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“Though what I’m saying is perhaps not new, I have
felt it quite vividly on this new occasion.”

J. W. Goethe, in a letter from Naples, 17 May 1787

Foreword

The present textbook is my best effort to write a lively, problem-oriented and under-
standable introduction to classical modern algebra. Besides careful exposition, my
goals were to lead the reader right away to interesting subject matter and to assume
no more background than that provided by a first course in linear algebra.

In keeping with these goals, the exposition is by and large geared toward certain
motivating problems; relevant conceptual tools are introduced gradually as needed.
This way of doing things seems more likely to hold the reader’s attention than a
more or less systematic stringing together of theorems and proofs. The pace is more
leisurely and gentle in the beginning, later faster and less cautious, so the book lends
itself to self-study.

This first volume, primarily about fields and Galois theory, in order to deal with
the latter introduces just the necessary amount of group theory. It also covers basic
applications to number theory, ring extensions and algebraic geometry. I have found
it advantageous for various reasons to bring into play early on the notion of the
algebraic closure of a field. Naturally, Galois’ beautiful results on solvable groups
of prime degree could not be left out, nor could Dedekind’s Galois-theoretical arith-
metic reduction principle. Infinite Galois extensions are not neglected either. Finally,
it seemed appropriate to include the fundamentals of transcendental extensions.

At the end of the volume there is a collection of exercises, interspersed with
remarks that enrich the text. The problems chosen are of widely varying degrees of
difficulty, but very many of them are accompanied by hints — sometimes amounting
to an outline of the solution — and in any case there are no outright riddles. These
exercises are of course meant to allow readers to practice their grasp of the material,
but they serve another important purpose as well: precisely because the main text
was kept short and to the point, without lots of side-results, the appendix will give
the reader a better idea of the wealth of consequences and applications derived from
the theory.

The linear algebra facts used, when not totally elementary, are accompanied by
references to my Lineare Algebra, now published by Spektrum Akademischer Verlag
and abbreviated LA I and LA II. This has not been translated, but equivalent spots in
other linear algebra textbooks are not hard to find. Theorems and lesser results are
numbered within each chapter in sequence, the latter being marked F1, F2, : : :— the
F is inherited from the German word Feststellung. Allusions to historical matters
are made only infrequently (but certainly not at random). When a theorem or other
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result bears the name of a mathematician, this is sometimes a matter of tradition
more than of accurate historical origination.

The first German edition of this book appeared in 1987. I thank my colleagues
who, already back at the writing stage, favored it with their interest and gave me
encouragement — none more than the late H.-J. Nastold, with whom I had many
fruitful conversations, W. Lütkebohmert, who once remarked that there was no
suitable textbook for the German Algebra I course, O. Willhöft, who suggested
several good problems, and H. Schulze-Relau and H. Epkenhans, whose critical
perusal of large portions of the manuscript was a great help. The second (1991) and
third (1995) editions benefited from the remarks of numerous readers, to whom I
am likewise thankful, in particular R. Alfes, H. Coers, H. Daldrop and R. Schopohl.
The response and comments on the part of students were also highly motivating.
Special thanks are due to the publisher BI-Wissenschaftsverlag (later acquired by
Spektrum) and its editor H. Engesser, who got me going in the first place.

The publication of this English version gives me great pleasure. I’m grateful
to Springer-Verlag New York and its mathematics editor Mark Spencer, for their
support and competent handling of the project. And not least for seeing to it that
the translation be done by Silvio Levy: I have observed the progress of his task with
increasing appreciation and have incorporated many of the changes he suggested, in
a process of collaboration that led to noticeable improvements. Further perfecting
is of course possible, and readers’ suggestions and criticism will continue to be
welcome and relevant for future reprints.

Münster, July 2005 Falko Lorenz
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1

Constructibility with Ruler and Compass

1. In school one sometimes learns to solve problems where a certain geometric
figure must be constructed from given data. Such construction problems can be
quite difficult and afford a real challenge to the student’s intelligence and ingenuity.

If you have tried long and hard to solve a certain construction problem, to no
avail, you might then wonder whether the required construction can be carried out at
all. Whether a construction exists is a fundamental question: so much so that there
are some construction problems that had already been entertained by the ancient
Greeks, and yet remained unsolved for two thousand years and more.

For example, nobody has ever been able to state a procedure capable of dividing
an arbitrary angle into three equal angles, using ruler and compass. Now, of course
construction problems range widely in degree of difficulty: think of the similar-
looking problem of dividing an arbitrary segment into three equal parts using ruler
and compass — not totally trivial, but after some thought just about anyone can
carry out the construction. The problem of constructing a regular pentagon is also
solvable, but already somewhat more complicated. So it is certainly understandable
that even a construction problem that has eluded would-be solvers for a long time
should leave room for hoping that success might yet be achieved through greater
ingenuity. Perhaps, then, the question of whether a particular construction with ruler
and compass is possible is not one that comes to mind immediately.

Even if someone asks this question of principle, it is not clear a priori that there
is a promising way to tackle it. Yet there is, as the development of algebra since
Gauss (1777–1855) has shown. I would like to explain now, at the beginning of our
introduction to algebra, how one can arrive at broad statements about the general
constructibility problem, by translating this geometric problem into an algebraic one.
As we elaborate on this, we will have the chance to motivate quite naturally certain
fundamental algebraic concepts. Moreover the subsequent treatment of the derived
algebraic problem will require many of the tools usually treated in an Algebra I
course. This procedure has the advantage that one starts from a concrete and easily
understood question and keeps the goal of solving it in mind as one goes along.

Let it be said, however, that the problem of constructibility with ruler and com-
pass by no means played a central role in the development of algebra. In this
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regard the problem of solving algebraic equations by means of radicals was surely
more significant, not to mention other motivations and stimuli coming from outside
algebra — from number theory and analysis, for example. Incidentally, in due time
we will make precise the problem of solubility of equations by radicals and keep it
in view as the exposition unfolds.

2. First let’s describe properly what is to be understood by constructibility with
ruler and compass. For this we start from the plane �2 of elementary geometry. A
construction problem asks whether a certain point P of the plane can be constructed
with ruler and compass, starting from a given initial set M of points. Thus, let a
subset M of �2 be given (we may as well assume it has at least two points). Then
look at the set

M D ˚

P 2 �2
ˇ

ˇ P is constructible from M with ruler and compass
�

;

to be defined more precisely as follows. Let

Li.M /D set of straight lines joining two distinct points of M ,

Ci.M /D set of circles whose center belongs to M

and whose radius equals the distance between two points of M .

Then consider the following elementary steps for the construction of “new” points:

(i) intersecting two distinct lines in Li.M /;

(ii) intersecting a line in Li.M / with a circle in Ci.M /;

(iii) intersecting two distinct circles in Ci.M /.

Let M 0 be the union of M with the set of points obtained by the application of
one of these steps. The points of �2 that can be obtained by repeated application
of steps (i)–(iii), starting from M and replacing M by M 0 each time, are said to be
constructible from M with ruler and compass. They form the set M .

We just mention right now four well known constructibility problems that were
posed already by the ancient Greeks.

˛: Trisection of the angle.

Given an angle of measure ', construct an angle of
measure '=3 with ruler and compass. We regard
the given angle as determined by its vertex S and
points Q;Q0 on each of its sides; one may as well
assume that Q and Q0 are equidistant from S . Let
X be the point indicated in the figure. The question
then is whether X 2 fS;Q;Q0g.

QS

Q0

X

'
'=3

ˇ: Doubling of the cube (Delian problem).

Given a cube of side length a, find a cube of twice the volume. The side length x of
the desired cube satisfies x3 D 2a3, so x D a

3
p

2. Thus let P;Q;X be points on the
real line such that PQ D a and PX D a

3
p

2; the question is whether X 2 fP;Qg.
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� : Quadrature of the circle.

Given a circle, construct a square of the same surface area. The given circle of
radius r is determined by points P and Q a distance r D PQ apart. The side length
x of the desired square must satisfy x2 D�r2, so x D r

p
� . What must be decided,

then, is whether some point X such that PX D r
p
� belongs to fP;Qg.

ı: Construction of a regular n-gon (n-section of the circle).

As before, we think of the circle as being given by
two points P and Q, the center and a point on the
circumference. Let X be the point shown on the
right. For what natural numbers n does X lie in

fP;Qg ? P
Q

X

2�=n

This is the case, for example, for n D 6 (and
therefore for all numbers of the form n D 3 �2m):
it is enough to draw a circle of radius PQ with
center Q. By successively repeating the procedure
with the newly found points one gets the well known rosette:

3. To make the problem of constructibility with ruler and compass accessible, one
must first “algebraize” it. To that end it is useful to employ the identification

�2 D �;

that is, to regard points in the plane as complex numbers, and so take advantage of
the possibility not only of (vector) addition but also of multiplication. Assuming
the basic properties of the field � of complex numbers, the problem of dividing the
circle into n parts (see ı above) amounts to the following question: Is it the case
that

e2� i=n 2 f0; 1g ?

The next statement points out that the fundamental algebraic operations of �

can be described constructively.

F1. Let M be any subset of � containing the numbers 0 and 1. Then:

(1) i 2 M ;
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(2) z 2 M ) z 2 M ;

(3) z 2 M ) Re z; Im z 2 M ;

(4) z 2 M ) �z 2 M ;

(5) z1; z2 2 M ) z1 C z2 2 M ;

(6) z1; z2 2 M ) z1z2 2 M ;

(7) z 2 M; z ¤ 0 ) 1=z 2 M .

Proof. (1) The line connecting 0 and 1, that is, the real line �, belongs to Li.M / by
definition. Intersecting � with the unit circle, which belongs to Ci.M /, we see that
�1 2 M . If we now construct the perpendicular bisector of the interval Œ�1; 1� in
the well-known way and intersect it with the unit circle, we obtain i 2 M .

(2) Drop a perpendicular from z to �. From the foot of this perpendicular, say a,
draw a circle whose radius is the distance from a to z. Its second intersection with
the straight line through z and a gives z 2 M .

(3) As just verified, we have a D Re z 2 M . To obtain b D Im z, draw the
perpendicular to the imaginary axis through z, and then transfer to � the absolute
value of the foot bi of the perpendicular.

(4) Intersect the line through 0 and z with the circle of radius jzj and center 0.

(5) Intersect the circle of center z1 and radius jz2j with the circle of center z2 and
radius jz1j. One of the intersections is the vertex z1 C z2 of the parallelogram
determined by z1; z2.

(6) If z1 D a1 C ib1 and z2 D a2 C ib2 we have

z1z2 D .a1a2 � b1b2/C .a1b2 C a2b1/i:

Now z1; z2 2 M implies a1; b1; a2; b2 2 M , by (3). If we assume the claim is
true for real numbers, it will also be true for arbitrary complex numbers, because of
(4) and (5). Therefore we must prove that given real numbers r1 and r2,

r1; r2 2 M ) r1r2 2 M:

Clearly one can assume r1; r2 > 0. To complete the proof, consider this diagram:

z

0 1 r1 r2 x
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Here z is the appropriate intersection of the line through 0 and 1 C i with the
circle of radius r2 and center 0, and the dashed line indicates a parallel to the line
through 1 and z. By similarity of triangles we have xWr2 D r1W1, and therefore
x D r1r2. Since x lies in M , this proves the claim.

(7) Since z�1 D z � .zz/�1, it suffices in view of the earlier parts to show that if
r > 0 lies in M , so does r�1. To do this we refer to the following diagram:

0 x 1 r

By similarity of triangles, r W1 D 1Wx, and this proves the claim since x 2 M .
˜

As a consequence of F1 we will explicitly state again:

F2. Let M be a subset of � containing the points 0 and 1. Then M is a subfield of
�. It is called the field of numbers constructible from M .

In particular, � � M , since � is the smallest subfield of �. Also the set
fa C bi j a; b 2 �g — which incidentally is also a subfield of M — is contained
in M . But the field M is substantially larger:

F3. The field M is quadratically closed, that is, for every z 2 � we have

(8) z 2 M ) p
z 2 M;

where
p

z represents any complex number w with w2 D z .

Proof. Suppose w2 D z D rei' . Letting
p

r be the positive square root of r 2 �,
we have w D ˙p

r ei'=2. Since it is always possible to bisect an angle with ruler
and compass, it is enough in order to prove (8) to show that for any r > 0 in M ,
the square root

p
r is also in M . To do this we raise the perpendicular to the

segment Œ�1; r � through 0 and intersect it with the semicircle constructed over the
same segment, to obtain a point v:

0�1 r

v
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Then x D jvj belongs to M . By Thales’ Theorem the triangle with vertices
�1; v; r has a right angle; applying the formula for the altitude of a right triangle
we get x2 D 1 � r , and so x D p

r . ˜

4. Now let’s return to the statement of F2, which says that M is a field containing
� as a subfield. Trivially,

(9) M � M:

Thus the field E WD M also contains all numbers that can be obtained from k WD �

and from M by means of arithmetic operations in E. This serves as the motivation
for a simple but fundamental definition:

Definition 1. Let E be a field and k a subfield of E. We say that E is an extension
of k. Let A be any subset of E. Set

k.A/ WD intersection of all subfields F of E such that k � F and A � F .

We call k.A/ the subfield of E generated by A over k, and we also say that k.A/

arises from k by adjoining to k the elements of A. (The corresponding noun is
adjunction.) Clearly, k.A/ is the smallest subfield of E containing k and A. In the
case of a finite set A D f˛1; : : : ; ˛mg we also denote the field k.A/ by

k.˛1; ˛2; : : : ; ˛m/:

Example. Take E D �, k D �, A D fig. We claim that

�.i/D fa C bi j a; b 2 �g:
Proof. Let F0 be the set on the right-hand side. Then � � F0 and fig � F0 no
matter what. Since �.i/ is a subfield of E, we also have F0 � �.i/. To prove the
claim we must show that F0 is a subfield of �. Clearly, F0 is closed under addition
and multiplication. There remains to show that if z D aCbi ¤ 0 lies in F0, so does
z�1. But

z�1 D z.zz/�1 D a � ib

a2Cb2
D a

a2Cb2
� i

b

a2Cb2
;

so z�1 does lie in F0. ˜

Warning. In the situation of Definition 1 it is not generally true that

k.˛/D fa0 C a1˛C � � � C an˛
n j ai 2 k; n � 0g:

We will return to this point in Chapter 3.

Now let’s return to the earlier situation. We know that M is an extension of
� containing M . Thus it contains the well-defined subfield �.M / obtained from
� by adjunction of M . We set M D fz j z 2 M g and consider the subfield

(10) K WD �.M [ M /
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of M obtained from � by adjunction of the set A WD M [M (because of (2) and
(9), we know that A � M ). Since M � K � M we obviously have

(11) M D K:

In other words, when considering the set of numbers constructible from a set, the
initial set M can always be replaced by the field given by (10). By the way, the
field K is mapped to itself under complex conjugation:

(12) K D K:

This is clear from (10), but we will justify it in detail for pedagogical purposes: By
definition, K D �.A/, and so � D � � K and A D A � K. By Definition 1, then,
�.A/ � K, that is, K � K. By complex conjugation we then get K � K D K.
(Where have we used the fact that the complex conjugate of a subfield of � is also
one?)

F4. Let K be any subfield of � with K D K.

(a) If z is the intersection of two distinct lines in Li.K/, then z 2 K.

(b) If z is an intersection of a line in Li.K/ with a circle in Ci.K/, then

.�/ there exists w 2 � with w2 2 K and z 2 K.w/.

(c) If z is an intersection of two distinct circles in Ci.K/, condition .�/ again holds.

These statements simply reflect the well-known fact that the analytic counter-
part of the elementary construction steps (i)–(iii) can only lead to solving linear
or quadratic equations. Therefore we postpone the proof of F4 and instead derive
from F4 certain consequences of great import to the constructibility problem. First
we equip ourselves with appropriate terminology:

Definition 2. Let E be an extension of the field K.

(a) We say that E arises from K by adjoining a square root if there exists w 2 E

such that
w2 2 K and E D K.w/:

We call w a square root of the element v WDw2 of K, and we write w D p
v.

(b) We say that E arises from K by successively adjoining square roots if there
is a chain K D K0 � K1 � � � � � Km D E of subfields Ki of E where each
Ki is obtained from Ki�1 by adjoining a square root.

Examples. 1. E D �.
p

2/ is obtained from � by adjoining a square root.

2. E D �.z/, where z D e2� i=3, is obtained from � by adjoining a square root.
For since z D �1

2
C 1

2
i
p

3, we have �.z/D �.
p�3/.
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3. E D �.e2� i=5/ is obtained from � by successively adjoining square roots.
This is not immediately obvious, but can be seen as follows: The complex
number w D e2� i=5 satisfies w4 Cw3 Cw2 CwC 1 D 0, since w5 D 1 and
w ¤ 1. Dividing by w2 yields

(13) w2 Cw1 C 1 Cw�1 Cw�2 D 0:

Now set z WDwCw�1; then (13) becomes, via .wCw�1/2 Dw2 C2Cw�2,

(14) z2 C z � 1 D 0:

This equation has the solutions z D�1
2

˙ 1
2

p
5. The field K1 WD�.z/ therefore

satisfies
K1 D �.

p
5/:

But E D K1.w/, and w obviously satisfies the quadratic equation

(15) w2 � zwC 1 D 0;

whose coefficients lie in K1. Thus, as can be seen from the quadratic formula,
E is obtained from K1 by adjoining a square root of z2 �4, which lies in K1.

The following theorem fulfills our first goal, the reduction of the geometric
problem of constructibility with ruler and compass to a purely algebraic problem.

Theorem 1. Suppose M � � contains 0 and 1. Set

K WD �.M [ M /:

For a given z 2 �, the following statements are equivalent:

(i) z 2 M , that is, z is constructible from M with ruler and compass.

(ii) z lies in a subfield E of � obtainable from K by successively adjoining square
roots.

Proof. (ii) ) (i): By assumption, there exists a finite chain of subfields of �, say

K D K0 � K1 � � � � � Km D E;

satisfying Ki D Ki�1.wi/ with w2
i 2 Ki�1 for each i , and also z 2 E. We also

know that K0 D K � M . Now consider the field K1 D K.w1/, with w2
1

2 K. By
F3, w1 lies in M because w2

1 does. Since M is a field, we have K.w1/� M ,
that is, K1 � M . Analogously we get K2 � M , and so on until we finally get
E D Km � M . Since z 2 E we have z 2 M .

(i) ) (ii): We first consider a z 2 � arising from M by applying only one of the
elementary construction steps (i), (ii), (iii). Now we make use of F4. We conclude
that z 2 K in the case of step (i); in cases (ii) and (iii) we get z 2 K.w/, where
w 2 � is such that w2 lies in K. We claim that in each case z lies in a subfield
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K0 of � obtained from K by successively adjoining square roots and satisfying the
condition

(16) K0 D K0:

In case (i) this is clear; see (12). In cases (ii) and (iii) consider the field

(17) K0 D K.w;w/D K.w/.w/:

It clearly satisfies condition (16). Sincew2 2K, we havew2 Dw2 2K DK �K.w/,
so by (17) K0 is indeed obtained from K by successively adjoining square roots.

For an arbitrary z 2 M the assertion follows by induction on the number of
elementary steps needed to construct z. ˜

Now that Theorem 1 has accomplished the desired algebraization of our problem,
the four classical constructibility problems listed earlier can also be reformulated
algebraically:

Doubling of the cube: Does 3
p

2 lie in a subfield of � obtainable from � through
the successive adjunction of square roots?

Quadrature of the circle: Does the number � lie in a subfield of � that can be
obtained from � by successively adjoining square roots?

Construction of a regular n-gon: For what natural numbers n is the complex
number e2� i=n contained in a subfield of � obtainable from � by the successive
adjunction of square roots? (By Example 3 after Definition 2, this is certainly the
case for n D 5: thus a regular pentagon is constructible with ruler and compass. You
are encouraged to derive a practical construction from the calculation in Example 3;
it is not hard to do.)

Angle trisection: Let ' be any real number. Is it the case that the complex
number ei'=3 always lies in a subfield of � obtained from the field

(18) K D �.ei'/

by successively adjoining square roots? (Note: For z WDei' we have z De�i' Dz�1,
so �.z; z/ D �.z/, and (18) does indeed represent the right ground field for the
purposes of Theorem 1.)

5. We now carry out the proof of F4. We start with an arbitrary subfield K of �

satisfying K D K.

(a) An arbitrary line g in �2 D � is given by an equation

(19) g D fz0 C tz1 j t 2 �g;
where z0; z1 2 � and z1 ¤ 0. If g 2 Li.K/ we can assume that z0; z1 2 K. Now
suppose that g0 D fz0

0
C t 0z0

1
j t 0 2 �g, with z0

0
; z0

1
2 K, is another line in Li.K/,

distinct from g, and that z 2 g \ g0. There exist uniquely determined real numbers
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t; t 0 such that z D z0 C tz1 D z0
0

C t 0z0
1
. Looking separately at real and imaginary

parts, we see that .t; t 0/ is the unique solution of the system of linear equations

tx1 � t 0x0
1 D x0

0 � x0;

ty1 � t 0y 0
1 D y 0

0 � y0:

Multiplying the second equation by i we get a system of linear equations over K.
It follows that t; t 0 2 K and so z 2 K.

(b) An arbitrary circle c in �2 D � is given by

(20) c D ˚

z j .z � a/.z � a/D r2
�

;

with a 2 � and r > 0 real. Suppose c 2 Ci.K/. Then a 2 K. Since c also contains
an element b from K, and since r2 D .b � a/.b � a/ and K D K, we have r2 2 K.
Now let g 2 Li.K/ be given by (19) and suppose z 2 g \ c. Then there exists t 2 �

with z D z0 C tz1 and, in view of (20),

.z0 C z1t � a/.z0 C z1t � a/D r2:

Multiplying out and dividing by jz1j2, we get an equation

t2 C pt C q D 0;

with p and q in K. Then w WD t C 1
2
p satisfies w2 2 K, and since z D z0 C tz1 and

K.t/D K.w/ we have z 2 K.w/.

(c) Now let two distinct circles c1 and c2 be given and suppose z 2 c1 \ c2. Then z

satisfies a system of equations of the form

(21)
.z � a/.z � a/D r2;

.z � b/.z � b/D s2;

with a; b; r2; s2 2 K and a ¤ b. Subtracting one equation from the other yields

(22) z.b � a/C z.b � a/D c;

with c D r2 � s2 � aa C bb 2 K. Solving equation (22) for z and substituting the
resulting value into the first line of (21), we get for z a quadratic equation with
coefficients in K. The assertion follows immediately. ˜

6. The algebraic translation of the constructibility problem (Theorem 1) thus leads
us to a more detailed study of the extensions of a given field K. In this forthcoming
investigation the following statement is both simple and fundamental:

F5 (Dedekind). Let K be a field and E an extension of K. Then E can be regarded
as a vector space over K.
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Proof. This is clear: we consider on E the existing addition operation and a scalar
multiplication K � E ! E defined simply by restricting the existing multiplication
map E � E ! E of the field E. With these operations E of course obeys all the
axioms of a K-vector space. (Incidentally, by considering on the K-vector space
E thus obtained the original multiplication operation, we can make E into a K-
algebra; for this concept see LA I, p. 87.) ˜

By regarding extensions of a field K as K-vector spaces, one gains access to
the powerful methods of linear algebra, which have demonstrated their fruitfulness
over and over in many different areas of mathematics and applications.

Definition 3. If E is an extension of the field K, we denote by

ŒE WK�
the dimension of the K-vector space E. Instead of ŒE WK� we can also write E WK.
This number is called the degree of E over K.

Examples. (1) As an �-vector space, � D �2, so � W� D 2.

(2) We have �.i/ W � D 2; see the example after Definition 1 and observe that
i … �.

(3) We will see in Chapter 2 that �.
3
p

2/ W� D 3.

(4) Because � is uncountable, the degree � W� cannot be finite.

The usefulness of the viewpoint introduced in F5 becomes apparent already from
the next statement:

F6. Let E be an extension of the field K, and suppose that 1 C 1 ¤ 0 in K. Then
these two statements are equivalent:

(i) E WK D 2.

(ii) E is obtained from K by adjoining a square root that is not already in K.

Proof. Suppose (i) holds, and let ˛ be an element of E not belonging to K. Since
E W K D 2, the set f1; ˛g is necessarily a K-basis of E. In particular there is a
relation of the form

˛2 C p˛C q1 D 0; with p; q 2 K:

For w WD ˛C 1
2
p we then have w2 D 1

4
p2 � q 2 K. Since E D K.˛/D K.w/ this

implies (ii).
Suppose, conversely, that E D K.w/ with w2 DW d 2 K and w … K. Clearly

E0 WD fa C bw j a; b 2 Kg is a subring of E containing K. To prove (i) therefore
we just have to show that for every a C bw ¤ 0 in E0 the inverse .a C bw/�1 also
belongs to E0. This follows from

.a C bw/.a � bw/D a2 � b2d 2 K;

because we know (from w D p
d … K) that a2 � b2d ¤ 0. ˜
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Thanks to F6 we can recast Theorem 1 as follows:

Theorem 10. As before, suppose M � � contains 0 and 1, and set K WD �.M [M /.
Then these two statements are equivalent:

(i) z 2 M .

(ii) There is a finite chain K D K0 � K1 � � � � � Km of subfields of � such that
z 2 Km and

Ki WKi�1 D 2 for 1 � i � m:

This result suggests that we should study the relationship between the degrees
of the extensions in the diagram

(23)

Ě
ˇ

ˇ

ˇ

F̌
ˇ

ˇ

ˇ

K

whose meaning is that F is an extension of K and E is an extension of F .

F7 (Degree formula). Let E be an extension of K and let F be a subfield of E

containing K. Then

(24) ŒE WK�D ŒE WF � � ŒF WK�:
Proof. If E WK is finite, so are E WF and F WK, of course. Now assume

(25) F WK D m and E WF D n;

with m and n natural numbers. We show that E W K is also finite and satisfies
equation (24). Indeed, by (25) there is an isomorphism F ' Km of K-vector spaces
and an isomorphism E ' Fn of F -vector spaces. This results in an isomorphism

E ' Fn ' .Km/n D Kmn

of K-vector spaces. It follows that E WK Dmn, so equation (24) holds. The essential
content of (24) is thus proved. (Incidentally, it is clear how to modify the argument
in case any of the degrees are infinite, so as to prove (24) regarded as an equality
between cardinals.) But in addition we establish the following: If ˛1; : : : ; ˛m form
a basis of F over K and ˇ1; : : : ; ˇn form a basis of E over F , the elements

(26) .˛i ǰ /1�i�m; 1�j�n

form a basis of the K-vector space E. For any ˛ 2 E can be written in the form
˛D P

j bj ǰ with coefficients bj 2 F , which in turn can be written as bj D P

i aij˛i

with aij 2 K; it follows that ˛D P

j

�

P

i aij˛i

�

ǰ D P

i;j aij˛i ǰ , so the elements
in (26) span the K-vector space E. Since E WK D mn they must form a basis. ˜
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We immediately get, as a consequence of F7 (and F6):

F8. If E is obtained from K by successively adjoining square roots,

E WK D 2m for some integer m � 0.

Remark. The converse of F8 is unfortunately not true; see Appendix, §5.7.

At any rate, F8 gives us a necessary condition for a number to be constructible:

F9. Let K be a subfield of � with K D K. If z 2 � is constructible from K,

(27) K.z/ WK is a power of 2:

Proof. Take z 2 K. By Theorem 1, z lies in an extension E of K that can be
obtained from K by successively adjoining square roots. By F8, E W K D 2m is
a power of 2. Since z 2 E we have K.z/ � E. Because of the degree formula
ŒE WK�D ŒE WK.z/� � ŒK.z/ WK�, the integer K.z/ WK is a power of 2, since it divides
E WK. ˜

As remarked, the converse of F9 is not generally true. Only in Chapter 11 will
we be able to explain how condition (27) can be modified to give a necessary and
sufficient condition for the constructibility of a number.

Regarding the four classical constructibility problems listed near the beginning
of this chapter, F9 tells us that we should be investigating the following questions:

˛/ �.ei'=3/ W�.ei'/D ?

ˇ/ �.
3
p

2/ W� D ?

� / �.�/ W� D ?

ı/ �.e2� i=n/ W� D ?

If we can show, for example, that �.
3
p

2/ W � D 3 , this would prove that the
problem of the doubling of the cube is insoluble with ruler and compass.
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Algebraic Extensions

1. Let K be a field and E an extension of K. One writes this assumption in short
as

Let E=K be a field extension;

and the word “field” is often omitted when it can be inferred from the context.
An element ˛ of E is called algebraic over K if there exists a polynomial

f .X /¤ 0 in KŒX � such that
f .˛/D 0:

If ˛ is not algebraic over K, we say that ˛ is transcendental over K.

Remarks. (a) If K D � and E D �, the elements of E algebraic over K are called
simply algebraic numbers, and the elements of E transcendental over K are
called transcendental numbers. Example: ˛ WD 3

p
2 is an algebraic number,

since ˛ is a root of the polynomial X 3 � 2 2 �ŒX �.

(b) The set of algebraic numbers is countable (since �ŒX � is countable and any
nonzero polynomial in �ŒX � has finitely many roots in �). Therefore the set
of transcendental numbers must be uncountable. To actually be able to exhibit
a transcendental number is a different (and much harder) matter.

Theorem 1. Let M be a subset of � containing 0 and 1. Any point z 2 M is
algebraic over K WD �.M [ M /.

The proof will be given later in this chapter. But first we quote a famous result:

Theorem 2 (Lindemann 1882). The number � is transcendental.

Corollary. The quadrature of the circle with ruler and compass is impossible.

Proof. If it were possible, we would have � 2 �; by Theorem 1 then � would be
algebraic, which by Lindemann’s Theorem is not the case. ˜

Lindemann’s Theorem can be proved using relatively elementary algebraic and
analytic arguments, but the proof is on the whole quite intricate. We will go into it
later on (Chapter 17).
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2. Now we start our study of field theory with the following statement:

F1. Let E=K be a field extension. If ˛ 2 E is algebraic over K, then

K.˛/ WK <1:

Proof. Suppose there exists a nonzero polynomial

(1) f .X /D X n C an�1X n�1 C � � � C a0 2 KŒX �

such that f .˛/D0; we have assumed without loss of generality that f is normalized
(has leading coefficient 1). There exists a unique homomorphism of K-algebras '
from the polynomial ring KŒX � into E such that '.X /D ˛ (see page 21); its image

R D im' � E

consists precisely of those elements of E that can be written as polynomial ex-
pressions g.˛/ in ˛ with coefficients in K. But in writing such an expression we
immediately see from the relation

(2) ˛n D �.an�1˛
n�1 C � � � C a1˛C a0/

that only terms of degree less than n are needed, so in fact

(3) R D fc0 C c1˛C � � � C cn�1˛
n�1 j ci 2 Kg:

Thus, as a vector space over K, the dimension of R is at most n. Since R, being
a subring of E, has no zero-divisors, a simple argument (given a bit further down)
shows that R is actually a field. It follows that K.˛/ � R (using the definition of
K.˛/), and therefore that R D K.˛/. From (3) we then get

(4) K.˛/D fc0 C c1˛C � � � C cn�1˛
n�1 j ci 2 Kg:

In particular,

(5) K.˛/ WK � n. ˜

F2. Let R be an integral domain (that is, a commutative ring with no zero divisors
and with 1 ¤ 0), and let K be a subfield of R. If R is finite-dimensional as a K-vector
space, R is a field.

Proof. For a given a ¤ 0 in R, consider the map h W R ! R given by multiplication
by a, namely, h.x/D ax for all x in R. Then h is an endomorphism (linear map)
of the K-vector space R. Since R has no zero-divisors, h is injective. Because R is
assumed finite-dimensional over K, it is also surjective. In particular, there exists
b 2 R such that ab D 1. ˜

Remark. It can be proved in an analogous way that an integral domain that has
finite cardinality is a field.
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3. Let E=K be a field extension, and let ˛ 2 E be algebraic over K. Consider
on the K-vector space K.˛/ the endomorphism h defined by multiplication by ˛.
The minimal polynomial of h is called the minimal polynomial of ˛ over K, and we
denote it by

MiPoK .˛/:

This is the lowest-degree normalized polynomial in KŒX � that has ˛ as a zero. (That
there can be only one such polynomial is clear: if f;g are both normalized and of
degree n, the degree of f � g is less than n.) The degree of f D MiPo˛.K/ is also
called the degree of ˛ over K, and is denoted by Œ˛ WK�.
Example. Consider E D �, K D � and ˛D e2� i=3. Then ˛ is a root of X 3 �1. But
X 3 �1 D .X �1/g.X /, with g.X /D X 2 CX C1; since ˛¤ 1, we have g.˛/D 0.
Let f D MiPoK .˛/; we claim that f D g. Otherwise necessarily degf < deg g, so
f could only be of the form f .X /D X �˛, which is impossible since ˛ … �.

F3. Let E=K be a field extension and let ˛ 2 E be algebraic over K, of degree
n WD Œ˛ WK�. The elements

(6) 1; ˛; ˛2; : : : ; ˛n�1

of E form a basis of K.˛/ over K. In particular,

(7) K.˛/ WK D Œ˛ WK�D deg MiPoK .˛/:

Proof. Let f .X /D X n C� � � Ca1X Ca0 the minimal polynomial of ˛ over K. We
know that

K.˛/ WK � nI
see (5) in the proof of F1. There remains to show that 1; ˛; ˛2; : : : ; ˛n�1 are linearly
independent over K. Suppose there is a relation

(8)
n�1
X

iD0

ci˛
i D 0 with ci 2 K:

Set g.X / WD Pn�1
iD0 ciX

i . If some ci in (8) were nonzero, g.X / would be a nonzero
polynomial in KŒX � of degree less than n and vanishing at ˛. Contradiction! ˜

4. Let E=K be a field extension and assume ˛ 2 E is algebraic over K. Is it the
case that any ˇ 2 K.˛/ is also algebraic over K?

Definition. An extension E=K is called algebraic if every element of E is algebraic
over K. An extension E=K is called finite if E WK <1.

Remarks. �=� is a finite extension, since � W � D 2. The extension �=� is not
algebraic; see Remark (b) in Section 2.1.

An extension E=K is called transcendental if it is not algebraic.
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F4. If an extension E=K is finite, it is also algebraic; for each ˇ 2 E the degree
Œˇ WK� is a divisor of E WK.

Proof. Let E=K be finite of degree n. Given ˇ 2 E, the n C 1 elements 1; ˇ;

ˇ2; : : : ; ˇn of the n-dimensional K-vector space E are linearly dependent. Therefore
there exist a0; a1; : : : ; an 2 K, not all zero, such that

a01 C a1ˇC � � � C anˇ
n D 0:

Thus ˇ is algebraic over K. By F3, Œˇ WK� D K.ˇ/ WK, and K.ˇ/ WK is a divisor
of E WK by the degree formula (Chapter 1, F7). ˜

We now can easily answer in the affirmative the question asked at the beginning
of this section.

F5. Let E=K be a field extension. If ˛ 2 E is algebraic over K, the extension
K.˛/=K is algebraic.

Proof. If ˛ is algebraic over K, we know from F1 that K.˛/=K is finite. But every
finite field extension is algebraic, by F4. ˜

Together, F1 and F4 afford the following criterion:

F6. Let E=K be a field extension. An element ˛ of E is algebraic over K if and only
if K.˛/=K is finite.

Now it is a cinch to prove Theorem 1, which we can reformulate as follows:

Theorem 1. Let M be a subset of � containing 0 and 1. Let K D �.M [ M /. The
field extension M=K is algebraic.

Proof. Take z 2 M . From F9 of Chapter 1 we know that K.z/ WK <1. Then F6
says that z is algebraic over K. ˜

Remark. The converse of F4 is not true: Not every algebraic extension is finite.
This will soon become obvious. In fact a counterexample comes up naturally in our
context: If E D f0; 1g is the field of all numbers constructible from f0; 1g with
ruler and compass, the field extension E=� is algebraic but not finite. (With what
we know so far this is not very easy to prove, but it’s worth thinking about; see §2.5
in the Appendix.)

Among algebraic extensions, finite extensions can be characterized thus:

F7. Let E=K be a field extension. The following conditions are equivalent:

(i) There are elements ˛1; : : : ; ˛m of E, finite in number and algebraic over K,
such that E D K.˛1; : : : ; ˛m/.

(ii) E=K is finite.
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Proof. (ii) ) (i) is clear; all we need to do is choose a basis ˛1; : : : ; ˛m for E=K.
Then we actually have E D K˛1 C � � � C K˛m, and by F4 all the ˛i are algebraic
over K.

To show (i) ) (ii) we use induction over m. For m D 0 there is nothing to
prove. Assume that (i) holds for some m � 1 and set

K0 D K.˛1; : : : ; ˛m�1/:

Then E D K0.˛m/. Since ˛m is algebraic over K, it is a fortiori algebraic over the
larger field K0. By F1 this implies E WK0 < 1. But by the induction hypothesis,
K0=K is finite. The degree formula (Chapter 1, F7) then implies that E=K is finite.

˜

5. Let E=K be a field extension. A subfield L of E containing K is called an
intermediate field of the extension E=K.

F8. Let E=K be a field extension. The subset

F D f˛ 2 E j ˛ is algebraic over Kg
is an intermediate field of E=K. It is called the algebraic closure of K in E. In
particular, the set of all algebraic numbers is a subfield of �.

Proof. Take ˛; ˇ 2 F . Consider the subfield K.˛; ˇ/ of E. By F7 the extension
K.˛; ˇ/=K is finite (prove this again for practice). Now apply F4; all elements of
K.˛; ˇ/ are algebraic over K, so

K.˛; ˇ/� F:

The elements ˛Cˇ, ˛�ˇ, ˛ˇ and 1=˛ (if ˛ ¤ 0) lie in K.˛; ˇ/, and thus also in
F . So F really is a subfield of E. Clearly K � F , since any ˛ 2 K is a zero of
a polynomial X � ˛ 2 KŒX � and therefore algebraic over K. This completes the
proof. ˜

This proof qualifies as easy, but it’s only easy because we have the right notions
at our disposal. Otherwise, would you be able to write down, at the drop of a hat, a
nontrivial rational polynomial that vanishes at the sum of two numbers, given only
rational polynomials vanishing at one and the other number respectively?

F9 (Transitivity of algebraicness). Let L be an intermediate field of the extension
E=K. If E=L and L=K are algebraic, so is E=K (and vice versa).

Proof. Take ˇ 2 E. By assumption ˇ is algebraic over L. Let ˛0; ˛1; : : : ; ˛n�1

be the coefficients of MiPoL.ˇ/; then ˇ is also algebraic over the subfield F WD
K.˛0; ˛1; : : : ; ˛n�1/. By assumption all the ˛i are algebraic over K. Therefore we
can apply F7 to conclude that F W K is finite. But F.ˇ/ WF is also finite, by F6;
therefore the degree formula gives

F.ˇ/ WK <1:

Using F4 we see in particular that ˇ is algebraic over K. ˜
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F10. Let E=K be a field extension and A a subset of E. If all elements of A are
algebraic over K, the extension K.A/=K is algebraic.

Proof. Clearly K.A/ is the union of all subfields of the form K.M /, where M

ranges over finite subsets of A. By F7, each K.M /=K is finite and therefore also
algebraic. Thus K.A/ contains only elements algebraic over K. (Of course F10
also follows directly from F8.) ˜

F11. Let E=K be a field extension, and L1;L2 intermediate fields of E=K. The field

(9) L1L2 WD L1.L2/D L2.L1/

is called the composite of L1 and L2 in E.

(a) If L1=K is algebraic, so is L1L2=L2.

(b) If L1=K is finite, so is L1L2=L2; moreover L1L2 WL2 � L1 WK.

(c) If L1=K and L2=K are algebraic, so is L1L2=K.

(d) If L1=K and L2=K are finite, so is L1L2=K; if , moreover, the extension
degrees n1 D L1 WK and n2 D L2 WK are relatively prime, we have L1L2 WK D
n1n2.

Proof. Part (a) follows from F10, taking (9) into account. Part (c) therefore also
follows, thanks to F9. Let L1=K and L2=K be finite. Assuming (b) already proved,
we see from the degree formula that

(10) L1L2 WK D .L1L2 WL2/.L2 WK/� .L1 WK/.L2 WK/;
which is the first part of (d). Again from the degree formula we obtain that L1L2 WK
is divisible by n1 and by n2. If n1; n2 are relatively prime, L1L2 WK is divisible by
n1n2, which together with (10) gives the second part of (d).

There remains to prove (b). Consider the set R of all finite sums of products ab

with a 2 L1; b 2 L2. Clearly R is a subring of E containing L1 and L2. It is also
clear that any basis of L1=K generates R as an L2-vector space R, so in particular
R WL2 � L1 WK. If L1 WK < 1, this implies that R is a field (see F2). It follows
that R D L1L2, which concludes the proof. ˜
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Simple Extensions

1. We have seen that in considering constructibility questions one must investigate
certain algebraic field extensions, for example �.

3
p

2/=� in the case of the doubling
of the cube and �.e2� i=n/=� in the case of the construction of a regular n-gon. How
can such extensions be described? What can be said about their degree?

More generally, let E=K be a field extension and take ˛ 2 E. How can K.˛/=K

be described?

Definition. A field extension L=K is called simple if there exists an element ˛ of
L such that L D K.˛/. Such an ˛ is called a primitive element of L=K.

Let K be a field. The polynomial ring KŒX � is an algebra over K, or K-algebra
(for the definition of this notion see LA I, p. 87). Now, if E=K is a field extension,
E can also be regarded as a K-algebra. Let ˛ be an element of E. Because of the
universal property of the polynomial ring there exists a unique homomorphism of
K-algebras

(1) ' W KŒX �	 E with '.X /D ˛;

namely the substitution homomorphism given by

(2) g.X /D
X

aiX
i ’

X

ai˛
i DW g.˛/:

We will denote the image of ' by KŒ˛�. We have

(3) KŒ˛�D ˚

g.˛/ j g 2 KŒX �
�

:

KŒ˛� is a subring of E, and indeed a subalgebra of the K-algebra E.

F1. Let E=K be a field extension and take ˛ 2 E. The following statements are
equivalent: (i) ˛ is algebraic; (ii) K.˛/D KŒ˛�; (iii) KŒ˛� is a field.

Proof. (i) ) (ii): If ˛ is algebraic over K, the field K.˛/ can be described as in
equation (4) of Chapter 2, so K.˛/ D KŒ˛�. The implication (ii) ) (iii) is trivial.
Finally, if (iii) is true, ˛ (if nonzero) has an inverse in KŒ˛�; that is,

˛.a0 C a1˛C � � � C am˛
m/D 1 for appropriate ai 2 K:
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Hence ˛ is algebraic over K. ˜

2. Let E=K be a field extension and ˛ any element of E. In connection with the
description of KŒ˛� in (3), we compare KŒ˛� with the polynomial ring KŒX �. In
KŒX �,

(4)
X

aiX
i D

X

biX
i implies ai D bi for all i:

In contrast with X in KŒX �, the element ˛ may satisfy a nontrivial relation in KŒ˛�,
so that in general we cannot deduce from

P

ai˛
i D P

bi˛
i that ai D bi for all i .

For g1;g2 2 KŒX � the equation g1.˛/ D g2.˛/ is equivalent to .g1 � g2/.˛/ D 0,
so we must study the kernel

(5) I D I˛ WD ˚

g 2 KŒX �
ˇ

ˇ g.˛/D 0
�

of the homomorphism ' of (1) and (2).

Definition. Let R be any ring with unity. A nonempty subset I of R is called a
(two-sided) ideal of R if

(i) a; b 2 I ) a C b 2 I , and

(ii) a 2 I; x 2 R ) xa; ax 2 I .

Thus a subset of R is an ideal of R if and only if it is a subgroup of the additive
group of R and is mapped into itself by multiplication, whether on the left or on
the right, with any element of R.

The set I˛ in (5) is an example of an ideal, called the ideal of relations of ˛. In
general:

F2. Suppose ' W R ! R0 is a ring homomorphism (of rings with unity, so '1 D 1).
Then

ker' D fa 2 R j 'a D 0g
is an ideal of R. Conversely, if I is an ideal in a ring R, there is a (canonical)
surjective homomorphism of rings � W R ! R such that ker� D I .

Proof. The first assertion is clear. (But incidentally, the image of ' is generally
not an ideal of R0.) The proof of the second assertion results from the following
construction:

The quotient modulo I . Consider the relation 
 on R defined as follows: a 
 b

means a � b 2 I . Clearly this is an equivalence relation on R. Instead of a 
 b one
generally writes (following Gauss)

(6) a � b mod I;

read “a and b are congruent modulo I”. This terminology is felicitous (among other
reasons because it stresses that the relation 
 depends on the ideal I ). Now consider
the equivalence classes determined by 
 , for which we use the notations

a D fa0 2 R j a0 
 ag D a C I D fa C y j y 2 Ig:
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Thus in the notation of (6) we have

(7) a D b ” a � b mod I:

The set a is called the residue class of a mod I . We denote the set of all residue
classes modulo I by

R=I;

read “R modulo I” or “R quotient I”. Now take the map

(8)
� W R ! R=I

a ‘ a;

which assigns to each a in R the residue class of a mod I (that is, the 
-equivalence
class containing a).

We claim that R=I is a ring in a natural way; more precisely, there is a unique
ring structure on R=I that makes � into a ring homomorphism.

Proof: Given a; b 2 R=I , we have no choice but to specify

(9) a C b WD a C b; ab WD ab:

But we have to check that this sum and product are well defined — in other words,
that a0�a mod I and b0�b mod I necessarily imply that a0Cb0� aCb mod I and
a0b0 � ab mod I . So suppose that a0 D a C x and b0 D b C y, with x;y 2 I . Then

a0 C b0 D a C b C .x C y/; a0b0 D ab C .ay C bx C xy/:

Since I is an ideal of R, the expressions in parentheses both lie in I , which proves
the claim.

To prove F2 we now just have to show that I D ker� . But this is clear, because
�.a/D 0 ” a D 0 ” a � 0 mod I ” a 2 I . ˜

We call R=I the quotient ring of R by I , or modulo I . (“Residue-class ring”
is an alternative name for “quotient ring”.) When no misunderstanding is likely,
one can simply write R instead of R=I . The map � in (8) is called the quotient
homomorphism under I or the canonical map from R onto R=I .

The role of the quotient ring in the description of ring homomorphisms is the
following:

F3 (Fundamental Homomorphism Theorem). Let ' W R ! R0 be a homomorphism
of rings. There exists a unique ring isomorphism

 W R= ker ' 	 im'

such that the diagram

(10)

R
' � R0

���� � ���
�

�

R= ker'
 � im'



24 3 Simple Extensions

commutes. Here � denotes the quotient homomorphism and � the inclusion of im'

in R0. In particular, there is an isomorphism

(11) R= ker' ' im':

Analogous statements hold regarding (instead of rings) K-algebras, modules over
rings, abelian groups, arbitrary groups, etc.

Proof. We have no choice but to define  by setting  .a/ D '.a/. Is  then well
defined? Yes, because a D b implies the existence of x 2 ker' such that a D b Cx,
whence we get the desired equality '.a/D '.b C x/D '.b/C'.x/D '.b/.

Clearly  is surjective. We still have to prove that ker D 0, that is,  is
injective: but from  .a/D 0 we get '.a/D 0, hence a 2 ker', so a D 0 as desired.

This reasoning applies wholly analogously to any type of algebraic structure;
in most cases it is clear which subsets actually occur as kernels of the type of
homomorphism in question, so the construction of the quotient structure carries
over. In the case of a group G kernels are subgroups U of G that satisfy Ux D xU

for every x 2 G; these are called normal subgroups of G. ˜

Applying the Fundamental Homomorphism Theorem to the situation considered
at the beginning of the chapter leads to the isomorphism of K-algebras

(12) KŒ˛�' KŒX �=I˛:

F4. Let E=K be a field extension. Given ˛ 2 E the following statements are equiva-
lent:

(i) ˛ satisfies no algebraic relation, that is, f .˛/ D 0 with f 2 KŒX � implies
f D 0.

(ii) ˛ is transcendental over K.

(iii) KŒ˛�' KŒX � as K-algebras.

(iv) KŒ˛� is not a field.

Proof. (i) ” (ii) is clear. Suppose (i) holds. Then I˛ D f0g, so KŒ˛� '
KŒX �=f0g ' KŒX � by (12), which implies (iii). Using a degree argument we see
that the group of units of KŒX � is K�, the multiplicative group of K; therefore (iii)
) (iv). The implication (iv) ) (ii) is already contained in F1. ˜

We now look at the case where ˛ is algebraic over K. The ideal I˛ of relations
of ˛ is then nontrivial; in particular, it contains f WD MiPoK .˛/. For an arbitrary
g 2 KŒX �,

(13) g.˛/D 0 � f divides g in KŒX �:

We recall the proof of this well-known fact. Division with remainder yields

(14) g D qf C r with q; r 2 KŒX �; deg r < deg f:
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So if g.˛/D 0, one concludes by substituting ˛ in (14) that r.˛/D 0, which (since
deg r < degf and f D MiPoK .˛/) can only happen if r D 0. Therefore g D qf .

Thus, according to (13) the ideal I˛ has the form

(15) I˛ D ˚

qf
ˇ

ˇ q 2 KŒX �
� D KŒX �f:

This motivates the next definition:

Definition. Let R be a commutative ring with unity. Given a 2 R, denote by .a/
the ideal Ra D fca j c 2 Rg in R. This is the principal ideal of R generated by a.
Instead of x�y mod .a/, it is common to write x�y mod a. The quotient R=.a/

is also denoted by R=a. The ideal f0g D .0/ is often simply written 0.

We summarize the work so far:

Theorem 1. Let L=K be a simple algebraic field extension and ˛ a primitive element
of L=K. Put f D MiPoK .˛/. The substitution homomorphism corresponding to ˛,

KŒX �	 L D K.˛/D KŒ˛�;

gives rise to an isomorphism (of K-algebras)

KŒX �=f 	 L D K.˛/:

In particular, given g 2 KŒX �, we have g.˛/D 0 ” f jg.

In the situation of Theorem 1, the isomorphism

(16) K.˛/' KŒX �=f

gives a good description of a simple algebraic field extension: it all boils down
to computing in KŒX � modulo f . Crucially, this description also provides a hint
for how to generate simple algebraic extensions of a given field. We address this
question now.

3. So let K be an arbitrary field and f a polynomial in KŒX � of degree n � 1.
Consider the quotient algebra

(17) Kf WD KŒX �=f

over K and denote by � W g ‘ g the corresponding quotient homomorphism. Since
deg f � 1, the homomorphism of K-algebras

(18) K ! Kf with a ‘ a

is clearly injective. Through this homomorphism we can regard K as a subfield of
Kf : K � Kf . Now let ˛ WD �.X /D X be the residue class of X mod f . Then �
is also the unique algebra homomorphism KŒX �! Kf mapping X to ˛. Therefore
�.g/D g.˛/ for all g 2 KŒX �. Thus, since �.f /D 0,

(19) f .˛/D 0:
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Thus f has ˛ as a root in Kf . Even more: given any g 2 KŒX �,

(20) g.˛/D 0 ” f jg in KŒX �:

Also

(21) Kf D KŒ˛�D ˚

g.˛/
ˇ

ˇ g 2 KŒX �
�

:

More precisely, we claim that 1; ˛; : : : ; ˛n�1 form a basis of the K-vector space Kf ,
so this space has dimension n. Proof: Any element of Kf is of the form g.˛/ with
g 2 KŒX �. Division with remainder lets us write g D qf C r , and substituting ˛ we
get g.˛/D r.˛/ with deg r � n � 1. There remains to show that 1; ˛; : : : ; ˛n�1 are
linearly independent. A linear relation c0 C c1˛C � � � C cn�1˛

n�1 D 0 with ci 2 K

results in h.˛/D 0 with h.X /D c0 Cc1X C� � �Ccn�1X n�1 2 KŒX �, which is only
possible if h D 0, because f divides h (look at the degrees).

Is Kf a field? We will show that this is so if and only if f is irreducible.
Recall that a polynomial f 2 KŒX � is irreducible if degf � 1 and any factorization
f D f1f2 with f1; f2 2 KŒX � implies that f1 2 K or f2 2 K. An irreducible
polynomial is also called a prime polynomial. The following result is fundamental
and well-known:

Theorem 2. Let f be an irreducible polynomial in KŒX �. If f divides gh for
g;h 2 KŒX �, then f jg or f jh.

Proof. This assertion, which you’re surely familiar with, will follow from general
considerations in Chapter 4. Here we give an ad hoc argument: Suppose that f;g;h
contradict the theorem. Division with remainder gives g D qf Cr . Since f jgh we
have f jrh, so we might as well assume that deg g < degf to begin with. Among
all triples f;g;h contradicting the theorem choose one where deg g is minimal.
Since f D qg C r with deg r < deg g we first get f jrh, and since the degree of g

is minimal and less than that of f we next get r D 0. Because f is irreducible it
follows that g is a unit — a contradiction. ˜

Theorem 2 was first formulated by Simon Stevin in 1585; the analogous state-
ment for the ring � is already in the works of Euclid (ca. �330).

F5. Kf D KŒX �=f is a field if and only if f is irreducible in KŒX �.

Proof. Let Kf be a field. If f D f1f2 in KŒX � we have f1.˛/f2.˛/ D f .˛/ D 0

and therefore f1.˛/D 0 or f2.˛/D 0. Because of (20), either f2 or f1 lies in K,
so f is irreducible.

Conversely, assume that f is irreducible. We already know that Kf is finite-
dimensional over K; keeping in mind Chapter 2, F2, we then just have to show that
Kf is an integral domain. So let gh D 0. Since gh D gh D 0 we get f jgh; by
Theorem 2 this implies f jg or f jh, which is to say g D 0 or h D 0. ˜

F6. Let E=K be a field extension and suppose ˛ 2 E is algebraic over K. Then
f WD MiPoK .˛/ is an irreducible polynomial in KŒX �. Conversely, a normalized
irreducible polynomial in KŒX � that vanishes at ˛ must equal MiPoK .˛/.
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Proof. (i) Because of (16) we have KŒX �=f ' K.˛/, so f is irreducible by F5.

(ii) Any polynomial g such that g.˛/D 0 is divisible by f . If g is irreducible and
normalized, it must equal f because f is also a normalized polynomial of degree
at least 1. ˜

Example. Let K D �, E D �, ˛ D 3
p

2, g.X / D X 3 � 2. We wish to show that
g D MiPo�.˛/. Since g.˛/ D 0 all we have to do, thanks to F6, is show that g is
irreducible. Suppose g D g1g2 were a nontrivial factorization of g in �ŒX �. Then
one or the other factor, say g1, has degree 1. Being linear, g1 has a zero ˇ in �. It
follows that g.ˇ/D 0, so ˇ3 D 2. This contradicts the fact that 3

p
2 does not lie in

�. (This is something we assume known; later we will be able to show that X 3 �2

is irreducible without resorting to this fact, but rather as an immediate consequence
of Chapter 5, F10.)

Taking into account equation (7) of Chapter 2, we immediately get the corollary

�.
3
p

2/ W � D 3:

As a first fruit of our algebraic study of the constructibility problem, we obtain
from this and from Chapter 1, F9:

Theorem 3. 3
p

2 is not constructible from f0; 1g with ruler and compass. Conse-
quently, the Delian problem of the doubling of the cube is also not soluble.

Here is an important field-theoretical application of the results from this chapter:

Theorem 4 (Kronecker). Every nonconstant polynomial f .X / over a field K has a
root in some appropriate extension of K.

Proof. Since deg f � 1, there must be an irreducible polynomial g dividing f
(consider all nonconstant factors of f and take one of least degree). If an extension
of K contains a root of g it will also serve for f ; therefore we assume without loss
of generality that f is irreducible. Then Kf D KŒX �=f is a field, by F5. Up to
isomorphism Kf is an extension of K, and the image ˛ of X is a zero of f ; see
(18) and (19). ˜

Kronecker’s Theorem is unsurprising from the point of view of modern algebra,
and its proof is simple. Nonetheless it does remove one of the criticisms leveled
by Gauss at earlier justifications of the Fundamental Theorem of Algebra, which
was that Euler and Lagrange simply started off from the premise that a nonconstant
polynomial always has roots (somewhere) and then sought to prove that these roots
must be in �. Gauss wrote: “How these magnitudes, which we cannot even begin to
visualize — mere shadows of shadows — are to be added or multiplied is something
that surely cannot be grasped with the clarity that mathematics always demands.”

4. We now consider a simple transcendental extension L=K. Let ˛ be a primitive
element of L=K. Then ˛ must be transcendental (by F5 in Chapter 2), and so F4
yields

KŒ˛�' KŒX �:
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What can we say about L D K.˛/ itself? (By F4 we know KŒ˛� is not a field, so
K.˛/¤ KŒ˛�.)

For brevity we set R D KŒ˛�. We claim that

(22) L D fˇ=� j ˇ; � 2 R; � ¤ 0g:
Proof: Let Q be the subset of L defined by the right-hand side of (22). Clearly L

is a subfield of L, and KŒ˛�D R � Q. This implies K.˛/� Q, so we get L D Q.

Definition. Let E be a field and R a subring of E. The field of fractions of R in
E is the intersection L of all subfields of E that contain R. One can express L

exactly as in (22), the justification being the same as above.

Now, is any integral domain R a subring of a field?

F7 (Fraction field). Let R be a integral domain. There exists a field F and an
injective ring homomorphism � W R ! F with the following property: If � W R ! E

is any injective ring homomorphism from R into a field E, there is a unique ring
homomorphism � W F ! E such that �ı�D �— in other words, making the following
diagram commutative:

(23)

F
�� E

��
�
�

�

R

�
�

Such a field F is called a fraction field of R. It is uniquely determined up to
isomorphism: more precisely, if F 0 is another fraction field and �0 W R ! F 0 the
corresponding map, there exists a unique isomorphism � W F ! F 0 such that

(24)

F
�� F 0

R

�
�

id� R

�0
�

commutes. Moreover, F is the field of fractions of �R in F , in the sense of the
preceding definition.

(Another name for “fraction field” is “field of quotients”. This use of “quotient”
is not the same as in the expression “quotient ring” defined earlier; in a field of
quotients the elements of the field are themselves the quotients.)

Remark. In view of the uniqueness statement in F7, we talk from now on about
the fraction field of R; we denote it by Frac R. For simplicity we will generally
assume that R � Frac R, which entails no loss of generality. We then have

Frac R D fa=b j a; b 2 R; b ¤ 0g:
The reason we were so punctilious in the statement of F7 is that this is a key example
of solving a universal problem of the kind that one often comes across in algebra
(and elsewhere).
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Before proving F7, we state one more result:

F8. Let R be a integral domain. If � W R ! K is an injective ring homomorphism
from R into a field K, the field F of fractions of �R in K is a fraction field of R.

Proof. Let � W R ! E be an injective ring homomorphism of R into a field E. We
define � W F ! E by setting

�.�a=�b/D �a=�b:

It is easy to check that � is well defined. It is also clear that � is a ring homomor-
phism, and that in fact it’s the only one for which diagram (23) commutes. ˜

Proof of F7. We first show the uniqueness statement. By assumption there exist
homomorphisms � W F ! F 0 and �0 W F 0 ! F with � ı � D �0 and �0 ı �0 D �. It
follows that �0 ı�ı �D �0 ı �0 D �, and thus, because of the uniqueness requirement,
�0 ı�D idF ; analogously we have � ı�0 D idF 0 . Therefore � is an isomorphism.

In view of F8 what is left to show is that there is a field K and an injective ring
homomorphism � W R ! K. For this consider the set M D f.a; b/ j a; b 2 R; b ¤ 0g
with the relation 
 defined by

.a; b/
 .c;d/ means ad D bc:

It is easy to prove that this is an equivalence relation; let K D M=
 the set of
equivalence classes. Denote the class of .a; b/ 2 M by Œa=b�. Define addition and
multiplication on K as follows:

Œa=b�C Œc=d �D Œ.ad C bc/=bd �; Œa=b� � Œc=d �D Œac=bd �:

Checking that these operations are well defined is left to the reader. It is easy to
see that with these operations K becomes a commutative ring with unity; the zero
element is Œ0=1� and the unity is Œ1=1�. The map � W R ! K defined by �.a/D Œa=1� is
a homomorphism. By definition, Œa=b�D 0 D Œ0=1� if and only if a D 0. In particular,
� is injective. In addition, every Œa=b�¤ 0 in K has a multiplicative inverse, namely
Œb=a�. Therefore K is a field. ˜

The classical example of the construction above is the field of rational numbers

� D Frac �:

Other key examples arise as follows:

Definition. Let K be a field and KŒX � the polynomial ring over K. The field

K.X / WD Frac KŒX �

is called the field of rational functions in one variable over K. It satisfies

K.X /D
�

f .X /

g.X /

ˇ

ˇ

ˇ

ˇ

f;g 2 KŒX �; g ¤ 0

�

I
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thus every “rational function” — which is to say, every element of K.X /— is a
quotient of polynomials. (If K is infinite, the elements of K.X / can really be
seen as rational functions in the usual sense of sending each point in the domain of
definition — here K minus some points — to its image.)

F9. Let E=K be a field extension and take ˛ 2 E. If ˛ is transcendental over K,
there is a natural isomorphism

(25) K.˛/' K.X /

of fields (and of K-algebras). Conversely, if (25) holds, ˛ is transcendental over K.

Proof. If ˛ is transcendental over K, the homomorphism ' W KŒX � ! KŒ˛� given
by 'X D ˛ is an isomorphism and so can be uniquely extended to an isomorphism
Q' W K.X /! K.˛/ of the corresponding fraction fields (see F7).

The converse part of F9 follows for instance from the fact that KŒX �— and
therefore also K.X /— is infinite-dimensional over K. ˜

Thus the simple transcendental extensions of a given K are all of one type,
represented by K.X /=K.

5. This is a good place for one more essential remark about fields. Let K be a
field. For each n 2 �, consider the n-th multiple nK D n1K of the unity 1K in K.
If nK ¤ 0 for all n ¤ 0, we say that K is a field of characteristic zero, and write

(26) char K D 0:

If, on the contrary, there is a natural number n such that nK D 0, and if p is the
smallest such number, p is called the characteristic of K and we write

(27) char K D p:

Because .mn/K D mK nK , this p must be prime. For the moment, denote by �K

the subring of K consisting of all nK , for n 2 �. Consider the uniquely defined
homomorphism

(28) ' W � ! K such that '1 D 1K :

Two cases can be distinguished:

Case A: ker' ¤ 0. Then we are in situation (27) above. If n 2 ker', division by p

with remainder shows that n 2 p�. It follows that ker ' D p�, so the Fundamental
Homomorphism Theorem applied to ' yields an isomorphism

(29) �K ' �=p�:

In particular, �K has exactly p elements. Being a finite integral domain, �K is a
field! (See Chapter 2, Remark after F2.)

Case B: ker' D 0. This occurs if and only if char K D 0, and the Homomorphism
Theorem applied to (28) then gives an isomorphism

(30) �K ' �:
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Definition. A field is called a prime field if it has no proper subfields.

F10. (a) Any field K has exactly one prime field as a subfield. (This is called the
prime field of K.)

(b) Any prime field K is isomorphic either to � or to some �=p� for p prime
(depending on whether char K D 0 or char K D p > 0).

Proof. (a) The intersection of all subfields of K is a subfield of K. It is the smallest
subfield of K, hence a prime field.

(b) Let K be any field and K0 its prime field. Clearly, �K � K0. Now, in case A
above, �K is itself already a subfield of K, so K0 D �K ' �=p�. In case B we
have K0 D Frac �K ' Frac � D �. ˜
Remarks. (a) It is customary to write just n instead of nK , and we will do so. But
you should keep an eye open in each case for whether the n represents an integer
or an element of K.

(b) Clearly � is a prime field (indeed, up to isomorphism, the only prime field of
characteristic 0). For any prime number p,

(31) �p WD �=p�

is a field (see Chapter 2, Remark after F2; naturally, to show that �=p� has no
zero-divisors, it is necessary to use the well-known Euclidean result: if p is a prime
dividing ab, then p divides a or b; see also Chapter 4). For a given p, the field �p

is, up to isomorphism, the only prime field of characteristic p. As an example of a
nonfinite field of characteristic p consider the field of rational functions �p.X / over
�p .

(c) It’s good to keep in mind the following trivial fact: If K is a subfield of E, then
char E D char K.

6. To conclude this chapter we will go into another interesting characterization of
simple algebraic field extensions. First we prove:

F11. Let E=K be a simple algebraic extension with primitive element ˛. Let L be
an intermediate field of E=K, and denote by

g.X /D X m Cˇm�1X m�1 C � � � Cˇ1X Cˇ0 2 LŒX �

the minimal polynomial of ˛ over L. Then

L D K.ˇ0; ˇ1; : : : ; ˇm�1/:

Proof. Set F D K.ˇ0; ˇ1; : : : ; ˇm�1/. Trivially, F � L. Since g 2 F ŒX � we see
that g is the minimal polynomial of ˛ also over F . Consequently,

(32) F.˛/ W F D L.˛/ W L

(see Chapter 2, F3). But since E D K.˛/ we get F.˛/D L.˛/D E, so (32) says
simply that E W F D E W L. By the degree formula this means F W K D L W K, which
(since F � L) demands that F D L. ˜
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Theorem 5. Suppose E=K is an algebraic extension. Then E=K is simple if and
only if it possesses only finitely many intermediate fields.

Proof. Denote by � be the set of all intermediate fields of E=K.

(i) Assume E D K.˛/, and set f D MiPoK .˛/. To prove the finiteness of �,
consider the set

� D ˚

g 2 EŒX �
ˇ

ˇ g is normalized and divides f in EŒX �
�

:

Now, it is well known that EŒX � enjoys unique factorization into prime factors (see
for example LA II, p. 142, or the next chapter in this book). Therefore f has only
finitely many normalized factors in EŒX �, and thus � is finite. Now consider the
map

(33) � ! �

that takes each g.X /D X m Cˇm�1X m�1 C � � � Cˇ0 in � to the intermediate field
K.ˇ0; : : : ; ˇm�1/. Given L 2 �, the element g D MiPoL.˛/ is a factor of f in
LŒX �, therefore also in EŒX �. Thus g lies in �. By F11, L is the image of g under
the map (33). The map (33) is thus surjective, and since � is finite, so is �.

(ii) The converse will be proved here only in the case where K has infinitely many
elements. Suppose that � is finite. Then E D K.˛1; : : : ; ˛n/ with finitely many ele-
ments ˛i ; otherwise there would be an infinite chain of intermediate fields obtained
by adjoining ever more elements.

Now, to start an induction, we assume that E D K.˛; ˇ/. Since � is finite but
K is infinite, there exist distinct �1; �2 2 K such that

K.�1˛Cˇ/D K.�2˛Cˇ/DW L:

Then .�1˛Cˇ/� .�2˛Cˇ/D .�1 ��2/˛ lies in L, and therefore so does ˛, and
likewise ˇ. It follows that E D L D K.�1˛ C ˇ/, so that E=K is simple (with
� D �1˛Cˇ as a primitive element). To prove the case E D K.˛1; : : : ; ˛n/, apply
the induction hypothesis to write K.˛1; : : : ; ˛n�1/D K.˛/, so E D K.˛; ˛n/.

For K a finite field the assertion follows from the fundamental theorem of the
theory of finite fields, which we will study later (Theorem 2 in Chapter 9). ˜



4

Fundamentals of Divisibility

Throughout this chapter,

R stands for a commutative ring with unity.

Much of the content of this chapter is probably familiar to you from earlier courses.
We nonetheless lay it out here because of its fundamental importance; in connection
with the problems pursued up to now, we will be particularly interested in the
question of irreducibility of polynomials.

1. Given elements a; b in R, we say that a is a divisor of b (or divides b, or that b

is divisible by a) if there exists c in R such that b D ca. In this case we write

(1) a jb:
The negation of (1) is denoted by

(2) a -b:

The divisibility relation satisfies some obvious rules:

(3) a ja (reflexivity);

(4) a jb and b jc ) a jc (transitivity);

(5) 1 ja; a j0;

(6) a jb and c jd ) ac jbd .

Item (5) says that 1 is a minimal and 0 is a maximal element for the divisibility
relation. Divisibility is compatible with addition in the following sense:

(7) a jb and a jc ) a jb C c:

If R is an integral domain,

(8) ac jbc ) a jb for c ¤ 0:
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Elements of R�, that is, units or invertible elements of R, can be characterized thus:

(9) " j1 ” " 2 R�:

Definition 1. If a jb and b ja, we say that a is associated to b and write a OD b.
Clearly OD is an equivalence relation on R.

F1. In an integral domain R we have a OD b if and only if there is a unit " of R such
that b D "a.

The simple proof is left to the reader.
In the ring � we have a OD b if and only if a D ˙b. But in general an integral

domain has more units than just 1 and �1:

Examples. (a) If R is a integral domain, so is the polynomial ring RŒX �, and
RŒX �� D R�.

(b) For the subring R D �Œi � of � we have R� D f˙1;˙ig.

(c) For a field K we of course have K� D K r f0g.

(d) For the subring R D �Œ
p

2� of � we have R� D ˚˙.1 C p
2/j

ˇ

ˇ j 2 �
�

. (The
proof of this is not totally straightforward and is left to the reader as a more
challenging exercise.)

Definition 2. Let a1; : : : ; an be given in R. An element d 2 R is called a greatest
common divisor (gcd) of a1; : : : ; an if the following conditions are satisfied:

(i) d is a common divisor of a1; : : : ; an.

(ii) Every common divisor of a1; : : : ; an also divides d .

We say that the elements a1; : : : ; an are relatively prime if 1 is a gcd of a1; : : : ; an.
The notion of the least common multiple (lcm) of a1; : : : ; an is defined analogously.

F2. Any two gcd’s of a1; : : : ; an are associated to one another. Likewise for any two
lcm’s of a1; : : : ; an.

This follows immediately from the definitions.
But how about the existence of a gcd or lcm for given elements of R ?

2. In investigating divisibility questions it is relevant to consider in connection with
an element a of R the set of its multiples, i.e., the principal ideal generated by a:

.a/D Ra D fxa j x 2 Rg:
Clearly,

(10) a jb ” .b/� .a/:

This translation of the divisibility relation into a simple inclusion relation is very
fruitful. We have, for example,

(11) a OD b ” .a/D .b/:
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Moreover: v is a common multiple of a and b if and only if .v/� .a/\ .b/. From
this we deduce easily that

(12) m is an lcm of a; b ” .a/\ .b/D .m/:

Thus there exists a lowest common multiple for a; b if and only if the ideal .a/\.b/
is a principal ideal.

F3. Let I1 and I2 be ideals of R. Then I1 \ I2 and I1 C I2 WD f˛1 C ˛2 j ˛i 2 Iig
are also ideals of R; and in fact I1 \ I2 is the largest ideal of R contained in I1 and
I2, and I1 C I2 is the smallest ideal of R containing I1 and I2.

Of course similar statements hold for the intersection I1 \ � � � \ In and the sum
I1 C � � � C In of more than two ideals. In the case of principal ideals we also use
the notation

(13) .a1; : : : ; an/ WD .a1/C � � � C .an/:

This set consists of all R-linear combinations of a1; : : : ; an.
So t is a common divisor of a; b if and only if .a/C .b/� .t/. Now, (12) does

not have a complete analog for the gcd (why not?); but if .a/C .b/ is a principal
ideal, say .a/C .b/ D .d/, then d is a gcd of a; b. (We already know that d is a
common divisor of a and b; if t is another, then .d/� .t/, so t jd .)

Definition 3. An integral domain R is called a principal ideal domain, or PID, if
every ideal of R is a principal ideal.

F4. In a principal ideal domain R any tuple of elements a1; : : : ; an of R has a gcd.
If d is a gcd of a1; : : : ; an, it can be represented as

(14) d D x1a1 C � � � C xnan

for appropriate xi 2 R.

Proof. Given a1; : : : ; an, we use the assumption that R is a PID to find d such that

(15) .a1/C � � � C .an/D .d/:

This means d is a gcd of the ai , by the argument preceding Definition 3; moreover,
d clearly has a representation of the desired from. And so does any other gcd d 0 of
the ai , since .d 0/D .d/, by F2 and (11). ˜

Thus in a principal ideal domain not only is the existence of a gcd for any
a1; : : : ; an assured, but it’s true to boot that any gcd has an additive representation
of the form (14), which is astonishing. But none of this would help if we could not
prove the existence of interesting principal ideal domains. . .

F5. The ring � of integers is a principal ideal domain.
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Proof. Let I be an ideal of �; we may except the trivial case I D .0/. Among all
nonzero elements of I , let a be one with smallest absolute value jaj. We claim that
I D .a/. Obviously .a/� I . Now let b 2 I . By considering division with remainder
we see that there exist q; r 2 � such that

b D qa C r and jr j< jaj
(we can even demand that 0 � r < jaj or alternatively that �1

2
jaj < r � 1

2
jaj/.

Because r D b � qa, this r is an element of I . If r were nonzero we’d have a
contradiction with our choice of a, because jr j < jaj. It follows that b D qa, and
therefore b 2 .a/. ˜

A study of this proof leads to the following generalization:

Definition 4. An integral domain R is called a Euclidean domain if there exists a
map � W R ! � [ f0g such that �.0/ D 0 and that, for every a; b 2 R with a ¤ 0,
there exist q; r 2 R with

b D qa C r and �.r/ < �.a/:

Such a map � is called a Euclidean valuation on R.

Examples. (i) R D � with �.a/D jaj.
(ii) If K is a field, R D KŒX � is a Euclidean domain, with valuation � defined by

setting �.0/D 0 and �.g/D .deg g/C 1 for g ¤ 0.

F6. Every Euclidean domain R is a principal ideal domain.

This is proved exactly like the case R D � of F5.

3. We now generalize the familiar notion of prime numbers in � and irreducible
polynomials in KŒX �.

Definition 5. An element � of R is called irreducible if � … R� and

(16) � D ab ) a 2 R� or b 2 R�:

Remarks. (1) The irreducible elements of � are precisely the prime numbers p and
their negatives �p.

(2) By the Fundamental Theorem of Algebra (see for example LA I, p. 191), we
know that the only irreducible polynomials in �ŒX � are the linear polynomials. As an
exercise, deduce the following: Apart from linear polynomials, the only irreducible
polynomials in �ŒX � are those of the form f D aX 2 C bX C c with b2 � 4ac < 0.

(3) A divisor a of b is called proper if it is neither a unit of R nor an element
associated to b. Thus a nonzero element � is irreducible if and only if it is not a
unit and has no proper divisors (here we’re assuming that R is an integral domain).



Unique factorization domains 37

Definition 6. We say that a 2 R can be decomposed into irreducible factors if it has
an expression of the form

(17) a D "�1�2 : : : �r with " 2 R� and each �i irreducible:

(Here we allow r D 0, in which case (17) is to be read as saying that a D "1 D ").
An integral domain where every a ¤ 0 has a decomposition into irreducible factors
is called a factorization domain.

We say that a has a unique decomposition into irreducible factors if it has a
decomposition into irreducible factors and the following uniqueness condition holds:
If in addition to (17) we have another such decomposition

(18) a D "0� 0
1�

0
2 : : : �

0
r 0 ;

then r 0 D r and, after a permutation, � 0
i OD �i for 1 � i � r . An integral domain

where every a ¤ 0 has a unique decomposition into irreducible factors is called a
unique factorization domain (UFD).

F7. For a factorization domain R, the following conditions are equivalent:

(i) R is a unique factorization domain.

(ii) For any irreducible element � of R we have

(19) � jab ) � ja or � jb:
Proof. (i) ) (ii): We may as well assume a; b ¤ 0. Given factorizations a D
"�1 : : : �r and b D Q" Q�1 : : : Q�s of a and b into irreducible factors we get for ab the
factorization ab D "Q"�1 : : : �r Q�1 : : : Q�s . Now, if � j ab, there is a decomposition of
ab into irreducible factors where � appears. From the assumption it follows that
� is associated with one of the elements �1; : : : ; �r ; Q�1; : : : ; Q�s . Therefore � is a
divisor of a or b.

(ii) ) (i): Assume that (17) and (18) are true and that r � 1, the case r D 0

being trivial. Now, �1 is always a divisor of the product on the right-hand side of
(18). Assumption (ii) then implies that �1 must divide one of the � 0

i — let’s say
� 0

1. Then there is a unit � such that � 0
1 D ��1. By cancellation of �1 we then get

"�2 : : : �r D "0�� 0
2 : : : �

0
r 0 . The assertion follows by induction. ˜

Definition 7. An element � in R is called prime in R, or a prime of R, if it is not
a unit and it satisfies (19).

Remarks. (1) Clearly, in an integral domain every nonzero prime is irreducible.

(2) F7 suggests a question: Under what circumstances are the irreducible elements
of an integral domain necessarily prime? That this is not always the case can be
seen from the example of R D �Œ

p�5�, where 2 is irreducible but not prime. (Prove
this as an exercise; notice that 6 D 2 � 3 D .1 C p�5/.1 � p�5/ in R.)

F8. An integral domain R is a unique factorization domain if and only if the follow-
ing two conditions are satisfied:
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(i) Every chain .a1/ � .a2/ � � � � � .an/ � .anC1/ � � � � of principal ideals is
stationary, that is, .aj /D .an/ for some n and all j � n. (This is the ascending
chain condition for principal ideals.)

(ii) Every irreducible element of R is prime.

Proof. We show first that (i) implies that any nonzero a in R can be decomposed
into irreducible factors. Let M be the set of all ideals .a/¤0 such that a has no such
decomposition, and assume that M ¤?. Then M has a maximal element; otherwise
there would be a nonstationary chain .a1/$ .a2/$ � � � $ .an/$ .an/$ .anC1/$ � � � ,
in contradiction with assumption (i). So let .a/ be maximal in M . The generator
a can be neither irreducible nor a unit. Thus a D bc with .a/$ .b/ and .a/$ .c/.
Because .a/ is maximal, both b and c have decompositions into irreducible factors.
But then the same is true of a D bc, contradicting the assumption that .a/ 2 M .

If condition (ii) is satisfied as well as (i), we see from F7 that R is a UFD.
Conversely, assume that R is a UFD. Then (ii) is immediately true, by F7. Let a

and t be elements of R with .0/¤ .a/� .t/¤ .a/, and suppose that a satisfies (17).
From the uniqueness of the decomposition into irreducible factors we conclude that,
since t is a proper divisor of a, it has (after reordering the �i) a decomposition of
the form t D "0�1 : : : �s , with s < r . From this one easily concludes (i). ˜

F9. Every principal ideal domain is a unique factorization domain.

