
An Introduction to
Numerical Methods and
Optimization Techniques

Richard W. Daniels

-- NORTH-HOLLAND NEW YORK
NEW YORK OXFORD

Elsevier North-Holland, Inc.
52 Vanderbilt Avenue, New York, New York 10017

Distributors outside the United States and Canada:
Thomond Books
(A Division of Elsevier/North-Holland
Scientific Publishers, Ltd)
P.O. Box 85
Limerick, Ireland

© 1978 by Elsevier North-Holland, Inc.

Library of Congress Cataloging In Publication Data

Daniels, Richard W., 1942-
An introduction to numerical methods and

optimization techniques.

Bibliography: p.
Includes index.
1. Numerical analysis. 2. Mathematical

optimization. 1. Title.
QA297.D37 519.4 78-6980
ISBN 0-444-00263-4

Manufactured in the United States

Contents

Preface

1. Introduction

1.1 "Historical" Background
1.2 Numerical Methods
1.3 Optimization Techniques
1.4 Computer Philosophy Used in the Text
1.5 Error Analysis

Problems

2. Solution of Linear Equations

2.1 Introduction
2.2 Cramer's Rule
2.3 The Matrix Solution
2.4 Gauss Elimination
2.5 Crout Reduction
2.6 Suggested Reading in Related Topics

Problems

3. Solutions for a Nonlinear Equation

3.1 Introduction
3.2 Iterative Procedures

3.3 Newton's Method
3.4 Quadratic Interpolation and Muller's Method
3.5 Bairstow's Method
3.6 Suggested Reading in Related Topics

Problems

4. Interpolation

4.1 Introduction
4.2 A Unique Solution

xi

15

15

16

17

19

29

36

38

43

43

44

45

50

57

64

67

71

71

72

vii

vill Contents

4.3 The Normalized Variable 73

4.4 Some Useful Operators, A and E 74

4.5 Difference Tables 77

4.6 The Newton-Gregory Polynomial 78

4.7 The Lagrange Polynomial 82

4.8 Inverse Interpolation 85

4.9 Introduction to Least-Squares Data Fitting 86

4.10 Spline Functions 89

4.11 Fourier Series Applied to Interpolation 91

4.12 Suggested Reading in Related Topics 97

Problems 100

S. Differentiation 103

5.1 Introduction 103

5.2 Method of Interpolating Polynomials 104

5.3 Method of Undetermined Coefficients 107

5.4 Application of Interpolating Programs 111

Problems 113

6. Integration 115

6.1 Introduction 115

6.2 Trapezoidal Rule 116

6.3 Simpson's Rules 121

6.4 Examples 125

6.5 Romberg Prediction 127

6.6 Method of Undetermined Coefficients 129

6.7 Predictor and Corrector Equations 131

6.8 Gaussian Quadrature 134

6.9 Suggested Reading in Related Topics 137

Problems 139

7. Solution of Differential Equations 143

7.1 Introduction 143

7.2 Classification of Differential Equations 144

7.3 Euler Method 144

7.4 Stability Analysis 147

7.5 Modified Euler Method 151

7.6 Runge-Kutta Method 153

Contents Ix

7.7 Adams Method and Automatic Error Control 156

7.8 Solution of Higher-Order Differential Equations 163

7.9 Boundary-Value Problems 169

7.10 Suggested Reading in Related Topics 172

Problems 174

8. Introduction to Optimization Theory 177

8.1 Preliminary Remarks 177

8.2 Formulation of Optimization Problems 179

8.3 Overview of Various Optimization Techniques 181

8.4 The Simplex Optimization Technique 183

8.5 Applications of Simplex 190

8.6 Test Functions 195

Problems 202

9. Gradient Techniques 205

9.1 Introduction 205

9.2 Quadratic Interpolation for a Specific Direction 206

9.3 The Gradient 208

9.4 The Steepest-Descent Optimization Technique 211

9.5 Applications of Steepest Descent 220

9.6 The Fletcher-Powell Optimization Technique 226

Problems 233

10. The Least-pth Optimization Technique 237

10.1 Introduction 237

10.2 The Least-Squares Algorithm 238

10.3 The Least-pth Algorithm 242

10.4 A Least-pth Program 244

10.5 Application to Least-Squares Data Fitting 252

10.6 Chebyshev Approximations 256

Problems 263

11. Constrained Optimization Problems 265

11.1 Introduction 265

11.2 Active Constraints versus Inactive Constraints 266

11.3 Transformations 269

x Contents

11.4 Penalty Functions 276
11.5 Concluding Comments about Optimization Tech-
niques 280

Problems 282

References 285

Answers to Selected Problems 287

Index 291

Preface

The availability of computers has revolutionized every field which depends
on numerical calculations. The scientist or engineer can be greatly aided in
his work if he knows how to enlist the aid of his new ally. The purpose of
this book is to help the undergraduate student learn how to apply a
computer to many different types of practical problems. The book is
written in a manner that should instill enthusiasm in the reader and help
convince him that the computer is one of the greatest labor saving devices
ever to come along.

This book's philosophy differs from most others written on numerical
methods or numerical analysis. In a typical numerical-analysis text, much
time is spent on error analysis. However, in practical applications, usually
little time is devoted to rigorous error analysis.

Instead of relying solely on error analysis to estimate the accuracy of
answers, other methods are emphasized in this text. Observing how a
process converges can give insight into its accuracy. Also, solving a
problem two different ways can verify a solution. Although error analysis
is not very practical as a tool for estimating accuracy, it does have other
uses. It can be used to compare different numerical methods and demon-
strate that, on the average, one is superior to another. Or a knowledge of
error properties can be used to improve a numerical method.

Avoiding a lengthy investigation of error analysis allows time for the
reader to become acquainted with optimization techniques. Numerical
methods and optimization techniques are intimately related, but unfor-
tunately they are not generally taught in the same course. However, since
both numerical methods and optimization techniques are usually iterative
procedures, they have a common philosophy and application. In fact, as
demonstrated in this book, an optimization technique can be viewed as a
collection of numerical methods which have been linked together in a
specific way. Thus, once a student has become familiar with numerical
methods the extension to optimization techniques is very natural.

This text does not attempt to be a complete catalog of numerical
methods or optimization techniques-volumes would be needed for this.
For a specific problem, the specialist can probably consult the literature

x1

xll Preface

and obtain a more efficient solution than presented in this book. If he uses
his sophisticated program very often, his time is well spent. In fact, this
text is not written for the specialist, but for the reader or student who will
probably not have the luxury of spending days on research to save
milliseconds of computer time.

Instead of overwhelming the reader with numerous methods for solving
the same problem, attention is focused on one or two. If a person is
familiar and confident with a specific method, he is much more likely to
apply it than if he only has a nodding acquaintance. Just because a
particular method has been included in this text, it need not be the best
one available. The choices were influenced by the desire to have an
introductory text which links numerical methods to optimization tech-
niques. At the end of most chapters is a section entitled "Suggested
Reading in Related Topics", which enables the enthusiastic reader to do
additional research on topics not essential to an introductory course.

The typical student using this book for a formal course will be a junior
or senior-a sophomore could understand the material, but might not
appreciate the range of applications. A knowledge of differentiation and
integration is essential for the course; the ability to solve differential
equations would be helpful, but is not essential.

Because the application of many of the algorithms in this text requires
the use of a computer, numerous programs are included. These programs
are written in a version of time-sharing FORTRAN that is similar to FORTRAN
iv. The programs were all run on a Control Data Cyber 70 computer
system.

The programs that have been included in the text are written with the
emphasis on clarity. Their purpose is to implement the methods described
in the text and provide a means for the student to apply the algorithms.
The programs have not been included in the hope that they will become
widely used in various computation centers; they are ill suited for that
purpose. The literature contains ample selections of programs that have
been written with the emphasis on speed and accuracy. However, even
though the programs in this book are relatively simple, they should be
adequate for the problems encountered by students who are at this
introductory level; and they provide a good basis for understanding the
more sophisticated programs that abound in the literature.

The problems at the end of the chapters serve various purposes. Some
help to extend the material presented in the text or to check the reader's
knowledge of subtle points. Others illustrate the application of the pro-
grams or equations. Finally, many of the problems help the student
become familiar with the computer so that it will become an ally in future
endeavors.

Preface

The idea of combining numerical methods and optimization techniques
into one text occurred to the author while teaching at Tennessee State
University. My appreciation goes to those students who helped shape the
early direction of the book. Also, I have the good fortune to have had
many different experts review the text and offer numerous suggestions for
its improvement. To two of my colleagues go special thanks: R. P. Snicer
for his thorough review and detailed suggestions, and P. H. McDonald for
her helpful hints on structured programming.

Chapter One

Introduction

1.1 "HISTORICAL" BACKGROUND

Scientists have been using numerical methods to help solve mathematical
problems for many, many centuries. As an illustration of a numerical
method, consider one that could have been used by Pythagoras to find the
hypotenuse of a right triangle. Suppose his triangle had two sides of unit
length, so that the hypotenuse was \ . The square root of two is an
irrational number, so it cannot be calculated exactly, but it can be
approximated by using the binomial expansion

+l)I l+ + (z)(-z) + (?)(-n(-I +)(-z)(-i)(-i)
2 2! 3! 4!

(1.1)

If Pythagoras had used the first five terms in (1.1), he would have
approximated the square root of two as 1.40. This is just one of many
possible numerical methods that could have been used. A better (though
equally simple) method is given in Problem 3.10 (Chapter 3).

The original numerical methods were first used when there were no
computer systems, minicomputers, desk-top calculators, pocket calculators,
mechanical calculators, or even any slide rules. It is, thus, not surprising
that our present conception of a good numerical method may differ greatly
from our ancestors'.

Originally, much effort was spent on systematically tabulating calcula-
tions so that a relatively untrained person could perform the drudgery
required by a numerical method. In fact, because computers are a recent
invention, that was true well into this century. Then, with the advent of
computers, emphasis slowly shifted to writing the numerical method in
such a way that a computer could do the tedious calculations.

1.2 NUMERICAL METHODS

Numerical methods are used to estimate answers to mathematical prob-
lems. Depending on the particular numerical method and the particular

1

2 Introduction

problem, the numerical answer may be very accurate or very inaccurate.
That is, assuming an analytical answer could be determined, the numerical
and analytical answer might be the same for many digits, or the numerical
answer might have only a few meaningful significant figures.

One usually applies a numerical method because an analytical result
either cannot be obtained or would require too much work. Since in the
usual case direct comparison cannot be used to estimate the accuracy of
the numerical result, an error analysis is often required. Texts that devote a
considerable amount of space to error analysis are usually referred to as
numerical-analysis texts, instead of numerical-methods texts.

The series expansion of a function is one numerical method with which
the reader is probably already familiar. This can be used to estimate the
value of a function by adding together a sufficient number of terms.
Special attention will not be devoted to series solutions in this text, but
they will often be part of an iterative solution. An iterative numerical
method follows a definite set of rules-over and over and over again, until
the desired accuracy is obtained. With high-speed computers, many itera-
tions can be performed in a very short time. This has helped make many
numerical methods practical which used to require too many manual
computations.

EXAMPLE 1.1

Transient responses (i.e., responses that eventually disappear) occur in
many engineering problems. For this example we will consider the voltage

v(t)=7e-3t+3e _2r, (1.2)

where t represents time. This voltage is plotted (for positive times) in Fig.
1.1, which indicates that the voltage initially is equal to 10 and asymptoti-
cally decays to zero.

In theory it takes forever for a transient response to become zero.
However, in practice the transient response soon becomes small enough so
that it is negligible. In this example we will assume that a designer wants to
determine when the voltage has decayed to one percent of its initial value.
That is, we want to solve the following equation for t:

0.1=7e -3r+3e-2r (1.3)

This is a nonlinear equation for which we cannot obtain an exact
solution, but by "guessing" at the answer in a systematic manner we can
obtain as accurate an answer as we desire. Chapter 3 will describe more
sophisticated methods of solving nonlinear equations, but the following
interval-halving method will be a good introductory example of an iterative
method.

As a first guess, assume the solution is t = 1.5. The accuracy of this guess

Numerical Methods

FIGURE 1.1. Transient response of an electrical network.

3

can be determined by evaluating the error, which is defined as

error= (7e-3r+3e-2`)-0.1. (1.4)

Table 1.1 indicates that this error is approximately 0.1271. Since the error
is positive, we know the solution must occur at a larger time, so the guess
t=2.5 is made. Table 1.1 indicates that this error is approximately
-0.0759. Since the first error was positive and the second error was
negative, the solution must be between t = 1.5 and t = 2.5. Therefore let the
next guess be half way between t =1.5 and t = 2.5.

The solution to (1.3) can be found approximately by iteratively halving
the interval of uncertainty as illustrated in Table 1.1.Of course, halving the
interval will never reduce the uncertainty to zero; but it may not take too
many iterations before the error is negligible. For example, the fifth guess
t=1.875 yielded an error of -0.0042. (To four significant figures the
solution is I= 1.856.)

Table 1.1
Interval-halving example

t error

1.5 0.12712
2.5 -0.07591
2.0 -0.02770
1.75 0.02732
1.875 -0.00420

4 Introduction

1.3 OPTIMIZATION TECHNIQUES

An iterative numerical method is often used to successively adjust a
parameter until a desired result is obtained. For example, in Chapter 3,
various methods are described for adjusting the parameter x so that the
function f (x) is made zero-that is, x is adjusted so that the roots of f (x)
are found.

Optimization techniques also adjust parameters so as to attain a desired
result. In fact, it is often a matter of personal preference whether a process
is termed a numerical method or an optimization technique. Usually, if the
process adjusts only one parameter, it is termed a numerical method; if it
adjusts more than one, it is termed an optimization technique.

The optimization techniques to be described in this book can simulta-
neously adjust many parameters to meet some specification optimally. Like
the numerical methods, the optimization techniques will be iterative proce-
dures. The optimum set of parameters will not be found by applying a set
of computation rules just once; often many iterations will be required.

Because numerical methods and optimization techniques have a com-
mon philosophy and application, both will be treated in this book. In fact,
an optimization technique can be viewed as a collection of numerical
methods which have been linked together in a specific way. Thus, once a
student has become familiar with numerical methods, the extension to
optimization techniques is very natural.

1.4 COMPUTER PHILOSOPHY USED IN THE TEXT

Many programs and numerous examples have been included in the text.
This is because it is difficult, if not impossible, to fully appreciate numeri-
cal methods without using them. For those who do not have access to a
computer, the examination of examples will help by providing sample
output. However, actually using the programs will be even more beneficial.

The actual choice of a computer language was difficult, since no choice
will make everyone happy. The BASIC language was considered first,
because it is an elementary language which is easily learned. However,
almost every person who eventually does "serious computing" will discard
BASIC for a more powerful language. Since more advanced languages can
be learned without much added difficulty, it was decided not to use BASIC.

FORTRAN was chosen as the computer language for this text because it is
the most universally used language. However, this does not imply it is the
most readable language. In fact, unless care is taken, the flow of computa-
tion can be confused by many branching and GO TO statements. This has
been avoided as much as possible in this text by simulating statements

Computer Philosophy Used In the Text 5

such as WHILE and UNTIL which are found in other languages. Also, the
readability of the programs has been enhanced by including numerous
comment statements, many of which cite equations used in the text.

Until recently, the majority of computer programs were run in the batch
mode. This means that a batch of instructions was given to the computer,
and then it proceeded without interruption until the job was terminated.
Because computers only do exactly what they are told, this implies that the
instructions they are given must be perfect or else the computations will
not be correct. Because we humans are prone to make mistakes, it often
requires many attempts at writing a program before it works correctly.
Thus, many programmers have pondered the possibility that we have
merely traded the drudgery of numerical calculations for the frustrations
of program "debugging".

Instead of operating in the batch mode, it is now often feasible to run
programs in the interactive mode. This implies that the user can directly
interact with the computer by some means such as a teletypewriter or a
keyboard. The degree of interaction varies from computer to computer.
Some interactive computers are still essentially used in the batch mode: the
job may be originated at a teletypewriter and the results printed out there,
but there is no other communication between the user and the computer.
At the other extreme, some interactive computers inform the operator that
he has used the wrong syntax in a command even before he attempts to
run the program.

When a computer is used in the interactive mode, it allows for much
more flexibility from the user's viewpoint. The computer can request data,
print out some intermediate results, and then request additional data. The
user can examine the previous output and supply new data based on his
observations. Of course, all this could be done in the batch mode, but not
as conveniently.'

The purpose of this book is to help the reader become aware of what can
be accomplished with numerical methods and optimization techniques. So
that attention can be focused on the main concept in an algorithm, the
programs have been kept as simple as possible. Writing the programs for
an interactive computer helped to keep the programs simple. For example,
less emphasis need be placed on providing "stop criteria" in a program. It
should be reemphasized that it is not the purpose of this book to develop
general-purpose, efficient programs that will be used at computing centers.
Computer facilities come supplied with "canned" programs for standard
problems such as solving sets of linear equations. In writing such

'Batch programs may still be desirable in many instances-for example, if a computer
program requires a large amount of time for execution.

6 Introduction

programs, much effort is spent in making the program both efficient and
foolproof. Thus, in many situations the reader may find it wise not to
"reinvent the wheel", but instead use what is already available. This book
should help one obtain an understanding of the theory that is used in these
programs.

If the reader understands the theory behind the programs in this text, he
should then be in a position to assess realistically whether or not a
particular program is sophisticated enough for his needs. Thinking about a
problem before rushing off to solve it can save time (much more than a
few milliseconds) in the long run. It should be kept in mind that in many
applications computational efficiency does become important (e.g., in
optimization problems that require many iterations).

In closing this section, a few of the author's programming habits will be
mentioned. In order to simplify the programs, free-format input and
output statements are frequently used. In a free-format PRINT statement, /
(slash) causes a line to be skipped. Sometimes, more than one statement is
included on one line, the symbol $ being used to separate statements.

Although it is not required by time-sharing FORTRAN, in this text state-
ment numbers are always made the same as the corresponding line
numbers. For example,'

98 98 X=5+Y.
T T

line statement
number number

1.5 ERROR ANALYSIS

Numerical techniques are applied because, for a particular problem, an
analytical answer is impractical or impossible to find. In any numerical
method, there will be sources of error, so attempts will be made to estimate
the amount by which the answer is in error. It must be emphasized that the
error can only be estimated-if we could find the exact error, then we
would know the exact answer.

Three sources of error will be discussed in this section: input error,
roundoff error, and truncation error. Interspersed throughout the discus-
sion will be hints on the use of the computer as an aid in error analysis.

The input data supplied to the computer may contain errors because the
data are the result of imperfect measurements. For example, suppose we
want to determine the area of a rectangle of which side a is measured as

2Note that in batch FORTRAN, there would be no line numbers, only statement numbers.

Error Analysts 7

10.232 cm and side b as 8.417 cm. If we know that the measuring device
has 0.1% accuracy, we might feel confident in stating a= 10.23 cm and
b = 8.42 cm, but certainly we would not want to wager money on a =
10.232 cm versus a= 10.231 cm. In this case, we would say that a= 10.232
cm is accurate to four significant figures.

Errors in input data will cause errors in output (i.e., calculated answers);
however, the amount of output error will vary from problem to problem.
Sensitivity analysis can be used to determine how sensitive a result is to
variations in a particular input parameter. For example, assume the output
y is a function of three input parameters x,,x2,x3. A 0.1% change in x,
(x2, x3 assumed constant) is found to cause a 2% change in y, while a 0.1%
change in either x2 or x3 causes only a 0.5% change in y. We would then
conclude that the calculations are most sensitive to errors in x, and take
extra precautions to insure an accurate value for x,.

If the output is very sensitive to variations in the input, then the problem
is said to be ill conditioned. An example is given in Problem 1.8.

The computer can, of course, serve as an aid in sensitivity analysis. One
can run the same problem many different times, each time making a small
change in one parameter and observing the effect on the output. In fact,
sophisticated programs exist which simultaneously vary all input parame-
ters by amounts determined by statistical properties of the data. These
programs allow one to determine the probability that an answer is within a
certain range of values.

The roundoff errors we will be concerned with result from the fact that a
computer must represent numbers by using only a finite number of digits.
For example, the fraction i may he represented by a computer as
0.33333333. Since in practical problems we will not normally need more
than eight significant figures in an answer, this might not appear to be a
serious limitation. However, roundoff errors have a nasty tendency to
accumulate. In a numerical solution to a problem, there may be thousands
of calculations before the result is obtained. Many of these calculations
may depend on previous calculations, so it is not difficult to conceive of
roundoff errors growing until the final answer is meaningless.

Some computers let the user specify double-precision arithmetic. That is,
throughout the program (or just in specific parts), twice as many digits as
normal will be used by the computer. Using double-precision arithmetic
reduces computation speed and also uses additional memory locations, so
it should be avoided unless necessary. Its necessity can be determined by
doing two computer runs: one with single precision and one with double
precision in the critical parts of the program. Comparing the two results
will indicate whether or not roundoff errors significantly influenced the
result.

a Introduction

If roundoff errors are troublesome, it is often possible to modify part of
the program and reduce their effect. An example of this is given in
Problem 1.9. This problem indicates that roundoff errors are particularly
troublesome if two nearly equal numbers are subtracted. For example,
consider the difference ; -0.333. If is rounded to four significant figures
(i.e., to 0.3333), then the difference will be calculated as 0.0003, while the
actual difference is 0.000333... ; thus the answer is only accurate to one
significant figure.

As previously mentioned, roundoff errors can accumulate and eventu-
ally cause a final answer to be meaningless. Whether or not an error
decays, stays approximately constant, or grows as the computations pro-
ceed will depend on the numerical method that is used. In fact, in some
algorithms the roundoff errors exhibit exponential growth. An example of
such an algorithm is given in Section 7.4.

Truncation error will be explained with reference to the Taylor series
expansion of f (x) about a reference point xo,

fi3)(o)h3
+... (1.5)f(xo+h)=f(xo)+f')(xo)h+

ftZ)2'o)hz

+ 3
where, for example, f,3)(xO) represents the third derivative of f (x)
evaluated at xo. This equation implies that for an increment size h,
f(xo+h) can be determined exactly from the behavior at f(xo) (assuming
all the derivatives exist).

It is impossible to sum an infinite number of terms with a computer, so
an expression such as (1.5) must be truncated; that is, only a certain
number of the terms can be used, and the rest must be discarded, resulting
in a truncation error. For example, if the Taylor series is truncated after the
second derivative, then (1.5) can be written as

f(xo+h)=f(.xo)+f" (x0)h+
r(2)(2o)h2

+error(h). (1.6)

The error term can be expressed by the Taylor-series remainder theorem,
but that will not be necessary for our purposes. We will be able to obtain
sufficient information about the error just by noting how the error behaves
for small increments h. For example, comparing (1.5) and (1.6) yields that,
for h small enough, the error is proportional to h3. That is,

error(h)zah3.

EXAMPLE 1.2

Expanding f(x)=ex in a Taylor series about xo= I yields
2 3 4

f(1+h)=e1+h=e+eh+e + 3+ 4 +.

Error Analysis 9

If this series is truncated after the third term, then the error is given by

error(h)=e'+h-(e+eh+0.5ehz).

The error can be made arbitrarily small by making h small enough. For
example error(0.1)=4.646X 10-4, while error(0.05)=5.735X 10-5. Since
error(0.I)/error(0.05)=8.1, we see that when h was reduced by a factor of
2 the error was reduced by approximately a factor of 8 which implies
error(h),:j ah 3. Using error(0. I) = 4.646 X 10-4 yields that the constant of
proportionality is approximately 0.46.

The previous work implies that if f (x) is expanded in a power series as

f(xo+h)=ao+a, h+azhz+ - +a,,,h'"+error(h),

then for h small enough the error is proportional; to h". This is also
stated as "the error is of the order of h"'"" and written as error(h)=
O(hm+1)

Knowledge about the order of an error will be useful to us when we
study numerical integration in Chapter 6. In that chapter we will obtain
some formulas for approximating4 f xO+hf(x)dx.

We will now develop some tools that can be used to establish the order
of the error of these (and other) approximations. Assume that a particular
formula is exact for every second-degree function, but not for every
third-degree function. That is, if an arbitrary function J(x) is expanded in
a power series as

f (xo+h)=ao+a1h+azhz+error(h), (1.7)

then the integral equation will be exact for the first three terms and only
yield an error for the last term. Thus,

Integral error= f xo+herror(h) dx = f
o

dh. (1.8)
xp o

But for (1.7) error(h)=ah3, so that the integral error in (1.8) is of the order
h4.

Generalizing, if an approximation for fXO+h f(x)dx is exact for every
mth-degree function, but not every (m + 1)th-degree function, then the
error is of the order of h"'+2

3Asuuming that the m + I denvative of f(x) is nonzero.

4Actually, some of the formulas will be of the form f xo 'f(x)dr where i is an integer.
However, the same conclusions apply for this case also.

10

EXAMPLE 1.3

In Chapter 6 the trapezoidal rule is given as

2

[f (xo)+.f(xo+h)

introduction

Any first-degree function can be written as f(x)=a+bx. For this arbitrary
first-degree function it follows that the exact solution is

fx°+"f(x)dx= f
x°+ti(a+bx)dx=ah+b(xoh+0.5h2).

xo xo

But applying the trapezoidal rule to this function gives

2 [f(xo)+f(xo+h)] =
2

{(a+bxo)+[a+b(xo+h)]},

which is the same as the exact answer; thus the trapezoidal rule is exact for
any first-degree function.

If we instead consider the second-degree function f(x) = x2, then the
exact integral is xo2h + xoh2 + h3/3, while the trapezoidal rule yields x02h +
x0h2+h3/2, which is different from the exact answer.

Since the trapezoidal rule is exact for every first-degree function, but not
for every second-degree function, it follows that the error for the
trapezoidal rule is of the order of P. This is equivalent to saying that, for h
small enough, the error for the trapezoidal rule is proportional to h3.

The above type of error analysis can be used to compare two different
methods for approximating integrals: if one has an error that is propor-
tional to h2 and another has an error proportional to h4, the latter one is
usually considered to be better. The reason for this is that halving the step
size h for the process which has an error proportional to h4 would reduce
the error by a factor of 16, but only by a factor of 4 in the other process.

Notice that if a Taylor series approximation of f (xo+ h) was accurate
for every second-degree function, but not every third-degree one, then the
error was of the order of h3; while for the same conditions the integration
error was of the order of h4. An interpretation of this is that integration
"smoothes" errors-positive and negative errors tend to cancel and aid the
accuracy of the estimation. On the other hand, differentiation tends to
magnify errors. By analogy to the previous work it can be shown that:

If sample points of separation h are used to estimate df/dx and the ap-
proximation is exact for every mth-degree function, but not every (m + 1)th-
degree function, then the error is proportional to h'.

Error Analysis 11

In many of the interactive numerical methods, h represents a step
size-the solution advances from x0 to to x0+2h, etc., until it finally
reaches the desired point. We have just seen that for small step sizes the
error may be proportional to h', where m is a positive integer. Thus by
reducing the step size the error can be made arbitrarily small. The
disadvantage of reducing the step size is that more steps must be taken
from the initial value x0 to the final value.

Reducing the step size is one way of determining the truncation error
introduced by a numerical method. If the step size is halved and the new
answer agrees for the first five digits with the previous answer, then it is
fairly certain that the answer is accurate to five significant figures (assum-
ing no input errors). This is one way the computer can be used to estimate
the accuracy of solutions. In fact, as demonstrated in Problem 1.11, the
computer can even be used to determine, for a paticular numerical
method, the value of m in error(h)zahm.

PROBLEMS

1.1 Round off the following numbers so that they are accurate to four
significant figures:

n, = 12.3456, n2=0.00126446, n3 = 7846.51.

Which answers would change if the numbers had been truncated to
four significant figures instead of rounded?

1.2 Express 10sin45° as a number which is accurate to
(a) Three significant figures.
(b) Three digits after the decimal point.

1.3 If x2 is used as an approximation to x,. then the absolute error can be
defined as I x, - x21.
(a) If x, = 1.784 is approximated as x,= 1.78, what is the absolute

error?
(b) If the number x2= 12.63 was obtained by rounding to four

significant figures, what is the largest the absolute error could be?
(c) If the number x2 = 12.63 was obtained by truncating to four

significant figures, what is the largest the absolute error could be?
1.4 If x2 is used as an approximation to x, then the relative error can be

defined as 02-x1)/x,I.
(a) If x,=1.98 is approximated by x2=2.00, what is the absolute

error and what is the relative error?
(b) Repeat (a) for x, = 198 and x2 = 200.

12 Introduction

(c) Which gives more insight into the number of significant figures:
the absolute error or the relative error?

1.5 (a) What is the relative error if 22+21 is used to approximate
21.9 + 20.6?

(b) What is the relative error if 22-21 is used to approximate
21.9 - 20.6?

1.6 What is the relative error if 100 X 200 is used to approximate 101 X
201?

1.7 Sensitivity coefficients can be used to indicate how much a particular
input parameter x, influences the output y. For example, if y is a
function of two parameters, then the sensitivity coefficients are de-
fined as

av x

` ax, v
SY =]ay X2

Y

.

- axe y

Calculate the sensitivity coefficients for y =60x, - l/(x2 -0.98). Let
x,=1= x2.

1.8 Division by a difference of large numbers can produce inaccuracies
due to roundoff errors in computation or magnify input data errors.
For this problem the output y is related to the input x via y =10/(x -
99)2. If x is increased 1% from its original value of 100, what is the
percentage change in y?

1.9 The expression (x -y)/(x2 _. V') can be written in a simpler form if
the denominator is factored. This problem illustrates that the ac-
curacy of the answer can depend on which form is used.
(a) Evaluate (x -),)/(x2 -y2) for x = 1.001, v = 1. Use five significant

figures in all calculations.
(b) Repeat (a) for 1/(.x+y).

1.10 An approximation for In(] + h) is ln(1 + h)zh -0.5h2.
(a) What is the error if h=0.1?
(b) What is the error if h = 0.05?
(c) Calculate error(0.1)/error(0.05).
(d) For h small, error(h)zah3. Find the value of a.

1.11 An approximation for sin.x is sinxz.x. where x is in radians. What is
the order of the error of this approximation? Check your answer by
finding error(0.0I)/error(0.005).

1.12 The trapezoidal rule can be written as

J f(-x)dx 2 [f(xo)+J(.xo+h)U].

Let xo= I and f(x)=x3.

Problems 13

(a) Find the error that results when the trapezoidal rule is applied
with h =0.1.

(b) Repeat (a) with h=0.05.
(c) Find error(0.1)/error(0.05).

1.13 A simple approximation for the derivative at x = xo is

df
dx

f(xo+h)-f(xo)

(a) Show that this is exact for any first-degree function.
(b) Show that it is not exact for every second-degree function.

1.14 The approximation in Problem 1.13 has an error which is propor-
tional to h. Verify this for the function f(x) = e-` by comparing the
exact derivative at x=0 with the approximate value. In particular,
calculate error(h = 0.1)/error(h = 0.05).

Chapter Two

Solution of Linear Equations

2.1 INTRODUCTION

Unlike most chapters in this book, this chapter is concerned with finding
an analytical solution-the solution of a set of linear equations. The
methods described in this chapter will not be iterative; except for roundoff
errors, they will yield exact answers. We will study the solution of linear
equations because their solution is often required as part of a numerical
technique. A specific example of this is the least-pth optimization tech-
nique, which is described in Chapter 10.

One first encounters the solution of simultaneous linear equations in a
study of algebra. A popular method of solution introduced there is
Cramer's rule, which is expressed in terms of determinants. This method is
reviewed briefly in the next section-briefly because it is inefficient from a
computational viewpoint. However, while Cramer's rule is not usually
programmed, this does not imply that one seldom wants to evaluate
determinants. The evaluation of determinants is an important topic, and
an efficient program for it is given in Section 2.4.

Sets of linear equations can be conveniently represented by matrices. In
fact, one can often use various properties of matrices to help derive results
that would otherwise require much more work. The solution to a set of
linear equations can be expressed in terms of what is called the inverse of a
matrix. A program for matrix inversion is given in Section 2.4.

The program for determinant evaluation and the program for finding
the inverse of a matrix are actually the same program. In Section 2.4 it is
shown that if one solves a set of equations by the Gauss elimination
method, then with very little extra work one can also evaluate a determi-
nant or invert a matrix.

It should be emphasized that solving sets of linear equations by
Cramer's rule (i.e., the method of determinants) or by inverting a matrix is
not recommended. A much more efficient and accurate approach is given
in Section 2.4, which discusses the Gauss elimination method. Section 2.2
can be omitted if the reader does not wish to learn about Cramer's rule,

15

18 Solution of Linear Equations

and Section 2.3 can be skipped by those who do not need a review of
matrices.

2.2 CRAMER'S RULE

Before introducing the general notation, a specific example of a set of
simultaneous linear equations might be helpful. Consider

x, +x2+x3+ X4= 3

2x,-x2+x3- x4= 4 (2.1)

x2-x3+x4= -2
-X,+X2+X3-2X4= -2.

This is a set of four equations in terms of four unknowns: x,, x2, x3, x4. In
general, it is not necessary to have the same number of equations as
unknowns,' but we will restrict our attention to this case.
A set of n equations can be written in terms of n unknowns as

a11X,+a12x2+... +a,.x.n CI

a2, x, a22x2+... (2.2)

In these equations it is assumed that the coefficients a;j are known, as are
the constants c;. For example, for the equations in (2.1) we would have

1, a12= 1, a13= 1, a14=1, c,=3, etc.
Cramer's rule gives the solution of (2.2) in terms of determinants.

Instead of stating the rule for this general equation and risking a confusing
notation, we will see how the example in (2.1) can be solved. This example
is general enough so we will then know how to solve any set of equations
by Cramer's rule.

The first unknown, x,, can be found from the following equation:

3 1 1 1 I I 1 1

4 -l I -I 2 -l 1 -1x = (2.3)1

-2 1 -1 1 0 1 -1 1

-2 1 1 -2 -1 1 1 -2

The denominator in the above equation is the determinant of the
coefficients a,,;. The numerator is that same determinant except that the
first column has been replaced by the constants c;.

If there are more equations than unknowns, usually no solution exists; if there are fewer
equations than unknowns, usually an infinite family of solutions exists.

The Matrix Solution 17

In the process of finding the parameter x1, the first column in a
determinant was replaced by the column of constants. To find any other
parameter we would replace the corresponding column by the column of
constants. Thus Cramer's rule can be applied to find all the unknown
parameters.

There is only one circumstance for which we cannot use Cramer's rule:
if the determinant of the coefficients air is zero, (2.3) is meaningless. But if
the determinant of the coefficients is nonzero, then there is a unique
solution-the one given by Cramer's rule. Of course, one might choose to
obtain it by another method; but the result must be the same.

2.3 THE MATRIX SOLUTION

Sets of linear equations can be conveniently represented by matrices.
Because of this one encounters matrices in many different mathematical
applications. There are many properties of matrices which can be used to
facilitate the solution of problems; this brief discussion will present just a
few of the elementary ones.

A matrix is an ordered array of numbers such as

4 3A=1
1 0

41. (2.4)

This matrix A has two rows and three columns. A general 2 X 3 matrix can
be written as

[a,,
A= a12 a13

(2.5)
a,, a22 a,;

A typical element of this matrix is written as a, . where i denotes the row
and j denotes the column. Two matrices A, B are said to be equal if and
only if all corresponding elements are equal; that is, air = bj for every i and
J.

A very special matrix is the identity matrix I. This is a square matrix
(n x n) which has all elements equal to zero except those on the diagonal,
which are equal to unity. For example, for n = 3

1 0 0
I= 0 1 0

0 0 1

The transpose of a matrix is formed by interchanging the rows and
columns; for example, the transpose of the matrix in (2.4) is

2 1

A` = 4 0
.

(2.7)
3 4

18 Solution of Linear Equations

Because rows and columns are interchanged to form the transpose, it
follows that a,,'= ai. An illustration of this for the matrix in (2.7) is
a12 = I = a21. By definition, a symmetric matrix is one for which the matrix
and its transpose are identical; that is, aid - aj, for every i and j. Only
square matrices can be symmetric (but not all square matrices are symmet-
ric).

A matrix that has only one column is called a vector2 and is usually
denoted by a lower case letter such as x. The transpose notation can be
used to provide a convenient representation for a vector. For example, a
vector x with three components x x2, and x3 can be represented as

X= [XI x2 x3]'. (2.8)

Often, instead of using matrix notation, a vector will be defined just by
listing its components. For example, the vector in (2.8) could also be
expressed as

x = (xl, x2, x3).

If two matrices are of the same order (e.g., both are 2 X 3), their sum is
defined as

A+B=C, where a,,, +by=c,,. (2.9)

That is, the corresponding elements are added together to produce the
sum. For example,

0

[1

2
-2

43

6 0]-[5 4 41.

A matrix can be multiplied by a scalar or another matrix. If a matrix is
multiplied by a scalar, then every element of the matrix is multiplied by
that scalar; e.g.,

The product of an m x n matrix A and an n X r matrix B yields an m X r
C whose elements are defined by

AB = C, where c,., _ I aikbkj. (2.10)
k=I

That is, cij is formed by multiplying corresponding terms of the ith row of
A and the jth column of B, then adding together these products. For

2Some texts also refer to a matrix of only one row as a (row) vector.

Gauss Elimination

example,

19

3 22

22 4]
3 4 -[2-8+12 1+0+16]-[

13 14

17

This definition of matrix multiplication allows us to obtain a convenient
representation of the set of n linear equations which in Section 2.2 was
written as

a11x,+ai2x2+
a21x,+a22x2+... +a2nxn=C2

(2.11)

an IX 1 +an2x2+ ... +ann.Xn=C,,.

If for this set of equations we define the matrices

ail ale ... a,n

a21 a22 ... a2n

A=

ann J

xi

x2

xn

c= , (2.12)

then (2.11) can be written as Ax = c. The solution to this matrix equation is
usually written as x=A-'c, where A-' is called the inverse of the matrix A.
The inverse is a matrix with the following properties:

A-' A=AA-'= 1, (2.13)

where I is the identity matrix. The inverse of a square matrix can be
evaluated in terms of "cofactors," but a knowledge of that process is not
essential to the methods in this text.

In the next section we will learn how to find the inverse of a matrix by
performing elementary row operations. This method is more efficient than
the method of cofactors, and thus it is this method which will be pro-
grammed for use in the following chapters.

2.4 GAUSS ELIMINATION

The Gauss elimination technique will be introduced first for the specific
example

x=

-3x,+2x2-- .Y,= -6 (2.14)

4x,+ x2-4x3= 10.

20 Solution of Linear Equations

Associated with this set of equations is the coefficient matrix

2 1 -1
A= -3 2 -1

4 1 -4
(2.15)

The Gauss elimination method can simultaneously solve the set of equa-
tions in (2.14), find the determinant of the matrix of coefficients, and find
the inverse of A.

To simultaneously do all of the above three tasks, we must augment
(2.14) and form

2.x,+ x2- x3+ x4+0x5+0x6=7+x4
-3x,+2x2- x3+0.x4+ x5+0x6=-+x5 (2.16)

4x,+ x2-4x6+0x4+Ox5+ X6= 10+ X6.

This set of equations can be written concisely with matrices as
AXa+IXb=C+Xh,

where xa is a vector having components x,, x2, x3 and xb is a vector having
components x4, X5, x6.

The solution to (2.16) will be obtained by using two processes, which are
termed forward elimination and back substitution. As a first step in the
forward elimination process we will divide the first equation by 2 so that
the coefficient of x, becomes unity:

x,+0.5x2-0.5x3+0.5x4+0x5+0x6=3.5+0.5x4.

This equation can be used to eliminate x, from the following equations.
For example, multiplying by 3 and adding to the second equation
eliminates x, there. Similarly, multiplying by 4 and subtracting from the
third row will eliminate x, there. This result can be expressed as3

1 0.5 -0.5 x, 0.5 0 0 3.5
0 3.5 -2.5 x2 + 1.5 1 0

Xb

= 4.5 + Bxb.

0 -1 -2 x3 -2 0 1 -4
(2.17)

This equation was obtained by making the coefficient of x, in the first
equation be unity and then using this equation to eliminate x, from the
remaining equations. The next step in this process is to make the
coefficient of x2 in (2.17) be unity and then use this equation to eliminate

3The matrix B in this equation is equal to the coefficient matrix of xb on the left side of the
equation.

Gauss Elimination

x2 in the next equation to yield

r 1 0.5 -0.5

0 1

5

7

xI

x2

0 0 - 9][X3

+

1 0.5 0
3 2

7 7

11

7

0 Xb =

1

3.5 1
9

7

19

7

21

+B,Xb. (2.18)

If the last row is divided by - ; , the above matrix relation becomes

1 0.5 -0.5
0 1 -;
0 0 1

x1

x2

x3

0.5 0 0
3 2 0
7 7

L j_ 2 _ 7
19 19 19

1

+ B2xb.

(2.19)

As a result of the steps thus far we have modified the coefficient matrix
of x,, so that all diagonal terms are unity and all terms below the diagonal
are zero. These steps constitute the forward elimination part of Gauss's
procedure.

Forward elimination produced all zeros below the diagonal; back sub-
stitution can be used to produce all zeros above the diagonal. For example,
from the third row in the matrix equation of (2.19) one can see by
inspection that x3 is equal to unity. This can be substituted hack into the
two preceeding equations to eliminate x3.4 Next x2 can be found and
substituted back into the first equation to yield x1. A detailed description
of back substition for equation (2.19) is given next.

Multiplying the third row by ; and adding it to the second row produces
a zero coefficient of x2. Similarly, multiplying the third row by 0.5 and
adding it to the first row produces a zero coefficient of .x,, which changes
(2.19) to

1 0.5 0

0 1 0

0 0 1

xI

x2

x3

15 _ 1 _ 7
19 19 38

16

19

4 _ 5
19 19

11 _ 2 _ 7
19 19 19

+ B3xb. (2.20)

Finally, multiplying the second row by 0.5 and subtracting from the first

'If one does not wish to find the inverse, x3 need not be eliminated from the preceeding
equations. Rather, its value can be substituted into the previous equation, which can then be
solved for x2. Finally, substituting the values for x2.x3 into the first equation would yield x1.
If zeros are produced above the diagonal (as in this text), then the procedure is usually
referred to as Gauss-Jordan elimination; this book will simply call it Gauss elimination.

22 Solution of Linear Equations

row yields

1 0 0 1 7 -3 -1 3

0 1 0 x0 + 19 16 4 - 15 xb = 2 + B4xb. (2.21)

0 0 1 11 -2 -7 1

The above equation is of the form

1x0 + B4Xb = d + B4Xb; (2.22)

thus it follows that x0 = d. That is, x, = 3, x2 = 2, and x3 = I is the solution
to the set of equations in (2.14).

It can be shown that the matrix B4 in (2.22) is really the inverse of A.
This follows from the fact that we started with the matrix equation

A xa = c (2.23)

and then modified the equation by doing elementary row operations. The
elementary row operations were:

(a) Multiplying (or dividing) a row by a constant.
(b) Adding (or subtracting) one row to another.

It can be shown that5 elementary row operations are equivalent to premul-
tiplication by a matrix. In this case the matrix that must be used is B4; that
is, the row operations on (2.23) are equivalent to

B4Axa=B4c=d. (2.24)

But we have previously stated that x0 is equal to d, thus it follows from
(2.24) that

B4 A = I. (2.25)

This equation implies that B4 is the inverse of A as previously stated.
We have seen how the elementary row operations not only solved the

original set of equations, but also produced the inverse of the matrix A. We
can even find the determinant of A, At, if we use the following facts from
the theory of determinants:

(a) Multiplying any row of a matrix by a constant multiplies the determi-
nant of that matrix by the same constant.

(b) Adding one row of a determinant to another row does not change the
value of the determinant.

SSee Problem 2.12 for a demonstration of the fact that elementary row operations can be
accomplished by premultiplying A by a suitable matrix.

Gauss Elimination 23

The original matrix was A, and it has an unknown determinant IAI. The
final coefficient matrix was I, and it has a determinant III = 1. In producing
I, various rows of A were divided by 2, 2, and - 11; thus

JAI=2x2x(-)19.
The previous example will now be generalized so that a computer

program can be developed. For the general case we will assume we have a
set of n linear equations which can be written as

a, 2x2 + + a,,,x = c,

a2Ix, a22x2 + ... + C2

a,,,x,+ai2x2+ ..

which is equivalent to

(2.26)

Ax= c. (2.27)

In some applications we may want to solve a set of equations which
have the form in (2.26). In other applications we may wish to find the
inverse of a matrix A; or we may simply want to evaluate a determinant
JAI. Any (or all) of these tasks can be accomplished by augmenting the A
matrix in (2.27) to obtain

a ai2 ... a,,, 1 0 ... 0 C,

a2, a22
...

a2n 0 1
... 0 c2

R= (2.28)

a

a first step in the solution of (2.27) we normalize coefficients by
dividing row, of the augmented matrix d by a,,. If a is zero this of
course presents a problem, but not an insurmountable one. We can simply
search for another row (call it row) which has aj, 0. Row, and rowj can
be interchanged, and then we can normalize the new row,.

If two rows are interchanged,' the new matrix is no longer d, but the
interchange affects neither the solution nor the inverse A-'.
The reason the solution (x,, x2, ... 1 XI) is not affected is that interchanging
rows does not change the vector x; it just affects the coefficient matrix.
Because x is not affected by an interchange of rows, if elementary row

6T'he interchanging of rows of a matrix is another elementary row operation. It changes the
sign of the determinant, as demonstrated in Problem 2.11.

24 Solution of Linear Equations

operations transform the coefficient matrix of x,,x2,....x,, into the identity
matrix, then the rest of the augmented matrix must be the inverse A- I.
Finally, it has been stated previously in this section that interchanging
rows does not change the value of the determinant, except for its sign.

Assuming a,, is unequal to zero, the result of normalizing the first row
of the augmented matrix d can be written as

r 1 a] 2 .. a ,, a.,,, + 1

d'=
a21 a22

... a2 0

a. I

0 .. 0 cIl
i 0 C2

a,,,, 0 0 ... 1 e

(2.29)

where a,f =aj/a,,. In the material that follows, the prime will be dropped;
that is, even though each row operation will modify the augmented matrix
d, we will identify the modified matrix by the same name. This implies
that (in the computer program we write) only one array will be reserved for
the augmented matrix: any modification of the matrix will be stored in the
same location. This is a common trick used in computer programming to
save storage area in a computer. In the notation commonly used, A'--.A.

Normalizing the first row of the matrix d is equivalent to normalizing
the first equation in (2.26), which implies the coefficient c, must also be
normalized; that is,

ci=c,/a (2.30)

This equation indicates that in row,, the constant c, is treated just the same
as any coefficient a,,. In general, in row; the constant c; will undergo the
same elementary row operations as the constants a,1. Use of this fact is
made in the computer program by defining c; = ai.2 and then treating it
as a regular member of the augmented matrix.

If row, is multiplied by a21 and subtracted from row2, then the 2,1 entry
in the new matrix will be zero. Generalizing, if row, is multiplied by a;, and
subtracted from row;, then the i, I entry in the new matrix will be zero.
Applying this procedure to all the rows produces

d=

I a12

0 a22

0 ant

.,, a1, a1.,,+1 0 ... 0 C,

a2n a2,,+, I ... 0 r2

a. an,tt+1 0 ... I
ell

. (2.31)

We can next use row2 as the pivot. Again assuming a22 is unequal to
zero, the coefficients of row2 can be normalized by dividing by a22. Then
multiplying row2 by a32 and subtracting from row3 produces zero in the 3,2

Gauss Elimination 25

entry in the new matrix. Similarly, zeros can be produced in the remaining
rows.

Generalizing, when row; is used as the pivot it should be normalized by
dividing' by aii. Then multiplying row, by aji and subtracting from rowj
produces zero in the a1i entry. This can be summarized by

rowi/a,,->row,,
rowj - aji row; -rowi,

where

first i= 1, j = 2,3,..., n,

next i=2, j=3,4,...,n,

finally i=n- 1,

(2.32)

j= n.

The result of the above generalized process is

d =

a1, a14

a23 a24

a1n a,.n+1

(2.33)
C12n a2.n+1

0 0 0 0 ... 1 an.n+

The steps described thus far complete the forward elimination part of
Gauss's procedure for solving a linear set of equations. Back substitution
can be used to produce zeros above the unity diagonal in (2.33). The
general back substitution process is

rowi - aji rowi-->rowj. (2.34)

where

first i=n. j=1.2,...,n-1,
next i=n- I , j= 1.2,...,n-2,

finally i=2, j= 1.

The back substitution procedure modifies the augmented matrix of

'?If a;, is zero, then the rows should be rearranged to produce a nonzero a,1. If rearrange-
ment cannot produce a nonzero a;;, then JAI=0. so that A-1 does not exist and there is no
unique solution to (2.26).

26

(2.33) so that it becomes

R=

1 0

0 1

0
all1

a -12
1

-10 a' a-1n

Solution of Linear Equations

al xt
tai, x2

. (2.35)

- xrt1 0 0 ... 1
a,- 1 ant1 _-

artn
1

From this result, the components8 a;j-' of the inverse matrix A-' can be
readily obtained, as can the components of the solution vector x1 x2, ...,x,,.
The determinant of A can also be easily found by keeping track of the
various normalization steps and row interchanges that were used in the
forward elimination process.

A program for the Gauss elimination method is given in Fig. 2.1. This is
the first program to be given in this text, and before it is discussed the
programming philosophy that was mentioned in Section 1.4 will be re-
iterated. The programs that have been included in this text are written with
the emphasis on clarity and not necessarily practicality. As an example of
a practical program that stresses numerical accuracy, one may consult the
IBM Scientific Subroutine Package for the Gauss elimination subroutine.

Most of the steps that are shown in Fig. 2.1 are obvious from the
previous discussion, but perhaps a few comments should be made about
the calculation of the determinant of A, which is identified as DET in the
program. Initially, DET is set equal to unity; then it is multiplied by a;;
whenever row; is normalized. As previously explained, the justification for
this is that multiplication of a row by a constant multiplies the determinant
of the matrix by the same constant. Also, whenever two rows are inter-
changed, DET is multiplied by minus one.

As mentioned previously in this section, if the pivot element is zero, then
the rows should be interchanged until a nonzero element is found. If the
program in Fig. 2.1 cannot find any row which has a nonzero pivot, then
the determinant of A is equal to zero, so that DET=0 is printed and the
program is stopped.

EXAMPLE 2.1

As an example of the application of the program, consider the following
set of equations:

xl+ xz+x3=2
2x,- x2-x3= 1
x,+2x2 -x3= -3.

8This notation is meant to indicate the components of the inverse matrix; it does not imply
that a; 1 is the reciprocal of a,1.

Gauss Elimination

01C GAUSS ELIMINATION
02 PROGRAM G(INPUT,OUTPUT)
03 03 FORMAT(1P,5E14.5)
06 DIMENSION A(10,21)
10C
11C
12
14
17
18
19
22
30C
31C
32
34
35 35
40
42
44
45C
46C
47
48
49 49
51
52
53
55
56
57 57
59C
60C
61 61
62C
63C
64
65
66 66

INPUT,N,A,C
PRINT,*N*, $READ,N
PRINT,/,*A(I,J)*
READ,((A(I,J),J=1,N),I=1,N)
PRINT,/,*C(I)*
READ,(C(I),I=1,N)
N1=N+1 $N2=2*N+1 $N3=2*N

DEFINE AUGMENTED MATRIX
DO 35 I=1,N
A(I,N+I)=1.
A(I,N2)=C(I)
DET=1.
DO 75 I=1,N
IF(A(I,I).NE.0) GO TO

INTERCHANGE ROWS I,J
DET=-DET
J=I
J=J+1
IF(J.GT.N) GO TO 98
IF(A(J,I).EQ.0) GO TO
DO 57 K=1,N2
SAVE=A(I,K)
A(I,K)=A(J,K)
A(J,K)=SAVE

,C(10)

61

49

CALCULATE DETERMINANT
DET=DET*A(I,I)

NORMALIZE ROW I
X=A(I,I)
DO 66 K=I,N2
A(I,K)=A(I,K)/X

(EQ.

(EQ.

2.32)

2.28)

27

FIGURE 2.1. A program for the Gauss elimination method.

28 Solution of Linear Equations

70C FORWARD ELIMINATION (EQ. 4.19)

71 I1=I+1
72 DO 75 J=11 ,N
74 DO 75 K=I1,N2
75 75 A(J,K)=A(J,K)-A(J,I)*A(I,K)
77C
78C BACK SUBSTITUTION (EQ. 4.21)
79 DO 84 L=2,N
80 I=N+2-L $I1=I-1 $12=I+1
81 DO 84 J=1,I1
82 DO 84 K=12,N2
84 84 A(J,K)=A(J,K)-A(J,I)*A(I,K)
86C
87 PRINT,/,*DETERMINANT*
88 PRINT 3,DET
89 PRINT,/,/,*X(I)*
90 PRINT 3,(A(I,N2),I=1,N)
92 PRINT,/,/,*INVERSE*
93 DO 95 I=1,N
95 95 PRINT 3,(A(I,J),J=N1,N3)
96 STOP
98 98 PRINT,*DET=O*
999 END

FIGURE 2.1. (Continued.)

This is equivalent to the matrix equation Ax=c, where
1 1 1 r, 2

A= 2 -1 -1 , x= X, , c= I

1 2 -1 X3 -3

If instead just the matrix A were given, then the program in Fig. 2.1
could still be used to determine A -' and IAI, because these are indepen-
dent of the constant vector c. That is, any value for c (e.g. C, = c2 = c3 = 0)
could be used for input data, and the program would find the correct
values for A-' and Al.CThe

solution from the computer program is given in Fig. 2.2.

The problems at the end of the chapter help illustrate the application of
the Gauss elimination method. Problems 2.14, 2.15, 2.16 have the student
apply the process (without using a. program) to solve some sets of equa-
tions. Problem 2.16 could be solved by inspection without ever using the
Gauss elimination method, but it is a good illustration of the necessity of
interchanging rows. Problems 2.17, 2.18, 2.19 require the application of the

Crout Reduction 29

N ? 3

A(I,J)
? 1 1 1

? 2 -1 -1
? 1 2 -1

C(I)
? 2 1 -3

DETERMINANT
9.00000E+00

X(I)
1.00000E+00 -1.00000E+00 2.00000E+00

INVERSE
3.33333E-01 3.33333E-01 3.55271E-15
1.11111E-01 -2.22222E-01 3.33333E-01
5.55556E-01 -1.11111E-01 -3.33333E-01
STOP

FIGURE 2.2. An application of the Gauss elimination program.

computer program to solve some stated conditions. Finally, Problem 2.20
investigates what can be done if there are more unknowns than there are
equations.

The Gauss elimination program of Fig. 2.1 can be used to solve a set of
equations, find the inverse of a matrix, or evaluate a determinant. If we
only want to do one of these tasks, then the program can be made more
efficient. In particular, if we just want to solve a set of equations, then it is
not necessary to form the augmented matrix that is shown in (2.28).
Instead, the coefficient matrix can be augmented just by the column vector
(ci, c2, A Gauss elimination program that is designed for just solving
a set of equations is included in Fig. 10.1.

2.5 CROUT REDUCTION

The Gauss elimination procedure is often applied to solve a set of linear
equations such as

Ax=c, (2.36)

30

where

A=

Solution of Closer Equations

a,,
a21

a3,

a12
a22

a32

a,3

a23

a33

a,
a2n

a3n x=

x,

x2

X3 c=

C,

C2

C3
. (2.37)

Lan1 ant an3
... a,, j L -xnI L `nJ

In this method forward elimination is used to produce an upper triangular
matrix (a matrix with all zero terms below the diagonal), and back
substitution is applied to this triangular matrix to yield the solution.

Many other methods besides Gauss elimination exist for solving sets of
linear equations such as (2.36). None are used as frequently as Gauss
elimination, but some are encountered quite commonly nonetheless. The
rest of this section will discuss one of these methods-Crout re-
duction-which compares favorably with Gauss elimination (storage re-
quirements, accuracy, and speed of computation are comparable). Crout
reduction is the direct9 method of producing an LU decomposition. The
LU decomposition, to be described in the next paragraph, is widely
encountered in many scientific applications. An application to sparse-
matrix techniques is given at the end of this section.

The Crout reduction method is quite similar to the Gauss elimination
method. However, not only does it use an upper triangular matrix U, it
also uses a lower triangular matrix L. It does this by decomposing the
coefficient matrix A as

A = LU, (2.38)

where

L=

111 0 0 0

12, 122 0 ... 0

131 132 133 . . 0 U=

1 u,2 u13
... u,n

0 I U23 U2,,

0 0 1 ... u3n

In 1 42 1n3 ... Inn 10 0 0 ... I

(2.39)

In this section we will first learn how to find the matrices L and U; then
we will express the solution (x,, x2, ... , x,,) in terms of this decomposition.

The lower triangular matrix L and the upper triangular matrix U can be

9As mentioned in Tewarson, R. P. (1973), Sparse Matrices (New York: Academic), Gauss
elimination can be used indirectly to produce an LU decomposition.

Crout Reduction

found by realizing that since A=LU, a typical term of A is given by

all = lik ukj
k-l

But from the special form of U in (2.39) it follows that
j j(- 1

ai; = 11,k Ukj = G lik uk; +lij
k-1 k=1

This equation can be used to give an expression for a
j-1

li;=ai;- Y, likuk;

31

(2.40)

i=jJ+1,....
k-I

In the derivation of (2.42), attention was focused on the special form of
U in (2.39). If instead attention is focused on the special form of L in
(2.39), it follows that

i-I
a,j E likukj

k=1
uij

1
j=i+l,i+2,.... (2.43)

Equations (2.42) and (2.43) are recursive equations: they calculate addi-
tional elements of L or U based on other elements that have already been
found. This implies that the equations must be applied in a specific
sequence so that all terms on the right-hand side of the equation are
always known. We will presently see that the proper sequence is first a
column of L, then a row of U, then a column of L, etc.

From (2.38) and (2.39) it follows that the first column of L is

lil=ail, i=1,2,.... (2.44)

This result also follows from (2.42) if one sets j equal to unity and ignores
the summation10 because it is from k = I to k=0.

Similarly, from (2.38) and (2.39) [or from (2.43)] it follows that

ulj=alj/11,, j=2,3,.... (2.45)

It should be noted that ulI is not calculated in (2.45); or in general, u1i is
not calculated in (2.43). This is because, by definition, uui is equal to unity
and thus need not be calculated.

The first column of L can be calculated from (2.44); then since 111 has
been determined, the first row of U can be calculated from (2.45). Next the
second column of L can be found from (2.42), and the second row of U

10Actually, many computer languages would yield (2.44) as a special case of (2.42) and two
separate equations would not be needed.

32 Solution of Linear Equations

can be found from (2.43). By alternating between (2.42) and (2.43) all
elements of L and U can be found.

EXAMPLE 2.2

Let the matrix A be given by

2 1 -I
A= -3 2 -1

4 1 -4
(2.46)

Equation (2.44) yields 111= 2, 121 = -3, 131=4. Similarly applying (2.45),
(2.42), and (2.43) yields fu12= 1, 1413= (122- i 132= -1), (1423- - i),
(133 = - 1f). From this it follows that the LU decomposition of A is

A=

0
7
2

-1

0
0

19

7

1

i
-1-

2 2

0 1 -5

0 0 1

(2.47)

The A matrix that was decomposed in Example 2.2 is the same one that
was studied in the Gauss elimination procedure [see (2.15)]. In the Gauss
elimination procedure, forward elimination produced an upper triangular
matrix [see (2.19)] which is the same as the U matrix found in Example 2.2.

Because the U matrix in the Crout reduction method is the same as the
upper triangular matrix produced by forward elimination in Gauss
elimination, a similar approach can he used to solve for the unknown
vector x. First, the A matrix is augmented by adding a column, equal to
the vector c. Next, the LU decomposition is formed according to the rules
given in this section. Finally, the solution vector x is obtained by back
substitution.

The back-substitution formula that was developed for the Gauss
elimination method would also work for the Crout reduction procedure,
but it can be simplified because in this case the augmented matrix has only
one more column than the unaugmented matrix. A simpler back-substitu-
tion formula can be obtained for the Crout reduction procedure by
considering the general upper triangular matrix equation

I u12

0 1

1413

U23
(2.48)

uln

U2n

CI

C2

XI

X2

0 0 0 xn Cn j

Crout Reduction

Back substitution for this can be written as
Xn=Cn

33

x,=ci - ui,, x i=n-l,n-2,...,1. (2.49)
=i+I

EXAMPLE 2.3

The coefficient vector in (2.14) was c=[7 -6 10], so that the aug-
mented A matrix for Example 2.2 is

2 1 -1 7

-3 2 -1 -6
4 1 -4 10

The formulas for the LU decomposition yield

1 2 0 0 1 2 -i Z1

Q= -3
2

0 0 1 -;
4 -1 -; 0 0 1 1

Back substitution applied to the augmented U matrix then yields the last
column [3 2 1]', thus x, = 3, x2 = 2, x3 =1.

A program for the Crout reduction method is given in Fig. 2.3. This
program is not as general as the Gauss elimination one of Fig. 2.1. For
example, no check has been included to determine whether or not an
interchange of rows is necessary to avoid division by zero. This inter-
change possibility could have been included, but then the LU decomposi-
tion would be for the interchanged A matrix and not the original one. If
difficulty is experienced in a particular problem, then the order of the
initial equations can be interchanged and the program run again.

The Crout reduction program corresponds to the description in the
previous part of this section with one major exception: it uses the same
memory location for ail and lii (if i >j) or for aid and uiv (if i <j). This is
possible because once lip (or uij) is calculated, that value of ai. is no longer
needed and may be destroyed. This allows conservation of memory loca-
tions and is one of the reasons for the popularity of Crout reduction.

An example of the application of the Crout reduction program is given
in Fig. 2.4. This example is the same as Example 2.3; thus the output in
Fig. 2.4 can be compared with the previous results.

One important use of the LU decomposition is in sparse-matrix tech-
niques. A matrix is said to be sparse if it has a low proportion of nonzero

01C CROUT REDUCTION
02 PROGRAM CR(INPUT,OUTPUT)
03 03 FORMAT(1P,5E14.5)
06 DIMENSION A(10,21),C(10)
10C
11C INPUT,N,A,C
12 PRINT,*N*, $READ,N
14 PRINT,/,*A(I,J)*
17 READ,((A(I,J),J=1,N),I=1,N)
18 PRINT,/,*C(I)*
19 READ,(C(I),I=1,N)
20C
21C DEFINE MISC. CONSTANTS
22 N1=N+1 $N2=N-1
30C
31C DEFINE AUGMENTED MATRIX
32 DO 35 I=1,N
35 35 A(I,N1)=C(I)
39C
40C CALCULATE A(1,J)=U(1,J) (EQ. 2.45)
42 DO 43 J=2,N1
43 43 A(1,J)=A(1,J)/A(1,1)
47C
48C CALCULATE A(J,I)=L(J,I) (EQ. 2.42)
49 DO 65 I=2,N
51 DO 54 J=I,N
52 K2=I-1
53 DO 54 K=1,K2
54 54 A(J,I)=A(J,I)-A(J,K)*A(K,I)
56C
57C CALCULATE A(I,J)=U(I,J) (EQ. 2.43)
58 J1=I+1 $K2=I-1
60 DO 65 J=J1,N1
62 DO 63 K=1,K2
63 63 A(I,J)=A(I,J)-A(I,K)*A(K,J)
65 65 A(I,J)=A(I,J)/A(I,I)
68C
69 PRINT,/,*LU MATRIX*
70 DO 72 I=1,N
72 72 PRINT 3,(A(I,J),J=1,N1)
79C
80C BACK SUBSTITUTION (EQ. 2.49)
82 DO 87 K=1,N2
84 I=N-K $J1=I+1
85 DO 87 J=J1,N
87 87 A(I,N1)=A(I,N1)-A(I,J)*A(J,N1)
88C
90 PRINT,/,*X(I)*
91 PRINT 3,(A(I,N1),I=1,N)
999 END

FIGURE 2.3. A program for the Crout reduction method.

