
Richard H. Enns
George C. McGuire

Computer Algebra Recipes

An Advanced Guide to
Scientific Modeling

Richard H. Enns
Simon Fraser University
Department of Physics
Burnaby, B.C. V5A 1S6
Canada
renns@sfu.ca

George C. McGuire
University College of Fraser Valley
Department of Physics
Abbotsford, BC V2S 7M9
Canada
george.mcguire@ucfv.ca

Cover design by Mary Burgess.

Library of Congress Control Number: 2006936017

ISBN-10: 0-387-25768-3 e-ISBN-10: 0-387-49333-6
ISBN-13: 978-387-25768-6 e-ISBN-13: 978-0-387-49333-6

Printed on acid-free paper.

c©2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York,
NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com (EB)

PREFACE

A computer algebra system (CAS) not only has the number \crunching" and
plotting capability of traditional computing languages such as Fortran and C,
but also allows one to perform the symbolic manipulations and derivations
required in most mathematically based science and engineering courses. To
introduce students in these disciplines to CAS-based mathematical modeling
and computation, the authors have previously developed and classroom tested
the text Computer Algebra Recipes: A Gourmet's Guide to the Mathematical
Models of Science [EM01] based on the Maple CAS. Judging by course evalua-
tions and reader feedback, the response to this book and the computer algebra
approach to modeling has been very favorable. With the release of several new
versions of Maple since this text was published and the authors' accumulation
of many insightful comments and helpful suggestions, a second up-dated edi-
tion seemed expedient. However, incorporating all the changes would make
an already lengthy book even longer. So the topics of the Gourmet's Guide
have been reorganized into two new stand-alone volumes, an already-published
Introductory Guide [EM06] and this Advanced Guide.

In this book, we explore mathematical models involving linear and nonlin-
ear ordinary and partial di®erential equations (ODEs and PDEs). This volume,
which may be used either as a course text or for self-study, features an eclectic
collection of Maple computer algebra worksheets, or \recipes," that are system-
atically organized to illustrate graphical, analytical, and numerical techniques
applied to ODE/PDE-based scienti¯c modeling. No prior knowledge of Maple
is assumed, the early recipes introducing the reader to the basic Maple syntax,
the subsequent recipes introducing further Maple commands and structure on
a need-to-know basis.

The recipes are fully annotated in the text and in most cases presented as
\stories" or in a historical context. Each recipe typically takes the reader from
the analytic formulation of an interesting mathematical model to its analytic
or numerical solution and ¯nally to either a static or animated graphical visu-
alization of the answer. Every recipe is followed by a set of problems that can
be used to check one's understanding or develop the topic further. For your
convenience, the recipes are included on a CD located in the inside back cover.

v

Contents

PREFACE v

INTRODUCTION 1
A. Computer Algebra Systems . 1
B. Computer Algebra Recipes . 2
C. Introductory Recipe: Boys Will Be Boys 3
D. Maple Help . 8
E. How to Use This Text . 9

I THE APPETIZERS 11

1 Phase-Plane Portraits 13
1.1 Phase-Plane Portraits . 13

1.1.1 Romeo and Juliet . 18
1.1.2 There's No Damping Vectoria's Romantic Heart 23
1.1.3 Van der Pol's Limit Cycle 28

1.2 Three-Dimensional Autonomous Systems 32
1.2.1 The Period-Doubling Route to Chaos 33
1.2.2 The Oregonator . 40
1.2.3 RÄossler's Strange Attractor 44

2 Phase-Plane Analysis 47
2.1 Phase-Plane Analysis . 47

2.1.1 Foxes Munch Rabbits . 51
2.1.2 The Mona Lisa of Nonlinear Science 58
2.1.3 Mike Creates a Higher-Order Fixed Point 67
2.1.4 The Gnus and Sung of Erehwon 73
2.1.5 A Plethora of Points . 78

2.2 Three-Dimensional Autonomous Systems 82
2.2.1 Lorenz's Butter°y . 82

2.3 Numerical Solution of ODEs . 88

vii

viii CONTENTS

2.3.1 Finite Di®erence Approximations 89
2.3.2 Rabbits and Foxes: The Sequel 91
2.3.3 Glycolytic Oscillator . 96
2.3.4 Fox Rabies Epidemic . 101

II THE ENTREES 107

3 Linear ODE Models 109
3.1 First-Order Models . 110

3.1.1 How's Your Blood Pressure? 110
3.1.2 Greg Arious Nerd's Problem 115

3.2 Second-Order Models . 118
3.2.1 Daniel Encounters Resistance 118
3.2.2 Meet Mr. Laplace . 121
3.2.3 Jennifer's Formidable Series 126

3.3 Special Function Models . 130
3.3.1 Jennifer Introduces a Special Family 131
3.3.2 The Vibrating Bungee Cord 137
3.3.3 Mathieu's Spring . 142
3.3.4 Quantum-Mechanical Tunneling 144

4 Nonlinear ODE Models 149
4.1 First-Order Models . 150

4.1.1 An Irreversible Reaction 150
4.1.2 The Struggle for Existence 152
4.1.3 The Bad Bird Equation 161

4.2 Second-Order Models . 164
4.2.1 Patches Gives Chase . 164
4.2.2 Oh What Sounds We Hear! 168
4.2.3 Vectoria Feels the Force and Hits the Bottle 175
4.2.4 Golf Is Such an \Uplifting" Experience 179

4.3 Variational Calculus Models . 185
4.3.1 Dress Design, the Erehwonese Way 185
4.3.2 Queen Dido Wasn't a Dodo 191
4.3.3 The Human Fly Plans His Escape Route 195
4.3.4 This Would Be a Great Amusement Park Ride 201

5 Linear PDE Models. Part 1 207
5.1 Checking Solutions . 207

5.1.1 The Palace of the Governors 207
5.1.2 Play It, Sam . 211
5.1.3 Three Easy Pieces . 215
5.1.4 Complex, Yet Simple . 220

5.2 Di®usion and Laplace's Equation Models 223

CONTENTS ix

5.2.1 Freeing Excalibur . 223
5.2.2 Aussie Barbecue . 227
5.2.3 Benny's Solution . 231
5.2.4 Hugo and the Atomic Bomb 236
5.2.5 Hugo Prepares for His Job Interview 241

6 Linear PDE Models. Part 2 247
6.1 Wave Equation Models . 247

6.1.1 Vectoria Encounters Simon Legree 247
6.1.2 Homer's Jiggle Test . 251
6.1.3 Vectoria's Second Problem 254
6.1.4 Sound of Music? . 257

6.2 Semi-in¯nite and In¯nite Domains 261
6.2.1 Vectoria's Fourth Problem 261
6.2.2 Assignment Complete! . 263
6.2.3 Radioactive Contamination 266
6.2.4 \Play It, Sam" Revisited 270

6.3 Numerical Simulation of PDEs 274
6.3.1 Freeing Excalibur the Numerical Way 275
6.3.2 Enjoy the Klein{Gordon Vibes 278
6.3.3 Vectoria's Secret . 281

III THE DESSERTS 285

7 The Hunt for Solitons 287
7.1 The Graphical Hunt for Solitons 290

7.1.1 Of Kinks and Antikinks 290
7.1.2 In Search of Bright Solitons 293
7.1.3 Can Three Solitons Live Together? 296

7.2 Analytic Soliton Solutions . 299
7.2.1 Follow That Wave! . 300
7.2.2 Looking for a Kinky Solution 304
7.2.3 We Have Solitons! . 306

7.3 Simulating Soliton Collisions . 308
7.3.1 To Be or Not to Be a Soliton 308
7.3.2 Are Diamonds a Kink's Best Friend? 312

8 Nonlinear Diagnostic Tools 319
8.1 The Poincar¶e Section . 319

8.1.1 A Rattler Signals Chaos 320
8.1.2 Hamiltonian Chaos . 323

8.2 The Power Spectrum . 329
8.2.1 Frank N. Stein's Heartbeat 332
8.2.2 The Rattler Returns . 334

x CONTENTS

8.3 The Bifurcation Diagram . 337
8.3.1 Pitchforks and Other Bifurcations 338

8.4 The Lyapunov Exponent . 342
8.4.1 Mr. Lyapunov Agrees . 343

8.5 Reconstructing an Attractor . 345
8.5.1 Putting Humpty Dumpty Together Again 346
8.5.2 Random Is Random . 349
8.5.3 Butter°y Reconstruction 351

Epilogue . 353

Bibliography 355

Index 361

INTRODUCTION

A. Computer Algebra Systems

Man is still the most extraordinary computer of all.
John F. Kennedy, former American president. Speech, 21 May 1963.

Unlike traditional programming languages such as Fortran and C, a computer
algebra language such as Maple allows one to compute not only with num-
bers, but also with symbols, formulas, equations, and so on. Using a computer
algebra system (CAS), symbolic computation can be done on the computer, re-
placing the traditional pen-and-paper approach with the keyboard/mouse and
computer display. By entering short, simple, transparent commands on the
computer keyboard (which will be referred to as the \classic" approach), or by
selecting mathematical symbols from a palette with the mouse, the CAS user
can quickly and accurately generate symbolic input and output on the com-
puter screen. Mathematical operations such as di®erentiation, integration, and
series expansion of functions can be done analytically on the computer.

Because it also has numerical capability, a CAS allows the student or the
researcher to tackle all aspects of mathematical modeling, from analytic deriva-
tion and manipulation of the model equations to the analytic or numerical
solution of those equations, to the plotting or animation of the results. One of
the most powerful computer algebra systems currently available is Maple 10,
which will be used in this text. Useful reference books to this CAS are the
Maple user manual [Map05] and the introductory and advanced programming
guides [MGH+05].

In the two volumes of Computer Algebra Recipes, we present classic Maple
worksheets, or \recipes," that demonstrate how a CAS can serve as a valu-
able adjunct tool in easily deriving, solving, plotting, and exploring interesting,
modern scienti¯c models chosen from a wide variety of disciplines ranging from
the physical and biological sciences to the social sciences and engineering. The
present book is the second volume and concentrates on mathematically more
advanced models involving linear and nonlinear ordinary and partial di®eren-
tial equations (ODEs and PDEs). The classic Maple worksheet interface, which
requires less computer memory than the standard interface, is used to generate
all the mathematical and graphical output shown in this text.

1

2 INTRODUCTION

B. Computer Algebra Recipes

The mathematics is not there till we put it there.
Sir Arthur Eddington, The Philosophy of Physical Science, 1939

The ODE and PDE recipes in our computer algebra \menu" have been or-
ganized into three sections of increasing mathematical sophistication. The Ap-
petizers illustrate phase-plane portraits and analysis, the Entrees deal with
linear and nonlinear ODEs and linear PDEs, and the Desserts feature the
hunt for solitons and some nonlinear diagnostic tools. The recipes are intended
to ful¯ll not only a useful and serious pedagogical purpose but also to titil-
late and stimulate the reader's intellect and imagination. Associated with each
recipe is an important scienti¯c model or method and usually some historical
background or an interesting story featuring an engineering or science student
who will guide you through the steps of the recipe. These storybook characters
are ¯ctitious composites of some of the more likeable, industrious, and brighter
students that the authors have had the privilege of teaching over the years.

Every topic or story in the text contains the Maple code or recipe to explore
that particular topic. To make life easier for you, all recipes have been placed
on the CD-ROM enclosed within the back cover of this text. The recipes are
ordered according to the chapter, section, and subsection (story) number. For
example, the recipe 01-2-3, entitled RÄossler's Strange Attractor, is associated
with Chapter 1, Section 2, Subsection 3. Although the recipes can be directly
accessed on the CD by clicking on the appropriate worksheet number, it is
recommended that you access them through the menu index ¯le, 00menu.
All recipes may be conveniently accessed from this menu using the hyperlinks.
Complete instructions on how to do this may be found in the menu ¯le.

The computer code on the CD is unannotated, so you will have to read the
text in order to understand what the code is trying to accomplish. The code has
been imported into the text and here is accompanied by detailed explanations
of the underlying modeling concepts and computational methods.

The recommended procedure for using this text is ¯rst to read a given
topic/story for overall comprehension and enjoyment. If you are having any
di±culty in understanding a piece of the text code, then you should execute
the corresponding Maple worksheet and try variations on the code. Keep in
mind that the same objective may often be achieved by a di®erent combination
of Maple commands from those used by the authors. After reading the topic,
you should execute the worksheet (if you have not already done so) to make
sure the code works as expected. At this point feel free to explore the topic.
Try rotating any three-dimensional graphs or running any animations in the
¯le. See what happens when changes in the model or Maple code are made and
then try to interpret any new results. This book is intended to be open-ended
and merely serve as a guide to what is possible in mathematical modeling using
a CAS, the possibilities being limited only by your own background and desires.

Each topic or story is self-contained and generally done completely, from

INTRODUCTORY RECIPE 3

the derivation to the solution to the plot and accompanied by a thorough dis-
cussion of the steps and results. Since arriving at the answer is more important
in our opinion than the method used, one will encounter recipes in which ana-
lytic derivation of the model equations occurs, followed by a numerical solution
because an analytic solution doesn't exist. Although brief introductions, which
generally include some de¯nitions of terminology and short explanations of un-
derlying concepts, are given for each main topic area, this text is not intended
to teach you everything that you want to know, for example, about methods of
solving ODEs or PDEs. Neither is it intended to teach you about the myriad
subject areas of science or engineering. Instead, it is meant to serve as a guide
to how these topics and areas can be handled using a CAS. However, this book
is not just any ordinary guide. It is a gourmet's guide! It presupposes that the
reader has learned or is about to learn about various scienti¯c models and/or
methods, and we are providing the computer algebra tools to enable you to
solve complex scienti¯c problems more easily, to attain greater understanding,
and to explore the frontiers of science that interest you.

At the end of most recipe subsections, there are related problems where you,
the reader, can check your mastery of the scienti¯c computation and computer
algebra techniques presented in the recipes. The problems also allow you to
explore new frontiers and challenge you to invent and solve \What happens if
: : :?" problems. The purpose of this text is not only to teach computer-assisted
computational techniques useful to engineering and science students, but to
whet the student's curiosity and put some fun back into the pursuit of a science
education. For maximum satisfaction and learning, it demands an interactive
approach by the reader. Although the stories were designed to be interesting
or amusing to read, the Maple recipes must be run, the models explored, and
the problems solved. Some things never change in the learning process!

C. Introductory Recipe: Boys Will Be Boys

Giving money and power to government is like giving
whiskey and car keys to teenage boys.
P. J. O'Rourke, American journalist (1947{)

To give you some idea of what a typical computer algebra recipe looks like
and to introduce some basic Maple syntax, consider the problem that follows.
The recipe that solves this problem is not on the CD, so after reading this sec-
tion you should open up classic Maple 10 on your computer, type in the recipe,
and execute it.

Richard's grandson Daniel throws a small ball with an initial speed of 15
m/s towards a 3:5-meter-high fence located 20 meters from the ball's initial
position. The ball leaves Daniel's hand at a height of 2 m above the level
ground and just clears the top of the fence. The gravitational acceleration is
g=9:8 m/s2. The ball may be regarded as a point particle and air resistance
neglected.

4 INTRODUCTION

(a) At what angle Á with the horizontal is the ball thrown?

(b) How long does it take the ball to reach the fence?

(c) Plot the entire trajectory, then animate the motion of the ball, including
the fence in the animation.

Let's choose the origin to be on the ground below the initial position of the
ball and take the x-coordinate to be horizontal and the y-coordinate vertical.
To begin the recipe, we ¯rst clear Maple's internal memory of any previously
assigned values (other worksheets may be open with numerical values given to
some of the same symbols being used in the present recipe). This is done by
typing in the restart command after the opening prompt (>) symbol, ending
the command with a colon (:), and pressing Enter (which generates a new
prompt symbol) on the computer keyboard.

> restart:

All Maple command lines must be ended with either a colon, which suppresses
any output, or a semicolon (;), which allows the output to be viewed.

Next, the given parameter values are speci¯ed. For example, the initial
x-coordinate of the ball is entered, the symbolic name xb being placed to the
left of the Maple assignment operator (:=). The numerical value (0) of the
coordinate is placed on the right-hand side of the operator and the output
suppressed here with a command-ending colon. Assigned quantities can be
mathematically manipulated. In a similar manner, the numerical values of the
ball's initial y-coordinate (yb), the horizontal location (xf) of the fence, the
fence's height (yf), the initial speed (V) of the ball, and the magnitude of the
gravitational acceleration (g) are entered. Because the command entries are
short, we have chosen to place them all on the same prompt line, separating
the entries by a space for reading clarity.

> xb:=0: yb:=2: xf:=20: yf:=3.5: V:=15: g:=9.8:

Using the symbol * for multiplication, we express the horizontal (vx) and verti-
cal (vy) components of the ball's initial velocity in terms of the unknown angle
Á. The Maple input syntax phi is used to generate the Greek letter Á in the
output. Note that the assigned value (15) of V is automatically substituted.

> vx:=V*cos(phi); vy:=V*sin(phi);

vx := 15 cos(Á) vy := 15 sin(Á)

Using the standard kinematic relations [Oha85], we calculate the ball's x and y
coordinates at arbitrary time t. The symbols +, -, /, and ^ are used for addition,
subtraction, division, and exponentiation. Note that the decimal coe±cient of
t2 in the output is given to 10 digits, Maple's usual default accuracy.

> x:=xb+vx*t; y:=yb+vy*t-(1/2)*g*t^2;

x := 15 cos(Á) t y := 2 + 15 sin(Á) t¡ 4:900000000 t2
Setting x=xf in the solve command, the time t = tf for the ball to reach the
fence is determined in terms of Á.

> tf:=solve(x=xf,t); #time to reach fence

INTRODUCTORY RECIPE 5

tf :=
4

3

1

cos(Á)
A comment, pre¯xed by the pound sign #, has been added to the command
line. Short comments are useful for later reference or for others to read and
understand the purpose of a Maple command.1

A transcendental equation eq for Á results on evaluating y at t = tf and
equating the result to yf:

> eq:=eval(y,t=tf)=yf;

eq := 2 +
20 sin(Á)

cos(Á)
¡ 8:711111111

cos(Á)2
= 3:5

The transcendental equation is solved for Á, the result being labeled ©.

> Phi:=solve(eq,phi); #angles in radians

© := 0:9917653601; 0:6538908144; ¡2:149827293; ¡2:487701839
Four angles, expressed in radians, are generated in the above output ©, the
default accuracy being 10 digits. Since the initial angle must be above the hor-
izontal, only the positive answers are acceptable as solutions for this problem.
Since there are two positive results, this means that Daniel could throw the ball
at two di®erent angles to just clear the fence. To proceed, we shall select one of
the positive answers, say the second one in ©. This is done by entering Phi[2].
You can look at the ¯rst positive angle by changing this entry to Phi[1]. If de-
sired, the angle Á ¼ 0:65 radians can be converted to degrees using the convert
command with units as the second argument.

> phi:=Phi[2]; theta:=convert(phi,units,radian,degree);

Á := 0:6538908144 μ := 37:46518392

In this case, Daniel throws the ball at an angle μ ¼ 371
2
degrees to the horizontal.

It should be mentioned that the convert command is very useful for converting
an expression from one form to another, the form of conversion being dictated
by the choice of second argument. To see the types of conversions possible with
Maple, click on the convert command in the worksheet, then on Help in the
tool bar, and ¯nally on Help on convert.

Using the °oating-point evaluation command, evalf, we numerically eval-
uate the time to reach the fence, which is found to be about 1.68 seconds.

> tf:=evalf(tf); #time to reach fence

tf := 1:679846933

To plot the entire trajectory, the time T for the ball to hit the ground must
be determined. This is accomplished by setting y = 0 and solving for t, which
produces two answers.

> T:=solve(y=0,t);

T := ¡0:1981184874; 2:060197767
1Longer or more detailed comments may be inserted into a worksheet by clicking on

Insert in the tool bar at the top of the computer screen, then on Execution Group, on
either Before Cursor or After Cursor, on Text, and ¯nally typing in the comments.

6 INTRODUCTION

The negative answer is the time at which the ball would have had to been
thrown if it had started from ground level. The second answer is the relevant
one here and is now selected. The ball hits the ground after 2.06 seconds.

> T2:=T[2]; #time to hit ground

T2 := 2:060197767

The entire trajectory of the ball is now plotted using the plot command. The
ball's horizontal and vertical coordinates must be entered as part of a Maple
\list," the list entries being separated by commas and the entire list enclosed
in square brackets. Maple preserves the order of items in a list. In the present
case, the list entries are the x-coordinate, the y-coordinate, and the time range.2

If no optional arguments are speci¯ed in the plot command, a ¯gure will be
generated in which Maple chooses its own horizontal and vertical scaling. Con-
strained scaling can be achieved by including the option scaling=constrained
as an additional argument.3

On executing the plot command, we generate a computer plot similar to
that reproduced in Figure 1, with y plotted vertically and x horizontally.

> plot([x,y,t=0..T2],scaling=constrained);

0

2

4

6

5 10 15 20 25

Figure 1: Trajectory of the ball.

Note that the horizontal and vertical axes are not labeled in the ¯gure. Axis
labels can be added by including the option labels=["x(in m)","y(in m)"]
in the plot command. Try it and see.4

If you wish to learn more about the plot command and its optional argu-
ments, click the left mouse button on the plot command and then on Help
at the top of the computer screen. Clicking on the entry Help on plot opens
up a help page with information about this command structure. The various

2This is a parametric plot, because x and y depend parametrically on the time t.
3If this optional argument is omitted, constrained scaling can be achieved in another way.

Click your left mouse button on the computer plot. This opens a tool bar at the top of the
computer screen with various options. Clicking on Projection and then on Constrained
produces a plot with constrained scaling.

4The double quotes in the labels option indicate a Maple \string," a sequence of characters
that has no value other than itself. A string cannot be assigned to, and will always evaluate to,
itself. Omit the double quotes and note what happens when the plot command is executed.

INTRODUCTORY RECIPE 7

plotting options available can be found by clicking on the underlined hyperlink
plot/details that appears on the help page, and then on plot[options]. Try
including some other options in the plot command. For example, change the
color of the ball's trajectory from the default red to, say, blue.

The ¯nal part of the problem is to animate the trajectory of the ball with
the vertical fence included. The fence is now plotted, but not displayed, being
assigned the name fence. The coordinates of the bottom and the top of the
fence are entered as Maple lists and then formed into another list, i.e., one has
a \list of lists." The fence will be plotted as a vertical (default red) line.

> fence:=plot([[xf,0],[xf,yf]]):

To produce specialized plots, such as an animated one, we must access the plots
library package. This is done by entering the command with(plots). The
preface with always indicates a Maple library package is being \loaded" into
the worksheet. Library packages are extremely important, since they contain
approximately 90% of Maple's mathematical knowledge. Normally, we would
end the command with a colon, but here a semicolon is used to see what plot
commands are contained in the plots library.5

> with(plots);

Warning, the name changecoords has been redefined

[Interactive ; animate; animate3d ; animatecurve; arrow ; changecoords ; : : :]

The animate command, appearing in the above list, will be used to animate the
motion of the ball. The syntax is animate(plot command,[plot arguments],
time range,options). The pointplot command will plot the ball as a point.
The plot arguments symbol=circle and symbolsize=14 instruct Maple to plot
the point as a size-14 circle.6 Included in the plot arguments list are the ball's
x- and y-coordinates given as a list of lists. The time range is t = 0 to T2 . In
the options, the number7 of frames is taken to be 200, the frames being equally
spaced in time. The option background=fence causes the fence to appear as
background in each time frame. Finally, the scaling is constrained.

> animate(pointplot,[[[x,y]],symbol=circle,symbolsize=14],

t=0..T2,frames=200,background=fence,scaling=constrained);

When the animate command line is executed on the computer, the initial frame
of the animation will appear on the screen. Clicking on the picture with the left
mouse button places the picture in a viewing box and opens up an animation bar
at the top of the screen. The animation is started by clicking on the arrowhead
(¤) and stopped by clicking on the square (2).

5Only a partial list of plot commands is shown here in the text, as indicated by the dots.
Note that a warning message is also produced that informs us that the name changecoords
has been rede¯ned in the current release of Maple. If desired, warnings can be removed by
inserting the command interface(warnlevel=0) prior to loading the library package. From
now on, all such warnings will generally be arti¯cially removed in the text.

6The default symbol is a diamond and the default size is 10.
7The default number is 25 frames. 200 frames produces a smoother animation.

8 INTRODUCTION

D. Maple Help

We teachers can only help the work going on,
as servants wait upon a master.
Maria Montessori, Italian educator, The Absorbent Mind, 1949.

We have already seen in the introductory recipe how Maple's Help can be used
to learn more about the Maple commands that appear in the text recipes. If
you wish to ¯nd out what other help is available, click on Help at the top of
the computer screen and then on the entry Using Help. A help page opens
with a number of hyperlinks that you should explore.

Two of the more important hyperlinks are entitled Perform a Topic
Search and Perform a Full Text Search. Here we shall give two simple ex-
amples of using these searches, leaving the full descriptions of the search types
for you to read. It should be noted that neither type of search is case-sensitive.

Our ¯rst example illustrates a topic search, which locates help based on
a keyword that you specify. For example, suppose that you wanted the cor-
rect form of the command for taking a square root. Click on Help, then on
Topic Search, making sure that the Auto-search box is selected. Depending
on the programming language used, the square root command could be sqr,
sqrt, : : :, : : : On typing the ¯rst couple of letters, sq, in the Topic box, Maple
will display all the commands starting with sq. Double click on sqrt or, alter-
natively, single click on sqrt and then on OK. A description of the square root
command will appear on the screen. You can then close the Help window and
proceed with programming your recipe.

The second example illustrates a full-text search. Suppose, for example,
that you wish to ¯nd the command for analytically or numerically solving an
ODE. In the Help window, click on Full Text Search. Then type ode in
the Word(s) box and click on Search. Double clicking on dsolve produces
a description of the dsolve command for solving ODEs along with several
examples. If, for example, you want to know how to ¯nd a numerical solution,
click on the hyperlink dsolve,numeric.

The approach employed in the introductory recipe may also be used to ¯nd
information about unfamiliar mathematical functions that appear in the Maple
output. If, for example, the output contained the word \EllipticF," you may
¯nd out what this function is by clicking on the word to highlight it, then on
Help, and ¯nally on Help on EllipticF. You will ¯nd that EllipticF refers to
the incomplete elliptic integral of the ¯rst kind, which is de¯ned in the Help
page. The same Help window may also be opened by typing in a question mark
followed by the word and a semicolon, e.g., ?EllipticF;.

Maple's Help is certainly not perfect, and on occasion you might feel frus-
trated, but generally it is helpful and should be consulted whenever you get
stuck with Maple syntax or are seeking just the right command to accomplish
a certain mathematical task.

HOW TO USE THIS TEXT 9

E. How to Use This Text

Begin at the beginning ... and go on till you come to the end.
Lewis Carroll, Alice's Adventures in Wonderland (1865)

The recommended procedure for most readers, particularly for someone who
is new to CASs in general and to Maple in particular, is to follow the advice
given by the king to the white rabbit in Alice's Adventures in Wonderland.
Start with the Appetizers, then go on to the Entrees, and ¯nish o® with
the Desserts. In the early recipes of the Appetizers you will be introduced
to more of the basic features of the Maple system and see further examples of
Maple's Help. Keep in mind that although we have made every e®ort to keep
this book self-contained, it is impossible for us to teach you everything you
would wish to know about programming with the Maple CAS. After all, that
it is not the primary purpose of this text. Further, the choice of Maple library
packages and associated command structures is to some extent dictated by the
choice of subject matter. Since the topics of Computer Algebra Recipes have
now been split between two volumes, you might wish to consult the Introductory
Guide for use of library packages not emphasized in this Advanced Guide. And,
at the risk of sounding immodest, the former volume also contains a wonderful
selection of scienti¯c models.

Of course, if you are already a Maple expert, feel free to pick and choose
those topics and recipes in this volume that interest you or are relevant to your
own scienti¯c tastes or goals.

No matter what approach to using this text is taken, we hope that you
will enjoy the wide range of interdisciplinary topics and stories that we have
presented. Before beginning your intellectual journey through this book, let us
paraphrase a well-known saying from the world of sports with these words of
advice:

You can't learn the great game of scienti¯c modeling
by being a spectator. You must play the game!

We trust that as you sample and explore the various recipes on which our
menu is based, you will enjoy the intellectual \feast" that we have prepared
and presented in this Advanced Guide to the Mathematical Models of Science.

Bon Appetit!
Richard and George,
Your CAS chefs

Part I

THE APPETIZERS

A man ceases to be a beginner in any given science

and becomes a master in that science when he has

learned that ... he is going to be a beginner all his life.

R. G. Collingwood, British philosopher, The New Leviathan, 1942

In a time of drastic change it is the learners who inherit

the future. The learned usually ¯nd themselves equipped

to live in a world that no longer exists.

Eric Ho®er, American philosopher, Re°ections on the Human Condition, 1973

To know yet to think that one does not know is best;

Not to know yet to think that one knows

will lead to di±culty.
Lao-Tzu, Chinese philosopher, 6th century BC

11

Chapter 1

Phase-Plane Portraits
Every portrait that is painted with feeling
is a portrait of the artist, not of the sitter.
Oscar Wilde, Anglo-Irish playwright, novelist, and poet (1854{1900)

Consider a system of two ¯rst-order coupled ODEs of the general structure

_X ´ dX

dt
= P (X;Y); _Y ´ dY

dt
= Q(X;Y); (1.1)

where P and Q are known functions of the dependent variables X and Y , and
the independent variable has been taken to be the time t. In other model
equations, the independent variable could be a spatial coordinate, e.g., the
Cartesian coordinate x. For compactness, the dot notation of (1.1) will often
be used in our text discussion for time derivatives, one dot denoting d=dt, two
dots standing for d2=dt2, and so on. Superscripted primes on the dependent
variable indicate a spatial derivative, e.g., Y 0 ´ dY=dx, Y 00 ´ d2Y=dx2, etc.

The 2-dimensional ODE system (1.1) is said to be autonomous, meaning that
P and Q do not depend explicitly on t. If there is an explicit dependence on the
independent variable, the equations are said to be nonautonomous. Our goal in
the following section is to illustrate a simple graphical procedure for exploring
all possible solutions of equations (1.1) for speci¯c forms of P and Q. In the
second section, we shall show that a 2-dimensional nonautonomous system of
ODEs can be cast into a 3-dimensional autonomous system and present some
interesting examples of the latter.

1.1 Phase-Plane Portraits

Some biological models of competing species are naturally of the standard form
(1.1). For example, a simple ODEmodel of the temporal evolution of interacting
rabbit and fox populations might be given by the system

_r = 2 r ¡ 0:04 rf; _f = ¡f + 0:01 rf; (1.2)

where r(t) and f(t) are the numbers of rabbits and foxes per unit area at time
t. If the \interaction" terms involving rf are omitted in (1.2), the remaining

13

14 CHAPTER 1. PHASE-PLANE PORTRAITS

ODEs are linear (¯rst order) in r and f , respectively, and are said to be linear
ODEs. Inclusion of the higher-order interaction terms changes the equations
into nonlinear ODEs. That is to say, P (r; f) ´ 2 r¡0:04 rf and Q(r; f) ´ ¡f+
0:01 rf are nonlinear functions of the dependent variables r and f . Nonlinear
models, such as this one, are usually di±cult or impossible to solve analytically,
so that one must resort to graphical or numerical means to obtain a solution.

Other models, involving second-order ODEs, can often be recast into the
standard form, e.g., models arising from Newton's second law of the structure

Äx = F (x; _x); (1.3)

where x is the displacement and F is the force per unit mass. Setting _x = v,
which is the velocity, (1.3) can be expressed as the coupled ¯rst-order system

_x = v; _v = F (x; v): (1.4)

For example, consider the damped, simple harmonic oscillator (SHO) equation

Äx+ 2 ° _x+ !20 x = 0; (1.5)

describing the oscillations of a massm attached to a light spring (spring constant
k) that obeys Hooke's law and experiences a frictional force (damping coe±cient
°) linear in the velocity. The characteristic frequency !0 is equal to

p
k=m.

On setting _x = v, this second-order linear ODE may be rewritten in standard
form with P (x; v) ´ v and Q(x; v) ´ F (x; v) = ¡2 ° v ¡ !20 x.

Whether linear or nonlinear, a graphical approach can be used to view all
possible solutions of those ODE systems that can be put into the standard form.
This graphical procedure has proved especially important in the investigation
of nonlinear systems, less so for linear systems, since the latter can usually be
solved analytically. Since equations (1.1) do not depend explicitly on t, the
independent variable may be eliminated by dividing one equation by the other
to form the ratio

dY

dX
=
Q(X;Y)

P (X;Y)
: (1.6)

If the Y -versus-X plane is considered, this ratio represents the slope of the
trajectory of the ODE system at the point (X,Y) in the plane. The X-Y plane
is referred to as the phase plane and the trajectory as a phase-plane trajectory.
For the rabbits{foxes system the phase plane shows the fox number (f) versus
the rabbit number (r), while for the SHO the phase plane is a plot of velocity
(v) against displacement (x).

The time evolution of any possible motion of the ODE system may be pic-
tured by systematically ¯lling the phase plane with a grid of uniformly spaced
arrows indicating the direction of increasing time and the slope at each grid
point. For a given set of initial conditions, the subsequent temporal evolution
of the system may be traced out by moving from one arrow to the next and
drawing an appropriate line for the trajectory. Pictures created in this manner
are called phase-plane portraits. Since an arrow at any point in the phase plane
is tangent to the trajectory at that point, the grid of arrows is referred to as
the tangent ¯eld.

1.1. PHASE-PLANE PORTRAITS 15

The phase-plane analysis of ODE systems, particularly those that are non-
linear, can be aided by ¯rst locating the stationary or ¯xed points (X0,Y0) of
the system and then identifying their topological nature, i.e., the characteristic
shape of the trajectories in the vicinity of the ¯xed points. At these points all
the derivatives are zero. Thus, from equation (1.1) they are found by solving

P (X0;Y0) = 0; Q(X0;Y0) = 0: (1.7)

At a stationary point, it follows from equation (1.6) that the slope of the tra-
jectory is of the form 0=0 and thus indeterminate. At any other point (referred
to as an ordinary point) of the phase plane, a trajectory has a de¯nite slope.

For linear systems that can be expressed in standard form there will be only
one stationary point. For example, setting P = Q = 0 for the SHO yields a
stationary point at the origin of the v versus x phase plane.

For nonlinear systems, there can be more than one ¯xed point. As an
example, let's use Maple to determine these points for the rabbits{foxes system.

> restart:

The forms of P and Q for equations (1.2) are entered,

> P:=2*r-0.04*r*f;

P := 2 r ¡ 0:04 r f
> Q:=-f+0.01*r*f;

Q := ¡f + 0:01 r f
and the solve command applied to the set of equations1 P = 0, Q = 0. A
Maple \set" is enclosed in \curly" (f g) brackets. Unlike a Maple list, the
order of the items is not preserved in a Maple set. The unknowns r and f are
also entered as a set.

> solve(fP=0,Q=0g,fr,fg);
fr = 0:; f = 0:g; fr = 100:; f = 50:g

From the output, we see that there are two stationary points, one at the origin
of the f -r phase plane and the other at r = 100 rabbits, f = 50 foxes.

Every stationary point has a certain topology in its neighborhood that dic-
tates the nature of the phase-plane trajectories near that point. Thus, identify-
ing the nature of each stationary point was an important task historically, since
it allowed investigators in the precomputer era to sketch all the possible phase{
plane trajectories from a knowledge of the location of the stationary points
and their types. In the modern computer era we can let software packages like
Maple do the graphing and analysis for us.

For ODE systems that can be put into standard form, what types of station-
ary points are possible? It turns out that there are only four types of so-called
simple2 stationary points, which are schematically illustrated in Figure 1.1. For
the ¯rst three types (the vortex, focal, and nodal points) we shall

1Note that it isn't necessary to explicitly set P and Q equal to zero, since Maple will
automatically assume that this is so unless you specify otherwise.

2The precise de¯nition of the phrase \simple" will be given in Chapter 2.

16 CHAPTER 1. PHASE-PLANE PORTRAITS

V F

N
S

A A

AA

1

2

4

3

Figure 1.1: Curves near a vortex (V), focal (F), nodal (N), saddle (S) point.

use the SHO equation expressed in standard form as an explanatory tool, as-
suming that the reader already has some idea of the qualitative nature of the
solutions as the damping coe±cient ° is varied.

For ° = 0, a SHO released from rest outside the origin will oscillate inde¯-
nitely about the origin with no change in amplitude. If the velocity is plotted
versus the displacement, the phase-plane trajectories near the origin will quali-
tatively look like those shown in the top left of Figure 1.1, the arrows indicating
the direction of increasing time. As the SHO passes through the origin, the ve-
locity will be a maximum, going to zero as the system reaches its turning points.
For each choice of initial displacement, a di®erent closed loop will be traced out
in the phase plane. In this case, the origin (labeled V) is said to be a vortex
point or center. Since a continuum of initial conditions is possible, a vortex
point is surrounded by a continuum of closed loops.

For small ° below some critical threshold, the SHO will oscillate about the
origin with an ever-decreasing amplitude, asymptotically approaching the origin
as t!1. The origin is said to be a stable equilibrium point. Two representative
trajectories are shown in the top right of Figure 1.1. As time progresses, each
trajectory approaches the stationary point F at the origin along a (di®erent)
spiral path. The point F is an example of a stable spiral point or focal point.
An unstable focal point would be one for which the trajectory winds o® the

1.1. PHASE-PLANE PORTRAITS 17

stationary point as t!1.
As ° is increased, a critical damping is reached, beyond which the behavior

of the SHO system changes. The SHO will no longer oscillate inde¯nitely about
the origin but eventually approach it from a de¯nite direction as t!1. This is
schematically illustrated in the bottom left of Figure 1.1 for six di®erent initial
conditions. The origin, labeled N , is in this case an example of a stable nodal
point. For an unstable nodal point, the time arrows would be reversed.

The fourth type of possible ¯xed point, which will be illustrated in the
following Romeo and Juliet recipe, is called a saddle point.

Figure 1.2: Saddle-point topography.

If you have done any alpine hiking, you might know that a \saddle" is a ridge
between two mountain peaks or summits as illustrated in Figure 1.2, acquiring
its name because the local topography resembles that of a horse saddle. The
saddle point is the low point in the saddle, where in two opposite directions you
would go downhill toward the two valleys and in the two transverse directions
uphill toward the two peaks. If one characterized these four directions by arrows
pointing in the direction of decreasing elevation, the arrows would point away
from the saddle point in the ¯rst case and toward it in the second. If given an
in¯nitesimal nudge, a particle would tend to move away from the saddle point
in the ¯rst case and toward it in the second.

A saddle point (labeled S) in the phase plane is a two-dimensional analogue
of this topology, as schematically indicated in the bottom right of Figure 1.1, the
arrows pointing in the direction of increasing time. The four trajectories labeled
A1S, A2S, A3S, and A4S are examples of so-called separatrixes, dividing the
area about the saddle point into four distinct regions with the trajectories in
each region evolving with time in the directions indicated. A representative
point approaches S along A1S and A2S as t ! +1, while it departs from S
along A3S and A4S at t = ¡1.

18 CHAPTER 1. PHASE-PLANE PORTRAITS

1.1.1 Romeo and Juliet

I am convinced we do not only love ourselves in others
but hate ourselves in others too.
G. C. Lichtenberg, German physicist, philosopher (1742{1799)

The mathematician Steven Strogatz [Str88] [Str94] has suggested a simple dy-
namic model to create di®erent scenarios for the love a®air between Romeo and
Juliet. In his model, R(t) and J(t) represents Romeo's love/hate for Juliet and
Juliet's love/hate for Romeo, respectively, at time t. Positive values of R and
J indicate love, while negative values indicate hate. The love a®air equations
take the form

_R(t) = aR+ b J; _J(t) = cR+ d J;

where a, b, c, and d are real coe±cients that may have either sign. For the sake
of de¯niteness, let's take a = 2, b = 1, c = ¡1, and d = ¡2 in the following
problem, leaving other coe±cient values for you to explore.

(a) Is the ODE system linear or nonlinear? Locate the ¯xed point(s).

(b) Create a tangent ¯eld plot and identify the nature of the ¯xed point(s).

(c) Create a phase-plane portrait that contains the four trajectories corre-
sponding to the following initial conditions: (i) R(0) = ¡0:25, J(0) = 1,
(ii) R(0) = ¡0:27, J(0) = 1, (iii) R(0) = 0:27, J(0) = ¡1, and ¯nally
(iv) R(0) = 0:25, J(0) = ¡1. Consider t = 0 to 4 time units.

(d) Plot R versus t over the interval t = 0 to 2 for initial condition (i).

(e) Derive analytic solutions for R(t) and J(t) for initial condition (i).

To plot the tangent ¯eld and create the phase-plane portrait, the dfieldplot
and phaseportrait commands, respectively, will be used. These specialized
di®erential equation plotting tools are contained in the DEtools library pack-
age, which is now loaded. The colon may be replaced with a semicolon to
display the complete list of available commands in this package.

> restart: with(DEtools):

The general love a®air di®erential equations are entered in de1 and de2, each
¯rst-order derivative with respect to t being entered with the diff command.

> de1:=diff(R(t),t)=a*R(t)+b*J(t);

de1 :=
d

dt
R(t) = aR(t) + b J (t)

> de2:=diff(J(t),t)=c*R(t)+d*J(t);

de2 :=
d

dt
J (t) = cR(t) + d J (t)

Before proceeding further with solving our problem, a few words should
be said about Maple's derivative command. Using exp, ln, and sin to enter
the exponential, natural logarithm, and sine functions, suppose that Romeo's
love/hate for Juliet depended on time in the following way.

1.1. PHASE-PLANE PORTRAITS 19

> Romeo:=exp(-t)*ln(1+t)*sin(t)/sqrt(1+t^2);

Romeo :=
e(¡t) ln(1 + t) sin(t)p

1 + t2

The ¯rst derivative of Romeo with respect to t is now taken, the \inert" form,
Diff, being used on the left-hand side to display the derivative, the \active"
form, diff, employed on the right to explicitly perform the di®erentiation.

> derivative:=Diff(Romeo,t)=diff(Romeo,t);

derivative :=
d

dt

μ
e(¡t) ln(1 + t) sin(t)p

1 + t2

¶
= ¡e

(¡t) ln(1 + t) sin(t)p
1 + t2

+
e(¡t) sin(t)

(1 + t)
p
1 + t2

+
e(¡t) ln(1 + t) cos(t)p

1 + t2
¡ e

(¡t) ln(1 + t) sin(t) t
(1 + t2)(3=2)

The extension of Maple's syntax to higher-order derivatives is straight-forward.
The active form of the second derivative of Romeo is diff(Romeo,t,t) or,
alternatively, diff(Romeo,t$2). As an exercise, you should calculate, say, the
seventh time derivative of Romeo and see how easy it is to generate the new
answer. A calculation by hand would be very tedious and prone to error.

Returning to our problem, since the right-hand side (rhs) of both de1 and
de2 depend linearly on R and J , the ODEs are linear. By visual inspection,
there is one stationary point at R = J = 0. This is con¯rmed by applying the
solve command to the rhs of the two ODEs.

> statpoint:=solve(frhs(de1),rhs(de2)g,fR(t),J(t)g);
statpoint := fJ (t) = 0; R(t) = 0g

The given coe±cient values are now speci¯ed,

> a:=2: b:=1: c:=-1: d:=-2:

which are automatically substituted into the two ODEs.

> de1; de2;

d

dt
R(t) = 2R(t) + J (t)

d

dt
J (t) = ¡R(t)¡ 2 J (t)

The dfieldplot command is used to plot the tangent ¯eld.

> dfieldplot([de1,de2],[R(t),J(t)],t=0..1,R=-1..1,J=-1..1,

dirgrid=[30,30],arrows=MEDIUM);

The ¯rst and second arguments are Maple lists of the ODEs and dependent
variables. The time range has been taken to be from t = 0 to 1 and the
plotting range for both R and J is from ¡1 to +1. The dirgrid option speci¯es
the number of horizontal and vertical mesh points (30 £ 30 here) to use for
the tangent arrows. The mimimum is 2 £ 2 and the default is 20 £ 20. The
option arrows=MEDIUM produces \full" arrowheads, the default being \half"
arrowheads. To learn more about dfieldplot, highlight this command with
your mouse, then click on Help, and on Help on d¯eldplot.

20 CHAPTER 1. PHASE-PLANE PORTRAITS

–1

–0.5

0.5

1

J

–1 –0.5 0.5 1
R

Figure 1.3: Tangent ¯eld for Romeo and Juliet's love a®air.

The tangent ¯eld for Romeo and Juliet's love a®air is shown in Figure 1.3. In-
specting the graph and comparing with Figure 1.1, it is seen that the stationary
point at the origin is a saddle point. By changing the coe±cient values, the
nature of the stationary point and therefore the nature of the love a®air can be
altered. This is left as a problem at the end of the section for you to explore.

The four initial conditions are now entered,

> ic1:=(R(0)=-0.25,J(0)=1): ic2:=(R(0)=-0.27,J(0)=1):

ic3:=(R(0)=0.27,J(0)=-1): ic4:=(R(0)=0.25,J(0)=-1):

and the phaseportrait command is used to create the phase-plane portrait for
the four initial conditions. These conditions are entered as a list of lists. The
time step size is taken to be 0.05. The default is to divide the time range into 20
equal steps. So the default step size here would be 4=20 = 0:2. Again MEDIUM
arrows are chosen, which are colored red. The trajectories are colored blue using
the linecolor option. A complete list of options may be found under DEplot,
whose Help page may be accessed though the topic search.

> phaseportrait([de1,de2],[R(t),J(t)],t=0..4,[[ic1],[ic2],

[ic3],[ic4]],stepsize=0.05,dirgrid=[30,30],R=-1..1,J=-1..1,

arrows=MEDIUM,color=red,linecolor=blue);

The phase-plane portrait for Romeo and Juliet's love a®air is reproduced in
Figure 1.4. Asymptotically, the trajectories approach the separatrixes of the
saddle point at the origin, the separatrixes dividing the phase plane into four
di®erent \°ow" regions for the tangent arrows. Thus, for example, one can see
that for any initial condition in the lower right region, R will remain positive
and J negative. Romeo's love for Juliet is unrequited!

1.1. PHASE-PLANE PORTRAITS 21

–1

–0.5

0

0.5

1

J

–1 –0.5 0.5 1
R

Figure 1.4: Phase-plane portrait for the love a®air.

By introducing the option scene=[t,R] into phaseportrait, a plot of R
vs. t can be produced. The resulting picture for the ¯rst initial condition is
shown in Figure 1.5, Romeo's initial hate turning to love. Changing R to J in
the scene option will generate J versus t. Try it and see how Juliet responds.

> phaseportrait([de1,de2],[R(t),J(t)],t=0..2,[[ic1]],

stepsize=0.2,scene=[t,R],color=red,linecolor=blue);

–0.2

0

0.2

0.4

0.6

R

0.5 1 1.5 2
t

Figure 1.5: R versus t for the love a®air.

22 CHAPTER 1. PHASE-PLANE PORTRAITS

Now, the ODEs in Strogatz's model are linear with constant coe±cients, so
they can be solved analytically. If proceeding by hand, one can solve de1 for
J(t) and substitute the result into de2 , yielding a second-order ODE in R(t)
alone. Assuming a solution for R(t) of the form e® t yields a quadratic equation
in ®, with two roots ®1 and ®2. Then R would involve a linear combination
of e®1 t and e®2 t, the two arbitrary coe±cients being evaluated with the initial
condition. With R(t) completely determined, J(t) is then easily evaluated.

The Maple di®erential equation solve command, dsolve, has such standard
analytic methods of attack built into its solution algorithm. Applying this
command to the ODE set, subject to the ¯rst initial condition, generates the
following analytic solutions for R(t) and J(t).

> solution:=dsolve(fde1,de2,ic1g,fR(t),J(t)g);

solution :=

(
R(t) = ¡

Ã
1

2
¡ 7

p
3

24

!
p
3 e(

p
3 t) +

Ã
1

2
+
7
p
3

24

!
p
3 e(¡

p
3 t)

¡ 2
Ã
1

2
¡ 7

p
3

24

!
e(
p
3 t) ¡ 2

Ã
1

2
+
7
p
3

24

!
e(¡

p
3 t);

J (t) =

Ã
1

2
¡ 7

p
3

24

!
e(
p
3 t) +

Ã
1

2
+
7
p
3

24

!
e(¡

p
3 t)

)

In this case, one can see by inspecting the output that ® = §
p
3. If the analytic

forms of either R(t) and J(t) are to be further manipulated, the solution must
be assigned. Otherwise, entering R(t) or J(t) will not produce the analytic
solutions, but just the symbols R(t) and J(t) in the output.

> assign(solution):

Having assigned the solution, it can now be checked by, for example, subtract-
ing the right-hand side (rhs) of de1 from the left-hand side (lhs) of de1 and
simplifying with the simplify command. The result is 0 as expected.

> check:=simplify(lhs(de1)-rhs(de1));

check := 0

You can check that a zero result occurs if de1 is replaced with de2.

PROBLEMS:
Problem 1-1: Recasting into ¯rst-order ODEs
Recast each of the following second-order ODEs into a ¯rst-order ODE system
and identify P and Q. Which systems are nonlinear? For each autonomous
system, locate all the stationary points. All parameters are real and positive.

(a) Airy equation: y 00 ¡ x y = 0;
(b) \soft" spring equation: Äx+ (1¡ x2)x = 0;
(c) Hermite equation: y 00 ¡ x y 0 + ny = 0;
(d) Rayleigh equation: Äx¡ ² (1¡ _x2) _x+ x = 0;

1.1. PHASE-PLANE PORTRAITS 23

(e) con°uent hypergeometric equation: x y 00 + (° ¡ x) y 0 ¡ ®y = 0;
(f) plane pendulum equation: Äμ + sin μ = 0.

Problem 1-2: Symbolic di®erentiation
Display and evaluate the following derivatives:

(a) d5

dx5

³
x6 ln(x) cos(x) e¡x

2
´
, (b) d9

dx9

μ
x11 tanh(2x)p

1 + x4

¶
Problem 1-3: Alternative love a®airs
For each of the following possible love a®airs involving Romeo and Juliet:

² produce a tangent ¯eld plot using the dfieldplot command and identify
each stationary point and its stability;

² produce a phase-plane portrait with the speci¯ed initial condition;
² use the phaseportrait command and scene options to plot J(t) and R(t);
² use the dsolve command to derive the analytic solution;
² discuss how the love a®air evolves with time.

(a) _R = ¡2R+ J , _J = ¡R¡ 2J , R(0) = ¡1, J(0) = 1.
(b) _R = J , _J = ¡R, R(0) = 5, J(0) = ¡2.
(c) _R = J , _J = ¡R+ J , R(0) = 0:1, J(0) = 0.

(d) _R = 2R+ J , _J = R+ 2J , R(0) = 0:2, J(0) = ¡0:1.

1.1.2 There's No Damping Vectoria's Romantic Heart

Don't waste time trying to break a man's heart; be satis¯ed if you
can just manage to chip it in a brand new place.
Helen Rowland, American journalist, A Guide to Men, \Syncopations," 1922

Vectoria, a physics major at the Metropolis Institute of Technology (MIT),
is working on her computer algebra assignment while waiting for a phone call
from her boyfriend Mike, who is returning from a summer job with an archae-
ological dig in a remote area of Asia. In particular, she is asked to use the
DEplot command to illustrate the change in the phase-plane trajectory of the
damped simple harmonic oscillator (SHO) as the damping coe±cient is varied.

Entering DEplot in Maple's Topic Search and clicking OK, Vectoria ¯nds
that the DEplot command is contained in the DEtools library package, which
she now loads.

> restart: with(DEtools):

The SHO equation results on applying Newton's second law of motion to a
unit mass acted on by a Hooke's-law restoring force, Fhooke = ¡!2 x(t), and
a velocity-dependent Stokes's drag force, Fdrag = ¡¯ (dx=dt). Here x(t) is the
displacement of the mass from equilibrium, ! is the frequency, and ¯ is the

24 CHAPTER 1. PHASE-PLANE PORTRAITS

damping or drag coe±cient. These two forces are now entered, square brackets
being used for each assigned force to produce the relevant subscript.

> F[hooke]:=-omega^2*x(t); F[drag]:=-beta*diff(x(t),t);

Fhooke := ¡!2 x(t) Fdrag := ¡¯
μ
d

dt
x (t)

¶
Equating the second time derivative of x(t) to the sum of the forces generates
the SHO equation, de .

> de:=diff(x(t),t,t)=F[hooke]+F[drag];

de :=
d2

dt2
x(t) = ¡!2 x(t)¡ ¯

μ
d

dt
x (t)

¶
Vectoria now relates the velocity v(t) to the displacement in de2 ,

> de2:=diff(x(t),t)=v(t);

de2 :=
d

dt
x (t) = v(t)

and substitutes this result into de to create a coupled system (de2 and de3) of
two ¯rst-order ODEs, linear in x and v.

> de3:=subs(de2,de);

de3 :=
d

dt
v(t) = ¡!2 x (t)¡ ¯ v(t)

To plot the phase-plane trajectory, the parameter values must be speci¯ed.
Vectoria takes !=1 and three di®erent ¯ values, namely, b1=0, b2=0:2, and
b3=3.

> omega:=1: b[1]:=0; b[2]:=0.2; b[3]:=3;

b1 := 0 b2 := 0:2 b3 := 3

A \do loop" is used to create a phase-plane portrait using the DEplot command
for each of the three ¯ values. The general syntax for a do loop is

for <name> from <expression> by <expression> to <expression>
while <expression> do <statement sequence> end do

where the <statement sequence> is the main body (the DEplot command here)
of the do loop. In the following do loop, <name> is the index i, the ¯rst <ex-
pression> is 1, the second <expression> is missing so i automatically increments
by 1, the third <expression> is 3, and there is no conditional while <expres-
sion> present. The syntax for the DEplot command is the same as for the
phaseportrait command used in the Romeo and Juliet recipe, the time
range here being from t = 0 to 50.

> for i from 1 to 3 do

> DEplot([de2,subs(beta=b[i],de3)],[x(t),v(t)],t=0..50,

[[x(0)=1,v(0)=0]],stepsize=0.05,x=-1.1..1.1,v=-1.1..1.1,

dirgrid=[30,30],arrows=MEDIUM,color=red,linecolor=blue):

> end do;

1.1. PHASE-PLANE PORTRAITS 25

On execution of the do loop, the phase-plane portraits shown in Figures 1.6 to
1.8, are produced. For zero damping (¯=b1=0), the phase-plane trajectory

–1

–0.5

0

0.5

1

v

–1 –0.5 0.5 1
x

Figure 1.6: Phase-plane portrait for ¯ = 0.

displayed in Figure 1.6 is a closed loop circling a vortex ¯xed point at the
origin. The tangent ¯eld is also shown, the arrows pointing in the direction of
increasing time.

For ¯ = 0:2, the phase-plane trajectory shown in Figure 1.7 is a spiral that

–1

–0.5

0.5

1

v

–1 –0.5 0.5 1
x

Figure 1.7: Phase-plane portrait for ¯ = 0:2.

26 CHAPTER 1. PHASE-PLANE PORTRAITS

asymptotically approaches a stable focal point at the origin. This behavior is
characteristic of underdamping.

–1

–0.5

0

0.5

1

v

–1 –0.5 0.5 1x

Figure 1.8: Phase-plane portrait for ¯ = 3.

Finally, for ¯ = 3, the phase-plane trajectory shown in Figure 1.8 approaches a
stable nodal point at the origin, a behavior characteristic of overdamping. It is
left as an exercise for you to determine the critical damping threshold between
under- and overdamping.

Unlike the phaseportrait command, DEplot may also be used to produce
solution curves, but not tangent ¯elds, for single higher-order ODEs.

Taking, say, ¯ = b2 = 0:2, Vectoria now uses DEplot to generate the x(t)
solution curve shown in Figure 1.9 for the second-order ODE de , given the
initial condition3 x(0) = 1, _x(0) = 0. The time range is from t = 0 to 50, and
the time step size in the underlying numerical scheme is taken to be 0:05.

> beta:=b[2]:

> DEplot(de,x(t),t=0..50,[[x(0)=1,D(x)(0)=0]],stepsize=0.05);

The numerically derived solution curve in Figure 1.9 decreases in amplitude in
an oscillatory manner, again characteristic of the underdamped SHO.

Finally, since the SHO equation de is linear with constant coe±cients, an
analytic solution can be easily obtained for x(t) using the dsolve command.

> dsolve(fde,x(0)=1,D(x)(0)=0g,x(t));

x (t) =
1

33

p
11 e(¡

t
10
) sin

Ã
3
p
11 t

10

!
+ e(¡

t
10
) cos

Ã
3
p
11 t

10

!

3Note that the derivative condition _x(0) = 0 is entered as D(x)(0)=0, where D is the
di®erential operator. The di®erential operator D is more general than diff. It can represent
derivatives evaluated at a point and can di®erentiate procedures.

1.1. PHASE-PLANE PORTRAITS 27

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

1

x(t)

10 20 30 40 50
t

Figure 1.9: x versus t for ¯ = 0:2.

Vectoria leaves it as a problem for you to obtain the analytic solution for
the critically damped case.

Unfortunately, Vectoria must leave us for now, since her cell phone has just
rung. Mike's plane has just landed and she's o® to the Metropolis International
Airport to pick him up after he clears immigration and customs.

PROBLEMS:
Problem 1-4: Critical damping
Given ! = 1, what ¯ value corresponds to critical damping of the SHO? Make
a phase-plane portrait for this case using the DEplot command and the initial
condition x(0) = 1, _x(0) = 0. Use this command to plot x(t). Then obtain the
analytic solution.

Problem 1-5: Competition for the same food supply
Two biological species competing for the same food supply are described by the
following nonlinear population number equations:

_N1 = (4¡ 0:0002N1¡ 0:0004N2)N1; _N2 = (2¡ 0:00015N1¡ 0:00005N2)N2:

(a) Locate all the stationary points.

(b) Create a tangent ¯eld plot that includes all the stationary points. Identify
the nature of these points.

(c) Create a phase-plane portrait that includes several representative trajec-
tories that support your identi¯cation of the stationary points.

(d) Use the scene option to plot N1(t) and N2(t).

(e) Attempt to obtain an analytic solution of the ODE system.

28 CHAPTER 1. PHASE-PLANE PORTRAITS

1.1.3 Van der Pol's Limit Cycle

In order to be able to set a limit to thought, we should have to ¯nd
both sides of the limit thinkable (i.e., we should have to be able to
think what cannot be thought).
Ludwig Wittgenstein, Austrian philosopher (1889{1951)

In the ¯rst two recipes, the ODEs were linear and, because they had constant
coe±cients, were easily solved analytically. In this recipe, we look at the his-
torically important nonlinear Van der Pol ODE, for which no analytic solution
exists. Balthasar Van der Pol was a Dutch electrical engineer who pioneered
the development of experimental nonlinear dynamics in the 1920s and 1930s
using electrical circuits and discovered several important nonlinear phenomena.

For example, he found that certain nonlinear circuits containing vacuum
tubes could begin to spontaneously oscillate even though the energy source
was constant, the oscillations evolving into a stable cycle, now called a limit
cycle. When these circuits were driven with a signal whose frequency was near
that of the limit cycle, the resulting periodic response shifted its frequency to
that of the driving signal. The circuit became entrained to the driving signal.
Entrainment is the basis of the modern pacemaker, which is used to stabilize
irregular heart beats, or arrhythmias.

In the September 1927 issue of the journal Nature, Van der Pol and van der
Mark reported that an \irregular noise" was heard at certain driving frequen-
cies, probably one of the ¯rst experimental reports of deterministic chaos.4

Here, we shall look at a modern electrical circuit [Cho64] that is governed by
the Van der Pol equation and can produce his limit cycle. The circuit, involving
a battery (voltage VB), inductor L, resistor R, capacitor C, and a tunnel diode
D, is shown on the left of Figure 1.10. The tunnel diode has a nonlinear current
(iD)-voltage (VD) curve similar to that shown on the right.

V R C D

L

B

i
D i

i

VS

S

V

point of
inflection

D

D

Figure 1.10: Left: tunnel diode circuit. Right: Current-voltage curve for diode.

4This historical information is taken from the IEEE History Center (www.ieee.org).

1.1. PHASE-PLANE PORTRAITS 29

The battery voltage VB is adjusted to coincide with the in°ection point VS of
the iD vs. VD curve, i.e., VB = VS . Near this operating point, one may write
i = ¡a v + b v3, where i = iD ¡ iS and v = VD ¡ VS , and a and b are positive.

The governing Van der Pol (VdP) ODE, which will presently be derived, is
Äx¡ ² (1¡ x2) _x+ x = 0; ² > 0; (1.8)

with x proportional to v. Equation (1.8) is just the simple harmonic oscillator
equation for unit frequency and mass with an amplitude-dependent damping
term. For x < 1, the damping contribution is negative, so that oscillations
tend to grow, while for x > 1 the damping is positive, tending to reduce the
oscillations. The negative damping is responsible for the growth of any small
spontaneous circuit \noise" into stable oscillations, i.e., into a stable limit cycle.

Let's now derive the VdP equation and demonstrate the growth of a small
input signal into a limit cycle for a typical tunnel diode, 1N3719, for which
a = 0:05 and b = 1:0 in SI units.

The DEtools and PDEtools packages are loaded. The former contains the
DEplot3d command, which is a three-dimensional generalization of the DEplot
command. The PDEtools package contains the dchange command, which will
allow us to easily make a somewhat complicated variable transformation.

> restart: with(DEtools): with(PDEtools):

The time-dependent tunnel diode current and voltage expressions are entered.

> i[D]:=i[S]-a*v(t)+b*v(t)^3; V[D]:=V[S]+v(t);

iD := iS ¡ a v(t) + b v(t)3 VD := VS + v(t)

The voltage drop across both the resistor R and the capacitor C is the same as
across the diode D, i.e., VR = VD and VC = VD. The voltage drop across the
inductor L is VL = VB ¡ VD = VS ¡ VD, the latter form being entered.

> V[R]:=V[D]: V[C]:=V[D]: V[L]:=V[S]-V[D];

VL := ¡v(t)
By Ohm's law, the current through the resistor is iR = VR=R. The current
through the capacitor is iC = C (dVC=dt).

> i[R]:=V[R]/R; i[C]:=C*diff(V[C],t);

iR :=
VS + v(t)

R
iC := C

μ
d

dt
v(t)

¶
Using Kirchho®'s current rule, eq1 states that the current leaving L must be
equal to the sum of the currents entering R, C, and D.

> eq1:=-i[L](t)+i[R]+i[C]+i[D]=0; #Kirchhoff's current rule

eq1 := ¡iL(t) +
VS + v(t)

R
+ C

μ
d

dt
v(t)

¶
+ iS ¡ a v(t) + b v(t)3 = 0

Di®erentiating eq1 with respect to t eliminates the in°ection point current iS .

> eq2:=expand(diff(eq1,t)/C);

eq2 :=

d

dt
v(t)

C R
¡
d

dt
iL(t)

C
+

μ
d2

dt2
v(t)

¶
¡
a

μ
d

dt
v(t)

¶
C

+

3 b v(t)2
μ
d

dt
v(t)

¶
C

= 0

30 CHAPTER 1. PHASE-PLANE PORTRAITS

From the de¯nition of inductance, one has diL=dt = VL=L, which is substituted
into eq2 . This yields a second-order ODE entirely in terms of the potential v(t).

> de:=subs(diff(i[L](t),t)=V[L]/L,eq2);

de :=
v (t)

C L
+

d

dt
v(t)

C R
+

μ
d2

dt2
v(t)

¶
¡
a

μ
d

dt
v (t)

¶
C

+

3 b v (t)2
μ
d

dt
v (t)

¶
C

= 0

Then de is put into more compact form by collecting the ¯rst derivatives. The
resulting ODE is the unnormalized form of the VdP equation.

> de1:=collect(de,diff(v(t),t)); #unnormalized VdP equation

de1 :=

μ
1

C R
¡ a

C
+
3 b v(t)2

C

¶μ
d

dt
v(t)

¶
+
v(t)

C L
+

μ
d2

dt2
v (t)

¶
= 0

To obtain the normalized (dimensionless) VdP equation, a transformation will
be made to new variables. First a characteristic frequency ! = 1=

p
LC is

introduced by making the following substitution into de1 .

> de2:=subs(v(t)/(C*L)=omega^2*v(t),de1);

de2 :=

μ
1

C R
¡ a

C
+
3 b v(t)2

C

¶μ
d

dt
v(t)

¶
+ !2 v(t) +

μ
d2

dt2
v (t)

¶
= 0

Inspecting the structure of de2 , we are led to introduce a dimensionless time
¿ = ! t, and voltage x(¿) =

p
(3 b) v(t)=

p
(a¡ 1=R). The transformation from

the \old" (t; v(t)) to the \new" (¿; x(¿)) variables is entered.

> tr:=ft=tau/omega,v(t)=x(tau)*sqrt(a-1/R)/sqrt(3*b)g:
The dchange command allows us to apply the transformation to de2 . The
result is then multiplied by the factor

p
(3 b)=(!2

p
(a¡ 1=R).

> sqrt(3*b)*dchange(tr,de2,[x(tau),tau])/(omega^2*sqrt(a-1/R)):

Using the ditto operator, %, to refer5 to the last computed result, we collect
dx(¿)=d¿ terms and factor the result.

> de3:=collect(%,diff(x(tau),tau),factor);

de3 :

(x (¿)¡ 1) (x (¿) + 1) (aR¡ 1)
μ
d

d¿
x (¿)

¶
!C R

+ x (¿) +

μ
d2

d¿2
x(¿)

¶
= 0

Introducing the dimensionless parameter ² = (aR¡1)=(! C R), the normalized
Van der Pol equation results.

> vdp:=subs((a*R-1)=epsilon*(omega*C*R),de3); #VdP equation

vdp := (x (¿)¡ 1) (x (¿) + 1) ²
μ
d

d¿
x(¿)

¶
+ x (¿) +

μ
d2

d¿2
x (¿)

¶
= 0

To make a phase-plane picture, the second-order VdP equation is now rewritten
as two ¯rst-order ODEs in de4 and de5 , by setting y(¿) ´ dx(¿)=d¿ .

> de4:=diff(x(tau),tau)=y(tau); de5:=subs(de4,vdp);

5To refer to the second-to-last expression, use %%, and so on.

1.1. PHASE-PLANE PORTRAITS 31

de4 :=
d

d¿
x(¿) = y(¿)

de5 := (x (¿)¡ 1) (x (¿) + 1) ² y(¿) + x (¿) +
μ
d

d¿
y(¿)

¶
= 0

With a = 0:05 entered for the tunnel diode 1N3719, a necessary condition for
a limit cycle to occur is that ² > 0 or R > 1=a = 1=0:05 = 20 ohms. We take
R = 55 ohms, L = 25:0 £ 10¡3 henries, and C = 10¡6 farads, and calculate !
and ².

> a:=0.05: R:=55: L:=25.0*10^(-3): C:=10^(-6):

> omega:=1/sqrt(L*C); epsilon:=(a*R-1)/(omega*C*R);

! := 6324:555320 ² := 5:030896278

The VdP equation has a ¯xed point at the origin of the y vs.x phase plane.
Let's choose an initial condition close to this point, viz., x(0) = 0:1, y(0) = 0.

> ic:=x(0)=0.1,y(0)=0:

Instead of plotting the trajectory in two dimensions using either the DEplot
or phaseportrait commands, the solution curve corresponding to the initial
condition can be drawn in the three-dimensional ¿ vs. x vs. y space using
DEplot3d with the option scene=[tau,x,y]. The line color of the trajectory
is allowed to vary with ¿ . The resulting trajectory appears in a 3-dimensional
viewing box similar to that shown in Figure 1.11. The viewing box can be
rotated on the computer screen, by clicking on the box and dragging with the

> DEplot3d([de4,de5],[x(tau),y(tau)],tau=0..60,

scene=[tau,x,y],[[ic]],stepsize=0.01,linecolor=tau);

0
10

20
30

40
50

60

t

–2
–1

0
1

2

x

–4

0

4

y

Figure 1.11: Evolution of the VdP trajectory onto a limit cycle.

32 CHAPTER 1. PHASE-PLANE PORTRAITS

mouse. The angular coordinates, μ and Á, of the viewing box appear in a
small window near the top left of the computer screen, the default angles being
45±, 45±. The option orientation=[angle,angle], with the values of the two
angles speci¯ed, can be inserted into DEplot3d if some other default orientation
is desired. For example, choose the angles to be μ = 0, Á = 90 to see the phase
plane.

The trajectory evolves away from the vicinity of the origin onto a closed
loop, the limit cycle. You can check that the limit cycle will be obtained no
matter what the choice of initial condition.6 Can you identify the stationary
point at the origin?

The nonlinear Van der Pol equation does not have an analytic solution.
Applying the dsolve command to the ODE system, de4 and de5 , subject to
the initial condition,

> dsolve(fde4,de5,icg,fx(tau),y(tau)g);
produces no output for x(t) and y(t). Only a few nonlinear ODEs of physical
interest have analytic solutions. We shall see a few examples in Chapter 4.

PROBLEMS:
Problem 1-6: Di®erent initial conditions
With all other parameters as in the text recipe, show for a number of di®er-
ent initial conditions that all trajectories wind onto the limit cycle. Take the
orientation that shows the y versus x phase plane.

Problem 1-7: Varying the resistance
With all other parameters as in the text recipe, investigate the behavior of the
Van der Pol equation as the resistance R is varied. Choose an orientation that
shows x versus ¿ . Discuss the results.

Problem 1-8: Tangent ¯eld
In the text recipe, use the phaseportrait command instead of DEplot3d to
make a phase-plane portrait with the tangent ¯eld included.

1.2 Three-Dimensional Autonomous Systems

Although a three-dimensional plot was produced in the last example, we were
still dealing with a two-dimensional autonomous system. Let's now consider a
general three-dimensional autonomous ODE system of the structure

_X = P (X;Y; Z); _Y = Q(X;Y; Z); _Z = R(X;Y; Z); (1.9)

with P , Q, and R known functions of the three dependent variables X, Y , and
Z. Some systems of physical interest are naturally of this structure, while the
two-dimensional nonautonomous ODE system

_X = P (X;Y; t); _Y = Q(X;Y; t); (1.10)

can be recast into the form (1.9) by setting R = 1 and imposing Z(0) = 0.

6If you start too far o® the limit cycle, the time range may have to be increased.

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 33

1.2.1 The Period-Doubling Route to Chaos

Chaos often breeds life, when order breeds habit.
Henry Adams, American historian (1838{1918)

Nonautonomous nonlinear ODEs, such as Du±ng's equation,

Äx+ 2 ° _x+ ®x+ ¯ x3 = F cos(! t); (1.11)

have played a very important role in the development of nonlinear dynamics.
Du±ng's equation is a model for the motion of a viscously damped (damping
coe±cient °) spring that is subject to a nonlinear restoring force f =¡®x ¡
¯ x3 and is being driven by a periodic force of amplitude F and frequency !.
Depending on the signs and magnitudes of ® and ¯, various descriptive names
are usually applied to Du±ng's equation:

² hard-spring Du±ng equation: ® > 0, ¯ > 0;
² soft-spring Du±ng equation: ® > 0, ¯ < 0;
² inverted Du±ng equation: ® < 0, ¯ > 0;
² nonharmonic Du±ng equation: ® = 0, ¯ > 0.

Setting _x = y, Du±ng's equation can be written in the 2-dimensional nonau-
tonomous form (1.10) with P ´ y and Q ´ ¡2 ° y ¡ ®x ¡ ¯ x3 + F cos(! t).
It can be made autonomous by introducing a third dependent variable, z, and
expressing Du±ng's equation as the three-dimensional system

_x = y; _y = ¡2 ° y ¡ ®x¡ ¯ x3 + F cos(z); _z = !; with z(0) = 0: (1.12)

After a transient time interval, the Du±ng system can, not unexpectedly,
display a periodic oscillation in response to the periodic driving term. A more
surprising result is that it can exhibit highly irregular, or chaotic, oscillatory
motion that is essentially unpredictable, even though the Du±ng equation is
deterministic. In contrast to the periodic regime, there is an extreme sensitivity
to initial conditions in the chaotic domain.

The Du±ng ODE is not the only dynamical system to exhibit chaotic be-
havior. In general, for chaos to occur in a dynamical system, two ingredients are
necessary, namely that some nonlinearity be present and that the system have at
least three dynamical dependent variables (i.e., be at least three-dimensional).
The study of chaotic behavior is a nonlinearly growing ¯eld, and it is not our
intention to explore it in any depth in this text, although some useful diagnostic
tools are brie°y presented in the Desserts.

In the following recipe, Jennifer, a mathematician at MIT, will illustrate
the so-called period-doubling route to chaos for the Du±ng system. This refers
to a sequence of period doublings (halving of the frequency response) that are
observed when a \control" parameter is increased, ultimately ending in a chaotic
regime. This period-doubling scenario is not the only route to chaos, but it is a
very common one in the study of driven nonlinear ODE systems as well as other
nonlinear systems that are naturally three- (or more) dimensional in nature.

34 CHAPTER 1. PHASE-PLANE PORTRAITS

For a given Du±ng spring system with speci¯ed initial conditions, there are
two control parameters that could be varied in the driving force, namely the
frequency ! and the amplitude F . Jennifer decides to hold ! ¯xed, and study
how the Du±ng system responds as F is increased.

After loading the plots and DEtools packages, Jennifer unprotects °,

> restart: with(plots): with(DEtools): unprotect(gamma):

which she would like to use for the damping coe±cient. Otherwise, Maple
treats the entry of gamma as a request for Euler's constant. If this constant
is unfamiliar to you, consult Maple's Help.

For the sake of de¯niteness, Jennifer considers the inverted spring system
with the parameter values ® = ¡1, ¯ = 1, ° = 0:25, and ! = 1,

> alpha:=-1: beta:=1: gamma:=0.25: omega:=1:

and the four force amplitudes F1 = 0:325, F2 = 0:35, F3 = 0:356, and F4 = 0:42.

> F[1]:=0.325: F[2]:=0.35: F[3]:=0.356: F[4]:=0.42:

The F values were selected to illustrate distinctly di®erent responses of the
spring system to the driving force. To gain a preliminary understanding of
what motions are possible, Jennifer decides to derive the potential energy func-
tion V (x) and plot it. This may be accomplished by entering the anharmonic
(nonlinear) restoring force f = ¡®x¡ ¯ x3,

> f:=-alpha*x-beta*x^3; #anharmonic restoring force

f := x¡ x3
and performing the inde¯nite integral V = ¡

R
f dx using the int command.

> V:=-int(f,x);

V := ¡1
2
x2 +

1

4
x4

The potential energy V is plotted over the range x = ¡1:5 to 1:5,
> plot(V,x=-1.5..1.5,tickmarks=[3,2],labels=["x","V"]);

–0.2

V

–1 1x

Figure 1.12: Double-well potential for an inverted-spring Du±ng equation.

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 35

the resulting picture being shown in Figure 1.12. The potential is commonly
referred to as the double-well potential. There are two minima, at x = ¡1 and
x = +1, at which points V = ¡ 1

4 , separated by a maximum at x = 0, where
V = 0. In the absence of any driving force (set F = 0) or damping (° = 0), the
two minima correspond to vortex points, and the maximum is a saddle point.
In this case, the spring system will oscillate in one of the two potential wells
provided that the total energy is less than zero. For a total energy greater than
zero, the oscillations will be back and forth between the two potential wells.
These possible motions can be con¯rmed by making a phase-plane portrait for
° = 0 and F = 0 in the Du±ng equation.

To make this portrait, Jennifer inserts the time-dependence of the displace-
ment by changing the variable x to x(t) in the restoring force,

> f:=subs(x=x(t),f):

and introduces the velocity dx=dt = y(t) in eq0 .

> eq0:=diff(x(t),t)=y(t):

The following three initial conditions are considered.

> ic1:=x(0)=0.09,y(0)=0: ic2:=x(0)=-0.09,y(0)=0:

ic3:=x(0)=-1.5,y(0)=0:

These conditions should produce undamped oscillatory motion in the right,
left, and both potential wells, respectively. To con¯rm this, Jennifer applies
the phaseportrait command to the coupled system eq0 and dy=dt = f .

> phaseportrait([eq0,diff(y(t),t)=f],[x(t),y(t)],t=0..100,

[[ic1],[ic2],[ic3]],stepsize=0.1,,x=-1.5..1.5,color=red,
linecolor=blue,arrows=MEDIUM):

–1

1

y

–1 1x

Figure 1.13: Phase portrait for inverted Du±ng equation for ° = 0 and F = 0.

36 CHAPTER 1. PHASE-PLANE PORTRAITS

The resulting Figure 1.13 exhibits closed-loop trajectories in the phase plane
characteristic of the predicted possible oscillatory motions.

The inclusion of damping and a nonzero force amplitude, on the other hand,
will make the physical behavior much harder to predict. For (° 6= 0), the
two vortices will change to stable focal or nodal points, and in the absence
of any energy source (F =0) the spring system would asymptotically (t ! 1)
approach one of the two minima. With the inclusion of the driving term (F6=0),
which periodically pumps energy into the nonlinear system, periodic solutions
are again possible but their nature much more di±cult to forecast, since the
periodicity of the response depends on the amplitude F chosen (for ¯xed !)
and the initial conditions.

To determine what happens, Jennifer now uses a do loop to construct a
phase-plane graph for each of the four di®erent F values.

> for i from 1 to 4 do

Du±ng's equation is entered for the ith force value, the result being labeled as
the ith equation.

> eq[i]:=diff(y(t),t)+2*gamma*y(t)-f=F[i]*cos(omega*t);

In the phaseportrait command, Jennifer starts the time range at t = 100
to eliminate any transient response of the system. The ¯rst initial condition is
chosen, which corresponds to starting the system from rest in the right potential
well of Figure 1.12, slightly displaced to the right of the central peak that
separates the two wells. To create a phase-plane portrait for the nonautonomous
case, the scene=[x,y] option is selected.

> gr[i]:=phaseportrait([eq0,eq[i]],[x(t),y(t)],t=100..250,

[[ic1]],scene=[x,y],stepsize=0.1,color=red,linecolor=blue);

> end do:

The four graphs produced by this do loop are grouped together in a 2£ 2 array
> Graphs:=array(1..2,1..2,[[gr[1],gr[2]],[gr[3],gr[4]]]):

and then displayed, the resulting picture being shown in Figure 1.14.

> display(Graphs,tickmarks=[2,2]):

For the ¯rst three phase-plane portraits, corresponding to F1 = 0:325,
F2 = 0:35, and F3 = 0:356, the Du±ng system executes qualitatively di®er-
ent periodic motions in the right potential well of Figure 1.12. Because of the
mathematical uniqueness of the solutions for given initial conditions, \true"
phase-plane trajectories do not cross at ordinary points of the phase plane. But
here there are apparent \crossings" of the trajectories, the number increasing
with increasing F . The crossings are an artifact of using a phase plane to
represent the motion of the driven system. In fact, as mentioned earlier, the
inverted spring system is actually a three-dimensional autonomous system. The
trajectories do not cross when plotted in the three-dimensional x-y-z space.

For F4=0:42, the driving-force amplitude is su±ciently large that the system
clearly oscillates between both of the potential wells, its motion in the phase
plane appearing to be quite chaotic.

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 37

y

1x

y

x –10 1

0 10 1

y y

x x

Figure 1.14: Phase-plane portraits for F1 = 0:325 (top left), F2 = 0:35 (top
right), F3 = 0:356 (bottom left), and F4 = 0:42 (bottom right).

To produce a deeper understanding, Jennifer reruns the ¯le with the scene
option in the ith graph, gr[i], replaced with scene=[t,x] and the time range
shortened to t = 100 to 160. The four displacement (x(t)) curves in Figure 1.15
result, each corresponding to the matching phase-plane portrait in Figure 1.14.

For F1 = 0:325, the inverted spring responds periodically at exactly the
driving frequency, the period being T = 2 ¼=! = 6:28. If the period is written
as T = n (2¼=!), then n = 1 for this case, and the motion is referred to as a
period-one response.

For F2 = 0:35, the spring has a repeat period that is twice that of the driving
term, i.e., one has n = 2 and therefore a period-two response. Notice that now
the system alternates each half-cycle between di®erent maximum values of the
displacement.

For F3 = 0:356, the repeat period is four times as large, corresponding to
period four. As F was increased, the period doubled from period one to period
two to period four. As F is further increased, this period doubling will continue

38 CHAPTER 1. PHASE-PLANE PORTRAITS

until the repeat period is so large that the motion appears to be chaotic. This
is what has happened for F4 = 0:42.

1

t

t

t t

x

x x

x

–1

150100

1

150100

1

150100

1

150100

Figure 1.15: Displacement x versus time t for F1 = 0:325 (top left), F2 = 0:35
(top right), F3 = 0:356 (bottom left), and F4 = 0:42 (bottom right).

The scenario that Jennifer has outlined for the inverted Du±ng equation is
a commonly observed phenomenon for forced oscillator systems and is referred
to in the literature as the period-doubling route to chaos.

PROBLEMS:

Problem 1-9: Unforced damped motion
In the text example, keep all equation coe±cients the same (leaving ° = 0:25)
but take the forcing amplitude F to be zero.

(a) If the inverted spring system is initially at rest in the right potential well
with total energy E = + 1

4 , to what stationary point does it asymptotically
evolve? Make a phase-plane portrait and a plot of x versus t.

(b) Identify the stationary point.

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 39

(c) How long does it take for the system to be within 1% of this point?

(d) If the spring system is initially at rest in the right potential well, what is
the minimum value that the total energy must have so that it asymptot-
ically approaches the stationary point in the left potential well?

Problem 1-10: Period 8
In the text example, determine an approximate F for which period 8 occurs.

Problem 1-11: A di®erent response
In the text example, what e®ect does changing the driving frequency to ! = 2
have on the four graphs? Identify the period response for each F value.

Problem 1-12: Varying frequency
With all other parameters the same as in the text, but with F = 0:42, study the
response of the inverted Du±ng system as ! is varied over the range between
zero and one. Interpret the results in each case.

Problem 1-13: Varying the damping coe±cient
With all other parameters the same as in the text, investigate the e®ect on the
four graphs when the damping coe±cient is reduced to ° = 0:125. Identify the
period response for each F value. Repeat with ° = 0:0625.

Problem 1-14: Varying the force law
Execute the text recipe with the x3 term in the force law replaced with x5 and
discuss how this change a®ects the results. Then try some larger F values (all
other parameters remaining the same) and determine the period response of
each solution.

Problem 1-15: Nonharmonic Du±ng oscillator
For the nonharmonic Du±ng oscillator with ® = 0, ¯ = 1, ° = 0:04, ! = 1,
F = 0:2, x(0) = 0:25, and y(0) ´ _x(0) = 0, determine the period response
of the solution. Use both scene=[x,y] and scene=[t,x] before making your
conclusion. What is the period response if x(0) = 0:2, all other parameter
values remaining the same?

Problem 1-16: Another forced oscillator
Determine the period response of the forced-oscillator equation

Äx+ 0:7 _x+ x3 = 0:75 cos t;

subject to the initial condition x(0) = _x(0) = 0. Explore the change in period
response of the solution as the force amplitude is varied. What type of Du±ng
equation is the above equation?

Problem 1-17: Three-dimensional plots
Instead of the planar plots presented in the text recipe, make use of the DEplot3d
command to make three-dimensional plots in the t versus x versus y space. Plot
the trajectory for each F value separately, choosing an orientation in each case
that gives the best view.

40 CHAPTER 1. PHASE-PLANE PORTRAITS

1.2.2 The Oregonator

Everybody's youth is a dream, a form of chemical madness.
F. Scott Fitzgerald, American writer (1896{1940)

The Belousov{Zhabotinski (BZ) chemical reaction is now probably one of the
best known of the chemical oscillators. However, because it was contrary to
the then current belief that all solutions of reacting chemicals must go mono-
tonically to equilibrium, Belousov could not initially get his chemical oscillator
discovery published in any Soviet journal. Only years later, when his results
were con¯rmed by Zhabotinski, was he given due recognition for his discovery.
For his pioneering research work he was awarded, along with Zhabotinski, the
Soviet Union's highest medal, but unfortunately for him, he had passed away
10 years earlier.

The BZ reaction may be achieved [Tys76] by dissolving 4.292 g of 0.28 M
malonic acid7 and 0.175 g of 0.002 M cerium ammonium nitrate in 150 ml of 1
M sulfuric acid and stirring well. The solution will initially be yellow, then turn
clear after a few minutes. Then, on adding 1.415 g of 0.063 M sodium bromate,
the solution will oscillate between yellow and clear with a period of about one
minute. A more dramatic color change between red and blue can be achieved
by adding a few ml of 0.025 M ferroin.

Field, K}orÄos, and Noyes [FKN72][FN74] were able to measure the periodic
oscillations in the Br¡ concentration and the Ce4+/Ce3+ ratio in the BZ reac-
tion. They then isolated the ¯ve most important reactions in the complicated
chemistry that was taking place and created a kinetic model called the Orego-
nator, the name re°ecting the location of where the research was carried out.

Labeling the concentration of BrO¡3 as A, that of HBrO2 as X, that of Br
¡

as Y , that of Ce4+ as Z, and all other less-important chemical species as ¤, the
relevant chemical reactions in the Oregonator model are as follows:

A+ Y + ¤ k1! X + ¤
X + Y + ¤ k2! ¤
A+X + ¤ k3! 2X + 2Z + ¤ (1.13)

2X
k4! A+ ¤

Z + ¤ k5! hY + ¤

Here the ki denote the rates of reaction and h is a numerical \fudge factor"
introduced because of the severe truncation of the full set of equations describing
the complicated chemistry. How sensitive the results are to the value chosen
for h will be left as a problem.

Ignoring the less-important chemical species and noting that the depletion
of A can be neglected, i.e., A is constant, the rate equations for the production

7Belousov [Bel58] used citric acid, but malonic acid is now commonly substituted.

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 41

of X, Y , Z are

_X = k1AY ¡ k2X Y + k3AX ¡ k4X2;

_Y = ¡k1AY ¡ k2X Y + h k5 Z;
_Z = 2 k3AX ¡ k5 Z:

(1.14)

In writing down equations (1.14), use has been made of the following empirical
rule: When two substances react to produce a third, the reaction rate is pro-
portional to the product of the concentrations of the two substances. Thus, for
example, the structure of the _X equation can be easily understood. In the ¯rst
chemical reaction, the rate of producing X is +k1AY . In the second reaction,
there is a decrease in X, the rate contribution being ¡k2X Y . The third reac-
tion provides a positive contribution +k3AX . Finally, noting that 2X in the
fourth reaction is treated as X+X, this reaction provides a rate decrease given
by ¡k4X2. The other rate equations may be similarly understood. The factor
of 2 in the _Z equation appears because in the third reaction, two of Z appear
for each net (2X ¡X) one of X .

The nonlinear rate equations (1.14) can be converted into a normalized
form that reduces the number of parameters. Introducing a normalized time
¿ = (k1A) t and concentrations

x = (k2X)=(k1A); y = (k2 Y)=(k3 A); z = (k2 k5 Z)=(2 k1 k3A
2);

and positive parameters,

² = k1=k3; p = (k1A)=k5; q = (k1 k4)=(k2 k3);

the Oregonator equations reduce to

² _x(¿) = x+ y ¡ q x2 ¡ x y; _y(¿) = ¡y + 2 h z ¡ x y; p _z(¿) = x¡ z:

As an illustrative example, we will look at the onset of oscillations in the
Oregonator model for ² = 0:03, p = 2, q = 0:006, h = 0:75 and initial (normal-
ized) concentrations x(0) = 1, y(0) = 1, and z(0) = 20.

After loading the plots package,

> restart: with(plots):

the three governing di®erential equations are entered,

> de1:=epsilon*diff(x(t),t)=x(t)+y(t)-q*x(t)^2-x(t)*y(t);

de1 := ²

μ
d

dt
x (t)

¶
= x(t) + y(t)¡ q x (t)2 ¡ x(t) y(t)

> de2:=diff(y(t),t)=-y(t)+2*h*z(t)-x(t)*y(t);

de2 :=
d

dt
y(t) = ¡y(t) + 2 h z (t)¡ x (t) y(t)

> de3:=p*diff(z(t),t)=x(t)-z(t);

de3 := p

μ
d

dt
z (t)

¶
= x(t)¡ z (t)

42 CHAPTER 1. PHASE-PLANE PORTRAITS

along with the parameter values

> epsilon:=0.03: p:=2: q:=0.006: h:=0.75:

and the initial condition.

> ic:=x(0)=1,y(0)=1,z(0)=20:

The set of nonlinear ODEs cannot be solved analytically, so we seek a numerical
solution for the set of three unknowns using the dsolve command with the
numeric option. Unless otherwise speci¯ed, the default numerical scheme is the
Runge{Kutta{Fehlberg 45 (rkf45) algorithm. See Burden and Faires. [BF89]

> sol:=dsolve(fde1,de2,de3,icg,fx(t),y(t),z(t)g,numeric):
The 3-dimensional text plot command is used to place the blue-colored word
\start" near the starting point of the trajectory. The three numbers in the list
are the x-, y-, and z-coordinates where the word is to be placed.

> tp:=textplot3d([1,1,21,"start"],color=blue):

The odeplot command enables us to plot the numerical solution over the time
interval 0 to 20 time units. The minimum number of plotting points is taken
to be 3000 in order to obtain a smooth curve. The default number is 50.

> gr:=odeplot(sol,[x(t),y(t),z(t)],0..20,numpoints=3000,

thickness=2,axes=frame,labels=["x","y","z"],

tickmarks=[3,3,3]):

The above two plots are then displayed together, producing Figure 1.16.

> display(ftp,grg);

start

0

50

100 x

0
5

10
15

y

10

20

30
z

Figure 1.16: Evolution of Oregonator system onto limit cycle in phase space.

The trajectory in the 3-dimensional phase space evolves onto a closed loop,
characteristic of an oscillatory solution. No matter what the starting point

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 43

(initial condition), the trajectory will wind onto the same loop, indicating that
the loop is a stable 3-dimensional limit cycle.

The odeplot command is used to plot the concentrations x(t), y(t), and z(t)
as red, blue, and green curves respectively, with a title indicating this included.

> odeplot(sol,[[t,x(t),color=red],[t,y(t),color=blue],

[t,z(t),color=green]],0..20,numpoints=3000,tickmarks=[3,3],

thickness=2,title="red=x, blue=y, green=z");

red=x, blue=y, green=z

0

50

100

x, y, z

10 20t

Figure 1.17: Oscillatory behavior of HBrO2 (x), Br
¡ (y), and Ce4+ (z).

The black-and-white version is shown in Figure 1.17, the tallest curve being x(t),
the intermediate curve z(t), and the shortest curve y(t). Each curve reaches its
maximum amplitude at a di®erent time.

PROBLEMS: Problem 1-18: Oregonator limit cycle
Con¯rm that a limit cycle results in the Oregonator model, regardless of the
initial (nonzero) concentrations.

Problem 1-19: Another chemical oscillator
The rate equations for a certain chemical oscillator are

A
k1! X

B +X
k2! Y + ¤

2X + Y
k3! 3X

X
k4! ¤

where the concentrations A and B of species A and B are held constant.

(a) Using the empirical rule for chemical reactions, write down the rate equa-
tions for X and Y .

44 CHAPTER 1. PHASE-PLANE PORTRAITS

(b) Convert the rate equations into a normalized form by setting ¿ = k4 t,
x=

p
(k3=k4)X, y=

p
(k3=k4) Y , a=

p
(k3=k4) (k1=k4)A, b=(k2=k4)B.

(c) Taking a = 1, b = 2:5, x(0) = y(0) = 0:1, produce a 3-dimensional plot
showing x(t) vs. y(t) vs. t. Choose an orientation that clearly shows a
periodic orbit.

(d) Con¯rm the limit-cycle nature by trying a few di®erent initial normalized
concentrations.

Problem 1-20: Oregonator fudge factor
In the text recipe for the Oregonator model, the fudge factor was taken to be
h = 0:75. Exploring the range h = 0:1 to h = 1, with all other conditions the
same, determine whether a limit cycle occurs. Comment on the sensitivity of
the model on h.

1.2.3 RÄossler's Strange Attractor

Strange as it may seem, no amount of learning can cure stupidity,
and formal education positively forti¯es it.
Stephen Vizinczey, Hungarian novelist (1933{)

The following 3-dimensional nonlinear ODE system, due to RÄossler [RÄ76],

_x = ¡(y + z); _y = x+ a y; _z = b+ z (x¡ c); (1.15)

can display a variety of di®erent trajectories in the x-y-z phase space, depending
on the values assigned to the parameters a, b, and c and the initial condition.
The following recipe produces one of the more interesting trajectories.

After loading the DEtools library package,

> restart: with(DEtools):

the right-hand sides of the _x, _y, and _z equations are entered and assigned the
names P , Q, and R, respectively.

> P:=-(y+z); Q:=x+a*y; R:=b+z*(x-c);

P := ¡y ¡ z Q := x+ a y R := b+ z (x¡ c)
We take the parameter values to be a = 0:2, b = 0:2, and c = 5:7.

> a:=0.2: b:=0.2: c:=5.7:

The number and locations of the ¯xed points are determined by solving the
three equations P = 0, Q = 0, and R = 0 for x, y, and z. Lists are used so that
the order x; y; z of the ¯xed-point coordinates is maintained in the output.

> points:=solve([P=0,Q=0,R=0],[x,y,z]);

points := [[x = 0:007026204834; y = ¡0:03513102417; z = 0:03513102417];
[x = 5:692973795; y = ¡28:46486898; z = 28:46486898]]

There are two ¯xed points, one of which is near the origin. We take our initial
condition to be x(0) = 0:1, y(0) = 0:1, z = 0:1, i.e., near this ¯xed point. The

1.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 45

trajectory that results if the initial condition is near the other ¯xed point is left
as a problem.

> ic:=[x(0)=0.1,y(0)=0.1,z(0)=0.1]:

To enter the relevant ODEs, the dependent variables x, y, and z must be made
time-dependent. This is done in the following command line.

> vars:=fx=x(t),y=y(t),z=z(t)g:
Substituting the variables into P , Q, and R, and equating to dx=dt, dy=dt, and
dz=dt, yields the RÄossler system of ODEs.

> sys:=diff(x(t),t)=subs(vars,P),diff(y(t),t)=subs(vars,Q),

diff(z(t),t)=subs(vars,R);

sys :=
d

dt
x (t) = ¡y(t)¡ z (t); d

dt
y(t) = x(t) + 0:2 y(t);

d

dt
z (t) = 0:2 + z (t) (x (t)¡ 5:7)

Choosing the option scene=[x,y,z] in the DEplot3d command, we plot the
trajectory in x-y-z space over the time interval t = 0 to 150, subject to the
given initial condition. The step size is taken to be 0.01 in order to obtain a
smooth curve. The trajectory is colored with the zhue shading option, and a
particular orientation of the viewing box is chosen.

> DEplot3d([sys],[x(t),y(t),z(t)],t=0..150,[ic],scene=[x,y,z],

stepsize=0.01,shading=zhue,orientation=[-120,60],

tickmarks=[3,3,3],thickness=1);

0
10

x
–10

–5
0

5

y

10

20

z

Figure 1.18: RÄossler's strange attractor.

46 CHAPTER 1. PHASE-PLANE PORTRAITS

The resulting picture is shown in Figure 1.18. The trajectory unwinds in a
spiral fashion from its starting point near the origin, indicating that the ¯xed
point at the origin is an unstable focal point. As time progresses, the trajec-
tory is attracted to a localized region of the phase space where it traces out a
never-repeating (chaotic) path. This is an example of a strange attractor, the
word strange being introduced historically because it was not like a \normal"
attractor (e.g., a focal point). Strange attractors also have the property that
they have noninteger, or fractal, dimensions. If you wish to learn more about
strange attractors and fractal patterns, this topic is discussed at length in the
Introductory Guide.

PROBLEMS: Problem 1-21: Second ¯xed point
Run the text recipe with an initial condition near the second ¯xed point. What
is the probable nature of this ¯xed point? What is the nature of the resulting
trajectory as time progresses?

Problem 1-22: Varying c
Holding all other parameters as in the text recipe, explore the behavior of the
RÄossler system as the coe±cient c is varied. Interpret the results.

Chapter 2

Phase-Plane Analysis
The more important the subject and the closer it cuts to the bone of
our hopes and needs, the more we are likely to err in establishing a
framework for analysis.
Stephen Jay Gould, American paleontologist and science historian (1941{2002)

In the ¯rst chapter, the reader has seen examples of phase-plane portraits for
two-dimensional autonomous ODE systems of the structure

_x = P (x; y); _y = Q(x; y); (2.1)

where P and Q were speci¯ed real functions. Given the mathematical forms
of P and Q, the number and locations of the ¯xed points is easily established,
either analytically or numerically. Quite generally, the topological nature of a
¯xed point can then be determined by examining the °ow of tangent arrows in
its vicinity and/or the temporal evolution of a nearby trajectory. For nonlinear
systems, this was done with numerically based graphing commands. In this
chapter, we will complement this approach by introducing phase-plane analysis,
which involves analytically examining the nature of the trajectories at ordinary
points lying near each ¯xed point. The method can be generalized [Hay64] to
three-dimensional systems, but becomes considerably more complicated.