Proof. Let R be a PID. We will use the characterization of UFDs in F8. Consider
a chain .a1/ � .a2/ � � � � of principal ideals. Let I be the union of all the .aj /.
It’s easy to check that I is an ideal of R. By assumption, it is a principal ideal,
I D .a/. By the definition of I , there exists n such that a 2 .an/. Then .aj /� I D
.a/� .an/� .aj / for every j � n, so the chain is stationary.

Now let � be any irreducible element of R, and let a be an element of R not
divisible by � . Since � is irreducible, � and a are relatively prime. By F4 we have
1 D x� C ya, for appropriate x;y in R. Multiplying by an arbitrary b 2 R we get

(20) b D .xb/�C y.ab/:

This says that if � divides ab, it divides b. Therefore � is prime. ˜

Remarks. (1) The converse of F9 is not true. For example, the polynomial ring
�ŒX � over � is a unique factorization domain, by a theorem of Gauss (see next
chapter), but it is not a principal ideal domain (again see next chapter; but this is
easy to see directly — for instance, the ideal .2/C.X / cannot be principal in �ŒX �.)

(2) Euclidean domains are principal ideal domains (F6), and principal ideal domains
are unique factorization domains. In particular, � is a UFD (Euclid, ca. �330), and
so is any polynomial ring KŒX � over a field K (Stevin, 1585). In a Euclidean
domain, though, there are additional benefits arising from the Euclidean valuation
�. For example, a gcd of two given elements a ¤ 0 and b can be computed step-
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by-step through the Euclidean algorithm:

b D q0a C r1 with �.r1/ < �.a/;

a D q1r1 C r2 with �.r2/ < �.r1/;
:::

ri�1 D qiri C riC1 with �.riC1/ < �.ri/;
:::

rn�1 D qnrn C 0:

Then rn is a gcd of a; b and these equations even provide, by recursion, elements
x;y such that rn D xa C yb. In the case R D KŒX �, with � as in Example (ii)
following Definition 4, the elements qi ; ri are uniquely determined by a; b. The
same is true for R D �, if we demand that each ri be nonnegative.

4. We now wish to inspect more closely the situation in unique factorization do-
mains. By taking a factorization of the form (17) and grouping together irreducible
factors that are associated to one another, we arrive at a representation of the form

(21) a D ��
e1

1
�

e2

2
: : : �em

m with � 2 R�; ei 2 �;

where �i is not associated to �j if i ¤ j . If the ring in question is a UFD, this
representation is essentially unique; indeed, if besides (21) there were another such
decomposition a D "	

f1

1
: : : 	

fn
n , we would have m D n, and (after renumbering)

	i OD �i and ei D fi for all i D 1; 2; : : : ;m. In this sense (21) is called the prime
factorization of a.

It turns out to be useful to extend our terminology a little in a formal sense.
Toward this goal we first fix a directory of primes � of R specifying a representative
for each class of associated primes; that is, � is a set of nonzero prime elements of
R such that every nonzero prime of R is associated with one and only one element
of �. (Such a � exists by the axiom of choice.) In many cases there is a canonical
choice for � — for example, in R D � the set of natural prime numbers stands out,
and in the polynomial ring KŒX � over a field K we can take for � the set of all
normalized prime polynomials. In any case we have:

F10. Let R be a unique factorization domain and � a directory of primes of R.
Every nonzero a 2 R possesses a unique representation of the form

(22) a D "
Y

�2�

�e� ;

where " is a unit of R and the e� are nonnegative integers with e� D 0 for almost
all � 2 � (that is, all but finitely many � 2 �).

There is also a sort of converse to this statement:

F11. Let R be a integral domain and � a subset of R r f0g. If every nonzero a 2 R

can be uniquely represented in the form (22) above, then R is a unique factorization
domain and � is a directory of primes of R.
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Proof. Each � 2 � is of course irreducible, by assumption. Now let � be any
irreducible element of R. Again from the assumption we have � D "� 0, with " a
unit and � 0 2 �, both being uniquely determined. Thus � is associated to exactly one
� 0 2 �. Overall, the assumption implies that every a¤0 has a unique decomposition
into irreducible factors — that is, R is a UFD. Since in a UFD being an irreducible
element is the same as being a nonzero prime, the proof is complete. ˜

Let R be a unique factorization domain and � any irreducible element of R.
For every nonzero a 2 R we denote by w�.a/ the (highest) exponent with which �
appears in a. Thus we have a unique representation of the form

(23) a D �w� .a/a0 with � -a0:

We also set w�.0/D 1. Thus we obtain a map

(24) w� W R ! � [ f1g;
which obviously enjoys the following properties:

(25) w�.ab/D w�.a/Cw�.b/;

(26) w�.a C b/� min
�

w�.a/; w�.b/
�

:

It should be stressed that both the definition of w� and property (25) depend on the
assumption that R is a UFD.

If K is the fraction field of R, we can extend w� to a map

(27) w� W K ! � [ f1g;
by setting

(28) w�.a=b/D w�.a/�w�.b/:
Because of (25), this w� is well defined. Moreover now (25) and (26) hold for all
a; b 2 K. We call w� the �-adic valuation on K. The ability to extend arithmetic
considerations to fraction fields has certain advantages.

F12. Let R be a unique factorization domain with fraction field K D Frac R and fix
a directory of primes �.

(i) Every nonzero element x 2 K has a representation

(29) x D "
Y

�2�

�w� .x/ with " 2 R�;

where w�.x/D 0 for almost all � 2 �.

(ii) An element x 2 K is in R if and only if w�.x/� 0 for all � 2 �.

(iii) For a; b 2 R we have a jb if and only if w�.a/�w�.b/ for all � 2 �.
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(iv) Given arbitrary a1; : : : ; an 2 R, there exist a gcd and an lcm for a1; : : : ; an,
and in fact

d WD
Y

�2�

�min.w� .a1/;:::;w� .an// is a gcd

and
m WD

Y

�2�

�max.w� .a1/;:::;w� .an// is an lcm

of a1; : : : ; an (where �1 is to be understood as 0 if it occurs).

Proof. Part (i) follows easily from F10 with the help of (28). If w�.x/ � 0 for all
� , then x 2 R, by (29). The converse is clear, so (ii) is established. Since a jb is
equivalent to b=a 2 R, part (iii) follows using (28). Part (iv) now is an automatic
consequence of (iii). ˜

5. The foregoing sections have dealt with little more than the general foundations
of elementary arithmetic. We now wish to introduce some ring-theoretical concepts
connected with our discussion in Section 3.2.

Definition 8. Let R be a (not necessarily commutative) ring with unity 1 ¤ 0. We
call R simple if every homomorphism R ! R0 into an arbitrary ring R0 is either
injective or the zero map. Clearly (see Section 3.2) a ring R (with 1 ¤ 0) is simple
if and only if f0g and R are the only ideals of R. An ideal I ¤ R of R is a maximal
ideal of R if there is no ideal of R distinct from I and R and containing I .

F13. I is a maximal ideal of R if and only if the quotient ring R=I is simple.

Proof. Ideals of R containing I are in one-to-one correspondence, via the quotient
map � W R ! R=I , with ideals of R=I . ˜

Definition 9. Let R be a commutative ring with unity. An ideal I of R is called
a prime ideal of R if R=I is an integral domain. This condition is equivalent to
saying that I ¤ R and

(30) ab 2 I ) a 2 I or b 2 I:

Thus a principal ideal .�/ of R is prime if and only if � is a prime element of R.

F14. Let R be a commutative ring with unity. R is simple if and only if R is a field.
Therefore an ideal of R is maximal if and only if R=I is a field. Moreover, every
maximal ideal of R is also a prime ideal.

Proof. Only the first assertion needs to be proved. Let R be a field and ' W R ! R0
a ring homomorphism. If the kernel of ' contains a nonzero element a, it contains
every element x of R, because x D .xa�1/a; thus ' is the zero map. Conversely,
assume R is simple and take a nonzero a 2 R. Then .a/D R, so there exists x 2 R

such that ax D 1. ˜

We single out a special case:
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F15. If E;F are fields and ' W E ! F is a homomorphism of rings with unity
(meaning that '1E D 1F ), then ' is injective, and so provides an isomorphism
between E and a subfield E0 of F .

Definition 10. Let R be a commutative ring with unity. Two ideals I1; I2 of R are
relatively prime if I1 CI2 D R; in other words, when there exists a 2 I1 and b 2 I2

such that a C b D 1. The product I1I2 of two ideals I1; I2 of R is the ideal of R

generated by all products xy, where x 2 I1 and y 2 I2; thus is consists of all finite
sums of such products. Clearly I1I2 � I1 \ I2.

Lemma. (a) For I1; I2 relatively prime ideals of R we have I1I2 D I1 \ I2.

(b) If an ideal I1 of R is relatively prime to each of the ideals I2; I3; : : : ; In of R,
it is also relatively prime to the product I2I3 : : : In.

Proof. (a) From 1 D a C b with a 2 I1 and b 2 I2 we conclude by multiplying with
an arbitrary c 2 I1 \ I2 that c D ca C cb 2 I1I2.

(b) By assumption there exists for each i D 2; 3; : : : ; n an element ai 2 I1 and a
bi 2 Ii such that 1 D ai C bi . It follows that

1 D
Y

i

.ai C bi/ 2 I1 C I2I3 : : : In: ˜

F16 (Chinese Remainder Theorem). Let I1; I2; : : : ; In be pairwise relatively prime
ideals of a commutative ring R with unity. The natural ring homomorphism

(31) R ! R=I1 � R=I2 � � � � � R=In

is surjective, that is, given any elements x1;x2; : : : ;xn of R there exists x 2 R such
that

(32) x � xi mod Ii for i D 1; 2; : : : ; n:

The kernel of the map (31) is the ideal

(33) I1 \ I2 \ � � � \ In D I1I2 : : : In;

so the element x in (32) is uniquely determined modulo the ideal (33).

Proof. Consider first the case n D 2. By assumption there exist e1 2 I1 and e2 2 I2

such that e1 C e2 D 1. For arbitrary x1;x2 2 R, the element

x D x2e1 C x1e2

is then a solution of the system (32). Now let n � 2 be arbitrary. By induction we
can assume that there exists x0 2 R such that

x0 � xi mod Ii for i D 2; : : : ; n:
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By part (b) of the preceding lemma, I1 is relatively prime to the product I2I3 : : : In;
thus, thanks to the previously settled case n D 2, there exists x 2 R such that

x � x1 mod I1 and x � x0 mod I2 : : : In:

Then x clearly satisfies all the congruences in (32). As for the kernel of (31), it
obviously equals the intersection of the Ii . But by the preceding lemma one easily
concludes by induction that

I1 \ I2 \ � � � \ In D I1 \ .I2 : : : In/ D I1I2 : : : In: ˜
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Prime Factorization in Polynomial Rings.
Gauss’s Theorem

1. Let ˛ 2 � be an algebraic number. When looking into whether ˛ is constructible
from f0; 1g with ruler and compass, we were led to investigate in particular the
degree of the field extension �.˛/=� (Chapter 1, F9). Now, �.˛/ W� equals the
degree of the minimal polynomial of ˛ over K (Chapter 2, F3). Thus, if we already
know a (normalized) polynomial f 2 �ŒX � such that f .˛/ D 0, our task is to
determine whether f is irreducible. If so, we have found our desired minimal
polynomial — it is f (Chapter 3, F6). If not, we must continue the search by looking
for irreducible factors of f .

Example. Consider ˛ D e2� i=n, for n> 1 a natural number. Since

X n � 1 D .X � 1/.1 C X C � � � C X n�1/;

the polynomial f .X /D X n�1 C� � �CX C1 satisfies f .˛/D 0. Is f irreducible? If
n has a proper divisor d , surely not, since in this case .X d �1/=.X �1/ is a divisor
of f . But if n is prime we will see in F11 that f is indeed irreducible.

This is not the place for a comprehensive study of the problem mentioned in the
first paragraph. Nonetheless, we would like to shed some light on certain theoretical
aspects of the issue. Two very natural questions will guide us: (i) Is the ring �ŒX � a
UFD? (ii) Is every polynomial f 2 �ŒX � that is irreducible in �ŒX � also irreducible
in �ŒX �? These questions are intimately connected and were both answered by
Gauss in the affirmative.

2. In the remainder of this chapter,

R will always be an integral domain.

Question (i) above can be generalized to read: When is RŒX � a UFD? For practice
with basic algebraic constructs, we start by establishing the following:

F1. RŒX � is a principal ideal domain if and only if R is a field.

Proof. If R D K is a field, KŒX � is a Euclidean domain and therefore a principal
ideal domain (Chapter 4, F6).
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Conversely, assume RŒX � is a principal ideal domain. Consider the kernel I of the
substitution homomorphism ' W RŒX � ! R with '.X / D 0. Since ' sends each
polynomial in RŒX � to its constant term, I D .X /. Thus

(1) RŒX �=X D RŒX �=I ' R

is an integral domain, that is, X is prime in RŒX �, by Definition 9 of Chapter 4.
But then the next statement shows that RŒX �=X is actually a field, and therefore by
(1) R is also a field. ˜

F2. If A is a principal ideal domain and � is irreducible in A, the quotient A=� is a
field.

Proof. According to F14 in Chapter 4, we have to show that .�/ is a maximal ideal
of A. Let I be a proper ideal of A containing .�/. By assumption, I D .a/ for
some a. Then a j� and a … A�, so since � is irreducible we have .�/ D .a/D I .
(Incidentally this shows again that every irreducible element of a principal ideal
domain is prime.) ˜

F3. If RŒX � is a UFD, so is R.

Proof. Take a nonzero a 2 R. Since RŒX � is a UFD, we can write

a D "p1.X /p2.X / : : :pr .X /

with " 2 RŒX �� D R� and p1.X /; : : : ;pr .X / all prime in RŒX �. But then all the
factors have degree zero, so define �i WD pi.X /2 R. For elements of R, divisibility
in RŒX � coincides with divisibility in R, so the �i are prime in R. Thus every
nonzero a 2 R can be represented as

(2) a D "�1�2 : : : �r

with " 2 R� and the �i prime in R. If a 2 R is irreducible, we must have r D 1 in
this representation, so a is associated to �1 and therefore also prime. This shows
that R is a UFD, by F7 in Chapter 4. ˜

3. We now prove the converse:

Gauss’s Theorem. If R is a UFD, so is the polynomial ring RŒX �.

We begin with some preliminary observations, which are of interest in and of
themselves. Every ring homomorphism ' W R ! R0 can be naturally extended to
a homomorphism RŒX � ! R0ŒX � between the corresponding polynomial rings, by
setting

(3)
X

aiX
i ‘

X

'.ai/X
i I

we will denote the extension by ' as well. (By the way, if we regard R0ŒX � as an
R-algebra via ', the map (3) can be thought of as a substitution homomorphism.)
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Given a 2 R, we consider in particular the quotient map R ! R=a and its natural
extension

(4) RŒX �! .R=a/ŒX �:

F4. (i) The homomorphism (4) yields a natural isomorphism (of R-algebras)

RŒX �=a ! .R=a/ŒX �:

(ii) An element a 2 R is prime in R if and only if it is prime in RŒX �.

Proof. Part (i) follows from the Fundamental Homomorphism Theorem, since the
kernel of (4) is clearly I D aRŒX �. Part (ii): since RŒX �=a ' .R=a/ŒX �, we have a

prime in R ” R=a is an integral domain ” .R=a/ŒX � is an integral domain
” RŒX �=a is an integral domain ” a is prime in RŒX �. ˜

From now on we assume R is a unique factorization domain. We denote by

K D Frac R

the fraction field of R. Now let � be a given nonzero prime of R. The corresponding
�-adic valuation w� W K ! � [ f1g in R (page 40) can be extended to a map

(5) w� W KŒX �! � [ f1g
as follows: set

(6) w�
�

X

aiX
i
� D min

˚

w�.ai/
ˇ

ˇ i � 0
�

:

Thus, for f 2 RŒX �, the value of w�.f / is the exponent of the highest �-power
that fits in all coefficients of f . By equation (25) in Chapter 4,

(7) w�.cf /Dw� .c/Cw�.f / for c 2 K; f 2 KŒX �:

The springboard for the proof of Gauss’s Theorem is provided by the next result:

F5. Let R be a unique factorization domain and � ¤ 0 a prime in R. With the
notations introduced above, we have, for all g;h 2 KŒX �,

(8) w�.gh/D w�.g/Cw�.h/:

Proof. Clearly, for every f 2 KŒX � there exists c 2 R such that cf 2 RŒX �. So
taking (7) into account, we can assume without loss of generality that g;h 2 RŒX �.
For simplicity we set w D w� . By the definition of w we then have g D �w.g/g1

and h D �w.h/h1, where g1;h1 2 RŒX � are polynomials satisfying

(9) w.g1/D 0; w.h1/D 0:

We obtain gh D�w.g/Cw.h/g1h1, which together with (7) implies w.gh/Dw.g/C
w.h/Cw.g1h1/. Thus we must show that

w.g1h1/D 0:

Suppose to the contrary that w.g1h1/ > 0, that is, � jg1h1. By F4(ii) we then have
� jg1 or � jh1, that is, w.g1/ > 0 or w.h1/ > 0. But this contradicts (9). ˜
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Definition. A nonconstant polynomial f 2 RŒX � (that is, one whose degree is at
least 1) is called primitive if the gcd of the coefficients of f is 1.

Thus a normalized polynomial in RŒX � is trivially primitive. If R is a UFD,
every nonconstant polynomial g 2 RŒX � can be represented as

g D ag1; with a 2 R r f0g and g1 2 RŒX � primitive:

Also, a is determined up to associatedness, being the gcd of the coefficients of g.
We call a the content of g; more precisely, the uniquely determined principal ideal
.a/ is called that. As can be proved easily from F5,

(10) Content.gh/D Content.g/ � Content.h/. ˜

We now formulate Gauss’s result a bit more precisely:

Theorem 1 (Gauss). Let R be a UFD with fraction field K. Let �1 be a directory
of primes for R and �2 a directory of primes for KŒX � containing only primitive
polynomials of RŒX �. Then RŒX � is a UFD and �1 [ �2 is a directory of primes for
RŒX �.

(It is clear that there exists a �2 with the required properties.)

Proof. Take any nonzero g 2 RŒX �. Since KŒX � is a UFD, there is a unique
factorization

(11) g D a
Y

f 2�2

f ef with a 2 K� D KŒX �� and integers ef � 0,

where ef D 0 for almost all f 2 �2. Now, for any � 2 �1 we have (see F5)
w�.g/ D w�.a/C P

efw�.f / D w�.a/, the latter equation because the f ’s are
primitive. It follows that w�.a/ � 0 for all � , and thus also a 2 R (see F12 in
Chapter 4). Now let

(12) a D "
Y

�2�1

�e�

be the prime factorization of a in R. Together, (11) and (12) yield

(13) g D "
Y

�2�1

�e�

Y

f 2�2

f ef :

This representation is unique, that is, ", the e� and the ef are uniquely determined
by g. For if a representation of the form (13) is given, a comparison with (11)
immediately yields (12), since KŒX � is a UFD; but now since R too is a UFD, the
representation (13) is completely fixed. Now keeping in mind Chapter 4, F11, the
proof is complete. ˜

F6. Let R be a UFD with K D Frac R, and let g 2 RŒX � be nonconstant. If g is
irreducible in RŒX �, it is irreducible in KŒX �.
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Proof. By Theorem 1 we have (with �2 as in the theorem’s statement)

g D "f with " 2 R� and f 2 �2:

Thus g is irreducible in KŒX �. ˜

Conversely, if g 2 RŒX � is irreducible in KŒX �, then g is irreducible in RŒX � if
and only if g is primitive.

F7 (Gauss’s Lemma). Let R be a UFD and K D Frac R. If f .X / 2 RŒX � can be
expressed as

f .X /D g.X /h.X / with normalized g;h 2 KŒX �;

all the coefficients of g and h lie in R.

Proof. For any prime � ¤ 0 of R we have

w�.f /� 0 since f 2 RŒX �;

w�.g/; w�.h/�w�.1/D 0 since g;h are normalized.

But w�.f /D w�.g/Cw�.h/, so all three integers vanish. Since � was arbitrary,
all the coefficients of g and h belong to R (see Chapter 4, F12). ˜

F8. Let R be a UFD and K D Frac R. Let f 2 RŒX � be a normalized polynomial
with coefficients in R. Then any root ˛ of f that lies in K actually lies in R, and
moreover divides the constant term of f .

Proof. Take a factorization f .X /D .X �˛/h.X / in KŒX �. Since f is normalized,
so is h. By Gauss’s Lemma (F7), all the coefficients of X � ˛ and h.X / are in R.
In particular, ˛ 2 R, and since a0 WD f .0/D .�˛/h.0/ we have ˛ ja0. ˜

Application. Consider the special case R D �, K D �. We prove that f .X / D
X 3 � 2 is irreducible. Suppose f were reducible. Since it has degree 3, it would
have a linear factor, and therefore a root ˛ in �. By F8, X 3 � 2 would also have a
root in �, which is clearly not the case.

From the irreducibility of X 3 � 2 it follows that 3
p

2 is not a rational number.
Using similar arguments one can easily derive from F8 the irrationality of numbers
such as 5

p
3;

6
p

72;
12
p

27. (Note that although 12
p

27 is irrational, X 12 � 27 is not
irreducible. As an exercise prove that X 6 � 72 is irreducible — compare F11(d) in
Chapter 2.)

4. The next statement suggests a fundamental principle by means of which one can
investigate the irreducibility of polynomials:

F9. Let R be an integral domain and let a ‘ a be a homomorphism of R into an
integral domain R; extend this to a homomorphism RŒX � ! RŒX � of polynomial
rings in the usual way:

f D
X

aiX
i ‘ f D

X

aiX
i :
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Let f .X / D anX n C � � � C a0 be a primitive polynomial of RŒX � with an ¤ 0. If f
is irreducible in RŒX �, then f is irreducible in RŒX �.

Proof. Assume the opposite. Then f D gh, where g;h are nonconstant polynomials
in RŒX � (nonconstant because f is primitive). Taking the image in RŒX � gives
f Dgh. Since an is nonzero, we must have deg g D deg g �1 and deg hD deg h�1.
Since R is an integral domain, we get a contradiction with the assumption that f
is irreducible. ˜

In applying F9, one is usually dealing with a unique factorization domain R,
because apart from the fact that otherwise one has hardly any control over the
primitivity of f , it is also not permissible in the general case to deduce that f is
irreducible over K D Frac R. On the other hand, the train of thought that leads to
F9 can be useful even if we don’t know ahead of time that f is irreducible, but
rather we know something about the possible factorizations of f in RŒX �. Here is
the best known application of this approach:

F10 (Eisenstein irreducibility criterion). Let R be an integral domain, and let

f .X /D aX n C an�1X n�1 C � � � C a1X C a0

be a primitive polynomial in RŒX �. If there exists a prime � of R such that (i) � -a,
(ii) � jai for 0 � i � n � 1, and (iii) �2 -a0, then f is irreducible in RŒX �. If R is a
UFD, f is also irreducible in KŒX �, where K is the fraction field of R.

Proof. Since � was assumed prime in R, the quotient R WD R=� is an integral
domain. We now work as in the proof of F9. Suppose f has a nontrivial factorization
in RŒX �:

f D gh; with r D deg g � 1 and s D deg h � 1:

Taking the image in RŒX � leads to, as before,

f D gh; with deg g D r and deg h D s:

To be sure, f is not irreducible, but because of condition (ii) it has the form f D
aX n, so that in RŒX � the equation

(14) aX n D gh

holds. Set k D Frac R. Since kŒX � is a UFD and a ¤ 0, it follows from (14) that
g and h have the form g D ˇX r and h D �X s , with ˇ; � 2 k. But r; s � 1, so
in particular g.0/ D h.0/ D 0, that is, � jg.0/ and � jh.0/. This implies that �2

divides g.0/h.0/D f .0/D a0, contradicting condition (iii). ˜

Here is an immediate consequence of Eisenstein’s irreducibility criterion: All
polynomials of the form

X n � a; with a 2 � r f1;�1g square-free

are irreducible in �ŒX � and therefore also in �ŒX �. (An integer a 2 � is called
square-free if it is not divisible by the square of any prime.)
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F11. If p is a prime number, the polynomial

Fp.X /D X p�1 C X p�2 C � � � C X C 1

is irreducible in �ŒX �.

Proof. We show that Eisenstein’s criterion can be applied after a simple change of
variables. Instead of Fp.X /, consider the polynomial

f .X /D Fp.X C 1/:

This f is irreducible in �ŒX � if and only if Fp is, because the two polynomials are
mapped to one another by the automorphism of �ŒX � coming from the invertible
substitution X ‘ X C 1. Since Fp.X /.X � 1/ D X p � 1 we get f .X /X D
.X C 1/p � 1, that is,

f .X /D
p

X

kD1

�

p

k

�

X k�1 D p C
�

p

2

�

X C � � � C
�

p

p � 1

�

X p�2 C X p�1:

Relative to the prime p of �, this is an Eisenstein polynomial of �ŒX �— that is, it
satisfies all the conditions required for the application of the Eisenstein criterion, as
a result of the fact that p divides

(15)

�

p

k

�

D p.p � 1/ : : : .p � k C 1/

1 � 2 � : : : � k
for 0 < k < p. (This is seen as follows: For 0 < k < p, the numerator, but not the
denominator, of the fraction in (15) is divisible by p; since we already known — on
combinatorial grounds, for instance — that

�

p
k

�

is an integer, the divisibility claim is
proved.) ˜

F11 has immediate repercussions for the constructibility of regular polygons:

F12. Let p be a prime. A construction of the regular p-gon with ruler and compass
is impossible unless p � 1 is a power of 2.

Proof. If 
 WD e2� i=p lies in �, the degree �.
/ W � is a power of 2, by Chapter 1,
F9. But by F11 we always have �.
/ W� D p�1 (review Chapter 2, F3 and Chapter
3, F6). ˜

Thus a regular heptagon (7-gon) is not constructible with ruler and compass, nor
is an 11-gon, a 13-gon, a 14-gon, a 19-gon, and so on. And neither is a 9-gon, as
can be seen from the following generalization of F11:

F13. We keep the notations of F11. If n D pr is a prime power, the minimal polyno-
mial of 
 WD e2� i=n over � is

(16) Fpr .X / WD 1 C X pr �1 C X 2pr �1 C � � � C X .p�1/pr �1 D Fp.X
pr �1

/:

In particular, �.
/ W� D pr�1.p � 1/.
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Proof. Since X pr � 1 D .X pr �1 � 1/Fpr .X /, our 
 is certainly a root of Fpr . It
suffices to show that the polynomial f .X / WD Fpr .X C 1/ in �ŒX � is an Eisenstein
polynomial with respect to p. We work in �ŒX � modulo p. As we saw in the proof
of F11, Fp.X C 1/� X p�1 mod p. Thus

f .X /D Fpr .X C1/D Fp..X C1/p
r �1

/� Fp.X
pr �1 C1/� .X pr �1

/p�1 mod p:

In addition, f .0/D Fpr .1/D p and f is normalized, so f is indeed an Eisenstein
polynomial with respect to p. ˜

Until now we have left open the question whether for primes of the form p D
2m C1 it is indeed always possible to subdivide the circle into p parts with ruler and
compass. If this is so, a moment’s thought shows that the constructibility problem for
arbitrary n has been completely solved (apart of course from the number-theoretical
question of which primes have the form 2m C 1). It turns out that the division of
the circle into p parts with ruler and compass is possible for all primes of the form
2mC1, but we will only substantiate this fact after we have developed our conceptual
machinery some more and acquired more powerful tools. (The reader interested in
learning more about Gauss’s more direct approach to this problem should consult his
Disquisitiones Arithmeticae.) Incidentally, Gauss at the age of eighteen had already
discovered a way to construct a regular 17-gon, before he had a thorough proof of
the impossibility of constructing, say, a regular heptagon.

We now address the problem of trisecting an angle:

F14. Consider an angle ' with 0 � ' < 2� . If ei' is transcendental, ' cannot be
trisected with ruler and compass.

Remarks. (1) The condition in F14 is satisfied for uncountably many '. Indeed,
the function ' ‘ ei' provides a bijection between the interval Œ0; 2�/ and the unit
circle in �; therefore there can be only countably many ' 2 Œ0; 2�/ for which ei'

is algebraic.

(2) Even when ei' is algebraic, the trisection of ' is by no means necessarily
possible. Consider for example ' D 2�=3. Trisecting ' amounts to constructing a
9-gon, which as we know from F13 is impossible. Actually it is also easy to prove
directly that �.ei'=3/ W�.ei'/D 3.

(3) Again in connection with the transcendence condition in F14, the famous
Hermite–Lindemann Theorem says that if z is any nonzero algebraic complex num-
ber, ez is transcendental — in particular, ei' is transcendental for any algebraic value
of the angle '. Since ei� D �1, the theorem also implies that � is transcendental.
We will give a proof of the Hermite–Lindemann Theorem in Chapter 17.

Proof of F14. Let K D �.ei'/, and suppose t D ei' is transcendental. We must
show that z D ei'=3 does not belong to K. This will be done if we prove that

(17) K.z/ WK D 3
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(see Chapter 1, F9). Now, z is certainly a root of the polynomial X 3 � t over K.
To prove (17) therefore we have to show that

(18) X 3 � t is irreducible in KŒX �:

Since t is transcendental, K D �.t/ is the field of rational functions in t over �

(Section 3.4), which is to say, the fraction field of the polynomial ring R WD �Œt �.
Since R is a UFD and t is prime in R, an application of the Eisenstein criterion to
the polynomial X 3 � t proves (18). ˜



6

Polynomial Splitting Fields

1. Still bearing in mind the initial problem of Chapter 1, our task now consists in
the study of (finite) field extensions E=K. One fundamental question concerns the
possible intermediate fields of E=K (see Chapter 1, Theorem 10). Our subsequent
discussion will benefit from the introduction of a convenient shorthand:

Definition 1. Let E1 and E2 be extensions of a field K, which we regard as algebras
over K. A homomorphism of K-algebras � W E1 ! E2 is called a K-homomorphism
from E1 to E2. We also say that � is a homomorphism from the extension E1=K to
the extension E2=K and write

(1) � W E1=K ! E2=K:

If � is an isomorphism, we say that the extensions E1=K and E2=K are isomorphic.

Remark. A field homomorphism � W E1 ! E2 satisfies �.1/ D 1 by definition;
therefore it is always injective and so gives rise to an isomorphism of E1 with a
subfield of E2. If E1 and E2 are both extensions of a field K, a field homomorphism
� is a K-homomorphism if and only if

(2) �.c/D c for all c 2 K:

From Definition 1 there is a steep but well-traveled path to Galois theory (opened
largely by Dedekind and E. Artin; see the latter’s Galois Theory). Here we will take
the more leisurely and scenic route. The following result is simple but far-reaching:

F1. Let E=K and E0=K0 be field extensions and � W K ! K0 a field homomorphism.
There is a natural extension of � to a ring homomorphism KŒX � ! K0ŒX �; we still
call it � , but for f 2 KŒX � we often write f � instead of �.f /. Let f 2 KŒX �.

(a) Every homomorphism � W E ! E0 extending � maps any root of f in E to a
root of f � in E0.

(b) Assume � W K ! K0 is an isomorphism. Let ˛ be a root of f in E and ˛0 a root
of f � in E0. If f is irreducible over K, there is an isomorphism � W K.˛/ !
K0.˛0/ extending � and such that �.˛/D ˛0.
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Remark. As an important special case, take K0 D K and � D idK . Then a � as
in part (a) is a K-homomorphism from E to E0, and a � as in part (b) is a K-
homomorphism from K.˛/ onto K.˛0/. By the way, the irreducibility assumption
in (b) cannot be dispensed with.

Proof. (a) Suppose f .X / D a0 C a1X C � � � C anX n. If 0 D f .˛/ D a0 C a1˛C
� � � C an˛

n then 0 D �.f .˛//D �.a0/C�.a1/�.˛/C � � � C�.an/�.˛/
n D f � .�˛/.

(b) Let f 2 KŒX � be irreducible; we may as well assume it normalized. Then f is
the minimal polynomial of ˛ over K. We define � by setting

�.g.˛//D g� .˛0/ for g 2 KŒX �:

Is � well-defined? If g1.˛/D g2.˛/ we get .g1 �g2/.˛/D 0, so g1 �g2 D hf with
h 2 KŒX �; then g�

1
�g�

2
D h�f � and therefore g�

1
.˛0/�g�

2
.˛0/D h� .˛0/f � .˛0/D 0.

It is clear that � is a surjective homomorphism from K.˛/ to K0.˛0/ extending � . ˜

In order to have some room to maneuver, we quote now a result whose proof —
in spite of the statement’s spartan simplicity — requires further preliminaries and is
postponed to the end of the chapter. The general construction principles laid down
in preparation for the proof (Sections 6.2 and 6.3) will also be important in other
contexts.

Theorem 1. Let .Ei/i2I be an arbitrary family of extensions Ei of a field K. There
exists an extension E of K and homomorphisms �i W Ei=K ! E=K such that E is
obtained from K by adjoining the union of the sets �iEi , for i 2 I .

Definition 2. A field C is algebraically closed if every nonconstant polynomial
f .X / 2 C ŒX � has a root in C .

Remark. The field � of complex number is algebraic closed; this is proved through
analysis, function theory or algebra (see Volume II for the latter).

F2. The following statements about a field C are equivalent:

(i) C is algebraically closed.

(ii) Every irreducible polynomial in C ŒX � is linear (that is, of degree 1).

(iii) Every nonconstant polynomial in C ŒX � is completely decomposable into linear
factors.

(iv) If E=C is an algebraic field extension, E D C .

Proof. (i) ) (ii): Let f 2 C ŒX � be irreducible. By (i) there exists ˛ 2 C with
f .˛/D 0. Then f is divisible in C ŒX � by X �˛, that is, f D � .X �˛/, necessarily
with � 2 C �.

(ii) ) (iii): By (ii), only linear polynomials can appear in the prime factorization
of f 2 C ŒX �.

(iii) ) (iv): Let E=C be algebraic. The minimal polynomial f D MiPoC .˛/ of
any ˛ 2 E is irreducible, hence linear, by (iii). Therefore ˛ 2 C .
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(iv) ) (i): Suppose f 2 C ŒX � is nonconstant. By Chapter 3, Theorem 4, there is
an extension E=C and an ˛ 2 E such that f .˛/D 0. But C.˛/=C is algebraic, so
by (iv) we have C.˛/D C , that is, ˛ 2 C . ˜

Theorem 2 (Steinitz). Let K be a field.

(I) There exists an extension C of K with the following properties:
(i) C is algebraically closed.

(ii) C=K is algebraic.
Such a field is called an algebraic closure of K.

(II) If C1 and C2 are algebraic closures of K, the extensions C1=K and C2=K are
isomorphic.

Proof of part (I). Let KŒXn; n 2 �� be the polynomial ring in countably many inde-
terminates X1;X2; : : : over K. Consider the set I of all subsets M � KŒXn; n 2 ��

such that

M is a maximal ideal of KŒX1; : : : ;Xm� for some m 2 �:

For each such M , let EM WDKŒX1; : : : ;Xm�=M be the corresponding quotient field.
We regard EM as an extension of K. Now apply Theorem 1 to the family .EM /M 2I ,
to conclude that there exists a field extension E=K and K-homomorphisms

�M W EM ! E

for each M 2 I . We claim that for every finite field extension L=K there exists
a K-homomorphism from L into E. Indeed, if L D K.˛1; : : : ; ˛m/ with each ˛i

algebraic over K, consider the homomorphism of K-algebras ' W KŒX1; : : : ;Xm�!
L defined by '.Xi/ D ˛i . Let M be its kernel. Then ' yields an isomorphism
KŒX1; : : : ;Km�=M ! L. Hence M is a maximal ideal of KŒX1; : : : ;Xm�, and the
claim is proved.

Now let C be the algebraic closure of K in E (see Chapter 2, F8). The ex-
tension C=K is certainly algebraic; we show that C is also algebraically closed.
Suppose otherwise. Then there is an algebraic extension F=C with F ¤ C . Take
˛ 2 F r C , and let f be the minimal polynomial of ˛ over K . (Note: ˛ is alge-
braic over K because it is algebraic over C and C=K is an algebraic extension.)
Suppose f has exactly n distinct roots ˇ1; : : : ; ˇn in C , and form the subfield
L D K.˛; ˇ1; : : : ; ˇn/ of F . Then L=K is finite (see Chapter 2, F7). Therefore, by
the italicized statement in the previous paragraph, there exists a K-homomorphism
' W K.˛; ˇ1; : : : ; ˇn/! C . But then '.˛/; '.ˇ1/; : : : ; '.ˇn/ are nC1 distinct roots
of f in C . Contradiction! ˜

Remark. The extensions EM=K are all algebraic (so E=K itself can be assumed
algebraic); but this is harder to prove and we don’t need it here.

The proof of part (II) of Theorem 2, the uniqueness part, ensues from:
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Theorem 3. Let � WK !K0 be an isomorphism of fields and let L=K be an algebraic
field extension. If C is an algebraically closed extension of K0, the map � can be
extended to a homomorphism � W L ! C .

Proof. (a) We deal first with the case K0 D K and � D idK . An application of
Theorem 1 to E1 WD L and E2 WD C shows there exists an extension E=K and
K-homomorphisms �i W Ei ! E such that E D C 0.L0/, where L0 WD �1L and
C 0 WD �2C . The extension C 0.L0/=C 0 is algebraic and C 0 is algebraically closed. It
follows that C 0 D C 0.L0/D E, so �2 W C ! E is an isomorphism. Then we can look
at the K-homomorphism ��1

2
ı �1 W L ! C ; this homomorphism is an extension �

of � D idK as desired.

(b) Now let � W K ! K0 be any isomorphism. As can easily be checked, there is
an extension L0 of K0 and a homomorphism 	 W L ! L0 that agrees with � on
K (replacing the elements of K in L by elements of K0). By (a) there exists a
K0-homomorphism � 0 W L0 ! C . Then � D � 0 ı 	 W L ! C is an extension of � . ˜

Proof of part (II) of Theorem 2. By Theorem 3, there is a homomorphism
� W C1=K ! C2=K. But C2=�C1 is algebraic (because C2=K is), and �C1 is
algebraically closed (like C1). It follows that C2 D �C1, so � is an isomorphism. ˜

F3. Every endomorphism of an algebraic field extension E=K is an automorphism.

Proof. Let � W E=K ! E=K be a homomorphism of field extensions. We must show
that �E D E. Take ˛ 2 E and set f D MiPoK .˛/. Denote by N˛ the set of all
roots of f in E. Then � effects a permutation of N˛, because � takes roots of f
to roots of f (see F1) and � is injective. Thus, since ˛ 2 N˛ , there exists ˇ 2 N˛

such that �.ˇ/D ˛. ˜

Definition 3. Let K be a field and f 2 KŒX � a nonconstant polynomial. An exten-
sion E of K is called a splitting field of f over K if there exist ˛1; ˛2; : : : ; ˛n 2 E

such that f .X /D � .X �˛1/.X �˛2/ : : : .X �˛n/ and E D K.˛1; ˛2; : : : ; ˛n/.

The name echoes the expression “to split into linear factors”, which means the
same as “to have a complete decomposition into linear factors”.

F4. Every nonconstant f 2 KŒX � has a splitting field over K. If E;E0 are splitting
fields of f over K, the extensions E0=K and E=K are isomorphic.

Proof. Existence: Let C be an algebraic closure of K, which exists by Theorem 2.
In C ŒX � we have

f .X /D � .X �˛1/.X �˛2/ : : : .X �˛n/

with ˛i 2 C (and � 2 K the leading coefficient of f ). Therefore the subfield
K.˛1; ˛2; : : : ; ˛n/ of C is a splitting field of f over K. (Actually the existence of
a splitting field also follows easily from Kronecker’s Theorem, given as Theorem 4
in Chapter 3; see §3.3 in the Appendix.)
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Uniqueness: Let C and C 0 be algebraic closures of E and E0 (and therefore
also of K and K0). By Theorem 3 there exists a K-homomorphism � W E ! C 0.
Clearly, since E is a splitting field of f over K, so is �E; but since the splitting
fields �E and E0 of f over K are both subfields of C 0, it follows that �E D E0.
Thus � yields a K-isomorphism between E and E0. ˜

Examples. (a) One splitting field of X 4 � 2 over � is the subfield �.
4
p

2; i/

of �. Indeed, X 4 � 2 D .X � 4
p

2/.X � i
4
p

2/.X C 4
p

2/.X C i
4
p

2/ and
�.

4
p

2; i
4
p

2/D �.
4
p

2; i/.

(b) One splitting field of X n�1 over � is the subfield E WD �.
/ of �, where 
D
e2� i=n. Indeed, X n � 1 D Qn

jD1.X � 
j / in EŒX �, because 1; 
; 
2; : : : ; 
n�1

are all distinct.

Definition 4. An algebraic field extension E=K is called normal if every irreducible
polynomial f 2 KŒX � that has some root in E splits into linear factors over E (in
other words, E contains a splitting field of f over K).

Theorem 4. Let E=K be an algebraic field extension, and let C be an algebraic
closure of E (and therefore also of K). The following statements are equivalent:

(i) E=K is normal.

(ii) For every homomorphism � W E=K ! C=K we have �E D E (that is, � can
be regarded as an automorphism of E=K).

(ii0) Every automorphism of C=K restricts to an automorphism of E=K.

(iii) E is a splitting field over K; that is, there exists a set M �KŒX � of nonconstant
polynomials such that E D K.N /, where N denotes the set of all roots of
polynomials f 2 M in C .

Proof. (iii) ) (ii0): Let � W C=K ! C=K be an isomorphism. Then �.N /� N , so
�.K.N //� K.N /, that is, �E � E. Now F3 shows that �E D E.

(ii0) ) (ii): By Theorem 3, a homomorphism � W E=K ! C=K can be extended to
a homomorphism � W C=K ! C=K. By F3, � is an automorphism of C=K.

(ii) ) (i): Let f 2 KŒX � be irreducible and suppose f .˛/ D 0 for some ˛ 2 E.
We must show that all roots of f in C already lie in E. So suppose f .ˇ/D 0 for
some ˇ 2 C . By F1 there is a K-isomorphism � W K.˛/! K.ˇ/ taking ˛ to ˇ. By
Theorem 3, � can be extended to a homomorphism � W E ! C . By (ii) we have
�E D E. In particular ˇ D �˛ D �˛ is an element of E.

(i) ) (iii): Set M D fMiPoK .˛/ j ˛ 2 Eg and let N be the set of ˇ 2 C that are
roots of polynomials f 2 M . By definition, E � N . If E=K is normal, we have
N � E. Putting it all together we get E D N , so E D K.N /. ˜

Remark. If E=K is a finite normal extension, we can obviously take M D ff g
in (iii), with an appropriate choice of f 2 KŒX �. (However in general it cannot be
stipulated at the same time that f be irreducible.)

As a consequence of implication (iii) ) (i) of Theorem 4, we can state explicitly:
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F5. Let f 2 KŒX � be a nonconstant polynomial and let E be the splitting field of f
over K. Then E=K is normal.

The proof of the next statement is left to the reader as an exercise.

F6. Let E=K be an algebraic extension. There is an extension E0 of E with these
properties:

(i) E0=K is normal.

(ii) If L is an intermediate field of E0=E and L=K is normal, L D E0.
Such an E0 is called a normal closure of E=K. Any two normal closures of E=K

are isomorphic as K-extensions. If E=K is finite, so is E0=K.

2. We now equip ourselves with an important algebraic tool, which we will use to
prove Theorem 1 among other things. Fix a field K. If M is a nonempty set, define

KM WD K.M / D ˚

f W M ! K
ˇ

ˇ f ./D 0 for almost all  2 M
�

:

There is a natural K-vector space structure on KM , with a canonical basis .e�/�2M

populated by the characteristic functions e� of one-point sets fg � M (defined by
e�.�/D 1 if D � and e�.�/D 0 otherwise). With the identification e� D, every
f 2 KM has a unique representation of the form

(3) f D
X

�2M

c� with c� 2 K;

where c� D 0 for almost all  2 M .
Now give M a monoid structure, that is, an associative operation (written mul-

tiplicatively) having an identity element. Then KM acquires a natural K-algebra
structure, whereby the multiplication .; �/ ‘ � is extended distributively to all
of KM . (When M D G is a group we call KG the group algebra of G over K.)

We consider an application. Let .Ai/i2I be a family of K-algebras with unity,
where I ¤ ?. Set

M D ˚

.ai/i2I j ai 2 Ai ; ai D 1Ai
for almost all i

�

:

By setting .ai/i.bi/i D .aibi/i we make M into a monoid, whose corresponding
monoid algebra we denote by KM . Elements of KM have unique representations
of the form

X

˛D.ai /2M

c˛˛; c˛ 2 K;

with c˛ D 0 for almost all ˛ 2 M . We now wish to construct a quotient algebra of
KM where certain relations are obeyed. Take the K-subspace U of KM generated
by all elements of the form

(4) .ai/C.bi/�.si/, where aj Cbj Dsj for some j 2I and ai Dbi Dsi for all other i ’s
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and those of the form

(5) .ai/� c.bi/, where aj D cbj for some j 2 I and ai D bi for all other i ’s.

It is easy to see that U is in fact an ideal of KM , so we can take the quotient
of KM modulo U . We denote this quotient by

(6)
O

i2I

Ai D KM=U:

If � is the quotient map, we set
N

i ai WD �.˛/ for ˛ D .ai/:

If I D f1; 2; : : : ; ng, we also write

A1 ˝ � � � ˝ An WD
O

i2I

Ai ; a1 ˝ � � � ˝ an WD N

i ai :

The K-algebra (6) is called the tensor product of the K-algebras Ai , for i 2 I . All
its elements have the form

X

˛D.ai /2M

c˛
�

N

i ai

�

;

but this representation is no longer unique in general. For each j 2 I there is a map

�j W Aj !
O

i

Ai

taking a 2 Aj to the element
N

i ai defined by aj D a and ai D 1Ai
for i ¤ j .

By definition, �j .1Aj
/ is the unity element in

N

i Ai , and for all a; b 2 Aj we
have �j .ab/ D �j .a/�j .b/. As can easily be seen from (4) and (5), we also have
�j .a C b/ D �j .a/C �j .b/ and �j .ca/ D c�j .a/ for c 2 K. Thus every �j is a
homomorphism of K-algebras. This whole construction was aimed at showing that
(6) yields a K-algebra, which, together with the �j defined above, enjoys certain
functorial properties:

F7. Let .'i/i2I be a family of K-algebra homomorphisms 'i W Ai ! A. Then if

(7) 'i.a/'j .b/D 'j .b/'i.a/

for all i ¤ j and all a 2 Ai ; b 2 Aj , there exists a unique homomorphism of K-
algebras

' W
O

i2I

Ai ! A

such that ' ı �i D 'i for all i 2 I .

Proof. (a) Suppose ' has already been found. Then

'
�

N

i ai

� D '
�

Q

i �i.ai/
� D Q

i '.�i.ai//D Q

i 'i.ai/;

so ' is uniquely determined. Note that the expression
Q

i 'i.ai/ is well-determined
because of assumption (7).
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(b) It is clear from (a) how ' is to be defined; but we must prove that the definition
is consistent. The map .ai/‘ Q

i 'i.ai/ from M into A is multiplicative and thus
can be extended to a homomorphism of K-algebras  W KM ! A satisfying

 

�

X

˛

c˛˛

�

D
X

˛D.ai /

c˛

�

Y

i

'i.ai/

�

:

It is easy to ascertain that elements of the form (4) and (5) are in the kernel of  .
Thus  .U / D 0, so  gives rise to a K-algebra homomorphism ' W KM=U ! A

such that

(8) '
�

N

i ai

� D Q

i 'i.ai/:

In particular, '.�j .a//D 'j .a/ for all a 2 Aj , which proves the assertion. ˜
Remark. All of this continues to work if K is a commutative ring with unity rather
than a field. The only change is that when K is a ring we talk of K-modules rather
than K-vector fields (though the name K-algebra remains). Now, not all K-modules
are lucky enough to be free, that is, to contain a set of K-linearly independent
elements whose K-linear combinations make up the whole module. If such a set
exists, it is called a basis. Our KM does have a basis — in fact a canonical basis, the
set .e�/�2M (page 60). Thus KM is a free K-module. Other constructions so far in
this section also work just as well in this more general setting, as the reader should
check, with only the change that U is a K-submodule of KM . But watch out: our
vector space intuition does not work so well with modules, and it is possible, for
example, for U to be the whole of KM ! So the tensor product (6) might be the
zero ring, even if all the Ai are nonzero. This does not happen, however, in the
following special situation:

F8. Let K be a commutative ring with unity and suppose .Ai/i2I are K-algebras
such that each Ai has a K-basis Mi with 1Ai

2 Mi . (In particular, the Ai are free
K-modules.) Then the family of elements of the form

(9)
N

i bi with bi 2 Mi and bi D 1Ai
for almost all i

is a K-basis of the tensor product
N

i2I Ai .

Proof. Clearly the elements (9) span
N

i2I Ai as a K-module. Let ˛ D N

i ai be a
fixed but arbitrary element among those in (9). For each i 2 I , let fi W Ai ! K be
the linear functional that assigns to each a 2 Ai the coordinate of a corresponding
to the basis element ai . Then consider the K-linear map

h˛ W
O

i

Ai ! K

such that h˛
�

N

i xi

� D Q

i fi.xi/. This map is well-defined. For an arbitrary ele-
ment ˇ D N

i bi of the form (9) we have

h˛.ˇ/D Q

i fi.bi/D
�

0 if .bi/¤ .ai/,
1 if .bi/D .ai/.
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Now suppose we have a linear dependence
X

ˇD.bi /

cˇ
�

N

i bi

� D 0;

where the sum is over the elements ˇD .bi/i in (9). Applying h˛ we see that c˛ D 0.
Thus the elements (9) are linearly independent over K. ˜

Here is an immediate consequence of F8:

F9. We keep the assumptions of F8. The multiplicative identity 1 D N

i 1Ai
of

N

i Ai is nonzero. For every j the map �j W Aj ! N

i Ai is injective; hence Aj can
be regarded as a subalgebra of

N

i Ai .

Example. Let � be a nonempty set. For each X 2 �, let AX WD KŒX � be the
polynomial ring in one variable X over K. Then

KŒ�� WD
O

X 2�

AX

is called the polynomial ring in the variables X 2 � over K. The elements of KŒ��
are called polynomials in the variables X 2 �. We regard KŒX � as a subalgebra of
KŒ��. In view of F8, the family of monomials

M�.�/ WD
Y

X

X �.X /; with � D .�.X //X 2 .� [ f0g/.�/;

forms a basis of KŒ��.
If � D fX1; : : : ;Xng has n elements, we set KŒX1; : : : ;Xn� WD KŒ��; in this case

the basis representation of an f 2 KŒ�� has the form

f D
X

�D.�1;:::;�n/

c�X
�1

1
X
�2

2
: : :X �n

n :

The following functorial property comes directly from the definition of KŒ��
together with F7:

F10. Let K be a commutative ring with unity and � a nonempty set. If A is a com-
mutative K-algebra, any map � ! A can be uniquely extended to a homomorphism
of K-algebras ' W KŒ��! A (the substitution homomorphism).

If � D fX1; : : : ;Xng and ˛i WD '.Xi/, denote by f .˛1; : : : ; ˛n/ the image '.f /
of a polynomial f 2 KŒX1; : : : ;Xn� under '. In particular, f .X1; : : : ;Xn/ D f .
Note also that KŒX1; : : : ;Xn�D KŒX1; : : : ;Xn�1� ŒXn�:

3. We now turn to an important algebraic application of Zorn’s Lemma.

Zorn’s Lemma. Let M be a (partially) ordered set in which every chain has an
upper bound. Then M has a maximal element.
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Recall that a set M is called partially ordered, or simply ordered, if it is endowed
with a relation � satisfying the following properties: (i) a � a; (ii) a � b and b � c

imply a � c; (iii) a � b and b � a imply a D b. Let .M;�/ be an ordered set. A
subset N of M is a chain if it is totally ordered with the order induced from M ;
that is, if for a; b 2 N we either have a � b or b � a. Again let N � M . An element
a 2 M is an upper bound for N if x � a for every x 2 N . Finally, m 2 M is a
maximal element of M if any m0 2 M such that m � m0 actually equals m.

We take Zorn’s Lemma as a well-known fundamental statement of set theory;
see for example the Wikipedia entry at http://en.wikipedia.org/wiki/Zorn’s lemma.
As a typical example of its application, consider:

F11. Let V be a vector space over a field K, and let T be a linearly independent
subset of V . Then V has a basis B such that T � B.

Proof. The set M of all linearly independent subsets of V containing T is ordered
by inclusion. It is also nonempty, since T 2 M . Let N ¤ ? be a chain in M . The
union U of all Y 2 N is then linearly independent as well. Otherwise there would
exist a finite subset A of U exhibiting a linear dependence; because A is finite and
N is a chain, there would exist Y 2 N such that A � Y . But this is impossible,
since Y was assumed linearly independent.

By Zorn’s Lemma, then, there exists a maximal linearly independent subset B

of V such that T � B. But such a set must be a basis for V . (Why?) ˜

The following result is important in our context:

F12. Let I be an ideal in a ring R with unity. If I ¤ R, there exists a maximal ideal
of R containing I .

Proof. Consider the set M of ideals J of R such that 1 … J  I , and order M by
inclusion. M is nonempty since it contains I . If N ¤ ? is a chain in M , consider
the union QJ of all J 2 N . One checks easily that QJ 2 M ; also QJ is obviously an
upper bound for N . By Zorn’s Lemma, then, M has a maximal element J . From
the definitions and the fact J ¤ R (since 1 … J ) we see that J is a maximal ideal
of R and J contains I . ˜

Remark. For noncommutative rings, the exact same proof yields the corresponding
statement about left ideals (instead of two-sided ideals).

We are finally ready to pick up our long-awaited proof:

Proof of Theorem 1. Consider the tensor product A D N

i2I Ei of the extensions Ei

of K (regarded as K-algebras), together with the corresponding homomorphisms of
K-algebras �i W Ei ! A. Then A is a (commutative) K-algebra with 1 ¤ 0 (see
F9; but in general A is not a field). By F12, there exists a maximal ideal M in A.
Therefore A=M is a field, by F14 in Chapter 4. Being a K-algebra, A=M can be
regarded as an extension E of K. The desired K-homomorphisms �i W Ei ! E are
obtained by composing the �i with the quotient map A ! A=M D E. It is clear
that E arises from K by adjunction of the union of the sets �iEi . ˜
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Separable Extensions

1. Definition 1. Let K be a field and C an algebraic closure of K. Two elements
˛; ˇ 2 C are called conjugate over K if there is an automorphism � of C=K with
�.˛/Dˇ. The elements of C conjugate to ˛2C over K are called the K-conjugates
of ˛ (in C ).

F1. With the notations of Definition 1, the following statements are equivalent:

(i) ˇ and ˛ are conjugate over K in C .

(ii) ˇ is a root of MiPoK .˛/.

(iii) There is an isomorphism � WK.˛/=K ! K.ˇ/=K such that �.˛/D ˇ.

(iv) MiPoK .˛/D MiPoK .ˇ/.

In particular, any ˛ 2 C has at most Œ˛ WK�D K.˛/ WK distinct K-conjugates in C .

Proof. (iii) ) (i): Extend � to an automorphism � of C=K (Chapter 6, Theorem 3
and F3).

(i) ) (ii): By assumption there is an automorphism � of C=K such that �.˛/D ˇ.
Set f D MiPoK .˛/. Then f .ˇ/D f .�˛/D 0 (Chapter 6, F1).

(ii) ) (iv): Set f D MiPoK .˛/ and suppose f .ˇ/D 0. Since f is irreducible and
normalized, f D MiPoK .ˇ/.

(iv) ) (iii): This follows from Chapter 6, F1(b).

The last statement of F1 is clear, since f D MiPoK .˛/ can have at most Œ˛ WK� D
deg f distinct zeros in C . ˜

F2. If K is a field and C an algebraic closure of K, the following statements are
equivalent for a given ˛ 2 C with f D MiPoK .˛/:

(i) ˛ has exactly n distinct K-conjugates in C .

(ii) There are exactly n distinct homomorphisms from K.˛/=K into C=K.

(iii) f has exactly n distinct roots in C .

Proof. A homomorphism � W K.˛/=K ! C=K is determined by the image �.˛/.
Thus F2 follows from F1. ˜
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Definition 2. Let E=K be a field extension and suppose ˛ 2 E is algebraic over K.
The number of distinct roots of f D MiPoK .˛/ in any splitting field of f over K

is called the separable degree of ˛ over K, and is denoted by

Œ˛ WK�s :
An element ˛ is said to be separable over K if Œ˛ W K�s D Œ˛ W K�; otherwise it
is inseparable over K. Thus ˛ is separable over K if and only if its minimal
polynomial over K only has simple roots (in its splitting field).

Remarks. (a) Clearly, Œ˛ WK�s � Œ˛ WK�.
(b) Œ˛ WK�s is the number of K-conjugates of ˛ in an algebraic closure C of K.

(c) Any ˛ 2 K is separable over K.

So far, so clear. Now we may ask: If ˛ is separable over K, is every ˇ 2 K.˛/

also separable over K?

Definition 3. An algebraic field extension E=K is called separable if every element
of E is separable over K; otherwise E=K is inseparable.

We also agree on the following conventions: If E1=K;E2=K are field exten-
sions, we denote by

G.E1=K;E2=K/

the set of all homomorphisms E1=K ! E2=K (see Chapter 6, Definition 1). When
E1 D E2 D E we use the abbreviation G.E=K/ WD G.E=K;E=K/.

Remark. If E=K is algebraic, G.E=K/ has a natural group structure (Chapter 6,
F3). We thus obtain the automorphism group of the algebraic extension E=K.

Theorem 1. Let E=K be a finite extension, of degree n, and let C be an algebraic
closure of K.

(I) G.E=K;C=K/ has at most n elements.

(II) G.E=K;C=K/ has n elements if and only if E=K is separable.

We postpone for a while the proof of this important theorem; first we bring its
content to bear:

Definition 4. Let E=K be an algebraic field extension and C an algebraic closure
of K. Then

ŒE WK�s D ˇ

ˇG.E=K;C=K/
ˇ

ˇ

is called the separable degree of E=K. (This number is independent of the choice
of C ; see Chapter 6, Theorem 2(II).)

Remarks. Let E=K be any field extension, but assume ˛ 2 E algebraic over K.
Then

(1) ŒK.˛/ WK�s D Œ˛ WK�s
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by F1 (see also Definition 2 and Remark (b) following it). It follows further that

(2) ˛ is separable over K ” K.˛/=K is separable.

For, by definition, ˛ is separable over K if and only if Œ˛ WK�s D Œ˛ WK�; and because
of (1), this is equivalent to ŒK.˛/ WK�s D ŒK.˛/ WK�. But, by part (II) of Theorem 1,
this latter equality holds if and only if K.˛/=K is separable. Note that (2) answers
in the affirmative the question posed just before Definition 3.

We base the proof of Theorem 1 on the following result:

Lemma. Let F be an intermediate field of an algebraic extension E=K and let C be
an algebraic closure of E. Then there exists a bijection

G.E=K;C=K/ “ G.F=K;C=K/� G.E=F;C=F /:

Proof. By Chapter 6, Theorem 3, there exist maps

G.F=K;C=K/! G.C=K/

� ‘ Q� and
G.E=F;C=F /! G.C=F /

� ‘ Q�
with Q�F D � and Q�E D � . We claim that the map

G.F=K;C=K/� G.E=F;C=F /! G.E=K;C=K/

.�; �/‘ . Q� Q�/E
is bijective. First we show injectivity: Suppose . Q� Q�/E D . Q�1 Q�1/E . By restriction to
F we see first that Q�F D . Q�1/F , then that � D �1 and therefore Q� D Q�1. From the
assumption it then follows that Q�E D . Q�1/E , which is to say � D �1.

To prove surjectivity it is enough (by Chapter 6, Theorem 3) to prove that, for
every  2 G.C=K/, there exist � and � as above, such that  E D . Q� Q�/E . For
a given  set � WD  F and then � WD Q��1 E . Then � 2 G.F=K;C=K/ and
� 2 G.E=F;C=F /, because Q��1 E fixes F pointwise. By definition Q��1 E D Q�E ,
so  E D Q� Q�E D . Q� Q�/E . ˜

Proof of Theorem 1. We work by induction on n D E WK. For n D 1 the assertion
is clear. Suppose n> 1; then there exists ˛ 2 E r K. For F D K.˛/ we then have
E WF < n. By the lemma,

(3)
ˇ

ˇG.E=K;C=K/
ˇ

ˇ D ˇ

ˇG.F=K;C=K/
ˇ

ˇ � ˇˇG.E=F;C=F /ˇˇ:
The first factor on the right-hand side is at most F W K because of F1 (see also
Remark (a) following Definition 2). The second factor is at most E W F by the
induction hypothesis. Thus the left-hand side of (3) is worth at most ŒF WK� ŒE WF �D
ŒE WK�D n, proving assertion (I).

For assertion (II), assume E=K is separable. Trivially, F=K is separable; but
also E=F is separable, because for each ˇ 2 E the polynomial MiPoF .ˇ/, being a
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factor of MiPoK .ˇ/, has only simple roots. By the induction hypothesis and (3) we
conclude that

ˇ

ˇG.E=K;C=K/
ˇ

ˇ D ŒF WK� ŒE WF �D ŒE WK�D n.
Conversely, assume

ˇ

ˇG.E=K;C=K/
ˇ

ˇ D n. Taking (3) and (I) into account we
see that

ˇ

ˇG.F=K;C=K/
ˇ

ˇD F WK
An application of F2 to F D K.˛/ then shows that ˛ is separable over K. Now
recall that this holds for any ˛ 2 E … K. Thus E=K is separable (because each
˛ 2 K is separable over K). ˜

In view of Definition 4 we can reformulate Theorem 1 as follows:

Theorem 10. Let E=K be a finite field extension. Then ŒE WK�s is finite, and

(4) ŒE WK�s � ŒE WK�:
Equality holds if and only if E=K is separable.

Remark. ŒE WK�s actually divides ŒE WK�, as can be proved by induction with a bit
more effort. But this result will follow more easily from F17 below.

F3. If F is an intermediate field of an algebraic extension E=K,

(5) ŒE WK�s D ŒE WF �s � ŒF WK�s :
Proof. This is an immediate consequence of the lemma. ˜

F4. Given an extension E=K, there is equivalence between:

(i) E=K is finite and separable.

(ii) E is generated over K by finitely many separable algebraic elements ˛1; : : : ;

˛m 2 E.

Proof. (ii) ) (i): E=K is clearly finite (Chapter 2, F7). By induction on m and
using Theorem 10 we get E WK D ŒK.˛1; : : : ; ˛m/ WK.˛1/�s � ŒK.˛1/ WK�s , since ˛1

is separable over K. Then F3 implies that ŒE WK� D ŒE WK�s , so E=K is separable
by Theorem 10.
The implication (i) ) (ii) is obvious. ˜

F5. Consider an algebraic extension E=K. Then

Es D f˛ 2 E j ˛ separable over Kg
is an intermediate field of E=K, called the separable closure of K in E.

Proof. For ˛; ˇ 2 Es , consider the subextension K.˛; ˇ/=K of E=K. By F4 this is
separable; therefore K.˛; ˇ/� Es , and the assertion follows. ˜

F6. Let E=K be an algebraic field extension and let A be a subset of E. If A only
contains elements separable over K, the extension K.A/=K is separable.
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Proof. By F5 we have K.A/� Es . ˜
F7 (Transitivity of separability). Let L be an intermediate field of an algebraic field
extension E=K. If both E=L and L=K are separable, so is E=K (and conversely).

Proof. In the case of finite extensions the assertion is clear; see F3 and Theo-
rem 10. The general case is reduced to the finite case as follows. For ˇ 2 E,
let ˛0; ˛1; : : : ; ˛n�1 be the coefficients of f D MiPoL.ˇ/. Then f is also the
minimal polynomial of ˇ over the subfield F WD K.˛0; ˛1; : : : ; ˛n�1/. Since ˇ
is separable over L by assumption, f has only simple roots. This implies the
separability of F.ˇ/=F . But in view of F4, F=K too is separable, because by
assumption ˛0; ˛1; : : : ; ˛n�1 are separable over K. ˜

2. And now at long last:

Definition 5. Let K be a field. A polynomial f 2 KŒX � of degree n � 1 is called
separable if it has n distinct roots in the splitting field of f over K.

Remarks. (a) Let L=K be an extension and let ˛ 2 L be algebraic over K. In view
of the definition, ˛ is separable over K if and only if the minimal polynomial of ˛
is separable over K (see F2).

(b) Let f 2 KŒX � be any nonconstant polynomial and let E by a splitting field of
f over K. The prime factorization of f in EŒX � has the form

f .X /D � .X �˛1/
e1.X �˛2/

e2 � � � .X �˛r /
er ;

with the ˛i all distinct. Then f is separable if and only if all the ei equal 1, that is,
f has no multiple roots.

(c) In analysis, the differential calculus is a useful tool for dealing with multiple
roots. In algebra we make do with the following formal differential calculus on
polynomials: Given a polynomial f D Pn

iD0 aiX
i in KŒX �, the (formal) derivative

of f is f 0 WD Pn
iD1 iaiX

i�1. The map KŒX � ! KŒX � defined by f ‘ f 0 is
obviously linear:

.af C bg/0 D af 0 C bg0;
and satisfies the product rule with respect to multiplication:

.fg/0 D f 0g C g0f:

(Because of linearity this just has to be verified in the case that f D X i and g D X j

are monomials.)

F8. With the preceding notation, suppose that f .˛/D 0 for some ˛ 2 E. Then ˛ is
a multiple root of f if and only if f 0.˛/D 0.

Proof. By assumption we have f .X / D .X � ˛/eg.X / in EŒX �, with e � 1 and
g.˛/¤ 0. Differentiation gives

f 0.X /D e.X �˛/e�1g.X /C .X �˛/eg0.X /:

Substituting ˛ of X shows that f 0.˛/D 0 ” e � 2. ˜
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F9. A polynomial f 2 KŒX � is separable if and only if f and f 0 are relatively prime
in KŒX �.

Proof. Let E be a splitting field of f over K. By F8, f being separable is equivalent
to f and f 0 being relatively prime in EŒX �. But for polynomials in KŒX �, relative
primeness in EŒX � is the same as in KŒX �; see §4.7 in the Appendix. ˜

F10. If f 2 KŒX � is irreducible, then f is separable if and only if f 0 ¤ 0.

Proof. We use F9. If f; f 0 are relatively prime, f 0 ¤ 0. Now suppose instead that
f; f 0 are not relatively prime in KŒX �. Because f is irreducible, f must divide f 0;
but since deg f 0 < deg f , this is only possible if f 0 D 0. ˜

F11. Let K be a field of characteristic 0. Every irreducible polynomial f 2 KŒX � is
separable. Thus every algebraic extension E=K is separable.

Proof. Write f D Pn
iD0 aiX

i , so that f 0 D Pn
iD1 iaiX

i�1. Saying that f 0 D 0 is
the same as saying that

(6) iai D 0 for all 1 � i � n:

But if char K D 0 this condition is only satisfied if a1 D a2 D : : :D an D 0, that is,
if f D a0 is a constant polynomial. ˜

3. We now turn to the case char K D p > 0. Condition (6) is then equivalent to

ai D 0 for all i such that i 6� 0 mod p.

As a consequence:

F12. If char K D p > 0,

(7) f 0 D 0 ” f 2 KŒX p �

for f 2 KŒX �. Thus, if f is assumed irreducible, it is separable if and only if does
not lie in KŒX p �.

Thus, over a field of characteristic p > 0 there exist nonconstant polynomials
with zero derivative; any polynomial of the form

c0 C c1X p C c2X 2p C � � � C X kp

(for k � 1) has this property. (Whether there really are any irreducible polynomials
in KŒX p � is a question we have not broached yet.)

F13. Let E=K be a field extension with char K D p > 0. If ˛ 2 E is algebraic over
K, there exists an integer m � 0 such that ˛pm

is separable over K.
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Proof. Set f D MiPoK .˛/. Clearly there is an integer m � 0 such that f 2 KŒX pm
�

but f … KŒX pmC1
�. Thus there is a polynomial g 2 KŒX � such that

(8) f .X /D g.X pm

/ but g … KŒX p �:

We wish to show that g is irreducible. Suppose g.X / D h1.X /h2.X / in KŒX �.
Then g.X pm

/ D h1.X
pm
/h2.X

pm
/. But f in (8) is irreducible, so h1 2 K� or

h2 2 K�. Since g.˛pm
/D f .˛/ D 0 we then have g D MiPoK .˛

pm
/. By F12, g

is separable. ˜

F14. For an arbitrary field K of characteristic p > 0, the map

(9) ˛ ‘ ˛p

of K into itself is a homomorphism; in particular, ˛p D 1 in K if and only if ˛ D 1.

Proof. Obviously, .˛ˇ/p D˛pˇp and 1p D1. Also, by (15) in Chapter 5, .˛Cˇ/p D
˛p Cˇp . For the last assertion see again Chapter 4, F15. ˜

Remark. In the case of a finite field K of characteristic p, the injective map (9)
is also surjective. Thus we get an automorphism �p of K. Consequently, for any
power q D pn of p, the map �q W ˛ ! ˛q is likewise an automorphism of K, since
�q is the n-th power of �p in Aut K.

Definition 6. An algebraic extension E=K is called purely inseparable if any ˛ 2 E

not belonging to K is inseparable over K.

F15. Let E=K be purely inseparable with E ¤ K (which implies that char K D p >

0). Given any ˛ 2 E one can find values of m 2 � such that ˛pm 2 K; if m is taken
as the smallest such integer,

(10) X pm�˛pm

is the minimal polynomial of ˛ over K.

Proof. By F13 there exists m � 0 such that ˛pm
is separable over K, and hence lies

in K by the inseparability assumption. Let m be minimal with this property, and
let f .X / the polynomial (10). Then f .X / 2 KŒX �. But f .X /D .X �˛/pm

since
char K D p, so if g is an irreducible factor of f in KŒX �, the prime factorization
of f in KŒX � must have the form

f .X /D g.X /j ; with 1 � j � pm:

But pm D degf D j deg g, so deg g D pn with n � m. Then

g.X /D .X �˛/pn D X pn�˛pn

;

so ˛pn 2 K because g.X /2 KŒX �. But m was assumed minimal, so n D m. Thus
f .X /D g.X /, and f is irreducible. ˜
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F16. Let E=K be an algebraic extension and C an algebraic closure of E. The
following statements are equivalent:

(i) E=K is purely inseparable.

(ii) ŒE WK�s D 1.

(iii) Every K-homomorphism � W E ! C fixes E pointwise.

(iv) No ˛ 2 E is conjugate over K to ˇ 2 C distinct from ˛.

Proof. (i) ) (ii): Take � 2G.E=K;C=K/ and ˛2E. By F15 we have � WD˛pm2K

for some m 2 �. An application of � yields

�.˛/p
m D �.˛pm

/D �.� /D � D ˛pm

;

which by F14 implies �.˛/ D ˛. Thus G.E=K;C=K/ contains a single element,
the inclusion E ! C .

(ii) ) (iii) and (iii) ) (iv) are clear from the definitions.

(iv) ) (i): Take ˛ 2 E and f D MiPoK .˛/. All roots of f in C are conjugate to
˛ over K. By the hypothesis, then, ˛ can only be separable over K if degf D 1,
that is, if ˛ 2 K. ˜

Remark. Let F be an intermediate field of an algebraic extension E=K. By F3 we
have ŒE WK�s D ŒE WF �s � ŒF WK�s . It follows from this and F16 that E=K is purely
inseparable if and only if E=F and F=K are purely inseparable.

F17. Let E=K be a algebraic extension and Es the separable closure of K in E.

(a) E=Es is purely inseparable.

(b) If Es=K is finite, so is ŒE WK�s ; moreover ŒE WK�s D Es WK. In particular, if
E=K is a finite extension, ŒE WK�s divides E WK.

(c) If E=Es is finite, E WEs is a power of p D char K.

Proof. (a) Let ˛ 2 E be separable over Es . Then Es.˛/=Es is separable, and by F7
so is Es.˛/=K. It follows that Es.˛/� Es , that is, ˛ 2 Es .

(b) By F3 we have ŒE WK�s D ŒE W Es �s � ŒEs WK�s . By part (a) and F16, the first
factor must equal 1. The second coincides with Es WK, since Es=K is separable
and, by assumption, finite. (By the way, from ŒE WK�s < 1 it follows conversely
that Es WK <1. Think about it for a while. A proof can be given using Theorem 3
in Chapter 8, and is left as an exercise; see also §8.22 in the Appendix.)

(c) We must show that the degree of a finite, purely inseparable extension E=K is
a power of p. Take ˛ 2 E r K. Since E=K.˛/, too, is purely inseparable (see the
preceding Remark), it can be assumed by induction that E WK.˛/ is a power of p.
By F15, K.˛/ WK is also a power of p, and thus so is E WK D ŒE WK.˛/� � ŒK.˛/ WK�.

˜
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Remark. Keep the notation of F17. Then

(11) ŒE WK�i WD E WEs

is called the inseparable degree of E=K. (See also §7.9 in the Appendix.)

Definition 7. A field K is called perfect if every algebraic extension over K is
separable.

By F11, every field of characteristic 0 is perfect. Assume char K D p > 0. Let

(12) Kp WD f˛p j ˛ 2 Kg
be the set of p-th powers of elements in K. By F14, this is a subfield of K.

F18. If K is perfect and K0=K is an algebraic field extension, K0 is also perfect.

Proof. Let E=K0 be any algebraic extension. Since E=K0 and K0=K are algebraic,
so is E=K. Since K is perfect, E=K is separable. Then E=K0 is also separable. ˜

F19. A field K with char K D p > 0 is perfect if and only if Kp D K. In particular,
every finite field is perfect.

Proof. Let K be perfect. For a given ˛ 2 K, let E be a splitting field of the
polynomial f .X /D X p �˛ over K. In E this polynomial has a root, that is, there
exists a ˇ 2 E such that ˇp D ˛. Since the map x ‘ xp of E into itself is a field
homomorphism and hence injective, f has only this one root ˇ in E (alternatively,
this follows from the equality X p �ˇp D .X �ˇ/p). Thus f .X /D .X �ˇ/p .

Now set g D MiPoK .ˇ/. By assumption, g is separable. But g divides f , so it
must be of the form g.X /D X �ˇ. Thus ˇ 2 K.

Conversely, assume K D Kp . Suppose there is an inseparable irreducible poly-
nomial f 2 KŒX �. By F12, it must have the form f .X / D g.X p/, with g 2
KŒX �. Since K D Kp , we have g.X / D P

b
p
i X i with bi 2 K. It follows that

f .X / D g.X p/ D P

b
p
i X pi D �

P

biX
i
�p

; that is, f is not irreducible in KŒX �,
contradicting the assumption.

Finally, if K is finite, Kp D K by the Remark following F14. ˜

Remark. As an example of a nonperfect field, consider K D �p.t/, the field of
rational functions in one variable over the field �p with p elements. Indeed, the
polynomial f .X / D X p � t 2 KŒX � is irreducible (Eisenstein’s criterion, F10 in
Chapter 5), but not separable (F12). Associated with f is the purely inseparable
extension K.t1=p/=K of degree p (where t1=p is defined as the unique p-root of t

in a fixed algebraic closure of K).
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Galois Extensions

1. Let E be a field. If G is a group of automorphisms of E, the set

EG WD f˛ 2 E j �˛ D ˛ for all � 2 G g
is called the fixed field of G. (It is clear that EG really is a subfield of E.)

F1. Let E be a field and G a group of automorphisms of E; denote by K D EG the
fixed field of G. Take ˛ 2 E. If the set

G˛ WD f�˛ j � 2 G g
is finite, ˛ is algebraic over K. If G˛ contains exactly n distinct elements, say
˛1; ˛2; : : : ; ˛n (one of them being ˛), the minimal polynomial of ˛ over K is the
separable, normalized polynomial

(1) f .X /D
n

Y

iD1

.X �˛i/:

Proof. Each � 2 G gives rise to a ring isomorphism � W EŒX � ! EŒX �, sending
g.X /D P

biX
i to g� .X /D P

�.bi/X
i . Thus the polynomial f in (1) satisfies

(2) f � .X /D
n

Y

iD1

.X � �.˛i//:

But � gives rise to a permutation of ˛1; ˛2; : : : ; ˛n, since for every � 2 G we have
�.�˛/D .��/˛ 2 G˛, and plus � is injective. Thus (2) implies that f � .X /D f .X /

for every � 2 G. By definition, then, all the coefficients of f already lie in the fixed
field K of G. But ˛ is a root of f .X / 2 KŒX �, and therefore algebraic over K.

Let g D MiPoK .˛/. Then in any case g divides f in KŒX �. Since g.˛/D 0 we
have g.�˛/D 0 for every � 2 G, that is, g.˛i/D 0 for i D 1; 2; : : : ; n. Thus g has
at least degree n. It follows that f D g, since both polynomials are normalized. ˜
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Definition 1. An algebraic field extension E=K is a Galois extension if

(3) K D EG.E=K /:

The group G.E=K/ is then called the Galois group of E=K.

Remarks. (a) For an arbitrary extension E=K, it is clear that K � EG.E=K /.

(b) Let G be a group of automorphisms of a field E, with fixed field K D EG . If
E=K is algebraic, it is a Galois extension. This is because G � G.E=K/ by
definition, and hence EG.E=K / � EG D K. Because of (a) equality (3) holds.

Theorem 1. For an algebraic extension E=K there is equivalence between:

(i) E=K is Galois.

(ii) E=K is normal and separable.

Proof. (ii) ) (i): Let ˛ be any element of E not lying in K. We must show that
there exists � 2 G.E=K/ such that �˛ ¤ ˛. Let C be an algebraic closure of E.
By assumption, ˛ is separable over K, so ŒK.˛/ WK�s D K.˛/ WK ¤ 1. Thus there
exists � 2 G.C=K/ such that �˛ ¤ ˛ (see Chapter 7). Since E=K is normal, �
restricts to an automorphism � 2 G.E=K/ by Chapter 6, Theorem 4. We thus have
�˛ D �˛ ¤ ˛ as required.

