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EDITOR’S PREFACE

The present book, stemming from the first four chap­
ters of the authors’ Tensor Calculus (Moscow, 1969), 
constitutes a lucid and completely elementary introduction 
to linear algebra. The treatment is virtually self-contained. 
In fact, the mathematical background assumed on the part 
of the reader hardly exceeds a smattering of calculus and a 
casual acquaintance with determinants. A special merit of 
the book, reflecting its lineage, is its free use of tensor 
notation, in particular the Einstein summation convention. 
Each of the 25 sections is equipped with a problem set, 
leading to a total of over 250 problems. Hints and answers 
to most of these problems can be found at the end of 
the book.

As usual, I have felt free to introduce a number of 
pedagogical and mathematical improvements that occurred 
to me in the course of the translation.

R. a. s.

vii
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LINEAR SPACES

1. Basic Concepts

In studying analytic geometry, the reader has undoubtedly already 
encountered the concept of a free vector, i.e., a directed line segment which 
can be shifted in space parallel to its original direction. Such vectors are 
usually denoted by boldface Roman letters like a, b , . . . ,  x, y , . . .  It can be 
assumed for simplicity that the vectors all have the same initial point, which 
we denote by the letter O and call the origin o f  coordinates.

Two operations on vectors are defined in analytic geometry:

a) Any two vectors x and y can be added (in that order), giving the 
sum x +  y;

b) Any vector x and (real) number a  can be multiplied, giving the product 
A-x or simply Ax.

The set of all spatial vectors is closed with respect to these two operations, 
in the sense that the sum of two vectors and the product of a vector with a 
number are themselves both vectors.

The operations of addition of vectors x, y, z , . . .  and multiplication of 
vectors by real numbers A, p , . . .  have the following properties:

1) x +  y =  y +  x;
2) (x +  y) +  z =  x +  (y +  z);
3) There exists a zero vector 0 such that x +  0 =  x;
4) Every vector x has a negative (vector) y =  —x such that x +  y =  0;
5) 1 • x =  x;
6) X(px) =  (A/*)x;

1



2 LINEAR SPACES CHAP. 1

7) W +  M)x  =  Ax +  //x;
8) A(x +  y) =  Ax +  Ay.
However, operations of addition and multiplication by numbers can be 

defined for sets of elements other than the set of spatial vectors, such that the 
sets are closed with respect to the operations and the operations satisfy the 
properties l)-8) just listed. Any such set of elements is called a linear space 
(or vector space), conventionally denoted by the letter L. The elements of a 
vector space L  are often called vectors, by analogy with the case of ordinary 
vectors.

Example 1. The set of all vectors lying on a given straight line / forms a 
linear space, since the sum of two such vectors and the product of such a 
vector with a real number is again a vector lying on /, while properties
l)-8) are easily verified. This linear space will be denoted by L x.t

Example 2. The set of all vectors lying in a given plane is also closed with 
respect to addition and multiplication by real numbers, and clearly satisfies 
properties l)-8). Hence this set is again a linear space, which we denote by 
L2.

Example 5. Of course, the set of all spatial vectors is also a linear space, 
denoted by L 3.

Example 4. The set of all vectors lying in the xy-plane whose initial points 
coincide with the origin of coordinates and whose end points lie in the first 
quadrant is not a linear space, since it is not closed with respect to multipli­
cation by real numbers. In fact, the vector Ax does not belong to the first 
quadrant if A <  0.

Example 5. Let L„ be the set of all ordered w-tuples
X =  (Xj, x 2, . . . ,  x„), y =  (y u y 2, . . . ,  y„),. . . 

of real numbers x 19. . . ,  y„ , . . .  with addition of elements and multiplication 
of an element by a real number A defined by

X +  y =  (*1 +  X2 +  2̂» • • • > Xn +  y*)> . .
Ax =  (A*!, Ax2, . . . ,  Xx„).

Then Ln is a linear space, since Ln is closed with respect to the operations 
(1) which are easily seen to satisfy properties l)-8). For example, the zero 
element in Ln is the vector

0 =  (0, 0 , . . . ,  0),
while the negative of the vector x is just

- x  =  (-X j, - x 2, . . . ,
Example 6. As is easily verified, the set of all polynomials

t  Concerning the meaning of the subscript here and below, see Sec. 3.
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P(t) =  a0 +  axt +  • • • +  dntn
of degree not exceeding n is a linear space, with addition and multiplication 
by real numbers defined in the usual way.

Example 7. The set of all functions tp(t) continuous in an interval [a, b] 
is also a linear space (with the usual definition of addition and multiplication 
by real numbers). We will denote this space by C[a, b].

PROBLEMS

1. Which of the following are linear spaces:
a) The set of all vectorst of the space L2 (recall Example 2) with the excep­

tion of vectors parallel to a given line;
b) The set of all vectors of the space L2 whose end points lie on a given line;
c) The set of all vectors of the space L3 (recall Example 3) whose end points

do not belong to a given line?
2. Which of the following sets of vectors x =  (*i, x 2, . . . ,  x„) in the space Ln 

(recall Example 5) are linear spaces:
a) The set such that x x +  x 2 4- • • • +  x„ = 0;
b) The set such that x x +  x 2 +  • ■ • +  *„ =  1 ;
c) The set such that x x =  x 3 ;
d) The set such that x 2 — x4 = • • • ;
e) The set such that x t is an integer;
f) The set such that Xi or x 2 vanishes?

3. Does the set of all polynomials of degree n (cf. Example 6) form a linear 
space?
4. Let R+ denote the set of positive real numbers. Define the “sum” of two 
numbers p  e R+> q G R+t  as pq and the “product” of a number p  e R+ with 
an arbitrary real number A as px. Is R+ a linear space when equipped with these 
operations? What is the “zero element” in R+t! What is the “negative” of an 
element p e R+f>
5. Prove that the set of solutions of the homogeneous linear differential equation

y (n) + P i(x ) y (n~l) +  • * •  +  Pn-l(x)y'  +  Pn(x)y =  0  

of order n forms a linear space.
6. Let L  be a nonempty subset of a linear space L, i.e., a subset of L containing 
at least one vector. Then U  is said to be a linear subspace of L if L' is itself a 
linear space with respect to the operations (of addition and multiplication by 
numbers) already introduced in jL, i.e., if x +  y e U, Ax G L' whenever x g 1/, 
y G L .  The simplest subspaces of every linear space L (the trivial subspaces) 
are the space L itself and the space {0} consisting of the single element 0 (the

t  As agreed at the beginning of the section, we regard all vectors as emanating from the 
origin of coordinates.

t  As usual, the symbol e means “is an element of” or “belongs to.”
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zero element). By the sum of two linear subspaces U  and L" of a linear space 
is meant the set, denoted by V  +  L", of all vectors in L which can be repre­
sented in the form x =  x' +  x" where x' e L \  x" e  L". By the intersection 
of two linear subspaces L' and L" of a linear space L  is meant the set, denoted 
by L' n  L", of all vectors in L which belong to both U  and L".

Prove that the sum and intersection of two linear subspaces of a linear space 
L  are themselves linear subspaces of L.
7. Describe all linear subspaces of the space L3.
8. Which sets of vectors in Prob. 2 are linear subspaces of the space L„?

2. Linear Dependence

2.1, Let a, b , . . ,  e be vectors of a linear space L, and let a, 6
be real numbers. Then the vector

is called a linear combination of the vectors a, b , . . . ,  e, and the numbers 
a, 6 are called the coefficients of the linear combination.

If a =  P =  • • • = 6  =  0, then obviously x =  0. But there may also exist 
a linear combination of the vectors a, b , . . . ,  e which equals zero even though 
the coefficients a, 6 are not all zero; in this case, the vectors a, b , . . . ,
e are said to be linearly dependent. In other words, the vectors a, b , . . . ,  e 
are linearly dependent if and only if there are real numbers a, e not
all equal to zero such that

Suppose (1) holds if and only if the numbers a, 6 are all zero. Then
a, b, . . . ,  e are said to be linearly independent.

We now prove some simple properties of linearly dependent vectors.
Theorem 1. I f  the vectors a, b, . . . ,  e are linearly dependent, then 

one o f the vectors can be represented as a linear combination o f the 
others. Conversely, i f  one o f the vectors a , b , . . . , e / n  linear combina­
tion o f the others, then the vectors are linearly dependent.

Proof If the vectors a, b , . . . ,  e are linearly dependent, then

where the coefficients a, / ? , . . . ,  6 are not all zero. Suppose, for example, 
that a ^  0. Then

x =  aa +  fib +  • • • +  ee

oca +  fib +  • • • +  6e =  0. (1)

aa +  fib +  • • • +  ee =  0,

a =  — ^-b a
which proves the first assertion.
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Conversely, if one of the vectors a, b , . . . ,  e, say a, is a linear 
combination of the others, then

a =  mb +  • • • +  pe,
and hence

1 -a +  (—m)b +  • • • +  (—p)e =  0,
i.e., the vectors a, b , . . . ,  e are linearly dependent. | t

Theorem 2. I f  some o f the vectors a, b , . .  . ,  e are linearly dependent, 
then so is the whole system.

Proof Suppose, for example, that a and b are linearly dependent. 
Then

aa +  fib =  0,
where at least one of the coefficients a  and P is nonzero. But then 

aa +  pb  +  0-c +  • • • +  0-e =  0,
where at least one of the coefficients of the linear combination on the 
left is nonzero, i.e., the whole system of vectors a, b , . . . ,  e is linearly 
dependent. |

Theorem 3. I f  at least one o f the vectors a, b , . . . ,  e is zero, then 
the vectors are linearly dependent.

Proof Suppose, for example, that a =  0. Then 
aa +  0-b +  • • • +  0-e =  0 

for any nonzero number a. |

2.2. Next we give some examples of linearly dependent and linearly inde­
pendent vectors in the space L3.

Example 1. The zero vector 0 is linearly dependent (in a trivial sense), 
since a0 =  0 for any a  ^  0. This also follows from Theorem 3.

Example 2. Any vector a ^  0 is linearly independent, since aa =  0 only 
if a =  0.

Example 3. Two collinear vectorsi a and b are linearly dependent. In 
fact, if a 0, then b =  aa or equivalently

aa +  (—l)b =  0,
while if a =  0, then a and b are linearly dependent by Theorem 3.

Example 4. Two noncollinear vectors are linearly independent. In fact, 
suppose to the contrary that aa -f pb =  0 where p  ^  0. Then

t  The symbol |  stands for Q.E.D. and indicates the end of a proof. 
t  Two or more vectors are said to be collinear if they lie on the same line and coplanar 

if they lie in the same plane.
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b = a
- j

»,

which implies that a and b are collinear. Contradiction!
Example 5. Three coplanar vectors are linearly dependent. In fact, 

suppose the vectors a, b and c are coplanar, while a and b are noncollinear. 
Then c can be represented as a linear combination

c =  OC =  OA OB =  oca -(- fib
(see Figure 1), and hence a, b and c 
are linearly dependent by Theorem 1. 
If, on the other hand, the vectors a 
and b are collinear, then they are 
linearly dependent by Example 3, and 
hence the vectors a, b and c are 
linearly dependent by Theorem 2.

Example 6. Three noncoplanar 
vectors are always linearly indepen­
dent. The proof is virtually the same 
as in Example 4 (give the details).

Example 7. Any four spatial 
vectors are linearly dependent. In 
fact, if any three vectors are linearly 
dependent, then all four vectors are 
linearly dependent by Theorem 2. 
On the other hand, if there are three 
linearly independent vectors a, b and 
c (say), then any other vector d can 
be represented as a linear combina­
tion

d =  OD =  OP +  PD  =  OA +  OB +  OC =  Aa +  pib +  yc 
(see Figure 2), and hence a, b, c and d are linearly dependent by Theorem 1. 

Example 8. The vectors
e, = ( 1 , 0 , . . . , 0 ) ,  e2 =  (0,1......... 0 ) , . . . ,  e„ =  ( 0 , 0 , . . . ,  1)

are linearly independent in the space L„. In fact, the linear combination 

a ,e , +  a 2e2 +  . . .  +  «.«, =  (a„  a 2, . . . ,  a„)
equals zero if and only if a 1 =  a 2 =  • • • =  a„ =  0. Let x =  (x l9 x 2, . . . ,  x„) 
be an arbitrary vector of Ln. Then the system of vectors e19 e2, . . . ,  e„, x is 
linearly dependent, since x can be represented in the form

X =  X &  +  x 2e2 +  . . .  +  x nen.
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PROBLEMS

1. Let a and b be linearly independent vectors in L2. Find the value of a  making 
each of the following pairs of vectors linearly dependent (collinear):

a) oca +  2b, a — b; b) (a +  l)a +  b, 2b; c) oca -f b, a +  ocb.
Find values of a and 0  such that

d) 3a +  5b =  oca +  (20 +  l)b; e) (2a -  0  -  l)a -  (3a +  0  +  10)b =  0.
2. Let a, b and c be three linearly independent vectors in L 3.

a) For what value of a  are the vectors

linearly dependent (collinear)?
b) For what value of a  are the vectors

x =  aa +  b +  3c, y =  aa — 2b +  c, z =  a — b +  c 
linearly dependent (coplanar)?

3. Prove that the following sets of functions are linearly dependent in the space 
C[a, b] introduced in Sec. 1, Example 7:

a) (px(t) =  sin2 /, <p2(t) =  cos2 /, tp3(t) =  1;
b) (p!(f) =  sin2 /, (p2{t) =  cos2 U ?3(0 =  ^4(0 =  3, q>5(t) =  e';

c) ?>i(0 =  */~t, (piit) =  jz , =  0, ?»4(0 =  tK

4. Prove that the functions

are linearly independent in the space of all polynomials of degree not exceed­
ing n.
6. Prove that the space C[a, b\ contains an arbitrarily large number of linearly 
independent vectors.
7. Prove that the vectors

ai =  (0,1,1), a2 =  (1,1, 2), a3 =  (1,2, 3) 
are linearly dependent in the space L3.
8. Prove that a set of vectors is linearly dependent if it contains

a) Two equal vectors;
b) Two collinear vectors.

9. Prove that if the vectors ai, a2, a3 are linearly independent, then so are the 
vectors a t +  a2, a2 +  a3, a3 -f ai.

x =  aa +  4b +  2c, y =  a +  ab — c

are linearly independent in the space C[0, 2].
5. Prove that the polynomials

P 0(0 =  1 ,^ ( 0 =  r , . . . , P „ ( / ) = r
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3. Dimension and Bases

The largest number of linearly independent vectors in a linear space L  
is called the dimension of L.

Example 1. There is only one linearly independent vector on a line, any 
two vectors on the line being linearly dependent. Hence the line is a one­
dimensional linear space, which we have already denoted by Thus the 
subscript 1 is just the dimension of the space.

Example 2. There are two linearly independent vectors in the plane, but 
any three vectors in the plane are linearly dependent. Therefore the plane 
is a two-dimensional space and is accordingly denoted by L 2.

Example 3. There are three linearly independent vectors in space, but 
any four vectors are linearly dependent. Thus ordinary space is three-dimen­
sional and is denoted by L3.

Example 4. In Sec. 2, Example 8, we found n linearly independent vectors 
e19 e2, . . . , en in the space whose elements are the vectors x =  (x l9 x 2, . . . ,  
x n). On the other hand, it can be shownt that any n +  1 vectors in this 
space are linearly dependent. Therefore this space is w-dimensional and is 
denoted by Ln.

Theorem. Let e1? e2, . . .  , e„ be any n linearly independent vectors 
in an n-dimensional linear space L, and let x be any vector o f L. Then 
x has a unique representation as a linear combination o f el9 e2, . . . ,  e„.

Proof The vectors x, e,, e2, . . . ,  e„ are linearly dependent, since 
there are more than n of them, i.e., more than the dimension of the 
space L. Hence there are numbers a, a 19. . . ,  a„ such that

ax +  a,®, +  a 2e2 +  • • • +  aBe„ =  0,
where a ^  0 since otherwise the vectors e,, e2, . . . ,  e„ would be linearly 
dependent. Therefore we can represent x as the following linear com­
bination of el9 e2, . . . ,  e„:

Equivalently, we can write
x =  x 1e1 +  x 2e2 +  • • • +  *ne„ (1)

where

t See e.g., G. E. Shilov, Linear Algebra, translated by R. A. Silverman, Prentice-Hall, 
Inc., Englewood Cliffs, N. J. (1971), Sec. 2.35.
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To prove the uniqueness of the “expansion” (1), suppose there were 
another expansion

x =  x',el +  *ie2 +  • - ■ +
of x with respect to the vectors e,, e2, . . . ,  e„, so that

* ie i +  x 2e2 +  ■ • • +  x.e. =  +  x'2e2 4- * * * +  x/„en9
and hence

(*i -  y,)«! +  (*2 ~  ^ 2  +  • * * +  (xa -  x f„)en =  0.
But then

=  x!u x 2 =  x i , . . . ,  =  j£,
because of the linear independence of e,, e2, . . . ,  eB. |
Remark 1. A system of linearly independent vectors e19 e2, . . . ,  e„ is 

called a basis for the «-dimensional space L  if every vector x e  L  has a 
unique expansion of the form (1), and the numbers x l9 x 29. . . ,  x n are then 
called the components of x with respect to (or relative to) this basis. Thus 
we have proved that any n linearly independent vectors o f  L  can be chosen 
as a basis for L.

Remark 2. In particular, any vector x on the line L 1 has a unique repre­
sentation of the form

X =  X ^ i ,

where e, is an arbitrary nonzero vector on the line, while any vector x in the 
plane has a unique representation of the form

x =  x,ej +  x2e2,
where e, and e2 are any two noncollinear vectors of the plane. Similarly, 
any vector x in the space L 3 has a unique representation of the form

x =  Xje, +  x2e2 +  x 3e3,
where e,, e2 and e3 are any three noncoplanar spatial vectors. Thus any vector 
in the space L l9L 2 or L 3 is completely determined by its components with 
respect to an appropriate basis. Moreover, vectors in L l9 L 2 an d L 3 have the 
following familiar properties:

a) Two vectors are equal if and only if their corresponding components 
are equal;

b) Each component of the sum of two vectors equals the sum of the 
corresponding components of the separate vectors;

c) Each component of the product of a number and a vector equals the 
product of the number and the corresponding component.

Hence it is clear that the spaces L l9L 2 and L 3 can be regarded as the special 
cases of the space Ln obtained for n =  1, 2 and 3, respectively.
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Remark 3. The expansion (1) can be written more concisely in the form

X =  2  x kek. (2)
k= 1

But even this notation is not very convenient and can be simplified still 
further by dropping the summation sign, i.e., by writing

x =  x kek

instead of (2), it being understood that summation from  1 to n is carried out 
over any index (in this case k ) which appears twice in the same expression. 
This rule, proposed by Einstein, is called the summation convention, and the 
index k  is called an index o f summation. We can just as well replace k  by any 
other letter, so that

Xk*k =  Xfii =  x aem =  •••.

In the rest of the book, we will confine ourselves (for simplicity) to the case 
of the plane or ordinary three-dimensional space. Hence n =  2 or n =  3 
in all subsequent formulas, so that indices of summation will range over 
the values 1 and 2 or over the values 1, 2 and 3. However, most of the con­
siderations given below will remain valid for a general «-dimensional linear 
space.

PROBLEMS

1. Prove that the vectors
ai =  (1,1,1), a2 =  (1,1, 2), a3 =  (1, 2, 3) 

form a basis for the space L 3. Write the vector x =  (6, 9,14) in this basis.
2. Find the dimension of the space of all polynomials of degree not exceeding 
n (see Sec. 1, Example 6 and Sec. 2, Prob. 5). Find a basis for the space. What 
are the components of an arbitrary polynomial of the space with respect to 
this basis?
3. What is the dimension of the space C[a, b] ?t
4. What is the dimension of the space R+ considered in Sec. 1, Prob. 4? Find 
a basis in R+.
5. Prove that if the dimension of a subspace L' of a finite-dimensional linear 
space L  coincides with that of L itself, then L' =  L.
6. Prove that the sum of the dimensions of two linear subspaces U  and L" 
of a finite-dimensional linear space L equals the dimension of L' +  L" (the 
sum of Lf and L") plus the dimension of L' n  L" (the intersection of V  and 
L").

t  See Sec. 1, Example 7 and Sec. 2, Prob. 6.
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7. Prove that if the dimension of the sum L' +  L" of two linear subspaces U  
and L" of a finite-dimensional linear space L is one greater than the dimension 
of the intersection U  n  JL", then U  +  L" coincides with one of the subspaces 
and L' n  L" with the other.
8. Prove that if two linear subspaces U  and L" of a finite-dimensional linear 
space L  have only the zero vector in common, then the dimension of L' 4- L" 
cannot exceed that of L.
9. Describe the sum and intersection of two (distinct) two-dimensional linear 
subspaces of the space L 3.
10. By the linear subspace L' a  L„ spanned by the vectors a t, a2, . . . ,  a„, is 
meant the linear subspace of smallest dimension containing a l9 a2, . . . ,  am.t 
Let U  be the linear subspace of L4 spanned by the vectors

ai =  (1,1,1,1), a2 =  (1, -1 ,1 ,  -1 ), a3 =  (1, 3,1, 3), 
and let L" be the linear subspace of L 4 spanned by the vectors

bi =  (1, 2,0, 2), b2 =  (1, 2,1, 2), b3 =  (3,1, 3,1).
Find the dimension s of the sum L' +  L" and the dimension d of the intersec­
tion U  n  L".
11. Let L' and L" be the linear subspaces of L4 spanned by the vectors

=  (1, 2,1, -2 ), a2 =  (2, 3,1,0), a3 =  (1, 2,2, -3 )
and

bi =  (1, 1,1,1), b2 =  (1, 0,1, -1 ), b3 =  (1, 3,0, -4 ), 
respectively. Find bases for L' +  L" and L' n  L".
12. Find a basis for each of the following subspaces of the space L„:

a) The set of w-dimensional vectors whose first and second components are 
equal;

b) The set of «-dimensional vectors whose even-numbered components are 
equal;

c) The set of «-dimensional vectors of the form (a, ft, a, fi, . . . ) ;
d) The set of «-dimensional vectors (*i, jc2, . . . ,  jc„) such that xi +  x 2 

+  • • • +  xn =  0.
What is the dimension of each subspace?
13. Which solutions of a homogeneous linear differential equation of order « 
form a basis for the linear space of solutions of the equation (see Sec. 1, Prob. 
5)? What is the dimension of this space? What numbers serve as components 
of an arbitrary solution of the equation with respect to the basis ?
14. Write a single vector equation equivalent to the system of equations

011*1 +  012*2 +  ‘ ' ■ +  01n*u =  b\9 
021*1 +  022*2 +  * * * +  02/i*n =  b2i

0/n 1*1 "t” 0/n2*2 “h ' ' * “1“ 0/nn*n bm.

t  As usual, the symbol cz means “is a subset of.”
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4. Orthonormal Bases. The Scalar Product

In the three-dimensional space L 3, let e1? e2, e3 be a basis consisting of 
three (pairwise) orthogonal unit vectors.! Such a basis is said to be orthonor­
mal. Expanding an arbitrary vector x with respect to an orthonormal basis 
Cp e2, e3, we get

x  =

(the summation convention is in force), where the numbers x t are called the 
rectangular components of the vector x.

An orthonormal basis e,, e2, e3 is called right-handed if the rotation 
through 90° carrying the vector e1 into the vector e2 appears to be counter­
clockwise when seen from the end of the vector e3. If the same rotation 
appears to be clockwise, the basis is called left-handed.

By the scalar product of two vectors x and y, denoted by x-y or (x, y), 
we mean the quantity

I x 11 y | cos 0,
where | x | is the length of the vector x, | y | is the length of y, and 0 is the 
angle between x and y (varying between 0 and 180°). It is easy to see that the 
scalar product has the following properties:

1) x-y =  y-x;
2) (Ax)• y =  Ax-y for arbitrary real A;
3) (x +  y)-z =  x-z +  y -z;t
4) x-x >  0 where x-x  =  0 if and only if x =  0.
Let e19 e2, e3 be an orthonormal basis. Then the various scalar products 

of the vectors e19 e2, e3 with each other are given by the following table:

«1 e 2 e 3

e , 1 0 0

C 2 0 1 0

e 3 0 0 1

Introducing the quantity du defined by

we find that

j l  if i = j ,  
lO if i ^ j ,

e,*e, =  <5,y ( i,j  = 1 , 2 ,  3).
We call 8¡j the symmetric Kronecker symbol, or simply the Kronecker delta.

t  By a unit vector is meant a vector of unit length. 
t  The simplest way of proving property 3) is to use formula (1) below.
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Next let x =  xfit and y =  j>yey be two arbitrary vectors of L 3. Then 
\ - y  =  (x(e,M  yfij),

and hence
x y  =  x ,y /p r ej)

(why?). The sum on the right consists of nine terms, since the indices i and 
j  range independently from 1 to 3. But only three of these terms are nonzero, 
since ei.-ey =  0 if i ^  j. Moreover ef*ey =  1 if / =  y, and hence

x-y  =  x ty t +  x 2y 2 +  x 3y 3, (1)
which can be written more concisely in the form

x-y =  x ty t
by using the summation convention.

Remark. The scalar product of an arbitrary vector x =  xfa  and the basis 
vector ey is clearly

x-e,. =  x /e (-e;) =
where the expression x fi^  is the sum of three terms, two of which vanish 
since ¿¡j =  0 if i ^  y. But dij =  1 if / =  y, and hence

x e ; =  *Ay =  Xj.
Thus the rectangular components of the vector x are the orthogonal projec­
tions of x onto the corresponding coordinate axes.

Finally, we list a number of familiar geometric facts involving scalar 
products:

a) The length of the vector x =  x iei is given by

I XI =  V * 7* =  VdijXiXj =  « /x ^ r
Any vector x 0 can be normalized, i.e., replaced by a proportional 
vector x0 of unit length, by merely setting

b) The cosine of the angle 6 between the vectors x =  x t%t and y =  y (e{ 
is given by

cos 9 = x-y =  x ty t 
IX11 y I J x , x t J y ty (

c) If a is a unit vector, then its /th component at equals the cosine of 
the angle which a makes with the basis vector e,., i.e., 

ar =  a-e, =  cos a,..
Moreover

cos2 a, +  cos2 a 2 +  cos2 a 3 =  1,
since a*a =  1.
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d) The projection of the vector x =  x tet onto the vector a =  aiel is given 
by

Pr.x = a-x  _  atx t
|a |  j a f l ' t

PROBLEMS

1. Use the scalar product to prove the following theorems of elementary 
geometry:

a) The cosine law for a triangle;
b) The sum of the squares of the diagonals of a parallelogram equals twice 

the sum of the squares of two adjacent sides of the parallelogram;
c) The diagonals of a rhombus are perpendicular;
d) The diagonals of a rectangle are equal;
e) The Pythagorean theorem;
f) The length ma of the median of a triangle with sides a, b, and c equals

ma 4
b2 +  c2 el

4 ’
g) If two medians of a triangle are equal, then the triangle is isosceles;
h) The sum of the squares of the diagonals of a trapezoid equals the sum of 

the squares of the lateral sides plus twice the product of the bases;
i) Opposite edges of a regular tetrahedron are orthogonal.

2. Prove the Cauchy-Schwarz inequality

(x-y)2 < |x |2|y |2, (2)
and write it in terms of the components of the vectors x, y e L3. Prove that 
the equality holds only if x and y are collinear.
3. Prove the following triangle inequalities involving vectors x, y e l 3:

|X +  y| <  Ix| +  |y|, |x -  y| >  ||x | -  |y||. (3)
4. Given an arbitrary linear space L, we say that a scalar product is defined in 
L  if with every pair of vectors x, y e  L  there is associated a number x-y, or 
equivalently (x, y), such that

a) x-y =  y-x;
b) (Ax)-y =  A(x-y) for arbitrary real A;
c) (x +  y)-z =  x-z +  y-z;
d) x-x >  0 where x-x =  0 if and only if x =  0.

A linear space equipped with a scalar product is called a Euclidean space, 
conventionally denoted by E. The concepts of the length of a vector and of 
the angle between two vectors in a Euclidean space E  are defined by analogy 
with the corresponding concepts in the three-dimensional Euclidean space L * 
(or E 3) considered above. Thus the length of a vector x e  E  is defined as

I X I =  \ / * - x >
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while the angle between two vectors x, y e  E  is the angle (p (0° <  q> <  180°) 
whose cosine equals

X* VCOS <p — I—i f ]  •Y |x ||y |
Two vectors x, y e  E  are said to be orthogonal if x-y =  0.

Can the scalar product of two vectors in L3 be defined as
a) The product of their lengths;
b) The product of their lengths and the square of the cosine of the angle 

between them;
c) Three times the ordinary scalar product ?

5. Prove that the scalar product of two vectors x =  (jc1#. . . ,  x n) and y =  
(y i, . . . ,  y„) in the space L n (see Sec. 1, Example 5) can be defined by the formula

X-y =  x xy x 4- ••• + X nyn. (4)
(The space L„ equipped with this scalar product is a Euclidean space, which 
we denote by En.)
6. Prove that the scalar product of two functions f i t )  and g{t) in the space 
C[a, b] (see Sec. 1, Example 7) can be defined by the formula

(/.*> =  \ bam g (t)d t.

Write an expression for the length of f i t ) .

7. Prove that the scalar product of two arbitrary vectors x =  ( * i , . . . ,  x„) and 
y =  O i , . . .  ,y„) in the «-dimensional Euclidean space En is given by the expres­
sion (4) if and only if the underlying basis e j , . . . ,  e„ (in which x t =  x-e„ 
y, =  y • e;) is orthonormal.
8. Prove that the Cauchy-Schwarz inequality (2) holds in an arbitrary Euclidean 
space.
9. Write the Cauchy-Schwarz inequality for vectors of the space E„ in com­
ponent form and for vectors of the space C\a, b] equipped with the scalar product 
defined in Prob. 6.
10. Find the angles of the triangle in the space C[—1,1] formed by the vectors 
Xiit) =  1, x 2it) =  t, x 3it) =  1 —

11. Prove that any two vectors of the system of trigonometric functions
1, cos t, sin /, cos 2/, sin 2 cos «/, sin « / , . . .  

in the space C[—it, 7t\ are orthogonal.
12. Prove that any n (pairwise) orthogonal nonzero vectors Xi , . . . ,  x„ e  En 
are linearly independent.
13. Prove that if the vector x in a Euclidean space E  is orthogonal to the vectors 
yt, . . . ,  y*, then x is orthogonal to any linear combination C]yi +  • • • -f ckyk.
14. Let Xi, . . . ,  x„ be the same as in Prob. 12. Prove that

|xj + x 2 +  +X*| 2 =  \ X i \2 +  |x2|2 +  ••• + |x * |2,
thereby generalizing the Pythagorean theorem (cf. Prob. le).
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15. Show that the triangle inequalities (3) hold for arbitrary vectors x and y 
in any Euclidean space E.
16. Write the triangle inequalities for the space C[a, b] equipped with the scalar 
product defined in Prob. 6.
17. Let e i , . . . ,  e„ be an orthonormal basis in E„. Prove Bessel's inequality

2  (Pretx)2 <  x-x (k <  n). (5)i= i
Prove that the equality holds if and only if k — /i.t
18. Let En + 1 be the Euclidean space consisting of all polynomials of degree not 
exceeding n, with real coefficients, where the scalar product of the polynomials 
P(t) and Q(t) is defined by the formula

(P ,Q )=

a) Prove that the polynomials

Pod) =  1, Pt(f) =  JEJT -  »* № - 1 , 2 . . . . . « ) ,

known as Legendre polynomials, form an orthogonal basis in E„+i.
b) Write the Legendre polynomials for k — 0,. 1,2, 3, 4. Verify that the 

degree of Pk{t) is ky and expand Pk(t) in powers of t.
c) What is the “length” of Pk(t) ?
d) Find P*(l).

5. The Vector Product. Triple Products

5.1. By the vector (or cross) product of two vectors x and y, denoted by 
x x y, we mean the vector z such that

1) The length of z equals the area of the parallelogram constructed on 
the vectors x and y, i.e., | z | =  | x 11 y | sin <p where q> is the angle between 
the vectors x and y;

2) The vector z is orthogonal to each of the vectors x and y;
3) The vectors x, y, and z (in that order) form a right-handed triple.

The following properties of the vector product are easily verified:
1) X x y =  —(y x x);
2) (Ax) x y =  A(x x y);
3) (x +  y) x z =  x x z +  y x z.
Let e1? e2, e3 be an orthonormal basis in the space L3. Then the various 

vector products of the basis vectors with each other are given by the table

t  In this case (5) reduces to Parseval's theorem

S  (Preix)2 = x-x.
i= i
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if ©j, e2, e3 is a left-handed basis.
To write the vector products of the basis vectors in a form valid for any 

orthonormal basis, we introduce a quantity e, equal to + 1  if the basis 
e1,e 2, e3 is right-handed and to —1 if the basis is left-handed. Thus e 
depends on the “handedness” of the basis. We then introduce a quantity 
eiSk given by

f 1 2 3  =  f 2 3 1  =  ^ 3 1 2  =  ¿ 9

f 2 1 3  —  ^ 3 2 1  —  ^ 1 3 2  —  ^

if all three subscripts are different, and equal to zero if any two of the indices 
i j ,  k  are equal. This quantity, which depends on the choice of the basis, 
is called the antisymmetric Kronecker symbol. Using eiJkf we have

e, x  e, =  eiJkek, (1)
regardless of the handedness of the basis, where in the right-hand side it 
is understood that summation is carried out over the index k  (in keeping with 
the convention introduced on p. 10). Formula (1) is easily verified. For 
example, we have

C1 X e2 =  1̂2*®* =  1̂21®l 1̂22®2 1̂23®3>
where the first two terms on the right vanish while e123 =  e. It follows that

so that
e, x e 2 =  ee3,

e , x e 2 =  e3
if the basis is right-handed, while

ej x e2 =  —e3
if the basis is left-handed, in keeping with the tables given above. More 
generally, given any two vectors x =  x t-et. and y =  yyey, we have

x x  y =  (x,e.) X (y fr),
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and hence
X x y =  x ty/fi, x e}) =  etskx ty p k

(why?), where in the right-hand side summation takes place over all three 
indices. In detail,

x  X y =  e{(x2y } -  x 3y 1)ei +  (x3y 1 -  x ,^3)e2 +  (xty 2 -  
or more concisely,

e l e 2 e 3

* 1 * 2 * 3

y \ y  2 J>3

in terms of a third-order determinant. Thus, if z =  x x y, the components 
of the vector z are given by

x k =  €ktjx tyj
(since eijk =  €kiJ), or in more detail,

*i =  e(x2y 3 -  x 3y 2),
=  f ( x 3y l -  x ty 3),

Z3 =  e(xty 2 -  x 2y t).
Remark. It should be noted that our definition of a vector product 

differs somewhat from another definition often encountered in the literature.t 
With our definition the vector product is independent of the handedness of 
the underlying basis, while in the alternative definition the vector product 
changes sign whenever the handedness of the basis is changed and hence is 
not an ordinary vector but rather a so-called “axial vector.” However, as 
defined here, the vector product is an ordinary vector, a fact which frees 
us from the necessity of considering axial vectors.

5.2. The scalar triple product (x, y, z) of three vectors x, y and z is defined 
by the formula

(x, y, z) =  (x X y)-z,
and equals the volume of the parallelepiped constructed on the vectors x, y 
and z, taken with the plus sign if the vectors x, y and z (in that order) form 
a right-handed triple and with the minus sign otherwise. The scalar triple 
product has the following easily verified properties:

1) (x, y, z) =  - ( y ,  x, z);
2) (x, y, z) =  (y, z, x) =  (z, x, y);t

t  See e.g., A. I. Borisenko and I. E. Tarapov, Vector and Tensor Analysis with Appli­
cations, translated by R. A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1968),
p. 18.

J The simplest way of proving property 2) is to use the geometric interpretation of the 
scalar triple product. Alternatively use formula (5) below, together with a familiar property 
of determinants.
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3) (Ax, y, z) =  A(x, y, z);
4) (x +  y, z, u) =  (x, z, u) +  (y, z, u).

Moreover, if e., ey, e* are basis vectors, then

(®i* e A:) =  *IJk -  P )

In fact,
(®i* ®Ar) =  (®» X Cy)• e* =  Cfjfii'Gk, (3)

where the right-hand side involves summation over the index /. But er ek 
is nonzero only if / =  k, in which case e,-e* =  1. Hence the right-hand side 
of (3) reduces to the single term eiJk9 thereby proving (2).

Now let x =  x tei9 y =  y fiJ9 z =  zkek be three arbitrary vectors. Then
(x, y, z) =  (*,.e„ yjej9 zkek) =  x tyjZk(ei9 ej9 ek)

(why?), and hence
(x, y, z) =  €ijkx iyjZk9 (4)

where the right-hand side involves summation over the indices i9 j  and k  
which independently range from 1 to 3. Thus the expression on the right is 
a sum containing V  =  21 terms, of which only six are nonzero since the 
other terms involve eiJk with repeated indices. Hence, writing (4) out in full, 
we get

(x, y, z) =  f{ x 1y 1z 3 +  x 2y 3z, +  x 3y ,z 2 -  x 2y ,z 3 — x 3y 2z, -  x ,y 3z2),
or, more concisely,

(x, y, z) =  e y  i
Z \

in terms of a third-order determinant.

* 2  * 3

y 2 y3 (5)

5.3. Finally we consider the vector triple product x x (y x z) of three 
vectors x, y and z, establishing the formula

x x (y x z) =  y(x• z) — z(x-y). (6)
If the vectors y and z are collinear, then it is easy to see that both sides of 
(6) vanish. Thus suppose that y and z are not collinear, and let u =  x x 
(y x z). The vector u is orthogonal to the vector y x z, and hence lies in 
the plane II  determined by the vectors y and z, i.e.,

u =  Ay +  pz. (7)
Let z* denote the vector in the plane II  obtained by rotating z through 90° 
in the clockwise direction as seen from the end of the vector y x z. Then 
the vectors z*, z and y x z form a right-handed triple of vectors, and clearly

u*z* =  A(y«z*). (8)
On the other hand,

u-z* =  [x X (y x z)]-z* =  [(y X z) X z*]-x,
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by property 2) of the scalar triple product. Let y =  (y x z) x z*. Then y 
has the same direction as the vector z, and moreover |v | =  |y  x z | | z* |  
since the vectors y x z and z are orthogonal. It follows that

M  =  | y | | z | 2 sin(y,z) =  I y I I z I2 cos(y, Z*) =  (y .z*)|z |, 
where (y, z) denotes the angle between y and z. Therefore

v == (y-z*)z,
and hence

u-z* =  (x-z)(y-z*). (9)
Comparing (8) and (9), we find that X =  x-z. Moreover, taking the scalar 
product of (7) with the vector x, we get

A(x-y) +  //(x-z) =  0,
which implies fi =  — x*y. Substituting these values of X and ¡i into (7), we 
finally arrive at (6).

PROBLEMS

1. Find the areas of the diagonal sections of the parallelepiped constructed on 
the vectors a, b and c.
2. Express the sine of the dihedral angle a  formed at the edge AB of the tetra­
hedron OABC in terms of the vectors OA, OB and OC.
3. Express the altitudes /zi, /z2, /z3 of a triangle in terms of the radius vectors 
ri, r2, r3 of its vertices.
4. Prove that the sum of the normal vectors nt, . . . ,  n4 to the faces of a tetra­
hedron OABC, directed outwards from the tetrahedron and equal to the areas 
of the corresponding faces, equals zero. Prove that the areas S u • • • > * $ 4  of the 
faces satisfy the formula

S \  — “h Sz ~h *S*3 — 2SiS2 cos (5i, Sz) — 2SzSz cos (*S'2, S3)
2535i cos (53, S^),

where (Sh SJ) denotes the angle between the faces with areas St and Sj.
5. Given a determinant

a h Ö12 ¿7i3
Û21 dzi Û23
Ö31 Ö32 Ü3 3

of order three, let Atj be the cofactor of the element Prove that

a) a =  pqraipajcflkr >

b) Aij =  ^€ikfijp<fikpOlq\
c) Aikakj =  öijd.
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6. Prove Lagrange*s identity

(a x b)-(c xd) = a-c
b e

a d
b d

7. Use the result of the preceding problem to find | a x b |2, writing the result 
in component form.
8. Prove that the vectors a and c are collinear if

a x (b x c) =  (a x b) x c, a-b ^  0, b-c ^  0.
9. Prove Jacobi*s identity

a x (b x c) +  b x (c x a) +  c x (a x b) =  0.
10. Suppose that in each face of a trihedral angle we draw a line through the 
vertex of the angle perpendicular to the edge lying opposite the face. Prove 
that the resulting three lines are coplanar. (It is assumed that none of the edges 
of the trihedral angle is perpendicular to the opposite face.)
11. Given four vectors a, b, c and d emanating from a common point, suppose 
a and b are orthogonal, while c and d are also orthogonal. Prove that the 
vectors p =  (b x c) x (a x d) and q =  (a x c) x (b x d) are orthogonal.
12. Find the area S  of the base of a triangular pyramid, given the lengths 
a , b, c of the lateral edges and planar angles a, /?, y at the vertex (a lies opposite 
a , etc.).
13. Calculate the scalar triple product (a +  b, b +  c, c +  a) and interpret the 
result geometrically.
14. Given three noncoplanar vectors a, b and c, what relation between the 
numbers A, // and v makes the vectors a +  Ab, b +  fic and c +  va coplanar? 
Use the result to prove the direct theorem o f  Menelaus (the product of the ratios 
in which any line divides the sides of a triangle equals —1) and the inverse 
theorem o f  Menelaus (if three points lying on the sides pf a triangle divide them 
in ratios whose product equals —1, then the three points lie on a line).
15. Use the scalar triple product to deduce Cramer's theorem for solving a 
system of three linear equations in three unknowns, written in vector form (cf. 
Sec. 3, Prob. 14).
16. Use formula (6) to prove the following formulas:

a) (a x b) x (c x d) =  b(a, c, d) — a(b, c, d);
b) (a x b, c x d, e x f ) =  (b, e, f)(a, c, d) -  (a, e, f )(b, c, d).

17. Prove that
a) a(b, c, d) -  b(c, d, a) +  c(d, a, b) -  d(a, b, c) =  0;
b) (a x  b,b x c,c x a) =  |(a ,b ,c)|2.

What is the geometric meaning of the second formula?
18. Prove that

(a, b, c)(x, y, z) =
a-x a*y a*z 
b-x b«y b*z 
c-x c«y c*z
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19. Prove that three vectors making angles of a, /?, y with each other are copla- 
nar if and only if

1 COS P
COS p 1
cos y cos a

cos y 
cos a =  0.

1

6. Basis Transformations. Tensor Calculus

6.1. Let elye2, e 3 be an orthonormal basis in the space L3 and let
e r , e2,, e3, be another orthonormal

e 3 basis in L3, both emanating from the 
same origin O (see Figure 3). Clearly, 
the vectors of the “new” basis e r , er , 
e3, can be expressed as linear com­
binations of the vectors of the “old” 
basis et, e2, e3. Let yn  denote the 
coefficient of et. in the expansion of 
e,, with respect to the old basis vectors. 
Then the expansions of the new basis 
vectors with respect to the old basis 
vectors take the formFigure 3

e r  =  y i'ie i +  7i'2e2 +  7 i'3e3> 
er  =  yr ie, +  yr2e2 +  yr3e3,

e 3 '  =  7 r ^ l  +  ? 3 ' 2 e 2 +  y 3 ' 3 e 3>

or more concisely,

ei' =  Yrfir (1)
Taking the scalar product of each of the equations (1) with each of the 
vectors ey, we get

e/'*e; =  Yefit-tj  =  Y iJ i j  =  Y n .
or equivalently,

e/'’e/ =  7i'i-
But et- and er are unit vectors, and hence

e.,-e4. =  cos (ex/, et),
where ( e £ \ )  denotes the angle between er and ef. It follows that

Yn =  cos (e £ \) .  (2)
In just the same way, the vectors of the “old” basis e,, e2, e3 can be 

expressed as linear combinations of the vectors of the “new” basis er , er , 
er . Let yu, denote the coefficient of er in the expansion of et. with respect to
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the new basis vectors. Then the expansions of the old basis vectors with 
respect to the new basis vectors take the form

«i =  y 11*1' +  yi2*v +  713*3', 
=  7 2 1 * 1 '  +  7 2 2 * 2 '  +  7 2 3 * 3 ' ,

e 3 =  7 3 1 * 1 '  +  7 3 2 * 2 '  +  7 3 3 * 3 ' ,

or more concisely,
e, =  7„,e,,. (3)

Taking the scalar product of each of the equations (3) with each of the 
vectors er , we get

V * ;' =  7«f*,'-e,' =  yu'di'y =  7/y',
or equivalently,

=  yiV =  cos (C V ), (4)
where (e£V) denotes the angle between ef and er. Since obviously =
(¿CX), it follows from (2) and (4) that

7/'/ =  7«'. (5)
The numbers yn can be written in the form of an array or matrix

/ 7  i ' i  7 1'2 7 i ' 3\

^  =  1 7 2  1 7 2 '2  7 2 '3 j .  ( 6 )

W l  7  3 '2  7 3 '3 /

A matrix like (6), with the number of rows equal to the number of columns, 
is called a square matrix, and the number of rows (or columns) is called the 
order of the matrix. Thus r  is a square matrix of order three, called the 
matrix o f the transformation from the old basis to the new basis. Similarly, 
the numbers yu> form a matrix

(7i i' 712' 7i3'\
7 2 1 ' 7 2 2 ' 7 2 3 ' ) ,

7 3 1 ' 7 3 2 ' 7 3 3 ' /

called the matrix o f the transformation from the new basis to the old basis 
(the notation jH_1 shows that this is the matrix of the inverse transformation). 
The matrices r  and r ~1 can be written more concisely in the form

F  =  (yn), F~l =  (7«')-
Formula (5) shows that the matrix T ”1 is obtained from the matrix r  

by interchanging rows and columns in r .  Moreover the elements of the two 
matrices satisfy the relations

Vttfrk =  VkiVkl’ =  (7)
7lk'?ik’ =  Vk’iYk’J =  <5.7-
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In fact,
Yi-kVj-k =  YnVn +  YnVj'i +  Yn7rt =  e,-er  =  Sn ., 

and similarly for the second formula. The relations (7) show that for either 
of the matrices r  and r ~ 1 the sum o f the products o f  the elements o f any 
row {or column) with the corresponding elements o f any other row {or column) 
equals zero, while the sum o f the squares o f the elements o f any row {or column) 
equals unity. A matrix whose elements satisfy these conditions is said to be 
orthogonal. Thus we have shown that the transformation from one ortho­
normal basis to another in L3 is described by an orthogonal matrix. Conversely, 
let r  — {yrt)  be any orthogonal matrix. Then, by (7), the vectors defined 
by (1) form a set of orthogonal unit vectors. It follows that every orthogonal 
matrix is the matrix o f the transformation from one orthonormal basis to another.