34

Crout Reduction

N ? 3

A(I,J)

35

? 2 1

? -3 2

? 4 1

C(I)
? 7 -6

-1
-1
-4

10

LU MATRIX
2.00000E+00 5.00000E-01 -5.00000E-01 3.50000E+00

-3.00000E+00 3.50000E+00 -7.14286E-01 1.28571E+00
4.00000E+00 -1.00000E+00 -2.71429E+00 1.00000E+00

X(I)
3.00000E+00 2.00000E+00 1.00000E+00

FIGURE 2.4. An application of the Crout reduction program.

entries. An example of a sparse matrix is

2 5 0 0

A= 0 4 0 3 (2.50)
0 0 3 7

4 1 2 3

To learn how the LU decomposition can be applied in a sparse-matrix
problem to save computation time, assume that we want to solve the
problem Ax=c for ten different values of the coefficient vector c. One
approach would be to first apply the Gauss elimination method to find

-0.238 0.205 -0.246 0.369

A-'= 0.295 -0.082 0.098 -0.148 (2.51)
0.918 - 1.033 0.639 -0.459

-0.393 0.443 -0.131 0.197

Once this inverse matrix has been obtained, then for any c the solution can
be found from X=A-'c. In this situation the computational time will be
mainly determined by the number of multiplications (i.e., addition time
will be negligible). Since (2.51) contains sixteen nonzero entries, any one
particular solution for x will require sixteen multiplications. Thus for ten
different values of the coefficient vector c, the computational time will be
proportional to 160.

The important point to notice in the above example is that even if a
matrix A is sparse, its inverse A-' will usually not be sparse. For example,
(2.50) had six zero terms while (2.51) had none. However, if the LU
decomposition is used, then advantages due to sparsity may occur.

As an illustration of the application of the LU decomposition to a sparse

36 Solution of Unear Equations

matrix, again consider (2.50), which has the LU decomposition

2 0 0 0 1 2.5 0 0

A=LU= 0 4 0 0 0 1 0 0.75 (2.52)
0 0 3 0 0 0 1 2.333
4 -9 2 5.083 0 0 0 1

The inverse of this is

A-'=U-'L-'
1 -2.5 0 1.875 0.5 0 0 0
0 1 0 -0.75 0 0.25 0 0
0 0 1 -2.333 0 0 0.333 0
0 0 0 1 -0.393 0.443 -0.131 0.197

(2.53)

The equation Ax=c can now be solved via x=A-'c=U-'L-'c=
U-'d, where d=L`c. Because of the zero entries of L-', the solution for
d requires only seven multiplications. Because of the zero entries of U-',
the solution of x from U-'d requires only four further multiplications, for
a total of eleven multiplications. Thus for ten different values of the
coefficient vector c, 110 multiplications will be required.

In the previous discussion, the LU decomposition required fifty less
multiplications than the A-' solution. The savings in larger-dimension
problems (e.g., n = 50 instead of n = 4) may be much more dramatic. For a
further introduction to sparse-matrix techniques, the interested reader is
referred to Chua and Lin."

2.6 SUGGESTED READING IN RELATED TOPICS

Only some elementary properties of matrices were used in this chapter.
Any good technical library contains many books about matrices or their
applications. Examples of good introductory texts are Gunston (1970) and
Stewart (1973).

There are quite a few modifications of the Gauss elimination method.
For example, the Gauss-Jordan method eliminates terms above and below
the diagonal at essentially the same time and does not require back
substitution. However, the normal Gauss elimination procedure requires a
smaller total number of steps and is thus more popular.

As described in this chapter, interchanging rows was done to avoid
division by zero. The technique of interchanging rows can be extended to

"Chug, L. 0., and Lin, P. (1975), Computer-Aided Analysis of Electronic Circuits: Algo-
rithms & Computational Techniques, (Englewood Cliffs, N.J.: Prentice-Hall).

Suggested Reading In Related Topics 37

improve numerical accuracy. When large sets of equations are solved,
roundoff errors may cause numerical inaccuracies. Because many of the
formulas in this chapter are recursive, the inaccuracies get progressively
worse as the solution advances. An approach that has been used to reduce
these numerical inaccuracies is to interchange rows so that the magnitude
of the pivot coefficient is always as large as possible.

If roundoff errors do tend to cause large numerical inaccuracies in the
solution of a set of equations, the equations are said to be ill conditioned.
Condition numbers have been introduced to give a measure of the amount
of ill-conditioning. One condition number (Conte and de Boor 1972) is
IIAII IA-'11, where A is the matrix of coefficients and

n

IIAII= max I la,jl_
all rows j = I

The equations are ill conditioned with respect to the precision used in the
computations if the condition number is of the order of 2", where n is the
number of bits used by the computer.

If matrices are of a special form, often a special program will be more
efficient than a general-purpose one. For example, special programs can be
written to find the inverse of a triangular matrix, or to find the LU
decomposition of symmetric matrices. So also for special sets of equations:
for example, if the coefficient matrix for the equations is positive definite,
the square-root method12 is widely used.

The methods discussed in this chapter for solving sets of linear equations
were direct methods-they followed a set of rules which (after a specific
number of steps) yielded a theoretically perfect answer.13 Contrasted with
direct methods are the iterative methods. For an iterative method, one
guesses an initial solution vector (x,,x2,...), and then an application of a
set of rules adjusts the initial guess so it is closer to the correct solution.
This is termed one cycle of iteration. With a convergent procedure, by
applying a sufficient number of iteration cycles one can get arbitrarily
close to the solution.

Iterative procedures can be used to reduce numerical inaccuracies that
arise in the solution of a large set of linear equations, but this is not their
most important application. There are many cases for which an analytical
solution cannot be found, and then iterative solutions are indispensable.
The next chapter introduces some iterative techniques.

'2Faddeeva, V. N. (1959), Computational Methods of Linear Algebra (New York: Dover).
"Only "theoretically perfect," because roundoff errors can be introduced in computer

solutions.

PROBLEMS

2.1 Solve the following set of equations by using Cramer's rule:

x1+x3=5, X1 -x2=6. x1+x2+x3=1.

2.2 Does the following set of equations have a unique solution? If so,
what is it?

x1 +x3=0, x1 -x2=0, x1+x2+x3=0.

2.3 A group of equations that does not have a unique solution is x1 + x3
=0, x1-x2+x3=0, xI+X2+X3=O.
(a) Show that the determinant of coefficients is equal to zero.
(b) If x , = 2, find x2 and x3.
(c) If x1= 1, find x2 and X3-

2.4 In this problem the matrices A, B are defined as

3
A-10 -I 4]' B-[2 -O 4

If the sum is defined, find (a) A+B, (b) A'+B, (c) A'+B'.
2.5 This problem demonstrates that in general ABABA. Let

A=[3 2]'

4
B=[0

2

].

(a) Find A B.
(b) Find B A.
(c) Find JA BI and IB Al.

2.6 It can be shown that (A B)= B' A'. As a specific application of this let

__ I 2 3A
0 -1 4 '

1 2
B= 0 -1

1 4

(a) Find A Band then form (AB)'.
(b) Find B' and also A', then form B'A'.
(c) If it is defined, find A'B.

2.7 For most matrices, the order of multiplication is important; that is,
ABABA. However, this is not true for a matrix and its inverse; that
is, AA-'=A-'A. As a specific application of this, evaluate AA-' and
A-'A for

A=[3 4]'
-4 -i]

38

Problems 39

2.8 Solve the following set of equations by using matrix techniques:
x1+2x2=8

3x, +4x2=20.

Hint : Problem 2.7 contains the necessary inverse matrix.

2.9 If one row of a determinant is added to another row, the value of the
determinant is unchanged. As an example of this, evaluate the follow-
ing two determinants (note that B was obtained from A by adding the
first row to the third):

A=
1 2 1

0 1 2

-1 2 1

B=
1 2 1

0 1 2

0 4 2

2.10 If one row of a determinant is multiplied by a constant, then the
value of the determinant is multiplied by that constant. As an
example of this, evaluate the following two determinants (note that B
was obtained from A by multiplying the second row by 3):

A=
1 2 1

0 1 2

-1 2 1

B=
1 2 1

0 3 6

-1 2 1

2.11 If two rows or columns of a determinant are interchanged, then the
value of the determinant is multiplied by minus one. As an example
of this, evaluate the following two determinants:

A=
1 2 1

0 1 2

-1 2 1

B=
0 1 2

1 2 1

-1 2 1

2.12 Any of the elementary row operations on a matrix A may be accom-
plished by premultiplying A by a suitable matrix P. Parts (a), (b), (c)
of this problem give various special forms for P. Assuming A is a
3 x 3 matrix, how is PA related to A?

0 0 1

(a) 0 1 0 . (b)

1 0 0

1 0 0 1 0 -1
0 k 0. (c) 0 1 0.
0 0 1 0 0 1

2.13 Problems 2.9, 2.10, 2.11 investigated the effect of various elementary
row operations on the value of a determinant. Problem 2.12 demon-
strated that any elementary row operation on a matrix A may be
accomplished by premultiplying A by a suitable matrix P. Outline
how the results of Problem 2.12 could be applied to prove the
statements made in Problems 2.9, 2.10, 2.11.

40 Solution of Linear Equations

2.14 Use the Gauss elimination method to solve the following set of
equations, find the inverse of the coefficient matrix and the determi-
nant of the coefficient matrix:

2x,-3x2=8
4x,+ x2=2.

2.15 Find the inverse of the following matrix by using the Gauss elimina-
tion method; also find its determinant:

1 0 I

A= 1 1 1 .

0 2 -3
2.16 Use the Gauss elimination method to solve the following set of

equations and to find the inverse and the determinant of the
coefficient matrix (note that an interchange of rows is necessary):

Ox,+x2=2
x,+x2=3.

2.17 Use the Gauss elimination program to evaluate the following determi-
nant:

1 2 3 4 5

I 2 1 4 1

6 8 7 2 1

9 -4 0 0 1

-8 -6 4 I 7

Check your answer by interchanging rows l and 5.
2.18 Find the inverse of the following matrix by using the Gauss elimina-

tion program; then find the inverse of your answer to determine
whether or not the original matrix is obtained:

1 2 8

6 1 2

-1 0 -8
What is the relation between IAA and IA -'I?

2.19 Solve the following set of equations by using the Gauss elimination
program:

2x,+ x3-2x4=9
X2+ X3- x4=5

3.x, + 2x2 - -V4=0

X2+ X3-4.x4= -7.
2.20 The three equations in this problem contain four unknowns; thus

there is no unique solution-that is, one of the parameters can be

Problems 41

selected arbitrarily. Initially choose x4=2 and obtain a solution for
x,, x2, x3; then choose x4 = - 3 and obtain a new solution, given the
equations

x,+2x2- x3+ x4=7
2x,+3.x2+x3-2x4=0

2.21 Decompose the following matrix into a lower triangular matrix L and
an upper triangular matrix U:

A=L8 6

2.22 Find the LU decomposition for

2 4 8

A= 0 1 2

1 1 2

2.23 A matrix equation is relatively easy to solve if it is an upper triangular
matrix. Solve for x,, x2, x3 in the following matrix equation:

1 -4 2 x, 9

0 1 6 .x2 = 40 .

0 0 1 x3 5

2.24 It follows from (2.43) that if the lower triangular matrix A has any
diagonal terms that are equal to zero, then an LU decomposition does
not exist for the original matrix A. However, sometimes rows can be
interchanged and an LU decomposition can be found for the new
matrix. Interchange row, and row2 in the following relation, and then
use an LU decomposition to solve for x x2, x3:

0 8 9 x, 9

2 4 3 x2 J = 5 ,

4 2 -2 x3 2

2.25 Solve the following set of equations by the LU decomposition and
then use the fact that the determinant of a product is equal to the
product of the determinants to evaluate the determinant of the
coefficient matrix:

2x,+4x,-2.x3=8
X1+ X2+ x3= -2
x,-2x2-3x3=14.

2.26 Modify the LU decomposition program so that it calculates the
determinant of A.

Chapter Three

Solutions for a Nonlinear Equation

3.1 INTRODUCTION

The previous chapter discussed how to solve a linear set of equations.
Because the equations were linear, the solution did not require an iterative
approach. In this chapter we will no longer restrict attention to linear
equations; as a result we will not be able to obtain an analytical answer.

The fact that we cannot obtain an analytical answer does not imply we
cannot obtain an accurate answer. We will discover that by following a set
of computation rules over and over again (that is, by an iterative process)
we will be able to obtain any desired accuracy. The more accuracy we
desire, the more computation time is required.

The nonlinear equations that we consider in this chapter will be a
function of just one variable. An example of such an equation is

tanx=x+2. (3.1)

In this chapter we will not consider sets of nonlinear equations that contain
more than one variable. This topic must wait until we study optimization
techniques later in the book.

The nonlinear equations will be solved by finding roots of the equations.
For example, (3.1) can be rewritten as

f(x)=tanx-x-2. (3.2)

Any x that makes f (x) zero is called a root of that equation.
In Chapter 1 we briefly discussed one numerical method that can be

used to obtain roots of an equation: the interval-halving method. That
method, also known as the bisection method, is very popular because it
almost always converges to a root. By continually halving the area of
uncertainty a computer can quite rapidly find a zero to sufficient accuracy.
This would obviously be a tedious method if hand calculations were used,
but the use of a computer can make it practical. It has the advantage of
being guaranteed to converge to a root. For example, in ten iterations the
interval of uncertainty is reduced by 2-10 or more than a factor of a
thousand; in twenty iterations, by more than a million.

43

44 Solutions For A Nonlinear Equation

The bisection method requires that an interval be found in which there
is a sign change. In this chapter we will study Newton's method, which
does not have that restriction. Like the interval-halving method, Newton's
method is simple and widely used.

Newton's method iteratively finds roots of an equation by using a
straight-line approximation of a function. Muller's method uses a second-
order approximation, a parabola, and thus usually converges faster than
Newton's method. A second-order function can also be used to find the
minimum of a function, as is demonstrated by the quadratic interpolation
method. Considerable time will be spent studying quadratic interpolation
because it is an important part of some of the optimization programs that
are included in this book.

The procedures that were just mentioned were designed for general
functions; they are not limited to polynomials. Bairstow's method is
restricted to polynomials, but it has the attraction of easily being able to
yield complex roots.

3.2 ITERATIVE PROCEDURES

"Iterative procedures" is a fancy way of saying, "if at first you don't
succeed, try, try again". Almost any repetitous task can become tedious,
and the same is true for an iterative procedure. Fortunately, computers are
now widely available and we can assign the repetitive calculations to them.
It is the speed of digital computers that have really made iterative proce-
dures practical.

An iterative procedure will require an initial guess. For example, if we
are trying to find a root of

f(x)=tanx- x-2, (3.3)

we may make the initial guess x = 3. This yields f (x) _ - 3.14, which is
certainly not zero. However, a good iterative procedure should be able to
improve on the initial guess and eventually make f (x) negligible. For
example, four iterations of Newton's method (to be described in the next
section) yield f (10.9183) = 9.7 x 10'7 .

The selection of the initial value should be done with care-the closer it
is to an actual root, the faster will be the convergence of the iterative
procedure. In fact, for a poor guess the iterative procedure may diverge
instead of converge. Also, if a nonlinear equation has more than one root,
the one that is found will be determined by the initial guess. Often, some
practical knowledge about the problem being studied can yield a good
initial value. Another approach is to do a series of computer runs and thus
obtain some insight into the solution.

Newton's Method 45

An iterative procedure will keep trying to improve previous solutions
until instructed to stop. In computer programming there are two different
approaches that can be used to terminate an iterative process. If a program
is run in the interactive mode, a person can observe the results and stop
the calculations when the result is deemed to be accurate enough. If a
program is instead run in the batch mode, there must be instructions in the
program that will cause the program to stop when a particular criterion is
satisfied. Of course, an interactive program can also have stop criteria
included in it.

It is often convenient to have the termination of the iterative procedure
he under the control of the computer user (as is possible in the interactive
mode), because the accuracy that is desired may depend on the particular
application. For example. if the roots of an equation correspond to the
average daily temperature, then two-digit accuracy might be sufficient. On
the other hand, if the roots of an equation correspond to the resistance of
an electrical component, then four-digit accuracy might be necessary.

In this book it will be assumed that the programs will be run in the
interactive mode. Most of the programs will not stop automatically, but
will require intervention by the computer user. Of course, these programs
can be modified to include stop criteria if it is necessary to use the batch
mode.

3.3 NEWTON'S METHOD'

As in any iterative procedure, an initial guess must be made for New-
ton's method. Assume that x0 is the initial guess for a root of f (x). The
function f (x) can be expanded in a Taylor series about this initial value:

f(x)=f(x0)+J°(xo)(x- x0) + f (xo)2x-x0)2 +....
(3.4)

Unless the guess was very lucky, x0 will not be a root, but we can obtain a
better value by assuming that x0 is very close to a root r, so that (r- x0)2 is
a small quantity and (3.4) can be approximated as

f (r) =f (xo) +f '(xo)(r - x0). (3.5)

But f (r) is equal to zero, since by assumption r is a root. Therefore solving
(3.5) yields

f(x0)rax0-
.f'(xo)

'Also called the Newton-Raphson method.

46 Solutions For A Nonlinear Equation

This relation is the basis of Newton's method. A graphical interpretation
of the method can be obtained from Fig. 3.1. This figure indicates that if a
line is drawn tangent to f (x) at x0, then the line intercepts the x-axis a
distance xO-f(xo)/f'(xo) away from x. This new point can next be used as
an "initial value" and Newton's method applied again. Repeating the
process enough times will bring the solution arbitrarily close to the root r.

Instead of the notation in (3.6) we will find it more convenient to write

f(x)
x -

f (x)
-max.

This implies that the operation on the left side produces a new value for x
which replaces the old one.

EXAMPLE 3.1

The function f(x)=x3-x2-2x+1 has a root near x=0.6. In this
example we apply two iterations of Newton's method to improve upon this
initial value.

Since f (0.6) 0.344 and f'(0.6) = - 2.12, using (3.7) yields x = 0.4377.
The next iteration uses f (0.4377) = 0.01687 and f'(0.4377) = - 2.3, so that

(3.7) yields x = 0.445. After two iterations we now have f (O.445) = 9.6 x
10` 5, which has a much smaller magnitude than the initial value f (0.6) _
- 0.344.

XO /'(X0)

FIGURE 3.1. A graphical interpretation of Newton's method.

Newton's Method 47

Although the calculations in Newton's method are relatively simple, they
are time consuming if many iterations are required; it is thus worthwhile to
write a program. Before this can be done we should note that (3.7) requires
the evaluation of a derivative.

There are two methods that could be used to evaluate the derivative in a
computer program. One is to include a subroutine that evaluates an
analytical expression for the derivative. For Example 3.1 this subroutine
would evaluate f'(x) = 3x 2 - 2x - 2. This has the disadvantage of requiring
a different subroutine for every new function. The other possibility is to
use an approximate (but accurate) formula for the derivative. This is the
approach that will be used in this text.

By definition, the derivative of f (x) is given by

df = f(x+Sx)-f(x) (3.8)

TX axo Sx

It is of course not possible to let Sx approach zero in a computer program;
instead we must settle for some very small number. The question is "How
small?" The best solution is to let the size of Sx be proportional to the size
of x: if x is a large number, then the change in x will be large; if x is a
small number, then the change in x will be small. That is, Sx will be given
as

Sx = ex, (3.9)

where e is the constant of proportionality.
The constant of proportionality e should be made small enough so that

(3.9) is a good approximation to (3.8). However, if a is made too small then
roundoff errors can cause the numerator of (3.8) to be very inaccurate. The
amount of roundoff error will depend on the function f(x) that is
evaluated, and it will also depend on the computer that is used. For the
fourteen-digit Cyber 70, a reasonable value fore is 10-6. A less accurate
computer might require that e be 10-4 or even larger.

It should be noted that if x were zero, then Sx = ex would also be zero,
which would cause an attempt at division by zero in (3.8). The computer
program that is discussed in this section will check to see if x is equal to
zero; if it is, then Sx will instead be set equal to e.

A program for Newton's method is shown in Fig. 3.2. As indicated in
the figure, the program is based on (3.7) and (3.8). It is important to note
that (3.7) is based on the assumption that the parameter change f (x)/f'(x)
is small. Occasionally, it may happen (especially if the initial guess for a
root location is poor) that the parameter change is quite large. In this case,
applying (3.7) may actually move one farther from the root. To protect
against this possibility, line 58 checks whether or not If(x) < { f (xoid)I.

48 Solutions For A Nonlinear Equation

O1C NEWTON'S METHOD
02 PROGRAM NM(INPUT,OUTPUT)
03 03 FORMAT(1P,2E14.5)
09C
10C INITIAL VALUE
14 PRINT,*X*, $READ,X
15 PRINT,/,* X F(X)*
18 FX=F(X)
19 PRINT 3,X,FX
20C
21C FIND DERIVATIVE (EQ. 3.8)
22 22 DELTA=.000001*X
24 IF(ABS(X).LT.IE-12) DELTA=.000001
27 DERIV=(F(X+DELTA)-FX)/DELTA
50C
51C FIND NEW X (EQ. 3.7)
52 DO 59 J=1,6
54 SF=. 5** (J-]_)
55 X1=X-SF*FX/DERIV
56 FX1=F(X1)
58 IF(ABS(FX1).LT.ABS(FX)) GO TO 81
59 59 CONTINUE
80C
81 81 X=X1 $FX=FX1
84 PRINT 3,X,FX
89 GO TO 22
890 END
898C
899 FUNCTION F(X)
900 F=X*X-7.*X+10.
950 RETURN
999 END

FIGURE 3.2. A program for Newton's method.

If not, then line 54 causes the parameter change Sx to be reduced until it
is. Many of the programs that are included in this text have similar checks.
In fact, another one will be mentioned in this chapter.

At the bottom of the program for Newton's method is a function
statement that is used to define the function f(x). This function statement
must be rewritten whenever the function f(x) is changed (that is, whenever
a new problem must be solved). The function that is shown in Fig. 3.2 is
f (x) = x2 -7x + 10. This equation has two roots; the one that is found by a
particular computer run depends on the initial value that is used for x. For
example, Fig. 3.3 indicates that an initial guess of x =1 yielded r 2, while
a value of x = 10 yielded rx 5.

Newton's Method 49

X ? 1

X

1.00000E+00
1.80000E+00
1.98824E+00
1.99995E+00
2.0E000E+00
2.00000E+00

F (X)
4.00000E+00
6.39999E-01
3.54322E-02
1,37308E-04
2,00316E-09

0.

(a)

X ? 10

X
1.00000E+01
6.92308E+00
5.54019E+00
5.07152E+00
5.00163E+00
5.00000E+00

F (X)
4.00000E+01
9.46747E+00
1.91239E+00
2.19661E-01
4.88470E-03
2.65352E-06

(b)

FIGURE 3.3. An application of the Newton-method program.

This is a good opportunity to repeat one of the programming philoso-
phies that has been used in this text. To keep the programs simple (and
flexible), STOP criteria usually have not been included. In this specific
example, when it was observed that the computations had converged to a
root, the "Break" key on the teletypewriter was pressed.

In the above example we knew that one root was approximately 5
because f (x) was quite small for that value. If the program had been
allowed to run longer, then f (x) would have become even smaller, indicat-
ing that the root was more accurate. By examining the behavior of x we
can obtain a good idea about the number of digits that are significant. For
example, near the end of the first column in Fig. 3.3(b), the first three
digits of x did not change, so the answer is probably accurate to at least
three significant figures.

Insight into the rate of convergence of Newton's method may be
obtained by considering the Taylor series

+ .. .j M =J (X0) +J"(xo)(x - x0) + 2
f "(x0)(x - x0)2

(3.10)

Given an initial value x0, Newton's method approximates the root by
ignoring all terms after the first derivative. That is, (3.10) is approximated

50

as

Solutions For A Nonlinear Equation

f(x).Z:f(x0)+f'(x-xa). (3.11)

Comparing (3.10) and (3.11), we can see that the function error is of the
order of (x - xo)2.

The Taylor series can also be used to investigate the root error, which is
defined as e = x - r, where r is the root and x is the estimate of the root
at the nth iteration. Newton's method uses

xn+ I = xn -f (xn)I '(xn). (3.12)

Subtracting r from both sides of the equation yields

e. (3.13)

This can be approximated by expanding f in a Taylor series about the
root r:

(3.14)

Using f(r)=0 and ignoring higher-order terms because we are near a root,
we have

+.f"(r)e,',/2. (3.15)

Differentiating (3.14) then produces

f"(r)e,,. (3.16)

Substituting (3.15) and (3.16) and using (1 + e/2)/(1 + e) 1- a/2, where
we have

f "(r)
z

2 f,(r) e, . (3.17)

This equation indicates that (sufficiently close to a root) the current error
is a quadratic function of the previous error Newton's

method is said to be quadratically convergent or to be of second order.

3.4. QUADRATIC INTERPOLATION AND MULLER'S METHOD

In this section we will assume that in a sufficiently small region a
function can be approximated by a second-degree polynomial. This is
equivalent to assuming that the third- and higher-order terms in the
following Taylor series can be ignored:

(3.18)

Quadratic Interpolation and Muller's Method 51

For quadratic interpolation, the point x will be made to iteratively ap-
proach the minimum of a function. For Muller's method, the point x will
be made to iteratively approach the root of a function. If the initial guess
in the iterative procedure is poor, then x will not be near xa and the
high-order terms in (3.18) will not be negligible. However, as xa is ap-
proached the approximation of the function by a second-degree poly-
nomial will become valid, and convergence will be faster than for a
method such as Newton's, which uses a linear approximation.

Because quadratic interpolation and Muller's method both approximate
a function by a second-degree polynomial (i.e., a parabola), they are both
presented in this section. However, they are being presented for different
reasons. Quadratic interpolation is used to minimize a function and will be
very important in the optimization programs that are developed in some of
the following chapters. Muller's method is a relatively new numerical
method that is now widely used for finding roots of functions. Since this
chapter is concerned with finding solutions for a nonlinear equation, it is
appropriate that Muller's method be studied.

Since quadratic interpolation will find substantial application in later
chapters, it will be explained more thoroughly than Muller's method.
Quadratic interpolation will be used to find a minimum; thus the ap-
proximating parabola should be concave upward as shown in Fig. 3.4. In
that figure, the initial point is located at xo,fo where fo is the notation that
will be used for f(xo). The program in Fig. 3.5 describes how points x1,f1,
and x2,f2 can be selected so that a parabola passed through these three
points is concave upward as desired.

f(4

f2

fo

fm

L1 ._ I

1

I- - X
X2

A ;m

FIGURE 3.4. Illustration of the notation used for quadratic interpolation.

52 Solutions For A Nonlinear Equation

01C QUADRATIC INTERPOLATION
02 PROGRAM QUAD(INPUT,OUTPUT)
03 03 FORMAT(1P,2E14.5)
09C
10C INITIAL VALUE
14 PRINT,*X*, $READ,X
15 PRINT,/,* X F(X)*
18 18 FO=F(X)
19 19 PRINT 3,X,F0
20C
21C FIND ALPHA 1
22 Al=.01
24 24 F1=F((1.+A1)*X)
26 IF(F1.LT.FO) GO TO 32
27 A1=-.5*A1
28 IF(ABS(A1) LT. 1E-10) STOP
29 GO TO 24
30C
31C FIND ALPHA 2
32 32 A2=A1
33 33 A2=2.*A2
35 F2=F((1.+A2)*X)
36 IF(F2.GT.F1) GO TO 42
38 Al=A2 $F1=F2
39 GO TO 33
40C
41C FIND ALPHA (EQ. 3.24)
42 42 A=(Al*Al-A2*A2)*FO+A2*A2*F1-Al*Al*F2
43 A=.5*A/((Al-A2)*FO+A2*F1-Al*F2)
50C
51C FIND NEW X
52 X=(1.+A)*X
54 FO=F(X)
56 IF(FO.LT.F1) GO TO 19
58 X=(1.+A1)*X/(1.+A)
60 GO TO 18
890 END
898C
899 FUNCTION F(X)
900 F=X**4+X**3+3*X*X+X+2.
950 RETURN
999 END

FIGURE 3.5. A program for quadratic interpolation.

Quadratic Interpolation and Muller's Method 53

The first part of the program in Fig. 3.5 indicates how the point x,,f, can
be picked so that f, < fo. The computer first tries a value

x, = (I + a,)x0, (3.19)

where a, =0.01. That is, x, is 1% greater than x0. If at this point the value
f, is not less than fo, then the computer next tries a point that is 0.5% less
than xo. If this again fails, it tries a point that is 0.25% greater than xo.
Eventually, by looking sufficiently close to x0, the computer must find a
point x, such that f, < fo unless x0 is the minimum.2

Next the computer searches for a point

x2 = (1 + a2)xo (3.20)

such that A X2) = f2 > f, . This is done by first giving a2 twice the last value
of a,. If this does not work, then a2 is doubled until the function increases
sufficiently that f2 becomes greater than f,.

It should be noted that in the program of Fig. 3.5, if f2 is not greater
than f,, then in step 38 the present value of f2 is redefined to be f,. This
reduces the value of f,, thus putting it closer to the minimum, which will
make the quadratic interpolation procedure converge faster.

We have seen how it is possible to pick three points
so as to yield a parabola that is concave upward. The equation of this
parabola can be easily written if we use a result that will be proven in the
next chapter. A second-degree function that goes through three points can
be expressed as

(x-x,)(x-x2) (x-x0)(x-x2) (x-x0)(x-x,)
AX)(x) _

(xo- xi)(xo- x2) f0+ (X + (x2- x0)(x2 - x,)
.f2

(3.21)

The minimum of this parabola can be found by differentiating and then
setting the derivative equal to zero. This yields

(xi-xz)fo+(x2-xo)f,+(xo-xi)f2
()x = 0.5.

1
3.22

(x1- x2)fo+(x2 - xo)fi +(xo- xi)f2

This equation can be simplified if we express x relative to x0 as we
previously expressed x, relative to x0 in (3.19), and similarly for x2 in
(3.20). That is, we will write x as

x=(1 +a)x0. (3.23)

2Statement 28 causes the calculations to stop if xa is sufficiently close to the minimum.

54 Solutions For A Nonlinear Equation

Substituting (3.19), (3.20), and (3.23) into (3.22) yields

(a f, - a2)fo+ aifi - a2f2
« = 0.5

(al-a2)fo+a2f1-alf2
(3.24)

Once a has been calculated by this equation, x can be calculated from
(3.23).

The quadratic interpolation program of Figure 3.5 is based on using
(3.24) to calculate the minimum of a parabola. However, the function f (x)
will usually not behave quadratically except close to a minimum. Thus, far
from a minimum it may happen that the value of x calculated from
x = (1 + a)xo may yield f (x) >f (xo). If this happens, then line number 58
causes the new point to be x=(l+a1)xo. This point is used because the
selection of a1 guarantees that f (x1) < f (xo).

EXAMPLE 3.2

The function at the bottom of the quadratic interpolation program in
Fig. 3.5 is f (x) = x4 + x3 +3x 2 + x + 2. As illustrated in Fig. 3.6, choosing
an initial value of xo= I yields a minimum of -0.178846.

X ? 1

X F (X)
1.00000E+00 8.00000E+00

-1.94588E-01 1.91307E+00
-1.78859E-01 1.91241E+00
-1.78846E-01

STOP
1.91241E+00

FIGURE 3.6. An application of the quadratic interpolation program.

As mentioned previously, Muller's method is similar to quadratic inter-
polation: it uses a parabolic approximation to find a root instead of a
minimum. If the parabola

f (x) = ax 2 + bx + c (3.25)

is equated to the parabola of (3.21), namely

(x-x,)(x-x2) (x-x0)(x-x2) (x-x0)(x-x,) jf(x}=
(x0-x1)(x0-.x2)

/fo+
(xI-x0)(x,-x2)

fl+
(x2-xo)(x2-x1) J2

01C MULLER'S METHOD
02 PROGRAM MM(INPUT,OUTPUT)
03 03 FORMAT(1P,2E14.5)
09C
10C INITIAL VALUE
14 14 PRINT *X*, $READ,XO
1.5 PRINT,/,* X F(X)*
18 FO=F(X0)
19 PRINT 3,XO,FO
20C
21C ARBITRARILY PICK X1,X2
22 X1=1.1*X0
23 F1=F(X1)
25 X2=.9*XO
26 F2=F(X2)
40C
41C FIND B0,B1,B2 (EQ. 3.26)
42 42 BO=FO/(X0-X1)/(X0-X2)
43 B1=F1/(X1-XO)/(X1-X2)
44 B2=F2/(X2-XO)/(X2-X1.)
50C
51C FIND A,B,C (EQ. 3.26)
52 A=BO+B1+B2
53 B=-((X1+X2)*BO+(XO+X2)*B1+(XO+X1)*B2)
54 C=X1*X2*BO+XO*X2*B1+X0*X1*B2
56 IF(A EQ. 0) X3=-C/B
57 IF(A EQ. 0) GO TO 68
60C
61C FIND THE ROOT CLOSEST TO X2 (EQ. 3.27)
62 DSC=B*B-4.*A*C
63 IF(DSC LT. 0.) DSC=O.
64 X3=(-B+SQRT(DSC))/(2.*A)
65 X4=(-B-SQRT(DSC))/(2.*A)
67 IF(ABS(X4-X2) LT. ABS(X3-X2)) X3=X4
68 68 F3=F(X3)
69 PRINT 3,X3,F3
70C
71C DISCARD THE OLDEST POINT
72 X0=X1 $X1=X2 $X2=X3
73 F0=F1 $F1=F2 $F2=F3
76 GO TO 42
890 END
891C
899 FUNCTION F(X)
900 F=X*X-7.*X+10.
950 RETURN
999 END

FIGURE 3.7. A program for Muller's method.

55

55

x ? 1

(a)

X ? 4

X F(X)
1.00000E+00 4.00000E+00
2.00000E+00 -1.09139E-11

X F(X)
4.00000E+00 -2.00000E+00
5.00000E+00 0.

Solutions For A Nonlinear Equation

(b)

X ? 1

X F (X)
1.00000E+00 -2.80000E+01
2.06986E+00 1.21385E+00
1.99598E+00 -7.25479E-02
1.99998E+00 -3.07846E-04
2.00000E+00 -4.80895E-09

(c)

FIGURE 3.8. An application of the Muller program.

it follows that3

where

a=bo+b,+b2

b= - [(xi+x2)bo+(xo+x2)bi+(xo+xi)b2J (3.26)

c=xlx2bo+x0x2b, +xoxI b2,

Aba__

(xo-xi)(xo-x2)

b,=-
(xi

A

- xo)(xi - x2)
b2 =

f2

(x2-x0)(x2-x1)

Once a,b,c have been calculated from (3.26), the roots of the parabola can

3To demonstrate this use f(0)=c, f'(0)=b, f"(0)=2a.

Beirstow's Method

be found from

57

-b±(b2--4ac)
= 2a (3.27)xr

A program implementing these equations is given in Fig. 3.7, and some
applications are given in Fig. 3.8. Figures 3.8(a, b) shows an application to
finding the roots of x2-7x+ 10. Since this is a second-degree equation,
Muller's method was able to determine the roots (except for numerical
inaccuracies) in one iteration. Figure 3.8(c) shows an application of
Muller's method to (x2 - 7x + 10)(x - 8). This time more than one iteration
was required because the polynomial was third-degree.

The description of Muller's method that was just given emphasized
clarity and not numerical accuracy. In particular, calculating bo,bt,b2, as
given in (3.26) can cause inaccuracies because the denominator terms will
become small as the minimum is approached. As described by Conte and
DeBoor (1972), Muller used different equations to solve for the roots. If
one needs to find roots very accurately, then it is recommended that the
program in Fig. 3.7 be so modified.

As described in this chapter, the Newton program and the Muller
program only find real roots.' The method in the next section was
developed specifically to solve for complex roots of polynomials.

3.5 BAIRSTOW'S METHOD

In this section we will learn how to find the roots of the following
nth-degree equation:

f(x)=.x"+Aix"-'+A2xn-2+ +A"_ix +A"=0. (3.28)

It should be noted that the first coefficient is unity (that is, A0= I). If the
leading coefficient is not equal to one, then the equation can be divided by
A0, as that will not affect the roots; thus there is no loss in generality if we
assume the normalized form shown in (3.28).

Bairstow's method removes a quadratic factor, x2 + Px + Q, from (3.28).
The remainder is thus two degrees lower, and Bairstow's method can be
applied again, so that eventually all quadratic factors can be founds

In order to remove the quadratic factor x2+ Px + Q, an iterative proce-
dure will be used. First, as an initial guess, it will be assumed that

4Problem 3.30 requests the reader to modify the program of Fig. 3.7 so that it will find
complex roots.

If n is odd, then the final remainder will be a linear term.

58 Solutions For A Nonlinear Equation

x2+ Pox + Q0 is a factor of (3.28); thus the equation can be rewritten as

f(x)=(x2+Pox+Qo)(Box"-2+B,X"-3+ +Bn_2)+Rx+S. (3.29)

If x2+Pox+ Q0 is really a factor, then the remainders R, S should be zero.
However, usually the initial guess will not be so successful; but P0 and Qo
can be iteratively adjusted until the remainders R,S are negligibly small.

Equations for the remainders R and S can be obtained by equating
coefficients of like powers in (3.28) and (3.29). Problem 3.17 establishes
that these remainders can be written as

R=B"_1
S=B"+PoB"_1, (3.30)

where the coefficients B", B,, -I can be found from the following recursive
relations:

Bo=I

B, =A 1-- PO

B;=A;- PoB;-1-QoBi-2, i=2,3,...,n. (3.31)

EXAMPLE 3.3

For the function f(x)=x3+2x2+3x+2, find the remainder if it is
assumed that a factor is x2+Pox+Qo=x2+2x+3.

SOLUTION

Applying (3.31) with P0= 2 and Qo= 3, we have

Bo=I

B,=2-2=0
B2=3-2(0)-3(1)=0
B3=2-2(0)-3(0)=2.

Thus (3.30) yields R = 0, S = 2 + 2(0) = 2. This implies that

x3+2x2+3x+2=(x2+2x+3)(x+0)+Ox+2.

The remainder terms, R and S, are of course a function of the initial
guess P0,Q0. Given an initial guess P0, Q, we want to choose a better pair
P1, Q, so that R, S is made smaller. This will be done by using the Taylor

Balrstow's Method 59

series approximation :6

PR aPSP+ a S(o,Q0)+R(P1,Q1)- Q Q
(3.32)

S(P1,Q1)=S(P0,Qo)+ -8P+ aQSQ,

where SP and SQ are defined by

P, = Po + 6P, QI=QO+SQ. (3.33)

Summarizing Bairstow's method to this point: We made an initial guess
that x2 + Pox + Q0 is a quadratic factor of f (x). This yielded remainders
which can be calculated by (3.30). We now want to choose increments,
SP, SQ so that the remainders become zero. That is, we want R (PI, Q1) and
S (P,, Q,) to equal zero; thus (3.32) yields

aPSP+ aQSQ-R(Po,Qo) (3.34a)

as asaPSP+ aQSQ=-S(Po,Qo). (3.34b)

In these two equations we are assuming we know the quantities
R (Po, Q0) and S (Po, Qo). The partial derivatives can be calculated by
differentiating (3.30); thus we have two equations and just two unknowns:
SP,SQ. It is shown in Problems 3.20 to 3.23 that the solution to (3.34) can
be expressed as

Bn-ICn-2- B.Cn--38p= (3.35)K

BnCn-2-Bn-I(Cn-I-Bn-1)
S 363Q K)(.

where'
Co= I

C,=BI -Po (3.37)

C,=Br-POC,-I-QOC.-2, i=2,3,...n,
and the constant K is defined as

(3.38)

6This is a two-dimensional generalization of (3.5) which was used in Newton's method, so
Bairstow's method can be considered to be a generalization of Newton's method.

7 Note the similarity between (3.31) and (3.37). If the B's in (3.31) are replaced by C's and
the A's by B's, then one obtains (3.37).

60 Solutions For A Nonlinear Equation

EXAMPLE 3.4

Example 3.3 assumed _Y2+2x+3 was a factor of x3+2xz+3x+2 and
found that the remainder was Rx + S = Ox + 2. This example will apply
(3.35) and (3.36) to yield changes SP,SQ which will produce a better
quadratic factor x2+ P1x+Q1.

In Example 3.3, for Po=2 and QO=3 it was found B0=1, B1=0=B21
B3=2. Thus applying (3.37) yields

('o= 1

('1=0-2= -2
('2=0-2(-2)-3(1)=1
('3=2-2(l)-3(-2)=6.

Next, applying (3.38) produces K=3. Finally, applying (3.35) and (3.36)
gives the desired changes

SP= - 3, SQ- 3,

so that

P,=PO+SP=3, Q1=QO+SQ=13

Usually, the increments SP,SQ will not be perfect: they will not result in
remainders R,S which are both exactly zero. This is because the Taylor
series in (3.32) were only approximations. However, this can be the basis of
an iterative procedure. As the procedure progresses, the increments SP,SQ
will become smaller, the Taylor series will become more exact, and the
solution will converge.

Thus by using Bairstow's iterative procedure it is possible to find a
quadratic factor of

f(x)=x"+A1xn-1+A2xn-2+ +A"_1x+A". (3.39)

Denoting this quadratic factor as x2+Px+Q, it follows from (3.29) that
f(x) can be expressed as

f(x)=(x2+Px+Q)(B0xn-2+B1x"-3+ +Bn_2), (3.40)

where

B0= 1

B,=A1-P
B,=A;-PB_,-QBr_2, i=2,3,...,n.

(3.41)

Bslrstow's Method

O1C BAIRSTOWS METHOD
02C THIS PROGRAM FINDS THE FACTORS OF
03C X**N+A2*X**(N-1)+A3*X**(N-2)+...
04C QUADRATIC FACTORS: X**2+P*X+Q
OSC LINEAR FACTOR: X+XO
06C
07 PROGRAM B(INPUT,OUTPUT)
08 08 FORMAT(1P,2E14.5)
09 DIMENSION A(10),B(10),C(10)
10 REAL K
11C
12 PRINT,*N*, $READ,N
14 PRINT,/,*A(I) I=2,3.... N+1*
16 N1=N+1 $A(1)=1.
17 READ,(A(I),I=2,N1)
20 20 PRINT,/,*INITIAL P,Q*, $READ,P,Q
23C
24C CALCULATE B,C (EQS. 3.31,3.37)
25 B(1)=1. SC(1)=1.
27 27 B(2)=A(2)-P $C(2)=B(2)-P
29 DO 32 I=3,N1
31 B(I)=A(I)-P*B(I-1)-Q*B(I-2)
32 32 C(I)=B(I)-P*C(I-1)-Q*C(I-2)
35C
36C CALCULATE K (EQ. 3.38)
37 K=C(N-1)**2+C(N-2)*(B(N)-C(N))
38 IF(K.EQ.0) K=.001
40C
41C CALCULATE DP,DQ (EQS. 3.35,3.36)
42 DP=(B(N)*C(N-1)-B(N1)*C(N-2))/K
43 DQ=(B(N1)*C(N-1)-B(N)*(C(N)-B(N)))/K
45C
46C CALCULATE P,Q (EQ. 3.33)
47 P=P+DP $Q=Q+DQ
49C
50C ACCURACY CONTROL
51 IF(ABS(DP)+ABS(DQ).GT.1E-6) GO TO 27
53C
54 PRINT,* FINAL P,Q*, $PRINT 8.P,Q
59C
60C REDUCE DEGREE BY 2 (EQ. 3.42)
61 N=N-2 SN1=N1-2
62 A(2)=A(2)-P
63 IF(N.EQ.1) GO TO 92
64 DO 65 I=3,Nl
65 65 A(I)=A(I)-P*A(I-1)-Q*A(I-2)
67 IF(N.GT.2) GO TO 20
80C
82C LAST QUADRATIC FACTOR
83 PRINT,/,* FINAL P,Q*, $PRINT 8,A(2),A(3)
84 STOP
90C
92 92 PRINT,/,*LINEAR TERM X0=*, $PRINT 8,A(2)
999 END

61

FIGURE 3.9. A program for Bairstow's method.

62 Solutions For A Nonlinear Equation

Once the quadratic factor has been removed as indicated in (3.40), the
other factor can be again analyzed by Bairstow's method. Before this can
be done, two minor items need to be taken care of. First, the degree of the
second factor in (3.40) is n-2, so the substitution n-2--+n must be
performed. Second, the coefficients are identified as B; in (3.40), while the
program is written in terms of A;. This can be taken care of by using the
following instead of (3.41):

A, - P--*A,

A; - PA; - i - QA;-2-*A,, i =2,3,...,n.
(3.42)

A program for Bairstow's method is given in Fig. 3.9. This will automati-
cally remove quadratic factors x2+Px+Q from an nth-degree polynomial
f (x) until no more quadratic factors remain. If the degree is odd there will
be a linear factor, which is denoted as x + x0.

Most of the steps in the program are obvious from the discussion on the
previous pages, but a couple may need clarifying. At line 38 a check is
made to see whether or not K=0, so that division by zero will not result
when SP and SQ are calculated. If K does equal zero it is redefined to be
0.001; the effects of this will disappear after a few iterations. Note that the
iterations continue until 1 SP + 16QI < 10--6. Reducing the SP and SQ even
more would produce a more accurate quadratic factor, but this would of
course require more iterations (and thus more computation time).

EXAMPLE 3.5

Example 3.4 started analyzing the third-degree function f(x)=x3+2x2
+3x+2. After one iteration it was found that the initial guess of Po=2,
Q0= 3 was modified to P, =

3

, Q, = 3 .
The Bairstow program can be used to factor this function. The output in

Fig. 3.10 was obtained by choosing as the initial guess Po=O, Qo=O. The

N ? 3

A(I) I=2,3.... N+1
? 2 3 2

INITIAL P,Q ? 0,0
FINAL P,Q 1.00000E+00 2.00000E+00

LINEAR TERM X0= 1.00000E+00
END.

FIGURE 3.10. An application of the Bairstow program.

Bairstow's Method 63

output indicates that f (x) can be factored as

f(x)=(x2+x+2)(x+1).
The program in Fig. 3.9 indicates that initial values for P,Q are required

as input data. The values that are used are not very critical. In fact, if the
initial values are always chosen as zero, the algorithm will work fine. Thus
the initial values could have been set internally and not left as input data;
however, this was not done, in order to provide more flexibility.

N ? 7

A(I) I=2,3,...N+1
? 13 65 172 277 293 177 42

INITIAL P,Q ? 0,0
FINAL P,Q 1.55051E+00 5.50510E-01

INITIAL P,Q ? 0,0
FINAL P,Q 1.00000E+00 2.00000E+00

INITIAL P,Q ? 0,0
FINAL P,Q 5.00000E+00 7.00000E+00

LINEAR TERM X0= 5.44949E+00
END.

(a)

N ? 7

A(I) I=2,3,...N+1
? 13 65 172 277 293 177 42

INITIAL P,Q ? 4.9,6.9
FINAL P,Q 5.00000E+00 7.00000E+00

INITIAL P,Q ? 1.5,.5
FINAL P,Q 1.55051E+00 5.50510E-01

INITIAL P,Q ? .9,1.9
FINAL P,Q 1.00000E+00 2.00000E+00

LINEAR TERM X0= 5.44949E+00
END.

(b)

FIGURE 3.11. The values chosen for P, Q can influence the order of root removal.

64 Solutions For A Nonlinear Equation

By choosing different initial values for P,Q one can change the order in
which the roots are removed. This property can be used to check the
accuracy of the roots. Because Bairstow's method proceeds by successively
removing factors, the roots removed first will be the most accurate:
roundoff errors can accumulate and make the last roots relatively inac-
curate. Thus using Bairstow's method again with a different order of
factorization can serve as a check on accuracy. If accuracy is a problem,
then the root with the smallest magnitude should be removed first, because
this reduces the effect of roundoff error.

EXAMPLE 3.6

Figure 3.11 shows output for the function
f(X) = X7 + 13x6+65x5+ 172x4+277x3+293x2+ 177x+42.

The results in Fig. 3.11(a) were obtained by always using as initial values
P = 0, Q = 0. Notice that the last quadratic factor removed was x2+5x+7.

Figure 3.11(b) shows the result of a second computer run for the same
problem. This time, we chose as initial values P=4.9 and Q=6.9, and the
first factor to be removed was x2+5x+7. The initial values were chosen to
be different from P = 5 and Q = 7 in order to verify that the original answer
was accurate.

From the output in Fig. 3.11, it follows that f(x) can be factored as

AX) = (X 2 + 1.55x+0.55)(x2+x+2)(x2+5x+7)(x+5.45).

It should be noted that the output in Fig. 3.11 is more accurate than this;
the answer here was simplified for ease of presentation.

3.6 SUGGESTED READING IN RELATED TOPICS

In this chapter we considered three algorithms that can be used to find
the roots of equations. The three methods were very different in their
approach to the problem. Newton's method used the derivative to help
predict the location of a root; Muller's method used a second-degree
curve-fitting approach; and Bairstow's method successively removed
quadratic factors.

Newton's method had simplicity as its main virtue; thus it served as a
good introduction to iterative techniques. However, as indicated by Ham-
ming (1973), Newton's method may encounter difficulty in some special
cases. For example, if f (x) has a multiple zero at a root, then the derivative
will also be zero at that root, which causes division by zero in the
algorithm. Newton's method can also encounter difficulty if the root is at
an inflection point (second derivative equals zero), in which case the
procedure may never converge.

Suggested Reading In Related Topics 65

It is possible to modify Newton's method and eliminate the problems
mentioned above. One modification was mentioned in Section 3.3. It was
based on the observation, illustrated in Fig. 3.1, that Newton's method
predicts the parameter change 6x by using the negative of the slope. If this
parameter change is too large and results in an f (x) which has a magnitude
greater than the previous f (X), then the modified Newton's method halves
the parameter change until f (x) finally has a smaller magnitude. An
approach similar to this is used in the steepest-descent method of Section
9.4.

There are many other methods which are as simple as Newton's method.
Some of the more popular ones are the secant method and the bisection
method. The secant method can be considered to be a simplification of
Newton's method which solves iteratively for a root via

x,, 1 = X. -f (xtt)/f'(x,,)
In the secant method the derivative is approximated by

f(Xtt)=
f(X.) -f(Xtt-1)

Xtt-X.-I
Newton's method was second-order; further approximating the derivative
as above makes the secant method of lower order. However, since the
secant method does not require the evaluation of a derivative it uses fewer
function evaluations than Newton's methods and may require less com-
putation time.

Recall that Newton's method was exact for any linear function, and
quadratic interpolation was exact for any second-degree function. Continu-
ing this approach, cubic interpolation would be exact for any third-degree
function. Thus in theory cubic interpolation may sound even better than
quadratic interpolation; but in practice it is not. By the time one is close
enough to the minimum so that f (x) can be approximated by a third-de-
gree function, quadratic interpolation will also do a good job. Any saving
that cubic interpolation would produce because of increased accuracy is
usually more than offset by the necessity of fitting a curve to four points
instead of the three required by quadratic interpolation.

The golden section method8 is an algorithm that can be used to find the
minimum of a function f(x) and is simpler than quadratic interpolation.
First it is assumed that we have found a region in which f(x) is unimodal
-i.e., f(x) has one and only one minimum in that region. Let x, and x4 be
points which bracket the unimodal region. Interior points x2=0.618x,+
0.382x4 and x3=0.382x,+0.618x4 are next examined. If f(x2) is greater
than f (x3) then point x, is discarded and x2,x4 are now known to bracket a

8This is analogous to the bisection method which was used for finding roots of a function.

66 Solutions For A Nonlinear Equation

01C GOLDEN SECTIONS
02 PROGRAM GS(INPUT,OUTPUT)
03 03 FORMAT(1P 2E14.5)
09C
10C INITIAL VALUES
11 PRINT * UNIMODAL POINTS*
12 READ ,X1,X4
13C
20C FIND INTERIOR POINTS
21 X2=.618*X1+.3B2*X4
22 F2=F(X2)
24 X3=.382*X1+.618*X4
25 F3=F(X3)
29C
30 30 PRINT 3,X1,X4
39C
40C IF F2>F3 THE NEW UNIMODAL POINTS ARE X2,X4
41 IF(F3 GT. F2) GO TO 63
43 X1=X2
44 X2=X3 $F2=F3
46 X3=.382*X1+.618*X4
47 F3=F(X3)
48 GO TO 30
59C
60C IF F3>F2 THE NEW UNIMODAL POINTS ARE X1,X3
63 63 X4=X3
64 X3=X2 $F3=F2
66 X2=.618*X1+.382*X4
67 F2=F(X2)
68 GO TO 30
69 END
88C
89 FUNCTION F(X)
90 F=(X*X*X+6.*X*X+11.*X+6.)**2
98 RETURN
99 END

FIGURE 3.12. A program for the golden section method.

unimodal region. Point x3 is still used as an interior point and another one
is found from 0.382x2 +0.618x4. On the other hand, if A X3) is greater than
f (x2) then point x4 is discarded and a new interior point is found from
0.618x, +0.382x3. The numbers 0.382 and 0.618 are related to the golden
ratio (Forsythe 1977). They were used in the above equations because they
allow the bounds of the unimodal region to be reduced by the same
amount if f2 is greater than f3 or vice versa. A program for the golden

Problems 67

section method is given in Fig. 3.12. This program will not be used in the
following chapters because we will prefer the more involved but more
accurate quadratic interpolation method.

As described in this chapter, Bairstow's method usually works very well
for finding the quadratic factors of a polynomial. However, the method
sometimes fails to converge if there are multiple roots. Hamming (1973)
discusses a modification of Bairstow's method that can cure this problem.
As just noted, Bairstow's method can only be applied to find roots of a
polynomial. Muller's method does not have this restriction-it can find
real or complex roots of a polynomial or an arbitrary function.

PROBLEMS

3.1 The function f (x) = x2 + 0.9x - 2.2 has a root near x =1. Use one
iteration of Newton's method to approximate this root. Check the
answer by using the quadratic formula to find both roots of the
equation.

3.2 The function f(x)=x3+4.4x2+6.2x+2.8 has three roots, one of
which is near x = - 1.6.
(a) Use this as an initial value and apply one iteration of Newton's

method to find a better answer.
(b) If the answer in (a) is rounded to two significant figures, it is

exact; thus one factor of the cubic equation is now known.
Remove this factor so as to obtain a quadratic remainder. Find
the roots of the quadratic term.

3.3 The equation e' = 3x2 has a solution near x = 4. Use two iterations of
Newton's method to improve this initial value.

3.4 Apply the relation in (3.9) with t=0.1 to estimate the derivative of
f(x)=x2+2 at x=2.

3.5 Use the program in Fig. 3.2 to check the answer obtained in Problem
3.3. Stop the computer when the answer is accurate to four significant
figures.

3.6 Modify the program in Fig. 3.2 so that data are only printed if
I f (x)I < 10-6; once these data are printed, have the program auto-
matically stop. Use this modified program on Problem 3.3.

3.7 Using the modified program of Problem 3.6, find the four roots of

x4+x3-4x2-3x+3=0.

68 Solutions For A Nonlinear Equation

3.8 Use xo = 2 as an initial guess for the root of f (x) = ax + b. Apply one
iteration of Newton's method to find the exact solution (the answer
will be exact because Newton's method is exact for linear equations).

3.9 Show that Newton's method is not exact for every second-degree
equation by considering the function f(x)=x'-4. Choose as an
initial value x = 3 and show that one iteration does not yield the exact
answer.

3.10 In Chapter 1 the square root of two was approximated by using the
binomial series. A more efficient approximation uses Newton's
method to find a root of f (x) = x2 - 2. Choose the initial value as x
equal to I and apply two iterations of Newton's method.

3.11 For the function f (X) = x3 -2X2_ x+2, choose as the initial value
x0= 1.5. Follow the process described by the program in Fig. 3.5 to
find a, and a2. Also find x, and X2-

3.12 For the function f(.c)=x2-5x+3 let xo= I, x,=2. x2=4. Find fo, f,,
f2

3.13 (a) Find the minimum xof the parabola that goes through the three
points (1, - 1), (2, - 3), (4, - 1).

(b) Find the minimum off (x) = x2 - 5x + 3, and compare the answer
with the result found in (a).

3.14 For the function f(x)=x3-2x2-x+2 let xo=1.2, x,=1.4, x2=1.8.
(a) Find fo, f,, f2.

(b) Find the minimum x," of a parabola that goes through the three
points (xo,fo), (Y1,fi), (x2,f2)-

(c) Find the minimum of f (x) and compare it with the answer in (b).
3.15 Check the answer in Problem 3.13(b) by using the quadratic inter-

polation program.

3.16 Solve the following nonlinear equation by using the quadratic inter-
polation program:

2eX=x2.

3.17 This problem establishes the relations in (3.30) and (3.31).

(a) Compare the coefficient of x" in (3.28) with the coefficient in
(3.29) to yield one of the relations in (3.31).

(b) Repeat (a) for the coefficients of x"- 1

(c) Equate the coefficients of x' for i=2,3,...,n-2 to obtain the
relation B,=A;-POB;_,-Q0Bi_2.

(d) Define B. = A _,-POBn-2-QOB"_3, and show that R=B"_,.

Problems 69

(e) Define B = A - POB , - QOB _ 2, and show that S = B +

3.18 Example 3.3 assumed that a factor of f(x)=x3+2x2+3x+2 was
x 2 + 2x + 3 and found the remainders. Generalize this result and find
the remainders for f(x)=x3+A,x2+A2x+A3, assuming that x2+
A,x+A2 is a factor.

3.19 If x2 is assumed to be a factor of f(x)=x3+A,x2+A2x+A3, what is
the remainder?

3.20 (a) Show that (3.34a) is equivalent to

_B,
I

aP
SP+ aQ SQ- -

B,

(b) Show that (3.34b) is equivalent to

(ap +Poaap Q +PoaaQ ISQ

= - B. - POB1, -1.

(c) Use the results in (a) and (b) to show that

LB- 1 LB-aP
BSQB,.

3.21 Show that

aB, aB, - , aBJ-2

- aP =B;-1+Po
aP +Q0 aP

3B, aB;-, aB;_2
- aQ =Bi-2+Po

aQ +Qo aQ

3.22 Show that if the definitions

aB; aB;

aP Crand Q=-C;-2

are substituted into the results of Problem 3.21, then (3.37) is pro-
duced.

3.23 Substitute the expressions from Problem 3.22 into Problem 3.20(a, c);
then solve the resulting equations to yield (3.35) and (3.36).

3.24 Use two iterations of Bairstow's method to find a quadratic factor of
x3+2x2+3x+2. Let the initial guesses be P=0 and Q=O.

70 Solutions For A Nonlinear Equation

3.25 If the output of the Bairstow program indicates P=2, Q=5, xo=4.
(a) What was the original function f (x)?
(b) What are the roots of f (x)?

3.26 Use the Bairstow program to factor f(x)=2x3+4x2+16x+14.
3.27 If one quadratic factor of f(x)=x4+8x3+20x2+23x+4 is x2+5x+

1, then what is the other quadratic factor?
3.28 (a) Factor f(x)=x4+3x3+15x2+17x+36 by using the Bairstow

program with initial values P=0 and Q=O.
(b) Use the Bairstow program again, but this time choose initial

values that will change the order of factorization.
3.29 (a) Factor f (x) = x 3 + 6x2 + 11 x + 6 by using the Bairstow program

with initial values P=0 and Q=0.
(b) Repeat (a) with P = 5 and Q = 5. Compare the answers in (a) and

(b).

3.30 Muller's method can also be used to find complex roots. Modify the
program of Fig. 3.7 so that it will find complex roots. Hint: define
certain parameters as complex, modify statement 14, and delete
statement 63.

Chapter Four

Interpolation

4.1 INTRODUCTION

The title of this chapter may be somewhat misleading; perhaps a better
title would be "Interpolation and Extrapolation". Interpolation is usually
meant to imply that a function is to be estimated at a point interior to some
data. For example, given the values of sin37° and sin38°, one can
interpolate for the value of sin37.2°. On the other hand, extrapolation
implies that a function is to be estimated at a point exterior to some data.
For example, given the values for sin37° and sin38°, one can extrapolate
for the value of sin38.3°.

In this text, the word interpolation will be used to indicate an estimation
of a function value based on some given (or calculated) values. It will not
imply whether the point is interior or exterior to the given data. The reason
for this is that we will learn how to calculate a polynomial which repre-
sents the given data. Once we have this polynomial, we will be able to
estimate the value of the function at any interior or exterior point. Even
though this polynomial can be used for extrapolation as well as interpola-
tion, it is customarily referred to as an interpolating polynomial.

A student is usually first introduced to the subject of interpolation in an
elementary mathematics course that requires the use of tables: for exam-
ple, tables of trigonometric functions or of logarithms. By interpolating
one is able to estimate the value of a function at points that are not
tabulated. This use of interpolation has decreased with the proliferation of
calculators that contain subroutines for calculating trigonometric functions
as well as many other functions. However, interpolation has many addi-
tional uses and is still important.

Interpolation can be useful when one is analyzing experimental data.
For example, after an experiment has been concluded and the apparatus
dismantled, one may discover an additional measurement would have been
beneficial. Instead of doing the experiment again, it may be possible to use
the experimental data that are already available to estimate the desired
measurement. Or one of the data points might be incorrect; interpolation
techniques can be used to replace it with a better value.

71

72 Interpolation

Another use of interpolating polynomials is to aid in plotting smooth
curves to represent experimental data. One can find an interpolating
polynomial which exactly matches the measured values. This polynomial
can then be evaluated at enough additional points so that a smooth curve
can be plotted. In fact, a computer can be programmed to evaluate the
interpolating polynomial and then plot the results.

It is not always best to use an interpolating polynomial which exactly
matches the measured values. In any practical experiment there will be
sources of error. One way of compensating for the errors is to take more
data than should be theoretically necessary and then smooth the data by
using a least-squares fitting approach. Another method that will also be
studied in this chapter is the use of a cubic spline function to produce a
smooth curve.