2.1 Phase-Plane Analysis

Consider an ordinary point (x; y) lying near a ¯xed point (x0; y0). From equa-
tion (2.1), the general expression for the slope of a trajectory at (x; y) is

dy=dx = Q(x; y)=P (x; y): (2.2)

At a stationary point, Q(x0; y0) = P (x0; y0) = 0, while at ordinary points,
although either Q or P may be zero (corresponding to zero slope or in¯nite
slope), they are not zero simultaneously. For ordinary points close to a given
¯xed point, we can write x = x0 + u, y = y0 + v, where u and v are small, so
that equation (2.2) becomes

dy

dx
=
Q(x0 + u; y0 + v)

P (x0 + u; y0 + v)
: (2.3)

47

48 CHAPTER 2. PHASE-PLANE ANALYSIS

Taylor expanding the right-hand side of (2.3) in powers of u and v yields

dy

dx
=
dv

du
=
c u+ d v + c 0 u2 + d 0 v2 + f 0 u v + ¢ ¢ ¢
a u+ b v + a 0 u2 + b 0 v2 + e 0 u v + ¢ ¢ ¢ ; (2.4)

where the coe±cients

a ´
μ
@P

@x

¶
x0;y0

; b ´
μ
@P

@y

¶
x0;y0

; c ´
μ
@Q

@x

¶
x0;y0

; d ´
μ
@Q

@y

¶
x0;y0

;

etc., are real since Q, P were assumed to be real.
For a linear model, only linear terms in u and v will be present in equa-

tion (2.4), the coe±cients a 0 ´ (@2P=@x2)x0;y0 , b 0 ´ (@2P=@y2)x0;y0 , etc., being
identically zero. On the other hand, for a nonlinear model, higher-order terms
corresponding to some of these coe±cients being nonzero must be present.

A simple stationary point for a nonlinear model is one in the neighborhood
of which the qualitative behavior of the trajectories is correctly described by
retaining only the linear terms in u and v in equation (2.4), so that

dv

du
=
c u+ d v

a u+ b v
: (2.5)

Clearly, if a, b, c, and d are nonzero and u and v are su±ciently small, then
equation (2.5) should be a good approximation to equation (2.4), the higher-
order terms in u and v making only small corrections that, except for the
vortex,1 do not qualitatively change the nature of the trajectories.

If, on the other hand, c and d (or a and b) both vanish, then higher-order
terms should be kept in the numerator (or denominator). Even for a, b, c, and
d all nonzero, one can have au + b v = 0 and c u + d v = 0 for u and v 6= 0
(u, v = 0 corresponds to the ¯xed point (x0; y0) of interest), in which case
higher-order terms should be kept in both the numerator and denominator. A
nontrivial solution of c u + d v = 0, a u + b v = 0, can occur only if the system
has zero determinant: ¯̄̄

¯ c d
a b

¯̄̄
¯ = b c¡ a d = 0: (2.6)

If this occurs, the stationary point is no longer simple (i.e., it is not determined
by linear terms in u and v alone). Since setting either c and d or a and b equal
to zero also makes b c¡a d vanish, it follows that a simple ¯xed point can occur
if b c¡ a d6= 0. In the neighborhood of such a stationary point, the trajectories
are described by equation (2.5), so their nature is completely determined by
the four coe±cients a, b, c, and d.

Next we shall establish that there are only four types of simple ¯xed points
for the two-dimensional phase plane, namely the vortex, focal, nodal, and saddle
points introduced in Chapter 1. The expression (2.5) for dv=du can be thought
of as resulting from a pair of coupled ¯rst-order linear ODEs, viz.,

_u = a u+ b v; _v = c u+ d v: (2.7)
1Even the smallest corrections can change a vortex into a focal point.

2.1. PHASE-PLANE ANALYSIS 49

Solving for v in the ¯rst equation and substituting into the second yields the
second-order linear ODE

Äu+ p _u+ q u = 0; with p ´ ¡(a+ d); q ´ a d¡ b c: (2.8)

Since this ODE has constant coe±cients, a solution of the form u = e¸ t is
sought. Substituting u into (2.8) yields the quadratic auxiliary equation

¸2 + p ¸+ q = 0; with two roots; ¸1;2 = ¡
p

2
§ 1
2

p
p2 ¡ 4 q: (2.9)

These roots may be either real or complex. Since the general solution u is a
linear combination of e¸1 t and e¸2 t, it is clear that u ! 0 as t ! 1 if the
real parts of both ¸1 and ¸2 are negative and u!1 if either one (or both) of
the roots has a positive real part. For the former, the stationary point will be
stable, while for the latter it will be unstable.

For simple ¯xed points, a d ¡ b c ´ q 6= 0, so a zero ¸ root is not possible.
The case q = 0 corresponds to a higher-order stationary point, which will be
illustrated later. The possible roots ¸1, ¸2, which dictate the topological nature
of the ¯xed point, depend on the relative size and signs of p and q. First, let's
consider q > 0 and p6= 0. Three cases have to be examined:

² For p2 > 4q, both the roots ¸1 and ¸2 are real and of the same sign,
negative for p > 0 and positive for p < 0. For p > 0, the general solution
for u is of the structure u = Ae¡j¸1j t + B e¡j¸2j t (A, B are arbitrary
constants), while for p < 0, u = Aej¸1j t + B ej¸2j t: The mathematical
form of these solutions is characteristic of trajectories in the neighborhood
of a nodal point. Stable nodal points (u ! 0 as t ! 1) occur for p > 0
and unstable nodal points for p < 0. The overdamped SHO, encountered
earlier, is an example of a stable nodal point solution.

² For p2¡4 q = 0, we have ¸1 = ¸2 = ¡p=2, so the roots are degenerate and
obviously of the same sign. In this case, a second linearly independent
solution t e¸ t must be introduced. Since this second solution is dominated
by the exponential function for large t, nodal points must also occur along
the parabolic curve p2 ¡ 4 q = 0. An example of this case for p > 0 is the
critically damped SHO.

² For p2 ¡ 4 q < 0, the roots are ¸1;2 = ¡p=2 § (i=2)
p
j4 q ¡ p2j; i.e., are

complex conjugate roots. Using the trigonometric identity

e§ i μ = cos(μ) § i sin(μ);

the general solution for u is of the form

u = e¡(p=2) t(A cos(
p
j4 q ¡ p2j t) +B sin(

p
j4 q ¡ p2j t)):

These damped oscillatory solutions are characteristic of trajectories in
the neighborhood of a focal point. Clearly, stable focal points occur for
p > 0, and unstable focal points for p < 0. The underdamped SHO is an
example of a stable focal point.

50 CHAPTER 2. PHASE-PLANE ANALYSIS

For q > 0, now consider the case p = 0. The two roots, ¸1 and ¸2, are now
purely imaginary, viz., ¸1;2 = § i q, and the general solution is of the undamped
oscillatory form u = A cos(q t) + B sin(q t). The solution is characteristic of
trajectories in the vicinity of a vortex point.

Finally, we examine the situation in which q < 0. Independent of the value
or sign of p, the roots ¸1 and ¸2 are real but of opposite signs. Because the
roots are of opposite signs, the associated stationary points are always unstable.
This situation corresponds to the occurrence of saddle points. Since all possible
roots of ¸ have been examined, it follows that there are only four types of simple
stationary points. The regions of p and q for which each type holds may be
summarized by making a p-q diagram as illustrated in Figure 2.1.

S
ad

dl
e

P
oi

nt
s

Stable Nodal Points

Stable Focal Points

Unstable Focal Points

p
q−4

=0
2

p

q

Unstable
Nodal Points

Vortices and Focal Points

H
ig

he
r-

O
rd

er
F

ix
ed

P
oi

nt
s

Figure 2.1: The p-q diagram for establishing types of simple stationary points.

In the ¯gure, it should be noted that the line p = 0 for q > 0 has been labeled as
vortices and focal points, rather than vortices alone. This is because the anal-
ysis for the vortices is not de¯nitive for nonlinear models,2 since we have kept
only ¯rst-order terms in u and v in the Taylor expansion (2.4). Higher-order
terms in the expansion may turn vortices into focal points. With the Taylor ex-
pansion option available in Maple, we could, of course, keep higher-order terms
in an attempt to distinguish between the two types of ¯xed points. This can be
done for individual cases, but it is di±cult to make \global" statements that

2For linear ODE models, recall that higher-order terms are not present and one can have
vortices only for p = 0 and q > 0.

2.1. PHASE-PLANE ANALYSIS 51

apply to all nonlinear systems. A simple global theorem, which is left for the
reader to prove, is due to Poincar¶e:

Suppose that for the system of equations _x = P (x; y), _y = Q(x; y), the func-
tions P (x; y), Q(x; y) satisfy, in the neighborhood of the stationary point O, the
conditions for O to be a vortex or a focus. If P (x; y) and Q(x; y) satisfy the
conditions P (x; ¡y) = ¡P (x; y), Q(x; ¡y) = Q(x; y), then O is a vortex.

In some situations, P and Q may not satisfy the above conditions, yet O is a
vortex. Poincar¶e's theorem represents a su±cient condition for the existence of
a vortex, but is not a necessary condition.

2.1.1 Foxes Munch Rabbits

As for life, it is a battle ...
Marcus Aurelius Antonius, Roman emperor and philosopher (AD 121{180)

In mathematical biology there has been a great deal of interest in predator{prey
systems in which certain animal species (the predator) survive by munching or
crunching on one or more others (the prey). As a simple example, suppose that
a species of fox survives by eating jackrabbits in the rolling hills of Rainbow
County. The rabbits in turn subsist on the available vegetation, of which we
shall assume there is an adequate supply. A model of this predator{prey inter-
action can be built up phenomenologically. Let's call f(t) and r(t) the fox and
jackrabbit numbers per unit area (acre, hectare, or whatever) at time t.

If no foxes were present, the rabbit population would increase, the rate
of increase assumed to be proportional to the number of rabbits present, i.e.,
_r(t) = A1 r(t), with the rate constant A1 positive. On the other hand, if
no rabbits were present, the foxes would starve to death and their numbers
decrease, the rate equation being _f(t) = ¡A2 f(t), with A2 > 0.

With both species present, the probability of an interaction will be propor-
tional to the product r(t) f(t) of the population numbers. For the foxes the
interaction will be positive in nature, but negative for the rabbits. Thus, the
simple phenomenological model takes the following form:

_r = A1 r ¡ B1 r f; _f = ¡A2 f + B2 r f; (2.10)

with the interaction coe±cients B1 and B2 positive. In practice, mathematical
biologists create more realistic models with other factors taken into considera-
tion and the coe±cient values determined from observational data. Despite its
simple appearance, this set of nonlinear ODEs cannot be solved analytically.

To begin the recipe, the DEtools library package is loaded because a phase-
plane portrait will be constructed.

> restart: with(DEtools):

We enter the following numerical values: A1 = 2, A2 = 1, B1 = 3=100, and
B2=1=100, for the coe±cients. The coe±cient numbers are strictly arti¯cial,

52 CHAPTER 2. PHASE-PLANE ANALYSIS

and you should feel free to experiment with di®erent positive values.

> A[1]:=2: A[2]:=1: B[1]:=3/100: B[2]:=1/100:

The nonlinear functions P =A1 r¡ B1 r f and Q=¡A2 f +B2 r f , correspond-
ing to the right-hand sides of the ODEs in (2.10), are entered as \functional
operators" using the \arrow notation."

> P:=(r,f)-> A[1]*r-B[1]*r*f;

P := (r; f)! A1 r ¡B1 r f
> Q:=(r,f)-> -A[2]*f+B[2]*r*f;

Q := (r; f)! ¡A2 f +B2 r f
The \arrow" (->) in the above inputs is formed on the keyboard by entering a
\hyphen" followed by a \greater than" sign. The operation or \procedure" on
the right-hand side of each arrow will be applied when the two3 variables r and
f on the left-hand side are supplied as arguments to P and Q. For example,
let's take r = 100 and f = 10 and calculate P (100; 10).

> P(100,10); #example

170

The procedure on the rhs of P has been applied with the coe±cient values
automatically substituted, namely, 2£ 100¡ (3=100)£ 100£ 10 = 170.

To classify the stationary points, we need to evaluate a, b, c, and d, which
respectively involve the partial derivatives @P=@r, @P=@f , @Q=@r, and @Q=@f
evaluated at the stationary points. A functional operator F is introduced to
di®erentiate an arbitrary quantity X(r; f) with respect to a variable v.

> F:=(X,v)->diff(X(r,f),v):

Then F is used to calculate the four relevant partial derivatives of P and Q.

> a:=F(P,r): b:=F(P,f): c:=F(Q,r): d:=F(Q,f):

The results have been labeled a, b, c, and d, but remember that the derivatives
must still be evaluated at each stationary point. So let's locate the stationary
points by solving P (r; f) = 0 and Q(r; f) = 0 for r and f .

> sol:=solve(fP(r,f)=0,Q(r,f)=0g,fr,fg);

sol := fr = 0; f = 0g;
½
f =

200

3
; r = 100

¾
There are two ¯xed points, one at the origin (r=0, f =0) and the second at
r=100, f=200=3=66 2

3
. By choosing one of the ¯xed points and assigning the

solution, the coordinates will automatically be substituted into the expressions
that follow. Let's select the nonzero ¯xed point, which is the second solution
here. As a check, the coordinates r0 and f0 of the ¯xed point are displayed.

> assign(sol[2]); r0:=r; f0:=f;

r0 := 100 f0 :=
200

3
Then the values of a, b, c, and d are determined for the assigned ¯xed point.

3Any (¯nite) number of variables may be used.

2.1. PHASE-PLANE ANALYSIS 53

> a:=a; b:=b; c:=c; d:=d;

a := 0 b := ¡3 c :=
2

3
d := 0

The quantities p = ¡(a+ d) and q = a d¡ b c are calculated.
> p:=-(a+d); q:=a*d-b*c;

p := 0 q := 2

Referring to Figure 2.1, these values of p and q indicate that the stationary
point must be either a vortex or a focal point. Instead of always referring
back to the p-q picture in the text when tackling other examples, it is more
convenient to create the picture directly in the code and place the (q, p) point
on it. The range of q and p in the ¯gure will be set to be from R = ¡3 to
+3. For other stationary-point problems, this range may have to be adjusted.
Further, the display command will be used to superimpose a number of graphs
in the same ¯gure. This command is found in the plots library package, which
is now loaded.

> R:=3: with(plots):

The ¯rst graph, assigned the name gr1, uses the pointplot command to plot
the point (q, p) (entered as a list) as a size-20 blue box. The default size is 10.

> gr1:=pointplot([q,p],symbol=box,symbolsize=20,color=blue):

The second graph, gr2, plots the two branches p = §
p
4 q of the parabola that

divides the focal point and nodal point regions in the p-q diagram. Note that
q is entered as qq (which ranges from ¡R to R), because q has already been
assigned a speci¯c value. The resulting parabola is represented by a thick (the
default thickness is 0) red curve on the computer screen. The minimum number
of plotting points is taken to be 250, the default being 50.

> gr2:=plot([sqrt(4*qq),-sqrt(4*qq)],qq=-R..R,

numpoints=250,thickness=2,color=red):

The third graph, gr3, generates a thick green line along the p=0 axis between
q=0 and q=R and along the q=0 axis between p=¡R and p=+R.

> gr3:=plot([[[0,0],[R,0]],[[0,-R],[0,R]]],style=line,

color=green,thickness=3):

Using the textplot command, the fourth graph labels the various regions of
the p-q diagram. Here sFP stands for stable Focal Point, uFP for unstable Focal
Point, sNP for stable Nodal Point, uNP for unstable Nodal Point, SP for Saddle
Point, and V and FP for Vortices and Focal Points. The two numbers in each
list are determined by trial and error and indicate the horizontal and vertical
locations of each string of letters.

> gr4:=textplot([[1,0.9,"sFP"],[1,-0.9,"uFP"],

[0.7,2.5,"sNP"],[0.7,-2.5,"uNP"],[-1,0.8,"SP"],

[-1,-0.8,"SP"],[1,0.2,"V and FP "]]):

All four graphs are superimposed with the display command, the axes being
labeled, and the minimum number of tickmarks along each axis speci¯ed.

> display(fgr1,gr2,gr3,gr4g,labels=["q","p"],tickmarks=[3,3]);

54 CHAPTER 2. PHASE-PLANE ANALYSIS

SP

V and FP

SP

SP

uNP

sNP

uFP

sFP

–2

2

p

–2 2 q

Figure 2.2: p-q diagram for the second ¯xed point.

The resulting p-q diagram is shown in Figure 2.2, the location of the box at
p = 0, q = 2 indicating that the second stationary point is either a vortex or a
focal point. As you may verify, assigning the ¯rst ¯xed point would move the
box to the saddle-point region of the p-q diagram.

So, is the second ¯xed point a vortex or a focal point? Let's apply Poincar¶e's
theorem. Forming P (r0 +u; f0 ¡ v)+P (r0 +u; f0 + v) and Q(r0 +u; f0 ¡ v)¡
Q(r0 + u; f0 + v) and expanding,

> expand(P(r0+u,f0-v)+P(r0+u,f0+v));

0

> expand(Q(r0+u,f0-v)-Q(r0+u,f0+v));

¡u v
50

we see that the ¯rst relation yields zero, but the second doesn't. So Poincar¶e's
theorem is inconclusive here. A phase-plane portrait that includes the two ¯xed
points should settle this issue.

To proceed, the quantities r and f are unassigned from their previous values,

> unassign('r','f'):

and the rabbits{foxes equations generated using the operators P and Q .

> req:=diff(r(t),t)=P(r(t),f(t));

req :=
d

dt
r(t) = 2 r(t)¡ 3

100
r(t) f (t)

2.1. PHASE-PLANE ANALYSIS 55

> feq:=diff(f(t),t)=Q(r(t),f(t));

feq :=
d

dt
f (t) = ¡f (t) + 1

100
r(t) f (t)

A phase-plane portrait operator PP is formed to generate a phase-plane portrait
for the rabbits{foxes equations over the time interval t = 0 to 10 time units,
given an initial population of 100 rabbits and 5 foxes (per unit area). The scene
variables x and y and the linecolor c must be speci¯ed. Instead of the default
color red, the tangent ¯eld arrows are colored blue.

> PP:=(x,y,c)->phaseportrait([req,feq],[r(t),f(t)],

t=0..10,[[r(0)=100,f(0)=5]],stepsize=0.01,scene=[x,y],

color=blue,linecolor=c,arrows=MEDIUM,dirgrid=[25,25]):

The operator PP is used to plot a red-colored phase-plane trajectory in the f
versus r plane, the resulting picture being shown in Figure 2.3.

> PP(r,f,red);

0

50

100

f

200

250

100 200 r 400 500 600

Figure 2.3: The phase-plane portrait of the rabbits{foxes interaction.

The phase-plane trajectory is a closed loop around the stationary point at
r0 = 100, f0 = 66

2
3
, indicating that this stationary point is probably4 a vortex,

not a focal, point. The behavior of the trajectory and the appearance of the
tangent ¯eld near the origin is consistent with the origin being a saddle point.

The temporal evolution of the rabbit and fox population numbers can be
observed by entering PP(t,r,blue) and PP(t,f,red) and superimposing the
blue and red curves using the display command. This produces Figure 2.4,
the taller curve in this black-and-white rendition being for the rabbits.

4One can feel more con¯dent about this conclusion by considering other initial conditions
and taking longer time intervals.

56 CHAPTER 2. PHASE-PLANE ANALYSIS

> display([PP(t,r,blue),PP(t,f,red)],labels=["t","r,f"]);

0

100

200

400

500

600

r,f

2 4 6 8 10t

Figure 2.4: Periodic variation in the rabbits{foxes population numbers.

The periodic variation in population numbers is clearly seen, the two curves
being slightly out of phase with each other as one would intuitively expect.
You might argue that this cyclic result depends on the particular values chosen
for the coe±cients in the model. As you may con¯rm, choosing other positive
values shifts the vortex-point location but doesn't destroy the periodicity.

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935

40

80

120

160 snowshoe hare

lynx

year

quantity

Figure 2.5: Trading records of fur catches for the Hudson's Bay Company.

Although the above predator{prey model is a phenomenological and over-
simpli¯ed model of reality, the cyclic variations in population numbers that it
predicts is a feature that has been observed in nature for di®erent predator{
prey interactions. For example, this can be seen in Figure 2.5, which shows the
trading records for the period 1845 to 1935 of fur catches by trappers working in
the Canadian north for the Hudson's Bay Company. In this case the lynx were
the predators and the snowshoe hares the prey. Of course, the periodic vari-

2.1. PHASE-PLANE ANALYSIS 57

ations observed in the lynx and snowshoe hare data curves are not as smooth
and regular as in our idealized mathematical model.

PROBLEMS:

Problem 2-1: Iron core inductor
Consider the simple circuit shown in Figure 2.6, consisting of a charged capaci-
tor C connected to a coil ofN turns wrapped around an iron core. The current i

i

C

iron core
inductor

Figure 2.6: Iron core inductor circuit.

versus °ux © relation for the iron core inductor has the form i = N ©=L0+A©
3,

where L0 is the self-inductance of the coil, © is the °ux threading through one
turn of the coil, and A > 0.

(a) Using Kirchho®'s voltage rule, show that the governing ODE is given by

Ä© + ®©+ ¯ ©3 = 0;

where ® and ¯ are left for you to identify.

(b) Reexpress the ODE in a dimensionless form with ® and ¯ scaled out.

(c) Analytically show that the origin of the phase plane is a vortex. Con¯rm
with a phase-plane (_© versus ©) portrait containing a representative orbit.

(d) Use the scene option to plot ©(t).

Problem 2-2: Competing armies
The armies of two warring countries are modeled by the following equations:

_C1 = ®C1 ¡ ¯ C1 C2; _C2 = (®+ 1)C2 ¡ ° ¯ C1 C2;

with ® and ¯ both positive and ° > 1. Here C1 and C2 are the numbers of
individuals in the armies of countries 1 and 2.

(a) Discuss the model equations and how the model could be improved.

(b) Analytically locate and identify all the stationary points.

(c) Taking ® = 5, ° = 1:15, and ¯ = 1=2500, make a tangent ¯eld plot
that includes all stationary points and some representative trajectories.
Discuss possible outcomes on the basis of this plot.

(d) Using appropriate scene options, create plots of C1(t) and C2(t).

58 CHAPTER 2. PHASE-PLANE ANALYSIS

Problem 2-3: Vortex or focal point?
You are told that the following system has either a vortex or a focal point at
the origin. Analytically determine which it is and support your conclusion by
creating a suitable phase-plane portrait.

_x = y + x (x2 + y2); _y = ¡x+ y (x2 + y2)

2.1.2 The Mona Lisa of Nonlinear Science

Opinion is like a pendulum If it goes past the center of gravity on
one side, it must go a like distance on the other.
Arthur Schopenhauer, German philosopher (1788{1860)

In the world of art, one of the most famous portraits ever painted is that of
a woman with an enigmatic smile, referred to as the Mona Lisa. The artist
was the Italian Leonardo da Vinci (1452{1519), who was not only a painter,
but also a sculptor, architect, musician, and scientist. If Leonardo were alive
today, he would probably appreciate on esthetic, as well as scienti¯c, grounds
one of the most important phase-plane portraits of nonlinear science, that of
the simple plane pendulum. If we may make a puny pun, the plane pendulum
is not so plain as its name implies.

θ

θ

θ

m

mg

L

mgsin

Figure 2.7: A simple plane pendulum.

What is a simple plane pendulum? It can be modeled as a small mass m
attached to the end of a very light rigid rod of length L that is allowed to
swing freely in a circular arc in the vertical plane as shown in Figure 2.7. Our

2.1. PHASE-PLANE ANALYSIS 59

goal is to derive the equation of motion, locate and classify all of the possible
stationary points, and determine all possible solutions of the simple pendulum.

The necessary packages to carry out this program are now loaded.

> restart: with(plots): with(DEtools): with(PDEtools):

The plots library package contains the display command for superimposing
plots and the textplot command for placing text on a ¯gure. The DEtools
package is needed in order to use the DEplot command to produce a phase-
plane portrait. Finally, the PDEtools package contains the dchange command,
which will enable us to make variable changes in the equation of motion.

Since the coe±cient ° will be introduced as a normalized damping coe±-
cient, it must be unprotected from its Maple assignment as Euler's constant.

> unprotect(gamma);

If μ(t) is the angle in radians that the pendulum rod makes with the vertical
at time t, g is the acceleration due to gravity, and the air resistance is assumed
to be proportional to the angular velocity dμ=dt with damping coe±cient ¡,
Newton's second law, applied in the direction tangent to the circular arc, yields

> eq1:=m*L*diff(theta(t),t,t)=-m*g*sin(theta(t))

-Gamma*diff(theta(t),t);

eq1 := mL

μ
d2

dt2
μ(t)

¶
= ¡mg sin(μ(t))¡ ¡

μ
d

dt
μ(t)

¶
On dividing eq1 by mg and expanding, eq2 results.

> eq2:=expand(eq1/(m*g));

eq2 :=

L

μ
d2

dt2
μ(t)

¶
g

= ¡sin(μ(t))¡
¡

μ
d

dt
μ(t)

¶
mg

Noting that the radian is actually a dimensionless unit, it is clear from the ¯rst
term in eq2 that

p
L=g has the units of time. The reciprocal of this quantity

is the characteristic frequency ! of the plane pendulum, which is entered.

> omega:=sqrt(g/L);

! :=

r
g

L
A new dimensionless time variable ¿ = ! t is introduced in the following trans-
formation tr . Since the angle μ is already dimensionless, the transformation
of eq2 into a completely dimensionless form is quite trivial. If Maple is used,
however, the dependent variable μ(t) must be replaced by a new symbol, say,
£(¿), in the variable transformation. The \old" variables are placed on the left
of the transformation set, the \new" variables on the right.

> tr:=ft=tau/omega,theta(t)=Theta(tau)g;

tr :=

8>><
>>:μ(t) = £(¿); t =

¿r
g

L

9>>=
>>;

60 CHAPTER 2. PHASE-PLANE ANALYSIS

The variable transformation of eq2 is implemented in eq3 with the dchange
command. The ¯rst argument is the variable transformation tr , the second
argument the equation to be transformed, the third argument the new variables,
and the last optional argument is to simplify the result.

> eq3:=dchange(tr,eq2,[Theta(tau),tau],simplify);

eq3 :=
d2

d¿2
£(¿) = ¡

sin(£(¿))mg + ¡

μ
d

d¿
£(¿)

¶ r
g

L

mg
The equation is further simpli¯ed by de¯ning a dimensionless damping coef-
¯cient ° through the relation ¡ = 2 ° mg=!. Inclusion of the factor 2 is a
matter of taste, a choice often made for damped harmonic oscillator systems.
Substituting this expression for ¡ into eq3 and expanding,

> eq4:=expand(subs(Gamma=2*gamma*m*g/omega,eq3));

eq4 :=
d2

d¿2
£(¿) = ¡sin(£(¿))¡ 2 °

μ
d

d¿
£(¿)

¶
yields eq4 , the dimensionless equation of motion for the plane pendulum.

To make a phase-plane portrait, this second-order nonlinear ODE is re-
expressed as two coupled ¯rst-order equations by setting the angular velocity
d£=d¿ = V (¿) in eq5 , and substituting eq5 into eq4 .

> eq5:=diff(Theta(tau),tau)=V(tau);

eq5 :=
d

d¿
£(¿) = V (¿)

> eq6:=subs(eq5,eq4);

eq6 :=
d

d¿
V (¿) = ¡sin(£(¿))¡ 2 °V (¿)

From the right-hand sides of eq5 and eq6 , the forms of P and Q needed to
analyze the possible stationary points are easily identi¯ed and now entered.

> P:=V; Q:=-sin(Theta)-2*gamma*V;

P := V Q := ¡sin(£)¡ 2 ° V
The derivatives @P=@£, @P=@V , @Q=@£, @Q=@V are calculated in a, b, c, d.

> a:=diff(P,Theta): b:=diff(P,V): c:=diff(Q,Theta): d:=diff(Q,V):

The quantities a, b, c, and d still have to be evaluated at the stationary points,
which are found by solving P = 0, Q = 0 for the unknowns £ and V .

> sol:=solve(fP,Qg,fTheta,Vg);
sol := f£ = 0; V = 0g

There is a ¯xed point at the origin of the phase plane, corresponding to the
pendulum at rest with the supporting rod oriented vertically downward (μ = 0
in Figure 2.7). This is obvious on physical grounds, since the ¯xed point arises
because there is a zero net force on the mass m in this position. The downward
pull of gravity on m is balanced by the upward tension in the supporting rod.

2.1. PHASE-PLANE ANALYSIS 61

But the net force on m would also be zero if the pendulum were oriented
vertically upward (μ = ¼). If the mass also has zero initial angular velocity, it
will remain at rest, so the point (μ = ¼, V = 0) must be another stationary
point in the phase plane. Clearly, this second ¯xed point is one of unstable
equilibrium, since the slightest nudge would cause the pendulum to move away
from μ = ¼. So, why didn't the solve command produce a second solution
to the equations P = 0, Q = 0? The reason is that the sine function is
a transcendental function, so that in order to obtain the stationary points,
one must solve an inverse transcendental function. To return the entire set of
stationary points, we must make use of the following command line.

> _EnvAllSolutions:=true:

On applying the solve command a second time to the equations P = 0, Q = 0,

> Sol:=solve(fP,Qg,fTheta,Vg); assign(Sol);
Sol := f£ = ¼ Z1 ; V = 0g

and noting that the symbol Z1 in the output stands for integer value, the
complete family of stationary points is obtained for the simple pendulum. This
new solution, Sol , is assigned.

For Z1 =0 and Z1 = 1, the ¯xed points (μ=0,V =0) and (μ= ¼,V =0)
result. The other stationary points corresponding to Z1 = 2; 3; 4; : : : and
Z1 =¡1; ¡2; ¡3; : : : re°ect the mathematical periodicity of the sine function,
which has a period 2¼. Physically, for example, the angular position μ = 2 ¼ is
the same as μ = 0. In our analysis of the types of stationary points, we shall
therefore concentrate on the points (μ=0,V =0) and (μ=¼,V =0).

Continuing, the quantities p = ¡(a+ d) and q = a d¡ b c are evaluated,
> p:=-(a+d); q:=a*d-b*c;

p := 2 ° q := (¡1) Z1
and found to be p = 2 °, while q = +1 for Z1 = 0 (or any even integer) and
q = ¡1 for Z1 =1 (or any odd integer). Let's label the former q value as q1
and the latter as q2 .

> q1:=1: q2:=-1:

Three di®erent ° values, °1 = 0, °2 = 0:1, and °3 = 1:25, are entered, the
numbers selected to reveal di®erent physical behaviors of the pendulum.

> gamma[1]:=0: gamma[2]:=0.1: gamma[3]:=1.25:

In the following do loop,

> for i from 1 to 3 do

two plotting points, corresponding to the stationary points at (μ=0,V =0) and
at (μ=¼,V =0), are calculated for each ° value,

> pt1:=[q1,subs(gamma=gamma[i],p)];

> pt2:=[q2,subs(gamma=gamma[i],p)];

and three plots formed, the ¯xed points represented by size-20 blue circles.

> pl[i]:=plot(fpt1,pt2g,style=point,symbol=circle,
symbolsize=20,color=blue):

62 CHAPTER 2. PHASE-PLANE ANALYSIS

> end do:

Now the rest of the p-q diagram is created. The parabola p2 = 4 q is plotted as
a thick red line over the range q = ¡2 to +2. Note that the \dummy variable"
r is used below instead of q as the latter has already been assigned.

> pl[4]:=plot([sqrt(4*r),-sqrt(4*r)],r=-2..2,

numpoints=250,thickness=2,color=red):

The segments q=0 to +2 along the q-axis, and p=¡3 to +3 along the p-axis,
are plotted as thick green lines.

> pl[5]:=plot([[[0,0],[2,0]],[[0,-3],[0,3]]],style=line,

color=green,thickness=3):

The various regions of the p-q plane are labeled in the same manner as the
previous recipe.

> pl[6]:=textplot([[1,0.8,"sFP"],[1,-0.8,"uFP"],

[0.7,2.5,"sNP"],[0.7,-2.5,"uNP"],[-1,0.8,"SP"],

[-1,-0.8,"SP"],[1.7,0.2,"V/FP"]]):

The six plots are superimposed to produce the entire p-q diagram in Figure 2.8.

> display(fseq(pl[i],i=1..6g,labels=["q","p"],tickmarks=[2,3]);

SP

V/FP

SP

SP

uNP

sNP

uFP

sFP

–2

2

p

–2 2q

Figure 2.8: p-q diagram for a simple pendulum.

From bottom to top, the pairs of points in Figure 2.8 correspond to ° = 0,
° = 0:1, and ° = 1:25. In all three cases, the point on the left, which is
associated with the ¯xed point (μ = ¼, V = 0), is an unstable saddle point.
Because of the mathematical periodicity of the sine function, saddle points

2.1. PHASE-PLANE ANALYSIS 63

will also occur at (μ = ¡¼; §3¼; : : :, V = 0). The ¯xed points on the right
correspond to (μ = 0, V = 0) as well as (μ = §2¼; : : :, V = 0). For ° = 0,
the ¯xed point is a vortex or a focal point. Applying Poincar¶e's theorem, the
reader will be able to con¯rm that it is a vortex. For ° = 0:1, the damping
coe±cient is su±ciently small that (μ = 0, V = 0) is a stable focal point, while
for ° = 1:25 the damping is su±ciently large that a stable nodal point results.

With the stationary point analysis completed, a phase-plane portrait is now
constructed for each of the ° values. First, the values of £ and V are unassigned.

> unassign('Theta','V'):

Two initial conditions are chosen, both corresponding to pulling the pendulum
to the left of the vertical so that the initial angle is ¡2 radians (about ¡115±).
For ic1 the pendulum is given an initial angular velocity of 2:75 radians per
second, while for ic2 it is released from rest.

> ic1:=Theta(0)=-2,V(0)=2.75;

ic1 := £(0) = ¡2; V (0) = 2:75
> ic2:=Theta(0)=-2,V(0)=0;

ic2 := £(0) = ¡2; V (0) = 0
A functional operator de is formed to evaluate the di®erential equation eq6 for
the ith ° value.

> de:=i->eval(eq6,gamma=gamma[i]):

Another arrow operator, G, is introduced which uses the DEplot command
to produce a phase-plane portrait for the two initial conditions. Using the
linecolor option, the trajectories are colored red. A tangent ¯eld of full-
headed blue-colored arrows is also included. The argument i = 1, 2, or 3 must
be provided for the operator G.

> G:=i->DEplot([eq5,de(i)],[Theta(tau),V(tau)],tau=0..25,

[[ic1],[ic2]],Theta=-2..8.5,V=-2..3.5,stepsize=0.05,

color=blue,linecolor=red,arrows=MEDIUM,

dirgrid=[30,30]):

Entering G(1) and G(2),

> G(1); G(2);

produces Figures 2.9 and 2.10, corresponding to ° = 0 and ° = 0:1, respectively.
In Figure 2.9, the vortex ¯xed points at V = 0 and £ = 0 and 2¼ can be

clearly seen, as well as the saddle point at V = 0, £ = ¼.
The closed curve encircling the vortex point at the origin is for the second

initial condition (zero initial velocity). In this case, the mass has insu±cient
initial energy to swing over the top, i.e., past the saddle point. The direction
of increasing time is indicated by the tangent-¯eld arrows.

For the ¯rst initial condition (nonzero initial velocity), on the other hand,
the initial energy is su±ciently large that the pendulum can swing over the top.
Since no damping is present, the pendulum continues to move in the positive
μ-direction, alternately speeding up and slowing down, but never approaching
a stationary point.

64 CHAPTER 2. PHASE-PLANE ANALYSIS

–2

3

V

–2 8
Theta

Figure 2.9: Phase-plane diagram for ° = 0.

–2

3

V

–2 8
Theta

Figure 2.10: Phase-plane diagram for ° = 0:1.

Figure 2.10, corresponding to ° = 0:1, displays a completely di®erent behav-
ior. Due to the presence of small damping, the vortices have turned into stable
focal points. For ic2 , the pendulum initially overshoots μ = 0 but eventually
winds onto the origin. For ic1 , the pendulum makes it over the top once, before
winding onto the stationary point (μ = 2¼, V = 0). Physically, of course, this

2.1. PHASE-PLANE ANALYSIS 65

point corresponds to the vertically downward position of the pendulum rod.

The third graph, for ° = 1:25, is shown in Figure 2.11. Because the trajec-
tories turn out to be con¯ned to a limited region of the phase plane, we use the
display command to better control the viewing range of G(3) and e®ectively
magnify the region of interest. Care must be taken in doing this, since the
number of tangent-¯eld arrows is correspondingly reduced and their directions
may not accurately re°ect the directions of the trajectories.

> display(G(3),view=[-2..1,-0.5..3],tickmarks=[3,3]);

1

2

3

V

–2 –1 1
Theta

Figure 2.11: Phase-plane diagram for ° = 1:25.

The damping is now su±ciently large that both trajectories approach the stable
nodal point at the origin. One would have to increase the initial angular velocity
to see any over-the-top behavior before things settle down to a stable nodal
point. Here, the two trajectories merge along a common path for large times.

From an artistic, as well as a scienti¯c, viewpoint Leonardo da Vinci would
undoubtedly have appreciated the many di®erent faces revealed by the, perhaps
not so plain, plane pendulum.

PROBLEMS:
Preamble: For each of the nonlinear ODE systems in the following set of
problems, carry out the following steps:

(1) Use the p-q diagram approach to locate and identify the stationary points
of the system, using Poincar¶e's theorem where necessary.

66 CHAPTER 2. PHASE-PLANE ANALYSIS

(2) In each case make a phase-plane portrait with all the ¯xed points included
as well as the tangent ¯eld and some representative trajectories.

(3) Plot the temporal evolution of the dependent variable(s) for the above
trajectories, using the appropriate scene option.

(4) Answer any additional questions posed for the system.

Problem 2-4: Hard and soft springs
For a hard (soft) spring, the displacement x from equilibrium is described by

Äx+ !2 (1§ ®2 x2)x = 0; with ! > 0; ® > 0:

The plus sign is for the hard spring, the minus sign for the soft spring. Carry
out the steps listed in the preamble for each spring type. Discuss the origin and
nature of the restoring force leading to each equation.

Problem 2-5: Eardrum equation
The displacement x of an eardrum is described by the model equation

Äx+ x¡ x2=2 = 0:
Carry out the steps listed in the preamble.

Problem 2-6: Some nonlinear systems
Carry out the steps listed in the preamble for each of the following systems:

(a) _x = x2 ¡ y3, _y = 2 x (x2 ¡ y2);
(b) _x = ¡x, _y = 1¡ x2 ¡ y2;
(c) _x = x (1¡ x2 ¡ 6 y2), _y = y (1¡ 3 x2 ¡ 3 y2).

Problem 2-7: SIR model of infectious diseases
The study of disease occurrence is called epidemiology. There are basically three
types of deterministic models for infectious diseases that are spread by direct
person-to-person contact. One of these models is referred to as the SIR model,
the name being an acronym for the three population categories in the model.
The S refers to the number of susceptibles who have not yet caught the disease,
the I to the number of infectibles who have become infected with the disease,
and R to the number of removables who have had the disease and are immune
to catching that disease again. The disease being considered is such that very
few people die from it. The SIR model equations are given by

_S = b¡ a I S; _I = a I S ¡ c I; _R = c I;

where b = 1 is the constant birth rate, a = 0:001 is the interaction coe±cient
between susceptibles and infectibles, and c = 0:1 is the rate of increase of
the removables. More generally, the model will have natural deaths in each
category. The initial conditions are S(0) = 100, I(0) = 1, and R(0) = 0.

Carry out the steps listed in the preamble. Note: To use the symbol I, ¯rst
enter the command interface(imaginaryunit=j), which assigns j to stand
for

p
¡1, rather than I. Discuss problems with the SIR model.

2.1. PHASE-PLANE ANALYSIS 67

2.1.3 Mike Creates a Higher-Order Fixed Point

I never learn anything talking.
I only learn things when I ask questions.
Lou Holtz, American football coach

Echoing Lou Holtz, Vectoria asks her mathematician boyfriend Mike, \Can
you give me a simple physical example of a higher-order stationary point?"

\Sure," Mike replies, \I can build up a phenomenological force law model
for a nonlinear spring system that will display a higher-order ¯xed point. To
do this, let's consider a light (weightless) spring suspended from one end with
a unit mass attached to the other. Since you are into using computer algebra,
I will do so as well. Let me load the following Maple library packages, that I
am sure we will need, onto your computer.

> restart: with(DEtools): with(plots):

If the spring is stretched by only a small amount x from the equilibrium position,
the force F required to de°ect the unit mass is given by Hooke's law F = kx
with the spring constant k being positive. The restoring force is, of course, of
the opposite sign. As you already know, the equation of motion is then just the
SHO equation, which has periodic solutions. There is only a single stationary
point, namely a vortex, located at the origin of the velocity{displacement phase
plane. Physically, the stationary point corresponds to the situation that both
the velocity and the force F (and therefore the acceleration) are equal to zero.
By integrating F with respect to x, the potential energy V is given by the
parabolic curve V = 1

2
k x2. The stationary point is at x = 0, the bottom of

the potential well.
If we stretch the spring even more, the displacement can be su±ciently large

that higher-order terms in a Taylor expansion of F (x) should be included, thus
leading to a nonlinear equation of motion. If x is not too large, we need keep
terms only up to third order in the Taylor expansion of F (x). I will write the
polynomial force law in the form F = k x ¡ g x2 + hx3 with k, g, and h all
positive.

> F:=k*x-g*x^2+h*x^3; #deflecting force

F := k x¡ g x2 + h x3
The associated potential energy V is again easily obtained by integrating F ."

> V:=int(F,x);

V :=
1

2
k x2 ¡ 1

3
g x3 +

1

4
h x4

\Hold on a moment, Mike. I don't see why you went to third order in x in
the force law and why you took the quadratic term to be negative?"

\Let me answer your last question ¯rst. If all three terms in F were positive,
then F (x) would have only one real root at x = 0, which clearly still corresponds
to a vortex. A higher-order stationary point is not possible in this case, no
matter what the size of the coe±cients. Now let's make the quadratic term

68 CHAPTER 2. PHASE-PLANE ANALYSIS

negative. If the coe±cient g is su±ciently large, then as x is increased from
zero, F will grow linearly at small x due to the k x term, then begin to decrease
at intermediate x due to the ¡g x2 term, and again increase at larger x due
to the h x3 term. Since F is a cubic polynomial, there exists the possibility of
F = 0 having three real x roots and therefore three stationary values. Since
we can still look at very small vibrations around the origin where the Hooke's
law contribution predominates, there will still be a vortex at the origin of the
phase plane. So this still leaves two other possible nonzero stationary points
corresponding to the nonzero x roots of F = 0. If you substitute numbers and
play around with the cubic polynomial, the other two stationary points will be
simple stationary points unless the coe±cients are such that the two nonzero
roots coalesce into a single degenerate root. When coalescence takes place, the
F curve will just be tangent to the x-axis at the location of the degenerate root.
So we must impose the condition that dF (x0)=dx = 0, as well as F (x0) = 0, in
order to adjust the coe±cients to give a degenerate root x0. It is this degenerate
situation that gives rise to a higher-order ¯xed point, as I will now show you.
We would not have obtained a degenerate root and therefore a higher-order
stationary point if I had not kept the cubic term in F .

Let's calculate the derivative of the force F with respect to x,

> derF:=diff(F,x);

derF := k ¡ 2 g x+ 3h x2
and substitute x = x0 into both F = 0 and derF = 0.

> eq1:=subs(x=x[0],fF=0,derF=0g);
eq1 := fk ¡ 2 g x0 + 3h x20 = 0; k x0 ¡ g x20 + hx30 = 0g

Solving the set of equations contained in eq1 for the coe±cients g and h,

> sol:=solve(eq1,fg,hg);

sol :=

½
g = 2

k

x0
; h =

k

x20

¾
yields g = 2 k=x0 and h = k=x20. Assigning the solution and collecting the
coe±cients of k in F yields the force law necessary for coalescence of the nonzero
roots to occur.

> assign(sol): F:=collect(F,k);

F :=

μ
x¡ 2x

2

x0
+
x3

x20

¶
k

In order to plot both the force and potential energy curves as a function of x,
I will choose some speci¯c values for x0 and k. What do you suggest?"

\Oh, I think that we will get a good idea of the physical behavior if we take
x0 = 1 and k = 1."

\OK," Mike replies, \I will evaluate F and V with your suggested numbers,

> F:=eval(F,fx[0]=1,k=1g);
F := x¡ 2x2 + x3

2.1. PHASE-PLANE ANALYSIS 69

> V:=eval(V,fx[0]=1,k=1g);

V :=
1

2
x2 ¡ 2

3
x3 +

1

4
x4

and now plot the force and potential energy in the same ¯gure. To distinguish
the two curves on the computer screen and in a black-and-white text rendition,
I will use di®erent colors and line styles for the two curves. Using a list format
to preserve order, the following plot command will generate a dashed red curve
for F and a solid blue curve for V ."

> plot([F,V],x=-0.25..1.5,color=[red,blue],

linestyle=[DASH,SOLID],labels=["x","F,V"]);

For the reader's bene¯t, the resulting picture observed by Mike and Vectoria
on executing the plot command is reproduced in Figure 2.12.

–0.4

–0.2

0.2

1

F,V

x

Figure 2.12: De°ecting force F , dashed line; potential energy V , solid line.

Mike continues, \At the degenerate root location, x0 = 1, the (solid) po-
tential energy curve is horizontal, corresponding to the (dashed) force curve
touching zero. The equation of motion takes the form

Äx = ¡F = ¡x+ 2x2 ¡ x3; (2.11)

so that on setting the velocity _x equal to y, we can identify the functions P and
Q needed for stationary point analysis.

> P:=-F; Q:=y;

P := ¡x+ 2x2 ¡ x3 Q := y

To evaluate a, b, c, and d, the following partial derivatives are calculated.

> a:=diff(P,x): b:=diff(P,y): c:=diff(Q,x): d:=diff(Q,y):

Solving the simultaneous equations P = 0, Q = 0,

70 CHAPTER 2. PHASE-PLANE ANALYSIS

> sol:=solve(fP,Qg,fx,yg);
sol := fx = 0; y = 0g; fy = 0; x = 1g; fy = 0; x = 1g

yields the expected root at the origin and the twofold degenerate root (x = 1,
y = 0). Since we already know that the former is a vortex, let's select the
second (or third) solution and assign it for later use.

> assign(sol[2]);

Then, calculating p and q using the standard formulas,

> p:=-(a+d); q:=a*d-b*c;

p := ¡1 q := 0

we obtain p = ¡1 and q = 0. Since q is zero, the degenerate root is a higher-
order stationary point as I predicted."

\OK, I understand your construction of a higher-order ¯xed point. But what
do the trajectories look like in the phase plane, and how does the displacement
x(t) behave in this case?"

\To answer your questions, I ¯rst have to unassign x and y from their
stationary-point values,

> unassign('x','y');

and then enter the associated ¯rst-order ODEs.

> ODEs:=fdiff(x(t),t)=y(t),diff(y(t),t)=-x(t)+2*x(t)^2-x(t)^3g;

ODEs :=

½
d

dt
x(t) = y(t);

d

dt
y(t) = ¡x(t) + 2 x(t)2 ¡ x (t)3

¾

In order to put the stationary points in the phase-plane diagram, let's create a
plot for the two points, using size-20 red circles to represent their locations.

> gr1:=plot([[0,0],[1,0]],style=point,symbol=circle,

symbolsize=20,color=red):

Employing the DEplot command, we can produce a phase-plane portrait for
di®erent initial conditions."

After some experimentation, Mike comes up with four di®erent initial con-
ditions, which are included in the following DEplot command line. He chooses
blue arrows with two barbs on the head (using arrows=MEDIUM) for the tangent
¯eld and colors the trajectories red with the linecolor option. The time range
is taken from t = 0 to 20 and the time step size equal to 0:05.

> gr2:=DEplot(ODEs,[x(t),y(t)],t=0..20,x(t)=-1..2.5,

y(t)=-1.5..1.5,[[x(0)=-0.4,y(0)=1],[x(0)=-0.35,y(0)=0],

[x(0)=-0.3,y(0)=0],[x(0)=-0.2,y(0)=0]],stepsize=0.05,

color=blue,linecolor=red,arrows=MEDIUM,dirgrid=[20,20]):

Putting the two graphs gr1 and gr2 together with the display command

> display(fgr1,gr2g,tickmarks=[2,3]);
and controlling the tick marks on the coordinate axes results in the phase por-
trait shown in Figure 2.13. The four trajectories, corresponding to the four
initial conditions, are clearly seen.

2.1. PHASE-PLANE ANALYSIS 71

–1

1

2

Figure 2.13: Phase-plane diagram for the nonlinear spring system.

\That's a nice plot, Mike. I can see the two stationary points and the
change in shape of the trajectories from the inner one to the outer one. Close
to the origin, the tangent ¯eld is characteristic of a vortex. The inner closed
trajectory for the initial condition x(0) = ¡0:2 and y = 0 is a distorted circle
cycling around this vortex point. As the loops grow larger, corresponding to
the other initial conditions, the higher-order terms in the polynomial force law
become more important and there is even more distortion of the closed loops.

For x(0) = ¡0:35 and y(0) = 0, the third-largest loop encloses both station-
ary points. For the degenerate stationary point at x = 1, y = 0, the tangent
¯eld to the left of the point looks like that for a saddle point, while on the right
it looks like that for a vortex. Does this type of higher-order ¯xed point have
a name?"

\This hybrid stationary point is, not surprisingly, referred to as a saddle-
vortex ¯xed point. For other examples involving higher-order stationary points,
di®erent hybrid combinations are possible, and are best studied on a case-by-
case basis.

As the trajectory moves further away from both stationary points, as in
the case of the outer loop in Figure 2.13, generated by the initial condition
x(0) = ¡0:4 and y(0) = 1, the positive cubic term in the force law predominates
and periodic motion about both stationary points still occurs.

You also asked about what x(t) looks like. The x(0) = ¡0:35, y = 0
trajectory looks as if it could be interesting. To see x(t), we can use the DEplot

72 CHAPTER 2. PHASE-PLANE ANALYSIS

command again, but this time with the scene=[t,x] option."

> DEplot(ODEs,[x(t),y(t)],t=0..50,[[x(0)=-0.35,y(0)=0]],scene

=[t,x],stepsize=.05,color=blue,linecolor=red,axes=normal);

–0.4

–0.2

0.2

0.4

0.6

0.8

1

1.2

x

10 20 30 40 50t

Figure 2.14: Displacement of the nonlinear spring as a function of time.

Again, we have reproduced what Mike and Vectoria see on the computer screen
in Figure 2.14.

Mike continues, \Two features displayed by the x(t) curve leap out at me,
Vectoria. The shape is not sinusoidal and it is highly asymmetric about the
origin. The deviation away from sinusoidal behavior is a signal that nonlinear
terms are present in the force law. The asymmetry arises speci¯cally from the
quadratic term, which doesn't reverse sign as the spring system passes through
the origin."

\That was great, Mike. I have learned a lot from this example. It's Friday
and I feel like wrapping the week up by going to that little Greek restaurant on
West 4th for supper. How about you?"

\With a glass or two of Tsantali to drink, that sounds good. Save the ¯le,
shut down your computer, and let's be o®."

PROBLEMS:
Problem 2-8: Verhulst predator{prey equations
The population densities of prey (variable x) and predators (variable y) are
governed by the following nonlinear ODEs:

_x = x¡Ax2 ¡B xy; _y = y ¡ C y2 +Dxy;

with the coe±cients A, B, C, and D all positive.

2.1. PHASE-PLANE ANALYSIS 73

(a) What do the terms involving A and C represent physically?

(b) Show that the nature of the stationary points depends on whether C > B,
C = B, or C < B.

(c) For C > B and C < B, show that in each case four simple stationary
points occur, and locate and identify them.

(d) Choosing appropriate numerical values for the parameters, make phase-
plane portraits for each case in part (c), superimposing representative
trajectories on the tangent ¯eld. Represent the stationary points in the
plot by colored circles.

(e) For C = B, show that two of the four stationary points are higher-order
¯xed points. What are the other two stationary points?

(f) Make phase-plane portraits for part (e), superimposing representative tra-
jectories on the tangent ¯eld. Represent the stationary points in the plot
by colored circles.

Problem 2-9: Variation on the Verhulst problem
Suppose that in the preceding problem D = ¡B, so that the interaction is
disadvantageous to both species. Taking A = B = C = 1, ¯nd the stationary
points of the new system and identify them. Con¯rm the stationary-point
analysis by producing appropriate phase-plane portraits.

2.1.4 The Gnus and Sung of Erehwon

These are the voyages of the starship Enterprise. Its ¯ve-year
mission ... to boldly go where no man has gone before.
Gene Roddenberry, Star Trek television series, 1966

On the terraformed5 planet of Erehwon, there coexist two related species of
animals, the gnus and their somewhat backward relatives the sung. If the den-
sity of gnus per unit area at time t is g(t) and the density of sung is s(t), the
temporal evolution of the densities is given by6

_g(t) = ag g(t)¡ bg g(t) s(t)¡ cg g(t)6 s(t)7;

_s(t) = ¡as s(t) + bs s(t) g(t) + cs g(t)5 e¡s(t);

(2.12)

with ag = 2, as = 1, bg = 0:03, bs = 0:01, cg = 0:1, and cs = 0:1. The question
facing the Gnus{Sung Preservation Society is, what is the long-term prognosis
for the two animal populations given that the current population densities are

5This word, which is commonly used in science ¯ction novels, refers to the attempt by
colonizers from Earth to alter a planet's atmosphere and other physical characteristics to be
more Earth-like.

6Reference: page 454, Encyclopedia Erehwonia, 44th edition, Springer Intergalactic, Inc.

74 CHAPTER 2. PHASE-PLANE ANALYSIS

g(0) = 0:5 and s(0) = 1? Can the gnus and sung get along su±ciently well that
both groups will survive, or is the interaction such that only one will survive?

Although this competition problem is similar to that for the rabbits and
foxes, it is complicated by the appearance of higher-order polynomial and tran-
scendental terms on the right-hand sides of the evolution equations. This makes
locating the stationary points more of a challenge than in the earlier examples.

To answer the question, the society has called on the services of the pre-
eminent scientist and conservationist Dr. Eiram Eiruc. Dr. Eiruc begins her
computer analysis by loading the plots and DEtools packages,

> restart: with(plots): with(DEtools):

as well as the given coe±cient values.

> a[g]:=2: a[s]:=1: b[g]:=0.03: b[s]:=0.01: c[g]:=0.1: c[s]:=0.1:

From equations (2.12), the functions P and Q are identi¯ed and entered.

> P:=a[g]*g-b[g]*g*s-c[g]*g^6*s^7;

P := 2 g ¡ 0:03 g s¡ 0:1 g6 s7
> Q:=-a[s]*s+b[s]*g*s+c[s]*g^5*exp(-s);

Q := ¡s+ 0:01 g s+ 0:1 g5 e(¡s)
The stationary points can be obtained by setting P = Q = 0. However, the
simultaneous solution of these equations is nontrivial because of their com-
plexity. Before carrying out a numerical search for the roots, Eiram uses the
implicitplot command with boxed axes to graph the functions P = 0, Q = 0.
The intersection points will then correspond to the stationary points. The
ranges of g and s are determined by trial and error.

> implicitplot(fQ=0,P=0g,g=-6..6,s=-10..10,grid=[60,60],
numpoints=5000,tickmarks=[4,2],axes=box);

–10

0

s

–6 –4 –2 0 2 4 6g

Figure 2.15: Graphically solving P = 0, Q = 0 to locate stationary points.

2.1. PHASE-PLANE ANALYSIS 75

The result is shown in Figure 2.15. Since the population densities cannot be
negative, the only stationary points of interest to Eiram are the one that ap-
pears to be at the origin and the one in the g > 0, s > 0 quadrant. Eiram
could, of course, obtain approximate values by clicking the mouse arrow on the
intersection points in the computer screen plot. More accurate numbers are
found by using the °oating point solve command. However, since the equations
P = 0 and Q = 0 are quite nonlinear, the fsolve command will yield only one
real root if no range is speci¯ed for the variables. When more than one root is
present, a range must be given that includes the root of interest.

For example, by taking g = ¡1 to 1 in the fsolve command,
> sol[1]:=fsolve(fP,Qg,fg,sg,g=-1..1);

sol1 := fg = 0:; s = 0:g
Eiram con¯rms that there is indeed a stationary point at the origin. Referring
to Figure 2.15, she then chooses the range g = 1 to 3,

> sol[2]:=fsolve(fP,Qg,fg,sg,g=1..3);
sol2 := fg = 1:902803669; s = 0:9669140476g

and ¯nds that the second stationary point is at g ¼ 1:90 gnus and s ¼ 0:97
sung (per unit area).

The relevant partial derivatives of P and Q for identifying the stationary
points are calculated.

> a:=diff(P,g): b:=diff(P,s): c:=diff(Q,g): d:=diff(Q,s):

A do loop is formed that will enable Eiram to carry out the identi¯cation process
for each of the two relevant stationary points.

> for i from 1 to 2 do

The \coordinates" of the ith stationary point are assigned.

> assign(sol[i]):

The quantities p = ¡(a+ d), q = a d¡ b c, and r = p2 ¡ 4 q are calculated for
the ith stationary point.

> p[i]:=-(a+d); q[i]:=a*d-b*c; r[i]:=p[i]^2-4*q[i];

Then g and s are unassigned,

> unassign('g','s');

and the do loop ended,

> end do;

yielding the following results:

p1 := ¡1: q1 := ¡2: r1 := 9:

p2 := 11:78445045 q2 := 87:09248243 r2 := ¡209:4966573
Having the Springer Intergalactic edition of this text, Eiram refers to the p-q
diagram given in Figure 2.1. Noting that q1 < 0, she concludes that the sta-
tionary point at the origin is a saddle point. For the second nonzero stationary
point, p2 > 0 and q2 > 0, so this ¯xed point is either a stable focal point or a
stable nodal point. But r2 < 0, so it is actually a stable focal point.

76 CHAPTER 2. PHASE-PLANE ANALYSIS

Eiram will con¯rm this analysis by making a phase-plane portrait. She forms
the gnus and sung ODEs by inserting the g and s time-dependence in the P , Q
functions and entering dg(t)=dt = P (g(t); s(t)) and ds(t)=dt = Q(g(t); s(t)).

> gnus:=diff(g(t),t)=subs(fg=g(t),s=s(t)g,P);

gnus :=
d

dt
g(t) = 2 g(t)¡ 0:03 g(t) s(t)¡ 0:1 g(t)6 s(t)7

> sung:=diff(s(t),t)=subs(fg=g(t),s=s(t)g,Q);

sung :=
d

dt
s(t) = ¡s(t) + 0:01 g(t) s(t) + 0:1 g(t)5 e(¡s(t))

A functional operator F is formed to produce a phase-plane portrait for the
gnus and sung, given that initially there were 0:5 gnus and 1 sung (per unit
area), and looking at a time span of 10 years. The scene variables x and y, and
the line color c, must be supplied as arguments.

> F:=(x,y,c)->phaseportrait([gnus,sung],[g(t),s(t)],t=0..10,

[[g(0)=0.5,s(0)=1]],scene=[x,y],g=0..3,s=0..2,stepsize

=0.01,color=blue,linecolor=c,arrows=MEDIUM,

dirgrid=[20,20]):

Then, entering F(g,s,red) produces the phase-plane portrait shown in Fig-
ure 2.16, the tangent arrows being colored blue and the trajectory red on the
computer screen.

> F(g,s,red);

2

s

1 2 3g

Figure 2.16: Phase-plane portrait for the gnus{sung interaction.

As expected, the trajectory winds onto the stable focal point. The tangent
arrows near the origin are indicative of a saddle point.

2.1. PHASE-PLANE ANALYSIS 77

Next, Eiram will show the time evolution of the two animal populations.
First she uses the textplot command to create name labels to be added to the
¯nal ¯gure.

> tp:=textplot([[1.2,1.1,"sung"],[1.2,2,"gnus"]]):

She then uses the display command and the functional operator F to produce
Figure 2.17, showing the temporal evolution of the gnus and sung populations
for a period of two years. On the computer screen the gnus' population density
is colored red, the sung's population density blue.

> display(fF(t,g,red),F(t,s,blue),tpg,labels=["t",""],
tickmarks=[3,3],view=[0..2,0..3]);

gnus

sung

0

1

2

3

1 2t

Figure 2.17: Temporal evolution of gnus and sung.

So Eiram concludes that if all conditions remain the same, then the two groups
will ultimately live in relative harmony with each other, since both gnus and
sung survive. However, she notes that the gnus will gain the upper hand in
terms of population density over their more backward relatives, even though
initially the density of sung was twice that of the gnus.

PROBLEMS:
Problem 2-10: Create your own model
Create your own complicated model of the gnus{sung interaction by modifying
the last term in each of the equations. Follow the procedure in the text recipe
and determine the fate of the two populations in your model. Feel free to
experiment with parameter values and initial conditions.

78 CHAPTER 2. PHASE-PLANE ANALYSIS

2.1.5 A Plethora of Points

The sure conviction that we could if we wanted to
is the reason so many good minds are idle.
G. C. Lichtenberg, German physicist, philosopher (1742{1799)

We have asked Jennifer, the MIT mathematician, to provide us with a recipe
that locates and identi¯es all the ¯xed points of the nonlinear ODE system

_x = x (1¡ x2 ¡ 6 y2); _y = y (1¡ 3x2 ¡ 3 y2);

making use of conditional logic statements, and to support the identi¯cation
with a tangent-¯eld plot containing all the stationary points. Here is her recipe.

After loading the required library packages,

> restart: with(plots): with(DEtools):

Jennifer identi¯es the rhs of the _x and _y equations as the functions P and Q
needed for the ¯xed-point analysis. She then enters P and Q.

> P:=x*(1-x^2-6*y^2); Q:=y*(1-3*x^2-3*y^2);

P := x (1¡ x2 ¡ 6 y2) Q := y (1¡ 3x2 ¡ 3 y2)
Jennifer introduces a functional operator f for di®erentiating a given function
X with respect to an arbitrary variable v.

> f:=(X,v)->diff(X,v):

Making use of the functional operator f , the partial derivatives a = @P=@x,
b = @P=@y, c = @Q=@x, and d = @Q=@y are calculated.

> a:=f(P,x): b:=f(P,y): c:=f(Q,x): d:=f(Q,y):

The partial derivatives must be evaluated at each ¯xed point. To locate these
points, the equations P = 0 and Q = 0 are solved for x and y. Lists are used
here, because the order of x and y in sol must be preserved for later use.

> sol:=solve([P=0,Q=0],[x,y]);

sol := [[x = 0; y = 0]; [x = 0; y = RootOf(¡1 + 3 Z 2; label = L1)];

[x = 1; y = 0]; [x = ¡1; y = 0];
[x = RootOf(5 Z 2 ¡ 1); y = RootOf(¡2 + 15 Z 2)]]

In the solution, RootOf() is a placeholder for the roots of the polynomial
function given in each included argument. Jennifer wants to extract all the
roots explicitly. To this end, she ¯rst determines the number of operands (here
the number of lists) in sol using the nops command.

> N:=nops(sol);

N := 5

The number of operands is 5, which is easily con¯rmed by visual inspection of
sol . The roots can be explicitly obtained by applying the allvalues command
to the ith entry in sol , and using the seq command (running from i = 1 to N)
to generate the sequence of roots. The results are again put into a list, so the
number of operands in the new list of lists can be extracted.

2.1. PHASE-PLANE ANALYSIS 79

> sol2:=[seq(allvalues(sol[i]),i=1..N)];

sol2 :=

"
[x = 0; y = 0];

"
x = 0; y =

p
3

3

#
;

"
x = 0; y = ¡

p
3

3

#
;

[x = 1; y = 0]; [x = ¡1; y = 0];
"
x =

p
5

5
; y =

p
30

15

#
;

"
x =

p
5

5
; y = ¡

p
30

15

#
;

"
x = ¡

p
5

5
; y =

p
30

15

#
;

"
x = ¡

p
5

5
; y = ¡

p
30

15

##

In the sol2 list of lists, there are clearly nine lists of x and y values, correspond-
ing to the coordinates of nine stationary points. There is indeed a plethora
of ¯xed points in this example. The number of operands (lists here) will be
needed, so this number is extracted with the nops command.

> N2:=nops(sol2);

N2 := 9

Functional operators are formed to numerically evaluate p = ¡(a + d) and
q = a d¡ b c for the ith entry in sol2 .

> p:=i->evalf(eval(-(a+d),sol2[i])):

> q:=i->evalf(eval(a*d-b*c,sol2[i])):

Next, Jennifer creates a do loop, running from i = 1 to N2 = 9, to identify the
nature of each ¯xed point and to plot each point.

> for i from 1 to N2 do

The ith entry (list of x and y coordinates) of sol2 is entered, and then the x and
y coordinates are extracted separately. For example, taking i = 1, sol2[1,1]
extracts the ¯rst entry (x = 0) in the ¯rst list of sol2 , while sol2[1,2] produces
the second entry (y = 0). The right-hand sides are extracted to give the x and
y coordinates of the ¯xed point for plotting purposes.

> sol2[i]; X[i]:=rhs(sol2[i,1]); Y[i]:=rhs(sol2[i,2]);

The values of p, q, and r = p2¡ 4 q are determined for the ith ¯xed point. Jen-
nifer uses the concatenation operator || to attach numbers to these quantities.
For example, the outputs of p||1, p||2, etc., would be of the form p1 , p2 , etc.
Concatenation is a useful alternative way of numbering quantities.

> p||i:=p(i); q||i:=q(i); r||i:=simplify(p||i^2-4*q||i);

A conditional statement is now entered that will classify the ith ¯xed point
according to the region of the p-q diagram in which it is located. The general
syntax for a conditional statement is

if <conditional expression> then <statement sequence>
elif <conditional expression> then <statement sequence>
else <statement sequence>
end if

where the elif (else if) and else phrases are optional.

80 CHAPTER 2. PHASE-PLANE ANALYSIS

> if q||i<0 then s||i:=saddle;

elif q||i>0 and p||i>0 and r||i<0 then s||i:=stablefocal;

elif q||i>0 and p||i>0 and r||i>=0 then s||i:=stablenodal;

elif q||i>0 and p||i<0 and r||i<0 then s||i:=unstablefocal;

elif q||i>0 and p||i<0 and r||i>=0 then s||i:=unstablenodal;

elif q||i>0 and p||i=0 then s||i:=vortexorfocal;

else s||i:=higherorder;

end if:

The ith stationary point is plotted as a size-20 blue circle,

> gr[i]:=pointplot([[X[i],Y[i]]],symbol=circle,

symbolsize=20,color=blue);

and the conditional statement ended, a colon being used to suppress the output.

> end do:

Using the sequence command, the x and y ¯xed-point coordinates and ¯xed-
point type are now displayed for all nine ¯xed points. For example, the ¯xed
point at x = 0, y = 0, is an unstable nodal point.

> seq([X[i],Y[i],s||i],i=1..N2);

[0; 0; unstablenodal];

"
0;

p
3

3
; stablenodal

#
;

"
0; ¡

p
3

3
; stablenodal

#
;

[1; 0; stablenodal] ; [¡1; 0; stablenodal];
"p

5

5
;

p
30

15
; saddle

#
;

"p
5

5
; ¡

p
30

15
; saddle

#
;

"
¡
p
5

5
;

p
30

15
; saddle

#
;

"
¡
p
5

5
; ¡

p
30

15
; saddle

#

The two relevant ODEs are entered, with the time dependence of x and y being
substituted into P and Q.

> xeq:=diff(x(t),t)=subs(fx=x(t),y=y(t)g,P);

xeq :=
d

dt
x (t) = x(t) (1¡ x (t)2 ¡ 6 y(t)2)

> yeq:=diff(y(t),t)=subs(fx=x(t),y=y(t)g,Q);

yeq :=
d

dt
y(t) = y(t) (1¡ 3 x(t)2 ¡ 3 y(t)2)

The dfieldplot command is used to plot the tangent ¯eld for this ODE system,
the resulting graph being assigned the name gr[N2+1].

> gr[N2+1]:=dfieldplot([xeq,yeq],[x(t),y(t)],t=0..10,

x=-1.2..1.2,y=-1.2..1.2,dirgrid=[26,26],arrows=MEDIUM):

The above graph assignment allows Jennifer to use the sequence command to
plot all the stationary points and the tangent ¯eld in the same ¯gure.

> display(fseq(gr[i],i=1..N2+1)g,tickmarks=[3,3]);

2.1. PHASE-PLANE ANALYSIS 81

The resulting picture is shown in Figure 2.18. The plot con¯rms the identi¯ca-
tion of the ¯xed points, e.g., the unstable nodal point at the origin.

–1

1

–1 1

Figure 2.18: A plethora of ¯xed points.

PROBLEMS:
Problem 2-11: Lots of ¯xed points
Consider the coupled ODE system

_x = y (1 + x¡ y2); _y = x (1 + y ¡ x2):
Using conditional logic statements, locate and identify all the ¯xed points. Make
a tangent-¯eld plot containing all these stationary points.

Problem 2-12: Not so many ¯xed points
Locate and identify all the ¯xed points of the ODE system

_x = 16x2 + 9 y2 ¡ 25; _y = 16x2 ¡ 16 y2;
making use of conditional logic statements. Support the identi¯cation with a
tangent-¯eld plot containing all the stationary points.

Problem 2-13: Squid and herring
The major food source for squid is herring. If S and H are the numbers of
squid and herring, respectively, per acre of seabed, the interaction between the
two species can be modeled [Sco87] by the system (with time in years)

_H = k1H ¡ k2H2 ¡ k3H S; _S = ¡k4 S ¡ k5 S2 + b k3H S;

with k1 = 1:1, k2 = 10
¡5, k3 = 10¡3, k4 = 0:9, k5 = 10¡4, and b = 0:02.

(a) Using conditional logic statements, locate and identify all the stationary
points of the squid{herring system.

82 CHAPTER 2. PHASE-PLANE ANALYSIS

(b) Make a phase-plane portrait that shows all the stationary points and
includes some representative trajectories. Discuss possible outcomes for
di®erent ranges of initial populations.

(c) Suppose that every last squid were removed from the area occupied by
the herring and from all surrounding areas. Would the herring population
increase inde¯nitely without bound or would there be an upper limit on
the number of herring per unit area? If you believe the latter would occur,
what is that number?

(d) If the squid-free situation just described had persisted for many years,
how many squid would there be two years later if a pair of fertile squid
were introduced into the area?

2.2 Three-Dimensional Autonomous Systems

The analysis of the general autonomous 3-dimensionsal system,

_X = P (X;Y; Z); _Y = Q(X;Y; Z); _Z = R(X;Y; Z); (2.13)

where P , Q, and R may be nonlinear functions of the dependent variables X, Y ,
and Z, can be tackled in a manner similar to the 2-dimensional case. However,
the analytic identi¯cation of the ¯xed points is nontrivial, and we refer the
interested reader to the texts by Jackson [Jac90] and Hayashi [Hay64].

We shall be content to look at one speci¯c example, locating the ¯xed points,
establishing their stability, and using a graphical approach to identify their
nature. What better example is there than Lorenz's famous chaotic \butter°y"?

2.2.1 Lorenz's Butter°y

The butter°y's attractiveness derives not only from colors
and symmetry: deeper motives contribute to it.
Primo Levi, Italian chemist, author, Other Peoples Trades,\Butter°ies," 1985

In a famous paper, Edward Lorenz [Lor63] discussed the possibility of very-long-
range weather forecasting. Starting with the nonlinear Navier{Stokes PDEs of
°uid mechanics, Lorenz attempted to model thermally driven convection in the
earth's atmosphere. The atmosphere was treated as a °at °uid layer that is
heated from below by the surface of the earth and cooled from above by heat
radiation into outer space. Lorenz managed to reduce the original set of PDEs
to the following set of three nonlinear ODEs:

_x = ¾ (y ¡ x); _y = r x¡ y ¡ x z; _z = x y ¡ b z; (2.14)

where x is proportional to the convective velocity, y to the temperature di®er-
ence between ascending and descending °ows, and z to the mean convective heat

2.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 83

°ow. The positive coe±cients ¾ and r are the Prandtl and reduced Rayleigh
numbers, respectively, and b > 0 is related to the wave number.

The Lorenz equations (2.14) must be solved numerically. On doing so,
Lorenz discovered that a very small change in the initial condition could lead
to dramatically di®erent long-term behavior of the numerical solutions. This
could have implications for very-long-range weather forecasting, because present
conditions are never known exactly due to the inevitable inaccuracy and incom-
pleteness of weather observations. One might argue that this conclusion was
model dependent, particularly because the original PDEs were so severely sim-
pli¯ed, but in fact Lorenz found that this sensitivity to initial conditions was a
general feature of nonlinear systems.

In addition to the sensitivity feature, Lorenz's ODE system is well known
because its trajectory in x-y-z phase space is attracted to a localized region
where it traces out a never-repeating (chaotic) path whose shape somewhat
resembles the two wings of a butter°y. This is another example of a strange
attractor, the attractor di®ering in appearance from the RÄossler strange attrac-
tor seen in Chapter 1. Lorenz's butter°y attractor is illustrated in the following
recipe, along with a stability analysis of the ¯xed points.

The DEtools and LinearAlgebra packages are loaded. The former is needed
because we shall be using the DEplot and DEplot3d commands to plot x(t)
and the butter°y attractor, respectively. The LinearAlgebra package contains
commands to construct and manipulate matrices and vectors and solve linear al-
gebra problems. Various commands (e.g., GenerateMatrix and Eigenvalues)
in this package will be used for the stability analysis.

> restart: with(DEtools): with(LinearAlgebra):

The right-hand sides of the three Lorenz equations are entered and assigned the
names P , Q, and R, to be consistent with equations (2.13).

> P:=sigma*(y-x); Q:=r*x-y-x*z; R:=x*y-b*z;

P := ¾ (y ¡ x) Q := r x¡ y ¡ x z R := x y ¡ b z
To produce Lorenz's butter°y, we take ¾ = 10, b = 8=3, and r = 28.

> sigma:=10: b:=8/3: r:=28:

To locate the ¯xed points, the equations P = 0, Q = 0, and R = 0 are solved
for x, y, and z.

> sol:=solve([P,Q,R],[x,y,z]);

sol := [[x = 0; y = 0; z = 0]; [x = 6RootOf(¡2 + Z 2; label = L3);

y = 6RootOf(¡2 + Z 2; label = L3); z = 27]]
The number N of operands in sol is determined.

> N:=nops(sol);

N := 2

The allvalues command is used to remove the RootOf that appeared in sol .

> sol2:=[seq(allvalues(sol[i]),i=1..N)];

84 CHAPTER 2. PHASE-PLANE ANALYSIS

sol2 := [[x = 0; y = 0; z = 0]; [x = 6
p
2; y = 6

p
2; z = 27];

[x = ¡6
p
2; y = ¡6

p
2; z = 27]]

The number of ¯xed points is equal to the number N2 of operands in sol2 .

> N2:=nops(sol2);

N2 := 3

So the Lorenz system has three ¯xed points. The stability of these ¯xed points
will now be determined by extending the procedure used in the phase-plane
analysis. A functional operator f is introduced to substitute the coordinates
x + u, y + v, z + w of an ordinary point, near a ¯xed point (x; y; z), into a
dependent variable V , where V will be taken to be P , Q, and R.

> f:=V->simplify(subs(fx=x+u,y=y+v,z=z+wg,V)):
Assuming that u, v, and w are su±ciently small, only linear terms in these
variables will be retained in P , Q, and R. Since P is already linear, entering
f(P) produces the linear algebraic form shown in eq1 . However, on entering
f(Q) the nonlinear term uw will be present. This term can be removed with
the remove command, which is done in eq2 . Similarly, the nonlinear term u v
is removed from f(R) in eq3 .

> eq1:=f(P); eq2:=remove(has,f(Q),u*w);

eq3:=remove(has,f(R),u*v):

eq1 := 10 y + 10 v ¡ 10 x¡ 10u
eq2 := 28 x+ 28u¡ y ¡ v ¡ x z ¡ xw ¡ u z

eq3 := x y + x v + u y ¡ 8 z
3
¡ 8w

3
Let's take i = 1, so that assigning the ith operand in sol2 corresponds to taking
the ¯xed point coordinates to be x = 0, y = 0, z = 0. The stability of the other
two ¯xed points may be examined by choosing i = 2 or i = 3.

> i:=1: assign(sol2[i]): #choose i

For i = 1, eq1 , eq2 , and eq3 reduce to the following linear forms:

> eq1:=eq1; eq2:=eq2; eq3:=eq3;

eq1 := 10 v ¡ 10u eq2 := 28u¡ v eq3 := ¡8w
3

So, the linearized ODEs at an ordinary point near the ¯xed point at the origin
are du

dt
= 10 v ¡ 10u; dv

dt
= 28u¡ v; dw

dt
= ¡8w

3
:

The stability is determined by assuming that u; v; w ' e¸ t. For the ODEs
to have a nontrivial solution, a determinantal equation must be satis¯ed that
when expanded produces a cubic equation in ¸ with three roots. To have a
stable ¯xed point, the real part of ¸ must be negative for all three roots. If any
root has a real part that is positive, the solution will grow with time, leading
to an unstable situation.

2.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 85

Let's now carry out this analysis using a matrix approach. Equating eq1 to
¸u, eq2 to ¸ v, and eq3 to ¸w, the GenerateMatrix command

> (A,B):=GenerateMatrix([eq1=lambda*u,eq2=lambda*v,

eq3=lambda*w],[u,v,w]);

A; B :=

2
64
¡10¡ ¸ 10 0
28 ¡1¡ ¸ 0

0 0
¡8
3
¡ ¸

3
75 ;
2
4 0
0
0

3
5

yields the relevant 3£ 3 matrix A and zero column vector B such that

A

2
4 u
v
w

3
5 = B ´

2
4 0
0
0

3
5 :

The determinant of A is computed, yielding a cubic polynomial in ¸.

> det:=Determinant(A);

det := 720 +
722

3
¸¡ 41

3
¸2 ¡ ¸3

The determinant is set equal to zero, solved for ¸, and the answer put in °oating-
point form.

> lambdas:=evalf(solve(det=0,lambda));

lambdas := ¡2:666666667; 11:82772345; ¡22:82772345
Three real roots are obtained, with two of them being negative, but the third
one positive. Thus, the ¯xed point at the origin is unstable. It should be noted
that the same result can be obtained by setting ¸ = 0 in A and obtaining the
eigenvalues by using the Eigenvalues command. In this case, the ¸ values are
expressed as a column matrix or vector.

> eiv:=evalf(Eigenvalues(eval(A,lambda=0)));

eiv :=

2
4 ¡2:666666667

11:82772345
¡22:82772345

3
5

To see how the trajectory evolves from the vicinity of the ¯xed point, the
variables x, y, z are unassigned from their previous values,

> unassign('x','y','z'):

and an initial condition near the ¯xed point (the origin for i = 1) chosen.

> ic:=[x(0)=rhs(sol2[i,1])+0.1,y(0)=rhs(sol2[i,2])+0.1,

z(0)=rhs(sol2[i,3])+0.1]:

ic := [x(0) = 0:1; y(0) = 0:1; z(0) = 0:1]

The system of Lorenz ODEs is entered by introducing time dependence into
the x, y, z variables,

> var:=(x=x(t),y=y(t),z=z(t)):

86 CHAPTER 2. PHASE-PLANE ANALYSIS

and substituting these variables into P , Q, and R, which are equated to dx=dt,
dy=dt, and dz=dt, respectively.

> sys:=diff(x(t),t)=subs(var,P),diff(y(t),t)=subs(var,Q),

diff(z(t),t)=subs(var,R);

sys :=
d

dt
x (t) = 10 y(t)¡ 10 x(t); d

dt
y(t) = 28 x (t)¡ y(t)¡ x (t) z (t);

d

dt
z (t) = x (t) y(t)¡ 8

3
z (t)

The DEplot command is used with the scene option scene=[t,x] to plot x
versus t for the system of ODEs (subject to the initial condition), the line color
being allowed to change with time as the time increases.

> DEplot([sys],[x(t),y(t),z(t)],t=0..60,[ic],scene=[t,x],

stepsize=0.01,linecolor=t,thickness=1);

The black-and-white version of the plot is shown in Figure 2.19.

–10

0

10

20

x

10 20 30 40 50 60
t

Figure 2.19: x versus t for an initial condition near the origin.

There is no apparent repeat pattern as x increases with t, the motion being
chaotic. Longer times can be taken to con¯rm this. Sensitivity to the initial
condition can be checked by changing the initial condition slightly and observ-
ing that the x versus t curve changes dramatically. Although the ODEs are
deterministic, one's intuition is inadequate to predict what the value of x will
be at large times if the initial condition is changed slightly. This is in contrast
to a linear ODE system, where a slight change in initial condition will produce
only a small change in the solution.

The DEplot3d command is now used to plot the trajectory in the x-y-z
space, the line color again being allowed to change with t.

2.2. THREE-DIMENSIONAL AUTONOMOUS SYSTEMS 87

> DEplot3d([sys],[x(t),y(t),z(t)],t=0..50,[ic],scene=[x,y,z],

stepsize=0.01,linecolor=t,orientation=[-23,68]):

–10
0

10
x

–20 –10 0 10 20
y

10

20

30

40

z

Figure 2.20: Lorenz's butter°y.

Qualitatively, the trajectory leaves the origin in a ¯xed direction, implying that
the ¯xed point is an unstable nodal point. The trajectory then evolves into a
localized region of phase space, producing a nonrepeating path that ¯lls in the
region so that the pattern resembles (to an active imagination, especially when
seen in color on the computer screen) the wings of a butter°y.

By choosing i = 2 and 3, you can use the recipe to determine the nature of
the other two ¯xed points and observe the strange attractor that results.

PROBLEMS:
Problem 2-14: Other ¯xed points
Use the text recipe to investigate the other two ¯xed points for the Lorenz
system. Identify their probable nature and generate x versus t as well as the
phase-space trajectory for an initial condition near each ¯xed point.

Problem 2-15: Sensitivity
Use the text recipe to explore the sensitivity to initial conditions for the Lorenz
system.

Problem 2-16: The Oregonator
Consider the Oregonator system

² _x = x+ y ¡ q x2 ¡ x y; _y = ¡y + 2 h z ¡ x y; p _z = x¡ z;
with ² = 0:03, p = 2, q = 0:006, h = 0:75. Show analytically that the origin is
an unstable ¯xed point.

88 CHAPTER 2. PHASE-PLANE ANALYSIS

Problem 2-17: The RÄossler system
Consider the RÄossler system

_x = ¡(y + z); _y = x+ a y; _z = b+ z (x¡ c);
with a, b, c > 0. Analytically show that there are no stationary points for
c <

p
4 a b and two ¯xed points for c >

p
4 a b. Find analytic expressions for

the latter points. Linearizing the system in the vicinity of these ¯xed points,
¯nd the cubic equation for the roots ¸. Taking a = b = 0:2 and allowing c to
take on the values c = 2:4, 3:5, 4:0, 5:0, 8:0, solve the cubic equation for the
roots and determine the stability in each case.

Taking x(0) = 0:1, y(0) = 0:1, z(0) = 0, show by plotting the trajectories in
phase space that each c value leads to a qualitatively di®erent behavior of the
solution. Identify the behavior by plotting y(t).

Problem 2-18: Multiple stationary points
For the following 3-dimensional system,

_x = (1¡ z) [(4¡ z2) (x2 + y2 ¡ 2x+ y) + 4 (2 x¡ y)¡ 4];

_y = (1¡ z) [(4¡ z2) (x y ¡ x¡ z y) + 4 (x+ z y)¡ 2 z];

_z = z2 (4¡ z2) (x2 + y2);

locate all of the stationary points and determine the stability of each point.
Explore the nature of the ¯xed points and the behavior of this system by making
suitable 3-dimensional x-y-z plots.

2.3 Numerical Solution of ODEs

In the opening chapter as well as this one, we have encountered nonlinear ODE
models for which analytic solutions simply do not exist, in which case use must
be made of Maple command structures that solve the given ODE(s) numerically.
In this section, we would like to discuss brie°y the basis for the Runge{Kutta{
Fehlberg 45 (RKF45) method that Maple employs as its default scheme in the
dsolve(ODE,numeric) command for numerically solving ODEs.

All such numerical schemes make use of the idea of replacing the ODE with
a di®erence equation in which each derivative is replaced with a ¯nite di®erence
approximation involving a ¯nite step size. The step size may either be ¯xed or,
as in the RKF45 method, variable, taking bigger steps in °atter regions and
smaller steps in steeper regions. The di®erence equation can be iterated using
a do loop procedure.

The common ¯nite di®erence approximations for ¯rst and second derivatives
are introduced in the ¯rst recipe. Our intention in this and subsequent recipes
is only to give you the \°avor" of the subject of numerical analysis, referring
you to texts such as Burden and Faires [BF89] or Numerical Recipes [PFTV89]
for more complete treatments.

2.3. NUMERICAL SOLUTION OF ODES 89

2.3.1 Finite Di®erence Approximations

A tool knows exactly how it is meant to be handled, while the user of
the tool can only have an approximate idea.
Milan Kundera, Czech author, critic (1929{)

Consider a general function y(x) as schematically depicted by the solid curved
line in Figure 2.21. The independent variable has been taken to be x, but it
could just as well be the time t. It is desired to ¯nd, say, the ¯rst and second

h

x x+h

h

x–h

y(x+h)y(x)y(x–h)

R

P
Q

Figure 2.21: Obtaining ¯nite di®erence approximations to derivatives.

derivatives of y at an arbitrary point P on the curve located at the horizontal
position x. Assuming that h is small, two neighboring points R and Q located
at x+ h and x¡h, respectively, are considered. At point R, the vertical height
is y(x+ h) and at Q it is y(x¡ h).

Since h is assumed to be small, y(x+ h) can be Taylor expanded in powers
of h about h = 0, neglecting terms of, say, order h4 (i.e., O(h4)) and higher.

> restart:

> eq1:=y(x+h)=taylor(y(x+h),h=0,4);

eq1 := y(x+ h) =

y(x) + D(y)(x)h+
1

2
(D(2))(y)(x)h2 +

1

6
(D(3))(y)(x)h3 +O(h4)

The O(h4) term in eq1 can be removed with the convert(polynom) command.

> eq1b:=convert(eq1,polynom);

eq1b := y(x+ h) = y(x) + D(y)(x)h+
1

2
(D(2))(y)(x)h2 +

1

6
(D(3))(y)(x)h3

Similarly y(x¡ h) is Taylor expanded and the fourth-order term removed.

90 CHAPTER 2. PHASE-PLANE ANALYSIS

> eq2:=y(x-h)=convert(taylor(y(x-h),h=0,4),polynom);

eq2 := y(x¡ h) = y(x)¡D(y)(x)h+ 1
2
(D(2))(y)(x)h2 ¡ 1

6
(D(3))(y)(x)h3

On subtracting the second expansion, eq2 , from the ¯rst, eq1b,

> eq3:=eq1b-eq2;

eq3 := y(x+ h)¡ y(x¡ h) = 2D(y)(x)h+ 1
3
(D(3))(y)(x)h3

the h2 terms cancel, leaving terms involving h and h3 on the right-hand side of
eq3 . If the latter term is now dropped by substituting h3 = 0 into eq3 ,

> eq3b:=subs(h^3=0,eq3);

eq3b := y(x+ h)¡ y(x¡ h) = 2D(y)(x)h
the relative error in eq3b will be O(h3)=O(h) = O(h2). Solving eq3b for D(y)(x)
yields the central di®erence approximation (CDA) y 0CDA to the ¯rst derivative.
To use the symbol y 0 in the assignment, y 0 must be enclosed in left quotes.

> `y 0`[CDA]:=solve(eq3b,D(y)(x));

y 0CDA :=
1

2

y(x+ h)¡ y(x¡ h)
h

The quantity y 0CDA is just the slope of the chord QR that approaches the slope
of the tangent to the y(x) curve at P as h ! 0. The reader will recognize
this limiting result as the usual de¯nition for the ¯rst derivative. The ¯nite
di®erence approximation consists in taking h to be small, but ¯nite.

Now, the above CDA is not the only way of representing y 0. The forward-
di®erence approximation y 0FDA to the ¯rst derivative results on dropping the
h2 and h3 terms in eq1b and solving for D(y)(x).

> eq4:=subs(fh^2=0,h^3=0g,eq1b);
eq4 := y(x+ h) = y(x) + D(y)(x)h

> `y 0`[FDA]:=solve(eq4,D(y)(x));

y 0FDA :=
y(x+ h)¡ y(x)

h
The backward-di®erence approximation y 0BDA is similarly obtained from eq2 .

> eq5:=subs(fh^2=0,h^3=0g,eq2);
eq5 := y(x¡ h) = y(x)¡D(y)(x)h

> `y 0`[BDA]:=solve(eq5,D(y)(x));

y 0BDA := ¡
y(x¡ h)¡ y(x)

h
The forward- and backward-di®erence approximations, both of which have er-
rors of O(h), correspond to approximating y 0 at P by the slopes of the chords
PR and QP , respectively. For a given (small) value of h, the FDA and BDA are
not as accurate as the CDA. Despite this, the FDA is more commonly used to
represent ¯rst time derivatives in solving initial value problems than the CDA,
because, as will be seen, it allows one to explicitly advance forward in time from
t = 0. Numerical ODE-solving procedures based on the FDA are called explicit

2.3. NUMERICAL SOLUTION OF ODES 91

schemes. If the step size is too large, explicit ¯xed-step numerical schemes tend
to become numerically unstable, so variable-step schemes or implicit schemes
are also commonly used. Implicit schemes are based on the BDA.

How does one represent the second derivative? As with the ¯rst derivative
there is more than one way to represent y 00 by a ¯nite di®erence approximation.
However, the most commonly used form is obtained by adding eq1b and eq2
and solving for the second derivative.

> `y 00`:=solve(eq1b+eq2,(D@D)(y)(x));

y 00 :=
y(x+ h) + y(x¡ h)¡ 2 y(x)

h2

This central di®erence approximation, which has an error O(h2), is often used in
numerically solving di®usion and wave equation models, as shall be illustrated
in Chapter 6. A more accurate approximation to y 00 is left as a problem.

PROBLEMS:
Problem 2-19: Alternative second-derivative approximation
By also Taylor expanding y(x+ 2 h) and y(x¡ 2h) show that

y 00(x)=
[¡y(x+2 h) + 16 y(x+h)¡ 30 y(x) + 16 y(x¡ h)¡ y(x¡ 2 h)]

(12h2)
+O(h4)

is an alternative ¯nite di®erence approximation to the second derivative.

Problem 2-20: Fourth-derivative approximation
Show that

y 0000(x) =
[y(x+ 2h)¡ 4 y(x+ h) + 6 y(x)¡ 4 y(x¡ h) + y(x¡ 2h)]

h4
+O(h2)

is a ¯nite di®erence approximation to the fourth derivative.

2.3.2 Rabbits and Foxes: The Sequel

A journey of a thousand miles must begin with a single step.
Lao-tzu, Chinese philosopher (sixth century BC)

Now that we have some idea of how to approximate ¯rst and second deriva-
tives by ¯nite di®erences, numerical ODE-solving algorithms can be created of
varying accuracy and CPU (central processing unit) time. The ultimate goal,
of course, is to produce a highly accurate numerical scheme for a given ODE
that takes as little CPU time as possible. Generally, more accurate schemes
allow larger step sizes to be used but involve more function evaluations on each
step. Larger step sizes reduce the CPU time, while more function evaluations
increase the time. Unfortunately, the step size can be increased only so far be-
fore the solution becomes quite inaccurate or even displays wild oscillations, an
indication of numerical instability. How the best compromise between accuracy
and time may be reached is the subject matter of numerical analysis courses

92 CHAPTER 2. PHASE-PLANE ANALYSIS

and beyond the scope of this text. Here, we shall be content to present a few
examples that illustrate some of the more important ideas.

The ¯rst recipe involves revisiting those natural foes, the sly foxes and pesky
jackrabbits of Rainbow County. In this sequel, we will not employ the phase-
plane portrait approach but instead replace each time derivative with a forward-
di®erence approximation and convert the ODEs to ¯nite di®erence equations.

Recall that the predator{prey equations were of the general structure

_r = a r ¡ b rf ´ R(r; f); _f = ¡c f + d rf ´ F (r; f); (2.15)

where r(t) and f(t) are the rabbit and fox numbers (per unit area) at time t.
For the coe±cient values we shall take a = 2, b = 0:01, c = 1, and d = 0:01,
and r(0) = 300 rabbits and f(0) = 150 foxes as initial conditions.

To solve this set of ¯rst-order nonlinear ODEs, we can proceed as follows.
If h is the time step size, then the time on step (n + 1) is related to the time
on step n by tn+1 = tn + h. Introducing the notation rn ´ r(tn), fn ´ f(tn),
rn+1 ´ r(tn+1), and fn+1 ´ f(tn+1), the FDA to the two time derivatives is

_r =
(rn+1 ¡ rn)

h
and _f =

(fn+1 ¡ fn)
h

:

The overall accuracy of the numerical scheme then depends on how R(r; f) and
F (r; f) are approximated. Historically, the oldest and simplest approximation
is to evaluate these functions on the nth time step, reducing the ODEs to

rn+1 = rn + hR(rn; fn); fn+1 = fn + hF (rn; fn): (2.16)

This ¯nite di®erence approximation, which allows one to advance forward a
single step at a time, is referred to as the forward Euler algorithm.

The step size h must be taken to be small to obtain an accurate approxi-
mation to the solution of the original ODEs. How small? A common approach
to answering this question is to cut the step size in two and see what e®ect it
has on the answer. This procedure can be repeated until a su±ciently accurate
answer for your purposes has been attained. Some words of caution should be
o®ered, however. One cannot keep cutting the step size in two inde¯nitely for
a ¯xed number of digits or one will encounter round-o® error, the answer in
fact becoming less accurate. Further, to execute the worksheet out to the same
total time will take more and more CPU time as the step size is decreased.

Let's now solve equations (2.16), ¯rst loading the plots package and entering
the coe±cient values.

> restart: with(plots):

> a:=2: b:=0.01: c:=1: d:=0.01:

The initial time, initial rabbit number, and initial fox number are speci¯ed and
the time step size taken to be h = 0:02. We take N = 1000 steps, so the total
elapsed time for the numerical run will be 0:02£ 1000 = 20 time units.

> t[0]:=0: r[0]:=300: f[0]:=150: h:=0.02: N:=1000:

Although the Maple system normally uses 10 digits as its default, the number of
digits is speci¯ed in case it is desired to increase this number, e.g., to lessen the

2.3. NUMERICAL SOLUTION OF ODES 93

round-o® error mentioned earlier. To compare the speed of di®erent numerical
schemes or algorithms, the computer CPU time at which the execution of the
algorithm begins is recorded using the time command. The CPU time at which
the execution is ¯nished will also be recorded, the CPU time for the algorithm
then being the di®erence. The CPU time will depend on the computer being
used, the times quoted here being for a 3-GHz PC.

> Digits:=10: begin:=time():

Functional operators are formed to calculate R and F for speci¯ed x and y.

> R:=(x,y)->a*x-b*x*y: F:=(x,y)->-c*y+d*x*y:

A do loop is used to iterate the di®erence equations (2.16) and the time.

> for n from 0 to N do

> r[n+1]:=r[n]+h*R(r[n],f[n]);

> f[n+1]:=f[n]+h*F(r[n],f[n]);

> t[n+1]:=t[n]+h;

A 3-dimensional plotting point is formed for the nth time step.

> pnt[n]:=[t[n],r[n],f[n]];

> end do:

On ending the loop, the temporal evolution of the solution will be observed by
creating a three-dimensional plot using a sequence of the plotting points from
n = 0 to n = N and the pointplot3d command.

> pointplot3d([seq(pnt[n],n=0..N)],symbol=cross,color=red,

axes=normal,labels=["t","r","f"],tickmarks=[2,3,3]);

200

400

600
f

0

200

400
r

0

20

t

Figure 2.22: Forward Euler solution of the rabbits{foxes equations.

94 CHAPTER 2. PHASE-PLANE ANALYSIS

The resulting spiral trajectory, corresponding to a cyclic variation in population
numbers, is shown in Figure 2.22. The elapsed CPU time for the run,

> CPUtime:=(time()-begin)*seconds;

CPUtime := 0:130 seconds

was only a fraction of a second.
Instead of this \¯rst principles approach" to numerically solving the rabbits{

foxes equations, one can alternatively \dial up" the forward Euler approxima-
tion as follows. The dependent variables r and f are unassigned,

> unassign('r','f'): begin2:=time():

and the ODE system is entered.

> sys:=diff(r(t),t)=R(r(t),f(t)),diff(f(t),t)=F(r(t),f(t)):

The initial population numbers are entered as the initial condition.

> ic:=r(0)=300,f(0)=150:

The numerical ODE solve command is used with the \classical" forward Euler
method included as an option. The step size is 0:02, the same as before.

> sol:=dsolve(fsys,icg,fr(t),f(t)g,type=numeric,
method=classical[foreuler],stepsize=0.02):

By using the odeplot command and specifying that 1000 time steps are to be
taken, exactly the same plot (not displayed here) as in Figure 2.22 is produced.

> odeplot(sol,[t,r(t),f(t)],0..20,numpoints=1000,style=point,

symbol=cross,axes=normal,labels=["t","r","f"],

tickmarks=[2,3,3]);

If the three-dimensional picture produced by either code is rotated to show the
r{f plane, the phase-plane trajectory is as shown in Figure 2.23.

200

400

600

f

0 200 400r

Figure 2.23: Phase-plane trajectory for the rabbits{foxes system.

Although it appears that the trajectory is an outward-growing spiral, this con-
clusion would not be correct. The trajectory really should be a vortex, i.e., a

2.3. NUMERICAL SOLUTION OF ODES 95

closed loop. The incorrect behavior is due to cumulative error arising from use
of the Euler approximation (which has low accuracy) and the ¯nite step size.
Keeping in mind the danger of round-o® error for a ¯xed number of digits, the
growth of the spiral can in principle be reduced by reducing h. But in practice,
the CPU time goes up so rapidly that the Euler method is not used for serious
numerical calculations. In the next recipe, the classical fourth-order Runge{
Kutta method is introduced, a much more accurate numerical scheme than the
Euler method for a given step size.