(i) ) (ii): Take ˛ 2 E and set f D MiPoK .˛/. We must show that f is separable
and that it splits into linear factors over E . But this follows immediately from F1,
with G D G.E=K/. The necessary assumption that f�˛ j� 2 G g be finite is satisfied
since all the �˛ are roots of f . ˜

F2. Let f 2 KŒX � be a separable polynomial with splitting field E over K. Then
E=K is a finite Galois extension. (Instead of assuming that f is separable, it is
enough to assume that the prime factors of f in KŒX � are separable.)

Proof. E=K is normal, according to F5 in Chapter 6. Let ˛1; : : : ; ˛n be the roots of
f in E. Then E D K.˛1; : : : ; ˛n/. Each ˛i is separable over K (see Definition 2
in Chapter 7). Thus E=K is finite and separable, by F4 in Chapter 7. ˜

Theorem 2. Let E=K be a Galois extension. For every intermediate field F of E=K,
the extension E=F is also Galois:

F D EG.E=F /:

The map
F ‘ G.E=F /

from the set of intermediate fields of E=K into the set of subgroups of G.E=K/ is
therefore injective.

Proof. Clearly E=F is algebraic, separable and normal if E=K has each of these
properties. Thus E=F is a Galois extension, by Theorem 1. ˜
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Is F=K a Galois extension in the situation of Theorem 2? In general, no. True,
F=K is trivially separable, but it need not be normal, because it is not necessarily
the case that �F � F for each � 2 G.E=K/.

F3. If F is an intermediate field of a Galois extension E=K,

(4) G.E=�F /D �G.E=F /��1 for any � 2 G.E=K/.

Moreover, the following statements are equivalent:

(i) F=K is a Galois extension.

(ii) �F D F for all � 2 G.E=K/.

(iii) �G.E=F /��1 D G.E=F / for all � 2 G.E=K/.

Proof. To prove (4), note that, for an arbitrary � 2 G.E=K/,

� 2G.E=�F / ” �.�˛/D�˛ for all ˛2F ” .��1��/˛D˛ for all ˛2F

” ��1�� 2 G.E=F / ” � 2 �G.E=F /��1:

(ii) ” (iii): In view of (4) and Theorem 2 we have

�F D F ” G.E=F /D G.E=�F /D �G.E=F /��1:

(i) ” (ii): In view of Theorem 1 we just have to prove that (ii) is equivalent to
F=K being normal (F=K is separable in any case). Let C be an algebraic closure
of E (and so also of F and K). We use the normality criterion (ii0) of Chapter 6,
Theorem 4.

Any � 2 G.E=K/ extends to some � 2 G.C=K/ (Chapter 6, Theorem 3 and
F3). If F=K is normal we get �F D F , hence �F D F .

Conversely, if �F D F for all � 2 G.E=K/, it is also true that �F D F for all
� 2 G.C=K/, since any � 2 G.C=K/ restricts to � 2 G.E=K/ (by the normality of
E=K). Therefore F=K is normal. ˜

The proof shows that if E=K and F=K are normal extensions with F � E, and
C is an algebraic closure of E, there is a commutative diagram

(5)

G.C=K/
r� G.E=K/

�
��

�r 0
�
G.F=K/

p

	

with well defined homomorphisms r , p, r 0, each of them surjective.

Definition 2. Let G be a group. A subgroup H of G is called normal if

�H��1 D H for all � 2 G:

Thus the notion of a normal subgroup comes up quite naturally in the study of
fields; but it is also a key notion in group theory: see the remarks following the
Fundamental Homomorphism Theorem (F3 in Chapter 3).
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F4. We keep the assumptions of F3.

(a) F=K is a Galois extension if and only if G.E=F / is a normal subgroup of
G.E=K/.

(b) If F=K is Galois, the natural map p W G.E=K/ ! G.F=K/ gives rise to an
isomorphism of groups

(6) G.E=K/
ı

G.E=F /! G.F=K/:

Proof. Part (a) is clear from F3 and Definition 2. We prove (b). We know that p is
surjective. By definition,

ker p D ˚

� 2 G.E=K/
ˇ

ˇ �x D x for all x 2 F
� D G.E=F /:

We conclude by invoking the Fundamental Homomorphism Theorem for groups
(remarks following F3 in Chapter 3). ˜
F5. Let E0 be a normal closure of an algebraic extension E=K see (Chapter 6, F6).
If E=K is separable, so is E0=K (and therefore E0=K is Galois).

Proof. Suppose E D K.B/. In an algebraic closure C of E0, let A be the set of all
roots of minimal polynomials of ˛ 2 B. Then E0 D K.A/. If E=K is separable,
every element of A is separable over K. By F6 in Chapter 7, this implies E0=K
separable. ˜

2. We now wish to study particularly the implications of finiteness.

F6. If a Galois extension E=K is finite, the Galois group of E=K is also finite, with

jG.E=K/j D E WK:
Proof. Let C be an algebraic closure of E. Since E=K is separable, ŒE W K� D
ŒE WK�s D jG.E=K;C=K/j. Since E=K is normal, we can identify G.E=K;C=K/

with G.E=K;E=K/D G.E=K/ (Chapter 6, Theorem 4). ˜
Theorem 3 (Primitive element theorem). A field extension E=K that is finite and
separable is also simple, that is, E D K.˛/ for some ˛ 2 E.

Proof. In view of Chapter 3, Theorem 5, it suffices to show that E=K has only
finitely many intermediate fields. Let E0 be a normal closure of E=K. If E0=K
has only finitely many intermediate fields, so does E=K. By F5, E0=K is a Galois
extension; it is also finite by F6 in Chapter 6. Thus we might as well assume that
E=K is Galois to begin with. Then G.E=K/ is a finite group (F6) and as such has
only finitely many subgroups. By Theorem 2 this means that E=K has only finitely
many intermediate fields. ˜
Theorem 4. Let E be a field and G a finite group of automorphisms of E, with fixed
field K D EG . The extension E=K is finite and Galois; moreover,

G D G.E=K/;

that is, G coincides with the Galois group of E=K.
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Proof. In view of F1, E=K is algebraic, separable and normal. Thus it is a Galois
extension. Let d WD jGj be the order of G. By F1 we know at first only that

(7) K.˛/ W K � d for each ˛ 2 E:

There is certainly some ˛ 2 E for which K.˛/ WK is maximal. Take any ˇ 2 E.
By Theorem 3, there exists � 2 E with K.˛; ˇ/ D K.� /. From our choice of ˛
we have K.� / WK � K.˛/ WK; therefore K.˛/ D K.� / 3 ˇ. Thus E D K.˛/. In
particular, E=K is finite, and (7) becomes

(8) E WK � d D jGj:
The inclusion G � G.E=K/ is trivial. But jG.E=K/j D E WK by F6, so in view of
(8) we must have G D G.E=K/. ˜

For another justification of (8) see §12.6 in the Appendix.

Theorem 5 (Fundamental theorem of Galois theory for finite Galois extensions).
Let E=K be a finite Galois extension. Then the map

(9) F ‘ G.E=F /

is a bijection between the set of intermediate fields F of E=K and the set of sub-
groups H of G WD G.E=K/. Each extension E=F is Galois and satisfies

(10) E WF D jG.E=F /j:
Moreover there is an equivalence

(11) F1 � F2 ” G.E=F1/ G.E=F2/:

The inverse of (9) is the map

(12) H ‘ EH D the fixed field of H:

F=K is a Galois extension if and only if G.E=F / is a normal subgroup of G. If F=K

is Galois, one obtains by restriction a natural isomorphism

(13) G.F=K/' G.E=K/
ı

G.E=F /:

Proof. Theorem 2 says that, for every intermediate field F of E=K,

(14) EG.E=F / D F:

Since E=K was assumed finite, G D G.E=K/ is finite by F6, and hence so is any
subgroup of G. By Theorem 4, then,

(15) G.E=EH /D H

for any subgroup H of G. Thus, by (14) and (15), the maps (9) and (12) are indeed
inverse to each other. The remainder of Theorem 5 is now clear (look again at
Theorem 2, F6, and F4). ˜
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3. As can easily be seen from Theorem 3, if E=K is a finite Galois extension, E

is the splitting field of a separable (and irreducible) polynomial f 2 KŒX � over K.
By F2 the converse also holds: If f 2 KŒX � is a separable polynomial and E is
a splitting field of f over K, then E=K is a finite Galois extension. The following
definition is therefore apposite and convenient (and is close to the original definition
of a “Galois group”; see Évariste Galois, Œuvres mathématiques, Paris, 1897):

Definition 3. Take f 2 KŒX �. Assume that f is separable (or just that all prime
factors of f are). Let E be a splitting field of f over K. The Galois group of
the finite Galois extension E=K is also called the Galois group of f over K, or the
Galois group of the equation f .X /D 0 over K.

Example. The Galois group of X 3 � 2 D 0 over � is isomorphic to the symmetric
group S3.

Proof: X 3 �2 has three distinct roots ˛1; ˛2; ˛3 in �. Let G be the Galois group
of X 3�2 over �. Every � 2G permutes ˛1; ˛2; ˛3. Thus one gets a homomorphism

G ! S3:

This map is injective, since � is uniquely determined by its action on ˛1; ˛2; ˛3.
Therefore G is isomorphic to a subgroup of S3. Now let E WD �.˛1; ˛2; ˛3/ D
�.

3
p

2; 
3/ be the splitting field of X 3 � 2 over �; then E W � D 6 (see F10 in
Chapter 5 and F11 in Chapter 2). Therefore G ' S3.

Remark. Let f 2 KŒX � be as in Definition 3. One sees just as in the example that,
more generally, If f has degree n, the Galois group of f over K is isomorphic to a
subgroup of the symmetric group Sn. But it can certainly be a proper subgroup; for
instance, the group of the equation X 4 � 2 D 0 over � is of order 8 (whereas S4

has order 24). To prove this one must show that the splitting field E D �.
4
p

2; i/

of X 4 � 2 over � (Chapter 6, example (a) after F4) has degree E W� D 8. Setting
F D �.

4
p

2/, one sees first that F W� D 4, since X 4�2 is irreducible by Eisenstein’s
criterion (Chapter 5, F10). At the same time E WF D F.i/ WF � 2; since F � � we
have i … F , so E WF D 2. From the degree formula we then get E W� D 8.

F7. Let G be the Galois group of a separable polynomial f 2 KŒX � over K, and let
N be the set of roots of f in a splitting field E of f over K. There is equivalence
between:

(i) f is irreducible.

(ii) G acts transitively on N , that is, for any ˛; ˇ 2 N there exists � 2 G taking ˛
to ˇ.

Proof. (i) ) (ii): Any two roots ˛; ˇ 2 N of the irreducible polynomial f have the
same minimal polynomial, and so are conjugate over K (Chapter 7, F1); in other
words — letting C be an algebraic closure of E — some � 2 G.C=K/ maps ˛ to ˇ.
Since E=K is normal, � restricts to some � 2 G.E=K/D G such that �˛ D ˇ.
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(ii) ) (i): Fix ˛ 2 N and take g D MiPoK .˛/. Certainly g divides f . Given ˇ 2 N

there exists by assumption a � 2 G with �˛D ˇ. But since g.˛/D 0 we must have
g.ˇ/D g.�˛/D 0. Every root of f is thus also a root of g. Since f is separable,
this means f divides g. ˜

Definition 4. Let f 2 KŒX � be normalized of degree n � 1, and let E be a splitting
field of f over K. In EŒX � we have

f .X /D
n

Y

iD1

.X �˛i/;

where ˛1; : : : ; ˛n are not necessarily distinct. Now consider the element

(16) 4 D 4.˛1; : : : ; ˛n/ WD
Y

i<j

. j̨ �˛i/

of E. Its square

(17) D D D.f / WD 42 D
Y

i<j

. j̨ �˛i/
2 D .�1/n.n�1/=2

Y

j¤i

. j̨ �˛i/

is obviously independent of the order in which we take ˛1; : : : ; ˛n. We call D.f /

the discriminant of the polynomial f 2 KŒX �; it is nonzero if and only if f is
separable.

By the foregoing, �D D D for every � 2 G.E=K/. Galois theory then gives

(18) D.f / 2 K;

since in the inseparable case we have D.f /D 0, which implies (18) trivially.
Furthermore,

p
D D 4 2 E by (16), so K.

p
D/� E. When is

p
D not actually

in K, that is, when is K.
p

D/ WK D 2? This is an interesting question; here we will
treat only the following special case, whose proof affords us a nice opportunity to
practice our Galois-theoretical skills.

F8. Suppose the Galois group G of an irreducible and separable polynomial f 2
KŒX � over K is cyclic of even order n. So long as char K ¤ 2, the discriminant D

of f is not a square in K, so
p

D … K.

Proof. Saying that G is cyclic is saying that any element of G can be written as a
power �j of a fixed � 2 G. Let ˛ be a root of f in the splitting field E of f over
K. Since G is abelian, all its subgroups are normal, so K.˛/=K is normal (see F4).
Since f is irreducible, this implies that all roots of f already lie in K.˛/, that is,
E D K.˛/. Thus f has precisely n distinct roots ˛1; : : : ; ˛n in E, which we can
assume to be numbered as follows: ˛1 D ˛, ˛2 D �˛, ˛3 D �2˛, . . . , ˛n D �n�1˛.
Then 4DQ

i<j . j̨ �˛i/DQ

1�i<j�n.�
j�1˛�� i�1˛/DQ

0�i<j�n�1.�
j˛� � i˛/.

It follows that
�4
4 D

Qn
iD2.˛�˛i/

Qn
jD2. j̨ �˛/ D .�1/n�1 D �1;
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since we’ve assumed n even. Thus the element 4 D p
D of E is not G-invariant,

and so does not lie in K. ˜

Perhaps it might have been conceptually clearer to point out the relation �4 D
sgn.�/4, where sgn.�/ is the sign or parity of � regarded as a permutation of Sn

(see also Problem 15.9 in the Appendix).

Remark. Keeping the preceding notations and the assumptions of F8, the field
K.

p
D/ is the unique intermediate field F of E=K such that F WK D 2. You should

now, at the end of this chapter, persuade yourself of this fact, as a consequence of
the Fundamental theorem of Galois theory, a later result on cyclic groups (F6 in
Chapter 9), and of course F8.
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Finite Fields, Cyclic Groups and Roots of Unity

1. One infinite family of finite fields has already come to our attention (Section 3.5):
namely, for every prime number p, there is a field �p WD �=p with p elements. It
was Galois who first discovered that there are other finite fields out there. In this
chapter we will put together a list, so to speak, of all finite fields, and discuss some
key properties of these fields.

Let K be a given finite field and let k be its prime field (Section 3.5). Since k is finite
one cannot have k ' �, so k ' �p , where p, a prime number, is the characteristic
of K. We look at K as a vector space over k, necessarily of finite dimension.
Setting d WD K Wk we then get an isomorphism of k-vector spaces K ' kd . Thus
the number of elements of K is

q WD jKj D pd :

The multiplicative group K� of K has order

jK�j D q � 1 D pd � 1:

We claim that ˛q�1 D 1 for all ˛ 2 K�. This comes from a more general fact:

F1. If G is a finite group or order n, then xn D 1 for every x 2 G.

Proof. We prove the assertion here only in the case that G is abelian (see also
page 95). Suppose G D fa1; : : : ; ang, and consider g WD a1a2 : : : an. For a given
x 2 G, the map ai ‘ xai is a permutation of G, so g D .xa1/.xa2/ : : : .xan/ D
xna1a2 : : : an D xng. Therefore xn D 1. ˜

Thus any element ˛¤ 0 of a q-element field K satisfies the equation ˛q�1 D 1,
hence also the equation ˛q D ˛. The latter is also satisfied by ˛ D 0. Therefore
every element of K is a root of X q � X , and by looking at degrees we see that

(1) X q � X D
Y

˛2K

.X �˛/:

In particular, K is a splitting field of X q � X over �p , and as such is uniquely
determined up to isomorphism. So all q-element fields are isomorphic.
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How about the existence of a finite field of pn elements (for a given prime p and
natural number n)? The preceding discussion shows how one must proceed: For
q WD pn, consider the polynomial

(2) f .X /D X q � X

over �p . Let K be a splitting field of f over �p (whose existence is guaranteed
by Chapter 6, F4). The next two assertions then imply that K has exactly q D pn

elements:

(i) K contains only roots of f .

(ii) f has no multiple roots.

Proof of the assertions. (i) Let K0 D f˛ 2 K j ˛q D ˛g be the set of roots of f
(in K). By definition, K0 is the fixed field of the automorphism �q W ˛ ‘ ˛q of
K (Chapter 7, Remark after F14). Hence K0 is a field. It contains �p , since �p is
the prime field of K. Therefore K0 is a splitting field of f over �p , and because
K0 � K we have K0 D K.

(ii) The derivative of the polynomial in (2) is f 0.X / D qX q�1 � 1 D �1. By
Chapter 7, F9, f is in fact separable. (Another proof: If ˛ ¤ 0 is a root of f , set

g WD X q�1 � 1

X �˛ D X q�1 �˛q�1

X �˛ D X q�2 C˛X q�3 C � � � C˛q�2I

thus g.˛/D .q � 1/˛q�2 ¤ 0.) ˜

To summarize the work so far:

Theorem 1. Let C be a (fixed) algebraic closure of �p . For every n 2 �, there is in
C exactly one finite subfield �pn having pn elements, namely the splitting field of the
polynomial X pn �X over �p in C . The elements of �pn are precisely all the roots of
X pn � X . Every finite field (of characteristic p) is isomorphic to one and only one
�pn .

Let K be a finite field with q D pn elements. Then K ' �q . If E is an extension
of K such that E WK D m, we have jEj D qm. As we saw above, E is then a splitting
field of X qm � X over K. Therefore, up to a K-isomorphism, K has at most one
extension of degree m over K (Chapter 6, F4). Conversely, �qm is an extension
of �q , for any m 2 �. Therefore K ' �q clearly has an extension E such that
E ' �qm . Because jEj D jKjE WK we then have E WK D m. Putting it all together:

Theorem 10. If K is a finite field and m 2 �, there is an extension E of K of degree
m, and it is unique up to K-isomorphism.

What can one say about the structure of the multiplicative group K� of a finite
field K? We shall see that the answer is as simple as can be: K� is cyclic. Before
we prove this fundamental theorem, however, we will indulge in a little detour on
cyclic groups.
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2. First let G be any group and ˛ an element of G. There is a well defined group
homomorphism

(3) ' W � ! G; determined by 1 ‘ ˛:

Let h˛i WD f˛m j m 2 �g denote its image. By the Fundamental Homomorphism
Theorem, h˛i is isomorphic to �= ker'. But ker', being a subgroup of �, is
actually an ideal of the ring �. Since � is a principal ideal domain, ker' has the
form

(4) ker ' D n�; with n 2 � [ f0g uniquely determined.

Definition. If n ¤ 0 in (4), we call n the order of ˛, and write n D ord ˛. If n D 0,
we set ord ˛ D 1. Since h˛i ' �=ker', we see that ˛ has finite order if and only
if the subgroup h˛i of G generated by ˛ is finite.

F2. Let G be a group and ˛ and element of G. Then

(5) ord ˛ D jh˛ij:
If ˛ has finite order and m 2 �, we have

(6) ˛m D 1 ” ord ˛ j mI
in particular, ord ˛ is the smallest natural number m such that ˛m D 1.

Proof. Suppose n WD ord ˛ < 1. Then h˛i ' �=n�, but of course j�=n�j D n.
This proves (5). To prove (6), write

˛m D 1 ” m 2 ker' ” m 2 n� ” n jm: ˜

Definition. A group G is called cyclic if there exists � 2 G such that G D h� i; such
a � is called a generator of G.

F3. A group G is cyclic if and only if G ' �=n� for some n 2 � [ f0g.

Proof. If G D h� i, the map ' in (3), with ˛D � , is surjective. Thus G ' �= ker 'D
�=n� for some n 2 � [ f0g. The converse is clear, since the residue class of 1 in
�=n is a generator of the group �=n (additively written). ˜

If G is finite, any ˛ 2 G generates a finite group and therefore has finite order.
More precisely:

F4. If G is a finite group and ˛ is any element of it, the order of ˛ divides that of G.

Proof. If n D jGj we have ˛n D 1 for any ˛ 2 G; see F1. The assertion then follows
from (6) in F2. ˜

Remark. If ˛ is an element of a finite group G, we get from (5):

ord ˛ D jGj ” G D h˛i:
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F5. If G is a cyclic group, so is any subgroup H of G.

Proof. Suppose G D h� i, so the homomorphism (3) is surjective, where ˛ D � .
The inverse image '�1.H / of H under ' is a subgroup of �, necessarily of the
form '�1.H / D k�. Since ' is onto, we get H D '.k�/ D h� ki, that is, � k

generates H . ˜
F6. Let G be a finite, cyclic group of order n. The map

(7) H ‘ jH j
is a bijection between the set of subgroups of G and the set of natural numbers that
divide n.

Proof. Suppose G D h� i, for a fixed generator � . If d is a natural number and d jn,
set d 0 D n=d . The order of the subgroup H.d/ WD h� d 0i coincides with ord.� d 0

/.
Because .� d 0

/d D � n D 1 we have ord.� d 0

/ jd , by (6); thus jH.d/j divides d . On
the other hand, .� d 0

/jH .d/j D 1 by F1, and hence n D ord � divides d 0 � jH.d/j;
since n D dd 0 we conclude that jH.d/j is divisible by d . Putting it all together we
get

(8) jH.d/j D d:

We claim that d ‘ H.d/ is the inverse map to (7). Let H be any subgroup of G,
having order d . We must show that d divides n and that

(9) H D H.d/:

By F5, H is of the form H D h�mi. Since .�m/n D 1 it is indeed the case that
d DjH jDord.�m/ divides n. By F1 we get .�m/d D1; again from (6) there follows
n jmd , which is to say d 0 jm. Hence �m 2 h� d 0i D H.d/, so that H � H.d/. Since
both groups have the same order d , (9) follows. ˜

3. We are now ready for the result promised earlier:

Theorem 2. The multiplicative group K� of a finite field K is cyclic. (A generator
of K� is called a primitive root.)

In fact we prove something more general:

Theorem 20. Let K be any field. Then any finite subgroup G of K� is cyclic.

The proof relies on the following characterization of cyclic groups:

Lemma. A finite group G of order n is cyclic if

(10)
ˇ

ˇfx 2 G j xd D 1gˇˇ � d for every d jn:
Proof of Theorem 20 assuming the Lemma. Set n WD jGj. For any d 2 � there are in
K at most d elements x with xd D 1, since that’s the most roots that X d �1 2 KŒX �

might have in K. Thus (10) is satisfied, which means G is cyclic. ˜
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Proof of the Lemma. For d jn, set

 G.d/ WD ˇ

ˇfx 2 G j ord x D dgˇˇ:
Then

(11)
X

d jn
 G.d/D n D jGj;

since any ˛ 2 G has a well defined order d , with d jn. For m 2 �, set

(12) '.m/ WD the number of elements of �=m that are generators:

Then '.m/� 1. We will show that

(13)  G.d/� '.d/ for all d jn:
For  G.d/ D 0 this is clear. Thus suppose  G.d/ � 1; this means there exists
˛ 2 G with ord ˛ D d . Then H D h˛i is a subgroup of order d in G, and xd D 1

for any x 2 H . From (10) it follows, in particular, that any order-d element in G

already lies in H . Because H ' �=d , we then get  G.d/D H .d/D '.d/, which
yields (13).

We remark that in the case of the group �=n we must have

(14)  �=n.d/D '.d/;

since all order-d elements of �=n lie in one and the same order-d cyclic subgroup
of �=n (see F6 and F5). By summation we get from (13), in conjunction with (11)
and (14),

n D
X

d jn
 G.d/�

X

d jn
'.d/D

X

d jn
 �=n.d/D n:

But in view of (13) this can only happen if  G.d/D '.d/ for all d jn. In particular,
 G.n/D '.n/� 1, so G possesses an element of order n. ˜

Remarks. Let the quotient map � ! �=n be written k ‘ k. Then

(15) ord k D n

.k; n/
:

Proof: We have
n

.k; n/
k D n

.k; n/
� k � 1 D 0;

so j WD ord k divides the right-hand side of (15). Next, j k D 0, so n jj k. But this
implies that n=.k; n/ divides j .

If G is a group and ˛ 2 G has finite order n, we have for every k 2 �

(16) ord.˛k/D n

.k; n/
:
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To prove this observe that h˛i ' �=n and apply (15).
According to (16) we have ord.˛k/D n if and only .k; n/D 1, that is, when k

and n are relatively prime. Thus the function ' defined in (12) satisfies

(17) '.n/D ˇ

ˇfk 2 � j 1 � k � n with .k; n/D 1gˇˇ:
For this reason the function ' is of interest in number theory; it is called Euler’s
totient function or '-function. Now note that

.n; k/D 1 ” ord k D n ” �=n D hki ” 1 2 hki ” 9l W 1 D lk D lk:

Therefore .n; k/ D 1 if and only if k is a unit in the ring �=n�. In particular, the
group of units .�=n�/� of �=n� has exactly '.n/ elements:

(18) '.n/D ˇ

ˇ.�=n/�
ˇ

ˇ:

We call .�=n/� the group of prime residue classes modulo n. The function ' is
multiplicative in the following sense:

(19) '.n1n2/D '.n1/'.n2/ if .n1; n2/D 1:

To see this, consider the natural ring homomorphism

�=n1n2 ! �=n1 � �=n2:

Because n1 and n2 are assumed relatively prime this map is injective; since both
domain and counterdomain have n1n2 elements, it must be an isomorphism. But a
ring isomorphism implies an isomorphism of the corresponding groups of units, in
this case .�=n1n2/

� ' .�=n1/
� � .�=n2/

�. Keeping (18) in mind, we get (19).

4. We now talk a bit about the third item in the title of this chapter.

Definition. If K is a field, denote by W .K/ the set of all elements of finite order
in the group K�. These elements are called roots of unity. For n 2 �, set

Wn.K/D f
 2 K j 
n D 1g:
The elements of Wn.K/ are the n-th roots of unity of K. Clearly W .K/ and Wn.K/

are subgroups of K�. An element 
 2 W .K/ is a primitive n-th root of unity if
ord 
 D n.

F7. For any n, Wn.K/ is a finite cyclic group whose order divides n. If K has
characteristic p > 0, then Wnp.K/D Wn.K/.

Proof. Wn.K/ is finite because its elements are the roots of the polynomial X n�1 in
K. Being a finite subgroup of K�, however, Wn.K/ must be cyclic; see Theorem 20
in Section 9.3. The order of a generator divides n, by F2.

Now suppose char K D p > 0. Since 
np D .
n/p D 1 we have 
n D 1 by F14
in Chapter 7. Thus Wnp.K/� Wn.K/. The opposite inclusion is obvious. ˜
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Remark. Wn.�/D fe2� ik=n j k D 0; 1; 2; : : : ; n�1g has n elements.

F8. Let C be an algebraically closed field, and take n 2 �. In case char C D p > 0

assume also that .n;p/D 1. Then Wn.C / has order n. Thus C contains a primitive
n-th root of unity 
, and any such is a generator of Wn.C /.

Proof. Consider f .X / D X n � 1 2 C ŒX �. We must show that f has no multiple
roots; the rest then follows from F7. Now f 0.X / D nX n�1; because char K does
not divide n, it follows that f 0.
/¤ 0 for any 
 2 C �. ˜

Incidentally, if char C D p > 0 and n is arbitrary, F7 shows that Wn.C / has
order np�wp.n/, where wp.n/ is defined as on page 40.

Definition. Let K be a field and take n 2 �. The splitting field E of X n � 1 over
K is called the field of n-th roots of unity over K. We use the notation E D K.n/ D
K.

n
p

1 /.

F9. Let E D K.
n
p

1 / be the field of n-th roots of unity over K. Then E=K is a (finite)
Galois extension, with abelian Galois group G. If n is not divisible by char K, then
G is canonically isomorphic to a subgroup of .�=n/�.

Proof. Suppose n is not divisible by char K. The polynomial f .X / D X n � 1 is
then separable over K, as seen in the proof of F8. Hence E is a splitting field of
a separable polynomial over K, and E=K is a Galois extension by Chapter 8, F2.
(That this is still the case for arbitrary n follows from F7.)

Let 
n 2 E be a primitive n-th root of unity, so ord 
n D n. Given � 2 G, the
image �
n also has order n, so

(20) �
n D 
k
n with .k; n/D 1;

where k can be uniquely determined by the condition 1 � k � n. Then any 
 D 

j
n

in Wn.E/ satisfies �
 D 
k , so k in (20) is independent of the choice of 
n. In this
way we get a well defined map

(21) G ! .�=n/�; � ‘ k:

It is easy to see that this is a group homomorphism. It is also injective, since �
is determined by �
n — recall that E D K.
n/. Now G, being isomorphic to a
subgroup of the abelian group Z=n, is abelian as well. ˜

As can be seen already from K D� or �, the map (21) is generally not surjective.
(For more interesting examples see F11 in Section 9.5.) But in the case of K D �

we have:

Theorem 3 (Gauss). Let E D �.
n
p

1 / be the field of n-th roots of unity over �.
The Galois group of E=� is canonically isomorphic to the group of prime residue
classes .�=n/�. In particular, �.

n
p

1 / W� D '.n/.
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Proof. Let 
 be a primitive n-th root of unity in E. In view of the homomorphism
(21), we must show that for each k 2 � relatively prime to n, there exists � 2
G.E=K/ with �
 D 
k . By F7 in Chapter 8, this boils down to showing that 
k is
also a root of f WD MiPo�.
/:

(22) f .
k/D 0:

(Group-theoretically, 
k with .k; n/ D 1 is certainly specifiable as the image of an
automorphism of the group h
i; however, to derive the existence of a corresponding
field automorphism of �.
/, we must ensure that 
k satisfies the same defining
equation as 
, that is, (22) must hold.) By expressing k as a product of prime
numbers, one sees that it suffices to prove the assertion for the case of k D p a
prime, where furthermore p does not divide n. In �ŒX � we have the decomposition

(23) X n � 1 D f .X /g.X /:

Then Gauss’s Lemma (Chapter 5, F7) implies that f .X /;g.X / 2 �ŒX �. Now we
assume, contrary to claim, that f .
p/¤ 0. By (23) we have g.
p/D 0. Therefore 

is a root of the polynomial g.X p/, and so we get, again by using Gauss’s Lemma,
a decomposition

g.X p/D f .X /h.X / with h.X / 2 �ŒX �:

Passing to polynomials over �p D �=p via the natural map �ŒX �! .�=p/ŒX �, we
get the decomposition

(24) g.X p/D f .X /h.X / in �p ŒX �:

But for any polynomial g.X /D P

˛iX
i over �p we have g.X /p D �

P

˛iX
i
�p D

P

˛
p
i X ip D P

˛iX
pi D g.X p/. Thus (24) can be written in the form

g.X /p D f .X /h.X / in �p ŒX �:

In an algebraic closure of �p , therefore, f and g must have a common root, so
X n �1 D f .X /g.X / cannot be separable. This contradicts F8, because .p; n/D 1.

˜

In the sequel let C be an algebraically closed extension of � (for instance C D�,
or the field of algebraic numbers in �). Set Wn D Wn.C /. Then

(25) X n � 1 D
Y

	2Wn

.X � 
/:

Definition. The polynomial

Fn.X /D
Y

ord 	Dn

.X � 
/;

where the product is taken over all primitive n-th roots of unity of C , is called the
n-th cyclotomic polynomial.
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F10. The n-th cyclotomic polynomial Fn has the following properties:

(a) Fn is normalized.

(b) deg Fn D '.n/.

(c) X n � 1 D Q

d jn Fd .X /.

(d) Fn.X / 2 �ŒX �.

Proof. Parts (a) and (b) are immediate. Since any 
 2 Wn has a well defined order
d with d jn, part (c) follows from (25). Part (d) can be proved by induction on n:
Part (c) implies that

Fn.X /D .X n � 1/
ı

Q

d jn
d<n

Fd .X /;

and in �ŒX � one can always divide with remainder by normalized polynomials.
Another proof of (d): Any � in the Galois group G of �.

n
p

1 /=� satisfies

F�
n .X /D Q

ord 	Dn.X � �.
//D Fn.X /;

so all coefficients of Fn.X / lie in the fixed field of G, and so, by Galois theory, also
in �. But once we know that Fn 2 �ŒX �, it follows that Fn, being a normalized
factor of X n � 1, must lie in �ŒX � (Chapter 5, F7). ˜

Theorem 30 (Gauss). The n-th cyclotomic polynomial Fn.X / is irreducible in �ŒX �.

Proof. Let 
 be a primitive n-th root of unity. We must show that

Fn.X /D MiPo�.
/;

since we already know that Fn.X / is a normalized polynomial in �ŒX � vanishing
at 
. By Theorem 3, �.
/ W� D '.n/D deg Fn, which is all is needed. ˜

Remark. Let p be a prime number. Then

(26) Fp.X /D X p�1

X�1
D 1 C X C � � � C X p�1;

and more generally

(27) Fpm.X /D X pm�1

X pm�1�1
D 1 C X pm�1C � � � C X .p�1/pm�1 I

in particular, then,

(28) '.pm/D .p � 1/pm�1 D pm � pm�1:

The irreducibility of (27) had already been proved in Chapter 5, F13 using a different
method (yet one based on the same principles in a way). Of course (28) is also easily
derived from (17). And one may observe that granting the validity of Theorem 30
the assertion of Theorem 3 can be derived immediately.
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If n D p
e1

1
p

e2

2
: : :per

r
is the prime factorization of a natural number n > 1, it

follows from (19) together with (28) that

(29) '.n/D
r

Y

iD1

.pi � 1/p
ei �1
i :

5. We now return once again to finite fields, considering them from the viewpoint
of Galois theory. Though simple, the relation here is of greatest significance for
deeper arithmetic questions.

Theorem 4. Let E=K be any extension of finite fields and let q be the number of
elements of K. Then E=K is Galois with a cyclic Galois group, and in fact G.E=K/

is generated by the automorphism �q W ˛ ! ˛q of E. (We call �q the Frobenius
automorphism, or simply the Frobenius, of E=K.)

Proof. Let G be the subgroup of Aut E generated by �q . Then K is the fixed field of
G in E, since by Section 9.1 K contains exactly those ˛ 2 E such that ˛q D ˛. By
Galois theory (Chapter 8, Theorem 4), E=K is a Galois extension and G D G.E=K/

is its Galois group. ˜

We could also have proved this result without depending of Chapter 8; by and
large, Galois theory results for finite fields can be verified directly without much
trouble.

F11. Let K be a finite field with q elements. Given a natural number n relatively
prime to q, denote by q mod n the residue class of q in .�=n/�. Then

K.
n
p

1 / WK D ord.q mod n/:

Proof. Set E D K.
n
p

1 / and let 
 be a primitive n-th root of unity in E. Theorem
4 shows that E WK equals the order of �q 2 G.E=K/. Thus, since E D K.
/, the
degree E W K is the smallest natural number f such that 
qf D 
; that is, qf �
1 mod n. In other words, E WK is the order of q mod n in .�=n/�. ˜

For practice, derive F11 directly from Theorems 1 and 2, without appealing to
Theorem 4.
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Group Actions

According to the Fundamental Theorem of Galois theory, the intermediate fields of
a finite Galois extension E=K are in one-to-one correspondence with the subgroups
of the Galois group of E=K. This by itself would be reason enough to study groups,
and thus it is time for us to turn our attention to some key notions of group theory.

Natural examples of groups usually come up in mathematics as automorphism
groups of certain structures. Our investigations in Chapter 8 illustrate this typical
trend (among others). Think also of concepts such as the linear group of a vector
space, the orthogonal group of a quadratic form, etc.; or even, if you will, the group
of bijections of a nonempty set M — where the structure in question is a bare set.

In the sequel, G will denote a group and M a nonempty set.

Definition 1. We say that G acts (or operates) on M if there exists a group homo-
morphism

T W G ! S.M /

� ‘ T .�/D T�

from G into the group of permutations of M . The result of applying � 2 G to
x 2 M is denoted also by

�:x D �x D T� .x/:

Thus one gets a map

(1)
G � M ! M

.�;x/ ‘ �x

satisfying
.i/ 1x D x and .ii/ .��/x D �.�x/:

Conversely: Given a map (1) satisfying (i) and (ii), the group G acts on M by
means of the map T W G ! S.M / defined by T .�/.x/D �x. Indeed, (ii) says that
T .��/D T .�/ ı T .�/, and (i) says that T .1/D idM , so T .�/ ı T .��1/D T .1/D
idM D T .��1/ ı T .�/. Thus we really do have T .�/ 2 S.M /, with T .�/�1 D
T .��1/. Either the map G ! S.M / or the map G � M ! M can be called the
corresponding action of G on M .
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Example 1. Let E=K be a Galois extension with Galois group G D G.E=K/. The
group G acts on E via .�;x/‘ �.x/, and it acts on E� likewise. If E is a splitting
field of a polynomial f 2 KŒX � having degree n and roots ˛1; : : : ; ˛n, the group G

also acts on M D f˛1; : : : ; ˛ng.

There are many other examples of group actions, arising in very diverse ways.
It is a group’s nature, so to speak, to act on something.

Definition 2. Let G act on M . For x 2 M , the set

Gx D f�x j � 2 Gg
is called the orbit of x (relative to the given group action). Compare Chapter 8, F1.

F1. Let G act on M . Any two distinct orbits (relative to the given group action) are
disjoint, and M is the union of all such orbits.

Proof. For x;y 2 M , write x 
 y if there is � 2 G such that �x D y. You can easily
persuade yourself that 
 defines an equivalence relation on M . The equivalence
class of x 2 M under 
 is none other than the orbit Gx of x. This is enough to
prove the assertion. ˜

Definition 3. Let G act on M . The action is transitive if it has a single orbit; i.e.,
if, for some (or for that matter, for any) x 2 M ,

M D Gx:

See also Chapter 8, F7.

F10. Let the group G act on a finite set M . Then

jM j D
X

C

jC j;

where the sum is over all distinct orbits C .

Remark. The cardinality jGxj is called the size (or length) of the orbit of x (under
G).

Example 2. Let G be a group. Then G acts on M WD G via the action .�; �/‘ �� .
The corresponding homomorphism T W G ! S.G/ associates to every � 2 G the left
translation T� corresponding to � , defined by T� .�/D �� . Clearly, T is injective.
If jGj D n we have S.G/' Sn, so we obtain:

F2 (Cayley’s Theorem). Every group G of order n is isomorphic to a subgroup of
the symmetric group Sn.
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Example 3. Let H be a subgroup of a group G. Then H acts on M D G by left
translations. The orbit of � 2 G is

H� D f	� j 	 2 H g:
This is called the (right) coset of � mod H . The set of such right cosets is denoted
by HnG, and its cardinality by

G WH D jHnGj:
If G is finite, so are H and HnG. Since jH� j D jH j for all � 2 G, we see that F10
implies the next result:

F3 (Euler–Lagrange). For any subgroup H of a finite group G,

(2) jGj D .G WH / � jH j:
In particular, the order of H divides that of G.

Remarks. (a) Of course (2) is also valid for infinite groups, if regarded as an
equation between cardinals.

(b) We denote the subgroup f1g by 1. Then jH j D H W1 for any H , and moreover

.20/ G W1 D .G WH /.H W1/:
(c) We complete here the proof of Chapter 9, F1, picking up the general (nonabelian)
case. Given ˛ 2 G we look at H D h˛i. Since jH j D ord ˛, this number divides
n D jGj, according to F3. In particular, ˛n D 1.

(d) For H a given subgroup of G, write

G=H

for the set of left cosets �H , for � 2 G. Then G is the disjoint union of all the
distinct left cosets mod H . There are as many left cosets mod H as right cosets
mod H ; thus

jG=H j D G WH:
To see this, note that .�; �/‘ ���1 also defines an action of H on M D G, which
associates to each � 2 H the right translation by ��1. The corresponding orbits
are precisely the sets �H . The map � ‘ ��1 of G onto itself yields a bijection
HnG ! G=H , since .H�/�1 D ��1H �1 D ��1H .

We call G WH the index of H in G. If G is finite,

.200/ G WH D jGj W jH j
by (2); in particular; G WH then divides jGj.
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Definition 4. Let G act on M and take x 2 M . The subgroup

Gx D f� 2 G j �x D xg
is called the stabilizer of x.

F4. Let G act on M and take x 2 M . The map

G ! Gx; � ‘ �x

defines a bijection i W G=Gx ! Gx. Thus, if Gx is finite, so is G WGx , and

(3) jGxj D G WGx :

If G is finite, so is Gx, and

(4) jGxj D jGj
jGx j I

in particular then the size of any orbit divides the order of G.

Proof. Take H WD Gx . Then �H D �H if and only if 	 WD ��1� 2 H . It follows that
�x D�	x D�x. Thus we get a well defined map i W G=Gx ! Gx with i.�H /D�x.
Clearly i is surjective. But i is also injective since the equality �x D �x implies
��1�x D x, hence ��1� 2 H and also �H D �H . ˜

F5 (Orbit formula). Let the group G act on a finite set M , and let x1; : : : ;xs be
representatives for each of the s distinct orbits of the action. Then

jM j D
s

X

iD1

.G WGxi
/:

Proof. By F10, we have jM j D Ps
iD1 jGxi j. The assertion follows thanks to (3). ˜

Example 4. Let G be a group. As can easily be checked, G acts on M D G via
the map .�; �/ ‘ ����1. Let � ‘ T� be the corresponding homomorphism from
G into S.G/, that is, T� .�/D ����1. Now,

T� .�1�2/D �.�1�2/�
�1 D ��1�

�1��2�
�1 D T� .�1/T� .�2/I

therefore T� is actually an automorphism of G. Thus we obtain a homomorphism

T W G ! Aut G

from G into the automorphism group of the group G. Elements of S.G/ in the
image of T are called inner automorphisms of G. The kernel of T is the normal
subgroup of G given by

ZG WD f� j ����1 D � for all � 2 GgI
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it is called the center of G, and of course can also be characterized as

ZG D f� j �� D �� for all � 2 Gg:
The stabilizer G� of � with respect to the action under consideration is the subgroup

(5) ZG.�/ WD f� j ����1 D �g;
called the centralizer of � in G. The orbit of � 2 G, that is, the set

f����1 j � 2 Gg;
is called the conjugacy class of � in G. Two elements �1 and �2 in the same con-
jugacy class are conjugate in G; this happens if and only if �2 is the image of �1

under an inner automorphism: �2 D ��1�
�1 for some � 2 G.

We now apply F5 to the action from the preceding example. We obtain:

F6 (Class formula). If G is a finite (nonabelian) group and �1; �2; : : : ; �r represent
each of the conjugacy classes of G that contain more than one element, we have

jGj D jZGj C
r

X

iD1

�

G WZG.�i/
�

:

Proof. The conjugacy class of � 2 G has a single element if and only if � 2 ZG. ˜

Definition 5. Let p be a prime. A finite group G is called a p-group if jGj is a
power of p.

F7. Every finite p-group G ¤ 1 has nontrivial center.

Proof. By F6, p must divide jZGj, so ZG ¤ 1. ˜

F8. If G is a p-group of order pm, there exists a chain

G D H0  H1  H2  � � �  Hm D 1

of normal subgroups Hi of G such that

Hi�1 WHi D p for all 1 � i � m:

Proof. Let m > 0. By F7, ZG contains an element ˛ ¤ 1. The cyclic subgroup
h˛i has a subgroup H of order p (see Chapter 9, F6). Since H � ZG, this H

is normal in G. Now consider the quotient group G D G=H . By induction we
can assume that there exists a chain G D N0  N1  � � �  Nm�1 D 1 of normal
subgroups Ni of G such that Ni�1 WNi D p. Each map 'i W G ! G ! G=Ni gives
rise to an isomorphism G=ker 'i ' G=Ni . Now set Hm D 1 and Hi WD ker'i for
0 � i � m � 1. We then get a chain G D H0  H1  � � �  Hm�1 D H  Hm D 1

of normal subgroups of G. For 0 � i � m � 1 we have, by the definition of Hi , the
equalities G WHi D G WNi D pi , the latter because of Euler–Lagrange, equation (2).
Again from (2) we then get Hi�1 WHi D p. From our choice of H this is also true
for i D m. Thus we have obtained a chain with the desired properties for G. ˜
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Notation. If H is a subgroup of G we write H � G. If H is a normal subgroup of
G, we indicate this by writing H E G.

Example 5. Let G act on M . Then G acts also on the power set of M , via

.�;X /‘ �X D f�x j x 2 X g:
We have j�X j D jX j for every X � M .

Example 6. In the preceding example, consider in particular the action of G on
M D G by inner automorphisms. The orbit of an X � G is then f�X��1 j � 2 Gg.
We use the notation X � WD ��1X� . If now X D H � G is a subgroup of G, the
image H � D ��1H� is also a subgroup of same cardinality. We say that H � and
H are conjugate subgroups of G. The stabilizer of H ,

NGH WD f� 2 G j �H��1 D H g;
is called the normalizer of H in G. By definition, H E NGH . Moreover,

(6) H E G ” NGH D G:

By F4, G WNGH is the number of subgroups of G conjugate to H .

Example 7. Take H � G. Then the action of G on G=H via .�; �H / ‘ ��H is
transitive. The stabilizer of �H is the subgroup �H��1 of G, since for � 2 G we
have �.�H /D �H ” � 2 �H��1.

Example 8. In the situation of the preceding example let U �G be another subgroup
besides H . Then U acts on G=H via .�; �H /‘ ��H . The orbit of �H is the set

(7) f��H j � 2 U g
of left cosets mod H ; the stabilizer of �H is

(8) �H��1 \ U;

by Example 7. The union of cosets of (7) is the set

U�H:

This is called the double coset of � relative to U and H . Clearly,

(a) G is the disjoint union of all the distinct double cosets relative to U and H .

If we now assume that G is finite and let m be the size of the orbit (7) of �H , we
get jU�H j D m � jH j. By virtue of F4, then, m D U W .�H��1 \ U /; see (8). Thus
the cardinality of the double coset U�H is

(9) jU�H j D jU j jH j
j�H��1 \ U j

Moreover
j�H��1 \ U j D jH \ ��1U� j D jH \ U � j;

as can easily be seen by applying the inner automorphism corresponding to � . Thus:
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(b) Let G be finite and let T be a complete set of representatives of the distinct
double cosets of G relative to U and H . Then

(10) jGj D
X

�2T

jU j jH j
j�H��1 \ U j D

X

�2T

jU j jH j
jH \ U � j :

For the rest of this chapter G will denote a finite group and p a prime number.

Definition 6. (a) A subgroup H � G with jH j D pm is called a p-subgroup of
G.

(b) Suppose jGj D pna with .a;p/ D 1, so that pn is the highest power of p

dividing jGj. A subgroup H � G such that jH j D pn is called a Sylow p-
subgroup of G. We denote by

SylpG

the set of such subgroups. For an arbitrary subgroup H of G, F3 gives

(11) H 2 SylpG ” H is a p-group and G WH 6� 0 mod p:

Example 9. Consider the group G D GL.n;p/ D GL.n; �p/ of invertible n � n

matrices with coefficients in the field �p . It is easy to see that G has order

(12) jGj D .pn � 1/.pn � p/ : : : .pn � pn�1/;

since there are pn � 1 possibilities for what the matrix does to the first element of
the canonical basis of �n

p , then pn �p for the second, and so on. The highest power
of p that fits in jGj is thus

(13) p1C2C���C.n�1/ D pn.n�1/=2:

The subgroup

P WD

8

ˆ

ˆ

<

ˆ

ˆ

:

0

B

B

@

1

1
�

: : :
0

1

1

C

C

A

9

>

>

=

>

>

;

� GL.n;p/

of all upper triangular matrices with 1 in the diagonal obviously has order (13).
Thus P is a Sylow p-subgroup of G.

Lemma. Suppose H � G and let P be a Sylow p-subgroup of G. Then there exists
� 2 G such that

H \ P �

is a Sylow p-subgroup of H .

Proof. We look at the double coset decomposition of G relative to H and P . By
(10) we have

(14) jGj D
X

�2T

jH j jP j
jH \ P � j :
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Dividing this equation by the highest possible power of p, namely pn D jP j, we
see that for at least one � we must have

jH j
jH \ P � j D H WH\P � 6� 0 mod p:

On the other hand, H \ P � is a p-group, since it is a subgroup of P � . Thus, by
(11), H \ P � is a Sylow p-subgroup of H . ˜

Theorem 1 (Sylow’s Theorems).

First. G contains a Sylow p-subgroup. Every p-subgroup of G is contained in some
Sylow p-subgroup of G.

Second. Any two Sylow p-subgroups of G are conjugate.

Third. Let np be the number of Sylow p-subgroups of G. Then
(a) np divides G WP for P 2 SylpG, and
(b) np � 1 mod p.

Remarks. The number np actually satisfies
(a0) np D G WNGP , and also
(b0) np � 1 mod pd for every d such that

(15) P WP \P 0 � 0 mod pd for every P 0 2 SylpG distinct from P .

Now (b) will follow from (b0), since (15) is obviously satisfied for d D 1.

As a consequence of Sylow’s second theorem, a normal Sylow p-subgroup of G is
the only Sylow p-subgroup of G. The converse is clear: If G only has one Sylow
p-subgroup, this group is normal in G, since any conjugate of a Sylow p-subgroup
of G is also a Sylow p-subgroup.

Proof of Sylow’s Theorems. (1) Let n D jGj. By F2, G is isomorphic to a subgroup
of Sn. By associating to each � 2 Sn the permutation matrix P� 2 GL.n; �p/ that
accounts for the effect of � on the canonical basis e1; : : : ; en (that is, P�ei D e�.i/),
we get an injective homomorphism of Sn into GL.n; �p/. Thus G is isomorphic to a
subgroup H of GL.n; �p/. But for GL.n; �p/ we have produced a Sylow p-subgroup
in Example 9. By the Lemma on the previous page, this means that H , too, has a
Sylow p-subgroup, and thus so does G.

(2) Take P 2 SylpG and let H � G be any p-subgroup of G. By the Lemma, there
exists � 2 G such that H \P � 2 SylpH . But H is also a p-group, so H \P � D H ,
and therefore H � P � 2 SylpG. This completes the proof of Sylow’s first theorem.
Now, if H 2 SylpG, it follows that H D P � , since both groups have same order.
This proves Sylow’s second theorem.

(3) Take P 2 SylpG. Sylow’s second theorem yields np D ˇ

ˇfP � j � 2 Ggˇˇ D G WNGP

(see Example 6). This proves (a0), hence also (a).
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(4) There remains to prove (b0). To do this consider equation (14) with H D NGP .
Then

P�NGP; for � 2 T;

runs over all the distinct double cosets of G relative to P and NGP . We may as
well assume that 1 2 T . For � ¤ 1 in T , then, we have � … NGP , so P � ¤ P .
Being a p-group, P � \ NGP is contained in a Sylow p-subgroup of NGP , thanks
to Sylow’s first theorem. But then, being normal in NGP , the group P must be
the unique Sylow p-subgroup of NGP , so that P � \ NGP � P . It follows that
P � \ NGP � P � \ P , and hence

P � \ NGP D P � \ P:

Dividing (14) by jH j D jNGP j we get

G WNGP D 1 C
X

�2T rf1g
.P WP �\P /:

Using (a0) it now follows that np � 1 mod pd for any d that obeys (15). ˜

Remarks. Together with F8, Sylow’s first theorem immediately implies that for any
prime power pk dividing the order of G there exists a subgroup H of G such that
jH j D pk . For k D 1, in particular, we get a theorem that goes back to Cauchy: For
any prime p dividing the order of G, there is an element of order p in G.

The Norwegian mathematician Ludwig Sylow (1832–1918) recognized the
significance of Cauchy’s Theorem and fleshed it out into the three statements that
bear his name, which have played, ever since their publication (in 1872 in the
Mathematische Annalen), a fundamental role in group theory.

If a finite group G is abelian (or just nilpotent — see §10.19 in the Appendix),
it is actually the case that there is a subgroup of any order dividing the order of G.
But not so for general groups; already the alternating group A4 has no subgroup of
order 6 (see §15.11 in the Appendix).
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Applications of Galois Theory to Cyclotomic Fields

1. We start by considering, in the light of Galois theory, the general problem of
constructibility with ruler and compass, which has served as our lodestar, so to
speak, since Chapter 1.

Theorem 1. Let M � � contain 0 and 1, and set

K WD �.M [ M /:

Given z 2 �, there is equivalence between:

(i) z 2 M (that is, z is constructible with ruler and compass);

(ii) z is algebraic over K, and the degree over K of the normal closure E=K of
K.z/=K/ is a power of 2.

Proof. The implication (ii) ) (i) is especially interesting, and we prove it first. By
assumption the extension E=K is Galois, and its Galois group G D G.E=K/ is a
2-group. Thus, by F8 in Chapter 10, there exists a chain

(1) G D H0  H1  : : : Hn D 1

of subgroups of G (normal, in fact) such that Hi�1 W Hi D 2. By Galois theory
(Chapter 8, Theorem 5) this chain of subgroups Hi of G has a corresponding chain

.10/ K D K0 � K1 � � � � � Kn D E

of intermediate fields Ki of E=K, with Ki WKi�1 D Hi�1 WHi D 2. By Theorem 10
in Chapter 1, this implies that z 2 M .

The implication (i) ) (ii) just serves to round out the picture; its proof, though
elementary, is quite instructive. Taking z 2 M , we know from Theorem 1 in
Chapter 1 that z lies in a certain extension Km of K that can be obtained from K

by successively adjoining square roots:

z 2 Km D K.w1; w2; : : : ; wm/;

where w2
i 2 K.w1; : : : ; wi�1/ and wi … K.w1; : : : ; wi�1/ for 1 � i � m.
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Let Em=K be the normal closure of Km=K. Then Em=K is a finite Galois
extension. Clearly, to prove our assertion it is enough to show that Em WK is a power
of 2. This we do by induction on m. For m D 1 we have K1 D K.w1/ with w2

1
2 K,

w1 … K; in this case K1=K is normal, so E1 D K1 and hence E1 WK D 2. Now
suppose m > 1 and set Km�1 WD K.w1; : : : ; wm�1/. By the induction hypothesis,
the normal closure Em�1=K of Km�1=K has degree Em�1 WK equal to a power
of 2. We have Km D Km�1.wm/.

Now let ˛1 D wm; ˛2; : : : ; ˛s be the distinct conjugates of wm over K (in
�). Then ˛2

i 2 Em�1, since ˛2
i is conjugate over K to the w2

m 2 Km�1. Now of
course Em D Em�1.˛1; : : : ; ˛s/, so Em W Em�1 must be a power of 2. But then
Em WK D .Em WEm�1/.Em�1 WK/ too is a power of 2. ˜

2. We now apply Theorem 1 to the problem of dividing the circle into n parts. As
we saw in Chapter 1, the question is to decide, for a given n 2 �, whether or not
the complex number


 D e2� i=n

lies in the field �. The extension �.
/=� is normal; by Theorem 1, then, 
 2 �

if and only if �.
/ W� is a power of 2. By Gauss’s Theorem (Chapter 9, Theorem 3)
we have �.
/ W� D '.n/, so we must figure out for what values of n the natural
number '.n/ is a power of 2. Let

(2) n D 2ep
e1

1
: : :per

r

be the prime factorization of n, where e is nonnegative, the primes p1; : : : ;pr are
odd and pairwise distinct, and each ei is at least 1. Applying ' to (2) and taking
multiplicativity into account (see (19) in Chapter 9), we get

'.n/D '.2e/'.p
e1

1 / : : : '.p
er
r /:

Since '.pm/D .p �1/pm�1 for m � 1, we see that '.n/ is a power of 2 if and only
if all the ei’s are 1 and pi � 1 is a power of 2 for every i . This leads to:

Theorem 2 (Gauss). A regular n-gon is constructible with ruler and compass if and
only if

n D 2ep1p2 : : :pr ;

where e � 0 is arbitrary and p1; : : : ;pr are distinct primes of the form

pi D 1 C 22ki
:

The only thing in this result that has not yet been proved is:

Lemma. For m 2 �, the integer 1 C 2m cannot be prime unless m is a power of 2.

Proof. Suppose m D m1m2, with m2 > 1 odd. Then

1 C 2m D 1 � .�2m1/m2 D .1 C 2m1/
�

1 � 2m1 C 2m12 � � � � C 2m1.m2�1/
�

is composite. ˜
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Remarks. For k 2 � [ f0g, the number

(3) Fk D 1 C 22k

is called the k-th Fermat number. It is easy to show that

(4) F0 D 3; F1 D 5; F2 D 17; F3 D 257; F4 D 65537

are prime. Fermat (1601–1665), the great reviver of number theory in the modern
era (see Winfried Scharlau and Hans Opolka, From Fermat to Minkowski, Springer,
1985), occupied himself, in a context totally different from circle division, with the
numbers that now bear his name; see Pierre de Fermat, Œuvres I, 127ff. He stated
that they are all primes (Œuvres II, p. 309). But already the next Fermat number,

F5 D 1 C 232 D 641 � 6700417;

is composite, as Euler (1707–1783) found out and showed more or less as follows:
Because 641 D 5 � 27 C 1 D 54 C 24, there is a congruence

232 D 24 � .27/4 � �54 � .27/4 D �.5 � 27/4 � �1 mod 641:

Fermat’s mistake is noteworthy because he himself had found counterexamples of
the caliber of Euler’s in the case of the Mersenne numbers 2p � 1; but he seems to
have relied on Frenicle, who apparently agreed with the claim (Fermat, Œuvres II,
p. 208).

Today we know that Fk is composite at least for 5 � k � 32, and we don’t
know whether there are any prime Fermat numbers after those in (4). (Note that
F17 already has 39457 decimal digits, and F32 has over a billion.)

It is easy to see from the definition (3) that FkC1�2 D .Fk �2/Fk ; by induction,

(5) Fm � 2 D
Y

0�k<m

Fk :

Thus n D F5 � 2 D 232 � 1 D F0F1F2F3F4 is the largest known odd number of
sides that a constructible regular polygon can have; its decimal representation is
4294967295.

Incidentally, (5) implies that any two distinct Fermat numbers are relatively
prime. Thus there appear infinitely many primes in the factorization of Fermat
numbers.

3. Given a prime number p ¤2, we now look at the field �.
p/ of p-th roots of unity
over � (where 
p denotes a p-th root of unity ¤1 in �, for example 
p De2� i=p) and
ask what square roots of nonzero rational numbers lie in this field. For d1;d2 2 ��,
the extensions �.

p
d1/ and �.

p
d2/ coincide if and only if d1 D x2d2, for x 2 ��.

Thus we should investigate quadratic subfields of E D �.
p/, that is, subfields F

of E such that F W � D 2. Now, E=� is a Galois extension, with Galois group
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G DG.E=�/ isomorphic to .�=p/�; see Chapter 9, Theorem 3. The group .�=p/�
is cyclic of order p � 1, by Theorem 2 in Chapter 9. Thus for any factor t of p � 1

the group G has a unique subgroup of order t (Chapter 9, F6); then by Galois
theory (Theorem 5 in Chapter 8) E has exactly one subfield F such that E WF D t .
Setting t D .p � 1/=2, we conclude that E D �.
p/ has a unique subfield F with
F W� D 2. In other words: There exists a unique square-free integer d ¤ 1 such thatp

d 2 �.
p/.
What then is this number d , as a function of p?

Notation. For a prime number p ¤ 2, set

(6) p� D
�

p for p � 1 mod 4;

�p for p � 3 mod 4:

If desired, this can also be written as

(60) p� D .�1/.p�1/=2p:

Theorem 3. For every prime p ¤ 2, the extension �.
p

p�/ is the unique quadratic
subfield of �.
p/, and thus p� is the unique square-free integer (apart from 1) such
that

p
p� 2 �.
p/.

Proof. As seen earlier, �.
p/ has a unique subfield F such that F W � D 2, and
F D �.

p
d/ for a unique square-free d D d.p/ 2 �. Instead of finding d “naively”

(but see the remark in the proof of F1 below), we draw on F8 of Chapter 8, which is
perfect for the situation. According to that result, F D �.

p
D/, where D D D.f /

is the discriminant of the p-th cyclotomic polynomial

(7) f .X /D 1 C X C X 2 C � � � C X p�1:

Then d.p/ is simply the square-free part of D.f /. So all we have to do is compute
the discriminant D.f /; the result is

(8) D.f /D .�1/.p�1/=2pp�2;

according to the following lemma. Thus, as asserted,

d.p/D .�1/.p�1/=2p D p�: ˜

Lemma. For p ¤ 2 prime, the discriminant of the polynomial f D Fp is given by (8).

Proof. For simplicity we write 
 for 
p . Substituting X D 1 into the polynomial
f .X /D Qp�1

kD1
.X � 
k/ and taking (7) into account we get

(9)
p�1
Y

kD1

.1 � 
k/D p:
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By (17) in Section 8.3, we have

(10) "D.f /D
Y

j¤i

.
i � 
j /D
p�1
Y

iD1

f 0.
i/;

where "D .�1/n.n�1/=2 D .�1/.p�1/=2. Since X p � 1 D f .X /.X � 1/, this gives

p
p�1 D f 0.
/.
� 1/:

Now taking the product over all conjugates, and applying (9) and (10), one obtains
what is needed:

pp�1 D "D.f /p: ˜

We now wish to study more closely the action of the Galois group G on the
quadratic subfield F of �.
/ (where 
 D 
p as above). By Theorem 3 in Chapter 9,
there is first of all a natural isomorphism

(11) .�=p/� ! G D G.�.
/=�/;

sending each element a mod p of .�=p/� to the automorphism �a characterized by

(12) �a.
/D 
a:

For each � 2 G, then, we have

(13) �
�p

p� � D �.�/
p

p�;

with a well defined �.�/ 2 f1;�1g. The map � W G ! f1;�1g is of course a group
homomorphism; it is called the sign character (of p).

Definition. For a 2 � such that .a;p/D 1, set

(14)
�

a

p

	

WD �.�a/:

This is called the Legendre symbol of a (relative to p). The element
�

a
p

�

of f1;�1g
is thus fixed by the equation

(15) �a

�p
p� � D

�

a

p

	 p
p�:

As already observed,

(16)
�

ab

p

	

D
�

a

p

	�

b

p

	

:

By definition, H WD ker� is the subgroup of G associated by Galois theory to
the subfield F D �.

p
p�/. But since G is cyclic and of order p �1, it has only one

subgroup of index 2, namely the group

(17) H D f�2 j � 2 Gg
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of all squares in G (Chapter 9, F6). This, in view of the isomorphism (11), implies
that

(18)
�

a

p

	

D 1 ” a mod p is a square in .�=p/�:

We see, then, that the Legendre symbol (14) has an elementary number-theoretic
description:

(19)
�

a

p

	

D
�

1 if X 2 � a mod p has a solution in �;

�1 if X 2 � a mod p has no solution in �:

(The choice of 1 and �1 instead of 0 and 1 to label the branches of this dichotomy is
made so that (16) works.) Since H in (17) is the unique subgroup of order .p�1/=2

in G is, we obtain Euler’s criterion:

(20)
�

a

p

	

D 1 ” a.p�1/=2 � 1 mod p:

Substituting a D �1 (and considering that then, since p ¤ 2, congruence implies
equality), we obtain

(21)
��1

p

	

D .�1/.p�1/=2 D
�

1 for p � 1 mod 4;

�1 for p � 3 mod 4:

We know that 1; 
; : : : ; 
p�2 form a basis of the �-vector spaces �.
/, since
the minimal polynomial Fp of 
 over � has degree p � 1. Multiplication by 

transforms this basis into the basis

(22) 
; 
2; : : : ; 
p�1;

which is ideal for Galois-theoretic considerations, consisting as it does of all the
�-conjugates of the one element 
. Now

p
p�, like any other element of �.
/, has

a unique representation in the form

(23)
p

p� D
X

�2G

a��.
/ with a� 2 �:

Applying some � 2 G we get �.�/
p

p� D P

� a���.
/; this yields a relation
�.�/a1 D a��1 between coefficients. Thus

a� D a1�.�/ for any � 2 G:

Then (23) becomes

(24)
p

p� D a1 �
X

�2G

�.�/�.
/:

More can be said:
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F1. With the preceding notation,

(25)
p

p� D ˙
X

�2G

�.�/�.
/:

Thus, in terms of the Legendre symbol (see (14) and (12)), we have

.250/
p�1
X

aD1

�

a

p

	


a D ˙p

p�:

Proof. We must show that the rational factor a1 in (24) satisfies a2
1

D 1. There
seems to be no tidy conceptual argument at hand to let us get around the dirty work.
So we make a virtue of necessity and determine the square of

(26) ˛ WD
X

�

�.�/�.
/

by a direct computation — whereby we incidentally establish again that the quadratic
irrationality

p
p� does belong to �.
p/. Observing that �.�/D �.��1/, we have

˛2 D
X

�;�

�.�/�.�/�.
/�.
/D
X

�;�

�.��1�/�.
/�.
/;

Let 	D ��1� , so � D �	. Since a sum over all .�; �/ is also a sum over all .�; 	/,
we get

˛2 D
X


;�

�.	/�.
/�	.
/D
X




�.	/
X

�

�.
	.
//:

We can evaluate the rightmost sum by observing that 
	.
/ is a p-th root of unity,
primitive unless 	 is the particular automorphism ��1 defined by (12). For a p-th
root of unity �,

X

�

��D �C �2 C � � � C �p�1 D
�

p�1 if �D 1;

�1 if �¤ 1:

Applying this to 
	.
/, we get

˛2 D �.��1/.p�1/�
X


¤��1

�.	/

D �.��1/.p�1/C�.��1/�
X




�.	/D p�.��1/;

where
P


 �.	/ vanishes because ker� has index 2 in G. From (14) and (21) we
know that

�.��1/D
��1

p

	

D .�1/.p�1/=2;

so the desired equality ˛2 D p� follows. ˜
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Remark. In the preceding discussion
p

p� denoted, as usual for algebraic purposes,
an arbitrary (but fixed) solution of the equation X 2 � p� D 0 in � — which of the
two is immaterial. In this light, the occurrence of the ˙ in (25) and (250) is not
surprising. From the analytic viewpoint, however, it is relevant to ask which sign is
the right one, if one understands by

p
p� the positive square root

p
p in the case

p� D p and the complex number i
p

p in the case p� D �p. For a given p, the
factor a1 D a1.
/ 2 f1;�1g that appears in (24) depends at most on the choice of

; that it does so depend is easy to see because when one replaces 
 by another
primitive p-th root 
k the sign behaves as follows:

(27) a1.

k/D

�

k

p

	

a1.
/:

From the point of view of analysis there does exist a canonical choice for 
, namely

D e2� i=p , and the question then is which sign is appropriate for this choice. Gauss
agonized over this problem for years, as he himself confessed, until he finally found
the answer in 1805: the sign is always C1, independently of p. Readers interested
in knowing the proof can find a matrix-theoretic one by Isaac Schur in his Werke,
vol. II, and a function-theoretic one by Carl Ludwig Siegel in Chandrasekharan’s
Introduction to Analytic Number Theory.

In pursuit of explicit applications of Galois theory, we have wandered unawares
into the realm of number theory. We might as well go one step further and prove
the famous quadratic reciprocity law of Gauss. Without having to fuss about the
exact sign determination of the Gaussian sums (26), we already have in hand a key
to the problem, in the form of the relation ˛2 D p�.

Let q be any prime distinct from the original prime p. It will prove convenient
to work in the ring R D �Œ
� (still with 
 D 
p). For an arbitrary element of R, say

˛ D
X

�

a��.
/ with a� 2 �;

we have

�q.˛/D
X

�

a��.
/
q �

�

X

�

a��.
/

�q

mod q;

and hence

(28) �q.˛/� ˛q mod qR:

Applying this to ˛ D p
p� given by (25), one gets, using (15),

(29)
�

q

p

	p
p� � �p

p� �q
mod qR:

After multiplying by
p

p�, and assuming q ¤ 2, we get
�

q

p

	

p� � .p�/.qC1/=2 mod qR:
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Since p� and q are relatively prime, p� is invertible modulo q in � � R, so

(30)
�

q

p

	

� .p�/.q�1/=2 mod qR:

But q�Œ
�\ � D q� (as can be seen easily by comparing coefficients relative to the
basis 1; 
; : : : ; 
p�2); thus (30) says simply that

�

q

p

	

� .p�/.q�1/=2 mod q�:

Using Euler’s criterion (20) we then obtain
�

q

p

	

�
�

p�
q

	

mod q�:

Since q ¤ 2 this finally yields
�

q

p

	

D
�

p�
q

	

;

since the only values that can occur are 1 and �1. To summarize:

Theorem 4 (Quadratic reciprocity law). If p and q are distinct odd primes,

(31)
�

q

p

	

D
�

p�
q

	

;

which, taking into account (60), (16) and (21), also means that

(32)
�

q

p

	

D .�1/
1
2
.p�1/ 1

2
.q�1/

�

p

q

	

:

In other words:

(a) If p or q is congruent to 1 mod 4, then
�

q
p

� D �

p
q

�

, that is, q is a quadratic
residue mod p if and only if p is a quadratic residue mod q.

(b) If both p and q are congruent to 3 mod 4, then
�

q
p

� D ��

p
q

�

, that is, q is a
quadratic residue mod p if and only if p is not a quadratic residue mod q.

Equation (32) is completed by two “supplementary laws” for quadratic residues:
For any odd prime p,

(33)
��1

p

	

D .�1/.p�1/=2

and

(34)
�

2

p

	

D .�1/.p
2�1/=8 D

�

1 for p � 1 or � 1 mod 8;

�1 for p � 3 or � 3 mod 8:

Proof. All that remains to prove is (34). To do this we work in the field of eighth
roots of unity over �. Choose

(35) 
 D e� i=4;
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so

(36)
p

2 D 
C 
�1;

and with this one gets a formula analogous to (25). Now, if "p is the sign such that

(37) �p

�

p
2

� D "p
p

2;

then the relation parallel to (29) is

"p
p

2 � p
2

p
mod p;

and one uses Euler’s criterion exactly as above to obtain

(38) "p D
�

2

p

	

:

But since �p.
/D 
p we have

"p D 1 ” �p

�

p
2

� D p
2 ” 
p C 
�p D 
C 
�1 ” p � 1 or �1 mod 8;

since for the remaining p’s we have 
p C
�p D �.
C
�1/. Equation (34) follows.
˜

Example. Is 221 a quadratic residue modulo the prime 383? To apply Theorem 4,
we must first factor 221 into primes. Then

�

221

383

	

D
�

13

383

	�

17

383

	

D
�

383

13

	�

383

17

	

D
�

6

13

	�

9

17

	

D
�

6

13

	

D
�

2

13

	�

3

13

	

D �
�

3

13

	

D �
�

13

3

	

D �
�

1

3

	

D �1;

so the congruence X 2 � 221 mod 383 has no solution in �.

Remarks. (a) It is clear that the algorithm illustrated by the preceding example
will always succeed in determining whether a fully factorized number is a quadratic
residue. It is possible to avoid the heavy computational burden of a preliminary
prime factorization (apart from factoring out 2’s). To do this, one extends the
Legendre symbol into the Jacobi symbol, by setting

(39)
�

a

b

	

WD
Y

p

�

a

p

	

wp.b/

whenever a; b are relatively prime integers such that a ¤ 0 and b is odd and positive.
Using Theorem 4 one can easily prove (exercise) the relations

(40)
�

b

a

	

D .�1/
1
2
.a�1/ 1

2
.b�1/

�

a

b

	

;
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where a is also assumed odd and positive, and

(41)
��1

b

	

D .�1/.b�1/=2;
�

2

b

	

D .�1/.b
2�1/=8:

Since clearly (39) depends only on a modulo b, the Jacobi symbol achieves what is
desired. For example, although 1363 D 29 � 47 is not a prime, we can write, letting
b be the Fermat prime 65537:

�

1363

65537

	

D
�

113

1363

	

D
�

7

113

	

D
�

1

7

	

D 1:

Thus 1363 is a quadratic residue mod 65537.

(b) The deeper meaning of the quadratic reciprocity law, which far transcends its
nice algorithmic handiness, is beyond our scope. Nonetheless, there is an important
fact that we can touch upon, and which can be read off from the properties (40) and
(41) of the Jacobi symbol, namely: The value of

�

a
b

�

depends on b 2 � only modulo
4a (and if a � 1 mod 4, then

�

a
b

�

depends on b only modulo a). For a given integer
a, then, we have: If p and p0 are odd primes not dividing a, then

�

a

p

	

D
�

a

p0
	

; if p � p0 mod 4a:

Thus the quadratic residue behavior of a modulo p is the same for all primes p

that belong to the same residue class mod 4a. This implies (though we cannot go
into it here — see F. Lorenz, Algebraische Zahlentheorie, BI-Verlag, 1993) that the
decomposition behavior of primes p in the quadratic number field �

�p
a

�

depends
only on p modulo 4a. (In the case a D �1, compare with §4.18 in the Appendix.)

(c) A word on the history of the quadratic reciprocity law. In 1875 Kronecker
(see vol. II of his Werke) called attention to the fact that the law was first stated by
Euler — as far back as 1744 in its essentials, and in much more developed form again
in 1783. Thus Euler preceded Legendre (1785) and Gauss (1801), who seem to have
overlooked his remarks. However, the indisputable merit of finding a real proof for
what was until then a heuristic observation belongs to Gauss; see his Disquisitiones
Arithmeticae, where he in fact makes some historical remarks as well (articles 151,
296, 297 and Addenda at the end).

(d) The quadratic reciprocity law is a mathematical gem in itself. It has also
proved to be a landmark along a road which, in the realm of algebraic number
theory, has led toward fuller awareness of class regularity for abelian number
field extensions, an awareness that has found deep expression in Artin’s reciprocity
law. (Again, see my Algebraische Zahlentheorie.) Furthermore today a trail is
being blazed past the abelian case (see the survey article by J. Neukirch in Ein
Jahrhundert Mathematik, 1890–1990: Festschrift zum Jubiläum der DMV, Deutsche
Mathematiker-Vereinigung and Vieweg, 1990).
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Further Steps into Galois Theory

1. What happens to the Galois group of a polynomial when the ground field is
extended? Let f 2 KŒX � be separable and let G be the Galois group of f over K.
If K0 is any extension of K, it is easy to see that the Galois group of f over K 0
can be regarded as a subgroup of G. More generally:

Theorem 1 (Translation theorem). Let E=K be a Galois extension and K0=K any
field extension. Assume, without loss of generality, that E and K0 are subfields of a
field C , and let EK0 D K0.E/ be their composite in C .

(a) EK0=K0 is a Galois extension.

(b) The map G.EK0=K0/ ! G.E=K/ defined by restriction gives rise to an iso-
morphism

G.EK0=K0/' G.E=E \ K0/:
The Galois group G.EK0=K0/ of the extension EK0=K0 can thus be identified with
a subgroup H of G.E=K/, namely the subgroup corresponding to the intermediate
field E \ K0 of E=K.

Proof. Clearly EK0=K0 is algebraic and separable. Because E=K is normal, E is the
splitting field of some set M � KŒX � of polynomials over K. Thus EK0 D K0.E/
is the splitting field of M � K0ŒX � over K0, meaning that EK0=K0 is normal. Thus
EK0=K0 is Galois. Obviously, the restriction

(1)
r W G.EK0=K0/! G.E=K/

� ‘ �E

is a homomorphism. If � 2 G.EK0=K0/ acts trivially on E, it acts trivially on
EK0 D K0.E/, since � acts trivially on K0 by definition. Thus r is injective.

There remains to show that the image of r equals G.E=E \K0/. Let H be this
image. Since every � 2 G.EK0=K0/ fixes K0 pointwise, K0 \E is contained in the
fixed field EH of H in E. Conversely, anything in EH is left fixed by all elements
of G.EK0=K0/, and therefore lies in K0. Therefore

(2) EH D K0 \ E:
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If E=K is assumed finite, this equality implies the desired conclusion that H D
G.E=K0 \ E/, by Theorem 5 in Chapter 8. For the case of an infinite Galois
extension E=K, readers might try to give a justification on their own. It will soon
become apparent how nice it would be to have some appropriate generalization of
the Fundamental theorem of Galois theory (Chapter 8) applicable to infinite Galois
extensions. We will get to that in Section 12.4. Given the results there, the conclu-
sion that H D G.E=K0 \ E/ easily follows (see Remarks on page 130). ˜

The state of affairs described by Theorem 1 can be conveniently visualized
through a diagram:

(3)

8

ˆ

ˆ

ˆ

ˆ

Ĝ
ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

K

E\K0

E

K0

EK0
9

>

H
>

;

9

>

H
>

;

�����

������

F1. In the same situation as Theorem 1, assume further that E=K is finite. Then

(4) EK0 WK0 divides E WK:
Proof. By Theorem 1, the degree EK0 WK0 coincides with the order of the subgroup
G.E=E \ K0/ of G.E=K/, and so divides E WK. ˜
Remark. Relation (4) need not hold when E=K is not Galois. For instance, consider

K D �; E D �.
3
p

2 /; K0 D �.
3
3
p

2 /;

where 
3 denotes a primitive third root of unity. It is easy to see that EK0 D
�.

3
p

2; 
3/, E WK D K0 WK D 3, and EK0 WE D 2, so EK0 WK0 D 2.

F2. Let E1=K and E2=K be Galois extensions. Assume, without loss of generality,
that E1 and E2 are subfields of an algebraically closed field C , and let E1E2 be
their composite in C . Then:

(a) E1E2=K is a Galois extension.

(b) The group homomorphism

h W G.E1E2=K/! G.E1=K/� G.E2=K/

� ‘ .�E1
; �E2

/

is injective. If E1 \ E2 D K, the map h is an isomorphism.