Interpolating polynomials will be very useful to us in many of the
chapters that follow. They will enable us to derive many different for-
mulas. For example, consider numerical integration. It may happen that
we wish to integrate a function f(x), but can neither find it in a table of
integrals nor discover a way to integrate it analytically. The function f(x)
may be evaluated at various points and then approximated by an inter-
polating polynomial P(x). This polynomial P(x) can be integrated to
estimate the integral of f(x). By evaluating f(x) at a sufficient number of
points, the numerical integration can be made arbitrarily accurate.

4.2 A UNIQUE SOLUTION

In order to become familiar with notation that will be used throughout
this text, consider the following hypothetical experiment. The speed of a
race car is measured at different distances from a starting line. The
independent variable (distance of the car) will be denoted by x, and the
dependent variable (speed of the car) by f(x).

The initial value of the independent variable will be written as x0, the
next will be x1, etc. Thus the value of the dependent variable at these
locations can be written as We will prove in this
section that there is a unique nth-degree interpolating polynomial that
passes through the n + I data values.

In order to demonstrate that it is a unique polynomial, assume the
opposite. That is, assume that P (x) and Q (x) are two different nth-degree
polynomials that match the n+ I values. Because these polynomials give
the same values as the data at points xo, x 1, ... , x,,, we have

P(xo)=Q(xo), P(xi)=Q(xi),..., (4.1)

The difference of the two polynomials can be written as D (x) = P (x) -
Q(x). It follows from (4.1) that D(x) is zero at x=x0,xI ,x2,.... x,,. Since

The Normalized Variable 73

D (x) has at least n + I zeros, its degree must be at least equal to n + 1. But
by assumption P (x) and Q (x) were nth-degree functions, so their dif-
ference must be no greater than an nth-degree function. Since the assump-
tion that P (x) and Q (x) were different functions led to a contradiction, we
must conclude they are really the same function.

The fact that there is a unique nth-degree polynomial that matches n + I
data values will be extremely important to us. If one refers to other books
for additional information about interpolation, one will find many diffe-
rent interpolating polynomials. However, we know they must all yield the
same answer. That is, their form may be different, but we know they could
all eventually be manipulated to have the same form, since there is a
unique polynomial.

The reader must now he wondering, "If there is a unique polynomial,
why do people like to have so many different expressions for it?" The
answer is that, depending on the specific application, one form may he
easier to evaluate than another. However, the fact that a special form may
save a few milliseconds of computer time is of little consequence to most
of us. The majority of the readers of this book will not want to invest hours
of study to save milliseconds of computer time, so we will limit attention to
just two important forms.

4.3 THE NORMALIZED VARIABLE

As mentioned in the previous section, we will want to pass an nth-degree
polynomial through n + I values

f(xx0), f(xt), f(x2)..... (4.2)

In most applications we will be able to choose the locations of the
independent variable x. It will simplify the calculations if the points are
equally spaced, that is, if

X1 -XO=X2-x,=x3-.Y2=... = h. (4.3)

Because we will encounter equally spaced data so frequently, it will be
useful to define a normalized variables. For this important special case the
normalized variable is defined as

s=(x-x0)/h, (4.4)

where x0 is the initial point and h is the spacing between the equidistant
points. The parameter h is often called the step size or the increment.

For evenly spaced data we will often use the notation fs instead of fix).
It should be noted from the definition of s in (4.4) that s is not restricted to
integer values.

74 Int rpo$Nion

EXAMPLE 4.1

At 4 P.M., 6 P.M., and 8 P.M. the temperature was measured as 60°, 70°,
and 65°. Let x represent the time and f(x) the temperature.

(a) s = 1.5 corresponds to what time?
(b) If x = 2 P.M., what is s?
(c) What is the value of f2?

SOLUTION

The initial measurement was at 4 P.M., so that x0=4. The measurements
were made at increments of two hours; therefore h=2.

(a) Substituting into (4.4),

1.5=(x-4)/2.

Solving for x yields 7 P.M.

(b) s=(2-4)12=-1.
(c) If s = 2 then x = 8 P.M., so that

f2=f(x=8 P.M.)=65°.

4.4 SOME USEFUL OPERATORS, A AND E

In this section we will study some operators that can be used to derive
an especially convenient form for the interpolating polynomial. It must be
emphasized that these operators assume evenly spaced data. That is, we
are considering the data

f0, f1 f2+"" fn` (4.5)

where the x-values x0, x 1.x2, ... , x are uniformly spaced with distance h
between adjacent points.

The difference operator A is defined by the following equation

In this equation s is not necessarily an integer, but in our applications it
usually will be. From (4.6) it can be seen that when 0 operates on a
function we first replace s by s + I and then subtract the original function
from this shifted function. This produces the difference function Afs.

Some Useful Operators, A and E 75

Higher-order difference operators are defined analogously to the 0-oper-
ator. For example

&fs=O(AA)=A(fS 1-4)
=4fs+I -AIS

=(Is+2-fs+1)-(4+I -fr)
Combining terms yields

o2f,=Is+2-2fs+1+fs. (4.7)

Similarly, by extending this process it can be shown that the third-order
and fourth-order difference functions are given by

o3f5 =Js+3-3Is+2+3I,+. -Is, (4.8)

(4.9)

EXAMPLE 4.2

For the function values A = 2, f, = 3, f2 = 3, f3 =1 we will calculate A3f0
two different ways to illustrate the above formulas.

(a) 03f0 = &2f, - 0'I0 From (4.7), &f1 =f3 - 212 + f, 2. Similarly A%fo =f2
- 2f, +f0= - 1, so that &fo= - 1.

(b) From (4.8), 03Io=I3-3f2+3f,-fo= - 1.

The coefficients in (4.6) to (4.9) are the same as would be encountered if
we expanded the binomial (a - b)" where, for example, n = 4 for (4.9). We
can easily prove that they are the binomial coefficients by introducing the
shift operator E defined by

Ef=s,,- (4.10)

Just as we were able to define higher-order difference operators, so can
we also define higher-order shift operators. For example, E2Is= E(Efs)
EUS+i)=f5+2 Generalizing,

E'IS=Is+i. (4.11)

The difference operator can be expressed in terms of the shift operator:

oIS=IsI -Is=EIt-I, (4.12)

This suggests that we write

A= E- 1. (4.13)

In interpreting this expression we would keep in mind that 0 and E are

76 Interpolation

operators: they cannot really stand alone, but must operate on a function
such as f,..

The relation in (4.13) is very useful because it allows us to easily evaluate
higher-order difference functions such as A'fs. It follows from (4.13) that

A'=(E-1)3= E3-3E2+3E-1,
so that

A3f, =E3fs-3E2f+3Ef,-fs

=fs+3-3f+2+3fs+1 -fs,
which is the same as (4.8).

This process is easily generalized, as is demonstrated next for the special
case of s equal to zero:'

r(r- 1) r(r- 1)(r-2)A'=(E-1)'=E'-rE' i + 2 E'-z
3!

E' 3+...

so that

r(r- 1) r(r- 1)(r-2)
A'fo=f'-'rfr+ 2 fr-2- 3!

f,-3+.... (4.14)

The process indicated continues until the last function is fo.
The expression in (4.14) verifies the observation made earlier that the

coefficients of the various functions are the binomial coefficients. As an
application of (4.14), consider the case when r=4:

D4fo =f4 - 4f3 + 6fz - 4.f1 + fo.

This equation agrees with (4.9).
After we study difference tables in the next section, we will develop a

program that can find an interpolating polynomial. Part of the program
will have to calcuate difference functions. Anticipating this need, we will
conclude this section on difference functions by putting (4.14) in a form
that is suitable for a computer program. The form we will choose is

r0fo _ af,-
i=o

where

ao= 1,

(4.15)

a,=-aIr+1-i

(4.16)

'The expression for A'f, can be obtained from (4.14) by simply increasing each subscript by
s.

Difference Tables 77

4.5 DIFFERENCE TABLES

Assume that an experiment has been done and measurements were
recorded at many different points. If one then wants to estimate what
would have been measured at an additional point, this can be done by
interpolation. In the next section we will learn how to construct a poly-
nomial that goes through all data pairs. This polynomial could then be
used to interpolate at any other point.

The above process may appear to require an unreasonable amount of
work, but this is not true. We will be able to use very high-order interpolat-
ing polynomials, because we will develop a program that will delegate the
work to a computer. However, we may wish to avoid high-order interpolat-
ing polynomials for a reason other than excessive computations.2

Very often an understanding of the mathematical relations that describe
an experiment can let the experimenter know that a certain degree equa-
tion should exactly describe his results. For example, if a car undergoes
constant acceleration, then the distance (as a function of time) should be
described by a second-degree equation. In this case a second-degree
function should be used as an interpolating polynomial.

If in a particular problem one has not obtained any insight into what
degree polynomial may describe the situation, the knowledge about the
difference functions may help. It is shown in Chapter 5 that the nth-order
difference function is related to the nth-order derivative. It thus follows
that if a process can be represented by an nth-degree function, then the
(n + 1)th-order difference function should be zero.

A difference table provides a convenient means for examining the
various difference functions. An illustration is given in Table 4.1. In order
to construct a difference table one must first know the value of the
function at the various data points. Thus in order to construct Table 4.1
the values of f (1), f (1.5), ...,f(3-5) were used.

Table 4.1
A difference table

x f Af A2f A3f A°f

1.0 3.0 5.5 4.0 1.5 0
1.5 8.5 9.5 5.5 1.5 0
2.0 18.0 15.0 7,0 1.5

2.5 33.0 22.0 8.5
3.0 55.0 30.5
3.5 85.5

2See Section 4.12.

78 Interpolation

The values for the column labeled Af were found by applying the
formula Of, =f3+ 1-f,. Similarly, the entries in the A2f column were found
by applying A2f, = 4f,+, - Of,. Of course, the general formula (4.14) could
be used to find any particular difference function, but a difference table
lets one see at a glance how a particular function behaves.

An examination of Table 4.1 indicates that all the third-order difference
functions are constant and thus the fourth-order difference functions are
zero. We can conclude that this particular function is third-order, and we
should be able to find the value of the function at any point by construct-
ing a third-order interpolating polynomial.

In most problems the proper degree for the interpolating polynomial will
not be as obvious as for the hypothetical case in Table 4.1. Usually there
will be some experimental error in the data, and thus the difference
functions will also contain errors. However, examining a difference table
can help one detect such errors. If a particular datum is thought to be
incorrect, a different value can be assumed and then one can observe how
this change propagates throughout the difference table.

4.6 THE NEWTON-GREGORY POLYNOMIAL

In this section we will derive a formula for an nth-degree polynomial
that exactly matches n + I equally spaced data. These data will be written
as

f0, fl, f2 fn -
(4.17)

Once we have this interpolating polynomial, we will be able to calculate
f (x) at any value of x.

The Newton-Gregory polynomial may be obtained by utilizing two
simple relations from the previous material about the operators 0 and E.
First, it follows from (4.11) that

f==ESfo.

Second, it follows from (4.13) that

E=I+A.
Combining these relations yields f, = (I +A)3fo; thus it follows that

s(s-1) s(s-1)(s-2)
f: 2 A fo+

3!
A3fo+

(4.18)

(4.19)

(4.20)

The process continues until the last term "fo is reached. The coefficient of
this term will contain s"; thus f, will be nth-degree as desired.

The Newton-Gregory Polynomial 79

EXAMPLE 4.3

Use a second-degree polynomial to interpolate the following data:

f(- 1)=2, f(l)=6, f(3)=34.
In particular, find f(0).

SOLUTION

For a second-degree polynomial (4.20) becomes

s(s-1)
fs=fo+sLfo+ 2 OZf0.

For this problem

fo=2, Nf0=6-2=4,

A%=34-2(6)+2=24,
so that

f, =2+4s+ 12s(s-1)=12s2-8s+2.
The point x = 0 corresponds to s = [0 - (- 1)]/2 = 0.5. Substituting s = 0.5
into f, yields fo.5 = 1.

In the above example the second-degree interpolating polynomial was
expressed as f, =12s2 - 8s + 2. It will usually be sufficient to express the
polynomial in terms of s, but if necessary it can be written in terms of x by
substituting s = (x - xo)/ h. For this problem xo= - I and h = 2, so that the
function becomes f(x)=3x2+2x+ 1. Note that f(0)=1, which agrees with
the result from Example 4.3, f0 5 = 1.

It is relatively easy to develop a program that uses a Newton-Gregory
polynomial to interpolate data. For this purpose, (4.20) will be rewritten
as3

(4.21)

where

b0=I. (4.22)

b,=b,_is+l-r r=1,2,...,n.
r

A program for Newton-Gregory interpolation is shown in Fig. 4.1. First,
a few words should be said about the comment "subscript translation". An

3Note the similarity to (4.15) and (4.16).

80 Interpolation

01C NEWTON-GREGORY INTERPOLATION
02 PROGRAM NG(INPUT,OUTPUT)
06 DIMENSION DEL(50),FT(50)
08 INTEGER R
10C
11C SUBSCRIPT TRANSLATION: FT(I+1)=F(I)
12C
15 PRINT,*N,X0,H*
16 READ,N,X0,H
17 PRINT,/,*FO,F1,F2,...FN*
18 N1=N+1
19 READ,(FT(I),I=1,N1)
20C
21C CALCULATE DEL(R) (EQS. 4.15,4.16)
22 DO 32 R=1,N
24 A=1.
26 DEL(R)=FT(R+1)
28 DO 32 I=1,R
30 A=-A*(R+1-1)/I
32 32 DEL(R)=DEL(R)+A*FT(R-1+1)
34C
35 35 PRINT,/,*X*, $READ,X
37 S=(X-X0)/H
39C
40C CALCULATE F(X) (EQS. 4.21,4.22)
44 B=1. $FX=FT(1)
46 DO 50 R=1,N
48 B=B* (S+1-R) /R
50 50 FX=FX+B*DEL(R)
52C
54 PRINT,*F(X)*,FX
56 GO TO 3 5
999 END

FIGURE 4.1. A program for Newton-Gregory interpolation.

unfortunate fact about FORTRAN is that it does not allow for a subscript to
be zero. That is, F(0) is not an allowable representation for fo. In this
program this deficiency of FORTRAN was overcome by translating all
subscripts by one; for example, FT(1)=fo or similarly FT(2)=fl. Similar
substitutions will be made in some of the other programs in this text.

In the Newton-Gregory program, the difference functions Orf0 are
identified as DEL(R) and are calculated as described in Eqs. (4.15), (4.16).
An important observation should be made: the calculations of the various
difference functions do not need a value for x (the point at which we wish

The Newton-Gregory Polynomial 81

N,X0,H
? 9,0,10

F0,F1,F2,...FN
? 0.0000 .1736 .3420 .5000 .6428
? .7660 .8660 .9397 .9848 1.0000

X ? -10
F(X) -.16490E+00

X ? 45
F(X) .70709E+00

X ? 100
F(X) .97800E+00

FIGURE 4.2. Interpolation by using a ninth-degree Newton-Gregory polynomial to
approximate the sine function.

to interpolate). That is, the difference functions are evaluated before a
value of x is input into the computer. Because the difference functions do
not have to be evaluated for every new x, the interpolation process in Fig.
4.1 is fast. Notice that the calculations are done in terms of the normalized
variables and not in terms of the input variable.

An application of the Newton-Gregory program is shown in Fig. 4.2.
The data shown there represent the function

f(x)=sinx
evaluated at x = 0°, 10°, 20*,..., 90°. The program thus matched a ninth-
degree polynomial to these ten data pairs. Once it had calculated the nine
different difference functions, it was then able to interpolate for any
desired value of x. The interpolated values that are shown in Fig. 4.2 are

sin(-10°)= -0.1649, sin45°=0.7071, sin100°=0.9780.

The value for sin45° is more accurate than either of the others because 45°
was in the middle of the interpolation range, while -10° and 100° were
both beyond the interpolation range-they required extrapolation. In
general, a result produced by interpolation will be much more accurate
than one produced by extrapolation.

The Newton-Gregory polynomial is very similar to a Taylor series
expansion. The similarity can be emphasized by rewriting (4.21) as

A70
(4.23)

r.
r-0

82 Interpolation

where

s(0)= I,

S(r)=s(s - l)(s-2)... (s- r+ l). (4.24)

The polynomial in (4.23) was derived for discrete function values:
f0 f,, ... ,f,,. If we were instead given a continuous function, we could
expand f(x) in the Taylor series

00 r r

AX) df (x-x0)r. (4.25)
r=0

Comparing (4.23) and (4.25), we see that the Newton-Gregory polynomial
is to discrete functions as the Taylor series is to continuous functions.

4.7 THE LAGRANGE POLYNOMIAL

The Newton-Gregory polynomial is an interpolating polynomial that
can be used for evenly spaced data; however, sometimes data will not be
evenly spaced. In fact, in the very next section we will discuss inverse
interpolation which does not have evenly spaced values. Also, when we
study boundary-value differential equations we will need to interpolate
data that are not evenly spaced.

The Lagrange polynomial is an interpolating polynomial that can be
used for unevenly spaced data, and, of course, for evenly spaced data as a
special case. Since there is a unique nth-degree interpolating polynomial,
the Newton-Gregory polynomial and the Lagrange polynomial must give
the same interpolation results for evenly spaced data. However, the New-
ton-Gregory polynomial is easier to evaluate, so it should be used if the
points are evenly spaced.

Lagrange interpolation expresses the polynomial f(x) as
n

f(x)= I Pi(x).f;,
i=o

where the polynomials P, (x) have the following properties:

(a) P1(x) is an nth-degree polynomial.
(b) Pi(xi)=1.
(c) Pi(xk)=0 for ilk.

(4.26)

For example, if we want to match a second-degree polynomial to three

The Lagrange Polynomial 83

data, then (4.26) becomes

f(x)= Po(x)fo+ P,(x)fi+P2(x)f2, (4.27)

where the polynomials Po(x), P,(x), and P2(x) are all second degree. Also,
from property (b) we have

Po(xo) = PI (x,) = P2(x2) = 1

and from (c) we have

Po(x))= Po(x2)= Pi (xo)= Pi (x2)= P2(xo)=
Because of these properties of Pi(x) it follows that f(xk)=fk for k=0,1,2.
That is, the second-degree polynomial in (4.27) matches the three points
xo, x x2 and is thus another way the unique interpolating polynomial can
be written.

Generalizing the results from the above discussion, the interpolating
polynomial can be expressed as in (4.26)-provided we can find functions
P; (x) that have properties (a), (b), (c). Polynomials that have these proper-
ties are

P,(x)=
x; - x;

(4.28)

iao
jot

where the - symbol indicates that the product of terms should be formed.
For example, for n = 2

x-x, x-x2
P°(X) xo-x, xo-x2

x-xo x-x2
x,-xo x,-x2'
x-xo x-x,

P2 (x) X2-xo x2-x,

The Lagrange polynomial is obtained by substituting (4.28) into (4.26),
which yields

n
X--X'f(.Y)= H fI .

i=0 io X` --J
(4.29)

=i-
In order to illustrate the meaning of this notation we will consider first the
case n = 2 and then the case n = 3. For n = 2,

x-x, x-x2 Y-xo x-x2 x-.xo x-x,
AX) X _X x x f0+ x x x x f'+ x x x x f2. (4.30)

O 1 o- z i- o i- 2 2- o z- 1

84 Interpolation

Similarly for n = 3,
X-x1 X_ 1C2 x-x3 _'C-x0 x-X2 x-x3AX) -
X0-X1 x0-X2 XO-x3

f0+

X1-x0 X1-X2 X1-x3 fl
x-XD X--X1 X--X3 fX-X0 X-X1 X-X2

f3 (4.3 1)
+ .x2 - x0 X2 - X 1 X2-X3

2 +
x3-x0 x3-x1 X3-X2

EXAMPLE 4.4

Example 4.3 found the second-degree Newton-Gregory polynomial that
passes through the following data: f(- 1)=2, f(l)=6, and f(3)=34. The
problem then continued and interpolated to find f(0). In this problem we
will use the second-degree Lagrange polynomial to interpolate for f(0).

Applying (4.30) for the data in this problem,

f(X)= x-1 x-3 2+x+1 x-36+x+1 x-134
-1-I -1-3 1+1 1 -3 3+1 3-1

=3x2+2x+ 1.

O1C LAGRANGE INTERPOLATION
02 PROGRAM L(INPUT,OUTPUT)
06 DIMENSION XT(50),FT(50)
10C
11C SUBSCRIPT TRANSLATION
12C FT(I+1)=FT(I) XT(I+1)=XT(I)
13C
15 PRINT,*N*, $READ,N
18 N1=N+1
20 PRINT,* X(I) F(I)*
22 READ,(XT(I),FT(I),I=1,N1)
34C
35 35 PRINT,/,*X*, $READ,X
39C
40C CALCULATE F(X) (EQ. 4.29)
41 FX=O.
43 DO 55 I=1,N1
44 P=1.
46 DO 50 J=1,N1
50 50 IF(J.NE.I) P=P*(X-XT(J))/(XT(I)-XT(J))
55 55 FX=FX+P*FT(I)
60C
64 PRINT,*FX*,FX
66 GO TO 35
999 END

FIGURE 4.3. A program for Lagrange interpolation.

Inverse Interpolation 85

This polynomial can be evaluated at any value of x; in particular, f(0)=1,
which agrees with the answer in Example 4.3.

A program for Lagrange interpolation is given in Fig. 4.3. In this
program the letter P represents the polynomials P,(x) that are described in
(4.28). These polynomials are multiplied by the functions f and then added
together to form the summation in (4.26). An illustration of the use of this
program is given in the next section.

4.8 INVERSE INTERPOLATION

The following data are plotted in Fig. 4.4:

f(0.2)=0.45, f(0.4)=0.5, f(0.6)=0.6, f(0.8)=0.75, f(l)=1.

The function y =f(x) is a single-valued function of x. That is, for any
value of _x there is only one value of y; thus we can interpolate and for any
x find Y. For example, using the Newton-Gregory program to fit a
fourth-degree polynomial to the data and then interpolating for the func-
tion at x = 0.5 yields y (0.5) = 0.54.

For the above function we can also consider x to be a single-valued
function of y. That is, for any value of y there is only one value of x; thus
we can interpolate and for any .v find x. This process of finding what x
produced y - f (x) is called inverse interpolation.

Y = f(x)

1

0.8

0.6

0.4

0.2

L- '_. , I

0 0.2 0.4 0.6 0.8 1

X

FIGURE 4.4. For these data, y can be considered to be a single-valued function of
x or vice versa.

86 Interpolation

The interpolation problem can be stated as: given the points X.,x1,...,x,,
and the function values (0,f1,...,J at these points, estimate the value of the
function at the point x. The points x0,x1....,x,, are usually chosen to be
equally spaced so as to simplify the calculations.

The inverse interpolation problem can be stated as: given the function
values f0, f ... ,f at the points x0, x 1, ... , x,,. estimate the location of the
point x at which the function has a certain value f.

Notice that the inverse interpolation problem is just like the interpola-
tion problem--except the roles of the points x0.x1....,x,, and the function
values f0,J1,...,f have been interchanged. If one is doing an experiment, or
using a table of data, one usually does not have total control over the
function values; thus for inverse interpolation the function values will
probably not be evenly spaced. For inverse interpolation there is not a
choice between Newton-Gregory interpolation and Lagrange interpola-
tion; Lagrange interpolation must be used because of the unevenly spaced
data.

EXAMPLE 4.5

Figure 4.5 illustrates inverse interpolation for the sine function. The
Lagrange interpolation program of the previous section was used to fit a

N ? 3

X(I) F(I)
? .1736 10
? .3420 20
? .6428 40
? .7660 50

X ? .5
FX 29.92

FIGURE 4.5. Inverse interpolation by using the Lagrange program.

third-degree polynomial to the four data values

0.1736=sin-' 10°, 0.342 = sin '20°,

0.6428 = sin -' 40°, 0.766=sin-150'.

The computer was then asked to determine what angle has a sine equal to
0.5. The output indicates 0.5 =sin -' 29.92°.

4.9 INTRODUCTION TO LEAST-SQUARES DATA FITTING

In the curve fitting we have done so far we have assumed we want to
match the data exactly. However, this may not be the case if the data

Introduction To Least-Squares Data Fitting 87

contain errors. In any practical experiment there will be sources of error
and thus the data will not be totally reliable. In order to compensate for
errors one can take more data than should theoretically be necessary in the
hope that some of the errors will cancel.

Figure 4.6 illustrates a hypothetical situation. The X's represent experi-
mental data, and the curve that goes through all these points represents a
high-order interpolation polynomial. Because it is high-order, it need not
be very smooth. On the other hand, a lower-order interpolating polynomial
may not go through all the experimental points, but it may yield more
realistic results when used for interpolation. Often a plot such as this is
very useful in alerting one to possible trouble.

Suppose from our knowledge of the system we know that an nth-degree
polynomial should describe the experimental results. If the results were
error free we would be content to take n +I measurements, because this
determines a unique nth-degree polynomial. However, we will instead take
m + I measurements (where m > n) to determine the nth-degree poly-
nomial.

In this section we will assume we have taken measurements at m+ I
points xo,x1,x2,...,x,, and recorded the data .,ym. We want to fit
the following nth-degree polynomial to the data:

f(x) a'xi. (4.32)
J-0

The error (difference between the experimental data and the poly-
nomial) at point x, is

ej=.r,-f(-x,), i=0,1,2,..., m. (4.33)

We would like to choose the coefficients a. in (4.32) so as to minimize the
errors at each of the data points. We know it is not possible to make the
error zero at every point, because an nth-degree polynomial cannot exactly

-Low-degree polynomial

High-degree polynomial

FIGURE 4.6. A low-degree polynomial may yield better results.

88 Interpolation

match m + 1 points. Realizing that it is not possible to obtain zero error,
the least-squares error criteria seeks to minimize the sum of the squared
errors. That is, it minimizes4

E = e,2

i=0

m
_ E [y,-(a0+a,xi+a2x +...a,,xi")]2. (4.34)

i=0
Minimization requires that

aE
= 0'

aE =0 aE =0. (4.35)
aa0

,
aa, aa"

This is a set of n+ I equations in terms of the n + I unknowns ao,a,,...,a",
and thus we can solve for these unknown coefficients. The details of this
solution can be obtained by differentiating (4.34):

maE =0= 12[,'i-(ao+a,xi+a2X2+... +ax,n)}(- I)
aa0 i-O

m

=0= 2 2[yi-(ao+a,xi+a2x2+ . +anxi")](-xi) (4.36)
i-O

aE
aa,

aE "'
as

=0= 2[yi-(aO+aixi+a2x2+ +anxi")
i=0

The above set of equations is equivalent to

C00a0 + CO, a, + C02a2 + + COnan = yi,
i-0

m
CloaO+C,,a,+CI2a2+,.. +C,nan= I xyi, (4.37)

i=0

m

where

C"OaO+C"Ia,+Cn2a2+... +Cnna = I xiy1,i-0

Cij I= xk +',
k=0

(4.38)

4The individual errors e; are squared so that negative errors will not be canceled by
positive errors.

Spline Functions 89

EXAMPLE 4.6

In this example we will choose a second-degree function f (x) = ao+ a, x
+a2x2 to minimize the mean-square error E for the following data:

x: 0 0.5 1 1.5 2

y: -2.9 - 1.8 0.2 2.0 5.2

The coefficients ao, a,, and a2 can be obtained by solving (4.37), which
for this example is

5ao+5a, +7.5a2=2.7

5ao+7.5a, + 12.5a2=12.7

7.5ao+ 12.5a, +22.125a2 = 25.05.

This set of linear equations can be solved by applying any of the
techniques described in Chapter 2. For example, the Gauss elimination
program of Fig. 2.1 yields

ao = - 2.889, a, =1.714, a2 =1.143,

so that the second-degree polynomial is

f(x) -2.889+ 1.714x+ 1.143x2.

This section has served as an introduction to least-squares data fitting.
Least-squares data fitting is a practical method of reducing the effects of
experimental errors, but solving the set of equations in (4.37) is not the
most practical means of obtaining the least-squares solution. The
coefficients in (4.37) may differ greatly in size, and thus the set of
equations may be ill conditioned.

In Chapter 10 we will develop a general purpose program that can be
used to minimize error functions. In particular, we will be able to apply the
program to adjust iteratively the polynomial coefficients a0,a,,...,a,, so as
to minimize the mean-square error. This will be a practical means of doing
least-squares data fitting.

4.10 SPLINE FUNCTIONS

It is not always wise to use a high-degree interpolating polynomial to
match a larger number of data values. The previous section described how
data can be fitted by using a least-squares approach. Another possibility is
to use spline functions. The spline function that is most commonly used is
the cubic one, and that will be discussed in this section.

A spline function can be considered to be an analytical French curve. A
French curve is a graphical tool that is used as an aid in drawing curves

90 Interpolation

(plots). If the draftsperson is skilled, the resulting curve will go through the
data points and be smooth-the first derivative will be continuous. A cubic
polynomial can be used to do an even better job, since it has four
parameters that can be selected. The parameters can be selected so that the
curve goes through two adjacent points and also so that the first and
second derivatives are continuous. A cubic polynomial that has these
properties is said to be a cubic spline function; it can be found by using
equations as outlined below.

We will assume that we have taken measurements at x0,x,,x2,...,x,, and
obtained the values f0,f1, 2,..., f,,. For ease of presentation the x-values will
be assumed to be uniformly spaced with distance h between the adjacent
points, but this restriction is not necessary.

The cubic spline function f(x) is a set of third-degree polynomials that
goes through each of the data points and has continuous first and second
derivatives. It can be shown5 that it is given by

(x' - x)3 (x-x.
f(x}= 6h M. 1+ 6h

f-1 hM,-1+(x;-x)(h - 6),

M;+(x-x;-t)(h - h6)
1)3

(4.39)

where x is between x; _, and x;.
M; represents the second derivative of f(.x) evaluated at x;. These

derivatives can be found by solving

M;+4M,+M1+1=hZ(f-,-2f,+f+1), i=l,2,...,n-I. (4.40)

This is a set of n - I linear equations in terms of n + I unknowns
(M0,M,,...,Ma). Two other equations can be obtained by putting con-
straints on the derivatives at the end points. The actual constraints that are
used depend on the problem that is being solved. One approach is to
require that near the end points the curves should be as smooth as
possible, which is accomplished by requiring that the third derivatives be
continuous at x, and x,, ... ,. This yields6

MO-2M, +M2=0

(4.41)

5Liou, M. L. (May 1976), "Spline Fit Made Easy", IEEE Trans. Computers, pp. 522-527.
6Pennington, R. H. (1970), Introductory Computer Methods and Numerical Analysis,

(London: MacMillan).

Fourier Series Applied To Interpolation 91

EXAMPLE 4.7

In this example we will find a third-degree cubic spline function for the
following data:

x: 0 0.5 1 1.5 2

f(x): -2.9 - 1.8 0.2 2.0 5.2

Applying (4.40) and (4.41) yields

Ma+4M,+M2=21.6
M, +4M2+ M3= -4.8
M2 +4M3 + M4= 33.6

Mo-2M1 +M2=0
M2-2M3+M4=0.

Solving these equations by the Gauss elimination program of Chapter 2
yields

M0 = 10.7, M,=3.6, M2=-3.5, M3=5.6, M4 =14.7.

Now that the second derivatives M; are known, (4.39) can be used for
interpolation. For example,

f(0.75)=0.5(f,+f2)-0.015625(M,+M2)= -0.8016.

4.11 FOURIER SERIES APPLIED TO INTERPOLATION

The interpolation methods that have been discussed thus far in this
chapter used polynomials to match data. This section will introduce
another way that is common-the data will be interpolated by using a sum
of sine and cosine functions which is termed a Fourier series. it will be
shown later in this section that sines and cosines have a special property
called orthogonality. There are many other orthogonal functions that are
used in numerical analysis (e.g. Legendre polynomials), but they will not
be discussed here.

This book will not discuss many of the general theorems that have been
developed about the Fourier series, as that is too specialized for an
introductory text such as this. However, it is worth mentioning that the
Fourier theory is well developed and can provide powerful tools for
numerical analysis. Not only is there the Fourier series of sine and cosine
functions; there is also a Fourier series of complex exponentials. Further-
more, there is the Fourier transformation, which has found many applica-
tions, especially since the introduction of the fast Fourier transformation
(Brigham 1974).

92 Interpolation

In order to keep the material that follows to a reasonable length, phrases
such as "it can be shown that" will be resorted to. Asking the reader to
take some results on faith or to derive the results will allow more time for
the applicaton of Fourier series to numerical methods.

If f(x) is a periodic function,' then it can be expressed in terms of a
Fourier series. An example of a periodic function is shown in Fig. 4.7. The

f(}x)

-5P/4 - 3P/4 -P/4 P/4 3P/4

FIGURE 4.7. A square wave of unit amplitude and period P.

5P/4_ x

function shown in that figure has a period of length P; that is,

f(x)=f(x+P)=f(x+2P)= . (4.42)

While most functions that we want to interpolate will not be periodic, they
can usually be "truncated" and then treated as periodic. More will be said
about this later.

If a function f(x) is periodic with period P, then it can be shown that it
can be expressed by the Fourier series

00

00

f(x)=2°+A;cos2Px+B;sin2Px. (4.43)

Theoretically, the above summation requires an infinite number of terms;
practically, the coefficients A, and B; usually become so small as i increases
that eventually they can be ignored.

The coefficients A. can be found by multiplying both sides of (4.43) by

'It must also satisfy some rather nonrestrictive requirements known as the Dirichlet
conditions.

Fourier Series Applied To interpolation

cos(2irkx/P) and then integrating over the period. That is,8

x dxf pf(x)cos 2 px dx= T
f Pcos 2P

00
P 2wix 2irkx+ E A; f cos P cos P dx

i_i o

93

00 P 2irix 2akx
+ E Bi f sin P cos P dx. (4.44)

oi=l

This was done because the sine and cosine functions have a special
property: it can be shown that

p 21rix 2lrkx P i= k= 0
f cos P cos P dx= 0.5P i= k0

0 0 ilk

fP 2'7rix 27rix
sin P cos P dx = 0.

(4.45)

Functions that satisfy relations such as those in (4.45) are said to be
orthogonal. Other functions besides sines and cosines are orthogonal and
find applications in numerical methods.

It follows from (4.44) and (4.45) that
P

A. = P f f(x) cos 2 px dx, i =0,1,2,.... (4.46)
0

Similarly, it can be shown that

Bi= P r
Pf(x)sin2Pxdx,

i=1,2,... (4.47)
0

These equations indicate how to find the Fourier coefficients (A4,B1) for
continuous f(x). In order to apply the Fourier series to interpolation it is
necessary to replace the continuous function f(x) by a discrete function,
since there can only be a finite number of data. As was assumed for
Newton-Gregory interpolation, it will again be assumed that there are n + I
equally spaced data points xo, x,, xz, x,,, which have function values
fo,ft,fr ... ,f .

sThe fact that the integral starts at x=0 implies that the origin is the reference point.
Eventually we will let an arbitrary point x0 be the reference.

94 Interpolation

If "discrete Fourier coefficients" A,,B, are chosen properly, then the
function values fk can be expressed in the following form which is very
similar to (4.43):

AO
M-1

27Tixk
m 1

21rixk A21rmxk
fk = 2 + Ai cos + E B, sin + 2 cos

P
. (4.48)

r-I j-1

This is a form adopted from Hamming (1973). An important point is that
there should be as many unknown coefficients (A,, B;) as there are data
(fk). That is, 1 +2(m - 1) + I = n+ 1, which implies

m=(n+1)/2.
The above discussion implies that for m to be an integer, n must be odd.

Furthermore, the data must represent a periodic function, since it is to be
approximated by a Fourier series. The case n = 5 is illustrated in Fig. 4.8.
The period P for this case is 6h, where h is the spacing between points. In
general, the period is P = (n + 1)h. Although f(x) is shown as restricted to
the interval P in Fig. 4.8, the representation by a discrete Fourier series
will make it repeat periodically outside of this interval.

If n is even, then we could ignore the last function value and thus cause
n to become odd. That is, the substitution n -1- n changes an even
number to an odd number. However, instead of simply discarding the last
function value it is better to first make the substitution (fO+f")/2-->fO,
which replaces the initial function value by the average of the first and last
values.

f(x)

nh

h

FIGURE 4.8. Representation of a function by discrete data points.

Fourler Series Applied To Interpolation 95

01C FOURIER INTERPOLATION
02 PROGRAM FI(INPUT,OUTPUT)
03 03 FORMAT(1P,E14.5)
06 DIMENSION AT(50),BT(50),FT(50)
10C
11C SUBSCRIPT TRANSLATION
12C AT(I+1)=A(I) BT(I+1)=B(I) FT(I+1)=F(I)
13C
15 PRINT,*N,X0,H*
16 READ,N,X0,H
17 PRINT,/,*F0,F1,F2.... FN*
18 N1=N+1
19 READ,(FT(I),I=1,N1)
20C
21C REDEFINE TERMS IF N EVEN
22 M=(N+1)/2
23 M1=M+1
24 IF(2*M.EQ.N+1) GO TO 32
28 FT(1)=.5*(FT(1)+FT(N1))
29 N=N-1 $N1=N1-1
30C
31C CALULATE A(I),B(I) (EQ. 11.8)
32 32 DO 44 I=1,M1
34 AT(I)=BT(I)=0.
36 Z=6.283185308*(I-1)/N1
38 DO 41 K=1,N1
40 AT(I)=AT(I)+FT(K)*COS(K*Z-Z)
41 41 BT(I)=BT(I)+FT(K)*SIN(K*Z-Z)
43 AT(I)=2.*AT(I)/N1
44 44 BT(I)=2.*BT(I)/N1
46C
47 47 PRINT,/,*X*, $READ,X
49C
50C CALCULATE F(X) (EQ. 11.7)
52 FX=.5*AT(1)
54 Z=6.283185308*(X-X0)/(N1*H)
56 DO 57 I=2,M
57 57 FX=FX+AT(I)*COS(I*Z-Z)+BT(I)*SIN(I*Z-7,)
59 FX=FX+.5*AT(M1)*COS(M*Z)
64C
66 PRINT,*F(X)*, $PRINT 3,FX
68 GO TO 47
999 END

FIGURE 4.9. A program for Fourier interpolation.

96

The discrete Fourier coefficients in (4.48) can be found by analogy to
the derivation of the continuous Fourier series. The result is

n

A; n2 1 fkcos2"k i0,1,2,...,
k=0

n

B;= Z fksin2"k i=1,2,..., (4.49)n+1 n+1'
k-0

which is very similar to (4.46) and (4.47). In (4.49) it is assumed that
xk = kh/ P; that is, x0 is located at the origin. This is analogous to the zero
lower limit of integration in (4.46).

A program for the calculation of the discrete Fourier series is given in
Fig. 4.9. This program does not restrict the reference point x0 to be located
at the origin. The origin is shifted by using x - x° instead of x in the
right-hand side of (4.48).

An application of the Fourier interpolation program is given in Fig. 4.10.
The data in that figure represent the function f(x)=ex evaluated at
x = 0.6,0.7,0.8,0.9, 1.0. Since there are an odd number of points, the initial
value was automatically changed by the computer to (e°.6+et)/2=2.2702.

This explains why f (O.6) = 2.2702 and f (l) = 2.2702 was found by the

N,X0,H
? 4,.6,.1

F0,F1,F2,...FN
? 1.8221 2.0138 2.2255 2.4596 2.7183

X ? .6
F(X) 2.27020E+00

X ? .7
F(X) 2.01380E+00

X ? .75
F(X) 2.06886E+00

X ? 1

F(X) 2.27020E+00

X ? 1.1
F(X) 2.01380E+00

FIGURE 4.10. An application of the Fourier interpolation program.

Suggested Reading In Related Topics 97

computer. The fact that the discrete Fourier series matches the data
exactly is demonstrated by f (O.7) = 2.0138. An application of the program
to interpolation is illustrated by f (O.75) = 2.06886. This is quite close to the
value a°-75 = 2.117. The fact that the evaluation is periodic is illustrated by
f (l .1) = 2.0138 = f (0.7). It should be noted that this value is not close to
e'' =3.004. This demonstrates that the Fourier interpolation program
should be used only to interpolate-because of the periodicity property it
should not be used for extrapolation.

4.12 SUGGESTED READING IN RELATED TOPICS

It should be emphasized that there is a unique nth-degree polynomial
that exactly matches it + I data values. However, there is not a unique way
of writing this polynomial. Some forms of the. interpolating polynomial are
easier to evaluate than others. For example, in this chapter we studied the
Newton-Gregory polynomial and the Lagrange polynomial. Either repre-
sentation of the interpolating polynomial can be used for evenly spaced
data.9

The Newton-Gregory polynomial will be used in future chapters to help
derive numerical integration and differentiation formulas. This material
will later be extended to aid in the numerical solution of differential
equations. In these applications we will be able to formulate the problem
so that the data are evenly spaced; however, this is not always possible, so
in some cases we are not able to apply the Newton-Gregory formula. For
example, inverse interpolation requires a formula (such as Lagrange's) that
is valid for unevenly spaced data.

In addition to the Newton-Gregory polynomial there are numerous
other representations of the interpolating polynomial that have been used
to interpolate evenly spaced data. In fact, the polynomial given in (4.20) is
often called the Newton-Gregory forward polynomial, because there is also
a Newton-Gregory backward polynomial. The forward polynomial is for-
mulated in terms of the function value at an initial point x0. The other data
are used by proceeding forward from x0 and calculating the various
forward difference functions. The forward difference operator was defined
by Of,=f,+i-f,. There is also a backward difference operator which is
defined by V f, = f, - f, _ ,. The Newton-Gregory backward polynomial is
formulated in terms of the last function value f,,. The other data are used
by proceeding backward from x and calculating various backward dif-
ference functions.

One is not restricted to proceeding just in a forward direction or just in a
backward direction; there are numerous "zigzag" paths that are possible. A

9The Lagrange polynomial can also be used for unevenly spaced data.

98 Interpolation

Lorenge diagram can be used to picture these different possibilities, some
of which have been named after Bessel, Stirling, etc. See Hildebrand (1974)
for a discussion of these forms and many others.

An nth-degree interpolating polynomial can exactly match n+ I data
points, but that of course does not mean there will be no interpolation
errors. For example, in Section 4.6 a ninth-degree polynomial was matched
to the sine function at ten points, but the interpolated value of sin(- 10°)
was -0.1649 instead of the actual value of -0.1736.

There is a formula that can be used to predict the value of the
interpolation error; however, as we shall shortly see, it is usually not very
informative. Carnahan (1969) demonstrates that the error is given by

E(x)` p"+i>(
[J (z-x,), (4.50)

(n+

1)!

! ;-o

where f is the (n + l)st derivative evaluated at the point rt for 71
somewhere between the initial point x0 and the final point x". There are
two difficulties in using (4.50). First, the function f(x) is not known (this is
why we are interpolating), and thus the (n+ l)th derivative certainly is not
known. Second, the location of the point 71 is not known except that it is
between x0 and x,,.

While an exact error estimate cannot be obtained from (4.50), it can still
provide some useful information. First we can note that the error can be
minimized by minimizing II7,,o(x - x,). This fact has been applied to show
that choosing the data locations .x, not to be evenly spaced, but instead to
be located according to a Chebyshev criterion, will lead to smaller errors
(Householder 1953).

An even more important observation has been made regarding the error
formula (4.50). For many functions, the magnitude of the derivative
increases as the order of the derivative increases (Hamming 1973). Thus
(4.50) implies that increasing the degree n of the interpolating polynomial
will not necessarily result in a smaller error; it may actually increase it.

If we know (from physical reasoning, from examining a difference table,
etc.) that an nth-degree polynomial should describe a particular situation,
we will not improve accuracy by fitting a higher-degree polynomial to
more data. However, as described in Section 4.9, the least-squares method
can be applied to reduce errors. Also, as discussed in Chapter 10, this
approach can be generalized, leading to the least-pth optimization tech-
nique. In fact, the least-pth technique is very closely related to the
Chebyshev theory of Section 10.6.

It is not always wise to use a high-degree interpolating polynomial to
match a large number of data. One solution is to use cubic spline functions
to connect the points. These functions were briefly introduced in this

Suggested Reading In Related Topics 99

chapter, but books have been dedicated to them. An example was solved
by using the Gauss elimination method to obtain the second-derivative
coefficients. There exist methods of finding these coefficients that are
much more efficient and accurate (Liou, 1976, note 5).

This chapter on interpolation was concluded by illustrating how the
Fourier series can be applied to interpolation. This is an alternative
solution which can be used instead of approximating the data with poly-
nomials. The Fourier approach is well developed and has been applied to
other facets of numerical methods-but that will not be done in this text.
The interested reader is referred to Hamming (1973).

It is interesting to note that the polynomial approach to least-squares
data fitting that was used in Section 4.9 can be related to the Fourier-series
approach of Section 4.11. In Section 4.9 the coefficients aj of the sum

j_OajxJ were picked so as to minimize the mean-square error. In Section
4.11 we used coefficients of sine or cosine functions instead of coefficients
of a power series. This can be generalized so that the coefficients aj of the
sum E"_0ajgj(x) are picked to minimize mean square error. Thus, e.g., in
Section 4.9 we studied the special case g,(x) = x'. For this special case we
demonstrated that the a1 were solutions to

c10a0 + ci I a 1 + ... + cin a,, xkyk, I = 0, 1, n,
k=0

where For the more general case it can be shown (Conte
and de Boor 1972) that the as are solutions to

in

ci0a0+C,1a1 + ... +c,,,a.= E g,(X*)Yk,
k=0

where c,J=Xk_Ogi(xk)g,(xk). It can also be shown that solving the above
equations is equivalent to solving the following matrix equation:

raoI
a,

where

A=

La,, J

=(A7A)-'A

YO

y1

Y.

g0(x0) g I (x0)
... gn (x0)

g0(x1) g1(x1) ... gn(X.)

[g0(xm) g1(xm) ... g"(X'.

PROBLEMS

4.1 If xo= -2 and h=4, what is xs?
4.2 Given that xo = 0 and h = l .5, find the x that corresponds to s = - 2.2.
4.3 Using the fact that AzJ =fs+z - 2fs+ i + fS, derive the expression for

03fs.

4.4 Negative step sizes are also possible. As an illustration, assume x, =4
and h = - 2. Find x3.

4.5 If OZf0 2, o2f, =4, Ozfz=5, and i2f3=1,
(a) What is d3f,?
(b) What is t4f,?

4.6 For fo = 2, f, =3, f2=3, f3 =1, f4 = - 5,
(a) What is E 2f,?

(b) What is &3f,?

4.7 Apply (4.14) to find an expression for A5fo. What is i fs?
4.8 Construct a difference table for f(x)=2x2-3x+4. Use xo= -1,

x, = -0.5,..., x4= I.
4.9 Find a new difference table for Problem 4.8 if the function at x, is

incorrectly calculated as f, - 5.
4.10 Apply (4.8) to the data in Table 4.1 to verify that the value of 03f is

equal to 1.5 at x = 1.5.
4.11 For the case n = 3, use (4.20) to determine the coefficients ao, a,, a2, a3

in the following equation:

J .=a0+a,s+a2s2+a3s3
4.12 If f, =2s3+s+ 15, then the function can also be expressed as f(x)=

a3x3+a2x2+a,x+ao. Find these coefficients if x0=2 and h=1.
4.13 The Newton-Gregory polynomial is supposed to be exact at the given

data pairs. For the case n = 7, verify that (4.20) gives the exact answer
at s = 3. That is, evaluate the right side of (4.20) at s = 3 and show that
itisf3.

4.14 If f(x)=4x2+2x-I passes through evenly spaced data that have
xo = 3 and h = 2, then the function can also be expressed as fc = a2s2 +
a,s+ao. Find these coefficients.

4.15 At I P.M., 2 P.M., and 3 P.M. the temperature was measured as 60°,
70°, and 65°. Use a second-degree polynomial to estimate the temper-
ature at 2:30 P.M.

100

Problems 101

4.16 Use the Newton-Gregory polynomial to find a second-degree func-
tion that fits the following data:

(1,1), (2, 2), (3, 3).

4.17 Data were taken at xo = 1, x, = 3, and x2 = 5, and the following
interpolating polynomial was obtained:

f, = 8s2+4s + 1.

The polynomial can instead be expressed as

f(x)=A2x2+A,x+A0.
Find AQ,A,,A2.

4.18 Assume that an object accelerates at a constant rate, so that its
location r can be expressed as a second-degree equation in terms of
the time. If r(l)=6, r(3)=34, and r(5)=86, use a Newton-Gregory
polynomial to discover what r(2) was.

4.19 Use the Newton-Gregory program to pass a fourth-degree polynomial
through the values f(1)=2, f(3)=3, f(5)=3, f(7)=2, and f(9) = -4.
Interpolate for the following data: f(0), f(2), f(4), f(6), f(8), and f(10).

4.20 Use the Newton-Gregory program to pass a fourth-degree polynomial
through the values f(-1)=4, f(1)=2, f(3) = 3, f(5) = 3, and f(7) = 2.
Interpolate for the same data as in Problem 4.19 and then compare
the answers.

4.21 Use the Newton-Gregory program to pass a fifth-degree polynomial
through the values f(-1)=4, f(l)=2, f(3)=3, f(5)=3, f(7)=2, and
f(9) = -4. Interpolate for the same data as in Problem 4.19 and then
compare the answers.

4.22 The functions(') that was defined in (4.24) is called the factorial
function. Discover the reason for this name by evaluating r4').

4.23 Show that Os(") = ns("- '). This relation explains why the notation s®'®
was used for the formula in (4.24): because it behaves similarly to x'
which has (d/dx)x'=rx'-'.

4.24 Use a Lagrange polynomial to interpolate the following data for f(2):

f(- 1)= -3, f(0)= 1, f(1)=7.

4.25 Solve Problem 4.15 again, this time using a Lagrange polynomial.
4.26 The number of cans of beer sold at the Pines Speedway may be

expressed as a polynomial in the temperature. Three weeks ago the
temperature was 60° and 156 cans of beer were sold. Two weeks ago
it was 50° and only 135 cans were sold; however, last week it was 80°

102 Interpolation

and 204 cans were sold. If it is 700 this week, estimate how many cans
of beer will be sold at the Pines Speedway.

4.27 Use the Lagrange-interpolation program to verify the answer in
Problem 4.26.

4.28 Apply the Lagrange-interpolation program to the following data to
determine what angle has a tangent equal to unity:

0.1763=tan-' 10°, 0.364=tan-'20°, 0.5774=tan-'30°,
0.8391 =tan ' 40°, 1.1918 = tan - '50°, 1.7321= tan -' 60°.

4.29 Inverse interpolation can be used to approximate roots of equations.
This is done by finding what value of x makes the function f(x) equal
to zero. As an example, consider the function f(x)=x3+4.4x2+6.2x
+ 2.8, which was previously analyzed by Newton's method in Prob-
lem 3.2. This time apply the Lagrange-interpolation program to 1(1.3),
f (1.35), f (l.45), and f (I.5) to approximate the root.

4.30 Example 4.6 matched some data with the polynomial f(x) =1.143x2 +
1.714x - 2.889. Find the mean-square error.

4.31 Match a second-degree Newton-Gregory polynomial to the following
data pairs: (0, -2.9), (1,0.2), (2,5.2). For this polynomial, what is the
mean-square error of the data in Example 4.6? Should this answer be
less than or greater than the answer found in Problem 4.30?

4.32 Find the second-degree function that minimizes the mean-square
error for the following data:

x: -1 0 l 2

Y: - 4.5 - 1.9 3.2 9.1

4.33 The discrete Fourier coefficient A. is given by
n

__ 2 2irik
A' n+1 fkcosn+I

k-0

Show that A; is periodic with period n+ 1. That is, show Ai =A;+n+,.
4.34 Show that the discrete Fourier coefficients have the following proper-

ties:
An+I-e=Ar, B,,,,-i= -Bi.

4.35 Use the Fourier interpolation program for the following values:
f(1)=2, f(3)=3, f(5)=3, f(7)=2, and f(9)=4. Interpolate for the
following data: f(0), f(l), f(2).

4.36 Use the Fourier interpolation program for the following values:
f(-1)=4, f(l)=2, f(3)=3, f(5)=3, and f(7)=2. Interpolate for the
following data: f (O), f(l), f(2).

Chapter Five

Differentiation

5.1 INTRODUCTION

Numerical differentiation can be used to find the derivative of an analyti-
cal function or to estimate the derivative from discrete data. If one has an
analytical function, the rules of differentiation could be applied to yield an
analytical derivative. However, if a computer program requires the calcula-
tion of a derivative it is inconvenient to supply a different subroutine for
each different derivative. As was the case in Newton's method of Chapter
3, it is often preferable to use numerical differentiation.

If one has only discrete data, there is no choice: if a derivative is to be
found it must be estimated by numerical methods. This case is not
emphasized in this chapter because the following chapters only require
derivatives for analytical functions. For the discrete case, it is best to first
fit the data with spline functions. As explained in Section 4.10, spline
functions can be used to give a smooth match to discrete data. This
smooth analytical curve can then be differentiated.

Two curves may appear to be quite similar, but have very different
derivatives. For example, consider the two functions shown in Fig. 5.1. The
function in Fig. 5.1(a) resembles part of a sine function, so the derivative
would be similar to a cosine function. However, the derivative of the
function in Fig. 5.1(b) is very different: it is zero everywhere except at the
discontinuities where it is undefined.

This discussion implies that small changes in input data can cause large
changes in the derivative. That is, differentiation is a very sensitive process
-it amplifies changes in input data. This will be contrasted in the next
chapter with integration, which smoothes changes in input data. Because
differentiation is a sensitive process, high-order polynomials should not be
used to fit the data before differentiating. As mentioned above, spline
functions can be applied to smooth the data-or a least-squares fit can be
used for noisy data.

Because differentiation is a sensitive process, one usually does not
attempt to numerically calculate any derivative higher than the first.
However, we will derive some formulas for higher-order derivatives in this
chapter-not because we are anticipating practical applications, but

103

104

f(x)

Dlfferentlatlon

FIGURE 5.1. Two functions may be similar in appearance, but have very different
derivatives.

because it will give us further insight into the meaning of difference
functions and provide an opportunity for becoming more familiar with
interpolating polynomials. Also, this chapter introduces the method of
undetermined coefficients, which is used in later chapters.

5.2 METHOD OF INTERPOLATING POLYNOMIALS

From the previous chapter we know that an nth-degree polynomial can
be passed through n + 1 points. Thus, given some data, an interpolating
polynomial can be found, and then this polynomial can be differentiated.
This approach will be used in this section to derive some differentiation
formulas.

Usually the data will be evenly spaced, so the following Newton-
Gregory polynomial can be used:

s(s-1) s(s- 1)(s-2)
fs=fo+SWfo+ 2 A%+ 3!

A3fo+... (5.1)

The derivative of f (x) can be found by applying the chain rule to fs:

df(x)df,__dfs ds1 dfs
dx

_
dx ds dx

_
h ds (5.2)

For the general case, df,/dx is difficult to determine from (5.1), but for
s = 0 (that is, for x = xo) substituting (5.1) into (5.2) yields the following
simple result:

] `1Zf0 o3f0 + Ontofl'(xo)^ h
af0 2+ 3 n I'

The + is selected for n odd, the - for n even.

Method of Interpolating Polynomials 105

The approximation in (5.3) is illustrated below in (5.4) for the cases
n = 1, 2, 3. The result in (5.4a) is the approximation that was used to
calculate the derivative for Newton's method in Chapter 3.

f'(x()-t: h (f1-fo) (5.4a)

f'(xu)- h (- i f2 + 2f. - i fo) (5.4b)

f'(xo) h (33 - f2+3f, fo). (5.4c)

The approximations in (5.4b) and 5.4c) are more accurate than the one
used for Newton's method; however, they require more evaluations of the
function.

EXAMPLE 5.1

The following data were found by evaluating f(x)=ex at the points
indicated: f(l)=2.7183, f(1.1)=3.0042, f(1.2)=3.3201, f(1.3)=3.6693. Ap-
plying (2.4a), (2.4b), and (2.4c) yields 2.859, 2.709, and 2.720. Comparing
these approximations with the analytical answer 2.718, we can see that the
answers became increasingly accurate as more terms were included. This is
usually the case-the answer gets better as one goes to a higher-order
formula.

Information about the error of the derivative estimates can be obtained
from Section 1.5 by recalling that:

If sample points of separation h are used to estimate df/dx and the
approximation is exact for every mth-degree function, but not every (m +
I)th-degree function, then the error is proportional to hm.

Thus, for example, consider (5.4c), which was derived by using a
third-degree polynomial and is therefore exact for every third-degree
function. Problem 5.3 demonstrates that (5.4c) is not exact for every
fourth-degree function, so that the error is proportional to h3. Similarly, for
(5.4b) the error is proportional to h2, and for (5.4a) it is proportional to h.

EXAMPLE 5.2

In Example 5.1 the approximation f'(xo)--(f, - fo)/h yielded f'(1)z
2.859 as an approximation for the derivative of er at x = 1. This approxi-
mation was obtained for h = 0.1 and has an error which will be written as
error(0.1)=0.141. If h is reduced to 0.05, then the error is reduced to
error(0.05) = 0.069; thus reducing h by a factor of two reduced the error by

106 Differentiation

approximately a factor of two, which verifies that the error in (5.4a) is

proportional to h (for small h).

Estimates for the first derivative were obtained by differentiating the
Newton-Gregory polynomial that was given in (5.1). This can be differenti-
ated again to yield the following approximation for the second derivative:

f (zo)= hz
12p4fo_... (5.5)

Thus the simplest estimate for the second derivative is

f"(xO) ,-z:&fo/
h 2.

The above process can be generalized to yield the simplest estimate for the
nth derivative as

O

fl^)(xo)x
"f

h"
. (5.6)

This gives us insight into the physical interpretation of the nth-order
difference function A"f0: except for a scale factor of h" it is the discrete
version of the nth derivative.

The work on error analysis in Chapter I can be extended to yield:

If sample points of separation h are used to estimate the nth derivative and
the approximation is exact for every mth-degree function, but not for every
(m + 1)th-degree function, then the error is proportional to h m+ -"

Thus, for example, consider (5.6) with n = 3:

ro)^ h3
f3 - 3fzh33fi -fo

. (5.7)

This was derived by using a third-degree polynomial and is therefore exact
for every third-degree function. Problem 5.5 demonstrates that (5.7) is not
exact for every fourth-degree function, so that the error is proportional to
hm+i-"=h3+1-3=h. In fact, it can be shown in general that the error in
(5.6) is proportional to h.

It should be emphasized that the main purpose of this chapter is not to
derive a long list of useful formulas for numerical differentiation. The
formulas that are needed in this text could be easily derived in a single
section. Instead, the chapter offers a means of becoming familiar with the
use of interpolating polynomials. Also, it will introduce the method of
undetermined coefficients, which is a powerful tool that will be used in
later chapters.

Method of Undetermined Coefficients

5.3 METHOD OF UNDETERMINED COEFFICIENTS'

107

In the previous section, derivative formulas were derived by using the
Newton-Gregory polynomial

s(s- 1) s(s- l)(s-2)
f =fo+.sAfo+ - 2 Zfo+ 3!

A3fo+ - - (5.8)

This polynomial was truncated to a finite number of terms and then
differentiated.

In this section an alternate derivation for the previous results will be
presented. This new method, the method of undetermined coefficients, is
useful because it eliminates the need to differentiate (5.8), which can be a
tedious task. The method of undetermined coefficients will also be applied
in this section to obtain some new derivative formulas, and in the next
chapter will be applied to obtain some integral formulas.

In order to obtain the method of undetermined coefficients, note that if
expressions for the difference functions are substituted into (5.8), then that
equation can be rewritten as

jr = co(s)fo+ ct(s)f1 + c2(s)f2+ c3(s)f3+ .. , (5.9)

where the notation co(s) indicates that the coefficient of fo is a function of
s. For example, if (5.8) is truncated after the second-order difference
function, then it can be expressed as

1.5s+0.5s2)f0+(2s-s2)ft+0.5.s(s-1)f2, (5.10)

so that co= I - I.5s+0.5s2, c, =2s-s2, c2=0.5s(s-1). It should be noted
that if (5.8) is instead truncated after the third-order difference function,
then each of the above coefficients will change.

The fact essential to the method of undetermined coefficients is that if
f(x) is an nth-degree polynomial, then it could be matched exactly by
continuing the terms in (5.9) to Because it would then be matched
exactly, any derivative calculated from it would also be exact.

To learn how this fact can be applied, assume we have an approximation
for the first derivative that is expressed in terms of fo, ft, and f2. Since f can
be expressed as in (5.9), the derivative can be approximated as

fs ;:t-do(s)fo+di (s)f, +d2(s) f2, (5.11)

where the coefficients are the derivatives of the ones in (5.10).

'This is termed "the direct method of finding formulas" by Hamming (1973). Hamming
also discusses a Taylor-series method of finding formulas which can yield similar results.

108 Dmmerentlatlon

The approximation in (5.11) is valid for any value of s, but we will be
particularly interested in the location s =0. For this we will write

fo = dofo + d 1 f i + d2f2 (5.12)

It should be emphasized that (5.12) is exact for any function which is of
second degree or less. In particular, it is exact for the functions fs=l, fs=s,
and f, = s2, so for any of these simple functions, the approximation symbol
in (5.12) will be replaced by an equality symbol.

For the function fj=I it follows that fo=f,=f2=1 and ff=0, so that
(5.12) becomes

do+d,+d2=O. (5.13)

Similarly, for the function fj=s it follows that fo=0, f,=1, f2=2, and
ff= 1, so that

d,+2d2=1,
while the function fs = s2 yields

d,+4d2=0.

(5.14)

(5.15)

In summary, we picked three simple functions fs =1, fs = s, and fj = s2 for
which the relation in (5.12) was exact. This produced three equations for
the coefficients do, d,, and d2. Solving the three equations produces the
"undetermined coefficients" do = - 1.5, d i = 2, d2 = - 0.5.

Substituting these values into (5.12) yields

fo:., -1.5fo+2f, -0.5f2. (5.16)

If we use the fact that fo=hf'(xo), then it is evident that (5.16) agrees with
5.4b), which was derived by the method of interpolating polynomials
instead of the method of undetermined coefficients.

The method of undetermined coefficients is very powerful because it lets
us choose the form for our answer ahead of time. To illustrate this,
suppose we want to express the first derivative as

if-,+aofo+aifi. (5.17)

The coefficients a_,, ao, and a, can be easily determined by considering
the related expression

hf'(xo)=fo^ d-if ,+dofo+diff. (5.18)

Utilizing the fact that this expression is exact for the functions fj =1, fj = s,
and f, = s2 leads to

d_,+ do+d,=0
-d_,+0do+d,=1
d_,+0do+d,=0.

(5.19)

Method of Undetermined Coefficients 109

These three equations can be conveniently rewritten using matrix notation
as

(5.20)

Solving by the techniques discussed in Chapter 2 yields d_, = -0.5, do=0,
d, = 0.5. Substituting into (5.18), we have

f'(xo)-z
A i

(5.21)

In the previous section we derived another two-term approximation for
the derivative, fo)/h. This had an error that was proportional
to h.

Instead of just looking on one side of xo, equation (5.21) considers both
sides: that is, it considers both f ., and f,. For this reason it is called the
central-difference formula for the first derivative. Since we are using infor-
mation from both sides of xo, it seems probable that the error should be
less than if just one side were considered. This intuitive feeling can be
verified by recalling that the central-difference formula was derived by
considering three points, and thus it is exact for any second-degree
function. This implies that the error is proportional to h2.