Finally, the CPU time for the forward Euler dial-up method is determined,

> CPUtime2:=(time()-begin2)*seconds;

CPUtime2 := 0:330 seconds

and is actually slightly longer than for the ¯rst-principles calculation.

PROBLEMS:
Problem 2-21: Van der Pol equation
By setting _x = y, the second-order Van der Pol (VdP) equation

Äx¡ ² (1¡ x2) _x+ x = 0
may be written as a coupled system of two ¯rst-order ODEs. Choosing ² = 5
and x(0) = _x(0) = 0:1, solve the VdP system for h = 0:01 and t = 0 to 15 using
the ¯rst principles Euler method. Rotate your plot to produce a phase-plane
portrait solution and compare the result with what would be obtained using
the dial-up Euler option of the dsolve command.

Problem 2-22: White dwarf equation
In his theory of white dwarf stars, Chandrasekhar [Cha39] introduced the non-
linear equation

x (d2y=dx2) + 2 (dy=dx) + x (y2 ¡ C)3=2 = 0;
with the boundary conditions y(0) = 1 and y 0(0) = 0. Write the second-order
equation as two ¯rst-order equations and solve the system using the ¯rst prin-
ciple's Euler method. Take h = 0:01 and 10-digit accuracy, and numerically
compute y(x) over the range 0 · x · 4 with C = 0:1 and plot the result. (Hint:
Start at x = 0:01 to avoid any problem at the origin.)

Problem 2-23: Baleen whales
May [May80] has discussed the solution of the following normalized equation
describing the population of sexually mature adult baleen whales:

_x(t) = ¡ax(t) + b x(t¡ T)(1¡ (x(t¡ T))N):
Here x(t) is the normalized population number at time t, a and b are the
mortality and reproduction coe±cients, T is the time lag necessary to achieve
sexual maturity, and N is a positive parameter. If the term 1¡ (x(t¡ T))N is
negative, then this term is to be set equal to zero. Taking a = 1, b = 2, T = 2,
step size h = 0:01, and 4000 time steps, use the ¯rst principles Euler method to
solve numerically for x(t¡ T) versus x(t) and for x(t) for (a) N = 3:0, and (b)
N = 3:5. Plot your results. For (a) you should observe a period-one solution,

96 CHAPTER 2. PHASE-PLANE ANALYSIS

and for (b) a period-two solution. Discuss how this interpretation can be made
from your plots.

Problem 2-24: Arti¯cial example
Consider the nonlinear equation

dy=dx = x y (y ¡ 2);

with y(0) = 1. Taking h = 0:02 and 10-digit accuracy, solve for y(x) out to
x = 3 using the dial-up Euler's method and plot the result.

Problem 2-25: Modi¯ed Euler algorithm
If the rabbits{foxes system is written for brevity as _r = R(r; f) and _f = F (r; f),
the modi¯ed Euler algorithm for solving the equations is

rn+1 = rn +
h

2
(R1[n] +R2[n]); fn+1 = fn +

h

2
(F1[n] + F2[n]);

where
tn+1 = tn + h; R1[n] ´ R(rn; fn); F1[n] ´ F (rn; fn);

R2[n] ´ R(rn + hR1[n]; fn + hF1[n]); F2[n] ´ F (rn + hR1[n]; fn + hF1[n]):
Taking the same parameter values as in the text recipe, but N twice as large,
solve the rabbits{foxes equations using the modi¯ed Euler algorithm given
above. Rotate your plot to show the r{f phase plane and compare the re-
sult with that for the Euler method.

Problem 2-26: Onset of numerical instability
Investigate the onset of numerical instability as h is increased in the modi¯ed
Euler algorithm of the previous problem.

2.3.3 Glycolytic Oscillator

Give me another horse!
William Shakespeare, King Richard III (1564{1616)

The Euler algorithm, which is the simplest example of an explicit ¯xed-step
method, is not a very accurate numerical procedure, being of order h accuracy
(error O(h2)). A systematic approach to developing more accurate explicit nu-
merical schemes are the ¯xed-step Runge{Kutta (RK) methods [BF89], which
still use the FDA approximation for the ¯rst derivatives but create better ap-
proximations to the functions on the right-hand side of the ODEs.

Consider an ODE system of the general form

_x = X(t; x; y); _y = Y (t; x; y); (2.17)

where X and Y are known functions of the arguments. Note that any second-
order ODE of the general structure Äx = Y (t; x; _x) can be put into this standard
form by setting _x = y ´ X.

In the Euler method, the functions X and Y are evaluated only once on
each step. The general RK approach is to increase the accuracy by using more

2.3. NUMERICAL SOLUTION OF ODES 97

evaluations of the functions X and Y , the extra evaluations being carried out at
intermediate points between tn and tn+ h in such a way that an nth-order RK
scheme is equivalent to a Taylor series expansion of the functions truncated at
terms of order n. The interested reader is referred to numerical analysis texts
such as Burden and Faires [BF89] for the details.

Here it will su±ce to illustrate the application of the fourth-order Runge{
Kutta (RK4) method, which has been the historical \workhorse" of ¯xed-step
methods. This method, which involves four function evaluations of X and Y on
each step, is of order h4 in accuracy (error O(h5)). Explictly, the RK4 method
applied to equation (2.17) takes the following form:

xn+1 = xn+
1

6
(K1+2K2+2K3+K4); yn+1 = yn+

1

6
(L1+2L2+2L3+L4);

with K1 = hX(tn; xn; yn);

K2 = hX(tn + h=2; xn +K1=2; yn + L1=2) ;

K3 = hX(tn + h=2; xn +K2=2; yn + L2=2) ;

K4 = hX(tn + h; xn +K3; yn + L3);

and L1 to L4 obtained by replacing X with Y in K1 to K4.
Since this RK4 scheme is O(h4) accurate, one can either use the same step

size as in the Euler method, producing an answer of greater accuracy, or, alter-
natively, use a larger step size to speed up the calculation. However, h can be
increased only so much before the Taylor expansion on which the RK4 method
is based begins to break down and wild numerical oscillations in the output
occur. All explicit schemes are prone to this numerical instability if the step
size is made too large.

Runge{Kutta methods of even greater accuracy than RK4 can be generated,
but these involve even more evaluations of X and Y , which increases the CPU
time. The RK4 method is usually deemed to be the optimum ¯xed-step explicit
method that best combines good accuracy with reasonable CPU time.

As an illustration of the RK4 method, let's consider solving the nonlinear
ODEs describing the glycolytic oscillator. Living cells obtain energy by breaking
down sugar, a process known as glycolysis. In yeast cells, this process proceeds
in an oscillatory way with a period of a few minutes. A simple system of model
equations proposed by Sel'kov [Sel68] to describe the oscillations is as follows:

_x = ¡x+ a y + x2 y;

_y = b¡ a y ¡ x2 y:
(2.18)

Here x and y refer to the concentrations of adenosine diphosphate (ADP) and
fructose-6-phosphate (F6P), respectively, and a and b are positive constants.
We shall use the nominal values a=0:05 and b= 0:5, and take x0=3, y0=3.

98 CHAPTER 2. PHASE-PLANE ANALYSIS

After loading the plots package, specifying the number of digits, and record-
ing the beginning time,

> restart: with(plots): Digits:=10: begin:=time():

the parameter values are entered and N = 1000 steps of size h = 0:05 are
considered.

> t[0]:=0: x[0]:=3: y[0]:=3: a:=0.05: b:=0.5: N:=1000: h:=0.05:

The functional, or arrow, operator is used to produce the right-hand side of
each ODE. Whatever forms are inserted for x and y in the entries X(x,y) and
Y(x,y) will be operated on as indicated on the right-hand side of the arrow.

> X:=(x,y)-> -x+a*y+x^2*y;

X := (x; y)! ¡x+ a y + x2 y
> Y:=(x,y)->b-a*y-x^2*y;

Y := (x; y)! b¡ a y ¡ x2 y
Similarly, operators are introduced to perform the four function evaluations,
where f will be taken to be X and Y . Note that X and Y do not depend
explicitly on time here.

> k1:=f->h*f(x[n],y[n]):

> k2:=f->h*f(x[n]+K1[n]/2,y[n]+L1[n]/2):

> k3:=f->h*f(x[n]+K2[n]/2,y[n]+L2[n]/2):

> k4:=f->h*f(x[n]+K3[n],y[n]+L3[n]):

Using the above operators, the fourth-order Runge{Kutta algorithm is iterated
from n = 0 to N = 1000 and a plotting point produced at each step.

> for n from 0 to N do

> K1[n]:=k1(X); L1[n]:=k1(Y);

> K2[n]:=k2(X); L2[n]:=k2(Y);

> K3[n]:=k3(X); L3[n]:=k3(Y);

> K4[n]:=k4(X); L4[n]:=k4(Y);

> x[n+1]:=x[n]+(K1[n]+2*K2[n]+2*K3[n]+K4[n])/6;

> y[n+1]:=y[n]+(L1[n]+2*L2[n]+2*L3[n]+L4[n])/6;

> t[n+1]:=t[n]+h;

> pnt[n]:=[t[n],x[n],y[n]];

> end do:

Using the spacecurve command, the sequence of points is plotted as a solid
blue line with normal axes. The tickmarks are controlled, axis labels added,
and a particular orientation of the 3-dimensional viewing box chosen.

> spacecurve([seq(pnt[n],n=0..N)],color=blue,axes=normal,

tickmarks=[2,2,2],labels=["t","x","y"],

orientation=[23,71]);

The resulting picture is shown in Figure 2.24. It may be rotated on the computer
screen by dragging with the mouse.

2.3. NUMERICAL SOLUTION OF ODES 99

0

2

y

5
x

50

t

Figure 2.24: Temporal evolution of a glycolytic oscillator.

The spiral behavior characteristic of temporal oscillations is clearly seen. If
the three-dimensional ¯gure is rotated on the computer screen to show the x-y
phase plane, a closed loop will be observed. One can also view x versus t and
y versus t. The CPU time for the ¯rst-principles RK4 calculation is

> CPUtime:=(time()-begin)*seconds;

CPUtime := 0:500 seconds

about one-half a second.

After unassigning the variables x and y,

> unassign('x','y'): begin2:=time():

exactly the same 3-dimensional plot is produced (not displayed here) by using
the dsolve command with the option method=classical[rk4].

> sys:=diff(x(t),t)=X(x(t),y(t)),diff(y(t),t)=Y(x(t),y(t)):

> sol:=dsolve(fsys,x(0)=3,y(0)=3g,fx(t),y(t)g,type=numeric,
method=classical[rk4],stepsize=0.05):

> odeplot(sol,[t,x(t),y(t)],0..50,axes=normal,numpoints=1000,

color=blue,style=line,tickmarks=[2,2,2],

labels=["t","x","y"],orientation=[23,71]);

> CPUtime2:=(time()-begin2)*seconds;

CPUtime2 := 0:300 seconds

The CPU time for the dial-up routine is slightly shorter than the ¯rst-principles
calculation here.

100 CHAPTER 2. PHASE-PLANE ANALYSIS

PROBLEMS:
Problem 2-27: Harvesting of ¯sh
In suitably normalized units, the e®ect of ¯shing on the normalized population
number x of a single species of ¯sh with a limited food supply can be described
by the following nonlinear ODE,

_x = x (1¡ x)¡H x=(a+ x);
where H is the harvesting coe±cient and a is a parameter. For H = 0, the
remaining ODE is known as the logistic equation. Show that this equation has
an analytic solution and plot the result for a = 0:2 and x(0) = 0:1. Discuss the
behavior of the solution.

Then, using the ¯rst-principles RK4 method with step size h = 0:1, numer-
ically investigate this equation as the harvesting coe±cient H is increased from
zero. Plot your results and discuss the change in behavior as H increases.

Problem 2-28: Bucky the beaver
Bucky the beaver attempts to swim across a river by steadily aiming at a target
point directly across the river. The river is 1 km wide and has a speed of 1
km/hr, while Bucky's speed is 2 km/hr. In Cartesian coordinates, Bucky is
initially at (x = 1; y = 0), while the target point is at (0; 0). Bucky is initially
swept an in¯nitesimal distance downstream but recovers almost instantly to
continue his swimming motion. His equations of motion are

_x = ¡ 2xp
x2 + y2

; _y = 1¡ 2 yp
x2 + y2

:

(a) Justify the structure of the equations.

(b) Using the ¯rst-principles RK4 method with h = 0:01, determine how long
it takes Bucky to reach the target point.

(c) Determine the analytic solution y(x) for Bucky's path across the river.

(d) Plot the analytic and numerical solutions together for Bucky's path.

Problem 2-29: Chemical reaction
Consider the irreversible chemical reaction

2K2Cr2O7 + 2H2O + 3S ! 4KOH + 2Cr2O3 + 3SO2,

with initially N1 = 2000 molecules of potassium dichromate (K2Cr2O7), N2 =
2000 molecules of water (H2O), and N3 = 3000 atoms of sulphur (S). The
number X of potassium hydroxide (KOH) molecules at time t s is given by the
rate equation

_X = k (2N1 ¡X)2 (2N2 ¡X)2 (4N3=3¡X)3;
with k = 1:64 £ 10¡20 s¡1 and X(0) = 0. Determine X(t) by using the ¯rst-
principles RK4 method with h = 0:001. How many KOH molecules are present
at t = 0:1 s? at t = 0:2 s?

2.3. NUMERICAL SOLUTION OF ODES 101

2.3.4 Fox Rabies Epidemic

Thought is an infection. In the case of certain thoughts, it becomes
an epidemic.
Wallace Stevens, American poet (1879{1955)

As already mentioned, if the step size h is made too large, ¯xed-step explicit
methods not only become increasingly inaccurate, but will become numerically
unstable with the solution eventually \blowing up." One approach to avoiding
this instability is to make use of the backward-di®erence approximation to the
derivative and create an implicit or semi-implicit numerical scheme.

In this example, we will illustrate this approach by solving the nonlinear
ODEs for the fox rabies epidemic7 model of Anderson and coworkers [AJMS81]
using the backward Euler algorithm. The ideas presented here can be extended
to higher-order RK methods.

The rabies epidemic model was applied to the fox population in central Eu-
rope, the epidemic believed to have originated in Poland in 1939. In this model,
the fox population is divided into three categories: susceptibles (population
density x foxes/km2) are foxes that are currently healthy but are susceptible
to catching the virus; infected (density y) are foxes that have caught the virus
but are not yet capable of passing on the virus; infectious (density z) are foxes
that are capable of infecting the susceptibles. The model has no category of
recovered immune foxes because very few, if any, survive after acquiring the
rabies virus. For other diseases with a lower mortality rate, one would add a
recovered category and therefore an additional modeling equation. The relevant
equations for the fox rabies epidemic are

_x = a x¡ (b+ g N)x¡ ¯ x z ´ X;

_y = ¯ x z ¡ (¾ + b+ g N) y ´ Y;

_z = ¾ y ¡ (®+ b + g N) z ´ Z;

(2.19)

with N = x + y + z being the total fox density. The meaning of the various
coe±cients in (2.19) and their estimated values is as follows:

Symbol Meaning Value
a average per capita birth rate 1/year
b average per capita intrinsic death rate 0:5/year
¯ rabies transmission coe±cient 79:67 km2/year
¾ 1=¾ = average latent period (¼ 28 to 30 days) 13/year
® death rate of rabid foxes 73/year
g g N represents increased death rate at large 0.1-5 km2/year

N due to depletion of food supply

7Modeling the spread of diseases is extensively discussed in Murray [Mur89].

102 CHAPTER 2. PHASE-PLANE ANALYSIS

Using the BDA for the time derivative to connect time step n to the previous
step n ¡ 1 and approximating the rhs with its value at step n, the backward
Euler approximation to equations (2.19) is

xn ¡ xn¡1
h

= Xn;
yn ¡ yn¡1

h
= Yn;

zn ¡ zn¡1
h

= Zn;

or letting n! n+ 1 and substituting the forms of X, Y , and Z,

xn+1 = xn + h (a¡ b)xn+1 ¡ h g Nn+1 xn+1 ¡ h¯ xn+1 zn+1

yn+1 = yn + h¯ xn+1 zn+1 ¡ h (¾ + b) yn+1 ¡ h gNn+1 yn+1

zn+1 = zn + h¾ yn+1 ¡ h (®+ b) zn+1 ¡ h gNn+1 zn+1

(2.20)

with Nn+1 = xn+1 + yn+1 + zn+1.
This algorithm is nonlinear in the unknowns xn+1, yn+1, and zn+1, and is

an example of an implicit algorithm because one cannot explicitly express the
unknowns in terms of the known values xn, yn, and zn. The standard approach
is to make the scheme semi-implicit by linearizing it as follows. For a nonlinear
function f(xn+1; zn+1), we Taylor expand thus:

f(xn+1; zn+1) = f(xn; zn)+(xn+1¡xn)
μ
@f

@x

¶
xn;zn

+(zn+1¡zn)
μ
@f

@z

¶
xn;zn

+¢ ¢ ¢

For our fox-rabies example, this gives us, for example,

f ´ (x z)n+1 = xn zn + zn(xn+1 ¡ xn) + xn(zn+1 ¡ zn): (2.21)

Applying this procedure to all of the quadratic terms on the rhs of (2.20) and
gathering all the \new" values xn+1, etc., on the lhs, we obtain

A1n xn+1 +B1n yn+1 + C1n zn+1 = xn +D1n;

A2n xn+1 +B2n yn+1 + C2n zn+1 = yn +D2n;

A3n xn+1 +B3n yn+1 + C3n zn+1 = zn +D3n;

(2.22)

with

A1n=1 + h (b¡ a) + h g (Nn + xn) + h ¯ zn; B1n=h g xn; C1n=h (¯ + g)xn;

A2n=h g yn ¡ h¯ zn; B2n=1 + h (¾ + b) + h g (Nn + yn); C2n=h g yn ¡ h ¯ xn;

A3n=h g zn; B3n=h g zn ¡ h ¾; C3n=1 + h (®+ b) + h g (Nn + zn);

D1n=h g Nn xn + h¯ xn zn; D2n=h g Nn yn ¡ h¯ xn zn; D3n=h g Nn zn:

We now have three linear equations (2.22), with known numerical coe±cients
determined from the previous step, for the three unknowns xn+1, yn+1, zn+1.

2.3. NUMERICAL SOLUTION OF ODES 103

The semi-implicit algorithm is now implemented in the following recipe,
taking a total of 5000 time steps of size h = 0:004.

> restart: Digits:=10: total:=5000: h:=0.004:

The parameter values are entered, with g at the lower end of its range.

> a:=1: b:=0.5: beta:=79.67: g:=0.1: alpha:=73: sigma:=13:

Initially, we take x0 = 4, y0 = 0:4, and z0 = 0:1.

> t[0]:=0: x[0]:=4: y[0]:=0.4: z[0]:=0.1:

The initial plotting point is formed, and the starting time of the do loop that
iterates the algorithm is recorded.

> pnt[0]:=[t[0],x[0],y[0]]: begin:=time():

> for n from 0 to total do

The various coe±cients are evaluated on the nth step.

> N[n]:=x[n]+y[n]+z[n];

> A1[n]:=1+h*(b-a)+h*g*(N[n]+x[n])+h*beta*z[n];

> B1[n]:=h*g*x[n];

> C1[n]:=h*(beta+g)*x[n];

> D1[n]:=h*g*N[n]*x[n]+h*beta*x[n]*z[n];

> A2[n]:=h*g*y[n]-h*beta*z[n];

> B2[n]:=1+h*(sigma+b)+h*g*(N[n]+y[n]);

> C2[n]:=h*g*y[n]-h*beta*x[n];

> D2[n]:=h*g*N[n]*y[n]-h*beta*x[n]*z[n];

> A3[n]:=h*g*z[n];

> B3[n]:=h*g*z[n]-h*sigma;

> C3[n]:=1+h*(alpha+b)+h*g*(N[n]+z[n]);

> D3[n]:=h*g*N[n]*z[n];

The linear equations for xn+1, yn+1, zn+1 are entered,

> E1:=A1[n]*x[n+1]+B1[n]*y[n+1]+C1[n]*z[n+1]=x[n]+D1[n];

> E2:=A2[n]*x[n+1]+B2[n]*y[n+1]+C2[n]*z[n+1]=y[n]+D2[n];

> E3:=A3[n]*x[n+1]+B3[n]*y[n+1]+C3[n]*z[n+1]=z[n]+D3[n];

and numerically solved.

> sol[n+1]:=(fsolve(fE1,E2,E3g,fx[n+1],y[n+1],z[n+1]g));
The solution is assigned and the values of xn+1, yn+1, and zn+1 are recorded
at time tn+1 = tn + h.

> assign(sol[n+1]);

> x[n+1],y[n+1],z[n+1];

> t[n+1]:=t[n]+h;

Finally, a plotting point is formed and the loop ended.

> pnt[n+1]:=[t[n+1],x[n+1],y[n+1]];

> end do:

104 CHAPTER 2. PHASE-PLANE ANALYSIS

On a 3-GHz PC, the CPU time to execute the loop

> cpu:=time()-begin;

cpu := 10:565

is about 11 seconds.

The points are now plotted, the resulting curve being shown in Figure 2.25.
The three-dimensional curve may be rotated on the computer screen by drag-
ging the viewing box with the mouse. What does the model calculation predict?

> plots[spacecurve]([seq(pnt[n],n=0..total)],color=black,

axes=normal,tickmarks=[3,2,3],labels=["t","x","y"]);

0

0.5

1

1.5

y

2

4

x
10

20

t

Figure 2.25: Semi-implicit solution of fox rabies epidemic model.

You can con¯rm that the algorithm remains stable for much larger h, but
becomes increasingly inaccurate. In general, semi-implicit schemes are not guar-
anteed to be stable, but usually are. However, such schemes are costly in terms
of computing time if high accuracy is required. For systems of nonlinear ODEs,
this is usually the case, so variable- or adaptive-step explicit schemes are pre-
ferred by researchers. Such schemes adjust the step size so that larger steps are
used when the \terrain" is °atter and smaller steps when it becomes steeper.

Maple's default ODE algorithm is based on the Runge{Kutta{Fehlberg 45
(RKF45) scheme, one of the most widely used adaptive step methods. Without
getting into the details, which can be found in standard numerical analysis
texts [BF89], the code uses both the fourth-order and ¯fth-order Runge{Kutta
schemes and compares the results of both algorithms on each step, using the
di®erence in answers as a measure of the error. The step size is then adjusted
to maintain some maximum tolerance on the error.

2.3. NUMERICAL SOLUTION OF ODES 105

PROBLEMS:
Problem 2-30: The arms race
Rapoport [Rap60] has proposed the following system of model equations to
describe the arms race between two nations (or two groups of nations),

_x = ¡m1 x+ a1 y + b1 y
2;

_y = ¡m2 y + a2 x+ b2 x
2;

where x and y are the defense budgets (in suitable units of currency) of the two
nations and all constants are positive. Explain the terms in the model.

Apply the semi-implicit backward Euler method to Rapoport's model, tak-
ing the nominal values m1 = 0:5, a1 = 1, b1 = 0:02, m2 = 0:4, a2 = 0:1,
b2 = 0:05, x(0) = y(0) = 0:5. Try di®erent step sizes and plot the results in t
vs. x vs. y space. Discuss the results.

Problem 2-31: Van der Pol oscillator
The Van der Pol equation,

Äx¡ ² (1¡ _x2) + x = 0;

with ² = 5:03, x(0) = 0:1, and _x(0) = 0 was the subject of recipe 01-1-3.
Choosing a suitable step size, numerically solve this ODE using the semi-implicit
backward Euler method and compare with the results obtained in 01-1-3.

Problem 2-32: Second-order-accurate scheme
Given a system of ¯rst-order nonlinear ODEs with a representative equation
of the structure _x = X(x; : : :), one can create a second-order-accurate semi-
implicit numerical scheme by using the backward-di®erence approximation for
the derivative and replacing the Euler approximation Xn on the rhs with the
average (Xn +Xn+1)=2.

Derive a second-order-accurate semi-implicit algorithm for the RÄossler sys-
tem of Section 1.2.3. Taking a = b = 0:2, c = 5:0, x(0) = 4:0, y(0) = z(0) = 0,
and h = 0:05, determine the behavior of the system up to t = 100 and plot the
trajectory in x-y-z space. How do your results compare with those obtained
with recipe 01-2-3 for the same parameter values?

Problem 2-33: Sti® ODE system
A sti® ODE system is one for which there are two or more very di®erent time or
spatial scales of the independent variable. Numerical instability can occur for
sti® systems solved with ¯xed-step explicit schemes unless the step size is taken
to be shorter than (about) the shortest time scale for the system. Consider the
following set of coupled linear ODEs,

_x = 998x+ 1998 y; _y = ¡999 x¡ 1999 y;
subject to the initial conditions x(0) = 1 and y(0) = 0.

(a) Analytically solve the system for x(t) and y(t).

(b) Determine the two characteristic times in the solutions and con¯rm that
they are very di®erent from each other.

106 CHAPTER 2. PHASE-PLANE ANALYSIS

(c) Using the dial-up RK4 algorithm, con¯rm the statement on numerical
instability and the characteristic time scales.

(d) Using the backward-di®erence approximation for the time derivatives and
the Euler approximation on the right-hand side, show that the numerical
instability can be \cured." Choose a step size such that when plotted
using a point style, the numerical points lie on the analytic curves for
x(t) and y(t).

Problem 2-34: Forced sti® system
Repeat the steps of the previous problem for the forced system

_x = 9 x+ 24 y + 5 cos t¡ 1
3
sin t; _y = ¡24x¡ 51 y ¡ 9 cos t+ 1

3
sin t;

subject to the initial conditions x(0) = 4=3 and y(0) = 2=3.

Part II

THE ENTREES

That is the essence of science:

ask an impertinent question,

and you are on the way to a pertinent answer.

Jacob Bronowski, British scientist, author, The Ascent of Man, 1973

The whole of science is nothing more

than a re¯nement of everyday thinking.

Albert Einstein, physics Nobel laureate, Out of My Later Years, 1950

The e®ort to understand the universe is one

of the very few things that lifts human life a little

above the level of farce, and gives it

some of the grace of tragedy.

Steven Weinberg, American physicist, The First Three Minutes, 1977

107

Chapter 3

Linear ODE Models
Among all the mathematical disciplines the theory of di®erential
equations is the most important. It furnishes the explanation of all
those elementary manifestations of nature which involve time.
Sophus Lie, Norwegian mathematician (1842{1899)

In the two chapters of the Appetizers, we presented only a few examples of
linear ODEs, because the graphical and numerical techniques were more suit-
able for nonlinear systems where generally exact analytic solutions simply do
not exist. Also, modern research often involves nonlinear ODE (and PDE)
systems, a subject that is almost completely neglected in undergraduate math-
ematics training. So, one of the goals of this text is to partially ¯ll in this
\hole," showing how a computer algebra system may be used to explore nonlin-
ear models without getting \buried" in messy and complicated mathematical
details. However, we would be remiss if we did not provide some coverage of
linear di®erential equation systems, both ordinary and partial. The former are
covered in this chapter, while linear PDEs are dealt with in Chapters 5 and 6.
In between, we shall explore nonlinear ODEs further in Chapter 4.

For linear ODE systems with constant coe±cients, it is always possible to
¯nd exact analytic solutions in terms of \elementary" mathematical functions
such as sines and cosines, logs, and exponentials. Analytic solutions are also
possible for linear ODEs with variable coe±cients that are of the so-called
Sturm{Liouville [MW71] type. Included in this classi¯cation are such \famous"
ODEs as Bessel's equation and the Legendre and Hermite equations, to mention
just a few. The solutions are expressed in terms of \special" functions, de¯ned
in terms of either in¯nite series or ¯nite polynomials.

In this chapter, the emphasis will be on illustrating how the dsolve com-
mand can be used to easily generate analytic solutions for some physically
interesting linear ODE systems, with both constant and variable coe±cients.
We will not go into mathematical methods here, leaving this to your mathemat-
ics education. However, if you would like to see computer algebra recipes that
apply mathematical methods to solving ODEs, you are referred to Computer
Algebra Recipes for Mathematical Physics [Enn05].

109

110 CHAPTER 3. LINEAR ODE MODELS

3.1 First-Order Models

The most general nth-order linear ODE can be written in the form

a0(t)
dnx(t)

dtn
+ a1(t)

dn¡1x(t)
dtn¡1

+ ¢ ¢ ¢+ an¡1(t)
dx(t)

dt
+ an(t)x(t) = h(t); (3.1)

the equation being labeled as linear because each term on the left-hand side is
linear, or of ¯rst order, in the dependent variable x. For the sake of de¯niteness,
the independent variable has been taken to be the time t here, but could be a
spatial variable. If h(t) = 0, the di®erential equation is said to be homogeneous,
otherwise it is inhomogeneous.

In the following two recipes, we look at two examples of inhomogeneous
¯rst-order ODEs, the ¯rst involving constant coe±cients, the second containing
variable coe±cients.

3.1.1 How's Your Blood Pressure?

Amid the pressure of great events, a general principle gives no help.
Georg Hegel, German philosopher (1770{1831)

On measuring your blood pressure, your doctor will give you two numbers.
A normal blood pressure for humans is 120/80, the ¯rst number specifying
the maximum (systolic) pressure (in units of mm of Hg) on the arterial walls,
the second number the minimum (diastolic) pressure. The blood pressure is
generated by the beating of the heart, its variation controlled by the aorta.

The aorta is the large blood vessel into which the arterial blood °ows on
leaving the heart. During the systolic phase of the heartbeat cycle, blood is
pumped under pressure from the heart into one end of the aorta, whose walls
then stretch in order to accommodate the blood. The diastolic phase then
follows during which there is no °ow of blood into the aorta, its walls elastically
contracting. The blood is then squeezed out of the aorta and around the body's
circulatory system. The following recipe presents a simple model of the variation
of blood pressure due to the beating heart and the aorta.

The entry infolevel[dsolve] will provide some information about the
dsolve command, the amount of information generally increasing as the integer
(which can vary from 1 to 5) speci¯ed on the right of the colon is increased.

> restart: infolevel[dsolve]:=2:

Let V (t) be the volume of the aorta and p(t) the pressure within it at time t.
Assuming that the aorta expands linearly with increasing p, then V = V0+C p,
where V0 and C are constants. The parameter C, called the compliance, is a
measure of the stretchability of the aorta. Mentally di®erentiating this relation
produces ode1 .

> ode1:=diff(V(t),t)=C*diff(p(t),t);

ode1 :=
d

dt
V (t) = C

μ
d

dt
p(t)

¶

3.1. FIRST-ORDER MODELS 111

The rate of change of volume (dV=dt) of the aorta is equal to the di®erence
between the rate f(t) at which blood is pumped into the aorta by the heart and
the rate p(t)=R at which blood is pumped out of the aorta into the circulatory
system. The constant R is referred to as the systemic resistance. Thus, the
second ODE is is now given by ode2 .

> ode2:=diff(V(t),t)=f(t)-p(t)/R;

ode2 :=
d

dt
V (t) = f (t)¡ p(t)

R
An ODE (ode3) for pressure alone results on substituting ode1 into ode2 .

> ode3:=subs(ode1,ode2);

ode3 := C

μ
d

dt
p(t)

¶
= f (t)¡ p(t)

R

As a simple model of the forcing function f(t), let's assume that during the
systolic (pumping) phase f(t) = A sin(¼ t=¿), with A the amplitude and ¿ the
duration of this phase, and f(t) = 0 during the diastolic (nonpumping) phase.
So f(t) is a piecewise forcing function. If T is the time for one complete cycle
(time between heart beats), the piecewise function for two heartbeats can be
entered using the following piecewise command.

> f(t):=piecewise(t<=tau,A*sin(Pi*t/tau),t<T,0,

t<=T+tau,A*sin(Pi*(t-T)/tau),t<2*T,0);

f (t) :=

8>>>>><
>>>>>:

A sin

μ
¼ t

¿

¶
t · ¿

0 t < T

A sin

μ
¼ (t¡ T)

¿

¶
t · T + ¿

0 t < 2T
The piecewise function f(t) is automatically substituted into ode3 , the complete
form of the ODE being reproduced below.

> ode3:=ode3;

ode3 := C

μ
d

dt
p(t)

¶
=

0
BBBBB@

8>>>>><
>>>>>:

A sin

μ
¼ t

¿

¶
t · ¿

0 t < T

A sin

μ
¼ (t¡ T)

¿

¶
t · T + ¿

0 t < 2 T

1
CCCCCA¡

p(t)

R

Using the dsolve command, ode3 is solved for the pressure p(t), subject to the
initial condition p(0) = P . To simplify the solution, it is assumed that ¿ > 0,
T > ¿ , C > 0, R > 0, A > 0, and P > 0.

> sol:=dsolve(fode3,p(0)=Pg,p(t))
assuming (tau>0,T>tau,C>0,R>0,A>0,P>0) ;

The assuming command applies the assumption only to the command line in
which it appears. If you wish to apply assumptions to the entire work sheet,
you can use the assume command at the beginning of the work sheet. In either

112 CHAPTER 3. LINEAR ODE MODELS

case, the assumptions are determined by trial and error, i.e., looking at the
form of the answer, which is now given.

Methods for ¯rst order ODEs:
| Trying classi¯cation methods |
trying a quadrature
trying 1st order linear
<¡ 1st order linear successful

sol := p(t) =8>><
>>:e
(¡tRC)

μ
P +

AC¼¿R2

¿2 + ¼2R2C2

¶
¡
AC¼¿R2 cos

μ
¼ t

¿

¶
¿2 + ¼2R2C2

+

AR¿2 sin

μ
¼ t

¿

¶
¿2 + ¼2R2C2

; t · ¿

8<
:AC¼¿R

2 e(
¿¡t
RC)

¿2 + ¼2R2C2
+ e(

¡t
RC
)
μ
P +

AC¼¿R2

¿2 + ¼2R2C2

¶
; t · T

¢ ¢
In the above solution, we have shown only the analytic form (thus the dots)
for the ¯rst cycle to save on text space. You can observe the complete solution
by executing the recipe on your computer. Because of the inclusion of the
infolevel[dsolve] command, we are told in the output that Maple recognizes
ode3 as a ¯rst-order linear ODE and presumably uses a standard method for
solving such an ODE. You may object to this \black box" nature of the dsolve
command, but obtaining the answer easily in our opinion is more important
than the mechanical details leading up to it. However, if the methodology is
important to you, we shall mimic a hand calculation in the next recipe.

To make a plot, we shall take the parameter values1 to be T = 1 second (60
heartbeats per minute), ¿ = 0:15 s, C = 0:002 liters/mm Hg, P = 80 mm Hg,
and R = 1056 mm Hg/liter/second.

> tau:=0.15: T:=1: C:=0.002: P:=80: R:=1056:

The amplitude parameter A must be such that the right-hand side (rhs) of the
solution must be the same at t = T as at t = 0, i.e., the heartbeat is periodic.

> eq:=eval(rhs(sol),t=0)=eval(rhs(sol),t=T);

eq := 80: =
432:0593387A¼

0:0225 + 4:46054400¼2
+ 49:82624166

The above equation is numerically solved for A.

> A:=fsolve(eq,A);

A := 0:9791418590

The pressure is then given by the rhs of sol , the °oating-point evaluation com-
mand being used to express the answer to four digits.

> Pressure:=evalf(rhs(sol),4);
1These approximate values are taken from the Internet.

3.1. FIRST-ORDER MODELS 113

Pressure:=
©
103:4 e(¡0:4735 t) ¡ 23:36 cos(20:95 t) + 0:5280 sin(20:95 t); t · 0:15

f 103:4 e(¡0:4735 t) + 23:36 e(0:07102¡0:4735 t); t · 1:
f 103:4 e(¡0:4735 t) + 23:36 e(0:07102¡0:4735 t) + 23:36 e(0:4735¡0:4735 t)
¡ 23:36 cos(¡20:95 + 20:95 t) + 0:5280 sin(¡20:95 + 20:95 t); t · 1:15
f 103:4 e(¡0:4735 t) + 23:36 e(0:07102¡0:4735 t) + 23:36 e(0:4735¡0:4735 t)
+ 23:36 e(0:5445¡0:4735 t); 1:15 < t

The piecewise forcing function f(t) is plotted over the time interval t = 0 to
2T , axis labels being added to the plot, which is shown in Figure 3.1.

> plot(f(t),t=0..2*T,labels=["t","f(t)"],tickmarks=[3,4]);

0

0.2

0.4

0.6

0.8

f(t)

1 t 2

Figure 3.1: Piecewise forcing function f(t).

The blood pressure variation is plotted over the same interval.

> plot(Pressure,t=0..2*T,labels=["t","Pressure"]);

80

90

100

110

120

Pressure

0 0.2 0.4 0.6 0.8 1 t 1.4 1.6 1.8 2

Figure 3.2: Time variation of the blood pressure.

114 CHAPTER 3. LINEAR ODE MODELS

The resulting picture is shown in Figure 3.2, the plot capturing the gross be-
havior of the variation in blood pressure with time. More detailed behavior can
be obtained by using more sophisticated models. You might try an Internet
search to learn more about these models.

PROBLEMS:
Problem 3-1: More heartbeats
Modify the forcing function in the text recipe to include four heartbeats. Do an
Internet search on blood pressure and discuss how the model could be improved.

Problem 3-2: An RL circuit
A simple electrical circuit consists of a resistor of R ohms (−) in series with an
inductor of L henries (H) and a battery providing a constant voltage v (in volts
(V)). If i(t) is the current in the circuit at time t, the voltage drop across the
resistor is R i (Ohm's law) and across the inductor is L (di=dt).
(a) Making use of Kirchho®'s voltage rule, which states that the sum of the

voltage drops is equal to the supplied voltage, derive the ¯rst-order ODE
for i(t) and solve it, given that the initial current is zero.

(b) Taking L = 4H, R = 12−, and v = 60V, plot the solution over a time
interval that brings the current to within 1% of its asymptotic value.

(c) The battery is replaced with a generator that produces a variable voltage
of v(t) = 60 sin(30 t) volts, the resistor and inductor retaining the same
values as in part (b). If the initial current is zero, determine the current
i(t) for t ¸ 0. Plot the current over a time interval that brings the current
to within 1% of steady state.

Problem 3-3: Learning curves for widget production
Learning curves are used by scientists interested in learning theory. A learning
curve is a plot of the performance P (t) of someone learning a skill as a function
of the training time t. A simple model of learning curve is to assume that the
rate dP=dt at which performance improves is proportional to M ¡ P (t), where
M is the maximum level of performance. Determine the analytic form of P (t)
and discuss what this model implies.

Two new workers (Jimbo and Jumbo) are hired for an assembly line produc-
ing widgets. Jimbo (Jumbo) produces 25 (35) widgets during the ¯rst hour and
45 (50) widgets the second hour. Estimate the maximum number of widgets
per hour that each is capable of producing and plot their learning curves.

Problem 3-4: Population growth
A deer population initially numbers 1000 and has a growth rate of 0.5 when t
is measured in months. The population is \harvested" throughout the year at
the rate of h (2 + cos(¼ t=6)) per month, where h is a constant. Determine the
deer population number as a function of t. What value of h would lead to a
zero population growth over the 12-month period from t = 0 to t = 12? Plot
the deer-population curve for this 12-month period.

3.1. FIRST-ORDER MODELS 115

3.1.2 Greg Arious Nerd's Problem

It will be found, in fact, that the ingenious are always fanciful,
and the truly imaginative never otherwise than analytic.
Edgar Allan Poe, American writer, The Murders in the Rue Morgue, 1841

Greg Arious Nerd, an eminent mathematician at the Erehwon Institute of Tech-
nology (EIT), has assigned the following problem for his undergraduate class to
solve using computer algebra. They are not to use dsolve to analytically solve
the relevant ODE, but instead use command structures found in the DEtools
library package that mimic the steps in a hand calculation.

Starting from rest, Evil Knievel weevil experiences a time-dependent drive
force Fdrive = t

2 e¡t and a drag force Fdrag = ¡(t2=(1 + t)) v(t), per unit mass.
Mimicking a hand calculation, determine Evil's velocity v(t) at time t and plot
it over the interval t = 0 to 10 Erehwonian time units. What distance does Evil
travel in this interval?

Here is Professor Nerd's answer key. Loading the DEtools package,

> restart: with(DEtools):

the drag and drive forces are entered.

> F[drag]:=-(t^2/(1+t))*v(t); F[drive]:=t^2*exp(-t);

Fdrag := ¡
t2 v (t)

1 + t
Fdrive := t

2 e(¡t)

Applying Newton's second law, the ODE governing Evil Knievel's velocity is

> ode:=diff(v(t),t)=F[drag]+F[drive];

ode :=
d

dt
v(t) = ¡ t

2 v(t)

1 + t
+ t2 e(¡t)

Although not requested, Nerd applies the odeadvisor command to ode. This
command will classify the ODE and inclusion of the help option causes a rele-
vant Help page with useful hyperlinks to be opened. The Help page should be
closed when one is ¯nished reading it.

> odeadvisor(ode,help); #close Help page

[linear]

In this case, ode is classi¯ed as linear, which is obvious by inspection.

Proceeding by hand, one would look for the integrating factor2 of the ¯rst-
order inhomogeneous ODE. With Maple, the integrating factor IF for ode is
obtained by entering intfactor(ode), which is then simpli¯ed.

> IF:=intfactor(ode);

IF := e(
t2

2
¡ t+ ln(1 + t))

> IF:=simplify(IF);

2For a general linear ¯rst-order ODE, _x+ f(t)x = g(t), the integrating factor is e

R
f(t) dt

.

116 CHAPTER 3. LINEAR ODE MODELS

IF := (1 + t) e(
t (t¡2)
2

)

With the integrating factor known, the standard mathematical procedure is to
multiply ode by IF and integrate. This is easily accomplished with the ¯rst
integral (firint) command.

> sol1:=firint(ode*IF);

sol1 :=

μ
e(
t (t¡2)
2

) + e(
t (t¡2)
2

) t

¶
v(t)¡ 3 t e(1=2 t

2 ¡ 2 t) ¡ 4 e(1=2 t
2 ¡ 2 t)

+
5

2
I
p
¼ e(¡2)

p
2 erf

μ
1

2
I
p
2 t¡

p
2 I

¶
¡ t2 e(1=2 t

2 ¡ 2 t) + C1 = 0

In the solution output, I stands for
p
¡1, erf for the error function,3 and C1

is the integration constant to be determined. Then, sol1 is solved for v(t), the
result (assigned the name V) not being shown here in the text.

> V:=solve(sol1,v(t));

Evil Knievel's initial velocity is zero. So the constant C1 is determined by
evaluating the velocity V at t = 0, equating the result to 0, and solving for
C1 . The constant will be automatically substituted into V .

> _C1:=solve(eval(V,t=0)=0,_C1);

C1 := 4 +
5

2
I
p
¼ e(¡2)

p
2 erf(

p
2 I)

On simplifying V , Evil Knievel's velocity is now determined at arbitrary time
t ¸ 0. This is a nontrivial result to derive by hand.

> Vel:=simplify(V);

Vel :=
1

2

μ
6 t e(

t (t¡4)
2

) + 8 e(
t (t¡4)
2

) ¡ 5 I
p
¼ e(¡2)

p
2 erf

μ
1

2
I
p
2 t¡

p
2 I

¶

+ 2 t2 e(
t (t¡4)
2

) ¡ 8¡ 5 I
p
¼ e(¡2)

p
2 erf(

p
2 I)

¶
e(¡

t (t¡2)
2

) ±(1 + t)
Now, since the original ODE was completely real, the velocity must also be
completely real. It can be converted to a real form using the Re (real part of)
command, assuming that t > 0. The new function er¯ is the imaginary error
function,4 which is a real function here.

> Vel:=Re(Vel) assuming t>0;

Vel :=
1

2

Ã
6 t e(

t (t¡4)
2

) + 8 e(
t (t¡4)
2

) + 5
p
¼ e(¡2)

p
2 er¯

Ãp
2 t

2
¡
p
2

!

+ 2 t2 e(
t (t¡4)
2

) ¡ 8 + 5p¼ e(¡2)
p
2 er¯(

p
2)

¶
e(¡

t (t¡2)
2

) ±(1 + t)
3De¯ned as erf(u) = 2p

¼

R u
0
e¡t

2
dt:

4De¯ned as er¯(u) = ¡I erf(I u) = 2p
¼

R u
0
et
2
dt.

3.1. FIRST-ORDER MODELS 117

Evil Knievel's velocity is plotted over the time interval t = 0 to 10 time units,
labels being added to the graph.

> plot(Vel,t=0..10,labels=["t","Vel"],tickmarks=[3,3]);

0

0.1

0.2

0.3

Vel

2 4 6 8 10
t

Figure 3.3: Evil Knievel's velocity pro¯le.

The resulting picture is shown in Figure 3.3, the velocity curve increasing from
zero to a maximum and then decreasing to zero again as t!1.

The distance traveled in the time interval t = 0 to 10 is equal to the area
under the velocity curve between these limits, this area obtained by performing

the integration
R 10
0
Vel dt. However, if the integer 10 is used, the integral will

not be evaluated. A °oating-point answer could be obtained by apply the evalf
command. An alternative way used here in Professor Nerd's answer key is to
enter the upper limit as 10.0, which forces a °oating-point evaluation of the
integral. It does not imply any increase in accuracy.

> distance:=int(Vel,t=0..10.0); #note floating point number

distance := 0:9943356328

So, Evil Knievel travels just under 1 Erehwonian spatial unit in the time interval.

PROBLEMS:
Problem 3-5: Direct solution
Solve Professor Nerd's problem directly with the dsolve command and check
that the answer is identical to that derived in the text recipe.

Problem 3-6: Di®erent drive force
The drive force in the text recipe is replaced with Fdrive = sin(t) t2 e¡t. De-
termine the velocity as a function of time and plot the result over the interval
t = 0 to 10. What is Evil Knievel's maximum velocity and at what time does
this occur? What is his maximum displacement from the origin in this interval
and at what time does this occur?

118 CHAPTER 3. LINEAR ODE MODELS

3.2 Second-Order Models

3.2.1 Daniel Encounters Resistance

Belief like any other moving body follows the path of least resistance.
Samuel Butler, English writer (1835{1902)

In the introductory recipe, recall that Richard's grandson Daniel threw a small
ball with an initial speed of 15 m/s toward a 3:5-meter-high fence located 20
meters from the ball's initial position. The ball left his hand at a height of 2
m above the level ground and just cleared the top of the fence. The gravita-
tional acceleration has the value g=9:8 m/s2. The ball was regarded as a point
particle and air resistance was neglected.

In the recipe, we determined the angle with the horizontal that the ball was
thrown, the time for the ball to reach the fence, and animated the motion of
the ball with the fence included.

In the following recipe, we shall make the above model calculation more
realistic by including the e®ect of air resistance on the ball. Provided that the
ball is smooth and its velocity ~v is not too high, the air resistance is governed by
Stokes's resistance law, the drag force taking the form ~Fdrag = ¡mk~v, where
m is the mass of the ball and the drag coe±cient k is positive.

As previously, the origin is chosen to be on the ground below the initial
position of the ball and the x-coordinate is taken to be horizontal and the
y-coordinate vertical. The plots package, needed for the animation, is loaded.

> restart: with(plots):

With air resistance included, Newton's second law of motion yields the following
ODE in the x direction.

> xeq:=diff(x(t),t,t)=-k*diff(x(t),t);

xeq :=
d2

dt2
x (t) = ¡k

μ
d

dt
x (t)

¶
Although xeq is a second-order ODE, it clearly can be reduced to a ¯rst-order
ODE by integrating both sides once, and then solved by the same \hand"
procedure used in the last recipe. However, it's quicker to solve for x(t) using
the dsolve command, subject to the initial condition x(0) = xb and _x(0) =
V cos(Á). Here xb is the initial x-coordinate of the ball, V the initial speed,
and Á the initial angle of the velocity with the horizontal. For the time being,
everything is kept symbolic, the parameter values being substituted later. After
applying the dsolve command, we take the rhs of the resulting answer, yielding
the x-coordinate of the ball at time t ¸ 0.

> x:=rhs(dsolve(fxeq,x(0)=xb,D(x)(0)=V*cos(phi)g,x(t)));

x :=
xb k + V cos(Á)

k
¡ V cos(Á) e

(¡k t)

k
Taking xf to be the x-coordinate of the fence, we ¯nd the time tf for the ball
to reach the fence by equating x to xf and solving for t.

3.2. SECOND-ORDER MODELS 119

> tf:=solve(x=xf,t);

tf := ¡
ln

μ
xb k + V cos(Á)¡ xf k

V cos(Á)

¶
k

In the y direction, the gravitational force on the ball must be included as well
as air resistance. Newton's second law yields the ODE given in yeq .

> yeq:=diff(y(t),t,t)=-k*diff(y(t),t)-g;

yeq :=
d2

dt2
y(t) = ¡k

μ
d

dt
y(t)

¶
¡ g

Solving yeq with the dsolve command, subject to the initial condition y(0) =
yb, _y(0) = V sin(Á), where yb is the ball's initial y-coordinate, and taking the
rhs, yields y.

> y:=rhs(dsolve(fyeq,y(0)=yb,D(y)(0)=V*sin(phi)g,y(t)));

y := ¡e
(¡k t) (V sin(Á) k + g)

k2
¡ g t
k
+
yb k2 + V sin(Á) k + g

k2
Evaluating y at t= tf , and equating to the fence height yf , yields the following
formidable looking transcendental equation eq for the unknown angle Á.

> eq:=eval(y,t=tf)=yf;

eq := ¡(xb k + V cos(Á)¡ xf k) (V sin(Á) k + g)
k2 V cos(Á)

+

g ln

μ
xb k + V cos(Á)¡ xf k

V cos(Á)

¶
k2

+
yb k2 + V sin(Á) k + g

k2
= yf

To solve the transcendental equation for Á, the given values xb = 0m, yb = 2m,
xf = 20m, yf = 3:5m, V = 15m/s, and g = 9:8m/s2, are entered. The drag
coe±cient is taken to be k = 0:01 s¡1.

> xb:=0: yb:=2: xf:=20: yf:=3.5: V:=15: g:=9.8: k:=0.01:

The transcendental equation must be solved numerically. This is done in the
following two command lines, two di®erent search ranges (in radians) being
speci¯ed for Á to determine the two possible angles, ©1 and ©2, at which the
ball can be thrown to just clear the fence. Making use of the ditto operator, we
convert the ¯rst angle to degrees.

> Phi[1]:=fsolve(eq,phi,0..0.8); evalf(convert(%,degrees));

©1 := 0:6696475750 38:36797980 degrees

> Phi[2]:=fsolve(eq,phi,0.8..Pi/2);

©2 := 0:9693759172

Without air resistance, it was previously found that the smaller of the two
possible angles was 37.47 degrees, about 1 degree less than the value found
above. It is left as an exercise for you to compare the values for the upper
angle, with and without air resistance.

To animate the ball, the ¯rst angle ©1 will be selected.

120 CHAPTER 3. LINEAR ODE MODELS

> phi:=Phi[1]: #select angle

In this case, the time tf to reach the fence is calculated

> tf:=evalf(tf);

tf := 1:715218642

to be about 1.72 s, slightly more than the 1.68 s without air resistance.
Setting y = 0, we determine the time T for the ball to hit the ground,

> T:=solve(y=0,t);

T := 2:090175405; ¡0:1946627301
the positive angle (¯rst solution here) being selected.

> T2:=T[1]; #choose positive time

T2 := 2:090175405

The ball hits the ground after 2.09 seconds, compared to 2.06 seconds without
air resistance.

The fence is plotted as a quite thick (default color red) line.

> fence:=plot([[xf,0],[xf,yf]],style=line,thickness=3):

Using exactly the same syntax as in the introductory recipe, the motion of the
ball is animated with the fence as background.

> animate(pointplot,[[[x,y]],symbol=circle,symbolsize=14],

t=0..T2,frames=200,background=fence,scaling=constrained);

To see this animation, execute the recipe on your computer, click on the opening
frame, and then on the start arrow in the Maple tool bar.

PROBLEMS:

Problem 3-7: Maximum drag coe±cient
With all other parameters the same as in the text recipe, what is the maximum
value of the drag coe±cient k such that the ball just clears the fence? What
are the two corresponding initial angles?

Problem 3-8: How high?
If the drag coe±cient k is equal to 0:1 s¡1, how high can the fence be for the
ball to just clear it, all other parameters the same as in the text recipe? What
are the two initial angles in this case?

Problem 3-9: A falling raindrop
For a sphere of diameter d meters moving in air, the approximate value of the
constant k in Stokes's linear resistance law, ~Fdrag = ¡k ~v newtons, is given by
k = 1:55 £ 10¡4 d. For a small spherical raindrop (density ½ = 103 kg/m3,
d = 10¡4 m) falling from rest, determine the distance through which it falls in
t seconds and its velocity then. Plot the distance and velocity separately over
a time interval t = 0 to the time at which the velocity reaches 99 percent of its
terminal (asymptotic) value.

3.2. SECOND-ORDER MODELS 121

3.2.2 Meet Mr. Laplace

The weight of evidence for an extraordinary claim must be
proportioned to its strangeness (known as the principle of Laplace).
Pierre-Simon Laplace, French mathematician (1749{1827)

Pierre-Simon Laplace was one of the most in°uential scientists in history. In-
deed, he has been referred to as the Newton of France. Not only did he make
outstanding contributions to astronomy, for example, mathematically investi-
gating the stability of the solar system, he developed probability theory as a
coherent body of knowledge from a set of miscellaneous problems, and played a
leading role in forming the modern discipline of mathematical physics. One of
his most important contributions to the latter is the Laplace transform, which
can be used to solve linear ODEs.

The Laplace transform of a function f(t) is de¯ned as

L(f(t)) ´ F (s) =
Z 1

0

f(t)e¡stdt:

By integrating by parts and assuming that e¡s tf(t) ! 0 as t ! 1, it is easy
to show that

L
³
_f(t)
´
= s F (s)¡ f(0) and L

³
Äf(t)

´
= s2 F (s)¡ s f(0)¡ _f(0):

The Laplace transform method of solving a linear ODE (system) with con-
stant coe±cients is to Laplace transform the ODE, solve the resulting algebraic
equation for F (s), and then perform the inverse Laplace transform to obtain
the solution f(t). In the era before computer algebra existed, tables of Laplace
transforms and their inverses were almost as common as integral tables, and
one of their main uses was in solving linear ODEs. With the Maple computer
algebra system, these tables are obsolete, since Maple has an integral transform
library package that includes the Laplace transform and its inverse.

The use of this package is now demonstrated in the ¯rst of the two recipes
that follow. It is desired to solve the following forced oscillator ODE for x(t):

Äx+ 4 _x+ 13x = sin(t); with x(0) = 1 and _x(0) = ¡5:

Entering the integral transform package and using a semicolon to display
its contents, we see that it contains the Laplace transform (laplace) command
and its inverse (invlaplace).

> restart: with(inttrans);

[addtable; fourier ; fouriercos ; fouriersin; hankel ; hilbert ; invfourier ;

invhilbert ; invlaplace; invmellin; laplace ; mellin; savetable]
The forced oscillator ode is entered,

> ode:=diff(x(t),t,t)+4*diff(x(t),t)+13*x(t)=sin(t);

ode :=

μ
d2

dt2
x (t)

¶
+ 4

μ
d

dt
x (t)

¶
+ 13 x(t) = sin(t)

122 CHAPTER 3. LINEAR ODE MODELS

along with the initial conditions.

> x(0):=1: D(x)(0):=-5:

The alias command is used to replace laplace(x(t); t ; s), which would otherwise
appear in the output, with the symbol F . That is to say F will be the Laplace
transform of x(t), the transformed independent variable being s.

> alias(F=laplace(x(t),t,s)):

The Laplace transform of ode is performed,

> eq:=laplace(ode,t,s);

eq := s2 F + 1¡ s+ 4 s F + 13F = 1

s2 + 1
and the algebraic equation eq solved for F .

> F:=solve(eq,F);

F :=
s (¡s+ s2 + 1)

s4 + 14 s2 + 4 s3 + 4 s+ 13
The inverse Laplace transform of F is calculated, yielding the analytic solution
(labeled X) of the forced oscillator ODE.

> X:=invlaplace(F,s,t);

X := ¡ 1

40
cos(t) +

3

40
sin(t) +

1

120
(123 cos(3 t)¡ 121 sin(3 t)) e(¡2 t)

The steps carried out above mimic a hand calculation. An easier way to derive
exactly the same form of x(t) is to use the dsolve command with the Laplace
transform option, i.e., include method=laplace.

> dsolve(fode,x(0)=1,D(x)(0)=-5g,x(t),method=laplace);

x (t) = ¡ 1

40
cos(t) +

3

40
sin(t) +

1

120
(123 cos(3 t)¡ 121 sin(3 t)) e(¡2 t)

The implementation of the Laplace transform method with Maple can be ex-
tended to systems of linear ODEs, as is demonstrated in the following problem,
a problem that is quite challenging to do by hand.

Masses m1 and m2, with equilibrium positions at x=2 and x=5, are free to
move horizontally on a smooth surface (the x-axis). The mass m1 is connected
to a ¯xed wall on its left by a linear spring (spring constant k) and on its right
to m2 with an identical spring. A driving force F =f sin(! t) acts to the right
on m2. A °uid resistance is present, given by Stokes's drag law, Fdrag=¡a v.

(a) Derive the governing ODEs for the displacements x1(t) and x2(t) of m1

and m2 from equilibrium. Taking m1 = 2, m2 = 1, k = 1, a= 1, ! = 2,
f=2, x1(0)=1, x2(0)=0, _x1(0)=0, and _x2(0)=0, solve the ODEs using
the Laplace transform option in the dsolve command.

(b) Extract the steady-state and transient parts of x1 and x2 separately and
plot them. Discuss the results.

(c) Animate the motion of m1 and m2 about their equilibrium positions over
a time interval for which the transients become small.

3.2. SECOND-ORDER MODELS 123

Loading the plots package, we use the alias command. Entering x1, x2, m1,
m2 will produce the subscripted quantities x1, x2, m1, and m2 in the output.

> restart: with(plots):

> alias(x[1]=x1,x[2]=x2,m[1]=m1,m[2]=m2):

When m2 is displaced from equilibrium by amount x2 at time t in, say, the
positive x-direction, it exerts a force on m1 through the connecting spring. If
m1 is displaced from equilibrium by amount x1(t), the force exerted on m1 by
m2 is k (x2(t) ¡ x1(t)). The spring connected to the wall will exert a force
¡k x1(t) in the opposite direction. Including damping, Newton's second law
yields the ODE ode1 governing the displacement x1(t) of m1.

> ode1:=m1*diff(x1(t),t,t)

=k*(x2(t)-x1(t))-k*x1(t)-a*diff(x1(t),t);

ode1 := m1

μ
d2

dt2
x1(t)

¶
= k (x2(t)¡ x1(t))¡ k x1(t)¡ a

μ
d

dt
x1(t)

¶
The mass m1 will exert an equal and opposite force on m2 through the connect-
ing spring, i.e., ¡k (x2(t) ¡ x1(t)). Including the damping and driving forces,
the displacement x2(t) of m2 is given by the ODE ode2 .

> ode2:=m2*diff(x2(t),t,t)

=-k*(x2(t)-x1(t))-a*diff(x2(t),t)+f*sin(omega*t);

ode2 := m2

μ
d2

dt2
x2(t)

¶
= ¡k (x2(t)¡ x1(t))¡ a

μ
d

dt
x2(t)

¶
+ f sin(! t)

One has a system of two coupled, linear, second-order, inhomogeneous ODEs.
To solve them, let's ¯rst enter the given parameter values,

> m1:=2: m2:=1: k:=1: a:=1: omega:=2: f:=2:

and the initial conditions.

> ic:=x1(0)=1,x2(0)=0,D(x1)(0)=0,D(x2)(0)=0:

The set of ODEs is analytically solved for x1(t) and x2(t), subject to the ini-
tial conditions, using the dsolve command with the Laplace transform option.
The same answer could be obtained by mimicking the hand calculation in the
previous example. This is left as a problem.

> sol:=dsolve(fode1,ode2,icg,fx1(t),x2(t)g,method=laplace);

sol := fx1(t) =
36

493
cos(2 t) +

26

493
sin(2 t)

¡ 1

194242
(
X
®=%1

(56380 + 339955 ®+ 193087 ®2 + 188250 ®3) e(® t))g;

fx2(t) = ¡
164

493
cos(2 t)¡ 228

493
sin(2 t)

¡ 1

194242
(
X
®=%1

(107923 + 533529 ®+ 249954 ®2 + 293736 ®3) e(® t))g

%1 := RootOf(2 Z 4 + 3 Z 3 + 5 Z 2 + 3 Z + 1)

124 CHAPTER 3. LINEAR ODE MODELS

The sine and cosine terms in the solution survive as t ! 1 and represent
the steady-state parts, while the exponential terms decay to zero and thus
correspond to the transient parts of the solution. The summation is over the four
roots of the quartic polynomial given in the subexpression %1. To manipulate
the solution further, it is now assigned.

> assign(sol):

Using the remove command, the exponential terms are removed from x1(t) and
x2(t) to yield the steady-state parts, x1ss and x2ss , separately.

> x1ss:=remove(has,x1(t),exp); x2ss:=remove(has,x2(t),exp);

x1ss :=
36

493
cos(2 t) +

26

493
sin(2 t) x2ss := ¡164

493
cos(2 t)¡ 228

493
sin(2 t)

The select command is used to extract the exponential terms from x1(t) and
x2(t), thus producing the transient parts separately.

> x1tr:=select(has,x1(t),exp): x2tr:=select(has,x2(t),exp):

Because the roots of a quartic polynomial must be found, the numerical °oating-
point evaluation command is applied to each of the transient parts. The com-
plex evaluation command is then used to simplify the outputs, which are given
by x1tr and x2tr .

> x1tr:=evalc(evalf(x1tr)); x2tr:=evalc(evalf(x2tr));

x1tr := 0:5591296681 e(¡0:3923340189 t) cos(0:3903466128 t)

+ 0:9914981558 e(¡0:3923340189 t) sin(0:3903466128 t)

+ 0:3678480196 e(¡0:3576659811 t) cos(1:226572647 t)

¡ 0:1154210539 e(¡0:3576659811 t) sin(1:226572647 t)

x2tr := 0:6802842310 e(¡0:3923340189 t) cos(0:3903466128 t)

+ 1:721342502 e(¡0:3923340189 t) sin(0:3903466128 t)

¡ 0:3476270302 e(¡0:3576659811 t) cos(1:226572647 t)
+ 0:3225193055 e(¡0:3576659811 t) sin(1:226572647 t)

You might have thought our earlier identi¯cation of the exponential terms as
the transient contribution a bit premature, but now one can clearly see that
they decay to zero as t goes to in¯nity.

The steady-state and transient contributions are now plotted separately.
Lists are used here so that the steady-state and transient parts of x1(t) are
colored red on the computer screen, while the corresponding parts for x2(t) are
colored blue.

> plot([x1ss,x2ss],t=0..20,color=[red,blue],tickmarks=[3,4]);

> plot([x1tr,x2tr],t=0..20,color=[red,blue],tickmarks=[3,4]);

The black-and-white versions of the two pictures are shown in Figure 3.4, the
steady-state contributions on the left, the transient contributions on the right.

3.2. SECOND-ORDER MODELS 125

–0.4

–0.2

0

0.2

0.4

10 t 20

0

0.2

0.4

0.6

0.8

1

10 t 20

Figure 3.4: Steady-state (left) and transient (right) contributions.

In the steady-state picture, the shorter of the two oscillatory curves corresponds
to x1(t), the taller one to x2(t). The motion of mass m1 is approximately 180
degrees out of phase with m2. The period of oscillation of both masses is
identical with that of the driving force.

In the transient picture, the curve that rises above 1 is x2(t). Both curves
decay to essentially zero in less than 20 time units.

To animate the solution, the complete (steady-state plus transient) time-
dependent displacements are added to the given equilibrium coordinates.

> X1:=2+x1ss+x1tr: X2:=5+x2ss+x2tr:

The motion of the two masses is now animated, each mass being represented
by a size-10 (default color red) circle. To produce motion along the horizontal
axis, the horizontal coordinate of each mass is entered in a list with the vertical
coordinate set equal to zero. The time range is such that the transient parts
vanish, revealing the steady-state motion. You can take a larger time interval
if you desire. To obtain a smooth animation, 200 frames are used.

> animate(f[X1,0],[X2,0]g,t=0..20,frames=200,style=point,
symbol=circle,symbolsize=20,tickmarks=[3,2]);

Execute the command on your computer to see the animated motion.

PROBLEMS:
Problem 3-10: Hand calculation
Making use of the integral transform package, mimic a hand calculation to
derive the solution for the second example.

Problem 3-11: Transform package approach
Use the integral transform package and the Laplace transform method to solve
the following ODEs. Con¯rm the solutions using the method= laplace option
in the dsolve command. Plot each solution over a suitable time range that
includes the steady-state regime. Extract the transient part of the solution and

126 CHAPTER 3. LINEAR ODE MODELS

estimate the time interval over which it lasts.

(a) _y + 5 y = cos(t) + e¡t; y(0) = 1;

(b) Äy ¡ 5 _y + 6 y = 0; y(0) = 2; _y(0) = 5;

(c) 9 Äy + 6 _y + y = 5; y(0) = 6; _y(0) = 1;

(d) 5 Äy + 2 _y + y = sin2(t); y(0) = ¡3; _y(0) = 1;
(e) _x = ¡4 x+ y + 3; _y = ¡4 x¡ 4 y + 5; x(0) = 1; y(0) = ¡1;
(f) Äy + _y = 2 cos4(t) e¡t; y(0) = 0; _y(0) = ¡2;
(g) Äy + 2 _y = t cos(t) e¡t + t2 cos(2 t) e¡2 t; y(0) = 0; _y(0) = 0.

3.2.3 Jennifer's Formidable Series

Isn't life a series of images that change as they repeat themselves?
Andy Warhol, American pop artist (1928{1987)

Jennifer is currently teaching a course on ordinary di®erential equations at
MIT. As part of an assignment, she has assigned the following problem to be
done with the Maple computer algebra system.

Consider the following second-order linear ODE with variable coe±cients,

2x y 00(x) + (1¡ 2x) y 0(x)¡ x2 y(x) = 0; y(0) = 1; y 0(0) = 0:

(a) Show that Maple is unable to produce a closed-form analytic solution.

(b) Derive a procedure for numerically determining y(x) and y 0(x) at an ar-
bitrary x value. Evaluate y and y 0 at X = 4.

(c) Derive a series solution for y(x), keeping su±cient terms to achieve 1%
agreement with the numerical answer at X.

(d) Plot the series derived in part (c) and the numerical solution together in
the same ¯gure over the range x = 0 to X .

Vectoria, who is in Jennifer's class, has submitted the following recipe to solve
the problem. In order to have the ODE appear on the computer screen in the
prime notation used in the problem wording, she loads the PDEtools package,
which contains the declare command for achieving this notation.

> restart: with(plots): with(PDEtools):

As indicated by the output, the following declare command will cause y(x) to
be displayed as y and introduce primes for the derivatives with respect to x.

> declare(y(x),prime=x):

y(x)will now be displayed as y

derivatives with respect to x of functions of one variable

will now be displayed with 0

3.2. SECOND-ORDER MODELS 127

On entering the given di®erential equation, Vectoria observes that the output
in de is expressed in terms of the prime notation.

> de:=2*x*diff(y(x),x,x)+(1-2*x)*diff(y(x),x)-x^2*y(x)=0;

de := 2 x y 00 + (1¡ 2x) y 0 ¡ x2 y = 0
The initial condition is speci¯ed, as well as the value of X and a parameter d
that will control the spacing of the numerical points in the graph.

> ic:=y(0)=1,D(y)(0)=0: X:=4: d:=8:

Using dsolve, an attempt is made to analytically solve de for y(x).

> dsolve(fde,icg,y(x)); #no analytic solution
No output is generated, Maple being unable to provide an analytic answer. Al-
though she has now omitted it, Vectoria had included infolevel[dsolve]:=5;
prior to the dsolve command. On doing so she was able to view a very lengthy
list of unsuccessful ODE solving methods tried by Maple. If you wish to see
these attempts, include the above infolevel command.

To generate a procedure for numerically evaluating y and y 0 at arbitrary x,
Vectoria includes the numeric option in dsolve and requests that the output
be given as a \list procedure."

> numsol:=dsolve(fde,icg,y(x),numeric,output=listprocedure);

numsol := [x = (proc(x) : : : end proc); y = (proc(x) : : : end proc);

y 0 = (proc(x) : : : end proc)]
Evaluating y(x) with the numsol procedure will generate a numerical answer
for y at x when the value of x is supplied as the argument of Ynum de¯ned
below. Then, entering Ynum(X) gives the numerical value of y at X (4, here),
the answer being given to 18 digits, more than the \normal" 10-digit accuracy.

> Ynum:=eval(y(x),numsol): Ynum(X);

41:1065491999371986

Thus, y ¼ 41 at x = X = 4. A similar command structure is used to numerically
evaluate the derivative of y, yielding y 0 ¼ 76 at X.

> Ynumder:=eval(diff(y(x),x),numsol): Ynumder(X);

75:6306643796735756

Vectoria will use a do loop to systematically calculate series solutions of de as
a function of the order n, terms of order xn and larger being neglected. The
do loop will include a conditional statement that will terminate the loop when
the absolute percentage di®erence j100 (ynum(X)¡yseries(X))=ynum(X)j drops
below one percent. As a \seed number" to implement the conditional statement,
she calculates the absolute percentage di®erence between the starting value of
y(0) = 1 and the numerical value of y at x = X = 4.

> percent[0]:=abs(evalf(100*(Ynum(X)-1)/Ynum(X))); #seed

percent0 := 97:56729762

The do loop runs from 1 to 50, the number 50 being chosen to be large enough
to achieve a percentage error below one percent. The loop will calculate the

128 CHAPTER 3. LINEAR ODE MODELS

series solution to order n as long as the percentage error in the previous order
is above 1 percent.

> for n from 1 to 50 while percent[n-1]>1 do

The order of the series is taken to be n. The error in the series is of order xn,
terms of this order and larger being neglected. If the order is not speci¯ed, the
default order is 6.

> Order:=n:

The di®erential equation is solved for y(x), subject to the initial condition,
with the series option included. The dsolve command uses several methods
when trying to ¯nd a series solution to an ODE or ODE system. When initial
conditions are given, such as in this problem, the series is calculated at the
given point. Otherwise, the series is calculated at the origin. The ¯rst method
used is a Newton iteration, the second involves a direct substitution to generate
a system of equations which must be solved, while the third is the method of
Frobenius discussed in standard ODE texts. Useful references may be found by
entering the topic dsolve,series in Maple's Topic Search.

> sol[n]:=dsolve(fde,icg,y(x),'series');
To remove the \order of" term that appears in the output of the last command
line, the convert(,polynom) command is applied to the right-hand side of the
nth order solution. The largest term in the series for Yn is x

n¡1.

> Y[n]:=convert(rhs(sol[n]),polynom);

The absolute percentage error at x = X is calculated for each order,

> percent[n]:=abs(evalf(100*(Ynum(X)-eval(Y[n],x=X))/Ynum(X)));

and the do loop ended with a colon to suppress the lengthy output.

> end do:

The loop stops at N = n ¡ 1, in this case order 17, for which the percentage
error (to 3 digits) is 0.696 percent. As you can check by either replacing the
colon with a semicolon in the do loop or taking N = n¡2, the percentage error
in order 16 is 1.31 percent. Order 17 is the ¯rst order for which the percentage
error drops below one percent. The corresponding polynomial representation
of the solution is given by Y17.

> N:=n-1; evalf(percent[N],3)*percent; Y[N]:=Y[N];

N := 17 0:696 percent

Y17 := 1 +
1

15
x3 +

1

70
x4 +

4

1575
x5 +

29

20790
x6 +

43

126126
x7 +

61

1001000
x8

+
16013

1033782750
x9 +

498307

152770117500
x10 +

7710323

14115958857000
x11

+
2117887

21250934424720
x12 +

96270661

5534097506437500
x13 +

121568353967

46021554863534250000
x14

+
1141494706493

2859910909376771250000
x15 +

2799853112879

47283860368362618000000
x16

3.2. SECOND-ORDER MODELS 129

Using the sequence command, we graph the numerical solution from x= 0 to
X in steps of size 1=d. Each numerical point is plotted as a size-16 blue circle.

> gr1:=plot([seq([i/d,Ynum(i/d)],i=0..d*X)],style=point,

symbol=circle,symbolsize=16,color=blue):

The series solution is plotted as a solid thick curve over the same range of x,

> gr2:=plot(Y[N],x=0..X,thickness=2):

and the two graphs superimposed to produce Figure 3.5.

> display(fgr1,gr2g,labels=["x","y"]);

10

20

30

40

y

0 1 2 3 4x

Figure 3.5: Comparison of numerical (circles) and series (curve) solutions.

Of course, because of the imposition of the conditional statement, the ¯t of the
series solution to the numerical points is very good.

Vectoria hopes that Jennifer will like her solution to this problem. By
modifying Vectoria's recipe, you should be able to solve the following problems,
which also appeared on Jennifer's assignment.

PROBLEMS:

Problem 3-12: What's special about this ODE?
Consider the following linear second-order ODE:

x y 00(x) + y 0(x) + x y(x) = 0; y(0) = 1; y 0(0) = 0:

(a) Show that Maple is able to produce a closed-form analytic solution. Iden-
tify the ODE and the \special" function that appears in the solution.

(b) Derive a series solution for y(x), keeping su±cient terms to achieve 1%
agreement with the analytic answer at x = X = 10.

(c) Plot the series derived in part (b) and the analytic solution together in the
same ¯gure over the range x = 0 to X, representing the analytic answer
by appropriately sized and spaced circles.

130 CHAPTER 3. LINEAR ODE MODELS

Problem 3-13: Another ODE
Consider the following linear second-order ODE:

x y 00(x) + 2 y 0(x) + x y(x) = 0; y(0) = 1; y 0(0) = 0:

(a) Show that Maple is able to produce a closed-form analytic solution.

(b) Derive a series solution for y(x), keeping su±cient terms to achieve 1%
agreement with the analytic answer at x = X = 20.

(c) Plot the series derived in part (b) and the analytic solution together in the
same ¯gure over the range x = 0 to X, representing the analytic answer
by appropriately sized and spaced circles.

Problem 3-14: Variation on the text problem
Carry out the same steps as in Jennifer's text problem for the ODE

y 00(x)¡ x y 0(x)¡ 1 = 0; y(0) = 1; y 0(0) = 0:

3.3 Special Function Models

Many boundary-value problems of mathematical physics lead to variable-coe±cient
ODEs of the Sturm{Liouville (S{L) form,

d

dx

·
p(x)

dy(x)

dx

¸
¡ q(x) y(x) = ¡¸w(x) y(x); (3.2)

where p(x), q(x), and w(x) are real functions of the spatial variable x, ¸ is a
real constant, and certain conditions on y and its ¯rst derivative are speci¯ed
at the boundaries. Often the only solution to such a problem is the trivial
solution y(x) = 0, but for special values (called the eigenvalues) ¸1, ¸2, : : : of
¸, nontrivial solutions (called the eigenfunctions) y1, y2, : : : can occur.

For certain choices of the functions p(x), q(x), w(x), and ¸, the well-known
Bessel, Legendre, Hermite, Chebyshev, Mathieu, etc., ODEs result. The solu-
tions of these ODEs, which take the form of in¯nite series or ¯nite polynomials
in x, have been historically labeled as special functions, to distinguish them
from such ordinary functions as the sine, cosine, log, and exponential functions.

Special-function solutions can also occur for initial-value problems with x
replaced with the time t. The systematic study of the S{L ODE and special
functions and their properties is beyond the scope of this text. The interested
reader is referred to standard mathematical texts (e.g., [MW71], [Boa83]) for
the theoretical aspects and to [Enn05] for recipes on applications. Here, we shall
be content to introduce two of the more famous members of the S{L family and
then look at two special-function models.

3.3. SPECIAL FUNCTION MODELS 131

3.3.1 Jennifer Introduces a Special Family

\That's a great deal to make one word mean," Alice said in a
thoughtful tone. \When I make a word do a lot of work like that,"
said Humpty Dumpty, \I always pay it extra."
Lewis Carroll, Through the Looking Glass, 1872

Although we shall not emulate Humpty Dumpty and pay the word \special"
extra for making it work so hard in this section, we would tell Alice, if she were
here, that the phrase \special" function does encompass a great many functions
with their associated mathematical properties. The Handbook of Mathemati-
cal Functions by Abramowitz and Stegun [AS72], for example, contains over
1000 pages dealing with the properties of special functions. This handbook,
produced by the U.S. National Bureau of Standards, is one of the standard
reference books for these functions and has been reprinted many times since it
was ¯rst issued.

We have asked our MIT mathematician friend Jennifer to introduce two of
the more prominent members of this special family of functions.

Letting the letter L stand for ¸, Jennifer forms a functional operator SL for
generating speci¯c cases of the Sturm{Liouville ODE when the forms of p, q,
w, and L are supplied as arguments.

> restart: with(plots):

> SL:=(p,q,w,L)->diff(p*diff(y(x),x),x)-q*y(x)=-L*w*y(x);

SL := (p; q; w; L)!
μ
d

dx

μ
p

μ
d

dx
y(x)

¶¶¶
¡ q y(x) = ¡Lw y(x)

A second functional operator sol is introduced to provide the general analytic
solution y(x) of a speci¯ed ODE.

> sol:=ode->dsolve(ode,y(x)):

Now Jennifer will make two choices for p, q, w, and L that lead to probably
the best-known two members of the family of special functions. Taking p = x,
q = ¡x, w = 1=x, and L = ¡m2 as arguments in the Sturm{Liouville operator
produces ode1 .

> ode1:=SL(x,-x,1/x,-m^2);

ode1 :=

μ
d

dx
y(x)

¶
+ x

μ
d2

dx2
y(x)

¶
+ x y(x) =

m2 y(x)

x
To illustrate that Maple is able to identify this ODE, Jennifer loads the DEtools
package and applies the odeadvisor command to ode1 .

> with(DEtools): odeadvisor(ode1);

[Bessel]

So, ode1 is Bessel's di®erential equation, whose general solution y(x)

> sol(ode1);

y(x) = C1 BesselJ(m; x) + C2 BesselY(m; x)

132 CHAPTER 3. LINEAR ODE MODELS

is a linear combination of a Bessel function of the ¯rst kind (BesselJ(m; x)) and
of the second kind (BesselY(m; x)), with C1 and C2 arbitrary constants. In
traditional mathematical notation, the Bessel functions are written as Jm(x)
and Ym(x), m being referred to as the order of the Bessel function. Highlighting
BesselJ(m; x) or BesselY(m; x) on the computer screen will open a Help page
with some (but not much) information about these special functions.

If you wish to know what other special functions are known to Maple, exe-
cute the following inifcns (initially known mathematical functions) command
line and use the hyperlinks provided in the lengthy list of functions. Remember
to close the Help page when you're done.

> ?inifcns;

The Bessel functions are actually in¯nite Frobenius power series solutions of
the Bessel ODE, i.e., a series expansion about x = 0 is sought of the form
y(x) =

P1
m=0 cm x

m+s. The allowed values of the index s and the forms of the
coe±cients cm are determined5 by substituting y(x) into the Bessel ODE.

The series command can be used to obtain the form of the Frobenius series.
For example, since the most commonly occurring order in physical problems
involves positive-integer values of m, Jennifer calculates the Frobenius series of
Jm(x) for m = 0 to 2, terms of order x8 and higher being omitted here.

> seq(J[m]=series(BesselJ(m,x),x=0,8),m=0..2);

J0 = 1¡
1

4
x2 +

1

64
x4 ¡ 1

2304
x6 +O(x8);

J1 =
1

2
x¡ 1

16
x3 +

1

384
x5 ¡ 1

18432
x7 +O(x8);

J2 =
1

8
x2 ¡ 1

96
x4 +

1

3072
x6 +O(x8)

Note that at x = 0, we have J0 = 1 and J1 = J2 = 0. As is easily con¯rmed by
increasing the range of m in the seq command, Jm(0) = 0 for m = 3; 4 : : :

Looking at the above truncated series does not convey much of an idea of
the shapes of J0(x), J1(x), and J2(x). Jennifer will now plot these functions
and attach appropriate identifying labels to each curve. First, in the graph gr1
she plots Jm(x) over the range x = 0 to 20 for m = 0 to 2.

> gr1:=plot(fseq(BesselJ(m,x),m=0..2)g,x=0..20,thickness=2):
She uses the textplot command in gr2 to place appropriate labels on the
Bessel function curves. The horizontal and vertical coordinates of the names
(entered as strings) were determined by observing the picture generated by gr1.

> gr2:=textplot([[1.5,0.9,"J0"],[3,0.6,"J1"],[5,0.4,"J2"]]):

The two graphs are superimposed to yield Figure 3.6.

> display(fgr1,gr2g,tickmarks=[2,2]);
The Jm(x) are oscillatory with amplitudes that decrease with increasing x.
Unlike sin(x) or cos(x), the Jm(x) do not cross the horizontal axis at equal

5A recipe is given in Computer Algebra Recipes for Mathematical Physics [Enn05].

3.3. SPECIAL FUNCTION MODELS 133

J2

J1

J0

0

1

10 20x

Figure 3.6: Bessel functions of the ¯rst kind of order 0, 1, and 2.

intervals of x. The zeros of a particular Bessel function, for example J2, can be
approximately determined by clicking the mouse on the computer screen plot
with the cursor placed at the location of a zero. The coordinates of the cursor
are displayed in a small window at the top left of the computer screen. More-
accurate values of the Bessel J2 zeros can be determined with the BesselJZeros
command. The ¯rst six zeros are now determined to 4-digit accuracy.

> Zeros:=evalf(BesselJZeros(2,0..5),4);

Zeros := 0; 5:136; 8:417; 11:62; 14:80; 17:96

What do the integer-order Bessel functions of the second look like? Jennifer ¯rst
examines the analytic forms of the Frobenius series for Y0(x), Y1(x), and Y2(x),
terms of order x8 and higher again being omitted. Because the expressions are
lengthy, only Y0 is shown here in the text.

> seq(Y[m]=series(BesselY(m,x),x=0,8),m=0..2);

Y0 = (
2 (¡ln(2) + ln(x))

¼
+
2 °

¼
) +

0
B@¡1

2

¡ln(2) + ln(x)
¼

¡
¡1
2
+
°

2
¼

1
CA x2

+

0
B@¡

3

64
¡ °

32
¼

+
1

32

¡ln(2) + ln(x)
¼

1
CA x4

+

0
B@¡¡

11

6912
+

°

1152
¼

¡ 1

1152

¡ln(2) + ln(x)
¼

1
CA x6 +O(x8)

The constant ° in the above output is the Euler{Mascheroni constant. It is

134 CHAPTER 3. LINEAR ODE MODELS

de¯ned as

° = lim
n!1

Ã
nX
i=1

1

i
¡ ln(n)

!
¼ 0:5772157:

Because of the ln(x) terms, Y0(x) diverges to ¡1 at x = 0. A similar behavior
occurs for Y1(x), Y2(x), etc. Because of this divergence, positive integer-order
Bessel functions of the second kind are rejected in physical problems (where
they often occur) in regions that include the origin.

Again the truncated series do not reveal the shapes of Y0(x), Y1(x), etc.
In the next three command lines, Jennifer plots Ym(x) over the range x = 0
to 20 for m = 0; 1; 2 and adds identifying labels to the curves. Note that in
the display command, she limits the vertical range of the ¯nal ¯gure to be
between ¡1 and +1 so the oscillations are clearly seen.

> gr3:=plot(fseq(BesselY(m,x),m=0..2)g,x=0..20,thickness=2):
> gr4:=textplot([[2,.65,"Y0"],[3.7,.55,"Y1"],[6,.4,"Y2"]]):

> display(fgr3,gr4g,view=[0..20,-1..1],tickmarks=[2,2]);

Y2
Y1

Y0

–1

0

1

10 20x

Figure 3.7: Bessel functions of the second kind of order 0, 1, and 2.

The Bessel functions Y0(x), Y1(x), and Y2(x) are shown in Figure 3.7. As with
the Bessel functions of the ¯rst kind, the zeros are not evenly spaced along the
x-axis. Their locations can be determined with the fsolve command.

As a second example of a special-function solution to a S{L ODE, Jennifer
takes p = 1 ¡ x2, q = 0, w = 1, and L = n (n + 1) as arguments in the
Sturm{Liouville functional operator and then derives the general solution.

> ode2:=SL(1-x^2,0,1,n*(n+1)); sol(ode2);

ode2 := ¡2 x
μ
d

dx
y(x)

¶
+ (1¡ x2)

μ
d2

dx2
y(x)

¶
= ¡n (n+ 1) y(x)

y(x) = C1 LegendreP(n; x) + C2 LegendreQ(n; x)

3.3. SPECIAL FUNCTION MODELS 135

The general solution y(x) is a linear combination of a Legendre function of
the ¯rst kind (LegendreP(n; x)) and of the second kind (LegendreQ(n; x)), n
indicating the order. In problems of physical interest, n often takes on positive-
integer values, the Legendre functions of the ¯rst kind then being ¯nite poly-
nomials, denoted by the symbol Pn(x), with x ranging

6 from x = ¡1 to +1.
Jennifer now derives the ¯rst few Legendre polynomials,

> polynomials:=seq(P[n]=simplify(LegendreP(n,x)),n=0..4);

polynomials := P0 = 1; P1 = x; P2 =
3x2

2
¡ 1
2
; P3 =

5

2
x3 ¡ 3

2
x;

P4 =
35

8
x4 ¡ 15

4
x2 +

3

8
and plots them with identifying labels added to the curves.

> gr5:=plot(fseq(LegendreP(n,x),n=0..4)g,x=-1..1,thickness=2):
> gr6:=textplot([[.3,.9,"P0"],[.5,.65,"P1"],[.2,-.55,"P2"],

[-.5,.55,"P3"],[.15,.45,"P4"]]):

> display(fgr5,gr6g,tickmarks=[2,3]);

P4
P3

P2

P1

P0

–1

1

–1 1
x

Figure 3.8: The Legendre polynomials Pm(x) for m = 0 to 4.

The Legendre polynomials are shown in Figure 3.8. They take on the values
¡1 and +1 at the ends of the range.

What do the Legendre functions of the second kind look like? For physical
problems where x varies from ¡1 to +1, the following environment command
line must be entered to pick out the correct solution branch.

> _EnvLegendreCut:=1..infinity:

The analytic forms of Qm(x) are then calculated for m = 0, 1, and 2.

> seq(Q[m]=simplify(LegendreQ(m,x)),m=0..2);

6The variable x can be the cosine of a polar angle, whose range is from 0 to ¼ radians. So
x = cos μ varies from ¡1 to +1.

136 CHAPTER 3. LINEAR ODE MODELS

Q0 =
1

2
ln(x+ 1)¡ 1

2
ln(1¡ x); Q1 =

1

2
x ln(x+ 1)¡ 1

2
x ln(1¡ x)¡ 1;

Q2 = ¡
1

4
ln(x+ 1) +

1

4
ln(1¡ x) + 3

4
x2 ln(x+ 1)¡ 3

4
x2 ln(1¡ x)¡ 3x

2

The Qm(x) form equal to zero or a positive integer diverge to in¯nity at x = ¡1
and +1 and must therefore be rejected as being unphysical.

PROBLEMS:
Problem 3-15: A Sturm{Liouville equation
Show that the following ODE is of the Sturm{Liouville form:

y00(x)¡ 2 x y0(x) + 2ny(x) = 0:
Determine the general solution of this ODE and plot the included special func-
tions over a suitable range of the independent variable x.

Problem 3-16: Recurrence Formula
Bessel functions of di®erent orders can be related through recurrence relations.
Use Maple to prove the following Bessel function recurrence relations.

² Jm¡1(x) + Jm+1(x) = (2m=x) Jm(x);

² 4 d
2Jm(x)
dx2

= Jm+2(x)¡ 2Jm(x) + Jm¡2(x).

Problem 3-17: Bessel function solutions
Find the general solution of each of the following ODEs in terms of Bessel
functions and identify the order. Identify any other new functions that occur.

(a) y00(x) + y(x)=
p
x = 0;

(b) y00(x) + x y(x) = 0, Hint: Use convert(,Bessel);

(c) d2

dx2

μ
x
16
5
d2y
dx2

¶
¡ x

8
5 y(x) = 0;

Problem 3-18: Orthogonality
An important general property that all solutions yn(x) of the Sturm{Liouville
equation corresponding to a given ¸n possess is orthogonality. Provided that
y(x) or y 0(x) or p(x) vanishes at the endpoints a and b of the range (referred
to as Sturm{Liouville boundary conditions), thenZ b

a

w(x) ym(x) yn(x) dx = 0; for m6= n; (3.3)

where w(x) is referred to as the weight function. Con¯rm the orthogonality
property for Legendre functions of the second kind of orders 2 and 3 over the
range x = ¡1 to +1. Which of the possible Sturm{Liouville boundary condi-
tions is satis¯ed?

3.3. SPECIAL FUNCTION MODELS 137

3.3.2 The Vibrating Bungee Cord

Wisdom consists in being able to distinguish among dangers
and make a choice of the least harmful.
Niccolμo Machiavelli, from The Prince (1469{1527)

While on vacation in Rainbow County, Jennifer is nervously watching her sis-
ter Heather getting ready to bungee jump from an abandoned railway bridge
spanning a deep gorge. At present, the uniform elastic bungee cord has no one
attached to its lower end, but is simply hanging vertically downward and dis-
playing small vibrations transverse to its length. This reminds Jennifer that the
famous mathematician Daniel Bernoulli ¯rst studied this vibrational problem
nearly 300 years ago, and was able to solve it. To put a modern spin on an old
problem, Jennifer recently showed her mathematical physics class a computer
algebra derivation of the solution.

With Jennifer's permission, we shall now reproduce her treatment. To aid
in understanding the physics of the problem, a free-body diagram is shown in
Figure 3.9, which shows the relevant forces on the bungee cord and introduces
the notation that will be used.

y

y+dy

y,t y+dy,t

ds

y+dy

y θ

ψ

ψ

ψ

T

T ()

() ()

()

dy

d

Figure 3.9: Free-body diagram for a segment of vibrating bungee cord.

Jennifer begins her recipe by loading the plots and plottools library pack-
ages, which will be needed for the animation of the transverse vibrations of the
vertical cord.

138 CHAPTER 3. LINEAR ODE MODELS

> restart: with(plots): with(plottools):

Measuring y vertically downward, the origin y = 0 is chosen to be at the top
end of the bungee cord (length L) where it is attached to the bridge. If the cord
has a mass density ² per unit length, and g is the acceleration due to gravity,
the tension T in the cord is given by T = ² g (L¡ y), which is entered.

> T:=epsilon*g*(L-y);

T := ² g (L¡ y)
At the top end (y = 0), the cord has a tension T = ² g L, because the cord must
support its entire weight. At the bottom end, y = L and the tension is zero.

The cord is now allowed to undergo a small transverse displacement dÃ(y; t)
at time t from the equilibrium position. The above expression for T will still
be valid. To understand this, consider the cord segment of arc length

ds =
p
(dy)2 + (dÃ)2 =

p
1 + (dÃ=dy)2 dy

shown in Figure 3.9. Letting μ be the angle with the vertical, and noting that
the forces still balance in the y-direction, then

(T cos μ)y ¡ (T cos μ)y+dy = (² ds) g; (3.4)

with cos μ = dy=ds. Assuming that dÃ=dy ¿ 1, one has ds ¼ dy and cos μ ¼ 1,
so the vertical force equation (3.4) reduces to

T (y)¡ T (y + dy) = (² dy) g: (3.5)

Taylor expanding the left-hand side of (3.5) to the ¯rst power in dy, and dividing
both sides by dy, yields @T=@y = ¡² g. The expression T = ² g (L ¡ y) follows
on integrating and evaluating the constant at y = 0.

In the Ã-direction, Newton's second law yields

(T sin μ)y+dy ¡ (T sin μ)y = (² ds)
@2Ã

@t2
(3.6)

with sin μ = dÃ=ds. For dÃ=dy ¿ 1, sin μ ¼ @Ã=@y, partial derivatives being
used because one also has time as an independent variable. So (3.6) becomesμ

T (y)
@Ã

@y

¶
y+dy

¡
μ
T (y)

@Ã

@y

¶
y

= (² dy)
@2Ã

@t2
; (3.7)

or, on Taylor expanding the left-hand side for small dy, dividing by dy, and
taking the limit dy ! 0,

@

@y

μ
T (y)

@Ã

@y

¶
= ²

@2Ã

@t2
: (3.8)

This equation of motion is now entered,

> eq:=diff(T*diff(psi(y,t),y),y)=epsilon*diff(psi(y,t),t,t);

eq := ¡² g
μ
@

@y
Ã(y; t)

¶
+ ² g (L¡ y)

μ
@2

@y2
Ã(y; t)

¶
= ²

μ
@2

@t2
Ã(y; t)

¶

3.3. SPECIAL FUNCTION MODELS 139

the expression for the tension being automatically substituted.
The equation of motion is a linear partial di®erential equation. Solving linear

PDEs is the subject matter of Chapters 5 and 6. The PDE may be converted
into an ODE by assuming a solution of the form Ã(y; t) = X(y) cos(! t), with
! taken to be a positive angular frequency.

> psi(y,t):=X(y)*cos(omega*t);

Ã(y; t) := X (y) cos(! t)

With the assumed solution automatically substituted, the resulting output of
eq is divided by cos(! t) and expanded to produce the ODE eq2 .

> eq2:=expand(eq/cos(omega*t));

eq2 := ¡² g
μ
d

dy
X (y)

¶
+ ² g

μ
d2

dy2
X (y)

¶
L¡ ² g

μ
d2

dy2
X (y)

¶
y = ¡²X (y)!2

The second derivative terms are collected in eq2 ,

> eq3:=collect(eq2,diff(X(y),y,y));

eq3 := (² g L¡ ² g y)
μ
d2

dy2
X (y)

¶
¡ ² g

μ
d

dy
X (y)

¶
= ¡²X (y)!2

and a general analytic solution to eq3 obtained.

> sol:=dsolve(eq3,X(y));

sol := X (y) = C1 BesselJ

μ
0; 2

r
L¡ y
g

!

¶
+ C2 BesselY

μ
0; 2

r
L¡ y
g

!

¶
The general solution is a linear combination of zeroth-order Bessel functions of
the ¯rst and second kinds with arbitrary constants C1 and C2 . The Bessel
Y0 function diverges to ¡1 at y = L so must be removed on physical grounds.

> X:=remove(has,rhs(sol),BesselY);

X := C1 BesselJ

μ
0; 2

r
L¡ y
g

!

¶
To remove the arbitrary constant C1 , the op command is used to select the
second operand in X.

> X:=op(2,X);

X := BesselJ

μ
0; 2

r
L¡ y
g

!

¶
Taking the bungee cord length to be L = 30 meters, its density ² = 1

2
kilo-

gram/meter, and g = 9:8 meter/second2, the form of X is as follows:

> L:=30: g:=9.8: epsilon:=1/2: X:=X;

X := BesselJ(0; 2
p
3:061224489¡ 0:1020408163 y !)

The transverse displacement X of the cord at y = 0 is zero, which is entered as
a boundary condition, bc.

> bc:=eval(X,y=0)=0;

bc := BesselJ(0; 3:499271060!) = 0

140 CHAPTER 3. LINEAR ODE MODELS

The boundary condition implies that there are certain allowed frequencies (eigen-
frequencies) ! of vibration, each frequency corresponding to a possible normal
mode solution. A general transverse motion of the cord will involve a linear com-
bination of normal modes, the combination depending on the initial conditions
imposed on the cord.

The eigenfrequencies will now be determined. First, the op command is
used to extract the ¯rst element of the second argument on the lhs of bc.

> c:=op([2,1],lhs(bc));

c := 3:499271060

Using the BesselJZeros command, the ¯rst 10 eigenfrequencies are numerically
evaluated, and assigned.

> freq:=seq(omega[n]=evalf(BesselJZeros(0,n)/c),n=1..10);

freq := !1 = 0:6872361462; !2 = 1:577493717; !3 = 2:473008739;

!4 = 3:369711645; !5 = 4:266865142; !6 = 5:164236682;

!7 = 6:061730076; !8 = 6:959298411; !9 = 7:856916100;

!10 = 8:754568007
> assign(freq):

A functional operator for creating the nth normal mode, with the time depen-
dence included, is formed.

> mode:=n->eval(X,omega=omega[n])*cos(omega[n]*t):

As an explicit example, choosing n = N = 3 produces the normal mode X3
corresponding to the third eigenfrequency.

> N:=3: X[N]:=mode(N);

X3 :=BesselJ(0; 4:946017478
p
3:061224489¡ :1020408163 y)cos(2:473008739 t)

The normal mode is now animated, the plot being rotated by ¡¼
2 radians using

the rotate command, so that the animated string is hanging vertically in equi-
librium, rather than being pictured as horizontal. The scaling is constrained,
so that the transverse displacement is small compared to the length of the cord.
The axes are also removed so that the small vibrations are better viewed.

> rotate(animate(plot,[X[N],y=0..L],t=0..10,color=red,

frames=100,scaling=constrained,axes=none),-Pi/2);

The animation can be observed on your computer by executing the above com-
mand line, clicking on the computer plot, and on the start arrow in the tool
bar. You should also look at the other transverse vibrational modes as well, by
changing the value of N from 3 to some other integer between 1 and 10. Or, if
you want, you could generate even higher-integer normal modes.

