (Completeness Theorem). For each pair of parallel dependent

. . P1smy p2,mz
direct transformations H) — G —= H,

— _ P P1,01 K P2,02 P
50 D5 ,0:

there is a critical pair P, & K Lz_—2—> P, 1 2

and a morphismm : K - G € Mwithm | l 1)) ml 2) l

acg, leading to extension diagrams (1) and (2).

. . 1,01 1 prmy P2, 2
Moreover, for each critical pair Py — )
P20 .
K =% P, for (p1, p2) there is a parallel de-
pendent pair H, LN g 2 H, and a morphism m : K — G € M such that
m E acg, leading to to extension diagrams (1) and (2). A

Proof. By Fact 5.37, for parallel dependent H; L 6 £ H, there is a weak

critical pair P ARy RN P, with m [ ack, leading to extension diagrams (1)

and (2). Since this extension exists, the weak critical pair is indeed a critical pair.
Conversely, it follows from the definition of critical pair that each critical pair

can be extended to a pair of parallel dependent transformations. |

Example 5.42. Due to Theorem 5.41, the weak critical pair in Ex. 5.39 is actually a
critical pair. In particular, the parallel dependent transformations depicted in Fig. 5.4
satisfy acg. A

In order to show local confluence, we have to require that all critical pairs be
confluent. However, even in the case of plain graph transformation rules, this is not
sufficient to show local confluence [PIu93, Plu05]. For transformations without ap-
plication conditions, the strict confluence of critical pairs ensures that the confluent
transformations of the critical pair can be extended to the original pair of transfor-
mations. However, if we consider application conditions we may be unable to apply
some of these rules if the corresponding matches of the extensions fail to satisfy the
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application conditions. Therefore, we compute a derived application condition ac()
(see Def. 5.31), collecting all application conditions in the transformation, which is
used in the notion of strict AC confluence.

Definition 5.43 (Strict AC confluence). A critical pair P; PLALARY QRN P, with
induced application conditions acy is strictly AC-confluent if it is

1. confluent without applica- K
tion conditions, i.e., there
are plain transformations
P15 K and Py 5 K/, /

2. strict, i.e., given derived \

spans der(P 2ol ks ) =

(K P N; iR P;) and
der(P; = K') = (P; <= K’

Wit2

Niyyp — K')fori =1,2
and pullback (1), there ex-
ist morphisms z3, z4 such that diagrams (2), (3), and (4) commute, and

\
/\
\/
O

3. forf; : K 222 P; =5 K’ it holds that acx = ac(f;) fori = 1,2. A

Theorem 5.44 (Local Confluence Theorem). A transformation system is locally
confluent if all its critical pairs are strictly AC-confluent. A

Proof. For parallel independent direct transformations Theorem 5.26 implies that
we have local confluence.

For a parallel dependent pair of transformations H; LN RSN H, we find
a critical pair P & K => P, and embedding diagrams (5) and (6) with a
morphism m € M such that m E acg G

(Theorem 5.41). By assumption, this crit-
ical pair is confluent without application
conditions, i.e., we have diagram (7). The K
Local Confluence Theorem without ap- ®) (6)
plication conditions (see [EEPT06]) im- P1,01P2,02
plies that we have corresponding exten- | H; <—P; 7 P,——H,
sions #| of #; and #, of t, in diagrams (8)
and (9).

Since the extension diagrams exist, the
Extension Theorem without application
conditions (see [EEPTO06]) implies that m

. . ’
is boundary-consistent w.r.t. #; and #, as G

wellas 7, : K 225 Py =, K’ and 7, : K 22, P, =, K'.

P2,

I [5)

®) X % (9)

o f’
It remains to show that all direct transformations in tl G ﬂl;ni'—;, H, = G

and Zz G £&, H, :> G’ satisfy their corresponding apphcatlon conditions.

This means that we have to show that m is AC-consistent w.r.t. f; and %, i.e., m £



5.2 Results for Transformations with Application Conditions 1

[\

floor

down) next_up:

next_up
floor
EXH next_up: T quest
movi
o (et o
floor

'

=

H

=

- w m floor
down floor moveJ down nexr,upT
(elevator)™*- ine o
down next_up loor
on
Qn — request floor
Hleee 2 next_up|

=

'

i

ProcessIntDownu ProcessIntDown|
floor floor
on
down next_up
elevator )next_up — o
1 elevator | floor
floor
elevator ) next_up
own next_up

request %1 £loor

1

Fig. 5.14 Strict AC confluence of the critical pair in Examples 5.39 and 5.42

ac(t)) and m = ac(t;). By AC confluence, especially AC compatibility, we have that
ack = ac(t)) and ack = ac(ty). Since m [ ack it follows that m E ac(f;) and
m [ ac(ty). Now Theorem 5.34 implies that ¢} and 7} as well as 7, and 7, are valid
transformations, even with application conditions. O

Example 5.45. Using Fig. 5.14, we want to show that the critical pair in Exam-
ples 5.39 and 5.42 is strictly AC-confluent. First of all, when applying first the
rule processIntDown and then the rule moveDown to P, as rules without appli-
cation conditions, we obtain K’ = P; as a confluent model (see Fig. 5.14). This
is a strict solution, since it deletes none of the two floors and the edge between
them nor the elevator—these four elements are the only structures preserved by
the critical pair. To show AC compatibility, we have to analyse the transforma-

. - moveDown - intRequest processIntDown
tionst; : K ———— Py = K and , : K , P, ,
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moveDown , . - - .

P3; ———= K. Since ac(t;) = acx we have that ack = ac(t). Similarly, we have

ac(ty) = ack A Apos’ A = Aneg’ with pos’ = pos; and, as explained in Ex. 5.39,

- A negac; = neg’. Therefore acy = ac(t,) and the critical pair is AC-compatible.
moveDown,m intRequest,m;

Now Theorem 5.44 implies that the pair H; « G > H,
from Fig. 5.4 is locally confluent, as shown in the outer diagram of Fig. 5.14. This
means that if the elevator is in downwards mode with a request on the lowest floor,
we can first process a new internal request on the actual floor and then continue
moving downwards instead of moving downwards immediately. A

Remark 5.46. As shown in [HP09], in the case of graphs, application conditions
are expressively equivalent to first-order graph formulas. This means that the satis-
fiability problem for application conditions is undecidable and, as a consequence,
constructing the set of critical pairs for a transformation system with arbitrary ap-
plication conditions would be a noncomputable problem. Similarly, showing logical
consequence, and in particular AC compatibility, and therefore showing strict con-
fluence, is also undecidable. However, in [OEP08, Pen08], techniques are presented
to tackle the satisfiability and the deduction problems in practice. Obviously, this
kind of techniques would be important in our context for computing critical pairs.
Nevertheless, it must be taken into account that, as shown in [PIu05], checking local
confluence for terminating graph transformation systems is undecidable, even in the
case of rules without application conditions. A

5.3 Process Analysis

This section presents general techniques for the analysis of processes of M-adhesive
transformation systems, i.e., of equivalence classes of executions differing only for
the interleaving of the same transformation steps. The main problem in this context
is to analyse whether a sequence of transformation steps can be rearranged in order
to generate all possible equivalent executions, or some specific and possibly better
ones. We define processes of M-adhesive transformation systems based on subob-
ject transformation systems inspired by processes for Petri nets [RE96] and adhesive
rewriting systems [BCH*06]. For this purpose, we use the concept of permutation
equivalence [Her09, HCE14] for transformation systems with negative application
conditions (NACs) in M-adhesive categories. Permutation equivalence is coarser
than switch equivalence with NACs and has interesting applications in the area of
business processes [BHE09b, BHG11]. This section is based on [Her09, HCE14].
In the main results of this section, we show that processes represent equivalence
classes of permutation-equivalent transformation sequences. Moreover, they can be
analysed efficiently by complete firing sequences of a Petri net, which can be con-
structed effectively as a dependency net of a given transformation sequence. Most
constructions and results are illustrated by a case study of a typed attributed graph
transformation system. Tool support for the analysis is available by the tool AGT-
M [HCEK10, BHEO9b], based on Wolfram Mathematica. This section is based
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Type Graph stopTask finishTask
ATG L ] K | R | L ] K | R |
[ 1:Person | [ 1:Person | [ 1:Person | [ 1:Person | [ 1:Person |
e
workson :worksOn| s i <~ >
v started :started
[ Task |
ﬁ [[2:Task | [2:Task | [ 2:Task || | [[2:Task | [ 2:Task | [ 2:Task
startTask
NAC1 L K R
[ 1:Person | [ 1:Person | [ 1:Person [ 1:Person |
[accessLevel=add(lv,x) | [accessLevel=add(lv,x) | [accessLevel=add(lv,x) [ accessLevel=add(lv,x) |
<~ <~ — == :
3:started ‘worksOn - 3:started
[ 2:Task | [ 2:Task | [ 2:Task |
[ accessLevel=lv | | accesslevel=lv | [ accessLevel=lv |
continueTask
NACT T ] K R
[ 1:Person | [ 1:Person | [ 1:Person [ 1:Person |
[ accessLevel=add(lv,x) | - [ accessLevel=add(lv,x) | - [ accessLevel=add(lv,x) - [ accessLevel=add(lv,x) |
T
3:started 3:started 3:started :worksOn  3:started
:worksOn 4 ¥ ¥ 4
5T [ 2:Task | [ 2:Task | [ 2:Task |
Level=lv | | accessLevel=lv | [ Level=lv |
[ accessLevel=lv = accessLevel=lv

[Nac2=R |

Fig. 5.15 Typed attributed graph transformation system GTS

on [CHS08, Her09, HCEK10, HCE14]. We present all results for transformation
systems with NACs as a special kind of general application condition.

General Assumption: We generally assume M-adhesive transformation sys-
tems with effective pushouts (see Def. 4.23.5) and &M factorisation for the mor-
phism class O of the matches.

Example 5.47 (Typed attributed graph transformation system). As a running exam-
ple for the analysis of permutation equivalence, we use the following typed at-
tributed graph transformation system with the match morphism class O contain-
ing all morphisms that are injective on the graph part, i.e., possibly noninjective
on data values. The type graph ATG specifies persons and tasks: a task is active
if it has a “:started” loop, and it can be assigned to a person with a “:worksOn”
edge. Moreover, the attribute “accessLevel” specifies the required access level of
tasks and the allowed maximal access level of persons. Rule “startTask” is used
to start a task, where the access level of the task can be at most equal to the ac-
cess level of the considered person and the NAC schema ensures that the task is
not started already. Rules “stopTask™ and “finishTask” removes the assignment of
a person, where “finishTask™ additionally deletes the marker “:started” to specify
that the task has been completed. Finally, rule “continueTask™ assigns an already
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[Go ] (G ] [ ] [ ] [T

al=4
= *|Cas | *|[Cals ] *| s

—~ W1:worksOn —~ Ww2:worksOn

4:§t;ted 4:started 4:gt;ted 4:started 4:§t;ted
\ \ \ \ 3:Task \ 3:Task
al-3 al-3

[aL=accessLevel |

Fig. 5.16 Transformation sequence d of GTS

started task to a person. This rule contains two NAC schemata (see Def. 5.6) which
forbid the assignment of persons to already assigned tasks—if either another per-
son is already assigned to that task (“NACI1”) or the person himself is already

assigned (“NAC2”). Fig. 5.16 shows a NAC-consistent transformation sequence
continueT ask, fi stopTask, f> continueT ask, f3 stopTask, f4

d= (G() > Gl 2 G3 > G4) of GTS.
The first graph of the transformation sequence contains exactly one task, which is
first assigned to node “1:Person”, and then, after being stopped, to node “2:Person”.
The NAC schemata of rule “continueTask™ are checked at graphs Gy and G,. The
instantiated NACs n’ : L — N’ with N’ according to Fact 5.8 and Def. 5.5 contain an
edge of type worksOn. Since G and G, do not contain an edge of this type there is
no embedding g from N’ into these graphs such that the NAC schemata are satisfied
by the matches. Therefore, the transformation sequence is NAC-consistent, because
the remaining steps do not involve NACs. A

5.3.1 Permutation Equivalence

The classical theory of the DPO approach introduces an equivalence among transfor-
mation sequences, called switch equivalence, that relates the sequences that differ
only in the order in which independent transformation steps are performed. More
precisely, two sequences are switch-equivalent if each of them can be obtained from
the other by repeatedly exchanging consecutive transformation steps that are se-
quentially independent (see Def. 5.21).

Definition 5.48 (Switch equivalence for transformation sequences). Let d =
(dy;...;dy; drys - - .3 dy) be a transformation sequence, where dy, and dy,; are two
sequentially independent transformation steps, and let d’ be obtained from d by
switching them according to the Local Church—Rosser Theorem (Theorem 5.26).
Then, d’ is a switching of d, written d ~ d’. The switch equivalence, denoted by
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(G ] [Gr ] [Gi] [Gi] [Gi ]
> X N >
_—~_ W2:worksOn ~~ A~ w1 worksOn
4:started 4:started 4:started 4:started ¥ 4:started
\G[3:Task | \\[3Task | \\[3:Task | \ [ 3:Task \\[3:Task |
a3 23
[aL=accessLevel |

Fig. 5.17 Permutation-equivalent transformation sequence d’ of GTS

swo, . . o .
~, is the smallest equivalence on transformation sequences containing both ¥ and
the isomorphism relation =.' A

In our opinion, however, the switch equivalence for NAC-consistent sequences
is too restrictive, for the following reason. Suppose that d;; d, are sequentially in-
dependent without considering application conditions, but that after the switching
d; d} is not NAC-consistent. Then either &, does not satisfy the NACs, which means
that d; can fire after d; because d; deletes some resource that would represent a for-
bidden context for d,; or the NACs of di are not satisfied, because d, creates a re-
source that matches (part of) a NAC of the transformation rule of d;. In both cases,
we argue that there is no information flow from d; to d,, and therefore that there
is no conceptual obstacle to the possibility that the two steps occur in the opposite
order (even if not consecutively) in another equivalent transformation sequence.

These considerations justify the following definition of permutation equiva-
lence [Her09, HCE14] for NAC-consistent transformation sequences, which is
coarser than the corresponding switch equivalence in the sense that it equates more
sequences.

Definition 5.49 (Permutation equivalence of transformation sequences). Two
NAC-consistent transformation sequences d and d’' are permutation-equivalent,
written d & d’, if, disregarding the NACs, they are switch-equivalent as per
Def. 5.48. The equivalence class m-Equ(d) of all permutation-equivalent transfor-
mation sequences of d is given by m-Equ(d) = {d’ | d’ z d}. A

Example 5.50 (Permutation equivalence). Fig. 5.17 shows a NAC-consistent trans-

. , continueT ask, f| , stopTask,f; , continueT ask.f;
formation sequence d’ = (Gy —= G > G

stopTask,f
5 =———— Gy), which is permutation-equivalent to the transformation

sequence d of Fig. 5.16, by performing the following switchings of steps
disregarding NACs (we denote by (dlf;d}) the result of switching (dj;d;)):

! Informally, transformation sequences d and d’ are isomorphic (d = d’) if they have the same
length and there are isomorphisms between the corresponding objects of d and ¢’ compatible with
the involved morphisms.
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Fig. 5.18 Construction of instantiated rules and transformation steps

(d2; d3), (dy; d}), (dy; ds), (d]; dy). The equivalent transformation sequences are not
switch-equivalent with NACs, because there is no pair of independent consecutive
transformation steps in any of the transformation sequences. A

While general matches for M-adhesive transformation systems lead to extended
concepts for NACs and NAC satisfaction, we now show that we can reduce the
analysis of a concrete given transformation sequence to the case of M-matches by
instantiating the rules and transformation diagrams along the given matches. Note
in particular that, for transformation steps along M-matches, the instantiated trans-
formation steps coincide with the given ones.

Definition 5.51 (Instantiated rules and transformation sequences). Let G g;»
H be a NAC-consistent transformation step via a rule p = ((L <= K — R),N) with
NAC schemata N. Let f = m o e be the extremal &M factorisation of match f. The

instantiated transformation step is given by G L2, H with instantiated rule P
derived via e and constructed as follows according to Fig. 5.18. Construct pullback
(PB) (5) leading to pushouts (POs) (3) and (5) by PB splitting and M-pushout—
pullback decomposition (see Def. 4.21). Construct PO (4) leading to PO (6) by PO
splitting. Instantiate each NAC schema n : L — N in N along morphism e (square
(7) according to Fact 5.8 and Def. 5.5), leading to new NACs n’ : L' — N’. Let
N’ be the new set of NACs consisting of all NACs n’ : L’ — N’ obtained from
all n € N. The instantiated rule is given by p’ = (L’ « K’ — R’),N’) and the

instantiated transformation step is defined by G 2%, H with m € M via DPO

diagram ((5) + (6)).
Let d be a transformation sequence; then the instantiated transformation sequence
d; is derived by instantiating each transformation step as defined above. A

Example 5.52 (Instantiation of transformation sequence). The instantiation of the
transformation sequence d in Fig. 5.16 via rules of Fig. 5.15 is performed according
to Def. 5.51. We derive an instantiated transformation sequence d;. By definition,
the lower line of the DPO diagrams coincides with the one of d in Fig. 5.16. The
instantiated rules for the four steps are depicted in Figs. 5.19 and 5.20 (rules “stop1”,
“stop2”, “contl”, and “cont2”) and they are used in the following sections for the
analysis of permutation equivalence. A
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Super Object 2=stop1 4=stop2

[T Tperson] || [ L] K| R_] L] K] R
als [1:Person| | |[T:Person]| |[1:Person]| ||[2:Person] | |[2:Person]| |[2:Person]

| _

w2-worksOn w1:worksOn|<— = w2:worksOn |<— —

i w1:worksOn

415?‘3';9" [ 3:Task | [ 3:Task | [ 3:Task | [ 3:Task

3:Task
alL=3

Fig. 5.19 Super object T and two rules of process Prc(d)

1=cont1

- - N
w2:worksOn 3:started 4:started 4:started w1:worksOn 4:started
[ 3:Task | [ 3:Task | [ 3:Task | [ 3:Task |
| al=3 | [ aL=3 | [ al=3 | [ al=3 |
3=cont2

NAC1 L K R

- - N
w1:worksOn 3:started 4:started 4:started w2:worksOn 4:started
[ 3:Task | [ 3:Task | [ 3:Task | [ 3:Task |
[ al=3 | [ al=3 | [ al=3 | [ al=3 |

Fig. 5.20 Further rules of STS S75(d)

Fact 5.53 (Reduction of permutation equivalence for general matches to M-
matches). Two transformation sequences d and d with general matches are
permutation-equivalent if and only if their instantiated transformation sequences dj

and dy; with M-matches are permutation-equivalent, i.e., d 2 d o d; X d;. A

Proof (Idea). The full proof (see [HCE14]) first shows that switch equivalence dis-
regarding NACs is implied for both directions using Def. 5.48. In a second step, we
showed that the transformation sequences are additionally NAC consistent. There-

e
~

fore,d ~ d' o d; ~ d,. O

Remark 5.54 (Permutation equivalence for general matches). By the above fact, we
can base our analysis techniques in the following on the derived transformation se-
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analysis

Def. 5.51 Fact 553

= ~~~di,1~~-)

analysis

Fig. 5.21 Correspondence between transformation sequences and their instantiations

quences with M-morphisms only as depicted in Fig. 5.21. Given a transformation
sequence d, we first instantiate d according to Def. 5.51, such that the lower trans-
formation diagrams form a new transformation sequence d; with M-matches only
and all NAC morphisms n’: L’ — N’ are M-morphisms. Thereafter, we can analyse
permutation equivalence for d; and derive the analysis results for d via Fact 5.53.
In particular, the derived permutation-equivalent transformation sequences d; of d;
can be composed with the upper DPO diagrams of the instantiation, leading to
permutation-equivalent transformation sequences d’ of d. A

5.3.2 Subobject Transformation Systems

We now present subobject transformation systems (STSs) as a formal framework
for the concurrent semantics of M-adhesive transformation systems. This concept
generalises the notion of elementary nets, which form the category of process nets
for P/T Petri nets, in the way that STSs form the category of process transformation
systems for M-adhesive transformation systems. Subobject transformation systems
are essentially double pushout transformation systems over the lattice of subobjects
Sub(T)  of a given object T of an M-adhesive category C. By |C| we denote the
class of objects of C.

Definition 5.55 (Category of M-subobjects). Let 7 be an object of an M-
adhesive category C. Given two M-morphisms @ : A — T anda’ : A’ — T,
they are equivalent if there exists an isomorphism ¢ : A — A’ such that a = @’ o ¢.
An M-subobject [a : A — T] of T is an equivalence class of M-morphisms with
target T. The category of M-subobjects of T, denoted by Sub(T), has the M-
subobjects of T as objects. Furthermore, there is an arrow from [a : A — T] to
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[b : B — T] if there exists a morphism f : A — B such that @ = b o f; in this case
S is an M-morphism and it is unique up to isomorphism (therefore Sub(7) is a
partial order), and we write [a : A > T]C[b: B— T].

Usually we will denote an M-subobject [a : A < T7] simply by A, leaving the
M-morphism a implicit, and correspondingly we write A C Bif[a: A — T]C [b:
B — T1] and denote the corresponding embedding by f : A — B. A

If M is the class of all monomorphisms of C, as for adhesive categories, then
Sub(T) for T € |C] is the standard category of subobjects of 7. The following no-
tions of “intersection” and “union” will be used in the definition of direct derivations
of an STS.

Definition 5.56 (Intersection and union in Sub,(7)). Let A, B € |Sub(T)| be
two M-subobjects, with T' € |C|. The product of A and B in Sub(7') is called their
intersection, denoted by A N B. The coproduct of A and B in Sub(T) is called
union, denoted by A U B. A

Since pushouts are not effective in general, we require this property by our gen-
eral assumption. As shown in [HCE14] for M-adhesive transformation systems
based on [LS04], intersections and unions exist, and Sub (7) is a distributive lat-
tice for any 7 € C.

Remark 5.57 (Unions in Suby(T) for (AGraphs,;;, M)). The M-adhesive cat-
egory (AGraphs,;;, M) has effective pushouts, because by commutativity of the
diagram in item 5 of Def. 4.23, the morphism d is an isomorphism on the data part.
Therefore, the union A U B of two M-subobjects A and B can be constructed as the
pushout over the intersection A N Bin C. A

Definition 5.58 (STS with NACs). A subobject transformation system (STS) with
NACs § = (T, P,nr) over an M-adhesive category C with effective unions consists
of a super object T € C, a set of rule names P—also called productions—and a
function 7, which maps each rule name g € P to a rule with negative application
conditions ((L, K, R),N), where L, K, and R are objects in Suby(7), K € L, K C R
and its NACs N are given by N = (&, v), consisting of a set N of names for the NACs
together with a function v mapping each NAC name i € N to a NAC v(i), which is
given by a subobject v(i) = N; € Sub(T) with L C N; C T. The short notation N[{]
refers to a NAC N; of rule p with v(i) = N,. A

Direct derivations (G 2, G’) with NACs in an STS correspond to transformation
steps with NACs in an M-adhesive TS, but the construction is simplified, because
morphisms between two subobjects are unique. There is no need for pattern match-
ing, and for this reason, we use the notion of derivations within an STS in contrast
to transformation sequences in an M-adhesive TS, and we use names {py,..., p,}
for rules in an M-adhesive TS and {qy, ..., g,} for rules in an STS.

Definition 5.59 (Direct derivations in an STS). Let S = (7, P, ) be a subobject
transformation system with NACs, let 7(g) = ((L, K, R),N) be a production with
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NACs, and let G € [Suby(T)|. Then there is a direct derivation disregarding NACs
from G to G’ using g if G’ € |[Suby(T')| and there is an object D € Sub(7) such
that:

(i) LUD=GaG; @iiy LD =K,

@) DUR=G',and (iv) DNR =K.

We say that there is a direct derivation with NACs from G to G’ using g, if in addition
to all the conditions above it also holds that N[i] € G for each N[i] in N. In both

. q
cases we write G = G’. A

Given a transformation sequence d with matches in M, we can construct its cor-
responding STS, which we will use for the analysis of its processes in a similar way
to that presented for adhesive systems in [BCH*06].

Definition 5.60 (STS of a transformation sequence with AM-matches). Let d =
(Gy AL LN G,) be a NAC-consistent transformation sequence in an M-
adhesive TS with matches in M. The STS with NACs generated by d is given by
STS(d) = (T, P, ) and its components are constructed as follows. T is an arbitrarily
chosen but fixed colimit of the sequence of DPO diagrams given by d; P = {i |
0 < i < n}is a set of natural numbers that contains a canonical rule occurrence
name for each rule occurrence in d. For each k € P, n(k) is defined as n(k) =
((Lgs Kk, Ry), Ni), where each component X of a production py (X € {L, Ki, Ri})
is regarded as a subobject of T via the natural embedding iny(X). Furthermore, for
each k € {1,...,n} the NACs N = (N, v) are constructed as follows. Let Jy, be the
set of subobjects of T which are possible images of NACs of production (px, Ny),
with respect to the match iny : Ly — T'; namely,

In={[j: N T]e€Suby(T)| A(n: Ly = N) € Ny A jon = ing(Ly)).

Then the NAC names N are given by N, = {i | 0 < i < |/n,|} and the function v
is an arbitrary but fixed bijective function v : Ny — Jn, mapping NAC names to
corresponding subobjects. A

When analysing permutation equivalence in concrete case studies we consider
only transformation sequences such that the colimit object T is finite, i.e., has
finitely many M-subobjects, in order to ensure termination. Finiteness is guaran-
teed if each rule of 7'S has finite left- and right-hand sides, and if the start object of
the transformation sequence is finite. For typed attributed graphs, this means that T’
is finite on the structural part, but the carrier sets of the data algebra for the attribu-
tion component may by infinite (M-morphisms in AGraphs,;; are isomorphisms
on the data part).

Remark 5.61. Note that during the construction of S7S(d) the set of instantiated
NAC:s for a NAC of a rule p applied in d may be empty, which means that the
NAC n cannot be found within 7. This would be the case for rule continueTask if
we replace the variable Iv within the NACs by the constant 4, i.e., the NAC pattern
would never be present in the transformation sequence. Furthermore, if we require
T to be finite, the sets of NACs in STS(d) are finite. A
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Example 5.62 (Derived STS STS(d)). For the transformation sequence in Fig. 5.16
the construction leads to the STS as shown in Figs. 5.19 and 5.20. The transforma-
tion sequence d involves the rules “continueTask™ and “stopTask”, and thus the de-
rived STS contains the rule occurrences “contl”, “cont2”, “stopl” and “stop2”. A

Deterministic processes for DPO graph transformation systems are introduced
in [CMR96] and characterised as occurrence grammars in [Bal00]: these concepts
generalise the corresponding notions for Petri nets [Rei85], and are generalised
further in [BCH*06] to adhesive transformation systems. By Def. 5.60, we gen-
eralise these notions and define the process of a transformation sequence d in an
M-adhesive transformation system. The process consists of the STS derived from d
together with an embedding v relating the STS with the M-adhesive TS of the given
transformation sequence.

Definition 5.63 (Process of a transformation sequence with NACs). Let d =

(Go KL N G,) be a NAC-consistent transformation sequence in an M-
adhesive transformation system TS = (Prs, w1s). The process Prc(d) = (STS(d), p)
of d consists of the derived STS STS(d) = (T, P, m) of d together with the mapping

u: STS(d) — TS given by u : P — Prs, u(i) = g; for each step i of d. A

Note that the mapping u induces a function y, : n(P) — nrs(Prs) mapping
each rule in STS(d) to the corresponding rule in TS, where u,(7(g)) = mrs(u(g)).
Given the process Prc(d) = ((T, P,m),u) of a derivation d, often we will denote
by seq(d) € P* the sequence of production names of Prc(d) that corresponds to the
order in which productions are applied in d; from the canonical choice of production
names in P (see Def. 5.60) it follows that seq(d) = (1,2, ...,n), where n is the length
of d.

The notion of processes for transformation sequences corresponds to the notion
of processes for Petri nets given by an occurrence net together with a Petri net mor-
phism into the system Petri net. Moreover, as shown in [CHS08] the process con-
struction yields a pure STS, meaning that no rule deletes and produces again the
same part of a subobject, i.e., L N R = K. This terminology is borrowed from the
theory of elementary net systems, where a system which does not contain transi-
tions with a self-loop is called “pure”. Therefore, the class of pure STSs can be seen
as a generalisation of elementary nets to the setting of M-adhesive transformation
systems, and thus as a generalisation of the Petri net class of occurrence nets.

The following relations between the rules of an STS with NACs specify the pos-
sible dependencies among them: the first four relations are discussed in [CHSO08],
while the last two are introduced in [Her09, HCE14].

Definition 5.64 (Relations on rules). Let g; and ¢, be two rules in an STS S =
(T, P, ) with n(q;) = ((L;, K;, R;), N;) for i € {1,2}. The relations on rules are defined
on P as shown in Table 5.1. A

In words, q; <,. g2 (read: “g; causes g, by read causality”) if g; produces an
element which is used but not consumed by g,. Analogously, g; <. g» (read: “q,
causes g, by write causality”) if ¢g; produces an element which is consumed by
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Table 5.1 Relations on rules in an STS

Name Notation Condition
Read Causality q1 <re @2 R NK, ¢ K,
Write Causality q1 <we @2 RinL, ¢ KUK,
Deactivation q1 <4 Q2 KinlL, ¢ K,
Independence q1 O ¢ (LiUR)N(L,URy) C K1 NK;
Weak NAC Enabling | g1 <wen[i1q2 0<i<INo] A LiNNy[i] € K4 UL,
Weak NAC Disabling | ¢i<wanijq2 | 0<i<INi| A Ni[ilN"Ry € LUK,

Table 5.2 Relations on rules in the example STS

contl <, stopl [stopl<,.ujcontl|stop2<,.e,p2jcontl|contl <,,g,r1jcontl|cont2 <4, cont2
cont2 <, stop2 [Stop1 <,enr17€0Nt2|SLOP2 <ypepp2ycont2|cont2 <,g,p1jcontl |contl <4,z cont2

q» and q, <4 g, (read: “q; is deactivated by ¢,”) precisely when g, preserves an
element which is consumed by ¢,, meaning that g; is not applicable afterwards.
Furthermore g; ¢ ¢, if they overlap only on items that are preserved by both.
Finally, g1 <yen[i] g2 (read: “q; weakly enables g, at i) if q; deletes a piece of the
NAC N[i] of ¢; instead gq; <yan(ij g2 (g2 weakly disables g, at i) if g, produces a
piece of the NAC N[i] of ¢, . It is worth stressing that the relations introduced above
are not transitive in general.

Example 5.65 (Relations of an STS). The rules of STS(d) in Ex. 5.62 are related by
the dependencies listed in Table 5.2. A

Definition 5.66 (STS-switch equivalence of sequences disregarding NACs). Let
S = (T,P,n) be an STS, let d be a derivation in S disregarding NACs and
let s = {(qi1,...,qn) be its corresponding sequence of rule occurrence names. If
qi < qr+1, then the sequence s = {(q1, - .., Grr15Gks - - - s Gn) 18 STS-switch-equivalent
to the sequence s, written s ~s s’. Switch equivalence Sgs of rule sequences is
the transitive closure of *g . A

In order to characterise the set of possible permutations of transformation steps
of a given transformation sequence, we now define suitable conditions for permu-
tations of rule occurrences. We call rule sequences s of a derived STS STS(d) le-
gal sequences if they are switch-equivalent without NACs to the sequence of rules
seq(d) of d and if the following condition concerning NACs holds: For every NAC
N[{] of a rule ¢y, either there is a rule which deletes part of N[i] and is applied before
qx, or there is a rule which produces part of N[i] and is applied after gi—;. In both
cases, N[i] cannot be present when applying g, because the STS STS(d) is a sort of
“unfolding” of the transformation sequence, and every subobject is created at most
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once and deleted at most once (see [CHS08]). Note that the first condition already
ensures that each rule name in P occurs exactly once in a legal sequence s.

Definition 5.67 (Legal sequence). Letd = (d;;...;d,) be a NAC-consistent trans-
formation sequence in an M-adhesive TS, and let STS(d) = (T, P, my) be its derived
STS. A sequence s = (q;...;qy) of rule names of P is locally legal at position
k €{l,...,n} with respect to d if the following conditions hold:

1. s Rgrsa seq(d)
2. ¥ NAC Ni[i] OfC]k : ( deec{l,....,k—1}: ge<wen[i]qk O )

A letk,....n}: g<wanqi-

A sequence s of rule names is legal with respect to d, if it is locally legal at all
positions k € {1, ..., n} with respect to d. A

Definition 5.68 (STS equivalence of rule sequences). Let d be a NAC-consistent
transformation sequence of an M-adhesive TS and let Prc(d) = (STS(d), i) be its
derived process. Two sequences s, s’ of rule names in STS(d) are STS-equivalent,
written s ~grgq) S, if they are legal sequences with respect to d. The set of all STS-
equivalent sequences of Prc(d) is given by Seq(d) = {s | s =sr5w) seq(d)}. More-
over, the specified class of transformation sequences of Seq(d) is given by Trafo(s) =
[trafogrgq)(s)]= for single sequences and Trafo(Seq(d)) = Useseqa) Trafo(s) for the
complete set. A

Theorem 5.69 (Characterisation of permutation equivalence based on STSs).
Given the process Prc(d) of a NAC-consistent transformation sequence d.

1. The class of permutation-equivalent transformation sequences of d coincides
with the set of derived transformation sequences of the process Prc(d) of d:
m-Equ(d) = Trafo(Seq(d))

2. The mapping Trafo defines a bijective correspondence between STS-equivalent
sequences of rule names and permutation-equivalent transformation sequences:
Trafo : Seq(d) = (n-Equ(d))/= A

Proof (Idea). Let d be a NAC-consistent transformation sequence in an M-adhesive
TS and let Prc(d) = (S, ) be the process of d with S = (T, P, ). We have to show
that each STS-equivalent rule sequence s’ of seq(d) in S defines a permutation-
equivalent transformation sequence trafoSTS(d)(s’) of d; and vice versa, for each
permutation-equivalent transformation sequence d’ of d there is an STS-equivalent
rule sequence s’ of seq(d) in S such that d’ = trafogrg)(s').

Vs eP s mgrswy seq(d) = trafogrs(s) ~ d 1)

vd: d ~d= 5.5 ~stsy seq(d) A trafogrgq)(s') = d' (2)

The proof is based on Thm. 1 in [Her09], which concerns the results (1) and
(2) for the case of adhesive transformation systems with NACs and monomor-
phic matches and is extended to the case of M-adhesive transformation systems
in [HCE14]. By Def. 5.68 we have that d° € Trafo(Prc(d)) is equivalent to
d’ = trafogrg,)(s’) and 5" ~srs@a) seq(d). Using (1) and (2) above together with
Def. 5.49, we derive m-Equ(d) = Trafo(Prc(d)). |
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According to Theorem 5.69, the construction of the process Prc(d) of a transfor-
mation sequence d specifies the equivalence class of all transformation sequences
which are permutation-equivalent to d. In the next section, we present an efficient
analysis technique for processes based on Petri nets.

5.3.3 Analysis Based on Petri Nets

In order to efficiently analyse the process of a transformation sequence, we present
the construction of its dependency net, given by a P/T Petri net which specifies only
the dependencies between the transformation steps. All details about the internal
structure of the objects and the transformation rules are excluded. The names of
the generated places of the dependency net are composed of constant symbols and
numbers, where constant symbols s are denoted by s. We use the monoidal notation
of P/T Petri nets according to [MM90] and ISO/IEC 15909-1:2004 [ISO04], which
is equivalent to the classical notation of P/T Petri nets [Rei85].

Definition 5.70 (Dependency net DNet of a transformation sequence). Let d
be a NAC-consistent transformation sequence of an M-adhesive TS, let STS(d) =
(T, P, ) be the generated STS of d and let s = seq(d) = {(qi, - - ., q,) be the sequence
of rule names in STS(d) according to the steps in d. The dependency net of d is given
by the following marked Petri net DNet(d) = (Net, M), Net = (PL, TR, pre, post):

TR=P={i|1<i<|P}
PL={p(q) |qe TR} U{p(¢'<xq) | .4’ € TR, x € {rc,we,d},q' <, q}
) {p(LI!N[l]) | q € TR7 77(61) = ((Lq, anRq)7N)70 <i < |N|5q {de[i] q}

pre(q) = p(g) @Z p(q' <) GBZ p(q',NLiD) & Z p(q,N[1)

7' < 9 <waniq pCg.NLyEPL

x€{re,we,d} q'#q

postig)= ) P(q<:q’) &) p(¢',NLiD) ® ) p(g,NLiD)

G<sq’ q<wenli)q’ p(q,N[i1)ePL
xe{re,we,d)
e« M= ) p@@® ) plg NLD A
q€TR ,
q <wdn[i|4

p(q’,N[i])ePL
Fig. 5.22 shows how the dependency net is constructed algorithmically. The con-
struction steps are performed in the order in which they appear in the table. Each
step is shown as a rule, where gray lines and plus signs mark the elements to be
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STS(d) = (T,P,m) DNet(d) = ((PL,IR,pre,post),M)

1. For each g€ P —+ @ *
2. For all ¢,¢' € P, ¢<: ¢, = € {rc,wc,d } s s

3. For all geP with NACs N and
for all 0<i<|N| with q ¥wdn/i/q

a) For N[Z] ofq N n
b) For all ¢' € P: ¢' <uenfi ¢ Lo Gt
c) For all ¢' € P: q <uanfi ¢' — @ -

Fig. 5.22 Visualisation of the construction of the Petri net

inserted. The matched context that is preserved by a rule is marked by black lines,
e.g., in Step 2 the new place “p(q <y ¢’)” is inserted between the already existing
transitions g and ¢’. The tokens of the initial marking of the net are represented by
bullets that are connected to their places via arcs. In the first step, each rule g of the
STS is encoded as a transition and it is connected to a marked place, which prevents
the transition from firing more than once. In Step 2, between each pair of transitions
in each of the relations <, <, and <4, a new place is created in order to enforce
the corresponding dependency. The rest of the construction is concerned with places
which correspond to NACs and can contain several tokens in general. Each token in
such a place represents the absence of a piece of the NAC; therefore if the place is
empty, the NAC is complete.

In this case, by Step (3a) the transition cannot fire. Consistently with this intu-
ition, if ¢’ <,yenp;7 ¢, 1.€., transition ¢’ consumes part of the NAC N[i] of ¢, then by
Step (3b) ¢’ produces a token in the place corresponding to N[i]. Symmetrically, if
q <wanii1q’» 1.€., ¢’ produces part of NAC N[i] of ¢, then by Step (3c) ¢’ consumes
a token from the place corresponding to NJ[i]. Notice that each item of a NAC is
either already in the start graph of the transformation sequence or produced by a
single rule. If a rule generates part of one of its NACs, say N[i] (¢ <yan[i 9), then
by the acyclicity of Prc(d) the NAC NI[i] cannot be completed before the firing of
q: therefore we ignore it in the third step of the construction of the dependency net.
Examples of such weakly self-disabling rules are rules (1 = contl) and (3 = cont2)
in Fig. 5.20, where the specific NACs coincide with the right-hand sides of the rules
(NAC2 =R).

Note that the constructed net in general is not a safe one, because the places
for the NACs can contain several tokens. Nevertheless it is a bounded P/T net. The
bound is the maximum of 1 and the maximal number of adjacent edges at a NAC
place minus 2.
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(contl) (cont2)

p(1<qe 2)? p(1,N[2])

(stopl) (stop2)

p(2)

Fig. 5.23 Dependency net DNet(d) as Petri net

Example 5.71 (Dependency net). Consider the transformation sequence d in
Fig. 5.16 from Ex. 5.47 and its derived STS in Ex. 5.62. The marked Petri net in
Fig. 5.23 is the dependency net DNet(d) according to Def. 5.70. The places encod-
ing the write causality relation are “p(1 <, 2)” and “p(3 <, 4)”. For the NAC
dependencies we have the places p(1,N[2]) for the second instantiated NAC in
the first transformation step of d and p(3,N[1]) for the third transformation step
and its first instantiated NAC. The other two instantiated NACs are not considered,
because the corresponding rules are weakly self-disabling (g <aui ). At the be-
ginning, transitions 1 and 2 (contl and cont2) are enabled. The firing sequences
according to the transformation sequences d and d’ in Figs. 5.16 and 5.17 can be
executed and they are the only complete firing sequences of this net. Thus, the net
specifies exactly the transformation sequences which are permutation-equivalent to
d. A

We now show that we can exploit the constructed Petri net DNet(d) to charac-
terise STS equivalence of sequences of rule occurrences by Fact 5.73. Note that
according to Def. 5.70 each sequence s of rule names in the STS of Prc(d) can be
interpreted as a sequence of transitions in the derived marked Petri net DNet(d), and
vice versa. This correspondence allows us to transfer the results of the analysis of
the dependency net back to the STS. Notice that the construction of the dependency
net (Def. 5.70) ensures that each transition can fire at most once by construction.