The method of undetermined coefficients can also be applied for
higher-order derivatives. In fact, we can use it to improve on our previous
result from (5.6),

f"(xo)'_-(f2-2f1+fo)/h2. (5.22)

This approximation had an error which was proportional to h. Note that
the expression is not centered about xo, but only looks at one side. From
the previous work on the central-difference formula we would expect that
a better three-term approximation would be of the form

Of"(xo)=fo =d-if-i+dofo+d,fi. (5.23)

Using the functions f, =1, f = s, and f, = s2 yields

l 1 1 d_, 0

-1 0 1 do J = 0 , (5.24)

1 0 1 d, 2

which has as its solution d_., = 1, do= -2, d, =1. Thus the central dif-
ference formula for the second derivative is

f"(xo);-_(f_ 1- 2fo+f,)/h2. (5.25)

110 Differentiation

This section will conclude with another example that should further
emphasize the power of the method of undetermined coefficients. Assume
we want to estimate the derivative at x = x2 as

If - ,+clf,+c2fz. (5.26)

There are two new aspects to this problem. First, we want to evaluate the
derivative at x, instead of x0. Second, we are not considering fo; thus the
data are not evenly spaced.

If for some reason we wished to express the derivative as in (5.26), we
could find a second-degree polynomial that goes through the three func-
tion values f - f,, and /,. We could then differentiate the polynomial and
evaluate the derivative at x2. Conceptually the above procedure is simple;
however, practically it is tedious-especially since the data are not equally
spaced, so the Lagrange interpolating polynomial must be used.

It is much easier to use the method of undetermined coefficients, as will
now be demonstrated. As usual, instead of (5.26) we will consider the
normalized equation'

fi=d-..If-I+d,fl+d,f,. (5.27)

Since this relation contains three function values, it will be exact for a
constant, linear, or second-degree function. Choosing the functions fs = 1,
f,=s, and fs = s2 yields

I I llFd-I 0

-1 1 2 d, = 1 . (5.28)

1 1 4 d2 4

Before proceeding, a comment should be made about the constant 4 in the
column matrix, which came from

fs=s =2sls=z=4.&

The fact that we want to evaluate the derivative at s = 2 (instead of s =0 as
in the previous example) presents no difficulty for the method of unde-
termined coefficients.

The solution to (5.28) is d I = 6d, = - 6d2 6, so that

d(

dx
x I

6h
[f_I-9f,+8f2]. (5.29)

2We can still define a normalized variable s=(x-xo)/h, even though the value of the
function 1(x0) is not used in (5.26). The normalized variable is used here to simplify notation.

Application of Interpolating Programs 111

In practice, one would not use this approximation, because a more ac-
curate one can be obtained if the function value fo is also used (see
Problem 5.8). However, an example of the use of (5.29) will be illuminat-
ing, because this is the first derivative formula we have had for unevenly
spaced data.

EXAMPLE 5.3

The derivative of f (x) = e X can be estimated at x =I by using the data
x - 0.5, x, = 0.5, and x2 = 1. For these values of x it follows that
f- 0.607, f, = 1.649, ./'2 = 2.718. Substituting these numbers into (5.29) and
using h = 0.5 yields an estimate for the derivative of 2.50, as compared with
the analytical answer 2.72.

The answer in this example was quite inaccurate because the three
values f (- 0.5) = 0.607, f (0.5) = 1.649, and f (1) = 2.718 did not characterize
the function f(x)=eX very well at the point x=1. That is, the three values
determined a unique second-degree polynomial. The slope of this poly-
nomial was 2.5 at x = 1, while the slope of eX is 2.72 at x =1.

In the next section we will discuss an easy way of verifying that the
second-degree polynomial actually did have a slope of 2.5 at x = 1.

5.4 APPLICATION OF INTERPOLATING PROGRAMS

In practice, one does not very often take experimental data and then
predict high-order derivatives-because the predictions would be too inac-
curate. In fact, the average reader will estimate the first derivative so
infrequently it is not worth developing a special program for this; instead,
an existing one can be used.

If data have been taken at n + I points, then an nth-degree interpolating
polynomial is uniquely determined. If the points are evenly spaced, then
the Newton-Gregory program can be applied to interpolate the data at any
desired point. If the data are not evenly spaced, Lagrange interpolation
can be used. The interpolated values can then be used to estimate the
derivative.

EXAMPLE 5.4

The following data represent values for the function f(x)=eX: J(1.3)=
3.6693, f(1.5) = 4.4817, 1(1.7) = 5.4739, f (1.9) = 6.6859, f(2.1)=8.1662,
f (2.3) = 9.9742, f (2.5) = 12.182.

Since the data are evenly spaced, the Newton-Gregory program can be
used to produce a sixth-degree interpolating polynomial. This polynomial

112 Differentiation

can then be evaluated at any desired points. For example, if we want to
evaluate the derivative at x = 2 by using the central-difference formula with
h = 0.001, then we can use the program to yield f (1.999) = 7.38169 and
f (2.001) = 7.39647, so that by the central-difference theorem

f '(2) z (7.39647 - 7.38169)/0.002 = 7.39.

The Newton-Gregory program can be applied to give a demonstration
that small changes in input data can cause large changes in the derivative.
Assume that the data in Example 5.4 were the result of an experiment, and
an experimental error caused f (1.9) = 6.7528 (1% high) and f(2. 1) = 8.0854
(1% low). Interpolating with a sixth-degree polynomial then yields f(1.999)
= 7.38686 and f(2.00 1) = 7.39991, so that this time the central-difference
formula yields f'(2)--6.53. Comparing this result with 7.39 from Example
5.4, we can see that a 1% change in some of the input data caused a greater
than 10% change in the estimate of the derivative.

An example will next be presented that has unevenly spaced data and
thus requires the use of the Lagrange interpolating program.

EXAMPLE 5.5

In Example 5.3 we calculated the derivative at x = I for the second-de-
gree polynomial that matches

f(-0.5)=0.607, f(0.5)=1.649, f(1)=2.718.

The answer, 2.50, can be verified by using the Lagrange program to
produce a second-degree interpolating polynomial. Interpolating with the
program yields f (O.999) = 2.7155 and f (1.001) = 2.7205, so that the central-
difference formula indicates f'(l)2.5.

PROBLEMS

5.1 Evaluate f (x) = 2 + 3x + x4 at x =1, 1.1, 1.2, and 1.3. Use these
function values to estimate the first derivative at x = I by applying
(5.4a), (5.4b), and (5.4c). Compare with the analytical answer.

5.2 Evaluate f (x) = 3 sin 2x at x =0, 0.1, 0.2, and 0.3. Use these function
values to estimate the first derivative at x = 0 by applying (5.4c).

_5.3 Show that the derivative approximation in (5.4c) is exact for f (x)
x3, but not for f (x) = x4. Choose xo=I and h = 1.

5.4 This problem shows that for f (x) = e x the derivative approximation in
(5.4b) has an error that is proportional to h2.
(a) Choose x0 = 0 and h = 0.1. Find error(0.1).
(b) Reduce h to 0.05 and find error(0.05).
(c) Calculate error(0.I)/error(0.05).

5.5 Show that the derivative approximation in (5.7) is exact for f (x) = x3,
but not for f (x) = x4. Choose x0= I and h =1.

5.6 This problem shows that for f (x) = e ` the derivative approximation
f"(x0)-_&Zf0/h2 has an error that is proportional to h.
(a) Choose x=0 and h=0.1. Find error(0.1).
(b) Reduce h to 0.05 and find error(0.05).
(c) Calculate error(0.1)/error(0.05).

5.7 Find the coefficients for the following approximation by using the
method of undetermined coefficients:

1f_1 +a3f3+a4f4
5.8 The central-difference formula for the first derivative was given as

f'(xo) = (f, -f-.)12h. An even better approximation would be of the
form f'(x0) =a -2f-2 +a-, f_ I + a0 f0 + a, f, + a2 f2. Find the
coefficients.
Hint: Use the Gauss elimination program to help solve a set of
equations.

5.9 Another approximation for the first derivative is f (x0) = (f _ 2 - 8f- I +
8f, - f2)/ 12h. Apply this to f (x) = er as follows:
(a) Choose x0 = 0 and h = 0.1. Find error(0.1).
(b) Reduce h to 0.05 and find error(0.05).
(c) Calculate error(0.1)/error(0.05).
Beware: this requires at least 8-digit accuracy.

113

114 Differentiation

5.10 Problem 5.7 found the coefficients in the approximation

f
In this problem, use the method of undetermined coefficients to find
the unknowns in the equivalent approximation

f'(x1)-= bofo+b4f4+b5f5

5.11 (a) Use the central-difference formula to approximate f'(1) forf(x)=
e "'. Choose h = 0.1.

(b) Reduce h to 0.05 and approximate f"(1).
5.12 The following data represent values of the function f(x)=3x2+2x+

I:

f(1)=6, f(2)=17, f(3)=34.
(a) Use (5.4a) to estimate the derivative at x=2.
(b) Use the central-difference formula to find the derivative at x=2.

Why is this result exact?
5.13 The method of undetermined coefficients is not restricted to integer

values of s. Demonstrate this fact by determining the coefficients for
f'(xo+ h/2) ao fo+ a1 f1 + a2 f2.

5.14 Use the result of Problem 5.13 to estimate the derivative at x= 1.5
from the following data:

f(1)=6, f(2)= 17, f(3)=34.

5.15 As an alternate solution to Problem 5.14, use the Newton-Gregory
program to find a second-degree interpolating polynomial that
matches f (1) = 6, f (2) = 17, and f (3) = 34. Interpolate to estimate
f(1.501) and f(1.499). Apply the central-difference formula to esti-
mate the derivative at x = 1.5.

5.16 A car was accelerated at a constant rate, and the following distances
were measured as a function of time: s(l) = 35, s(2) = 70, and s(2.2) _
78.2.

(a) Apply the Lagrange interpolation program to find the velocity at
t=1.5 and t=2.2.

(b) If the distance s(2.2) had been incorrectly measured as 77, what
velocities would be calculated at t = 1.5 and t = 2.2?

Chapter Six

Integration

6.1 INTRODUCTION

In a calculus course one is taught how to find the integral of certain types
of functions. The integral of some functions, for example polynomials, can
be written down by inspection. More complicated expressions may require
some special tricks, such as integration by parts. Finally, if one runs out of
time, patience, or knowledge, there are tables of integrals that can be
consulted.

Even with integral tables it is not always possible to integrate a function
analytically. Also, oftentimes we will not have a function, but will have
experimental data to integrate, and this cannot be done analytically.
Numerical integration can be used when analytical integration is impossi-
ble or impractical.

In numerical integration a function or set of data is approximated as a
set of simple functions, such as a series of straight lines or parabolas. The
area under each of the simple functions is then calculated, and the sum of
the areas used to approximate the integral. The accuracy of the approxima-
tion to the integral will depend on how accurately the set of simple
functions approximates the given function.

The first numerical method that will be studied is the trapezoidal rule,
which approximates a given function by a set of straight lines. The shorter
each straight line is, the better will be the approximation and the more
accurate will be the answer. Shorter line segments imply that a larger total
number of lines will be required to approximate the given function, which
will in turn require more computation time.

Another way to improve the accuracy of numerical integration is to use
a set of more complicated functions to approximate the given function. In
addition to straight lines, second-order and third-order functions are
commonly used.

115

116

6.2 TRAPEZOIDAL RULE

Integration

The concept of an integral is usually introduced in a calculus course by
applying the trapezoidal rule to find areas under curves. Once analytical
methods are derived for evaluating integrals, the trapezoidal rule is dis-
carded as a tool that is no longer necessary. However, computer programs
can be written which apply the trapezoidal rule to numerical integration.

The notation that will be used in discussing the trapezoidal rule is
illustrated in Fig. 6.1. In order to integrate a function f(x) from an initial
point x = A to a final point x = B, the function is divided into a series of n
panels. The width of each of the panels is the same and is denoted by h.

This notation is reminiscent of that used in the study of interpolation of
evenly spaced data. However, we are not going to fit an nth-degree
polynomial to the function values at xo,x...... x,,. We will instead work
with a much simpler polynomial. The reason for this choice of polynomial
will become clear later.

The trapezoidal rule finds the integral of a function such as the f (x)
shown in Fig. 6.1 by approximating the area in each one of the panels and
then adding together all the areas. To learn how the trapezoidal rule
estimates the area of a panel, consider the first one which is shown in Fig.
6.2.

Between x0 and x, the function is approximated as a straight line, and
the area under f (x) is approximated as the area under the straight line.
Because the area of a panel is approximated by the area of a trapezoid, this
is termed the trapezoidal rule. The area of a trapezoid is given by the width

1(x)

A=xo

h

,-2 n-t , " BX1 X2

FIGURE 6.1. Illustration of notation used for various integration rules.

Trapezoidal Rule

1

xo
X,

FIGURE 6.2. The trapezoidal rule approximates a panel by a trapezoid.

117

times the average height. The width in Fig. 6.2 is x,-xo=h and the
average height is (fo+ f,)/2, so that

1
f(x)dx: 2(fo+fi). (6.1)

x
Similarly, the area of the second panel is approximated by h(f, +f2)/2,

the third by h (f2 + f3)/2, etc. Adding together these results gives the
trapezoidal rule

1 Bf(x)dx--: 2
h

(f0+2f1+2f2+ ' +2ffl 2+24 -1+fn). (6.2)
A

Note that all function values except the first (f0) and the last (f) are
multiplied by two.

EXAMPLE 6.1

Estimate f 0_-0 5e x dx by applying the trapezoidal rule to a total of ten
panels.

SOLUTION

The increment size is h= 1/10=0.1, so that x0= -0.5, x, = -0.4. x2= -
0.3, etc. Evaluating ex at these locations yields fo=0.6065, f, =0.6703,
f2 = 0.7408, f3 = 0.8187, f4 = 0.9048, f5 =1, f6 =1.1052, f7 =1.2214, f8 =1.3499,
f9=1.4918, flo=1.6487.

118 integration

Applying (6.2) to these data.

fos Oexdx 11 (0.6065+2x0.6703+--- +2x1.4918+1.6487)=1.0431.
o.s

The analytical answer is e 0.5_ e -0.s = 1.0422.

A program for integration by the trapezoidal rule is given in Fig. 6.3.
The trapezoidal rule is first applied for ten panels, and the approximate
answer is printed out. Then the number of panels is doubled (that is, step
size halved) and the trapezoidal rule is applied again. The number of
panels is doubled until the answer is deemed to be accurate enough at
which time the computations should be stopped interactively. Note that
each time the number of panels is doubled, it is possible to reduce the
number of calculations by using the function values that are already
available from previous calculations; thus the DO loop at line 54 uses
increments of two.

Each time the program of Fig. 6.3 is applied to a different function, the
expression in line 900 must be rewritten. Note that the function in Fig. 6.3
is a x.

EXAMPLE 6.2

The trapezoidal-rule program is applied in Fig. 6.4 to evaluate
j°_o.sexdx. For n= 10 the integral was approximated as 1.04306, while for
n = 20 it was 1.0424 1, and for n = 40 it was 1.04224. Comparing the last two
answers we can conclude that to four significant figures the answer is
1.042.

The program in Fig. 6.3 applies the trapezoidal rule to continuous data.
That is, it is assumed that a subroutine contains the function f (x), which
can therefore be evaluated for any value of x. For these circumstances
better and better approximations can be made to the integral by making
the step size h smaller and smaller.

Instead of continuous data, we will often have discrete data. For
example, we may have measured the velocity of a car at seven different
times and want to estimate the distance that the car travelled. Problem 6.8
outlines how the program of Fig. 6.3 can be modified for discrete data.

Insight into the accuracy of the trapezoidal rule can be obtained by
recalling from Example 1.3 that the trapezoidal rule is exact for every
first-degree function, but not every second-degree function. It follows that
the error for the trapezoidal rule is of the order of P. It must be stressed
that this is the local error, that is, the error for one panel. The error for n
panels (the global error) is of the order of nh3. Since the number of panels

Trapezoidal Rule 119

O1C TRAPEZOIDAL RULE
02 PROGRAM TR(INPUT,OUTPUT)
03 03 FORMAT(I4,1P,E14.5)
08 REAL INTGRL
10C
11C INITIAL POINT=A FINAL POINT=B
12 PRINT,* A B*
13 READ,A,B
14 PRINT,/,* N INTEGRAL*
16 FO=F(A) $FN=F(B)
18C
19C INITIAL CONSTANTS N,H
21 N=10 $N1=9 $H=(B-A)/10.
23C
30C APPLICATION OF TRAPEZOIDAL RULE (EQ. 6.2)
33 SUM=O.
35 DO 36 I=1,N]
36 36 SUM=SUM+F(A+I*H)
46 Z=F0+2.*SUM+FN
47 INTGRL=.5*H*Z
48 PRINT 3,N,INTGRL
49C
50C DOUBLE THE # OF STEPS UNTIL INTERRUPTED
51 51 N=2*N $N1=N-1 $H=.5*H
54 DO 55 I=1,N1,2
55 55 SUM=SUM+F(A+I*H)
56 Z=F0+2*SUM+FN
57 INTGRL=.5*H*Z
58 PRINT 3,N,INTGRL
59 GO TO 51
60 END
898C
899 FUNCTION F(X)
900 F=EXP(X)
950 RETURN
999 END

FIGURE 6.3. A program for the trapezoidal rule.

n is inversely proportional to h, it follows that

The global error for the trapezoidal rule is of the order of h2.

This is equivalent to saying that, for h small enough, the global error for
the trapezoidal rule is proportional to h2. This fact will be used in Section
6.5 (Romberg prediction) to improve the accuracy of the trapezoidal rule.
In fact, applying Romberg prediction to the trapezoidal rule yields

120 Integratlon

A B
? -.5 .5

N INTEGRAL
10 1.04306E+00
20 1.04241E+00
40 1.04224E+00

FIGURE 6.4. An application of the trapezoidal-rule program.

Simpson's s rule. Simpson's rule is a very popular integration formula
which is discussed in the next section.

EXAMPLE 6.3

Example 6.2 found the following estimates of J°' o.se" dx:

Integral (h=0.1)=1.04306,
Integral (h=0.05)=1.04241.

The analytical answer is 1.04219, so the errors for these two different
values of h are error(0.l)=0.0087 and error(0.05)=0.0022. Thus when h
was reduced by a factor of 2, the error was reduced by a factor of 4, which
confirms that the error is proportional to hZ.

This section about the trapezoidal rule will conclude by rederiving the
formula by the method of interpolating polynomials. This method will then
be applied in the next section to derive Simpson's rules.

The trapezoidal rule for one panel was used to evaluate JzQf(x)dx. Since
we are assuming evenly spaced data, we can use the normalized variable
s = (x - xo)/h. For this normalization, integration over one panel can be
expressed as

f X`f(x)dz=h f'fsdr. (6.3)
XO o

If we are integrating over one panel, we have just two data values (fo,fl)
and can thus just use a first-degree polynomial to match the data. From
(4.20), the first-degree Newton-Gregory polynomial is

f fo+s(fi-fo).
Substituting this into (6.3) yields

(6.4)

(fo+fi), (6.5)

which is the trapezoidal rule as it was expressed in (6.1).

Simpson's Rules

6.3 SIMPSON'S RULES

121

The trapezoidal rule has a global error that is proportional to h2; thus,
for h small enough, every time the step size is reduced by a factor of 2 the
error is reduced by a factor of 4. This implies that by using a sufficient
number of panels the error can be made arbitrarily small.

In this section we will study Simpson's rules and discover that for the
same number of panels they will produce a smaller error than the
trapezoidal rule. Put another way, for the same accuracy, Simpson's rules
require a smaller number of panels than does the trapezoidal rule. For this
reason Simpson's rules are more widely used.

Simpson's first rule is derived by integrating over two panels at a time as
indicated in Fig. 6.5. In terms of the normalized variable this can be
expressed as

2

f 2f(x)dx=h f Jds. (6.6)
xp 0

The two panels are described by the following data pairs: (xo,fo), (x1,f1),
and (x2,J2). From (4.20), the following second-degree Newton-Gregory
polynomial goes through the three values:

A~fo+sAfo+ s(S2 1) A2fo=fo+s(fi -fo)+
s(s2

I) (f2-2f1+fo) (6.7)

Substituting this into (6.6) yields

f f(-z)dx,. 3 (fo+4fi+f2). (6.8)
xi,

x2
--x

FIGURE 6.5. Simpson's i rule integrates two panels at a time.

122
Integration

Similarly, the area of the second pair of panels is approximated by

h (f2 + 4f3 +f4)/3, the third pair of panels by h(f4+4f5+f6)/3, etc. Adding
together these results gives Simpson's first rule, which is known as Simp-
son's s rule:

(f0+4fi+2f2+4f3+... +2fn--2+4ff-i+.ff). (6.9)IBf(x)dx; h
A

Note that all odd functions are multiplied by 4 and all even functions
(except fo and fn) are multiplied by 2.

It should be emphasized that Simpson's rule assumes that n is an even
number. This is because it was derived by integrating over pairs of panels.

EXAMPLE 6.4

Estimate f o- o.s e dx by applying Simpson's rule to a total of ten panels.

SOLUTION

This has an even number of panels, so we can apply (6.9). The function
values f0, f...... fio were calculated in Example 6.1 for the trapezoidal rule.
Using these data in (6.9), we have

fo.s
r e x dx

D I (0.6065 + 4 x 0.6703 + 2 x 0.7408
J_0.5

+4x0.8187+2x0.9048+4x1+2x 1.1052+4x 1.2214
+ 2 x 1.3499 + 4 x 1.4918 + 1.6487) = 1.0422.

This answer agrees with the analytical answer to five significant figures.

A program written for Simpson's 1 rule is given in Fig. 6.6. The function
in the subroutine (see statement 900) is ex. This program was applied to
evaluate f °_- 0.5 e x dx, and for n = 10 yielded 1.04219, which is the same as
the first six figures of the analytical answer. This result for n= 10 is much
more accurate than the corresponding trapezoidal result of Example 6.2.

Further insight into the accuracy of Simpson's 1 rule can be obtained by
recalling that it was derived by matching a second-degree polynomial to
the function values of two panels, and thus it is exact for any second-de-
gree function. Problem 6.13 demonstrates that Simpson's 1 rule is also
exact for any third-degree function, while Problem 6.14 demonstrates that
it is not exact for every fourth-degree function. It follows that the local
error (for two panels) is of the order of h5, so that:

The global error for Simpson's i rule is of the order of h4.

Simpson's Rules 123

01C SIMPSON'S 1/3 RULE
02 PROGRAM SR(INPUT,OUTPUT)
03 03 FORMAT(I4,1P,E14.5)
08 REAL INTGRL
10C
11C INITIAL POINT=A FINAL POINT=B
12 PRINT,* A B*
13 READ,A,B
14 PRINT,/,* N INTEGRAL*
16 FO=F(A) $FN=F(B)
18C
19C INITIAL CONSTANTS N,H
21 N=10 $N1=9 $N2=8 $H=(B-A)/10.
23 C
30C APPLICATION OF SIMPSON'S RUL E (EQ. 6.9)
33 SUM1=0.
35 DO 36 T=1,N1,2
36 36 SUM1=SUM1+F(A+I*H)
40 SUM2=0.
42 DO 43 I=2,N2,2
43 43 SUM2=SUM2+F(A+I*H)
46 Z=F0+4.*SUM1+2.*SUM2+FN
47 INTGRL=H*Z/3.
48 PRINT 3,N,INTGRL
49C
50C DOUBLE THE # OF STEPS UNTIL INTERRUPTED
51 51 N=2*N $N1=N-1 $H=.5*H
52 SUM2=SUM1+SUM2
53 SUM1=0.
54 DO 55 I=1,N1,2
55 55 SUM1=SUM1+F(A+I*H)
56 Z=F0+4.*SUM1+2.*SUM2+FN
57 INTGRL=H*Z/3.
58 PRINT 3,N,INTGRL
59 GO TO 51
60 END
898C
899 FUNCTION F(X)
900 F=EXP(X)
950 RETURN
999 END

FIGURE 6.6. A program for Simpson's ; rule.

124 Intagratton

This is equivalent to saying that, for h small enough, the global error is
proportional to h4.

Since matching a second-degree polynomial to the function values of
two panels was much more accurate than matching a first-degree poly-
nomial to the function values of one panel, the next logical step is to try
matching a third-degree polynomial to the function values of three panels.
This can be done as follows:

'f(x)dx=h f 3fsds, (6.10)fo

where from (4.20)

s(s- 1) s(s- l)(s-2)
fs ^ fo + .s nfo + 2 42fo +

3 t Q3fo. (6.11)

Substituting (6.11) into (6.10) yields Simpson's s rule:

f i'f (x) dxz 8 (fo+3f, +3f2+f3). (6.12)

From the derivation we know that Simpson's s rule is exact for every
third-degree function. Problem 6.15 shows that it is not exact for every
fourth-degree function. From these two facts we can conclude that the
local error is of the order of h5, which is the same conclusion that was
reached for Simpson's 3 rule. Because Simpson's rule is no more
accurate than the i rule, people are usually content to apply the first rule.

The reason for the surprising accuracy of Simpson's 1 rule can be seen
from an examination of (6.11). That expression is exact for any third-de-
gree function (since the fourth- and higher-order difference functions are
zero for this case). If (6.11) is integrated over two panels, then the last term
can be ignored because (os(s -1)(s - 2) ds = 0.' Since the last term contrib-
utes nothing to the integral, Simpson's ; rule must be exact for any
third-degree function.

The program in Fig. 6.6 applied Simpson's 3 rule to continuous data.
Because there was a subroutine that calculated f(x), it was possible to
make sure the number of panels was even, as is required by Simpson's 3
rule. However, for discrete data one may encounter an odd number of
panels. This situation may be treated by applying Simpson's rule to the
first three panels; the remaining number of panels will be even, so the 3
rule can be applied to these. Instead of using the rule for the first three
panels, one can produce an even number of panels from an odd number

'An easy way to verify that the integral is zero is to make the substitution s= S+ i, so that
the integral becomes S ! , S (S 2 - l)dS. This integral has an equal amount of positive and
negative area, so that it must be equal to zero.

Examples 125

applying the trapezoidal rule to just the first panel. However, this will

usually not be as accurate as using Simpson's rule.

6.4 EXAMPLES

The program in Fig. 6.6 for Simpson's 3 rule can be used on a variety of
different functions. This section will discuss a few applications that may be
familiar to the reader.

In the study of probability theory, the normal (or Gaussian) probability
density function is frequently encountered. This is also sometimes referred
to as the "bell-shaped curve". Integrating a probability density function
indicates the probability of a specific event. For example, the probability
that a person's income is within two standard deviations of the average
might be given by

2 f z
e-r'/zdx. (6.13)\,r o

This integral (without the factor 2/ V21r) was evaluated as indicated in
Fig. 6.7 to yield 1.19629. Multiplying by 2/ V r yields a probability of
95.45%.

Another function encountered in probability theory is the gamma func-
tion, which is defined as

I'(t)= f 'O x`-'e-xdx. (6.14)
0

This definition applies whether or not t is an integer. If t is an integer n,
then it can be shown that I'(n)=(n-1)!. Thus, for example,

r,(4)= f
00

x3e-xdx=3!=6. (6.15)
0

This equality is investigated in Fig. 6.8. The upper limit of integration is
infinity in (6.15), but this is of course not practical for computer calcula-
tions. However, the factor of a-x in the integral implies that the contribu-
tions to the integral will become smaller and smaller as x increases.

A B
? 0 2

N INTEGRAL
10 1.19629E+00
20 1.19629E+00

FIGURE 6.7. Integration of the Gaussian probability density function.

126 Integration

A B
? 0 10

N INTEGRAL
10 5.93265E+00
20 5.93646E+00
40 5.93786E+00
80 5.93798E+00

160 5.93798E+00
320 5.93798E+00
640 5.93798E+00

(a)

A B
? 0 100

N INTEGRAL
10 6.05442E-01
20 5.77323E+00
40 6.55891E+00
80 6,00828E+00

160 5.99697E+00
320 5.99972E+00
640 5.99998E+00

(b)

FIGURE G.S. Evaluation of the gamma function f(4) by integration. The infinite
limit of integration is first approximated as (a) B=10 and then as (b) B=100.

In Fig. 6.8(a) the upper limit of integration was chosen as B= 10. With
this as an approximation to infinity the integral was found to be 5.93798.
In Fig. 6.8(b) the upper limit of integration was instead picked as B = 100,
which yielded 5.99998 for the integral. This is extremely close to the
analytical answer of 6.

Elliptic integrals are encountered in many branches of engineering and
science. For example, electrical engineers use them to help design elliptic
filters. The elliptic integral of the first kind is defined as

u(4,k)= Jm(1-k2sin2x)-'/2dx. (6.16)
0

As the notation indicates, this is a function of two variables: $ and k. The
elliptic integral is evaluated in Fig. 6.9 for the case ¢=190° (3.3161
radians) and k =0.5. This figure indicates that u(190°,0.5)=3.54623.

Romberg Prediction

A B
? 0 3.3161

N INTEGRAL
10 3.54623E+00
20 3.54623E+00

FIGURE 6.9. Evaluation of the elliptic integral u(190°.0.5).

6.5 ROMBERG PREDICTION

127

In Section 6.2 we found that, for h small enough, trapezoidal integration
has a global error that is proportional to h2. In Section 6.3 we found that
for either of Simpson's rules the error is proportional to h4. In this section
we will treat the general case-we will assume that an integration process
has an error that is proportional to h', where r is an integer.

The notation we will use is that Int is the exact value of the integral,
while Int(h) is the value that is determined by the integration process; for
example, by the trapezoidal rule. Since the error is assumed to be propor-
tional to h', we can write

Int - Int(h) : ah', (6.17)

where a is a constant of proportionality. The approximation symbol is
used instead of an equality symbol to emphasize that the error is only
proportional to h' for h small enough(that is, as h-+0).

In our integration programs, we let It be continually reduced by a factor
of 2 until the error was small enough. To see the effect of halving h on the
error, we can replace h by h/2 in (6.17).

Int-Int(h/2);-,za(h/2)'. (6.18)

The relations in (6.17) and (6.18) have two unknowns: the exact value of
the integral (Int) and the value of the proportionality constant (a). We can
solve for Int by multiplying (6.18) by 2' and then subtracting from (6.17).
This yields

2' Int(h/2) - Int(h)
Int : r- 12 (6.19)

This equation is the basis of Romberg prediction. To understand how it
can be applied, recall that Int(h) is the estimate for the integral based on
using a step size equal to h. Int(h/2) is another estimate for the integral,
but this is based on using a smaller step size h/2. Equation (6.19) indicates
that the more accurate estimate [Int(h/2)] is weighted by 2' and then the
less accurate estimate is subtracted from it.

128 Integration

As indicated in (6.19), Romberg prediction takes two estimates for an
integral and calculates an even better estimate. The approximation symbol
in (6.19) indicates that the true value of the integral is not calculated
exactly-because the error was only approximately proportional to h'.
However, as h is made smaller, the approximation becomes better and
better.

Romberg prediction has its biggest success when applied to the
trapezoidal rule. Since this has an error proportional to h2, (6.19) becomes

Int 41 nt(h/2) - Int(h)
(6.20)

3

EXAMPLE 6.5

Example 6.2 used the trapezoidal rule to estimate f°__ 0 5 ex dx. For n = 10
the estimate was 1.04306, while for n=20 it was 1.04241. Thus in our
present notation,

Int(h) = 1.04306, 1 nt(h / 2) = 1.0424 1.

Substituting these values into (6.20) yields Int:.,1.04219, which agrees with
the analytical answer to six significant figures.

The above example demonstrated that two successive answers from a
computer output could be taken and used to estimate a much more
accurate answer. The same approach can be used if we have experimental
data (instead of a continuous function as in the example. This is demon-
strated in the next example.

EXAMPLE 6.6

The following function values were found by evaluating f (x) =4x2 - 7x
+2:

f(0)=2, f(l)=-1, f(2)=4, f(3)=17, f(4)=38.
This data can be used by the trapezoidal rule to estimate the integral from
0 to 4. The result is Int(h =1)=40. If we want to, we may instead consider
only some of the data as indicated below:

f(0)=2, f(2)=4, f(4)=38.
Applying the trapezoidal rule to this yields Int(h=2)=48.

Romberg prediction may be applied to these two estimates of the
integral to yield a better answer:

Int.zt(4x40-48)/3=371.

Method of Undetermined Coefficients 129

This answer is also the analytical answer. Simpson's s rule also would
have given the analytical answer because it is exact for any third-degree
function. We will now demonstrate the surprising fact that Romberg
prediction applied to the trapezoidal rule always yields the same result as
Simpson's 1 rule.

The trapezoidal rule estimates the integral as

Int(h)z 2 (fo+2f,+2f3+2f4+ ..). (6.21)

If we instead choose to use just half the data, we have

Int(2h)xh(fo+2f2+2f4+). (6.22)

Applying Romberg prediction to these two results, we have

4Int(h) - Int(2h)
I t^-n

3

= 3 (fo+4fi +2f2+4f3+2.f4+ ...), (6.23)

which is Simpson's rule.
It has just been shown that Romberg prediction applied to the

trapezoidal rule yields the same results as Simpson's i rule. However, even
though the results must be the same for the same step size, a program
based on Romberg prediction can have features not available in a program
based on Simpson's 3 rule. A Romberg program can include an estimate of
whether h is small enough (because answers for both h and 2h are obtained
in the process). One would have to use Simpson's rule twice (with different
h's) to get the same information. The Romberg method therefore is useful
as the basis of programs which reduce h automatically until it is small
enough (e.g., subroutine QA TR of the IBM scientific subroutines package).

Because of the success we had in applying Romberg prediction to the
trapezoidal rule, it is logical to attempt to apply it to Simpson's rules.
However, the attempt is usually not worth the effort. To apply Romberg
prediction to Simpson's rules, we would have to make the assumption that
h is small enough so that the error is proportional to h4. However, by that
time the error is usually negligible anyway, so Romberg prediction is not
necessary. An exception to this statement might occur if very high ac-
curacy is desired; then integration rules that converge faster than fourth
order may be needed.

6.6 METHOD OF UNDETERMINED COEFFICIENTS

The method of undetermined coefficients was applied in the previous
chapter to help derive approximations for derivatives, but it is not re-

130 Integration

stricted to derivatives. The method is based on the fact that the following
approximation can be exact for any nth-degree polynomial:

fszCO(s)fo+ci(s)fi+c2(s)f2+ ... (6.24)

Since the coefficients c;(s) can be chosen so that the expression is exact for
any nth-degree polynomial, it can be integrated and the result will also be
exact.

The approximation for an integral will be expressed as

f SBfsdszdfo+d,f, +d2f2+... +d f,., (6.25)
S4

where the coefficients d; are related to the coefficients c;(s) via

d; = f SBc; (s) ds. (6.26)
s,,

Actually, it is not necessary to apply (6.26) to determine the coefficients d;;
they can be determined by analogy with the method used for derivatives.

As an illustration of the application of the method of undetermined
coefficients to the derivation of integral approximations, consider the
following:

0fZf:dszdofo+d, (6.27)

The three unknown coefficients do,d,,d2 can be determined so that this
equation is exact for any second-degree polynomial. In particular, it must
be exact for the polynomials f, = 1, fs = s, and f, = s2.

The fact that (6.27) is exact for these three different functions can be
used to obtain three equations in terms of the three unknowns
For example, substituting the function f, = s2 into (6.27),

f 2s2ds=
3

=fodo+fid.+f2d2=0+d,+4d2. (6.28)
U

The results of applying the three different functions can be conveniently
written in matrix notation as

1 1 1 do

0 1 2 d,

0 1 4 d2
3

(6.29)

This relation can be solved to yield do= 1, d, = 3, d2 = 3, so that (6.27)
becomes

2

I f,dr s(fo+4fi+f2) (6.30)

Predictor and Corrector Equations 131

Since s = (x - xo)/ h i , this expression is equivalent to

f `2f(x)A (fo+4f,+f2). (6.31)

xU

Either of the results in (6.30) or (6.31) can be recognized as Simpson's 3
rule. Simpson's s rule was obtained because the three unknown
coefficients do, d,, d2 were selected so that the integral approximation would
be exact for any second-degree polynomial. Other approximations can be
obtained as illustrated in the following sections.

6.7 PREDICTOR AND CORRECTOR EQUATIONS

This section applies the method of undetermined coefficients to derive
what are called predictor and corrector equations. There will be nothing
profound about the derivations, but the results will be so useful to us in the
next chapter that their importance will be emphasized by devoting this
separate section to them.

In this section we will first assume that at the locations we
have function values fo,fi,f2,f3 and we want to estimate the integral
fx;f(x)dx. This situation is illustrated (for the normalized variable s) in
Fig. 6.10, which indicates we want to predict the value of the integral
without knowing the value f4.

0 1 2
$

FIGURE 6.10. Extrapolation can be used to obtain a predictor integration equa-
tion.

132 Integration

It is possible to predict the integral without knowing f4 because through
four data values one can pass a third-degree polynomial and use this to
estimate the value of f (x) between x3 and x4. However, instead of actually
finding the third-degree polynomial, we will apply the method of unde-
termined coefficients, which is simpler.

By analogy with the derivation of Simpson's s rule, in this problem the
integral can be approximated in terms of four function values as

f 4

f,ds.` dof0+dif,+d2f2+d3f3

Using the four functions fs = 1, fs = s, fS = s2, f = s3 then yields

l 1 1 1

0 1 2 3

0 1 4 9

0 1 8 27

do

d,

d2

d3

Fl

3.5
37

3

43.75

(6.32)

(6.33)

The above matrix equation can be solved by using the Gauss elimination
method of Chapter 2. The result is do= - 4, d, = ia, d2= - za, d3= a, so
that the predictor equation becomes

Ix°J(x)dxx 249fo+37J,-59f2+55f3). (6.34)
X3

EXAMPLE 6.7

Using xo=0, x,=0.1, x2=0.2, and x3=0.3 for f(x)=ex-1 yields that
fo = 0, f, = 0. 10517, f2 = 0.22140, and f3 = 0.34986. Substituting these values
into the predictor integration formula with h=0.1 produces

I0.4
(ex -

0.3

compared with the analytical answer 0.04197.

We have developed an equation that can be used to predict the value of
fx,f(x)dx without having the value of the function at x4. If the value of
the function f4 is known, then the four function values f,,f2,f3,f4 can be
used to estimate the integral, as illustrated in Fig. 6.11. In the Adams
method described in Chapter 7, an integral of the type shown in Fig. 6.11
will be used to "correct" a "predicted" value; thus the relation derived for
this figure will be called a corrector integration formula.

The method of undetermined coefficients can be used to find the
coefficients in

f,ds.:;dif,+d2f2+d3f3+d4f4. (6.35)
f343

Predictor and Corrector Equations 133

Is

FIGURE 6.11. Interpolation can be used to obtain a corrector integration equation.

Applying the method for fs = 1, fs = s, f, = s2, and fs = s3 yields

1 2 3 4

1 4 9 16

1 8 27 64

d, 1

d2 3.5
37

d3 3
d4 43.75

(6.36)

The solution to this matrix equation is d, = z4, d2= - i4, d3= L9, d4= 24, so24

that the corrector equation becomes

f X4f(x)dxx24(fi-5f2+19f3+9.f4). (6.37)
X3

The corrector equation is more accurate than the predictor equation
because the integration range x3 to x4 is within the region where the
corrector values are specified (see Fig. 6.11), but outside the region where
the predictor values are specified (see Fig. 6.10). That is, the corrector uses
interpolation, while the predictor uses extrapolation. The better accuracy
of the corrector equation is also evident by comparing (6.34) and (6.37).
The predictor equation has the difference 55f3 - 59f2, which is very sensi-
tive to changes in f2 or f3 (because of the large coefficients which are
approximately the same), while the corrector equation is much less sensi-
tive.

More insight into the predictor and corrector equations may be obtained
by considering the coefficients of the various derivatives as weights. For

134

example, reexamine the corrector equation

f T° f (x) dxPL- 24 (9f4+ 19f3-5fz+f.).

Integration

Since the integral is from x3 to x4, it is logical that the derivatives f3 and f4
should have the largest weights.

6.8 GAUSSIAN QUADRATURE2

The integration formulas that have been presented in this chapter were
for equally spaced data. If the data are not constrained to be equally
spaced, then the extra degrees of freedom can be used to give a more
accurate solution. This section will explain how two data pairs can be
located so that a third-degree polynomial can be integrated exactly. A
program, similar to the one developed for Simpson's ; rule, will then be
given and applied.

As mentioned in the next section, higher-order Gaussian-quadrature
programs are possible and in fact widely used. They have the advantage
that, for the same accuracy, they require fewer function evaluations than
an equally spaced evaluation would.

Gaussian quadrature can be developed by generalizing the method of
undetermined coefficients. The generalization will be introduced by con-
sidering the following approximation:

Ju
f,&--d.4 +dbfb. (6.38)

2

The left side of this relation indicates that we want to find an approxi-
mation for integration over two panels. The right side indicates that we
want to express the approximation in terms of two function values: f, and
fb. As usual, there are some coefficients to be determined: da and db.
However, the notation in (6.38) implies there are two more quantities to be
determined: a and b. That is, we have indicated we want to express the
approximation in terms of two function values, but we have not specified
their locations.

It should be emphasized that we are assuming once a and b have been
determined the function values fa and fb will be available. Thus Gaussian
quadrature will only work for continuous functions, not for experimental
data.

There are four unknowns in (6.38): the locations a, b, and the
coefficients da,db. Since there are four unknowns, the approximation for
the integral can be exact for any polynomial which is of third degree or

2Quadrature is another term for integration.

Gaussian Quadrature 135

less. In particular it is exact for the polynomials f = 1, f= = s, fJ = s2, and
fs = s'. Substituting these polynomials into (6.38) yields

da+db=2

adQ+bdb=2

a2da+b2db= 3 (6.39)

a'd0 + b'db = 4.

This is not a linear set of equations, so the techniques derived in Chapter
2 cannot be applied to yield a solution. Some methods for solving nonlin-
ear equations such as these will be mentioned in the next section; here it
will be stated without derivation that a solution to (6.39) is

da=l=dh, a=1-1/V, b=1+1/V. (6.40)

Combining (6.38) and (6.40), and also using the fact that s=(x-xo)/h,
we have

(6.41)

where

f=f(xo+h-h/V_3), (6.42)

fb=f(xo+h+h/V3

EXAMPLE 6.8

Use the Gaussian quadrature formula to estimate where
f(X)=X3+2.

SOLUTION

Since xo = I and x2 = 5, it follows that h = 2, and

fQ=f(1+2-2/V3)=8.2835

fb=f(1+2+2/')=73.717.
Substituting into (6.41) yields 164 as the value of the integral.

Since (6.41) is exact for any third-degree polynomial, the answer to
Example 6.8 must be exact. Recall that Simpson's 1 rule was also exact for
any third-degree polynomial, but it required four function values instead of
two as in Gaussian quadrature.

An integration program can be based on (6.41) and (6.42) by analogy
with the development of the Simpson integration program. That program

136 Integration

applied Simpson's 3 rule to an even number of panels by going from x0 to
x in steps of two panels at a time. Using this approach for Gaussian
quadrature, we can write from (6.41) and (6.42)

n

I
B =xf(x)dx h I f- I+f(x;+h+) . (6.43)

A=xO i=o.2....

A better form for a computer program can be obtained by substituting
xi=A+ih:

n-2

IBf(x)dx.--h I [f(ih+81)+f(ih+82)), (6.44)
A i-0,2....

01C GAUSSIAN QUADRATURE
02 PROGRAM GQ(INPUT,OUTPUT)
03 03 FORMAT(I4,1P,E14.5)
08 REAL INTGRL
10C
11C INITIAL POINT=A FINAL POINT=B
12 PRINT,* A B*
13 READ,A,B
14 PRINT,/,* N INTEGRAL*
18C
19C INITIAL CONSTANTS N,H
21 N=10 $N2=8 $H=(B-A)/10.
23C
24C APPLICATION OF GAUSS. QUAD. (EQ. 6.43)
27 27 DEL1=A+H-H/1.73205 $DEL2=A+H+H/1.73205
28 Z=F(DEL1)+F(DEL2)
29 DO 30 I=2,N2,2
30 30 Z=Z+F(A+I*H+DEL1)+F(A+I*H+DEL2)
32 INTGRL=H*Z
34C
36 PRINT 3,N,INTGRL
40C
41C NEW CONSTANTS N,H
42 N=2*N $N2=N-2
50 GO TO 27
60 END
898C
899 FUNCTION F(X)
900 F=X**3/EXP(X)
950 RETURN
999 END

$H=. 5*H

FIGURE 6.12. A program for Gaussian quadrature.

Suggested Reading In Related Topics

A B

? 0 10

N INTEGRAL
10 5.94038E+00
20 5.93897E+00
40 5.93806E+00
80 5.93799E+00

160 5.93798E+00
320 5.93798E+00

FIGURE 6.13. An application of the Gaussian-quadrature program.

where

137

S1=A+h-h/\ ,

&2=A+h+h/V . (6.45)

A program that implements these equations is shown in Fig. 6.12. This
program is very similar to the one for Simpson's i rule that was shown in
Fig. 6.6 and thus should need no further explanation. Fig. 6.13 shows the
application of the Gaussian quadrature program to f °x3e-Xdx.

6.9 SUGGESTED READING IN RELATED TOPICS

In this chapter we started our investigation of numerical methods for
integration by first considering the trapezoidal rule, which can be obtained
by matching a first-degree polynomial to two data values. Similarly, using
a second-degree polynomial to match three points leads to Simpson's 133
rule, and using a third-degree polynomial for four points leads to Simp-
son's s rule. This process has been continued by other authors. For
example, using a fourth-degree polynomial for five points leads to Boole's
rule. It is not practical to keep extending this approach and use high-de-
gree polynomials to match many points. The reason is the same as the one
mentioned in Section 4.12: increasing the degree of an interpolating
polynomial need not result in a smaller error, and may actually increase it.
Thus, in practice, one uses a low-degree polynomial (e.g., third-degree) to
match a few points and then finds the total integral by adding up a series
of such contributions. That is, one uses composite integration such as
Simpson's 1 rule.

The error analysis that was used in this chapter consisted mainly in
determining the order of the truncation error for a particular process. For
example, for the trapezoidal rule we found that the (global) error was of
the order of h2. This allowed the use of Romberg prediction to improve

138 Integration

trapezoidal results. There are more definitive error statements available for
the various integration rules.' Again using the trapezoidal rule for an
illustration, the truncation error can be approximated as - h2(x -
xo)2f al(e/ 12, where f (2)(t) is the second derivative at some point which is
between x0 and x,,. However, since the location of the point is unknown,
this formula conveys little more information than the statement that the
error is of the order of h2. Because the error is proportional to h2, we know
that by reducing h we can make the error arbitrarily small (until roundoff
error is larger than truncation error).

For special types of integrals, more efficient algorithms have been
developed than the general-purpose procedures. One important algorithm,
Filon's method, treats oscillatory functions of the form fbf(x)sinxdx. In
fact, the Gaussian quadrature method as presented in this chapter was very
elementary; the theory has been extended to treat many different types of
special functions.

The Gaussian procedure developed in this chapter chose the location of
two function values fa,fb and their "weights" da,db. The resulting approxi-
mation was exact for any third-degree function. If n function values and n
weights were used, then the resulting approximation would be exact for
any (2n - 1)-degree polynomial. This is a factor of 2 better than if the
function locations were constrained to be equally spaced and accounts for
the widespread popularity of the Gaussian quadrature method.

Finding the value of the function locations and their weights requires the
solution of some nonlinear equations. One way these equations could be
solved would be to use optimization techniques as outlined in Chapter 8.
However, a more efficient solution is based on the use of Legendre
polynomials. It should be emphasized that once the locations and weights
have been obtained, they can be tabulated and the average user need never
worry about solving the nonlinear equations. Stroud and Secrest (1966)
provide tables containing values of the locations and weights. It should be
noted that these tables (and most of those in other books) are for the
normalized integral f'__ if (x) dx.

If the integral is of a special form, often other polynomials are more
useful than the Legendre polynomials. If the integral is of the form
foe-xf(x)dx, then Laguerre polynomials are used. Hermite polynomials
are used for f °_° e - 'f (x) dx, and Chebyshev polynomials are used for

f0

0

f ix)J dx.
ac

x2

30ne way of deriving these error estimates [e.g. see McCormick and Salvadori (1965)) is to
use a Taylor series expansion and include the remainder term which is due to truncation.

Problems 139

Besides these special polynomials, special transformations are often useful
if the limits of integration are infinite or if there are singularities (locations
at which division by zero is encountered).

The Gaussian quadrature method did not require equally spaced data.
Adaptive quadrature routines (Forsythe 1977) also do not require equally
spaced points. Such routines use small distances between the points where
the integrand varies rapidly and larger distances elsewhere. This can
substantially reduce the number of points which are necessary to achieve
an accurate approximation of the integral.

PROBLEMS

6.1 Apply the trapezoidal rule to evaluate J27 (2x+3)dx using just one
panel. Compare with the analytical answer.

6.2 Integrate x2-2 from 0 to 4 by using the trapezoidal rule with four
panels.

6.3 Apply the trapezoidal rule to evaluate f e -X dx, using four panels.
Compare with the analytical answer.

6.4 Use the trapezoidal program of Fig. 6.3 to evaluate Joe-x2dx. Stop
the calculations when the answer is accurate to three significant
figures.

6.5 Use the trapezoidal program to evaluate Joe -2xdx for ten panels and
for twenty panels. Find the error for these answers by comparing with
the analytical answer. Verify that the error is proportional to h2.

6.6 Integrate the following data from x=1 to x=2: f(l)=1, f(1.2)=2,
f (I.6) = 3, f (l .8) = 3, f(2) = 2.5. In this problem the data are not evenly
spaced, but the trapezoidal rule can still be applied to each panel and
then the individual results can be added to yield the overall answer.

6.7 The data in Problem 6.6 would be evenly spaced if we had f(1.4).
(a) Interpolate with a fourth-degree polynomial to estimate f(1.4).
(b) Apply the trapezoidal rule for evenly spaced data to estimate

f 2f(x)dx.
6.8 Modify the trapezoidal program of Fig. 6.3 so that it can be used for

discrete data. This can be done as follows:
(a) Input data rather than calculate them via a subroutine.
(b) Input a value for N instead of setting it equal to 10.

140 Integration

6.9 Apply the program that was developed in Problem 6.8 to integrate the
following data from x= 1 to x=3: f(l)=1, f(1.25)=1.5, f(1.5)=1.6,
f(2) = 1.6, f(2.25) = 1.4, f(2.5)= 1, f(2.75) = 0, f(3) = -2.

6.10 Problem 6.2 integrated x2 - 2 from 0 to 4 by using the trapezoidal rule
with four panels. The answer was not exact. In this problem evaluate
the same integral by using Simpson's 3 rule with two panels. Note
that this result will be exact because Simpson's rule is exact for any
second- (or third-) degree function.

6.11 Repeat Problem 6.3 with Simpson's rule.

6.12 Repeat Problem 6.4 with Simpson's rule.

6.13 For two panels, Simpson's rule is This is
exact for any second-degree function. Any third-degree function can
be written as f,=(second-degree)+cs3, where c is an arbitrary con-
stant. This implies that if Simpson's rule is exact for the function s3, it
must be exact for every third-degree function. Show that Simpson's 3
rule is exact for fs = s3.

6.14 Show that Simpson's 1 rule applied to j
u
fs ds does not give the exact

answer for fs = s4.

6.15 Show that Simpson's rule applied to (Usds does not give the exact
answer for f = s4.

6.16 The following data represent the sine function: f(0)=0, f(0.1)=
0.0998, f (0.2) = 0.1987, f (0.3) = 0.2955, f (0.4) = 0.3894, f (O.5) = 0.4794,
f (0.6) = 0.5646.

(a) Use Simpson's rule to estimate the integral from 0 to 0.6.

(b) Use Simpson's rule to estimate the integral from 0 to 0.6.

6.17 For an odd number of panels, Simpson's s rule can be used for the
first three and Simpson's 3 rule for the rest. Use this technique to
integrate the following data: f (1.8) = 6.05, f(2.0)=7.389, f(2.2)=
9.025, f (2.4) =11.023, f (2.6) =13.464, f (2.8) = 16.445.

6.18 The complete elliptic integral of the first kind is defined as

K(k)= f"12
(I - k2sin2x)-112dx.

0

Use the program in Fig. 6.6 to find k(0.5).

6.19 The elliptic integral u(190°, 0.5) was found in Section 4 to be equal to
3.5462. An alternate method of calculating this is to use

u(190°,0.5)=2K(0.5)+u(10°,0.5),

where K (O.5) is the complete elliptic integral as defined in Problem

Problems 141

6.18. Use the Simpson integration program to evaluate u(10°,0.5),
and combine this with 2K(0.5) to yield a value for u(190°,0.5).

6.20 The elliptic integral of the first kind can also be written as

u(q,k)_ fs,ni[(1-z2)(l-k2z2)]
11ZdZ.

Use the program in Fig. 6.6 to evaluate u(10°,0.5).

6.21 Problem 6.3 applied the trapezoidal rule to evaluate f' e _ x dx by
using four panels. The result was 0.23375. In this problem, also apply
the trapezoidal rule for two panels and then use Romberg prediction
to obtain a better answer.

6.22 What is the Romberg prediction formula for Simpson's 1 rule?
6.23 Romberg prediction is not restricted to integration processes; it can

also be applied to differentiation. As an illustration of this use,
evaluate f(x)=2+3x+x° at x=1, 1.1, and 1.2. Use f(1) and f(1.1) to
estimate the derivative at x = 1. Also use f (l) and f (I.2) to estimate
the derivative at x = 1. Then use Romberg prediction to provide a
better estimate.

6.24 Apply the method of undetermined coefficients to derive the
trapezoidal rule.

6.25 Apply the method of undetermined coefficients to derive Simpson's
rule.

6.26 Use the predictor equation to estimate f2.5 (2+4x3)dx by choosing
xo = 0 and h = 0.5. Compare the results with the analytical answer.

6.27 Equation (6.34) expresses a function in terms of four function values,
so it should be exact for any third-degree polynomial. Problem 6.26
was one illustration of this fact. Show that the predictor equation is
not exact for A = s°.

6.28 Use the predictor equation to estimate J;:Sxadx by choosing xo=0
and h = 0.5. Compare the result with the analytical answer.

6.29 Assume that the three equally spaced data points xI,x2,x3 have
function values fj,f2,f3. Use the method of undetermined coefficients
to show that

f `4f(x)dxz43 [2f,-f2+2f3].
XO

6.30 Use the result of the previous problem to estimate foe"dx. (Hint: For
this problem, x, =0.5, x2=1, x3=1.5.) Compare your answer with the
exact answer.

142

6.31 The approximation

Integration

f X'f(x)dxz 3h [2f1-f2+2f3]
to

is exact for any second-degree polynomial. Show that it is also exact
for f(x)=x3. [Hint: It is equivalent (and easier) to show instead that
it is exact for the normalized problem f =s3.] Note that the result of
this problem implies that the relation is exact for any third-degree
polynomial.

6.32 In Problem 6.27 the predictor equation was used to integrate f = s4
from s = 3 to s = 4. The answer is 147.83, compared to the analytical
answer of 156.2. Use the corrector equation and see whether it is
better or worse than the predictor's result.

6.33 Apply Gaussian quadrature to evaluate f 2 e - ` dx, using four panels.
Compare with the analytical answer.

Chapter Seven

Solution of Differential Equations

7.1 INTRODUCTION

Very often the laws describing natural phenomena are most easily ex-
pressed in terms of differential equations. For example, the motion of a
pendulum might be described by

d2O + gsin9=O, (7.1)
dt2 1

where B is the angular displacement, g the gravitational constant, and I the
length of the pendulum. Or the variation of voltage in an electrical circuit
might be described by

2

C dtv + R dt
+ L = cos 2t, (7.2)

where v, R, L, and C represent voltage, resistance, inductance, and
capacitance, respectively.

The above differential equations are easy to solve, and one need not
resort to numerical methods.' Later in this chapter, we will encounter other
differential equations that are not so easily solved. Comparing our numeri-
cal solutions with analytical solutions will allow us to simultaneously
develop confidence in the numerical methods and also become familar
with some well-known differential equations. Of course, the purpose of the
numerical methods is not comparison with known results, but the solution
of problems for which no analytical results have been found.

As in the preceding chapters, sample programs are included in this one
about differential equations. These programs are adequate for many prob-
lems, but again it should be mentioned that experts have written far better
programs for solving differential equations than the novice can. If the
reader anticipates developing a sophisticated program he will be well
advised to consult the literature or someone in a computation center.

'The pendulum differential equation is only easy to solve if the small-angle approximation
sing=B is made.

143

144 Solution of Differential Equations

7.2 CLASSIFICATION OF DIFFERENTIAL EQUATIONS

There are two types of differential equations, ordinary and partial. We
will restrict our attention to the type that has only one independent
variable, the ordinary differential equation-for example,

3

d22 +xy dX +y2=6x. (7.3)
dx

The order of the highest derivative determines the order of the differential
equation, while the exponent of the highest derivative determines the
degree. The above differential equation is of second order and third degree.

A linear differential equation is one which has only first-degree deriva-
tives and a first-degree dependent variable. For example,

d3 dx3 y +6y + (sinx)y = tanx (7.4)
dx2 dx2

is a linear differential equation. For a linear differential equation it can be
shown that if yi(x) is a solution and y2(x) is a solution, then the sum
y,(x)+y2(x) is also as solution.

The methods we study in this chapter will initially be discussed in terms
of first-order differential equations. However, this will not be restrictive,
because we will learn later how to change a higher-order differential
equation into a set of first-order differential equations which can then be
solved.

7.3 EULER METHOD

A general form for a first-order differential equation is

d =f(x,y)

This implies that, in general, the first derivative (slope) is a function of the
dependent variable y as well as the independent variable x. Equation (7.5)
is simple enough in appearance, but unfortunately there is no general
method for obtaining an analytical solution.

For some special cases of (7.5), analytical solutions can be obtained.
One such case is if the variables are separable, as in

dy 2y312

dx x2

Euler Method 145

It can be shown that the solution to this equation is
fy - (I+Cx llz. (7.7)

The above solution contains an arbitrary constant C, which can be
evaluated if an initial condition is given. For example, if yo=1 at xo= 1,
then the constant must be C=O. From the analytical answer y=x2 one
can plot a continuous curve to represent the solution. This is not possible
for a numerical solution. As will be demonstrated next for the Euler
method, a numerical solution yields answers only at discrete points.
Because the Euler method is simple and easy to understand, it will serve as
a good introduction to the numerical solution of differential equations. We
will eventually study much more efficient algorithms.

Given the initial point xo,yo, the slope there can be calculated from
dy/dx = f (xo,yo). As illustrated in Fig. 7.1, one can proceed from xo,yo in
the direction of the slope until the abscissa is xo+ h = x,, where the
solution will be y, = yo+ hf (xo,yo). At this new point x,,yI the new slope
f(x,,y,) can he calculated, and one can proceed in that direction until the
abscissa is xo+2h=x2. This procedure can be continued indefinitely by
using the equation

yr+ I =yr + hf (x1,y). (7.8)

x

FIGURE 7.1. A graphical interpretation of the Euler method.

146 Solution of Differential Equations

EXAMPLE 7.1

Apply the Euler method to the first-order differential equation

dy 2y3/2

dx
= x2 =f(x,y)

to estimate y (2). Use y (1) = 1 as the initial value, and choose h = 0.25 as the
step size.

SOLUTION

From (7.8), y 1 = yo + hf (xo,yo). For this problem, at the initial point
x0 = I the value of y was given as yo= 1. Evaluating the function for these
values yields f (1, 1) = 2. Substituting these values into the Euler equation
yields

y1=1+0.25x2=1.50
This completes one cycle of the Euler solution.

The next cycle sets i = I in (7.8) to yield y2 =y1 + hf (x1,y,). Using
x1= 1.25, y1=1.50, f(1.25,1.50)=2.3515 produces Y2 = 2.089.

Advancing the solution to x3= 1.75 yields y3=2.758, and finally one
more cycle yields that at x4 = 2, y4 = 3.506.

The numerical answer found in Example 7.1 was 3.506, while the analytical
answer is 4. The numerical accuracy would have been better if the step size
h had been smaller.

All the numerical methods that are discussed in this chapter will have a
step size h which influences the accuracy and speed of the solution to the
differential equation. The step size should be made small enough so that
the answer has the desired accuracy, but large enough so that an unneces-
sary number of calculations is not performed.

Care must be taken that the step size is not too large because the errors
are cumulative, as illustrated in the previous example. That is, after one
cycle of the Euler method the result was y, = 1.50, while the analytical
value is y(1.25)= 1.5625. This error affected the next value y2, since we
used y2 =yl + f (x,,y 1). Similarly, the error in y2 affects the value found for
y3, etc. In general, if h is too large, by the time the last point is reached the
answer may be meaningless.

Numerical methods will normally be applied when one does not have an
analytical solution. In that case the accuracy of the solution can be
checked by solving the problem twice, once for a step size of h and again
for a step size of h/2. If the answers do not agree to the desired number of
significant figures, then the step size can usually be halved until they do.
This will be demonstrated in the following sections.

Stab llty Analysis 147

7.4 STABILITY ANALYSIS

The step size can usually be halved until the solution is sufficiently
accurate; however, this is not always possible. Some algorithms are un-
stable-even if the step size is infinitesimally small there may be errors that
grow exponentially as the solution is advanced.

This section will demonstrate the instability of one particular numerical
method. It will also indicate how stability can be investigated for other
numerical methods. However, so that the reader does not imagine that all
numerical methods of solving differential equations are unstable, it should
be emphasized that this is not the case. The following sections will
introduce the Runge-Kutta method and the Adams method, both of which
can be stable numerical methods. They are also fairly efficient procedures
and thus are quite popular algorithms.

The unstable algorithm that will be investigated in this section is based
on an attempt to improve the Euler method, which we recall is described
by

y;+S=y,+hf(x,,yr). (7.9)

This method was derived by using (y,+, -y;)/h as an approximation to the
first derivative. The central-difference approximation is more accurate, and
can hopefully be used to improve the Euler method. Applying the central
difference equation (5.21) yields

y,+ i =y,- i +2hf (x;,y,). (7.10)

As noted in Chapter 5. the standard approximation for the first deriva-
tive results in an error that is proportional to h, while the central-difference
approximation results in an error that is proportional to h2. Thus we would
expect that (7.10) would yield more accurate results than (7.9). To investi-
gate this assumption for a particular example, consider the following
differential equation:

y (x)= -y(x), y(0)=2. (7.11)

Its analytical solution is y(x)=2e r, which implies y(l)=0.73576 and
y (10) = 9.0800 x 10 5. These values should be compared with the results
shown in Table 7.1. This table indicates the effect of reducing the step size
h for Euler's method and for the central-difference method. In the table, YE
is the Euler answer and ycn is the central-difference answer.2

2The central-difference method of (7.10) requires two values (y;_,,y;) to be available
before y;+, can be calculated. Usually just one "initial" value is given lyo=y(xo)I. A second
value can be obtained by applying Euler's method [y, = yo+ hf (xo,yo)].