While we have been looking at Jennifer's computer algebra treatment of the
transverse vibrations of the cord, Heather has completed her bungee jump, the
largest of the vertical oscillations bringing her head to within a meter of the
river far below the bridge. Looking rather pale, Heather attempts to persuade
Jennifer to also do a bungee jump, but Jennifer sensibly declines.

3.3. SPECIAL FUNCTION MODELS 141

PROBLEMS:
Problem 3-19: Vibrations of a weighted bungee cord
Determine the transverse normal modes of vibration of the bungee cord if a
mass M = 60 kg hangs from the lower end. Animate one of the normal modes.

Problem 3-20: A sti®ening spring
A vibrating spring is governed by the ODE

Äx(t) + a _x(t) + k x(t) = 0;

where the spring coe±cient is k = b + c ed t, and initially x(0) = A, _x(0) = 0.
Determine the analytic form of x(t). Taking a =

p
5, b = 1

4 , c = 1, d = 1,
and A = 1, plot x(t) over a time interval for which the oscillations e®ectively
vanish. Determine the threshold on ® for critical damping.

Problem 3-21: The growing pendulum
Consider a pendulum that consists of a point mass m at the bottom end of
a light supporting rod of length L that is allowed to move in a vertical plane
about a pivot point at its top end. Suppose that L increases at a steady rate,
i.e., L = L0 + v t, where v > 0 is a constant speed and t the time. Letting
the rod make an angle μ(t) with the vertical and neglecting drag, use Newton's
second law to derive the ODE for small μ. Solve the ODE for L0 = 1 meter,
g=9:8 m/s2, μ(0)=¼=6 radians, _μ(0) = 0 radians/s, and v=0:5 m/s. Animate
the motion of the pendulum arm (representing it as a thick line) over the time
interval t=0 to 100 seconds, taking 100 frames and using constrained scaling.

Problem 3-22: Onset of bending
A thin, vertical steel wire of length L and circular cross section of radius a is
clamped at its bottom and is free at its top. Let μ be the angular de°ection of
the wire from the vertical at a distance y from the top. If L is small, the wire
is stable in the vertical position, i.e., μ=0 for all values of y. As L increases,
there is a critical value Lcr beyond which the wire is unstable and will bend
from the vertical.

The relevant ODE for small angular displacements μ is

d2μ

dy2
= ¡c2 y μ; where c =

2

a

r
½ g

Y
: (3.9)

Here ½ is the mass density, g is the acceleration due to gravity, and Y is Young's
modulus.

(a) Determine the solution of the ODE, subject to the boundary conditions
μ=0 at y=L (wire clamped at bottom) and dμ=dy=0 at y=0 (wire is
free at top).

(b) Show that the onset of bending occurs at Lcr ¼ (2:8=c)2=3.
(c) Determine Lcr for a steel (Y =2:1£ 1011 N/m2 and ½=7800 kg/m3) wire

of radius 1 mm. Take g=9:8 m/s2.

142 CHAPTER 3. LINEAR ODE MODELS

3.3.3 Mathieu's Spring

In every tyrant's heart there springs in the end
This poison, that he cannot trust a friend.
Aeschylus, Greek dramatist, Prometheus, in Prometheus Bound (525{456 BC)

Emile Mathieu (1835{1890), a French mathematician, introduced the special
functions that bear his name as solutions to the problem of determining the
transverse vibrations of an elliptically shaped elastic membrane. As illustrated
in the following recipe, Mathieu functions also occur for the vibrations of a unit
mass attached to the end of a linear spring having a time-dependent spring
coe±cient k = a+ b cos(c t), where a, b, and c are real constants. The mass is
allowed to slide on a smooth horizontal surface, but experiences a viscous drag
force given by Stokes's law, Fdrag = ¡¡(dx=dt), where x(t) is the displacement
of the mass from equilibrium at time t and ¡ is the damping coe±cient.

To see what mathematical approach Maple uses in solving the relevant ODE,
the infolevel[dsolve] command is set to 2.

> restart: infolevel[dsolve]:=2:

The mathematical form of the spring coe±cient is entered.

> k:=a+b*cos(c*t);

k := a+ b cos(c t)

A functional operator ode is introduced to generate the ODE governing the
motion of the unit mass for a given value of the damping coe±cient ¡.

> ode:=Gamma->diff(x(t),t,t)+Gamma*diff(x(t),t)+k*x(t)=0;

ode := ¡!
μ
d2

dt2
x(t)

¶
+ ¡

μ
d

dt
x (t)

¶
+ k x(t) = 0

An operator X is formed to analytically solve ode for x(t) for a speci¯ed ¡ value
and the initial condition x(0) = A, _x(0) = 0.

> X:=Gamma->rhs(dsolve(fode(Gamma),x(0)=A,D(x)(0)=0g,x(t))):
As speci¯c parameter values, let's take a = 10, b = 2, c = 2, and A = 1.

> a:=10: b:=2: c:=2: A:=1:

The analytic solution for, say, ¡ = 2 is generated.

> sol:=simplify(X(2)); #example

Methods for second order ODEs:
| Trying classi¯cation methods |
¢ ¢
¡> Trying a Liouvillian solution using Kovacic's algorithm
<¡ No Liouvillian solutions exists
¡> Trying a solution in terms of special functions:
¡> Bessel
¡> elliptic
¡> Legendre
¡> Whittaker

3.3. SPECIAL FUNCTION MODELS 143

¡> hypergeometric
¢ ¢
¡> Mathieu
<¡ Mathieu successful
<¡ special function solution successful
¢ ¢
Change of variables used:
[t = 1/2*arccos(t)]
Linear ODE actually solved:
(5+t)*u(t)+(-2*(1-t^2)^(1/2)-2*t)*di®(u(t),t)
+(2-2*t^2)*di®(di®(u(t),t),t) = 0
<¡ change of variables successful

sol := e(¡t) (MathieuC(9; ¡1; t) +MathieuS(9; ¡1; t))
The solution is expressed in terms of the even (MathieuC) and odd (MathieuS)
general Mathieu functions. Information about these functions may be obtained
by highlighting, for example,MathieuC, opening theHelp window, and click-
ing onHelp on \MathieuC". From the partial output shown here in the text,
one can see that the answer was arrived at by replacing the independent variable
t with 1

2
arccos(t) and solving the resultant ODE.

The information level is now turned o® by setting the integer to zero, and
the plots library package is loaded so that the motion of the unit mass can be
animated.

> infolevel[dsolve]:=0: with(plots):

The horizontal displacement of the unit mass from equilibrium is animated over
the time interval t = 0 to 6 for ¡ = 2 and 0, 150 frames being used. The mass
is represented by a size-20 red box for ¡ = 2 and a blue box for zero damping.

> animate(pointplot,[[[X(2),0],[X(0),0]],symbol=box,

color=[red,blue],symbolsize=20],t=0..6,frames=150,

tickmarks=[3,0]);

Execute the recipe to see the motion, and feel free to experiment with di®erent
parameter values and initial conditions.

PROBLEMS:

Problem 3-23: Critical damping
In the text recipe, at what critical value of ¡ does the oscillatory motion cease
and the unit mass approach the equilibrium position monotonically?

Problem 3-24: Other parameter values
Explore the text recipe for other parameter values and discuss any interesting
behavior.

144 CHAPTER 3. LINEAR ODE MODELS

3.3.4 Quantum-Mechanical Tunneling

If we see light at the end of the tunnel,
It's the light of the oncoming train.
Robert Lowell, American poet commenting on pessimism (1917{1977)

The SchrÄodinger equation [Gri95] describing the one-dimensional motion of a
particle of mass m moving in a potential V (x) at time t is

¡ ¹h2

2m

@2ª(x; t)

@x2
+ V (x)ª(x; t) = I ¹h

@ª(x; t)

@t
; (3.10)

where ª(x; t) is the wave function, I=
p
¡1, and ¹h=h=(2 ¼), where h is Planck's

constant. Assuming a stationary-state solution, ª(x; t)=Ã(x) e¡I E t=¹h, reduces
the PDE (3.10) to the time-independent SchrÄodinger ODE,

d2Ã(x)

dx2
+
2m

¹h2
(E ¡ V (x))Ã(x) = 0 (3.11)

The probability of ¯nding the particle between x and x + dx at time t is
jª(x; t)j2 dx = jÃ(x)j2 dx ´ P (x) dx. The total probability of ¯nding the parti-
cle somewhere in the range x = ¡1 to +1 is

R +1
¡1 P (x) dx = 1.

Although classically impossible, a particle with energy E incident on a ¯nite
potential barrier of maximum height Vmax > E has a nonzero probability of
quantum-mechanically tunneling through the barrier to the opposite side. This
is the basis of ®-emission, in which ® particles are able to escape from the nu-
cleus through the nuclear potential barrier. For a particle incident on a barrier
with incident amplitude Ãinc, re°ected amplitude Ãrefl, and transmitted am-
plitude Ãtrans, one can de¯ne the re°ection coe±cient R = jÃreflj2=jÃincj2 and
the transmission coe±cent T =

p
(E ¡ Vtrans)=(E ¡ Vinc) jÃtransj2=jÃincj2.

The factor 2m=¹h2 can be removed from equation (3.11) by rescaling the
spatial variable, letting x now stand for (

p
2m=¹h)x. Using the \scaled" ODE,

our goal in this recipe is to determine the re°ection and transmission coe±cients
for a particle of energy E > 0 incident on a potential barrier V (x) = ax2,
with a = 1, located between x = 0 and x = L = 1. Outside the barrier,
V (x) = 0, i.e., Vtrans = Vinc = 0 so T = jÃtransj2=jÃincj2. Then we will plot
both coe±cients as a function of the energy E.

The DEtools library package is loaded, because it contains the expsols com-
mand, which will enable us to generate exponential solutions to the SchrÄodinger
ODE rather than the default sine and cosine solutions that would otherwise oc-
cur in the regions x < 0 and x > L, where V (x) = 0.

> restart: with(DEtools):

The parameter values a = 1 and L = 1 are entered, along with the assumed
condition E > 0.

> a:=1: L:=1: assume(E>0):

The scaled SchrÄodinger ODE is entered for V (x) = 0,

> de1:=diff(psi(x),x,x)+E*psi(x);

3.3. SPECIAL FUNCTION MODELS 145

de1 :=

μ
d2

dx2
Ã(x)

¶
+ E Ã(x)

and two independent exponential solutions obtained.

> sol1:=expsols(de1,psi(x));

sol1 :=
h
e(
p
E x I); e(¡I

p
E x)

i
Remembering that the spatial forms are to be mentally multiplied by the time
factor e¡I E t=¹h, the ¯rst term in sol1 corresponds to a plane wave traveling to
the right, the second term to a plane wave traveling to the left. In region 1

(x < 0), the total amplitude can be taken to be of the form Ã1 = e(
p
E x I) +

Ae(¡I
p
E x), the ¯rst term representing the incident wave (particle), the second

term the re°ected wave. Without loss of generality, the coe±cient of the incident
wave has been taken to be 1, because R and T involve ratios of amplitudes.
The re°ection coe±cient then is R = jAj2. Making use of sol1 , the wave form
Ã1 is entered.

> psi1:=sol1[1]+A*sol1[2];

Ã1 := e(
p
E x I) +Ae(¡I

p
E x)

In region 3 (x > L), there is only a transmitted wave traveling to the right,
which is now entered. The transmission coe±cient will be T = jBj2.

> psi3:=B*sol1[1];

Ã3 := B e(
p
E xI)

In the barrier (0 < x < L) region 2, the potential is V (x) = a x2. The scaled
SchrÄodinger ODE is entered for this region,

> de2:=diff(psi(x),x,x)+(E-a*x^2)*psi(x);

de2 :=

μ
d2

dx2
Ã(x)

¶
+ (E ¡ x2)Ã(x)

and the general solution Ã2 obtained in terms of two undetermined coe±cients
C1 and C2 and the Whittaker functions of the ¯rst and second kinds. To
learn a little more about these special functions, highlight either one in the
ouput on the computer screen and consult Maple's Help.

> psi2:=rhs(dsolve(de2,psi(x)));

Ã2 :=

C1WhittakerM

μ
E

4
;
1

4
; x2

¶
p
x

+

C2 WhittakerW

μ
E

4
;
1

4
; x2

¶
p
x

Assuming that x > 0, we try to convert the Whittaker functions in Ã2 to the
more \standard" Hermite functions.

> psi2:=convert(psi2,Hermite) assuming x>0;

Ã2 :=

C1WhittakerM

μ
E

4
;
1

4
; x2

¶
p
x

+

C2 HermiteH

μ
¡1
2
+
E

2
; x

¶

2(¡1=2 +
E
2
) e(

x2

2
)

146 CHAPTER 3. LINEAR ODE MODELS

There are four unknown coe±cients, A, B, C1 , and C2 , so four equations
are needed to determine them. Continuity of the amplitudes Ã1 and Ã2 at
x = 0 is imposed in the ¯rst boundary (or matching) condition bc1 . The latter
waveform must be carefully handled. One cannot simply evaluate Ã2 at x = 0,
because the error message \division by zero" will appear. One must take the
limit as x approaches zero from the right, i.e., from x > 0. The quantity ¡
appearing in the output is the gamma function.

> bc1:=eval(psi1,x=0)=limit(psi2,x=0,right);

bc1 := 1 +A =
C2

p
¼

¡

μ
3

4
¡ E
4

¶
In the second boundary condition, Ã2 and Ã3 are equated at x = L.

> bc2:=eval(psi2,x=L)=eval(psi3,x=L);

bc2 := C1WhittakerM

μ
E

4
;
1

4
; 1

¶
+

C2 HermiteH

μ
¡1
2
+
E

2
; 1

¶

2(¡1=2 +
E
2
) e(1=2)

= B e(
p
E I)

Because the second derivative is ¯nite, the ¯rst derivative (slope) of the wave
forms must be continuous at x = 0. This condition is imposed in bc3 , the
limiting process again being used for the derivative dÃ2=dx.

> bc3:=eval(diff(psi1,x),x=0)=limit(diff(psi2,x),x=0,right);

bc3 :=
p
E I ¡A

p
E I =

C1¡

μ
5

4
¡ E
4

¶
2(¡1=2 +

E
2
) ¡ C2 2(¡3=2 +

E
2
)p¼ + C2 2(¡3=2 +

E
2
)p¼ E

¡

μ
5

4
¡ E
4

¶
2(¡1=2 +

E
2)

The slope continuity condition is also imposed at x = L (lengthy output not
shown here).

> bc4:=eval(diff(psi2,x),x=L)=eval(diff(psi3,x),x=L);

The four boundary conditions are solved for the four unknown coe±cients, and
the solution is assigned.

> sol3:=solve(fbc1,bc2,bc3,bc4g,fA,B,_C1,_C2g): assign(sol3):
The re°ection and transmission coe±cients are calculated, the very lengthy
expressions being suppressed with line-ending colons. Noting that the ampli-
tudes are complex, these coe±cients are given by R = jAj2 = A £ A¤ and
T = jBj2 = B £ B¤, where the asterisk denotes the complex conjugate. The
conjugate command is used to enter the complex conjugates.

> R:=A*conjugate(A): T:=B*conjugate(B):

The re°ection and transmission coe±cients are now plotted over the energy
range E = 0 to 1, the two curves being colored blue and red on the computer
screen. The black-and-white version is shown in Figure 3.10.

3.3. SPECIAL FUNCTION MODELS 147

> plot([R,T],E=0..1,color=[blue,red],tickmarks=[3,3],

view=[0..1,0..1]);

0

0.2

0.4

0.6

0.8

1

0.2 0.4 E 0.8 1

Figure 3.10: Re°ection and transmission coe±cients versus energy E.

The transmission coe±cient rapidly increases from 0 and approaches 1 as E
is increased. Conversely, the re°ection coe±cient rapidly decreases with in-
creasing E. By energy conservation, the sum of the re°ection and transmission
coe±cients should sum to 1 for all values of the energy E. From the ¯gure, this
appears to be the case, the con¯rmation being left for you as a problem. Note
that the re°ection coe±cient is not equal to zero at E = 1, even though the
energy of the incoming particle is equal to that at the top of the barrier.

PROBLEMS:
Problem 3-25: R+T=1
Con¯rm that the sum of the re°ection and transmission coe±cients is equal to
1 for all E. You may do this either graphically or analytically.

Problem 3-26: Equality
Determine the energy at which the re°ection and transmission coe±cients are
equal by (i) using the mouse, (ii) using the fsolve command.

Problem 3-27: Exponential barrier
Determine the transmission and re°ection coe±cients as a function of energy
E if the barrier has the form V (x) = V e¡x=L between x = 0 and L = 1,
with V = 1. Outside the barrier region, V (x) = 0. Plot the re°ection and
transmission coe±cients in the same ¯gure and discuss how the results compare
with those obtained in the text recipe.

Chapter 4

Nonlinear ODE Models
The elegant body of mathematical theory pertaining to linear
systems ... tends to dominate even moderately advanced university
courses. The mathematical intuition so developed ill equips the
student to confront the bizarre behavior exhibited by the simplest of
...nonlinear systems. Yet such nonlinear systems are surely the rule,
not the exception Not only in research, but also in the everyday
world of politics and economics, we would all be better o® if more
people realized that simple nonlinear systems do not necessarily
possess simple dynamic properties.
Robert M. May, mathematical biologist, Nature, Vol. 261, 459 (1976)

In Chapter 1, phase-plane portraits were used to explore some simple nonlinear
ODE models whose temporal evolution could not have been predicted, even
qualitatively, before the portraits were numerically constructed. An example
was the period-doubling route to chaos exhibited by the Du±ng equation

Äx+ 2 ° _x+ ®x+ ¯ x3 = F cos(! t) (4.1)

when the amplitude F of the driving force was increased, the other parameters
being held ¯xed. If the nonlinear term, ¯ x3, were not present, this \bizarre"
period-doubling behavior would not even be possible. If we were to change the
various coe±cient values in (4.1), the response of the nonlinear system would
in general be entirely di®erent and not easily predicted on the basis of mathe-
matical or physical intuition alone. To aid in the qualitative understanding of
the behavior of nonlinear ODE systems such as this one, the concepts of ¯xed
points and phase-plane analysis were discussed in Chapter 2.

One might well ask whether there are mathematical techniques for obtain-
ing the exact analytic solutions to nonlinear ODEs, and if so, whether Maple
can be used to ¯nd these solutions. The answer is that the vast majority of
nonlinear ODEs of interest to physicists and engineers do not possess exact
analytic solutions. Only a handful of ODEs of physical interest can be solved
exactly, and for those equations Maple can be used to ¯nd the solutions. Some
examples of ¯rst-order nonlinear ODEs for which this is the case are illustrated
in the following section.

149

150 CHAPTER 4. NONLINEAR ODE MODELS

4.1 First-Order Models

4.1.1 An Irreversible Reaction

I shall use the phrase \time's arrow" to express this one-way prop-
erty of time which has no analogue in space.
Arthur Eddington, British astrophysicist (1882{1944)

As our ¯rst example, we consider the following problem, which the reader was
previously asked to solve numerically (see Problem 2-29).

Consider the irreversible chemical reaction
2K2Cr2O7+2H2O+3S ! 4KOH+2Cr2O3+3SO2

with initially N1 molecules of potassium dichromate (K2Cr2O7), N2 molecules of
water (H2O), N3 atoms of sulphur (S), and 0 molecules of potassium hydroxide
(KOH). The number x of KOH molecules at time t seconds is given by the
nonlinear rate equation

_x = k (2N1 ¡ x)2 (2N2 ¡ x)2 (4N3=3¡ x)3

with k = 1:64 £ 10¡20 s¡1. Taking N1 = 2000, N2 = 2000, and N3 = 3000,
analytically determine the number of KOH molecules at arbitrary time t > 0
and plot the solution for the ¯rst second after the chemical reaction begins.
How many KOH molecules are present at 0:2 seconds? How many are present
in the limit t!1?

To observe Maple's method of solution, the infolevel[dsolve] command
is set equal to 2, and the rate equation entered.

> restart: infolevel[dsolve]:=2:

> de:=diff(x(t),t)=k*(2*N1-x(t))^2*(2*N2-x(t))^2

*(4*N3/3-x(t))^3;

de :=
d

dt
x (t) = k (2N1 ¡ x(t))2 (2N2 ¡ x(t))2

μ
4N3

3
¡ x(t)

¶3
The rate coe±cient k and the initial molecule numbers are speci¯ed.

> k:=1.64*10^(-20): N1:=2000: N2:=2000: N3:=3000:

The di®erential equation de is analytically solved for x(t), subject to x(0) = 0.

> sol:=dsolve(fde,x(0)=0g,x(t));
Methods for ¯rst order ODEs:
| Trying classi¯cation methods |
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<¡ separable successful

sol := x (t) = ¡ 4000 5(2=3)

(251904 t+ 625)(1=6)
+ 4000

In arriving at the answer, Maple has recognized that the ¯rst-order di®erential

4.1. FIRST-ORDER MODELS 151

equation is separable. That is to say, it can be written in the form dx=dt =
f(t)=g(x), where f(t) and g(x) are given functions. So, on rearranging and
integrating, one has

R
g(x) dx =

R
f(t) dt, the answer following if the integrals

can be performed (which is the case here).
The right-hand side of the solution sol can be converted into a functional

operator x using the unapply command. Then entering x(t) will evaluate x at
the speci¯ed value of t.

> x:=unapply(rhs(sol),t);

x := t! ¡ 4000 5(2=3)

(251904 t+ 625)(1=6)
+ 4000

The number x(t) of KOH molecules at time t is plotted over the time interval
t = 0 to 1 second.

> plot(x(t),t=0..1,labels=["t","x"]);

0

500

1000

1500

2000

2500

x

0.2 0.4 0.6 0.8 1t

Figure 4.1: Number of KOH molecules as a function of time.

The number of KOH molecules present after 0.2 seconds is determined,

> number:=evalf(x(0.2));

number := 2079:400844

and rounded o® to the nearest integer.

> KOH:=round(number);

KOH := 2079

So, 2079 KOH molecules are present 0.2 seconds after the reaction begins.
The number of KOH molecules appears to be leveling o® in Figure 4.1 as

the time increases. From the analytic form of the solution, clearly the limiting
number N is 4000 KOH molecules as t!1. This can be con¯rmed by applying
the following limit command to x(t):

> N:=limit(x(t),t=infinity);

N := 4000

152 CHAPTER 4. NONLINEAR ODE MODELS

PROBLEMS:
Problem 4-1: Falling basketball
A spherical object (diameter d meters and mass m kg) falling from rest experi-
ences [FC99] a drag force Fdrag = ¡Av¡B v2 newtons, where v is the velocity
in m/s and A = 1:55£ 10¡4 d, B = 0:22 d2. Derive the nonlinear ODE govern-
ing the velocity of the falling sphere. If the sphere is a basketball of diameter
25 cm and mass 0.60 kg, analytically determine v(t). Does Maple recognize the
ODE as being separable? Plot v(t) and show that the ball will reach a terminal
velocity. Determine the terminal velocity. How long does it take the basketball
to come within 1 percent of the terminal velocity?

Problem 4-2: It's separable
Consider the ODE dy

dx
=
2 x3 y ¡ y4
x4 ¡ 2 x y3 ; y(1) = 5:

Does this ODE appear to be separable? Show that assuming y(x) = x z(x) leads
to a separable equation for z(x). Making use of this transformation, determine
y(x) and plot the solution, starting at x = 1, over the range for which it remains
real. What is the x value at the upper end of this real range?

4.1.2 The Struggle for Existence

The mathematics of uncontrolled growth are frightening. A single
cell of the bacterium E. coli would, under ideal circumstances, divide
[in two] every twenty minutes it can be shown that in a single
day, one cell of E. Coli could produce a super-colony equal in size
and weight to the entire planet Earth.
Michael Crichton, The Andromeda Strain (1969)

A classic experiment in microbiology is to grow yeast, or other microorganisms,
in a nutrient broth inside a test tube or °ask at a suitable ¯xed temperature.

As an assignment associated with her microbiology course in the premed
program at MIT, Heather has been asked to create a Maple worksheet that il-
lustrates the solution of simple model equations describing the growth of yeast
in a test tube. She is to search the literature and ¯nd realistic numbers for
the parameter values and use these to create suitable plots of the solutions.
Consulting her older sister Jennifer who, recall, is a mathematics faculty mem-
ber at MIT, Heather is guided to the text Mathematical Models in Biology by
Leah Edelstein-Keshet [EK88]. This interesting and easy-to-read book describes
some yeast-growing experiments and associated model equations.

After loading the library plots package,

> restart: with(plots):

Heather considers the simplest model of yeast growth, which would apply if
there were an unlimited supply of nutrient. She lets N(t) be the yeast popula-

4.1. FIRST-ORDER MODELS 153

tion density at time t > 0 and k > 0 the rate of reproduction. If k is taken to
be a constant, the following linear yeast equation, YE , results:

> YE:=diff(N(t),t)=k*N(t);

YE :=
d

dt
N (t) = kN (t)

This growth equation is historically known as Malthus's law, named in honor
of Thomas Malthus (1766{1834), who published a pamphlet (entitled Essay on
Population) on population growth in 1798. Although Heather can solve this
simple linear ODE in her head, she lets Maple generate the solution, subject to
the initial condition N (0) = No.

> ic:=N(0)=No;

ic := N (0) = No

> sol:=dsolve(fYE,icg,N(t));
sol := N (t) = No e(k t)

Malthus's law leads to exponential growth of the yeast population density.
Having read The Andromeda Strain, Heather is curious as to how many

Escherichia coli there would be at the end of 24 hours if the exponential so-
lution prevailed. According to the Crichton quotation, the doubling time is
20 minutes, or 1=3 of an hour. In the following command line, Heather takes
N(t = 1=3)=No = 2 in the exponential solution,

> eq:=2=exp(k/3); #time in hours

eq := 2 = e(
k
3)

and numerically solves for the reproductive rate constant, labeled k1 .

> k1:=fsolve(eq,k);

k1 := 2:079441542

Using the Malthus solution, at the end of 24 hours the number of E. coli would
have grown from a single bacterium (No = 1),

> Number:=1*exp(k1*24); #in 24 hours

Number := 0:4722366529 1022

to about 1022 bacteria. Talk about explosive growth! Heather wonders how
accurate the Malthus solution is. After all, she need not have formulated the E.
coli growth as a continuous-time ODE, but instead could calculate the growth
directly. In a 24-hour period there would be 24£ 3 = 72 doublings. At the end
of 24 hours, the number of E. coli is given by the output of the following line:

> Number2:=2^(24.0*3);

Number2 := 0:4722366483 1022

The two numbers di®er only in the eighth decimal place.
Although 1022 E. coli is a large number, Heather notes that since an E. coli

bacterium weighs about 10¡12 gm, their total weight is only 1010 gm, much less
than the 6£ 1027 gm weight of the earth. Crichton's conclusion seems wrong.

154 CHAPTER 4. NONLINEAR ODE MODELS

This is interesting, but Heather realizes that she should get back to the yeast
problem. Such unlimited growth as seen above clearly cannot occur in a test
tube experiment with only a ¯nite amount of nutrient available. It seems more
reasonable that the growth would depend on the amount of nutrient left in the
test tube. To this end, Heather modi¯es her original model by assuming that
the reproductive rate k is not a constant but is proportional to the concentration
C(t) of nutrient, the proportionality constant being labeled K.

> k:=K*C(t);

k := K C (t)

The new yeast equation then is given by NYE .

> NYE:=YE;

NYE :=
d

dt
N (t) = K C (t)N (t)

As the yeast density increases, the nutrient concentration must decrease. Heather
assumes that the rate of decrease of C(t) is proportional to the rate of increase of
N(t), the positive proportionality constant being labeled a. The concentration
equation (CE) then is as follows.

> CE:=diff(C(t),t)=-a*diff(N(t),t);

CE :=
d

dt
C (t) = ¡a

μ
d

dt
N (t)

¶
The problem now involves two coupled ODEs, NYE and CE , but the general
solution of the latter is easily obtained, C1 being the integration constant.

> dsolve(CE,C(t));

C (t) = ¡aN (t) + C1

The last output is then substituted into the new yeast equation.

> NYE:=subs(%,NYE);

NYE :=
d

dt
N (t) = K (¡aN (t) + C1)N (t)

It is traditional in mathematical biology to make the form of the equation
notationally simpler, so Heather substitutes C1 = a b and K = r=(a b) into
NYE , where b and r are new constants.

> subs(f_C1=a*b,K=r/(a*b)g,NYE);
d

dt
N (t) =

r (¡aN (t) + a b)N (t)
a b

To cancel the constant a, the simplify command is applied.

> NYE:=simplify(%);

NYE :=
d

dt
N (t) =

r (¡N (t) + b)N (t)
b

The resulting nonlinear di®erential equation is known as the logistic equation
and was ¯rst studied by the mathematician Verhulst in 1838.

According to Edelstein-Keshet's text, the logistic equation can be solved in
a straightforward way, and the solution is quoted in her book. If an analytic

4.1. FIRST-ORDER MODELS 155

solution exists, Heather reasons that she should be able to use the dsolve
command to ¯nd it. Setting the infolevel[dsolve] command to be 2, NYE
is solved for N(t), subject to the same initial condition as for Malthus's law.

> infolevel[dsolve]:=2:

> yeastdensity:=dsolve(fNYE,icg,N(t));
Methods for ¯rst order ODEs:

| Trying classi¯cation methods |
trying a quadrature
trying 1st order linear
trying Bernoulli
<¡ Bernoulli successful

yeastdensity := N (t) =
No b

No ¡ e(¡r t)No + e(¡r t) b
In solving NYE for the yeast density N (t), Maple has recognized the ODE
as being a Bernoulli equation. A Bernoulli di®erential equation (named after
Jakob Bernoulli (1654{1705)) is of the general structure1

dy

dt
+ f(t) y = g(t) yn: (4.2)

The logistic equation is a special case of the Bernoulli equation with n = 2 and
f and g constant. For NYE , f = ¡r and g = r=b.

The exponential terms in the solution are now collected.

> yeastdensity:=collect(yeastdensity,exp);

yeastdensity := N (t) =
No b

(¡No + b) e(¡r t) + No
This mathematical form is referred to as the logistic curve. For positive r, N(t)
approaches the value b as t ! 1. Unlike Malthus's law, the logistic equation
predicts \saturation" of the yeast number to a constant value at large times,
rather than uncontrolled growth.

Heather notes that by loading the DEtools package, the general Bernoulli
solution to NYE can also be obtained using the bernoullisol command.

> with(DEtools): bernoullisol(NYE,N(t));

trying Bernoulli
<¡ Bernoulli successful½

N (t) =
b

1 + e(¡r t) C1 b

¾
As part of her assignment, Heather was asked to ¯nd some realistic parameter
values. In a book aptly entitled The Struggle for Existence, Gause [Gau69]
has reported on test-tube experiments involving the growth of the two yeasts,
Schizosaccharomyces kephir and Saccharomyces cerevisiae. The yeasts were
grown separately in the ¯rst experiment and as a competing mixture in the

1If proceeding by hand, the standard approach to solving equation (4.2) is to introduce
the new dependent variable p = 1=yn¡1, which reduces the equation to a linear ODE.

156 CHAPTER 4. NONLINEAR ODE MODELS

second. With the initial population density N0 = 0:5329 known, the data from
the ¯rst experiment were used to ¯nd the parameter values b and r to use in
the logistic-model solution for each yeast variety. Using a least-squares ¯tting
approach, Gause found that for the kephir, r = 0:0607 and b = 5:80, while for
the cerevisiae r = 0:2183 and b = 13:0. The ¯rst experiment was carried out
over a time period of 160 hours. Heather decides to plot the logistic curve for
the kephir, so enters the parameter values,

> b:=5.80: No:=0.5329: r:=0.0607: yeastdensity;

N (t) =
3:090820

5:2671 e(¡0:0607 t) + 0:5329
and applies the plot command, adding a title to the picture.

> plot(rhs(yeastdensity),t=0..160,labels=["t","A"],

color=blue,thickness=2,tickmarks=[2,4],

title="Amount of yeast (A) vs. hours (t)");

1

2

3

4

5

A

0 100t

Amount of yeast (A) vs. hours (t)

Figure 4.2: Growth curve for the yeast kephir.

The logistic growth curve of the kephir population is shown in Figure 4.2. The
plot for the cerevisiae would be similar in appearance.

Gause's second experiment studied the competition between the two yeasts
for the available nutrient when they were grown together in the same test tube.
To explore this case Heather labels the kephir population density and param-
eters with the subscript k, while the subscript c is used for the cerevisiae. To
account for the interaction between the two species of yeast, Gause assumed
that the probability of an interaction is proportional to the product of the
population densities, i.e., to NkNc, and that the competition for nutrient was
detrimental to both populations. Accordingly, Gause described the growth of

4.1. FIRST-ORDER MODELS 157

the two interacting species by the following pair of coupled nonlinear equations:

_Nk = rk (bk ¡Nk ¡ ¯kcNc)Nk=bk; _Nc = rc (bc ¡Nc ¡ ¯ckNk)Nc=bc; (4.3)

with the interaction parameters experimentally determined to be ¯kc = 0:439
and ¯ck = 3:15. This set of nonlinear ODEs cannot be solved analytically, but
the behavior of the two competing yeast populations can easily be determined
by making a phase-plane portrait of Nk versus Nc.

Heather unassigns k so that it can be used as a subscript to label the kephir
population and sets the infolevel[dsolve] command to zero.

> unassign('k'): infolevel[dsolve]:=0:

The values determined by Gause for the coe±cients in (4.3) are entered,

> r[k]:=0.0607: b[k]:=5.8: beta[kc]:=0.439: r[c]:=0.2183:

b[c]:=13.0: beta[ck]:=3.15:

as well as the system (sys) of equations.

> sys:=diff(N[k](t),t)=r[k]*(b[k]-N[k]-beta[kc]*N[c])*N[k]/b[k],

diff(N[c](t),t)=r[c]*(b[c]-N[c]-beta[ck]*N[k])*N[c]/b[c];

sys :=
d

dt
Nk(t) = 0:01046551724 (5:8¡Nk(t)¡ 0:439Nc(t))Nk(t);

d

dt
Nc(t) = 0:01679230769 (13:0¡Nc(t)¡ 3:15Nk(t))Nc(t)

Heather takes Nk(0)=Nc(0)=0:5 in the phaseportrait command,

> phaseportrait([sys],[N[k](t),N[c](t)],t=0..250,

[[N[k](0)=0.5,N[c](0)=0.5]],stepsize=0.1,linecolor=blue);

0

2

4

6

8

N[c]

1 2 4 5
N[k]

Figure 4.3: Phase portrait showing competition between kephir and cerevisiae.

158 CHAPTER 4. NONLINEAR ODE MODELS

producing the phase-plane picture shown in Figure 4.3. In the actual experi-
ment, the time interval was only about 50 hours. On reducing the time range
to be from t = 0 to 50 in the phaseportrait command line, Heather ¯nds that
the curve terminates in the vicinity of the maximum value for Nc. In this case,
both species of yeast survived over the 50 hours of the experiment, with the
cerevisiae dominating over the kephir. However, assuming that enough nutrient
was available, she can see that ultimately only one species would survive over
250 hours and it isn't the cerevisiae, but rather the kephir. This is because the
interaction coe±cient ¯kc is much smaller than ¯ck. In this struggle for exis-
tence, there would be only the victorious kephir and the vanquished cerevisiae.
To see the explicit time evolution of each yeast population, Heather uses the
phase-plane portrait command again, but now creates two plots, one with the
scene option scene=[t,N[k]], the other with scene=[t,N[c]].

> plot1:=phaseportrait([sys],[N[k],N[c]],t=0..300,

[[N[k](0)=0.5,N[c](0)=0.5]],stepsize=0.1,

scene=[t,N[k]],color=red,linecolor=blue):
> plot2:=phaseportrait([sys],[N[k],N[c]],t=0..300,

[[N[k](0)=0.5,N[c](0)=0.5]],stepsize=0.1,

scene=[t,N[c]],color=red,linecolor=red):

On superimposing the two plots with the display command, Figure 4.4 results.

> display(fplot1,plot2g,tickmarks=[3,3]);

0

2

4

6

8

N

100 200 300t

Figure 4.4: Time evolution of the kephir (saturable curve) and the cerevisiae.

By clicking with the mouse on the plot, the crossover point for the two pop-
ulation densities occurs at about 164 hours. With her assignment completed,
Heather is grateful that her sister was able to recommend a useful text. She
will have to treat her to a Starbucks latte the next time they get together.

4.1. FIRST-ORDER MODELS 159

PROBLEMS:
Problem 4-3: Nonlinear diode circuit
A linear capacitor with capacitance C is connected in series with a nonlinear
diode that has a current (i){voltage (v) relation of the form i = a v + b v2, with
the coe±cients a and b both positive. The voltage across the capacitor at time
t = 0 is v = V . Derive the nonlinear ODE governing this circuit. Introducing
the dimensionless variables y = v(t)=V , ¿ = a t=C, and ¯ = b V=a, rewrite the
ODE in dimensionless form. Analytically solve this ODE, demonstrating that
Maple recognizes the ODE as a Bernoulli equation. For ¯ = 2, plot the solution
over the time interval ¿ = 0 to 2.

Problem 4-4: Nonlinear diode revisited
Suppose that the current{voltage relation for the nonlinear diode in the previous
problem is given by the more general relation i = a v+b vn, where n = 2, 3, 4, 5,
: : : Derive the corresponding general dimensionless ODE and analytically solve
it for arbitrary n. For the same parameters and time range as in the previous
problem, produce a single plot that shows the solutions for n = 2 to 5. Discuss
the e®ect of increasing n.

Problem 4-5: A potpourri of Bernoulli equations
For each of the following nonlinear ODEs (with prime indicating an x-derivative):

² con¯rm that it is of the Bernoulli type;

² analytically solve the ODE for y(0) = 1;
² plot the solution y(x) over the range x = 0 to 5.

(a) y3 y 0 + x¡1 y4 = x; (b) y 0 + y = x y3; (c) y ¡ y 0 = 3 y3 e¡2x;
(d) y3 + 3 y2 y 0 = 4.
Problem 4-6: General solution
Determine the general solution of the following Bernoulli equation:

x y 0 + y = x3 y6:

Problem 4-7: Laser beam competition
In the theory of stimulated thermal scattering [BEP71], the intensities IL and IS
of two interacting collinear laser beams traveling in the z-direction are governed
by the following pair of coupled ¯rst-order nonlinear ODEs:

dIL
dz

= ¡g IL IS ¡ ® IL;
dIS
dz

= g IL IS ¡ ® IS ;

where the gain coe±cient g > 0 and the absorption coe±cient ® ¸ 0.
(a) By adding the two equations and eliminating IL, show that a single

Bernoulli equation can be obtained for the intensity IS .

(b) Analytically solve this Bernoulli equation for IS(z).

(c) Plot ln(IS(z)=IS(0)) for z = 0 to 10 cm given that IS(0)=IL(0) = 0:01,
g IL(0) = 1 cm

¡1, and (a) ® = 0, (b) ® = 0:5 cm¡1. Discuss the results.

160 CHAPTER 4. NONLINEAR ODE MODELS

Problem 4-8: Variable transformation
Explicitly show that the general Bernoulli equation (4.2) can be transformed
into a linear ODE by making use of the transformation p = 1=yn¡1. Here n is
an arbitrary positive integer greater than or equal to two.

Problem 4-9: Flu epidemic in Spuzzum
In the small town of Spuzzum (population N0 = 2000 people), the number
N(t) of people infected with the °u after t weeks is governed by the logistic
equation, _N = 0:002N (N0 ¡ N): If two people are initially infected, derive
the analytic formula for N(t): How many weeks does it take before 75% of
Spuzzum's population is infected with the °u? Plot N(t) for the time that it
takes 90% of the population to be infected.

Problem 4-10: Hare today, gone tomorrow
The growth of a snowshoe hare population is governed by the logistic equation,
_N = r N (N0 ¡N); with the rate constant r = 0:25=N0, time being measured
in months. A viral epidemic of deadly myxamatosis strikes the population,
suddenly reducing the hare number to 1% of the equilibrium number N0. How
many months does it take for the snowshoe hare population to climb back up to
a level of 50% of its equilibrium number? Plot N(t)=N0 over this time interval.

Problem 4-11: Harvesting of blue whales
In the absence of harvesting, the blue whale population numberN(t) is governed
by the logistic equation. If a constant rate h of harvesting is included, the
equation becomes _N(t) = a (M ¡N(t))N(t)¡ h;
whereM is the maximum number of whales in the absence of harvesting and a is
a positive constant. With t in years, it has been estimated that a = 6£10¡7 and
M=200,000. The steady-state (equilibrium) population occurs when _N = 0.

(a) Plot h versus N for the steady state. Find the maximum value hmax of
h by: (i) clicking the mouse on the maximum point of the curve, and
(ii) working with the algebraic form and then substituting numbers. The
quantity hmax is called the maximum sustained yield. What happens to
the whale population for hÀ hmax?

(b) Using the dsolve command, solve the logistic equation for the given pa-
rameters and N(0)=100,000, h = 7000. How many years would it take for
the blue whale population to go extinct? It is because of overharvesting
that the blue whale population has been nearly wiped out.

Problem 4-12: Gompertz's law
Gompertz's law is an alternative nonlinear growth model to the logistic equation
and has been used to model the growth of cancerous tumors. The Gompertz
ODE is of the form

_y = k y ln(ym=y);

where k and ym are positive constants. Derive the general analytic solution
to the Gompertz ODE. If k = 0:1, ym = 0:5, and y(0) = 0:1, determine the
analytic form for y(t) and plot the solution for t = 0 to 75. What is the
interpretation of the constant ym?

4.1. FIRST-ORDER MODELS 161

Problem 4-13: The von Bertalan®y model of growth
The limited-growth von Bertalan®y model is governed by the nonlinear ODE

_y = 3 k y2=3(ym ¡ y1=3);

with k and ym positive constants. Derive the general analytic solution to the
von Bertalan®y ODE. If k = 0:1, ym = 0:5, and y(0) = 0:1, determine the
analytic form for y(t) and plot the solution for t = 0 to 75.

Problem 4-14: The Michaelis{Menton equation
The nonlinear Michaelis{Menton model equation

_y = ¡a y=(b+ y);
with a, b positive constants, describes the rate at which an enzyme reaction
takes place. Here y(t) is the amount of substrate that is being transformed by
the enzyme at time t. Taking a = b = y(0) = 1, determine the analytic form of
y(t). Plot the analytic solution for t = 0 to 5.

4.1.3 The Bad Bird Equation

Everyone pushes a falling fence.
Chinese proverb about failure.

In an article by Peastrel and coworkers in the The Physics of Sports [PLA92],
the experimental data for the distance y (in meters) that a badminton bird
(\bad" bird, for short) falls in t seconds from rest is well described by

y =
V 2

g
ln

μ
cosh

μ
g t

V

¶¶
; (4.4)

where V is the terminal velocity and g is the acceleration due to gravity. Vecto-
ria will now show you how equation (4.4) can be easily derived, using Newton's
second law and assuming that the drag force is given by Newton's law of air
resistance, viz., Fres = ¡kmv2, with k the drag coe±cient, m the mass of
the bird, and v the speed. The quadratic dependence on v is appropriate for
turbulent air °ow. For the falling bird, the turbulence arises because of the
bird's \feathers." Stokes's law of resistance (Fres / v) prevails for laminar (i.e.,
smooth) °ow.2

Vectoria begins by loading the DEtools package,

> restart: with(DEtools):

and entering Newton's law of air resistance.

> F[res]:=-k*m*v(t)^2;

Fres := ¡km v(t)2

2The more general resistance law is a combination of linear and quadratic terms in the
velocity. Which term dominates depends on the shape of the moving object and the magnitude
of the velocity.

162 CHAPTER 4. NONLINEAR ODE MODELS

The equation of motion follows on applying Newton's second law to the motion
of the bad bird. Equating the net force on the bird, due to the pull of gravity
and the drag force, to the bird's mass times its acceleration produces eq.

> eq:=m*g+F[res]=m*diff(v(t),t);

eq := mg ¡ km v(t)2 = m
μ
d

dt
v(t)

¶
The force equation is simpli¯ed by dividing eq through by the mass m.

> eq2:=simplify(eq/m);

eq2 := g ¡ k v(t)2 = d

dt
v(t)

Since the terminal velocity V is reached when the upward and downward forces
balance, so that the acceleration is zero, then g = k V 2. Thus, the drag coe±-
cient k may be eliminated by substituting k = g=V 2 into eq2 .

> ode:=subs(k=g/V^2,eq2); #Riccati equation

ode := g ¡ g v(t)
2

V 2
=
d

dt
v(t)

Vectoria recognizes the resulting ¯rst-order nonlinear ode as a speci¯c example
of Riccati's equation, which has the general structure

_x+ a x2 + f1(t)x+ f2(t) = 0; (4.5)

with a a constant. In the present case, Vectoria identi¯es x ´ v, a ´ k = g=V 2,
f1 = 0, and f2 = ¡g. She recalls that Riccati's equation can be reduced to a
linear ODE involving a new dependent variable z(t) by introducing the trans-

formation z(t) = exp(a
R t
0
x(t) dt): However, it is easier to derive the general

form of v(t) by applying the riccatisol command to ode . The square brackets
are included at the end of the command line to remove the brackets that would
otherwise enclose the output.

> sol:=riccatisol(ode,v(t))[];

sol := v(t) = ¡1
2

tan

0
BB@
t

r
¡4 g

2

V 2

2
¡
C1

r
¡4 g

2

V 2

2

1
CCA
r
¡4 g

2

V 2
V 2

g
The integration constant C1 is determined by evaluating the right-hand side
of the solution at t = 0, setting the result to zero (since the bird starts from
rest), and solving for the constant.

> _C1:=solve(eval(rhs(sol),t=0)=0,_C1);

C1 := 0

The integration constant is zero. The velocity expression follows on simplifying
the rhs of sol , assuming that g > 0, V > 0, and t > 0.

> v:=simplify(rhs(sol)) assuming g>0,V>0,t>0;

4.1. FIRST-ORDER MODELS 163

v := tanh

μ
t g

V

¶
V

To determine y(t), a second ODE is formed by equating dy=dt to v. To make
the ¯nal expression appear in the desired form, the convert command is used
to reexpress the hyperbolic tangent in terms of the hyperbolic sine and cosine.

> ode2:=diff(y(t),t)=convert(v,sincos);

ode2 :=
d

dt
y(t) =

sinh

μ
t g

V

¶
V

cosh

μ
t g

V

¶
Analytically solving ode2 for y(t), subject to the initial condition y(0) = 0,

> dsolve(fode2,y(0)=0g,y(t));

y(t) =

V 2 ln

μ
cosh

μ
t g

V

¶¶
g

produces an output that is identical in structure to equation (4.4), thus com-
pleting Vectoria's task.

PROBLEMS:
Problem 4-15: Return velocity
A ball of unit mass is thrown vertically upward near the earth's surface with an
initial speed v(0) = U . Assuming that Newton's law of air resistance prevails,
show that after the ball rises to its maximum height and begins to fall it passes
its initial position with a velocity v = (U V)=(

p
U2 + V 2); where V is the

terminal velocity. Hint: Reexpress the acceleration as

dv

dt
=

μ
dv

dx

¶μ
dx

dt

¶
= v(x)

μ
dv(x)

dx

¶

and note that at the maximum height the speed is zero.

Problem 4-16: A Riccati equation
Consider the following Riccati equation:

y 0(x) + y(x)=x+ a y(x)2 + b = 0;

with the initial condition y(0) = A, where a, b, and A are real constants.

(a) Analytically solve the ODE. Does the answer depend on the value of A?

(b) What does the general solution look like if no initial condition is speci¯ed?
Explain what happens mathematically when y(0) = A is imposed.

(c) Taking a = 5 and b = 2, plot the solution for y(0) = A over the range
x = 0 to 2, using the plot option view=[0..2,-5..5].

(d) Explain the origin of the singular points in the graph in terms of the
behavior of Bessel functions.

164 CHAPTER 4. NONLINEAR ODE MODELS

Problem 4-17: Nonlinear drag on Lake Ogopogo
A boat is launched on Lake Ogopogo with initial speed v0. The water exerts a
drag force F (v) = ¡a eb v , with a > 0, b > 0, thus slowing the boat down.
(a) Find an analytic expression for the speed v(t).

(b) Determine the time it takes for the boat to come to rest.

(c) How far does the boat travel along Lake Ogopogo before coming to rest?

4.2 Second-Order Models

The vast majority of second-order nonlinear models that physicists and en-
gineers are interested in must be solved numerically. However, we begin this
section with a few examples of models that lead to nonlinear ODEs having exact
analytic solutions. Historically, these models have appeared in many equivalent
guises, so keep this in mind when you read the stories.

4.2.1 Patches Gives Chase

Man ... cannot learn to forget, but hangs on the past:
however far or fast he runs, that chain runs with him.
Friedrich Nietzsche, German philosopher (1844{1900)

A loveable beagle, named Patches, is patrolling a °at farm ¯eld, sni±ng con-
tentedly at gopher holes, when she spots her mistress, Heather, walking at
constant speed along a straight road at the edge of the ¯eld. Patches then
runs at constant speed toward Heather in such a way as to aim always at her
with her sensitive beagle nose. With distances in km, Patches is initially at
(x = 1; y = 0) and Heather at (0; 0). The road is described by the equation
x = 0, and the ratio of Heather's speed to Patches' speed is r.

(a) Derive the nonlinear ODE describing Patches' path y(x).

(b) Analytically solve the ODE for y(x). If Heather walks at 3 km/h and
Patches runs at 8 km/h, plot y(x) using constrained scaling.

(c) How many minutes does it take the dog to reach her mistress? How far
has Heather walked in this time? How far has Patches run?

(d) Animate the motion of Patches and Heather, including a tangent line to
Patches' instantaneous position, which points towards Heather. Again,
use constrained scaling.

At some instant in time, Patches' coordinates are (x; y(x)), while Heather's
are (0; h). Patches runs towards Heather in such a way as to aim always at her.
Therefore the slope of the tangent to Patches' path is dy=dx = (h¡y(x)=(0¡x),
which is now entered in eq.

4.2. SECOND-ORDER MODELS 165

> restart:

> eq:=diff(y(x),x)=(h-y(x))/(0-x);

eq :=
d

dx
y(x) = ¡h¡ y(x)

x
We solve eq for Heather's vertical coordinate h.

> h:=solve(eq,h);

h := ¡
μ
d

dx
y(x)

¶
x+ y(x)

Heather's speed is r times that of Patches, so dh=dt = r (ds=dt), where t is time
and ds =

p
1 + (dy=dx)2 dx is an element of arclength along Patches' path.

But then dh = r ds, or dh=dx = r (ds=dx) = r
p
1 + (dy=dx)2. Entering this

last relation yields the relevant second-order nonlinear ODE for y(x),

> ode:=diff(h,x)=r*sqrt(1+diff(y(x),x)^2);

ode := ¡
μ
d2

dx2
y(x)

¶
x = r

s
1 +

μ
d

dx
y(x)

¶2
the expression for h having been automatically substituted. Although ode is
nonlinear, it can be analytically solved. Patches is initially at x = 1; y = 0 and
the tangent line there has zero slope. These starting conditions are used in the
dsolve command.

> sol:=dsolve(fode,y(1)=0,D(y)(1)=0g,y(x));

sol := y(x) = ¡ x

2 (¡1 + r)xr ¡
x xr

2 (1 + r)
+

r

¡1 + r2 ;

y(x) =
x

2 (¡1 + r)xr +
xxr

2 (1 + r)
¡ r

¡1 + r2
Two forms of the solution are generated, the ¯rst corresponding to Heather
moving downward (in the negative y direction) along the x = 0 line, the second
corresponding to moving upward. The upward (second one here) solution is
selected and simpli¯ed with respect to powers of x.

> y:=simplify(rhs(sol[2]),power);

y :=
x(1¡r)

2 (¡1 + r) +
x(1+r)

2 (1 + r)
¡ r

¡1 + r2
Evaluating y at x = 0 yield's Heather's vertical coordinate when Patches reaches
her. Notice that as r approaches 1 from below, Y goes to in¯nity, i.e., Patches
cannot catch Heather in a ¯nite distance. Obviously, Patches must run faster
than Heather can walk to catch her.

> Y:=eval(y,x=0);

Y := ¡ r

¡1 + r2
The given ratio r = 3

8 is entered, and y and Y are automatically evaluated.

> r:=3/8: y:=y; Y:=evalf(Y);

166 CHAPTER 4. NONLINEAR ODE MODELS

y := ¡4x
(5=8)

5
+
4x(11=8)

11
+
24

55

Y := 0:4363636364

Heather has walked about 0.44 km before Patches catches her. The times T
in hours and T2 in minutes for Patches to reach Heather are calculated, along
with the distance Sdog that Patches runs. The absolute value is taken for T ,
because Y will be negative if the downward solution branch is chosen.

> T:=abs(Y)/3; T2:=T*60*minutes; Sdog:=8*T;

T := 0:1454545455 T2 := 8:727272730minutes Sdog := 1:163636364

The time for Patches to catch Heather is about 0:15 hours, or 8:73 minutes.
(Patches is rather slow!) Patches has run about 1:16 km.

A labeled plot of y is now created with constrained scaling,

> pl:=plot(y,x=0..1,thickness=2,tickmarks=[3,3],

labels=["x","y"],scaling=constrained):

and, loading the plots package, displayed in Figure 4.5.

> with(plots): display(pl);

0

0.2

0.4

y

0.2 0.4 0.6 0.8 1x

Figure 4.5: Patches' path is the curved line.

Finally, an animation of Heather's and Patches' motion is produced. The an-
imation will contain N = 40 frames, the frames labeled from i = 0 to N ¡ 1.
The Student[Calculus1] library package is loaded so that the tangent line to
Patches' position on the path can be drawn for each frame.

> N:=40: with(Student[Calculus1]):

The following functional operator X will calculate Patches' horizontal coordi-
nate for the ith frame. For i = 0; 1; 2; etc., X(0) = 1; X(1) = 1 ¡ 1=40 =
0:975; X(2) = 0:95, etc.

> X:=i->1-i/N:

4.2. SECOND-ORDER MODELS 167

The operator hh calculates Heather's y-coordinate for the ith frame. The sign
command is included to pick up the correct sign for the coordinate, whether
Heather's motion is upward or downward.

> hh:=i->sign(-Y)*evalf(int(r*sqrt(1+diff(y,x)^2),x=1..X(i))):

The pointplot command is used to graph Heather's and Patches' positions for
the ith frame as size-16 blue circles.

> gr:=i->pointplot([[X(i),eval(y,x=X(i))],[0,hh(i)]],

symbol=circle,symbolsize=16,color=blue):

The command Tangent(y,x=X(i),0..1) generates the equation of the line
tangent to y at the point x = X(i), the third argument giving the range of x.
A plot of the tangent line is produced by including the arguments showtangent
and output=plot.

> gr2:=i->Tangent(y,x=X(i),0..1,showtangent,output=plot,

thickness=2):

All the graphs are superimposed for the ith frame, using the display command.

> Gr:=i->display([pl,gr(i),gr2(i)],view=[0..1,0..Y]):

The motion is animated using the display command again, with the option
insequence=true.

> display(seq(Gr(i),i=0..N-1),insequence=true,

scaling=constrained);

On execution of the above command line, the opening frame of the animation
appears on the computer screen. Click on the plot and on the start arrow to
see the animation. The equation of the tangent curve is displayed at the top of
each frame, along with the coordinates at which the tangent line is calculated.

PROBLEMS:

Problem 4-18: Heather slows down
On seeing Patches begin to run toward her, Heather slows down, her speed
being 3 x km/h, where x is Patches' horizontal coordinate. Thus, when Patches
is at x = 1, Heather's speed is 3 km/h, but when Patches reaches her (x = 0)
Heather is standing still. If Patches still runs at a constant speed of 8 km/h,
analytically determine the equation y(x) describing Patches' path and plot it.
How far has Heather walked when Patches catches her? How far has Patches
run? How long does it take Patches to reach Heather?

Problem 4-19: Curves of pursuit
Do an Internet search on curves of pursuit and discuss the history and types of
pursuit curves that have been studied in the mathematical literature. Also see
Davis [Dav62]. Create a recipe that generates the pursuit curve of your choice
and motion along it, including the instantaneous tangent line. Depending on
your choice, you may have to solve the relevant ODE numerically.

168 CHAPTER 4. NONLINEAR ODE MODELS

4.2.2 Oh What Sounds We Hear!

A man falls in love through his eyes, a woman through her ears.
Woodrow Wyatt, British journalist, To the Point,\The Ears Have It," 1981
Wyatt argues that what is said to a woman by a man, and what she believes
about his status, is usually more important than the super¯ciality of good looks.

At the end of the nineteenth century, the famous German scientist Heinrich
Helmholtz knew that the ear perceives frequencies that are not present in the
incident acoustic waves. He attributed this to an asymmetric nonlinear response
of the eardrum's tympanic membrane and developed a simple mechanical model
for the eardrum's vibrations.

In the present century, a nervous young mathematics major by the name of
Mike has an hour or so to fret over his upcoming date with Vectoria. Why is
Mike nervous? This is the night that he plans to reveal his serious intentions for
her hand, and he is worried about possible rejection. To calm him down, let's
try to take his mind o® Vectoria by asking him to reproduce Helmholtz's deriva-
tion. Helmholtz's model involves applying Newton's second law to generate a
phenomenological nonlinear ODE describing the one-dimensional displacement
x(t) of the freely vibrating eardrum about the equilibrium position x = 0.

Reluctantly acquiescing to our request, Mike begins by loading the plots
library package, and then formally Taylor expanding the restoring force per
unit mass, F (x), about x = 0 out to third order in x.

> restart: with(plots):

> Force:=taylor(F(x),x=0,3);

Force := F (0) + D(F)(0)x+
1

2
(D(2))(F)(0)x2 +O(x3)

The coe±cients D(F)(0) and D(2)(F)(0) in the above output stand for the ¯rst
and second derivatives of F with respect to x, evaluated at x = 0, respectively.
Mike then assumes that the displacement x is su±ciently small that only terms
to second order in x have to be retained. So he removes the O(x3) term.

> Force:=convert(Force,polynom);

Force := F (0) + D(F)(0)x+
1

2
(D(2))(F)(0) x2

Why keep the second-order term? The term that is linear in x corresponds to
Hooke's law, while the quadratic term is the ¯rst nonlinear correction to Hooke's
law and is responsible for the asymmetric response noted by Helmholtz. As the
eardrum vibrates about the equilibrium position x = 0, the linear (x) term in
the force changes sign with x, but the quadratic (x2) term does not change sign.

In equilibrium the restoring force must vanish, so Mike sets F (0) = 0. He
also makes the symbolic substitutions D(F)(0)=¡!20 and D(2)(F)(0)=¡2¯,

> Force:=subs(fF(0)=0,D(F)(0)=-omega[0]^2,(D@@2)(F)(0)=
-2*betag,%);

Force := ¡!02 x¡ ¯ x2

4.2. SECOND-ORDER MODELS 169

with !0 and ¯ both positive. Using Newton's second law and substituting
the explicit time dependence into the force yields the relevant second-order
nonlinear ODE.

> ode:=diff(x(t),t,t)-subs(x=x(t),Force)=0;

ode :=

μ
d2

dt2
x (t)

¶
+ !0

2 x (t) + ¯ x(t)2 = 0

If ¯ is set equal to zero, then the familiar linear simple harmonic oscillator
equation results, the eardrum vibrating at the characteristic frequency !0. In
this case, the period (time for one complete oscillation) is T = 2¼=!0. With
¯ 6= 0, the above ODE is nonlinear, but can be solved analytically, as Mike
will demonstrate. Since he is already furtively looking at his watch, we will not
insist that Mike look for realistic parameter values for the eardrum, but instead
allow him to set !0 = 1 and ¯ = 1, so the ode has the following form.

> omega[0]:=1: beta:=1: ode:=ode;

ode :=

μ
d2

dt2
x(t)

¶
+ x(t) + x (t)2 = 0

Applying the dsolve command to ode ,

> solution:=dsolve(ode,x(t));

solution :=

Z x(t) 3p
¡9 a2 ¡ 6 a3 + 9 C1

d a ¡ t¡ C2 = 0;

Z x(t)

¡ 3p
¡9 a2 ¡ 6 a3 + 9 C1

d a ¡ t¡ C2 = 0

produces two general implicit solutions for the time, with positive and negative
square roots. To obtain a positive period, Mike chooses to work with the positive
square root, which is the ¯rst solution for this particular run.

> answer:=solution[1]; #choose positive square root

answer :=

Z x(t) 3p
¡9 a2 ¡ 6 a3 + 9 C1

d a ¡ t¡ C2 = 0

The constant C2 in the answer merely shifts the origin of time and so can be
disregarded or set equal to zero. The other arbitrary constant C1 can be evalu-
ated by specifying an initial amplitude x(0) = A with zero initial velocity there.
The amplitude sets the total energy E of the system. For a one-dimensional
mechanical system having mass m and speed v, the total energy is the sum of
the kinetic energy and potential energy U(x), i.e.,

E =
1

2
mv2 + U(x): (4.6)

But this can be rewritten as

v =
dx

dt
= §

r
2

m
(E ¡ U(x)); (4.7)

170 CHAPTER 4. NONLINEAR ODE MODELS

or, on integrating,

t = §
Z x(t)

0

dxp
(2=m)(E ¡ U(x))

: (4.8)

Comparing the result in answer with the positive square root in (4.8), the
potential energy U(x) for the present problem can be taken (to within an overall
proportionality constant) as

U(x) = 9x2 + 6 x3: (4.9)

Now Mike di®erentiates the answer with respect to time,

> eq:=diff(answer,t);

eq :=

3

μ
d

dt
x(t)

¶
p
¡9 x (t)2 ¡ 6 x (t)3 + 9 C1

¡ 1 = 0

thus removing the unwanted coe±cient C2 from the analysis. Next, he solves
eq for dx=dt, i.e., for the velocity vel .

> vel:=solve(eq,diff(x(t),t));

vel :=
1

3

p
¡9 x(t)2 ¡ 6 x(t)3 + 9 C1

and removes the time dependence for later integration purposes, replacing x(t)
with the dummy variable y.

> vel:=subs(x(t)=y,vel);

vel :=

p
¡9 y2 ¡ 6 y3 + 9 C1

3
The unknown constant C1 can be determined by imposing the condition that
the velocity must be zero at the turning point y = A,

> condition:=eval(vel,y=A)=0;

condition :=

p
¡9A2 ¡ 6A3 + 9 C1

3
= 0

and solving for the constant. The velocity expression is then determined.

> _C1:=solve(condition,_C1); vel:=vel;

C1 := A2 +
2

3
A3

vel :=

p
¡9 y2 ¡ 6 y3 + 9A2 + 6A3

3
To proceed any further, the amplitude A must be given a speci¯c value. Mike
enters the nominal value A = 1

3
, which is automatically substituted into vel .

> A:=1/3: vel:=vel;

vel :=

r
¡9 y2 ¡ 6 y3 + 11

9
3

4.2. SECOND-ORDER MODELS 171

In vel , the total energy is identi¯ed to be E = 11=9. To get a qualitative feeling
for the eardrum motion, Mike plots the potential energy U as a thick red line
over the range x = ¡1:6 to 0:6,

> U:=plot(9*x^2+6*x^3,x=-1.6..0.6,color=red,thickness=2):

and the total energy E as a thick green horizontal line between the points
(x = ¡2; E = 11=9) and (x = 1; E = 11=9).

> E:=plot([[-2,11/9],[1,11/9]],style=line,color=green,

thickness=2):

The two energy curves are superimposed in Figure 4.6.

> display(fU,Eg,tickmarks=[3,3],labels=["x","Energy"]);

0

2

4

Energy

-1 x

Figure 4.6: Asymmetric potential well for the eardrum model equation.

The horizontal total energy line in Figure 4.6 intersects the potential energy
curve at three x values. The two intersection points inside the potential well
centered at x = 0 are the turning points, the eardrum system oscillating between
these two points if it is placed at one of these two points with zero velocity.
The turning point on the right is the input value x(0) = A = 1

3 . Because the
potential well is slightly asymmetric, the other turning point on the left is not
at x = ¡ 1

3
. The other turning point is easily determined by ¯rst ¯nding all the

intersection points using the solve command.

> points:=solve(vel=0,y);

points :=
1

3
; ¡11

12
+

p
33

12
; ¡11

12
¡
p
33

12
Three solutions are produced, corresponding to the three intersection points
of the total energy line with the potential energy curve. The ¯rst answer cor-
responds to the turning point on the far right, and the third answer to the
intersection on the far left. So the second answer is selected as corresponding
to the second turning point for motion inside the potential well. This turning
point is labeled B.

172 CHAPTER 4. NONLINEAR ODE MODELS

> B:=points[2];

B := ¡11
12
+

p
33

12
If ¯ = 0, the potential well would have been symmetric about x = 0, and the
second turning point would have been at x = ¡ 1

3
¼ ¡0:333. For ¯ = 1, the

potential well is asymmetric and the second turning point is at B = (¡11 +p
33)=12 ¼ ¡0:438. Clearly, the period of oscillation will be somewhat longer

than the period 2 ¼=!0 ¼ 6:28 for the linear case.
Mike calculates the period T for the nonlinear situation by multiplying the

time it takes the system to go from B to A by 2, i.e, T = 2
R A
B
(1=vel) dy.

> T:=2*int(1/vel,y=B..A);

T :=

24EllipticK

Ãs
15¡

p
33

15 +
p
33

!
p
30 + 2

p
33

The period is expressed in terms of the complete elliptic integral K(k) of the
¯rst kind, which is de¯ned as

K(k) ´
Z ¼=2

0

d®p
1¡ k2 sin2 ®

: (4.10)

Maple expresses the complete elliptic integral in the form EllipticK(k), so in

this case k =
q
(15¡

p
33)=(15 +

p
33): The elliptic integral can be evaluated

numerically,

> T:=evalf(T);

T := 6:747679332

so the period is T ¼ 6:75, which is about 71
2
% longer than for the linear case.

To perform the necessary integration to obtain the analytic solution, it is
necessary to assume that the displacement satis¯es x > B and x < A.

> assume(x>B,x<A):

An implicit solution expressing t in terms of x is obtained by integrating the
inverse velocity from the turning point B to an arbitrary point x (less than A).

> sol:=t=int(1/vel,y=B..x); #implicit solution

sol := t =

12EllipticF

Ã
2

s
45x+ 33¡

p
33 + 3

p
33x

(15¡
p
33) (11 +

p
33 + 12x)

;

s
15¡

p
33

15 +
p
33

!
p
30 + 2

p
33

The implicit solution is expressed in terms of the incomplete elliptic integral of
the ¯rst kind, u ´ F (Á; k), which is de¯ned as follows:

u ´ F (Á; k) =
Z Á

0

d®p
1¡ k2 sin2 ®

=

Z sinÁ

0

dyp
1¡ y2

p
1¡ k2 y2

: (4.11)

Maple expresses the incomplete elliptic integral in the form EllipticF(z; k) with
z ´ sinÁ. The complete elliptic integral K(k) corresponds to taking Á = ¼=2.

4.2. SECOND-ORDER MODELS 173

An explicit solution is obtained by solving sol for x.

> x:=solve(sol,x);

x := ¡1
3

88%1 + 8%1
p
11
p
3¡ 77¡ 3

p
33

32%1¡ 43¡ 5
p
33

%1 := JacobiSN

Ã
t
p
30 + 2

p
33

12
;

s
15¡

p
33

15 +
p
33

!2

The formidable-looking answer, which is challenging to derive with pen and
paper, is given in terms of the Jacobian elliptic sine function, which Maple
expresses in the form JacobiSN(u; k). When written by hand, the elliptic sine
function is often written as sn(u), the argument k not being explicitly expressed.

How is sn(u) de¯ned? The upper limit Á in the ¯rst integral of equa-
tion (4.11) is referred to as the \amplitude" of u and is written as Á = am(u).
Then, for a given k value, the elliptic sine function, sn(u), is de¯ned by

sn(u) = sinÁ = sin(am(u)): (4.12)

For k = 0, it is easy to verify that sn(u) reduces to sin(u). As k is increased,
the elliptic sine function deviates away from the \ordinary" sine function shape.
To learn more about the Jacobian elliptic sine function, Mike suggests that you
try some of the relevant problems that follow this recipe.

The solution is now plotted over the time interval t = 0 to 30, displaying
asymmetric oscillation about the equilibrium point.

> plot(x,t=0..30,thickness=2);

–0.4

–0.2

0

0.2

5 10 15 20 25 30t

Figure 4.7: Asymmetric oscillations of the eardrum.

Unfortunately, Mike has to leave to pick Vectoria up, so let's wish him luck
in his quest for this fair damsel's hand and hope that he will return soon to
explore some more interesting recipes with us.

174 CHAPTER 4. NONLINEAR ODE MODELS

PROBLEMS:
Problem 4-20: Di®erent amplitude
Taking the initial conditions x(0) = ¡ 4

5
, _x(0) = 0 in the text recipe, determine

the analytic form of the period and its numerical value. Determine the analytic
solution and plot it over a suitable time range.

Problem 4-21: Maximum energy for bounded motion
What is the maximum total energy E for which oscillatory motion of the
eardrum can occur in the text recipe? What are the numerical values of the
turning points?

Problem 4-22: Higher-order correction to the period
For the freely vibrating eardrum, also keep the cubic term in the Taylor ex-
pansion of the force law and express the restoring force per unit mass as
F = ¡!20 x ¡ ¯ x2 ¡ ° x3. Taking ! = 1, ¯ = 3

4 , ° =
1
2 , and A = 1

3 de-
termine the period of vibrations of the eardrum. By how much is the period
changed with respect to that predicted by the linear Hooke's law?

Problem 4-23: Plotting the elliptic sine function
Plot the Jacobian elliptic sine function sn(u) over the range u = 0 to 20 in the
same graph for k = 0:1, k = 0:5, k = 0:9, and k = 0:995. Discuss the behavior
of sn(u) as k is increased.

Problem 4-24: Plotting the elliptic cosine function
In analogy to the elliptic sine function, the Jacobian elliptic cosine function of u
is de¯ned as cn(u) = cosÁ = cos(am(u)): Noting that the Maple command for
cn(u) is JacobiCN(u,k), plot the elliptic cosine function over the range u = 0
to 20 in the same graph for k = 0:1, k = 0:5, k = 0:9, and k = 0:995. Discuss
the behavior of cn(u) as k is increased.

Problem 4-25: Properties of elliptic functions
Using the de¯nition of cn(u) in the previous problem and de¯ning another

elliptic function dn(u) =
p
1¡ k2 sin2 Á =

p
1¡ k2 sn2(u); prove the following:

(a)
d

du
(cn(u)) = ¡ sn(u) dn(u);

(b)
d2

du2
(cn(u)) = (2 k2 ¡ 1) cn(u)¡ 2 k2 cn3(u);

(c)

Z
cn(u) du =

1

k
arccos(dn(u)).

Problem 4-26: Vibrating hard spring
The equation of motion for a \hard" spring is

Äx(t) + (1 + a2 x(t)2)x(t) = 0:

Analytically determine the period and the solution x(t) for the hard spring,
given the initial conditions x(0) = A, _x(0) = 0. Plot the solution over several
cycles for a = A = 1.

4.2. SECOND-ORDER MODELS 175

4.2.3 Vectoria Feels the Force and Hits the Bottle

Man your ships, and may the force be with you.
Film line from Star Wars, written by George Lucas, 1977

Our fair damsel, Vectoria, has felt the force of Mike's love and can't wait to tell
her girlfriends tonight about becoming engaged. Perhaps a bottle of sparkling
Asti Spumante wine would be in order then, but in the meantime a homework
assignment in her electromagnetics course beckons and an entirely di®erent sort
of bottle awaits her immediate consideration.

She has been asked to create a recipe that illustrates the movement of a
charged particle in a magnetic bottle. The phrase \magnetic bottle" refers to
the carefully designed arrangements of magnetic ¯elds that are used for the
con¯nement of extremely hot plasmas studied in experiments on thermonuclear
fusion. Basically, the magnetic ¯eld is approximately uniform in the center of
the \bottle" but gets stronger and pinches inward at the ends of the bottle.
A charged particle starting in the central region, and given an initial velocity
toward one end of the bottle, spirals around a ¯eld line traveling toward that
end. As it approaches the end, the orbits become smaller and smaller, and
¯nally at some point the charge re°ects o® the \end" of the bottle and reverses
direction. It then travels to the other end of the bottle and repeats the scenario.

In her recipe, Vectoria will make use of the Lorentz force law and a magnetic
¯eld con¯guration of her own mathematical design. A particle of charge q
moving with velocity ~v in an external electric ¯eld ~E and magnetic ¯eld ~B will
experience the Lorentz force ~F = q ~E + q (~v £ ~B). If present, the electric ¯eld

produces a contribution to the Lorentz force in the direction of ~E, while the
magnetic force contribution is perpendicular to the velocity vector. So, the
electric force will accelerate the charge, while the magnetic force de°ects it.

Vectoria begins her recipe by loading the VectorCalculus and plots packages,
the former being needed for creating and manipulating vectors.

> restart: with(VectorCalculus): with(plots):

Using Cartesian coordinates, with êx, êy, and êz pointing along the x-, y-, and z-
axes respectively, the position vector ~r = x(t) êx+y(t) êy+ z(t) êz of the charge
at time t is entered, and its velocity ~v = d~r=dt and acceleration ~a = d~v=dt
calculated. The position vector is entered here with the \shorthand" syntax,
the longer form being Vector([x(t),y(t),z(t)]). The default output is in
terms of Cartesian unit vectors, although Maple does not place \hats" on them.

> r:=<x(t),y(t),z(t)>; v:= diff(r,t); a:=diff(v,t);

r := x (t) ex + y(t) ey + z (t) ez

v :=

μ
d

dt
x(t)

¶
ex +

μ
d

dt
y(t)

¶
ey +

μ
d

dt
z (t)

¶
ez

a :=

μ
d2

dt2
x(t)

¶
ex +

μ
d2

dt2
y(t)

¶
ey +

μ
d2

dt2
z (t)

¶
ez

176 CHAPTER 4. NONLINEAR ODE MODELS

The radial distance R =
p
x(t)2 + y(t)2 at time t is entered. The coordinates

and initial conditions will be chosen so that spirals are traced out in the radial
direction with translation of the spirals along the z-axis.

> R:=sqrt(x(t)^2+y(t)^2);

R :=
p
x(t)2 + y(t)2

For the magnetic bottle ¯elds, Vectoria takes the electric ¯eld to be zero, and
starts to build up the magnetic ¯eld structure, inputting the x-, y-, and z-
components but with the mathematical forms of the radial function Br and
longitudinal function Bz not yet speci¯ed.

> E:=<0,0,0>; B:=<-Br*x(t)/R,-Br*y(t)/R,Bz>;

E := 0 ex

B := ¡ Br x (t)p
x(t)2 + y(t)2

ex ¡
Br y(t)p
x(t)2 + y(t)2

ey + Bz ez

The Lorentz force on the charge q is calculated, the short-hand form v &x B being
used to enter the cross product ~v £ ~B. The long form is CrossProduct(v,B).

> F:=q*E+q*(v &x B);

F := q

0
BB@
μ
d

dt
y(t)

¶
Bz +

μ
d

dt
z (t)

¶
Br y(t)p

x (t)2 + y(t)2

1
CCA ex

+q

0
BB@¡

μ
d

dt
z (t)

¶
Br x(t)p

x(t)2 + y(t)2
¡
μ
d

dt
x (t)

¶
Bz

1
CCA ey

+q

0
BB@¡

μ
d

dt
x(t)

¶
Br y(t)p

x(t)2 + y(t)2
+

μ
d

dt
y(t)

¶
Br x (t)p

x(t)2 + y(t)2

1
CCA ez

Taking the mass of the charge to be m, Newton's second law gives the system
of three component equations. Only the ¯rst ODE is shown here in the text.

> sys:=seq(m*a[i]=F[i],i=1..3);

sys := m

μ
d2

dt2
x(t)

¶
= q

0
BB@
μ
d

dt
y(t)

¶
Bz +

μ
d

dt
z (t)

¶
Br y(t)p

x(t)2 + y(t)2

1
CCA ; : : :

Vectoria uses the piecewise command to build up the functional forms of Br
and Bz . The structure of Br is such that there is no radial component of the
magnetic ¯eld between z = ¡1 and z = +1. In this region, the magnetic ¯eld
is completely in the z-direction. Outside this central region, the radial ¯eld

4.2. SECOND-ORDER MODELS 177

component is allowed to vary with z according to a hyperbolic cosine function.
The function Bz is taken to be constant inside the region z = ¡0:5 to 0:5 and
allowed to grow linearly stronger outside this region.

> Br:=piecewise(z(t)>1,cosh(z(t)),z(t)<-1,-cosh(z(t)),0);

Br :=

(
cosh(z (t)) 1 < z (t)
¡cosh(z (t)) z (t) < ¡1
0 otherwise

> Bz:=piecewise(abs(z(t))<.5,4,4+4*abs(abs(z(t))-.5));

Bz :=

½
4 jz (t)j < 0:5
4 + 4 jjz (t)j ¡ 0:5j otherwise

To see whether her piecewise functional forms produce a suitable ¯eld con¯g-
uration for the occurrence of magnetic bottle behavior, Vectoria will plot the
magnetic ¯eld in the y = 0 plane. To accomplish this she ¯rst substitutes
y(t) = 0 and removes the time dependence from x and z in the ¯rst and third
components of the magnetic ¯eld.

> B1:=subs(fx(t)=x,z(t)=z,y(t)=0g,B[1]):
B3:=subs(fx(t)=x,z(t)=zg,B[3]):

She uses the fieldplot command to represent the direction and magnitude
of the ¯eld with thick red arrows. A cross-sectional plot of the symmetrical
magnetic ¯eld is shown in Figure 4.8. Note that the size of the arrows is an
indication of ¯eld strength, bigger arrows for stronger ¯elds. The ¯eld con¯gu-
ration shown in the ¯gure should allow magnetic bottle behavior.

> fieldplot([B3,B1],z=-1.5..1.5,x=-1..1,arrows=THICK,grid=

[15,15],color=red,scaling=constrained,tickmarks=[3,3]);

–1

0

1

x

–1 1
z

Figure 4.8: Magnetic ¯eld con¯guration to produce a magnetic bottle.

To animate the motion of a charge in her magnetic bottle, Vectoria chooses the
nominal mass and charge values m = 1 and q = 1 and the initial conditions

178 CHAPTER 4. NONLINEAR ODE MODELS

x(0) = 0:5, y(0) = 0, z(0) = 0, _x(0) = 0, _y(0) = ¡2, and _z(0) = ¡0:2.
> m:=1: q:=1:

> ic:=(x(0)=0.5,y(0)=0,z(0)=0,D(x)(0)=0,D(y)(0)=-2,D(z)(0)=0.2):

Maple is not able to produce an explicit closed-form analytic solution for the
nonlinear ODE system, sys , so a numerical solution is generated, the output
being given as a \listprocedure."

> sol:=dsolve(fsys,icg,fx(t),y(t),z(t)g,numeric,
output=listprocedure):

Evaluating x(t), y(t), and z(t) with sol will allow Vectoria to calculate the
charge's position at an arbitrary time t.

> X:=eval(x(t),sol): Y:=eval(y(t),sol): Z:=eval(z(t),sol):

For example, the charge's x-coordinate at t = 2 time units is now evaluated.

> X(2);

¡0:0727500262205896948
Vectoria will now animate the motion of the charge in the magnetic bottle. She
takes the total time to be T = 24:0 time units and will have N = 200 time
steps in her animation. The time step size T=N is then calculated.

> T:=24.0: N:=200: step:=T/N;

step := 0:1200000000

The spacecurve command is used to plot (but not display) the entire trajectory
over the time interval t = 0 to T , the trajectory being colored with the zhue
option. To obtain a smooth curve, the minimum number of plotting points is
taken to be 1000.

> sc:=spacecurve([X(t),Y(t),Z(t)],t=0..T,shading=zhue,

numpoints=1000):

Using a do loop running from n = 0 toN , the charge is plotted on each time step
in 3 dimensions as a size-18 red circle superimposed on the entire trajectory.

> for n from 0 to N do

> t:=step*n;

> pp[n]:=pointplot3d([X(t),Y(t),Z(t)],symbol=circle,

symbolsize=18,color=red);

> gr[n]:=display(fsc,pp[n]g);
> end do:

The motion of the charge in the magnetic bottle is animated with the display
command, using the insequence=true option. To see the animation execute
the worksheet, click on the plot, and on the start arrow in the tool bar.

> display(seq(gr[n],n=0..N),insequence=true,axes=frame,

labels=["x","y","z"]);

Vectoria is quite pleased that her piecewise model mimics magnetic bottle be-
havior. But now she has to forsake this bottle for another one, as she rushes
o® to join her girlfriends and share a bottle of Asti Spumante.

4.2. SECOND-ORDER MODELS 179

PROBLEMS:
Problem 4-27: Crossed electric and magnetic ¯elds
Consider a charge q and mass m moving in the crossed electric and magnetic
¯elds described by ~E = E0 sin(! t) êz, ~B = B0 êx, where E0, B0, and ! are real
constants. Using the Lorentz force law, derive the system of ODEs governing
the motion of the charge. Is the system linear or nonlinear? Analytically derive
the solution of the system, given the initial conditions x(0) = 0, y(0) = 0,
z(0) = 0, _x(0) = 0, _y(0) = 0, and _z(0) = 0. Taking m = 1, q = 1, ! = 5:1,
E0 = 2, and B0 = 2:3, animate the motion of the charge (represented as a
circle), superimposing the motion on the entire trajectory.

Problem 4-28: Altering the magnetic bottle ¯eld
In the text recipe, experiment with di®erent functional forms of Br and Bz and
discuss the e®ect of your alterations on magnetic bottle behavior. Optional:
Create a continuous ¯eld con¯guration that produces magnetic bottle behavior
and check that div~B = 0.

4.2.4 Golf Is Such an \Uplifting" Experience

If you watch a game, it's fun. If you play it, it's recreation.
If you work at it, it's golf.
Bob Hope, American comedian, Readers Digest, October 1958.

Heather's girlfriends have invited her to go gol¯ng, but they still need another
woman to make up a foursome for the Thursday afternoon ladies' day at the
Metropolis Country Club. Heather assures them that she can probably twist
her older sister Jennifer's arm to go with them. Jennifer, who has been busy
preparing lectures for her applied mathematics course, has had little time to
play golf recently, but is persuaded to go on the basis that a gourmet bu®et
supper will be available in the clubhouse after the 18 holes are completed.

Although it won't help her to play golf any better, Jennifer's inborn curios-
ity about how she would go about realistically modeling the °ight of a golf ball
is piqued, so she trots over to the university science library to look up some
articles on the physics of golf [Erl83], [MA88], [MH91]. She recalls from her
undergraduate physics courses that the trajectory of a golf ball was calculated
assuming that there was no atmospheric drag on the ball, and also not taking
any possible uplift due to backspin of the ball into account. Jennifer wonders
what e®ect the inclusion of these two contributions might have on the ball's
°ight path? For example, can the uplift compensate su±ciently for the aero-
dynamic drag to enable the ball to °y farther? After photocopying the cited
references, she makes a beeline back to her o±ce, where she commences to sim-
ulate the °ight of the golf ball with both drag and uplift included. Fortunately,
the references also provide actual parameter values that can be used in her
computer modeling.

180 CHAPTER 4. NONLINEAR ODE MODELS

As she was taught way back in ¯rst-year physics, Jennifer begins by making
a free-body diagram showing all the forces acting on the golf ball. This diagram
is reproduced in Figure 4.9.

F F

F

gravitydrag

lift

V

V
V

φ

θ

x

y

golf ball

Figure 4.9: Free-body diagram for a golf ball, including drag and lift.

Three forces are included, the pull of gravity ~Fgravity downward, the drag force
~Fdrag in the direction opposite to the instantaneous velocity vector ~V , and

the lift force ~Flift in a direction perpendicular to ~V . For simplicity, Jennifer
assumes that the ball's spin axis is in the z-direction and that the translational
motion is in the x-y plane with x horizontal and y vertical. She makes a call to
the plots and VectorCalculus packages,

> restart: with(plots): with(VectorCalculus):

and enters the velocity vector ~V = Vx êx + Vy êy.

> Velocity:=<V[x],V[y]>;

Velocity := Vx ex + Vy ey
Since the speed V will be needed, it is calculated by taking the dot product of
the velocity vector with itself and then taking the square root. The dot product
is entered with the shorthand3 dot syntax. The unit vector (assigned the name

uv) in the direction of ~V is then equal to the velocity divided by the speed.

> Speed:=sqrt(Velocity . Velocity); u[v]:=Velocity/Speed;

Speed :=
q
Vx

2 + Vy
2

uv :=
Vxq

Vx
2 + Vy

2
ex +

Vyq
Vx

2 + Vy
2
ey

3The long form is DotProduct(Velocity,Velocity).

4.2. SECOND-ORDER MODELS 181

Referring to the freebody diagram, sin(μ) = Vy=V and cos(μ) = Vx=V .

> sin(theta):=V[y]/Speed; cos(theta):=V[x]/Speed;

sin(μ) :=
Vyq

Vx
2 + Vy

2
cos(μ) :=

Vxq
Vx

2 + Vy
2

The unit vector Á̂ pointing in the lift direction is related to the Cartesian unit
vectors êx and êy pointing along the x- and y-directions, respectively, by the

relation Á̂ = ¡ sin μ êx + cos μ êy. This relation is entered and labeled uÁ.

> u[phi]:=<-sin(theta),cos(theta)>;

uÁ := ¡
Vyq

Vx
2 + Vy

2
ex +

Vxq
Vx

2 + Vy
2
ey

The gravitational force ~Fgravity = ¡mg êy, where m is the mass of the ball and
g is the acceleration due to gravity.

> F[gravity]:=<0,-m*g>;

Fgravity := ¡mg ey
According to the photocopied references, both the drag force ~Fdrag and the

lift force ~Flift are proportional to the square of the speed. Jennifer labels the
proportionality constants (per unit mass) as Kdrag and Klift , respectively, and
enters the two forces.

> F[drag]:=-K[drag]*m*Speed^2*u[v];

Fdrag := ¡Kdrag m
q
Vx

2 + Vy
2 Vx ex ¡Kdrag m

q
Vx

2 + Vy
2 Vy ey

> F[lift]:=K[lift]*m*Speed^2*u[phi];

Flift := ¡Klift m
q
Vx

2 + Vy
2 Vy ex +Klift m

q
Vx

2 + Vy
2 Vx ey

The net force ~F acting on the golf ball is the vector sum of the three forces.

> F:=F[gravity]+F[drag]+F[lift]:

Now, Vx = dx(t)=dt and Vy = dy(t)=dt, where x(t) and y(t) are the horizontal
and vertical coordinates of the golf ball at time t.

> V[x]:=diff(x(t),t): V[y]:=diff(y(t),t):

Newton's second law of motion is applied in the x- and y-directions.

> xeq:=diff(V[x],t)=simplify(F[1]/m);

xeq :=
d2

dt2
x(t) = ¡

sμ
d

dt
x (t)

¶2
+

μ
d

dt
y(t)

¶2μ
Kdrag

μ
d

dt
x (t)

¶
+Klift

μ
d

dt
y(t)

¶¶

> yeq:=diff(V[y],t)=simplify(F[2]/m);

182 CHAPTER 4. NONLINEAR ODE MODELS

yeq :=
d2

dt2
y(t) = ¡g ¡Kdrag

sμ
d

dt
x (t)

¶2
+

μ
d

dt
y(t)

¶2 μ
d

dt
y(t)

¶

+Klift

sμ
d

dt
x (t)

¶2
+

μ
d

dt
y(t)

¶2 μ
d

dt
x(t)

¶
Jennifer's task is now to solve the coupled nonlinear ODEs, xeq and yeq , nu-
merically, since they do not have analytic solutions. To accomplish this, the
parameter values must be entered. From the references, she ¯nds that the drag
and lift parameters for a British golf ball of mass m = 0:046 kg and radius
r = 0:0207 m launched at an initial speed V0 = 61 m/s and with a backspin of
about 60 rev/s are approximately equal to each other with a value 0:28. The
density ½ of dry air at 1 atm pressure and 20±C is ½ = 1:21 kg/m3. Jennifer
takes g = 9:81 m/s and the initial launch angle of the ball to be 16±.

> rho:=1.21: m:=0.046: r:=0.0207: g:=9.81: V0:=61: Angle:=16:

Drag:=0.28: Lift:=0.28:

According to the references, the drag and lift coe±cient are given by Kdrag =
½ ¼ r2Drag=(2m) and Klift = ½¼ r2 Lift=(2m). These two coe±cients are nu-
merically evaluated and temporarily labeled KDrag and KLift .

> KDrag:=evalf(rho*Pi*r^2*Drag/(2*m));

KLift:=evalf(rho*Pi*r^2*Lift/(2*m));

KDrag := 0:004957310686 KLift := 0:004957310686

The initial angle is converted from degrees into radians,

> Theta:=convert(Angle*degrees,radians);

£ :=
4¼

45
and the initial velocity of the golf ball calculated.

> Vo:=evalf(V0*<cos(Theta),sin(Theta)>);

Vo := 58:63696345 ex + 16:81387871 ey
The ball starts with a horizontal velocity component of 58:6 m/s and a vertical
component of 16:8 m/s. Taking the golf ball to be initially positioned at the
origin of the coordinate system, the initial conditions are then entered.

> ic:=x(0)=0,D(x)(0)=Vo[1],y(0)=0,D(y)(0)=Vo[2]:

Jennifer wishes to compare the path followed by the ball when both drag and
lift are included with the trajectory that results when both contributions are
absent. So in the following do loop, n = 2 corresponds to the former, while
n = 1 produces the latter situation.

> for n from 1 to 2 do

For n = 1 in the following command line, Kdrag = 0 and Klift = 0, while n = 2
produces Kdrag = KDrag and Klift = KLift .

> K[drag]:=(n-1)*KDrag: K[lift]:=(n-1)*KLift:

The nonlinear ODEs xeq and yeq are solved numerically for x(t) and y(t),

4.2. SECOND-ORDER MODELS 183

> sol:=dsolve(fxeq,yeq,icg,fx(t),y(t)g,type=numeric);
and the odeplot command used to plot the trajectory of the ball. The time
interval for the golf ball to strike the ground again is di®erent for the two
trajectories. Without drag and lift, the time interval is about 3:42 s, while
the time interval lengthens to about 7 s when these contributions are both
included. Jennifer allows for this in the following command line. The linestyle
option, linestyle=3-n, is used to produce a solid curve for the situation that
both lift and drag are included (n = 2), and a dashed line when they are not.

> pl[n]:=odeplot(sol,[x(t),y(t)],0..3.42+3.6*(n-1),

labels=["x","y"],linestyle=3-n,thickness=2):
> end do:

On ending the do loop, Jennifer muses about what usually happens when she
goes gol¯ng. Invariably, she ends up in the rough, in a sand trap, or has to
shoot over a tree. So in her simulation, she places a thick brown \tree" 30
meters high at a distance of 120 meters from where the ball is struck.

> tree:=plot([[120,0],[120,30]],color=brown,thickness=3):

The two possible trajectories are superimposed with the tree plot to produce

> display([seq(pl[i],i=1..2),tree],scaling=constrained);

0

10

20

30

y

100 x 200

Figure 4.10: Solid curve: drag and lift included. Dashed curve: no drag or lift.

Figure 4.10. Jennifer notes a number of important di®erences between the two
trajectories. Despite the e®ect of drag, her simulation indicates that a golf ball
in the real world rises higher (thus, clearing the \tree" here) and consequently
travels farther because of the lift on the golf ball due to backspin. This is not
too surprising, since the ball stays in the air about twice as long as when both
drag and lift are neglected. She further notices that the ball's path actually
bends upward before reaching the zenith of its trajectory, a phenomenon that
she has seen on the golf course, especially when the club pro is playing. In
her model calculation the ball has traveled about 203 m (222 yards), hardly a
long shot by the standards of someone like Tiger Woods, who averages about
300 yards a drive. However, she is con¯dent that she could modify the initial
conditions to mimic one of Tiger's shots. Undoubtedly Heather, who is a big
Tiger Woods fan, will ask her to do it when she learns about the simulation.

184 CHAPTER 4. NONLINEAR ODE MODELS

As much fun as she has had, Jennifer suddenly realizes that she had better
spend a little time hitting balls down at the local driving range before she goes
out with Heather and her friends. Otherwise, she might end up proving to be
an embarrassment to her sister. Now where did she put those golf clubs?

PROBLEMS:

Problem 4-29: The Bo®o brothers go gol¯ng
Syd and Benny Bo®o have taken an afternoon o® from their realty business
and gone gol¯ng at the Metropolis Country Club. After a good approach shot
on a level fairway, Benny Bo®o has placed his golf ball 100 m from the hole.
He selects a 9-iron and hits the ball perfectly, landing practically at the hole.
If both lift and drag are included and all other parameters of the text recipe
prevail, at what angle to the horizontal (in degrees) was the ball hit? How high
did the ball rise?

Problem 4-30: Syd Bo®o makes a hole in one
Syd and Benny Bo®o's golf match continues and they move onto the next hole,
a par 3. The tee-o® point is elevated 20 m above the hole, the ball having to
travel over an intervening lily pond. The horizontal distance from the tee-o®
position to the hole is 160 m. Syd miraculously scores a hole in one, which
means that drinks are on him at the clubhouse after the match. Assuming
that both lift and drag are included and all other parameters of the text recipe
prevail, at what angle did Syd's ball ascend in order for him to make the hole
in one? How high did the ball rise relative to the hole? If the green is circular
(radius 5 m) with the hole at its center, and the pond stretches up to the edge of
the green, would the ball have ended up in the pond if lift had been neglected?
Or would the ball have overshot the green?

Problem 4-31: Rocky Mountain high
At a Rocky Mountain golf resort, the elevation is such that the density of air is
½ = 1:0 kg/m3 and g = 9:8 m/s2. How much farther would the ball travel than
for the sea-level data given in the text recipe?

Problem 4-32: Horizontal drive
A golf ball that has been teed up 3 cm above the ground is hit badly and leaves
the tee horizontally. Including lift and drag and taking all other parameters as
in the text recipe, plot the trajectory of the ball and determine where it strikes
the ground, assuming that the fairway is level. How does the distance compare
to the situation in which there is no lift?

Problem 4-33: Vertical shot
As part of its testing routine, a golf ball manufacturing company tests the
performance of one of its golf balls by shooting it vertically into the air with
the same spin and other parameters as in the text recipe. If lift and drag are
included, where would the golf ball land?

4.3. VARIATIONAL CALCULUS MODELS 185

4.3 Variational Calculus Models

The models in this section are based on the following mathematical framework
developed by the mathematicians Euler and Lagrange. Consider a function
y(x) with ¯xed values y(x0) = y0 and y(x1) = y1 at two distinct points A and
B, respectively. Form a speci¯c function F of x, y(x) and y 0 ´ dy(x)=dx, i.e.,
F = F (x; y; y 0). In our examples, F will be determined by the speci¯cation of
the problem. Among all functions y(x) connecting A and B, ¯nd those that
give an extremum (minimum or maximum, usually) to the integral

I[y] =

Z x1

x0

F (x; y(x); y 0(x)) dx: (4.13)

The value I of the integral depends on the functional form chosen for y(x).
Rather than trying di®erent y(x) ad in¯nitum, it turns out that the y(x) that
yields an extremum value for I must satisfy the Euler{Lagrange equation [FC99]

@F

@y
¡ d

dx

μ
@F

@y 0

¶
= 0: (4.14)

The resulting ODE is often nonlinear in nature, but may be susceptible to
analytic solution. If not, it can be solved numerically.

4.3.1 Dress Design, the Erehwonese Way

Haute Couture should be fun, foolish and almost unwearable.
Christian Lacroix, French couturier (1951{)

On the planet Erehwon the leading dress designer, Gino Spoo¯a, has created a
new design, called the lampshade look,4 as shown in Figure 4.11, to accommo-

y

x

Figure 4.11: The lampshade look in dress design.

4The supporting straps are not displayed.

186 CHAPTER 4. NONLINEAR ODE MODELS

date the shapes of its most beautiful (by Erehwon standards) female citizens.
Being an amateur scientist on the side and also to keep down material cost, he
wants the surface area of cloth in the one-piece dress to be a minimum. The
smaller upper ring at x = 0 is of radius y = 1 sretem (the local unit of length),
and the lower, larger, ring at x = 1 sretem is of radius y = 2 sretem. To answer
the question of what the shape of the surface should be to minimize the area,
Gino consults one of Erehwon's most prominent mathematicians, Greg Arious
Nerd, who says that this problem was solved many millennia ago. Greg then
proceeds to outline the solution to the problem for his dress-designing friend.
For the bene¯t of readers who may not understand the peculiar Northern Ere-
hwonese dialect spoken by Greg, we shall translate what he has to say. The
authors are not totally °uent in this language, so bear with us if we occasionally
are in doubt about the exact words and thus resort to paraphrasing what Greg
says instead of reporting his remarks verbatim.

\It's all very simple," Greg starts out. \The surface area of the dress can be
generated by revolving the curve y(x) about the x-axis. So what5 is the shape
of y(x)?

y

ds

x

y(x)

Figure 4.12: Determining the surface area of the dress.

Referring to Figure 4.12, an element dA of surface area is given by

dA = (2¼ y) ds = 2 ¼ y
p
(dx)2 + (dy)2 = 2¼ y

p
1 + (y 0)2 dx; (4.15)

where the prime indicates a derivative with respect to x. So the surface area
between x = 0 and x = 1 is

A = 2¼

Z 1

0

y
p
1 + (y 0)2 dx: (4.16)

5Author's note: This appears to be a rhetorical question on Greg's part, since Gino hasn't
opened his mouth yet.

4.3. VARIATIONAL CALCULUS MODELS 187

The goal is to ¯nd the shape y(x) that minimizes A."
\I know that, Greg," Gino interjects, \but get to the point. As my business

associates from Earth say, time is money. What is the bottom line? How many
square sretem of cloth will I need?"

A little perturbed by this sign of impatience, Greg's dialect has become
stronger and his response is di±cult for us to precisely translate, but the gist of
it goes something like this. Long ago, some ancestors on his mother's side had
adopted a trial-and-error approach to ¯nding y(x). This consisted in choosing
some form for y(x) and performing the integration to calculate A. Then the
venerable ancestors would choose another form and see whether it generated a
smaller value for A. With a touch of hyperbole, we think, Greg said that some
kept repeating this process until either they became residents in the Erehwon
asylum or inductees into the Erehwon Academy of Mathematics. According
to his unbiased (?) version of history, a better approach was discovered long
ago by one of Greg's illustrious ancestors on his father's side, Hil Arious Nerd.
Evidently, Hil independently discovered the same method as developed by Euler
and Lagrange on far-distant Earth. The method is as follows.

Label the integrand of the area integral as F , i.e., F = 2¼ y
p
1 + (y 0)2.

The curve y(x) that minimizes the area is the solution of the Euler{Lagrange
equation (known as the Nerd equation on Erehwon)

@F

@y
¡ d

dx

@F

@y 0
= 0: (4.17)

Solving this type of problem by hand has been a standard assignment given in
the past by perverse professors on Erehwon6 to their students.

It appears that Greg has calmed down so that we can understand him better,
so let's pick up Greg's detailed narrative once again.

\It's now frowned upon to in°ict mental pain on students (and dress design-
ers) by performing hand calculations when computers can do all the algebra for
you with no errors. At the Erehwon Institute of Technology we use the Elpam
computer algebra system, so let's use it to crack your problem.

I will begin by loading the VariationalCalculus library package which con-
tains the EulerLagrange command for generating the left-hand side of the
Euler{Lagrange (Nerd) equation (4.17).

> restart: with(VariationalCalculus):

Next let's enter the integrand, F = y(x)
p
1 + (dy(x)=dx)2, omitting the factor

of 2¼, which would ultimately cancel out of the equation,

> F:=y(x)*sqrt(1+diff(y(x),x)^2);

F := y(x)

s
1 +

μ
d

dx
y(x)

¶2
The EulerLagrange command is applied to F , the second argument (x) being
the independent variable, the third argument the dependent variable. The
result is then simpli¯ed.

6Author's note: This quaint, but archaic, custom is still widely practiced on Earth.

188 CHAPTER 4. NONLINEAR ODE MODELS

> eq:=simplify(EulerLagrange(F,x,y(x)));

eq :=

8>>>>><
>>>>>:

y(x)s
1 +

μ
d

dx
y(x)

¶2 = K1;

1 +

μ
d

dx
y(x)

¶2
¡ y(x)

μ
d2

dx2
y(x)

¶
Ã
1 +

μ
d

dx
y(x)

¶2!(3=2)

9>>>>>=
>>>>>;

Two results are generated in eq. The expression not involving the constant K1

is just the lhs of the Euler{Lagrange equation. It can be extracted using the
remove command to remove the expression containing K1 from eq. Inclusion of
the brackets at the end of the command line removes the brackets that would
otherwise enclose the following answer.

> eq2:=remove(has,eq,K[1])[];

eq2 :=

1 +

μ
d

dx
y(x)

¶2
¡ y(x)

μ
d2

dx2
y(x)

¶
Ã
1 +

μ
d

dx
y(x)

¶2!(3=2)

The relevant governing nonlinear ODE that must be solved for y(x) follows on
setting the numerator of eq2 equal to zero. This ODE would have been tedious
to derive by hand.

> ode:=numer(eq2)=0; #relevant ODE

ode := 1 +

μ
d

dx
y(x)

¶2
¡ y(x)

μ
d2

dx2
y(x)

¶
= 0

If proceeding by hand, one could reduce the second-order ode to a ¯rst-order
ODE by setting p = dy=dx, so that d2y=dx2 = dp=dx = (dy=dx) (dp=dy) =
p (dp=dy). The variables can then be separated and the integrations performed,
yielding p ´ dy=dx with one arbitrary constant. But this ¯rst integral is already
contained in eq , being the term involving the constant K1. This ¯rst integral
can be extracted from eq using the following select command:

> eq3:=select(has,eq,K[1])[]; #first integral

eq3 :=
y(x)s

1 +

μ
d

dx
y(x)

¶2 = K1

The ¯rst-order ODE eq3 is solved for y(x), a second constant C1 appearing in
the solution, which contains two equivalent answers (not displayed).

> sol:=dsolve(eq3,y(x));

I will select the ¯rst answer in sol and simplify the rhs of the result.

> y:=simplify(rhs(sol[1]));

y :=
1

2
(K1

2 + e
(2 (x¡ C1)

K1
)
) e
(¡x¡ C1

K1
)

4.3. VARIATIONAL CALCULUS MODELS 189

We now have the general curve y that will minimize the area, but we have to
determine the two constants K1 and C1 . Evaluating y at x = 0 and setting
the result to 1 yields the ¯rst boundary condition, while evaluating y at x = 1
and setting the result to 2 yields the second one. The two boundary conditions
are then solved numerically for K1 and C1 and the solution is assigned.

> bc1:=eval(y,x=0)=1: bc2:=eval(y,x=1)=2:

> sol2:=fsolve(fbc1,bc2g,fK[1],_C1g); assign(sol2):
sol2 := fK1 = 0:9499888273; C1 = ¡0:2581775581g

On expanding and simplifying, y is now completely determined,

> y:=simplify(expand(y));

y := 0:3438580549 e(¡1:052643959x) + 0:6561419450 e(1:052643959 x)

and can be plotted, the vertical view being controlled."

> plot(y,x=0..1,view=[0..1,0..2.5],tickmarks=[4,4]);

0

0.5

1

1.5

2

2.5

0.2 0.4 x 0.8 1

Figure 4.13: The curve y(x) that minimizes the surface area of the dress.

\That's O.K., Greg," Gino interrupts, \but a 3-dimensional picture of the dress
would be nicer, and more importantly, what is the minimum surface area?"

\Since you're getting impatient, let's load the Student[Calculus1] package,

> with(Student[Calculus1]):

and use the SurfaceOfRevolution command to obtain the minimum area A.

> A:=evalf(SurfaceOfRevolution(y,x=0..1));

A := 13:06167468

The minimum surface area of your lampshade dress is about 13 square sretem.
Using the same command, but with the option output=plot included,

> SurfaceOfRevolution(y,x=0..1,output=plot);

will yield the desired surface of revolution, i.e., your \dress," with the form of
y(x) included. The dress will be oriented horizontally on the computer screen
but can be `dragged' into a vertical position."

190 CHAPTER 4. NONLINEAR ODE MODELS

PROBLEMS:
Problem 4-34: Other curves
Calculate the surface areas for dresses generated with some other curves y(x)
joining the endpoints (x = 0, y = 1) and (x = 1, y = 2). How do these
areas compare with the area obtained in the text recipe? Plot the surfaces of
revolution generated by the curves.

Problem 4-35: Brachistochrone
Consider the smooth curve y(x) joining the two points A and B in Figure 4.14.

x

y

A

B
(x ,y)0 0

bead

Figure 4.14: Brachistochrone problem.

(a) If a small bead slides without friction between A and B, what y(x) cor-
responds to the shortest time? This famous brachistochrone (\shortest
time" in Greek) problem was proposed and solved by Jakob and Johann
Bernoulli. Hint: First show that the time is given by

t =

Z x0

0

p
(1 + (y 0)2)=(2 g y) dx;

where g is the acceleration due to gravity.

(b) Let the coordinates of B be x0 = 0:5 m, y0 = 0:5 m for the remainder of
this problem. What is the shortest time for the bead to slide from point
A at the origin to point B?

(c) Plot the path of the bead from A to B.

(d) What is the speed of the bead when half the shortest time has elapsed?

(e) What is the position of the bead at this latter time?

Problem 4-36: Fermat's principle and mirages
Fermat's principle states that a ray of light in a medium with a variable refrac-
tive index will follow the path that requires the shortest traveling time. For
a two-dimensional situation, write down the integral that must be minimized
to obtain such a path. Note that the speed of light in a medium of refractive
index n is c=n, where c is the vacuum speed of light. If the refractive index
varies vertically from ground level according to the formula n = n0 (1 + ®y),
with n0 > 0 and ® > 0, determine the equation for the path taken by a light

4.3. VARIATIONAL CALCULUS MODELS 191

ray. By plotting a light ray path for physically reasonable parameter values,
discuss how your answer may be related to the phenomenon of mirages.

Problem 4-37: A di®erent refractive index
Making use of Fermat's principle, prove that a light ray will follow a semicircular
path in a medium whose refractive index n(x; y) equals 1=y. Plot a typical path.

Problem 4-38: Geodesic
The geodesic between two points is the curve that gives the shortest distance.
Show that the geodesics on the surface of a sphere are the arcs of great circles.
(A great circle is a curve resulting from the intersection of a sphere with a plane
passing through the center of that sphere.) Create a three-dimensional plot of
the geodesic between New York City and Sydney, Australia, assuming that the
Earth is spherical. You will have to look up the necessary parameter values.

4.3.2 Queen Dido Wasn't a Dodo

Mathematics is the queen of the sciences.
Carl Friedrich Gauss, German mathematician (1777{1855)

According to the Aeneid, written by the Roman poet Virgil in the ¯rst cen-
tury BC, the Phoenician Queen Dido was able to convince the North African
ruler King Jambas to give her as much land as she could enclose with an ox-
hide. Being rather clever, she had the hide cut into very thin strips, the ends
stitched together, and was able to stake out a sizable area along the Mediter-
ranean coast on which she built the city of Carthage (now Tunis). Queen Dido's
problem was to lay out the joined oxhide strips that had a total ¯xed length in
such a way as to maximize the area enclosed. Can you suggest what shape the
perimeter traced out by the joined strips might take? Problems of this type
that involve maximizing an area enclosed by a perimeter of ¯xed length are
called isoperimetric (constant perimeter) problems.

A recipe is now given to solve Queen Dido's problem. A strip of oxhide of
¯xed length L > a is connected at its ends to the points (x = 0, y = 0) and
(x = a, y = 0). The area enclosed by a strip of shape y(x) and the x-axis
between x = 0 and x = a is A =

R a
0
y(x) dx and the length of the strip is given

by L =
R a
0

p
1 + (y 0)2 dx: If, say, a = 1 milion7 and L = 1:5 milion, what is

the shape y(x) that maximizes the area subject to the length constraint? Plot
y(x) and determine the value of the maximum area.

If the integrands of A and L are labeled as F and G, respectively, the shape
y(x) may be found by solving the Euler{Lagrange equation of the previous
subsection with F replaced by FF = F + ¸G, where ¸ is an undetermined
parameter. See, e.g., references [MW71] and [Boa83].

The VariationalCalculus package is loaded,

> restart: with(VariationalCalculus):

7A milion is a Roman mile, so this recipe involve one very big oxhide!

192 CHAPTER 4. NONLINEAR ODE MODELS

and the integrands F and G are entered.

> F:=y(x); G:=sqrt(1+diff(y(x),x)^2);

F := y(x) G :=

s
1 +

μ
d

dx
y(x)

¶2
Then FF = F + ¸G is formed.

> FF:=F+lambda*G;

FF := y(x) + ¸

s
1 +

μ
d

dx
y(x)

¶2
The EulerLagrange command is applied to FF .

> eq:=EulerLagrange(FF,x,y(x));

eq :=

8>>>>><
>>>>>:
1 +

¸

μ
d

dx
y(x)

¶2 μ
d2

dx2
y(x)

¶
Ã
1 +

μ
d

dx
y(x)

¶2!(3=2) ¡
¸

μ
d2

dx2
y(x)

¶
s
1 +

μ
d

dx
y(x)

¶2 ;

y(x) + ¸

s
1 +

μ
d

dx
y(x)

¶2
¡

μ
d

dx
y(x)

¶2
¸s

1 +

μ
d

dx
y(x)

¶2 = K1

9>>>>=
>>>>;

The ¯rst integral is extracted from eq by selecting the term that has K1 in it,
and removing the brackets that would otherwise appear in ode .

> ode:=select(has,eq,K[1])[];

ode := y(x) + ¸

s
1 +

μ
d

dx
y(x)

¶2
¡

μ
d

dx
y(x)

¶2
¸s

1 +

μ
d

dx
y(x)

¶2 = K1

A general analytic solution to the ¯rst-order nonlinear ode is sought, yielding
two answers that di®er by the sign in front of the square root.

> sol:=dsolve(ode,y(x));

sol := y(x) = K1 +
p
¸2 ¡ C1 2 ¡ x2 + 2x C1 ;

y(x) = K1 ¡
p
¸2 ¡ C1 2 ¡ x2 + 2 x C1

The rhs of, say, the negative square root result (second one) is chosen.

> Y:=rhs(sol[2]);

Y := K1 ¡
p
¸2 ¡ C1 2 ¡ x2 + 2 x C1

4.3. VARIATIONAL CALCULUS MODELS 193

The boundary conditions that Y = 0 at x = 0 and at x = a are imposed in bc1
and bc2 , which are then solved for K1 and C1 in sol2 .

> bc1:=eval(Y,x=0)=0; bc2:=eval(Y,x=a)=0;

bc1 := K1 ¡
p
¸2 ¡ C1 2 = 0

bc2 := K1 ¡
p
¸2 ¡ C1 2 ¡ a2 + 2 a C1 = 0

> sol2:=solve(fbc1,bc2g,fK[1],_C1g);

sol2 := f C1 = a

2
; K1 =

p
4¸2 ¡ a2
2

g
Assigning sol2 , we obtain Y in the following form.

> assign(sol2): Y:=Y;

Y :=

p
4¸2 ¡ a2
2

¡
r
¸2 ¡ 1

4
a2 ¡ x2 + xa

To determine ¸, the constraint condition
R a
0
G(y(x) = Y) dx = L is imposed.

> eq2:=simplify(int(eval(G,y(x)=Y),x=0..a))=L;

eq2 :=

r
¡ ¸2

¡4 ¸2 + a2
p
¡4¸2 + a2 (¡ln(¡a+

p
¡4¸2 + a2)

+ln(a+
p
¡4¸2 + a2)) = L

The values a = 1 and L = 1:5 are entered, and eq2 numerically solved for ¸,
the search range ¸ = 0 to 0:6 being speci¯ed.

> a:=1: L:=1.5: lambda:=fsolve(eq2,lambda=0..0.6);

¸ := 0:5014101096

The ¯nal form of Y is then displayed, and jY j plotted in Figure 4.15.
> Y:=Y; plot(abs(Y),x=0..a,scaling=constrained);

Y := 0:03757789244¡
p
0:0014120980¡ x2 + x

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1
x

Figure 4.15: Shape of the oxhide strip that maximizes the enclosed area.

194 CHAPTER 4. NONLINEAR ODE MODELS

The absolute value of Y was plotted, because in some executions of the work
sheet Y will be negative because the ordering of the answers in sol is reversed.
The shape of the strip that maximizes the area is a circular arc.

The area
R a
0
Y dx is now calculated, the absolute value being taken to avoid

a possible negative area if the \wrong" solution is selected in sol .

> A:=abs(int(Y,x=0..a));

A := 0:3572686358

The maximum area is about 0:36 square milions. Without doing any mathemat-
ical calculation, can you suggest why this is a maximum and not a minimum?

PROBLEMS:
Problem 4-39: Maximum volume of a solid
A curve y(x) of length 2 is drawn between the points (0, 0) and (1, 0) in such
a way that the solid obtained by rotating the curve about the x-axis has the
largest possible volume.

(a) Determine y(x).

(b) Plot y(x) over the range x = 0 to 1.

(c) What is the value of y at x = 0:5?

(d) Make a three-dimensional plot of the solid.

(e) What is the volume of the solid?

Problem 4-40: The catenary curve
Consider a uniform cable of length L = 1:5 km and mass per unit length ² = 1
kg/m suspended between the two endpoints (¡a=2, b) and (a=2, b), where
a = b = 1 km.

(a) Determine the equilibrium shape (referred to as a catenary curve) of the
cable. Hint: The potential energy of the cable will be at a minimum when
the cable has its equilibrium shape. Take g = 10 m/s2.

(b) Plot the equilibrium shape of the cable.

(c) If the cable crosses a very deep Himalayan gorge with the river located a
distance b below the endpoints of the cable, what is the distance between
the minimum in the cable and the river?

(d) What is the distance down to the river from a point one-third of the way
along the cable?

(e) What force is exerted on the supports at the endpoints of the cable?

(f) What length of cable should be used if the sag in the middle of the cable
is not to exceed 50 m?

4.3. VARIATIONAL CALCULUS MODELS 195

4.3.3 The Human Fly Plans His Escape Route

A product of the untalented, sold by the unprincipled
to the utterly bewildered.
Al Capp, American cartoonist, comment on abstract art (1907{1979)

Mr. X, whom the popular press have dubbed the \human °y," plans to scale the
outside vertical wall of one of Metropolis's tallest skyscrapers, the Metropolis
Stock Exchange, using a combination of his rock-climbing skills and suction
cups. Knowing that once the climb has begun, the police will quickly learn of
his exploit and try to capture him, Mr. X plans to execute a daring escape.
He intends to evade the law enforcement o±cers by sliding down a thin, but
strong, wire to a yet-undetermined window at a lower elevation in the slanted
roof of the Museum of Modern Art directly across the street (see Figure 4.16).
The window will be left open so that Mr. X can zoom through to the room in-

x

y

Figure 4.16: Mr. X sliding down wire with a police helicopter hovering nearby.

side, brake rapidly, and make a (hopefully) relatively soft landing on the °oor.
Catching the police by surprise and taking advantage of the museum's many
exits, Mr. X hopes once again to avoid capture and expand his ever-growing
legend. However, being somewhat cautious, despite an otherwise harebrained
scheme, Mr. X decides to check the details of the escape route by conferring
with his mathematician friend Mike.

\Mike, the roof of the stock exchange is slightly over 200 meters above
street level and the police will surely be waiting for me on the rooftop and in
the street below. They will probably even have a police helicopter hovering
nearby. If I were to connect a wire to the stock exchange outer wall at the 200
meter point, what shape should the wire have, and what point on the slanting

196 CHAPTER 4. NONLINEAR ODE MODELS

museum surface should it be connected to, in order to minimize the time of
descent? What is the time of descent and what speed would I have acquired
on reaching the slanted museum roof? Fortunately, the museum roof has many
windows to let in light and I could arrange for the appropriate window to be
left open. A few relevant facts are as follows. The museum roof slants at 45±

to the horizontal. The street is 50 meters wide, and the vertical section of the
museum wall adjoining the slanted roof is 50 meters tall."

\You're crazy," Mike replies, \but you do pose an interesting mathematical
problem. I can tackle the solution using the Euler{Lagrange equation. Referring
to Figure 4.16, let's choose to measure x to the right and y downward from the
point at which the wire is attached to the stock exchange building. We need
to ¯nd a general expression for the time of descent along the wire. Let the
equation of the wire be y(x). Neglecting friction and equating the increase
in kinetic energy of a falling mass to its decrease in potential energy yields a
speed v =

p
2 g y, where g is the acceleration due to gravity. But v = ds=dt,

where ds =
p
1 + (dy=dx)2 dx is an element of arc length along the wire. If the

(unknown) coordinates of the contact point on the museum roof are (x1 , y1),
the time of descent will be given by

T =

Z x1

0

p
1 + (dy=dx)2p

2 g y
dx:

Since the factor
p
2 g will cancel out, the integrand to use in the Euler{Lagrange

equation can be taken to be

F = (
p
1 + (dy=dx)2)=

p
y:

I will now use Maple to solve the problem. Loading the necessary library
packages, I enter the integrand F .

> restart: with(VariationalCalculus): with(plots):

> F:=sqrt((1+diff(y(x),x)^2)/y(x));

F :=

vuuut1 +

μ
d

dx
y(x)

¶2
y(x)

The EulerLagrange command is applied to F , and the ¯rst integral result, in-
volving the constant K1, is selected from the output (not shown) and simpli¯ed
in ode .

> EL:=EulerLagrange(F,x,y(x));

> ode:=simplify(select(has,EL,K[1])[]);

ode :=
1vuuut1 +

μ
d

dx
y(x)

¶2
y(x)

y(x)

= K1

A general solution to the ¯rst-order nonlinear ode is sought.

4.3. VARIATIONAL CALCULUS MODELS 197

> sol:=dsolve(ode,y(x)); #implicit solution

sol := x+

q
y(x)¡K1

2y(x)2

K1
¡ 1
2

arctan

0
BB@
p
K1

2

μ
y(x)¡ 1

2

1

K1
2

¶
q
y(x)¡K1

2y(x)2

1
CCA

K1

p
K1

2
¡ C1 = 0;

x¡

q
y(x)¡K1

2y(x)2+

K1

1

2

arctan

0
BB@
p
K1

2

μ
y(x)¡ 1

2

1

K1
2

¶
q
y(x)¡K1

2y(x)2

1
CCA

K1

p
K1

2
¡ C1 = 0

A formidable-looking implicit solution has been produced, with two forms
present. It turns out that we must select the form having the positive square
root (the ¯rst solution for this particular run). For later convenience, I will also
replace the awkward constant symbols K1 and C1 with 1=

p
A and B.

> ans:=subs(fK[1]=1/sqrt(A),_C1=Bg,sol[1]); #select + root

ans := x+
p
A

r
y(x)¡ y(x)

2

A
¡ 1
2

p
A arctan

0
BB@
r
1

A
(y(x)¡ A

2
)r

y(x)¡ y(x)
2

A

1
CCA

r
1

A

¡B = 0

To proceed any further with the implicit answer, its square-root structure sug-
gests a trigonometric substitution of the form y = A sin2 μ, where μ is an angular
parameter not connected to any geometrical feature in our picture. Here A and
B are assumed to be positive, as are sin μ and cos μ as well.

> assume(A>0,B>0,sin(theta)>0,cos(theta)>0):

> Y:=y(x)=A*sin(theta)^2;

Y := y(x) = A sin(μ)2

Then Y is substituted into the answer, and simpli¯ed with the trig option.

> sol1:=simplify(subs(Y,ans),trig);

sol1 := x+A sin(μ) cos(μ) +
1

2
A arctan

μ
1

2

¡1 + 2 cos(μ)2
sin(μ) cos(μ)

¶
¡B = 0

Then we solve sol1 for x and combine with respect to trig terms.

> x:=combine(solve(sol1,x),trig);

x := ¡1
2
A sin(2 μ)¡ 1

2
A arctan

μ
cos(2 μ)

sin(2 μ)

¶
+B

So, now we have expressions for the coordinates x and y of our sought-after
curve in terms of A, B, and μ. If A and B can be found and the range of μ

198 CHAPTER 4. NONLINEAR ODE MODELS

determined, the curve that minimizes the time of descent will be known.
At the starting point x = 0, we shall choose to set the parameter μ equal

to zero. Some care must be taken in evaluating the arctan term at μ = 0. The
limit must be taken from the positive side (i.e., from the \right") of μ = 0.

> eq:=limit(x,theta=0,right)=0;

eq := B ¡ A¼
4
= 0

The resulting eq is easily solved for the constant B.

> sol2:=B=solve(eq,B);

sol2 := B =
A¼

4
The solution sol2 is assigned and x displayed.

> assign(sol2); x:=x;

x := ¡1
2
A sin(2 μ)¡ 1

2
A arctan

μ
cos(2 μ)

sin(2 μ)

¶
+
A¼

4
We still have to determine the constant A and the range of μ. Now it gets a bit
tricky. We have no idea yet what the coordinates (x1 ; y1) of the endpoint on
the museum roof should be.

Hand me that copy of Mathematical Methods in Physics [MW71]. Ah, here
we go. The case in which one endpoint of the sought-after curve is ¯xed and
the other endpoint is allowed to vary along a line g(x; y) = 0 is considered.
It is shown that if the Euler{Lagrange function F is of the structure8 F =
f(x; y)

p
1 + (y 0)2; which it is in our case, then the condition for determining

the unknown endpoint is that the slope of y(x) must satisfy the condition y 0 =
(@g=@y)=(@g=@x) at that point. But this is just a mathematical statement
that the curve y(x) of quickest descent must intersect the destination curve
g(x; y) = 0 at right angles. Here the equation for the slanting museum roof is
the straight line g(x; y) = y + x ¡ 200 = 0: But both @g=@y and @g=@x are
equal to 1, so we have y 0 = 1 at the museum roof. Since the parameter μ has
been introduced, the slope of y(x) must be calculated in terms of μ.

> slope:=simplify(diff(rhs(Y),theta)/diff(x,theta));

slope :=
cos(μ)

sin(μ)
Setting the slope to 1, the value £ that the parameter μ must have at the
museum roof is determined, assuming that μ is positive.

> Theta:=solve(slope=1,theta) assuming theta>0;

£ :=
¼

4

8If F is not of this structure, the endpoint condition is more complicated, taking the form³
F ¡ y 0 @F

@y 0

´
@g

@y
¡ @F

@y 0
@g

@x
= 0:

4.3. VARIATIONAL CALCULUS MODELS 199

Evaluating x at μ = £ must yield x1 ,

> eq1:=x1=eval(x,theta=Theta);

eq1 := x1 = ¡1
2
A+

1

4
A¼

while evaluating the rhs of Y at μ = £ must yield y1 .

> eq2:=y1=eval(rhs(Y),theta=Theta);

eq2 := y1 =
A

2
Finally, the straight-line equation for the museum roof at (x1 ; y1) is entered,

> eq3:=x1+y1=200;

eq3 := x1 + y1 = 200

and the three equations solved for A, x1 , and y1 .

> sol3:=fsolve(feq1,eq2,eq3g,fA,x1,y1g); assign(sol3):
sol3 := fA = 254:6479090; y1 = 127:3239545; x1 = 72:67604557g

Thus, the endpoint of the wire on the museum roof has coordinates x1 ¼ 72:7,
y1 ¼ 127:3. The endpoint is about 127 meters below the starting point on the
stock exchange wall. I hope you realize, X, that this means that you will be
dropping more than 40 stories as you slide along the wire!

I will plot the curve (colored blue in graph gr1) of minimum descent to the
museum roof (colored red in gr2). The wire and roof are labeled in gr3.

> gr1:=plot([x,-rhs(Y)+200,theta=0..Theta],color=blue):

> gr2:=plot([[50,0],[50,50],[125,125]],color=red,thickness=2):

> gr3:=textplot(f[40,140,"wire"],[100,85,"roof"]g):
> display(fgr1,gr2,gr3g,scaling=constrained,tickmarks=[3,3]);

roof

wire

0

100

200

50 100

Figure 4.17: Shape of wire that minimizes the descent time to the roof.

200 CHAPTER 4. NONLINEAR ODE MODELS

OK, X, there's your curve shown in Figure 4.17. You can arrange for a window
to be left open at the point where the curve intersects the museum roof.

Now that we know the distance through which you will be dropping, we
can easily calculate your velocity from the expression v =

p
2 g y1 . Taking the

gravitational acceleration to be g = 9:81 m/s2,

> g:=9.81: vel:=sqrt(2*g*y1);

vel := 49:98095625

you will be traveling at almost 50 m/s as you pass through the window on
the museum roof, if you haven't been braking. This is an upper bound on
your speed, of course, because we have completely neglected friction and air
resistance. I can see by the look on your face that you don't quite appreciate
how fast this is. So, let me convert the velocity to kilometers per hour.

> vel2:=convert(vel,units,m/s,km/h)*km/h;

vel2 :=
179:9314425 km

h
Your theoretical speed would be almost 180 km/hr but, as I said, in reality it
would be somewhat less. The time of descent can now be calculated from

T =

Z £

μ=0

p
(dx=dμ)2 + (dy=dμ)2

2 g y(μ)
dμ; viz:;

> T:=int(sqrt(diff(x,theta)^2+diff(rhs(Y),theta)^2)

/sqrt(2*g*rhs(Y)),theta=0..evalf(Theta));

T := 5:659009626

The minimum time of descent is about 5:7 seconds. Again, friction, air re-
sistance, and any braking on your part would lengthen this time. Given the
estimates that we have come up with, do you still want to go through with your
bizarre escape route?"

\Sure, Mike," Mr. X replies, \and I am counting on you to help attach the
wire to the appropriate window in the museum roof and leave it open for me."

\Oh no," Mike groans. \If I get caught, Vectoria's parents are sure to call
o® our recently announced engagement."

PROBLEMS:
Problem 4-41: A di®erent escape route
Determine Mr.X's escape route if the museum roof slanted at 30± to the hor-
izontal, the street is 50 m wide, and the vertical section of the museum wall
adjoining the slanted roof is 25 m tall. Make a plot similar to that in Fig-
ure 4.17. How close to the edge of the roof would Mr.X land? What would be
his speed at this point? Neglect friction and air resistance.

Problem 4-42: In search of reality
Suppose that Mr.X decides that sliding down a steel wire at nearly 180 km/hr
is a little too insane even for his bizarre tastes. His friend Mike is unavailable for
technical advice because he is busy with preparations for his upcoming wedding

4.3. VARIATIONAL CALCULUS MODELS 201

to Vectoria. So Mr.X comes to you and asks what speed he would reach and
how long would his slide take if air resistance and friction are included, the same
wire shape being used. He tells you that his mass is about 60 kg. You may
assume that the force due to air resistance is 0:5 v2 newtons, where v is Mr.X's
speed, and that the coe±cient of kinetic friction is about 0:6 (appropriate for
steel on steel). Mr.X would also like to know the maximum speed and trip time
if a braking action is applied. You may assume that the brakes exert a force of
400 newtons on the wire. Hint: You may ¯nd that using a do loop to compute
the tangential velocity and position of Mr.X at discrete time intervals is the
easiest way to attack this problem.

4.3.4 This Would Be a Great Amusement Park Ride

To gyre is to go around and round like a gyroscope.
To gimble is to make holes like a gimlet.
Lewis Carroll, English writer and mathematician (1832{1898)

Consider the following possible amusement park ride consisting of a small cage
of mass m (including the screaming victims inside) being swung around at the
end of a light, but strong, connecting arm of ¯xed radius r as in Figure 4.18.
The cage can trace out various spherical surface trajectories depending on the

θ
φ

m
z

y

x

r

Figure 4.18: Con¯guration of the amusement park ride.

conditions imposed by the slightly sadistic ride operator. What kind of trajec-
tories can the victims be subjected to?

Our task is to investigate this question using Lagrange's equations of motion,
an alternative approach to the Newtonian formulation. The Lagrangian L is
de¯ned as L = T ¡ V , where T is the kinetic energy and V is the potential
energy of the system being studied. Formulating the Lagrangian is often much
easier than determining all the forces and their components that are required to

202 CHAPTER 4. NONLINEAR ODE MODELS

apply Newton's second law. If L depends on the coordinates q1, q2,: : :, qi,: : :, qN
and the \velocities" _qi ´ @qi=@t, it is shown in standard mechanics texts [FC99]
that the equations of motion are given by Lagrange's equations,

@L

@qi
¡ d

dt

μ
@L

@ _qi

¶
= 0; (4.18)

with i = 1; 2; : : : ; N . Since each component equation is of the Euler{Lagrange
structure, it should come as no surprise that the EulerLagrange command can
be used to derive the relevant ODEs, given a speci¯ed form of L. Let's now use
this approach for the amusement park ride.

After we load the plots and VariationalCalculus library packages,

> restart: with(plots): with(VariationalCalculus):

the Cartesian coordinates of the mass m are expressed in terms of the spherical
polar coordinates r (which is ¯xed), μ(t), and Á(t), as in Figure 4.18.

> x:=r*sin(theta(t))*cos(phi(t));

x := r sin(μ(t)) cos(Á(t))

> y:=r*sin(theta(t))*sin(phi(t));

y := r sin(μ(t)) sin(Á(t))

> z:=r*cos(theta(t));

z := r cos(μ(t))

The kinetic energy of the mass at time t is calculated and simpli¯ed.

> T:=simplify((m/2)*(diff(x,t)^2+diff(y,t)^2+diff(z,t)^2));

T := ¡1
2
mr2

Ã
¡
μ
d

dt
Á(t)

¶2
+

μ
d

dt
Á(t)

¶2
cos(μ(t))2 ¡

μ
d

dt
μ(t)

¶2!

The potential energy V = ¡mg r cos(μ(t)), with g the gravitational accelera-
tion, is entered and the Lagrangian L = T ¡ V calculated.

> V:=-m*g*r*cos(theta(t)): L:=T-V;

L := ¡1
2
mr2

Ã
¡
μ
d

dt
Á(t)

¶2
+

μ
d

dt
Á(t)

¶2
cos(μ(t))2 ¡

μ
d

dt
μ(t)

¶2!

+mg r cos(μ(t))

The EulerLagrange command is applied to L, the independent variable t being
speci¯ed, and the two angular coordinates Á(t) and μ(t) being entered as a list.
The lengthy output is suppressed here in the text.

> eq:=EulerLagrange(L,t,[phi(t),theta(t)]);

The ¯rst integral in eq containing the constant K1 is selected.

> ode1:=select(has,eq,K[1])[];

ode1 := ¡1
2
mr2

μ
¡2
μ
d

dt
Á(t)

¶
+ 2

μ
d

dt
Á(t)

¶
cos(μ(t))2

¶
= K1

4.3. VARIATIONAL CALCULUS MODELS 203

A second ODE relating μ(t) to Á(t) is required. To this end, we select the
expression in eq containing d2μ(t)=dt2 and set the result to zero.

> ode2:=select(has,eq,diff(theta(t),t,t))[]=0;

ode2 := mr2
μ
d

dt
Á(t)

¶2
cos(μ(t)) sin(μ(t))¡mg r sin(μ(t))¡mr2

μ
d2

dt2
μ(t)

¶
= 0

With ode1 and ode2 , we have two coupled nonlinear ODEs. However, we can
solve the former for dÁ=dt by isolating this term on the lhs of the equation,

> ode1b:=isolate(ode1,diff(phi(t),t));

ode1b :=
d

dt
Á(t) = ¡ 2K1

mr2 (¡2 + 2 cos(μ(t))2)
and then simplifying with the algebraic substitution cos(μ(t))2 = 1¡ sin(μ(t))2.

> ode1c:=algsubs(cos(theta(t))^2=1-sin(theta(t))^2,ode1b);

ode1c :=
d

dt
Á(t) =

K1

mr2 sin(μ(t))2

Then substituting ode1c and g = r !2, where ! is a frequency, into¡ode2=(mr2)
and expanding,

> ode2b:=expand(subs(fode1c,g=r*omega^2g,-ode2/(m*r^2)));

ode2b := ¡ K1
2 cos(μ(t))

m2 r4 sin(μ(t))3
+ !2 sin(μ(t)) +

μ
d2

dt2
μ(t)

¶
= 0

yields the second-order nonlinear ODE ode2b entirely in terms of μ(t). This
ODE cannot be solved analytically. Before seeking a numerical solution, it is
instructive to consider some simpler special cases ¯rst.

Consider the situation in which the ride operator is feeling in a rare mellow
mood and allows the cage to swing to and fro at a constant angle Á, so _Á = 0
and, from ode1c, K1 = 0. Then ode2b reduces to the well-known linear ODE for
the simple undamped plane pendulum with characteristic frequency !. Those
readers who have gone to an amusement park lately may have seen a \boat"
ride that behaves as a driven simple pendulum. This ride is much too tame for
our ride operator and the large teenage market that he is after.

Another special case corresponds to the cage orbiting in a horizontal circle
at a ¯xed angle μ(t) = £. (A popular young children's ride does exactly this.)
We evaluate ode2b at this ¯xed angle.

> eq2:=eval(ode2b,theta(t)=Theta);

eq2 := ¡ K1
2 cos(£)

m2 r4 sin(£)3
+ !2 sin(£) = 0

At the ¯xed angle £, K1 is given from ode1c by the following command line,
where we have set the angular velocity dÁ(t)=dt = −.

> K[1]:=Omega*m*r^2*sin(Theta)^2;

K1 := −mr
2 sin(£)2

204 CHAPTER 4. NONLINEAR ODE MODELS

The angular velocity needed to maintain the horizontal circular motion at the
¯xed angle μ(t) = £ is then obtained by solving eq2 for −.

> Omega:=solve(eq2,Omega);

− :=
!p
cos(£)

; ¡ !p
cos(£)

The two angular velocity solutions given above correspond to rotations in the
opposite sense.

The two rides described so far are not su±ciently exciting to the teenage
generation. Taking the nominal values r = 1, m = 1, and ! = 1 for the param-
eters (the reader can experiment with more realistic numbers), can one create
a more interesting trajectory? For a horizontal circular orbit at an inclination
to the vertical of £ = 60±, the constant K1 is given by

K1 =
!mr2 sin2£p

cos£
=

r
9

8
¼ 1:06:

To create a more interesting ride let's take K1 = 0:5. The trajectory of the ride
will be plotted over T = 20 time units.

> r:=1: m:=1: omega:=1: K[1]:=0.5: T:=20:

Let's suppose that initially, Á(0) = 0, μ(0) = ¼=3 radians, and _μ(0) = 0,

> ic:=phi(0)=0,theta(0)=Pi/3,D(theta)(0)=0:

and numerically solve ode1c and ode2b subject to this initial condition.

> sol:=dsolve(fode1c,ode2b,icg,ftheta(t),phi(t)g,numeric):
To get a feeling for the three-dimensional motion, the spherical surface on which
the cage can move is created with the sphereplot command. The radius r = 1
of the sphere is speci¯ed as well as the angular ranges μ = 0 to 2 ¼ and Á = 0
to ¼. A wireframe style is used to represent the spherical surface.

> gr1:=sphereplot(r,theta=0..2*Pi,phi=0..Pi,style=wireframe):

The odeplot command is now used to plot the numerically determined trajec-
tory of the mass m over the time interval t = 0 to T . Normal axes are chosen,
and the minimum number of plotting points is taken to be 500 to obtain a
smooth curve.

> gr2:=odeplot(sol,[x,y,z],0..T,axes=normal,numpoints=500,

thickness=3):

The display command is used to overlay the two graphs. Axis labels are added,
and the orientation and size of the 3-dimensional viewing box controlled, as well
as the number of tickmarks.

> display(gr1,gr2,labels=["x","y","z"],orientation=[50,-100],

view=[-1..1,-1..1,-1..1], tickmarks=[2,2,4]);

Figure 4.19 shows the 3-dimensional trajectory. The viewing box can be ro-
tated to observe the trajectory from di®erent angles by dragging the box on the
computer screen with your mouse.

4.3. VARIATIONAL CALCULUS MODELS 205

-1

-0.5

0

0.5

1
z

-1

1
y

-1

1
x

Figure 4.19: A wild amusement park ride trajectory on a spherical surface.

If this trajectory isn't wild enough, feel free to create your own crazy ride.
You could also try using more realistic values for the parameters instead of the
nominal values used in the above recipe.

Have a stomach-churning ride!

PROBLEMS:

Problem 4-43: A twirling-loop ride
A vertically oriented circular loop of radius ` rotates with angular velocity !
about the z-axis as shown in Figure 4.20. A cage of unit mass (m = 1) is allowed
to slide along the frictionless loop. If the plane of the loop is oriented along the

θ

ω

x

y

z

m

Figure 4.20: Rotating circular loop with cage (mass m) free to slide.

206 CHAPTER 4. NONLINEAR ODE MODELS

y-axis at t = 0, what are the x-, y-, and z-coordinates of the cage at time t?
Using the Lagrangian approach, show that the cage's motion is described by

Äμ + !20 sin μ ¡
1

2
!2 sin(2 μ) = 0;

with !0 =
p
g=`. Numerically solve the equation of motion for !0 = 1 and

varying values of ! and discuss the behavior to which the cage is subjected.

Problem 4-44: Ride into the jaws of chaos
The pivot point O for the simple pendulum is undergoing vertical oscillations
given by A sin(! t) as indicated in Figure 4.21.

θ

m

Asin(ω t)
O

Figure 4.21: An example of parametric excitation.

Show that the relevant equation of motion is

Äμ + !20

μ
1¡ A!

2

g
sin(! t)

¶
sin μ = 0;

with !0 =
p
g=`. This nonlinear ODE with a time-dependent coe±cient is

referred to in the mathematics literature as an example of parametric excitation.
Taking !0 = 1 and ! = 1, numerically study the e®ect of changing the ratio
A=g. Then take this ratio equal to 1, and study the e®ect of changing !.

Problem 4-45: Horizontally oscillating pivot point
The pivot point O in the previous problem is undergoing horizontal oscillations
given by A sin(! t). Derive the relevant equation of motion. Taking !0 = 1,
! = 1, and g = 10, numerically study the e®ect of changing the amplitude A.

Chapter 5

Linear PDE Models. Part 1
Because linear partial di®erential equations play such an important role in the
mathematical description of electromagnetic waves, heat °ow, elastic vibrations,
and many other scienti¯c phenomena, there is an abundance of wonderful ex-
amples that can be solved using computer algebra. For this reason, this topic
is split over two chapters. We begin with examples of checking PDE solutions,
either obtained by intelligent guessing or quoted, without derivation, in some
scienti¯c reference. Di®usion and Laplace's equation models are then presented.

5.1 Checking Solutions

5.1.1 The Palace of the Governors

The knowledge of the world is only acquired in the world,
and not in a closet.
Phillip Dormer Stanhope, Earl of Chester¯eld (1694{1773)

While driving back to Phoenix from Los Alamos, where he attended an en-
gineering conference at the Los Alamos National Laboratory, Russell stops in
Sante Fe to have something to eat and to tour the historic Plaza area of town.
After treating himself to a gourmet lunch, consisting of a tasty rattlesnake
burger washed down with a Corona beer, he strolls around the Plaza. As an
engineer, Russell is particularly impressed by the massively thick walls of the
Palace of the Governors. This long, low adobe structure, which was built in
1610 by the Spanish, is the oldest continuous seat of government in the United
States. The thick walls, which is a design feature of many historic buildings in
the American Southwest, not only o®ered protection from attackers but helped
to keep the heat of the summer sun at bay as well as excluding the cold breath
of winter.

On completing his tour of the Plaza, Russell is intrigued by the question
of how e®ective a very thick adobe wall is in cutting down the incident solar
radiation from the summer sun. Pulling out his laptop computer, and ¯nding
a shady spot, he formulates the following relevant model. For simplicity, he

207

208 CHAPTER 5. LINEAR PDE MODELS. PART 1

considers a semi-in¯nite solid medium whose bounding planar surface is peri-
odically heated by the sun. The direction transverse to the surface is taken to
be the x-direction, with the surface located at x = 0, and positive x taken to
be inside the surface. In order to animate the temperature pro¯le inside the
surface, Russell loads the plots library package.

> restart: with(plots):

From undergraduate thermodynamics, he knows that the time-dependent tem-
perature distribution T (x; t) obeys the one-dimensional heat di®usion equation

@T

@t
= d

@2T

@x2
; (5.1)

with the heat di®usion coe±cient d = K=(½C), where K is the thermal conduc-
tivity, ½ the density, and C the speci¯c heat. Russell enters the heat equation.

> heateq:=diff(T(x,t),t)-d*diff(T(x,t),x,x)=0;

heateq :=
³
@
@tT (x; t)

´
¡ d

μ
@2

@x2
T (x; t)

¶
= 0

To account for the periodic heating of the planar surface due to the sun, he
takes the temperature variation at x = 0 to be T (0; t) = T0 cos(! t). Rather
than derive the temperature variation T (x; t) for x > 0, Russell decides to
make an intelligent guess as to its mathematical form and check it by sub-
stituting the form back into the di®usion equation. Since he is looking for a
steady-state response and the temperature should decrease as x increases in-
side the surface, Russell conjectures that the solution should be of the structure
T (x; t) = T0 e

¡®x cos(! t ¡ ¯ x), with the parameters ® and ¯ as yet undeter-
mined. At x = 0, the boundary condition is satis¯ed, and an exponentially
decaying cosine solution seems reasonable inside the surface. Both ® and ¯
must be positive for a waveform propagating in the positive x-direction.

What forms should ® and ¯ have? From the structure of the heat di®usion
equation, the units of d are m2/s, so 1=

p
d has units of s1=2¢m¡1. Since the

argument in the exponential function must be dimensionless, ® must have the
dimensions of m¡1. The only other parameter in the problem involving a time
unit is the frequency ! with units s¡1. So, noting that the combination

p
!=d

has the units m¡1, Russell takes ® = a
p
!=d, where a is a numerical factor, yet

to be determined. By similar reasoning, the constant ¯ is set equal to b
p
!=d,

with b another numerical factor. Both a and b must be positive.
To check the postulated solution and determine a and b, Russell enters

T (x; t), which will be automatically substituted into the heat equation.

> T(x,t):=T[0]*exp(-a*sqrt(omega/d)*x)

*cos(omega*t-b*sqrt(omega/d)*x);

T (x; t) := T0 e
(¡a

p
!
d
x) cos

μ
¡! t+ b

r
!

d
x

¶
Russell then simpli¯es the heat equation,

> eq:=simplify(heateq);

5.1. CHECKING SOLUTIONS 209

and collects the coe±cients of the cosine and sine terms.

> collect(eq,fcos,sing);

¡T0 ! e(¡a
p

!
d
x) (a2 ¡ b2) cos

μ
¡! t+ b

r
!

d
x

¶

¡ T0 ! e(¡a
p

!
d x) (¡1 + 2 a b) sin

μ
¡! t+ b

r
!

d
x

¶
= 0

For the left-hand side of the above output to be equal to zero for arbitrary x
and t, one must have b = a and ¡1 + 2 a b = 0, so that a = 1=

p
2 = b. These

values of a and b are entered, numerically evaluated, and labeled aa and bb.

> aa:=evalf(1/sqrt(2)): bb:=aa:

Adobe brick is made up of a mixture of dried clay and straw, so Russell consults
a handbook of physical constants that he just happens to have brought along
with him. He ascertains that for dried clay, the major component of the bricks,
K = 0:4 W/(m¢K), ½ = 2000 kg/m3, and C = 920 J/(kg¢K). Russell then is
able to calculate the di®usion coe±cient dclay for clay, which he will use as an
estimate for the adobe brick.

> K:=0.4: rho:=2000: C:=920: d[clay]:=K/(rho*C);

dclay := 0:2173913043 10
¡6

The rotational period of the earth is about 24 hours, or 24£ 60£ 60 = 86;400
seconds, so its rotational frequency, freq , can be calculated.

> period:=24*60*60; freq:=evalf(2*Pi/period);

period := 86400 freq := 0:00007272205218

Summer temperatures in the American Southwest can vary from daily highs of
100±F or more, to overnight minima in the low to mid-60s. For his calculation,
Russell takes a mean daily temperature of 80±F with a variation of 20± on either
side. Converting to degrees Celsius, this translates into a mean temperature
of 26:6±C and T0 = 11± for the amplitude of the temperature variation. Now
T (x; t) is evaluated using the parameter values that have been obtained.

> T:=eval(T(x,t),fa=aa,b=bb,T[0]=11,d=d[clay],omega=freqg);
T := 11: e(¡12:93293161x) cos(¡0:00007272205218 t+ 12:93293161 x)

Russell creates a plot of the mean daily temperature, representing the temper-
ature by a dashed (linestyle=3) blue line. The spatial range of the plot is
from x = 0 to 0:5 meters.

> meantemp:=plot(26.6,x=0..0.5,color=blue,linestyle=3):

The total temperature pro¯le over a 0:5-meter spatial range is animated over
a time interval of one complete period (day). Fifty frames are included in the
animation. The mean temperature line is included with the background option.

> animate(plot,[T+26.6,x=0..0.5],t=0..period,frames=50,

thickness=2,background=meantemp);

The initial temperature pro¯le in the animation is similar to the solid curve
shown in Figure 5.1, the horizontal dashed line being the mean temperature.

210 CHAPTER 5. LINEAR PDE MODELS. PART 1

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5x

Figure 5.1: Initial temperature pro¯le inside the adobe wall.

On running the animation, the temperature curve will oscillate up and down
as the externally imposed temperature on the surface varies during the day.
However, the temperature variation drops to zero within a penetration depth
of less than 0:4 m or 40 cm (16 in). Well within the surface, the temperature
is in thermal equilibrium with the mean exterior temperature. Since the adobe
walls of many of the historic buildings of Arizona and New Mexico are substan-
tially thicker than 16 inches, the interior temperature of these buildings is quite
insensitive to external temperature variations.

PROBLEMS:
Problem 5-1: A house of wood
In the text recipe, make the following modi¯cations:

(a) The region x > 0 is composed of solid wood for whichK = 0:15 W/(m¢K),
½ = 700 kg/m3, and C = 1800 J/(kg¢K).

(b) The mean daily temperature is 30±C and the amplitude of the temperature
variation is 20±.

Run the animation and determine the approximate depth in centimeters at
which the temperature variation is essentially zero.

Problem 5-2: Pulsating sphere
The surface of a sphere of radius r = a, surrounded by an ideal compressible
°uid, pulsates radially with frequency !. The radial velocity of the surface is
given by V = U cos(! t). It is stated in an advanced calculus text that the
steady-state °uid velocity at an arbitrary point r > a is of the form

V =
U a2

(c2 + a2!2) r2
£
(c2+a r !2) cos(μ) + c ! (r ¡ a) sin(μ)

¤
;

5.1. CHECKING SOLUTIONS 211

where μ ´ ! (r ¡ a)=c¡ ! t and c is the speed of sound in the °uid.
(a) Check that the solution satis¯es the boundary condition.

(b) The velocity V is related to the velocity potential © by V = ¡@©=@r.
Determine the radial dependence of the velocity potential.

(c) Since © depends only on the distance r from the center of the sphere, it
satis¯es the wave equation in the form

@2(r©)

@r2
=
1

c2
@2(r©)

@t2
:

Verify that © satis¯es the wave equation, thus ensuring that it is the
correct solution to the pulsating sphere problem.

(d) Taking the nominal values U = 1, a = 1, c = 1, and ! = 1, animate the
analytic formula for V in the region outside the spherical surface.

(e) How far from the surface does the velocity oscillation amplitude drop to
5% of the value at the surface?

5.1.2 Play It, Sam

You just pick a chord, go twang, and you've got music.
Syd Vicious, British rock musician (1957{1979)

In a famous scene from the classic movie Casablanca, Humphrey Bogart is
annoyed by the musical piece that the nightclub pianist is playing and doesn't
want to hear it. But Ingrid Bergman turns to the piano player, and says \Play
it, Sam." Humphrey Bogart then echoes her, by saying \If she can stand it, I
can. Play it."

To a certain undergraduate physics student watching this old movie, an
individual who tends to look for deeper understanding rather than simply en-
joying the movie and the music, the sounds that emanate are of course due to
the transverse vibrations of the piano strings as each is successively struck by
a piano hammer. This student is our old friend Vectoria, who is spending a
lonely evening by herself, since her ¯anc¶e Mike is out of town at a mathemat-
ics conference. Hoping that Mike will phone before it gets too late, Vectoria
decides in the meantime to look at the mathematical vibrations of an elastic
string ¯xed at its ends.

Not yet having taken the necessary mathematics prerequisites to study the
topic of vibrating strings in depth, Vectoria consults a physics text that gives
no derivation but simply the formula for the transverse displacement of a light,
horizontal, elastic string of length a ¯xed at both ends when struck and given a
certain initial velocity pro¯le. The information that Vectoria gleans from this
particular text is as follows.

212 CHAPTER 5. LINEAR PDE MODELS. PART 1

Neglecting sti®ness, we can model the transverse displacement Ã(x; t) of a
light, initially horizontal (Ã(x; 0) = 0) piano string by the wave equation

@2Ã

@x2
¡ 1

c2
@2Ã

@t2
= 0; (5.2)

where the wave velocity c equals
p
T=², T being the tension in the string and

² the mass per unit length. If a string of length a is held ¯xed at both ends
(Ã(0; t) = Ã(a; t) = 0) for all times, and is given an initial transverse velocity

_Ã(x; 0) =

8<
:
4 v x=a; 0 < x < a=4;
(4 v=a)((a=2)¡ x); a=4 < x < a=2;
0; a=2 < x < a;

(5.3)

the solution to the initial value problem is given by the Fourier series expansion
Ã(x; t) =

P1
n=1 Ãn(x; t), where a representative Fourier term has the form

Ãn(x; t) ´
8 v a

¼3 n3c

³
2 sin

³n¼
4

´
¡ sin

³n¼
2

´´
sin
³n¼ x

a

´
sin

μ
n¼ c t

a

¶
: (5.4)

Not knowing whether the formula is correct and not yet having the math-
ematical tools to derive it, Vectoria at least knows how to check the alleged
solution to see whether it is indeed valid. The formula for the total displace-
ment must, of course, satisfy the wave equation, as must each individual Fourier
term Ãn.

After loading the plots package, Vectoria checks that this is the case by
entering the left-hand side of the PDE (5.2) applied to Ãn(x; t),

> restart: with(plots):

> PDE:=diff(psi[n](x,t),x,x)-(1/c^2)*diff(psi[n](x,t),t,t);

PDE :=

μ
@2

@x2
Ãn(x; t)

¶
¡
@2

@t2
Ãn(x; t)

c2

and the given mathematical form of this term.

> term:=psi[n](x,t)=(8*v*a/(Pi^3*n^3*c))*(2*sin(n*Pi/4)

-sin(n*Pi/2))*sin(n*Pi*x/a)*sin(n*Pi*c*t/a);

term := Ãn(x; t) =

8 v a
³
2 sin

³n¼
4

´
¡ sin

³n¼
2

´´
sin
³n¼ x

a

´
sin

μ
n¼ c t

a

¶
¼3 n3 c

The pdetest command is used to test whether Ãn(x; t) satis¯es PDE .

> pdetest(term,PDE);

0

The zero result con¯rms that the quoted term does satisfy the wave equation.
Next, Vectoria looks at the boundary conditions at x = 0 and x = a to see

whether each Fourier term vanishes at these points for arbitrary t. For integer
n, the spatial part sin(n¼ x=a) correctly goes to zero at the endpoints.

What about satisfying the initial conditions? At t = 0, the time part
sin(n¼ c t=a) equals 0 as required. The initial velocity distribution, which is

5.1. CHECKING SOLUTIONS 213

a piecewise function, is slightly harder to verify. One approach is to plot the
velocity pro¯le predicted by the series solution at t = 0 and compare it with the
analytic piecewise form. Adding, say, the ¯rst ¯ve terms in the series solution,

> psi:=add(psi[n],n=1..5);

Ã :=

8 v a (
p
2¡1) sin

³¼ x
a

´
sin

μ
¼ c t

a

¶
¼3 c

+

2 v a sin

μ
2 ¼ x

a

¶
sin

μ
2¼ c t

a

¶
¼3 c

+
8

27

v a (
p
2 + 1) sin

μ
3 ¼ x

a

¶
sin

μ
3¼ c t

a

¶
¼3 c

+
8

125

v a (¡
p
2¡ 1) sin

μ
5 ¼ x

a

¶
sin

μ
5¼ c t

a

¶
¼3 c

and di®erentiating with respect to time, yields the velocity in the transverse
direction (output suppressed here).

> vel:=diff(psi,t);

To plot the transverse velocity at t = 0, some representative values must be
substituted for the parameters. Vectoria chooses v = 5, a = 2, and c = 1.

> t:=0: v:=5: a:=2: c:=1:

To compare the series representation at t = 0 with the given piecewise initial
velocity distribution, the latter is entered,

> V:=piecewise(x<a/4,4*v*x/a,x<a/2,(4*v/a)*(a/2 -x),x<a,0):

and plotted together with vel , the result being shown in Figure 5.2.

> plot([vel,V],x=0..a,color=[red,green],thickness=2,

labels=["x","vel"],tickmarks=[2,4]);

As seen in Figure 5.2 the agreement on keeping ¯ve terms in the Fourier series

0

1

2

3

4

5

vel

1 2x

Figure 5.2: Comparing the sum of ¯ve Fourier terms to the exact input velocity.

214 CHAPTER 5. LINEAR PDE MODELS. PART 1

solution isn't too bad, but not great either. Increasing the n value, Vectoria
observes an increasingly better ¯t. The reader should be the judge of how many
terms su±ce to give a good ¯t for the parameters chosen.

Although reasonably satis¯ed that the quoted Fourier series expansion is
correct, Vectoria still isn't entirely happy until the actual motion predicted
by the formula is observed. After all, it is not obvious from the series solution
exactly what the behavior of the string is after being struck. So the displacement
Ã(x; t) is animated for the time interval t = 0 to 50. First, the time variable t
must be unassigned. Otherwise, Maple will remember the value t = 0 used to
check the initial velocity pro¯le.

> unassign('t'):

Finally, the animation command is given with 100 frames being used.

> animate(plot,[psi,x=0..a],t=0..50,frames=100,thickness=2);

On running the animation, Vectoria observes that the wave form begins to grow
in the region where the string was struck. This makes intuitive sense. Because
the wave form is created on the left side of the string, it then moves with wave
velocity c to the right and re°ects o® the boundary at x = a. On re°ection
the wave form is inverted, a characteristic feature for a ¯xed-ends boundary
condition. The wave then propagates to the left boundary at x = 0 before
inverting again and repeating the oscillatory behavior.

Finally, with a feeling of accomplishment, Vectoria is able to appreciate the
deeper content underlying the simple remarks made by Ingrid Bergman and
Humphrey Bogart. She will be even more content if Mike phones soon.

PROBLEMS:

Problem 5-3: Plucked string
An elastic string ¯xed between x = 0 and L, and initially at rest, is \plucked,"
its initial shape being given by the following symmetric triangular pro¯le,

Ã(x; 0) =

½
2h x=L; 0 · x · L=2;
2h (L¡ x)=L; L=2 · x · L:

Verify that the motion for t > 0 may be described by the Fourier series solution

Ã(x; t) =
8 h

¼2

1X
n=1

sin(n¼=2)

n2
sin(n¼ x=L) cos(n¼ c t=L)

and animate the solution for parameter values of your own choosing.

Problem 5-4: A striking piano hammer
A piano string ¯xed between x = 0 and a is struck by a piano hammer in a
region of width d centered at x=x0. Its initial velocity distribution is

_Ã(x; 0) =

½
v cos(¼ (x¡ x0)=d); jx¡ x0j < d=2;
0; jx¡ x0j > d=2:

5.1. CHECKING SOLUTIONS 215

Neglecting sti®ness and assuming Ã(x; 0) = 0,

Ã(x; t) =
4 v d

¼2c

1X
n=1

1

n

sin(n¼ x0=a) cos(n¼ d=(2 a))

(1¡ (n d=a)2) sin(n¼ x=a) sin(n¼ c t=a)

is the shape of the string at time t. Verify that this series solution is correct
and animate it for parameter values of your own choosing.

5.1.3 Three Easy Pieces

I would advise you Sir, to study algebra, if you are not already an
adept in it: your head would be less muddy ...
Samuel Johnson, English writer and lexicographer (1709{1784)

Spurred by her earlier success, and feeling happier after her long phone con-
versation last night with Mike, Vectoria is pursuing another vibrating string
example, which she has entitled Three Easy Pieces. This does not refer to the
old Jack Nicholson movie with a similar title (cf. Five Easy Pieces), but to
the fact that the algebraic manipulations involved in dealing with plane-wave
propagation along a three-piece string are easy if one uses computer algebra.

When an intermediate section of a very long horizontal string has a greater
mass density ² than the remaining two identical portions of the string, a trans-
verse plane wave incident on that section will in general experience partial
re°ection and transmission. Recall that the velocity of the transverse wave is
given by c =

p
T =², where T is the tension in the string. The wave number is

k = !=c = 2 ¼=¸, where ! is the angular frequency and ¸ is the wavelength.
Since the frequency of the wave and the tension must remain the same in each
region, the ratio r of wave numbers in two di®erent regions of mass density ²2
and ²1 is given by r = k2=k1 =

p
²2=²1. Vectoria reads in a certain physics

text that for the case k1 = K, the ratio r = 3, and the more massive segment
(labeled 2) stretches from x = 0 to x = L, the energy transmission (T) and
re°ection (R) coe±cients are given by,

T =
9

17¡ 8 cos(6K L) ; R =
8¡ 8 cos(6K L)
17¡ 8 cos(6K L) :

Here T and Rmeasure the fraction of the incident power that is transmitted and
re°ected. The power here is proportional to the square of the string amplitude.

Vectoria's objective is to verify the cited re°ection and transmission coe±-
cients and plot them for K = 1 as a function of L. Her method of attack is to
write down plane-wave expressions in each region, determine the coe±cients by
matching the solutions at x = 0 and x = L, and then calculate T and R.

She begins by entering r = 3, k1 = K, and k2 = r k1.

> restart: r:=3: k[1]:=K; k[2]:=r*k[1];

k1 := K k2 := 3K

216 CHAPTER 5. LINEAR PDE MODELS. PART 1

The plane wave is assumed to be traveling in the positive x-direction, its time
part being e¡I ! t, where I =

p
¡1. In the ¯rst region, x < 0, labeled by the

subscript 1, the spatial part of the wave will be Ã1 = e
I k1 x + a e¡I k1 x.

> psi[1]:=exp(I*k[1]*x)+a*exp(-I*k[1]*x);

Ã1 := e
(K x I) + a e(¡I K x)

The ¯rst term is the incident plane wave, while the second term is the re°ected
wave with amplitude a. Since the transmission and re°ection coe±cients involve
ratios of squared amplitudes, the amplitude of the incident wave has been set
equal to one without loss of generality. The energy re°ection coe±cient then is
given by R = jaj2=1 = jaj2.

In region 2 (0 · x · L), the wave form must be made up of waves traveling
in the positive and negative x-directions, viz., Ã2 = b eI k2 x + c e¡I k2 x, with
undetermined amplitudes b and c.

> psi[2]:=b*exp(I*k[2]*x)+c*exp(-I*k[2]*x);

Ã2 := b e
(3 I K x) + c e(¡3 I K x)

In the third region, x > L, there will be only a transmitted plane wave, with
spatial part Ã3 = d eI k1 x, the wave number being k1 = K since the string
density is the same as in the ¯rst region. The fraction of the energy incident in
region 1 that is transmitted into region 3 is given by the transmission coe±cient
T = jdj2=1 = jdj2.

> psi[3]:=d*exp(I*k[1]*x);

Ã3 := d e
(K x I)

To evaluate the four unknown coe±cients a, b, c, and d, four independent
equations are needed. The ¯rst two equations, eq1 and eq2 , follow from the
physical continuity of the string. The string segment in region 2 is joined to
the segment in region 1 at x = 0 and to the segment in region 3 at x = L.

> eq1:=eval(psi[1]=psi[2],x=0);

eq1 := 1 + a = b+ c

> eq2:=eval(psi[2]=psi[3],x=L);

eq2 := b e(3 I K L) + c e(¡3 I K L) = d e(K LI)

Since the wave equation, and therefore the second spatial derivative, remains
¯nite everywhere along the string, the ¯rst derivative of Ã with respect to x
must be continuous. So, continuity of the slope at x = 0 and x = L yields the
third and fourth equations.

> eq3:=eval(diff(psi[1],x)=diff(psi[2],x),x=0);

eq3 := K I ¡ aK I = 3 I bK ¡ 3 I cK
> eq4:=eval(diff(psi[2],x)=diff(psi[3],x),x=L);

eq4 := 3 I bK e(3 I K L) ¡ 3 I cK e(¡3 I K L) = dK e(K LI) I

The system of four equations is now solved for the four unknown amplitudes,
and the solution is assigned.

5.1. CHECKING SOLUTIONS 217

> sol:=solve(feq1,eq2,eq3,eq4g,fa,b,c,dg); assign(sol):

sol := fb = ¡ 2 e(¡3 I K L)

e(3 I K L) ¡ 4 e(¡3 I K L)
; c = ¡ e(3 I K L)

e(3 I K L) ¡ 4 e(¡3 I K L)

a = ¡2 (e
(3 I K L) ¡ e(¡3 I K L))

e(3 I K L) ¡ 4 e(¡3 I K L)
; d = ¡ 3 e(¡3 I K L) e(3 I K L)

e(K LI) e(3 I K L) ¡ 4 e(¡3 I K L)
g

Since the amplitudes are complex, the transmission coe±cient is given by T =
jdj2 = d£d¤, where the asterisk denotes the complex conjugate. The command
conjugate(d) is used to enter d¤. The complex evaluation command, evalc,
which breaks a complex quantity into real and imaginary parts, is used to
generate a completely real answer. Finally, the result is simpli¯ed.

> T:=simplify(evalc(d*conjugate(d)));

T := ¡ 9

¡25 + 16 cos(3K L)2
Applying the combine command, with the trig option, produces the desired
form of the transmission coe±cient.

> T:=combine(T,trig);

T := ¡ 9

¡17 + 8 cos(6K L)
Similarly, the re°ection coe±cient is given by R = a£ a¤, and the desired form
follows on using the same command structure as for deriving T .

> R:=simplify(evalc(a*conjugate(a)));

R :=
16 (¡1 + cos(3K L)2)
¡25 + 16 cos(3K L)2

> R:=combine(R,trig);

R :=
¡8 + 8 cos(6K L)
¡17 + 8 cos(6K L)

By energy conservation the sum of the re°ection and transmission coe±cients
should add up to one. This is checked in the next command line. The value
K = 1 is also entered for plotting purposes.

> check:=simplify(R+T); K:=1:

check := 1

Finally, Vectoria plots the re°ection and transmission coe±cients in the same
¯gure over the range L = 0 to 5, using a solid (linestyle=1) red curve for
R, and a dashed (linestyle=3) blue curve for T . To maintain order, lists are
used here for the energy coe±cients, the colors, and the line styles. For better
visualization, thick curves are employed. Labels are also added to the plot,
entered as strings.

> plot([R,T],L=0..5,color=[red,blue],linestyle=[1,3],

thickness=2,labels=["L","R,T"]);

The resulting picture is shown in Figure 5.3.

218 CHAPTER 5. LINEAR PDE MODELS. PART 1

0

0.2

0.4

0.6

0.8

1

R, T

1 2 3 4 5L

Figure 5.3: Re°ection (upper curve) and transmission (lower) coe±cients vs. L.

When L = n¼=3, with n = 0 or a positive integer, the re°ection coe±cient
vanishes and there is 100% transmission. Looking back at the expression for
R, and recalling that k2 = 3K here, Vectoria notes that this situation will
occur whenever k2 L = n¼ or L = n (¸2=2), i.e., when the length L of the thick
portion exactly accommodates an integer number of half-wavelengths in that
region. Does this condition make sense to you?

PROBLEMS:
Problem 5-5: Variation on the text example
If ²1 = 1, ²2 = 16, k1 = 1, and L = 2, what fraction of the incident plane wave
energy is transmitted through the middle segment into the third region?

Problem 5-6: As simple as 1-2-3
Consider a plane wave of frequency ! traveling from x = ¡1 along an in¯nitely
long string with three regions of di®erent density, the middle one being located
between x = 0 and L. Suppose that the wave number in region 1 (x < 0) is
k1 = 1, in region 2 (0 < x < L) is k2 = 2, and in region 3 (x > L) is k3 = 3.

(a) Con¯rm that the re°ection coe±cient is

R =
17 + 15 cos(4L)

113 + 15 cos(4L)
:

(b) Because k3 6= k1, the transmission coe±cient T is equal to k3jdj2=(k1jaj2),
where a and d are the incident and transmitted amplitudes. Determine
the analytic form of T and con¯rm that R+ T = 1.

(c) Plot R and T on the same graph.

(d) Is there an L value for which 100% transmission is possible?

5.1. CHECKING SOLUTIONS 219

(e) What is the maximum value of T , and for what L value does this trans-
mission occur?

Problem 5-7: Five easy pieces (not the movie)
Consider an in¯nitely long string that has a linear density ²1 = 1 in region 1
(x < 0), density ²2 = 4 in region 2 (0 < x < L), density ²3 = 1 in region 3
(L < x < 2L), density ²4 = 4 in region 4 (2L < x < 3L), and density ²5 = 1 in
region 5 (x > 3L). For a plane wave of frequency ! coming from x = ¡1:

(a) Show that the transmission coe±cient T into region 5 is

T = 2048=

Ã
5X

n=0

bn cos(2nL)

!

with b0=3686, b1=¡882, b2=¡1800, b3=1611, b4=162, b5=¡729.
(b) Show that the sum T +R equals 1, where R is the re°ection coe±cient.

(c) Plot the transmission and re°ection coe±cients in the same graph.

(d) At what values of L is there 100% transmission? Discuss your answer.

Problem 5-8: Quantum-mechanical tunneling revisited
SchrÄodinger's equation describing one-dimensional motion of a particle of mass
m and energy E in a potential V (x) is

¡ ¹h2

2m

d2Ã(x)

dx2
+ V (x)Ã(x) = E Ã(x):

Here Ã(x) is the probability amplitude for ¯nding the particle at x and ¹h =
h=(2¼), where h is Planck's constant. Consider a particle with energy E < V0
incident on a rectangular barrier V (x) = V0 > 0 located in the region x = 0 to
L. The potential V (x) equals 0 outside the barrier.

(a) Show that the transmission coe±cient T , which may be calculated in a
similar manner to that for the 3-piece string, is

T =

μ
1 +

sinh2(K L)

(4E=V0) (1¡ E=V0)

¶¡1
;

with K =
q
2m (V0 ¡ E)=¹h2.

(b) Plot T as a function of KL for some representative values of E=V0 < 1.

(c) Discuss the behavior of the transmission coe±cient and contrast it with
what would be expected classically.

220 CHAPTER 5. LINEAR PDE MODELS. PART 1

5.1.4 Complex, Yet Simple

I adore simple pleasures. They are the last refuge of the complex.
Oscar Wilde, Anglo-Irish playwright (1854{1900)

Consider the complex function w= u(x; y)+I v(x; y) = z+1=z, where z = x+I y
with I =

p
¡1. It is stated in a certain mathematical physics text that because

the real functions u and v satisfy the Cauchy{Riemann conditions,

@u

@x
=
@v

@y
;

@v

@x
= ¡@u

@y
; (5.5)

then both u(x; y) and v(x; y) satisfy Laplace's equation,

r2u = @2u

@x2
+
@2u

@y2
= 0; r2v = @2v

@x2
+
@2v

@y2
= 0; (5.6)

and therefore can represent possible real potentials. It is further stated that
the constant-v curves can be used to represent the equipotentials outside an
in¯nitely long grounded conducting cylinder of unit radius placed in a previously
uniform electric ¯eld oriented perpendicular to the cylinder. The electric ¯eld
lines outside the cylinder are given by the constant-u curves, and the electric
¯eld vectors by ~E = ¡rv.

Our goal in this recipe is to illustrate how simple it is to check these state-
ments using Maple. Loading the plots and VectorCalculus packages,

> restart: with(plots): with(VectorCalculus):

both z = x+ I y and w = z + 1=z are entered.

> z:=x+I*y; w:=z+1/z;

z := x+ y I w := x+ y I +
1

x+ y I
The complex function w is separated into real and imaginary parts.

> w:=evalc(w);

w := x+
x

x2 + y2
+

μ
y ¡ y

x2 + y2

¶
I

The term involving I is removed from w, thus yielding u. The term containing
I is selected and divided by I to produce v.

> u:=remove(has,w,I); v:=select(has,w,I)/I;

u := x+
x

x2 + y2
v := y ¡ y

x2 + y2

We now check that both Cauchy{Riemann conditions (5.5) are satis¯ed.

> CR1:=simplify(diff(u,x)-diff(v,y));

CR1 := 0

> CR2:=simplify(diff(v,x)+diff(u,y));

CR2 := 0

A functional operator L is formed to calculate and simplify the Laplacian (r2)
of a function f expressed in terms of the Cartesian coordinates x and y.

5.1. CHECKING SOLUTIONS 221

> L:=f->simplify(Laplacian(f,'cartesian'[x,y])):

Applying L to u and to v yields zero, con¯rming that these functions satisfy
Laplace's equation and can be regarded as real potentials.

> L(u); L(v);

0 0

To con¯ne our attention to the region outside the cylinder, two piecewise func-
tions, pw1 and pw2 , are formed which are equal to zero for x2 + y2 < 1 and u
and v, respectively, outside this circular region.

> pw1:=piecewise(x^2+y^2<1,0,x^2+y^2>=1,u);

pw1 :=

(
0 x2 + y2 < 1

x+
x

x2 + y2
1 · x2 + y2

> pw2:=piecewise(x^2+y^2<1,0,x^2+y^2>=1,v):

A contour plot operator CP is formed to plot the equipotentials for a given
potential function f . The color C must also be speci¯ed. The contours are
drawn for potentials equal to 0:2n, with n ranging from ¡11 to +11. The grid
spacing is taken to be 90£ 90, and constrained scaling is imposed.

> CP:=(f,C)->contourplot(f,x=-2..2,y=-2..2,contours=

[seq(0.2*n,n=-11..11)],grid=[90,90],color=C,

scaling=constrained,thickness=2):

The curves corresponding to constant u are colored red, those corresponding
to constant v colored blue. The two sets of curves are superimposed. A black-
and-white version of the plot is shown in Figure 5.4.

> display(fCP(pw1,red),CP(pw2,blue)g);

–2

2

y

–2 2x

Figure 5.4: Equipotentials and electric ¯eld lines outside a conducting cylinder.

222 CHAPTER 5. LINEAR PDE MODELS. PART 1

The horizontal curves are the equipotentials (constant v) and the vertical curves
are the electric ¯eld lines (constant u). The two sets of curves intersect at
right angles, as would be expected. The electric ¯eld lines also intersect the
cylindrical surface perpendicularly, because the conducting surface is also an
equipotential.

Instead of showing the electric ¯eld lines, one can plot the electric ¯eld
vectors. The electric ¯eld ~E = ¡rv can be calculated in Cartesian coordinates
using the Gradient command.

> E:=-Gradient(v,'cartesian'[x,y]);

E := ¡ 2 y x

(x2 + y2)2
ex +

μ
¡1 + 1

x2 + y2
¡ 2 y2

(x2 + y2)2

¶
ey

Since we are interested only in the electric ¯eld outside the cylinder, two piece-
wise functions are formed to calculate the x and y components of the electric
¯eld in the region x2 + y2 ¸ 1.

> Ex:=piecewise(x^2+y^2<1,0,x^2+y^2>=1,E[1]):

> Ey:=piecewise(x^2+y^2<1,0,x^2+y^2>=1,E[2]):

The fieldplot command is used to plot the electric ¯eld vectors as thick red
arrows, the grid being 12 £ 12. The arrows will point in the direction of ~E,
their size being a measure of the magnitude, j ~Ej.

> FP:=fieldplot([Ex,Ey],x=-2..2,y=-2..2,arrows=THICK,

grid=[12,12],color=red):

The equipotentials and electric ¯eld vectors are superimposed in the same pic-
ture, a black-and-white rendition being shown in Figure 5.5.

> display(fCP(pw2,blue),FPg,labels=["x","y"],tickmarks=[2,2]);

–2

0

2

y

–2 2x

Figure 5.5: Equipotentials and electric ¯eld vectors outside the cylinder.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 223

PROBLEMS:

Problem 5-9: Intersecting conducting plates
In the text recipe replace the complex function with w = u + I v = z2, with
z = x + I y. Con¯rm that u(x; y) and v(x; y) satisfy the Cauchy{Riemann
conditions and Laplace's equations. Con¯rm by making a suitable plot that
the equipotentials and electric ¯eld lines are appropriate to the quarter-space
bounded by two semi-in¯nite conducting plates intersecting at right angles.
Make another plot that shows the electric ¯eld vectors and equipotentials.

Problem 5-10: Fluid °ow around a plate
Consider the function w = u + i v =

p
z2 ¡ 1, with z = x + i y. By creating a

suitable ¯gure in the x-y plane, show that the constant-u curves can represent
the streamlines (tracks of the °uid particles) for °uid °ow around an in¯nitely
long plate of ¯nite width, lying between x=¡1 and +1, inserted perpendicular
to a previously uniform °uid °ow in the y direction. Include the plate and the
equipotentials (constant v curves) in your ¯gure.

5.2 Di®usion and Laplace's Equation Models

In this section, di®usion and Laplace's equation models are solved in Cartesian
and other common coordinate systems, using some of the standard methods
of mathematical physics. Of course, we will let Maple do the heavy slogging,
concentrating on the underlying physics.

5.2.1 Freeing Excalibur

A sleeping presence is always a mystery ... seemingly peaceful,
yet in reality o® on wild adventures in strange landscapes.
A. Alvarez, British novelist (1929{)

Russell works as a control systems engineer for an aerospace company in the
Phoenix area. Earlier in the day, several of his old ASU engineering classmates
dropped by his workplace and persuaded him to go to the Monastery, a local
outdoor pub, after work. There they ate chicken wings and pizza, drank pitch-
ers of Mexican beer, and swapped stories about their undergraduate days and
what had happened to each of them since graduating from engineering school.

Later that night, probably triggered by the day's events, Russell is having
a wild dream in which he has been transported back to the mythical times of
Merlin the magician. Merlin has wrapped the fabled sword Excalibur in thin
insulating material and has embedded it in a large rock with only the tip and
hilt protruding. The legend is that whoever manages to pull out the sword will
become ruler of the Kingdom with all its associated wealth. Many have tried,

224 CHAPTER 5. LINEAR PDE MODELS. PART 1

but all1 have failed to pull the sword out of the rock. Having taken a course
in thermodynamics as an engineering undergraduate, Russell speculates as to
whether the sword could be pulled out by cooling the ends of the sword with
large buckets of ice, thus causing heat to °ow out of the warmer interior of the
sword's blade to the ends. If the sword were cooled su±ciently, its diameter
might shrink slightly, and just possibly he could pull the sword out.

But remembering the thermodynamics course causes Russell's dream to alter
direction, and he then dreams of a related problem that appeared on that
course's ¯nal exam many years ago. A thin 1-m-long rod (the sword's shaft)
whose lateral surface is insulated to prevent heat °ow through that surface has
its ends suddenly held at the freezing point of water, 0 ±C (contact with the
buckets of ice). Taking one end of the rod to be at x = 0 and the other at x =
L = 1, the initial temperature (T) distribution was T (x; t = 0) = 100x (1¡ x),
a parabolic pro¯le with a maximum temperature of 25± at the midpoint x = 1

2
.

In the exam, he was asked to determine the temperature distribution T (x; t) for
any time t > 0. Despite the passage of time, Russell remembers his approach to
solving this problem very well. His method of attack was to solve the di®usion
equation

@T (x; t)

@t
= d

@2T (x; t)

@x2
; (5.7)

by the method of separation of variables, i.e., assume that T (x; t)=S(x)F (t).
Substituting this assumed form into (5.7) and dividing by T (x; t) yields

1

F (t)

dF (t)

dt
=

d

S(x)

d2S(x)

dx2
: (5.8)

Since the lhs of (5.8) involves a function of t alone and the rhs involves a function
of x alone, the only way that it can be generally true is for both sides to be
equal to a common constant, called the separation constant. The separated
ODE for S(x) is solved, subject to the boundary conditions, and the complete
product solution constructed, subject to the initial condition.

Russell's wild dream is interrupted by the roar of a big jet passing over his
house on its way into Sky Harbor Airport. Waking up, and unable to get back
to sleep, he decides to make a cup of instant decaf co®ee and implement an
animated Maple solution of the heat di®usion problem on his computer. To
carry out the animation, the plots library package is loaded. Noting that the
di®usion coe±cient d could be absorbed into either the spatial or time variable,
Russell sets d = 1 without loss of generality. He also speci¯es the rod's length,
L = 1, and enters the heat equation (5.7).

> restart: with(plots): d:=1: L:=1:

> heateq:=diff(T(x,t),t)=d*diff(T(x,t),x,x);

heateq :=
@

@t
T (x; t) =

@2

@x2
T (x; t)

A general solution to the heat equation is sought using the PDE solve (pdsolve)
command, the HINT option explicitly telling Maple to separate variables.

1King Arthur has not shown up yet.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 225

> pdsolve(heateq,HINT=S(x)*F(t));

(T (x; t) = S (x)F (t)) &where

·½
d

dt
F (t) = c1 F (t);

d2

dx2
S(x) = c1 S(x)

¾¸
The heat equation has been separated into two ODEs, c1 being the separation
constant. If the INTEGRATE option is also included, the general solution of each
ODE will be generated as Russell now illustrates.

> pdsolve(heateq,HINT=S(x)*F(t),INTEGRATE);

(T (x; t) = S (x)F (t)) &where

[ffF (t) = C3 e(c1 t)g; fS (x) = C1 e(
p
c1 x) + C2 e(¡

p
c1 x)gg]

There are three unknown constants in the output, namely C1 , C2 , and C3 .
Finally, including the build option produces the general product solution, sol .

> sol:=pdsolve(heateq,HINT=S(x)*F(t),INTEGRATE,build);

sol := T (x; t) = C3 e(c1 t) C1 e(
p
c1 x) +

C3 e(c1 t) C2

e(
p
c1 x)

Russell then substitutes c1 = ¡k2 on the rhs of sol and applies the simplify
command with the symbolic option, which is equivalent to assuming that k > 0.

> temp:=simplify(subs(_c[1]=-k^2,rhs(sol)),symbolic);

temp := C3 (C1 e(k (¡t k+x I)) + C2 e(¡k (t k+x I)))
The resulting form is complex in appearance, so the complex evaluation com-
mand is applied to separate temp into real and imaginary terms.

> temp:=evalc(temp);

temp := C3 (C1 e(¡k
2 t) cos(k x) + C2 e(¡k

2 t) cos(k x))

+ C3 (C1 e(¡k
2 t) sin(k x)¡ C2 e(¡k

2 t) sin(k x)) I
The temperature has been expressed in terms of cosine, sine, and exponential
terms, which are now successively collected.

> temp:=collect(%,[cos,sin,exp]);

temp := C3 (C1 + C2) e(¡k
2 t) cos(k x) + C3 (C1 ¡ C2) e(¡k

2 t) sin(k x) I

Since T (x = 0; t) = 0 for all times and cos(k x) does not vanish at x = 0, Russell
removes it from temp. This is the ¯rst boundary condition (bc1).

> temp:=remove(has,temp,cos); #bc1

temp := C3 (C1 ¡ C2) e(¡k
2 t) sin(k x) I

Similarly, the temperature must also vanish at x = L = 1 for all t (the second
boundary condition). Therefore sin(k L) = 0, so k = n¼=L with n = 1; 2; 3; : : :
The general solution must involve a linear combination of terms involving all
possible n values. With the coe±cient labeled An, the nth term in the Fourier
series representation of the temperature will be of the following form.

> T[n]:=A[n]*subs(k=n*Pi/L,exp(-k^2*t)*sin(k*x)); #bc2

Tn := An e
(¡n2 ¼2 t) sin(n¼ x)

226 CHAPTER 5. LINEAR PDE MODELS. PART 1

The complete series solution is T =
P1

n=1 Tn, with the form of An to be deter-
mined from the initial condition. At t = 0, one must have

T (x; 0) =

1X
n=1

An sin(n¼ x) = 100x (1¡ x):

If T (x; 0) is multiplied by sin(m¼ x) and integrated from x = 0 to x = L = 1,
the lhs will integrate to zero for every term in the series except for the term
corresponding to m = n. This is a result of the independence, or orthogonality,
of the sine terms in the series. The resulting equation can then be solved for
An. Russell will now apply this approach. He evaluates Tn at t = 0, and enters
the initial temperature pro¯le, T0 .

> X:=eval(T[n],t=0); T0:=100*x*(1-x);

X := An sin(n¼ x) T0 := 100 x (1¡ x)
Since only the nth term in the series survives, Russell forms T0 ¡X , multiplies
this by sin(n¼ x), and integrates from x = 0 to 1 in eq. Then eq is set equal to
zero and solved for An.

> eq:=int((T0-X)*sin(n*Pi*x),x=0..1);

> A[n]:=solve(eq=0,A[n]);

An := ¡
200 (¡2 + n¼ sin(n¼) + 2 cos(n¼))
n2 ¼2 (n¼ ¡ sin(n¼) cos(n¼))

Assuming that n is an integer, the nth Fourier term Tn is simpli¯ed, An hav-
ing been automatically substituted. The double colon in assuming is a \type
match" command.

> T[n]:=simplify(T[n]) assuming n::integer;

Tn := ¡
400 (¡1 + (¡1)n) e(¡n2 ¼2 t) sin(n¼ x)

n3 ¼3
Thus, the temperature distribution in the rod satisfying the boundary and
initial conditions is given by the following in¯nite Fourier series:

> Temp:=Sum(T[n],n=1..infinity);

Temp :=
1X
n=1

Ã
¡400 (¡1 + (¡1)

n) e(¡n
2 ¼2 t) sin(n¼ x)

n3 ¼3

!

The sum of the ¯rst ¯ve terms gives a good approximation to T (x; t), because
the contribution of higher-order terms drops very rapidly with increasing time.

> TT:=sum(T[n],n=1..5);

TT :=
800 e(¡¼

2 t) sin(¼ x)

¼3
+
800

27

e(¡9¼
2 t) sin(3 ¼ x)

¼3
+
32

5

e(¡25 ¼
2 t) sin(5¼ x)

¼3
Then TT is animated so its spatial and temporal evolution can be clearly seen.

> animate(plot,[TT,x=0..1],t=0..1,frames=50);

Russell is feeling sleepy, so is going back to bed. If you wish to see how the
initial parabolic temperature pro¯le decays to zero everywhere inside the rod,
execute the work sheet, click on the plot, and then on the play arrow.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 227

PROBLEMS:
Problem 5-11: Hot rod
For the heated rod discussed in the text, at what time is the temperature at
the center of the rod equal to one-third of its initial value?

Problem 5-12: The switch
The temperatures at the ends x = 0 and x = 100 of a rod (insulated on its
sides) 100 cm long are held at 0± and 100±, respectively, until steady state
is achieved. Then at the instant t = 0, the temperatures of the two ends
are interchanged. Determine the resultant temperature distribution T (x; t).
Animate your solution and discuss its behavior.

5.2.2 Aussie Barbecue

He who does not mind his belly, will hardly mind anything else.
Samuel Johnson, English author and lexicographer (1709{1784)

When coauthor Richard spent a sabbatical leave at the Australian National
University, in Canberra, he constructed a barbecue consisting of a scrap of
rectangular iron plate placed on a primitive2 brickwork support. The myriad
eucalyptus trees that dot the landscape of the Australian Capital Territory and
New South Wales constantly shed branches, which were gathered to be used
as free barbecue fuel. With the iron plate slightly tilted to allow the grease
from the sizzling lamb chops (accompanied with a cask of wine, the staple of
the Australian outback barbecue) to drip o® into the ¯re, the °ames on the
downhill edge of the plate tended to make that edge considerably hotter than
the other edges of the plate. The temperature distribution in the plate was
uneven, and vigilance was necessary to prevent the chops from being turned
into charcoal. The Aussie barbecue is the inspiration for the following two-
dimensional boundary value example, in which the steady-state temperature
pro¯le in a thin rectangular plate, with prescribed temperatures on the edges,
is found.

Consider a uniform solid rectangular plate stretching between x = 0 and
x = L and y = 0 and y = h, where L and h are measured in meters. Since
what is important is the temperature di®erences across the plate, without loss
of generality the coldest edge can be set equal to zero. Speci¯cally, we shall
imagine the plate to have three \cold" edges whose temperatures are set equal to
zero, i.e., T (0; y)=T (x; 0)=T (x; h)=0. The \hot" edge x=L will be assumed
to have a parabolic temperature distribution given by T (L; y)=400 y (h¡y) ±C.
If, for example, h=1 m, the temperature along the hot edge will vary from zero
at the corners to a temperature 100± hotter in the middle of that edge. Our goal
is to determine the steady-state temperature distribution T (x; y) in the plate.

2Note: Richard is a theoretician, not an experimentalist.

228 CHAPTER 5. LINEAR PDE MODELS. PART 1

The answer will require that the two-dimensional form of Laplace's equation,

@2T (x; y)

@x2
+
@2T (x; y)

@y2
= 0; (5.9)

be solved, subject to the four boundary conditions. After loading the plots
package, we enter Laplace's equation (LE).

> restart: with(plots):

> LE:=diff(T(x,y),x,x)+diff(T(x,y),y,y)=0;

LE :=

μ
@2

@x2
T (x; y)

¶
+

μ
@2

@y2
T (x; y)

¶
= 0

Using the pdsolve command with the HINT=f(x)*g(y),INTEGRATE, and build
options, we generate the general product solution of Laplace's equation.

> sol:=pdsolve(LE,HINT=f(x)*g(y),INTEGRATE,build);

sol := T (x; y) = C3 sin(
p
c1 y) C1 e

(
p
c1 x) +

C3 sin(
p
c1 y) C2

e(
p
c1 x)

+ C4 cos(
p
c1 y) C1 e

(
p
c1 x) +

C4 cos(
p
c1 y) C2

e(
p
c1 x)

The solution involves one separation constant c1 and four unknown coe±cients.
For notational convenience, we substitute

p
c1 = m in the rhs of sol .

> T:=subs(sqrt(_c[1])=m,rhs(sol));

T := C3 sin(my) C1 e(mx) +
C3 sin(my) C2

e(mx)
+ C4 cos(my) C1 e(mx)

+
C4 cos(my) C2

e(mx)

The coe±cients are determined from the four boundary conditions. To satisfy
T (x; 0) = 0, the cos(my) terms are removed since they don't vanish at y = 0.

> T:=remove(has,T,cos(m*y)); #bc1

T := C3 sin(my) C1 e(mx) +
C3 sin(my) C2

e(mx)

Then T is converted completely to trigonometric form.

> T:=expand(convert(T,trig));

T := C3 sin(my) C1 cosh(mx) + C3 sin(my) C1 sinh(mx)

+
C3 sin(my) C2

cosh(mx) + sinh(mx)

The second boundary condition is that T (0; y) = 0. Since cosh(mx) doesn't
vanish at x = 0, terms involving cosh(mx) are removed from T .

> T:=remove(has,T,cosh(m*x)); #bc2

T := C3 sin(my) C1 sinh(mx)

The third boundary condition, T (x; h) = 0, requires that sin(mh) = 0, so that
m = n¼=h with n a positive integer. This relation is substituted into T , and

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 229

the awkward coe±cient combination replaced with An. The resulting form,
labeled Tn, is the nth term in the in¯nite Fourier series solution.

> T[n]:=A[n]*subs(m=n*Pi/h,T)/(_C3*_C1); #bc3

Tn := An sin
³n¼ y
h

´
sinh

³n¼ x
h

´
The remaining boundary condition must be applied along the \hot" edge at
x = L. Then Tn is evaluated at this value in S, and the temperature distribution
T0 = 400 y (h¡ y) along the hot edge entered.

> S:=eval(T[n],x=L); T0:=400*y*(h-y);

S := An sin
³n¼ y
h

´
sinh

μ
n¼ L

h

¶
T0 := 400 y (h¡ y)

On the edge x = L, we have

T (L; y) =

1X
n=1

An sin
³n¼ y
h

´
sinh

μ
n¼ L

h

¶
= T0 = 400 y (h¡ y):

If T (L; y) is multiplied by sin(m¼ y=h) and integrated from y = 0 to h, the lhs
will yield zero except for m = n. Thus, the coe±cient An can be determined
in a manner similar to the last recipe. The next two command lines carry out
this procedure and calculate An.

> eq:=int((S-T0)*sin(n*Pi*y/h),y=0..h)=0: #bc4

> A[n]:=solve(eq,A[n]):

Assuming that n is an integer, the nth Fourier term is simpli¯ed, An having
been automatically substituted.

> T[n]:=simplify(T[n]) assuming n::integer;

Tn := ¡
1600 h2 (¡1 + (¡1)n) sin

³n¼ y
h

´
sinh

³n¼ x
h

´
n3 sinh

μ
n¼ L

h

¶
¼3

The complete solution is T (x; y) =
P1

n=1 Tn. To plot the solution, we will take
L = 1, h = 1, and keep terms in the series up to n = 7,

> L:=1: h:=1: Temp:=sum(T[n],n=1..7);

Temp :=
3200 sin(¼ y) sinh(¼ x)

sinh(¼)¼3
+
3200

27

sin(3¼ y) sinh(3¼ x)

sinh(3¼) ¼3

+
128

5

sin(5¼ y) sinh(5 ¼ x)

sinh(5¼)¼3
+
3200

343

sin(7¼ y) sinh(7¼ x)

sinh(7¼)¼3

which is su±ciently accurate here. By itself, the series representation doesn't
tell us much. To see the steady-state temperature distribution T (x; y) in the
plate, a three-dimensional colored contour plot with 20 equally spaced contours
is created.

> plot3d(Temp,x=0..L,y=0..h,axes=boxed,style=patchcontour,

contours=20,orientation=[-132,35],tickmarks=[2,2,2]);

230 CHAPTER 5. LINEAR PDE MODELS. PART 1

0

1

x

0

1

y

0

100

Figure 5.6: Three-dimensional contour plot of the temperature distribution.

The resulting picture is shown in Figure 5.6. From the ¯gure, the reader can
get a good feeling for how the temperature distribution drops o® from the hot
edge. If it is desired to know the temperature at a particular point, a more
accurate answer can be obtained by substituting the coordinates of the point
into the series solution. For example, the temperature in the middle (x = L=2,
y = h=2) of the plate is evaluated,

> middle:=evalf(eval(Temp,fx=L/2,y=h/2g));
middle := 20:53145858

and found to be about 201
2
± warmer than on the cold edges.

PROBLEMS:
Problem 5-13: Electric potential
An in¯nitely long hollow conductor has a rectangular cross section with sides L
and 2L. One of the longer sides is charged to a potential V =V0 and the other
three sides are held at zero potential. By solving Laplace's equation, determine
the potential distribution in the interior region. Taking V0=1 and L=1, plot
the equipotential lines. Calculate the electric ¯eld ~E = ¡rV in the interior
region. Plot ~E on the same graph as the equipotential lines.

Problem 5-14: Barbecue plate
Suppose that a rectangular barbecue plate has a ¯nite thickness c = 0:01 m
in the z-direction and dimensions a = 0:5 m and b = 0:5 m in the x- and
y-directions, respectively. Assuming that the bottom of the plate is uniformly
heated and is 100± hotter than the other ¯ve sides, determine the steady-state
temperature distribution T (x; y; z) inside the plate and make a suitable plot.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 231

5.2.3 Benny's Solution

A good scientist is a person with original ideas. A good engineer is
a person who makes a design that works with as few original ideas
as possible. There are no prima donnas in engineering.
Freeman Dyson, British-born U.S. physicist (1923{)

Greg Arious Nerd is currently teaching the mathematical physics course to a
mixture of future engineers and physicists at Erehwon's most famous academic
institution, EIT (Erehwon Institute of Technology). The students are being
instructed in the use of the Elpam computer algebra system in solving their
mathematical physics problems. As a classroom example, Greg selects a some-
what arti¯cial, but pedagogically useful, two-dimensional static potential prob-
lem. A circular annulus has an angular potential distribution Á(10; μ) = 15 cos μ
speci¯ed on the inner radius r1 = 10 cm and a potential Á(20; μ) = 30 sin μ on
the outer radius r2 = 20 cm. The question to be answered is, \What is the
potential distribution in the annular region, and what do the equipotentials
look like in this region?"

The following recipe for solving this problem has been submitted by one of
Greg's engineering students, Benjamin Beetlebrox III. Although, as a descen-
dent of one of the founding families on Erehwon, he doesn't like his ¯rst name
shortened, we shall take Freeman Dyson's words to heart and call him Benny.

In addition to the plots package needed for plotting the equipotentials,
Benny loads the VectorCalculus package, because it contains the Laplacian
command, which will enable him to easily generate Laplace's equation for the
potential Á(r; μ) in polar coordinates. The radial (r) and angular (μ) polar co-
ordinates are related to the Cartesian coordinates (x; y) through the relations
x = r cos μ, y = r sin μ.

> restart: with(plots): with(VectorCalculus):

Curious about the coordinate systems that the Elpam system supports, Benny
enters the following command line. On executing this line, a list of the available
two- and three-dimensional coordinate systems appears in a Help page.

> ?coords;

Through the hyperlinks at the bottom of the Help page, Benny is led to the
coordplot and coordplot3d commands for plotting representative curves and
surfaces in two and three dimensions, corresponding to holding each coordinate
equal to a constant value. Closing the Help window, Benny uses coordplot
to plot the lines r = constant and μ = constant in polar coordinates. The
grid option is used to control the number of constant values and therefore
the number of lines drawn. The default is grid=[12,12]. The values of the
constants are added to the graph by including labeling=true. More detailed
explanations and other options may be found on the coordplot Help page.

> coordplot(polar,grid=[5,7],labelling=true,

scaling=constrained);

232 CHAPTER 5. LINEAR PDE MODELS. PART 1

13/41/21/4
0

5/3*Pi4/3*Pi

Pi

2/3*Pi 1/3*Pi

Figure 5.7: Constant r and μ lines in polar coordinates.

The resulting picture is reproduced in Figure 5.7, circles being produced for
r = 0; 1

4
; 1
2
; 3
4
; 1 and polar lines for μ = 0; ¼=3; 2 ¼=3; ¼; : : : :

Benny now enters Laplace's equation (LE) in polar coordinates.

> LE:=expand(Laplacian(phi(r,theta),'polar'[r,theta]))=0;

LE :=

@

@r
Á(r; μ)

r
+

μ
@2

@r2
Á(r; μ)

¶
+

@2

@μ2
Á(r; μ)

r2
= 0

The pdsolve command with the HINT=f(r)*g(theta), INTEGRATE and build
options is used to ¯nd the general product solution of Laplace's equation.

> sol:=pdsolve(LE,HINT=f(r)*g(theta),INTEGRATE,build);

sol := Á(r; μ) = C3 sin(
p
c1 μ) C1 r

(
p
c1) +

C3 sin(
p
c1 μ) C2

r(
p
c1)

+ C4 cos(
p
c1 μ) C1 r

(
p
c1) +

C4 cos(
p
c1 μ) C2

r(
p
c1)

Benny notes that the solution must reduce to a cos μ form on one boundary
and a sin μ form on the other, so he accordingly sets the separation constantp
c1 = 1 on the rhs of sol .

> phi:=subs(sqrt(_c[1])=1,rhs(sol));

Á := C3 sin(μ) C1 r +
C3 sin(μ) C2

r
+ C4 cos(μ) C1 r +

C4 cos(μ) C2

r
The terms are then grouped by successively collecting cos μ, sin μ, and r terms.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 233

> phi:=collect(phi,[cos(theta),sin(theta),r]);

Á :=

μ
C4 C1 r +

C4 C2

r

¶
cos(μ) +

μ
C3 C1 r +

C3 C2

r

¶
sin(μ)

To simplify the coe±cients in Á, Benny makes the following substitutions.

> phi:=subs(_C3=a/_C1,_C2=b*_C1/a,_C4=c/_C1,phi);

Á :=

μ
c r +

c b

a r

¶
cos(μ) +

μ
a r +

b

r

¶
sin(μ)

> phi:=algsubs(c*b=a*d,phi);

Á := cos(μ)

μ
c r +

d

r

¶
+

μ
a r +

b

r

¶
sin(μ)

To determine the four unknown coe±cients a, b, c, and d, four boundary con-
ditions are required. On the inner boundary, r = 10 cm, the coe±cient of the
cos μ term must equal 15, while the coe±cient of the sin μ term must equal zero.
This yields two boundary conditions, labeled bc1 and bc2 .

> bc1:=eval(coeff(phi,cos(theta)),r=10)=15;

bc1 := 10 c+
d

10
= 15

> bc2:=eval(coeff(phi,sin(theta)),r=10)=0;

bc2 := 10 a+
b

10
= 0

On the outer boundary, r = 20 cm, the coe±cient of the sin μ term must equal
30, while the coe±cient of the cos μ term is equal to zero. This yields two more
boundary conditions, bc3 and bc4 .

> bc3:=eval(coeff(phi,sin(theta)),r=20)=30;

bc3 := 20 a+
b

20
= 30

> bc4:=eval(coeff(phi,cos(theta)),r=20)=0;;

bc4 := 20 c+
d

20
= 0

The four boundary condition equations are solved for a, b, c, and d,

> coefficients:=solve(fbc1,bc2,bc3,bc4g,fa,b,c,dg);

coe±cients :=

½
d = 200; a = 2; c =

¡1
2
; b = ¡200

¾
which are assigned to produce the ¯nal solution Á to the potential problem.

> assign(coefficients): phi:=phi;

Á := cos(μ)

μ
¡r
2
+
200

r

¶
+

μ
2 r ¡ 200

r

¶
sin(μ)

As requested by Professor Nerd, Benny will now use Á to plot the equipotentials
in the annular region between r = 10 and 20. He ¯rst converts the potential
into Cartesian coordinates by substituting r =

p
x2 + y2, cos μ = x=

p
x2 + y2,

and sin μ = y=
p
x2 + y2, into Á.

234 CHAPTER 5. LINEAR PDE MODELS. PART 1

> phi:=subs(fr=sqrt(x^2+y^2),cos(theta)=x/sqrt(x^2+y^2),
sin(theta)=y/sqrt(x^2+y^2)g,phi):

He then creates a piecewise potential function © equal to Á for 100 · x2+y2 ·
400 and zero otherwise. (The © output is suppressed here.)

> Phi:=piecewise(100<=x^2+y^2 and x^2+y^2<=400,phi,0);

A functional operator F is formed, which uses the implicitplot command, to
plot © in potential steps of 5 i, where i will be allowed to take on integer values.

> F:=i->implicitplot(fPhi=5*ig,x=-20..20,y=-20..20,
scaling=constrained,grid=[100,100]):

The sequence of constant-potential plots is then displayed for i = ¡6 to +6,
the result being shown in Figure 5.8.

> display(fseq(F(i),i=-6..6)g);

–20

–10

10

20

y

–20 –10 10 20x

Figure 5.8: Equipotential lines for the circular annulus.

Although, he hasn't bothered to label the equipotential lines, Benny feels that
the plot already conveys a better sense of the equipotentials than could be
gained by staring at the formula, simple as it is. He has left the labeling of the
equipotentials for you to carry out as a problem.

PROBLEMS:
Problem 5-15: Labeling of equipotential lines
Using the textplot command, add appropriate potential values to Figure 5.8
so that the equipotential lines are clearly identi¯ed.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 235

Problem 5-16: Split potential
Along the circumference of a circle of radius r = 1, the potential Á(r; μ) has
the value Á = 1 for the angular range 0 < μ < ¼ and Á = 0 when ¼ < μ < 2¼.
Determine Á(r; μ) for r < 1 and for r > 1. Plot the equipotentials inside and
outside the circle.

Problem 5-17: Temperature distribution
A plate has the form of an annular region bounded by two concentric circles
r1 = 1 m and r2 = 2 m. The temperature in degrees Celsius along r1 is T1 =
75 sin μ and along r2 is T2 = 60 cos μ. Determine the steady-state temperature
at each point of the annular region and plot the isotherms.

Problem 5-18: Alternating surface potential
An in¯nitely long hollow conducting cylinder of radius r = a is divided into
equal quarters, alternate segments being held at the potentials +V and ¡V .
Using the two-dimensional form of Laplace's equation, determine the potential
inside the cylinder. Taking a = 1 and V = 1, plot the equipotential surfaces.

Problem 5-19: The bipolar coordinate system
For the two-dimensional bipolar coordinate system, use ?coords to ¯nd out
how bipolar and Cartesian coordinates are related. Plot the bipolar coordinate
system, using options of your own choice. Suggest an electrostatic boundary
value problem in which this coordinate system would be useful.

Problem 5-20: Three-dimensional coordinate plots
Use coordplot3d to plot the surfaces corresponding to holding each coordinate
equal to a constant value for the following three-dimensional systems:
(a) cylindrical; (b) spherical; (c) paraboloidal; (d) sixsphere.

Problem 5-21: Entering Laplace's equation
Making use of the VectorCalculus package, determine the form of Laplace's
equation for the scalar ¯eld Ã in the following coordinate systems:

(a) cylindrical, with Ã = Ã(r; μ; z);

(b) spherical, with Ã = Ã(r; μ; Á);

(c) bispherical, with Ã = Ã(»; ´; Á);

(d) paraboidal, with Ã = Ã(´; »; Á);

(e) prolate spheroidal, with Ã = Ã(u; v; Á);

(f) elliptic, with Ã = Ã(u; v).

Problem 5-22: Solving Laplace's equation
Solve Laplace's equation in the following coordinate systems. In each case, look
at what Maple does as each additional option is included, ending up with the
complete product solution:

(a) cylindrical, with Ã = Ã(r; μ; z);

(b) spherical, with Ã = Ã(r; μ; Á);

(c) paraboloidal, with Ã = Ã(´; »; Á).

236 CHAPTER 5. LINEAR PDE MODELS. PART 1

5.2.4 Hugo and the Atomic Bomb

If the radiance of a thousand suns were to burst forth at once in the
sky, that would be like the splendor of the Mighty One.
Bhagavad Gita, a philosophical dialogue that is a sacred Hindu text, found in
the Mahabharata, one of the ancient Sanskrit epics (250 BC{250 AD)

Hugo, who was formerly a scientist in country X, has emigrated to the New
World in search of a better life. Unfortunately, he has been forced to temporarily
drive taxis until he can ¯nd a job more suitable to his educational training.
While waiting for his next fare, he tries to keep his mind sharp by carrying out
model calculations on his laptop computer. At this particular moment, Hugo is
working on the problem of the growth of the neutron density in a nuclear chain
reaction. Let's eavesdrop on what Hugo is doing.

Hugo knows that if uranium nuclei are bombarded with neutrons, a given
nucleus may absorb a neutron, resulting in the splitting of the uranium nucleus
into two parts with the release of substantial energy as well as two or three of
the neutrons that were already present in the nucleus. This splitting process
is called nuclear ¯ssion and is the ¯rst step in a chain reaction. Whether the
reaction will keep on going depends on how many of the released neutrons are
available to initiate another ¯ssion process. The factor by which the number of
neutrons increases between one step and the next in the chain reaction is called
the multiplication factor. In a nuclear reactor, the multiplication factor is kept
at unity (called the critical condition) by using boron or cadmium control rods
to \soak up" excess neutrons. In this case, the chain reaction proceeds at a
constant rate with a steady output of energy. If the multiplication factor is
greater than unity (the supercritical condition), the chain reaction leads to a
geometrically increasing number of ¯ssions in a very short time interval with the
accompanying release of an enormous amount of energy. A nuclear explosion
takes place| the basis of the atomic bomb.

Hugo decides that he can learn more about the underlying role that the
neutrons play in the chain reaction by modeling the time evolution of some
speci¯ed initial neutron distribution inside a mass of ¯ssionable material. For
calculational purposes, he takes the mass to be cylindrical in shape with a radius
r = a, the lower face of the cylinder at z = 0 and the upper face at z = h.
For simplicity, Hugo takes the neutron density N (number of neutrons per unit
volume) to be independent of the angular coordinate μ, i.e., N = N(r; z; t). In
the absence of any production of neutrons by ¯ssion, the neutron density would
obey the linear di®usion equation. To account for the production of neutrons
by ¯ssion, Hugo adds a neutron source term ¯ N , where ¯ is a positive rate
constant, to the di®usion equation, viz.,

@N

@t
= dr2N + ¯ N: (5.10)

In order to use the cylindrical polar form of the Laplacian, he calls up the
VectorCalculus package.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 237

> restart: with(plots): with(VectorCalculus):

The di®usion equation is entered with the Laplacian in cylindrical coordinates.

> de:=diff(N(r,z,t),t)-beta*N(r,z,t)

=d*Laplacian(N(r,z,t),'cylindrical'[r,theta,z]);

de :=
@

@t
N (r; z; t)¡ ¯N (r; z; t)

=

d

μμ
@

@r
N (r; z; t)

¶
+ r

μ
@2

@r2
N (r; z; t)

¶
+ r

μ
@2

@z2
N (r; z; t)

¶¶
r

The di®usion equation de is solved with the pdsolve command, the HINT option
being omitted, because Maple already assumes a general product solution. After
the introduction of two separation constants c1 and c2, the PDE is separated
into three ODEs which are solved and the product formed.

> sol:=pdsolve(de,INTEGRATE,build);

sol := N (r; z; t)

= e(
p
c2 z) C5 e(t d c1) e(t d c2) e(t ¯) C1 BesselJ(0;

p
¡ c1 r) C3

+
C5 e(t d c1) e(t d c2) e(t ¯) C1 BesselJ(0;

p
¡ c1 r) C4

e(
p
c2 z)

+ e(
p
c2 z) C5 e(t d c1) e(t d c2) e(t ¯) C2 BesselY(0;

p
¡ c1 r) C3

+
C5 e(t d c1) e(t d c2) e(t ¯) C2 BesselY(0;

p
¡ c1 r) C4

e(
p
c2 z)

The solution sol involves a linear combination of a zeroth-order Bessel function
of the ¯rst kind (J0(

p
¡ c1 r) in math notation) and a zeroth-order Bessel func-

tion of the second kind (Y0(
p
¡ c1 r)). The latter Bessel function diverges at

r = 0 at arbitrary time, so Hugo imposes the ¯rst boundary condition, removing
terms involving BesselY from the rhs of the solution.

> N:=remove(has,rhs(sol),BesselY); #bc1

N := e(
p
c2 z) C5 e(t d c1) e(t d c2) e(t ¯) C1 BesselJ(0;

p
¡ c1 r) C3

+
C5 e(t d c1) e(t d c2) e(t ¯) C1 BesselJ(0;

p
¡ c1 r) C4

e(
p
c2 z)

Hugo simpli¯es N by substituting c1 = ¡¹2 and c2 = ¡º2 and applying the
simplify command with the symbolic option.

> N:=simplify(subs(f_c[1]=-mu^2,_c[2]=-nu^2g,N),symbolic);

N := C5 C1 BesselJ(0; ¹ r) e(¡t d ¹
2¡t d º2+t ¯) (C3 e(º z I) + C4 e(¡I º z))

The complex form is split into real and imaginary parts with the complex
evaluation command.

> N:=evalc(N);

238 CHAPTER 5. LINEAR PDE MODELS. PART 1

N := C5 C1 BesselJ(0; ¹ r) e(¡t d ¹
2¡t d º2+t ¯) (C3 cos(º z) + C4 cos(º z))

+ C5 C1 BesselJ(0; ¹ r) e(¡t d ¹
2¡t d º2+t ¯) (C3 sin(º z)¡ C4 sin(º z)) I

Hugo assumes that the neutron density at the surface of the cylindrical mass is
zero. Thus, since it doesn't go to zero at z = 0, the cos(º z) term is removed
(a second boundary condition) from N and the result factored.

> N:=factor(remove(has,N,cos)); #bc2

N := C5 C1 BesselJ(0; ¹ r) e(¡t (¡¯+d ¹
2+d º2)) sin(º z) (¡ C4 + C3) I

In the next command line, Hugo removes the \ugly" Maple coe±cient combi-
nation from N by forming the product of the 4th, 5th, and 6th operands of N ,
the other operands corresponding to the various constants.

> N2:=op(4,N)*op(5,N)*op(6,N);

N2 := BesselJ(0; ¹ r) e(¡t (¡¯+d ¹
2+d º2)) sin(º z)

Since the neutron density is zero on the cylindrical surface r = a and at the end
z = h, two more boundary conditions must be imposed. At r = a, J0(¹ a) = 0,
so that ¹ = ¸m=a, where ¸m is the mth zero of J0. These zeros may be
found with the command BesselJZeros(0,m), where m = 1; 2; : : : : At z = h,
sin(º h) = 0, so º = n¼=h, with n a positive integer. This pair of boundary
condition relations is substituted into N2 .

> N2:=subs(fmu=BesselJZeros(0,m)/a,nu=n*Pi/hg,N2); #bcs

N2 := BesselJ

μ
0;
BesselJZeros(0; m) r

a

¶

e(¡t (¡¯ +
dBesselJZeros(0;m)2

a2
+ d n2 ¼2

h2
)) sin

³n¼ z
h

´
By the principle of linear superposition, the complete solution will be

N(r; z; t) =
1X
m=1

1X
n=1

Cm;nN2 ´
1X
m=1

1X
n=1

Nm;n;

with the Cm;n determined by the initial neutron density N(r; z; 0) = f . Evalu-
ating N2 at t = 0, and labeling the result g,

> g:=eval(N2,t=0);

g := BesselJ

μ
0;
BesselJZeros(0; m) r

a

¶
sin
³n¼ z
h

´
one has

N(r; z; 0) =
1X
m=1

1X
n=1

Cm;n g = f:

If we multiply both sides of N(r; z; 0) by r J0(¸m 0 r=a) sin(n 0 ¼ z=h) and inte-
grate r from 0 to a and z from 0 to h, the lhs will yield zero unless m = m 0

and n = n 0. Solving for Cm 0;n 0 , and dropping the primes, the coe±cients can
be calculated from

Cm;n =

R a
0

R h
0
r f g dr dzR a

0

R h
0
r g2 dr dz

:

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 239

For an initial neutron density satisfying the boundary conditions, Hugo takes
f to be of the following simple structure:

> f:=(1-r^2/a^2)*sin(Pi*z/h);

f :=

μ
1¡ r2

a2

¶
sin
³¼ z
h

´
The coe±cients Cm;n are calculated, and then the Fourier term Nm;n.

> C[m,n]:=int(int(r*f*g,z=0..h),r=0..a)

/int(int(r*g^2,z=0..h),r=0..a):

> N[m,n]:=C[m,n]*N2;

For integer n > 1, Nm;n should be equal to zero, since only an n = 1 term
occurs in f . Hugo checks that this is the case.

> simplify(N[m,n]) assuming n::integer,n>1;

0

To determine Nm;1 greater care must be exercised, and the limit taken as n! 1.
The result then is simpli¯ed with respect to the exponentials.

> N[m,1]:=simplify(limit(N[m,n],n=1),exp);

Nm; 1 := 8 sin
³¼ z
h

´
BesselJ

μ
0;
BesselJZeros(0; m) r

a

¶

e(¡
(¡¯ a2 h2+dBesselJZeros(0;m)2 h2+d ¼2 a2) t

a2 h2
)Á

BesselJ(1; BesselJZeros(0; m)) BesselJZeros(0; m)3

The total neutron density at time t then is
P1

m=1Nm;1. To plot the density,
Hugo takes the nominal values a = 1, h = 1, and d = 1. In the time-dependent
part of the density, the coe±cient of t is ¯ ¡ d (¸2m=a2 + ¼2=h2). The largest
possible positive value of this coe±cient occurs when m = 1, corresponding to
the ¯rst zero of J0. In this case ¸1 ¼ 2:405. If

¯ < ¯c = d

μ
¸21
a2
+
¼2

h2

¶
;

all terms in the series representation of the neutron density will decay with
time. If ¯ is larger than the critical value, ¯c, exponential growth of the neutron
density will take place. If the cylinder dimensions a and h are such that ¯ =
¯c, then the corresponding mass Mc equals ½ (¼ a

2)h, where ½ is the mass
density of the ¯ssionable material, is called the \critical mass." According to
Ohanian [Oha85], the critical mass for uranium 235 is about 53 kg and for a
spherical shape corresponds to a diameter of 18 cm.

For his nominal input parameters, Hugo ¯nds that the critical value of ¯
is slightly less than 15:7. To simulate growth that starts out relatively slowly
but then increases rapidly, Hugo takes ¯ = 15:7. The total neutron density is
evaluated with the above parameters, three terms being kept in the series.

240 CHAPTER 5. LINEAR PDE MODELS. PART 1

> Density:=sum(eval(N[m,1],fa=1,h=1,d=1,beta=15.7g),m=1..3);

Density :=

1:108022261 sin(3:141592654 z) BesselJ(0:; 2:404825558 r) e(0:047209632 t)

¡ 0:1397775054 sin(3:141592654 z) BesselJ(0:; 5:520078110 r) e(¡24:64086674 t)

+ 0:04547647069 sin(3:141592654 z) BesselJ(0:; 8:653727913 r) e(¡69:05661119 t)

The numerical coe±cient of t in the ¯rst term of the output is slightly posi-
tive while the coe±cients of t in the other terms are large negative numbers.
Thus, the ¯rst term in the series will grow with time and all remaining terms
exponentially decay. If the neutron density grows fast enough, an uncontrolled
chain reaction, i.e., an explosion, will occur.

To create a dynamic 3-dimensional picture of the explosive growth in neutron
density (the \nuclear explosion"), Hugo makes use of the animation command.

> animate(plot3d,[Density,r=-1..1,z=0..1],t=0..100,

frames=25,orientation=[65,40],shading=zhue,

style=patchnogrid,grid=[25,25],axes=framed);

As Hugo contentedly looks at the \explosion" on his computer screen, running
in the loop mode and with 200% zoom magni¯cation, he hears a gru® voice.

\Hey Buddy, if you don't mind, I am running late and have to get to the
airport."

Interrupted by harsh reality, Hugo puts his computer away, but hopes that
one of his job applications will pan out soon.

PROBLEMS:
Problem 5-23: Spherical mass
Carry out a calculation similar to that in the text recipe for a ¯ssionable spher-
ical mass of radius r = a and an initial neutron density f(r) = 1 ¡ r2=a2.
Make an animated plot of the neutron density inside the sphere when the mass
slightly exceeds the critical mass.

Problem 5-24: Semicircular plate
A thin semicircular plate of radius r = 1 has its edges held at zero temperature
and its °at faces insulated. If the initial temperature distribution inside the
plate is T (r; μ; 0) = 100 r2 cos(2 μ), determine the temperature T (r; μ; t) for
t > 0. Taking the di®usion constant d = 1, animate the temperature pro¯le.

Problem 5-25: Temperature distribution
A solid has the shape of an in¯nitely long quarter-cylinder of radius r = 1
and di®usion constant d. The °at sides are insulated, so no heat °ows through
them, while the curved surface is kept at 100±C. Assuming that the temper-
ature initially varies as the fourth power of the distance from the axis, ¯nd
the temperature distribution at any point inside the solid for t > 0. Choosing
nominal parameter values, create an animated plot of the temperature pro¯le.

Problem 5-26: Cylindrical temperature pro¯le
A cylinder of unit radius and unit height has its circular ends z = 0 and z = 1

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 241

kept at T = 0 and T = 1, respectively, while the circular surface is kept at
T = 1. Determine the steady-state temperature pro¯le inside the cylinder and
plot the contours of equal temperature.

Problem 5-27: Elliptic cross section
An in¯nitely long bar of elliptic cross section has its curved surface, x2+4 y2 = 1,
kept at T = 0±. Determine the temporal evolution of T in the cylinder if initially
T =100± everywhere inside and the di®usion constant d=1. Animate the result.

5.2.5 Hugo Prepares for His Job Interview

I'm notorious for giving a bad interview. I'm an actor and I can't
help but feel I'm boring when I'm on as myself.
Rock Hudson, American movie actor (1925{1985)

Hugo has been invited by International Hydrodynamics Inc. to interview for a
research position with their company, which specializes in designing streamlined
hulls for surface vessels as well as underwater craft. As part of his preparation,
Hugo decides to create some ¯les for the interview that demonstrate his skills
at simulating liquid °ow around a variety of rigid geometrical shapes. As a
\warm-up" exercise, he recalls from his undergraduate days a problem involv-
ing uniform incompressible °uid °ow around a sphere, a problem that can be
solved analytically. Hugo remembers that the °uid can be characterized by a
velocity potential U that satis¯es Laplace's equation. The velocity ~V of a °uid
element is then given by ~V = ¡rU .

Since a spherical boundary of, say, radius a is involved, Hugo chooses to use
spherical coordinates (r; μ; Á) with the origin at the center of the sphere and the
physicist's convention that μ is measured from the positive z-axis and Á from
the positive x-axis. Then, the Cartesian and spherical polar coordinates are
connected by the relations x = r sin μ cosÁ, y = r sin μ sinÁ, and z = r cos μ.
The range of r is from 0 to 1, μ from 0 to ¼, and Á from 0 to 2 ¼.

At a distance r far from the sphere, the °uid °ow is assumed to be uniform
and directed along the z-axis. The asymptotic (large r) form of the velocity is
~V = V0 êz where V0 is the undisturbed °uid speed. Thus, since

~V = ¡@U
@x
êx ¡

@U

@y
êy ¡

@U

@z
êz = V0 êz ; (5.11)

then, on equating vector components and integrating, the asymptotic velocity
potential is given (to within an arbitrary constant) by U = ¡V0 z = ¡V0 r cos μ.
This will serve as one of the boundary conditions on the solution. The other
boundary condition is at the surface of the sphere. If the surface is idealized to
be absolutely rigid, it will acquire no momentum from the °uid. This implies
that the normal component of the °uid velocity vector must vanish at r = a.
Writing the gradient operator in spherical polar coordinates, this means that
the velocity potential must satisfy the boundary condition @U=@rjr=a = 0.

242 CHAPTER 5. LINEAR PDE MODELS. PART 1

To solve Laplace's equation, Hugo loads the VectorCalculus package,

> restart: with(plots): with(VectorCalculus):

and inputs Laplace's equation in spherical coordinates. He notes that the prob-
lem has rotational symmetry about the z-axis, the direction of °uid °ow, so
that there should be no Á dependence in the ¯nal solution. Accordingly, he
takes U = U(r; μ).

> LE:=expand(Laplacian(U(r,theta),'spherical'[r,theta,phi]))=0;

LE:=

2

μ
@

@r
U (r; μ)

¶
r

+

μ
@2

@r2
U (r; μ)

¶
+

cos(μ)

μ
@

@μ
U (r; μ)

¶
r2 sin(μ)

+

@2

@μ2
U (r; μ)

r2
= 0

With no HINT provided, a general product solution is built with the pdsolve
command, the answer involving one separation constant, c1, and four arbitrary
constants. The result is then expanded.

> sol:=expand(pdsolve(LE,INTEGRATE,build));

sol := U (r; μ) =

C1 r(1=2
p
1+4 c1) C3 LegendreP

μ
1

2

p
1 + 4 c1 ¡

1

2
; cos(μ)

¶
p
r

+

C1 r(1=2
p
1+4 c1) C4 LegendreQ

μ
1

2

p
1 + 4 c1 ¡

1

2
; cos(μ)

¶
p
r

+

C2 r(¡1=2
p
1+4 c1) C3 LegendreP

μ
1

2

p
1 + 4 c1 ¡

1

2
; cos(μ)

¶
p
r

+

C2 r(¡1=2
p
1+4 c1) C4 LegendreQ

μ
1

2

p
1 + 4 c1 ¡

1

2
; cos(μ)

¶
p
r

The solution is expressed in terms of Legendre functions of the ¯rst kind
(LegendreP) and of the second kind (LegendreQ). The former are well-behaved
polynomial functions of cos μ, but the latter diverge at the ends of the angular
range and therefore must be removed on physical grounds.

> U:=remove(has,rhs(sol),LegendreQ);

U :=

C1 r(1=2
p
1+4 c1) C3 LegendreP

μ
1

2

p
1 + 4 c1 ¡

1

2
; cos(μ)

¶
p
r

+

C2 r(¡1=2
p
1+4 c1) C3 LegendreP

μ
1

2

p
1 + 4 c1 ¡

1

2
; cos(μ)

¶
p
r

In standard math notation, the Legendre polynomials of the ¯rst kind would

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 243

be written as Pn(cos μ), where n =
1
2

p
1 + 4 c1 ¡ 1

2
. To express U in the

Maple equivalent of the math notation, Hugo substitutes c1 = ¡ 1
4
+ (n+ 1

2
)2,

and simpli¯es the square root that would otherwise appear by including the
symbolic option.

> U:=simplify(subs(_c[1]=-1/4+(n+1/2)^2,U),symbolic);

U :=
C3 LegendreP(n; cos(μ)) (C1 r(n+1=2) + C2 r(¡n¡1=2))p

r
To simplify the notation, and without any loss of generality, Hugo sets C3 = 1,
C1 = A, and C2 = B, in U . On some executions of the recipe the coe±cient
C3 in U is replaced with C4, so the latter is also set equal to one.

> U:=subs(f_C3=1,_C4=1,_C1=A,_C2=Bg,U);

U :=
LegendreP(n; cos(μ)) (Ar(n+1=2) +B r(¡n¡1=2))p

r
Only two coe±cients, A and B, remain to be evaluated, so the two boundary
conditions mentioned earlier are used. The radial derivative of U must be zero
at r = a, which is now entered, and solved for B in terms of A.

> bc:=eval(diff(U,r),r=a)=0;

> B:=simplify(solve(bc,B));

B :=
nAa(2n+1)

n+ 1
Now Hugo recalls that the ¯rst few Legendre polynomial functions of the ¯rst
kind are P0(cos μ) = 1, P1(cos μ) = cos μ, and P2(cos μ) =

1
2 (3 cos

2 μ ¡ 1), : : : :
Although the general solution will involve a sum over n from 1 to 1, only the
n = 1 term has the correct cos μ dependence to match the asymptotic form of
the velocity potential. The coe±cients of all terms for which n 6= 1 must be
equal to zero. As r ! 1, U ! AP1(cos μ) r = ¡V0 r cos μ, so A = ¡V0. The
potential U is now evaluated with A = ¡V0 and n = 1, and simpli¯ed.

> U:=simplify(eval(U,fA=-V[0],n=1g));

U := ¡1
2

cos(μ)V0 (2 r
3 + a3)

r2
So the velocity potential U is now completely known. In standard texts, the
potential and velocity distributions would probably only be sketched, if drawn
at all. Hugo knows that this is not good enough for his prospective employers.
He decides to create a plot of the region outside the sphere that shows the
equipotential lines as well as the velocity vectors ~V = ¡rU . For graphing
purposes, he chooses V0 = 1 and a = 1, and switches to Cartesian coordinates,
taking x = 0 so that a two-dimensional plot can be made.

> U:=subs(fV[0]=1,a=1,cos(theta)=z/sqrt(z^2+y^2),
r=sqrt(z^2+y^2)g,U):

Since the region of interest is outside the sphere, Hugo forms a piecewise func-
tion U2 that is equal to U for z2 + y2 ¸ 1, and zero otherwise.

> U2:=piecewise(z^2+y^2>=1,U,0);

244 CHAPTER 5. LINEAR PDE MODELS. PART 1

U2 :=

(
¡z (2 (z

2 + y2)(3=2) + 1)

2 (z2 + y2)(3=2)
1 · z2 + y2

0 otherwise

A functional operator F, which makes use of the implicitplot command, is
formed to plot the equipotentials in steps of 0:25 i, where i will be taken to be
an integer. Instead of the 25£ 25 default grid, which is too coarse here, Hugo
take the grid to be 100£ 100.

> F:=i->implicitplot(U2=.25*i,z=-2..2,y=-2..2,grid=[100,100]):

Next, Hugo wants to form a graph of the velocity vectors. He calculates the
velocity in the z-y plane and again forms piecewise functions to give the velocity
components outside the sphere.

> Vel:=Gradient(-U,'cartesian'[z,y]);

> Ve[1]:=piecewise(z^2+y^2>=1,Vel[1],0):

> Ve[2]:=piecewise(z^2+y^2>=1,Vel[2],0):

The fieldplot command is used to produce a graph of the velocity vectors.

> gr:=fieldplot([Ve[1],Ve[2]],z=-2..2,y=-2..2,grid=[18,18],

arrows=MEDIUM,color=blue):

The velocity vectors and the equipotential lines corresponding to i = ¡8 to 8
(U = ¡2 to +2 in steps of 0.25) are displayed in Figure 5.9.

> display(fgr,seq(F(i),i=-8..8)g,axes=boxed,
scaling=constrained);

Looking at the ¯gure, Hugo can easily \see" the °uid °ow around the sphere,
with the velocity vectors perpendicular to the equipotentials and varying in
magnitude near the sphere.

–2

–1

0

1

2

y

–2 –1 0 1 2z

Figure 5.9: Velocity vectors and equipotentials for °uid °ow around a sphere.

5.2. DIFFUSION AND LAPLACE'S EQUATION MODELS 245

With this simple example under his belt, Hugo feels con¯dent that if he can
come up with some °uid °ow examples for di®erent hull shapes, he might make
a good impression on his interviewers and be hired. He realizes that for more
complicated shapes he will probably have to use Maple's numerical capability.

So let's leave Hugo to ¯nish his job interview preparation, so he doesn't pull
a Rock Hudson and give a bad interview.

PROBLEMS:
Problem 5-28: Split potential
On the surface of a hollow sphere of radius a, the electric potential is

©(a; μ) =

½
+V; 0 · μ < ¼=2;
¡V; ¼=2 < μ · ¼:

By solving Laplace's equation in spherical coordinates, determine ©(r; μ) for
both the regions r < a and r > a. Plot the equipotential lines and electric ¯eld
vectors for both regions, taking a = 1 and V = 1.

Problem 5-29: Another split potential
Two thin concentric spherical shells of radius a and b > a are each divided
into two hemispheres by the same horizontal plane. The potential on the top
hemisphere of the inner shell is V and the potential on the bottom hemisphere
is zero, whereas the potential on the top hemisphere of the outer shell is zero
and the potential on the lower hemisphere is V . Using Laplace's equation in
spherical polar coordinates, determine the potential in the region between the
spheres. Choosing your own parameter values, plot the equipotential lines in
this region.

Problem 5-30: Temperature of an iron sphere
A uniform solid iron sphere of radius 20 cm is heated to a temperature of 100±C
throughout. Its surface is to be kept at the constant temperature 0±C.

(a) Explicitly determine T (~r; t).

(b) If the heat di®usion coe±cient d = 0:185 cgs units, ¯nd the temperature
of the center of the sphere 15 minutes after the cooling has begun.

(c) Plot the constant-temperature pro¯les at this time.

(d) Animate the temperature pro¯le inside the sphere.

Problem 5-31: Another spherical temperature distribution
The temperature of the surface of a solid sphere of radius a is prescribed to be
T = T0 (1¡ cos μ). Find the steady-state temperature distribution at any point
inside the sphere. Plot the constant-temperature pro¯les inside the sphere,
taking a = 1 and T0 = 100.

Chapter 6

Linear PDE Models. Part 2
In the previous chapter, the computer algebra recipes concentrated on mathe-
matical models formulated in terms of the di®usion and Laplace equations. In
this continuation of our study of linear PDE models, the wave equation and a
variety of models involving semi-in¯nite and in¯nite domains are presented.

6.1 Wave Equation Models

The wave equation,
r2Ã(~r; t) = 1

c2
@2Ã(~r; t)

@t2
; (6.1)

with r2 the Laplace operator, Ã a scalar or vector function of position ~r and
time t, and c the wave velocity, applies to many di®erent types of waves, e.g.,

² electromagnetic waves (with Ã a vector);
² sound waves;
² tidal waves in an incompressible °uid;
² elastic waves in a solid;
² vibrations of elastic strings and membranes.

In our ¯rst example, Vectoria plucks the humble string.

6.1.1 Vectoria Encounters Simon Legree

\We called him Tortoise because he taught us," said the Mock Turtle
angrily. \Really you are very dull!"
Lewis Carroll, Alice's Adventures in Wonderland, 1865

It is some time later in the undergraduate career of Vectoria, the physics student
who has been featured in several of our earlier stories. Recall that, inspired by
the movie Casablanca, Vectoria used Maple to check and animate a textbook
formula for the transverse motion of an initially horizontal piano string that has
been struck. Since then Vectoria has progressed in her studies and is currently
enrolled in a mathematical physics course. She has begun to learn how to solve
wave equation problems using the separation of variables method.

247

248 CHAPTER 6. LINEAR PDE MODELS. PART 2

Professor Simon Legree,1 who is teaching the course, has a reputation for
assigning large numbers of often di±cult problems, so Vectoria decides once
again to let Maple help her in deriving the solutions. Although she could do
the problems by hand, it seems smarter in the long run to develop a computer
algebra approach to lighten the workload and to avoid mathematical mistakes.
On talking to the professor, she ¯nds out that, surprisingly, Legree not only
agrees but suggests that it might be wise to start with a relatively simple
problem, before tackling the more di±cult ones. Amazed that Legree, despite
his hard-nosed reputation, has been so helpful, Vectoria decides to follow his
advice and selects a problem involving the transverse motion of a string that
has been plucked and released from rest.

Since she doesn't yet know how to include sti®ness in the string, she opts
to make use of the linear wave equation that neglects sti®ness. The horizontal
string is ¯xed at its endpoints, x = 0 and x = L > 0, and is given an initial
transverse displacement Ã(x; t = 0) = 2h x=L for 0 · x · L=2 and Ã(x; 0) =
2h (L ¡ x)=L for L=2 · x · L. Vectoria recognizes that this is a triangular
pro¯le with a maximum displacement h at the center (x = L=2) of the string.
Professor Legree has also stressed that his marking assistant has been instructed
not to give full credit for a problem solution unless it is accompanied by some
sort of meaningful plot as well as some pertinent discussion.

So Vectoria, anticipating that she will animate the vibrational motion of the
string, begins her recipe with a call to the plots package, and enters the wave
equation WE for the tranverse displacement Ã(x; t) of the string at time t.

> restart: with(plots):

> WE:=diff(psi(x,t),x,x)=(1/c^2)*diff(psi(x,t),t,t);

WE :=
@2

@x2
Ã(x; t) =

@2

@t2
Ã(x; t)

c2

On applying the pdsolve command to WE without any options,

> pdsolve(WE);

Ã(x; t) = F1 (c t+ x) + F2 (c t¡ x)
Vectoria ¯nds that the solution is given by Ã(x; t) = F1(c t+x)+ F2(c t¡x),
where F1 and F2 are arbitrary functions. This is the well-known general
solution of the wave equation, which is not too useful for solving the present
problem with speci¯ed boundary and initial conditions. Clearly, a hint should
be provided. She could be quite general and enter HINT=f(x)*g(t), but she
realizes that sine and cosine functions clearly satisfy the wave equation. Since
sin(k x), where k is an undetermined constant, is equal to zero at x = 0 and thus
satis¯es the boundary condition there, she provides the HINT=sin(k*x)*g(t)
and integrates and builds up the solution.

1Unfortunately, Mrs. Legree, when naming her newborn son, chose Simon as a ¯rst name.
She was unaware that Simon Legree was the cruel plantation owner in Harriet Beecher Stowe's
novel, Uncle Tom's Cabin.

6.1. WAVE EQUATION MODELS 249

> sol:=pdsolve(WE,HINT=sin(k*x)*g(t),INTEGRATE,build);

sol := Ã(x; t) = sin(k x) C1 sin(c k t) + sin(k x) C2 cos(c k t)

The string is initially at rest, so the transverse velocity _Ã(x; 0) is equal to 0.
Mentally di®erentiating the above output, clearly only the cos(c k t) term should
be retained, since its derivative vanishes at t = 0, whereas the derivative of the
sin(c k t) term does not. So Vectoria selects the term on the rhs of the solution
containing the cosine term.

> sol2:=select(has,rhs(sol),cos);

sol2 := sin(k x) C2 cos(c k t)

The displacement of the string must also vanish at x = L for arbitrary times, so
one must have sin(k L) = 0, which yields k = n¼=L, with n a positive integer.
She substitutes this result into sol2 , and temporarily removes any coe±cients
by setting C1 and C2 equal to 1.

> F[n]:=subs(fk=n*Pi/L,_C1=1,_C2=1g,sol2);

Fn := sin
³n¼ x
L

´
cos

μ
c n¼ t

L

¶
The general solution satisfying the boundary conditions at x = 0 and L, and
with zero initial transverse velocity, then is

Ã(x; t) =

1X
n=1

An Fn =

1X
n=1

An sin
³n¼ x
L

´
cos

μ
c n ¼ t

L

¶
; (6.2)

where the coe±cients An have to be determined from the initial string pro¯le.
This pro¯le is given by the piecewise function f .

> f:=piecewise(x<L/2,2*h*x/L,x>L/2,2*h*(L-x)/L);

f :=

8><
>:
2h x

L
x <

L

2
2h (L¡ x)

L

L

2
< x

Evaluating equation (6.2) at t = 0 and equating to f , Vectoria sees that the
orthogonality of the independent sine functions for di®erent values of n yields

An =

Z L

0

f sin (n¼ x=L) dx

Á Z L

0

sin2(n¼ x=L) dx;

which Vectoria now calculates. In order for the piecewise integral in the numer-
ator to actually be carried out, it is necessary to assume that L > 0.

> A[n]:=int(f*sin(n*Pi*x/L),x=0..L)/int(sin(n*Pi*x/L)^2,x=0..L)

assuming L>0:

The nth Fourier term in the in¯nite series representing the string displacement
is then Ãn=An Fn, the result being simpli¯ed by assuming that n is an integer.

> psi[n]:=simplify(A[n]*F[n]) assuming n::integer;

Ãn :=

8h sin
³n¼
2

´
sin
³n¼ x
L

´
cos

μ
c n¼ t

L

¶
n2 ¼2

250 CHAPTER 6. LINEAR PDE MODELS. PART 2

The transverse displacement of the string at arbitrary time t is Ã(x; t) =P1
n=1 Ãn. For animation purposes, Vectoria takes L = 10, h = 1, and c = 1.

> L:=10: h:=1: c:=1:

To obtain a good approximation to the initial string pro¯le, Vectoria keeps
terms in the series up to n = 25, only the partial output being shown here.

> psi:=sum(psi[n],n=1..25);

Ã :=

8 sin
³¼ x
10

´
cos

μ
¼ t

10

¶
¼2

¡ 8
9

sin

μ
3¼ x

10

¶
cos

μ
3 ¼ t

10

¶
¼2

+
8

25

sin
³¼ x
2

´
cos

μ
¼ t

2

¶
¼2

+ ¢ ¢ ¢ ¢ ¢ ¢+ 8

441

sin

μ
21 ¼ x

10

¶
cos

μ
21¼ t

10

¶
¼2

¡ 8

529

sin

μ
23 ¼ x

10

¶
cos

μ
23¼ t

10

¶
¼2

+
8

625

sin

μ
5¼ x

2

¶
cos

μ
5¼ t

2

¶
¼2

The displacement Ã is animated over the time interval t = 0 to 20, with 100
equally spaced time frames.

> animate(plot,[psi,x=0..L],t=0..20,frames=100);

On running the animation command, Vectoria is at ¯rst surprised by the be-
havior of the string, but on thinking about it decides that it makes sense. After
executing the recipe, does the behavior make sense to you? What should Vec-
toria write in her explanation of the wave motion?

PROBLEMS:
Problem 6-1: Another plucked string
A light homogeneous horizontal string of length L ¯xed at its ends initially
has a parabolic shape with height h in the middle. If it is released from rest,
solve the wave equation to determine its subsequent transverse displacement at
arbitrary time t. Animate the vibrations for parameters of your own choice and
choose enough frames to produce a smooth animation.

Problem 6-2: Struck piano string
If a horizontal piano string ¯xed at x = 0 and x = L is struck in such a way
that its initial displacement Ã(x; 0) is zero and its initial transverse velocity is

_Ã(x; 0) =

8<
:
4 v x=L; 0 < x < L=4;
(4 v=L)(L=2¡ x); L=4 < x < L=2;
0; L=2 < x < L;

solve the wave equation to determine the transverse displacement of the string
for all times t. Taking L = 20 cm and v = 5 cm/s, animate the solution. Choose
enough frames to produce a smooth animation. Discuss the results.

6.1. WAVE EQUATION MODELS 251

6.1.2 Homer's Jiggle Test

The fundamental cause of trouble in the world today is that the stupid
are cocksure while the intelligent are full of doubt.
Bertrand Russell, British mathematician and philosopher (1872{1970)

Having successfully used Maple to solve the plucked string problem, Vectoria
now tackles the ¯rst problem on Professor Legree's wave equation assignment.
She is asked to determine the transverse displacement Ã(x; y; t) of a light, hor-
izontal, rectangular elastic membrane having sides of length a and 2 a that
is held ¯xed along all four edges. Speci¯cally, the boundary conditions are
Ã(0; y; t) = Ã(a; y; t) = 0 for 0 · y · 2 a and Ã(x; 0; t) = Ã(x; 2 a; t) = 0 for
0 · x · a. The membrane is given an initial displacement

Ã(x; y; 0) ´ f = 4 hx2 (a¡ x) y3 (2 a¡ y)
a7

and is released from rest. Professor Legree also requests that the membrane
displacement be animated for a = 1, h = 1, and wave velocity c = 1.

Vectoria realizes that this membrane problem is mathematically equivalent
to two ¯xed-ends string problems in the x and y directions. So her \shortcut"
approach to separating variables in the last recipe can be easily extended.

After loading the plots package, she enters the wave equation WE in two
dimensions.

> restart: with(plots):

> WE:=diff(psi(x,y,t),x,x)+diff(psi(x,y,t),y,y)

=(1/c^2)*diff(psi(x,y,t),t,t);

WE :=

μ
@2

@x2
Ã(x; y; t)

¶
+

μ
@2

@y2
Ã(x; y; t)

¶
=

@2

@t2
Ã(x; y; t)

c2

The pdsolve command is applied toWE with HINT=sin(p*x)*sin(q*y)*T(t),
where p and q are constants. The assumed form satis¯es the boundary condi-
tions along the ¯xed edges x = 0 and y = 0.

> sol:=pdsolve(WE,HINT=sin(p*x)*sin(q*y)*T(t),INTEGRATE,build);

sol := Ã(x; y; t) = sin(p x) sin(q y) C1 sin(c
p
p2 + q2 t)

+sin(px) sin(q y) C2 cos(c
p
p2 + q2 t)

The initial transverse velocity is zero, so once again only the term involving
cos(c

p
p2 + q2 t) is kept.

> sol2:=select(has,rhs(sol),cos);

sol2 := sin(px) sin(q y) C2 cos(c
p
p2 + q2 t)

At x = a, sin(p a) = 0, so p = m¼=a, where m is a positive integer. Similarly,
at y = 2 a, sin(q 2 a) = 0, so q = n¼=(2 a), n being a positive integer. Vec-
toria substitutes the p and q relations into sol2 , and temporarily removes all
coe±cients by setting C1 = C2 = 1.

252 CHAPTER 6. LINEAR PDE MODELS. PART 2

> F[m,n]:=subs(fp=m*Pi/a,q=n*Pi/(2*a),_C1=1,_C2=1g,sol2);;

Fm;n := sin
³m¼ x

a

´
sin
³n¼ y
2 a

´
cos

Ã
c

r
m2 ¼2

a2
+
n2 ¼2

4 a2
t

!

Since she will need it for determining the coe±cients, Vectoria evaluates Fm;n
at t = 0, labeling the result gm;n.

> g[m,n]:=eval(F[m,n],t=0);

gm;n := sin
³m¼ x

a

´
sin
³n¼ y
2 a

´
The initial pro¯le of the rectangular membrane is entered.

> f:=4*h*x^2*(a-x)*y^3*(2*a-y)/a^7;

f :=
4h x2 (a¡ x) y3 (2 a¡ y)

a7
Now, the general form of the transverse displacement at time t will be given by
the following linear superposition,

Ã(x; y; t) =

1X
m=1

1X
n=1

Am;n Fm;n ´
1X
m=1

1X
n=1

Ãm;n; (6.3)

with the coe±cients Am;n determined by the initial pro¯le f . Setting t = 0 in
(6.3) yields 1X

m=1

1X
n=1

Am;n gm;n = f:

Multiplying both sides by sin(m 0¼ x=a) sin(n 0¼ y=(2 a)), integrating over x from
0 to a and over y from 0 to 2 a, and taking the double sum will yield zero unless
m = m 0 = and n = n 0. Removing the primes and solving for Am;n yields

Am;n =

Z 2 a

0

Z a

0

f gm;n dx dy

Á Z 2 a

0

Z a

0

g2m;n dx dy:

Using this relation, we calculate Am;n in the next command line.

> A[m,n]:=int(int(f*g[m,n],x=0..a),y=0..2*a)/int(int(g[m,n]^2,

x=0..a),y=0..2*a):

Then, the general Fourier term Ãm;n = Am;n Fm;n is determined, the result
being simpli¯ed assuming that m and n are integers and a > 0.

> psi[m,n]:=simplify(A[m,n]*F[m,n]) assuming m::integer,

n::integer,a>0;

Ãm;n := 3072h
¡
4 + 8 (¡1)m + ¼2 n2 (¡1)n + 2 (¡1)(m+n) ¼2 n2

+8 (¡1)(1+m+n) + 4 (¡1)(1+n)
¢
sin
³m¼ x

a

´
sin
³n¼ y
2 a

´

cos

Ã
c ¼
p
4m2 + n2 t

2 a

!.
(m3 ¼8 n5)

Given the mathematical form of f , Vectoria is not surprised at how complicated
the coe±cient turns out to be in Ãm;n.

6.1. WAVE EQUATION MODELS 253

The parameter values suggested by Professor Legree are entered,

> a:=1: h:=1: c:=1:

and the membrane displacement approximated by the ¯nite sum

Ã =

15X
m=1

15X
n=1

Ãm;n:

Vectoria claims that she has kept 152 = 225 terms so as to get an accurate
animation. We will let you be the judge of this, but we have overruled her desire
to show the lengthy result and advised her to put a colon on the command line.

> psi:=sum(sum(psi[m,n],m=1..15),n=1..15):

Finally, a 3-dimensional zhue colored animation of Ã is produced over the time
interval t = 0 to 5, with 40 frames.

> animate(plot3d,[psi,x=0..a,y=0..2*a],t=0..5,

frames=40,axes=frame,shading=zhue,orientation=[-130,50],

tickmarks=[2,2,3]);

On executing the animation, Vectoria is reminded of a rerun of an episode
of a popular cartoon series that she watched recently with her ¯anc¶e, Mike.
The main character, Homer Simpson, who has a rather fat stomach, went to
the doctor for a medical checkup. The doctor supposedly measured the fat
content of Homer's stomach by giving it a jiggle and studying the motion of the
resulting wave form. The initial shape of the membrane in this animation and
its subsequent movement somewhat resembles that of Homer's stomach in the
doctor's jiggle test. Vectoria wonders whether Professor Legree was partially
motivated in setting up this problem by watching the same cartoon episode.
Perhaps, underneath his stern exterior, Professor Legree has a sense of humor.

PROBLEMS:
Problem 6-3: Vibrations of a square membrane
A square membrane whose sides are of unit length is given an initial transverse
displacement Ã(x; y; 0) = x y (1 ¡ x) (1 ¡ y) and then released. Determine the
displacement Ã(x; y; t) of the membrane for t > 0 and animate the solution for
nominal values of the parameters.

Problem 6-4: Free edges
Consider a rectangular membrane having sides of length a between x = 0 and
x = a and sides of length 2 a between y = 0 and y = 2 a. The edges at x = 0
and x = a are ¯xed, while those at y = 0 and y = 2 a are \free." At a free edge,
the slope is zero. Explicitly determine Ã(x; y; t) if the membrane is initially at
rest and has the initial shape

Ã(x; y; 0) =

½
2x h=a; 0 · x · a=2;
(2 h=a) (a¡ x); a=2 · x · a:

Animate the solution for a = 1, h = 1, and c = 1.

254 CHAPTER 6. LINEAR PDE MODELS. PART 2

6.1.3 Vectoria's Second Problem

Oh yes, there is a vast di®erence between the savage and the civilized
man, but it is never apparent to their wives until after breakfast.
Helen Rowland, American journalist, A Guide to Men, 1922

The second problem on Professor Legree's assignment is to determine the trans-
verse displacement Ã(r; μ; t) of a light, horizontal, circular membrane or drum-
head of radius a ¯xed on its perimeter, given the initial conditions

Ã(r; μ; 0) ´ f = 20 r
μ
1¡ r2

a2

¶
sin(2 μ); _Ã(r; μ; 0) = 0:

The motion of the drumhead is then to be animated for a = 1 and wave velocity
c = 1, and its behavior discussed.

After loading the plots and VectorCalculus packages, Vectoria uses the
Laplacian command to enter the wave equation in polar coordinates.

> restart: with(plots): with(VectorCalculus):

> WE:=expand(Laplacian(psi(r,theta,t),'polar'[r,theta])

=(1/c^2)*diff(psi(r,theta,t),t,t));

WE :=

@

@r
Ã(r; μ; t)

r
+

μ
@2

@r2
Ã(r; μ; t)

¶
+

@2

@μ2
Ã(r; μ; t)

r2
=

@2

@t2
Ã(r; μ; t)

c2

Based on her experience with the ¯rst problem on the assignment, the initial
condition _Ã(r; μ; 0) = 0 can be satis¯ed if she assumes a general product solution
of the form F (r)G(μ) cos(c k t), where the functions F and G and the constant
k remain to be determined. The assumed form is provided as a HINT in the
pdsolve command.

> sol:=pdsolve(WE,HINT=F(r)*G(theta)*cos(c*k*t),INTEGRATE,

build);

sol := Ã(r; μ; t) = cos(c k t) C3 sin(
p
c1 μ) C1 BesselJ(

p
c1; k r)

+ cos(c k t) C3 sin(
p
c1 μ) C2 BesselY(

p
c1; k r)

+ cos(c k t) C4 cos(
p
c1 μ) C1 BesselJ(

p
c1; k r)

+ cos(c k t) C4 cos(
p
c1 μ) C2 BesselY(

p
c1; k r)

The Bessel functions of the second kind (Y) diverge at r = 0, so are removed.

> sol2:=remove(has,rhs(sol),BesselY);

sol2 := cos(c k t) C3 sin(
p
c1 μ) C1 BesselJ(

p
c1; k r)

+ cos(c k t) C4 cos(
p
c1 μ) C1 BesselJ(

p
c1; k r)

Vectoria simpli¯es the separation constant by substituting
p
c1 = p into sol2 .

> sol3:=subs(sqrt(_c[1])=p,sol2);

sol3 := cos(c k t) C3 sin(p μ) C1 BesselJ(p; k r)

+ cos(c k t) C4 cos(p μ) C1 BesselJ(p; k r)

6.1. WAVE EQUATION MODELS 255

Recognizing that the sines and cosines are independent functions and to be
consistent with the sin(2 μ) term in the initial displacement, Vectoria removes
the cos(p μ) term from sol3 and sets p = 2 in the resulting expression.

> sol4:=eval(remove(has,sol3,cos(p*theta)),p=2);

sol4 := cos(c k t) C3 sin(2 μ) C1 BesselJ(2; k r)

The drumhead is ¯xed on its perimeter for all t, i.e., Ã(a; μ; t) = 0, so that the
Bessel function J2(k a) equals 0. The allowed k values are the zeros of J2(x).
The mth zero, km, is entered,

> k[m]:=BesselJZeros(2,m)/a;

km :=
BesselJZeros(2; m)

a
and substituted into sol4 with all Maple constants removed.

> F[2,m]:=subs(k=k[m],BesselJ(2,k*r)*sin(2*theta)*cos(c*k*t));

F2;m := BesselJ

μ
2;
BesselJZeros(2; m) r

a

¶
sin(2 μ) cos

μ
cBesselJZeros(2; m) t

a

¶
The displacement of the drumhead at time t will be given by

Ã(r; μ; t) =
1X
m=1

A2;m F2;m ´
1X
m=1

Ã2;m;

with the coe±cients A2;m determined by the initial pro¯le f , which is entered.

> f:=20*r*(1-r^2/a^2)*sin(2*theta);

f := 20 r

μ
1¡ r2

a2

¶
sin(2 μ)

Evaluating F2;m at t = 0 yields g2;m.

> g[2,m]:=eval(F[2,m],t=0);

g2;m := BesselJ

μ
2;
BesselJZeros(2; m) r

a

¶
sin(2 μ)

The mth coe±cient A2;m is given by

A2;m =

Z a

0

Z 2¼

0

r f g2;m dμ dr

Á Z a

0

Z 2 ¼

0

r (g2;m)
2 dμ dr;

which is now calculated.

> A[2,m]:=int(int(r*f*g[2,m],theta=0..2*Pi),r=0..a)

/int(int(r*g[2,m]^2,theta=0..2*Pi),r=0..a):

Then, the mth Fourier term Ã2;m = A2;m F2;m is determined, the lengthy and
quite formidable result being suppressed here in the text.

> psi[2,m]:=A[2,m]*F[2,m];

For animation purposes Ã2;m is evaluated at a = 1, c = 1,

> psi[2,m]:=eval(psi[2,m],fa=1,c=1g):
and converted to Cartesian coordinates by noting that sin(2 μ) = 2 sin μ cos μ

and substituting r =
p
x2 + y2 and sin(2 μ) = 2x y=(x2 + y2).

256 CHAPTER 6. LINEAR PDE MODELS. PART 2

> psi[2,m]:=subs(fr=sqrt(x^2+y^2),sin(2*theta)=2*x*y
/(x^2+y^2)g,psi[2,m]):

Vectoria will animate the sum
P5

m=1 Ã2;m, which is su±cient to give a good
animation. Labeling this result as Ã, she numerically evaluates the terms and
displays them.

> psi:=evalf(sum(psi[2,m],m=1..5));

Ã :=
33:78863892BesselJ(2:; 5:135622302

p
x2 + y2)x y cos(5:135622302 t)

x2 + y2

+
1:727434530BesselJ(2:; 8:417244140

p
x2 + y2)x y cos(8:417244140 t)

x2 + y2

+
4:730070500BesselJ(2:; 11:61984117

p
x2 + y2)x y cos(11:61984117 t)

x2 + y2

+
0:8068048260BesselJ(2:; 14:79595178

p
x2 + y2)x y cos(14:79595178 t)

x2 + y2

+
1:787787351BesselJ(2:; 17:95981949

p
x2 + y2)x y cos(17:95981949 t)

x2 + y2

Since the displacement Ã applies only to the drumhead, not the region outside,
Vectoria forms a piecewise function that is equal to Ã for x2+y2 · 1 and equal
to zero otherwise.

> psi2:=piecewise(x^2+y^2<=1,psi,0):

The piecewise function is animated, a PATCHCONTOUR style being chosen so as to
best display any nodal lines in the animation. Along a nodal line, the membrane
remains stationary for all times. Vectoria has taken only 15 frames in her
animation, but if you have a fast computer you could take more frames.

> animate(plot3d,[psi2,x=-1..1,y=-1..1],t=0..2,frames=15,

axes=framed,shading=zhue,style=PATCHCONTOUR,

orientation=[45,30]);

On executing the animation, Vectoria observes that in the initial frame of the
animation the membrane displays two up peaks and two down peaks, located
radially at r = a=

p
3 and separated into four quadrants by perpendicular in-

tersecting nodal lines. These nodal lines correspond to sin(2 μ) = 0, or μ = 0,
¼=2, ¼, and 3¼=2. The up and down peaks correspond to plus and minus signs
as μ ranges from 0 to 2¼ in sin(2 μ). For μ = 0 to ¼=2 and ¼ to 3¼=2, sin(2 μ)
is positive; for μ = ¼=2 to ¼ and 3¼=2 to 2 ¼, it is negative.

As time progresses the up peaks become down peaks and vice versa, the
\°ipping" of peaks occurring periodically. Having written down her observa-
tions, she decides that this is enough for the time being, since she has three
more problems to do on Professor Legree's assignment. She can add more dis-
cussion, if necessary, when she does a ¯nal review of all her answers. She has a
date with Mike and would like to ¯nish the assignment before he calls on her.

6.1. WAVE EQUATION MODELS 257

PROBLEMS:
Problem 6-5: Circular drumhead
A circular drumhead of radius r = a and ¯xed on its perimeter is displaced a
distance h at its center at time t = 0 so that it has a conical shape. Determine
the displacement of the membrane for t > 0. Taking a = h = 1 and c = 1,
animate the motion of the membrane.

Problem 6-6: A di®erent initial shape
A circular drumhead of radius a ¯xed on its outer edge has an initial displace-
ment Ã(r; μ; 0) = (1¡ r2=a2) sin(4 μ) and its initial velocity is zero. Determine
the subsequent displacement Ã(r; μ; t), and animate the solution for parameters
of your own choosing.

6.1.4 Sound of Music?

Music is spiritual. The music business is not.
Van Morrison, Irish rock musician, Times, London, 6 July 1990

The third problem on Vectoria's assignment, which Professor Legree has worded
as follows, might be considered to be noteworthy.

Some musically inclined people like to sing in the shower stall when taking
a shower. Suppose that a large \shower stall" is empty without the water
running and consists of a completely enclosed hollow vertical metal cylinder of
radius a and height h with (approximately) rigid walls and all ¯xtures removed.
The speed of sound for the air inside the cylinder is c. By solving the scalar
Helmholtz equation for the spatial part of the velocity potential, determine
the allowed normal modes inside the cylinder. For rigid walls, the normal
component of the °uid velocity (or the normal derivative of the potential) must
vanish at each wall. Taking a=1:83 m, h=3:04 m, and c=344 m/s (assuming
dry air), determine the three lowest eigenfrequencies. By either consulting a
musically inclined friend or a music reference book, or going to the Internet, ¯nd
the closest musical notes on the equal-tempered scale to these eigenfrequencies
and relate these notes to those found on a piano keyboard.

Vectoria knows that the velocity potential Á satis¯es the scalar wave equa-
tion, with c the speed of sound. The velocity of a °uid element is given by
~v = ¡rÁ. A normal mode of frequency ! is obtained by assuming a solution of
the form Á(~r; t) = S(~r) cos(! t). The wave equation then reduces to the scalar
Helmholtz equation,

r2S + k2 S = 0; with k = !=c: (6.4)

Professor Legree in his lectures uses the acronym SHE for the scalar Helmholtz
equation, and jokingly refers to this equation as \she who must be obeyed".
Evidently, this refers to a standard phrase uttered by the main character, a
British barrister, about his wife in a PBS television series (Rumpole of the
Bailey) that Legree saw some years ago.

258 CHAPTER 6. LINEAR PDE MODELS. PART 2

Vectoria begins her solution by loading the VectorCalculus package,

> restart: with(VectorCalculus):

and entering SHE in cylindrical coordinates. The z direction is taken along the
cylinder axis, r is the radial coordinate measured perpendicular to the z-axis,
and μ is the angular coordinate measured about this axis.

> SHE:=expand(Laplacian(S(r,theta,z),'cylindrical'[r,theta,z])

+k^2*S(r,theta,z))=0;

SHE :=

@

@r
S(r; μ; z)

r
+

μ
@2

@r2
S (r; μ; z)

¶
+

@2

@μ2
S (r; μ; z)

r2
+

μ
@2

@z2
S (r; μ; z)

¶
+k2 S(r; μ; z) = 0

SHE is solved with the pdsolve command, a general product solution of the
form S(r; μ; z) = R(r) £(μ)Z(z) being assumed.

> S:=rhs(pdsolve(SHE,HINT=R(r)*Theta(theta)*Z(z),INTEGRATE,

build));

S := e(
p
c3 z) e(

p
c2 μ) C5 C3 C1 %2 + e(

p
c3 z) e(

p
c2 μ) C5 C3 C2 %1

+
e(
p
c3 z) C5 C4 C1 %2

e(
p
c2 μ)

+
e(
p
c3 z) C5 C4 C2 %1

e(
p
c2 μ)

+
e(
p
c2 μ) C6 C3 C1 %2

e(
p
c3 z)

+
e(
p
c2 μ) C6 C3 C2 %1

e(
p
c3 z)

+
C6 C4 C1 %2

e(
p
c3 z) e(

p
c2 μ)

+
C6 C4 C2 %1

e(
p
c3 z) e(

p
c2 μ)

%1 := BesselY(
p
¡ c2;

p
c3 + k2 r)

%2 := BesselJ(
p
¡ c2;

p
c3 + k2 r)

The Bessel functions of the second kind diverge at r = 0 and must be removed.

> S2:=remove(has,S,BesselY);

S2 := e(
p
c3 z) e(

p
c2 μ) C5 C3 C1 %1 +

e(
p
c3 z) C5 C4 C1 %1

e(
p
c2 μ)

+
e(
p
c2 μ) C6 C3 C1 %1

e(
p
c3 z)

+
C6 C4 C1 %1

e(
p
c3 z) e(

p
c2 μ)

%1 := BesselJ(
p
¡ c2;

p
c3 + k2 r)

To simplify the notation for matching the boundary conditions, the separation
constants c2 and c3 are replaced with ¡m2 and ¡q2 in S2 . Vectoria also
substitutes k2 = ®2 + q2, and simpli¯es the result with the symbolic option.

> S3:=simplify(subs(f_c[2]=-m^2,_c[3]=-q^2,k^2=alpha^2+q^2g,
S2),symbolic);

S3 := C1 BesselJ(m; ® r)(C5 C3 e((q z+mμ) I) + C5 C4 e((q z¡mμ) I)

+ C6 C3 e(¡I (q z¡mμ)) + C6 C4 e(¡I (q z+mμ)))

6.1. WAVE EQUATION MODELS 259

Then S3 is converted to trig form and the result expanded.

> S4:=expand(convert(S3,trig));

S4 := C1 BesselJ(m; ® r) C5 C3 cos(q z) cos(mμ)

¡ C1 BesselJ(m; ® r) C5 C3 sin(q z) sin(mμ)

+ ¢
Approximating the metallic walls of the cylinder as being rigid, the normal
component of the °uid velocity must vanish at the walls. Since the velocity
is equal to minus the gradient of the potential, this implies that the normal
derivative of the potential must vanish at the walls. In the z direction, one
must have dZ=dz = 0 at z = 0, so only terms involving cos(q z) are selected.

> S5:=select(has,S4,cos(q*z));

S5 := C1 BesselJ(m; ® r) C5 C3 cos(q z) cos(mμ) + ¢ ¢ ¢
To satisfy the derivative boundary condition on the top face of the cylinder at
z = h, one must have sin(q h) = 0, or q = n¼=h, with n = 0; 1; 2; : : : :

For the angular part to remain single-valued as μ increases by 2¼, one must
have cos(m (μ + 2 ¼)) = cos(μ), which is satis¯ed if m = 0; 1; 2; : : : : Negative
integer values of m need not be considered because the minus sign can be
absorbed in the arbitrary constants. Similar remarks apply to sin(mμ), which
also appears in S5 . So the allowed Bessel functions are J0; J1; J2; etc.

To satisfy the derivative condition on the cylindrical wall, one must have
(d=dr)Jm(®m;s r)jr=a = 0, where s labels the zeros of the derivative of the mth-
order Bessel function. For later convenience, Vectoria sets ®m;s = ¼ pm;s=a,
the values of pm;s still to be determined. The allowed values of q and ® are
subsituted into S5 and the result factored.

> S6:=factor(subs(fq=n*Pi/h,alpha=Pi*p[m,s]/ag,S5));

S6 := (¡cos(mμ) C3 I ¡ cos(mμ) C4 I + sin(mμ) C3 ¡ sin(mμ) C4)

cos
³n¼ z
h

´
BesselJ

³
m;

¼ pm; s r

a

´
C1 (C5 + C6) I

Replacing the awkward coe±cient combinations with An;m;s and Bn;m;s gives
normal modes of the following form. For each m value, except m = 0, there are
actually two modes corresponding to cos(mμ) and sin(mμ).

> NM:=(A[n,m,s]*cos(m*theta)+B[n,m,s]*sin(m*theta))

*select(has,S6,fcos(n*Pi*z/h),BesselJg);

NM := (An;m; s cos(mμ) +Bn;m; s sin(mμ)) cos
³n¼ z
h

´
BesselJ

³
m;

¼ pm; s r

a

´
Noting that the boundary condition (d=dr)(Jm(¼ pm;s r=a)jr=a = 0 may be
rewritten as (d=dp)(Jm(¼ p)jp = pm;s = 0, Vectoria creates a functional opera-
tor f to apply the derivative boundary condition at the cylinder wall.

> f:=m->diff(BesselJ(m,Pi*p),p)=0:

Then using f , she employs a do loop to numerically determine pm;s for m = 0
and 1 and s = 0 to s = 4.

260 CHAPTER 6. LINEAR PDE MODELS. PART 2

> for m from 0 to 1 do

> sol[m]:=seq(p[m,s]=fsolve(f(m),p,s..s+1),s=0..4);

> assign(sol[m]):

> end do;

sol0 := p0; 0 = 0:; p0; 1 = 1:219669891; p0; 2 = 2:233130594;

p0; 3 = 3:238315484; p0; 4 = 4:241062864

sol1 := p1; 0 = 0:5860669999; p1; 1 = 1:697050942; p1; 2 = 2:717193891;

p1; 3 = 3:726137088; p1; 4 = 4:731227206

Recalling that ! = c k = c
p
®2 + q2, the eigenfrequencies are given by

!n;m;s = ¼ c

r³pm;s
a

´2
+
³n
h

´2
radians per second;

or, on using ! = 2¼ º,

ºn;m;s =
c

2

r³pm;s
a

´2
+
³n
h

´2
hertz:

A functional operator F is formed to calculate the ºn;m;s.

> F:=(n,m,s)->(c/2)*sqrt((p[m,s]/a)^2+(n/h)^2):

The given values of the cylinder radius a, cylinder height h, and speed of sound
c are entered,

> a:=1.83: h:=3.04: c:=344:

and the three lowest allowed frequencies calculated using F.

> nu[0,1,0]:=F(0,1,0);

º0; 1; 0 := 55:08389289

> nu[1,0,0]:=F(1,0,0);

º1; 0; 0 := 56:57894736

> nu[1,1,0]:=F(1,1,0);

º1; 1; 0 := 78:96462843

Consulting The Acoustical Foundations of Music, by John Backus [Bac69], Vec-
toria determines that the closest musical notes are A1 (55.000 Hz) for the ¯rst
two frequencies and D2

(77.782 Hz) for the third. Not having much of a
feeling for these numbers, Vectoria goes to the Internet and ¯nds that the
lowest-frequency note on a piano is 27.500 Hz and the highest frequency is
4186.0 Hz. So the allowed frequencies in this \shower stall" example are at the
low-frequency end of the piano keyboard.

PROBLEMS:

Problem 6-7: Acoustical waveguide
A sound wave of frequency ! is generated at one end (z = 0) of a very long
straight cylindrical pipe of radius a having rigid walls.

6.2. SEMI-INFINITE AND INFINITE DOMAINS 261

(a) Determine and discuss in detail the allowed modes of propagation and
the cuto® frequency for wave propagation. The cuto® frequency is the
minimum frequency for propagation of a speci¯c mode.

(b) If the speed of sound in air is 1100 feet per second and if the frequency of
the sound wave is 500 Hz, show that only a plane wave will be propagated
if a < 7:73 inches.

Problem 6-8: Vibrating cylinder
An in¯nitely long circular cylinder of radius r = a is surrounded by an ideal
compressible °uid. The cylinder's surface is vibrating with a radial velocity
V0 cos(! t). The °uid velocity is given by ~v = ¡rÁ(r; t), where Á satis¯es the
wave equation in cylindrical coordinates and r is measured from the cylinder
axis. Assuming that the cylinder's surface is rigid, the °uid velocity must equal
the velocity of the vibrating surface. Noting that far from the surface the waves
in the °uid must be outgoing from the cylinder, analytically determine ~v(r; t) in
the °uid and animate the solution for nominal values of the parameters. Note
that the Bessel function of the second kind must be kept, since the origin of the
cylindrical coordinates lies inside the cylinder and outside the °uid.

6.2 Semi-in¯nite and In¯nite Domains

To solve di®usion and wave equation boundary value problems involving semi-
in¯nite or in¯nite domains, a standard approach is to use integral transform
methods to solve the governing PDE for some speci¯ed initial condition. This
approach is illustrated in the following recipes, where use is made of Maple's
integral transform library package.

6.2.1 Vectoria's Fourth Problem

It is nothing short of a miracle that modern methods of instruction
have not yet entirely strangled the holy curiosity of inquiry.
Albert Einstein, Nobel laureate in physics (1879{1955)

The fourth problem on Professor Legree's assignment involves a thin insulated
semi-in¯nite (0 · x · 1) rod that has the end x = 0 held at the constant tem-
perature T (0; t) = T0 = 100±C and whose interior (x > 0) is at zero degrees at
time t = 0. Vectoria is asked to determine the temperature distribution T (x; t)
in the interior of the rod for t ¸ 0 and to animate T (x; t) for a heat di®usion
constant d = 100 cm2/s.

Vectoria has learned that semi-in¯nite domain problems such as this one,
where the function is speci¯ed on one boundary, may be solved using the Fourier
sine transform method. The Fourier sine transform (FST) of a function f(x)

262 CHAPTER 6. LINEAR PDE MODELS. PART 2

that vanishes at x =1 is de¯ned as

FST (f(x)) ´ F (s) =
r
2

¼

Z 1

0

f(x) sin(s x) dx; (6.5)

and the inverse Fourier sine transform of F (s) by

f(x) =

r
2

¼

Z 1

0

F (s) sin(s x) ds: (6.6)

For the present problem, the temperature distribution will satisfy the one-
dimensional heat di®usion equation (with d the heat di®usion coe±cient),

@T (x; t)

@t
= d

@2T (x; t)

@x2
: (6.7)

Taking the FST of (6.7) with respect to x and integrating the rhs twice by parts,
and assuming f 0(x!1)! 0, will convert the PDE into a ¯rst-order ODE for
the transformed quantity F (s; t). The ODE will depend on the boundary con-
dition T (0; t). The ODE is then solved for F (s; t) making use of the Fourier sine
transform of the initial condition. Finally, on performing the inverse transform
with respect to s, the temperature distribution T (x; t) is found.

Once again, Vectoria disdains doing the problem \the old-fashioned way"
favored by some instructors, but instead intends to let the computer assist her.
To this end, she loads the plots and integral transform packages,

> restart: with(plots): with(inttrans):

and enters the di®usion equation DE ,

> DE:=diff(T(x,t),t)=d*diff(T(x,t),x,x);

DE := @
@t
T (x; t) = d

μ
@2

@x2
T (x; t)

¶
and the boundary condition T (0; t) = T0 .

> T(0,t):=T0:

To keep the recipe general for the moment, Vectoria has not yet speci¯ed the
value of T0 . She then takes the FST of DE with respect to x, the integration
by parts and boundary condition substitution being automatically done.

> FST:=fouriersin(DE,x,s);

FST :=
@

@t
fouriersin(T (x; t); x; s) =

d s (
p
2T0 ¡ s fouriersin(T (x; t); x; s)

p
¼)p

¼
To simplify the notation and facilitate solving the above ODE, she replaces
fouriersin(T (x; t); x; s) with F (t), temporarily suppressing the argument s.

> FST:=subs(fouriersin(T(x,t),x,s)=F(t),FST);

FST :=
d

dt
F (t) =

d s (
p
2T0 ¡ sF (t)

p
¼)p

¼
The Fourier sine transform of the initial condition is zero, so Vectoria solves
the ¯rst-order linear di®erential equation FST for F (t), subject to F (0) = 0.

> eq:=dsolve(fFST,F(0)=0g,F(t));

6.2. SEMI-INFINITE AND INFINITE DOMAINS 263

eq := F (t) =

p
2T0

s
p
¼
¡ e

(¡d s2 t)p2T0
s
p
¼

The Fourier (inverse) sine transform of the rhs of eq with respect to s is taken,

> T:=fouriersin(rhs(eq),s,x);

T := T0 ¡ T0 erf
μ

x

2
p
d t

¶
yielding the temperature T expressed in terms of the error function. Now T is
evaluated with the given parameter values (d=100, T0 =100) and simpli¯ed.

> T:=simplify(eval(T,fd=100,T0=100g));

T := 100¡ 100 erf
μ

x

20
p
t

¶
Choosing the spatial range to be x = 0 to 400 cm, Vectoria animates T over
the time interval t = 0 to 150 seconds, 50 frames being taken.

> animate(plot,[T,x=0..400],t=0..150,frames=50,thickness=2);

On running the animation, Vectoria is pleased with the \sweetness" of the whole
computer algebra derivation.

Looking at her watch, she realizes that Mike will be picking her up at 5:00
p.m., so she had better ¯nish the last problem on Professor Legree's assignment
before he shows up. She will enjoy her dinner at Gira®es on the waterfront more
if she has ¯nished her work.

PROBLEMS:
Problem 6-9: Fourier sine transform
Calculate the Fourier sine transform of each f(x) below and plot the answers:

(a) f(x) = e¡3 jxj; (b) f(x) = cos(2x); (c) f(x) = sin(x)2;
(d) f(x) = x=(x2 + 1).

Problem 6-10: A di®erent T (x; 0)
Use the Fourier sine transform approach to solve the heat conduction problem
for d = 10 cm2/s in a semi-in¯nite rod (0 · x · 1) that has the boundary
condition T (0; t) = 0 and initial interior temperature distribution T (x; 0) =
10x=(x2 + 1). Animate the plot.

6.2.2 Assignment Complete!

It is not knowledge, but the act of learning, not possession, but the
act of getting there, which grants the greatest enjoyment.
Carl Friedrich Gauss, German mathematician (1777{1855)

The last problem on Vectoria's assignment is similar to the fourth one, but in-
volves a di®erent boundary condition and initial condition. It is now supposed
that the semi-in¯nite rod (0 · x · 1) has an initial temperature distribution

264 CHAPTER 6. LINEAR PDE MODELS. PART 2

T (x; 0) = A±(x¡ a), i.e., is a Dirac delta function2 of amplitude A located at
x = a > 0. The end x = 0 is perfectly insulated so that no heat can °ow across
this end. For no heat °ow to occur, the boundary condition is @T=@xjx=0=0,
i.e., the gradient of the temperature is zero. The evolution of the temperature
pro¯le is to be animated over the spatial range x = 0 to 20 for the time interval
t = 1 to 200, with a = 5, A = 5, and a heat di®usion constant d = 1.

In her mathematical physics course, Vectoria has learned that when a gra-
dient boundary condition is involved for a semi-in¯nite domain problem the
Fourier cosine transform should be used. The Fourier cosine transform F (s) of
a function f(x) for which both f(x) and f 0(x) ! 0 as x ! 1 and its inverse
transform are de¯ned as

F (s) =

r
2

¼

Z 1

0

f(x) cos(s x) dx; f(x) =

r
2

¼

Z 1

0

F (s) cos(s x) ds:

Guided by her easy conquest of the previous problem, Vectoria realizes that she
will be done by the time Mike arrives to pick her up.

She again loads the plots and integral transform library packages, and enters
the 1-dimensional heat di®usion equation.

> restart: with(plots): with(inttrans):

> DE:=diff(T(x,t),t)=d*diff(T(x,t),x,x);

DE := @
@t
T (x; t) = d

μ
@2

@x2
T (x; t)

¶
The boundary condition bc and the initial condition ic are speci¯ed. The dif-
ferential command D[1](T)(0,t) is used to enter @T (x; t)=@xjx=0, while the
Dirac delta function is entered with the Dirac command.

> bc:=D[1](T)(0,t)=0; ic:=A*Dirac(x-a);

bc := D1(T)(0; t) = 0 ic := ADirac(¡x+ a)
The Fourier cosine transforms of the initial condition (assuming that a > 0) and
the di®usion equation are calculated. The boundary condition is substituted
into the latter result.

> F0:=fouriercos(ic,x,s) assuming a>0;

F0 :=
A
p
2 cos(s a)p
¼

> FCT:=subs(bc,fouriercos(DE,x,s));

FCT :=
@

@t
fouriercos(T (x; t); x; s) = ¡d s2 fouriercos(T (x; t); x; s)

As in the previous recipe, fouriercos(T (x; t); x; s) is replaced with F (t) in FCT .

> FCT:=subs(fouriercos(T(x,t),x,s)=F(t),FCT);

FCT :=
d

dt
F (t) = ¡d s2 F (t)

2The Dirac delta function ±(x¡ a) is an in¯nitely tall spike located at x = a and is equal
to zero for x 6= a. One of its most important properties is the sifting property, viz., for a

smooth function f(x) (not another delta function) and ² > 0,
R a+²
a¡² f(x) ±(x¡ a) dx = f(a):

6.2. SEMI-INFINITE AND INFINITE DOMAINS 265

Then, the ordinary di®erential equation FCT is analytically solved for F (t),
subject to the initial condition F (0) = F0 ,

> eq:=dsolve(fFCT,F(0)=F0g,F(t));

eq := F(t) =
A
p
2 cos(s a) e(¡d s

2 t)

p
¼

and the inverse transform performed on the rhs of eq.

> T:=fouriercos(rhs(eq),s,x);

T :=

A

r
¼

t d
e(¡

a2+x2

4 t d
) cosh

³ ax
2 t d

´
¼

Looking at the analytic result for T , Vectoria is pleased that she has spent time
learning how to use the Maple computer algebra system. Once she has set up
a template for a certain type of problem, then any other problem of that type
is generally trivial to tackle. In the real world, certain integrals and other steps
may not be carried out analytically, but traditionally in the world of academia,
problems are assigned by instructors for which analytic answers exist.

To ¯nish o® the problem and complete the assignment, Vectoria evaluates
T with the given parameter values (d = 1, a = 5, A = 5),

> T:=eval(T,fd=1,a=5,A=5g);

T :=

5

r
¼

t
e(¡

25+x2

4 t
) cosh

μ
5x

2 t

¶
¼

and animates the solution over the suggested time interval t = 1 to 200. Clearly,
the solution cannot be plotted at t = 0, because the initial pro¯le has been
assumed to be a Dirac delta function. The number of points is controlled to
product a smooth curve.

> animate(plot,[T,x=0..20],t=1..200,numpoints=200,

frames=50,thickness=2);

As she watches the animation on the computer screen, Mike arrives to whisk
her o® on their date.

PROBLEMS:
Problem 6-11: Fourier cosine transform
Calculate the Fourier cosine transform of each f(x) below and plot the answers
where possible:

(a) f(x) = e¡3 jxj; (b) f(x) = cos(2x); (c) f(x) = sin(x)2;
(d) f(x) = x=(x2 + 1).

Problem 6-12: Di®erent initial condition
Modify the text recipe to ¯nd the temperature distribution inside a semi-in¯nite
rod (0 · x · 1) that is insulated at x = 0 and has the initial temperature
distribution T (x > 0; 0) = 25x2=(x2 + 25) and d = 1. Animate T (x; t).

266 CHAPTER 6. LINEAR PDE MODELS. PART 2

6.2.3 Radioactive Contamination

The unexamined life is not worth living.
Socrates, Greek philosopher (470{399 BC)

When coauthor Richard was a student, he worked one summer as a chem-
istry lab assistant at a uranium mine on Great Bear Lake, which straddles the
Arctic Circle in Northern Canada. Because it was a summer job, there was a
period of several weeks when the sun never set, so evening baseball games were
never called o® because of darkness. The baseball diamond was located on the
leveled mine tailings, the only relatively °at spot in the small northern min-

x

0

Figure 6.1: The radioactive disposal site.

ing town of Port Radium, which is perched on almost treeless primordial rock
formations. The author has always wondered what long-term health problems
eventually arose among the permanent workers because of working in the mine
and playing baseball on the radioactive mine tailings. Motivated by these remi-
niscences, we could not resist including a related example involving radioactive
contamination.

A radioactive gas is di®using at a steady rate into the atmosphere from
a leveled contaminated disposal site. The ground and the atmosphere will
be taken to be semi-in¯nite media with X = 0 at the boundary as shown in
Figure 6.1. The concentration C(X;T) of radioactive gas in the atmosphere
obeys the concentration equation (a modi¯ed di®usion equation)

@C(X;T)

@T
= d

@2C(X;T)

@X2
¡ ¸C(X;T); (6.8)

where d is the di®usion constant and ¸ is the decay rate of the radioactive gas.
The boundary condition at X = 0 is given by Fick's law,

¡d @C(0; T)
@X

= K; (6.9)

6.2. SEMI-INFINITE AND INFINITE DOMAINS 267

where K is a positive constant with units in kg/(m2¢ s). The coe±cients can be
eliminated and the two equations cast into dimensionless form by introducing
the new variables t ´ ¸T , x ´

p
¸=dX, and c = (

p
¸d=K)C. Then the

concentration equation becomes

@c(x; t)

@t
=
@2c(x; t)

@x2
¡ c(x; t); (6.10)

with @c=@x = ¡1 as the boundary condition at x = 0.
Assuming that initially c = 0 for x ¸ 0, we want to determine the distri-

bution of radioactive gas in the atmosphere for times t ¸ 0 and animate the
solution. The method of attack will be to make use of the Laplace transform.

The Laplace transform of a function f(t) is de¯ned as

L(f(t)) ´ F (s) =
Z 1

0

f(t) e¡s t dt: (6.11)

Integrating by parts and assuming that e¡s t f(t)!0 as t!1, then

L

μ
df

dt

¶
= s F (s)¡ f(0); and L

μ
d2f

dt2

¶
= s2 F (s)¡ s f(0)¡ df(0)

dt
: (6.12)

To solve the concentration equation (6.10), subject to the boundary and
initial conditions, the Laplace transform can be applied to the time part of the
equation, the resultant second-order ODE in x solved, and the inverse Laplace
transform performed to regain the time dependence.

This program is now carried out using the laplace command contained in
the integral transform library package.

> restart: with(plots): with(inttrans):

The dimensionless concentration equation is entered,

> CE:=diff(c(x,t),t)=diff(c(x,t),x,x)-c(x,t);

CE := @
@t
c(x; t) =

μ
@2

@x2
c(x; t)

¶
¡ c(x; t)

and the initial concentration speci¯ed.

> c(x,0):=0:

The Laplace transform of CE is taken with respect to the time variable, and
the function laplace(c(x; t); t; s) then replaced with f (x) in LT .

> LT:=laplace(CE,t,s);

> LT:=subs(laplace(c(x,t),t,s)=f(x),LT);

LT := s f(x) =

μ
d2

dx2
f (x)

¶
¡ f (x)

This second-order ODE is solved for f(x), the following DEtools command line
being used to obtain exponential solutions, which are convenient here.

> sol:=DEtools[expsols](LT,f(x));

sol := [e(
p
s+1x); e(¡

p
s+1x)]

268 CHAPTER 6. LINEAR PDE MODELS. PART 2

As x!1, the concentration must go to zero, so the negative exponent solution
is selected and multiplied by an arbitrary coe±cient B to yield f .

> f:=B*sol[2];

f := B e(¡
p
s+1x)

The Laplace-transformed boundary condition bc takes the following form:

> bc:=eval(diff(f,x),x=0)=laplace(-1,t,s);

bc := ¡B
p
s+ 1 = ¡1

s
Then bc is solved for B, and the result BB substituted into f .

> BB:=solve(bc,B); f:=subs(B=BB,f);

BB :=
1p
s+ 1 s

f :=
e(¡

p
s+1x)

p
s+ 1 s

To perform the inverse Laplace transform, the substitution s = y ¡ 1 is ¯rst
made in f . Looking back at the de¯nition of the Laplace transform, it is then
necessary to multiply this result by e¡t, producing f2 .

> f2:=exp(-t)*subs(s=y-1,f);

f2 :=
e(¡t) e(¡

p
y x)

p
y (y ¡ 1)

The inverse Laplace transform of f2 with respect to y is carried out assuming
that x > 0. This yields the analytic form c for the concentration, expressed in
terms of the complementary error function (erfc(z) = 1¡ erf(z)).

> c:=invlaplace(f2,y,t) assuming x>0;

c := ¡1
2
erfc

μ
x+ 2 t

2
p
t

¶
ex +

1

2
erfc

μ
¡¡x+ 2 t

2
p
t

¶
e(¡x)

The concentration is animated over the spatial region x = 0 to 5 and time
interval t = 0 to 3.

> animate(plot,[c,x=0..5],t=0..3,frames=100,thickness=2);

On running the code and observing the animated concentration pro¯le in the
region x > 0, you will see the radioactive gas di®using into the atmosphere,
with the concentration attaining a steady-state pro¯le that decreases (approxi-
mately) exponentially from the contaminated surface as the distance x increases
from zero. Steady state occurs when there is a balance between the rate at which
radioactive gas atoms are di®using into the atmosphere and the rate at which
they are decaying.

PROBLEMS:

Problem 6-13: Laplace transform
Calculate the Laplace transforms of the following functions, simplifying the
answer where necessary, and identifying any special functions that occur:

(a) f(t) = e¡a
p
t with a > 0; (b) f(t) = t cos(a t); (c) f(t) = arctan(t);

6.2. SEMI-INFINITE AND INFINITE DOMAINS 269

(d) f(t) = tn ln(t) with n > 0; (e) f(t) = tanh(t); (f) f(t) = tanh¡1(t);

(g) f(t) =
sin(3

p
t)

t1=4
; (h) f(t) = J0(t)J1(t).

Problem 6-14: Inverse Laplace transform
Calculate the inverse Laplace transforms of the following functions, identifying
any special functions that occur in the answer:

(a) F (s) =
1

s2
; (b) F (s) =

a

s2 + a2
; (c) F (s) =

s2

(s2 + a2)3=2
;

(d) F (s) =
1p

s2 + a2
; (e) F (s) = e¡a s; (f) F (s) =

sin(a s)

s
;

Problem 6-15: Heat °ow in a semi-in¯nite rod
Consider a semi-in¯nite rod spanning the range x = 0 to x = 1. The ini-
tial temperature of the rod is zero. For t > 0, the temperature at x = 0 is
T (x; 0) = T0. By Laplace transforming the temporal part of the di®usion equa-
tion, determine the temperature distribution inside the rod for t > 0. Animate
the temperature pro¯le for nominal values of the parameters.

Problem 6-16: Heat °ow in a bar of varying cross section
The heat °ow along an insulated semi-in¯nite bar whose cross section varies
exponentially is described by

@

@x

μ
e®x

@T

@x

¶
= e®x

@T

@t
:

If T (x; 0) = 0 for x > 0, T (0; t) = 1, and T (1; t) = 0, use the Laplace transform
approach to show that for t > 0, the temperature distribution in the bar is

T (x; t) =
e¡®x

2

μ
erfc

μ
1

2

³
x t¡1=2 ¡ ® t1=2́

¶
+ e®xerfc

μ
1

2

³
x t¡1=2 + ® t1=2́

¶¶
:

Taking ® = 1, animate T (x; t) over the range x = 0 to 5 for t = 0 to 10.

Problem 6-17: Convolution theorem
An important property of the Laplace transform is the convolution theorem. If
f1(t) and f2(t) are two functions, their convolution is de¯ned to be

C(T) =

Z T

0

f1(T ¡ t) f2(t) dt:

If F (s), F1(s), and F2(s) are the Laplace transforms of C(T), f1(t), and f2(t),
respectively, the convolution theorem states that

F (s) = F1(s)F2(s):

Using the integral transform package, take the Laplace transform of C(t) and
con¯rm the convolution theorem.

270 CHAPTER 6. LINEAR PDE MODELS. PART 2

6.2.4 \Play It, Sam" Revisited

How can you tell Al Gore from a roomful of Secret Service agents?
He's the sti® one.
Al Gore, former U.S. Vice President, joking about his reputation for sti®ness,
New York Times, 14 September 1996

As pointed out in the subsection, Play It, Sam, the small transverse vibra-
tions of a light, horizontal, stretched, elastic string are well modeled by the
linear wave equation. However, a piano \string," the subject of that section,
is not actually a °exible elastic string, but rather a wire, possessing a degree
of sti®ness. To understand the concept of sti®ness, imagine holding a string
at one end between your ¯ngers. The unsupported end of the string will °op
vertically downward at the juncture with your ¯ngers. The internal forces of
the string are unable to balance the shear force exerted on the string by Earth's
gravitational pull. For a wire, the unsupported end will sag, but not °op ver-
tically downward at the juncture point. The wire is said to have a degree of
sti®ness.

For a string under tension, the sti®ness is negligible compared to the tension,
but for a piano wire sti®ness should be included in the equation of motion. As
shown in Morse [Mor48], the transverse displacement Ã(x; t) of a horizontal
wire is governed by the following fourth-order PDE:

@2Ã

@x2
¡ 1

2®2
@4Ã

@x4
=
1

c2
@2Ã

@t2
: (6.13)

The parameter ® is a measure of the ratio of tension to sti®ness. If ® ! 1,
tension predominates and the usual string wave equation results. For interme-
diate values of ®, the full wire equation must be solved. If, on the other hand,
sti®ness is all important, then ® is very small and the fourth spatial derivative
term dominates over the second spatial derivative. In this limiting case, the
equation relevant to a vibrating \bar" results. As a wire is made thicker and
thicker it becomes a bar. Some common examples of bars are the steel girders
supporting bridges and used in high-rise construction and railway tracks.

Labeling a2 ´ c2=(2®2), the transverse vibrations of a bar are governed by

@2Ã

@t2
+ a2

@4Ã

@x4
= 0: (6.14)

Because of the fourth spatial derivative, the vibrations of a bar are substantially
di®erent from those of a string.

As a simple example, but one with a complicated answer, suppose that an
in¯nitely long bar is initially at rest (@Ã(x; 0)=@t = 0) and is given a transverse
displacement

Ã(x; 0) = Ae¡b
2x2 ;

with A the amplitude. We want to analytically determine the displacement of
the bar for times t > 0 and animate the solution. Our approach will be to make
use of the \full" Fourier transform and its inverse.

6.2. SEMI-INFINITE AND INFINITE DOMAINS 271

Given a function f(x) that (along with all of its derivatives) vanishes as
x! §1, the Fourier transform of f(x) and its inverse are de¯ned as

F (k) =

Z 1

¡1
f(x) e¡I k x dx; f(x) =

1

2¼

Z 1

¡1
F (k) eI k x dk: (6.15)

If the Fourier transform of f(x) (denoted by F [f(x)]) is F (k), then

F
·
dnf(x)

dxn

¸
= (I k)n F (k):

Fourier transforming the spatial part of the bar equation will involve n = 4.
Now let's use the \full" Fourier transform to solve the vibrating bar prob-

lem, ¯rst loading the integral transform package, which contains the necessary
fourier and invfourier (inverse Fourier) commands.

> restart: with(plots): with(inttrans):

The parameters a in the bar equation and b in the initial pro¯le are assumed
to be positive, as is the time.

> assume(a>0,b>0,t>0):

The partial di®erential equation of motion for the bar is entered, using the
shortcut x$4 to enter the fourth spatial derivative.

> pde:=diff(psi(x,t),t,t)+a^2*diff(psi(x,t),x$4)=0;

pde :=

μ
@2

@t2
Ã(x; t)

¶
+ a2

μ
@4

@x4
Ã(x; t)

¶
= 0

The Fourier transform of the spatial part of pde is performed, and the function
fourier(Ã(x; t); x; k) replaced with F (t).

> FT:=fourier(pde,x,k);

> FT:=subs(fourier(psi(x,t),x,k)=F(t),FT);

FT := a2 k4 F (t) +

μ
d2

dt2
F (t)

¶
= 0

Since a fourth spatial derivative was involved in the transform, a term (I k)4 =
k4 has resulted in the output.

The Fourier transform of the initial pro¯le is calculated,

> F0:=fourier(A*exp(-b^2*x^2),x,k);

F0 := Ae(¡
k2

4 b2)
r
¼

b2

and the second-order di®erential equation FT solved for F (t), subject to the
initial conditions F (0) = F0 , _F (0) = 0.

> sol:=dsolve(fFT,F(0)=F0,D(F)(0)=0g,F(t));

sol := F (t) =
Ae(¡

k2

4 b2
)p¼ cos(a k2 t)
b

To facilitate the calculation of the inverse Fourier transform, the right-hand
side of sol is converted to exponential form and simpli¯ed.

272 CHAPTER 6. LINEAR PDE MODELS. PART 2

> F2:=simplify(convert(rhs(sol),exp));

F2 :=
1

2

A
p
¼

μ
e(
k2 (¡1+4 I a t b2)

4 b2
) + e(¡

k2 (1+4 I a t b2)
4 b2

)
¶

b
We temporarily set ¡1 + 4 I a t b2 = ¡B and 1 + 4 I a t b2 = C in F2 .

> F3:=subs(f-1+4*I*a*t*b^2=-B,1+4*I*a*t*b^2=Cg,F2);

F3 :=
1

2

A
p
¼

μ
e(¡

k2 B
4 b2

) + e(¡
k2 C
4 b2

)
¶

b

To perform the inverse Fourier transform of F3 , it is necessary to make assump-
tions about B and C. Clearly the real part of each is positive and assuming
Re(A) > 0 and Re(B) > 0 will work here. A slightly simpler form results if we
assume that both B and C are positive, even though they are really complex.
The inverse Fourier transform of F3 then yields the solution Ã.

> psi:=invfourier(F3,k,x) assuming B>0,C>0;

Ã :=
1

2

A

μ
e(¡

x2 b2

B
)pC + e(¡

x2 b2

C
)pB

¶
p
B
p
C

The original forms of B and C are substituted back into the displacement Ã,
the lengthy complex output being suppressed.

> psi:=subs(fB=1-4*I*a*t*b^2,C=1+4*I*a*t*b^2g,psi):
Since the initial pro¯le was real, Ã should be real as well. The complex evalu-
ation command, evalc, is applied and the result simpli¯ed.

> psi:=simplify(evalc(psi));

Ã :=

Ae(¡
b2 x2

%1
)
μ
cos

μ
4 b4 x2 a t

%1

¶p
2
p
%1 + 2 + sin

μ
4 b4 x2 a t

%1

¶p
2
p
%1¡ 2

¶
2
p
%1

%1 := 1 + 16 a2 t2 b4

As expected, the displacement Ã is completely real. Noting the subexpression
%1 (an artifact of exporting the Maple output into the text), the mathematical
form of Ã is indeed quite complicated, as predicted earlier.

Taking the nominal values A = 1, a = 0:1, and b = 1 in Ã,

> psi:=eval(psi,fA=1,a=0.1,b=1g):
the vibrations of the bar are animated over the spatial range x = ¡200 to 200
and time interval t = 0 to 400.

> animate(plot,[psi,x=-200..200],t=0..400,frames=150,

numpoints=500,thickness=2);

On running the animation, you will observe that the initial Gaussian pro¯le
of the bar begins to decrease in the vicinity of x = 0, generating oscillations
that rapidly disperse away from the origin in both directions. The bar does not

6.2. SEMI-INFINITE AND INFINITE DOMAINS 273

overshoot the horizontal equilibrium position near the origin, even for longer
times. You should experiment with other values of the parameters.

PROBLEMS:
Problem 6-18: Fourier transform
Calculate the Fourier transforms of the following functions and plot the results:

(a) f(x) = e¡3 jxj; (b)f(x) = cos(2 x); (c) f(x) = x=(x2 + 1).

Problem 6-19: Inverse Fourier transform
Calculate the inverse Fourier transforms of the following functions, simplifying
where necessary, and plot the results:

(a) f(k) = cos(¼ k=2) =(1¡ k2);
(b) f(k) = ¡2 I k=(¼ (k2 + 2));
(c) f(k) = (1=

p
2¼) (sin k=k)

2
.

Problem 6-20: Bandwidth theorem
An approximately monochromatic plane wave packet in one dimension has the
instantaneous form u(x; 0) = f(x) eI k0 x; with f(x) the envelope function and
k0 the central wave number. Consider the following functions:

(a) f(x) = 2 e¡3 jxj=2;

(b) f(x) = 4 e¡x
2=4;

(c) f(x) = 5 for jxj < 1 and 0 otherwise.
For each function, perform the following:

² Calculate the wave number spectrum jA(k)j2 where A(k) is the Fourier
transform of f(x).

² Plot the intensities ju(x; 0)j2 and jA(k)j2.

² Explicitly evaluate the root mean square deviations from the means, ¢x
and ¢k, de¯ned with respect to the above intensities.

² Show that in each case the bandwidth theorem (the optical analogue of
the uncertainty principle) ¢x¢k ¸ 1

2
is satis¯ed.

Problem 6-21: Temperature distribution in an in¯nite rod
By Fourier transforming the spatial part of the di®usion equation, determine the
temperature distribution T (x; t) in an in¯nite rod for t > 0 when T (x; 0) = T0
for jxj < x0, and zero otherwise. Animate T (x; t) for nominal values of the
parameters.

Problem 6-22: Another temperature distribution
By Fourier transforming the spatial part of the di®usion equation, determine
the temperature distribution T (x; t) in an in¯nite rod for t > 0 when T (x; 0) =

T0 e
¡®2 x2 . Animate T (x; t) for nominal values of the parameters.

274 CHAPTER 6. LINEAR PDE MODELS. PART 2

6.3 Numerical Simulation of PDEs

Simulated disorder postulates perfect discipline; simulated fear
postulates courage; simulated weakness postulates strength.
Sun Tzu, Chinese general, The Art of War, c. 490 BC

To solve some linear and almost all nonlinear PDE models, subject to speci¯ed
initial and/or boundary conditions, one must resort to numerical means and
simulate the behavior of the model equation by replacing the spatial and time
derivatives with ¯nite di®erence approximations and introducing an accurate
numerical representation of any functional forms. In this section, we will illus-

h
0,0 1,0

0,1 1,1

0,2 1,2

j i-1, j i, j i+1, j

i

P

i, j-1

i, j+1

k

t = jk

x = ih

Figure 6.2: Subdividing the x-t plane with a rectangular computational mesh.

trate how ¯xed-step explicit schemes are created for a one-spatial-dimensional
PDE whose dependent variable is some amplitude Ã(x; t), x being the spatial
coordinate and t the time. The discussion presented here is meant only to give
you the °avor of a vast and important topic.

The general approach is to extend the ideas introduced at the end of Chap-
ter 2 for numerically solving ODEs. Referring to Figure 6.2, the x-t plane can
be subdivided for computational purposes into a rectangular grid or mesh, with
each rectangle having sides of length h and k in the x- and t-directions, respec-
tively. The coordinates of a representative intersection, or mesh, point P are
taken to be x = i h, y = j k with i; j = 0; 1; 2; : : : : In a nonadaptive scheme,
since h and k are ¯xed, the integers i and j may be used to label the mesh
points, the point P being indicated by (i; j). The value of Ã at P is written as
ÃP = Ã(x = i h; y = j k) ´ Ãi;j . A similar subscript notation may be used for
the spatial and time derivatives.

6.3. NUMERICAL SIMULATION OF PDES 275

For example, in the forward di®erence approximation, the ¯rst spatial and
time derivatives at P are written asμ

@Ã

@x

¶
P

=
(Ãi+1;j ¡ Ãi;j)

h
;

μ
@Ã

@t

¶
P

=
(Ãi;j+1 ¡ Ãi;j)

k
; (6.16)

while the \standard" CDAs for the second derivatives at P areμ
@2Ã

@x2

¶
P

=
(Ãi+1;j ¡ 2Ãi;j + Ãi¡1;j)

h2
; (6.17)

μ
@2Ã

@t2

¶
P

=
(Ãi;j+1 ¡ 2Ãi;j + Ãi;j¡1)

k2
: (6.18)

Although rectangular meshes are most commonly employed, diamond-shaped
grids can also prove to be useful in certain numerical schemes used to model
wave equations.

6.3.1 Freeing Excalibur the Numerical Way

\Are ¯ve nights warmer than one night, then?"
Alice ventured to ask. \Five times as warm of course."
\But they could be ¯ve times as cold, by the same rule|"
\Just so!" cried the Red Queen.
Lewis Carroll (Charles Lutwidge Dodgson), English writer (1832{1898)

Recall that Russell, the aerospace engineer, was having a wild dream about
freeing the sword Excalibur from its stony tomb by cooling its ends with buck-
ets of ice water when his dream took a sudden detour and he recalled the
following related problem from his undergraduate thermodynamics course.

A thin 1-meter-long rod (the shaft of the sword), whose lateral surface is
insulated to prevent heat °ow through that surface, has its ends suddenly held
at the freezing point of water, 0±C, by placing them in contact with buckets of
ice. Taking one end of the rod to be at x = 0 and the other at x = 1, the initial
temperature distribution was T (x; t = 0) = 100x (1 ¡ x), a parabolic pro¯le
with a maximum temperature of 25± at the midpoint x = 1

2
.

Russell was able to determine the analytic solution to this problem, using
the separation of variables technique with the aid of Maple. Since it is now
necessary in his work to numerically solve a system of nonlinear PDEs, and he
hasn't done any numerical work for a while, he decides to tackle the Excalibur
problem ¯rst, using an explicit ¯nite-di®erence scheme.

In the linear di®usion equation (with di®usion coe±cient d = 1), Russell
replaces the time derivative with the forward-di®erence approximation and the
second spatial derivative with the standard CDA, so that

@T

@t
=
@2T

@x2
) (Ti;j+1 ¡ Ti;j)

k
=
(Ti+1;j ¡ 2Ti;j + Ti¡1;j)

h2
: (6.19)

276 CHAPTER 6. LINEAR PDE MODELS. PART 2

If he sets r ´ k=h2 and c ´ 1¡ 2 r, the explicit scheme is
Ti;j+1 = r Ti¡1;j + c Ti;j + r Ti+1;j : (6.20)

The unknown value Ti;j+1 on time step j + 1 is explicitly determined from the
three known values Ti¡1;j , Ti;j , and Ti+1;j on the previous (jth) time step. One
starts with the bottom row (j = 0) in the numerical mesh shown in Figure 6.2,
which corresponds to the initial temperature pro¯le here, and calculates T at
each internal mesh point of the ¯rst (j = 1) time row. The end mesh points of
each time row are held at zero temperature in accordance with the boundary
conditions. Once all the Ti;1 values are known on time step 1, the Ti;2 on time
step 2 are calculated in a similar manner, and so on.

Since he intends to use a matrix multiplication approach, Russell makes a
call to the LinearAlgebra library package. He divides the spatial range x = 0
to x = 1 into 12 equal parts, so that there are M = 11 internal mesh points on
each time row. The value of M is easily increased if necessary.

> restart: with(LinearAlgebra): M:=11: begin:=time():

To display theM £M = 11£ 11 square matrix that will perform the operation
on the rhs of (6.20), the following interface command is entered. The argument
rtablesize=infinity allows a matrix with M > 10 to be explicitly displayed,
instead of being represented by a placeholder.

> interface(rtablesize=infinity):

Russell introduces an M £ M tridiagonal matrix3 A using the BandMatrix
command. In the argument, the list [r,c,r] gives the coe±cients on the rhs of
the explicit scheme (6.20), the number 1 indicates that there is one subdiagonal
on either side of the main diagonal, and M speci¯es the size of the matrix A.

> A:=BandMatrix([r,c,r],1,M,M);

A :=

2
66666666666666664

c r 0 0 0 0 0 0 0 0 0
r c r 0 0 0 0 0 0 0 0
0 r c r 0 0 0 0 0 0 0
0 0 r c r 0 0 0 0 0 0
0 0 0 r c r 0 0 0 0 0
0 0 0 0 r c r 0 0 0 0
0 0 0 0 0 r c r 0 0 0
0 0 0 0 0 0 r c r 0 0
0 0 0 0 0 0 0 r c r 0
0 0 0 0 0 0 0 0 r c r
0 0 0 0 0 0 0 0 0 r c

3
77777777777777775

Consulting his old numerical analysis text, Russell ¯nds that the ¯xed-step
explicit scheme for the di®usion equation becomes numerically unstable if the
ratio r is greater than 1

2
. Wanting to carry out a reasonably accurate calcu-

lation, he takes r = 0:05. Inputting the spatial step size h = 1=(M + 1), he

3A tridiagonal matrix has nonzero matrix elements only on the central diagonal and two
adjacent diagonals.

6.3. NUMERICAL SIMULATION OF PDES 277

evaluates the time step size k = r h2, as well as the parameter c. Wanting to
animate his numerical solution, he decides to create N = 50 plots, with each
plot separated in time by s = 20 steps.

> r:=0.05: h:=1.0/(M+1); k:=r*h^2; c:=1-2*r; N:=50: s:=20:

h := 0:08333333333 k := 0:0003472222222 c := 0:90

An operator f will be used to input the initial parabolic temperature pro¯le.

> f:=x->evalf(100*x*(1-x)):

With the help of f, the initial (j = 0 time row) temperatures at the M internal
mesh points are calculated, and expressed as a column vector4 T0 so that matrix
multiplication can be performed.

> T[0]:=<<seq(f(evalf(i/(M+1))),i=1..M)>>; #input temperatures

T0 :=

2
66666666666666664

7:638888889
13:88888889
18:75000000
22:22222222
24:30555556
25:00000000
24:30555556
22:22222222
18:75000000
13:88888889
7:638888886

3
77777777777777775

A graphing operator is formed to plot the temperature pro¯le on the jth step,
the plotting points being connected by straight lines. The zero temperatures at
the endpoints are included.

> gr:=j->plot([[0,0],seq([i/(M+1),T[j][i,1]],i=1..M),[1,0]],

labels=["x","T"]):

In the following do loop, the temperature pro¯le is calculated every s=20 steps.

> for n from 1 to N do

> T[n]:=A^s . T[n-1];

> end do:

The CPU time on a 3-GHz personal computer to perform the calculation

> CPUtime:=(time()-begin)*seconds;

CPUtime := 0:350 seconds

is a fraction of a second, hardly worth recording. The plots[display] com-
mand5 with the insequence=true option is employed to produce an animated
sequence of the temperature pro¯le in the rod.

> plots[display]([seq(gr(j),j=0..N)],insequence=true);

4Entered with the short-hand notation << >>.
5A shortcut to ¯rst entering with(plots) and then display.

278 CHAPTER 6. LINEAR PDE MODELS. PART 2

To see Russell's animated di®usion equation solution, you will have to execute
the program and use the animation tool bar.

PROBLEMS:

Problem 6-23: Numerical Instability
In the text recipe, con¯rm that the solution becomes numerically unstable for
r > 0:5. Numerical instability is signaled by the appearance of increasingly
wild oscillations in the solution as time increases.

Problem 6-24: Comparison with exact solution
Explore the change in the percentage error in the numerical mesh values at the
end of the run compared with the exact values as M is increased.

Problem 6-25: A di®erent pro¯le
Modify the text recipe to produce an animated numerical solution for the initial
temperature pro¯le T (x; 0) = 25 sin(¼ x). Compare the numerical solution in
the center of the rod with the exact solution as a function of time. At what
time is the temperature in the middle equal to one-quarter of the initial value?

6.3.2 Enjoy the Klein{Gordon Vibes

The world is never quiet, even its silence eternally resounds with the
same notes, in vibrations which escape our ears.
Albert Camus, French-Algerian philosopher, writer (1913{1960)

After tackling the Excalibur heat-di®usion example, Russell decides to numeri-
cally investigate the small transverse oscillations of a light stretched horizontal
string embedded in a stretched vertical elastic membrane. In the absence of
the membrane, the instantaneous displacement Ã(x; t) of the string satis¯es the
one-dimensional wave equation. The e®ect of the membrane is to add an addi-
tional Hooke's law restoring force, proportional to Ã, on the string, which tends
to speed up the vibrations. The relevant transverse wave equation, called the
Klein{Gordon equation (KGE), then is

@2Ã

@x2
¡ @

2Ã

@t2
= aÃ; (6.21)

where a is the elastic coe±cient of the membrane and the wave speed has been
set equal to unity.

If the string is of unit length and ¯xed at both ends, the boundary conditions
are Ã(0; t) = Ã(1; t) = 0 for t ¸ 0. Supposing that the string has the initial
transverse pro¯le f ´ Ã(x; 0) = x (1¡x)5 and velocity g ´ _Ã(x; 0) = x3 (1¡x),
Russell wishes to numerically solve the KGE and animate the oscillations.

At the internal mesh points, he uses the standard CDAs for the second
derivatives and approximates the inhomogeneous term with aÃi;j . The numer-

6.3. NUMERICAL SIMULATION OF PDES 279

ical algorithm for the KGE then is

(Ãi+1;j ¡ 2Ãi;j + Ãi¡1;j)
h2

¡
(Ãi;j+1 ¡ 2Ãi;j + Ãi;j¡1)

k2
= aÃi;j ; (6.22)

or, setting r ´ k2=h2 and c ´ 2¡ 2 r ¡ k2 a, and rearranging,

Ãi;j+1 = r Ãi¡1;j + c Ãi;j + r Ãi+1;j ¡ Ãi;j¡1; (6.23)

with j = 1; 2; 3; : : : : The mesh points involved in this explicit scheme are
schematically depicted in Figure 6.3.

ψ ψ ψi−1,j i,j i+1,j

ψi,j+1

ψi,j−1

Figure 6.3: Relevant mesh points for numerically solving the KGE.

In this algorithm, the unknown Ã value on time step (j + 1) depends on
its values on the previous two time steps, j and (j ¡ 1). The second time
row, corresponding to taking j = 1, will be the ¯rst to be calculated. The Ã
values are known along the zeroth time row from the initial condition Ã(xi; 0) =
f(xi). To apply the scheme, the Ã values along the ¯rst time row must also be
known. These may be determined from the initial transverse velocity. Using
the forward-di®erence approximation, the condition _Ã(x; 0) = g(x) yields6

Ãi;1 ¡ Ãi;0
k

= g(xi); or Ãi;1 ´ G = Ãi;0 + k g(xi): (6.24)

Now Russell programs the explicit scheme (6.23), ¯rst loading the Linear-
Algebra package so a matrix approach can be used again.

> restart: with(LinearAlgebra): begin:=time():

6In the problem set, Russell will show us a better approximation than this one.

280 CHAPTER 6. LINEAR PDE MODELS. PART 2

He divides the range x = 0 to 1 into 50 equal spatial intervals, so that the
number of internal mesh points is M = 49. The size of the time step is taken
to be k = 0:005, the number of time steps is N = 200, and a = 100.

> M:=49: k:=0.005: N:=200: a:=100:

The values of the spatial step size h, the ratio r, and c are calculated.

> h:=1.0/(M+1); r:=k^2/h^2; c:=2-2*r-k^2*a;

h := 0:02000000000 r := 0:06250000000 c := 1:872500000

Except for the inclusion of the last term on the rhs (and a di®erent de¯nition of
r), the numerical scheme (6.23) is identical with that for the Excalibur example.
So, Russell forms a tridiagonal matrix A as before. Because of its large size, the
full matrix is not explicitly displayed, but given by the following placeholder.

> A:= BandMatrix([r,c,r],1,M);

A :=

2
66664
49 x 49 Matrix
Data Type : anything
Storage : band[1; 1]
Shape : band[1; 1]
Order : Fortran order

3
77775

Operators are formed to calculate f(x), g(x), and G(x).

> f:=x->evalf(x*(1-x)^5):

> g:=x->evalf(x^3*(1-x)):

> G:=x->evalf(f(x)+k*g(x)):

Using the operator f, the initial (zeroth time row) displacements are calculated
at the M internal mesh points, and put into a column vector format.

> v[0]:=<<seq(f(evalf(i/(M+1))),i=1..M)>>:

Similarly, G is used to calculate the displacements at internal mesh points on
the ¯rst time row and represented as a column vector.

> v[1]:=<<seq(G(evalf(i/(M+1))),i=1..M)>>:

A graphing operator is formed to plot the displacement pro¯le on the jth step.

> gr:=j->plot([[0,0],seq([i/(M+1),v[j][i,1]],i=1..M),[1,0]],

labels=["x","psi"]):

The following loop implements the numerical scheme, calculating the displace-
ments at the internal mesh points from the second time row to the Nth row.

> for j from 1 to N do

> v[j+1]:=A . v[j]-v[j-1]:

> end do:

The CPU time is a fraction of a second.

> CPUtime:=(time()-begin)*seconds;

CPUtime := 0:540 seconds

Russell animates the transverse oscillations by using the display command
with the insequence=true option.

6.3. NUMERICAL SIMULATION OF PDES 281

> plots[display]([seq(gr(j),j=0..N)],insequence =true);

Once again, you should execute the worksheet to see the oscillations of the
string. Feel free to change the parameter values or initial conditions.

Although the KGE can be solved analytically, since it is a linear PDE,
Russell's numerical approach allows him to tackle nonlinear wave equations
that cannot be solved analytically. For example, the nonlinear KGE

@2Ã

@x2
¡ @

2Ã

@t2
= aÃ + b Ã3; (6.25)

with a and b positive, might be used to model the symmetric transverse oscilla-
tions of the string when the membrane is stretched su±ciently that a nonlinear
correction to Hooke's law should be included. The modi¯cation of Russell's
numerical scheme is left as a problem for the interested reader.

PROBLEMS:
Problem 6-26: a = 0
For a = 0, the KGE reduces to the linear wave equation. Run the code for
a = 0 and then explore how the results are a®ected by increasing a.

Problem 6-27: Nonzero initial velocity
Modify the text recipe for the KGE to handle the initial conditions f(x) = 0,
g(x) = sin(¼ x). You may have to adjust the viewing box.

Problem 6-28: Nonlinear KGE
Modify the text recipe to numerically simulate the nonlinear KGE (6.25). Take
the same parameters as in text recipe and explore what happens when increasing
positive values of b are considered.

Problem 6-29: Better ¯rst-row approximation
A better approximation to the ¯rst time row to use for solving the KGE is

Ãi;1 = f(xi) + k g(xi) +
r

2
(f(xi+1)¡ 2 f(xi) + f(xi¡1)) + O(k3):

Execute the text recipe with this improved approximation.

6.3.3 Vectoria's Secret

None are so fond of secrets as those who do not mean to keep them.
C. C. Colton, English writer (1780{1832)

Vectoria's secret is out! She and Mike have announced the date of their wed-
ding, which will take place in July in a lupine-dappled alpine meadow near
Mount Baker in the North Cascades. Rumor has it that Mike will throw any
guest whose cell phone rings into one of the nearby icy Chain Lakes. Since she
will be too busy making wedding plans, we will not be seeing Vectoria in the
rest of this text. So, we have asked her to favor us with one last recipe for
solving the following problem.

282 CHAPTER 6. LINEAR PDE MODELS. PART 2

In a region of space, the potential V (x; y) satis¯es the Poisson equation,

@2V

@x2
+
@2V

@y2
= x ey; 0 · x · 2; 0 · y · 1;

with the four boundary conditions V (0; y) = 0, V (2; y) = 2 ey, V (x; 0) = x,
and V (x; 1) = e x. Using a central di®erence approximation for each second
derivative at a mesh point (i, j) and evaluating the rhs of Poisson's equation at
this point, derive a ¯nite di®erence scheme for solving the equation. Dividing
the x-interval into 30 steps and the y interval into 15 steps, determine V at
each mesh point and plot the numerical solution. Here is Vectoria's solution.

She begins by entering the boundaries and dividing them into the suggested
intervals in the x- and y-directions.

> restart: with(plots): begin:=time():

In the x-direction, the boundaries are at x=a=0 and x=b=2:0. The interval
b¡ a is divided into m=30 steps, and the x step size h=(b¡ a)=m calculated.

> a:=0: b:=2.0: m:=30: h:=(b-a)/m;

h := 0:06666666667

In the y-direction, the boundaries are at y=c=0 and y=d=1:0. The interval
d¡ c is divided into n=15 steps, and the y step size k=(d¡ c)=n calculated.

> c:=0: d:=1.0: n:=15: k:=(d-c)/n;

k := 0:06666666667

Using central di®erence approximations for the second derivatives, evaluating
the inhomogeneous term at (i; j), setting r = (h=k)2, and rearranging, Poisson's
equation becomes

2 (1 + r)Vi; j ¡ Vi+1; j ¡ Vi¡1; j ¡ r (Vi; j+1 + Vi; j¡1) + h2 xi eyj = 0 (6.26)

The ratio r is now evaluated.

> r:=(h/k)^2;

r := 1:000000000

The grid coordinates in the x- and y-directions are generated.

> Xcoords:=seq(x[i]=i*h,i=0..m):

> Ycoords:=seq(y[j]=j*k,j=0..n):

The potential V at the grid points along the four bounding edges are generated
in the following four boundary conditions.

> bc1:=seq(V[i,0]=i*h,i=0..m):

> bc2:=seq(V[i,n]=evalf(exp(1))*i*h,i=0..m):

> bc3:=seq(V[0,j]=0,j=0..n):

> bc4:=seq(V[m,j]=2*evalf(exp(j*k)),j=0..n):

Vectoria then assigns Xcoords , Ycoords , and the four boundary conditions.

> assign(Xcoords,Ycoords,bc1,bc2,bc3,bc4):

An operator f is formed to calculate equation (6.26) at the grid point (i; j).

6.3. NUMERICAL SIMULATION OF PDES 283

> f:=(i,j)->2*(1+r)*V[i,j]-V[i+1,j]-V[i-1,j]-r*(V[i,j+1]

+V[i,j-1])+h^2*x[i]*exp(y[j])=0;

f := (i; j)! 2 (1 + r)Vi; j ¡ Vi+1; j ¡ Vi¡1; j ¡ r (Vi; j+1 + Vi; j¡1) + h2 xi eyj
The mesh equations are determined for all the internal grid points using two
nested sequences running from i = 1 to m¡ 1 and from j = 1 to n¡ 1.

> eqs:=fseq(seq(f(i,j),i=1..m-1),j=1..n-1)g:
The unknown potentials at the internal grid points are entered as the variables.

> vars:=fseq(seq(V[i,j],i=1..m-1),j=1..n-1)g:
The mesh equations are solved (to 6 digits) for the variables, and the solution
is assigned.

> sol:=evalf(fsolve(eqs,vars),6): assign(sol):

Three-dimensional plotting points are formed for all the grid points, including
those on the boundaries.

> pts:=seq(seq([x[i],y[j],V[i,j]],i=0..m),j=0..n):

Using the pointplot3d command, the points representing the potential at each
grid point are plotted as size-6 blue circles, the result being shown in Figure 6.4.

> pointplot3d([pts],symbol=circle,symbolsize=6,color=blue,

axes=boxed,orientation=[135,60],tickmarks=[3,3,3],

labels=["x","y","V"]);

0
1

2

x

0
0.5 y

0

2

4

V

Figure 6.4: Numerical solution of the Poisson equation.

The CPU time to execute the entire recipe is about 6 seconds.

> cpu:=time()-begin;

cpu := 5:978

284 CHAPTER 6. LINEAR PDE MODELS. PART 2

PROBLEMS:
Problem 6-30: Steady-state temperature distribution
The steady-state temperature distribution T (x; y) in a thin square metal plate
0:5 m on a side satis¯es Laplace's equation, r2T (x; y) = 0. The boundary
conditions on the edges of the plate are

T (0; y) = 0; T (x; 0) = 0; T (x; 0:5) = 200 x; T (0:5; y) = 200 y:

Using the standard CDA for the second derivatives, and choosing a suitable
mesh spacing, numerically determine the temperature distribution in the plate
and make a 3-dimensional plot.

Problem 6-31: Potential distribution
A square inner conductor 3 cm on a side is held at a potential of 100 V. A
second square conductor, concentric with the ¯rst and 9 cm long on each of its
inner sides, is held at 0 V. The potential ©(x; y) in the region between the two
conductors satis¯es Laplace's equation, r2©(x; y) = 0.
(a) Taking the mesh spacing in both directions to be 1 cm, make a mesh

diagram showing all the interior mesh points for which © is to be found.

(b) Using CDAs for the second derivatives, write out the mesh equations for
the interior points. Make use of symmetry arguments to show that only
seven interior points need to be used in the calculation of ©.

(c) Solve the mesh equations and determine © at each interior point.

(d) Plot © in the region stretching from the inner to the outer conductor.

Part III

THE DESSERTS

The way a child discovers the world constantly

replicates the way science began. You start to

notice what's around you, and you get very curious

about how things work. How things interrelate.

It's as simple as seeing a bug that intrigues you.

You want to know where it goes at night;

who its friends are; what it eats.

David Cronenberg, Canadian ¯lmmaker (1943{)

It's food too ¯ne for angels; yet come, take

And eat thy ¯ll! It's Heaven's sugar cake.

Edward Taylor, English poet (1664{1729)

285

Chapter 7

The Hunt for Solitons
There is no better ... door by which you can enter into the study of
natural philosophy than by considering the ... physical phenomena of
a candle.
Michael Faraday, English physicist (1791{1867)

Nonlinear PDEs display a rich spectrum of solutions that in most cases must be
obtained by numerical means. However, there exist special analytic solutions
to some nonlinear PDEs of physical interest, the best known being soliton so-
lutions of nonlinear wave equations. A soliton is a stable solitary wave, which
is a localized pulse solution that can propagate at some characteristic velocity
without changing shape despite the \tug of war" between \competing terms"
in the governing equation of motion.

A simple physical example [EJMR81] of a solitary wave is provided by the
°ame of an ordinary lit candle. There exists a dynamic balance between the
di®usion of the heat from the °ame into the wax and the nonlinear energy
release as the wax vaporizes. The candle °ame advances into the wax at a
velocity that just maintains the balance. To check whether a solitary wave
is stable, i.e., is a soliton, one can subject the solitary wave to some type of
perturbation and see whether its integrity is preserved. For example, the candle
°ame may °icker because of an ambient air current, but it tends to preserve its
shape as the candle burns, so the °ame displays soliton-like behavior.

Of course, there exist many di®erent possible stability criteria that could be
invoked to decide whether a solitary wave is a soliton. Historically, however,
mathematicians have decided that in order for a solitary wave to be deemed
worthy of the name soliton, it must survive a collision with another solitary-wave
solution of the same PDE completely unchanged in shape. There are two main
approaches to applying this collisional stability criterion, either numerically or
analytically. The numerical simulation approach will be brie°y illustrated in the
last section. Analytic methods are considerably more complicated to implement
(see, e.g., [EM00]) and we will be content here only to quote some of the results
in the form of two-soliton solutions.

Given a nonlinear PDE, how do we know that it even has the possibility

287

288 CHAPTER 7. THE HUNT FOR SOLITONS

of having soliton solutions? This chapter is about the hunt for solitary waves
(possible solitons), using graphical and analytic approaches, and the analytic
con¯rmation that some of these solitary waves are indeed solitons.

First, we should have some idea of what solitary waves look like, and what
well-known nonlinear PDEs of physical interest are known to have them. To
keep the discussion simple, let's restrict our attention to wave motion in one
spatial dimension. Three well-known nonlinear PDEs that describe di®erent
types of wave motion are the Korteweg{de Vries equation (KdVE), the sine{
Gordon equation (SGE), and the nonlinear SchrÄodinger equation (NLSE):

² @Ã@t + ®Ã
@Ã
@x +

@3Ã
@x3

= 0, KdVE;

² @
2Ã
@x2

=
1

c2
@2Ã

@t2
+ sinÃ, SGE;

² i @Ã
@x

§ 1
2

@2Ã

@t2
+ jÃj2 Ã = 0, NLSE.

Here x is the spatial coordinate, t is the time, ® is a numerical scale parameter,
i =

p
¡1, and Ã(x; t) is the amplitude. All three equations turn out to be very

important in nonlinear dynamics because, under suitable approximations, they
arise in many di®erent contexts.

The KdVE has been used to describe [SCM73] water waves in shallow canals,
magnetohydrodynamic waves in plasmas, longitudinal dispersive waves in elas-
tic rods, pressure waves in liquid{gas bubble mixtures, and so on.

The SGE is applicable [BEMS71] to the propagation of magnetic spins in
ferromagnets, magnetic °ux in Josephson junctions, crystal dislocations, ultra-
short optical pulses, etc.

Undoubtedly, the most important application of the NLSE [Has90] is to the
propagation of optical pulses in glass ¯bers whose refractive index n is of the
form n = n0+n1 I, with n0 and n1 positive constants and I the light intensity.
The light intensity is proportional to jÃj2, where Ã is the complex electric
¯eld amplitude that satis¯es the NLSE. The light intensity is experimentally
measured rather than the electric ¯eld amplitude.

The derivation of these three nonlinear wave equations is beyond the scope
of this text. The reader who is interested in such matters should consult the
references cited above. As will be demonstrated, all three nonlinear PDEs
support collisionally stable solitary-wave solutions, i.e., solitons.

What do solitary waves (solitons) look like? Figure 7.1 shows a sketch of the
two commonly occurring types. For the peaked variety (called nontopological
solitary waves by mathematicians), there exists a localized maximum with the
pulse dropping to zero amplitude at §1. Nontopological solitary waves also
exist whose pulse amplitude displays a localized dip to zero with the pulse
increasing to a constant nonzero amplitude at §1. In terms of the intensity,
the NLSE supports both types of nontopological solitary waves. Those optical
solitary waves with peaks are called bright solitary waves, while those with the

289

dip are referred to as black solitary waves. The bright ones occur for the plus
sign in the NLSE, the black ones for the minus sign. The Korteweg{de Vries
(KdV) equation also possesses nontopological solitary-wave solutions.

z

U
peaked kink

∞ ∞−

Figure 7.1: Qualitative shapes of two common types of solitary waves.

For the kink type (referred to as topological solitary waves) in Figure 7.1, the
pulse amplitude U changes from one constant value (e.g., zero in the ¯gure) at
¡1 to a larger constant value at +1. The region in which the change takes
place is usually quite localized. Antikink solitary waves can also exist, for which
the amplitude changes from a constant value at ¡1 to a lower constant value
at +1. The SGE displays both kink and antikink solutions.

Given a nonlinear wave equation, how are these solitary-wave solutions
found? We know that the one-dimensional linear wave equation has a gen-
eral solution of the structure Ã(x; t) = f(x ¡ c t) + g(x + c t), where f and g
are arbitrary functions. The function f(x¡ c t) describes a waveform traveling
with speed c in the positive x-direction, while the form g(x + c t) describes a
wave traveling in the negative x-direction. Let us now con¯ne our attention to
waves traveling in the positive x-direction, the discussion for waves traveling
in the opposite direction being similar. The linear wave equation can support
localized solutions Ã(x; t) = f(z = x ¡ c t) such as the peaked solitary waves
shown in Figure 7.1. These solutions will translate unchanged in shape along
the positive x-axis. For nonlinear wave equations, we can look for similar types
of localized solutions. That is to say, we seek solutions of the mathematical form
Ã(x; t) = Ã(z = x ¡ c t) that have pro¯les qualitatively similar to those shown
in Figure 7.1. Note that this assumed form reduces the number of independent
variables from two (x and t) to one (z), thus reducing the PDE to an ODE.

Borrowing concepts from Chapter 1, we can make a phase-plane portrait for
the nonlinear ODE. As will be shown in the following section, the solitary-wave
solutions will correspond to separatrix solutions, a separatrix being a trajectory
in the phase plane that divides the plane into regions with qualitatively di®erent
behaviors. The graphical method of hunting for solitons is quite important,
because it allows for their possible existence to be established, even if analytic
forms do not exist.

290 CHAPTER 7. THE HUNT FOR SOLITONS

7.1 The Graphical Hunt for Solitons

7.1.1 Of Kinks and Antikinks

If you are idle, be not solitary; if you are solitary, be not idle.
Samuel Johnson, letter, 27 October 1779, to James Boswell

In this ¯rst example, a phase-plane portrait will reveal that the SGE has both
kink and antikink solitary waves. To produce this portrait, the DEtools library
package must be loaded. In order to implement the assumption Ã(x; t) = Ã(z =
x¡ c t), the dchange command will be employed to make a change of variables,
requiring us also to load PDEtools. The SGE is then entered,

> restart: with(DEtools): with(PDEtools):

> SGE:=diff(psi(x,t),x,x)-diff(psi(x,t),t,t)=sin(psi(x,t));

SGE :=

μ
@2

@x2
Ã(x; t)

¶
¡
μ
@2

@t2
Ã(x; t)

¶
= sin(Ã(x; t))

and a variable transformation tr introduced with the \old" variables x, t, and
Ã(x; t) related to the \new" variables z, ¿ , and U(z) by x = z + c ¿ , t = ¿ , and
Ã(x; t) = U(z), where c is an arbitrary velocity parameter.

> tr:=fx=z+c*tau,t=tau,psi(x,t)=U(z)g;
tr := fx = z + c ¿; t = ¿; Ã(x; t) = U (z)g

The variable change (dchange) command applies the transformation to SGE.

> de1:=dchange(tr,SGE,[z,tau,U(z)]);

de1 :=

μ
d2

dz2
U (z)

¶
¡ c2

μ
d2

dz2
U (z)

¶
= sin(U (z))

The SGE has been reduced to an ODE de1 with z as the independent \spatial"
variable. It can be simpli¯ed by collecting the second derivatives, d2U(z)=dz2.

> de2:=collect(de1,diff(U(z),z,z));

de2 := (1¡ c2)
μ
d2

dz2
U (z)

¶
= sin(U (z))

The nature of the phase-plane portrait will depend on the parameter c. For
c > 1 (so 1 ¡ c2 < 0), de2 is just the undamped plane-pendulum ODE, whose
portrait was \painted" in Chapter 1. For c < 1, noting that sinU=¡ sin(U+¼),
the portrait is the same as for c > 1, except that all ¯xed points are shifted by
¼. For c = 1, sin(U(z)) = 0 and U = 0, or an integer multiple of ¼, for all z.

The second-order ODE de2 is now rewritten as two ¯rst-order equations by
setting dU=dz = Y in de3 , and substituting de3 into de2 to produce de4 .

> de3:=diff(U(z),z)=Y(z); de4:=subs(de3,de2);

de3 :=
d

dz
U (z) = Y (z)

de4 := (1¡ c2)
μ
d

dz
Y (z)

¶
= sin(U (z))

7.1. THE GRAPHICAL HUNT FOR SOLITONS 291

Four phase-plane trajectories will be drawn corresponding to the following ini-
tial conditions, which are chosen to be close to the saddle points that occur for
c < 1 at (U = 0; § 2¼; Y = 0) in the Y vs. U phase-plane portrait.

> ic:=[[U(0)=0.01,Y(0)=0],[U(0)=-0.01,Y(0)=0],

[U(0)=-6.27,Y(0)=0],[U(0)=6.27,Y(0)=0]]:

An operator F is formed to apply the phaseportrait command to the ODE
system de3 and de4 for, say, c = 0:5 for speci¯ed scene parameters A and B.
Choosing A = U and B = Y will generate the phase-plane portrait, while
A = z and B = U will produce a plot of U(z). By trial and error, the z range is
taken to be from 0 to 11. This will produce approximate separatrix trajectories
that leave from one saddle point and end up at another saddle point. The
tangent arrows are colored green and are taken (using arrows=MEDIUM) to be
\two-headed." The four trajectories are given di®erent colors, so that they are
easily distinguished on the computer screen.

> F:=(A,B)->phaseportrait([de3,eval(de4,c=0.5)],[U(z),Y(z)],

z=0..11,ic,scene=[A,B],U=-6.5..6.5,Y=-6.5..6.5,

stepsize=0.05,dirgrid=[30,30],color=green,linecolor=

[blue,red,black,magenta],arrows=MEDIUM):

Entering F(U,Y)produces the phase-plane portrait shown in Figure 7.2.

> F(U,Y);

–6

–4

–2

0

2

4

6

Y

–6 –4 –2 2 4 6
U

Figure 7.2: Separatixes correspond to kink and antikink solitons.

The solid curves are the separatrixes, two trajectories between the saddle points
(¡2¼; 0) and (0,0), and two between (0,0) and (+2 ¼; 0). Inside the separatrixes,

292 CHAPTER 7. THE HUNT FOR SOLITONS

the solutions are periodic as the trajectories cycle around vortex points at (U =
§¼; Y = 0) as z increases. The solutions outside the separatrixes are also
oscillatory, resembling \over-the-top" motion for the undamped pendulum.

What do the separatrix solutions look like? Qualitatively, the answer is quite
simple. A trajectory starting at the saddle point (0,0) at z = ¡1 asymptoti-
cally approaches the right saddle point (2¼; 0) as z ! +1. A similar trajectory
connects the left saddle point at (¡2 ¼; 0) to the one at the origin as z varies
from ¡1 to +1. These are examples of kink solitary waves, whose pro¯les
U(z) may be seen by entering F(z,U), thus producing Figure 7.3. The curves
connecting U = 2¼ to U = 0, and U = 0 to ¡2¼, are the antikink solutions.

> F(z,U);

–6

–4

–2

0

2

4

6

U

2 4 6 8 10z

Figure 7.3: Pro¯les of kink and antikink solitary waves.

An important physical example of a kink is a so-called Bloch wall between
two magnetic domains in a ferromagnet as schematically depicted in Figure 7.4.
The magnetic spins rotate from, say, spin down in one domain to spin up in

Figure 7.4: Bloch wall between two ferromagnetic domains.

the adjacent domain. The narrow transition region between down and up spins
is called a Bloch wall in honor of the theoretical physicist and Nobel laureate

7.1. THE GRAPHICAL HUNT FOR SOLITONS 293

Felix Bloch. Under the in°uence of an applied magnetic ¯eld, the Bloch wall
(kink soliton) can propagate according to the SGE without changing in shape.

PROBLEMS:
Problem 7-1: Variation in velocity
Explore how the sine{Gordon solitary waves vary in shape as the velocity c is
altered.

Problem 7-2: Cosine{Gordon equation
If the sine term is replaced with a cosine in the SGE, how would the solitary-
wave solutions be a®ected? Con¯rm your reasoning by running the text recipe
with a cosine present, instead of the sine term. You will have to alter the initial
conditions to obtain the new separatrixes.

Problem 7-3: Is there or isn't there?
Suppose that the nonlinear term in the SGE is replaced with sin2 Ã. Using
the phase-plane portrait approach, determine whether there is a solitary-wave
solution to this modi¯ed SGE.

7.1.2 In Search of Bright Solitons

We're all of us sentenced to solitary con¯nement inside our
own skins, for life!
Tennessee Williams, American dramatist (1914{1983)

Our second example illustrates the existence of a bright solitary-wave solution
to the NLSE for the situation that the equation has the plus sign.

The DEtools library package is loaded,

> restart: with(DEtools):

and the NLSE entered.

> NLSE:=I*diff(E(x,t),x)+(1/2)*diff(E(x,t),t,t)

+abs(E(x,t))^2*E(x,t)=0;

NLSE :=

μ
@

@x
E (x; t)

¶
I +

1

2

μ
@2

@t2
E (x; t)

¶
+ jE (x; t)j2 E (x; t) = 0

Because of the complex nature of the equation, a slightly di®erent assumption
is made here than in the sine{Gordon example. In this case, a solitary-wave
solution of NLSE of the form E(x; t) = U(t) ei b x is sought, where the parameter
b, the coordinate x, and U(t) are taken as positive.

> ode:=eval(NLSE,E(x,t)=U(t)*exp(I*b*x))

assuming b>0,x>0,U(t)>0;

ode := ¡U (t) b e(b x I) + 1
2

μ
d2

dt2
U (t)

¶
e(b x I) + U (t)3 e(b x I) = 0

This assumption has reduced the NLSE to an ODE, which is simpli¯ed by
dividing by ei b x and multiplying by 2.

294 CHAPTER 7. THE HUNT FOR SOLITONS

> ode2:=simplify(2*ode/exp(I*b*x));

ode2 := ¡2U (t) b+
μ
d2

dt2
U (t)

¶
+ 2U (t)3 = 0

The second-order ODE is cast into two ¯rst-order ODEs by setting dU=dt = Y
in ode3 , and substituting this expression into ode2 .

> ode3:=diff(U(t),t)=Y(t); ode4:=subs(ode3,ode2);

ode3 :=
d

dt
U (t) = Y(t)

ode4 := ¡2U (t) b+
μ
d

dt
Y (t)

¶
+ 2U (t)3 = 0

Two phase-plane trajectories will be plotted for initial conditions very close to
the origin. The origin will be revealed to be a saddle point.

> ic:=[[U(0)=.01,Y(0)=0],[U(0)=-.01,Y(0)=0]]:

Taking b = 1, an operator F is formed to apply the phaseportrait command
to ode3 and ode4 for speci¯ed scene parameters A and B.

> F:=(A,B)->phaseportrait([ode3,eval(ode4,b=1)],[U(t),Y(t)],

t=0..9,ic,scene=[A,B],U=-2..2,Y=-2..2,stepsize=0.05,

dirgrid=[20,20],color=red,linecolor=blue,arrows=MEDIUM):

The phase-plane portrait results on entering F(U,Y),

> F(U,Y);

the result being shown in Figure 7.5.

–2

–1

0

1

2

Y

–2 –1 1 2
U

Figure 7.5: Separatrixes correspond to bright solitary waves.

The arrows indicate the direction of increasing t, while the solid curves to the
left and right of the origin are the two separatrixes. There are vortex points at
(U =§ 1, Y = 0) and a saddle point at the origin. The separatrix line to the
right of the origin starts at U =0 for t ! ¡1, grows to a maximum positive

7.1. THE GRAPHICAL HUNT FOR SOLITONS 295

value at intermediate t, and returns to zero as t ! +1. Recalling that the
intensity is proportional to jÃj2 = U2, we see that the separatrix to the left of
the origin will produce exactly the same solitary-wave pro¯le for the intensity,
which is normally what is measured experimentally. Because this solitary-wave
pro¯le is collisionally stable, it is referred to as a bright soliton. The amplitudes
U(t) corresponding to the two separatrixes are obtained by entering F(t,U),

> F(t,U);

the result being shown in Figure 7.6.

–2

–1

0

1

2

U

2 4 6 8
t

Figure 7.6: Bright solitary-wave amplitudes.

The reader might have been surprised that a di®erent assumed solution was
used for the NLSE than in the previous section to derive the bright soliton.
This is because in the underlying derivation of the NLSE, which is beyond the
scope of this text, a coordinate transformation to a frame moving at the speed of
light has already been made. The bright soliton is stationary (has zero velocity)
in this moving frame. In the laboratory frame, the bright-soliton solution can
be interpreted as follows. At a given point in the medium, the bright-soliton
intensity will be essentially zero until the pulse arrives, then grow to a maximum
value, and decrease back toward zero as the pulse passes by.

Bright-soliton solutions have been observed [Has90] experimentally in glass
¯bers, the time interval over which the light intensity is appreciable at a given
point in the ¯ber being of the order of a few picoseconds (1 picosecond (ps)=10¡12

seconds).

Because of their narrow widths and their stability, solitons are envisioned by
telecommunications engineers as high-bit-rate carriers of digitized information
along optical ¯bers, each soliton representing a \one" and a blank space between
adjacent solitons representing a \zero."

Black solitons may be found for the minus-sign case in the NLSE, this being
left for you to do as a problem. A few other interesting problems are also
presented for your intellectual amusement.

296 CHAPTER 7. THE HUNT FOR SOLITONS

PROBLEMS:

Problem 7-4: Black solitons
Modify the text recipe to determine the solitary-wave solutions for the minus-
sign case in the NLSE. Remembering that the physically observed intensity
is proportional to jÃj2, con¯rm that these solutions are black solitary waves.
These solitary waves are collisionally stable, so are black solitons.

Problem 7-5: Saturable refractive index
The NLSE for a dielectric with a saturable refractive index takes the form

i
@Ã

@x
+
1

2

@2Ã

@t2
+

jÃj2
1 + a jÃj2 Ã = 0;

where i =
p
¡1 and a is a positive parameter. Taking a = 0:5 and assuming

a solution of the form Ã(x; t) = U(t) ei b x with b = 1, use the phase-plane
portrait to demonstrate graphically that a solitary-wave solution exists. An
analytic form is not known for this solitary wave.

Problem 7-6: Burgers' equation
Burger's equation

@Ã

@t
+ Ã

@Ã

@x
= ¾

@2Ã

@x2
;

with ¾ a positive parameter, is an example of a nonlinear di®usion equation.
Graphically show that an antikink solitary-wave solution exists to Burgers'
equation for a representative value of the di®usion coe±cient ¾.

Problem 7-7: Boussinesq's equation
The Boussinesq wave equation, which was ¯rst derived in an attempt to de-
scribe shallow-water waves (Ã is the surface displacement) propagating in both
directions, is

@2Ã

@x2
¡ @2Ã

@t2
+ 6

@2(Ã2)

@x2
+
@4Ã

@x4
= 0:

Using the phase-portrait option, show that a bright solitary-wave solution exists
for this equation.

7.1.3 Can Three Solitons Live Together?

... for nothing on earth is solitary ...
Ralph Waldo Emerson, American essayist and philosopher (1803{1882)

An interesting theoretical problem [ER79] in nonlinear optics is the resonant
interaction of three collinear waves consisting of two electromagnetic waves la-
beled with subscripts 1 and 2 and a sound wave with subscript 3. The wave
velocities are, respectively, v1, v2, and v3 ¿ v1; v2. The real amplitudes Á1, Á2,
and Á3 satisfy the following set of nonlinear PDEs:

7.1. THE GRAPHICAL HUNT FOR SOLITONS 297

@Á1
@t

+ v1
@Á1
@x

= ¡¯1 Á2 Á3;
@Á2
@t

+ v2
@Á2
@x

= ¯2 Á1 Á3;

@Á3
@t

+ v3
@Á3
@x

= ¡¯3 Á1 Á2:

(7.1)

Here, x is the direction of wave propagation, t is the time, and the coupling
parameters ¯1, ¯2, and ¯3 are real and positive. Our goal is to show graphically
that there exists a set of three solitary waves, one for each equation, which will
propagate along together at a common velocity c.

The DEtools and PDEtools library packages are loaded,

> restart: with(DEtools): with(PDEtools):

and the parameter °, which will shortly be introduced, is unprotected from its
Maple assignment as Euler's constant. To generate the N = 3 PDEs

> unprotect(gamma): N:=3:

with a do loop, let's set Á4 = Á1 and Á5 = Á2.

> phi[4](x,t):=phi[1](x,t): phi[5](x,t):=phi[2](x,t):

The following do loop then generates the three relevant PDEs.

> for j from 1 to N do

> pde[j]:=diff(phi[j](x,t),t)+v[j]*diff(phi[j](x,t),x)

=(-1)^j*beta[j]*phi[j+1](x,t)*phi[j+2](x,t);
> end do;

pde1 :=
³
@
@t
Á1(x; t)

´
+ v1

³
@
@x
Á1(x; t)

´
= ¡¯1 Á2(x; t)Á3(x; t)

pde2 :=
³
@
@t
Á2(x; t)

´
+ v2

³
@
@x
Á2(x; t)

´
= ¯2 Á3(x; t)Á1(x; t)

pde3 :=
³
@
@t
Á3(x; t)

´
+ v3

³
@
@x
Á3(x; t)

´
= ¡¯3 Á1(x; t)Á2(x; t)

Solitary-wave solutions are sought that are functions of the single \new" in-
dependent \spatial" variable z = x ¡ c t, c being an arbitrary velocity for the
moment. The relevant variable transformation is entered, with t = ¿ and new
amplitudes U1(z), U2(z), and U3(z).

> tr:=fx=z+c*tau,t=tau,phi[1](x,t)=U[1](z),
phi[2](x,t)=U[2](z),phi[3](x,t)=U[3](z)g;

tr := fx = z+c ¿; t = ¿; Á1(x; t) = U1(z); Á2(x; t) = U2(z); Á3(x; t) = U3(z)g
and the dchange command applied to each PDE in the following do loop.

> for j from 1 to N do

> ode[j]:=dchange(tr,pde[j],[z,tau,U[1](z),U[2](z),U[3](z)]);

To simplify the output, the substitution ¯j = °j (vj ¡ c) is made in the jth
ODE and each equation divided by (vj ¡ c) and simpli¯ed.

> ode[j]:=subs(beta[j]=gamma[j]*(v[j]-c),ode[j]):

298 CHAPTER 7. THE HUNT FOR SOLITONS

> ode[j]:=simplify(ode[j]/(v[j]-c)):

> end do:

On completion of the do loop, the system sys of three resulting nonlinear ODEs
is put into a list and displayed.

> sys:=[ode[1],ode[2],ode[3]];

sys :=

·
d

dz
U1(z) = ¡°1 U2(z)U3(z);

d

dz
U2(z) = °2 U3(z)U1(z);

d

dz
U3(z) = ¡°3 U1(z)U2(z)

¸
To graphically ¯nd three coexisting solitary-wave solutions, the ° parameters
are all set equal to the value 1.

> gamma[1]:=1: gamma[2]:=1: gamma[3]:=1:

Since the ¯ parameters were all positive, choosing all three ° values to be
positive implies that c is less than the smallest v value, i.e., smaller than v3.
Typically, v1 ¼ v2 ¼ 108 m/s and the speed v3 of sound is about 10

3 m/s.
So, the electromagnetic solitary waves are very unusual, since they would be
traveling some ¯ve orders of magnitude more slowly than they normally do.

Our graphical procedure will produce a three-dimensional viewing box, so
based on trial and error, it is convenient to choose the following two orientations

> Orient[1]:=[-90,90]: Orient[2]:=[-90,0]:

for the viewing box in the following do loop.

> for i from 1 to 2 do

The DEplot3d plotting command will produce solution trajectories but no tan-
gent ¯eld. The independent variable z is allowed to vary from z = ¡5 to z = 20.
Solitary waves are sought that are kinks (antikinks) or peaked solutions. Peaked
solutions would start with U = 0 at z = ¡1, while kinks would start at some
constant value at this limit. One can't literally start at zero, for example, be-
cause then it would take forever in terms of z to generate a solution. In the
following, U1 and U3 start out with the value 0:01 (close to zero) and peaked
solutions are sought for these amplitudes. On the other hand, U2 will start with
the value ¡0:99 (close to ¡1) and a kink solution sought for this amplitude.
The scene option is taken to be scene=[z,U[1](z),U[2](z)], so that with the
appropriate orientation, the behavior of U1 and U2 as a function of z can be
observed.1

> DEplot3d(sys,[U[1](z),U[2](z),U[3](z)],z=-5..20,

[[U[1](0)=0.01,U[2](0)=-0.99,U[3](0)=0.01]],

scene=[z,U[1](z),U[2](z)],U[1]=0..1.2,U[2]=-1.2..1.2,

stepsize=0.05,orientation=Orient[i],linecolor=blue);
> end do;

On completion of the do loop, the two plots are displayed in Figure 7.7.

1To see U3 plotted versus z, you can take scene = [z,U[2](z),U[3](z)] with an orientation
[-90,90].

7.2. ANALYTIC SOLITON SOLUTIONS 299

–5 0 5 z 15 20

1

U1

–5 0 5 z 15 20

–1

–0.5

0.5

1

U2

Figure 7.7: Solitary-wave pro¯les for U1 (left) and U2 (right).

On the left is shown the peaked solitary wave for electromagnetic wave number
one (U1) and on the right the coexisting kink solitary-wave solution for the
second electromagnetic wave (U2). The sound-wave amplitude U3 (not shown)
displays a peaked solitary-wave pro¯le as well.

David Kaup [Kau76], [KRB79] has extensively investigated the three-wave
problem and analytically established that the three solitary waves are solitons.
However, although many years have elapsed since these solitons were predicted,
there is still no experimental evidence that such solitons can actually be pro-
duced in the laboratory.

PROBLEMS:
Problem 7-8: Solitary sound-wave pro¯le
Modify the recipe in the text to explicitly graph the solitary sound wave pro¯le
as a function of z.

Problem 7-9: Variation with °
Discuss how the three solitary-wave pro¯les vary in shape as the values of °1,
°2, and °3 are altered in the text recipe. For example, try °1 = 1, °2 = 2,
and °3 = 3. Support your discussion with the pro¯le plots in each case. Note
whether any of the pro¯les is still a solitary wave or is a wave train.

7.2 Analytic Soliton Solutions

In Chapters 5 and 6, the focus was on solving a wide variety of linear di®usion,
Laplace, and wave equation models. The coverage was somewhat lengthy not
only because of the physical importance of these PDEs but also because such
linear PDEs could be solved analytically, the detailed solutions being readily
derived with Maple. The mathematical solution of nonlinear di®usion and wave

300 CHAPTER 7. THE HUNT FOR SOLITONS

equation models is much more di±cult, and analytic approaches have consisted
mainly in ¯nding special solutions, some of which are of physical importance.
Many of these approaches are quite complicated in nature, but the seeking of
analytic solitary-wave pro¯les is relatively easy, provided that analytic solutions
exist. This will now be illustrated in the next two examples.

7.2.1 Follow That Wave!

It's just a job ... waves pound the sand. I beat people up.
Muhammad Ali, American boxer, New York Times, 6 April 1977

Probably the ¯rst reported observation of soliton behavior recorded in the sci-
enti¯c literature was made by the Scottish engineer and naval architect John
Scott Russell [Rus44]. In the less formal style of scienti¯c reporting of the day,
he wrote:

I was observing the motion of a boat which was rapidly drawn along a nar-
row channel by a pair of horses, when the boat suddenly stopped|not so the
mass of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded smooth and well-de¯ned heap of water, which continued its
course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original ¯gure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my ¯rst chance interview with that
singular and beautiful phenomenon : : : :

The \narrow channel" referred to by Russell still exists, being the Union Canal
linking Edinburgh with Glasgow. Actually, Russell was not observing the
\rapidly drawn boat" by accident, but was actually carrying out a series of ex-
periments to determine the force{velocity characteristics of di®erently shaped
boat hulls in order to determine design parameters for conversion from horse
power to steam power. His solitary-wave observations were followed by ex-
tensive wave-tank experiments in which he established the major properties of
hydrodynamic solitary waves. [EJMR81]

The detailed mathematical explanation of Russell's solitary wave had to wait
50 years until 1895, when the relevant nonlinear Korteweg{de Vries equation,

@Ã

@t
+ ®Ã

@Ã

@x
+
@3Ã

@x3
= 0; (7.2)

was derived by the Dutch mathematicians Diederik Korteweg and Gustav de
Vries. In the KdV equation, Ã is the transverse displacement of the horizontal
water surface, x the spatial coordinate in the direction of wave propagation, t

7.2. ANALYTIC SOLITON SOLUTIONS 301

the time, and ® a numerical factor that can be either scaled out of the equation
or, alternatively, assigned a convenient numerical value. The KdV equation
doesn't look like a wave equation, having a ¯rst time derivative and a third
spatial derivative term. However, it does describe the unidirectional propaga-
tion of lossless shallow-water waves in a rectangular canal quite well. How a
peaked solitary wave solution to the KdV equation occurs is rather interesting.

If the nonlinear term, ®Ã (@Ã=@x), is neglected, the remaining two terms
produce a dispersive (spreading) e®ect. This is easily understood as follows. A
localized propagating pulse can be built up out of a Fourier sum of terms of
the plane wave structure ei(k x+! t), where k is the wave number and ! is the
frequency. Neglecting the nonlinear term, the dispersion relation ! = k3 results
on substituting the plane wave solution. Solving for k, the phase velocity then
is v = !=k = !2=3. Therefore, high-frequency Fourier components travel faster
than low-frequency components, i.e., dispersion occurs.

On the other hand, if the third-derivative term is ignored, it can be ana-
lytically shown [EM00] that the remaining two terms generate a \shock wave"
e®ect. A shock wave is characterized by a progressive steepening of the leading
edge of a propagating localized pulse. The solitary-wave solution corresponds
to the situation in which the dispersive and shock wave contributions cancel
exactly.

To analytically determine the solitary-wave solution, let's follow the proce-
dure of the previous section and assume that Ã(x; t) = Ã(z = x ¡ c t), where
c > 0 is the velocity, whose value is not yet unspeci¯ed. The e®ect of this sim-
plifying assumption will be to reduce the nonlinear PDE (7.2) to a nonlinear
ODE. To carry out this reduction explicitly, the PDEtools library is loaded,

> restart: with(plots): with(PDEtools):

and the KdV equation entered.

> KdVE:=diff(psi(x,t),t)+alpha*psi(x,t)*diff(psi(x,t),x)

+diff(psi(x,t),x,x,x)=0;

KdVE :=

μ
@

@t
Ã(x; t)

¶
+ ®Ã(x; t)

μ
@

@x
Ã(x; t)

¶
+

μ
@3

@x3
Ã(x; t)

¶
= 0

The transformation from the \old" independent variables x and t to the new
variables z and ¿ is entered with x = z+ c ¿ and t = ¿ . The dependent variable
Ã(x; t) is rewritten as U(z).

> tr:=fx=z+c*tau,t=tau,psi(x,t)=U(z)g;
tr := fx = z + c ¿; t = ¿; Ã(x; t) = U (z)g

Then, applying the dchange command to KdVE with the transformation tr ,

> ode1:=dchange(tr,KdVE,[z,tau,U(z)]);

ode1 := ¡
μ
d

dz
U (z)

¶
c+ ®U (z)

μ
d

dz
U (z)

¶
+

μ
d3

dz3
U (z)

¶
= 0

yields the third-order nonlinear ODE shown in ode1 . The left-hand side of this
equation is easily integrated, yielding ode2 .

302 CHAPTER 7. THE HUNT FOR SOLITONS

> ode2:=int(lhs(ode1),z)=0;

ode2 := ¡cU (z) + 1
2
®U (z)2 +

μ
d2

dz2
U (z)

¶
= 0

On the right-hand side of ode2 , we have set the integration constant equal to
zero by assuming that we are seeking a peaked solitary wave similar to that
schematically depicted earlier in Figure 7.1. For such a solitary wave, U(z) and
all of its derivatives must vanish as z !1.

To integrate the second-order nonlinear ODE ode2 , we can proceed as fol-
lows. Letting V = dU(z)=dz, then,

d2U(z)

dz2
=
dV

dz
=
dV

dU

dU

dz
= V

dV

dU
:

Along with U(z) = U , this result is substituted into ode2 .

> ode3:=subs(fdiff(U(z),z,z)=V(U)*diff(V(U),U),U(z)=Ug,ode2);

ode3 := ¡cU + ®U
2

2
+ V (U)

μ
d

dU
V (U)

¶
= 0

Since U ! 0 and V (U) ´ dU=dz ! 0 as jzj ! 1, we can apply the dsolve
command to ode3 subject to the condition V (U = 0) = 0,

> sol:=dsolve(fode3,V(0)=0g,V(U));

sol := V (U) =

p
¡3®U + 9 c U

3
; V (U) = ¡

p
¡3®U + 9 cU

3
yielding positive and negative square root solutions. The positive answer is
selected and simpli¯ed.

> sol1:=simplify(sol[1],symbolic);

sol1 := V (U) =

p
¡3®U + 9 c U

3
Now, remember that V ´ dU=dz, so from the above output we have

z =

Z
3 dU

U
p
9 c¡ 3®U

:

This integration is now carried out,

> eq:=z=int(1/rhs(sol1),U);

eq := z = ¡
2 arctanh

μp
¡3®U + 9 c
3
p
c

¶
p
c

and eq solved for U using the isolate command and the result simpli¯ed.

> eq2:=simplify(isolate(eq,U));

eq2 := U = ¡
3 c

Ã
tanh

μ
z
p
c

2

¶2
¡ 1

!

®
Then, substituting z = x ¡ c t into the rhs of eq2 yields the solitary wave Ã,
which is converted into a more standard form with the sincos option.

7.2. ANALYTIC SOLITON SOLUTIONS 303

> psi:=subs(z=x-c*t,rhs(eq2));

Ã := ¡
3 c

Ã
tanh

μ
(x¡ c t)pc

2

¶2
¡ 1

!

®
> psi:=simplify(convert(psi,sincos));

Ã :=
3 c

cosh

μ
(x¡ c t)

p
c

2

¶2
®

At z ´ x¡c t = 0, the solitary-wave solution has its maximum amplitude 3 c=®.
For a ¯xed value of ®, the maximum amplitude is proportional to the velocity
c, so by ¯xing this maximum amplitude, the velocity is also ¯xed. Clearly, a
taller KdV solitary wave will have a larger velocity than a shorter solitary wave.
On the other hand, the width of the pulse scales inversely with

p
c, so taller

KdV solitary waves are thinner than shorter solitary waves.
To con¯rm that the solitary-wave solution is indeed localized and travels at

constant velocity with unchanging shape, the analytic solution can be animated.
Let's take, for example, ® = 1 and c = 1

2 ,

> psi:=eval(psi,falpha=1,c=1/2g);

Ã :=
3

2

1

cosh

Ã
(x¡ t=2)

p
2

4

!2
and animate the solitary-wave solution.

> animate(plot,[psi,x=-20..70],t=0..100,numpoints=200,

frames=50,axes=frame,thickness=2);

By running the animation, the reader will see that all the features that have
been discussed are con¯rmed. Later, by looking at the collision of one solitary
wave with another, we will con¯rm that the solitary wave is a soliton.

PROBLEMS:
Problem 7-10: Modi¯ed KdV equation
Derive a solitary-wave solution of the modi¯ed KdV equation

@Ã

@t
+ ®Ã2

@Ã

@x
+
@3Ã

@x3
= 0;

which appears in the theory of double layers in plasmas and as a model of ion
acoustic solitons in a multicomponent plasma.

Problem 7-11: Boussinesq's equation
The Boussinesq water wave equation is

@2Ã

@x2
¡ @

2Ã

@t2
+ 6

@2

@x2
¡
Ã2
¢
+
@4Ã

@x4
= 0:

Derive the analytic form of the bright solitary-wave solution and animate it.

304 CHAPTER 7. THE HUNT FOR SOLITONS

7.2.2 Looking for a Kinky Solution

Masterpieces are not single and solitary births; they are the outcome
of ... thinking by the body of the people, so that the experience of the
mass is behind the single voice.
Virginia Woolf, British novelist, A Room of One's Own, 1929

In our second example, we seek a kink solitary-wave solution of the SGE,

@2Ã

@x2
¡ @

2Ã

@t2
= sinÃ: (7.3)

Recall that the moving kink has been used to model the motion of a magnetic
domain wall separating two di®erent spin regions in a ferromagnet.

To ¯nd a kink, the PDEtools package is loaded and the SGE entered.

> restart: with(plots): with(PDEtools):

> SGE:=diff(psi(x,t),x,x)-diff(psi(x,t),t,t)-sin(psi(x,t))=0;

SGE :=

μ
@2

@x2
Ã(x; t)

¶
¡
μ
@2

@t2
Ã(x; t)

¶
¡ sin(Ã(x; t)) = 0

Then, SGE is reduced to a nonlinear ODE by assuming that Ã(x; t) = U(z)
with x = z + c ¿ and t = ¿ , and applying the dchange command.

> tr:=fx=z+c*tau,t=tau,psi(x,t)=U(z)g:
> ode1:=dchange(tr,SGE,[z,tau,U(z)]);

ode1 :=

μ
d2

dz2
U (z)

¶
¡
μ
d2

dz2
U (z)

¶
c2 ¡ sin(U (z)) = 0

The second derivative terms are collected in ode1 .

> ode1:=collect(ode1,diff(U(z),z,z));

ode1 := (1¡ c2)
μ
d2

dz2
U (z)

¶
¡ sin(U (z)) = 0

For a nontrivial solution, it is necessary that the velocity satisfy c 6= 1. Al-
though c could be left as a general parameter, the analytic form is substantially
simpli¯ed if a speci¯c numerical value is chosen for c, e.g., c = 1

4
.

> c:=1/4:

Paralleling the procedure in the KdV recipe, let's set V = dU=dz, so that
d2U=dz2 = V (dV=dU), and substitute this result and U(z) = U into ode1 .

> ode2:=subs(fdiff(U(z),z,z)=V(U)*diff(V(U),U),U(z)=Ug,ode1);

ode2 :=
15

16
V (U)

μ
d

dU
V (U)

¶
¡ sin(U) = 0

For the kink solitary wave, both U and V ´ dU=dz must go to zero as z ! ¡1.
So ode2 is solved for V (U), subject to V (0) = 0.

> sol:=dsolve(fode2,V(0)=0g,V(U));

sol := V (U) =
4

15

p
30¡ 30 cos(U); V (U) = ¡ 4

15

p
30¡ 30 cos(U)

7.2. ANALYTIC SOLITON SOLUTIONS 305

The positive square root is chosen (the negative square root yields an antikink)
and the trig identity cosU = 1¡ 2 sin2(U=2) substituted,

> sol1:=subs(cos(U)=1-2*sin(U/2)^2,sol[1]);

sol1 := V (U) =
4

15

p
60

s
sin

μ
U

2

¶2
and the result simpli¯ed using the square root and symbolic options.

> sol1:=simplify(sol1,sqrt,symbolic);

sol1 := V (U) =
8

15

p
15 sin

μ
U

2

¶
Since V = dU=dz, then z ´ x¡ c t is equal to the integral with respect to U of
the reciprocal of the right-hand side of sol1 .

> z:=x-c*t=int(1/rhs(sol1),U);

z := x¡ t

4
=
1

4

p
15 ln

μ
csc

μ
U

2

¶
¡ cot

μ
U

2

¶¶
Then, solving for U and recalling that U(z) ´ Ã(x¡ c t),

> solwave:=psi(x,t)=solve(z,U);

solwave := Ã(x; t) =

2 arctan

0
BBBBB@

2 e(
(4 x¡t)p15

15)

1 +

Ã
e(
(4x¡t)p15

15
)

!2 ; ¡
Ã
e(
(4x¡t)p15

15)

!2
¡ 1

1 +

Ã
e(
(4x¡t)p15

15
)

!2

1
CCCCCA

yields the analytic solitary-wave solution shown in solwave. The arctan function
is expressed in terms of two arguments separated by a comma. The term to the
left (right) of the comma is the numerator (denominator) of arctan.

The common denominators in the arguments can be removed and the nu-
merator of the second argument simpli¯ed with the following assumption:

> solwave:=simplify(solwave,assume=real);

solwave := Ã(x; t) = 2 arctan(2 e(
(4 x¡t)p15

15
); ¡e(

2 (4 x¡t)p15
15

) + 1)

If you can't instantly see that this still complicated-appearing result is a kink
solitary-wave solution of the SGE, you can be excused. However, that it is a
solution can be con¯rmed by applying the following pdetest command.

> pdetest(solwave,SGE);

0

To see that it is a kink solitary wave, let's animate the rhs of solwave.

> animate(plot,[rhs(solwave),x=-10..50],t=0..200,frames=50,

thickness=2,axes=framed);

On running the animation, we observe that a kink solitary wave travels to the

306 CHAPTER 7. THE HUNT FOR SOLITONS

right, maintaining its initial shape throughout. The kink varies in amplitude
from 0 at x = ¡1 to 2¼ at z = +1.

PROBLEMS:
Problem 7-12: Antikink solitary waves
Show that the choice of the negative square root yields an antikink solution.

Problem 7-13: Relation between amplitude and velocity
Is there any relation between the maximum nonzero amplitude and the veloc-
ity? Is this the same sort of relationship as for the KdV solitary wave or is it
di®erent?

Problem 7-14: Burgers' equation
Burgers' nonlinear di®usion equation is of the form

@U

@t
+ U

@U

@x
= ¾

@2U

@x2
;

where ¾ is the positive di®usion coe±cient. Analytically derive an antikink
solitary-wave solution to Burgers' equation and animate it. How do the width
of the antikink region and the velocity depend on amplitude?

Problem 7-15: Sine{Gordon breather
The SGE permits a moving (velocity v) \breather"-mode solution, which is
localized in space but oscillatory in time, of the form,

Ã = 4 arctan

μr
m

1¡m
sin(°

p
1¡m (t¡ v x))

cosh(°
p
m (x¡ v t))

¶
;

with ° = 1=
p
1¡ v2, ¡1 < v < 1, and 0 < m < 1. The factor ° is the special

Lorentz transformation of relativity with speed of light equal to one.

(a) Con¯rm that Ã is a solution of the SGE.

(b) Animate Ã for m = 1
2
and (i) v = 0, (ii) v = 0:5, (iii) v = ¡0:9.

7.2.3 We Have Solitons!

No civilization : : :would ever have been possible without a framework
of stability : : :
Hannah Arendt, German-born American political philosopher (1906{1975)

To establish whether a solitary wave is a soliton, one must check its ability
to survive a collision with another solitary-wave solution of the same PDE. If
it remains unchanged in shape after the collision, it's a soliton. Two main ap-
proaches are used to study the collision process: analytic and numerical. The
analytic approach uses methods beyond the scope of this text (see, e.g., [EM00])
to establish two-soliton (more generally, multisoliton) solutions. In this recipe,
we shall con¯rm and animate two-soliton solutions for the Korteweg{de Vries
and sine{Gordon equations.

7.2. ANALYTIC SOLITON SOLUTIONS 307

In 1971, Fred Tappert, of Bell Laboratories, found an exact two-soliton
analytic solution for the KdV equation, this equation now being entered.

> restart: with(plots):

> KdVE:=diff(psi(x,t),t)+psi(x,t)*diff(psi(x,t),x)

+diff(psi(x,t),x,x,x)=0;

KdVE :=

μ
@

@t
Ã(x; t)

¶
+ Ã(x; t)

μ
@

@x
Ã(x; t)

¶
+

μ
@3

@x3
Ã(x; t)

¶
= 0

Tappert's two-soliton solution Ã(x; t) is given.

> psi(x,t):=72*(3+4*cosh(2*x-8*t)+cosh(4*x-64*t))

/(3*cosh(x-28*t)+cosh(3*x-36*t))^2;

Ã(x; t) :=
72 (3 + 4 cosh(2 x¡ 8 t) + cosh(4x¡ 64 t))
(3 cosh(x¡ 28 t) + cosh(3x¡ 36 t))2

The lhs of KdVE is extracted and simpli¯ed, Ã(x; t) having been automatically
substituted. A lengthy expression results, which is suppressed here in the text.

> check1:=simplify(lhs(KdVE));

The combine command, with the trig option, is applied to the numerator of
check1 , the result being zero, con¯rming that Ã(x; t) is a solution of KdVE .

> check2:=combine(numer(check1),trig);

check2 := 0

The two-soliton solution is now animated.

> animate(plot,[psi(x,t),x=-20..20],t=-1..1,frames=60,

numpoints=250,axes=frame,thickness=2);

In the animation, one initially has a taller, narrower solitary wave to the left of
a shorter, wider solitary wave. As the animation progresses, both pulses move
to the right. Having a larger velocity, the taller pulse overtakes the shorter
pulse and a collision occurs. During the collision, a nonlinear superposition
takes place, the resultant amplitude being less than the linear sum of the two
amplitudes. As time progresses, the taller, faster pulse passes through the
shorter one and emerges unchanged in shape, as does the shorter pulse. The
solitary waves are indeed solitons.

Next, we con¯rm that the sine{Gordon equation,

> SGE:=diff(U(x,t),x,x)-diff(U(x,t),t,t)-sin(U(x,t))=0;

SGE :=

μ
@2

@x2
U (x; t)

¶
¡
μ
@2

@t2
U (x; t)

¶
¡ sin(U (x; t)) = 0

is satis¯ed by the following two-soliton kink{kink solution. [Jac90]

> U(x,t):=4*arctan(c*sinh(x/sqrt(1-c^2))

/cosh(c*t/sqrt(1-c^2)));

U (x; t) := 4 arctan

0
BB@
c sinh

μ
xp
1¡ c2

¶

cosh

μ
c tp
1¡ c2

¶
1
CCA

308 CHAPTER 7. THE HUNT FOR SOLITONS

The lhs of SGE is simpli¯ed,

> check3:=simplify(lhs(SGE));

and the numerator of check3 expanded and further simpli¯ed.

> check4:=simplify(expand(numer(check3)));

check4 := 0

The result is zero, so U(x; t) satis¯es the sine{Gordon equation. This two-
soliton kink{kink solution is now animated, with c = 1

4 .

> animate(plot,[eval(U(x,t),c=1/4),x=-50..50],t=-100..100,

frames=50,thickness=2,axes=framed);

On running the animation, you will observe that the two kinks travel in opposite
directions, run into each other, and reverse directions after the collision, still
maintaining their initial shapes.

PROBLEMS:

Problem 7-16: Kink{antikink collision
In the two-soliton kink{kink solution, replace the ¯rst c by 1=c, x by c t, and
c t by x. Animate the resulting solution and show that it represents a kink{
antikink collision. Describe the observed behavior.

7.3 Simulating Soliton Collisions

Both authors of this text have spent an academic lifetime jousting with non-
linearities in all mathematical shapes and sizes. In this text, we have tried to
provide a glimpse of the excitement and complexity involved in the study of
nonlinear dynamics, yet still present the bread-and-butter recipes necessary to
solve linear ODE and PDE problems, the staple of most undergraduate science
curricula. Whether the balance of linear and nonlinear recipes is right in our
computer algebra menu, you will have to be the judge, but we could not resist
presenting two numerical recipes that simulate soliton collisions. The ¯rst is
for the Korteweg{de Vries equation, the second for the sine{Gordon equation.

7.3.1 To Be or Not to Be a Soliton

There is no means of proving it is preferable to be than not to be.
E. M. Cioran, French philosopher (1911{1995)

To prove that solitary-wave solutions are solitons, i.e., whether they survive
collisions with each other unchanged in shape, is an important area of research
in nonlinear dynamics. One approach is to numerically collide the solitary
waves using a ¯nite di®erence scheme to simulate the relevant nonlinear PDE.
This was done by Norman Zabusky and Martin Kruskal [ZK65] for the KdV

7.3. SIMULATING SOLITON COLLISIONS 309

equation (taking ® = 1),

@Ã

@t
+ Ã

@Ã

@x
+
@3Ã

@x3
= 0: (7.4)

They used a CDA for each ¯rst derivative, approximated @3Ã=@x3 byμ
@3Ã

@x3

¶
P

= (Ãi+2;j ¡ 2Ãi+1;j + 2Ãi¡1;j ¡ Ãi¡2;j)=(2h3); (7.5)

and averaged Ã in the nonlinear term equally over the three grid points (i+1; j),
(i; j), and (i ¡ 1; j). Setting r = k=h3, the Zabusky{Kruskal algorithm is

Ãi;j+1 = Ãi;j¡1 ¡ r h2 (Ãi+1;j + Ãi;j + Ãi¡1;j) (Ãi+1;j ¡ Ãi¡1;j)=3

¡ r (Ãi+2;j ¡ 2Ãi+1;j + 2Ãi¡1;j ¡ Ãi¡2;j);

(7.6)

with j = 1; 2; : : : : This scheme is numerically stable for r < 0:3849. [EM00]
As with the Klein{Gordon equation, the unknown value Ã on the time row

j + 1 involves Ã values from the previous two time rows, j and j ¡ 1. On the
zero time row, the input will consist of separated solitary waves ordered so that
taller pulses are to the left of shorter ones. As time progresses, the pulses move
to the right, the taller, faster pulses overtaking the shorter, slower ones, and
the pulses \collide." On the ¯rst time row, the values of Ã will be calculated
from a similar time derivative condition to that used by Russell for the KGE.
Let's now implement this numerical scheme with, believe it or not, not just two
but three solitary waves. If the execution time is too long on your computer,
remove the smallest pulse and shorten the number of time steps. For typing
convenience, we shall use the symbol U instead of Ã in the recipe.

In the simulation, we take M = 250 spatial steps and N = 450 time steps.

> restart: M:=250: N:=450: begin:=time():

An operator F is formed to produce a time-dependent KdV solitary-wave pro¯le
centered at time t = 0 at x = X and having speed c.

> F:=(X,c)->3*c *(sech((sqrt(c)/2)*((x-X)-c*t)))^2:

The spatial step size is taken to be h = 1:0 and the time step size k = 0:25.
The ratio r = k=h3 = 0:25 is less than 0:3849, so the numerical scheme will be
stable.

> h:=1.0: k:=0.25: r:=k/h^3;

r := 0:2500000000

The speeds c and pulse centers X of the three solitary waves are entered. The
fastest (c1 = 0:95) and therefore tallest and skinniest wave will be initially on
the far left with center at X1 = 0:2M = 50, the second-fastest (c2 = 0:5)
and tallest in the middle at X2 = 0:3M = 75, and the slowest (c3 = 0:1) and
shortest at X4 = 0:4M = 100.

> c[1]:=0.95: c[2]:=0.5: c[3]:=0.1 :

> X[1]:=0.2*M: X[2]:=0.3*M: X[3]:=0.4*M:

310 CHAPTER 7. THE HUNT FOR SOLITONS

Using the operator F, we add the three time-dependent solitary waves in f , and
take the time derivative of f in g.

> f:= add(F(X[i],c[i]),i=1..3): g:=diff(f,t):

Setting the time to zero, we plot the input pro¯le over the spatial range x = 0
to M , the resulting picture being shown in Figure 7.8.

> t:=0: plot(f,x=0..M,thickness=2);

0

0.5

1

1.5

2

2.5

50 100 150 200 250x
Figure 7.8: Input pro¯le for the three-solitary-wave collision simulation.

Note that there is a slight overlap of the solitary-wave tails. One could place
them further apart initially, but this takes more computing time.

To evaluate f and g at the spatial mesh points, we use the unapply command
to turn them into operators in terms of the spatial coordinate x.

> f2:=unapply(f,x): g2:=unapply(g,x):

Using these two operators, we calculate the input amplitudes Ui;0 ´ f(i; t = 0)
and Ui;1 ´ f(i; t = 0) + k g(i; t = 0) for i = 0 to M in the ¯rst and second
initial conditions, ic1 and ic2 .

> ic1:=seq(U(i,0)=evalf(f2(i)),i=0..M):

> ic2:=seq(U(i,1)=evalf(f2(i))+k*g2(i),i=0..M):

To avoid any possible unknown U values creeping into the double do loop that
will be used to iterate the numerical algorithm, we \initialize" all U values to
zero for i = 0 to M and j = 2 to N , i.e., for all remaining grid points. These
zeros will be overwritten as the loop is executed and new U values calculated.

> init:=seq(seq(U(i,j)=0,i=0..M),j=2..N):

The two initial conditions and the initialization are assigned.

> assign(ic1,ic2,init):

7.3. SIMULATING SOLITON COLLISIONS 311

An operator G is introduced to calculate the rhs of the Zabusky{Kruskal algo-
rithm (7.6) (with Ã replaced with U) for a speci¯ed i and j.

> G:=(i,j)->U(i,j-1)-r*h^2*(U(i+1,j)+U(i,j)+U(i-1,j))

*(U(i+1,j)-U(i-1,j))/3

-r*(U(i+2,j)-2*U(i+1,j)+2*U(i-1,j)-U(i-2,j)):

The numerical algorithm is ¯rst iterated from i = 2 toM¡2 for a given j value
and then from j = 1 to N . The spatial index i is started at 2 and ended at
M ¡ 2 to avoid unknown U values from the two edges of the grid entering into
the double do loop calculation.

> for j from 1 to N do;

> for i from 2 to M-2 do

> U(i,j+1):=G(i,j):

> end do:

> end do:

A graphing operator is formed to plot the entire pro¯le on the jth time step.

> gr:=j->plot([seq([i,U(i,j)],i=2..M-2)],thickness=2):

Using every second graph, the sequence of pictures is now animated.

> plots[display]([seq(gr(2*j),j=0..N/2)],insequence=true);

You will have to execute the recipe, click on the resulting plot, and then on the
start arrow to see the wonderful animation. Despite the initial overlap of the
solitary-wave tails and the coarse spatial grid used (recall, h = 1), the solitary
waves are remarkably stable, all three surviving the collision process apparently
unchanged. After the collision the order of the waves is the reverse of the initial
ordering, with the smallest pulse on the left and the largest on the right.

> cpu:=time()-begin;

cpu := 29:072

The CPU time on a 3-GHz PC is about 29 seconds.

Although we have concentrated on soliton collisions here, the recipe may
be easily modi¯ed to investigate the behavior of other input pro¯les. For most
cases, an analytic solution will not exist and the numerical simulation route is
the only feasible one to take.

PROBLEMS:

Problem 7-17: Third derivative
Using the Taylor expansion, derive the approximation (7.5) to @3Ã=@3x.

Problem 7-18: A di®erent scheme
In the Zabusky{Kruskal ¯nite di®erence scheme for the KdV equation, Ã in the
nonlinear term Ã (@Ã=@x) was approximated by the average of three Ã terms
at the grid points (i+ 1; j), (i; j), and (i¡ 1; j). Compare the results obtained
in the text recipe with those you would obtain if U ´ Ã were approximated by
Ui;j alone. Discuss your result.

312 CHAPTER 7. THE HUNT FOR SOLITONS

Problem 7-19: Ampli¯cation
Multiply the smallest of the three solitary waves in the text recipe by a factor of
3 and interpret the resulting behavior when the worksheet is executed. Explore
the e®ect of multiplying one or more pulses by numerical factors.

Problem 7-20: Radiative ripples
In the text recipe, change the sech2 terms in the input pulses to sech4 terms,
then execute the modi¯ed recipe, and discuss the results.

7.3.2 Are Diamonds a Kink's Best Friend?

I never hated a man enough to give him diamonds back.
Zsa Zsa Gabor, Movie actress (1919{)

Although the sine{Gordon equation,

@2Ã

@x2
¡ @

2Ã

@t2
= sinÃ; (7.7)

can be numerically solved with an explicit scheme based on a rectangular mesh,
it lends itself more naturally to being tackled with a diamond-shaped mesh
chosen to follow the characteristic directions of the equation. To see how this
works, let's consider the general PDE

a
@2U

@x2
+ b

@2U

@x@y
+ c

@2U

@y2
+ e = 0; (7.8)

where a, b, c, and e are functions of U , @U=@x, @U=@y, but not of higher
derivatives. For the SGE, U = Ã, y = t, a = 1, b = 0, c = ¡1, and e = ¡ sinÃ.

Equation (7.8) can be quite generally solved by themethod of characteristics.
Setting p ´ @U=@x and q ´ @U=@y, equation (7.8) can be written in the form

a
@p

@x
+ b

@p

@y
+ c

@q

@y
+ e = 0: (7.9)

Since p = p(x; y) and q = q(x; y), then

dp

dx
=
@p

@x
+
@p

@y

dy

dx
;
dq

dy
=
@q

@x

dx

dy
+
@q

@y
: (7.10)

Substituting @p=@x and @q=@y into (7.9), then multiplying through by dy=dx,
noting that @q=@x = @p=@y, and rearranging yields

@p

@y

"
a

μ
dy

dx

¶2
¡ b

μ
dy

dx

¶
+ c

#
¡
·
a
dp

dx

dy

dx
+ c

dq

dx
+ e

dy

dx

¸
= 0: (7.11)

At this stage, the resulting equation looks like a mathematical mess! However,
if we choose to work in the characteristic directions whose slopes are given by

a

μ
dy

dx

¶2
¡ b

μ
dy

dx

¶
+ c = 0; (7.12)

7.3. SIMULATING SOLITON COLLISIONS 313

then equation (7.11) reduces to

a

μ
dy

dx

¶
dp+ c dq + e dy = 0: (7.13)

For the SGE, a = 1, b = 0, and c = ¡1, so that (7.12) yields (dy=dx)2 ¡ 1 = 0,
or dy=dx = §1. The two characteristic directions have slopes of 45± and ¡45±,
respectively. Forming a diamond-shaped mesh with these slopes produces the
grid illustrated in Figure 7.9. Given the new grid, how is U (or Ã) calculated?

Δx=h

L R

P

x

y

Δy=h
j=0

j=1

j=2

i=0 i=1 i=2

(1,1) (3,1) (5,1)

(2,0) (4,0) (6,0)

(0,2) (2,2) (4,2)

x xmin max

Figure 7.9: Characteristic directions and labels for solving the SGE.

Consider the mesh point P in Figure 7.9, where it is desired to calculate the
unknown UP from the known values UL and UR on the previous time step. The
subscripts L and R denote advancing \from the left" along the characteristic
direction dy=dx = 1 and \from the right" along the characteristic direction
dy=dx = ¡1, respectively. Taking dy=dx = §1 and replacing (7.13) with a
¯nite di®erence approximation yields the following pair of equations,

(pP ¡ pL)¡ (qP ¡ qL) = ¡eL (yP ¡ yL);

¡(pP ¡ pR)¡ (qP ¡ qR) = ¡eR (yP ¡ yR);
(7.14)

314 CHAPTER 7. THE HUNT FOR SOLITONS

which are easily solved for pP and qP ,

pP =
1

2
(pR + pL) +

1

2
(qR ¡ qL) +

1

2
(eR ¡ eL)¢y;

qP =
1

2
(pR ¡ pL) +

1

2
(qR + qL) +

1

2
(eR + eL)¢y;

(7.15)

with ¢y = yP ¡ yL = yP ¡ yR = ¢x ´ h.
To obtain UP from the values at L and R, we note that U=U(x; y), so that

dU=(@U=@x) dx+ (@U=@y) dy=p dx+ q dy. Replacing this result with a ¯nite
di®erence approximation along the characteristic direction dy=dx=1 yields

UP = UL +
1

2
(pL + pP)(xP ¡ xL) +

1

2
(qL + qP)(yP ¡ yL)

or UP = UL +
1

2
h (pL + pP + qL + qP); (7.16)

where for improved accuracy, the \old" and \new" values of p and q have
been averaged. Of course, we could also have calculated UP along the other
characteristic direction dy=dx = ¡1, viz.,

UP = UR +
1

2
(pR + pP)(xP ¡ xR) +

1

2
(qR + qP)(yP ¡ yR);

or UP = UR +
1

2
h (¡pR ¡ pP + qR + qP): (7.17)

Since the two numerical values of UP will di®er slightly, an equally weighted
average of the two results for UP is usually taken.

This method of characteristics scheme is now applied to the collision of a
sine{Gordon kink with an antikink solitary wave, the input pro¯le taken to be,

U = 4arctan
³
e(x¡ x1 ¡ c1 t)=a

´
+ 4 arctan

³
e¡(x¡ x2 ¡ c2 t)=b

´
; (7.18)

with a =
p
1¡ c21, b =

p
1¡ c22, x1 < 0, x2 > 0, c1 > 0, and c2 < 0, and

the time t = 0. The ¯rst term in the input pro¯le is the kink,2 the second
the antikink. Nonzero values of x1 and x2 are used to spatially separate the
kink and antikink initially. The choice of signs puts the kink to the left of the
antikink. Since the velocities are of opposite sign, the kink and antikink will
move toward each other and a collision will ultimately take place.

So with this preamble behind us, let the ¯nal recipe of this chapter begin!
Let's consider M = 200 spatial and N = 100 time steps.

> restart: begin:=time(): M:=200: N:=100:

We take x1 = ¡5, x2 = 5, c1 = 0:8, and c2 = ¡0:8, and calculate a and b.
> x[1]:=-5: x[2]:=5: c[1]:=0.8: c[2]:=-0.8:

> a:=sqrt(1-c[1]^2); b:=sqrt(1-c[2]^2);

a := 0:6000000000 b := 0:6000000000

2A more general form than derived earlier.

7.3. SIMULATING SOLITON COLLISIONS 315

The spatial range is taken from xmin = 3x1 = ¡15 to xmax = 3x2 = 15, and
the step size h = (xmax ¡ xmin)=M calculated.

> xmin:=3*x[1]: xmax:=3*x[2]: h:=evalf((xmax-xmin)/M);

h := 0:1500000000

The kink{antikink pro¯le at time t is entered.

> U:=4*arctan(exp((x-x[1]-c[1]*t)/a))

+4*arctan(exp(-(x-x[2]-c[2]*t)/b));

U := 4 arctan
³
e(1:666666667x+ 8:333333335¡ 1:333333334 t)

´
+ 4arctan

³
e(¡1:666666667x+ 8:333333335¡ 1:333333334 t)

´
The values of p(x; 0) ´ (@U=@x)jt=0 and q(x; 0) ´ (@U=@t)jt=0 are needed, so
the relevant spatial and time derivatives are calculated and labeled P and Q.

> P:=diff(U,x): Q:=diff(U,t): t:=0:

Setting t = 0, the following loop evaluates U , p, and q at each spatial grid point
on the zeroth time step. Note that the numerical value of U at the ith spatial
grid point is labeled ui;0 and i is incremented in steps of 2 from 0 to M .

> for i from 0 to M by 2 do #initial conditions

> x:=xmin + i*h;

> u[i,0]:=evalf(U); p[i,0]:=evalf(P); q[i,0]:=evalf(Q);

> end do:

The input pro¯le is now plotted and displayed in Figure 7.10.

> plot([seq([xmin+2*i*h,u[2*i,0]],i=0..M/2)],view=

[xmin..xmax,-1..15],tickmarks=[3,3],labels=["x","U"]);

0

5

10

15

U

–10 10x

Figure 7.10: Input pro¯le for the kink{antikink soliton collision simulation.

316 CHAPTER 7. THE HUNT FOR SOLITONS

The kink is on the left, the antikink on the right, the two pro¯les being joined
together in the middle. At the x boundaries, one has U ¼ 2¼ and @U=@x ¼ 0.
Since the kink is traveling to the right and the antikink to the left, a collision will
take place before each reaches the opposite boundary. Provided that we do not
let the kink and antikink come close to those boundaries, the above boundary
conditions will prevail for all times in the run. This implies that @U=@t ¼ 0 at
the x boundaries. In the following do loop, the x-boundary grid points (circled
points in Figure 7.9) are initialized, setting U = 2¼ and p = q = 0.

> for j from 2 to N by 2 do #boundary conditions

> u[0,j]:=2*evalf(Pi): p[0,j]:=0: q[0,j]:=0;

> u[M,j]:=2*evalf(Pi): p[M,j]:=0: q[M,j]:=0;

> end do:

The following double do loop calculates the values of u at the other grid points.

> for j from 0 to (N-1) do:

A conditional statement is inserted to start i at i0 = 0 for j = 0; 2; 4; : : : and
i0 = 1 for j = 1; 3; 5; : : : :

> if j mod 2 = 0 then i0:=0: else i0:=1: end if;

The following do loop runs over the spatial grid points i, incrementing them
from i0 to M ¡ 2 in steps of 2.

> for i from i0 to (M-2) by 2 do

Using equation (7.15), we calculate the values of p and q.

> p[i+1,j+1]:=0.5*(p[i+2,j]+p[i,j]+q[i+2,j]-q[i,j]

+(-sin(u[i+2,j])+sin(u[i,j]))*h);

> q[i+1,j+1]:=0.5*(p[i+2,j]-p[i,j]+q[i+2,j]+q[i,j]

+(-sin(u[i+2,j])-sin(u[i,j]))*h);

Then U is evaluated using equations (7.16) and (7.17), and the average taken.

> uP1:=u[i,j]+0.5*h*(p[i,j]+p[i+1,j+1] +q[i,j]+q[i+1,j+1]);

> uP2:=u[i+2,j]+0.5*h*(-p[i+2,j]-p[i+1,j+1]+q[i+2,j]

+q[i+1,j+1]);

> u[i+1,j+1]:=(uP1+uP2)/2;

> end do: end do:

The results are plotted,

> for j from 0 to N by 2 do

> pl(j):=plot([seq([xmin+2*i*h,u[2*i,j]],i=0..M/2)],

thickness=3,labels=["x","U"]):

> end do:

and animated with the insequence=true option.

> plots[display]([seq(pl(2*j),j=0..N/2)],insequence=true);

When the work sheet is executed, the kink{antikink hump °ips upside down
but the shape of the moving pro¯le is identical to the input shape aside from a

7.3. SIMULATING SOLITON COLLISIONS 317

phase factor ei¼ = ¡1, indicating that the kink and antikink solitary waves are
indeed solitons. Finally, the CPU time is calculated.

> cpu:=(time()-begin)*seconds;

cpu := 3:024 seconds

and is about 3 seconds on a 3-GHz PC.

PROBLEMS:
Problem 7-21: Ampli¯ed kink{antikink input
In the text recipe, double the amplitudes of the input kink and antikink solitary-
wave pro¯les. Remembering to also double the value 2¼ in the initialization
statement to avoid causing an end-e®ect problem, run the ¯le with the ampli¯ed
input and interpret the outcome.

Problem 7-22: Kink{kink collision
Modify the recipe to simulate the collision of a kink solitary wave with another
kink. Discuss the observed behavior.

Problem 7-23: Antikink{antikink collision
Modify the recipe to simulate the collision of an antikink solitary wave with
another antikink. Discuss the observed behavior.

Problem 7-24: Rectangular mesh
Solve the problem of the text recipe using an explicit scheme based on a rect-
angular mesh.

Problem 7-25: Interacting laser beams
The interaction of two intense laser pulses of di®erent frequencies as they pass
through each other in opposite directions in a certain resonant absorbing °uid
can be described [RE76] by the following normalized PDEs for the laser inten-
sities U and V ,

@U

@x
+
@U

@y
= ¡g1 U V ¡ ®U;

@V

@x
¡ @V
@y

= ¡g2 U V + ®V:

Here x is the normalized distance inside the °uid medium of length one unit, y
the normalized time, g1 > 0 and g2 > 0 are the \gain" coe±cients, and ® ¸ 0
the absorption coe±cient. The U pulse travels in the positive x direction, while
the V pulse moves in the negative x direction.

(a) Find the characteristic directions along which the PDEs reduce to ODEs.

(b) Devise an explicit numerical scheme that integrates the ODEs along the
characteristic directions assuming that there are no pulses initially inside
the °uid (U(x; 0) = V (x; 0) = 0 for 0 < x < 1) and identical ¯nite-
duration U and V pulses are fed in at opposite ends (U(0; y) = V (1; y) =
f(y) for 0 · y · Y = 1

2
and zero for y > Y).

(c) Numerically solve the equations and animate the results, assuming that
f(y) = 1, g1 = 0:4, g2 = 20, and (a) ® = 0, (b) ® = 0:5.

(d) Discuss the behavior of the two pulses as revealed in the animation.

318 CHAPTER 7. THE HUNT FOR SOLITONS

(e) Repeat the calculation and animation for f(y) = sin(2¼ y), the param-
eter values and all boundary and initial conditions remaining the same.
Compare the results with those obtained for the rectangular pulses.

Chapter 8

Nonlinear Diagnostic Tools

In the Appetizers, the reader was introduced to the concept of phase-plane
analysis of nonlinear ODE models. This involved the creation of phase-plane
portraits and the location and identi¯cation of the relevant stationary points of
the ODE system. This graphical approach was extended in the last chapter to
¯nding solitary wave solutions of physically important nonlinear PDEs.

Physicists and mathematicians have developed a wide variety of other graph-
ical tools for exploring the frontiers of nonlinear dynamics and understanding
what is observed. In this chapter, a few of the simpler diagnostic tools for
nonlinear ODEs and nonlinear di®erence equations are presented for the reader
who craves a ¯nal light but scrumptious intellectual dessert.

8.1 The Poincar¶e Section

An important approach to studying the forced motion of nonlinear oscillator
systems is to create a Poincar¶e section. If the driving frequency is !, one takes a
\snapshot" of the phase plane after each period T0 = 2 ¼=! of the driving force.
After an initial transient time, the ODE system will settle down in steady state
to either a periodic or a chaotic motion. For the periodic case, the system is said
to display a period-n response if its period T equals nT0, where n = 1; 2; 3; : : : :
In other words, the frequency response of a period-n solution is !n = !=n.

If the system evolves to a period-1 solution, with T = T0, the Poincar¶e
section will consist of a single plot point in the phase plane that is reproduced
at each multiple of the driving period. On the other hand, if the system evolves
to a period-2 solution, with T =2 T0, the Poincar¶e section will have two points
between which the system oscillates as multiples of T0 elapse. And so on.

In contrast to the periodic situation, for chaotic motion a point is produced
at a di®erent location at each multiple of T0, and the \sum" of the individual
snapshots can produce strange, localized patterns (\strange attractors") of plot
points with complex boundaries in the phase plane.

In the following recipe, the \period-doubling route to chaos" is explored once
again for the forced Du±ng oscillator, now from the Poincar¶e section viewpoint.

319

320 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

8.1.1 A Rattler Signals Chaos

Humor is emotional chaos remembered in tranquility.
James Thurber, American writer, humorist, and cartoonist (1894{1961)

As an illustrative example of how a Poincar¶e section is produced and how it
changes character as a control parameter is varied, let's consider Du±ng's ODE
describing the force oscillations of a nonlinear spring system,

Äx+ 2 g _x+ ®x+ ¯ x3 = F cos(! t): (8.1)

Here x is the displacement, g the damping coe±cient, ® and ¯ real parameters,
F the force amplitude, and ! the driving frequency.

The solutions of Du±ng's equation were examined in some detail in Sec-
tion 1.2.1 as the control parameter F was varied, all other parameters being
held ¯xed. In this recipe, we shall use exactly the same coe±cient values and
initial conditions as in the earlier treatment, including the same F values. This
will allow us to compare the results of the Poincar¶e treatment with the conclu-
sions reached previously on the response of the forced Du±ng oscillator.

The number of F values is taken to be N1 = 4, and the maximum number
of multiples of the driving period T0 = 2¼=! considered is N2 = 250.

> restart: with(plots): N1:=4: N2:=250:

The coe±cient values are entered and the driving period calculated.

> g:=0.25: alpha:=-1: beta:=1: omega:=1: T[0]:=2*Pi/omega;

T0 := 2¼

The force amplitudes are F1=0:325, F2=0:35, F3=0:356, and F4=0:42.

> F[1]:=0.325: F[2]:=0.35: F[3]:=0.356: F[4]:=0.42:

Du±ng's equation can be rewritten as a coupled set of ¯rst-order ODEs,

_x = y; _y = ¡2 g y ¡ ®x¡ ¯ x3 + Fi cos(! t);
which will be numerically solved with the initial conditions x(0)=0:09, y(0)=0.

> ic:=x(0)=0.09,y(0)=0:

The coupled ¯rst-order di®erential equations are entered, an operator being
used for the second one, the subscript i of the force amplitude Fi to be given.

> de1:=diff(x(t),t)=y(t):

> de2:=i->diff(y(t),t)=-2*g*y(t)-alpha*x(t)-beta*x(t)^3

+F[i]*cos(omega*t):

An operator sol is introduced to numerically solve de1 and de2 (i), subject to
the initial conditions, for a given value of i. The option maxfun=0 overrules any
limit on the maximum number of function evaluations in Maple's numerical
algorithm. The output is given as a listprocedure.