Proof. (a) Clearly E1E2=K is separable; see Chapter 7, F7.
Let � W E1E2 ! C be a K-homomorphism. For i D 1; 2, we have �.Ei/� Ei ,

since Ei=K is normal; there follows �.E1E2/� E1E2, so E1E2=K is normal.
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(b) If � 2 G.E1E2=K/ acts as the identity on both E1 and E2, it does the same
on E1E2. Therefore h is injective. Now assume E1 \ E2 D K. By Theorem 1,
there exists for any �1 2 G.E1=K/ some 	 2 G.E1E2=E2/ such that �1 D 	E1

.
Likewise, for any �2 2 G.E2=K/ there exists some � 2 G.E1E2=E1/ such that
�2 D �E2

. Set � D 	� . Then �E1
D 	E1

�E1
D 	E1

D �1, so �E1
D �1; similarly,

�E2
D �2. This shows that h is surjective. ˜

Remark. Let things be as in F2, and set L WD E1 \ E2. Clearly L=K is normal;
let 4 D G.L=K/ be its Galois group. If pi W G.Ei=K/! G.L=K/ is the canonical
map, for i D 1; 2, define

G.E1=K/�4 G.E2=K/ WD ˚

.�1; �2/ 2 G.E1=K/� G.E2=K/ j p1�1 D p2�2

�

:

One easily persuades oneself that the image of the homomorphism h defined above is
precisely the subgroup G.E1=K/�4 G.E2=K/ of G.E1=K/� G.E2=K/, and thus
yields an isomorphism

(5) G.E1E2=K/' G.E1=K/�4 G.E2=K/:

Indeed: For h.�/ D .�E1
; �E2

/ we have .�E1
/L D �L D .�E2

/L, so h.�/ lies in
G.E1=K/�4 G.E2=K/. Conversely, if .�1; �2/ is an element of this product, we
find first an � 2 G.E1E2=K/ such that �L D .�1/L D .�2/L. Then, for i D 1; 2, we
have ��1

Ei
�i 2 G.Ei=L/; but by F2, part (b), G.E1E2=L/! G.E1=L/�G.E2=L/

is surjective, so there exists � 2 G.E1E2=L/ such that �Ei
D ��1

Ei
�i . Now the

element Q� WD �� satisfies Q�Ei
D �i for i D 1; 2.

2. We now discuss a result of R. Dedekind that is of fundamental importance to
field theory.

Theorem 2 (Linear independence of field homomorphisms). Let E=K be a finite
separable field extension of degree n, and let C be an algebraically closed extension
of K. Denote by �1; �2; : : : ; �n the distinct K-homomorphisms of E in C . Then
�1; �2; : : : ; �n are linearly independent over C ; that is, for any c1; c2; : : : ; cn in C ,
the condition

(6)
X

ci�i.ˇ/D 0 for all ˇ 2 E

implies c1 D c2 D � � � D cn D 0.

The following demonstration is somewhat redundant because this theorem is
contained in a result shortly to be stated (Theorem 20), for which we give a different
and simple proof. But the method of this first proof is of great intrinsic interest.

Proof of Theorem 2. Let ˇ1; : : : ; ˇn be a basis of E=K. Clearly, (6) is equivalent to

(7)
n

X

iD1

ci�i. ǰ /D 0 for 1 � j � n:
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The assertion of Theorem 2 is thus equivalent to the nonvanishing of the determinant
of the n � n matrix .�i. ǰ //i;j . Set

(8) �.ˇ1; : : : ; ˇn/D det .�i. ǰ //i;j :

So what we have to show is that for some (and therefore for every) basis ˇ1; : : : ; ˇn

of E=K we have

(9) �.ˇ1; : : : ; ˇn/¤ 0:

Since E=K was assumed separable, the primitive element theorem (Chapter 8) yields
an ˛ 2 E such that E D K.˛/, and we can consider the particular basis of E=K

given by

(10) ˇ1 D 1; ˇ2 D ˛; ˇ3 D ˛2; : : : ; ˇn D ˛n�1:

Then �i. ǰ / D �i.˛
j�1/ D �i.˛/

j�1. Thus �.1; ˛; : : : ; ˛n�1/ D det .�i.˛/
j�1/i;j

is a Vandermonde determinant (see LA I, p. 155), and as such it evaluates to

(11) �.1; ˛; : : : ; ˛n�1/D
Y

i<j

�

�j .˛/� �i.˛/
�

:

But since �1; : : : ; �n are all distinct and ˛ generates E over K, the �1.˛/; : : : ; �n.˛/

are all distinct. Thus the particular basis (10) does satisfy (9). ˜

As mentioned, Theorem 2 also follows from the next result:

Theorem 20 (Artin). Let M be a monoid and F a field. If �1; : : : ; �n are pairwise
distinct homomorphisms of M into the multiplicative group F� of F , then �1; : : : ; �n

are linearly independent over F .

Proof. The proof rests on a simple fact from linear algebra:
Let B be a set of endomorphisms of an F -vector space V . Let v1; : : : ; vn 2 V be

simultaneous eigenvectors of all the ˇ 2 B; that is, suppose that for each ˇ 2 B and
each 1 � i � n there is a unique �i.ˇ/ 2 F such that

ˇ.vi/D �i.ˇ/vi :

If the functions �1; : : : ; �n WB !F are all distinct, the vectors v1; : : : ; vn are linearly
independent.

To see this, consider a nontrivial linear dependence involving as few vi’s as
possible; write it (after renumbering if necessary) as v1 D Pk

iD2 civi , with k > 1

and ci ¤0 for each i . Then 0Dˇv1��1.ˇ/v1 DPk
iD2 ci

�

�i.ˇ/��1.ˇ/
�

vi , leading
to a shorter linear dependence if we take ˇ such that �2.ˇ/¤ �1.ˇ/. Contradiction.

Now, to see why Theorem 20 follows from the linear algebra statement, consider
the F -vector space V D FM of all maps from M into F . For every ˇ 2 M we
take an endomorphism of V — also denoted by ˇ— as follows: For any � W M ! F
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in V , the image ˇ.�/ W M ! F is the map � ‘ �.ˇ� /. Then, for each �i in the
statement of the theorem, we have ˇ.�i/.� /D �i.ˇ� /D �i.ˇ/�i.� /, so

ˇ.�i/D �i.ˇ/�i:

Therefore each �i is an eigenvector of every ˇ, with eigenvalue �i.ˇ/— here we
used the fact that �i ¤ 0. Since the maps �1; : : : ; �n were assumed to be all distinct,
the linear algebra statement applies, with �i playing the role of both �i and vi . This
proves that the �i are linearly independent. ˜

Remark. Let E=K be a Galois extension of degree n, with Galois group G. By
extension of the field of constants, we can make the tensor product E ˝K E into a
module over the group algebra EG in a natural way:

(12) c�.x ˝ y/D �x ˝ cy:

(For the definition of the group algebra see Section 6.2.) Now let �1; : : : ; �n be
the n distinct elements of G. Consider the homomorphism of EG-modules f W
E ˝K E ! EG such that

f .x ˝ y/D
n

X

iD1

.��1
i .x/y/�i:

We claim that f is an isomorphism, so we get a canonical EG-module isomorphism

(13) E ˝K E ' EG:

To prove this it is enough to show that f is injective, since the E-vector spaces
E ˝K E and EG both have dimension n. Let ˇ1; : : : ; ˇn be a basis of E=K. Every
element z of E ˝K E can be expressed (uniquely) in the form

z D
n

X

jD1

ǰ ˝ cj with cj 2 E:

Now, if f .z/D 0, we have

0 D
n

X

jD1

� n
X

iD1

��1
i . ǰ /cj�i

�

D
n

X

iD1

� n
X

jD1

��1
i . ǰ /cj

�

�i :

There follows
n

X

jD1

��1
i . ǰ /cj D 0 for all i:

But in the proof of Theorem 2 we saw that the matrix
�

��1
i . ǰ /

�

i;j
cannot be

markrightThe existence of a normal basissingular; consequently all the cj vanish,
proving the claim.
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It is worth remarking that the isomorphism statement (13) can be viewed as a
deep reason why Galois theory works. In this connection, E. Artin has shown that
Theorem 20 can serve as the starting point for a logical treatment of Galois theory;
see E. Artin, Galois theory, Notre Dame mathematical lectures, 1942. See also the
hint to §12.6 in the Appendix.

3. We now come to a beautiful and momentous theorem of Galois theory, which
actually amounts to a strengthening of the isomorphism statement (13), as will be
explained more precisely later.

Theorem 3 (Existence of normal bases). Let E=K be a finite Galois extension with
Galois group G. There exists an element ˛ in E such that the family

(14) .�.˛//�2G

is a basis of E=K. Such a family is called a normal basis of E=K.

Remarks. (i) Any � 2 G permutes the elements of a normal basis and is uniquely
determined by this permutation.

(ii) If .�.˛//� is a normal basis of E=K, a minute’s thought shows that E D K.˛/;
in other words, ˛ is a primitive element of E=K.

(iii) Let p be prime and let 
p denote a primitive p-th root of unity (in �). Then
˛ WD 
p gives rise to a normal basis of �.
p/=�. Indeed, as we know, the �-
conjugates of 
p are

(15) 
p; 

2
p ; : : : ; 


p�1
p I

but since 1; 
p; 

2
p ; : : : ; 


p�2
p form a basis of �.
p/=�, so do the elements in (15).

The primeness of p is essential; the corresponding statement for, say, the field �.i/

of fourth roots of unity would be false, since i;�i are linearly dependent over �.

Proof of Theorem 3. We first take an arbitrary element ˛ of E and assume there is
a relation

X

�2G

a��.˛/D 0; with a� 2 K:

For any � 2 G we can apply ��1 to the sum, obtaining
X

�2G

a� �
�1�.˛/D 0:

From this we see that to force all the a� to vanish, it suffices to ensure that

(16) det
�

��1�.˛/
�

�;�2G
¤ 0;

so our task is to prove that there exists ˛ 2 E with this property. By the primitive
element theorem there exists ˇ 2 E such that E D K.ˇ/. Then

f .X /D
Y

�2G

.X � �ˇ/
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is the minimal polynomial of ˇ over K; see Chapter 8, F1. For each � 2 G, consider
the polynomial

g� .X /D f .X /

X � �ˇ 2 EŒX �I
then

(17)
g� .ˇ/D 0 for � ¤ 1; but

g� .ˇ/¤ 0 for � D 1:

Now let d.X / be the determinant of the matrix

�

g�
�1� .X /

�

�;�
D

�

f .X /

X � ��1�ˇ

	

�;�
2 Mn.EŒX �/:

When we plug X D ˇ into this polynomial matrix we get a diagonal matrix whose
diagonal entries are equal and nonzero — all of this by (17). Taking the determinant
we get d.ˇ/¤ 0, so d.X / cannot be the zero polynomial:

(18) d.X /¤ 0:

Now assume that the field K has infinitely many elements; then, by (18), there exists
� in K such that d.� /¤ 0. So, for such a � , the matrix

�

f .� /

� � ��1�ˇ

	

�;�
D

�

��1�
�

f .� /

� �ˇ
	

�

�;�

has nonzero determinant; thus the element

˛ WD f .� /

� �ˇ
satisfies the desired condition (16). The existence of a normal basis is proved in the
case where the ground field K is infinite.1

In the case of finite fields we must resort to a different argument. In this case
Galois groups are necessarily cyclic (see Theorem 4 in Section 9.5). The finiteness
of K does not come in other than via this fact; for this reason we may as well
assume simply that

G D G.E=K/ is cyclic:

So let � be a generating element of G and let n D E WK be the order of � . We
regard � as an endomorphism of the K-vector space E, and show that the minimal
polynomial of this endomorphism is X n � 1. Since �n D 1, clearly � is a root
of X n � 1. On the other hand, � cannot be a root of a nonzero polynomial of
smaller degree (over K), because this would amount to a linear dependence relation
among the automorphisms 1; �; �2; : : : ; �n�1, contradicting Theorem 20. Now, the

1 It should be clear how the proof needs to be modified in order to obtain an ˛ that gives rise
to a normal basis of E=F for every intermediate field F simultaneously.
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dimension of the K-vector space E is n; therefore the minimal polynomial and the
characteristic polynomial of � coincide. But then there exists a cyclic vector for �
(see LA II, p. 168), which is to say some ˇ 2 E such that

(19) ˇ; �ˇ; �2ˇ; : : : ; �n�1ˇ

form a basis of E=K. By definition, the elements (19) form a normal basis of E=K.
˜

The existence theorem for normal bases can also be expressed as follows:

Theorem 30. Let E=K be a finite Galois field extension with Galois group G. The
group algebra KG and E are isomorphic as KG-modules:

(20) E ' KG as KG-modules.

Proof. Every element x of KG has a unique representation

x D
X

�2G

a��:

E has a canonical KG-module structure given by the map
�

X

�

a��; ˛

�

‘
X

�

a��.˛/:

Like any ring, KG is a module over itself via the map .x;y/‘ xy. Now, for any
˛ 2 E, the map

(21)
X

�

a�� ‘
X

�

a��˛

is obviously a KG-module homomorphism from KG into E. Conversely, given a
KG-module homomorphism ' W KG ! E, set ˛ WD'.1/; then ' must have the form
(21). But clearly (21) is an isomorphism if and only if the images �˛ of the � 2 G

make up a basis of E=K. Thus we have shown the equivalence between Theorems
3 and 30. ˜

Remarks. (1) Let E=K be an extension of finite fields. Since we know certain things
about finite fields (for instance, that the multiplicative group E� of E is cyclic), it
does not seem totally unreasonable to ask whether one can exhibit more concretely
a normal basis for E=K. It is true that the author has never come across a solution,
but the problem is hereby posed anyway (see also §12.3 in the Appendix).

(2) The existence theorem for normal bases strengthens the earlier statement that

(22) E ˝K E ' EG
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as EG-modules (see (13) in the remark following Theorem 20). This is clear,
because the existence of a normal basis for E=K implies, as we have seen, the
isomorphism of KG-modules

(23) E ' KGI
by tensoring one then gets E ˝K E ' KG ˝K E ' EG, which is (22). Note,
however, that in contrast with (22), the isomorphism (23) is not canonical.

(3) The existence proof we gave for normal bases is less than fully satisfying, in
that it requires separate treatment for finite and infinite ground fields. It would be
much nicer anyway to be able to derive the existence of the isomorphism (23) from
the canonical isomorphism (22). This turns out to be possible, as proved by M.
Deuring. More precisely:

Let M and M 0 be modules over a K-algebra A, both finite-dimensional over K.
If for a finite field extension E=K there is an isomorphism M ˝K E ' M 0 ˝K E of
A ˝K E-modules, then there is an isomorphism M ' M 0 of A-modules.

Sketch of proof. Every A-module M with M WK <1 is of course the direct sum of
directly indecomposable submodules. By a fundamental theorem of Krull, Remak
and Schmidt (which we will prove in Volume II, Chapter 28), such a decomposition
is unique up to isomorphism and reordering of the indecomposable summands. Now,
if we assume that M ˝K E and M 0 ˝K E are isomorphic as A˝K E-modules, they
are also isomorphic as A-modules. But as A-modules they also clearly satisfy
(setting n D E WK)

M ˝K E ' M n; M 0 ˝K E ' M 0 n;

and so also
M n ' M 0 n:

Applying the Krull–Remak–Schmidt Theorem we get M ' M 0. ˜

Definition. Consider a finite Galois extension E=K with Galois group G. Let H

be a subgroup of G and let F be the corresponding intermediate field of E=K. For
x 2 E, set

(24) TrH .x/D
X

�2H

�x:

Clearly TrH .x/ is invariant under all the � 2 H , and so lies in the fixed field F

of H . Thus we get a function TrH W E ! F , which we denote also by TrE=F and
which we call the trace with respect to H (or to E=F ).

F3. Let E=K be a finite Galois extension with Galois group G. For a given subgroup
H of G with fixed field F , let �1H; : : : ; �mH be the distinct left cosets of G with
respect to H (so mD G WH and an element of G lies in �iH if and only if it coincides
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with �i on F ). If for some ˛ 2 E the conjugates �˛, for � 2 G, form a normal basis
of E=K, then the elements

(25) ��1
1 TrE=�1F .˛/; ��1

2 TrE=�2F .˛/; : : : ; ��1
m TrE=�mF .˛/

form a basis of F=K. If H is a normal subgroup of G (equivalently, if F=K is
normal), the basis given by (25) is a normal basis of F=K. In any case we have
F D K.TrE=F .˛//.

Proof. A given x 2 E has a unique representation

x D
X

�2G

a��˛ with a� 2 K;

and it lies in F if and only if it is invariant under every � 2 H . But

�x D
X

�2G

a���˛ D
X


2G

a��1
	˛ D
X

�2G

a��1��˛;

so �x D x for every � 2 H if and only if a��1� D a� for every � 2 H and every
� 2 G, that is, if and only if a is constant on every right coset H� . The elements
��1

1
; : : : ; ��1

m each represent a different right coset of G modulo H , so x lies in F

if and only if x is of the form

x D
m

X

iD1

ai

�

X

�2H

���1
i ˛

�

; with ai 2 K:

Notice here that ���1
i D ��1

i .�i��
�1
i / and that the subgroup �iH�

�1
i is associated

with the fixed field �iF , so we finally get, as a necessary and sufficient condition
for x to lie in F , that x be of the form

x D
m

X

iD1

ai�
�1
i TrE=�i F .˛/; with ai 2 K:

Such a representation is unique by construction, so we have in fact shown that the
elements listed in (25) form a basis of F=K — note that they are indeed in F , since
��1

i TrE=�i F .˛/ 2 ��1
i .�iF /D F .

If H is a normal subgroup we have �iF D F , so (25) lists precisely the conju-
gates of TrE=F .˛/.

As for the last assertion of F3, one easily sees that in any case �i TrE=F .˛/ ¤
�j TrE=F .˛/ for i ¤ j ; thus TrE=F .˛/ has at least m D F WK distinct conjugates in
E, and the statement follows. ˜

4. Let K be a field and C a fixed algebraic closure of K. Denote by Cs the
separable closure of K in C . Then Cs=K is a Galois extension, and any Galois
extension E=K with ground field K can be regarded as intermediate to Cs=K.
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Thus the Galois extension Cs=K might prove to be an especially worthy object of
study. However, Cs=K is generally not a finite extension. The question, then, is
to find an appropriate generalization of the fundamental theorem of Galois theory
from finite to arbitrary Galois extensions. That the theorem as given in Chapter 8,
Theorem 5 does not apply to infinite Galois extensions is shown by the following
example. What happens is that the one-to-one correspondence between intermediate
fields and subgroups of the Galois group breaks down — we know from Chapter 8,
Theorem 2 that there is an injective map from the former to the latter always, but in
the infinite case different subgroups of the Galois group may have the same fixed
field.

Example. Let K D �p be the prime field of characteristic p> 0 and set �p1 WD C D
Cs . Denote by ' 2 G.C=�p/ the corresponding Frobenius automorphism, defined
by 'x D xp . The fixed field of the subgroup H D h'i of G.C=�p/ generated by '
consists of all elements x 2 C such that xp � x D 0; therefore

(26) fixed field of h'i D �p:

Nevertheless, we will show that the group corresponding to the intermediate field
�p does not coincide with H :

(27) G.�p1=�p/ ¤ h'i:
To do this we take any prime q and consider the subfield

(28) F D
[

m

�pqm

of �p1 consisting of all x 2 �p1 such that xpqm D x for some m 2 �. For every
x 2 F , the degree �p.x/ W�p is a q-power. Therefore F ¤ �p1 , and consequently
there exists

� 2 G.�p1=F / such that � ¤ 1:

Now, if (27) were not satisfied, � would be a power of ', say � D'n, where we may
as well assume n 2 � (otherwise replace � by ��1). Then F would be contained
in the fixed field �pn of 'n D � . But this is impossible, since �pn=�p has degree n,
whereas the field F in (28) has infinite degree over �p . ˜

In the sequel, assume given an arbitrary Galois extension E=K, with Galois
group G D G.E=K/. If F is an intermediate field of E=K that is Galois over K,
and if � 2 G, we denote by

�F

the automorphism of F arising from � . (We switch away from the more natural
notation �F used up to now for reasons of convenience, which will soon become
obvious.)
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Now, we know that any element of E lies in a subfield L of E such that L=K

is finite and Galois. Thus, if we let L run over all intermediate fields of E=K with
this property, the natural homomorphism

(29)
h W G ! Q

L

G.L=K/

� ‘ .�L/L

is injective. In the sequel we will continue to use L as a running index to designate
all intermediate fields L of E=K such that L=K is finite and Galois.

How can the image of h in (29) be characterized? For L�L0 there is a canonical
map

fL=L0 W G.L0=K/! G.L=K/

� ‘ �L

and obviously if L � L0 � L00 we have

fL=L00 D fL=L0 ıfL0=L00 :

Moreover for � 2 G the components of h.�/ satisfy

fL=L0.�L0

/D �L if L � L0:

This leads us to the following notion:

Definition. Let I be a (partially) ordered set of indexes; assume further that I

is directed, which means that for any i; i 0 2 I there exists j 2 I with i � j and
i 0 � j . Assume given a family .Gi/i2I of sets (groups, rings, topological spaces,
etc.) together with maps (homomorphisms)

fij W Gj ! Gi

for each pair .i; j / of indices in I such that i � j . This setup is called a projective
system if in addition we have

fik D fij ıfjk whenever i � j � k:

The projective limit of such a projective system is defined as the following subset
of the cartesian product of the Gi :

(30) lim
�
i2I

Gi WD
n

.�i/i 2 Q

i2I

Gi

ˇ

ˇ

ˇ

fij .�j /D �i for i � j
o

:

When the Gi are groups or rings, the projective limit is obviously a subgroup or
subring of

Q

Gi ; if the Gi are topological spaces, the projective limit is a subspace
of the topological space

Q

Gi , and because all the fij are assumed continuous, it
is in fact closed in

Q

Gi if all the Gi are Hausdorff.
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Now let’s get back to the situation that we had set up starting from an arbitrary
Galois extension E=K. Thanks to the notion just introduced, we can state:

F4. If E=K is an arbitrary Galois extension, the map (29) yields an isomorphism

(31) G.E=K/ 	 lim
�

L

G.L=K/;

where L runs over the set of all intermediate fields of E=K that are finite and Galois
over K.

Proof. Everything is clear except the surjectivity of (31). So let

(32) .�L/L 2 lim
�

L

G.L=K/

be given; we must show that there exists � 2 G.E=K/ such that

(33) �L D �L for every L:

Since, as mentioned, E is the union of the L, an element � 2 G.E=K/ is fully
determined by the conditions (33). Conversely, the existence of such a � will be
obvious if we can prove that, for any L1;L2 in our index set, the maps �L1

and
�L2

coincide on L0 WD L1 \ L2; in other words, that

�
L0

L1
D �

L0

L2
:

Let L WD L1L2 be the composite of L1 and L2 in E. Because of (32) we have

�
L1

L
D fL1=L.�L/D �L1

; �
L2

L
D fL2=L.�L/D �L2

:

This indeed implies that

�
L0

L1
D .�

L1

L
/L0 D �

L0

L
D .�

L2

L
/L0 D �

L0

L2
: ˜

Definition. We talk of a topological group G when G has, besides a group structure,
also a topology such that the map .x;y/‘ xy�1 of G � G in G is continuous.

Remark. If .Gi/i2I is a family of topological groups Gi , the cartesian product

Q

i2I

Gi

is of course also a topological group. If .Gi/i2I is a projective system, the projective
limit

lim
�
i2I

Gi

is a topological group, since it is a subgroup of
Q

Gi . As remarked earlier, the
projective limit is in fact closed in Gi if the Gi are Hausdorff.
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Definition. Let E=K be any Galois extension. We endow the Galois group G.E=K/

of E=K with a natural topological group structure as follows: Give each finite group
G.L=K/ in (31) the discrete topology and then simply transfer to G.E=K/ the
topological group structure of

(34) QG D lim
�

L

G.L=K/;

via the isomorphism (31). The resulting topology on G.E=K/ is called the Krull
topology.

F5. Let E=K be a Galois field extension. The Galois group G D G.E=K/ of E=K

becomes a compact topological group with the Krull topology. The family

(35) .G.E=L//L;

where L runs over all intermediate fields of E=K that are finite and Galois over
K, is a fundamental system of open neighborhoods of 1 in G; that means, first, that
each G.E=L/ is open, and second, that any neighborhood of 1 in G contains some
G.E=L/.

Proof. By the well-known theorem of Tichonov (or Tychonoff), the cartesian prod-
uct of compact topological spaces is compact. The spaces G.L=K/ are trivially
compact, being finite and discrete; thus the projective limit (34), being a closed
subset of the cartesian product of the G.L=K/, is also compact.

Let I be the set indexing the intermediate fields L. If S runs over the finite
subsets of I , the sets

US WD Q

L2S

f1g � Q

L…S

G.L=K/

form, by the definition of the product topology, a fundamental system of open neigh-
borhoods of 1 in the cartesian product of the G.L=K/. Thus their intersections with

QG D lim� G.L=K/

also form a fundamental system of open neighborhoods of 1 in the topological group
QG. For given S , let L be the composite of all the L0 2 S . It follows easily from the

definition of the projective limit that

US \ QG D UfLg \ QG:

But the inverse image of UfLg \ QG under the map in (31) is no other than the
subgroup G.E=L/ of G D G.E=K/. This proves F5. ˜

We can now extend to infinite Galois extensions the fundamental theorem of
Galois theory, stated in Chapter 8, Theorem 5 for the finite case:
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Theorem 4. Let E=K be any Galois extension. The map

(36) F ‘ G.E=F /

is a bijection between the set of intermediate fields of E=K and the set of closed
subgroups of G D G.E=K/. This bijection maps intermediate fields of finite degree
over K to open subgroups of G, and vice versa.

Proof. (i) Any open subgroup H of a topological group G is closed in G, because
G r H is a union of cosets gH ¤ H , and every gH is open, being the image of an
open set H under the homeomorphism x ‘ gx of G.

(ii) Let F=K be a finite intermediate extension of E=K and denote by L the normal
closure of F=K in E. Then L=K is also finite. By F5, G.E=L/ is open in G. Since
G.E=L/ is contained in G.E=F /, the latter group is also open (being the union of
cosets gG.E=L/, all of which are open).

(iii) As we know, for every intermediate field F of E=K the extension E=F is
Galois, so F is the fixed field of G.E=F / in E:

(37) F D EG.E=F /I
see Chapter 8, Definition 1 and Theorem 2. From (37) we immediately deduce that
the map (36) is injective.

(iv) We claim that G.E=F / is always closed in G. For let � be an element of G and
take � … G.E=F /. There exists an intermediate field F0 of F=K for which F0=K

is finite and on which � is nontrivial — meaning that � … G.E=F0/. Therefore

�G.E=F0/\ G.E=F /D ?:

This justifies the claim, since the finiteness of F0=K implies that �G.E=F0/ is an
open neighborhood of � in G, by (ii).

(v) Let H be an open subgroup of G. By F5, there exists a Galois subextension
L=K of E=K such that

G.E=L/� H:

Let F D EH be the fixed field of H . From (37) we then get

F D EH � EG.E=L/ D L;

so F=K is finite because L=K is.

(vi) To complete the proof of the theorem all we need to do is show (and this is the
nub) that every closed subgroup H of G satisfies

(38) H D G.E=EH /:

First let H be any subgroup of G. Trivially, H � G.E=EH /. We show that

(39) G.E=EH /D H �;
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where H � is the closure of H in G. Let F D EH be the fixed field of H in E, and
let � be any element of G.E=F /. To prove that � 2 H � it is sufficient to check that
H intersects every fundamental neighborhood �G.E=L/ of � in G D G.E=K/:

(40) �G.E=L/\ H ¤ ?:

To see this, let H0 be the image of H under the canonical map G.E=F / !
G.LF=F /. Then F is also the fixed field of H0 in LF . But the Galois extension
LF=F is finite, so the fundamental theorem for finite Galois extensions (Chapter 8,
Theorem 5) yields

H0 D G.LF=F /:

Thus for the given � 2 G.E=F / there is � 2 H such that �L D �L. Setting 	 D
��1� 2 G.E=L/ we conclude that �	D � lies in the intersection (40). ˜

Remarks. Let F=K and F 0=K0 be Galois extensions with K � K0 and F � F 0.
The natural homomorphism

(41) r W G.F 0=K0/! G.F=K/

is continuous, because if G.F=L/ is a basic open neighborhood of 1 in G.F=K/,
then G.F 0=LK0/ is an open neighborhood of 1 in G.F 0=K0/, and G.F 0=LK0/ �
r�1.G.F=L//.

The fixed field of r.G.F 0=K0// in F is obviously F \ K0. Since r.G.F 0=K0//
is compact (being a continuous image of the compact G.F 0=K0/) and hence also
closed in G.F=K/, it follows from Galois theory (Theorem 4) that we have an
equality

(42) r.G.F 0=K0//D G.F=F \K0/:

Thus the map r in (41) gives rise to a surjective homomorphism

(43) G.F 0=K0/! G.F=F \K0/

of topological groups; its kernel is G.F 0=FK0/. We claim that the map (43) is open.
To justify this we must show that the earlier map r in (41) is open if F \ K0 D K.
So take G.F 0=L0/, a basic open neighborhood of 1 in G.F 0=K0/; we must show
that the image r.G.F 0=L0// D G.F=F \L0/ is open in G.F=K/. By assumption,
G.F 0=L0/ is a normal subgroup of finite index in G.F 0=K0/; this carries over to their
homomorphic images, so that G.F=F \L0/ is a normal subgroup of finite index
in G.F=K/. Thus F \L0=K is Galois with finite Galois group G.F \L0=K/ '
G.F=K/ =G.F=F \L0/, and therefore r.G.F 0=L0// D G.F=F \L0/ really is an
open neighborhood of 1 in G.F=K/.

In particular, if F is an intermediate field of a Galois extension E=K and F=K

is also Galois, the restriction homomorphism G.E=K/ ! G.F=K/ is continuous
and open, and so gives rise to a canonical isomorphism

G.E=K/ =G.E=F /' G.F=K/



Infinite Galois extensions 131

of topological groups, where the quotient group G.E=K/ =G.E=F / is given the
quotient topology (that is, the finest topology for which the quotient map G.E=K/!
G.E=K/ =G.E=F / is still continuous).

Incidentally, one can easily check that, if F is an intermediate field of a Galois
extension E=K, the Krull topology of G.E=K/ induces on the subgroup G.E=F /

the Krull topology of the Galois group G.E=F /.
Another thing that can be checked easily: If H is an open subgroup of the Galois

group G D G.E=K/, then H has finite index in G, and in fact G WH D F WK, where
F is the fixed field of H in E.
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Norm and Trace

1. We mentioned in Chapter 1 that, by regarding an extension E of a field K as
a vector space, we gain the ability to use the powerful tools of linear algebra. It
is true that after Chapter 3 this viewpoint receded to the background, and only in
Chapter 12 did we start making frequent use of it again. But in this chapter we will
examine in our context some simple but effective concepts from linear algebra.

Notation. Departing from our practice so far, we will use the letter K in this chapter
to denote not necessarily a field, but any commutative ring with unity.

If A is a K-algebra and M is an A-module, we consider for each ˛ 2 A the
K-endomorphism

˛M W x ‘ ˛x

of M . We also write ˛M=K instead of ˛M .

Definition. In the situation above, assume in addition that M is a finitely generated
free K-module; this means M has a finite K-basis. The characteristic polynomial
P .˛M=K / of ˛M=K 2 EndK .M / is called the characteristic polynomial of ˛ with
respect to the A-module M . It is an element of KŒX �, and we denote it by

PM=K .˛/D PM=K .˛I X /:

Likewise, we call
TrM=K .˛/ WD Trace˛M=K

the trace of ˛, and
NM=K .˛/ WD det˛M=K

the norm of ˛, always with respect to the A-module M .

The following properties of the norm and trace are obvious:

.1/

.2/

.3/

TrM=K .˛Cˇ/D TrM=K .˛/C TrM=K .ˇ/;

TrM=K .a˛/D a TrM=K .˛/ for a 2 K;

TrM=K .˛ˇ/D TrM=K .ˇ˛/:
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It follows from (1) and (2) that TrM=K W A ! K is a K-linear form on A, and by
using (3) as well we see that the map .˛; ˇ/! TrM=K .˛ˇ/ is a symmetric bilinear
form on A.

Next we have

(4) NM=K .˛ˇ/D NM=K .˛/NM=K .ˇ/:

If C.˛/ D .cij .˛//i;j is the matrix expressing ˛M=K with respect to a K-basis
e1; : : : ; en of M , we have

.5/

.6/

.7/

TrM=K .˛/D Trace C.˛/D P

i cii.˛/;

NM=K .˛/D det C.˛/;

PM=K .˛I X /D det
�

XIn � C.˛/
�

;

where In is the n� n identity matrix. If PM=K .˛/ has the form X n C an�1X n�1 C
� � � C a0, we have

.8/

.9/

TrM=K .˛/D �an�1;

NM=K .˛/D .�1/na0:

F1. In the preceding situation let M1 be a submodule of the A-module M and set
M2 WD M=M1. If M1 and M2 are both finitely generated free K-modules, M is also
one, and for each ˛ 2 A we have

TrM=K .˛/D TrM1=K .˛/C TrM2=K .˛/;

NM=K .˛/D NM1=K .˛/ � NM2=K .˛/;

PM=K .˛I X /D PM1=K .˛I X / � PM2=K .˛I X /:

In particular this is true when M ' M1 ˚ M2.

Proof. Let e1; : : : ; em be a K-basis of M1. Choosing representatives f1; : : : ; fn for
the elements of a basis of M=M1 D M2 obviously yields a basis of a submodule
of M complementary to the K-module M1. Thus e1; : : : ; em; f1; : : : ; fn form a
K-basis of M . With respect to this basis the matrix of some ˛M has the form

�

C1.˛/ �
0 C2.˛/

�

;

where C1.˛/ is the matrix of ˛M1
relative to e1; : : : ; em and C2.˛/ is the matrix of

˛M2
relative to f1; : : : ; fn. The rest follows. ˜

Remark. Let the situation be as in Definition 1, and let L be a commutative K-
algebra. The L-module ML D M ˝K L can be seen in a natural way as a module
over the algebra AL D A ˝K L. For all ˛ 2 A we then have

.10/ TrML=L.˛˝ 1/D TrM=K .˛/; NML=L.˛˝ 1/D NM=K .˛/;

.11/ PML=L.˛˝ 1I X /D PM=K .˛I X /:
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For if e1; : : : ; en form a K-basis of M , then e1˝1; : : : ; en˝1 form an L-basis of
ML D M ˝K L, with respect to which ˛ML

has exactly the same matrix that ˛M

has with respect to e1; : : : ; en.
In a nutshell, (10) and (11) say that the trace, the norm and the characteristic

polynomial are invariant under extension of the ground ring. Carefully distinguish
this situation from the next one:

Let A and A0 be K-algebras, M an A-module and M 0 an A0-module. As
K-modules, let M and M 0 be free and finitely generated of dimension n and n0,
respectively. It is easy to check that the A ˝K A0-module M ˝K M 0 satisfies

.12/

.13/

TrM ˝M 0=K .˛˝˛0/D TrM=K .˛/ � TrM 0=K .˛
0/;

NM ˝M 0=K .˛˝˛0/D NM=K .˛/
n0 � NM 0=K .˛

0/n:

Definition. Let A be a K-algebra and suppose that A is free and finitely generated
as a K-module. The characteristic polynomial of an element ˛ 2 A with respect
to the A-module A is called the (regular) characteristic polynomial of ˛, and is
denoted by PA=K .˛/ D PA=K .˛I X /. We define similarly the (regular) norm and
trace of ˛, and denote them by

NA=K .˛/; TrA=K .˛/:

Remark. Let A be as in Definition 2. Since NA=K ;TrA=K ;PA=K are special cases of
Definition 1, they satisfy properties (1)–(13) above. In the role of F1 we have at least
the following fact: If A D A1�A2�� � ��An is a direct product of finite-dimensional
K-algebras Ai , then (by F1) we have, for every ˛ D .˛1; ˛2; : : : ; ˛n/ 2 A,

.14/ TrA=K .˛/D P

i

TrAi=K .˛i/; NA=K .˛/D Q

i

NAi =K .˛i/;

.15/ PA=K .˛I X /D Q

i

PAi
.˛i I X /:

F2. Let B be a subalgebra of a K-algebra A. Suppose that both B as a K-module
and A as a B-left module are free and finitely generated. Then the same is true of
the K-module A, and

(16) PA=K .ˇI X /D PB=K .ˇI X /m for ˇ 2 B;

where m is the number of elements of a B-basis of A. Similarly,

(17) TrA=K .ˇ/D m TrB=K .ˇ/ and NA=K .ˇ/D NB=K .ˇ/
m for ˇ 2 B:

All three equalities follow directly from the isomorphism A ' Bm of B-modules
together with F1. But note that they are only valid for elements ˇ in B . In trying to
generalize for arbitrary elements in A one runs into obstacles; but see F5 and also
§13.1 in the Appendix.

F3. Let A be a K-algebra as in Definition 2. An element ˛ 2 A is invertible in A if
and only if NA=K .˛/ is invertible in K.



136 13 Norm and Trace

Proof. If ˛˛�1 D 1 then N.˛/N.˛�1/ D 1, so N.˛/ is invertible. Conversely,
if N.˛/ D det˛A=K is invertible, ˛A=K is invertible in EndK A; in particular there
exists x 2 A such that ˛x D 1. But then N.˛/N.x/D 1, so N.x/ is invertible, and
repeating the argument with x instead of ˛ we obtain an y 2 A such that xy D 1.
Left-multiplying by ˛ yields y D˛, so ˛ is invertible (has a two-sided inverse x). ˜

2. We are especially interested in the norm and trace as applied to finite field
extensions E=K (that is, the case where A D E is a field). Thus, let E=K be a finite
field extension and ˛ an element of E. Consider first the intermediate field K.˛/

of E=K. If

(18) f .X /D X n C an�1X n�1 C � � � C a1X C a0

is the minimal polynomial of ˛ over K, comparing degrees shows that ˛ coincides
with the characteristic polynomial of ˛ as an element of the K-algebra K.˛/:

(19) f .X /D MiPoK .˛/D PK.˛/=K .˛/:

Thus, in view of (8) and (9), we also have

.20/

.21/

TrK.˛/=K .˛/D �an�1;

NK.˛/=K .˛/D .�1/na0:

Using F2, then, we have for the extension E=K the equality

(22) PE=K .˛I X /D f .X /m; where m D E WK.˛/;
and also

(23) TrE=K .˛/D �man�1; NE=K .˛/D .�1/nmam
0 :

We now obtain for the trace TrE=K .˛/ and the norm NE=K .˛/ of an element ˛
of a finite field extension E=K the following characterization (which reveals, in
particular, that our notation is in agreement with the Tr already introduced in F3 of
Chapter 12):

F4. Let E=K be a finite field extension. Let C be an algebraic closure of K and let
G D G.E=K;C=K/ be the set of all homomorphisms of E=K in C=K. If E=K is
separable we have, for any ˛ 2 E,

(24) TrE=K .˛/D P

�2G

�˛

and

(25) NE=K .˛/D Q

�2G

�˛:

More generally, without the separability assumption we have, for any ˛ 2 E,

(26) TrE=K .˛/D ŒE WK� i P

�2G

�˛
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and

(27) NE=K .˛/D
�

Q

�2G

�˛

�ŒEWK �i
;

where ŒE WK� i is the inseparable degree of E=K.

Proof. We may as well assume that E � C .

(i) Assume first that E=K is separable. For a given ˛ 2 E, set F D K.˛/. Let
n D K.˛/ WK and denote by 	1; : : : ; 	n the n distinct K-homomorphisms of K.˛/

into C . Then 	1˛; : : : ; 	n˛ are the distinct roots of f WD MiPoK .˛/. This, together
with (20) and (21), shows that

TrK.˛/=K .˛/D �an�1 D
n

P

iD1

	i˛ and NK.˛/=K .˛/D .�1/na0 D
n
Q

iD1

	i˛:

We know from Chapter 7 that each 	i 2 G.F=K;C=K/ has exactly m WD E W F

distinct extensions � 2 G.E=K;C=K/. Thus we have

P

�2G

�˛ D m
n

P

iD1

	i˛ D mSK.˛/=K .˛/D TrE=K .˛/;

which is (24). The norm is dealt with similarly.

(ii) In the general case, let Es be the separable closure of K in E. By definition,

ŒE WK� i D ŒE WEs �:

If char K D 0 we have E D Es , so ŒE WK� i D 1 and there is nothing to prove. So
we assume char K D p > 0; then the degree ŒE WK� i is a p-power pe , by F17 in
Chapter 7. For every ˛ 2 E, the element ˛pe

lies in Es , and we have

NE=K .˛/
pe D NE=K .˛

pe

/D NEs=K .˛
pe

/p
e

;

so
NE=K .˛/D NEs=K .˛

pe

/ D Q

�

�.˛pe
/;

by part (i), where � runs through the set G.Es=K;C=K/. But the restriction map

G.E=K;C=K/! G.Es=K;C=K/

is bijective, so we finally get

NE=K .˛/D Q

�2G

�.˛/p
e
;

which proves (27). There remains to prove (26). In the case ˛ 2 Es , we have
TrE=K .˛/ D ŒE W Es �TrEs=K .˛/ and the assertion is clear. So take ˛ … Es . The
minimal polynomial f .X / of ˛ over K then has the form f .X / D g.X p/, for
some g 2 KŒX �. Using (20) we see from this that TrK.˛/=K .˛/ D 0, which also
means that TrE=K .˛/ D 0. But since char K D p and ŒE WK� i D pe > 1, nothing
further is needed. ˜
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F5 (Nesting formulas for trace and norm). Let E=K be a finite field extension and
L an intermediate field of E=K. Then

.28/

.29/

TrE=K D TrL=K ı TrE=L;

NE=K D NL=K ı NE=L:

Proof. Let C be an algebraic closure of K and R � G.C=K/ a set of representatives
for M WD G.L=K;C=K/, meaning that for each  2 M there is a unique 	 2 R

such that 	L D . Any � 2 S WD G.E=K;C=K/ then has a unique representation

� D 	�; with 	 2 R and � 2 T WD G.E=L;C=L/

(note that G.C=K/ is a group, by F3 in Chapter 6). For every ˛ 2 E we then get

Q

�2S

�˛ D Q


2R
�2T

	�˛ D Q


2R

	
�

Q

�2T

�˛
	

D Q

�2M


�

Q

�2T

�˛
	

:

This, together with (27) and the equality ŒE WK� i D ŒE WL� i ŒL WK� i , leads to

(30) NE=K .˛/D NL=K .NE=L.˛//

as desired. The corresponding formula for the trace is derived similarly. ˜

For nesting formulas in the context of linear algebra see §13.1 in the Appendix.

3. After the generalities of the last two sections, we are now ready for some specific
properties of the trace and norm as applied to field extensions.

F6. For every finite separable field extension E=K the trace map TrE=K W E ! K is
surjective.

Proof. Since TrE=K is a linear form on the K-vector space E, we just need to show
it’s nonzero. But if we had

TrE=K .˛/D P

�

�˛ D 0 for all ˛ 2 E

(where the first equality comes from F4), we would be in contradiction with the
linear independence of the elements � of G.E=K;C=K/, guaranteed by Theorem 2
of Chapter 12. ˜

In contrast, if E=K is inseparable, TrE=K is the zero map, by (26).

F7. For every finite separable field extension E=K, the map

E � E ! K

.˛; ˇ/‘ TrE=K .˛ˇ/

is a nondegenerate symmetric bilinear form on the K-vector space E.
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Proof. Take ˛ ¤ 0. If TrE=K .˛ˇ/D 0 for every ˇ 2 E, then TrE=K .� /D 0 for all
� 2 E, contradicting F6. ˜

F8. Let E=K be a finite Galois field extension and G D G.E=K/ the Galois group
of E=K. The kernel of TrE=K W E ! K is made up of all finite sums of elements of
the form

(31) �˛�˛; where ˛ 2 E and � 2 G:

If G is cyclic and generated by � , the following statements are equivalent for a given
� 2 E:

(i) TrE=K .� /D 0.

(ii) There exists ˛ 2 E such that � D �˛�˛.

Proof. By Theorem 3 in Chapter 12 there exists ˇ 2 E such that .�ˇ/�2G is a
K-basis for E. Now let

(32) � D
X

�2G

a��ˇ; with a� 2 K;

be an arbitrary element of E. An application of Tr WD TrE=K yields

(33) Tr � D
X

�

a� Tr.�ˇ/:

But for any ˛ 2 E,

(34) Tr.�˛/D
X

�2G

��˛ D
X


2G

	˛ D Tr˛;

so the element in (32) has trace

(35) Tr � D .Trˇ/

�

X

�2G

a�

�

;

by (33). Since .�ˇ/�2G is a basis for E=K, we have

Trˇ D
X

�2G

�ˇ ¤ 0:

By (35) we then see that Tr � D 0 is equivalent to
P

�2G

a� D 0. We also have, in full
generality,

X

�

a��ˇ�
�

X

�

a�

�

ˇ D
X

�

a� .�ˇ�ˇ/D
X

�

�

�.a�ˇ/� a�ˇ
�

:

Taking it all together we see that Tr � D 0 if and only if � is a sum of elements of
the form (31).



140 13 Norm and Trace

Now let G be cyclic with � as a generator. Clearly the set M WD f�˛�˛ j˛ 2 Eg
is a subgroup of the additive group of E. What remains to show is: For every �D�k

in G and every ˛ 2 E, each difference �˛�˛ lies in M . This follows from

�k˛�˛ D �k˛� �k�1˛C �k�1˛� � � � C �˛�˛
D �.�k�1˛C �k�2˛C � � � C˛/� .�k�1˛C �k�2˛C � � � C˛/: ˜

It is of great significance that there is a direct multiplicative analog for F8 in the
cyclic case (whereas surprisingly this fails to be the case in general; but see §13.4
in the Appendix):

F9 (Hilbert’s Theorem 90). Let E=K be a finite Galois extension with cyclic Galois
group G D h�i. For a given � 2 E�, there is equivalence between:

(i) NE=K .� /D 1.

(ii) There exists ˛ 2 E� such that � D ˛

�.˛/
.

Proof. That (ii) implies (i) is obvious. We prove the converse. First take an arbitrary,
but fixed, ˇ 2 E. Denote by n the order of G. Our first candidate for the desired
element ˛ will be

˛ D
n�1
X

iD0

�i�
i.ˇ/ with �i 2 E;

where we choose �0 D 1 without loss of generality. Then

�˛ D
n�1
X

iD0

�.�i/�
iC1.ˇ/D

n
X

iD1

�.�i�1/�
i.ˇ/:

Thus the equation

(36) ˛ D ��.˛/

will certainly be satisfied if the following conditions hold:

.37/

.38/

�i D ��.�i�1/ for 1 � i � n � 1;

1 D ��.�n�1/:

The conditions (37) are equivalent to

(39) �i D � �.� /�2.� / : : : � i�1.� / for 1 � i � n � 1:

This determines all the �i (given that we took �0 D 1), independently of ˇ. In
particular, we have �n�1 D � �.� / : : : �n�2.� / and consequently

�.�n�1/D �.� /�2.� / : : : �n�1.� /D ��1NE=K .� /:
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Thus, if NE=K .� / D 1, as assumed, (38) is likewise a consequence of (39). We
therefore see that the element

(40) ˛ D ˇC ��.ˇ/C ��.� /�2.ˇ/C � � � C �

��.� /�n�2.� /
�

�n�1.ˇ/

satisfies (36), for every ˇ 2 E. We now have to arrange for ˛ in (40) to be nonzero;
this is possible with the right choice of ˇ because 1; �; : : : ; �n�1 are linearly inde-
pendent over E. In conclusion, then, we have found ˛ 2 E� such that

.41/ � D ˛

�.˛/
: ˜

F10. If K is a finite field and E=K is a finite extension, the norm map NE=K is
surjective.

Proof. The norm map N D NE=K gives rise to a homomorphism

(42) N W E� ! K�

of multiplicative groups always; we must show that this map is surjective if K and
E are finite. We know that E=K is Galois with cyclic Galois group G.E=K/D h�i.
Now consider, besides (42), the homomorphism

(43) ı W E� ! E�

defined by ı.˛/D ˛=�˛. By applying the fundamental homomorphism theorem for
groups to (42) and (43) we get, in particular, the cardinality relations

jim N j � jker N j D jE�j D jim ıj � jker ıj:
We have ker ı D f˛ 2 E� j �˛ D ˛g, so by Galois theory,

ker ı D K�:

By Hilbert’s Theorem 90 (see F9) we get

im ı D ker N:

There follows jim N j D jK�j and hence the desired conclusion K� D im N . ˜

The fact stated in F10 is of considerable importance in algebra and in number
theory. Here we derived F10 as a nice application of Hilbert’s Theorem 90, but it is
worth remarking that another proof can be given: We know that the multiplicative
group E� of E is generated by some element 
. Letting q denote the number of
elements of K, we must show that the element NE=K .
/ of K� has order q�1. This
we do by noting that the Galois group G.E=K/ is generated by the automorphism
�q W ˛ ‘ ˛q . Setting n D E WK, we obtain

(44) NE=K .
/D 

q
q2

: : : 
qn�1 D 
1CqCq2C���Cqn�1

:

Since 
 has order qn � 1 D .q � 1/.1 C q C q2 C � � � C qn�1/, the element NE=K .
/

in (44) does indeed have order q � 1.
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Binomial Equations

1. Let K be a field. We consider polynomials of the form

(1) f .X /D X n � � 2 KŒX �;

with n 2 �. The roots of such a polynomial (in a splitting field E of f over K), that
is, the solutions of the binomial equation X n � � D 0, are called n-th roots of � .
(A binomial equation is also sometimes called a “pure equation”.)

In this chapter we will always assume � ¤0. The derivative of f .X / is f 0.X /D
nX n�1. Thus f .X / is separable if and only if char K is not a divisor of n.

F1. Assume that the field K contains a primitive n-th root of unity (in particular,
char K is not a divisor of n). Let � 2 K�. Then the Galois group G of the binomial
equation X n � � D 0 over K is cyclic, and its order divides n.

Moreover, if ˛ is an n-th root of � in a splitting field E of X n �� over K, the or-
der of G is the smallest natural number d such that ˛d 2 K. The polynomial X d �˛d

is then the minimal polynomial of ˛ over K. The extension E=K is generated by ˛.

Proof. Let the notation be as above. In particular, let ˛ 2 E be a fixed root of
X n � � , so ˛n D � . Clearly, the elements 
˛, where 
 runs over all n-th roots of
unity in K, are roots of X n � � in E, and there is no other. Thus E D K.˛/.

Now take � 2 G. Since ˛ is a root of X n � � , so is �˛; thus �˛ D 
˛ for a
unique root of unity 
 D 
.�/. This defines an injective map

(2) � ‘ �˛

˛
D 
.�/

from G to the group of n-th roots of unity. By assumption, all n-th roots of unity
lie in K; this implies that (2) is a homomorphism, because by applying 	 2 G

to �˛ D 
.�/˛ we get 	�˛ D 
.�/	˛ D 
.�/
.	/˛, so 
.	�/ D 
.	/
.�/. In
summary, the Galois group G is isomorphic to a subgroup of the group of n-th
roots of unity. The latter is cyclic of order n, so G is cyclic and its order divides n.
Let d be the order of G and � a generator of G. Then 
 D �˛=˛ is a primitive d -th
root of unity. Since

�.˛d /D �.˛/d D 
d˛d D ˛d ;
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the Galois correspondence shows that ˛d is an element of K. Conversely, if we
assume that ˛d 0 2 K, then

˛d 0 D �.˛d 0

/D �.˛/d
0 D 
d 0

˛d 0

;

so 
d 0 D 1. Thus d 0 is divisible by d .
There remains to show only that MiPoK .˛/D X d �˛d . On the one hand, ˛ is

a root of X d �˛d ; on the other, deg MiPoK .˛/D K.˛/ WK D E WK D jGj D d . ˜

Remarks. Still in the situation of F1, let n
p
� denote an arbitrary n-th root of � in

E. Also let

(3) d D K. n
p
� / WK:

By F1 we have n D rd for some r 2 �. The element ˇ WD . n
p
� /d lies in K, and

we have � D ˇr and

(4) K. n
p
� /D K. d

p

ˇ /:

Also it follows immediately from F1 that the order d of the Galois group of
K. n

p
� /=K coincides with the order of the element of K�=K�n determined by � .

Theorem 1. Let E=K be a finite Galois extension with cyclic Galois group (we call
E=K a cyclic extension). Let n be the order of the Galois group G of E=K. If K

contains a primitive n-th root of unity, E is obtained from K by adjoining an n-th
root of an element of K; in other words, E D K.˛/, where ˛ 2 E is a root of a
polynomial X n � � 2 KŒX �.

Proof. Let K contain a primitive n-th root of unity 
, and let � be a generator of
G. We seek an element ˛ 2 E� such that

(5)
�˛

˛
D 
:

Such an ˛ exists if and only if 
 satisfies NE=K .
/ D 1 (see Chapter 13, F9, alias
Hilbert’s Theorem 90). This condition is satisfied since 
 2 K (so NE=K .
/D 
n D
1), so there is indeed ˛ in E� such that �˛ D 
˛. From this we get

�.˛n/D �.˛/n D 
n˛n D ˛n:

Since � generates all of G, the power ˛n must already lie in K. Setting � WD ˛n,
we see that ˛ is a root of the polynomial X n � � 2 KŒX �. Also from (5) we get

� i˛ D 
i˛I
thus ˛ has n distinct conjugates ˛; 
˛; 
2˛; : : : ; 
n�1˛ over K. There follows
K.˛/ WK D n D E WK, so E D K.˛/. This concludes the proof. ˜
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Remark. In our proof of Hilbert’s Theorem 90 on page 140, we found an ˛ with
the desired property by first setting

(6) ˛ D
n�1
X

iD0


�i� i.ˇ/;

with ˇ 2 E. The expression on the right is called the Lagrange resolvent and is
sometimes denoted by .
�1; ˇ/. For appropriate ˇ 2 E, as we have seen,

(7) .
�1; ˇ/¤ 0;

so ˛ D .
�1; ˇ/ is a primitive element of E=K whose n-th power is in K. Inciden-
tally: if ˇ 2 E satisfies (7), it is a primitive element of E=K; but the converse is
not true in general.

F2. Let q be a prime number and � an element of K�. Either � is a q-th power in
K or the polynomial X q � � is irreducible in KŒX �.

Proof. Suppose that � is not a q-power in K. Let E be a splitting field of X q � �
over K and ˛ a root of X q � � in E.

If char K D q we have X q � � D X q � ˛q D .X � ˛/q , so E D K.˛/ and
E=K is purely inseparable (see for instance F16 in Chapter 7); then X q � � is the
minimal polynomial of ˛ over K (Chapter F15).

So assume instead that char K ¤ q. Then X q �� is separable, hence E contains
a primitive q-th root of unity 
. Suppose, for a contradiction, that X q�� is reducible
over K; then it is a fortiori reducible over K.
/, and by F1 it must split into linear
factors over K.
/, since q is prime. Thus

K.˛/� K.
/:

The extension K.
/=K is Galois and its Galois group G is cyclic (being isomorphic
to a subgroup of the cyclic group .�=q�/�; see F9 and Theorem 2 in Chapter 9).
Let � be a generator of G; then

(8) �˛ D �˛;

where � is a q-th root of unity, and in fact a primitive one (�D 1 is excluded because
it would imply that G fixes ˛, hence ˛ 2 K, whereas we’ve assumed that � is not a
q-th power in K). Since � … K, we cannot deduce from (8) things like � i˛ D �i˛,
for instance. Instead we take the ratio �.�/=�, which is also a primitive q-th root
of unity, so that

�D
�

�.�/

�

	k

for some 0 � k � q � 1:

Together with (8) this leads to

�
�

˛

�k

	

D �˛

�.�/k
D �˛

�k�
D ˛

�k
:

As before this implies that ˛=�k lies in K. There follows .˛=�k/q D ˛q D � , so �
is a q-th power in K after all and we get the desired contradiction. ˜
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Remark. Still in the situation of F2, let K0 denote the field of q-th roots of unity
over K. The proof we just gave actually shows something stronger than F2: Either
� is q-th power in K, or X q � � is irreducible even over K0. And we explicitly
restate the following consequence of F1: If K0 D K, either X q �� is irreducible in
KŒX � or X q � � splits into linear factors over K.

The statement of F2 enters crucially into the proof of the following general fact:

Theorem 2. For � 2 K�, the polynomial X n �� is irreducible over K if and only if
the following conditions are met:

(a) There is no prime factor q of n such that � is a q-th power in K.

(b) If n is divisible by 4, there is no � 2 K such that � D �4�4.

Proof. Sufficiency. We work by induction on n. For n D 1 there is nothing to prove.
Take n> 1 and assume (a) and (b).

Let q be a prime factor of n and set m D n=q; also let ˛ be a root of X n �� . By
induction we can assume that X m � � is irreducible, so K.˛q/ WK D m. Consider
the polynomial X q �˛q over K.˛q/. If this is irreducible, we have

K.˛/ WK D ŒK.˛/ WK.˛q/� � ŒK.˛q/ WK�D q � m D n;

and therefore X n � � is irreducible over K, as desired.
If, instead, X q �˛q is reducible over K0 D K.˛q/, we know from F2 that ˛q is

a q-th power in K0. We will analyze various subcases, in each one getting either a
contradiction or the irreducibility of X n � � . Write

(9) ˛q D ˇq ; with ˇ 2 K0:

Let N D NK 0=K be the norm map for the extension K0=K. Applying N to (9) we
get

(10) N.ˇ/q D N.ˇq/D N.˛q/D �� .�1/m;

since X m � � is the minimal polynomial of ˛q over K.
If m is odd, (10) expresses � as a q-th power in K, contradicting (a).
If m is even but q is odd, (10) says that .�N.ˇ//q D � , so again � is a q-th

power in K.
Free as we are to choose q, we have covered all cases except

n D 2s; with s � 2:

In this latter case (10) says that

(11) �� D ı2; with ı 2 K:

Suppose �1 D i2 in an extension of K; then i … K, otherwise � would be a square
in K, by (11). Over K.i/ we have the decomposition

X 2s � � D �

X 2s�1C iı
��

X 2s�1� iı
�

:
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If the first factor on the right is irreducible over K.i/, so is the second, since the two
are conjugate; then the uniqueness of prime factorizations in KŒX � and in K.i/ŒX �

(together with the fact that i … K) yields the irreducibility of X 2s � � .
Finally, suppose instead that

X 2s�1C iı

is reducible over K.i/. By the induction hypothesis, either iı is a square in K.i/

or iı equals �4Q�4 with Q� 2 K.i/; in the latter case iı is a square in K.i/ all the
same. Thus there exist �; 2 K such that

iı D .�C i/2 D �2 C 2�i �2:

There follows �2 D2 and 2�D ı. By squaring we get ı2 D 4�4 and then, taking
(11) into account, � D �4�4, contradicting (b).

Necessity. Let n D qm with q prime and m � 1, and suppose � D ˇq in K. Then
X q � � is not irreducible over K, and so neither is .X m/q � � . That shows the
necessity of (a).

Let n D 4m with m � 1, and suppose � D �4�4 with � 2 K. Then

X 4 � � D X 4 C 4�4 D .X 2 C 2�2/2 � .2�X /2

D .X 2 � 2�X C 2�2/.X 2 C 2�X C 2�2/:

Thus X 4 � � is not irreducible over K, and so neither is .X m/4 � � . That takes
care of (b). ˜

In F1 and Theorem 1 we had to assume that the ground field K contains a
primitive n-th root of unity. When p D char K > 0 and p jn this condition cannot
be met; but we can, at least in the case p D n, prove the following substitutes for
F1 and Theorem 1:

Theorem 3 (Artin–Schreier). Let K be a field of characteristic p > 0.

(I) If E=K is a cyclic extension of degree p, then E arises from K by adjoining a
root of a polynomial of the form

X p � X � �; with � 2 K:

(II) Conversely, given a polynomial of the form

f .X /D X p � X � � 2 KŒX �;

with splitting field E over K, either E D K or f is irreducible over K. In the
latter case E=K is a cyclic extension of degree p.
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Proof. We prove (II) first. Let ˛ 2 E be a root of f .X /. For any integer j � 0,
regarded as an element of the prime field of K, we have

f .˛Cj /D .˛Cj /p � .˛Cj /� � D ˛p C j p �˛� j � �
D ˛p �˛C j p � j � � D f .˛/C j p � j D 0;

where we have used that j p � j D 0. Thus f has in E the p distinct roots

(12) ˛; ˛C 1; ˛C 2; : : : ; ˛C .p�1/I
in particular, f is a separable polynomial, so the extension E=K is Galois. Moreover
E D K.˛/. Thus, if one root of f lies in K, so do all others. Now assume that f
has no root in K. Under any element � of the Galois group G of E=K, the image
of ˛ is a root of f as well, that is,

�˛ D ˛C j ;

for a well defined j of the prime field of K. The map

� ‘ �˛�˛
is clearly an injective group homomorphism from the Galois group G into the ad-
ditive group �=p� of the prime field of K. The latter is cyclic of prime order p.
Since we assumed that E ¤ K, we get G ' �=p�. As claimed, then, E=K is cyclic
of degree p. Finally, f is irreducible because E D K.˛/.

Conversely, to prove (I), let E=K be a cyclic extension of degree p, with Galois
group G generated by � . Since char K D p, we have

SE=K .1/D ŒE WK� � 1 D p � 1 D 0:

By F8 in Chapter 13, there exists ˛ 2 E such that 1 D �˛�˛, or yet

(13) �˛ D ˛C 1:

In particular, we have �˛¤ ˛; hence ˛ is not contained in K. This already implies
that E D K.a/, since E=K has degree p. From (13) we further obtain

�.˛p �˛/D �.˛/p � �.˛/D .˛C1/p � .˛C1/

D ˛p C 1p �˛� 1 D ˛p �˛:
Hence the element � WD ˛p �˛ is fixed by � and so must lie in K. Therefore ˛ is
a root of the polynomial X p � X � � in KŒX �. ˜

Remarks. (1) Let p be a fixed prime. If C is a field of characteristic p, consider
the map

(14) } W C ! C defined by }.x/D xp � x:
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Theorem 3 shows that the solutions of the equation

}.˛/D �

in fields of characteristic p play a role analogous to that of p-th roots in fields
of characteristic ¤ p. (See also §14.5 in the Appendix.)

(2) Is it also possible to say something about cyclic extensions E=K whose degree
is a power of p D char K > 0? By “naive reasoning” only little; see §14.4 in
the Appendix. But full information is provided by a subtle theory of E. Witt;
see Section 26.5 in Volume II.

2. Under the assumption that K contains a primitive n-th root of unity, we have
given in F1 and F2 a description of the extensions E=K obtainable from K by
adjoining an n-th root of an element of K; now we will investigate what happens
when we adjoin not one, but a whole series of n-th roots of elements of K. But in
order to do that we must go over some basic facts about finite abelian groups.

First let G be any abelian group (written multiplicatively). Consider the set

(15) G� D Hom.G;��/

of all homomorphisms � W G ! �� from G into the multiplicative group �� of the
field of complex numbers. This has the natural group structure, given by (pointwise)
multiplication of functions; it is called the character group or dual of G, and its
elements are called the characters of G. (We have already encountered an interesting
example of a character, the Legendre symbol of Chapter 11.)

We say that G is a group of exponent m if �m D 1 for every � in G. If G is of
exponent m and �2G� is a character of G, the equalities �.�/m D�.�m/D�.1/D1

show that the values of � are all m-th roots of unity, so � can also be viewed as a
homomorphism

(16) � W G ! Wm.�/

from G into the group Wm.�/ of m-th roots of unity in �.
If G D G1 � G2 is a direct product, there is clearly a natural isomorphism

(17) .G1 � G2/
� ' G�

1 � G�
2

given by �‘ .�jG1
; �jG2

/.

F3. For every finite abelian group G there is a (noncanonical) isomorphism

(18) G ' G�:

Proof. We use the fact (whose proof can be looked up in the next section) that G

is a direct product of cyclic groups, G D C1 � C2 � � � � � Cr . In view of (17), it is
enough to verify the existence of an isomorphism (18) in the case that G is cyclic.
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So let G D h�i, with � of order n D jGj. Then G ' Wn.�/, and we will be done
if we show that the homomorphism

G� ! Wn.�/

�‘ �.�/

is an isomorphism. Injectivity is clear. Let 
 denote a generator of Wn.�/, that is,
a root of unity of order n in �. The equation �.�k/D 
k then yields a well defined
character � of G with �.�/D 
; this proves surjectivity. ˜

F4. Let G;H be abelian groups and

' W G � H ! ��

a bilinear (bimultiplicative) map, also known as a pairing. Then ' naturally gives
rise to homomorphisms

'1 W G ! H �

� ‘ '.�; � /
and '2 W H ! G�

� ‘ '. � ; �/
If ' is nondegenerate (equivalently, if '1 and '2 are injective), G is finite if and only
if H is; in this case '1 and '2 are isomorphisms, and so in particular

G ' H � and H ' G�:

Proof. Suppose ' is nondegenerate and H , say, is finite. Using F3 we successively
get

jGj � jH �j D jH j � jG�j D jGj;
so G is also finite. The other assertions follow. ˜

F5. Let G be a finite abelian group. For every subgroup A of G the sequence

(19) 1 	 .G=A/� inf	 G� res	 A� 	 1

is exact, that is, the image of each map equals the kernel of the next.

Proof. For � 2 G�, the character res� by definition takes the same values as �
on every a 2 A. For  2 .G=A/�, the character inf is defined by .inf /.�/ D
 .� mod A/ for every � 2 G. The exactness of (19) is then obvious everywhere
except at A�, where it amounts to the surjectivity of res W G� ! A�. But by the
fundamental homomorphism theorem and F3 we can write

jres G�j D jG�j
j.G=A/�j D jGj

jG=Aj D jAj: ˜
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F6. For any finite abelian group G the pairing

G� � G ! ��

.�; �/‘ �.�/

is nondegenerate, and so (by F4) it provides a natural isomorphism

(20) G ' .G�/� DW G��:

Proof. If �.�/ D 1 for every � we have � D 1 by definition. To show that our
pairing is also nondegenerate in the second variable, let � be a nontrivial element
of G; we must check that there exists � 2 G� such that �.�/¤ 1.

Consider the subgroup A D h�i of G. By F3, A ¤ 1 implies A� ¤ 1. Because
of the surjectivity of res W G� ! A� (see F5), there does exist some � 2 G� that is
nontrivial on A; that is, the condition �.�/¤ 1 is satisfied. ˜

We now come to the previously announced field-theoretical applications of these
results. We need:

Notations and assumptions. Let K be a field, C an algebraic closure of K and n

a natural number. We assume that K contains a primitive n-th root of unity.
Given a subset A of K�, we define the set of n-th roots of elements of A (in

the chosen algebraic closure C of K) by

n
p

A D f˛ 2 C j ˛n 2 Ag:
Consider the extension E D K.

n
p

A / in C , which is clearly Galois. If A1 D hAi
is the subgroup of K� generated by A, we obviously have K.

n
p

A / D K. n
p

A1 /.
Thus from now on we may assume that A is a subgroup of K�. Denoting by K�n

the subgroup of n-th powers of elements of K�, we can also assume that

K�n � A;

if necessary after replacing A by the subgroup AK�n of K�.

We speak of an abelian field extension L=K when L=K is Galois and its Galois
group is abelian.

F7. Suppose K contains a primitive n-th root of unity and let A be a subgroup of K�
such that K�n � A. Then the extension K.

n
p

A /=K is abelian and its Galois group
G is a group of exponent n. There is a canonical pairing

(21)
G � A ! Wn.K/

.�; a/‘ �˛

˛
; where ˛n D a:

This in turn gives rise to a nondegenerate pairing

(22) G � A=K�n 	 Wn.K/:
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K.
n
p

A /=K is finite if and only if the group A=K�n is finite, and in this case there
are natural isomorphisms

(23) G ' .A=K�n /�; G� ' A=K�n:

Here, for an abelian group G of exponent n, the dual is considered to be the group
G� D Hom.G;Wn.K//. Otherwise the isomorphisms in (23) are not canonical;
indeed we have Wn.K/' Wn.�/, but not, in general, canonically.

Proof of F7. We set E WD K.
n
p

A/. For � 2 G and ˛ 2 E� such that ˛n D a 2 A

we have .�˛/n D a, so there is a unique n-th root of unity 
 D 
.�; ˛/ such that

(24)
�˛

˛
D 
.�; ˛/:

By assumption, 
.�; ˛/ is in K. If some ˛0 2 E also satisfies ˛0n D ˛n D a, there
is � 2 Wn.K/ such that ˛ D �˛0; there follows

�˛

˛
D �.�˛0/

˛
D ��.˛0/

˛
D �.˛0/

˛0 :

Thus the map (21) is well defined. It is multiplicative in the second variable, since
obviously

�.˛ˇ/

˛ˇ
D �.˛/

˛

�.ˇ/

ˇ
:

Since 
.�; ˛/ 2 K, applying some 	 2 G to both sides of (24) immediately gives
	�˛ D 
.�; ˛/	˛ D 
.�; ˛/
.	; ˛/˛, and hence


.	�; ˛/D 
.	; ˛/
.�; ˛/:

Thus (21) is multiplicative also in the first variable. Moreover we see that the
Galois group G is abelian. Take � 2 G. If �˛=˛ D 1 for any ˛ such that ˛n 2 A,
we obviously get � D 1. Thus the pairing (21) is nondegenerate with respect to the
first variable. On the other hand, let ˛n D a 2 A be given; then a necessary and
sufficient condition for �˛=˛ to equal 1 for all � 2 G is that ˛ belong to K�, which
is to say that a lie in K�n. Thus one gets from (21) the nondegenerate pairing (22).
The remaining assertions now follow immediately from F4, with the replacement
of �� by Wn.K/. ˜

Remark. From F7 we recover F1 by taking A D h� iK�n.

Definition. A Galois extension E=K is called abelian of exponent n if G.E=K/ is an
abelian group of exponent n. An abelian extension E=K where K contains a prim-
itive n-th root of unity is also called a Kummer extension, in honor of E. Kummer
(1810–1893), who earned immortal fame for his profound work in number theory.
Kummer himself actually considered only certain special extensions that arose in
his number-theoretic studies; the more general, purely algebraic laws of what is now
called Kummer theory came later. Their usefulness in number theory is astonishing,
given how simple it is to derive them.
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Theorem 4 (Kummer theory). Under the assumption that K has a primitive n-th
root of unity, and keeping the earlier notations, the map

(25) A ‘ K.
n
p

A /DW EA

is a bijection between the set of subgroups A of K� such that K�n � A and the set of
subfields E of C for which E=K is abelian of exponent n. Moreover EA=K is finite
if and only if the group A=K�n is finite, and then there are natural isomorphisms

(26) G� ' A=K�n; G ' .A=K�n/�;

where G D G.EA=K/ (and the convention flagged immediately after the statement
of F7 is maintained).

Proof. We must show that the map (25) is one-to-one and onto; everything else then
follows from F7.

Surjectivity: Let E=K be abelian of exponent n. Setting

A WD E�n \ K�

we get K.
n
p

A / � E. Suppose that E is not contained in K.
n
p

A / D EA. Then
there exists a finite subextension F=K of E=K such that F 6� EA. This extension is
abelian of exponent n because E=K is. The finite abelian group G.F=K/ is a direct
product of finite cyclic subgroups. By Galois theory, then, F=K is a composite of
cyclic subextensions of F=K; therefore we could just as well have chosen F so that
F=K it cyclic, and we assume we did so. By Theorem 1, we have F is generated
over K by some ˛ such that ˛n 2 K�. By definition, then, ˛ belongs to EA. But
then F � EA, contradicting our assumption.

Injectivity: In view of the preceding discussion, what is left to prove is: If E D
K.

n
p

A / for some subgroup A of K� containing K�n, then A must coincide with
the subgroup

(27) AE D E�n \ K�:

The inclusion A � AE is clear. Conversely, let a be any element of AE . Since
K. n

p
AE /DE DK.

n
p

A /, there exist elements a1; : : : ; ar of A such that K. n
p

a /�
K. n

p
a1; : : : ; n

p
ar /, which means that

(28) K. n
p

a; n
p

a1; : : : ;
n
p

ar /D K. n
p

a1; : : : ;
n
p

ar /:

It suffices to prove that a is an element of the group A0 D ha1; : : : ; ar ;K
�ni. To do

this, consider the field

E0 D K. n
p

a1; : : : ;
n
p

ar /D K.
n
p

A0 /:

Because of (28), a 2 AE0 . We see therefore that the extension E=K may be assumed
finite with loss of generality. But taking into account (23) in F7, we have

A WK�n D AE WK�n <1;

from which we get the desired equality A D AE because A � AE . ˜



154 14 Binomial Equations

Remark. Let E=K D K.
n
p

A /=K be any Kummer extension of exponent n as above,
with Galois group G. Then, even in the case E WK D 1, the nondegenerate pairing
(22) gives rise to an isomorphism

G ' .A=K�n/�;

as can be deduced easily from the finite case, effecting the regress via projective
limits. Similarly, (22) gives in the infinite case an isomorphism

A=K�n ' G�;

if by G� we understand the group of continuous homomorphisms from the topolog-
ical group G D G.E=K/, with the Krull topology, into the discrete group Wn.K/.

3. The preceding field-theoretic considerations are a good motivation for spending
some time at this point on the structure of finite abelian groups. Although this is
elementary material that you may have already studied, a brief and self-contained
exposition of it geared toward our needs is useful. Actually the treatment of abelian
groups is not at all out of place here; N. H. Abel (1802–1829), in his investigations
of algebraic equations, made patent right from the beginning the close connections
between equations and commutative groups.

Definition. A group G is called a torsion group if for every x 2 G there exists n 2 �

such that xn D 1.
If p is a prime number, G is a p-group if for every x 2 G there is a p-power

pk such that xpk D 1.

F8. A finite group G is a p-group if and only if its order jGj is a p-power.

Proof. Let n D jGj. We know that xn D 1 for every x 2 G. Thus, if n is a p-power,
G is a p-group. If n is not a p-power, it has distinct prime factors q ¤ p. By
Cauchy’s Theorem (page 101) there exists x 2 G such that ord x D q. Therefore G

is not a p-group; if it were, the order of x would be a factor of a p-power. ˜

Remark. In the case of an abelian group G we need not resort to Cauchy’s Theorem:
Let G be an abelian p-group of order n > 1. For any x ¤ 1 in G the order of x is
a p-power pk , that is, the subgroup H D hxi has order pk . By induction we can
assume that the order of the quotient group G=H is also a p-power. This gives the
result, since jGj D jG=H j � jH j.
Convention. In the sequel the group operation for an abelian group A will mostly
be denoted additively. For x 2 A and n 2 � we then write nx instead of xn.

Remark. Every abelian group is a �-module (and vice versa). The point of this
observation is that the main results about to be stated for abelian groups carry over
with only minor terminological changes to the context of modules over an arbitrary
principal ideal domain R instead of �. We will formulate them for abelian groups
only, but give the proofs in such a way that they can be generalized without difficulty
to modules over a PID.
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Definition. Let A be any abelian group, and let p be a prime number. Set

Ap D fx 2 A j there exists k 2 � such that pkx D 0g:
Since A is abelian, Ap is a subgroup of A. By definition, Ap is a p-group. We call
Ap the p-component of A.

F9. Every abelian torsion group A is the direct sum of its p-components; that is, the
map

' W L

p Ap ! A

.xp/p ‘ P

p xp

is an isomorphism.

Proof. (i) Clearly ' is a (well defined) homomorphism of groups.

(ii) Take x D .xp/p 2 L

p Ap , and suppose '.x/D 0. Let p1; : : : ;pr be (distinct)
indices such that xp D 0 for all p ¤ pi , and consider

(29) n D p
k1

1
: : :pkr

r with p
ki

i D ord xpi
:

Set ni D n=p
ki

i for 1 � i � r . Because n1; : : : ; nr are relatively prime, there is a
relation

(30) c1n1 C c2n2 C � � � C cr nr D 1 with ci 2 �:

Set xi D xpi
. Then 0 D ni'.x/D ni

P

k xk D nixi and hence xi D 1xi D cinixi D 0

for all 1 � i � r . Therefore x D 0, and we have shown that ' is injective.

(iii) Take any y 2 A. Since A is a torsion group, there exists n 2 � such that

(31) ny D 0:

Let (29) be the prime factorization of n, define numbers ni as in part (ii) and choose
coefficients ci such that (30) holds. Then

(32) y D 1y D
r

X

iD1

ciniy D
r

X

iD1

xi ;

with xi D ciniy. Since p
ki

i xi D cip
ki

i niy D ciny D 0, each xi belongs to Api
.

Define x D .xp/p 2 L

p Ap by setting xp D xi if p D pi and xp D 0 otherwise;
then '.x/D P

xi D y, by (32). Therefore ' is surjective as well. ˜

Definition. Let G be a group. We say that G is a group of exponent m if

(33) xm D 1 for every x 2 G

(in the abelian case, mx D 0).
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Remarks. (1) If G is a group of exponent m and m divides m0, then G is also a
group of exponent m0. So our terminology is perhaps a bit questionable (but
see the next definition). It is nonetheless very practical, particularly as regards
the formulation of Kummer theory results such as the ones above.

(2) If G is a finite group of order n we have xn D 1 for every x 2 G, so G is a
group of exponent n.

Definition. Let G be a group, and suppose there exists m 2 � such that (33) holds.
Among all such m let e be the smallest. We call this number the exponent of G and
denote it by

e.G/ WD e:

If no m 2 � satisfies (33), we set e.G/D 0. Clearly,

G is finite ) e.G/¤ 0 ) G is a torsion group

(and neither implication is reversible, as the examples W .�/' �=� and �
.�/
p show).

F10. Let G be a group such that e.G/¤ 0. Any m 2 � for which (33) holds must be
a multiple of e.G/:

(34) e.G/ jm:
Thus e.G/ is the least common multiple of the orders of elements of G:

(35) e.G/D lcm ford x j x 2 Gg:
In particular,

(36) ord x je.G/ for all x 2 G:

Proof. Set e D e.G/ and write m D qe C r by applying division with remainder.
For every x in G we have 1 D xm D xeqxr , so xr D 1. If r were not 0 we would
get the contradiction e � r < e. This proves (34). ˜

Remarks. (i) If G is finite we have e.G/¤ 0, and

(37) e.G/ divides jGj:
(ii) For G D S3 we have e.G/D jGj.
(iii) For any finite abelian group G we only have e.G/ D jGj when G is cyclic.
This quite nontrivial fact will become apparent as a consequence of F12 below.