148 Solution of Differential Equations

Table 7.1
An Illustration of numerical Instability

H YE(1) YCD(1) YE(10) 3`cD(10)

0.1 0.69736 0.74862 5.3123 x 10-' 107.51

0.01 0.73206 0.73589 8.6342X 10 - 5 1.1011

0.001 0.73539 0.73576 9.0347 x 10-' -1.0934x 10-2
0.0001 0.73572 0.73576 9.0754 x 10-' -1.9353 x 10
0.00001 0.73576 0.73576 9.0795 x

10-' 8.9689 x 10-5

We will first compare the solutions from the two numerical methods
with the analytical answer y(l)=0.73576. For any particular step size the
central-difference method was more accurate than Euler's method. For
example, with h =0.001 the central-difference answer agrees with the
analytical answer to five significant figures. On the other hand, yE(1)=
0.73539 agrees only to three significant figures. However, reducing the step
size to 0.00001 caused the Euler answer to be accurate to five significant
figures.' This is as would be anticipated, since a smaller step size causes
less truncation error.

We will next compare the solutions from the two numerical methods
with the analytical answer y(10) = 9.0800 x 10- 5. This time the Euler
answers are more accurate than the corresponding central-difference
answers; in fact, for large step sizes the central-difference answers are
meaningless. The source of the trouble is in the accumulation of truncation
error. In the central-difference method the errors grow exponentially as the
independent variable x is increased,' and the method is thus said to be
unstable. Reducing the step size h can alleviate this behavior, as it reduces
the truncation error. However, as the step size is reduced, more calcula-
tions must be performed before the end point is reached; thus there will be
more chance for roundoff error. In fact, if the step size is reduced too
much, the roundoff error may become worse than the truncation error.-5

As is indicated by Table 7.1, whether or not a numerical method is
stable for a particular problem can be determined by seeing whether or not
the answer changes significantly as the step size is reduced. An alternative
stability investigation can be performed by solving the difference equation
that corresponds to that problem. This will be illustrated next for Euler's
method and for the central-difference method.

'For this same step size the central-difference answer was accurate to nine significant
figures.

4This will be demonstrated in (7.21).

'The optimum step size would depend on the computer, the algorithm, and the problem.

Stability Analysis 149

Euler's method is described by

Y;+, =Y; + hf (xrY;) (7.12)

For the differential equation y'(x)= -y(x). Euler's equation becomes the

difference equation

Y;+i =Y;-hy1. (7.13)

It thus follows that

y,=(1-h)Yo

Y2=(I -h)y,=(1-h)2yo (7.14)

Yr=(I-h)'yo.

For example, if h=0.1, yo=2, and x=1 (i=10), then y,o=2(0.9)10=
0.69736, which agrees with the result in Table 7.1.

The central-difference method is described by

Y;+1=Y;-, +2hf(x;,y;). (7.15)

For the differential equation y'(x)= -y(x) the central-difference equation
becomes the difference equation

Yr+, =Y;-, - 2hy;. (7.16)

As noted previously, this requires values for yo and y, before the equation
can be applied. We will again assume that y, is obtained from the Euler
solution, i.e., y, =(1- h) yo. It thus follows that

Y2 =Yo-2hy, = (1 -2h+2h2)yo

y3=y1-2hy2=(1-3h+4h2-4h3)yo (7.17)

Unfortunately, these equations are difficult to generalize. We can cir-
cumvent this problem by solving the linear difference equation (7.16) by
assuming6'' the solution is of the form y; =A' and seeing what this implies
about A. Substituting y; = A' into (7.16) yields

A'= I - 2hX. (7.18)

The solutions to this quadratic equation are

A,.2=-h±V'1+h2. (7.19)

6This is analogous to the assumption y = e"` that would be made for a homogeneous linear
differential equation.

7See Section 6.2 of Conte and deBoor (1972).

150 Solution of Differential Equations

Because (7.16) is a linear difference equation, the general solution is found
by taking a linear combination of yi =A and y, =A'. That is,

y,=C,(VI+h2 -h)'+C2(-1)'(Vl+h2 +h)'. (7.20)

The constants C,, C2 can be found in terms of yo and yI= (I - h)yo. This
yields

Yi=

2

(l+
I+h2

-h)'yo

+(2 1)'(l-
l)(vi +h2 +h)'yo. (7.21)

+ h2
For example, if h = 0. 1, yo = 2, x =1 (i = 10), then

Yio=(1+ I)(vioT -0.1)10
V1 01

+(1- 1)01.01 +0.1)10 (7.22)
X1.01

= 0.73515 + 0.01347 = 0.74862,

which agrees with the result in Table 7.1.
We are now in a position to see why the central-difference solution is

unstable. The second term in (7.21) contains (1 + h2 + h)'; thus it raises
to the power i a term which is greater than unity. Therefore as i ap-
proaches infinity (i.e., as x gets large), the second term also approaches
infinity. This is very unfortunate, since the correct solution is y=2e-x,
which approaches zero as x becomes large.

To obtain more insight into this instability we can rewrite (7.21) making
the assumption that h is much less than unity:

Y;"(l-h)'y0+ 4
(l+h)'yo. (7.23)

This should be compared with the Euler solution, which was y, =(I - h)'y0.
Thus the first term in (7.21) represents the desired solution, and the second
term represents an extraneous solution which becomes larger and larger
and finally dominates the desired solution.

We have just investigated the stability of Euler's method and the
central-difference method for the differential equation y'(x)= -y(x). The
same approach could have been used for another differential equation or
another algorithm (e.g., for the Runge-Kutta method which is described in
the next section). In general, an algorithm that approximates the solution

Modified Euler Method 151

of a differential equation does so by replacing the differential equation
with a difference equation. In the difference equation the solution is
advanced by using previous values. These previous values will contain
errors (because of poor starting data, roundoff error, or truncation error),
and thus the future calculations will also contain errors. If these errors
grow exponentially then the algorithm is unstable.

A detailed stability analysis will not be performed for each of the
algorithms that is introduced in the remaining part of this chapter. How-
ever, to allay any fears this section may have generated about their
stability, it should be noted that one of the reasons the algorithms in the
following sections are popular is their good stability characteristics.

7.5 MODIFIED EULER METHOD

The Euler method for solving differential equations is not very popular,
because (for the same step size h) it is less accurate than most other
methods. Insight into its accuracy can be obtained by realizing that it
yields exact solutions for first-degree functions, but not for second-degree
ones. From Section 1.5, this implies that the error at each step is of the
order of h2, so that the global error is of the order of h; thus Euler's
method is said to be a first-order method.

In this section we will study the modified Euler method, which uses an
additional function evaluation at each step and is thus a second-order
method instead of a first-order one. In addition to improved accuracy,
another reason for studying the modified Euler method is that it uses a
predictor-corrector approach which will be very important in other sec-
tions of this chapter. Also, the Runge-Kutta method of the next section
can be considered to be a generalization of the modified Euler method.
The Runge-Kutta method is a practical and accurate approach to solving
differential equations. In fact, it can be shown to be exact for fourth-de-
gree functions, so that its global error is proportional to the fourth power
of h: the Runge-Kutta method is fourth-order.

As illustrated in Fig. 7.2, the Euler method predicts a new value of y by
using the derivative at x.y. That is,

yp=y(x)+hd,, (7.24)

where d, -f (x,y) is the derivatives at x.y. The derivative at this predicted
value of y is

yp=f(x+h,yp)=d2. (7.25)

'Throughout this chapter, the symbol d will be used for derivatives.

152

Y(X)

Solution of Differential Equations

FIGURE 7.2. A value of y (x + h) can be predicted by assuming a constant
derivative dt=J(x,y).

The predicted value yp was found in (7.24) by assuming a constant slope
d,; but as is evident in Fig. 7.2, the slope will usually not be constant. A
more accurate value for y(x+h) can be obtained by using the average
value of the derivatives d d2 to correct the predicted value9

y, =y(x) +0.5h(d, + d2). (7.26)

Equation (7.24) is termed a predictor equation; given a valuey(x), it is
used to predict the value y(x+h). For this predicted value, the slope can
be found by applying (7.25). Finally, this predictor slope can be used to
provide a better estimate of y(x+h), which is given by the corrector
equation (7.26).

EXAMPLE 7.2

For dy/dx=2x-y=f(x,y) and the initial condition y(1)=1, estimate
y(2) by using the modified Euler method with h = 0.25.

SOLUTION

Applying (7.24), y,, = 1 + 0.25f (1, 1) = 1.25. Next (7.25) yields d2 =
f (1.25,1.25) = 1.25. Substituting these values into (7.26) gives yc =1.28125.

The modified Euler method can now be applied again, except this time

'This equation is merely a restatement of the trapezoidal rule (6.1). For this reason, the
modified Euler method is also called the trapezoidal method.

Runge-Kutta Method 153

with x,y = 1.25,1.28125. This yields a predictor value of 1.5859 and a
corrector value of 1.6104.

Applying the modified Euler method to x,y =1.5,1.6104 produces x,y =
1.75,1.9768, and finally one more application gives x,y = 2.00, 2.3725.

The modified Euler method in the above example yielded an answer of
2.3725, compared to the analytical answer 2.3679. On the other hand,
without modification the Euler method would yield 2.3164 (see Problem
7.1). Thus, the modification certainly improved the result, but the next
method is even more accurate.

7.6 RUNGE-KUTTA METHOD

As a preliminary to the Runge-Kutta method we will consider a refine-
ment of the modified Euler method. Instead of going from x to x+h
directly, we will first go to x+0.5h by predicting and correcting, then we
will continue to x + h by again predicting and correcting. The predicted,
corrected pair at x+0.5h will be denoted as yp,,y,,, and the pair at x + h
will be denoted as Yp2'Yc2

EXAMPLE 7.3

For dy/dx=2x-y=f(x,y) and the initial condition y(l)= 1, estimate
y(1.5) by using the above refinement of the modified Euler method with
h = 0.5.

SOLUTION

To advance the solution to x+0.5h, we apply (7.24) to (7.26) as follows:

y'=d,=f(x,y)=f(1,1)=1,
yp, =y + 0.5h d, =1 + 0.25 =1.25,

YP, =d2=f(x+0.5h,)p,)=f(1.25,1.25) = 1.25,

yc, =y +0.25h(d, + d2) = 1.28125.

Thus, half way to x + h the solution is 1.25,1.28125. The modified Euler
method can next be applied to this point and be used to advance the
solution to x + h as follows:

y", = d3 =f (x +0.5h,yc,) =f (1.25,1.28125) = 1.21875,

Yp2 =Yc, + 0.5h d3 = 1.58594,

Yp2=d4=f(x+h,Yp2)=f(l.5,1.58594)=1.41406,

yc2 =Y,, + 0.25 h (d3 + d4) =1.60992.

154 Solution of Dlfhrentlal Equations

The procedure used in the above example is summarized by the follow-
ing set of equations:

y'= d, =f (x,),), yp, =y+0.5hd,,

yp,=d2=f(x+0.5h,yp,), yc,=y+0.25h(d,+d2),
(7.27)

y,t=d3=f(x+0.5h,yct), Yp2=Yc1+0.5hd3,

Yp2=d4=,/ (x+h,yp2), Y,2=yc1 +0.25h(d3+d4).

Substituting the expression for yc, into the expression for yc2 allows us to
approximate y (x + h) as

y (x + h)zy + 0.25h(d, + d2 + d3 + d4). (7.28)

This equation is very similar to the modified Euler equation (7.26), except
instead of averaging two derivatives this one averages four derivatives.

Recall that d, and d4 are estimates of the derivative at x and x + h
respectively, while d2 and d3 are both estimates of the derivative at the
midpoint x+0.5h. Equation (7.28) weights all these derivatives equally,
while the Runge-Kutta method can be viewed as weighting them differ-
ently. Actually, there are many different Runge-Kutta methods. The most
popular one weights the derivatives at the midpoint twice as heavily as
those at the end points, that is,

y(x+h)xy(x)+h(d,+2d2+2d3+d4)/6. (7.29)

Also, the Runge-Kutta method does not use the same values for d3 and
d4 as those given in (7.27). Instead, in the expression for d3, yc, is
approximated as10 y +0.5h d2. Similarly, in the expression for d4, Yp2 is
approximated as y + h d3. Thus, in the Runge-Kutta method the d's are
written asil

d, =f (x,Y),

d2=f(x+0.5h,y+0.5hd,),
d,= f (x+0.5h,y+0.5hd2),

d4=f(x+h,y+hd3).
(7.30)

EXAMPLE 7.4

For dy/dx=2x-y=f(x,y) and the initial condition y(l) = 1, estimate
y(2) by using the Runge-Kutta method with h=0.5.

1°This is obtained by using d,xd2.
"Instead of the constants d,, most texts use constants k;=hd;. The notation d; was choosen

here to emphasize that the constants are derivatives.

Rungs-Kutta Method 155

SOLUTION

Applying (7.30) yields d,=I, d2=1.25, d3 =1.1875, d4 =1.40625. Sub-
stituting these values into (7.29) produces y (l.5) = 1.60677. This completes
one cycle of the Runge-Kutta method.

The value for y (l.5) can now be taken as the initial value and (7.30)
applied again to yield d, = 1.39323, d2=1.54492, d3=1.50700, d4=1.63973.
Substituting these values into (7.29) produces y (2) = 2.3682.

The Runge-Kutta method was applied in this example to yield an
answer of 2.3682, compared to the analytical answer 2.3679. Since the step
size was chosen as 0.5, the Runge-Kutta method needed two cycles to
reach x = 2. For each of these cycles the function f(x,y) had to be
evaluated four times (once for each of the d;); thus, there were a total of
eight function evaluations.

O1C RUNGE-KUTTA METHOD
02 PROGRAM RK(INPUT,OUTPUT)
03 03 FORMAT(F8.2,1P,E14.5)
10C
11 PRINT,*H*, $READ,H
12 PRINT,/,*INITIAL VALUES*,/,* X0 YO*
13 READ,X,Y
15 PRINT,/,* X Y*
22C
23C FIND D1,D2,D3,D4 (EQ. 7.30)
31 31 D1=F(X,Y)
32 D2=F(X+.5*H,Y+.5*H*D1)
33 D3=F(X+.5*H,Y+.5*H*D2)
34 D4=F(X+H,Y+H*D3)
35C
36C FIND Y(X+H) (EQ. 7.29)
37 Y=Y+H*(D1+2.*D2+2.*D3+D4)/6.
39C
40C ADVANCE SOLUTION
41 X=X+H
42 PRINT 3,X,Y
78 GO TO 31
99 END
8980
899 FUNCTION F(A,B)
900 F=-(2.*B*ALOG(B))/A
950 RETURN
999 END

FIGURE 7.3. A program for the Runge-Kutta method.

156 Solution of Differential Equations

The modified Euler method was applied to the same problem in Exam-
ple 7.2 and produced an answer of 2.3725, compared to the analytical
answer 2.3679. Since the step size was chosen as 0.25, the modified Euler
method needed four cycles to reach x=2. For each of these cycles the
function f(x,y) was evaluated twice; thus, this also had a total of eight
function evaluations.

Since the number of function evaluations is a good indication of the
computer time, the above example demonstrates that the Runge-Kutta
method is much more efficient than the modified Euler method. Because
of its efficiency, the Runge-Kutta method is widely used in computer
programs that numerically solve differential equations.

A program for the Runge-Kutta method is given in Fig. 7.3.

EXAMPLE 7.5

For dy/dx= -(2ylny)/x and the initial condition y(1)=e2, find y(2)
accurate to four significant figures.

SOLUTION

Results obtained by using the Runge-Kutta program are shown in Fig.
7.4. A step size of h = 0.2 was tried first and yielded y(2).; 1.6504. Reduc-
ing the step size by a factor of 2 to h=0.1 then produced y(2)mt 1.6489,
while reducing it by another factor of 2 to h = 0.05 yielded y(2)., 1.6487.
Comparing the last two answers, we can conclude that to four significant
figures y (2) = 1.649.

7.7 ADAMS METHOD AND AUTOMATIC ERROR CONTROL

Given an initial value y(x), the Runge-Kutta method requires four
function evaluations to extend the solution toy (x + h). The Adams method
is just as accurate as the Runge-Kutta method and only needs two function
evaluations per cycle. However, the Adams method needs more data than
are contained in the initial conditions, that is, it is not "self-starting". As
we will shortly see, the Runge-Kutta method can be used to advance the
solution a sufficient number of times so that the more efficient Adams
method can then take over.

In Section 6.7 the method of undetermined coefficients was applied to
yield the following predictor integration formula:

f X4f(x)dx;t 24 9fo+37fi -59f2+55f3). (7.31)
X3

Adams Method and Automatic Error Control

H ? .1

INITIAL VALUES
X0 Y0

? 1 7.38906
H ? .2

INITIAL VALUES
X0 Y0

? 1 7.38906

X Y

1.20 4.01897E+00
1.40 2.77961E+00
1.60 2.18753E+00
1.80 1.85615E+00
2.00 1.65036E+00

(a)

157

X Y
1.10 5.22294E+00
1.20 4.01117E+00
1.30 3.26616E+00
1.40 2.77478E+00
1.50 2.43278E+00
1.60 2.18449E+00
1.70 1.99802E+00
1.80 1.85408E+00
1.90 1.74039E+00
2.00 1,64886E+00

(b)

H ? .05

INITIAL VALUES
X0 Y0

? 1 7.38906

X Y
1.05 6.13534E+00
1.10 5.22212E+00
1.15 4.53715E+00
1.20 4.01044E+00
1.25 3.59668E+00
1.30 3.26560E+00
1.35 2.99638E+00
1.40 2.77435E+00
1.45 2.58896E+00
1.50 2.43245E+00
1.55 2.29900E+00
1.60 2.18422E+00
1.65 2.08470E+00
1.70 1.99780E+00
1.75 1.92143E+00
1.80 1.85390E+00
1.85 1.79387E+00
1.90 1.74024E+00
1.95 1.69211E+00
2.00 1.64873E+00

(c)

FIGURE 7.4. An application of the Runge-Kutta program.

158 Solutlon of Diflerendal Equations

We can use this relation to predict a solution to the first-order differen-
tial equation

d =f (x,Y)

Integrating from x3 to x4 yields

(7.32)

Y4=Y3+ f X4f(x,y)dx. (7.33)
X3

Comparing this with (7.31), we see that y4 can be predicted by

Y4p=Y3+ 24(-9fo+37f,-59f2+55f3). (7.34)

To use this predictor equation we must have y(x) at four points. That is,
we must have the initial value yo=y(xo) and the next three values y1, y2,
and y3 so that we can calculate the derivatives fo, f f2, and f3. Given an
initial value yo, the next three values can be calculated by using the
Runge-Kutta method; then the value y4 can be predicted by using (7.34).

From the predicted value y4p a predicted derivative fop can be evaluated.
This predicted derivative can then be used in the corrector equation which
was derived in Section 6.7 to yield

Y4,r =Y3 + 24 (fI - 5f2 + 19f3 + 9f4p). (7.35)

This corrected value y4r is assumed to be an accurate estimate of the
value of y (x + 4h). Thus, we can now calculate the derivative f4. From the
value y4 and the derivatives f1, f2, f3, f4 the value y5 can first be predicted
and then corrected. In this manner the Adams method can be used to
advance the solution indefinitely.

EXAMPLE 7.6

For dy / dx = 2x - y =f (x,y) and the initial condition y(1)= 1, estimate
y(3) by using the Adams method with h =0.25.

SOLUTION

Table 7.2 contains data obtained for this solution. The Runge-Kutta
method was used to obtain y(1.25), y(l.50), and y(1.75). The predictor
equation of (7.34) then gave yp = 2.36810. The derivative was evaluated at
this point, and the corrector equation of (7.35) yielded y(2.00) = 2.36786.
This completes one cycle of the Adams method; the next cycle yielded
y (2.25) = 2.78646, etc.

Adams Method and Automatic Error Control 159

Table 7.2

x Y f(X,Y) Yy f(X,Yy)

1.00 1.00000 1.00000
1.25 1.27881 1.22119
1.50 1.60654 1.39346
1.75 1.97238 1.52762 2.36810 1.63190
2.00 2.36786 1.63214 2.78666 1.71334
2.25 2.78646 1.71354 3.22322 1.77678

2.50 3.22308 1.77692 3.67384 1.82616

2.75 3.67372 1.82628 4.13537 1.86463

3.00 4.13528

One is not normally interested in six significant figures, but there is a
reason Table 7.2 was made that detailed: it allows the predicted value y, to
be compared with the corrected value y. For example, the first predicted
value was 2.36810, and the corrected value was 2.36786, which differs by
0.00024. On the other hand, the last predicted value was 4.13537, and the
corrected value was 4.13528, which differs by 0.00009.

The predicted value can be made arbitrarily close to the corrected value
by choosing h small enough. If the predicted value and corrected value are
extremely close, then the solution will be very accurate, but there is a price
for this-a small step size implies many cycles of the Adams method must
be performed before the desired value of x is reached.

A very important property of a predictor-corrector technique such as the
Adams method is that it allows for automatic error control. If the predicted
value is not close enough to the corrected value, then the step size can be
reduced, or if they are closer than necessary, then the step size can be
increased.

A program that incorporates automatic error control into the Adams
method is shown in Fig. 7.5. As indicated in line 21, the Runge-Kutta
method is first applied three times to provide starting values for the Adams
method. The important calculations of the Adams method are indicated in
lines 51-58. It should be noted that each cycle of the Adams method
requires two evaluations of the function J(x,y); this is half as many as
required by the Runge-Kutta method, so that there are substantial time
savings.

The allowable size of the error is controlled by the parameters Smi and
Sma,, (i.e., DMIN, DMAX). These are related to the quantity S= Iyy -y,j; that
is, 8 indicates the difference between the predicted value and the corrected
value.12 If Smi < 8 < Smex, then the step size h is correct and the Adams

12 As shown on p. 352 of Conte and deBoor (1972), the error in yx; o(yy -ye,); thus some
prefer to include a scale factor of approximately o when calculating S.

160 Solution of Dlf erential Equations

01C ADAMS METHOD
02 PROGRAM A(INPUT,OUTPUT)
03 03 FORMAT(F8.2,1P,E14.5)
06 DIMENSION G(5)
10C
11 PRINT,*H,DMIN,DMAX*, $READ,H,DMIN,DMAX
12 PRINT,/,*INITIAL VALUES*,/,* X0 YO*
13 READ,X,Y
15 PRINT,/,* X Y*
19C
20C ADVANCE 3 STEPS BY RUNGE-KUTTA METHOD
21 21 DO 39 1=1,3
22C
23C FIND D1,D2,D3,D4 (EQ. 7.30)
31 D1=G(I)=F(X,Y)
32 D2=F(X+.5*H,Y+.5*H*D1)
33 D3=F(x+.5*H,Y+.5*H*D2)
34 D4=F(X+H,Y+H*D3)
35C
36C FIND Y(X+H) (EQ. 7.29)
37 Y=Y+H*(D1+2.*D2+2.*D3+D4)/6.
38 X=X+H
39 39 PRINT 3,x,Y
41C
42C FIND F3 WHICH IS DEFINED AS G(4)
43 43 G(4)=F(X,Y)
49C
50C FIND Y PREDICTED (EQ. 7.34)
51 YP=Y+H*(-9*G(1)+37*G(2)-59*G(3)+55*G(4))/24
52C
53C FIND Y4P WHICH IS DEFINED AS G(5)
54 G(5)=F(X+H,YP)
56C
57C FIND Y CORRECTED (EQ. 7.35)
58 Y=Y+H*(G(2)-5*G(3)+19*G(4)+9*G(5))/24
60C
61C ADVANCE SOLUTION
62 X=X+H
63 PRINT 3,X,Y
64 G(1)=G(2) $G(2)=G(3) $G(3)=G(4)
69C
70C ERROR CONTROL
71 DEL=ABS(YP-Y)
72 IF(DEL.GE.DMIN.AND.DEL.LE.DMAX) GO TO 43
74 IF(DEL.LT.DMIN) H=2.*H
76 IF(DEL.GT.DMAX) X=.5*H
78 GO TO 21
99 END
898C
899 FUNCTION F(A,B)
900 F=2.*R**1.5/A/A
950 RETURN
999 END

FIGURE 7.5. A program for the Adams method.

Adams Method and Automatic Error Control 161

method continues cycle after cycle. However, if the error 8 is not within
the above limits, the step size is automatically changed and the Runge-
Kutta method is applied again to help restart the Adams method.13

As an example of how the program can be applied, consider again the
differential equation dy/dx =2y3"2/x2, which was discussed in Section 7.3.
For the initial condition y (l) =1 the analytical solution is y = x2, which can
be used to check a numerical solution. For example, Fig. 7.614 indicates
that choosing h =1 yielded y (I0),. 81.68, while the analytical answer is

y(10) =100. But suppose we do not know the analytical answer. Insight
into the accuracy of the numerical answer can then be obtained by doing
another computer run with h=0.1. This yielded y(10);;-09.9913, while
choosing h = 0.5 yielded y(l0):.,99.9996.

H,DMIN,DMAX ? 1 0 1000

INITIAL VALUES
X0 Y0

? 1

X

1

Y

2.00 3.84632E+00
3.00 8.45697E+00
4.00 1.47210E+01
5.00 2.25371E+01
6.00 3.18071E+01
7.00 4.24394E+01
8.00 5.43489E+01
9.00 6.74553L+01

10.00 8.16834E+01

FIGURE 7.6. An application of the Adams program.

If one uses automatic error control, the number of cycles can be
reduced. This can be illustrated by choosing Smax=0.001,
and h=0.1. A rough estimate15 for the maximum error can be obtained by
assuming it takes ninety cycles to reach x = 10 and each cycle has an error
8.,.=0.001; thus, the maximum error should be the order of 0.1. If the

131n this program, when the difference between predictor and corrector is too large, the
result is accepted anyway, and then the step is halved. With little added complexity, this
could be modified so the answer is instead recalculated for the smaller step.

14Note that DMIN - 0 and DMAX =1000 so that, in essence, there was no automatic error
control.

"This is very rough, because the errors cannot simply be added to get a final error
estimate. Truncation errors can grow, even for a stable method, for nonlinear problems.

162 Solution of Differential Equations

H,DMIN,DMAX ? .1 .00001 .001

INITIAL VALUES
X0 Y0

? 1

X

1

Y
1.10 1.20999E+00
1.20 1.43999E+00
1.30 1.68998E+00
1.40 1.95998E+00
1.60 2.55990E+00
1.80 3.23981E+00
2.00 3.99971E+00
2.20 4.83962E+00
2.60 6.75888E+00
3.00 8.99797E+00
3.40 1.15568E+01
3.80 1.44356E+01
4.20 1.76340E+01
4.60 2.11521E+01
5.00 2.49899E+01
5.80 3.36229E+01
6.60 4.35338E+01
7.40 5.47225E+01
8.20 6.71889E+01
9.00 8.09325E+01
9.80 9.59529E+01

10.60 1.12250E+02
(a)

H,DMIN,DMAX ? -.6 0 1000

INITIAL VALUES
X0 Y0

? 10.6 112.25

X Y
10.00 9.99077E+01

(b)

FIGURE 7.7. An illustration of automatic error control.

Solution of Higher-Order Differential Equations 163

difference 6 between any predicted value yp and its corrected value y is
greater than 6,,,A then h will be halved.

On the other hand, if 8 < 8m;n, then the step size can be doubled and the
point x= 10 will be reached much faster. For this example (as shown in
Fig. 7.7) the step size was automatically increased from 0.1 to 0.2, etc.,
until it was finally h = 0.8. Because of this continually increasing step size,
the point x= 10 was reached much quicker. Actually, the answer was not
computed at x = 10, but instead at x = 10.6, where it was found that
y(10.6),: 112.25. Using this as an initial value and choosing h= -0.6 then
gave y(10)--99.9 1, which is within the desired accuracy of y(10) = 100.

7.8 SOLUTION OF HIGHER-ORDER DIFFERENTIAL EQUATIONS

The previous sections have presented methods that can be used to solve
first-order differential equations. In this section we will learn how these
methods can be extended to solve higher-order differential equations. We
will first learn how to solve a set of simultaneous first-order differential
equations. This does not imply one often wants to solve a set of first-order
differential equations as such, but an nth-order differential equation can be
represented as n first-order ones, so that learning how to solve such sets of
equations will be very useful to us.

We have studied different numerical methods for solving the differential
equation dy/dx=f(x,y) subject to the initial condition y(xo) =yo. Any of
these methods can be extended to solve a set of first-order equations.
However, the following discussion will be restricted to the Runge-Kutta
method because it is easy to program and relatively efficient.

For one first-order differential equation the Runge-Kutta method
advances the solution by using

y (x + h)--y(h) + h(d, + 2d2 + 2d3 + d4)/6, (7.36)

where

di =f (x,Y),
d2=f(x+0.5h,y+0.5hd,),

d3= f (x+0.5h,y +0.5hd2),

d4=f(x+h,y+hd3).

(7.37)

Next consider the following first-order differential equations:

d =g(x,Y,Y1), d' =f(x,Y,Y1), (7.38)

subject to the initial conditions y(xo), y1(x0). The equations can be solved

164 Solution of Differential Equations

by considering two sets of d parameters: d11, d21, d31, d41 corresponding to
the function g(x,y,y,), and d12, d22, d32, d42 corresponding to f(x,y,y,). For
just one differential equation, d2 was a function of d,; d3 was a function of
d2; and d4 was a function of d3. For two equations, d21, d22 are functions of
d,,, d12; d31, d32 are functions of d21, d22; and d41, d42 are functions of d31,
d32, as is illustrated by the following set of equations:

d12=f(x,Y,Y1),
d21=g(x+0.5h,y+0.5hd11,y,+0.5hd12),

d22 = f (x +0.5h,y +0.5hd11,y1 +0.5hd12),
(7.39)

d31=g(x+0.5h,y+0.5hd21,y,+0.5hd22),

d32=f(x+0.5h,y+0.5hd21,y,+0.5hd22),

d41=g(x+h,y+hd31,y,+hd32),

d42=f (x+h,y+hd3l,yl +hd32).

The Runge-Kutta method advances the solution for y and y 1 by using the
following equations, which are analogous to (7.36):

(740)
yl(x+h)^.yl(x)+h(d12+2d22+2d32+442)/6.

Even if we are not interested in solving two first-order differential
equations, the previous work is very useful because a second-order can be
expressed as two first-orders.

A second-order differential equation can be written as

d 2y

dx2
= +'Y' d). (7.41)

This general second-order differential equation can be expressed as two
first-order equations by introducing the notation dy/dz=y,, from which it
follows that d2y/dx2=dy,/dx. Substituting into (7.41) yields

d =Y1=g(x,Y,y1). d =f (x,y,y1). (7.42)

EXAMPLE 7.7

The second-order differential equation (7.3) was (d v/dx2)3+xvdy/dx
+y2=6x. Putting this into the form of (7.41).

d2y

=(6x-y2-xYdx)
113

(7.43)
dx2

Solution of Higher-Order Differential Equations 165

Introducing the notation dy/dx=y,, we can rewrite this as dy,/dx=(6x-
y2-xyy,)'I3. Comparison with (7.42) yields

g(x,Y,Y,)=y, f x, =(6x -x)1/3.

The Runge-Kutta method for two first-order differential equations has
the set of derivatives (7.39) that must be evaluated. For the special case
g(x,y,yl)=y1 these derivative equations can be simplified considerably:

d,1 =Y,,

d12 =f (x,Y,YI),

d21=y1+0.5hd12,

d22 =f (x+0.5h,y+0.5hd11,d21),

d31=Y 1 + 0.5h d22,

d32=f(x+0.5h,y+0.5hd21,d31),

d41 -Y, + h d32,

(7.44)

Before an example is done, this technique will be extended to an
nth-order differential equation so a general purpose program can be
developed. An nth-order differential equation can be written as

d'y =f ddo-Y
dx^ dx

,...,
dx"

This is equivalent to

dy

dx

dy,
dx -Y2,

(7.45)

(7.46)

dx

By analogy with (7.44), the d coefficients for this set of first-order

166 Solution of Dlffarental Equations

differential equations are
du=y in-1,

d1.=f(x,Y,y1,...).

d2i=y;+0.5hd1.;+1, n-
(7.47)

d31=Y,+0.5hd2.1+1, n-
d3n=f(x+0.5h,y+0.5hd21,d31,d32,...),

d41=Y1+hd3.++1, i= n- 1,

d4r=f(x+h,y+hd31,d41,d42,...).

The Runge-Kutta method can advance the solution for y,y1,y2,...,yi_1
by using the following equations:

y(x+h)zy(x)+h(d11+2d21+2d31+d41)/6,

y,(x+h), y;(x)+h(d1.,+1+2d2.i+1+2d3.;+1+d4.,+t)/6. (7.48)

A program for the solution of an nth-order differential equation is given
in Fig. 7.8. This program is a generalization of the Runge-Kutta program
of Fig. 7.3; thus many of the steps are similar. If the program in Fig. 7.8 is
compared with equations (7.47), (7.48), it should be noted that the sub-
scripts in this figure have been shifted by one so that Y(1) corresponds toy,
Y(2) corresponds to the first derivative, etc. Two examples will be de-
scribed next to illustrate the application of the program.

EXAMPLE 7.8

The third-degree equation (7.3) can be rewritten as
1/3d dy

dx2
16x - xy

dx y2) =f (x,y,y1),

where yl = dy/dx. Figure 7.9(a) contains a computer output for the initial
conditions y (l) =1 and y'(l) = -1. The solution indicates that y (2) =
0.9827. The accuracy of the solution was verified by also using h = 0.05
instead of h = 0.1.

EXAMPLE 7.9

The third-order differential equation

day -3_ +2y=2(sinx-2cosx)
dx3 dx

Solution of HISher-Order Dlflerontial Equations 167

01C NTH-ORDER DIFFERENTIAL EQUATION
02 PROGRAM NTH(INPUT,OUTPUT)
03 03 FORMAT(F8.2,1P,E14.5)
06 DIMENSION D1(10),D2(10),D3(10),D4(10),Y(10)
1 5C
16 PRINT,*N,H*, $READ,N,H
17 N1=N+1
19 PRINT,/,*INITIAL VALUES*
20 PRINT,* XO*, $READ,X
22 PRINT,*YO,Y1,...*
24 READ,(Y(I),I=1,N)
26 PRINT,/,* X Y*
29C
30C CALCULATE D1(I)
32 32 DO 34 I=1,N
34 34 D1(I)=Y(I)
36 Dl(N1)=F(X,Y)
39C
40C CALCULATE D2(I)
42 DO 44 I=1,N
44 44 D2(I)=Y(1)+.5*H*D1(I+1)
46 D2(N1)=F(X+.5*H,D2)
49C
50C CALCULATE D3(I)
52 DO 54 I=1,N
54 54 D3(I)=Y(I)+.5*H*D2(I+1)
56 D3(N1)=F(X+.5*H,D3)
59C
60C CALCULATE D4(I)
62 DO 64 I=1,N
64 64 D4(I)=Y(I)+H*D3(I+1)
66 D4(N1)=F(X+H,D4)
69C
70C CALCULATE Y(X+H) (EQ. 7.29)
71 DO 72 I=2,N1
72 72 Y(I-1)=Y(I-1)+H*(Dl(I)+2.*D2(I)+2.*D3(I)+D4(I))/6.
75C
76C ADVANCE SOLUTION
77 X=X+H
78 PRINT 3,X,Y(1)
79 GO TO 32
99 END
897C
898 FUNCTION F(X,Y)
899 DIMENSION Y(10)
900 F=3*Y(2)-2*Y(1)+2*(SIN(X)-2*COS(X))
950 RETURN
999 END

FIGURE 7.8. A program for the solution of an nth-order differential equation.

168 Solution of Differential Equations

N,H ? 2,.1

INITIAL VALUES
X0 ? 1

Y0,Y1....
? 1 -1

x Y

1.10 9.09185E-01
1.20 8.37111E-01
1.30 7.84277E-01
1.40 7.51120E-01
1.50 7.38025E-01
1.60 7.45324E-01
1.70 7.73289E-01
1.80 8.22123E-01
1.90 8.91936E-01
2.00 9.82723E-01

(a)

N,H ? 3,.01

INITIAL VALUES
X0 ? 0

Y0,Y1,...
? 4 -2 17

X Y
.01 3.98085E+00
.02 3.96338E+00
.03 3.94757E+00
.04 3.93341E+00
.05 3.92089E+00
.06 3.90998E+00
.07 3.90068E+00
.08 3.89296E+00
.09 3.88681E+00
.10 3.88223E+00

(b)

FIGURE 7.9. Application of the program in Fig. 7.8 to (a) y" = (6x - xyy' -Y 2)113,
(b)y"'-3y'+2y=2(sinx-2cosx).

Boundary-Value Problems 159

has as a general solution

y =(C, + C2x)e x + C3e -- 2x + sin x.

For the initial conditions y (0) = 4, y'(0) = - 2, and y"(0) = 17, the constants
are C,=1, C2 = 2, and C3 = 4. Using these values for the constants, the
analytical answer at x=0.1 is y(0.1)=3.8822. Figure 7.9(b) contains a
computer output for this problem, which demonstrates that for h=0.01 the
numerical method yields the same result as the analytical method.

7.9 BOUNDARY-VALUE PROBLEMS

All the problems presented thus far in this chapter have been initial-
value problems: the conditions on the function and its derivatives were
given at the same point. For example, the third-degree equation

()3=6x_xY_Y2 (7.49)

had the initial conditions y (l) =I and y'(l) 1. Both conditions were
given at the point x =1.

Differential equations are important because they often describe practi-
cal physical problems. Sometimes the conditions pertaining to these prob-
lems are not initial conditions, but are boundary values. For example, the
deflection of a beam can be described by a differential equation. If the
beam is supported at both ends, then boundary values are that the
deflection at both ends must be zero.

The program in Fig. 7.8 is for initial-value problems, but with a little
insight it can also be used for boundary-value problems. That is, one can
iteratively guess initial values until the proper boundary values are ob-
tained; then this equivalent initial-value problem can be solved by normal
methods.

As an example, consider the differential equation (7.49) with the
boundary values y (1) = 1, y (2) = 0.75. One can guess values for y'(1) until
the solution y (2) = 0.75 is obtained. To be specific, for h=0.1 the program
yielded

y(2)=0.5090 if y'(1)= - 1.5,

y(2)=0.9827 if y'(l)= -1.0,
y(2)=1.4420 if y'(l)= -0.5.

Instead of making further guesses, we can treat this as an inverse
interpolation problem. That is, we can match a second-degree polynomial
to the above three data pairs and then find the value of y'(1) corresponding

170 Solution of Differential Equations

toy (2) = 0.75. The Lagrange interpolation program of Section 4.7 was used
to yield y'(1) = - 1.2476.

With h=0.1 and initial values of y(1)=1, y'(1)= -1.2476, the differen-
tial equation program of Fig. 7.9 yielded y(2)=0.7498, which is very close
to the desired boundary value of 0.75. Of course, the initial value could be
perturbed slightly from 1.2476 to yield an even better match to
the boundary value; but in practice y(2)=0.7498 would certainly be
accurate enough.

Most boundary-value problems are of second order, but if higher-order
equations are encountered the same type of approach can be used: guess
initial conditions until the proper boundary values are obtained. If more
than one boundary value has to be matched, then optimization techniques
(described later in the book) can be used to determine the equivalent initial
conditions. Optimization techniques can simultaneously vary more than
one parameter (such as the initial conditions in the above problem) to
match a desired response.

However, for the few times one is likely to encounter a higher-order
differential equation that is subject to boundary values, it is probably not
worth the effort to develop a general-purpose optimization program. In-
stead, one can optimize the initial parameters one at a time, as illustrated
by the next example.

EXAMPLE 7.10

The following fourth-order differential equation is solved in Problem
7.19 for a set of initial conditions:

ay z a 2 z 2d x d y
+ d +` -xy2=x+l -sinx.

dx4 dx3 dx2 \dX

This example will demonstrate how a set of boundary values can be
transformed into an equivalent set of initial conditions.

The boundary values for this example are16 y(0)= 1, y'(0) = 1, y(0.5)
0.4, and y'(0.5)=0.62. A set of equivalent initial conditions can be ob-
tained by an iterative procedure. We will first concentrate on making
y (0.5) = 0.4.

As illustrated in Table 7.3, there are many different sets of initial
conditions that can make y(0.5)=0.4. For example, the initial conditions
y"(0) = - 0.8212, y"'(0)=O result in a boundary value of y (0.5) = 0.3999,
which is essentially 0.4 as desired. The initial conditions y"(0) = -0.8212,

16Originally, the last boundary value was y'(0.5) = 0.60; however, one of the intermediate
guesses in the solution yielded this value, so it was changed to y'(0.5)=0.62 to keep the
problem from being trivial.

Boundary-Value Problems

Table 7.3

INITIAL CONDITIONSa BOUNDARY VALUES

y"(0)
y,,,(0)

y(0.5) y'(0.5)

0.0 0 0.5001 1.0012

-0.5 0 0.4395 0.7663
-1.0 0 0.3778 0.5230
-0.8212 0 0.3999 0.6103

-0.7 0.25 0.4201 0.7004
-0.8 0.25 0.4077 0.6517
-0.9 0.25 0.3954 0.6029
-0.8625 0.25 0.4000 0.6212

-0.7 -0.25 0.4097 0.6384
-0.8 -0.25 0.3974 0.5897
-0.9 -0.25 0.3850 0.5409
-0.7789 -0.25 0.4000 0.6000

-0.7 0.2232 0.4195 0.6970
-0.8 0.2232 0.4072 0.6483
-0.9 0.2232 0.3948 0.5996
-0.8582 0.2232 0.4000 0.6200

'The initial conditions y(O) and y'(0) are fixed at 0 and I respec-
tively.

171

y"'(0) = 0 were obtained by

(a) setting y"'(0) = 0,

(b) choosing three values for y"(0) and finding the corresponding values
for y (0. 5),

(c) using Lagrange interpolation to pass a second-degree polynomial
through the three data pairs

0.5001,0; 0.4395, -0.5; 0.3778, - 1.0,

(d) interpolating for the value y (0.5) = 0.4, which yielded y"(0)= -0.8212.
Table 7.3 also indicates that the initial values y"(0)= -0.8625, y"'(0)=

0.25 results in y (0.5) = 0.4, as do the initial values y"(0) = - 0.7789, y"'(0) =
-0.25.

None of the above sets of initial values result in the desired boundary
value y'(0.5) = 0.62. However, Lagrange interpolation can be used on the
three data pairs y'(0.5), y"'(0), which are 0.6103,0; 0.6212,0.25; 0.6000,
-0.25, to yield y"'(0)=0.2232. With this value for y"'(0) it was then
possible to findy"(0) such thaty(0.5)=0.4.

As indicated in Table 7.3, the initial values y(0)=0, y'(0)=1, y"(0)=
- 0.8582, y"'(0) = 0.2232 are equivalent to the boundary values

y(o)=0, y'(O)=I, y(0.5)=0.4, y'(0.5)=0.62.

172 Solution of Differential Equations

7.10 SUGGESTED READING IN RELATED TOPICS

This chapter stressed the numerical solution of ordinary differential
equations. Numerical solutions have the advantage of being applicable to
any ordinary differential equation, but they have the disadvantage of being
given only at discrete points. Also, if the initial conditions are changed,
then the solution must be found again. On the other hand, analytical
solutions cannot be found for all differential equations; but it should be
mentioned that there are many classes of problems that can be solved by
systematic procedures. These analytical solutions can be evaluated for any
value of the independent variable. Furthermore, if the initial conditions or
boundary conditions are changed, then only some constants need be
reevaluated. A good introductory text about differential equations is the
one by Rainville (1969).

We have studied three different methods for solving differential equa-
tions: the (modified) Euler method, Runge-Kutta method, and Adams
method. The Euler method is not a very efficient approach; it was
presented to serve as a simple introduction to the numerical solution of
differential equations. Another simple introduction could have been a
Taylor-series method which uses the first few terms in the Taylor series
and evaluates the first and higher derivatives from dy/dx = f (x,y).

The Runge-Kutta method is much more efficient than the Euler method.
It was developed in this chapter by analogy with the predictor-corrector
technique used in the modified Euler method. An alternate approach
matches coefficients to a Taylor series expansion. However, the Taylor-
series approach is more involved than the one presented here-though it
does have the advantage of being more general.

The Runge-Kutta method is self-starting: it only needs the initial values,
and then the solution can be advanced indefinitely. The Adams method is
not self-starting, but once it has been supplied four function values it can
advance the solution with half the effort of the Runge-Kutta method.
Because of this, numerical analysis programs for solving differential equa-
tions often use the Runge-Kutta method to start the solution and then
continue it with the Adams method. Other methods, such as one proposed
by Milne, have been used instead of the Adams method, but none are as
popular.

Actually, there are many different formulas due to the work of
Adams-only the most popular one was described in this chapter. The
ones that use explicit relations are often termed Adams-Bashforth
methods, and the ones that use implicit relations are termed Adams-Moul-
ton methods. The explicit methods express the current value of the variable
y as a function of the previous derivatives; thus the predictor equation

Suggested Reading In Related Topics 173

(7.34) is an explicit relation for y. In this chapter we did not solve
differential equations by just applying this predictor equation, although
that is possible. Instead, we used it in the implicit corrector equation (7.35).

The implicit methods express the current value of the independent
variable y as a function of previous derivatives and the present derivative.
Since this present derivative is not accurately available, the current value
of y cannot be solved for explicitly; but an estimated (predicted) value of y
can be used to approximate the derivative. In fact, some methods go
through this cycle a few times-each time estimating the derivative more
and more accurately. However, it is usually more practical to use the
additional computations to reduce the step size, which is an alternative
way of improving the predicted value.

The implicit (Adams-Moulton) algorithms are used more frequently than
the explicit (Adams-Bashforth) methods for two reasons. First, the addi-
tion of a corrector equation provides increased accuracy by reducing
truncation error. Second, these algorithms are more stable, and thus errors
do not propagate as freely as they might in an Adams-Bashforth algorithm.

Boundary-value problems, as contrasted with initial-value problems,
were only briefly mentioned here. The approach described in Section 7.9
has been termed the "shooting method" because of the analogy with an
artillery problem. To determine the proper direction of a cannon one can
shoot, observe the result, correct the direction, shoot again, etc. In Section
7.9 we aimed at the boundary values and adjusted the initial conditions
until the results were satisfactory. Another approach that is sometimes
used is to approximate the differential equations by difference equations.
This can be done by applying the equations that were developed in
Chapter 5. In fact, partial differential equations can also be solved by
using the difference-equation approach.

In closing this chapter, it is worthwhile mentioning that sometimes the
step size h must be chosen very small in order to ensure accurate answers.
This is the situation in the case of "stiff differential equations" as described
by Hamming (1973). A stiff differential equation is examined in Problem
7.20. Stiff differential equations may result, for example, if one describes a
chemical process that has time constants that are orders of magnitude
different: then the step size may have to be made small enough so that
variations due to the short time constant are not overlooked. However,
even if the variations due to the small time constant are past, care must
still be taken that a large step size does not cause instability. Methods have
been described (Fowler and Warten, 1967)" for reducing the number of

17See also, Gear, C. W. (1971), Numerical Initial Value Problems in Ordinary Differential
Equations (Englewood Cliffs, N.J.: Prentice-Hall).

174 Sotutlon of Differential Equations

computations needed in the numerical solution of stiff differential equa-
tions.

PROBLEMS

7.1 For y'=2x-y=f(x,y) and the initial condition y(1)=1, estimate
y(2) by using Euler's method as given in Eq. (7.8), with h=0.25.
Compare with the analytical answer of 2.3679.

7.2 For y'=x2-2y and the initial condition y(0)=0, estimate y(O.4) by
using Euler's method with h=0.1. Compare with the analytical
answer of 0.0177.

7.3 Apply the modified Euler method to Problem 7.2 and compare the
result with that answer.

7.4 Write a program for the modified Euler method and apply it to the
differential equation in Problem 7.2.

7.5 For y'= x2 - 2y and the initial condition y (0) = 0, apply one cycle of
the Runge-Kutta method with h=0.1 to find y(0.1).

7.6 Use the Runge-Kutta program to find y(2) for dy/dx= -(l+e")
subject to the initial conditon y(0)=0. First have h=0.2, and then
h=0.1. Compare the answers and determine how many digits are
probably accurate.

7.7 The Runge-Kutta program in Fig. 7.3 calculates the d-parameters
based on (7.30). Modify the program so it instead calculates the
derivatives based on (7.27). Apply this modified program to Problem
7.6.

7.8 The Runge-Kutta method produces an error which is of the order of
h4; thus, for Problem 7.6 we can write y (2) - y (h) + ah 4. Use Rom-
berg prediction on the results of Problem 7.6 to yield a better estimate
of y(2).

7.9 The nth-order Chebyshev polynomial T. is the solution to the follow-
ing differential equation:

dT,, 2 21-T,z
dx

- 112-
1 - x2

Using the initial condition T3(0)=0, apply the Runge-Kutta method
to evaluate T3(0.3). Choose h=0.1 and use the negative slope for
dT/dx.

Problems 175

7.10 For y'=x2-2y and the initial condition y(O)=O, applying the
Runge-Kutta method with h=0.1 yields y(0.1)=0.0003175,y(0.2)=
0.0024204, y(0.3)=0.0077979. Apply the Adams method to find
y(0.4). Compare with the Euler-method result of Problem 7.2, which
was 0.01284, and the analytical result, which is 0.0176678.

7.11 Use the Adams-method program to estimate the solution of

dx y(ex+lny

at x=0.1. Use the initial conditiony(0)= I, and choose Sm;n=0.0001,
Sma=0.01, h=0.001.
Hint: The closest printout to x=0.l will be x=0.092; thus, for an
initial condition of y (O.092) use the program again with h=0.008.
Compare with the analytical answer y = exp(- x2e - X).

7.12 In Section 7.8 the Runge-Kutta method was applied to solve the set
of equations

d =g(x,y,y), d ` =f(x.y,yt)
This problem will instead illustrate the application of the Euler
method, which can advance the solution by y(x+h)xy(x)+
hg(x,y,y,) and y,(x+h):.,y,(x)+hf(x,y,y,). Use this approach to
estimatey(0.2) andy,(0.2) for g(x,y,y,)=x+y f(x,y,y,)=x-2y-
3y,, subject to the initial conditions y(0)=0 and y,(0)=0. Choose
h = 0.5.

7.13 Express the following third-order differential equation as a set of
first-order differential equations:

d
+ 4yd + siny = e'T.

What is f (x,y,y,,y2)'?

7.14 The set of first-order differential equations in Problem 7.12 can be
transformed into a second-order differential equation in terms of x
and y. Find this equation and give the initial conditions. If familiar
with differential equations, find the analytical solution.

7.15 Use the program in Fig. 7.8 to find y(l.5) for

dz2 +2d +2y=0

subject to the initial conditions y (0) = 0, y'(0) = 1. First let h = 0.3, and
then let h=0.1.

176 Solution of Differential Equations

7.16 The differential equation in the above problem is said to be homoge-
neous, because the right side is zero. Re-solve the problem for the
right side instead equal to 3. For initial conditions use y(0)=1.5,
y'(0)=1.

7.17 Find y(1.2) for the following nonhomogeneous differential equation:

d
+3 dy +2y=3.

Use h = 0. 1, y (O) -1, y'(0) = 0.
7.18 Legendre's differential equation is

(1 -x2)d -2xd +n(n+l)y=0.
dx2

Find y(0.1) for n = 5 and the initial conditions y(0)=0, y'(0)=1.875.
First let h=0.01, and then let h=0.001. For h=0.001 modify the
program so that the output is printed only for x=0.1. Compare with
the analytical answer which is

y(X) = 63X5- 35X3+ 15X.
B 4 8

7.19 Find y(0.5) for the following fourth-order second-degree differential
equation:

z z z

dXa -x(+ d +(d
/

-xy2=x+l-sinx.dX3

Use the initial conditions y (0) = 0, y'(0) =1, y"(0) = 0, y"'(0) _ -1, and
choose h = 0.1.

7.20 An example of a stiff differential equation is

+100a +y=2.dX2

(a) For the initial conditions y(O)=O and y'(0)=100, show that
y=2-e-0.01x-e-99.99x

(b) Examine the solution where the small time constant predominates
by evaluating the solution in (a) for x=0.001, 0.01, 0.02, and 0.05.

(c) Examine the solution where the large time constant predominates
by evaluating the solution in (a) for x = 5, 50, and 300.

(d) Use the program of Fig. 7.8 to find y(0.05), and compare with the
answer found in (b). Use h=0.001.

(e) In the region where the large time constant predominates, one
would like to use a large step size. Try the program of Fig. 7.8 for
this differential equation with y(1)= 1, y'(1)=0, and h=0.1. Ex-
plain what happened.

Chapter Eight

Introduction to Optimization Theory

8.1 PRELIMINARY REMARKS

In our everyday experiences we often consciously or subconsciously try to
optimize results. Some of the problems we encounter are rather trivial,
such as finding the shortest path between two points: a straight line.
However, if the problem is to reach the airport in a minimum amount of
time so as not to miss a flight, then the optimum solution is not so easily
found. Perhaps the geometrically shortest route goes through the city and
is therefore rather slow. If one decides to drive on the freeway to the
airport, other choices will have to be made: for example the speed (we do
not want to get a ticket or get in an accident), the exit to use, etc.

Optimization problems become increasingly difficult to solve as the
number of variables is increased. In practical applications there may be
many parameters that can be varied independently to improve results.
However, while optimization problems may be involved and thus require
the use of a computer, the benefits of using optimization theory can be
great.

Optimization theory has been used to great advantage in electrical
engineering. For example, an electrical network may contain many resis-
tors, inductors, and capacitors. These elements, which may be considered
as the independent variables, can be adjusted by optimization techniques
so that a desired electrical response is obtained. An example in Section 8.6
illustrates one application of this approach.

Optimization theory has influenced the design of many different types of
manufacturing processes. A chemical product, for instance, may contain
variable proportions of ingredients, may be subjected to various tempera-
tures for different amounts of time, etc. It may be possible to write
functional relations for these different parameters, but it will probably be
impossible to obtain an analytical answer for the optimum result. How-
ever, often the problem can be formulated in a manner that allows iterative
methods to adjust the parameters and obtain an optimum solution. These
optimization techniques can thus be viewed as a collection of numerical
methods that have been linked together in a specific way.

177

178 Introduction to OpUmlzatlon Theory

In the next section, it is shown that optimization can correspond to
minimizing a function, which will be termed the error function E. If the
error E is a function of only one variable x, then we will assume it can be
expanded in terms of a Taylor series as

z Sx
2

E(x + Sx) = E(x) + 7ESx+ dz (2) + (8.1)

In an introductory calculus course, an equation such as this could be used
to prove that at a minimum the first derivative dE/dx must be zero and
the second derivative d2E/dx2 must be positive.

In optimization problems, the error E may be influenced by many
variables x1,x2,...,x and thus will often be written as E(x), where x is a
vector having components x,,. As mentioned in Section 9.6, the
equation that corresponds to (8.1) for this general case is

E(x+Sx)=E(x)+VETSx+ Sx'HSx + (8.2)

The symbol V E represents the gradient, which is defined in Section 9.3.
The gradient is the n-dimensional analogue of the first derivative. In fact, it
is shown in Section 9.3 that the gradient must be zero at a minimum.

The symbol H represents a matrix termed the Hessian, which is defined
in Section 9.6. The Hessian is the n-dimensional analogue of the second
derivative. In fact, by analogy it can be shown that at a minimum we must
have SxTHSx positive for any nonzero vector Sx. A matrix such as this is
said to be positive definite.

Four different optimization techniques are discussed in detail in this
book: simplex, steepest descent, Fletcher-Powell, and least pth. After
comparing optimization techniques in general in Section 8.3, the simplex
algorithm is described in detail in Section 8.4. Simplex was chosen for this
introductory chapter because it is unsophisticated yet can still be a
powerful optimization program. At the end of the chapter. the simplex
algorithm is applied to various test functions such as the Rosenbrock
function.

Another simple optimization technique is the steepest-descent method,
which searches for the minimum by proceeding in the direction of the
negative gradient. The Fletcher-Powell optimization technique modifies
this direction slightly by using information that is contained in the Hessian
matrix. The least-pth optimization procedure (a generalization of least
squares) also calculates the gradient to help determine the search direction,
but it calculates this very efficiently by assuming that the error function is
of a special form.

The reader may be wondering why the text discusses four different
optimization techniques, when any one theoretically can be used to mini-

Formulation of Optimization Problems 179

mize a function. A major reason is that often one technique is not able to
find a minimum, so another must be tried. Which program is best will
often depend on the particular error function that must be minimized. In
fact, as shown in Section 9.5, even scaling the parameters (e.g., replacing xt
by lOx,) can drastically affect the rate of convergence.

When an optimization program finds a minimum, the user may not be
happy with the minimum that is found. One reason (see Section 9.5) may
be that the point found was only a local minimum; that is, if different
initial parameter values had been chosen, then an even smaller value could
have been obtained. Another reason may be that the parameter values at
the minimum were unrealistic (e.g., if the parameters represent dimensions
of an object, then the "optimum" product may be too large to manufac-
ture). Chapter 11 indicates how parameter values can be constrained to
have practical values.

Before proceeding with this introduction to optimization theory, a warn-
ing should be given about the optimization programs that are included in
the rest of this text. As was true for the previous programs, these optimiza-
tion programs have been written with clarity as the first goal and not
efficiency. (In an optimization program, it can be worthwhile to save a few
milliseconds of computation time because the computations may be done
many times before the optimization loop is completed.) While it should be
acknowledged that these programs are not sophisticated, it also should be
emphasized that they can be used to solve practical optimization problems
-but interaction might be required in certain cases. This interaction could
consist of choosing a better set of initial parameters; or if a particular
algorithm (e.g., steepest descent) does not perform satisfactorily for a
specific problem, then another algorithm (e.g., least pth) could be tried.

8.2 FORMULATION OF OPTIMIZATION PROBLEMS

Before optimization techniques can be applied to a specific problem, it
must be stated in terms of mathematical relations. We will assume the
problem can be formulated so that we wish to minimize an error function'
E. The error function E may depend on many variables xl,x2,...,x and
thus will often be written as E(x), where x is a vector having components
xJ,x2,...,xn.

The fact that the optimization techniques we study are formulated so as
to minimize functions is not so restrictive as it might seem. If instead we
want to maximize a function F(x), we can let E(x)= - F(x) and minimize
E (x).

This is often called the objective function.

180 Introduction to OpUmlzatlon Theory

Often, we will not want to minimize an error, but instead minimize the
magnitude of the error. That is, a large negative error may be as objection-
able as a large positive error. As an example of this, assume we want to
find a solution of the nonlinear equation Inx=x. If we define an error
function as e(x) =1n x - x, then a solution of the nonlinear equation can be
found by adjusting x so that the error function e(x) becomes zero. If we
want to make a function e(x) become zero, we can instead minimize the
square of that function, i.e.,

E=[e(x)]2. (8.3)

This idea can be generalized in numerous ways; for example, the
function we want to make zero may depend on many parameters
x1,x2,...,x,,. Then we write

E (x) = [e(x)]2. (8.4)

Or we may have many functions e, (x), e2(x), ... , em (x) we wish to simulta-
neously set equal to zero; then we can define the error function as

m

E(x)= [e; (x)]2. (8.5)
1=1

EXAMPLE 8.1

A set of nonlinear equations can be solved by using an error function of
the type in (8.5). As a simple case, consider

x, +3cosx2=2,
cosx1 +2x,x2=4.

For this case, if we define the individual errors as

e,(X1,x2)=x +3cosx2-2,
e2(xt,x2)=cosx,+2X,x2-4,

then minimizing the following error function will produce a solution

E (x) = e, (x 1, x2)2+ e2(x,, x2)2.

The exponent in (8.5) was picked as 2 so that the contribution of each
individual error was always positive. In general, any even positive number
p could have been used:

M

E(x)= [e;(x)]°. (8.6)

Overview of Various Optimization Techniques 181

This is called the least-p tit error criterion, while the special case of p=2 is
called the least-squares error criterion.

In a practical problem, some of the individual errors may be more
important than others. In this case we can assign nonnegative weighting
factors wi so that

Ht

E(x)= wi[e,(x)]°.

The more important an error is, the larger is the weight we assign it. Of
course we could make the substitution wi[ei(x)]p-3[ei(x)] and transform
the weighted problem to a nonweighted one.

In some problems a requirement2 f(t) may be given and we may wish to
adjust the parameters xt,x2.... ,x so that the response h(t) of a system is
as close as possible to f(t). For this case we could define an error as

e(t)=f(t)-h(t). (8.8)

However, a computer can only treat discrete functions, so we will instead
define

e, =f -h,, (8.9)

where the subscript i indicates that the functions are evaluated at t= t,. For
this case, (8.6) can be rewritten as

E(x)= [f,.-hi(x)]°. (8.10)
;at

8.3 OVERVIEW OF VARIOUS OPTIMIZATION TECHNIQUES'

Just as there are various numerical methods for finding the roots of an
equation, there are different optimization techniques that can be used to
minimize the error function E(x). Which is the best will depend on the
specific application. However, it is possible to divide optimization tech-
niques into certain categories and then to compare the categories. This
section will give a brief overview of various optimization techniques, and
the next section will give a more detailed presentation of a specific one.
The following two chapters will give detailed descriptions of additional
optimization techniques.

'The variable t can be considered to be time in this discussion, but of course it could have
a different meaning.

3This is essentially the same as Section 13.4 of Daniels (1974).

182 Introduction to Optimization Theory

1. Simple Search Methods (Nonderivative)

The sophisticated optimization techniques evaluate the first and/or
higher derivatives; however, there are some procedures that do not require
derivatives. Perhaps one of the simplest ways to minimize the error
function is to vary one available parameter at a time-for example, first
minimize the error for the parameter x then for x2, and so on, after doing
this for all parameters, one would start over again at x,. Since each step in
this minimization procedure is a single parameter search, the quadratic
interpolation method may be used to find the minimum.

The simplex method can be used for multiparameter searches, that is,
searches in which one does not examine the behavior of the error function
for one parameter at a time. In n-dimensional space, a set of n + I points
forms a simplex. In the simplex method we start with an arbitrary simplex
and then let it tumble and shrink toward the region where the error is a
minimum. The direction in which we allow the simplex to move is
determined by evaluating the error function at each of the n + I points of
the simplex.

2. Slope-Following Methods

Slope-following methods evaluate the first derivatives of the error func-
tion (8E/8x;) and use this information to indicate how the parameters
should be changed in order to minimize the error. The first derivatives
determine the gradient of the error function. The gradient points in the
direction of the greatest change in error; thus, to minimize the error one
proceeds in the direction opposite to the gradient. This is the basis of the
steepest-descent method, which uses the gradient to predict parameter
changes for error minimization. Steepest descent can be considered to be
an attempt to change parameter values so as to proceed down an error
slope most rapidly. Assuming that the error function E(x) has the special
form given in (8.6) leads to the least-pth optimization technique, which is a
generalization of the least-squares method.