> sol:=i->dsolve(fde1,de2(i),icg,fx(t),y(t)g,type=numeric,
maxfun=0,output=listprocedure):

Operators X and Y are formed to evaluate x(t) and y(t)

> X:=i->eval(x(t),sol(i)): Y:=i->eval(y(t),sol(i)):

8.1. THE POINCAR¶E SECTION 321

for the ith solution, the evaluations being carried out in the following do loop.

> for i from 1 to N1 do xx[i]:=X(i); yy[i]:=Y(i); end do:

An operator Gr is created to graph a phase-plane point, represented by a size-16
blue cross, at time t = nT0 for the ith amplitude.

> Gr:=(i,n)->pointplot(f[yy[i](n*T[0]),xx[i](n*T[0])]g
color=blue,symbol=CROSS,symbolsize=16):

Using this graphing operator in the following loop generates the Poincar¶e section
for each of the N1 = 4 amplitude values. To eliminate the transient part of the
solution, a certain number of initial points must be removed in each plot. This
number will vary for each numerical run and must usually be determined by
trial and error. Here, the ¯rst 24 points have been removed. Since N2 = 250,
each plot still contains 225 points. A suitable viewing box is selected, which is
the same for all four plots, and labels added and the minimum number of tick
marks controlled.

> for i from 1 to N1 do
> display([seq(Gr(i,n),n=25..N2)],axes=boxed,view=

[-0.4..0.8,-1.4..1.4],labels=["y","x"],tickmarks=[3,3]);
> end do;

–1

1

x

0 0.5y

–1

1

x

0 0.5y

Figure 8.1: Period-1 (left ¯gure) and period-2 (right) Poincar¶e sections.

The plot on the left of Figure 8.1 corresponds to F1=0:325, the one on the right
to F2=0:35. Despite the fact that 225 points were plotted, we see only a single
cross in the F1 =0:325 graph, indicating that the system has settled down to
a period-1 solution. For F2 = 0:35, the ODE system oscillates back and forth
between the two crosses, the Poincar¶e section being characteristic of a period-2
solution. The observed periodicities agree with the results in Section 1.2.1.

For F3 = 0:356, Figure 8.2 indicates a period-4 solution, again agreeing
with our earlier conclusion about the periodicity for this forcing amplitude.
So it is clear that the Poincar¶e section approach is a useful graphical tool for
interpreting the periodicity of driven oscillator systems.

322 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

–1

1

x

0 0.5y

Figure 8.2: Period-4 Poincar¶e section.

Finally, for F4 = 0:42, we had previously observed a localized chaotic tra-
jectory, characteristic of a strange attractor. The corresponding \strange"
Poincar¶e section is shown in Figure 8.3.

–1

0

1

x

0 0.5y

Figure 8.3: Chaotic \rattler."

Strange attractors are often given colorful or descriptive names. What name
shall we give to the chaotic Poincar¶e section obtained above? This depends on
the reader's experience and imagination. To coauthor Richard, it reminds him
of an incident that occurred while he was hiking with his family in the Super-
stition Mountains of southern Arizona. While scrambling down a rocky scree
slope, he had a feeling of impending chaos when his youngest daughter nearly
stumbled into a coiled rattlesnake. To the author, this particular Poincar¶e sec-

8.1. THE POINCAR¶E SECTION 323

tion resembles that rattler poised to strike. Fortunately, the snake was just as
frightened as the author's daughter and slithered away without striking. Some
years later one could joke about the incident, but it was certainly not funny at
the time.

PROBLEMS:
Problem 8-1: A di®erent ¯ value
Holding all other parameter values as in the text recipe, use the Poincar¶e section
to determine the response of Du±ngs's ODE for each F value when ¯ = 2.

Problem 8-2: Varying the frequency
For each of the four Fi, explore the response of the Du±ng ODE as the frequency
! is varied, all other parameters being the same as in the text recipe.

Problem 8-3: Interchanging signs
Determine the response of the Du±ng ODE for each Fi when all numerical val-
ues are the same as in the text recipe, but the signs of ® and ¯ are interchanged.

Problem 8-4: Periodicity?
Using the Poincar¶e section approach, determine the periodicity of the steady-
state solution of the following forced oscillator equations:

(a) Äx+ 0:7 _x+ x3 = 0:75 cos t; with x(0) = _x(0) = 0;

(b) Äx+ 0:08 _x+ x3 = 0:2 cos t; with x(0) = 0:25; _x(0) = 0.

Problem 8-5: Varying force amplitude
Using the Poincar¶e section approach, determine the periodicity of the steady-
state solution of the following ODE for F = 0:357 and F = 0:35797:

Äx+ 0:5 _x¡ x+ x3 = F cos(t+ 1); with x(0) = 0:09; _x(0) = 0:

8.1.2 Hamiltonian Chaos

Progress everywhere today does seem to come so very heavily
disguised as Chaos.
Joyce Grenfell, British actor, writer, Stately as a Galleon, 1978

In the Hamiltonian formulation of classical mechanics the motion of a single
particle of unit mass, with coordinates qi and (generalized) momenta pi, mov-
ing in a conservative potential V (qi) can be described by the Hamiltonian,

H =

NX
i

1

2
p2i + V (qi); (8.2)

where the ¯rst term is the kinetic energy and N is the number of degrees of
freedom. Hamilton's equations of motion then are given by

_qi =
@H

@pi
; _pi = ¡

@H

@qi
: (8.3)

324 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

For N = 1, the motion can be described by a trajectory in the q1 vs. p1 phase
plane. For N > 1, the trajectory is in a 2N -dimensional phase space.

Originally motivated to study the motion of a star inside a galaxy, H¶enon
and Heiles [HH64] introduced a conservative Hamiltonian describing the motion
of a unit mass in the two-dimensional potential

V =
1

2
q21 +

1

2
q22 + q

2
1 q2 ¡

1

3
q32 : (8.4)

The ¯rst two terms in V would generate a paraboloid of revolution characteristic
of a two-dimensional harmonic oscillator. The force ~F = ¡rV in this case is
just the two-dimensional form of Hooke's law. The inclusion of the two cubic
terms in V distort the shape of the potential away from a paraboloid, add
nonlinear terms to Hooke's law, and Hamilton's equations generate nonlinear
ODEs in the 4-dimensional phase space.

In this recipe, we shall use specialized commands found in the DEtools
library package to generate these equations, numerically solve them to pro-
duce the trajectory for a speci¯ed energy and initial conditions, and produce a
Poincar¶e section.

> restart: with(plots): with(DEtools):

Entering the H¶enon{Heiles potential (8.4), a two-dimensional contour plot is
generated, the contour lines given by V = 0:04 i with i = 0 to 9. To obtain
smooth curves, the number of plotting points is taken to be 5000.

> V:=q1^2/2+q2^2/2+q1^2*q2-q2^3/3:

> contourplot(V,q1=-2..2,q2=-2..2,contours=[seq(0.04*i,

i=0..9)],numpoints=5000,color=black);

–2

–1

0

1

2

q2

–2 –1 1 2q1

Figure 8.4: Contour plot of the H¶enon{Heiles potential.

8.1. THE POINCAR¶E SECTION 325

To aid in interpreting the contour plot, let's ¯nd the stationary points where the
force vanishes. Di®erentiating V with respect to each coordinate and solving
for the coordinate values that make the force components equal to zero,

> sol:=solve(fdiff(V,q1),diff(V,q2)g,fq1,q2g);

sol := fq2 = 0; q1 = 0g; fq2 = 1; q1 = 0g;

fq2 = ¡1
2
; q1 =

1

2
RootOf(¡3 + Z 2; label = L2)g

yields a stationary point at q1 = q2 = 0 and q1 = 0; q2 = 1, as well as others
at q2 = ¡1

2
and q1 given by the RootOf placeholder. These latter values may

be found by applying the allvalues command to the third entry in sol .

> sol3:=allvalues(sol[3]);

sol3 := fq1 =
p
3

2
; q2 =

¡1
2
g; fq2 = ¡1

2
; q1 = ¡

p
3

2
g

There are two more ¯xed points at q1 =
p
3
2
; q2 = ¡ 1

2
and at q1 = ¡

p
3
2
; q2 =

¡ 1
2 . The four stationary points are now extracted separately and labeled,

> s1:=sol[1]; s2:=sol[2]; s3:=sol3[1]; s4:=sol3[2];

s1 := fq2 = 0; q1 = 0g s2 := fq2 = 1; q1 = 0g

s3 := fq1 =
p
3

2
; q2 =

¡1
2
g s4 := fq2 = ¡1

2
; q1 = ¡

p
3

2
g

and the potential energy at each stationary point determined.

> U:=v->eval(V,v): V1:=U(s1); V2:=U(s2); V3:=U(s3); V4:=U(s4);

V1 := 0 V2 :=
1

6
V3 :=

1

6
V4 :=

1

6
The stationary point s1 at the origin is the minimum of what would be a
parabolic potential well if the cubic terms were not present in V . Referring
to the contour plot, the shape of the contour lines changes as one moves away
from the origin, the contour lines near the other three stationary points being
characteristic of saddle points.1 If the particle has a total energy below the
potential energy 1

6
at the saddle point and starts inside the region bounded

by the three saddle points, it will have a bounded orbit inside this region. If
E > 1

6 , the particle could escape through one of the saddle points to in¯nity.
The Hamiltonian is entered, and the command hamilton eqs used to gen-

erate Hamilton's equations and a list of the four dependent variables.

> H:=p1^2/2+p2^2/2+V;

> hamilton_eqs(H);

[
d

dt
p1 (t) = ¡q1 (t)¡ 2 q1 (t) q2 (t); d

dt
p2 (t) = ¡q2 (t)¡ q1 (t)2 + q2 (t)2;

d

dt
q1 (t) = p1 (t);

d

dt
q2 (t) = p2 (t)]; [p1 (t); p2 (t); q1 (t); q2 (t)]

1You can con¯rm this by making a 3-dimensional contour plot using the plot3d command.

326 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

The result is a nonlinear system of four coupled ODEs, which must be solved
numerically. Let's take as initial conditions q1 (t = 0) = q10 = ¡0:1, q2 (0) =
q20 = ¡0:2, p2 (0) = p20 = ¡0:05, and a total energy E0 = 1=16. This will
produce a bounded orbit inside the region bounded by the saddle points.

> q10:=-0.1: q20:=-0.2: p20:=-0.05: E0:=1/16:

Note that it is not necessary to specify the initial value of p1 , since it will be
determined by energy conservation. In fact, p1 (0) can be obtained by entering
the following generate ic command and asking for one solution.

> ic:=generate_ic(H,ft=0,p2=p20,q2=q20,q1=q10,energy=E0g,1):
ic := f[0:; 0:2667708130; ¡0:05; ¡0:1; ¡0:2]g

The second entry in the output tells us that p1 (0) ¼ 0:267. If desired, more ini-
tial conditions can be generated by stating, e.g., a range for q2 (0) and specifying
the number of p1 (0) values wanted.

The following poincare command uses a fourth-order Runge{Kutta method
with three iterations and a step size of 0:05 to produce a trajectory over the
time interval t = 0 to 300 in the q2 vs. p2 vs. q1 phase space. The last number
speci¯es that a 3-dimensional plot is to be produced.

> poincare(H,t=0..300,ic,stepsize=.05,iterations=3,

scene=[q2=-0.4..0.4,p2=-0.4..0.4,q1=-0.4..0.4],3);

H = :62500000e ¡ 1 ; Initial conditions :; t = 0:;

p1 = 0:2667708130; p2 = ¡0:05; q1 = ¡0:1; q2 = ¡0:2;
Maximum H deviation : :1020000000e ¡ 5 %

Time consumed : 19 seconds

H = .6250000000e–1;

–0.4–0.200.20.4 q2

–0.4
0

p2

–0.4

–0.2

0

0.2

0.4

q1

Figure 8.5: Quasiperiodic trajectory for E = 1=16.

8.1. THE POINCAR¶E SECTION 327

The output informs us of the input H (energy) value, the initial conditions,
the maximum percentage deviation from the input H value, and the computer
time taken to produce a plot of the trajectory, which is shown in Figure 8.5.
The trajectory executes quasiperiodic motion on the surface of a twisted torus,
referred to as the Kolmogorov{Moser{Arnold (KAM) torus.

The Poincar¶e section for the q1 = 0 plane shown in Figure 8.5 can be
obtained with the following poincare command. In addition to the same in-
formation as before, the number of points (96 here) in the q2 -p2 plane where
the trajectory crosses the plane is also given.

> poincare(H,t=0..300,ic,stepsize=.05,iterations=3,

scene=[q2,p2]);

H = :62500000e ¡ 1 ; Initial conditions :; t = 0:;

p1 = 0:2667708130; p2 = ¡0:05; q1 = ¡0:1; q2 = ¡0:2
Number of points found crossing the (q2 ; p2) plane : 96

Maximum H deviation : :9800000000e ¡ 6 %

Time consumed : 1 seconds

H = .6250000000e–1;

–0.2

–0.1

0

0.1

0.2

p2

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
q2

Figure 8.6: Poincar¶e section for E = 1=16.

The Poincar¶e section can be qualitatively understood. One can think of the
KAM torus as a twisted \donut," with the trajectories con¯ned to the donut's
surface. The con¯guration of points in the Poincar¶e section resembles two
distorted ellipses that one might expect from \slicing" the donut through its
cross section with the q1 = 0 plane.

If the total energy is increased to 1
8 and the viewing box increased in size,

the \chaotic" trajectory shown in Figure 8.7 results.

328 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

H = .1250000000;

–0.6–0.4–0.200.20.40.6 q2

–0.5
0

p2

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

q1

Figure 8.7: Chaotic trajectory for E = 1
8
.

A great deal of mathematics research has gone into understanding the on-
set of chaos for the nonlinear H¶enon{Heiles ODE system. The interested
reader is referred to the nonlinear dynamics texts by Jackson [Jac90] and by
Hilborn [Hil94].

PROBLEMS:
Problem 8-6: A di®erent potential
Replace the potential in the text recipe with

V =
1

2
q21 +

1

2
q22 + q

4
1 q2 ¡

1

4
q32 :

(a) Execute the modi¯ed recipe with E = 1=16 and initial conditions as in
the text recipe. Discuss the resulting plots.

(b) Explore other initial conditions for the same total energy as in part (a).
Discuss the results.

(c) Explore what happens as the energy is increased with the same initial
conditions as in part (a). Discuss the results.

(d) Explore other potential energy functions and discuss the results.

Problem 8-7: Toda potential
The Toda potential [Jac90] is given by

V =
1

3

μ
e(q2 +

p
3 q1) + e(q2 ¡

p
3 q1) + e(¡2 q2)

¶
¡ 1:

(a) Create two- and three-dimensional contour plots of V , choosing suitable
potential energy contours and viewing ranges.

8.2. THE POWER SPECTRUM 329

(b) Locate and identify the nature of the stationary points.

(c) Generate the Hamiltonian equations.

(d) For E = 1:0, p2(0) = ¡0:05, q2(0) = ¡0:2, q1(0) = ¡0:2, determine p1(0).
(e) Plot the system's trajectory in the q1-q2-p2 space and discuss the result.

(f) Generate the Poincar¶e section in the q2 vs. p2 plane. Interpret the result.

(g) Explore the Toda Hamiltonian for other E values and discuss the results.

8.2 The Power Spectrum

Still another important diagnostic tool is the power spectrum, which, although
perhaps better known for its use by engineers in digital signal processing [SK89],
can be adapted to studying the frequency content of a solution x(t) of a forced
linear or nonlinear oscillator equation.

Suppose that in principle, a nonlinear ODE of physical interest has the time-
dependent solution x(t), valid for all t (¡1 < t <1). To study the frequency
spectrum of the solution, one can introduce the Fourier transform X(f) of x
and its inverse through the relations

X(f) =

Z 1

¡1
x(t) e¡2 ¼ I f t dt; x(t) =

Z 1

¡1
X(f) e2¼ I f t df; (8.5)

where f is the frequency in hertz (cycles/second), which is related to the fre-
quency ! in radians/second by the relation ! = 2¼ f . With the help of (8.5),
the scienti¯cally important Parseval's theorem can be derived, having the form,Z 1

¡1
jx(t)j2 dt =

Z 1

¡1
jX(f)j2 df: (8.6)

Parseval's theorem has a simple physical interpretation in, for example, classical
mechanics. In this case, x(t) is the instantaneous displacement, and the left-
hand side of (8.6) is proportional to the total energy. Thus, since the right-hand
side must have the same dimensions, the quantity jX(f)j2 represents the energy
per unit frequency interval. Aside from a suitable normalization, which can be
introduced, S(f)´jX(f)j2 is called the power spectrum. The power spectrum
gives us information on the distribution of energy as a function of frequency.
If, for example, all the energy is in a single frequency, the spectrum will consist
of a single vertical \spike" at that frequency.

For a nonlinear forced oscillator ODE such as Du±ng's equation, x(t) cannot
in general be determined analytically. For such situations, one must evaluate x
numerically at discrete time steps. Instead of obtaining a continuous function
x(t), a sequence of x values is obtained for some ¯nite time domain. For su±-
ciently small time steps, the sequence will approximate a continuous function.
Although you might think that one could use the entire sequence to numerically

330 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

evaluate the Fourier transform of x(t) and then S(f), this procedure would lead
to an inordinately long computation time. In practice, one tries to obtain an
accurate power spectrum using a limited number of x points. How this is done
is now explained in some detail.

Assume that a sequence of N values of x, viz., xn ´ x(tn = nTs) with
n = 0; 1; 2; : : : ; N ¡ 1 is recorded at evenly spaced time intervals Ts over some
¯nite time range. As with the Poincar¶e section analysis, one starts recording at
a su±ciently large time t0, so as to ensure that all transients have died away.
How large this time must be depends on the nature of the forced oscillator, the
parameter values, initial conditions, etc., and is determined by trial and error.

For any choice of the sampling time interval Ts, there is a very special corre-
sponding frequency, fNyquist = 1=(2Ts), called the Nyquist frequency. Note that
the sampling frequency Fs = 1=Ts is twice the Nyquist frequency. Why is the
Nyquist frequency important? The answer lies in the sampling theorem, due to
Nyquist [Nyq28] and Shannon [Sha49], which states:

If a continuous signal x(t), sampled at an interval Ts, is such that its Fourier
transform X(f) is equal to 0 for all frequencies jf j > fNyquist, then x(t) is com-
pletely determined by the sampled values xn.

In this case, the Nyquist frequency is clearly greater than the maximum fre-
quency fmax in the signal's frequency spectrum. Thus, Fs > 2 fmax.

In signal processing, engineers ensure that the sampling theorem prevails by
using a low-pass analog ¯lter on their signal to select fmax(< fNyquist), removing
all higher frequencies by the process of attenuation. When X(f) is zero outside
the range ¡fNyquist to fNyquist, they refer to x(t) as being bandwidth limited to
frequencies smaller in magnitude than fNyquist.

What happens if x(t) is not bandwidth limited to this frequency range,
i.e., its Fourier transform X(f) does not vanish outside the range ¡fNyquist to
fNyquist? It turns out that the power outside this frequency range gets \folded
back" into the range giving an inaccurate power spectrum. This phenomenon is
called aliasing. To avoid aliasing, one should attempt to make x(t) bandwidth
limited by taking the sampling frequency Fs > 2 fmax. Unfortunately, for forced
oscillator problems it is usually not known a priori what the maximum frequency
component is in the signal x(t). On the other hand, suppose that the chosen
sampling frequency or sampling interval Ts = 1=Fs is such that X(f) is not
zero at the Nyquist frequency. Then increase Fs to check for possible aliasing.
Increasing Fs pushes the Nyquist frequency up, allowing us to see whether there
are indeed higher-frequency components present.

Keeping these important aspects in mind, let's continue with the formal
derivation of the power spectrum from the N sampled values xn. It follows from
elementary mathematics that given these N values, we can generate the Fourier
transform at only N frequencies. Assuming that x(t) is bandwidth limited, we
shall take these frequencies to be equally spaced between ¡fNyquist and fNyquist,
viz., the frequencies fk ´ k=(N Ts) with k = ¡N=2; : : : ; 0; : : : ; N=2. The
extreme k values generate ¡fNyquist and fNyquist. It might seem on counting the

8.2. THE POWER SPECTRUM 331

k values that we have N + 1 of them, but due to periodicity of the Fourier
transform, the extreme k values are not independent, but in fact are equal.

We now approximate the continuous Fourier transform as follows,

X(fk) =

Z 1

¡1
x(t) e¡2¼ I fk t dt ¼

N¡1X
n=0

xn e
¡2¼ I fk tn Ts = TsXk;

where Xk is the discrete Fourier transform,

Xk ´
N¡1X
n=0

xn e
¡2¼ I k n=N : (8.7)

We can change the k range from ¡N=2; : : : ; N=2 to 0; : : : ; N ¡ 1, thus making
it the same as the n range, by noting that Xk is periodic in k with period N .
With this standard convention for the range of k, k = 0 corresponds to zero
frequency, k = 1; 2; : : : ; N=2¡1 to positive frequencies, k = N=2+1; : : : ; N¡1
to negative frequencies, and k = N=2 to both fNyquist and ¡fNyquist. Because of
symmetry of the power spectrum about k = N=2, it su±ces to plot only the
positive frequency range, which is what we will do in our recipes.

In a similar manner, the inverse discrete Fourier transform can be derived:

xn =
1

N

N¡1X
k=0

Xk e
2¼ I k n=N : (8.8)

From the discrete Fourier transform pair, Parseval's theorem then becomes

N¡1X
n=0

jxnj2 =
1

N

N¡1X
k=0

jXkj2 ´
N¡1X
k=0

SN (k); (8.9)

where SN (k) = jXkj2=N is the power spectrum.
In calculating the discrete Fourier transform Xk, we will make use of the fast

Fourier transform (FFT), which is the default numerical algorithm [Bri74] in
the FourierTransform command found in Maple's DiscreteTransforms library
package. The FFT is based on the idea of splitting the data set in the discrete
Fourier transform into even- and odd-labeled points and using the periodicity
of the exponential function to eliminate redundant operations. A detailed dis-
cussion of this conversion may be found in standard numerical analysis texts,
for example in Burden and Faires [BF89] and in Numerical Recipes [PFTV89].
Why use this routine? As suggested by the process of eliminating redundant
calculations, the FFT is signi¯cantly faster than the straightforward evaluation
of the discrete Fourier transform.

How much faster? A lot! If N is the number of data points, the dis-
crete Fourier transform involves N2 multiplications, while the FFT turns out
to involve about N log2(N) operations. If, for example, N = 10000 as in the
following recipe, the \normal" discrete Fourier transform requires (104)2 = 108

computations compared to about 104 £ log2(104) ¼ 105 for the FFT. In this
case the FFT is about 1000 times faster.

332 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

8.2.1 Frank N. Stein's Heartbeat

The more powerful and original a mind, the more it will incline
towards the religion of solitude.
Aldous Huxley, British writer (1894{1963)

Let's ¯rst illustrate how the power spectrum is calculated for a simple example.
We are given Frank N. Stein's steady heartbeat described by

x =
2X
i=1

Ai sin(2 ¼ fi t);

with fundamental frequency f1 = 1 beat per second (60 beats per minute) and
a small second harmonic f2 = 2 beats per second. The suitably normalized
amplitudes are A1 = 1 and A2 = 0:4. Pretending that we do not know the
frequencies, we will extract them from the power spectrum. (We could be
dealing with experimental data, not a known analytic form.)

To calculate the discrete Fourier transform, the DiscreteTransforms package
must ¯rst be loaded. The number of sampling points is taken to be N = 1000.
The numerical factor d = 10 will be used to determine the sampling time.

> restart: with(DiscreteTransforms): N:=1000: d:=10:

The parameter values are entered and the time T2 = 1=f2 is calculated.

> A[1]:=1: A[2]:=0.4: f[1]:=1: f[2]:=2.0: T[2]:=1/f[2];

T2 := 0:5000000000

An operator is formed to calculate x at a speci¯ed time t.

> x:=t->add(A[i]*sin(2*Pi*f[i]*t),i=1..2):

Then, x(t) is plotted over the time interval t = 0 to d T2.

> plot(x(t),t=0..d*T[2],labels=["t","x"]);

–1

–0.5

0

0.5

1

x

1 2 3 4 5
t

Figure 8.8: Frank N. Stein's heartbeat.

If one were given only the plot shown in Figure 8.8, it would not be obvious
exactly what frequencies are contained in Frank's heartbeat. The power spec-

8.2. THE POWER SPECTRUM 333

trum will now reveal what they are. The sampling time interval is taken to be
Ts = T2=d and the sampling frequency Fs = 1=Ts is calculated.

> T[s]:=T[2]/d; F[s]:=1/T[s];

Ts := 0:05000000000 Fs := 20:00000000

The continuous function x(t) is sampled at times t = nTs with n = 0 to N ¡ 1.
The sequence of sampled x values is then put into an array format.

> x:=Array([seq(x(n*T[s]),n=0..N-1)]):

The (discrete) Fourier transform of x is performed. Maple de¯nes this transform
such that the kth item in FT is Xk=

p
N in our notation.

> FT:=FourierTransform(x):

The following operator will allow us to calculate S(k) for a given k value.

> S:=k->abs(FT[k])^2:

A plotting point operator pt is introduced that gives the power spectrum S(k)
at the frequency (k ¡ 1)Fs=N .

> pt:=k->[F[s]*(k-1)/N,S(k)]:

Taking the power spectrum to be zero at zero frequency, we produce the points
in the power spectrum for k ranging up to N=2.

> pts:=[[0,0],seq(pt(k),k=2..N/2)]:

The complete power spectrum is plotted, and shown in Figure 8.9. There are
clearly two frequencies present at 1 and 2 beats per second, as expected.

> plot(pts,labels=["f","S"],view=[0..5,0..0.3]);

0

50

100

150

S

250

300

1 2 3 4 5f

Figure 8.9: Frequencies in Frank N. Stein's heartbeat.

PROBLEMS:
Problem 8-8: Third Harmonic
Suppose that Frank N. Stein's heartbeat also contains the term 0:1 sin(6 ¼ t).
Plotting

p
S, show that the presence of the third harmonic is revealed.

334 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

8.2.2 The Rattler Returns

You cannot have power for good without having power for evil too.
Even mother's milk nourishes murderers as well as heroes.
George Bernard Shaw, Anglo-Irish playwright, Cusins, in Major Barbara, act 3

To illustrate how the power spectrum is calculated for a nonlinear ODE, let's
consider the Du±ng oscillator of the previous section with exactly the same pa-
rameter values and initial conditions. We begin by loading the DiscreteTrans-
forms package and taking the number of sample values of x to be N = 10000.

> restart: with(DiscreteTransforms): N:=10000:

The Du±ng oscillator ODE is entered,

> ode:=diff(x(t),t,t)+ 2*g*diff(x(t),t) + alpha*x(t)

+ beta*x(t)^3=F*cos(omega*t);

ode :=

μ
d2

dt2
x (t)

¶
+ 2 g

μ
d

dt
x(t)

¶
+ ® x(t) + ¯ x (t)3 = F cos(! t)

along with the parameter values (taking F =0:325 here) and initial conditions.

> g:=0.25: alpha:=-1: beta:=1: omega:=1; F:=0.325; #change F

! := 1 F := 0:325

> ic:=x(0)=0.09,D(x)(0)=0:

The force amplitude F will be adjusted to the other values, F = 0:35; 0:356; 0:42,
used previously. The Du±ng oscillator equation is numerically solved,

> sol:=dsolve(fode,icg,fx(t)g,numeric,maxfun=0,
output=listprocedure):

and the solution used to evaluate x(t) for arbitrary time t.

> X:=eval(x(t),sol):

The driving frequency is !=1 rad/s, or f=!=(2¼)=1=(2¼) Hz. The sampling
frequency fs is taken to be 4 f and the sampling time Ts=1=fs is calculated.

> f:=omega/(2*Pi): f[s]:=4*f; T[s]:=1/f[s]; #frequencies in Hz

fs :=
2

¼
Ts :=

¼

2
To eliminate the transient solution, the x values are recorded starting at t0 =
50¼ seconds and sampled every Ts seconds up to time (N ¡1)Ts. These values
are entered with the Array command.

> x:=Array([seq(X(50*Pi+T[s]*i),i=0..N-1)]):

The FourierTransform command is applied to the sampled x values. This
command calculates the discrete Fourier transform (8.7), divided by

p
N , using

the fast Fourier transform as the default algorithm.

> FT:=FourierTransform(x):

The following operator F enables us to extract the ith term in FT and, since
the result is generally complex, take the absolute value. Because of Maple's
de¯nition of the discrete Fourier transform, this is equivalent to taking the

8.2. THE POWER SPECTRUM 335

square root of the power spectrum for the ith frequency point. We take the
square root here because it helps to accentuate smaller peaks in the spectrum.

> F:=i->abs(FT[i]): #sqrt of S

An operator pt is introduced to form the ith plotting point for the power
spectrum, the frequency being expressed in radians per second so a comparison
can be easily made with the driving frequency !=1 rad/s.

> pt:=i->[2*Pi*f[s]*(i-1)/N,F(i)]:

With the aid of the pt operator, the plotting points are formed into a list of
lists, with the zero frequency value of the power spectrum taken as zero. Since
the power spectrum is symmetric about N/2, only the points up to this number
will be plotted. In the present case, 5000 points will be included. The point,
e.g., i = 2501 corresponds to an angular frequency of 1 rad/s, for which S ¼ 29.

> pts:=[[0,0],seq(pt(i),i=2..N/2)]: pts[2501];

[1; 28:82963799]

The points are plotted and labels are added,

> plot(pts,tickmarks=[3,2],labels=["omega","S"]);

0

20

S

1 2omega 0

20

S

1 2omega

Figure 8.10: Power spectrum for period-1 (left) and period-2 (right).

the power spectrum for F = 0:325 being shown in the left plot of Figure 8.10.
This spectrum shows a single sharp spike located at a frequency of 1 rad/s, i.e.,
exactly at the driving frequency. The period is T =2 ¼=!=2¼ seconds, so the
response is period 1, in agreement with the conclusion reached earlier for the
same Du±ng oscillator on the basis of a Poincar¶e section analysis.

The plot on the right of Figure 8.10 results on executing the work sheet
with F = 0:35. In addition to the tallest spike at the driving frequency, there
is a second spike to the left, located at the frequency !=2 = 0:5 rad/s. This
corresponds to a period T = 2¼=(!=2) = 4 ¼ seconds, i.e., twice as long as
for F = 0:325. The spectrum is characteristic of a period-2 solution. Note
that there is also a spike in the power spectrum to the right of the driving

336 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

frequency, occurring at 1:5 rad/s. This is the third harmonic of the period-2
frequency. Harmonics are often present in power spectra, so remember that
only those spikes lying to the left of the driving frequency spike should be
used to determine the periodicity. It is because these harmonics are present
that one must be sure to use a su±ciently high sampling frequency so that
these harmonics do not get \folded" back (aliased) into the frequency range of
interest.

On increasing F to 0:356, one sees three spikes to the left of the driving
frequency in the left plot of Figure 8.11. The spike furthest to the left is located
at !=4 = 0:25 rad/s, corresponding to a period of 8¼ seconds. The spectrum
is characteristic of a period-4 response. Again, harmonics of these frequencies
appear to the right of the driving frequency.

0

20

S

1 2omega 0

10
S

1 2omega

Figure 8.11: Power spectrum for period-4 (left) and chaotic response (right).

Finally, taking F =0:42 produces the power spectrum shown on the right of
Figure 8.11. Although a sharp spike is still seen at the driving frequency, the
spectrum is very chaotic, which is not surprising, since it corresponds to the
chaotic \rattler" Poincar¶e section seen earlier.

Recalling Richard's fright when his daughter nearly stumbled and rolled
over a real rattlesnake, one might fancifully interpret this power spectrum as
representing the rattling of his teeth or the shaking of his knees at the time of
the incident.

PROBLEMS:

Problem 8-9: A di®erent ¯ value
Holding all other parameter values as in the text, use the power spectrum to
determine the response of the forced Du±ng ODE for each F value when ¯ = 2.

Problem 8-10: Varying the frequency
For each of the four F values, use the power spectrum to explore the response
of the Du±ng oscillator as ! is varied, all other parameters being unchanged.

8.3. THE BIFURCATION DIAGRAM 337

Problem 8-11: Interchanging signs
Use the power spectrum to determine the response of the forced Du±ng oscil-
lator for each F value when all numerical values are the same as in the text
recipe, but the signs of ® and ¯ are interchanged.

Problem 8-12: Steady-state solution?
Using the power spectrum approach, determine the nature of the steady-state
solution for the following forced oscillator equation:

Äx+ 0:7 _x+ x3 = 0:75 cos t; x(0) = _x(0) = 0:

Problem 8-13: Solution?

Using the power spectrum approach, determine the nature of the steady-state
solution for the following forced Du±ng equation:

Äx+ 0:08 _x+ x3 = 0:2 cos t; x(0) = 0:25; _x(0) = 0:

Problem 8-14: Solutions?

Using the power spectrum approach, determine the nature of the steady-state
solution for the following oscillator equation for F = 0:357 and F = 0:35797:

Äx+ 0:5 _x¡ x+ x3 = 0:357 cos(t+ 1); x(0) = 0:09; _x(0) = 0:

Problem 8-15: Forced glycolytic oscillator
The equations describing forced oscillations of the glycolytic oscillator are

_x = ¡x+ ®y + x2 y; _y = ¯ ¡ ®y ¡ x2 y +A+ F cos(!t):

Taking ® = ¯ = 0, A = 0:999, F = 0:42, x(0) = 2, and y(0) = 1, determine the
periodicity of the response using the Poincar¶e section approach for (a) ! = 2
and (b) ! = 1:75. Explore the frequency range in between and identify any
interesting solutions.

8.3 The Bifurcation Diagram

Bifurcation diagrams can be generated for both nonlinear ODEs and nonlinear
di®erence equations by plotting the system \response" versus a \control" pa-
rameter as the latter is varied. The word bifurcation is derived from the Latin
word furca for fork. When period doubling occurs from period one to period
two, the response curve resembles a two-pronged fork, the period-one portion
being the \handle" and the period-two portion looking like two \prongs." In a
typical period-doubling scenario, the two prongs then split into four and then
into eight and so on as the control parmeter is further increased. Period dou-
bling is not the only \route" to chaos, so bifurcation diagrams are useful in
revealing the nature of the route.

338 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

8.3.1 Pitchforks and Other Bifurcations

Though you drive away nature with a pitchfork, she always returns.
Horace, Roman poet known for his odes (65{8 BC)

Consider the following di®erence equation, known as the logistic map,

xn+1 = a xn (1¡ xn); (8.10)

where n = 0; 1; 2; : : : ; N and a is allowed to vary between 0 and 4. As a is
increased over its range, a period-doubling sequence to chaos occurs that can
be illustrated by plotting xn (at large N to eliminate the transient) versus a.

The ¯rst part of the following recipe illustrates a period-2 solution of the
logistic map for a = 3:2, N = 119, and initial value x0 = 0:1.

> restart: a:=3.2: N:=119: x[0]:=0.1:

An operator F is formed to calculate the rhs of the logistic map for a given x.

> F:=x->a*x*(1-x):

The logistic map is iterated from n = 0 to N ,

> for n from 0 to N do

> x[n+1]:=F(x[n]);

> end do:

and the sequence of points [n; xn] plotted, each point being represented by a
size-12 black circle. The resulting picture is shown in Figure 8.12.

> plot([seq([n,x[n]],n=0..N)],style=point,symbol=circle,

symbolsize=12,color=black,labels=["n","x"]);

0.1

0.2

0.3

0.4

0.5

x

0.7

0.8

0 20 40 60 n 100 120

Figure 8.12: Period-2 solution for the logistic map.

8.3. THE BIFURCATION DIAGRAM 339

After a short transient interval, the logistic system oscillates back and forth
between the two branches shown in the ¯gure. This is characteristic of a period-
2 solution, there being only one branch in steady state for a period-1 solution.
As a is increased, further bifurcations occur.

To create a bifurcation diagram for the logistic map, a particular initial
value of x0 is chosen, and the map iterated for a given a. A certain number of
the initial points are thrown away to remove the transient part of the solution,
and the subsequent steady-state points plotted. Then, one increments a by a
small amount and repeats the process, and so on. The whole process is easily
automated, as is now illustrated.

> restart: with(plots):

As you may con¯rm by running the ¯rst part of the recipe, a period-1 solution
prevails until a = 3:0, at which point period two begins. In the recipe, the range
of a is taken from the starting value Sa = 2:9 up to the ¯nal a value Fa = 4. If
this a range is divided into, say, N = 200 equal intervals,

> Sa:=2.9: Fa:=4: N:=200: stepsize:=(Fa-Sa)/N; x:=0.2;

stepsize := 0:005500000000 x := 0:2

the stepsize is ¢a = 0:0055. The initial value of x has been taken to be x = 0:2.

A total of 500 iterations will be considered and the ¯rst 100 points ignored
in order to remove any transients. This leaves 400 points to be plotted for each
a value. The quantity c is a counter to keep track of the plots, a graph being
produced for each a value. The counter is initially set equal to zero.

> totalpts:=500: ignorepts:=100: pts:=totalpts-ignorepts; c:=0:

pts := 400

In the following double do loop, the ¯rst, or outer, loop increments a from the
starting value Sa to the ¯nal a value Fa in incremental steps given by stepsize.

> for a from Sa to Fa by stepsize do

The second, or inner, do loop iterates the logistic equation from 1 to totalpts .

> for n from 1 to totalpts do

> x:=a*x*(1-x);

The points for a given a value are formed into a list,

> pts[n]:=[a,x];

> end do;

and the inner do loop completed. Then, the counter is advanced by one,

> c:=c+1;

and a list of lists is made using the ¯nal 400 (presumably) steady-state points.

> points:=[seq(pts[k],k=ignorepts..totalpts)]:

A plot is made for each a value using a point style,

> Gr[c]:=pointplot(points,symbol=point,color=black):

> end do:

340 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

and the outer do loop ended. The N = 200 plots are superimposed with the
display command, yielding the bifurcation diagram shown in Figure 8.13.

> display([seq(Gr[m],m=1..N)],view=[Sa..Fa,0..1],

labels=["a","x"]);

0

1

x

3 4a

Figure 8.13: Bifurcation diagram for the logistic map for a = 2:9 to 4.

Starting at a = 2:9, the reader can observe period 1 occurring up to a = 3:0.
Then the steady-state response undergoes a so-called pitchfork bifurcation to
period 2, followed by clearly seen bifurcations to period four, period eight, and
a barely observable period-sixteen solution. At higher a values, the response is
generally chaotic, but narrow periodic windows also occur. The reader should
be able to see, for example, a period-3 solution for a ¼ 3:83. In this case, the
bifurcation to period 3 is an example of a tangent bifurcation.

Since the periodic windows are often very narrow in terms of the range of a,
one should really increase the number N , but this leads to a longer computing
time. A better approach is to leave N unchanged and zoom in on a particular
range of a by changing the values of Sa and Fa.

Bifurcation diagrams are very useful diagnostic tools for studying the behav-
ior of nonlinear maps as well as forced oscillator ODEs as one or more control
parameters are varied.

A complementary graphical approach is to calculate the Lyapunov exponent
as a function of a as illustrated in the next recipe.

8.3. THE BIFURCATION DIAGRAM 341

PROBLEMS:
Problem 8-16: Finer structure
For the logistic map, produce the bifurcation diagram for the region a = 3:54 to
a = 3:6, taking x0 = 0:2, and dividing the a interval into 100 steps. Summarize
the various periodic solutions that you observe.

Problem 8-17: More ¯ne structure
Explore the periodic window in the vicinity of a = 3:8 and report on what
periodicities you observe at each a value sampled.

Problem 8-18: Cubic map
Produce a bifurcation diagram for the cubic map

xn+1 = a xn ¡ x3n
over a suitable range of the parameter a. Determine the values of a in the
diagram at which the periodicity changes.

Problem 8-19: Quartic map
With x0 = 0:2, produce the bifurcation diagram for the quartic map

xn+1 = axn (1¡ x3n)

over the range a = 1:5 to a = 2:0, taking as small an a step size as you can.
Summarize the behavior of the map as a varies over the speci¯ed range.

Problem 8-20: The tent map
Produce the bifurcation diagram for the tent map

xn+1 = 2 a xn; 0 < x · 1
2 ; xn+1 = 2 a (1¡ xn);

1
2 · x < 1

with 0 < a < 1. Take x0 = 0:2 and x0 = 0:6. Summarize the periodic solutions
that you see in each case. Are there any di®erences in the bifurcation diagrams
for the two inputs.

Problem 8-21: The sine map
Produce the bifurcation diagram for the sine map

xn+1 = a sin(¼ xn)

with 0 · a · 1 and 0 · x · 1. How does the bifurcation diagram qualitatively
compare with that for the logistic map if only the range a = 0:7 to 1 is plotted?

Problem 8-22: Miscellaneous maps
Produce bifurcation diagrams for the following maps over suitable ranges of
a > 0 and discuss the results:

(a) xn+1 = xn e
a (1¡xn) (b) xn+1 = e¡a xn (c) xn+1 = a cos(xn)

(d) xn+1 = a+ x
2
n

342 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

8.4 The Lyapunov Exponent

Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov
(1857{1918), the Lyapunov exponent ¸ is a measure of the very sensitive depen-
dence on initial conditions that is characteristic of chaotic behavior in nonlinear
di®erence equations (maps) and ODEs. The discussion that follows is for maps,
a similar analysis applying to ODEs.

Consider a one-dimensional map

xn+1 = f(xn); (8.11)

with f some speci¯ed functional form, and let x0 and y0 be two initial values
very close to each other. In phase space, they would be represented by two very
close points. After n iterations, the values of xn and yn will be given by

xn = f
(n)(x0); yn = f

(n)(y0); (8.12)

where f (n) denotes the nth iteration of the map. Because the chaotic regime
is typically characterized by an extreme sensitivity to initial conditions, for a
chaotic situation nearby initial points will rapidly separate. On the other hand,
periodic solutions are insensitive to initial conditions, and nearby initial points
rapidly converge.

This suggests that for su±ciently large n, one might assume an approxi-
mately exponential dependence on n of the separation distance, viz.,

jxn ¡ ynj = jx0 ¡ y0je¸n; (8.13)

with ¸ > 0 for the chaotic situation and ¸ < 0 for the periodic case. Taking n
large, ¸ can be extracted from (8.13):

¸ = lim
n!1

1

n
ln

¯̄̄
¯xn ¡ ynx0 ¡ y0

¯̄̄
¯ : (8.14)

However, for trajectories con¯ned to a bounded region such as the range 0 <
x < 1 for the logistic map, such exponential separation for the chaotic case
cannot occur for very large n, unless the initial points x0 and y0 are very close.
Therefore, the limit jx0 ¡ y0j ! 0 must also be taken.

Modifying (8.14) yields

¸ = lim
n!1

1

n
lim

jx0¡y0j!0
ln

¯̄̄
¯xn ¡ ynx0 ¡ y0

¯̄̄
¯ = lim

n!1
1

n
lim

jx0¡y0j!0
ln

¯̄̄
¯f (n)(x0)¡ f (n)(y0)x0 ¡ y0

¯̄̄
¯ ;

or
¸ = lim

n!1
1

n
ln

¯̄̄
¯df (n)(x0)dx0

¯̄̄
¯ : (8.15)

Now, f(x0) = x1 and f(x1) = f
(2)(x0) = x2, so that, for example,

df (2)(x0)

dx0
=
df(x1)

dx1

dx1
dx0

=
df(x1)

dx1

df(x0)

dx0
: (8.16)

Generalizing (8.16) produces

df (n)(x0)

dx0
=

n¡1Y
k=0

df(xk)

dxk
; (8.17)

8.4. THE LYAPUNOV EXPONENT 343

and the Lyapunov exponent ¸ is given by

¸ = lim
n!1

1

n

n¡1X
k=0

ln

¯̄̄
¯df(xk)dxk

¯̄̄
¯ : (8.18)

For periodic solutions, which starting point x0 is chosen doesn't matter, but
for chaotic trajectories, the precise value of ¸ will depend on x0, i.e., in general
¸ = ¸(x0). One can, if desired, de¯ne an average ¸, averaged over all starting
points. Whether this is done or not, ¸ > 0 should correspond to chaos and
¸ < 0 to periodic behavior.

Let us now calculate the Lyapunov exponent as a function of a for the
logistic map. This will allow the regions of periodicity and chaos observed in
the Lyapunov exponent to be compared with those observed in the bifurcation
diagram of the previous section.

8.4.1 Mr. Lyapunov Agrees

If you know a thing only qualitatively, you know it no more than
vaguely. If you know it quantitatively|grasping some numerical
measure that distinguishes it from an in¯nite number of other
possibilities|you are beginning to know it deeply.
Carl Sagan, American astronomer (1934{1996)

This recipe directly programs equation (8.18), the number of iterations being
taken to be 300.

> restart: with(plots): numpts:=300:

The range of a is taken from the starting value Sa = 2:8 to the ¯nal a value
Fa = 4, with the range divided into N = 480 equal steps.

> Sa:=2.8: Fa:=4: N:=480: x:=0.2: stepsize:=(Fa-Sa)/N; c:=0:

stepsize := 0:002500000000

The stepsize is 0:0025 and the initial value of x is taken to be 0:2. The plots
counter c has been \initialized" to zero. The outer loop in the following double
loop increments a in units of stepsize from Sa to Fa.

> for a from Sa to Fa by stepsize do

The sum in equation (8.18) is calculated for each value of a, and the sum is
assigned the name total . To start o®, total is set to zero.

> total:=0;

The inner do loop runs over the total number of iterations, numpts = 300.

> for j from 1 to numpts do

The logistic map is entered, and the absolute value of the derivative with respect
to x formed and labeled d.

> x:=a*x*(1-x);

> d:=abs(a*(1-2*x));

344 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

If d is not equal to zero, then f = ln(d) is calculated. If d = 0, we would obtain
f = ¡1. This latter situation is avoided by setting f = 0 in this case.

> if d<>0 then f:=ln(d) else f=0 end if;

To perform the sum in equation (8.18), the total is incremented by the value of
f , and the inner loop ended.

> total:=total+f;

> end do:

The counter c is incremented by one,

> c:=c+1;

and a list of points formed with a as the horizontal coordinate and ¸ =
total=numpts as the vertical coordinate. This completes the evaluation of ¸
in equation (8.18) for a given a value.

> pts[c]:=[a,total/numpts]:

> end do:

The sequence of N = 480 points is plotted, the points being joined using a line
style. Figure 8.14 shows the Lyapunov exponent ¸ for a = 2:8 to a = 4.

> plot([seq(pts[i],i=1..N)],style=line,view=[Sa..Fa,-1.5..1],

tickmarks=[3,3]);

-1

0

1

3 3.5 4

Figure 8.14: Lyapunov exponent (vertical axis) for a = 2:8 to a = 4.

If one compares the periodic windows where the Lyapunov exponent goes neg-
ative, there is good agreement with the bifurcation diagram, Figure 8.13, for
the logistic map. Because the Lyapunov spikes are sometimes quite narrow, the
agreement can be improved by zooming in on a particular a region by altering
the values of Sa and Fa.

8.5. RECONSTRUCTING AN ATTRACTOR 345

PROBLEMS:
Problem 8-23: Quartic map
With x0 = 0:2, calculate the Lyapunov exponent for the quartic map

xn+1 = axn (1¡ x3n)

over the range a = 1:5 to a = 2:0, keeping all other parameters as in the text
recipe. Over what regions of a do periodic solutions occur?

Problem 8-24: The tent map
Plot the Lyapunov exponent ¸ versus a for the tent map

xn+1 = 2 a xn; 0 < x · 1
2
; xn+1 = 2 a (1¡ xn); 1

2
· x < 1

with 0 < a < 1. Take x0 = 0:2. Analytically show that ¸ = ln(2 a) and discuss
your graph in terms of this result.

Problem 8-25: The sine map
Plot the Lyapunov exponent versus a for the sine map

xn+1 = a sin(¼ xn)

with 0 · a · 1 and an x value of your choosing from the range 0 · x · 1.
Discuss your graph.

Problem 8-26: Another sine map
Plot the Lyapunov exponent for the following map over the range a = 2:9 to
a = 6:

xn+1 = a sin(xn) (1¡ sin(xn)):
Identify ranges of a where periodic windows occur.

8.5 Reconstructing an Attractor

An extremely important issue in many areas of modern science is how to distin-
guish between random noise and deterministic chaos. Typically, experimental
data is acquired by sampling at regular time intervals, and the investigator
would like to know whether there is some underlying chaotic attractor that can
be described by a mathematical function that would therefore allow other be-
havior to be predicted or whether one is dealing with noise from which nothing
can be foretold.

One approach is to assume that if there is some underlying chaotic at-
tractor, perhaps it is possible to recover its geometric shape, and deduce the
mathematical function that would produce the shape, from the sampled time
series. Suppose that the sampling time interval is ts and the data points are

x0=x(t=0); x1=x(t= ts); x2=x(t=2 ts); : : : ; xn=x(t=n ts); xn+1; : : : :

If a deterministic relation exists, then xn+1 will depend somehow on xn, xn¡1,
etc. The simplest assumption is to assume that a one-dimensional map exists

346 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

so that xn+1 depends only on the previous value xn. If this is the case, then a
functional form f will exist such that xn+1 = f(xn).

Assuming that this is the case, one plots pairs of numbers (xn; xn+1) from
the time series to form the two-dimensional space xn+1 versus xn. If the points
appear to lie on a de¯nite geometrical line, this implies that there is an under-
lying attractor and an associated functional form f . If the geometrical shape
has more structure to it, this could imply that there is an underlying \two-
dimensional" map, namely,

xn+1 = f(xn) + g(xn¡1); or xn+1 = f(xn) + yn; yn+1 = g(xn):

If the dimensionality of the underlying map is higher than two, one must in-
crease the dimensionality of the space accordingly. To \see" a three-dimensional
map, for example, one must work in a three-dimensional space. The above pro-
cedure is then generalized by plotting triplets of numbers. For example, one
might use (x0; x1; x2), (x1; x2; x3), etc.

8.5.1 Putting Humpty Dumpty Together Again

Humpty Dumpty sat on a wall, Humpty Dumpty had a great fall,
All the king's horses, And all the king's men,
Couldn't put Humpty Dumpty together again.
Lewis Carroll, Alice's Adventures in Wonderland, 1865

Suppose that we have been given the following lengthy data list x, where each
entry x(n) corresponds to a time t = n ts, with n = 1; 2; : : : ; N .

> restart: with(plots):

> x:=[6.24, 9.15, 3.03, 8.24, 5.66, 9.58, 1.56, 5.14, 9.74, .980,

3.45, 8.81, 4.09, 9.43, 2.10, 6.47, 8.91, 3.79, 9.18, 2.93, 8.07,

6.07, 9.30, 2.53, 7.37, 7.56, 7.18, 7.89, 6.50, 8.88, 3.89, 9.27,

2.65, 7.60, 7.12, 8.00, 6.24, 9.15, 3.03, 8.23, 8.23, 5.67, 9.57,

1.60, 5.23, 9.73, 1.03, 3.59, 8.98, 3.58, 8.97, 3.61, 9.00, 3.51,

3.86, 9.24, 2.74, 7.76, 6.77, 8.53, 4.89, 9.74, .969, 8.89, 3.41,

8.77, 4.21, 9.51, 1.82, 5.81, 9.50, 1.87, 5.93, 9.41, 2.16, 6.61,

8.74, 4.30, 9.56, 1.64, 5.33, 9.71, 1.11, 3.85, 9.23, 2.76, 7.80,

6.70, 8.62, 4.65, 9.70, 1.13, 3.91, 9.28, 2.59, 7.48, 7.34, 7.61,

7.10, 8.04, 6.16, 9.23, 2.78, 7.83, 6.62, 8.72, 4.34, 9.58, 1.56,

5.13, 9.74, .977, 3.44, 8.80, 4.13, 9.45, 2.02, 6.29, 9.10, 3.18,

8.46, 5.08, 9.75, .960, 3.39, 8.73, 4.31, 9.56, 1.62, 5.30, 9.72,

1.08, 3.76, 9.15, 3.04, 8.25, 5.63, 9.60, 1.51, 5.00, 9.75, .951,

3.36, 8.70, 4.43, 9.62, 1.42, 4.75, 9.73, 1.04, 3.63, 9.02, 3.45,

8.81, 4.09, 9.43, 2.10, 6.47, 8.90, 3.81, 9.20, 2.88, 8.00, 6.23,

9.16, 3.01, 8.21, 5.73, 9.54, 1.70, 5.49, 9.66, 1.30, 4.41, 9.61,

1.45, 4.84, 9.74, .989, 3.48, 8.84, 3.98, 9.35, 2.38, 7.07, 8.07,

6.07, 9.30, 2.52, 7.35, 7.59, 7.14, 7.97, 6.30, 9.09, 3.23, 8.53,

4.88, 9.74, .972, 3.42]:

8.5. RECONSTRUCTING AN ATTRACTOR 347

Although the data appears to be con¯ned to the approximate range 0 to 10, it
is not clear at ¯rst glance whether it represents deterministic chaos or is simply
a \noisy" set of data. Can we con¯rm that it is the former and identify the
probable identity of the underlying map? Calling this the \Humpty Dumpty
map," can we then reconstruct his or her mathematical \appearance"? Or, at
the risk of sounding rather melodramatic, can we put Humpty Dumpty back
together again?

The number of operands command reveals that there are 200 entries in x.

> N:=nops(x);

N := 200

First, let us plot x versus n and see whether that reveals any pattern that we
might have missed. By default, the N points are joined by straight lines.

> plot([seq([n,x[n]],n=1..N)],labels=["n","x[n]"]);

2

4

6

8

x[n]

0 50 100 150 200n

Figure 8.15: Time series x versus n.

Although there is a hint of some repetition, it certainly isn't conclusive that the
series comes from a map producing deterministic chaos rather than just being
noisy output. Following the procedure mentioned in the introduction, we will
plot xn+1=10 versus xn=10, the factor of 10 being introduced to reduce both
vertical and horizontal ranges to 0 to 1 in the graph. The points are represented
by size-12 black circles. The graph is assigned a name, gr1, so it can ¯rst be
displayed and then used to reveal Humpty Dumpty's true identity.

> gr1:=pointplot([seq([x[n]/10,x[n+1]/10],n=1..N-1)],

symbol=circle,symbolsize=12,color=black,

labels=["x[n]","x[n+1]"]):

Entering gr1 with a command-line-ending semicolon,

> gr1; #humpty dumpty?

348 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

0.2

0.4

0.6

0.8

x[n+1]

0.2 0.4 x[n] 0.8

Figure 8.16: xn+1 versus xn for time series.

produces Figure 8.16. The data points appear to lie on an inverted parabola,
suggesting that Humpty Dumpty might be a one-dimensional logistic map. Ad-
justing the parameter a by trial and error to provide the best ¯t, the logistic
curve is now plotted for a = 3:9 as a thick red line over the range X = 0 to 1.

> a:=3.9: #adjust

> gr2:=plot(a*X*(1-X),X=0..1,color=red,thickness=2):

The two graphs, gr1 and gr2, are plotted in the same picture, the result being
shown in Figure 8.17.

> display(fgr1,gr2g); #successful reconstruction

0

0.2

0.4

0.6

0.8

x[n+1]

0.2 0.4
x[n]

0.8 1

Figure 8.17: Best-¯tting logistic curve (solid) and xn+1 vs. xn points.

8.5. RECONSTRUCTING AN ATTRACTOR 349

The points lie on the logistic curve, so we have been successful in identifying and
reconstructing Humpty Dumpty. We can con¯rm from either of the previous
two recipes that the logistic map produces deterministic chaos for a = 3:9.

PROBLEMS:
Problem 8-27: Reconstructing the quartic map
Taking a = 1:97 and x0 = 0:9, iterate the quartic map

xn+1 = axn (1¡ x3n)

to produce a time series with 200 points. Plot the time series with a line
style. Attempt to reconstruct any possible underlying deterministic attractor
by plotting xn+1 versus xn using a point style. Show that these points lie on
the curve aX (1¡X3) with a = 1:97. (This problem is a bit like a dog chasing
its tail!)

8.5.2 Random Is Random

We humans have purpose on the brain. We ¯nd it hard to look at
anything without wondering what it is \for," what the motive for it
is, or the purpose behind it. When the obsession with purpose be-
comes pathological it is called paranoia{reading malevolent purpose
into what is actually random bad luck. But this is just an exagger-
ated form of a nearly universal delusion. Show us almost any object
or process, and it is hard for us to resist the \Why" question|the
\What is it for?" question.
Richard Dawkins, British biologist, author, River Out of Eden, 1995

In this recipe, we shall use Maple's random-number generator to produce a
time series and attempt to reconstruct any underlying deterministic attractor.
The time series will have N = 200 points.

> restart: N:=200:

The command randomize() sets the random-number seed to a di®erent value
based on the computer system clock.

> randomize():

In the following do loop, N random decimal numbers lying between 0 and 1 are
generated.

> for n from 0 to N do

The command rand() produces a random positive twelve-digit number. A
fractional number between 0 and 1 results on dividing by 1012. The number is
then put into decimal form by applying the °oating-point evaluation command.

> x[n]:=evalf(rand()/10^12);

> end do:

350 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

The randomly generated time series is plotted in Figure 8.18.

> plot([seq([n,x[n]],n=1..N)],labels=["n","x[n]"]);

0

0.2

0.4

0.6

0.8

1

x[n]

50 100 150 200n

Figure 8.18: Time series for random data.

If we didn't know how the series was produced, we would probably still
conclude from the ¯gure that we are dealing with random noise. But one might
have arrived at the same conclusion in the previous recipe from the time series
plot. As in that recipe, let's plot xn+1 versus xn using a point style, thus
producing Figure 8.19.

> plot([seq([x[n],x[n+1]],n=1..N-1)],style=point,symbol=

circle,symbolsize=16,labels=["x[n]","x[n+1]"]);

0

0.2

0.4

0.6

0.8

1

x[n+1]

0.2 0.4 x[n] 0.8 1

Figure 8.19: xn+1 versus xn for time series.

8.5. RECONSTRUCTING AN ATTRACTOR 351

There is no discernible pattern in the ¯gure, unlike the situation in the previous
recipe. By plotting other pairs, or even triplets, of numbers, one can conclude
(not surprisingly) that there is no underlying chaotic attractor here.

PROBLEMS:
Problem 8-28: Rolling a die
Consulting Maple's Help, produce a random set of 500 numbers from the posi-
tive integers one to six inclusive. This might simulate the rolling of an honest
die. Make a plot of the \time series" and xn+1 versus xn to show the random-
ness.

Problem 8-29: Literature search
Apply the techniques of attractor reconstruction to some time series data (e.g.,
the Dow Jones index) extracted from newspapers, magazines, or whatever, and
see whether a pattern emerges.

8.5.3 Butter°y Reconstruction

A people's literature is the great textbook for real knowledge of them.
The writings of the day show the quality of the people as no historical
reconstruction can.
Edith Hamilton, American classical scholar (1867{1963)

Our ¯nal recipe will illustrate how Lorenz's butter°y attractor can be recon-
structed from time series data extracted from the governing system of three
coupled nonlinear ODEs. The Lorenz system (which was discussed in Section
2.2.1) is entered, along with the initial condition x(0) = 2, y(0) = 5, z(0) = 5.

> restart: with(plots):

> sys:=diff(x(t),t)=sigma*(y(t)-x(t)),diff(y(t),t)=-x(t)*z(t)

+r*x(t)-y(t),diff(z(t),t)=x(t)*y(t)-b*z(t);

sys :=
d

dt
x (t) = ¾ (y(t)¡ x (t));

d

dt
y(t) = ¡x(t) z (t) + r x (t)¡ y(t);

d

dt
z (t) = x(t) y(t)¡ b z (t)

> ic:=(x(0)=2,y(0)=5,z(0)=5):

The parameter values are taken to be r = 28, b = 8=3, and ¾ = 10.

> r:=28: b:=8/3: sigma:=10:

The total number of entries in the time series will be taken to be N = 2000.
The total time is T = 50, so the step size ¢ = T=N is 1=40.

> N:=2000: T:=50: Delta:=T/N;

352 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

¢ :=
1

40
The system of ODEs is solved numerically, the solution being given as a list
procedure, so that we can create a time series.

> sol:=dsolve(fsys,icg,fx(t),y(t),z(t)g,numeric,maxfun=0,
output=listprocedure):

The following line uses the numerical solution to evaluate x(t) at an arbitrary
time, which must be speci¯ed.

> S:=eval(x(t),sol):

Then entering S(n*Delta) will yield x(t) at t = n¢. Using this result, the x
values are obtained at times t = n¢ for n = 0 to N .

> for n from 0 to N do X[n]:=S(n*Delta); end do:

The time series is created and plotted, the default being to join the points with
straight lines. The resulting picture is shown in Figure 8.20.

> plot([seq([n*Delta,X[n]],n=0..N)],labels=["t","x"]);

–15

–10

–5

0

5

10

15

x

10 20 30 40 50
t

Figure 8.20: x time series for the Lorenz system.

To reconstruct the 3-dimensional Lorenz butter°y attractor, it is necessary to
form triplets of numbers from the time series. By trial and error, we use the
triplet combination involving n, n+ 3, and n+ 6 to create the plotting points.

> points:=[seq([X[n],X[n+3],X[n+6]],n=0..(N-6))]:

Using the spacecurve command with shading=z to color the trajectory, the
butter°y attractor is revealed.

> spacecurve(points,style=line,shading=z,axes=framed,

orientation=[-30,60],tickmarks=[3,3,3],

labels=["X(n)","X(n+3)","X(n+6)"]);

A black-and-white version is shown in Figure 8.21. If one compares the pic-
ture, which can be rotated on the computer screen, with the butter°y picture
obtained in Chapter 2, the reconstruction of the butter°y is quite good.

8.5. RECONSTRUCTING AN ATTRACTOR 353

–10
0

10X(n)
–10

0
10

X(n+3)

–10

0

10

X(n+6)

Figure 8.21: Butter°y attractor reconstructed from time series.

In the preceding recipes, the reconstruction attempt has been tested on
known examples. So the question is, does the method work for real experimen-
tal time series data, particularly when the answer is not known? The answer is
yes! The method has been applied to the Belousov{Zhabotinski chemical oscil-
lator reaction (Section 1.2.2) [RSS83] [SWS82], to Taylor{Couette °ow in hy-
drodynamics [AGS84], to ultrasonic cavitation in liquids [LH91], and to measles
data for the cities of Baltimore and New York [SK86].

PROBLEMS:

Problem 8-30: Butter°y attractor
Try reconstructing the butter°y attractor from the z(t) time series, and explain
why you do not obtain two \wings."

Problem 8-31: RÄossler attractor
The RÄossler system is given by

_x = ¡(y + z); _y = x+ a y; _z = b+ z (x¡ c):

Using the time series for x(t) with a = 0:2, b = 0:2, c = 5:7, x(0) = y(0) =
z(0) = 0:1, construct the RÄossler attractor. Hint: Your picture should resemble
Figure 1.18.

354 CHAPTER 8. NONLINEAR DIAGNOSTIC TOOLS

Epilogue

Thus grew the tale of Wonderland.
Thus slowly, one by one,
Its quant events were hammered out|
And now the tale is done,
And home we steer, a merry crew,
Beneath the setting sun.
Lewis Carroll, Alice's Adventures in Wonderland, 1865

The storybook characters who formed the \merry crew of our \Wonderland,"
having earlier attended Mike and Vectoria's wedding ceremony in a sun-dappled
alpine meadow, are beginning to slowly drift away from the banquet table to
dance beneath the setting sun. Eavesdropping on their conversation, it appears
that everyone was pleased with the entire menu, the appetizers, the entrees,
and the desserts. The crew also chatted about the new friends that they have
made. They hope that you the reader, having shared some of their experiences
and recipes, will include yourself in this group.

Now your CAS chefs must reluctantly end this tale of Wonderland and
close this gourmet's guide to some of the advanced mathematical models of
science. Our guiding principle throughout both volumes of Computer Algebra
Recipes has been to introduce the reader to what we believe is an important
educational and scienti¯c innovation, the use of a computer algebra system
to learn and explore science. This belief is supported by the fact that over
a million physicists, engineers, mathematicians, chemists, and other groups of
scientists, are already using one CAS or another to solve technological and
scienti¯c problems of interest to them. If you have successfully applied the
computer algebra recipes in our menu to the text problems in both volumes,
you should be in good shape to join their ranks.

Richard and George, Your CAS chefs

Bibliography

[AGS84] R. H. Abraham, J. P. Gollub, and H. L. Swinney. Testing nonlinear
dynamics. Physica D, 11:252, 1984.

[AJMS81] R. M. Anderson, H. C. Jackson, R. M. May, and A. M. Smith.
Population dynamics of fox rabies in Europe. Nature, 289:765, 1981.

[AS72] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. National
Bureau of Standards, Washington, DC, 1972.

[Bac69] J. Backus. The Acoustical Foundations of Music. W. W. Norton,
New York, 1969.

[Bel58] B. P. Belousov. Oscillation reaction and its mechanism. In Collec-
tion of Abstracts on Radiation Medicine. Medgiz, Moscow, 1958.

[BEMS71] A. Barone, F. Esposito, C. J. Magee, and A. C. Scott. Theory
and applications of the sine{gordon equation. Riv. Nuovo Cimento,
1:227, 1971.

[BEP71] I. P. Batra, R. H. Enns, and D. Pohl. Stimulated thermal scattering
of light. Physica Status Solidi, 48:11, 1971.

[BF89] R. L. Burden and J. D. Faires. Numerical Analysis, 4th ed. PWS{
KENT, Boston, MA, 1989.

[Boa83] M. L. Boas. Mathematical Methods in the Physical Sciences, 2nd
ed. John Wiley, New York, 1983.

[Bri74] E. O. Brigham. The Fast Fourier Transform. Prentice-Hall Inc.,
New Jersey, 1974.

[Cha39] S. Chandrasekhar. An Introduction to the Study of Stellar Structure.
Dover Reprint, Chicago, 1939.

[Cho64] W. F. Chow. Principles of Tunnel Diode Circuits. Wiley, New York,
1964.

355

356 BIBLIOGRAPHY

[Dav62] H. T. Davis. Introduction to Nonlinear Di®erential and Integral
Equations. Dover, New York, 1962.

[EJMR81] R. H. Enns, B. L. Jones, R. M. Miura, and S. S. Rangnekar. Nonlin-
ear Phenomena in Physics and Biology. Plenum Press, New York,
1981.

[EK88] L. Edelstein-Keshet. Mathematical Models in Biology. BirkhÄauser,
Boston, MA, 1988.

[EM00] R. H. Enns and G. C. McGuire. Nonlinear Physics with Maple for
Scientists and Engineers, 2nd ed. BirkhÄauser, Boston, MA, 2000.

[EM01] R. H. Enns and G. M. McGuire. Computer Algebra Recipes: A
Gourmet's Guide to the Mathematical Models of Science. Springer-
Verlag, New York, 2001.

[EM06] R. H. Enns and G. M. McGuire. Computer Algebra Recipes: An In-
troductory Guide to the Mathematical Models of Science. Springer-
Verlag, New York, 2006.

[Enn05] R. H. Enns. Computer Algebra Recipes for Mathematical Physics.
BirkhÄauser, Boston, MA, 2005.

[ER79] R. H. Enns and S. S. Rangnekar. The 3-wave interaction in nonlin-
ear optics. Phys. Status Solidi, 94:9, 1979.

[Erl83] H. Erlichson. Maximum projectile range with drag and lift, with
particular application to golf. Amer. J. Phys., 51:357, 1983.

[FC99] G. R. Fowles and G. L Cassiday. Analytic Mechanics. Saunders
College, Orlando, FL, 1999.

[FKN72] R. J. Field, E. K}orÄos, and R. M. Noyes. Oscillations in chemi-
cal systems, Part 2. Thorough analysis of temporal oscillations in
the bromate{cerium{malonic acid system. Journal of the American
Chemical Society, 94:8649, 1972.

[FN74] R. J. Field and R. M. Noyes. Oscillations in chemical systems, IV.
Limit cycle behavior in a model of a real chemical reaction. Journal
of Chemical Physics, 60:1877, 1974.

[Gau69] G. F. Gause. The Struggle for Existence. Hafner, New York, 1969.

[Gri95] D. J. Gri±ths. Introduction to Quantum Mechanics. Prentice Hall,
Englewood Cli®s, N. J., 1995.

[Has90] A. Hasegawa. Optical Solitons in Fibers. Springer-Verlag, New
York, 1990.

BIBLIOGRAPHY 357

[Hay64] C. Hayashi. Nonlinear Oscillations in Physical Systems. McGraw
Hill, New York, 1964.

[HH64] M. H¶enon and C. Heiles. The applicability of the third integral of
motion: some numerical experiments. Astrophys. J., 69:73, 1964.

[Hil94] R. C. Hilborn. Chaos and Nonlinear Dynamics. Oxford University
Press, Oxford, 1994.

[Jac90] E. A. Jackson. Perspectives of Nonlinear Dynamics, Vol. 1 and 2.
Cambridge University Press, Cambridge, 1990.

[Kau76] D. J. Kaup. The three-wave interaction. Studies Appl. Math., 55:9,
1976.

[KRB79] D. J. Kaup, A. Rieman, and A. Bers. Space{time evolution of
nonlinear three-wave interactions. Rev. Modern Phys., 51:275, 1979.

[LH91] W. Lauterborn and J. Holzfuss. Acoustic chaos. International Jour-
nal of Bifurcation and Chaos, 1:13, 1991.

[Lor63] E. N. Lorenz. Deterministic nonperiodic °ow. J. Atmospheric Sci.,
20:130, 1963.

[MA88] J. J. McPhee and G. C. Andrews. E®ect of sidespin and wind on
projectile trajectory, with particular application to golf. Amer. J.
Phys., 56:933, 1988.

[Map05] Maplesoft. Maple 10 User Manual. Waterloo Maple, Waterloo,
Canada, 2005.

[May80] R. M. May. Nonlinear phenomena in ecology and epidemiology.
Ann. New York Acad. Sci., 357:267, 1980.

[MGH+05] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M.
Vorkoetter, J. McCarron, and P. DeMarco. Maple 10 Introduc-
tory (Advanced) Programming Guide. Waterloo Maple, Waterloo,
Canada, 2005.

[MH91] W. M. MacDonald and S. Hanzely. The physics of the drive in golf.
Amer. J. Phys., 59:213, 1991.

[Mor48] P. M. Morse. Vibration and Sound. McGraw-Hill, New York, 1948.

[Mur89] J. D. Murray. Mathematical Biology. Springer-Verlag, New York,
1989.

[MW71] J. Mathews and R. L. Walker. Mathematical Methods of Physics,
2nd ed. Addison-Wesley, New York, 1971.

358 BIBLIOGRAPHY

[Nyq28] H. Nyquist. Certain topics in telegraph transmission theory. Trans.
AIEE, 47:617, 1928.

[Oha85] H. C. Ohanian. Physics. W. W. Norton, New York, 1985.

[PFTV89] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes. Cambridge University Press, Cambridge, 1989.

[PLA92] M. Peastrel, R. Lynch, and A. Armenti. Terminal velocity of a
shuttlecock in vertical fall. In Jr. Angelo Armenti, editor, The
Physics of Sports. American Institute of Physics, New York, 1992.

[RÄ76] O. E. RÄossler. An equation for continous chaos. Phys. Lett. A,
57:397, 1976.

[Rap60] A. Rapoport. Fights, Games and Debates. University of Michigan
Press, 1960.

[RE76] S. S. Rangnekar and R. H. Enns. Numerical solution of the tran-
sient gain equations for stimulated backward scattering in absorbing
°uids. Canadian Journal of Physics, 54:1564, 1976.

[RSS83] J. C. Roux, R. H. Simoyi, and H. L. Swinney. Observation of a
strange attractor. Physica D, 8:257, 1983.

[Rus44] J. S. Russell. Report on waves. British Assoc. Adv. Sci., 14th
Meeting, 1844.

[SCM73] A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin. The soliton: A
new concept in applied science. Proc. IEEE, 61:1443, 1973.

[Sco87] D. E. Scott. An Introduction to Circuit Analysis. McGraw-Hill,
New York, 1987.

[Sel68] E. E. Sel'kov. Self-oscillations in glycolysis. European J. Biochem.,
4:79, 1968.

[Sha49] C. E. Shannon. Communication in the presence of noise. Proc. IRE,
37:10, 1949.

[SK86] W. M. Scha®er and M. Kot. Di®erential systems in ecology and
epidemiology. In Chaos. Princeton University Press, Princeton, N.
J., 1986.

[SK89] R. D. Strum and D. E. Kirk. Discrete Systems and Digital Signal
Processing. Addison-Wesley, Reading, MA, 1989.

[Str88] S. H. Strogatz. Love a®airs and di®erential equations. Math. Mag.,
61:35, 1988.

BIBLIOGRAPHY 359

[Str94] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley,
Reading, MA, 1994.

[SWS82] R. H. Simoyi, A. Wolf, and H. L. Swinney. One-dimensional dy-
namics in a multi-component chemical reaction. Physical Review
Letters, 49:245, 1982.

[Tys76] J. J. Tyson. The Belousov{Zhabotinskii reaction. In Lecture Notes
in Biomathematics, Vol. 10. Springer-Verlag, New York, 1976.

[ZK65] N. J. Zabusky and M. D. Kruskal. Interaction of \solitons" in a
collisionless plasma and the recurrence of initial states. Phys. Rev.
Lett., 15:240, 1965.

Index

acoustical waveguide, 261
adenosine diphosphate, 98
aliasing, 330
Andromeda Strain, 152
anharmonic force, 34
annulus, 231
aorta, 110
arms race, 105
arrhythmias, 28
arrow notation, 52
arrowheads

full, 19
half, 19

attractor
butter°y, 83, 351
chaotic, 345
Lorenz, 83
normal, 45
RÄossler, 353
reconstruction, 345
strange, 44

autonomous system, 32

baleen whale, 95
band matrix, 276
bandwidth limited, 330
bandwidth theorem, 273
basketball, falling, 152
Belousov{Zhabotinski, 40
Bernoulli equation, 155
Bernoulli, Daniel, 138
Bessel functions, 132, 254
Bessel recurrence relations, 136
Bessel zeros, 133
bifurcation, 337

diagram, 337

pitchfork, 340
tangent, 340

Bloch wall, 292
blood pressure

diastolic, 110
systolic, 110

blue whale, 160
boundary condition, 228
bounded orbit, 325
Boussinesq's equation, 296, 303
brachistochrone, 190
bungee cord, 138
Burgers' equation, 296, 306
butter°y reconstruction, 351
butter°y, Lorenz's, 83

candle °ame, 287
capacitor, 29
Casablanca, 211
catenary, 194
Cauchy{Riemann conditions, 220
CDA, 274
center, 17
central di®erence approximation, 90
chain reaction, 236
Chandrasekhar, S., 95
chaos, 33, 38, 336
characteristic directions, 312
chemical oscillator, 40
chemical reaction, 100

empirical rule, 41
Oregonator, 41

classic Maple, 1
coalescence of roots, 68
column vector, 85, 277
competition

361

362 INDEX

for food, 27
warring armies, 57

complex conjugate, 217
complex function, 220
compliance, 110
computational mesh, 274
computer algebra system(CAS), 1
concentration, 41
conditional statement, 80
conducting plates, 223
contour plot, 221
control parameter, 34, 320
control rods, 236
convolution theorem, 269
coordinates

bipolar, 235
bispherical, 235
Cartesian, 243
cylindrical, 235, 258
elliptic, 235
paraboloidal, 235
polar, 232, 254
prolate spheroidal, 235
spherical, 235

CPU time, 91
Crichton, Michael, 152
critical condition, 236
critical damping, 26, 27
critical mass, 239
cross product, 176
cross section, variable, 269
crossed ¯elds, 179
crystal dislocation, 288
cubic map, 341
cuto® frequency, 261
cylinder

quarter, 240
temperature distribution, 241

da Vinci, Leonardo, 58
damping

critical, 27
negative, 29
over, 26
under, 26

Dawkins, Richard, 349
de Vries, Gustav, 301
degenerate root, 69
degrees of freedom, 324
derivative

BDA, 90
CDA, 90
FDA, 90

derivative boundary condition, 259
determinant, 85
deterministic chaos, 28
di®erence approximation

backward, 90
central, 90
forward, 90
fourth derivative, 91

di®usion coe±cient, 209, 224
dimensional analysis, 208
dimensionless variable, 60
Dirac delta function, 264
dispersion, 273, 288
dispersion relation, 301
do loop, 24
dot notation, 13
dot product, 180
double-well potential, 34
drag force

Newton, 161
Stokes, 24

driving period, 320
drumhead, 254
drumhead, circular, 257
Du±ng's equation, 34, 149, 320

hard spring, 33
inverted, 33
nonharmonic, 33
soft spring, 33

E. coli, 153
eardrum, 168
eardrum equation, 66
Eddington, Arthur, 150
Edelstein-Keshet, Leah, 152
eigenfrequency, 257
eigenfunction, 130

INDEX 363

eigenvalue, 130
Eiram Eiruc, 74
electric ¯eld lines, 222
elliptic cosine function, 174
elliptic integral, 8

complete, 172
incomplete, 172

elliptic sine function, 173
EllipticF, 8
EllipticK, 172
energy transmission, 215
entrainment, 28
enzyme reaction, 161
epidemiology, 66
equipotentials, 222
Erehwon, 187
erf, 263
erfc, 268
Erlenmeyer °ask, 152
error function, 263
error function, complementary, 268
Euler algorithm, 92
Euler's constant, 34
Euler{Lagrange equation, 185
Euler{Mascheroni constant, 133
explicit scheme, 91, 275, 279

falling raindrop, 120
fast Fourier transform (FFT), 331
FDA, 274
Fermat's principle, 190
ferromagnet, 288
ferromagnetic domain, 292
Fick's law, 266, 267
Field, R. J., 40
¯nite di®erence approximation, 89
¯sh harvesting, 100
¯xed edges, 251
¯xed point, 15
°u epidemic, 160
°uid °ow, 223
focal/spiral point, 16
forced sti® ODE, 106
forward Euler method, 94
forward-di®erence approximation, 274

Fourier cosine transform, 264
Fourier series, 212
Fourier sine transform, 261
Fourier transform, 271, 329

inverse, 271
fractal dimension, 45
free body diagram, 181
free edges, 253
Frobenius series, 133
fructose-6-phosphate, 98
fudge factor, 44
functional operator, 52
fur catches, 57

gamma function, 145
Gause, 155
generalized momentum, 324
geodesic, 191
glycolysis, 97
gnus and sung, 73
golf, 179
Gompertz's law, 160
gradient, 222
great circle, 191
Greg Arious Nerd, 115

H¶enon{Heiles Hamiltonian, 324
H¶enon{Heiles potential, 324
Hamilton's equations, 324
Hamiltonian chaos, 324
hard spring, 66, 174
harmonics, 335
harvesting, 114
heat capacity, 209
heat di®usion, 208
Helmholtz, 168
Hermite functions, 145
higher-order ¯xed point, 49
hole in one, 184
Hooke's law, 24
Hudson's Bay Company, 57
human °y, 195
Humpty Dumpty map, 346
hyperlink, 8

implicit scheme, 91

364 INDEX

implicit solution, 169
incompressible °uid, 241
inductor, 30
infectious disease, 66
in¯nite domain, 261
initial conditions, 20
initialization, 310
Internet, 260
inverted spring, 34
ion acoustic soliton, 303
iron core inductor, 57
iron sphere temperature, 245
irreversible reaction, 150
isoperimetric problem, 191

Jacobi elliptic function, 173
Josephson junction, 288

K}orÄos, E., 40
KAM torus, 327
Kaup, David, 299
KdV equation, 287, 300
KdV soliton collision, 308
Kerr medium, 288
kink, 304
Kirchho®'s current rule, 29
Kirchho®'s potential rule, 57
Klein{Gordon equation, 278
Korteweg, Diederik, 301
Kruskal, Martin, 309

Lagrange's equations, 202
laminar °ow, 161
Laplace transform, 121, 267
Laplace's equation, 220
Laplace, Pierre-Simon, 121
laser beam competition, 159
laser beams, 318
learning curve, 114
Legendre polynomials, 243
limit cycle, 28
logistic equation, 154
logistic map, 338
Lorentz force, 175
Lorenz equations, 83

Lorenz's butter°y, 351
love a®air, 18
low-pass ¯lter, 330
Lyapunov exponent, 342, 343
Lyapunov, Aleksandr M., 342

magnetic bottle, 175
magnetic spin, 288, 292
magnetohydrodynamic waves, 288
Malthus's equation, 153
Malthus's law, 152
Malthus, Thomas, 153
map

cubic, 341
Humpty Dumpty, 346
logistic, 338
one-dimensional, 346
quartic, 341, 345
sine, 341, 345
tent, 341, 345

Maple
active derivative, 19
addition, 4
aliasing symbols, 122
animation, 7
arrow operator, 52
assignment operator, 4
assume vs. assuming, 112
automatic substitution, 19
classic interface, 1
clearing internal memory, 4
colon, 4
command information, 110
comment, 5
conditional statement, 80
constrained scaling, 6
copying examples, 8
CPU time, 91
curly brackets, 15
default accuracy, 4
di®erential operator, 26
digits control, 103
ditto operator, 30
division, 4
functional operator, 52

INDEX 365

Help, Full Text Search, 8
Help, Topic Search, 8
Help, using, 8
inert derivative, 19
inserting comments, 5
library packages, 7
list, 6
list of lists, 6
list procedure, 127
menu index ¯le, 2
multiplication, 4
placeholder, 280
plot options, 6
powers, 4
prime notation, 126
procedure, 52
prompt symbol, 4
recipe, 1
rotating viewing box, 31
semicolon, 4
set, 15
square brackets, 6
standard interface, 1
string, 6
superimposing ¯gures, 53
suppressing output, 4
text on plot, 42
toolbar, 6
type match, 226
unassignment, 54
unprotect Maple symbol, 59
user manuals, 1
variable change, 29
warnings, 7
worksheet, 2

Maple Command
^, 4
¡ >, 52
*, 4
+, 4
-, 4
., 180
/, 4
::, 226
:=, 4

:, 4
;, 4
<< >>, 277
< >, 176
?coords, 231
?inifcns, 132
?, 8
Array, 333
BandMatrix, 276, 280
BesselJZeros, 133, 255
BesselJ, 132
BesselY, 133, 237
CrossProduct, 176
DEplot3d, 31, 45
DEplot, 24
DEtools[expsols], 267
Determinant, 85
Diff, 19
Digits, 98
Dirac, 264
DotProduct, 180
D, 26
Eigenvalues, 85
EulerLagrange, 188
FourierTransform, 333
Gamma, 59
GenerateMatrix, 85
Gradient, 222
HINT, 225
Hamilton eqs, 325
INTEGRATE, 225
Int, 34
I, 216
Laplacian('cylindrical'), 258
Laplacian, 232
LegendreP, 134
LegendreQ, 134, 242
Omega, 203
Order, 128
Phi, 5
Pi, 209
Sum, 226
SurfaceOfRevolution, 189
Tangent, 167
Theta, 60, 203

366 INDEX

#, 5
&x, 176
EnvAllSolutions, 61
EnvLegendreCut, 135
abs, 128
add, 213
algsubs, 203
alias, 123
allvalues, 79, 325
alpha, 34
animate, 7
array, 36
arrows=MEDIUM, 19
arrows=THICK, 177
assign, 22, 52
assume=real, 305
assume, 172
assuming, 116
axes=frame, 42
axes=none, 140
axes=normal, 72
background, 7
bernoullisol, 155
beta, 24, 26, 34
build, 225
coeff, 233
collect, 30, 68
color, 20
combine(trig), 217
combine, 197
conjugate, 217
contourplot, 221, 324
contours, 221
convert(exp), 272
convert(polynom), 89
convert(radians), 182
convert(sincos), 163
convert(units), 5, 200
coordplot3d, 235
coordplot, 232
cosh, 177, 228
cos, 4
dchange, 30, 60, 290
declare, 126
dfieldplot, 19

diff, 18, 59
dirgrid, 19
display, 42
dsolve('series'), 128
dsolve(classical[foreuler]),

94
dsolve(classical[rk4]), 99
dsolve(method=laplace), 122
dsolve(numeric), 42, 127
dsolve, 22, 27
epsilon, 30
evalc, 124
evalf, 5
eval, 5
expand, 30, 54, 59, 60
exp, 19
factor, 30, 238
fieldplot, 177
firint, 116
for...while...do, 24
fouriercos, 264
fouriersin, 262
fourier, 271
frames, 7
fsolve, 75, 199
gamma, 34, 59
generate ic, 326
grid, 75
has, 225
if...elif... end if, 80
implicitplot, 75, 234
infinity, 152
infolevel[dsolve], 110
insequence=true, 167
integer, 229
interface(imaginaryunit), 66
intfactor, 116
int, 34
invfourier, 272
invlaplace, 121, 268
isolate, 203
iterations, 327
labelling=true, 232
labels, 34
lambda, 85

INDEX 367

laplace, 121, 267, 268
lhs, 22
limit(right), 198
limit, 152
linecolor, 20
linestyle=[DASH,SOLID], 69
ln, 19
maxfun=0, 320
mu, 237
nops, 78
numer, 188
numpoints, 42
nu, 237
odeadvisor, 115, 131
odeplot, 42, 204
omega, 24, 31, 34
op, 140
orientation, 31, 45
output=plot, 167
pdetest, 212, 305
pdsolve, 225
phaseportrait, 20, 35
phi, 5
piecewise, 111, 213
plot3d, 229
plots[display], 277
plot, 6
poincare, 326
pointplot3d, 93, 178
pointplot, 7, 53
polar, 232
psi, 139
rand(), 350
randomize(), 349
remove, 84, 124
restart, 4
rho, 209
rhs, 19, 22
riccatisol, 162
rotate, 140
round, 151
rtablesize=infinity, 276
scaling=constrained, 6
scene, 21, 31
select, 124

seq, 80
series, 133
shading=zhue, 45
showtangent, 167
sign, 167
simplify(exp), 239
simplify(power), 165
simplify(symbolic), 225
simplify(trig), 197
simplify, 22, 60
sin, 4, 19
solve, 5, 15
spacecurve, 98, 104, 352
sphereplot, 204
sqrt, 8, 19, 59
stepsize, 20
style=line, 53
style=patchcontour, 229
style=patchnogrid, 240
style=point, 62
subs, 24, 30, 35
sum, 226
symbol=box, 53
symbol=circle, 7, 62
symbol=cross, 93
symbolsize, 7
tau, 30, 60
taylor, 89, 168
textplot3d, 42
textplot, 53
theta, 5, 59
thickness, 42
tickmarks, 34
time(), 98, 276
title, 42
unapply, 151
unassign, 54, 63
unprotect, 34, 59, 297
with(DEtools), 18, 23, 51
with(DiscreteTransforms), 332
with(LinearAlgebra), 83, 276
with(PDEtools), 29, 59, 126
with(Student[Calculus1]), 166
with(VectorCalculus), 175
with(inttrans), 121, 262

368 INDEX

with(plots), 7, 59
with(plottools, 138

Mathieu equation, 143
Mathieu functions, 142
Mathieu, Emile, 142
MathieuC, 143
MathieuS, 143
matrix, 85

band, 276
multiplication, 276
square, 276
tridiagonal, 276

May, Robert, 149
mean daily temperature, 209
measles, 353
membrane

circular, 254
free edges, 253
rectangular, 251
square, 253

mesh
diamond-shaped, 312
point, 274
rectangular, 275

method of characteristics, 312
Michaelis{Menton equation, 161
microbiology, 152
Mike, 23
mirage, 190
model

KdV soliton, 300
modi¯ed Euler algorithm, 96
modi¯ed KdV equation, 303
Mona Lisa, 58
multiplication factor, 236
musical notes, 257
myxamatosis, 160

National Bureau of Standards, 131
negative damping, 29
neutron density, 236
neutron di®usion, 236
Newton's drag law, 161
Newton's second law, 59, 115
nodal lines, 256

nodal point, 16
nonlinear diode, 159
nonlinear drag, 164
nonlinear rate equations, 41
nonlinear SchrÄodinger equation, 287
nonlinear spring, 72
normal modes, 257, 259
Noyes, R. M., 40
nuclear explosion, 240
nuclear ¯ssion, 236
numerical instability, 96, 277
numerical mesh, 274
Nyquist frequency, 330
Nyquist, H., 330

ODE
nth-order, 110
Airy, 23
analytic solution, 22
arms race, 105
autonomous, 13
baleen whale, 95
Bernoulli, 155
Bertalan®y, 161
Bessel, 131
blood pressure model, 110
blue whale, 160
brachistochrone, 190
bungee cord, 138
catenary, 194
chemical oscillator, 44
chemical reaction, 100
competing armies, 57
con°uent hypergeometric, 23
dimensionless, 30
dot notation, 13
Du±ng, 149, 320
eardrum, 168
Euler algorithm, 92
Euler{Lagrange, 185
falling basketball, 152
falling raindrop, 120
¯nite di®erence approximation,

89
¯rst integral, 116

INDEX 369

¯sh harvesting, 100
¯xed points, 14
°u epidemic, 160
forced sti®, 106
fox rabies, 102
Frobenius series, 132
geodesic, 191
glycolytic, 96
gnus and sung, 74
golf ball, 182
Gompertz, 160
growing pendulum, 141
hard spring, 174
Hermite, 23
homogeneous, 110
inhomogeneous, 110
integrating factor, 115
Lagrange, 202
Laplace transform method, 121
laser beam, 159
learning curve, 114
Legendre, 134
light ray path, 191
linear, 14, 110
logistic, 154
Lorenz, 83
Malthus, 153
Maple odeadvisor, 115
Mathieu, 142
Michaelis{Menton, 161
modi¯ed Euler algorithm, 96
nonautonomous, 13
nonlinear, 14
nonlinear diode, 159
numerical instability, 96
numerical solution, 42
onset of bending, 141
Oregonator, 40
oscillating pivot, 206
p-q diagram, 50
parametric excitation, 206
pendulum, 23
phase-plane analysis, 47
phase-plane portrait, 13
piecewise, 111

plotting numerical solution, 42
population growth, 114
prime notation, 13
pursuit, 164
RÄossler, 45, 88
rabbits and foxes, 14, 51
Rayleigh, 23
Riccati, 162
RK4 algorithm, 96
rkf45 method, 42
RL circuit, 114
Romeo and Juliet, 18
rotating circular loop, 206
SchrÄodinger, 219
second-order, 14, 118
Sel'kov, 97
semi-implicit algorithm, 102
separable, 150
series solution, 126
simple harmonic oscillator, 14
SIR model, 66
soft spring, 23
spherical pendulum, 203
squid and herring, 82
standard form, 14
stationary points, 14
steady-state solution, 124
sti®, 105
sti®ening spring, 141
Sturm{Liouville, 130
trajectory, 14
transient solution, 124
Van der Pol, 28
Verhulst, 72
white dwarf, 95
yeast model, 154

optical pulse, 288
ordinary functions, 130
ordinary point, 15, 47
Oregonator, 40
orthogonality, 136, 226
oscillator

forced glycolytic, 337
glycolytic, 96
tunnel diode, 28

370 INDEX

overdamping, 26

p-q diagram, 50
pacemaker, 28
Palace of the Governors, 207
parametric excitation, 206
parametric plot, 6
Parseval's theorem, 329
PDE

Boussinesq, 296
Burgers, 296
cosine{Gordon, 293
embedded string, 278
Hamilton, 324
heat di®usion, 208
interacting laser beam, 318
KdV, 287
Klein{Gordon, 278, 281
Laplace, 220
modi¯ed di®usion, 267
modi¯ed KdV, 303
nonlinear, 287
nonlinear di®usion, 296
nonlinear Klein{Gordon, 281
nonlinear SchrÄodinger, 287
numerical Laplace, 284
numerical simulation, 274
Poisson, 282
scalar Helmholtz, 257
sine{Gordon, 287
sound waves, 257
three-wave, 296
variable separation, 224
vibrating bar, 270
vibrating membrane, 251
vibrating string, 248
vibrating wire, 270
wave, 212, 247
general solution, 248

pendulum, growing, 141
pendulum, rotating, 205
period doubling, 34, 38
period eight, 39
period four, 38, 321, 336
period one, 37

period two, 38, 319, 335
period-n response, 319
periodic windows, 344
phase plane, 14

portrait, 14
trajectory, 14

phenomenological model, 51
piano string, 250
piecewise function, 111
pitchfork bifurcation, 337
plane wave, 215
plate, semicircular, 240
Poincar¶e section, 319
Poincar¶e's theorem, 51
point

¯xed, 15
focal/spiral, 16, 49
higher-order ¯xed, 49
nodal, 16, 49
ordinary, 15, 47
saddle, 16, 17, 50
saddle-vortex, 71
simple stationary, 15, 48
stable equilibrium, 16
stable focal, 17
stable nodal, 17, 49
stationary or ¯xed, 47
unstable focal, 17
unstable nodal, 17
vortex, 16, 17, 67

Poisson's equation, 282
polar coordinates, 231
polynomial force law, 67
population growth, 153
potential

alternating surface, 235
split, 245

power spectrum, 329
chaotic, 336

predator{prey interaction, 51
prime notation, 13
pulsating sphere, 210
pursuit problem, 164

quantum tunneling, 219

INDEX 371

quartic map, 345
Queen Dido, 191

RÄossler system, 88
radian, 59
radiation, 312
radioactive contamination, 266
Rainbow County, 51
random time series, 350
random-number generator, 349
random-number seed, 349
rectangular barrier, 219
recurrence formula, 136
re°ection coe±cient, 215
resistor, 29
Riccati equation, 162
rigid boundary, 241
rk4 method, 97
rkf45 algorithm, 42
RL circuit, 114
Rocky Mountain, 184
Romeo and Juliet, 18
rotational symmetry, 242
round-o® error, 95
route to chaos, 34
Russell, John Scott, 300

Saccharomyces cerevisiae, 155
saddle point, 16, 17, 35
saddle{vortex point, 71
Sagan, Carl, 343
sampling frequency, 330, 333, 334
sampling theorem, 330
saturable refractive index, 296
saturation, 155
scalar Helmholtz equation, 257
Schizosaccharomyces kephir, 155
SchrÄodinger equation, 219
Sel'kov model, 97
semi-implicit method, 102
semi-in¯nite domain, 261
separable ODE, 151
separation constant, 228
separation of variables, 224
separatrix, 17, 289

Shannon, C. E., 330
SHE, 257
shear force, 270
SHO, 16
shock wave, 301
sifting property, 264
signal processing, 330
simple ¯xed point

condition for, 48
simple harmonic oscillator, 14
simple pendulum, 58
simple stationary point, 15, 48
sine map, 341, 345
sine{Gordon breather, 306
sine{Gordon equation, 287
single-valued, 259
SIR model, 66
snowshoe hare, 160
solitary wave, 287

antikink, 289
black, 289
bright, 289
kink, 289
nontopological, 289
three-wave, 296
topological, 289

soliton, 287
black, 296
bright, 295
ion acoustic, 303
stationary, 295

sound speed, 257
special functions, 130
speci¯c heat, 208
squid and herring, 81
stability, collisonal, 287
stable focal point, 17
stable limit cycle, 29
stable nodal point, 17
static potential, 231
stationary point, 15
stationary points

classi¯cation of, 49
steady state, 124, 284
sti® ODE, 105

372 INDEX

sti®ness, 248, 270
Stokes's drag law, 118
storybook character, 2
strange attractor, 44, 319
streamlines, 223
string

plucked, 214
struck, 215

Strogatz, Steven, 18
supercritical condition, 236
superposition

linear, 238
surface of revolution, 189
systemic resistance, 111

tangent ¯eld, 14
Tappert, Fred, 307
Taylor expansion, 48, 89
Taylor{Couette °ow, 353
tent map, 341, 345
terminal velocity, 120
thermal conductivity, 208
thermonuclear fusion, 175
third harmonic, 333
three-wave problem, 296
Toda Hamiltonian, 329
trading records, 57
transcendental equation, 5
transcendental function, 61
transform

discrete Fourier, 331
discrete inverse Fourier, 331
Fourier, 271
Fourier cosine, 264
Fourier sine, 261
inverse Fourier, 271
Laplace, 267

transient, 124
transmission coe±cient, 215
transverse velocity, 249
tridiagonal matrix, 276
tunnel diode, 28
turbulence, 161
turning point, 171
two-soliton solution, 307

tympanic membrane, 168

ultrasonic cavitation, 353
uncertainty principle, 273
underdamping, 26
unstable focal point, 17
unstable nodal point, 17

Van der Pol equation, 29
Van der Pol, Balthasar, 28
variable endpoint, 198
variable transformation, 290
variational calculus, 185
vector

column, 277
Vectoria, 23
velocity potential, 241
Verhulst, 154
Verhulst equations, 72
vibrating cylinder, 261
vibrating wire, 270
von Bertalan®y equation, 161
vortex point, 16, 17, 35, 51, 67

wave equation, 212
wave number, 215
waves

elastic, 247
electromagnetic, 247
longitudinal dispersive, 288
magnetohydrodynamic, 288
membrane, 247
pressure, 288
shallow water, 288
sound, 247
string, 247
tidal, 247

weather forecasting, 83
white dwarf stars, 95
Whittaker functions, 145
Woods, Tiger, 183

yeast, 152

Zabusky, Norman, 309
Zabusky{Kruskal algorithm, 309

	Preface
	Introduction
	Contents
	Part I THE APPETIZERS
	Chapter 1 Phase-Plane Portraits
	Chapter 2 Phase-Plane Analysis

	Part II THE ENTREES
	Chapter 3 Linear ODE Models
	Chapter 4 Nonlinear ODE Models
	Chapter 5 Linear PDE Models. Part 1
	Chapter 6 Linear PDE Models. Part 2

	Part III THE DESSERTS
	Chapter 7 The Hunt for Solitons
	Chapter 8 Nonlinear Diagnostic Tools

	Bibliography
	Index