(iv) We show that (iii) easily implies the following theorem, first encountered in
Section 9: If G is a finite subgroup of the multiplicative group K� of a field K, then
G is cyclic. For let n be the order of G and e D e.G/ its exponent. Every x 2 G

satisfies xe D 1 and is thus a root of the polynomial X e � 1 2 KŒX �. There can be
at most e such roots in K, so n � e. There follows e D n, and then (iii) implies that
G is cyclic.
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(v) Consider the direct product G D Q

i2I Gi of given groups Gi , for i 2 I . Set
e D e.G/ and ei D e.Gi/. Then obviously

(38) e D lcm fei j i 2 Ig:
(vi) Assume e.G/¤ 0. If G is a p-group, e.G/ is a p-power.

F11. Let A be an abelian group with e.A/ ¤ 0, and let p1; : : : ;pr be the distinct
prime factors of e WD e.A/. Setting Ai D Api

and ei D e.Ai/, the map

(39)
A1 � A2 � � � � � Ar ! A

.x1; x2; : : : ; xr /‘ P

i xi

is an isomorphism, and

(40) e D e1e2 : : : er

is the prime factorization of e.

Proof. Ap is zero for every prime p that does not come into the prime factorization
of e. By F9, then, (39) is indeed an isomorphism. The rest follows from remarks
(v) and (vi) above. ˜

Remark. Let A be a finite abelian group of order n and let n D p
�1

1 : : :p
�r
r be the

prime factorization of n. Then p1; : : : ;pr are exactly the distinct prime factors of
e D e.A/. The orders of the groups Ai of F11 are given by

(41) jAi j D p
�i

i I
in other words, Ai is the pi-Sylow group of A, for each 1 � i � r .

Proof. With the notation of F11, we have A ' A1 � � � � � Ar , so jAj D Qr
iD1 jAi j.

Being a pi-group, Ai has order a power of pi (see F8). The result follows, because
the prime factorization of n is unique. ˜

F12. Let A be an abelian group with e.A/¤ 0. There is an element a in A such that

(42) ord a D e.A/:

Proof. (i) We consider first the special case where e WD e.A/ is a p-power for some
prime p. For every x 2 G, the order of x divides e. Since e is a p-power, we have

ord x D p�.x/;

with a well defined �.x/ 2 � [ 0. Now, by (35),

e D lcmfp�.x/jx 2 Ag D pmaxf�.x/jx2Ag:

Given a 2 A with �.a/D maxf�.x/jx 2 Ag, then, we have e D p�.a/ D ord a.
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(ii) For the general case we invoke F11. Using the same notation as in that statement,
we see from part (i) that, since ei D e.Ai/ is a power of pi for each i , there exist
ai such that

(43) ord ai D ei for 1 � i � r:

Consider the element QaD .a1; : : : ;ar / in A1�� � ��Ar . Since (39) is an isomorphism,
it is enough to show that ord Qa D e.A/. By (40) and (43) we have, on the one
hand, e.A/ D e1e2 : : : er D ord a1 ord a2 : : : ord ar ; on the other, each element
Qa D .a1; : : : ; ar / of the direct product A1 � � � � � Ar obviously satisfies ord Qa D
lcm.ord a1; : : : ; ord ar /. But because all the ai have orders relatively prime to one
another, we have lcm.ord a1; : : : ; ord ar /D ord a1 ord a2 : : : ord ar . ˜

Definition. Let G be a group and M a subset of G. Denote by

hM i
the intersection of all subgroups of G containing M ; equivalently, hM i is the least
subgroup of G containing M . When M D fa1; : : : ; ar g is a finite set we also write
ha1; : : : ; ar i for hM i.

When hM iDG we say that M generates G (or that the elements of M do so). A
group G is called finitely generated if there are finite many elements a1; : : : ; ar 2 G

such that G D ha1; : : : ; ar i.
Let A be a finitely generated abelian group. By assumption, there are elements

a1; : : : ; ar in A such that

A D
n r

P

iD1

ciai j ci 2 �
o

D �a1 C � � � C �ar D ha1i C � � � C har i:

First we will assume that A is a torsion group. (Then A is necessarily finite; this
is easy to check, but we will not make use of finiteness, so that our considerations
can serve also for the more general case of modules over a PID.) Taking F11 into
account, we can reduce to the case of a p-group. For that case we have:

Theorem 5. Let A ¤ 0 be a finitely generated abelian p-group. Then A is a finite
direct product of cyclic p-groups, that is,

(44) A ' �=p�1 � �=p�2 � � � � � �=p�s ;

where the �i are natural numbers. The numbers s; �1; �2; : : : ; �s are uniquely deter-
mined if we impose the condition

(45) �1 � �2 � : : :� �s � 1:

Proof. Suppose that A is generated by a1; : : : ; ar , where r D r.A/ is the minimal
number of generators of A (i.e., the smallest cardinality of a set that generates A).
To prove the theorem’s first assertion, we work by induction on r.A/, and we show
that (44) holds with s D r.A/.
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For r.A/ D 1 everything is clear. Let r.A/ > 1 and denote by e D e.A/ the
exponent of A. Clearly e ¤ 0. Since A is a p-group, one sees immediately that one
at least of a1; : : : ; ar must have order e; suppose without loss of generality that it
is a1:

(46) ord a1 D e:

Now consider A D A=ha1i, with quotient homomorphism x ‘ x. Obviously A D
ha2; : : : ; ar i, so r.A/ < r.A/. By the induction hypothesis this means that

(47) A D hb2i � � � � � hbsi
for certain bi 2 A (and s � r ). Moreover each bi is replaceable by representative of
the same class modulo ha1i. By (47), we have in any case

(48) A D �a1 C �b2 C � � � C �bs D ha1; b2; : : : ; bsi:
(This means that r.A/ � s, so in fact r D s.) We now show that one can choose
the bi in such a way that the sum (48) is direct, which will obviously imply the
existence part of the theorem. Let ei D ord bi . Then we have

(49) eibi D kia1 with ki 2 �:

Since ei D ord bi jord bij e, we have e=ei 2 �. Multiplication of (49) by e=ei yields

.e=ei/kia1 D ebi D 0:

Using (46) it follows that .e=ei/ki is divisible by e, and hence that ki=ei must be
an integer. Now set b0

i D bi � .ki=ei/a1; then b0
i D bi , and eib

0
i D 0 because of (49).

Therefore
ord b0

i jei D ord bi D ord b0
i j ord b0

i ;

so ord b0
i D ei . Thus we can assume without loss of generality that

(50) ord bi D ei D ord bi for all 2 � i � s:

But in this case (48) is a direct sum, because an equality of the form

(51)
s

X

iD1

cibi D 0; with ci 2 � .and b1 WD a1/

implies first
s

P

iD2

cibi D 0 (since b1 D 0) and then, using (47),

ord bi jci for 2 � i � s:

Thus we conclude from (50) that ord bi divides ci , and hence

cibi D 0 for 2 � i � s:

But then c1b1 also vanishes, so all summands in (51) are zero.
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We must still show the uniqueness of the representation in Theorem 5. Assume that,
besides (44) and (45), there holds

A ' �=p�1 � �=p�2 � � � � � �=p�t ;

where 1 � 2 � : : : � t � 1 are natural numbers. Clearly p�1 D e.A/ D p�1 ,
so certainly 1 D �1. We now apply induction on e.A/. Suppose e.A/ > p. The
subgroup pA of A obviously satisfies

pA ' �=p�1�1 � � � � � �=p�s�1 ' �=p�1�1 � � � � � �=p�t �1:

The induction hypothesis then implies immediately that � D .�1; : : : ; �s/ and  D
.1; : : : ; t / already coincide at all entries except perhaps those of value 1; in other
words, there exists d � 1 such that �d > 1 and that

� D .�1; : : : ; �d ; 1; : : : ; 1
„ ƒ‚ …

n entries

/; D .�1; : : : ; �d ; 1; : : : ; 1
„ ƒ‚ …

m entries

/:

To show that the number of 1’s is the same for  and �, consider the subgroup
A.p/D fa 2 A j pa D 0g of A. We have

A.p/ ' .�=p/d � .�=p/m ' .�=p/d � .�=p/n:
This implies m D n, because we are talking of vector spaces over the field �=p.
The same argument also serves to start the induction, in the case e.A/D p1. ˜

(The last step of the proof can be simplified by considering the order of the
group; but again we refrain from using this argument so the proof applies more
generally.)

Theorem 50. Let A ¤ 0 be a finitely generated abelian torsion group (that is, a finite
abelian group). Then A is a finite direct product of cyclic groups. More precisely,
there exist natural numbers e1; e2; : : : ; es > 1 such that

(52) ejC1 jej for 1 � j � s � 1

and that the isomorphism

(53) A ' �=e1 � �=e2 � � � � � �=es

holds. The numbers s; e1; : : : ; es are uniquely determined.

Proof. If p1; : : : ;pr are the distinct prime factors of e D e.A/¤ 0, we have by F11

(54) A D A1 � � � � � Ar with Ai D Api
:

Now decompose the Ai according to Theorem 5:

(55) Ai '
s

Y

jD1

�=p
�.i;j/
i ;
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where we pad as needed with �.i; j / D 0, in order to be able to have the same
number s of factors for each i . Multiply together the highest prime powers, one for
each i , then the second highest, and so on. This yields a sequence

(56) ej D p
�.1;j/
1

p
�.2;j/
2

: : :p�.r;j/r

of natural numbers satisfying (52) and ej > 1. Now, because of (56), we have

�=ej '
r

Y

iD1

�=p
�.i;j/
i :

Thus by combining the factors in the same pattern as the prime powers, one obtains
the isomorphism (53).

The uniqueness part of Theorem 50 is true because the Ai D Api
are canonically

determined and their decompositions according to Theorem 5 are also unique (for
each type). ˜

Theorem 50 wholly explains the structure of finitely generated abelian groups
that are torsion groups. To deal with the general case, we first look at the diametric
opposite of torsion groups:

Definition. A group G is called torsionfree if, apart from the identity, no element
of G has finite order.

F13. Let A be any abelian group. Then

AT D fx 2 A j there exists n 2 � such that nx D 0g
is a subgroup of A. By definition, AT is a torsion group. The quotient group A=AT

is torsionfree.

The easy proof is left as an exercise.

Theorem 6. If A ¤ 0 is a torsionfree finitely generated abelian group, then

A ' � � � � � � � D �r ;

where r WD r.A/ is the minimal number of generators of A.

Proof. We wish to show that A is free abelian in r generators, which by definition
means that A ' �r . We first establish that A is isomorphic to a subgroup of �r , then
show that any such subgroup is isomorphic to �d for some d � r . That settles the
question, since r � d as well (obviously �d has a generating set with d elements).

Suppose A D �a1 C �a2 C � � � C �ar . After renumbering, let fa1; : : : ; ang be
a maximal linearly independent subset of fa1; : : : ; ar g. (Linearly independent here
means that if

P

ciai D 0 with ci 2 � then c1 D c2 D � � � D cn D 0.) In view of the
definition of a1; : : : ; an, there is for each i with n< i � r a relation of the form

miai D
n

X

jD1

cj aj for some nonzero mi 2 �:
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Taking the lcm we see that there exists m 2 � r f0g such that

mai 2 �a1 C � � � C �an for every i :

Setting F WD �a1 C � � � C �an, we rewrite this as

(57) mA � F:

Now F , by its definition and the linear independence of a1; : : : ; an, is free abelian
in n generators: an isomorphism F ' �n is given by .x1; : : : ;xn/‘ P

xiai . At the
same time A and mA are isomorphic (by the map a ‘ ma, since A is torsionfree).
So, as announced,

(58) A ' mA � F ' �n with n � r :

Our theorem will be completely proved after we show that any subgroup of �n is
isomorphic to �d for some d � n (where we allow d D 0 to represent the zero
group).

We do this by induction on n. The case n D 1 is clear: every nonzero subgroup
of � is of the form m� ' �. Suppose n > 1 and denote by � W �n ! � the
projection onto the n-th factor: �.x1; : : : ;xn/ D xn. Let B � �n be our subgroup
and take B 0 D B \ker� ; this is isomorphic to a subgroup of �n�1, so the induction
assumption implies that

B 0 ' �k ; with k � n � 1:

If B D B 0 we are done. If instead B ¤ B 0, it is easy to check that

(59) B D B 0 � �a;

where a 2 B is such that �a generates the subgroup �B. Thus B ' �k �� ' �kC1

with k C 1 � n, and our assertion is proved. ˜

Remarks. (1) Should anyone need convincing that �m and �n can only be iso-
morphic if m D n, here is one reason: An isomorphism between �m and �n

implies, for any prime p, an isomorphism between p�m and p�n, and so also
an isomorphism between �m=p�m ' .�=p/m and �n=p�n ' .�=p/n. But
then m D n follows by comparing dimensions.

(2) The existence of the direct-sum decomposition (59) falls under the following
principle: Given an exact sequence

0 ! B
i	 A

�	 C ! 0

of abelian groups, if there is a homomorphism � W C ! A such that �ı� D idC ,
then A is the direct sum of iB and �C , and hence A ' B � C . The simple
proof is left to the reader; note that the endomorphism " WD � B� of A satisfies
"2 D ".
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Theorem 7 (Classification of finitely generated abelian groups). Let A be a finitely
generated abelian group. There exist integers c1; c2; : : : ; cs � 0, all distinct and
different from 1, satisfying

(60) cj jcjC1 for 1 � j � s � 1;

and such that

(61) A ' �=c1 � �=c2 � � � � � �=cs :

The numbers s; c1; : : : ; cs are uniquely determined; c1; : : : ; cs are called the invari-
ants of A.

Proof. Let AT be the torsion component of A and set A D A=AT (see F13). Being
a homomorphic image of A, the group A is finitely generated. It is also torsionfree,
so Theorem 6 shows that

A ' �r D �=0 � � � � � �=0

for some r � 0 (with the obvious interpretation in the case r D 0). Denote by
� W a ! a the canonical homomorphism from A to A, and let a1; : : : ; ar form a �-
basis of A. There exists exactly one homomorphism � W A ! A such that �.ai/D ai

for all 1 � i � r ; it satisfies � ı � D idA. By Remark 2 after Theorem 6, then,

A ' AT � AI
in particular AT is also a homomorphic image of A, and so finitely generated.
By Theorem 50, then, there is a (possibly empty) family of natural numbers
c1; c2; : : : ; cq > 1 such that

AT ' �=c1 � � � � � �=cq and cj jcjC1:

Setting cqC1 D � � � D cqCr D 0, we obtain (60) and (61).

The uniqueness part, which is very important, comes out easily from the uniqueness
statements in Theorem 50 and Remark 1 to Theorem 6. ˜

Remark. Still in the situation of Theorem 7, the number s equals r.A/, the minimal
number of generators of A. For obviously r.A/� s. Suppose s � 1. If p is a prime
divisor of c1 we have A=pA ' .�=p/s , so s D r.A=pA/� r.A/.

In the framework of the question we are pursuing, Theorem 7 represents a fully
satisfying outcome (and one which, as mentioned, extends to modules over any
principal ideal domain R instead of �). In some other situations, however, one
often needs a stronger result:

Theorem 8. Let F ' Rn be a free module in n generators over a principal ideal
domain R, and let N be a submodule of F . There exists a basis b1; : : : ; bn of
F and elements c1; : : : ; cm (where m � n) in R r f0g such that ci jciC1 and that
c1b1; : : : ; cmbm form a basis of N . The number m and the elements c1; : : : ; cm are
uniquely determined apart from multiplication by units.
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Proof. If we take existence as proved, we get an isomorphism

F=N ' R=c1 � � � � � R=cm � Rn�mI
then uniqueness follows immediately from Theorem 7 (but note that here the early
ci’s can be units in R).

One might think that the existence part can also be plucked somehow from
Theorem 7, but that impression is deceptive. We are better off resorting to the
methods of linear algebra. Both R-modules, F and N , possess R-bases, one with
n and the other with m elements, where m � n. (Regarding N see the discussion
following (58) on page 162.) The assertion now follows directly from a well known
result:

Invariant Factor Theorem. Let A be an n�m matrix over a principal ideal domain
R, with m � n. Then A is equivalent over R to a matrix obtained from an m � m

diagonal matrix by adding n�m rows of zeros and where the diagonal entries c1; : : : ;

cm satisfy ci j ciC1.

This is proved in LA II, p. 148, in the case where R is a Euclidean ring (also
with the assumption m D n, but that makes scant difference.) If R is a PID but not
Euclidean, it’s not possible to get by with only the usual elementary operations, and
the reader might ponder what to do instead. Note that certain other manipulations
of two rows or columns are also permissible, whereby the leading entries a; b are
replaced by d; 0, with d D gcd.a; b/. ˜

Apart from uniqueness, Theorem 7 is an easy consequence of Theorem 8: Let
M be a finite generated module over a principal ideal domain R and n the minimal
number of generators of M . Then M ' Rn=N . Theorem 8 gives

M ' R=c1 � � � � � R=cm � Rn�m:

By the minimality of n, none of the ci is a unit in R. Hence we get a decomposition
of the desired form, setting ci WD 0 for m< i � n.
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Solvability of Equations

1. Let K be a field. The roots of a quadratic polynomial

(1) f .X /D X 2 C pX C q

can be represented, in a splitting field E of f over K, as

(2) �p

2
˙

p
d ; where d D

�

p

2

	2 � qI

here
p

d denotes an element of E whose square is d , and we have assumed that
char K ¤ 2.1 Moreover,

(3) 4d D p2 � 4q

is the discriminant of f in the sense of Section 8.3.

In the early sixteenth century Italian mathematicians (Scipione Ferro, Nicolo
Tartaglia, Girolamo Cardano) found out that the roots of a real cubic polynomial

(4) f .X /D X 3 C pX C q

too can be expressed using appropriate radicals: namely, in the form

(5)
3

s

�q

2
C

r

�

q

2

	2 C
�

p

3

	3 C 3

s

�q

2
�

r

�

q

2

	2 C
�

p

3

	3

;

where the cube roots must be suitably interpreted (see F10). The same formula finds
the roots of f 2 KŒX � for any field K, provided of course that char K ¤ 2; 3. Under
this assumption, moreover, any cubic polynomial g.X /DX 3CaX 2CbX Cc can be
reduced to a polynomial of the form (4), via the transformation f .X / WD g.X � 1

3
a/.

1 If char K D 2, the polynomial f in (1) is inseparable if and only if p D 0. If this is the case,
f has as its only zero the unique square root of q. If p ¤ 0, the roots of f can be expressed
in terms of a solution ˛ of the equation Y 2 � Y D q=p2: they are p˛ and p.˛C1/.
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The question whether similar formulas exist for the roots of polynomials of any
degree occupied mathematicians for a long time. It was finally answered in the
negative by Abel in 1826, and it provided a decisive impetus for the work of Galois
(1831).

This problem of solvability of equations by means of radicals is close in spirit
to the problem of constructibility with ruler and compass, discussed in Chapter 1.
We will proceed in a similar way as we did then, with the difference that we now
have at our fingertips a well-developed conceptual apparatus.

2. First we have to make precise what is meant by solving an equation by radicals.

Definition 1. (i) Let F=K be a field extension. We say that F arises from K by
the successive adjunction of radicals (of exponents n1; : : : ; nr respectively) if
there is a finite chain

.6/ K D K0 � K1 � � � � � Kr D F

of intermediate fields Ki of F=K such that each Ki is obtained from Ki�1 by
the adjunction of an ni-th root (also called a radical of exponent ni). In this
case we call F=K a radical extension.

(ii) An extension E=K is called solvable by radicals (of exponents n1; : : : ; nr

successively) if there is a field extension F=K such that E � F and F arises
from K by the successive adjunction of radicals (of exponents n1; : : : ; nr

respectively).

(iii) A polynomial f .X / 2 KŒX � is called solvable by radicals (of exponents n1;

: : : ; nr successively) if there is an extension E=K that is solvable by radicals
(of exponents n1; : : : ; nr successively) and such that f splits into linear factors
over E.

Remarks. (a) Obviously, any radical extension can be obtained by successively
adjoining radicals of prime exponents.

(b) Let F1;F2 be intermediate fields of an extension C=K and let F1F2 be their
composite in C . Clearly, if F1=K is a radical extension, so is F1F2=F2; and if
F1F2=F2 and F2=K are radical extensions, so is F1F2=K. Putting it together
we see that if F1=K and F2=K are both radical extensions, so is F1F2=K.
Corresponding statements follow for extensions solvable by radicals.

(c) If F=K is a radical extension and F 0 is the normal closure of F=K, the exten-
sion F 0=K is also radical. This follows from (b), because F 0 is the composite
over K of the fields conjugate to F (inside some algebraic closure C of F ).
The corresponding statement for extensions solvable by radicals follows.

(d) From (c) we derive: If f 2 KŒX � is irreducible and E=K is an extension
solvable by radicals such that f has a root in E, then f is solvable by radicals.

(e) Any finite and purely separable extension E=K is a radical extension; see F15
in Chapter 7.
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Next we consider a radical extension F=K, assumed to be Galois, and we inves-
tigate what consequences can be derived regarding the Galois group G D G.F=K/.
Take a chain of subfields (6) with all terms different and such that the adjoined
radicals all have prime exponent; that is, assume that

(7) Ki D Ki�1.˛i/ with ˛i …Ki�1, ˛pi

i 2Ki�1, pi prime

for all i . Then pi ¤char K for all i ; otherwise Ki=Ki�1 would be purely inseparable
of degree pi , contradicting the separability of F=K (see F3 in Section 7). If we set

n D p1p2 : : :pr ;

there is a primitive n-th root of unity 
 in the algebraic closure C of F . We now
make the additional assumption that


 2 K:

Then, by F1 in Chapter 14, each extension

(8) Ki=Ki�1 is cyclic of degree pi :

Now, by Galois theory, the chain (6) of intermediate fields of the extension F=K

corresponds to a chain

G D H0  H1  � � �  Hr D 1

of subgroups Hi D G.F=Ki/ of G D G.F=K/, and because of (8), each Hi is a
normal subgroup of Hi�1, with quotient group Hi�1=Hi cyclic of order pi . Thus
we are led to:

Definition 2. A group H is called solvable (or metacyclic) if there exists a chain

(9) G D H0  H1  � � �  Hr D 1

of subgroups Hi of G such that

(10) Hi E Hi�1 and Hi�1=Hi is cyclic of prime order.

(The Hi need not be normal subgroups of G.)

We next assemble a list of simple facts about solvable groups:

F1. Let G be a finite group.

(a) If G is solvable, so is any subgroup of G.

(b) If G is solvable, so is any quotient group G=N of G.

(c) Suppose N E G. If N and G=N are solvable, so is G.

(d) If G is abelian, G is solvable.

(e) If G is a p-group, G is solvable.
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We postpone the proof for a bit, so we can get to something meatier right away:

Theorem 1. If E=K is an extension solvable by radicals and E0 is the normal closure
of E=K, the automorphism group G.E0=K/ is solvable.

Proof. By Remark (c) following Definition 1, E0=K is solvable by radicals if E=K

is. Thus we may as well assume that E=K is normal: E D E0. By assumption
there is a radical extension F=K such that E is a subfield of F . Again by Remark
(c) we can assume that F=K is normal. Now, the natural map G.F=K/! G.E=K/

is surjective; thus by part (b) of F1, it suffices to show that G.F=K/ is solvable.
Altogether this shows that we can assume that E=K is both a radical and a normal
extension; we further assume that E arises from K by the successive adjunction of
radicals of prime exponents p1;p2; : : : ;pr .

Now let n be the product of all the pi such that pi ¤ char K, and fix a primitive
n-th root of unity 
 (in the algebraic closure of E). Consider the diagram of fields

(11)

E.
/

��� ���
E K.
/

��� ���

K

Clearly, E.
/=K is normal. Moreover E.
/=K.
/ is a radical extension with
exponents p1; : : : ;pr , since E=K is one. By F9 in Chapter 9, the group G.K.
/=K/

is abelian, and thus solvable, by part (d) of F1. Thus, if we take the solvability of
G.E.
/=K.
// as granted, part (c) of F1 shows that G.E.
/=K/ is solvable and thus
also G.E=K/, by part (b) of F1. What is left to prove, then, is that G.E.
/=K.
// is
solvable, or, otherwise put, that G.E=K/ is solvable under the additional assumption
that 
 2 K.

If E=K is Galois, there is nothing left to show, in view of what we said before
Definition 2. The general case is completed by induction on r . For r D 0 there is
nothing to show. Thus take r >0 and assume without loss of generality that K1 ¤K.
If p1 D char K, the extension K1=K is purely inseparable, so G.K1=K/D1; if p1 ¤
char K, on the other hand, G.K1=K/ is solvable. The induction hypothesis applied
to the normal radical extension E=K1 says that G.E=K1/ is solvable. Because
G.K1=K/ and G.E=K1/ are solvable, so is G.E=K/, by part (c) of F1. ˜

The reader is encouraged to work out the proof again under the assumption that
char K D 0, which makes it less fussy.

Proof of F1. (b) Let � W G ! G be a surjective homomorphism. Given a chain (9)
of subgroups of G, where each Hi is a normal subgroup of Hi�1, the application
of � yields a chain

G D �G D �H0  �H1  � � �  �Hr D 1;
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where again each �Hi is a normal subgroup of �Hi�1. Moreover � gives rise to
surjective homomorphisms

�i W Hi�1=Hi ! �Hi�1=�Hi :

If Hi�1=Hi has prime order, the Fundamental Homomorphism Theorem for groups
and the Euler–Lagrange Theorem imply that either �Hi�1 D�Hi or �Hi�1=�Hi '
Hi�1=Hi . This proves that G is solvable.

(c) We can start with a chain

G=N D U0  U1  � � �  Um D 1

of subgroups G=N , where each Ui is a normal subgroup of Ui�1 of prime index,
and a similar chain

N D Hm  HmC1  : : : Hn D 1

for N . Let � W G ! G=N be the quotient homomorphism, and consider the sub-
groups ��1.Ui/ of G. We have ��1.Um/ D ��1.1/ D N D Hm, so there is no
ambiguity in notation if we set

Hi WD ��1.Ui/ for i D 0; 1; : : : ;m:

Of course Hi is a normal subgroup of Hi�1; moreover � yields an isomorphism

Hi�1=Hi ' Ui�1=Ui :

Thus we obtain a chain

G D H0  H1  � � �  Hm  HmC1  � � �  Hn D 1;

where each Hi is a normal subgroup of Hi�1 with quotient group Hi�1=Hi cyclic
of prime order. Therefore G is solvable.

(d) Let G be a finite abelian group. We prove that G is solvable by induction on
the order of G. Leaving aside the trivial case G ¤ 1, take an element � 2 G whose
order is a prime p. Let N be the subgroup generated by � . Since G is abelian, N is
trivially normal in G. By the induction assumption, G=N is solvable. Since N too
is solvable, being a group of prime order, part (c) above shows that G is solvable.

Moreover using (d) and (c) we see by induction that, if a finite group G admits a
chain of subgroups

G D H0 D H1 D � � � D Hr D 1

for which all the quotient groups Hi�1=Hi are abelian, G is solvable. Thus we can
forgo the stipulation that the Hi�1=Hi in (10) have prime order. On the other hand,
we remark that any solvable group G admits a chain G D N0  N1  � � �  Nr D 1

where each Ni is a normal subgroup of G , so that the quotient groups Ni�1=Ni are
all abelian (see §15.2 in the Appendix).
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(e) The solvability of p-groups is guaranteed by the (stronger) statement of F8 in
Chapter 10, again taking into account that a group of prime order is automatically
cyclic.

(a) Let H be a subgroup of G. Starting from a chain (9) of subgroups of G having
the properties listed in Definition 2, we obtain by intersection with H a chain

H D H0 \H  H1 \H  � � �  Hr \H D 1:

For each i D 1; 2; : : : ; r , consider the restriction �i of the quotient homomorphism
Hi�1 ! Hi�1=Hi to the subgroup Hi�1 \ H of Hi�1:

�i W Hi�1 \ H ! Hi�1=Hi :

Its kernel is .Hi�1\H /\ Hi D Hi \ H . Thus Hi \ H is a normal subgroup of
Hi�1 \ H , and �i yields an injective homomorphism

Hi�1\H=Hi\H ! Hi�1=Hi :

Thus, either Hi�1 \ H coincides with Hi \ H or Hi�1\H=Hi \H ' Hi�1=Hi is
cyclic of prime order. The solvability H follows. ˜

We take the opportunity afforded by the preceding considerations to formulate
the relevant isomorphism theorem:

F2 (Noether’s isomorphism theorem for groups). Let N be a normal subgroup of
a group G, with quotient map � W G ! G=N . For every subgroup H of G, the
restriction of � to H gives rise to an isomorphism

H=H \N ' �.H /I
moreover ��1.�.H // D HN , so � also gives rise to an isomorphism HN=N '
�.H /. Altogether one gets a natural isomorphism

(12) HN=N ' H=H \N:

Getting back to the problem of departure: we now show that, with the right
stipulation regarding the characteristic, Theorem 1 admits a converse. (The reader
might consider first the case char K D 0, where certain technical complications do
not arise.)

Theorem 2. Let E=K be a finite field extension and let E0 be the normal closure
of E=K. If the group G.E0=K/ is solvable and its order is not divisible by the
characteristic of K, the extension E=K is solvable by radicals.

Proof. Clearly we may as well assume that E=K is normal .E0 D E/. Let Es be the
separable closure of K in E. The extension E=Es is radical (see Remark (e) after
Definition 1), so it suffices to show that Es=K is solvable by radicals. However,
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Es=K is Galois (because the normality of E=K obviously implies that of Es=K);
since G.Es=K/' G.E=K/ we can therefore assume that E=K is Galois.

Let G be the Galois group of E=K, of order n D E WK. Since char K does not
divide n, the algebraic closure C of E contains a primitive n-th root of unity 
. Now
consider again the diagram (11). Trivially, K.
/=K is a radical extension, since 
 is
an n-th root of 1. Therefore it is enough to show that E.
/=K.
/ is solvable by rad-
icals (because then so is E.
/=K, and a fortiori E=K). By the Translation Theorem
of Galois theory (Chapter 12, Theorem 1), the group G.E.
/=K.
// is isomorphic
to a subgroup of G D G.E=K/; and since G is solvable, so is G.E.
/=K.
//, by
F1. Thus we see that we can assume without loss of generality that the ground field
K contains a primitive n-th root of unity.

That G D G.E=K/ is solvable means there is a chain

G D H0  H1  � � �  Hr D 1

of subgroups Hi of G such that each Hi (where 1 � i � r ) is a normal subgroup of
Hi�1, with cyclic quotient Hi�1=Hi of prime order pi . By Galois theory we have
an associated chain

K D K0 � K1 � � � � � Kr D E

of intermediate fields Ki of E=K, where each extension Ki=Ki�1 (for 1 � i � r )
is Galois, with Galois group isomorphic to Hi�1=Hi . Thus

(13) G.Ki=Ki�1/

is cyclic of prime order pi . Since Ki�1 contains a primitive pi-th root of unity
(since pi divides n), Theorem 1 of Chapter 14 says that Ki arises from Ki�1 by
adjunction of a pi-th root. This completes the proof of Theorem 2. ˜

Remark 1. We can extend the notion of a radical extension given in Definition 1
(and likewise that of an extension solvable by radicals) by allowing the possibility
that, if char K D p > 0, some elements Ki in the chain (6) be obtained from Ki�1

by the adjunction of a root of a polynomial of the form X p � X � � 2 Ki�1ŒX �

(compare Theorem 3 in Chapter 14). Then the statement of Theorem 1 remains valid,
and Theorem 2 is valid without any condition on the characteristic. The proofs are
analogous to the ones given earlier, with recourse to Theorem 3 of Chapter 14 when
required.

Remark 2. Let F=K be a field extension. We will say that F arises from K by the
successive adjunction of irreducible radicals of prime exponents p1; : : : ;pr if there
is a finite chain

K D K0 � K1 � � � � � Kr D F

of intermediate fields Ki of F=K such that each Ki arises from Ki�1 by the ad-
junction of a root of an irreducible polynomial of the form

X pi � �i 2 Ki�1ŒX �; with pi prime.
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An extension E=K is called solvable by irreducible radicals if E is a subfield of
a field F that can be obtained from K by the successive adjunction of irreducible
radicals.

If E=K is such an extension and E0 is the normal closure of E=K, the extension
G.E0=K/ is solvable, by Theorem 1. For the converse we have to strengthen a bit
our assumption on the ground field K:

Theorem 20. Let E=K be a finite extension, with normal closure E0. If the group
G.E0=K/ is solvable and the characteristic of K is either zero or greater than all
primes dividing the order of G.E0=K/, the extension E=K is solvable by irreducible
radicals.

The proof follows the same pattern as that of Theorem 2: First we can assume
that E=K is normal. Since any purely inseparable extension is always solvable by
irreducible radicals, we can also assume that E=K is Galois. Now everything goes
through as in the proof of Theorem 2, assuming the following result to have been
proved:

Lemma 1. Let K be a field and n a natural number. Let K0 be the field of n-th
roots of unity over K. If the characteristic of K is either 0 or greater than all prime
factors of n, the extension K0=K is solvable by irreducible radicals.

Proof. We work by induction on n. The cases n D 1; 2 being trivial, assume n> 2.
There is a primitive '.n/-th root of unity � in the algebraic closure C of K0, because
no prime factor of '.n/ is greater than all prime factors of n (formula (29) in
Chapter 9). Now consider the diagram

K0.�/

��� ���
K0 K.�/

��� ��
�

K

Since '.n/<n, the extension K.�/=K is solvable by irreducible radicals, by the
induction hypothesis. We thus see that we can henceforth assume that the ground
field K contains a primitive '.n/-th root of unity. Now, G.K0=K/ is isomorphic to
a subgroup of the group of prime residue classes modulo n (Chapter 9, F9). Thus
G D G.K0=K/ is certainly abelian, and its order divides '.n/. Every prime factor
q of jGj is therefore a factor of '.n/. Since abelian groups are solvable, G has a
chain of subgroups

G D H0  H1  � � �  Hr D 1

where each Hi (for 1 � i � r ) is a normal subgroup of Hi�1 or prime index qi . By
the Galois correspondence we get a corresponding chain

K D K0 � K1 � � � � � Kr D K0
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of intermediate fields Ki of K0=K, where each extension Ki=Ki�1 is Galois with
Galois group of prime order qi . Each qi divides '.n/; thus K and therefore also
Ki�1 contain a primitive qi-th root of unity. By Theorem 1 in Chapter 14, the field
Ki arises from Ki�1 by the adjunction of an irreducible radical. Therefore K0 arises
from K by the adjunction of irreducible radicals. ˜

Let f 2 KŒX � be a polynomial over a field K, and let E be a splitting field of
f over K. The automorphism group G D G.E=K/ is also called the group of f
(or of the equation f D 0) over K. If all prime factors of f are separable in KŒX �,
the extension E=K is Galois; in this case G is called the Galois group of f over K

(compare Chapter 8, Definition 3). An arbitrary polynomial f 2 KŒX � is solvable
by radicals if and only if E=K is solvable by radicals; see Definition 1(iii). With
this, Theorems 1 and 2 imply:

Theorem 3. Let f be a polynomial over a field K. If f is solvable by radicals, the
group of f over K is solvable. Conversely, if the group of f over K is solvable and
its order is not a multiple of the characteristic of K, the polynomial f is solvable by
radicals.

Remarks. (1) In characteristic 0, Theorem 3 becomes: A polynomial f 2 KŒX �

is solvable by radicals if and only if its group over K is solvable.

(2) If the characteristic of K is 0 or greater than all prime factors of jGj, Theorems
3 and 20 together imply: A polynomial f 2 KŒX � is solvable by radicals if and
only if it is solvable by irreducible radicals.

(3) If we use the extended notion of radicals introduced in Remark 1 to Theorem 2
(namely allowing roots of polynomials X p �X �� where p D char K> 0), the
italicized statements in parts (1) and (2) hold regardless of the characteristic.

3. The foregoing considerations raise two obvious questions:

A. Are there any finite groups that are not solvable?

B. What finite groups occur as Galois groups of Galois extensions?

We first take up question B and show that, for any n, the symmetric group Sn

is the Galois group of an appropriate Galois extension. To this effect we consider,
over some arbitrary ground field k, the field k.X1;X2; : : : ;Xn/ of rational functions
in the n variables X1; : : : ;Xn (that is, the fraction field of the polynomial ring
kŒX1; : : : ;Xn� in the n variables X1; : : : ;Xn over k). For every r 2 k.X1; : : : ;Xn/

there exist polynomials g1;g2 2 kŒX1; : : : ;Xn� such that

(14) r D g1

g2
:

Of course this representation is not unique, but we have

(15) r D g1

g2

D h1

h2

” g1h2 D h1g2:
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Take ˛1; : : : ; ˛n in some extension k 0 of k. The expression

(16) r.˛1; : : : ; ˛n/ WD g1.˛1; : : : ; ˛n/

g2.˛1; : : : ; ˛n/
:

is well-defined when it is defined at all, that is, when in the representation (14) we
can choose g2 so that g2.˛1; : : : ; ˛n/¤ 0. This can be easily seen from (15).

We now study the polynomial

(17) f .X /D
n

Y

iD1

.X � Xi/D X n � s1X n�1 C s2X n�2 C � � � C .�1/nsn

over kŒX1; : : : ;Xn� and over k.X1; : : : ;Xn/. Note that si 2 kŒX1; : : : ;Xn� , so we
write si D si.X1; : : : ;Xn/. We call si the i -th elementary symmetric function. We
have

s1 D X1 C X2 C � � � C Xn;

s2 D X1X2 C � � � C X1Xn C � � � C Xn�1Xn;
:::

sn D X1X2 : : :Xn:

The symmetric group Sn acts in a natural way on kŒX1; : : : ;Xn� and k.X1; : : : ;Xn/:
Given � 2 Sn, we set

�h.X1; : : : ;Xn/ WD h
�

X�.1/;X�.2/; : : : ;X�.n/
�I

that is, the map h ‘ �h of kŒX1; : : : ;Xn� into itself is the unique homomorphism
of k-algebras

(18) kŒX1; : : : ;Xn�! kŒX1; : : : ;Xn� such that Xi ‘ X�.i/:

It is clearly an isomorphism. Next, the map h ‘ �h on k.X1; : : : ;Xn/ is the
unique extension of (18) to the fraction field. In this way each � 2 Sn defines a
k-automorphism of k.X1; : : : ;Xn/. In the sequel we will regard Sn as a subgroup
of the automorphism group of the extension k.X1; : : : ;Xn/=k:

Sn � Aut.k.X1; : : : ;Xn/=k/� G.k.X1; : : : ;Xn/=k/

(see page 66 for notation). For conciseness we set F D k.X1; : : : ;Xn/. Then
the elements � 2 Sn act (coefficientwise) on the ring F ŒX � of polynomials in one
variable X over F . The polynomial f in (17) satisfies

�f D
n

Y

iD1

.X � �.Xi//D
n

Y

iD1

.X � X�.i//D
n

Y

iD1

.X � Xi/D f:

Thus the coefficients si of f lie in the fixed field of Sn in k.X1; : : : ;Xn/. But clearly
k.X1; : : : ;Xn/ is a splitting field of the separable polynomial f .X /D Q

i.X �Xi/

over the field
k.s1; s2; : : : ; sn/:
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Therefore k.X1; : : : ;Xn/=k.s1; : : : ; sn/ is a Galois extension. Every automorphism
of this extension permutes the roots X1; : : : ;Xn of f , and as just seen every per-
mutation of X1; : : : ;Xn is obtained in this way. Thus

(19) G
�

k.X1; : : : ;Xn/=k.s1; : : : ; sn/
� D Sn:

With this we have exhibited Sn as the Galois group of a field extension.

Definition 3. An element r 2 k.X1; : : : ;Xn/ is called symmetric if

� r D r for all � 2 Sn;

that is, r D r.X1; : : : ;Xn/ remains unchanged by any permutation of the variables.

Thus the symmetric functions of k.X1; : : : ;Xn/ are precisely the elements of
the fixed field of Sn in k.X1; : : : ;Xn/. Taking (19) into account we see by Galois
theory (Chapter 8) that the field of symmetric functions of k.X1; : : : ;Xn/ coincides
with the field k.s1; : : : ; sn/. To summarize:

F3. Consider over the field of rational functions k.X1; : : : ;Xn/ the polynomial

f .X /D
n

Y

iD1

.X � Xi/D X n � s1X n�1 C s2X n�2 C � � � C .�1/nsn

whose coefficients s1; : : : ; sn are the elementary symmetric functions in X1; : : : ;Xn.
The extension k.X1; : : : ;Xn/=k.s1; : : : ; sn/ is Galois, and its Galois group is natu-
rally identified with the symmetric group Sn. A rational function r 2 k.X1; : : : ;Xn/

is symmetric if and only if it lies in k.s1; : : : ; sn/; that is, if and only if it can be
expressed as a rational function in the elementary symmetric functions s1; : : : ; sn.
The polynomial f .X / is irreducible over k.s1; : : : ; sn/.

Proof. Only the last statement has not yet been proved. Sn is the Galois group of
f over k.s1; : : : ; sn/. Since Sn acts transitively on the roots X1; : : : ;Xn of f , the
irreducibility of f is guaranteed by F7 in Chapter 8. ˜

We will now look at things from a different angle. As before, let k be an
arbitrary ground field. Let K D k.u1; : : : ;un/ be the field of rational functions in
the n variables u1;u2; : : : ;un over k. In the polynomial ring KŒX � over K, consider
the polynomial

(20) g.X /D X n � u1X n�1 C u2X n�2 C � � � C .�1/nun:

This is called the general polynomial of degree n over k.

Theorem 4. The general polynomial of degree n over k is separable, and it is ir-
reducible over the field K D k.u1; : : : ;un/ of its coefficients. Its Galois group over
K (also known as the “Galois group of the general equation of degree n over k”) is
isomorphic to the symmetric group Sn.
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Proof. Let E be the splitting field of g over K D k.u1; : : : ;un/. Over E we have

(21) g.X /D
n

Y

iD1

.X � xi/; with xi 2 E:

Then E D K.x1; : : : ;xn/ D k.x1; : : : ;xn/. Is E a field of rational functions
in n variables over k? To answer the question, consider the polynomial ring
kŒX1; : : : ;Xn� in the n variables X1; : : : ;Xn over k, and as before take the polyno-
mial

(22) f .X / WD
n

Y

iD1

.X � Xi/:

Then let

(23) kŒX1; : : : ;Xn�! kŒx1; : : : ;xn�

be the unique homomorphism of k-algebras taking each Xi to xi . This map obvi-
ously satisfies

si D si.X1; : : : ;Xn/‘ si.x1; : : : ;xn/D ui :

Therefore (23) gives rise to a homomorphism of k-algebras

(24) kŒs1; : : : ; sn�! kŒu1; : : : ;un� such that si ‘ ui :

This is an isomorphism: indeed, since kŒu1; : : : ;un� is the polynomial ring in the
variables u1; : : : ;un, there is a homomorphism of k-algebras

(25) kŒu1; : : : ;un�! kŒs1; : : : ; sn� such that ui ‘ si ;

and the maps (25) and (24) are clearly inverse to each other. The isomorphism (24)
has a unique extension to the fraction field:

(26) K0 D k.s1; : : : ; sn/! K D k.u1; : : : ;un/:

We now claim that (23) too is an isomorphism. In particular, x1; : : : ;xn are
pairwise distinct and hence g is separable. The surjectivity of (23) is clear; we must
prove its injectivity. Let h.X1; : : : ;Xn/ 2 kŒX1; : : : ;Xn� satisfy h.x1; : : : ;xn/D 0,
and consider

N.h/D
Y

�2Sn

�h D h �
Y

�¤1

�h 2 kŒX1; : : : ;Xn�:

Clearly N.h/ lies in the fixed field of Sn, so N.h/2 k.s1; : : : ; sn/. Also N.h/ lies in
the kernel of (23) because h does. But the map (23) coincides with the isomorphism
(26) on k.s1; : : : ; sn/\ kŒX1; : : : ;Xn�. Thus N.h/D 0 and hence h D 0.

We now can extend (23) in unique fashion to an isomorphism k.X1; : : : ;Xn/!
k.x1; : : : ;xn/ of fraction fields, and taking this together with (26) we get the com-
mutative diagram

(27)

k.X1; : : : ;Xn/
'� k.x1; : : : ;xn/

K0

�

' � K

�
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The isomorphism (26) gives rise to an isomorphism

K0ŒX �! KŒX �

of polynomial rings; this isomorphism maps f to g. Because f is irreducible in
K0ŒX � we then deduce that g is irreducible in KŒX �. Finally, (27) yields

G
�

k.x1; : : : ;xn/=K
� ' G

�

k.X1; : : : ;Xn/=K
0� ' Sn

(see F3). This completes the proof of Theorem 4. ˜
The proof also showed that (24) is an isomorphism, and hence that the field

k.s1; : : : ; sn/ of symmetric functions can be seen as the field of rational functions
in the n variables s1; : : : ; sn. Therefore:

F4. Let r 2 k.X1; : : : ;Xn/ be symmetric. There exists a unique

g 2 k.X1; : : : ;Xn/ such that r D g.s1; : : : ; sn/:

In fact we have more:

Fundamental Theorem on Symmetric Functions. Every symmetric polynomial h

in kŒX1; : : : ;Xn� has one and only expression in the form

h D g.s1; : : : ; sn/

for g a polynomial in kŒX1; : : : ;Xn�.

This theorem can be proved directly with some effort; see, for example, van der
Waerden, Algebra I. But it can also be shown to follow from F4 if one has the right
conceptual tools; we do this in Chapter 16.2

F5. Given any finite group G, there exists Galois extensions E=F such that
G.E=F /' G.

Proof. Set n D jGj. Then G is isomorphic to a subgroup U of Sn (Chapter 10, F2).
By F3 (or Theorem 4) there exists a Galois extension E=K such that G.E=K/D Sn.
Let F be the fixed field of U in E. By Galois theory, G.E=F /D U ' G.

8

ˆ

ˆ

ˆ

ˆ

ˆ

Sn̂
ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

E

F

9

>

U ' G
>

;

K

˜

2 For a delightful little exercise, show that, conversely, F4 follows from the theorem just
stated; this is simple once you see how. On the other hand, F4 implies: If r is symmetric
and r D g=h for g; h 2 kŒX1; : : : ;Xn� relatively prime, then g and h are symmetric. To see
this, show first that if two elements of kŒs1; : : : ; sn� are relatively prime in kŒs1; : : : ; sn�,
they are also relatively prime in kŒX1; : : : ;Xn�.
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Remarks. With F5 we have been able to give a surprisingly simple answer to our
Question B (page 173). Another, much harder question is this: Once a ground
field K is fixed, for what finite groups G is there an extension E such that E=K

is Galois with G.E=K/ ' G? In particular, taking the case K D �, one would
like to know whether every finite group G occurs as the Galois group of a Galois
extension E=�. This is a central problem of inverse Galois theory. It can be shown
using more or less elementary methods that for every natural number n there exists
f 2 �ŒX � such that the Galois group of f over � is isomorphic to Sn (see van der
Waerden, Algebra I ). A much deeper result of Scholz and Shafarevitch says that
every solvable group G occurs as the Galois group of a Galois extension E=�.

As to our Question A on whether there exist nonsolvable finite groups, the
following statement will be proved in the next section:

F6. The symmetric group Sn is not solvable for n � 5, and it is solvable for n � 4.

As a corollary we obtain:

Theorem 5 (Abel, Ruffini). The general polynomial of degree n over k is not solv-
able by radicals if n � 5.

Proof. Let g be as in (20) the general polynomial of degree n over k and let
K D k.u1; : : : ;un/ be its coefficient field. By Theorem 4, the Galois group of g

over K is isomorphic to the symmetric group Sn. If the polynomial g 2 KŒX � were
solvable by radicals, therefore, Sn would have to be a solvable group, by Theorem 3;
and F6 says this is not the case for n � 5. ˜

F7. Let K be a field with char K ¤ 2; 3. Every f 2 KŒX � of degree at most 4 is
solvable by irreducible radicals.

Proof. Let G be the group of f over K. Then G is isomorphic to a subgroup of
Sn, where n is the degree of f . In view of the second sentence of F6, together with
part (a) of F1, G is solvable. The assertion then follows from Theorem 20. ˜

4. We now must prove F6; and we take the opportunity to talk a bit about permuta-
tions. In this section M will denote a set with n elements, say M D f1; 2; : : : ; ng,
and S D S.M / ' Sn will denote the group of all permutations of M . The group
S acts on M via

.�; a/‘ �a D �.a/:

For a given � 2 S we consider in particular the action of the cyclic group H D h�i
on M . The orbit of a 2 M under H is also called the orbit of a under � . Let
Ha Df	2H j	aDag be the stabilizer of a under H , and d DH WHa its index in H .
Then � iaD�j a ” � i�j aDa ” � i�j 2Ha ” d j i�j ” i �j mod d ,
so the orbit

Ha D fa; �a; �2a; : : : ; �d�1ag has d elements.

Now set ai WD � i�1a, so that

�a1 D a2; �a2 D a3; : : : ; �ad D a1:
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Definition 4. An element 	 2 S.M / is called a cycle of length d if there exist d

distinct elements a1; a2; : : : ; ad in M such that

	ai D aiC1 for i < d I 	ad D a1I 	a D a for all a 2 M r fa1; : : : ; ad g:
Remarks. (a) A cycle of length 1 is the identity: 	D 1.

(b) Given d distinct elements a1; a2; : : : ; ad 2 M there is obviously a unique
	 2 S.M / satisfying the conditions in Definition 4. This cycle 	 of length d

is denoted by
	D .a1a2 : : : ad /:

Note that .a1a2 : : : ad /D .a2a3 : : : ada1/D � � � D .ada1 : : : ad�1/. Moreover,
.a/D 1 for any a 2 M .

(c) A cycle of length d obviously has order d .

(d) Cycles transform elegantly under inner automorphisms: for any � 2 S.M /,

.28/ �.a1a2 : : : ad /�
�1 D .�a1 �a2 : : : �ad /:

Given � 2 S.M /, define the set W .�/D fa 2 M j �a ¤ ag; this is the union of
orbits of � (i.e., orbits under h�i) that have length greater than 1. Two permutations
�; � 2 S.M / are called disjoint if W .�/\ W .�/ D ?. Obviously, in this case the
two permutations commute: �� D �� .

Again let � 2 S.M / be given and let C1; : : : ;Cr be the distinct orbits of � . As
we saw above, there exists for each Cj a cycle 	j such that 	j a D �a for all a 2 Cj

and W .	j /� Cj . By definition, 	1; 	2; : : : ; 	r are pairwise disjoint. We claim that

� D 	1	2 : : : 	r :

Indeed, any given a 2 M lies in precisely one Cj , and then

	1	2 : : : 	r a D 	j a D �a:

We thus get the first statement in the following result:

F8. Every � 2 S.M / can be represented as a product

(29) � D 	1	2 : : : 	r

of pairwise disjoint cycles with

(30)
X

i

length 	i D n:

This representation is unique apart from the order of the factors. In (29) one can of
course omit cycles of length 1, but then (30) is no longer satisfied.
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Proof. What remains to be proved is the uniqueness. Take � ¤ 1 and let � D
�1�2 : : : �s be another decomposition into pairwise disjoint cycles �1; : : : ; �s of
length greater than 1. Take a2W .�1/. There is precisely one j such that a2W .	j /;
we may as well assume it is j D 1. Then

�1a D �a D 	1a; �1� D ��1; 	1� D �	1:

It follows that �1.�
k�1
1

a/ D � k
1

a D �ka D 	k
1
a D 	1.	

k�1
1

a/. Thus the orbits
W .�1/ and W .	1/ of a under �1 and 	1 coincide, and because of this we get
�1x D �x D 	1x for all x in W .�1/D W .	1/. Outside of this set both permutations
act trivially. Altogether we obtain �1 D	1, and by cancellation 	2 : : : 	r D �2 : : : �s .
By induction we are done. ˜

F9. (i) Let � 2 S.M / have the decomposition � D 	1	2 : : : 	r into pairwise
disjoint cycles. The order of � is the least common multiple of the lengths of
the 	i .

(ii) Two elements �; � 0 of S.M / are conjugate in S.M / if and only if their decom-
positions into cycles have the same type (the type is defined in the proof).

Proof. (i) Since all the 	i commute, we have

(31) �m D 	m
1 	

m
2 : : : 	

m
r for each m:

In particular, if m D v is the lcm of the lengths (which is to say, the orders) of
the cycles 	i , equation (31) implies that ord.�/ jv. From (31) we get the cycle
decomposition of �m. Thus from �m D 1 we get 	m

i D 1 for all i . Therefore
ord.	i/ divides ord.�/ for all i , and hence so does v.

(ii) A decomposition
� D 	1	2 : : : 	r

into pairwise disjoint cycles is called normalized if it satisfies condition (30) in F8.
We say that � 2 Sn has type c1; c2; : : : ; cn if the normalized decomposition of �
contains precisely cj cycles of length j . We have n D P

j jcj . For an arbitrary
� 2 Sn, equality (28) says that

����1 D .�	1�
�1/.�	2�

�1/ : : : .�	r�
�1/

is the normalized cycle decomposition of ����1; this of course has the same type
as the normalized decomposition of � .

Conversely, suppose �; � 0 2 S.M / have the same type and let

� D 	1 : : : 	r ; � 0 D 	0
1 : : : 	

0
r 0

be their normalized decompositions. Then r D r 0, and after renumbering we can
assume that

length	i D length 	0
i for 1 � i � r:
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For fixed i set
	i D .a1 : : : ad /; 	0

i D .a0
1 : : : a

0
d /;

and let 'i be the bijection from Mi D fa1; : : : ; ad g onto M 0
i D fa0

1; : : : ; a
0
d
g defined

by 'i.aj /D a0
j . Because the 	1; : : : ; 	r are disjoint we can form a map � W M ! M

coinciding with 'i on each Mi , and this is a bijection because the 	0
1
; : : : ; 	0

r are
also disjoint. Again from (28) we get

����1 D .�	1�
�1/ : : : .�	r�

�1/D 	0
1 : : : 	

0
r D � 0;

so � and � 0 are conjugate in S.M /. ˜

We denote by

(32) sgn W Sn ! fC1;�1g
the well known signature map or parity map, which assigns to each permutation
� 2 Sn its sign or parity sgn.�/ (see for instance LA I, p. 160). A permutation � is
called even if sgn.�/D 1; otherwise it is called odd. If

(33) � D �1�2 : : : �s

is a representation of � as a product of transpositions (cycles of length two), we
have

sgn.�/D .�1/s:

Note that the �1; : : : ; �s in (33) are generally not pairwise disjoint, nor is a repre-
sentation in the form (33) unique; only the parity of s is determined by � .

For cycles � of length d , one clearly has

� D .a1a2 : : : ad /D .a1a2/.a2a3/ : : : .ad�1ad /;

so

(34) sgn.�/D .�1/d�1:

Since the map (32) is a homomorphism, the set

An WD f� 2 Sn j sgn.�/D 1g D ker sgn

is a normal subgroup of Sn, of index 2 if n � 2. It is called the alternating group
of degree n, and it consists of all even permutations in Sn. By (34), cycles of odd
length are even and cycles of even length are odd.

We now can easily show: Sn is solvable for n � 4. For S1 D 1 and S2 ' �=2�

this is clear; for S3 we have the chain

(35) S3 D A3 D 1 with S3=A3 ' �=2�; A3 ' �=3�:

In S4, consider the set

(36) V4 WD ˚

1; .12/.34/; .13/.24/; .14/.23/
�

;
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consisting of the identity and of all the double transpositions in S4. Since

.12/.34/ � .13/.24/D .14/.23/D .13/.24/ � .12/.34/;

this is a subgroup of S4, isomorphic to �=2� � �=2�. It is called the Klein four-
group. In view of (28), it is a normal subgroup of S4. Clearly V4 is contained in
A4, and by considering the orders we see that A4=V4 ' �=3�. Now the chain

(37) S4 D A4 D V4 D 1

shows that S4 is solvable. Moreover one easily sees that V4 is the only nontrivial
normal subgroup of A4, and that S4=V4 ' S3.

Lemma. Let n � 5 and let G be a subgroup of Sn containing all three-cycles (that is,
cycles of length three). If N is a normal subgroup of G with abelian quotient G=N ,
then N contains all three-cycles.

Proof. Let .abc/ be a three-cycle. Since n � 5, there exist d; e such that d; e 2
M r fa; b; cg and e ¤ d . Set � D .ace/ and 	 D .abd/. By (28) we have
	�	�1 D .	a 	c 	e/D .bce/, so

	�	�1��1 D .bce/.eca/D .abc/:

But N contains all commutators of elements of G since G=N was assumed abelian;
in particular N contains .abc/. ˜

With this lemma we can now easily show that Sn is not solvable for n � 5. For
otherwise there would be a chain Sn D G0 D G1 D G2 D � � � D Gm D 1 with all
factors Gi�1=Gi abelian. By induction, it would follow from the lemma that every
Gi contains all three-cycles. But this is impossible since Gm D 1.

The unsolvability of Sn for n � 5 has had interesting consequences for us from
the field-theoretic point of view; but in fact a much more encompassing result is true:

Theorem 6. The alternating group An is simple for n � 5.

Recall that a group G ¤ 1 is called simple if it has no normal subgroup apart
from itself and 1. A proof of Theorem 6 is outlined in §15.13 and §15.16 in the
Appendix.

5. Returning to our earlier line of investigation, we now wish to find an explicit
solution by radicals for cubic polynomials f over a field K of characteristic distinct
from 2 and 3. As remarked on page 165, we may as well assume that f has the
form

(38) f .X /D X 3 C pX C qI
we also assume that f is irreducible in KŒX �. Let E be a splitting field of f over
K and let ˛1; ˛2; ˛3 be the roots of f in E. We now proceed according to the
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theory. First we adjoin a primitive third root of unity 
, and so form the diagram

K

E

K0 WD K.
/

E0 WD E.
/

������

������

Now let F 0 WD K0.
p

D/, where D denotes the discriminant of f (Chapter 8,
Definition 4). Since

p
D is not preserved by any transposition of roots, we have

E0 WK0.
p

D/� 3. At the same time, since f is irreducible, E WK is divisible by 3,
and hence so is E0 WK0, since K0 WK � 2. Putting it together we get

E0 WF 0 D 3:

Thus the extension E0=F 0 is cyclic of degree 3. By the material in Chapter 14 —
see in particular equation (6) there — we have E0 D F 0.v/, where v, a Lagrange
resolvent, is defined by

v D ˇC 
2�.ˇ/C 
�2.ˇ/;

where ˇ 2 E0 is to be chosen so that v ¤ 0 but is otherwise arbitrary. We first try
ˇ D ˛1, so that

(39) v D ˛1 C 
2˛2 C 
˛3;

and we consider at the same time the resolvent

(40) u D ˛1 C 
˛2 C 
2˛3:

We have u C v D 2˛1 C .
C 
2/˛2 C .
C 
2/˛3 D 3˛1 since 1 C 
C 
2 D 0 and
˛1 C ˛2 C ˛3 D 0; and observing that multiplication by 
 or 
2 in (39) and (40)
induces a cyclic permutation on the indices, we likewise get the last two equations
in the following trio:

(41) u C v D 3˛1; 
2u C 
v D 3˛2; 
u C 
2v D 3˛3:

By construction, u3 and v3 lie in F 0; one sees on conjugacy grounds that these
are the roots of a quadratic equation over K0, and we can actually write down this
equation explicitly by computing the sum and product of u3 and v3. First we have

u3 C v3 D .u C v/.u C 
v/.u C 
2v/D 3˛1 � 3˛3 � 3˛2;

where the second equality comes from (41). Therefore

(42) u3 C v3 D �27q:
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Next, from (39) and (40) we get

(43) uv D ˛2
1C˛2

2C˛2
3 C 
2.˛1˛2C˛2˛3C˛1˛3/C 
.˛1˛2C˛2˛3C˛1˛3/

D ˛2
1C˛2

2C˛2
3 C .
2C
/p D ˛2

1C˛2
2C˛2

3 � p

D .˛1C˛2C˛3/
2 � 3p D �3p;

so

(44) u3v3 D �27p3:

Thus u3 and v3 are the roots of the quadratic polynomial

(45) X 2 C 27qX � 27p3;

whose coefficients actually lie in K. There follows

�

u

3

	3 D �q

2
C

r

�

q

2

	2 C
�

p

3

	3

;
�

v

3

	3 D �q

2
�

r

�

q

2

	2 C
�

p

3

	3

:

Together with (41) we then get:

F10. Let K have characteristic distinct from 2 and 3. The roots of the polynomial
f .X /D X 3 C pX C q 2 KŒX � are given by

(46)
3

s

�q

2
C

r

�

q

2

	2 C
�

p

3

	3 C 3

s

�q

2
�

r

�

q

2

	2 C
�

p

3

	3

;

where one cube root � can be chosen at will, but the other cube root � 0 must be
chosen so that 3�� 0 D �p. (The choice of a square root is arbitrary but must be the
same in both terms.) The discriminant D of f .X / is

(47) D D �4p3 � 27q2:

Proof. Regardless of whether f is irreducible, we have seen above that, if u and v
are defined by (39) and (40), they satisfy the relations (41), and u3; v3 are the roots
of the quadratic equation (45). It follows that every root of f must have the form
(46). To be safe we must show that for any f (even if inseparable), the numbers
given by (46) are indeed zeroes of f . The cube roots � D u=3 and � 0 D v=3

that occur in (46) satisfy � 3 C � 03 D �q and 27� 3� 03 D �p3 (since u3; v3 are
solutions of the quadratic equation X 2 C 27qX � 27p3 D 0), and by assumption
they are normalized so that 3�� 0 D �p. It follows that .�C� 0/3Cp.�C� 0/Cq D
� 3 C� 03 C3� 2� 0 C3�� 02 Cp.�C� 0/Cq D �qC3�� 0.�C� 0/Cp.�C� 0/Cq D 0.
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Finally we have to verify the formula (47) for the discriminant. Setting 4 D
.˛1�˛2/.˛1�˛3/.˛2�˛3/, we have

274 D .3˛1�3˛2/.3˛1�3˛3/.3˛2�3˛3/

D .uCv�
2u�
v/.uCv�
u�
2v/.
2uC
v�
u�
2v/

D �

.1�
/2u C .1�
/v��

.1�
/u C .1�
2/v
��

.
2�
/u C .
�
2/v
�

D .1�
/2�

.1C
/u C v
��

u C .1C
/v��

.u�v/.
2�
/�

D .
�1/3
.�
2uCv/.u�
2v/.u�v/
D .1�
/3.u�
v/.u�
2v/.u�v/D .1�
/3.u3�v3/I

setting D D 42 and using the fact that .
 � 1/2 D 
2 � 2
C 1 D �3
 we get

272D D .
 � 1/6.u3 � v3/2 D �27.u3 � v3/2;

so �27D coincides with the discriminant of the quadratic polynomial (45):

�27D D 272q2 C 4 � 27p3:

This implies (47). ˜
Note that (47) can be rewritten as

(48) D D �4 � 27

�

�

p

3

	3 C
�

q

2

	2
�

;

so that the square root appearing in the Cardano formula (46) is related to the
discriminant by

(49)
p�3D D 2 � 9

r

�

q

2

	2 C
�

p

3

	3

:

Remarks. (1) From the introductory remarks of this section we see that, if the
cubic polynomial f is irreducible, the extension E=K.

p
D/ is cyclic of degree 3.

Moreover, since f has degree 3, the irreducibility of f in KŒX � is equivalent to
there being no roots of f in K. In the sequel we will identify the Galois group G

of f over K with a subgroup of S3, by fixing the numbering of the roots ˛1; ˛2; ˛3

of f .
If f is irreducible we therefore have:

(50) G D
�

A3 if D is a square in G,
S3 if D is not a square in G.

An example of the first alternative with K D � — that is, a cubic polynomial over
� whose Galois group G over � is cyclic of order 3 — is given by

(51) X 3 � 3X C 1:

For this is clearly irreducible (Chapter 5, F8), and it has discriminant D D 81 by
(47). Examples of the second alternative, illustrating the (generic) case G D S3, are
given by X 3�XC1, X 3�2, and X 3�4XC1, with discriminants �23, �108, 229.
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(2) Assume that K is a subfield of �. Then, for any cubic polynomial f over K,

(52) D � 0 ” all the roots of f lie in �:

To see this, note first that f , being a polynomial of odd degree, has at least one real
root. Either all roots ˛1; ˛2; ˛3 of f are real or, say, ˛1 is real and ˛3 D ˛2 … �.
In the former case 4 D .˛1�˛2/.˛1�˛3/.˛2�˛3/ is real, so D D 42 � 0; in the
latter case, 4 D .˛1�˛2/.˛1�˛2/.˛2�˛2/ is purely imaginary, so D D 42 < 0.

Suppose in addition that D ¤ 0, so ˛1; ˛2; ˛3 are all distinct. By (48) we have

D > 0 ”
r

�

q

2

	2 C
�

p

3

	3 … �:

Thus, for f separable, equation (52) says that the Cardano formula (46) yields three
real roots if and only if the square root appearing in the formula is nonreal (“casus
irreducibilis”).

6. In this section we will deal with solvable equations of prime degree. We will
need to have at hand the following group-theoretic result.

Lemma. Let p be a prime number and let G be a subgroup of the full permutation
group of a set M with p elements. Assume that G acts transitively on M .

(a) Any normal subgroup N ¤ 1 of G also acts transitively on M .

(b) If G is solvable, it contains a unique subgroup H of order p (which is then
necessarily normal in G).

Proof. (a) Take a 2 M . For any � in G we have

�Na D N�a:

Since G acts transitively on M , all orbits of N have the same length, say m. Thus
m divides p D jM j (see F10 in Chapter 10). Since N ¤ 1 we have m> 1. It follows
that m D p, that is, N acts transitively on M .

(b) Since G acts transitively on the p-element set M , the order of G is divisible by
p (Chapter 10, F4). Assume jGj>p (otherwise there is nothing to prove). Because
G is solvable, it contains a normal subgroup N distinct from G and from 1. By
part (a), N acts transitively on M . By induction on the order of the group, we
can therefore assume that N has exactly one subgroup H of order p. Then H is a
characteristic subgroup of the group N ; that is, for each automorphism ˛ of N we
have �H D H . In particular, H is a normal subgroup of G (because every inner
automorphism of G gives rise to an automorphism of N , since N is normal in G).
So G contains a normal subgroup H of order p. Let H 0 be any subgroup of order p

and assume that H 0 is distinct from H . Then H \H 0 D 1, and the quotient H 0H=H
satisfies

H 0H=H ' H 0=H 0\H ' H 0;
so the subgroup H 0H of G has order p2 (see F2). It follows that p2 divides jGj,
and hence p!, contradicting the primality of p. ˜
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Now let f 2 KŒX � be an irreducible polynomial of prime degree p. We assume
that f is separable (that is, if p D char K, the polynomial does not have the form
c.X p � a/; see Chapter 7, F12). The Galois group G of f over K acts transitively
on the p-element set M of roots of f in a splitting field E of f over K (Chapter
8, F7).

Assume that the Galois group G of f over K is solvable. By part (b) of the
preceding lemma it follows, first, that G contains an element 	 of order p. Regarded
as a permutation of M , the element 	 is then necessarily a cycle of length p, that
is, for some numbering ˛1; ˛2; : : : ; p̨ of the roots of f in E, we have

(53) 	˛i D ˛iC1 for i < p; 	 p̨ D ˛1:

We now identify M D f˛1; ˛2; : : : ; p̨g with the p-element field �p via the map
˛i ‘ i , thus also identifying G with a subgroup of S.�p/. Then (53) becomes

(54) 	x D x C 1 for all x 2 �p:

In other words, the action of 	 on elements of �p is simply translation by 1. But
more is true: Let � be any element of G. By the lemma, the subgroup generated by
	 is a normal subgroup of G. Therefore

�	��1 D 	a;

for some natural number a< p. Thus �	x D 	a�x for all x 2 �p; hence, by (54),

�.x C 1/D �x C a:

Setting b WD �.0/, we get �.1/D bCa, �.2/D bCaCa, . . . , and in general

�x D ax C b for all x 2 �p:

Definition 5. A permutation � 2 S.�p/ is called affine if there exist elements a 2 ��
p

and b 2 �p such that

(55) �x D ax C b for all x 2 �p:

A subgroup G of S.�p/ is called an affine subgroup of S.�p/ if every element of G

is affine.

Theorem 7 (Galois). (I) Let f 2 KŒX � be irreducible of prime degree p; also
assume that f is separable (that is, not of the form c.X p � a/ if p D char K).
As before we regard the Galois group G of f over K as a subgroup of S.�p/.
Then, if G is solvable, it is an affine subgroup of S.�p/.

(II) Every affine subgroup of S.�p/ is solvable.

Proof. Part (I) has been proved above. For part (II), let’s denote an element � 2S.�p/

of the form (55) by �a;b; note that b 2 �p and a 2 ��
p are uniquely determined by

� . A simple calculation shows that

�a;b ı �a0;b0 D �aa0;bCab0 :
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Let G denote the set of all affine elements of S.�p/. Then G is a subgroup of S.�p/,
and the map � D�a;b ‘ a is a homomorphism form G onto the multiplicative group
��
p of �p . Let N be its kernel. Obviously, N consists of all elements of the form
�1;b , that is, of all translations. The map �1;b ‘ b is then an isomorphism of N

onto the additive group �=p� of �p . Thus N is cyclic (of order p). The quotient
G=N is isomorphic to the multiplicative group ��

p , by the foregoing. Therefore
G=N is also cyclic, by Chapter 9, Theorem 2. Putting it all together we conclude
that G is solvable (see F1). Since a subgroup of a solvable group is solvable, we
are done. ˜

The lovely result just proved is Proposition VII of Galois’s “Mémoire sur les
conditions de résolubilité des équations par radicaux”, and can be found in Écrits
et mémoires mathématiques d’Evariste Galois, Gauthier-Villars, Paris, 1962.

Remark. The group S.�p/ itself is not affine for p � 5, since it has precisely
p.p�1/ elements of the form (55). By Theorem 7, therefore, Sp is not solvable
(since up to isomorphism, Sp occurs as the Galois group of the general equation of
degree p: see Theorem 4). In particular, S5 is not solvable. And since for n � 5

the symmetric group Sn clearly has a subgroup isomorphic to S5, we have proved
again that Sn cannot be solvable for n � 5.

As an application of Theorem 7 we obtain another result of Galois:

F11. Let f 2 KŒX � be irreducible of prime degree p, and assume f is separable.
Let E be a splitting field of f over K and G the Galois group of E=K.

If G is solvable, E arises by adjunction of any two distinct roots of f .
Conversely, if there exist two roots ˛; ˇ of f such that E D K.˛; ˇ/, the group

G is solvable.

Proof. Let G be solvable and let ˛ and ˇ¤˛ be roots of f in E. We must show that
E D K.˛; ˇ/, or equivalently, by Galois theory, that G.E=K.˛; ˇ// D 1. Assume
for a contradiction that G.E=K.˛; ˇ// contains an element � ¤ 1. Then ˛ and ˇ are
both left fixed by � . But a map of the form (55) distinct from the identity obviously
has either exactly one fixed point or none.

For the converse, suppose that E D K.˛; ˇ/, where ˛; ˇ are roots of f . Hence

(56) jGj D E WK � p.p � 1/;

because K.˛/ W K D p and K.˛; ˇ/ W K.˛/ � p�1 no matter what. Also since
K.˛/ WK D p, there is an element 	 of order p in G. If H D h	i is normal in G,
it follows, as we saw above, that G is isomorphic to an affine subgroup of S.�p/.
Thus G is solvable, by Theorem 7. On the other hand, if H is not normal in G, we
can find � 2 G such that H 0 WD ��1H� is distinct from H . Because p is prime,
H \ H 0 D 1. Therefore HH 0 (though it need not be a subgroup of G) contains p2

elements, in contradiction with (56). ˜

The following consequence of F11 was first stated by Kronecker:
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F12. Let K be a subfield of the field � of real numbers, and let f 2 KŒX � be an
irreducible polynomial of prime degree p > 2. If the Galois group of f over K is
solvable, f has either exactly one root in � or all its roots in �.

Proof. Being a polynomial of odd degree, f certainly has at least one root ˛ in �.
Assume there is another one, ˇ 2 �, with ˇ ¤ ˛. Using F11 we conclude that the
subfield K.˛; ˇ/ of � must be a splitting field of f over K. But then all the roots
of f lie in �. ˜

Remarks. Using F12 it is not hard to find polynomials of prime degree with rational
coefficients that are not solvable by radicals over �. For example:

(i) For every prime p � 5, the polynomial

(57) f .X /D X p � 4X C 2

is not solvable by radicals over �.

Proof. First, by Eisenstein’s criterion, f is irreducible over �. If f were solvable
by radicals over �, it would have, by F12, either exactly one real root or exactly
p real roots. But a simple analytic argument shows that in fact f has exactly three
real roots: If k is the number of real roots of f , the derivative f 0.X /D pX p�1 �4

has at least k�1 roots in �, by Rolle’s Theorem. But clearly pX p�1�4 has exactly
two real roots, so k � 3. On the other hand, the Intermediate Value Theorem gives
k � 3, since f .�2/ < 0, f .0/ > 0, f .1/ < 0, f .2/ > 0. ˜

For p D 5 more can be proved:

(ii) The Galois group of X 5 � 4X C 2 over � is isomorphic to the full symmetric
group S5.

Proof. As already seen, the polynomial (57) in the case p D 5 has precisely two
nonreal roots, which we can view as elements of �, by the Fundamental Theorem of
Algebra (see Remark to Definition 2 in Chapter 6). The permutation of the roots of
f determined by complex conjugation, z ‘ z, is therefore a transposition. Hence, if
we regard the Galois group G of f over � as a subgroup of S5, this group contains
a transposition. Since G also contains a cycle of length 5 (any element of order 5),
it must coincide with S5, as follows form the following general fact, whose proof
is left as an exercise. ˜

(iii) If a subgroup G of Sn contains both a transposition and a cycle of length n, and
n is a prime number, then G DSn. (The primality of n is an unavoidable assumption;
for instance, in S4 the elements (1234) and (24) generate a subgroup of order 8.)

The converse of the statement of F12 is not true; just consider the polynomial

(58) f .X /D X 5 � X � 1;

which has a single real root (again by calculus), but whose Galois group is iso-
morphic to S5. Justifying this last assertion is not so simple, but it’s easy to see
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at least that f is irreducible over �: it suffices to show that f is irreducible as a
polynomial over some field �p (see F9 and F6 in Chapter 5), which is the case for
instance when p D 5 (Theorem 3 in Chapter 14). The irreducibility of f implies,
if nothing else, that the Galois group G has an element of order 5, that is, a cycle
of length 5. To prove the equality G D S5, one can for example — in view of (iii)
above — check that G contains a transposition. One way to do this is to look at f
over �2; here we have the prime factorization

X 5 � X � 1 D .X 2CX C1/.X 3CX 2C1/ in �2ŒX �:

Hence the Galois group G of X 5 �X �1 over �2 certainly contains a transposition.
Now by a general principle due to Dedekind, this allows one to conclude that G,
too, contains a transposition; see F13 in Chapter 16. (Another way of proving that
G D S5 is outlined in §15.25 in the Appendix.)

7. To conclude this chapter we will cite a beautiful — and fairly deep — theorem
of David Hilbert (1862–1943), without undertaking to prove it here.

Hilbert Irreducibility Theorem. Let k stand for the field � or for any finitely
generated extension of �. Then k has the following property:

If f D X m C am�1.t1; : : : ; tn/X
m�1 C � � � C a0.t1; : : : ; tn/, with m; n � 1, is

an irreducible polynomial in the ring kŒt1; : : : ; tn;X � of polynomials in the nC1

variables t1; : : : ; tn;X over k, there exist infinitely many .c1; : : : ; cn/ 2 kn such that
the polynomial f .c1; : : : ; cn;X / 2 kŒX � is also irreducible.

Surely this theorem already speaks for itself; but its relevance to Galois theory
will be put in sharp focus by a later result (Chapter 16, F14).

Remarks. (a) A field having the property stated for k in the conclusion of the
theorem is called Hilbertian. It turns out that a field is already Hilbertian if
the property holds with n D 1.

(b) Let k be Hilbertian. For n>1 a stronger version of the property holds, namely:
If in addition to the irreducible polynomial f 2 kŒt1; : : : ; tn;X � we are given
a nonzero polynomial g in kŒt1; : : : ; tn�, there exist infinitely many c 2 kn

such that f .c;X / is irreducible in kŒX � and such that g.c/ ¤ 0. See Lang,
Diophantine geometry, Chapter 8. This further implies the following fact, by
F12 in Chapter 7: If an irreducible polynomial f 2kŒt1; : : : ; tn;X � is separable
as a polynomial over k.t1; : : : ; tn/, there exist infinitely many c 2 kn for which
f .c;X / is irreducible and separable over k.
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Integral Ring Extensions
with Applications to Galois Theory

1. We now explain how the notion of an algebraic field extension can be generalized
to rings in the appropriate way. Let A be a ring with unity and R a subring of A

containing the unity of A. Suppose also that R is central, that is to say, each of its
elements commutes with all elements of A. (In particular, R is commutative.) In
this situation we say that

A=R is a ring extension:

If A=R is a ring extension, we can regard A in a natural way as an R-algebra.
Conversely, if A is an algebra (with unity element 1) over a commutative ring R

with unity, there is a natural ring homomorphism

R ! A

a ‘ a1

whose image R0 is a subring of the center of A and contains the unity of A. Then
A=R0 is a ring extension in the sense just defined.

Definition 1. Let A be an algebra over a commutative ring R with unity. An element
˛ of A is called integral over R if there exists a normalized polynomial

(1) f .X /D X n C an�1X n�1 C � � � C a0 2 RŒX �

of degree n � 1 over R such that

(2) f .˛/D ˛n C an�1˛
n�1 C � � � C a0˛

0 D 0:

An equation of the form (2) is called an integrality equation for ˛ over R.

Examples. (1) For a field extension E=K, an element of E is integral over K if
and only if it is algebraic over K.

(2) Let k be a field and K D k.X1; : : : ;Xn/ the field of rational functions in
n variables X1; : : : ;Xn over k. Let s1; : : : ; sn be the elementary symmetric
functions in X1; : : : ;Xn. Then each Xi is integral over kŒs1; : : : ; sn�; see (17)
in Chapter 15.
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(3) The elements of � that are integral over � are called algebraic integers. The
following complex numbers, for example, are algebraic integers: 5,

p
2, 1C i ,

e2� i=n for n 2 �, and 1
2
.�1 C p

5/.