3. Second-Order Methods

The slope-following methods tend to reduce the error rapidly in the
initial stages of an optimization procedure; however, their convergence is
rather slow as the minimum is approached. To improve the rate of
convergence, one can use not only the first derivatives of the error function
(aE/ax;), but also the second derivatives (a ZE/ax; axe). Just as the first
derivatives determined the gradient of the error function, the second
derivatives determine the Hessian.

The Simplex Optimization Technique 183

The various second-order methods differ mainly in the way they try to
approximate the second derivatives. The second derivatives are not usually
found by using a perturbation scheme based on varying elements; they are
instead approximated by using knowledge of the error function and its
gradient at previous iterations. The Fletcher-Powell minimization proce-
dure is one of the best known second-order methods.

8.4 THE SIMPLEX OPTIMIZATION TECHNIQUE4

As previously mentioned, we are trying to minimize an error function
E(x) which is a function of n variables x,,x21 ...,x,,. Because x is an
n-dimensional vector, we are led to the concept of an n-dimensional space.
Even though our imagination may balk at something larger than a three-
dimensional space, our mathematical symbols will not.

The simplex method of nonlinear programming begins by choosing n + I
parameter vectors to span an n-dimensional space. The geometric figure
which is formed by these points is called a simplex-hence the name of the
method. In particular, a two-dimensional simplex is a triangle and a
three-dimensional simplex is a tetrahedron. In the simplex method we will
start with an initial simplex and then cause it to approach the region where
the error is a minimum.

In any optimization technique an initial guess must be made for the
variables x,,x2,.... x,,. The optimization technique is then supposed to
adjust the parameters to minimize E(x). In the simplex method we will
identify this initial guess as point P0 in the n-dimensional space. That is,

(8.11)

We will use this initial point to generate other points P1,P2,...,P,,. These
points will define the initial simplex.

Point P, will be arbitrarily related to Po via

P1 _ (1. I x,, x2,.x3, ... , (8.12)

and in general

P, = (x,, x2, 1. l x,, ... , (8.13)

where i= 1,2,...,n.

4This is not related to Dantzig's simplex algorithm of linear programming. The nonlinear
simplex method described here was originally proposed by Nelder, J. A., and Mead, R. (Jan.
1965), "A Simplex Method for Function Minimization", Comput. J., pp. 308-313. The values
for a, P, and y in this section were suggested by P. E. Fleischer and D. M. Bohling (private
correspondence).

184 Introduction to Optimization Theory

The iterative part of the simplex algorithm begins by ordering the points
Po, P1, ... , P. according to the values of E (P0), E (PI),..., E The points
that yield the lowest, highest, and next highest values of the error function
are identified as PL, PH, and PNH. The simplex algorithm repetitively
replaces PH, the highest point. It will be illuminating to adopt a geometric
language in a description of the algorithm. We will picture the simplex as
moving towards a minimum by a series of operations termed reflections,
contractions, and expansions. These are illustrated in Fig. 8.1 for the case
of a two-dimensional simplex.

1. Reflection

The first attempt at replacing PH is by reflection about the centroid,
defined as

C=
I

2 P,.
=o

i H

(8.14)

That is, the centroid is the average of all the points except PH, which is
going to be replaced shortly.

EXAMPLE 8.2

The error function for this example is E(x)=2x, - x2. If the initial point

Po = PH

NZ

Contraction
point Reflection point

Expansion point

FIGURE B.I. Illustration of reflection, contraction, and expansion for a two-dimen-
sional simplex.

The Simplex Optimization Technique 185

is chosen as Po = (2, 1):

(a) Find P, and P2.
(b) What point is PH?
(c) Find the centroid.

SOLUTION

(a) Applying (8.13) yields P,=(2.2,1) and P2=(2,1.1).
(b) To determine which point has the highest error we must evaluate E (x)

for each of the points:

E(P0)=E(2,1)=3,
E(P,)=E(2.2,1)=3.4,
E(P2)=E(2,1.1)=2.9;

thus PH = P,.

(c) Applying (8.14) with H= I yields

C=i(P0+P2)=2(2+2,1+1.1)=1(4,2.1)=(2,1.05).

The reflected point is defined by

PR = (1 + a)C - aPH. (8.15)

If a = 1, then the reflected point is the same distance from the centroid as
is PH, but on the opposite side (see Fig. 8.1 or Problem 8.10). However,
this value will be modified slightly to a=0.9985 to prevent any of the
computed parameters from becoming zero, which could cause computa-
tional difficulties.

EXAMPLE 8.3

This example will demonstrate reflection for the data given in Example
8.2. The parameter a will be chosen as unity to simplify computations.

For a = 1, (8.15) becomes PR = 2C - PH. Substituting the results from the
previous example,

PR=2(2, 1.05)-(2.2, 1)=(1.8,1.1).

If the reflection is moderately successful, namely if

E(PL)<E(PR)<E(PH), (8.16)

then PR replaces PH, thereby forming a new simplex. Another reflection is
then attempted for this new simplex.

186 introduction to Optimization Theory

The reflected point may not be described by (8.16), for one of two
possible reasons. One of the possibilities can be illustrated by calculating
the error function for the reflected point of Example 8.3. Since for those
data the error function was defined as E(x)=2x,-x2, it follows that for
PR = (1.8, 1.1), E (PR) = 2.5. From Example 8.2, the error at the low point
was E (PL) = 2.9; thus E (PR) < E (PL). The other reason the reflected point
may not be described by (8.16) is that in some cases E(PR)> E(PH).

2. Expansion

If the reflection operation is highly successful and produces a new
minimum, so that E (PR) < E (P,,), then it seems likely we are proceeding
in a good direction, so we will go further in that direction by expanding
according to the expression

PEx=0PR+(I-/3)C. (8.17)

If $ = 2, then the expanded point will be twice as far from the centroid as is
the reflected point (see Fig. 8.1 or Problem 8.10). However, this value will
be modified slightly to 1.95 to prevent possible instabilities. Depending on
whether E(PR) or E(PE,,) is smaller, either PR or PEx replaces PH. A new
centroid is then calculated and the reflection process is again attempted.

3. Contraction

If the reflection operation is not successful, but results in E(PR)>
E(PH), then it seems likely we are searching on the wrong side of the
centroid, so contraction is performed according to

PC=(' - y)C+ yPH. (8.18)

If y= then the contracted point is midway between PH and the centroid
(see Fig. 8.1). This value of y will be modified slightly to 0.4985 for
practical reasons. If contraction is successful and E (Pc) < E (PH), then the
result is the same as if reflection had been successful, and we proceed
accordingly.

Contraction is usually successful; however, if it is not and E(Pc) >
E(PH), then drastic measures are taken.

4. Scaling

In the unlikely event that neither reflecting nor contracting can find a
better point than PH, then the simplex itself is modified by a scaling
process described by

P;+k(PL-P;)'P,, i=0,1,...,n. (8.19)

The Simplex Optimization Technique 187

A two-dimensional representation of the scaling process for k =0.5 is
shown in Fig. 8.2. As demonstrated there, if k=0.5, then the scaling
process moves every point towards the best point PL; in fact, the distance
is halved. In general, if k is positive (and also less than unity), then the
scaling process of (8.19) causes the simplex to shrink about the point PL.

On the other hand, if k is negative, then every point moves away from
PL and the simplex increases in size. For example, if k= - 1, then the
distance between PL and a point P; doubles. Suggested values for the scale
factor k are 0.5 to reduce the size of the simplex and - I to increase it.

A program for the simplex algorithm is shown in Fig. 8.3. The notation
in the program is very similar to that used in the preceeding discussion, but
one comment should be made. As usual, because FORTRAN does not allow
a subscript to be zero, the subscripts have been translated by unity in this
program. For example, the initial point is identified as P(1) and not P(0).

Any point in the simplex has n components; since there are n + I points
in the simplex, this implies there is a total of n(n+ 1) quantities that
describe the simplex. The most convenient way to store this information is
in a matrix. In the program, row, of the matrix represents P,, row2
represents P2, and in general row; represents P. The matrix is denoted by
P in the program, so the general term P(i,j) in the matrix represents thejth
component of the ith simplex point P;.

In the program L, H, and NH represent lowest, highest, and next highest.
For example, if L=4, then P4 is the simplex point that has the lowest error
value and this error value is E4. It should be noted that extra memory
locations are not needed for the lowest point PL or its error EL. Instead,
the memory location L is used to indicate which simplex point produces
the lowest error. The error at point P; is stored as E(i); thus the lowest,

ORIGIN

FIGURE 8.2. Illustration of scaling for a two-dimensional simplex.

188 Introduction to Optimization Theory

01C SIMPLEX
02 PROGRAM S(INPUT,OUTPUT)
03 03 FORMAT(7H X(I)=,1P,4E14.5)
04 04 FORMAT(7H ERROR=,IP,E14.5,/)
06 DIMENSION C(10),E(10),P(10,10),R(10),X(10)
07 INTEGER H
08 REAL K
09C
10C INITIAL VALUES
11 PRINT,*N*, $READ,N
12 N1=N+1
14 PRINT,/,*X(I) I=1,2.... N*
15 READ,(X(I),I=1,N)
16 E(1)=ERROR(X)
17 PRINT 4,E(1)
19C
20C INITIALIZE SIMPLEX (EQ. 8.13)
21 DO 22 J=1,N
22 22 P(1,J)=X(J)
24 DO 28 I=2,N1
25 DO 26 J=1,N
26 26 P(I,J)=X(J)
27 P(I,I-1)=1.1*X(I-1)
28 28 IF(ABS(X(I-1)).LT.IE-12) P(I,I-1)=.0001
29C
30C FIND PL,PH
31 31 L=H=1
32 DO 38 I=1,N1
34 DO 35 J=1,N
35 35 X(J)=P(I,J)
36 E(I)=ERROR(X)
37 IF(E(I).LT.E(L)) L=I
38 38 IF(E(I).GT.E(H)) H=I
39C
40C FIND PNH
41 41 NH=L
42 DO 43 1=1,N1
43 43 IF(E(I).GE.E(NH).AND.I.NE.H) NH=I
49C
50C CALCULATE CENTROID (EQ. 8.14)
51 DO 56 J=1,N
52 C(J)=-P(H,J)
53 DO 54 I=1,N1
54 54 C(J)=C(J)+P(I,J)
56 56 C(J)=C(J)/N
59C
60C REFLECT (EQ. 8.15)
61 61 DO 62 J=1,N
62 62 R(J)=1.9985*C(J)-.9985*P(H,J)
64 ER=ERROR(R)

(a)

FIGURE 8.3. A program for simplex.

The Simplex Optimization Technique

70C REFLECT AGAIN
71 IF(ER.LT.E(L))
73 IF(ER.GE.E(H))
79 79 DO 80 J=1,N
80 80 P(H,J)=R(J)
81 E(H)=ER

(IF MODERATELY SUCCESSFUL)
GO TO 91
GO TO 122

GO TO 6183 IF(ER.GT.E(NH))
85 H=NH
86 GO TO 41
89C
90C
91 91
92
93 93
94
96
98
99 99
100
101
104 104
105 105
106
109C
110 110
114
117
11 9C
120C
122 122
123 123
124
126
128
1 32C
133C
134
136
137
138 138
139
140
897C
898
899
900
950
999

EXPAND (EQ. 8.17)
L=f) $H=NH
DO 93 J=1,N
X(J)=1.95*R(J)-.95*C(J
EX=ERROR(X)
IF(EX.LT.ER) GO TO 104
DO 99 J=1,N
P(L,J)=R(J)
E(L)=ER
GO TO 110
DO 105 J=1,N
P(L,J)=X(J)
E(L)=EX

PRINT 3,(P(L,J),J=1,N)
PRINT 4,E(L)
GO TO 41

CONTRACT (EQ. 8.18)
DO 123 J=1,N
R(J)=.5015*C(J)+.4985*P(H,J)
ER=ERROR(R)
IF(ER.LT.E(L)) GO TO 91
IF(ER.LT.E(H)) GO TO 79

SCALE (EQ. 8.19)
PRINT,*K*, $READ,K
00 138 I=1,N1
DO 138 J=1,N
P(I,J)=P(I,J)+K*(P(L,J)-P(I,J))
GO TO 31
END

FUNCTION ERROR(X)
DIMENSION X(10)
ERROR=100.*(X(1)*X(1)-X(2))**2+(1-X(1))**2
RETURN
END

(b)

189

FIGURE 8.3. (Continued.)

190 IntroductIon to Optimization Theory

highest, and next highest errors would be stored as E(L), E(H), and E(NH).
The location of the centroid C is found by calculating

n+1 nil

C=n
i
i

P;=Nf -PH+
i=1

P; P. (8.20)
L

#N

The second form of the equation is used because it avoids the necessity of
checking each point to determine whether or not it is PH.

In the program, the point produced by contraction is identified as PR
(i.e., R). Actually this is the value P.. that would be calculated by applying
(8.18). It is identified in the program as PR (and not as P(.) because if
contraction is successful we proceed exactly the same as we would have
proceeded if reflection had been successful. Thus coding the result of
contraction as PR eliminates an unnecessary substitution (i.e., it eliminates
PC---)'PR)'

8.5 APPLICATIONS OF SIMPLEX

This section discusses some applications of the simplex program to serve
as an introduction to the use of an optimization program. Compared with
most optimization problems, these examples are quite simple, but they
should thus be relatively easy to understand.

EXAMPLE 8.4

This uses the simplex algorithm to solve the following nonlinear equa-
tions, which were first presented in Example 8.1:

x,2+3cosx2=2,
cosx1+2xlx2=4.

That example derived a suitable form for the error function, which can be
coded in statements 900 and 910 as

900 ERROR = (X(1) *X(1) + 3. *COS(X(2)) - 2.) * *2

910 ERROR= ERROR +(COS(X(1))+2. *X(1)*X(2)-4.)**2

In this example, each contribution to the error function was given a
separate statement which makes for ease in reading.

Figure 8.4 indicates the output of the simplex program for this example.
The top of the printout indicates that for the initial set of parameters
x1= 1, X2= 1 the error function was 2.52. After a few iterations, the simplex
algorithm indicated that a better set of parameters would be x, =1.26222,
x2=1.44424, for which the error function was 0.00333.

Applications of Simplex 191

N ? 2

X(I) I=1,2.... N
? 1 1

ERROR= 2.51624E+00

X(I)= 1,14735E+00 1,14735E+00
ERROR= 1.21597E+00

X(I)= 1.02242E+00 1,36449E+00
ERROR= 5.89749E-01

X(I)= 1.16965E+00 1.41160E+00
ERROR= 1.18917E-01

X(I)= 1.31655E+00 1.45862E+00
ERROR= 1.32776E-02

X(I)= 1.28842E+00 1.42986E+00
ERROR= 7.99136E-03

X(I)= 1,26222E+00 1.44424E+00
ERROR= 3.33276E-03

FIGURE 8.4. The solution of two nonlinear equations by simplex.

In most optimization problems exact knowledge about the final value of
an error function will not be very enlightening. The fact that the final error
function in Example 8.4 was 0.00333 does not convey much information.
However, comparing this value with the initial error value which was 2.52,
we can note that the final error function is about a factor of 1000 smaller.
This gives us some confidence that the final set of values for xI, x2 is much
better than the initial set.

Much more insight into the accuracy of the optimization result may be
obtained by returning to the set of equations we were trying to solve.
Consider the first one: x,2+3cosx2=2. If x, =1.2622, x2=1.4442 is sub-
stituted into the left side, the number 1.972 results instead of 2. Similarly,
substituting into the second equation yields 3.949 instead of 4.

Of course, improved accuracy could be obtained by using more itera-
tions of the simplex algorithm. When one is finally satisfied that a set of
parameter values is close enough to the optimum answer, the number of
important digits in the parameter values should be determined. The mere
fact that a computer has been programmed to print out six significant
figures certainly does not imply that they are all important. For example,
changing the solution from x, = 1.2622, x2=1.4442 in the previous problem

192 Introduction to Optimization Theory

to x, = 1.26, x2 = 1.44 changes the left side of the equations to 1.979 and
3.935, which are probably still sufficiently close to the desired values of 2
and 4.

In a practical optimization problem, the accuracy of a parameter value
may indicate the tolerance of a component that is used. For example, if x
represents the value of a resistor in an electrical network, then specifying
four significant figures may imply that a component with a tolerance of
0.1% should be used. Since increased tolerance usually results in increased
cost, an effort should be made to ascertain how many digits in the
optimized parameter values are really important.

EXAMPLE. 8.5

Figure 8.5 demonstrates the minimization of

E(x)= 2 sin x, cos x2 + (cos x,)2(sin x2)°.

For the initial set of parameters x, = 1, x2=1 the error function was 1.056.
After many iterations the parameters were adjusted to x, = 1.56, x2=3.12,
which yielded an error function of -2.00.

It should be noted that the minimum that was found in Example 8.5 was
a negative number. The simplex algorithm is a general procedure that
minimizes a function of several variables. Often the function E(x) is
formulated as a sum of squares [see (8.5)], so that the minimum will be
positive; but as this example demonstrates, that is not necessary.

The processes reflection, expansion, and contraction were used in the
two previous examples. However, it was never necessary to scale the entire
simplex. In fact this is generally true; the scale operation in simplex is not
used often. The following example was especially concocted so that scaling
would be necessary. Singularities (places where the function approaches
infinity) were put near PR (the reflected point) and Pc (the contracted
point) so that these points would have large error values.

EXAMPLE 8.6

The error function for this example is E(x,,x2)=(x,+5x2)2+1/(x,+x2
-2.04)'+ 1 / (x, + X2-2. 19)2. Choosing the initial parameter vector as Po =
(1, 1), the remaining points of the initial simplex are calculated as P, =
(1.1,1) and P. = (1,1.1). For these points the error function is E0 = 688.7,
E, = 438.4, and E2 = 443.5; thus PH = P0.

Applying (8.14) yields that the centroid is C=(1.05,1.05). Reflecting
with the parameter a chosen as unity for simplicity produces P. =(1.1,1.1),
so that the error at the reflected point is ER = 1008.3. This error is greater
than the error at the high point P0, so contraction is attempted.

Applications of Simplex 193

N ? 2

X(I) I=1,2,...N
? 1 1

ERROR= 1,05566E+00

X(I)= 8,52867E-01 1.29460E+00
ERROR= 7.81547E-01

X(I)= 9.77610E-01 1.38689E+00
ERROR= 5.95195E-01

X(I)= 7.50202E-01 1.80949E+00
ERROR= 1.54609E-01

X(I)= 8.85399E-01 2.18931E+00
ERROR= -7.21224E-01

X(I)= 6.58230E-01 2.61100E+00
ERROR= -1.01418E+00

X(I)= 7,93395E-01 2.98993E+00
ERROR= -1.40886E+00

X(I)= 1.06468E+00 2.75167E+00
ERROR= -1.61306E+00

X(I)= 1.15443E+00 3.16823E+00
ERROR= -1.82848E+00

X(I)= 1,42524E+00 2.93001E+00
ERROR= -1.93468E+00

X(I)= 1,51465E+00 3.34612E+00
ERROR= -1,95522E+00

X(I)= 1.53787E+00 3.07897E+00
ERROR= -1.99500E+00

X(I)= 1,57620E+00 3.17595E+00
ERROR= -1,99879E+00

X(I)= 1,56456E+00 3.11956E+00
ERROR= -1.99948E+00

FIGURE 8.5. Demonstration that simplex can produce a minimum that is a
negative number.

194 Introduction to Optimization Theory

N ? 2

X(I) 1=1,2....N
? 1 1

ERROR= 6,88701E+02

K ? -1
X(I)= 1.19471E+00 6,10585E-01
ERROR= 4.29520E+01

X(I)= 9.44848E-01 4,26182E-01
ERROR= 1.31858E+01

X(I)= 1,40035E+00 -4.19359E-01
ERROR= 2,06083E+00

X(I)= 1.20316E+00 -4,16675E-01
ERROR= 1,91885E+00

X(I)= 1,20648E+00 -2.31504E-01
ERROR= 1.56140E+00

X(I)= 8.24123E-01 -1.38592E-01
ERROR= 1.00409E+00

X(I)= 4,99346E-01 -1.96285E-01
ERROR= 8,44714E-01

X(I)= -2,09031E-01 9.16705E-02
ERROR= 4.64853E-01

X(I)= -5.32790E-01 3.38486E-02
ERROR= 4.25601E-01

X(I)= -1,23986E+00 3.21415E-01
ERROR= 3,52595E-01

FIGURE S.S. Illustration of the simplex scale feature.

Contracting with y = i produces P,=(1.025,1.025), so that the error at
the contracted point is EE. = 1008.9, which is still worse than the error at PH'
Because all else has failed, scaling must be done.

Figure 8.6 shows the results of using the simplex program. In this
computer run the scale factor k was chosen as equal to -1, so the initial
simplex was increased in size about the low point P,. Simplex was the
able to make the error function arbitrarily close to zero.s

sIf x1- -5x2, then the error approaches zero as x2 approaches infinity.

Test Functions

8.6 TEST FUNCTIONS

195

The simplex algorithm that was just described is but one of many
optimization techniques that can be used to minimize an error function
E(x). Numerous techniques have been described in the literature; which is
best depends on the application. However, for a specific problem one can
make meaningful comparisons between different optimization techniques.

Over the years researchers have encountered (or concocted) various
functions that are difficult to minimize. Many of these functions have been
described in the literature and are now commonly used as test functions.
In this section a few of the "classical" test functions will be discussed; then
in the following chapters we will be able to compare different optimization
techniques.

Perhaps the most famous test function is the Rosenbrock function

E(x)= l00(x,2 -x2)2 + (1- x,)2. (8.21)

That this is a difficult function to optimize can be appreciated by studying
Fig. 8.7.' This figure indicates contours of constant E (x). Because the
contours are close together it is difficult for an optimization program to
search for the minimum.

The amount of computation time required by an optimization technique
to reach a minimum can be greatly influenced by the values selected for
the initial parameters. For the Rosenbrock function the values customarily
chosen are x, _ -1.2 and x2 =1.

Figure 8.8 shows the output of the simplex program for the Rosenbrock
function. For P0 = (- 1.2, 1) the initial error was 24.2. After one iteration
the parameters were adjusted to x, = - 1.08, x2=1.10, which reduced the
error to 4.77. However, after this initial reduction in the error function, the
simplex algorithm was very slow in approaching the minimum. The path
taken due to the simplex optimization is indicated by the dashed line in
Fig. 8.7. Following the thin curving contours is time consuming, but
depending on how patient one is, the algorithm can get arbitrarily close to
the minimum x, =1= x2, at which point E (x) is equal to zero.

A function very similar to the Rosenbrock function is "cube"

E(x)= 100(x,3 -X2)2+(1 _ x,)2. (8.22)

This function is plotted in Fig. 8.9, and the simplex optimization results are
given in Fig. 8.10. The initial point Po=(-1.2, 1) was the same as for the
Rosenbrock function. The initial error of 749 was worse than the corre-
sponding Rosenbrock error, but the optimal point P = (1, 1) was ap-
proached much more quickly.

'The dashed line in this figure will be explained later.

186

x2

7

6

5

4

3

2

1

_1 L
-3

Introduction to Optimization Theory

FIGURE 8.7. The Rosenbrock function.

Both of the test functions that were just discussed were functions of just
two variables. As the number of parameters is increased, an optimization
technique may encounter difficulties. A four-parameter function due to
Powell is

E(x)=(x,+ 10X2)2+5(X3-X4)2+(X2-2X3)4+(10X1-X4)4. (8.23)

Customary initial values for this function are Po=(3, - 1,0, 1). Choosing a
component to be zero causes line 28 in the program to be executed. If this
statement had not been included in the program, then the algorithm would
never have been able to vary the third component of PO from zero. The
computer output in Fig. 8.11 indicates that the simplex algorithm was able
to reduce the error functions slowly from an initial value of 707,336 to 90.9
in ten iterations.

Test Functions 197

N ? 2

X(I) I=1,2,...N
? -1.2 1

ERROR= 2.42000E+01

X(I)= -1.08018E+00 1.09992E+00
ERROR= 4.77423E+00

X(I)= -1.08027E+00 1.19978E+00
ERROR= 4,43505E+00

X(I)= -1.07276E+00 1.14058E+00
ERROR= 4,30682E+00

X(I)= -1,05606E+00 1.10709E+00
ERROR= 4.23406E+00

X(I)= -1.03521E+00 1.09768E+00
ERROR= 4.20976E+00

X(I)= -1.00992E+00 1.01948E+00
ERROR= 4.03978E+00

X(I)= -9.30016E-01 8.53469E-01
ERROR= 3.73810E+00

X(I)= -8,02573E-01 6.04726E-01
ERROR= 3,40449E+00

X(I)= -6,41337E-01 3.50679E-01
ERROR= 3,06163E+00

X(I)= -5.48732E-01 2.51302E-01
ERROR= 2.64661E+00

FIGURE B.S. Minimization of the Rosenbrock function by simplex.

In the next two chapters these three test functions (Rosenbrock, "cube",
and Powell) will be used to compare the efficiency of different optimiza-
tion techniques. This will give insight into how the programs would be
expected to perform on problems similar to these test functions. However,
if one wants to know how different optimization techniques compare for a
particular type of problem, then a problem of that type should be selected.

For an example of a "particular type of problem", the technique of
coefficient matching will be explained. The electrical circuit in Fig. 8.12 is

198 Introduction to Optlmlzatton Theory

-1.5 -1 -0.5 0 0.5 1

FIGURE 8.9. The "cube" function.

-4

termed an active filter-it is made up of resistors, capacitors, and an
operational amplifier. In a design problem the resistors and capacitors
should have their element values chosen to yield a specified response. We
will assume for this example that the response should have the form

T (s) =
s

sZ+s+40
(8.24)

where s is a normalized variable related to the frequency of an electrical
signal.

Some of the element values for the circuit can be arbitrarily selected,
and the response still made to have the form shown in (8.24). For this

Test Functions 199

N ? 2

X(I) I=1,2,...N
? -1.2 1

ERROR= 7.49038E+02

X(I)= -9,66351E-01 1.14735E+00
ERROR= 4.24020E+02

X(I)= -8.55709E-01 1,02242E+00
ERROR= 2,75366E+02

X(I)= -3.48384E-01 1,25017E+00
ERROR= 1.68863E+02

X(I)= 1.07280E-01 1.11477E+00
ERROR= 1.24794E+02

X(I)= 1.31085E+00 1.49410E+00
ERROR= 5.76125E+01

X(I)= 1.23542E+00 1.33145E+00
ERROR= 3.07595E+01

X(I)= 9.83418E-01 1.33872E+00
ERROR= 1.50273E+01

X(I)= 1.09020E+00 1.29437E+00
ERROR= 8.32327E-03

X(I)= 1.07322E+00 1,23345E+00
ERROR= 6.07770E-03

X(I)= 1.05875E+00 1,18485E+00
ERROR= 3.83487E-03

FIGURE 8.10. Minimization of "cube" by simplex.

example, the following choices will be made:

Ra = 1000, Rh = 5000, C, = C2 = 10-8. (8.25)

It can then be shown that the response of the circuit is given by

T(s)=
a,s

(8.26)
s2+b,s+bo

200 Introduction to Optimization Theory

N ? 4

X(I) I=1,2.... N
? 3 -1 0 1

ERROR= 7.07336E+05

X(I)= 2.41588E+00 -1.07368E+00 7.36769E-05 1.07368E+00
ERROR= 2.84082E+05

X(I)= 2.03217E+00 -1,01175E+00 1.93810E-05 1.28777E+00
ERROR= 1.31328E+05

X(I)= 1.31910E+00 -1.02041E+00 2.28368E-04 1.23140E+00
ERROR= 2.05456E+04

X(I)= 3.33829E-01 -1.15493E+00 8.58329E-05 1.38571E+00
ERROR= 1.51702E+02

X(I)= 1.57127E-01 -1.07911E+00 1.62529E-04 1.51571E+00
ERROR= 1.25923E+02

X(I)= 3.12163E-01 -1.03953E+00 1.99599E-04 1.51494E+00
ERROR= 1.20975E+02

X(I)= 7.84367E-02 -1.00796E+00 1.84177E-04 1.64235E+00
ERROR= 1.15083E+02

X(I)= 1.70012E-01 -9.83617E-01 2.59339E-04 1.57024E+00
ERROR= 1.06697E+02

X(I)= 2.24448E-01 -9.24915E-01 2.01309E-04 1.71597E+00
ERROR= 9.69756E+01

X(I)= 3.54463E-01 -8.41895E-01 2.58020E-04 1.82053E+00
ERROR= 9.09423E+01

FIGURE 8.11. Minimization of "Powell" by simplex.

INPUT
OUTPUT

FIGURE 8.12. An active filter circuit that is used to illustrate coefficient matching.

Test Functions

where
a,= 1.2x 105/x2,

(X2+X3)X 1010
b0

X,x2X3

2X105 2X104(x2+X3)
X, x2x3

201

(8.27)

The coefficient-matching technique consists of adjusting the parameters
x,,x2,x3 so that the coefficients have the specified values. For this
problem (8.24) implies that the specified values are a,= 1, b0=40, and
b, = 1. Optimization techniques can be applied to this problem if the
following error function is defined:

E(x)=(a, - 1)2+(bo-40)2+(b,-1)2,
where a bo, b, are as given in (8.27).

(8.28)

N ? 3

X(I) I=1,2,...N
? 10000 10000 10000
ERROR= 2.59460E+04

X(I)= 1.09824E+04 1.09824E+04 1.09824E+04
ERROR= 1.61135E+04

X(I)= 1.32447E+04 1.03152E+04 1.06270E+04
ERROR= 1.10851E+04

X(I)= 1.35027E+04 1.25720E+04 1.12430E+04
ERROR= 7.36973E+03

X(I)= 1.50221E+04 1.12300E+04 1.34720E+04
ERROR= 4.89402E+03

X(I)= 1.96490E+04 1.21319E+04 1.33350E+04
ERROR= 1.72462E+03

X(I)= 2.15355E+04 1.52155E+04 1.66871E+04
ERROR= 4.17308E+02

X(I)= 2.89243E+04 1.34183E+04 2.08358E+04
ERROR= 8.06558E+01

X(I)= 3.17047E+04 1.59435E+04 2.04281E+04
ERROR= 7.48690E+01

X(I)= 3.19244E+04 1.44463E+04 2.12484E+04
ERROR= 7.48069E+01

X(I)= 3.04410E+04 1.35902E+04 1.98408E+04
ERROR= 7.13897E+01

FIGURE 8.13. Coefficient matching by simplex.

202 Introduction to Optimization Theory

The result of applying the simplex algorithm to minimize the error
function is shown in Fig. 8.13. For the initial parameters x, = x2 = x3 =
10000 the optimization program yielded x, =30441, x2=13590, x3=19841
as a better set after ten iterations; but the error function was still quite
large.

In conclusion, the results of applying the simplex algorithm to the four
test functions are shown in Figs. 8.8, 8.10, 8.11, and 8.13. Each of these
figures shows ten iterations of the simplex optimization technique. If more
iterations were allowed, the simplex method did converge to the minimum
for each test function. However, the number of iterations was arbitrarily
restricted to ten. This will also be done in later chapters when other
optimization techniques are applied to the same test functions.

M. J. Box (1966) applied the simplex algorithm to many other test
functions not described in this chapter. In fact, one of his test functions
had twenty variables. He observed that (when compared with other optimi-
zation techniques such as Fletcher-Powell7) simplex did well for a small
number of variables, but for more than three dimensions it was progres-
sively less successful. However, in many applications it has been success-
fully used even for more than ten variables.

PROBLEMS

8.1 The simplex algorithm described in this chapter minimizes a function
E(x). If we instead want to maximize the function f(x)=2sinx,cosx2
+(cosx,)2(sinx2)°, how should E(x) be chosen?

8.2 Outline how optimization techniques can be used to solve the follow-
ing set of linear equations:

x+y+z=6, x+2y+z=8, 3x-y+z=4.

8.3 Outline how optimization techniques can be used to solve the follow-
ing set of nonlinear equations:

x2+y2=13, y3-xy=21.

8.4 If the initial parameters are chosen as x, =1, x2=2, and x3=3, what
are the four points that describe the initial simplex?

7See Chapter 9.

Problems 203

8.5 Let the error function for this problem be given as
E(x) = x,2+(2x2- 3)2+(x3- x, +2)2.

If a simplex is defined by
Po=(0,0,0), P, =(0, - 1,0), P2=(0,1,0), P3=(1,1,1),

what is the centroid?
8.6 If the four points of a simplex produce the error functions E,=2,

E2=5, E3=2, and E4=5, then it is not obvious which points will be
chosen as PL, PH, and PNH. In fact, the choice will depend on how
the program is written. For the program in Fig. 8.3, what numbers
would be determined for L, H, and NH?

8.7 The four points of a simplex are Po=(1,1,2), P,=(2,1, -I), P2=
(0,1,2), P3=(1,1,0). Assume that PH=P3.
(a) Find the centroid.
(b) Reflect and find PR (let a=1).
(c) If reflection is highly successful (i.e., ER < EL), an expansion is

attempted. Find PE, (let /3 = 2).
8.8 The following three points define a triangular simplex: Pa=(1,0,4),

P,=(8,2,5), P2=(3,2,6). Assume that PH=P,.
(a) Find the centroid.
(b) Reflect, and find PR (let a = 1).
(c) Assume that the reflection in (b) resulted in an error function ER

described by ENH < ER < EH. This implies that the highest point
PH should be replaced by PR and reflection should be done
again. Find the new point produced by reflection.

(d) Assume that the reflection in (c) was unsuccessful (ER > EH).
Contract and find Pc (let -y=0.5).

8.9 In this problem the initial simplex is defined by Po=(0,2,4), P,=
(4, 2, 0), P2 = (2, - 2, 4). Assume that PL = P,, PH = Po, and therefore
PNH=P2. If the result of reflecting (let a=1) is described by P, <PR
< P2, what is the new centroid?

8.10 (a) Draw a two-dimensional vector diagram to demonstrate that
PR = 2C - PH produces a reflected point that is the same distance
from the centroid as is PH, but on the oppostie side. (Hint: The
drawing should be similar to Fig. 8.2.)

(b) Draw a two-dimensional vector diagram to illustrate PEx=2PR-
C.

(c) Draw a two-dimensional vector diagram to illustrate Pc=0.5PH
+0.5PC.

204 Introduction to Optimization Theory

8.11 For this problem the simplex is defined by Po=(2,4,O), P1=
(-2,4,2), P2 = (0,1, 0), P3 = (2, 2, - 2). Assume that PL = P1, PH = P31
PNH = P0. If neither reflection nor contraction can produce a point
better than PH, then the simplex is scaled.
(a) If k=0.5, what is the new simplex?
(b) If k = - 1, what is the new simplex? For this part, start with the

original simplex and not the result of (a).
8.12 If the initial parameters are chosen as xI =0, x2=0, and x3=0, what

does the program in Fig. 8.3 find for an initial simplex?
8.13 If the simplex algorithm is applied to the error function

E (x) = (cosx2)2 + x,(sin x2)2,

what will E(x) approach after many iterations?
8.14 Use the simplex program to solve the following set of nonlinear

equations:

2x2-4xy+y2= -7, x4+xy2-y3=7.
Use as the initial set of parameters x =I=y.

8.15 Solve the following three equations by using the simplex program
with the initial parameters x =y = z =1:

x2+y2+z2=21, xyz= -8, 2x+y3+z2=22.

8.16 Apply the simplex program to minimize

x2-4x+y2-6y+9.
8.17 Apply the simplex program to maximize

4x2y+2xy2+8x+4y-4x2-y2-8xy-x?y2.

Chapter Nine

Gradient Techniques

9.1 INTRODUCTION

The simplex algorithm described in the previous chapter was a collection
of various rules: to find a minimum, reflection was tried first; if reflection
was highly successful, an expansion was attempted; if reflection was only
moderately successful, another reflection was performed; etc.

For a particular problem, the rate of convergence of an optimization
technique depends on the initial parameters that are selected. In fact, if a
poor set of initial parameters is used some optimization techniques will
converge slowly so that they are useless. However, the simplex algorithm
does not have this drawback: for any set of initial parameters it will
proceed (although sometimes rather slowly) towards a minimum. Thus, if
another optimization technique encounters convergence problems because
of a poor set of initial parameters, the simplex algorithm can be used to
provide a better set. In fact, practical optimization programs usually
contain more than one optimization technique. This allows the user to first
specify a "slow but sure" algorithm such as simplex and then automatically
switch to a faster technique when sufficiently close to the minimum.

If one is sufficiently near a minimum, there are optimization techniques
that will converge much more rapidly than the simplex algorithm. This
chapter is an introduction to a class of optimization methods that can be
viewed as a combination of two separate processes: first a decision is made
to which direction to proceed in the parameter space, and then a decision
is made as to how far to proceed in that direction.

There are many different rules that are used to determine the direction.
In fact, the simplex algorithm could be modified so that it determines the
direction. If Fig. 8.1 is reexamined, we can see that contraction, reflection,
and expansion are all in the same direction from the high point PH. The
simplex algorithm instructs the computer to proceed from P. towards the
centroid. How far it proceeds depends on which rule is used: reflection,
expansion, or contraction (and, of course, the value of a, /3, or -y).

205

206 Gradient Techniques

The simplex rules are supposed to cause the parameters to proceed from
the high point PH in a "downhill" direction; that is, towards a minimum.
In this chapter, we will next discuss a technique, steepest descent, that
guarantees the direction is downhill. The Fletcher-Powell optimization
technique modifies the steepest-descent direction slightly and thus may
converge even faster. This method will also be discussed in this chapter.
There are other methods which also modify the steepest-descent direction;
they will not be discussed in detail in this book, but an important
observation should be made: no matter which rule or set of rules used to
determine the "proper" direction, the distance to proceed in that direction
can be determined by the same method. The method commonly used is
given in the next section.

9.2 QUADRATIC INTERPOLATION FOR A SPECIFIC DIRECTION

Many optimization methods seek the minimum of a function by choos-
ing the parameter change 8x to point in a certain direction. The direction S
that is calculated will vary from method to method. However, once the
direction of optimization has been determined, any of the optimization
techniques can use the same algorithm to determine the magnitude of the
parameter changes.

The following example is included to illustrate the meaning of direction
and magnitude.

EXAMPLE 9.1

Find a vector r=(r,,r2) which is in the same direction as S=(3,4) and is
twice as long (i.e., has twice the magnitude).

SOLUTION

Since r should point in the same direction as S, it follows that r= aS,
where a is a constant of proportionality. The fact that the magnitude of r is
twice the magnitude of S implies that a = 2, so that

r = aS = 2S = (6,8).

This section will assume that the direction of the parameter change has
been determined and is denoted as S. The magnitude of the parameter
changes will then be determined by selecting the proportionality constant
in the following equation:

8x=aS. (9.1)

Quadratic Interpolation For a Specific Direction 207

From this formulation of the problem it can be seen that the distance
one goes in a specific direction can be determined by a single-parameter
search. That is, the proportionality constant a can be found by using one
of the single-parameter minimization methods that was described in
Chapter 3. Because the single-parameter search can take a substantial
amount of the total computational time, it should be chosen carefully. We
will use the quadratic interpolation method.

The quadratic interpolation method can be used to approximate the
minimum of the error function E by passing a parabola through three
points. If the error function is quadratic, then the minimum of the
parabola will also be the minimum of the error function (that is, the
minimum in the direction S). However, the error function will not usually
be quadratic, so the parabola minimum will just approximate the error
minimum.

The rest of this section will be used to explain the statements shown in
Fig. 9.1. These statements will be used in the steepest-descent program to
apply quadratic interpolation. The statements are a generalization of the

49C QUADRATIC INTERPOLATION
50C
51C FIND ALPHA 1
52 Al=1.
53 53 DO 54 I=1,N
54 54 X1(I)=X(I)+A1*S(I)
55 E1=ERROR(X1)
57 IF(E1.LT.EO) GO TO 63
58 Al=.S*Al
59 GO TO 53
61C
62C FIND ALPHA 2
63 63 A2=Al
64 64 A2=2.*A2
65 DO 66 I=1,N
66 66 X2(I)=X(I)+A2*S(I)
67 EE2=ERROR(X2)
68 IF(E2.GT.E1) GO TO 74
69 A1=A2 $E1=E2
70 GO TO 64
72C
73C FIND ALPHA
74 74 A=(Al*Al-A2*A2)*E8+A2*A2*E1-AI*AI*E2
76 A=.5*A/((Al-A2)*EO+A2*E1-Al*F2)

FIGURE 9.1. Some statements for quadratic interpolation in a specific direction.

208 Gradient Techniques

original quadratic-interpolation program that was described in Chapter 3.
At the beginning of Fig. 9.1 it is assumed that the error function Eo has

been calculated at the initial point x; thus one of the three points of the
parabola is by assumption x, Eo. The next point is found by evaluating the
error function at x, = x+ a, S with a, first set equal to unity. If this error E,
is greater than E0, then a, is repeatedly reduced by a factor of 2 until
E, < E0. In the original quadratic interpolation program of Fig. 3.5, a, was
repeatedly reduced by a factor of -2 instead of 2. The minus sign was
included so that the algorithm would first look for a minimum on one side
of x and then on the other. In the application in this chapter we will know
that the minimum is the direction S (not in the direction -S) and thus
only need look on one side of x.

The last point x2 is found by doublit.g the distance from x until E2> E,.
A parabola is then passed through the three points. The minimum of this
parabola is given by

xm=x+aS,

where

0.5(a,2-a22)Eo+a22Ei-a12E2
a=

(a, - a2)Eo+ a2E, - a,E2

Summarizing, if the direction S is known, then quadratic interpolation
can be used to find the constant of proportionality in Sx = aS. The
direction S will be related to the gradient of the error function, which is
discussed in the next section.

It should be noted that (9.2) only gives the exact minimum for a
quadratic function. Applying quadratic interpolation many times could get
one arbitrarily close to the minimum for the specific direction under
consideration. However, in this chapter quadratic interpolation will be
applied just once for each search direction that is considered. Then a new
"optimum" direction will be determined and a new minimum estimated.
Others have proposed algorithms that find the minimum in each direction
more accurately, but they will not be treated here.

9.3 THE GRADIENT

If a function f (x) depends on only one parameter x, then the first
derivative (rate of change) of the function is called its slope. At a maxi-
mum or minimum the slope is zero.'

'However, the fact that the slope is zero does not necessarily imply that the function is at a
maximum or minimum-it could be at a saddle point.

The Gradient 209

The error function E (x) is a function of many parameters. That is, x is a
vector which may be written as

x=(x1,x2,...,xn) (9.3)

For this multidemensional case, the concept of slope can be generalized by
defining the gradient V E as

DE= aE aE aE (9.4)
(ax

1
' ax2 axn

The gradient is an n-dimensional vector, the ith component of which is
obtained by finding the partial derivative of the function with respect to x;.

EXAMPLE 9.2

The function E (x) = x, 2 + x2 can be considered to define a set of circles
centered at the origin. For example, if E (x) = 4, then x 12 + x22 = 4 is a circle
of radius equal to 2.

By definition, the gradient of E(x) for x = (x,, x2) is V E =
(aE/ax1, aE/ax2). For this example

aE
- 2

aE = 2X2-
ax, axe

Thus, the gradient is given by

V E=(2x1,2x2).

In general, the value of the gradient depends on the coordinates of the
point at which the gradient is evaluated. For example, for this particular
function

VEI(2.3)=(4,6).

The concept of the gradient will be helpful when we try to find an
expansion for E(x+Sx). It will let us discover how to choose Sx, the
change in the parameter vector x, so as to minimize the error function E.
This will be done by analogy to the following one-dimensional case.

If the error function is a function of only one variable, then it can be
expanded in terms of a Taylor series as

2 2x(S

)E(x+Sx)=E()+ d-S +E 9 5x x 2 i (.)

If Sx is small, then this can be approximated as

E(x+Sx)-_ E(x)+ d Sx. (9.6)

210 Gradient Techniques

The approximation in (9.6) can be generalized to n dimensions. For this
case, if the n parameter changes Sx,, Sx2, ... , Sx,, are sufficiently small, then
it follows that

E (x + Sx),r E (x) + aE Sx, + a.E Sx2+ . + ax Sx,,. (9.7)
1 2 n

This relation can be written in an extremely convenient form by recall-
ing that the gradient is a vector which can be written as

aE aE aE _ f aEvE=(a
1

, axe....,
IL ax1

aE
aX2

aE I T
ax

Here we have used the notation that a vector can be treated as a column
matrix. It follows that

]VETSx= I aE M M
l a-Y, ax2 ax"

Sx,

Sx2

LSx,]

= aE 8x1 + aE Sx2+ ... + ax Sx,,. (9.9)

Comparing this with (9.7), it follows that

E(x+Sx)xE(x)+VETSx. (9.10)

The above relation will be very important to us-in fact, it can be
considered to be the foundation for the steepest-descent method which is
described in the next section. However, before discussing the steepest-
descent algorithm we will consider an example for (9.10) and also discuss
the gradient in more detail.

EXAMPLE 9.3

If the function E(x)=x,2+x22 is evaluated at x,=2, x2=3, one finds
E(2,3)= 13. If the parameters are changed slightly, choosing Sx, =0.2 and
8X2=0,1, then (9.10) can be applied to estimate a new error. In the
following equation, the value of the gradient came from Example 9.2:

E(2.2,3.1),zt E(2,3)+[4 6]I0.]=13+0.8+0.6=14.4.

The exact answer is 14.45. t

It was mentioned at the beginning of this section that in the one-dimen-
sional case the slope must be zero at a minimum (or at a maximum).

The Steepest-Descent Optimization Technique 211

Similarly, in the n-dimensional case the gradient must be zero at a
minimum (or at a maximum). That this is necessary can be seen by again
examining

E (x + Sx) E (x) + D E' Sx. (9.10)

Consider the case of a minimum (a maximum could be treated in the same
manner). If the gradient is not zero, then the parameter change Sx can
always be chosen so that V ET ax is a negative number. For example, if
VE=(1,-2), then choosing 8x=(-1,1) yields VETax=-3. If VETax
can be made negative, then (9.10) implies that the parameter changes ax
can be selected to reduce E(x). That is, E(x) can always be reduced unless
the gradient is zero, so the gradient must be zero at a minimum.

In the next section we will learn how to iteratively choose the parameter
change Sx so as to make the gradient become zero and minimize the error
function E(x). However, before this can be done we must obtain an
approximation that can be used by a computer to calculate the gradient.

The gradient is an n-dimensional vector, and a typical component of it is
given by

aE E(x+Sx,)-E(x)
lim

ax, s.Y,-.o fix;
(9.11)

where Sx, is a vector which has all zero components except for the ith
component, which is equal to Sx;.

The expression for the partial derivative in (9.11) -is very similar to the
expression for the derivative which was given in (3.8). We will evaluate this
partial derivative by analogy with the method that was used to evaluate the
derivative in Newton's method. That is, Sx, will be calculated via

Sx; = ex;, (9.12)

where a is a constant of proportionality. The same value for e will be used
here as in Chapter 3, namely a=10- 6.

9.4 THE STEEPEST-DESCENT OPTIMIZATION TECHNIQUE

For any optimization procedure, one must make an initial guess x for
the parameter values. Next this guess is modified to x + Sx so as to reduce
the error function. How the parameter change Sx is calculated depends on
the optimization procedure. In this section we will learn how Sx is chosen
for the steepest-descent technique.

Since Sx is a vector, it can be described by two quantities: a direction
and a magnitude. In order to choose the direction of Sx we will use the
scalar product (dot product) of vector algebra. By definition, the scalar

212

product of and is

Gradient Techniques

(9.13)

It can be shown that this definition implies

(9.14)

where Jai is the magnitude of a, IbI is the magnitude of b, and 0 is the angle
between the two vectors.

EXAMPLE 9.4

If a=(3,4), choose a unit vector b such that

(a) a,b, + a2b2 is a maximum.
(b) a, b, + a2b2 is a minimum.

SOLUTION

(a) Comparing (9.13) and (9.14) yields a, b, + a2bZ = IaI Ibl cos B. This is a
maximum when 0 = 0-i.e., when a and b are in the same direction;
thus b=a(3,4). But b is a unit vector, so that

Ib1=I3a,4a1= 9a2+16a2 =5a=1.
Since therefore a = 5 , it follows that

b = (0.6, 0.8).

(b) For the sum to be minimum we require cos 0 = - 1, to align b opposite
to a. Analogously to the above, we have

b= -(0.6,0.8).

In order to see how the scalar product can be applied, consider again the
relation

E(x+Sx),: E(x)+VETSx. (9.15)

The last term in this expression can be rewritten as

VE' Sx=a-LE

z
Sx,+ aE 6x2+ + ax Sx,,, (9.16)

2 n

which [by comparison with (9.13)] is the scalar product of the gradient V E
and the parameter change Sx.

Since VETSx is equivalent to the scalar product of VE and Sx, it
follows from Example 9.4 that a unit vector Sx will produce a maximum
change if it points in the direction of the gradient and will produce a

The Steepest-Descent Optimization Technique 213

minimum change (i.e., maximum negative change) if it points in the
direction of the negative gradient. The steepest-descent method utilizes this
information by choosing Sx to point in the direction of the negative
gradient.

In the steepest-descent optimization technique one first chooses an
initial set of parameters x, which results in an error E(x). Next the gradient
V E is calculated at point x. The parameter changes are then chosen to be
in the direction of the negative gradient; that is,

Sx = - a V E, (9.17)

where a is a positive constant.
As explained in Section 9.2, the proportionality constant a can be

determined by using quadratic interpolation for a specific direction. In the
steepest-descent optimization technique the direction is that of

S= - V E. (9.18)

In other optimization methods (e.g., the Fletcher-Powell method in Section
9.6) the direction may be calculated by an equation different from (9.18),
but once the direction has been obtained, the same quadratic interpolation
subroutine can be used to determine the constant of proportionality a.
Finally, the new parameters can be calculated from the old parameters, a,
and S by

x + as-*x. (9.19)

EXAMPLE 9.5

A previous example considered the error function E (x) = x 12 +x22 and
found that at x=(2,3) the error function had the gradient V E=(4, 6). In
this example we will consider two different parameter changes, one which
will be in the direction of the negative gradient and one in the direction of
the positive gradient.

For the parameter changes in the direction of the negative gradient,
S= - V E _ (- 4, - 6). If the constant a is arbitrarily chosen as 0.01, then
(9.19) yields

(2,3)+0.01(-4, -6)=(1.96,2.94)=(x1,x2).

The error function for this is 12.49, which is smaller than the original error
function E= 13.

If the parameter changes are instead in the direction of the positive
gradient, then S = V E _ (4, 6). Again choosing a=0.01 yields

(2, 3)+0.01(4,6)=(2.04,3.06).

The error function for this set of parameters is 13.53, which is larger than
the original error function.

214

y

Gradlent Techniques

FIGURE 9.2. A steepest-descent optimization path for elliptical contours.

Choosing the parameter changes to be in the direction of the gradient
results in a path that is orthogonal' to contours of constant error. This
follows from (9.10) which was

E(x+Sx)=E(x)+VE'Sx.
If Sx is chosen to be along a contour of constant error, then E (x + Sx) _
E (x), so that V ET x = 0. This implies that V E is orthogonal to Sx, i.e., the
gradient is orthogonal to contours of constant error.

It is illustrated in Fig. 9.2 that the steepest-descent path is orthogonal to
contours of constant error. The error contours for

E(x)=(x, - 1)2 +4(x2 - 2)2.

are ellipses. The steepest-descent path originates on the E(x)= 100 contour
and is orthogonal to that contour. It continues in a straight line until the
E (x) = 50 contour, at which point calculating the gradient again makes the
path orthogonal to the contour. Similarly, each time the gradient is
recalculated at a contour the optimization path becomes orthogonal to that
contour.

21f two vectors are orthogonal, then their scalar product is zero. That is,
abcosO-O. This implies that the angle between a and b is 90°.

The SNepest-Descent Optimization Technique 215

01C STEEPEST DESCENT
02 PROGRAM SD(INPUT,OUTPUT)
03 03 FORMAT(7H X(I)=1P,4E14.5)
04 04 FORMAT(7H ERROR=,IP,E14.5,/)
06 DIMENSION E(10),GRAD(10),S(10),X(10),X1(10),X2(10)
09C
10C INITIAL VALUES
11 PRINT,*N*, $READ,N
14 PRINT,/,*X(I) I=1,2.... N*
15 READ,(X(I),I=1,N)
18 EO=ERROR(X)
19 PRINT 4,EO
20C
21C FIND GRADIENT
22 22 DO 28 I=1,N
23 DELTA=.000001*X(I)
24 IF(ABS(X(I)).LT.1E-12) DELTA=.000001
25 XSAVE=X(I)
26 X(I)=X(I)+DELTA
27 GRAD(I)=(ERROR(X)-EO)/DELTA
28 28 X(I)=XSAVE
39C
40C FIND DRECTION S (EQ. 9.18)
41 DO 44 I=1,N
44 44 S(I)=-GRAD(I)
48C
49C QUADRATIC INTERPOLATION
50C
SIC FIND ALPHA 1
52 Al=1.
53 53 DO 54 I=1,N
54 54 X1(I)=X(I)+A1*S(I)
55 E1=ERROR(X1)
57 IF(E1.LT.EO) GO TO 63
58 Al=.5*A1
59 IF(A1.LT.1E-8) STOP
60 GO TO 53
61C
62C FIND ALPHA 2
63 63 A2=A1
64 64 A2=2.*A2
65 DO 66 I=1,N
66 66 X2(I)=X(I)+A2*S(I)
67 E2=ERROR(X2)
68 IF(E2.GT.E1) GO TO 74
69 Al=A2 $E1=E2
70 G0 TO 64
72C
73C FIND ALPHA
74 74 A=(Al*Al-A2*A2)*EO+A2*A2*E1-Al*Al*E2
76 A=.S*A/((Al-A2)*£O+A2*E1-Al*E2)
80C

(a)

FIGURE 9.3. A program for steepest descent.

216 Gradient Techniques

S1C FIND NEW X
84 DO 85 I=1,N
85 85 X(I)=X(I)+A*S(I)
86 EO=ERROR(X)
87 IF(EO.LT.E1) GO TO 95
90 DO 9) I=1,N
91 91 X(I)=X(I)+(A1-A)*S(I)
93 EO=ERROR(X)
94C
95 95 PRINT 3,(X(I),I=1,N)
96 PRINT 4,E0
98 GO TO 22
99 END
897C
898 FUNCTION ERROR(X)
899 DIMENSION X(10)
900 ERROR=100.*(X(1)*X(1)-X(2))**2+(1.-X(1))**2
950 RETURN
999 END

(b)

FIGURE 9.3. (Continued.)

A program for the steepest-descent method is given in Fig. 9.3. The first
part of the program indicates how the gradient can be approximated by
applying (9.12) with the increment parameter e equal to 0.000001. After the
gradient is calculated, the negative gradient is defined to be S. A one-
dimensional search for the minimum is then performed in this direction by
employing quadratic interpolation, which was described in Section 9.2.
This process yields the parameter a which indicates how far to proceed in
the direction S. The parameter x is then incremented by aS.

The "minimum" that is obtained by the above process will probably not
be the minimum of the error function. This is because (9.15) assumed that
the parameter change Sx is very small (in fact, infinitesimal). At the
beginning of the steepest-descent method, Sx will probably be quite large,
because the initial guess for the parameter x may be poor. However, if the
steepest-descent method is used iteratively, then as the minimum is ap-
proached, the parameter change will become smaller and smaller, so that
the approximation in (9.15) will be very accurate.

Very infrequently it happens that the error function evaluated at x,,,=x
+ aS [where a is given by (9.2)] is larger than the original error function.
This can occur far from a minimum where the assumption of a quadratic3
error function is not sufficiently valid. In this case, line 87 of the steepest-
descent program causes the point x, to be used as the next guess for the

3As a function of a.

The Steepest-Descent Optimization Technique 217

location of the minimum, since E(x,) was found in such a manner that it is
guaranteed to be less than the initial error E0.

The function that is coded in statement 900 of Fig. 9.3 is the Rosenbrock
function. The results of computer runs for this and the other test functions
are given in Figs. 9.4-9.7. These figures indicate the minimum that steepest
descent was able to attain (after ten iterations) for the various test

N ? 2

X(I) I=1,2.... N
? -1.2 1

ERROR= 2.42000E+01

X(I)= -1,01284E+00 1,07639E+00
ERROR= 4.30709E+00

X(I)= -1.02891E+00 1.06651E+00
ERROR= 4.12265E+00

X(I)= -8.13910E-01 6.58198E-01
ERROR= 3.29207E+00

X(I)= -8.05820E-01 6.59570E-01
ERROR= 3.27144E+00

X(I)= -8.02957E-01 6,41045E-01
ERROR= 3.25202E+00

X(I)= -7.94927E-01 6.42283E-01
ERROR= 3.23252E+00

X(I)= -7.92468E-01 6.24776E-01
ERROR= 3.21399E+00

X(I)= -7.84461E-01 6.25899E-01
ERROR= 3.19537E+00

X(I)= -7.82332E-01 6.09208E-01
ERROR= 3.17751E+00

X(I)= -7.74318E-01 6.10229E-01
ERROR= 3.15957E+00

F143URE 9.4. Minimization of the Rosenbrock function by steepest descent.

218 GradNnt Technlquss

N ? 2

X(I) I=1,2.... N
? -1.2 1

ERROR= 7.49038E+02

X(I)= -3.72447E-02 7.31346E-01
ERROR= 5.45701E+01

X(I)= -2.38255E-02 -2.17332E-04
ERROR= 1.04822E+00

X(I)= 2.32122E-01 4.87883E-03
ERROR= 5.95455E-01

X(I)= 2.47363E-01 2.29155E-02
ERROR= 5.72515E-01

X(I)= 2.61018E-01 1.10520E-02
ERROR= 5.50625E-01

X(I)= 8.62417E-01 6.84183E-01
ERROR= 2.01683E-01

X(I)= 8.78017E-01 6.77291E-01
ERROR= 1.48973E-02

X(I)= 8.78377E-01 6.77222E-01
ERROR= 1.48158E-02

X(I)= 8.78676E-01 6.78807E-01
ERROR= 1.47362E-02

X(I)= 8.79030E-01 6.78740E-01
ERROR= 1.46569E-02

FIGURE 9.5. Minimization of the "cube" function by steepest descent.

The Steepest-Descent Optimization Technique 219

functions. If these results are compared with the corresponding results
obtained by the simplex algorithm (see Figs. 8.8, 8.10, 8.11, 8.13), we are
not able to conclude that one of these optimization techniques is always
better than the other: The simplex algorithm was better for the
Rosenbrock and cube functions, while steepest descent was better for the
Powell function and coefficient matching.

N ? 4

X(I) I=1,2.... N
? 3 -1 0 1

ERROI.= 7.07336E+05

X(I)= 6.41034E-01 -9.99652E-01 4.83735E-06 1.23588E+00
ERROR= 8.13063E+02

X(I)= 2.22239E-01 -9.85161E-01 3.46988E-04 1.27696E+00
ERROR= 1.02617E+02

X(I)= 1.50222E-01 -1.25742E-02 2.56034E-02 1.23048E+00
ERROR= 7.26477E+00

X(I)= 1.23559E-01 -2.78714E-02 4.02785E-01 8.55751E-01
ERROR= 1.55328E+00

X(I)= 1.07730E-01 1.77109E-02 4.01929E-01 8.19492E-01
ERROR- 1.33930E+00

X(I)= 9.56487E-02 -1.84180E-02 4.04708E-01 7.79958E-01
ERROR= 1.18252E+00

X(I)= 9.52789E-02 1.63340E-02 3.97946E-01 7.47868E-01
ERROR= 1.05018E+80

X(I)= 8.69167E-02 -1.54803E-02 3.95124E-01 7.14234E-01
ERROR= 9e35799E-01

X(I)= 8.68037E-82 1.45339E-02 3.86480E-01 6.86602E-01
ERROR= 8.36207E-01

X(I)= 7.99820E-02 -1.35781E-02 3.81738E-01 6.57719E-01
ERROR= 7.48938E-01

FIGURE 9.6. Minimization of the Powell function by steepest descent.

220 Gradient Techniques

N ? 3

X(I) I=1,2.... N
? 10000 10000 10000
ERROR= 2.59460E+04

X(I)= 2.98033E+04 1.98722E+04 1.97913E+04
ERROR= 7.70003E+01

X(I)= 2.79038E+04 1,86731E+04 1.81067E+04
ERROR= 4.64119E+01

X(I)= 2.74910E+04 1.92966E+04 1.66871E+04
ERROR= 4.39795E+01

X(I)= 2.80230E+04 1.98468E+04 1.68334E+04
ERROR= 4.16719E+01

X(I)= 2.78720E+04 2.04692E+04 1.54577E+04
ERROR= 3.94360E+01

X(I)= 2.84156E+04 2.09487E+04 1.56617E+04
ERROR= 3.73815E+01

X(I)= 2.83694E+04 2,13156E+04 1.47268E+04
ERROR= 3.57458E+01

X(I)= 2.88460E+04 2.17380E+04 1.48518E+04
ERROR= 3.43825E+01

X(I)= 2.88006E+04 2.19852E+04 1.40920E+04
ERROR= 3.31333E+01

X(I)= 2.92461E+04 2.23671E+04 1.42100E+04
ERROR= 3.19864E+01

FIGURE 9.7. Coefficient matching by steepest descent.

9.5 APPLICATIONS OF STEEPEST DESCENT

The previous chapter discussed some applications of the simplex optimi-
zation technique. Steepest descent could also be applied to any of those
applications. For some situations the simplex algorithm might be more
efficient; for others, steepest descent. In this section some additional
optimization problems will be solved by using the steepest-descent pro-
gram. These, of course, could also be solved by using the simplex algo-
rithm.

EXAMPLE 9.6

Minimize the following function by applying the steepest-descent pro-
gram of Fig. 9.3:

E(x)=x12+0.1x2
2 2+(x1- 1)2(x1-5)2+$2(x2-4)2. (9.20)

Applications of Steepest Descent 221

SOLUTION

Figure 9.8 shows two different steepest-descent computer runs for this
error function. In Fig. 9.8(a) the initial parameters were chosen as x, = 10,
x2 = 10, which yielded a minimum E (0.943, 3.975) = 2.533. In Fig. 9.8(b) the
initial parameters were instead chosen as x, = 1, x2=1, which yielded
E (0.943, 0) = 0.943.

This example was presented to introduce the concept of a local mini-
mum versus a global minimum. The difference between these two mini-
mums can be understood by picturing the steepest-descent algorithm as
changing the parameters x in such a way that one goes down a mountain
(that is, one reduces the error function) as quickly as possible. On the way
down the mountain we may encounter a valley and conclude that we are at

N ? 2

X(I) I=1,2.... N
? 10 10
ERROR= 5.73500E+03

X(I)= 4.85948E+00 2.28120E+00
ERROR= 3.98028E+01

X(I)= 2.01683E+00 4.25819E+00
ERROR= 1.62909E+01

X(I)= 1.01915E+00 3.58429E+00
ERROR= 4.54937E+00

X(I)= 9.17705E-01 3.91928E+00
ERROR= 2.59120E+00

X(I)= 9.47973E-01 3.97099E+00
ERROR= 2.53324E+00

X(I)= 9.43220E-01 3.97426E+00
ERROR= 2.53266E+00

X(I)= 9.43484E-01 3.97466E+00
ERROR= 2.53266E+00

(a)

FIGURE 9.8. A local minimum is found in (a); the global minimum is found in (b).