Definition 5.72 (Transition-complete firing sequences). A firing sequence of a
Petri net is called transition-complete if each transition of the net occurs exactly
once. The set of transition-complete firing sequences of a dependency net DNet(d)
is denoted by FSeq(DNet(d)). A

Fact 5.73 (Characterisation of STS equivalence based on Petri nets). Given the
process Prc(d) and the dependency net DNet(d) of a NAC-consistent transformation
sequence d of an M-adhesive transformation system with M-matches, the class of
STS-equivalent sequences of seq(d) coincides with the set of transition-complete
firing sequences in the dependency net DNet(d), i.e., Seq(d) = FSeq(DNet(d)). A

Remark 5.74 (Bijective correspondence). Analogously to Theorem 5.69, there is
also a bijective correspondence between STS sequences and transition-complete
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firing sequences, which is in this case directly given by the identity function
id : Seq(d) = FSeq(DNet(d)). A

Proof (Idea). The proof (see [HCE14]) shows that s =gr5@a) seq(d) iff s is a
transition-complete firing sequence of DNet(d). Direction “=" uses the property
that s is a legal sequence with respect to d in STS(d) and thus s is a permutation of
seq(d) and each transition occurs exactly once in s. For each transition, we can en-
sure its activation using Def. 5.70. Direction “<” starts with the transition-complete
firing sequence s of DNet(d) and shows that s is a legal sequence with respect to d
in STS(d), i.e., that the two conditions in Def. 5.67 hold. |

In order to solve the challenge of computing the set of all permutation-equivalent
transformation sequences for a given one, we can now combine the presented re-
sults, leading to our forth main result by Theorem 5.75 below, where we show that
the analysis of permutation equivalence can be completely performed on the depen-
dency net DNet(d).

Theorem 5.75 (Analysis of permutation equivalence based on Petri nets). Given
the process Prc(d) and the dependency net DNet(d) of a NAC-consistent transfor-
mation sequence d.

1. The class of permutation-equivalent transformation sequences of d coincides
with the set of derived transformation sequences using DNet(d):
m-Equ(d) = Trafo(FSeq(DNet(d))).

2. The mapping Trafo according to Def. 5.68 defines a bijective correspondence
between transition-complete firing sequences and permutation-equivalent trans-
formation sequences:

Trafo : FSeq(DNet(d)) = (n-Equ(d))/=. A

Proof. By combining the characterisations of Theorem 5.69 and Fact 5.73 we
derive the equality m-Equ(d) = Trafo(FSeq(DNet(d))), and the bijection Trafo :
FSeq(DNet(d)) S (m-Equ(d))/= is given by Trafo : Seq(d) = (n-Equ(d))/~ of The-
orem 5.69 with Seq(d) = FSeq(DNet(d)) in Fact 5.73. a

Remark 5.76 (Analysis of permutation equivalence). We now describe how the pre-
sented results can be used for an efficient analysis of permutation equivalence, i.e.,
for the generation of the complete set of permutation-equivalent transformation se-
quences for a given one and for checking permutation equivalence of specific ones.
Given a NAC-consistent transformation sequence with general matches and NAC
schemata, we can first reduce the analysis problem to the derived instantiated trans-
formation sequence with M-matches and standard NACs according to Fact 5.53 and
Rem. 5.54. According to Theorem 5.75, we can perform the analysis of permutation
equivalence based on Petri nets by first constructing the dependency net DNet(d).
For the generation of all permutation-equivalent sequences, we construct the com-
plete reachability graph of DNet(d), where each path specifies one permutation-
equivalent transformation sequence up to isomorphism. If only specific reorderings
of the transformation steps shall be checked, then the corresponding firing sequences
are checked for being executable in DNet(d). A
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Another computational model closely related to transformation systems with
NACs are Petri nets with inhibitor arcs (or inhibitor nets) [JK95, BP99, KK04,
BBCPO04]. In such nets, a transition cannot fire if there are tokens on its inhibitor
places, i.e., on the places that are linked to it with inhibitor arcs.? Therefore these
places play a role conceptually similar to NACs’.

Note that the proposed notion of permutation equivalence would be original also
in the framework of inhibitor nets. In fact, if we encode the system of Ex. 5.47 into
an inhibitor net (by forgetting the graphical structure), the standard semantics for
such nets would not consider equivalent the firing sequences corresponding to the
two transformation sequences d of Fig. 5.16 and d’ of Fig. 5.17.

2 For simplicity we consider only the case of unweighted inhibitor arcs.



Chapter 6
Multi-amalgamated Transformations

In this chapter, we introduce amalgamated transformations. An amalgamated rule
is based on a kernel rule, which defines a fixed part of the match, and multi rules,
which extend this fixed match. From a kernel and a multi rule, a complement rule
can be constructed which characterises the effect of the multi rule exceeding the
kernel rule. If multiple rules can be applied using the same kernel rule, as a first
main result the Multi-amalgamation Theorem states that a bundle of s-amalgamable
transformations is equivalent to a corresponding amalgamated transformation. An
interaction scheme is defined by a kernel rule and available multi rules, leading
to a bundle of multi rules that specifies in addition how often each multi rule is
applied. Amalgamated rules are in general standard rules in M-adhesive transfor-
mation systems; thus all the results follow. In addition, we are able to refine parallel
independence of amalgamated rules based on the induced multi rules. If we extend
an interaction scheme as large as possible we can describe the transformation for
an unknown number of matches, which otherwise would have to be defined by an
infinite number of rules. This leads to maximal matchings, which are useful for
defining the semantics of models. For this chapter, we require an M-adhesive cate-
gory with binary coproducts as well as initial and effective pushouts (see Sect. 4.3).
The theoretical results in this chapter are based on [GHE14].

In Sect. 6.1, kernel, multi and complement rules are presented. In Sect. 6.2, we
introduce amalgamated rules and transformations and show some important results
in Sect. 6.3. In Sect. 6.4, we define interaction schemes and maximal matching and
use these concepts for the firing semantics of elementary Petri nets modelled by
typed graphs using amalgamation. This chapter is based on [EGH" 14, Gol11].

6.1 Kernel Rules, Multi Rules, and Complement Rules

In the following, a bundle represents a family of morphisms or transformation steps
with the same domain, which means that a bundle of things always starts at the same
object.

© Springer-Verlag Berlin Heidelberg 2015 139
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Computer Science. An EATCS Series, DOI 10.1007/978-3-662-47980-3_6
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A kernel morphism describes how a smaller rule, the kernel rule, is embedded
into a larger rule, the multi rule. The multi rule has its name because it can be
applied multiple times for a given kernel rule match, as described later. We need
some more technical preconditions to make sure that the embeddings of the L-, K-,
and R-components as well as the application conditions are consistent and allow us
to construct a complement rule.

/! 7
Definition 6.1 (Kernel morphism). Given rules py = (Lo — Ky AN Ry, acy) and

I 1

)41 =(L| <—K] —>R|,ac1),a . Iy ro

kernel morphism sy : po — pi, po aCODLO‘ Ko ~Ro
s1 = (1.0, S1.k> S1.R) consists of Sll Ml (1) 51-’{ (21) l“-k
M-morphisms sy : Ly — Ly, i dCIDLl K, - R,
S1,K ¢ K() d Kl, and S1,R * RO -
R, such that the diagrams (1) and (2) are pullbacks, (1) has a pushout complement
(1) for 51, o ly, and ac; = Shift(sy r, aco). In this case, py is called kernel rule and

0

p1 multi rule. I I K - R
acy and ac; are complement-compatible 0 0 0
w.r.t. s1 if there is some application con- | s Ll (1) lwl 3y) len
/

dition ac] on the pushout complement Lio I I A
such that ac; = Shift(s; ., aco) A L(p}, 1 0 10 V1 1
Shift(vy, ac))) for the pushout (3;) and p} = A“C

(L1 <u_1 Lo L) El) A

Remark 6.2. The complement-compatibility makes sure that there is a decomposi-
tion of ac into parts on Ly and Ljo. The latter are used later for the application
conditions of the complement rule, which ensure the equivalence of the composi-
tion. A

Example 6.3. To explain the concept of amalgamation, in our example we model a
small transformation system for switching the direction of edges in labeled graphs,
where we have different labels for edges—black and dotted ones. The kernel rule pg
is depicted in Fig. 6.1. It selects a node with a black loop, deletes this loop, and adds
a dotted loop, all of this if no dotted loop is already present. The matches are defined
by the numbers at the nodes and can be induced for the edges by their position.

In Fig. 6.2, two multi rules p; and p, are shown which extend the rule p, and
in addition reverse an edge if no backward edge is present. They also inherit the
application condition of py, forbidding a dotted loop at the selected node. There is
a kernel morphism s; : pg — pi, as shown in the top of Fig. 6.2, with pullbacks
(11), (21) and pushout complement (17). Similarly, there is a kernel morphism s, :
Po — P2, as shown in the bottom of Fig. 6.2, with pullbacks (1), (2,) and pushout
complement (15).

For the application conditions, it holds that ac; = Shift(s; z,aco) A = I a; =
Shift(sy,z, aco) A L(p}, Shift(vi, ~ 3 a})) with a| as shown in the left of Fig. 6.3.
We have that Shift(vi, = 3 a}) = — 3 a1, because square (*) is the only possible
commuting square leading to morphism (a;;, b1;) being jointly surjective and by,
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Dot acOD Q

Loy

1@

Ko

Ly

ap

acop =-day

Fig. 6.1 The kernel rule p, deleting a loop at a node

P~ | e .
aco D 1 : o 1e o e 1 : o e
Ly Ko Ro Lo Ko
s ) se (21) 51 1 ap o
P |~ ] .
1 e K'g 1 1 1
20 2 e 2 2 2 20
L, K, R L L, Ly
acy = Shift(sy z,aco) A~ Ja;
po: |~ ] .
acy D 1 : L ) m g 1 : b )
Ly Ko Ro Ly Ko
a1 (12) 2k (2) S2R s (1%) w2
P2 |~ ] .
1 1e I 1 1 1e
> e e (e
3 3@ 3@ 3 3 3
L, K> Ry Ly L, Ly

acy = Shift(sy ;,aco) A= Jay

Fig. 6.2 The multi rules p; and p, describing the reversion of an edge

being injective. L(p},= 3 a11) = — 3 a1, as shown by the two pushout squares
(PO1) and (P0O>) in the middle of Fig. 6.3. Thus ac| = = 3 a/, and acy and ac; are
complement-compatible w.r.t. s;. Similarly, it can be shown that acy and ac, are
complement-compatible w.r.t. s;.

A

For a given kernel morphism, the complement rule is the remainder of the multi
rule after the application of the kernel rule, i.e., it describes what the multi rule does
in addition to the kernel rule.
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Ly 7. .

2@ 20 2 e 2 2 e 2@ 2
Lo E, L, Ly E, Ly L
q (%) an a (POY) (PO») an a ar

Fig. 6.3 Constructions for the application conditions

I
Theorem 6.4 (Existence of complement rule). Given rules py = (Lg < Ky AN
I
Ry, acy) and py = (L4 — K, AN Ry,acy), and a kernel morphism sy : py — pi,
T — 7
there exists a rule p; = (L — Ki RN Ry, acy) and a jointly epimorphic cospan
Ry BN E; & L_l such that the E-concurrent rule po+g, p1 exists and p1 = po*g, p1

for rules without application conditions. Moreover, if acy and ac, are complement-
compatible w. . t. 5| then p| = pg *g, p1 also for rules with application conditions.

acq
Ly~

I T —

aco[>Ly+—2——Ky—""—=Ry

K, R
Sl.Ll (1’1) Wll (31) \ / (91) l (131) l‘l
L Rio " R,

K,

A

Proof. First, we consider the construction without application conditions. Since s
is a kernel morphism the following diagrams (1;) and (2;) are pullbacks and we
have a pushout complement (1) for sy, o lp. Now construct the pushout (3) and
the initial pushout (4,) over s, g with by, c; € M.

Ly—2 K —" Ry Ly~ Ky—" >R,

Sl.Ll (1y) Sl,Kl 21) lsue S],Ll (1'1) Wll 31) lell
Ly« K R Ly +~— Lo — Ei

A
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Consider P; as the pullback object of ry and b;, and K

the pushout (5;) where we obtain an induced morphism / (iMA
513 0 81 = Ro with s13 0510 = by, s;30 811 =rg,and | p,° (5))  S;2R,

513 € M by effective pushouts. \B s%'hl/v

Since (1)) is a pullback, Lem. B.1 implies that there 1 SLR
is a unique morphism /g : K; — Lo with [jp o s1x = l 4D
wi, U1 o lig = [4, and l;p € M, and we can construct ol . R,

pushouts (61)—(9]_) as a d_ecomposition of pushout (3;),
which leads to L; and K, of the complement rule, and with (7;) + (9;) being a
pushout, e;; and e}, are jointly epimorphic.

S11 513
Lo lo Ko Ko -S| >Ry

SL{ (1’1) w]l 511{ (61) SMl (E) M]zl

K Vi1 w1
S1.K 1

~K,
N ’ml (1) ﬂl 1) ull
71

Ky Lio—y am—E1

The pushout ﬁ 1) can be decomposed into pushouts (10;) and (11), obtaining the
right-hand side R of the complement rule, while pullback (2;) can be decomposed
into pushout (6;) and square (12,), which is a pullback by Lem. B.2.

B, S12 ~ S, 513 >Ry Ko S11 .S s13 ~ Ry
l a0y | an) l l o | a2 l
Ci 171 7 >R K o fl - R,

Now Lem. B.1 implies that there is a unique morphism 7 : K, — R, with
T1 0S4 = U3, t ory = vyp, and 7| € M. With pushout (7;) there is a unique mor-
phism vy : Rjg — R; and by pushout decomposition of (11;) = (7,) + (13;) square
(13y) is a pushout.

— I —

S bRy S >Ry S, ey € R,
l (11) l l ) l l ) l (13)) l

S14/ 55— 13} 7 1 S1, . .
R———=R K Rio\"* Roy—— R0 =R
/ﬁ Vi2 N
K] Rl

Moreover, (81) + (91) as a pushout over M-morphisms is also a pullback which
completes the construction of the rule, and p; = pg *g, p1 for rules without applica-
tion conditions.

For the application conditions, suppose ac; = Shift(sy z, aco) A L(p], Shift(vq,
ach)) for py = (L L Lio 2, Ey) with vy = ejp ouyy and ac) over Lip. Now define
acy = Shift(u;1, ac}), which is an application condition on L.
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We have to show that (pl,ach*Elﬁ) =~ (p1,acy). By construction of the E;-
concurrent rule we have that L(p7, Shift(ei,, acy)) = L(p], Shift(e2, Shift(u;1, ac})))
= L(pj, Shift(e;z o uri,ac})) = L(pj], Shift(vi,ac))). It follows that ACpyey 7 =
Shift(sy,r, aco) AL(p], Shift(e1a, act)) = Shift(sy 1, aco) AL(p7], Shift(vy, ac))) = ac.

S C B,
/ Y l (10"
Ly+—"—Ky—1> 5 — 2+ Ry L~ a K —— R~ S
l”(ll)”l (61) l (71)unzl(71)+(9 CH) a3) | aty |a
L+ . K — 'FI u ~Ro 12 Wi f 13
\l GO Y \
Lio—"—1, = Ej " Rip— 23 Ry 2 R!o
lh‘\(gl)'F(gl)r%'
K
O

Remark 6.5. Note that by construction the interface Ky of the kernel rule has to be
preserved in the complement rule. The construction of pj is not unique w.r.t. the
property p; = po *g, P1, since other choices for S| with M-morphisms s;; and s;3
also lead to a well-defined construction. In particular, one could choose S| = Ry,

leading to p; = E| & Rio 2, R;. Our choice represents the smallest possible
complement, which should be preferred in most application areas. A

I/ T
Definition 6.6 (Complement rule). Given rules py = (Lo — Ky —> Rp,acy) and
I
p1 = (L — K o, Ry, acy), and a kernel morphism s; : pg — p; such that acg

— I, — 7 —
and ac, are complement-compatible w. r. t. sy, the rule p; = (L, — K, AN Ry, acy)
constructed in Theorem 6.4 is called complement rule (of sy).

If we choose ac; = true, this leads to the weak complement rule (of s1) p1 =

— 5 — " = L .
(Ly — K, -, Ry, true), which is defined even if acy and ac; are not complement-
compatible. A

Example 6.7. Consider the kernel morphism s; depicted in Fig. 6.2. Using Theo-
rem 6.4 we obtain the complement rule depicted in the top row of Fig. 6.4 with the
application condition ac; = — da; constructed in the right of Fig. 6.3. The diagrams
in Fig. 6.5 show the complete construction as done in the proof. Similarly, we obtain
a complement rule for the kernel morphism s, : pg — p» in Fig. 6.2, which is shown
in the bottom row of Fig. 6.4. A

Each direct transformation via a multi rule can be decomposed into a direct trans-
formation via the kernel rule followed by a direct transformation via the (weak)
complement rule.
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Fig. 6.4 The complement rules for the kernel morphisms

1
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S 2 B,
C
i3 Tiosiy (10)
o,
1; o 1e e o, e 1 1e 1
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e o n s
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Fig. 6.5 The construction of the complement rule for the kernel morphism s;
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r

I I
Fact 6.8. Given rules py = (Lg P Ky LN Ry, acy) and p; = (L, — K, —

Ry,acy), a kernel morphism s, : po — pi, and a direct transformation
pi.m .

th - G Gy, t; can be decomposed into G prm G

1

pramy
the transformation G N Gy 2% Gy with N
0,110 D1

mgy = myosy y using either the weak complement G it
rule p1 or the complement rule py if acy and 0
acy are complement-compatible with respect to
S1. A

Proof. If acy and ac; are complement-compatible then we have that p; = pg *g, pi.
The analysis part of the Concurrency Theorem now implies the decomposition into

Po.mo Py
G Gy == G, withmg =mj o 5.

If acy and ac; are not complement-compatible we can apply the analysis part
of the Concurrency Theorem without application conditions leading to a decom-

position into G ﬁo;”?—;» Gy % G, with my = m, o s for rules without ap-
plication conditions. Since ac; = Shift(s; 1, aco) and m; | ac; we have that
my [ Shift(s; 1, aco) © my = my o 511 E acy. Moreover, acy = true and m; [ acy.
This means that this is also a decomposition for rules with application conditions.
O

6.2 Amalgamated Rules and Transformations

Now we consider not only single kernel morphisms, but bundles of them over a
fixed kernel rule. The idea is to combine the multi rules of such a bundle to an amal-
gamated rule by gluing them along their common elements defined by the kernel
rule.

Definition 6.9 (Multi-amalgamated rule). Given rules p; = (L; L K; N
R;,ac;) fori = 0,...,n and a bundle of kernel morphisms s = (s; : po = pi)i=1...n»

-3 I = F = ~ .
the (multi-)amalgamated rule p; = (Ly; «— K AN Ry, dcy) is constructed as the
componentwise colimit of the kernel morphisms.

This means that we construct - ac L I % . R
L, = Colimit((s;.)r-1..) Po aco>Lo 0 0
1~< COllmll((S, K)i=1,..n)> and s[l S“l (1) S“l (2) S”{
R = Colimit((s;g)i=1....), with o e
- itoaci| > L« K; R
dcy = Nz, Shift(i, ac;), and P > . '
I; and 7, are induced by (t;y o "l "~Ll (14;) "‘Kl (15 ’f.f{
li)l I,...n and (th ° rl)l 1,...n5 I~ ﬁs; dcsbzs, ; NS = 'Rs
spectively. A '

This definition is well-defined. Moreover, if the application conditions of the
kernel morphisms are complement-compatible, this also holds for the application
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Fig. 6.6 An amalgamated transformation

condition of the amalgamated rule with respect to the morphisms from the original
kernel and multi rules.

Fact 6.10. The amalgamated rule as defined in Def. 6.9 is well defined and we have
kernel morphisms t; = (t;p,tix,tir) : pi = pPsfori=0,1,...,n If acy and ac; are
complement-compatible w. r. t. s; for alli = 1,...,n then also ac; and at, as well as
acy and dcg are complement compatible w. 1. t. t; and t,, respectively. A

Proof. See Appendix B.5.1. O
The application of an amalgamated rule yields an amalgamated transformation.

Definition 6.11 (Amalgamated transformation). The application of an amalga-
mated rule to a graph G is called an amalgamated transformation. A

Example 6.12. Consider the bundle s = (sy, 52, 53 = s1) of the kernel morphisms
depicted in Fig. 6.2. The corresponding amalgamated rule p; is shown in the top
row of Fig. 6.6. This amalgamated rule can be applied to the graph G, leading to the
amalgamated transformation depicted in Fig. 6.6, where the application condition
dc; is obviously fulfilled by the match 7. A

If we have a bundle of direct transformations of an object G, where for each
transformation one of the multi rules is applied, we want to analyse if the amalga-
mated rule is applicable to G combining all the single transformation steps. These
transformations are compatible, i.e., multi-amalgamable, if the matches agree on the
kernel rules, and are independent outside.
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Definition 6.13 (Multi-amalgamable). Given a bundle of kernel morphisms s =
(8 : po = Ppi)i=1...n» a bundle of direct transformations steps (G ﬁ'—_nﬁ—> Gii=1,.n 18
s-multi-amalgamable, or in short s-amalgamable, if
e it has consistent matches,i.e., m;os;j = m;o o L'&.
sj =:mpforalli,j=1,...,nand G
e it has weakly independent matches, i.e., for \ /
all i # j consider the pushout complements
(17) and (1}) for which there exist morphisms p;; : Lig — Djand pj; : Ljp — D;
such that f; o p;j =m;ou;and fio pjy =mjou,;.

Moreover, if aco and ac; are complement-compatible we require g; o p;; | ac; for
all j#1i.

Ve

As with to the characterisation of parallel independence in [EEPT06], we can
give a set-theoretical characterisation of weak independence.

Fact 6.14. For graphs and other set-based structures, weakly independent matches

means that
m;(L;) Nm;(L;) € my(Lo) U (m(1i(K;)) N m;(l;(K})))

foralli # j =1,...,n, ie., the Lo
. . . Si, Sj,
elements in the intersection of the P L.l g
] j
A/mj

1A
. K; L mol
matches m; and m; are either pre- ! '
or are also matched by my. A

T
served by both transformations, G

Proof. We have to prove the equivalence of m;(L;) \m;(L;) € mo(Lo) U (m;(1;(K;)) N
m;i(lj(K;))) for all i # j = 1,...,n with the definition of weakly independent
matches.

“<" Let x = m;i(y;) = m;(y;), and suppose x & mo(Lo). Since (1?) is a pushout we
have that y; = u;(z;) € u;j(Lio\w;(Ko)), and x = m;(u;(z))) = fi(pi(z;)) = m;(y;), and
by pushout properties y; € [;(K;) and x € m;(I;(K})). Similarly, x € m;([;(K;)).

“=” For x € Ly, x = wi(k) define p;j(x) = kj(s;x(k)); then fi(p;;j(x))
fitki(s;x (k) = m;(li(s;x (k) = mj(s;L(lo(k))) = mi(s;L(lo(k))) = mi(n;(wi(k)))
m;(u;(x)). Otherwise, x ¢ w;(Ko), i.e., u;(x) ¢ s;1(Lo), and we define p;;(x) = y with
fi» = mi(u;(x)). This y exists, because either m;(u;(x)) ¢ m;(L;) or m;(u;j(x)) €
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Fig. 6.7 An s-amalgamable bundle of direct transformations

m;(L;) and then m;(u;(x)) € m;(l;(K;)), and in both cases m;(u;(x)) € f;(D;). Simi-
larly, we can define pj; with the required property. O

Example 6.15. Consider the bundle s = (s, 52, 53 = §1) of kernel morphisms from
Ex. 6.12. For the graph G given in Fig. 6.6 we find matches my : Ly — G, m; :
L, —- G,m : L, —» G,and m3 : Ly — G mapping all nodes from the left-
hand side to their corresponding nodes in G, except for m3 mapping node 2 in L;
to node 4 in G. For all these matches, the corresponding application conditions are
fulfilled and we can apply the rules p;, p», pi, respectively, leading to the bundle of
direct transformations depicted in Fig. 6.7. This bundle is s-amalgamable, because
the matches m;, m,, and m3 agree on the match my, and are weakly independent,
because they only overlap in m. A

For an s-amalgamable bundle of direct transformations, each single transforma-
tion step can be decomposed into an application of the kernel rule followed by an
application of the (weak) complement rule, as shown in Fact 6.8. Moreover, all ker-
nel rule applications lead to the same object, and the following applications of the
complement rules are parallel independent.

Fact 6.16. Given a bundle of kernel morphisms s = (s; : po = pi)i=1...n and an
s-amalgamable bundle of direct transformations G:
Pim; o

(G = Gi=1

pism .
G == G; can be decomposed into a trans-
PosMo Pim;

formation G —— Gy ——= G, where p; is
the (weak) complement rule of s;. Moreover, the

» each direct transformation

.....

transformations Gy LN G; are pairwise par- G;
allel independent. A
Proof. See Appendix B.5.2. O

If a bundle of direct transformations of an object G is s-amalgamable we can
apply the amalgamated rule directly to G, leading to a parallel execution of all the
changes done by the single transformation steps.
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Theorem 6.17 (Multi-amalgamation Theorem). Consider a bundle of kernel

G;
. pism; . i1 i
rect transformations (G ——= G));=1...n, there is an G% X‘H
. Ds>m Pl
amalgamated transformation G — H and trans- et

formations G; L, H over the complement rules q; of
DisM; i . ..
the kernel morphisms t; . p; — ps such that G I=> G; q:> H is a decomposition

of G 25, H.
. , . pssim
2. Analysis. Given an amalgamated transformation G L% H, there are s;-related

pim; pim;i

transformations G — G; L H fori=1,...,nsuch that the bundle (G —

Gi)i=1...n Is s-amalgamable.
3. Bijective Correspondence. The synthesis and analysis constructions are inverse
to each other up to isomorphism. A
Proof. See Appendix B.5.3. O

Remark 6.18. Note that g; can be constructed as the amalgamated rule of the kernel

morphisms (pg, — P;)jz, where px, = (Ko ﬁ Ky m Ky, true)) and p; is the
complement rule of p;.

For n = 2, the Multi-amalgamation Theorem specialises to the Amalgamation
Theorem in [BFH87, EGH* 14] for rules without application conditions. Moreover,
if po is the empty rule, this is the Parallelism Theorem in [EHL10], since the trans-
formations are parallel independent for an empty kernel match. A

Example 6.19. As already observed in Ex. 6.15, the transformations G % G,

G 22, G,, and G 222, G5 shown in Fig. 6.7 are s-amalgamable for the bundle

s = (81,582,583 = s1) of kernel morphisms. Applying Fact 6.16, we can decom-
pose these transformations into a transformation G L, Gy followed by trans-

. P11 P2.imny 1,13 .
formations Gy — G|, Gy —= G», and Gy ——= G3 via the complement

rules, which are pairwise parallel independent. These transformations are depicted
in Fig. 6.8.
Moreover, Theorem 6.17 implies that we obtain for this bundle of direct transfor-

mations an amalgamated transformation G 2%, H, which is the transformation al-
ready shown in Fig. 6.6. Vice versa, the analysis of this amalgamated transformation

leads to the s-amalgamable bundle of transformations G % G, G % G,,
and G 222 G; in Fig. 6.7. A

For an M-adhesive transformation system with amalgamation we define a set of
kernel morphisms and allow all kinds of amalgamated transformations using bun-
dles from this set.

Definition 6.20 (M-adhesive grammar with amalgamation). An M-adhesive
transformation system with amalgamation ASA = (C, M, P,S) is an M-adhesive
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Fig. 6.8 The decomposition of the s-amalgamable bundle

transformation system (C, M, P) with a set of kernel morphisms S between rules in
P.
An M-adhesive grammar with amalgamation AGA = (ASA, S) consists of an
M -adhesive transformation system with amalgamation AS A and a start object S.
The language L of an M-adhesive grammar with amalgamation AGA is defined
by
L ={G| 3 amalgamated transformation S = G},

where all amalgamated rules over arbitrary bundles of kernel morphisms in S are
allowed to be used. A

Remark 6.21. Note that by including the kernel morphism id,, : p — p for arule p

into the set S the transformation G == H is also an amalgamated transformation
for this kernel morphism as the only one considered in the bundle. A

6.3 Results for Amalgamated Transformations

Since amalgamated rules are normal rules in an M-adhesive transformation system
with only a special way of constructing them, we obtain all the results from Sect. 5.2
also for amalgamated transformations. Especially for parallel independence, we can
analyse this property in more detail to connect the result to the underlying kernel
and multi rules.

6.3.1 Parallel Independence of Amalgamated Transformations

The parallel independence of two amalgamated transformations of the same object
can be reduced to the parallel independence of the involved transformations via the
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multi rules if the application conditions are handled properly. This leads to two new
notions of parallel independence for amalgamated transformations and bundles of
transformations.

Definition 6.22 (Parallel amalgamation and bundle independence). Given two
bundles of kernel morphisms s = (s; : po = pi)i=1..» and s' = (s} D py —

Ppi-m;

.....

,,,,,,,,,,

G % Hand G p:m:> H’, we have that

e G 2% Hand G % H’ are parallel amalgamation independent if they
are parallel independent, i.e., there are morphisms 7; and 7y with f o 7y = i,
floFs =im, goFy E dcy, and g’ o 7y [ dcy, and in addition we have that
giodiofy E Shift(t}yL, ac_’].) and g; o d’l o 7y = Shift(t;,ac;) foralli = 1,...,n,
j=1,...,n.

L. ac; ac} L
l< dcg  dcy D y
7% /4
D Ty % ix V V 7:’ % Ty D
RS - Ks 'Lv Ls’ - Ks’ 'Rx’
- Fy 7y -
TR )
H~—p—D 7 G E D H'
N V4
H i 4 Di D; gi /
s o

,,,,,,,,,,

they are pairwise parallel independent for all i, j, i.e., there are morphisms r;;
and r}i with fj’ oy =m, fio r}l. = m;, g;. orj F ac, and g; o r}l. = ac;, and in
addition we have for the induced morphisms 7 : Ly — D’ and 7y : Ly — D that
gofFy Edcy and g’ o 7  dcy.

o (G = G))iz1..n and (( —= G})Fl w are parallel bundle independent if

R~ Kt Lt K LR,

r/'i Ti ,
”zl kl 2 m; " ! l J l"/
j
/ ’
H; i D; 7 ~G 7 D; 7 H;

A

Remark 6.23. Note that all objects and morphisms in the above diagrams originate
from the construction in the proof of Theorem 6.17 and the parallel independence.
A
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Fig. 6.9 A counterexample for parallel independence of amalgamated transformations

Two amalgamated transformations are parallel amalgamation independent if and
only if the corresponding bundles of transformations are parallel bundle indepen-
dent.

Theorem 6.24 (Characterisation of parallel independence). Given two bundles
of kernel morphisms s = (s; : po = Pii=1

.....
s

pim’ ,
(G —3 Gj)jzl

P ' ot
Py m Dismi Pjm;

G ——= H/, the following holds: (G — G,)i=1,.., and (G —= G;)jzl w are

.....

,,,,,,,,,,

parallel bundle independent if and only if G g:, H and G % H’ are parallel
amalgamation independent. A

Proof. See Appendix B.5.4. O

Remark 6.25. Note that the additional verification of the application conditions is
necessary because the common effect of all rule applications may invalidate the
amalgamated application condition, although the single applications of the multi
rules behave well. For example, consider the kernel morphism s} in Fig. 6.9, where
the bundles s = (s{,s]) and s’ = (s7,s]) are applied to the graph X. Although
all pairs of applications of the rule p} to X are pairwise parallel independent, the
amalgamated transformations are not parallel independent because they invalidate
the application condition.

Similarly, a positive condition may be fulfilled for the amalgamated rule, but not

for all single multi rules. A

Given two amalgamated rules, the parallel rule can be constructed as an amal-
gamated rule using some componentwise coproduct constructions of the kernel and
multi rules.
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Fig. 6.10 Parallel independence of the transformations G % G and G % G’1

.....

.....

the parallel rule ps + py is constructed by p; + py = p; as the amalgamated rule of
the bundle of kernel morphisms t = (t; : po+py = pi+pg,1; : po+py = po+p)). 4

Proof. This follows directly from the general construction of colimits and their
compatibility. |

Example 6.27. Consider the amalgamated transformation G 28 Hin Fig. 6.6 and
the bundle of kernel morphisms s” = (s}) using the kernel morphism depicted in
Fig. 6.9. The amalgamated rule py can also be applied to G via match /%" matching
the nodes 1 and 2 in L to the nodes 2 and s in G, respectively. This results in the

amalgamated transformation G L, G).
For the analysis of parallel amalgamation independence, we first analyse the pair-

wise parallel independence of the transformations G 22, G and G % G|
for i = 1,2,3, with m’1 = 7'. This is done exemplarily for i = 1 in Fig. 6.10,
where we do not show the application conditions. The morphisms r; and r, are
marked in their corresponding domains D} and Dy, leading to f{ o ri; = m; and
fi o1}, = mj. Moreover, g o r}; | ac], because there are no ingoing edges into
node 2, and g’ o r|; [ acy, because there is no dotted loop at node 1 and no reverse
edge. Thus, both transformations are parallel independent, and this follows analo-
gously for i = 2,3. Moreover, the induced morphism 7y : Ly = L} — D leads
to g o 7y | dcy = acy. In the other direction, 7 : Ly — D’ = D/ ensures that
g} oFs k dcy. Thus, the two bundles are parallel bundle independent and, using The-

orem 6.24, it follows that G p:m:;» H and G p:m:> H’ are parallel amalgamation
independent.
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Fig. 6.11 The kernel morphisms leading to the parallel rule
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Fig. 6.12 A parallel amalgamated graph transformation

The construction of this parallel rule according to Fact 6.26 is shown in Fig. 6.11.
The parallel rule p; + py = p; is the amalgamated rule of the bundle of kernel
mOI‘phiSIIlS t=(s10=s1+1id 0> 520 = 52 + id 0> S10 = 51 + id 0> S0 = idpo + S’l)
The corresponding parallel rule is depicted in the top of Fig. 6.12, where we omit
showing the application condition ac, due to its length. It leads to the amalgamated

transformation G ﬁ’;”ﬁ_> G’ depicted in Fig. 6.12. A

As in any M-adhesive transformation system, also for amalgamated transfor-
mations the Local Church—Rosser and Parallelism Theorem holds. This is a direct
instantiation of Theorem 2.26 to amalgamated transformations. For the analysis of
parallel independence and the construction of the parallel rule we may use the re-
sults from Theorem 6.24 and Fact 6.26, respectively.

Theorem 6.28 (Local Church-Rosser and Parallelism Theorem). Given two
parallel independent amalgamated transforma-

> Bs G iy
. Ps Py .
tions G — H, and G = H,, there is an /

object G’ together with direct transformations | H\ P
H L% G and Hy, 2 G such that G L \ /

2 G’ Ps

H, p=5> G and G p_;> H, p=3> G’ are sequen-
tially independent.

Given two sequentially independent direct transformations G p:> H, p:‘) G,
there is an object H, with direct transformations G p: H, ﬁ: G’ such that
G ﬁ=l> H,and G i)A:/ H, are parallel independent.

In any case of independence, there is a parallel transformation G p_—t> G’ via the

parallel rule p; + py = p; and, vice versa, a direct transformation G L G’ can be
sequentialised both ways. A
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Proof. This follows directly from Theorem 5.26, where all transformations are
amalgamated transformations. O

Example 6.29. In addition to the results from Ex. 6.27, from Theorem 6.28 we ob-

tain amalgamated transformations H == G’ and H' == G’, with G = G =

G ad G 2 H & @ being sequentially independent transformation se-

quences. A

6.3.2 Other Results for Amalgamated Transformations

For M-adhesive transformation systems with amalgamation, also the other results
stated in Sect. 5.2 are valid for amalgamated transformations. But additional results
for the analysis of the results for amalgamated rules based on the underlying kernel
and multi rules are future work:

e For the Concurrency Theorem, two amalgamated rules leading to parallel de-
pendent amalgamated transformations can be combined to an E-concurrent rule
and the corresponding transformation. It would be interesting to analyse if this
E-concurrent rule could be constructed as an amalgamated rule based on the un-
derlying kernel and multi rules.

o For the Embedding and Extension Theorem, an amalgamated rule can be embed-
ded if the embedding morphism is consistent. Most likely, consistency w.r.t. an
amalgamated transformation can be formulated as a consistency property w.r.t.
the bundle of transformations.

e For the Local Confluence Theorem, if all critical pairs depending on all available
amalgamated rules are strictly AC-confluent then the M-adhesive transformation
system with amalgamation is locally confluent. It would be interesting to find a
new notion of critical pairs depending not on the amalgamated rules, but on the
kernel morphisms. For arbitrary amalgamated rules, any bundle of kernel mor-
phisms had to be analysed. It would be more efficient if some kinds of minimal
bundles were sufficient for constructing all critical pairs or dependent transfor-
mations of the M-adhesive transformation system with amalgamation.

6.4 Interaction Schemes and Maximal Matchings

For many interesting application areas, including the operational semantics of Petri
nets and statcharts, we do not want to define the matches for the multi rules explic-
itly, but to obtain them dependent on the object to be transformed. In this case, only
an interaction scheme is given, which defines a set of kernel morphisms but does
not include a count of how often each multi rule is used in the bundle leading to the
amalgamated rule.
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Definition 6.30 (Interaction scheme). A kernel rule py and a set of multi rules
{p1,-..,pr} with kernel morphisms s; : po — p; form an interaction scheme is =
{s1,..., 8} A

When given an interaction scheme, we want to apply as many rules occurring in
the interaction scheme as often as possible over a certain kernel rule match. Here we
consider two different possible maximal matchings: maximal weakly independent
and maximal weakly disjoint matchings. For maximal weakly independent match-
ings, we require the matchings of the multi rules to be weakly independent to ensure
that the resulting bundle of transformations is amalgamable. This is the minimal re-
quirement to meet the definition. In addition, for maximal weakly disjoint matchings
the matches of the multi rules should be disjoint up to the kernel rule match. This
variant is preferred for implementation, because it eases the computation of addi-
tional matches when we can rule out model parts that were already matched.

Definition 6.31 (Maximal weakly independent matching). Given an object G and
an interaction scheme is = {si,..., s}, a maximal weakly independent matching
m = (mg,my, ...,m,) is defined as follows:

1. Set i = 0. Choose a kernel matching my : Ly — G such that G % Gpis a
valid transformation.
2. As long as possible: Increase i, choose a multi rule p; = p; with j € {1,...,k},

and find a match m; : L; — G such that m; o 5;;, = my, G % G; is a valid
transformation, the matches m;, ..., m; are weakly independent, and m; # m, for
all=1,...,i—1.

3. If no more valid matches for any rule in the interaction scheme can be found,
return m = (mg, my, ..., n,).

The maximal weakly independent matching leads to a bundle of kernel morphisms

s = (s; : po — p;) and an s-amalgamable bundle of direct transformations G %

Gi. A
Definition 6.32 (Maximal weakly disjoint matching). Given an object G and
an interaction scheme is = {s,..., s}, a maximal weakly disjoint matching
m = (mg,my, . ..,m,) is defined as follows:

1. Set i = 0. Choose a kernel matching mgy : Ly — G such that G 2__,110:) Gpis a
valid transformation.

2. As long as possible: Increase i, choose a multi rule p; = I 5L
pjwith j € {1,...,k}, and find amatchm; : L; — G such g

L;

pj.mi . . . 8 . .
that m; o 51, = mg, G == G; is a valid transformation, “‘Ll (Pic) J’"

the matches my, . . ., m; are weakly independent, and m; # L p i G
mg and the square (P;,) is a pullback forall £ = 1,...,i—
1.

3. If no more valid matches for any rule in the interaction scheme can be found,
return m = (mg, my, ..., nM,).
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The maximal weakly disjoint matching leads to a bundle of kernel morphisms s =
(s; : po — pi) and an s-amalgamable bundle of direct transformations G ey
G;. A

Note that for maximal weakly disjoint matchings, the pullback requirement al-
ready implies the existence of the morphisms for the weakly independent matches.
Only the property for the application conditions has to be checked in addition.

Fact 6.33. Given an object G, a bundle of kernel morphisms s = (sy,..., S,), and

matches my, ..., m, leading to a bundle of direct transformations G LN G; such
that m; o s;; = my and square (P;;) is a pullback for all i # j, the bundle G % G;
is s-amalgamable for transformations without application conditions. A

Proof. By construction, the matches m; agree on the match my of the kernel rule. It
remains to show that they are weakly independent.

Given the transformations G 2oy G; with pushouts (20;) and (21;), consider
the following cube, where the bottom face is pushout (20;), the back right face is
pullback (1;), and the front right face is pullback (P;;). Now construct the pullback
of f; and m; as the front left face, and frommjos;;oly = m;os;;0ly = m;oljos; g =
fi o ki o sk we obtain a morphism p with fo p=sjrolpandmop =k;os;k.

o
A

th Ki T _ Ri
(20;) k,i 1) ln,-

\
DG, Q/u/\{

From pullback composition and decomposition of the right and left faces it fol-
lows that also the back left face is a pullback. Now the M-van Kampen property
can be applied, leading to a pushout in the top face. Since pushout complements
are unique up to isomorphism, we can substitute the top face by pushout (1}) with
P = Ljy. Thus we have found the morphism pj; := 71 with f; o p;; = m; o u;. This
construction can be applied for all pairs i, j leading to weakly independent matches
without application conditions. O

E
—

Q

This fact leads to a set-theoretical characterisation of maximal weakly disjoint
matchings.

Fact 6.34. For graphs and graph-based structures, valid matches mg, my,...,m,
with m; o s;;, = mgp for alli = 1,...,n form a maximal weakly disjoint matching
without application conditions if and only if m;(L;) N m;(L;) = mo(Lo). A

Proof. Valid matches means that the transformations G LM, are well defined. In
graphs and graph-like structures, (P;;) is a pullback if and only if m;(L;) N m;(L;) =
mo(Lo). Then Fact 6.33 implies that the matches form a maximal weakly disjoint
matching without application conditions. |
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Fig. 6.13 Application of an amalgamated rule via maximal matchings

Example 6.35. Consider the interaction scheme is = (s1, s;) defined by the kernel
morphisms s; and s, in Fig. 6.2, the graph X depicted in the middle of Fig. 6.13,
and the kernel rule match my mapping the node 1 in Ly to the node 1 in X.