F1. Let A be an algebra over a commutative ring R with unity. If A is finitely
generated as an R-module, every element of A is integral over R.

Proof. This is a direct generalization of the fact that every finite field extension is
algebraic (F4 in Chapter 2). Admittedly, the proof is harder. Since we still lack
certain conceptual tools, we fall back on the following “classical” argument:

By assumption, A possesses a finite set of generators ˇ1; : : : ; ˇn over R. We
can assume that ˇ1 D 1 (by adding this extra generator if needed). We can also
assume that R is a subring of A. Let ˛ 2 A be given. For each 1 � j � n we have

˛ ǰ D
n

X

kD1

akjˇk for some akj 2 R:

Otherwise stated, there are relations

(3)
n

X

kD1

.akj � ıjk˛/ˇk D 0 for 1 � j � n;

where ıjk is the Kronecker delta. Make the abbreviation

cjk WD akj � ıjk˛

and denote by C D .cjk/j ;k the corresponding n � n matrix over the commutative
ring RŒ˛�. The adjoint matrix QC D . Qcjk/j ;k of C satisfies

QC C D det.C /En;

where En is the n�n identity matrix (see for example LA I, p. 148). From (3) there
follows, for all 1 � i � n,

0 D
n

X

jD1

Qcij

� n
X

kD1

cjkˇk

�

D
n

X

kD1

n
X

jD1

Qcij cjkˇk D
n

X

kD1

det.C / ıikˇk D det.C /ˇi :

Since ˇ1 D 1 this implies

det.C /D det
�

.ajk � ıjk˛/j;k
� D 0:

Thus ˛ is a root of the polynomial

f .X /D det
�

.ıjkX � ajk/
� 2 RŒX �:

But f .X / is normalized of degree n � 1, so ˛ is indeed integral over R. ˜
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Definition 2. A ring extension A=R is called integral if every element of A is
integral over R.

A ring extension A=R is called finite if A is finitely generated as an R-module.

Given this definition, F1 can be rephrased very simply:

F10. Every finite ring extension A=R is integral.

The following integrality criterion for elements can then be stated:

F2. Let A be an algebra over a commutative ring R with unity. Given an element ˛
in A, there is equivalence between:

(i) ˛ is integral over R.

(ii) The subalgebra RŒ˛� of A is finitely generated as an R-module.

(iii) There exists a subalgebra A0 of A that contains ˛ and is finitely generated as
an R-module.

Proof. (i) ) (ii): By definition, RŒ˛� D fg.˛/ j g 2 RŒX �g. Let f .˛/ D 0 be an
integrality equation for ˛ over R. Since f is normalized, division with rest yields
for any g 2 RŒX � a representation

g.X /D h.X /f .X /C r.X /;

with h.X /; r.X / 2 RŒX � and deg r < degf DW n. Since g.˛/D r.˛/ it follows that
1; ˛; : : : ; ˛n�1 generate the R-module RŒ˛�.

The implication (ii) ) (iii) is trivial, and (iii) ) (i) follows from F1. ˜

In the sequel we will assume all rings to be commutative with unity.

Lemma 1. If A=R and B=A are finite ring extensions, B=R is also finite.

Proof. The relations A D Re1 C � � � C Rem and B D Af1 C � � � C Afn obviously
imply B D Re1f1 C � � � C Remfn. ˜

F3. For a ring extension A=R, there is equivalence between:

(i) There exist finitely many elements ˛1; : : : ; ˛m of A integral over R and such
that A D RŒ˛1; : : : ; ˛m�.

(ii) A=R is finite.

Proof. (ii) ) (i) is clear: We can choose for ˛1; : : : ; ˛m a set of elements that
generate A as an R-module. Then we actually have A D R˛1 C� � �CR˛m, and F10
says that the ˛i are integral over R.

(i) ) (ii) is proved by induction on m. For mD 0 there is nothing to prove. Suppose
(i) holds with some m � 1 and set A0 D RŒ˛1; : : : ; ˛m�1�. Then A D A0Œ˛m�, and
˛m is integral over A0. Therefore, by F2, A=A0 is finite. A0=R is also finite, by the
induction hypothesis. The finiteness of A=R follows from Lemma 1. ˜
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F4 and Definition 3. Let A=R be a ring extension. The subset

C D f˛ 2 A j ˛ is integral over Rg
is a subring of A containing R. We call C the integral closure of R in A.

Proof. Clearly R � C , since every a 2 R is a root of the normalized polynomial
X � a over F . Now let ˛; ˇ be elements of C , and take the subalgebra RŒ˛; ˇ�

of the R-algebra A. By F3, the extension RŒ˛; ˇ�=R is finite. Thus, by F10, all
elements of RŒ˛; ˇ� are integral over R, so

RŒ˛; ˇ�� C:

In particular, ˛Cˇ, ˛�ˇ and ˛ˇ all belong to C . This completes the proof. ˜

Definition 4. Let A=R be a ring extension. We say that R is integrally closed in A

if R coincides with its integral closure in A.

F5. For every ring extension A=R, the integral closure C of R in A is integrally
closed in A.

Proof. Let ˛ 2 A be integral over C . Then

˛n C˛n�1˛
n�1 C � � � C˛0 D 0; with ˛i 2 C; n � 1:

Clearly ˛ is then integral over the R-subalgebra A0 D RŒ˛0; ˛1; : : : ; ˛n�1� of C as
well. By F3 the extension A0=R is finite; A0Œ˛�=A0 is also finite, by F2. Therefore
A0Œ˛�=R is finite. But then, by F10, the element ˛ must be integral over R (since it
belongs to A0Œ˛�). This shows that ˛ 2 C . ˜

F6. Let A=R and B=A be ring extensions. If A=R and B=A are integral, so is B=R

(and conversely).

Proof. Let C be the integral closure of R in B. Since A=R was assumed integral,
we have A � C . Since B=A is also integral by assumption, B=C is integral. But
now F5 says that C is integrally closed in B, so B D C . ˜

2. We now turn our attention to subrings of fields.

F7. Let E=R be a ring extension, and assume that E is a field. If ˛ 2 E is algebraic
(equivalently, integral) over the field K of fractions of R in E, there exists a nonzero
c 2 R such that c˛ is integral over R.

Proof. Let

(4) f .˛/D ˛n C an�1˛
n�1 C � � � C a0 D 0

be an algebraic equation for ˛ over K. There certainly exists a nonzero c 2 R such
that

cai 2 R for all 0 � i � n � 1:
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Multiplying (4) by cn we get

.c˛/n C can�1.c˛/
n�1 C � � � C a0cn D 0;

which is an integrality equation for c˛ over R. ˜
Definition 5. An integral domain R is called integrally closed, or normal, if R is
integrally closed in its fraction field.

F8. Every unique factorization domain R is integrally closed.

Proof. This has already been stated in different words in Chapter 5, F8 — and proved
using Gauss’s Lemma! One can also justify the statement as follows: Any element
˛ of K D Frac R has the form ˛ D a=b, with a; b 2 R; since R is a UFD, one can
also assume that a; b are relatively prime. Now let ˛ be integral over R, satisfying,
say, ˛n C an�1˛

n�1 C � � � C a0 D 0 with each ai in R. Multiplication by bn yields

an C ban�1an�1 C � � � C a0bn D 0;

so b divides an. But because a; b are relatively prime and R is a UFD, this can only
happen if b is a unit of R. Then ˛ D a=b lies in R. ˜
Remark. We can now show how the Fundamental Theorem on Symmetric Func-
tions (page 177) can be derived from F4 in Chapter 15: Let h.X1; : : : ;Xn/ be a
symmetric polynomial in kŒX1; : : : ;Xn�. We already know that h lies in the subfield
k.s1; : : : ; sn/ of k.X1; : : : ;Xn/ generated by the elementary symmetric functions
s1; : : : ; sn. This subfield is the fraction field of the ring R WD kŒs1; : : : ; sn�. We also
know that each Xi is integral over kŒs1; : : : ; sn�; thus, by F4, so is each element of
kŒX1; : : : ;Xn�. In particular, h is integral over R. But R D kŒs1; : : : ; sn� is a poly-
nomial ring in n variables over a field k; therefore R is a UFD, by Gauss’s Theorem
(page 46), and hence integrally closed, by F8. Thus h does lie in R D kŒs1; : : : ; sn�

as desired.

Lemma 2. Let A=R be a ring extension and � W A ! B a ring homomorphism. If
˛ 2 A is integral over R, then �.˛/ is integral over �.R/.

Proof. This is clear. ˜
F9. Let E=K be a finite field extension and assume K is the fraction field of an
integral domain R. If R is integrally closed, the minimal polynomial of an element
˛ of E integral over R has all its coefficients in R. In particular, SE=K .˛/ and
NE=K .˛/ lie in R.

Proof. Over an algebraic closure C of E, let g WD MiPoK .˛/ have the factorization

g.X /D
n

Y

iD1

.X �˛i/; with ˛1 D ˛:

There exist K-homomorphisms �i W K.˛/! C such that �i.˛/D ˛i . By Lemma 2,
all the ˛i are integral over R. The coefficients of g are polynomial expressions
sj .˛1; : : : ; ˛n/ in the ˛i , and thus, by F4, also integral over R. But R was assumed
to be integrally closed, and g lies in KŒX �, so we obtain g 2 RŒX � as required. ˜
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Another justification for F9 is provided by the next result, which in view of F8
represents a generalization of Gauss’s Lemma (F7 in Chapter 5):

F10. Let R be an integrally closed integral domain, with fraction field K. Let
f;g;h 2 KŒX � be normalized polynomials over K, with

(5) f D gh:

If all the coefficients of f lie in R, so do the coefficients of g and h.

Proof. Let E be a splitting field of f over K. Over E we have

f .X /D
n

Y

kD1

.X �˛k/:

Since f is normalized, all the ˛k are integral over R. In view of (5), there exist
I;J � f1; 2; : : : ; ng such that

g.X /D
Y

i2I

.X �˛i/; h.X /D
Y

j2J

.X � j̨ /:

Being polynomial expressions in the integral elements ˛k , the coefficients of g and
h are also integral over R. Moreover they lie in K, and R is integrally closed; thus
indeed g;h 2 RŒX �. ˜

F11. Let E=R be an integral ring extension. If E is a field, so is R.

Proof. Take ˛ 2 Rrf0g. The element 1=˛ of E satisfies by assumption an equation
of the form

.1=˛/n C an�1.1=˛/
n�1 C � � � C a0 D 0

over R. Multiply out by ˛n�1 to get

1=˛ D �an�1 � an�2˛� � � � � a0˛
n�1 2 R:

Thus R is a field. ˜

The next result is useful in various contexts:

F12. Let A be a subring of � obtained from � by adjoining algebraic integers.
For a given prime p the natural homomorphism � ! �p can be extended to a ring
homomorphism from A into an algebraic closure of �p .

Proof. First note that the principal ideal pA of A is distinct from A. Otherwise there
would be a relation 1 D p˛ with ˛ 2 A, and then we would have 1=p 2 A\� D �.

Next, since pA ¤ A, there is a maximal ideal P of A such that pA � P (see
Chapter 6, F12). The inclusion � � A then yields a natural homomorphism

(6) �=p� ! A=P:
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This map is injective, since �=p� is a field. Because P is maximal, A=P is also
a field. We can then view A WD A=P as an extension of �p D �=p�, via the map
(6). Since A is integral over �, the field A is algebraic over �p (see Lemma 2), and
so is contained in an algebraic closure of �p . Thus the natural map A ! A=P D A

extends the map � ! �=p� D �p and yields a homomorphism of A into an algebraic
closure of �p . ˜
Remark. In addition one sees easily that if A=� is finite, say with AD�Œ˛1; : : : ; ˛n�,
there can only be finitely many extensions with the properties stated in the conclu-
sion of F12.

We would not want to pass up the chance to point out that F12 is a special case
of a result that is quite general:

F12�. Let A=R be an integral ring extension (of arbitrary commutative rings). Every
homomorphism from R into an algebraically closed field F can be extended to a
homomorphism from A into F . In other words: For each prime ideal p of R there is
at least one prime ideal P of A such that

(7) p D P \ R:

We will not prove F12� here; see §16.12 in the Appendix.

3. Now we would like to show how the basic results about ring extensions presented
in the last two sections are useful, for instance, when one is investigating the Galois
group of a given equation. Naturally enough, we keep in mind first the case where
the ground field is K D �.

Suppose then that we are given a normalized polynomial f 2 �ŒX � of degree
n � 1. First we get rid of multiple roots, by taking the gcd of f and f 0 and dividing
f by it. We can also arrange for all the coefficients of f to be in �, by making
a substitution X ‘ X=c for a judiciously chosen integer c (much as in the proof
of F7) and dividing by the leading coefficient to keep the polynomial normalized.
These changes do not affect the Galois group G of f over �.

It is now natural to look at the reduction modulo some appropriate prime p. We
cannot hope that this will still leave the Galois group unaltered — consider that only
cyclic Galois groups occur over a finite field — but we can expect to obtain some
partial information about G. We denote by f D f .X / the canonical image of f in
�p ŒX � and we assume moreover that f has no multiple roots. Over a splitting field
E of f over � we have

(8) f .X /D .X �˛1/.X �˛2/ : : : .X �˛n/:

If A denotes the integral closure of � in E, one can extend the natural map � ! �p

into a homomorphism ' from A into an algebraic closure of �p (see F12); over this
algebraic closure we have

(9) f .X /D .X �˛1/.X �˛2/ : : : .X �˛n/;

with ˛i D '.˛i/. We can then state the following law:
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Theorem 1. We maintain the preceding notation and the assumption that f has
no multiple roots. As a group of permutations of the roots ˛1; ˛2; : : : ; ˛n of f ,
the Galois group G.f / of f over �p is isomorphic to a subgroup of the Galois
group G.f / of f over �, likewise regarded as a group of permutations of the roots
˛1; ˛2; : : : ; ˛n of f .

We postpone the proof of this theorem a bit in order to illustrate its application
to the case of the polynomial

(10) f .X /D X 5 � X � 1:

For p D 2, the prime factorization of f in �p ŒX � is

(11) f .X /D .X 2 C X C 1/.X 3 C X 2 C 1/:

From this we see immediately that G.f / contains a transposition (as well as a three-
cycle). Because of Theorem 1, the Galois group G.f / over � must also contain a
transposition (as well as a three-cycle).

If we now examine f modulo the prime p D 5 as well, we can in fact conclude,
as outlined on page 190, that G.f / is isomorphic to the full symmetric group S5.

An important ingredient in the application of Theorem 1, of course, is that G.f /

is isomorphic to a subgroup of G.f / not just as an abstract group, but rather with
preservation of the permutation structure; otherwise in the p D2 example one would
not be able to conclude that G.f / contains a transposition, only some element of
order 2. ˜

The proof of Theorem 1 will be given in a more general framework. Instead
of � we will consider an arbitrary integrally closed ring R with fraction field K.
We will start from a normalized polynomial f .X / 2 RŒX � of degree n � 1. Let E

be a splitting field of f over K and let A be the integral closure of R in E. Also
suppose given a maximal ideal p of R with quotient field R D R=p. We assume
that the natural map R ! R can be extended to a homomorphism

' W A ! F

from A into an algebraic closure F of R. (This does not represent a restriction;
for R D � we have seen why in F12, and for the general case one would resort to
F12�.) In general there are many ways to extend R ! R to a homomorphism from
A into a given algebraic closure F of R, but we imagine having chosen such an
extension once and for all, and denote it by ˛‘ ˛; let its image be A and its kernel
P. An obvious idea is to form the set

(12) GP D f� 2 G j �P D Pg
of all those elements � of the Galois group G D G.f / D G.E=K/ of f over K

that map the kernel P of ' into itself. Clearly GP is a subgroup of G, and by
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the definition of GP each element � 2 GP gives rise to an automorphism of the
algebraic field extension A=R which is well defined by the condition

(13) �.˛/D �.˛/:

Note that the extension A=R is normal, which can be seen as follows: Let ˇ 2 A be
arbitrary and take g D MiPoK .ˇ/. Since the normalized polynomial g 2 RŒX � splits
into linear factors over E, one sees by applying ' that g also splits into linear factors
over A. Since g.ˇ/D 0 the assertion follows; moreover one gets R.ˇ/ WR � E WK,
on account of which the largest separable subextension of A=R must be finite. As
we have already seen, the map

(14)
GP ! G.A=R/

� ‘ �

affords a natural homomorphism between the subgroup GP of G and the group
G.A=R/ of the normal field extension A=R. As before, let f be the canonical
image of the given polynomial f in R ŒX �. If (8) is the factorization of f over E,
(9) is the factorization of f over A. Since R Œ˛1; : : : ; ˛n� is contained in A, the map
(14) yields a homomorphism

(15) GP ! G.f /

from GP into the group of f over R.
From now on we assume that f has no multiple roots, so the ˛1; ˛2; : : : ; ˛n in

(9) are all distinct. Then the map (15) is obviously injective: For if �˛i D j̨ with
� 2 GP and j ¤ i , we get � ˛i D �˛i D ˛j , that is, � ¤ 1. And what’s more, we
have the following theorem (which encompasses the statement of Theorem 1):

Theorem 2. In the situation above, assuming that f has no multiple roots, the maps
(14) and (15) are isomorphisms.

Proof. Let’s first assume that (14) is already known to be surjective. Because (15)
is injective, as we have just seen, it follows that G.f /D G.A=R/, and we are done.

The proof that (14) is surjective is carried out in two steps:

(1) Let Z be the fixed field of GP in E and let S D A \ Z be the integral closure
of R in Z. We wish to show that S D R. For this we take elements 1; �2; : : : ; �r of
G that give rise to the distinct K-homomorphisms from Z into E; here r D Z WK.
By definition, then, P ¤ �iP and ��1

i P ¤ P. We claim that

(16) ��1
i P \ S ¤ P \ S

as well. For, given x 2 ��1
i P not lying in P, the element

NE=Z .x/D
Y

�2GP

�x
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lies in ��1
i P\S , but not in P. Since the natural map S=P\S ! A=P is injective

and P is a maximal ideal of A, the intersection P\S is a maximal ideal of S (see
F11). Now let s be any element of S . An application of the Chinese Remainder
Theorem (see Section 4.5, Lemma and F16) now yields, in view of (16), an element
z 2 S such that

z � s mod P; z � 1 mod ��1
i P for i D 2; : : : ; r:

Then, setting

a WD NZ=K .z/D z �
r

Y

iD2

�iz;

we have obtained an element of R such that a � s mod P. This shows that indeed
S D R.

(2) To prove the surjectivity of (14) we can assume from now on that GP D G.
Let 	 2 G.A=R/ be given. We will use the fact that 	 is determined by its action
on a primitive element of the largest separable subextension of A=R. Take ˇ, with
ˇ 2 K, to be such a primitive element. Let g be the minimal polynomial of ˇ over
K and let g.X /D .X �ˇ1/.X �ˇ2/ : : : .X �ˇm/ be its factorization over E. Since
	 can only take ˇ to a root of g, we have 	ˇD ˇi for some i . By the irreducibility
of g, however, there is some � 2 G such that �ˇD ˇi . There follows � D 	, which
proves the claim. ˜

As a consequence of Theorem 1 we now mention a fact first stated by Dedekind:

F13. Let f be a normalized polynomial with coefficients in � and let p be a prime
number for which the polynomial f of �p ŒX � determined by f has no multiple roots.
Let the prime factorization of f in �p ŒX � be

(17) f D f1f2 : : : fr ;

each f i having degree ni . Regarded as a group of permutations of the roots of f , the
Galois group G.f / of f over � contains an element � whose decomposition into
cycles has the form

(18) � D �1�2 : : : �r ; with length �i D ni :

(A marvelous converse was proved by Frobenius: see §11.11 in the Appendix.)

Proof. We start from the Galois group G.f / of f over �p . The orbits of the action of
G.f / on the set of roots of f are precisely the sets of roots of the distinct irreducible
factors f1; f2; : : : ; fr of f in (17). But the Galois group G.f / is cyclic, and so
generated by a single element � . Directly from the definition (Section 15.4), we
conclude that the cycle decomposition of � has the form �D�1�2 : : : �r with cycles
� i of length ni D degf i . By Theorem 1, then, each G.f / contains a permutation
� of the same type. ˜
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Remark. Under the assumptions underlying Theorem 2, we have: If P0 is another
prime ideal of A such that P0 \R D p, there exists an element � in the Galois group
G of E=K such that �P D P0.

Proof. Assume for a contradiction that �P ¤ P0 for all � 2G. Applying the Chinese
Remainder Theorem to P and the ideals ��1P0 for � 2 G, we get an ˛ 2 A such
that

˛ � 0 mod P; ˛ � 1 mod ��1P0 for all � 2 G:

Now the norm N˛ D Q

� �˛ 2 R satisfies on the one hand N˛ � 0 mod P and on
the other N˛ � 1 mod P0. Since P \ R D p D P0 \ R, this is impossible. ˜

To conclude, we mention an interesting consequence of Theorem 2 to Galois
Theory:

F14. Let k be a hilbertian field (see Remark (a) at the end of Chapter 15). Let
a subgroup G of Sn be given. G can be regarded in a natural way as a group of
automorphisms of the field of rational functions E D k.X1; : : : ;Xn/ in n variables
over k; let K D EG denote the fixed field of G in E. Under the assumption that K

is also a rational function field

K D k.t1; : : : ; tn/

in n variables t1; : : : ; tn over k, the group G can be realized as a Galois group over
the field k.

Proof. By the Primitive Element Theorem there is some ˛ 2 E such that E D K.˛/,
and we can assume that ˛ is integral over kŒt1; : : : ; tn�. So let f D f .t1; : : : ; tn;X /

be the minimal polynomial of ˛ over K. Since k is hilbertian, there exist c1; : : : ; cn 2
k such that f D f .c1; : : : ; cn;X / is irreducible and separable in kŒX �. It follows
directly from Theorem 2, together with F12�, that the Galois group G.f / of f over
k is isomorphic to a subgroup of G D G.E=K/. Because f is irreducible we then
have jG.f /j � deg f D degf D jGj, so G is isomorphic to G.f /, proving the
assertion. ˜

The relevance of F14 to inverse Galois theory over � (page 178) stands out in
view of the Hilbert Irreducibility Theorem (Section 15.7): A given finite group G of
order n can be regarded naturally as a subgroup of Sn, and thus also as a group of
automorphisms of the field of rational functions �.X1; : : : ;Xn/ in n variables over
�. If the fixed field K of G is likewise a field of rational functions in n variables
over �, the given group G is isomorphic to the Galois group of a Galois extension
L=� with ground field �.

The conjecture that the field K so obtained always satisfies the condition just
stated is generally attributed to Emmy Noether, although her 1917 work has no hint
of it; nor does Hilbert’s foundational work of 1892 contain any intimation in this
direction. In 1969 a counterexample to the conjecture was exhibited by Swan, for G

a cyclic group of order 47 (Invent. Math. 7, 148–158). Thus the central problem of
inverse Galois theory is not to be put to rest so easily; and yet the methodical study
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of function fields remains by all means a fruitful approach. (One may also remark
that the counterexamples found by Swan involve only certain cyclic groups, that
is, groups whose realizability as Galois groups over � is known on other grounds
anyway: see §14.10 in the Appendix.)

The reader who wishes to get a glimpse of current work on inverse Galois theory
is referred to Inverse Galois theory by G. Malle and B. H. Matzat’s (Springer, 1999)
and to Generic polynomials: constructive aspects of the inverse Galois problem by
C. Jensen, A. Ledet and N. Yui (Cambridge, 2002).
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The Transcendence of �

1. To prove the famous result, already stated in Chapter 2, that � is transcendent,
we will frame it as a special case of a more general theorem that will be of use in
other situations. Not that we shall be able to go deep into the fascinating territory
of transcendental number theory, but this approach hopefully has the advantage of
transparency, and in any case no shorter path to the transcendence of � is known
to this author. The guiding ideas are taken from Drinfeld’s booklet,1 with some
necessary minor corrections to the exposition.

Suppose that � is algebraic. Let ˇ1 D i�; ˇ2; : : : ; ˇm be the conjugates of i� .
Since ei� D �1, we have

.1 C eˇ1/.1 C eˇ2/ : : : .1 C eˇm/D 0:

Multiplying out we get

1 C
X

j

e ǰ C
X

j<k

e ǰ Cˇk C � � � C eˇ1C���Cˇm D 0:

Denote by ˛1; ˛2; : : : ; ˛n those exponents ǰ , ǰ Cˇk , . . . , ˇ1C� � �Cˇm that are
nonzero, and rewrite the preceding relation as

(1) N C e˛1 C e˛2 C � � � C e˛n D 0;

where N 2 � and all the ˛i are nonzero by assumption.
Now, a conjugacy map simply permutes the numbers ˛1; ˛2; : : : ; ˛n. But then

the existence of a relation (1) is precluded by Theorem 1 on the next page.

2. As a stepping stone to Theorem 1 we state and prove an elementary approxima-
tion property of the exponential function in connection with an arbitrary polynomial

(2) f .X /D c0 C c1X C � � � C cmX m:

1 G. I. Drinfeld, Kvadratura kruga i transcendentnost~ qisla � , Vishcha shkola,
Kiev, 1976; German translation: Quadratur des Kreises und Transzendenz von � (Mathe-
matische Schülerbücherei, 101), VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
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First we claim that for every nonzero x 2 � and every j D 0; 1; 2; : : : ,

(3) j !ex D j ! C j !x C j !

2!
x2 C � � � C xj C xjC1qj .x/e

jxj;

where jqj .x/j< 1.
The questionable remainder of the series j !ex is xjC1ıj .x/, where

ıj .x/D 1

j C1
C x

.j C1/.j C2/
C x2

.j C1/.j C2/.j C3/
C � � � :

Thus

jıj .x/j � 1 C jxj
1 � 2 C jxj2

1 � 2 � 3 C � � � < ejxj

for x ¤ 0. It follows that qj .x/ WD ıj .x/e
�jxj does indeed satisfy jqj .x/j< 1.

Now multiply (3) by cj , for j D 0; 1; : : : ;m, and add together the resulting
equalities. After a simple calculation, this leads to:

Lemma. For f .X / as in (2), set

(4) F.X /D f .X /Cf .1/.X /C � � � Cf .m/.X /:

Then for every nonzero x 2 � we have

(5) F.0/ex D F.x/C ejxjQ.x/;

where

(6) F.0/D
m

X

jD0

cj j !

and

(7) Q.x/D
m

X

jD0

cj qj .x/x
jC1; with jqj .x/j< 1:

3. We denote by �c the field of all algebraic numbers, that is, the algebraic closure
of � in �.

Theorem 1. Let ˛1; : : : ; ˛n 2 �c r f0g and a1; : : : ; an 2 � be given, satisfying
the following condition: For every automorphism � of �c=� there is a permutation
s 2 Sn such that �˛i D ˛s.i/ and as.i/ D ai for all i . Then there exists no nonzero
integer a satisfying

(8) a1e˛1 C a2e˛2 C � � � C ane˛n D a:

Proof. The ˛i are roots of a polynomial g.X /D P

biX
i 2 �ŒX � of degree n. For

a given prime p (which will be chosen later) we consider the polynomial f .X /
defined by

(9) .p � 1/!f .X /D X p�1g.X /p DW
m

X

p�1

cj X j 2 �ŒX �;
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where m D np C p � 1. Now we form the polynomial F associated with f as in
(4), and obtain, with the notations of the lemma, the equations

F.0/e˛i D F.˛i/C ej˛i jQ.˛i/:

Multiplying by ai and adding together, we obtain, after using (8),

(10) aF.0/� a1F.˛1/� � � � � anF.˛n/D a1ej˛1jQ.˛1/C � � � C anej˛njQ.˛n/:

Now, it follows from the definitions that, for each i ,

(11) F.˛i/D p � h.˛i/ for some h 2 �ŒX � of degree< np:

(Note that ˛i is a root of f of multiplicity at least p, so all the derivatives of f of
order up to p � 1 vanish at ˛i .)

Because the ˛1; : : : ; ˛n are algebraic numbers, we can find b 2 � such that all
numbers b˛k

i with k � n are algebraic integers. Then bph.˛i/ is also an algebraic
integer for every i . Multiplying by bp we get from the left-hand side of (10) an
algebraic integer; since this number must also, by assumption, be invariant under
all automorphisms, we have

(12) abpF.0/� a1bpF.˛1/� � � � � anbpF.˛n/ 2 �:

Choose p large enough that

(13) p - ab0b:

The number F.0/, being equal to
Pm

jDp�1 cj j !=.p � 1/!, must be an integer, and
modulo p we have

F.0/� cp�1 D b
p
0 � b0 mod p:

For p as in (13), therefore, the first summand in (12) is not divisible by p. In view
of (11), this shows that the whole sum (12) is not divisible by p, and a fortiori it
is nonzero. We will thus have a contradiction with (10) if we show that for large
enough p,

(14)
ˇ

ˇa1bpQ.˛1/e
j˛1j C � � � C anbpQ.˛n/e

j˛njˇ
ˇ< 1:

By the definition of Q.x/ in (7), we have

.p � 1/!jQ.x/j �
m

X

jD0

jcj j jxjjC1 D jxj
m

X

jD0

jcj j jxjj

� jxj jxjp�1

�

X

i

jbi j jxji
�p

D jxjp
�

X

i

jbi j jxji
�p

:

(For the last inequality, note that the cj arise from the bi by a polynomial law.)
From this we see that, for i D 1; 2; : : : ; n,

(15)
ˇ

ˇaib
pQ.˛i/

ˇ

ˇ � M p

.p � 1/!
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with a constant M > 0 that depends only on the initial data, not on p. For large
enough p, then, the right-hand side of (15) becomes as small as we please; in
particular one can arrange for (14) to hold. ˜

Now, starting from Theorem 1, we would like to derive some more general
transcendence statements. Following Weierstrass (see his Werke, vol. II), we first
formulate the following result:

Lemma. Suppose given algebraic numbers x1; : : : ;xm, all distinct. If .a.k/j /j 2
�m r f0g for k D 1; 2; : : : ; r , form the product

P D
Y

i

�

X

j

a
.i/
j exj

�

D
X

j1;:::;jr

a
.1/
j1

a
.2/
j2
: : : a

.r/
jr

exj1
C���Cxjr :

By collecting together terms having the same sums in the exponent, we obtain a
representation

(16) P D
X

j�0

cj ezj ;

with z0; z1; z2; : : : all distinct (where each cj is a sum of products a
.1/
j1
: : : a

.r/
jr

with
xj1

C � � � C xjr
D zj ). Then at least one of the cj in (16) is nonzero.

Proof. Since the order of the xi is not involved, we can assume that they are ordered
lexicographically as points in � D �2: x1 > x2 > � � � > xm. If we define ik , for
each k, as the lowest index such that a

.k/
ik

¤ 0, and then set zi D xi1
C� � �Cxir

, the
corresponding ci is nonzero; for if

a
.1/
j1
: : : a

.r/
jr

exj1
C���Cxjr

is another nonzero summand, then jk � ik for each k and hence xj1
C � � � C xjr

�
xi1

C� � �Cxir
, and equality can only hold if j1 D i1, . . . , jr D ir . Thus we see that

ci D a
.1/
i1
: : : a

.r/
ir

¤ 0. ˜
Theorem 2. If x1;x2; : : : ;xm are distinct algebraic numbers, then ex1 ; ex2 ; : : : ; exm

are linearly independent over �.

Proof. We pick a finite Galois extension K=� containing all the xi . By supple-
menting the x1;x2; : : : ;xm with conjugates as needed, we can assume that every
� 2 G D G.K=�/ effects a permutation of the xi ; thus there is a well defined
element of Sm, still denoted by � , such that �xi D x�.i/. Now suppose there is a
nontrivial relation

(17)
m

X

jD1

aj exj D 0; with aj 2 �:

We form the product

(18)
Y

�

�

X

j

a�.j/e
xj

�

D
s

X

iD0

cie
zi ;
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where according to the lemma some coefficient on the right-hand side, say c0, is
nonzero. Clearly each � effects a permutation of the zi , and it is easy to see that
�zi D zj always implies cj D ci . By collecting conjugates together in (18) and
renumbering appropriately, we obtain

(19)
t

X

kD0

bk

�

X

�

e�zk

�

D 0; with bk 2 �

and b0 ¤ 0. We next multiply (19) by
P

� e��z0 , obtaining

(20)
X

k

bk

�

X

�;�

e�zk ��z0

�

D
X

k

bk

�

X

�;


e�.zk�
z0/

�

D 0:

Let H be the subgroup of all 	2 G such that 	z0 D z0. Then the expression zk �	z0

vanishes if and only if k D 0 and 	 2 H . Consider the nonvanishing members of
the family .zk � 	z0/k;r for all k and 	 2 H , and call them y1;y2; : : : ; then (20)
yields

(21) r0 C
X

i�1

ri

�

X

�

e�yi

�

D 0;

with ri 2 �, where r0 D jGj � jH j �b0 ¤ 0. Denoting by ˛1; ˛2; : : : ; ˛n the members
of the familiy .syi/s;i , for all i and � 2 G, we finally get from (21) a relation

n
X

iD1

aie
˛i D a

of precisely the form precluded by Theorem 1. ˜

As a consequence of Theorem 2, we obtain:

Theorem 3 (Hermite–Lindemann). If ˛¤ 0 is an algebraic number, e˛ is transcen-
dental. In particular, e is transcendental (and also � , since ei� D �1).

Proof. If e˛ were algebraic, there would be a nontrivial relation

a0e0 C a1e˛ C a2e2˛ C � � � C anen˛ D 0 with ai 2 �;

contradicting Theorem 2. ˜

Theorem 3 was first proved by Lindemann, using methods developed by Hermite,
who had already been able to use them to show the transcendence of e.

A more general fact than Theorem 2 was stated by Lindemann and proved by
Weierstrass:

Theorem 4 (Lindemann–Weierstrass). If x1; : : : ;xm are distinct algebraic numbers,
ex1 ; ex2 ; : : : ; exm are linearly independent over �c .
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Proof. Suppose
a1ex1 C � � � C amexm D 0;

where a1; : : : ; am are nonvanishing algebraic numbers. Choose a finite Galois ex-
tension K=� containing all the ai . Setting G D G.K=�/ we form the product

Y

�2G

�

X

j

a�j exj

�

D
X

i

cie
zi ;

as in the lemma. One easily sees that each ci is invariant under all the � 2 G; thus
ci 2 �. In view of the lemma, this leads to a contradiction with Theorem 2. ˜

As an exercise, derive from Theorem 4 the following fact: If a chord of the unit
circle has as its length a (nonzero) algebraic number, the length of the corresponding
arc cannot be constructed with ruler and compass, and neither can the area of the
corresponding sector.



18

Fundamentals of Transcendental Field Extensions

1. Let E=K be a fixed field extension. Let M be a subset of E. By the algebraic
closure of M in E we understand the algebraic closure of K.M / in E (see F8 in
Section 2.5). We denote this field by

H.M /D HE=K .M /:

We say that an element ˛ in E is algebraically dependent of M (over K) if ˛ lies
in H.M /, that is, if ˛ algebraic is algebraic over K.M /. Clearly

(i) M � H.M /;

(ii) M � M 0 ) H.M /� H.M 0/;
(iii) H.H.M //D H.M /.

Definition 1. We say that M is algebraically independent (over K) if

˛ … H.M r f˛g/ for all ˛ 2 M;

that is, if every ˛ in M is transcendental over K.M r f˛g/. Otherwise we say that
M is algebraically dependent (over K).

The formal analogy between these notions and those of linear .in/dependence,
familiar from linear algebra, is self-evident. The following statements are also clear:

(iv) M algebraically dependent if and only if there exists some ˛ 2 M that is
algebraic over K.M r f˛g/.

(v) An element ˛ 2 M lies in H.M r f˛g/ if and only if H.M /D H.M r f˛g/.
(vi) If ˛ is algebraic over K.M / and does not lie in M , then M [ f˛g is alge-

braically dependent.

(vii) M is algebraically dependent if and only if M has a finite subset that is still
algebraically dependent.

(viii) M is algebraically independent if and only if every finite subset of M is
algebraically independent.
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F1. M is algebraically independent if and only if , for any distinct elements
˛1; : : : ; ˛n of M (where n is any positive integer), the canonical homomorphism
of K-algebras from the polynomial ring KŒX1; : : : ;Xn� into E defined by

Xi ‘ ˛i for 1 � i � n

is injective; in other words, if and only if there is no nontrivial algebraic relation
linking the ˛i (the meaning of this expression being that f .˛1; : : : ; ˛n/ D 0 implies
f D 0 for f 2 KŒX1; : : : ;Xn�).

Proof. Without loss of generality, we can assume that M D f˛1; : : : ; ˛ng has n

elements.

(1) Assume that M is algebraically dependent. Then there exists i such that ˛i is
algebraically dependent of M rf˛ig; we may as well suppose it’s i D n. Therefore
˛n is algebraic over K.˛1; : : : ; ˛n�1/D Frac KŒ˛1; : : : ; ˛n�1�. Thus

m
X

iD0

gi.˛1; : : : ; ˛n�1/˛
i
n D 0;

for certain polynomials gi D gi.X1; : : : ;Xn�1/ in KŒX1; : : : ;Xn�1�, the last of
which satisfies gm.˛1; : : : ; ˛n�1/¤ 0. If we set

f .X1; : : : ;Xn/ WD
m

X

iD0

gi.X1; : : : ;Xn�1/X
i
n;

the polynomial f 2KŒX1; : : : ;Xn� satisfies f .˛1; : : : ;˛n/D0 but f .X1; : : : ;Xn/¤0.

(2) Conversely, assume instead that M D f˛1; : : : ; ˛ng is algebraically independent,
and suppose that f .˛1; : : : ; ˛n/ D 0 for some f 2 KŒX1; : : : ;Xn�. We must show
that f D 0. Now, f has a representation of the form

(1) f .X1; : : : ;Xn/D
m

X

iD0

gi.X1; : : : ;Xn�1/X
i
n;

with uniquely determined polynomials gi.X1; : : : ;Xn�1/2 KŒX1; : : : ;Xn�1�. Since
f .˛1; : : : ; ˛n/D 0, we have

(2)
m

X

iD0

gi.˛1; : : : ; ˛n�1/˛
i
n D 0:

This is an algebraic equation for ˛n over K.˛1; : : : ; ˛n�1/. By assumption it must
be trivial, that is, gi.˛1; : : : ; ˛n�1/ D 0 for all i . By induction this implies that
gi.X1; : : : ;Xn�1/D 0 for all i , and hence f D 0. ˜
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F2. Let M be a subset of E and ˛ any element of E.

(a) If M is algebraically independent but M [ f˛g is algebraically dependent, we
have ˛ 2 H.M /, that is, ˛ depends algebraically on M .

(b) If B is a maximal algebraically independent subset of M , then M is contained
in H.B/, that is, every element of M is algebraic over K.B/.

Proof. (a) Under the assumption, there exist distinct elements ˛1; : : : ; ˛n�1 and
˛n D ˛ in M [ f˛g satisfying a nontrivial algebraic relation

(3) f .˛1; : : : ; ˛n/D 0 with f 2 KŒX1; : : : ;Xn� nonzero:

Write f in the form (1); not all the gi.X1; : : : ;Xn�1/ vanish. Because of (3), the
relation (2) is satisfied. Here not all the gi.˛1; : : : ; ˛n�1/ can vanish; for otherwise,
because of the algebraic independence of ˛1; : : : ; ˛n�1 over K, all the gi would
vanish, by F1. Therefore (2) represents a nontrivial algebraic equation for ˛n over
K.˛1; : : : ; ˛n�1/, meaning that ˛n is in fact algebraic over K.˛1; : : : ; ˛n�1/ and
hence also over K.M /.

Part (b) is an immediate consequence of (a). ˜

Definition 2. A transcendence basis of a field extension E=K is a set B � E such
that

(i) E D H.B/ (so the extension E=K.B/ is algebraic), and

(ii) B is algebraically independent (over K).

F3. If B is a subset of E, the following conditions are equivalent:

(i) B is a transcendence basis of E=K.

(ii) If B is contained in a subset M of E such that H.M /DE, then B is a maximal
algebraically independent subset of M .

(iii) There exists a subset M of E such that H.M / D E and that B is a maximal
algebraically independent subset of M .

Proof. (i) ) (ii): Take ˛ 2 M r B. We must show that B [ f˛g is algebraically
dependent. But this is clear because ˛ 2 H.B/ D E, according to statement (vi)
after Definition 1 (with B playing the role of M ).

(ii) ) (iii): Take M D E.

(iii) ) (i): All we have to show is that H.B/D E. By F2(b), M is contained in
H.B/. Therefore E D H.M /� H.H.B//D H.B/. ˜

Theorem 1. Every field extension E=K has a transcendence basis. More precisely:
Given a subset M of E such that E=K.M / is algebraic, and given a subset C of
M that is algebraically independent over K, there exists a transcendence basis B of
E=K such that C � B � M .



212 18 Transcendental Field Extensions

Proof. We must enlarge C to make it a maximal algebraically independent subset
B of M ; by F3, such a set is a transcendence basis of E=K. If M is finite, the
existence of B is clear. If M is infinite, one resorts to Zorn’s Lemma, the argument
being wholly similar to the one used for the proof of Chapter 6, F11. ˜

F4. Let E=K be a field extension and M a subset of E such that E=K.M / is
algebraic. If C is any subset of E algebraically independent over K, there exists a
subset M 0 of M disjoint from C and such that C [ M 0 is a transcendence basis of
E=K.

Proof. By Theorem 1, there exists a transcendence basis B of E=K such that
C � B � M [ C . Now set M 0 WD B r C . Then M 0 and C are disjoint, and their
union B is a transcendence basis of E=K. ˜

Theorem 2. Any two transcendence bases of a field extension E=K have the same
cardinality.

Proof. Let B and B 0 be transcendence bases of E=K. If B and B 0 are both infinite
sets, the desired assertion follows easily on set-theoretical grounds (see §18.2 in the
Appendix).

We now prove the assertion for the more interesting case, where E=K has a
finite transcendence basis. Let B be an n-element transcendence basis of E=K and
C D f˛1; : : : ; ˛mg an m-element algebraically independent subset of E. It suffices
to show that in these circumstances m does not exceed n.

Assume for a contradiction that m>n. We will show by induction that for every
integer k such that 0 � k � n there exist subsets

(4) B0  B1  � � �  Bk

of B such that, for each k,

(5) f˛1; : : : ; ˛kg [ Bk is a transcendence basis of E=K

and

(6) f˛1; : : : ; ˛kg \ Bk D ?:

For k D 0 we take B0 WD B. Assume the assertion is true for 0 � k < n. By F4
there is a subset BkC1 of the set f˛1; : : : ; ˛kg [ Bk that satisfies the conditions

(7) f˛1; : : : ; ˛kC1g [ BkC1 is a transcendence basis of E=K

(8) f˛1; : : : ; ˛kC1g \ BkC1 D ?:

Then BkC1 is necessarily contained Bk . Now, BkC1 and Bk cannot be equal, since
otherwise Bk [f˛1; : : : ; ˛kg[f˛kC1g would be algebraically independent according
to (7), yet algebraically dependent according to (5). By virtue of (4), Bk has at most
n�k elements. Therefore Bn is empty. Thus f˛1; : : : ; ˛ng is a transcendence basis
of E=K, by (5). Because C D f˛1; : : : ; ˛mg is algebraically independent, it cannot
happen that m> n. ˜
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Definition 3. The transcendence degree TrDeg.E=K/ of a field extension E=K is
the cardinality of any transcendence basis of E=K.

Definition 4. A field extension E=K is called purely transcendental if E=K has a
transcendence basis B for which E D K.B/.

Remarks. (1) If E=K is purely transcendental with transcendence basis B, then
E is K-isomorphic to the fraction field of the polynomial ring KŒB� in the
variables X 2 B over K.

(2) By Theorem 1, any field extension E=K has an intermediate field F for which
F=K is purely transcendental and E=F is algebraic:

(9)

Ě
ˇ

ˇ

ˇ

ˇ

)

algebraic

F̌
ˇ

ˇ

ˇ

ˇ

)

purely transcendental

K

Of course, F is not unique.

Theorem 3. Let F be an intermediate field of E=K, and let B and B 0 be transcen-
dence bases for F=K and E=F , respectively. Then B \ B 0 D ? and B [ B 0 is a
transcendence basis for E=K. In particular,

(10) TrDeg.E=K/D TrDeg.E=F /C TrDeg.F=K/:

Proof. Suppose ˛ lies in both B and B 0; then ˛, being an element of F , is algebraic
over F.B 0 r f˛g/. But because ˛ 2 B 0, this contradicts the algebraic independence
of B 0 over F . Thus B \ B 0 D ?.

Next we show that E=K.B [ B 0/ is algebraic. But assumption, F=K.B/ is
algebraic; then so is the extension

FK.B 0/ =K.B/K.B 0/ D F.B 0/ =K.B [ B 0/:

Also by assumption, E=F.B 0/ is algebraic. Since algebraicness is transitive, the
conclusion follows.

There remains to show that B [B 0 is algebraically independent over K. By F4,
we know there is a subset B 00 of B [ B 0 such that B \ B 00 D ? and that B [ B 00 is
a transcendence basis for E=K. Clearly B 00 is contained in B 0, so if we prove that
B 0 � B 00 we are done. Suppose there exists ˛ 2 B 0 r B 00. Being an element of E,
this ˛ is algebraic over K.B [ B 00/ D K.B/.B 00/, and so also over F.B 00/. Since
B 00 � B 0 and because of our assumption, ˛ is then algebraic over F.B 0 r f˛g/,
contradicting the algebraically independence of B 0 over F . ˜
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2. A fact that comes in handy on many occasions is that, for finitely generated
extensions, Theorem 1 (and Remark 2 to Definition 4) can be sharpened:

Theorem 4 (Noether’s Normalization Theorem). Let A be a commutative algebra
over a field K, and suppose that A is generated (as an algebra) by finitely many
elements x1; : : : ;xn, meaning that

(11) A D KŒx1; : : : ;xn�:

Then there exists some m � n (possibly zero) and elements u1; : : : ;um of A with the
following properties:

(a) The subalgebra KŒu1; : : : ;um� of A is a polynomial algebra over K with u1;

: : : ;um as indeterminates (if m D 0, by convention, KŒu1; : : : ;um�D K).

(b) The ring extension A=KŒu1; : : : ;um� is integral, and therefore, by (11), it is in
fact finite.

Proof. We may as well assume that x1; : : : ;xn are all distinct. We use induction
on n. The case n D 1 is clear. Suppose that n > 1 and that the assertion holds
for n�1. If the x1; : : : ;xn satisfy no nontrivial algebraic relation over K, there is
nothing to show; therefore we assume instead the existence of a nonzero polynomial
in f 2 KŒX1; : : : ;Xn� such that

(12) f .x1; : : : ;xn/D 0:

Let the explicit expression for f be

(13) f D
X

�D.�1;:::;�n/

c�X
�1

1
: : :X �n

n :

Further, let 2; 3; : : : ; n be natural numbers (about which we will have more to
say later). Setting

(14) yi D xi � x
�i

1
for 2 � i � n;

equation (12) becomes

(15) f .x1; y2 C x
�2

1
; : : : ; yn C x

�n

1
/D 0:

For notational simplicity we define RDKŒX1; : : : ;Xn�. Consider, in the polynomial
ring RŒY2; : : : ;Yn� in n�1 variables over R, the polynomial

f .X1;Y2 C X
�2

1
; : : : ;Yn C X

�n

1
/:

As a polynomial in X1 over KŒY2; : : : ;Yn�, this has the form

X

�

c�X
�1C�2�2C���C�n�n

1
C g.X1;Y2; : : : ;Yn/;



Noether’s Normalization Theorem 215

where g.X1;Y2; : : : ;Yn/ is a polynomial whose degree in X1 is less than the degree
of the polynomial on the left — it being assumed that we arrange for the summands
in the sum not to cancel one another. Now we take care of the 2; : : : ; n. First
define D .1; 2; : : : ; n/ and denote by � D 1 �1 C2�2 C� � �Cn�n the usual
inner product of  with � D .�1; : : : ; �n/. Let p be a natural number such that

p > degf D maxf�1 C � � � C �n j c� ¤ 0g:
We now choose

D .1;p;p2; : : : ;pn�1/:

For distinct n-tuples � D .�1; : : : ; �n/ and �0 D .�0
1; : : : ; �

0
n/ such that c� ¤ 0 and

c�0 ¤ 0 we have � ¤�0, because �i ; �
0
i < p for all i . (The expansion of a natural

number in powers of p is unique.) Therefore

f .X1;Y2 C X
�2

1
; : : : ;Yn C X

�n

1
/D cX N

1 C h.X1;Y2; : : : ;Yn/

with c ¤ 0 in K and some polynomial h of degree less than N in X1.
Dividing this equality by c and substituting x1;y2; : : : ;yn for X1;Y2; : : : ;Yn,

we get using (15) an integrality equation for x1 over KŒy2; : : : ;yn�. In view of (14)
and (11), then, we conclude that the ring extension

(16) A=KŒy2; : : : ;yn� is integral:

Now, by the induction hypothesis, there exist elements u1; : : : ;um of KŒy2; : : : ;yn�

with the following properties:

(17) KŒu1; : : : ;um� is a polynomial ring in u1; : : : ;um over KI
(18) KŒy2; : : : ;yn� =KŒu1; : : : ;um� is integral:

This proves the desired assertion, because according to (16) and (18) the extension
A=KŒu1; : : : ;um� is also integral (see F6 in Chapter 16). ˜

Here is a remarkable consequence Noether’s Normalization Theorem:

Theorem 5. Let E=K be a field extension, and suppose E is finitely generated as a
K-algebra. Then E=K is algebraic.

Proof. By Theorem 4, E has as a subring some polynomial ring over K in finitely
many indeterminates, say F D KŒu1; : : : ;um�, with the further property that E=F is
integral. Since E is a field, F11 in Chapter 16 says that F must also be a field. But
this is only possible for m D 0, because in a polynomial ring over a field K there
are no invertible elements outside K�. Now, m D 0 implies that E=K is integral,
which is to say algebraic. ˜

Remark. Theorem 5 represents an important generalization of the fundamental
fact, learned long ago, that an element ˛ of a field extension over K is algebraic if
and only if K.˛/ D KŒ˛� (Chapter 3, F1). At the same time, a more direct proof
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of Theorem 5 can be given by induction on the number of generators, as we now
show.

Suppose E D KŒx1; : : : ;xn�, with n> 0 (the case n D 0 being trivial). Then E D
K.x1/Œx2; : : : ;xn�, and the induction hypothesis implies that each xi is algebraic
over K.x1/. We set t D x1. If t is algebraic over K, we are done. So suppose t is
transcendental over K. Then, by F7 in Chapter 16, there is a nonzero polynomial
h D h.t/ 2 KŒt � such that hxi is integral over KŒt � for all i . For any f in E D
KŒx1;x2; : : : ;xn�, therefore, hef is integral over KŒt � for some appropriate power he

of h. In particular this holds for all f in K.t/. But KŒt � is integrally closed in K.t/,
so every rational function f can be represented as a quotient g=he of polynomials
in t , where the denominator is a power of a fixed polynomial h, independent of f .
This is impossible.
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Hilbert’s Nullstellensatz

1. Transcendental field extensions come up naturally in the algebraic treatment of
geometric problems. This chapter will serve as a appetizer for the feast that awaits
the reader who wishes to delve deeper into the field of algebraic geometry (see for
example Hartshorne’s textbook of the same name).

Definition 1. In this chapter we will be working with a fixed field extension C=K

and with the polynomial ring KŒX1; : : : ;Xn� in n variables over K. If M is a subset
of KŒX1; : : : ;Xn�, we set

�.M /D ˚

.x1; : : : ;xn/ 2 C n
ˇ

ˇ f .x1; : : : ;xn/D 0 for all f 2 M
�

:

A point x D .x1; : : : ;xn/ in �.M / is called a zero of M in C n. The set �.M / itself
we call the the zero set of M in C n. Instead of �.M / we sometimes use the more
precise notation �C .M /, to exhibit the dependence on the chosen extension C of
K. The subsets V of C n of the form V D �.M / for some M � KŒX1; : : : ;Xn� are
called affine algebraic sets of C n defined over K, or algebraic K-sets of C n for short.

Conversely, if N is a subset of C n, we define

�.N /D ˚

f 2 KŒX1; : : : ;Xn�
ˇ

ˇ f .x1; : : : ;xn/D 0 for all .x1; : : : ;xn/ 2 N
�

:

If f lies in �.N / we say that f vanishes on N . Sometimes we write �K .N / instead
of �.N / to make K explicit.

F1. The following formal properties hold:

(i) M � M 0 ) �.M 0/� �.M /.

(ii) If a D .M / is the ideal of KŒX1; : : : ;Xn� generated by M , we have �.M / D
�.a/.

(iii) For every N 2 C n, the set �.N / is an ideal of KŒX1; : : : ;Xn�, called the ideal
of N in KŒX1; : : : ;Xn�.

(iv) N � N 0 ) �.N 0/� �.N /.

(v) M � ��.M / for every M � KŒX1; : : : ;Xn�.
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(vi) N � ��.N / for every N � C n.

(vii) For any family .ai/i2I of ideals in KŒX1; : : : ;Xn� we have
T

i2I �.ai/ D
�

�

P

i2I ai

�

, where the sum
P

i2I ai of the given ideals ai is defined as the
ideal generated by the union

S

i2I ai .

(viii) �.a/[ �.b/D �.ab/D �.a \ b/ for any ideals a; b of KŒX1; : : : ;Xn�, where
the product ab of a and b is defined as the ideal of KŒX1; : : : ;Xn� generated by
all products fg with f 2 a and g 2 b.

(ix) V D ��.V / for any algebraic K-set V of C n.

Proof. We prove (viii) and (ix), leaving the others to the reader.

(viii) Clearly ab � a \ b � a; b, so (i) yields

�.a/[ �.b/� �.a \ b/� �.ab/:

Thus what is left to show is that �.ab/ � �.a/[ �.b/. Let x 2 C n be a zero of
ab but not of a. Then there exists f 2 a such that f .x/ ¤ 0, and for every g 2 b
we must have g.x/D 0, since f .x/g.x/D fg.x/D 0. Consequently x belongs to
�.b/, as desired.

(ix) First let M be any subset of KŒX1; : : : ;Xn�. From (v) we get M � ��.M /,
which yields the inclusion ���.M /� �.M / because of (i); on the other hand, (vi)
shows that �.M /� ��.�.M //. Thus, for every M � KŒX1; : : : ;Xn�, we have

(x) �.M /D ���.M /:

But the algebraic K-sets of C n are precisely those subsets of the form V D �.M /,
so (x) is tantamount to (ix). ˜

For an arbitrary ideal a of KŒX1; : : : ;Xn�, it is generally not the case that a D
��.a/; that is, a does not necessarily coincide with the ideal of its zero set in C n.
This is just because not every ideal occurs as the ideal of some subset of C n: if
a D �.N / we obviously have, for every natural number m,

(1) f m 2 a ) f 2 a:

Thus, for instance, the ideal a D .X 2
1
; : : : ;X 2

n / of KŒX1; : : : ;Xn� is not of the form
a D �.N /.

Definition 2. Let a be an ideal of a commutative ring R. The set
p

a WD ff 2 R j 9 m W f m 2 ag
is an ideal of R, called the radical of a. An ideal a of R is called reduced if a D p

a.

Remark. If R is a commutative ring, one can in particular consider the radical
p

0

of the zero ideal 0 WD .0/. By definition, this is the set of all nilpotent elements
of R, and for this reason it is called the nilradical of R. If a is an ideal of R, its
radical

p
a is the inverse image of the nilradical of the quotient ring R=a under the

quotient map.
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It follows from these definitions that ideals of subsets of C n must be reduced.
But for arbitrary extensions C of K, condition (1) is generally not sufficient to
ensure that an ideal a of KŒX1; : : : ;Xn� is an ideal of a subset. For example, take
K D C D � and n � 2, and consider the principal ideal

a D .X 2
1 C X 2

2 C � � � C X 2
n /

of �ŒX1; : : : ;Xn�. It is easy to see that X 2
2

C� � �CX 2
n is irreducible in �ŒX1; : : : ;Xn�.

Hence a is a prime ideal and as such it is reduced; and yet �.a/D f0 WD .0; : : : ; 0/g,
so �.�.a//D �.f0g/ D .X1; : : : ;Xn/. Therefore a is not of the form �.N /, since
for any N � C n there is an equality dual to (x) above:

(xi) �.N /D ���.N /:

If C is an algebraically closed field, however, the condition is sufficient:

Theorem 1 (Hilbert’s Nullstellensatz, algebraic form). Let C=K be a field extension
where C is algebraically closed. With the preceding notations, every ideal a of
KŒX1; : : : ;Xn� satisfies

(2) ��.a/D p
a:

Thus � constitutes a bijection between the set of reduced ideals of KŒX1; : : : ;Xn�

and the set of algebraic K-sets of C n. The map inverse to � is �.

“Nullstellensatz” is German for “Theorem on zeros”. We will trace Theorem 1
back to the following fact, which has intrinsic interest as well:

Theorem 2 (Hilbert’s Nullstellensatz, geometric form). Let K be a field and C an
algebraically closed extension of K (for instance, an algebraic closure of K). Let an
ideal a of the polynomial ring KŒX1; : : : ;Xn� be given. Provided that a is not all of
KŒX1; : : : ;Xn�, there exists in C n a common zero .z1; : : : ; zn/ of all the polynomials
f 2 a: in symbols,

�C .a/¤ ?:

Proof. The assumption a ¤ KŒX1; : : : ;Xn� implies (see F12 in Chapter 6) that
KŒX1; : : : ;Xn� has a maximal ideal m that contains a. We look at the quotient
homomorphism

(3) KŒX1; : : : ;Xn�! KŒX1; : : : ;Xn�=m:

Denote the images of X1; : : : ;Xn by x1; : : : ;xn, respectively. Then

(4) KŒX1; : : : ;Xn�=m D KŒx1; : : : ;xn�;

and because m is maximal, KŒx1; : : : ;xn� is a field. This implies, by Theorem 5 in
Chapter 18, that the extension KŒx1; : : : ;xn�=K is algebraic. Thus there exists (by
Theorem 3 in Chapter 6) a K-homomorphism

� W KŒx1; : : : ;xn�! C:
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Let z1 D �x1, z2 D �x2, . . . , zn D �xn be the images of x1; : : : ;xn under � . In
view of (3) and (4) we have

f .z1; : : : ; zn/D 0 for all f 2 m:

In particular this equality is fulfilled for all f 2 a, since a � m. Thus we have found
a point .z1; : : : ; zn/ 2 C n where all the polynomials in a vanish. ˜

Now that Theorem 2 has been proved, we derive Theorem 1 from it using the
so-called “Rabinovich trick”, which is no more than an adaptation of the elementary
technique of clearing denominators:

Let a be any ideal of KŒX1; : : : ;Xn�, and let f 2 ��.a/ be a polynomial of
KŒX1; : : : ;Xn� that vanishes on the zero set �.a/. We must show that there exists
a natural number m such that

f m 2 a:

To this effect we will regard KŒX1; : : : ;Xn� as a subring of the polynomial ring
KŒX1; : : : ;Xn;XnC1� in the n C 1 variables X1; : : : ;Xn;XnC1, and consider the
ideal A of KŒX1; : : : ;Xn;XnC1� generated by a and the element 1�XnC1f :

(5) A D .a; 1�XnC1f /:

First assume that A is not all of KŒX1; : : : ;XnC1�. By Theorem 2, then, A has a
zero .z1; : : : ; znC1/ 2 C nC1. By definition the point .z1; : : : ; znC1/ 2 �.A/ satisfies

(6) g.z1; : : : ; zn/D 0 for all g 2 a;

(7) f .z1; : : : ; zn/znC1 D 1:

From (6) it follows that .z1; : : : ; zn/ 2 �.a/; thus our f 2 ��.a/ must satisfy
f .z1; : : : ; zn/D 0. But this contradicts (7), and we conclude that our assumption is
untenable; that is, the ideal A in (5) is all of KŒX1; : : : ;XnC1�, so 1 2 A. Thus by
looking at (5) we see there is a relation of the form

(8) 1 D
X

i

higi C h.1 � XnC1f /;

for certain polynomials gi 2 a and hi ;h 2 KŒX1; : : : ;XnC1�. We can assume from
the beginning that f ¤ 0. Applying to (8) the homomorphism KŒX1; : : : ;XnC1�!
K.X1; : : : ;Xn/ defined by the substitutions

Xi ‘ Xi for 1 � i � n and XnC1 ‘ 1=f;

we get a relation

1 D
X

i

hi.X1; : : : ;Xn; 1=f /gi.X1; : : : ;Xn/:

Multiplying by an appropriate power f m of f , then, we obtain

(9) f m D
X

i

Qhi.X1; : : : ;Xn/gi.X1; : : : ;Xn/

for certain polynomials Qhi 2 KŒX1; : : : ;Xn�. Since gi 2 a this implies f m 2 a, and
Theorem 1 is proved. ˜
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2. We now complement the preceding discussion of algebraic sets with the follow-
ing fundamental theorem:

Theorem 3 (Hilbert Basis Theorem). Let K be any field. Every ideal a of the
polynomial ring KŒX1; : : : ;Xn� is finitely generated, that is, there exist finitely many
polynomials f1; : : : ; fm in KŒX1; : : : ;Xn� such that

a D .f1; : : : ; fm/:

In particular, if C is any extension of K, any algebraic K-set V of C n is the zero set
of a finite family of polynomials f1; : : : ; fm in KŒX1; : : : ;Xn� :

V D ˚

.x1; : : : ;xn/ 2 C n
ˇ

ˇ fi.x1; : : : ;xn/D 0 for 1 � i � m
�

:

In this situation we write V D �.f1; : : : ; fm/.

Theorem 3 arises directly from the following general statement, which is also
often called the Hilbert Basis Theorem, although Hilbert himself never stated it
explicitly:

Theorem 4. If R is a commutative ring with unity in which every ideal is generated
by finitely many elements (such a ring is called Noetherian), then every ideal of the
ring RŒX � of polynomials in one variable X over R is also finitely generated.

Proof. Let a be an ideal of RŒX �. For each integer m � 0, consider the set

cm D fa j a is an m-th coefficient of a polynomial f 2 a of degree at most mg :
Apart from 0, then, the elements of cm are the highest coefficients of polynomials
of degree m contained in a. Clearly cm is an ideal in R. If f .X / is a polynomial
of degree m in a, then Xf .X / is a polynomial of degree mC1 in a; we thus obtain
a chain

(10) c0 � c1 � � � � � cm � cmC1 � � � �
of ideals in R. Therefore the union c of all the ci is also an ideal in R. Because R is
assumed Noetherian, c is finitely generated, so the chain (10) terminates, meaning
that there is some n for which

(11) c0 � c1 � � � � � cn D cnC1 D � � � D c:

By assumption, all the ideals c0; c1; : : : ; cn are finitely generated; suppose, say, that

(12) ci D .ci1; : : : ; cir / for 0 � i � n

(where we have uniformized the size r of the generating sets for 0 � i � n by, say,
repeating generators). By the definition of the ci there is, for all 0 � i � n and
1 � j � r , a polynomial fij 2 a of the form

(13) fij D cij X i C polynomial of degree less than i;
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with the same cij as in (12). Now let Qa be the ideal of RŒX � generated by all the
fij . We wish to show that a D Qa, which will prove Theorem 4.

It is clear that Qa is contained in a. Let f be a polynomial of degree m in a, and
let a be its leading coefficient:

f .X /D aX m C � � � ; with a ¤ 0:

By definition, a 2 cm. We claim that if n is chosen as in (11), then

a 2 ci for some i � m; n:

If m � n this is clear: just take i D m. For m > n, on the other hand, the claim
follows from (11). Now a, being an element of ci with 0 � i � n, can be written as

a D a1ci1 C a2ci2 C � � � C ar cir ; with aj 2 R:

Then the polynomial Qf defined by

(14) Qf D f �
r

X

jD1

ajfij X m�i

had degree less than m, because of (13). On the other hand, the same polynomial
lies in a, since fij 2 Qa � a. By induction we can therefore assume that Qf 2 Qa. By
(14), then, f itself lies in Qa. ˜

3. The Hilbert Basis Theorem has some fundamental consequences for algebraic
sets, which we briefly discuss. As before, C=K will be an arbitrary but fixed field
extension.

F2. Every nonempty set of algebraic K-subsets of C n has a minimal element.

Proof. Clearly this is equivalent to saying that any descending chain

(15) V1  V2  � � �  Vm  VmC1  � � �
of algebraic K-sets Vi in C n terminates, that is, satisfies Vn D VnC1 D � � � for some
n. An application of � to (15) yields the ascending chain of ideals

(16) �.V1/� �.V2/� � � � � �.Vm/� �.VmC1/� � � � :
This chain we already know to be terminating, since the union of the �.Vi/ is
itself an ideal of KŒX1; : : : ;Xn�, and so must be finitely generated by Theorem 3.
Applying � to (16) and keeping in mind F1(ix) we recover the chain (15), which is
thus seen to terminate. ˜

Definition 3. An algebraic K-set V ¤ ? in C n is called irreducible if it cannot be
expressed as a union V D V1 [ V2 of algebraic K-sets V1;V2 of C n distinct from
V . An irreducible (affine) algebraic K-set in C n is also called an (affine) K-variety
of C n.
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F3. An algebraic K-set V of C n is irreducible if and only if its ideal �K .V / is a
prime ideal of KŒX1; : : : ;Xn�.

Proof. (1) Let V be irreducible and suppose fg 2 �.V /. Then

V D �.�.V //� �.fg/D �.f /[ �.g/;

so V D V1 [ V2 where V1 D �.f /\ V and V2 D �.g/\ V are algebraic K-sets.
Because V is assumed irreducible we have (say) V1 D V , so V � �.f /. But then
f 2 �.�.f //� �.V /. Since V is nonempty, moreover, we have 1 … �.V /.

(2) Let �.V / be a prime ideal, and suppose V D V1 [ V2 with V1;V2 algebraic
K-sets in Kn; suppose moreover that V1 ¤ V . First note that

(17) �.V /D �.V1 [ V2/D �.V1/\ �.V2/ �.V1/�.V2/:

Now �.V1/ ¤ �.V /, otherwise we would have V1 D �.�.V1// D �.�.V // D V ,
contrary to the assumption V1 ¤V . Thus there exists f 2 �.V1/ such that f … �.V /.
But �.V / is a prime ideal; therefore �.V2/� �.V /, by (17). It follows that V � V2

and hence that V is irreducible. ˜
Remark. Affine space Kn (being the zero set of the zero polynomial) is itself an
algebraic K-set of Kn. If the field K is infinite, moreover, �.Kn/ is the zero ideal
and hence Kn is irreducible, by F3. In particular, Kn cannot, in the case of K

infinite, be expressed as a union of finitely many proper subspaces (this a favorite
linear algebra exercise). If K is finite, of course, Kn is not irreducible.

Note also that every algebraic K-set V of C n is also an algebraic C -set of C n.
But clearly being irreducible as an algebraic K-set of C n does not imply being
irreducible as an algebraic C -set of C n.

F4. Any algebraic K-set V of C n can be written as a finite union

(18) V D V1 [ V2 [ � � � [ Vr

of irreducible algebraic K-sets Vi . If we demand that Vi 6� Vk for i ¤ k in (18), this
representation is unique up to order; the Vi are called the irreducible K-components
of V . Every K-variety W contained in V is contained in one of the Vi .

Proof. (1) Let U be the set of all algebraic K-sets of C n that cannot be expressed as in
(18). If U is nonempty, it has a minimal element V by F2. This V is not irreducible
by assumption, and so it is of the form V D V1 [V2, where V1;V2 are algebraic sets
strictly contained in V . But by definition V1 and V2 both have representations of
the form (18), and therefore so does V , contradicting the assumption that it belongs
to U.

(2) We next show the last assertion of F4. From (18) we have

W D .W \ V1/[ � � � [ .W \ Vr /:

Since each W \ Vi is algebraic and W is irreducible, there exists Vi such that
W D W \ Vi , and thus W � Vi .
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(3) To prove uniqueness, let V D V1 [� � �[Vr and V D W1 [� � �[Ws be two ways
to write V as a finite union of irreducible algebraic K-sets. By (2) there exists for
each Wj some Vi such that Wj � Vi . Likewise there exists for this Vi some Wk

such that Vi � Wk ; thus Wj � Vi � Wk . The noninclusion assumption then implies
that j D k and hence Wj D Vi ; that is, each Wj coincides with some Vi . Likewise
for each Vk there is some Wl such that Vk D Wl . The assertion follows. ˜

Definition 4. Let V be an algebraic K-set of C n. The K-algebra

(19) KŒV � WD KŒX1; : : : ;Xn�=�.V /

is called the affine coordinate ring of V . Clearly KŒV � can be identified with the
ring of all functions V ! C that arise from polynomials in KŒX1; : : : ;Xn�. Being
a homomorphic image of KŒX1; : : : ;Xn�, this K-algebra has the form

(20) KŒV �D KŒx1; : : : ;xn�;

and so is finitely generated as a K-algebra. In the sequel we will call any finitely
generated commutative K-algebra A an affine K-algebra. If the algebraic K-set V

of C n is irreducible — in which case we speak of an (affine) K-variety of C n —
then KŒV � is an integral domain (see F3); the fraction field

(21) K.V / WD Frac KŒV �

is then called the field of rational functions of the K-variety V .

Remarks. (i) If C is algebraically closed, V D C n is a K-variety, and K.V / is
the field K.X1; : : : ;Xn/ of rational functions in n variables over K.

(ii) Suppose that the affine K-algebra A D KŒx1; : : : ;xn� is an integral domain.
Then A, being a homomorphic image of KŒX1; : : : ;Xn�, is isomorphic to
KŒX1; : : : ;Xn�=p, where p is a prime ideal. Thus, if C is algebraically closed,
A is isomorphic to the affine coordinate algebra of the K-variety V D �.p/ of
C n (see Theorem 1).

(iii) Again let A D KŒx1; : : : ;xn� be an integral domain. The transcendence degree
of A is of course defined as that of the field extension Frac.A/=K:

TrDeg.A=K/ WD TrDeg.Frac.A/=K/:

Since Frac A D K.x1; : : : ;xn/, we have TrDeg.A=K/� n.

(iv) Any affine K-algebra is Noetherian, since it is a homomorphic image of a
polynomial ring KŒX1; : : : ;Xn� (see Theorem 4).

4. In this last section we examine the notion of dimension for algebraic sets.
We continue to work with a fixed field extension C=K, and make the additional
assumption throughout the section that C is algebraically closed.

Definition 5. The dimension dim V of an algebraic K-set V of C n is the supremum
of all integers m for which there is a strict chain V0 � V1 � � � � � Vm of K-varieties
of C n, all contained in V .
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Natural as this definition appears, it is not self-evident that dim V is finite. In
view of Theorem 1 and F3, however, Definition 5 suggests two related notions:

Definition 6. Let A be any commutative ring with unity. The height h.p/ of a prime
ideal p of A is the supremum of all integers m for which there is a strict chain
p0 � p1 � � � � � pm D p of prime ideals pi in A. The dimension (more precisely,
Krull dimension) of the ring A is the supremum of the heights of all prime ideals
of A, and is denoted by dim A.

Even if A is assumed to be Noetherian, it is not a priori clear that every prime
ideal p of A satisfies h.p/ < 1. This nonetheless turns out to be the case; on the
other hand, there exist Noetherian rings A such that dim A D 1 (see Matsumura,
Commutative algebra).

Regardless of the finiteness of the numbers in question, we have:

F5. For every algebraic K-set V of C n,

(22) dim V D dim KŒV �:

Proof. By F3 and Theorem 1, K-varieties W contained in V are in one-to-one
(and inclusion-reversing) correspondence with prime ideals of the polynomial ring
KŒX1; : : : ;Xn� that contain �.V /. But the latter correspond exactly to the prime
ideals of KŒX1; : : : ;Xn�=�.V /D KŒV �. The assertion follows. ˜

Remark. It is easy to see that

dim V D max.dim V1; : : : ; dim Vr /

if V D V1 [ � � � [ Vr is the decomposition of V into irreducible components given
by F4. Therefore we will restrict our attention from now on to K-varieties V . Take
the conceivably simplest case of the K-variety V D C 1. Then KŒV � D KŒX � is
the polynomial ring in one variable over K. But KŒX � is a principal ideal domain,
so every prime ideal of KŒX � is either a maximal ideal or the zero ideal of KŒX �.
Thus the only K-varieties contained in V D C 1 are (besides V itself) the root sets
of irreducible polynomials of KŒX �. Thus for V D C 1 we have

dim V D dim KŒV �D 1 D TrDeg.KŒV �=K/:

In general the dimension of an arbitrary K-variety V can be given the following
description, which also makes the finiteness of dim V manifest:

Theorem 5. For any K-variety V of C n,

(23) dim V D TrDeg.KŒV �=K/:

In particular, dim V is at most n (and for instance dim C n D n).

We refer the proof of Theorem 5 to an auxiliary result:
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Lemma 1. Let the K-algebra A be an integral domain and assume that TrDegK .A/

is finite. For any nonzero prime ideal p of A we have

(24) TrDegK .A=p/ < TrDegK .A/:

Proof. For notational simplicity set A D A=p and denote by

' W A ! A;

x ‘ x

the quotient map. If x1; : : : ;xs are algebraically independent over K, so are
x1; : : : ;xs . Thus we already know that TrDegK .A/ � TrDegK .A/. Now assume,
in contradiction with (24), that

TrDegK .A/D TrDegK .A/DW r:

Then there exist r algebraically independent elements x1; : : : ;xr of A. The map '
is injective on KŒx1; : : : ;xr �, so ' can be extended to a homomorphism

Q' W K.x1; : : : ;xr /ŒA�! K.x1; : : : ;xr /ŒA�;

where the K-algebras in question are regarded as subalgebras of the fraction field
of A or A as the case may be. Let QA be the K-algebra on the left. Since r D
TrDegK .A/, every element of QA is algebraic over K.x1; : : : ;xn/. Thus QA is a
field. But then Q' is injective, and hence so is '. Because p D ker' we obtain a
contradiction with p ¤ 0; this proves the lemma. ˜

With the help of this result we now show a result which is equivalent, thanks to
(22), to Theorem 5:

Theorem 50. Let A be an affine K-algebra without zero-divisors. Then

(25) dim A D TrDeg.A=K/:

Proof. Clearly TrDeg.A=K/ is finite, since A is finitely generated as a K-algebra.
We now use induction on r WD TrDeg.A=K/.

(i) We first want to show that dim A � r . Let

0 D p0 � p1 � p2 � � � � � pm

be a strict chain of prime ideals of A; we mush show that m � r . If r D 0 then A

is a field, so m D 0. Now let r � 1 and (avoiding triviality) m � 1. Applying the
natural map A ! A D A=p1 we get a strict chain of prime ideals

0 D p1 � p2 � � � � � pm

of A. By the induction assumption and Lemma 1 it follows that m�1�dim A� r�1,
and hence that m � r .
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(ii) Now we wish to show that r � dim A. For r D 0 there is nothing to show, so let
r � 1. By Noether’s Normalization Theorem (Chapter 18, Theorem 4), A contains
a polynomial ring R D KŒy1; : : : ;yr � in r variables as a subalgebra such that A=R

is integral. For the prime ideal p D .yr / of R there is a prime ideal P of A such
that P \R D p, by §16.12 in the Appendix. Setting

A D A=P; R D R=p;

so that R ' KŒy1; : : : ;yr�1� , we obtain in this way a ring extension A=R. But
since A=R is integral, so is A=R; it follows that TrDeg.A/ D TrDeg.R/ D r � 1.
By the induction assumption this implies the existence of a strict chain of prime
ideals

0 D P1 � P2 � � � � � Pr

in A. Denoting by P1; : : : ;Pr the inverse images of these ideals in A, we obtain
a strict chain of prime ideals 0 D P0 � P1 � � � � � Pr . This shows that indeed
r � dim A. ˜

Remark. Let the situation be as above. In part (ii) of the proof we showed that
r � dim A. If A is a field, so that dim A D 0, it follows that r D 0, that is, A=K is
algebraic. Thus the considerations in (ii) amount to a generalization of the argument
used in Chapter 18 to prove Theorem 5 (page 215).

We will now supplement Theorem 5 with something sharper. But we again need
preparatory results:

Lemma 2. If R is a UFD, a prime ideal p has height 1 if and only if it is a principal
ideal.

Proof. Suppose h.p/D 1. Then p ¤ 0, and we may take a nonzero f 2 p. Since p
is a prime ideal, at least one prime factor f1 of f lies in p. Now .f1/ is likewise a
prime ideal, and we have 0 ¤ .f1/� p. Since h.p/D 1, we get p D .f1/.

Conversely, suppose p D .f /, and assume for a contradiction that h.p/ ¤ 1.
Then there is a prime ideal q such that 0 ¤ q � p D .f /. If g is a nonzero element
of q there must be a prime factor g1 of g in q. There follows .g1/ � .f /, and
because g1 is irreducible we must have .f /D .g1/� q. Contradiction. ˜

Lemma 3. Let R D KŒy1; : : : ;yr � be a polynomial ring in the r indeterminates
y1; : : : ;yr over the field K. For every prime ideal p of height h.p/ D 1 in R, the
quotient ring R D R=p has transcendence degree r � 1 over K.

Proof. By Lemma 2, p has the form p D .p/, where p 2 kŒy1; : : : ;yr � is a noncon-
stant polynomial. If, say, the variable y WD yr really does appear in p, we also have
degy p � 1. It follows that

p \ KŒy1; : : : ;yr�1�D 0:

Thus the quotient map R ! R D KŒy1; : : : ;yr � gives rise to an isomorphism on the
subring KŒy1; : : : ;yr�1�; that is, y1; : : : ;yr�1 are algebraically independent over
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K. At the same time, p.y1; : : : ;yr�1;yr /D 0 is a (nontrivial) algebraic equation
for yr over K.y1; : : : ;yr�1/. Putting the two facts together we conclude that indeed

TrDeg.R=K/D TrDeg.K.y1; : : : ;yr /=K/D r � 1: ˜

For the announced sharpening of Theorem 5 we also need a basic fact from
commutative algebra, whose justification we leave for the Appendix (§19.6):

F6� (Krull’s Descent Lemma). Let A=R be an integral extension of integral do-
mains, and assume that R is integrally closed (in its fraction field). Suppose given
prime ideals p and q of R with q � p, and also a prime ideal P of A such that
P \R D p. Then there is a prime ideal Q of A such that Q \R D q and Q � P.

Theorem 6. Let A D KŒx1; : : : ;xn� be an affine K-algebra, and assume that A is an
integral domain. Let

(26) 0 D P0 � P1 � � � � � Pm

be a nonrefinable strict chain of prime ideals in A (such a chain must exist because
dim A<1; see Theorem 50). Then

(27) m D TrDeg.A=K/I
in particular all maximal ideals of A have the same height, namely the transcendence
degree of A over K. (We thus recover the result that dim A D TrDeg.A=K/.)

Proof. We proceed inductively. Let m D 0. Then Pm D 0 is a maximal ideal of A,
so A is a field. Using Chapter 18, Theorem 5 or equation (25), we conclude that
TrDeg.A=K/D 0.

Now suppose m � 1. By the Noether Normalization Theorem, A contains a
polynomial algebra R D KŒy1; : : : ;yr � as a subalgebra such that A=R is integral.
Since (26) cannot be refined, we have h.P1/ D 1. We claim that the prime ideal
p1 D P1 \ R also has height 1. Otherwise there is a prime ideal q � p1 such that
0 ¤ q ¤ p1. Krull’s Descent Lemma then provides a prime ideal Q of A such that
Q � P1 and Q\R D q. Since q is not the zero ideal, neither is Q. Thus h.P1/D 1

implies P1 D Q, and we get q D Q\R D P1 \R D p1, contradicting q ¤ p1. Now
setting

A D A=P1 and R D R=p1;

we obtain a ring extension A=R. Since A=R is integral, so is A=R. There follows
TrDeg.A=K/D TrDeg.R=K/. But by Lemma 3 we have TrDeg.R=K/D r � 1, so

TrDeg.A=K/D r � 1:

Passing from A to A, we get from (26) a strict and nonrefinable chain of prime
ideals

0 D P1 � P2 � � � � � Pm

of length m�1 in A. By induction (on m or the transcendence degree of A) we then
get m�1 D TrDeg.A=K/D r �1. Therefore m D r D TrDeg.A=K/, as claimed. ˜
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We prove an application of Theorem 6:

F6. A K-variety V of C n has dimension n�1 if and only if it is of the form V D�.f /,
where f is an irreducible polynomial in KŒX1; : : : ;Xn�.

Proof. (i) Since V is irreducible, its ideal p1 is a prime ideal of KŒX1; : : : ;Xn�DW A.
Now suppose dim V D n � 1. Because A D A=p1 we have n � 1 D dim V D
dim KŒV � D dim A (see F5). Thus there exists a strict chain of prime ideals 0 D
p1 � � � � � pn in A. Taking inverse images we then get a strict chain of prime ideals
0 D p0 � p1 � � � � � pn in A. Since dim A D n, we must have h.p1/D 1. Therefore,
by Lemma 2, p1 D .f / is a principal ideal. Thus V D�.f /, with f 2KŒX1; : : : ;Xn�

irreducible.

(ii) Suppose V D �.f /, where f 2KŒX1; : : : ;Xn�DWA is irreducible. Set p1 D .f /.
By Lemma 2, h.p1/D 1. Since dim A<1 there is then a nonrefinable strict chain
of prime ideals 0 D p0 � p1 � � � � � pm (containing the given prime ideal!). Now
we resort to Theorem 6, according to which m D n. Passing to A D A=p1 we get a
strict and nonrefinable chain of prime ideals of length n�1 in A. Using Theorem 6
again we conclude that n � 1 D dim A D dim KŒV �D dim V , as desired. ˜

From Theorem 6 some consequences of a general sort can be drawn. We leave
the simple demonstrations to the reader:

F7. Let A be an affine K-algebra and an integral domain. For every prime ideal p
of A,

(28) h.p/C dim A=p D dim A:

Moreover, if 0 D p0 � p1 � � � � � pr D p is a strict chain of prime ideals in A, with
last element p, and if there is no finer chain of the same description, then r D h.p/.

In the context of K-varieties, equality (28) becomes: For every prime ideal p
of KŒX1; : : : ;Xn�, the algebraic set V D �C .p/— where, as we recall, C is an
algebraically closed extension of K — has dimension

(29) dim V D n � h.p/:

One immediate consequence of the first statement in F8 is that, for 1 � r � n, the
prime ideal .X1; : : : ;Xr / of KŒX1; : : : ;Xn� has height r ; the strict chain of prime
ideals 0 � .X1/� .X1;X2/� � � � � .X1; : : : ;Xr /, therefore, admits no refinement.

Here is an addendum to F7:

F70. For every nonzero f in KŒX1; : : : ;Xn�, all the irreducible K-components of
�.f /D �C .f / have dimension n � 1. Conversely, if V is an algebraic K-set of C n

whose irreducible K-components all have dimension n�1, then V is a hypersurface,
that is, it can be expressed as V D �.f / for some nonzero f in KŒX1; : : : ;Xn�.

Proof. If V D �.f / and f D f
e1

1
: : : f

er
r is the prime factorization of f , we have

V D V1 [ � � � [ Vr , where the Vi D �.fi/ are K-varieties. By F7, each Vi has
dimension n � 1.
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Conversely, if the irreducible K-components V1; : : : ;Vr of an algebraic K-set
V of C n all have dimension n � 1, then by F7 each Vi is of the form Vi D �.fi/.
Setting V D V1 [ � � � [ Vr D �.f1/[ � � � [ �.f2/D �.f1 : : : fr / we get the desired
result. ˜

Remark. Let V be any algebraic K-set of C n, and suppose that f 2 KŒX1; : : : ;Xn�

does not vanish on any of the irreducible K-components of V . Then

(30) dim.V \ �.f // � dim V � 1:

To see this, we start by assuming without loss of generality (see F4) that V is a
K-variety. Every K-component W of V \ �.f / is a proper subset of V . Thus
the assertion follows directly from Definition 5. In Section 27.5 in volume II we
will show, for the case K D C , that in fact dim W D dim V � 1; this represents an
important generalization of F70 in the case K D C .

Finally, using (30) one can prove the following fact (see §19.10 in the Appendix):

F9 (Kronecker). An algebraic K-set V of C n can always be represented as the zero
set of at most n C 1 polynomials.

As Kronecker presumably already knew, and as proved for example by U. Storch
(“Bemerkung zu einem Satz von M. Kneser”, Archiv der Math. 23, 1972), one can
actually replace n C 1 by n in this statement. It is an interesting — and difficult —
question to determine under what conditions V has a representation involving ex-
actly n � dim V polynomials.



Appendix:

Problems and Remarks

References preceded by § are to this appendix.

Chapter 1: Constructibility with Ruler and Compass

1.1 Let K be a subfield of � and a; b elements in K�. Show equivalence between:

(i) K.
p

a/D K.
p

b/.

(ii) There exists c 2 K� with a D bc2.

(The assumption K � � is not essential; the statement holds for any field K where
1 C 1 ¤ 0.)

1.2 Let K be a subfield of � with K D K and let w be a complex number such that
w2 2 K. It is then always that case that K.w/D K.w/? The answer is no (that is
why in the proof of Theorem 1 we had to take a certain precaution). Hint: Consider
the example K D �.i/ with w2 D 1C i (and use §1.1 with a D 1C i , b�1 D 1� i ).

1.3 In F9, the assumption K D K cannot be dispensed with — nor can the field
�.M [ M / in Theorem 1 by replaced by, say, �.M /. One can see this most
spectacularly as follows (while peeking at some concepts that will only be treated
later, in Chapters 2 and 18): choose algebraically independent real numbers x;y

and set K D �.x C iy/, E D �.i;x;y/. Then E � K, but E=K is not algebraic,
since otherwise by looking at transcendence degrees we would get the contradiction
2 D TrDeg.E=�/� TrDeg.K=�/� 1.

1.4 Let E=K be a finite field extension. Prove that if E WK is a prime number,
E=K has no proper intermediate fields, and for each ˛ 2 E such that ˛ … K we
therefore have E D K.˛/.

1.5 Prove that �.
p

2;
p

3/ W� D 4 and �.
p

2Cp
3/D �.

p
2;

p
3/.



232 Appendix: Problems and Remarks

1.6 Let K be an infinite field and E an extension of degree n > 1 over K. Show
that the quotient group E�=K� of the multiplicative groups of E and K is infi-
nite. (Hint: Otherwise the K-vector space E ' Kn would be a union of finitely
many one-dimensional subspaces; in other words, the projective space Pn�1.K/

would be finite.) Remark: E�=K� is not even finitely generated; but this is a
much deeper result, for which see A. Brandis, “Über die multiplikative Struktur von
Körpererweiterungen”, Math. Zeitschrift 87 (1985).

1.7 A Danish schoolbook of 1854, published in Flensburg, contains the following
recipe for constructing the heptagon inscribed in a circle S of radius 1 around the
origin: Let the circle of radius 1 centered at z1 D 1 intersect S at z2 and z3. Let
z4 be the intersection of the line through z2 and z3 with the line through 0 and z1.
Beginning at z1, mark off the distance jz4 � z2j against the circle S , seven times in
succession.

Does this mean that Gauss’s statement (see F12 in chapter 5) that e2� i=7 …
f0; 1g is in error? Show that the points obtained according to the procedure above

are the powers z; z2; : : : ; z7 of the complex number z D 5
8

C 1
8

p
39 i . It follows that

65536z7 D 65530 � 142
p

39 i .

Chapter 2: Algebraic Extensions

2.1 Let E=K be a field extension and let L1;L2 be intermediate fields of E=K

with Li WK < 1. Prove that L1L2 WK D ŒL1 WK� � ŒL2 WK� implies L1 \ L2 D K.
(The converse does not hold; see the Example in Section 3.1.)

2.2 Show that �.
p

2;
p

1 C i/ W� D 8. Hint: For wD p
1 C i we have wwD p

2,
so �.

p
2; w/D �.i; w; w/. Now see §1.2.

2.3 Let E=K be an extension. Prove that E=K is algebraic if and only if every
subring R of E containing K is a field.

2.4 Let R be a commutative ring with unity and K a subring of R. Prove: If K is
a field and R has no zero-divisors, then 1R D 1K (in particular 1R ¤ 0, so R is an
integral domain and a K-vector space). Show by example that 1R and 1K can be
distinct if R has zero-divisors.

2.5 Define a sequence .˛n/n of real numbers ˛n > 0 through the recursion ˛1 D 2,
˛nC1 D p

˛n. Then ˛n 2 � for every n, and

(1) �.˛nC1/ W� D 2n;

so the algebraic extension �=� cannot be finite. For the proof, we will show by
induction over n that

(2) �.˛nC1/ W�.˛n/D 2

for every n. The initial case n D 1 follows from
p

2 … �. Assume that for some
n > 1 equation (2) is false; then ˛nC1 2 �.˛n/D fa C b˛n j a; b 2 �.˛n�1/g. But
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˛nC1 D aCb˛n implies ˛n D ˛2
nC1

D a2 Cb2˛2
n C2ab˛n D a2 Cb2˛n�1 C2ab˛n.

From the induction hypothesis we get a2 C b2˛n�1 D 0, and since ˛n�1 > 0 we
obtain a D b D 0.

It’s worth mentioning that the equality in (1) can be read off in a trice from
certain later results from Chapters 3 and 5: ˛nC1 is a root of the polynomial X 2n �2,
which is irreducible over �.

2.6 Let .pn/n be the sequence of prime natural numbers. Working just as in §2.5,
prove by induction that

�.
p

p1; : : : ;
p

pn/ W� D 2n:

In Chapter 14 we will see that this equality, and also that of §1.1, follow directly
from Kummer theory.

2.7 Prove that the numbers a D sin 45ı and b D cos 72ı are algebraic and irrational.
(Hint: For b see Chapter 1, Example 3 after Definition 2.)

2.8 What is the minimal polynomial of
p

2 C p
3 over �? (See §1.5.) Consider

the real number
˛ D

p

5 C 2
p

6

and show that 1; ˛; ˛2; ˛3 form a �-basis of �.˛/, as do 1;
p

2;
p

3;
p

6. Is the
polynomial X 4 � 10X 2 C 1 irreducible in �ŒX �?

Chapter 3: Simple Extensions

3.1 Let E=K be an extension and L1;L2 intermediate fields of E=K with Li WK
finite. Then necessarily L1L2 WL2 � L1 WK (Chapter 2, F11), but L1L2 WL2 is not
necessarily a factor of L1 WK. Hint: Consider L1 D �.

3
p

2/ and L2 D �.
3
3
p

2/

with 
3 D e2� i=3.

3.2 Let E=K be a field extension and suppose ˛; ˇ 2 E are algebraic over K. Set
f D MiPoK .˛/ and g D MiPoK .ˇ/. Prove that f is irreducible over K.ˇ/ if and
only if g is irreducible over K.˛/.

3.3 Let K be a field and f 2 KŒX � a polynomial of degree n> 0. Using induction
on n and Theorem 4 (Kronecker), show that there exists an extension E of K such
that f can be expressed as a product of linear factors over E:

f .X /D � .X �˛1/.X �˛2/ : : : .X �˛n/:

Therefore the subfield K.˛1; : : : ; ˛n/ of E satisfies K.˛1; : : : ; ˛n/ WK � n!.

3.4 Keeping the assumptions and notations of §3.3, show that K.˛1; : : : ; ˛n/ WK is
in fact a divisor of n!. (Hint: Use induction on n D deg f . If f D gh in KŒX � with
deg g D r and deg h D n�r , then r !.n�r/! is a divisor of n!). Show furthermore
that if K.˛1; : : : ; ˛n/ WK � .n�1/!, then f is irreducible over K or f already has
a root in K.
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3.5 How does it follow from Kronecker’s Theorem that there must exist a field with
say exactly 9 elements?

3.6 Let K.X / be the field of rational functions in one variable over the field K.
Prove:

(a) If T D T .X / is an element of K.X / not contained in K, the extension
K.X /=K.T / is finite. Hint: Let Y be an indeterminate over K.X / and let
T be of the form T D f=g, with f;g 2 KŒX �. Then X is a root of the
polynomial f .Y /� Tg.Y / 2 K.T /ŒY �, and since T … K, this polynomial is
nonzero.

(b) K is algebraically closed in K.X /, that is, the algebraic closure of K in K.X /

is K. (Hint: Using (a), this follows from the transitivity of algebraicness.)

(c) K.X /=K is a simple field extension possessing infinitely many intermediate
fields. (Hint: If K.˛/=K is not algebraic, ˛2 is transcendental over K and
K.˛2/¤ K.˛/.)

(d) If K=k is a finite field extension of degree n, so is K.X /=k.X /.

3.7 Let E=K be a field extension and take ˛; ˇ 2 E�. Suppose that ˛m 2 K

and ˇn 2 K for certain relatively prime natural numbers m; n. Prove that ˛ˇ is a
primitive element of the extension K.˛; ˇ/=K. (Hint: there exist x;y 2 � such that
1 D xm C yn.)

3.8 Let E be a subfield of � and E0 D E \ �. Prove:

(a) It is not always the case that E WE0 � 2.

(b) If E D �.
n/ with 
n D e2� i=n, then E0 D �.�n/ with �n D 
n C 
�1
n D


n C 
n D 2 cos.2�=n/, and E WE0 D 2 for n> 2.

(c) For n ¤ 1; 2; 3; 4; 6, the number 
n C 
�1
n is irrational. (Hint: If ˛ 2 � is a

zero of a normalized polynomial f 2 �ŒX �, then ˛ 2 �.)

(d) �.
7/ W� D 6, so the regular heptagon cannot be constructed with ruler and
compass. (Show that �7 is a zero of a cubic polynomial over �.)

3.9 Let G be an abelian group of order n (written multiplicatively), and denote by
.G/ the product of all elements of G. Consider the subgroups G2 D fx 2 G j x2 D
1g and G2 D fx2 j x 2 Gg of G. Prove:

(a) .G/D .G2/.

(b) If G is a subgroup of the multiplicative group of a field K and �1 2 G, then
.G/D �1 D .�1/n=2.G2/.

Deduce that:

.˛/ In the field �p we have .p�1/! D �1.

.ˇ/ For p ¤ 2 the element �1 is a square in �p if and only if p � 1 mod 4.

3.10 Let the extension E D K.˛; ˇ/ of K satisfy K.˛/ WK D p and K.ˇ/ WK D q,
with p>q both prime. Assume moreover that char K ¤p. Prove that E DK.˛Cˇ/.

Hint: If this were not so and we set h.X / D MiPoK .˛ C ˇ/, we would have
h.X Cˇ/D MiPoK .˛/.
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3.11 Let K be a field and, for elements a; b in K�, write a 
 b if ab is a sum of
two squares in K.

(a) Why is 
 an equivalence relation?

(b) Does the analogous statement hold if one replaces 2 by some arbitrary power
2n? (Hint: See LA II, p. 187, Problem 87.)

(c) In the case K D �.X /, prove: f 
 1 if and only if f .x/ � 0 for all x 2 �

where f .x/ is defined. (Hint: Look first into the case f 2 �ŒX �, and take into
account Section 4.3, Remark 2 after Definition 5.)

3.12 The construction of the fraction field of an integral domain given in the text can
be generalized. Let R be a commutative ring with unity, and let S be a multiplicative
subset of R, that is, a set S containing 1 and for which s; t 2 S implies st 2 S . On
the set M D R � S , form the relation 
 given by

.x; s/
 .y; t/ means 9u 2 S such that .xt � ys/u D 0:

It is easy to prove that 
 is an equivalence relation.1 Denote by x=s the equivalence
class of .x; s/, and let S�1R be the set of all such equivalence classes. If the classes
x=s are added and multiplied in the usual way (prove that this is well-defined), the
set S�1R becomes a commutative ring with unity; it is called the ring of formal
fractions of R with denominators in S , or the localization of R relative to S . For an
integral domain R and S D R r f0g, we have S�1R D Frac R. Now, if we denote
by � W R ! S�1R the homomorphism defined by �.x/D x=1, we have a universal
property analogous to F7: Let � W R ! B be a ring homomorphism (of commutative
rings with unity) such that �.s/ is invertible for every s 2 S . There exists exactly one
ring homomorphism � W S�1R ! B such that � ı �D �.

The ring A WD S�1R and the homomorphism � W R ! A have the following
properties:

(i) �.s/ is a unit in A for every s 2 S .

(ii) Every element of A is of the form �.x/�.s/�1, with x 2 R and s 2 S .

(iii) �.x/D 0 if and only if there exists s 2 S with xs D 0.

Because of this last property, � is not always injective, so R in general cannot be
regarded as a subring of S�1R. But, analogously with F8, we have: If � W R ! A is a
ring homomorphism with properties (i)–(iii), then A is isomorphic to the localization
of R relative to S . Incidentally, S�1R is the zero ring if and only if 0 2 S .

3.13 Let R be an integral domain with fraction field K. Assume R is a Bézout
ring, that is, given a; b 2 R there is always some d 2 R with that aR C bR D dR.
Prove that every subring A of K containing R is of the form A D S�1R, for some
multiplicative subset S of R. Hint: Consider S D A� \ R.

3.14 (a) Find a subfield K of � and z 2 K such that K.z/ WK is finite but not a
power of 2. How is this to agree with Chapter 1, F9? (Hint: Choose K D �.x/

with x D 3
p

2 C i t , where t is a transcendental real number.)

1 The proof will make it clear why we can’t just demand xt D ys in the defining condition.
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(b) Find a subfield K of � and z 2 K such that K.z/=K is not algebraic. How
is this to agree with Chapter 2, Theorem 1? (Hint: Choose K D �.s C i t/

with s; t 2 �, where t is transcendental and s is not in the algebraic closure
of �.t/ in �. Then x D s C i t is not algebraic over �.t/. Prove that if t is
algebraic over �.x/, then x is algebraic over �.t/.)

Chapter 4: Fundamentals of Divisibility

4.1 Find the gcd of a D 17017 and b D 1114129 and write it as an integer linear
combination of a and b. Note how much faster it is, already in this simple example,
to use the Euclidean algorithm than to find prime factorizations. (The factorizations,
by the way, are a D 17 � 13 � 11 � 7 and b D 17 � 65537.)

4.2 Let R be a UFD. Using F12, prove:

(a) If � 2 R and ı is a gcd of ˛1; : : : ; ˛n in R, then � ı is a gcd of �˛1; : : : ; �˛n.

(b) If ˛1; : : : ; ˛n are pairwise relatively prime elements of R and their product
˛1˛2 : : : ˛n is an m-th power in R, each ˛i is associated to an m-th power
in R.

(c) If � is a directory of primes of R and K D Frac R, the multiplicative group
of K satisfies K� ' R� � �.�/.

4.3 Find the prime factorization of X 4 C 1 in �ŒX �, in �ŒX � and in �ŒX �. (Hint:
In �ŒX � the answer is clear; the rest follows.) How about the prime factorization of
X 5 CX C1 in �ŒX �, in �2ŒX � and in �19ŒX �? Show that X 4 C4 is not irreducible
in �ŒX �.

4.4 Show that:

(a) The number 2 is irreducible in R D �Œ
p�5�, but not prime. (Hint: Use the

fact that the function N˛D ˛˛ is multiplicative; why is ˛ 2 R� equivalent to
N˛ D 1?)

(b) �Œ
p�1�, �Œ

p�2�, �



1
2
.�1 C p�3/

�

and �Œ
p

2� are all Euclidean domains.
(Hint: For �Œ

p
2� consider QN˛ WD j˛˛0j, where ˛0 Da�b

p
2 for ˛DaCb

p
2.)

4.5 The statement that Y 2 D X 3 � 2 has exactly one solution .x;y/ in natural
numbers goes back as far as Fermat. Prove its truthfulness, by working in the ring
�Œ

p�2� and making use of §4.4b and §4.2b. Remark: However, the same equa-
tion has a whole series of rational solutions .x;y/, such as .129=100; 383=1000/,
.164323=1712; 66234835=1713/, and so on; this is connected with the operation of
addition on elliptic curves.

4.6 Let R be a principal ideal domain and consider an infinite strictly decreasing
chain of ideals in R, say I1 � I2 � I3 � � � � . Show that

T1
iD1 Ii D .0/.

4.7 (a) Let R be a subring of an integral domain R0. Assume that R is a principal
ideal domain and that a; b 2 R. Show that a gcd of a; b in R is also a gcd of
a; b in R0.



Chapter 4: Fundamentals of Divisibility 237

(b) Let E=K be a field extension and let f;g 2 KŒX � be polynomials over K.
Show that if a normalized polynomial h 2 EŒX � is the gcd of f;g in EŒX �,
all the coefficients of h already lie in K.

4.8 Let R be an integral domain in which any two elements x;y 2 R have an lcm.
Show that every irreducible element of R is prime. (Hint: If � -a, then a� is an
lcm of a; � .)

4.9 Let R be an integral domain in which any two elements have a gcd. Show that
any two elements a; b also have an lcm (namely ab=gcd.a; b/ if a; b ¤ 0).

4.10 Here is an elementary proof that � is a UFD: by induction, it is clear that any
n> 1 is a product of prime numbers. Now use §4.8. Prove that if m is the smallest
of all common natural multiples of two given integers x;y ¤ 0, then m is an lcm
of x;y. (Hint: A one-time application of division with remainder.)

4.11 Set R D �Œ
p

10�. Show that in R every element ˛ ¤ 0 is the product of
irreducible elements, but R is not a unique factorization domain. (Hint: Consider
the multiplicative function QN defined as in §4.4b, and note that ˛ 2 R� if and only
if QN˛ D 1.)

4.12 Let R be a commutative ring with unity and S a multiplicative subset of R

(see §3.12). Form the localization S�1R of R relative to S , with canonical map
� W R ! S�1R. If a is an ideal of R, denote by S�1a the ideal of S�1R generated
by �.a/. It is easy to check that S�1a consists of all elements of the form a=s with
a 2 a and s 2 S ; moreover S�1a D .1/ if and only if a \ S ¤ ?. Conversely, if A
is an ideal of S�1R, denote the ideal ��1.A/ of R by A \R. Then a is of the form
a D ��1.A/ if and only if no element of S gives rise to a zero-divisor of R=a. Prove
that the maps P ‘ P \ R and p ‘ S�1p establish a one-to-one correspondence
between prime ideals of S�1R and prime ideals of R that are disjoint from S .

4.13 Let R be a commutative ring with unity and p a prime ideal of R. Then
S WD R r p is multiplicative, in the sense of §3.12. In this case we denote the ring
S�1R by Rp, and call it the localization of R at p. Set M D pRp D S�1p; then
1 … M. Every element of Rp not belonging to M is a unit of Rp, and conversely. In
other words: each ideal A ¤ .1/ of Rp is contained in M. In yet different words:
M is the unique maximal ideal of Rp. (A commutative ring with unity that has
a unique maximal ideal is called a local ring; in this connection see Chapter 6,
F12.) From §4.12 it follows that prime ideals in the local ring Rp are in one-to-one
correspondence with prime ideals of R contained in p.

4.14 Let R be a commutative ring with unity. An element f of R is called nilpotent
if there is a natural number n such that f n D 0. Denote by N the set of nilpotent
elements of R, called the nilradical of R. Prove that the nilradical of R is the
intersection of all prime ideals of R. (Hint: Given f 2R, consider S Dff n jn2�0g.
If f is not nilpotent, S�1R is not the zero ring and thus has a maximal ideal P;
see Chapter 6, F12. Now apply §4.12.)
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4.15 Let R be a commutative ring with unity 1 ¤ 0. Show that if every principal
ideal of R distinct from R is prime, R is a field. (Hint: Consider the principal ideals
.0/ and .a2/ for all a ¤ 0.)

4.16 Find an example of a noncommutative simple ring. (Hint: Consider the matrix
group Mn.K/; see LA II, p. 179, Problem 46.)

4.17 Let m; n be natural numbers with m jn. Show that the canonical map

.�=n�/� 	 .�=m�/�

is surjective. (Hint for one possible solution: Look first at the case of a prime power
n D pr and then bring the Chinese Remainder Theorem to bear.)

4.18 The ring �Œi �, where i D p�1, is called the ring of Gaussian integers. By
§4.4b above it is a Euclidean domain, and so has the same nice divisibility properties
as �. Thus it is pertinent to ask: (a) What primes p of � remain prime in �Œi � ? (b)
How does one locate all primes in �Œi � ?

Answer: For each Gaussian prime � there exists a �-prime p with � jp. Now,
either .p/D .�/, or there exists .p/D .��/ such that .�/¤ .�/, except in the case
p D 2. The first case happens when p � 3 mod 4, and the second when p � 1 mod 4

or p D 2.
Therefrom deduce Fermat’s Theorem: A prime number p ¤ 2 can be written in

the form p D x2 Cy2 with x;y integers if and only if p � 1 mod 4. (Hint: For p �
1 mod 4, by §3.9, there is some x such that p is a divisor of x2 C1 D .xCi/.x�i/.
Now, if p is prime in �Œi �, it follows that p jxCi .)

What would one have to know in order to perform an exactly similar analysis
of, say, the Euclidean domain �Œ

p
2�?

4.19 Let E be a field, and assume that f 2 EŒX � has a decomposition f D
f1f2 : : : fr into pairwise relatively prime factors. Show that

EŒX �=f ' EŒX �=f1 � � � � � EŒX �=fr :

(This is an application of the Chinese Remainder Theorem, but it also can be proved
easily by a direct dimension argument.)

4.20 Let A be a ring with unity. Assume that A D A1 �� � � �Ar is a direct product
of (sub)rings Ai .

(a) Prove that the ideals of A are precisely those subsets of the form I1 �� � ��Ir ,
where each Ik is an ideal of Ak . This statement also holds for left ideals
instead of two-sided ideals.

(b) Assume each ring Ai is simple and prove that the Ai coincide with the minimal
ideals of A, and therefore are uniquely determined. (An ideal I of a ring A is
called minimal if it is minimal in the set of all nonzero ideals of A.)

4.21 Let R be a UFD where the ideal generated by any two elements is a principal
ideal. Prove that R is a principal ideal domain.
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4.22 Let R D C.X / be the ring of all continuous functions on X D Œ0; 1� with values
in �. For a 2 X let Ia be the set of f 2 R such that f .a/ D 0. Show that the Ia

are the only maximal ideals of R. (Hint: X is compact.) Is the same true if X is
the open interval X D .0; 1/? (Hint: This question cannot be answered if F12 in
Chapter 6 is not accepted.)

4.23 Let R be a UFD, and suppose there is a prime element q of R such that no
unit e ¤ 1 of R satisfies the congruence e � 1 mod q. Show that R has infinitely
many prime principal ideals .p/. In particular this is true if R D � or R D KŒX �

for K a field.
Hint (Euclid): Let p1; : : : ;pn be primes in R with p1 D q. Then 1 C p1 : : :pn

has at least one prime divisor p.

4.24 For m; n 2 � relatively prime, show that:

(a) �.
m
p

2;
n
p

3/D �.
m
p

2
n
p

3/.

(b) A nonzero element a of a field K is an mn-th power in K if and only if a is
both an m-th power and an n-th power in K.

4.25 Determine all maximal ideals of the following rings:
(a) � � �; (b) �ŒX �=X 2 C X C 1; (c) �ŒX �=X 3; (d) �ŒX �=X 2 � 3X C 2.

4.26 Let K be a field of characteristic 0, and denote by E D K.X / the field of
rational functions in the variable X over K. For given a; b 2 K consider the subfield
F D K.X 2 C aX C b/. Set F0 D K.X 2/ and show that the extensions E=F and
E=F0 are finite (of degree 2), but if a ¤ 0 the extension E=F\F0 is not algebraic.
(Hint: For each f 2 F we have f .�X � a/ D f .X /. Show that any f 2 K.X /

satisfying f .X C a/D f .X / must be constant.)

Chapter 5: Prime Factorization in Polynomial Rings. Gauss’s
Theorem

5.1 Show that the following polynomials are irreducible in �ŒX �:
(a) 3X 4 C 6X 2 � 12X C 10; (b) 7

8
X 4 C 1

2
X 3 C 5X 2 C 6X C 12.

5.2 Why is 3
p

2 not an element of �.
7
p

5/ ? Why is there no extension E of �

such that E W� D 3?

5.3 Prove:

(a) X 2 C X C 1 is the only prime polynomial of degree 2 in �2ŒX �.

(b) The polynomial f .X / D X 4 C 3X 3 C X 2 � 2X C 1 is irreducible in �ŒX �,
therefore also in �ŒX �. (Hint: First, f has no zeroes in � — see F8. Now
work mod 2; see the Remark after F9.)

(c) X m C 1 2 �ŒX � is irreducible for every m D 2n (see F13).

5.4 Show that no element of the field �.X;Y / of rational functions in two variables
over � is a square root of X 4 C X 2Y 2 C XY C X .
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5.5 Show that if a1; : : : ; an are distinct integers, the polynomial

f .X /D .X � a1/
2.X � a2/

2 : : : .X � an/
2 C 1

is irreducible in �ŒX �. (Hint: f is a normalized polynomial of degree 2n in �ŒX �

taking positive values at all ˛ 2 � and taking the value 1 at the n distinct points
a1; : : : ; an. A nontrivial factorization f D gh with g;h 2 �ŒX � normalized would
therefore imply g D h D .X � a1/ : : : .X � an/C 1.)

5.6 Let f .X /D X n �upm, with p a prime and u 2 � relatively prime to p. Show
that if m; n are relatively prime, f is irreducible. (Hint: At least the case u D 1 is
clear, because then �

�

. n
p

p /m
� D �. n

p
p /.)

5.7 Consider f .X /D X 4 C X C 1 2 �ŒX �. Show that:

(i) f is irreducible.

(ii) In �ŒX � we have f .X / D .X � z/.X � z/.X � w/.X � w/; the following
relations are satisfied: z C z CwCw D 0, zz CwwC .z C z/.wCw/ D 0,
zz.wCw/Cww.z C z/D �1, zzww D 1.

(iii) ˛ WD zz Cww D .z C z/2 is a zero of the polynomial X 3 � 4X � 1.

(iv) Although �.z/ W� D 4, the number z does not belong to �.

5.8 In the situation of §3.6, choose for T 2 K.X / a representation T D f=g, with
f;g relatively prime. Show that

K.X / WK.T /D max.degf; deg g/:

(Hint: The polynomial f .Y /�Tg.Y / in §3.6 is irreducible in KŒT � ŒY �D KŒY � ŒT �,
therefore also in . . . .)

5.9 Let E be a subfield of the field of rational functions K.X / in one variable over
K, with E ¤ K.

(i) Why is K.X / W E < 1 ? Consider the minimal polynomial of X over E,
say Y n C tn�1.X /Y

n�1 C � � � C t0.X /. Show that, up to multiplication by an
element of KŒX �, this polynomial coincides with a polynomial

F.X;Y /D cn.X /Y
n C cn�1.X /Y

n�1 C � � � C c0.X / 2 KŒX � ŒY �

that is primitive over KŒX �.

(ii) Let t be an element of E such that t … K and t D f=g with f;g 2 KŒX � rela-
tively prime. Show that F.X;Y / divides g.X /f .Y /�f .X /g.Y / in KŒX � ŒY �.
Then, using §5.8, deduce that degX F � K.X / WK.t/.

(iii) In the same situation as (ii), assume that degf; deg g � degX F and deduce that
g.X /f .Y /�f .X /g.Y /D aF.X;Y / with a 2 K�; and hence that K.t/D E.

(iv) Using (iii), show that E=K is purely transcendental, that is, E is itself a field
of rational functions in one variable over K (Lüroth’s Theorem). Hint: At least
one ti.X / does not lie in K, and therefore satisfies E D K.ti/.
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5.10 Let R be an integral domain and f D aX n C � � � C a1X C a0 a primitive
polynomial in RŒX �. Suppose there is a prime element � of R and polynomials
'; 2 RŒX � such that

f .X /D a'.X /m C� .X /; with m 2 �:

Let x ‘ x be the quotient map from R onto R=� . Prove that, if ' is a prime
polynomial in RŒX � and  6� 0 mod ', then f irreducible in RŒX �.

This generalization of Eisenstein’s irreducibility criterion goes back to T. Schöne-
mann, who taught at the Havel Gymnasium in Berlin. He published his result (in
Crelle’s Journal) in 1846, a couple of years before Eisenstein.

5.11 Let f D X n Can�1X n�1 C� � �Ca0 be a polynomial in �ŒX � with a0 ¤ 0, and
suppose f .X /D .X �˛1/ : : : .X �˛n/ over �. Show that f is irreducible over �

if ˛1; : : : ; ˛n�1 have absolute value less than 1.

5.12 Prove:

(a) For every prime number p and every normalized f 2 �ŒX � whose image f is
irreducible in �p ŒX �, the ideal .p; f / is a maximal ideal of �ŒX �. (Hint: Why
is there a homomorphism from �p ŒX �=f onto �ŒX �=.p; f /?)

(b) If P is a prime ideal of �ŒX � that is not of the form given in (a), P is a
principal ideal of �ŒX �. If P is a principal ideal of �ŒX �, then P is not a
maximal ideal. (Hint: If a nonzero g is in P , so is some prime factor of g.)

Chapter 6: Polynomial Splitting Fields

6.1 Show that �.
3
p

2;
2
p�3/ is a splitting field of X 3 � 2 over �.

6.2 Let E=K be an algebraic field extension and F an intermediate field of E=K.
Prove:

(i) If E=K is normal, so is E=F .

(ii) If F WK D 2, then F=K is normal.

Give an example where E=F and F=K are normal, but E=K is not. (Hint: See §1.2
and keep Theorem 4 in mind; see also §6.3 below.)

6.3 Prove that E0 D �.
p

2;
p

1Ci/ is a normal closure of the degree-4 extension
�.

p
1Ci/=�. Thanks to §2.2, E0 W� D 8.

6.4 Show that if E=K is an algebraic field extension with the property that every
irreducible f 2 KŒX � over E splits into linear factors, then E is an algebraic closure
of K.

6.5 (a) Let L D K.˛1; : : : ; ˛n/ be a finite-degree extension over K. Show that
L=K is normal if and only if L is a splitting field of f1f2 : : : fn over K,
where fi D MiPoK .˛i/.
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(b) Let E=K and L=K be finite, normal field extensions. Show that there exists a
K-homomorphism � W E ! L if and only if there exist f;g 2 KŒX � satisfying
the following conditions: g divides f , L is a splitting field of f over K and
E is splitting field of g over K. (Consider F4.)

6.6 (a) Let E=K be an extension and take f 2 KŒX �. Prove the existence of the
following isomorphism of E-algebras:

.1/ E ˝ KŒX �=f ' EŒX �=f:

(b) Set F D �.i/. Show that the tensor product F ˝ F of the �-algebra F with
itself is not a field. (Consider that F ' �ŒX �=.X 2 C 1/.)

6.7 Let E1=K; E2=K be finite extensions and E an extension of both E1 and E2.
Let E1E2 WD E1.E2/D E2.E1/ be the composite of E1 and E2 in E. Show that
E1E2 ' E1 ˝ E2 (as K-algebras) if and only if E1E2 WE1 D E2 WK.

6.8 Let f;g be irreducible polynomials over the field K, both without multiple
zeros (in an algebraic closure of K). Let L D K.˛/ and E D K.ˇ/ be extensions of
K with f .˛/D 0 and g.ˇ/D 0. Show that if f D f1 : : : fr and g D g1 : : :gs are
the prime factorizations of f over K.ˇ/ and of g over K.˛/, we have r D s, and
after reordering we also have EŒX �=fi ' LŒX �=gi for all 1 � i � r ; in particular,

(2) ŒK.ˇ/ WK� degfi D ŒK.˛/ WK� deg gi :

(Hint: Use §6.6 together with §4.19 and §4.20.) This result is a significant strength-
ening of §3.2; it is due to Dedekind. Incidentally, it was also Dedekind who baptized
what we know as fields (with the German word Körper, literally “body”).

6.9 Let R be a commutative ring with unity, S a subset of R and a an ideal such
that a \ S D ?. Show that the set of ideals b of R such that a � b and b \ S D ?
has maximal elements. These elements are prime ideals when S is a multiplicative
set (see §3.12). As an application, show that if R D C.X / is the ring from §4.22,
every maximal ideal m D Ia of R contains a prime ideal p distinct from m.

6.10 Let A D RŒX1; : : : ;Xn� be the polynomial ring in n variables over an integral
domain R. Denote by Ad the set of all homogeneous polynomials of degree d (that
is, polynomials in A where only monomials X

�1

1
: : :X

�n
n of degree d D �1 C� � �C�n

appear). Prove that, as an R-module, A is the direct sum of the submodules Ad ,
d 2 �0. We have Ad Ae � AdCe . A polynomial f 2 A is homogeneous of degree
d if and only if the equation f .tX1; : : : ; tXn/ D tdf .X1; : : : ;Xn/ holds in the
polynomial ring AŒt �.

6.11 In order to prove Theorem 1, which is fundamental in our context, we had to
introduce in Section 6.3 the notion of the tensor product of K-algebras. The notion,
familiar from linear algebra, of the tensor product of (finitely many) K-vector spaces
is not subsumed under the definition given in Section 6.3, because for K-algebras
we demand the existence of a unity element (and therefore a K-vector space cannot
simply be regarded as a ring with trivial multiplication). In general, suppose K is
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a commutative ring with unity, and let V;W be K-modules. A tensor product of
V;W is a K-module V ˝ W together with a bilinear map

� W V � W ! V ˝ W;

.x;y/ ‘ x ˝ y;

satisfying the following condition: Given any bilinear map ˇ W V � W ! Z, there
exists a unique linear map f W V ˝ W ! Z such that f .x ˝ y/ D ˇ.x;y/ for all
x 2 V , y 2 W . Prove:

(i) Let .V ˝1 W; �1/ and .V ˝2 W; �2/ be tensor products of V;W . There exists
a unique isomorphism � W V ˝1 W ! V ˝2 W such that �.x ˝1 y/D x ˝2 y.

(ii) Every element of V ˝ W is a finite sum of elements of the form x ˝ y. The
following relations hold:

.x C x0/˝ y D x ˝ y C x0 ˝ y;

x ˝ .y C y 0/D x ˝ y C x ˝ y 0;
˛x ˝ y D x ˝˛y D ˛.x ˝ y/ for ˛ 2 K:

(iii) Given K-homomorphisms f W V ! V 0 and g W W ! W 0, there exists a unique
K-homomorphism h W V ˝ W ! V 0 ˝ W 0 such that h.x ˝ y/ D f x ˝ gy.
This homomorphism is written h D f ˝ g.

(iv) There is a canonical isomorphism f W K ˝ V ! V such that f .˛˝ x/D ˛x.

(v) For any family .Vi/i2I of K-modules, there exists a canonical isomorphism
�

L

i2I Vi

� ˝ W ! L

i2I .Vi ˝ W / such that
�

P

i xi

� ˝ y ‘ P

i.xi ˝ y/.

(vi) There is a canonical isomorphism V ˝W ! W ˝V such that x ˝y ‘ y ˝x

and a canonical isomorphism .V ˝ W / ˝ Z ! V ˝ .W ˝ Z/ such that
.x ˝ y/˝ z ‘ x ˝ .y ˝ z/.

6.12 Prove the existence of a tensor product .V ˝ W; �/ for arbitrary K-modules.
Hint: As in Section 6.3, start with the free K-module F D KM generated by the
set M D V � W ; then form the K-submodule U generated by all elements of one
of the forms

.xCx0;y/� .x;y/� .x0;y/; .x;yCy 0/� .x;y/� .x;y 0/; .˛x;y/� .x; ˛y/:

Finally, consider the quotient module F=U .

6.13 Let W be a free K-module, with basis .ej /j2J . Deduce from §6.11(v,vi) that,
if V is any K-module, every t 2 V ˝W has a unique representation t D P

j xj ˝ej

with xj 2 V . Thus, for every injective homomorphism V 0 ! V , the corresponding
map V 0 ˝ W ! V ˝ W is injective as well. If V , too, is free, with basis .di/i2I ,
the family .di ˝ ej /i;j is a basis of V ˝ W . Specializing to K-vector spaces V;W

of dimensions m; n, we see that V ˝ W has dimension mn.

6.14 Let A;B be K-algebras. For the moment we will write the underlying vector
spaces of A;B as A0;B0. Show that A0 ˝ B0 can be given one and only one K-
algebra structure in such a way that .a˝b/.a0 ˝b0/D aa0 ˝bb0, and this algebra is
then the tensor product of the K-algebras A;B in the sense of Section 6.3 (see F7).
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6.15 Consider the �-algebras � and �=n . WD �=n�/. Show that � ˝ �=n D 0,
and that � ˝ � ' � and �=n ˝ �=n ' �=n (with canonical isomorphisms).

Chapter 7: Separable Extensions

7.1 Let f 2 KŒX � be irreducible and let L=K be a normal field extension. Show
that if g;h are normalized prime factors of f in LŒX �, there exists � in G.L=K/

such that �g D h.
Deduce that in the prime factorization of f in LŒX � all prime factors have the

same exponent.

7.2 Let E=K be a (not necessarily algebraic) field extension such that char K D
p > 0, and take ˛ 2 E. Prove:

(a) If ˛p 2 K but ˛ … K, then K.˛/=K is purely inseparable of degree p. (Hint:
F16, F15.)

(b) K.˛p/ D K.˛/ if and only if ˛ is algebraic and separable over K. (Hint:
Consider F12.)

7.3 Let f 2 KŒX1; : : : ;Xn� be a polynomial in n variables over the field K, and
let M be a subset of Kn on which f vanishes. Which of the following conditions
imply f D 0?

(i) M is infinite;

(ii) M D Kn;

(iii) M contains a set of the form A1 �� � ��An, where each Ai is an infinite subset
of K.

Answer: In general only (iii). And the converse is false; if, for example, K D �,
n D 2 and f vanishes on M D ˚�

m; k C 1
m

� j m; k 2 �
�

, then f D 0, but M does
not satisfy (iii).

7.4 Let F=K be an extension and suppose K is infinite. Let f1; : : : ; fk be polyno-
mial in F ŒX1; : : : ;Xn� and set Vi D fx 2 Kn j fi.x/D 0g for each i . Show that if
Kn D V1 [ � � � [ Vk , at least one Vi coincides with Kn (that is, fi D 0).

7.5 Suppose a field extension E=K satisfies E D K.˛1; : : : ; ˛n/, where the ˛i

are algebraic over K. Suppose ˛2; : : : ; ˛n separable over K. Show that if K has
infinitely many elements, E contains an element ˛ of the form

(1) ˛ D x1˛1 C � � � C xn˛n with xi 2 K;

for which E D K.˛/. This is the primitive element theorem, which is due to Abel.
Hint: Using §7.4, show that there exists .x1; : : : ;xn/2 Kn such that x1 ¤ 0 and

(2)
n

X

jD1

xj�i. j̨ /¤
n

X

jD1

xj j̨ for i D 2; : : : ; r;
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where �1 D1, �2, . . . , �r are the r WD ŒE WK�s D Es WK distinct K-homomorphisms
from E into a normal closure F of E=K. Now, if (2) is satisfied and ˛ is as in (1),
it follows that Es D K.˛/s � K.˛/, and therefore ˛2; : : : ; ˛n lie in K.˛/. Since
x1 ¤ 0, we then have ˛1 2 K.˛/ as well. (A somewhat weaker version of the
primitive element theorem will come up in the context of Chapter 8.)

7.6 Let E D K.˛1; : : : ; ˛n/ be as in §7.5, but assume that ˛2; : : : ˛n are only
separable over K.˛1/. Prove that there exists ˛ 2 E with E D K.˛/.

Hint: Let F be the separable closure of K in E. Then E D F.˛1/. Now §7.5
yields the assertion. (For the case of finite fields see Chapter 9, Theorem 2.)

7.7 Suppose an extension E=K of degree 2n is of the form E D K.
p

a1; : : : ;
p

an/,
with ai 2 K. Prove that, if char K ¤ 2, then ˛ WD p

a1 C � � � C p
an is a primitive

element of E=K. (Hint: Otherwise there would exist � 2 G.E=K.˛// with � ¤ id.)

7.8 Find a finite extension E=K that has infinitely many intermediate fields. (Hint:
Consider the field of rational functions E D �p.X;Y / in two variables, the subfield
K D �p.X

p;Y p/, and the intermediate fields K.X C tY / for t 2 K.)

7.9 Let E=K be a finite field extension. Show that if E is perfect, so is K. (Compare
F18.) Hint: Why is Ep WKp D E WK?

7.10 Let E=K be a finite field extension. Then ŒE WK�D ŒE WK�s ŒE WK�i ; see F17
and the remark following it. Deduce that for any intermediate field F of E=K,

ŒE WK�i D ŒE WF �i ŒF WK�i :
7.11 Let L=K be an algebraic extension and h 2 LŒX � a normalized polynomial.
Prove that a necessary and sufficient condition for all the coefficients of h to be
separable over K is that for every root ˛ of h the multiplicity ord˛ h be divisible
by ŒK.˛/ WK�i .

Hint: Let ˛ be a root of h and f the normalized prime factor of h such that
f .˛/D 0. Then

f .X /D g.X pm

/D
r

Y

jD1

.X pm �˛pm

j /D
r

Y

jD1

.X � j̨ /
pm

;

where pm D ŒL.˛/ W L�i and the ˛1; : : : ; ˛r are all distinct.

Chapter 8: Galois Extensions

8.1 (a) Solve §1.1 again, this time using Galois theory. (Hint: Consider
p

a=
p

b in
K.

p
a;

p
b/.)

(b) Take E D �.
2
p

2;
3
p

3/. Using Galois theory, show that E D �.
2
p

2 C 3
p

3/.
(Hint: Consider E � �.)
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8.2 For E D �.
p

2;
p

5/, show:

(i) E=� is a Galois extension.

(ii) G.E=�/' �=2 � �=2. List all the intermediate fields of E=�.

8.3 Suppose that the Galois group of an irreducible and separable polynomial f 2
KŒX � is abelian. Let E be a splitting field of f over K and let ˛1; : : : ; ˛n be the
roots of f in E. Show that E D K.˛i/ for any i , and hence that E WK D degf .

8.4 Let E � � be a field. Show that if E=� is a Galois extension and E0 D E \�,
we must have E W E0 � 2. Is E0=� always Galois if E=� is? Prove: If E=K

is a Galois extension, E0=� is Galois if and only if the generator 	 of G.E=E0/

commutes with all elements of G.E=�/.

8.5 Let K be a subfield of � and let E=K be a Galois extension of degree 4n whose
Galois group is cyclic. Using F6 in Chapter 9, show that no element d < 0 of K is
a square in E. (Hint: Consider §8.4.)

8.6 Let a1; a2; : : : ; an be pairwise relatively prime square-free integers of absolute
value ¤ 1. Show that �.

p
a1; : : : ;

p
an /=� is a Galois extension, with Galois

group isomorphic to fC1;�1gn ' .�=2/n (compare §2.6). For each 0 � k � n,
the number of subfields of degree 2k is equal to the number of subfields of degree
2n�k ; find this number.

8.7 Let E=K be a normal field extension, and let Es be the separable closure of K

in E. Show that there exists a (canonical) intermediate field F of E=K such that
F \ Es D K and FEs D E; in particular, F=K is purely inseparable and E=F is
separable. If E=K is finite, F WK is the inseparable degree of E=K. (Hint: Consider
the fixed field of the automorphism group G.E=K/ of E=K.)

8.8 Let L=K be an algebraic extension with the property that every irreducible
f 2 KŒX � in L has at least one root (compare §6.4). Show that L is an algebraic
closure of K. (Hint: Work in a fixed algebraic closure C of L, apply the primitive
element theorem and use §8.7.)

8.9 Let k be a field of characteristic p>0 and let K Dk.Y;Z/ be the field of rational
functions in two variables over k. Also let ˛ be a root of X 2p CYX p CZ 2 KŒX �

and consider E D K.˛/. Prove:

(i) E=K is an inseparable but not purely inseparable extension of degree 2p.

(ii) E=K has no proper intermediate field inseparable over K (see §8.7). Hint:
You can use §7.1.

8.10 Let E=K be a finite field extension and G a group of K-automorphisms of E.
Show that G is finite and its order divides E WK. Moreover, jGj D E WK if and only
if E=K is Galois and G.E=K/D G.

8.11 Let ˛ be a complex number satisfying ˛6 C 3 D 0. Show that �.˛/=� is a
Galois extension, and determine its Galois group and all its intermediate fields.
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8.12 Take f1 D X 4 � 2 and f2 D X 4 � 2X 2 C 2 and let E1;E2 be splitting fields
of f1; f2, respectively, over �. Prove:

(i) E1 D �.i;
4
p

2/, E2 D �.
p�2;

p
1 C i/, and both have degree 8 over �.

(ii) E1 and E2 are not isomorphic, but E1=� and E2=� have isomorphic Galois
groups.

Find all intermediate fields of E1=� and E2=�.

8.13 Determine the Galois group G of the splitting field E of X 3 C X C 1 over
�. How many subfields does E have, and what are their degrees over �? (Hint:
Exactly one of the roots ˛1; ˛2; ˛3 is real. It follows that G ' S3. Thus there are
exactly three subfields of degree 3, namely �.˛1/;�.˛2/;�.˛3/, and exactly one
of degree 2. By the way, the degree-2 field is �.

p�31/; see Section 15.5.)

8.14 Let E be a splitting field of X 5 � 2 over �. Prove:

(i) E W � D 20.

(ii) There exists precisely one intermediate field F of E=� with E WF D 5, and
F=� is normal.

(iii) 5
p

2 C 
5 is a primitive element of E=�.

(iv) The Galois group G of E=� has elements �; � such that ord � D 5, ord � D 4,
and ����1 D �2.

List all intermediate fields of E=�. (Note: Without knowledge of group theory
some labor is involved in proving the uniqueness part of (ii), or at any rate in
determining the intermediate fields; but see the results in Chapter 10, particularly
Theorem 1 (Sylow’s Theorem), which turns the problem into a piece of cake.)

8.15 Let E D k.X / be the field of rational functions in one variable over some
field k. Any automorphism � of E=k is characterized by the image �.X / of X .
Why does this (plus §5.8) immediately imply that �.X / has the form

�X D aX C b

cX C d
with ad � bc ¤ 0?

The automorphism group of k.X /=k is thus canonically isomorphic to the projective
linear group PGL.2; k/D GL.2; k/=k�.

8.16 Let E D k.X / be as in §8.15. We make the identification Aut.k.X /=k/ D
PGL.2; k/. Prove that finite subgroups G of PGL.2; k/ are in one-to-one corre-
spondence with intermediate fields K such that E=K is Galois, and in fact the
correspondence is given by G ‘ EG and K ‘ G.E=K/.

Prove that if G is a finite subgroup of PGL.2; k/, there exists a rational function
f 2 k.X / such that G contains precisely those � 2 PGL.2; k/ that leave f invariant:

(1) G D f� 2 PGL.2; k/ j �f D f g:
Hint: Lüroth’s Theorem (§5.9).

Here is an example: Take �1.X /DX , �2.X /DX �1, �3.X /D1�X , �4.X /D
.1�X /�1, �5.X /D.X �1/X �1, �6.X /DX.X �1/�1. These elements of PGL.2; k/
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form a group G isomorphic to S3. Find an f satisfying (1). (Hint: One of the
coefficients of the minimal polynomial of X over the fixed field of G is not constant;
see §5.9.)

8.17 In the field of rational functions E D k.X /, consider the element

J.X /D .X 2 � X C 1/3

X 2.X � 1/2
:

Show that the extension k.X /=k.J / is Galois of degree 6, and determine its Galois
group and all its intermediate fields.

Watch out: The group defined by (1) is finite for any nonconstant f 2 k.X /,
but k.X /=k.f / is generally not normal.

8.18 Set G D Aut.k.X /=k/. Prove:

(a) If k is an infinite field, k is the fixed field of G.

(b) In the case of a finite field k with q elements, however, the fixed field K of G

is not the same as k; the extension k.X /=K is Galois of order q3 � q. Hence
there exists a nonconstant f 2 k.X / with denominator of degree q3 � q and
such that K D k.f /. Using results from Section 9.1 one can show that

f D .X q � X /q
2C1

.X q2 � X /qC1

satisfies this property.

Hint: Note that G is generated by the elements aX , X C b and 1=X , with a 2 k�
and b 2 k.

8.19 Let K be a subfield of � and assume f 2 KŒX � is separable and normalized.
Show that the discriminant D.f / has sign .�1/r2 , where r2 is half the number of
nonreal roots of f in �.

8.20 Prove that the only homomorphism of the field � into itself is the identity.

8.21 Let E=K be a finite Galois extension with group G, and let V be an n-
dimensional vector space over E on which G operates semilinearly, meaning that
�.x C y/ D �.x/C �.y/ and �.�x/ D �.�/�.x/ for any x;y 2 V , � 2 E and
� 2 G. Clearly the set V G of elements fixed by G is a K-vector space. Prove that
there exists a K-basis of V G that is also an E-basis of V .

(Hint: Show first that any v1; : : : ; vm 2 V G that are linearly independent over
K are also linearly independent over E. Then show that any linear functional on
the E-vector space V that vanishes on V G is trivial.)

8.22 Let F be an intermediate field of the Galois extension L=K. Set G D G.L=K/

and H D G.L=F /. Why is it that ŒF WK�D G WH , if L=K is assumed finite? Prove,
more generally, that if ŒF W K� is finite, so is G W H , and then ŒF W K� D G W H .
(Hint: There is a well defined from G=H into the set G.F=K;L=K/ of all K-
homomorphisms of F in L.)

Prove that G WH <1 implies ŒF WK� <1.
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8.23 Let ˛ 2 � be an algebraic number and K � � a field. Why is K.˛/ WK no
greater than �.˛/ W�? Prove that if �.˛/=� is normal, K.˛/ WK divides �.˛/ W�.
(Hint: Why is K.˛/=K Galois and why does every � 2 G.K.˛/=K/ give rise to
a �0 2 G.�.˛/=�/? Considerations of this sort lead to the so-called Translation
Theorem of Galois theory; see Chapter 12, Theorem 1.)

Chapter 9: Finite Fields, Cyclic groups and Roots of Unity

9.1 Keeping the notation of Theorem 1, prove that �pm is a subfield of �pn if and
only if n is divisible by m.

9.2 Let K be a finite field with q elements and let f 2 KŒX � be irreducible. Prove
that f divides X qn� X in KŒX � if and only if n is divisible by deg f .

9.3 Let p ¤ 2 be prime.

(a) Using Theorem 2, prove again (compare §3.9) that �1 is a square in �p if and
only if p � 1 mod 4.

(b) More generally, a 2 ��
p is a square if and only if a.p�1/=2 D 1.

(c) Characterize finite fields �pn where �1 is a square.

9.4 Take G D .�=23/�.

(a) Find all elements of order 11 in G. (Hint: ord 2 D 11.)

(b) Find all generators of G. (Hint: ord 5 D 22.)

(c) Show that the splitting field of X 23 � 1 over �2 has degree 11 (see F11).

9.5 In his memoir “Sur la théorie of the nombres”, Galois (1811–1832) was the
first to consider finite fields that are proper extensions of their prime fields. Actually
he says nothing about their existence. He simply performs computations in them,
calling the quantities that he manipulates “les imaginaires”. Although Galois himself
does not offer any specifically number-theoretical applications of his investigations,
he is visibly convinced of their usefulness.

In his memoir Galois discusses the following example: The polynomial X 3�2 is
irreducible over �7; thus, if we fix one of its roots, calling it ˛D 3

p
2, we have found

a primitive element of �73=�7 , since �73 D �7.˛/. Now try to find a primitive root

Da˛2Cb˛Cc of �73 , that is, an element 
 such that ord 
D73�1D342D19�32�2.
Clearly ˛ itself is only a primitive 9th root of unity. Next try 
 D ˛ C 1. Galois
chooses ˛2 C ˛ as a primitive root and states that .˛C 1/10 D �1. Has he made a
mistake?

9.6 Determine the prime factorization of f .X /D X 5 �X 4 �6X 3 C6X 2 �3X C3

as a polynomial over �, �3, and �5 (one at a time). Show that the respective Galois
groups all have distinct orders.

9.7 For any k 2 � let 
k denote a primitive k-th root of unity in �. Show that, for
any natural numbers m; n with d as their gcd and v as their lcm, we have:
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(i) '.mn/'.d/D '.m/'.n/d .

(ii) '.m/'.n/D '.v/'.d/.

(iii) �.
m; 
n/D �.
v/.

(iv) �.
m/\ �.
n/D �.
d /.

(Hint: See Theorem 3 and use §2.1.)

9.8 Prove that cyclotomic polynomials Fn for n> 1 have the following properties:

(i) F2m.X /D Fm.�X / if m is odd.

(ii) Fm.X
p/D Fm.X /Fmp.X / for all primes p not dividing m.

(iii) Fn.X /D Fm.X
n=m/ if m is the product of all primes dividing n.

(iv) Fn.0/D 1 and hence Fn.X
�1/X '.n/ D Fn.X /.

(v) Fn.1/D p if n is the power of a prime p.

(vi) Fn.1/D 1 if n is not a prime power.

The last two properties are particularly interesting in connection with arithmetic:
In case (vi), 1�
n is a unit in the ring RD�Œ
n�, whereas in (v) the element �D1�
n

is prime in R and p has in R the prime factorization p D "�'.n/, with " a unit (this
despite the fact that �Œ
p � is generally not a UFD; more precisely, �Œ
p � for p prime
is not a UFD exactly when p � 23).

9.9 Prove, with the greatest possible economy:

(a) F15.X /D X 8 � X 7 C X 5 � X 4 C X 3 � X C 1.

(b) For primes p ¤ q, all coefficients of Fpq.X / have absolute value 1. Hint:
Look at

Fpq.x/D .1 � x/
�

Fq.x
p/.1 � xq/�1

�

as an identity between power series.

(c) The smallest n for which not all coefficients of Fn have absolute value 1 is
n D 105. In fact,

F105.X /D X 48 C X 47 C X 46 � X 43 � X 42 � 2X 41 � X 40 C � � � C 1:

Note: I. Schur showed that the coefficients of the Fn can be arbitrarily large.

9.10 Let p be a prime and suppose that for some a 2 � and � 2 � we have
a � 1 mod p� but a 6� 1 mod p�C1. Show that, apart from the case p D 2 and
� D 1, there follows

ap � 1 mod p�C1; ap 6� 1 mod p�C2:

Thus, for p ¤ 2 and any n 2 �, the residue class of 1 C p in .�=pn�/� has order
pn�1; for p D 2 the equality 1 C 22 D 5 determines an element of order 2n�2 in
.�=2�/�.
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9.11 Prove:

(a) If p is an odd prime and n 2 �, the group .�=pn�/� is cyclic of order '.pn/D
.p � 1/pn�1. (Hint: Let a represent a primitive root in .�=p�/�. We know
that ap�1 � 1 mod p. By taking p-th powers, a can (thanks to §9.10) be
modified so that ap�1 � 1 mod pn. Then the residue class of a.1 C p/ has
order .p � 1/pn�1.

(b) For p D 2 and n � 3 the group .�=2n�/� D h�1i � h5i is the direct product
of the cyclic subgroups generated by the residue classes of �1 and 5 (of order
2 and 2n�2 respectively). (See §10.8(b) for the notion of the direct product of
groups.)

9.12 Consider the abelian group G D .�=m�/�, where m > 1. Describe the
subgroup G2 consisting of elements � such that �2 D 1. Show, in particular, that if
r is the number of odd primes in the prime factorization of m and e is the exponent
of the factor 2, then G2 has order 2r , 2rC1, or 2rC2, depending on whether e � 1,
e D 2, or e � 3, respectively. (In the case m D 2n, with n � 3, write out the three
elements of order 2.) For what values of m is G cyclic? (Answer: Only when
m D pn or m D 2pn, with p prime and n � 1, where moreover n D 1 if p D 2.)

9.13 What are the prime factorizations of X 9 � X and X 27 � X in �3ŒX �?

9.14 Let K be the field with 729 elements. How many subfields does K possess?
Prove that K has exactly 696 elements ˛ with the property that K D �3.˛/, and that
there are exactly 116 normalized prime polynomials of degree 6 over �3. Formulate
more-general statements of this sort.

9.15 Let K be a finite field. Show that every element of K is a sum of two squares
in K. More generally, if a; b 2 K�, any c 2 K can be represented as c D ax2 Cby2

in K. Hint: How many elements are in the sets fax2 j x 2 Kg and fc�by2 j y 2 Kg?

9.16 Prove that any root of unity contained in �.
n/ has the form ˙
k
n .

9.17 Take n 2 � and a prime p not dividing n. Show that, for x 2 �, we have
Fn.x/ � 0 mod p if and only if x 2 ��

p has order n. (Hint: X n � 1 is a separable
polynomial in �p ŒX �.)

9.18 Take n 2 �. Show that there are infinitely many primes p such that p �
1 mod n. (More generally, the famous Dirichlet Theorem says that for any integer
a relatively prime to n there are infinitely many primes p � a mod n.) Hint: Let
P .Fn/ be the set of all primes p such that the equation Fn.X / � 0 mod p has a
solution in �. From §9.17 it follows, for every prime p -n, that

p 2 P .Fn/ ” p � 1 mod n:

Now the assertion follows from the general result given in the next exercise.

9.19 Let f .X /DanX nC� � �Ca1X Ca0 be a nonconstant polynomial in �ŒX �. Show
that there are infinitely many primes p such that the congruence f .X /� 0 mod p

has a solution in �. (Hint: If a0 D 1, the result follows using the same sort of
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argument as in Euclid’s proof that there are infinitely many primes. The general
case can then be reduced to the case a0 D 1.)

Note: If P .f / denotes the set of primes p in question, it can actually be proved
that

X

p2P.f /

1

p
D 1:

Unfortunately the author is not aware of an elementary proof of this fact, in spite
of some stabs at the problem.

9.20 Why is 4
p

5 not in �.
25/? (Hint: �.
4
p

5/=� is not normal.) Why is
p

15 not
in �.
15/? (Hint:

p�3 2 �.
3/;
p

5 2 �.
5/.) Prove more precisely that �.
15/=�

has exactly 6 proper intermediate fields, namely �.
p�3/, �.

p
5/, �.

p�15/,
�.

p�3;
p

5/, �.
5/, and �.
15 C 
�1
15 /.

9.21 Show that �.
8/=� has exactly three intermediate fields, namely �.
p

2/,
�.

p�1/, and �.
p�2/.

9.22 Why does �.
41/=� have exactly 8 intermediate fields? Show, more generally,
that if q is an odd prime and p

e1

1
: : :per

r is the prime factorization of q�1, then �.
q/

has exactly .e1C1/ : : : .er C1/ subfields. (Hint: Theorem 3, Theorem 2, F6.)

9.23 Take E1 D K.
16/ and E2 D K.
17/, with K D �. Show that the degree
of E1=K is half as much as the degree of E2=K, but E1=K has more proper
intermediate fields than E2=K (in fact, twice as many).

9.24 Examine again the assertions of §3.8 in light of recently acquired knowledge
and show how easily they can be proved now.

Chapter 10: Group Actions

10.1 Let G be a nontrivial group, i.e., a group having more than one element. Prove
the equivalence between:

(i) G is finite of prime order.

(ii) G has no subgroups apart from itself and 1.

(iii) G is cyclic of prime order.

10.2 Let G be a nontrivial group. Prove the equivalence between:

(i) There is a proper subgroup of G containing all others.

(ii) G is a finite cyclic group and its order is a prime power.

(iii) G is finite and the set of subgroups of G is totally ordered.

10.3 Let k be a field with algebraic closure C . Let ˛ be a element of C rk. Prove
that among the intermediate fields of C=k not containing ˛, there is a maximal one.
Let K be such a maximal field and E=K a finite extension (inside C=k). Prove that
if E=K is separable, E=K is Galois with a cyclic group of order equal to a prime
power. (Hint: §10.2.) If E=K is not separable and p D char K, then E=K is purely
inseparable, and the extension K=Kp has degree p. (Hint: See §8.7.)
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10.4 Let G be a finite group and H a subgroup of G. Prove that if G W H D 2, then
H is normal in G and lies in the center of G.

More generally, let p be the smallest prime dividing the order of G. Prove:

(a) If H is a normal subgroup of order p, then H � ZG.

(b) If H has index p, then H is a normal subgroup of G.

(Hint: (a) Inner automorphisms of G give rise to elements of the group Aut H '
.�=p�/�. (b) Let M be the set of subgroups of G conjugate to H . By letting G

act on M by conjugacy, one gets a homomorphism of G into the group S.M / of
permutations of M ; look at its kernel.)

10.5 Let G be a finite p-group and H a proper subgroup of G. Show that H is a
proper subgroup of its normalizer NGH in G. Consequences: If H is a maximal
subgroup of G (that is, maximal among proper subgroups of G), then H is a normal
subgroup of index p in G. Further: Every proper subgroup H of G lies in a normal
subgroup N of index p in G. (Hint: ZG ¤ 1. Work by induction on jGj. The case
ZG 6� H is trivial.)

10.6 Let G be a finite p-group and N ¤ 1 a normal subgroup of G. Prove:

(a) N \ ZG ¤ 1.

(b) N contains a subgroup H normal in G and such that N WH D p.

(Hint: Use the orbit formula for the action of G on N by inner automorphisms. Part
(b) follows from (a) by induction.)

10.7 Let N be a normal subgroup of a group G such that the quotient G=N is
cyclic. Prove:

(a) If in addition N is contained in the center of G, then G is abelian. Conse-
quence: Every group of order p2 (for p prime) is abelian.

(b) If G is finite and G=N has order f , then G has a cyclic subgroup C of order f .
If in addition f is relatively prime to the order of N , then N \ C D 1 and
G D NC .

10.8 (a) Let H be a subgroup of a group G. Denote by p W G ! G=H the map
defined by � ‘ �H . Can a multiplication operation be defined on G WD G=H

in such a way that p.�/ �p.�/D p.��/ for all �; � 2 G? If so, there is clearly
only one way to do it; then G=H is a group with this operation, and p is a
group homomorphism. Prove that the answer to the question is yes if and only
if H is a normal subgroup of G.

(b) Let H1;H2 be subgroups of a group G and let f W H1 � H2 ! G be the map
.x1;x2/‘ x1x2. Show that f is a homomorphism if and only if x1x2 D x2x1

for all x1 2 H1, x2 2 H2. In this situation we say that G is the direct product
of H1 and H2 if f is an isomorphism. Show that this happens if and only if
the following conditions are satisfied:

G D H1H2; Hi E G for i D 1; 2; H1 \ H2 D 1:

(Hint: Two elements a; b of a group commute if and only if their commutator
Œa; b� WD aba�1b�1 equals 1.)
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(c) Let H1; : : : ;Hn be subgroups of a group G, and let H be their intersection.
Show that if every Hi has finite index in G, so does H . (Hint: The maps
pi W G ! G=Hi defined by pi.�/ D �Hi give rise to a well defined map
G=H ! G=H1 � � � � � G=Hn.)

10.9 Let p be a prime number. Prove:

(a) Any group of order pam with m�p has a normal subgroup of order pa. (Hint:
The case m D p is taken care of by F8. For m< p see Sylow’s Theorems.)

(b) If G is a group of order pq, where q < p is also prime and does not divide
p � 1, then G is cyclic.

(c) If q is a prime distinct form p, every group of order p2q has a normal Sylow
p-subgroup or a normal Sylow q-subgroup.

(d) Every group of order 2n �3 possesses a normal subgroup N with G WN D 3 or
G WN D 2. (Hint: The action of G on M D Syl2G via inner automorphisms
yields a homomorphism G ! S.M /.)

(e) Every group of order 45 is abelian.

(f) If q and r are primes with p < q < r and G is a group of order pqr , then
one of the nontrivial Sylow subgroups of G is normal in G. (Hint: Otherwise
there would be too many elements of order p, q and r all combined.)

10.10 A subgroup H of a group G is called characteristic in G, and we write
H J G, if '.H / D H for all automorphisms ' of G. A group G ¤ 1 is called
simple if it has no nontrivial proper subgroup H with H J G, and it is called
characteristic-simple if it has no nontrivial proper subgroup H with H EG. Prove:

(a) The condition H J N E G implies H E G. In particular, any subgroup H of
a cyclic normal subgroup N of G is normal in G.

(b) If G is a characteristic-simple finite group and N is a minimal normal subgroup
of G (that is, minimal among nontrivial normal subgroups of G), then G 'N �
� � � � N and N is simple. (Hint: G D ˝

'.N / j ' 2 Aut G
˛ D '1.N / : : : 'r .N /,

and for r minimal the product is direct.)

(c) If G ' N � � � � � N and N is a simple group, G is characteristic-simple.

10.11 Among groups G of order n < 60 there are no simple groups apart from
cyclic groups of prime order.

(Hint: By §10.9 the only cases that remain doubtful are n D 36, n D 40 and
n D 56. For n D 40 a normal Sylow 5-group is available, for n D 36 you can argue
as in §10.9(d), and for n D 56 you can count elements of order 7 and those of order
a power of 2.)

10.12 Let E be a splitting field of X 7 � 6 over �. Prove:

(i) E W � D 6 � 7.

(ii) There is exactly one intermediate field F of E=� such that E W F D 7, namely
F D �.
7/.

(iii) 7
p

6 C 
7 is a primitive element of E=�.
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(iv) The Galois group G of E=� contains elements �; � such that ord � D 7,
ord � D 6 and ����1 D �3.

Let’s get an overview of all the intermediate fields of E=�. If ˛1; : : : ; ˛7 are the
roots of X 7 � 6, then besides � and E one necessarily has the following pairwise
distinct intermediate fields: �.

p�7/, �.
7 C 
7/, �.
7/, �.˛k/, �.˛k ;
p�7/,

and �.˛k ; 
7 C 
7/, with 1 � k � 7 in each case. Show that there are no others.
(Hint: The number of Sylow 3-groups is either 1 or 7, and since the �.˛k ;

p�7/ are
distinct it must be 7. Note further that every subgroup of order 6 must be contained
in one of these seven Sylow 3-groups. Correspondingly, a subgroup of order 14
or 21 contains the only Sylow 7-group of G. How much room is left now for the
Sylow 2-groups? The number of elements of order 2 can also be read off from the
structure of G.)

10.13 Let pk be a prime power and m any natural number. For every group G of
order mpk , consider the set M of all subsets of G having pk elements. G acts on
M by translation; for X 2 M let GX D f� 2 G j �X D X g be the corresponding
stabilizer. Prove:

(a) For every X 2 M we have jGX j � jX j D pk , and equality holds if and only
if X is a coset of a subgroup H of order pk .

(b) Denote by nG D nG.p
k/ the number of subgroups of order pk in G. Then the

orbit formula for the action of G on M yields the congruence
�

mpk

pk

�

� nG � m mod mp:

This holds for all groups G of order mpk . In particular, if one takes G cyclic,
we get

�

mpk

pk

�

� m mod mp:

Thus one reaches the following theorem of Frobenius: In any group of order
pkm the number of subgroups of order pk is congruent to 1 modulo p. In particular,
any finite group has Sylow p-subgroups, and their number is congruent to 1 modulo
p.

This chain of reasoning goes back to Wielandt (1959) and Miller (1915), but in
those papers there is no reference to Frobenius’s result.

10.14 Let P be a Sylow p-subgroup of a finite group G. Show, without using
Sylow’s Second Theorem, that if P is normal in G it is the only Sylow p-subgroup
of G (and conversely). More generally: If N is an arbitrary normal subgroup of G,
the intersection N \ P is a Sylow p-subgroup of N (and incidentally PN=N is a
Sylow p-subgroup of G=N ).

10.15 Let N be a normal subgroup of a finite group G. Show that, if P is a Sylow
p-subgroup of N , then NG.P /N D G.

10.16 Let P be a Sylow p-subgroup of a finite group G. Show that if H is a
subgroup of G containing NGP , then NGH D H .
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10.17 Let G be a finite group. Prove the existence of a Sylow p-subgroup of G by
induction, using the class formula F6. (Hint: Why can one start by assuming that
jZGj 6� 0 mod p?)

10.18 Let G be a p-group of order pn. Deduce from §10.13 that, for any k � n,
the number of normal subgroups of order pk in G is congruent to 1 modulo p.

10.19 A finite group G is called nilpotent if all Sylow subgroups of G are normal.
Show that for a finite group G there is equivalence between:

(i) G is nilpotent.

(ii) G is the direct product of its Sylow subgroups.

(iii) Any proper subgroup H of G is a proper subgroup of NGH .

(iv) Any maximal subgroup of G is normal (of prime index).

(v) Any nontrivial quotient group of G has nontrivial center.

(vi) Any two elements of G whose orders are relatively prime commute.

10.20 Let a finite group G act on a finite set M . For any � 2 G, denote by i.�/

the number of fixed points of � . Show that the average value of i.�/ coincides with
the number s of orbits:

s D 1

jGj
X

�2G

i.�/:

Hint: Look at the subset f.�;x/ j �x D xg of G � M and count its elements.

10.21 Prove that a finite p-group G ¤ 1 that has only one subgroup H0 of index p

must be cyclic. (Hint: Every proper subgroup of G lies in a maximal subgroup H

of G. Now §10.19 implies H D H0. The statement then follows using §10.2.)

10.22 Prove that a finite group G is never the union of the conjugates �H��1 of a
proper subgroup H � G.

Simple and easy to prove as this fact is, it nonetheless plays a certain role on
many different occasions. One can also stress its connection with §10.20 and recast
it as follows: If a finite group G acts transitively and nontrivially on a set M , there
exists � in G that leaves no point of M fixed.

10.23 Let G be a group and take a 2 G. For m 2 �, set Gm.a/D fx 2 G j xm D ag
and Gm D Gm.1/. Is Gm always a subgroup of G? Prove that G2 is a subgroup of
G if and only if xy D yx for all x;y 2 G2. If G is abelian, every Gm is a subgroup
of G.

Now suppose G finite of order n. Prove:

(a) If G is cyclic, then Gm has order .m; n/.

(b) If G is abelian, the order of Gm is divisible by .m; n/, and more generally

.�/ jGm.a/j � 0 mod .m; n/:
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(Hint for (b): One can assume m jn and m> 1. Choose a prime factor p of m and
use induction on m.)

Does .�/ hold when G is not abelian? In this connection consider the case
G D S3 and m D 3.

But by a theorem of Frobenius (see B. Huppert, Finite groups I), jGm.a/j is
always divisible by .m; n=c/, where c is the number of elements of the conjugacy
class of a in G. Thus one gets a statement of general validity if one replaces in .�/
the order n of G by the order n=c of the centralizer ZG.a/ of a in G.

Chapter 11: Applications of Galois Theory to Cyclotomic Fields

11.1 Let ˛ be an algebraic number such that �.˛/ W� D 4. Prove that, if the Galois
group of the minimal polynomials f of ˛ over � has order greater than 8, then
˛ … �. (One example is f .X /D X 4 C X C 1; see §5.7.)

11.2 What is the smallest angle whose measure in degrees is a natural number and
that can be constructed with ruler and compass from �?

11.3 Let p be a prime and � D g mod p a generator of G WD G.�.
p/=�/ D
.�=p�/�. Show that for any t 2 � dividing p � 1 there exists a unique subfield
K D Kt of �.
p/ such that �.
p/ WK D t and K W� D .p�1/=t DW s. If H D Ht

is the corresponding subgroup of G, we have H D ˚

1; � s ; : : : ; � s.t�1/
�

. Set

(1) �i.t/D
t�1
X

jD0


gsj Ci

p for 0 � i � s � 1:

Then �0.t/ lies in Kt , and �0.t/; : : : ; �s�1.t/ are precisely the s distinct conjugates
of �0.t/ over �. It follows that Kt D �.�0.t//D �.�i.t//. In this way one gets a
description of all subfields of �.
p/ via the sums in (1), called Gaussian periods.

11.4 Consider the situation of §11.3 in the case where p D 17 and 
 D ei' with
' D 2�=17. Show that g D 3 can serve as a primitive root mod 17. Then we have,
for instance,

�0.2/D 
C 
�1 D 2 cos';

�0.4/D 
C 
4 C 
�1 C 
�4 D 2.cos'C cos 4'/;

�0.8/D 
�8 C 
8 C 
2 C 
�2 C 
4 C 
�4 C 
�1 C 
:

Why is �0.8/C �1.8/ equal to �1? By computing �0.8/
2, or in any other way,

derive the equality

X 2 C X � 4 D �

X � �0.8/
��

X � �1.8/
�

:

Because �0.8/D 2.cos 8'C cos 4'C cos 2'C cos'/ > 0 we then have

�0.8/D 1
2
.�1 C p

17/; �1.8/D 1
2
.�1 � p

17/
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(incidentally showing again that �.
p

17/ is the quadratic subfield of �.
17/). Now
clearly �0.4/C �2.4/D �0.8/ and you should show that �0.4/�2.4/D �1, so that

X 2 � �0.8/X � 1 D �

X � �0.4/
��

X � �2.4/
�I

similarly,
X 2 � �1.8/X � 1 D �

X � �1.4/
��

X � �3.4/
�

:

It is easy to see that �0.4/ > �2.4/ and �1.4/ > �3.4/. This implies, for example,
that

�0.4/D 1
4

��1 C p
17 C

p

34�2
p

17
�

; �1.4/D 1
4

��1 � p
17 C

p

34C2
p

17
�

:

Finally, show that

X 2 � �0.4/X C �1.4/D �

X � �0.2/
��

X � �4.2/
�

and observe that �0.2/>�4.2/. Putting it all together we get an explicit construction
for �0.2/D 2 cos' by successive adjunction of square roots, and hence an explicit
ruler-and-compass construction for the 17-gon.

11.5 Prove:

(a) If p is a prime of the form 4k C3, the number 2p C1, if also a prime, divides
2p � 1. Give at least two examples of numbers of the form 2p � 1 (Mersenne
numbers) that are not prime.

(b) Any prime divisor p of a Fermat number Fk , with k � 2, satisfies p � 1 mod
2kC2.

11.6 (a) Is 14993 a quadratic residue modulo 65537?

(b) Describe all primes p such that 7 is a quadratic residue modulo p.

11.7 Let a and b be natural numbers, with b odd. Prove:

(a) If
�

x
b

� D 1 for all x 2 � relatively prime to b, then b is a square. (Hint: Use
the Chinese Remainder Theorem).

(b) There are infinitely many primes p such that
�

a
p

� D 1. (Compare §9.19.)

(c) If
�

a
x

� D 1 for all x 2 � odd and relatively prime to a, then a is a square.
(Hint: Use the quadratic reciprocity law and part (a).)

(d) If a is not a square, there exist infinitely many primes p not dividing a such that
a is not a quadratic residue modulo p. (Hint: If p1; : : : ;pn have already been
found, there exists y 2 � such that y � p1 mod 4a and y � 1 mod p1 : : :pn.)

11.8 Prove that the congruence .X 2 C 1/.X 4 � 4/� 0 mod p has a solution in �

for every prime p, although the corresponding equation has no solution in �.

11.9 Let n be an odd natural number. Prove:

(a) If xn�1 � 1 mod n for all x 2 � relatively prime to n, then n is square-free
(but not necessarily prime; the smallest counterexample is n D 3 � 11 � 17).
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(b) If
�

x
n

� � x.n�1/=2 mod n for all x 2 � relatively prime to n, then n is prime
(this is a converse of sorts to Euler’s criterion). Hint: Take n D pm with m> 1.
The assumption implies x.m�1/=2 � �

x
m

�

mod p. By §11.7 there exists some
y with

�

y
m

� D �1. Now take x such that x � y mod m and x � 1 mod p.

11.10 An algebraic number field is an extension K=� with K W � < 1. Such a
field is called quadratic if K W � D 2. It is called cyclotomic if it is a subfield of
�.m/ D �.
m/ for some m. Prove that every quadratic number field is cyclotomic.
More precisely, suppose K D �.

p
d/, with d ¤ 1 a square-free integer. Set m D jd j

if d � 1 mod 4 and m D 4 jd j otherwise. Then K is contained in �.m/ (and m is
minimal with this property).

This is a good place to mention the famous Kronecker–Weber Theorem: Every
abelian number field K (meaning that K=� is Galois with a finite abelian Galois
group) is cyclotomic. (Kronecker did not supply a complete proof; this was done
by H. Weber.)

11.11 So that the example in §11.8 does not leave something of a false impression,
let it be mentioned that a nonconstant polynomialf 2�ŒX � for which the congruence
f .X /� 0 mod p has a solution in � for almost all primes p cannot be prime over
�. The proof of this fairly deep theorem (see F. Lorenz, Algebraische Zahlentheorie,
BI-Verlag, 1993, p. 293) is founded on an approach pioneered by Kronecker, which
in 1896 allowed Frobenius to prove the following stronger result:

Suppose the Galois group G.f / of a polynomial f 2 �ŒX � of degree n > 1

contains an element � whose cycle decomposition comprises r cycles, of lengths
n1; : : : ; nr (summing up to n). Then there exist infinitely many primes p such that f
factors in �p ŒX � into r prime polynomials whose degrees are n1; : : : ; nr .

Now, if f is assumed irreducible over �, the group G.f / contains some � for
which all the ni exceed 1 (see §10.22); thus there are infinitely many values of p

for which f has no linear factor in �p ŒX �. Compare also with Chapter 16, F13.

11.12 Factor X p�1 � 1 in �p ŒX � and derive Wilson’s Theorem:

(2) .p � 1/! � �1 mod p:

This was already known to Leibniz, as was the following “converse”: If .n � 1/! �
�1 mod n for n 2 �, then n is prime.

For p an odd prime, set t D 1
2
.p�1/ and H D f1; 2; : : : ; tg. By taking together

the factors a and p � a, for each a 2 H , derive from (2) that

(3) .t !/2 � �.�1/.p�1/=2 mod p:

Thus, if p �1 mod 4, the number t ! is a solution to the congruence X 2 ��1 mod p;
whereas t ! � ˙1 if p � 3 mod 4. In this latter case show more precisely that

(4) t ! � .�1/� mod p;

where � is the number of elements of H that are not quadratic residues mod p. Let
D t �� be the number of elements of H that are quadratic residues mod p. Prove
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that  D � D 1
4
.p�1/ if p � 1 mod 4, but  ¤ � if p � 3 mod 4. (Remarkably,

in the latter case � is always less than , but this is much harder to prove; see,
for example, Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press,
1966. More precisely, let p � 3 mod 4; if the so-called class group of �.

p�p /

has order h, then

(5) � � D
n

h if p D 3 or p � 7 mod 8,
3h otherwise.

Thus, since C � D 1
2
.p�1/, we get

� D 1
4
.p � 1/� 1

2
h or � D 1

4
.p � 1/� 3

2
h;

as the case may be. Note that h is always odd.)

Chapter 12: Further Steps into Galois Theory

12.1 Let F=K be a separable field extension of finite degree. Derive again, using F3,
the primitive element theorem (Chapter 8, Theorem 3), which says that F contains
an element ˇ such that F D K.ˇ/. Can one require that TrF=K .ˇ/D 1?

12.2 Let 
n be a primitive root of unity in �. When do the conjugates of 
n form
a normal basis for �.
n/=�? (Answer: If and only if n is square-free; see also
§13.7.)

12.3 In the finite field E D �33 , find: (a) a primitive root of E whose conjugates
do not form a normal basis of E=�3; (b) a normal basis that does not consist of
primitive roots of E.

For an arbitrary finite field E with prime field �p , the extension E=�p does
always have at least one normal basis consisting of primitive roots. This was proved
by Carlitz for E large enough, and by Davenport for any E. Davenport’s proof is
elementary, subtle and long (J. London Math. Soc. 43 (1968), 21–39). The statement
remains true when �p is replaced by an arbitrary subfield K of E.

12.4 By giving � the divisibility partial order and by taking the natural homo-
morphisms fmn W �=n� ! �=m�, for m dividing n, one makes .�=n�/n2� into a
projective system of groups (or rings). Set

O� D lim
�

n

�=n�:

Prove:

(a) For every finite field �p there is a canonical isomorphism G.C=�q/' O�, where
C denotes an algebraic closure of �q .

(b) The open subgroups of O� are precisely the subgroups of the form n O�. The
map � ! O� gives rise to an isomorphism �=n� ' O�=n O�. There are nontrivial
closed subgroups of O� other than those of the form n O�.
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(c) For each prime p, set �p D lim
�

i

�=pi�. Show there is a natural isomorphism
O� ' Q

p

�p .

12.5 Let W be the group of all roots of unity in �. Show that the following natural
isomorphisms hold:

G.�.W /=�/' O�� ' lim
�

n

.�=n�/� ' Q

p

��
p :

12.6 Using Artin’s result (Theorem 20) prove again Theorem 4 of Chapter 8. Hint:
Suppose, in contradiction with equation (8) of that chapter (page 79), that E=K

contains n linearly independent vectors b1; : : : ; bn, with n> jGj. Now consider the
system of linear equations

X

j

��1.bj /xj D 0 for � 2 G;

and notice that TrG ¤ 0.

12.7 (Algebraic independence of field homomorphisms). It is possible to strengthen
Theorem 2 under the additional assumption that the ground field K is infinite. In
fact, in this case a polynomial f in C ŒX1; : : : ;Xn� that satisfies

(1) f .�1.ˇ/; : : : ; �n.ˇ//D 0 for all ˇ 2 E

must be the zero polynomial.
To prove this, choose a basis ˇ1; : : : ; ˇn of E=K and consider the polynomial

(2) g.X1; : : : ;Xn/ WD f

� n
X

jD1

�1. ǰ /Xj ; : : : ;

n
X

jD1

�n. ǰ /Xj

�

:

Because of (1) we have g.x1; : : : ;xn/D 0 for all x1; : : :xn 2 K. Since K is infinite,
we have g D 0. But then f D 0 as well, for the following reason: By Theorem 2,
the matrix .�i. ǰ //i;j in Mn.C / has an inverse, say .ars/r;s . By substitution in (2)
we get

g

� n
X

kD1

a1kXk ; : : : ;

n
X

kD1

ankXk

�

D f .X1; : : : ;Xn/D f:

12.8 The theorem asserting the existence of normal bases (Theorem 3) appears
to have first been stated by Emmy Noether, in a 1932 paper in Crelle’s Journal.
Perhaps because the paper was essentially about number theory, or perhaps also
because Noether was not sure the theorem was original, she merely outlined the
proof of this purely algebraic result in a three-line footnote. As the nature of her
argument makes clear, she was not including the case of a finite ground field. Was
this all she meant when she remarked in a later work (Gesammelte Abhandlungen,
p. 638) that her proof had “a gap”? In any case, her argument can be fleshed out
into a proof of the theorem (for infinite ground fields) as follows:
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Let E=K be a finite Galois extension with K infinite, and let E.X1; : : : ;Xn/

be the field of rational functions in the variables X1; : : : ;Xn over E. Clearly the
extension E.X1; : : : ;Xn/ =K.X1; : : : ;Xn/ is Galois and its Galois group can be
identified in a natural way with G D G.E=K/. Choose a basis ˇ1; : : : ; ˇn of E=K,
form the element

(3) u D
n

X

jD1

ǰ Xj 2 EŒX1; : : : ;Xn�;

and then the n � n matrix .��1�.u//�;� in Mn.EŒX1; : : : ;Xn�/, where � and � run
over the elements of G in some fixed order. Denote by d D d.X1; : : : ;Xn/ the
determinant of this matrix. We claim that d is not the zero polynomial. Assuming
this, d cannot vanish everywhere in Kn, so there exist a1; : : : ; an in K such that
d.a1; : : : ; an/¤ 0. Now set ˛ WD P

aj ǰ ; then

(4) det .��1�.˛//�;� ¤ 0;

and this is enough to show that the elements �.˛/, for � 2G, are linearly independent
over K.

To show that d ¤ 0, set Y� WD �.u/D P

�. ǰ /Xj for every � 2 G; see (3). By
Theorem 2 the n�n matrix .�.bj //�;j is invertible. Thus EŒX1; : : : ;Xn� equals the
ring of polynomials over E in the n variables Y� , for � 2 G. By definition,

(5) d D det .Y��1� /�;� :

Following Frobenius, we call this the group determinant of G. It is nonzero for any
finite group G and any field E, which can be seen as follows: On every row of
the matrix M WD .Y��1� /�;� the variable Y1 appears exactly once, and always on
the diagonal. Thus, by expanding d D det M according to Leibniz’s rule, we get
d D Y n

1
C g, where g 2 EŒY� j � 2 G� has degree less than n with respect to Y1.

Therefore d cannot be 0.

12.9 Let .�.˛//�2G be a normal basis of a finite Galois extension E=K. If F is an
intermediate field of E=K and we set H D G.E=F /, the elements �.˛/, for � 2 H ,
may turn out to be linearly dependent over F , so one does not get a normal basis of
E=F in this way. Confirm this with the example E=K D �.
9/=�, ˛ D 
9 C 
3,
F D �.
3/.

Chapter 13: Norm and Trace

13.1 Let A be a K-algebra and let L be a subalgebra of A contained in the center
of A (so that A can be viewed as an L-algebra as well). Assume further that both
L as a K-module and A as an L-module are free and finitely generated. Then the
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same holds for A as a K-module. Prove that for any ˛ 2 A we have

NA=K .a/D NL=K .NA=L.a//;

TrA=K .a/D TrL=K .TrA=L.a//;

PA=K .aI X /D NLŒX �=K ŒX �.PA=L.aI X //:

(Hint: See LA II, p. 181, Aufgabe 63.) From this we can get F5 as a particular
case, and hence also equations (26) and (27).

13.2 Let E=K be a Galois extension with cyclic Galois group h�i of order 4.
Assume also that char K ¤ 2. Prove that the quadratic intermediate field L of E=K

must be of the form L D K.
p

a2 C b2 /, with a; b 2 K.
Hint: Write L D K.

p
d/ and E D L.w/, with w2 2 L. From G.E=L/ D

h�2i deduce that �2.w/ D �w and then w�.w/ 2 L. Moreover NL=K .w�.w//D
�NL=K .w

2/, so �1 2 NL=K .L
�/. The result follows upon observing that if �1 is

a square in K, every element of K is a sum of two squares (why?).
Prove also the converse: If L=K is a quadratic extension of the form L D

K.
p

a2 C b2 /, with a; b 2 K, there is an extension E=L such that E=K is cyclic
of degree 4.

13.3 A field K is called pythagorean if every sum of two squares in K is a square
in K. Prove that a field K such that char K ¤ 2 is pythagorean if and only if it has
no cyclic extension of degree 4.

13.4 Let E=K be a finite Galois extension with Galois group G. Every ˛ 2 E�
gives rise to a map ' D '˛ W G ! E�, defined by

(1) '.�/D ˛�

˛
;

where ˛� WD �.˛/ (accordingly, the notation for the group operation of G obeys
˛�� D .˛� /� ). The function ' thus defined clearly satisfies the functional equation

(2) '.��/D '.�/�'.�/:

Any map ' W G ! E� with property (2) is called a crossed homomorphism from G

to E�.

(a) Suppose G is cyclic, with generator � . Show that if ' W G ! E� is a crossed
homomorphism, '.�/ has norm 1. Conversely, if � is an element of E� such that
NE=K .� /D 1, there is a unique crossed homomorphism ' taking � to � .

This equivalence reduces Hilbert’s Theorem 90 (see F9) to a special case of the
following theorem of A. Speiser, which holds for any finite Galois group: Every
crossed homomorphism ' W G ! E� is split, that is, has the form (1).

This more general statement, too, is often called Hilbert’s Theorem 90. (There is
nothing objectionable about that, so long as the common practice of misattributing
to E. Noether this generalization of the original Theorem 90 is avoided; in this
connection see F. Lorenz, “Ein Scholion zum Satz 90 von Hilbert”, Abh. Math.
Univ. Hamburg 68 (1998), 347–362.)
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(b) Prove the preceding Theorem of A. Speiser — as a candidate for ˛ in (1), start
with

˛ D
X

�2G

a�ˇ
� where a� ; ˇ 2 E,

and take into account the linear independence of all the � (Chapter 12, Theorem 2).

(c) Let IGE� denote the subgroup of E� consisting of all finite products of elements
of the form ˛��1 WD ˛�=˛, with ˛ 2 E� and � 2 G. Prove that NE=K .� / D 1 for
any � 2 IGE�. If G is cyclic with generator � , we have IGE� D .E�/��1. Thus
Hilbert’s Theorem 90 says that for G cyclic, the norm homomorphism NE=K WE� !
K� has kernel IGE�.

For G noncyclic it is possible to have ker NE=K ¤ IGE�. Establishing this
looks at first like an easy algebraic exercise — take for instance K D � and E D
K.

p
a;

p
b / a biquadratic extension. But it’s not as simple as that; see the article

cited in part (a). Nonetheless, N. Zimmermann (at the time a graduate student
in Münster) was able to prove explicitly, by relatively simple number-theoretical
means, that in E D �.

p
2;

p
3 /, for example, the element � D 1 C p

2, which
obviously satisfies NE=K .� /D 1, does not lie in IGE�. Actually in this case it can
be shown even that the quotient ker NE=K=IGE� has order 2, but this is a deeper
result; see again the article cited in part (a).

13.5 Let f and g be distinct normalized irreducible polynomials in the polynomial
ring KŒX � over the field K, of degrees m and n, respectively. In some extension
E of K, let ˛ and ˇ be elements satisfying f .˛/ D 0 and g.ˇ/ D 0. Prove the
following reciprocity result concerning the norm:

NK.˛/=K .g.˛// � NK.ˇ/=K .f .ˇ//
�1 D .�1/mn:

13.6 A function f W � ! � such that f ¤ 0 is called a number-theoretic function;
f is called multiplicative if f .mn/ D f .m/f .n/ for all relatively prime m; n.
Examples: the Euler totient function '; the function � such that �.n/ D 1 for all
n; the function " such that ".1/ D 1 and ".n/ D 0 otherwise; the multiplicative
function  defined by .p/ D �1 and .pe/ D 0, for p prime and e > 1. Given
two number-theoretic functions f;g, define their product f � g by

.f � g/.n/D
X

d jn
f .d/g.n=d/:

Prove that f �g D g�f , .f �g/�h D f �.g�h/, "�f D f � "D f , and � �D ".
Derive from this the Möbius inversion formula: g D f � � if and only if f D g �.

13.7 Given n 2 �, denote by 
n a primitive n-th root of unity in �. Prove that

(3) Tr�.	n/=�.
n/D .n/;

where  is the Möbius function of §13.6. Hint: Define f via f .n/D Tr�.	n/=�.
n/

and prove that
P

d jn f .d/ D ".n/; this reduces the desired equality to the Möbius
inversion formula.



Chapter 14: Binomial Equations 265

For n > 1, let s2.n/ denote the third coefficient of the n-th cyclotomic polyno-
mial. Prove that

(4) 2s2.n/D Tr�.n/�.
n/
2 � Tr�.n/=�.


2
n/

and deduce that s2.n/ can only take the values 0; 1;�1. The latter property is shared
by the fourth coefficient �s3.n/, as can be seen from the relation

(5) 3s3.n/D Tr�.n/=�.

3
n/�.n/3 C 3.n/s2.n/

(compare §15.24). What secrets lurk behind the distribution functions sk.n/, for
0 � k � '.n/, can only be guessed at.

Chapter 14: Binomial Equations

14.1 Let K be a field containing a primitive n-th root of unity. Let E=K be a cyclic
extension of degree n and suppose E D K.˛/, where ˛ is an n-th root of some
element a in K�. Take a0 2 K�. Prove that E contains an n-th root ˛0 of a0 if and
only if there is a natural number r for which a0=ar is an n-th power in K. When
is K.˛0/ D E as well? (Hint: See the proof of F1. Also, these results can also be
easily derived from Kummer theory.)

14.2 Let K be a field and q a prime distinct from char K.

(a) Prove that an element of K� that is a q-th power in K.
q/ is already a q-th
power in K (compare F2).

(b) Let E D K.˛/ and E0 D K.˛0/ be extensions of K containing, respectively,
q-th roots ˛ and ˛0 of elements a and a0 in K�. If E=K ' E0=K, there exists
a number r relatively prime to q such that a0=ar is a q-th power in K. If
E0 WK D q the converse also holds. Generalizations? Counterexamples when
q is not prime? (See also §14.5 and §14.6.) Hint: One may as well assume
E D E0. Now see §14.1 and part (a).

14.3 Suppose char K D p > 0. Let E D K.˛/ and E0 D K.˛0/ be extensions of K,
where ˛; ˛0 satisfy }.˛/D a and }.˛0/ D a0, with a; a0 2 K (for } see Remark 1
after Theorem 3). Prove that E=K and E0=K are isomorphic if and only if there is
a natural number r < p such that a0 � ra 2 }.K/.

More generally, formulate a Kummer theory, analogous to Theorem 4, for
abelian extensions of exponent p; in this version the multiplicative group of K

is replaced by the additive group of K and the n-th power map is replaced by }.
This topic is explored further in §14.15.

14.4 Let K be a field of characteristic p > 0.

(a) Let E=K be a cyclic extension of degree pe ¤ 1, with � a generator of G D
G.E=K/. Set m D pe�1 and prove: There exists a unique intermediate field
L of E=K such that E WL D p; this field is of the form E D L.˛/, where ˛
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satisfies }.˛/ D a for some a 2 L; moreover �m˛ D ˛C 1. Prove that, as a
consequence, E D K.˛/. Prove also that ˇ WD �˛� ˛ lies in L and satisfies
�a � a D }.ˇ/ and SL=K .ˇ/D 1. Is it the case that L D K.ˇ/?

(b) Let L=K be a cyclic extension of degree pe�1 ¤ 1. Prove there exists an
extension E of L such that E=K is cyclic of degree pe . (Hint: Use part (a)
as a road map.)

14.5 Let n be a natural number not divisible by 4.

(a) Prove that if X n �a 2 �ŒX � is irreducible, the Galois group G of X n �a over
� has order '.n/n or '.n/n=2. Do both cases really occur? (Hint: Investigate
whether X n � a is irreducible over �.
n/.)

(b) Suppose we’re in the case jGj D '.n/n of part (a). Prove that G is isomorphic
to the subgroup of matrices in GL.2;�=n�/ having the form

�

a
0

b
1

�

.

14.6 Let q be a prime number and K a field of characteristic distinct from q; assume
also that

p�1 2 K if q D 2. Prove that any element of K that is a qn-th power in
K.
qn/ is already a qn-th power in K. (Hint: Use induction on n, and be aware that
some perseverance is required; apply Theorem 2 and the results from §9.11, §10.2
and §14.2.)

14.7 Let E=K be a finite field extension and M a subgroup of E� such that
K� � M . Assume the quotient M=K� is finite. Explain why

ŒK.M / WK�� M WK�

necessarily. Prove that K.M /=K is separable if and only if the order of M=K� is
not divisible by char K.

14.8 In the situation of §14.7, assume that E=K is separable and that M satisfies
the following conditions: (i) For any prime p, any p-th root of unity contained in
M is already in K. (ii) If M contains a 1 C 
4, where 
4 is a primitive fourth root
of unity, then 
4 2 K. Prove in order:

(a) If M=K� has prime order p, then ŒK.M / WK�D p.

(b) If M=K� is a p-group and ŒK.M / WK� D p, then M WK� D p. (Hint: See
Theorem 2 and §14.2.)

(c) If M=K� is a group of order pn, then ŒK.M / WK�D M WK�. (Hint: Induction
on the index ŒK.M / WK� ; from M D h˛iM 0 with M 0 WK� D pn�1 deduce that
X p �˛p is irreducible over K.M 0/.)

(d) ŒK.M / WK� D M WK�. (Hint: Consider each Sylow group P=K� of M=K�
and keep §14.7 in mind.)

14.9 Let E=K be a field extension and ˛1; : : : ; ˛r elements of E. Suppose that
˛

ni

i D ai 2 K�, where n1; : : : ; nr are natural numbers relatively prime to the char-
acteristic of K. Prove:

(a) If K.˛1; : : : ; ˛r / WK D n1n2 : : :nr , the following conditions are satisfied: (i)
For any prime p, a product

Q

pjni
a

ti
i cannot be a p-th power in K unless each
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ti is a multiple of p. (ii) A product
Q

2jni
a

ti
i , with ni ti � 0 mod 4, cannot be

of the form �4�4 with � 2 K unless all the ti are multiples of 4.

(b) If conditions (i) and (ii) in part (a) are satisfied and M is the subgroup of E�
generated by ˛1; : : : ; ˛r and K�, then M=K� has order n1n2 : : : nr .

(c) If conditions (i) and (ii) in part (a) are satisfied, then K.˛1; : : : ; ˛r / W K D
n1n2 : : :nr . (Hint: By part (b), M=K� has order n1n2 : : :nr . Now check that
M also satisfies conditions (i) and (ii) of §14.8.)

Apart from the assumptions made on the characteristic, these results are a direct
generalization of Capelli’s Theorem (Theorem 2 in Section 14.1).

14.10 Let G be any abelian group of finite order. Prove that G can be realized
as a Galois group over the field � (see the remarks after F5 in Section 15.3).
Hint: Handle first the case where G is cyclic, by considering �.
p/ for primes
p � 1 mod jGj; see §9.18.

14.11 Let p be any prime number. Prove that the Galois group of the polynomial
X 4p C 4p2 over � has order '.4p/p. (Hint: Prove that �4p2 is a fourth power in
�.
4p/.)

14.12 Let E=K be a cyclic extension of degree n, where K contains a primitive
n-th root of unity 
. Let � be a generator of G.E=K/. The statement and proof
of Theorem 1 (page 144) boil down to the existence of a nonzero ˛ 2 E such that
�˛ D 
˛. Justify the existence of such an ˛ using linear algebra.

Hint: Consider � as an endomorphism of the K-vector space E, with minimal
polynomial f . Since �n D 1, this polynomial divides X n � 1. Moreover f splits
into linear factors, because 
 2 K, and it has only simple roots. Therefore � is
diagonalizable (see LA I, p. 215). Now let W be the set of eigenvalues of � in K.
Why is W a group?

The goal is to show that 
 2 W . Suppose otherwise. Then k WD ord W < n.
Applying �k to a basis of eigenvectors of � we get �k D 1, a contradiction.
(Note: Using the linear independence of 1; �; �2; : : : ; �n�1, we see right away from
Theorem 2 in Chapter 12 that f .X /D X n � 1, so 
 is an eigenvalue of � .)

14.13 Let m be a natural number greater than 2. Prove that

�.
2m ;
2mp

2 / W� D 22m�2 and �.
2m /\ �.
2mp

2 /D �.
p

2 /:

Hint: Set n D 2m, ˛ D n
p

2, K D �.
n/. To determine K.˛/ W K use F1 after
observing that

p
2 2 K, 4

p
2 62 K.

14.14 Let p be a prime number, K a field of characteristic distinct from p, 

a primitive p-th root of unity (in an algebraic closure C of K), L D K.
/, � a
generator of G.L=K/ and k a natural number such that 
� WD � .
/D 
k . Prove:

(a) If E=L is a cyclic extension of degree p, the extension E=K is abelian if and
only if E D L. p

p
a/ for some a 2 L� such that a��k 2 L�p .

(b) There is a bijection between abelian extensions F=K of exponent p (in C=K)
and subgroups A of L� such that L�p � A and A��k � L�p.
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14.15 Let K be a field of prime characteristic p, C an algebraic closure of K

and } W C ! C the map given by }.x/ D xp � x. For each subset B of K,
denote by EB D K.}�1.B// the subfield of C obtained by adjoining to K the roots
of all polynomials X p � X � b such that b 2 B. Prove that the map B ‘ EB

provides a one-to-one correspondence between additive subgroups B of K such that
}.K/� B and abelian extensions E=K of exponent p (in C=K); moreover EB=K is
finite if and only if K=}.K/ is finite, and in that case there are natural isomorphisms
G ' .B=}.K//� and G� ' B=}.K/, where G D G.EB=K/.

This is a generalization of the Artin–Schreier Theorem (Theorem 3), so it’s
sometimes called Artin–Schreier theory. It represents an analog of Kummer theory;
not a full one, however, since it does not encompass abelian extensions of exponent
pn for n > 1. There is a theory for the latter as well, the key to which stems from
the calculus of Witt vectors; see Volume II, Chapter 26, Theorem 6.

Chapter 15: Solvability of Equations

15.1 Let G be a solvable, characteristic-simple finite group (see §10.10). Prove that
G is elementary abelian, that is, isomorphic to a product G ' �=p� � � � � � �=p�

for p prime. In particular, every minimal normal subgroup of a solvable group is
elementary abelian.

15.2 Let G be a finite group. A chain G D H0  H1  � � �  Hr D 1 of subgroups
Hi of G such that Hi E Hi�1 is called a normal series of G. The groups Hi�1=Hi

are called the factors of the normal series. If the Hi are all normal in G , the
chain is called a principal series of G. The subgroup G0 of G generated by all the
commutators (elements of the form aba�1b�1 for a; b 2G) is called the commutator
subgroup of G. Define G.0/ D G and G.iC1/ D G.i/0 by recursion. Prove:

(a) G0 is the smallest normal subgroup of G with an abelian quotient group.

(b) There is equivalence between: (i) G is solvable; (ii) G has a normal series
whose factors are abelian. (iii) There exists n such that G.n/ D 1. (iv) G

has a principal series whose factors are abelian. (v) G has a principal series
whose factors are elementary abelian (§15.1).

15.3 Let K be a field of characteristic 0. Prove that for every n the Galois group
of a polynomial of the form X 4n C aX 3n C bX 2n C cX n C d 2 KŒX � is solvable.

15.4 Suppose a cubic polynomial f 2 �ŒX � is irreducible and has three real roots.
Prove that nevertheless there is no radical extension F=� such that F � � and that
F contains the splitting field of f over �.

15.5 Prove:

(a) Every group of order n< 60 is solvable (use §10.11).

(b) A5 is a simple group of order 60. (Hint: Otherwise A5 would be solvable,
because of part (a); but this contradicts F6.)
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15.6 Prove:

(a) If a simple group G has a strict subgroup H of index n � 5 and G is not cyclic,
then n D 5 and G ' A5. (Hint: G acts on G=H , and is therefore isomorphic
to a subgroup G� of Sn; since sgn must be trivial on G�, we have G� � An.)

(b) Every simple group G of order 60 is isomorphic to A5. Hint: Otherwise, by
part (a), G has no strict subgroup H such that G WH � 5. Hence there must
be fifteen 2-Sylow groups, ten 3-Sylow groups and six 5-Sylow groups. This
means that there exists some x ¤ 1 lying in two different 2-Sylow groups P

and P 0; since both are abelian, x lies in the center of H D hP;P 0 i D G, a
contradiction. (Only the count of 2-Sylow groups is needed for the argument
if one uses Remark (b0) following Sylow’s Third Theorem, page 100.)

15.7 Prove: For every maximal subgroup H of a solvable group G, the index n D
G WH is a prime power. Hint: By induction one can restrict oneself to the case where
H contains no nontrivial normal subgroups of G. Moreover, under the action of G

on G=H , every normal subgroup N ¤ 1 acts transitively on G=H . Now consider a
minimal normal subgroup N of G and use §15.1.

15.8 Let a group G act on a set M with n elements. Prove that there exists a unique
homomorphism

sgn D sgn.G;M / W G ! fC1;�1g
with the following property: If ' W f1; 2; : : : ; ng ! M is any bijection and we denote
by �' D '�1 ı � ı' the element of Sn corresponding to � 2 G via ', then

sgn.�/D sgnn.�
'/ for all � 2 G;

where sgnn W Sn ! fC1;�1g is the signature map.

15.9 Let f 2 KŒX � be a separable polynomial over a field K and let E be a splitting
field of f over K. The Galois group G of E=K acts on the set M D f˛1; : : : ; ˛ng
of roots of f in E; let sgn W G ! fC1;�1g be the corresponding signature map (see
§15.8). Prove that the element 4 D Q

i<j .˛i � j̨ / satisfies �.4/D sgn.�/4 for
all � 2 G.

Let H D f� 2 G j sgn.�/ D 1g be the subgroup of even permutations � of G.
Assuming char K ¤ 2, the fixed field of H in E is K

�

p

D.f /
�

; in particular,
D.f / is a square in K if and only if G contains only even permutations. (For the
definition of D.f / see Chapter 8, Definition 4; one may as well assume also that
f is normalized.)

15.10 Consider the natural action of Sn on the rational function field k.X1; : : : ;Xn/,
whose fixed field is K D k.s1; : : : ; sn/ (see F3). Set 4 D Q

i<j .Xi � Xj /

and show, under the assumption char k ¤ 2, that K.4/ is the fixed field of
the alternating group An. As we saw in Section 15.3, the intermediate field
k.s1; : : : ; sn/ of k.X1; : : : ;Xn/ is a field of rational functions in n variables over
k. It is natural to ask whether this is the case also for the intermediate field
K.4/D k.s1; : : : ; sn;4/, that is, whether there are in this field variables t1; : : : ; tn
over k such that k.s1; : : : ; sn;4/ D k.t1; : : : ; tn/. The answer to this question is
unknown.
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15.11 Why does A4 have no subgroup of order 6? Why are the solvable groups
S3, A4 and S4 not nilpotent?

15.12 Prove:

(a) The conjugacy class of a permutation � 2 Sn of type c1; : : : ; cn has cardinal-
ity n!=.c1!1c1 c2!2c2 : : : cn!ncn/; equivalently, exactly c1!1c1 c2!2c2 : : : cn!ncn

elements of Sn commute with � .

(b) An element � 2 Sn of type c1; : : : ; cn belongs to An if and only if the number
P

j .j � 1/cj is even. Let k.�/ be the conjugacy class of � in Sn. Given
� 2 An, either k.�/ is also a conjugacy class in An or the disjoint union of
two conjugacy classes in An, and the choice hinges on whether there exists an
odd permutation that commutes with � . The former case happens if and only
if cj � 1 for some even j or cj � 2 for some odd j .

15.13 Using §15.12, show that A5 is simple. (Hint: Any normal subgroup N of A5

consists of full conjugacy classes in A5. But the equation 1C20xC15yC12z D jN j
has no solution in integers x;y; z � 0 when jN j is a proper divisor of 60.)

15.14 Given a finite group G, consider the action of G on itself by left translations.
Prove that the corresponding signature map is nontrivial if and only if G has even
order and the 2-Sylow groups of G are cyclic.

15.15 Let n be an odd natural number. Prove:

(a) Any group G of order 2n contains a normal subgroup of index 2. (Hint: There
exists � 2G of order 2. Consider the cycle decomposition of � as a permutation
of G, and look at the image of � under sgn W G ! fC1;�1g.)

(b) If G is a group of order 2kn containing an element of order 2k , then G has a
normal subgroup N with cyclic quotient group of order 2k . (Hint: Argue by
induction on k.)

15.16 Let G be a group acting on a set M . We say that the action is k-transitive if
any k-tuple of distinct elements of M is mapped to any other such k-tuple by some
� 2 G.

(a) Let G be a subgroup of the full permutation group S.M / of an n-element set
M , acting 2-transitively on M . Prove that every normal subgroup N ¤ 1 of
G acts transitively on M .

(b) Prove that for n � 3 the action of An on f1; 2; : : : ; ng is .n�2/-transitive.

(c) Using induction on n, prove that An is simple if n � 5. Hint: To start the
induction apply §15.13 or §15.5. Now let n> 5 and regard An�1 as a subgroup
of An. Suppose 1 ¤ N EAn. Since N acts transitively, we have An D NAn�1.
By the induction assumption, either An�1 \ N D An�1 or An�1 \ N D 1. In
the second case, take some � 0 2 N such that � 0.n/D 1. Prove that there exists
� 2 An�1 such that �� 0��1 ¤ � 0 but �� 0��1.n/D 1. This contradicts the fact
that An�1 \ N D 1.

15.17 For n � 3, determine all nontrivial normal subgroups of Sn. (Answer: For
n ¤ 4 the only one is An and for n D 4 there is also the four-group V4; see §15.16.)
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15.18 Derive from §15.17 Bertrand’s Theorem: For n ¤ 4 the group Sn has no
subgroup H of index m, where 2 < m < n. (Hint: Sn acts transitively on G=H ;
now look at Sn ! S.G=H /.) As an interesting historical footnote, when Bertrand
proved his theorem in 1845 he had to make the assumption that for every natural
number n > 1 there exists a prime p such that n < p < 2n; this became known as
Bertrand’s Postulate and was later proved by Chebyshev.

As to subgroups of index n in Sn, it can be proved (with more effort) that —
assuming n ¤ 6 — the only ones are those that leave invariant a particular element
of the set f1; : : : ; ng; otherwise put, every automorphism of Sn is inner. The case
n D 6 is exceptional: then there is also another type.

15.19 Let p � 5 be a prime number. (a) Prove that there exists n0 2 �, depending
on p, such that for any natural number n> n0 the polynomial

f .X /D .X �p/.X �2p/ : : : .X � .p�2/p/.X 2 Cnp/� p

over � is not solvable by radicals. (b) Same question, proving that f in fact has
Galois group isomorphic to Sp . (Hint: For part (a) see F12, and for part (b) the
remarks thereafter.)

15.20 Let f 2 KŒX � be irreducible of prime degree p. Suppose the splitting field
L of f over K contains roots ˛¤ ˇ of f with ˇ 2 KŒ˛�. Prove that L=K is cyclic
of degree p. (Hint: Using F1(b) in Chapter 6, prove that K.˛/=K is Galois.)

15.21 Let the subgroup G of Sn act transitively on f1; 2; : : : ; ng. Prove that, if
G contains a cycle of length n � 1 and also a transposition, then G D Sn. (Hint:
If .1 2 : : :n�1/ 2 G, show that G contains all transpositions of the form .i n/.)

15.22 (a) Find the Galois group of the polynomial f .X / D X 5 C X C 1 over �.
(b) Let ˛1; ˛2; ˛3 be the roots of X 3 � X 2 C 1 in �. Prove that the splitting field
of f has exactly the following distinct nontrivial subfields: �.

p�3/, �.
p�23/,

�.
p

69/, �.
p�3;

p
69/, �.˛1; ˛2; ˛3/, �.˛k/, �.˛k ;

p�3/, �.˛k ;
p

69/, with
1 � k � 3 in the last three cases.

15.23 Let K be a subfield of � and let f 2 KŒX � be a solvable prime polynomial
of prime degree p. Prove that D.f / > 0 if p � 1 mod 4. For p � 3 mod 4 the
inequality D.f / < 0 is equivalent to f having a single real root.

15.24 In the polynomial ring �ŒX1; : : : ;Xn�, consider for i � 0 the polynomials
pi D X i

1 C X i
2 C � � � C X i

n (sums of powers) and prove Newton’s formulas:

pr � s1pr�1 C s2pr�2 � � � � C .�1/nsnpr�n D 0 for n � r;

pr � s1pr�1 C s2pr�2 � � � � C .�1/r sr r D 0 for n> r � 1:

Hint: With f as in F3, set g Df � D X nf .X �1/D P

.�1/isiX
i . Then the quotient

Xg0.X /=g.X / can be expanded in power series as n�P1
kD0 pkX k . The assertion

follows by comparing coefficients for Xg0.X /.
Incidentally, logf �.X / has the power series expansion � P1

kD1.1=k/pkX k ,
from which it likewise follows that each of the pk ’s is a polynomial in s1; : : : ; sk

with integer coefficients (where sk D 0 for k > n).
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15.25 Let G be the Galois group of the polynomial f .X / D X 5 � X � 1 over �

(see page 189). Use Theorem 7 to prove that G D S5.
Hint: By §16.10 below the discriminant D of f equals 2869D19 �151. Therefore

G is not contained in A5, by §15.9. Suppose G ¤ S5. Then G \ A5 is a strict
subgroup of A5, and therefore solvable (§15.5). But then so is G. Theorem 7 and
its proof then imply that G D NH , with N E G and H � G, where N is generated
by a cycle of length 5 and H is isomorphic to a subgroup of ��

5 . Since G is not
contained in A5, there must exist � 2 H such that sgn � D �1. Since G ¤ S5, this
� cannot be a transposition. Deduce that � is a cycle of length 4. Letting F be the
fixed field of N , the extension F=� is then cyclic of degree 4, with

p
D 2 F . Now

§13.2 leads to a contradiction, because D D 19 �151 is not of the form a2 Cb2 with
a; b 2 �. (To see this apply §9.3).

Chapter 16: Integral Ring Extensions
with Applications to Galois Theory

16.1 Let A=R be an integral ring extension. Prove that, if A is an integral domain
and R is a field, A is a field.

16.2 Let A=R be an integral ring extension. Let P be a prime ideal of A and p a
prime ideal of R such that P lies over p, meaning that P \ R D p. Prove:

(a) If p is a maximal ideal in R, then P is a maximal ideal in A. (Hint: Go over
to A=P.)

(b) If P0 is a second prime ideal of A lying over p and it satisfies P0 � P, then
P D P0. (Hint: By going over to A=P0 one can assume that A is an integral
domain and P \ R D 0.)

16.3 Let A=R be an extension of commutative rings and let S be a multiplicative
subset of R (hence also of A); see §3.12. The ring S�1R can be regarded as a
subring of S�1A. Prove that if A=R is integral, the ring extension S�1A=S�1R is
also integral.

16.4 Let A=R be an integral ring extension, q an ideal of R and qA the ideal of A

generated by q. Prove that every ˛ 2 qA satisfies an integrality equation f .˛/D 0

whose coefficients, apart from that of the leading term, lie in q. (Hint: Suppose
˛ D a1˛1 C � � � C an˛n, with ai 2 q and ˛i 2 A. The subring A0 D RŒ˛1; : : : ; ˛n�

is finitely generated as a module over R (see F3), and ˛A0 � qA0. Now adapt the
proof of F1 to derive the assertion.)

16.5 In the situation of §16.4, assume further that A is an integral domain, R is
integrally closed in its fraction field K and q is a prime ideal. Prove that if ˛ 2 qA,
the minimal polynomial g of ˛ over K has all its coefficients in q, apart from that
of the leading term. (Hint: Take f as in §16.4 and consider f .X / D g.X /h.X /

modulo q.)
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16.6 Let B=R be an extension of commutative rings and q a prime ideal of R. If
qB \ R D q, there exists a prime ideal Q of B such Q \ R D q (and vice versa).

Hint: Set S D Rrq; then qB \S D ?. Thus qS�1B is a proper ideal of S�1B

(see §4.12) and thus lies in a maximal ideal M of S�1B. Now set Q D M \ B, in
the sense of §4.12.

16.7 The fundamental theorem on symmetric functions in Chapter 15 was only given
for the case of polynomials over a field, since that was what the context demanded.
Now, with the methods of Chapter 16, prove:

Let R be a commutative ring with unity. Then every symmetric polynomial h in
RŒX1; : : : ;Xn� has a unique representation h D g.s1; : : : ; sn/ with some polynomial
g 2 RŒX1; : : : ;Xn� . Hence the ring of symmetric polynomials of RŒX1; : : : ;Xn�

coincides with the subring RŒs1; : : : ; sn� of RŒX1; : : : ;Xn� , and it is even a polyno-
mial ring in s1; : : : ; sn as variables over R.

Hint: Since the question is one of existence and uniqueness involving finitely
many coefficients only, it suffices to prove the theorem for the case of a polynomial
ring R D �ŒY1; : : : ;Yr � over �. Let k D Frac R. From Chapter 15, F4 it follows
that there exists a unique g in k.X1; : : : ;Xn/ such that h D g.s1; : : : ; sn/. There
remains to show that g in fact lies in RŒX1; : : : ;Xn�. This follows from the fact
that h.X1; : : : ;Xn/ is integral over RŒs1; : : : ; sn� and the latter ring is a UFD, hence
integrally closed.

16.8 Derive from §16.7 the existence of a certain n-variable polynomial dn over
� with the following property: If f D X n C a1X n�1 C � � � C an is any normalized
polynomial of degree n over any field K, the discriminant of f is given by D.f /D
dn.a1; : : : ; an/.

16.9 In the situation of Section 16.3, prove:

(i) D.f / 2 � (or D.f / 2 R as the case may be).

(ii) f has no multiple roots if and only if D.f / 6� 0 mod p (or D.f / 6� 0 mod p).

16.10 (a) Let E=K be a field extension of degree n and ˛ a primitive element of
E=K, with minimal polynomial f . Prove that

D.f /D .�1/n.n�1/=2NE=K .f
0.˛//:

(b) Let K be a field. Prove that a polynomial f 2 KŒX � of the form f .X / D
X n C bX C c has discriminant

D.f /D .�1/n.n�1/=2
�

nncn�1 C .�1/n�1.n � 1/n�1bn
�

Hint: By §16.8, you can assume that f is irreducible and that char K D 0.
Suppose f .˛/D 0; set ˇ D f 0.˛/ and show that ˛ can be expressed in terms
of ˇ by means of a simple formula. Now compute the minimal polynomial of
ˇ and so also NK.˛/=K .ˇ/.

16.11 Prove that the two statements in F12� are indeed equivalent.
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16.12 Let A=R be an extension of commutative rings and let p be a prime ideal
of R. Prove that, if A=R is integral, there exists a prime ideal P of A such that
P \ R D p. (This going up theorem goes back to Krull, but is often named after
Cohen and Seidenberg).

Hint: Consider first the case where R is a local ring (see §4.13) and p its maximal
ideal. Then it’s actually the case that every maximal ideal P of A satisfies P\RDp,
as can be easily seen by applying F11 to the rings A=P and R=P\R. The general
case can be reduced to the local case by examining the ring extension S�1A=S�1R,
where S D R r p; see §4.13, §4.12 and §16.3.

16.13 Let E=K be a finite separable field extension of degree n, and let �1; : : : ; �n

be the distinct K-homomorphisms from E into the algebraic closure C of E. Fix a
basis ˇ1; : : : ; ˇn of E=K and consider the matrix

(1) M D .�i. ǰ //i;j :

Its determinant 4 is nonzero (Chapter 12, Theorem 2). The square

DE=K .ˇ1; : : : ; ˇn/ WD 42

is also nonzero. But the square must lie K, as can be seen for instance from the
equality 42 D det tM det M and its consequence

(2) DE=K .ˇ1; : : : ; ˇn/D det
�

.SE=K .ˇi ǰ //i;j
�

:

The element DE=K .ˇ1; : : : ; ˇn/2K is called the discriminant of the basis ˇ1; : : : ; ˇn

of E=K. If E D K.˛/ and f D MiPoK .˛/, the discriminant of the basis 1; ˛; : : : ;

˛n�1 agrees with the discriminant of the polynomial f :

(3) DE=K .1; ˛; : : : ; ˛
n�1/D D.f /D .�1/n.n�1/=2NE=K .f

0.˛//I
see (11) in Chapter 12 and (17) in Chapter 8.

Now assume that K is the fraction field of an integrally closed domain R, and
let A be the integral closure of R in E. Suppose a basis ˇ1; : : : ; ˇn of E=K consists
only of elements of A; such a basis exists by F7. Prove that

(4) A � 1

D
.Rˇ1 C � � � C Rˇn/;

with D D DE=K .ˇ1; : : : ; ˇn/ 2 R. If we now choose ˛ 2 A with E D K.˛/, then

(5) A � 1

D
RŒ˛�:

Hint: Any ˇ 2 A has first of all a representation ˇ D P

j xj ǰ , with each xj in K.
Applying �i one gets

�i.ˇ/D
X

j

xj�i. ǰ / for 1 � i � n:

The assertion follows using Cramér’s Rule (see for example LA II, p. 12).



Chapter 16: Integral Ring Extensions with Applications to Galois Theory 275

16.14 Let E D �.
p

d/, where d 2 � is square-free and distinct from 1. Find the
integral closure A of � in E. Hint: An element ˛ 2 E is an algebraic integer if
and only if its trace an norm are integers. Use this to show that A D �Œ

p
d � for

d � 2 mod 4 and for d � 3 mod 4, whereas A D �



1
2
.1 C p

d /
�

for d � 1 mod 4.

16.15 Let K be an algebraic number field, that is, an extension of � such that
K W � <1. Denote by �K the integral closure of � in K. Prove that �K possesses
a �-basis with n D K W �. Such a basis is called an integral basis of K. (Hint:
Using equation (4) in §16.13 above, the assertion follows easily from Section 14.3;
see the proof of Theorem 6 there.)

Prove further that all integral bases of K have the same discriminant; the integer
DK thus defined is called the discriminant of the algebraic number field K. Find
the discriminant of the quadratic number field K D �.

p
d/ (see §16.14).

16.16 Let E=K be a extension of algebraic number fields, of degree d , and suppose
that E D K.
m/, where 
m is a primitive m-th root of unity. Prove that

md �E � �K Œ
m� :

Hint: f D MiPoK .
m/ divides X m � 1. Therefore f 0.
m/ is a divisor of m in �E .
Now use equations (3) and (5) from §16.13.

16.17 (a) Let pr be a prime power and 
D 
pr a primitive pr -th root of unity in �.
Prove that the integral closure of � in the field F D �.
/ is �F D �Œ
�.

Hint: Set � WD 1 � 
. In the ring �Œ
� D �Œ�� we have .p/ D .�e/ with
e D F W�; see §9.7. Now use this to show that

p�F \ �Œ
�D p�Œ
�:

At the same time, by §16.16, there is a power pa such that pa�F � �Œ
�.

(b) Now let n be any natural number and 
n a primitive n-th root of unity. Prove
that �Œ
n� is the ring of algebraic integers of �.
n/. Hint: Use induction
founded on §16.16(a).

16.18 Let n be a natural number and c>0 a real number. Prove the following simple
but remarkable observation of Kronecker : There are only finitely many algebraic
integers ˛ whose conjugates have absolute value at most c and such that �.˛/ W�

is at most n. Hence a given algebraic number field K (see §16.15) contains only a
finite number of algebraic integers whose conjugates all have absolute value at most
c. (Hint: The coefficients of the minimal polynomial of an algebraic number ˛ can
be expressed in terms of the conjugates of ˛.)

16.19 Deduce from §16.18 that any algebraic integer ˛ whose conjugates all have
absolute value 1 must be a root of unity. Is this also true when ˛ is only assumed
to be algebraic?

16.20 Let K be a subfield of � and let K0 D K\ � be its maximal real subfield. We
say that K is a complex multiplication field, or CM-field in short, if two conditions
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are satisfied: (i) K WK0 D 2, and (ii) K0 is totally real, that is, every homomorphism
� W K0 ! � maps K0 into �. An important example of a CM-field is K D �.
n/.

Assume that K is a CM-field and prove:

(a) If 	 W � ! � is complex conjugacy and � W K ! � is any homomorphism, the
composition ��1	� is defined and coincides with 	 on K.

(b) If ˛ 2 K has absolute value 1, so do all conjugates of ˛.

(c) If " is a unit of K, that is, a unit in the ring �K of algebraic integers in K,
then "=" is a root of unity in K (see §16.19).

(d) The map d W ˛ ! ˛=˛ gives rise to an exact sequence

1 ! WK EK0
! EK

d! WK=W
2

K ;

where WK is the group of roots of unity of K and EK , EK0
are the groups of

units of K, K0. In particular we have EK WWK EK0
� 2.

16.21 (a) Prove that K D �
�

p
2;

p
1 C i

�

is not a CM-field (see §16.20). Find the
maximal real subfield K0 of K.

(b) Find an algebraic integer of absolute value 1 whose conjugates don’t all have
absolute value 1 (but compare §16.20(b)). Hint: Consider K.

4
p

2/ with K as
in (a).

(c) Let ˛ be an algebraic number such that ˛ ¤ ˛ and ˛˛ 2 �. Prove that if all
conjugates of ˛ have the same absolute value, then �.˛/ is a CM-field.

16.22 (a) Let pr be an odd prime power and 
D 
pr a primitive pr -th root of unity
in �. Prove Kummer’s Lemma: Every unit " in �Œ
� has the form " D �� for
some pr -th root of unity � and some real unit �.

(b) Does the same hold in the case p D 2?

(c) Let n be a natural number and 
n a primitive n-th root of unity. Assume also
that n 6� 2 mod 4. Set E D �Œ
��, E0 D E \ � and W D h�
ni. Prove that
E ¤ WE0 if n is not a prime power. (Hint: See §16.19 and §16.20, and take
§9.8(vi) into account.)

16.23 (a) Take K D �.˛/, where ˛3 C ˛C 1 D 0. Justify why DK D d.1; ˛; ˛2/

and hence why 1; ˛; ˛2 is an integral basis of K.

(b) Take K D �.˛/, where ˛5 �˛C 1 D 0. Show that �K D �Œ˛�.

(c) Take K D �.˛/, where ˛3 C˛2 � 2˛C 8 D 0. Prove that �K ¤ �Œ˛�. (Hint:
Consider 4=˛.)

16.24 Let K D �.
n/, where 
n is a primitive n-th root of unity, with n> 2. Prove
that

DK D .�1/'.n/=2
n'.n/

Q

pjn
p'.n/=p�1

:

Hint: Consider first the case n D pr ; then the n-th cyclotomic polynomial f D Fn

satisfies X pr � 1 D �

X pr �1 � 1
�

f .X /. Taking the derivative, plugging in 
n and
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taking the norm then leads to the desired assertion. For other values of n work by
induction; use the fact that if A is an r � r matrix and B is an s � s matrix, the
tensor product matrix A˝B D .aij B/ has determinant det.A/s det.B/r (see LA II,
p. 181, problem 63).

16.25 Let m; n be odd integers, with n not divisible by 5. Prove that the Galois
group of the polynomial

f .X /D X 5 C 5mX C 5n

over � is isomorphic to S5. (Hint: Use Theorem 1 with p D 2.)

16.26 Prove that all the roots of the polynomial

f .X /D X 5 � 20X 3 C 9X C 1

are real, and that the Galois group of f over � is isomorphic to S5. (Hint: Use
Theorem 3 of Chapter 14 with p D 5 and F13 of Chapter 16 with p D 2.)

16.27 Prove the irreducibility of the polynomial

f .X /D X 5 � 5X C 12

over �, convince yourself that f has only one real root and that D.f / is a square,
and deduce therefrom that the Galois group G of f over � must be isomorphic
either to A5 or to a subgroup of order 10 of A5 (see Section 15.6). (Note: It turns
out that G is not isomorphic to A5, but this is apparently not to be proved without
a good deal more trouble.) Prove that

f .X /D X 5 C 20X � 16

has Galois group over � isomorphic to A5. Hint: Again infer from §16.10 that
D.f / is a square. Use F13 with p D 3 and p D 7 to show that f is irreducible and
G.f / contains a 3-cycle.

Chapter 18: Fundamentals of Transcendental Field Extensions

18.1 Let E=K be a field extension. Prove the equivalence of: (i) E WK.B/ is finite
for any transcendence basis B of E=K. (ii) TrDeg.E=K/ < 1, and E WK.B/ is
finite for any transcendence basis B of E=K. (iii) There exists a finite transcendence
basis B of E=K such that E WK.B/ is finite. (iv) E=K is finitely generated, that
is, E D K.x1; : : : ;xn/ for some x1; : : : ;xn in E.

18.2 Let E=K be a field extension. Prove:

(a) If M � E is algebraically independent over K and F is an intermediate field
of E=K such that F=K is algebraic, then M is also algebraically independent
over F .
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(b) If E=K is purely transcendental, K is algebraically closed in E.

(c) Let B be a transcendence basis of E=K and M a subset of E such that
E=K.M / is algebraic. Then B can be written as a union B D S

˛2M B˛ ,
where the B˛ are finite sets. Thus for B infinite the cardinality of B does not
exceed that of M .

18.3 Prove:

(i) TrDeg.�=�/D TrDeg.�=�/D Card.�/.

(ii) Aut.�/D Aut.�=�/ is uncountable (contrast with §8.20).

(iii) If C is the algebraic closure of � in � and B is a transcendence basis of �=C ,
then �=C.B/ is never finite and hence �=C is not purely transcendental.
(Hint: Consider

p
B.)

(iv) There exist subfields K of � such that � WK D 2 and K ¤ �.

18.4 In the polynomial ring KŒX1; : : : ;Xn� over the field K, consider the power
sum polynomials p1; : : : ;pn defined in §15.24. Prove that if K has characteristic
zero, p1; : : : ;pn are algebraically independent over K. Hint: §15.24 implies that
KŒp1; : : : ;pn�D KŒs1; : : : ; sn�.

18.5 Let k be a field of characteristic other than 2. For any a; b 2 k�, consider the
polynomial

(1) f .X;Y /D aX 2 C bY 2 � 1 2 kŒX;Y �

and the corresponding homogeneous polynomial Qf DaX 2CbY 2�Z2 in kŒX;Y;Z�.
Let C be an algebraic closure of k.X / and y an element in C such that f .X;y/D 0.
Set x WD X and F WD k.x;y/. Prove:

(a) f is absolutely irreducible, that is, irreducible over the algebraic closure C0

of k (in C ).

(b) TrDeg.F=k/D1, F Wk.x/D 2, and k is algebraically closed in F .

18.6 Let the setup be as in §18.5. We say that the projective curve over k defined
by .1/ has a rational point if there is a point .˛; ˇ; � /¤ 0 in k3 such that

Qf .˛; ˇ; � /D a˛2 C bˇ2 � � 2 D 0:

Prove that the following statements are equivalent:

(i) The projective curve over k defined by .1/ has a rational point.

(ii) b is a norm in the extension k.
p

a /=k.

(iii) F=k is purely transcendental, that is, there exists t 2 F such that F D k.t/.

Hint: Suppose a˛2 Cb �ˇ2 D 0, with ˛; ˇ 2 k. Parametrize the line joining the
point .˛; ˇ/ to the point .x=y; 1=y/ of the curve by its slope; that is, set

t WD 1=y �ˇ
x=y �˛ D 1 �ˇy

x �˛y
and s WD 1 Cˇy

x C˛y
:
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An easy calculation shows that st D a. Then one can find x;y by solving a system
of linear equations with coefficients in k.s; t/ via Cramér’s rule; the result is

x D 2ˇ� .sCt/˛

ˇ.sCt/� 2a˛
; y D s � t

ˇ.sCt/� 2a˛
;

with a nonzero denominator.
These formulas become, in the case of the equation x2 Cy2 �1 D 0 of a circle,

(2) x D 2t

1 C t2
; y D 1 � t2

1 C t2

— a rational parametrization of the circle! Discuss also the curve x2 Cy2 C1 D 0,
which has no rational points over �, over the field k D �.i/.

18.7 Using (2), parametrize all the rational solutions of the equation x2 C y2 D 1.
As an application, prove that the set of solutions .a; b; c/ of X 2 C Y 2 D Z2 in
natural numbers a; b; c (such triples are called Pythagorean) with a; b; c relatively
prime and b even is parametrized by

a D m2 � n2; b D 2mn; c D m2 C n2;

where .m; n/ runs over all pairs of relatively prime natural numbers such that m> n

and mn is even. (Obviously any Pythagorean triple can be reduced to one satisfying
the stated restrictions.)

18.8 Let k be a field of characteristic distinct from 2. Lest the special examples
of curves in §18.5 to §18.7 leave something of a false impression, it should be
said that for an arbitrary curve defined over k the situation for k-rational points
may be radically different. For example, replace the polynomial (1) of §18.5 by a
polynomial of the form

(3) f .X;Y /D Y 2 � d.X /;

where d.X / is any separable polynomial over k of degree at least 3, and let Qf be
the corresponding homogeneous polynomial. A (projective) curve defined over k by
a such a polynomial f is called hyperelliptic (beware: often this term is restricted
to the case deg d � 5).

If k D � and deg d � 5, the curve defined by .3/ always has at most finitely many
rational points. This follows from a general result of Gerd Faltings, one of the most
significant advances in mathematical research from the last couple of decades.

We also say something about the case where d has degree 3; the projective
curve determined by (3) is then called an elliptic curve over k, and it must contain
at least one rational point over k, since Qf .0; 1; 0/D 0. (When deg d D 4, too, one
sometimes talks of the curve as being elliptic, but such a curve need not contain
regular rational points over k. If such a point does exist, the curve can be reduced
to the case of degree 3 by a change of coordinates.)
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Again with k D �, the elliptic curve defined by y2 D x3 C 7x has the rational
points .0; 1; 0/ and .0; 0; 1/, and it can be shown with somewhat more advanced
techniques that these are the only ones. By contrast, the elliptic curve defined
by y2 D x3 � 2 has infinitely many rational points (which moreover form a cyclic
group); this is all the more remarkable because only two of these points have integer
coordinates (see §4.5). More broadly, the question whether a given elliptic curve
over � possesses finitely or infinitely many rational points illustrates a challenging
and interesting research area in contemporary mathematics, likely to remain a topic
of lively investigation for a long time to come.

18.9 Let K.X1; : : : ;Xn/=K be a purely transcendental extension and E an inter-
mediate field thereof. Lüroth’s Theorem (see §5.9) says that in the case n D 1 the
extension E=K is purely transcendental as well. Is is natural to ask what can be said
in the case n> 1, if one assumes additionally that TrDeg.E=K/D n, or equivalently
that K.X1; : : : ;Xn/=E is finite.

For n D 2 we have a theorem of Castelnuovo: If K is algebraically closed and
K.X1;X2/=E is finite and separable, then E=K is also purely transcendental. (The
separability assumption cannot be lifted.)

The parallel statement for n D 3 is no longer valid (for all this see references
in Hartshorne, Algebraic Geometry, GTM 52, Springer, New York, 1977). Also
Ischebeck and others were able to show that even for nD2 there are counterexamples
when instead of assuming K algebraically closed one takes K D � as the ground
field. Compare also the remarks at the end of Chapter 16.

Chapter 19: Hilbert’s Nullstellensatz

19.1 Let A be an affine K-algebra, that is, a K-algebra A D KŒx1; : : : ;xn� generated
by finitely many elements, and let C be an algebraically closed extension of K.
Prove that there exists a homomorphism of K-algebras KŒx1; : : : ;xn�! C .

(Hint: Consider the kernel a of KŒX1; : : : ;Xn�! KŒx1; : : : ;xn�. Then the state-
ment can be most easily deduced from Theorem 2; in fact it can be regarded as yet
another version of the Hilbert Nullstellensatz.)

Can one still demand in the case of an integral domain KŒx1; : : : ;xn� that among
specified elements f1; : : : ; fr 2 KŒx1; : : : ;xn�, none should map to 0? (Hint: Con-
sider KŒx1; : : : ;xn; 1=f1; : : : ; 1=fr �.)

19.2 Let C be a fixed algebraic closure of K. Prove that the maximal ideals of
KŒX1; : : : ;Xn� are exactly the ideals of the form m.˛/ D ff 2 KŒX1; : : : ;Xn� j
f .˛/ D 0g with ˛ D .˛1; : : : ; ˛n/ 2 C n. If K is algebraically closed, these ideals
are more explicitly described in the form m.˛/D .X1 �˛1; X2 �˛2; : : : ; Xn �˛n/.

19.3 Prove that the nilradical
p

0 of an affine K-algebra A D KŒx1;x2; : : : ;xn�

coincides with the Jacobson radical of A, which is defined as the intersection of all
the maximal ideals of A. This is a weak form of the Hilbert Nullstellensatz.

(Hint: Set A D KŒX1; : : : ;Xn�=a and take f 2 KŒX1; : : : ;Xn�. If f is not
nilpotent, there exists .˛1; : : : ; ˛n/ 2 �C .a/ such that f .˛1; : : : ; ˛n/¤ 0.)
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19.4 Prove that if every prime ideal in a commutative ring R with unity is finitely
generated, R is Noetherian. Hint: Let a be maximal among all nonfinitely generated
ideals of R. For b … a, consider the ideal a W bR D fx 2 R j xb 2 ag.

19.5 Let A=R be an integral extension of integral domains, and let R be integrally
closed (in its fraction field K). Also let P be a prime ideal of A and set p D P\R.
Prove that every prime ideal q of R contained in p satisfies

qAP \ R D q:

Hint: Any ˇ 2 qAP has the form ˇ D ˛=s with ˛ 2 qA and s 2 S D A r P. The
minimal equation of ˛ 2 qA over K then has the form

˛n C an�1˛
n�1 C � � � C a0 D 0 with ai 2 q;

by §16.5. Therefore, if one further assumes that ˇ 2 R, the minimal equation of
s D ˛=ˇ over K is

sn C an�1

ˇ
sn�1 C � � � C a0

ˇn
D 0:

But s is integral over R, so all the an�i=ˇ
i lie in R. If ˇ were not in q, we would

have sn 2 qA � pA � P.

19.6 Prove F6�, Krull’s Descent Lemma. Hint: It suffices to show that there is a
prime ideal Q in AP such that Q \ R D q. Indeed, by §4.12, Q is of the form
QAP, for Q a prime ideal of A satisfying Q � P and Q \ A D Q; there follows
q D Q \ R D Q \ R. Now, in order to show that such a Q exists, we can’t just use
the going up theorem of §16.12, since AP is generally not integral over R. But we
can use the result of §19.5, which suffices because of §16.6.

19.7 Prove (using the Hilbert Basis Theorem) that the content of Hilbert’s Nullstel-
lensatz (Theorem 1) can easily be quantitatively strengthened as follows: For every
ideal a of KŒX1; : : : ;Xn� there is a natural number m such that f m 2 a whenever
f 2 KŒX1; : : : ;Xn� vanishes on the zero set of a. (Actually finding such an m for
a specified a, described say by a set of generators, is a different matter.)

19.8 Over an algebraically closed field, a system of homogeneous algebraic equa-
tions in more unknowns than there are equations always has a nontrivial solution.
Prove this using the road map below, following H.-J. Nastold:

Let K be an algebraically closed field, and suppose f1; : : : ; fr are polynomials
in KŒX1; : : : ;Xn� such that �.f1; : : : ; fr /D f0g. Then:

(a) There exists q 2 � such that X
q
i 2 .f1; : : : ; fr / for all i .

(b) Take q as in (a). If the fi are homogeneous, there exists for each i certain
homogeneous polynomials h1; : : : ;hr in KŒX1; : : : ;Xn� such that

X
q
i D h1f1 C � � � C hrfr and deg hj < q:

(c) Set A D KŒX1; : : : ;Xn� and R D KŒf1; : : : ; fr �. If the fi are homogeneous,
the ring extension A=R is finite. (Hint: By (b), any monomial of degree � nq

can be generated by monomials of lower degree.)



282 Appendix: Problems and Remarks

(d) If the fi are homogeneous, then r � n.

At the end of Chapter 27 we shall see what is needed in order to derive this
theorem by means of a simple dimensionality argument.

19.9 (a) Let a be any ideal of a commutative ring R with unity, and let p1; p2; : : : ; pr

be prime ideals of R such that

a � p1 [ p2 [ � � � [ pr :

Prove that there exists i such that a � pi .
Hint: Let r be minimal with the property that a is contained in a union as

above. For 1 � j � r , there exists aj 2 a \ pj such that aj … pi for all i ¤ j .
Now, if r > 1, consider the element a1a2 : : : ar�1 C ar .

(b) Deduce from this that, if V;W1; : : : ;Wr are algebraic K-sets in C n with the
Wi irreducible and none of them contained in V , there is f in KŒX1; : : : ;Xn�

such that f vanishes on V but not on any of the Wi .

19.10 Let V be any algebraic K-set of C n, where C is assumed algebraically closed.
Prove that, for each 1 � i � nC 1, there exist polynomials f1; : : : ; fi and algebraic
K-sets Z1; : : : ;Zi of C n such that

(1) �.f1/\ � � � \ �.fi/D V [ Zi ; with dim Zi � n � i:

Hint: We can start by assuming that there is some nonzero f1 that vanishes on V .
Then �.f1/ D V [ Z1, where Z1 is the union of all the K-components of �.f1/

that don’t already lie in V . If Z1 ¤ ?, there is by §19.9 some f2 that vanishes on V

but not on any K-component of Z1. Then �.f1/\�.f2/D V [�

Z1 \�.f2/
�

, and
by (30) we have dim

�

Z1 \ �.f2/
� � dim Z1 � 1 � .n� 1/ � 1 D n� 2. Continuing

in this way leads to the assertion.
In the case i D n C 1, equation (1) amounts to Kronecker’s result given in F9.

19.11 Round off §19.2 by proving that every maximal ideal a of KŒX1; : : : ;Xn�

can be generated by n irreducible polynomials f1; : : : ; fn. (As remarked at the end
of Chapter 19, it is even true that every reduced ideal of KŒX1; : : : ;Xn� can be
generated by n polynomials, but the proof cannot be supplied so readily as for the
special case of this exercise.)

Hint: By §19.2, such an a is the vanishing ideal of a point ˛ D .˛1; : : : ; ˛n/ in
C n. Now choose fn in KŒX1; : : : ;Xn�1� ŒXn� such that fn.˛1; : : : ; ˛n�1;Xn/ is the
minimal polynomial of ˛n over the field KŒ˛1; : : : ; ˛n�1�. Take f 2 a. Division
with rest over KŒX1; : : : ;Xn�1� yields f D qfn C r , with some polynomial r all
of whose coefficients lie in the kernel an�1 of KŒX1; : : : ;Xn�1�! kŒ˛1; : : : ; ˛n�1�.
By induction we can assume that an�1 is generated by f1; : : : ; fn�1. Then f lies
in .f1; : : : ; fn�1; fn/.

19.12 Prove the following generalization of F4: Every reduced ideal a in a Noethe-
rian ring is an intersection of finitely many prime ideals; if we insist that none of
these ideals be contained in one another, they are uniquely determined up to order.

Hint: Use the proof of F4 for guidance. Note that
p

bc D p
b \ c.
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modulo primes 197
of certain polynomials 189
solvable 173

theory 55, 76, 79, 115, 128
inverse problem 178, 202

Gauss, Carl-Friedrich (1777–1855) 1, 22,
27, 45, 49, 52, 89, 104, 113

Gauss’s Lemma 49, 196
Gauss’s Theorem 195
Gaussian

integers 238
periods 257
sums 110

gcd 34
general polynomial 175
generators 161
Goethe, Johann Wolfgang von (1749–1832)

i
going up theorem 274
greatest common divisor 34
group see also abelian, finite, Galois

action 93
transitive 80

algebra 60
determinant 262
theory 93

Hartshorne, Robin 217, 280
heptagon, regular 51, 52
heptakaidecagon 52, 258
Hermite, Charles (1822–1901) 52, 207
Hilbert, David (1862–1943) 140, 190, 263

Basis Theorem 221, 280, 281
irreducibility theorem 190, 201
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Nullstellensatz 219, 280, 281
Theorem Ninety 140, 263

Hilbertian field 190
homogeneous polynomial 242
homomorphism

crossed 263
of K-algebras 55
of field extensions 55
theorem 23

Huppert, Bertram (1927– ) 257
hyperelliptic curve 279
hypersurface 229

ideal 22
maximal 41
of a set in C n 217
prime 41
principal 34
product of –s 42, 43
reduced 219
sum of –s 43

index of a subgroup 95
infinite Galois extensions 128
inner automorphism 96
inseparable 66

degree 73, 246
purely 71

integer, Gaussian 238
integral

basis 275
closure 194
domain 16, 41
over R 191
ring extension 193

integrality equation 191
integrally closed 194, 195
intermediate field 19
inverse Galois theory 178, 202
inversion formula 264
irreducibility criterion 241
irreducible 37

K-component 223
algebraic set 223
polynomial 26, 48
radicals 171

Ischebeck, Friedrich G. 280

Jacobi, Carl Gustav Jacob (1804–1851)
112

Jacobi symbol 112
Jensen, Christian U. 202

K-algebra 242
K-conjugate 65
K-homomorphism 55
Klein, Felix (1849–1925) 182
Kronecker, Leopold (1823–1891) 27, 58,

113, 188, 230, 234, 259, 275, 282
Krull, Wolfgang (1899–1971) 123, 128,

225, 228, 274, 281
Krull topology 128
Krull’s descent lemma 228, 281
Kummer, Eduard (1810–1893) 152, 276
Kummer extension 152
Kummer theory 153, 265, 268
Kummer’s Lemma 276

Lagrange resolvent 145
Lagrange, Joseph Louis (1736–1813) 27,

95, 145
Lang, Serge (1927– ) 190
lcm, least common multiple 34
Ledet, Arne 202
Legendre, Adrien Marie (1752–1833) 107,

113
Legendre symbol 107, 149
Leibniz, Gottfried Wilhelm (1646-1716)

259, 262
length

of cycle 179
of orbit 94

Levy, Silvio ii
Lindemann, Ferdinand (1852–1939) 15,

52, 207
linear algebra i, 11, 133, 242
linear independence of field homomorphisms

117
local ring 237, 274
localization 235, 237

at prime ideal 237
Lorenz, Falko 113, 259, 263
Lüroth, Jakob (1844–1910) 240, 247, 280
Lütkebohmert, Werner ii

Malle, Gunther 202
Matsumura, Hideyuki (1930– ) 225
Matzat, B. Heinrich (1945– ) 202
maximal element 63
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maximal ideal 41, 241
Mersenne, Marin (1588–1648) 105, 258
metacyclic see solvable
Miller, George Abraham (1863–1951) 255
minimal polynomial 17, 31
Möbius, August Ferdinand (1790–1868)

264
Möbius function, inversion formula 264
module over a ring (or field) 62, 192
monoid algebra 60
multiplicative

function 237, 264
group 24

of finite field 83
map 62, 152
subset 235, 237, 242, 272

Nastold, Hans-Joachim (1929–2004) ii,
281

Neukirch, Jürgen (1937–1997) 113
Newton, Sir Isaac (1643–1727) 271
Newton’s formulas 271
nilpotent group 101, 256
nilradical 218, 237
Noether, Emmy (1882–1935) 201, 263

isomorphism theorem for groups 170
Noether normalization theorem 214

Noetherian ring 221
norm 133
normal

basis 120, 122, 262
closure 60, 76
field extension 59, 76
series 268
subgroup 24, 77, 253–254

normalized polynomial 16
normalizer 98
Nullstellensatz 219, 281
number theory 113, 264

Opolka, Hans 105
orbit 94

formula 96
order of a group element 85
ordered set 63

p-group 97, 154
p-subgroup 99
pairing 150

parity see signature
pentagon, regular 1, 9
perfect field 73
permutation 75, 178–182

cycle decomposition 179
� , transcendence of 15, 52, 203
�-adic valuation 40, 47
polygon, regular 1, 3, 9, 51, 104, 258
polynomial algebra 210
polynomial ring 63
prime

element 37
factorization 39, 45
field 31
ideal 41
numbers 39
polynomial 26
residue classes 88, 250

primitive
element 21

theorem 78, 244
polynomial 48
root 86
root of unity 88

principal ideal 25, 34, 41
principal series 268
product of ideals 42, 43
product tensor 61
projective linear group 247
projective system, projective limit 126
pure equation 143
purely inseparable 71, 246
purely transcendental 213
pythagorean field 263
pythagorean triple 279

quadratic
equation 165
field 259
reciprocity law 107, 110, 111, 258

quadratically closed field 5
quadrature of the circle 3, 9, 15
quotient 28

homomorphism 23
ring 23

radical see also solvable by –s
extension 166
of an ideal 218
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rational functions 29, 53, 173, 190
rational parametrization of circle 279
reciprocity law 107, 111, 264
reduced ideal 219
relatively prime 42, 43
Remak, Robert (1888-1942) 123
residue-class ring 23
resolvent 145
ring

extension 191
of formal fractions 235
polynomial 63
simple 41

n-th roots 143
root of unity 88
Ruffini, Paolo (1765–1822) 178
ruler and compass 1, 8, 51, 103, 258

Schönemann, Theodor 241
Scharlau, Winfried (1940– ) 105
Schmidt, Otto Juljewitsch (1891–1956)

123
Scholz, Arnold (1904–1942) 178
Schopohl, Ralf ii
Schreier, Otto (1901–1929) 147, 268
Schulze-Relau, Hubert ii
Schur, Issai (1875–1941) 250
Seidenberg, Abraham (1916–1988) 274
separable

closure 71
degree 66
element 66
polynomial 69, 143

17-gon 52, 258
Shafarevich, Igor R. (1923– ) 178, 260
signature map 181, 269
simple

field extension 21, 31, 78
group 182, 254
ring 41

size of orbit 94
solvable

by irreducible radicals 171
by radicals 1, 166
equation of prime degree 187, 271
group 167, 173, 268, 272

Speiser, Andreas (1885–1970) 263
Spektrum Akademischer Verlag i
Spencer, Mark ii

splitting field 58
Springer-Verlag ii
square-free integer 50
stabilizer 96
Steinitz, Ernst (1871–1928) 57
Stevin, Simon (1548–1620) 26
Storch, Uwe 230
structure theorem for finite abelian groups

160
substitution homomorphism 21, 63
successive see under adjunction
sum of ideals 43
Swan, Richard G. 201
Sylow, Ludvig (1832–1918) 99, 101
Sylow group (or p-subgroup) 99, 255
Sylow’s Theorems 100
symmetric functions 174, 177, 195, 273

Tartaglia, Nicolo (1500–1557) 165
tensor product 242

of K–algebras 61
Theorem see also fundamental

90 of Hilbert 140, 263
Artin–Schreier 147
Bertrand 271
Capelli 267
Cauchy 101, 154
Cayley 94
Chinese Remainder 42
Dirichlet 251
Euler–Lagrange 95
Hermite–Lindemann 207
Hilbert’s basis 221, 280, 281
Hilbert’s irreducibility 190, 201
Kronecker 27
Kronecker–Weber 259
Lüroth 240, 247, 280
Lindemann 15
Noether normalization 214
Nullstellensatz 219, 280, 281
on normal bases 120, 122, 262
primitive element 78, 244
structure of finite abelian groups 160
Sylow 100
Translation 115
Wilson 259

topological group 127
torsion group 154
torsionfree group 162
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totally real 276
totient function 88, 264
trace 133
transcendence

basis 211
degree 213, 231
of � 15, 52, 203

transcendental
extension 17
number 15
over K 15

transitive group action 80, 94
transitivity

of algebraicness 19
of separability 69

translation 94
Translation Theorem 115
transposition 181, 189
trisection of the angle 1, 2, 9, 52
Tschebyschev see Chebyshev

UFD 37, 45, 195

universal problem 28, 235
universal property 21

valuation 36, 38, 40, 47
variety 222

van der Waerden, Bartel Leendert
(1903–1996) 177

Weber, Heinrich (1842–1913) 259
Weierstrass, Karl (1815–1897) 206
Wielandt, Helmut (1910–2001) 255
Wikipedia 64
Willhöft, Oda ii
Wilson, John (1741–1793) 259
Witt, Ernst (1911-1991) 149, 268

Yui, Noriko 202

Zimmermann, Nadja 264
Zorn, Max August (1906–1993) 64
Zorn’s Lemma 63
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