222 Gradient Techniques

N ? 2

X(I) I=1,2.... N
? 1 1

ERROR= 1.01000E+01

X(I)= 8.70582E-01 2.10555E-01
ERROR= 1.68458E+00

X(I)= 9.63341E-01 2.06959E-02
ERROR= 9.56749E-01

X(I)= 9.42366E-01 1.61174E-03
ERROR= 9.42785E-01

X(I)= 9.43547E-01 8.18966E-05
ERROR= 9.42722E-01

X(I)= 9.43450E-01 7.58370E-06
ERROR= 9.42721E-01

X(I)= 9.43453E-01 -8.32343E-07
ERROR= 9.42721E-01

(b)

FIGURE 9.8. (Continued.)

the bottom. However, it is possible that once we climb the other side of the
valley we discover the mountain descends for another mile. In this discus-
sion, the valley would be the local minimum, while the bottom of the
mountain would be the global minimum. In Example 9.6, E (0.943, 3.975) =
2.533 was a local minimum, while E(0.943,0)=0.943 was the global
minimum.

In an optimization problem one usually wants to find the global mini-
mum and does not want to be trapped at a local minimum. Failing to find
the global minimum is not just a difficulty associated with steepest-
descent; any optimization technique can be plagued by this problem.

Sometimes one will know for physical reasons that the global minimum
must be near a certain point, which should then be picked as the initial
point. The computer will then improve on that point and hopefully attain
the global minimum. Other times (see Chapter 11) the parameters will be
constrained to remain within a certain region (perhaps for reasons of
availability of component values) and this will imply there is only one
allowable minimum.

Applications of Steepest Descent 223

50 25

75

25 50 100

FIGURE 9.9. Different initial parameters can yield different minimums.

However, often many different computer runs must be done before one
is satisfied with the minimum that is attained. If many different initial
parameters produce the same minimum, then one is fairly confident that it
is the lowest value that can be found. But in practical optimization
problems that have many parameters that can be varied, there may be
numerous local minimums.

A hypothetical case that has two local minimums in addition to the
global minimum is portrayed in Fig. 9.9. Choosing the initial parameter
values to be given by P, yields a minimum value of 5; starting at P2 yields
10; and starting at P3 yields the global minimum, which is zero.

In cases that have numerous local minimums, the initial parameters can
be systematically picked for good distribution over the parameter space. In
a practical problem one can never be positive that the global minimum has
been found; however, after a sufficiently low value has been located one
may decide his time can be spent more profitably on other tasks.

The rate of convergence of any search technique is highly dependent on
the given function E (x). It is for this reason that there is no optimal
procedure for an arbitrary error function. The efficiency of a particular
optimization technique is usually dependent on the scale used. To under-
stand why this is so, consider the following function:

E(x1 ,x2)=(x1 -2)2+0.01(x2-30)2. (9.21)

224 Gradient Techniques

A steepest-descent optimization printout for the initial condition (1, 10) is
shown in Fig. 9.10(a). The initial error was 5, and after ten iterations this
was reduced to 0.44.

If 0.1 x2 is replaced by x3, then (9.21) can be rewritten as

E(x,,x3)=(x,-2)2+(x3-3)2. (9.22)

This function represents a family of concentric circles centered about (2,3).
For a case such as this, steepest descent can find the minimum in one
iteration, as demonstrated in Fig. 9.10(b). The initial error at x1= I, x3=1
was 5 (the same as it was at the equivalent unscaled point x1= 1, x2 =10),
and after one iteration the error was essentially zero.

It has just been demonstrated that in some problems scaling can drasti-
cally affect the rate of convergence. In general, scaling should be done so
as to make the contours of constant error be as circular as possible. Note
that in (9.22) the contours were exact circles.

For a problem that has many parameters x1, x2, ... , X. one can examine
the behavior of E(x) as just x, and x2 are varied. x2 can then be scaled so
that near the initial point x the error-function contours are nearly circular.
Next just x1 and x3 can be varied so as to determine how to scale x3;
similarly for the remaining parameters x4,xs1 ...1x,,.

Far from a minimum one will probably not be able to scale the
parameters so that the error contours are circular. However, as the mini-
mum is approached, the error function will behave as a quadratic form and
thus can be scaled to yield circular contours. This discussion implies that
as an optimization procedure advances, one may wish to change how it is
scaled. In fact, some optimization techniques rescale the parameters after a
certain number (e.g. n + 1) of iterations.

Very elaborate schemes exist for determining how to scale parameters
for a particular problem. However, the reader of this text can usually
ignore these techniques, since for our applications the computer will
probably be able to optimize a poorly scaled problem faster than we can
determine a satisfactory scaling. In fact, instead of attempting scaling if a
particular problem is slow to converge, it may be more beneficial to apply
a different optimization technique.

It was mentioned that scaling will usually affect the rate of convergence;
however, the simplex optimization technique is an exception to this rule.
As a demonstration of this, the error function

-2)2+0.01(x2-30)2

was reduced by using ten iterations of simplex. Similarly, ten iterations of
simplex were applied to (the scaled function

E(x1,x3)=(x1 -2)2+(x3-3)2.

N ?

X(I)
? 1

2

I=1,2,...N
10

ERROR= 5.00000E+00

X(I)= 2.03958E+00 1.02079E+01
ERROR= 3.91883E+00

X(I)= 1.21625E+00 1.43245E+01
ERROR= 3.07148E+00

X(I)= 2.03103E+00 1.44875E+01
ERROR= 2.40735E+00

X(I)= 1.38573E+00 1.77138E+01
ERROR= 1.88685E+00

X(I)= 2.02432E+00 1.78415E+01
ERROR= 1.47888E+00

X(I)= 1.51855E+00 2.03701E+01
ERROR= 1.15915E+00

X(I)= 2.01906E+00 2.04702E+01
ERROR= 9.08538E-01

X(I)= 1.62265E+00 2.24519E+01
ERROR= 7.12127E-01

X(I)= 2.01494E+00 2.25304E+01
ERROR= 5.58177E-01

X(I)= 1.70424E+00 2.40835E+01
ERROR= 4.37520E-01

(a)

N ? 2

X(I) I=1,2,...N
? 1 1

ERROR= 5.00000E+00

X(I)= 2.00000E+00
ERROR= 4.94774E-14

(b)

3.00000E+00

FIGURE 9.10. Minimization of equivalent scaled functions by steepest descent.

225

226 Gradient Techniques

N ? 2

X(I) I=1,2,...N
? 1 10
ERROR= 5.00000E+00

X(I)= 1.14735E+00 1.14735E+01
ERROR= 4.15930E+00

X(I)= 1.02242E+00 1.36449E+01
ERROR= 3.63056E+00

X(I)= 1.25017E+00 1.55951E+01
ERROR= 2.63726E+00

(a)

N ? 2

X(I) I=1,2,...N
? 1 1

ERROR= 5.00000E+00

X(I)= 1.14735E+00 1.14735E+00
ERROR= 4.15930E+00

X(I)= 1.02242E+00 1.36449E+00
ERROR= 3.63056E+00

X(I)= 1.25017E+00 1.55951E+00
ERROR= 2,63726E+00

(b)

FIGURE 9.11. Minimization of equivalent scaled functions by simplex.

As indicated in Fig. 9.11, the error functions are exactly the same at
corresponding iterations. Scaling does not affect the simplex technique,
because the initial simplex is determined by varying each parameter by the
same percentage. Also, since the algorithm uses only discrete points, which
one is discarded to form a new simplex is not affected by scaling.

9.6 THE FLETCHER-POWELL OPTIMIZATION TECHNIQUE

The steepest-descent optimization technique is based on the fact that the
negative gradient points in the direction of the fastest rate of decrease.
However, this direction is guaranteed to be the optimal direction only for

The Fletcher-Powell Optimization Technique 227

an infinitesimal distance. After that infinitesimal distance, one should
really calculate a new direction-but this of course is impractical.

In order to improve the steepest-descent method, (9.7) can be continued
as

z

E(x+Sx)^E(x)+ 3E8x1+ I E SzSx. (9.23)
axi 2 ax. ax,i-1 j=1

Not only does this equation contain the first-derivative terms, it also
contains second-derivative terms. Steepest descent chose the direction to
move in parameter space by considering the slope; any method based on
(9.23) will use the slope and the curvature and thus should be more
accurate.

The above equation can be used to improve (9.10), which was the
foundation for the steepest-descent technique. The result is

E(x+Sx)^-E(x)+VE'8x+ ZSHTHSx, (9.24)

where H is the Hessian matrix, which is defined as'

H=
L

a zE
1. (9.25)

L ax; ax,

Equation (9.24) implies that in the neighborhood of an optimum, the
objective function is essentially a quadratic function. The theory of many
optimization methods are based on this assumption. In particular, the
Fletcher-Powell method leads to the minimum of a quadratic function in
n +I steps if n is the number of variables.5 However, since most error
functions are not quadratic, it usually takes longer to reach the minimum.
Also adding to the number of iterations is the fact that for each search,
quadratic interpolation finds the minimum search distance only approxi-
mately.

In the steepest-descent technique we searched for a minimum in the
direction of the negative gradient, that is,

S= - V E. (9.26)

Methods that are based on (9.24) modify this direction by the inverse of
the Hessian, i.e.,

S= - H -' V E. (9.27)

4Recall that at a minimum V E must be zero, so that V E T*dx cannot be negative. Similarly
it follows that 8xTHEx must be positive for any nonzero vector 8x. That is, H must be a
positive definite matrix.

5This assumes that the derivatives are calculated analytically and not numerically.

228 Gradient Techniques

This appears to be quite simple, but computationally it is very involved.
First recall that the Hessian is a matrix which contains second-order
partial derivatives. We know from the material in Chapter 5 that the
evaluation of second derivatives by numerical methods is an inaccurate
process. If we could evaluate the Hessian accurately, then the inverse could
be obtained by the methods of Chapter 2, but this would require a
substantial amount of computational time.

For the reasons just mentioned, one usually does not attempt to directly
evaluate H-' in an optimization technique; instead, approximations are
used. The most famous approximation is used in the Fletcher-Powell
optimization technique.' This approximates the inverse of the Hessian by
another matrix G which iteratively approaches H-'. Initially, the ap-
proximation is chosen to be the identity matrix I, so that S in (9.27) points
in the direction of the negative gradient. Thus, the first Fletcher-Powell
iteration is equivalent to steepest descent, but the following iterations use
better and better approximations for H-' to improve the search direction.

We shall now see how the approximation G is obtained. Assume we are
at a point x and have a value for G (initially, this would be the identity
matrix). We then go in the direction S = - G GRAD (x) for a distance AX
(the distance can be found by quadratic interpolation). Thus, the next
point is x' = x + Ox. At this point, a better approximation G' is found by
using the parameter change Ax and also the gradient change

y = GRAD (x) - GRAD (x).

These changes are used to adjust G as follows:8

(9.28)

G'-- G + Ox 4x7 (Gy)(Gy)T
(9 29)

d, d2

where the scale factors d, and d2 are given by

.

d, = Y' Ax, d2 = yrGy. (9.30)

A program that implements these equations is given in Fig. 9.12. The
following comments should help in understanding that program.

The definition

z=Gy (9.31)

6This is also known as the DFP optimization technique after Davidon, Fletcher, and
Powell. Davidon originally conceived the algorithm, but Fletcher and Powell presented it in a
manner that made it famous.

7The notation GRAD(x) is used to indicate that the gradient is evaluated at point x.
sFor a derivation of this equation, the interested reader is referred to Gottfried, B. S., and

J. Weisman (1973), Introduction to Optimization Theory (Englewood Cliffs, N.J.: Prentice-
Hall).

O1C FLETCHER POWELL
02 PROGRAM FP(INPUT,OUTPUT)
03 03 FORMAT(7H X(I)=1P,4E14.5)
04 04 FORMAT(7H ERROR=,IP,E14.5,/)
06 DIMENSION G(10,10),GRAD(10),GRAD1(10),S(10)
07 DIMENSION X(10),X1(10),X2(10),Y(10),Z(10),DELX(10)
09C
10C INITIAL VALUES
11 PRINT,*N*, $READ,N
14 PRINT,/,*X(I) I=1,2,...N*
15 READ,(X(I),I=1,N)
18 EO=ERROR(X)
19 PRINT 4,E0
20C
21C FIND GRADIENT
22 22 DO 28 I=1,N
23 DELTA=.000001*X(I)
24 IF(ABS(X(I)).LT.1E-12) DELTA=.000001
25 XSAVE=X(I)
26 X(I)=X(I)+DELTA
27 GRAD(I)=(ERROR(X)-E0)/DELTA
28 28 X(I)=XSAVE
29C
30C INITIALIZE G
31 K=0
33 DO 36 I=1,N
34 DO 35 J=1,N
35 35 G(I,J)=0.
36 36 G(I,I)=1.
39C
40C FIND DIRECTION S (EQ. 9.27)
41 41 DO 44 I=1,N
42 S(I)=0.
43 DO 44 J=1,N
44 44 S(I)=S(I)-G(I,J)*GRAD(J)
48C
49C QUADRATIC INTERPOLATION
50C
5IC FIND ALPHA 1
52 A1=1.
53 53 DO 54 I=1,N
54 54 X1(I)=X(I)+A1*S(I)
55 E1=ERROR(X1)
57 IF(E1.LT.EO)GO TO 63
58 Al=.5*A1
59 GO TO 53
61C
62C FIND ALPHA 2
63 63 A2=A1
64 64 A2=2.*A2
65 DO 66 I=1,N
66 66 X2(I)=X(I)+A2*S(I)
67 E2=ERROR(X2)
68 IF(E2.GT.E1) GO TO 74
69 A1=A2 $E1=E2
70 GO TO 64
72c
73c FIND ALPHA
74 74 A=(Al*Al-A2*A2)*EO+A2*A2*EI-Al*Al*E2
76 A=.5*A/((A)-A2)*E0+A2*El-A1*E2)

(a)

FIGURE 9.12. A program for the Fletcher-Powell optimization technique.
229

81C FIND NEW X
82 DO 85 I=1,N
83 DELX(I)=A*S(I)
85 85 X(I)=X(I)+DELX(I)
86 EO=ERROR(X)
87 IF(EO.LT.E1) GO TO 95
89 DO 92 I=1,N
90 X(I)=X(I)+(A1-A)*S(I)
92 92 DELX(I)=Al*S(I)
93 EO=ERROR(X)
94C
95 95 PRINT 3,(X(I),I=1,N)
96 PRINT 4,E0
99C
100C REINITIALIZE G EVERY 5 CYCLES
101 K=K+1
102 IF(K.EQ.5) GO TO 22
110C
111C FIND NEW GRADIENT
112 DO 119 I=1,N
114 DELTA=.000001*X(I)
115 IF(ABS(X(I)).LT.1E-12) DELTA=.000001
116 XSAVE=X(I)
117 X(I)=X(I)+DELTA
118 GRAD1(I)=(ERROR(X)-E0)/DELTA
119 119 X(I)=XSAVE
122C
123C FIND Y (EQ. 9.28)
124 DO 126 1=1,N
125 Y(I)=GRAD1(1)-GRAD(I)
126 126 GRAD(I)=GRAD1(I)
129C
130C FIND DI (EQ. 9.30)
131 D1=0.
134 DO 135 I=1,N
135 135 D1=D1+Y(1)*DELX(I)
139C
140C FIND Z (EQ. 9.31)
141 DO 148 I=),N
142 Z(I)=0.
144 DO 148 J=1,N
148 148 Z(I)=Z(I)+G(I,J)*Y(J)
149C
150C FIND D2 (EQ. 9.31)
151 D2=0.
152 DO 155 I=1,N
154 DO 155 J=1,N
155 155 D2=D2+G(I,J)*Y(I)*Y(J)
199C
200C FIND NEW G MATRIX (EQ. 9.29)
201 DO 210 I=1,N
203 DO 210 J=1,N
210 210 G(T,J)=G(I,J)+DELX(I)*DELX(J)/D1-Z(I)*Z(J)/D2
212 GO TO 41
300 END
897C
898 FUNCTION ERROR(X)
899 DIMENSION X(10)
900 ERROR=100.*(X(1)*X(1)-X(2))**2+(1.-X(1))**2
950 RETURN
999 END

(b)

FIGURE 9.12. (Continued.)

230

The Fletcher-Powell Optimization Technique 231

is made to allow the vector Gy to be conveniently stored by the program.
Lines 101 and 102 cause the matrix G to be set equal to the identity

matrix every five iterations. The number five was chosen somewhat arbi-
trarily-the important fact is that periodic reinitialization is necessary to
prevent numerical inaccuracies in G from accumulating. In order to
observe how reinitialization of G can be beneficial, examine Figure 9.13,
which is a Fletcher-Powell optimization of the Rosenbrock function. The

N ? 2

X(I) I=1,2,...N
? --1.2 1

ERROR= 2.42000E+01

X(I)= -1.01284E+00 1.07639E+00
ERROR= 4.30709E+00

X(I)= -8.73203E-01 7.41217E-01
ERROR= 3.55411E+00

X(I)= -8.15501E--01 6.24325E-01
ERROR= 3.46184E+00

X(I)= -6.72526E-01 3.88722E-01
ERROR= 3.20145E+00

X(I)= -7.12159E-01 4.94380E--01
ERROR= 2.94785E+00

X(I)= 1.05488E+00 1.13391E+00
ERROR= 4.77510E-02

X(I)= 1.06641E+00 1.13774E+00
ERROR= 4.43687E-03

X(I)= 1.06413E+00 1.13140E+00
ERROR= 4.20725E-03

X(I)= 1.02291E+00 1.04313E+00
ERROR= 1.55704E-03

X(I)= 1.02772E+00 1.05350E+00
ERROR= 1.49666E-03

FIGURE 9.13. Minimization of the Rosenbrock function by the Fletcher-Powell
program.

232 Gradient Techniques

error did not change very much between the fourth iteration (E=3.20) and
the fifth (E=2.95), but reinitializing G caused the error to be reduced
dramatically (E = 0.05).

There are many other optimization techniques that are related to the
Fletcher-Powell algorithm. These algorithms are referred to as conjugate-
direction methods .9 They all base their search direction on the assumption
that sufficiently near a minimum the error function can be expressed as a
second-degree equation as in (9.24). However, none of the practical
methods directly evaluate the Hessian by evaluating second derivatives. In
fact, some of the methods do not even evaluate the gradient by evaluating
first derivatives. But of the conjugate-direction methods, the Fletcher-
Powell optimization technique is the most popular.

In conclusion, there are many different optimization techniques. Even in
a particular problem, the technique that works best may depend on the
initial set of parameters. For example, far from a minimum, steepest
descent may make more rapid improvements than Fletcher-Powell (be-
cause of a poor approximation to the inverse Hessian). In fact, far from a
minimum the simplex optimization technique may be better than either
steepest descent or Fletcher-Powell.

Organizations that must frequently solve optimization problems have
general-purpose optimization programs that contain many different opti-
mization algorithms. These programs can be written so they will automati-
cally change from one optimization technique to another if the original one
can not make sufficient reductions in the error function. Thus an error
function might be reduced by steepest descent at first, and then by
Fletcher-Powell as the minimum is approached.

The next chapter discusses another algorithm, the least-pth optimization
technique, that is extremely popular. It is often used separately or as part
of a general-purpose optimization program.

9S1, S2 are said to be conjugate with respect to the positive-definite matrix H if SIHS2=0.

PROBLEMS

9.1 If a vector x has components x,,x2,x3, then its magnitude is defined
as lxl=(x,2+x22+x32)'/2. Show that the magnitude of x=(2,4,6) is

twice the magnitude of y=(1,2,3).
9.2 For the error function E (x) = (x, - 2)2 + (x2 - 4)2, what is the error at

x+aS is x=(2.1,4.2), a=0.01, and S= -(1,2)?
9.3 If the function f(x) has f'(xo) =0 and f"(xo) =0, then x0 is called a

saddle point.
(a) What is the saddle point of f(x)=x3-6x2+12x+I?
(b) For the saddle point found in (a), show that f(xo+ 6) >f(xo) if S

is a positive number and f(x0+S)<f(x0) if S is a negative
number (thus x0 is neither a maximum nor minimum).

9.4 For E(x)=x,2+2x22+3x32:
(a) Calculate the gradient at x = (1, 2, 3).
(b) Calculate the gradient at x=(1,0, - 1).

9.5 For E(x)=x,2+2x,x3+x2x32:
(a) Calculate the gradient at x=(l, 1, 1).
(b) Estimate E (1. 1, 1.05,0.95) by using (9.10).

9.6 Find where the gradient of

E(x)=xi2-2x,+x22-8x2+ 17

is equal to zero.
9.7 The gradient of E(x)=x,2+2x,x3+x2x32 was found analytically in

Problem 9.5 to be (4,1,4) at x=(1,1,1). In this problem it will be
found by numerical methods.

(a) Use (9.12) with a=0.01 to estimate the gradient at x=(1,1,1).
(b) Instead of (9.12), use a central-difference formula to estimate the

gradient at x = (1,1,1).

(c) What is the disadvantage of using the central-difference formula
to estimate the gradient?

9.8 What is the scalar product of the two vectors a = (1, 4, - 2),
b=(1, - 1,1)?

9.9 What is

233

234 Gradient Techniques

9.10 For a = (1, 4, - 2), choose a unit vector b such that
(a) a, b, + a2b2 + a3b3 is a maximum,
(b) a, b, + azbz + a3b3 is a minimum.

(c) What are the maximum and minimum values?
9.11 For the error function E(x)=x,2+3.x,x3+2x22+4:

(a) Calculate the error at x = (1, 1, 2).

(b) Calculate the gradient there.
(c) Let Sx = 0.01 V E, and calculate the error at the new point.
(d) Let 8x = - 0.01 V E, and calculate the resulting error.

9.12 The Rosenbrock function was minimized by steepest descent in Fig.
9.4. This problem will verify that after one iteration x, 1.0128,
x2 = 1.0764.

(a) By analytical means, evaluate V E at x, = 1.2, x2= I.

(b) In what direction does steepest descent search for a minimum?
(c) Quadratic interpolation

= 9.765625 x 10 - °.
(1) Find x,, E(x,),

Fig. 9.3.
(2) Find x2, E (x2),

Fig. 9.3.
(3) Find a.

a, =(0.5)iofinds it necessary to iterate to

where x, is as identified in statement 54 of

where x2 is as identified in statement 66 of

(d) For the value of a found in (c), calculate the new values of x,,x2.

9.13 What statement was included in the steepest-descent program in case
any of the initial parameters were chosen as zero?

9.14 Solve Problem 8.14 by using the steepest-descent program.
9.15 Solve Problem 8.15 by using the steepest-descent program.
9.16 Solve Problem 8.16 by using the steepest-descent program.
9.17 Solve Problem 8.17 by using the steepest-descent program.
9.18 The amount of calculation performed by the quadratic-interpolation

subroutine greatly affects the speed of the steepest-descent program.
One way to reduce the number of calculations is to change the way a,
is calculated.

(a) Add an output statement to the steepest-descent program so that
after E, < E0 the value of a, is printed. Apply this program to the
"cube" test function.

(b) Change the 0.5a,-4a, statement to 0.la,--tea, and apply this
program to "cube". Did this increase the speed?

Problems 235

9.19 Instead of the modification suggested in Problem 9.18(b). another
possibility is to change the initial value of a, from I to 0.01. Apply
the resulting program to "cube" and determine whether or not this
increased the speed.

9.20 The following function has two minimums:

E (.x,, x2) = x,° 4x,2 + x,2 6x2 +20.

Use the steepest-descent program with different initial parameters so
that both minimums are located.

9.21 The functions in the two parts of this problem are equivalent, since
the variables were scaled according to x2 = 100x3. However, one form
will be much easier for steepest descent to optimize than the other.

(a) Use the steepest-descent program to minimize

3x12-4x,+6+(1+x,2)(x,+100)2.

Choose the initial parameters as x, = 1. x, = 100.
(b) Use the steepest-descent program to minimize

3x,2-4x,+6+10,000(1+x,2)(x3+1)2.

Choose the initial parameters as x, = 1, .x3= I.
9.22 (a) Calculate the Hessian at x = (- 1.2,1) for the Rosenbrock func-

tion.

(b) Find the inverse of the Hessian.
(c) Find the direction that is given by S H -' V E.

Chapter Ten

The Least-pth Optimization Technique

10.1 INTRODUCTION

The steepest-descent optimization technique searches in the direction of
the negative gradient for a minimum. Since the error function decreases
most rapidly in that direction, this is a logical search direction. However,
since the search must be for a finite distance, it will only be in the direction
of the negative gradient at the beginning of the search (assuming that the
gradient is not constant); other optimization techniques modify the search
direction to attempt to predict changes in the gradient.

An optimization technique that is written for a specific type of problem
is usually more efficient when applied to that type of problem than is a
general-purpose optimization algorithm. The least-pth optimization tech-
nique is written for a particular class of problems. The theory used to
develop it is very similar to that used for steepest descent, but it also
assumes the the error function is of a particular form. This assumption is
not very restrictive, but can drastically improve the rate of convergence.

In the least-pth optimization technique the assumption is made that the
error function can be written as

m

E(x)= w,[e,(x)]°. (10.1)
r=i

This form of the error function was discussed in Section 8.2. There it was
mentioned that the individual error e,(x) is first raised to an even positive
power p (to guarantee that each contribution to the total error E is
positive) and then multiplied by a weight w, before the summation process.
In this chapter we will assume that if any weights are used, the problem
will first be transformed to a nonweighted problem by substituting

wr[e;(x)]°- [e,(x)]°. (10.2)

Thus the error function will be assumed to be in the form
m

E(x)= [ee(x)]°. (10.3)
r=i

237

238 The Least-pth Optimization Technique

The least-pth method is the natural approach to use when one is
attempting to match a polynomial to discrete data, because the errors are
easy to formulate as in (10.3). Often this assumed form for the error
function is not very restrictive; in fact, any of the test functions we have
encountered can be put into this form.

EXAMPLE 10.1

The Rosenbrock function is

E (x,, x2) = 100(x 2 - x2)2 + (l - x,)2.

This function can be put in the form (10.1) by choosing m=2=p, (o,= 100,
w2 = 1, e, = x I - x2, e2 = 1-- x,. However, it can also be written as a non-
weighted problem by rewriting it as

E (x,, x2) = [10(x i - x2)
]2+(,_X,)2.

Thus for this nonweighted formulation the individual error contributions
are

e, = ION i - x2), e, =(I - x,).

In this example, the error functions were raised to the power p = 2. For
this case, the least-pth optimization technique is often referred to as the
least-squares optimization technique. Most of the problems that will be
solved in this chapter will use the least-squares method, but generalizing to
obtain the least-pth technique will lead to important applications in the
last section.

The least-squares optimization technique is derived in the next section.
Starting first with p = 2 will help keep the derivation relatively simple.
However, we will see in the following section that the more general case of
p being any even integer is not much more complicated.

10.2 THE LEAST-SQUARES ALGORITHM

In this section we will assume that the error function can be written in
the form

E(x)= [e,(x)]2= e?. (10.4)

In order to simplify notation, the second form of the equation will
commonly be used.

From Chapter 9 we know that the gradient of the error function must be
zero at a minimum. It will he made zero by proceeding in an iterative

The Least-Squares Algorithm 239

manner. Parameter changes for x will be chosen. These increments will
usually not reduce V E to zero at the first step, because a linear approxima-
tion must be made; however, by iterating, the gradient may be made as
close to zero as desired.

To learn how to choose the parameter change Sx, it is necessary to
calculate the gradient of the error function. For the special form that was
assumed in (10.4) it follows that

aE
ax,

VE(x)=
aE
axe

aE
ax,,

=2 (10.5)

e

i=1
ax"

In this equation it has been assumed that the error function depends on n
parameters, so that the gradient vector has n components. Any of these n
components can be found by evaluating a summation of m terms, where m
represents the number of individual error functions.

EXAMPLE 10.2

The error function

E (x) = (x'+ x2+ x,x2 -4)2+4xix2+9XIx2

can be written as

E(x)= eZ,
i=1

where

e, =x +x2+x,x2-4, e2=2x,x2, e3=3X,x2.
For these individual error functions, the gradient can be determined by
applying (10.5):

(2x, + x2)e, + 2x2e2 + 3x2e3

=2
(2x2+x,)e, +2x,e2+6x,x2e3

240 The Least-pth Optimization Technique

The result in (10.5) can be rewritten in a simpler form if we introduce
the m x n Jacobian matrix, which is defined to be

ae, ae, ae,

ax, ax2 ax

ae2 ae2 ae2

ax1 ax2 ax ae;
= axk . (10.6)

de,,, de aen

ax1 ax2 aX

That is, the element in the ith row and kth column is ae,/axk.
Since for a least-squares error formulation the gradient can be written as

in (10.5), we have
0 E (x) = 2J`(x)e(x), (10.7)

where e(x) is a vector that has the individual errors e, as components. That
is, e(x) _ (e1,e2,.... ej

Recall that at a minimum of the error function E, the gradient should be
zero. The initial parameter vector x will usually not be at the minimum;
thus 0 E (x) will not be zero. However, (10.7) can be used to obtain a
change Sx such that the magnitude of the gradient is reduced. The
increment Sx can be found by using (10.7) to express the gradient at x+Sx
as

VE(x+Sx)=2J`(x+Sx)e(x+Sx). (10.8)

It often happens that the Jacobian does not vary very much as the
parameters are changed. Even if this is not true at the start of an iterative
search for the minimum, it will be true as the minimum is approached.
Thus we can use the approximation

V E (x + Ox)--2J` (x)e(x + Sx). (10.9)

In order to choose the parameter change Sx so that the gradient becomes
zero, we must find an approximation for e(x+Sx). Expanding this in a
Taylor series and keeping the first-order terms yields

n

e(x + Sx)xe(x) + 2 az SXk. (10.10)
k=1 k

This approximation can be written in the following simpler form by using
the Jacobian defined in (10.6):

e(x+Sx)--e(x)+J(x)Sx. (10.11)

The Least-Squares Algorithm 241

The approximations (10.9) and (10.11) can be used to estimate the
parameter changes Sx that will produce a zero gradient at x + Sx. Substitut-
ing (10.11) into (10.9), setting 0 E (x + Sx) equal to zero, and rearranging
yields

J`J Sx., -J`e(x). (10.12)

EXAMPLE 10.3

The error functions in Example 10.2 were

e, = x 2 + x2 + x, x2 - 4, e2 = 2x, x2, e3 = 3 x, x2.

At x = (1, 1) the total error is

E=(- 1)2+(2)2+(3)2= 14.

In this example we will use (10.12) to yield parameter changes that will
reduce the error.

From (10.6) the Jacobian is

f 2x,+x2 2x2 +x, 3 3

J= 2x2 2 x, 2 2 ,

3x2 6x ,x2 3 6

so that

3J`J=[
3

2 3

2 6]
3

2
3

3

2
6

22 31

31 49
1'

Substituting into (10.12),

22 31 3 2

1

49,8x--[3
2[3

Solving for Sx yields (11-2 , - L08), so that the new point is
(1.8462, 0.0769). The error function at this new point is

31
-1

6
2'
3

x=(1, I)+ 6x=

E = (- 0.4437)2 + (0.2839)2 +(0.0328)2=0.279.

The error function in this example was reduced, but not minimized. The
minimum was not found in one application of the least-squares technique,
because (10.12) was an approximate relation and not an exact one. How-
ever, it can be the basis of an iterative procedure to minimize error
functions. Instead of developing a least-squares program, we will develop a
more general least-pth program in the next sections.

242 The Least-pth Optimization Technique

10.3 THE LEAST-pTH ALGORITHM

The iterative least-squares optimization technique can be used to mini-
mize functions of the form

M
E(x)= (10.4)

This can be generalized to yield the least-pth optimization technique,
which can be used to minimize

m

E (x) _ e;'. (10.4')

The equations in this section will be very similar to the equations in the
previous section, and thus will be only briefly discussed. They will be
numbered in such a way that the corresponding least-squares equations
may be obtained by removing the prime. For example, for the least-squares
case we had

VE(x)=2J'(x)e(x). (10.7)

while for the least-pth case this becomes

V E (x) =pJ' (x)eP-' (x), (10.7')

where eP-'(x) is a vector that has components equal to ep-1.
In order to make the gradient become zero, as it must at a minimum, we

substitute x+Sx into (10.7') to yield

VE(x+Sx)=pJ'(x+Sx)eP-'(x+Sx) (10.8')

-zzpJ' (x)eP-' (x+ Sx). (10.9')

To solve for Sx we use the Taylor approximation

'(x)+(p-1)DJ(x)8x, (10.11'a)

where D is a diagonal matrix which has the diagonal elements
ev-2 (10.1l'b)

The approximations (10.9') and (10.11) can be used to estimate the
parameter change Sx that will produce a zero gradient at x+Sx. Substitut-
ing (10.11') into (10.9'), setting V E (x + Sx) equal to zero, and rearranging
yields

J'DJSx-_ - p I 1 J'eP-'(x). (10.12')

This equation can be the foundation for an iterative procedure that
minimizes an error function E=E;" ,e'. One first chooses initial values for

The Least-pth Algorithm 243

the parameter vector x. The gradient V E (x) will not be zero, but its
magnitude can be reduced by using a new parameter vector x+Sx, where
Sx is found from (10.12'). Using this equation iteratively can make the
magnitude of the gradient as small as desired.

The next section will describe a program that is based on (10.12'); but
before presenting the program an example will be discussed. In the
example, as in the program, the following definitions are used:

1 J'eo -(x),A=J'DJ C= - (10.13), p-1
so that solving (10.12') is equivalent to solving

ASx=C. (10.14)

EXAMPLE 10.4

Example 10.3 had the error functions

e,=x;+xz+xix2-4, e2=2x1x2, e3=3x,x2,

This example will raise these individual error functions to the fourth power
and use one iteration of the least-pth algorithm to obtain a lower error
function. That is, we will reduce E(x)=e

°
+ e2 + e3.

At x=(1,1) the total error is

E=(- 1)4+(2)4+(3)°=98.
In this example we will use (10.12') to yield parameter changes that will
reduce the error.

From Example 10.3 the Jacobian is

,- 3 2 3J-
3 2 6

so that

3 2 3

P
1 =_1f 941,C=-1Jep-'=-3[3 3175)2 6,

27

A=J`DJ=[
3

Thus

2

2

31
1

6
0
0

0 0 3 3

4 0 2 2

0 9 3 6

1106 187

187 349

1

87
3187

49
JSx= - 3

l
194

[1 51

244 The Least-pth Optimization Technique

Solving this set of equations yields Sx=(-,'-5,-0.16), so that the new
point is x = (1, 1) + Sx = (0.9867, 0.84). The error at this new point is

E = (- 1.492)4 + (1.6577)4 + (2.0886)4 = 31.5.

In the above example, the new point x=(0.9867,0.84) resulted in an
error of 31.5 when the individual errors were raised to the fourth power.
Even if these same individual errors were squared instead of raised to the
fourth power, the total error would be 11.7, which is much larger than the
error of 0.279 found in Example 10.3.

A general property of the least-pth optimization technique is that the
larger the power p, the slower the rate of convergence. However, when an
optimum is finally attained, having p large can produce favorable results.
To understand why this is possible, recall that the total error E is found by
summing some individual error functions, each of which is raised to the
pth power. If p is a large number (e.g., 10), then when the largest individual
error is raised to the pth power, its contribution to E will be much larger
than that of another individual error which is only slightly smaller. Thus
when p is large, the least-pth optimization technique tends to minimize the
maximum error. Much more will be said about this property when
Chebyshev theory is presented in Section 10.6.

10.4 A LEAST-pTH PROGRAM

Any least-pth program that is based on (10.12) must be able to evaluate
the Jacobian matrix J. Recall that the element in the ith row and kth
column of J is ae;/axk; thus a typical component of J is

ae e'(x+Sxk)-e;(x)
= (10.15)J,k

3XA 8Xkmo SXk
,

where Sxk is a vector which has all zero components except for the kth
component, which is equal to Sxk.

The partial derivative in (10.15) will be approximated in the same way
we have approximated previous partial derivatives, namely by

e;[xi,x2,.... -e;(x)
JA -

fXk
(10.16)

where a is a constant of proportionality. The same value for a will be used
as in Chapter 3, namely a=10-6. The expression in (10.16) for an element
of the Jacobian matrix is very similar to the expression in (9.12) for an
element of the gradient vector; thus a computer implementation can be
similar.

A Least-pth Program 245

The least-pth program is given in Fig. 10.1. In this program line 26
indicates that the elements in the first column of J are evaluated first, then
the elements in the second column are evaluated, etc. That is, J;, (i=
1,2,...,m) is found first, then Ji2 (i=1,2,...,m) is found, etc. Calculating
the elements of the Jacobian in this order means that error function
subroutine e(x) only has to be used n times. Since the command e(x)-3e; is
only encountered n times, the evaluation of the Jacobian is not too time
consuming.

Recall that the least-pth algorithm is based on

JTDJSxx- 1

1

J`eP-', (10.17)

which can be rewritten as

where

A8xxC, (10.18)

A=JTDJ, C= - 1

1
JTeP-'. (10.19)p-

The vector C is found in lines 50 to 60. D is an n x n diagonal matrix of
terms e?2. Because D has only m nonzero terms, it can be found very
simply as indicated in lines 61 to 63.

The set of equations A Sx = C is solved by using the Gauss elimination
method.' In terms of this solution Sx, the new set of parameters could be
expressed as x, = x + 8x. However, for some initial conditions, the error
function may vary so rapidly that the assumption of small parameter
changes is a poor approximation. In this case, the error function may
actually get worse if the new parameters are found from x, = x + Sx.
Because of this, it may be necessary to reduce Sx by a scale factor, that is,

x,=x+SFSx. (10.20)

Initially, the scale factor SF can be chosen as unity. If the error function is
not reduced, then SF can be repeated halved until the error function
finally is reduced. The halving of the scale factor is accomplished in line
202, and equation (10.20) is implemented in line 204.

The first application of the least-pth program is shown in Fig. 10.2,
which is a printout for the following error functions:

e, = x l +X2+ x, x2 - 4, e2 = 2x, x2, e3 = 3x, x2.

These error functions were studied in Example 10.4, which showed that for
p = 4 the initial error E (1, 1) = 98 could be reduced to E (0.9867, 0.84) =

'Since A is symmetric, it would be more efficient to use the square-root method that was
mentioned in Section 2.6.

246 The Least-pth Optimization Technique

01C LEAST-PTH OPTIMIZATION
02 PROGRAM LP(INPUT,OUTPUT)
03 03 FORMAT(7H X(I)=,1P,4E14.5)
04 04 FORMAT(7H ERROR=,IP,E14.5,/)
06 DIMENSION A(20,40),C(20),D(20),E(20),E0(20),X(20),X1(20)
07 INTEGER P,F1,P2
08 REAL JA(20,20)
09C
10C INITIAL VALUES
11 PRINT,*M,N,P*, $READ,M,N,P
12 N1=N+1 $P1=P-1 $P2=P-2
14 PRINT,/,*X(I) I=1,2.... N*
15 READ,(X(I),I=1,N)
16 CALL ERROR(X,EO)
17 EX=O.
18 DO 19 I=1,M
19 19 EX=EX+EO(I)**P
22 PRINT 4,EX
24C
25C FIND JACOBIAN
26 26 DO 46 K=1,N
30 DELTA=.000001*X(K)
32 IF(ABS(X(K)).LT.1E-12) DELTA=.000001
34 XSAVE=X(K)
36 X(K)=X(K)+DELTA
38 CALL ERROR(X,E)
40 X(K)=XSAVE
42 DO 46 I=1,M
46 46 JA(I,K)=(E(I)-E0(I))/DELTA
49C
50C FIND C
52 DO 58 K=1,N
54 C(K)=0.
56 DO 57 I=1,M
57 57 C(K)=C(K)+JA(I,K)*E0(I)**P1
58 58 C(K)=-C(K)/P1
60C
61C FIND D
62 DO 63 I=1,M
63 63 D(I)=E0(I)**P2
69C
70C FIND A
71 DO 79 I=1,N
72 DO 79 K=1,M
73 A(I,K)=A(I,M+K)=0.
77 DO 79 L=1,M
79 79 A(I,K)=A(I,K)+D(L)*JA(L,I)*JA(L,K)
99C
100C GAUSS ELIMINATION
130C
131C DEFINE AUGMENTED MA'IRIX
132 DO 135 I=1,N
135 135 A(I,N1)=C(I)
142 DO 175 I=1,N
144 IF(A(I,I).NE.0) GO TO 164

(a)

FIGURE 10.1. A program for the least-pth algorithm.

A Least-pth Program

146C
148
149 149
151
152
153
155
156
157 157
162C
163C
164 164
165
166 166
169C
170C
171
172
174
175 175
177C
178C
179
180
181
184 184
186C
199C

INTERCHANGE ROWS I,J
J=I
J=J+1
IF(J.GT.N) GO TO 298
IF(A(J,I).EQ.0) GO TO 149
DO 157 K=1,N1
SAVE=A(I,K)
A(I,K)=A(J,K)
A(J,K)=SAVE

NORMALIZE ROW I

Y=A(I,I)
DO 166 K=I,N1
A(I,K)=A(I,K)/Y

FORWARD ELIMINATION
I1=I+1
DO 175 J=I1,N
DO 175 K=I1,N1
A(J,K)=A(J,K)-A(J,I)*A(I,K)

BACK SUBSTITUTION
DO 184 L=2,N
I=N+2-L $I1=I-1 $I2=I+1
DO 184 J=1,I1
A(J,N1)=A(J,N1)-A(J,I)*A(I,N1)

200C FIND NEW X
201 J=0 $SF=2.
202 202 SF=.5*SF
203 DO 204 I=1,N
204 204 X1(1)=X(I)+SF*A(I,N1)
245 CALL ERROR(X1,E0)
247 EX1=0.
248 DO 249 I=1,M
249 249 EX1=EX1+E0(I)**P
251 J=J+1
252 IF(J.EQ.10) GO TO 281
270 IF(EX1.GE.EX) GO TO 202
280C
281 281 DO 282 I=1,N
282 282 X(I)=X1(I)
284 PRINT 3,(X(I),I=1,N)
286 EX=EX1
287 PRINT 4,EX
288 GO TO 26
290C
298 298 PRINT,*DET=O*
299 STOP
300 END
897C
898
899
900
910
950
999

SUBROUTINE ERROR(X,E)
DIMENSION X(10),E(10)
E(1)=10.*(X(1)*X(1)-X(2))
E(2)=1.-X(1)
RETURN
END

(b)

FIGURE 10.1. (Continued.)

247

248 The Least-pth Optlmlzaeon Technique

M,N,P ? 3 2 4

X(I)
? 1

I=1,2,...N
1

ERROR= 9.80000E+01

X(I)= 9.86667E-01 8.40000E-01
ERROR= 3.15344E+01

X(I)= 1.32081E+00 5.48988E-01
ERROR= 8.73832E+00

X(I)= 1.56725E+00 3.62529E-01
ERROR= 2.32095E+00

X(I)= 1.73376E+00 2.25155E-01
ERROR= 4.69911E-01

X(I)= 1.83417E+00 1.39328E-01
ERROR= 8.53242E-02

X(I)= 1.89393E+00 8.85433E-02
ERROR= 1.58390E-02

X(I)= 1.93103E+00 5.73137E-02
ERROR= 3.01056E-03

X(I)= 1.95474E+00 3.75078E-02
ERROR= 5.80598E-04

X(I)= 1.97012E+00 2.47102E-02
ERROR= 1.12954E-04

X(I)= 1.98021E+00 1.63470E-02
ERROR= 2.20937E-05

FIGURE 10.2. Application of the least-pth program to the function in Example
10.4.

31.5. This result is confirmed by the data in Fig. 10.2, which also indicates
that after ten iterations E (I.98), 0.016)=2.2x 10-'.

Insight into the efficiency of the least-pth algorithm relative to simplex
or steepest descent can be obtained by applying it to our various test
functions. The Rosenbrock function is shown coded in statements 900 and
910 of Fig. 10.1.

The least-pth computer output for the Rosenbrock function is shown in
Fig. 10.3. As is customary for the Rosenbrock function, the initial parame-

A Least-pth Program 249

ters were chosen as x=(- 1.2, 1), which yielded the error 24.2. The first
few iterations of the least-pth algorithm reduced the error function slowly,
but the last one was extremely successful-it found the minimum.

The least-pth algorithm was even more successful with "cube", as
indicated in Fig. 10.4. The exact minimum (1,1) was essentially found after
six iterations. Neither simplex nor steepest descent approached this
efficiency.

M,N,P ? 2 2 2

X(I) I=1,2,...N
? -1.2 1

ERROR= 2.42000E+01

X(I)= -1.06250E+00 6.97500E-01
ERROR= 2.28651E+01

X(I)= -9.33594E-01 4.50537E-01
ERROR= 2.14680E+01

X(I)= -6.91895E-01 5.18714E-02
ERROR= 2.10823E+01

X(I)= -4.80408E-01 -1.87426E-01
ERROR= 1.96822E+01

X(I)= -2.95357E-01 -3.12949E-01
ERROR= 1.76927E+01

X(I)= 2.84824E-02 -4.04199E-01
ERROR= 1.73472E+01

X(I)= 2.71362E-01 -2.89111E-01
ERROR= 1.36895E+01

X(I)= 6.35681E-01 8.99879E-02
ERROR= 9.99875E+00

X(I)= 1.00000E+00 8.67272E-01
ERROR= 1.76168E+00

X(I)= 1.00000E+00 1.00000E+00
ERROR= 6.00261E-18

FIGURE 10.3. Minimization of the Rosenbrock function by the least-pth program.

250 The Least-pth Optimization Technique

hi,N,P ? 2 2 2

X(I) I=1,2,...N
? -1.2 1

ERROR= 7.49038E+02

X(i)= -9.25000E-01 1.84700E+00
ERROR= 6.99850E+02

X(I)= -4.43750E-01 2.42270E+00
ERROR= 6.32134E+02

X(I)= 1.00000E+00 7.65504E-01
ERROR= 5.49883E+00

X(I)= 1.00000E+00 1.00000E+00
ERROR= 7.77389E-18

X(I)= 1.00000E+00 1.00000E+00
ERROR= 2.02453E-26

X(I)= 1.00000E+00 1.00000E+00
ERROR= 0.

FIGURE 10.4. Minimization of the "cube" function by the least-pth program.

M,N,P ? 4 4 2

X(I) I=1,2.... N
? 3 -1 0 1

ERROR= 7.07336E+05

X(I)= 1.46766E+00 -1.46766E-01 1.76617E-01 1,76617E-01
ERROR= 4.42052E+04

X(I)= 7.33832E-01 -7.33832!;-02 8.83085E-02 8.83085E-02
ERROR= 2.76283E+03

X(I)= 3.66916E-01 -3.66916E-02 4.41542E-02 4.41542E-02
ERROR= 1.72677E+02

X(I)= 1.83458E-01 -1.83458E-02 2.20771E-02 2.20771E-02
ERROR= 1.07924E+01

X(I)= 9.17291E-02 -9.17291E-03 1.10386E-02 1.10386E-02
ERROR= 6.74524E-01

X(I)= 4.58646E-02 -4.58646E-03 5.51928E-03 5.51928E-03
ERROR= 4.21578E-02

X(I)= 2.29323E-02 -2.29323E-03 2.75964E-03 2.75964E-03
ERROR= 2.63487E-03

X(I)= 1.14662E-02 -1.14662E-03 1.37982E-03 1.37982E-03
ERROR= 1.646806-04

X(I)= 5.73308E-03 -5.73308E-04 6.89911E-04 6.89911E-04
ERROR= 1.02925E-05

X(I)= 2.86654E-03 -2.86654E-04 3.44956E-04 3.44956E-04
ERROR= 6.43282E-07

FIGURE 10.5. Minimization of the Powell function by the (east-pth program.

A Least-pth Program 251

For the Powell test function in Fig. 10.5 and the coefficient-matching
test function in Fig. 10.6, the optimization required more iterations than
for Rosenbrock or "cube", but the results were still extremely successful.

Usually the least-pth optimization technique is quite efficient in locating
minimums. If a poor initial guess for the location of the minimum causes
the algorithm to converge too slowly, then simplex or steepest descent can
be applied to yield a better starting location. They can also be used if the
error function cannot be put into the least-pth format. Thus we now have
some very practical tools that can be applied to many different types of
problems. The next section indicates one application.

M,N,P ? 3 3 2

X(I) I=1,2.... N
? 10000 10000 10000
ERROR= 2,59460E+04

X(I)= 1.37917E+04 1.45833E+04 5,83333E+03
,ERROR= 1.80888E+04

X(I)= 2.26507E+04 2.73944E+04 4.82724E+03
ERROR= 4,58639E+03

X(I)= 3.25978E+04 4,85351E+04 5.24397E+03
ERROR= 6.19031E+02

X(I)= 4.05497E+04 7.74397E+04 5.71401E+03
ERROR= 4.05724E+01

X(I)= 4.37610E+04 1,04905E+05 5.91843E+03
ERROR= 6.43089E-01

X(I)= 4.41341E+04 1,18101E+05 5.94405E+03
ERROR= 1.68864E-03

X(I)= 4.41391E+04 1,19970E+05 5.94449E+03
ERROR= 2.92233E-07

X(I)= 4.41391E+04 1,20000E+05 5,94449E+03
ERROR= 1.79019E-14

X(I)= 4.41391E+04 1,20000E+05 5,94449E+03
ERROR= 5.57378E-26

X(I)= 4.41391E+04 1.20000E+05 5,94449E+03
ERROR= 5.16988E-26

FIGURE 10.6. Coefficient matching by the Least pth program.

252 The Least pth Optimization Technique

10.5 APPLICATION TO LEAST-SQUARES DATA FITTING

Section 4.9 introduced the concept of least-squares data fitting. In that
section it was assumed that measurements were taken at m points2
x,, x2, xm and the data y,1y21 .."Y m were recorded. The measurements
contained "noise", which was smoothed by fitting the following nth-degree
polynomial to the data:

f(x)= ajxj. (10.21)
j=0

The difference between the experimental data and the polynomial at
point xi is the error

ei=yr-f(xi), i=1,2,....m. (10.22)

The least-squares error criterion seeks to minimize the sum of the squared
errors,

m

E_ e;'. (10.23)

This is in a form which is ideal for applying the least-pth optimization
technique. By using (10.21) and (10.22), the individual error functions are
expressed as

ei=yi-(ao+a,xi+a2x2+ (10.24)

where it should be recalled that xi is the ith measurement point. In this
section the parameters to be optimized are not xi; they are instead3
ao,a,,a2,...,a,,.

EXAMPLE 10.5

In Example 4.6 we chose the coefficients ao, a,, a2 of f (x) = ao+ a, x +
a2x2 to minimize the mean-square error for the following data:

X= 0 0.5 1 1.5 2
y= -2.9 -1.8 0.2 2.0 5.2

In that example we solved for the coefficients by applying the Gauss
elimination method to a set of three linear equations.

In this example the coefficients will be solved for by applying the
least-squares optimization technique. The general form for the individual
error function ei is given in (10.24). For this example, the error functions
are shown in Fig. 10.7(a).

2Beware! In this section, the initial value of x is identified as x and not x0 as it was in
Chapter 4.

'Beware! In this section, the number of parameters is n+ I and not n.

Application to Laaat-Squares Data Fitting

898 SUBROUTINE ERROR(X,E)
899 DIMENSION X(10),E(10)
900 E(1)=-2.9-X(1)
910 E(2)=_1.8-(X(1)+.5*X(2)+.25*X(3))
920 E(3)=.2-(X(1)+X(2)+X(3))
930 E(4)=2.-(X(1)+1.5*X(2)+2.25*X(3))
940 E(5)=5.2-(X(1)+2.*X(2)+4.*X(3))
950 RETURN
999 END

(a)

M,N,P ? 5 3 2

X(I) I=1,2,...N
? 1 1 1

ERROR= 4,64550E+01

253

X(I)= -2.88857E+00 1.71429E+00 1.14286E+00
ERROR= 1.29143E-01

X(I)= -2.88857E+00 1.71429E+00 1.14286E+00
ERROR= 1.29143E-01

(b)

FIGURE 10.7. An illustration of least-squares data fitting by applying the least-pth
program.

An application of the least-pth program is shown in Fig. 10.7(b). Since
there are five error functions and three adjustable parameters, we have
m = 5 and n = 3. Since we want to minimize the mean-square error, p must
be selected as 2. For the initial parameters x=(1,1, I) the algorithm was
able to find the minimum in one iteration. It is indicated in Fig. 10.7 that
the minimum is located at ao = -2.88857, a, = 1.71429, a3= 1.14286, so that
the second-degree polynomial is

f (x) 2.88857 + 1.71429x + 1.14286x2.

In the above example, the least-squares optimization technique was able
to find the minimum in just one iteration. It is proven in Problem 10.19
that if the individual error functions are of the form (10.24), then the
minimum can always be found by applying just one iteration of the
least-squares algorithm. This proof of course must assume that there are no
roundoff errors introduced by the computer.

Unfortunately, any computer will introduce roundoff errors. In Example
10.5 the errors were negligible, but this will not always be the case. If there

254 The Least-pth Optimization Technique

are substantial roundoff errors, nothing catastrophic happens in the least-
squares algorithm: instead of reaching the minimum in one iteration, a few
more may be required. The least-squares algorithm will eventually reach
the minimum because the parameter changes will become smaller and the
effect of roundoff errors will decrease.

The ability of the least-squares algorithm to find the minimum should be
contrasted with the approach that was described in Chapter 4. In that
chapter the coefficients in

R

f(x)= " (10.25)
j=0

were found by solving a set of n linear equations; thus, theoretically, the
solution could he obtained by using some standard approach such as the
Gauss elimination method. However, for high order (e.g., for n=8), the
equations are ill conditioned; thus there may be substantial roundoff errors
in the solution. The least-squares algorithm can also have ill-conditioned
equations, but it has the advantage of being able to iterate the linear
equation solving.'

Better accuracy is one reason for applying the least-pth program instead
of attempting to find an analytical solution as in Chapter 4. Another
reason is that the approach that was described in Chapter 4 was only for
functions f(x) which are power series as in (10.25). The method can be
extended to other types of functions, but there is a limit to the functions
that can be used for least-squares data fitting when analytical means are
used.

As an example of a data-fitting function that would present problems for
the analytical approach consider

a0+a,x
() 10 26xf - I +b,x .)(

This is a special case of the more general function

a xj
f()= 2710x (.)

x'I b,

This function is not a polynomial as in (10.25), but is instead a ratio of
polynomials. However, the least-pth program can be easily applied to such
functions, as demonstrated in the next example.

EXAMPLE 10.6

The function y(x)= 100(ex - 1)/(ex + 1) could be approximated by a
power series; but ex can also be represented as a power series, therefore a

4Also, see Forsythe (1977) for the "singular valued decomposition" which can be used to
avoid ill conditioning.

Application to Least-Squares Data Fitting 255

better approximation for y (x) is possible by using a ratio of power series.
In this example we will approximate y(x)= 100(e"- 1)/(ex+ 1) by f(x)=
(ao+ a,x)/(1 + b,x).

The coefficients ao,ai,b, will be chosen so as to minimize the mean-
square error for the following data:

y (0.2) = y, = 9.967, y (0.4) =Y2 = 19.74, v (0.6) =y3 = 29.13,

y(0.8)=y4=37.99, y(1.0)=y5=46.21.

898 SUBROUTINE ERROR(X,E)
899 DIMENSION X(10),E(10)
900 E(1)=9.967-(X(1)+.2*X(2))/(1.+.2*X(3))
910 E(2)=19.74-(X(1)+.4*X(2))/(1.+.4*X(3))
920 E(3)=29.13-(X(1)+.6*X(2))/(1.+.6*X(3))
930 E(4)=37.99-(X(1)+.8*X(2))/(1.+.8*X(3))
940 E(5)=46.21-(X(1)+1.*X(2))/(1.+1.*X(3))
950 RETURN
999 END

(a)

M,N,P ? 5 3 2

X(I) I=1,2,...N
? 0 50 .5
ERROR= 3.01371E+02

X(I)= 5.73498E-02 4,89583E+01 -1.09513E-01
ERROR= 1.09323E+02

X(I)= -1.70491E-01 5.14107E+01 7.37450E-02
ERROR= 2.81954E+00

X(I)= -5.23130E-01 5.37790E+01 1.49232E-01
ERROR= 2.28780E-02

X(I)= -5.53010E-01 5.39835E+01 1.55312E-01
ERROR= 1.19690E-02

X(I)= -5.52727E-01 5.39826E+01 1.55308E-01
ERROR= 1.19688E-02

X(I)= -5.52727E-01 5.39826E+01 1.55308E-01
ERROR= 1.19688E-02

(b)

FIGURE 10.8. Least-squares data fitting with a ratio of polynomials.

256 The Least pth Optimization Technique

That is, the coefficients will be chosen so as to minimize
5 5

E= e,-' = L, [y; -f(x,)] 2.

The individual error functions e; for this example are shown in Fig.
10.8(a), and a computer output is shown in Fig. 10.8(b). The initial values
for ao,a,,b, were picked by using the approximation

100 e'- 1 '100x = 50x
e`+l 2+x 1+0.5x

This implies that good starting parameters would be a0=0, a, =50, b, =0.5.
The output in Fig. 10.8 indicates that a good approximation for the

function in this example is

100 ' I -0.5527+53.98x (10.28)
eX +I 1 +0.1553x

This is a good example of the importance of choosing the initial
parameters wisely. The initial parameters a0=0, a1=50, b,=0.5 were
based on knowledge about the behavior of y(x) for small values of x. If the
initial parameters were instead picked poorly, then the least-pth algorithm
would not have been able to locate the minimum. For example, choosing
a0= a, = b, = I led to the least-pth program attempting to make the param-
eters approach infinity.

Example 10.6 was the first time we did not restrict an approximating
function to be a polynomial: we instead used a ratio of polynomials. This
approximating function can be used to estimate the value of y(x)=
100(e- - 1)/(e' + 1) at any value of x. As usual, the approximation will be
better if x is located within the range of the given data. As a demonstration
of using the approximating function for interpolation, consider

.1(0.5)=
-0.5527+53.98x0.5 =24.53.
l +0.1553 x0.5

This agrees very well with the analytical answer y(O.5)= 24.49.

10.6 CHEBYSHEV APPROXIMATIONS

Chebyshev approximations occur in many different branches of science
and engineering. The diverse applications of the theory due to Chebyshev
provide a remarkable example of how an elegant mathematical develop-
ment can have important practical results. For example, millions of electri-
cal networks termed Chebyshev filters have been manufactured.

Chebyshev approximations were originally studied by means of
Chebyshev polynomials. These polynomials are obtained by solving a

Chebyshev Approxlmatlons 257

differential equation which describes an approximation problem. The
theory of Chebyshev polynomials is both interesting and time consuming.
Those caring to pursue the subject further are referred to Daniels (1974).

The least-pth optimization technique offers a way of obtaining
Chebyshev approximations without resorting to Chebyshev polynomials.
In this section we will learn an easy way of finding Chebyshev approxima-
tions and also come to appreciate intuitively why this type of approxima-
tion is so important.

For the sake of comparison, we will first study the Maclaurin series. A
function y(x) can be approximated by the Maclaurin series

v(x) r
y(i)(0)xj

(10.29)jj=0

where y°'°(0) is the jth derivative of y(x) evaluated at x equal to zero. The
Maclaurin series is of course just a special case of the Taylor series.

The Maclaurin series is expressed in terms of powers of x and thus can
be written as

n

Ax)- I ajxi=f(x). (10.30)

j=0
The difference between the true function y(x) and the approximation f(x)
can be defined to be the error e(x). That is,

e(x)=y(x)-J(x). (10.31)

The power series matchesy(x) and the first n derivatives at x=0; thus it is
an extremely good match at the origin. However, the quality of the match
decreases as we proceed away from the origin.

EXAMPLE 10.7

The function y(x)=(100e,)2 can he expanded in a Maclaurin series as
(2x)2 (2x); (2x)4

y(x)=104 1+2x+ 2 + 3 +
4!

It is of course not practical to continue the series indefinitely, so it must be
truncated. In this example we will truncate the Maclaurin series to yield a
fourth-degree polynomial f(x) that approximates (100ex)2. This Maclaurin
series is

10(1+2x+2x2+4x'/3+2x4/3). (10.32)

The error of this approximation can be defined as

e(x) = l04[e2x -(I+2x+2x2+4x'/3+2x4/3)}. (10.33)

258 The Least-pth Optimization Technique

e(x)

1

FIGURE 10.9. The error function for a Maclaurin series approximation.

This error is plotted in Fig. 10.9. Note that the error is zero at the origin,
but the magnitude of the error increases as we proceed away from the
origin.

The Maclaurin series concentrated its approximating power at the
origin, where it matched y(x) and the first three derivatives. This type of
approximation is sometimes referred to as a maximally flat approximation.
Instead of concentrating all the approximating power at the origin, we
usually would prefer to have a better approximation over a specified
region. Two ways of accomplishing this are illustrated in the next example.

EXAMPLE 10.8

The function y(x) = (100e-)2 can be approximated by a power series as

f(x)=ao+a1x+a2x2+a3x3+a4x4. (10.34)

The error of the approximation is

e(x)= 104e2x-(ao+aix+a2x2 +a3x3+a4x4). (10.35)

The coefficients in (10.35) can be found by applying optimization tech-
niques.