If we choose maximal weakly independent matchings, the construction works as
follows, defining the following matches, where f is the edge from 1 to2in L; and g
the reverse edge in L;:
i=1l:py=p,m: 203 fHc
i=2:pp=p,my:2-4,f>d,
i=3:ps=pr,m3:32,8-a,
i=4:ps=p,mg:2—4fie,
i=5:ps=pr,ms: 32,8 b.

Thus, we find five different matches, three for the multi rule p; and two for the
multi rule p,. Note that in addition to the overlapping m, the matches m3 and ms
overlap in the node 2, while m, and my4 overlap in the node 4. But since these matches
are still weakly independent, because the nodes 2 and 4 are not deleted by the rule
applications, this is a valid maximal weakly independent matching. It leads to the
bundle s = (sy, 51, 51, 52, 52) and the amalgamated rule p,, which can be applied to

X, leading to the amalgamated transformation X 2%, X’ as shown in the left of
Fig. 6.13.

If we choose maximal weakly disjoint matchings instead, the matches m4 and
ms are no longer valid because they overlap with m, and mj3, respectively, in
more than the match m,. Thus we obtain the maximal weakly disjoint matching
(mg, my, my, m3), the corresponding bundle s* = (sy, sy, 5») leading to the amalga-

mated rule py and the amalgamated transformation X LA ' depicted in the
right of Fig. 6.13. Note that this matching is not unique; also, (g, m;, my, my) could
have been chosen as a maximal weakly disjoint matching. A

6.4.1 Main Results for Amalgamated Transformations Based on
Maximal Matchings

If we allow applying amalgamated rules only via maximal matchings, the main re-
sults from Sect. 5.2 do not hold instantly as is the case for arbitrary matchings. The
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main problem is that the amalgamated transformations obtained from the construc-
tions are in general not applied via maximal matchings. The analysis and definition
of properties ensuring these results is future work:

o The Local Church-Rosser Theorem guarantees that for parallel independent
amalgamated transformations G pz, H, and G L H, via maximal match-

ings there exist transformations H; p= G’ and H, pz G’. But in general, these
resulting transformations will not be via maximal matchings, since py or p; may
create new matchings for s or s’, respectively. Thus, we have to find properties
that make sure that no new matches, or at least no new disjoint matches, are
created.

e For the Parallelism Theorem, the property of maximal weakly independent
matchings is transferred to the application of the parallel rule, as shown below.

e For the Concurrency Theorem, we have to formulate results concerning the con-
struction of an E-concurrent rule as an amalgamated rule based on the underlying
kernel and multi rules before relating the results to maximal matchings.

e For the Embedding and Extension Theorem, embedding an object G with a max-
imal matching into a larger context G’ in general enables more matches, i.e., the
application of the amalgamated rule to G’ may not be maximal. We need to de-
fine properties to restrict the embedding to certain parts outside the matches of
the multi rules to ensure that the same matchings are maximal in G and G’.

e For the Local Confluence Theorem, maximal matchings may actually lead to
fewer critical pairs if we have additional information about the objects to be
transformed, since some conflicting transformations may not occur at all due to
maximal matchings.

In case of parallel independent transformations, the property of a maximal
weakly independent matching is transferred to the application of the parallel rule.
Note that for maximal weakly disjoint matchings, we have to require in addition that
the matches of the two amalgamated transformations not overlap.

Theorem 6.36 (Parallelism of maximal weakly independent matchings). Given
parallel independent amalgamated transformations G LEUN Hy and G 2, H,
leading to the induced transformations G L2, G via the parallel rule p; = ps +
Dy, the following holds: if G E;m—> H, and G % H, are transformations via

pism, . .
maximal weakly independent matchings then also G 2 Gisa transformation
via a maximal weakly independent matching. A

ps.im

Proof. Consider parallel independent amalgamated transformations G 2% H

and G % H, via maximal weakly independent matchings (mq,mi,...,m,)
with 7 o t;; = m; and (m), m|,...,m;,) with /i’ o t}’L = m}, respectively. Then
parallel transformation G % G’, with [m;, my] o (s + idy,) = [mo,my] and
[mo, m;] o (idr, + s;. ) = [mo, my]. We have to show the maximality of m.
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Fig. 6.14 The firing semantics and type graph for elementary Petri nets

Suppose m is not maximal. This means that there is, w.1. 0. g., some match 7 :
Ly + L, — G such that 7z o (s 1 + idLa) = [mo, my] and i # [m;, my] for all i =
1,...,n such that (m, ) is also weakly independent. Then we find a match 77y, :=
m o iy, for the rule p; with 7y, o s, = mg and Ay, # m; for all i. It follows that
(my,my,...,m,,my) are also weakly independent, which is a contradiction to the
maximality of (mg, my,...,m,). a

6.4.2 Semantics for Elementary Nets

As a concrete and more complex example, we use amalgamation and maximal
matchings to model the operational semantics of elementary Petri nets. Using amal-
gamation allows the description of a semantical step in an unknown surrounding
with only one interaction scheme. We do not need specific rules for each occurring
situation as is the case for Petri nets with standard graph transformation.

In the following, we present a semantics for the firing behaviour of elementary
Petri nets using graph transformation and amalgamation. Elementary Petri nets are
nets where at most one token is allowed on each place. A transition ¢ is activated
if there is a token on each pre-place of ¢ and all post-places of ¢ are token-free. In
this case, the transition may fire, leading to the follower marking where the tokens
on all the pre-places of ¢ are deleted and at all post-places of  a token appears. An
example is depicted on the right of Fig. 6.14, where the transition ¢ in the elementary
Petri net G is activated on the left and the follower marking is depicted on the right,
leading to the elementary Petri net H.

We model these nets by typed graphs. The type graph is depicted on the left of
Fig. 6.14 and consists simply of places, transitions, the corresponding pre- and post-
arcs, and tokens attached to their places. For the following examples, we use the
well-known concrete syntax of Petri nets, modelling a place by a circle, a transition
by a rectangle, and a token by a small filled circle placed on its place.
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Fig. 6.15 The kernel rule selecting an activated transition

In Figs. 6.15 and 6.16, three rules, py, p1, and p,, are shown, which, combined as
an amalgamated rule with maximal weakly disjoint matchings, will result in a firing
step of the net. The rule py in Fig. 6.15 selects a transition # which is not changed at
all. But note that the application condition restricts this rule to be only applicable if
there is no empty pre-place of # and we have only empty post-places. This means that
the transition ¢ is activated in the elementary net. The rule p; describes the firing of
a pre-place, where the token on this place is deleted. It only inherits the application
condition of py to guarantee a kernel morphism s, : po — p;, as shown at the top of
Fig. 6.16. s; is indeed a kernel morphism because (1) and (2) are pullbacks and (3)
is the required pushout complement. acy and ac; are complement-compatible w.r. t.
s1 with ac| = true. Similarly, rule p, describes the firing of a post-place, where
a token is added on this place. Again, there is a kernel morphism s, : py — po,
as shown in the bottom of Fig. 6.16 with pullbacks (1’) and (2)’, (1’) is already a
pushout, and acy and ac; are complement-compatible w.r. t. s with ac} = true.

Theorem 6.37 (Equivalence of amalgamated transformation and firing step).
Using the interaction scheme is = {s; : po — p1,S2 : po — p2} of the rules
defined in Figs. 6.15 and 6.16 with maximal weakly disjoint matchings, the derived
amalgamated transformations are equivalent to the firing steps of elementary Petri
nets. A

For the multi rules in Fig. 6.16, the complement rules are the rules p; and p;
themselves but with empty application condition true, because they contain every-
thing which is done in addition to pg, including the connection with Ky, while the
application condition is already ensured by py.

Now consider the interaction scheme is = {sy, s»} leading to the bundle of kernel
morphisms s = (sy, Sy, 1, S2, 52). The construction of the corresponding amalga-
mated rule p, is shown in Fig. 6.17 without application conditions. This amalga-
mated rule can be applied to the elementary Petri net G as depicted in Fig. 6.18,

leading to the amalgamated transformation G 2% H.

. my,pi ma,p|
Moreover, we can find a bundle of transformations G —— G|, G —— G,
m3,pi m4,pa ms,p2

G G3, G —= G4, and G ——= G5 with the resulting nets depicted in
Fig. 6.19 and matches mqy : t ¥ t,my : py = q1, my : p1 & qa, M3 : p1 — g3,
my : p» & g4, and m3 @ py — gs. This bundle is s-amalgamable, because it has
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consistent matches with m, matching the transition ¢ from pg to the transition ¢ in
G, and all matches are weakly independent; they only overlap in Lgy. (mq, ..., ms)
is both a maximal weakly independent and a maximal weakly disjoint matching,
because no other match can be found extending the kernel rule match, and all these
matches are disjoint up to the selected transition ¢.

If we always use maximal matchings, any application of an amalgamated rule
created from the interaction scheme is = {sy, 55} is a valid firing step of a transition
in the elementary net. For example, to fire the transition ¢ in G the bundle s' =
(s1, 52) leads to the required amalgamated rule. In general, for a transition with m
pre- and n post-arcs, the corresponding bundle s = ((s1)i=1,...m, (52) j=1,..,,) leads
to the amalgamated rule firing this transition via a maximal matching. Note that
each maximal weakly independent matching is already a maximal weakly disjoint
matching due to the net structure.

For elementary Petri nets we only need one kernel rule and two multi rules to
describe the complete firing semantics for all well-defined nets. We neither need
infinite many rules, which are difficult to analyse, nor any control or helper structure
when using amalgamation. This eases the modelling of the semantics and prevents
errors [GHE14].
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This third part presents model transformation, model integration and model syn-
chronisation based on triple graph grammars. Following up on the informal intro-
duction to model transformation in Chap. 3 of Part I, we present the formal theory of
graph transformation based on triple graph grammars. In Chap. 7, we give the foun-
dations of triple graph grammars leading to model transformation and model inte-
gration. It is important to note that transformation and integration are based on oper-
ational rules, which can be generated automatically from the triple graph grammar
rules. A flattening construction allows us to show the equivalence of model trans-
formations based on triple graph grammars and plain graph grammars. In Chap. 8,
we present several analysis techniques for model transformations, which are sup-
ported by tools discussed in Part IV. Important properties, which are analysed in
Chap. 8, include correctness and completeness, functional behaviour and informa-
tion preservation, as well as conflict resolution and optimisation. In Chap. 9, model
transformation techniques are applied to model synchronisation, which is an impor-
tant technique for gaining and keeping consistency of source and target models after
changing one or both of them. This leads to unidirectional and concurrent model
synchronisation, respectively.



Chapter 7
Model Transformation and Model Integration

In this chapter, we describe the formal framework for model transformation and
model integration based on triple graph grammars. For this purpose, we use triple
graph transformation systems as introduced in Chap. 3 and show in Sect. 7.1 that
they instantiate the general framework of M-adhesive transformation systems pre-
sented in Chap. 5. This ensures that all results for M-adhesive transformation sys-
tems hold for the specific case of triple graph transformation systems. A triple graph
grammar is a constructive specification of a language of integrated models, which
are specified by their underlying abstract syntax graphs. Based on this general con-
cept, we first derive a transformation system for forward model transformations,
which are defined in Sect. 7.3. In Sect. 7.4, we introduce forward translation rules
as an alternative to forward rules and show the equivalence of model transforma-
tions based on either forward or forward translation rules. The concept of forward
translation rules simplifies the control mechanism for executing model transforma-
tions. In addition to that, it offers improved capabilities for analysis and execu-
tion, which we will study in detail in Chap. 8. Model integration is a technique
to integrate two given models—one from the source and one from the target lan-
guage. In Sect. 7.5, we present model integration based on TGGs and show for-
mally that this concept is closely related to model transformations. The last section
(Sect. 7.6) of this chapter relates the presented concepts based on TGGs with stan-
dard model transformations based on plain graph grammars. The chapter is based
on [Herl1, HEGO14, EEE*07, EEHO8c, HHK10, GEH11].

7.1 Triple Graphs form an M-adhesive Category

A triple graph is an integrated model G = (G5 « G¢ — G”) containing a source
model G5 from the source language, a target model G” from the target language,
and explicit correspondences between them specified via a correspondence model
GC.
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The category of triple graphs can be constructed from underlying M-adhesive
categories of typed attributed graphs.

Fact 7.1 (Construction of categories of triple graphs). The category of typed at-
tributed triple graphs in Def. 3.4 and the base categories for triple graphs in Def. 3.5
can be constructed as follows.

o The category TrGraphs of triple graphs and triple graph morphisms can be
constructed as functor category [X, Graphs] over the category Graphs of graphs
with schema category X = ({S,C, T}, {s: C — S,t: C - T,ids,idc, idr}).

e The category ATrGraphs of attributed triple graphs can be constructed as the
Sfunctor category [X, AGraphs] over the category AGraphs of attributed graphs
with the same schema category as above.

o The category TrGraphs;; of typed triple graphs (or ATrGraphs,;; of typed
attributed triple graphs) for a given triple graph TG in TrGraphs (or ATG in
ATrGraphs) can be constructed as slice category TrGraphs\TG over TrGraphs
(or ATrGraphs\ATG over ATrGraphs). A

Proof. A triple graph G = (G¥ &¢ G€ %5 G7) is represented by a functor G: X —
Graphs with G(S) = G5,G(C) = G°,G(T) = G” and G(s) = s5,G(t) = t;. The
compatibility condition for triple graph morphisms follows from the compatibility
condition of functor transformations that form the morphisms in a functor category.
The typing and attribution extensions are compatible with the construction of the
functor category. i

Theorem 7.2 (Category of triple graphs is M-adhesive). The categories
TrGraphs, TrGraphs;;, ATrGraphs, and ATrGraphs,;; are M-adhesive. A

Proof. Using Fact 7.1, we derive the categories as functor and slice constructions
over M-adhesive categories (Graphs, M) and (AGraphs, M) and can apply Theo-
rem B.13 to derive that the constructed categories are again M-adhesive categories.

O

By Theorem 7.2, we can conclude that the results in Chapters 4 to 6 for M-
adhesive categories hold for triple graphs and triple graph transformations. In par-
ticular, we will apply the theory and analysis for critical pairs and confluence (see
Sect. 5.2.4 in Chap. 5) in Chap. 8 for analysing functional behaviour and informa-
tion preservation. Using Theorem 7.2, we derive the classes of M-morphisms for
the different kinds of triple graphs as constructions from the M-adhesive categories
Graphs and AGraphs. The class of M-morphisms is given by all triple graph mor-
phisms that are injective on the graph part and isomorphisms on the data part.

From the application point of view a model transformation should be injective
on the structural part, i.e., the transformation rules are applied along matches that
do not identify structural elements. Thus, the translation of each element is explic-
itly specified and there is no confusion. But it would be too restrictive to require
injectivity of the matches also on the data and variable nodes, because we must
allow two different variables to be mapped to the same data value. For this rea-
son we introduce the notion of almost injective matches, which requires matches
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to be injective except for the data value nodes. This way, attribute values can still
be specified as terms within a rule and matched noninjectively to the same value.
For the rest of this chapter, we generally require almost injective matching for the
transformation sequences. Moreover, we require that application conditions contain
almost injective morphisms only. For the constructions, we can assume without loss
of generality that each almost injective morphism f = (fs, fp): G — H is given by
f = (incg, fp), i.e., [ is an inclusion.

Definition 7.3 (Almost injective match). An attributed triple graph morphism m :
L — G is called almost injective if it is noninjective at most for the set of variables
and data values. A

Remark 7.4 (Restriction of application conditions to almost injective internal mor-
phisms). The internal morphisms of an application condition are not restricted by
definition. If we consider almost injective matches, it is sufficient to use almost
injective morphisms for the internal morphisms of an application condition. The
reason is that those internal morphisms that are not almost injective can never be
completed with a compatible mediating morphism ¢: P — G. Thus, they are not
relevant and do not restrict the applicability of the rule. Therefore, we use applica-
tion conditions with almost injective internal morphisms only. Note that this restric-
tion is compatible with the notion of AC schemata. Given an AC schema ac (see
Def. 5.6), where ac contains almost injective internal morphisms only, the induced
application condition ac also contains almost injective internal morphisms only due
to the merge construction (see Def. 5.5). A

Following the discussion and explanations for almost injective morphisms above,
we generally require almost injective morphisms for TGGs as stated by our general
assumption below.

Remark 7.5 (General assumption). The formal results in this chapter are presented
for TGGs that are executed via almost injective matches and where all internal mor-
phisms of application conditions are almost injective. A

7.2 Derivation of Operational Rules

The operational rules for executing forward and backward model transformations
are derived from the set of triple rules of a given TGG. This process requires us
to split the application conditions of the triple rules and to distribute them to the
corresponding derived rules. For this reason, we need to specify a restriction of ap-
plication conditions, which ensures that the split can be performed. This restriction,
however, is not problematic from an application point of view, which we will also
see in our running example.

Definition 7.6 (Special application conditions). Given a triple rule tr : L — R, an
application condition ac = 1 (a,ac’) over L witha : L — P is an



174 7 Model Transformation and Model Integration

o S-application condition if a€, a* are identities, i.e., P° = L€, PT = LT, and ac’

is an S -application condition over P,
e S-extending application condition if a® is an identity, i.e., P = LS, and ac’ is an
S -extending application condition over P.

S -application condition S -extending application condition
ac P> (IS <2— 16—~ I7) acD>>(L5 <=1 % I7)

ATd W T

S C _gC T _ T ’ S — 1S C T
ac’>P < PC =L P = L") ac'[>(P° =L’ = P P)

e T-application condition if a5, a© are identities, i.e., P = LS, P¢ = L®, and ac’
is a T-application condition over P,

o T-extending application condition if a’ is an identity, i.e., PT = LT, and ac’ is a
T-extending application condition over P,

T-application condition T-extending application condition

ac (LS <2— 1€ L5 1Ty ac[>(I5 4 1€ —>IT)

T R R

ac’[>(PS = L5 = P€ =L —>PT) ac’[>(PS <—PC—>PT LT

o ST-application condition if aC is an identity, i.e., P = L€, and ac’ is an ST-
application condition over P.

S T-application condition
ac[> (LS R § SR

4

ac'> (P’ <P =1L —P")

Moreover, true is an S - (S -extending, ST-, T-, T-extending) application condition,
and if ac, ac; are S- (S -extending, ST-, T-, T-extending) application conditions so
are —ac, Nierac;, and Verac;. A

During the generation of the operational rules, each application condition ac of
a triple rule #r € TR has to be transferred to the operational rules. This transfer is
achieved by decomposing ac into (1) a part on the source rule and an S -extending
application condition for the forward rule, or (2) a part on the target rule and a 7-
extending application condition for the backward rule, or (3) an ST-condition for
the source—target rules and an empty remainder for the model integration rules.
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Fig. 7.1 Translation of application conditions for the construction of operational rules

Definition 7.7 (Translated application condition). Consider a triple rule tr

(tr: L — R,ac); then an application condition ac can be translated as follows, ac-
cording to Fig. 7.1. The data component for each inclusion @ — X for a triple graph
X is given by an identity, i.e., the construction does not change the data component.

e Given an application condition acg over L, we define an application condition

toS (acy) over Lg = (LS « @ — @) by

— toS(true) = true,
- toS(3d(a,acg)) = 1 (@S, idyp, idy), toS (acy)), and
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— recursively defined for composed application conditions.

Given an § -extending application condition ac), over L, we define an application
S o

condition foF (ac’,) over Ly = (RS {2 L€ 1 [T) by

— toF(true) = true,

— toF(3d(a,acy)) = 3 ((idgs, a‘,ah), toF(ac}.)), and
— recursively defined for composed application conditions.

Given an application condition ac’, over L, we define an application condition
toT (acy) over Ly = (@ « @ — L") by

— toT (true) = true,
- toT(3d(a,acy)) = A ((idy, idg, ab), toS (acy)), and
— recursively defined for composed application conditions.

Given a T-extending application condition ac), over L, we define an application
; T
condition toB(ac},) over L = (LS & L€ 2y RTY by

— toB(true) = true,
- toB(3d(a,acy)) = 3 (@S, dC, idgr), toB(acy)), and
— recursively defined for composed application conditions.

Given an application condition acg, over L, we define an application condition
10ST(acyy) over Lsy = (L5 « @ — L") by

— toST(true) = true,
- toST(3A (a,acgy)) = 3 (a®,idy,a"), toST(acyy)), and
— recursively defined for composed application conditions. A

In order to assign an application condition ac to the derived operational rules, we

have to be able to decompose it properly.

Definition 7.8 (S - and T-consistent application conditions). Given a triple rule
tr =(tr: L > R,ac), ac is

S -consistent if it can be decomposed into ac = acg A acp such that acy =
Shift((ids, @1c, @rr), toS (acy)) and ac). is an S-extending application condi-
tion.

T-consistent if it can be decomposed into ac = ac}. A acjy such that ac}, =
Shift((@s, @1c, idyr), toT (ac})) and acy is a T-extending application condition.
ST-consistent if it can be decomposed into ac = acg, such that acy, =
Shift((idys, @1c, id;r), toS T (acy)).

If ac is S -consistent (T-consistent, ST-consistent), we also say that 7r is S -consistent
(T-consistent, ST-consistent). A
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The consistency conditions for application conditions in Def. 7.8 can be checked
as follows. First of all, for an S -consistent application condition we require that we
be able to split it into a conjunction of an application condition acg that concerns the
source component only and an application condition ac’, that does not restrict source
structures. Thus, a modeller should use application conditions that are already of
this form. Furthermore, we require that acy = Shift((ids, @;c, @1r), toS (acy)). By
Lem. 7.9 we show that our general assumption (see Rem. 7.5) already ensures this
condition. This means that the additional condition is guaranteed by using almost
injective morphisms for matches and application conditions.

Lemma 7.9 (Validity of S -consistency for almost injective morphisms). Let ac
be an S -application condition for a triple rule tr = (L — R) and ac’ = Shift((idys,
@ic, @), toS (ac)). Let further all morphisms in ac be almost injective. Then, ac’ =
ac for almost injective matches, i.e.: for each almost injective morphismm: L — G
it holds that m £ ac & m [ ac’. A

Proof. See Appendix B.6.1. |

Example 7.10 (Consistent application conditions). Two of the triple rules in Fig. 3.8
described in Ex. 3.9 contain application conditions. The application condition of rule
Association2ForeignKey is both, a T-application condition and an § -extending
application condition. The rule PrimaryAttr2Column contains a conjunction of
two NACs, where NAC1 is an application condition that is an S -application condition
and a T-extending application condition and NAC2 is an application condition that
is a T-application condition and an S -extending application condition. Therefore,
all application conditions are S-consistent and T-consistent, because they can be
decomposed as required using ac = (ac Atrue). Moreover, all application conditions
are ST-consistent, because they are each either S - or T-consistent. A

From a triple rule, we can derive a source rule trg and a target rule ¢r;, which
specify the changes made by this rule in the source and target components, respec-
tively. Similarly, we derive a source—target rule trsy specifying the changes made by
this rule in the source and target components synchronously. Additionally, we derive
the forward rule frr describing the changes made by the rule to the correspondence
and target parts, the backward rule trp concerning the correspondence and source
parts, and the integration rule #r; concerning the correspondence parts. Intuitively,
these rules require that their counterparts (source, target, and source—target, respec-
tively) have been applied already. Intuitively, source rules are used to parse a given
source model in order to control the actual forward model transformation via for-
ward rules from source to target models. Vice versa, target rules are used to parse
a given target model in order to control the actual backward model transformation
via backward rules from target to source models. Source—target rules are used to
parse a given pair of source and target models in order to control the actual model
integration via integration rules, yielding a fully integrated model. Technically, the
source rules recreate the given source model, such that the matches can be used
to induce partial matches for the forward rules that transform the model into the
corresponding target model.
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Fig. 7.2 The main components of derived operational rules for model transformation

Definition 7.11 (Derived operational rules without application conditions).

Given a triple rule tr = (tr: L — R, ac), we derive its operational rules trg, try, trsr,
trr, trp, tr; without application conditions according to Fig. 7.2. The data compo-
nent for each inclusion @ — X for a triple graph X is given by an identity, i.e., the
construction does not change the data component. A

We combine the translated application conditions with the derived rules without
application conditions, leading to the derived rules of a triple rule with application
conditions.

Definition 7.12 (Derived operational rules). Given a triple rule tr = (tr: L —
R,ac), we derive its operational rules without application conditions according
to Def. 7.11. If #r contains an application condition ac of L, then the derivation
is extended as defined below, requiring additional consistency conditions. If ac
is an §-consistent application condition, we derive ac = acy A acj, and we ob-
tain the source rule trg = (trs,acs) with acs = toS(acy) and the forward rule
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Class2Tablegs(n:String) Class2Tablep(n:String)
:Class++ :Class ++ @ ++| :Table++
name=n-++ name=n o name=n
Subclass2Tables(n:String) Subclass2Tabler(n:String)

S1:Class S1:Class|#—-———---- @———» :Table
++
:parent :parent ]
:Class ++ :Class tt 7777777 77777_&4‘
name=n ++ name=n

Attr2Columng(n:String, t:String) Attr2Columny(n:String, t:String)

S1:Class S1:Class H, , f>| T1:Table

++
:attrs :attrs .co1s |t
Y A \
:Attribute ++ :Attribute . . Column ++
name=n ++ name=n Bl |+ | name=n 4+
datatype=t ++ datatype=t type=t ++
is_primary=false ++ is_primary=false

Fig. 7.3 Derived source rules (left) and forward rules (right) for CD2RDBM

trp = (trp,acp) with acy = toF(ac},). If ac is a T-consistent application condi-
tion, we derive ac = ac’. A acy and we obtain the target rule trr = (trr,acr) with
acr = toT (acy) and the backward rule trg = (trp, acp) with acg = toB(ac’B). If ac
is an ST-application condition, we obtain the source—target rule trsy = (trsy, acsr)
with acgr = toST(ac) and the integration rule tr; = (try, true). By TRs, TRy, TR,
TRp, TRy and TR;, we denote the sets of all source, target, source—target, forward,
backward and integration rules derived from 7R. A

Remark 7.13 (Symmetry of forward and backward case). According to Def. 7.12,
the definition of operational rules shows symmetries. Source rules are symmetric to
target rules and forward rules are symmetric to backward rules. For this reason, all
further constructions can be presented based on source and forward rules and the
symmetric constructions and results for target and backward rules follow immedi-
ately. A

Example 7.14 (Derived operational rules). The derived operational source and for-
ward rules for the model transformation CD2RDBM are depicted in Fig. 7.3. The
derived operational target and backward rules follow by the symmetry in Def. 7.12.
Intuitively, the source rules are obtained by deleting all elements in the correspon-
dence and target components, including the components of the application condi-
tions. The forward rules are obtained by removing all double plus signs in the source
component and by removing the application conditions on the source component.
The derived operational source—target and integration rules for the model transfor-
mation CD2RDBM are depicted in Figs. 7.4 and 7.5. Intuitively, the source—target
rules are obtained by deleting all elements in the correspondence component, in-
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Class2Tablegr(n:Strin, Class2Tabler(n:String)
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Fig. 7.4 Derived source—target and integration rules for CD2RDBM (part 1)



7.2 Derivation of Operational Rules 181
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Fig. 7.5 Derived source—target and integration rules for CD2RDBM (part 2)

cluding the components of the application conditions. The integration rules are ob-
tained by removing all double plus signs in the source and target components and
by removing the application conditions on the source and target components. A

In the following, we want to split each triple rule into the corresponding source
and forward rules. Each triple rule without application conditions is the E-concurrent
rule of its source and forward rules as well as the E-concurrent rule of its target and
backward rules (see also the proof for Thm. 1 in [EEE*07]). Moreover, each triple
rule without application conditions is the E-concurrent rule of its source—target and
integration rules (see also the proof for Lem. 1 in [EEHO0S8a]).

Fact 7.15 (Splitting of triple rule without application condition). Given a triple
rule tr = (tr: L — R) without application conditions, we have that tr = trs *g, trp =
trr *g, trg = trsy *g, try with E|, E, and Ez being the domains of trg, trp and try,
respectively. A

Proof. At first, we show that tr = trg *g, trp where E; = Lp. Triple graph mor-
phisms e;  and e; r are obtained from pushouts (1F) and (2F) in ATrGraphs,;;
(see Fig. 7.6). Using tr = trg o (tr%,id, id) we obtain trs #g trp = tr. Symmetri-
cally, we derive that tr = trr g, trp where E; = Lg by exchanging frg with try
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Fig. 7.6 Splitting of triple rules via forward, backward and integration rules (from top to bottom)

and frr with trp. Analogously, we derive that tr = trsr *g, tr; where E3 = L; by
exchanging trg with trgr and trp with tr;. In that case, e;; = (id, @, id), e = id,
and tr = try o (trS,id, tr7). O

In case of S-consistency, each triple rule is the E-concurrent rule of its source
and forward rules. Similarly, in case of T-consistency, each triple rule is the E-
concurrent rule of its target and backward rules (see also Fact 5.17 in [Goll1]).
Moreover, in case of an ST-application condition, each triple rule is the E-concurrent
rule of its source—target and its integration rule. This correspondence is made ex-
plicit in Prop. 7.16 below and used to show the composition and decomposition
theorem for TGGs in Theorem 7.21, which builds the basis for the correctness and
completeness properties in Sect. 8.1.

Proposition 7.16 (Splitting of triple rule with application condition). Given a
triple rule tr = (tr: L — R, ac) with S -consistent ac, tr = trs *g, trp with E; = Lp.
Dually, if ac is T-consistent we have that tr = try *g, trg with E, = Lg. If ac is
ST-consistent, we have that tr = trsy *g, try with E3 = L. A

Proof. By Fact 7.15 we know that this holds for triple rules without applica-
tion conditions. It remains to show the property for the application conditions.
By Def. 5.27, the application condition ac* of (trs ., trp) is given by ac* =
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ach, > L<—— [ —" 5 [, <] acr i = (0, idye,idyr)
j j ip = (tr%, idpc, idpr)

a (PO) a (PO) L”F a = (idLs,aC,aT)

ap = (idgs,a€,a")

. )
ac%b P<'—PP$-PF < toF (ac};.

Fig. 7.7 Obtaining P as pushout complement from left shift construction

Shift(u;, acy) A L(p*, Shift(ey, acy)) with u; = (ids, @7c,@r), acy = acs, p* =
(L (ﬂ L (trS id, ¢ ,id, 1)

ac* = Shift((idys, @,c, @pr),acs) A L(L & L
We show that ac = ac; A ac}, = ac™ in two steps:

Lr), e = epp = idy, and ac, = acrp. Thus, we have that

Sid, cid . .
WM ) Y, Shift(idy, , ack)).

1. acg = Shift((idys, @1c, @1r), acs). Since acs = toS (ac) and ac is S -consistent,
we can conclude directly that acy = Shift((idys, @1c, @1r), toS (acy)).

i rSid,cid, T . . . .
2. acl, = L((L M g Wy Shifi(idy, , acr). Shift(idy, . acr) = acr by

i P
Item 1 of Fact 5.4, and therefore ac), = L(L &% [ Y140 11y gep). With
acr = toF(acy,) this is obvious for ac}. = true. Consider acy, = 3 (a,ac}) with
L((LS « P¢ - P") > (RS « P® — P"),10F(ac})) = ac}. Then (P¥ = L% &
PC€ 2, PT) is the pushout complement constructed for the left shift construction
(see Fig. 7.7). Thus, we have that L((L M) Lp),toF( 3 (a,acy))) =

. S ; i
L(L & D, 1), 3 (dgs . aC.a"), 10F (ac)) = 3 ((idys,aC,ah),
L((P v (L5 « P - PT)y - (RS « P¢ - PT)),toF(ac}’)) = J(a, ac}’)l:
ac’.. This can be recursively done, leading to the result that indeed L((L S
s
L e, gy Shift(idy, , acr)) = acy.
, , . . (frs,l'ch,idLT)

It follows that ac = acg A acl, = Shift((ids, Dic, @r7), acs) A L(L ———=5

El), Shlft(ldEI s acF)).

Dually, we can obtain the result for the splitting into target and backward rules for

a T-consistent application condition ac = ac’, A acy = Shift(@ys, @c, idr), acT) A

L((L “s e ) Shift(idy, , acy)).

Analogously, we can obtain the result for the splitting into source—target and inte-
gration rules for an ST-consistent application condition ac. We show that Shift((ids,
@yc,idir),acst) = ac. With acsy = toST(ac) this is obviously true for ac = true.
Consider ac = 1 (a, ac”) and suppose Shift((idps, @;c, idpr), toST(ac”)) = ac”.
Then we have that (PS &£ P¢ = L€ 2, PT) is the only square that we have
to consider in the shift construction; for the correspondence component, (C) is
the only jointly epimorphic extension we have to consider because all morphisms
in the application conditions are identities in the correspondence component. For
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any square (1) with a monomorphism 5% and (6%, %) jointly epimorphic, it fol-
lows that b5 is an epimorphism, i. e., P = Q5. For any square (2) with a
monomorphism b7 and (b7, c”) jointly epimorphic, it follows that b7 is an epi-
morphism, i. e, PT = QT. This means that (§) and (T) are the only epimor-
phic extensions that we obtain in the source and target components. It follows that
Shift((idys, @ic, idyr), toST( A (a,ac”))) = A (a, Shift((idps, @5, idpr), toST(ac’))
= d(a,acy;) = acy,. This can be recursively done, leading to the result that indeed
Shift((idys, @yc, idpr), acst) = ac.

s g s s 4 g g

“Sl’ M lcs ”Tl’ 2 lcT usl () ‘J/“S l © l uTl/ (1) iaT

PS—>QS PT—>QT Psﬁps LCﬁLC PTﬁ-PT
»S »T idps id,c idpr

Therefore, ac = Shift((id;s, @;c, idyr), acsy). a

7.3 Model Transformation Based on Forward Rules

In order to perform model transformations that are compatible with the consistency
specification of a TGG, the triple rules of the TGG are used to generate operational
rules. These operational rules have to be executed in a controlled way. This section
presents the execution of forward transformations using the control condition source
consistency and backward transformations using the control condition target consis-
tency. In Sect. 7.4, we use extended operational rules for simplifying and improving
both, analysis and execution techniques.

The general idea of model transformations based on TGGs from source to tar-
get models is to take the given source model and apply forward rules in order to
complete the missing elements in the correspondence and target components. This
process has to be driven by a suitable control condition, which ensures termination,
correctness and completeness of the transformation with respect to the triple lan-
guage L(TGG) generated by the TGG. This control condition has been formalised
by the notion of source consistency in [EEE*07, EEHP09, GEH11]. As we show
in Chap. 8, source consistency ensures syntactical correctness and completeness. In
combination with an additional static condition on the rules, termination is ensured
as well.

Example 7.17 (Inconsistent transformation sequence via forward rules). The for-

. ryF.myp tra,F,ma, p . . ..
ward transformation sequence Gy = » G| —=—= G, in Fig. 7.8 is incon-
sistent. Types are abbreviated by the first letter. The two nodes of type Class are
translated into two nodes of type Table using the forward rule Class2Tabler for
each step. However, the edge of type parent between the two nodes of type Class
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Lir Rk L R r
][ eslflop| [[@] ] Hes|lelkfolfr]|
*mI,F \”LF /mz‘F \"J,F
G, [[cl-fof+{T] G [cl+{ot~T]
fir for
{o}~[1]

Fig. 7.8 Inconsistent forward sequence

was not handled by one of the two transformation steps. Still, we could execute fur-
ther forward transformation steps via rules Class2Tabley or SubClass2Tabley.
However, there is no extension of this sequence that would yield a triple graph
G, € L(TGG). Thus, the result will never be consistent with the given TGG. In-
tuitively, each further step would need to effectively translate again a node of type
Class. A

As illustrated by Ex. 7.17, matches for forward rules have to be consistent with
the given source model. The main idea of source consistency is the following: Let us
consider a source model G° € L(TG®). If there is a target model G* € L(TGT), such
that there is a triple graph G = (G5 < G¢ — G7) of the triple language £L(TGG),
we know that GT corresponds to G5 according to the TGG. Otherwise, there is
no consistent model transformation sequence starting with G5. The challenge is to
compute such a triple graph G € L(TGG), if it exists. By definition, G € L(TGG)

means that there is a triple sequence @ L, Gvia triple rules t» € TR. It turns out that

tr
this sequence can be decomposed into a source sequence ss = (@ = Gno = Gs)
with Gs = (G5 « @ — @) via source rules trs € TRg and a forward sequence

*

sr = (Gg W:F> G, = G) via forward rules trp € TRp. In addition to that, the se-
quences correspond stepwise to each other concerning the applied rules and the used
matches. The exact correspondence is characterised by the notion of source consis-
tency. The remaining challenge is to compute possible source sequences from a
given source model, which intuitively means to parse the source model. In Sect. 7.4,
we provide an efficient technique for this purpose.

In a first step, we analyse how a triple transformation sequence can be decom-
posed into a transformation applying first the source rules followed by a sequence of
forward rules. Match consistency of the decomposed transformation means that the
co-matches of the source rules define the source part of the matches of the forward
rules. This notion provides the basis for the actual control condition source consis-
tency for forward model transformations. Note that triple transformation sequences
always satisfy the application conditions of the corresponding rules.

Definition 7.18 (Source and match consistency). Given a sequence (#r;)i=1..
of triple rules with S-consistent application conditions leading to corresponding
sequences (s )i=| » of source and forward rules. A triple trans-



186 7 Model Transformation and Model Integration

(RS —2—2) (RS —LE—LT)
tris Il Il trir
Li,S > Ri,S Li,F > Ri,F
mis \1/ nis i mx.Fl ’11.F¢
Gi,O Gi+l,0 \—/ Gn,i Gn,iJrl
inc;
(incionis)s = mi,

Fig. 7.9 Match and source consistency conditions

Lis R;s Ls Ry
trys, tros, (g/;
3
w
Ym s N7 Kmys N s 2
Guo Guo G g
P 19}
fis fos ®
L],F RH" sz RZ,F
s [[elfop{T]|  |Ce o {+[z][ |l {-[T] ]
a
*mI,F \nI,F /mZ,F \nZ,F g’
e G, [[cl={o}+T] G |[cl~ €
3
—_— _—
fir for
g

Fig. 7.10 Consistent forward sequence: source sequence (top) and forward sequence (bottom)

r tr;, .
formation sequence @ = Gy = Gno == Gy, via first try g, ..., tr,s and then

triF, ..., trop with matches m; ¢ and m; p and co-matches n; s and n; r, respectively,
is match consistent if the source component of the match m; ¢ is uniquely defined
by the co-match n; 5 (see Fig. 7.9).

*

. . tr . . . .
A triple transformation G, N G, 18 called source consistent if there is a

&

. g ry
match consistent sequence Goyg == G0 = G- A

Example 7.19 (Consistent transformation sequence via forward rules). The forward
nmr, Gy s, G in the bottom of Fig. 7.10 is

. . trys,mis tras,mys
source consistent. The compatible source sequence Gy = @ > G

G20 = Gy provides co-matches n; ¢ that induce the source component mlS  of the

transformation sequence Go
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forward matches m; r of the forward sequence. Intuitively, each forward step is trig-
gered by a corresponding source step until the given source model Gg is completely
constructed by the source rules. In fact, the first source step creates the upper node
of type Class and the second source step creates the remaining node and edge. A

As mentioned in the beginning of this section, the triple rules #r; € TR generate
the language of consistent integrated models £(TGG). Therefore, is is important
that there is a compatibility between the transformation sequences via the triple rules
tr; € TR and the consistent transformation sequences via forward rules. This com-
patibility is expressed by the decomposition and composition property. The main
idea is that we can split a transformation Gy lr:] G =>... rr=’> G, via triple rules

. . ris , I rns , rnF
tr; € TR into transformations G =— G, =— G| = ... =— G,_| = G,.

Definition 7.20 (Decomposition and composition (forward case)). A TGG satis-
fies the decomposition and composition property for forward sequences if the fol-
lowing holds:

1. Decomposition: For each triple transformation sequence
1, . .
(1) Gy = Gy = ... == G, viarules in TR

there is a corresponding match consistent triple transformation sequence
s rns ryF tryF
(2)G0 ZGO’() - GI.O B G,,,() o Gn,l T Gn,n =Gn

via rules in TRg and TRp.

2. Composition: For each match consistent triple transformation sequence (2) as
above there is a canonical triple transformation sequence (1) as above.

3. Bijective Correspondence: Composition and decomposition are inverse to each
other. A

A sufficient condition for the (de)composition property of TGGs in the forward
case is that the application conditions of triple rules are S-consistent application
conditions as stated by Theorem 7.21 [EEE*07, EHS09, GEH11] below. The proof
shows that a decomposition into a match consistent transformation can be found in
general, but the composition of match consistent transformations into transforma-
tions via the corresponding triple rules requires the additional condition. The inves-
tigation of further sufficient criteria to ensure the (de)composition property forms a
future research topic for TGGs.

Theorem 7.21 (Decomposition and composition). For triple transformation se-
quences with S -consistent application conditions, the decomposition and composi-
tion property for forward sequences holds. A

Proof. At first, we concern only triple rules without ACs (see Fig. 7.11).

try

1. Decomposition: Given the TGT sequence (1) Gy té; G > ...— G, we first

consider the case n = 1. A TGT step Gy AN G can be decomposed uniquely
. . try, try,
into a match consistent TGT sequence Gy = Gogo — Gio — G = Gy.
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tris trys r3s
GO,O GI,O GZ,O _——————————— Gn,O
try
trir trir trr tri
s Iras tris
GO,I G1’| GZ,I — Gn,]
try
trar trar traF traF
B B s
r,
try,T tror rn \ trnF
s trap Ir3p
GO,n Gl,n GZ,n _— Gn,n

Fig. 7.11 Composition and decomposition of triple sequences

By Fact 7.15 we have shown that tr; can be represented as E-concurrent rule

. 1.
try = try s *g tr1p. Using the Concurrency Theorem the TGT step Gy r:I G
can be decomposed uniquely into an E-related sequence as given above. In this
special case, an E-relation is equivalent to the fact that the S-components of

1< tr ..
the co-match of Ggg — G and the match of G - G, coincide,
which corresponds exactly to match consistency. Using this construction for

i = 1,...,n the transformation sequence (1) can be decomposed canonically
1)
to an intermediate version between (1) and (2) called (1.5): Gy = Goo ”:3
trir trys troF trps trp,F

Gp — G = Gy = Grp > ... = G, == G,,, where
tris trif
each subsequence G,1,1 = G;;1 == G;; is match consistent. Moreover,
rr

Gy = Gy ::> G, is sequentially independent, because we have a
morphism d: L, — Gy, with L, = (L « @ — @) andd = (m},2,0).

The morphism my: L, — Gy is the match of Gy % G, because the S-
components of G and G ; are equal according to the forward rule tr; r. Now
the Local Church—Rosser Theorem (Theorem 5.26) leads to an equivalent se-
quentially independent sequence G Ki—) Gao g—) G,,1 such that Gop EA—;,

tras riF troF
Gy == Gy9 == G, == G» is match consistent. The iteration of this

shift between tr; r and tr;g leads to a shift-equivalent transformation sequence
tryF tryr

2) Gy = G(),o ; GI,O = ... : Gno > Gn1 AT Gnn = G,
which is still match consistent.

2. Composition: Vice versa, each match consistent transformation sequence (2)
leads to a canonical sequence (1.5) by inverse shift equivalence, where each sub-
sequence as above is match consistent. In fact, match consistency of (2) implies
that the corresponding subsequences are sequentially independent in order to al-
low inverse shifts in an order opposite to that in Item 1, using again the Local
Church—Rosser Theorem. Match consistent subsequences of (1.5) are E-related,
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as discussed in Item 1, which allows to apply the Concurrency Theorem to obtain
the TGT sequence (1).

3. Bijective Correspondence: The bijective correspondence of composition and de-
composition is a direct consequence of the bijective correspondence in the Local
Church—Rosser and the Concurrency Theorem, where the bijective correspon-
dence for the Local Church—Rosser Theorem is not explicitly formulated in The-
orem 5.26, but is a direct consequence of the proof in analogy to Theorem 5.30.

Now we consider the case of triple rules with ACs. We use the facts that tr; =
1ris *g, triF, as shown in Prop. 7.16, and that the transformations via tr;s and tr;r
are sequentially independent for i > j, as shown above for rules without application
conditions. This result can be extended to triple rules with application conditions,

as shown in the following.
. triF.my try.s Mo
It suffices to show that the transformations G > G , G, are se-

quentially independent. From the sequential independence without application con-
ditions we obtain morphisms i : Ry r — G withi =njand j: Ly — G with
g0 j=m.

It remains to show the compatibility with the application conditions (see
Fig. 7.12):

e jE acys (see Fig. 7.12(a)): acys = toS (aczs) For acZS = true, also ac, s =
true and therefore j = ac,s. Suppose ac2 ¢ = d(a, ac2 '), leading to aco g =
3 (a%,idy, idy), toS (acf ;). Moreover, try r is a forward rule, i.e., it does not
change the source component and G = GS We know thatmy = gj0j F acas,
which means that there exists p : P > G1 1 w1th poa=gioj,plEtoS(ac),
and p€ = p = @. Then there exists ¢ : P — G with ¢ = (p°, 2, QD)
goa= (p oa’,®,2) = j,and q [ toS (acj ;) because all objects occurring in
toS (acy ) have empty correspondence and target components. This means that

jE acz, s for this case, and can be shown recursively for composed ac, s .

e gron; [ acg := R(trif,ac r) (see Fig. 7.12(b)): ac, r = toF(ac’l’F), where ac’l’F
is an §-extending application condition. For ac| , = true also acyr = true and
acg = true, therefore g, o n; = acg. Now suppose ac'l = d(, ac’lf ), lead-
ing to acip = 3 ((idps, a®,a"),t0F(ac?})) and acg = 3 ((idpgs, b €,b"), ach)
by componentwise pushout construction for the right shift w1th ac;e = R(u,
toF(acy ). Moreover, tr s is a source rule, which means that g2 and g2 are iden-
tities. From the shift property of application conditions we know that n; [ acg,
using m; | ac; . This means that there is a morphism p : P — G;; with
poa = n, p FE ack, and P o= nf It follows that g, o poa = g, o n; and
g op = (g op’,p°.p") E ack, because it only differs from p in the S-
component, which is identical in all objects occurring in acy. This means that
g20on; Eacg = I (a,acy), and can be shown recursively for composed acg. O

Remark 7.22 (Composition and decomposition for backward case). For each TGT

tr* . . .
sequence Go —> G, there is also a corresponding match consistent backward TGT
tri,r T tryr tro,F
sequence GQ = GOO > GOl R G()n Eo Gln = ... Gnn = G
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' T

Gy

(b) g2 0ny F acg := R(tryr,acyr)

Fig. 7.12 Constructions for showing compatibility with the application conditions

based on target and backward rules, leading to a backward model transformation
MTyg : L(TGT) = L(TG®) with similar results as in the forward case. A

Based on source consistent forward transformations we define model transfor-
mations, where we assume that the start graph of the given TGG is the empty graph.

Definition 7.23 (Model transformation based on forward rules). A (forward)
model transformation sequence (G5, Gy ::> G,,G") is given by a source graph

t
G%, a target graph G7, and a source consistent forward transformation Gy = G,

with Gy = (G5 <~ @ —> @) and G = GT.
A (forward) model transformation MTr : VLs = VLr is defined by all (for-
ward) model transformation sequences. A

Example 7.24 (Model transformation sequence ). Fig. 7.13 shows the resulting triple

graph G of a transformation sequence Gy :> G, via forward rules. This sequence
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g c T
Q Si:Attribute Q T1:Column T4:Column Ii
name="cId" type="INTEGER" || type="INTEGER"
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Forward transformation sequence: G 1 2
G3 PrimaryAttribute2Columng G4 PrimaryAttribute2Columng G5 Association2Tabler G6 _ Gn-
Step Matched Elements Created Elements
1 (S3 C2,T9
2 |(S7 C4,T12
3 |S7 -S8,S11,C4,T12 C6
4 |S1-S3,C2,T9 C1,T1-T3
5 |S7,S9 —S10,C4,T12 C5,T13 —T14,T18
6 (S3-S7,C2,C4,T1,T3,T9,T12 - T13,T18(C3,T4—-T8,T10 —T11,T15-T17,T19

Fig. 7.13 Forward model transformation for CD2RDBM: result (top) and forward transformation
sequence (bottom)

*

specifies a model transformation sequence (G%,G ré G,,GT) from a source
model G to a target model G” via forward rules, where Gy = (G° « @ — @).
The table in the bottom of the figure shows the corresponding steps with numbers
for matched and created elements. According to the numbers of the elements, the
correspondence and target components are completely created during the forward

*

I
. . N
model transformation sequence. Moreover, there is a source sequence @ — Gy

tr tr
such that ¢ == G, == G, is match consistent. The co-matches of the source
steps are given by the numbers for the source elements in the forward matches. In-

* *

tr -
deed, we can inspect the figure and conclude that the sequence @ —» Gy — G,
is match consistent, because the source elements of each forward match are created

tr
by the corresponding source rule applications in @ == Gj. A
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Similar to the structuring concepts for plain graph grammars [KKvT10], tech-
niques for rule refinement and control structures have been introduced for TGGs to
improve the development process concerning usability and maintainability. We refer
you to [ASLS14] for an overview. In the next section, we present how the control
condition “source consistency” can be encoded by additional attributes, which is
used for analysis and implementation purposes.

7.4 Model Transformation Based on Forward Translation Rules

While the concept of model transformations based on source consistent forward
sequences in Sect. 7.3 provides an abstract formal basis for model transformations
based on TGGs, this section presents a possible encoding of the control condition
source consistency by extending the forward rules. This concept has been introduced
in [HEOG10b] and extended in [HEGO10, HEGO14]. The main idea is to extend the
operational forward rules with additional markers for keeping track of the elements
that have been translated during the execution of a forward transformation. This
concept achieves the following goals.

1. Simplification of execution: The complex and descriptive control condition source
consistency that is based on the existence and compatibility of a source sequence
is replaced by a constructive check of marker values of the resulting graph.

2. Improvement of formal analysis: The general results for confluence analysis for
M-adhesive transformation systems based on critical pair analysis cannot be ap-
plied directly to systems with forward rules and would need to be accompanied
with additional techniques in order to capture the effect of the control condi-
tion source consistency. The encoding of this condition within the triple graphs
enables us to apply the critical pair analysis directly as performed in Sect. 8.2.

3. Implementation of the approach: The resulting execution strategy for model
transformations based on forward translation rules has a constructive nature that
can be implemented as an extension to existing graph transformation engines. It
has been used for realising the implementation in the tool HenshinTGG and it
has a close correspondence to the pointer structures that are used in execution
algorithms of other TGG tools.

The main idea is to extend the source component of the triple graph by addi-
tional Boolean-valued attributes that specify for each element whether it has been
already translated. The main result in this section shows that model transformations
based on source consistent forward TGT sequences are equivalent to those based on
complete forward translation TGT sequences, as stated by Fact 7.36. The control
condition source consistency is ensured by the completeness of forward translation
TGT sequences, which are based on the generated forward translation rules. For
this reason, the check of source consistency for forward TGT sequences is reduced
to a check for whether all translation attributes are set to “T”, which ensures that
the model is completely translated. Note that the encoding via translation attributes
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requires the general assumption (see Rem. 7.5), which states that matches and ap-
plication conditions are based on almost injective morphisms. This ensures that the
translation markers are independent from each other, because the morphisms do not
identify structural elements.

In many practical applications, model transformations are required to preserve
the source model in order to use database-driven model repositories. For this rea-
son, we have presented in [HEOG10a] how the translation attributes can be exter-
nalised using the concept of triple graphs with interfaces. The translation attributes
are equivalently replaced by external pointer structures such that the model trans-
formation can be performed without any modification of the source model. This
concept corresponds to the transformation algorithm in [SK08], which uses a sepa-
rate set of translated elements. Furthermore, it shows how the source sequence for
a source consistent forward sequence in the previous section can be computed by
an implementation with additional pointer structures, as explained at the end of this
section.

7.4.1 Translation Attributes

The extension of forward rules to forward translation rules is based on new attributes
that control the translation process to ensure the source consistency condition. For
each node, edge and attribute of a graph a new attribute is created and labelled with
the prefix “tr”. Given an attributed graph AG = (G, D) and a family of subsets
M C G for nodes and edges, we call AG” a graph with translation attributes over AG
if it extends AG with one Boolean-valued attribute tr_x for each element x (node or
edge) in M and one Boolean-valued attribute tr_x_a for each attribute associated
to such an element x in M. In order to distinguish between a triple rule #r and the
prefix tr of a translation attribute, we use a different font shape (typewriter). The
family M together with all these additional translation attributes is denoted by Att,.

Definition 7.25 (Family with translation attributes). Given an attributed graph
AG = (G,D) (see Def. 2.4), we denote by |G| = (VS,VE, ES EN EEY
the underlying family of sets containing all nodes and edges. Let M C
|G| with (VG,VA[;,EI?,I,EZA,EAE/,A); then a family with translation attributes for
(G, M) extends M by additional translation attributes and is given by Atty =
(VG VD ES, ENA, EEA) with:

o ENM = EVA ultr x| xe ViU {tr_x_ala € E)}, srck(a) = x e VE),

o EEA = Ef,[A U{tr_x|xe Eﬁ} Ui{tr_x alace Ef,IA, srch(a) =Xx€ Eg}. A

Definition 7.26 (Graph with translation attributes). Given an attributed graph
AG = (G, D) (see Def. 2.4) and a family of subsets M C |G| with {T,F} C Vﬁ, let
Atty be a family with translation attributes for (G, M) according to Def. 7.25. Then
AG’ = (G’, D) is a graph with translation attributes over AG, where the domains |G’|
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MC——— s A1ty

=

|G| ——— |G|

Fig. 7.14 Triple graph with translation attributes: construction

S C
H S1:Class LEd T1:Table i
tr=T - — ™| name=“Company“
name="Company*
S2:src LERnAnSS
tr=F S3:Association
tr=F
name = “employee”
S4:dest |: tr_name=F
tr=F
> S5:Class
S6:parent >
to=T | tr=T
st [omemet [+ (G-
p— name="Person’
name="“Customer‘ | | /C3:\|_ ________1
tr_name=T I

Fig. 7.15 Triple graph with translation attributes: example

of G’ are given by the gluing via the pushout of |G| and Aty over M (see Fig. 7.14)
and the source and target functions of G’ are defined as follows:

G _

G G _ +.,G
® Srcl, = Src, trgl, = trgg.

srcg(z) z € Ey

for X € {NA, EA},
X z=tr_xorz=1tr_x_a

o srcy(2) = {
trgé(z) Z€ Eé

TorF z=tr xorz=tr x a for X € {NA, EA}.

o gl () = {

Att),, where v = T or v = F, denotes a family with translation attributes where
all attributes are set to v. Moreover, we denote by AG & Att), that AG is extended
by the translation attributes in Atty,, i.e., AG & Atty, = (G’, D) for AG' = (G’, D), as
defined above. Analogously, we use the notion AG @ Att}, for translation attributes

with value v and we use the short notation Aft'(AG) := AG & Attl"Gl. A

Example 7.27 (Triple graph with translation attributes). Fig. 7.15 shows the triple
graph H = (HS « H® — HT) which is extended by some translation attributes
in the source component. The translation attributes with value “T” indicate that
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the owning elements have been translated during a model transformation sequence
using forward translation rules, which are defined in Def. 7.29 hereafter. The re-
maining elements (edges S2, S4, node S3 and the attribute name of S3) in the source
component are still marked with translation attributes set to “F”. These elements
can still be matched for a continuation of the translation and may be translated at
later steps. A

The concept of forward translation rules, which we have introduced in
[HEOG10b], extends the construction of forward rules by additional translation at-
tributes in the source component. As described in Ex. 7.27, the translation attributes
are used to keep track of the elements that have been translated so far. Since triple
rules may create new attributes for existing nodes by definition, we also have to keep
track of the translation of the attributes. The separate handling of nodes and their at-
tributes is used, e.g., in synchronisation scenarios [HEO*11a]. At the beginning,
the source model of a model transformation sequence is extended by translation
attributes that are all set to “F” and, step by step, they are set to “T” when their
containing elements are translated by a forward translation rule.

7.4.2 Execution via Forward Translation Rules

The extension of forward rules to forward translation rules integrates additional
translation attributes on the source component that keep track of the elements that
have been translated during the execution of a forward transformation.

The application conditions of a forward translation rule are derived from the
forward rule by adding translation attributes with value T to all additional elements
that are not contained in the left hand side Lgr of the forward translation rule trgr.
Therefore, we introduce the construction ¢Ext in Def. 7.28 below that extends an
application condition with additional translation attributes, which are set to the value
T. The third argument X of this construction specifies the triple components that are
extended. This enables us to use this construction for several kinds of operational
translation rules in this book, such as the consistency creating rules in Def. 7.44.

Definition 7.28 (T-Extension of application conditions). Given an application
condition ac over P, a triple graph with translation attributes P’ (extended premise
graph) and a subset of triple components X C {S, C, T'}, the T-extension tExt(ac, P’, X)
of ac is given by

tExt(true, P’, X) = true,

tExt(=(ac"), P’',X) = =~(tExt(ac’, P’, X)),

tExt(acy A acy, P',X) = tExt(acy, P, X) A tExt(acy, P, X),

tExt(acy V acy, P’, X) = tExt(acy, P’, X) V tExt(acy, P’, X),

tExt( A (a = (incp,ap): P — C,ac’),P’',X) = A(ag: P —» C’,tExt(ac’,C’, X))
withC’ = P +p C ® Uxex(AttB\PX) and ag = (incp,,ap) given by the algebra
homomorphism ap on the data part and the inclusion incp, on the graph part
(derived from incp). A
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Subclass2Table(n:String) s Subclass2Tablesr(n:String
S1:Class [« ——— @ - :Table 8 EHS
:parent++ ‘ iﬂ S1:Class |4 @ = :Table -
:Class ++| 4. o+ | T tr=T S
name=n ++| = ; S2:parent A 3
s, tr=F <
® S
S3:Class N
3 name=n S
Subclass2Tablepr(n:String) tr=F =
S1:Class |gq——— @* >| :Table | tr_name=F §'
tr=T A‘ 5 ?
! 5 4 g
S2:parent } 2 RHS S
- | S Si:Class @ ‘Table] | &
[ g et - > g
| 3 tr=T \ =
$3:Class | = S2:parentA [ Z
name=n :t _t ] tr=T } 5
tr=[F=T] g S3:Class ! s
_ ] name=n I
tr_name=[F=T] tr=T ! @ ol %
tr_name=T

Fig. 7.16 Forward translation rule Subclass2Tablegyr(n : String)

Definition 7.29 (Forward translation rule). Consider a triple rule tr = (¢r:
L — R,ac) with S-consistent application condition. Let trg = (trs: Ly — Ry,
acy) be the derived source rule and trr = (trp: L — Rp, acg) be the derived for-
ward rule with ac = acg A acp. The forward translation rule of tr is given by

trer = (trpr: Lpr ﬁ Ker LN Rpr, acrr), defined as follows:

_ T F
o Lpr=Lp @AIILS GBA”RS\LS’
e Kpr=Lp @Al‘l{s,
_ T T _ T
Rer = Rrp @Atl‘LS GB.AZ‘IRS\LS. = RF.GBAZ‘I‘RS,
lpr and rpr are the induced inclusions,
acpr = tExt(ac, L7, {S}).

Given a set of triple rules TR, we denote by TRy the set of all trpr withtr € TR. A

Remark 7.30 (Construction of application conditions). The construction of the ap-
plication condition for a forward translation rule trpy starts with the left hand side
Lgr that contains translation attributes and adds additional translation attributes re-
cursively for each new element in the premise and conclusion graphs Pgr and Cpr.
Note that initially Lgr plays the role of the first premise Pgr of a nested application
condition. Note further that (Pgr+pC) is the union of Pry and C with shared P (con-
structed as a pushout) and for an S -extending application condition ac the forward
translation application condition acpy does not contain any additional translation
attributes because C5 = PS for all contained morphisms a: P — C. A

Example 7.31 (Derived forward translation rules). The rule “Subclass2Tablerr” in
Fig. 7.16 is the derived forward translation rule of the triple rule “Subclass2Table”
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Pri At tr2C0lumn (n:Stri .String)
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Q

is_primary=true rattrs 8
= u it A A .
:Attribute ++ . L3

: Column++H %

name=n o+ name=n ++ =

datatype=t + g type=t +4 %

is_primary=true ++
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o . . .
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:Attribute S
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Fig. 7.17 Forward translation rule with NACs PrimaryAttribute2Columngy(n : String)

in Fig. 3.8. Note that we abbreviate “tr_x" for an item (node or edge) x by “tr” and
“tr_x_a” by “tr_type(a)” in the figures to increase readability. The compact nota-
tion of forward translation rules specifies the modification of translation attributes
by “[F = T]”, meaning that the attribute is matched with the value “F” and set
to “T” during the transformation step. The detailed complete notation of a forward
translation rule is shown on the right of Fig. 7.16 for “Subclass2Tablepr”.

Fig. 7.17 shows the forward translation rule with NACs “PrimaryAttr2Columngr”
derived from the triple rule “PrimaryAttr2Column” in Fig. 3.8. According to
Def. 7.29 the source elements of the triple rule are extended by translation attributes
and changed by the rule from “F” to “T” if the owning elements are created by the
triple rule. Furthermore, the forward translation rule contains both, the source and
the target NACs of the triple rule, where the NAC only elements in the source NACs
are extended by translation attributes set to “T”. Thus, a source NAC concerns only
elements that have been translated so far. A

Since forward translation rules are deleting attribution edges only, each NAC-
consistent match is applicable according to Fact 7.32 below, which was first pre-
sented in [HEGO10]. Note that in the general case of deleting rules the additional
gluing condition has to be checked [EEPT06]. This ensures, in particular, that edges
do not become dangling due to the deletion of nodes.

Fact 7.32 (Gluing condition for forward translation rules). Let trgr be a forward
translation rule and mpr : Lrr — G be an almost injective match; then the gluing

condition is satisfied, i.e., there is the transformation step G L H. A
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Proof. According to Def. 9.8 in [EEPT06] we need to check that DP U IP C GP.
First of all, by the restriction of the match, the set /P may only contain data elements
which are in GP. Furthermore, the set DP does only contain nodes. The rule is only
deleting on attribution edges, and thus DP U IP C GP. O

Now, we define model transformations based on forward translation rules via al-
most injective matches in a similar way as for forward rules in Def. 7.23. We replace
the control condition source consistency of the forward sequence by requiring that
the forward translation sequence be complete.

Definition 7.33 (Complete forward translation sequence). A forward translation

try,
sequence Gy —— G, with almost injective matches is called complete if no further
forward translation rule is applicable and all translation attributes in G, are set to
true (“T”). A

Definition 7.34 (Model transformation based on forward translation rules). A
model transformation sequence (G°, G|, N G.,GT) based on forward translation

rules TRyr consists of a source graph G°, a target graph G, and a complete TGT

sequence G|, LN G, typed over TG’ = TG EBAttlFTGSl ®Att|TTGS\ based on TRpr with
G, = (Af*(G%) « @ - @) and G}, = (A" (G®) « G - G").

A model transformation MT : L(TG%) = L(TG") based on TRy7 is de-
fined by all model transformation sequences as above with G5 ¢ L(TG®) and
G e L(TG"). All the corresponding pairs (G5, G”) define the model transfor-
mation relation MTrrg C L(TG%) x L(TG") based on TRy7. The model transfor-
mation is terminating if there are no infinite TGT sequences via TRy starting with

Gy = (At*(GS) « @ — ) for some source graph G5. A

Example 7.35 (Model transformation via forward translation rules). Fig. 7.18 shows
the resulting triple graph with translation attributes of a forward translation se-
quence. The execution starts by taking the source model G¥ (see Fig. 7.13) and ex-
tending it with translation attributes according to Def. 7.34, i.e., G = A (GS)
@ — ©). We can execute the forward translation sequence shown in the bottom
part of Fig. 7.18 with G being the triple graph G’ in Fig. 7.18. The triple graph
G’ is indeed completely translated, because all translation attributes are set to “T”".
No further forward translation rule is applicable and we derive the resulting target
model G by restricting G’ to its target component, i.e., G’ = G’T. According to
the equivalence of the model transformation concepts based on forward and forward
translation rules in Fact 7.36 below, we can further conclude that GT can be equiv-
alently obtained via a source consistent forward transformation sequence based on
forward rules without translation attributes. A

By Fact 7.36 below we show that the model transformation sequences based on
forward translation rules with NACs are in one-to-one correspondence with model
transformation sequences based on forward rules with NACs, i.e., based on source
consistent forward sequences. For this reason, we can equivalently use both concepts
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Fig. 7.18 Triple graph instance obtained from forward translation sequence for CO2RDBM

and choose one of them depending on the particular needs. While the concept based
on source consistency shows advantages in formal proofs, the concept based on
forward translation rules shows advantages concerning analysis and efficiency, as
we will show in Sect. 8.2.1. It will be part of future work to extend the result to
a corresponding result that generalises from the case with NACs to the case with
general application conditions.

Fact 7.36 (Equivalence of forward transformation and forward translation se-
quences). Given a source model G5 € L(TG%), the sets of forward rules TRy and
corresponding forward translation rules TRrr, the following statements are equiv-
alent for almost injective matches.

1. There is a model transformation sequence (G°, Gy ”=F> G,,G") based on TRf
with Gy = (G° « @ — @) and G, = (G° « G¢ — G")
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2. There is a model transformation sequence (GS, G(’J l:—F_T:;» G,, G") based on TRpr
with G|, = (Atf*(G%) « @ — @) and G, = (Att"(G) « G - G").

Moreover, the model transformation relation MT g g for the model transformation
based on forward rules coincides with the model transformation relation MT pr g for
the model transformation based on forward translation rules, i.e., MT g = MT pr .

A

Proof. See Appendix B.6.2. |

7.5 Model Integration Based on Integration Rules

The main purpose of model integration is to establish a correspondence between var-
ious models, especially between source and target models. From the analysis point
of view, model integration supports correctness checks of syntactical dependencies
between different views and models. This section presents model integration based
on triple graph grammars and shows the close relationship between model transfor-
mation and model integration. For each model transformation sequence there is a
unique model integration sequence, and vice versa. The main concepts and results
were first presented in [EEH08a, EEHOSb].

The general problem of model integration is constructing an integrated model
G = (G « G — G7) for a given pair (G, G") of source and target models. For
this purpose, two separate kinds of operational triple rules are derived from each
triple rule ¢r: the integration rule ¢r; and the source—target rule trg7. These rules are
the basis for defining and constructing model integration sequences from (G5, G")
to G. Of course, not each pair (G5,GT) allows us to construct such a model inte-
gration sequence. In Theorem 7.41, we characterise existence and construction of
model integration sequences from (G°, GT) to G by model transformation sequences
from G5 to G”. This main result is based on the canonical decomposition result (see
Theorem 7.21) and a similar decomposition result of triple transformation sequences
into source—target and model integration sequences.

7.5.1 Model Integration Rules and Transformations

Given models G° € L(TG%) and GT € L(TG"), the aim of model integration is
to construct an integrated model G € L(TGG) such that G restricted to source and
target is equal to G5 and G7, respectively, i.e., projs(G) = G° and proj;(G) = GT.
In analogy to model transformations, we use the operational rules derived from the
given triple rules ¢r;: the source—target rules #r; sy and the integration rules ¢r; ;.

try
Given a transformation sequence Gy —» G, via integration rules with Gy =
(G5 « @ — GT), we want to make sure that the unrelated pair (G5,G7) €
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Fig. 7.19 Source-target consistency conditions

L(TG®)x L(TG") is transformed into an integrated model G = G,, with projs(G) =
G’ and projr(G) = G'. Of course, this is not possible for all pairs (G°, GT) €

L(TG®) x L(TG™), but only for specific pairs. In order to be sure that G => G,
integrates all parts of G5 and G, we require that ® = G be given by @ : Go
based on the same triple rule sequence #r* as Go => G,. Moreover, the co-matches

in @ % Gy have to be compatible with the matches in Gy ; G,. Finally, we
need to ensure that a model integration can be performed for a given pair G5, G” if
there is at least one integrated model G = (G° « G¢ — G') € L(T'GG) which con-
tains both models. This leads to the formal condition of source—target consistency
of transformation sequences via integration rules.

Definition 7.37 (Source-target consistency). Consider a sequence (r;);=i....
triple rules with ST-application conditions leading to corresponding sequences

(trisr)i=1...n and (tris)i=1. n of source—target and integration rules (see Fig. 7.2
tr tr;
and Def. 7.12). A triple transformation sequence Gy = Gno = G, via first

trist, .-, trasr and then try y, ..., tr,; with matches m; gr and m;; and co-matches
n; st and n; j, respectively, is match consistent if the source and target components
of the match m;; are uniquely defined by the co-match n; s (see Fig. 7.19).
try
A triple transformation G, = G, is called source—target consistent if there

®

. . sy iy
is a match consistent sequence Gog = G0 = G- A

Definition 7.38 (Model integration based on integration rules). A model in-

tegration sequence (G5,G"), Gy AN G,,G) is given by a source graph G°, a
target graph G7, a triple graph G, and a source—target-consistent transformation
Go 25 G, with Gy = (G5 <= @ 2 GT)and G, = G.

A model integration MI : L(TGG)S x L(TGG)" = L(TGG) is defined by all
model integration sequences. A

Definition 7.39 (Decomposition and composition for model integration). A
TGG satisfies the decomposition and decomposition property for integration se-
quences if the following holds:
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ry st ra st 3 s7
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Fig. 7.20 Composition and decomposition of triple sequences for model integration

1. Decomposition: For each triple transformation sequence

(1) Gy =5 Gy = ... == G, viarules in TR

there is a corresponding match consistent triple transformation sequence

st trpst tryy rpg
(2)G0 ZG()’() > Gl,O =5 G,,,o > Gn,l = Gn,n ZGn

via rules in TRgr and TR;.

2. Composition: For each match consistent triple transformation sequence (2) as
above there is a canonical triple transformation sequence (1) as above.

3. Bijective Correspondence: Composition and decomposition are inverse to each
other. A

Theorem 7.40 (Decomposition and composition for model integration). For
triple transformation sequences with S - and T-application conditions the decom-
position and composition property for integration sequences holds. A

Proof. At first, we consider only triple rules without ACs (see Fig. 7.20).

tr,

1. Decomposition: Given a TGT sequence (1) Gy £_I—> G = ... = G, we first

consider the case n = 1. The TGT step Gy LN G can be decomposed uniquely

. . st tryg
into a match consistent TGT sequence Gy = Goy9p == G == G11 = Gi.

By Fact 7.15 we have shown that tr; can be represented as E-concurrent rule

tr1 = trisr *g tr;. Using the Concurrency Theorem, the TGT step Gy t—i—> G,
can be decomposed uniquely into an E-related sequence as given above. In this
special case, an E-relation is equivalent to the fact that the S - and T-components

s try, .
of the co-match of G —_ G and the match of G AN G, coincide on
the source and target components, which corresponds exactly to match consis-
tency. Using this construction for i = 1,...,n, the transformation sequence (1)

can be decomposed canonically into an intermediate version between (1) and (2)
called (15) Go = Go)() g} GI,O _t_r_1_1_> G1,1 g} G2,1 -Z;} Gz!z = ... st

Gun t_r—_'_> G, where each subsequence G ;1 E—S_T:, Gii ir—_’_> G;; is match
consistent. Moreover, G o t_r—1> G KZ—fL G», is sequentially independent, be-

cause we have a morphism d: Lys7 — Gy, with Lysr = (L « @ — L)
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Fig. 7.21 Constructions for showing compatibility with ST-application conditions

and d = (mg,ST, @,m£ o). The morphism mysr: Losr — Gy, is the match of

1,
G % G»,1, because the S- and T-components of G and G are equal

according to the integration rule tr;;. Now, the Local Church—Rosser Theo-

rem (Theorem 5.26) leads to an equivalent sequentially independent sequence
tra,st tryy tryst ra,st iy rag
Gl’o - GZ,O =3 G2’1 such that G()’O o Gl)() E GZ’O e G2,1 o

G is match consistent. The iteration of this shift between tr;; and tr; 57 leads to

. . . 1ri s trost
a shift-equivalent transformation sequence (2) Gy = Go 0 G 0= ... il

tryr o . . . .
G = G, = ... == G,,, = G,, which is still match consistent.

2. Composition: Vice versa, each match consistent transformation sequence (2)
leads to a canonical sequence (1.5) by inverse shift equivalence where each sub-
sequence as above is match consistent. In fact, match consistency of (2) implies
that the corresponding subsequences are sequentially independent in order to al-
low inverse shifts in an order opposite to that in Item 1 using again the Local
Church—Rosser Theorem. Match consistent subsequences of (1.5) are E-related,
as discussed in Item 1, which allows us to apply the Concurrency Theorem to
obtain the TGT sequence (1).

3. Bijective Correspondence: The bijective correspondence of composition and de-
composition is a direct consequence of the bijective correspondence in the Local
Church—Rosser and the Concurrency Theorem, where the bijective correspon-
dence for the Local Church—Rosser Theorem is not explicitly formulated in The-
orem 5.26, but is a direct consequence of the proof in analogy to Theorem 5.30.

Now, we consider the case of triple rules with ACs. We use the facts that tr; =
trist *g, tri1, as shown in Prop. 7.16, and the transformations via tr; g7 and tr;; are
sequentially independent for i > j as shown above for rules without application
conditions. This result can be extended to triple rules with application conditions as

shown in the following.
. tryp,m try sT,1>
It suffices to show that the transformations G o > G > Gy, are se-

quentially independent. From the sequential independence without application con-
ditions we obtain morphisms i : R;; — G withi = nj and j : Ly st — G with
gi1oj=ms.
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It remains to show the compatibility with the application conditions (see
Fig. 7.21). We show that j = acysr. acosr = toST(acy), where acy is an ST-
application condition. For ac, = true, also acy sy = true and therefore j | acysr.
Suppose ac, = 3 (a,acy), leading to acosr = 3 ((a®,idy, a”), 10ST(ac’y)). More-
over, try s 1S an integration rule, i.e., it does not change the source and target compo-
nents: Gf,l = Gio and G7| = G{.

We know that my sy = g1 0 j = acys, which means that there exists p : P — G
with poa = g o j, p E 10ST(ac), and p© = @. Then there exists ¢ : P — Gy
withg = (p%,2,p"), goa=(pS 0a’,2,p" ca’) = j,and g £ toST(acy)) because
all objects occurring in t0ST(ac?) have empty correspondence components. This
means that j = acps for this case, and can be shown recursively for composed
acys. O

7.5.2 Model Integration as Model Transformation

From a general point of view, we want to analyse which pairs (G¥,GT) € L(TG") x
L(TG") can be integrated. Intuitively, these are those which are related by the
model transformation MT : L(TG®) = L(TG") (see also Theorem 8.4). In fact,
model integration sequences can be characterised by unique model transformation
sequences.

Theorem 7.41 (Characterisation of model integration sequences). Each model
o
integration sequence ((G°,G"), Gy —r_'—> Gy, G) corresponds uniquely to a model
try
transformation sequence (G5, G(’) == G, GT), where tr] and try, are based on the

same rule sequence tr*. A

Proof. (G5,G"), Gy ; G, G) is a model integration sequence

try
S (def] exists source—target consistent Gy = G, with Gy = (G5 « @ — GT)
and G, = (G5 « G -GN =G
try try
S def] @ — Gy = G, is ST-match consistent with with Gy = (G* « @ —
G"yand G, =G

. tr* .
S[Theorem 7.40] €XIStS @ — G, with G, = (GS « G’ > GT)

. try try . .
E(Theorem 721] €Xists @ == Gjj == G, match consistent with G, = (G5 « G® —
G")
. . tr* .
S (def] exists source consistent Gy — G, with Gy = (G5 « @ — @) and
G,=(G’ « G -G

try
Eldef] (G%,Gy = G,,G") is a model transformation sequence. O
Coming back to the example of a model transformation from class diagrams to

database models, we describe the relevance and value of the given theorems from
the more practical view.
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LGT]

G° - G¢
J Si:Attribute J T1:Column T4:Column

name="cId" type="INTEGER" || type="INTEGER"
datatype="INTEGER" |q— — | name="cId" name="cIq"

is_primary=true i T5:fcols
T2:cols T3:pkey

S2:attrs
|
54 : sT C—p| 33:Class <_> T9:Table T7:references
I_ name="Company" name="Company" T8:fkeys|
S5:Association T3
name="employee" ¢~ AT /T Tl?:Table m
[ S7:Class pamezsemplioyes] Til:fkeys ]
S6:dest—w e <~ T12:Table
S9:attrs ¢ 13 n;me Eerson Ti5:references y
. M e .
58:parent S10:Attribute 5 v T14'v°°15 | T16:FKey
name="pIqd" - |
- T18:Column | T17:fcol
datatype="INTEGER" type="INTEGER" : ¥ cone
is_primary=true name="pId" : T19:Column
1
|

type="INTEGER"

S11:Class —n "
name="Customer" [* =~~~ "~~~ " "R ) r------------- ! EaRealt

Fig. 7.22 Model integration for CD2RDBM: result graph of integration sequence

Integration sequence:
Class2table Subclass2Table PrimaryAttribute2Column,
G1 :’ G2 g G3 :

Class2table;
Go
PrimaryAttribute2Column, Association2Table;

Gy Gs Ge = G,.

Corresponding forward transformation sequence:
Class2tables Class2tabler Subclass2Tableg PrimaryAttribute2Columng

Go = Hy H, H, Hj

PrimaryAttribute2Column, Association2Tablep

H4 H5 H(, S G(,.

Integration Sequence

Step Matched Elements Created Elements
1 |S3,T9 C2
2 |S7,T12 C4
3 |S7-1S8,5S11,C4,T12 C6
4 |S1-S3,C2,T1-T3,T9 C1
5 [S7,S9 -S10,C4,T12 - T14,T18 C5
6 (S3-S7,C2,C4,T1,T3-T13,T15-T19 |C3
Step Matched Elements Created Elements
1 |S3 C2,T9
2 |S7 C4,T12
3 |S7—S8,S11,C4,T12 C6
4 |S1-S3,C2,T9 C1,T1-T3
5 |S7,89 —S10,C4,T12 C5,T13 - T14,T18
6 [S3-S7,C2,C4,T1,T3,T9,T12 - T13,T18|C3,T4 - T8,T10 —T11,T15-T17,T19

Fig. 7.23 CD2RDBM: integration sequence (top) and corresponding forward sequence (bottom)
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Example 7.42 (Model integration sequence). Fig. 7.22 shows the resulting triple

graph G of a model integration sequence ((G%,GT), Gy tr:', G,,G) via integration
rules, where Gy = (G5 « @ — GT). The upper table in Fig. 7.23 shows the cor-
responding steps with numbers for matched and created elements. According to the
numbers for the elements, the correspondence component is completely created dur-
ing the model integration sequence. The source as well as the target elements of each

tr
match are created by the corresponding source—target rule application in @ == Gj.
tre, try
Therefore, @ —= Gy — G, is match consistent. According to Theorem 7.41,

tr.
there is a corresponding model transformation sequence (G%,Gy = G,,G") via
forward rules with Gy = (G° < @ — ©@). Thus, there is a match consistent transfor-

*

mation sequence @ tr=s> G} ; G,. Numbers for the corresponding matched and
created elements are provided in the lower table in Fig. 7.23, where co-matches of
the source steps are given by the numbers for the source elements of the matches in
the forward transformation sequence. A

Remark 7.43 (Model integration with translation markers). The execution of model
integrations can be performed using translation attributes in an analogous way to
that presented for model transformations in the previous section. A

7.5.3 Consistency Checking of Integrated Models

While model transformation and model integration aim to complete missing struc-
tures of triple graphs, consisteny checking is performed to validate that a given triple
graph is consistent with respect to a given TGG. In order to perform a consistency
check, we use a further kind of operational rule—the consistency creating rules
for marking the currently consistent substructures. Technically, consistency creat-
ing rules are used to compute maximal subgraphs Gy, of a given triple graph G typed
over TG, such that G, € L(TGG). In the special case that G € L(TGG), we know
that Gy = G. Each consistency creating rule switches labels from F to T for those
elements that would be created by the corresponding 7GG rule in TR. This means
that elements in the left hand side Lo = R are labelled with T if they are also con-
tained in L, and they are labelled with F otherwise. Accordingly, all elements in the
right hand side R¢¢ are labelled with T. We extend Def. 7.29 for forward translation
rules to also define backward translation rules and consistency creating rules.

Definition 7.44 (Operational translation rules). Given a triple rule tr = (L — R)
and its derived source rule trg = (Ly — Ry), target rule try = (Lt — Rp), forward
rule trp = (Lr — Rp), and backward rule trg = (Lg — Rp), the derived translation

rules of tr are given by the consistency creating rule trcc = (Lec Jee Kce X5 Ree),
the forward translation rule trpr = (Lgr & Ky T Rer), and the backward

translation rule trgr = (Lgr & Kgr ™55 Rpr) defined in Fig. 7.24 using the
notation based on translation attributes.



7.5

Model Integration Based on Integration Rules

207

main components new AC for each
ac of tr
I
trce Lcc < O Kee © e Ree accc = tExt(ac,
[ [ I Lec,
RoAMT A ) (ROAMT) (ROAMT AL ) {s.C.TH
I
trrr Lpr il D) Kpr C il Rpr acpr = tExt(ac,
[ | | {L;}T)
T F T T T
(Lp @Azst @AzzRS\LS) (Lr eaAtst) (RF GBAttLS GBAttRS \LS)
I
trpr Lpr £l D) Kpr C o Rpr acgr = tExt(ac,
[ [ [ {L;}T;
T F T T T
Ly @An] @Ay ) (Lp®An]) (Rg@®Alt] ®Aily )

Fig. 7.24 Components of derived operational translation rules

Moreover, the application conditions are given by accc = tExt(ac, Lcc, {S,C, T}),
acpr = tExt(ac, Lgr,{S}), and acgr = tExt(ac, Lgr,{T}) (see Def. 7.28).

By TRcc, TRpr, TRgr we denote the sets of all derived consistency creating,
forward translation and backward translation rules, respectively. A

Remark 7.45 (Construction of operational rules). Note that in Fig. 7.24 (B +4 C)
is the union of B and C with shared A, as explained in Rem. 7.30. For instance,
(Lgr +1 P) is the union of Lgr and P with shared L. Recall that G @AttL denotes
the addition of translation attributes for all the elements and attributes included in
M C G to the graph G. All these attributes are set to T. A

As with the completeness of forward translation sequences in Def. 7.33, we de-
fine the execution via consistency creating sequences by Def. 7.46 below as an ex-
haustive application of the rules to the input graph and check whether the output
graph contains any element marked with F. Consistency creating sequences are
used for computing a maximal consistent part of a given triple graph. A consis-
tency creating sequence starts at a triple graph G|, = At*(G), i.e., at a triple graph
where all elements are marked with F. Each application of a consistency creating
rule modifies some translation attributes of an intermediate triple graph G} from F
to T and preserves the structural part G contained in G;. Therefore, the resulting
triple graph G, extends G with translation attributes only, i.e., some are set to T and
the remaining ones to F.

Definition 7.46 (Consistency creating sequence). Given a triple graph grammar
TGG = (TG,2,TR), let TRc¢ be the set of all consistency creating rules of 7R
and let G be a triple graph G typed over TG. A consistency creating sequence s =
(G, G Kiﬂ G, G,) is given by a TGT sequence G Ké} G, via TRcc with G| =
At*(G)and G, = G @Attg" @Attg\Gn, where G, is the subgraph of G derived from
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S C
H S1:Class ﬂ T1:Table Iﬂ

tr=T l— — » tr=F
name="Company name="Company"

S2:src eEname Ty tr_name=T
tr=F S3:Association
tr=F
name="employee"
S4:dest |: tr_name=F
tr=F
o S5:Class
" er=T

name="Person”
S6:parent tr_name=T .- ——__p| T8:Table
tr=T tr=T

« «
name=Person

S7:Class tr_name=T
tr=T A
name="Customer” [# ————— = 5 !
tr_name=T

Fig. 7.25 Triple graph at the end of a consistency creating sequence

tre
G, —— G, by restricting G/, to all T-marked elements. The consistency creating

sequence s is called ferminated if there is no rule in TRc¢ which is applicable to
the result graph G/, In this case, the triple graph G, is called a maximal consistency
marking of G. A triple graph G’ is called completely T-marked if G’ = Att*(G) for
a given triple graph G, i.e., all translation attributes in G’ are set to “T"". A

Example 7.47 (Consistency creating sequence). Fig. 7.25 shows the resulting triple

try
graph G, of a consistency creating sequence s = (G, G = G',G,) via con-

sistency creating rules with Gj = At¥(G). No further consistency creating rule
is applicable. Some translation markers were not modified, such that the consis-
tency creating sequence is not complete. In more detail, G, = G @Attgn @Attg\G ,

where G, is the subgraph of G derived from Gj t_—r—c_c: G, by restricting G,, to all
T-marked elements. The F-marked elements are the Association node and its ad-
jacent edges. A

7.6 Flattening of Triple Graph Grammars

Triple graphs are a direct extension of single plain graphs, i.e., graphs consisting
of one graph component instead of three in the case of triple graphs. As shown in
the previous sections, this additional structural information provides the basis for
an elegant and formal notion of model transformations and model integrations. The
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natural question arises whether this additional structure can be encoded within plain
graphs. And in fact, many implementations [GHL12, SK08, LAVS12, HGN™"14]
for executing model transformations based on TGGs use plain graphs, where triple
components are encoded by an additional pointer structure and mappings between
the triple components are encoded as plain edges. This reduces the efforts for imple-
mentation, as existing graph transformation engines and development environments
can be reused.

This section presents a general flattening construction from TGGs to plain graph
grammars that is compatible with the encoding used in many tools. The main con-
cepts and results were first presented in [EEHO8c, EEH08d]. Since morphisms be-
tween the triple components are encoded by sets of edges, the class of suitable TGGs
has to be restricted. Triple graphs may not contain edges in their correspondence
components, i.e., correspondence graphs have to be discrete graphs. As the main
result (see Theorem 7.57), we show that the encoding for model transformations
based on the restricted class of TGGs is correct and complete, i.e., the underlying
transformation sequences are in one-to-one correspondence.

Remark 7.48 (General assumption). The results for the flattening construction in
this section are presented for TGGs without application conditions and where the
triple graphs do not contain edges in the correspondence component. We are quite
confident that the results can be extended to systems with application conditions,
where we refer to [MEE13, MEE12] for the first general results in this direction
based on the general results for M-functors between M-adhesive transformation
systems. A

Triple graphs can be interpreted as plain graphs consisting of three distinguish-
able subcomponents and edges of special type for interconnection between the com-
ponents. This idea leads to the general flattening construction for triple graphs and
triple graph morphisms. Since interconnections are encoded as plain edges, there is
no possibility to encode interconnections between edges of different components.
This means that edges in the correspondence component cannot be related to edges
in the source and target components. For this reason, the correspondence component
of a triple graph is required to contain only nodes to apply the flattening construc-
tion. This condition can be generally achieved by requiring that the type graph TG
for the correspondence component be discrete, i.e., TGS must not contain edges.

SG
«—

Definition 7.49 (Flattening construction). Given a triple graph G = (G°
G€ S, G7), the flattening 7(G) of G is a plain graph defined by the disjoint union
F(G) = G5 + G + G” + Links(G) + Linky(G) with additional edges (links) below:

Links(G) = {(x,y) | x € G,y € G5, s6(x) = y},
Linkr(G) = {(x,y) | x € G$,y € G, 1(x) = y},
se6)((x,¥) = x,(x,y) € Links U Linky,
tr6)((x,y)) =y, (x,y) € Links U Linky.

Given a triple graph morphism f = (f5, €, fT) : G — G’, the flattening F(f) :
T(G) - T(G’) is defined by T(f) = fs +fc+fT+fLS +fLT with fLS : Lll/lks (G) d
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jgu S1l:Attribute

T1:Column T4 :Column
name="cId" type="INTEGER" | | type="INTEGER"
C1,T1) |type ype
datatype="INTEGER" S Sl ) name="cId" name="cId"
is_primary=true A A T5:fcols
T2:cols T3:pkey
S2:attrs
I—S4:src—> S3:Class (:(32,53}C2:\(C2,T9)= 15 Table T7:references
name="Company" CT name="Company" “ T8:fkeys|
S5:Association (€3,85) (C3,T10)
rp——— 22/C3 N8 110 Table
fname= ‘emp_oyee AT name="employee" —T11: fke
Ls6:qest—w| S7:Class | (C4,S7) Ga\(C4,T12) ey

»| name="Person" - < ct/ T12:Table
S9:attrs ‘ Ename="Person" ]TIS:references

r T13:pkey T14:cols L
S8:parent__ S10:Attribute ¥ v

— (C5,510)GE\(C5, T18)
rene PIC—i"INTEGER" @ 118 Colum T17:fcols
atatype= type="INTEGER" ¥

is_primary=true name="pId" T19:Column
type="INTEGER"
S11:Class _ (C6,811) /C6:\ (C6,T19) name="pId"
name="Customer" [ CT

Fig. 7.26 Flattened triple graph #(G)

Links(G’), fur : Linkr(G) — Linkr(G’) defined by f15((x,y)) = ( fC(x), fS (») and
frr((x,y) = (fC @), [T A

Remark 7.50. Note that the flattening construction does not specify mappings of
edges in Gg. Therefore, we generally assume that Gg = () by requiring that TGg =
0 for the type graph TG. Analogously, we require that TGS does not contain any
attribute to ensure that G¢ does not contain any attribute. A

Example 7.51 (Flattening construction). The graph in Fig. 7.26 shows the plain
graph 7 (G) obtained by flattening the triple graph G = (G5 &< G€ % GT) in
Fig. 7.13. The additional edges in Links(G) and Linky(G) define the mappings sg
and 7 from the correspondence component to the source and target components.
The flat graph consists of the following components:

e the subgraphs G5, G¢ and G7,

e the edges in Links(G) corresponding to the morphism G5 ¢ G, defined by
Links (G) = {(C1,S1),(C2,S3),(C3,S5),(C4,57),(C5,S10), (C6,S11)} (where the
numbers refer to the numbered nodes in Fig. 7.26), with s#)((C1,S1)) =
C1,t#)((C1,S1)) = S1 (analogously for all other edges in Links(G)),

e and the edges in Link;(G) corresponding to the morphism G€ %5 G7, defined by
Link7(G) = {(C1,T1),(C2,T9),(C3,T10),(C4,T12),(C5,T18),(C6,T19)}, with
s7)((C1,T1)) = Cl,t¢()((C1,T1)) = T1 (analogously for all other edges in
Linky). A
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The flattening construction induces a functor from the category of typed at-
tributed triple graphs to typed attributed graphs. The functor ensures several im-
portant properties. The functor is compatible with typing, and preserves, creates
and reflects pushouts and pullbacks.

Fact 7.52 (Properties of the flattening construction).

1. The flattening construction defines a functor ¥ : ATrGraphs — AGraphs,
which preserves pushouts.

2. Given an attributed triple type graph TG = (TG® « TG — TGT) with TGgG =

TGgNA = TGgEA = 0 and flattening ¥ (TG), the typed flattening construction
is the functor 1 : ATrGraphs;; — AGraphsg ;;, defined by Fr6(G,1) =
(F(G), F () and Frc(f) = F (f). We sometimes write Frg = F for short.

3. The typed flattening Fr¢ is injective on objects. Fr¢ is injective on morphisms
and creates morphisms, i.e., for all m’ . Frg(L) — Frc(G) in AGraphsg g,
there is a unique morphism m : L — G with Frc(m) = m'. Especially we have
Frc(A) = Frg(B) iff A = B.

4. Frc preserves and reflects pushouts, i.e., (1) pushout in ATrGraphs;; iff (2)
is pushout in AGraphsf,r(TG), and Frg creates pushouts, i.e., givenr : L — R,
m : L — G in ATrGraphs; and pushout (3) with H,n', f’ in AGraphsg ¢,
there are unique G’,n, f in ATrGraphs;g, s.t. (1) is pushout in ATrGraphs;;
with F16(G") = H, Fre(n) = n', and Frc(f) = f'.

r Fre(r Fre(r
i FroD) —"= Fro®)  Fro(L) —="> Fro(R)
m o) n I | |
Frg(m 2 Frc(n Frc(m 3) n
G G T(\i/( ) ()] T(\I/( ) T(\i/( ) ( l
/ H
Fr6(G) - Frc(G')  Fro(G) =
5. Frc preserves, reflects and creates pullbacks. A
Proof. See Appendix B.6.3. |

Remark 7.53 (Flattening functor). The typed flattening construction ¥ :

ATrGraphs;; — AGraphsg g, is in general not surjective and hence defines no
isomorphism or equivalence of categories ATrGraphs;; and AGraphsg ). There
are graphs (H, typey;) in AGraphsg 7, which are not functional in the sense that for
TG = (TGS « TG — TG") one node in H = type;'(TG®) is connected in H with
zero or more than one node in HS = fype;(TG®) or in HT = type;(TG"). In this
case, we do not obtain graph morphisms sy : H© — H® orty : H* — H' and hence
no triple graph (HS « HC — HT). Moreover, in the literature [GK08, KW07],
triple graph applications exist where plain graphs are used which have multiple
edges connecting the same correspondence node to various elements of the source
and target language. This approach does not correspond to pure morphism-based
triple graphs and hence is not covered by our translation construction. A

Using Fact 7.52 above, the flattening functor can be extended to translate triple
graph grammars.
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Definition 7.54 (Translation of triple graph grammars). Given a triple graph
grammar TGG = (TG, SG, TR) with triple type graph TG, start graph SG and triple
rules tr : L — R in TrGraphs;, the translation #(TGG) of TGG is the graph
grammar F(TGG) = (F(TG), F (SG), F (TR)) with type graph ¥ (TG), start graph
F(SG), and rules F(TR) = {F (¢tr) : F(L) > F(R)|(tr : L > R) € TR}. A

Theorem 7.55 (Translation and creation of triple graph transformations).
Given a triple graph grammar TGG = (TG, SG, TR) with translation ¥ (TGG) =
(F(TG), F(SG), F(TR)), the following hold.

try,my 1ry,my

1. Each TGT sequence trafo: SG — G| = ... == G, via TGG can be
translated into a flattened graph transformation

F(trafo): F(SG) 221 7(Gy)y = ... L2 (G,) via F(TGG).
2. Vice versa, each graph transformation sequence

, F(tr1),m| , F(try),m), , .
trafo : T(SG) _ Gl = .. e Gn via ?(TGG)

creates a unique (up to isomorphism) TGT sequence
try,m try,my

trafo: S6 —m— G| = ... —m—= G, via TGG
with F (trafo) = trafo’, i.e., ¥ (m;) = m_ and F(G;) = G' fori=1...n. A

Proof. Using the general assumption that the TGG has no application conditions
(see Rem. 7.48); this result follows from Fact 7.52. a

Finally, we show that the flattening functor yields a one-to-one correspondence
between the model transformation sequences via TGGs and their flattened versions
for systems without application conditions (see Rem. 7.48 for this restriction).

Definition 7.56 (Translation of model transformation based on forward rules).
Given a triple graph grammar TGG = (TG, SG,TR) with model transformation
MT: L(TG®) = L(TG"), the following hold.

1.MT = (L(TG’S),L(TG’T),TG, ts,tr,TRr) is a model model transforamtion
according to Def. 3.2 with 7G> = (TG® « @ — @), TG = (@ «
@ — TG"), inclusions tg = (incygs, @, @) (TG® « @ — @) — TG and
tr = (2,2, incygr): (@ « @ = TG") — TG.

2. The translated model transformation #(MT) is a plain model transformation
defined by F(MT) = (F(Ls), ¥ (Lr), F(TG), F(t5), F (tr), ¥ (TRF)), where
¥ : TrGraphs;; — Graphsg g, is the typed flattening functor (see Def. 7.54).

. , , Flrip)m , F(tro.r),m,
3. Each graph transformation sequence trafo’ : G) —— G| = ...

G,, satisfies the plain control condition if G, = ¥(Gy) and the uniquely created

try pmy trp,F My

triple graph transformation trafo : Gy —— G| = ... ——= G,, (by Theo-
rem 7.55) is source consistent. A

Theorem 7.57 (Properties of translation). Given a triple graph grammar TGG =
(TG, SG, TR) with model transformation MT: L(TG®) = L(TG") and the trans-
lated plain model transformation ¥ (MT), the following hold.
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1. There is a bijective correspondence (up to isomorphism) between model trans-
formation sequences of MT and ¥ (MT) , and
2. F(MT) being functional is equivalent to MT being functional. A

try,
Proof. Given an MT model transformation sequence (G5, G, ;r—> G,GT), we ob-

: . F(try)
tain by Def. 7.56 the # (MT) model transformation sequence (¥ (G%), ¥(G) %

F(Gyn), F(GT)), because F (try,) satisfies the plain control condition, f5(Gs) = Gy
implies ¥ (#5)~(F (Gs)) = F(G1), and 17(G,) = Gr implies F(17)~(F (Gr)) =
F(G,) because F preserves pullbacks by Fact 7.52. Vice versa, each ¥ (MT) model
transformation sequence creates a unique M7 model transformation sequence using
again Def. 7.56 and the fact that # creates pushouts and pullbacks by Fact 7.52.
Injectivity of ¥ by Fact 7.52 implies that we have a bijective correspondence (up to
isomorphism) between MT and ¥ (MT) model transformation sequences. This im-
plies that 7 (MT) being functional is equivalent to MT being functional. O



Chapter 8
Analysis of Model Transformations

Model transformations based on TGGs as presented in Chap. 7 provide an excel-
lent framework for analysing and verifying a major part of the properties that may
have to be ensured in an application scenario with regard to the first dimension
of challenges for model transformations—the functional dimension—presented in
Sect. 3.1. The first two sections of this chapter (Sects. 8.1 and 8.2) present powerful
analysis techniques that are based on the introduced model transformation concepts.

1. Syntactical correctness and completeness: Syntactical correctness of a transfor-
mation method means that if we can transform any source model G° into a model
GT using the method, then the model GT is a valid target model and, more-
over, the pair (G5, G”) is consistent with respect to the specification of the model
transformation provided by the triple graph grammar. Completeness, on the other
hand, means that for any consistent pair (G5, G") according to the specification
our transformation method will be able to build G” from G5.

2. Functional and strong functional behaviour: Functional behaviour means that
for each source model G5 each forward transformation starting with G° leads to
a unique valid target model G”. Strong functional behaviour means, in addition,
that also the forward transformation from G5 to G7 is essentially unique, i.e.,
unique up to switchings of independent transformation steps.

3. Information and complete information preservation: In case of bidirectional
model transformations, information preservation means that for each forward
transformation from Gg to G there is also a backward transformation from Gr
to G . Complete information preservation means in addition that each backward
transformation starting with Gy leads to the same Gy. A

It is the main aim of this chapter to analyse under which conditions the prop-
erties defined above can be guaranteed and how these conditions can be checked
with suitable tool support. Additional important properties as listed in Sect. 3.1, like
semantic correctness, are not considered in this chapter, but the interested reader is
referred to [BHE09a, HHK10].

As the first main results, we show in Sect. 8.1 that the presented approaches
for model transformations ensure syntactical correctness and completeness (see
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Theorem 8.4, Cor. 8.5 and Theorem 8.9). In Sect. 8.2, we show as a second group
of main results how functional behaviour of model transformations can be effi-
ciently analysed (see Theorems 8.29 and 8.32) with automated tool support. There-
for, we provide a sufficient condition for termination (see Facts 8.13 and 8.21),
which is often satisfied for practical applications, and if not, it can be usually
achieved with minor efforts. Moreover, we present how model transformations
based on TGGs are analysed with respect to information preservation (see Theo-
rems 8.36 and 8.39) based on the techniques developed earlier. Information preser-
vation is one aspect relevant for the bidirectional characteristics of model transfor-
mations, and thus already concerns the nonfunctional dimension of challenges. In
Sect. 8.3, we study techniques for reducing nondeterminism. This chapter is based
on [Herl1l, HEGO14, EEE*07, EEHO8c, HHK10, GEH11].

Remark 8.1 (General assumption). The formal results in this chapter are presented
for TGGs that ensure the composition and decomposition property for forward se-
quences (Def. 7.20) and for integration sequences (Def. 7.39). Chap. 7 presents suf-
ficient conditions for these properties by Theorems 7.21 and 7.40. These conditions
mainly require that the application conditions be compatible application condition
schemata with almost injective morphisms and the execution be performed via al-
most injective matches. A

Remark 8.2 (Validity of results for equivalent concepts). The formal results in this
chapter are presented for model transformations based on forward rules. Using
the equivalence results in Chap. 7, we automatically derive corresponding results
for model transformations based on forward translation rules (Fact 7.36), flattened
TGGs (Theorem 7.57), and model integrations (Theorem 7.41). A

8.1 Syntactical Correctness and Completeness

The central challenges for model transformations are to ensure syntactical correct-
ness and completeness. As one of the main advantages over other approaches for
model transformation, we can generally ensure syntactical correctness and com-
pleteness for the presented approaches in Chap. 7 for model transformation (see
Theorems 8.4 and 8.7 and Cor. 8.5) and for model integration (see Theorem 8.9).
The main results of this section are based on [HEGO14]. Syntactical Correctness
of a model transformation based on TGGs states that each successful execution of
a model transformation starting with a valid source model G° yields a target model
GT which exactly corresponds to G5 according to the language of integrated mod-
els L(TGG). Completeness means that all valid source models can be transformed.
Moreover, we do not only show that our model transformations are left total with
respect to source models, but they are also right total. This means that for each valid
target model G7 there is a source model which can be transformed into G” .

In [EEE*07, EEHP09] we have proven that source consistency ensures (syn-
tactical) correctness and completeness of model transformations based on forward
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rules with respect to the language L(T'GG) of integrated models. Syntactical cor-

rectness means that every model transformation sequence (G, Gy ”:F G,, GT) via
forward rules leads to an integrated model G, = (G° « G° — GT) which is
contained in L(TGG). In other words, source consistent forward transformations
generate correct model transformations, according to the class of transformations
specified by the given TGG. Completeness means that for any integrated model
G = (G5 « G¢ = GT) € L(TGG), there is a corresponding model transformation

sequence (G5, Gy ”=F> G,G™). Intuitively, this means that any valid transformation
specified by a TGG can be implemented by a source consistent forward transforma-
tion.

Note that the model transformation relation MT g is in general not a function
from L(TG%) to L(TGT), but we study functional behaviour in Sect. 8.2.1.

Definition 8.3 (Syntactical correctness and completeness). A model transforma-
tion MT : L(TG®) = L(TG") based on forward rules is

e syntactically correct if for each model transformation sequence (G,

Gy ”=F> G,,GT) there is G € L(TGG) with G = (G5 « G — GT) imply-
ing further that G5 € £(TGG)® and GT € L(TGG), and it is
o complete if for each G° € L(TGG)S thereis G = (G° « G¢ — GT) e L(TGG)

with a model transformation sequence (G5, Gy "=F> G,,G") and G, = G. Vice
versa, for each G" € L(TGG)" there is G = (G* « G — G") € LITGG) with

a model transformation sequence (G, Gy N G,,GT)and G, =G. A

Note that we define syntactical correctness and completeness concerning forward
model transformations. If we consider Def. 8.3 for both directions of a bidirectional
model transformation, i.e., for the forward and backward directions, we derive a
more specific definition. In that case, the conditions for correctness and complete-
ness are both required for all source and target models. The following result (based
on [HEGO14, GEH11]) shows that model transformations based on forward rules
are syntactically correct and complete.

Theorem 8.4 (Syntactical correctness and completeness). Each model transfor-
mation MT : L(TG®) = L(TG") based on forward rules is syntactically correct
and complete. A

Proof. 1. (Syntactical Correctness)

. . iy
Given a model transformation sequence (G5,Gy = G,,G"), the source con-

sistency of Gy ”:F; G, implies a match consistent sequence @ W=S> Gy ”=F> G,.
Using the general assumption (see Rem. 8.1) we can apply the composition part
of Def. 7.20 and have a corresponding TGT sequence @ AN G,. This implies
for G = G, that G € L(TGG) with G = (G5 « G¢ — GT), and hence also
G’ € L(TGG)® and GT € L(TGG)T.
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2. (Completeness)
Given G° € L(TGG)S, we have by definition of £L(TGG)® some G = (G5 «

G¢ —» G") € L(TGG). This means that we have a TGT sequence @ 6.
Using the general assumption (see Rem. 8.1) we can apply the decompos1t10n

part of Def. 7.20 and have a match consistent sequence %) => Go => G, which

defines a model transformation sequence (G*, Gy =~ G,G")using G = (G5 «
G¢ — GT). Vice versa (concerning G € L(TGG)T), we use Rem. 7.22. ]

Based on the corresponding equivalence result in Chap. 7 (see Fact 7.36), we
can directly conclude the following result (see also [Her11]), which shows that
model transformations based on forward translation rules are syntactically correct
and complete.

Corollary 8.5 (Syntactical correctness and completeness based on translation
rules). Each model transformation MT : L(TGY) = L(TGT) based on forward
translation rules is syntactically correct and complete. A

Proof. This follows direcly from Theorem 8.4 due to Fact 7.36.

Model transformations based on forward rules are source consistent. They define
model transformations in the general notion of Def. 3.2 using source consistency as
control condition.

Example 8.6 (Model transformation based on forward rules). Consider a triple
graph grammar TGG = (TG, 2,TR) with source rules TRy and forward rules
TRy defining the triple graph languages £y = L(TGG)S and Lr = L(TGG)T.
Let TR be typed over TG = (IG° « TGS — TG") with ts : (TG® «
@ - @ — TGand tr : (@ « @ — TG') — TG being type graph em-
beddings and GTS = (TRf) with “source consistency” as control condition, i.e.,

G t=> G, satisfies the control condition if it is source consistent. Then, the
model transformation MT : L(TG®) = L(TG") based on forward rules is given
by MT = (L(TG®), L(TG"), TG, ts, t7, TRF). A

We show by Theorem 8.7 below that the general notions of correctness, totality,
surjectivity and completeness in Def. 3.2 can be guaranteed for model transforma-
tions based on forward rules. This is possible, if the source language £ coincides
with the source language £(TGG)’ derived from the TGG and, vice versa, the target
language L7 coincides with the target language £(TGG)” derived from the TGG.
Therefore, we require that L5 = L(TGG)® and L7 = L(TGG)". This allows us
to apply the correctness and completeness results for TGGs (see Theorem 8.4) that
ensure completeness (which implies totality and surjectivity by definition) and syn-
tactical correctness concerning L5 = L(TGG)® and L = L(TGG)'.

Theorem 8.7 (General properties of model transformation based on forward
rules). Let MT : L(TG®) = L(TG") be a model transformation in the sense of
Def. 3.2 with MT = (L(TG%), LITG"), TG , ts,tr, TRr). Let forward rules TRy be
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derived from the triple graph grammar TGG, source language Ls = L(TGG)’,
and target language Ly = L(TGG)T and let the consistency relation MT ¢ be given
by MT¢ = {((G5,GT)| 3G = (G° « G¢ = G") € LITGG)). Then

e cach model transformation sequence (G5, G, ”:F G,, GT) in the sense of
Def. 7.23 is a model transformation sequence in the sense of Def. 3.2 and vice
versa.

o Moreover, MT is syntactically correct, total, surjective and complete in the sense
of Def. 3.2. A

Proof. Each model transformation sequence in the sense of Def. 7.23 is also one in
the sense of Def. 3.2, and vice versa, because

° [Go =5>(G* )] = [Go typed over (TG® « @ — @) and projs(G,) = GS] and
o [G" =G| & [projr(Gy) = GT].

MT is syntactically correct in the sense of Def. 3.2, because Theorem 8.4 ensures
that for each source consistent Gy —= G, with G = 5*(G%) we have G = (G5
G — G") € L(TGG) with G5 € LTGG) ¢ L(TG®) and G" = {<(G,) €
LTGG)" ¢ LTG"), and G, € L(TGG) implies (G5,G™) € MT¢.

MT is total, because for each G5 € L(TGG)S we have by definition G € L(TGG)
with projs(G) = G5. G € L(TGG) 1mp11es o L G, and hence, by Theo-

i
rem 7.21, a match consistent sequence %) => Gy = G. This implies a model

transformation sequence (G°, Gy G, GT) with projs(Goy) = projs(G) = G5
and hence (G°,G") € MTg, which implies that MT is total. Similarly we find, for
each GT € L(TGG)T, a triple graph G € L(TGG) with G5 = projs(G) such that
(G5, G") € MTg. This shows that MT is surjective. a

Similarly to forward and backward model transformations based on TGGs, the
derived operation of model integration is syntactically correct and complete.

Definition 8.8 (Syntactical correctness and completeness of model integration).

A model integration MI : L(TG%) x L(TG®) = L(TG) based on integration rules

is

e syntactically correct if for each model integration sequence ((G°,G7),
Gy ; G,.G) we have a triple graph G € L(TGG) with G = G, = (G5 «
G¢ — G"), implying further that G5 € L(TGG)® and GT € L(TGG)", and it is

e complete if for each G = (G° « G¢ — GT) € L(TGG) there is a model

integration sequence ((G%,G"), Gy SN G,,G) with G, = G. A
Theorem 8.9 (Syntactical correctness and completeness of model integration).

Each model integration MI : L(TGY) x L(TGT) = L(TG) based on integration
rules is syntactically correct and complete. A
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Proof. 1 Syntactical correctness: Given a model 1ntegrat10n sequence ((G5,GT),
Gy : G,,G), the source—target cons1stency of Gy :> G, implies a match

consistent sequence @ ’=, Gy : G,. Using the general assumption (see
Rem. 8.1) we can apply the composition part of Def. 7.39 and have a correspond-

ing TGT sequence @ ;:, G,. This implies for G = G, that G € L(TGG) with
G = (G® « G¢ = G"), and hence also G5 € L(TGG)S and GT € L(TGG)".

2. Completeness: Given G € L(TGG), we have a TGT sequence @ L, G, and
using the general assumption (see Rem. 8.1) we can apply the decomposition
part of Def. 7.39 and have a match consistent sequence (Z) => Gy ;:, G,
which defines a model integration sequence (G, G”), G, => G,,G)using G =
(G5 « G¢ - G"). a

8.2 Functional Behaviour and Information Preservation

As shown in Sect. 8.1, we can ensure syntactical correctness and completeness for
model transformations based on forward rules and equivalently for those based
on forward translation rules using Fact 7.36. This section concentrates on the
analysis of functional behaviour and information preservation. Several formal re-
sults are available concerning termination [EEHP09, GHL10], functional behaviour
[HEOG10b, GHL10], and optimisation with respect to the efficiency of their exe-
cution [HEGO10, KLKS10, GHL10]. The main results of this section are based on
[HEGO14, Herl1, EEE*07].

8.2.1 Functional Behaviour and Efficient Execution

At first, we consider the general notion of functional behaviour that can be applied to
arbitrary transformation systems, in particular to sets of operational rules of a TGG.
Functional behaviour of a transformation system means that a transformation system
yields unique results for the same input if the sequences are terminated. Termination
of a transformation sequence means that the construction of this sequence ends at a
graph to which no further forward translation rule is applicable.

Definition 8.10 (Functional behaviour of a transformation system). A transfor-
mation system TS = (R) with transformation rules R has functional behaviour if for
each two terminated transformation sequences G =* H, and G =* H, via TS and
starting at G the resulting graphs are isomorphic, i.e., H| = H,. A

Functional behaviour of a model transformation means that each model of the
source domain-specific language (DSL) Ly is transformed into a unique model of
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the target language, where we require Ls € L(TGG)s in order to ensure correct-
ness and completeness by Theorem 8.4. The source DSL can form any subset of
L(TGG)s and it can be specified by the type graph TG® together with additional
well-formedness constraints. In many cases, model transformations should ensure
the crucial property of functional behaviour. Moreover, in order to ensure efficient
executions of model transformations, backtracking should be reduced or eliminated,
respectively. Backtracking is necessary due to the possible choice of a suitable for-
ward rule and match used for the translation of a particular source element. There-
fore, backtracking is performed if a transformation sequence terminates and is not
completed successfully, because some parts of the source model have not been trans-
lated. In the case of FT rules, this means that an execution of MT requires backtrack-

ing if there are terminating TGT sequences (Att"(G5) « @ — @) tré, G/ with
G # Att" (G). As we will show by Theorems 8.29 and 8.32, functional behaviour
and elimination of backtracking are closely related topics (see [HEGO14]).

Definition 8.11 (Functional behaviour of model transformations). Given a
source DSL Ls C L(TGG)s, a model transformation MT based on forward
translation rules has functional behaviour if each execution of MT starting at a
source model G5 € L leads to a unique (up to isomorphism) target model
G" € L(TGG)r. A

The standard way to analyse functional behaviour is to
check whether the underlying transformation system is con-
fluent, i.e., all diverging derivation paths starting at the same
model finally meet again. According to Newman’s Lemma
[New42], confluence can be shown by proving local conflu-
ence and additionally ensuring termination. More precisely, local confluence means
that whenever a graph K can be transformed in one step into two graphs P; and P;,
these graphs can be transformed into a graph K’, as shown in the diagram on the
right. Let us start with the analysis of termination.

Definition 8.12 (Termination). A system of operational translation rules TRy with
X € {CC,FT,BT} is terminating if each transformation sequence via TRy is ter-
minating, i.e., the sequence ends at a graph to which no further translation rule
(CC, FT,BT) is applicable. A

For showing termination of a system of forward translation rules according to
Def. 8.12, we have the following Fact 8.13, which is a direct extension of Thm. 1 in
[HEGOI10]. It provides a simple and sufficient condition for termination that can be
checked statically.

Fact 8.13 (Termination). Given a set of operational translation rules TRx with
X € {CC,FT, BT}, TRy is terminating if all input graphs are finite on the graph part
(E-graph component) and each rule modifies at least one translation attribute from
FroT. A
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Proof. The input triple graphs are finite on the graph part, and thus contain finitely
many translation attributes. Each translation rule modifies at least one translation
attribute from F to T. According to Def. 7.44, none of the translation rules changes
a translation attribute from T to F. Therefore, each transformation sequence stops
after finitely many steps. O

Local confluence can be shown by checking confluence of all critical pairs
(P « K= P,) (see Sects. 2.3.5 and 5.2.4), which represent the minimal objects
where a confluence conflict may occur. A critical pair describes a minimal conflict,
where minimality means that only overlappings of the rule components are consid-
ered for the graph K.

While termination of model transformations based on forward rules or forward
translation rules can be ensured quite easily by checking that all TGGtriple rules are
creating on the source component (see Fact 8.13), the conditions for local conflu-
ence are usually more restrictive. In fact, the system of forward translation rules of
our case study CD2RDBM terminates but is not locally confluent. However, we can
show in Ex. 8.34 that the model transformation has functional behaviour. Indeed,
functional behaviour of a model transformation does not require general conflu-
ence of the underlying system of operational rules. Confluence only needs to be
ensured for transformation paths which lead to completely translated models. More
precisely, derivation paths leading to a point for backtracking do not influence the
functional behaviour. For this reason, we introduce so-called filter NACs that extend
the model transformation rules in order to avoid misleading paths that cause back-
tracking, such that the backtracking for the extended system is reduced substantially.
By Fact 8.20 we ensure that the overall behaviour of the model transformation with
respect to the model transformation relation is still preserved. As the first important
result we show in Theorem 8.29 that functional behaviour of a model transformation
is ensured by termination and strict confluence of all significant critical pairs of the
system of forward translation rules enriched by filter NACs, where significant crit-
ical pairs are a subset of all critical pairs. Furthermore, we are able to characterise
strong functional behaviour of a terminating model transformation based on forward
translation rules with filter NACs in Theorem 8.32 by the condition that there is no
significant critical pair at all. Compared with functional behaviour we additionally
ensure by strong functional behaviour that the model transformation sequences are
unique up to switch equivalence.

The addition of filter NACs therefore has two advantages. On the one hand, the
analysis of functional behaviour is improved, because the possible conflicts between
the transformation rules are reduced and we will show in this section that filter NACs
allow us to verify functional behaviour for our case study CD2ZRDBM. On the other
hand, filter NACs improve the efficiency of the execution by cutting off possible
backtracking paths. Filter NACs are based on the following notion of misleading
graphs, which can be seen as model fragments that are responsible for the back-
tracking of a model transformation.

Definition 8.14 (Translatable and misleading graphs). A triple graph with trans-

try,
lation attributes G is translatable if there is a transformation sequence G —— H
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Fig. 8.2 A forward translation rule with filter NAC: Class2Tablepy

via forward translation rules such that H is completely translated (see Def. 7.33). A
triple graph with translation attributes G is misleading if for every triple graph G’
with translation attributes that contains G (G’ 2 G) we have that G’ not translat-
able. A

Example 8.15 (Misleading graph). Consider the transformation step shown in
Fig. 8.1. The resulting graph G, is misleading according to Def. 8.14, because the
edge S2 is labelled with a translation attribute set to F, but there is no rule which may
change this attribute in any bigger context at any later stage of the transformation.
The only rule which allows one to change the translation attribute of a parent-
edge is Subclass2Tablegr, but it requires that the source node S3 be labelled with
a translation attribute set to F. However, forward translation rules do not modify
translation attributes from T to F, and moreover they do not change the structure of
the source component. A

Definition 8.16 (Filter NAC). A filter NAC n for a forward translation rule trgr :

Lpr < Kpr — Rpr is given by a morphism n : Lgr — N, such that there is a TGT

step N 20 M with M being misleading. The extension of t7zr by some set of

filter NAC:s is called forward translation rule trpy with filter NACs. A

Example 8.17 (Forward translation rule with filter NACs). The rule Class2Tablepr

is extended by a filter NAC in Fig. 8.2, which is obtained from the graph G, of

. Class2Tabler R L .
the transformation step G, T, G, in Fig. 8.1, where G, is misleading

according to Ex. 8.15. A
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A direct construction of filter NACs according to Def. 8.16 would be inefficient,
because the size of the considered graphs to be checked is unbounded. For this
reason we use efficient techniques as presented in [HEGO14, HEOG10b], which
support the generation of filter NACs and allow us to bound the size without losing
generality. At first we present an automated technique for a subset of filter NACs
and thereafter an interactive generation technique leading to a much larger set of
filter NACs. The first procedure in Fact 8.18 below is based on a sufficient criterion
for checking the misleading property. Concerning our example, this automated gen-
eration leads to the filter NAC shown in Fig. 8.2 for the rule Class2Tablepr for an
incoming edge of type “parent”.

Fact 8.18 (Automated generation of filter NACs). Given a triple graph grammar,
the following procedure applied to each triple rule tr € TR generates filter NACs
for the derived forward translation rules TRpr leading to forward translation rules
TRgy with filter NACs:

e Qutgoing Edges: Check whether the following properties hold

— tr creates a node (x : T,) in the source component and the type graph allows
outgoing edges of type “ T,” for nodes of type “ T,”, but tr does not create
an edge (e : T.) with source node x.

— Each rule in TR which creates an edge (e : T,) also creates its source node.

— Extend Lgr to N by adding an outgoing edge (e : T,) at x together with
a target node. Add a translation attribute for e with value F. The inclusion
n: Lpr — N is a NAC-consistent match for tr.

For each node x of tr fulfilling the above conditions, the filter NAC (n : Lyr — N)
is generated for trpr, leading to trgy.

e Incoming Edges: Dual case, this time for an incoming edge (e : T,).

o TRpy is the extension of TRpr by all filter NACs constructed above. A

Proof. Consider a generated NAC (n : Lpr — N) for anode x in #r with an outgoing

edge e in N\ L. A transformation step N L8 M exists according to Fact 7.32 and
leads to a graph M, where the edge e is still labelled with a translation attribute set
to “F”, but x is labelled with “T”, because it is matched by the rule. Now, consider
a graph H’ 2 M, such that H’ is a graph with translation attributes over a graph
without translation attributes H, i.e., H = H @ Arty, for Hy € H’, meaning that
H’ has at most one translation attribute for each element in H without translation
attributes.

In order to have M misleading (Def. 8.14), it remains to show that A’ is not
translatable. Forward translation rules only modify translation attributes from “F”
to “T”; they do not increase the number of translation attributes of a graph and

no structural element is deleted. Thus, each graph H; in a TGT sequence H’ :T

H will contain the edge e labelled with “F”, because the rules, which modify the
translation attribute of e, are not applicable due to x being labelled with “T” in each
graph H; in the sequence, and there is only one translation attribute for x in H’.
Thus, each H, is not completely translated, and therefore M is misleading. This
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means that (n : Lpr — N) is a filter NAC of trpy. Dualising the proof leads to the
result for a generated NAC w.r.t. an incoming edge. O

The following interactive technique for deriving filter NACs was presented
in [HEGO14, HEOG10b] and is based on the generation of critical pairs, which
define conflicts of rule applications in a minimal context. By the completeness of
critical pairs (Theorem 5.41) we know that for each pair of two parallel dependent

transformation steps there is a critical pair which can be embedded. If a critical
. i, s, . . . .
pair P, —L g =L P, contains a misleading graph P, we use the overlapping

graph K as a filter NAC of the rule tr; ;r. However, checking the misleading prop-
erty needs manual interaction. But in some cases, these manual results of identified
misleading graphs can be reused for more general static conditions. Indeed, the con-
ditions used in Fact 8.18 were inspired by first applying the interactive method to
our case study. Moreover, we are currently working on a technique that uses a suffi-
cient criterion to check the misleading property automatically, and we are confident
that this approach will provide a powerful generation technique.

Fact 8.19 (Interactive generation of filter NACs). Given a set of forward transla-

. .. . try Fr,m try Fr,m
tion rules, we generate the set of critical pairs P < K =, P,. If Py (or

similarly P,) is misleading, we generate a new filter NAC m, : Ly pr — K for try pr
try FN .M

leading to tr\ gy, such that K ——= P violates the filter NAC. Hence, the critical
pair for try pr and try pr is no longer a critical pair for try py and try pr. But this
construction may lead to new critical pairs for the forward translation rules with
filter NACs. The procedure is repeated until no further filter NAC can be found or
validated. This construction, starting with TRpr, always terminates if the structural
part of each graph of a rule is finite. A

Proof. The constructed NACs are filter NACs, because the transformation step
riEr, . . . .
J QRN P contains the misleading graph P;. The procedure terminates, because

the critical pairs are bounded by the number of possible pairwise overlappings of
the left hand sides of the rules. The number of overlappings can be bounded by con-
sidering only constants and variables as possible attribute values. O

Based on the flattening construction presented in Sect. 7.6 we derive an equiva-
lent plain graph transformation system from the system of forward translation rules.
Since the system of forward translation rules ensures source consistency for com-
plete transformation sequences by construction, the derived flattened grammar also
ensures source consistency for complete transformation sequences. For this reason,
we do not need to extend the analysis techniques for critical pairs and can use the
critical pair analysis engine of AGG [AGG14].

Concerning our case study CD2RDBM, the interactive generation terminates af-
ter the second round, which is typical for practical applications, because the number
of already translated elements in the new occurring critical pairs usually decreases.
Furthermore, several NACs can be combined if they differ only on some translation
attributes.
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According to Fact 8.20 below, filter NACs do not change the behaviour of model
transformations as presented in [HEGO14, Her11]. The only effect is that they filter
out derivation paths which would lead to misleading graphs, i.e., to backtracking for
the computation of the model transformation sequence. This means that the filter
NAC:s filter out backtracking paths.

Fact 8.20 (Equivalence of transformations with filter NACs). Given a triple
graph grammar TGG = (TG, @, TR) with forward translation rules TRpr and fil-
ter NACs leading to TRpy, let Gy = (G5 « @ — @) be a triple graph typed over
TG and G|, = (At (G®) « @ — @); then the following statements are equivalent
for almost injective matches:
. g Mpr .
1. There is a complete TGT sequence Gl =——= G’ via TRrr.
ot

2. There is a complete TGT sequence G, % G’ via TRpy. A
Proof. Sequence 1 consists of the same transformation diagrams as Sequence 2.
NAC consistency of sequence 2 implies NAC consistency of sequence 1, because
each step in Sequence 2 involves a superset of the NACs for the corresponding step

. . . . . (i, FT),Mi,FT) .
in Sequence 1. For the inverse direction, consider a step G;_; G, which

17, FN) s/, FT)

leads to the step G;_; G; if NACs are not considered. Assume that mgr
does not satisfy some NAC of trpy. This implies that a filter NAC (n : Lipr — N)
is not fulfilled, because all other NACs are fulfilled by NAC consistency of Se-
quence 1. Thus, there is a triple morphism g : N — G,_; with g on = m;pr. By
Thm. 6.18 (Restriction Thm.) in [EEPT06] we have that the transformation step

1r i, FN) M, FT) . tri rr)n . .
G- —m———= G; can be restricted to N ——= H with embedding H — G,. By
trFryn

Def. 8.16 of filter NACs we know that N ——= H and H is misleading, which
implies by Def. 8.14 that G; is not translatable. This is a contradiction to the com-
pletely translated graph G,, in sequence 1, and therefore the filter NAC is fulfilled,
leading to NAC consistency of sequence 2. |

The equivalence above implies that we can check termination of a model trans-
formation based on forward translation rules with filter NACs by checking that it is
terminating without filter NACs.

Fact 8.21 (Termination with filter NACs). Given TRgy and TRgr as in Fact 8.20,
TRpy is terminating if TRy is terminating. A

Proof. Since TRpr is terminating, we know that all transformation sequences via
TRpr terminate. Since TRpy C TRpr by construction, we automatically derive that
the transformation sequences via TRpy are a subset of the ones via TRyr. Hence, all
transformation sequences via TRpy terminate. =]

In order to analyse functional behaviour we generate the critical pairs for the sys-
tem of forward translation rules and show by Theorem 8.29 that strict confluence of
“significant” critical pairs ensures functional behaviour. A critical pair is significant
if it can be embedded into two transformation sequences via forward translation
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Fig. 8.3 Unreachable patterns U; and U,

rules that start at the same source model G°, which belongs to the source domain-
specific language L. This implies that a critical pair containing a misleading graph
automatically is not significant. For this reason, some of the nonsignificant critical
pairs can be eliminated with the presented automatic and interactive techniques for
generating filter NACs in Facts 8.18 and 8.19.

Definition 8.22 (Significant critical pair). A critical pair (P, <_t_rl—_Fi K "zé P»)

for a set of forward translation rules with filter NACs TRy is called significant if it

can be embedded into a parallel dependent pair (G| <1l—ﬂ G’ Zg_:» GY) such that

there is G° € Ly € L(TGG)s and G|, I G with G, = (A" (G®) « @ - o).
, iy , G

Gy=—==G < , A
1o G,

The pragmatic solution for analysing critical pairs would be to start generating
critical pairs and inspect overlapping graphs of some pairs. If we detect that an over-
lapping graph already contains an unreachable pattern, we can conclude that this
critical pair is not significant, because it cannot be embedded in a forward trans-
lation sequence. Intuitively, an unreachable pattern cannot be reached by applying
forward translation rules to a valid initial graph of a forward translation. Note that
the notion of unreachable patterns is more restrictive than the notion of misleading
graphs.

Definition 8.23 (Unreachable pattern). A graph U is called unreachable pattern
if there is no forward translation sequence G =" G with G{)S = At*(G%) and
G® € L(TGG)S such that there is an M-morphism u: U — G (i.e., such that U is
contained in G). A

Example 8.24 (Unreachable patterns). The graph U, in Fig. 8.3 contains a Class
node with two primary Attribute nodes. This pattern cannot occur in a valid
source model G° € L(TGG)’, because the rule PrimaryAttr2Column is the only
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rule that creates primary Attribute nodes, and its source NAC prohibits the cre-
ation of a second one for the same Class node. Therefore, graph U, is unreachable:
it cannot be embedded in a forward translation sequence starting with a consistent
source model as required otherwise, because forward translation rules only modify
translation attributes on the source component.

The graph U, in Fig. 8.3 contains two classes with each containing a primary
attribute, and both Class nodes are connected to the same table. We show that U,
is unreachable by contraposition. Assume that U, is not unreachable, i.e., there is
a transformation sequence via forward translation rules G’ =* H’ such that G’5 =
At*(G®), G5 € L(TGG)S and H’ contains U,. Therefore, at least one of the Class
nodes was connected to the table via the rule Subclass2Tablegz. This means as
well that both classes are within the same class hierarchy in G5. Now, we explain
why this leads to a contradiction. The condition G° € L£(TGG)® means that the
source model G5 belongs to a consistent integrated triple graph G (i.e., G = (G5 «
G¢ — G") € L(TGG)). Thus, G is constructed by applying the triple rules of TGG.
In order to create the two attribute nodes with is_primary = true, we have to
apply the rule PrimaryAttr2Column twice using the same Table node, because
the classes belong to the same hierarchy. This would mean that each of the two
steps would create a primary key for that table. Thus, the second step would not
be possible due to the target NAC of the rule. Therefore, the graph G cannot be
constructed via the triple rules, and thus G ¢ L(TGG). This is a contradiction, and
therefore U, is an unreachable pattern. A

Based on the notion of unreachable graphs, we define negative constraints, which
we call filter constraints (Def. 8.25), because they are used to filter out nonsignificant
critical pairs. They forbid the presence of unreachable patterns. As we will see for
our example, filter constraints are only used for the generation of critical pairs, but
can reduce the number of filter NACs required for showing functional behaviour.
The reason for this is that the conditions for a graph to be an unreachable pattern
and to be misleading partially overlap in a semantic way.

Definition 8.25 (Filter constraint). A filter constraint is given by a negative con-
straint c = = 3 (p: @ — U, true), where U is an unreachable pattern. We call ¢ a

. . . . 1 .
strict filter constraint if for all transformation steps G —L, H via a forward trans-
lation rule trpy, where U is embedded into H via an M-morphism u: U — H, we
can conclude that also G is unreachable. A

Remark 8.26 (Relationship between filter constraints and filter NACs). Filter con-
straints are related to filter NACs, but none of them is a special case of the other.
First of all, a filter NAC —( A n: L — N,true) is a condition over L for a specific
triple rule #r = (L — R), while a filter constraint ¢ = = 3 (p: @ — U, true) is
a condition over the initial object @. This means that the filter NAC concerns the
applicability of a single rule, while a filter constraint is independent from the triple
rules. Secondly, a filter constraint contains an unreachable pattern U (see Defs. 8.23
and 8.25), while a filter NAC contains a graph N that can be transformed into a
misleading graph M (see Defs. 8.14 and 8.16). If we consider the system without
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cy=-3(@: @ - Uy, true)
¢ =-31(2: @ - U,,true)

Fig. 8.4 Filter constraints based on graphs U; and U, from Fig. 8.3

filter NACs, we know that the unreachable patterns will not occur in any partial
model translation sequence, but it might be that misleading graphs occur. Note that
some misleading graphs can be unreachable patterns, e.g., one can combine a mis-
leading graph with an unreachable pattern and obtain a new graph that is then both,
unreachable and misleading. Vice versa, each unreachable pattern is misleading by
definition, because there in no valid sequence in which it can be embedded.
Practically, a NAC with an unreachable pattern would have no effect as unreach-
able patterns never occur in valid sequences anyhow. On the other hand, a con-
straint with a misleading graph could be defined. However, it could be transformed
into NACs, which usually improves efficiency as the condition checks are reduced.
Thus, unreachable patterns are appropriate for constraints and misleading graphs
are a suitable notion for obtaining relevant NACs. Concerning the analysis of crit-
ical pairs, a filter constraint generally reduces the number of critical overlapping
graphs, while a filer NAC concerns only the overlapping graphs that are relevant for
the specific rule. A

Example 8.27 (Filter constraint). Consider the two constraints in Fig. 8.4. They are
filter constraints, because they are based on the graphs U; and U,, which are un-
reachable patters as shown in Ex. 8.24. A

Using the concept of filter constraints, we show that they can be used as global
constraints when generating critical pairs. They will ensure that all the nonsignifi-
cant critical pairs that contain the specified negative pattern will already be filtered
out during the generation process.

Lemma 8.28 (Filtering of critical pairs). Given a filter constraintc = -3 (p: @ —
U, true), all graphs (K, Py, P,) of significant critical pairs (P < K = P;) satisfy c,
e, KEcANPiEcAPEC A

Proof. Letc = =3 (p: @ — U, true) be a filter constraint; then U is unreachable.
Let ¢/ = 3 (p: @ — U, true), i.e., leaving out the negation, and let (P; =« K =
P») be a critical pair. Assume that one of the graphs K, P; or P, does not satisfy
¢, i.e, X F ¢ with X € {K, P, P,}. This implies that there is an M-morphism
x: U — X. By Def. 8.23 (unreachable pattern), we can conclude that there is no
forward translation sequence G}, =* G with G,° = A" (G®) and G° € L(TGG)S.
Therefore, we can conclude by Def. 8.22 that the critical pair is not significant. This
is a contradiction, and we can conclude that the assumption is wrong. Therefore, all
graphs of the critical pair satisfy c. O
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Using the notion of significant critical pairs, we can provide our first main result
of this section on functional behaviour as presented in [HEGO14, HEOG10b]. It
states that a model transformation has functional behaviour and does not require
backtracking, if the significant critical pairs are strictly confluent.

Theorem 8.29 (Functional behaviour). Let MTrr be a model transformation
based on forward translation rules TRgr with model transformation relation MT pr g
and source DSL L. Furthermore, let TRpy extend TRpr with filter NACs such that
TRpy is terminating and all significant critical pairs are strictly confluent. Then,
MT g7 has functional behaviour. Moreover, the model transformation MT gy based
on TRpy does not require backtracking and MT py defines the same model transfor-
mation relation, i.e., MTry g = MTpr . A

Proof. For functional behaviour of the model transformation we have to show that
each source model G5 € L is transformed into a unique (up to isomorphism) com-
pletely translated target model G”, which means that there is a completely translated
triple model G’ with G’T = G”, and furthermore G” € L(TGG)r.

For G5 € Lg C L(TGG)s we have by definition of £(TGG) that there

is a GT € L(TGG)r and a TGT sequence @ LN (G5 « G¢ - G7) via
TR. Using the decomposmon theorem with NACs, we obtain a match consis-

tent TGT sequence @ :, G5 « @ — ) => G5 « G° - GhH
by general assumption (Rem. 8.1), and by Fact 7.36 a complete TGT sequence

- UGS « o - @) 2 AH"GY) « GE — G') = G'. This

tr
means that (G5,G, == G’,G”) is a model transformation sequence based on
TRpr. Assume that we also have a complete forward translation sequence G, =

AP (GS) « @ — @) =2 (A" (G®) — GC - GT) = G By Fact 8.20 we also

have the complete TGT sequences G, : G’ and G : G. Using the precon-
dition that TRpy is terminating and all significant critical pairs are strictly confluent,
we show that all diverging transformation sequences can be merged again. Consider
the possible transformation sequences starting at G;, (which form a graph of trans-

formation steps) and two diverging steps (G}, | P G — o G )). If they are

parallel independent, we can apply the local Church— Rosser theorem (LCR), The-

orem 5.26, and derive the merging steps (G}, :m> H f: G7.)). If they are

parallel dependent diverging steps, we know by completeness of critical pairs (The-
orem 5.41) that there is a critical pair, and by Def. 8.22 we know that this pair is
significant, because we consider transformations sequences starting at Gj,. This pair
is strictly confluent by precondition. Therefore, these steps can be merged again.
Now, any new diverging situation can be merged by either LCR for parallel inde-
pendent steps or by strict confluence of critical pairs for parallel dependent steps. By
precondition the system is terminating. In combination, this implies that G’ = 6’,

T
and hence GT =G .

Backtracking is not required, because the termination of TRpy with strict con-
fluence of significant critical pairs implies unique normal forms as shown above.
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Therefore, any terminating TGT sequence AT (G®) « @ — ©) zi—) G, leads to
a unique G, up to isomorphism, and by correctness and completeness (Theorem 8.4
and Fact 7.36) we have that G’S = Ant” (G¥).

The model transformation relation is the same, because we have the equivalence
of the model transformation sequences (Fact 8.20). O

If the set of generated critical pairs of a system of forward translation rules with
filter NACs TRpy is empty, we can directly conclude from Theorem 8.29 that the
corresponding system TRpr without filter NACs has functional behaviour. More-
over, from an efficiency point of view, the set of rules should be compact in order
to minimise the effort for pattern matching. In the optimal case, the rule set ensures
that each transformation sequence of the model transformation is itself unique up to
switch equivalence, meaning that it is unique up to the order of sequentially indepen-
dent steps. For this reason, we introduce the notion of strong functional behaviour
with respect to a given source domain-specific language L.

Definition 8.30 (Strong functional behaviour of model transformations). A
model transformation based on forward translation rules TRpy with filter NACs
and the source DSL Lg C L(TGG)s has strong functional behaviour if for each
G5 € L there is a GT € L(TGG)r and a model transformation sequence

Iy .
(GS, G, = Gy, GT) based on forward translation rules, and moreover,

iy
iy

e any partial TGT sequence G; — G terminates, i.e., there are finitely many

ik *

, Uy , ey ,
extended sequences G0 — G — Gj, and

tr "y —
e each two TGT sequences G, = G’ and G, LN G:n with completely trans-
lated graphs G;, and 6;,1 are switch-equivalent up to isomorphism. A

Remark 8.31 (Strong functional behaviour).

1. The sequences being terminating means that no rule in 7Rgy is applicable any-
more. However, it is not required that the sequences be complete, i.e., that G,
and 6;1 are completely translated.

2. Strong functional behaviour implies functional behaviour, because G), and E:n

. . tr, iy, — . .
completely translated implies that Gj) == G, and G|, 22, G/, are terminating
TGT sequences. A

The second main result of this section shows that strong functional behaviour of
model transformations based on forward translation rules with filter NACs can be
completely characterised by the absence of significant critical pairs, as presented
in [HEGO14, HEOG10b].

Theorem 8.32 (Strong functional behaviour). A model transformation based on
terminating forward translation rules TRpy with filter NACs has strong functional
behaviour and does not require backtracking, leading to polynomial time complexity
if and only if TRpy has no significant critical pair. A
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Proof. Direction “&”: Assume that TRpy has no significant critical pair. As in
the proof of Theorem 8.29 we obtaln for each G5 € L5 a GT € L(TGG)r and

a complete TGT sequence G => G’ and a model transformation (G°, G| tr:

G',G") based on TRpr underlylng TRpy. By Fact 8.20 we also have a complete TGT

sequence G, :::> G’, and hence also a model transformation (G¥, G, —= o G',G")
based on TRpr underlying TRpy. In order to show strong functlonal behaviour let

G, Wé G, and G| LEN 6;,, be two terminating TGT sequences with m,n > 1.
We have to show that they are switch-equivalent up to isomorphism. We show by
induction on the combined length n + m that both sequences can be extended to
switch-equivalent sequences.

Forn+m =2wehaven =m =1 withtl : G| ML G and 11 : G| % Gl
If trpy = trpy and m =_n_1, then both are 1som_orph1c with isomorphism i : G1 SN
G, such that 1 ~ i o t1. If not, then ¢1 and ¢1 are parallel independent, because
otherwise we would have a significant critical pair by completeness of critical pairs
in Theorem 5.41. By the local Church—Rosser theorem, Theorem 5.26, we have

I treN

12: G LN G, and 12 : G1 =, G, suchthat 201l x 1201l : Gy="G).
Now assume that for 1 : Gy =" G/ _, and 1l Gy =" Gm we have extensions
2:G, _ ="H12:G,="H,suchthat2otl ~ 2 01l.

m

G t

’ ’ ’
G, G, G,
ﬁu ﬂzz uﬁ
x_, * *
= H=—="K

12 13

Forastep ¢ : G, | = G, we have to show that f o t1 and 11 can be extended to
switch-equivalent sequences. By induction hypothesis and definition of significant
critical pairs also ¢ and #2 can be extended by 13 : G}, =" K, 13 : H=" K, such
that 13 o t ~ 13 o 12. Now, the composition closure of switch equivalence implies
Bototl x30r20tl: G, :* K. This completes the induction proof.

Now, we use that G), and G are both termmal which 1mphes that 73 and 13 o 12

must be isomorphisms. This shows that G|, : G, and G|, :> G are switch-
equivalent up to isomorphism.
Direction “=":Assume now that TRpy has strong functional behaviour and that

TRgy has a signiﬁcant critical pair. We have to show a contradiction in this case.
T\ FN 2 FN

Let P, <: K ——= P, be the significant critical pair which can be embedded

tra N

into a parallel dependent pair G, # G’ —= G, such that there is G° € Ly

with Gy —r_——> G’ and G = (Att*(GS) « @ — @). Since TRpy is terminating we
have terminating sequences G| =~ Gy, and G, =" G, via TRpy. By composition
we have the following terminating TGT sequences:

1. Gy =% ¢ %, Gy =" Gy, and

tra N

2. G(/) :} G = G2=> G2m
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Since TRpy has strong functional behaviour both are switch-equivalent up to iso-

morphism. For simplicity assume Gy, = Gy, instead of Gy, = Gy, This implies
tr . . . tro, «
n = m and that G/ ——s G| =" Gy, is switch-equivalent to G’ % Gy =" Gy

T'1,FN

. . . . t
This means that 7r; gy occurs in G; =™ Gy, and can be shifted in ¢/ == G| =~

. Iy, %
G1,,, such that we obtain G’ ELIN Gr,=" Gy,

But this implies that in an intermediate step we can apply the parallel rule 7 gy +

tro rN, leading to parallel independence of G’ mé, G and G’ % G, which is

a contradiction. Hence, TRy has no significant critical pair.

It remains to show that strong functional behaviour implies that backtracking is
not required. This is a direct consequence of Theorem 8.29, since we do not have
any significant critical pair, and therefore all of them are strictly confluent. O

Remark 8.33 (Analysis with AGG via flattening). We use the tool AGG to analyse
critical pairs and dependencies of plain graph transformation rules. In order to anal-
yse the operational rules of a TGG, we therefore apply the flattening construction
(see Def. 7.49) and derive the plain graph transformation rules. By the equivalence
result for the flattening construction (see Theorem 7.55), we know that there is a
one-to-one correspondence between transformation sequences in each of the sys-
tems. Therefore, functional behaviour of one of the systems implies functional be-
haviour of the other. This means that the analysis in AGG based on the flattened
rules is sound and complete with respect to the system of triple rules. A

Example 8.34 (Functional and strong functional behaviour). We analyse functional
behaviour of the model transformation CD2RDBM. By Fact 8.21, CD2RDBM is ter-
minating, because all TGGrules are creating in the source component. For analysing
local confluence we use the tool AGG [AGG14] (version 2.07, see Rem. 8.33) for
the generation of critical pairs. The set of derived forward translation rules from the
rules TR in Fig. 3.8 is given by TRpy = { Class2Tablepr, Subclass2Tablegr,
Attr2Columngy, PrimaryAttr2Columngr, Association2Tablegr }. We per-
form the following steps.

1. We obtain the initial table of critical pairs as shown in Fig. 8.5. In order to prevent
a memory overflow, we set a limit for the the maximum number of generated
critical pairs per rule pair and conflict kind to 200. This limit becomes effective
for the pair (5,5), which shows that there are 200 or more critical pairs for this
rule pair. In the next steps, we apply reduction techniques and do not reach this
limit anymore.

2. Now, we use the concept of filter constraints to filer out nonsignificant critical
pairs by setting the multiplicity (maximum values only) constraints depicted in
Fig. 11.9. We can do this, because the multiplicity constraints are ensured by the
triple rules as well as by the source rules, the forward rules and the forward trans-
lation rules. Formally, the multiplicity constraints correspond to filter constraints,
which contain unreachable patterns that violate the maximum multiplicity con-
straints. As a result of this step, we obtain the table in Fig. 8.6.
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(&7 Minimal Conflicts

Show

first | second 1 2 3 4 5

1 Class2Table_FT 1 1 o 0 0
2 Subclass2Table_FT 1 21 ] 0 0
3 Attribute2Column_FT 0 0 21 0 0
4 PAttribute2PKColumn_FT| 0 0 ] 30 0
"5 Association2Table_FT 0 0 200

(§07) Minimal Confiict
Show

first | second 1 2 3 4 5 |

1 Class2Table_FT 1 1 (1] o 1]

2 Subclass2Table FT 1 1 [1] o 0

3 Attribute2Column_FT 0 0 1 o /]
PAttribute2PKColumn_FT| 0 0 0 3 0

5 Association2Table_FT 0 0 1] o 1

Fig. 8.6 Table of critical pairs after setting the multiplicity constraints

&7 minimal Contiicts

Show

first\ second

1 Class2Table_FT

2 Subclass2Table_FT

3 Attribute2Column_FT

PAttribute2PKColumn_FT|

5 Association2Table FT

Fig. 8.7 Table of critical pairs without pairs of identical rules and matches
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P,

Subclass2Tablegr ;

S3:Class S1:Class | —— -
tr=F tr=T
name=n S2:parent
tr_name=F ——
tr=F

_@__

S1:Class g — —
tr=T

A
S2:parent

tr=T
S3:Class

tr=T
name=n

tr_name=T

__@___
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: Class2Tablerr

S1:Class

tr=T

S2;parent
_'_h
»‘EI=F- )

[

_@_.

S3:Class

tr=T

name=n

tr_name=T

->{:Table]

Fig. 8.8 Ceritical pair for the rules Subclass2Tablepr and Class2Tablepr

(&0 Minimal Conficts :

Show

first\ second 1

1 Class2Table_FT

2 Subclass2Table_FT

3 Attribute2Column_FT

PAttribute2PKColumn_FT]|

5 Association2Table_FT

o o oo | o

o o | oo | o

o o oo | o

o |lnm o o o

o o oo | o

Fig. 8.9 Table of critical pairs—after inserting the filter NAC for rule 2

(§07) minimal Conflicts |

Show

first\ second 1

1 Class2Table_FT

2 Subclass2Table_FT

3 Attribute2Column_FT

PAitribute2PKColumn_FT|

5 Association2Table_FT

o o oo | o

o oo |o | o

o o oo | o

o oo |o | o

o o oo | o

Fig. 8.10 Table of critical pairs after inserting the filter constraints
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3. Some of the critical pairs are pairs with identical rules and matches (diagonal
line). These pairs are directly strictly confluent, because P; = P,. We activate the
corresponding AGG CPA option to omit the pairs of identical rules and matches
and derive the table in Fig. 8.7.

4. The critical pair of the rule pair (SubClass2Tablegr, Class2Tablegy) is shown
in Fig. 8.8. This critical pair describes the conflict that the rule Class2Tablegr
is about to translate a Class node that has a parent node. This conflict can
by solved by the filter NAC discussed in Ex. 8.17 and shown in Fig. 8.2. We
exchange the forward translation rule Class2Tablep; with the extended rule
with filter NACs Class2Tablegy from Fig. 8.2, which we would also obtain by
the automated generation according to Fact 8.18. This leads to the table shown
in Fig. 8.9.

5. The remaining two critical pairs contain unreachable patterns in the overlapping
graphs. They specify conflicts of the rule PrimaryAttr2Column with itself. The
corresponding overlapping graphs K of the critical pairs contain two primary
attribute nodes, which belong in one case to one Class and in the other case
to two Classes that are connected to the same Table. The two unreachable
patterns in Fig. 8.3 can be embedded into the overlapping graphs. All of the
overlapping graphs of the two critical pairs are unreachable. We use the two filter
constraints in Fig. 8.4 based on the two unreachable patterns observed in the
previous step to filter out the nonsignificant critical pairs. The resulting table of
critical pairs is shown in Fig. 8.10 and no longer contains any critical pair.

Thus, we can apply Theorem 8.32 and derive that the model transformation
based on the forward translation rules with filter NACs TRgy has strong functional
behaviour and does not require backtracking. Furthermore, by Theorem 8.29 we
can conclude that the model transformation based on the forward translation rules
TR without filter NACs has functional behaviour. As an example, Fig. 7.18 shows
the resulting triple graph of a model transformation starting with the class diagram
GS. A

8.2.2 Information Preservation

Model transformations are information preserving if for any forward transformation
sequence there is a corresponding backward transformation sequence yielding the
initial source model. If a model transformation is not complete, this directly implies
that it is not information preserving. This has a practical impact. In fact, several TGG
tools do not support backtracking, such that they cannot ensure completeness. This
implies that the execution of backward transformations may stop without creating a
valid source model for some target models [GHL10, SK08, KLLKS10]. This section
provides results for analysing and ensuring information preservation for TGG model
transformations according to Chap. 7 in general. In addition to that, we provide
results for the stricter notion of complete information preservation. These results
hold even if tools do not perform backtracking.
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In this section, we analyse whether and how a source model can be reconstructed
from the computed target model as presented in [HEGO14, EEE*07, Her11]. For
this purpose, we distinguish between forward and backward model transformations.
Interestingly, it turns out that complete information preservation is ensured by func-
tional behaviour of the backward model transformation. We present the techniques
for model transformations based on forward rules. According to the equivalence
result in Fact 7.36, we also know that these techniques provide the same results
for model transformations based on forward translation rules. Moreover, due to the
symmetric definition of TGGs, the results can be applied dually for backward model
transformations.

Definition 8.35 (Information preserving model transformation). A forward
model transformation based on forward rules is information preserving, if for each

tr;
forward model transformation sequence (G°, Gy = G,,G") there is a backward

ry
model transformation sequence (GT,GE) LN G,’n,G’S) with G5 = G5, ie., the
source model G5 can be reconstructed from the resulting target model G” via a
target consistent backward transformation sequence. A

By Theorem 8.36 we show that model transformations based on forward rules
are information preserving as presented in [EEE*07, HEGO14].

Theorem 8.36 (Information preserving model transformation). Each forward
model transformation based on forward rules is information preserving. A

Proof. Given a set of triple rules TR with derived forward rules TR and backward
rules TRp. By Theorem 7.21 and Rem. 7.22 applied to the source consistent forward

*

try
sequence Gy — G, via TR we derive the target consistent backward transforma-
try,
tion G|, = (G « @ - @) = G, via TR with Gﬁ = G®. This means that we have

a backward model transformation sequence (G7, G, ”:B> G,, G'S ) with G5 = G'S.
O

Example 8.37 (Information preserving model transformation CD2RDBM). The
model transformation CD2RDBM is information preserving, because it consists of
model transformation sequences based on forward rules, which ensure source con-
sistency of the forward sequences by definition. Therefore, the presented source
model G3 of the triple graph in Fig. 7.18 can be reconstructed by a target consistent
backward transformation sequence starting at the model G, = (@ « @ — G").
But there are several possible target consistent backward transformation sequences
starting at G,,. The reason is that the rule Subclass2Tablep can be applied arbitrar-
ily often without having an influence concerning the target consistency, because the
rule is identical on the target component. This means that the inheritance informa-
tion within a class diagram has no explicit counterpart within a relational database
model.
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Fig. 8.11 Two possible target consistent backward transformations

There are many possible target consistent backward transformation sequences
for the same derived target model G’ where two of them are presented in Fig. 8.11.
The source model G° can be transformed into G = (G5 « G¢ — GT). But starting
with G”, both depicted backward transformation sequences are possible and target
consistent. The resulting source graphs G5 and G’5, however, differ with respect to
the class node S7 and the edge S 6 in G5. Hence, some information of G5 cannot be
reconstructed uniquely and therefore, is partially lost in the target model G7. A

According to Theorem 8.36 each model transformation based on forward rules
is information preserving. But the reconstruction of a corresponding source model
from a derived target model is in general not unique. In order to ensure uniqueness of
the reconstruction we now present the notion of complete information preservation.
This stronger notion ensures that all information contained in a source model of a
source domain-specific language (DSL) can be reconstructed from the derived target
model itself. More precisely, starting with the target model, each backward model
transformation sequence will produce the original source model. This ensures that
only one backward model transformation sequence has to be constructed. Intuitively,
this means that the model transformation is invertible.

Definition 8.38 (Complete information preservation). A forward model transfor-
mation with source DSL Lg is completely information preserving if it is information
preserving, and furthermore, given a source model G5 € L and the resulting tar-
get model G” of a forward model transformation sequence, each partial backward
transformation sequence starting with G’ terminates and produces the given source
model G5 as result. A

We can verify complete information preservation by showing functional be-
haviour of the corresponding backward model transformation with respect to the de-
rived target models L. € MT(Ls) € L(TGG)r as presented in [Her11, HEGO14].
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Theorem 8.39 (Completely information preserving model transformation).

Given a forward model transformation MT, it is completely information preserv-
ing if the corresponding backward model transformation according to Rem. 7.22
has functional behaviour with respect to the target language L't = MT(Ls). A

Proof. By Theorem 8.36 we know that MT is information preserving. For a model

transformation sequence (G5, Gy LN G,,G"), we additionally know that GT ¢
L(TGG)r by Theorem 8.4, and furthermore, that GT € L'y = MT(Ls). Using
the functional behaviour of the corresponding backward model transformation ac-
cording to Def. 8.11 for the language £’ we know that for each model H' the

backward model transformation yields a unique HS € L(TGG)s. Therefore, each
backward model transformation sequence (G, G}, ,—r_B—> G’,,G") leads to a unique

G5 € L(TGG)g. Furthermore, there is a backward model transformation sequence

(G",G"y 225 G”,,,G5) by Theorem 8.36, implying G5 = G’5, i.c., the model trans-
formation is completely information preserving. O

Example 8.40 (Complete information preservation). The model transformation
MT; = CD2RDBM is not completely information preserving. Consider, e.g., the
source model G° in Fig. 8.11 of Ex. 8.37, where two backward model transforma-
tion sequences are possible starting with the same derived target model G”. This
means that the backward model transformation has no functional behaviour with
respect to MT(Ls) = MT(L(TGG)s) = L(TGG)y = Lr.

However, we can also consider the inverse model transformation, i.e., swap-
ping the forward and backward direction, leading to the model transformation
MT, = RDBM2CD from relational database models to class diagrams. In this case,
the model transformation is completely information preserving, meaning that each
relational database model Mpp can be transformed into a class diagram M¢p, and
each database model Mpp can be completely and uniquely reconstructed from its de-
rived class diagram M¢p. In other words, each class diagram resulting from a model
transformation sequence of RDBM2CD contains all information that was present in
the given database model. According to Ex. 8.34 we know that the model transfor-
mation CD2RDBM has functional behaviour, and hence the backward model trans-
formation of RDBM2CD has functional behaviour with respect to L(TGG)r being
equal to the source language L(TGG)s of CD2RDBM. For this reason, we can ap-
ply Theorem 8.39, and have that RDBM2CD is completely information preserving.
In particular, foreign keys are completely represented by associations, and primary
keys by primary attributes. There is no structure within the database model which is
not explicitly represented within the class diagram. A

8.3 Reduction of Nondeterminism

Transformation systems in general cannot ensure deterministic behaviour. Nonde-
terminism is caused by the choice of the transformation rule and its match at each
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Fig. 8.12 Additional TGG rule for showing the effect of conservative policies

step during a transformation. The general concept for reducing nondeterminism is to
analyse functional behaviour based on critical pairs as presented in Sect. 8.2 before
and refine the rule set using filter NACs. This section presents two further practi-
cal concepts for reducing nondeterminism while ensuring completeness. The first
one is using policies for transformation rules and the second one is restricting the
operational rules to an effective subset called kernel translation rules.

Example 8.41 (Additional rule with nondeterminism). Consider the triple rule (6)
Association2ForeignKey in Fig. 8.12, which we can use as an additional rule for
the TGG CD2RDBM to handle 1 — n associations in the class diagram via foreign
keys in the source table in the database model. The rule contains an attribute compu-
tation in the target component: the value of name is derived by combining the name
of the association an and the name of the primary key of the destination Column. We
now consider the corresponding backward rule (6B) Association2ForeignKeys.
In order to apply the rule, the matching process of a transformation engine has to
find assignments for all variables, i.e., for an and cn. The match for the nodes on
the left hand side of the rule (black part without ++) provides enough information
to assign the variable cn, but for the variable an we need to find a value solving
the constraint that (an+ "_"+cn) is equal to the name of node T4. In general, there
can be several solutions if the character "_" occurs several times in the string ex-
pression. An efficient approach would be to assign an to the substring from the
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beginning until the first occurrence of "_". But this would neglect further potential
choices. However, this is enough if we are only interested in obtaining one solu-
tion, as long as the backward transformation for the possible target models can be
completed. A

In order to reduce nondeterminism for attribute assignments, we present the con-
cept of policies. The main idea of a policy for an operational rule is to restrict the
matches using additional attribute conditions in order to eliminate ambiguous re-
sults. Attribute conditions are given by equations over attribute values, i.e., they
require that some expressions be evaluated equally. In our case study, we use one
attribute condition (see Ex. 8.44).

A policy can be arbitrarily restrictive in general. However, if a policy is too re-
strictive, the model transformation may no longer be complete. Thus, we need to
ensure that the model transformation can still be executed successfully for all valid
inputs. For this reason, we introduce the notion of a conservative policy. In the case
of forward transformations, a policy for the set of forward translation rules is con-
servative if all valid source models can be translated. This ensures that the model
transformation is still complete.

Definition 8.42 (Policy for operational translation rules). An attribute condition
attCon for a (triple) rule tr : L — R is a set of equations for attribute values.
A match m : L — G satisfies attCon—written m | attCon—if the evaluation
of attribute values satisfies each equation. Given a TGG, let TRyr be the derived
set of forward translation rules. A policy pol : TRrr — TR} for restricting the
applications of the rules in 7Rp7 maps each rule trpy € TRpy to an extended rule
tryr € TRy, where tri.. is given by trgr extended by a set of additional attribute
conditions A#tC,,(trpr). The policy pol is called conservative if the derived model
transformation relation MT 7., , € L(TGG)s X L(TGG)r based on TRy is left total
and is contained in the model transformation relation MTpr g derived from TRpr,
i.e., MT:VT,R c MTFT,R-

A policy for backward translation rules TRpr is defined analogously by replac-
ing FT with BT and it is conservative if the derived model transformation relation
MTy; p € L(TGG)r x L(TGG)s is left total and contained in MT pr . A

In order to automatically check that a policy is conservative we provide a suffi-
cient condition by Fact 8.43 below based on the analysis of dependencies between
rules [EEPTO6]. Intuitively, two transformation steps Gy % G % G, are
sequentially independent if (1) there is no use—delete dependency (the first step uses
(creates or reads) an element (node, edge, or attribute) that is deleted by p, in the
second step) and (2) there is no forbid—produce dependency. A produce—forbid de-
pendency occurs if the first step forbids a pattern by a negative application condition
of p; and the second step produces some elements of it, such that applying the sec-
ond step first will disable the execution of the first step thereafter.

A policy restricts the applicability of rules. The main challenge is to ensure that
the restrictions are not too strict. In more detail, for each valid input model of an
operational transformation sequence we have to ensure that there is an equivalent
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transformation sequence respecting all restrictions of the policy. The key idea is
to check for each restriction of a rule p whether there are rules that could depend
on the execution of p. If we can show that there is no dependency on all possible
subsequent steps in an operational transformation sequence, we can conclude that
all steps via p can be shifted to the end of the sequence. This allows us to focus on p
itself. As stated by Fact 8.43 below, it is then sufficient to show that for each match
of p there is an equivalent match satisfying the conservative policy.

Fact 8.43 (Conservative policy). Let pol : TRpr — TR} be a policy, such that for
each rule tri.. = pol(trer) in TR with tr : L — R the following conditions hold.

1. Given a match m : L — G for trgr, there is also a match m’ : L — G for tri,
satisfying AttCpo(trer).

2. If AttCpo/(trpr) # O, then for each rule try € TRpr with trer # try the pair
(trpr, try) is sequentially independent.

Then, the policy pol is conservative (cf. Def. 8.42). A similar fact holds for a policy
pol : TRgr — TR}, concerning backward translation rules. A

Proof (ldea). According to Def. 8.42, the policy pol is conservative if the derived
model transformation relation MT  is left total. The model transformation rela-
tion MTg based on TRpr is left total due to the completeness result for TGG model
transformations based on forward translation rules (cf. Theorem 8.4). Thus, given a
source model G5 € L(TGG)s, there is a complete forward translation sequence sgr
via TRpr. We have to show that there is also a complete forward translation sequence
Spr via TRy First of all, MT ., € MTrr g, because the additional attribute con-
ditions only restrict the possible transformation sequences and no additional ones
are possible. Item (1) in Fact 8.43 ensures that for each step s; pr in spr via TRpr,
there is a step s; ;- via TR}, but this step may differ on the resulting triple graph.
However, item (2) ensures that there is no subsequent step in spr via a different rule
that is sequentially dependent on neither s; pr nor s; ... Therefore, we can iteratively
exchange the original steps with corresponding ones via TR}, shift them to the end
of the the sequence, and continue with the next step that is not via TR}, Finally, we
derive a complete forward translation sequence s, via TR},,.. For the full proof see
Fact 7 in [HEO* 11b]. O

Example 8.44 (Nonconservative policy). Fig. 8.13 shows the backward translation
rule (6BT) and its extension (6BT”) with a policy. The policy is an attribute condi-
tion concerning the variable an. It ensures that the match for the nodes will fully
determine the values for all variables. For each match of rule (6BT), there is a match
for rule 6BT’, because the condition requires that an be equal to a term. This term
uses string functions substr and pos, which have to be left total relations in or-
der to be algebra operations. Therefore, the policy satisfies the first condition of
Def. 8.42. However, it does not satisfy the second condition. Since the rule translates
nodes of type Column, there are possible dependencies on rules that use a node of
type Column as context node. This is the case for the rule Association2Tablegy.
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Therefore, the policy is not conservative if we consider all rules of CD2RDBM. If
we would drop the rule Association2Tablegy, then the policy would be conserva-
tive, because the second condition of Def. 8.42 would be satisfied in that case. Note
that we will use a conservative policy explicitly for optimising a TGG for model
synchronisation in Ex. 9.21 in Chap. 9. A

In order to ensure termination of the sets of operational rules using Fact 8.13, we
restrict the sets to those that modify at least one translation attribute. For this pur-
pose, we distinguish between several subsets of the triple rules of a TGG depending
on their effects concerning the creation of elements in the triple components.

Definition 8.45 (Creating and identic triple rules). Let 7R be a set of triple rules.
We distinguish between the following subsets:

the set of creating rules TR* = {tr € TR | tr # id},

the set of source creating rules TR™ = {tr € TR | tr5 # id},

the set of source identic rules TR = {tr € TR | t° = id),

the set of target creating rules TR™ = {tr € TR | trT # id},

the set of rarget identic rules TR = {tr e TR | tr" = id}, and

the set of identic rules TR' = {tr € TR | tr = id). A

Based on the different kinds of creating rules, we derive the effective operational
rules that ensure termination. We call these rules kernel translation rules. In the
case of forward translation rules, the kernel forward translation rules TR} € TRpr
are those forward translation rules that are derived from the source creating triple
rules TR™ C TR of the triple rules TR. The remaining forward translation rules
TR}F“T = TRrr \ T ;} are those derived from the source identic triple rules TR'S.
Vice versa, the kernel backward translation rules TR}, C TRpr are the backward
translation rules that are derived from the target creating triple rules TR*' C TR, and
TR};T are the remaining backward translation rules derived from the target identic
triple rules. Finally, the kernel consistency creating triple rules TR~ C TRcc are
those consistency creating rules that are derived from the creating triple rules TR* =
{(tr: L—> R)€ TR | L # R}.

Definition 8.46 (Kernel translation rules). Let 7R be a set of triple rules. We
distinguish between the following sets of rules:

o the set of kernel consistency creating rules TR = {trcc € TRcc | tr € TR™},

o the set of kernel forward translation rules TRy, = {trpr € TRpr | tr € TR}, and

o the set of kernel backward translation rules TR} = {trgr € TRpr | tr € TR*'}.
A

The notion of kernel translation rules automatically ensures termination accord-
ing to Lem. 8.47 below. We generally assume that the input models are finite on the
structure part, i.e., the carrier sets of the data values can be infinite, but the graph
nodes and all sets of edges are finite.
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Lemma 8.47 (Termination of rules with conservative policies). Letr TGG =
(TG, @,TR) be a triple graph grammar. Let further TR, TR}, and TR} be the
derived sets of operational translation rules for consistency creating, forward trans-

lation, and backward translation, respectively, according to Def. 7.44 and possibly

extended by some policies. Then, the transformation systems TR, TR}y, and TR}
are terminating for any input triple graph that is finite on the graph part. A

Proof. This is a direct consequence of Fact 8.13, because each rule of the sets

TR, TR}, and TR}, changes at least one translation attribute. ]

The restriction of the set of operational rules to those that change the marking
can cause the model transformation not to be complete anymore. Thus, it cannot
be ensured anymore that for an arbitrary valid input model there is a valid oper-
ational transformation sequence via forward or backward translation rules, respec-
tively. However, we can use the same idea as for conservative policies and check that
the remaining rules do not depend on the omitted ones (TRIF‘} and TR}E’T), as stated
by Rem. 8.48 below. The main idea is the following. If we can show that none of
the remaining triple rules depends on the source identic triple rules, we can actually
omit the source identic ones. The reason is that for each forward transformation se-
quence, we can shift the steps along source identic rules to the end and obtain an
equivalent sequence. Since all steps along source identic triple rules do not change
the marking of the source model, we further derive that these steps can be removed,
yielding still a complete forward translation sequence. This ensures that the rules
that do not change any translation attribute can be omitted while still all valid input
models can be processed successfully.

Remark 8.48 (Shifting of independent steps). Consider two sets P; and P, of rules
such that each pair (py, p2) € Py X P, is sequentially independent. Then, there is a

transformation sequence (G S H ) via (P U P,) if and only if there are transforma-

tion sequences s; = (G ; G1) via P, and s, = (G4 é H) via P, with the same
G . This result is shown by Fact 3 in App. A.2 in [HEO*11b]. A

Based on the result on shifting independent steps, we introduce the notion of
kernel-grounded operational translation rules and show thereafter that this property
allows us to restrict the sets of rules appropriately, such that termination and com-
pleteness are ensured.

Definition 8.49 (Kernel-grounded and deterministic sets of operational trans-
lation rules). Let TGG = (TG, 2,TR) be a triple graph grammar from which
we obtain the operational translation rules TR¢¢, TRrr, and TRpr. They are called
kernel-grounded if the pairs (TR}FST, TR73) and (TR};T, TR})) are sequentially inde-
pendent. This means that there is no pair (p;, p») of sequentially dependent rules
with either (p1, py) € (TR;YT X TR}3) or (p1, p2) € (TRII’;T X TRy7).

The sets of operational translation rules TR¢cc, TRrr, and TRy (possibly ex-
tended by conservative policies) are called deterministic if they have functional be-
haviour and do not require backtracking. A
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Example 8.50 ((Non-)kernel-grounded operational rules and determinism). The op-
erational rules of the TGG CD2RDBM are not kernel-grounded, because some back-
ward translation rules depend on the target-identic backward translation rule (2BT)
SubClass2Tablegr. For instance, rule (3BT) Attr2Columngr depends on it: (2BT)
SubClass2Tablepgs creates a C2T node and (3BT) Attr2Columngy uses a C2T node
as context node. If we consider a very restricted TGG CD2RDBM,, which uses the
rule set TR = { Class2Table, Attr2Column }, then we obtain sets of operational
translation rules that are kernel grounded and deterministic. By Fact 9.24 in Chap. 9,
we show that the operational rules for the TGG of our case study on model synchro-
nisation are indeed kernel-grounded and deterministic as well. A

The tool AGG [AGG14] supports the automated analysis of dependencies be-
tween rules. We apply this analysis engine to check whether a policy is conservative
and that the reduced sets of operational rules are sufficient to ensure completeness
of the propagation operations.

Remark 8.51 (Analysis of operational rules). In order to check that the sets of op-
erational translation rules are kernel-grounded and deterministic, we describe how
the preconditions of Def. 8.49 are checked using the tool AGG. The condition that
they have functional behaviour and do not require backtracking can be checked via
Theorem 8.29.

£, TR} and (TR}, TR,): we can use
the tool AGG for the analysis of rule dependencies based on the generation of
critical pairs according to Fact 2 in [HEO*11b].

2. Applied policies are conservative: According to Fact 8.43, this requires that the
additional application conditions according to the policy restrict the evaluation
of attribute values only, i.e., the assignment of variables. We have to show that
the existence of matches is preserved for each rule and that other rules are not
sequentially dependent. For the latter, we can again use the tool AGG and validate
that the corresponding table entries show the value 0. The preservation of the
existence of matches can be ensured by checking that the affected variables are
free in the unmodified rule (trgr or trgr ), i.e., they are not part of a term that is
connected to a node in the LHS (Lgr or Lgr). A

1. Sequential independence of the pairs (TR

Moreover, we can apply the presented results for showing that the derived model
transformation relations are left total. In particular, left totality of the relations is
required in Chap. 9 for ensuring completeness of model synchronisations via TGGs.

Remark 8.52 (Left totality). If the sets of operational translation rules of a TGG are
kernel-grounded, we can conclude that the forward model transformation relations
MTrpg: L(TGS) = L(TG") based on T. 7 and the backward model transformation
relation MTpg: L(TGT) = L(TG®) based on TRE} specify left total relations as
shown by Fact 5 in [HEO*11b]. This means that the model transformations can be
performed on reduced sets of operational translation rules. Source identic triple rules
TR}, are not used for forward translations and target identic triple rules TR} are not
used for backward translations. According to Def. 8.42, we can specify conservative
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policies in order to reduce the number of possible transformation sequences and
derive left total model transformation relations M7 , and MT},; . that use these
policies. A



Chapter 9
Model Synchronisation

Bidirectional model transformations are a key concept for model generation
and synchronisation within model-driven engineering (MDE, see [Ste10, QVTI1S5,
CFH*09]). Triple graph grammars (TGGs) have been successfully applied in sev-
eral case studies for bidirectional model transformation, model integration and
synchronisation [KW07, SKO08, GW09, GHO09], and in the implementation of
QVT [GKI10]. This chapter provides a TGG framework for model synchronisa-
tion that ensures correctness and completeness based on the theory of TGGs. It
is inspired by work on incremental synchronisation by Giese et al. [GW09, GHO09],
and the model synchronisation framework by Diskin [Dis11]. The chapter is based
on [HEO" 11a, HEEO12, HEO*13]. The main ideas and results are the following:

1. Models are synchronised by propagating changes from a source model to a cor-
responding target model using forward and backward propagation operations.
The operations are specified by a TGG model framework, inspired by symmetric
replica synchronisers [Dis11] and realised by model transformations based on
TGGs [EEHP09] (see Chap. 7). The specified TGG also defines consistency of
source and target models.

2. Since TGGs define, in general, nondeterministic model transformations, the de-
rived synchronisation operations are, in general, nondeterministic. But we are
able to provide sufficient static conditions based on TGGs to ensure that the op-
erations are deterministic.

3. The first main result shows that a TGG synchronisation framework with deter-
ministic synchronisation operations is correct, i.e., consistency preserving, and
complete (see Theorems 9.25 and 9.29). We also give sufficient static conditions
for invertibility and weak invertibility of the framework, where “weak’ restricts
invertibility to a subclass of inputs.

4. The second main result shows that a TGG synchronisation framework for concur-
rent model synchronisation based on deterministic propagation operations is cor-
rect and complete (see Theorem 9.41). Concurrent model synchronisation means
that updates may occur on both domains simultaneously, which requires addi-
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Fig. 9.1 Forward propagation

tional conflict resolution and may cause nondeterminism due to user interaction
during conflict resolution.

Deriving a synchronisation framework from a TGG has the following practical
benefits. Consistency of the related domains is defined declaratively and in a pattern-
based style, using the rules of a TGG. Consistency of source and target models is
always ensured after executing the synchronisation operations (correctness) and the
synchronisation can be performed for all valid inputs (completeness). The required
static conditions for deterministic behaviour and the additional conditions for invert-
ibility can be checked automatically using the tool support of AGG [AGG14]. The
extension of this approach to the general case of nondeterministic synchronisation
operations based on nondeterministic TGGs is described in [GHN"13].

Remark 9.1 (General assumption). As in Chap. 8, the formal results in this chap-
ter are presented for TGGs that ensure the composition and decomposition property
for forward sequences (Def. 7.20) and for integration sequences (Def. 7.39). Chap. 7
presents sufficient conditions for these properties by Theorems 7.21 and 7.40. These
conditions mainly require that the application conditions be compatible applica-
tion condition schemata with almost injective morphisms and the execution be per-
formed via almost injective matches. Moreover, the formal results in this chapter are
presented for triple graph grammars with negative application conditions (NACs).
An extension to general nested application conditions is future work. Several case
studies show that NACs are usually sufficient to restrict the applicability of triple
rules in the context of model synchronisation. A

Throughout this chapter, we use a simple running example, which is adapted
from [DXC11a, HEO*13]. The example considers the synchronisation of two or-
ganisational diagrams as shown in Fig. 9.1. Diagrams in the first domain—depicted
left—provide a view on employees of the marketing department of a company, while
diagrams in the second domain—depicted right—show all employees. Furthermore,
both domains differ on the type of information they specify. Diagrams on the left
show the base and bonus salary values of each person, while diagrams in the second
domain show only the total salary for each person, but additionally, they provide the
birth dates (marked by “*””). Therefore, both domains contain exclusive information
and none of them can be interpreted as a view—defined by a query—of the other.
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Both diagrams together with some correspondence structure build up an inte-
grated model, where we refer to the first diagram as the source model and to the
second diagram as the target model. An integrated model is called consistent if:

e corresponding persons coincide on names,
salary values are equal to the sums of corresponding base and bonus values, and
e persons in the source domain are exactly those who are marked with M in the
target domain.

Example 9.2 (Update propagation). The first row of Fig. 9.1 shows a consistent in-
tegrated model M in a visual notation. The source model of M consists of two per-
sons belonging to the marketing department (depicted as persons with label M and
without pencils) and the target model additionally contains the person Alex Archer
belonging to the technical department (depicted as a person with label T and with
pencil). The first column shows an update of the source model, where the person
Paul Page is removed and some attribute values of the person Lily Lee are modi-
fied. This change is propagated to the target domain, leading to a target update (right
column) and a new integrated model (bottom row). A

The synchronisation problem is to propagate a model update in such a way that
the resulting integrated model is consistent. Looking at Fig. 9.1, this requires that the
source model update of removing the person Paul Page and changing the attributes
LastName and Bonus of the person Lily Lee is propagated in an appropriate way to
the target domain. In this example, this means that the executed forward propagation
(fPpg) shall remove the person Paul Page and update the attribute values of Lily
Lee in the target model, such that the unchanged birth date value and consistency is
preserved.

Remark 9.3 (Choice of the example). This chapter uses a rather simple example for
model synchronisation to keep the figures and constructions compact. It is suffi-
cient to illustrate the relevant aspects and can serve as a reference to design more
complex ones. In fact, it is closely related to the even simpler benchmark example
for bidirectional model transformation and synchronisation presented in [ACG* 14].
Note that the example CD2RDBM used throughout Chapters 7 and 8 does not en-
sure all conditions for our general results in this chapter concerning correctness and
completeness and we discuss the corresponding problems of them in Rem. 9.27. A

Synchronisation scenarios like the one in our example are present in many do-
mains. Consider for example synchronisations between different kinds of visual
models for software development, models for software analysis, and even source
code. Synchronisations between these domains often need to provide mechanisms
that do not require that one model be completely obtainable from the other. In other
words, none of the models is just a view of the other. In this chapter, we show how
this flexibility in the synchronisation process is possible based on the formal no-
tion of TGGs. Stepwise, we develop the required formal techniques and illustrate
them on the running example in Fig. 9.1, whose intermediate steps are presented in
Fig. 9.16 of Sect. 9.2.
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Sect. 9.1 presents the general concept for change propagation and Sect. 9.2 intro-
duces the model synchronisation framework based on TGGs for the basic case, i.e.,
where updates are propagated from one side to the other. Sect. 9.2.3 shows that the
derived synchronisation framework is correct and complete under sufficient static
conditions. Moreover, it provides sufficient conditions that ensure compatibility of
the propagation operations, namely invertibility. Sect. 9.3 extends the framework to
the concurrent case, where updates may occur on both domains simultanously. The
propagation of both updates additionally requires us to resolve occurring conflicts
with optional user input.

9.1 General Concept for Change Propagation

This section describes the basic framework for model synchronisation, where triple
graphs describe pairs of interrelated models and triple graph grammars (TGGs) are
used as a tool to specify classes of consistent interrelated models (see Chap. 7). The
framework is a simplified version of symmetric delta lenses proposed by Diskin et
al. [Dis11]. Based on the notion of a TGG model framework, we define synchroni-
sation problems and the propagation operations which are used to solve them. We
present and discuss explicit properties concerning correctness, completeness and
invertibility.

In general, model synchronisation aims to achieve consistency among interre-
lated models. We consider a model as a kind of graph. Moreover, we assume that
a pair of interrelated models (MS, M), called source and target models, are repre-
sented by a triple graph G = (G5 « G — GT), which we also call an integrated
model. The source graph G° represents M5 and the target graph G” represents M’ .
The two graph morphisms s : G¢ — G5 and t : G — G7 specify a correspon-
dence r : G5 < G, which relates the elements of G5 with their corresponding
elements of G and vice versa. For simplicity, we use double arrows (<) as an
equivalent shorter notation for triple graphs whenever the explicit correspondence
graph can be omitted.

Example 9.4 (Type graph). The triple type graph TG of our example is shown in
Fig. 9.2. It specifies that models of the source domain contain persons, including
their detailed salary information (bonus and base salary) and their names. Models of
the target domain additionally contain the department to which a person is assigned,
his or her birth date, and a single value for his or her complete salary, while the
details about bonus and base salary are not provided. A

Example 9.5 (Triple rules). The triple rules of the TGG are depicted in a compact
notation in Fig. 9.3. Left and right hand sides of a rule are depicted in one triple
graph, where the elements to be created have the label “++”. They exist in the right-
hand side of the triple rule only. The first rule (Person2FirstMarketingP) inserts a
new department with name Marketing and the NAC ensures that none of the exist-
ing departments is named equally. The rule creates a person of the new department
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Fig. 9.2 Triple type graph TG

in the target model as well as a corresponding person in the source model. Note
that the left hand side of this rule is empty, i.e., it does not require existing struc-
tures. The rule Person2NextMarketingP is used to extend both models with further
persons in the marketing department. The left hand side of this rule contains the de-
partment node with name Marketing. Note that the attributes of the created persons
are not set with these rules. This is possible in our formal framework of attributed
graph transformation based on the notion of E-graphs (see Chap. 2, [EEPT06]). The
main advantage is that we can propagate changes of attribute values without the
need for deleting and recreating the owning structural nodes. This is important from
the efficiency and application point of view. Thus, rules 3-6 concern the creation
of attribute values only. Rules 3 (FName2FName) and 4 (LName2LName) cre-
ate new corresponding values for first and last names, respectively. The next rule
(Empty2Birth) assigns the birth date of a person in the target component and does
not change the source component. Finally, rule 6 (DetailedSalary2Salary) assigns
the detailed salary values (bonus and base) in the source component and the sum
of them in the target component. Rule 7 (Empty20therDepartment) creates a new
department that is not named Marketing, but does not change the source model. The
negative application condition (NAC) ensures that the used attribute value is differ-
ent from Marketing. The last rule Empty20therP of the TGG creates a new person
of a department that is different from the marketing department. Therefore, there
are no correspondences to the source model and the rule directly creates the person,
including all attribute values. A

A TGG model framework specifies the possible correspondences between models
and updates of models for a given TGG according to Def. 9.6 below. More precisely,
a model framework is defined as consisting of the classes of well-typed source and
target models, the class of correspondences between source and target models (i.e.,
the class of well-typed triple graphs), the subset of consistent correspondences (i.e.,
the class of triple graphs defined by the given TGG) and the classes of source and
target updates. In particular, a model update 6 : G — G’ is specified as a graph
modification consisting of two inclusions, d : G «= [ < G’. This notion is inspired
by the derived spans of graph transformation sequences (see Def. 5.31). The intu-
ition of a graph modification is that the inclusion / < G specifies the elements that
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are deleted from G (all the elements that are not in /) and I < G’ specifies all the
elements that are added by ¢ (all the elements in G’ that are not in /). Therefore,
the elements in / are the elements that remain invariant after the modification. In-
tuitively, one can also interprete a graph modification as a DPO rule that describes
the complete update as one step and contains the complete graphs and not just some
parts of them. Finally, it may be noted that graph modifications look like triple
graphs; however, their role is different: triple graphs are used to make explicit the
interrelations between two integrated models, while graph modifications are used to
describe updates on a given model.

Given a TGG with type graph TG = (TG® « TGS — TG"), we refer by L(TGG)
to the language of consistent integrated models, and by L(TG®), L(TG") to the
languages of source and target models typed over TG® and TG”, respectively.

Definition 9.6 (TGG model framework). Let TGG = (TG, 2,TR) be a triple
graph grammar with empty start graph @ and triple type graph 7G containing source
and target components TG® and TG?, and a set TR of triple rules. The derived TGG
model framework MF(TGG) = (L(TG®), L(TGT), R, C, Ag, A7) consists of source
domain £(TG%), target domain L(TGT), the set R of correspondence relations given
by R = L(TG), the set C of consistent correspondence relations C C R given by
C = L(TGG), (i.e., R contains all integrated models and C all consistent integrated
ones), and sets Ag, A7 of graph modifications for the source and target domains,
givenby dg = {a : G5 — G'S | GS,G5 € .E(TGS), and a is a graph modification}
and 47 = (b : GT = G'T | GT,G'T € L(TGT), and b is a graph modification},
respectively. A

Given a TGG model framework, the synchronisation problem is to provide suit-
able total and deterministic forward and backward operations fPpg and bPpg that
propagate updates on one model (G5 or G”) to the other model. The propagation
operations are executed via graph transformations. The operations are deterministic
if they ensure unique results for any input. They are total if they provide results for
all inputs. In other words, the propagation operations have to be proper functions
which is not satisfied by arbitrary graph transformation systems. Note that one can
consider also scenarios where update propagation is not necessarily deterministic,
i.e., the propagation of a source update would provide different possible target up-
dates. For full details of this extended case and the corresponding results for the
nondeterministic scenario we refer you to [GHN*13].

The conceptual idea of forward propagation is the following. Given an integrated
model (a correspondence relation) G5 « G” and an update a : G5 — G’5, the
operation fPpg must propagate the update a to G, returning as results an update
b : GT — G’T and a correspondence relation G’° « G’T. Similarly, bPpg is
the dual operation that propagates updates on target models to updates on source
models. The effect of these operations is depicted schematically in the diagrams
in Fig. 9.4, which we call synchronisation tiles, where we use solid lines for the
inputs and dashed lines for the outputs [Dis11]. Note that, in a common tool envi-
ronment, the required input for these operations is either available directly or can
be obtained. For example, the graph modification of a model update can be derived
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Fig. 9.5 Laws for correct and (weak) invertible synchronisation frameworks

via standard difference computation and the initial correspondence can be computed
based on TGG integration concepts (see Chap. 7, [EEHO08a, KW07]). Note also that
determinism of fPpg means that the resulting correspondence G’* < G’” and the
update b : G — G’T are uniquely determined up to isomorphism. The propaga-
tion operations are correct if they additionally preserve consistency as specified by
laws (al)—(b2) in Fig. 9.5. Law (a2) means that fPpg always produces consistent
correspondences from consistent updated source models G’5. Law (al) means that
if the given update is the identity and the given correspondence is consistent, then
fPpg changes nothing. Laws (b1) and (b2) are the dual versions concerning bPpg.
Moreover, the sets L(TGG)® and L(TGG)T specify the consistent source and tar-
get models, which are given by the source and target components of the integrated
models in C = L(TGG).

Definition 9.7 (Synchronisation problem and framework). Let MF = (L(TGY),
.E(TGT),R, C,45,47) be a TGG model framework. The forward synchronisa-
tion problem is to construct a total and deterministic operation fPpg : R ®
Ads — R X A7 leading to the left diagram in Fig. 9.4, where R ® 45 =
{(ra) e RxAg | r: G5 & GT,a: G5 — G'5},i.e.,aand r coincide on G5 . The pair
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Fig. 9.6 Counterexample for invertibility

(r,a) € R®4; is called premise and (', b) € R X Ay is called solution of the forward
synchronisation problem, written fPpg(r, a) = (', b). The backward synchronisation
problem is to construct a total and deterministic operation bPpg leading to the right
diagram in Fig. 9.4. The operation fPpg is called correct with respect to C if axioms
(al) and (a2) in Fig. 9.5 are satisfied and, symmetrically, bPpg is called correct
with respect to C if axioms (b1) and (b2) are satisfied.

Given total and deterministic propagation operations fPpg and bPpg derived
from TGG, the derived synchronisation framework Synch(TGG) is given by
Synch(TGG) = (MF(TGG),fPpg, bPpg). It is called correct if fPpg and bPpg are
correct; it is weakly invertible if axioms (c1) and (c2) in Fig. 9.5 are satisfied; and it
is invertible if additionally axioms (d1) and (d2) in Fig. 9.5 are satisfied. A

Invertibility (laws (d1) and (d2)) means that the propagation operations are es-
sentially inverse of each other. For instance, axiom (d1) states that if we propagate
an update a; : G5 — G*f to G, obtaining as result an update b, and now we propa-
gate update b to G3, we obtain the same result Gf. However, notice that we do not
require that the resulting update a, : G5 — Gf coincide with a;. In particular, it may
be possible that the set of elements of G° that are not modified by a; may not co-
incide with the set of elements that are not modified by a,, even if they produce the
same result G*f (see Ex. 9.8 below). However, as we show in Sect. 9.2.3, we are able
to ensure the more flexible notion of weak invertibility (laws (c;) and (c;)) for our
example. More precisely, weak invertibility expresses that the two operations are
the inverse of each other, up to certain information that may be lost when applying
the operations. For instance, in axiom (c) the intuition is that update b, the result of
propagation of update a;, may ignore part of the information added by a;, because
this kind of information may not be relevant for target models. As a consequence,
when propagating b to G° this information would be lost. However, weak invert-
ibility also states that no information added by update » would be ignored when
propagating it back to G5. Thus, update b is recovered in the last propagation step.
The reason is that all that information was, in some sense, included in update a;, so
it must be relevant for source models.

Example 9.8 (Invertibility and weak invertibility). Consider a model update b; of
a given target model, as depicted in Fig. 9.6, where a new person (Paul Page) is
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Fig. 9.7 Example for weak invertibility

added together with his birth date, leading to a target model G’”. The propagation
via bPpg yields an update a, whose resulting source model G’5 includes that per-
son without his birth date. Now, the propagation of a via fPpg yields an update b,
whose resulting target model G”’7 does not contain any information about the birth
date. Therefore, G’ # G'7, meaning that Synch(T GG) is not invertible, since law
(d2) does not hold. However, if we continue the diagram and perform an additional
backward propagation as in Fig. 9.7, we derive a source update that coincides again
with a, i.e., the diagrams satisfy law (c2) of weak invertibility. A

9.2 Basic Model Synchronisation

This section shows how to construct the synchronisation operations for the basic
case, where updates from one domain are propagated to the other domain to achieve
a consistent state. The more general case of simultaneous updates on both domains
is presented in Sect. 9.3.

The synchronisation operation fPpg of a TGG synchronisation framework (see
Def. 9.7) is derived as a composition of auxiliary operations, which are executed
based on the sets of operational rules of the TGG.

9.2.1 Derived Operational Rules for Synchronisation

The auxiliary operations for the propagation operations fPpg and bPpg are based
on the sets of operational rules of the specified TGG. The used sets are the derived
consistency creating rules, the forward translation rules and the backward transla-
tion rules (see Def. 7.44). The consistency creating rules are used to mark the still
consistent parts of the current state of the integrated model while the forward and
backward translation rules are used to propagate the update from one domain to the
other.
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Fig. 9.8 Derived operational triple rules: TR¢¢ (part 1)

In general, each intermediate phase during the execution of a propagation opera-
tion prepares the application of the operational rules in the subsequent phase. Hence,
the sets of operational rules have to be compatible up to a certain extent.

Remark 9.9 (Interdependencies between operational rules). The consistency creat-
ing rules (TR¢c¢) are used for marking the already consistent parts of a given in-
tegrated model in the second sub-phase of the synchronisation. The forward and
backward translation rules are used for the third sub-phase. This third sub-phase
can be interpreted as a completion of the computed sequence of the second sub-
phase. We show in Sect. 9.2.3 that this continuation is always possible if the sets
of operational rules are deterministic (Theorem 9.25), for which we also provide an
automated check and analysis. If a TGG does not ensure deterministic sets of op-
erational rules, the computed maximal subgraph via TR¢¢ may be too large to find
a corresponding completion via forward (backward) translation rules. In this case,
a possible solution would be to perform backtracking for sub-phases 2 and 3 of the
synchronisation, as discussed in Sect. 9.3. A

Example 9.10 (Derived sets of consistency creating rules). Figs. 9.8 and 9.9 show
the set of the consistency creating rules derived from the triple rules in Ex. 9.5
according to Def. 7.44. They do not modify the structure of a triple graph, but only
the translation attributes. They are used for marking consistent substructures of a
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Fig. 9.9 Derived operational triple rules: TR¢¢ (part 2)

given triple graph, i.e., of a given integrated model. For that purpose, we apply
all derived consistency creating rules as long as possible to a given triple G with all
translation attributes set to “F”. Thus, we compute a maximal consistent triple graph
that is contained in G. Intuitively, for each element x € R (node, edge, or attribute) of
a triple rule tr = (L — R), a separate translation attribute (tr or tr_x) is added for
the consistency creating rule tr¢c. If an element x € R is preserved by the triple rule
tr (x € L), then the consistency creating rule preserves it as well and the translation
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Fig. 9.10 Derived operational triple rules: TRpy (part 1)

attribute has value T. Otherwise, if x € R is created by #r (x € R\ L), then it becomes
a preserved element in the consistency creating rule tr¢¢ and the corresponding
translation attribute is changed from F to T. In visual notation, this means that all
plus signs are replaced by additional translation attributes whose values are changed
from F to T, and we denote such a modification by [F = TT. A

Example 9.11 (Derived sets of forward translation rules). Figs. 9.10 and 9.11 show
the set of the forward translation rules derived from the triple rules in Ex. 9.5 accord-
ing to Def. 7.44. These rules are used for translating a source model into its corre-
sponding target model. For this reason, the rules are only modifying the translation
attributes on the source component. Intuitively, for each element x in the source
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Fig. 9.12 Derived operational triple rules: TRpy (part 1)

component RS (node, edge, or attribute) of a triple rule tr = (L — R) a separate
translation attribute (tr or tr_x) is added for the forward translation rule trgy. If an
element x € RS is preserved by the triple rule #r, then the forward translation rule
preserves it as well and the translation attribute has value T. Otherwise, if x € RS
is created by tr, then it becomes a preserved element in the forward translation rule
trer and the corresponding translation attribute is changed from F to T. In visual
notation, this means that each plus sign in the source component of a triple rule is
replaced by an additional translation attribute whose value changes from F to T.
Note that the rules 6—8 are contained in TR}A‘T, i.e., they are identities on the
source component and, according to Def. 9.7, they are not used for fPpg, which
is based on TR};. This is important to ensure termination (see Lem. 8.47) and we
show by Fact 9.24 that the derived sets of operational rules are kernel-grounded
(see Def. 8.49). This is a sufficient condition to guarantee that the reduced set still
ensures completeness according to Rem. 8.52 and Theorem 9.25. A

Example 9.12 (Derived sets of backward translation rules). Figs. 9.12 and 9.13
show the set of the backward translation rules derived from the triple rules in Ex. 9.5
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according to Def. 7.44. They are derived dually to the case of forward translation
rules and used for the translation of target models into their corresponding source
models. Thus, they do only modify translation attributes on the target component.
Intuitively, for each element x in the target component R” (node, edge, or attribute)
of a triple rule tr = (L — R), a separate translation attribute (tr or tr_x) is added
for the backward translation rule ¢rg7. If an element x € R is preserved by the triple
rule fr, then the backward translation rule preserves it as well and the translation at-
tribute has value T. Otherwise, if x € R” is created by tr, then it becomes a preserved
element in the backward translation rule frgr and the corresponding translation at-
tribute is changed from F to T. In visual notation, this means that all plus signs in
the target component are replaced by additional translation attributes whose values
are changed from F to T. Note that all backward translation rules are used for bPpg
in contrast to the operation fPpg before. A

9.2.2 Execution of Basic Synchronisation

In the following, we show how to construct the operation fPpg of a TGG synchro-
nisation framework (see Def. 9.7) as a composition of auxiliary operations (fAln,
Del, fAdd). Intuitively, the operation fAln removes correspondences that become
dangling via the given update, the operation Del computes the maximal consistent
sub triple graph of the current state and removes inconsistent elements on the cor-
respondence and target components, but not on the source component. Finally, the
operation fAdd propagates the elements on the source component that are not yet
consistent already by performing suitable forward transformation steps. Symmetri-
cally, the operations (bAln, Del, bAdd) are used to define the operation bPpg for
the backward direction. By Def. 9.7, the propagation operations have to be total
and deterministic, i.e., they have to provide unique results for all inputs. There-
fore, we will require that the given TGG provide deterministic sets of operational
translation rules, meaning that the algorithmic execution of the forward translation,
backward translation, and consistency creating rules ensure functional behaviour
(unique results) and not require backtracking. For this purpose, additional policies
can be defined that restrict the matches of operational translation rules as presented
in Sect. 8.3 by Fact 8.43. Rem. 9.22 in Sect. 9.2.3 provides sufficient conditions
for deterministic operational translation rules. Additional static conditions and au-
tomated checks are provided in [HEO*11b].

The general synchronisation process is performed as follows (see Def. 9.13 and
Fig. 9.14, where we use double arrows (<) for correspondence in the signature of
the operations, and the explicit triple graphs for the construction details). Given two
corresponding models G5 and G” and an update of G5 via the graph modification
a= (G5 & D52 GS)withG'S € L(TGG)®, the forward propagation fPpg of the
model update a is performed in three steps via the auxiliary operations fAln, Del,
and fAdd. At first, the deletion performed in a is reflected in the correspondence
relation between G5 and G by calculating the forward alignment remainder via
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Fig. 9.14 Auxiliary operations fAln, Del and fAdd

the operation fAln. This step deletes all correspondence elements whose elements
in G5 have been deleted. In the second step, performed via the operation Del, the
two maximal subgraphs G} € G° and G{ € G” are computed such that they form a
consistent integrated model in £(7TGG) according to the TGG. All elements that are
in G but not in G| are deleted, i.e., the new target model is given by G} . Finally, in
the last step (operation fAdd), the elements in G’* that extend Gi are transformed
to corresponding structures in G'7 , i.e., G,{ is extended by these new structures. The
result of fAdd, and hence also fPpg, is an integrated model G’ = (G’S “ G’T).
Since graph transformation is nondeterministic in general, we require that the sets
of operational translation rules be deterministic (see Def. 8.49) in order to ensure
unique results for both the second and the third step of the propagation operation

fPpg.

Definition 9.13 (Auxiliary TGG operations). Let TGG = (TG, @, TR) be a TGG
with deterministic sets TR¢c, TR}T, and TRE} of operational translation rules and
let further M F(TGG) be the derived TGG model framework.

1. The auxiliary operation fAln computing the forward alignment remainder is given
by fAIn(r, a) = ’, as specified in the upper part of Fig. 9.14. The square marked
by (PB) is a pullback (see Def. A.22, [EEPT06]), meaning that D€ is the inter-
section of D° and G€.

2.Letr = (5,0): G5 & G' be a correspondence relation; then the result of the
auxiliary operation Del is the maximal consistent subgraph Gg © G,{ of r, given
by Del(r) = (a,r’, b), which is specified in the middle part of Fig. 9.14.
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3.Let r = (s5,1): G5 & G7 be a consistent correspondence relation, a = (1,a») :
G® — G’5 be a source modification and G’ € L(TGG)®. The result of the
auxiliary operation fAdd, for propagating the additions of source modification
a, is a consistent model G5 < G'T extending G5 < GT, and is given by
fAdd(r, a) = (', b), according to the lower part of Fig. 9.14. A

Remark 9.14 (Auxiliary TGG operations). Intuitively, the operation fAln constructs
the new correspondence graph D¢ from the given G¢ by deleting all correspon-
dence elements in G¢ whose associated elements in G5 are deleted via the update
a and, for this reason, do not occur in DS. The operation Del is executed by ap-
plying consistency creating rules (see Def. 7.44) to the given integrated model until
no rule is applicable anymore. If, at the end, G5 < G7 is completely marked, the
integrated model is already consistent; otherwise, the result is the largest consistent
integrated model included in G5 « GT. Technically, the application of the con-
sistency creating rules corresponds to a maximal triple rule sequence, as shown in
the right middle part of Fig. 9.14 and discussed in more detail in [HEO*11a]. Fi-
nally, fAdd is executed by applying forward translation rules (see Sect. 7.4.2) to
G”® < GT until all the elements in G’5 are marked with T. Intuitively, these TGT
steps form a model transformation of G*> extending G” . Technically, the application
of the forward translation rules corresponds to a source-consistent forward sequence
from Gy to G’, as shown in the right lower part of Fig. 9.14. By correctness of model
transformations (see Theorem 8.7, [EEHP09, HEGO14]), the sequence implies con-
sistency of G’ as stated above. The constructions for these auxiliary operations are
provided in full detail in [HEO" 11b]. Note that the constructions for Del and fAdd
yield unique results due to the requirement that the operational translation rules be
deterministic (see Def. 9.13). A

The auxiliary operation Del is based on the execution of consistency creating
rules. The computed resulting triple graph Gy is required to be consistent (G €
L(TGG)). This result is ensured by the equivalence of maximal triple and complete
extended consistency creating sequences according to Fact 9.15 below and shown
by Fact 11 in [HEO"11b].

Fact 9.15 (Equivalence of maximal triple and complete extended consistency
creating sequences). Given a set of nonidentic consistency creating rules TRcc and
G € L(TG), the following statements are equivalent for almost injective matches:

1. There is a TGT sequence s = (@ tr: Gy) via TR with injective embedding
f : Gy = G, such that s is f-maximal, i.e., any extension of s via TR is not
compatible with f.

try,
2. There is a terminated consistency creating sequence s’ = (G — G,) via TRcc
with G|, = Atf*(G), i.e., all translation attributes are set to F.

Moreover, the sequences correspond via G, = G @Attgk @Attg\ck. A

Proof. For the full proof, see [HEO™ 11b]. m]
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Fig. 9.15 Marking sequence: visual notation and graph representation
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Example 9.16 (Marking sequence). Consider the marking sequence in Fig. 9.15 with

. 1:Person2FirstPersonPcc 3:FName2FNamec¢ 6:Empty2Birthc
transformation steps G, > G > G ,

G/, The upper part of the figure depicts the steps in visual notation, where consis-
tent parts are indicated by gray boxes with checkmarks. The lower part shows the
abstract syntax including the modification of the translation attributes. Each modi-
fication is highlighted via a box around the changed translation attribute. All trans-
lation attributes of the initial graph G = G @ Att(F; are set to F, and in each step
some markers are set to T. The graph G still contains some markers with value F

and no further rule is applicable. Thus, the sequence is terminated and corresponds

. . 1:Person2FirstPersonP 3:FName2FName
to an f-maximal triple sequence @ = Gy Gy ,

G, M G with f: G3 — G. The graph Gj3 is given by all the elements

in Gg that are marked with T. A

Example 9.17 (Forward propagation via operation fPpg). Fig. 9.16 shows the appli-
cation of the three steps of the synchronisation operation fPpg to the visual models
of our running example. After removing the dangling correspondence node of the
alignment in the first step (fAln), the maximal consistent subgraph of the integrated
model is computed (Del) by stepwise marking the consistent parts. Explicit trans-
lation markers are omitted, but indicated by visually marking the consistent parts,
i.e., those elements whose translation markers are set to T. Consistent parts are indi-
cated by gray boxes with checkmarks in the visual notation and by bold face font in
the graph representation. Note that the node Alex Archer is part of the target graph
in this maximal consistent subgraph, even though it is not in correspondence with
any element of the source graph. This is possible, because the node Alex Archer is
connected to a different department (see rule 8:Empty20therP in Fig. 9.3). More-
over, the attributes Base and Bonus of Lily Archer in the source component are
not marked, because they are inconsistent with the attribute Salary according to the
triple rule 5:DetailedSalary2Salarycc in Fig. 9.9 (Base + Bonus # Salary). In the
final step (fAdd), the inconsistent elements in the target model are removed and the
remaining new elements of the update are propagated towards the target model by
model transformation, such that all elements are finally marked as consistent. A

The constructions for the auxiliary operations fAln, Del, and fAdd provide the ba-
sis for the propagation operation fPpg. Together with its symmetric version, namely
the backward propagation operation bPpg, we derive the TGG synchronisation
framework according to Def. 9.18. The forward and backward propagation oper-
ations fPpg and bPpg are called complete if they yield valid results for any valid
input. Completeness of the synchronisation operations is an important property in
the context of TGGs, and therefore it is worth emphasising it explicitly, while it is
implicitly included already within the signature in Fig. 9.17.

Definition 9.18 (Derived TGG synchronisation framework). Let TGG = (TG,
@,TR) be a TGG with deterministic sets TRcc, TR}, and TRj;. of derived oper-
ational translation rules (consistency creating, source creating forward translation,

and target creating backward translation rules) and with derived model framework
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Fig. 9.16 Forward propagation in detail: visual notation and graph representation



270 9 Model Synchronisation

Signature Definition of Components

VG5 € L(TGG)S :
G +———G"
aJ/ \:prg b

G’S <,> G’T

P

a=(a,a) =G & D52 G%),as=(a,1),ap = (d},D,ar = (1,a2 0 a})
b=bsobp

Fig. 9.17 Synchronisation operation fPpg—formal definition

/* == alignment remainder == */

forall (correpondence nodes without image in the source model){
delete these elements }

/% ==== delete === */

while(there is a triple rule tr:L->R with R\L is unmarked in G){
apply the consistency creating rule of tr to G }

forall (unmarked nodes and edges from the target model){
delete these elements }

[ === aahl ss=== 9

while(there is a forward translation rule applicable to G){
apply to G the forward translation rule }

Fig. 9.18 Synchronisation operation fPpg—algorithm

MF(TGG); then the operation fPpg of the derived TGG synchronisation framework
Synch(TGG) is given by the composition of the auxiliary operations for the for-
ward direction (fAln, Del, fAdd), as described in Rem. 9.19 according to Fig. 9.17.
Symmetrically—not shown explicitly—we obtain bPpg as the composition of the
auxiliary operations for the backward direction (bAln, Del, bAdd). Synch(TGG) is
called complete if its propagation operations are complete, i.e., they always yield a
result for any valid input. A

Remark 9.19 (Construction of fPpg according to Fig. 9.17). Consider a not nec-
essarily consistent integrated model r: G5 < GT and a source model update
a: G5 - G5 If G5 € L(TGG)S, we compute fPpg(r, a) as follows. First, fAln



9.2 Basic Model Synchronisation 271

computes the correspondence (D5 < GT), where D5 is the part of G° that is pre-
served by update a. Then, Del computes its maximal consistent integrated submodel
(G} & GU). Finally, fAdd composes the embedding G; — G’* with correspon-
dence (G < G}) leading to (G’ < G), which is then extended into the inte-
grated model (G < G'T) via forward transformation. Note that this execution is
only possible if G'S € LITGG)®. If G’* ¢ L(TGG)’, the above execution fails and
the result is given by b = (1,1): GT — G7, together with the correspondence rela-
tion ' = (@, @), and additionally an error message is provided. Fig. 9.18 describes
this construction algorithmically in pseudocode, leaving out the error handling. A

Fact 9.20 (Case study: termination of synchronisation operations). The derived
synchronisation operations fPpg and bPpg for our example TGG terminate. A

Proof. According to Def. 9.18, the synchronisation operations are based on the

sets TR, TRy, and TRy of operational translation rules. Hence, we can apply
Lem. 8.47 and derive that the synchronisation operations are terminating. O

9.2.3 Correctness and Invertibility of Model Synchronisation

In this section, we present our main results for unidirectional model synchronisation
concerning the properties correctness, completeness and invertibility of the synchro-
nisation framework. According to Def. 9.7, correctness requires that the synchroni-
sation operations ensure laws (al)—(b2) and are deterministic (see Def. 8.49), i.e.,
they have functional behaviour (see Def. 8.10) and do not require backtracking.
Concerning determinism, Theorem 9.23 below provides a sufficient condition based
on the notion of critical pairs (see Def. 2.39 and Def. 5.40, based on [EEPT06]). In
order to ensure this condition, Sect. 8.3 presents the concept of additional propaga-
tion policies that eliminate nondeterminism. They can be seen as application con-
ditions for the rules, and are called conservative if they preserve the completeness
result. Fact 8.43 provides a sufficient static condition for checking this property and
we perform the automated analysis of this condition for our example TGG using the
tool AGG [AGG14] as described below. Note again that we generally require almost
injective matching (see Def. 7.3 in Sect. 7.4.2).

Example 9.21 (Conservative policy). In Fig. 9.19, the backward translation
rule 5:DetailedSalary2Salarygr from Ex. 9.12 is extended to the rule 5':
DetailedSalary2Salarypr» by a policy in the form of an additional application con-
dition in order to ensure determinism. Since the left hand side of this rule specifies
only the sum of the salary of a person, the values of the base and bonus components
are not fixed via a match. The application condition (see Def. 2.9 and Def. 5.12
based on [EEPT06]) requires that both values be set to half the amount of the salary
sum. Now, this is possible for each number, such that we can conclude that the pol-
icy is conservative (Fact 8.43), which is important for ensuring completeness of the
propagation operation bPpg (see Theorem 9.25). A
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5: DetailedSalary2Salarygr()

:Person

:Person
Base = base ++ [T _ — =T policy
base+bonus

tr_Salary=[F=T]

5': DetailedSalary2Salarygr.,()

:Person
G
Base = 0.5*salary *+

Salary=salary
Bonus = 0.5*salary ** tr_Salary=[F>T]

:Person

(equivalent rule, optimized for execution)

Fig. 9.19 Backward translation rule without (5) and with (5") conservative policy

Now we investigate the most important property that has to be checked for the
operational translation rules in order to ensure correct propagation operations—
deterministic behaviour. First of all, this means that their execution has functional
behaviour, i.e., ensures unique results (see Sect. 8.2.1 and Def. 8.10). In addition
to that, their execution does not require backtracking. This means that once an op-
erational translation rule is applied, we do not have to undo the step during the
synchronisation process.

A system of operational translation rules has functional behaviour and does not
require backtracking if all significant critical pairs are strictly confluent, as shown
by Fact 9 in [HEO™ 11b], based on the corresponding result for forward translation
rules (see Theorem 8.29).

Remark 9.22 (Analysis of functional behaviour and backtracking). The tool
AGG [AGG14] provides an analysis engine for generating the complete set of crit-
ical pairs. On this basis, Rem. 8.51 provides sufficient conditions for deterministic
operational translation rules and we provide the analysis results for our example
TGG in Fact 9.24. A

Theorem 9.23 below shows that termination and strict confluence of the set of
significant critical pairs ensures the required conditions for deterministic behaviour.

Theorem 9.23 (Deterministic synchronisation operations). Let TGG be a triple
graph grammar and let TR, TR}, and TR} be the derived sets of kernel transla-
tion rules. If the significant critical pairs of the sets of operational translation rules
are strictly confluent and the systems of rules are terminating, then the sets of op-
erational translation rules are deterministic (see Def. 8.49), which implies that the
derived synchronisation operations fPpg and bPpg are deterministic as well. A

Proof (Idea). The operations fAIn and bAln are given by pullback constructions,
which are unique up to isomorphism by definition. Therefore, they are deterministic.
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@:. Minimal Dependencies
Show

|ifirst\ second 1: Per... 2: Per... 3: FNa... 4: LNa... 5: Det... 6: Em... 7: Em... 8. Em...
1: Person2FirstMarketingP_FT 0 1 1 1 1] 1 0 1
2: Person2NextMarketingP_FT| 0 0 1 1 1] 1 0 0
3: FName2FName_FT 0 0 0 0 0 0 0 0
4: LName2LName_FT 0 0 0 0 0 0 0 0
5: Detailed Salary2 Salary_FT 0 0 0 0 0 0 0 0
6: Empty2Birth_FT 0 0 0 0 0 0 0 0
7: Empty20therDepartment_FT| 0 0 0 0 0 0 0 1
8: Empty20therPerson_FT 0 1] 0 0 0 1 0 0

Fig. 9.20 Dependency analysis with AGG for TRpp—fields with “1” contain dependencies

Termination of Del, fAdd, and bAdd is ensured according to Lem. 8.47, because the
operational translation rules are given by TR, TR}, and TR}).. By Theorem 8.29
we know that functional behaviour of the transformation systems is ensured and
backtracking is not required if all significant critical pairs are strictly confluent and
the system is terminating. This ensures that the operations Del, fAdd, and bAdd are
deterministic. Thus, also the operations fPpg and bPpg are deterministic. For the

full proof, see Fact 1 in [HEO*11b]. |

By Fact 9.20, we know that the synchronisation operations in the running exam-
ple are terminating. Fact 9.24 below shows that the derived sets of operational rules
are deterministic and kernel-grounded (see Def. 8.49) using the fact that they are
terminating (Theorem 9.23) and using the sets of critical pairs generated with the
tool AGG.

Fact 9.24 (Case study: determinism). The derived sets of operational rules for
fPpg and bPpg of our example TGG are deterministic and kernel-grounded. A

Proof. We use the critical pair analysis engine of the tool AGG to show that the sets
are kernel-grounded and deterministic (see Def. 8.49). First, we show that they are
kernel grounded, i.e., the marking changing forward translation rules TR} (back-
ward translation rules TR:) do not depend on the marking preserving rules TRLS
(TRyp).

Concerning the set TRpr, we used AGG to derive the dependency table depicted
in Fig. 9.20. The source identic rules are the rules with numbers 6 to 8. There is
no dependency (entry > 0) for any pair (p,q) with p > 6 and g < 5. Moreover,
there are no target identic backward translation rules, because all triple rules are
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= |
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Fig. 9.21 Ceritical pair analysis with AGG for TRcc—fields with “1” contain conflicts
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Fig. 9.22 Critical pair analysis with AGG for TRzr—fields with “1” contain conflicts

creating on the target component. Therefore, the sets of operational translation rules
are kernel-grounded.

By Fact 9.20, we know that the transformation systems based on the operational
translation rules are terminating. Concerning the set TR¢c, we derive the resulting
table of critical pairs via AGG as depicted in Fig. 9.21. The only generated critical
pair is (py, p1) for p; = Person2FirstMarketingPcc and it is strictly confluent by
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l@ Minimal Dependencies n‘z IZI‘ E
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Fig. 9.23 Dependency analysis with AGG for TRgr—fields with “1” contain dependencies
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Fig. 9.24 Critical pair analysis with AGG for TRgr—fields with “1” contain conflicts

applying rule p, = Person2NextMarketingPcc to the remaining structure, and since
P> does not contain any NAC we automatically have strict confluence.

Concerning the set TRrr, we derived the resulting table depicted in Fig. 9.22,
where we used the constraint that there are no two departments with name Market-
ing. This is always ensured for the language L(TGG) due to the NACs of the first
two rules (see Def. 8.25 and Lem. 8.28).

The only significant critical pair is strictly confluent via one transformation step
using the rule p, = Person2NextMarketingP -, where no NAC is involved.
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The set TRy is not functional, because there is a choice of how to split the salary
into base and bonus. We can restrict the choice for the rule DetailedSalary2Salary
to base = bonus = 1/2-salary as a policy, which is shown by the additional positive
application condition in Fig. 9.12. We apply Fact 8.43 and derive that the policy is
conservative. First of all, no other rule depends on this rule, which we have verified
by the generated dependency table by AGG in Fig. 9.23. Moreover, any match for
the original rule implies that there is a match for the restricted rule, because the
restricted values are real numbers. We derive the table of generated critical pairs de-
picted in Fig. 9.24, where the only significant critical pair is again strictly confluent
via one transformation step using rule p, = Person2NextMarketingP g, where no
NAC is involved.

Summing up, the sets of operational translation rules are kernel-grounded and all
significant critical pairs are strictly confluent, such that we can apply Theorem 9.23
and derive that the derived sets of operational rules are deterministic. O

We now analyse correctness and completeness. A correct synchronisation frame-
work has to satisfy laws (a1)-(b2) in Def. 9.7. Intuitively, the propagation operations
have to preserve consistent inputs. First of all, if the given integrated model is al-
ready consistent and the given update does not change anything, then the resulting
integrated model has to be the given one and the resulting update on the opposite
domain has to be the identity (laws (a1) and (b1)). Most importantly, given an arbi-
trary integrated model together with a source update d° : G5 — G’S with consistent
new source model G’ € L(TGG)®, the forward propagation via fPpg has to pro-
vide a new consistent integrated model G5 o G'T € L(TGG). Completeness of a
synchronisation framework Synch(T GG) requires that the operations fPpg and bPpg
can be successfully applied to all consistent source models G’ € £L(TGG)® and tar-
get models G'7 € L(TGG)T, respectively. This property is of general importance in
the context of TGGs, and therefore we explicitly show it together with correctness in
Theorem 9.25 below. Both results are ensured if the sets of the operational rules are
deterministic as in Theorem 9.23 and, additionally, if they are kernel-grounded (see
Def. 8.49), i.e., the effective forward and backward translation rules do not depend
on any source or target identic translation rule, respectively. This second condition
is important for laws (al)—(b2), because it ensures that the computed transforma-
tion sequences via auxiliary operations Del, fAdd, and bAdd can be composed in a
consistent way.

Theorem 9.25 (Correctness and completeness). Let Synch(TGG) be a derived
TGG synchronisation framework such that the sets of operational translation rules
derived from TGG are kernel-grounded and deterministic (see Def. 8.49). Then
Synch(TGG) is correct and complete. A

Proof (Idea). By Theorem 9.23, the provided constructions of operations fPpg and
bPpg based on the operational translation rules have functional behaviour, i.e., for
each input the computation yields a unique output. Thus, the derived synchronisa-
tion framework is complete.

In order to show correctness, we have to show laws (al) and (a2) of Def. 9.7.
The precondition G € L(TGG) of law (al) implies that there is a triple sequence
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@ = G via TR, and by Fact 9.15 there is a corresponding complete consistency
creating sequence. Moreover, there is a corresponding forward translation sequence
via TRpy by Thm. 1 in [HEGO10]. Using the precondition that the operational trans-
lation rules are kernel-grounded, we can conclude that all steps via 7R} can be
shifted to the end. Thus, no further forward translation rule in 7R} is applicable.
The functional behaviour of the operation fPpg and the given identical source up-
date d; = idgs ensure the requested result, i.e., we derive the target update d’ = idgr
and the integrated model G’ = G. In order to show law (a2), we can use precondition
G e L(TGG)S, which implies that there is a source consistent forward sequence
sp starting at G’ and a corresponding complete forward translation sequence. Since
the operational rules are kernel-grounded we can conclude by Rem. 8.52 that there is
a complete forward translation sequence s via TRy Due to functional behaviour
of the operation Del we derive a consistency creating sequence that corresponds to
the first part of sp, and therefore to a sequence spr via forward translation rules.
Since the sets of operational rules are kernel-grounded, we can conclude that the
steps via TRy do not depend on TR}‘T. This allows us to complete sgr using TR},
where we can shift the source identic steps via TR}JT to the end. Thus, we derive
a complete forward translation sequence, where we can omit the steps via TR}ST at
the end. Functional behaviour of TR}, implies that this sequence corresponds to the
complete forward translation sequence sy, and therefore to a source consistent for-
ward sequence s} leading to G’. Thus, G’ € L(TGG) by Theorem 8.7. For the full
proof see Lemma 3 in [HEO*11b]. ]

The initially derived set of backward transformation rules for our running exam-
ple is not completely deterministic because of the nondeterministic choice of base
and bonus values for propagating the change of a salary value. Therefore, we have
defined a conservative policy for the responsible backward triple rule by fixing the
propagated values of modified salary values to bonus = base = 0.5 - salary. By
Fact 8.43 in Sect. 8.3, we have provided a sufficient static condition for checking
that a policy is conservative; we have validated our example and have shown that
the derived sets of operational rules for fPpg and bPpg are deterministic and kernel-
grounded (see Fact 9.24 in Sect. 9.2.2). For this reason, we can apply Theorem 9.25
and conclude that the derived TGG synchronisation framework is correct and com-
plete (see Fact 9.26 below).

Fact 9.26 (Case study: correctness and completeness). The derived synchronisa-
tion framework for our example TGG is correct and complete. A

Proof. By Fact 9.24, we know that the sets of operational rules of our example TGG
are deterministic and kernel-grounded. This allows us to apply Theorem 9.25 and
we derive that the derived synchronisation framework is correct and complete. O

Remark 9.27 (Model synchronisation for CD2RDBM). The TGG CD2RDBM of our
example for Chapters 7 and 8 does not satisfy the conditions we require in The-
orem 9.25 to ensure a correct and complete model synchronisation framework. In
fact, the operational translation rules are not deterministic as required by Theo-
rem 9.25 for the following reason (see also Ex. 8.50). The backward translation
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rules are not terminating, because the rule SubClass2Tablegr is identic on the tar-
get domain and it cannot be omitted, because several other rules depend on it, e.g.,
an application of rule Attr2Columng; (see Fig. 3.8 for the TGG rules) may de-
pend on the correspondence node that is created by SubClass2Tablegy. However,
from an application point of view, one can argue that the inheritance information
of a class diagram gets lost via the forward model transformation, and thus it is
just natural to omit the creation of new inheritance links via the backward transfor-
mation. Indeed, leaving out the rule SubClass2Tableg; seems to be the practical
choice to obtain a model synchronisation framework that is possibly correct and
complete. Future work may provide alternative conditions that also handle TGGs
like CD2RDBM. A

Now we present techniques and results for analysing invertibility of a model
synchronisation framework. Intuitively, invertibility means that the propagation op-
erations are inverse to each other (see Def. 9.7). Weak invertibility requires this
property for a restricted set of inputs, namely those where the given update on one
domain can be interpreted as the result of a propagation of an update from the corre-
sponding opposite domain. In addition to the conditions for ensuring a correct syn-
chronisation framework (Theorem 9.25), the notions of pure and tight TGGs allow
us to ensure these properties in Theorem 9.29 below. If the source identic triple rules
are empty rules on the source and correspondence components, and analogously for
the target-identic triple rules, then we say that the TGG is pure. This condition is
used to ensure weak invertibility according to Theorem 9.29 below. In the more spe-
cific case that all triple rules of a TGG are creating on the source and target compo-
nents (TR = TR = TR*"), the TGG is called tight, because the derived forward and
backward rules are strongly related. Effectively, a tight TGG ensures for the opera-
tional forward and backward translation rules that each of them changes at least one
translation attribute. In other words, for each triple rule #r there is a derived forward
translation rule trrr € TR} and a derived backward translation rule trgr € TR}
This additional property ensures invertibility according to Theorem 9.29 below.

Definition 9.28 (Pure and tight TGG). A TGG is called pure if TR'* C TRy and
TR" C TRs. It is called right if the sets of source and target creating rules TR** and
TR™ coincide with the set of triple rules TR, i.e., TR = TR** = TR*. A

Theorem 9.29 (Invertibility and weak invertibility). Let Synch(TGG) be a de-
rived TGG synchronisation framework such that the sets of operational translation
rules of TGG are kernel-grounded and deterministic (see Def. 8.49), TGG is pure
and at most one set of operational translation rules was extended by a conservative
policy; then Synch(T GG) is weakly invertible. If, moreover, TGG is tight and there
was no policy applied at all, then Synch(T GG) is also invertible. A

Proof (Idea). To prove the weak invertibility law (c1) in Fig. 9.5, we can first show
that the intermediate triple graphs after applying (bAln, Del) and (fAln, Del) accord-
ing to Figs. 9.14 and 9.17 are the same for the steps in the last two diagrams of (c1).
We compute all three diagrams of (c1) and obtain consistency creating sequences
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via Del for each diagram using the precondition that the operational rules are de-
terministic (which subsumes termination). Moreover, we derive that the second and
the third diagrams contain the same intermediate triple graph G;. Afterwards, the
auxiliary operations fAdd and bAdd for all three diagrams can be executed. We can
use the composition and decomposition result for TGGs and the requirements that
the TGG be pure, deterministic and preserve functional behaviour. If at most one set
of operational translation rules is extended by a conservative policy, the proof shows
that backward transformation sequences are not eliminated by the policy. This al-
lows us to obtain the resulting diagrams according to law (c1). The proof for axiom
(c2) follows out of the symmetry of the definitions. To prove invertibility (laws (d1)
and (d2)), we use the preconditions that no policy is applied and that the TGG is
tight, i.e., all rules are source and target creating. This ensures that for each forward
translation sequence there is a corresponding backward translation sequence. For
the full proof see Thm. 1 in [HEO*11b], where sets of operational rules are called
deterministic if they are kernel-grounded and deterministic using the notions of this
chapter. O

In our example TGG, the sets of operational translation rules are kernel-grounded
and deterministic according to Fact 9.24 in Sect. 9.2.2. Moreover, the TGG is pure
and we have used the conservative policy for the backward direction only. Thus,
Theorem 9.29 ensures that Synch(T GG) is weakly invertible (see Fact 9.30 below).

Fact 9.30 (Case study: weak invertibility). The derived synchronisation frame-
work for our example TGG is weakly invertible. A

Proof. In order to apply Theorem 9.29 concerning weak invertibility, we have to
show that the TGG is pure (see Def. 9.28) and at most one set of operational rules
was restricted by a conservative policy (see Def. 8.49). The used policy for the
set of backward translation rules is conservative, which we have shown already in
Fact 9.26. No further policy is applied and the TGG is pure, because each rule is
either creating on the source and target component, or it is creating either on the
source or the target component and empty on the other components. Therefore, we
can apply Theorem 9.29 and derive weak invertibility. O

An intuitive example for weak invertibility is shown in Ex. 9.8 in Sect. 9.1, where
we also show by counterexample that the derived synchronisation framework for our
example TGG is not invertible in the general sense. The reason is that information
about birth dates is stored in one domain only. The automated validation for our ex-
ample TGG with eight rules was performed in 25 seconds on a standard consumer
notebook via the analysis engine of the tool AGG [AGG14]. We are confident that
the scalability of this approach can be significantly improved with additional opti-
misations.

Remark 9.31 (Applicability of the approach). We have provided sufficient condi-
tions ensuring correctness and completeness (Theorem 9.25) which can be checked
statically. In the following, we discuss these restrictions with respect to relevant
application scenarios.
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1. Determinism: Most importantly, we require that the derived sets of operational
rules be deterministic, i.e., the forward and backward propagation operations en-
sure unique results. In several application domains, this property is already a
requirement by the domain experts, i.e., has to be ensured anyhow. For example,
unique results are often required for the synchronisation between visual models
and implementation code, i.e., for code generation and reverse engineering. Note
as well that one can modify existing triple rules to enforce determinism based on
the discussed critical pair analysis of a TGG using the tool AGG. For example,
the designer may insert additional correspondence nodes (trace links) to enforce
determinism and avoid conflicts between rules. The condition for determinism
does not seem to confine the expressiveness of TGG rules. In a large-scale indus-
trial project, we have used a TGG for the fully automated translation of satellite
control software [HGN™ 14], where the used TGG contains more than 200 rules.
The forward translation has functional behaviour as required by the industrial
partner. As a general recommendation based on the experiences from this project,
we can state that a designer of a TGG should divide the rules in small groups,
such that there are no cyclic dependencies between the groups.

2. Kernel-grounded sets of operational rules: Intuitively, the restriction to kernel-
grounded rules concerns the possibility that one domain may contain information
that is not present in the corresponding opposite domain. When translating from
one domain to another, we apply only those rules that are changing at least one
translation attribute (TR} and TR}}). Thus, we require that the structures that
concern only one domain be handled separately by triple rules that are the identity
on the corresponding opposite domain (TRIFST and TRZI;’T). In addition to that, these
sets of rules do not create structures that may be needed by the first group of
rules. This means that the restriction to kernel-grounded sets of operational rules
restricts the freedom mainly of how to design the TGG and usually not of the
problem and application domain.

The result on invertibility (Theorem 9.29) requires additional properties. Weak
invertibility is ensured if the TGG is pure and at most one of the sets of operational
rules is extended by a conservative policy. While this condition is not very restrictive
in the experience of the authors, the stronger condition for invertibility requiring a
tight TGG practically means that all pieces of information in one domain are also
reflected in the corresponding opposite domain. This result is consistent with Diskin
et al.’s analysis of strong invertibility [DXC*11b]. A

In the case that the specified TGG does not ensure deterministic synchronisation
operations, there are still two options for performing synchronisation that ensure
correctness and completeness. On the one hand, the triple rules can be modified
in a suitable way, such that the TGG can be verified to be deterministic. For this
purpose, the critical pair analysis engine of the tool AGG [AGG14] can be used
to analyse conflicts between the generated operational translation rules. Moreover,
backtracking can be reduced or even eliminated by generating additional application
conditions for the operational translation rules using the automatic generation of
filter NACs (see Fact 8.18 based on [HEGO10, HEGO14]). On the other hand, the
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TGG can be used directly, leading to nondeterministic synchronisation operations,
which may provide several possible synchronisation results [GHN"13].

9.3 Concurrent Model Synchronisation

Based on the basic framework for model synchronisation in the previous sections,
we now provide a correct TGG framework for concurrent model synchronisation,
where concurrent model updates in different domains have to be merged into a con-
sistent solution. In this case, we have the additional problem of detecting and solv-
ing conflicts between given updates. Such conflicts may be hard to detect, since they
may be caused by concurrent updates on apparently unrelated elements of the given
models. Furthermore, there may be apparently contradictory updates on related ele-
ments of the given domains which may not be real conflicts.

This section is based on [HEEO12]. The main idea and results for the approach
for concurrent model synchronisation based on TGGs are as follows:

1. Model synchronisation is performed by propagating the changes from one model
of one domain to a corresponding model in another domain using forward and
backward propagation operations. The propagated changes are compared with
the given local update. Possible conflicts are resolved in a semiautomated way.

2. The operations are realised by model transformations based on TGGs [HEO™" 11a]
and tentative merge constructions solving conflicts [EET11]. The specified TGG
also defines consistency of source and target models.

3. In general, the operation of model synchronisation is nondeterministic, since
there may be several conflict resolutions. The different possible solutions can
be visualised to the modellers, who then decide which modifications to accept or
discard.

4. The main result shows that the concurrent TGG synchronisation framework is
correct and compatible with the basic synchronisation framework (see Sect. 9.2),
where only single updates are considered at the same time.

9.3.1 Concurrent Synchronisation Problem

Concurrent model synchronisation aims to provide a consistent merging solution for
a pair of concurrent updates that are performed on two interrelated models. This sec-
tion provides a formal specification of the concurrent synchronisation problem and
the corresponding notion of correctness. At first, we motivate the general problem
with a compact example.

Example 9.32 (Concurrent model synchronisation problem). Fig. 9.25 shows two
models in correspondence. Two model updates have to be synchronised concur-
rently: on the source side (model update d‘f ), the node Paul Page is deleted and
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Fig. 9.25 Concurrent model synchronisation: compact example

the family name of Lilly Lee changes due to her marriage; moreover, since she is
married, her bonus is raised from 1,000 to 2,000. On the target side (model update
le), Paul Page is switching from the marketing to the technical department (in the
visualisation in Fig. 9.25 this is indicated by a different role icon and the label M is
replaced by label T). The department change is combined with a salary raise from
5,000 to 6,000. After performing the updates d‘; and dzT , a “consistently integrated
model” is derived that reflects as many changes as possible from the original updates
in both domains and resolves inconsistencies, e.g., by computing the new Salary of
Lily Lee in the target domain as the sum of the updated source attributes Base and
Bonus. Note that Paul Page is not deleted in the target domain by the concurrent
model synchronisation because in this case the changes required by le could not
have been realised. This conflict can be considered an apparent one. If a person
leaves the marketing department, but not the company, its node should remain in the
target model. Thus, a concurrent model synchronisation technique has to include an
adequate conflict resolution strategy. A

The concurrent model synchronisation problem is visualised in Fig. 9.26, where
we use solid lines for the inputs and dashed lines for the outputs. Given an inte-
grated model Gy = (Gj < G{) and two model updates d; = (G5 — G7) and

= (G} — G]), the required result consists of updates d; = (G| — G3)
and d} = (GT — GY) and a consistently integrated model G, = (G5 < GJ).
The solution for this problem is a concurrent synchronisation operation CSynch,
which is left total but in general nondeterministic, which we indicate by a wiggly
arrow “~” in Def. 9.33 below. The set of inputs is given by (Rel ® 4s ® Ar) =
{(r,d5,d") € Rel x A X A7 | r: G§ & Gb,d*: G5 — G,*,d": G} - Gy}, e, r
coincides with % on G and with dT on GT.

Definition 9.33 (Concurrent model synchronisation problem and framework).
Given a triple graph grammar TGG, the concurrent model synchronisation problem
is to construct a left total and nondeterministic operation CSynch : (Rel®4s®4r) ~»
(Rel x Ag x Ar) leading to the signature diagram in Fig. 9.26, called concurrent syn-
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Fig. 9.26 Signature and laws for correct concurrent model synchronisation frameworks

chronisation tile with concurrent synchronisation operation CSynch. Given a pair
(prem, sol) € CSynch, the triple prem = (ry, df s le) € Rel®45®A47 is called premise
and sol = (ry,d5 ,d}) € Rel X Ag x A7 is called a solution of the synchronisation
problem, written sol € CSynch(prem). The operation CSynch is called correct with
respect to the consistency relation C if laws (a) and (b) in Fig. 9.26 are satisfied for
all solutions. Given a concurrent synchronisation operation CSynch, the concurrent
synchronisation framework CSynch is given by CSynch = (TGG,CSynch). It is
called correct if the operation CSynch is correct. A

Correctness of a concurrent synchronisation operation CSynch according to
Fig. 9.26 ensures that any resulting integrated model G, = (Gg o G;) is con-
sistent (law (b)) and the synchronisation of an unchanged and already consistently
integrated model always yields the identity of the input as output (law (a)).

9.3.2 Concurrent Model Synchronisation with Conflict Resolution

In addition to the propagation operations used for the basic model synchronisation
framework in Sect. 9.2, the concurrent case requires additional steps. The most im-
portant one is conflict resolution, and we use the constructions and results for con-
flict resolution in a single domain according to [EET11]. Note that we apply conflict
resolution either to two conflicting target model updates (one of them induced by
a forward propagation operation fPpg) or to two conflicting source model updates
(one of them induced by backward propagation). Hence, we here consider updates
over standard graphs and not over triple graphs. Moreover, we use additional TGG-
specific operations that restrict the constructed intermediate models to those that are
consistent with the given TGG.

Two graph modifications (G <« D; — H;), (i = 1,2) are called conflict-free
if they do not interfere with each other, i.e., if one modification does not delete
a graph element, the other one needs to perform its changes. Conflict-free graph
modifications can be merged to one graph modification (G <~ D — H) that realises
both original graph modifications simultaneously.
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If two graph modifications are not conflict-free, then at least one conflict oc-
curs which can be of the following kinds: (1) delete—delete conflict: both modifica-
tions delete the same graph element, or (2) delete—insert conflict: m; deletes a node
which shall be the source or target of a new edge inserted by m, (or vice versa).
Of course, several of such conflicts may occur simultaneously. In [EET11], we pro-
pose a merge construction that resolves conflicts by giving insertion priority over
deletion in case of delete—insert conflicts. The result is a merged graph modification
where the changes of both original graph modifications are realised as far as possi-
ble.! We call this construction tentative merge because usually the modeller is asked
to finish the conflict resolution manually, e.g., by opting for deletion instead of in-
sertion of certain conflicting elements. The resolution strategy to prioritise insertion
over deletion preserves all model elements that are parts of conflicts and allows us
to highlight these elements to support manual conflict resolution. We summarise the
main effects of the conflict resolution strategy by Fact 9.34 below (see also Thm. 3
in [EET11] for the construction).

Fact 9.34 (Conflict resolution by tentative merge construction). Given two con-

D;
flicting graph modifications m; = G = H; (i = 1, 2) (i.e., they are not conflict-free).
The tentative merge construction yields the merged graph modification m = (G «
D — H) and resolves conflicts as follows:

1. If (my, my) are in delete—delete conflict, with both m; and m, deleting x € G, then
x is deleted by m.

2. If (my,my) are in delete—insert conflict, there is an edge e, created by my with
x = s(ey) or x = t(ey) preserved by my, but deleted by my. Then x is preserved by
m (and vice versa for (mp, my) in delete—insert conflict). A

Note that attributed nodes, which shall be deleted on the one hand and change
their values on the other hand, would cause delete/insert—conflicts and therefore
would not be deleted by the tentative merge construction. Attributes which are dif-
ferently changed by both modifications would lead (tentatively) to attributes with
two values. In many cases, the domain languages require single-valued attributes,
which means that the user has to restore the conflict and choose the value for the
attribute.

Throughout the paper, we depict conflict resolution based on Go m G
the tentative merge construction and manual modifications as | b \yres |
shown to the right, where m; and m, are conflicting graph mod- ’ v
ifications, and H is their merge after conflict resolution. The
dashed lines correspond to derived graph modifications (G; <« D3 — H) and

(G, « D4 — H) with interfaces D3 and Dy.

Gy e > H

Example 9.35 (Conflict resolution by tentative merge construction). Consider the
conflict resolution square 3:Res in the upper right part of Fig. 9.29. The first mod-
ification le’  deletes the node for Paul Page and updates the attribute values for

! Note that the conflict-free case is a special case of the tentative merge construction.
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Fig. 9.27 Consistency creating operations

Surname and Salary of Lily Lee. The second modification le relinks the node of
Paul Page from the marketing department to the technical department and updates
his Salary attribute. The result of the tentative merge construction keeps the Paul
Page node, due to the policy that nodes that are needed as source or target for newly
inserted edges or attributes will be preserved. Technically, the attribute values are
not preserved automatically. This means that the tentative merge construction only
yields the structure node of Paul Page (and the updated attribute), and the modeller
should confirm that the remaining attribute values should be preserved (this is nec-
essary for the attribute values for FirstName, LastName and Birth of the node for
Paul Page).

Variant: As a slight variant to the above example, let us consider the case that the
modification le also modifies the surname of Lily from “Lee” to “Smith”. Since the
same attribute is updated differently by both modifications, we now have two tenta-
tive attribute values for this attribute (we would indicate this by <Archer|Smith> as
attribute value for the Surname attribute of Lily). This can be solved by the user as
well, who should select the proper attribute value. A

The merge construction cannot be applied directly to detect and solve conflicts
in concurrent model synchronisation. The problem is that source and target updates
occur in different graphs and not the same one. To solve this problem we use the
forward and backward propagation operations (Sect. 9.2), allowing us to see the
effects of each source or target update on the other domain, so that we can apply
the merge construction. In addition, we use two further operations, CCS and CCT,
to reduce a given domain model to a maximal consistent submodel according to the
TGG.

Given a source update df : Gg - G‘lg , the consistency creating operation CCS
(left part of Fig. 9.27) computes a maximal consistent subgraph Gf,c € L(TGG)S
of the given source model GY. The resulting update from G§ to G5 is derived by
update composition df,c o df. The dual operation CCT (right part of Fig. 9.27)
works analogously on the target component.

Remark 9.36 (Execution of consistency creating operation CCS). Given a source
model Gf , the consistency creating operation CCS is executed by computing ter-

minated forward sequences (Hy ”=F> H,) with Hy = (Gf — @ — @). If the sets
of operational rules of the TGG are deterministic (see Def. 8.49 and Rem. 8.51),
then backtracking is not necessary. If G} is already consistent, then G} . = G,
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Fig. 9.28 Concurrent model synchronisation with conflict resolution (forward case: fSynch)

which can be checked via the operation CCS. Otherwise, the operation CCS cre-
ates a maximal consistent subgraph Gy . of G}. G} . is maximal in the sense that
there is no larger consistent submodel HS of Gf, i.e., with Gf,c C H° C Gf and
HS € L(TGG)S. From the practical point of view, the operation CCS is performed
using forward translation rules (see Sect. 7.4), which mark in each step the elements
of a given source model that have been translated so far. This construction is well

defined due to the equivalence with the corresponding triple sequence (@ é::. H,)
via the triple rules 7R of the TGG (see Fact 7.36 and App. B in [HEEO11]). A

The concurrent model synchronisation operation CSynch derived from the given
TGG is executed in five steps. Moreover, it combines the operations fSynch and
bSynch depending on the order in which the steps are performed. The used propa-
gation operations fPpg, bPpg are required to be correct and we can take the derived
propagation operations according to Sect. 9.2. The steps of the operation fSynch are
depicted in Fig. 9.28 and Construction 9.37 describes the steps for both operations.

Construction 9.37 (Operations fSynch and bSynch). In the first step (operation
CCS), a maximal consistent subgraph Gf,c € L(TGG)® of G} is computed (see
Rem. 9.36). In Step 2, the update df,cc is forward propagated to the target do-
main via the operation fPpg. This leads to the pair (7| p, d{ r)» and thus to the pair
(d1 P le) of target updates, which may show conflicts. Step 3 applies the conflict
resolution operation Res including optional manual modifications. In order to en-
sure consistency of the resulting target model G2 rc» We apply the consistency cre-
ating operatlon CCT (see Rem. 9.36) for the target domain and derive the target
model G} ., € L(TGG)" in Step 4. Finally, the derived target update dJ .. is
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Fig. 9.29 Concurrent model synchronisation with conflict resolution applied to the organisational
model example

backward propagated to the source domain via the operation bPpg, leading to the

source model G2 rcp and the source update dg,c - Altogether, we have constructed

a nondeterministic solution (rz,dg,dzT ) of the operation fSynch for the premise
(ro,ds,dT) with (r2,d5,dY) = (rarcs, dg’FCB,diFCB) (see Fig. 9.28). The concur-
rent synchronisation operation bSynch is executed analogously via the dual con-
structions. Starting with CCT in Step 1, it continues via bPpg in Step 2, Res in
Step 3, and CCS in Step 4, and finishes with fPpg in Step 5. The nondeterministic
operation CSynch = (fSynch U bSynch) is obtained by joining the two concurrent

synchronisation operations fSynch and bSynch. A

Example 9.38 (Concurrent model synchronisation with conflict resolution). The
steps in Fig. 9.29 specify the execution of the concurrent synchronisation in
Ex. 9.32. Since the given model Gg is consistent, Step 1 (1:CCS) can be omit-
ted, i.e., G . = G} and d} .. = dy. Step 2:fPpg propagates the source update to
the target domain: The attributes of the node for Lilly Lee are updated and the node
representing Paul Page is deleted. The resolution 3:Res resolves the conflict be-
tween the target model update dT and the propagated source model update on the
target side d LF (see Ex. 9.35). We assume that the user selected the old attribute
value for the blrthday of Paul Page. Step 4:CCT does not change anything, since
the model is consistent already. Finally, all elements that were introduced during
the conflict resolution and concern the source domain are propagated to the source
model via (5:bPpg). This concerns only Paul Page, who now is assigned to the
technical department. According to the TGG, such persons are not reflected in the
source model, such that the backward propagation does not change anything in the
source model. The result of the concurrent model synchronisation with conflict res-
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olution is r» pcp, where as many as possible of both proposed update changes have
been kept and insertion got priority over deletion.

Variant: Let us consider the case that both modifications dIT dlr’ - insert addition-
ally an edge of type married between the nodes of Lilly Lee and Alex Archer. The
conflict resolution operation 3:Res would yield two married edges between the two
nodes. But the subsequent consistency creating operation 4:CCT would detect that
this is an inconsistent state and would delete one of the two married edges. Note
that the user can already detect this conflict in Step 3 and resolve it by deleting one
of the edges. A

Remark 9.39 (Execution and termination of concurrent model synchronisation).
Note that the efficiency of the execution of the concurrent synchronisation opera-
tions can be significantly improved by reusing parts of previously computed trans-
formation sequences as described in App. B in [HEEO11]. In [HEO* 11a], we have
provided sufficient static conditions that ensure termination of the propagation op-
erations and they can be applied similarly for the consistency creating operations.
Update cycles cannot occur, because the second propagation step does not lead to a
new conflict. A

Note that the operation CSynch is nondeterministic for several reasons: the
choice between fSynch and bSynch, the reduction of domain models to maximal
consistent sub graphs, and the semi-automated conflict resolution strategy.

Definition 9.40 (Derived concurrent TGG synchronisation framework). Let
fPpg and bPpg be correct basic synchronisation operations for a triple graph gram-
mar TGG and let the operation CSynch be derived from fPpg and bPpg according
to Construction 9.37. Then the derived concurrent TGG synchronisation framework
is given by CSynch = (TGG, CSynch). A

9.3.3 Correctness and Compatibility

Our main results show correctness of the derived concurrent TGG synchronisation
framework (Def. 9.40) and its compatibility with the derived basic TGG synchroni-
sation framework (Sect. 9.2). Correctness of a concurrent model synchronisation
framework requires that the nondeterministic synchronisation operation CSynch
ensures laws (a) and (b) in Def. 9.33. In other words, CSynch guarantees consis-
tency of the resulting integrated model and, moreover, the synchronisation of an
unchanged and already consistently integrated model always yields the identity of
the input as output (law (a)).

According to Theorem 9.41 below, correctness of given forward and backward
propagation operations ensures correctness of the concurrent model synchronisation
framework.

Theorem 9.41 (Correctness of concurrent model synchronisation). Let fPpg
and bPpg be correct basic synchronisation operations for a triple graph gram-
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mar TGG. Then the derived concurrent TGG synchronisation framework CSynch =
(TGG, CSynch) (see Def. 9.40) is correct (see Def. 9.33). A

Proof.

Law (a) in Fig. 9.26: Let (r,d5,d!) €

s 1 s C o1 7
R®4s @ A7) with r = ¢ € C = G +— G «+—G —>G

L(TGG) and identities & = id*: |VceC: 1. Ucsyneh (@)
Gy >G5, dl = id: Gl - GI, g v
such that G _ (GS o GT) _ G Qv c>G

(G§ & Gl) = Gy. We have to show that the operation CSynch yields (c, id® , id")
as result, i.e., no further result is possible.

We apply the operation fSynch according to Fig. 9.28 and Construction 9.37.
Since r = Gy € L(TGG) and Gf = Gg € L(TGG)S we know that there is a model

transformation sequence sy = (Gf s 06 tr=r> G, GlT) based on forward rules using
the completeness result for model transformations based on forward rules (see The-
orem 8.4). Therefore, the operation CCS yields the maximal consistent subgraph
G} = G} and update d} .. = id®. By correctness of the operation fPpg (law (al)
in Fig. 9.5) we derive that the second step yields the target model G{ P = Gg , the
correspondence r; p = r and the target update d{ » = id". Therefore, the resolu-
tion in Step 3 concerns the updates d{ = id" and df , = id", which are parallel
independent by definition, leading to the merging result G} .. = G and updates

T
d2,FC

sary and therefore not executed. Again, since Gg € L(TGG)T we know that there

= id" and d'} #c = id". This means that manual modification is not neces-

is a model transformation sequence sg = (Gg s H(’) 25 H), Gf ) based on backward
translation rules using the dual version of the completeness result for model trans-
formations based on forward rules (see Theorem 8.4). Therefore, the operation CCT
yields the maximal consistent subgraph G .., = G{ and update d} = id". By cor-
rectness of the operation bPpg (law (b1) in Fig. 9.5) we derive that Step 5 yields the
source model Gi rep = Gg, the correspondence 1 pcp = r1,r = r = ¢ and the source
update d5 ., = id® . Altogether, the operation fSynch yields the result (c, id®, id") as
required by law (a). The same result holds for the operation bSynch using the sym-
metry of the precondition and the symmetric definition of TGGs and the derived
operations. Therefore, the result holds for the concurrent synchronisation operation

CSynch.

Law (b) in Fig. 9.26: Let (r9,d;,d]) € (R® & " &’
As ® Ar) as depicted on the right and in G} «— G} = G — G
Fig. 9.26. We have to show that the concurrent | I » )
synchronisation operation yields a consistent | CSynch i
correspondence r, € L(T'GG). GoS 4oy Gy T

We apply the concurrent synchronisation ri€
operation fSynch according to Fig. 9.28 and Construction 9.37. All steps are well
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F S K i
Gy +—— G} G L6 "Gl S aGr
G‘f € L(TGG), |&s N:prg dar = id ] {}:Csynch Jdr
Gl =G/ Gi - G

Fig. 9.30 Compatibility with synchronisation of single updates (forward case)

defined according to Rem. 9.39. Step 4 (operation CCT) provides a maximal consis-
tent subgraph Gg’ rep € L(TGG)T. Therefore, we can apply law (b2) in Fig. 9.5 and
derive that the operation bPpg in Step 5 yields a consistent correspondence r; (see
Theorem 9.25). The proof for the concurrent synchronisation operation bSynch is
analogous using the symmetric definition of TGGs and the dual definitions of the
steps according to Rem. 9.39. Therefore, the concurrent synchronisation operation

CSynch always yields a consistent correspondence r, € L(TGG). O

Example 9.42 (Correctness and compatibility). In Sect. 9.2, we have presented a
suitable realisation of correct propagation operations derived from the given TGG.
This allows us to apply the following main results in Theorem 9.41 and Theo-
rem 9.44 to our case study and we derive a concurrent model synchronisation frame-
work that is correct and compatible with the basic model synchronisation frame-
work. A

In addition to correctness, we show that the concurrent TGG synchronisation
framework is compatible with the basic synchronisation framework. This means
that the propagation operations (fPpg, bPpg) (see Sect. 9.2) provide the same result
as the concurrent synchronisation operation CSynch if one update of one domain
is the identity. Fig. 9.30 visualises the case for the forward propagation operation
fPpg. Given a forward propagation (depicted left) with solution (r,d"), a specific
solution of the corresponding concurrent synchronisation problem (depicted right)
is given by sol = (r1,id,d"), i.e., the resulting integrated model and the resulting
updates are the same. Due to the symmetric definition of TGGs, we can show the
same result concerning the backward propagation operation, leading to the general
result of compatibility in Theorem 9.44.

Definition 9.43 (Compatibility of concurrent with basic model synchronisa-
tion). Let fPpg, bPpg be basic TGG synchronisation operations and let CSynch be
a concurrent TGG synchronisation operation for a given TGG. The nondeterminis-
tic synchronisation operation CSynch is compatible with the propagation operations
fPpg and bPpg if the following condition holds for the forward case (see Fig. 9.30)
and a similar one for the backward case:

Y (d5, ry) € As ® Rel, with (d° : Gg — Gf) A (Gf e L(TGG)®):
(id, fPpg(d®, ry)) € CSynch(d®, ro, id)



9.4 Related and Future Work 291

Theorem 9.44 (Compatibility of concurrent with basic model synchronisation).
Let fPpg and bPpg be correct basic synchronisation operations for a given TGG and
let the operation CSynch be derived from fPpg and bPpg according to Construc-
tion 9.37. Then, the derived concurrent TGG synchronisation operation CSynch is
compatible with propagation operations fPpg, bPpg. A

Proof. Let CSynch be obtained from the derived forward and backward synchroni-
sation operations fSynch and bSynch, i.e., CSynch = (fSynch U bSynch). Ac-
cording to Def. 9.43, we have to show for the forward case that V (d%,ry) €
As @ Rwithd®: G5 - GS A GY € L(TGG)S it holds that (id, Ppg(d®,ry)) €
CSynch(d®, ry, id). The result for the backward case holds by dualisation due to
the symmetric definition of TGGs and the derived operations.

Let rp = (G & G) with Gy € L(TGG)® and let d° : G — G be a source
model update. Let further (r1,d”) be the result of applying fPpg to (d°,ry) with
ri = (G5 & GT)and d": GI — GT. We show that (id, r,d") € {Synch(d®, ry, id)
according to Fig. 9.28 and Construction 9.37. Since Gf € L(TGG)S, we have that
Step 1 (CCS) yields the maximal consistent subgraph G} . = G} (see Rem. 9.36)
and source update dy. = id: G; — GY. Thus, Step 2 applies the operation fPpg
to the same input as in the precondition, such that we derive the correspondence
ri.r = r; and target model update d{F = d’. By correctness of fPpg (law (a2) in

Fig. 9.5) we know that r; = r y € L(TGG), and therefore G € L(TGG)". In Step
3 (operation Res), the merge construction is applied to d’ and the target update
id, which does not delete or create anything (the corresponding minimal rule is the
empty rule). This means that