Let | r  | denote the determinant of the matrix 7 \ so that

y v i y  1'2 y  1'3

V r x y  2 '2 I n

y * ' i ? 3 ' 2 V r z

Then, since the rows of | r  | are made up of the components of the vectors 
er , e2 ey  with respect to the basis e,, e2, e3, it follows from formula (5), 
p. 19, that

| r |  =  f(e,., e2<, e,.),
where the scalar triple product on the right is of absolute value 1, being 
equal to the volume of the cube constructed on the vectors er, er , er . 
Hence the determinant o f  any orthogonal matrix equals ± 1 , where the plus 
sign is chosen if the bases e,, e2, e3 and e r, er , e3, have the same handedness 
and the minus sign otherwise (cf. p. 17). In the first case, the basis e,, e2, e3 
can be brought into coincidence with the basis er, er , e3, by making a rota­
tion about the point 0 , while in the second case a rotation alone will not 
suffice and in fact we must also make a reflection of the basis e,, e2, e3 in some 
plane through 0 .

Example. In the plane a transformation from one orthonormal basis to 
another is either a pure rotation through some angle 0 (in the counterclock­
wise direction, say) about an origin 0 , or else such a rotation followed by 
reflection in some line through 0 . In the first case, the formulas for the 
transformation of the basis are of the formt

e r =  cos 6 +  e2 sin 0, 
er =  — sin 0 +  e2 cos 0,

so that r ,  the matrix of the transformation, becomes 
^  / cos0 sin0\

\ —sin0 cos 0/

t  See Example 6, p. 72.
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with determinant 1. In the second case, the transformation formulas are of 
the form

with determinant — 1 .

6.2. Consider- any spatial vector x. The vector x represents some geo­
metrical or physical object, specified both in magnitude and direction, e.g., 
a force, velocity, acceleration, or electric field intensity. This “real” object 
does not depend on the coordinate system in which it is considered, and hence 
any operations or calculations directly involving vectors must always have a 
physical interpretation. However, together with direct calculations on vectors, 
a great role is played in geometry and its applications by the coordinate (or 
component) method, whose use permits us to study geometrical objects indi­
rectly, by well-developed methods of both algebra (in analytic geometry) and 
analysis (in differential geometry). These methods allow us to obtain a 
number of results quite simply, whose direct proof would sometimes be very 
formidable or even impossible. On the other hand, in applying the coordinate 
method, we associate with the vector x its components x 19 x 2 and x 3, numbers 
which depend not only on the vector x itself, but also on the particular coor­
dinate system (orthonormal basis) under consideration. Orthonormal bases 
can be chosen in many ways. For example, having chosen one basis, we can 
get many other bases by rotating the original basis about the origin of coor­
dinates. Thus in applying the coordinate method we deal with data which 
reflect not only the geometrical situation but also the arbitrariness implicit 
in the selection of a coordinate system. For example, the very components 
of a vector depend on the coordinate system, while the sum of the squares 
of these components (which, as we know, gives the square of the length of 
the vector) ought not to depend on the choice of the coordinate system, 
and in fact, as we will see in a moment, this quantity turns out to be the same 
in all orthonormal bases. The properties of geometrical or physical objects 
which do not depend on the choice of the coordinate system (in which the 
given object is considered) are called invariant properties, and it is just such 
properties which are of primary interest.

This preliminary discussion leads to the
Fundamental Problem of Tensor Calculus. How does one formu­

late propositions involving geometrical and physical objects in a way free  
from the influence o f  the underlying arbitrarily chosen coordinate system ?

As a first step towards the solution of this problem, we now examine 
how the components of a vector x transform in going from one orthonormal

er  =  et cos 0 +  e2  sin 0 , 
er  =  ex sin 6 — e2  cos 0 ,

so that r  becomes
cos 0  sin 0  

sin 0  —cos 6t
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basis Cj, e2, e 3 with origin O to another orthonormal basis e'^ e2, e3 with the 
same origin. Let

x =  X&, x =  xrer
be the expansions of x with respect to each of these bases. Since these are 
expansions of one and the same vector, we can equate the right-hand sides, 
obtaining

x iei =  (8 )
Using (3) to replace the vectors e, by their expansions relative to the basis 
e r , er , e3/, we get

x tylt* r  =  x t*r,
which, because of the linear independence of the vectors er, implies

Xf =  Xfrr,
or equivalently,

X, =  Yt-iX» (9)
where we use the fact that ytv =  yn . Formula (9) expresses the new compo­
nents o f  the vector x in terms o f its old components. Alternatively, if we use (1) 
to replace the vectors er in (8 ) by their expansions relative to the basis e,, e2, 
e3, we get the formula

x t =  YirXr, (10)
expressing the old components o f the vector x in terms o f its new components. 
It should be noted that (10) can be obtained from (9) by multiplying both 
sides of (9) by yjr, summing over and then using (7).

Next we examine which of the considerations of this chapter are of an 
invariant nature, i.e., are independent of the choice of the coordinate system, 
beginning with the case of the scalar product. The scalar product in the 
three-dimensional space L 3 was defined purely geometrically on p. 1 2 , and 
hence there can be no doubt about its invariance. We now prove this invari­
ance once again, starting from formula ( 1 ), p. 13, which expresses the scalar 
product of two vectors x and y in terms of the components of x and y rela­
tive to some orthonormal basis. It is important to do this, since the scalar 
product of two vectors x and y in the w-dimensionai space Ln is defined as 
the sum of the components of x and y relative to some orthonormal basis 
(see Sec. 4, Prob. 5), so that in this case the required invariance cannot be 
of a geometrical character and must be proved analytically (in fact by pre­
cisely the same argument as we will now use to carry out the proof in the 
three-dimensional case).

Thus let x and y be two vectors in L3, with components x iy y t relative 
to an orthonormal basis e,, e2, e3 and components x^, yv relative to another 
orthonormal basis e r , er , er . Then the scalar product x*y can be written 
either as x iy i or as x ryr. To prove the identity of these two expressions (and
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hence the invariance of the scalar product), we need only use (7 ) and (9 ) to 
deduce that

Xey? -- yi.,xiyn y j - dijx iy j -  x ty,.
The invariance of the formula for the scalar product immediately implies 
the invariance of the formulas for the length of a vector and for the cosine 
of the angle between two vectors, since these quantities are expressed in 
terms of the scalar product (see p. 13).

Before proving the invariance of the formulas expressing the vector 
product of two vectors and the scalar triple product of three vectors in terms 
of their components, we study the behavior of the components of the anti­
symmetric Kronecker symbol (see p. 17) under transformation to a new 
basis. In the new basis we have

f  =  (e.-> e,., e*.)
(see p. 19). Since

ei' =  Vefit> =  7rfij> e*'
it follows that

e i ' j 'k '  —  7 ¡ ' i7 j ' j 7 k ' k ^ i j k '

Remark. In particular,

7k'kek,

tv v v  — 7vi7vj7vk£nk'> • ( 1 1 )
where there are only six nonzero terms in the right-hand side, so that, in 
expanded form, ( 1 1 ) becomes

* w v  =  (7vi7r27r3 +  7vi7vz7yx +  7v*7v\7vi
—  7 vi7vi7y3 —  7v*7vi7v\ —  7i'i72'37y2)£i23•

The quantity in parentheses is just the determinant of the transformation 
matrix (6 ), and hence

Ci'2'3' =  ^ 1 23 det r . ( 1 2 )
Letting e' denote the value of the quantity e relative to the new basis, we 
can write ( 1 2 ) as

e ' =  e det T  (13)
(recall from p. 17 that e 1 2 3  =  6 ). Formula (13) shows that if the handedness 
of the basis is changed, then e does not change, while if the handedness of 
the basis is reversed, then e changes sign, in keeping with the original defini­
tion of the quantity e on p. 17.

Now let 

so that
Z =  X X y,

Zk =  CljkXtyj, (14)
while

Z* =  Ci'j'k'Xryr (14')
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in the new basis. To prove the invariance of the expressions for the com­
ponents of z, i.e., to show that formula (14) goes into formula (14') under 
a transformation of basis, we first substitute the expansions

*i =  7itXr, yj =  yJryr> ** =  ykk'Zk'
into (14), obtaining

=  ctjkytryjrxryj'.
We then multiply (15) by ykV and sum over the index k. Since

this gives
ykk'ykV — ôk'i'9

*r =  6 i ikyivy jyyki'X ry r , 
which coincides with (14'), since

(15)

C t jk y iry jry k r  =  yviy  n y v k ^ ijk  =  € r r r ,

as shown above.
In just the same way, we can prove that formula (4), p. 19 for the scalar 

triple product of three vectors x, y, and z is invariant under a transformation 
of basis, i.e., that

CtJkXtyjZk =  €rrk.Xryrzk..
However, the invariance of the expression for the scalar triple product 
follows even more simply from the formula

(x, y, z) =  (x X y)-z
and the fact that scalar and vector products are given by invariant expres­
sions, as just proved

PROBLEMS

1. Let ei, e2  and er , er  be two orthonormal bases in the space L2. Express the 
vectors of one basis in terms of those of the other basis and write the formulas for 
the transformation of an arbitrary vector in going from one basis to another if

a) The vectors of the second basis are obtained from those of the first basis 
by rotation through the angle a (in the counterclockwise direction) 
followed by relabelling of the basis vectors;

b) ei' =  —ei, e2' =  e2.
2. Write the matrix r  of the transformation from one orthonormal basis 
ei, e2, e3 in the space L 3 to another orthonormal basis er , e2>, e3' if

a) ey =  e2, e2> =  ej, e3> =  e3 ;
b) er  =  e3, e2' =  ei, e3* =  e2.

3. How does the matrix of the transformation from one basis to another change if
a) Two vectors of the first basis are interchanged;
b) Two vectors of the second basis are interchanged;
c) The vectors of both bases are written in reverse order?

4. Given two right-handed orthonormal bases ©i, e2, e3 and er , er , er  in the 
space L3, suppose the position of the second basis with respect to the first basis
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is specified by the three Eulerian angles, namely
a) The angle 0 between the vectors e3 and e3', given by the formula

cos 0 =  e3-e3 ;
b) The angle (p between the vectors ei and u, where u is a unit vector lying 

on the line o f nodes, i.e., the intersection of the plane determined by ei, 
e2 and the plane determined by er , e2', where u, e3 and ey form a right- 
handed triple;

c) The angle y/ between the vectors u and er .
Express the vectors of the second basis in terms of those of the first basis, 
using the angles 0, q> and y/.
5. Prove that the matrices

2 2 _ L \ 1 1 a/~ 2 ”\
3 3 3 2 2 ' 2

2 1 2 . r  2  = 1 1

3 3 3 2 2 2
1

\ ~ T
2
3

2
3

V T
2

V ^ 2
2 0 ,

are orthogonal.
6 . Every formula involving a change of basis in the three-dimensional space
L 3 is valid for the «-dimensional space L„, provided only that we let the indices 
/,7 , k , k', etc. take all values from 1 to n rather than just the values 1, 2, 3.
Suppose a vector x e Ln has components x u x 2, . . . ,  x„ with respect to an 
orthonormal basis ei, e2, . . . ,  e„. What choice of a new basis in Ln makes the 
components of the vector x equal to 0 , 0 , . . . ,  | x | ?
7. Let ei , e2, . . . ,  e„ be a basis in the s p a c e a n d  let Lk be a nontrivial subspace 
of L„ of dimension k. Prove that Lk can be specified as the set of all vectors 
x g Ln whose components x i9 x 2, . . . ,  xn relative to the basis et, e2, . . . ,  e„ 
satisfy a system of equations of the form

a ijXj =  0

(/ =  1 , 2 , .  . . ,  m <  n).
8 . In the space of all polynomials of degree not exceeding «,t  write the matrix 
of the transformation from the basis 1 to the basis 1 , t — a, . . . ,  it — a)n. 
Write formulas for the transformation of the coefficients of an arbitrary poly­
nomial under such a change of basis.

7. Topics in Analytic Geometry

We now consider some topics in analytic geometry, with the aim of recall­
ing a number of facts that will be needed later. At the same time, we will 
use this occasion to write the relevant equations in concise notation (the 
notation in which they will be used later).

t  See Sec. 1, Example 6 , Sec. 2, Prob. 5 and Sec. 3, Prob. 2.
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Let O be a fixed point of ordinary (Euclidean) space. Then every spatial
point P can be assigned a vector OP =  x, called the radius vector of P. 
The position of P  is uniquely determined once we know its radius vector x 
(with respect to the given origin O). In other words, given an origin O, we 
can establish a one-to-one correspondence between the vectors of the linear 
space L 3 (equipped with the usual scalar product) and the points of ordinary 
space. The components x x, x 2, x 3 of the vector x with respect to an ortho- 
normal basis e 19 e2, e3 are just the coordinates of the point P  with respect 
to a rectangular coordinate system whose origin coincides with O and whose 
axes are directed along the vectors e2, e3.

Naturally, this correspondence between points and vectors pertains to 
a given fixed  origin O. If we go from O to a new origin O', the radius vector
of every point P  changes correspondingly. Let O'P =  x ' be the new radius 
vector of the point P, with respect to the new origin O'. Then the relation 
between the old and new radius vectors is given by

+  P (1)
(see Figure 4). Consider two rectan­
gular coordinate systems with origins 
at the points O and O', respectively, 
whose axes are parallel and deter­
mined by the orthonormal vectors 
e19 e2, e3. Then the coordinates of P  
with respect to the first system are 
just the components of the vector x, 
while the coordinates of P  with 
respect to the second system are just 
the components of the vector x'. Let 
the expansions of the vectors x, x ' and 
p with respect to the basis en e2, e3 be

x - Xfil, x' =  xie,., p =  Pfit.
Then it follows from (1) that the components of these vectors are connected 
by the formula

=  A  +  Pi, O ')
which shows how the coordinates of the point P transforms when the coor­
dinate system is shifted parallel to itself.

Remark 1. Note that shifting a coordinate system parallel to itself has no 
effect on vectors, since such shifts do not change the basis vectors.

Remark 2. As already noted in the preceding section, all quantities and 
equations which have any geometric meaning must remain invariant (i.e., 
unchanged) under arbitrary transformations of a rectangular coordinate

P
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system. Since the components of vectors change only when the underlying 
orthonormal basis is changed and do not change under parallel shifts of the 
coordinate axes, every quantity depending on the components of vectors is 
invariant under parallel shifts of the coordinate system. Hence we need only 
test the invariance of such quantities under rotations of the coordinate 
system. By contrast, quantities which depend on the coordinates of points 
can change not only under rotations of the coordinate system, but also under 
parallel shifts of the coordinate system. Hence we must test the invariance 
of quantities depending on the coordinates of points under transformations 
of both types.

We now consider a number of concrete problems arising in three- 
dimensional analytic geometry.

7.1. Distance between two points. Division of a line segment in a given 
ratio. Let P and Q be two points in space, with radius vectors x and y. Then
PQ  =  y — x, and the length of the segment PQ  equals

I PQ  I =  I y -  * I =  V<5,70 .  -  -  Xj)
=  V ( y t -  x i)2 +  (y* -  x z)2 +  0 3 -  x 3)z. (2 )

The invariance of this expression under arbitrary (orthogonal) coordinate 
transformations follows from the fact that the distance between the points
P  and Q equals the length of the vector PQ, which, as we have seen, is invar­
iant under such transformations.

The point M  dividing the segment PQ  in the ratio A, i.e., such thatt
\PM\
\M Q\ = A,

is specified by the radius vector z such that

which implies
Z -  X =  A(y -  z ) ,

z = X + A y
1 +  A * (3)

The components of this vector are related to those of the vectors x and y 
by the formula

_  xL±_Xy1 
z‘ ~  l +  X O')

Suppose we subject the coordinate system to a (parallel) shift defined 
by the vector p. Then (3) becomes

z* x' +  Ay'.
1 H~ A

11 PM| denotes the length of the segment PM, and similarly for |Mj2l-
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where
x =  x' +  p, y =  y' +  p, Z =  z' +  p. 

It follows that (3) is invariant under shifts.

7.2. Equation of a plane. Let II be a plane in space, and let n be a vector 
normal to II. Suppose n has components a{ with respect to an orthonormal
basis e 1} e2, e3, so that

n =  a,.e,.. (4)
Let x 0 be the radius vector of a fixed point P0 e  II, with components 
and let x be the radius vector of an arbitrary vector P e  II, with components 
xf. Then clearly

x 0 =  xfei9 x =  x fit,
and hence

PJ> =  x -  x 0 =  (xt -  x?)er (5)

Since the vectors P0P and n are perpendicular, we have

P0f - n  =  0 , 
or

(x — x0)«n =  0, (6)
a result known as the vector form  of the equation of II.

Using (4), (5) and the expression for the scalar product of two vectors 
in terms of the components of the vectors, we get

a,(X — *?) =  0 ,
or

aix i +  6  =  0  (6 ')
after denoting — ape? by 6 . Equation (6 ') can be written in the form

n-x +  6 =  0.
If the plane II passes through the origin of coordinates, then 6  =  0, and the 
equation of the plane becomes

a.x, =  0 .
On the other hand, if II does not pass through the origin, then 6 ^ 0  and 
we can divide all the terms of equation (6 ') by 6 , obtaining

upct =  1

in terms of the numbers

u{ = Pl
6

7.3. Distance from a point to a plane. Suppose the plane II has equation
aix i +  6  =  0
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in some orthonormal basis e1} e2, e3. Then we can write the unit normal n 0  

to II  in the form

Do A/*,

Let PQ be any point of space, with coordinates and let P  be any point 
of II, with coordinates x r Then the distance 8 from the point P0 to the plane 
n  can be written in the form

¿ =  |Pr„.Pi>0| =  |P r .c( x f - x , ) e , |
=  l(*/° —  x,)a, | =  | a,xf +  ¿>|

(see p. 14). In particular, the distance S0 from the origin O =  (0 ,0 ,0 ) to the 
plane II  equals

1A. Equation of a straight line in space. Let / be the line in space with the 
direction specified by the vector a =  aiel which goes through the point P0 
with radius vector

r0 =  *?e,
in some orthonormal basis e1? e2, e3. Let P  be an arbitrary point of /, with 
radius vector

Since the vectors
r  =  *,e,.

PQP = r  - T 0 =  (x, -  x?)e,,
are collinear, we have

r — r 0  =  Aa,
where A is a parameter which can take arbitrary real values, or equivalently,

r  =  r 0  +  Aa (7)
(the vector form  of the equation of /). In coordinate form, (7) becomes

*, =  x? +  Xat (i =  1 , 2 , 3) (7')
(the parametric equations of /).

7.5. The straight line as the intersection of two planes. Let / be the line of 
intersection of two planes I I x and I I2. Then / is determined by the system of 
two equations

a\l)x t +  6 (1> =  0 , a}2>xt +  b<2> =  0 , (8 )
where a{(1) and aj2) are components of normal vectors n, and n2  to the planes 
Hj and I I2, respectively. To go from (8 ) to (7'), we must find a point PQ on
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/ and a vector a parallel to /. Being perpendicular to the vectors nx and n2, 
the vector a can be chosen as the vector product of n1 and n2:

a =  n, x  n2  =  euka^af>ek.
To find P 0 we need only fix one of the coordinates x t and then solve the 
system (8 ) for the other two coordinates (one coordinate must be fixed if 
the system is to have a solution). Let x? be the coordinates of the point P0 
which we have found in this way. Then the parametric equations of / can be 
written in the form

Xk =  x l +  X(IJkajl)a ^  (k =  1, 2, 3).

7.6. General equation of a second-degree curve in the plane. The general 
equation of a second-degree curve relative to some rectangular coordinate 
system in the plane is given by

A x2 +  2 Bxy +  Cy2 +  2 Dx +  2Ey +  F  =  0. (9)
Let the coordinates x  and y  be denoted by x l and x 2. Moreover, let au 
denote the coefficient of the product let at denote the coefficient of x i9 
and let a denote the constant term. Then (9) can be rewritten in the concise 
form

a.jxpcj +  2  apct +  a =  0 , ( 1 0 ),
where atj =  aJt. Note that in the first term summation takes place over both 
indices i and j. In fact, writing the first term out in detail, we get

a.jxpcj =  alxx \  +  al2x  Xx 2 +  a2lx 2x x +  a22x \
=  alxx \ +  la 12x 1x 2 +  tf2 2 * 2 - 

Hence, when written out in full, (10) becomes
alxx \  +  la l2x 1x 2 +  a22x \  +  2  axx x +  2  a2x 2 +  a =  0 , ( 1 0 ')

which coincides with (9). The condition
"i =  0

means that the second-order curve is central, with the origin of coordinates 
as its center of symmetry (why?), while the conditions

at =  0 , a =  0

mean that the curve degenerates into two intersecting (or coincident) lines 
passing through the origin.

7.7. General equation of a second-degree surface. The general equation 
of a second-degree (or quadric) surface relative to some rectangular coordi­
nate system in space is given by

A x2 +  By2 +  Cz2 +  2 Dxy +  2Exz +  2 Fyz
+  2 Gx +  2 Hy +  2Kz +  L  =  0. (11)
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Using notation analogous to that just introduced in the case of the second- 
degree curve, we can write ( 1 1 ) concisely as

atpcpCj +  2  apct +  a =  0 , ( 1 2 )
where au =  ajr Note that (10) and (12) are identical, except for the fact 
that the indices of summation take the values 1 , 2  in ( 1 0 ) and the values 
1, 2, 3 in (12). As before, the condition

a. =  0

means that the quadric surface is central, with the origin of coordinates as 
its center of symmetry, while the conditions

at =  0 , a =  0

means that the surface is a cone with its center at the origin which, in par­
ticular, may degenerate into two intersecting (or coincident) planes passing 
through the origin.

7.8. Determination of the center of a second-degree curve or surface. We
can often solve a problem involving a second-degree curve and the analogous 
problem involving a second-degree surface simultaneously, exploiting the 
fact that the curve and the surface both have the same equation ( 1 0 ) or ( 1 2 ) 
in concise notation (provided, of course, that we bear in mind that the indices 
of summation take two values for the curve and three values for the surface). 
Consider, for example, the problem of determining the center of a second- 
degree curve or surface, starting from the common equation ( 1 0 ) or ( 1 2 ). 
Suppose this equation pertains to a rectangular coordinate system with 
origin O, and suppose we shift the origin of the coordinate system to the 
center of the curve or surface. Let p be the radius vector of the new origin 
O' relative to the old origin O, i.e.,

p =  OO' = pfr.
Then the old coordinates x t and the new coordinates x[ of a variable point 
P  are related by formula (T):

*, =  *!• +  Pt-
Substituting these values of x t into equation (10) or (12), we find that the 
equation takes the form

‘¡nix'i +  PiXx’j +  Pj) +  2 a ^  +  Pi) +  a =  0 
or

dijX’iXfj +  a ^ iP j  +  a ,/jP t +  dijPiPj +  la ^ i  +  2aipi +  a =  0

in the new coordinate system. Interchanging the indices i and j  in the third 
term and noting that au =  an, we get

a,•,*!*/ +  2(auPj +  +  d,jp,pj +  2aipi +  a =  0.
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Since the new origin is at the center of the curve or surface, we must have

atjPj =  ~ a t. (13)

Thus the center has coordinates pj satisfying the system (13), and in fact a 
center exists if and only if the system (13) has a solution, i.e., if and only if 
its determinant (of order two for a curve or three for a surface) is non­
zero.

PROBLEMS

1. Write equations in both vector and coordinate form for the plane
a) Passing through two given intersecting lines

X =  Xi +  Aa, X =  X i +  pb;
b) Passing through the line x =  Xi +  Aa and the point P0 with radius 

vector x0.
2 . Give necessary and sufficient conditions for intersection, parallelism or 
coincidence of the two planes

a}»xi +  6 (1) =  0, a™xt +  6(2> =  0.
3. Find the distance between the two parallel planes

diXi +  b =  0, atXi + b' = 0. (14)
4. Write the equation of the plane parallel to the planes (14) lying midway 
between them.
5. Write the equation of the family of planes going through the line of inter­
section of the planes

a ^ x t +  6 (1> =  0, +  6 (2> =  0. (15)
6 . In the family of planes figuring in the preceding problem, find the plane

a) Passing through the point P0 with coordinates x/(0);
b) Perpendicular to the plane a ^x t  +  6 (3) in the family.

7. Find the angle between the planes (15). When are the planes orthogonal?
8 . Write the equations of the planes in the family figuring in Prob. 5 which 
bisect the angles between the planes (15) determining the family.
9. Find the coordinates of the foot of the perpendicular dropped from the point 
P0 with coordinates jci(0) to the plane atXi +  6 = 0 .
10. Find the area of the triangle whose vertices A, B and C have coordinates 
xti y t and zt, respectively.
11. Find the volume of the tetrahedron whose vertices A, B, C and D have 
coordinates xt, yt, zt and uiy respectively.
12. Find the distance from the point P with radius vector y to the line 
x =  x0  +  Aa.
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13. Find the distance between the two parallel lines
x =  Xi +  Aa, x =  x 2  +  /¿a.

14. Given two skew lines

find
x =  xi +  Aai, x =  x2  +  //a2,

a) The angle between the lines;
b) The shortest distance between them.



2

MULTILINEAR FORMS 
AND TENSORS

8. Linear Forms

8.1. The basic operations of vector algebra were considered in the pre­
ceding chapter. We now turn to the study of the simplest scalar functions 
of one or several vector arguments.

Given a linear space L, by a scalar function (p =  <p(x) defined on L  we 
mean a rule associating a number (p with each vector x  e  L. We call tp a 
linear function (of x) or a linear form  (in x) if

1 ) (p(x +  y) =  #>(x) +  <p(y) for arbitrary vectors x and y;
2 ) q>(Xx) =  A<p(x) for an arbitrary vector x and real number A.
Example 1. Let a be a fixed vector and x a variable vector of the space 

L 3. Then the scalar product
9 >(x) =  a»x

is a linear form in x, since
a*(x +  y) =  a«x +  a»y, a»(Ax) =  Aa*x, 

by the properties of the scalar product (see p. 1 2 ).
Example 2. In particular, let Pr; x be the projection of the vector x onto 

the (directed) line /, i.e., let
Pr7 x =  e7 «x,

where e/ is a unit vector along /. Then Pr; x is a linear form in x, since clearly 
Pr, (x +  y) =  Prz x +  Pr, y, Pr, (Ax) =  APr, x.

38
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Example 3. Since any component x i of a vector x e  L 3 with respect to an 
orthonormal basis e19 e2, e3 can be represented in the form

x, =  e,.x

(see p. 13), x t is also a linear form in x.

Example 4. Let a and b be two noncollinear vectors of the space L 3. 
Then the scalar triple product (a, b, x) is a linear form in x, since

(a, b, x +  y) =  (a, b, x) +  (a, b, y), (a, b, Ax) =  ¿(a, b, x),

by the properties of the scalar triple product (see p. 18).

Next, given an orthonormal basis e 19 e2, e 3 in L 3, we find an expression 
for a linear form q>(x) in terms of the components of x with respect to e19
®29 ®3 * Let

x =  X fa .

By the linearity of <p9

?(x) =  =  *,?(*,)>
so that, writing

=  ?(ef),
we have

<p(x) =  a(x r ( 1 )

The expression (1) is a homogeneous polynomial of degree one in the vari­
ables x r The coefficients at in (1) obviously depend on the choice of basis.

8.2. We now examine how the coefficients of a linear form q> =  q>(x) 
transform in going from one orthonormal basis e 15 e2, e3 to another ortho- 
normal basis er , e2/, e3,. Under such a transformation, we have

=  yrfii,
where r  =  (yn) is the matrix of the transformation from the old basis to 
the new basis (see p. 23). In the new basis q> takes the form

<P =

where the x r are the new components of the vector x and the coefficients 
av are given by

a? =  =  <p(yne,) =  =  y(flt.
Hence the coefficients of the linear form <p transform according to the law

ae =  yefl, (2 )
in going from the old basis to the new basis. Comparing (2) with formula 
(9), p. 26, we see that the coefficients of a linear form transform in exactly
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the same way as the components of a vector in going over to the new basis. 
In other words, the coefficients at of a linear form q> are the components 
of some vectort

a =  afr.
Thus formula (1) shows that the linear form <p =  p(x) can always be written 
as the scalar product of a fixed vector a and a variable vector x, i.e.,

(p =  0>(x) =  a-x.
Remark. To interpret the vector a geometrically, consider the level sur­

faces of the linear form <p, characterized by the equation q> =  c or
a-x =  c. (3)

Clearly (3) is the equation of a family of parallel planes, each of which has 
a as a normal vector, i.e., a is a common normal to the planes making up 
the level surfaces of the form a.

PROBLEMS

1. Which of the following scalar functions of a vector argument are linear 
forms:

a) The function
<p(x) =  ctxh

where the jct are the components of the vector x relative to some basis in 
the space Ln and the ct are fixed numbers;

b) The function
(p{x) = *?,

where * 1  is the first component of x relative to some basis in L„;
c) The function

<p(x) = c ;
d) The function

(Plfit)] = f ( t0) (a < t0 < b)
defined on the space C[a, b] of all functions f(t) continuous in the interval 
[a, b] (cf. Sec. 1, Example 7);

e) The function

?>[/«] =  J ‘ c(t)M  dt,

where c(t) is a fixed function and f(t) a variable function in the space 
C[a,b]?

2. Write the linear function considered in Example 4 in the form p(x) =  a-x.

t  Note that a =  а,-е,- = as follows directly from

аъ = aflivev = yrtßitt' = Ъ'Ъ'-
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9. Bilinear Forms

9.1. A  scalar function q> =  p(x, y) of two vector arguments x and y is 
called a bilinear function  or bilinear fo rm  if it is linear in both its arguments,
i.e., if

1) (p(xl +  x2, y) =  p(x„ y) +  <p(x2, y);
2) <p(Xx, y) =  X<p(x, y);
3) ¥>(x, y, +  y2) =  i>(x, y,) +  $>(x, y2);
4) q>(x, Ay) =  A(?(x, y).

Example 1. The scalar product of two vectors x and y is a bilinear form 
since it clearly has ail the above properties.

Example 2. Let a be a fixed vector and x, y variable vectors of the space 
L 3. Then it is easy to see that the scalar triple product (a, x, y) is a bilinear 
form (in x and y).

Example 5. Let a(x) and f i(y) be linear forms in the variable vectors x 
and y, respectively. Then the product

<p(x, y) =  a(x)fi(y)
is a bilinear form, since

$>(x, +  x2, y) =  a(x, +  x 2)0(y) =  a(x,)/?(y) +  a(x2)J?(y)

=  P(X|, y) +  9>(x2, y),
i>(Ax, y) =  a(Ax)/?(y) =  Aa(x)j?(y) =  Â >(x, y), 

and similarly for the second argument.

9.2. Next, given an orthonormal basis e,, e2, e3 in L 3, we find an expres­
sion for a bilinear form <p(x, y) in terms of the components of x and y with 
respect to e15e2,e3. Let

X =  Xfit, y =  y fi j .

By the linearity of <p in both its arguments,

<p(x, y) =  (p{xtt „  y f i j )  =  x ^ / p ^ ,  e;),
so that, writing

atl =  ¥>(e„ e,),
we have

9»(x, y) =  atjx ty j,
or, in more detail,

?>(x, y) =  +  a,2x,y2 +  a, jX,y3 +  a21x2yt +  a22x2y2
+  «23^2^3 +  <*31*3 y i +  <*32*3̂ 2 +  <*33*3̂ 3-

This expression is a homogeneous polynomial of degree two, linear in both 
sets of variables x l9x 29x 3 and y19y29y3-
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The coefficients of the bilinear form q> can be written in the form of an 
array

i.e., as a square matrix of order three (see p. 23). The matrix A is called 
the (coefficient ) matrix o f  the bilinear form <p. Thus, relative to a given basis 
e i , e2, e3 e  L 3, every bilinear form <p is characterized by a well-defined 
third-order matrix.

We now write the bilinear forms of Examples 1-3 in component form 
and find their matrices.

Example T . The bilinear form x«y becomes

Example 2'. Next consider the bilinear form (a, x, y). Recalling the 
expression for the scalar triple product in component form (see p. 19), we 
havet

(a, x, y) =  €kiiakx tyr

Hence the coefficient matrix of (a, x, y) takes the form

Example 3'. Relative to the orthonormal basis e2, e3, the linear forms 
a(x) and /?(y) can be written as

<x(x) =  atx „  fi(y) =  b jy j

(see Sec. 8 ), so that the bilinear form <p(x, y) =  a(x)/?(y) becomes 
tp(x, y) =  aix ib1y j =  a f i jX j j ,

with matrix

(1)

x*y =  x y x +  x 2y 2 +  x ,y }
in an orthonormal basis, and hence its matrix is just

0  1  0  =05„).

t  Here we write the indices of summation somewhat differently than on p. 19.
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9.3. Next we examine how the coefficients of a bilinear form tp =  p(x, y) 
transform under a change of basis. Relative to a new orthonormal basis 
©i'> > e 3 '> ^ e  form <p becomes

where

But

9 =  atrx^yr9 

aa . =  q>(ee, e,<). 

e,- =
in going over to the new basis. It follows from the basic properties of a 
bilinear form that

a,■!■ =  qKyrfii, Vrjej) =  VnYrM.*,’ «/) =  leitrPu •
Hence the coefficients of the bilinear form (p transform according to the law

af f  =  Je ffrfiu - (2)
Note the deep similarity between (2) and the transformation law (2), p. 39, 
for a linear form.

Conversely we have the following
T heorem . I f  the elements aij o f the matrix (1) transform according 

to the law (2) under a basis transformation in L3, then A is the matrix 
associated with a bilinear form.

Proof Let e,, e2, e 3 and e,,, er , e3, be two orthonormal bases in L3, 
and let x, y be any two vectors in L3. Then

X =  X f i t  =  x.*.,, y  =  yfij =  y rer

Consider the expression <p =  aiJx iy j . To prove that tp is really a bilinear 
form defined on L 3, we must show that it does not change under a 
change of basis, i.e., that its value depends only on the vectors x, y 
and not on the choice of basis. Under a change of basis q> goes over into 
<p =  avyxvy r . Hence we need only prove that (p' =  q>. By formula (2) 
above and formula (9), p. 26,

tp =  atrx t yr = yi'iyj'jaijy ,kx kyriy l =  yriytkyn yrf i iJx ky l- 
Moreover,

7nVn< =  <5,t , yfJyf , = Sj„ 
by the properties of an orthogonal matrix,! and hence

But

which implies

<p’  =  ¿ ¡ k S i f r j X n y , .

<5/*** =  Sj,y, =  y P 

¥  =  a ,^Û j =  <p. I

t  See formula (7), p. 23.
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PROBLEMS

1 . Prove that the coefficients of a bilinear form in the plane L2 can be written 
as a square matrix of order two.
2. Write the scalar triple product (a, x, y) figuring in Example 2 as a third- 
order determinant, and use the result to give another derivation of the coeffi­
cients of the corresponding bilinear form.
3. Let

*(*)] = j* J* K(x, y)Ax)g(y) dx dy,

where K(x, y) is a fixed function continuous in x  and y. Is <p a bilinear form 
defined on the space C[a, b] of all functions continuous in the interval [a, 6 ]?
4. Let

<P\f(x\ g(y)] =  /(¿otetFo),
where a < x 0 < b, a < y 0 < b. Is <p a bilinear form on the space C[a, 6 ]?
5. Let xi and y  i be the first components of the vectors x and y relative to some 
basis in the space L„. Is the function

<P(x, y) =  x\y \
a bilinear form?
6 . Is the function (p(x,y) = c (c a fixed real number) a bilinear form?

10. Multilinear Forms. General Definition of a Tensor

10.1. A scalar function <p — p(x, y, z , . . . ,  w) of p  vector arguments 
x, y, z , . . .  , w is called a multilinear function or multilinear form  if it is linear 
in all its arguments, i.e., if two conditions of the form

1 ) 0 >(x, y, z t +  z2, . . . ,  w) =  p(x, y, z„ . .  . ,  w) +  <p(x, y, z2, . .  . ,  w),
2 ) q>(x, y, Az, . . . ,  w) =  Ap(x, y, z, . . . , w)

hold for each of the arguments x, y, z , . . . ,  w. The number of arguments 
p is called the degree of the multilinear form, and <p itself is often called a 
p-linear form.

The linear forms considered in Sec. 8  are a special case of multilinear 
forms, i.e., forms of the first degree or 1-linear forms. Similarly, the bilinear 
forms considered in Sec. 9 are also a special case of multilinear forms,
i.e., forms of the second degree or 2-linear forms. We now give some ex­
amples of multilinear forms of degree higher than two.

Example 1. The scalar triple product (x, y, z) of three vectors x , y , z e  
L 3 is a trilinear (or 3-linear) form, since conditions of the type 1) and 2) 
hold for all three arguments x, y, z.
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Example 2. The product of three linear forms a(x), fi(y) and y(z) is a 
trilinear form. In fact, if

<p(x, y, z) =  a(x)/?(y)y(z),
then

<p(* 1 +  * 2 » y .z) =  «(x i +  x 2 )^(y)?(z) =  [a(xx) +  a(x 2 )]/?(y)y(z)
=  a(x i)A(y)Kz) +  a (x 2 )Ay))'(z) =  $>(*„ y, z) +  <p(x2, y, z), 

^(Ax, y, z) =  a(Ax)£(y)y(z) =  Aa(x)/?(y)y(z) =  Xg>(x, y, z), 
and similarly for the other two arguments.

10.2. Next, given an orthonormal basis e1? e2, e3 in L3, we find an expres­
sion for a p-linear form p(x, y, z , . . . ,  w) in terms of the components of 
x, y, z , . . . ,  w with respect to e 19 e2, e3. For simplicity, we confine ourselves 
to the case of a trilinear form p(x, y, z). Let

x =  *,e„ y =  z =  zkek,
where, as usual, we choose different indices merely for the convenience of 
subsequent calculations. By the linearity of q> in all three of its arguments,

p(x, y, z) =  yfij, z kek) =  x(y ,z^ (e (, ey, e*), 
so that, writing

& i j k  ~

we have
p(x, y, z) =  aukx iyjzk.

This expression is a homogeneous polynomial o f degree three, linear in all 
three sets of variables

X 1 9 x 2 9  X 3 9  Z \ i Z 2 * Z 3 -

The polynomial contains 33 =  27 terms and the same number of coefficients 
atjk• The coefficients aijk can be imagined as making up a “cubic array of 
order three.”

In just the same way, a 4-linear form ç?(x, y, z, u) can be written as

9  ~  a i j k l X i y j Z k U l

(in the basis e,, e2, e3), where

¡̂Jkl =  C/)
and the corresponding polynomial has 3 4  terms and the same number of coef­
ficients aiJkl. More generally, a p-linear form ç?(x, y, z ,. . . ,  w) can be written 
as

where
<P =  a tjk• • • mx iy jz k * • * wm,

a i j k  - m =  e k> • • •  9 ®m)* (0
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The coefficients aijk...m of this form have p  indices, each of which can take 
three values 1, 2, 3. Hence a p-linear form has 3* coefficients in all.

Example The trilinear form (x, y, z) considered in Example 1 becomes 
(x, y, z) =  €iJkXiyjZk

in component form (see p. 19), i.e., the general coefficient is just the anti­
symmetric Kronecker symbol introduced on p. 17.

Example 2'. In the case of the trilinear form considered in Example 2, 
suppose the linear forms a(x), fi(y), y(z) are

oc(x) =  ape,, fi( y) =  b jyp y(z) =  ckzk

in the orthonormal basis el9e2,e 3. Then the trilinear form q>(x, y, z) =  
a(x)/?(y)y(z) becomes

^(x, y, z) =  atbj ckx iy Jzk,
with coefficients

a i j k  =  a f i j C k -

10.3. The definition of a multilinear form q> =  (p(x, y, z , . . . ,  w , . . . )  is 
independent of the choice of coordinate system, i.e., the value of tp depends 
only on the values of its vector arguments. For example, a trilinear form 
(p =  (p{x, y, z) depends only on the values of the vectors x, y, z and not on 
the components of x, y, z relative to any underlying basis e2, e3. In the 
language of p. 25, we can say that multilinear forms have been defined in 
an invariant fashion.

Since the components of a vector change in transforming to a new basis, 
the same must be true of the coefficients of a multilinear form (if the form 
itself is to remain invariant). The set of coefficients of an invariant multi­
linear form constitutes a very important geometrical object:

Definition. The geometric {or physical) object specified by the set
o f  coefficients aiJk...m o f  a multilinear fo rm  q> =  <p(x, y, z , . . . ,  w) written
in some orthonormal basis is called an orthogonal tensor, and the numbers
aljk...m themselves are called the components o f  the tensor.

Remark 1. The tensors considered in this book are all orthogonal, and 
hence the term “tensor” will always refer to an “orthogonal tensor.”

Remark 2. The tensor aijk...m is said to be determined by the multilinear 
form (p =  (p{x, y, z , . . . ,  w). The coefficients aljk...m of a form q> of degree 
p  are given by formula (1) and have p  indices. Correspondingly, a tensor 
determined by a form of degree p  is called a tensor of order p.

Example 1. If tp is a trilinear form defined on L 3, then each index of the 
corresponding tensor can independently take the values 1, 2 and 3. Hence 
a tensor of order p  in three-dimensional space has 3P components. By the
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same token, such a tensor has 2P components in the plane and np components 
in the «-dimensional space Ln.

Example 2. The coefficients at of a linear form <p =  p(x) constitute a 
first-order tensor. Moreover, since the scalar product of an arbitrary constant 
vector a with a variable vector x is a linear form, the components at of any 
vector a also constitute a first-order tensor.

Example 3. In just the same way, the coefficients atj of a bilinear foriti 
(p — <p(x, y), making up a matrix A =  (au), constitute a second-order tensoi. 
In particular, since

X.y =  s ux,y j,
where x*y is the scalar product of two vectors x and y with components x v 
and yj in some orthonormal basis, the values of the symmetric Kronecker' 
symbol 5U are the coefficients of a bilinear form. Hence Su is a second- 
order tensor, known as the unit tensor.

Example 4. Since
(x, y, z) =

where x i9 yy. and zk are the components of the vectors x, y and z in some 
orthonormal basis, the values of the antisymmetric Kronecker symbol eijk 
are the coefficients of a trilinear form. Hence eijk is a third-order tensor, 
known as the discriminantal tensor.

Example 5. A scalar quantity, i.e., a quantity independent of the choice 
of the underlying basis, is called a tensor o f order zero and can be thought 
of as the unique coefficient of a linear form of degree zero. A tensor of 
order zero is also called an invariant, since its unique component does not 
change under basis transformations.

Two tensors are said to  be equal if the multilinear forms determining 
then are identical. Equal tensors have the same order, and their components 
are equal in any coordinate system. In fact, the identity

0 >(x, y, z , . . . ,  w) =  y/(x, y, z , . .  . ,  w)
becomes

a,jk...^c,yjZk =  bIJk...mx ly jzlc ■■■ wm
in component form, which immediately implies

^ i j k - ' - m  ^ i j k ’ —m *

If the multilinear form (p =  ^(x, y, z , . . . ,  w) is identically zero, then the 
tensor determined by <p is called the null tensor. The components of the null 
tensor are clearly all zero.

10.4. In going over to a new basis, the components of the vectors making 
up the arguments of a multilinear form transform in the way described by
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formula (9), p. 26. Hence the coefficients of the form, i.e., the components 
of the tensor determined by the form, must also transform in some perfectly 
well-defined way. This transformation law is given by the following

T heorem . A set o f quantities aijk...m depending on the choice o f basis 
forms a tensor i f  and only i f  they transform according to the law

^ i ' j ' k ' - - m y  V i ? j ‘j l l k 'k  * V m 'n f l i j k -  • -m

under the transformation from one orthonormal basis e 15 e2, e 3 to another 
orthonormal basis ev, er > er .

Proof. Suppose aijk...m is a tensor. Then the quantities aijk...m are 
the coefficients of some multilinear form <p =  ç?(x, y, z , . . . ,  w), and 
hence

a ijk  - m ~  * * * » ® m )*

The coefficients of q> in the new basis are given by the analogous formula 

=  P(ec> e/( .......... .. em-).
But the vectors e., of the new basis are expressed in terms of the vectors 
e. of the old basis by formula ( 1 ), p. 2 2 ,

and hence
e,-' =  3VA»

^i'j'k'-■ m ?k'k^kf • • ♦ » ?m'nfim)’
Since the form <p is multilinear, it follows that

=  ytiV/jy^k * * * ej> «*»•••> O
y i ' i ? j ' j ? k ' k  * y m 'm P 'ijk - - -m i

in keeping with (2 ).
Conversely, suppose the quantities aijk...m transform in accordance 

with (2 ) in going over to a new basis. Suppose aijk...m has p  indices, 
and let x, y, z , . . . ,  w be p vectors whose expansions relative to the 
old and new bases are given by

x =  x.e. =  x f r ,  y =  y fij =  yrer , 
z =  zkek = zk,ek, , . . . ,  w =  wmem =  wm,em,.

To prove that the set of quantities aijk...m forms a tensor, we must show 
that the expression

<P = aiik...mx iyJzk ■■■ wm (3)
is a multilinear form, i.e., that it depends only on the choice of the 
vectors x, y, z , . . . ,  w and not on the choice of basis. But (3) becomes

<P’ -  aa .k....„.xt yrzk. (3')
under the basis transformation. Substituting (2) into (3') and replacing
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x r, yj'f zk'> • . . ,  wm> by the values given by formula (9), p. 26 and its 
analogues, we get

W l i ’ i l  j ' j l k ' k  * * ' y m 'm ^ i jk  - m ? ï p ? j ’q y q Î k ' r Z r  * * * I m 's ^ s

=  ( r r t / y / t o )  • • • ( j ' . ' J . ' X t - W r  •••*»'»•
But by the orthogonality relations (7), p. 23,

l ï î l ï p  y } ' j l j ' q  ^ jq *  I k ' k l k ' r  ^ k r > * * * » y m 'm lm 's

and hence

¥  =  Û.7k ~m&,^£j<,y£k,Zr • ■ ■ Sasws =  auk...mxiy Jzk ■■■ wm= ç .  I

PROBLEMS

1. Is the function (p{x, y, z , . . . ,  w) = c (c a fixed real number) a multilinear 
form?
2. Let *i, y 2 and z x be the first components of the vectors x , y and z relative to 
some basis in the space Ln. Is the function

<p(x,y, z) =  x \y xz !
a trilinear form ?
3. Let

? [ / l ( 0 , / 2 ( 0 , . . .  , / * ( * ) ]  =  A i h V z i h )  • • • / * ( / * ) ,  

where a < tt < b(i = 1 , . . . ,  k). Is q> a multilinear form defined on the space 
C[<z, b] of all functions continuous in the interval [a, b]l
4. Let

<pU(x\ g(y), /i(z)] =  r  P  P  K(x, y, z)f(x)g(y)h(z) dx dy dz,
J  a J  a J  a

where AT (a:, y, z) is a fixed function continuous in x , y and z. Is (p a trilinear form 
on C[a, b]?
5. Suppose x =  xr.e, relative to some orthonormal basis ej, e2, e 3 in L3. Prove 
that the numbers xu =  jc,jcy- form a second-order tensor.
6 . Prove that the components of the unit tensor 5 l 7  have the same values in all 
orthonormal bases, i.e., that Si r = 3^ if / ' =  i j '  = j.
7. Prove that the components of the discriminantal tensor €ijk have the same 
values in all orthonormal bases with the same orientation and the negative of 
these values in bases with the opposite orientation, i.e., that =  db€iJk 
if / ' =  i , j ' =  j, k' =  k.
8 . Prove that the set of quantities aijkh defined in every orthonormal basis 
ely e2, e3 as

a . =  I 1 if / =  kyJ = ly
iJkl lo otherwise,

forms a tensor of order 4.



50 MULTILINEAR FORMS AND TENSORS CHAP. 2

9. Write the transformation law for the components of a tensor of order 5.
10. Let (p{x i , . . . ,  xn) be an invariant function of the rectangular coordinates 
Xi. Prove that the quantities

d(p
dxi

form a first-order tensor, while the quantities
d2y>

dxidxj
form a second-order tensor.

11. Algebraic Operations on Tensors

11.1. Addition of tensors. Let (p =  <p(x9 y, z , . . . ,  w) and y/ =  y/(x9 y, z,
. . . ,  w) be two multilinear forms of the same degree p  in the same vector 
arguments. Then the sum <p +  y/ is clearly a multilinear form of the same 
degree. By the sum of the tensors aijk...m and biJk...m of order p  determined 
by the forms q> and y/ we mean the tensor cijk...m determined by the form 
y> +  y/. Since

<9 +  W =  («,,* -m +  blJk...J x tyj wm, 
the components of the tensor cijk...m are connected with those of the tensors 
auk...m and buk...m by the relation

^ijk  --m Q’ijk-'-m "*F

11.2. Multiplication of tensors by real numbers. The product Aq> of a 
real number A and a multilinear form (p of degree p  is again a multilinear 
form of degree p. By the product of A and the tensor aijk...m of order p  
determined by the form q> we mean the tensor biJk...m of the same order 
determined by the form A<p. Since

X<p =  Q.aijk...m)xiyjzk
we have

bijk---m •̂Q’ijk  - • -m'

Remark. It follows from the foregoing that the set of all multilinear forms 
of degree p , as well as the set of all tensors of order p, forms a linear space. 
The dimension of this space is just 3P, with a basis consisting, say, of the

/^-linear forms
Vijk-m =  x tyjzk • • •

11.3. Multiplication of tensors. Let (p and y/ be two multilinear forms of 
degrees p  and q9 respectively, with different vector arguments. Then the 
product q>y/ is clearly a multilinear form of degree p  +  q. For example, if
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q> =  y>(x, y, z) is a trilinear form and y/ =  ^(u, v) a bilinear form, then the 
product (py/ =  y>(x9 y, z)^(u, v) is a multilinear form of degree 5.

The forms y> and y/ determine tensors of orders p  and q, respectively. 
By the product of the tensors determined by the forms <p and y/ we mean the 
tensor determined by the product tpy/. Since the form y>y/ is of degree p  +  q, 
the product of two tensors of orders p  and q is a tensor of order p  +  q. For 
example, the forms

0 >(x, y, z) =  aljkx iy jzk 
and

¥(»> v) =  blmu,vm
determine tensors aijk and blm of orders 3 and 2, respectively, and their 
product

<p(x, y, z M " , ▼) =  (aukb,m)xiy jzkulvm
determines a tensor aijkblm of order 5, i.e., the product of the tensors aiJk 
and blm.

Remark. In Example 3', p. 42, we in effect constructed the second-order 
tensor equal to the product of two first-order tensors a( and br  Similarly, 
in Example 2', p. 46, we constructed the third-order tensor equal to the 
product of three first-order tensors ai9 bj and ck.

11.4. Contraction of tensors. Given a multilinear form y> =  <p(x, y, z, 
. . . ,  w) of degree p , suppose we replace any two arguments, say x and y, 
by the basis vectors et. and eJ9 writing

P(e„ ey, z , . . . ,  w) =  <ptJ.
Then (pu is a linear function of the vector arguments z , . . . ,  w, but not a 
linear form, since it now depends on the choice of basis. To determine how 
(ptJ changes under basis transformations in L 3, let

Then, since
<Pn- =  <p(*n e,-, Z , . . . , w) .

we have
e,' =  7rfii> e/  =  7rfir>

(Pry =  7rfij> z , . . . ,  w) =  ynyrfflb,, ey, z , . • . . w)
=  ynVfjPu-

Suppose we set V — j '  and then sum over the resulting expressions. This 
gives

<PiY = ?nyrj9ij-
But

7n7n =  ¿ 0
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by the orthogonality relations (7), p. 23, and hence

<Pr? =  à t j t P i j  =  <pi r

It follows that the expression <pu, which is linear in the vector arguments 
z , . . . ,  w, does not depend on the choice of basis. Hence <pu is a multilinear 
form in z , . . . ,  w, in fact a form of degree p  — 2 , since it depends on two 
fewer vector arguments than the original form <p.

Writing (p in component form, we get

<P =  y>2» • - • »w) =  • • • w„.
The substitution x =  e,, y =  ey then gives

9 t j  ~  z , . . . ,  w )  =  Q t j k . . . mz k  . .

since in this case

*i =
y j  =

It follows that
9 i i  =  a i i k  - mZ k  * * *

Hence the expression for the components of the tensor bk...m of order p  — 2 
determined by the form in terms of the components of the tensor alJk.. m 
determined by the original form q> is just

1 , *„ =  0  if p ^ U  
1, y , =  0  if q ^ j .

or, in more detail,
; +  « 2 t +  û 3

The operation leading from the tensor aiJk...m to the tensor bk...m is called 
contraction of aiJk...m with respect to the indices i and j.

In just the same way, we define contraction of the tensor aijk...m with 
respect to any other pair of indices. As just shown, contraction o f a tensor 
lowers its order by two. For example, contraction of a second-order tensor 
au leads to a tensor atl of order zero, i.e., to an invariant. This invariant is 
called the trace of the tensor aiJ9 denoted by

au =  tr 0 ,7).

11.5. Contraction of products of tensors. Given a product of two tensors, 
e.g., the tensors aijk and blm (of orders 3 and 2, respectively), suppose we 
form the product aijkblm (a tensor of order 5), and then contract the resulting 
tensor with respect to the indices k  and /, say. This gives a tensor

aijkbkm =  ai]\b\m +  aij2^2m
of order 3, and the corresponding operation is again called contraction, 
more exactly, contraction of the tensors aijk and blm with respect to the 
indices k  and /. Thus the operation of contracting two tensors consists of
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first multiplying them and then contracting the resulting tensor with respect 
to a pair of indices, one belonging to each factor. Contraction o f two tensors, 
one o f order p and the other o f order q, clearly gives a tensor o f  order p  +  q — 2 .

Remark 1. In effect, the operation of contraction of tensors has already 
been encountered many times. For example, the scalar product of two vectors 
x =  x fr  and y =  given by the formula

x*y =  x ty t9
is just the result of contracting the two first-order tensors x t and y t. formed 
from the components of the vectors x and y. The linear form

0 >(x) =  aix i
is the result of contracting the tensors a, and the bilinear form

<P(x, y) =  Oijxpcj
is the result of first contracting the tensor au with the tensor x, and then 
contracting the tensor aijx l with the tensor and so on. More generally, 
as the last example makes clear, we can contract a product of tensors not 
only with respect to one pair of indices, but also with respect to any r pairs 
of indices. The result is a new tensor whose order is 2r less than the sum of 
the orders of the original tensors.

Remark 2. A particularly simple result is obtained if we contract an 
arbitrary tensor with the unit tensor. For example,

a i j k ^ k l  =  a i j \ $ \ l  " b  “ I" =  a t j h

since

1 0  if k ^ L
We now prove an important indirect test fo r tensor character:

Theorem. Let
a i i ■ * *ip j i * * *Jq ( 0

be a set o f  3p+? numbers specified in every orthonormal basis in L 3, and 
s u p p o s e  q c o n tr a c tio n s  o f  ( 1) w ith  an  a r b i tr a r y  te n so r  o f  o rd e r
q g iv e s  another tensor o f order p. Then ( 1 ) is a tensor o f order p +  q.

Proof For simplicity, consider the special case p =  3, q =  2, where 
the set of numbers (1) is of the form aijklm. Suppose the quantity

S i j k  =  a i jk lm h m

is a tensor whenever tlrr is a tensor. Let tlm =  utvm (the product  
of two arbitrary vectors ut and vm). Then

S i j k  =  a iJ k lm U i°m '>

and contracting this expression with arbitrary vectors x n y p zk, we get
W A  =  *iJkimXiyJZkUiVm.
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Since siJk is a tensor, the expression on the left is a scalar. It follows 
that the expression on the right, which depends linearly on the compo­
nents of the vectors x, y, z, u, v, is a multilinear form of degree 5. But 
the numbers aijklm are the coefficients of this form, and hence make up 
a tensor of order 5. This proves the theorem forp =  3, q =  2. The proof 
is virtually the same for general p and q. |

11.6. Permutation of indices. Let aijk...m be the tensor determined by 
the multilinear form q> =  ^(x, y, z , . . . ,  w), so that

(P =  <*ijk- mx iy jz k • • • wm,

and consider the form \j/ obtained from <p by permuting some of its argu­
ments. For example, suppose

y/(x, y, z , . . . ,  w) =  tp(y, z, x , . . . ,  w). (2 )

If btJk...m denotes the tensor determined by y/9 we can write (2 ) in the form

biJk- mx tyjZk • • • H>m =  aiJk...my ^ ,x k ■ • • wm. (3)

Changing indices of summation in the right-hand side, and bearing in mind 
that (3) is an identity, we get

The tensor btJk...m differs from the tensor aijk...m only in the arrangement 
of its indices. Thus permutation of the indices of a tensor leads to another 
tensor. It is important to note that the tensors aijk...m are actually distinct, 
since corresponding components of the two tensors (i.e., components with 
identical indices) are in general unequal.

PROBLEMS

1. Given a second-order tensor aih prove that the cofactors Au of the determi­
nant a made up of the components of atj is also a second-order tensor, satisfying 
the relation

¿ikQkj — a$ij
(cf. Sec. 5, Prob. 5).

2. Use multiplication and subsequent contraction to construct tensors of 
orders 5, 3 and 1 from a given third-order tensor aijk and second-order tensor 
blm*
3. Prove that the second-order tensor ztj is a product of two first-order tensors 
if and only if its components satisfy the condition

z l j Z k l  —  Z i iZ k j  =  0 .
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4. Construct an invariant by contraction of the tensor au whose components 
are the elements of the matrix

2 1 0\

3 - 5  6  •
- 7  0 4/

5. Let ciij be a second-order tensor with matrix
/2 0 

(*/,)= 5 1 
\4 5

in some basis, and let xt and yj be first-order tensors (vectors) with components 
2, 1, 4 and 3, 7, —1 , respectively, in the same basis. Find

a) b) a,sx,; c) a,jy,; d) e) a,jx,yj; f) a ^ x ,- ,
g) atj5,j; h) a,j -  \ 6 ua„\ i) («y -  § < 5 y t f , j )  (atJ -  %$ijau)Xiyj.

6 . Find a basis for the linear space consisting of all second-order tensors.

12. Symmetric and Antisymmetric Tensors

12.1. Let (p =  (p{x, y) be a bilinear form. Then (p is said to be symmetric 
if

i»(x, y) =  <p(y, x)

for all x and y. A second-order tensor determined by a symmetric bilinear 
form is also said to be symmetric. The components of a symmetric second- 
order tensor in any orthonormal basis form a symmetric matrix, i.e., satisfy 
the condition

fly =  aJt. (1 )
Since

<*,i - p 0 .> e,)>
( 1 ) follows from the fact that

?(e„ ey) =  (p(ep e,).
Conversely, if ( 1 ) holds, then the bilinear form q>(x, y) =  a ^ x ^ j  is symmetric 
since then

<p(x, y) =  a tjx^ j =  ajpttfj =  aiiy ix j =  <p(y, x). 

Clearly, every symmetric matrix (atJ)  is of the form
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where there are only six distinct matrix elements and, by the same token, 
only six distinct components of the corresponding tensor.

Example 1. The scalar product of two vectors x and y is a symmetric 
bilinear form, since

The coefficients of this form make up the unit tensor ôiJy whose matrix

is obviously symmetric.
More generally, let <p =  ^(x, y, z , . . . ,  w) be a multilinear form of degree 

p. Then (p is said to be symmetric in two (given) arguments if it does not change 
value when the two arguments are interchanged. By the same token, the 
tensor determined by (p is said to be symmetric in the corresponding indices. 
For example, we say that the form q> is symmetric in x and z if

and the tensor aijk...m determined by <p is symmetric in the indices / and k , 
so that its components satisfy the condition

in every coordinate system.
A  multilinear form of degree p is said to be symmetric if it does not 

change under any permutation of its arguments, and the corresponding tensor 
is called a symmetric tensor of order p . Thus arbitrarily rearranging the 
indices of a component of a symmetric tensor has no effect on its value.

Example 2. The trilinear form ^(x, y, z) is symmetric if and only if

p(x, y, z) =  <p(y, z, x) =  <p(z, X, y) =  <p(y, X, z) =  cp(z, y, x) =  <p(x, z, y)

for arbitrary vectors x, y and z. The components of the tensor aijk deter- 
mined by q> do not change under arbitrary permutations of indices.

12.2. A  bilinear form q> =  p(x, y) is said to be antisymmetric if

for all x and y. A  second-order tensor determined by an antisymmetric form 
is also said to be antisymmetric. Since qt(ei9 ej) =  —  p(ey, ex), the components 
of an antisymmetric second-order tensor satisfy the condition

x-y =  y-x.

9>(x, y, z , . . . ,  w) =  <p{z, y, X, . . . ,  w),

«K*. y) - -<p(y, x)
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in any basis, i.e., form a skew-symmetric matrix of the form

(2)

It is apparent from (2) that an antisymmetric second-order tensor has in 
effect only three components.

More generally, let q> =  q>{x, y, z , . . . ,  w) be a multilinear form of degree. 
Then (p is said to be antisymmetric in two {given) arguments if it changes sign 
when the two arguments are interchanged. By the same token, the tensor 
determined by (p is antisymmetric in the corresponding indices. A multilinear 
form of degree p is said to be antisymmetric (without further qualification) 
if it changes sign when any two of its arguments are interchanged, and the 
tensor determined by such a form is called an antisymmetric tensor of order 
p. Thus an antisymmetric tensor changes sign when any two of its indices 
are interchanged.

Example. The scalar triple product (x, y, z) of three vectors x, y and z 
is an antisymmetric trilinear form, and the tensor eijk determined by this 
form (the discriminantal tensor) is an antisymmetric tensor with effectively 
only one component e l23 =  e.

12.3. Suppose we use a given bilinear form q> =  q>{x, y) to construct the 
two related bilinear forms

Then <px is clearly symmetric, while (p2 is antisymmetric. In fact,

Pi(x, y) =  i W x> y) +  i>(y. x)] =  %[<p(y, x) +  q>(x, y)] =  p,(y, x),

<P2 (x, y) =  y) -  (p(y, x)] =  y, x) — cp(x, y)] =  -<p2(y, x).

The operation leading from the bilinear form (p to the bilinear form (px is 
called symmetrization of tp, while the operation leading from q> to tp2 is called 
antisymmetrization of q>. Obviously, q> can be represented as the sum

called the decomposition o f cp into its symmetric and antisymmetric parts.
Next we express the tensors determined by the forms (px and q>2 in terms 

of the tensor determined by the form (p. Writing q> in component form, we 
have

0 >>(X, y) =  y) +  <p(y, X)], 
? 2 (x, y) =  ifa(x , y) -  <p(y, x)].

while

9>(X, y) =  (p! (x, y) +  <p2{x, y), (3)

9 >(x, y) =  aux ty jy
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where x t and are the components of the vectors x and y, respectively. 
The forms (p , and (p2 then become

?>,<X y) =  +  a,jypcj),

i>2(x. y) =  i ( aux iyj ~  % W )-
But clearly

<*tj-yiXj =  ajiyjx i =  OjPcty j9
and hence

p,(x, y) =  H au +

V ii* , y) =  J-(al7 -  ajt)x ,y j.

Let denote the (symmetric) tensor determined by (pl and aUj] the (anti­
symmetric) tensor determined by tp2. Then

a d j )  =  \ X a i j  +  a j i ) >  

a UJ) =  i ( a i j  ~  a j i ) ‘

The operation leading from the tensor aij to the tensor a{u) is called sym- 
metrization of aij9 while the operation leading from au to aUJ] is called 
antisymmetrization of au. Obviously

a u  =  a « j )  +  a UJ]>

in keeping with (3).
More generally, let q> =  <p(xf y, z , . . . ,  w) be a multilinear form of 

degree p. Then, in just the same way (give the details), we can define the 
operation of symmetrization (or antisymmetrization) of q> in two (given) 
arguments and corresponding operations on the tensor determined by q>. 
A somewhat more complicated problem is that of complete symmetrization 
(or antisymmetrization) of a multilinear form of degree p  >  2. For example, 
to construct a form which is symmetric in all its arguments from a given 
trilinear form (p =  ç?(x, y, z), we must carry out all possible permutations 
of the arguments of <p. There are precisely 3! =  6  such permutations, and 
hence the desired symmetric trilinear form is just
<p,(x, y, z) =  ¿M X  y, z) +  <p(y, z, x) +  <p{z, X, y)

+  <p(y, X, z) +  (p(z, y, x) +  <p(x, z, y)].
By the same token, the corresponding antisymmetric trilinear form is given 
by
<p2(x, y, z) =  i6[q>(x, y, z) +  q>(y, z, x) +  cp(z, x, y)

— ip(y, x, z) — <p(z, y, x) — <p{x, z, y)]
(verify the antisymmetry). The operations leading from the trilinear form 
to the forms <px and ç 2 are again called symmetrization and antisymmetri­
zation (of <p). Let aui be the tensor determined by <p, aUJk) the (symmetric)
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tensor determined by q>l9 and a[ijk] the (antisymmetric) tensor determined 
by <p2. Then clearly

a V j k )  =  H a i j k  +  a j k i  +  a k i j  +  a j i k  +  ° k j i  +  a i k j ) >

^ [ i j k ]  I S ^ f l i j k  "t”  ^ j k i  & k i j  d j i k  ^ k j i  & i k j ) »

where the operations leading from the tensor aijk to the tensors aUJk) and 
a[ijk] are once again called symmetrization and antisymmetrization (of aijk).

12.4. Next suppose we set y =  x in a bilinear form q> =  (p{x, y). This 
gives a scalar function

(p = <p(x, x)
of one vector argument, called a quadratic form. Obviously, every bilinear 
form 0 ?(x, y) leads in this way to a unique quadratic form (p{x, x), but the 
same quadratic form may be “generated” by different bilinear forms. In fact, 
let q> =  tp{x, y) be an arbitrary bilinear form, and let

Pi(x, y) =  ¿[?(x> y) +  p(y> x>]
be the bilinear form obtained by symmetrizing (p. Then

¥>i(x, x) =  {{<p(x, x) +  <p(x, x)] =  q>(x, x),
so that the two bilinear forms <p{x, y) and <px{x, y), which are in general 
distinct, generate the same quadratic form ^?(x, x). Thus it can always be 
assumed that a given quadratic form q>(x, x) is obtained by setting y =  x 
in a symmetric bilinear form. This symmetric bilinear form is called the 
polar {bilinear) form  of the given quadratic form (p{x, x). The polar form 
q>{x, y) is uniquely determined by its quadratic form. In fact,

g>(x +  y, x +  y) =  <p{x, x) +  <p(x, y) +  <p(y, x) +  <p(y, y).
But <p(x, y) =  q>(y, x), and hence

i>(x, y) =  £[?>(x +  y, x +  y) -  <p(x, x) -  <p(y, y)].
Now let e 15 e2, e3 be an orthonormal basis, and let <p(x, y) be the bilinear 

form polar to a given quadratic form <p{x, x). Then
v>(x, y) =  aux iy 1,

where au =  aJt since <p(x, y) is symmetric, and hence
p(x, x) =  aIJx ix j . (4)

The expression (4) is a homogeneous polynomial of degree two in the com­
ponents of the vector x, with coefficients atJ making up a symmetric tensor. 
In more detail, the quadratic form ^(x, x) is given by

<p(x, x) =  au xj +  a22x \  +  a33xj +  2 a 1 2 x 1 * 2 +  2al3x Tx 3 +  2 a23x 2x 3.
Conversely, any symmetric second-order tensor ai} determines a unique 
quadratic form <p(x, x) =  aijx ix j. Hence there is a one-to-one correspondence 
between symmetric second-order tensors and quadratic forms.
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Example. The square of the length of the vector x is the quadratic form 

|X|2 =  Xtx t =  di jXiXp

and the corresponding polar bilinear form is the scalar product 

x *y =  x iy i =  8tjxpcj
of the vectors x and y (the symmetry of x«y has already been noted 
in Sec. 4).

Next suppose we set y =  x, z =  x in a trilinear form 0 >(x, y, z). This 
gives a scalar function q>(x9 x, x) of one vector argument, called a cubic 
form. Just as in the case of quadratic forms, it is easily proved that there is 
a one-to-one correspondence between cubic forms, symmetric trilinear forms 
and symmetric tensors of order three. Every cubic form <p can be written as

<P =  OijkXiXjXb
in terms of the components of the vector x, where aiJk is a symmetric tensor, 
or, in more detail, as

P  =  * 1 1 1 * 1  +  * 2 2 2 * 2  +  * 3  3 3 * 3

+  3 a112x 2ix 2 +  3ai22x^x\ +  3 ail3x]x3 
+  3 al33x Yx\ +  3a223x \x 3 +  3 a233x 2x \ +  6a123x 1x 2x 39

where the nine coefficients of the form coincide (apart from numerical 
factors) with the nine “essentially distinct” components of the symmetric 
tensor aijk.

Remark. More generally, by setting y =  x, z =  x , . . . ,  w =  x in a multi­
linear form <p(x9 y, z , . . . ,  w) of degree p 9 we can construct a corresponding 
scalar function <p(x9 x, x , . . . ,  x) of one vector argument. Again it is easily 
proved that there is a one-to-one correspondence between the forms q>(x, x, x, 
. . . ,  x), symmetric multilinear forms and symmetric tensors of order p.

12.5. Symmetric forms can be interpreted geometrically by introducing 
the concept of a “characteristic surface.” Fixing an origin O in L 3, let x =
OP be the radius vector of a variable point P e  L 3. Then, given any sym­
metric second-order tensor aij with corresponding quadratic form q>(x9 x) =  
aiJx ix j9 let S  be the locus of all points P  whose radius vectors x satisfy the 
condition

p ( x , x ) = l .  (5)
This locus is a surface 5, called the characteristic surface of the tensor au. 
In terms of the components of the vector x relative to some orthonormal 
basis e,, e2, e3, the equation of S  takes the form

aijx ix j = \ .  (6 )
It follows from the considerations of Sec. 7.7 that the characteristic surface
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of a symmetric second-order tensor is a central quadric surface whose center 
of symmetry coincides with the origin G.

Example L  The characteristic surface of the unit tensor 5U has equation
S ^ X j  =  1,

or equivalently,
x] +  x \  +  x\ =  1.

Thus the characteristic surface of the unit tensor is simply a sphere of unit 
radius.

Example 2. If aij =  apj, then the characteristic surface of aij is just
afljX,xt =  1,

which can be written in the form

(a , * , ) 2  =  1- (7)
But (7) separates at once into two equations

apct =  ± 1 ,
and hence the characteristic surface of the tensor apj is a pair of parallel 
planes, symmetric with respect to the origin.

Returning to the characteristic surface (5) of an arbitrary symmetric
tensor aiJ9 let x =  OP be the radius vector of a variable point of the surface, 
and let p be a unit vector with the same direction as x, so that

X =  x p , (8)
where x  =  | x | is the length of x. Substituting (8 ) into (5) and using the 
linearity of the form ç? in both its arguments, we get

It follows that
* x p .  p > =  i- 

<P(P.P) =  ^2 ’

i.e., the value o f a quadratic form  ?̂(x, x) for  x equal to a unit vector p is just 
the reciprocal o f the square o f the distance from the origin O to the point o f  
the characteristic surface S  in which the ray emanating from O with the direction 
o f  p intersects S. In particular, if p =  e. and if P,. is the point in which the ray 
emanating from O with the direction of ef intersects 5 , then

^

where a f =  | OP( |. But (̂e,., e.) =  au (no summation over i implied), and 
hence

1
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Remark 1. We can define the characteristic surface of a symmetric tensor 
of order greater than two in just the same way. For example, the character­
istic surface 5  of a symmetric third-order tensor aijk has the equation

aiJkx ix jx k =  I . (9)
Starting from (9), we can find the value of the cubic form 

$>(*> x, x) =  aijkx ix jx k 
for x equal to a unit vector p, namely

p(p> p> p) =

where x  is the distance from the origin O to the point of S  in which the ray 
emanating from O with the direction of p intersects 5. In particular,

a«; =  i>(e„ e„ e,) =
a  i

where ax. is the distance from the point O to the point in which the ray 
emanating from O with the direction of ef intersects S.

Remark 2. Note that an equation of the form (6 ) or (9) can be used to 
define the characteristic surface of an arbitrary (not necessarily symmetric) 
tensor. But then the surface describes only the “symmetric part” of the 
tensor. For example, if au is an arbitrary second-order tensor, then

a U ^07) “f” *U71>

and equation (6 ) reduces to
a i U ) X iX J  =  1-

PROBLEMS

1. Prove that in the space L 3 every antisymmetric trilinear Jo rm  <p(x, y, z) 
differs from the scalar triple product (x, y, z) by only a constant factor.

2. Prove that in the space L 3 every antisymmetric multilinear form of degree 
p >  3 is identically equal to zero.

3. State and prove theorems analogous to the assertions in Probs. 1 and 2 for the 
space Ln.

4. Prove that if the tensor aijk is symmetric in the indices i and j  and anti­
symmetric in the indices j  and k, then aijk vanishes.

5. Prove that if atu is a symmetric tensor and bu an antisymmetric tensor, then
Ay =  °-

6. Prove that if a tensor aijk is symmetric in its first two indices (aiJk =  ajik) 
and if the relation

aijkXiXjXk =  0
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holds for every vector x =  then
aijk +  ajki +  akij — 0.

7. Given a tensor aiJt suppose
a¡jXj =

for every vector x =  x&i9 where a is independent of x. Prove that
an =  ccSij.

8. Given a tensor aiJkh suppose
aijkiXiyjXkyi =  0

for arbitrary vectors x =  x&i9 y =  yjej. Prove that
aijki +  CLjku +  akuj +  aUjk =  0.

Prove that
aiJki =  0

if, in addition,
O-ijki +  a u k i  =  0 , a i j k i  +  d i j i k  = 0 , a u j k ) i  =  0 .

9. Prove that every third-order tensor aijk can be written in the form
Q-ijk —  Q ( i j k )  +  a U jk ) +  f  (¿*[¿'ylk  +  Q [ k j ] i )  ~T §(¿*0\ j ) k  a k ( i j ) ) -

10. Prove that if a tensor aijk is symmetric in the indices i and /, then
adjk) =  +  ajki +  akij).

11. Prove that if a tensor aijk is antisymmetric in the indices i and/, then
ci [ i j k ]  =  i & i j k  +  a j k i  4 -  a w ) .

12. Decompose the tensor au with matrix
(2 3 2\

<««)-= 5 7 - 2
\4 - 4  0/

into its symmetric part bi} =  a{ij) and antisymmetric part c{J =-- a{tJ\. Then find 
a) CijQiji b) bijCiji c) Cijdiji d) CijXi, where x =  (2, 3, -4 );
e) CijXiXj (same x); f) g) b -̂xr, h) b ^ X j.

13. Find the characteristic surface of the symmetric second-order tensor au =  
Xdij. Do the same for the tensor ¿7l7 =  ¡bj +  ¿7yA), where the vectors a =  
(¿7 i, ¿72, ¿* 3 )  and b =  (bu b2, b3) are orthogonal.
14. If n = 2 the notion of a characteristic surface reduces to that of a “char­
acteristic curve.” Find the characteristic curves of the symmetric third-order 
tensors with the following components:

a) flui =  ¿7222 =  1, ¿ * 1 1 2  =  ¿ * 1 2 2  =
b) ¿7iu =  ¿*222 ~  0, ¿7h 2 =  **122 =
C) ¿21 1 l =  1 , ¿7 i 2 2  =  — 1 , ¿*112 =  ¿*222 =  0 .

(Sketch each curve after finding its equation.)
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LINEAR TRANSFORMATIONS

13. Basic Concepts

13.1. So far we have considered scalar functions of one or several vector 
arguments in a linear space L. We now turn to the study of vector functions 
of a single vector argument, a topic of great importance in many branches 
of geometry, mechanics and physics. As we will see in Sec. 16, the most 
important of such functions, i.e., linear functions, are intimately related to 
second-order tensors.

Given a linear space L, by a vector function A defined on L  we mean a 
rule associating a vector u =  A(x) with each vector x e  L. A vector function 
A is said to be linear if

1) A(x +  y) =  A(x) +  A(y) for arbitrary vectors x and y;
2) A(ax) =  aA(x) for an arbitrary vector x and real number a,

A linear vector function is also called a linear transformation of the space L, 
or a linear operator (acting) in L . In writing vector functions, we will hence­
forth drop parentheses whenever this leads to no confusion, writing simply

u =  Ax.

Geometrically, the first of the properties defining a linear vector function 
A means that A carries the diagonal of the parallelogram constructed on the 
vectors x and y into the diagonal of the parallelogram constructed on the 
vectors u =  Ax and v =  Ay (see Figure 5a). The second property means that 
if the length of the vector x is multiplied by a factor a, then so is the length 
of the vector u =  Ax (see Figure 5b). It follows that a linear transformation

64
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carries collinear vectors into collinear vectors and coplanar vectors into 
coplanar vectors (why?).

13.2. Next we give some examples of linear transformations.
Example 1. The transformation associating the vector x itself with every 

given vector x is obviously linear. This transformation, denoted by E, is 
called the identity (or unit) transformation. Thus Ex =  x for all x.

Example 2. The transformation associating the vector Ax (A real) with 
every given vector x is also linear, since if Ax =  Ax, then

A(x +  y) =  A(x +  y) =  Ax +  Ay =  Ax +  Ay,
A(ax) =  A(ctx) =  ct(Ax) =  aAx.

Geometrically, the transformation Ax =  Ax represents a homogeneous 
expansion (or contraction) of all vectors with the same expansion coefficient 
A. Such a transformation is said to be homothetic. (If A <  0, the vectors 
are reflected in the origin as well as expanded.)

Example 3. If A =  0, the linear transformation considered in the preced­
ing example associates the zero vector 0 with every vector x. This transfor­
mation, denoted by N, is called the null (or zero) transformation. Thus Nx =  0 
for all x.

Example 4. The transformation
Ax =  x +  a (a ^  0)

is nonlinear, since
Ay =  y +  a,

and hence
A(x +  y) =  x +  y +  a ^  Ax +  Ay.

We now consider some examples of linear transformations in the two- 
dimensional space L 2, equipped with an orthonormal basis el9 e2.
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Example 5. The transformation A 
carrying the vector

x =  Xjej +  x2e2

into the vector

Figure 6

u =  Ax =  x 1el +  Àx2e2

represents an expansion (or contrac­
tion) of the plane L 2 in the direction 
parallel to e2 (see Figure 6). This 
transformation is linear, since

A(x +  y) =  (xx +  +  k(x2 +  y 2)e 2

=  (x le l +  Xx2e2) +  ( y ^  +  Ay2e2) =  Ax +  Ay,
A(ax) =  (ax je! +  X(ax2)e2 =  +  Xx2e2) =  aAx.

Example 6. If X =  0, the transformation just given reduces to the trans­
formation

representing projection of the vector x onto the axis parallel to e r  Hence 
projection is a linear transformation.

Example 7. The transformation carrying every vector x g L 2 into the 
vector u obtained by rotating x through the angle 0 (in the counterclockwise 
direction, say) is linear, as shown by the constructions in Figures 7a and 
7b. Naturally, such a transformation is called a rotation.

Example 8. The linearity of the transformation A carrying the vector
x =  x xex +  x2e2

into the vector
u =  Ax =  (x1 +  k x 2)el +  *2e2

is proved in the same way as in Example 5. Note that A shifts the end of

A (x lel +  x2e2) =  x ,e,,

(a) (b)
Figure 7
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Figure 8

the vector x by an amount k x 2 along the line parallel to the Xj-axis (see 
Figure 8 a), so that the square constructed on the vectors ej and e2  goes 
into the parallelogram constructed on the vectors ej and e2  +  k t l (see 
Figure 8 b).

PROBLEMS

1. Prove that every linear transformation of a one-dimensional space is equiva­
lent to multiplication of all vectors by the same number.
2. Let x\ and x 2 be the components of an arbitrary vector x relative to a given 
basis el9 e2 in the plane L2. Which of the following transformations are linear:

a) u =  Ax =  —x;
b) u =  Ax =  +  *ie2;
c) u =  Ax =  xiei — 2x2e2;
d) u =  Ax =  XxXi*i +  A2 x2 e2;
e) u =  Ax =  Jtfei ?

Interpret the linear transformations geometrically.
3. Write the transformation corresponding to expansion (or contraction) of the 
plane L2 in the direction perpendicular to e2.
4. Suppose the basis vectors ei and e2 in Example 5 are nonorthogonal. Prove 
that the corresponding transformation is linear, and interpret it geometrically.
5. Which of the following transformations of the space L 3 are linear :t

a) u =  Ax =  (a«x)a;
b) u =  Ax =  (a*x)x;
c) u =  Ax =  a;
d) u =  Ax =  +  x2e2;
e) u =  Ax =  xiei — x2e2 — 2x3e3;
f) u =  Ax =  *iei 4 - x2e2 +  Ax3e3;
g) u =  Ax =  xle2 +  *3e3?

t  In a)-c), a is a fixed nonzero vector, while in d)-g), jci, x 2, x 3 are the components of 
an arbitrary vector x with respect to some orthonormal basis e i, e2, e3 (similarly in Probs. 
6 and 7).
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6 . Is the transformation
u =  Ax =  a x x

linear?
7. Interpret the linear transformation

u =  Ax =  +  A2 x2 e2  4- X3x 3e3
geometrically.
8 . Prove that orthogonal projection of the vectors of L3 onto an axis making 
equal angles with the axes of a rectangular coordinate system is a linear trans­
formation.
9. Prove that rotation of L3 through the angle 2n/3 about the line with equation 
x\ =  x 2 — x 3 relative to an orthonormal basis e i,e2, e3 is a linear transfor­
mation.
10. Prove that the operation of differentiation is linear in the space of all 
polynomials of degree not exceeding n.
11. Prove the linearity of the following transformations, defined on the space 
C[a, b] of all functions continuous in the interval [a, b]:

a) g(t) =  A/(/) =
b) git) =  Afit)  = f(t)<p(t\ where (pit) is a fixed function continuous in

f o « ;
c) g{t) =  Afit)  =  J* //(/, s)fis) ds, where Hit, s) is a fixed function con­

tinuous in both arguments.
12. Which of the transformations in Prob. 11 are linear in the space of all 
polynomials of degree not exceeding n l

14. The Matrix of a Linear Transformation and Its Determinant

14.1. Let x be an arbitrary vector in L3, with expansion 
X =  Xfit  =  +  x 2e t  +  x3e3

relative to a given orthonormal basis e,, e2, e3, and let
u =  Ax

be a linear transformation of L3, where u has the expansion 
u =  M,et. =  +  w2 e2  +  w3 e3

relative to e1? e2, e3. We now find the relation between the components of 
the vector u and those of the original vector x. Since the transformation 
A is linear, we have

Ax =  ACx^e, +  x 2 e2  -f x 3 e3) =  x lAe1 +  x 2 Ae2  +  x 3 Ae3. (1) 
Suppose that relative to the basis e,, e2, e3 the vectors Ae1? Ae2, Ae3 have
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the expansions
Ae, — a n©i *4~ #2 ie 2  H- a 3 ie3 >
Ae2  =  ¿*i2 ®l "4" <*2 2 e 2  H” <*32C3»

or more concisely
Ae3 =  al2e l +  ¿*2 3 e2  +  a 3 3 e3, 

Ac, =  ajfij.
Then, substituting (2) into (1), we get

Ax =  ( a n X 1 +  ¿*1 2 * 2  +  G1 3 * 3 >ei +  0 *2 1 * 1  +  <*2 2 * 2  +  ¿*2 3 * 3 ^ 2

+  (¿ * 3 1 * 1  +  < * 3 2 * 2  +  ¿ * 3 3 * 3 > e 3>

or more concisely
Ax =

But u =  Ax, and hence the components of u are just

(2)

«1 =  <*11*1 +  <*12*2 +  ¿*,3*3»
* * 2 =  < * 2 1 * 1  +  ¿*2 2 * 2  +  <*23*3» (3)
« 3  =  <*31*1 4" ¿*32*2 <*33*3»

or briefly
Ui =  <*«7*y

These formulas allow us to determine the components of the vector u obtained 
by subjecting the original vector x to the linear transformation A. Note 
that the components of u are homogeneous linear expressions in the compo­
nents of x.

The coefficients of the formulas (3) relating the components of u and x 
can be written in the form of a matrixt

A =
'< * 1 1 < * 1 2 <*1

< * 2 1 < * 2 2 a.

<*3 1 <*3 2 <*:
called the matrix o f the linear transformation A. Note that A is a square 
matrix, with three rows and three columns. Thus we have proved that to 
every linear transformation A o f the space L 3 there corresponds a unique square 
matrix o f order three (relative to a given orthonormal basis in L3). Conversely 
to every square matrix A o f order three there corresponds a unique linear 
transformation (relative to the given basis). In fact, we need only use the 
matrix A to construct the vector function u =  Ax defined by the formulas 
(3), noting that the linearity of the vector function follows from the linearity 
and homogeneity of (3). Thus finally, there is a one-to-one correspondence

t  Note that if an operator is denoted by a boldface Roman letter (like A), then the 
matrix of the operator is denoted by the corresponding lightface Italic letter (like A).
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between linear transformations o f the space L 3 and square matrices o f order 
three (relative to a given basis).

Remark L  Consider a linear transformation u =  Ax of the plane L 2. 
Choosing a basis e19 e2  in L2, we have

u , =  a11x 1 +  a12x 2,

where
Aej =  ~h 2̂i®2»
Ae2  =  u12ct +  ^2 2 ®2 *

Hence any linear transformation A of the plane L 2 is described by a square 
matrix

of order two.
Remark 2. More generally, consider a linear transformation u =  Ax of 

the «-dimensional space L n. Choosing a basis e 19 e2, . . . ,  eB in L„, we have

where

w, =  a n Xj +  a12x2 +  • • • +  a lnx„,

u2 =  a2lx l +  a22x 2 +  • • • +  a2nx„,

'u„ = anlx, +  an2x 2 +  • • • +  annxn9

A e1 =  au e1 +  021e2 +  • • • +  anle„,
Ae2  =  a12e1 +  a22t 2 +  • • • +  Qn2 e„,

Ae„ =  +  a 2 ne2  +  • • • +  annen.

Hence any linear transformation A of L„ is described by a square matrix

* 1 2  *

A =  (aij) = «2 . * 2 2 «2»

* „ 2  ‘ • • aJ
of order «.

14.2. We now give a number of examples illustrating the above consider­
ations.

Example L  If E is the identity transformation, then
u =  Ex =  x,
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and hence u( =  x n so that the matrix of E has the form

in every basis. More concisely
E  =  (<5i7X

in terms of the Kronecker delta

The matrix E  is called the unit matrix.
Example 2. Under the homothetic transformation 

u =  Ax =  Ax,
the components of the vectors u and x are related by the formula ut =  Ax„ 
so that the matrix of A has the form

in every basis, or more concisely
A =  (A<5,7).

Example 3. Under the null transformation
u =  Nx =  0,

we have ut =  0, and hence the matrix N  of the null transformation consists 
entirely of zeros:

The matrix N  is called the null (or zero) matrix.
Remark. More generally, each of the matrices £, A and N  considered 

in Examples 1-3 has the same form in «-dimensional space as in three- 
dimensional space. For example, in «-dimensional space E  is the square 
matrix

/1 0 . . .  0\
0  1 . . .  0

\0 0 . . .  1/
of order «.
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Example 4. The transformation A carrying the vector x =  +  x 2 e2

into the vector u =  x ^  +  Ax2 e2  represents an expansion (or contraction) 
of the plane L 2 in the direction parallel to e2  (recall Example 5, p. 6 6 ). 
Here

Wi = * i ,  w2 =  Ax2,
so that the matrix of the transformation is just

Example 5. If A =  0, the transformation considered in the preceding 
example reduces to projection onto the axis parallel to e 15 with matrix

A =

Example 6. Let A be the trans­
formation which rotates the plane L 2 
through the angle 9 (recall Example 
7, p. 6 6 ). Then

Ae1 =  ej cos 9 +  e2  sin 6,

Ae2 =  — ex sin 0 +  e2  cos 9

(see Figure 9). It follows that

u =  Ax =  A(xret +  x 2 e2) =  x 1Ael +  x 2 Ae2

and hence
=  (x, cos 9 — x 2 sin 9)el +  (xx sin 9 +  x 2  cos 0)e2,

ux =  x x cos 9 — x 2 sin 9,
u2 =  x x sin 9 +  x 2 cos 9.

Therefore the matrix of the transformation A is just 
^  /co s 0  — sin 0 \

\sin 9 cos 9/
Example 7. The transformation A carrying the vector x =  x xex +  x 2 e2  

into the vector u =  (xx +  k x 2)ex +  x 2 e2 represents a shift of the plane L 2 
in the direction parallel to ej (recall Example 8 , p. 6 6 ). Here

ux =  x x +  k x 2, u2 =  x 2,
so that the matrix of the transformation is simply

Example 8. Consider the transformation A of the plane L 2 carrying the 
vector x =  x xex +  x 2 e2  into the vector u =  Xlx le l +  A2 x 2 e2. Then A is
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linear (why?), with matrix

Geometrically, this transformation represents a combination of two simul­
taneous expansions (or contractions) of the plane along two perpendicular 
axes e, and e2, with expansion coefficients Xl and A2, respectively. If either 
of these expansion coefficients is negative, say An then the A!-fold expansion 
is accompanied by reflection in the line of e2.

Example 9. In just the same way, consider the transformation A of the 
space L 3 carrying the vector x =  +  x 2e2 +  x 3 e3 into the vector u =
Xlx le l +  X2x 2e2 +  A3 x 3 e3. Then A is linear, with matrix

Geometrically, this transformation consists of three simultaneous expansions 
(or contractions) of space along three perpendicular axes e lf e2  and e3, with 
expansion coefficients A1? A2  and A3, respectively. A matrix like A, with all 
of its elements equal to zero except those on the main diagonal,t is called 
a diagonal matrix. In particular, if Aj =  A2  =  A3, then A reduces to a homo- 
thetic transformation, while if A2 =  A2  ^  A3, then A is a homothetic trans­
formation only in the plane of the vectors et and e2.

14.3. Let u =  Ax be a linear transformation in the space L 3 equipped 
with an orthonormal basis e 19 e2, e3. Then A carries the basis vectors into the 
vectors

where, as we have seen, the components of the vectors at. make up the columns 
of the matrix of the transformation A. Under the transformation A the 
vector x =  jcfe£ goes into the vector

Thus the expansion of u with respect to the vectors a{. has the same coeffi­
cients as the expansion of the original vector x with respect to the basis 
vectors e,..

Now consider the unit cube constructed on the basis vectors ep e2, e3. 
Then the “oriented volume” Ve of this cube equals ±1? depending on whether 
the triple of vectors e j ,e 2, e 3 is right-handed or left-handed. In terms of 
the quantity e introduced in Sec. 5.1, we have

a. =  Ae, =  auel +  a2ie2 +  a3ie3,

u =  Ax =  x iAei =  x tat.

t  Naturally, some (or all) of the diagonal elements may also equal zero.
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Under the transformation A the cube constructed on the vectors ep e2, e 3 

goes into a parallelepiped (in general, nonrectangular) constructed on the 
vectors a 19 a 2, a 3. The oriented volume Va of this parallelepiped equals the 
scalar triple product of the vectors a,, a2, a3, i.e.,

Using the representation of (ap a2, a3) as a determinant (see Sec. 5.2), we 
have

The determinant in (4) differs from the determinant of the matrix of the 
transformation A (see p. 69) in that rows and columns have been inter­
changed. But this has no effect on the value of a determinant, and hence

where | A | denotes the determinant of the matrix A.
Next consider an arbitrary parallelepiped constructed on given vectors 

Xj ,x2, x3. Under the transformation A this parallelepiped goes into the 
parallelepiped constructed on the vectors

where, as just noted, the expansions of the vectors uf with respect to the 
vectors a, have the same coefficients as the expansions of the original vectors 
x4. with respect to the basis vectors e,.. Hence, if Vx denotes the (oriented) 
volume of the parallelepiped constructed on the vectors x ,, x2, x3, while Vu 
denotes the volume of the parallelepiped constructed on the vectors u,, u2, u3, 
we have

and therefore

Thus the determinant o f the matrix o f a linear transformation measures the 
“magnification”t o f volumes as a result o f the transformation. If | A | >  0, 
the oriented volumes Vu and Vx have the same sign, and hence the transfor­
mation A preserves the orientation of vectors. On the other hand, if | A | < 0 ,  
the transformation A changes the orientation of vectors into the opposite 
orientation.

Suppose now that | A | =  0. Then

t  Here the word “magnification” is used in a general sense, comprising both “stretching” 
and “shrinking.”

K =  (»1.32. a3>'

(4)

Va = e \A  I,

u j == A x ,, u2  =  A x2, u3 =  Ax3,

(a , ,a 2, a3) =  0 ,
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and the vectors a1? a2, a3 are linearly dependent. Suppose a1?a2, a3 are 
noncollinear, and let II denote the plane determined by these vectors. Then 
every vector x =  goes into a vector u =  x ^  lying in the plane II, i.e., 
the linear transformation A carries every vector of space into a vector lying 
in II. If, however, the vectors a t, a2, a3 are collinear, all lying on a line /, 
then A carries every vector of space into a vector lying on /. Finally, if a, =  
a2 =  a3 =  0, then A carries every vector x e  L 3 into the zero vector.

A linear transformation A or the corresponding matrix A is said to be 
singular if the determinant | A \ vanishes. The “degree of singularity” of A 
differs from case to case (as we have just seen) and can be made precise by 
introducing a new concept, namely “rank.” By the rank of the matrix

we mean the largest of the orders of the nonzero determinants contained 
in A A If | A | ^  0, the rank of the matrix A equals three. If | A \ =  0 and the 
vectors a},a 2, a3 are noncollinear, then A must contain a nonzero deter­
minant of order two (since at least two of its columns are nonproportional),
i.e., the rank of A equals two. If | A \ =  0 and the vectors a19 a2, a3 are col­
linear, then all the second-order determinants contained in A vanish and the 
rank of A equals one (here, of course, we assume that at least one of the 
vectors a15 a2, a3 is nonzero!). Finally, the only matrix of rank zero is 
the null matrix N.

Conversely, suppose | A | =  0 and let r be the rank of A. Then the matrix 
A contains two linearly independent columns if r =  2 and one linearly inde­
pendent column (i.e., one nonzero column) if r =  1 , while every column 
consists entirely of zeros if r =  0. Correspondingly, two of the vectors 
a19 a2, a3 are linearly independent if r =  2  and one of the vectors a15 a2, a3 
is linearly independent (nonzero) if r =  1 , while all three vectors a,, a2, a3 
vanish if r =  0 .

The preceding considerations are summarized in the following
Theorem. Let X  be a linear transformation o f the space L3, and let 

r (0 <  r <  3) be the rank o f the matrix o f A. Then A maps the whole 
space L 3 into the r-dimensional linear space Lr.
Example 1. Consider the projection of the space L 3 onto the plane 

perpendicular to the vector e3, i.e., the linear transformation A carrying 
the vector x =  x ^ x +  x 2 e2  +  x 3 e 3 into the vector u =  Ax =  +  x 2e2.
Then

Wj =  x ,, u2 = x 2, u3 =  0 ,

t  More exactly, made up of the elements at the intersections of k rows and k columns 
of A (1 < & i< 3 ).
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and the transformation A has the matrix
0  0  

1 0  

0  0

of rank two. A more general transformation with matrix of rank two is 
given by

u =  Ax =  -x) +  a 2 (b2 -x), (5)
where both pairs of vectors a,, a 2  and b,, b2  are noncollinear. This trans­
formation projects the whole space L 3 onto the plane determined by the 
vectors a t and a2.

Example 2. Given a unit vector e0, the transformation 
u =  Ax =  e0 (e0 -x),

projecting every vector x e  L 3 onto the axis with direction specified by e0, 
is a transformation whose matrix is of rank one. A more general transfor­
mation with matrix of rank one is given by

u =  Ax =  a(b«x). (6 )

PROBLEMS

1. Find the matrix (relative to the basis e i,e2) of the linear transformations 
of the plane L2 considered in Probs. 2 and 3, p. 67.
2. Prove that under expansion (or contraction) of the plane L2 (cf. Example 5,
p. 6 6 ), a circle with center at the origin goes into an ellipse, while an equi­
lateral hyperbola with the coordinate axes as its axes goes into a general 
hyperbola.
3. Find the matrices (relative to the basis ei, e2, e3) of the linear transforma­
tions of the space jL3 considered in Probs. 5-9, pp. 67-68.
4. Prove that expansion (or contraction) of the space L 3 along the x3-axis (cf.
Prob. 5f, p. 67) carries a sphere with center at the origin into an ellipsoid of
revolution and the ellipsoid of revolution

A
a\

A
a\ 1 ,

into a general ellipsoid. Prove that the same transformation carries the hyper­
boloid of revolution

*î I *2 , *3 _' ~T .7 1 _2 --af ai ai ±1

of one or two sheets into a general hyperboloid of one or two sheets.
5. Let A be the “differentiation operator” in the space of all polynomials Pit) 
of degree not exceeding n, i.e., the operator such that AP(t) =  P'(t), Find the
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matrix of A relative to the following bases:
a) 1 , M 2,
b) 1 , t — a, (it ~  a)2 

2 ! ’

(t -  a)n 
’ n\

6 . Prove that there exists a unique linear transformation C of the space L 3 
carrying three linearly independent vectors ai, a2, a 3 into three (not necessarily 
linearly independent) vectors bi, b2, b3. Find the matrix C of this transformation 
relative to a given orthonormal basis ei, e2, e3.
7. Write the matrix of the linear transformation C of the space L 3 carrying 
the vectors

ai =  (2, 3, 5), a 2  =  (0,1, 2), a 3 =  (1, 0,0) 
into the vectors

b i = (1, 1, 1), b2 = (1,1, -1), b3 = (2, 1, 2), 
respectively.
8 . Describe geometrically the linear transformations of the space L3 with the 
following matrices relative to an orthonormal basis eu e2, e3:

/ - 1  0  0 \ / 1 0  0 \ / 1  0  0 \ / 0  0  0 \
a) 0  1 0  ; b) 0  X o |;  c) 0  0  0  ; d) 0  1 0  •

V 0  0  1 / Vo 0  X) VO 0  1 / Vo 0  0 /
9. Prove that a rotation of the space L 3 through an angle a  about the axis 
defined by the unit vector <o is the linear transformation given by the formula

u =  Ax =  (x-(o)co +  [x — (x'©)©] cos a +  <o x x sin a.
Find the matrix of this transformation in the basis ei, e2, e3 if co =  co.-e,.
1 0 . State and prove the analogue for the plane L2 of the theorem on p. 75.
11. Which of the linear transformations considered in Sec. 13 and in Probs. 
2-10, pp. 67-68 are nonsingular and which are singular? Find the rank of the 
matrix of each singular transformation.
12. Verify the linearity of the transformations (5) and (6 ), write the corre­
sponding matrices, and verify that the matrices have ranks 2  and 1 , respec­
tively.
13. Describe geometrically the linear transformations of the plane Lz and of 
the space L3 with the following matrices in some orthonormal basis:

Find the rank of each matrix.
14. Prove that a linear transformation A is nonsingular if and only if

a) Ax =  0 implies x =  0;
b) A carries three linearly independent vectors of the space L3 into three 

linearly independent vectors;
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c) A is a one-to-one mapping, i.e., x =£ y implies Ax ^  Ay;
d) A maps the space L3 into the whole space L3, i.e., given any vector 

y g L 3, there is a vector x e l 3 such that Ax =  y.
15. Prove that the image and inverse image under a linear transformation A 
of a linear subspace L of the space L3 are both linear subspaces.t
16. By the null space of a linear transformation A defined on a linear space 
L we mean the set of vectors in L which A carries into the zero vector 0. The 
dimension of the null space of A is called the defect of A. By the range of the 
transformation A we mean the image under A of the whole space L. The dimen­
sion of the range of A is called the rank of A. Prove that

a) The rank of the transformation A equals the rank of its matrix;
b) The sum of the rank and the defect of A equals the dimension of L\
c) The defect of the transformation A equals the defect of its matrix, the 

defect of a matrix of order n and rank r being defined as the number 
n — r.

17. Prove that the linear transformation A is nonsingular if and only if
a) The null space of A contains only the zero vector, i.e., the defect of A 

equals zero;
b) The range of A coincides with the whole space L , i.e., the rank of A 

equals the dimension of L.
18. Find the null space, range, defect and rank of each of the transformations 
of the spaces L2 and L 3 with the following matrices (in some orthonormal 
basis):

19. Find the null space, range, defect and rank of the differentiation operator 
in the space of all polynomials P(t) of degree not exceeding n.

15. Linear Transformations and Bilinear Forms

15.1. Let x and y be arbitrary vectors of the linear space L3, and let 
A be a linear transformation of L 3. Consider the scalar product of the 
vector x and u, where u =  Ay is the result of applying the transformation 
A to the vector y. Then the expression^

ç?(x,y) =  x-u =  (x,Ay) ( 1 )

is a scalar function of the vector arguments x and y. Clearly q> is a bilinear

t  By the image of L  under A we mean the set of all y such that y =  Ax for some x e L, 
while by the inverse image (synonymously, preimage) of L  under A we mean the set of all 
x such that Ax =  y for some y e L.

i  Here we use the alternative notation ( . , .)  for the scalar product (see p. 12).
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form, since
<p(*i +  x2, y) =  (x, +  X2, Ay) =  (Xj, Ay) +  (x2, Ay) =  p(x„ y) +  ?(x2, y),
p(x, y, +  y2) =  (x, A(y, +  y2)) =  (x, Ay,) +  (x, Ay2) =  p(x, y,) +  p(x, y2),

9 ?(Ax, y) =  (Ax, Ay) =  A(x, Ay) =  Ap(x, y),
q>{x9 Ay) =  (x, AAy) =  (x, AAy) =  A(x, Ay) =  Ap(x, y).
Theorem. The matrix o f the linear transformation A coincides with, 

the coefficient matrix o f the bilinear form  ( 1 ).
Proof Let

X =  Xfii9 y =  yfii9 U =  Ufit

relative to an orthonormal basis e,, e2, e3 in L 3. Since u =  Ay, we have

Ui =  auy j9
where A =  (atJ)  is the matrix of the transformation A. But then 

<p(x, y) =  xp , =  atjx ty j9
i.e., the elements of the matrix A are just the elements of the coefficient 
matrix of (p. |

Corollary. A matrix A =  (atJ) is the matrix o f a linear transfor­
mation A i f  and only i f  atj is a second-order tensor.

Proof If A is a linear transformation with matrix A =  (a0), then A 
is the coefficient matrix of the bilinear form (1). Hence ai} is a second- 
order tensor, by the definition on p. 46.

Conversely, let au be a second-order tensor, and let jc, be the compo­
nents of an arbitrary vector x e  L 3. Then it follows from Sec. 11.5 that 
the numbers

M, =  auXj (/ =  1, 2, 3) (2)
are the components of a new vector u. The vector function

u =  A(x) =  Ax, (2')
equivalent to (2), is obviously linear, i.e., A is a linear transformation, 
in fact the transformation with matrix A =  (al7). |

15.2. As noted in the remark on p. 50, the set of all tensors of a given 
order p  forms a linear space of dimension 3*. In particular, this applies to 
the case of second-order tensors (p =  2 ). Given two second-order tensors 
atj and biJ9 let A and B be the corresponding linear transformations, i.e., 
the transformations with matrices A =  (a<7) and B =  (6 i7). Forming the 
sum cu =  ai} +  bi} (itself a tensor), let C be the linear transformation with 
matrix C =  (ctJ). Then C is called the sum of the transformations A and B, 
denoted by

C =  A +  B.
Similarly, given a second-order tensor au and a real number A, form the
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product dij = ka.j (again a tensor), and let D be the linear transformation 
with matrix D =  (du). Then D is called the product of the transformation A 
with the number A, denoted by

D =  AA.
It is easy to interpret the transformation C geometrically. Given any 

vector x e  L3, let
y =  Ax, z =  Bx, u =  Cx.

Then
u =  y +  z

(see Figure 10a), since
U, =  cuXj =  (a,., +  b^Xj =  a,jXj +  buxJ =  y,  +  z„

i. e.,
(A +  B)x =  Ax +  Bx.

In just the same way,
(AA)x =  A(Ax)

(see Figure 10b). Since the set of all second-order tensors is a linear space of 
dimension 9, the same is true of the set of all linear transformations of L 3.

u=(A+B)x

15.3. Besides the transformation A, with tensor aip we can also consider 
the linear transformation which carries the vector x =  x it ( into the vector u 
with components

»1 =  OjiXj, (3)
where we now contract the right-hand side over the first index of the tensor 
au rather than over the second index as in (2). This transformation, denoted 
by the symbol A*, is called the adjoint of the transformation A. Setting 
a* =  aj{, we can write (3) in the form

U, =  afjXj. (3')
Thus the transformation A* has the matrix A* =  (afj) obtained by transpos­
ing the matrix A =  (atJ) of the original transformation A, i.e., by inter­
changing rows and columns of A.
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Theorem. I f  A  is a linear transformation with adjoint A*, then
(x, Ay) =  (y, A*x) (4)

for arbitrary vectors x and y.
Proof. Consider the bilinear form

<p(x, y) =  (x, Ay) =  a„x,yj, (5)
where A =  (tf,7) is the matrix of A and jc., are the components of the 
vectors x, y (relative to an underlying orthonormal basis e,, e2, e3). We 
can also write (5) as

<p(x, y) = ; Vj(aax,) =  yjUj, (6)
where

Uj =  a,jX,. (7)

But the vector u with components (7) is the result of applying the trans­
formation A* to the vector x =  as we see at once by interchanging 
the indices / and j  in (3). Therefore (6) takes the form

y) =  (y. A*x).
Comparing this with (5), we immediately get (4). |

15.4. A linear transformation A is called symmetric (synonymously, self- 
adjoint) if it coincides with its own adjoint A*.

Theorem. A linear transformation A is symmetric i f  and only i f  the 
bilinear form

<p(x> y) =  (X, Ay) 
associated with A is symmetric.

Proof. Suppose A is symmetric, so that A =  A*. Then 

(x, Ay) =  (y, A*x) =  (y, Ax), 
and hence q> is symmetric, i.e.,

$>(x, y) =  <p(y, x). (8)
Conversely, suppose^ is symmetric, so that (8) holds. Then

(x, Ay) =  (y, Ax), (9)
and comparing (9) with (4), we get

(y, Ax) =  (y, A*x). (10)
Since (10) holds for arbitrary y, we must have

Ax =  A*x. (11)
But (11) holds in turn for arbitrary x, and hence A =  A*, i.e., A is 
symmetric. |
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Corollary. The matrix A = (a.j) o f a linear transformation A is 
symmetric {i.e., au =  ajt)  i f  and only i f  the transformation A is sym­
metric.

Proof The transformation A is symmetric if and only if the bilinear 
form (p{x, y) =  (x, Ay) is symmetric. But, by Sec. 12.1, q> is symmetric 
if and only if au =  aJt. |
Remark. Comparing this corollary with the corollary on p. 79, we see 

that a matrix A =  (¿zl7) is the matrix of a symmetric linear transformation 
A if and only if ai} is a symmetric second-order tensor, i.e., there is a one- 
to-one correspondence between symmetric linear transformations and 
symmetric second-order tensors. It follows from the italicized assertion on 
p. 59 that there is a one-to-one correspondence between symmetric linear 
transformations and quadratic forms, t

Next consider the characteristic surface S  of the tensor of a symmetric 
linear transformation A (briefly, the characteristic surface of the transfor­
mation A). According to Sec. 12.5, the equation of S  is just

a ijX iX j  =  1,

or equivalently
(x, Ax) =  1.

Given any vector x, let P be the point such that the vector OP, joining the 
origin to the point P, has the direction of x (see Figure 11). Then the vector 
u =  Ax has the direction of the normal to S  at the point P. In fact, any 
normal to the surface with equation <p(xt, x 2, x 3) =  c in a rectangular coor­
dinate system is proportional to the vector with components* *

u = Ax

But here

dtp
d x £

= a, pc pc,.
and hence

dtp
dx,

as asserted.

2a , jX j  -  2u „

15.5. A linear transformation A is called antisymmetric if it is the negative 
of its own adjoint, i.e., if

A =  -A * .

t  The quadratic form q> associated with the transformation A is, of course, just p(x, x) 
=  (x, Ax).

* See, e.g., R. A. Silverman, Modern Calculus and Analytic Geometryy The Macmillan 
Co., New York (1969), p. 732.
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Just as in the case of a symmetric transformation, it can be shown that a 
linear transformation is antisymmetric if and only if the bilinear form 
q>(x, y) =  (x, Ay) =  a ^ x ^ j  is antisymmetric, i.e., satisfies the condition

a =  —a .ij ji
(so that, in particular, au =  0).

Now consider the vector a =  afe„ where

al =  (12)
Recalling the meaning of eijk from p. 17, we have

a\ — ^23» **2 =  €C231 » a3 =  2’
where the quantity € equals -¡-1 if the basis e2, e3 is right-handed and 
— 1 if the basis is left-handed. Therefore the matrix of an antisymmetric 
linear transformation can be written in the form

/  0 —Q3 *2

5
s

'w
' II n\ o? 0

\ “ «2 *1 0
Any antisymmetric linear transformation A can be written in the form

Ax =  a x x,
where a is the vector with components (12). In fact, if u =  Ax, then 

U, =  eitjXj =  e ( - a 3x 2 +  a2x 3),
« 2  =  a2JXj = e(a3x l -  a tx 3),
« 3  =  a3JXj =  e ( - a 2x 1 + a2x 2).

But the expressions on the right are just the components of the vector prod­
uct a x x (see p. 18).

15.6. Finally, we find the bilinear forms corresponding to some of the 
linear transformations considered in the preceding sections.

Example 1. The bilinear form corresponding to the identity transfor­
mation Ex =  x is just

y) =  (x, Ey) =  (x, y), (13)
i.e., the scalar product of the vectors x and y. Since the form q> is symmetric, 
so is the transformation E. The corresponding quadratic form is

p(x, x) =  (x, Ex) =  (x, x) =  I x I2, 
and hence the characteristic surface of E is the unit sphere

| x | 2 - 1.
Example 2. The bilinear form corresponding to the homothetic transfor­

mation
Ax =  Ax (14)
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i>(x> y) =  (x> Ay) =  A(x, y),
differing from (13) only by the factor X. The form <p is symmetric, like the 
transformation (14) itself. The matrix of q> (and of A) is just (XS^). 
The quadratic form corresponding to the transformation (14) is

p(x,x) =  (x, Ax) =  A|x|2,

and hence the characteristic surface of A is the sphere
A|x|2 =  l

of radius

(For this reason, the tensor A<$i7  is often called spherical.) Note that the 
coefficient X may be negative, in which case the characteristic surface is 
a sphere of “imaginary radius.”

Example 3. Let A be the transformation carrying the vector x  =  
into the vector

u =  Ax =  Xlx le l +  X2x 2e2 +  X3x 3e3.
Then the bilinear form corresponding to A is

p(x, y) =  (x, Ay) =  X ,xty t +  X2x 2y 2 +  X3x 3y 3.
The form q> is symmetric, and so is the transformation A. In fact, the matrix 
of A is diagonal (recall Example 9, p. 73), and hence obviously symmetric. 
The quadratic form corresponding to A is

0 >(x, x) =  Xxx \  +  X2x\ +  X3x \ , 
while the characteristic surface of A is

Xxx \  +  X2x \  +  X3x \  =  1 .
This is the equation of a central quadric surface, with the coordinate axes 
as its axes of symmetry. If all the “expansion coefficients” X£ are positive, 
the surface is an ellipsoid. If two of the numbers Xt are positive and one is 
negative, the surface is a hyperboloid o f one sheet, while if one of the numbers 
A- is positive and two are negative, the surface is a hyperboloid o f two sheets. 
Finally, if all the Xt are negative, the characteristic surface is an “imaginary 
ellipsoid.” If any two of the numbers Xt are equal, the characteristic sur­
face is a surface o f revolution, while if Xx =  X2 =  X3, the surface reduces to 
a sphere.

Example 4. The transformation A rotating the plane L 2 about the origin 
through the angle 6 in the counterclockwise direction has the matrix

/cos $ —sin 0\
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as shown in Example 6 , p. 72. The bilinear form corresponding to this 
transformation is
(x, y) =  (x, Ay) =  ;t ly l cos 0 — x^y2 sin 6 +  x 2y x sin 0 +  x 2y 2 cos 6

=  (* 1 ^ 1  +  x 2y 2) cos e -  (x ly 2 -  x 2y x) sin 0 .
This bilinear form is no longer symmetric, and hence the transformation 
A* has the matrix

^  / cos 0  sin 0 \
\ — sin 0  cos 0 /

and corresponds geometrically to a rotation about O through the angle —0.
Example 5. Let A be the transformation of the plane L 2 considered in 

Example 7, p. 72, with matrix

This transformation is nonsymmetric, and the same is true of the associated 
bilinear form

and corresponds geometrically to a “shift” like A, but in the direction of 
e2  rather than of e ,.

1. Prove the symmetry of the following linear transformations of the plane 
L2 (jci and x 2 are the components of an arbitrary vector x e L2):

a) u =  Ax =  jcjei;
b) u =  Ax =  —x;
c) u =  Ax =  Jtjei — x 2e2;
d) u =  Ax =  jcjej +  3x2 e2;
e) u =  Ax =  xiei +  Xx2e2;
f) u =  Ax =  Ai*iei +  A2 x2 e2.

Find the corresponding quadratic <p =  q>(x, x) and characteristic curves.
2. Do the same for the following linear transformations of the space L3 (xi t x 2 
and x 3 are the components of an arbitrary vector x e L3, while a =  (a j, a2, a3) 
and b =  (bu b2, b3) are a pair of fixed orthogonal vectors):

a) u =  Ax =  x 2 e2;
b) u =  Ax =  jciei +  * 2 e2;
c) u =  Ax =  *iei +  x 2 e2  — * 3 e3;

y) =  (x, Ay) =  x ty, +  hcly 2 +  x 2y 2. 
The transformation A* adjoint to A has the matrix

PROBLEMS
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d) u =  Ax =  — Xiei +  2x2 e2  — * 3 *3 ;
e) u =  Ax =  (a-x)a;
f) u =  Ax =  (a-x)a +  (b • x)b.

3. Find the adjoint of each of the following linear transformations of the 
space £ 3 :

a) u =  Ax =  (*! +  2x2 )e! +  x 2 e2  +  * 3 e3;
b) u =  Ax =  —x2ei +  *ie2 +  * 3 ^3 ;
c) u =  Ax =  (a • x)b ;
d) u =  Ax =  (a!-x)bi +  (a2 -x)b2;
e) u =  Ax =  a x x.

Express each transformation as a sum of a symmetric part and an antisymmetric 
part.
4. Prove the following properties of the adjoint of a linear transformation (or 
the transpose of a matrix) :

a) (A*)* =  A;
b) (A +  B)* =  A* +  B*;
c) (AA)* =  AA*;
d) E* =  E.

5. The matrix B of a linear transformation B coincides in some basis with 
the matrix A* of the transformation A* adjoint to the linear transformation A. 
Is the same true in every basis?
6 . Prove directly that addition of linear transformations (and matrices) and 
multiplication of transformations by real numbers have the following prop­
erties:

a) A B =  B -f A;
b) A +  (B +  C) =  (A +  B) +  C;
c) A(A +  B) =  AA +  AB;
d) (A -f ¿¿)A — A A -f n  Aj
e) (AA +  jjB)* =  AA* +  /¿B*.

7. Prove that the operation of reflection in a plane IT in the direction of a line 
/ is a symmetric linear transformation if and only if the line / is perpendicular 
to the plane IT.
8 . Let the scalar product of the functions / and g in the space C[a, b] be defined 
by the formula

as in Prob. 6, p. 15. Prove that
a) The linear transformation corresponding to multiplication by t (see 

Prob. 11a, p. 68) is symmetric;
b) The linear transformation

(see Prob. 1 lc, p. 68), where H(t, s) is a fixed function continuous in both 
arguments such that H(t, s) =  H(s, t \  is symmetric;

W ,g)=  J bJ(f)g(f)d t,
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c) The linear transformation

am = n t )
is antisymmetric if f(a) =  f(b) =  0;

d) The linear transformation

A/(0 =  f"(t)
is symmetric if f{a) =  fib), f'{a) =  f'{b).

16. Multiplication of Linear Transformations and Matrices

16.1. Let A and B be two linear transformations of the space L 3. Suppose 
we subject an arbitrary vector x to the transformation A, obtaining a 
vector y =  Ax, and afterwards subject y to the transformation B, obtaining 
a third vector z =  By. Then z can be regarded as a vector function of the 
vector argument x:

z =  Cx =  B(Ax).

Clearly, C is a linear transformation, since 

C(x +  y) =  B[A(x +  y)] =  B(Ax +  Ay) =  B(Ax) +  B(Ay) =  Cx +  Cy, 
C(Ax) =  B[A(Ax)] =  B(AAx) =  AB(Ax) =  ACx.

The transformation
C =  BA

is called the product of the transformations A and B, where the factors are 
written from right to left in the order in which the corresponding transfor­
mations are carried out.

T heorem 1. Multiplication o f linear transformations is associative,
i.e.,

C(BA) =  (CB)A.
Proof. Given any x e  L3, we have

[C(BA)]x =  C[(BA)x] =  C[B(Ax)] =  (CB)(Ax) =  [(CB)A]x. |
T heorem 2. The product o f a linear transformation with the identity 

transformation {in either order) is the transformation itself i.e.,

AE =  EA =  A.

Proof We need merely note that

(AE)x =  A(Ex) =  Ax =  E(Ax) =  (EA)x. |

Remark. In other words, the identity transformation serves as the unit 
for operator multiplication.
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AB ^  BA.
Proof. It is enough to give an 

example where AB ^  BA. Let A 
be rotation of the plane L 2 through 
90° about the point 0 , and let B be 
projection of L 2 onto the x,-axis. 
Then, given any vector x e  L2, 
Figure 12 shows that the vector 
(BA)x lies along the JCj-axis, while 
the vector (AB)x lies along the 
x2-axis. It follows thatFigure 12

(AB)x ^  (BA)x,
and hence AB ^  BA. |

Theorem 3. Multiplication o f linear transformations is noncommuta- 
tive, i.e., in general

xz

Two transformations A and B are said to commute if AB =  BA. For 
example according to Theorem 2, every transformation A commutes with 
the identity transformation E. As another example, let A be a transfor­
mation expanding the plane along the x,-axis and B a transformation 
expanding the plane along the x2-axis. Then A and B commute, since

and hence

Ax =  A^x.e, +  x 2e2, 
Bx =  +  A2x2e2,

(AB)x =  +  A2x2e2 =  (BA)x.

16.2. Suppose the linear transformations A and B have matrices A and 
B relative to some basis e2, e3 in the space L3, and suppose the product 
transformation C =  BA has the matrix C in the same basis. Then the matrix 
C is called the product of the matrices A and B, denoted by

C = BA.

As before, the factors are written from right to left in the order in which 
the corresponding transformations are carried out.

To express the elements of the matrix C in terms of those of the matrices 
A and B, suppose A = (atJ), B =  C =  (c,7). Then the transformation 
y =  Ax has the component form

y} =  aJkx k (1)
(in the basis e15 e2, e3), while the transformation z =  By has the form

zi =  b„yj. (2)
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Substituting (2) into (1), we get the component form of the transformation 
z =  Cx:

Since
Z, =  buajkx k.

Z. = cikx k,

we find that the elements of the matrix C are just

c,k =  buaJk- ( 3 )

Thus the quantities cik are the components o f the second-order tensor obtained 
by contracting the tensors bij and ajk with respect to the index j.

Equation (3) can be written in more detail as

But
C i k  = b i i a i k +  b t 2 a Z k +  b i 3 a l k -

'« 1 1 « 1 2 « 1 3 \ { b u b l 3

« 2 1 « 2 2 « 2 3 ,  B  = u , * 2 2 h  3

^« 3 1 « 3  2 a j U 31 * 3 2 * 3 3

and hence the element cik o f the matrix C is obtained by multiplying the 
element o f the ith row o f the matrix B by the corresponding element o f the 
kth column o f the matrix A and then adding the resulting products.

Remark 1. Multiplication of square matrices of any order can be defined 
in just the same way. For example, for second-order matrices we have

/« 11  ̂1 2 \ _  /« 1 1 ^ 1 1  “I" « 1 2 ^ 2 1  «1 1 ^ 1 2  «1 2 ^ 2 2

\ « 2 1  a 2 2 ' \ b 2 i b 1 2 I  \ f l 2 1 ^ 1  1 «2 2 ^ 2 1  «2 1 ^ 1 2  “ b  «2 2 ^ 2 2

Remark 2. All the basic results for multiplication of linear transformations 
carry over automatically to the case of multiplication of matrices, with the 
matrix E  =  (<5j7) of the identity transformation playing the role of multi­
plicative unit (this is why E  is called the unit matrix in Example 1, p. 70). 
Like multiplication of linear transformations, multiplication of matrices is 
noncommutative. For example,

/1 2 \ / 3 0\ _  /1 -3 +  2— 1 1 «0 +  2« 1\ _  / 1 2\
\0  1 /1 -1  1/ _  V0-3 H- 1 —  1 0 - 0 + M /  \ - l  1/
/ 3 0 \ / l  2 \ __/ 3-1 + 0 - 0  3-2 +  0 - l \ _ /  3 6\
\ - l  1 A o 1/ — V —1-1 +  1-0 —1 «2 +  1-1/ =  \ —1 -1 /*

Next we find the linear transformation adjoint to a product of linear 
transformations:'

T heorem . I f  A  and B are two linear transformations, then 
(AB)* =  B*A*. (4)
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Proof. Quite generally,
(x, Ay) =  (y, A*x) =  (A*x, y) 

for arbitrary vectors x and y. Hence 
(x, (AB)y) =  (x, A(By)) =  (A*x, By) =  (B*(A*x), y) =  ((B*A*)x, y) 

for all x and y, which implies (4). |
Remark. The matrix analogue of (4) is just 

(AB)* =  B*A*,
where the asterisk now denotes the operation of transposition.

16.3. Next we prove the following key
T heorem . I f  A and B are two matrices with determinants | A \ and 

| B I, then
\AB\ =  \A\\B\,

where \AB\ is the determinant o f the product matrix AB.
Proof Let A and B be the linear transformations corresponding 

to A and B in an underlying orthonormal basis e1? e2, e3. Then the prod­
uct matrix C — AB  corresponds to the product transformation C =  
AB. Let Vx be the oriented volume of the parallelepiped constructed on 
arbitrary vectors x ,, x2, x3 e l 3. Then B carries the vectors x,. into the 
vectors yf =  Bx. “spanning” a parallelepiped of volume

Vy = \B \V x (5)
(recall Sec. 14.3). By the same token, A carries the vectors y, into the 
vectors zf =  Ay,- spanning a parallelepiped of volume

VZ =  \A\V„. (6)
On the other hand, z, =  Cx, and hence

V : = \ C \ V X,
where | C | is the determinant of the matrix C. Substituting (5) into (6) 
and comparing the result with (7), we get

\C\ = \AB\ = \A\\B\ .  |
Remark 1. Applying the theorem twice, we find that 

\AB\ = \A\\B\ = \B\ \A\  = \BA\,
i.e., the determinant of the product of two matrices does not depend on the 
order of the factors. In particular, if one of the transformations A and B 
is singular, as defined on p. 75, then so is their product (in either order).

Remark 2. The above theorem on multiplication of determinants can be 
proved purely algebraically, by using familiar properties of determinants.
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For example, for two second-order determinants

A = (an  fl,2l  B = ( b"  M ,
\*21 *22 / \^21 ^22/

we have

so that

, __ __ / ^ 1 1 * 1 1  " I"  ^ 1 2 * 2 1  ^ 1 1 * 1 2  H“ ^ 1 2 * 2 2

\ ^ 2 L * 1 1  " I"  ^ 2 2 * 2 1  ^ * 2 1 * 1 2  “ I“  ^ 2 2 * 2 2 )■

|C | =

+

+  b12a2l b*i ia i2 H" bi2a:
+  b22a2l l*21*12 “b b22a:

bx xcil2
+ bn an b i2a:

b i\a\2 *2ia n bi2a:
b\iai2

+ b lia2l b\2a:
b2iai2 ^22aU b22a:

The first and last of the determinants on the right vanish since their columns 
are proportional, and hence

I C | — \&2
blx b l2 
b2i b22

+  * 2 1 * 1 2
b\2 b\\
b22 b2 1

* n * 1 2 bi 2
* 2 1 * 2 2 * 2 . b2 2

=  \B\\A\ .

16.4. Using matrix multiplication, we now derive a new form of the 
transformation law for the elements of the matrix A =  (ai7) of a linear 
operator A under a change of basis. It will be recalled from Sec. 15.1 that 
atj is a second-order tensor. Hence, under the transformation

er =  }v,e.
from one orthonormal basis e1? e2, e3 to another orthonormal basis e r , er , 
ey, the quantity aij transforms according to the law

arj, =  ynyj'frj

(see Sec. 9.3), where the yn are the elements of the orthogonal matrix 
r  = (yn) describing the basis transformation. For the orthogonal matrix 
r  we have

7n =  yw

(see Sec. 6.1), where the yu, are the elements of the matrix T " 1 describing 
the inverse transformation from the new basis back to the old basis. It 
follows that

a,y =  yefltftjr. (7)
But the right-hand side of (7) is just the result (in “element form”) of multi­
plying the matrices r ,  A and r ~ l. In fact, if A'  denotes the matrix of the
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linear transformation A in the new basis er , er , ey , then the matrix version 
of (4) is just

A' =  Г А Г -К  (8)
This way of writing the transformation of the matrix of a linear operator 
in going over to a new basis is particularly convenient.

Remark 1. It follows from (8) that the determinant of the matrix of a 
linear transformation does not change in going over to a new basis. In fact, 
by (8) and the theorem on multiplication of determinants,

\А'\  =  \ Г \ \ А \ \ Г ~ ' \ .
But

|Г |  =  |Г - м  =  ± 1
(see p. 24), and hence

\A'\  =  \A\. (9)
Formula (9) shows that the determinant of a linear transformation is an 
invariant, and hence must have a well-defined geometric meaning. In fact, 
as we saw in Sec. 14.3, the determinant of a linear transformation is just 
the “magnification” of volumes under the transformation.

Remark 2. The matrix Г  =  (yn) describing the transformation from the 
basis e1? e2, e3 to the new basis er , ey , ey is not a tensor, since its indices 
/ and /' pertain to different coordinate systems (in particular, Г  does not 
define a bilinear form on the space L3).

PROBLEMS

1. Verify that the following formulas hold for linear transformations (and 
for matrices with boldface changed to lightface):

a) A(AB) =  (2A)B;
b) (A +  B)C =  AC +  BC;
c) C(A +  B) =  CA +  CB;
d) AmAn =  Am+n;
e) (A +  B)2 =  A2 +  AB +  BA •+ B2;
f) (A +  B)3 =  A3 +  A2B +  ABA +  AB2 +  BA2 +  BAB +  B2A +  B3;
g) (A +  B)(A -  B) =  A2 +  BA -  AB -  B2.

What happens to the last three formulas if AB =  BA?
2. Prove that the transformation A equal to the product of two expansions 
(compressions) of a rectangular coordinate system along the X\ and x2-axes 
with coefficients k and Ilk, respectively, carries the family of hyperbolas x ijc2 =  
c into itself. Find the matrix of this transformation, and show that it does not 
change areas of figures.
3. Prove that the transformation A equal to the product of an expansion 
(compression) along the *i-axis with coefficient ¿72/<Z!, a rotation through the
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angle a, and an expansion (compression) along the Jti-axis with coefficient a j a 2 
(in that order) carries the ellipse

X1 I XZ _ i
a\ +  a\ (10)

and ellipses homothetic to (10), into themselves. Find the matrix of the trans­
formation, and show that it does not change areas of figures.
4. Prove that

<  :h : ; >
(X

b ) (o
ly / x n 
x )  ~  Vo

nX”-
X-/cos 9 —sin 6 \n 

Vsin 9 cos 9 /
/cos n9 
Vsin n9

—sin n9\  
cos rid)

Find An for the matrix
(X1

0 0 \
A =  0 ¿2 0 •

\o 0  x j
6. Prove that if two symmetric matrices commute, then their product is sym­
metric.
7. Prove that if A and B are antisymmetric matrices and if AB =  — BA, then 
AB is antisymmetric.
8. Prove that

(Ax, By) =  (x, (A*B)y) =  (y, B*Ax) 
for arbitrary linear transformations A, B and arbitrary vectors x, y.
9. Prove that if A is a linear transformation, then AA* is a symmetric trans­
formation.
10. Prove that the product of two orthogonal matrices (see Sec. 6.1) is itself 
an orthogonal matrix.
11. By the trace of a square matrix is meant the sum of the elements along 
its main diagonal (cf. p. 52). Given two square matrices A and B, prove that 
the trace of the product AB equals the trace of the product BA.
12. Prove that the rank of the product of an arbitrary (linear) transformation 
A and a nonsingular transformation B equals the rank of A.
13. Prove that the following formulas hold for arbitrary linear transformations 
A and B of a linear space L (or for the corresponding matrices, with boldface 
changed to lightface):

a) rank of A +  B <  rank of A +  rank of B;
b) defect of AB <  defect of A +  defect of B;
c) rank of AB <  rank of A, rank of AB <  rank of B 

(see Prob. 16, p. 78).
14. Prove that if a (square) matrix A has the property that AB = BA for every 
matrix B (of the same order), then A = XE.
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15. Prove that if a matrix A has the property that AB = BA for every diagonal 
matrix By then A is a diagonal matrix.
16. Find all matrices which commute with the following matrices:

17. Find all second-order matrices A such that A2 = N, where N  is the null 
matrix.
18. A matrix A is said to be involutory if A2 = E  and idempotent if A2 = A. 
Find all involutory matrices of order two.
19. Prove that if a matrix has two of the three properties of being symmetric, 
orthogonal or involutory, then it has the third property.
20. Which of the following matrices are idempotent :

21. Prove that if B is an idempotent matrix, then the matrix
A = 2 B - E

is involutory, and conversely if A is involutory, then
B =  i(A  +  E)

is idempotent.
22. Let A be the differentiation operator in the space of all polynomials P{t) 
of degree not exceeding n. Prove that A”+1 =  N, where N is the null transfor­
mation. Find the matrices of A2, A3, . . .  in the basis 1, /, r2, . . . ,  Find the 
null space, range, defect, and rank of A2, A3, . . .  (cf. Prob. 19, p. 78).
23. Let A be the differentiation operator in the space of all polynomials P(t) 
(of arbitrary degree), and let B be the operator of multiplication by the inde­
pendent variable t :

A[P(/)] =  P'{t\ B[P(01 =  tP(t).
Prove that

a) AB -  BA -  E;
b) AB” -  B”A =  /iB”"1.

Why can’t the transformation B be considered in the space of all polynomials 
of degree not exceeding n!

17. Inverse Transformations and Matrices

17.1. Given a linear transformation y =  Ax, the transformation B is 
called the inverse {transformation) of A if

By =  B(Ax) =  x,
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i.e., if B carries the vector y back into the original vector x. Thus the inverse 
transformation B is defined by the equation

BA =  E,
where E is the identity transformation. It is easy to see that the transfor­
mation B is itself linear (give the details).

Not every linear transformation A has an inverse. For example, let A 
be the transformation projecting the space L3 onto some plane II. Then the 
image y of every spatial vector x lies in II, and a vector y not in II has no 
inverse image x, while a vector y in II has infinitely many inverse images! 
However, as we will see in a moment, every nonsingular transformation 
has an inverse.

The transformation inverse to the transformation A is denoted by A-1, 
so that

A "1 A =  E.
It is obvious that

(A-1)“1 =  A, AA“1 =  E.
Suppose the transformation A has an inverse, and let A be the matrix 

of the transformation A in some basis e15 e2, e3. Then the matrix of the trans­
formation A "1 is called the inverse (matrix) of the matrix A and is denoted 
by A~l. Since the matrix of a product transformation is the product of the 
matrices of the factors, we have

A~1A =  E, A A ' l = E ,
where E  is the unit matrix. It follows from the theorem on multiplication of 
determinants (see Sec. 16.3) that

\ A ~ ' \ \ A \ = \ ,
i.e., the product of the determinants of a matrix and its inverse equals 1. 
Hence if a matrix A has an inverse, its determinant | A | must be nonvanishing.

17.2. Next we prove the proposition mentioned above:
Theorem. I f  A is a nonsingular linear transformation, then A has a 

unique inverse A-1.
Proof Relative to some basis e 19 e2, e3, the transformation y =  Ax 

takes the form
y. =  a,jXj, (1)

where (ai7) is the matrix of A'and x =  x-e,., y =  yfa. Finding the inverse 
transformation A“1 means finding the vector x for every given vector y, 
or equivalently, finding the components of x given those of y, i.e., 
solving the system (1) for the unknowns x; given the numbers y..  But, 
by Cramer’s rule,f this system (consisting of three equations in the

t  See e.g., R. A. Silverman, op. cit.y p. 610.
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three unknowns x 1, x 2, x z) has a unique solution if the determinant 
of the system is nonvanishing, i.e., if A is nonsingular. |
Next we find the matrix A~l of the transformation A-1 inverse to A, 

assuming that \A\-=£0. To this end, we write the system (1) in the more 
detailed form

011*1 “1“ 012*2 “1“ 013*3 =  1̂»
021*1 +  022*2 +  023*3 — 0  )
0 3 1 * 1  +  0 3 2 * 2  +  0 3 3 * 3  = > Y

Since the determinant of the system (1') is nonsingular, we can apply Cramer’s 
rule, obtaining, for example,

y 1 012 0

y2 022 a:
y3 032 0;

Let Atj denote the cofactort of the element au in the determinant \A\. 
Then (2) becomes

Similarly, we have
ci — rÜ T i +  +  -rfrJV

' •  -  ( V  +  f V  +  M v -

A
a * + + f a t * -

The coefficients of appearing in these expansions are the elements of the 
required inverse matrix A~l. Thus, if A~1 =  (a;V), we have

i.e., the element aij o f the inverse matrix A 1 equals the cofactor o f the ele­
ment aji o f the original matrix A, divided by the determinant o f  A .

Remark 1. Clearly, a .. is a second-order tensor, corresponding to the 
inverse transformation A "1. The tensor au is called the inverse of the tensor 
au corresponding to the original transformation A.

Remark 2. The inverse A~1 of a second-order matrix

is defined by the usual condition
A~1A = A A ~ 1 = E , (3)

where E  is now the unit matrix of order two. Here

t  Ibid., p. 602.
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and hence
fa22 _a \2̂

A - i =  M l M l

M l M l '
For example, if

then IA I =  1 and

The validity of (3) follows at once by direct multiplication.
We now write some relations satisfied by the elements of the matrix 

A =  (al7) and its inverse A ’ 1 =  Clearly A~XA =  E  implies

where, as usual, summation over k  is understood on the left and 5,7 is the 
symmetric Kronecker symbol. It should also be noted that

(there is an obvious analogue for matrices). Finally we note that, as implied 
by the notation, the matrix F " 1, the matrix of the transformation from the 
new basis er , er , ey to the old basis e„  e2, e3 (see pp. 23, 91), is just the 
inverse of the matrix r ,  the matrix of the transformation from the old basis 
to the new basis, so that in particular

& ik a k j  —
while AA  1 =  E  implies

aik&kj &tj9

(B -’A-OiAB) =  B_1(A_1A)B =  B_1EB =  B_1B =  E,
and hence

(A B )1 =  B_1A_1

r - ' T  =  r r - 1 =  E.

PROBLEMS

1. Find the inverse of each of the following matrices:
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2. Solve the following “matrix equations” :

c) A X  =  B, where

d) XA — B, where
1 2

~ 3 \
/  1 - 3

° \ (Xl Xl X3'

- 3 2 4 OII 2 4 HII*

Xs X6

, 2 -1 0/ \10 7 8 / \x7 x$ x 9,
3. Prove that the following formulas hold for nonsingular linear transfor­
mations :

a) (AjA2 . . . A*»!A*)-1 =  A i‘A ili . . .  A ^ A r1;
b) (Am)“1 =  (A-1)7";
c) (A*)"1 =  (A"1)*.

What are the matrix analogues of these formulas?
4. Prove that the following four formulas are equivalent for nonsingular ma­
trices :

A B  =  B A , A B ~l =  B - 'A , A - 'B  = B A ~ \ A lB ~1 =  B~lA 'K

5. Prove that
a) The inverse of a nonsingular symmetric matrix is symmetric;
b) The inverse of a nonsingular antisymmetric matrix is antisymmetric;
c) The inverse of an orthogonal matrix is orthogonal.

6. Prove that the inverse of a nonsingular “triangular matrix”

A =

is a matrix of the same type.

fan a 1 2 *13'
0 an *23
.0 0 a 3 3

18. The Group of Linear Transformations and Its Subgroups

18.1. The set of all nonsingular linear transformations of the three- 
dimensional space L 3> equipped with the operation of multiplication of 
transformations, has the following four key properties:

a) The set is closed under multiplication, i.e., if A and B are nonsingular 
transformations, then so is their product C =  AB;
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b) The operation of multiplication of transformations is associative, i.e., 
A(BC) =  (AB)C;

c) The set contains an identity transformation E such that AE =  EA =  A 
for every A;

d) Every nonsingular transformation A has a unique inverse transfor­
mation A-1 such that A-1 A =  AA_1 =  E.

The set of nonsingular linear transformations is not the only set with 
these properties. For example, the set of all positive rational numbers 
equipped with the ordinary operation of multiplication has all four prop­
erties,t and the same is true of the set of all nonzero complex numbers 
equipped with multiplication. There are many other examples of sets of the 
same type. This leads to the following

D efinition . Any set o f  elements equipped with a multiplicative 
operation satisfying properties a)-d) is called a group.
Thus the set of all nonsingular linear transformations of the space L 3 is 

a group, denoted by GL3 and called the fu ll linear group o f dimension three.
Remark 1. Relative to any basis in L 3 there is a one-to-one correspondence 

between nonsingular linear transformations of L 3 and square matrices of 
order three with nonvanishing determinants. Hence the set of all such 
matrices is essentially identical with the set of all nonsingular linear trans­
formations, and will again be called the full linear group of dimension three, 
denoted by GL3.

Remark 2. In just the same way, the set of all nonsingular linear trans­
formations of the two-dimensional plane L 2 is a group, denoted by GL2 and 
called the fu ll linear group o f  dimension two. The set of all square matrices 
of order two with nonvanishing determinants is essentially identical with this 
group. More generally, the set of all nonsingular linear transformations of 
the w-dimensional space Ln (or equivalently, the set of all square matrices 
of order n with nonvanishing determinants) is a group, denoted by GLn and 
called the fu ll linear group o f dimension n.

18.2. As we now show, certain subsets of the full linear group GL3, and 
not just the whole group GL3, also form groups. In other words, there are 
subsets of GL3 which are closed under multiplication and which, whenever 
they contain a transformation A, also contain the inverse transformation 
A-1. Note that properties b) and c) are automatically satisfied in any such 
subset of GL3. In fact, the associative property, being valid in the whole set, 
is obviously valid in any subset, while the identity transformation belongs 
to the subset, since the latter, by hypothesis, contains the inverse A-1 of 
any transformation A in the subset and hence also contains the product

t  With obvious changes in terminology, e.g., “number” for “transformation,” “positive” 
for “nonsingular,” etc.
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AA"1 =  E. Subsets of GL3 of this type are called subgroups of GL3 (sub­
groups of an arbitrary group are defined in just the same way).

Example L  Consider the subset of GL3 consisting of all linear transfor­
mations which do not change the orientation of noncoplanar triples of 
vectors. The matrix A of any such transformation A has a positive deter­
minant | A | >  0 (see Sec. 14.3). Clearly, the product of any two such trans­
formations is a transformation of the same type, and the same is true of the 
inverse of any such transformation. Hence the set of all transformations 
which do not change the orientation of noncoplanar triples of vectors is a 
subgroup of the group GL3. Moreover, the set of all third-order matrices 
with positive determinants is essentially identical with this subgroup. Note 
that the set of all third-order matrices with negative determinants does not 
form a group, since the product of two matrices with negative determinants 
is a matrix with a positive determinant.

Example 2. Suppose the transformation A with matrix A does not change 
the absolute value of the volume of the parallelepiped constructed on an 
arbitrary triple of vectors. Then the absolute value of the determinant A 
equals unity, i.e., \A \ — ± 1 . The set of all transformations of this type (and 
of their matrices as well) obviously forms a group, called the unimodular 
group. In turn, the set of all transformations which preserve both the volume 
and the orientation of triples of vectors forms a subgroup of the unimodular 
group. For such transformations, we have | A | =  1.

Example 3. Consider the set of all rotations of the plane L 2 about the 
origin of coordinates. This set is a group, since the product of any two 
rotations is obviously a rotation, and the same is true of the transformation 
inverse to any rotation. To verify this by a formal calculation, let

^  /cos a — sin a \  ^  /cos p  — sin p\
\sin a cos a / \sin ft cos p)

be the matrices corresponding to rotations through the angles a and p, 
respectively (recall Example 6, p. 72). Then the matrix

AB (COS a C° S ^  ~  S*n a S*n ^  ~ cos a s*n P ~  sin a cos p\
\sin a cos p  +  cos a sin p  —sin a sin p  +  cos a cos p)
/cos (a +  P) —sin (a +  P)\
\sin (a +  P) cos (a +  p)l

corresponds to a rotation through the angle a +  P, while the matrix
/ cos a sin a \

A- '  =  l .
\ - s i n a  cos a /

corresponding to rotation through the angle —a, clearly satisfies the relation 
A~lA = A A -1 =  E (verify this).
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18.3. Next we consider another important subgroup of the full linear 
group, namely the subgroup of orthogonal transformations. A linear trans­
formation A is said to be orthogonal if it preserves scalar products, i.e., if

(Ax, Ay) =  (x, y)
for arbitrary vectors x and y.

T heorem 1. Every orthogonal transformation A preserves lengths o f  
vectors and angles between vectors.

Proof Let u =  Ax, v =  Ay, and let (p be the angle between the 
vectors x and y, while y/ is the angle between the vectors u and v. Then

(u, u) =  (Ax, Ax) =  (x, x),
so that I u I2 =  I x I2, or equivalently | u | =  | x |. Similarly | v | =  | y |, and 
hence

cos (p (x,y) (u, v)
-T I , , =  COS y/u V Y

(see Sec. 4), since
(u, v) =  (Ax, Ay) =  (x, y)

by the orthogonality of A. It follows that <p =  y/, since the angle 
between vectors varies only from 0 to n. |

T heorem 2. I f  a linear transformation A preserves lengths o f vectors, 
then A is orthogonal.

Proof. Let u =  Ax, v =  Ay, so that u +  v =  A(x +  y). Then
|u +  v| =  |x  +  y|,

by hypothesis, and hence
(u +  V, u +  v) =  (x +  y, X +  y).

It follows that
(u, u) +  2(u, v) +  (v, v) =  (x, x) +  2(x, y) +  (y, y).

But | u | =  | x |, | v | =  | y |, or equivalently (u, u) =  (x, x), (v, v) =  (y, y), 
and hence

(u, v) =  (Ax, Ay) =  (x, y),
i.e., A is orthogonal. |

T heorem  3. A linear transformation A is orthogonal i f  and only i f  
A* A =  E. (1)

Proof. If u =  Ax, v =  Ay, then
(u, v) =  (Ax, Ay) =  (x, (A*A)y)

(see Sec. 15.3 and Prob. 8, p. 93). If (1) holds, then (u, v) =  (x, y) and ^  
A is orthogonal. Conversely, if A is orthogonal, then (u, v) =  (x, y) 
hence (1) holds. |
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Remark. Formula (1), satisfied by an orthogonal transformation A, can 
also be written in the form

A* =  A-1. (2)
T heorem 4. The set o f all orthogonal transformations o f the space 

L 3 forms a subgroup 0 3 o f the fu ll linear group GL3.
Proof It is enough to show that if the transformations A and B are 

orthogonal, so that
A* =  A~l, B* =  B 1,

then so are the product transformation C =  AB and the inverse trans­
formation A "1. But

C* =  (AB)* =  B*A* =  B_1A_1 =  (A B )1 =  C 1, 
which implies the orthogonality of C, while

(A"1)* =  (A*)* =  A =  (A"1)"1, 
which implies the orthogonality of A "1. |
Remark. The group character of the set of orthogonal transformations 

can be proved purely geometrically. In fact, if the transformations A and 
B do not change lengths of vectors and angles between them, then the same 
is clearly true of the product AB and the inverse A "1.

We now consider the matrices of orthogonal transformations, called 
orthogonal matrices. Such matrices have already been encountered in Sec. 
6.1 in our treatment of transformations from one orthonormal basis to 
another. It follows from (1) that the matrix A =  (atJ)  of an orthogonal 
transformation A satisfies the condition

A* A =  E  (3)
and the equivalent condition

AA* =  E. (3')
Let afj denote the elements of the matrix A *, so that af) =  aji (cf. p. 80). 
Then (3) and (3') become

^ik^kj ^k'flkj Sip ^
a ika k j =  a ika jk  =  & ij

in component form. The relations (4) show that the sum o f the products o f  
the elements o f any row (or column) with the corresponding elements o f any 
other row (or column) equals zero, while the sum o f the squares o f the elements 
o f any row (or column) equals unity. Note that the relations (4) differ only in 
notation from the relations (7), p. 23.

Remark 1. It has already been proved geometrically on p. 24 that the 
determinant of an orthogonal matrix equals ± 1 . We now give a simple 
algebraic proof of this fact. It follows from the formula A*A =  E  and the
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theorem on multiplication of determinants that
\A*A\ =  \A*\\A\  =  \A\* =  1,

since \ A*\ =  \A \ and | E\ =  1. But then obviously \A \ =  ± 1 .
Remark 2. Orthogonal transformations whose matrices have determinant 

+ 1  preserve the orientation of triples of vectors and are said to be proper. 
As is easily verified, the set of all proper orthogonal transformations is 
itself a group, namely a subgroup (denoted by 0$) of the group 0 3 of all 
orthogonal transformations. Orthogonal transformations whose matrices 
have determinant —1 change the orientation of triples of vectors and are 
said to be improper.t The set of all improper orthogonal transformations is 
clearly not a group (why not?). Every reflection of the space L 3 in a plane 
II  through the origin O is an improper orthogonal transformation. In fact, 
reflection in II does not change lengths of vectors or angles between them, 
but it does reverse the orientation of triples of vectors. It can easily be shown 
that every improper orthogonal transformation is the product of a proper 
orthogonal transformation and a reflection in some plane (cf. Sec. 20, Probs. 
6 and 7).

18.4. The subgroups of the full linear group considered so far ail contain 
infinitely many elements, like the full linear group itself. But there also exist 
finite subgroups of the full linear group, i.e., subgroups containing only a 
finite number of elements. Of particular interest are certain subgroups of the 
orthogonal group called symmetry groups, which are of great importance in 
crystallography and other branches of physics. We now give some examples 
of symmetry groups in the plane and in space.

Example 1. Let E be the identity transformation, and let A =  —E be 
the transformation which reflects all vectors in the origin O. Then clearly

EE =  E, EA =  AE =  A, AA =  E, E ~ ' = E ,  A~l =  A.
Hence the set of transformations consisting of the two elements E and A 
forms a group, since it is closed under multiplication and the operation of 
inversion. The “multiplication table” for the elements of this group can be 
written in the formt

E A

E E A
A A E

t  Similarly, an orthogonal transformation in the plane L 2 is said to be proper if its 
matrix has determinant + 1  and improper if its matrix has determinant — 1 .

t  In any such multiplication table, the first factor in a product appears on the left and 
the second factor appears on top.



1 0 4  LINEAR TRANSFORMATIONS CHAP. 3

Every figure with the point O as a center of symmetry is carried into itself 
by the transformations of the group. Note that the product of two elements 
of the group does not depend on the order of the factors; a group of this 
type is said to be commutative.

Example 2. Let E be the identity transformation in the plane, and let A 
be a rotation of the plane through the angle Inin (n a positive integer). 
Then the transformation A* is a rotation through the angle 2nk/n, so that 
in particular A" =  E. The transformations E, A, A2, . . . ,  A"-1 form a group, 
since

A* A7 =  A*+/ =  A",
where m is the remainder after dividing k  +  / by n. This group, called the 
cyclic group o f order n, is also commutative.

Example 3. Given three perpendicular axes a, b and c going through the 
origin O of the space L3, let A be a rotation through the angle n about a, 
B a rotation through n about b, and C a rotation through % about c. The 
four transformations E, A, B and C then form a group with the following 
multiplication table:

E A B C

E E A B C
A A E C B
B B C E A •
C C B A E

Since the product of any two elements of the group is independent of the 
order of the factors, the group is commutative. The transformations of this 
group carry any figure with a, b and c as axes of symmetry into itself.

Example 4. Given two perpendicular axes a and b through the origin 
O of the space L3, let A be a rotation through the angle 2n/3 about a, while 
B is a rotation through n about b. Then the six transformations

E, A, A2, B, AB, A2B (5)
form a group. In fact, the transformation B l =  AB is a rotation through n 
about the axis bx into which the transformation A2 carries the axis b, and 
similarly, the transformation B2 =  A2B is a rotation through n about the 
axis b2 into which the transformation A carries the axis b. It follows that

B2 =  B2 =  B2 =  E.
Moreover, using the fact that A3 =  E, we have

BA =  (B A )1 =  A_1B_1 =  A2B =  B2,
BA2 =  (BA2) 1 =  A-2B-1 =  AB =  Br
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The multiplication table for the transformations (5) now takes the form

E A A 2 B B , B 2

E E A A 2 B B i B 2

A A A 2 E B i B 2 B

A 2 A 2 E A B 2 B B i

B B B 2 B , E A 2 A

B i B B 2 A E A 2

B 2 B 2 B i B A 2 A E

from which it is apparent that the transformations form a group as asserted. 
Since the multiplication table is not symmetric, the group is not commutative.

P R O B L E M S

1. Determine which of the following sets of transformations of the plane L2 
are groups:

a) The set of all rotations about a point 0  \
b) The set of all reflections in all possible straight lines through O;
c) The set of all homothetic transformations with center at O and all possible 

expansion coefficients;
d) The set of all homothetic transformations with center at O, together 

with all rotations about O;
e) Reflection in a line through 0, together with the identity transformation;
f) The set of rotations about O through the angles 120°, 240° and 360°;
g) The set of rotations about O through the angles 90°, 180°, 270° and 360°, 

together with reflection in two given perpendicular lines intersecting at O.
2. List all orthogonal transformations of the plane L2 carrying each of the 
following figures into itself:

a) A rhombus;
b) A square;
c) An equilateral triangle;
d) A regular hexagon.

3. Determine which of the following sets of numbers are groups under the 
indicated operations:

a) The set of integers under addition;
b) The set of rational numbers under addition;
c) The set of complex numbers under addition;
d) The set of nonnegative integers under addition;
e) The set of even numbers under addition;
f) The set of numbers of the form 2k (k an integer) under multiplication;
g) The set of nonzero rational numbers under multiplication;
h) The set of nonzero real numbers under multiplication;



1 06 LINEAR TRANSFORMATIONS CHAP. 3

i) The set of nonzero complex numbers under multiplication;
j) The set of integral multiples of a given positive integer n under addition.

4. Determine which of the following sets are groups:
a) The set of matrices of order three with real elements under addition;
b) The set of nonsingular matrices of order three with real elements under 

multiplication;
c) The set of matrices of order three with integral elements under multi­

plication;
d) The set of matrices of order three with integral elements and determinants 

equal to ±1 under multiplication;
e) The set of polynomials of degree not exceeding n in a variable x  (exclud­

ing zero) under addition;
f) The set of polynomials of degree n under addition;
g) The set of polynomials of arbitrary degree (excluding zero) under addi­

tion.
6. Prove that a matrix A is orthogonal if and only if its determinant equals 
±  1 and every element equals its own cofactor, taken with the plus sign if | A | =  1 
and the minus sign if | A | =  — 1.
7. Under what conditions is a diagonal matrix orthogonal?
8. Find the matrices of the transformations considered in Examples 1-3 of 
Sec. 18.4, and verify by direct calculation that each set of matrices forms a group.



4

FURTHER TOPICS

19. Eigenvectors and Eigenvalues

19.1. Given a linear transformation u =  Ax, a nonzero vector x is called 
an eigenvector of A if

Ax =  Ax, (1)
where A is a real number. The number A is then called an eigenvalue of the 
transformation A, corresponding to the eigenvector x. According to this 
definition, the transformation A carries an eigenvector into a collinear 
vector, with the corresponding eigenvalue equal to the ratio of the two 
collinear vectors (the “expansion coefficient” of the eigenvector under the 
transformation A).

Obviously, if x is an eigenvector of A with eigenvalue A, then any vector 
x ' =  ax collinear with x (a a nonzero real number) is also an eigenvector 
of A with eigenvalue A. In fact, by the linearity of A, we have

Ax' =  A(ax) =  a(Ax) =  a(Ax) =  A(ax) =  Ax'.
Remark 1. Equation (1) can be written in the equivalent form

(A -  AE)x =  0, (1')
where E is the identity transformation.

Remark 2. Everything just said applies equally well to the plane L 2, to 
three-dimensional space L 3, or, more generally, to an arbitrary linear 
space L .

We now examine some of the linear transformations considered in Secs. 
13 and 14 from the standpoint of eigenvectors and eigenvalues.

107
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Example 1. For the homothetic transformation Ax =  Ax of the space L 3 
(or L 2), every nonzero vector x is an eigenvector with eigenvalue A. The 
same is obviously true of the identity transformation E (A =  1) and of the 
operation of reflection in the origin (A =  — l).t

Example 2. For the transformation A carrying the vector 
x =  Xjej +  x2e2 e  L 2

into the vector
u =  Ax =  x le1 +  Xx2e2

(see Example 5, p. 66), every vector lying on the x i or x2-axes (all vectors 
have their initial points at the origin) is an eigenvector, with eigenvalue 1 
for vectors on the x r axis and eigenvalue A for vectors on the x2-axis. In 
particular, the same vectors are eigenvectors for the operation of projection 
of the plane L 2 onto the x t-axis (A =  0), with the vectors on the x2-axis all 
going into the zero vector 0 (which is collinear with every vector!).

Example 3. Let A be the rotation of the plane L 2 through an angle a 
different from 0° or 180°. Then A obviously has no real eigenvectors (how­
ever, see Example 1, p. 112). If, on the other hand, a =  0° or a  =  180°, 
we get the identity transformation or the operation of reflection in the origin, 
for which every vector is an eigenvector. By contrast, every rotation in the 
space L3 has a unique real eigenvector, whose direction is that of the axis 
of rotation (cf. Prob. 2c, p. 115).

Example 4. For the shift
u =  Ax =  (x l +  k x 2)ex +  x 2e2

of the plane L 2 in the direction of the vector (see Example 8, p. 66), 
every vector lying on the x r axis is clearly an eigenvector with eigenvalue 1.

Example 5. The eigenvectors of the transformation 
u =  Ax =  AjXjej +  A2x2e2 +  A3x 3e3

of the space L 3, consisting of three simultaneous expansions along perpen­
dicular axes e19 e2 and e3, are just the vectors lying along these axes, since

Ae. =  Ap. (no summation over /),
and the corresponding eigenvalues are A15 A2 and A3. Similarly, the eigen­
vectors of the transformation

u =  Ax =  Alx ie1 +  A2x 2e2
in the plane L 2 are the vectors lying on the et and e2-axes, with eigenvalues 
Ax and A2.

19.2. Next we consider the problem of finding the eigenvectors and 
eigenvalues of a given linear transformation A of the space L 3. As we know

t  See Examples 1 and 2, p. 65 and Prob. 2a, p. 67.
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from Sec. 14.1, in any given orthonormal basis e,, e2, e3 the transformation 
A is associated with a matrix

namely, the matrix of the transformation (relative to e15e2, e3). Suppose 
x =  x,.et. is an eigenvector of A with eigenvalue A. Then, writing (1) in 
component form, we get

* 1 1 * 1  +  * 1 2 * 2  +  * 1 3 * 3  =  A X ,,  

* 2 1 * 1  +  * 2 2 * 2  +  * 2 3 * 3  =  ¿*2>  

* 3 1 * 1  +  * 3 2 * 2  +  * 3 3 * 3  =  ¿*3>

or, more concisely,
aijx j =  Ax..

We can also write (2) as

(2)

(*n -  A)x, +  ¿z12x2 +  a 13x 3 =  0,

*21*1 (*22 2)X2 +  ^23*3 =  0 )
*31*1 +  *32*2 +  (*33 ~  2)X3 =  0,

or, more concisely,
(flu ~  № i j )x j =  0.

The system (3) is a system of three homogeneous linear equations in the 
three unknowns x , ,x 2 and x 3. Since, by hypothesis, (3) has a nontrivial 
solution, representing the components of the nonzero vector x, the deter­
minant of (3) must vanish,! i.e., we must have

or, briefly,

* 1 1  -  A « 1 2 « 1 3

* 2 1 « 2 2  -  X « 2 3 =  o ;

* 3 1 « 3 2 « 3 3  -  X

\ A - X E \ =  0,

(4)

where E  is the unit matrix.
This shows that every eigenvalue of the linear transformation A satisfies 

equation (4). Conversely, let A0 be a real root of equation (4). Then, sub­
stituting A0 for A in (3), we get a system with a nontrivial solution x?, xj, xj, 
since the determinant of the system vanishes.! Clearly, (3) holds for the 
vector x0 with components x?, xl,  x?, and hence

Ax0 =  A0x0

t  Otherwise (3) would only have the trivial solution x\ = x 2 =  *3 =  0, by Cramer’s 
rule.

t  See e.g., R. A. Silverman, op. cit., Prob. 11, p. 615, and its solution, p. 984.
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for this vector and the number A0, i.e., x0 is an eigenvector of A correspond­
ing to the eigenvalue A0.

Thus to find the eigenvectors of the transformation A, we must first 
solve equation (4). Each real root of (4) gives an eigenvalue of A, and the 
components of the eigenvector corresponding to this eigenvalue can then 
be determined from the system (3). Equation (4) is called the characteristic 
(or secular) equation of the transformation A.

Remark. So far we have only considered real scalars and vectors with 
real components. More generally, we might consider complex linear spaces, 
allowing both the scalars and the components of vectors to be complex 
numbers. In this context, we then allow complex eigenvalues and eigenvectors 
with complex components. Suppose the matrix of the transformation A has 
real elements, so that the characteristic equation (4) of A is an equation of 
degree three with real coefficients. Then, by elementary algebra, equation 
(4) either has three real roots, or else it has one real root and a pair of 
conjugate complex roots. Such a pair of conjugate complex roots will then 
correspond to a pair of conjugate complex eigenvectors of the transformation 
A (show this).

19.3. Suppose we expand the determinant appearing in the left-hand side 
of the characteristic equation (4). Then (4) takes the form

where
A3 -  f A 2 +  I2A -  I 3 =  0,

A  ~  * 1 1  +  * 2 2  +  * 3 3 >

(5)

h  =
* 1 1 * 1 2

+
* 1 1 * 1 3

+
* 2 2 * 2 3

* 2 1 * 2 2 * 3  1 * 3  3 * 3  2 * 3  3

* 1 1  * 1 2  * 1 3

A =

The polynomial in the left-hand side of the characteristic equation (of degree 
three for the space L 3) is called the characteristic polynomial of the matrix 
A. Since the eigenvalues of the transformation A are independent of the 
choice of basis, the roots of the characteristic equation must also be indepen­
dent of the choice of the basis. As we now show, the same is true of the 
characteristic polynomial itself:

T heorem . The characteristic polynomial o f a matrix A is independent 
o f the choice o f  basis.

Proof The characteristic polynomial is the determinant of the matrix 
A — AE. Under a change of basis, the matrix A goes into the matrix

A' =  T A T  1
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(see Sec. 16.4), where Г  is the orthogonal matrix of the transformation 
from the old basis to the new basis. But obviously Г{ХЕ)Г~1 =  XE, and 
hence

A' -  XE =  Г А Г ~ 1 -  Г(ХЕ)Г~1 =  Г(А -  ХЕ)Г~К
Therefore, by the theorem on multiplication of determinants (see Sec. 
16.3),

\A' — XE\ =  \ Г \ \ А  — ХЕ\ \ Г~11.
But | Г 11 Г ~ 11 =  1, since the product of the determinants of a matrix 
and of its inverse must equal unity. It follows that

\A -  XE\ =  \A' -  XE\. |
Remark 7. Hence the characteristic polynomial of the matrix A can now 

be called the characteristic polynomial of the transformation A.
Remark 2. It follows from the invariance of the characteristic polynomial 

that its coefficients / , ,  72 and 73 are also invariant, i.e., that

* u  +  * 2 2  +  * з з  =  a v v  +  a r r  +  a 3 ' 3 >

* 1 1 * 1 2
+

* 1 1 * 1 3
+

* 2 2 * 2 3

* 2 1 * 2 2 * 3 1 * 3  3 * 3 2 * 3 3

* 1 '1 ' * l / 2 /
+

* 1 '1 ' * 1 '3 '
+

* 2 '2 ' * 2 '3 '

* 2 T * 2 '2 ' * 3 1 ' * 3 '3 ' * 3 '2 ' * 3 '3 '

* 1 1 * 1 2 * 1 3 * 1 '1 ' * 1  2 ' * 1 '3 '

* 2 1 * 2 2 * 2 3 = * 2 '1 ' * 2 '2 ' * 2 '3 '

* 3  1 * 3  2 * 3  3 * 3 1 ' * 3 '2  ' * 3 '3 '

Thus the matrix A of a linear transformation A of the space L 3 has three 
invariants.t Note that the invariance of / , ,  the trace of A , and of 73, the 
determinant of A , have already been proved in Secs. 11.4 and 16.4.

19.4. Turning now to the two-dimensional case, let u =  Ax be a linear 
transformation, of the plane L2, with matrix

/* ii au \  
U 21 * 2 2 /

in some orthonormal basis e l9 e2. Just as in Sec. 19.2, it can be shown that 
the eigenvalues of the transformation are determined from the characteristic 
equation

a lx — X
- A

=  0.

t  By the same token, 7t, / 2 and I3 are called the invariants of the transformation A 
itself.
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The eigenvectors are then determined from the system 
(0 , 1  -  A)x, +  a,2x z =  0,

+  ( 0 2 2  -  ¿)*2 =  0,
after replacing A by the solutions and A2 of the characteristic equation. 
As before, the polynomial

=  A2 (¿7j j +  #2 2 )^ “1“ (^11^22 ^12^2l)
appearing in the left-hand side of the characteristic equation is called the 
characteristic polynomial of the transformation A, and its coefficients

11 — #1 1 +  #22»
T _  a il a !2 
J 2 ~

a2l <*22
do not depend on the choice of basis.

Next we consider the same transformations as in Examples 3 and 4 of 
Sec. 19.1, giving algebraic proofs of results already found geometrically:

Example 1. The transformation corresponding to rotation of the plane 
L 2 through the angle a has matrix

/cos a —sin a '  
\sin a cos a,

(cf. Example 6, p. 72). The characteristic equation of this transformation 
is just

cos a — A 
sin a

—sin a 
cos a — A

=  0,

which implies
A2 — 2A cos a +  1 =  0. (6)

The roots of the quadratic equation (6), equal to

A =  cos a ±  V cos2 a — 1,
are imaginary for all values of a between 0° and 180°. Therefore a rotation 
through any angle other than 0° or 180° has no real eigenvalues, and hence 
no real eigenvectors. But it is easy to see that the transformation in question 
has the conjugate complex eigenvalues

A =  cos a ±  / sin a,
with corresponding complex eigenvectors that can be determined from the 
system

=F ix l sin a — x 2 sin a =  0, 
x, sin a T  ix2 sin a =  0.

Since a ^  0°, 180°, this implies

x2 =
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Setting x x =  1, we get the conjugate complex eigenvectors a x =  (1, —/) and 
a2 =  (1, /). Note that =  a2«a2 =  0, so that and a2 both have “zero 
length.”t

Example 2. The shift considered in Example 4, p. 108 has matrix

n

1 -  A k  
0 1 -  A

=  0,

and characteristic equation

i.e., 

with roots
A j =  A 2 =  1 .

The corresponding eigenvectors are determined from the system
(1 — 1)*! +  k x 2 =  0,

(1 -  A)2 =  0,

0-*, +  (1 — \ )x2 =  0,
which implies x 2 =  0 (assumingk ^ 0 ) ,  i.e., every eigenvector lies on the x v 
-axis and has eigenvalue 1, as already noted.

We conclude this section with two numerical examples.
Example 3. Find the eigenvectors and eigenvalues of the linear trans­

formation u =  Ax which has the component form
u j =  +  4 .v 2 ,

u2 =  5xl +  2x 2,
relative to an orthonormal basis e,, e2.

Solution. Solving the characteristic equation 
3 -  A 4

=  0,
5 2 - A

or
A2 — 5A — 14 =  0,

we find the eigenvalues
A, =  - 2 ,  A2 =  7.

t  A c t u a l ly ,  i n  th e  c a s e  w h e r e  L z  is  c o m p le x ,  th e  a p p r o p r ia t e  d e f in t io n  o f  th e  s c a la r  

p r o d u c t  o f  t w o  v e c to r s  x  =  x & t ,  y  =  y & i  is

x - y  =  X i y i  +  X z y i  

( th e  o v e r b a r  d e n o te s  th e  c o m p le x  c o n ju g a te ) ,  r a t h e r  t h a n

x - y  =  x i y i  -I- x 2 y 2-

T h e  le n g t h s  o f  ai  a n d  a 2 a re  t h e n  b o t h  e q u a l  t o  r a t h e r  t h a n  0 .
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For Aj =  —2 the eigenvector can be determined from the system
+  4x 2 =  0,

5*j +  4x2 =  0,
which implies

x1 _ __4_
x 2 5 ‘

Similarly, for A2 =  9 we have
—4xx +  4x2 =  0,

5*! — 5x 2 =  0,
which implies

*2
Thus the eigenvectors of the transformation A are

a, =  (4, - 5 ) ,  a2 =  (1,1), 
and all vectors collinear with and a2.

Example 4. Find the real eigenvectors and eigenvalues of the linear trans­
formation u =  Ax, which has the component form 

u\ =  4xx — 5x2 +  l x 3, 
u2 =  x , — 4x 2 +  9x3, 
u3 = —4xl +  5x3

relative to an orthonormal basis e19 e2, e3.
Solution. The characteristic equation of A is

4 - A
1

- 4

- 5
- 4 -  A 

0

7
9 =  0,

5 -  A
or

A3 -  5A2 +  17A - 1 3  =  0,
with roots

At =  1, A2 =  2 +  3/, A3 =  2 — 3/.
The eigenvector corresponding to the unique real eigenvalue A3 =  1 can be 
found from the system

3xl — 5x2 +  7x3 =  0, 
x x — Sx2 +  9x3 =  0,

—4xx +  4x3 =  0.
It follows from the last equation of this system that x x =  x 3, and then from 
the first two that
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Thus the only real eigenvector of the transformation A is a =  (1, 2, 1), or 
any vector collinear with a.

PROBLEMS

1. Prove that every vector of the space L x is an eigenvector of every linear 
transformation of L\.
2. Find the eigenvectors and eigenvalues of the following linear transforma­
tions of the space L3:

a) u =  (a«x)b;
b) u =  a x x;
c) u =  (x-co)co +  [x — (x«<d)cd] cos a +  © x x sin a, where <o is a unit 

vector;
d) u =  (a*x)a +  (b«x)b, where |a | =  |b|;
e) u =  (a«x)a +  (b*x)b +  (c*x)c,where|a| =  |b |=  |c |an d a -b =  b*c= a«c.

3. Find the eigenvectors and eigenvalues of the linear transformation
a) Carrying the vectors ei, e2, e3 into the vectors e2, e3, ci;
b) Carrying the vectors ei, e2, e3 into the vectors e2 +  e3, e3 +  ei, ei +  e2.

4. Find the eigenvectors and eigenvalues of the linear transformations of the 
plane L2 and the space L3 with the following matrices (in some orthonormal 
basis):

„ g ;>
( a —a 2 ¿z3\

1 0 0 ;  e)

0 1 o)

5. Prove that
a) The characteristic equations of the linear transformation A and of the 

transformation A* adjoint to A are identical; 
b) If x is an eigenvector of the transformation A with eigenvalue Ai and 

of the transformation A* with eigenvalue A 2 , then A j =  A 2 .
6. Let A i ,  A 2 and A 3 be eigenvalues of a linear transformation A. Prove that 

A i +  A 2 +  A 3 =  7 j ,  A ,A 2 +  A 2A 3 +  A 3A i =  / 2 , A i A 2A 3 =  73 .
7. Using the result of the preceding problem, prove that the eigenvalues of a 
transformation A are all nonzero if and only if the transformation A is non­
singular.

7 1 - 1 \ 2 i
0 1 0 ; c) 2 1 3
,0 2 i / b 3 6)1

fa 0 °\ (ax b1 c i'
1 a

0 |; 0 ° b2 C2
\0 1 a )

l \o 0 C3,

8. Prove that the eigenvalues of the inverse transformation A-1 are the recip­
rocals of the eigenvalues of the original transformation A.
9. Prove that the transformations AB and BA both have the same character­
istic polynomial.
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10. Prove that the proper rotation A E) of the space L3 with matrix

in some orthonormal basis is equivalent to a rotation a about some fixed axis 
/. Find a and the direction of /.
11. Find the angle a and the direction of / figuring in the preceding problem if

corresponds to a proper rotation through an angle a about some axis. Find 
the transformation B which corresponds to a rotation through the angle —a 
about the same axis.
13. Prove that if x is an eigenvector of the transformation A corresponding 
to the eigenvalue X, then x is also an eigenvector of the transformation A2 
corresponding to the eigenvalue X2.
14. Prove that if the transformation A2 has an eigenvector with a nonnegative 
eigenvalue p 2, then the transformation A also has an eigenvector.
15. Prove that if the characteristic equation of a linear transformation A of 
the space L3 has two conjugate complex roots, then there is a plane (called an 
invariant plane) which is carried into itself by the transformation A. Find this 
plane for the transformation considered in Example 4, p. 114.
16. Let C[a, b] be the space of all functions continuous in the interval [a, b]y 
and let A be the transformation which consists in multiplying a function f(t) e 
C[a, b] by the independent variable t. Prove that A has no eigenvalues.
17. Prove that the differentiation operator in the space C[a, b] has infinitely 
many eigenvalues.
18. Find the eigenvectors and eigenvalues of the differentiation operator in the 
space of all polynomials of degree not exceeding n.

U 2 2_\
15 15 3
_2 1 4 ___ 1̂
15 15 3
2 1 2
3 3 3 /

12. The transformation A with matrix

J _ ___L_ __i_\
2 v^2 2
J_ _1_  _  J_
2 « /2  2
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20. The Case of Distinct Eigenvalues

In the case of distinct eigenvalues we have the following elegant results:
T heorem 1. Let A be a linear transformation o f the space L 3 whose 

characteristic equation has three distinct real roots Ap A2, A3, and êt 
a p a2, a3 be the eigenvectors with eigenvalues Ap A2, A3, respectively. 
Then the vectors a p a2, a3 are linearly independent.

Proof. By hypothesis,
Aaj — Ajdj, Aa2 — A2a2, Aa3 — A3a3.

Suppose two of the vectors a p a2, a3, say and a2, are connected by a 
linear relation

a x*x +  a 2a2 =  0 (1)
(aj and a2 are both nonzero, being eigenvectors). Applying the trans­
formation A to (1), we get

<x1Aal +  a 2Aa2 =  0 
or

< M i a i +  <*2A 2a 2 =  0 -  ( 2)
Multiplying (1) first by — Aj and then by — A2, and adding each of the 
resulting equations to (2), we find that

^ 2 ( ^ 2  ^i)a2 =  O’ ftiCAj A2)ai =  0,
which implies

<*i =  a 2 =  0,
since At ^  A2. It follows that a { and a2 are linearly independent.

We have just proved the linear independence of any two of the 
vectors a 1? a2, a3. To prove that all three vectors a 15 a2, a3 are linearly 
independent, suppose to the contrary that a p a2, a3 are linearly depen­
dent, so that

+  a 2a2 +  a 3a 3 =  0, (3)
where a 1 ^  0, say. Applying the transformation A to (3), we get

otjAa! +  a 2Aa2 +  a 3Aa3 =  0 
or

M i a i +  a 2A2a2 +  a 3A3a3 =  0. (4)
Multiplying (3) by — A3 and adding the resulting equation to (4), we 
then get

^ 1 ( ^ 1  A3)aj -f- oc2(A2 A3)a2 =  0, 
from which it follows that aj and a2 are linearly dependent, since 0,
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X1 ^  A3. This contradiction shows that z l9 a2, a3 are in fact linearly 
independent. |

T heorem 2. Let A  be the same as in Theorem 1, with eigenvalues 
A,, A2, A3 and corresponding eigenvectors alf a2, a 3. Then the matrix o f  
A takes the particularly simple “diagonal form”

% 0 ° \
0 ¿2

0
(5)

>0 0 J
in the basis consisting o f the eigenvectors a , ,  a 2 , a 3 .

Proof Being linearly independent, the vectors a 1? a 2 , a 3 can be 
chosen as a basis. (Note that this basis is in general not orthonormal 
or even orthogonal, but the considerations of Sec. 14 apply equally 
well to the nonorthogonal case.) Given any vector x, suppose

x =  Xjaj +  * 2a 2 +  * 3a3>
and let

u =  Ax =  ux a t +  w2 a 2  +  M3 a 3 -
Then

u =  A(Xja! +  x2a2 +  jt3a3) =  x lA z l +  x 2Aa2 +  x 3Aa3
=  x 1A 1a 1 +  x 2A 2a 2 +  x 3A 3a 3,

so that
U l  =  ¿ 1 * 1 ,  « 2  =  ¿ 2 * 2 »  W3 =  ¿ 3 * 3 -

But then A has the matrix (5) in the basis a p  a 2 , a 3 . |
It is clear from Theorem 2 that the eigenvectors play an important role 

in the theory of linear transformations. In fact, if there exists a basis consis­
ting of eigenvectors, then the transformation A has its simplest “component 
representation” in this basis, with a matrix involving only the eigenvalues of A.

Remark 1. The converse of Theorem 2 states that i f  a linear transformation 
A has the diagonal matrix (5) in some basis a , ,  a 2 ,  a 3 , where A j ,  A 2 , A 3 are 
distinct real numbers, then the vectors a 19 a 2 , a 3 are eigenvectors o f  A. This 
proposition has in effect already been proved in Example 5, p. 108.

Remark 2. Theorem 2 has an obvious analogue for the case of the plane 
jL2, i.e., i f  A  is a linear transformation o f L 2 whose characteristic equation 
has two distinct real roots Xl and A 2, then the matrix o f A  takes the diagonal 
form

in the basis consisting o f the corresponding eigenvectors a x and a2 (aj and 
a2 are noncollinear but not necessarily orthogonal, by the analogue of 
Theorem 1).
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Example 1. A linear transformation A of the plane L 2 has the matrix

in some orthonormal basis. Reduce this matrix to diagonal form by making 
a suitable transformation to a new basis.

Solution. As shown in Example 3, p. 113, the transformation A has 
eigenvalues Xl =  — 2, X2 =  7, with corresponding eigenvectors 2ix =  (4, —5), 
a2 =  (1, 1). In the (nonorthogonal) basis consisting of the vectors a, and a 2, 
the matrix of A takes the diagonal form

Example 2. A linear transformation A of the space L 3 has the matrix

in some orthonormal basis. Reduce this matrix to diagonal form by making 
a suitable transformation to a new basis.

Solution. The characteristic equation of A is

X3 — 6X2 +  1U -  6 =  0,
with distinct real roots Xx =  1, X2 =  2, X3 =  3. We now determine the 
corresponding eigenvectors.

1) For Xx =  1 we have
4jtj — 3x2 +  2x3 =  0,
6 x x —  5 x 2 +  4x3 =  0,
4xt — 4 x 2  +  4*3 =  0.

It follows from the third equation that x 2 =  x x +  x 3, and the first two 
equations then imply Xj =  x 3, so that =  (1, 2, 1).

2) For A2 =  2 we have

5 — X - 3  2
6 —4 — X 4 =  0
4 - 4  5 - 2

or

3.x i — 3x2 +  2x3 =  0, 
6xl — 6x2 +  4x3 =  0, 
4Xj — 4x2 +  3x3 =  0.
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It follows from the first and third equations that x l =  x 2, and the second 
equation then implies x 3 =  0, so that a2 =  (1, 1, 0).

3) For A3 =  3 we have
2x1 — 3x2 +  2x3 =  0,

— l x 2 +  4x3 =  0,
4xx — 4 x 2 +  2x3 =  0.

It follows from the last equation that x 3 =  —2xl +  2x2, and the first two 
equations then imply x2 =  2xx, so that a3 =  (1, 2, 2).

Going over now to the basis a p a2, a3, we “diagonalize” the transfor­
mation A, i.e., we reduce the matrix of A to the diagonal form

The transformation A clearly carries the vector x =  x ^  +  x2a2 +  x3a3 
into the vector u =  Ax =  x 1tl1 +  2x2a2 +  3x3a3.

1. Prove the result stated in Remark 2.
2. Prove that the matrix of each of the linear transformations considered in 
Examples 1, 2, 5, p. 108 and Probs. 2d, 4a, 4b, 4c, 4f, p. 115 can be reduced to 
diagonal form by going over to a new basis. In each case find the appropriate 
diagonal basis and the corresponding basis.
3. The matrix of a linear transformation A is of the form

in some orthonormal basis. When does A have three distinct real eigenvalues? 
Find the eigenvectors in this case.
4. Prove that if x and y are eigenvectors of a linear transformation A with 
distinct eigenvalues and A2, then the vector ax +  fiy (a ^  0, /? ^  0) cannot 
be an eigenvector of A.
5. Using the result of the preceding problem, show that if every vector of the 
space L 3 is an eigenvector of a linear transformation A, then A =  AE, i.e., A 
is a homothetic transformation of L3.
6. Prove that the matrix of a proper orthogonal transformation A of the plane 
L2 (see the relevant footnote on p. 103) can be reduced to the form

PROBLtMS

/cos a —sin a' 
Vsin a cos a,

cos a —sin a'
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in some orthonormal basis, while the matrix of an improper orthogonal trans­
formation can be reduced to the form

c
Interpret the first transformation as a rotation and the second as a reflection.
7. Prove that the matrix of a proper orthogonal transformation A of the space 
L 3 (see Remark 2, p. 103) can be reduced to the form

/ 1 0  0 
0  cos a —sin a 

\ 0  sin a cos a
in some orthonormal basis, while the matrix of an improper orthogonal trans­
formation can be reduced to the form

/ - 1  0 0
0  cos a —sin a

\ 0  sin a cos a
Interpret the first transformation as a rotation and the second as the product 
of a rotation and a reflection.

21. Matrix Polynomials and the Hamilton-Cayley Theorem

21.1. In Chapter 3 we showed how linear transformations of the plane 
L 2 and of the space L 3 (and the corresponding square matrices of orders 
two and three) are added and multiplied both by numbers and by one another. 
In this regard, it should be noted that if A is a linear transformation, then

A" =  A-A • - - A
n times

(by definition) for a positive integer, while
A0  =  E,

where E is the identity transformation. Moreover,
A" =  (A"1) ' ”

if A is nonsingular and n is a negative integer.
Now let

P(X) =  a0Xm + a xXm- ' +  • • • +  am.,X +  am

be a polynomial in the variable A. Then the expression

P(A) =  a0A m 4- • + < /„ ., A +  am)E
is called a polynomial in the transformation A. Clearly P{A) is a linear trans­
formation, like A itself. If A is the matrix of the transformation A in some
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basis, then the matrix of P(A) is the “matrix polynomial”
P(A) =  a0Am +  alAm~1 +  • • • +  am-\A  +  amE,

where E  is the unit matrix. In fact, the transformation P(A) is obtained from 
A by the operations of multiplication and addition. But these operations 
on linear transformations lead to the same operations on the corresponding 
matrices.

All the algebraic rules valid for polynomials in one variable continue to 
hold for polynomials in linear transformations and for the corresponding 
matrix polynomials. For example,

(A +  E) 2  =  A2  +  2A +  E,
(A +  E ) 3 =  A 3 +  3A2  +  3A +  E,

A2  — E =  (A +  E)(A -  E),

and so on. Note that two polynomials P(A) and Q(A) in the same linear 
transformation A always commute:

P(A)Q(A) =  Q(A)P(A).

21.2. A linear transformation A is called a root of the polynomial P(A) 
if the substitution A =  A reduces P(X) to the null transformation, i.e., if 
P( A) =  N.

Theorem (Hamilton-Cayley). Let A  be a linear transformation with 
characteristic polynomial P(X) and distinct real eigenvalues Xl9 X2, X3. 
Then A  is a root o f its own characteristic polynomial, i.e.,

P( A) =  N. ( 1 )
Proof Since

P(X) =  (A — Xx){X -  X2)(X -  A3),
we have

P(A) =  (A -  A1E)(A -  A2 E)(A -  A3 E),
where the product on the right does not depend on the order of the 
factors. To prove (1), we must show that P(A) carries every vector x 
into the zero vector, i.e., that P(A)x =  0 for every x. Let a,, a2, a 3 be the 
eigenvectors of A corresponding to the eigenvalues A,, A2, A3, so that

Aat =  AjRj, Aa2  =  A2 a2, Aa3 =  A3 a3.
By Theorem 1, p. 117, the vectors a19 a2, a 3 are linearly independent and 
hence form a basis, so that any vector x e  L 3 can be written as a 
linear combination

x =  +  x 2 a 2 +  * 3 a 3 -
We then have

P( A)x =  x tP(A)at +  x 2 F(A)a2  +  ^ 3 P(A)a3.
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But
P(A)a, =  (A — A2 E)(A -  A3 E)(A -  XxE)zx 

=  (A -  A2 E)(A -  A3 E)(Aa1 -  XxE zx)
=  (A -  A2 E)(A -  A3 E)(Aiai -  A.a,) =  0,

and similarly
P(A)a2  =  0, 7>(A)a3 =  0.

It follows that
7>(A)x =  0

for every x. |
Remark. It can be shown that the Hamilton-Cayley theorem remains 

true even if some or all of the eigenvalues Xx, A2, A3 coincided

21.3. If P(X) is the characteristic polynomial of the linear transformation 
A, then

where I 19 1 2 and 73 are the invariants of A (see Sec. 19.3). It follows from 
the Hamilton-Cayley theorem that the matrices E, A, A 2, A 3 are linearly 
dependent, since

where N  is the null matrix. This also implies that any four consecutive 
powers Ak, A k + 1 9 A k+2, A k+3 of the matrix A are linearly dependent, as we 
see at once by multiplying (2) by Ak. We can now write a new expression 
for the inverse matrix A~l of a nonsingular matrix A. In fact, multiplying 
(2) by A ~ \  we get

P(X) =  X3 — I xX2 +  l^X -  73,

A 3 -  I XA 2 +  I2A -  I3E =  N , (2)

A 2 -  I XA +  72E -  I 3A~l =  N. 
But 73 =  IA I ^  0, since A is nonsingular, and hence

A - ' =  -¡-(A1 -  I tA +  I2E).
•*3

(3)

PROBLEMS

1. Find <p(A) if

2. Prove by direct substitution that the matrix

t  See e.g., G. E. Shilov, op. cit.y Sec. 6.52.



1 24 FURTHER TOPICS CHAP. 4

satisfies its own characteristic equation
X2 -  (a +  d)X + ad -  be = 0 .

3. Let /(A) be a polynomial in a linear transformation A. Prove that
a) The eigenvectors of the linear transformation /(A) coincide with those 

of A itself;
b) If X is an eigenvalue of A, then f(X) is an eigenvalue of /(A).

4. Given any vector a e L3 and any linear transformation A, let
ai =  Aa, a 2 =  A2 a, a 3 =  A3 a.

Prove that
a) a 3 =  / ,a 2 -  +  / 3 a;
b) If the vectors a, a t,a 2 are linearly dependent and the vectors a, slx are 

noncollinear, then the plane determined by a and is carried into itself 
by A, i.e., is invariant under A.

Assuming that the vectors a, a lya 2 are linearly independent, choose them as 
basis vectors and find the matrix of A in this basis.
5. Prove that the relation AB — BA = E cannot hold for any choice of the 
matrices A and B.
6 . Use formula (3) and its analogue for the plane L 2 to find the inverses of 
the matrices figuring in Prob. 1, p. 97.

22. Eigenvectors of a Symmetric Transformation

Let A be a symmetric linear transformation of the space L3.t Then 
(x, Ay) =  (y, Ax)

for arbitrary vectors x and y (see p. 81). Moreover, a linear transformation 
A is symmetric if and only if it has a symmetric matrix in every orthonormal 
basis (see Sec. 15.4).

We now prove a number of theorems on the eigenvectors and eigenvalues 
of a symmetric linear transformation A. These theorems will allow us to 
solve the problem of finding the simplest form of the matrix of A and of 
interpreting A geometrically.

T heorem 1. Let A be a symmetric linear transformation. Then the 
eigenvectors o f  A corresponding to distinct eigenvalues are orthogonal.

Proof. Given two distinct eigenvalues Xx and X2 of A, let and a 2  

be the corresponding eigenvectors, so that
Aaj =  X1stl,
Aa2  =  A2 a2.

t  Or, more generally, of the plane L2 or the space L„ (defined in just the same way as 
on p. 81).
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Taking the scalar product of the first equation with a 2  and of the second 
equation with a 15 we get

(a2, Aaj) =  a2),
(a1? Aa2) =  A2 (a 19 a2).

But (a2, Aa,) =  (a,, Aa2) by the symmetry of A, and hence 
A , ( a „  a 2)  =  A 2( a , , a 2)

or
(A, -  A2 )(a„ a2) =  0.

Since A, A2, it follows that
(a„ a2) =  0 ,

i.e., a, and a 2  are orthogonal. |
Theorem 2. Let a be an eigenvector o f a symmetric linear transfor- 

mation A and let x b e  a vector orthogonal to a. Then the vector Ax is also 
orthogonal to a.

Proof We have
(a, x) =  0

since x is orthogonal to a, and
Aa =  Aa

for some A since a is an eigenvector of A. Therefore
(a, Ax) =  (x, Aa) =  (x, Aa) =  A(a, x) =  0, 

i.e., Ax is orthogonal to a. |
Remark 1. The dimension of the underlying linear space plays no role 

in the proofs of Theorems 1 and 2. Therefore both theorems are valid for any 
space Ln, in particular for the plane L 2.

Remark 2. For the plane L 2 it follows from Theorem 2 that if a is an 
eigenvector of A, then every vector orthogonal to a is also an eigenvector 
of A. For the space L 3 it follows from Theorem 2 that if a is an eigen­
vector of A and if n  is the plane perpendicular to a, then A carries every 
vector in n  into a vector in II, i.e., II is an invariant plane of A.

Theorem 3. The roots o f  the characteristic equation

P W  =  0 (1)
o f a symmetric linear transformation A are all realA

Proof Suppose A =  a +  ifi is a complex root of (1). Then, since the 
coefficients of ( 1 ) are real, the number A* =  a — ifi conjugate to A is

t  Theorem 3 is also valid for arbitrary n, in particular for n =  2.
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also a root of (1). Let x and x* be eigenvectors corresponding to the 
eigenvalues A and A*, so that

Ax =  Ax, Ax* =  A*x*.

Then, as noted in the remark on p. 110, x and x* are complex conju­
gates, i.e.,

x  =  x kek, X* --

where the numbers x k and x% are complex conjugates (as indicated by 
the notation). If A ^  A*, it follows from Theorem 1 (which remains 
valid for complex eigenvalues) that the vectors x and x* are orthogonal, 
so that (x, x*) =  0. But, on the other hand,

(x, x*) =  x kx t  =  x ; | X* | 2  >  o.
k = l

Therefore A =  A*, i.e., A is real. |
T heorem 4. A symmetric linear transformation A o f the space L 3 

has three (pairwise) orthogonal eigenvectors.
Proof Let Ai be an eigenvalue of A (a real number, by Theorem 3), 

and let a 1 be the corresponding eigenvector. Then, as noted in Remark 
2, the plane I I  orthogonal to is invariant under A. The transforma­
tion A is again linear and symmetric in the plane I I .  Let A2  be an eigen­
value of A and let a 2 be the corresponding eigenvector (in I I ) .  Then a 2 is 
obviously orthogonal to a }. Now let a 3 be a vector in I I  which is 
orthogonal to a 2 . Then, by Theorem 2 (again see Remark 2), a 3 is also 
an eigenvector of A. Thus we have found three (pairwise) orthogonal 
eigenvectors a 19 a 2, a 3 of the transformation A. |

P R O B L E M S

1. Prove Theorem 3 for the plane L2 by direct evaluation of the roots of the 
characteristic equation of the transformation A.
2. Prove that if a linear transformation A of the space L3 has three orthogonal 
eigenvectors, then A is symmetric.
3. Prove that two symmetric linear transformations of the space L 3 commute 
if and only if they share three orthogonal eigenvectors.
4. Let A be an antisymmetric linear transformation of the space L3. Prove that

a) Two (possibly complex) eigenvectors ai and a 2  of A corresponding to 
eigenvalues Xx and A2  such that Xx +  A2  ^  0  are orthogonal;

b) If a is an eigenvector of A, then the plane orthogonal to a is invariant 
under A;

c) The eigenvalues of A either vanish or are purely imaginary.
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23. Diagonalization of a Symmetric Transformation

23.1. We begin with the following key
T heorem. Let X  be a symmetric linear transformation o f  the space 

L 3. Then the matrix o f  A can always be reduced to diagonal form by 
transforming to a new orthonormal basis e r , er , er .

Proof By Theorem 4 of the preceding section, A has three orthogonal 
eigenvectors a , ,  a 2 , a 3. Suppose we normalize these vectors, by setting

Then the vectors e r , er , e3, make up an orthonormal basis, and are 
also eigenvectors of A. Since

in this basis.. Since the original basis e,, e2, e 3 and the new basis e r , 
er , e3, are both orthonormal, the transformation

from the. former to the latter is described by an orthogonal matrix 
T  =  (jv,), as in Sec. 6.1. We then have

where A is the matrix of A in the old basis and A' its matrix in the 
new basis (see Sec. 16.4). |

Remark. Geometrically the theorem means that a symmetric linear trans­
formation is described by three simultaneous expansions (or contractions) 
along the three perpendicular axes determined by the vectors e r , er , e3,, 
since a diagonal matrix like A' corresponds to just such a transformation 
(see Example 9, p. 73).

23.2. Next we examine the uniqueness of the basis er , er , e3, in which 
the matrix of a symmetric linear transformation A takes the form (1). Here 
three cases arise :

Case 1 . If the eigenvalues are distinct (so that Xx ^  X2, X2 ^  A3, Xx ^  A3) 
then the set of orthonormal eigenvectors e r , er , e3, is uniquely determined

Aer  =  A,er , Aer  =  X2er , Ae3, =  X3er , 

the transformation A has the matrix

0 )

A' =  T A T - 1
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(to within reversal of directions and relabelling of vectors). In fact, if the 
vector a is not collinear with any of the vectors e r , er , e3,, then a cannot be 
an eigenvector of À. For example, let

a =  ae r  +  ß*r (a ^  0 , ß  ^  0 ).
Then the vector

Aa =  aA,er  +  ßX2er

is not collinear with a, since A, ^  A2, and hence a is not an eigenvector of A.
Case 2 . If two eigenvalues coincide (so that A, ^  A2, A2  =  A3 =  A, say) 

and if e r , er , e3, are the corresponding orthonormal eigenvectors, then 
every vector in the plane II determined by e r  and er  is an eigenvector of 
A. In fact, if

a =  ae2, +  ßer ,
then

A a  =  o c A e r  +  ßAe3, =  ocA e2, +  / M e 3, =  A ( a e r  ße3) =  A a .
Therefore any orthogonal pair of vectors lying in II can be chosen as the 
vectors er  and e3,. In this case, the transformation A represents the product 
of two transformations, a homothetic transformation with coefficient A in 
the plane perpendicular to e l and an expansion with coefficient At along 
the e r axis.

Case 3. If all three eigenvalues coincide (so that A, =  A2  =  A3 =  A), 
then every vector is an eigenvector (see Example 1, p. 108). Then A is a 
homothetic transformation with coefficient A in the whole plane L 3, and 
any three orthonormal vectors can be chosen as the basis e r , er , er .

Remark 1. The following observation facilitates the determination of the 
eigenvectors in Case 2: Since every vector in the plane II  is an eigenvector 
in this case, substitution of the eigenvalue A =  A2 =  A3 into the system (3), 
p. 109 leads to the single equation

(^u A)Xj -h a 12 ^ 2  H- a, 3X3 =  0 (2)
(the other two equations of the system are proportional to this one). Every 
nontrivial solution of (2 ) determines an eigenvector corresponding to the 
eigenvalue A =  A2  =  A3. Moreover, it follows from (2 ) that all the eigen­
vectors so obtained are perpendicular to the vector

» 1  =  ( « 1 1  —  ^ 2 »  « 1 2 -  « 1 3 > -

(Note that al ^  0, since the coefficients of (2) cannot all vanish.) Hence 
a 1 is an eigenvector corresponding to the eigenvalue Ar  To construct the 
required orthonormal basis, we need only set
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choose any normalized solution of (2 ) as the components of er , and then 
take er  to be the vector product er  x  er .

Remark 2. For a symmetric linear transformation A of the plane L 2 

there are only two possibilities:
Case 1. If the eigenvalues are distinct {Xx ^  X2), then A has the diagonal 

matrix

in the basis consisting of the eigenvectors. Thus the transformation A is 
described by two simultaneous expansions (or contractions) along the pair 
of perpendicular axes determined by the eigenvectors er  and er  correspond­
ing to Xx and X2.

Case 2. If the eigenvalues coincide (2, =  X2 =  2), then every vector in 
the plane L 2 is an eigenvector and A is a homothetic transformation in every 
orthonormal basis, with matrix

23.3. We now give some examples illustrating the above theory. 
Example 1. Given a linear transformation A of the plane L 2 with matrix

in an orthonormal basis en e2, find a new orthonormal basis in which the 
matrix of A is diagonal and write down the matrix.

Solution. The matrix of A is symmetric, and hence our problem is solv­
able. The characteristic equation of A is

X2 — 3X -  4 =  0 ,

with roots Xt =  4, X2 =  — 1 . The next step is to find the eigenvectors corre­
sponding to these eigenvalues.

1 ) For X =  4 the system (3'), p. 1 1 2  takes the form

with solution x x =  \ , x 2 =  2 (say). Normalizing this solution, we get the

or

—Axx +  2 x z =  0 , 
2 x t — x 2 =  0 ,
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corresponding to the eigenvalue A ^  ° '
2) For A =  —1 we get 1 ^

*i +  2 x  ^  rv 
2 x  2 ^

whence x t =  - 2 , x 2  == 1  and * 4 * 2  ^

In transforming to the basis e a \ 7 ? ) *
according to the formula 

(see Sec. 6.2), where

r> theco®Pon,ents of all vectors transform
fcv*,

1
1  ~  <?tl) - 1 v  5

In the basis e r> er  the matrix of the

Ä  =  T A r - '  =

s *  v t /

transformation A takes the form

I N  - 3

, J ____ 2
Iv ^ T

2

Note that the matrix A' can be written a 
calculations, since its diagonal element. ° Wn without carrying out these
transformation A correspond t o T S S T  ^  ei*enva,ues of A - **» 
A tneether with nn „ 1 , :  , exPans,on along e,. with coefficient

8 **' " l,h “ a ,k to “  - 1 < ***>  * 
Example 2. Given a linear transformation A of the space L 3 with matrix

-£ i :)
in an orthonormal basis e , ,e 2, e3, find a new orthonormal basis in which 
the matrix of A is diagonal and write down the matrix.

Solution. The problem can be solved since A is symmetric. The charac­
teristic equation is

1 - A  1 3
1 5 — A 1 = 0
3 1  1 — A
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or

A3 -  7A2 +  36 =  0,

with roots A, — 6, Aj — 3, A3 — —2. Since these roots are distinct, the
r f“ n \ 1S f  type described in Case 1, p. 127. Here the system (3), p. 109 takes the form K J

(1 — X)xt +  x 2 +  3x3 =  0,
x i +  (5 — X)x2 -|- x 3 =  0,
3xi +  * 2  +  (1 -  A)*3 =  0.

Substituting A =  6, A =  3, A =  - 2  in turn into this system, we get the 
vectors of the new orthonormal basis:

ci'
~ h '  ; 7 r >

. i i \
V T ’ v r j ’* - { * -

e*' C t ” 0> “ 7 t )-
Note that the vector e3. is just the vector product e,, x er . Here the matrix 
T  is given by

r  =

1

1

V ?
1

2
V * r

1

'V T

0  -

1  !
V S -

1

V 7
1

V ? '
while A has the matrix

in the basis er , e2-, e3.. Geometrically, the transformation A represents 
three simultaneous expansions along the axes e,., e2, and e3. with coeffi­
cients 6, 3 and —2, respectively.

Example 3. Given a linear transformation A of the space L3 with matrix
/5 2 2\

A =  2 2 - 4
\2 - 4  2

in an orthonormal basis e19 e2, e3, find a new orfhonormal basis in which 
the matrix of A is diagonal and write down the matrix.
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Solution. Once again the solvability of the problem is guaranteed by 
the symmetry of A. This time the characteristic equation is

or

5 -  A 
2 
2

2
- 4  

2 - A
=  0

A3 -  9A2 +  108 =  0 ,
with roots Aj =  — 3, A2  =  A3 =  6 . Thus we are now dealing with Case 2 , 
p. 128. According to Remark 1, p. 128, the system corresponding to the 
eigenvalue A2  =  A3 =  6  reduces to the single equation

— +  2 x 2 +  2x3 =  0. (3)
It follows that aj =  (— 1, 2,2) is the eigenvector corresponding to the eigen­
value =  —3. The corresponding unit vector is just

e r  =  (-4 >  ■*>■!)•
We now take any solution of (3), say x 1 =  2, x 2 =  — 1, x 3 = 2 ,  and nor­
malize it, obtaining the eigenvector

e2' =  ($> ~ b  §)•
Finally the eigenvector e3, is given by the vector product 

<V =  er  x  e2. =  (j, §, - } ) .
Hence the matrix of the transformation to the new basis is

while A has the matrix

Î ! '

r =  $ - i
\  1 1 - i

/ - 3  0 0\ 
A' =  r  A r ~ l =  I 0 6  0 

\  0 0 6/
in the basis er , er , e3,. Geometrically, the transformation A represents an 
expansion along the e r -axis with coefficient —3, together with a homothetic 
transformation in the er , e^-plane with coefficient 6 .

P R O B L E M S

1. Given a symmetric linear transformation A of the plane L2 or of the space 
L 3 with each of the following matrices in some orthonormal basis, find a new 
orthonormal basis in which the matrix of A takes diagonal form and write 
down the matrix:
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2. Raise the following matrices to the thirtieth power:

3. A symmetric linear transformation A is called nonnegative if (x, Ax) >  0 
for every vector x. Prove that

a) A is nonnegative if and only if all its eigenvalues are nonnegative;
b) If A is nonnegative, there is a nonnegative symmetric transformation B 

such that B2 =  A;
c) If A is nonnegative, and if AC =  CA for some transformation C, then 

BC =  CB where B2 =  A;
d) The sum of two nonnegative transformations is nonnegative;
e) The product of two commuting nonnegative transformations is nonnega­

tive;
f) If P(k) is a polynomial with nonnegative coefficients and if A is non­

negative, then P(A) is nonnegative;
g) A is nonnegative if and only if the coefficients of the characteristic poly­

nomial of A alternate in sign.
4. Prove that the symmetric transformations with the following matrices in 
some orthonormal basis are nonnegative:

In each case, find the matrix (in the same basis) of the transformation B such 
that B2 =  A.
5. Prove that if A is a symmetric orthogonal transformation, then its matrix 
can be reduced to one of the following four forms by making an orthogonal 
transformation:

/1 0 0\  /1 °  0\  /1 0 0\  / - 1 0  0\

0 1 0 , 0 1 0 , 0 -1  01, 0 -1  0 ].
\0 0 1/ \0 0 -1/ VO 0 -1/ V 0 0 -1/

24. Reduction of a Quadratic Form to Canonical Form

As shown in Sec. 15.4, there is a one-to-one correspondence between 
symmetric linear transformations and quadratic forms. Using this correspon­
dence, together with the fact that the matrix of a symmetric linear transfor­
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mation can be reduced to diagonal form, we are now in a position to make 
a related simplification of quadratic forms:

T heorem , t  Let A b e  a symmetric linear transformation o f the space L 3, 
and let

<p =  (x, Ax) =  a.pcpcj

be the corresponding quadratic form , where (aij) =  A is the matrix o f  A. 
Then 9  takes the “canonical form”

9  =  Xxx\, +  X2x l  +  A3 xf, (1)
in the orthonormal basis e r , er , ey t in which A takes the diagonal form

Mi 0  0 \
0 A2  0

\ 0  0  x j
(iinvolving the eigenvalues X19 A2, A3 o f  A).

Proof Let x =  x tet , where the numbers x t  are the components of 
the vector x with respect to the basis e r , er , e3,. Then, since er is an 
eigenvector of A with eigenvalue A„ we have

(p =  (x, Ax) =  (XfCf, A x =  (x^et , x^Aye^)
=  ôtJkjXtxr  =  Xtx$ =  Xtx 2y +  X2x l  +  A3 xf,. |

Remark. The directions of er , er , e3, are called the principal directions 
of the form <p corresponding to the eigenvalues A1? A2, A3. It follows from 
the results of Sec. 23.2 that if Xt X29 X2 ^  A3, A3 ^  X19 then <p has exactly 
three principal directions; if Xx ^  X2 =  A3, then <p has one principal direc­
tion corresponding to Xl and infinitely many principal directions perpen­
dicular to the direction corresponding to Xx\ while if A, =  X2 =  A3, then 
every direction in space is a principal direction of (p.

Example 1• Reduce
q> =  4x ,x2  +  3x2

to canonical form.
Solution. The symmetric linear transformation A corresponding to 9  has 

the matrix

This is just the matrix of the transformation considered in Example 1, p. 
129, with eigenvalues Xx — 4, X2 =  — 1. Hence we can reduce 9  to the sum

t  The theorem has an obvious analogue for a symmetric linear transformation of the 
plane ¿ 2*

t  The existence of such a basis is guaranteed by the theorem on p. 127.
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of squares
<p =  4x2y — x\.

by going over to the basis e , , e2, found on p. 130.
Example 2. Reduce

<p =  x \  +  5xl +  xf +  2xjX2 +  6x,x3 +  2 x 2x 3

to canonical form.
Solution. The matrix of the symmetric linear transformation A corre­

sponding to <p is

and coincides with the matrix of the transformation considered in Example 
2 , p. 130, with eigenvalues A, =  6 , A2  =  3, A3 =  —2 . Hence we can reduce 
ç  to the sum of squares

<p =  6x 2v +  3x1̂  — 2 x \
by going over to the basis e r , er , e3, found on p. 131.

24.2. A quadratic form q>(x, x) is called positive (or negative) definite if 
it takes only positive (or negative) values for every vector x  ^  0 . Since 
this must be true in any basis, it must hold in particular in the basis e r , er , 
e3/ in which q> has the canonical form ( 1 ). Clearly, the expression ( 1 ) is posi­
tive (or negative) for arbitrary x v, x r , x r  if and only if the eigenvalues 
A„ A2, A3 are positive (or negative). However, it is important to have a con­
dition allowing us to determine whether or not a given quadratic form ç?(x, x) 
is positive or negative definite when it is specified in an arbitrary orthonormal 
basis ej, e2, e 3 (not necessarily the “canonical basis” er , e2/, er ). Let A =  
0au) be the matrix of ç?(x, x) in the basis e„  e2, e3. Then the quantities

are called the (<descending) principal minors of A. The desired condition for 
<p(x, x) to be positive definite is given by the following

T heorem {Sylvester’s criterion). A quadratic form

with matrix A =  (au) is positive definite i f  and only i f  its principal minors 
{in any given basis) are positive.

Proof First we prove the theorem for the case of a quadratic form

M x — ax,, M 2 =
° ll a i2 *13

M , =  a2i a22 a23

ç>(x, x) =  OgjXpCj

<p{x, x) =  a xlx\ +  2a l2x xx2 +  a22x\ ( 2 )
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defined in the plane L 2. In terms of a new auxiliary variable t =  x j x 2, 
we can write (2 ) as

<p(x, x) =  x \(a , , / 2  +  2 ai2t +  a12).
The principal minor M 2 of the form <p(x, x) differs only in sign from the 
discriminant D =  a \ 2 — axxa22 of the quadratic polynomial in parenthe­
ses. If M 2 >  0, then D <  0 and the polynomial does not change sign 
as the parameter t varies. If M x =  a x x >  0, this sign will be positive for 
all t (why?). Hence (p{x, x) is positive definite in the planeL 2 if M x >  0, 
M 2 >  0. Conversely, it is easy to see that <p(x, x) >  0 implies M x >  0, 
M 2 >  0. In fact, if

x, = e „  x 2  =  —al2ex +  axxe2y
then

q>(xx, x x) =  axx =  M ,,
p(x2, x2) =  axx(axxa22 -  a \2) =  M XM 2,

which implies M x >  0, M 2 >  0 since q>(xxy Xj) >  0, (p{x2y x2) >  0.
Turning now to the proof of Sylvester’s criterion in three dimensions, 

we note that
p(x, x) =  axxx \ +  a22x \ +  a33x z2 +  2 a l2x xx 2 +  2 aX3x xx 3 +  2 a23x 2x 3 

in the given basis e,, e2, e3, which becomes
(p{x, x) =  k xx\. +  k 2x\, -h k 3x l

after going over to the basis er , er , e3, made up of the vectors directed 
along the principal directions of q>(xy x). Since the principal minor M 3 
coincides with the invariant / 3 of (p{xy x), we have M 2 =  Xxk 2k 3 (see 
Prob. 6 , p. I I5). Suppose tp(xy x) is positive definite. Then Xx >  0, 
X2 >  0, k 3 >  0, and hence M 3 >  0. To prove that M x and M 2 are also 
positive in this case, we need only consider the form (p(xy x) in the plane 
x 3 =  0 and use Sylvester’s criterion in two dimensions (just proved 
above). Conversely, suppose all three principal minors of the form 
(p{xy x) are positive. Then

M 3 =  k xk 2k 3 >  0 ,

and there are just two possibilities: 1) All three eigenvalues are positive, 
or 2) One of the eigenvalues is positive and the other two are negative. 
In the first case, the quadratic form <p(x, x) is positive definite and our 
converse assertion is proved. Thus suppose one of the numbers is 
positive, say X2 >  0 , while the other two are negative, say Xx <  0 , 
X3 <  0. Then the form (p{x, x) is negative definite in the er , e3 ,-plane. 
But, on the other hand, the form (p(xy x) reduces to

(p{xy x) =  ax Xx \ +  la X2x xx 2 +  a22x\ 
in the e p e2 -plane, and is positive definite in this plane because of the
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positivity of the first two principal minors. It follows that q>(x, x) is 
simultaneously positive definite and negative definite on the line of inter­
section of the e j ,e 2-plane and the er , e3,-plane. This contradiction 
shows that the numbers A, must all be positive. |
Remark. The quadratic form

p(x, x) =  QtjXpCj (3)
is positive definite if and only if the form

—9 »(x, x) =  —a,jX,Xj
is negative definite. Hence (3) is negative definite if and only if

< * 1 1 < * 1 2 < * 1 3

< * 1 1

< * 2 1

< * 1 2

< * 2 2

> 0 , < * 2 1 < * 2 2 < * 2 3

< * 3 1 < * 3 2 < * 3  3

PROBLEMS

1. Find the canonical form to which each of the following quadratic forms 
can be reduced by an orthogonal transformation without carrying out the 
transformation explicitly:

a) (p =  x xx 2\
b) q> =  * 1  +  2x ix 2 +  x\;
c) (p =  * 1  +  * 1 * 2  +  x\;
d) (p =  3*l +  3*1 +  4*1*2 +  4*i*3 — 2*2*3;
e) (p = x\ — 2 * 1 * 2  — 2 * 1 * 3  — 2 *2 * 3 .

2. Find an orthogonal transformation T  reducing each of the following quad­
ratic forms to canonical form:

a) <p =  5*1 +  8 * 1 * 2  +  5*1;
b) (p =  * 1 * 2  +  * 2 * 3  +  * 3 * 1 ;
c) <p = 7*1 +  6*1 +  5*1 — 4*i*2 — 4 *2 * 3 ;
d) <p =  2*1 +  *1 — 4 * 1 * 2  — 4 *2 * 3 ;
e) <p — 3*1 +  6*1 +  3*1 — 4 * 1 * 2  — 8 * 1 * 3  — 4 * 2 *3 -

3. For which values of the parameter a is each of the following quadratic forms 
positive definite:

a) <p =  3*1 — 4 * 1 * 2  +  4a*l;
b) <p =  5*1 +  *1 +  ax 1 +  4 * 1 * 2  — 2 * 1 * 3  — 2 *2 X3 ;
c) (p =  2*1 +  *1 +  3*1 +  2a* 1 * 2  +  2*2*3?

4. Let Ai and k 2 be the eigenvalues of the symmetric linear transformation 
corresponding to a quadratic form <p(x, x) defined in the plane L2. Prove that 
if A, <  A2,'then

Ai(x, x) <  0?(x, x) <  A2(x, x).
5. Prove that the eigenvalues of a symmetric matrix A all lie in the interval 
[a, b] if and only if the quadratic form with matrix A — xE  is positive definite 
for all * <  a and negative definite for all * >  b.
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6 . Let 0 >(x, x) =  1 be the characteristic surface of a symmetric linear trans­
formation A (see Sec. 12.5). Determine the form of the surface if the eigenvalues 
of A satisfy the following conditions:

a) Xi =  ^ 2  >  0 , A3 0 ;
b) Aj =  A2  <  0 , A 3  >  0 ;
c) A i >  0 , A 2 >  0 , A 3 >  0 ;
d) A i >  0 , A 2 >  0 , A 3 <  0 ;
e) A i >  0 , A 2 < 0 , A 3 <  0 ;
f )  Xi  <  0 ,  A 2 <  0 ,  A 3 <  0 .

25. Representation of a Nonsingular Transformation

25.1. As the following remarkable theorem shows, orthogonal trans­
formations and symmetric transformations suffice, in a certain sense, to 
describe arbitrary linear transformations:

T heorem , t  Every nonsingular linear transformation A o f the space 
L 3 can be represented as the product o f  an orthogonal transformation 
and a symmetric linear transformation.

Proof Let A* be the adjoint of A. Then the transformation A*A 
is symmetric, since

by the theorem on p. 89. Being symmetric, the transformation A*A has 
three orthonormal eigenvectors ev, er , er , by Theorem 4, p. 126, so that

Moreover, the eigenvalues A„ A2, A3 of the transformation A* A are 
all nonnegative. In fact, it follows from (1) that

=  (e„ (A*A)e,) =  (e„ A*(Ae,.)) =  (Aer, Aer) >  0 
(cf. Prob. 8, p. 93).

Now let H  be the transformation with matrix

in the basis e^, e2/, e3>. Since H ' is a symmetric matrix, H  is a sym­
metric linear transformation (why?). Moreover, the transformation H 2 
has the matrix

f The theorem has an obvious analogue for a nonsingular linear transformation of the

(A*A)* =  A*(A*)* =  A* A

(A*A)er  =  A,e,., (A*A)e2, =  X2er , (A*A)e3. =  A3e3.. (1)

plane £ 2.
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in the basis er , er , e3,, i.e., the same matrix as the transformation A*A.
It follows that

A* A =  H 2,
and hence

A =  (A*)_1H 2 =  ((A*)_1H)H,
and the theorem will be proved if we succeed in showing that the trans­
formation

T =  (A*)_1H (2)
is orthogonal. But

T* =  ((A*)_1H)* =  H*((A*)-1)* =  H A "1,
where we use the symmetry of H  and the fact that ((A *)'1)* =  A-1.
It follows that
TT* =  ( A ^ 'H H A 1 =  (A*)_1H 2A-1 =  ( A T ^ A A - 1 =  EE =  E,

i.e., T is in fact an orthogonal transformation. Thus, finally,
A =  TH, (3)

where T is orthogonal and H  symmetric. |
Remark 1. Geometrically, the theorem means that any nonsingular linear 

transformation consists of three simultaneous expansions (or contractions) 
along three perpendicular axes, followed by a rotation of the whole space 
(together with these axes) about the origin.t

Remark 2. In proving the theorem, we have given an explicit procedure 
for constructing the symmetric and orthogonal transformations figuring in 
the representation (3). Note that to find the matrix of the orthogonal trans­
formation (2), we must first find the matrix of the symmetric transformation 
H  in the original basis e l9 e2, e3 by using the formula

H = r - ' H T ,
where r  is the matrix of the (orthogonal) transformation from the basis 
e19 e2, e3 to the basis e r , er , e3„

25.2. We now give two examples illustrating the above theory.
Example 1. Let A be the linear transformation of the plane L 2 with 

matrix
/ 36 2 \

25 25
A =

_  23 36 
25 25/

in some orthonormal basis e,, e2. Express A as a product of an orthogonal 
transformation and a symmetric transformation.

t  See Prob. 7, p. 121. If T is improper, the rotation is coupled with a reflection.
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Solution. First we find the symmetric transformation A*A and reduce it 
to diagonal form. This transformation has the matrix

73 
25

A*A =

and characteristic equation

36 23\ / 36 2 \ i
25 25| 25 25
2 36 23 36
25 25/ \ 25 25 ) \

36

73 . 36
2 5 “  A “ 25

52
=  0,

36 _
'25 25

which simplifies to
A2 -  5A +  4 =  0.

Hence the eigenvalues of A*A are A, =  1, A2 =  4, with corresponding ortho- 
normal eigenvectors

Ci' =  (t ’ t ) ’ e2' =  ( - r - T ) ’
and the matrix of the transformation A*A takes the form

—G 3
in the basis er , er . The required symmetric transformation H has the matrix

“ • - G  “)
in the basis er , er , and the matrix

/3 4 \ /3 4 \ 41 12\
H =  r - 'H ' r  =

5 5

G 3
5 5 25 25

4 3 4 3 12 34
\ 5 5 \ 5 ~ T I \  25 25/

in the original basis e15 e2.
We can now construct the matrix of the orthogonal transformation 

T =  (A*)_1H. Observing first that

A* =
36 23\ /  1825 251 , 25

=2 36 1
\  25 25/ \  25

we have

(A *)-'H  =

18
'25

25

2 3 \i 41 ,2\ 24 7)
5° | | 25 25| 25 25

18 1 12 34 7 24
25/ V 25 25/ \  25 25/
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Noting that

we see that the transformation A consists of two simultaneous expansions 
along the e r  - and er -axes, with coefficients 1 and 2, respectively, followed 
first by a reflection in the e2,-axis and then a rotation of the plane about 
the origin through the angle a =  arc cos %% ^  16°.

Example 2. Let A be the linear transformation of the space L 3 with 
matrix

/ 1 6  2_ J_\
9 9 9
M _  U  _2
9 9 9

i i
\ 9 9 9 '

in some orthonormal basis ep e2, e3. Express A as a product of an orthogonal 
transformation and a symmetric transformation.

Solution. The symmetric transformation A*A has the matrix

16 14 5 16 2 i \ 53 26 4
9 9 9 9 9 9 9 9 9
2 14 14 14 14 2 26 44 22
9 9 9 9 9 9 9 9 9
1 2 16 5 14 16 4 22 29

\9 9 9 9 9 9 9 9 9 '

in the basis e,, e2, e3. After a bit of calculation based on equation (5), p. 110, 
we find that the characteristic equation of A* A is

X3 -  14A2 +  49A -  36 =  0,

with roots Xx =  1, k 2 =  4, A3 =  9. The corresponding orthonormal eigen­
vectors are

and the matrix of A*A is just

in the basis e r , er , ey . Thus the required symmetric transformation H
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figuring in the representation (3) has the matrix

n  0 Ov 
/ / ' =  0 2 0 

\0 0 3/

in the basis e r , er , e3, and the matrix

H  == r - ' H T  =

r 1 2 2 /1 2 2
3 3 3

/1 0 ° \
3 3 3

2 1 2
(o 2 o)

2 1 2
3 3 3

\o 0 3 /
3 3 3

2 2 1 2 2 1
k" 3 3 3 3 3 3 /

7 2 0 \
3 3

4 - 2  4

o  4 - 4

in the original basis e,, e2, e3. Noting that

/f* =

16 14 5 14 13 7
9 9 9 27 27 27
2
9

14
9

14
9 ’ W  =

I
27

29
54

13
27

1 2 16 1 1 14
9 9 9 27 27 27'

we can now find the matrix of the orthogonal transformation T =  (A*) *H, 
the first of the factors figuring in the representation (3):

T =  (A*)~lH  =

14 13 7 7 2 o ’27 ?7 27 3 3
1 29 13 2 2

27 54 27 3 L 3
1 1 14 n 2 5

27 27 27' u 3 3

8 4 1
9 9 9
4 7 4
9 9 9
1 4 8
9 9 9
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Thus the transformation A consists of three simultaneous expansions along 
the e r , er  and e3,-axes, with coefficients 1, 2 and 3, respectively, followed 
by the (improper) orthogonal transformation with matrix T.

PROBLEMS

1. Use a slight modification of the proof of the representation (3) to prove the 
alternative representation

A =  HT, (3)
of a nonsingular linear transformation A, where T is again orthogonal and 
H symmetric.
2. Represent the transformation A with each of the following matrices (in some 
orthonormal basis) in the form (3):

a) A - r , +i
- i

v T - >> b) A g ~:>
3. Represent the transformation A with matrix

(in some orthonormal basis) in the form (3').



SELECTED HINTS AND ANSWERS

Chapter 1

Sec. 1

1. a) and c) are not linear spaces; b) is a linear space if the line goes through 
the origin of coordinates.
2. a), c), and d) are linear spaces; b), e), and f) are not.
3. No.
4. Yes. The zero element in R+ is the number 1 e  R+, while the negative of 
an element p e R+ is the element 1 Ip e R+.
7. The set of vectors of L3 lying in any plane or line going through the origin 
of coordinates, the space L3 itself, and the space {0} consisting of the single 
element 0.
8. The sets a), c), and d).

Sec. 2

1. a) a  =  — 2; b ) a = —1; c ) a = ± l ;  d) a =  3, / 7 = 2 ;  e) a = — f,
f i=  - ¥ •
2. a) a =  —2; b) a =  .̂
4. Consider the relation Ci^i(/) +  c2̂ 2(0 =  0 for t = \  and t =  |.
5. Use the fact that an equation of degree n can have no more than n roots.
6. The functions 1,/, /2, . . . , / "  e C[a, b] are linearly independent for arbitrary 
n (see Prob. 5).

1 4 4
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7. Write the equation CC1 & 1  +  a 2a 2 +  oc3a 3 in component form, and show that 
the resulting system of homogeneous equations has a nonzero solution.
9. Since au a2, a3 are linearly independent, a(aj +  a2) +  fi(a2 +  a3) +  y(a3 + a,) 
=  0 implies CL + y =  (X + fi = p  + y = 0 and hence a =  p  = y = 0.

Sec. 3

1. x =  a t +  2a2 +  3a3.
Hint. Having proved the linear independence of the vectors ai, a2 and a3 (see 
Sec. 2, Prob. 7), write x in the form x = 0Ciai +  a 2a2 +  a 3a3. Then write this 
relation in component form and solve the resulting system for «i, a 2 and a 3.
2. The dimension equals n +  1, the simplest basis consisting of the polynomials
1, /, /2, . . . ,  The components of a polynomial P(t) =  a0 +  axt +  a2t2
+  . . .  +  a„tn in this basis are just the coefficients a0, au a2, . . . ,  a„.
3. Infinite-dimensional because of the result of Sec. 2, Prob. 6.
4. One-dimensional with any element x  ^  1 as a basis.
5. The result follows from the fact that the basis for U  is also a basis for L.
6. Choose a basis in L' n L", and enlarge it to make first a basis for L' and then 
a basis for L". Then prove that the vectors of the basis in L' n L" together 
with both sets of supplementary vectors form a basis in L' +  L".
7. Use the results of Probs. 5 and 6.
8. Use the result of Prob. 6.
9. The sum is the whole space L3, while the intersection is one-dimensional 
(a straight line).
10. 5 =  3, d =  2.
11. A basis for L' +  L” is given, say, by the vectors a2, a3, b2 and a basis 
for L' n L" by the vectors b! =  —2ax +  a2 +  a3, b3 =  5ai — a2 — 2a3.
12. a) A basis is given, say, by the vectors (1, 1 , 0 , . . . ,  0), ( 0 , 0 ,1 ,0 , . . . ,  0), 
(0, 0, 0,1, 0 , . . . ,  0 ) , . . . ,  (0, 0 , 0 , . . . ,  1). The dimension equals n — 1; b) 
A basis is given, say, by the vectors (1, 0 , . . . ,  0), (0,0,1, 0 , . . . ,  0), 
(0 ,0 ,0 ,0 ,1 ,0 , . . . ,  0), and the vector (0,1, 0,1,0, 1,...). The dimension equals 
1 +  IzO1 +  1)3> where [£(n +  1)] denotes the largest integer not exceeding 
£(/i +  1). c) A basis is given, say, by the vectors (1,0, 1 ,0 , . . . )  and 
(0 ,1 ,0 ,1 ,...) . The dimension equals 2. d) A basis is given, say, by the vectors 
(1,0, 0 , . . . ,  — 1), ( 0 , 1 , 0 , . . . ,  — 1 ) , . . . ,  ( 0 , 0 , . . . ,  1, — 1). The dimension 
equals n — 1.
13. Any n linearly independent solutions of the equation form a basis, and the 
space is of dimension n. The components of an arbitrary solution with respect 
to any basis are just the coefficients of the expansion of the solution with respect 
to the elements of the basis.
14. 2LiX\ +  a2*2 +  • • • +  2L̂ ca =  by where a, =  {aUj. . . ,  ami) (/ =  1 , . . . ,  n) 
and b =  (bi , . . . ,  bm) are vectors of the space Lm.
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Sec. 4

1. In the triangle ABC write BC in the form AC — AB, and then find | jBC|2. 
b) In the parallelogram ABCD we have AC =  AB +  BC, BD = BC — AB. 
Now find | AC |2 +  | BD |2. c) In the rhombus ABCD we have \AB\2 = \ AD |2, 
and hence AC - DB = (AB -A D )-  (AB +  A D) =  0. d) In the rectangle ABCD 
we have A B B C  = 0, and hence \~AB +  BC |2 =  \ AB -  BC |2, i.e., \AC \2 =
| BD |2 or | ~AC\ = | BD |. e) The proof is similar to a), f) The median AD of
the triangle ABC is given by AD =  \(AC  +  AB). Now find \AD\2, using the 
result of a), g) Let AAX and BB{ be equal medians of the triangle ABC. Then
\AAi |2 =  \BBX |2, and hence |AB +  AC |2 =  |BA +  BC |2 or (AB +  AC +  BA 
+  BC) - (AB -¡-AC — BA — BC) = 0, so that AB- CC i = 0 where CCX is the other 
median of the triangle, h) In the trapezoid ABCD we have AB 4- BC +  CD 
= AD, AC = AB + BC, BD = BA + AD, and hence \AC \2 +  \BD \2 =
| AB +  BC \2 + \lB A ^A D \2 ^ \X B \2 ^ 2 A B -B C ^ \B C \2 + \AB \2 -2 A B -A D  
+ \AD\2= | AD \2 + \BC \2 +2{|^® |2 + A B -(B C -A D ))=  \AD \2 + \B C \2 +  
2AB-(AB+ BC - A D ) =  \AD \2 + \BC \2 +  1AB-DC =  \AD \2 +  \BC \2 +  
2\AB\ | DC |. i) In a regular tetrahedron A xA2AzAa we have A 3A4 = A XA4 —
A \A 3, A\A 2 -A3A4 = A \A 2 -A\A4 — A \A 2 -A\A3 or A\A 2 -A3A4 =  / 2 cos 60° 
— l 2 cos 60° =  0, where / is the length of a side of the tetrahedron, i.e., 
A \A 2 -A3A4 = 0.
2. (Xiyt) 2 <  (XjXj)(ykyk).
4. a) Yes; b) Yes; c) No.

6. v u w t u t ) = J j y m d t .

8. Start from the arbitrary inequality (Ax — y) • (Ax — y) >  0.
9. In En the inequality is the same as in Prob. 2, except that now i,j, k = 1,2, 
. . . ,  n instead of i,j, k =  1,2, 3. In C[a, b] we have

I j7(/)ir(0 dt | < \ j \ [ s H t ) d t .

10. 30°, 90°, 120°.
14. Take the scalar product of the vector X! + x2 +  • • • +  x  ̂ with itself.

( < | x p  +  2 |x | |y |  +  |yp,
2 |x | |y |  +  |yp,

15. | x + y P = x - x  +  2x-y +  y y j ^  X '  +  :
l >  |xp —:

by the Cauchy—Schwarz inequality.

!6. | | <  +  g«W  dt

^  V j ° / 2(t)dt + J  j j* ( t ) d t .
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17. Calculate
|x  -  S  (x-e()e,|2 >  0,

noting that
Pr.,x =  x-c„ x =  2  (x-e,)e,.1=1

18. a) Let uk(t) =  (t2 — 1)*, and prove that uk \ \ )  =  0 if j  < k. Then integrate 
J-i u[k\t)tJ dt by parts repeatedly until the integrand no longer contains a 
power of t. Show that this integral vanishes if j  =  0,1, . . .  , k  — 1, thereby 
deducing the orthogonality of the Legendre polynomials, b) P0(t) =  1, Pi (/) =  /,
Pi(t) =  J(3t2 -  1), P3(t) =  '2(5t> -  30, P4(0 =  ¿(35f4 -  30/2 +  3)j />*(,) =
—— v  (—i)*-y f —SZll—/2/-* — y* ( 1 *3"S • • • (2y — 1)
2 kk ! yTo  ̂ 1} \7  /  (2/ — k)\* } (k - j y . i l j - k y . l k S  ’

where the terms with negative powers of / must be dropped, c) y ;
2 k  +  1‘

Writing (/2 -  1)* =  uk(t), show that f i t u{kk\t)u{kk\t)  dt = (A:!)2^  1
d) P*(l) =  1.
Hint. Use Leibniz’s rule for differentiating a product.

Sec. 5

1. |a x (b +  c)|, |b x (a +  c)|, |c x (a +  b)|.

 ̂ „ | OA x OB +  OB x OC +  OC x OA \z. sin (X =  J---------- --- ------------— -----— ----------1 •
| OB -  OA 11 OC -  OA I

3. hi =  !£'■  -  f » ) x  (r, - r a) |,  etc
|r3 - r 2|

4. We have nt =  r2 x rj, n2 =  r3 x r2, n3 =  r t x r3, n4 =  (r2 — rj) x 
(r3 — rO, where r 3 =  OA, r2 =  OB, r3 =  OC, and hence n3 +  n2 +  n3 +  n4 =
0. It follows that |n4 12 =  | ni +  n2 +  n312, which implies S i  =  S i  +  SI  +  S i 
+  2n!*n2 + 2n2 n3 +  2n3-nj. Now use the fact that the cosine of the angle 
between two faces differs only in sign from the cosine of the angle between the 
normals to the faces.

a\
bi

<*2

b2 b 1

a3

b3

a2

b2

a3

b3

a^i afii
b ^

components of a and b in some orthonormal basis.

, where a, and bi are the

10. The indicated lines are collinear with the vectors rY x  (r2 x r3), r2 x 
(r3 x rj) and r3 x (r3 x r2), where ri, r2, and r3 are vectors collinear with the 
edges of the angle. Now use the result of Prob. 9.
11. Use the result of Prob. 6 repeatedly to prove that p-q =  0.
12. S  =  £|(b — a) x (c — a) I, and hence 4S2 = b2c2 sin2 a  +  a2c2 sin2 fi +  
a2b2 sin2 y +  2abc2 (cos a cos p  — cos y) +  2bca2 (cos P cos y — cos a) -f
2acb2 (cos a cos y — cos p).
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13. 2(a, b, c). The volume of the parallelepiped constructed on the diagonals 
of three faces passing through one vertex, equal to twice the volume of the 
original parallelepiped.
14. Xfiv =  —1.
15. Write the system in vector form (cf. Sec. 3, Prob. 14), and then take the 
scalar product of both sides with a2 x a3, a3 x ai and ai x a2.
17. a) Calculate (a x b) x (c x d) in two different ways and compare the 
results, b) Use the result of Prob. 16a. The formula means that the volume of 
the parallelepiped whose edges are perpendicular to the faces of the original 
parallelepiped and have numerical values equal to the areas of these faces is 
equal to the square of the volume of the original parallelepiped.
18. By Prob. 17a we have (a, b, c)d =  (b, c, d)a +  (c, a, d)b +  (a, b, d)c =  
[(b x c)*d]a +  [(c x a)*d]b +  [(a x b) • d]c. Now replace d by x x y, use Prob. 
6, and take the scalar product of both sides of the resulting equation with z.
19. Use Prob. 18.

Sec. 6

1. a) er  =  —ej sin 0  +  e2 cos 0 , er  =  e! cos 0  4- e2 sin 0 , x v =  — x x sin 0  +  
x 2 cos0 , x r  =  * 1  cos0  +  jc2 sin#; b) x v =  —x u x 2* = x 2.

/0 1 0\ /0 0 1\
2. a) T =  1 0 0 ; b) T  =  1 0 0 .

\0 0 1/ \0 1 0/
3. a) Two rows are interchanged; b) Two columns are interchanged; c) The 
new matrix is obtained by reflecting the old matrix in its central term.
4. er  =  e^cos q> cos y/ — sin q> sin y/ cos 0) +  e2(sin (p cos y/ +  cos <p sin y/ cos0) 
+  e3 sin yr sin 0 , er  =  e! (—cos y> sin y/ — sin <p cos y/ cos 0 ) +  e2 (cos 0  cos q> cos y/ 
— sin <p sin y/) +  e3 cos y/ sin 0, e3/ =  ei sin (p sin 0  — e2 cos (p sin 0  +  e3 cos 0 .

6. e„- =  while e,., e2-, . . . ,  e(„_n. are arbitrary.

7. Choose a new basis er , . . . ,  e„, whose first k vectors form a basis for Lk. 
Write the condition that a vector x belong to Lk as a system of equations in the 
new basis, and then write the corresponding system in the old basis.

1 0 •• 0\
—a 1 •• 0
a2 - 2a •• 0

\(—\)nan (—1 )n- lnan~l • • • 1)
where the (k +  l)st row of the matrix consists of the numbers (—a)*, 
C t i i - * ) * " 1, C i_2( - a y ~ \  . . . ,  C \ { - a \  1, 0 , . . . ,  O.t

n — k times

denotes the binomial coefficient n\jk\{n — A:)!, where Cnk = 0 if k < 0 .
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Sec. 7

1. a) (x -  xj, a, b) =  0,
AT. -  a:',1’ x i  -  *<2» *3 -  x<3»

a i « 2 «3

bi ¿>2 b3

=  0, where

x =  xfit, Xi =  x(tl)eh a =  atei9 b =  bfiti b) (x -  x0, X! -  x0, a) =  0,
*1 -  *10> *2 ~  X(20) JC3 -  JC(30)
*(ll) -  x\0} *(2U -  x(2°> x?' -  X(30)

Oi
a =  aft,

a2 a3

=  0, where x =  xp i9 x0 =  x}0>e,, Xj =  xiue,, 

2. The planes intersect if (and only if) some

are parallel if all

and are coincident if all

a{2> ^  0,aj2)

ai” , ai2)
F 15 F 2*’

*P_ a p
1, F u ‘= F15'

3 l * - g l

4. atXi +  $(b +  b') =  0.
5. X(d"x,+  6'») +  + F 2>) =  0.
6. a) (aî Ari0' +  b<»X4nx, + Fi>) _  («<»*¡0’ +  bn,)(a,:1)xi + F 21) =  0; 
b) t t f 'c t fW x ,  +  F ‘>)- ai'V*’’ (ai2,x, + F 2>) = 0.

7. cos 0 =  • aP aP
« P F ‘V a P ap : thC planes are orthogonal when =  0.

8. Choose A =  ±a<i>(a<2 > ) 2  _  ^ 2 ) ^ 1  ^  =  a<2 >(a<i> ) 2  T  a<ua P a P  in the
answer to Prob. 5, where a<» =  ^ ¿ p a p ,  a '21 =  , / a p a p .

9. aP  -  (6 +  ";y!i0>) - / g<

1 0 - iV i /y p f i /p t .Z ,  -  ATjXzy — ATyX ^  -  X k) ( y t -  x ,) .

11. {eljk{ut -  XtXzj -  Xj)(yk _  xk).

12. la x (*0 — y)l

13. la X (x2 - x , l l 
la l

14. a) arc cos 3 ~ a2 . . M |(x2 -  Xi,ai ,a2)| 
| a . | | a 2|> ----- 1a, x a2l
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Chapter 2

Sec. 8

1 . a), d), and e) are linear forms, but not b); c) is a linear form only if c =  0 .
2 . 0 >(x) =  (a, b, x) =  (a x b)*x.

Sec. 9

3. Yes.
4. Yes.
5. No.
6 . No, unless c =  0.

Sec. 10

1. No, unless c =  0.
2. No.
3. Yes.
4. Yes.
7, 8 . Examine the cases where the components equal 0,1 separately.
in _  d<p dxj 

dxy dXi dxr
since X; =  yU'Xr implies

dxL
dxi/ 7«' = yn.

Similarly,
d 2 ( p  =  d  /  d t p  \  d x i  

d x i ' d x y  d x  i /  d x ?
ytr = y«yj'j

d2<p
dxidxj

Sec. 11

Qijk̂ lm j @ijk̂ imi jk^lii ^ijk^jm» ^ijk^lj■> ^ijk^kmi jk^lk i ^ijk^ijj ^ijk^jit ^ijk^jki 
aijkbkj-> Qijkbik, aijkbki.
3. To prove the sufficiency, write the condition in the form

=  £ «  =  A j,,
2a 2k,

which implies zi} =  za (no summation over /). Now let / =  1.
4. au =  1.



5. a) (16,19,41); b) (25, 21, 36); c) (37,2,16); d) (3,20,40); e) 186;
/ - 2  0 3X

f) 140; g) 10; h) I 5 - 3  2J ; i) (17,17,20); j) 150.

6. For example, such a basis consists of the nine tensors with matrices of the 
form

/1 0 0\  /0  1 0\  /0  0 0\

0 0 0 , 0 0 0 , . . . ,  0 0 0 .
\0 0 0/ \0 0 0/ \0 0 l )

Sec. 12

1. Prove that the coefficients aijk of the form (p are proportional to the com­
ponents of the discriminantal tensor eiJk.
2. Use the fact that two of the indices of the tensor determined by such a form 
are always equal.
4. A consequence of the fact that aijk =  ajik =  —ajki =  —akji =  akiJ =  aikJ
=  ~ a i j k -

5. Consider the terms with / =  j  and i ^  j  separately.
6. Collect similar terms, set the coefficients of distinct xtxjxk equal to zero, 
and use the symmetry of atJk in the first two indices.
8. In the first part, collect similar terms and set the coefficients of distinct 
xtyjXkyi equal to zero.
12. a) 6; b) 0; c) 0; d) ( -1 ,2 ,1) ;  e) 0; f) 9; g) (4,41, -3 ) ;  h) 143.
13. a) jc? +  jc|  +  xj — 1/A; a sphere of radius vT/A (real or imaginary depend­
ing on the sign of A); b) {a^^bjXj) = 1 or x vx v =  c after an appropriate 
coordinate transformation; a hyperbolic cylinder.
14. a) x\ +  x\ — 1; b) JCiX2(*i +  x 2) =  1; c) x\ — 3x xxl =  1.

Chapter 3
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Sec. 13

2. a), b), c) and d) are linear, but e) is not; a) represents reflection in the origin, 
b) carries the vector x into the vector lying on the bisector of the first and third 
quadrants with the same first component as x; c) represents twofold expansion 
of x along e2 followed by reflection in e l5 d) represents expansion Ai times along

followed by expansion A2 times along e2 (if Ai <  0, the first expansion must 
be accompanied by reflection in e2, and similarly if A2 <  0).
3. u =  Ax =  X x^i +  *2e2.
5. a), d), e), and f) are linear, b) and g) are nonlinear, c) is linear only if a =  0; 
a) represents projection onto a followed by expansion a2 times, d) represents
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projection onto the e^e^plane, e) represents reflection in the e^e^plane 
followed by reflection in the e^e^plane and twofold expansion along e3, f) 
represents expansion (or contraction) along e3.
6. Yes.
12. Only the operation c) provided that Hit, s) is a polynomial of degree not 
exceeding n in / with coefficients which are functions of s.

Sec. 14

1. A = (  1
V o - 3

in Prob. 2a; =  |
u  o ) inProb- 2b; ' ‘ - G  —2 ) *n

Prob. 2c; A
- f t

,° ^ in Prob. 2d; A =  in Prob. 3.

i a \ Û1Û2 axa%\
3. A =  a2ax a! a2a3 in Prob. 5a, where a =  tfxe4 ; A =  N for a =  0 in

\a zax <13̂ 2 a? /

in Prob. 5e;
/1 0 0\ /1 0 0\

Prob. 5c; A =  jo 1 Oj in Prob. 5d; A = [o —1 01
\0 0 0/ \0 0 - 2 /

/1 0 0\ / 0  - a 3

A =  0 1 0 1 in Prob. 5f. In Prob. 6, A =  € [ a3 0
\0 0 A/ \ —a2 a\

a = a ^  and € =  ±1 depending on whether the basis is right-handed or left-
/A! 0 0 \  I? i  i \

handed. In Prob. 7, A =  I 0 A2 0 ]. In Prob. 8, A =  I \  I. In Pr°b- 9, 
\0  0 A3/

/0 0 1\ /0 1 0\
A = 1 0 0 1 if ej goes into e2, while A = 0 0 1 I if e2 goes into e]a

Vi i  V

Vo l o/ Vi o o/

5. a) /4 =

/0 1 0 • ■ 
0 0 2-

• ° \  
• 0

; b) A =

/0 1 0 . 
0 0 1-

•o \ 
• 0

0
 

0
 

0
 

0
 

0
0

• n
oj

0 0 0 .  
\0 0 0 .

• 1 
•0 /

6. If a, =  aj7ey, b, =  bifij and A =  (alV), 1? =  (6l7), then the transformation 
matrix C has elements

bki^k
Ml ’

where Akj is the cofactor of ajk and \A \ is the determinant of the matrix A.

(2 6\
7. C =  1 - 7  4 1 •

\2 -1  0)
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8 . a) Reflection in the e2, e3 -plane; b) A-fold expansion along e2; c) Projec­
tion onto the e!,e 3 -plane; d) Projection onto e2.
9. A = (aik) where aik =  a>iCOk +  (Sik — cOi(ok) cos a +  €ijkcOj sin a.
11. The transformations considered in Examples 1,2, 5, 7, 8 and in Probs. 
2a, 2c, 2d, 3,4, 5e, 5f, 7, and 9 are nonsingular, while those considered in 
Examples 3, 6 and Probs. 2b, 5a, 5c (if a  =  0), 5d, 6, 8, and 10 are singular with 
matrices of rank 0 , 1 , 1 , 1 , 0 , 2 , 2 , 1 , n, respectively.
13. a) is a singular transformation with matrix of rank 1 carrying every vector 
of L 2 into a vector on the line x 2 = 2 x x, b) is a singular transformation with 
matrix of rank 2  carrying every vector of L3 into a vector in the plane x x +  x 2 
= *3, c) is a singular transformation with matrix of rank 1 carrying every vector 
of L3 into a vector on the line x x =  \ x 2 — ^ jc3.
14. Prove that a)-d) hold if and only if A has a matrix of rank 3.
17. Use the results of Probs. 14a and 14d.
18. a) The null space consists of the vectors collinear with e2, the range consists 
of the vectors collinear with aei +  e2, the defect and rank both equal 1 ; b) 
The null space consists of the vectors collinear with e2, the range consists of the 
vectors of the e!, e3 -plane, the defect equals 1, the rank equals 2; c) The null 
space consists of the vectors of the ex, e2 -plane, the range consists of the vectors 
collinear with e3, the defect equals 2, the rank equals 1; d) The null space 
consists of the vectors collinear with e2, the range consists of the e2, e3 -plane, 
the defect equals 1 , the rank equals 2 .
19. The null space consists of all polynomials of degree 0, the range consists 
of all polynomials of degree not exceeding n — 1 , the defect equals 1, the rank 
equals n.

Sec. 15 1 2

1. a) (p =  x\, x\ =  1, a pair of lines parallel to e2; b) q> = —x\ — xf, x \ +  
x\ = — 1, a circle of imaginary radius; c) q> = x \ — xi, jc? — x\ =  1, an 
equilateral hyperbola; d) (p =  x\ +  3jc|,  jc? +  3x\ =  1, an ellipse with 
semiaxes 1 and \/^/~3 ; *) (p = x \ + Xx\, x \ +  Xx\ =  1, an ellipse (A >  0) 
or hyperbola (A <  0) with semiaxes 1 and 1 / \ /X  (or 1/x/—A); f) (p =  Xxx\ 
+  X2xl, Xxx\ +  X2x\ =  1, an ellipse if Ai >  0, A2 >  0, a hyperbola if 
AjA2 < 0 , an imaginary ellipse if Ai <  0, A2 < 0 .
2 . a) (p =  xl, x \ — 1 , a pair of planes parallel to the ej, e3 plane; b) (p =  
*i +  *1, +  * 2  =  1 , a right circular cylinder; c) <p =  x \ +  x \ — *§, x\ +
* 2  — x\ =  1 , a single-sheeted hyperboloid of revolution; d) (p =  — x\ +  2x\ 
—x \,x \  — 2x\ +  * 3  =  — 1 , a double-sheeted hyperboloid of revolution ;e) (p =  
aiCLjXiXj, OidjXiXj = 1 or x\> =  c after an appropriate coordinate transformation, 
a pair of parallel planes; f)(p  = (axay +  bib f a x j  =  1 , an
elliptic cylinder (cf. Sec. 12, Prob. 13).
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3. u* =  A*x =  x ^ i  +  (2 x i  +  x 2)e2 +  * 3 e3, A =  A { +  A2 where Axx =  
( x t +  x 2) e l +  ( x i  +  x 2 )e2  +  x 3e 3, A2x =  x 2e x — x te 2 ; b) u* =  A*x =  x 2e : 
— *!e2  +  x 3e 3, A =  Aj +  A2 where AjX =  * 3 e3, A2x =  — x 2^  +  jĉ ;  
c) u* =  A*x =  (b«x)a, A =  A! +  A2 where AiX =  £[(a*x)b +  (b*x)a], A2x =  
¿[(a«x)b — (b-x)a]; d) u* =  A*x =  (b2 - x ^  +  (b2-x)a2, A =  Ax +  A2 where 
AiX =  ¿ [(a rx )^  +  (b1-x)a1 +  (a2-x)b2 +  (b2-x)a2], A2x =  ¿[(a^x)^  -  
(bi• x)aj +  (a2-x)b2 — (b2*x)a2]; e) u* =  A*x =  x x a, A =  Aj +  A2 where 
Aj =  N, A2x =  a x x.
5. Yes.
7. Write x in the form x =  x 2 +  x2, where X! is the projection of x onto IT 
parallel to / and x2 is the projection of x onto / parallel to II. Then Ax =  
Xj — x2. Now show that (y, Ax) =  (x, Ay) if and only if / is perpendicular to II.
8 . In c) and d) use integration by parts.

Sec. 16

h ;;>
«i  (

3. A =
cos a — - sin a \a2

\ — sin a\a  i
cos a

4. Use mathematical induction.
0 0

5. A" =  0 0

\o 0  k’y
8 . Use the theorems in Secs. 15.3 and 16.2.
1 2 . Use the theorem in Sec. 14.3.
14. Compare corresponding elements of the matrices AB and BA, using the 
arbitrariness of B.
15. Same hint.

16. a) / a 2b \  
V3 b a +  36 /

where a and b are arbitrary numbers;

(
a b c\
0  a 61, where a, b, and c are arbitrary numbers.

0  0  a)

17. ( a b\  where a, b, and c are arbitrary numbers satisfying the condition
\c —a)

a1 +  be =  0 .

18. ± E  and ( a b\  where a, b, and c are arbitrary numbers satisfying the 
\c - a )

condition a1 + be = 1 .
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20. Both.
2 2 . An+xP(t) =  i ^ + i ) ^  _

A2 =

A3 =

/0 0 1-2 0 . . .  0 V
0 0 0 2*3 0

0 0 0 0 1 )n *
0 0 0 0 0

' o 0 0 0 0 '
¡0 0 0 1•2-3 0 . . . 00 0 0 0 2-3-4 . . . 0

0 0 0 0 0 . . .  (/2 -  2Xu -  1 )n
0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0

' o 0 0 0 0 . . . 0

etc.

The null space of A2, A3, . . .  is the set of all polynomials of degree not exceeding 
1 , 2 , . . . ,  the range is the set of all polynomials of degreen ot exceeding 1 , 2 , . . .  ; 
the defect of A2, A3, . . .  is 2, 3 , . . . ,  the rank n — 1 , n — 2 , . . . .
23. The transformation B raises the degree of polynomials, and hence can be 
considered only in the space of all polynomials (of arbitrary degree).

Sec. 17

Sec. 18

1 . a), c), e), and f) are groups; b), d), and g) are not.
2. a) Reflection in the diagonals, rotation about the center through 180° and 
360°; b) Reflection in the diagonal and in the lines joining midpoints of oppo­
site sides, rotation about the center through 90°, 180°, 270°, and 360°; c) 
Reflection in the altitudes, rotation about the center through 120°, 240°, and
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360°; d) Reflection in the diagonals joining opposite vertices, rotation about 
the center through 60°, 120°, 180°, 240°, 300° and 360°. The sets of transfor­
mations are all groups.
3. All but d) are groups.
4. a), b), d), e), and g) are groups; c) and f) are not.
5. For example, the group in Prob. 3a is a subgroup of the group in Prob. 
3b, while the groups in Probs. 3a and 3b are subgroups of the group 
in Prob. 3c.
7. The diagonal elements must all equal ±1.

/1 0 0\ / - 1  0 0\

8 . a ) £  =  0  1  0  , - £ =  0 - 1  0

\0 0 1/  \  0 0 - 1/
2n . 2n\

/ —1 0

0 II 0 - 1
V 0 0

rotation.

B =

0 1, where the coordinate axes are chosen as the axes of
0/

Chapter 4

Sec. 19

2. a) The eigenvectors are collinear with b ,  A =  a - b ;  b) The eigenvectors are 
collinear with a ,  A =  0 ;  c) x =  ©, A =  1; d) — a  x b ,  x2 =  a  +  b ,  x3 =  
a  — b ,  A i =  0 ,  A 2 =  a - b  +  a - a ,  A 3 =  — a - b  +  a - a ;  e) Xi =  a  +  b  +  c  is an 
eigenvector and so is any vector in the plane perpendicular to x 1? A i =  a - a  4- 
2 a - b ,  A  2 —  A 3 —  a - a  — a  * b .
3 .  a) x  =  ( l / ^ / T ) ( e i  +  e 2 +  e 3) ,  A  =  1 ;  b) x t =  ( l / V T X « i  +  «2 +  e 3) ,  
x 2 =  ( l / v ^ ) ( e 1 +  e 2 -  2 e 3) , x 3 =  ( l / v ^ X - e i  +  * 2X 1̂ II 2 ,  A 2 =  A 3 =  - 1 .
4. a) Xl =  ( l A / i X e x  -  e 2) ,  x 2 =  ( 1 / ^ 5 ) ^  +  2 e 2) ,  A t =  1 , A 2 =  4 ;  b )  
x i =  ®i> x 2 =  ( 1 / v ^ X e i  +  ©3)» x 3 =  ( l / ^ T X e 2 —  e 3)> 1̂ =  2 ,  A 2 =  1 , A 3 =  
- 1 ;  c )  x ,  =  ( 1 / V T X e i  +  e 2 -  e 3) ,  x 2 =  ( l / V T X e i  -  e 2>, x 3 =  ( l / V F )  
x ( e j  +  e 2 +  2 e 3) ,  A t =  0 ,  A 2 =  — 1 , A 3 =  9 ;  d )  x  =  ( l / v ^ 4 +  a 2 +  1 )  x 
(a2ex +  ae2 +  e 3) ,  A =  a;  e) x  =  e 3 , A =  a;  f )  =  e u x 2 =  — M i  +  
{ a , -  ¿ 2) e 2 , x 3 =  ( M 2 -  M i  +  c ^ e i  +  c 2( c 3 -  a x)e2 +  ( c 3 -  b 2)(c3 -  t f i ) e 3 , 
A i  —  ct\, A 2 — b 2i A 3 =  c 3 .
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8. Show that

\A~' - A £ |  = i -Xy\A~' \^A ~ \ e \

if A is of order n.
9. Show that the characteristic equations of the matrices AB and BA have the 
same coefficients /,, / 2, 73.
10. Show that if a is the angle of rotation, then A , = 1, X2t3 =  cos a ±  / sin a. 
Deduce from this that 2 cos a =  au — 1. The direction of / is that of the eigen­
vector with eigenvalue Ai = 1.
11. a =  arc cos f, / has the direction of the vector (l^y/D O i +  2e2).
12. B =  A~l =A*.
14. Write the transformation A2 -  //2E as a product of two factors.
17. Any number a  is an eigenvalue, with ceat as the corresponding eigenvector.
18. The unique eigenvalue is A — 0, with the polynomials of zero degree as 
the corresponding eigenvectors.

Sec. 20

/A 0 0\
2. In Example 1 the matrix is 0 A 0 in any basis; in Example 2 the matrix

\0 0 A/

n  ° \  i1' ° \is I Q A  in the basis e2; m Example 5 the matrix is I 0 A2 0 in the
\0  0 A3/

/0 0 0 \

basis e ,,e 2, e3. In Prob. 2d the matrix is 0 a-b +  a-a 0 I in
\0 0 —a*b +  a-a/

/1 0\
the basis Xj, x2, x3, in Prob. 4a the matrix is i \ in the basis Xj, x2; in Prob. 

/2 0 0\

4b the matrix is 0 1 0 1 in the basis Xj, x2, x3; in Prob. 4c the matrix is
\0 0 - 1 /

/ 0  0  0 \  i a x 0  0 \
0 — 1 0 in the basis x ,, x2, x3; in Prob. 4f the matrix is 0 b2 0 I in

\0 0 9/ \0  0 c j
the basis x u x2, x3.
3. When a | ^  <Xia3, 0CiCC3 >  0.
6. Show that the matrix of a proper orthogonal transformation A is of the 
form



where a1 + bz = 1. Show that an improper orthogonal transformation has real 
eigenvalues and eigenvectors, and go over to the basis consisting of the eigen­
vectors.
7. Show that there is always one real eigenvalue equal to ±1, so that Ax =  ± x  
for the corresponding eigenvector x. Show that the plane perpendicular to x 
is invariant under A.
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4. a) Use the fact that A3 =  I x A2 — 72A +  73E; b) A(aa +  /fan) =  oca! +  /?a2,

5. Show that AB — BA =  E implies AkB -  BAk =  kAk~ \  and hence f(A)B  
— Bf(A) =  f'(A) for any polynomial /(A). But this cannot hold for the poly­
nomial g(k) of minimum degree for which g(A) = 0.

2. Choose the eigenvectors as a basis, and note that a symmetric matrix A 
goes into a symmetric matrix A' under an orthogonal transformation Г , since

{A T  =  tГ А Г - Т  =  tГ ~ Т А * Г * =  {Г -Т А Г *  =  Г А Г ~1 =  A'
(see Secs. 16.4 and 18.3).
3. Show that the subspace consisting of all eigenvectors of one transformation 
corresponding to the same eigenvalue is invariant under the other transforma­
tion.
4. Proved by analogy with the corresponding properties of a symmetric linear 
transformation.

Sec. 21

Sec. 22

Sec. 23
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J _ /  2 30 +  4.730 —2 31 +  2*730\
* 5 2 31 -f 2 -7 30 2 3 2  +  730 /

/1 +  232 +  4.330 2 +  2 31 — 4«330 2 — 2 32 +  2 -3 30\
b) 338l 2 +  2 31 -  4 - 3 30 4 +  2 30 +  4 - 3 30 4  -  2 31 — 2 -3 30 I.

\2  — 2 32 +  2 -3 30 4  — 2 31 — 2 -3 30 4 +  2 32 +  330/
Hint. Reduce the matrices to diagonal form (see Probs. la, lb), raise the diagonal 
matrices to the thirtieth power, and then transform back to the old basis.
3. a) To prove the necessity, apply A to the eigenvectors, while to prove the 
sufficiency, consider the basis consisting of the eigenvectors; b) Let B be such 
that Be, =  V ^ e , (no summation over /), where eu e2, e3 is the basis consisting 
of the eigenvectors of A; c) Show that if all the A, are distinct, then the matrix 
C is diagonal, while if At =  A2 ^  A3, then c13 = c3l = c23 = c32 =  0; in each 
case (including Ai =  A2 =  A3), verify the formula BC =  CB directly; d) 
(x, (A +  B)x) =  (x, Ax) +  (x, Bx) > 0 ,  (A +  B)* =  A* +  B* =  A +  B; e) 
Let A? =  A, BJ =  B, C =  A XBX; show that AiB| =  BiA1? C2 =  AB and hence 
that AB is nonnegative (the symmetry follows from Sec. 16, Prob. 6); f) Use 
parts d) and e); g) Use the result of Sec. 19, Prob. 6.

5. Show that the eigenvalues of an orthogonal symmetric transformation 
equal ±1.

V M**' X^ ; =  2xi'> c) <P =  1(3*}. +  x \);  d) <p =  4x\. +4 x l - 2 x l ;  e) q> =  x l  +  ^ /J x *  _

4. In the basis consisting of the unit eigenvectors er  and er , we have
Ai(*f, +  *1,) ^  A 1x 2/ +  X2x l  <  k 2{x\' +  x \) .

Now use the invariance of x \  - f  x \

4. a) B = \A ; b) B =

Sec. 24
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5. Show that the eigenvalues of the matrix A — xE  are obtained by subtracting 
x  from the eigenvalues of the matrix A.
6. a) A single-sheeted hyperboloid of revolution with axis e3,; b) A double- 
sheeted hyperboloid of revolution with axis e3/; c) An ellipsoid; d) A single- 
sheeted hyperboloid; e) A double-sheeted hyperboloid; f) An “imaginary” 
ellipsoid.

Sec. 25

1. Start from the transformation AA*.
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INDEX

A

Adjoint (transformation), 80 
Antisymmetric Kronecker symbol, 17

B

Basis, 9
left-handed, 12 
orthonormal, 12 
right-handed, 12 

Basis transformation, 22 if. 
inverse, 23 
matrix of, 23 

Bessel’s inequality, 16 
Bilinear form, 41 if. 

antisymmetric, 56 
antisymmetrization of, 57 
coefficients of, 42

transformation law of, 43 
matrix of, 42 
polar, 59 
symmetric, 55, 59 
symmetrization of, 57 

Bilinear function (see Bilinear form) 
Borisenko, A. L, 18

c

Canonical basis, 135 
Canonical form, 134 
Cauchy-Schwarz inequality, 14 
Center (of a curve or surface), 35 
Characteristic equation, 110

of a symmetric transformation, 125

Characteristic polynomial, 110 
Characteristic surface, 60-62, 82 
Contraction of tensors, 51-53 
Cramer’s theorem, 21 
Cross product (see Vector product) 
Cubic form, 60

D

Defect, 78 
Diagonal matrix, 73 
Diagonalization of a symmetric 

transformation, 127-132 
Distance:

between two points, 31 
from a point to a plane, 33 

Division of a line segment, 31 
Dimension, 8

E

Eigenvalue (s), 107 if.
of a symmetric transformation, 125 

Eigenvector(s), 107 ff.
of a symmetric transformation, 

124-126 
Einstein, A., 10 
Equation of a straight line, 33 

parametric equations of, 33 
vector form of, 33 

Euclidean space, 14 
Eulerian angles, 29 
Expansion (contraction), 65, 66,72

163
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F

Full linear group: 
of dimension n, 99 
of dimension two, 99 
of dimension three, 99

G

Group, 99
commutative, 104 
cyclic, 104 
full linear, 99
multiplication table of, 103 
of orthogonal transformations, 101 
symmetry, 103 
unimodular, 100

H

Hamilton-Cayley theorem, 122 
Homogeneous expansion 

(contraction), 65 
Homothetic transformation, 65

i

Identity transformation, 65, 99 
Image, 78
Index of summation, 10 
Invariance, 25 
Invariant, 47, 111 
Invariant plane, 116 
Inverse image, 78 
Inverse transformation, 94, 99

J

Jacobi’s identity, 21

K

Kronecker delta, 12

Kronecker symbol: 
antisymmetric, 17 
symmetric, 12

L

Lagrange’s identity, 21 
Legendre polynomials, 16 
Level surfaces, 40 
Line of nodes, 29 
Linear combination, 4 
Linear dependence, 4 
Linear form, 38 

coefficients of, 39 
transformation law of, 39 

Linear function (see Linear form) 
Linear independence, 4 
Linear operator (see Linear 

transformation)
Linear space(s), 1 if. 

basis for, 9 
dimension of, 8 

Linear subspace (s), 3-4 
intersection of, 4 
spanned by given vectors, 11 
sum of, 4 
trivial, 3

Linear transformation(s), 64 if. 
adjoint of, 80 
antisymmetric, 82-83 
as a group, 98-105 
characteristic equation of, 110 
commuting, 88 
defect of, 78 
diagonalization of, 118 
eigenvalue of, 107 
eigenvector of, 107 
invariants of, 111 
inverse of, 94-97, 99 
matrix of, 69 
multiplication of, 87 

associativity of, 99 
noncommutativity of, 88 

nonsingular, representation of, 
138-143 

null space of, 78
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Linear transformation^) (cont.): 
orthogonal, 101 
polynomial in a, 121 
product of, 87
product of, with a number, 80
range of, 78
rank of, 78
self-adjoint, 81
singular, 75
sum of, 79
symmetric, 81

diagonalization of, 127-132 
eigenvalues of, 125 
eigenvectors of, 124-126 
nonnegative, 133

Linear vector function {see Linear 
transformation)

M

Magnification, 74 
Matrix, 23 ff.

(descending) principal minors of, 
135

diagonal, 73 
idempotent, 94 
inverse, 95 
involutory, 94 
null, 71
of a basis transformation, 23 

determinant of, 24 
of a linear transformation, 69 

determinant of, 74 
order of, 23 
orthogonal, 24, 102 

determinant of, 24, 102 
rank of, 75 
singular, 75 
skew-symmetric, 57 
symmetric, 55 
trace of, 93 
transposition of, 80 
triangular, 98 
unit, 71, 89 
zero, 71

Matrix polynomial, 121 
root of, 122 

Matrix product, 88-89 
determinant of, 90 

Menelaus:
direct theorem of, 21 
indirect theorem of, 21 

Multilinear form, 44 
antisymmetric, 57 
degree of, 44 
symmetric, 56

Multilinear function (see Multilinear 
form)

N

Null matrix, 71
Null space, 78
Null transformation, 65

o

Origin of coordinates, 1 
Orthogonal matrix, 24 

determinant of, 24 
Orthogonal transformation, 101 

improper, 103 
proper, 103

Orthogonality relations, 23, 102

p

Parseval’s theorem, 16 
Plane:

distance from a point to a, 33 
equation of, 32 

vector form of, 32 
p-1 inear form, 44 
Polar form, 59
Preimage {see Inverse image) 
Principal directions, 134 
Principal minors, 135 
Projection, 14, 66
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Q

Quadratic form, 59,134-137 
negative definite, 135 
positive definite, 135 
principal directions of, 134 
reduction of, to canonical form, 

134

R

Radius vector, 30 
Range, 78 
Rank, 75, 78 
Rotation, 66

s

Scalar function, 38 
Scalar product, 12 

invariance of, 26-27 
Scalar quantity, 47 
Scalar triple product, 18 
Second-degree curve, 34

determination of center of, 35-36 
Second-degree surface, 34-35 

determination of center of, 35-36 
Secular equation (see Characteristic 

equation)
Shilov, G. E., 8,123 
Silverman, R. A., 8, 18, 82,95,109 
Square matrix, 23 
Straight line:

as intersection of two planes, 33-34 
equation of, 33 

vector form of, 33 
parametric equations of, 33 

Subgroup, 100 
finite, 103

Summation convention, 10 
Sylvester’s criterion, 135 
Symmetric transformation, 81,124 ff. 

characteristic equation of, 125

Symmetric transformation (cont.) : 
diagonalization of, 127-132 
eigenvalues of, 125 
eigenvectors of, 124-126 
nonnegative, 133

T

Tarapov, I. E., 18 
Tensor(s), 46 ff. 

antisymmetric, 57 
antisymmetrization of, 58 
characteristic surface of, 60-62, 82 
components of, 46 
contraction of, 51-53 
determined by a form, 46 
discriminantal, 47 
null, 47 
of order py 46 
of order zero, 47 
orthogonal, 46 
permutation of indices of, 54 
product of, 51
product of, with a real number, 50 
spherical, 84 
sum of, 50
symmetric, 55,56, 82 
symmetrization of, 58 
trace of, 52
transformation law of, 48-49 
unit, 47

Tensor calculus, fundamental problem 
of, 25

Tensor character, test for, 53-54 
Trace, 52,93 
Transposition, 80,90 
Triangle inequalities, 14

u

Unit matrix, 71, 89 
Unit transformation (see Identity 

transformation)
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Vector(s), 1 ff.
angle between, 13,15 
axial, 18 
closed set of, 1 
collinear, 5 
components of, 9 

rectangular, 12 
coplanar, 5 
free, 1
length of, 13,14 
linear combination of, 4 

coefficients of, 4 
linearly dependent, 4 
linearly independent, 4 
negative, 1 
normalized, 13 
orthogonal, 15 
product of, with a number, 1

V Vector(s) (cont.): 
projection of, 14, 66 
scalar product of, 12 
scalar triple product of, 18 
sum of, 1 
unit, 12
vector product of, 16 
vector triple product of, 19 
zero, 1

Vector product, 16 
invariance of, 27-28 

Vector space (see Linear space) 
Vector triple product, 19

z

Zero matrix (see Null matrix) 
Zero transformation (see Null 

transformation)
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HISTORY OF PHILOSOPHY, Julián Marías. Clearest one-volume history on the 
market. Every major philosopher and dozens of others, to Existentialism and later. 
505pp. 55* x 854. 21739-6 Pa. $8.50

ALL ABOUT LIGHTNING, Martin A. Uman. Highly readable non-technical 
survey of nature and causes of lightning, thunderstorms, ball lightning, St. Elmo’s 
Fire, much more. Illustrated. 192pp. 55* x 85*. 25237-X Pa. $5.95

SAILING ALONE AROUND TH E WORLD, Captain Joshua Slocum. First man 
to sail around the world, alone, in small boat. One of great feats of seamanship told 
in delightful manner. 67 illustrations. 294pp. 55* x 854. 20326-3 Pa. $4.95

LETTERS AND NOTES ON TH E MANNERS, CUSTOMS AND CONDI­
TIONS OF TH E NORTH AMERICAN INDIANS, George Catlin. Classic 
account of life among Plains Indians: ceremonies, hunt, warfare, etc. 312 plates. 
572pp. of text. 65* x 954. 22118-0, 22119-9 Pa. Two-vol. set $15.90

ALASKA: The Harriman Expedition, 1899, John Burroughs, John Muir, et al. 
Informative, engrossing accounts of two-month, 9,000-mile expedition. Native 
peoples, wildlife, forests, geography, salmon industry, glaciers, more. Profusely 
illustrated. 240 black-and-white line drawings. 124 black-and-white photographs. 3 
maps. Index. 576pp. 55* x 85*. 25109-8 Pa. $11.95
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THE BOOK OF BEASTS: Being a Translation from a Latin Bestiary of the Twelfth 
Century, T. H. White. Wonderful catalog real and fanciful beasts: manticore, 
griffin, phoenix, amphivius, jaculus, many more. White’s witty erudite commen­
tary on scientific, historical aspects. Fascinating glimpse of medieval mind. 
Illustrated. 296pp. 5% x 8%. (Available in U.S. only) 24609-4 Pa. $5.95

FRANK LLOYD W RIGHT: ARCHITECTURE AND NATURE With 160 
Illustrations, Donald Hoffmann. Profusely illustrated study of influence of 
nature—especially prairie—on W right’s designs for Fallingwater, Robie House, 
Guggenheim Museum, other masterpieces. 96pp. 954 x 10%. 25098-9 Pa. $7.95

FRANK LLOYD W RIGHT’S FALLINGWATER, Donald Hoffmann. W right’s 
famous waterfall house: planning and construction of organic idea. History of site, 
owners, W right’s personal involvement. Photographs of various stages of building. 
Preface by Edgar Kaufmann, Jr. 100 illustrations. 112pp. 9% x 10.

23671-4 Pa. $7.95

YEARS W ITH FRANK LLOYD W RIGHT: Apprentice to Genius, Edgar Tafel. 
Insightful memoir by a former apprentice presents a revealing portrait of Wright 
the man, the inspired teacher, the greatest American architect. 372 black-and-white 
illustrations. Preface. Index, vi + 228pp. 8 P  11. 24801-1 Pa. $9.95

TH E STORY OF KING ARTHUR AND HIS KNIGHTS, Howard Pyle. 
Enchanting version of King Arthur fable has delighted generations with im agina­
tive narratives of exciting adventures and unforgettable illustrations by the author. 
41 illustrations, xviii + 313pp. 6% x 9%. 21445-1 Pa. $5.95

TH E GODS OF TH E EGYPTIANS, E. A. Wallis Budge. Thorough coverage of 
numerous gods of ancient Egypt by foremost Egyptologist. Information on 
evolution of cults, rites and gods; the cult of Osiris; the Book of the Dead and its 
rites; the sacred animals and birds; Heaven and Hell; and more. 956pp. 656 x 9%.

22055-9, 22056-7 Pa., Two-vol. set $21.90

A THEOLOGICO-POLITICAL TREATISE, Benedict Spinoza. Also contains 
unfinished Political Treatise. Great classic on religious liberty, theory of govern­
ment on common consent. R. Elwes translation. Total of 421pp. 5% x 854.

20249-6 Pa. $6.95

INCIDENTS OF TRAVEL IN CENTRAL AMERICA, CHIAPAS, AND YU­
CATAN, John L. Stephens. Almost single-handed discovery of Maya culture; 
exploration of ruined cities, monuments, temples; customs of Indians. 115 
drawings. 892pp. 5% x 854. 22404-X, 22405-8 Pa., Two-vol. set $15.90

LOS CAPRICHOS, Francisco Goya. 80 plates of wild, grotesque monsters and 
caricatures. Prado manuscript included. 183pp. 6% x 9%. 22384-1 Pa. $4.95

AUTOBIOGRAPHY: The Story of My Experiments with T ruth, Mohandas K. 
Gandhi. Not hagiography, but G andhi in his own words. Boyhood, legal studies, 
purification, the growth of the Satyagraha (nonviolent protest) movement. Critical, 
inspiring work of the man who freed India. 480pp. 5% x 854. (Available in U.S. only)

24593-4 Pa. $6.95
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ILLUSTRATED DICTIONARY OF HISTORIC ARCHITECTURE, edited by 
Cyril M. Harris. Extraordinary compendium of clear, concise definitions for over 
5,000 im portant architectural terms complemented by over 2,000 line drawings. 
Covers full spectrum of architecture from ancient ruins to 20th-century Modernism. 
Preface. 592pp. 7K x 9%. 24444-X Pa. $14.95

THE NIGH T BEFORE CHRISTMAS, Clement Moore. Full text, and woodcuts 
from original 1848 book. Also critical, historical material. 19 illustrations. 40pp. 
4% x 6. 22797-9 Pa. $2.50

THE LESSON OF JAPANESE ARCHITECTURE: 165 Photographs, Jiro 
Harada. Memorable gallery of 165 photographs taken in the 1930’s of exquisite 
Japanese homes of the well-to-do and historic buildings. 13 line diagrams. 192pp. 
8XxllH. 24778-3 Pa. $8.95

THE AUTOBIOGRAPHY OF CHARLES DARWIN AND SELECTED LET­
TERS, edited by Francis Darwin. The fascinating life of eccentric genius composed 
of an intimate memoir by Darwin (intended for his children); commentary by his 
son, Francis; hundreds of fragments from notebooks, journals, papers; and letters to 
and from Lyell, Hooker, Huxley, Wallace and Henslow. xi + 365pp. 5% x 8.

20479-0 Pa. $5.95

WONDERS OF THE SKY: Observing Rainbows, Comets, Eclipses, the Stars and 
Other Phenomena, Fred Schaaf. Charming, easy-to-read poetic guide to all manner 
of celestial events visible to the naked eye. Mock suns, glories, Belt of Venus, more. 
Illustrated. 299pp. 5« x 814. 24402-4 Pa. $7.95

BURNHAM S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide 
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by 
constellation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and 
Pavo to Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp. 
6% x 9«. 23567-X, 23568-8, 23673-0 Pa., Three-vol. set $37.85

STAR NAMES: Their Lore and Meaning, Richard Hinckley Allen. Fascinating 
history of names various cultures have given to constellations and literary and 
folkloristic uses that have been made of stars. Indexes to subjects. Arabic and Greek 
names. Biblical references. Bibliography. 563pp. 5% x 854. 21079-0 Pa. $7.95

THIRTY YEARS THA T SHOOK PHYSICS: The Story of Quantum Theory, 
George Gamow. Lucid, accessible introduction to influential theory of energy and 
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom, 
much more. 12 plates. Numerous drawings. 240pp. 5% x 8& 24895-X Pa. $4.95

CHINESE DOMESTIC FURNITURE IN PHOTOGRAPHS AND MEASURED 
DRAWINGS, Gustav Ecke. A rare volume, now affordably priced for antique 
collectors, furniture buffs and art historians. Detailed review of styles ranging from 
early Shang to late Ming. Unabridged republication. 161 black-and-white draw­
ings, photos. Total of 224pp. 8% x \ \%. (Available in U.S. only) 25171-3 Pa. $12.95

VINCENT VAN GOGH: A Biography, Julius Meier-Graefe. Dynamic, penetrat­
ing study of artist’s life, relationship with brother, Theo, painting techniques, 
travels, more. Readable, engrossing. 160pp. 5% x 8& (Available in U.S. only)

25253-1 Pa. $3.95
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HOW TO  WRITE, Gertrude Stein. Gertrude Stein claimed anyone could 
understand her unconventional w riting—here are clues to help. Fascinating 
improvisations, language experiments, explanations illum inate Stein’s craft and 
the art of writing. Total of 414pp. 4% x 6%. 23144-5 Pa. $5.95

ADVENTURES AT SEA IN TH E GREAT AGE OF SAIL: Five Firsthand 
Narratives, edited by Elliot Snow. Rare true accounts of exploration, whaling, 
shipwreck, fierce natives, trade, shipboard life, more. 33 illustrations. Introduction. 
353pp. 5% x 8)4. 25177-2 Pa. $7.95

TH E HERBAL OR GENERAL HISTORY OF PLANTS, John Gerard. Classic 
descriptions of about 2,850 plants—with over 2,700 illustrations—includes Latin 
and English names, physical descriptions, varieties, time and place of growth, 
more. 2,706 illustrations, xlv + 1,678pp. 8)4 x 1254. 23147-X Cloth. $75.00

DOROTHY AND TH E WIZARD IN OZ, L. Frank Baum. Dorothy and the Wizard 
visit the center of the Earth, where people are vegetables, glass houses grow and Oz 
characters reappear. Classic sequel to Wizard of Oz. 256pp. 5% x 8.

24714-7 Pa. $4.95

SONGS OF EXPERIENCE: Facsimile Reproduction with 26 Plates in Full Color, 
William Blake. This facsimile of Blake’s original “Illuminated Book” reproduces 
26 full-color plates from a rare 1826 edition. Includes “The Tyger,” “London,” 
“Holy Thursday,” and other immortal poems. 26 color plates. Printed text of 
poems. 48pp. 5)4 x 7. 24636-1 Pa. $3.50

SONGS OF INNOCENCE, William Blake. The first and most popular of Blake’s 
famous “Illuminated Books,” in a facsimile edition reproducing all 31 brightly 
colored plates. Additional printed text of each poem. 64pp. 554 x 7.

22764-2 Pa. $3.50

PRECIOUS STONES, Max Bauer. Classic, thorough study of diamonds, rubies, 
emeralds, garnets, etc.: physical character, occurrence, properties, use, similar 
topics. 20 plates, 8 in color. 94 figures. 659pp. 656 x 9)4.

21910-0, 21911-9 Pa., Two-vol. set $15.90

ENCYCLOPEDIA OF VICTORIAN NEEDLEWORK, S. F. A. Caulfeild and 
Blanche Saward. Full, precise descriptions of stitches, techniques for dozens of 
needlecrafts—most exhaustive reference of its kind. Over 800 figures. Total of 
679pp. 856 x 11. Two volumes. Vol. 1 22800-2 Pa. $11.95

Vol. 2 22801-0 Pa. $11.95

TH E MARVELOUS LAND OF OZ, L. Frank Baum. Second Oz book, the 
Scarecrow and T in  Woodman are back with hero named Tip, Oz magic. 136 
illustrations. 287pp. 5% x 8)4. 20692-0 Pa. $5.95

WILD FOWL DECOYS, Joel Barber. Basic book on the subject, by foremost 
authority and collector. Reveals history of decoy making and rigging, place in 
American culture, different kinds of decoys, how to make them, and how to use 
them. 140 plates. 156pp. 7% x 10%. 20011-6 Pa. $8.95

HISTORY OF LACE, Mrs. Bury Palliser. Definitive, profusely illustrated chron­
icle of lace from earliest times to late 19th century. Laces of Italy, Greece, England, 
France, Belgium, etc. Landmark of needlework scholarship. 266 illustrations. 
672pp. 654 x 954. 24742-2 Pa. $14.95
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ILLUSTRATED GUIDE TO  SHAKER FURNITURE, Robert Meader. All 
furniture and appurtenances, with much on unknown local styles. 235 photos. 
146pp. 9 x 12. 22819-3 Pa. $7.95

WHALE SHIPS AND WHALING: A Pictorial Survey, George Francis Dow. Over 
200 vintage engravings, drawings, photographs of barks, brigs, cutters, other 
vessels. Also harpoons, lances, whaling guns, many other artifacts. Comprehensive 
text by foremost authority. 207 black-and-white illustrations. 288pp. 6x9 .

24808-9 Pa. $8.95

TH E BERTRAMS, Anthony Trollope. Powerful portrayal of blind self-will and 
thwarted ambition includes one of Trollope’s most heartrending love stories. 
497pp. 5% x m . 25119-5 Pa. $8.95

ADVENTURES W ITH A HAND LENS, Richard Headstrom. Clearly written 
guide to observing and studying flowers and grasses, fish scales, moth and insect 
wings, egg cases, buds, feathers, seeds, leaf scars, moss, molds, ferns, common 
crystals, etc.—all with an ordinary, inexpensive magnifying glass. 209 exact line 
drawings aid in your discoveries. 220pp. 5% x 8& 23330-8 Pa. $4.50

RODIN ON ART AND ARTISTS, Auguste Rodin. Great sculptor’s candid, wide- 
ranging comments on meaning of art; great artists; relation of sculpture to poetry, 
painting, music; philosophy of life, more. 76 superb black-and-white illustrations 
of Rodin’s sculpture, drawings and prints. 119pp. &% x 1 VA. 24487-3 Pa. $6.95

FIFTY CLASSIC FRENCH FILMS, 1912-1982: A Pictorial Record, Anthony 
Slide. Memorable stills from Grand Illusion, Beauty and the Beast, Hiroshima, 
Mon Amour, many more. Credits, plot synopses, reviews, etc. 160pp. 8‘/4 x If.

25256-6 Pa. $11.95

THE PRINCIPLES OF PSYCHOLOGY, William James. Famous long course 
complete, unabridged. Stream of thought, time perception, memory, experimental 
methods; great work decades ahead of its time. 94 figures. 1,391pp. 5% x 8&

20381-6, 20382-4 Pa., Two-vol. set $19.90

BODIES IN A BOOKSHOP, R. T. Campbell. Challenging mystery of blackmail 
and murder with ingenious plot and superbly drawn characters. In the best 
tradition of British suspense fiction. 192pp. 5% x 8& 24720-1 Pa. $3.95

CALLAS: PORTRAIT OF A PRIMA DONNA, George Jellinek. Renowned 
commentator on the musical scene chronicles incredible career and life of the most 
controversial, fascinating, influential operatic personality of our time. 64 black- 
and-white photographs. 416pp. 5% x 8i4. 25047-4 Pa. $7.95

GEOMETRY, RELATIVITY AND TH E FOURTH DIMENSION, Rudolph 
Rucker. Exposition of fourth dimension, concepts of relativity as Flatland 
characters continue adventures. Popular, easily followed yet accurate, profound. 
141 illustrations. 133pp. 5% x 8& 23400-2 Pa. $3.50

HOUSEHOLD STORIES BY TH E BROTHERS GRIMM, with pictures by 
Walter Crane. 53 classic stories—Rumpelstiltskin, Rapunzel, Hansel and Gretel, 
the Fisherman and his Wife, Snow White, Tom Thum b, Sleeping Beauty, 
Cinderella, and so much more—lavishly illustrated with original 19th century 
drawings. 114 illustrations, x + 269pp. 5% x 8& 21080-4 Pa. $4.50



C A T A L O G  O F  D O V E R  B O O K S

SUNDIALS, Albert Waugh. Far and away the best, most thorough coverage of 
ideas, mathematics concerned, types, construction, adjusting anywhere. Over 100 
illustrations. 230pp. b% x 8& 22947-5 Pa. $4.50

PICTURE HISTORY OF T H E  NORMANDIE: With 190 Illustrations, Frank O. 
Braynard. Full story of legendary French ocean liner: Art Deco interiors, design 
innovations, furnishings, celebrities, maiden voyage, tragic fire, much more. 
Extensive text. 144pp. 8% x 1 VA. 25257-4 Pa. $9.95

TH E FIRST AMERICAN COOKBOOK: A Facsimile of “American Cookery/’ 
1796, Amelia Simmons. Facsimile of the first American-written cookbook pub­
lished in the United States contains authentic recipes for colonial favorites— 
pum pkin pudding, winter squash pudding, spruce beer, Indian slapjacks, and 
more. Introductory Essay and Glossary of colonial cooking terms. 80pp. 5% x 8&

24710-4 Pa. $3.50

101 PUZZLES IN T H O U G H T  AND LOGIC, C. R. Wylie, Jr. Solve murders and 
robberies, find out which fishermen are liars, how a blind man could possibly 
identify a color—purely by your own reasoning! 107pp. 5% x 8& 20367-0 Pa. $2.50

TH E BOOK OF WORLD-FAMOUS MUSIC—CLASSICAL, POPULAR AND 
FOLK, James J. Fuld. Revised and enlarged republication of landmark work in 
musico-bibliography. Full information about nearly 1,000 songs and compositions 
including first lines of music and lyrics. New supplement. Index. 800pp. x 8lA.

24857-7 Pa. $14.95

ANTHROPOLOGY AND MODERN LIFE, Franz Boas. Great anthropologist’s 
classic treatise on race and culture. Introduction by R uth Bunzel. Only inexpensive 
paperback edition. 255pp. 5% x 8%. 25245-0 Pa. $5.95

TH E TALE OF PETER RABBIT, Beatrix Potter. The inimitable Peter’s terrifying 
adventure in Mr. McGregor’s garden, with all 27 wonderful, full-color Potter 
illustrations. 55pp. 4lA x 5Vt. (Available in U.S. only) 22827-4 Pa. $1.75

THREE PROPHETIC SCIENCE FICTION NOVELS, H. G. Wells. When the 
Sleeper Wakes, A Story o f the Days to Come and The Tim e Machine (full version). 
335pp. b% x m . (Available in U.S. only) 20605-X Pa. $5.95

APICIUS COOKERY AND DINING IN IMPERIAL ROME, edited and translated 
by Joseph Dommers Vehling. Oldest known cookbook in existence offers readers a 
clear picture of what foods Romans ate, how they prepared them, etc. 49 
illustrations. 301pp. 6% x 9%. 23563-7 Pa. $6.50

SHAKESPEARE LEXICON AND QUOTATION DICTIONARY, Alexander 
Schmidt. Full definitions, locations, shades of meaning of every word in plays and 
poems. More than 50,000 exact quotations. 1,485pp. 6% x 9lA.

22726-X, 22727-8 Pa., Two-vol. set $27.90

TH E W ORLD’S GREAT SPEECHES, edited by Lewis Copeland and Lawrence 
W. Lamm. Vast collection of 278 speeches from Greeks to 1970. Powerful and 
effective models; unique look at history. 842pp. 5% x 8& 20468-5 Pa. $11.95
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THE BLUE FAIRY BOOK, Andrew Lang. The first, most famous collection, with 
many familiar tales: Little Red Riding Hood, Aladdin and the Wonderful Lamp, 
Puss in Boots, Sleeping Beauty, Hansel and Gretel, Rumpelstiltskin; 37 in all. 138 
illustrations. 390pp. 5% * 8& 21437-0 Pa. $5.95

THE STORY OF TH E CHAMPIONS OF TH E ROUND TABLE, Howard Pyle. 
Sir Launcelot, Sir Tristram and Sir Percival in spirited adventures of love and 
triumph retold in Pyle’s inimitable style. 50 drawings, 31 full-page, xviii + 329pp. 
6'/2*9%. 21883-X Pa. $6.95

AUDUBON AND HIS JOURNALS, Maria Audubon. Unmatched two-volume 
portrait of the great artist, naturalist and author contains his journals, an excellent 
biography by his granddaughter, expert annotations by the noted ornithologist, Dr. 
Elliott Coues, and 37 superb illustrations. Total of 1,200pp. 5% x 8.

Vol. I 25143-8 Pa. $8.95 
Vol. II 25144-6 Pa. $8.95

GREAT DINOSAUR HUNTERS AND THEIR DISCOVERIES, Edwin H. 
Colbert. Fascinating, lavishly illustrated chronicle of dinosaur research, 1820’s to 
1960. Achievements of Cope, Marsh, Brown, Buckland, Mantell, Huxley, many 
others. 384pp. blA x 8Va . 24701-5 Pa. $6.95

THE TASTEMAKERS, Russell Lynes. Informal, illustrated social history of 
American taste 1850’s-1950’s. First popularized categories Highbrow, Lowbrow, 
Middlebrow. 129 illustrations. New (1979) afterword. 384pp. 6x9 .

23993-4 Pa. $6.95

DOUBLE CROSS PURPOSES, Ronald A. Knox. A treasure hunt in the Scottish 
Highlands, an old map, unidentified corpse, surprise discoveries keep reader 
guessing in this cleverly intricate tale of financial skullduggery. 2 black-and-white 
maps. 320pp. 5% x 8& (Available in U.S. only) 25032-6 Pa. $5.95

AUTHENTIC VICTORIAN DECORATION AND ORNAMENTATION IN 
FULL COLOR: 46 Plates from “Studies in Design,” Christopher Dresser. Superb 
full-color lithographs reproduced from rare original portfolio of a major Victorian 
designer. 48pp. 9lA x m .  25083-0 Pa. $7.95

PRIMITIVE ART, Franz Boas. Remains the best text ever prepared on subject, 
thoroughly discussing Indian, African, Asian, Australian, and, especially, North­
ern American primitive art. Over 950 illustrations show ceramics, masks, totem 
poles, weapons, textiles, paintings, much more. 376pp. b% x 8. 20025-6 Pa. $6.95

SIDELIGHTS ON RELATIVITY, Albert Einstein. Unabridged republication of 
two lectures delivered by the great physicist in 1920-21. Ether and Relativity and 
Geometry and Experience. Elegant ideas in non-mathematical form, accessible to 
intelligent layman, vi + 56pp. b% x 8& 24511-X Pa. $2.95

TH E W IT AND HUMOR OF OSCAR WILDE, edited by Alvin Redman. More 
than 1,000 ripostes, paradoxes, wisecracks: Work is the curse of the drinking classes, 
I can resist everything except temptation, etc. 258pp. b% x 8& 20602-5 Pa. $4.50

ADVENTURES W ITH A MICROSCOPE, Richard Headstrom. 59 adventures 
with clothing fibers, protozoa, ferns and lichens, roots and leaves, much more. 142 
illustrations. 232pp. b% x 8& 23471-1 Pa. $3.95
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PLANTS OF TH E BIBLE, Harold N. Moldenke and Alma L. Moldenke. Standard 
reference to all 2S0 plants mentioned in Scriptures. Latin name, biblical reference, 
uses, modern identity, much more. Unsurpassed encyclopedic resource for scholars, 
botanists, nature lovers, students of Bible. Bibliography. Indexes. 123 black-and- 
white illustrations. 384pp. 6 x 9. 25069-5 Pa. $8.95

FAMOUS AMERICAN WOMEN: A Biographical Dictionary from Colonial 
Times to the Present, Robert McHenry, ed. From Pocahontas to Rosa Parks, 1,035 
distinguished American women documented in separate biographical entries. 
Accurate, up-to-date data, numerous categories, spans 400 years. Indices. 493pp. 
6ft x 9Va. 24523-3 Pa. $9.95

TH E FABULOUS INTERIORS OF TH E GREAT OCEAN LINERS IN HIS­
TORIC PHOTOGRAPHS, William H. Miller, Jr. Some 200 superb photographs 
capture exquisite interiors of world’s great “floating palaces”—1890’s to 1980’s: 
Titanic, lie de France, Queen Elizabeth, United States, Europa, more. Approx. 200 
black-and-white photographs. Captions. Text. Introduction. 160pp. 8% x 11%.

24756-2 Pa. $9.95

TH E GREAT LUXURY LINERS, 1927-1954: A Photographic Record, William 
H. Miller, Jr. Nostalgic tribute to heyday of ocean liners. 186 photos of lie de 
France, Normandie, Leviathan, Queen Elizabeth, United States, many others. 
Interior and exterior views. Introduction. Captions. 160pp. 9 x 12.

24056-8 Pa. $9.95

A NATURAL HISTORY OF TH E DUCKS, John Charles Phillips. Great 
landmark of ornithology offers complete detailed coverage of nearly 200 species and 
subspecies of ducks: gadwall, sheldrake, merganser, pintail, many more. 74 full- 
color plates, 102 black-and-white. Bibliography. Total of 1,920pp. 8ft x 11%.

25141-1, 25142-X Cloth. Two-vol. set $100.00

TH E SEAWEED HANDBOOK: An Illustrated Guide to Seaweeds from North 
Carolina to Canada, Thomas F. Lee. Concise reference covers 78 species. Scientific 
and common names, habitat, distribution, more. Finding keys for easy identifica­
tion. 224pp. 5ft x 8ft. 25215-9 Pa. $5.95

TH E TEN BOOKS OF ARCHITECTURE: The 1755 Leoni Edition, Leon Battista 
Alberti. Rare classic helped introduce the glories of ancient architecture to the 
Renaissance. 68 black-and-white plates. 336pp. 8ft x 11%. 25239-6 Pa. $14.95

MISS MACKENZIE, Anthony Trollope. Minor masterpieces by Victorian master 
unmasks many truths about life in 19th-century England. First inexpensive edition 
in years. 392pp. 5ft x 8ft. 25201-9 Pa. $7.95

TH E RIME OF TH E ANCIENT MARINER, Gustave Dore, Samuel Taylor 
Coleridge. Dramatic engravings considered by many to be his greatest work. The 
terrifying space of the open sea, the storms and whirlpools of an unknown ocean, 
the ice of Antarctica, more—all rendered in a powerful, chilling manner. Full text. 
38 plates. 77pp. 9% x 12. 22305-1 Pa. $4.95

TH E EXPEDITIONS OF ZEBULON MONTGOMERY PIKE, Zebulon Mont­
gomery Pike. Fascinating first-hand accounts (1805-6) of exploration of Missis­
sippi River, Indian wars, capture by Spanish dragoons, much more. 1,088pp. 
5ft x 8ft. 25254-X, 25255-8 Pa. Two-vol. set $23.90
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A CONCISE HISTORY OF PHOTOGRAPHY: Third Revised Edition, Helmut 
Gernsheim. Best one-volume history—camera obscura, photochemistry, daguer­
reotypes, evolution of cameras, film, more. Also artistic aspects—landscape, 
portraits, fine art, etc. 281 black-and-white photographs. 26 in color. 176pp. 
8% x 11V4. 25128-4 Pa. $12.95

THE DORE BIBLE ILLUSTRATIONS, Gustave Dore. 241 detailed plates from 
the Bible: the Creation scenes, Adam and Eve, Flood, Babylon, battle sequences, life 
of Jesus, etc. Each plate is accompanied by the verses from the King James version of 
the Bible. 241pp. 9 * 12. 23004-X Pa. $8.95

HUGGER-MUGGER IN THE LOUVRE, Elliot Paul. Second Homer Evans 
mystery-comedy. Theft at the Louvre involves sleuth in hilarious, madcap caper. 
“A knockout.”—Books. 336pp. b% x 854. 25185-3 Pa. $5.95

FLATLAND, E. A. Abbott. Intriguing and enormously popular science-fiction 
classic explores the complexities of trying to survive as a two-dimensional being in 
a three-dimensional world. Amusingly illustrated by the author. 16 illustrations. 
103pp. 5% x 854. 20001-9 Pa. $2.25

THE HISTORY OF TH E LEWIS AND CLARK EXPEDITION, Meriwether 
Lewis and William Clark, edited by Elliott Coues. Classic edition of Lewis and 
Clark’s day-by-day journals that later became the basis for U.S. claims to Oregon 
and the West. Accurate and invaluable geographical, botanical, biological, 
meteorological and anthropological material. Total of 1,508pp. 5% x 8%.

21268-8, 21269-6, 21270-X Pa. Three-vol. set $25.50

LANGUAGE, TR U TH  AND LOGIC, Alfred J. Ayer. Famous, clear introduction 
to Vienna, Cambridge schools of Logical Positivism. Role of philosophy, 
elim ination of metaphysics, nature of analysis, etc. 160pp. 5% x 856. (Available in 
U.S. and Canada only) 20010-8 Pa. $2.95

MATHEMATICS FOR TH E NONMATHEMATICIAN, Morris Kline. Detailed, 
college-level treatment of mathematics in cultural and historical context, with 
numerous exercises. For liberal arts students. Preface. Recommended Reading 
Lists. Tables. Index. Numerous black-and-white figures, xvi + 641pp. 5% x 854.

24823-2 Pa. $11.95

28 SCIENCE FICTION STORIES, H. G. Wells. Novels, Star Begotten and Men 
Like Gods, plus 26 short stories: “Empire of the Ants,” “A Story of the Stone Age,” 
“The Stolen Bacillus,” “In the Abyss,” etc. 915pp. 5% x 854. (Available in U.S. only)

20265-8 Cloth. $10.95

HANDBOOK OF PICTORIAL SYMBOLS, Rudolph Modley. 3,250 signs and 
symbols, many systems in full; official or heavy commercial use. Arranged by 
subject. Most in Pictorial Archive series. 143pp. 856 x 11. 23357-X Pa. $5.95

INCIDENTS OF TRAVEL IN YUCATAN, John L. Stephens. Classic (1843) 
exploration of jungles of Yucatan, looking for evidences of Maya civilization. 
Travel adventures, Mexican and Indian culture, etc. Total of 669pp. 5% x 854.

20926-1, 20927-X Pa., Two-vol. set $9.90
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DEGAS: An Intimate Portrait, Ambroise Vollard. Charming, anecdotal memoir by 
famous art dealer of one of the greatest 19th-century French painters. 14 black-and- 
white illustrations. Introduction by Harold L. Van Doren. 96pp. 5% x 854.

25131-4 Pa. $3.95

PERSONAL NARRATIVE OF A PILGRIMAGE T O  ALMANDINAH AND 
MECCAH, Richard Burton. Great travel classic by remarkably colorful personality. 
Burton, disguised as a Moroccan, visited sacred shrines of Islam, narrowly escaping 
death. 47 illustrations. 959pp. 5% x 854. 21217-3, 21218-1 Pa., Two-vol. set $17.90

PHRASE AND WORD ORIGINS, A. H. Holt. Entertaining, reliable, modern 
study of more than 1,200 colorful words, phrases, origins and histories. Much 
unexpected information. 254pp. 5% x' 854. 20758-7 Pa. $5.95

TH E RED THUMB MARK, R. Austin Freeman. In this first Dr. Thorndyke case, 
the great scientific detective draws fascinating conclusions from the nature of a 
single fingerprint. Exciting story, authentic science. 320pp. 5% x 854. (Available in 
U.S. only) 25210-8 Pa. $5.95

AN EGYPTIAN HIEROGLYPHIC DICTIONARY, E. A. Wallis Budge. Monu­
mental work containing about 25,000 words or terms that occur in texts ranging 
from 3000 B.c. to 600 a.d. Each entry consists of a transliteration of the word, the word 
in hieroglyphs, and the meaning in English. 1,314pp. 6& x 10.

23615-3, 23616-1 Pa., Two-vol. set $27.90

TH E COMPLEAT STRATEGYST: Being a Primer on the Theory of Games of 
Strategy, J. D. Williams. Highly entertaining classic describes, with many 
illustrated examples, how to select best strategies in conflict situations. Prefaces. 
Appendices, xvi + 268pp. 5% x 854. 25101-2 Pa. $5.95

THE ROAD TO  OZ, L. Frank Baum. Dorothy meets the Shaggy Man, little 
Button-Bright and the Rainbow’s beautiful daughter in this delightful trip to the 
magical Land of Oz. 272pp. 5X x 8. 25208-6 Pa. $4.95

PO INT AND LINE TO  PLANE, Wassily Kandinsky. Seminal exposition of role of 
point, line, other elements in non-objective painting. Essential to understanding 
20th-century art. 127 illustrations. 192pp. 654 x 954. 23808-3 Pa. $4.50

LADY ANNA, Anthony Trollope. Moving chronicle of Countess Lovel’s bitter 
struggle to win for herself and daughter Anna their rightful rank and fortune— 
perhaps at cost of sanity itself. 384pp. 5% x 854. 24669-8 Pa. $6.95

EGYPTIAN MAGIC, E. A. Wallis Budge. Sums up all that is known about magic 
in Ancient Egypt: the role of magic in controlling the gods, powerful amulets that 
warded off evil spirits, scarabs of immortality, use of wax images, formulas and 
spells, the secret name, much more. 253pp. 5% x 854. 22681-6 Pa. $4.50

TH E DANCE OF SIVA, Ananda Coomaraswamy. Preeminent authority unfolds 
the vast metaphysic of India: the revelation of her art, conception of the universe, 
social organization, etc. 27 reproductions of art masterpieces. 192pp. 5% x 854.

24817-8 Pa. $5.95



C A T A L O G  O F  D O V E R  B O O K S

CHRISTMAS CUSTOMS AND TRADITIONS, Clement A. Miles. Origin, 
evolution, significance of religious, secular practices. Caroling, gifts, yule logs, 
much more. Full, scholarly yet fascinating; non-sectarian. 400pp. 5% x 8J4.

23354-5 Pa. $6.50

TH E HUMAN FIGURE IN MOTION, Eadweard Muybridge. More than 4,500 
stopped-action photos, in action series, showing undraped men, women, children 
jum ping, lying down, throwing, sitting, wrestling, carrying, etc. 390pp. 7% x 10%.

20204-6 Cloth. $19.95

TH E MAN WHO WAS THURSDAY, Gilbert Keith Chesterton. Witty, fast-paced 
novel about a club of anarchists in tum-of-the-century London. Brilliant social, 
religious, philosophical speculations. 128pp. 5% x 8^. 25121-7 Pa. $3.95

A CEZANNE SKETCHBOOK: Figures, Portraits, Landscapes and Still Lifes, Paul 
Cezanne. Great artist experiments with tonal effects, light, mass, other qualities in 
over 100 drawings. A revealing view of developing master painter, precursor of 
Cubism. 102 black-and-white illustrations. 144pp. 8% x 6%. 24790-2 Pa. $5.95

AN ENCYCLOPEDIA OF BATTLES: Accounts of Over 1,560 Battles from 
1479 b.c. to the Present, David Eggenberger. Presents essential details of every major 
battle in recorded history, from the first battle of Megiddo in 1479 b.c. to Grenada in 
1984. List of Battle Maps. New Appendix covering the years 1967-1984. Index. 99 
illustrations. 544pp. 614 x 9%. 24913-1 Pa. $14.95

AN ETYMOLOGICAL DICTIONARY OF MODERN ENGLISH, Ernest Week- 
ley. Richest, fullest work, by foremost British lexicographer. Detailed word 
histories. Inexhaustible. Total of 856pp. 6J4 x 9%.

21873-2, 21874-0 Pa., Two-vol. set $17.00

WEBSTER’S AMERICAN MILITARY BIOGRAPHIES, edited by Robert 
McHenry. Over 1,000 figures who shaped 3 centuries of American military history. 
Detailed biographies of Nathan Hale, Douglas MacArthur, Mary Hallaren, others. 
Chronologies of engagements, more. Introduction. Addenda. 1,033 entries in 
alphabetical order, xi + 548pp. 6*/4 x 9%. (Available in U.S. only)

24758-9 Pa. $11.95

LIFE IN ANCIENT EGYPT, Adolf Erman. Detailed older account, with much not 
in more recent books: domestic life, religion, magic, medicine, commerce, and 
whatever else needed for complete picture. Many illustrations. 597pp. 5% x 8)4.

22632-8 Pa. $8.95

HISTORIC COSTUME IN PICTURES, Braun & Schneider. Over 1,450 costumed 
figures shown, covering a wide variety of peoples: kings, emperors, nobles, priests, 
servants, soldiers, scholars, townsfolk, peasants, merchants, courtiers, cavaliers, 
and more. 256pp. 8% x 1VA. 23150-X Pa. $7.95

TH E NOTEBOOKS OF LEONARDO DA VINCI, edited by J. P. Richter. Extracts 
from manuscripts reveal great genius; on painting, sculpture, anatomy, sciences, 
geography, etc. Both Italian and English. 186 ms. pages reproduced, plus 500 
additional drawings, including studies for Last Supper, Sforza monument, etc. 
860pp. 7% x 10%. (Available in U.S. only) 22572-0, 22573-9 Pa., Two-vol. set $25.90
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THE ART NOUVEAU STYLE BOOK OF ALPHONSE MUCHA: All 72 Plates 
from “Documents Décoratifs” in Original Color, Alphonse Mucha. Rare copy­
right-free design portfolio by high priest of Art Nouveau. Jewelry, wallpaper, 
stained glass, furniture, figure studies, plant and animal motifs, etc. Only complete 
one-volume edition. 80pp. 9% x 12Î4. 24044-4 Pa. $8.95

ANIMALS: 1,419 COPYRIGHT-FREE ILLUSTRATIONS OF MAMMALS, 
BIRDS, FISH, INSECTS, ETC., edited by Jim  Harter. Clear wood engravings 
present, in extremely lifelike poses, over 1,000 species of animals. One of the most 
extensive pictorial sourcebooks of its kind. Captions. Index. 284pp. 9x12.

23766-4 Pa. $9.95

OBELISTS FLY HIGH, C. Daly King. Masterpiece of American detective fiction, 
long out of print, involves murder on a 1935 transcontinental flight—“a very 
thrilling story”—NY Times. Unabridged and unaltered republication of the 
edition published by William Collins Sons & Co. Ltd., London, 1935. 288pp. 
5% x №. (Available in U.S. only) 25036-9 Pa. $4.95

VICTORIAN AND EDWARDIAN FASHION: A Photographic Survey, Alison 
Gemsheim. First fashion history completely illustrated by contemporary photo­
graphs. Full text plus 235 photos, 1840-1914, in which many celebrities appear. 
240pp. 6K x 9!4. 24205-6 Pa. $6.00

TH E ART OF TH E FRENCH ILLUSTRATED BOOK, 1700-1914, Gordon N. 
Ray. Over 630 superb book illustrations by Fragonard, Delacroix, Daumier, Doré, 
Grandville, Manet, Mucha, Steinlen, Toulouse-Lautrec and many others. Preface. 
Introduction. 633 halftones. Indices of artists, authors & titles, binders and 
provenances. Appendices. Bibliography. 608pp. $% x l l 1̂. 25086-5 Pa. $24.95

TH E WONDERFUL WIZARD OF OZ, L. Frank Baum. Facsimile in full color of 
America’s finest children’s classic. 143 illustrations by W. W. Denslow. 267pp. 
5% x №. 20691-2 Pa. $5.95

FRONTIERS OF MODERN PHYSICS: New Perspectives on Cosmology, Rela­
tivity, Black Holes and Extraterrestrial Intelligence, Tony Rothman, et al. For the 
intelligent layman. Subjects include: cosmological models of the universe; black 
holes; the neutrino; the search for extraterrestrial intelligence. Introduction. 46 
black-and-white illustrations. 192pp. 5% x №. 24587-X Pa. $6.95

THE FRIENDLY STARS, Martha Evans Martin 8c Donald Howard Menzel. 
Classic text marshalls the stars together in an engaging, non-technical survey, 
presenting them as sources of beauty in night sky. 23 illustrations. Foreword. 2 star 
charts. Index. 147pp. 5% x №. 21099-5 Pa. $3.50

FADS AND FALLACIES IN TH E NAME OF SCIENCE, Martin Gardner. Fair, 
witty appraisal of cranks, quacks, and quackeries of science and pseudoscience: 
hollow earth, Velikovsky, orgone energy, Dianetics, flying saucers, Bridey Murphy, 
food and medical fads, etc. Revised, expanded In the Name of Science. “A very able 
and even-tempered presentation.”—The New Yorker. 363pp. 5% x 8.

20394-8 Pa. $6.50

ANCIENT EGYPT: ITS CULTURE AND HISTORY, J. E Manchip White. From 
pre-dynasties through Ptolemies: society, history, political structure, religion, daily 
life, literature, cultural heritage. 48 plates. 217pp. 5% x №. 22548-8 Pa. $4.95



C A T A L O G  O F  D O V E R  B O O K S

SIR HARRY HOTSPUR OF HUMBLETHWAITE, Anthony Trollope. Incisive, 
unconventional psychological study of a conflict between a wealthy baronet, his 
idealistic daughter, and their scapegrace cousin. The 1870 novel in its first 
inexpensive edition in years. 250pp. 5% x 8& 2495S-0 Pa. $5.95

LASERS AND HOLOGRAPHY, Winston E. Kock. Sound introduction to 
burgeoning field, expanded (1981) for second edition. Wave patterns, coherence, 
lasers, diffraction, zone plates, properties of holograms, recent advances. 84 
illustrations. 160pp. 556 x 8M. (Except in United Kingdom) 24041-X Pa. $3.50

IN T R O D U C TIO N  T O  A RTIFICIAL IN TELLIG EN C E: SECOND, EN ­
LARGED EDITION, Philip C. Jackson, Jr. Comprehensive survey of artificial 
intelligence—the study of how machines (computers) can be made to act intelli­
gently. Includes introductory and advanced material. Extensive notes updating the 
main text. 132 black-and-white illustrations. 512pp. 5% x 8& 24864-X Pa. $8.95

HISTORY OF INDIAN AND INDONESIAN ART, Ananda K. Coomaraswamy. 
Over 400 illustrations illuminate classic study of Indian art from earliest Harappa 
finds to early 20th century. Provides philosophical, religious and social insights. 
304pp. 6% x 9%. 25005-9 Pa. $8.95

TH E GOLEM, Gustav Meyrink. Most famous supernatural novel in modern 
European literature, set in Ghetto of Old Prague around 1890. Compelling story of 
mystical experiences, strange transformations, profound terror. 13 black-and-white 
illustrations. 224pp. 5% x 8& (Available in U.S. only) 25025-3 Pa. $5.95

ARMADALE, Wilkie Collins. T hird great mystery novel by the author of The  
Woman in White and The Moonstone. Original magazine version with 40 
illustrations. 597pp. 526 x 8& 23429-0 Pa. $9.95

PICTORIAL ENCYCLOPEDIA OF HISTORIC ARCHITECTURAL PLANS, 
DETAILS AND ELEMENTS: With 1,880 Line Drawings of Arches, Domes, 
Doorways, Facades, Gables, Windows, etc., John Theodore Haneman. Sourcebook 
of inspiration for architects, designers, others. Bibliography. Captions. 141pp. 
9x  12. 24605-1 Pa. $6.95

BENCHLEY LOST AND FOUND, Robert Benchley. Finest hum or from early 
30’s, about pet peeves, child psychologists, post office and others. Mostly 
unavailable elsewhere. 73 illustrations by Peter Arno and others. 183pp. 526 x 8&

22410-4 Pa. $3.95

ERTÉ GRAPHICS, Erté. Collection of striking color graphics: Seasons, A Iphabet, 
Numerals, Aces and Precious Stones. 50 plates, including 4 on covers. 48pp. 
9% x m .  23580-7 Pa. $6.95

TH E JOURNAL OF HENRY D. THOREAU, edited by Bradford Torrey, F. H. 
Allen. Complete reprinting of 14 volumes, 1837-61, over two m illion words; the 
sourcebooks for Walden, etc. Definitive. All original sketches, plus 75 photographs. 
1,804pp. №  x 121/4. 20312-3, 20313-1 Cloth., Two-vol. set $80.00

CASTLES: TH EIR  CONSTRUCTION AND HISTORY, Sidney Toy. Traces 
castle development from ancient roots. Nearly 200 photographs and drawings 
illustrate moats, keeps, baileys, many other features. Caernarvon, Dover Castles, 
Hadrian’s Wall, Tower of London, dozens more. 256pp. 526 x 8lA.

24898-4 Pa. $5.95
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AMERICAN CLIPPER SHIPS: 1833-1858, Octavius T. Howe & Frederick C. 
Matthews. Fully-illustrated, encyclopedic review of 352 clipper ships from the 
period of America’s greatest maritime supremacy. Introduction. 109 halftones. 5 
black-and-white line illustrations. Index. Total of 928pp. 5% x 8&.

25115-2, 25116-0 Pa., Two-vol. set $17.90

TOWARDS A NEW ARCHITECTURE, Le Corbusier. Pioneering manifesto by 
great architect, near legendary founder of ‘‘International School.” Technical and 
aesthetic theories, views on industry, economics, relation of form to function, 
‘‘mass-production spirit,” much more. Profusely illustrated. Unabridged transla­
tion of 13th French edition. Introduction by Frederick Etchells. 320pp. 6% x 9^. 
(Available in U.S. only) 25023-7 Pa. $8.95

TH E BOOK OF KELLS, edited by Blanche Cirker. Inexpensive collection of 32 
full-color, full-page plates from the greatest illuminated manuscript of the Middle 
Ages, painstakingly reproduced from rare facsimile edition. Publisher’s Note. 
Captions. 32pp. 9% x 1214. 24345-1 Pa. $4.95

BEST SCIENCE FICTION STORIES OF H. G. WELLS, H. G. Wells. Full novel 
The Invisible Man, plus 17 short stories: ‘‘The Crystal Egg,” ‘‘Aepyornis Island,” 
‘‘The Strange Orchid,” etc. 303pp. 5% x 8& (Available in U.S. only)

21531-8 Pa. $4.95

AMERICAN SAILING SHIPS: Their Plans and History, Charles G. Davis. 
Photos, construction details of schooners, frigates, clippers, other sailcraft of 18th 
to early 20th centuries—plus entertaining discourse on design, rigging, nautical 
lore, much more. 137 black-and-white illustrations. 240pp. 6% x 9lA.

24658-2 Pa. $5.95

ENTERTAINING MATHEMATICAL PUZZLES, Martin Gardner. Selection of 
author’s favorite conundrums involving arithmetic, money, speed, etc., with lively 
commentary. Complete solutions. 112pp. 5% x 8J1 25211-6 Pa. $2.95

TH E WILL TO  BELIEVE, HUMAN IMMORTALITY, William James. Two 
books bound together. Effect of irrational on logical, and arguments for hum an 
immortality. 402pp. 5% x 8& 20291-7 Pa. $7.50

THE HAUNTED MONASTERY and TH E CHINESE MAZE MURDERS, 
Robert Van Gulik. 2 full novels by Van Gulik continue adventures of Judge Dee and 
his companions. An evil Taoist monastery, seemingly supernatural events; 
overgrown topiary maze that hides strange crimes. Set in 7th-century China. 27 
illustrations. 328pp. 5% x 8& 23502-5 Pa. $5.95

CELEBRATED CASES OF JUDGE DEE (DEE GOONG AN), translated by 
Robert Van Gulik. Authentic 18th-century Chinese detective novel; Dee and 
associates solve three interlocked cases. Led to Van G ulik’s own stories with same 
characters. Extensive introduction. 9 illustrations. 237pp. 5% x 851

23337-5 Pa. $4.95

Prices subject to change w ithout notice.
Available at your book dealer or write for free catalog to Dept. GI, Dover 
Publications, Inc., 31 East 2nd St., Mineola, N. Y. 11501. Dover publishes more than 
175 books each year on science, elementary and advanced mathematics, biology, 
music, art, literary history, social sciences and other areas.
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Problem Book in the T heory of Functions, Volume I, Konrad Knopp. 
(60158-7) $4.50

Problem Book in the T heory of Functions, Volume II, Konrad Knupp. 
(60159-5) $3.95

Infinite Sequences and Series, Konrad Knopp. (60153-6) $4.50 
D ifferential Equations: G eometric T heory, Solomon Lefschetz. 

(63463-9) $8.95
T he A bsolute D ifferential Calculus, Tullio Levi-Civita. (63401-9) $8.95 
Conformal Mapping, Zeev Nehari. (61137-X) $7.95 
An Introduction to the Approximation of Functions, Theodore J. 

Rivlin. (64069-8) $4.00
Elements of Q ueueing T heory, Thomas L. Saaty. (64553-3) $9.95 
Modern N onlinear Equations, Thomas L. Saaty. (64232-1) $9.95 
N onlinear Mathematics, Thomas L. Saaty and Joseph Bram.

(64233-X) $8.00
A Concrete Approach to A bstract Algebra, W.W. Sawyer.

(63647-X) $5.95
H istory of Mathematics, David Eugene Smith. (20429-4, 20430-8) Two- 

volume set $20.00
One H undred Problems in Elementary M athematics, Hugo Steinhaus. 

(23875-X) $3.95
Set T heory and Logic, Robert R. Stoll. (63829-4) $8.50 
Introduction to Elementary Mathematical Logic, A. A. Stolyar. 

(64561-4) $5.00
Axiomatic Set T heory, Patrick Suppes. (61630-4) $6.00 
Fourier Series, Georgi P. Tolstov. (63317-9) $7.00 
T he Fourier Integral and Certain of Its A pplications, Norbert Wiener. 

(60272-9) $4.50
Mathematics for the P hysical Sciences, Herbert S. Wilf. (63635-6) $6.95

Paperbound unless otherwise indicated. Prices subject to change without 
notice. Available at your book dealer or write for free catalogues to Dept. 
23, Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11501. 
Please indicate field of interest. Each year Dover publishes over 200 books 
on fine art, music, crafts and needlework, antiques, languages, literature, 
children’s books, chess, cookery, nature, anthropology, science, 
mathematics, and other areas.

Manufactured in the U.S.A.



AN INTRODUCTION TO 
UNEAR ALGEBRA&TENSORS

M.A. Akivis & VV Goldberg
R i c h a r d  A .  S i l v e r m a n ’s s e r i e s  o f  t r a n s l a t i o n s  o f  o u t s t a n d i n g  R u s s i a n  
t e x t b o o k s  a n d  m o n o g r a p h s  is  w e l l - k n o w n  t o  p e o p l e  i n  m a t h e m a t i c s ,  
p h y s i c s  a n d  e n g i n e e r i n g .  T h e  p r e s e n t  b o o k  i s  a n o t h e r  e x c e l l e n t  t e x t  
f r o m  t h i s  s e r i e s ,  a  v a l u a b l e  a d d i t i o n  t o  t h e  E n g l i s h - l a n g u a g e  l i t e r a ­
t u r e  o n  l i n e a r  a l g e b r a  a n d  t e n s o r s .  I t  s t e m s  f r o m  t h e  f i r s t  f o u r  
c h a p t e r s  o f  t h e  R u s s i a n  a u t h o r s ’ i m p o r t a n t  w o r k  Tensor Calculus, 
a n d  c o n s t i t u t e s  a  l u c i d ,  e m i n e n t l y  r e a d a b l e  a n d  c o m p l e t e l y  e l e m e n ­
t a r y  i n t r o d u c t i o n  t o  t h i s  f i e l d  o f  m a t h e m a t i c s .  A  s p e c i a l  m e r i t  o f  
t h e  b o o k  i s  i t s  f r e e  u s e  o f  t e n s o r  n o t a t i o n ,  i n  p a r t i c u l a r  t h e  E i n ­
s t e i n  s u m m a t i o n  c o n v e n t i o n .  T h e  t r e a t m e n t  i s  v i r t u a l l y  s e l f - c o n ­
t a i n e d .  I n  f a c t ,  t h e  m a t h e m a t i c a l  b a c k g r o u n d  a s s u m e d  o n  t h e  
p a r t  o f  t h e  r e a d e r  h a r d l y  e x c e e d s  a  s m a t t e r i n g  o f  c a l c u l u s  a n d  a  
c a s u a l  a c q u a i n t a n c e  w i t h  d e t e r m i n a n t s .

T h e  a u t h o r s  b e g i n  w i t h  l i n e a r  s p a c e s ,  s t a r t i n g  w i t h  b a s i c  c o n c e p t s  
a n d  e n d i n g  w i t h  t o p i c s  i n  a n a l y t i c  g e o m e t r y .  T h e y  t h e n  t r e a t  m u l t i ­
l i n e a r  f o r m s  a n d  t e n s o r s  ( l i n e a r  a n d  b i l i n e a r  f o r m s ,  g e n e r a l  d e f i n i ­
t i o n  o f  a  t e n s o r ,  a l g e b r a i c  o p e r a t i o n s  o n  t e n s o r s ,  s y m m e t r i c  a n d  
a n t i s y m m e t r i c  t e n s o r s ,  e t c . ) ,  a n d  l i n e a r  t r a n s f o r m a t i o n  ( a g a i n  b a s i c  
c o n c e p t s ,  t h e  m a t r i x  a n d  m u l t i p l i c a t i o n  o f  l i n e a r  t r a n s f o r m a t i o n s ,  
i n v e r s e  t r a n s f o r m a t i o n s  a n d  m a t r i c e s ,  g r o u p  a n d  s u b g r o u p s ,  e t c . )  . 
T h e  l a s t  c h a p t e r  d e a l s  w i t h  f u r t h e r  t o p i c s  i n  t h e  f i e l d :  e i g e n v e c t o r s  
a n d  e i g e n v a l u e s ,  m a t r i x  p o l y n o m i a l s  a n d  t h e  H a m i l t o n - C a y l e y  
t h e o r e m ,  r e d u c t i o n  o f  a  q u a d r a t i c  f o r m  t o  c a n o n i c a l  f o r m ,  r e p r e ­
s e n t a t i o n  o f  a  n o n s i n g u l a r  t r a n s f o r m a t i o n ,  a n d  m o r e .  E a c h  i n ­
d i v i d u a l  s e c t i o n — t h e r e  a r e  2 5  i n  a l l — c o n t a i n s  a  p r o b l e m  s e t ,  m a k ­

i n g  a  t o t a l  o f  o v e r  2 5 0  p r o b l e m s ,  a l l  c a r e f u l l y  s e l e c t e d  a n d  m a t c h e d .  
H i n t s  a n d  a n s w e r s  t o  m o s t  o f  t h e  p r o b l e m s  c a n  b e  f o u n d  a t  t h e  

e n d  o f  t h e  b o o k .

D r .  S i l v e r m a n  h a s  r e v i s e d  t h e  t e x t  w i t h  n u m e r o u s  p e d a g o g i c a l  a n d  
m a t h e m a t i c a l  i m p r o v e m e n t s ,  a n d  r e s t y l e d  t h e  l a n g u a g e  s o  t h a t  i t  
i s  e v e n  m o r e  r e a d a b l e .  W i t h  i t s  c l e a r  e x p o s i t i o n ,  m a n y  r e l e v a n t  a n d  
i n t e r e s t i n g  p r o b l e m s ,  a m p l e  i l l u s t r a t i o n s ,  i n d e x  a n d  b i b l i o g r a p h y ,  
t h i s  b o o k  w i l l  b e  u s e f u l  i n  t h e  c l a s s r o o m  o r  f o r  s e l f - s t u d y  a s  a n  
e x c e l l e n t  i n t r o d u c t i o n  t o  t h e  i m p o r t a n t  s u b j e c t s  o f  l i n e a r  a l g e b r a  

a n d  t e n s o r s .

U n a b r i d g e d  a n d  u n a l t e r e d  r e p u b l i c a t i o n  o f  r e v i s e d  E n g l i s h  e d i t i o n  
o r i g i n a l l y  e n t i t l e d  Introductory Linear Algebra ( 1 9 7 2 ) .  B i b l i ­
o g r a p h y .  I n d e x ,  v i i  -f- 1 6 7 p p .  55/8 x  81/ .  P a p e r b o u n d .
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