For example, let individual error functions e, be defined at x =
0,0.1,0.2,...,1.0. These error functions are shown in Fig. 10.10(a). The
total error was optimized in a least-squares sense by choosing p equal to

898 SUBROUTINE ERROR(X,E)
899 DIMENSION X(20),E:(20)
900 E(01)=10000.0- X(1)
902 E(02)=12214.0-(X(1)+.1*X(2)+.01*X(3)+.001*X(4)+.0001*X(5))
903 E(03)=14918.2-(X(1)+.2*X(2)+.04*X(3)+.008*X(4)+.0016*X(5))
904 E(04)=18221.2-(X(1)+.3*X(2)+.09*X(3)+.027*X(4)+.0081*X(5))
905 E(05)=22255.4-(X(1)+.4*X(2)+.16*X(3)+.064*X(4)+.0256*X(5))
906 E(06)=27182.8-(X(1)+.5*X(2)+.25*X(3)+.125*X(4)+.0625*X(5))
907 E(07)=33201.2-(X(1)+.6*X(2)+.36*X(3)+.216*X(4)+.1296*X(5))
908 E(08)=40552.0-(X(1)+.7*X(2)+.49*X(3)+.343*X(4)+.2401*X(5))
909 E(09)=49530.3-(X(1)+.8*X(2)+.64*X(3)+.512*X(4)+.4096*X(5))
910 E(10)=60496.5-(X(1)+.9*X(2)+.81*X(3)+.729*X(4)+.6561*X(5))
911 E(11)=73890.6-(X(1)+1.*X(2)+1.0*X(3)+1.00*X(4)+1.000*X(5))
950 RETURN
999 END

(a)

N,N,P ? 11 5 2

X(I) I=1,2,...N
? 10000 20000 20000 13333 6667
ERROR= 2.17750E+07

X(I)= 1.00087E+04 1.93643E+04 2.49640E+04 4.89352E+02
X(I)= 1.90548E+04
ERROR= 1.43101E+03

X(I)= 1.00087E+04 1.93643E+04 2.49640E+04 4.89382E+02
X(I)= 1.90548E+04

ERROR= 1.43101E+03

(b)

M,N,P ? 11 5 10

X(I) I=1,2,...N
? 10008.7 19364.3 24964.0 489.352 19054.8
ERROR= 1.00952E+13

X(1)= 1.00157E+04 1.92936E+04 2.51726E+04 2.64280E+02
X(I)= 1.91305E+04

ERROR= 4.46970E+12

X(I)= 1.00142E+04 1.93270E+04 2.50970E+04 2.88580E+02
X(I)= 1.91507E+04

ERROR= 2.44471E+12

X(I)= 1.00135E+04 1.93296E+04 2.51002E+04 2.72466E+02
X(I)= 1.91611E+04

ERROR= 2.29063E+12

X(I)= 1.00133E+04 1.93308E+04 2.5099EE+04 2.70757E+02
X(I)= 1.91630E+04
ERROR= 2.28841E+12

X(I)= 1.00133E+04 1.93308E+04 2.56989E+04 2.71022E+02
X(I)= 1.91629E+04
ERROR= 2.28840E+12

(C)

FIGURE 10.10. (a) The error functions used in Example 10.8. (b) Least-squares
optimization for Example 10.8. (c) Least-tenth optimization for Example 10.8.

259

260 The Least-pth Optimization Technique

two as shown in Fig. 10.10(b). Note that the initial values for the parame-
ters were selected from the Maclaurin series of (10.32). For the least-
squares error criterion, Fig. 10.10(b) indicates that the approximating
function is

f2(x)=10008.7+ 19364.3x+24964x2+489.382x3+ 19054.8x4. (10.36)

Instead of choosing the power p equal to 2, it can be selected as any
positive even integer. An example of this is indicated in Fig. 10.10(c),
where p was 10. Note that this time the initial values for the parameters
were selected from the least-squares function of (10.34). For the "least-
tenth" error criterion, Fig. 10.10(c) indicates that the approximating func-
tion is

f,0(x)= 10013.3+ 19330.8x+25098.9x2+271.022x3+ 19162.9x4. (10.37)

From the material in Examples 10.7 and 10.8 we now have three
different fourth-degree polynomials that can be used to approximate
100e2i. We can decide which is best by comparing the error functions. The
error function for the Maclaurin series was shown in Fig. 10.9; the error
functions for f2(x) and f,o(x) are shown in Fig. 10.11.

Comparing Fig. 10.11 with Fig. 10.9 indicates that the maximum error of
the least-squares function f2(x) is smaller than the maximum error of the
Maclaurin function fm(x). That is, the magnitude of the maximum error of
f2(x) is approximately 20, while the magnitude of the maximum error of
fm(x) is much greater than 1000.

The least-squares error criterion was able to produce a smaller maxi-
mum error than that due to the Maclaurin series. However, choosing p=10
reduced the maximum error even more. From Fig. 10.11, the maximum
error was reduced to approximately 15.

The Chebyshev error criterion seeks to minimize the maximum error.
One way of doing this is to use Chebyshev polynomials to yield an
approximating function. However, our previous work has indicated
another way: we can use the least-pth program and choose p to be a large
number (for example, p = 10). If errors that are almost equal are raised to a
large power such as ten, then the largest error will be magnified and will
contribute much more to the total error function.

We now see why it is so useful to have a least-pth program instead of a
more restrictive least-squares program. As demonstrated in the first part of
this chapter, the least-pth program can be applied to minimize errors in a
least-squares sense. However, as just demonstrated, the same program can
also be used to yield a Chebyshev error criterion.

As illustrated in Fig. 10.11, the Chebyshev error criterion seeks to
minimize the maximum error by making the peak errors have equal

Chebyshev Approximations 261

e(x)

1

20

10

0.2 0.4 0.6 0.8 11.0

1

-201
\-e 10W

\`_i

e2(x)

FIGURE 10.11. Error functions for a least-squares approximation (dashed curve)
and a least-tenth approximation (solid curve).

magnitudes; that is. it produces an equiripple error function. The least-pth
program can be used to produce equiripple error functions not only for
polynomials as in (10.34), but also for more general functions such as
ratios of polynomials. However, there are a couple of pitfalls that must be
avoided.

In the least-pth program. the error function is only calculated at discrete
points. For example, in Ex. 10.8 it was calculated at x=0,0.1,0.2,...,1. By
choosing p as a large number we can minimize the maximum error at these
points, but it is possible that a larger error occurs between the points.
However, if a sufficient number of points is specified, it is unlikely that a
much larger error will occur between the points. A good rule of thumb is
that twice as many points should be specified as arbitrary constants.
Whether or not this number of points is sufficient can be determined by
plotting the error function and observing whether or not it is equiripple. If
it is not equiripple, then more points should be added. Note that these
points need not be equally spaced. Usually it is best to have more near the

262 The Least-pth Optimization Technique

ends of the approximation interval, where the approximating function
varies most rapidly.

Another problem that may be encountered when applying the least-pth
algorithm to yield an equiripple error function is that the process may not
converge. When p is selected as a large number, the initial parameters must
be selected very carefully or one of the individual errors may be much
larger than any other-this can cause the least-pth algorithm to diverge. If
convergence problems are encountered, the least-pth program can first be
applied with p = 2. A good set of initial parameters is relatively easy to find
for this case. Then the optimized parameters for the least-squares case can
be used as initial parameters for a higher power p. In this way p can be
increased until the error function is sufficiently equiripple (assuming that
increasing p does not cause numerical overflow problems; then scaling
would be necessary).

The least-pth algorithm that has been developed in this chapter is just
one of many possible ones. This one was described because it is closely
related to the previous material on the steepest-descent method. This
least-pth method converged extremely rapidly for the examples that were
given in this chapter; but in other examples it could encounter difficulties
because of the approximation of derivatives by finite differences. Peck-
ham5 has described a method which does not require the calculation of
derivatives. It can get around potential difficulties by using methods
similar to those described in the simplex optimization method.

5Peckham, G. (Nov. 1970), "A New Method for Minimizing a Sum of Squares Without
Calculating Gradients", Computer J., pp. 418-420.

PROBLEMS

10.1 The error function E(x)=25(x, - 10)2+ 100(x,x2)2 can be consid-
ered to be of the form E (x) = w, e, + w2e2, where w, = 25, w2 = 100,
e, = x, - 10, and e2 = x,x2. Instead of these individual error functions
e,,e2, define new error functions by using the substitution in (10.2).

10.2 For the individual error functions e,=x,-10 and e2 = x,x2, use
(10.5) to determine an expression for V E.

10.3 (a) What is the Jacobian for the error functions in Problem 10.2?
(b) Use (10.7) to determine an expression for V E.

10.4 For the individual error functions

e, = x,(x2+ 10) and e2=(x, +5)x2:

(a) Find V E (1, 1) by using (10.7).
(b) Find V E (1.01, 1.02) by using (10.8).
(c) Approximate V E (1.01,1.02) by using (10.9).

10.5 For the individual error functions e, =x,(x2+ 10) and e2=(x,+5)x2,
use the approximation in (10.11) to estimate e(1.0 1, 1.02). Choose the
initial point as x = (1, 1).

10.6 The number of error functions, m, need not be equal to the number
of parameters, n. In this problem m=3 while n=2. If e, =x,, e2 = x2,
and e3 = x,x2:

(a) Find V E (1, 2) by using (10.7).
(b) Use the approximation in (10.11) to estimate e(1.01,2.02).

10.7 If e, = x,(x2 + 10) and e2 = (x, + 5)x2, what would the least-squares
optimization technique yield for Sx if the initial parameters are
x=(1,1)?

10.8 If e1=x1, e2=X2, and e3 = x, x2, what would the least-squares optimi-
zation technique yield for 6x if the initial parameters are x=(1,2)?

10.9 For e, = x,, e2=X2, and e3 = x, x2 calculate H = J`eP -'. Let the initial
parameters be x = (1, 2) and choose p = 4.

10.10 Apply one iteration of the Least-pth algorithm with p =4 to yield Sx
for the following conditions: e,=x,(x2+10), e2=(x,+5)x2, initial
parameter x = (1, 1).

10.11 For the following test functions, give the individual error functions
that would be required for least-pth optimization:

263

264 The Least-pth Optimization Technique

(a) Rosenbrock
(b) "Cube"
(c) Powell

(d) Coefficient matching
10.12 If one never uses the least-pth method for any case except p = 2, then

the program in Fig. 10.1 can be simplified considerably. Simplify the
program for the least-squares case.

10.13 What is the purpose of statement 32 in Fig. 10.1?
10.14 Solve Problem 8,. 14 by using the least-pth program (with p = 2).
10.15 Solve Problem 8.15 by using the least-pth program (with p = 2). Use

as initial conditions x=(- 1, -1, - I).
10.16 Re-solve Example 8.4 by using the least-pth program (with p = 2).
10.17 Re-solve Example 9.6 by using the least-pth program (with p = 2).

10.18 In Example 10.6 the function y(x)=100(e'- 1)1(e'+ 1) was ap-
proximated by f (x) = (a0 + a, x)/(1 + b,x). Find a better approxima-
tion by applying the least-pth program to minimize the mean-square
error due to f(x)=(ao+a,x)/(l+b,x+62x2). Use the same data
points as in Example 10.6.

10.19 For the individual error function

e;(a)=y; -(a0+a,x,+a2x?):

ae,(a+8a) ae,(a)
(a) Show that aak aak

2 ae; (a)
(b) Show that a' (a + 8a) = e; (a) +

k0 aak
Sak

Note that (a) implies the approximation in (10.9) would be exact for
this error function, while (b) implies the approximation in (10.10)
would likewise be exact.

10.20 Use the least-squares program to find the coefficients in the follow-
ing approximation: cosx. ao+a,x+a2x2=f(x). Define the error
function as e(x)=cosx-f(x), and let x=0,0.1,0.2,...,0.5.

10.21 Use the least-squares program to find the coefficients in the follow-
ing approximation: sinx. a0+a,.x+a2.x2+a3x3=f(x). Define the
error functions as e(x)=sinx-f(x), and let x=0,0.1,0.2,...,0.5.

10.22 Proceed as in Problems 10.20 and 10.21, except this time approxi-
mate tanx as tanxz(ao+a,x)/(l +b,x+b2x). (Hint: Use a
Maclaurin series for sinx to yield initial values for ao,a,, and use a
Maclaurin series for cosx to yield initial values for b,,b2.)

Chapter Eleven

Constrained Optimization Problems

11.1 INTRODUCTION

In the previous three chapters we have studied different techniques that
can be applied to solve optimization problems. In the material presented
thus far it has been assumed that all of the parameters were unconstrained.
However, in practical problems the parameter values usually are not
allowed to attain any value that a designer might like to specify.

A chemical engineer might use an optimization technique to determine
the temperature, pressure, and duration of a certain process. If a computer
indicates that the optimum process requires a temperature so high that the
container would melt, then the engineer must settle for a lower tempera-
ture. One solution would be to fix the temperature at the highest allowable
value and then optimize the remaining parameters; but this is not neces-
sarily the best solution.

We have just observed that in some situations a parameter might be
constrained to be less than an upper bound. In other cases, a parameter
might be constrained to be greater than a lower bound. For example,
returning to our hypothetical chemical process, the apparatus may be
capable of reducing the pressure to only one-half an atmosphere which
would thus be a lower bound. Similarly, a parameter may have both an
upper bound and a lower bound. In this chapter we will learn how to treat
any of these three cases. The approach we will use will be to transform a
bounded problem to an unbounded one; then any of the previously
discussed optimization techniques can be applied to the unconstrained
problem.

Not only can there be constraints on individual parameters; there can be
a constraint on a function of the parameters. For example, consider an
electrical network that is constructed by putting many resistors on a
thin-film circuit. There is an upper bound to the total amount of resistance
that can be put onto such a circuit. If this upper bound is denoted as U,
then the constraint can be written as

R,< U, (11.1)

265

266 Constrained Optimization Problems

where R; is a resistance. In this chapter we will also learn how to optimize
problems when there are constraints such as these.

11.2 ACTIVE CONSTRAINTS VERSUS INACTIVE CONSTRAINTS

Assume that the error function E(x) is a function of the two parameters
x,,x2. Furthermore, assume that the parameters are constrained as indi-
cated below:

-25x,50.5, x,+x,51, x,-x251. (11.2)

These constraints are illustrated in Fig. 11.1. The region inside the shaded
area is referred to as the feasible region. By definition, no constraints are
violated within the feasible region.

In any constrained optimization problem the first task will be to select
an initial set of parameters that is located in the feasible region. Sometimes
this can be simply done by randomly choosing points and having good
luck. Other times a systematic approach of varying the parameters one at a
time will be necessary. Often insight into the practical problem will be
necessary. In some cases it may not even be possible to obtain a feasible

x, -

xI

FIGURE 11.1. A possible optimization path in a feasible region.

Active Constraints Versus Inactive Constraints 267

set of parameters. One may then he forced to find ways of modifying the
constraints.

Once a feasible set of initial parameters has been determined, then one
can start the optimization procedure by applying an optimization program
and monitoring the way the parameters are varied. As long as no con-
straints are violated, everything is fine. However, if the optimization
procedure attempts to force the parameters into the forbidden region, then
something must be done.

Different optimization techniques use different methods to guarantee
that the parameters always remain in the feasible region. For example, at a
constraint boundary the gradient projection method chooses a feasible direc-
tion by projecting the negative gradient onto the constraint boundary and
then proceeding in that projected direction. A detailed description of the
gradient-projection method is beyond the scope of this text, but a simple
feasible-direction method will be discussed next.

As an illustration of how the parameter could be kept in the feasible
region, consider again Fig. 11.1. This indicates that from the initial point
x=(- 1, 1) an optimization procedure varied the parameters until the
constraint x, + x2 < 1 was encountered. Until that point, the optimization
procedure had progressed as if there were no constraints; that is, the
constraints were inactive. However, when the boundary between the feasi-
ble and forbidden region was encountered the constraint xi +x2 < 1 be-
came active.

When a constraint is active, often it can be used to remove one of the
parameters from the error function. For example, if the constraint x,+x2
< 1 is active, then one can make the substitution x2 =1- x,. One can then
proceed and use an unconstrained optimization program. However, care
must be taken in this approach, because even though a constraint becomes
active in a minimization search, it may later become inactive.

The above procedure varies the parameters, which are related by the
active constraints, until a minimum is reached. If one knew ahead of time
what constraints would be active at the minimum, then the constrained
optimization problem would be greatly simplified. The active constraints
could be used to simplify the error function, which could then be mini-
mized by an unconstrained optimization program.

Although one may not be able to predict which constraints will be active
at the minimum, there are only a finite number of combinations of
constraints that can be active. For example, if there are three constraints,
a, b, c, then

(1) none might be active:
(2) a, (3) b, or (4) c might be active;

268 Constrained Optimization Problems

(5) a and b, (6) a and c. or (7) b and c might be active;
(8) a, b, and c might be active.

The optimization problem could be solved for each of these cases and the
results examined. Any proposed solution that violates constraints which
were assumed to be inactive should be discarded. The remaining solutions
can be compared, and the one with the smallest error function is the
correct answer.

EXAMPLE 11.1

Minimize

E(x)=xi+2x2+3x3+4x2 (11.3)

subject to the constraints

(a) x, > 0.4, (b) x2 + x3 > 0.5, (c) x3 + x4 > 0.6.

SOLUTION

There are eight different combinations of these constraints, and thus
eight different optimization problems must be solved. The different possi-
bilities are indicated in Table 11.1. The first couple of possibilities were so
simple that an optimization program did not have to be applied to yield
the solution vector. For example, if it is assumed that no constraints are
active, then it is obvious that the minimum is located at x=(0,0,0,0).
However, all three constraints are violated at that location, so it is not a
feasible point.

As another possibility, assume that constraints a and b are active at the
minimum. Substituting x,=0.4 and x2=0.5-x3 into (11.3) yields

E(x)=0.16+2(0.5-x3)2+3x3+4x4. (11.4)

Table 11.1

ACTIVE SOLUTION CONSTRAINTS

CONSTRAINTS VECTOR VIOLATED

None 0, 0, 0, 0 a.b,c
a 0.4,0,0,0 b, c
b 0, 0.3. 0.2, 0 a, c
c 0, 0, 0.34, 0.26 k c
a,b 0.4,0.3,0.2,0 c
a, c 0.4, 0, 0.34, 0.26 b
b, c 0, 0.12, 0.38, 0.22 a
a, b, c 0.4, 0.12, 0.38, 0.22 None

TransformatIons 269

Applying the least-pth program to this error function yields x=
(0.4,0.3,0.2,0).

Table 11.1 indicates if (and only if) all constraints were active, then the
minimum point was in the feasible region; so the minimum is
E(0.4,0.12,0.38,0.22)=0.82.

Although it is true that for a finite number of constraints there is a finite
number of possibilities as to which constraints will be active, it may also be
true that the number of possibilities is so large that it is impractical to
analyze them all. Fortunately, as indicated in the following sections, there
are other approaches that can be used.

11.3 TRANSFORMATIONS

Many of the constraints that are encountered can be eliminated by using
special transformations. In the transformed problem, no parameters are
constrained, and thus the standard optimization programs can be used.
Once the transformed problem has been optimized, the unconstrained
parameters (which are guaranteed to be in the feasible region) can be
determined from the transformed parameters.

The notation that will be used is that x = (x,, x2, are the con-
strained parameters and z = (z,, z2, z,,) are the unconstrained parame-
ters. As an example, assume that x, is constrained to be greater than the
lower bound x,,; that is, x, 3 x,,. We can thus express x, as

x,= (11.5)

Here the parameter z, is unconstrained (- oo < z, < oo), but the parameter
x, is constrained to be greater than (or equal to) x,,. as required.

Generalizing, if parameters are constrained to be greater than (or equal
to) lower bounds as indicated by

x; > x;,, (11.6)

then the constrained problem can be transformed to an unconstrained
problem by introducing the substitutions

x; = x;, + z;2. (11.7)

EXAMPLE 11.2

Minimize the Rosenbrock function E(x)=100(x; -x2)2+(1 -.x,)2 sub-
ject to the constraints x, > - 2 and x2) 2.

SOLUTION

For this example, the transformations in (11.7) are

x,=-2+z;, x2=2+z2,

270 Constrained Optimization Problems

so that the transformed error function is

E(z)=100[(-2+Z,2)1-(2+Z22)
]2+[1-(-2+z,)12.

The simplex program was applied to this (see Fig. 11.2) and yielded that
the minimum is at z=(1.848,0.07), where E=0.17. Thus in terms of the
constrained parameters, the minimum is where

x,= -2+(1.848)2= 1.39,

In this example, both parameters x, and x2 were constrained. However,
the optimized answer x=(1.4136,2) indicates that only the constraint
X2>2 was active. We can now use hindsight to verify the optimized
answer. Since the constraint x2 > 2 is active, we can set x2=2 in the error
function to yield

E(x)=100(x,-2)2+(1-x,)2.
Because this is a function of only one variable, it can be minimized by
applying the quadratic interpolation program of Fig. 3.5. The result is
x, = 1.4137, which verifies the answer in Example 11.2.

The transformation for lower bounds was applied so that only a positive
quantity could be added to a lower bound. The quantity was guaranteed to
be positive, since it was the square of a real number. It is very easy to
proceed by analogy to this approach and obtain a transformation for
upper bounds. This time a positive quantity should be subtracted from the
upper bound. Again, the quantity can be guaranteed to be positive if it is
the square of a real number.

The above discussion indicates that if parameters are constrained to be
less than (or equal to) upper bounds as indicated by

x; < x;,,, (I 1.8)

then the constrained problem can be transformed to an unconstrained
problem by introducing the substitutions

x; =x,,, (11.9)

EXAMPLE 11.3

Minimize the cube test function E(x)=100(x; -x2)2+(I-x,)2 subject
to the constraints x, < 0.5 and x2 < 0.6. Choose as initial parameters
x=(0.4,0.5).

SOLUTION

For this example, the transformations in (11.9) are

x,=0.5-z,, x2=0.6-z2,

transformations 271

N ? 2

X(I) I=1,2,...N
? 2 .2

ERROR= 3.85160E+02

X(I)= 1.80030E+00 2.19985E-01
ERROR= 2.58761E+01

X(I)= 1.84983E+00 2.27500E-01
ERROR= 2.68001E-01

X(I)= 1.84965E+00 2.07554E-01
ERROR= 2.31640E-01

X(I)= 1.85279E+00 2.17375E-01
ERROR= 1.90630E-01

X(I)= 1.85118E+00 2.07484E-01
ERROR= 1.87314E-01

X(I)= 1.85068E+00 1.95089E-01
ERROR= 1.86122E-01

X(I)= 1.85161E+00 2.03119E-01
ERROR= 1.83630E-01

X(I)= 1.85108E+00 1.82788E-01
ERROR= 1.82106E-01

X(I)= 1.84995E+00 1.59748E-01
ERROR= 1.78994E-01

X(I)= 1.84955E+00 1.26972E-01
ERROR= 1.77777E-01

X(I)= 1.84842E+00 1.03992E-01
ERROR= 1.75115E-01

X(I)= 1.84802E+00 7.12828E-02
ERROR= 1.72928E-01

FIGURE 11.2. A transformed version of a lower-bounded problem.

272 Constrained Optimization Problems

so that the transformed error function is

E (z) =
100[(0.5-;)3-(0.6-=2)]2+[

1

The optimization will be done in terms of this error function because zi,z2
are unconstrained. However, the initial parameter values were given in
terms of x, so they must be transformed to equivalent parameter values in
terms of z.

For any value of x, an equivalent value for z can be found by applying
(11.9) to yield'

'. (11.10)

If the parameter x; is in the feasible region, then it cannot be greater than
the upper bound, so that we need not worry about requiring the square
root of a negative number. Equation (11.10) can be applied to yield
equivalent initial parameters for this problem:

z1=(0.5-0.4)`0.32, z2=(0.6-0.5)= 0.32.

For the above initial parameters, the steepest-descent program was
applied to the transformed error function, and the results are shown in Fig.
11.3. The results indicate that the minimum is at z=(0.051,0.689), where
E=0.253. Thus in terms of the constrained parameters, the minimum is
where

XI=0.5-(0.05 1)2 .0.5, x2=0.6-(0.689)2=0.125.

The transformations in (11.7) and (11.9) allow one to treat constraints
that are either upper bounds or lower bounds. We will now learn how to
transform parameters xi that have both upper bounds and lower bounds:

xi,<xi<x,,,. (11.11)

A transformation that can be used to restrict a parameter to such a
range of values is

z;)2. (11.12)

In this equation the parameter z, is unconstrained; but because (sinzi)2
varies between zero and unity, the parameter x; is constrained. In particu-
lar, when sin zi = 0, x; then has its minimum value of xi,. On the other hand,
when sin z, = ± 1, x; then has its maximum value of x;,,.

The inverse transformation for the relation in (11.12) is

xi - xi,
zi=sin -' (11.13)

xiu - xii

'Note that the negative square root could have been selected instead.

Transformations 273

N ? 2

X(I) I=1,2.... N
? .32 .32
ERROR= 1.92632E+01

X(I)= 1.07795E-01 7.54745E-01
ERROR= 1.00353E+00

X(I)= 1.13674E-01 6.92011E-01
ERROR= 2.66185E-01

X(I)= 1.12594E-01 6.96033E-01
ERROR= 2.62842E-01

X(I)= 8.96238E-02 6.90534E-01
ERROR= 2.59770E-01

X(I)= 8.88595E-02 6.93526E-01
ERROR= 2.57961E-01

X(I)= 7.30132E-02 6.89793E-01
ERROR= 2.56346E-01

X(I)= 7.24387E-02 6.92109E-01
ERROR= 2.55276E-01

X(I)= 6.07960E-02 6.89387E-01
ERROR= 2.54333E-01

X(I)= 6.03457E-02 6.91239E-01
ERROR= 2.53656E-01

X(I)= 5.13904E-02 6.89156E-01
ERROR= 2.53062E-01

FIGURE 11.3. A transformed version of an upper-bounded problem.

EXAMPLE 11.4

Minimize the Rosenbrock function

E (x) = 100(x'[- x2)2+ (1 _X ,)2

subject to the constraint
-2<x,<0.8.

274 Constrained Optimization Problems

SOLUTION

For this example, the transformation in (11.12) is

X,= - 2 + 2.8(sin z,)2. (11.15)

Substituting this transformation into the Rosenbrock function yields the

following error function:

E=100{[-2+2.8(sinz1)2]
2-x2)2+[3-2.8(sinz1)212.

(11.16)

The result of using the simplex

program

for this error function is shown
in Fig. 11.4, which indicates that the minimum for the constrained error
function is located at z, =7r12, x2=0.64. We can use (11.12) to obtain the
value of x, that corresponds to z :

x, = - 2 + 2.8 sin(7r/2) =0.8.

The error function at x = (0.8, 0.64) is equal to 0.04.

Example 11.2 applied the transformation in (11.7) for lower bounds,
Example 11.3 applied the transformation in (11.9) for upper bounds, and
Example 11.4 applied the transformation in (11.12) for a parameter that
was restricted to a range of values. It is of course possible to encounter the
three types of bounds in the same problem. This presents no added
difficulty; the proper transformation is simply selected for each type of
constraint.

In the preceding pages, the possibility that the optimization procedure
may not converge was ignored. However, the transformations introduced
in this section often scale the parameters in such a way as to introduce
convergence problems. The rest of this section will discuss various rem-
edies for this situation.

If transforming a constrained optimization problem into an uncon-
strained optimization problem creates difficulties, the first solution that
may come to mind is "don't transform". We saw in the previous section
that constrained problems can be solved by examining all the different
combinations of active and inactive constraints. This is an attractive
approach for a small number of constraints, but is too time consuming for
many constraints.

Another approach is to use different transformations. The transforma-
tions described in this section are not unique: there are many others that
can be used to transform a constrained problem to an unconstrained one.
For some other transformations see Box (1966).

If a particular optimization program (for example, steepest descent)
encounters convergence problems, another optimization technique can be

Transformations 275

N ? 2

X(1) I=1,2.... N
? 2

LRROR= 1.65260E+01

X(I)= 1.61059E+00 5.73677E-01
6RRGR= 3.92896E-01

X(I)= 1.41697E+00 5.72921E-01
ERROR= 1,84672E-01

X(I)= 1.46545E+00 5.97988E-01
ERROR= 5.76557E-02

X(I)= 1.48509E+00 6.14325E-01
ERROR= 5.31571E-02

X(I)= 1.52920E+00 6.28757E-01
ERROR= 4.31982E-02

X(I)= 1.54440E+00 6.37791E-01
ERROR= 4.08667E-02

X(I)= 1.54824E+00 6.36565E-01
ERROR= 4.07060E-02

X(I)= 1.55295E+00 6.39661E-01
ERROR= 4,04755E-02

X(I)= 1.56266E+00 6.38738E-01
ERROR= 4.01674E-02

X(I)= 1.57704E+00 6.40906E-01
ERROR 4.01606E-02

FIGURE 11.4. A transformed version of a problem with upper and lower bounds.

applied. As noted many times, no one optimization technique is always
best. In this book four optimization techniques have been described in
detail: simplex, steepest descent, Fletcher-Powell, and least pth. Many
others have been described in the literature.

Instead of applying a new optimization technique, a reader of this book
may have more immediate success by modifying one of the programs
described in this text. Since this is an introductory text, the algorithms

276 Constrained Optimization Problems

have been kept relatively simple. If convergence problems are encountered
in a particular application, the reader may now have enough insight into
the algorithm to be able to modify it so that it will converge.

11.4 PENALTY FUNCTIONS

The previous section described a constrained problem that had con-
straints of the form

X,/<X Xi<Xi., x,,<X,<x,. (11.17)

We were able to transform problems of this type into equivalent uncon-
strained problems. However, these are not the only types of constraints
that may be encountered. For example, in (11.2) we had the constraint
XI + x2 < 1, which is not of the form of any of the constraints in (11.17).

In this section we will learn how to apply unconstrained optimization
programs to constraints that are much more general than those that were
studied in the previous section. In particular, we will learn how to:

Minimize E(x)

Subject to C,(x)>0, i= (11.18)

This notation indicates that there are c different constraints: C C2,..., C,
Any of these constraints can be a function of more than one parameter.

EXAMPLE 11.5

The constraints in (11.2) were

-2<x, <0.5, xI+x2< 1, xi-x2< 1.
These constraints can be put into the form of (11.18) as indicated below:

C1(x)=x1+2>0, C3(x)=1-x1-x2>0,
C2(x)=0.5-xl >0, C4(x)=1-x1+x2>0.

The constrained problem will be solved by minimizing an error function
E'(x) which is related to the original error function E(x) via a penalty
function:

E*(x) = E (x) + penalty function. (11.19)

The penalty function is introduced so that can be an unconstrained
problem. This will be done by choosing the initial set of points x to be in
the feasible region (i.e., x satisfies the constraints). If the optimization
procedure tries to find a minimum by going out of the feasible region, then
the penalty function will become large and "force" the parameters to stay
in the feasible region.

Penalty Functions 277

There are many different forms that are possible for the penalty func-
tion; we will choose the simple one

((11.20)penalty function= rE , x)
Ct- I

where r is a positive constant. To understand why this is a possible penalty
function, recall that in the feasible region C;(x) is positive. However, as x
approaches a boundary of the feasible region the penalty function will
become very large-which is exactly what is desired.

The parameter r is a "constant" that will initially be chosen quite large,
e.g., r= 100. If an optimization run is done for r large, the penalty function
will be quite large even far from the boundary of the feasible region. Thus
the minimum of E(x) be the

penalty function is quite large even far from the
boundary, we do not have to worry about a finite change in parameters
causing us to jump across the boundary.

Now suppose r is reduced and the parameters x found in the previous
paragraph are used for initial parameters in another optimization run.
Because r is smaller, the new optimum will be a little closer to the
boundary of the feasible region. If r is reduced slowly enough, the changes
will be small, so x will always stay in the feasible region.

Summarizing, instead of minimizing the error function E(x) subject to
the constraints C; (x) > 0. we will minimize the unconstrained problem

F*(x)=E(x)+r 1 (11.21)
f=I C1 (x)

This will be done by sequentially solving a series of optimization problems.
The parameter r will initially be quite large and then be gradually reduced.
It should be noted that as r approaches zero the unconstrained problem for
E*(x) approaches the constrained problem for E(x). Because r is sequen-
tially reduced, this method has been called SUMT (sequential uncon-
strained minimization technique).

Before an example can be done, it will be necessary to modify one of
our optimization programs. As the programs are presently written, large
parameter changes at early stages of optimization may cause the parame-
ters to leave the feasible region and enter the forbidden region. Once the
parameters are in the forbidden region, at least one of the constraints C;(x)
will be negative, and the parameters may then be adjusted so that E'(x) of
(11.21) approaches minus infinity.

As an illustration of how a program can be modified to keep the
parameters in the feasible region, consider the least-pth program. This will

278 Constrained Optimization Problems

be discussed with reference to the following problem:

Minimize F_ (x) = x +2 X2 +3x3 +4x4,

subject to x, + x2 > 0.4.
(11.22)

The penalty function will be defined as [k/(x,+x2-0.4)]2, so that the
unconstrained error function is

E*(x)=x2+2x2+3x3+4x4+ k 12_

L x,+x2-0.4

It should be noted that the penalty function was not defined as equal to
the reciprocal of the constraint, but instead as the square of the reciprocal.
This allowed the error function E*(x) to be written as a sum of squares,
which is necessary for a least-squares solution.

For this example, the constraint can be added to the least-pth program
(Fig. 10.1) via

210 IF(X1(1)+X1(2) .LT. 4.) GO TO 202

and the error functions can be written as (assuming k = 1)

900 E(1) = X(1)
910 E(2)=SQRT(2.)*X(2)
920 E(3)=SQRT(3.)*X(3)
930 E(4)=2.*X(4)
940 E(5) =1./(X(1) + X(2) -.4)

The results of applying the modified least-squares program are shown in
Table 11.2. It should be noted that each separate value of k required a
different optimization run. For each new run, statement 940 was modified
to reflect the change in k.

It should be mentioned that for the data in Table 11.2, the optimized
values were obtained by allowing the computer to use two iterations of the

Table 11.2

k INITIAL VALUES OPTIMIZED VALUES

X, X2 X3 X4 E* X, X2 X3 X4 E*

1 1.000 2.000 3.000 4.000 100.15 0.794 0.397 0.000 0.000 25.89
0.1 0.794 0.397 0.000 0.000 0.96 0.483 0.241 0.000 0.000 0.44
0.01 0.483 0.241 0.000 0.000 0.35 0.302 0.151 0.000 0.000 0.17
0.001 0.302 0.151 0.000 0.000 0.14 0.275 0.137 0.000 0.000 0.12
0.0001 0.275 0.137 0.000 0.000 0.11 0.269 0.134 0.000 0.000 0.11

Penalty Functions 279

least-squares algorithm. For example, when k was equal to unity, two
iterations reduced E*(1, 2, 3, 4) = 100.15 to E*(0.794, 0.397, 0, 0) = 25.89.
More iterations of the least-squares algorithm would not have reduced the
error E* much further, because k =I corresponds to a large penalty
function.

A much larger reduction in the error function was possible by reducing
k to the value 0.1. The initial values for this optimization problem were
chosen as the previous optimized values. The least-squares algorithm then
adjusted these parameters to yield E*(0.483,0.241,0,0)=0.44.

By gradually reducing the value of k, the error function was eventually
reduced to E*(0.269, 0.134, 0.000, 0.001) = 0.11. The value of k for this error
function was 0.0001, which is so small that the unconstrained error
function E* essentially corresponds to the constrained function E. In fact,
notice that the optimized values of x1,x2 are such that their sum is equal to
0.403, which is extremely close to the constraint of 0.4.

We have just seen that by gradually reducing the value of the penalty
constant r (or equivalently the value of k), the unconstrained optimization
problem E* can be made to approach the constrained optimization prob-
lem E. If one attempts to write a noninteractive batch program that
automatically selects an initial value for r and then automatically reduces
r, difficulty may be encountered in making the program foolproof. How-
ever, in an interactive program2 one can use many different strategies for
varying the penalty constant r, and thus one should be able to finally make
the unconstrained problem for E* approach the constrained problem for
E.

The constrained optimization technique that was just discussed is re-
ferred to as an interior-point algorithm. The initial point was selected to be
in the feasible region, and then penalty functions were designed to keep
the parameters interior to the feasible region. These penalty functions can
be viewed as barriers which keep the parameters within certain regions.

In an exterior-point algorithm penalty functions are used again as
barriers, but this time to prevent a parameter (or parameters) from entering
the feasible region. Thus the minimum can he approached from either side
of the boundary, since penalty functions can be made to keep the parame-
ters interior to the feasible region or exterior to it.

In closing this section it should be pointed out that the penalty-function
approach is not limited just to inequality constraints of the form C, (x) > 0.
Equality constraints such as D. (x) = 0 can be treated by introducing the

2One should be aware that in many optimization problems the running time may be so
great that it is impractical to use an interactive mode.

280 Constrained Optimization Problems

following penalty function:
d

D;{x)]2

penalty function= (11.24)r
rsi

Again the penalty constant r should be initially chosen large and then
gradually reduced.

11.5 CONCLUDING COMMENTS ABOUT
OPTIMIZATION TECHNIQUES

Since this is an introductory text, none of the examples that were
discussed required a computer to do very much work. However, in practi-
cal applications it is not uncommon for problems to take a substantial
amount of computation effort. One such type of program will be discussed
next in order to illustrate how circumstances can combine to cause an
optimization problem to tax even a large computer.

Electrical networks called filters are used to modify the amplitude of
electrical signals. These filters can be investigated experimentally by
changing the frequency of the signal that is applied to the filter's input and
measuring the amplitude of the output signal. Test sets exist that automati-
cally change the frequency of the input signal and record the amplitude of
the output.

The relation that is desired between the input signal and the output
signal will depend on the application for which the filter is designed. It is
the responsibility of the filter designer to choose the network parameters
(e.g. capacitors and inductors) so as to synthesize the proper response.

Sometimes the filter designer can apply analytic expressions to calculate
the network parameters, but in other cases optimization techniques must
be used. This can be done by simulating the filter response on a computer.
However, there is a fundamental difference between what can be done
experimentally and what can be simulated on a computer. In a laboratory
it is possible to vary the frequency of the input signal continuously-
e.g. from 1000 to 4000 Hz. However, this is not possible if one is simulating
the response on a computer. Instead, the input must be varied in discrete
steps-e.g. from 1000 to 4000 Hz in 100-Hz increments (i.e.
1000, 1100, 1200,...,4000). For this example there are thirty-one different
frequencies. At each one of these frequencies the filter response must be
calculated, the calculated value compared with the desired value, and the
error determined. The individual errors e, can then be combined to

Concluding Comments About Optimization Techniques 281

produce the total error
31

E = (e,)",

where the power p is often selected to be 2.
Next consider what must be done if optimization techniques are to be

applied to this problem. Assume that twenty network parameters3 should
be adjusted to minimize the total error E. Requiring twenty parameters to
be simultaneously optimized by a computer is a large request; but this is
only part of the difficulty. Since we are simulating the frequency response
by using thirty-one different frequencies, each calculation of the total error
E requires that the network be analyzed thirty-one different times.

Just to analyze a twenty-parameter network one time can require a
substantial amount of computer time. Thirty-one such analyses will take
almost 31 times longer. Because of this, much time has been spent
developing efficient analysis programs. Some of the popular ones are
described by Jensen (1976). Many modern network analysis programs use
"sparse-matrix techniques"4 to reduce the number of computations that are
necessary.

Generalizing, if evaluating the error function E requires a substantial
amount of computer time (e.g. because a complicated network must be
analyzed many different times) then it may be worthwhile to develop
sophisticated analysis tools (e.g. by using sparse-matrix techniques). Simi-
larly, if an optimization program is applied to minimize such an error
function, then considerable effort should be spent to assure that a rapidly
convergent algorithm is used.

'This is not an unreasonably large number; in fact, it could be considered as only a
moderate-size network.

'By definition, a sparse matrix has very few nonzero terms. For an introduction to this
subject see Calahan, D. A. (1972), Computer-Aided Network Design (New York: McGraw-
Hill).

PROBLEMS

11.1 In Example 1 1.1 it was mentioned that the least-pth program could
be used to minimize E (x) = 0.16 + 2(0.5 - x3)2 + 3x3 + 4x2. However,
this is an unnecessary application of the program, as the minimum is
easily found by other methods. Find the minimum by analytical
means.

11.2 If there are four different constraints, what is the number of possibil-
ities as to which constraints will be active?

- x2)2+ (1- x1)211.3 Minimize the Rosenbrock function E(x)=100(x2
subject to the constraint 0.6 < x, < 0.8. The minimum can be found
by solving the following parts to this problem:
(a) Assume the constraint 0.6 < x, is active and find the minimum

by analytical means.
(b) Assume the constraint x, < 0.8 is active and find the minimum

by analytical means.
11.4 Minimize the Rosenbrock function subject to the constraint 0.6 < x2

< 0.8. The minimum can be found by solving the following parts to
this problem:

(a) Assume the constraint 0.6 < x2 is active, and find the minimum
by using the quadratic interpolation program.

(b) Assume the constraint x2 < 0.8 is active, and find the minimum
by using the quadratic interpolation program.

11.5 Example 11.3 minimized E(x)=]00(x3-x2)2+(1-x1)2 subject to
the constraints x, < 0.5 and x2 < 0.6.

(a) Assume that the constraint x, < 0.5 is active, and write the error
function in terms of just x2. Apply quadratic interpolation to
minimize the error.

(b) Assume that the constraint x2 < 0.6 is active, and write the error
function in terms of just x1. Apply quadratic interpolation to
minimize the error.

(c) Discuss whether or not the results in (a) and (b) confirm the
results in Example 11.3.

11.6 Example 11.4 minimized E(x)=100(x, -x2)2+(1-x,)2 subject to
the constraint - 2 < x, < 0.8.

(a) Assume that the constraint - 2 < x, is active, and write the error

282

Problems 283

function in terms of just x2. Use analytical methods to minimize
the error.

(b) Repeat part (a) assuming that x, 5 0.8 is active.
(c) Discuss whether or not the results in (a) and (b) confirm the

results in Example 11.4.
11.7 For each of the following parts, find transformations to change the

constrained problem to an unconstrained one.
(a) x > - 4.

(b) x, < 2, x2 S 4.

(c) l<x,<3, -1'< x2<5.
(d) x, < 2, x2 > -4.

11.8 If the transformation in (11.7) is used to change the constrained
problem x, > 4 into an unconstrained problem, what is the value of
x, that corresponds to z, = 2?

11.9 If the transformations in (11.9) and (11.12) are used to change the
constrained problem x, < 2, 0 < x2 S 10 into an unconstrained prob-
lem, what is the value of x that corresponds to z=(1,2)?

11.10 Define a penalty function of the type shown in (11.20) for the
constraints x, < 4, x, + x2 > 2.

11.11 Define a penalty function of the type shown in (11.20) for the
constraint - 2 < x, < 4.

11.12 For the constraint 1 < x2 < 10, define two error functions that could
be used as penalty functions in the least-squares program.

11.13 Example 11.2 minimized the Rosenbrock function subject to the
constraints x, > - 2 and x2 > 2 by transforming the problem to an
unconstrained example. Verify the result by instead minimizing the
following function, which has penalty functions:

E* (x) X2)2 +(l-x)2+
K2 + K2

` i i x,+2 x2-2
where k = 0.000001. Choose as initial parameters x = (5, 5).
Hint: Add two statements that are similar to statement 210 on p.
278. These statements should describe the constraints for this prob-
lem.

11.14 Verify the results in Example 11.3 by minimizing
2 2

E*(x)=I00(xi-x2)2+(l-x,)2+ K +"(0.5-x,)2 0. 2

where K = 0.000001. Choose as initial parameters x = (- 1, - I).

284 Constrained Optimization Problems

11.15 Verify the results in Example 11.4 by defining an error function
E*(x) that is similar to the error function in Problem 11.13, except
have the penalty functions be defined for -2<x, <0.8. Choose as
initial parameters x=(- 1.2, 1).

11.16 Equation (11.2) listed the following constraints:

I.-2cx,c0.5, x1+x2 1, x1-X2<
Minimize the Rosenbrock function subject to these constraints. Do
this by defining four error functions for the least-pth program. These
error functions should be of the form e(x) = 0.000001 / C (x). Choose
as initial parameters x=(- 1.2, 1).

REFERENCES

Some of the following references were specifically mentioned in this text; others
are included because they serve as good general references for the reader who
wants more detailed information about a numerical method or an optimization
technique.

Box, M. J. (1966), "A Comparison of Several Current Optimization Methods and
the Use of Transformations in Constrained Problems", Computer J., No. 1, p.
67.

BRIGHAM, E. O. (1974), The Fast Fourier Transform. Englewood Cliffs, N.J.:
Prentice-Hall.

CALAHAN, D. A. (1972), Computer-Aided Network Design. New York: McGraw-
Hill.

CARNAHAN, B., LUTHER, H. A., and WILKES, J. O. (1968), Applied Numerical
Methods. New York: John Wiley.

CHARALAMaous, C. (March 1974), "A Unified Review of Optimization", IEEE
Trans. Microwave Theory Tech., pp. 289-300.

CHUA, L. O. and LIN, P. (1975), Computer-Aided Analysis of Electronic Circuits:
Algorithms & Computational Techniques. Englewood Cliffs, N.J.: Prentice-Hall.

CONTE, S. D. and DEBOOR, C. (1972), Elementary Numerical Analysis. New York:
McGraw-Hill.

DANIELS, R. W. (1974), Approximation Methods for Electronic Filter Design. New
York: McGraw-Hill.

FIACCO, A. V. and MCCORMICK, G. P. (1968), Nonlinear Programming. New York:
John Wiley.

FORSYTHE, G. E., MALcoLM, M. A., and MOLER, C. B. (1977), Computer Methods
for Mathematical Computations. Englewood Cliffs, N.J.: Prentice-Hall.

FOWLER, M. E. and WARTEN, R. M. (September 1967), "A Numerical Integration
Technique for Ordinary Differential Equations with Widely Separated Eigen-
values", IBM J. Res. Develop., pp. 537-543.

Fox, R. L. (1971), Optimization Methods for Engineering Design. Reading, Mass.:
Addison-Wesley.

GEAR, C. W. (1971), Numerical Initial Value Problems in Ordinary Differential
Equations. Englewood Cliffs, N.J.: Prentice-Hall.

GERALD, C. F. (1973), Applied Numerical Analysis. Reading, Mass.: Addison-
Wesley.

GOTTFRIED, B. S. and WEISMAN, J. (1973), Introduction to Optimization Theory.
Englewood Cliffs, N.J.: Prentice-Hall.

285

286 Retwence.

GROVE, W. E. (1963), Brief Numerical Methods. Englewood Cliffs, N.J.: Prentice-
Hall.

GUNSTON, M. A. R. (1970), Practical Matrix Algebra. New York: American
Elsevier.

HAMMING, R. W. (1973), Numerical Methods for Scientists and Engineers. New
York: McGraw-Hill.

HILDEBRAND, F. B. (1974), Introduction to Numerical Analysis. New York:
McGraw-Hill.

HOUSEHOLDER, A. (1953), Principles of Numerical Analysis, New York: McGraw-
Hill.

JENSEN, R. W. and McNAMEE, L. P. (1976), Handbook of Circuit Analysis Lan-
guages and Techniques. Englewood Cliffs, N.J.: Prentice-Hall.

Kowiwn , J. and OSBORNE, M. R. (1968), Methods for Unconstrained Optimization
Problems. New York: American Elsevier.

Liou, M. L. (May 1976), "Spline Fit Made Easy", IEEE Trans. Computers, pp.
522-527.

MCCORMICK, J. M. and SALVADORI, M. G. (1965), Numerical Methods in FORTRAN.
Englewood Cliffs, N.J.: Prentice-Hall.

NELDER, J. A. and MEAD, R. (January 1965), "A Simplex Method for Function
Minimization", Computer J., pp. 308-313.

PECKHAM, G. (November 1970), "A New Method for Minimizing a Sum of Squares
Without Calculating Derivatives", Computer J., pp. 418-420.

PENNINGTON, P. H. (1970), Introductory Computer Methods and Numerical Analysis.
London: MacMillan.

PIERRE, D. A. (1969), Optimization Theory with Applications. New York: John
Wiley.

POLAK, E. (1971), Computational Methods in Optimization. New York: Academic.

RAINVILLE, E. D. (1969), Elementary Differential Equations. New York: MacMillan.

RALSTON, A. (1965), A First Course in Numerical Analysis. New York: McGraw-
Hill.

SCHEID, F. (1968), Theory and Problems of Numerical Analysis. New York:
McGraw-Hill.

SHAMPINE, L. F. and GORDAN, M. K. (1975), Computer Solution of Ordinary
Differential Equations. San Francisco: W. H. Freeman.

STEwART, G. W. (1973), Introduction to Matrix Computations. New York:
Academic.

STROUD, A. H. and SECREST, D. (1966), Gaussian Quadrature Formulas. Englewood
Cliffs, N.J.: Prentice-Hall.

WHITTLE, P. (1971), Optimization Under Constraints: Theory and Applications of
Nonlinear Programming. New York: Wiley-Interscience.

ANSWERS TO SELECTED PROBLEMS

Chapter 1

1.2 (a) 7.07 (b) 7.071
1.4 (a) 0.02, 0.01 (b) 2, 0.01 (c) relative error
1.6 1.5%

1.8 -75%
1.10 (a) 3.102 E - 4 (b) 4.016 E - 5 (c) 7.72 (d) 0.3
1.12 (a) - 5.25 E - 4 (b) - 6.406 E - 5 (c) 8.2
1.14 error (0.1)/error (0.05)=(-0.0517)/(-0.0254)=2.04

Chapter 2

2.2 The unique solution is (0,0,0)
2.3 (b) x3= -2x2=0 (C) x3= - 1x2=0
2.8 (4,2)
2.9 A=B=-6
2.10 A=-6B=-18
2.11 A=-6B=+6
2.17 9484
2.19 (2.85714, -2.28571,11.2857,4)
2.20 (a) (- 0.75, 2.25, - 1.25) (b) (- 1.375,1.625, - 8.125)
2.23 (39,10, 5)

Chapter 3

3.1 1.103 versus 1.1

3.3 3.73
3.7 0.618034, -1.61803,1.73205, - 1.73205
3.10 1.41667

3.12 -1,-3,-1
3.14 (a) -0.352, -0.576, -0.448 (b) 1.533 (c) 1.54858
3.16 -0.901
3.19 R=A2 S=A3
3.24 x*x+x+2
3.26 2(x*x + x + 7)(x + 1)
3.28 (a) (x*x+x+4)(x*x+2x+9) (b) (x*x+2x+9)(x*x+x+4)

Chapter 4

4.2 -3.3
4.4 0

287

298 Answers to Selected Problems

4.6 (a) 1 (b) - 2
4.7 ff+5-5fs+a+ 10f,13- 10f,+2+5f.+i -.fs
4.12 ao=-3a,=25 a2=-12as=2
4.14 ap=41 a,=52 a2= 16
4.16 f(x)=x
4.18 17

4.20 2.22,2.47,3.22,2.47,2.22,8.47
4.22 r!
4.24 15

4.26 179

4.28 44.99
4.30 0.129
432 - 1.645 + 3.765x + 0.825x* x
435 2.396,3,3.104

Chapter 5

5.2 6.002
5.4 (a) 0.0036 (b) 0.0009
5.6 (a) 0.106 (b) 0.051
5.8 (f-2-8f-i+8f,-f2)/(12h)
5.10 (-7f0+ 15f4-8fs)/(20h)
5.12 (a) 17 (b) 14
5.14 11

5.16 (a) 35 42 (b) 35 35

Chapter 6

6.2 14

6.4 0.882
6.6 2.45

6.9 1.88571
6.11 0.23255
6.12 0.8821
6.16 0.1747
6.18 1.68575
6.20 0.174754
6.22 (16INT(h/2) - INT(h)1/ 15
6.26 11.9375

6.28 23.1

6.30 6.361 versus 6.389
632 156.83

Answers to Selected Problems

Chapter 7

289

7.2 0.0128
73 0.0185
7.5 0.0003175
7.6 -8.38906
7.8 - 8.3890561
7.10 0.0176687
7.13 exp(x) - 4y y2 - sing
7.15 (a) h = 0.3 y = 0.2225 (b) h = 0.1 y = 0.2226
7.17 0.2208
7.19 0.4802

Chapter 8

8.1 -2sinx,cosx2-(cosx,)**2(sinx2)**4
8.4 (1,2,3) (1.1,2,3) (1,2.2,3) (1,2,3.3)
8.5 (1/3,2/3,1/3)
8.7 (a) (1,1,1) (b) (I, 1,2) (c) (1, 1,3)
8.9 (5,0,0)
8.11 (a) (0,4,1) (-2,4,2) (- 1,2.5, 1) (0,3,0)

(b) (6, 4, - 2) (-2,4,2) (2, - 2, - 2) (6, 0, - 6)
8.14 After ten iterations x = (2.03, 2.96)
8.16 If initial x = (1, 1) then ten iterations gives (2.00, 3.03) at which point

the minimum is approximately -4.

Chapter 9

9.2 0.0405
9.4 (a) (2, 8,18) (b) (2, 0, - 6)
9.6 (1,4)
9.8 -5
9.11 (a) 13 (b) (8,4,3) (c) 13.9068 (d) 12.1268
9.13 Statement 24
9.20 E (1.422,2.958) = E(-1.422,2.958)=7.002
9.21 (a) E (0.666663, - 100) = 4.66667 (b) E (0.664175, - 0.999753) _

4.66756

Chapter 10

10.1 e , = 5(x, - 10) e2 = 10x, x2
10.4 (a) (254, 94) (b) (257.815, 96.168) (c) (257.125, 95.823)
10.6 (a) (10,8) (b) (1.01,2.02,2.04)

290 Answers to Selected Problems

10.8 (- 1/3, -5/3)
10.10 (- 0.3077, -0.2821)
10.18 as = - 0.02670 a, = 50.2236 b, = 0.01050 b2 = 0.07579
10.20 ao= 1.00012 a,= -4.48E-3 a2= -0.48161
10.22 ao= -6.8E-6 a,= 1.00033 b,=5.10E-3 b2 -0.348

Chapter 11

11.1 E(0.4,0.3,0.2,0)=0.36
11.3 (a) E(0.6,0.36)=0.16 (b) E(0.8,0.64)=0.04 which is the con-

strained minimum.
11.5 (a) E(0.5,0.125)=0.25 (b) E(0.8438,0.6)=0.02446
11.8 8

11.10 r[1 /(4 - x,) + 1 /(x, +x,-2)]
11.12 E(1)=[k/(x2- 1)]"2 E(2)=[k/(x2- 10)]'x2

Index

Absolute error, l I
Active constraint, 266-269
Adams-Bashford, 172
Adams method, 132, 156 -163

program, 160
Adams-Moulton method, 172
Adaptive quadrature, 139
Augmented matrix, 23
Automatic error control, 159

Back substitution, 21, 25.
See also Gauss elimination

Backward difference function, 97
Bairstow's method, 57-64

program, 61
BASIC, 4

Batch mode, 5
Bisection method, 43.

See also interval halving
Boole's rule, 137
Boundary-value problem, 169-171
Box, M. J., 202, 274
BRIGHAM, E. 0., 91

CALAHAN, D. A., 281
CARNAHAN, B., 98
Central difference equation, 109. 147
Centroid, 184
CHARALAMBOUS, C., 285
CHEBYSHEV, 138, 256-262
CHUA, L. 0., 36
Coefficient matching, 201
Condition number, 37
Conjugate directions, 232

Constrained optimization, 265-281
CONTE, S. D., 37, 57, 99, 159
Contraction, 186
Corrector equation, 131-134
Cramer's rule, 16-17
Crout reduction, 29-36

program, 34
Cube test function, 195
Cubic spline. See spline functions

DANIELS, R. W., 181
Dantzig, 183
Determinant, 22
Difference equation. 149
Difference function, 74
Difference operator, 74
Difference table, 77-78
Differential equations, 143-174
Differentiation, 103-112
Direct method, 37
Double precision, 7

Elementary row operations. 22, 23, 39
Elliptic integral, 126
Equiripple, 261
Error analysis, 6-11, 49, 98, 105, 119,

122, 137. See also stability analysis
Error function, 179
Euler method. 144-146. See also mod-

ified Euler method
Expansion, 186
Explicit methods, 172
Exterior-point algorithm, 279
Extrapolation, 71

291

292

FADDEEVA, V. N., 37
Feasible region, 266
FIACCO, A. V., 285
Filon's method, 138
FLEISCHER, P. E., 183
Fletcher-Powell, 226-232

program, 229
FoRSYTFm, G. E., 139, 254
FORTRAN, 4
Forward difference function, 42
Forward elimination, 21, 25. See also

Gauss elimination
Fourier interpolation program, 95
Fourier series, 91-97, 99
FowLER, M. E., 173
Fox, R. L., 285

Gamma function, 125
Gauss elimination, 19-29

program, 27
Gauss-Jordan, 21
Gaussian probability density function,

125
Gaussian quadrature, 134-137

program, 136
GEAR, C. W., 173
GERALD, C. F., 285
Global error, 118
Global minimum, 221
Golden section method, 65-67

program, 66
GOTTFRIED, B. S., 228
Gradient, 208-211
Gradient-projection method,

267
GROVE, W. E., 286
GUNSTON, M. A. R., 36

HAMMING, R. W., 64, 67, 98, 99, 107,
173

Hermite polynomial, 138
Hessian, 227
HILDEBRAND, F. B., 98
HOUSEHOLDER, A., 98

Index

Identity matrix, 17
Ill-conditioned, 37, 254
Implicit methods, 172
Inactive constraints, 266-269
Integration, 115-139
Interactive mode, 5
Interior-point algorithm, 279
Interpolating polynomial, 71

method of, 104-106
Interpolation, 71-99
Interval halving, 2. See also bisection

method
Inverse, 19, 29
Inverse interpolation, 85-86
Iterative, 2, 37, 44-45

Jacobian, 240
JENSEN, R. W., 281

KOWALIK, J., 286

Lagrange interpolation program, 84
Lagrange polynomials, 82-85
Laguerre polynomials, 138
Least-pth, 181, 237-262. See also least-

squares
program, 246

Least-squares, 86-89, 99, 238-241,
252-256. See also least-pth

Legendre polynomials, 138
Liou, M. L., 90, 99
Local error, 118
Local minimum, 179, 221
Lorenge diagram, 98
Lower triangular matrix, 30
LU decomposition, 30. See also Crout

reduction

Maclaurin series, 257
Matrix, 17-19
MCCORMICK, J. M., 138
Modified Euler method, 151-153
Muller's Method, 50-57

program, 55

Index

NELDER, J. A., 183
Newton-Gregory interpolation pro-

gram, 80
Newton-Gregory polynomial, 78-82,

104
Newton's method, 45-50

program, 48, 64
Newton-Raphson, 45
Normal probability density function,

125

Normalized variable, 73-74
Nth-order differential equation pro-

gram, 167

Objective function, 179
Orthogonal, 93

Panel, 116
PECKHAM, G., 262
Penalty function, 276-280
PENNINGTON, R. H., 90
PIERRE, D. A., 286
Pivot, 24
POLAK, E., 286
Powell test function, 196
Predictor equation, 131-134

Quadratic interpolation, 50-57, 206-208
program, 52

Quadrature, 134

RAINVILLE, E. D., 172
RALSTON, A., 286
Reflection, 184
Relative error, 11
Romberg prediction, 127-129
Rosenbrock test function, 195
Roundoff errors, 6
Runge-Kutta method, 153-156

program, 155

Scalar product, 211
Scaling, 88, 223
SCHEID, F., 286

293

Secant method, 65
Sensitivity analysis, 7, 12
Shift operator, 75
Shooting method, 173
Shrink, 187
Significant figure, 7
Simplex method, 183-190, 205

program, 188
Simpson's rules, 121-125, 129

program, 123
Singular value decomposition, 254
Sparse matrix, 33-36, 281
Spline function, 89-91, 98
Square-root method, 37
Stability analysis, 147-151
Steepest-descent method, 211-220

program, 215
STEWART, G. W., 36
Stiff differential equations, 173
STROUD, A. H., 138
SUMT, 277
Symmetric matrix, 18

Taylor series, 8, 81, 172
Test functions, 195-202
TEWARSON, R. P., 30
Transformations, 269-276
Transient, 2
Transpose, 17
Trapezoidal method. See modified

Euler method
Trapezoidal rule, 10, 116-120, 129, 138

program, 119
Truncation error, 6

Undetermined coefficients, 107-111,
129-131,134

Unimodal, 65
Upper triangular matrix, 30

Vector, 18

Weight, 181, 237
WHITTLE, P., 286

	Title Page
	Copyright
	Contents
	Preface�
	1. Introduction�
	1.1 "Historical" Background�
	1.2 Numerical Methods�
	1.3 Optimization Techniques�
	1.4 Computer Philosophy Used in the Text�
	1.5 Error Analysis�
	Problems�

	2. Solution of Linear Equations�
	2.1 Introduction�
	2.2 Cramer's Rule�
	2.3 The Matrix Solution�
	2.4 Gauss Elimination�
	2.5 Crout Reduction�
	2.6 Suggested Reading in Related Topics�
	Problems�

	3. Solutions for a Nonlinear Equation�
	3.1 Introduction�
	3.2 Iterative Procedures�
	3.3 Newton's Method�
	3.4 Quadratic Interpolation and Muller's Method�
	3.5 Bairstow's Method�
	3.6 Suggested Reading in Related Topics�
	Problems�

	4. Interpolation�
	4.1 Introduction�
	4.2 A Unique Solution�
	4.3 The Normalized Variable�
	4.4 Some Useful Operators, A and E�
	4.5 Difference Tables�
	4.6 The Newton-Gregory Polynomial�
	4.7 The Lagrange Polynomial�
	4.8 Inverse Interpolation�
	4.9 Introduction to Least-Squares Data Fitting�
	4.10 Spline Functions�
	4.11 Fourier Series Applied to Interpolation�
	4.12 Suggested Reading in Related Topics�
	Problems�

	5. Differentiation�
	5.1 Introduction�
	5.2 Method of Interpolating Polynomials�
	5.3 Method of Undetermined Coefficients�
	5.4 Application of Interpolating Programs�
	 Problems�

	6. Integration�
	6.1 Introduction�
	6.2 Trapezoidal Rule�
	6.3 Simpson's Rules�
	6.4 Examples�
	6.5 Romberg Prediction�
	6.6 Method of Undetermined Coefficients�
	6.7 Predictor and Corrector Equations�
	6.8 Gaussian Quadrature�
	6.9 Suggested Reading in Related Topics�
	 Problems�

	7. Solution of Differential Equations�
	7.1 Introduction�
	7.2 Classification of Differential Equations�
	7.3 Euler Method�
	7.4 Stability Analysis�
	7.5 Modified Euler Method�
	7.6 Runge-Kutta Method�
	7.7 Adams Method and Automatic Error Control�
	7.8 Solution of Higher-Order Differential Equations�
	7.9 Boundary-Value Problems�
	7.10 Suggested Reading in Related Topics�
	Problems�

	8. Introduction to Optimization Theory�
	8.1 Preliminary Remarks�
	8.2 Formulation of Optimization Problems�
	8.3 Overview of Various Optimization Techniques�
	8.4 The Simplex Optimization Technique�
	8.5 Applications of Simplex�
	8.6 Test Functions�
	Problems�

	9. Gradient Techniques�
	9.1 Introduction�
	9.2 Quadratic Interpolation for a Specific Direction�
	9.3 The Gradient�
	9.4 The Steepest-Descent Optimization Technique�
	9.5 Applications of Steepest Descent�
	9.6 The Fletcher-Powell Optimization Technique�
	 Problems�

	10. The Least-pth Optimization Technique�
	10.1 Introduction�
	10.2 The Least-Squares Algorithm�
	10.3 The Least-pth Algorithm�
	10.4 A Least-pth Program�
	10.5 Application to Least-Squares Data Fitting�
	10.6 Chebyshev Approximations�
	 Problems�

	11. Constrained Optimization Problems�
	11.1 Introduction�
	11.2 Active Constraints versus Inactive Constraints�
	11.3 Transformations�
	11.4 Penalty Functions�
	11.5 Concluding Comments about Optimization Techniques�
	Problems�

	References�
	Answers to Selected Problems�
	Index�

