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Preface

Pythagorean—hodograph curves are characterized by the special property that
their “parametric speed” — i.e., the derivative of the arc length with respect to
the curve parameter — is a polynomial (or rational) function of the parameter.
This distinctive attribute, achieved by a priori construction of the hodograph
(derivative) components of polynomial or rational curves in R™ as elements of
Pythagorean (n+ 1)—tuples, endows the Pythagorean—hodograph (PH) curves
with many computationally attractive features. For example, it is possible to
compute their arc lengths, bending energies, and offset (parallel) curves in an
essentially exact manner, without recourse to approximations; and they are
exceptionally well-suited to problems of real-time motion control and spatial
path planning based on the use of rotation—minimizing frames.

This study surveys and assesses the considerable body of research on PH
curves that has accumulated since their inception in 1990. As indicated by the
Contents, this research spans a spectrum of topics ranging from elucidation of
the basic mathematical theory of PH curves, through development of practical
algorithms for their construction and analysis, to the demonstration of their
use in computer—aided design and manufacturing applications.

In contrast to the traditional (Bézier/B—spline) schemes of computer—aided
geometric design, the PH curves require models that are inherently non—linear
in nature. However, by use of appropriate algebraic tools — complex numbers
and quaternions for planar and spatial PH curves, and Clifford algebra for the
most general setting — their construction and analysis is greatly facilitated.
The investigation of PH curves thus offers an excellent context and motivation
for exploring the pervasive ties between algebra and geometry.

For ease of access, the material has been organized into seven parts, each
comprising a number of chapters. Parts I through III are expository in nature,
and serve to establish the required mathematical background. The core theory
of planar and spatial PH curves is then developed in Parts IV and V, while
Parts VI and VII present practical details on their construction, analysis, and
applications. A more detailed synopsis of contents may be found in Chapter 1.



VI Preface

It is inevitable that a study of this nature will lean toward greater emphasis
on the author’s own contributions, if only because they shape his perspective
on the subject matter. Nevertheless, an effort has been made to summarize the
key ideas (if not the technical details) of all the most significant developments
in the field, and give pointers to many others. The subject matter originated in
papers co—authored with Takis Sakkalis in 1990. Subsequently, the author has
been fortunate to have the opportunity to pursue related research with many
other distinguished colleagues — including Gudrun Albrecht, Hyeong In Choi,
Paolo Costantini, Carlotta Giannelli, Chang Yong Han, Sung Chul Jee, Song
Hwa Kwon, Jairam Manjunathaiah, Carla Manni, Hwan Pyo Moon, Andy
Neff, Lyle Noakes, Francesca Pelosi, Christian Perwass, Jorg Peters, Helmut
Pottmann, Kazuhiro Saitou, Lucia Sampoli, Thomas Sederberg, Alessandra
Sestini, and Tait Smith, and also a number of graduate students (Mohammad
al-Kandari, Bryan Feldman, Bethany Kuspa, David Nicholas, Sagar Shah,
Sebastian Timar, Yi-Feng Tsai, and Guo—Feng Yuan). Much of the material
presented in Parts IV through VII is a direct outcome of these enlightening,
fruitful, and always enjoyable collaborations.

The author is grateful for financial support from a number of NSF grants
(CCR~0202179, DMS-0138411, CCR-9902669, DMI-9908525, CCR-9530741)
that have been directly or indirectly related to the subject matter of this book.
Thanks are also due to a number of experts, whose suggestions have greatly
improved portions of the book: Eleanor Robson, of the Department of History
and Philosophy of Science, Cambridge University, and Colin Wakefield of the
Bodleian Library, Oxford University (Chapter 2), and Peter Plafimeyer, of the
Mathematisch—Physikalischer Salon, Staatliche Kunstsammlungen Dresden —
Chapter 18. Finally, the patience and encouragement of Martin Peters and Ute
McCrory of Springer—Verlag helped guide this project to a conclusion.

Since a perusal of the Table of Contents may leave the reader wondering as
to whether this volume was intended as a textbook, research monograph, or
historical treatise, some explanatory remarks are perhaps in order. There was,
in fact, no conscious intent to aim for any of these — but what has transpired
seems, in part, each of them. In the pursuit of research and scholarly endeavor,
there is nothing remiss in simply pursuing one’s intuition — on the contrary,
this often proves the most enjoyable and rewarding modus operandi.

Dayvis, California, June 2007 Rida T. Farouki

Some books are to be tasted, others to be swallowed,
and some few are to be chewed and digested; that is
some books are to be read only in parts; others to be
read but not curiously; and some few to be read wholly,
and with diligence and attention. Some books also may
be read by deputy, and extracts of them made by others.

Francis Bacon (1561-1626)
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Introduction

As long as algebra and geometry were separated, their progress was
slow and their uses limited; but once these sciences were united, they
lent each other mutual support and advanced rapidly together towards
perfection.

Joseph—Louis Lagrange (1736-1813)

1.1 The Lure of Analytic Geometry

The use of coordinates to describe and analyze geometrical configurations has
undoubtedly been one of the most pervasive and productive developments in
the entire history of mathematics, science, and engineering. This seminal idea
— from which the field of analytic geometry arose — was first systematically
expounded by René Descartes in his 1637 treatise La Géométrie. The immense
appeal of analytic geometry derives from its intuitive visual aspect; from its
remarkable success in applying algebra and analysis to geometrical problems;
and from the ubiquity of such problems in science and technology.

In the relentless endeavor to further expand the frontiers of knowledge, a
tendency to neglect (or take for granted) established or “traditional” subjects
often arises. This is not so much an indication of their diminished importance,
but rather of the pressures to “make room” for novel methods, theories, and
perhaps even fashions. A related phenomenon is the tendency for a discipline,
once regarded as an organic whole, to fragment under intensive investigation
into specialized sub—disciplines that communicate only infrequently, if at all.
Analytic geometry is a notable victim of these trends. Of course, they are not
new — the poet Alexander Pope (1688-1744), a contemporary and erstwhile
critic of Isaac Newton, lamented them eloquently in his Essay on Man:

Trace science then, with modesty thy guide;
First strip off all her equipage of pride,
Deduct what is but vanity, or dress,



2 1 Introduction

Or learning’s luxury, or idleness;

Or tricks to show the stretch of human brain,

Mere curious pleasure, or ingenious pain:

Expunge the whole, or lop th’excrescent parts

Of all, our vices have created arts:

Then see how little the remaining sum,

Which served the past, and must the times to come!

Fortunately, a counter—trend has begun to emerge in recent decades, motivated
by the desire to employ digital computers for the construction, analysis, and
display of geometrical configurations in fields such as computational geometry,
computer—aided design, computer graphics, and scientific visualization.

Apart from their practical importance, the emergence of these disciplines is
perhaps the expression of a latent desire to restore the foundations of analytic
geometry as a subject in which computation® is the principal tool employed in
geometrical deductions. Certainly, the efficiency, infallibility, and memory of
computers, and their ability to organize complicated data, permit geometrical
computations that would formerly have been deemed impossible. At the same
time, efforts to implement basic geometrical functions of practical importance
— such as surface intersections — highlight the inadequacy of existing theory
as a basis for “robust” computations, and thus prompt new research.

This study is nominally concerned with a novel family of parametric curves
— the Pythagorean—hodograph curves — that were introduced [186] to provide
simple closed—form solutions to elementary computational problems, such as
arc length measurement and offset (parallel) curve constructions. In fact, the
key idea of constructing curves in R™ from hodographs (derivatives) defined by
Pythagorean (n+ 1)-tuples of polynomials arose serendipitously in a different
context: a proof that no curve, other than a straight line, can be parameterized
by rational functions of its arc length [187]. Subsequent to these initial studies,
it became increasingly apparent that the Pythagorean—hodograph (PH) curves
also satisfy a useful converse purpose — the wealth of basic ideas from algebra
and geometry that their investigation entails makes them a natural setting in
which to survey these two fields, and their diverse connections.

For ease of assimilation and organizational convenience, the contents of this
study are divided into seven principal parts, each comprising several chapters.
Some effort was expended on molding each chapter into a reasonably brief and
self-contained unit, with appropriate pointers to other chapters or published
papers for further details. Essentially, Parts I through III furnish the requisite
background in algebra, geometry, and computer aided geometric design; Parts
IV and V elucidate the rather distinct theories of planar and spatial PH curves;
and, finally, Parts VI and VII present the practical details of algorithms for
their construction, analysis, and applications. But the reader must not expect

1 As distinct from synthetic geometry, in which “ruler-and-compass” constructions
(and their generalizations) predominate. A liberal interpretation of computation
is imputed here — it might be symbolic, rather than numeric, in nature.
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rigid adherence to such “jurisdictional” boundaries: some mingling of subject
matter is inevitable, perhaps even desirable. Likewise, uniformity in the nature
or difficulty of the subject matter was relinquished in favor of a frankly eclectic
admixture of expository or tutorial material, historical or anecdotal interludes,
and mathematical derivations, algorithm descriptions, and technical details of
particular applications. It is hoped that this approach will render the material
more palatable, and also highlight its interconnections, to a broader audience
of potential readers (it certainly made the author’s task more enjoyable).

1.2 Symbiosis of Algebra and Geometry

To elucidate the basic theory of Pythagorean—hodograph curves, and develop
algorithms that facilitate their use in various practical applications, we must
deploy a remarkably diverse array of ideas and methods from the most ancient
and fundamental of quantitative sciences, algebra and geometry. Whereas PH
curve constructions are motivated by the practical requirements of “free—form”
geometric design, it is the special algebraic structures they embody that endow
them with uniquely advantageous computational properties.

A comprehensive review of the relevant ideas from algebra and geometry is
provided in Parts I and II, respectively. While algebra is primarily concerned
with finite computations on numeric or symbolic quantities, and geometry is
basically the study of spatial relationships, the historical development of these
disciplines has revealed a rich web of useful and insightful connections between
them. Algebraic methods offer powerful tools for the quantitative specification
and analysis of geometrical configurations. Conversely, geometrical models of
increasingly abstract algebraic entities (complex numbers, quaternions, etc.)
yield fruitful and intuitive perspectives on their “meaning” and manipulation.
Thus, our philosophy here is to treat these pillars of mathematics as different
facets of a single “grand scheme” — the sequestration of algebra and geometry
into Parts I and II is nominal rather than categorical.

The survey of algebra in Part I begins with a review of the historical origins
of key ideas for the theory of Pythagorean-hodograph curves (see Chap.2),
including the first known study of Pythagorean triples of integers, documented
in Plimpton 322 (a cuneiform tablet from ancient Mesopotamia); the rigorous
proof, attributed to the mystical Pythagorean school, that the sides a, b, ¢ of
all right triangles satisfy the celebrated relation a? + b = ¢?; the etymological
origins of the terms algebra and algorithm, in the works of the medieval author
Muhammad ibn Musa al-Khwarizmi of Baghdad; and finally the classification
of algebraic systems as fields, rings, or groups (with many finer distinctions)
in terms of the rules that govern combinations of their elements.

Since digital computers are only capable of finite sequences of arithmetic
operations, computer descriptions of geometrical loci usually employ functions
amenable to evaluation by such arithmetic sequences, namely, polynomials and
rational functions (ratios of polynomials). Chap.3 reviews basic properties
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and algorithms for polynomials and rational functions — their representation
in different bases, the computation of their roots, the elimination of variables
between polynomial equations, the division of polynomials, greatest common
divisors, and the partial fraction expansions of rational functions.

Chapters 4 and 5 review complex numbers and quaternions, which provide
concise algebraic characterizations for the hodographs of planar and spatial
PH curves, respectively. These hodograph formulations can be interpreted in
terms of continuous families of scalings and rotations of vectors in R? and R3
— with the non—commutative nature of the quaternion product reflecting the
dependence of the final outcome of successive spatial rotations on the order in
which they are performed. For involved calculations, such as the construction
of PH spline curve interpolants, the complex number and quaternion models
prove to be indispensable, and they offer new insights into the basic properties
and capabilities of PH curves. Complex numbers and quaternions are examples
of “higher—dimensional number systems” — namely, dimension 2 and 4. The
most general framework for the study of higher-dimensional number systems,
Clifford algebra (or geometric algebra), is reviewed in Chap. 6. This provides
a means of categorizing the structure of Pythagorean hodographs in spaces of
various dimensions, under both the Euclidean and Minkowski metrics.

The survey of geometry in Part II begins with a discussion of alternatives
to the familiar Cartesian coordinates (see Chap. 7) — barycentric coordinates
for the specification of position within a finite domain; curvilinear coordinates
(mandatory in non—Euclidean spaces); and homogeneous coordinates, which
provide a rigorous description of behavior “at infinity” and reveal the elegant
principal of duality that characterizes projective geometry.

Chapters 8 and 9 provide, respectively, surveys of differential geometry and
algebraic geometry. The former covers the intrinsic shape properties of plane
curves, space curves, and surfaces, and also discusses families of plane curves
and various “derived” curves: evolutes, involutes, and parallel (offset) curves.
The latter discusses planar algebraic curves, algebraic surfaces, and algebraic
space curves as point sets on which one or more polynomials in the Cartesian
coordinate variables vanish. The singularities of these loci, and conditions for
their irreducibility and rationality, are addressed. Finally, Chap. 10 provides
a brief synopsis of some basic ideas from non-Euclidean geometry.

1.3 Computer—aided Geometric Design

The representation of free—form curves and surfaces — i.e., loci not describable
in terms of “simple” geometrical parameters such as axes, centers, radii, etc. —
is a core problem of computer—aided geometric design. In general, parametric
rather than implicit curve and surface equations are preferred, and they must
be of sufficiently simple functional form to yield efficient and robust algorithms
for downstream applications, while providing the shape flexibility required to
design complicated shapes such as ship hulls, turbine blades, and automobile
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body parts. Such requirements have led to widespread adoption of (piecewise)
polynomial and rational parametric curve and surface representations.

The manner in which the degrees of freedom associated with such forms are
expressed is also an important issue — i.e., a basis that spans the space of the
chosen functions must be specified. A suitable basis offers the design engineer
a geometrically intuitive (and numerically stable) approach to specifying and
manipulating curves and surfaces. These issues were independently addressed
in the early 1960s by two French engineers working in the automotive industry:
Paul de Faget de Casteljau of Citroén and Pierre Bézier of Rénault.

They developed essentially equivalent schemes, that subsequently evolved
into industry standards. Though not initially recognized as such, these curve
and surface design schemes are intimately related to the elegant properties of
a polynomial basis first introduced by S. N. Bernstein fifty years earlier, in a
proof of the Weierstrass approximation theorem. For polynomials defined on
a finite interval, the Bernstein form is superior in many respects to the power
or “monomial” form. The Bernstein coefficients of a vector—valued polynomial
define the control points of a parametric curve — they form the vertices of a
polygon that is a “caricature” of the curve, embodying basic shape information
and providing an intuitive means to interactively modify it.

Whereas Rénault allowed Bézier considerable freedom to disseminate his
work in conferences and publications [35-41], the ideas of de Casteljau were
regarded as proprietary by Citroén, and hence they remained sequestered in
unpublished Company reports [118] for two decades [119,120]. Consequently,
the Bernstein—form representation of parametric curves and surfaces is now
named after Bézier, although the most fundamental algorithm associated with
such representations (see §13.4) honors de Casteljau.

Part III reviews these basic ideas from computer—aided geometric design,
and their extensions to spline curves and surfaces, to provide the context for
the subsequent formulation of PH curves and splines. Chapter 11 describes the
basic properties of polynomials in Bernstein form on the interval [0, 1] while
Chap. 12 extends this discussion to highlight the extraordinary stability of
this representation. A comprehensive survey of the Bézier form of parametric
curves and surfaces is then presented in Chap. 13.

Since individual curve segments or surface patches offer only limited shape
flexibility, the preferred means of introducing further shape freedoms is by
the use of piecewise—polynomial forms — i.e., splines. Chapter 14 summarizes
the classical problem of smooth interpolation by C? cubic splines. In Chap. 15
the notion of spline bases (for a given sequence of knots and end conditions)
is introduced, and is used to construct bivariate tensor—product spline bases.
The B—spline basis — a fundamental concept in the theory of splines — is also
defined, and is seen to be a natural generalization of the Bernstein polynomial
basis on [0, 1] when a partition of this domain is imposed. The basic properties
of B—spline curves and surfaces are also summarized in this chapter.
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1.4 Pythagorean—hodograph Curves

Parametric curves, which are essentially just vector—valued functions r(t) of a
real variable or “parameter” ¢, are the preferred means of specifying planar or
spatial loci in most practical applications. However, the practice of introducing
a curve parameter is not without shortcomings. Although it plays a key role in
allowing us to plot a curve, and analyze its intrinsic properties, the parameter
is completely unrelated to the curve geometry — a defect apparent in the fact
that there are infinitely many different parameterizations of a curve.

In differential geometry, a unique “natural” parameterization is identified
— namely, that for which the parameter ¢ coincides with arc length measured
along the curve from a chosen initial point. Although this seems geometrically
a natural and reasonable choice, it transpires algebraically to be an alarmingly
unnatural circumstance. Our foray into the theory of PH curves commences
in Chap. 16 by showing that, except in the trivial case of straight lines, planar
or spatial curves can never have natural parameterizations that are rational
(i.e., admit evaluation by a finite number of arithmetic operations).

The categorically negative nature of this result is mitigated by the fact that
it suggests an alternative, more fruitful avenue of investigation — namely, the
formulation of polynomial or rational curves whose hodograph (i.e., derivative)
components satisfy a Pythagorean condition in R? or R? — from which arise
many attractive and advantageous properties. Because of their rather different
formulations, planar and spatial PH curves are treated separately in Parts IV
and V, respectively. Chap.17 is a gentle introduction to planar PH curves
and their properties, using only real-variable methods, and in Chap. 18 we
focus on the uniqueness of the planar PH cubic and its historical significance,
concluding with a sociological interlude. It is possible to achieve much faster
progress with the PH curves if we relinquish our attachment to real variables.
Chapter 19 introduces a complex—variable model, in which planar curves are
viewed as complex—valued functions of a real parameter: the PH property then
arises through a simple squaring process. This model proves so propitious that
it becomes the basis for all subsequent treatment of planar PH curves. Finally,
Chap. 20 treats the generalization from polynomial to rational PH curves, and
describes a remarkable connection to classical geometrical optics.

Upon proceeding to spatial PH curves in Part V, a new characterization
of the Pythagorean condition for polynomial hodographs in R? is required, and
this is best characterized by means of a quaternion model — the counterpart of
the complex—variable description of planar PH curves. Chapter 21 introduces
spatial PH curves, and gives a complete analysis of the cubics purely in terms
of their Bézier control polygons (this subsumes the characterization of planar
PH cubics in Chap. 18). Chapter 22 treats the quaternion model for spatial PH
curves in detail, and highlights its property of invariance under any spatial
rotation. A special form of the spatial PH curves is addressed in Chap.23 —
namely, the helical PH curves (every helix with a polynomial parameterization
is a PH curve). Finally, Part V concludes with a discussion of spatial PH curves
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specfied under the Minkowski (rather than Euclidean) metric in Chap. 24. This
definition is motivated by the problem of reconstruction of the boundary of
a planar domain from its medial azis transform (MAT). Specifying the MAT
segments as Minkowski PH (MPH) curves permits an exact description of the
domain boundary as a piecewise-rational curve.

1.5 Algorithms and Applications

In order to make the PH curves useful for practical applications, algorithms to
construct or modify them in accordance with specified geometrical constraints
are required. In Part VI we shall see that, because of the inherently non—linear
dependence of PH curves on the coefficients of their defining polynomials, such
algorithms incur systems of quadratic equations, and thus yield a multiplicity
of formal solutions. Chapter 25 treats the problem of interpolating first—order
Hermite data by planar PH quintics, using the complex—variable formulation.
In general this yields four distinct solutions, and the absolute rotation index
is introduced as a quantitative means for identifying the “good” interpolant
among them. The evaluation of a further important shape measure for planar
PH curves, the bending energy (i.e., the integral of the square of the curvature
with respect to arc length) is then described in Chap. 26.

To obtain more shape flexibility than single PH quintic segments can offer,
Chap. 27 introduces planar C? PH quintic spline curves. Like the system that
governs “ordinary” C? cubic splines, the defining equations for PH splines
involve only three consecutive variables — but the variables are complex rather
than real, and the equations are quadratic rather than linear. Efficient schemes
for numerical solution of the PH spline equations under various end conditions
are proposed, and a control-polygon approach to designing PH splines is also
described. Chapter 28 addresses the Hermite interpolation problem for spatial
PH curves, using the quaternion model. This problem admits a two—parameter
family of formal solutions, rather than a finite multiplicity, and the “optimal”
choice of the free parameters remains an open problem. The generalization to
spatial C? PH quintic splines is correspondingly a more challenging task, that
is only briefly touched upon at the conclusion of Chap. 28.

Part VII brings the theory and algorithms for PH curves, developed thus
far, to bear on selected practical applications. The focus is on a comprehensive
treatment of two technical problems, rather than a superficial survey of many
possible applications. Chapter 29 treats the problem of real-time interpolator
algorithms for PH curves, a fundamental component of the motion controllers
for computer numerical control (CNC) machines. Although more emphasis is
given here to planar PH curves, the methods extend in a fairly straightforward
manner to the spatial PH curves. The role of the interpolator algorithm is to
compute a stream of reference points, one per sampling interval (~0.001 sec.),
from the commanded path geometry and speed variation, for comparison with



8 1 Introduction

actual machine positions as measured by encoders on its axes. This is a task
for which the PH curves transpire to be eminently well-suited.

Chapter 30 describes an application for spatial PH curves — namely, the
computation of rotation—minimizing frames (RMFs), which are advantageous
in prescribing a “natural” variation of the orientation for a rigid body, as its
center of mass executes a given spatial trajectory. Such frames are used in,
for example, animation, robot path planning, and swept surface constructions.
Algorithms for computing both exact RMFs on spatial PH curves (which incur
transcendental terms), and rational RMF approximations, are developed.

Finally, Chap. 31 gives an assessment of the current state of development
of PH curve theory and algorithms, identifies some important open problems
that deserve further attention, and suggests possibilities for new applications.
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I was unable to devote myself to the learning of this al—jabr and the
continued concentration upon it, because of obstacles in the vagaries
of Time which hindered me; for we have been deprived of all the people
of knowledge save for a group, small in number, with many troubles,
whose concern in life is to snatch the opportunity, when Time is asleep,
to devote themselves meanwhile to the investigation and perfection of
a science; for the majority of people who imitate philosophers confuse
the true with the false, and they do mothing but deceive and pretend
knowledge, and they do not use what they know of the sciences except
for base and material purposes; and if they see a certain person seeking
for the right and preferring the truth, doing his best to refute the false
and untrue and leaving aside hypocrisy and deceit, they make a fool of
him and mock him.

Omar Khayyam,
Risala fi'l-barahin ‘ala masa’il al-jabr wa’l-muqabala

1 A Historical Enigma

Figure 2.1 shows cuneiform tablet no. 322 in the Plimpton Collection of the
Rare Book and Manuscript Library at Columbia University. This compilation
of sexagesimal (base 60) numbers!® is believed to originate from the ancient
Mesopotamian city Larsa (Tell Senkereh in modern Iraq) and has been dated
to the period 1820-1762 BC. It was discovered in the 1920s and acquired in a
market by the antiquities dealer Edgar A. Banks, who then sold it for $10 to
George A. Plimpton, a New York publisher and a collector of mathematical
artifacts. Plimpton bequeathed his entire collection to Columbia University
in 1936, but the significance of the tablet was not fully appreciated until a

Our modern use of minutes and seconds as measures of time and angle can be

traced back to the Mesopotamian sexagesimal number system.
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Fig. 2.1. Plimpton 322, the “Pythagorean triples” cuneiform tablet from the ancient
city of Larsa in Mesopotamia (~1820-1762 BC). Reproduced with permission from
the Plimpton Collection, Rare Book and Manuscript Library, Columbia University.

thorough transcription and analysis of its contents was published [344] in 1945
by Otto Neugebauer and Abraham Sachs at Brown University.

Of all existing cuneiform mathematical tablets, Plimpton 322 has been
the subject of the most intense scholarly research [65,66,72,128,205,344, 377,
378,393]. While its numerical content (and even the correction of calculation
and transcription errors therein) is no longer in doubt, the interpretation of
its mathematical significance and its “purpose” are still the subject of lively
debate and reassessment, some 60 years after its initial decipherment.

The tablet measures approximately 5 x 3% inches, but is incomplete — a
portion has broken off at the left edge, while parts of the available fragment
are damaged and hence illegible. Traces of modern glue have been identified
along the broken edge, suggesting that the tablet may have been broken after
its modern discovery. The available portion, though incomplete, nevertheless
reveals a profound degree of numeracy and algebraic sophistication.

The fragment lists fifteen rows of sexagesimal numbers arranged in four
columns, with the last column being simply a counter for the rows. A clearer
impression may be gained from the drawing by Eleanor Robson [377] shown in
Fig.2.2. Table 2.1 presents a transcription of Plimpton 322 in modern Indo—
Arabic numerals [343], with commas employed to separate the coefficients for
successive powers of 60. In the second and third columns, it is assumed that
the right—most entries are the coefficients of unity — for example, the quantity
3,31,49 in the fourth row, second column is interpreted as

3 x (60)% + 31 x 60 + 49,

or 12,709 in familiar decimal notation. However, the quantities in the first
column apparently all begin with 1, suggesting a different interpretation with
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Fig. 2.2. A scale drawing by Eleanor Robson, clarifying the cuneiform sexagesimal
numbers tabulated in Plimpton 322 — reproduced with permission from [377].

Table 2.1. Left: the transcription of Plimpton 322 by Neugebauer and Sachs [344],
including interpolated missing or corrected values in square brackets. Right: deduced
integers p and ¢ that generate the values in the four columns of Plimpton 322.

=10 +d>)/2pq]> a=p"—¢* c=p*+¢" # p q

[1;59,0,]15 1,59 249 1 12 5
[1;56,56,]58,14,50,6,15 56,7 1,2025 2 14 27
[1;55,7,]41,15,33,45 1,16,41 1,5049 3 1,15 32
[1;]5[3,1]0,29,32,52,16 3,31,49 591 4 25 54
[1;)48,54,1,40 15 1,37 5 9 4
[15]47,6,41,40 5,19 81 6 20 9
[1;]43,11,56,28,26,40 38,11 591 7 54 25
[1;)41,33,59,3,45 13,19 2049 8 32 15
[15]38,33,36,36 8,1 12,49 9 25 12
1:35,10,2,28,27,24,26,40  1,22.41 216,01 10 1,21 40
1:33,45 45,0 1,150 11 1,0 30
1:29,21,54,2,15 27,59 48,49 12 48 25
[1;]27,0,3,45 2.41 449 13 15 8
1:25,48,51,35,6,40 29,31 5349 14 50 27
[15]23,13,46,40 56 1,46 15 9 5

the left-most entries as the coefficients of unity.? The quantity 1;48,54,1,40 in
the fifth row, first column is thus interpreted as

2 Mesopotamian numbers do not use a “sexagesimal point” to separate whole and
fractional parts, and are thus indeterminate by a power of 60 (although this is
often resolved by the context). Following Robson [377] we employ semi—colons to
denote the putative position of such points.
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48 54 1 40

SR COERR RN CURY

The parentheses [ ] in Table 2.1 indicate illegible entries that were “restored”

by Neugebauer and Sachs, who also corrected several apparent transcription
or calculation errors (where the listed values are inconsistent with the overall
structure apparent in the tabulation).

From a modern viewpoint, this structure is that the first three columns can
be generated from appropriately—selected integers p and ¢ by the expressions

2 272
f:[p;_q} . a=p'—¢, c=p*+¢. (2.1)
Pq
Deduced values for p and g are appended on the right in Table 2.1, where it
can be seen that 1 < ¢ < 60, ¢ < p, and the ratio p/q is steadily decreasing —
which also implies that the first—column entries steadily decrease. The column
headings in Table 2.1 are repeated here from (2.1) for convenience, and are
not transcriptions from the original tablet — it must be emphasized that the
manipulation of symbolic notations in mathematics was not widely practiced
prior to the Renaissance, and was certainly unknown in ancient Mesopotamia.
Neugebauer [343] observed that the values in columns two and three, and
also the denominators of the squares of the rational numbers in column one,
are intimately connected to a well-known procedure from number theory that
generates Pythagorean triples of integers (a, b, ¢) satisfying

a®+b* = 2, (2.2)

where a, b, ¢ denote the three sides of a right triangle (see Fig.2.3). Namely,
when p and ¢ range over all pairs of positive integers such that: (i) ¢ < p;
(ii) p and ¢ are not both odd; and (iii) p and ¢ have no common factor other
than 1; then the expressions

a=p°—q¢*, b=2pg, c=p*+¢ (2.3)

yield all primitive integer solutions to (2.2) without repetition (a “primitive”
triple is one in which a, b, ¢ have no common factor other than 1 — i.e., we
exclude solutions that are merely of the form (a/,V',¢) = (ka, kb, kc) where
(a,b,c) is an integer solution and k is an integer greater than 1).
Mathematicians who have studied Plimpton 322 were tempted to regard
it as an exercise in number theory, in which their Mesopotamian predecessors
were engaged in computing Pythagorean triples by means of the generating
functions (2.3) — or alternatively as a trigonometric table, since the entries
in the first column amount to sec? § (where @ is the angle between the triangle
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Fig. 2.3. Right triangle with integer sides generated by expressions (2.3).

sides b and ¢, as in Fig.2.3) and the resulting 6 values decrease in an orderly
progression from just under 45° to just over 30°.

However, Robson [377,378] argues convincingly that such “internalized”
mathematical interpretations are unduly colored by the modern perspectives
of their authors, and do not adequately take account of the historical, cultural,
and linguistic milieu of the tablet’s creation. For example, the theory that the
Pythagorean generating functions (2.3) were directly employed in calculating
the column entries contradicts the typical orderly left—to-right calculational
progression seen on contemporaneous tablets: one would expect each line to
begin explicitly with p and ¢, and proceed to subsequent derived quantities
towards the right. Similarly, a trigonometric reading contradicts the absence
of a well-developed notion of angle measure in Mesopotamian mathematics.
Robson illustrates this by contrasting the Mesopotamian perspective on the
area of a circle with the modern view. The modern formula A = 7r? derives
from the genesis of a circle by the angular rotation of a vector of length r, the
radius. In Mesopotamian thought, however, the circumference C' (which we
know to be C' = 277) is predominant: they expressed the area as A = C?/4n
— with, of course, an approximate 7 value — i.e., they conceived of the circle
as the locus of given length C' that bounds a symmetric area.

The explication of the purpose of Plimpton 322 currently considered most
likely [65,66,205,377,378,393] is that it represents a “school text” employed
to train scribes to perform computations concerned with reciprocal numbers.
In Mesopotamian mathematics, the division p/q of two numbers p and q is
accomplished by first computing the reciprocal 1/q of the denominator, and
then multiplying it with the numerator p. The reqular sexagesimal numbers
— l.e., those whose reciprocals have finite sexagesimal expressions — are of
particular importance in this regard (such numbers possess factorizations of
the form 2°3°57 for positive integers «, 3,7). Lists of regular reciprocal pairs
are common among mathematical cuneiform tablets, and presumably served
as aides to routine computations.
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Now if p/q and ¢/p are a regular reciprocal pair (i.e., two numbers with
finite sexagesimal representations whose product is unity), the Plimpton 322
entries can be readily computed from them using the formulae

1 2
f=4<p+q>, azpq<p—q>7 c=pq<p+q>« (2.4)
qa »p qa p qa »p

Such numbers occur in the solution of an equation of the form
! + h (2.5)
x = - .
x

for a regular reciprocal pair,  and 1/x, where the former exceeds the latter by
some integer amount h. The motivation for this is a “cut—and—paste” geometry
problem of the following form: given a rectangle of area A = 1 with sides x
and 1/z, the former exceeding the latter by h, we wish to determine z and
1/z from this data. We cut off a portion of width %h along the side z of the
rectangle, and affix it to the top to form an L shape, as shown in Fig. 2.4. The
L shape is contained within a square of side 1/z + %h, and its area A = 1
must equal the area of this square, minus the area of the smaller shaded square
shown in Fig. 2.4, of side %h. Thus

L= (r ) = (G0,

and multiplying both sides by z yields equation (2.5). Now writing = p/q,
the quantities 2/ and 1/x + %h arising in this construction become

2
1 1
(p_Q> and (ng),
2\q »p 2\q »p

and if we scale them by 2pq to obtain integers, they agree precisely with the
quantities a and ¢ in (2.4), while the quantity f represents the (unscaled) area
of the square that contains the L shape.

h/2

1/x+h/2

1/x

x=1/x+h 1/x+h/2

Fig. 2.4. Interpretation of Plimpton 322 in terms of a “cut—and—paste” geometry
problem. Left: a rectangle of unit area with reciprocal sides, z and 1/, the former
exceeding the latter by an integer amount h. Right: cutting off width %h and placing
it on top produces an L shape within a square of side 1/z + %h. The area of this
square minus that of the smaller shaded square, of side %h, must be equal to 1.
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The interpretation of Plimpton 322 as a compilation of “cut—and—paste”
geometry exercises involving regular reciprocal pairs is perhaps more mundane
(but more credible) than “number theory” or “trigonometry” interpretations.
Even as a humble pedagogical tool, however, it suggests at least an implicit
familiarity with the concept of Pythagorean triples, and imparts respect for
the thoroughness of Mesopotamian scribal training. A sense of the dedication
and professional pride that Mesopotamian scribes possessed, as the vanguard
of human literacy and numeracy, is apparent in the following passage from
“In praise of the scribal art,” translated [417] by Ake W. Sjcberg:

The scribal art is the mother of orators, the father of masters,

The scribal art is delightful, it never satiates you,

The scribal art is not (easily) learned, (but) he who has learned it
need no longer be anzious about it,

Strive to master the scribal art and it will enrich you,

Be industrious in the scribal art
and it will provide you with wealth and abundance,

Do not be careless about the scribal art, do not neglect it . ..

2.2 Theorem of Pythagoras

Pythagoras of Samos (~580-500 BC) is credited with the famous theorem
a + b = 2 (2.6)

that relates the hypotenuse length ¢ of a right triangle to the lengths a, b of
the other sides. On account of its simplicity and profundity, and its archetypal
role in the emerging concept of proof, this mathematical theorem has acquired
the unusual distinction of universal recognition. However, modern scholarship
— exemplified by the exhaustive treatise of W. Burkert [74] — has demolished
the legendary and heroic stature of Pythagoras (concerning his mathematical
achievements, at least). According to M. F. Burnyeat [76]:

It is hard to let go of Pythagoras. He has meant so much to so many
for so long. I can with confidence say to readers of this essay: most
of what you believe, or think you know, about Pythagoras is fiction,
much of it deliberately contrived.

The “traditional lore” concerning Pythagoras goes as follows. He is thought
to have travelled to Egypt and perhaps Mesopotamia, acquiring scientific and
mathematical knowledge there before founding a secretive society called the
“Pythagorean school” in Crotone on the south coast of modern Italy — part of
Magna Graecia in the time of Pythagoras. The Pythagorean school’s secretive
nature, and the fact that no contemporary biography of Pythagoras survives,
have only served to enhance his legendary standing and near—apotheosis. The
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followers of Pythagoras supposedly shunned individuality, and believed that
the discovery and stewardship of knowledge should be a communal endeavor:
it was their custom to credit all discoveries to their leader.

The Pythagorean school was ultimately destroyed in a political upheaval,
possibly engendered by external suspicion of their secret and elitist practices.
Pythagoras himself fled Crotone but was pursued and killed in Metapontum.
The Pythagoreans left no written documents — what we know of their ideas
and accomplishments comes from others. It is usually claimed, however, that
they were the first intellectual society, pursuing philosophy and mathematics
for their own sake,® and as a medium for moral advancement. Their putative
motto — All is number — expresses their faith in the unity of nature’s latent
mathematical structure, with its diverse manifestations in musical harmony,
the planetary motions, and other natural phenomena.*

The Pythagoreans pursued a fruitful mixture of algebra and geometry, in
which the emphasis was on securing the certainty and universality of results
by rigorous proof, based upon logical argument, rather than the case-by—case
examples that characterized most prior mathematics. Although commonly
attributed to Pythagoras, it has not been possible to establish with certainty
that he was the first to prove the right—triangle theorem (2.6). The form of
the proof is unknown, but is likely to have followed an intuitive geometrical
argument, such as that suggested [61] in Fig. 2.5. Four copies of a right—triangle
tile are positioned adjacent to each other, so the long side indicates the four
compass directions — mnorth, east, south, west. Adding a small square tile
(shaded) in the center then yields the square on the hypotenuse. By a simple
re—arrangement of these tiles, it is evident that the area of this square equals
the areas of the squares on the long and short triangle sides.

The legend that Pythagoras sacrificed a hundred oxen for the Muses, to
celebrate his proof of the theorem, is likely apocryphal in view of the strict
vegeterianism of the Pythagorean school — motivated by their beliefs in the
transmigration of souls and other mystical views. Having established the basic
relation (2.6) that governs all right triangles, the Pythagoreans were naturally
interested in examples for which it is satisfied by “whole numbers” (a,b,c) —
i.e., in Pythagorean triples of integers. They were familiar with the simplest
triple (3,4, 5) employed by the Egyptians in the construction of the pyramids,
and probably many others transmitted from Mesopotamia or discovered by
themselves. But they also devised a procedure to construct such triples, by
inserting odd numbers m into the expressions

a=3im’-1), b=m, c=3im’+1).

3 Pythagoras himself supposedly coined the terms philosophy for “love of wisdom”
and mathematics for “that which is learned” to describe the goals of his school.

4 In medieval times, the quadrivium or “four paths” (arithmetic, geometry, music,
astronomy) complemented the trivium (grammar, dialectic, rhetoric) to form the
seven liberal arts. Arithmetic was the study of pure number; geometry of number
in space; music of number in time; and astronomy of number in space and time.
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(i) (i) (iif)
C
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Fig. 2.5. By four—fold replication of the triangle in (i), and addition of the central
shaded square of side b — a, we obtain the square of area ¢® on the hypotenuse in
(iv). This can be re-arranged and divided, as indicated by the dashed line in (vi),

into squares of areas a? and b> — hence, the Pythagorean theorem a2 + b% = ¢2.

This was subsequently generalized in Euclid’s Elements — where it is shown
that, for integers u and v, the formulae

a=u?—v? b=2uw, c=u?+0? (2.7)
yield all Pythagorean triples. If w, v have no common factor (ged(u,v) = 1),
expressions (2.7) define a primitive Pythagorean triple in which a, b, ¢ have
no common factors. Of course, it is possible to generate other Pythagorean
triples by simply multiplying expressions (2.7) by any integer h > 1.

But the Pythagorean theorem also proved to be a source of consternation
to the Pythagoreans — a severe blow to their belief that all is number (where
“number” connotes a whole number or, at most, a ratio of whole numbers).
If we choose a = b =1 in (2.6) the resulting value for ¢, which nowadays we
denote by v/2 and recognize to be irrational, is not a whole number nor a
ratio p/q of whole numbers p, g. The Pythagoreans knew this, by one of the
first recorded cases of “proof by contradiction” or reductio ad absurdum. The
argument is as follows: suppose that v/2 = p/q, where p and ¢ are integers
with no common factors (and hence not both even). Then

P’ = 2¢°, (2.8)

so p? is even, and p must also be even, since only the squares of even numbers
are even. Thus, p = 2r for some integer r, and substituting into (2.8) gives

4r? = 2¢° or @ = 2r.
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So ¢? must be even, and ¢ must also be even. The conclusion that p, ¢ must
both be even contradicts the supposition that /2 = p/q, with p and ¢ not
both even, and hence this supposition must be false.

The discovery of “incommensurable” lengths in elementary geometrical
configurations incurred a crisis of confidence for the Pythagorean school and
subsequent Greek geometers. Their response was to retreat within the safety of
intuitive geometrical constructions by straight—edge and compass, a strategy
that allowed them to circumvent algebraic confrontations with values that are
not exactly expressible as whole-number ratios. As with other mathematical
stumbling blocks, the ultimate solution to this impasse was to regard it as an
opportunity to define a richer and more general mathematical structure, the
continuum of real numbers, based on experience in the natural world.

The significance of the Pythagorean theorem, which has been deemed the
most fundamental result in all of mathematics, is that it lies at the foundation
of distance measurement. The use of Cartesian coordinates (x,y) to describe
the position of any point p corresponds to specifying its distances from two
orthogonal lines, the coordinate azes. The distance

d = /(22— 1)+ (y2 — y1)?

between points (z1,y1) and (x2,y2) is then obtained by applying the theorem
to a triangle with horizontal and vertical sides o — 21 and y2 — y1.

With the advent of calculus, it became possible to precisely define not only
the straight-line distance between two points, but also the distance along a
curved path, i.e., to rectify® (compute the arc length of) of curves. Applying
the Pythagorean theorem to an infinitesimal segment d§ of a differentiable
parametric curve r(§) = (z(€), y(£)) allows us to express its arc length as

ds = Va(§) +y2(6) S,

and the total arc length S of a finite segment £ € [a,b] is thus given by the

integral
b
s = [ V@ i

Under what circumstances can we consider this integral exactly computable?
To obtain a closed—form reduction of the integral, the integrand must admit
an indefinite integral — or “anti—derivative” — expressible in terms of known
analytic functions, i.e., we must be able to identify a function s(§) such that

j—gs@) N GERERE

5 The term rectification connotes the “straightening out” a curve, as though it were
a piece of string, so it can be compared with straight lines of known length.
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It is instructive to consider a sequence of progressively more difficult cases:

o if x(ﬁ) y(&) are linear polynomials — i.e., r(¢) is a straight line — then
Va2(€) + y'2(€) is a constant, and s(€) is linear in &;

o if 2(€) = rcos§, y(&) = rsing — ie., r(§) is a circle of radius r — then

x2(&) + y2(€) = r and s(§) is again linear in the angular variable ¢;

o if 2(8), y(&) are quadratic, r(§) defines a parabola, and /2'2(§) + y'2(&)
is the square root of a quadratic in £ — a closed—form expression for s(§)
involving a logarithmic terms is possible;

e when z(£), y(§) are cubic, /z'2(£) + y'2(§) is the square root of a quartic
in £, and s(§) can be expressed in terms of incomplete elliptic integrals —
the same is true for the ellipse and hyperbola.

For higher degree curves, the arc length integral s(£) does not, in general,
admit a closed—form expression. Even in the cases where such an expression
is possible, but involves transcendental functions, its cumbersome nature may
compromise its practical value.® However, the qualification in general suggests
a possible means to ameliorate this problem: if the argument z/2(&) + y'?(€)
of the square root happens to be the ezact square of some polynomial o(§) —
ie., 2'(£),y'(€), o(§) constitute a Pythagorean triple of polynomials satisfying

2(6) + y2(6) = a%(9)

— then s(§) is just the indefinite integral of the polynomial o (), and is thus
itself a polynomial (of degree one higher). To make this a viable scheme, we
cannot depend on the Pythagorean nature of the triple z'(£), y'(€), o(§) to
arise serendipitously — rather, we must ensure that we explicitly incorporate
this structure into the polynomials 2/(£), y'(£) that represent the hodograph
(derivative) components of a planar curve r(§) = (z(£),y(&)).

Like the integers, polynomials with coefficients in any given field (e.g., the
rational, real, or complex numbers) constitute a unique factorization domain
(UFD). A UFD is, essentially, a set closed under addition or subtraction and
(commutative) multiplication, whose members admit unique decompositions
into products of prime or “irreducible” factors. In the case of integers, these
factors are of course the prime numbers. In the case of degree—n polynomials,
they are polynomials of degree <n with coeflicients in the prescribed field
that admit no further reduction into products of lower—degree factors with
coefficients in that field (we first factor out the highest—order coefficient, to
obtain a monic polynomial whose irreducible factors are also monic).

Euclid’s characterization (2.7) of Pythagorean triples of integers may be
generalized [292] to the members of any unique factorization domain. Thus,
three polynomials a(t), b(t), c(t) with coefficients in the field of real numbers
and no non—constant common factors will satisfy the Pythagorean condition

a’(t) + b3 (t) = ()

6 See §16.2 for a historical perspective on the curve rectification problem.
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if and only if they can be written in terms of two real polynomials u(t), v(t)
in the form

a(t) = u?(t) —v*(t), b(t) = 2u(t)v(t), ct) = u?(t) +o%(t).

Note that, for polynomials with real coefficients, the roles of a(t) and b(t) are
essentially interchangeable since we can obtain the same triple from

at) = 2a(t)s(t), b(t) = @) —02(t), ct) = @2(t) + (),

where (t) = [u(t) +v(t)]/v2 and ¥(t) = [u(t) — v(t)]/v/2. By considering
curves defined by hodographs (derivatives) defined in terms of relatively prime
polynomials u(t), v(t) in the form

o(t) = u¥(t) —v*(t), Y1) = 2u(t)u(t)

we resolve the difficulty of rectification. For such Pythagorean—hodograph (PH)
curves, the arc length can be exactly computed through just a few arithmetic
operations on the curve coefficients, and we shall find that they possess many
other interesting and useful attributes. For space curves, the three hodograph
components z'(t), y'(t), 2/(t) must be specified in terms of four polynomials
u(t), v(t), p(t), ¢(t) in order to satisfy a Pythagorean condition.

To facilitate their construction and analysis, it is advantageous to employ
PH curve formulations based on appropriate algebras — the complex numbers
and quaternions for planar and spatial PH curves, and Clifford algebra in an
even broader setting — this is the motivation for our present survey of algebra.
The treatment of PH curves begins in earnest in Part IV.

2.3 Al-Jabr wa’l-Muqgabala

The etymological origins of the term algebra, as the descriptor of a particular
style of mathematical methodology, can be traced to the Kitab al-mukhtasar fi
hisab al-jabr wa’l-muqabala [273,380], a treatise in Arabic by the 9th—century
Persian mathematician Muhammad ibn Musa al-Khwarizmi (or Muhammad,
son of Moses, of Khwarizm). A copy of this manuscript, dated A. H. 743 (A. D.
1342), is housed in the Bodleian Library of Oxford University: see Fig. 2.6.
In rough translation, the phrase al—jabr wa’l-mugabala means “restoration
and balancing” — in reference to the rearrangements of terms in an equation,
so as to determine its solution.” Khwarizmi’s book was translated into Latin
in 1145 by the Englishman Robert of Chester, while living in Segovia (Spain),
as the Liber algebrae et almucabola — hence the discipline algebra. The term

” in reference

T Another use of algebra was in the sense of “reunion of broken parts,
to the surgical process of setting fractured bones. According to a 1565 quotation
in the Ozford English Dictionary, “This Araby worde Algebra sygnifyeth as well

fractures of bones, etc. as sometyme the restauration of the same.”
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Fig. 2.6. Opening page (folio 1a) of MS. Huntington 214 in the Bodleian Library,
University of Oxford — a compilation of mathematical treatises including the Kitab
al-mukhtasar fi hisab al-jabr wa’l-mugabala by Muhammed ibn Musa al-Khwarizmi
and several related works by other authors. Reproduced with permission.

algorithm, prevalent in modern computer science, arose from a corruption of
al-Khwarizmi’s name through the title of the translation® of another treatise,
dealing with the Hindu numeral system: the Algoritmi de numero Indorum.

Another famous medieval Persian algebraist (but more famous as a poet)
was Omar Khayyam (1048-1131), or Ghiyath al-Din Abu’l-Fath Umar ibn
Ibrahim al-Nisaburi al-Khayyami to be more precise, where the moniker al—
Nisaburi identifies his place of origin as the town of Nishapur in Khurasan,
and al-Khayyami reveals the family profession, namely, tent—makers. Among
his diverse mathematical, astronomical, musical, and poetical writings is the
Risala fi’l-barahin ‘ala masa’il al-jabr wa’l-mugabala (or Treatise on Proofs
in Problems of Algebra) written c. 1070 under, by his own account, difficult
circumstances of political upheaval [274]. In it he proclaims

I say, with God’s help and good guidance, that the art of al-jabr
and al-muqabala is a mathematical art, whose subject is pure number
and mensurable quantities in as far as they are unknown, added to
a known thing with the help of which they may be found; and that

8 Possibly by Adelard of Bath [75] c. 1130: the translation was discovered by Baron
Baldassarre Boncompagni in Cambridge, and published in 1857 — see [420].
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thing is either a quantity or a ratio, so that no other is like it, and
the thing is revealed to you by thinking about it. And what is required
in it are the coefficients which are attached to its subject—matter in
the manner stated above. And the perfection of the art is knowing the
mathematical methods by which one is led to the manner of extracting
the numerical and mensurable unknowns.”

This has been regarded as one of the first definitions of algebra, as a clearly—
identified and articulated field of mathematical study [478].

Among his diverse scientific accomplishments, Khayyam was engaged in
a refinement of the calendar by measuring the length of the year in days to
an accuracy of five decimal places (the true value actually varies in the sixth
decimal place over a human lifespan), and he also developed methods to solve
specific types of cubic equations “geometrically” in terms of the intersections
of conic curves. For example, he solved cubics of the form

3 + a’z = a®b and 3+ ax® =03 (2.9)

in terms of the intersections of conics (see Fig.2.7). In the former case, he
drew the parabola 2 = ay and the circle 2% + y? — bz = 0. If P is their point
of intersection (other than the origin), and we drop a perpendicular from it
to the point @ on the z—axis, the unique real root is given by OQ. In the
latter case, he invoked the parabola y? = b(x + a) and rectangular hyperbola
xy = b%. Dropping a perpendicular from P (their intersection point in the
right half-plane) to @ on the x—axis, the desired positive root is OQ.

OU X O ) X

Fig. 2.7. Omar Khayyam’s solution of the cubic equations (2.9), in terms of the
parabola z? = ay and circle 24y —bz = 0 on the left, and the parabola y* = b(z+a)
and hyperbola zy = b? on the right. In each case, the length OQ is the desired root.

Khayyam knew that some cubics possess more than one real root, and
he aspired to a method for solving general cubics. But this was not achieved
until more than 400 years later, using complex numbers, in Renaissance Italy.
Today, he is more renowned as a poet, for his famous Ruba‘iyat (quatrains),

9 As translated in S. H. Nasr, Science and Civilization in Islam [341].
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popularized by Edward FitzGerald’s translation/interpretation of 1859. These
stanzas — alternately mystical and sensual, optimistic and fatalistic — offer
a fascinating glimpse into the complexity and subtlety of Khayyam’s mind:

The moving finger writes, and, having writ,
Mowes on: nor all thy piety nor wit

Shall lure it back to cancel half a line,

Nor all thy tears wash out a word of it.

It has been said of the Ruba ‘iyat that “No other book of poetry has appeared
in so many guises, from the edition de luxe to the penny pamphlet” [121] —
it has even been rendered as a musical score, for voice and orchestra, by the
composer Alan Hovhaness in 1975 (opus 282).

Of course, in the time of al-Khwarizmi and Khayyam, algebraic deductions
were conducted entirely in prose: the use of symbolic methods in algebra came
much later. The universal symbol z for the unknown quantity in an algebraic
equation is thought to be derived through Spanish from the Arabic word shay’
for “thing” — by which al-Khwarizmi and Khayyam referred to the unknown.

2.4 Fields, Rings, and Groups

Beginning with the “natural” numbers (i.e., the positive integers), which arise
directly from physical experience, the development of algebra is characterized
by a steadily increasing level of abstraction in the concept of number. Despite
the absurdity of a negative number of cows or sheep, the negative numbers are
simply too useful in calculations to be disqualified on philosophical grounds.
Elementary geometrical problems soon lead to confrontations with érrational
numbers, such as v/2, and even transcendental numbers like 7. The desire to
systematically solve non-linear algebraic equations obliges us to introduce the
“two—dimensional” complex numbers a+1ib, where i = v/—1. Despite lingering
doubts over their “existence,” the complex numbers prove immensely valuable
in contexts that greatly exceed their original purpose (see Chap.4).

The quaternions, which resulted from Hamilton’s attempt to construct a
“three—dimensional number” system, are a turning point in this development:
aspects of the familiar rules of arithmetic, formerly considered inviolable, were
for the first time relinquished — the result of multiplying two or more of these
entities depends on the order in which they are specified. This led to a certain
loss of inhibition among algebraists: the laws of algebra were no longer viewed
as immutable expressions of the natural order that governs the physical world,
but as more-or—less arbitrary rules (or azioms) that one can posit at will, in
order to investigate their logical consequences. Although this has incurred
an explosion in the variety and complexity of algebraic systems that have
been subject to detailed scrutiny, it has been convincingly argued by Morris
Kline [282] that the resulting detachment of mathematics from the “natural
world” has not been an unequivocally beneficial development.
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Since we will be working with algebraic systems such as the real numbers,
complex numbers, quaternions, polynomials, and rational functions, it is useful
to briefly review some of the basic principles used to categorize them. Suppose
a, b, c are elements of some set S, and let + and x be two binary operations
that, acting on any pair of elements from S, generate another element of S.
We postulate a set of possible rules for these operations, as follows:

Al. at+b=b+a

As. (a+b)+c=a+(b+0)

As. there exists z € S such that a+z2=a forall ae S

A,. for all a € S there exists —a € S such that (—a) +a =2

M;. axb=bxa
My, (axb)xc=ax(bxc)
M;s. there exists u € S such that a x u =a for all a € S

My. for all a € S, except z, there exists a~! € S such that a™ ! xa=u
Di;. ax(b+c¢) = (axb)+(axc)

The binary operations 4+ and X on pairs of elements in S are called addition
and multiplication. Rules A; and M; specify the commutative law for sums
and products, which requires the result to be independent of the order of the
two operands. Similarly, A, and Ms specify the associative law for sums and
products: this states that the result is independent of the grouping of terms
in a sum or product of three (or more) elements. Rules Az and M3 guarantee
that an additive identity and multiplicative identity exist as elements of S. In
all the sets that interest us, these elements of are simply z = 0 and u = 1.
Furthermore, rules Ay and My ensure that each element of S has an additive
inverse and (except z) a multiplicative inverse. Finally, the distributive law
D, states that the product of an element with a sum equals the sum of the
products of that element with each of the summands.

Rules A4 and My allow us to introduce inverses — and -+ to the operations
+ and x. Specifically, we set a — b = a + (—b) and a + b = a x (b~!), and
the existence of the additive and multiplicative inverse for every element of S
ensures closure under these operations, called subtraction and division.

A field is a set S whose elements are subject to a pair of operations +, x
that satisfy all of the rules A;—A4, M;—My, and D;. Some familiar fields are
the rational numbers (i.e., fractions) Q, real numbers R, complex numbers C,
and rational functions (i.e., ratios of polynomials) with real coefficients R(t).
All these sets exhibit closure under the operations of addition, subtraction,
multiplication, and division. Moreover, sums and products in these systems
are commutative and associative, and they obey the distributive law.

A ring is a set S whose elements are subject to a pair of operations +, x
that satisfy the rules A;—A4, My, and D;. Rule M; may or may not be also
satisfied — if it is, we have a commutative ring, otherwise a non—commutative
ring. In other words, addition, subtraction, and multiplication (which may or
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may not be commutative) are always possible within S, although division is
not. Familiar examples of rings are the integers Z, and the polynomials R[¢]
with real coefficients in some variable t. We can add, subtract, and multiply
integers or polynomials, and the result is always an integer or polynomial.
However, we cannot in general divide integers or polynomials, and expect the
result to always be an integer or polynomial.

The integers and polynomials are commutative rings, in which the order
of terms in a product does not matter. An example of a non—commutative
ring is R™*"™, the set of n X n matrices with real entries. Matrix products do
not, in general, commute — BA # AB for general matrices A, B € R™"*" so
M; is not satisfied. Also, matrices must be non-singular to have an inverse,
so in general they do not satisfy My (although Mj3 is satisfied).

Some systems that concern us lie “between” a ring and a field in terms of
their algebraic structure — i.e., they obey all the laws of a ring, but not quite
all the laws of a field. Many commutative rings that interest us also satisfy
Mjs but not My. A system that obeys all the laws of a field except My is an
integral domain. The integers Z are, of course, the archetypal example of such
systems. Another example is the polynomials with real coefficients R[t] in a
variable t. We can construct a field from an integral domain by extending
membership of the set S to include all ratios a/b of elements a and b # z.
Such quotient fields include the rational numbers (obtained from the integers)
and rational functions (obtained from the polynomials).

A system that obeys all the laws of a field except My is a division ring (or
a skew field or non—commutative field). The example of primary interest to us
here is the quaternions H. We defer a detailed treatment of them to Chap.5
and simply observe now that, although every quaternion has a multiplicative
inverse, the non—commutative nature of quaternion products requires us to
make a careful distinction between the processes of “left—multiplication” and
“right—-multiplication” in manipulating quaternion expressions.

Table 2.2 summarizes these classifications. However, not every system with
the two binary operations + and x will fall neatly into one of these categories.
Consider, for example, the case of interval arithmetic — which is concerned
[332,333] with sets of real values t, of the form [a,b] = {t]|a <t <b}. The
result of an arithmetic operation * € { +, —, X, + } on interval operands [a, b]
and [¢,d] is the set of values obtained by applying * to pairs of values drawn
from each of the two intervals:

[a,b] x [¢,d] = {z*xy |z €[a,b]andy € [¢,d] }.

From this definition, one may infer that

[a,b] + [¢,d] = [a+c,b+d],

[a,b] — [¢,d] = [a—d,b—c],

[a,b] X [¢,d] = [min(ac, ad, be, bd), max(ac, ad, be, bd) |,

[a,b] =+ [c,d] = [a,b] x [1/d,1/c], (2.10)
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Table 2.2. Summary of rules observed (*) or not observed (—) by the two binary
operations + and X in canonical algebraic systems, together with some examples.

. commutative  integral division
ring . . . field
ring domain ring
A, * * * * *
A, * * * * *
As * * * * *
Ay * * * * *
M1 - * * — *
Mo * * * * *
M3 — — * * *
My - - - * *
D * * * * *
example R™*™ Z, R[t] Z, Rt] H R, C, R(%)

where division is usually defined only for denominators such that 0 & [¢,d].
This system may be employed to model the propagation of errors in numerical
computations, or calculations with uncertain input values (see §12.3.4).

It can be verified that addition and multiplication are commutative and
associative, and the degenerate!? intervals [0,0] and [1,1] define the additive
and multiplicative identities. However, non—degenerate intervals [a,b] do not
have additive or multiplicative inverses (—, + are not the inverses to +, x).
Furthermore, multiplication does not in general distribute over addition —
instead, we have the sub—distributive law

[a;b] x ([e;d]+[e, f]) € ([a,b] x [e,d]) + ([a,b] x [e, f]).

Thus, interval arithmetic has a rather unusual algebraic structure — it obeys
the rules A1—A3 and M;-Mj3, but not Ay, My, and Dy.

We conclude by briefly mentioning the simpler algebraic structure known
as a group. This is a set S equipped with just a single binary operation. This
operation obeys the associative law, and the set exhibits closure under it — if
the group operation also obeys the commutative law, we have a commutative
(or Abelian) group, otherwise a non—commautative group. S also includes an
identity element with respect to the group operation, and each element of S
has a corresponding inverse in S. An important example is SO(n), the set of
special orthogonal real n x n matrices. A matrix is orthogonal if its inverse
is identical to its transpose, and it is special if its determinant is unity. Since
the product of two special orthogonal matrices is always a special orthogonal
matrix, such matrices constitute a (non-commutative) group under matrix
multiplication. The geometrical significance of the matrices in the group SO(n)
is that they describe rotations in the Euclidean space R™ (see §5.7).

10 By including degenerate elements, interval arithmetic subsumes the real numbers.
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The more it approaches intuition, the more reliable is the deduction.
Intuition has two distinctive features — it is an instantaneous act, and
it consists of clear grasp of an idea. Intuition and deduction should be
trustworthy processes which we can use to lead to genuine knowledge.

René Descartes

A polynomial p(t) in the variable ¢ is a finite sum of products of a sequence of
constants or coefficients ag, a1, ... ,a, with powers 1,¢,...,t" of the variable,

p(t) = ag+ art + - + a,t" = Zaktk. (3.1)
k=0

Any function of ¢ that can be evaluated by a finite sequence of the arithmetic
operations +, —, X (but not +) amounts to a polynomial in ¢. The number n
is the degree of the polynomial, and polynomials of degree n = 0,1,2,3,4...
are called constant, linear, quadratic, cubic, quartic ... polynomials.

3.1 Basic Properties

Polynomials have the algebraic structure of a ring. This means that we may
add, subtract, and multiply polynomials — and their scalar multiples — in any
combination we choose, and the end result will always be a polynomial, i.e.,
the set of polynomials is closed under the operations of addition/subtraction,
multiplication, and scaling. However, we cannot divide two polynomials and
expect the result to be, in general, a polynomial: the division of polynomials
yields, in general, a rational function (see §3.5) — just as the division of two
integers typically yields a rational number (fraction).
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The set of polynomials is also closed under differentiation and integration
— for example, the derivative p’(t) of the polynomial (3.1) of degree n is the
polynomial of degree n — 1 defined by

n—1
p'(t) = a1 +2ast + -+ na,t" ! = Z(k + Dag1t”.
k=0

Higher—order derivatives p”(t),...,p"™)(t) are defined similarly. Note that all
derivatives of order >n vanish identically: p("™ () = 0 if m > n — this can
be regarded as the defining property of degree—n polynomials.

Horner’s method, or “nested multiplication,” is an efficient procedure for
evaluating a degree—n polynomial p(t) that requires just n multiplications and
n additions. Given the coefficients ag, a1, ..., a, and a t value, we set py = a,
and recursively compute a sequence of values p1,ps,...,p, as follows:

P1 = poXt+ an-1,
p2 = p1 Xt + ap_2,

Dk Pr—1 Xt + Gn_yg,

Pn = Pn—1 Xt + ag.

Each step consists of multiplying the outcome of the preceding step by ¢, and
adding the next “unused” coefficient as we proceed through them in reverse
order: an,,...,a1,ag. The final step then yields the value of the polynomial:
p(t) = pp. Horner’s method amounts to writing

p(t) = ((++ (an Xt4+an—1)xt -+ +az) xt+a)xt+ag.

We can homogenize the polynomial (3.1) by substituting ¢ = T//U and then
multiplying by U™. This yields the corresponding homogeneous polynomial

P(T,U) = aoU" + a;TU™ " + -+ a,T" = Y _ax U™, (3.2)
k=0

where each term is of total degree n in T and U. The homogeneous variables
(T,U) are not independent, since we are interested only in their ratios T : U.
Each distinct ratio defines a unique value T'/U of the inhomogeneous variablet.
For example, we do not distinguish the (7,U) pairs (3,1) and (6,2): both
identify ¢ = 3. For any k # 0, the pair (0, k) identifies the origin, and (k,0)
identifies the point at infinity. The pair (0, 0) is excluded from consideration: it
does not identify any point. The homogeneous form allows us to describe the
behavior of a polynomial “at infinity” in a rigorous manner.
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3.2 Polynomial Bases

Let ¢o(t), p1(t), ..., Pn(t) be a set of n + 1 polynomials, each of degree < n.
These polynomials are linearly independent if the identity

cop(t) + c191(t) + -+ + cugn(t) =0

can only be satisfied by choosing ¢y = ¢; = -+ = ¢, = 0 (the identity sign
“=" means that the equation holds for every value of t).

Any set ¢o(t), d1(t),...,dn(t) of n + 1 linearly independent polynomials
forms a basis for all polynomials of degree <n. This means we can uniquely
express any polynomial p(t) of degree <n in the form

p(t) = codo(t) +c191(t) + -+ cadn(t) = ch(bk(t) ;
k=0

€0, C1,. ..,y being the coefficients of p(t) in the basis ¢o(t), d1(t),. .., dn(t).
In any basis, different polynomials always have different coefficients, and we
can obtain the coefficients in one basis from those in any other basis through
a linear transformation (i.e., a matrix multiplication).

The monomial or power basis used above, ¢ (t) = t* for k = 0,...,n, is
the most familiar and the most commonly seen in “theoretical” treatments of
the properties of polynomials. However, it is often not the most convenient
nor the most numerically—stable basis for practical computations. Since we
are concerned with polynomials over finite intervals — usually, ¢ € [0,1] —
we shall make extensive use of the Bernstein basis defined by

n

bR (t) = (k>(1—t)”"“tk, k=0,...,n.

This employs the barycentric coordinates t and 1 — t to specify the position
of a point symmetrically with respect to the interval end—points. A thorough
discussion of the properties and advantages of the Bernstein form is deferred
to Chap. 13. For now, we briefly review a few other useful bases.

The Hermite basis is convenient for interpolation of end—point values and
derivatives on a finite interval, typically [0,1]. For example, given function
values fo, f1 and derivatives fj, f{ at ¢ = 0,1 the unique cubic polynomial
that interpolates these values can be written as

p(t) = foao(t) + fraa(t) + foBo(t) + fiBi(t),
where the cubic Hermite basis functions are defined by

ao(t) = 1 — 382 + 243, ai(t) = 312 — 243,

Bo(t) =t — 212 + 13, Bi(t) = —t2 + 3. (3.3)

The « functions have vanishing derivatives at both interval end points, while
their values are unity at one end and zero at the other. Conversely, the §
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Bo(t)
0.0
Pa(t)
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Fig. 3.1. The cubic Hermite basis on the interval ¢t € [0,1].

functions have vanishing values at both end points, and their derivatives are
unity at one end and zero at the other. Thus, we have

a9 (0) ap(1) ag(0) ag(l) 1000
a1(0) ar(1) 4(0) ay(1) | _ {0100
Bo(0) Bo(1) By(0) Bo(1) 0010
£1(0) Bi(1) B1(0) Bi(1) 0001

where primes denote derivatives with respect to t. Figure 3.1 shows the cubic
Hermite basis on [0,1]. Note that ag(t) = a1(1 —t) and Fo(t) = —51(1 —¢).
Bases of higher (odd) degree n may be similarly defined, in terms of end—point
values and derivatives to order 3(n —1).

In algorithms for computer—aided curve and surface design, we are often
concerned with transformations between cubic Hermite and Bernstein bases.
One can easily verify that these transformation have the matrix forms

b (t) 1 -3 0 0] [ao(®
bi(t) 0 3 0 0] |pt)
)| = Lo 03 o s | (34
| b3(t) 0 0 3 1] [ea(t)]
and ~ -
ao(t) 1 1 0 0] /[w3¢)
Bo(t) 0 5 0 0] [b{()
s | = o 0=t ool (35)
| o (1) 0 0 1 1] |80

The Legendre basis is suited to problems of least—squares approxrimation
of functions by polynomials over finite domains [113,256]. It is usually defined
on the interval [—1,+41] to emphasize certain symmetry properties, but it is
more convenient for us to define it on [0, 1]. The Legendre polynomials Ly(t)
ont € [0,1] can be generated by the recurrence relation
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Fig. 3.2. The first five Legendre polynomials on the interval ¢ € [0,1].

(k+1)Lesa(t) = 2k +1)(2t = 1) Li(t) — kL1 (t) (3.6)
for k =1,2,..., commencing with Ly(t) =1 and Lq(t) = 2t — 1. This gives
Lo(t) = 6t2 —6t+1, Ls(t) = 20t3 — 30t + 12t —1, ... etc.

Figure 3.2 illustrates the behavior of Lg(t) through Lj(¢).
The Legendre polynomials possess the orthogonality property defined by

: 0 ifj£k
/ L)L dt = | (3.7)
0 1 ik
2k +1

This allows us to determine the coefficients of the degree—n least—squares
polynomial approximant

n
pa(t) = > erLi(t)
k=0
to a given function f(¢), that minimizes the “error integral”

1
= [ - f0 P ar.
0
by means of the formulae
1
o = (2k+1)/ L) f(H) dt, k=0,....n.
0

Moreover, the Legendre form of the approximating polynomial p, (¢) exhibits
permanence of coefficients, i.e., the values cg,...,c, remain unchanged if we
wish to increase the degree of the approximant to n + 1 by the introduction
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of an additional term ¢, 41 Ly4+1(t) — only ¢,4+1 requires computation. There
is an elegant relation between the Legendre and Bernstein bases on [0,1] —
namely, the Bernstein coefficients of the k"™ Legendre polynomial are simply
the binomial coefficients of order k, taken with alternating signs:

k.
nett) = Y0 () oo,

=0

Transformations between the Bernstein and Legendre forms of a polynomial
on [0,1] are comparatively stable [154].

Finally, we consider a basis useful in “min—max approximation” problems
and the best approximation of polynomials by polynomials of lower degree —
the Chebyshev basis. The Chebyshev! polynomials (of the first kind) are also
conventionally defined on the interval [—1,+1] by the formula

1
L7k) 2
Ty (t) = cos(kcos™t) = Zo (21) (t2 — 1)t ¢h=2
for k =0,1,2,..., where the “floor” function |z| denotes the largest integer

not exceeding x. In other words, Ty (t) is just the polynomial in ¢ obtained
by expanding cos(kf) in powers of cosf, and setting ¢ = cos 6. The first few
Chebyshev polynomials are

To(t) =1, Ti(t) =t, To(t) = 2> -1, Ts(t) = 4> —3t, etc.

Beginning with Tp(t) = 1 and T;(t) = t, they may also be generated by the
recurrence relation

Tia(t) = 2tT(t) — Th—a(t), k=1,2,...

Chebyshev polynomials on [0, 1] can be obtained by replacing ¢ with 2¢ — 1,
giving 1, 2t — 1, 8t — 8t + 1, 32¢3 — 48t? + 18t — 1, etc. The first few Chebyshev
polynomials on [—1,+1] are illustrated in Fig. 3.3.

The Chebyshev polynomials exhibit the orthogonality property

0 ifj#k,
TLOT |, A
= T 1 = =0,
RV ;o
sm it j=k>0,
with respect to the “weight function” 1/4/1 —t2? on t € [—1,+1]. Note that
Ty (t) has the k real roots tj, = cos(i — 3)m/k, i = 1,...,n on [—1,+1] and
these roots separate the alternating extremal values —1 and +1.
! Named for the Russian mathematician Pafnuty Lvovich Chebyshev (1821-1894),

who contributed to number theory, orthogonal polynomials, and probability. The
polynomials are denoted T after an alternative transliteration — Tschebyscheft.
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Fig. 3.3. The first five Chebyshev polynomials on the interval [ —1,+1].

Another interpretation of Tj(t) is as follows. Let Il denote the set of all
polynomials p(t) of degree <k. Suppose we seek the polynomial p(t) € IIj
that exhibits the least possible absolute difference

€, = min max t) — thtt
k p(t)ell, te[—1,+1] \p( ) |

from the monomial #**! over the interval [—1,+1]. The error of this best
“min-max” polynomial approximant p(t) of degree < k to t**! proves to be
a multiple of the Chebyshev polynomial T () — namely,

T — p(t) = 27 T (1),

and since [Ty41(t)| < 1 for t € [—1,+1], the value of the minimum possible
error is €, = 27%. This leads to the method of Chebyshev economization for
polynomials — i.e., best min—max approximation of a given polynomial by
polynomials of lower degree. If a polynomial p(t) = ag + a1t + - - - + app1tF !
of degree k + 1 is given, and we wish to determine the polynomial p(t) of
degree <k with the least absolute difference from p(t) over [—1,+1], we can
immediately identify this best approximating polynomial as

p(t) = p(t) — a1 27" Tiga (1),

since p(t) can agree ezactly with p(t) in all terms up to ayt*. Furthermore, the
approximation error will satisfy | p(t) —p(t) | < 2 *ax, 1, and this error bound
is attained at the extrema of Ty 1(t). Clearly, this process can be repeated to
obtain best approximants of successively lower degree.

The Chebyshev polynomials have many other useful applications: least—
squares approximation, expansion of functions, power series economization,
etc. For a thorough treatment of their properties and applications, see [376].
The Legendre and Chebyshev bases are actually special instances of a more
general class of orthogonal polynomials, the Jacobi polynomials [113,434].
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3.3 Roots of Polynomials

A simple root of the polynomial p(t) is a value 7 of the variable ¢ such that
p(1) =0 # p'(7). A multiple root is a value 7 such that p(r) = 0 and one or
more successive derivatives of p(t) vanish at ¢ = 7. Specifically, if

p(r) = p(r) = = p" V() = 0 £ (),

we call 7 an m—fold root, or a root of multiplicity m. In the cases m = 2,3, ...
we speak of double, triple, ... roots. The roots of a polynomial may be real or
complex. When the coefficients ag, aq, ..., a, are real numbers, complex roots
must occur in conjugate pairs, i.e., if t = o+ i is a root, t = o — i must
also be a root (of the same multiplicity).

The vanishing of successive low—order coefficients ag, aq, ... or high—order
coefficients ay,, an_1, ... of p(t) indicates the presence of certain special roots.
To identify them, we employ the homogeneous form (3.2) — for which roots
correspond to distinct ratios 7' : U. Note that multiplying both T" and U by
a constant k #£ 0 gives

P(KT,kU) = k"P(T,U),

so P(T,U) =0 <= P(kT,kU) = 0. If ag = 0, we evidently have P(0,U) = 0,
i.e., there is a root at the origin. On the other hand, if a,, = 0 but we formally
consider the polynomial as being of degree n, then P(T,0) = 0, i.e., there is
a root at infinity. If m consecutive low— or high—order coefficients vanish, we
have an m—fold root at the origin or at infinity, respectively.

The Fundamental Theorem of Algebra states that a degree—n polynomial
p(t) has ezactly n roots, if we count both real and complex roots, and each
distinct root is counted according to its multiplicity. This is equivalent to the
property that p(t) can be expressed in factored form as

p(t) = an(t —ry)(t—ro) - (t—710) = an [J (¢ —7s)
k=1

where the n roots 1,72, ..., 7, are not necessarily real or distinct. Combining
factors that correspond to complex conjugate roots, it is always possible to
decompose a real polynomial into real factors that are (powers of) linear or
quadratic terms. On multiplying out the factored form, we see that the sum
r1 + -+ ry, of the roots equals — a,,_1/an, while the product 7y - - - 7, of the
roots equals (—1)"ag/a,. In general, the sum of the (Z) products of roots,
taken k at a time, is equal to (—1)*a,_y/a,. These sums of products of the
roots are called the symmetric functions of the roots.

Descartes’ Law of Signs gives basic information on polynomial real roots,
without calculation. According to this law, the number N of positive real roots
of the polynomial p(t) — each counted according to its multiplicity — is less
than the number V' (ag, a1, ..., a,) of sign variations in the ordered sequence
of its coefficients by an even amount:
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N = V(ag,a1,...,a,) — 2K,

where K is a non—negative integer. We ignore coeflicients that are zero when
counting the coefficient sign variations — for example, V(—3,2,5,—1,4) = 3
and V(-7,0,2,-6,—8,3,0,—1,9) = 5.

This provides, by mere inspection, a bound on the number of positive real
roots of p(t). In particular, if ag,aq,...,a, are all of like sign, there are no
positive roots. By the change of variables ¢ — —t, we can also bound the
number of negative real roots in terms of the sign variations in the sequence
ap, —ai,as, —asg, . . . (where only odd-power coeflicients are negated). One may
also bound the number of real roots on a finite interval ¢ € (a, b) by considering
the Bernstein form of the polynomial on that interval (see §11.2).

The linear polynomial ag + a1t obviously has the single root ¢t = —ag/a;.
Quadratic, cubic, and quartic equations admit a solution by radicals, i.e., their
roots can be expressed in terms of their coeflicients using just a finite sequence
of arithmetic operations and root extractions. For the quadratic equation

ag + a1t + a2t2 =0,

for example, the roots are given by the well-known formula

Lo T + \/a? — 4aszag .

2a2

Similarly, Cardano’s method [452] can be used to solve for the roots of the
cubic equation
ap + alt + a2t2 + a3t3 = 0.
Set
_ 3ayaz — a% _ 9ajasaz — 27a0a§ — 2a§’

= — = > o = 3 2?
b 9a2 1 54al Pt

and let r be any of the three complex values specified by

=g+ V5. (3.8)
Then the roots of the cubic equation are given by
az p
3as tr r’
a1 p) x/§( p)
=4 22 _ Z(._F i = 3.9
3as 2(T r + 9 ! Tt r/)’ (3.9)
ag 1( p) x/§< p)
- — ——(r—=) - —i(r+=).
3as 2 r 2 T

One of the roots (3.9) is real and the other two are complex conjugates
when § > 0; all three roots are real and distinct when § < 0; and there is a
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multiple root when 6 = 0. Note that, even if all three roots are real, complex
arithmetic is generally required to evaluate the quantities (3.8)—(3.9).

When § < 0 (in which case p must be negative), it is possible to solve the
cubic equation exclusively in real arithmetic, by appealing to trigonometric
functions. Namely, if the angle 6 is defined by

q
/—p? ’

the three (real) solutions can be expressed as

cosf =

k2w

t:—OLz—i—Q\/—pcos<9—|—3)7 k=0,1,2.

3(13
Finally, the four roots of the quartic equation
ap + a1t + a2t2 + a3t3 + a4t4 =0

may be computed by Ferrari’s method [452]. Namely, let z be a real root of
the resolvent cubic equation

23 +0222 + ciz4+co =0

with
as aiaz — 4agay dagasay — a%a4 — aoag
Cg = ——, (1 = 2 y Co = 3 )
aq ay ay

and let s be either of the complex values defined by

§2 = a?), — 4aiz —4dasay .

Then the roots of the quartic are the same as the roots of the two quadratic

equations

+ 1 -2

2y (BES)p 4 S, BETM) g (3.10)
2a4 2 S

Again, even if all the roots are real, complex arithmetic is in general required
to obtain the root z of the resolvent cubic, and to solve the two quadratics.

Galois theory reveals that polynomial equations of degree n > 5 do not,
in general, admit a solution by radicals — we are obliged to invoke iterative
“numerical methods” to approximate their roots.

3.4 Resultants and Discriminants
Given two polynomials
p(t) =ap + art + -+ a,t™ and q(t) =bg + byt + -+ byt™,

one might ask: “do they have a common root?” In other words, does a value
7 exist such that p(7) = ¢(7) = 07 This question can, in fact, be answered
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without knowing the roots. There exists a function f(aog,...,an,bo,...,bn) of
the coefficients — the resultant of p(t) and ¢(t) with respect to t — such that

f(ao,--. an,bo,...,bp) =0 <= p(7) =q(7) =0 for some 7.

Informally, the resultant is the expression in the coefficients one obtains upon
“eliminating” the variable ¢ from the equations p(t) = 0, ¢(t) = 0.

The vanishing of the resultant indicates the existence of common roots,
but gives no information on their numerical values, their number, or whether
they are real or complex conjugates. We use the notation Resultant,(p, ¢) for
the resultant of p(t) and ¢(t) with respect to ¢, so that

Resultant;(p,q) = f(ao,-..,an,b0,-..,bm).

The resultant may be compactly expressed as a determinant, whose entries
depend upon the coefficients aq, . ..,a, and b, ..., b, of p(t) and ¢(¢). The
Sylvester determinant [452], defined by

apg ay a2 - - QAap
ap ay as - © Qp
Resultant(p, q) = bo by by a.o a.l ;)12 T An (3.11)
bo b1 by - - by
bo b1 by - - b,

is perhaps the simplest formulation — it is of dimension (n + m) x (n + m),
and contains m rows of the coefficients ag, ..., a, followed by n rows of the
coefficients by, . .., b,,, successive rows being displaced one space to the right
— all of the “empty space” in (3.11) is filled in with zeros.

Another useful form is the Bézout resultant. Expressed as a determinant,
this form is of smaller dimension than the Sylvester form, although its entries
are correspondingly more complicated. Consider the polynomial

i) = PO =pl0)alO) _ 5~

t—«
k

in t and a new variable « (since p(t)g(a) — p(a)q(t) vanishes for ¢ = «, it must
contain the factor t —« divided out above). The coefficients of the polynomials
r,(t) are quadratic expressions in the coefficients of p(t), ¢(¢) and the Bézout
resultant is the determinant of the array formed by those coefficients [212].
Resultants are also useful in answering the question: “does the polynomial
p(t) = ap+art+-- -+ a,t™ possess any multiple roots?” As previously stated,
a multiple root T satisfies p(7) = p’(7) = 0, so this question is equivalent to
asking if the polynomial has any roots in common with its derivative, and this
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can be answered by forming the resultant of p(¢) and p’(¢). The discriminant
of the polynomial p(t) is an expression in its coeflicients ag, a1, ..., a, that is
conventionally defined by

1
Alag, ... a,) = (=1)7"("=D — Resultant,(p,p’)

Qn

and we have
Alag,...,a,) =0 <= p(r)=p'(r) =0 for some 7.

For example, the discriminants of the quadratic ag 4+ a1t + aot? and the cubic
aop + a1t + agt? + ast? are given by

A = CL% —4@0&2,
A

2 2 3 3 2 2
18apaiazas + aja; — 4apas; — 4ajas — 27agas .

The vanishing of the discriminant indicates only the presence of one or more
multiple roots: it yields no information on their number, their multiplicities, or
whether they are real or complex. However, a sign change of the discriminant
is (usually) accompanied by a change in the number of real roots. For example,
a quadratic polynomial has two real roots when A > 0 and none when A < 0,
as is evident from the familiar solution formula. Similarly, a cubic polynomial
has three real roots when A > 0 and just one when A < 0.

Resultants can be used to reduce the dimension of systems of polynomial
equations in two or more variables, by successively eliminating variables (this
may be regarded as the non-linear generalization of the Gaussian elimination
procedure commonly used when solving systems of linear equations). Suppose,
for example, that

fz,y) = g(z,y) =0 (3.12)

are a pair of bivariate polynomial equations in z, y. The system of equations
defines two plane algebraic curves, and its solutions are the intersection points
(real or complex) of these two curves. If we regard f(x,y) and g(x,y) as (say)
polynomials in y, whose coeflicients are polynomials in x, we can eliminate
y between them by forming their resultant with respect to y. This yields a
polynomial in x only,

p(xz) = Resultant, (f(z,v),9(z,y)),

since the entries in the Sylvester determinant (3.11) are now polynomials
in . The roots of p(z) define the z—coordinates of all the intersection points
of the two curves f(z,y) = 0 and g(z,y) = 0. By computing these roots and
substituting their values into the original equations we can, in principle, find
the corresponding y—coordinates of the intersection points.

However, resultants are more often employed as theoretical tools rather
than for practical computations, except in small problems. Bézout’s theorem
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(see §9.2.9) states that two algebraic curves of degree m and n intersect in mn
points, so we can expect the resultant of the polynomials (3.12) with respect
to x or y to be, in general, of this degree. For higher—dimensional problems,
the growth of the resultant degree can be even more alarming.

3.5 Rational Functions

A rational function r(t) of the variable ¢ is the quotient of two polynomials,
p(t) and ¢(t), in ¢

where p(t) = ag+ait+---+ant™ and q(t) = bg+b1t+- - -+, t™. Any function
of ¢ that can be evaluated by a finite sequence of the arithmetic operations
+, —, X, + amounts to a rational function in t.

Rational functions possess the algebraic structure of a field — this means
that we may add/subtract and multiply/divide rational functions, and their
scalar multiples, in any way we like, and the result will always be a rational
function: it can always be expressed in the form p(t)/q(t), and thus requires
(in principle) only a single division for its evaluation.

The values of ¢ at which p(t) and ¢(¢) vanish are called, respectively, the
roots and poles of the rational function r(t): they may be simple or multiple.
We assume that the numerator and denominator polynomials, p(t) and ¢(t),
are relatively prime (i.e., they have no roots in common, otherwise we could
cancel the terms in their factored forms corresponding to those roots).

If m < n, we can decompose p(t)/q(t) into a quotient polynomial f(¢) of
degree n — m and a remainder polynomial h(t) of degree <m, such that

p(t) h(t)
— = ft) + —.
a0 G
The coefficients of f(t) and h(t) are uniquely determined by equating like

terms on either side of

p(t) = q(t)f(t) + h(t),

which yields a system of n + 1 linear equations? for these coefficients. When
m > n, we have f(t) = 0 and h(t) = p(t). The division of polynomials is
analogous to the problem of expressing the ratio of two integers in terms of
integral and fractional parts, e.g.,

11 2
—=3+Z.
3 T3

? The method of synthetic division [452] can also be used to compute f(t) and h(t).
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The greatest common divisor of two given polynomials p(¢) and ¢(t) is a
polynomial, denoted by ged(p(t), ¢(t)), each root of which is also a root of p(t)
and ¢(t). The multiplicity of a root 7 of ged(p(t), ¢(t)) is the smaller of the
multiplicities of 7 as a root p(t) and ¢(t). Of course, ged(p(t), ¢(t)) is defined
only up to a non—zero constant factor. If ged(p(t), ¢(t)) = constant, we say
that p(t) and ¢(t) are relatively prime — they have no common roots.

We can compute ged(p(t), ¢(t)) without explicitly factorizing p(t) and ¢(t),
or knowing their roots, through a sequence of polynomial divisions called the
Euclidean algorithm. We set ¢o(t) = p(t), ¢1(t) = ¢(t), and then recursively
define ¢y41(¢) as the remainder on dividing ¢x—1(t) by ¢ (t), so that

Po(t) = o1(t)fi(t) + ¢a(t),
$1(t) = ¢2(t) f2(t) + ¢3(1),

¢r72(t) = ¢r71(t)f7‘71<t) + ¢T<t)7
br—1(t) = or(t)fr(t).

We continue until a zero remainder is encountered, ¢,11(t) = 0, and we then
have ¢,(t) = ged(p(t), q(t)). See [452] for a more thorough description.

A slight modification of the Euclidean algorithm provides a powerful tool
for counting real roots of a polynomial on a finite interval. A Sturm sequence
for the polynomial p(t) is constructed by choosing ¢o(t) = p(t), ¢1(t) = p'(¢),
and then executing the Euclidean algorithm but with ¢o(¢), ¢3(t), . . . taken to
be the negation of the remainder at each step [452]:

do(t) = ¢1(t)f1(t) — ¢a(t),
P1(t) = ¢a(t) fo(t) — #3(1),

¢r—2(t) = ¢r—1(t)fr—1(t) - ¢T(t)a
¢r—1(t) = ¢T(t)fr(t)'

The Sturm sequence ¢q(t), ..., ¢.(t) allows us to determine the ezact number
(not just a bound, as in Descartes’ Law) of distinct real roots of p(t) on any
interval ¢ € (a, b) such that p(a) # 0, p(b) # 0. On evaluating the members of
this sequence at ¢ = a and ¢ = b, the number N of distinct roots on (a,b) is
given in terms of the numbers of sign variations in the resulting values by

N = V(¢O(a)’¢1(a)’"'a¢7'(a)) - V(¢O(b)7¢1(b)7a¢7(b))

Each distinct real root on (a,b) contributes once to N here — not according
to its multiplicity, as in Descartes’ Law.

Finally, we discuss the partial fraction decomposition of rational functions.
The problem is to express a given rational function r(¢) = p(t)/q(t) as the sum
of certain “simpler” rational functions, with denominators of lower degree.
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To accomplish this, the denominator ¢(¢) must first be factorized. We may
seek irreducible real factors (linear or quadratic) or complex factors (linear),
and these factors may be simple or multiple. It is simpler in certain respects
to use the factorization over complex numbers, which has the form

N
H t—rj

where r1,...,ry are the N distinct roots of ¢(t), real or complex conjugate
pairs, and my, ..., my are their respective multiplicities.
The partial fraction decomposition can then be written in the form

Pt)  om
3.13
t Z t — r] ( )
j=1 k::l
Each root r; of multiplicity m; contributes terms 1/(t —r;),...,1/(t —r;)™

o (3.13). Multiplying both sides of (3.13) by (¢t — r,;)™ and differentiating
m; — k times, one can verify that the coefficients Cj;, are given by

1 dma—k p(t)
Cir = t—r;)"
* = Ty =t demr T Gy |
for j =1,...,N and k = 1,...,m;, where a derivative of order 0 is simply

the function itself. Thus, for a simple root r; with m; = 1, we have

Cpn = (t—rj)‘zg) B

Partial fraction expansions of rational functions play an important role in
algorithms for their systematic integration. In this context, the coefficients
C11, ...,CpN1 have a special significance — they are called the residues of the
rational function p(t)/q(t) at its distinct poles rq,...,rn. We will encounter
them again in Chaps. 4 and 16.
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Complex Numbers

Wessel’s development [of complex numbers] proceeded rather directly
from geometric problems, through geometric—intuitive reasoning, to an
algebraic formula. Argand began with algebraic quantities and sought
a geometric representation for them. ... Wessel’s initial formulation
was remarkably clear, direct, concise and modern. It is regrettable that
it was not appreciated for nearly a century and hence did not have the
influence it merited.

Phillip S. Jones, “Caspar Wessel,” Dictionary of Scientific Biography

Complex numbers are indispensable tools for modern science and technology,
and the emergence of fields such as quantum mechanics, signal processing, and
control theory is inconceivable without a complete theory of complex variables.
Nonetheless, complex numbers were slow to secure widespread acceptance, due
to persistent philosophical concerns over the “existence” of i = /—1.

It was the geometrical interpretation of complex numbers as points in the
FEuclidean plane, coupled with their remarkable utility in diverse contexts, that
ultimately won their universal recognition. This utility becomes apparent once
again in Chap. 19, where the complex numbers offer a compact and elegant
model for planar Pythagorean—hodograph curves, that greatly facilitates the
formulation of algorithms for the construction and analysis of these curves.

4.1 Caspar Wessel

It has been recognized since antiquity that not all quadratic equations admit
real solutions. During the Renaissance, the Italian mathematicians Scipione
del Ferro (1465-1526), Niccolo Fontana (1500-1577) — commonly known as
Tartaglia, “the stammerer” — and Girolamo Cardano (1501-1576) found the
solution to cubic equations, and discovered that it required intermediate use
of complex numbers even in cases where all three roots are real (see §3.3).
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In that era, such discoveries were often held as closely—guarded secrets, to
ward off potential competitors for patronage or academic positions.

Caspar Wessel (1745-1818), a little-known Norwegian surveyor, was the
first to propose the idea that complex numbers may be described graphically
as points in the Euclidean plane R?, and their sums and products then admit
intuitive geometrical interpretations that instill a greater degree of comfort in
their use. He propounded these ideas in his paper Om directionens analytiske
betegning, et forsgg, anvendt fornemmelig til plane og sphaeriske polygoners
oplpsning (On the analytical representation of direction: an attempt, applied
chiefly to the solution of plane and spherical polygons), presented in March
1797 to the Royal Danish Academy by Johannes Nikolaus Tetens, Professor
of Mathematics and Philosophy in Copenhagen, and published [465] in the
Academy’s Mémoires for 1799 (see Fig.4.1). Sadly, his efforts were largely
ignored, and the geometrical interpretation of complex numbers is commonly
known as the Argand diagram or the Gaussian plane after later investigations
by the Swiss book-keeper Jean Robert Argand (1768-1822) and the German
mathematician Karl Friedrich Gauss (1777-1855).

Wessel’s modest yet remarkable paper provides the first clear exposition
of vector addition, and of the multiplication of complex numbers by taking
the product of the magnitudes and the sum of the polar angles. After lapsing
into obscurity for a century, it was re—published by his compatriot Sophus Lie

Im
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Directionens analyptiffe Beteaning,
et Forfoa,
anvende formemmelig
Z4
[
plane og fpharifte Pologoners Dpledning +1 Re
» Im 212,
Cajpar Wefjel,
Cantmaalen +e
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Kiebuibavn 1798 Z4
£rolt bed Jebam Nabeluh Thiele
+1 Re

Fig. 4.1. Left: Wessel’s paper Om Directionens analytiske Betegning (reproduced
with permission from the Special Collections Library, University of Michigan). Right:
Wessel’s proposals for the addition and multiplication of directed line segments.
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in 1895, and translated into French in 1897 (a complete English translation
appeared only in 1999). Wessel begins [465] by posing the question:

... how may we represent direction analytically; that is, how shall we
express right lines so that in a single equation involving one unknown
line and others known, both the length and direction of the unknown
line may be expressed?

Concerning the addition of directed line segments, he says:

Two right lines are added if we unite them in such a way that the
second line begins where the first one ends, and then pass a right line
from the first to the last point of the united lines.

For the product of directed line segments, he first multiplies their lengths to
obtain its magnitude, while for its direction he proposes a logical extension
of common experience with positive and negative real numbers, considered to
make angles 0 and 7 with the real axis:

Firstly, the factors shall have such a direction that they both can be
placed in the same plane with the positive unit.

Secondly, as regards length, the product shall be to one factor as the
other factor is to the unit.

Finally, if we give the positive unit, the factors, and the product a
common origin, the product shall, as regards its direction, lie in the
plane of the unit and the factors and diverge from the one factor as
many degrees, and on the same side, as the other factor diverges from
the unit, so that the direction angle of the product, or its divergence
from the positive unit, is equal to the sum of the direction angles of
the factors.

Wessel suggests that “it seems not only permissible, but actually profitable,
to make use of operations that apply to other lines than the equal (those of
the same direction) and the opposite.” To represent directed line segments he
uses numbers of the form a + eb, where € denotes a unit that is orthogonal
to the real axis. Then, from the above prescription for products of lines, he
infers algebraically that ¢ must be the imaginary unit:

Let +1 designate the positive rectilinear unit and +€ a certain other
unit perpendicular to the positive unit and having the same origin;
then the direction angle of +1 is equal to 0°, that of —1 to 180°, that
of +¢€ to 90°, and that of —e to 270°. By the rule that the direction
angle of a product equals the sum of the angles of the factors, we have
(+1)(+1) = +1; (+1)(—=1) = =1;...(+€)(+€) = —1;... it is seen that
€ is equal to /—1. ..
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Wessel’s aspirations to explore geometrical algebras beyond complex numbers
— e.g., lines in space — are apparent in his paper, although these ideas were
not elaborated upon, since he “... accepted the advice of men of judgement,
that in this paper both the nature of the contents and plainness of exposition
demand that the reader be not burdened with concepts so abstract.” Further
background on the development of complex numbers may be found in [339].
Wessel’s purpose was to employ complex numbers as tools in the solution
of practical geometry problems, such as those encountered in surveying. But
the converse view now predominates — i.e., the geometrical interpretation of
complex numbers is used to obtain insight into problems of complex analysis.
One of the few books that has championed the solution of analytic geometry
problems using complex variables, Zwikker [480], is now out of print.

4.2 Elementary Properties

We assume the reader is familiar with the basic properties of complex numbers
expressed in Cartesian and polar form, z = 2 + iy = re? = r(cos +isin6).
Here x = Re(z) and y = Im(z) are the real and imaginary parts of z, while r =

|z| = /22 +y? and 0 = arg(z) = tan~'y/z are its modulus and argument.
The symbol i represents v/—1. The Cartesian form is better suited to addition,

z1 + 22 = (xy +iy) + (w2 +iye) = (21 +22) + i(y1 +12),

while the polar form gives a more intuitive perspective on multiplication

2125 = (r1€7)(rpe'®) = ryry @102

in accordance with Wessel’s geometrical prescriptions. Using the property that

i2 = —1, multiplication in the Cartesian form is straightforward,

7122 = (71 +iy1) (2 +1iy2) = (122 — Y1y2) + i (T1y2 + T201),

but addition in the polar form is cumbersome and unenlightening. Thus, it is
profitable to employ both forms, and switch between them as appropriate.
The polar form leads to de Moivre’s theorem,
(cos@+1isinf)" = cosnf +1isinnd,

and hence to identification of the n*® roots of a complex number z = 7€' as

0+ k2 0+ k2
zkrl/"{cos(w)+isin<w)], k=0,....,n—1.
n

n

For z = 1, in particular, we obtain the n'* roots of unity as

2 2
COS(M> —l—isin(]“r) , k=0,....n—1.
n n
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Fig. 4.2. Visualization of the “extended” complex plane by stereographic projection
from the north pole of a sphere S whose south pole touches the complex plane at
z = 0. This mapping is one—to—one — except that all “infinitely distant points” are
mapped, regardless of direction, to a single point on S (namely, the north pole).

Any complex number z = z+iy = re' has a conjugate, 7z = r—iy = re 19,

so that zz = |z|?. Using the conjugate, we can express the ratio z1/zs as

21 zZy _ (1122 +yiy) +i(2ays — T1ya) TL (01 -62)
zy  |zof? 23 + Y5 r2 '

We can even define division in the case z5 = 0 upon introducing the extended
complex plane, by appending the single value co to the finite complex numbers.
The stereographic projection offers an intuitive way of visualizing the extended
complex plane. Consider a sphere S whose “south pole” touches the complex
plane at z = 0. Rays that connect the “north pole” to any point z of the plane
will pierce S at a unique location, except that all infinite points z correspond
to the same location — namely, the north pole — on S. Thus, the points of
S provide a representation for the extended complex plane (see Fig.4.2).
The complex numbers have the algebraic structure of a field, and obey
all the familiar rules of real arithmetic. In fact, they are the only example
of “higher—dimensional” numbers with this property. On progressing to the
four—dimensional quaternions in Chap. 5, we must relinquish the commutative
nature of products: the order of the terms in a product influences its value.

4.3 Functions of Complex Variables

We are familiar with the process of graphing a real-valued function f(x) of a
real variable  — i.e., drawing the locus of a point with Cartesian coordinates
(z,y) where z is the independent variable or abscissa, and y = f(x) is the
corresponding function value or ordinate. If we substitute a complez number
z in the function f, the value w = f(z) is, in general, also a complex number.
The problem of defining a “graph” for such a complex—valued function of a
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complex variable is not so simple: expressing the independent and dependent
variables in terms of real and imaginary partsasz =z +iy and w =u +1iv,
we see that the perspective of a four—dimensional real Euclidean space — with
axes labelled x,y,u,v — is required to “visualize” this function.

Since humans possess limited ability to perceive, sketch, or analyze four—
dimensional configurations, a different interpretation of the equation w = f(z)
is appropriate. Namely, we regard this relation as a mapping of the Fuclidean
plane into itself, that takes each point with Cartesian coordinates (z,y) =
(Re(z),Im(z)) to an image point with coordinates (u,v) = (Re(w),Im(w)).
Thus, a curve or region in the plane will be mapped by f to an image curve
or region that has, in general, a different shape and location.

To aid in visualization, any given geometrical configuration and its image
may be drawn in two “separate” planes, using Cartesian coordinates labelled
(z,y) and (u,v) respectively. Of special interest are those curves in the (u,v)
plane that are the images of the coordinate lines z = constant, y = constant
— and, conversely, those curves in the (z,y) plane that map into the lines
u = constant, v = constant. These families of level curves convey some idea
of the correspondence between points in the z and w planes — see Fig. 4.3
(note that, in general, the correspondence is not one—to—one).

For the preceding interpretation, the coordinates (z,y) and (u,v) in the
z—plane and w—plane are both Cartesian coordinates. Since a point z and its
image w are usually distinct, they typically have different numerical values
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Fig. 4.3. The map w = z?, with z = 2 + iy and w = w + iv. Lines of constant «
and y in the z plane map into two families of confocal parabolae in the w plane.
Conversely, the images of the two families of rectangular hyperbolae asymptotic to
=0,y =0 or ==y in the z plane are lines of constant u and v in the w plane.
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for their Cartesian coordinates (x,y) and (u,v). An alternative geometrical
interpretation of the map w = f(z) is to regard the real and imaginary parts
of f(z) = u(x,y) + iv(z,y) as defining a transformation (x,y) — (¢,n) from
Cartesian to curvilinear coordinates according to

¢ = u(z,y) and n = v(x,y). (4.1)

Then w is the image of z if the curvilinear coordinates (¢, n) of the latter, as

obtained from its Cartesian coordinates (z,y) by expressions (4.1), have the

same numerical values as the Cartesian coordinates (u,v) of the former.
Consider, for example, the simple function

w = f(z) = 2°, (4.2)
which corresponds to the mapping
(z,y) — (u,0) = (2* —y*,2zy).

Interpreting both (z,y) and (u,v) as Cartesian coordinates, we see that the
point (z,y) = (2,1) is mapped to the point (u,v) = (3,4). However, we may
also consider the system of curvilinear coordinates defined by

(=u(z,y) =2—y*> and 7 = v(z,y) = 2zy.

As seen in Fig.4.3, the level curves ( = constant and n = constant in the
z—plane then correspond to two families of rectangular hyperbolae. We note
that the point z has curvilinear coordinates (¢,7) = (3,4) that are identical
to the Cartesian coordinates (u,v) = (3,4) of its image point w. Note that
the mapping (4.2) is not one—to—one since, if w, is the image of z,, it is also
the image of —z,. In fact, the entire w—plane can be obtained from just the
half-plane lying to one side of any line through z = 0. If we do not restrict z,
the map (4.2) gives a “double covering” of the w plane.

4.4 Differentiation and Integration

If the function f(z) is analytic, i.e., its derivative with respect to the complex
variable z is defined at each point and satisfies

af
a7

for (almost) all z, the mapping defined by w = f(z) exhibits some attractive
geometrical properties, and thus merits a special name — it is known as a
conformal map. Exceptionally, cases where df/dz vanishes at certain points
or loci may also be allowed, and special care must be exercised in considering
such locations. To properly appreciate these ideas, we must first review the
concept of differentiation for a function of a complex variable.



52 4 Complex Numbers

To differentiate a function f(z) of a real variable, we compute the limit of
the ratio of corresponding increments Af = f(z) — f(zo) and Az = z — ¢ in
the function value and independent variable at a given point zy. This limit may
be obtained with z approaching zy from either smaller or larger values, and
it should not matter which we choose if f(z) is to be considered differentiable
at g — both should give the same derivative value there.

For a function f(z) of a complex variable, an extra complication arises in
defining its derivative: we may approach a given complex value zg = xg +iyo
of the independent variable along infinitely many directions in the complex
plane — not just from the “left” or “right” as in the real-variable case. If the
function does not satisfy certain criteria, the limiting ratio of corresponding
(complex) increments in f and in z may depend upon the direction in which
we approach zy. Such behavior is unacceptable — for the function f(z) to be
considered differentiable with respect to its complex argument at the point zg
of interest, the ratio

f(z) — f(z0)

Z — 7

(4.3)

must have a finite (complex) limiting value as z — z¢ that is independent of
the particular direction along which z approaches zg.

A sufficient and necessary condition for such direction-independence of the
complex derivative is that the real and imaginary parts of f(z), regarded as
bivariate real functions u(z,y) and v(x,y), should satisfy a system of partial
differential equations known as the Cauchy-Riemann equations'

Ou = ov and Ou = — @ (4.4)
ox dy dy Ox
The complex function f(z) is said to be analytic at each point zy where the
Cauchy—Riemann relations are satisfied, and the unique limit of the ratio (4.3)
as z approaches z, along any direction is then its complex derivative df/dz
at that point. Implicit in this definition is the requirement that the partial
derivatives of u and v in equation (4.4) be defined at zo.
Note that when conditions (4.4) are satisfied, the complex—derivative of f
may be written in terms of partial derivatives with respect to only the real
part x or the imaginary part y of z, as

g_au .O0v Qv . Ou

= — 4+i—=— —i—. 4.5
dz or Ox oy oy (4.5)

We say f(z) is analytic in a region {2 of the complex plane if it is analytic
at each point z € 2. If {2 is the entire complex plane, we simply say that
“f(z) is analytic” (holomorphic is also used as a synonym for analytic). Most
“elementary” (polynomial, rational, trigonometric, hyperbolic, exponential,

! Named for the founders of the theory of functions of a complex variable, Augustin—
Louis Cauchy (1789-1857) and Georg Friedrich Bernhard Riemann (1826-1866).
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logarithmic, etc.) functions we are familiar with in the real-variable context
prove to be analytic at nearly all points, on substituting a complex argument
z = x + iy in lieu of the real variable (verify this for some simple examples).

Suppose now we wish to integrate a function f(z) between specified limits
a and b of the complex variable z. The two—dimensional nature of complex
variables permits an infinitude of paths from a to b, other than the straight
line between them, along which the integration may be performed. However,
if f(z) is analytic in a subset {2 of the complex plane containing a and b, this
freedom of choice does not matter — all integration paths C' within (2 yield
exactly the same complex value for the integral of f(z) from a to b.

Fig. 4.4. Left: the integral of a function f(z) around a closed path C' in the complex
plane is zero if f(z) is analytic in a domain {2 containing C'. Center: the integral of
f(z) between two points a and b is independent of the integration path within 2
between them. Right: the integral of a rational function f(z) around a closed path
C depends only on the behavior of f(z) at its poles z1,...,zx that lie within C.

This property of path independence of the integral of an analytic function
f(z) between given points a and b in the complex plane is a consequence of
Cauchy’s theorem, which states that if C' € (2 is a closed path,? the integral
of f(z) along it (see Fig.4.4) vanishes:

fcﬂz)dz:o,

where the circle superposed on the integral indicates that integration occurs
along a closed path. This is one of the most fundamental results in complex
analysis, and is related to the fact that f(z) must satisfy the Cauchy—Riemann
relations within 2. If we break the closed integration path into components
P and @ at distinct points a and b on C, so that C = P U ), we have

jéf(z)dz:/Pf(z)dz—k/Qf(z)dz:O’

P being a path from a to b, and Q a path from b to a. Now if P is the reversal
of path () — i.e., the same path traversed in the opposite sense — then P is

2 We assume here that closed paths have an anti-clockwise orientation.
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a path from a to b, and the integral along this path is the negative of that
along ). Therefore, Cauchy’s theorem implies that

/}5 f(z) dz = /P f(2) dz

for any two paths P, P between a and b lying in the domain (2 within which
f(z) is analytic. An equivalent concept is the invariance of a complex integral
under deformation of the integration path — namely, if P is a path with fixed
end points a and b, we may deform it into any other path P from a to b
within 2, without altering the value of the integral of f(z).

What happens if we integrate a function f(z) around a closed path C, and
that function is not analytic at every point within C7 A typical instance is
the case of a rational function — i.e., the ratio of two polynomials (see §3.5).
The roots of the denominator polynomial are called the poles of the rational
function — it is not analytic at such points, since the complex ratio (4.3) does
not have a finite limit as z — zp when zg is a pole. Suppose f(z) has just a
single pole zo within 2. We can form a new domain 2 = 2 — 8y by removing
a small disk ¢ of radius r centered on zg, and f(z) is then analytic in 2. By
the invariance under path deformation, we can shrink the path C' around dg
without changing the integral, and we can also make r as small as we please.
This means that the integral along any closed path within {2 that contains zg
depends only on the behavior of f(z) at zo.

The value of the integral about the pole zg depends on what is called the
residue of f(z) at zg — it corresponds to the coefficient of the 1/(z—z¢) term
in the partial fraction expansion of f(z). If zg is of multiplicity m as a pole of
f(z), the residue may be computed (see §3.5) from the expression

) 1 dmfl
residue f(@) = D @

(z —20)" f(2)

Z=2Zg

The integral along a closed contour C' containing zg is 27i times the residue
of f(z) at that pole. This may be generalized (see Fig.4.4) to the case where

the contour C' contains several poles zq,...,zy of f(z), to obtain
N
% f(z) dz = 27i Zresidue f(z),
C b1 Z=Z|

a result known as Cauchy’s residue theorem. This is an extremely powerful
result, that can facilitate the calculation of definite integrals over the real line
in cases where other methods fail. We will return to it in Chap. 16.

4.5 Geometry of Conformal Maps

The map w = f(z) is conformal at the point zq if it is analytic at that point
and its derivative there satisfies df/dz # 0. Geometrically, this means that:



4.5 Geometry of Conformal Maps 55

(a) if two curves Z; and Z, intersect at an angle 6 at the point zg, the images
Wi = f(Z1) and Wy = f(Z2) of these curves will intersect at the image
point wo = f(2z¢) at angle 6 also (isogonality property);

(b)if ds; and dss are the lengths of infinitesimal segments of Z; and Z5 at
the intersection point zg, the lengths d¢; and d/¢s of their image segments
will satisfy d¢; : dly = ds; : dsy (isometry property).

In other words, angles and relative sizes are preserved “locally” by the map
w = f(z), in a neighborhood of each point where f is conformal — i.e., any
geometrical configuration in the z—plane and its corresponding image in the
w-plane are locally “similar” to each other.

We may deduce the above properties as follows. Let z1 (t) and z2(t) be two
complex—valued differentiable functions of a real parameter ¢, that describe
smooth loci Z; and Z5 in the plane. We suppose these loci intersect at a point
z,. corresponding to values 71 and 72 of the parameter: z, = z1 (1) = z2(72).
In order to analyze this intersection point, we express the curve parametric
derivatives there in polar form as

z) (1) = o1 exp(i6y) and z5H(m2) = o9 exp(ifz).

Here 01 and o9 represent the parametric speeds (i.e., the rates of change of
arc length with respect to the parameter ¢) of the two curves z;(t) and z2(t)
at their point of intersection, while the angles 6, and 6, indicate the curve
tangent directions at that point. Thus, the complex ratio

N

k = ?Eﬁ) — T expi (61 — 62) (4.6)
Z2 7'2) g2

incorporates the following information: (i) its magnitude indicates the ratio
of arc lengths of infinitesimal segments — corresponding to a fixed parameter
increment d¢t — of zq(¢) and zx(t) about the intersection point; and (ii) its
argument gives the angle between z(t) and z2(t) at that point.

We now consider the mapping of the curves z; (¢) and z2(t) by an analytic
function f(z). The image curves W; and W5 are given by

wi(t) = f(z1(t)) and wa(t) = f(z2(t)),

and they evidently intersect at the image point w,. = f(z.). The parametric
derivatives of these image curves at the point w, may be computed using the

chain rule for differentiating a “function of a function” — namely:
d d
wi(r) = d—JZC . 7} (71) and wh(Te) = d—JZc . z5(T2) .

If df /dz # 0 at the intersection point z,, these derivatives clearly also have the
complex ratio k given by (4.6). Hence, the image curves intersect at the same
angle as the original curves, and have the same ratio of parametric speeds.
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4.6 Harmonic Functions

In two dimensions, the Laplacian is the differential operator

02 0?

= 02 T

which may be applied to any twice—differentiable bivariate function ¢(x,y) of
the Cartesian coordinates x and y. If such a function satisfies the equation

Ad =0, (4.7)

it is known as a harmonic or potential function. The Laplace equation (4.7)
is of fundamental importance in a variety of physical problems characterized
by the fact that there is no net “flux” of a vector field through the boundary
012 of any region {2 that does not contain sources or sinks of that flux.

Examples include the determination of velocity fields for incompressible,
inviscid fluid flow and of electrostatic or gravitational force fields subject to
specified conditions at the boundary 92 of the volume {2 of interest. In these
contexts, the function ¢ satisfying (4.7) is a velocity potential or electrostatic
or gravitational potential, and its gradient V¢ is a velocity or force field.

By differentiating the Cauchy—Riemann relations (4.4) one can easily verify
that the real and imaginary parts u(z,y) and v(z,y) of any analytic function
f(z) of a complex variable z = x + iy must be harmonic functions. Thus,
complex—variable methods provide a rich class of “trial” harmonic functions,
which we can form linear combinations of in attempting to satisfy prescribed
boundary conditions. Dirichlet boundary conditions amount to specifying the
value of the potential function ¢ on 02, while Neumann boundary conditions
involve specifying the normal component n - V¢ of the corresponding vector
field (n being the unit normal to 92 at each point).

4.7 Conformal Transplants

Complex—variable methods can also be used to simplify the geometry of the
region {2 of interest, facilitating satisfaction of constraints on solutions to (4.7)
along the boundary 9(2. This method, known as the conformal transplantation
of harmonic functions, is based on the following reasoning.

Suppose w = f(z) specifies a conformal map between the complex planes
z=x+1iy and w = u+iv, and let IT be the image in the w—plane of a given
domain {2 of interest in the z—plane: IT = f(§2). We are concerned here with
cases in which the boundary curve OII of the image region is “simpler” than
the original boundary curve 92 and the desired boundary conditions are thus
easier to impose in the w—plane than in the z—plane.

Suppose ¢(z,y) and (u,v) are functions of the coordinates x = Re(z),
y = Im(z) and u = Re(w), v = Im(w) in the z and w planes, respectively.
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We call ¢(u,v) the conformal transplant of ¢(x,y) under the map w = f(z)
if the functions ¢ and 1 have identical values at corresponding points z and
w of this map. In other words, when a point is mapped according to z — w it
“carries” the value of the function ¢ with it, and these redistributed ¢—values
then define the transplanted function 1. We will demonstrate that, if ¢(x,y)
is a harmonic function of x and y, i.e., it satisfies

Az¢ =0,

where A, = 8?/0x% + 2 /9y? denotes the Laplacian in the z-plane, then its
conformal transplant ¢ (u, v) is a harmonic function of v and v satisfying

Aww =0,

where Ay, = 02 /0u? + §?/0v? is the Laplacian in the w—plane.
Writing the function f in terms of its real and imaginary parts as

f(2) = uw(z,y) + iv(z,y),

the condition for 1) to be the transplant of ¢ under f may be expressed as

oz, y) = ¥(u(z,y),v(z,y)).
Using standard rules for partial differentiation, we have

00 _ udv , 000w
dr  Oxdu  Ox v’

and upon further differentiation

Po _ (Vo owow By (Vo Pudy o oy
ox2  \ 0z ) Ou? Oz Or Oudv Ox

02 T oz ou Tz v

Adding the above to the analogous expression for the second derivative of ¢
with respect to y then gives

ouN  [ou\ | 0%y W\ [0V | 9%y
@J*Qﬂew+(w)%@>&ﬂ

oY
Oudv + Aau Ou + A

AV

o
ov

du Ov auav] 924

Now since f is analytic, its real and imaginary parts are harmonic functions,
and we have A u = Azv = 0. We also note, by virtue of the Cauchy—Riemann
relations (4.4), that the coefficient of the mixed second derivative 9%t /dudv
vanishes. Finally, from (4.5) we may write

ou\ 8u2_ ov'\ 81}2_df
(m)*(m)'-ﬁm)+(@>— du

i , (4.8)
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we hence we deduce that the Laplacians of ¢ and of its conformal transplant

1) are related by
2

Sl RN

Ny = |—
=0 = |1,
Now the complex—derivative of f is non—vanishing if the map is conformal,
and we therefore conclude that A,p = 0 = Ay = 0, i.e., the conformal
transplant of a harmonic function is likewise a harmonic function.

Note that, by the Cauchy-Riemann equations (4.4), we can write (4.8) as

daf
dz

2 _ Ou v Ou Ov

Oz 0y Oyox’

which is simply the Jacobian (see §7.3.1) for the coordinate transformation
(4.1) specified by the conformal map w = f(z). So the condition df/dz # 0
guarantees that the map (x,y) — (u,v) is (locally) one-to—one.

Thus, conformal mapping allows us to solve two—dimensional potential
problems by invoking a transformation that maps the domain of interest to
one of simpler geometry, solving within that domain, and then mapping back
to the original domain. A well-known example is the case of fluid flow around
an airfoil, which may be regarded as a Joukowski map of a circle (see §4.8).

4.8 Some Simple Mappings

Given complex numbers a, b, ¢, d such that ad — bec # 0, the mapping

az+b
w=1[f=)="_ 3 (4.9)

is known as a Mdbius transformation, after the astronomer-mathematician®

August Ferdinand Mobius (1790-1868). It is also called a fractional linear (or
bilinear) map. Since the derivative of f is
df ad — bc

dz ~ (cz+d)?’

the condition ad — bc # 0 ensures that the map (4.9) is conformal for all z.
If this condition is not satisfied, f(z) = constant, since the numerator and
denominator in (4.9) are then multiples of each other. The inverse

dw—-b
cw—a’

3 Mébius, like his mentor Gauss, was a professor of astronomy [197]: “At that time,
a mathematician was essentially a poor drudge whose time was spent pumping

basic calculations into ill-prepared unmotivated pupils, or if more ambitious was
at best an administrator, whereas an astronomer was a scientific professional.”
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of the map (4.9) is evidently also a M&bius transformation. Moreover, one can
verify that the successive application or “composition” of any two (or more)
Mobius transformations yields a single overall Mobius transformation. Hence,
the Mo6bius transformations have the algebraic structure of a group.

If ¢ # 0, the value z = —d/c is exceptional, since it is not mapped to a
finite value by (4.9). To address this we invoke the extended complex plane,
appending the value “c0” to the finite complex numbers (see §4.2) so that

f(=d/c) = 0 and a/c = f(c0).

We may then regard (4.9) as defining a one—to—one mapping of the extended
complex plane into itself. In fact, M6bius transformations are the only complex
mappings that are one-to-one over the entire (extended) complex plane. To
obtain one-to—one correspondence with any other form of f, it is necessary
to restrict the domain of the independent variable z.

The Mébius transformation maps the set of all straight lines and circles in
the z—plane into the set of all straight lines and circles in the w—plane (note,
however, that lines may be mapped into circles and vice-versa). In general,
such a map has two fized points, i.e., complex values z such that z = f(z).
They are the solutions of the quadratic equation

cz? +(d—a)z —b =0.

Mobius transformations encompass several simple mappings as special cases,
including translations, rotations, scalings, and inversions.

We note that there are only three essential (complex) parameters in (4.9),
since we can divide the numerator and denominator by any of the constants
a, b, ¢, d (if non—zero) without changing f(z). Correspondingly, a Md&bius
transformation can be found that maps any three specified points z1, zs, 2o
to three other specified points wy, wo, ws. The desired map is obtained by
solving for w in terms of z from the “cross ratio” relation

(W—wi)(Wy —w3) (2 —21)(22 — 23)
(W—w3)(w2—w1)  (z—23)(z2—21)

As another example, consider the Joukowski transformation defined by
w = f(z) =2z + —. (4.10)

As noted in §4.7, this maps a circle through one of the points z = +1 into
an airfoil shape (Fig.4.5). This map is conformal everywhere, except the two
points z = £1. Without restrictions on z, it gives a double covering of the
w-plane, since if w, is the image of z,, it is also the image of 1/z,. For a
one-to—one map, we must restrict z to either of the domains |z| < 1 or |z| > 1.

With the polar form z = r exp(i#) one can verify that the loci r = constant
and 6 = constant (circles centered on the origin and radial lines through it) are
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z-plane y w—plane

. ==\

N

Fig. 4.5. The Joukowski map defined by equation (4.10) transforms any circle that
passes through either of the points z = —1 or z = +1 into a cuspidal “airfoil” shape.

respectively mapped? to families of confocal ellipses and hyperbolae that are
mutually orthogonally. The circle » = 1 and the radial lines § = 0, = 7 /2 are
exceptions: they map to (portions of ) the axes Im(w) = 0 and Re(w) = 0. The
image in the w—plane of a smooth curve in the z—plane that passes through
either of the points z = +1 is not, in general, a smooth curve.

Thus, using the method of conformal transplantation as described in §4.7,
we can employ the Joukowski map to determine the nature of incompressible,
inviscid flow over an airfoil section from the known solution to the simpler
problem of such flow over a cylinder. In addition to the boundary condition
n- V¢ = 0 at the boundary, one usually makes the assumption that V¢ is
constant (i.e., the flow is uniform) far from the body in question.

4 See [21] for an interesting discussion of the implications of this fact for the orbits
of particles determined by power—law central force fields.
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Quaternions

A school of “quaternionists” developed, which was led after Hamilton’s
death by Peter Tait of Edinburgh and Benjamin Pierce of Harvard.
Tait wrote 8 books on the quaternions, emphasizing their applications
to physics. When Gibbs invented the modern notation for the dot and
cross product, Tait condemned it as a “hermaphrodite monstrosity.” A
war of polemics ensued, with luminaries such as Kelvin and Heaviside
writing some devastating invective against quaternions. Ultimately the
quaternions lost, and acquired a slight taint of disgrace from which they
have never fully recovered.

John C. Baez, The Octonions [23]

The methods of three-dimensional vector analysis — dot and cross products,
and the differential operators such as the gradient, divergence, and curl — are
fundamental to modern science. It is not commonly appreciated, however, that
these methods are actually a rather late development in mathematics: they
devolved from a more—sophisticated theory, the algebra of the quaternions. We
present here a brief introduction to quaternions and their use in describing an
important set of geometrical transformations — namely, rotations in R3. As
we shall see in Chap. 22, this property of quaternions proves invaluable in the
formulation of a sufficient—and—necessary characterization for Pythagorean
hodographs in R3, that is invariant under arbitrary spatial rotations.

5.1 Multi—dimensional Numbers

We noted in §4.2 that real and complex numbers are equivalent with regard
to the rules for their algebraic manipulation: any result derived by algebraic
operations on an expression in which the symbols represent real numbers will
be equally true if, instead, we interpret them as complex numbers.

The Irish mathematician Sir William R. Hamilton (1805-1865) observed
that, since the quantities “1” and “i” are qualitatively different in nature,
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adding multiples of them to form x + iy is like adding apples and oranges. To
emphasize that z = x + iy is really a kind of “two—dimensional number,” he
preferred to regard it as an ordered pair (z,y) of real numbers, the sums and
products of such pairs being defined by the rules

(x1,y1) + (x2,92) = (x1 + 22,51 +¥2),

(x1,y1) (X2, y2) = (T122 — Y1Y2, T1Y2 + Tay1) -

This purely formal interpretation — which defines a two—dimensional number
system that mimics the one-dimensional real numbers in its behavior — also
bypassed the controversy over the “existence” of i = v/—1 that persisted! for
years after the use of complex numbers became commonplace.

This “theory of algebraic couples” naturally motivated Hamilton to seek
an algebra of three—dimensional numbers (i.e., triples of real numbers) whose
sums are performed component—wise, and whose products are formulated so
as to obey the commutative, associative, and distributive laws satisfied by the
real and complex numbers. Hamilton devoted many years to this search and,
although unsuccessful, his efforts revealed instead that an algebraic system of
four—dimensional numbers — namely, the quaternions — can be constructed
if one is willing to relinquish the commutative law for products.

Hamilton was a child prodigy, who reputedly attained varying degrees of
familiarity with thirteen different languages. Like his German contemporary
Mobius, he was appointed a professor of astronomy (in Trinity College, Dublin,
at age 22) rather than of mathematics. The inspiration for the multiplication
rules governing the quaternion basis elements 1, i, j, k came to him suddenly
[108] while walking with his wife to a meeting of the Royal Irish Academy,
and he carved the equations

=7 =k*=ijk = -1 (5.1)

embodying those rules into a stone of Brougham Bridge in Dublin, which he
happened to be crossing (here “1” is the usual real unit: its product with the
other basis elements leaves them unchanged). Preserving the order of terms
in products, one may deduce from the above that

ij=—ji=k, jk=-kj=i, ki=—-ik =]j. (5.2)

Thus, the products of the basis elements are evidently non—commutative.
Hamilton is best known? nowadays for his studies in optics and mechanics,
which paved the way towards the development of quantum mechanics. The

! Even as late as 1831, Augustus De Morgan (1806-1871), professor of mathematics
at University College, London, wrote that “We have shown the symbol v/—a to be
void of meaning, or rather self-contradictory and absurd. Nevertheless, by means
of such symbols, a part of algebra is established which is of great utility.”

2 His name also arises in graph theory: a Hamiltonian graph contains a path that
starts and ends at a specific vertex, and visits each other vertex exactly once.
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initial step in the study of complex physical systems is typically to formulate
the Hamiltonian, which expresses the total energy of the system in terms of
its degrees of freedom, thus allowing a systematic derivation of the equations
governing the system dynamics. Hamilton secured international fame as early
as 1832 by predicting theoretically a phenomenon known as conical refraction,
associated with biaxial crystals, that was experimentally verified in the same
year by his Trinity College colleague, the Rev. Humphrey Lloyd.

However, the majority of Hamilton’s scientific career was preoccupied with
the algebra of quaternions and its use in describing physical and geometrical
phenomena. Insofar as modern physics and geometry rarely employ quaternion
formulations, this endeavor — culminating in Lectures on Quaternions (1853)
and the posthumous Elements of Quaternions (1866) — was hardly a success.
These monumental treatises were considered by contemporaries to be virtually
impenetrable: concerning the former, the astronomer Sir John Herschel (who
discovered of the planet Uranus) solemnly declared it would “take any man a
twelvemonth to read, and near a lifetime to digest ...” [108].

E. T. Bell’'s Men of Mathematics [32] characterizes Hamilton’s latter years
under the title “An Irish Tragedy.” The role that Hamilton sought to secure
for the quaternions was occupied instead by three—dimensional vector analysis,
a subject now familiar to every mathematician, scientist, and engineer. The
main concepts of vector analysis in R® — namely, the dot and cross products,
and the vector differential operators (gradient, divergence, curl) — appear as
sub—components of the quaternion algebra. As emphasized by Crowe [108], the
real tragedy is perhaps the prevailing ignorance of the extent to which vector
analysis was extracted from the theory of quaternions, by the physicists James
Clerk Maxwell (1831-1879) and Josiah Willard Gibbs (1839-1903), and the
engineer Oliver Heaviside (1850-1925). The struggle between quaternions and
vectors for supremacy in scientific and mathematical discourse is described by
Crowe [108] as follows:

A high level of intensity and a certain fierceness characterized much of
the debate and must have led many readers to follow it with interest.

... Gibbs and Heaviside must have appeared to the quaternionists
as unwelcome intruders who had burst in upon the developing dialogue
between the quaternionists and the scientists of the day to arrive at
a moment when success seemed not far distant. Charging forth, these
two vectorists, the one brash and sarcastic, the other spouting histor-
ical irrelevancies, had promised a bright new day for any who would
accept their overtly pragmatic arguments for an algebraically crude
and highly arbitrary system. And worst of all, the system they recom-
mended was, not some new system ... but only a perverted version of
the quaternion system. Heretics are always more hated than infidels,
and these two heretics had, with little understanding and less acknow-
ledgement, wrenched magjor portions from the Hamiltonian system and
then claimed that these parts surpassed the whole.
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Because of the familiarity of modern readers with vector concepts, we opt
below to express the basic quaternion operations in terms of them, although
it should be recognized that this practice is anachronistic.

5.2 No Three—dimensional Numbers

Before proceeding to the quaternions, we briefly demonstrate why Hamilton’s
search for a three-dimensional number system was unsuccessful. Suppose we
attempt to extend the complex numbers x +iy by introducing a new unit j —
i.e., we postulate three-dimensional numbers of the form = +iy 4+ j z that are
presumed to exhibit closure under addition, subtraction, multiplication, and
division, and also obey the commutative and associative rules for sums and
products. Closure under multiplication implies that the product ij must be
expressible as x + iy + j z for real values x, y, z. Then multiplying by i and
expanding i (ij) =i(r +iy+j2) usingi? = —1landij=z +iy+jz gives

—j=zx—y +ilztyz) +j22.
This equation is linear in j, and can be solved to obtain

y—zx — i(x+yz)
1+ 22

j:

But since z, y, z are real numbers, this implies that j is just a complex number
— contradicting the supposition that it is a fundamentally new unit, linearly
independent of 1 and i. Therefore, the hypothesis that we can create a three—
dimensional number system, that is a formal extension of the real and complex
numbers, and obeys all the rules of a field (see §2.4), must be false.

5.3 Sums and Products of Quaternions

We employ calligraphic letters A, B, . .. etc., to denote quaternions, which are
“four—dimensional numbers” of the form

A=a+azi+a,j+ak and B =b+b,i+b,j+0bk. (5.3)

In honor of Hamilton, the system of quaternions is denoted H. The quaternion
“basis elements” 1, i, j, k are governed by the relations (5.1) and (5.2). Since
the products of the basis elements are non-commutative, we have A B # BA in
general. Quaternion multiplication is associative,® however — one may verify

that (AB)C = A(BC) for any three quaternions A, B, C.

3 In fact, the adjective associative was introduced by Hamilton to describe precisely
this property of the quaternions.
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The sum of the two quaternions (5.3) is performed component—wise
A+ B = (a+b) + (ag +b)i+ (ay+0by)j+ (a, +b,)k, (5.4)
and using relations (5.2), the product is given by

AB = (ab— azby —ayb, —a.b,)
+ (aby +baz + ayb, —a.by)i
+ (aby + bay + azby —agh.)]j
+ (ab, + ba, + azb, — ayb,) k. (5.5)

The notations of three—dimensional vector analysis offer a useful shorthand for
quaternion operations. Regarding i, j, k as unit basis vectors in a Cartesian
coordinate system, we may consider A as comprising “scalar” and “vector”
parts,* a and a = a,i +a,j+a.k, and we write A = (g, a). Real numbers and
three—dimensional vectors are subsumed as “pure scalar” and “pure vector”
quaternions, of the form (a,0) and (0, a), respectively — for brevity, we often
denote such quaternions by simply a and a.

Writing A = (a,a) and B = (b,b) in lieu of (5.3), the sum (5.4) and the
product (5.5) may be more compactly expressed as

A+B = (a+b,a+Db), AB = (ab—a-b,ab+ba+axb),

where the usual rules for vector sums and dot and cross products apply (the
a x b term is responsible for the non—commutative nature of the product).
Hamilton also considered the quaternion differential operator

4*18—+'8—+k8—
- Oz J@y 0z’

which we recognize as the gradient (denoted by V), and its negated square

which defines the Laplacian A. Taking the quaternion product of V with a
vector function v = v,i+ v,j + vk of (z,y, z) yields a quaternion

(=V v,V xv)

in which the now—familiar divergence V - v and curl V x v of the vector field
v are apparent in the scalar and vector parts. These operators are crucial to
the modern formulations of mathematical physics — Maxwell’s equations of
electromagnetism, the Navier—Stokes equation of fluid mechanics, etc.

4 Also called the “real” and “imaginary” parts of a quaternion, since the square of
a “pure imaginary” (vector) quaternion is always negative. The terms scalar and
vector were introduced by Hamilton in an 1846 Philosophical Magazine article.
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Each quaternion A = (a, a) has a conjugate A* = (a, —a) and a magnitude
equal to the non—negative real number |A| defined by

A2 = A" = AA" = a2 + [a]?. (5.6)

One can easily verify that the conjugates of quaternion products satisfy

(AB)" = B*A*. (5.7)
In terms of the conjugate and magnitude, we can specify an inverse
A*
AL =
Al

for each quaternion A # 0, so that A=A = AA~! = 1. Using the inverse, one
can define the left division or right division of B by A as A™1B or BA~! (due
to the non—commutative nature of the product these results are, in general,
distinct). Since the quaternions satisfy all the properties of a field except the
commutative law M; for the product (see §2.4), they constitute a division ring.
Alternatively, the quaternion algebra is sometimes called a division algebra.

When |A] = 1, A is a unit quaternion. In fact, we may identify the unit
quaternions with the points of the unit “3-sphere” defined by

P+ +p =1 (5.8)

in the Euclidean space R* with coordinates (p, pz, py, p»). Now if A, B are unit
quaternions (i.e., their components are coordinates of points on the 3—sphere)
then C = A B is also unit, and identifies another point on (5.8). Thus, points on
the 3-sphere have the structure of a group® under quaternion multiplication.

As an alternative to the scalar/vector model, the quaternion algebra can
be realized by various matrix models. For example, making the identifications

1. 10 . 01 . 0 i K o i 0
o1|> '7|-1o0| Y o] 0—il’
gives a representation for the quaternions in terms of complex 2 x 2 matrices.
It is easy to verify that these matrices satisfy the relationships (5.1) and (5.2)

characterizing the quaternion basis elements. Alternatively, quaternions can
be represented by real skew—symmetric 4 x 4 matrices of the form

a —Qg —Gy —a,
Ay G —ay Gy

A:

5 This is not true of the familiar “2-sphere” in R®. In fact, the only other generalized
spheres whose points admit such a group structure are the “O-sphere” in R!
(comprising the two points +1) and the “l1-sphere” in R? (the unit circle).
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If A and B are two such matrices, representing the quaternions (5.3), one can
readily check that their matrix product yields a 4 x 4 skew—symmetric matrix
of the same form, with elements defined by the components of A B, as given in
(5.5). Note that the transpose AT represents A* and det(A) = |A|*. Thus, the
unit quaternions are defined by matrices of the above form with det(A4) = 1.

5.4 Quaternions and Spatial Rotations

As noted in §2.4, the algebra of quaternions forms a division ring (or skew field
or non—commutative field), since they satisfy all the laws of a field except the
commutative law of multiplication. Non—observance of this commutative law
was an impediment to the acceptance of quaternions, but in fact this property
is essential for the description of concatenated geometrical transformations in
which the final outcome depends upon the order of the operations. Of primary
interest to us here is the case of spatial rotations — see Fig. 5.1.

Unit quaternions offer a concise and elegant means of describing rotations
of vectors about arbitrary axes in R3, a geometrical transformation that can
otherwise be quite cumbersome to manipulate. Since both terms on the right—
hand side of (5.6) are non-negative, unit quaternions necessarily have the form
U = (cos 20, sin 26 n) for some angle 16 and unit vector n.

If V = (0,v) is any pure vector, the quaternion product U VU* also defines
a pure vector, corresponding to a rotation of v through angle § about an axis
defined by n. This can be verified by carrying out the multiplication: using
standard expansions for scalar and vector triple products, one obtains

UVU* = (0, (n-v)n + sinfn xv + cosf(nxv) xn). (5.9)
Now prior to the rotation, v can be expressed as

v=(n-v)n+ (nXv)xn, (5.10)

Fig. 5.1. Illustration of the non—commutative nature of spatial rotations. Left: a
vector is rotated by angle a about the y-axis followed by angle 8 about the z—axis.
Right: the same vector is rotated by angle 8 about the z—axis followed by angle «
about the y—axis. These different orderings obviously produce disparate end results.
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the terms on the right being the components of v parallel and perpendicular
to n. As expected, the rotation leaves the parallel component unchanged,
while the orthogonal component becomes sinffn x v + cosf (n x v) x n. Note
that the correspondence between unit quaternions and spatial rotations is not
quite one-to—one — one can easily verify that both ¢ = (COb 30,sin 36 n) and
—U = (—cos %9 —sin 16 n) describe exactly the same rotatlon

Since (5.9) is hnear in v, the rotated vector can also be characterized by
a matrix multiplication M v, where the elements mj of the 3 x 3 matrix M
are given in terms of ¢ and the components (n,ny,n.) of n by

mi =n2 + (1 —n2)cosb,

mig = ngny(l —cosf) —n,sinb,

miz = nyng (1l — cosf) + nysind,

moy = na:ny(l —cosf) +n.sinb,
+(1—-n )COSQ

Mog = nynz(l —cosf) —ngsind,

ms31 = NNz (1l —cosf) —nysind,

ms3a = nyn;(1 —cosf) + nysind,

mss = n? 4 (1 —n?)cosf.

The form cos ¢ + sin ¢ n of a unit quaternion (where |n| = 1), regarded as
a sum of scalar and vector parts rather than an ordered pair, is reminiscent of
Euler’s formula exp(i¢) = cos ¢ +sin ¢ i for a unit complex number. Moreover,
one can verify that unit quaternions satisfy an analog of de Moivre’s theorem,

(cos ¢ +singn)® = coske + sinkpn

for integer k. Thus, the quaternion U = (sin ¢, cos ¢ n) is sometimes written
in “exponential form” as exp(¢n). One must be cautious, however, with the
usual rules for the exponential function: if U, = exp(¢1n) and Us = exp(¢on),
we can write UiUs = exp((¢1 + ¢2)n), but there is no simple exponential form
for Uiy when Uy = exp(p1ny) and Us = exp(gpons) with n; # no.

Any number of successive spatial rotations, specified by arbitrary angles
and axes, can be replaced by a single “equivalent” rotation corresponding to
a unique angle and axis. The quaternion representation of rotations provides
an elegant illustration of this fact — the result of consecutively applying the
rotations defined by U; = (cos %917sin %Glnl) and Us = (cos %92,811’1 %92112)
to V = (0,v) is represented by

Us (LLVUT ) U
Now since Uf Uy = (Us Uy )™ this can also be written as

uvur,
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where U = Uy U;. Thus, the outcome of applying the rotation U followed by
the rotation Us is equivalent to a single rotation represented by U = Us U .
The non—commutative nature, Us Uy # Uy Us, of quaternion products reflects
the fact that the final outcome of a sequence of rotations depends explicitly
on the order in which they are applied.

Now if # = (cos 16,sin 30 n) is the product of Us = (cos 265, sin 16,n5)
and Uy = (cos %91, sin %F)lnl) one may verify that the equivalent angle # and
axis n for the compound rotation are given by

1p _ -1 1 1 c1lp o 1
50 = Fcos™ " (cos 50, cos 502 — sin 50; sin 565 cos a) ,

sin16; cos16,n; + cosi6;sinifyny, — sinlf sinlhyn; x ny
n — 2 2 2 2 2 2
- b
1 1 1 e 1 2
\/1 — (cos 501 cos 56 — sin 501 sin 560 cos a)

where we set ny - ny = cos « (a sign ambiguity arises since rotations by € about
n and by — 6 about —n are equivalent). These formulae were first obtained,
three years prior to Hamilton’s discovery of quaternions, by the rather obscure
French mathematician Olinde Rodrigues® (1794-1851), who became wealthy
through a career in banking and was a supporter of the socialist reform ideas
of Claude Henri de Rouvroy, the Comte de Saint—Simon.

The algebra of unit quaternions allows us to compound spatial rotations
without being explicitly concerned with ferocious formulae, such as the above
expressions for # and n in terms of #;, 65 and n;, ns. Quaternions have been
employed in motion planning and attitude control for aircraft, spacecraft, and
robots, and in defining spatial motions for computer graphics, animation, and
“virtual reality” by smoothly interpolating discrete orientation sequences for
rotating objects: see, for example, [28,262,278,293,410,463]. They have also
been used as a basis for alternative formulations of physical theories, such as
quantum mechanics and the special and general theories of relativity.

5.5 Rotations as Products of Reflections
A plane IT in R3 is the set of points p = (z,y, 2) satisfying the equation
n-p= da

where n is a unit vector specifying the orientation of I, and d is its distance
from the origin. A reflection in the plane IT is a one-to—one mapping of R3
that takes each point p to the image point R(p) defined by

R(p) =p+ 2(d—n-p)n. (5.11)

5 Another well-known mathematical result of Rodrigues is the recurrence relation
(3.6) for the Legendre polynomials.
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Geometrically, p and R(p) are on opposite sides of (and equidistant from) the
plane IT, and the line joining them crosses this plane orthogonally. Note that
R(p) =p < p € II. Consider now successive reflections Ry, Ry in distinct
non—parallel planes IIy, Ils with L = II; N Il as their line of intersection.
Clearly, each point of L remains fixed under the compounded reflections Ry Ry,
and one can verify that the images of the points of each plane IT orthogonal to
the line L amount to rotations about the point ¢ = LN II where L crosses II.
Thus, a sequence of reflections in two distinct, non—parallel planes corresponds
to a rotation in R? about their line of intersection.

The characterization of spatial rotations as products of reflections can be
expressed in terms of a quaternion model [107]. Let V = (0, v) be a pure vector
quaternion. Then for any pure vector quaternion A = (0,a) with |a| = 1, the
product

AVA = (0,v—2(a-v)a)

yields a pure vector quaternion, and from (5.11) we recognize its vector part
to be the reflection of v in the plane a- p = 0 through the origin. A sequence
of two reflections, defined by pure vector quaternions A = (0,a) with |a] =1
and B = (0,b) with |b| = 1, transforms V into the pure vector quaternion

B(AVA)B,

and one can easily verify that this is equivalent to the rotation U VU*, where
the unit quaternion U = (cos %9, sin %9 n) is defined by

cos%@z—zrb and sin%@n:bxa.

Hence, if a-b = cos ¢, the angle of rotation is 2(¢ =) and the axis of rotation
is in the direction of the cross product b x a.

We can invert the above reasoning and ask: for a spatial rotation specified
by a unit quaternion U = (cos %9, sin %9 n), what pairs of reflections in planes
are equivalent to it? To address this we choose unit vectors ey, e; orthogonal
to n, such that (e, ez, n) is an orthonormal triad. Then, for any «, successive
reflections in the two planes through the origin with the normals

cosae; + sinaey and — cos(a+ 20)e; — sin(a+ 16)es

are equivalent to the specified rotation. Thus, there is a one—parameter family
of pairs of reflections equivalent to any given spatial rotation — the reflection
planes are members of the pencil of planes having the line through the origin
along n as their common line, with angular separation %H:N:ﬂ of their normals.

5.6 Families of Spatial Rotations

Given distinct unit vectors in the plane, the problem of finding the rotation
that maps one into the other is trivial: if 6 is the clockwise angle between
them, we can either rotate clockwise by angle € or anti—clockwise by 27 — 6.
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The equivalent problem in R2 is more subtle. The “obvious” solution is to
rotate within the plane defined by the two vectors, in which case the solution
to the planar problem holds (this corresponds to motion along a great circle
on the unit sphere in R3). However, there is also a one-parameter family of
spatial rotations that achieve the desired result, for which the motion of one
vector into the other departs from their common plane — these correspond
to motions along small circles of the unit sphere. Unit quaternions provide an
elegant means of characterizing such families of spatial rotations.

Suppose, for simplicity, we choose coordinates so that the first unit vector
coincides with i. The second unit vector v has a general orientation. We are
then interested in the quaternion solutions i to the equation

Uiu* = v, (5.12)

that specifies” a spatial rotation of i into v. Writing U = wug + u,i+ Uyj +u.k
and v = A+ pj + vk, equation (5.12) is equivalent to the system of three
quadratic scalar equations
ud +u? — ui —uZ =N, 2upus tuguy) = p,  2(upu, — uguy) = v

in the four unknowns ug, ug, uy, u,. Note that summing the squares on both
sides gives (ud 4 u2 + uZ +u?)? = A2 4+ p? + 2 = 1, so the condition that U/
be a unit quaternion is automatically satisfied. Since we have three equations
in four unknowns, the solutions to (5.12) possess one degree of freedom.

A particular (pure vector) solution, with ug = 0, is easily seen to be

= +./11 iy P Y x). 1
U = +/ +)\)(1+1+/\J+1+)\ (5.13)

Moreover, if Q is any quaternion satisfying the equation
QiQ" =i, (5.14)
then U Q must also be a solution of (5.12), since
UQIUQ)* =U(QiQHU* = UiU*.
The quaternions satisfying (5.14) are necessarily of the form
Q = cos¢ + sinoi,
as can be deduced from the component equations of (5.14), namely

G+a-a -4 =1, 2(qa+aa) =0, 2(¢¢ —qq) =0

" For any vector v and quaternion A, the form Av.A* always yields a pure vector.
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where we take Q = qo + ¢zi+q,j+ ¢-k. The most general solution to equation
(5.12) can thus be parameterized in terms of the variable ¢ as

pHecoso+vsing
14+ A

v COosS ¢ — pusin ¢
— k. .1
1+ A ) (5.15)

UP) = /21 +N) <Sin¢ + cospi +

Since sin(¢ + 7) = —sin ¢ and cos(¢ + m) = — cos ¢, the above embodies the
sign ambiguity in (5.13). Thus, on proceeding from the special solution (5.13)
to the general solution (5.15), we may omit the + sign.
We can gain better geometrical insight by writing & = (cos %9, sin %9 n).
The rotation axis n = (ng, ny,n.) and angle 6 must then satisfy
n2(1 — cosf) + cosh = X,
NgNy(l —cosf) +n,sinf = p,

NNy, (1 —cosd) —nysinf = v.

Writing o = cos ™! ), this has (for o < 6 < 27 — «) the general solution

4 4 /cos? %a — cos? %0

Ny = 1 )
sin 50
21 _ . 21p .1
+py/cos? 5a —cos” 50 — vcos 50
ny = -
Y (14 A)sin 36 ’
21, 21 1
iy\/cos 50— cos” 50 + pcos 50
n, =

(14 A)sin 36

This parameterizes the family of spatial rotations that map the unit vector i
into another unit vector v by specifying the rotation axis as a function n(f)
of the rotation angle 6, over the restricted domain 6 € [, 27 — o] where « is
the angle between i and v (measured in their common plane).
We define a unit vector e orthogonal to the common plane of i and v,
and a unit vector ey in its plane, by
ixwv i+v
and ey = — .
[i+v]

e =
T x|

Note that ey corresponds to the (unit) bisector of i and v. The rotation axis
lies in the plane spanned by these vectors, and may be written as

sin %a cos %0 e| + 4/cos? %a — cos? %9 €
n(f) = T 1
oS 3¢ Sin 59

(5.16)
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The =+ sign in (5.16) indicates that for each 8 € (o, 2 — «) there are two
axes n about which a rotation by angle 6 maps i to v. These axes lie in the
plane of e , ey and have equal inclinations with e; . Some noteworthy special
cases of expression (5.16) are as follows:

(a) when 6 = «, we have n(a) = e, and the rotation is along the great circle
between i and v;

(b) when § = 7, we have n(m) = £eq, so i executes either a clockwise or
anti—clockwise half-rotation about ey onto v;

(c) when 6 = 27 — «, we have n(a) = —e,, and the rotation is again along
the great circle between i and v, in the opposite sense to case (a).

Figure 5.2 illustrates these ideas. The axes n for all possible rotations of i
onto v lie in the plane IT spanned by e , eg. The smallest and largest rotation
angles, # = « and 27—« correspond to the axesn = e and —e_ , respectively.

(@

Fig. 5.2. Spatial rotations of a unit vector i onto a unit vector v. (a) Unit vectors
e (orthogonal to i and v) and eg (the bisector of i and v) — the plane II spanned
by e, e is orthogonal to that of i and v. (b) For any rotation angle 6 € (o, 27 —«),
where o = cos™! (i-v), there are two possible rotations, with axes n inclined equally
to e in the plane II. (c) Sampling of the family of rotations of i onto v, shown as
loci on the unit sphere. (d) Axes n for the rotations in (c), lying in the plane IT.
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These cases correspond to motions along the great circle of the unit sphere
containing i and v. Intermediate rotation angles # admit two distinct rotation
axes, on either side of e, and correspond to motions along small circles of
the unit sphere, with the special case § = +7 arising when n lies in the plane
of i and v. Taken altogether, these motions describe a coazal system of circles
(see §8.2.2) on the unit sphere.

By comparing (5.15) with the solution giving n in terms of 6, of the form

UO) = cos 30 +sin 30 (n,i+n,j+n.k),
we find the relationship between the angular variables ¢ and 0 to be

1
_q cos 30
i

COS §Oé

¢ = — sin € [-im+in] for €[, 2 —a].

Although the parameter 6 has a clearer geometrical interpretation (the angle
of rotation from i to v about the corresponding axis n), the parameterization
(5.15) in terms of ¢ is simpler to use in practice. The special solution (5.13)
corresponds to the case § = m, for which n lies in the plane of i and v.

5.7 Four—dimensional Rotations

Quaternions live in R, a realm which admits possibilities that appear to defy
our “common sense” geometrical intuition based on experience in R? and R3.
In R* one discovers [318] that, for example, a sphere made of flexible material
may be turned inside out without tearing the material; a prisoner in a locked
cell may escape without penetrating its walls; and a knot in a length of string
may be untied without moving its ends. Such possibilities arise from the extra
“maneuvering freedom” afforded by the additional dimension.

Our concern here is specifically with rotations in R* — in Chap.22 we
shall employ quaternion polynomials (equivalent to parametric curves in R*)
to generate Pythagorean hodographs in R3 through a continuous sequence of
scalings/rotations applied to a unit “reference” vector. It transpires, however,
that such a specification is not unique — there exists a one—parameter family
of quaternion polynomials that specify a given Pythagorean hodograph, and
we shall see that they correspond to rotations of each other in R*.

Quaternions can be employed to describe rotations in R, as well as in R3.
If we regard a given quaternion A as a vector in R*, the most general rotation
of it is specified [135,310] using two unit quaternions Uy, Us by the map®

A = U AU (5.17)
8 This defines a linear transformation of the components of A by a 4 x 4 orthogonal

matrix of determinant 1, i.e., a member of SO(4). Since U1, U2 are independently
chosen, taking the conjugate of the latter in (5.17) is purely conventional.
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The correspondence between pairs of unit quaternions and rotations in R? is
not one—to—one, however, since — U1, —Us define the same rotation as Uy, Us
— as with the description of rotations in R3 by a single unit quaternion. The
special instances of (5.17) defined by

A—-UA and A — AU,

that involve multiplying a given quaternion by a single unit quaternion I on
the left or right, are known as a right screw and left screw, respectively [135].
Such quaternion mappings will play an important role in the theory of spatial
Pythagorean—hodograph curves (see Chap. 22).

A rotation in R? can be specified by a unit complex number e and has a
single free parameter, the rotation angle §. A rotation in R3, being specified
by a unit quaternion & = cos %0 + sin %9 n, exhibits three degrees of freedom
— the rotation angle 6, and the direction cosines of the rotation axis n. Since
a general rotation in R* is specified by two unit quaternions U, Uy it exhibits
siz degrees of freedom [135,310]. To understand the geometrical significance
of this, we must review some ideas from the geometry of R* [137,319].

A line, plane, and hyperplane in R* are respectively the point sets linearly
dependent on two, three, and four points “in general position” — alternately,
they are the sets of points that satisfy three, two, and one linear equations in
the four Cartesian coordinates of R*. A hyperplane in R* is just a copy of the
familiar three-dimensional Euclidean space R?, but there are infinitely many
such copies in R*. A hyperplane divides R* into two disjoint regions: it is not
possible to move from one to the other without crossing the hyperplane — as
is true for a plane in R?, and a line in R2. The following incidence relations®
follow directly from the preceding definitions:

1. two hyperplanes intersect in a plane;
2. three hyperplanes intersect in a line;
3. four hyperplanes intersect in a point.

Case (1) amounts to two linear equations in four unknowns, thus leaving two
degrees of freedom. Case (2) yields three linear equations in four unknowns,
leaving one degree of freedom — equivalently, one can say that “a plane and a
hyperplane intersect in a line.” Case (3) corresponds to four linear equations
in four unknowns, and thus admits a single point as its solution — one can
say that “two planes intersect in a point” as an alternative phrasing.
Consider two planes IT;, IT, in R* with p as their intersection point. These
planes are said to be absolutely perpendicular if each line through p on II is
orthogonal to each line through p on II5. This is a strictly four—dimensional
phenomenon, with no analog in R? — in dealing with R*, we must suppress our
intuition concerning the behavior of planes in R? (for example, it is possible
to circumnavigate a plane in R* without crossing it, just as it is possible to

9 These hold for hyperplanes in “general position” — or we can dispense with this
qualification with homogeneous coordinates in projective four—-dimensional space.
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circumnavigate a line in R® but not in R?). At each point of a given plane in
R*, there is a unique plane absolutely perpendicular to it.

A key geometrical feature of a general rotation in R"™ is its stationary set,
i.e., the set of points that do not move under the rotation. In R? the stationary
set is a point (the center of the rotation), while in R? it is a line (the azis line
of the rotation). These are examples of simple rotations, characterized by the
property that in R™ the stationary set has dimension n — 2. Now in R%, one of
two absolutely perpendicular planes may rotate on itself about their common
point while the other remains stationary. This is a simple rotation in R* —
the stationary set, the stationary axis plane, is of dimension n — 2.

However, a new possibility — a double rotation — arises for the first time
in R*. This involves both of the planes absolutely perpendicular to each other
rotating on themselves about their common point. Such rotations of absolutely
perpendicular planes are commutative, i.e., the outcome is independent of the
order in which they are performed, and the stationary set comprises just the
common point of the two absolutely perpendicular planes.

The six parameters associated with a general (double) rotation in R* can
be understood geometrically as follows. Without loss of generality, take the
origin of R* as the common point of the two absolutely perpendicular planes.
We need only specify one of these planes, and the other will then be uniquely
determined. Each plane has a rotation angle associated with it, accounting for
two parameters. The remaining four parameters specify one of the two planes:
the plane is determined by two additional points, not collinear with the origin
— each point has four coordinates, but also two freedoms of motion within
the plane, so only four essential parameters are required to fix the plane.

Under a continuous rotation at angular speed w in R? or R3, every point
(other than points of the stationary set) executes a periodic path — namely,
a circle — and will return to its initial position, at time ¢t = 0, every integer
multiple of the motion period T' = 27 /w. In R*, however, we first encounter
the strange phenomenon of rotations incurring non—periodic motions of points.
Consider a double rotation involving angular velocities w; and ws about two
absolutely perpendicular planes IT; and IT; with common point p. As noted
above, these two rotations commute, and their angular velocities w; and wq
are therefore completely independent. If a point in R? is to return exactly to
its initial position at t = 0, there must be a precise coincidence of multiples
JTh = j27/w; and kT5 = k27 /we of the rotation periods for integers j and k,
i.e., the angular velocity ratio must be a rational number, wa/wy = j/k. If the
ratio wy /w; is irrational, the motions of points in R* induced by the double
rotation are non—periodic — their paths are not closed curves!

Another perspective on the nature of rotations in R comes from studying
the eigenvalues of their representation by the n xn special orthogonal matrices,
SO(n). These eigenvalues are necessarily of modulus 1. The matrices of SO(2),
describing rotations in R?, always have two complex conjugate eigenvalues —
because there are no real eigenvectors, no point other than the origin remains
stationary. The matrices of SO(3), specifying rotations in R3, have one real
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and two complex conjugate eigenvalues. The eigenvector that corresponds to
the real eigenvalue identifies a stationary line through the origin — namely,
the axis of the rotation. Finally, the matrices of SO(4) may possess either two
pairs of complex conjugate eigenvalues, or one complex conjugate pair and
one real pair of eigenvalues. In the former case, the stationary set is just the
origin, since there are no real eigenvectors. In the latter case, the eigenvectors
corresponding to the two real eigenvalues span a plane through the origin that
remains stationary under the rotation.
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Clifford Algebra

We may always depend on it that algebra, which cannot be translated
into good English and sound common sense, is bad algebra.

William Kingdon Clifford

Clifford algebra (also known as geometric algebra) is named after the English
mathematician William Kingdon Clifford (1845-1879), who made significant
contributions to algebra and geometry! in a brilliant but tragically brief career
(he died of tuberculosis, possibly exacerbated by his rigorous work schedule).
Clifford algebra provides a systematic framework for generalizing the known
algebras of complex numbers and quaternions to any number of dimensions.
For a more comprehensive discussion of its methods and diverse applications
in science and engineering, see [30,133,134,238,310].

6.1 Clifford Algebra Bases

Consider an “n—dimensional number” of the form
X = x1€1 + -+ + xTp€n, (6.1)
where z1,...,z, € R and ey, ...,e, form an orthonormal basis in R™. Such

numbers are added component—wise, but to determine their products we must
specify the results of the products of (ordered) combinations of two or more

of the “units” eq,...,e,. The convention of Clifford algebra is to take
e;e; = 0;, (6.2)
where o0; = +1 fort=1,...,n, and
ejer = —e€ie;j itj#k. (6.3)

! He also presaged the general theory of relativity, by suggesting that gravity is a
manifestation of the curvature of space—time.



80 6 Clifford Algebra

This ensures that the square of (6.1) is the real number defined by

x? = o2 4 -+ opx? . (6.4)
As a consequence of (6.3), the Clifford algebra product is not commutative —
but it does obey the associative and distributive laws.

The signs o; specify the signature of the quadratic form (6.4). For example,
the special theory of relativity makes use of 4—vectors with three spatial and
one temporal components, and the appropriate signature is? (+++-). Two
“events” (x1,y1,21,ct1) and (2, ys, 22, cta), where ¢ is the speed of light, are
separated by the 4-vector (xo — z1,y2 — y1, 22 — 21, ¢(t2 — t1)). Such vectors
are said to be space—like or time—like according to whether the quantity

d? = (2 —21)® + (y2 —11)* + (22— 21)? — A(ta —t1)?

is positive or negative (and light—like when it is zero). The event (1, y1, 21, ct1)

may influence the event (z2,ys, 29, ct2) only if their separation is time-like.
The set of all products of k distinct vectors selected from ey, ..., e, for

0 < k < n forms a basis for the Clifford algebra over R™. This algebra is thus

of dimension .
n
= 2™,
> ()

k=0
Note that, by means of relations (6.2)—(6.3), the product of any k of the vectors
eq,...,e, can be reduced to a product of <k vectors in some canonical order.
Thus, for example, the n = 3 basis can be written in the canonical form

{17 €1, €2, €3, ege3, eze;, ejeq, e1eqe3 }, (65)

where 1 is the grade zero element (i.e., the scalar unit); e1, e2, es are grade one
elements (vectors); eses, eseq, ejey are grade two elements (bivectors); and
the unique element e;eses of the highest grade is known as the “pseudoscalar.”
Writing w = ejeses, one can easily verify that

we; = ew, 1=12,3

— i.e., the pseudoscalar commutes with each of the basis elements e, €2, e3
and consequently with all the basis elements (6.5).

6.2 Algebra of Multivectors

Because of their inherently different nature, we say that the basis elements
(6.5) of different grade define a graded algebra. The most general element of
the Clifford algebra over R? is an eight-dimensional multivector of the form

ap + aiey + azez + ages + aszeses + aziese; + aijzeies + aijzze1eses,

? Some authors use the signature (———+) instead.
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where the coefficients ag, . .., aj23 are real numbers (adding different “types”
of entities should cause no consternation, since we are already familiar with it
in the context of complex numbers and quaternions — it is really a short—hand
notation for manipulating multivectors as ordered 2"—tuples).

If we introduce an ordering in which o; = +1fori=1,...,p and 0; = —1
fori = p+1,...,p+q where p+q = n, the Clifford algebra over R under this
signature is denoted by C/, 4. In the common case p = n, ¢ = 0 we may simply
write (/,,. The sub—space of all the grade k elements in (/,,, of dimension (Z), is
denoted by C/¥. Also, the sub-space of even grade multivectors in (/,, comprise
a sub-algebra, denoted by C/; (the relations (6.2)—(6.3) ensure that a product
contains only even grade components if the factors have this property).

The algebra of the complex numbers C is isomorphic to the even Clifford
algebra C€2+ whose basis comprises the scalar unit 1 and the single bivector
i = ejey, which we identify with the imaginary unit since it satisfies i = —1.
Hence, general elements of this algebra are of the form a + bi for a,b € R,
and the square of any pure imaginary element is non—positive. Alternatively,
the complex numbers are isomorphic to the Clifford algebra (fy; with basis
1 and the single vector i = e;. On account of the signature (—), the square of
any pure imaginary element is again non—positive.

The algebra of the quaternions H is isomorphic to the even Clifford algebra
C@', whose basis comprises the scalar unit 1 and three bivectors — identified
with elements of the quaternion basis according to

egez = i, eex = j, ese; = k.

To justify this identification we note, for example, that

i? = (eges)(ege3) = —egegezes = —egey = —1

and
ij = (8263)(9182) = —e€3€egejey = ezejegey = eze; — k.

Alternatively, the quaternion algebra is also isomorphic to (fy » with signature
(——), the basis elements e, e3, e1e2 being identified with i, j, k.

As an example of a higher algebra subsumed by the multivector framework,
Clifford demonstrated that the eight—dimensional system of “biquaternions”
or octonions, discovered independently by Hamilton’s friend John T. Graves
in 1843 and Arther Cayley in 1845, is isomorphic to (¢ 3. The algebra of the
octonions — denoted by O@ and sometimes also called “Cayley numbers” —
is even more remote from the real numbers R and complex numbers C than
the quaternions Hl, because the octonion product is neither commutative nor
associative® (see [23,99] for a detailed treatment).

3 According to Hurwitz’s Theorem, the 1, 2, 4, and 8-dimensional number systems
R, C, H, and O are the only possible “composition algebras” — in which the norm
of a product equals the product of the individual norms of the factors.
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6.3 The Geometric Product

The products of vectors a,b € R? familiar to most mathematicians, scientists,
and engineers are the dot product a-b, and cross product a x b. If § € [0, 7]
is the angle between a and b, the dot product is the scalar with the real value
|a] |b| cos 6. The cross product, however, is a vector that is orthogonal to the
plane of a and b — it has magnitude |a| |b| sin 6, and its sense is such that a,
b, a x b form a right-handed triad (when 6 # 0 or ).

It is not widely appreciated that a x b is actually a different type of vector
than a and b. If we write the latter in terms of components as a = (az, ay, a)
and b = (bg, by, b;) in a specific (right-handed) Cartesian coordinate system,
then the change of coordinates (z,y,2) — (—z, —y, —z) evidently transforms
these vectors to —a = (—ag, —ay, —a.) and —b = (—bs, —by, —b,). Under such
a reversal of the coordinate directions, the right—handed Cartesian system will
become a left-handed system, and the components of vectors must be negated.
Vectors that behave in this manner are called “true” vectors, or polar vectors.
However, the vector a x b behaves differently — its components are evidently
unchanged by the transformation (z,y, z) — (—z, —y, —z). Consequently, such
vectors are called “pseudovectors” or azial vectors (they are closely associated
with rotations). A triple cross product (a x b) x ¢, corresponding to the cross
product of an axial vector a x b and a polar vector c, yields a true vector.

There is a similar distinction [80] between true scalars and pseudoscalars.*
The dot product of two vectors is a true scalar, if they are either both polar
or both axial, since it does not change sign under a reversal of the coordinate
axes. However, the dot product of a polar vector with an axial vector does
change sign under such reversal, and is therefore deemed a pseudoscalar — a
familiar example is the triple product (a x b) - ¢ of three polar vectors a, b, c.

As remarked in Chap. 5, vector analysis arose as an eclectic distillation of
those parts of the quaternion algebra deemed most “practical” for applications
and the formulation of physical theories.® But the relationship between them is
fraught with pitfalls. Whereas “ordinary” vectors are polar vectors, the vector
parts of quaternions are inherently azial vectors. The uncritical identification
of “pure vector” quaternions with ordinary vectors in R3 invites trouble, since
the quaternion product of two “pure vector” quaternions is not a vector. Also,
since the dot product is a dimension—reducing operation, it would seem more
natural for the cross product to be a dimension-raising operation, rather than
producing an entity of the same dimension. Among other quibbles concerning
vector analysis, we just mention that it is specific to R?, with neither a natural
specialization to R? nor a convincing generalization to R™ for n > 3.

4 The term “pseudoscalar” is used here in a different sense than that of §6.1, where
it represents the highest—grade element of a Clifford algebra. The intended sense
should be clear from the prevailing context.

5 A key impetus was the theory of electromagnetism, as exemplified by Maxwell’s
Treatise on Electricity and Magnetism (1873). The problematic relations between
quaternions and modern vector analysis are documented in [20,54,108,412,428].
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Contemporaneous with Hamilton’s pursuit of the quaternion algebra, the
German school teacher Hermann Giinter Grassmann (1809-1877) proposed a
systematic new approach to vector multiplications in his treatise Die lineale
Ausdehnungslehre, . ..° (The linear extension theory) of 1844. In it he develops
the inner product and outer product of two vectors. The former is essentially
the familiar scalar (dot) product, but the latter yields a “higher—order” entity
— namely, an oriented area — and outer products of any number of vectors
may be formed to generate entities of successively higher dimension.

In view of the fact that Grassmann had little mathematical training, and
was “only” a teacher at the Gymnasium in Stettin — now Szczecin, Poland —
his ideas are remarkable for their sweeping generality and elegant hierarchical
structure. However, they were not well received by his contemporaries: August
Ferdinand Mobius (1790-1868) judged them to be too abstract, and an essay
he submitted, in connection with his aspiration for a university position, was
summarized by Ernst Eduard Kummer (1810-1893) as “commendably good
material expressed in a deficient form.” A large fraction of the original printing
of the Ausdehnungslehre remained unsold, and was eventually recycled.

In addition to subsuming the algebra of complex numbers and quaternions,
Clifford algebra invokes Grassmann’s inner and outer products and combines
them into a new kind of “universal” vector product — the geometric product.
For vectors a, b the inner product is defined by a-b = |a| |b| cos§, where 0 is
the angle between a and b. Although this coincides with the “scalar product”
in the case of two vectors, we avoid using this term since the inner product can
be applied to higher—grade elements — for which the result is not, in general,
a scalar. The outer product a A b defines a bivector representing an oriented
area element with magnitude |a||b|sin 6, the area of the parallelogram with
sides a and b, and orientation described by tracing these sides in that order.
This orientation property implies that A is anti-commutative

aAb=—-bAa (6.6)

(see Fig.6.1) but it is associative and distributive. A direct consequence of
(6.6) is that aAb =0 if b = Aa for any scalar \.
An ordered outer product of k vectors

X1 AXo Ao AN Xg

defines a blade of grade k, but it vanishes if the vectors are linearly dependent.
Hence, the highest non—vanishing blade that can be defined in R" is of grade n.
In R3, for example, the trivector aAbAc is an oriented volume element (defined
by the parallelepiped with edges a, b, c¢). Inner and outer products can be

5 In full, Die lineale Ausdehnungslehre, ein never Zweig der Mathematik dargestellt
und durch Anwendungen auf die iibrigen Zweige der Mathematik, wie auch auf die
Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erlautert.
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Fig. 6.1. Interpretation of the outer products a A b and b A a as oriented areas.

combined in various ways. For example, the inner product of a bivector and
a vector defines a vector, given by the rule

(aAb)-c = (c-b)a—(c-a)b = —c-(aADb). (6.7)

In ¢, the geometric product ab of vectors a and b is defined to be the
sum of the inner product and outer product of those vectors,

ab=a-b+aAb. (6.8)

This is, in general, a multivector comprising the sum of a scalar and a bivector.
Because of the commutative nature of a- b and anti-commutative nature of
a A b, the inner and outer products can be expressed as

a-b = 1(ab+ba) and aAb = l(ab—Dba),

i.e., they constitute the symmetric and antisymmetric parts of the geometric
product ab. The expressions (ab — ba) and 1(ab + ba) are also called the
commutator and anti—commutator products for the vectors a and b.
Although the geometric product definition (6.8) is specifically for vectors,
it can be extended in a systematic manner to blades and multivectors in C/,,.
In the latter context, however, its behavior differs from our usual notion of a
product. For given vectors a # 0 and b, one can uniquely solve the equation

ax =>b

for an unknown vector x by defining the inverse a=! = a/|a|? of a, such that
a la=aa! =1 (since ahAa=0). We can also define an inverse for a blade
ajNagA---Aay as ap A---Aag Aay/|a;|?|as]? - - - |ag]|? — i.e., it is the reverse
of the blade, divided by the squared norms of the vectors defining it.

When we proceed to multivectors (i.e., sums of blades of different grade),
however, it is no longer possible to always define an inverse, since the product
of two multivectors may vanish even when they are individually non—zero. For

example, in (¢ 3 one can easily verify that
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(82 + egel)(eg + egel) = 0,

and thus neither e; +eze; nor es +ese; admits an inverse, since the existence
an inverse for either would imply that the other is 0. Non—zero elements for
which the product with some other non—zero element vanishes, and hence no
inverse exists, are called zero divisors (this is a new algebraic phenomenon —
not evident” among the real numbers, complex numbers, or quaternions). On
the other hand, those elements that do have inverses are called units, and the
set of all units forms a group: the product of two units is always a unit.

6.4 Reflections and Rotations

Any vector a can be resolved into components parallel and perpendicular to a
given unit vector n. Namely, a = a +a, witha; = (n-ajnanda; =a—aj.
The reflection of a by n is defined to be the vector a —a, that preserves the
parallel component of a, but reverses its perpendicular component.

The reflection of a by n can be concisely expressed as a geometric product,
nan. To verify this, we expand the product using (6.8) to obtain

nan = (n-a)jn+ (nAa)-n+ (nAa)An.

The third term on the right vanishes, since the three vectors are not linearly
independent. Also, the first is evidently just a. Thus, it remains to show that
the second term (n A a)-n equals —a, . Using (6.7), we obtain

(nAa)'n=(n-ajn - (n-nja=a —a=—aj.

To obtain a vector b by the reflection of a vector a in a unit vector n, where

|b| = |a|, we use the (unit) bisector of a and b,
a+b
= . 6.9
"7 Javb| (6.9)

The description of the reflection of a by n as nan holds in R” for all n.
If we successively apply two reflections to a vector a, specified by the unit
vectors n and m, the result
mnanm

corresponds to a rotation of the vector a. The plane of rotation is specified by
the bivector m A n, and the angle of rotation is 26 where 6 € [0, 7] is defined
by cos = m - n. Thus, the geometric product

R=mn=m-n+mAn (6.10)

" The algebra of n x n matrices is a familiar context in which zero divisors arise —
the zero divisors are precisely the (non—vanishing) singular matrices.
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of two unit vectors is said to define a rotor in R™. By introducing the reverse
of this rotor as R = nm, the rotation of a can be expressed as RaR. A rotor
and its reverse satisfy RR = 1, consistent with the fact that a rotation of a
changes its orientation, but not its magnitude.
By the definitions of m - n and m A n, the rotor (6.10) can be written as
mAn

R = cosf + sind (6.11)

lmAn|’

This may be regarded as generalizing the unit complex number cos 6 + sin 61,
which defines a rotation operator in R2, and unit quaternion cos 6 +sinfn —
a rotation operator in R®. By replacing the imaginary unit “i” or unit vector n
appropriate to these contexts by a unit bivector, the formula (6.11) furnishes
a “universal” rotation operator — valid in R™ for any n. Furthermore, it can
be applied to entities of any grade, not just grade one vectors.

Consider the rotation of a vector a onto another vector b, where |b| = |a|.
Among all possible rotors that accomplish this, the “simplest” is the one for
which a is transformed into b by a motion in their common plane, i.e., along
a great circle. The rotor that accomplishes this can be specified as

_a+b a
" Ja+b|fa

We recognize the first term as the vector (6.9) that reflects a onto b, and the
second term simply serves to convert this vector into a bivector (note that the
reflection of any vector in itself is the identity operation).

As with the quaternion rotation operators, the rotor (6.11) can be written
in exponential form as exp(6 b), where b = (mAn)/|mAn| is the unit bivector
that specifies the plane of rotation. Note that the plane of rotation is a valid
concept in R™ for any n — as distinct from the center of rotation in R? or the
axis of rotation in R3. The rotors defined by (6.10) or (6.11) constitute a group
under the geometric product operation. Thus, the outcome of applying rotor
R, then rotor Ry is equivalent to that of applying the single rotor R = RoR;.
The reverse of this compound rotor is defined by R = RiRo.
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Coordinate Systems

... the knowledge at which geometry aims is knowledge
of the eternal, and not of aught perishing and transient.

Plato (ca. 427-347 BC), The Republic, Book VII [261]

Geometry enlightens the intellect, and sets one’s mind right.
All its proofs are very clear and orderly. It is hardly possible for errors
to enter into geometrical reasoning, because it is so well arranged and
orderly. Thus, the mind that constantly applies itself to geometry is
not likely to fall into error. In this convenient way, the person who
knows geometry acquires intelligence.

Ibn Khaldtn (1332-1406), The Mugaddimah

Coordinates may be regarded as a powerful and versatile means whereby the
tools of algebra and analysis can be brought to bear upon various geometrical
problems — constructions, transformations, analysis of shape and incidence
relationships, etc. They are obviously crucial to the computer implementation
of geometrical algorithms and the visualization of their results.

To many readers, the term “coordinates” is doubtless synonymous with
Cartesian coordinates. Our concern here, however, is with a much broader
and more fruitful interpretation of this term. For example, the formulation
and solution of many scientific and engineering problems may be facilitated
by invoking appropriate curvilinear coordinates in lieu of a Cartesian system.
Proficiency in the problems of mensuration (measuring angles, lengths, areas,
volumes, etc.) and the manipulation of vectors and tensors within curvilinear
coordinate systems is thus invaluable in scientific computations.

In two dimensions, the Cartesian coordinates of a point may be identified
with the real and imaginary parts of a complex number. Conformal mapping
(i.e., the geometrical study of analytic functions of a complex variable) offers a
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powerful and elegant approach to the construction and analysis of curvilinear
coordinate systems (see Chap.4). Such methods are also valuable in solving
two—dimensional physical problems governed by Laplace’s equation (electro-
static potentials, incompressible fluid flow, etc.) by simplifying the loci along
which the boundary conditions hold. Although the complex numbers cannot
be extended to a “three-dimensional number” system, the (non—commutative)
algebra of four—dimensional numbers known as quaternions (see Chap.5) is
useful in describing the coordinate transformations associated with rotations
in R3. As noted in Chap. 5, the now—familiar concepts of three-dimensional
vector analysis were distilled from the algebra of quaternions.

It is often desirable in geometrical problems to provide a rigorous means of
describing and analyzing behavior “at infinity.” This need is satisfied by using
homogeneous coordinates — the natural language of projective geometry. By
eliminating certain “exceptional” geometrical situations, projective geometry
offers an elegant unifying perspective — many formerly disparate results are
seen to be different facets of a smaller system of fundamental relations.

On the other hand, in many geometrical problems we must focus on just a
finite region, and it then becomes desirable to have a more “balanced” system
than Cartesian coordinates for specifying location within that region. Here,
the use of barycentric coordinates is recommended — barycentric formulations
do not rely on the arbitrary choice of a special point as origin, and can often
be expected to yield deeper geometrical insight and better numerical stability
over the domain of interest than Cartesian formulations.

Finally, problems arise in which use of Cartesian coordinates is impossible,
namely, geometrical configurations in non—FEuclidean spaces. Suppose we are
concerned with analyzing geometrical configurations “in” a curved surface S.
By this we mean that the curved surface is considered as a two—-dimensional
space in its own right, within which any motions or measurements are confined
— we make no reference to the three-dimensional Euclidean space containing
S, that provides a perspective from which we can “see” the surface curvature.
A curved (i.e., non—Euclidean) space such as S does not admit construction
of a Cartesian coordinate system. Correspondingly, in such a space, familiar
notions — such as distance, straight line, or parallelism — acquire subtle new
interpretations in terms of curvilinear coordinates that span the space.

We examine these coordinate schemes in greater detail below. Our goal
is not to present a rigorous and exhaustive discussion, which would consume
more space than we can afford, but rather to impart basic knowledge of the
main concepts (references are provided so the reader can further investigate
each approach in detail). One should bear in mind that any coordinate system
is merely an artifact imposed on a geometrical problem by the human mind —
it has no “real” existence, being merely an intermediary aid to visualization,
analysis, and computation. Familiarity with a variety of coordinate methods
helps instill a detached perspective — encouraging one to seek out the most
propitious system of coordinates for the problem at hand.
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7.1 Cartesian Coordinates

The first systematic use of coordinates may be traced to the year 1637 in which
René Descartes (1596-1650) published his Discours de la méthode pour bien
conduire sa raison et chercher la vérité dans les sciences (Discourse on the
Method of Rightly Conducting the Reason and Seeking Truth in the Sciences).
The third Appendix, La géométrie, of the Discours introduces the notion that
a point P in the plane may be uniquely represented as an ordered pair (z,y)
of real numbers. This is accomplished by choosing a distinguished point O as
the origin, and two directed orthogonal lines OX and OY through O defining
the coordinate axes. The numbers x and y then measure the (signed) distances
of P from OY and OX (see Fig. 7.1) — they are the Cartesian coordinates of
P. The generalization to three or more dimensions is straightforward.

Seminal ideas often emerge independently among the great thinkers of a
given epoch, and the concept of coordinate representation of points is implicit
in contemporaneous (though unpublished) correspondence of Pierre de Fermat
(1601-1665). In the coordinate-based approach, the distance d between two
points Py = (x1,y1) and Py = (z2,y2) is computed from the relation

d? = (xg — 331)2 + (y2 — y1)2 ) (7.1)

which we recognize as an expression of the Pythagorean theorem for a right
triangle of hypotenuse d and sides xo — 1, y2 — y1 parallel to the coordinate
axes. Of course, the Pythagorean theorem predates Descartes and Fermat by
two millenia, but coordinate methods confer a different interpretation on this
ancient result. Instead of regarding (7.1) as a purely geometrical relationship
(to the ancient Greek geometers, the “squares” literally meant the areas of the
squares erected on the sides of a triangle — see §2.2) the Cartesian method
transforms this relation into an algebraic equation from which numerical values
for d can be computed once values for (z1,y1) and (x2,ys) are given.
Whereas classical Euclidean geometry was confined to “simple” forms —
lines, circles, conics, etc. — specified by intuitive definitions or constructions,
the Cartesian approach allowed a wealth of new shapes to be introduced and
studied by regarding the coordinates as variables that satisfy prescribed rules.
The powerful techniques of algebra and analysis are thus brought to bear on

o —

Fig. 7.1. Cartesian coordinates (z,y) of a point P.
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geometry problems. Descartes described the awkwardness characterizing prior
use of algebraic methods in geometry as follows [127]:

... I beg you to observe in passing that the considerations that forced
ancient writers to use arithmetical terms in geometry, thus making
it tmpossible for them to proceed beyond a point where they could see
clearly the relation between the two subjects, caused much obscurity
and embarrassment, in their attempts at explanation.

Suppose, for example, we stipulate the coordinates to be functions
z(t) and y(t) (7.2)

of some independent variable or parameter t. This pair of functions defines a
parametric curve: as t varies, the point (x(t),y(t)) traces a locus in the plane.
Assuming the functions (7.2) are differentiable, the analysis of such parametric
forms using the differential calculus is the foundation of differential geometry
— i.e., the study of “intrinsic” properties (tangents, curvatures, etc.) that are
independent of the parameterization and the chosen coordinate system. We
shall survey the methods of differential geometry in Chap. 8.

Alternately, we may impose mutual constraints on Cartesian coordinates
in the plane, typically expressed by an equation of the form

flz,y) = 0. (7.3)

A curve that is represented in the form (7.3) is usually called an implicit curve
— it is much more difficult to trace the curve from such a representation the
from the parametric representation (7.2). When f is a polynomial in x and y,
the curve defined by (7.3) is a plane algebraic curve. The study of such curves,
and of analogously—defined space curves and surfaces, is the domain of a
profound and beautiful theory known as algebraic geometry — an introduction
to its key ideas and methods is presented in Chap.9.

Descartes called loci that can be described by finite algebraic expressions
of the form (7.2) or (7.3) geometrical curves. On the other hand, loci that
do not admit such definitions, but may otherwise be described in terms of a
kinematical or similar construction, he considered to be mechanical curves.
We now call the former algebraic, and the latter transcendental, curves.

Prior to the advent of coordinates, the relation of geometry and algebra in
mathematical thought was converse to our modern view: a kind of geometrical
algebra — i.e., the solution of algebraic equations by geometrical methods —
prevailed. For example, Euclid used arguments concerning the areas of plane
figures to solve quadratic equations, while Omar Khayyam solved certain cubic
equations in terms of the intersections of conic curves (see §2.3). This mode
of thought was predominant until the era of Leibniz and Newton.
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7.2 Barycentric Coordinates

Given a function f(x) of a variable x, we are often interested in its variation
over only a finite interval I in that variable. Choosing a fixed point as origin,
we may interpret x as a one—dimensional Cartesian coordinate, and depending
on whether the origin is to the left of, to the right of, or within the interval
I, the value of x is positive, negative, or of non—constant sign over I. This
arbitrariness in the choice of origin is not a mere curiosity: it may also have
important consequences for practical computations.
Consider, for example, the case where f is a degree—n polynomial

fl@) =Y apak, (7.4)
k=0

and the origin is to the left of I, at a distance large compared to its width.
Then x has a large positive value within I, and if the coefficients ay, . . ., a, are
of alternating sign, computing values for f(z) incurs addition of quantities of
large magnitude but opposite signs — a circumstance that, in floating—point
arithmetic, can incur catastrophic loss of accuracy (see Chap.12).

Der

barycentrische Calcul

ein neues Hilfsmiteel

analytischen Behandlung der Geometrie
dargestellt
wnd insbesondere

auf die Bildung never Classen von Aulgaben und
die ickelung mehrerer Ei haft
der Kegelschoitte

anmgewaendet

August Ferdinand Mdabius

Frofessar der Astronamin 2s Lelpsig

Mis vier Kupfeetafeln.

Leiptig,
Verlag ven Johums Ambrosius Barth

1B

Fig. 7.2. Der barycentrische Calcul by A. F. Mobius (1827) — from the Special
Collections, Science Library, University of Michigan (reproduced with permission).



94 7 Coordinate Systems

Even if we take an endpoint of the interval I as origin, use of the Cartesian
coordinate z yields an “unbalanced” representation of f(x) over the entire
interval — its values (or roots) near the other endpoint are more difficult to
compute as accurately. A related problem is that the coefficients ayg, ..., a, in
(7.4) do not convey much useful insight concerning the variation of f(z) over
the interval I (r!a, is the r—th derivative of f at = 0). Clearly, it would be
advantageous to have a representation from which useful information about
the variation of f can be gleaned by merely inspecting its coefficients.

Such a representation is based on the “barycentric coordinates” proposed
by A. F. Mébius! in his 1827 treatise Der barycentrische Calcul: Ein neues
Huilfsmittel zur analytischen Behandlung der Geometrie (see Fig.7.2). As we
shall see, the term “barycentric” arises from a simple concept in mechanics
— namely, the center of mass of a system of particles.

7.2.1 Barycentric Coordinates on Intervals

Consider first one—dimensional barycentric coordinates on an interval I that
corresponds to Cartesian coordinates = € [a, b] referred to some origin. If we
imagine I to be a rigid rod, with masses v and u attached to its left and right
ends, we may ask: what values should these masses have, such that the rod
will balance about point  without tilting to the left or right (Fig.7.3)?

Xx—a b-x

Fig. 7.3. One-dimensional barycentric coordinates — masses u and v given by (7.6)
yield equilibrium about point  when placed at the endpoints of the interval [a,b].

We call u and v the barycentric coordinates of point x with respect to the
interval [a,b]. Taking moments about the pivot point, we must have

(r—a)v=(b—2)u,

i.e., z must be the center of mass for u and v. This allows to infer only the ratio
u : v — to obtain definite values for these masses, we impose the additional
“normalization” constraint

ut+v =1, (7.5)

i.e., the total mass is unity. We then have the explicit formulae

1 Mobius, whom we met in the context of conformal maps, is perhaps best known
as the discoverer of the Mdébius band — a “non—orientable” or one—sided surface
obtained by glueing together the ends of a twisted strip of paper — although this
honor may properly belong to his contemporary, Johann Benedict Listing [197].
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u_x—a and v—b_x
T b—a T b—a

(7.6)

for the barycentric coordinates of x with respect to [a,b].
To obtain a degree—n basis for polynomials on the interval I, we perform
a binomial expansion of the left-hand side of (7.5) raised to the n—th power:

(u+o)" = En: (Z)u%"—k — 1.

k=0

The n 4 1 terms in this expansion, which we denote by

b (u,v) = <Z> uFon =k (7.7)

are linearly independent. Hence, by a suitable choice of the coefficients ¢, any
polynomial given in the power form (7.4) may be cast in the barycentric form

P(u,v) = ch br (u,v) . (7.8)
k=0

Some noteworthy properties of the barycentric polynomials (7.7) are: they
are homogeneous in u and v; they are non—negative over the domain I; and
they sum to unity. Many useful features of barycentric forms, and algorithms
for manipulating them, result from these simple facts — see Chap.11 for a
detailed discussion. Writing both « and v as arguments in (7.8) emphasizes the
symmetry of the barycentric form, even though these variables are redundant
and one of them can be eliminated by use of (7.5). For example, the barycentric
form of a polynomial P(¢) on the interval ¢ € [0,1] can be expressed in an
explicitly univariate manner as

P(t) = Z erby(t), where b (t) = <Z) (1— t)n—ktk -
k=0

The functions b} (t), k = 0,...,n constitute the Bernstein basis for degree-n
polynomials on [0, 1]. We shall explore them further in Chap. 11.

7.2.2 Barycentric Coordinates on Triangles

Given a rectangular domain D C R? of the form (z,y) € [a,b] X [c, d] we may
define barycentric coordinates on each of the intervals z € [a,b], y € [¢,d]
as described above, and use them to specify location within D. A basis for
“tensor—product” bivariate polynomials may then be constructed from the
products of the Bernstein basis functions on the two intervals.
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A more fundamental approach, however, is based on a triangular (simplex)
domain in R2. Let T be a reference triangle in the plane, defined by its vertices
pr = (xk,yx) for k =1,2,3. If T is a proper triangle — i.e., the vertices are
not collinear — the value of the determinant

111
A = |1 T2 I3 (79)
Y1 Y2 Y3
is non—zero, and the signed area of T is given by A = % A, with the convention

that A is positive or negative according to whether the vertices of T" have been
labelled in a counter—clockwise or clockwise sense.

Now for any point p = (z,y) in the plane, consider the triangles T3, T5,
T3 subtended there by the three sides of the reference triangle (see Fig. 7.4).
We order the vertices of these triangles as follows:

(P, P2, P3) (P1,P:P3) (P1,P2,P) (7.10)

and define their signed areas A; = %Al, Ay = %Ag, Az = %Ag in terms of
the determinants

111 111 1 11
Ay = |z x9 23], Ay = |z1 T 23|, As = |z1 20 2| . (7.11)
Y Yy2 ys Y1 Yy ys YL y20 Yy

The barycentric coordinates (u,v,w) of the point p = (z,y) with respect to
the reference triangle T are then defined by the area-ratios

_ 4 _ A _ 4

u A, v A, U}—A

(7.12)

The barycentric coordinates (u,v,w) have two important features: (a) they
satisfy the normalization condition

p1'

Fig. 7.4. Geometry of two—dimensional barycentric coordinates.
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utvt+w =1, (7.13)

and (b) they are all non—negative if and only if the point p lies inside, or on
the boundary of, the reference triangle 7. Note that property (a) follows from
the interpretation of u,v,w as area ratios, while (b) is a consequence of the
specific vertex orderings (7.10) we chose for the triangles Ty, Ts, T5.
Expressions (7.9)—(7.12) defining the barycentric coordinates (u,v,w) in
terms of the Cartesian coordinates (x,y) can be written in matrix form as

u 1 | Y2~ ¥Ys T3 — T2 T2Y3 — T3Y2 z
v| = A Y3 — Y1 T1 — T3 T3Y1 — T1Y3 yl . (7.14)
Y1 — Y2 To —T1 Tiy2 — T2y | |1

On inverting the above, we find that Cartesian coordinates are recovered from
barycentric coordinates according to

X 1 Tg X3 u
Yl = |y y2 y3| |V, (7.15)
1 1 1 1 w

which can be more concisely expressed in the vector form
P =up1+vp2+wps.

Thus u, v, w can be regarded as masses placed at the vertices p1, p2, ps of T',
subject to the normalization (7.13), with point p as their center of mass.

Fig. 7.5. Signature of barycentric coordinates over the entire plane.

The vertices p1, P2, ps of T have barycentric coordinates (1,0, 0), (0, 1,0),
(0,0,1) while its barycenter %(pl + p2 + p3) has coordinates (%, %, %) Note
also that u, v, w remain constant along lines parallel to the three sides po—ps3,

P3—P1, P1—P2 of T, respectively. In particular, u = 0 along po—p3, v =0
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along ps—p1, and w = 0 along p;—p2. Also, on each side of T' the two non—
zero members of (u, v, w) specialize to the univariate barycentric coordinates
appropriate to that side (e.g., along w = 0, the coordinates v and v represent
the fractional distances of a point p from the vertices ps and py).

By extending the sides of T indefinitely, we divide its exterior into the six
regions shown in Fig. 7.5. In the three regions adjacent to the sides of T, two
of the barycentric coordinates are positive and the third is negative, while in
the three wedge—shaped regions emanating from the vertices of T', only one is
positive and the other two are negative.

7.2.3 Transformation of the Domain

Suppose (u, v, w) are the barycentric coordinates of p relative to a triangle T'
with vertices p1, p2, p3 and we wish to determine the barycentric coordinates
(u',v',w') of p relative to another triangle T" with vertices p, p5 p%, so that

p =up1 +vp2 + wps = u'p} + v'py + w'ph. (7.16)

Let ajj, for 1 < j,k < 3 be the k-th barycentric coordinate of the vertex p;
of T' with respect to T" — i.e.,

pj = Oéjlpll —+ Oéjgpg + Oz]‘gl)l37 j = 1,2,3. (717)
Substituting (7.17) into (7.16) and equating coefficients of p}, p5, p4 we obtain

Qaq1 (12 3
[ v w'] =[uvw] | a s a
Q31 (32 (33

Conversely, if 8, for 1 < j,k < 3 is the k-th barycentric coordinate of the
vertex p; of T' with respect to T', then

Bi1 Bi2 Bis
[uvw] = [u v W] | B2 Baz a3

B31 B3z B33

Clearly, the matrices A and B with elements o, and 3, are inverses of each
other: AB =1, the identity matrix.

7.2.4 Barycentric Points and Vectors

In Cartesian coordinates, we are accustomed to freely “adding” points, so that
if po = (T4, ya) and py, = (zp, y), when we write p. = p, + p» we mean that
the Cartesian coordinates of p. are given by x. = x4 + xp and y. = yq + Yp.
Actually, we are not adding points here, but rather the vectors from the origin
(0,0) to the prescribed points (x4, ys) and (xp, yp)-
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How do we “add” two points p, and p; specified in terms of barycentric,
rather than Cartesian, coordinates? Clearly, we cannot simply add the triples
(Uq, Vo, wq) and (up, vp, wp) component—wise to obtain (u, ve, w,) since then
Ue + Ve + we = 2, which violates the normalization condition (7.13). In fact,
the transformation (7.14) indicates that the proper barycentric coordinates
for the point (z¢,y.) = (za + b, Yo + yp) are given by

(uavc;wc) = (uazva;wa> + (Ub,’Ub,U]b)

_ (T2y3 — T3y2, T3y1 — T1Y3, T1Y2 — T2Y1)
A )
so the problem is not simply one of re-normalizing after adding component—
wise. Thus, points in a barycentric system are not equivalent to vectors (since
there is no origin) and the formulae (7.18) must be invoked to “add” points
— in the vectorial sense — specified by barycentric coordinates.
Consider now the difference of the barycentric coordinates of two points
Pa = (Ua, Va, ws) and pp = (Up, Vp, wp). Writing

(7.18)

(A V) = (Uug — Up, Vg — Vp, Wg — W) , (7.19)
and noting that u, + v, + w, = up + vp + wp = 1, we see that
At pu+v =0. (7.20)

Furthermore, if (A1, p1,v1) and (Ae, po,v2) are any two triples that satisfy
(7.20), and we add them component—wise to give

Az, p3,v3) = (A1 + Aoy po1 + po, 1 + 142),

it is clear that (A3, 3, v3) will also satisfy (7.20). Finally, any triple (X, u, v)
satisfying (7.20) may be scaled by a non—zero constant ¢ to yield a new triple
(cA, cu, cv) that also satisfies (7.20).

Thus, we regard any triple (\, i, v) satisfying (7.20) as specifying a vector
in barycentric form, just as any triple (u, v, w) satisfying (7.13) defines a point.
Thus, for example, if we wish to parameterize the line between the two points
(g, Vo, wq) and (up, vp, wp), we may write

(u(t),v(t),w(t)) = (ug + M, v + ut, wy + vt)
with (A, u, v) given by (7.19), and it is then guaranteed that
u(t) +o(t) +w() = 1.

We define the norm ||v|| of the barycentric vector v = (A, 1, v) by means
of a symmetric quadratic form in its components:

My Mg Mis| (A

IVII* = [Apv] | May My Mas| |l - (7.21)
M3y M3 Mss| |v
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The matrix M in (7.21) may be interpreted as a “metric” for measuring the

lengths of barycentric vectors: its elements are given by
Mij = Mji = .’Ei.'I,‘j + yiyj fOI' Z,j = 1, 273 . (722)

The reason for this choice is that if the vector v corresponds to the difference
of two points p, = (24, y,) and py = (xp,yp) with barycentric coordinates
(Uq, Vo, wq) and (up, vp, wp), we have

To =Ty = ATL+ px2 +vT3, Yo — Y = A1t puyz +vys,  (7.23)
and by squaring and adding the above expressions, we see that
VI = (2o = 2)* + (g0 — )°

— i.e., the norm of the barycentric vector v is simply the Euclidean distance
between the points p, and pp. The norm defined by (7.21) exhibits the usual
properties of a vector norm, namely ||v|| > 0 for all v; ||[v]| =0 < v = 0;
|Ev|| = |k| ||v]|; and the “triangle inequality” |[vy + va| < [[v1]| + [|v2]|-

By the same reasoning behind equations (7.23), we can write the Cartesian
components v, and v, of the barycentric vector v = (A, p,v) as

Vg = Az + pxe +ves, vy = Ay + py2 + vys. (7.24)

Thus, to compute the barycentric vector (\, i, v) corresponding to a Cartesian
vector (vg,v,) we consider (7.24) together with the normalization condition
(7.20) as a system of linear equations for A, u, v. The solution is

\_ (y2 - yg)Ux — (1172 - 1'3>Uy 1 (yB - yl)vx - (:E3 - zl)vy (7.25)

A ’ A ’

and v = —(A+ p). The quadratic form (7.21) can be generalized to define the
dot product u-v of two barycentric vectors u = (a, 8,7v) and v = (A, i, v). To
obtain the value of u - v, we simply contract the matrix with elements (7.22)
on the left and right with the sets of barycentric—vector components (v, 3,7)
and (A, g, v). It is not difficult to verify that this gives results in accordance
with the usual Cartesian interpretation of dot products.

7.2.5 Directional Derivatives

In Cartesian coordinates, we are familiar with the gradient V f of a bivariate
function f(z,y). When v is a unit (Cartesian) vector, the directional derivative
Vv f =v-Vfis the rate of change of f along v. We can adapt these ideas to
functions f(u,v,w) and vectors v = (A, u, ) specified in barycentric form.

Let fu, fv, fuw be the partial derivatives of a homogeneous polynomial
fu,v,w) of degree n. By Euler’s theorem for homogeneous functions, these
derivatives satisfy at each point (u,v,w) the relation
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ufu+vf1)+wfu) = nfa

and hence they are not independent. To deduce the barycentric form of V. f,
suppose that the Cartesian components of v are (vg,vy). Expressing these
components in terms of the barycentric form by means of (7.24), we have

Vof = vafz + nyy = ()\xl +:U“T2+VI3) Jz + ()‘yl +.Uy2+yy3) fy
= /\(xlfac +ylfy) + M(fow +y2fy) + V(x3fa: +y3fy)-

Now we note that

_of _ 0x0f  Oyof

+ == =z fs + y1fy

fu = ou  Ouox ou Oy

and likewise for f, and f,, (the last step follows from equation (7.15)). Thus,
on substitution, we find that

vvf = Afu"’ﬂfv +Vfw-

Note that the individual partial derivatives fy, f,, fw of f with respect to
the barycentric coordinates are not directional derivatives, since the triples
(1,0,0), (0,1,0), (0,0,1) are not barycentric vectors.

Using expressions (7.25) with (vy,v,) = (1,0) and (0,1), we can easily
recover the partial derivatives of f with respect to the Cartesian coordinates:

(w2 —y3) fut (Y3 —y1) fo + (Y1 — y2) fu

f:l) - A b
(@3 —x2) fu + (21 — 23) fo + (22 — 21) fu
fy = 7 .

7.2.6 Polynomial Bases Over Triangles

We now consider the construction of a basis for bivariate polynomials of total
degree n on a given triangular domain T'. In Cartesian coordinates (z,y) one
would ordinarily express such polynomials as

n—j

P(z,y) = Z ajkxjyk (7.26)
§=0 k=0

once a choice for the origin (z,y) = (0,0) has been made.

To construct a barycentric polynomial basis over the triangle T', we raise
the left—hand side of the normalization relation (7.13) to the n—th power and
use the trinomial expansion formula to obtain:

n!
i gl k!

(u+v+w)" = g ulviwk = 1. (7.27)
0<i,j,k<n
i+j+k=n



102 7 Coordinate Systems

The individual terms of this expansion define the bivariate barycentric basis
functions of degree n on the chosen reference triangle — we denote them by
: k

bije(u, v, w) = ] uvIw®,  wherei+j+k=n. (7.28)

The total number of these linearly—independent basis functions is

n+2\

N =

namely, 6 for quadratics, 10 for cubics, etc. The identity (7.27) expresses the
partition of unity property for the barycentric basis of degree n over T

Under the mapping (7.14) from Cartesian to barycentric coordinates, the
bivariate polynomial (7.26) can be expressed in the form

(n+1)(n+2),

N[

P(u,v,w) = Z Cijk iy (u, v, w) . (7.29)
0<4,j,k<n
i+j+k=n
Although P has three arguments, it is really a bivariate polynomial in view of
the constraint (7.13) on the barycentric coordinates. Note also the redundancy
of the indices in the above expression: in some cases we may prefer to re—write
the basis functions in a non-redundant manner as

b (u,v) = <Zjlj> uvI (1 —u— )"

where 0 < i <mn, 0 <j <n—1, and the trinomial coefficients are defined by

The bivariate basis (7.28) has the same homogeneity, non—negativity over T,
and partition—of—unity properties as in the univariate case. Each basis function
b?j (1, v, w) has a single extremum value over T', at the point with barycentric
coordinates (u,v,w) = (i/n,j/n, k/n).

7.2.7 Un—normalized Barycentric Coordinates

Thus far, our barycentric formulations have relied upon normalizations such as
(7.5) or (7.13) to ensure a unique correspondence between (affine) points and
barycentric coordinate values. However, such normalizations are not essential.
In the plane, for example, we may consider all sets of ratios u : v : w as defining
a barycentric coordinate system. As with homogeneous Cartesian coordinates
(see §7.4), barycentric coordinates of the form (u,v,w) and (cu, av, cw) with
a # 0 identify exactly the same point. In particular, if we no longer enforce
condition (7.13) in the plane, we may admit sets of coordinates satisfying
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u+v+w =0,

which are impossible in the normalized system. In fact, this relation identifies
a point at infinity in the un—normalized system. To verify this, we introduce
homogeneous Cartesian coordinates into equation (7.15) by multiplying both
sides by k (# 0) and setting (W, X,Y) = (k, kz, ky). It is then apparent that

W=0 <= ut+v+w=0.

Hence, we may regard un—normalized barycentric coordinates as representing
the projective plane (see §7.4) rather than just the affine plane.

7.2.8 Three or More Dimensions

The construction of barycentric coordinate systems, and of polynomial bases
defined in terms of them, can be readily generalized from the one— and two—
dimensional cases discussed above to an arbitrary number of dimensions. Any
d+ 1 linearly-independent points po, . .., pq in R? can be regarded as vertices
of a d-dimensional simplex S, defined as the point set

{p=popo+---+papa | po+--+ps=1and p; >0} (7.30)

— i.e., the set of all points in R? that are convex combinations of po, ..., Pd.
We define the faces Fy, . . ., Fq of the simplex S to be the d+1 linear subspaces
spanned by convex combinations of the vertices py, ..., pq taken d at a time.
Thus, for example, the face Fj may be defined by omitting the vertex py and
its corresponding “weight” u from expression (7.30).

Given any point p, we construct the d 4+ 1 simplices Sy, . ..,Sq subtended
at p by each face of S — e.g., Sy has vertices pg, ..., Pk—1, Ps Pk+1,-- -, Pd-
We note that, if p lies inside S, these d + 1 simplices form a partition of S,

d
S=Js.
k=0

The signed volume of S is given by the (d + 1) x (d + 1) determinant

11 ---1
Tog L1+ - XTqg
Yo Y1 - -+ Ya

vol(S) = w0 2z |

where (zk, Y, 2k, - - -) are the Cartesian coordinates of vertex pg. Similarly,
the volume of each subsimplex Sy is obtained by replacing the column with
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entries 1, zg, Yk, 2k, - . - in this determinant by the entries 1,z,y, z,... (where
x,Y, 7, ... are the coordinates of the chosen point p).

The barycentric coordinates of p with respect to the “reference simplex”
S are then defined to be the d 4+ 1 values

B vol(So) vol(Sg)
(uo, - .., uq) = ( Vol(é?) T vol(8) )

The division by vol(S) yields normalized barycentric coordinates, that satisfy
ug+- - -+ug = 1. To obtain a representation of d—dimensional projective space,
we may omit this division and simply regard the ratios vol(Sp) : - -+ : vol(Sy)
as specifying un—normalized barycentric coordinates.

A basis for polynomials of degree n within the domain S is then given by
the terms of the multinomial formula

n!
IE(U()—F"'-FUd)n: Z ' 'ugo...ugd.

€pi-€y.
0<eq,nea<n 0 d

cotteq=n
These basis functions are linearly independent, and there are altogether

n+d\ (n+d(n+d-1)---(n+1)
(") 7

of them. Any degree—n homogeneous polynomial f(ug,...,us) can then be
described by associating a coefficient f.,...., with each basis function.

One can easily verify that this general scheme is consistent with the lower—
dimension cases already discussed. In one dimension, a simplex is just a line
segment connecting two points, which are the faces of the simplex, and by its
“volume” we mean the (directed) length of that segment. A two—dimensional
simplex is a triangle defined by three points; the faces are the triangle edges,
and by “volume” we mean its (oriented) area. Finally, in three dimensions, a
simplex is a tetrahedron defined by four vertices; its faces are the triangular
facets bounding it, and its “volume” is the (signed) spatial volume enclosed
by those facets. An elegant property of this barycentric—coordinates hierarchy
is that, if we confine our attention to some boundary element of the reference
simplex S by setting one or more of the coordinates to 0 or 1, the remaining
“free” coordinates coincide with the barycentric system obtained by regarding
that element as a lower—dimension simplex in its own right. In R3, for example,
each face of the reference tetrahedron inherits a two—dimensional barycentric
system, and each edge a one-dimensional barycentric system.

7.3 Curvilinear Coordinates

Curvilinear coordinates were first systematically developed by the physicist,
mathematician, and engineer Gabriel Lamé (1795-1870) in his treatise Leg¢ons
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sur les coordonnés curvilignes et leurs diverses applications of 1859. He used
transformations to curvilinear coordinates in solving certain problems of heat
conduction and elasticity. This proved to be a powerful idea: many problems in
geometry, partial differential equations, multiple integrals, etc., become much
simpler when cast in coordinate systems that reflect their symmetries.

In general, a coordinate representation of the Euclidean plane specifies a
one-to—one correspondence between its points and pairs of real numbers (¢, ).
The uniqueness of this correspondence may be contingent on restricting the
values of the “coordinates” (¢, n). Exceptionally, representations in which the
one-to-one correspondence between points and coordinates fails at certain
points, or along certain loci, may also be admitted.

Cartesian coordinates are characterized by the property that the loci along
which ¢ and 7 remain constant are two families of parallel lines, orthogonal
to each other. In this case we use the usual notation (z,y) where z and y are
unrestricted real values. The distance d between two points is then defined by
equation (7.1). By relaxing the requirement that the families of parallel lines
be orthogonal, we obtain oblique coordinates — for which the distance relation
(7.1) must be modified. Employing Cartesian coordinates as a “reference” we
consider curvilinear coordinates to be defined by pairs of non—linear functions
of the Cartesian coordinates

((z,y) and n(z,y) (7.31)
that specify a map (x,y) — ({,n). Whereas x, y are unrestricted real variables,
the values that ¢, n take on are determined by the range of the functions (7.31).

7.3.1 One—to—one Correspondence

Assuming that the functions (7.31) are differentiable with respect to  and y,
a local condition for them to define a valid curvilinear coordinate system may
be phrased as follows. At any point P = (z,y) we form the Jacobian?

9¢ 9¢

_0(m) _ |0 Oy
J(z,y) = 8.) ~ | oy o (7.32)

ox Oy

of the map (x,y) — (¢, n) defined by (7.31). Then, in some neighborhood of P,
there will be a unique correspondence between the Cartesian and curvilinear
coordinates of each pair of distinct points P; # P, — i.e.,

2 Named for Carl Gustav Jacob Jacobi (1804-1851), a renowned champion of pure
mathematics in 19th—century Germany. At a conference in Manchester in 1842,
he reportedly “...had the courage to make the valid point that it is the great
glory of science to be of no use” [197]. “This caused a vehement shaking of heads.”
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(x1,91) # (22,92) <= (C1,m) # (C2,72)

— if and only if the condition
0 < |[J(z,y)| < o0 (7.33)

is satisfied at P = (z,y). The satisfaction of this condition guarantees the
existence of functions

z(¢,n) and y((,n) (7.34)

that define the inverse map (¢,n) — (z,y) in some neighborhood of P.

When the Jacobian (7.32) is non—zero and finite at every point P = (x,y),
the inverse map (7.34) will hold for all pairs (¢,n) of curvilinear coordinates.
In the Cartesian coordinate system, the loci corresponding to constant values
of ¢ and 7 are then the curves described parametrically by equations (7.34)
on substituting a fixed numerical value for one of the curvilinear coordinates,
and allowing the other one to vary as a free parameter.

We emphasize that the condition (7.33) ensures only a “local” one—to—one
correspondence between the Cartesian coordinates (x,y) and the curvilinear
coordinates (¢, n) — i.e., within a small neighborhood of each point where this
condition is satisfied. Such local one—to—one correspondence does not ensure
a “global” one—to—one correspondence: even if (7.33) is satisfied for all (z,y),
the inverse map (7.34) — considered for unrestricted (¢,n) values — may be
many-to—one, so that two (or more) distinct pairs ({1,71) and ((2,72) yield
the same point (z,y) upon substitution into (7.34). To avoid the problem of a
point having more than one set of curvilinear coordinates, it is often necessary
— in addition to ensuring the satisfaction of (7.33) — to restrict the range
of ¢ and 7, such that the inverse map (7.34) generates each Cartesian point
(z,y) once and only once as ({,n) vary over their allowed values.

In the theory of plane algebraic curves, an important family of (almost)
one-to-one coordinate transformations are those for which the map (7.31)
and its inverse (7.34) are both specified by rational functions. Such birational
transformations are used, for example, to “resolve” singular points of curves
— we shall defer discussion of them to §9.2.6 and §9.2.7.

7.3.2 Distance and Angle Measurements

While curvilinear coordinates serve to simplify certain problem formulations,
they necessitate a more involved machinery for basic angle, length, and area
measurements. For example, the distance d between two points ((1,71) and
(C2,m2) specified by curvilinear coordinates cannot, in general, be determined
directly from a simple algebraic expression such as (7.1). We examine here the
problems of distance and angle measurement in curvilinear coordinates, and
defer area determination to §7.3.3. Consider the functions (7.34) that specify
the Cartesian coordinates in terms of the curvilinear coordinates. If i and j
are orthogonal unit vectors in the Cartesian system, the expression
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r(¢,n) = iz(¢,n) + jy(¢,n) (7.35)

amounts to a vector parameterization of the plane. Infinitesimal increments
(d¢,dn) in the coordinates (¢, n) then yield a geometrical displacement

dr = red¢ + r,;dp (7.36)
of the point r({,n), where
Ox oy ox dy
B T d — i ;Y .
re 18C+_]8C an r, 1877+J87] (7.37)

are the partial derivatives of (7.35). The infinitesimal distance between points
with coordinates (¢,n) and (¢ +d¢,n + dn) is then ds? = |dr|?, and by use of
(7.36) this can be expressed as the symmetric quadratic form

ds® = [d¢ dn][ F¢ r T rC'r"} {dﬂ (7.38)

re-r, r,-r,| |dn

in d¢ and dn. Now in order to determine the distance between P; = ((1,m1)
and Py = ({2,72), we must first specify how ¢ and n vary between these two
points — unlike the Cartesian case, a linear variation of the coordinates does
not, in general, correspond to a straight—line path from P; to Ps.

If we specify this variation parametrically, by functions ¢(¢) and 7(t) for
t € [t1,t2], the distance between P, and P, can be expressed as the integral

to
d:/ \/r<~r<C’2+2r<~r,7§’77’+r<~rn77’2 dt, (7.39)
t1

where primes denote derivatives with respect to ¢. The 2 x 2 matrix in (7.38),
whose elements appear in the above integral, is called the metric tensor® for
the curvilinear system. As suggested by its name, it serves as the basis for
mensuration of lengths and angles in non—Cartesian coordinates.

Expression (7.39) specifies the length of any curved path from P; to P,
defined by differentiable functions ((t) and n(t) — not just the straight-line
distance between these two points. Of course, if the functions (7.34) are known,
and we are interested only in the straight—line distance between P; and Ps, we
could simply insert (¢1,71) and (C2,72) into (7.34) and then use equation (7.1),
instead of determining the appropriate path description, ((t) and 7(t), for a
straight line and then evaluating the integral (7.39). The real advantage of the
integral distance formulation (7.39) will become apparent in Chap. 10, in the
context of non—Fuclidean geometry — where only the metric tensor is known,
and the introduction Cartesian coordinates is fundamentally impossible.

Consider now the measurement of angles. We construct unit vectors

re ry
e = — and e, = —- (7.40)
re Ty

3 We shall elaborate on the meaning of a “tensor” in Chap. 10.
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in the direction of the partial derivatives (7.37). These two unit vectors are
linearly independent at each point where the Jacobian (7.32) is non—zero, and
they specify a local basis at such points. We say “local” because, in general,
the vectors (7.40) depend explicitly on the location ({,n) — i.e., they have a
different orientation at each position (e; and e, are, respectively, everywhere
tangent to the loci defined by 1 = constant and ¢ = constant).

Now let v be a vector at a particular point ({,n) that has “components”
v¢ and v" with respect to the curvilinear coordinate system,* so that

v = vlec + v'e,. (7.41)

In Cartesian coordinates, we are accustomed to moving vectors around freely
— i.e., we do not consider them to be “attached” to specific points. However,
in curvilinear coordinates, there are no “free” vectors: one can meaningfully
describe a vector in terms of its curvilinear—coordinate components only at a
definite point. Merely stating that v has components v¢ and v" is insufficient:
since the basis vectors e¢, e, change from point to point, we must also state
the location at which these components are measured.
The magnitude of the vector (7.41) is evidently given by

v| = \/(Ucp + ()2 4 20S0T e ey . (7.42)

Note the “cross term” above involving the scalar product of the basis vectors.
It is only in the special case of an orthogonal coordinate system — for which
ec and e, are everywhere mutually perpendicular — that this term is absent
(the simplest example is, of course, Cartesian coordinates).

Similarly, given two vectors u and v with curvilinear components (u¢, u")
and (v$,v") at a prescribed point (¢, n), we can form their dot product

u-v = utos + um + (uo +u) e - ey,

and thus determine the angle 6 between them from

u-v
cos) = —— (7.43)
luf|v]
where |u] is given in terms of (u$,u”) by an expression analogous to (7.42).
We can also avoid the normalization (7.40) and use the metric tensor directly
to compute angles between vectors: we replace the numerator in (7.43) by

[UC un]{rC'rC r<~rn} {Uf’}7
1‘4'1‘77 I‘C'I‘n v

and similarly |u| and |v| are replaced by the square roots of the scalar values
obtained by multiplying the metric on the left and right by the components
of u and v, respectively.

4 Here vector components are indicated by superscripts, rather than subscripts, for
reasons explained in §10.2 — they should not be confused with exponents.
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7.3.3 Jacobian of the Transformation

The Jacobian (7.32) for the transformation (x,y) — ((,n) from Cartesian to
curvilinear coordinates has a simple geometrical interpretation. In Cartesian
coordinates, the gradient operator
.0 .0
V=i e +J By (7.44)

acting on a differentiable function ¢ (x,y) yields a vector field Vi (z,y). At
each point, the orientation of the vector Vi indicates the direction in which
1) experiences the greatest rate of increase, while the magnitude of this vector
indicates the value of this maximum rate of increase.

Applying (7.44) to the curvilinear coordinate functions (7.31), we obtain
vector fields V( and V7 that describe the “flow” of ( and n with respect to
Cartesian coordinates. The loci defined by

¢(z,y) = constant and n(x,y) = constant

are everywhere orthogonal to these vector fields. If we now take a point on
the intersection of two such curves, and measure an infinitesimal distance ds
in the V( and V7 directions from it, we obtain the sides of an infinitesimal
parallelogram whose area is given by

| V¢ x V| ds?.

This may be compared with the area ds? of the square obtained by moving a
distance ds in the z and y directions from the chosen point. The factor

Oxr Oy  Ox Oy

by which these two areas differ is just the absolute value of the Jacobian (7.32)
for the Cartesian—to—curvilinear coordinate transformation.

Hence, we may interpret the condition (7.33) as requiring the area ratio of
the infinitesimal parallelogram and square, defined above, to be non—zero and
finite. Equivalently, this condition may be interpreted as requiring the vectors
V(¢ and V7 to be linearly independent and of finite magnitude.

We can also define a Jacobian for the inverse map (¢,7) — (z,y) defined
by (7.34) — i.e., the transformation from curvilinear to Cartesian coordinates.
Writing this as

o 0z
O(x,y) _ |9 On

J(¢,n) = - 7.45

S a(¢,m) Oy Oy ( )
a¢ on

and invoking the representation (7.35), we observe that |J((,n)| = |r¢ x 1y
Now the area dA of an infinitesimal parallelogram with sides r¢d¢ and r,dn
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— corresponding to increments d¢ and dn in the curvilinear coordinates at
the point r(¢,n) — is just the magnitude of the cross product (rd¢) x (r,dn),
and hence we see that

dA = |J(¢,n)| d¢dn. (7.46)

This allows us to formulate the integral of a function F(¢,n) of the curvilinear
coordinates over the area of any domain {2 with boundary specified in terms
of ¢ and 1 as

I =/F<<7n) 7(Cm)] dCdn.
0

In particular, when F' = 1, we obtain the total area A of the region 2. Note
that if the Jacobian changes sign within {2, it is necessary to break up this
domain into subregions over which J({,n) is of constant sign, to evaluate I.

7.3.4 Example: Plane Polar Coordinates

To illustrate the above points, consider the familiar case of polar coordinates
(p, @) defined by the functions

plz,y) = Va2 +y?2 and é(z,y) = tan ' (z,y). (7.47)

Here p is the distance of the point P = (z,y) from the origin O, while ¢ is
the counter—clockwise angle® that the line OP makes with the positive = axis.
From (7.47) we obtain the Jacobian for the transformation (x,y) — (p, ¢) as

o o
dr 0Oy

J(z,y) = o6 80 = vaZ+y?.
ox dy

The origin is a singular point of the polar coordinate system, since J(x,y) — 0
as (z,y) — (0,0). The one-to—one correspondence between Cartesian and
polar coordinates breaks down at (z,y) = (0,0): we clearly have p = 0 there,
but ¢ is indeterminate — it may have any value between 0 and 2.

The use of polar rather than Cartesian coordinates can greatly simplify
problems involving rotational symmetry or functions of an angular variable.
On account of this, the breakdown of one-to—one correspondence at the origin
is considered a minor defect, which can be managed by special treatment of
that point. In general, a perfect one-to—one correspondence between Cartesian
and curvilinear coordinates is too restrictive a requirement for practical use —
one should not discount curvilinear systems in which a unique correspondence
breaks down at discrete points or on certain loci, provided such singularities

® Here the arctangent function tan™!(x, ) has range is 0 < ¢ < 2, the value being
determined from the individual signs of z and y, not just the ratio y/z.
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are properly identified and treated. We insist, however, that no breakdown of
one-to—one correspondence occurs over any finite area of the plane.

Apart from the origin, polar coordinates satisfy everywhere the condition
(7.33) for a “local” one-to—one correspondence with Cartesian coordinates.
However, the map (x,y) — (p, ¢) also illustrates the need to restrict the range
of curvilinear coordinates to ensure “global” one-to—one correspondence. The
value of p in (7.47) is evidently non—negative, and we have stipulated that the
range of the function tan=!(x,%) be such that 0 < ¢ < 27. Any point (z,y)
other than (0,0) will then have unique polar coordinates (p, ¢). We relinquish
this uniqueness, however, if we regard p and ¢ as unrestricted variables with
arbitrary values between —oo and +oc0. This can be seen from the inverse

z(p,¢) = pcosp  and  y(p,¢) = psine (7.48)

to the transformation (7.47) — if (p, ¢) corresponds to (z,y), then so also do
(p, 2km + ¢) and (—p, (2k + 1)7 + ¢) for all integers k.

Substituting (7.48) into (7.35) we obtain r(p, ¢) =ipcos ¢ + jpsin ¢, and
by differentiation we deduce the local basis (7.40) to be

e, =icos¢p + jsing and ey = —ising + jcos¢. (7.49)

Although they depend on the point under consideration, these vectors clearly
form an orthogonal basis everywhere, i.e., e, - €, = 0 for all (p, ¢). This fact
is also evident from the metric, which is seen to be a diagonal matrix:

M(p,¢) = [(1) 2}

Hence the distance element (7.38) reduces to ds = /dp? + p?d¢?, while the
area element (7.46) is given by dA = pdpde.

7.3.5 Three or More Dimensions

Our discussion has been confined to two—dimensional curvilinear coordinates,
but the ideas generalize in a fairly straightforward manner to three (or more)
dimensions. Thus, three non-linear functions

((x,y7z), n(x7yaz)7 9(1‘,%2)

of the spatial Cartesian coordinates z,y, z will, in general, describe a three—
dimensional curvilinear coordinate system. We require the Jacobian

9¢ ¢ ¢
oxr Oy 0z

9(¢;n,0) On On On
o(z,y, 2) oxr Oy 0z

a6 09 09
oxr Oy 0z




112 7 Coordinate Systems

of the transformation (z,y, z) — ({,n,0) to be of non—zero, finite magnitude
to ensure local one—to—one correspondence. Moreover, it is often necessary to
restrict the range of (, 7,6 for a global one-to—one correspondence.

Using the inverse map ({,n,6) — (z,v, z), defined by functions

(¢, 0), y(¢n,0), 2((n,0), (7.50)

we may define a local basis e¢, e, ey from the normalized partial derivatives
of r(¢,n,0) =ixz(¢(,n,0) +jy((,n,0) +kz((,n,0) in a manner analogous to
equations (7.40). The metric tensor in three dimensions defines the distance
element ds corresponding to coordinate increments d¢, dn, df, namely

r¢-Te e Ty I Ty d¢
ds? = [d¢dndf] | rc vy 11,y Ty | [dn |,
I¢-Tg Iy Tg Tg-Ty dé

and is used to measure angles and distances in three dimensions by methods
analogous to those described above for the two—dimensional case.

Volume integrals of a function F(¢, 7, #) are computed by using the volume
element dV = |J(¢{,n, 0)| d¢ dn db, where J((,n, §) denotes the Jacobian of the
inverse map (7.50) — note that |J(¢,n,0)| corresponds to the magnitude of
scalar triple product (r¢ X rp) - v of the partial derivatives of r(¢,n,6).

Some familiar examples of three-dimensional curvilinear coordinates are
the cylindrical (p, ¢, z) and spherical (r,$,0) polar systems defined by

p=+Va2+y?, ¢ =tan '(z,y), =2,
and
1 z

VaZ+y?+ 22

with 0 < ¢ < 27 and —7/2 < 0 < +7/2 (where tan~!(z,y) denotes the angle
that a radius vector from the origin to (x,y) makes with the positive z—axis).

224+ y2 4+ 22, ¢ = tan"Y(x,y), 6 = sin~

7.4 Homogeneous Coordinates

In the Euclidean plane, any two lines that we choose will (ordinarily) intersect
in a single point. We are obliged to include a qualification of this statement to
allow for exceptional pairs of lines — namely, parallel lines — that, according
to Euclidean precepts, do not intersect at all.

If we draw a pair of lines £; and /5 intersecting at some point p and then
imagine rotating one of the lines about a chosen point q (# p) on it, we will
observe that the point of intersection p recedes arbitrarily far along the lines
{1 and {5 as they approach parallelism. This behavior suggests the intuitive
notion that ¢; and /5 intersect “at infinity” when they are parallel.
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Homogeneous coordinates, and the theory of projective geometry founded
upon them, are a rigorous means of quantifying and analyzing such intuitive
notions. By dealing systematically with “behavior at infinity,” they eliminate
the exceptional nature of instances such as parallel lines, and they also furnish
an elegant principle of duality, whereby any given algebraic condition admits
two complementary geometrical interpretations. A brief survey of these ideas
is presented below — for a comprehensive treatment, see [396,472].

7.4.1 The Projective Plane

The projective plane is the familiar set of all points (x, y) with finite Cartesian
coordinates, augmented by a family of special “points at infinity.” To describe
all (finite or infinite) projective points, we use homogeneous coordinate triples
(W, X,Y) subject to the following conventions:

e the triple (0,0,0) is excluded — it does not represent any valid point;
e two triples (W, X,Y) and (aW, oY, aX) differing by only a non—zero factor

« are not distinguished — they identify the same point.

If W # 0, the triple (W, X, Y") corresponds to a finite (or affine) point, whose
Cartesian coordinates are given by

X Y
T =0 and V= (7.51)

If W =0, on the other hand, (W, X,Y) represents a point at infinity.
Let us return to the problem of two intersecting lines. We may represent
{1 and {5 by the implicit equations

K+ Lix+ My =0, Ko+ Lox + My = 0, (752)

and provided that Li My # LoM; — i.e., {1 and {5 are non—parallel — the
Cartesian coordinates of their intersection point are given by

MKy — MyK, LKy - LK,
T LMy - Loy YT LMy - LMy
To treat the singular case Ly My = Lo My, we homogenize the line equations
(7.52) by substituting from (7.51) and multiplying through by W, giving
K\W+ L X+ MY =0, KoW 4+ Lo X + MY = 0. (7.53)

It is then easily seen that equations (7.53) are simultaneously satisfied by the
homogeneous coordinate triple

W, X,Y) = (0, M Ky — MoKy, LoKy — L1 K»)

which identifies a point at infinity. In other words, we have found a means of
formally expressing the fact that “parallel lines intersect at infinity” without
actually having to introduce the daunting symbol “co” at any time.
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Points at infinity may be regarded as specifying directions in the plane. In
this interpretation, however, one should not distinguish between a particular
direction and its reverse: although we may travel to the “left” or to the “right”
along any line, if we persevere we will arrive in either case at one and the same
point at infinity.® This conclusion is necessitated by the indistinguishability of
homogeneous coordinates that differ by only a constant factor — the triples
(0,X,Y) and (0, —X, —Y) identify exactly the same point.

Consider again the homogeneous equation of a straight line,

KW+LX+MY =0. (7.54)

We are free to choose the constants K, L, M in any way we please (except for
making them all zero); we obtain in each case a projective line. In particular,
if we choose L = M =0 and K # 0, the equation becomes simply

W =0.

Since it consists of all points at infinity, this special projective line is known
as the line at infinity — in projective geometry, it has the same stature as the
x and y axes, whose equations are Y = 0 and X = 0 respectively.

To help visualize the projective plane, it is useful to consider mapping it to
a sphere. For a unit sphere whose south pole touches the plane at the origin,
we consider a gnomonic projection, in which rays are drawn connecting each
point of the plane to the center of the sphere and beyond. Such rays will pierce
the northern and southern hemispheres in “antipodal” points, and lines in
the plane will project to great circles on the sphere. Hence, the entire (finite)
plane is mapped one—to—one onto the northern and southern hemispheres, but
the points at infinity of the projective plane are mapped to equatorial points
of the sphere, and the line at infinity corresponds to the entire equator.

The gnomonic projection employed here should not be confused with the
stereographic projection used in §4.2 to visualize the “extended” complex plane
— the stereographic projection takes rays through the north pole of the sphere,
rather than the center, and thus identifies just a single infinite point.

7.4.2 Circular Points and Isotropic Lines

We can also homogenize the equations of higher—order curves. Consider an
algebraic curve, defined by an implicit polynomial equation

f(x,y) =0

of degree n. By substituting from (7.51) into this equation, and multiplying
through by W", we obtain the corresponding homogeneous curve equation

6 Unlike affine lines, projective lines are “unordered” point sets: they are equivalent
topologically to a circle. Given three distinct points A, B, C' on a projective line,
we cannot uniquely identify one of them as lying “between” the other two.
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FW,X,Y) =0 (7.55)

wherein each term will be of total degree n in the homogeneous coordinates
W, X, Y. The behavior of the curve “at infinity” may then be determined by
setting W = 0 in this equation. For example,

224+ 9% —2ax — 2y +a®+ b2 —1r2 =0

defines a circle of radius r with center at the point (a,b). The corresponding
homogeneous equation is

X24Y2-2aWX —26WY + (a®> +b* —r*)W? = 0, (7.56)

and setting W = 0 in the above gives the equation X2 4+ Y2 = 0. The latter
has only complex solutions” — namely, values having the ratio X : Y =1 : =i,
and therefore the points at infinity on the locus (7.56) are identified by the
two triples (0, 1, +i). Note that these two points are independent of (a,b) and
r — i.e., all circles have the same points at infinity. For this reason, the points
(0,1, +i) are called the circular points at infinity.

Lines that pass through either of the circular points at infinity are known as
isotropic lines. Their coefficients have the form (K, L, M) = (k, %i, 1) for any
real value k # 0, and they exhibit rather non—intuitive properties if we apply
familiar ideas concerning real, affine lines to them. Consider, for example, the
“orientation” of isotropic lines. Since the line KW + LX + MY = 0 has slope
s = —L/M, the isotropic lines with (K, L, M) = (k, £i,1) have slope s = Fi.
Now the coordinate transformation (W, X,Y) — (W', X’ Y’) defined by

W=W, X =Xcosf+Y'sinf, Y =— X'sinf+Y’cosd,

corresponds to a rotation of the plane through angle 6. It transforms the line
KW+ LX 4+ MY =0into KW' + L'X' + M'Y’ = 0, whose coefficients

K' =K, L' = Lcos@—Msinf, M = Lsinf+ M cosf

are obtained by substituting for W, X, Y into the former equation. Taking
(K,L,M) = (k,+i,1), the slope of the isotropic line kW +iX +Y = 0 in the
rotated coordinate system is then

, r +icosf —sinf . cosf L£isind

S = - — = — = ] —— = i’

M’ +isinf + cosd + cosf £isinf +
which is exactly the same as before the rotation. Thus, we have shown that
rotations do not alter the slopes of isotropic lines!

" The complex points of an algebraic curve f(z,y) = 0 are a natural generalization
of the complex roots of a univariate polynomial f(z) = 0. Just as the introduction
of complex values in the latter case allows us to say that f(z) has precisely n (not
necessarily distinct) roots, the study of the complex locus of f(z,y) = 0 also leads
to elegant simplifications. The real locus is a special subset of its complex locus.
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Another unusual property concerns the distance of points from isotropic
lines. Ordinarily, the distance d between the point (Wy, X, Yy) and the line
KW + LX + MY = 0 can be written as

KWy + LXo + MY,
Wov L2+ M?

if Wy # 0 and (L, M) # (0,0), i.e., we are speaking of affine points and lines.
But, according to this formula, d is infinite for any affine point (Wy, Xo, Yo)
if the line is isotropic, with (K, L, M) = (k, £i,1)! These and other “strange”
properties of the isotropic lines highlight the danger of carrying our intuition,
developed from real affine geometry, into the complex projective domain.

d

7.4.3 The Principle of Duality

Equation (7.54) exhibits a striking symmetry between the point coordinates
W, X, Y and the line coefficients K, L, M. We usually regard the latter as fixed
numerical values, and the former as variables — there is then a singly—infinite
family of solutions (W, X,Y) to (7.54) that describe all the points lying on a
fixed line. However, there is no reason why we should not regard W, X, Y in
equation (7.54) as being fixed values, and allow K, L, M to vary instead: the
equation then has a singly—infinite family of solutions (K, L, M) that identify
all the lines passing through a fixed point. These alternative interpretations
of the linear equation (7.54) are illustrated in Fig. 7.6.

Such observations illustrate the so—called duality of points and lines in the
projective plane — for any statement concerning points, we can construct a
“dual” statement in terms of lines, by appropriate transposition of the words.
For example, we have the dual statements:

two distinct points define a line ... two distinct lines define a point.

infinity of points on a line infinity of lines through a point

Fig. 7.6. Dual interpretations of equation (7.54). Left: the set of points on a given
line (K, L, M fixed). Right: the set of lines through a given point (W, X,Y fixed).
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Note that the statements encompass points at infinity and the line at infinity:
indeed, these infinite elements must be included for the principal of duality to
hold in complete generality. The point—line duality offers an interesting new
perspective in the study of higher—order curves. At each smooth point of the
curve (7.55) the tangent is the unique line that most closely approximates the
curve in a neighborhood of the chosen point: the tangent “touches” the curve,
rather than crossing it.® This unique correspondence between the points and
tangents of a plane curve allows us to think of the curve as a continuous family
of lines (its tangents) rather than a continuous family of points.

Indeed, we can derive a dual line equation for the curve (7.55) — i.e., a
polynomial equation of the form

G(K,L,M) = 0, (7.57)

such that each set of values K, L, M satisfying this equation identifies a line
that is tangent to the curve (one may consider K, L, M to be line coordinates,
just as W, X, Y are point coordinates). Each set of values K, L, M satisfying
(7.57) identifies a line that is tangent to the point locus defined by (7.55).
Consider, for example, an ellipse centered on the origin with semi—axes a
and b. We will show how to derive its line equation from the point equation

b2 X2 +a’Y? - a®0*W? = 0. (7.58)

If M # 0, we can identify points where the line KW + LX + MY = 0 meets
the ellipse by substituting ¥ = —(KW + LX)/M into the above to obtain

(L%a® + M?v?) X? + 2a° KLWX + (K? — M*b)a*W? = 0,

which may be regarded as a quadratic equation for the ratio W : X. In order
for the line KW + LX + MY = 0 to touch the ellipse, this quadratic must
indicate two “coincident” intersections, i.e., it must have a double root.

The condition for this to occur is that the discriminant of the quadratic
must vanish. After simplifying and discarding constant factors, this yields
M?*(K? —a?L? — b*M?) = 0. Omitting the factor M?, since we assumed that
M # 0 in the derivation, we obtain the homogeneous line equation

K? — d’L? — v’M? =0 (7.59)

of the ellipse. Thus, all lines whose coefficients or “coordinates” K, L, M satisfy
(7.59) are tangent to the ellipse. The same arguments applied to the cubic

X3 W2 =0 (7.60)
yield its line equation as
4L + 27TK*M = 0. (7.61)

8 There are some technical qualifications to this characterization.
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Fig. 7.7. Line representation of an ellipse (left) and the cubic y = z* (right).

Figure 7.7 shows the families of lines defined by equations (7.59) and (7.61).
Note that, although we assumed M # 0 in the derivations, the equations (7.59)
and (7.61) also encompass tangent lines with M = 0 as the limiting instances
of tangent lines with M # 0 (namely, the two vertical lines X = +aW for the
ellipse, and the line at infinity W = 0 for the cubic y = x3).

For the ellipse (7.58) and cubic (7.60), we observe that the line equations
(7.59) and (7.61) are of the same degree as the point equations in the respective
coordinates W, X,Y and K, L, M. However, this is not true for all curves —
the degree of the line equation may, in general, be lower or higher than that of
the point equation. To differentiate between the two,? the degree of the point
equation is called the order of the curve, while the degree of the line equation
is known as its class. For a curve that is of lower class than order, the line
representation is simpler to analyze and compute with (see also §9.2.8).

One can also describe curves parametrically in terms of line coordinates.
If the points of a curve are specified by homogeneous—coordinate polynomials
W(t), X(t), Y(t) in some parameter ¢, the corresponding homogeneous line
coordinate polynomials K (t), L(t), M(t) — which describe all tangent lines
to the curve — are given by

K=XY'-XY, L=YW-YW, M=WX-WX.

This can be verified by regarding the tangent as the limit of the chord joining
points (W (¢), X (t),Y(t)) and (W (t + At), X (t + At), Y (t + At)) as At — 0.

7.4.4 Projective Transformations

Our discussion of projective geometry originated with the homogenization of a
Cartesian coordinate system, which may be recovered from the homogeneous
coordinates (W, X,Y") by the relations (7.51). Actually, there is no uniqueness

9 If we just say degree, it is understood that we refer to the order of the curve.
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about this homogeneous coordinate system — we can define an infinite number
of such systems through mappings of the form

V? moo mo1 Moz | | W
X = mio ™Mi11 Mi12 X . (762)
Y Moo Ma21 M22 Y

If the matrix in (7.62) is non—singular, it defines a projective transformation
from the coordinates (W, X,Y) to new coordinates (W, X,Y).

To elucidate the geometrical meaning of the 3 x 3 matrix that defines a
two—dimensional projective transformation, we note that it can be factorized
into the product of four matrices of the form

1A p k0O 1 00 1 0 O
010 010 Az 10 0 mi1 M2 s (763)
001 001 Ay 01 0 mo1 Moo

where Az = myg, Ay = mag, A = (Ma2mo1 — ma1moe2)/(Mi11ma2 — mizmay),
= (mi1moz — miamo1)/(Mmi1maz — miamay), and k = mog — (AAz + pAy).
Working from right to left — i.e., in the order in which they are successively
applied — we now explain the significance of each matrix in (7.63).

The first matrix specifies an affine transformation, under which no affine
point is mapped to a point at infinity, nor vice—versa. The coordinates (Z, 3)
of the image of each affine point (x,y) are defined by the homogeneous linear
combinations £ = mqy1x + mi2y and § = mo1x + Mmooy. Important cases of
such maps are those in which the lower-right 2 x 2 sub—matrix is orthogonal
— i.e., its inverse equals its transpose. In general, such a matrix has the form

[cosqb —sin¢}

cos2a  sin 2«
sing  cos¢ { ’ (7.64)

sin 2a — cos 2«

or is the product of such forms. The first form defines a rotation by an angle ¢
about the origin, the second a refiection in a line through the origin at angle «
to the x—axis. These are shape—preserving transformations. If the lower—right
2 x 2 sub—matrix is not orthogonal, the affine transformation does not preserve
shape — it involves a “shear” effect (the collinearity of points and parallelism
of lines are maintained, but angles are altered).

The second and third matrices in (7.63) also incur no swapping of affine
points with points at infinity. They define, respectively, a translation and a
uniform scaling in the affine plane: the former simply shifts the affine point
(z,y) to (x+ Az, y+ Ay), while the latter moves (x, y) along a ray through the
origin to (z/k,y/k). These are also clearly shape—preserving transformations.
The most general shape—preserving transformation has the form

W k0 0 W
X | = | Az cos¢p —sing X,
)% Ay sing coso Y
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obtained by multiplying the right—most three matrices in (7.63), where the
first matrix is assumed to be orthogonal: specifically, a rotation, although any
combination of rotations and reflections is allowed. Each affine point (x,y) is
first rotated by angle ¢ about the origin, then translated by amounts Ax, Ay
parallel to the axes, and finally its distance from the origin is scaled by 1/k to
yield the image point (Z, ). The order of these operations is important since,
in general, the matrices do not commute under multiplication.

The left—-most matrix in (7.63) is perhaps the most interesting. It defines a
“perspectivity” under which — unlike the first three matrices — affine points
may be mapped to infinity and, conversely, points at infinity may be mapped
into the affine plane. Hence, parallel lines may become intersecting lines, and
vice—versa, under such transformations. We see, in fact, that the affine line

W4 AX +puY =0

in the (YV, X,Y) coordinates is mapped to the line at infinity, W = 0, in the
(W,X,Y) coordinates by the left—-most matrix in (7.63). Conversely, the line
at infinity, W = 0, in the (W, X,Y") coordinates becomes the affine line

W—AX —puY =0

in the (W, X, Y) coordinates. This phenomenon is best understood in terms
of an intuitive geometrical model, which we discuss in §7.4.6 below.

The mapping of affine points to points at infinity, and vice—versa, has a
dramatic effect on the appearance of curves. Consider mapping the unit circle

X24+Y?2-W?2 =0

by the transformation (W, X,Y) = (W-Y, X,Y) corresponding to the choices
A =0 and p = —1. The equation of the transformed curve is then

X?—2WY -W? =0,

which represents a parabola symmetric about the g—axis, and crossing it at
the point (0, —%) In fact, any conic can be mapped into any other by means
of a projective transformation. This projective equivalence of the conics was
first recognized by the astronomer Johannes Kepler (1571-1630), famous for
his empirical laws of planetary motion. Rather than distinguishing between
different types of conics, he imagined them to form a continuous family that
can be characterized by the relative position of their two foci.

Starting with the degenerate case of two lines that intersect at the origin
(both foci coincident at that point), one observes a sequence of hyperbolae as
one focus moves to the right while the other one remains fixed at the origin.
Eventually, in the limiting case of the moving focus infinitely far on the right,
one has a parabola. As the moving focus reappears infinitely far on the left,
and begins to approach the origin again, the parabola “closes” and one passes
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Fig. 7.8. Kepler’s view of the conics as a continuum. With one fixed and one moving
focus, we pass on the left from the degenerate case of intersecting lines (1) through a
sequence of hyperbolae (2) to the transitional case of a parabola (3), with the moving
focus “at infinity.” As this focus reappears on the other side of the affine plane, we
have a family of ellipses (4) culminating in a circle (5). With further motion of this
focus, the entire sequence is repeated, but in reversed order (6)—(10), on the right.

through a sequence of increasingly round ellipses, finally arriving at a circle
when the two foci are again coincident at the origin (see Fig. 7.8).

Kepler’s notion of the parabola as a conic that has one focus “at infinity”
heralded the beginning of projective geometry. The subject was then pursued
by Girard Desargues (1591-1661), a French architect and military engineer,
although his writings were rather obscure and apparently not well-received by
contemporaries. It was the 1822 Traité des Propriétés Projectives des Figures
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of Jean Victor Poncelet!? (1788-1867) that established projective geometry
as an independent and rigorous discipline in its own right.

7.4.5 Invariance of the Cross Ratio

Projective transformations preserve the incidence relations among geometrical
figures, but not angles, lengths, or ratios of lengths in those figures. Thus, they
are the most basic or “primitive” of geometrical transformations, and subsume
other important transformations (e.g., shape—preserving and affine mappings)
as special instances. The English mathematician Arthur Cayley (1821-1895)
thus remarked that “All geometry is projective geometry.”

Fig. 7.9. The invariance of the cross ratio for four collinear points A, B, C, D is
characterized by equation (7.65), while the dual invariance of the cross ratio of four
concurrent lines a, b, ¢, d (through a common point P) is defined by equation (7.66).

Although, in general, projective transformations alter lengths and ratios
of lengths, they do preserve a special quantity defined for sets of four collinear
points, called the cross ratio — or “double ratio” — of those points. Namely, if
A, B, C, D are four distinct collinear points, their images A’, B’, C’, D’ under
a general projective transformation are also collinear, and the invariance of
the cross ratio is defined by the equation

ABCD _ 4B O'D
AD CB  A'D' C'B’
where AB denotes the signed distance from A to B (i.e., BA = —AB), and

likewise for A’B’, etc. This holds even if one of A, B, C, Dor A’, B', C’, D' is
a point at infinity, with the convention that we cancel the two terms involving

(7.65)

10 Poncelet is reputed to have developed many ideas for his Traité while incarcerated
as a prisoner—of—war following Napoleon’s invasion of Russia. He also introduced
the term fatigue to describe the sudden failure of materials under cyclical stress.
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that point from the numerators and denominators. The definition of the cross
ratio may also be extended to accommodate coincident points.

In accordance with the principle of duality, we can also define a cross ratio
for any four concurrent lines (passing through a common point), as the dual
to that for four collinear points, and this cross ratio for lines is also invariant
under a general projective transformation. Namely, if a, b, ¢, d are four distinct
lines concurrent at some point P, and a’, I/, ¢/, d’ are the images of these lines
under a general projective transformation, we have

sin(Z ab) sin(Z cd) sin(Za'b") sin(£d'd")

sin(Zad) sin(Z¢b)  sin(Zd'd') sin(ZcY)’ (7.66)

where Z ab is the oriented angle at P between a, b — similarly for Za’l’, etc.
Fig. 7.9 illustrates the dual cross ratios of points and lines.

7.4.6 Geometrical Figures and their Shadows

A deeper insight into projective transformations of the plane can be obtained
from an elegant geometrical model that intuitively explains how parallel lines
may be transformed into intersecting lines, or vice—versa. Consider a three—
dimensional Euclidean space in which two non—parallel planes — an “object”
plane O and “image” plane I — are chosen together with a point “light source”
or center of projection c that does not lie on O or I (see Fig. 7.10).

Fig. 7.10. Visualization of a plane projective transformation by means of a central
projection of an object plane O to an image plane I from a center of projection c.

We imagine the object plane O to be translucent, with a geometrical figure
A drawn on it in black ink. The point light source at ¢ then casts a shadow A’
of A onto the image plane I, such that the finite points of A and A’ exhibit
an (almost) one—to—one correspondence. The mapping of A to A’ is called a
central projection, and we are obliged to say “almost” for the following reasons.
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Consider the plane [ through the center of projection ¢ that is parallel
to the image plane I. This plane cuts the object plane O in a certain (affine)
line ¢p. Clearly, no point of the line {p on O casts a finite shadow point on I,
since rays from c to each point of this line are all parallel to I. Thus, we say
that the affine line o on O is mapped!! to the line at infinity on I.

Conversely, consider the plane O through c that is parallel to the object
plane. It cuts the image plane in a certain (affine) line £;, and we ask: what
points of the object plane are mapped to this line £; on the image plane? If we
consider a point p on I that approaches ¢;, the location at which the ray from
c to p pierces the object plane recedes indefinitely along that plane, since this
ray approaches parallelism with O. Thus, we say that the line ¢; on I is the
“shadow” of the line at infinity on O.

Figure 7.11 illustrates these concepts. From the above reasoning, it should
be evident that almost all intersecting lines on O are mapped to intersecting
lines on I. However, when two lines on O happen to intersect at a point on
Lo, they will be mapped to parallel lines on I. Conversely, parallel lines on O
are mapped to intersecting lines on I — their intersections lie on the line ¢;.

Fig. 7.11. Parallel lines on the object plane O, extended indefinitely, meet at a
point on the line ab when projected from the center ¢ onto the image plane I. The
line ab, defined by the intersection of I with a plane O} through c that is parallel
to O, is the image on I of the “line at infinity” on O.

A central projection of an object plane O from a finite center ¢ onto a
non—parallel image plane I defines the most general form of two—dimensional
projective transformation. When c recedes to infinity, the rays connecting it
to points of O become parallel, and we then have a parallel projection — which
corresponds to an affine transformation of the plane, since points at infinity

¢

1 For obvious reasons, the line 4o is often called the “vanishing line” on O.
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on O are then mapped!? to points at infinity on I. Finally, the case in which
the image plane I and object plane O are parallel defines a shape—preserving
affine transformation, namely, a simple scaling of the plane.

The model described above offers an intuitive geometrical understanding of
the projective transformations that were introduced in purely algebraic terms
in §7.4.4. It should be apparent that, in general, such transformations preserve
the incidence relations (intersections, tangencies, etc.) in a geometrical figure
— but they alter its size and shape. This can be seen, for example, in the
case of the conics in Fig.7.12, which imparts an intuitive interpretation to
the statement that “the parabola is tangent to the line at infinity.”

Fig. 7.12. Projective image of a circle. The “vanishing line” ab is the intersection of
the object plane O with a plane through c that is parallel to the image plane I. The
circle is mapped into an ellipse or a parabola according to whether ab lies outside
the circle or touches it (not shown is the case where the vanishing line ab cuts the
circle into two segments, which are mapped into the two branches of a hyperbola).

The equivalence of higher—order curves under projective transformations
was perhaps first recognized by Sir Isaac Newton. In his Fnumeratio linearum
tertii ordinis, concerned with the classification of cubic curves (see also §9.2)
he includes [432] the following paragraphs on genesis curvarum per umbras
— i.e., the generation of curves by shadows:

“If the shadows of curves caused by a luminous point, be projected on
an infinite plane, the shadows of conic sections will always be conic
sections; those of curves of the second genus will always be of the
second genus; those of the third genus will always be of the third
genus; and so on ad infinitum ... And in the same manner as the
circle, projecting its shadow, generates all the conic sections, so the

12 Unlike general projective transformations, this implies that parallel lines remain
parallel under affine transformations.
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five divergent parabolas, by their shadows, generate all other curves
of the second genus. And thus some of the more simple curves of other
genera might be found, which would form all curves of the same genus
by the projection of their shadows on a plane.”

In Newton’s terminology!'? (borrowed from Descartes) conics are curves of the
“first genus” while cubics are of the “second genus.” His “divergent parabolas”
are cubics described by an equation of the form

y? = ax® + ba? + cx + d,

and he identifies five different types according to the root structure of the cubic
on the right (namely: three simple real roots; a double root and a simple root
either greater or smaller than it; one triple root; and one real root with two
complex conjugate roots). Thus, Newton is claiming that any cubic may be
regarded as the projective image of a curve of the above type.

Fig. 7.13. Procedure for perspective drawing of a lute, from the Unterweisung der
Messung mit dem Zirkel und Rechtscheit by the artist Albrecht Diirer (1471-1528).

The desire of Renaissance artists for greater “realism” in their paintings
was the cultural pretext for the development of projective geometry. This
led to a deeper grasp of the “perspective” projection of a three-dimensional
scene onto a plane (the canvas) from a specified point (eye position), as seen
in Fig.7.13. Paolo Uccello (1379-1435) of Florence was perhaps the first to
fully master the method — his perspective rendering of a chalice appears on
the cover of the journal Computer Aided Geometric Design.

'3 This should not be confused this with the modern concept of genus (see §9.2.5),
that determines whether an algebraic curve admits a rational parameterization.
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7.4.7 Projective Geometry of Three Dimensions

The ideas discussed above generalize readily to three dimensions, using the
homogeneous coordinates (W, X,Y, Z) of three—dimensional projective space.
A duality between points and planes is suggested by the equation

KW +LX+MY +NZ =0, (7.67)

which may be interpreted as defining either the set of points on a fixed plane,
or the set of planes through a fixed point, depending on whether we consider
(K,L,M,N) or (W, X,Y, Z) to be held constant. The equation W = 0 defines
the plane at infinity. One can then form dual statements such as

three distinct points define a plane ... three distinct planes define a point.

Every pair of planes is considered to intersect in a line, either a line at infinity
or an affine line according to whether or not those planes are parallel. In three
dimensions, lines are considered to be self-dual — we do not change the word
“line” when forming the dual of a statement. Thus we have

two distinct points define a line ... two distinct planes define a line.

as dual results, in which the words point and plane have been swapped, but
line is unaltered. Similarly, dualizing “a point and a line define a plane” we
obtain “a plane and a line define a point” — note that the validity of these
statements is contingent on taking into account not only affine elements, but
also points, lines, and the plane at infinity. As the dual of the point equation
F(W,X,Y,Z) =0 of a surface, we have the plane equation

G(K,L,M,N) = 0.

Each plane (7.67) whose coefficients K, L, M, N satisfy the above equation is
tangent to the surface; the surface may be regarded as the envelope of this
two—parameter family of tangent planes.

The homogeneous representation of lines in space is rather more subtle
than that of points or planes. In three dimensions, there exist triply—infinite
sets of both points and planes, and we can specify a particular point or plane
by the ratios of four homogeneous coordinates: (W, XY, Z) or (K, L, M, N).
Now three-dimensional lines have four essential degrees of freedom,'* but it
is not possible to give a “symmetrical” representation with five homogeneous
coordinates. Thus, it is customary to employ a redundant set of siz variables,
known as Pliicker line coordinates, to describe lines in space. Choosing distinct
points (Wy, Xo, Yy, Zy) and (W7, X1,Y1,Z1) on any line ¢ in space, we may
form the quantities defined by

(Az, Ay, Ay) = (WoXq — Wi X, WoYr — WhYy, WoZy — Wi Zy),
(Bz, By, B:) = (YoZ1 — Y120, Zo X1 — Z1 X0, XoY1 — X1Y0) .

14" Any line can be mapped to (say) the z—axis by two rotations and two translations.
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One can then verify that the ratios A, : Ay : A, : By : By : B, are actually
independent of the chosen points on £ — i.e., any points (W, Xy, Y\, Z)) and
(Wy, X, Yy, Z,,) given by distinct values t = A, pin W = (1 — )Wy +t W,
X =(1-t)Xo+1tXy, ... etc., will yield the same ratios.

The above expressions may be simplified by using vector notations. Writing
PO = (Xo, Yo, Zo), P1 = (Xl, Yl, Zl) and A = (Aw, Ay,Az), B = (Bw, By, Bz)
we obtain

A = WQP1 — W1P0 and B = PO X Pl.
Clearly, the components of A and B are not independent — they satisfy
A -B=A4,B, +A,By + A,B, =0.

This, together with the fact that only the ratios A, : A, : A, : By : By : B,
are significant, means that among the six line coordinates (A,B) there are
only four degrees of freedom. Conversely, the (ratios of) components for any
pair of vectors (A, B) that satisfy A - B = 0 identify a unique line ¢ in space
— note that £ is a line at infinity if and only if A = (0,0,0).

One can also formulate a dual system of line coordinates, by regarding ¢
as the intersection of distinct planes (Ko, Lo, Mo, No) and (K3, Ly, My, Ny),
that is analogous to the above scheme. In fact, by writing Qo = (Lo, Mo, No)
and Q1 = (L1, M7, N1), one can deduce that the intersection of these planes
has line coordinates (A, B) given by

A =QoxQ and B = KoQi — K1Qo.

Two arbitrary lines £1, {5 in space are ordinarily skew (i.e., non—-intersecting).
The condition for them to intersect can be expressed in terms of their Pliicker
coordinates (A1,B1) and (A2, Bs) as

A;-By + A;-B; = 0.

In three-dimensional projective geometry, the circle at infinity (also known
as the absolute circle) assumes the role of the circular points at infinity in the
two—dimensional case. This locus may be regarded as the intersection of any
sphere with the plane at infinity. It is defined by the equations

W=X*+Y*+2%>=0,

and thus comprises only complex points. Alternately, we may parameterize it
using the rational form

W(t): X(t) : Y(t): Z(t) =0 :1—*: 2t :i(1+1?).

Each plane may be regarded as possessing two circular points at infinity: the
circle at infinity is the locus of such points for planes of all orientations.
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Three-dimensional projective transformations between two homogeneous
coordinate systems (W, X, Y, Z) and (W, X,Y, Z) can be described by a non—
singular 4 x 4 matrix:

Moo Mo1 M2 Mo3
mio Mi1 Mi2 M3
Moo M21 Ma2 M23
m3op MM31 M32 1M33

(7.68)

N = e =
NS

This matrix has a factorization analogous to (7.63), into an affine mapping
(three—dimensional rotations/reflections, if the lower-right 3 x 3 sub—matrix
is orthogonal), a translation, a scaling, and a three-dimensional perspectivity.
The latter admits a geometrical interpretation similar to that discussed above
in §7.4.6 for the two—dimensional case, although the visualization is now more
difficult because it is based on a projection between three-dimensional subsets
of a four—dimensional Euclidean space. In three dimensions, the most general
shape—preserving transformation has the form

w k 0 0 0 w
X | Az cospcosf —sing cospsinf X
Y | = | Ay singcosf cos¢ sin sinf Y
7 Az —sinf 0 cos Z

Here we assume that the lower-right 3 x 3 sub—matrix represents a rotation,
although any combination of rotations/reflections is allowed — the indicated
form corresponds to rotation by a polar angle 6 about the y—axis, followed by
rotation by an azimuthal angle ¢ about the z—axis.
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Differential Geometry

Let us therefore consider as differential geometry that branch of the
subject which is based on ... the infinitesimal calculus ... The first
writer we should consider in this connection actually did not use the
calculus at all, for it was not invented in his time, Christiaan Huygens.
He deserves to rank as a forerunner, however, owing to his interest in
curvature and evolutes. He was led to this, strangely enough, from his
interest in pendulums and clocks.

J. L. Coolidge, A History of Geometrical Methods

It is commonly believed that the invention of calculus was motivated by the
desire to formulate and solve differential equations, especially the equations of
motion of Newtonian dynamics. In fact, purely geometrical problems, such as
the determination of tangents and curvatures, feature prominently among its
earliest applications. The first calculus textbook, the Analyse des infiniment
petits, pour Uintelligence des lignes courbes (see Fig. 8.1), published in 1696 by
the French aristocrat Guillaume Francois Antoine de 'Hépital (1661-1704),
is an exposition on the elementary differential geometry of plane curves.!

Differential geometry is primarily concerned with the local intrinsic shape
properties of curves and surfaces. To characterize these properties, a curve or
surface is first represented by a vector—valued function of “auxiliary variables”
or parameters — one for a curve, and two for a surface. By local we mean
that the curve or surface geometry in the neighborhood of a particular point is
characterized in terms of its parametric derivatives at that point. By intrinsic
we mean that, although the curve or surface representation is not unique, the
shape measures formulated in terms of its derivatives have the same values
regardless of the chosen parameterization (or coordinate system).

! It might seem that modesty dissuaded de I’H6pital from having his name printed
on the cover sheet, although it appears “pencilled in” on many copies. This is, in
fact, more an indication of the limits to his audacity: the text is a near—verbatim
translation [443], by an unknown hand, of earlier Latin notes by Johann Bernoulli!
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ANALYSE

DES

INFINIMENT PETITS,
Pour lintelligence des lignes courbes.

DE L'IMPRIMERIE ROYALE

M. DC XCVL

Fig. 8.1. The Marquis de 'Hopital’s Analyse des infiniment petits (1696), from the
Special Collections Library, University of Michigan — reproduced with permission.

The tangent and curvature are the principal intrinsic shape properties of a
plane curve — they characterize the “best” linear and circular approximants
to the curve at each point. A plane curve is completely defined, modulo rigid
motions, by specifying curvature as a function of position (arc length) along
it. To describe a space curve an additional intrinsic property, the torsion, is
required: this specifies the amount of “twisting” of the curve out of the plane
that most nearly contains it in the neighborhood of each point.

At each point of a smooth surface the tangent plane — orthogonal to the
normal vector at that point — identifies the “best” linear approximation to
the surface. Since a surface is a two—dimensional locus, the characterization
of its intrinsic shape properties is more subtle than for one-dimensional loci
(curves). To elucidate the concept of surface curvature, we may appeal to the
established concept of curvature for plane curves. The family of planes that
contain the normal at a given point cut the surface in (planar) normal section
curves, each with a well-defined curvature there. These “normal curvatures”
exhibit minimum and maximum values, known as principal curvatures of the
surface at that point, corresponding to orthogonal orientations of the section
plane, which define the local principal directions for the surface. The surface
shape in the vicinity of a point is like that of a “cup” or a “saddle” according
to whether the principal curvatures there are of like or unlike sign.
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Besides intrinsic shape properties (tangents and curvatures) at any fixed
point, the freedoms of motion on a surface — as compared to a curve — allow
the identification of continuous loci on the surface that are also expressions of
its intrinsic geometry. The lines of curvature, for example, are an orthogonal
network of curves on a surface that are everywhere tangential to the principal
directions. For any two points, one may also consider the geodesic — or path
of least length — on the surface between those points. Such “intrinsic loci” of
a surface do not, in general, admit simple closed—form representations: they
are the solutions to systems of non-linear differential equations.

8.1 Intrinsic Geometry of Plane Curves

A plane curve may be defined by an ordered pair of functions of a “parameter” &,
the values of these functions being interpreted as the Cartesian coordinates of
points along the curve: r(§) = ((£),y(§)). Actually, many different pairs of
functions can exactly describe a given geometrical locus — i.e., there are many
different parameterizations of a curve. However, assuming that z(¢) and y(&)
are at least twice—differentiable, we can identify certain expressions in their
derivatives that are independent of the parameterization, and thus correspond
to “intrinsic” geometrical properties of the curve.

8.1.1 Tangent and Curvature

The tangent and the curvature of a plane curve are its fundamental intrinsic
geometrical properties. We say that the curve r(§) is regular if its derivative
satisfies r'(£) # 0 for each value of £ in the parameter domain that concerns
us. The derivative of a regular curve may be written in the form

r'(§) = a(§)t() (8.1)

o(6) = [F(&)] = Va2 (©) 1 97(E) = & (8.2)

d¢’
which corresponds to the local rate of change of the curve arc length s with
respect to the parameter £ — and the unit tangent vector

r'(§)
t(§) = (8.3)

v ()]
to the curve. Under a differentiable transformation £ — ( of the parameter,
such that d¢/d¢ # 0 over the domain of interest, the tangent vector changes
by at most a reversal in its sense. Thus, although (8.3) is not always invariant
under re—parameterization, the tangent line (i.e., the line through any curve
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point that contains the tangent vector) is an intrinsic property, and so is the
normal line (the line orthogonal to the tangent line at each point).
By differentiating equation (8.1) again, we obtain

r'(§) = o' () (&) + a(§)t'(€). (84)

Now t(€) is by definition a unit vector, and by differentiation of [t(£)[? = 1
we see that t/(€) - t(£) = 0, i.e., t/(€) is always perpendicular to t(£). Thus,
introducing the unit normal vector

n(§) = t(§) x z, (8.5)
where z is a unit vector orthogonal to the plane of the curve, we may write
t'(¢) = —o(§)r(§)n(§) (8.6)

where k(€) is a scalar function, the curvature of r(£), that we shall presently
determine (we introduce the factor o(£) to ensure that x has a geometrical
meaning independent of the curve parameterization). Through equations (8.3)
and (8.5) we adopt the convention that n(§), t(£), z form a right-handed
orthonormal triad at each point of the curve, and n(§) points locally to the
right of the curve r(§) as we traverse it in the sense of increasing .

k>0 k=0 k<0

Fig. 8.2. Local behavior of a plane curve, relative to its tangent line, at points of
positive, zero, and negative curvature. The arrows indicate the sense of the curve
parameterization, and in the k = 0 case we assume that x’ # 0, yielding an inflection.

Substituting (8.6) into (8.4), and taking the cross product of both sides
with r/(£), we find that the curvature is given by

[r'(§) xr"(§)] - =z
()
It is not difficult to verify that, although it is expressed in terms of the first

and second parametric derivatives of r(€), the value of x(&) is independent of
the curve parameterization. Note that «(£) may assume both negative and

k(&) = (8.7)
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positive values, according to the orientations of r'(£) and r”(£) relative to z.
The vector t(&) defines the orientation of the tangent line at each point, and
the curve lies locally to the left or right of this line according to whether k(&)
is positive or negative. At points where k(§) = 0, however, the curve crosses
its tangent line? — we then have an inflection point (see Fig. 8.2).

8.1.2 The Circle of Curvature

We now define the radius of curvature to be the reciprocal of the curvature:
p(&) = 1/k(&). Then, for each &, the point

e(&) = r(§) — p(§)n(¢) (8.8)

is the center of curvature® corresponding to the curve point r(£). The circle
with center e(£) and radius |p(€)| is called the osculating circle at that point:
it is the circle that most closely “nestles” against the curve there. As £ varies,
equation (8.8) defines a parametric curve “derived” from the given curve r(§),
namely, the locus of its centers of curvature — known as the evolute of that
curve. We defer a more detailed discussion of evolutes to §8.3.

To quantitatively express the idea that the osculating circle “nestles” more
closely against the curve at a given point than any other circle passing through
that point consider, for a given scalar value R and fixed point ¢, the function

fp) =|p—c|® — R?

of the variable point p = (z, y). Clearly, the locus of points satisfying f(p) = 0
is a circle of radius R with center c. If we now choose a fixed parameter value
&« and take ¢ =r(&,) — Rn(&,), the equation

f(p) = |p—r(&) + Rn(&) > — R? = 0 (8.9)

represents a circle passing through r(£,) whose center lies on the normal line
to the curve at that point, at distance R from it. To study how closely this
circle conforms to the curve, we imagine that the variable point p moves along
the curve r(€). Taking r(§) as the argument of f yields the univariate function

F(&) = f(x(§) = [r(§) —r(&) + Rn(&) | - R?, (8.10)

whose roots identify points & of the curve that lie on the circle (8.9).
Clearly &, is such a root, because the point r(&,) lies on the circle (8.9) by
construction. In fact, differentiating (8.10) yields

FI(§) = 21'(§) - [x(§) — (&) + Rn(&) ], (8.11)

2 Provided that k' (&) # 0, i.e., the value 0 is not a local extremum of the curvature.
3 Note that, according to the adopted sign convention, x(£) is positive when n(&)
points away from the center of curvature.
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and we see that F’(&,) = 0, since r'(£,) and n(&,) are orthogonal. Hence, &, is
actually a double root of (8.10) for all values of R. Geometrically, this reflects
the fact that, by construction, the circles defined by (8.9) all share the same
tangent line with the curve at the point r(&,) — these circles are said to have
first-order contact* with the curve at that point.

Among the family of circles (8.9), however, there is a unique member that
is an even better local approximation to the curve at the point r(£,) than all
the others: this circle has second—order contact with the curve. To find the
value of R identifying this special circle, we differentiate (8.11) again to obtain

F'(€) = 2x"(§) - [r(§) — (&) + Rn(&)] + 2r(§) - X' (€), (8.12)

and if &, is to be a triple root of the function (8.10), we must have F"(£,) = 0.
Solving this equation for R gives

(&) B
) xr'(€)]-z "

where p(&,) is the radius of curvature at r(£,). Thus, ¢ = r(&.) —p(&) n(éy) =
e(&.), and we identify the circle that has second—order contact with the curve
as the osculating circle, defined above. The point r(,) can be regarded as a
three—fold intersection of the curve with its osculating circle, and the fact that
osculating circle has odd intersection multiplicity with the curve implies that,
in general, it crosses the curve at r(&,). All other circles of radius R # p(&.)
in the family (8.9), which are tangent to the curve at r(&,), lie locally on one
side of the curve in a neighborhood of that point (see Fig.8.3).

R = (é*)a

Fig. 8.3. Among all circles tangent to a curve at a generic point (with centers on the
normal line there), those with radii R smaller or larger than the radius of curvature
p lie locally to one side of the curve: the osculating circle with R = p cuts the curve.

4 The order of contact at a common point of two curves is conventionally defined
[383] to be one less than their intersection multiplicity at that point.



8.1 Intrinsic Geometry of Plane Curves 137

8.1.3 Vertices of Plane Curves

We have observed that, for any point of non—zero curvature on a regular plane
curve r(§), there is a unique circle having second-order contact with the curve
at that point. Higher—order contacts of circles with a curve are possible, but
only at certain special points of the curve. By further differentiation of (8.12),
for example, one can show that &, is a four—fold root of F'(§) when R = p(&,)
and this value also corresponds to a (local) extremum of p(§).

A point where the radius of curvature (or curvature) of a curve attains a
local extremum value is called a vertex of that curve. The osculating circle at
a vertex has (at least) third—order contact with the curve, and it lies locally
to one side of the curve. Thus an ellipse, for example, has four vertices — two
of minimum and two of maximum curvature, on its minor and major axes,
respectively. This is perhaps the simplest illustration of a “global” intrinsic
property of closed plane curves, known as the four—vertex theorem:

Theorem 8.1 A smooth closed plane curve has at least four vertices.

The theorem may be proved by considering the curvature variation between
points of contact of the curve with the circle circumscribed about it [352].

8.1.4 The Intrinsic Equation

The curvilinear distance s or arc length of the curve r(£), as measured from
the point £ = 0, is given by the function

13
s(€) = /0 o(t) dt (8.13)

of the parameter . Unfortunately, the radical in (8.2) precludes a resolution
of this integral into elementary functions of £ for even the “simplest” curves
(i.e., those parameterized by polynomial or rational functions).

We shall demonstrate in §16.1 below that arc-length parameterizations in
terms of rational functions are, in fact, impossible — except in the trivial case
of a straight line. It is nevertheless advantageous, for theoretical purposes, to
consider the parameter transformation £ — s defined formally by (8.13). The
distinguishing property of the arc-length or “natural” parameterization r(s)
of a curve is that its parametric speed satisfies® o(s) = |#(s)| = 1; hence this
is often also called the “unit—speed” parameterization.

In terms of the arc-length parameterization, the tangent and normal are
t(s) = r(s) and n(s) = t(s) x z, while the curvature is x(s) = [r(s) X #(s)] - 2.
The variation of t and n along the curve is described by the Frenet equations

dt q dn
3 = kn an o
5 We employ dots to denote derivatives with respect to s, and primes for derivatives
with respect to a general parameter €.

=rt. (8.14)
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Now since the tangent and normal are orthogonal unit vectors, we may write
t(s) = (cosf(s),sinf(s)) and n(s) = (siné(s), — cos(s)), 6(s) being the angle
between the z—axis and the tangent to r(s). Substituting these expressions into
(8.14) we observe that the curvature has the interpretation

L
T ds’

i.e., it is derivative of the tangent—angle 6 with respect to the arc length s.
The function k(s) specifying the curvature in terms of arc length along a
plane curve is called the intrinsic equation of that curve — apart from a rigid
motion, it uniquely defines the curve. Given a start point rog = (xo,y0) and
direction to = (cos fy,sinfy) at s = 0, we have the explicit representation

z(s) = xo + /05 cosf(t)dt, y(s) = yo + /0S sin0(t) dt (8.15)

of the curve, where ,
0(s) = 6y + / k(t) dt. (8.16)
0

Of course, the possibility of resolving these integrals in terms of elementary
functions depends on the functional form of x(s). In cases where an analytic
reduction is impossible, numerical quadrature must be used to trace r(s).

Similarly, knowing the value and derivatives kg, Ko, . . . of k(s) at the point
ro where s = 0, we can develop r(s) in a power series about that point,

2 .
r(s) =rp + (8—2053—&—~-~>t0 + (—?82—2053—&—~-~>n0, (8.17)

where ty, and ng are the tangent and normal at ry, and only cubic or lower—
order terms in s are shown. We see that, referred to the tangent and normal
as local axes, the curve at rg looks “locally” like a parabola if kg # 0, and
like an inflectional cubic if kg = 0 # k¢ (see Fig. 8.2).

8.2 Families of Plane Curves

Consider a one-parameter family of plane curves C()), where the parameter
A varies over a given interval. C(\) may be specified by a polynomial equation
f(x,y,A) = 0 as a family of implicit algebraic curves, or by a vector polynomial
or rational function r(£, A) as a family of parametric curves — where ¢ is the
curve parameter, as distinct from the “family parameter” \. These two forms
evidently specify differentiable families of curves. The members of the family
C()\) may be all of the same size and shape, differing only in location and/or
orientation, or they may change continuously in size and shape as A varies.
The former case arises naturally in describing the motion of a rigid body.
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8.2.1 Envelopes of Curve Families

The most interesting feature of a differentiable family of plane curves C(\) is
its envelope [52]. An intuitive feel for the envelope can be obtained by plotting
a discrete sample C(A1),...,C(An) of the family members (see Fig.8.4) —
typically, the curves occupy a subset of the plane, and they “nestle” against a
certain locus that bounds the region occupied by the entire family: this locus
is (a subset of) the envelope.® However, some families of curves may have no
envelope at all — e.g., families of parallel lines or concentric circles.

i

N
X ///},

Fig. 8.4. Left: discrete sampling of a one—parameter family of curves C(A\), A € [0, 1]
generated by the motion (translation and rotation) of an ellipse. Right: envelope of
the curve family C'()\) together with the initial and final instances, C(0) and C(1).

There are several alternative approaches to defining the envelope £ of the
curve family C()\) quantitatively, and in certain situations they incur technical
differences in terms of what is considered to belong to the envelope. We briefly
address some of these differences below — see [62,63,203] for details.

Definition 8.1 The envelope £ is a curve that is tangent at some point to
each member of the curve family C()).

Definition 8.2 The envelope £ is the locus of intersections of “neighboring”
curves, C(A) and C(A 4+ AM), in the limit AN — 0.

Definition 8.3 If S is the surface defined by “stacking” each curve C(\) at
height z = A above the (z,y) plane, the envelope I" is the critical set of the
projection of S onto this plane (or the silhouette of S viewed along the z—axis).

We focus on the envelopes of smooth (tangent—continuous) curve families,
for which it is possible to identify the points of each curve C(\) that lie on the

5 Not all segments of the envelope separate regions occupied by the curve family
from “empty space” — parts of the envelope may lie within the former regions.
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envelope €. Curves with tangent discontinuities incur further complications in
the envelope formulation — each tangent—discontinuous point is a potential
contributor to the envelope (for example, the envelope of a moving polygon is
generated entirely by its vertices, unless there are instances where the motion
is instantaneously parallel to one side of the polygon).

8.2.2 Families of Implicit Curves

If C(\) is specified as a family of algebraic curves, by a polynomial equation
of the form f(z,y,A) = 0, its envelope £ is also an algebraic curve. Writing
fr = 0f/0OA, the equation of the envelope curve is obtained by eliminating A
among the equations” f = fy =0 — i.e.,

e(z,y) = Resultanty(f(z,y,\), falz,y,\)) = 0. (8.18)

This may be understood in terms of Definition 8.3 as follows. Identifying A
with the Cartesian coordinate z in R3, consider the silhouette of the algebraic
surface f(x,y, z) = 0, viewed along the z—axis. A point of this surface belongs
to the silhouette if the surface normal, in the direction of V f = (fz, fy, f2), is
orthogonal to the z—axis, i.e., if f, = 0. The locus of points on f(z,y,2) =0
satisfying f.(z,y,2z) = 0 is an algebraic space curve. The envelope £ of the
curve family is just the (parallel) projection of that space curve onto the (x,y)
plane — it may be regarded as the locus of points in the plane such that the
equations f = 0 and f, = 0 are simultaneously satisfied for some value of z.
With z = A, this interpretation yields (8.18) as the envelope equation.

In a number of exceptional circumstances, special factors may arise in the
envelope equation (8.18) — depending on the particular context, these factors
may or may not be regarded as defining parts of the desired envelope:

)

(a) if the value A = )\, identifies a “stationary” curve in the family, such that
falz,y, M) =0, then f(z,y, \.) appears as a factor of e(x, y);

(b) conversely, if \. identifies a “vacuous” member, so that f(x,y, ) = 0,
then fy(z,y, A«) appears as a factor of e(z,y);

(c) if g(z,y) = ged(f(z,y, As), fa(z,y, As)) is a non—constant common factor
of f and fy for A = A, then g(x,y) appears as a factor of e(z,y);

(d) if the family f(z,y,A) has a locus of singular points — i.e., there exists a
curve o(z,y) = 0 such that, as X varies, f = f, = f, = 0 on this curve —
o(x,y) also appears as a factor of e(z,y).

Perhaps the simplest example is a linear family, or pencil, of curves:

f(@,y,A) = (1=A) fo(z,y) + A fi(z,y) = 0. (8.19)
Since fy is independent of A, the envelope equation (8.18) becomes

"7 This method was first proposed [281] in the Acta Eruditorum of 1692 and 1694,
by Gottfried Wilhelm von Leibniz (1646-1716).
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G(I’,y) = fl(‘ray) - fO(Iay) = 0.
For example, the envelope of a pencil of conics is (in general) a conic itself.

Example 8.1 A pencil of circles — also called a coazal system of circles —
has one of the following three forms (see Fig.8.5):

e the common points or “elliptic” system:;
e the tangential or “parabolic” system;
e the limiting points or “hyperbolic” system.

The tangential system is a transitional case between the common and limiting
points systems. If fo(z,y) = 0, f1(z,y) = 0 are the equations of distinct circles
in a coaxal system, with the same coefficient for z2 + y2, the line defined by

g(I,y) = fl(x7y) - fO(xvy) =0 (820)

is known as the radical axis of that system. From the preceding discussion,
we might expect this line to be the envelope of the coaxal system. However,
the geometrical perspectives of Definitions 8.1-8.3 suggest that the envelope
is at most a set of discrete points, rather than a locus — namely, the common
points (elliptic system); the tangency point (parabolic system); and the empty
set (hyperbolic system). Actually, £(z,y) is one of the “extraneous” factors,
discussed above, that may arise in the envelope formulation (8.18). When the
coaxal system is expressed in the form (8.19), the value® A\ = foo identifies
the circle of “infinite radius” in the system, i.e., the radical axis (8.20). Since
f and fy both reduce to ¢(x,y) at A = +00, we expect from case (c) that this
factor will appear in (8.18).

Fig. 8.5. Common points (left), tangent (center), and limiting points (right) coaxal
circle systems: the dashed line indicates the radical axis. There is no envelope curve.

8 We may define f(x,y,=400) as a formal limit — alternately, we may regard \ as
being defined over the projective line by introducing a homogenizing variable.
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Fig. 8.6. Envelope of projectile trajectories or “parabola of safety” (Example 8.2).

Example 8.2 The trajectory of a projectile launched from the origin with
speed v, at an angle § = tan~! X to the ground, has the equation

fa,y, ) = k(1+X)2” — Az +y =0, (8.21)

where k = ¢g/2v? and g is the gravitational acceleration. As seen in Fig.8.6,
for all A this defines a family of parabolas. Taking the resultant of (8.21) and

fr =2k 2® — 2 (8.22)
with respect to A, we obtain the equation
e(x,y) = ka*(4k*2® +4ky —1) = 0.

The z* term arises because (8.21) and (8.22) have the common factor 2 when
A = too (corresponding to a vertical trajectory). Discarding this term, we see
that the envelope®

4k%2? + 4ky —1 =0 (8.23)

of the family of parabolas (8.21) is itself a parabola. Note that every member
of the family (8.21) is tangent to the envelope (8.23), although for |\ < 1
(i.e., |0] < w/4) the point of tangency lies below the ground, y = 0. As is well
known, the maximum range at y = 0, Tyax = v2/g, is obtained with |0| = 7 /4.
Since the projectile cannot intercept any object that remains outside the locus
(8.23), it is called the “parabola of safety” — see [52] for further details.

8.2.3 Families of Parametric Curves
Consider the envelope of a family C(\) of parametric curves, specified by

(& A) = (X(&A),Y(E, ), (8.24)

where X, Y are given (typically, polynomial or rational) functions of £ and A.
In this case, the surface S of Definition 8.3 can be parameterized as

9 This problem was first studied [281] by Torricelli and Bernoulli.
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= XA, y=Y(EN, z=A

We express this in vector form s(£, \) where s denotes a vector in R?, and we
regard & and X as surface parameters. The unit normal to S is given by

N Sg X Sx
 Isexsal”

where sg = (0X/0€,0Y/0¢,0) and sy = (0X/OA,0Y/0A,1). The condition
that the surface normal n be orthogonal to the z—axis thus amounts to

oXoy ovox .
o0& O o0& O

which may be cast in terms of the original specification (8.24) as r¢ x ry = 0.

Note that the left-hand side of (8.25) is the Jacobian, O(X,Y)/0(&, ), of the

bivariate functions X (£, A) and Y (&, \).

The condition (8.25) may be interpreted geometrically as follows. Provided
that r¢ and r) are non-vanishing, the former specifies the tangent direction
for a fixed curve A of the family, whereas the latter gives the instantaneous
direction of motion for a point of fixed parameter value £ as we pass through
successive curves of the family — i.e., as we increase the family parameter \.
Thus, we may identify the points on each member of (8.24) that contribute
to the envelope as those points where the curve tangent coincides with the
direction of motion as we pass through successive curves in the family.

Equation (8.25) identifies, for each A, the £ value(s) corresponding to the
point(s) that the curve r(£, A) contributes to the envelope €. If this equation
can be solved in closed form to yield a symbolic expression A(£) for the family
parameter in terms of the curve parameter, an explicit parameterization of
the envelope is obtained by substituting this expression into (8.24):

€(§) = r(& (). (8.26)

In general, however, equation (8.25) does not admit closed—form solutions for
A in terms of £ (moreover, the number of such solutions may vary with £). A
particularly simple instance is that of a pencil of parametric curves,

r(&A) = (1=A)ro(§) + Ari(§).

In this case, equation (8.25) has the unique real solution

_ ([r1(€) = ro(§)] x rp(8)) -2
([r1(§) = x6(E)] x [r1(€) —ro(§)]) - 2

z being a unit vector orthogonal to the plane of ro(§), r1(§). Substituting this
into expression (8.26) will yield, in general, a rational parameterization of the
envelope €(§) when ry(§) and rq(§) are polynomial or rational curves.
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8.2.4 Families of Lines and Circles

The envelopes of families of certain “simple” curves (namely, lines and circles)
are of particular importance. We have already encountered, in our discussion
of dual representations in § 7.4, the notion that a plane curve may be regarded
as the envelope of its tangent lines (see Fig. 7.7). In some situations, the dual
form is more useful than the customary point equation of a curve.

One might also postulate that a given family of lines are normals, rather
than tangents, to a plane curve. Whereas a given family of tangents identifies
a unique curve, a family of normals is compatible with an infinity of curves:
these curves are “offsets” or “parallels” to each other (see §8.3.4). The envelope
of the family of normal lines to a given curve is the evolute of that curve — it
corresponds to the locus of its centers of curvature. All members of a sequence
of offset curves share the same evolute — they are its involutes.

One family of circles associated with a sufficiently smooth curve is the set of
osculating circles (see §8.1.2). These circles have centers on the evolute of the
given curve, and radii given by its radius of curvature at each point. For d > 0,
one may also consider the families of circles of fixed radius d whose centers
lie on a given curve — the envelopes of such families correspond to the offset
(parallel) curves at each distance d from the given curve. In geometrical optics,
offset curves describe the propagation of a wavefront through a homogeneous
medium. They are employed in computer—aided design to describe tool paths
and tolerance zones, and they specify dilation and erosion operations for image
processing. The following section explores the intimate relationships between
evolutes, involutes, and offset curves in greater detail.

8.3 Evolutes, Involutes, Parallel Curves

For any given planar curve, several “derived” curves may be associated with it
by means of intuitive geometrical constructions. Perhaps the most important
examples are the intimately—connected evolute, involutes, and parallel (offset)
curves. The first investigations of such loci were conducted, prior to the formal
development of calculus, by Christiaan Huygens (1629-1695) in the context of
his design of an ingenious pendulum clock (Horologium Oscillatorium, 1673)
and his wave theory of light propagation (Traité de la Lumiére, 1690).

To elucidate the properties of the evolute, involutes, and offset curves, it is
instructive to begin by re—visiting the tangent line and osculating circle from
a geometrical perspective (as distinct from the analytic arguments of §8.1) —
this approach is closer in spirit to the original treatment by Huygens.

8.3.1 Tangent Line and Osculating Circle

Lines and circles are the first loci encountered in the study of geometry, and
throughout history they have been universally regarded as the most “perfect”
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curves. This is, no doubt, due to the geometric intuition we develop for them,
and the rigor and ease with which “ruler and compass” configurations can be
generated and analyzed. The notion of tangent line and osculating circle offer
a bridge to carry this intuition over to the realm of higher—order curves.

At any point P on a smooth planar curve, the tangent line Tp embodies
the most basic information concerning the location of nearby curve points. A
“highly magnified” view of the curve, in a sufficiently small neighborhood of P,
looks almost identical to Tp. If we desire an even better local approximation
(one that better describes the curve shape at lower magnification), we employ
the circle of curvature or osculating!'® circle Cp — the circle that most closely
“nestles” against the curve at P. The tangent line Tp is specified by a single
number, its orientation at P, but the circle of curvature Cp requires two: the
direction and distance to its center from the curve point P. This reflects the
fact that Cp is a “higher—order” description of local curve shape than Tp.

The orientation of the tangent line at a point P of a smooth curve can be
determined by a geometrical limit process. Consider an infinite sequence of
points Py, Ps, ... progressing systematically toward P along the curve,

lim P, = P.
k—oo

In this progression, one finds that while the length of the chord PP, shrinks,
its orientation approaches, asymptotically, a definite direction. This limiting
direction defines the tangent line Tp. The center of the osculating circle Cp
(i.e., the center of curvature for the curve point P) can also be determined by
a geometrical limit process. We assume the ability, as described, to determine
the tangent lines T, T5, ... at each of an infinite sequence of points Py, P, . ..
that progress toward P. We define the normal line Np to be the line through
P that is perpendicular to Tp — similarly, the normals Ny, Ny, ... are lines
through Py, P», ... that are perpendicular to the tangents 77, 75, . .. Then if Q
denotes the intersection point of the normal lines Np and N for k=1,2,...,
one finds that the points Q1, @2, ... converge to a definite limit,

klim Qk = Q

This limit point @ is the center of curvature for the point P of the curve, and
the distance p = QP is the radius of curvature there. Exceptionally, Q is a
point at infinity (and p becomes infinite) if the curve is locally “flat” at P.
Clearly, determining the center of curvature involves taking a “limit of limits”
— i.e., it is a second—order property of the curve.

The existence of the tangent line Tp and osculating circle C'p is contingent
on the curve being “sufficiently smooth” at the point P. A curve for which Tp
exists at each point has first—order geometric (G') continuity. If, in addition,
Cp exists at each point, the curve has second-order geometric (G?) continuity.
Figure 8.7 illustrates the two limit processes that determine tangent lines and

10 The adjective osculating comes from the Latin verb osculare, “to kiss.”
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Fig. 8.7. Geometrical construction of tangent line Tp and osculating circle Cp at
a curve point P. Left: the tangent at P is the limit of lines that connect it to curve
points Py, with limg_, ., Pr = P. Right: the center @) of the osculating circle at P is
the limiting intersection of the normals at the points P, with the normal Np at P.

osculating circles through purely geometrical constructions. As seen here, the
curve usually lies on one side of the tangent line T in a neighborhood of P —
except when P is an inflection (a point where the center of curvature jumps
from one side of the curve to the other), in which case the curve crosses Tp at P.
On the other hand, the curve generally cuts its circle of curvature Cp at P,
unless it is a vertez (a point where the radius of curvature is an extremum),
in which case the curve lies on one side of Cp in a neighborhood of P.

8.3.2 Evolutes and Involutes

A smooth plane curve C may be described by a continuous family of lines —
namely, as the envelope of its tangents. We have already discussed this point of
view in § 7.4.3, in the context of the point/line duality associated with the use
of homogeneous coordinates in projective geometry. If the curve is sufficiently
smooth, it may also be described by a continuous family of circles — as the
envelope of its osculating circles. When C has the parametric representation
r(€), the latter description typically comprises two parts: (i) the locus e(§) of
the centers of curvature; and (ii) the scalar function p(§) = 1/k(§) specifying
the (signed) radius of curvature at each center of curvature.

The locus e(§) of centers of curvature of a curve r(£) is called the evolute
of that curve. Another interpretation of it arises from our observation that the
centers of curvature of r(§) correspond to the limiting intersections of normal
lines at “neighboring” curve points that approach each other. This leads us
to interpret e(£) as the envelope of normal lines to r(§) — see Fig. 8.8.
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Fig. 8.8. Equivalent interpretations of the evolute of a smooth plane curve. Left:
the locus of centers of curvature. Right: the envelope of the family of normal lines.
Point and Line Equations of Evolutes

Let r(§) = (2(€),y(&)) be a degree—n curve, with unit tangent and normal

YOV e WO )
7€) + ) NEGEREGK

and (signed) curvature

(&) =

(o) = POVQ) — ")
FEGETE G

which is negative or positive according to whether n(¢) points toward or away
from the center of curvature.'! Interpreted as the locus of centers of curvature
of r(£), the evolute e(§) is defined by

e(§) = r(§) — p(§)n(¢), (8.27)

p(&) = 1/k(&) being the radius of curvature. The square root \/x'2(§) + y'2(€)
evidently cancels in the product of p(§) with n(§) above, and the evolute to
a polynomial curve r(§) is thus a rational curve. Writing

X9 Y0
“O‘Qmwwmﬂ’

its homogeneous point coordinates are specified by

11 Or, equivalently, whether the center of curvature lies to the right or left as we
traverse the curve in the sense of increasing &.
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)]a(€) = [a"(€) + (€)Y ()
E1y(©) + [2%(6) +y*(©)]'(§) . (8.28)

From the above expressions it can be verified'? that the evolute of a degree—n
polynomial curve is of order 3n — 3 (this is the degree of X (§) and Y.(§) —
the denominator polynomial W, () is of lower degree, namely, 2n — 4).

The dual form of the evolute — in terms of homogeneous line rather than
point coordinates — is actually much simpler than (8.28). In other words, the
class of the evolute (i.e., the degree of its line equation) is lower than its order
(the degree of its point equation). To demonstrate this, we use the alternate
definition of the evolute as the envelope of normal lines of r(£) — each normal
of the given curve is a tangent of its evolute. Writing the evolute tangent line
corresponding to point £ in terms of free coordinates (W, X,Y") as

K& W + L(§) X + MY = 0, (8.20)

the dual — or homogeneous line — representation of the evolute is specified
by the three polynomials K. (), L.(§), M.(£).

Fig. 8.9. Evolutes to an ellipse (left) and the inflectional cubic y = x> (right).

Now any point p on the normal line to r(£) must satisfy

[p—r(©)]-t(¢) =0

i.e., the vector p —r(€) must be orthogonal to the curve tangent t(£). Setting
p = (X/W,Y/W) and multiplying through by W, this reduces to

(X =Wa(©)]'(§) + [Y = Wy(&)]y'(€) = 0

2 Due to cancellation of leading terms, z'(€)y” () — 2" (€)y’(€) is generally of degree
2n — 4 for a degree—n curve.
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= [2(&)2"() +y( Y ()IW + 2/( X + y(§Y = 0.

Since the normals to r(£) are tangents to its evolute e(£), we may identify the
coefficients of W, X, Y above with the evolute line coordinates in (8.29),

Ke(§) = — [2(6)2"(©) + ¥y (§)], Le(§) =2'(), Me(§) =y'(§)- (8-30)

The degree of this line representation (i.e., the class of the evolute) is seen to
be 2n — 1, which is lower than the degree 3n — 3 of the point representation
(8.28) when n > 3. For example, the evolute to a cubic is of order 6 and class
5, while for a quartic the order and class are 9 and 7, respectively. A similar
analysis may be performed for the evolute a of rational degree—n curve r(&)
— one finds that the evolute is again generically a rational curve, though of
higher order and class than in the case of a polynomial curve. Examples of
the evolutes to some simple curves are shown in Fig. 8.9.

A Physical Model for Involutes

Given a smooth plane curve C, we have seen how to determine its evolute as
either the locus of centers of curvature of C or the envelope of the normal lines
to C. We now invert this problem and ask: if a given curve C is known to be
the evolute of some other curve, how can we determine that curve? In other
words — which curve has the property that its centers of curvature precisely
define the given curve C? Or, equivalently, which curve has the property that
its normal lines coincide precisely with the set of all tangents to C? We shall
see that there is actually an infinite family of curves for which the given curve
C is the evolute — these curves are known as the involutes of C.

A simple “physical” model provides a good intuitive understanding of the
involutes to a given curve C. Suppose C is specified parametrically as r(£). We
imagine that a length of string is attached at one end to some distant curve
point — i.e., at large positive £ — and wrapped around the curve so that its
free end coincides with the curve point £ = 7. As we unwrap this string from
the curve (keeping it taut at each instant) its free end, originally at r(7), will
trace out a certain locus.'® We call this locus the involute of the curve r(€),
corresponding to the point & = 7. Figure 8.10 illustrates this concept when C is
a circle (circle involutes are of fundamental importance in engineering, since
they define the shape of gear teeth that ensures conjugate action of meshing
gears [73] — i.e., a precisely constant ratio of angular speeds).

When the string has been unwrapped up to position £ on the curve r(§) =
(2(£),y(€)), the unwrapped length corresponds to the total arc length

13
6 () = / 7200 1 720 dt (8.31)

13 Alternatively, one may interpret the involute as the locus traced by the end of a
straight rod that rolls without slipping around the given curve.
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Fig. 8.10. Construction of an involute to a circle by the unwrapping of a taut string.

of the curve segment between parameter values 7 and £. Since the string is
kept taut, the sense of motion of its free end is orthogonal to its free length: we
may consider the free end to be instantaneously rotating** about the point r(€)
in an arc of radius s,(€). In other words, the curve points r(§) are centers of
curvature, and the arc lengths s, (£) are radii of curvature, for the trajectory
of the free end of the string as we continuously unwrap it from the curve.

Hence r(§) is the evolute for the trajectory of the free end of the string —
i.e., that trajectory is an involute of the curve r(§). We say here “an” involute,
rather than “the” involute, because choosing different parameter values 7 at
which the unwrapping of the string begins will, in general, produce different
trajectories for its free end. A parameterization for the involute i, (&) can be
formulated in terms of the integral (8.31) as

ir(§) = (&) — s(§)t(E), (8.32)

where t(§) is the unit tangent to r(¢). This equation simply expresses the
fact that the free end of the string is distance s, (§) from the curve point r()
up to which it has been unwound, measured in a direction opposite to the
curve tangent t(¢) at that point.!> Each value 7 yields, in general, a distinct
curve: there is an infinite family of involutes to any specified curve r(§). As
we shall see in §8.3.4, these involutes are nevertheless intimately related to
each other. Note also that, even if r(§) is a “simple” (polynomial or rational)
curve, the arc length (8.31) cannot in general be resolved into a polynomial or
rational function of £&. Hence, the involutes to polynomial or rational curves
are not ordinarily themselves polynomial or rational curves.

14 This interpretation, in terms of instantaneous centers of rotation, is the basis of
the first investigation of evolutes and their first practical use — see §8.3.3.

!5 The minus sign in (8.32) arises since we measure “backward” along the string —
opposite to the direction of the curve tangent t(£) in which s, () is increasing.
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It can be verified that the dual form for the involute (8.32) to the curve
r(€) = (x(€),y(§)) is defined by the homogeneous line coordinates

Kir(§) = a(§)s-(§) —2(§)a"(§) —y(©)y'(€),
Lir(§) = 2'(§), M (&) = y'(8), (8.33)

where
a(§) = s2(&) = Va2 (&) +y2(E)

is the parametric speed of r(£). Note the similarity of (8.33) to the dual form
(8.30) of the evolute — in fact, the evolute and all the involutes to r(§) have
parallel tangents at corresponding points. Unlike the evolute, however, the line
representation (8.33) of the involutes is not rational, because of the presence
of the radical o(§) and the irreducible integral s, (§).

Thus far, the “string model” for involutes has assumed that the curve r(§)
has curvature of constant sign, and the string is wrapped around its convez
side — otherwise, we could not maintain the string taut: it would “fall off” the
curve as we begin to unwrap! Nevertheless, equation (8.32) may be regarded
as formally defining involutes to arbitrary smooth curves r(¢), including those
with inflections, i.e., points where the curvature changes sign. For inflectional
curves, the string model can be salvaged — in our imagination, at least — as
follows. At each inflection point, we imagine that the string “passes through”
the curve, so as to always lie on the locally convex side. This ensures that the
string will remain taut at all times (it is understood here that portions of the
curve from which the string has already been unwrapped do not obstruct its
subsequent motion). As we shall see below, this incurs a peculiar behavior of
the involute at points corresponding to the inflections of r(&).

Reciprocal Nature of Evolutes and Involutes

We have presented an intuitive model, culminating in equation (8.32), for the
involute i,(£) corresponding to the point & = 7 of the curve r(£). It is not
difficult to verify formally that, for each 7, the curves specified by equation
(8.32) are indeed involutes of the given curve r(§) — i.e., they all have r(§) as
their evolute (or locus of centers of curvature). Hence, on taking the evolute
of any of the involutes of a given curve r(£), we uniquely recover the original
curve r(§). Reversing the order of these operations, however, does not yield
a unique result — by taking an involute of the evolute of a given curve r(§),
we obtain either the original curve or an offset to it. We elaborate on these
relationships in §8.3.4 below — for now we focus on verifying that the involutes
(8.32) have the curve r(§) as their locus of centers of curvature.

Now the derivatives of the tangent t(£) and normal n(§) to the curve r(§)
satisfy the Frenet equations
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o(€) and k(&) being its parametric speed and curvature. Using the above, and
the fact that r'(§) = o(&) t(£), the first and second derivatives of the involute
(8.32) can be expressed in terms of properties of the curve r(£) as

i, =s,06n, i’ = [s.(0'k+0K)+0*k]n + s,0%k*t. (8.35)
We can then determine the normal and curvature of the involute i,(§) from
n,,=1i. xz/li’| and k;, = (iL. x i) -z / |i,|? as

sign(~(£))
s+

These equations express formally what was stated intuitively above, namely:
(1) the radius of curvature of the involute is equal in magnitude to the length of
unwound string; and (ii) the normal line to the involute is tangent to the given
curve at the point where the string separates from the curve — this tangent
defines the orientation of the unwound length of string, and the instantaneous
motion of the free end is perpendicular to this length.

The evolute of the locus (8.32) is the curve i (§) — pi (&) n; - (§), where
pi(§) = 1/k; - (€) is its radius of curvature, and on substituting from (8.32)
and (8.36) one finds that this expression reduces to just r(£). Thus, for each
7, the loci defined by (8.32) are indeed involutes of r(&).

Equation (8.32) may be taken to define the involute of r(£) corresponding
to the curve point 7 for all values of the parameter &, greater than and less
than 7. For £ < 7, the arc length (8.31) is negative, and the interpretation of
the physical model is that the string is attached to the curve at a large negative
value of £ and unwound from it in the sense of decreasing £. Figure 8.11 shows
a sampling of the infinite family of involutes to an ellipse and an inflectional
cubic, as defined by expression (8.32) for —oco < £ < +00.

0, (€) = — sign(k()s, () £(€) and £y () = (8.36)
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Fig. 8.11. Left: sampling of the family of involutes to an ellipse — note the cusps
at the “points of attachment” to the curve. Right: involutes to an inflectional curve
also exhibit (ramphoid) cusps where they meet the tangent line at the inflection.
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Singularities of Evolutes and Involutes

As is evident from Figs. 8.9 and 8.11, the evolutes and involutes of a smooth
plane curve are not, in general, themselves smooth curves. We shall examine
here the nature of the geometric conditions under which singular points arise
on the evolute and involutes of a given plane curve r(&).

We have noted that the evolute has a point at infinity when the curvature
 vanishes (or the radius of curvature p becomes infinite), i.e., when r(§) has
an inflection. When & # 0, differentiating the parametric form (8.27) gives

() = r'(§) — P (On(§) — p(§)n'(E).

Now r’ = o t, and by the Frenet equations (8.34) we have pn’ = pokt =ot,
so the first and third terms above cancel and we deduce that

e'(§) = —p'(€)n(). (8.37)
Hence the unit tangent to the evolute is given by
_ QO
te(g) - |e/(€)‘ - Slgn(p (5)) 1’1(&) (838)
If p/(€) changes sign at the point £ = ¢, so that
) =0 # p"(1), (8.39)

then the evolute exhibits a cusp, or sudden tangent reversal, at that point:

Alm e (t — A = — lim £t + AS).

Condition (8.39) identifies points of extremum — minimum or maximum —
curvature on the curve r(§), and such points are known as its vertices. Thus,
a vertex (of non—zero curvature) on r(§) induces a cusp at the corresponding
point of the evolute e(£), as seen in the examples of Fig. 8.9.

Consider now the involute i, (§) corresponding to a parameter value 7 on
r(¢). Assuming that r(¢£) is a regular curve — i.e., (&) # 0 for all £ — we
find from (8.35) that the tangent to the involute is given by

s/
tir(€) = HEL = sign(s-(OR(E) n(E).

i (6]
We see that t; -(£) suddenly reverses, and the involute exhibits a cusp, when
either s, (§) or k(&) changes sign. From (8.31) we note that the former occurs
only once, namely, at the point £ = 7 where we begin'® “unwrapping” i, (€)
from r(§). Thus, the involute i, (£) meets the curve r(§) in a cusp at the point
& = 7. Points where k(§) changes sign correspond to inflections of the curve
r(§) — each of these also induces a cusp on the involute (see Fig.8.11).

6 As noted above, we imagine the involute to be unwrapped from r(£) in opposite
senses according to whether £ > 7 or £ < 7.



154 8 Differential Geometry

The Arc Length of an Evolute

By regarding any curve as an involute of its evolute, we can deduce a simple
relation between the curvature of the given curve r(£) and the arc length of
its evolute e(£). As noted previously, if we imagine r(£) to be traced by the
free end of a piece of string that we unwrap from e(), the radius of curvature
of r(§) at each instant is equal to the total length of unwound string.

Consider two corresponding segments £ € [a,b] onr(§) and e(§), such that
the radius of curvature p(§) of r(&) is finite, positive, and monotone-increasing
between £ = a and £ = b. If the string has free length ¢/, when unwrapped
up to the point £ = a of the evolute e(£), and upon further unwrapping it up
to & = b the free length becomes ¢, we must have p(a) = ¢, and p(b) = ¢p.
Furthermore, the change L = ¢, — ¢, = p(b) — p(a) in the unwrapped length
corresponds to the arc length of the segment & € [a,b] on e(&).

Hence, the arc length between two points of the evolute e(§) is the difference
in radius of curvature between the corresponding points of the given curve r(§).
We may verify this conclusion analytically — and also remove the restrictions
on the variation of p(§) — as follows. Using expression (8.37), we write

b b
L =/ |e’(§>|d€=/ P(6)] de,

and if p'(€) is of constant sign for & € [a,b] this reduces to L = |p(b) — p(a)|.
On the other hand, if there are values &1, ...,&x € [a,b] where p/(§) vanishes,
the domain of integration must be broken up at these points, and on setting
& = a and £n4+1 = b we obtain

N+1

L= Z | p(k) — p(Ek-1) | -
k=1

The significance of the values &1, . .., £y is that they identify the vertices of the
curve r(¢), which incur cusps on its evolute (as noted above). As we unwrap
the string from e(£), we can imagine it being “temporarily attached” to each
cusp — once the point of separation of the string from e({) reaches a cusp,
we “detach” it at that point and proceed to unwrap up to the next cusp. The
above expression for L then gives the total arc length of the evolute as the
sum of arc lengths of its smooth segments between cusps.

8.3.3 The Horologium Oscillatorium

The earliest systematic investigation of evolutes and involutes was motivated
by the invention of an “isochronous” pendulum clock by the Dutch physicist
and mathematician Christiaan Huygens (1629-1695), described in his treatise
Horologium Oscillatorium of 1673 (see Fig.8.12). This treatise exemplifies a
“golden era” of scientific research, in which new developments could — and,
in fact, were even expected — to simultaneously elucidate novel mathematical
or physical principles and serve practical applications.
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Fig. 8.12. Left: title page of Huygens’ Horologium Oscillatorium of 1673. Right:
sketch of Huygens’ isochronous pendulum clock — the cycloidal “jaws” that serve
to constrain the motion of the bob to a cycloidal trajectory may be seen in FIG. II.

The Problem of Isochronous Oscillation

An isochronous pendulum has an oscillation period that is exactly independent
of the amplitude of its swing — not just in the limit of small oscillations. Recall
that elementary dynamics yields the equation of motion
2
j—tf + % sinf = 0 (8.40)

for the angular displacement 6 of a simple pendulum, comprising a “bob” of
mass m suspended from a string of length ¢, where ¢ is the acceleration due
to gravity (see Fig.8.13). Although equation (8.40) ignores the mass of the
string, and the effects of air resistance and friction at the pivot, it nevertheless
cannot be solved ezactly in terms of “elementary” functions.!”

Consequently, one typically resorts to the small-amplitude approximation
— if @ <« 1, substituting siné ~ 6 into (8.40) yields the solution

0(t) = acoswt, (8.41)

where « is the amplitude, w = /g/¢, and the time ¢ is measured from the
instant of maximum excursion. The corresponding oscillation period

To = 2n/w = 2n+/l/g (8.42)

17 The exact solution involves the Jacobian elliptic functions — see [299].
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200

Fig. 8.13. Left: the “simple” pendulum, whose bob follows a circular path — the
period depends on the amplitude. Right: Huygens’ isochronous involute pendulum,
whose bob follows a cycloidal path with a period precisely independent of amplitude.

is independent of the oscillation amplitude o (and the mass m of the bob) if «
is sufficiently small. This is a very desirable feature: to calibrate the pendulum
clock, we need only know the length ¢ to high accuracy: the mass of the bob,
and the magnitude of the “kick” that sets it in motion, are immaterial.

The departure of a simple pendulum from isochronous oscillation at finite
amplitude « can be precisely quantified in terms of elliptic integrals. Energy
conservation gives the angular velocity at position 6 as

de
o4 2 —
gr w (cosf — cos a)

and the exact period T'(«) for an arbitrary amplitude of oscillation o may be
obtained by integrating the above. Considering just the first quadrant of the
oscillation, with 6 increasing from 0 to a as ¢ increases from 0 to iT, we may
take the positive sign above to obtain

1 [e3
1T(a) = —/ 49 .
w Jo +/2(cos@ — cosa)

Introducing the change of variables defined by

. 1 _ . 1 .
sin 56 = sin 5 sin ¢,

so that ¢ increases from 0 to 7/2 as 6 increases from 0 to «, allows the above
integral expression for T'(«) to be reduced to a standard form:

4K (a) e dg
T(a) = o where K(o) = /0 \/1 — %asm2¢. (8.43)

K(a) is a complete elliptic integral of the first kind. Its value as a function of
« may be found in standard mathematical tables, or it may be computed to
any desired accuracy from the power series
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where we set k = sin 3a. The ratio of the true (finite-amplitude) period to

the nominal value defined by (8.42) is thus

T 2 1\ 1-3\?
f = o =1 (g) st da s (e

K =

s
2

and representative values for this ratio are enumerated in Table 8.1.

Table 8.1. Deviation of a simple pendulum from isochronocity at amplitude a.

o 2° 5° 10° 20° 30° 45° 60° 90°
k:sin%oz 0.0175 0.0436 0.0872 0.1736 0.2588 0.3827 0.5000 0.7071
T(a)/To 1.0001 1.0005 1.0019 1.0077 1.0174 1.0400 1.0732 1.1803

The formula (8.42) is clearly unsatisfactory for accurate time—keeping — if
a = 10°, for example, the calibration error of ~0.2% amounts to a discrepancy
of about 3 minutes per day, and this increases to nearly 30 minutes per day for
a = 30°. Even if expression (8.43) rather than (8.42) is used for calibration,
dissipative effects can be expected to induce a systematic decay of «, and a
corresponding error in the cumulative indicated time.

Properties of the Cycloid Curve

In designing an isochronous clock, Huygens was aware that the oscillation of a
pendulum of length ¢ is equivalent to the motion of a small particle that rolls
on the inside of a spherical bowl of radius £ — both motions are determined
simply by the exchange between potential and kinetic energy along a circular
path. Recognizing that this principle will generalize to other paths, Huygens
sought shapes of bowls that would cause a particle to exhibit an isochronous
rolling motion — i.e., the time taken to reach the bottom of the bowl would
be independent of the point from which the particle is first released.

At that time, the cycloid was a curve that enjoyed great interest — due,
in part, to a competition to demonstrate certain of its properties sponsored
by Blaise Pascal'® (1623-1662). The cycloid is the locus traced by a point on
the circumference of a circle that rolls without slipping along a straight line
(see Fig.8.14). For a circle of radius ¢, the cycloid has the parameterization

18 Pascal abandoned science in favor of theology in 1654. His interest was revived in
1658 when, on a sleepless night brought on by toothache, he occupied himself with
investigations of the cycloid. Besides proving several new properties, this seems
[56] to have cured his ailment (the dental profession, however, has subsequently
been loath to prescribe mathematical exertions in lieu of fillings and extractions).
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Fig. 8.14. Generation of the cycloid curve by a fixed point on a rolling circle.

2(¢) = L(¢—sing), y(¢) = L1 —cosg) (8.44)

where ¢ is the angle of revolution of the circle about its center — the motion
amounts to superposing a translation £¢ in the x—direction and a rotation ¢
about the center. The cycloid was actually known long before Pascal: perhaps
the earliest study was by Nicholas of Cusa (1401-1464). Note that, because ¢
appears both as the argument of trigonometric functions and on its own, the
cycloid is a transcendental (i.e., non—algebraic) curve.

Huygens made the felicitous discovery that a particle rolling on the inside
of an “inverted” cycloid — obtained by reversing the sign of y(¢) above —
will exhibit the desired isochronous behavior. The question was thus: how can
one construct a “variable-length” pendulum, whose bob executes a cycloidal
trajectory? Huygens conjured up a remarkable answer — namely, use another
cycloid! to continuously adjust the length of the pendulum!

Consider the two cycloids rq(¢) and ro(¢) defined for 0 < ¢ < 27 by

x1(¢) = £(¢7Sin¢)v yl(d)) :£<COS¢71)3
x2(p) = L(p+sing), ya(p) = £(1 —cos¢). (8.45)

Actually, these two loci are just appropriately—positioned segments of a unique
(infinitely extended) cycloid. Figure 8.15 illustrates their generation by circles
C1 and C5 of radius ¢ rolling from left to right in contact with and below the
lines y = 0 and y = 2¢. The initial common point (z,y) = (0,0) of the circles,
considered as a fixed point of each, traces out the cycloids rq(¢) and ra(¢).
Huygens found that the cycloids (8.45) satisfy an involute—evolute relation:
for each ¢, the point ry(¢) is the center of curvature for the corresponding
point on rq(¢). Conversely, the point ry(¢) may be regarded as the end of a
taut string “unwrapped” from the curve ra(¢) up to the corresponding point.

19 This solution to the problem is also discussed in Book I of Newton’s Principia.
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Fig. 8.15. Generation of cycloids ri(¢) and r2(¢) with an involute—evolute relation.

The Horologium Oscillatorium

Huygens’ idea, then, was to employ the profile ra(¢) as a “cycloidal jaw” with
the pendulum suspended from its cusp at ¢ = 7. As the pendulum oscillates,
the string alternately wraps and unwraps about the left and right sides of this
jaw (see Fig.8.13) and the trajectory of the bob is the involute of the jaw
profile, i.e., the cycloid rq(¢). By the isochronicity of cycloidal motion, this
ensures an oscillation period that is precisely independent of the amplitude.

Considering the cycloidal trajectory ri(¢) as the envelope of its circles of
curvature, one may interpret the bob motion as a succession of instantaneous
circular motions, whose radii and centers are determined by the point along
ro(¢) to which the string has unwrapped. Figure 8.12 is convincing evidence
that Huygens was as concerned with the practical details of a viable clock as
with the theory of evolutes and involutes. However, the tools and materials
at his disposal could not match the precision of his mathematical arguments,
and the “cycloidal clocks” he constructed were of scarcely better accuracy
than simple pendulum clocks confined to small-amplitude oscillations.

The Problem of the Brachistochrone

The cycloid had further fascinating properties waiting to be discovered by 17th
century mathematicians. In 1696, Johann Bernoulli sponsored an international
competition involving a problem whose solution requires what we now call the
calculus of variations, i.e., methods for finding a function y(z) on z € g, 21
that minimizes an integral typically of the form

z1
I = / F(‘T7y7 y/) dx’
T

where 3y’ = dy/dx and F' is a (differentiable) function of z, y, and . It can be
shown [45] that the desired function y(x) satisfies the Fuler—Lagrange equation
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= _ T _ (8.46)

which is generally a second—order (non-linear) ordinary differential equation
for y(z), subject to the boundary conditions y(z¢) = yo and y(x1) = y1.

Bernoulli’s problem was again concerned with a small particle rolling inside
a smooth bowl, as follows: the particle is released from a point P at height h
relative to, but not directly above, the lowest point O of the bowl (Fig. 8.16).
The problem is to find the cross—sectional shape of the bowl that minimizes
the time taken for the particle to roll from point P to point O. The desired
curve was designated the brachistochrone — from the Greek for “least time.”
Bernoulli and Leibniz both managed to deduce that the brachistochrone is,
in fact, an inverted cycloid! The period of a particle that executes a cycloidal
trajectory?? is thus not only independent of amplitude — it is also the least
possible time among all smooth trajectories between the points P and O.

At this point, Bernoulli and Leibniz saw a golden opportunity to confound
Sir Isaac Newton — with whom a feud had developed over precedence in the
invention of the calculus. So the challenge was sent to Newton, then Master
of the Royal Mint in London. Although he had largely abandoned scientific
matters, Newton nevertheless felt compelled to defend his honor — by staying
up all night upon returning from his official duties, he succeeded in finding the
correct solution. Bernoulli and Leibniz were no doubt chastened on promptly
receiving an elegant anonymous solution in English! Bernoulli is reported [473]
to have said ex ungue Leonem, “from the claw (one recognizes) the Lion.”

Interestingly, Bernoulli approached the brachistochrone problem through
an ingenious physical analogy, rather than a “frontal assault” by the methods
of variational calculus. Noting that the speed v of the particle at a point (z,y)
depends only on the potential energy released in reaching it — i.e., on the
local y coordinate but not on the actual shape of its path up to that point —

20 The cycloid was first studied in detail by Galileo, but in his celebrated Dialogue
[207] championing the heliocentric solar system theory, he mistakenly identifies
the circle as the trajectory that yields isochronous oscillations of minimum period.
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he recognized [366] that light propagation in a stratified medium, such as the
atmosphere, is governed by a similar principle.

By reasoning that the variation of the speed of a light ray with the density
(actually, the refractive index) of the medium causes it to follow a curved path,
Bernoulli was able to derive and solve the differential equation defining the
shape of the brachistochrone. He published his result in the Acta Eruditorum
of May 1697, with the title “Curvatura radii in diaphanis non uniformibus
...7 (The curvature of a ray in a non—uniform medium ...), saying:

... We have a just admiration for Huygens, because he was the first
to discover that a heavy point on an ordinary cycloid falls in the same
time, whatever the position from which the motion begins. But the
reader will be greatly amazed, when I say that exactly this cycloid,
or tautochrone of Huygens, is our required brachistochrone ... 1 have
discovered a wondrous agreement between the curved path of a light
ray in a continuously varying medium and our brachistochrone.

The same issue of Acta Eruditorum contains Jakob Bernoulli’s contribution
“Solutio problematum fraternorum ...” (Solution of my brother’s problem)
and the correct solutions by Leibniz, Newton, and Tschirnhaus — as well as
an erroneous attempt by de I’Hopital.

8.3.4 Families of Parallel (Offset) Curves

For a smooth curve r(¢) with unit normal n(¢), the offset at (signed) distance
d is the locus defined by

rq(§) = r(§) + dn((). (8.47)

The offset is not in general a polynomial or rational curve — even if r(£) is —
since unitization of n(§) incurs the square root of a polynomial. For a given
sign of the offset distance d, the expression (8.47) defines a one—sided offset.
The offset to a curve r(§) = (X(£),Y (£)) can also be defined as the envelope
(see §8.2) of the one—parameter family of circles

fd(xh%)‘) = [‘T—X(A)]z + [y_Y(/\)]Q_d2 =0,

of fixed (positive) radius d centered on each point of r(£) — this specifies the
two—sided offset, corresponding to replacement of d by +d in (8.47). Using the
methods of §8.2, one can verify that the two—sided offset is always an algebraic
curve (of higher degree) when r(€) is a polynomial or rational curve.

The offsets to a given curve r(§) are also known [386] as its parallel curves:
we can interpret rq(€) as the locus of a point that (locally) maintains a fixed
distance d from the given curve r(£), or alternatively as a curve whose tangents
are parallel to those of r(§) at corresponding points (on common normal lines).
Christiaan Huygens (1629-1695) used parallel curves in his wave theory for
light propagation in a uniform medium, described in his Traité de la Lumiére
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(written before 1678, but published later in 1690). Given an “initial” wavefront
W (t) at time ¢, the wavefront W (t+ At) at time At later was described as the
envelope of a family of spherical “wavelets” of radius cAt (¢ being the speed
of light) centered on W (¢) — i.e., it is the parallel curve at distance d = cAt.
Huygens explained the known laws of reflection and refraction of light rays
(the normals to the wavefronts) by this model, although the wavelets define a
two—sided offset, predicting that light would travel in both the “forward” and
“backward” directions, contrary to physical experience.

Offset curves are of great practical importance in contemporary computer
aided design and manufacturing applications. If r(£) specifies a desired curve
to be machined by the cylindrical cutter of a milling machine, the cutter must
follow a center—line trajectory specified by the offset curve ry(&), where d is the
cutter radius. Similarly, one may imagine r(§) to be a desired profile subject
to geometrical uncertainties due to manufacturing errors. If each point of r(§)
is known only to some tolerance or dimensional accuracy d, the actual profile
lies in the region delineated by the two-sided offset r(§) £+ dn(§), which we
regard as a “tolerance zone” of half-width d. Overlap of tolerance zones signals
possible interference problems with manufactured components that are to be
assembled together. In such applications, it is often necessary to generalize the
definition (8.47) to piecewise—smooth curves, with tangent discontinuities at
the junctures of their smooth segments. This can be accomplished by inserting
a circular arc into the offset for each tangent discontinuity: the angular extent
of such arcs is defined by the two normal orientations at these points.

Figure 8.17 illustrates this for a piecewise-linear/circular curve (these are
the only curves that exhibit closure under offset operations). The form (8.47)
— augmented by circular arcs at tangent discontinuities if necessary — defines
the untrimmed offset ry(§) at distance d from the curve r(§). Corresponding

Fig. 8.17. Left: the one—sided (untrimmed) offsets at successive distances d from
a piecewise-linear/circular curve with tangent discontinuities. Right: the trimmed
offsets are obtained from the untrimmed offsets using an offset trimming procedure.
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points r(&,) and ryg(&,) of the curve and its untrimmed offset clearly satisfy
|rq(€s) —r(&) | = |d], but this does not guarantee that a chosen point rq (&)
of the untrimmed offset is (at least) distance | d | from every point of r(£). The
locus satisfying the latter property is called the trimmed offset at distance d,
since it obtained by deleting certain segments of the untrimmed offset, namely,
those that come “too close” to r(&). Figure 8.17 illustrates the outcome of the
trimming procedure, whereby the trimmed offsets are identified as subsets of
the untrimmed offsets (this will be described quantitatively below).

Singular Points on Offset Curves

The untrimmed offset (8.47) is not, in general, a smooth curve — even if the
given curve r(§) is smooth. The derivatives of (8.47) may be written as

rg(§) = [1+ k() d]r'(§), rg(§) = [1+ k() d]x" (&) + £'(€)dr'(€)

where k = [r'|3(r' x r”) - z is the curvature of r(¢). Substituting into the
expressions tg = r)/|r))| and kq = |r})|73(r), x r}) - z for the tangent and
curvature of the untrimmed offset, these quantities may be expressed as

1+r(6)d K(£)

88 = T e al = T w©d]

t¢)  and  ka(§) (8.48)

in terms of the tangent and curvature, t and , of the given curve r(§) and the
offset distance d. Thus, the tangent and/or curvature of the untrimmed offset
evidently exhibits a singular behavior at those parameter values £ where the
curvature k(&) attains the “critical” value —1/d.

If k(&) = —1/d and K/'(&) # 0 — i.e., the curvature attains the critical
value at £ = &, without being an extremum there — the factor multiplying t
in equation (8.48) is a “step function” that changes abruptly from —1 to +1,
or vice—versa, at that point. This incurs a sudden reversal of the tangent tg,
corresponding to a cusp on the untrimmed offset. On the other hand, when
k(&) = —1/d and &'(&) = 0 # K" (&x) — i.e., on attaining the critical value
the curvature is an extremum — the factor that multiplies t in (8.48) does
not change sign on traversing £ = &, but |k4(£)| — oo as & — &,. This defines
a tangent—continuous point of infinite curvature on the untrimmed offset.

Example 8.3 For the parabola r(¢) = (&,£2) the curvature
K(€) = 248 +1)73/

is non—negative for all £, and it attains its greatest value at the vertex £ = 0.
All of the exterior offsets (positive d) are smooth. The “interior” untrimmed

offsets (negative d) are also smooth for 0 > d > —3, since within this range
14+ k(§)d > 0 for all £&. When d = f%, however, the offset exhibits a tangent—

continuous point of infinite curvature at £ = 0, since then x(0) = —1/d and
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(@) (b) (©)

Fig. 8.18. Singularities on the interior offset to a parabola: (a) when |d| < 3, the
offset is smooth; (b) when |d| = %, there is a tangent—continuous point of infinite
curvature; and (c) when |d| > 1, there are two cusps and also a self-intersection.

#'(0) = 0 # £”(0). Finally, when d < —3, there are two symmetric values,
E==+1 [(—2d)*? —1], that induce cusps (k = —1/d and &’ # 0). Figure8.18
illustrates the singularities on the offsets to a parabola.

The occurrence of singular points has a simple geometrical interpretation:
they arise when a point of ryq(€) coincides with the center of curvature for the
corresponding point on the curve r(§). If k(&) = —1/d we have d = —p(u.),
where p(§) = 1/k(&) is the (signed) radius of curvature of r(§), so that

rq(&) = (&) — p(&)n(és)

from (8.47). This expression also identifies the center of curvature for £ = &,
(note that k is positive when n points away from the center of curvature).

As discussed in §8.3, the centers of curvature for every point of a smooth
curve r(¢§) form a locus known as the evolute of that curve. Hence, the cusps
of the untrimmed offsets at each distance d lie on the evolute to r(£). This
observation yields a further interpretation of the evolute e(§) of a given curve
r(¢) — namely, it is the locus of cusps on successive offsets rq(€) to that curve
as the offset distance d increases (compare Fig.8.19 with Fig. 8.8).

There is a pronounced similarity between Fig. 8.11, illustrating a family of
involutes to a given curve, and Fig. 8.19 showing a family of offsets to a curve
together with its evolute. This is not coincidental. In fact, the family of offsets
rq(§) to a given curve r(§) is precisely the family of involutes to the evolute
e(§) of that curve. It is not difficult to see why this is so.

For simplicity, consider a curve r(£) whose curvature is positive, monotone,
and finite.?! Its evolute is e(§) = r(¢) — p(é)n(€), where p(€) and n(&) are the
radius of curvature and unit normal of r(§). Since p'(§) # 0 by assumption,
we see from (8.38) that tangent to the evolute is t.(§) = —n(&). Moreover,
we know that the arc length s, -(§) of the evolute between 7 and ¢ is simply

2! The arguments can readily be extended to accommodate curves with inflections
and vertices, although they are then considerably more cumbersome.
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Fig. 8.19. Evolute of a given curve as the locus of cusps on its untrimmed offsets
(compare with Fig. 8.8). Note that the cusp of the evolute coincides with the tangent—
1

continuous point of infinite curvature on the offset at distance d = —3.

p(€) — p(7). Hence, the expression e(&) — s. (&) t(§) for the involute of the
evolute corresponding to parameter value 7 reduces to

r(§) — p(r)n(s),

and we recognize this as the offset to r(§) at the distance d = — p(7). Involutes
corresponding to successive 7 values thus generate a family of offsets to r(€).

One can also argue in purely geometrical terms. We know that the normals
to r(&) are tangents to its evolute e(€). Furthermore, we also know that these
tangents to e(£) are normals to each of its involutes. Hence, r(§) shares the
same normal lines at corresponding points with every involute of its evolute,
and this implies that the former and latter have parallel tangent lines at
corresponding points. In other words, the involutes of the evolute of r(§) are
all parallel to — i.e., offset from — that curve. Involutes of e(£) corresponding
to parameter values 71 and 7 are a fixed distance p(2) — p(71) apart (if we
assume that p(€) is monotone increasing).

Offsets to Tangent—discontinuous Curves

Many applications are concerned not only with smooth (G') curves, but also
piecewise-smooth curves that exhibit only point continuity at the junctures of
successive smooth segments. Since the order of continuity of the untrimmed
offset ry(&) is one less than that of the given curve r(£) — the former depends
on the derivative of the latter — a curve with tangent discontinuities exhibits
“gaps” in its untrimmed offset if we simply use (8.47) for each segment. Most
often, this is not the desired result — the offset should be a continuous curve.
Consistent with the property that the untrimmed offset is (locally) distance d
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Fig. 8.20. Closure of the untrimmed offset to a polygonal curve by circular fillets.

from the given curve, the remedy is simple: we introduce circular “fillet” arcs
of radius d centered on each tangent discontinuity. Depending on whether the
tangent discontinuity is concave or convex relative to the offset direction, such
arcs yield either a “swallowtail” or smooth closure of gaps in the untrimmed
offset — Fig. 8.20 illustrates this in the case of a polygonal curve.

Suppose the given curve C consists of one or more oriented, nested loops
— each loop is a sequence of parametric segments that meet end—to—end with
(at least) GO continuity, to form a closed curve free of self-intersections. The
outermost loop is assumed to be parameterized in an anti—clockwise sense, and
the orientation of the other loops reverses?? with successive nesting levels.

Definition 8.4 At each tangent—discontinuity q of the curve C we introduce
a cone of normals, defined to be the continuous family of unit vectors with
orientations between the limiting curve normals, n_ and n,, immediately
before and after q as we traverse C in the sense of its parameterization.

The cone of normals is taken in the clockwise or anticlockwise sense between
n_ to ny according to whether (n_ X n.) -z is negative or positive, where z
is the vector orthogonal to the plane.

Definition 8.5 A point p = q+dn is a generalized normal displacement by
distance d from a point q on the curve C if either: (a) q is a smooth point of
C, and n is the unique normal there; or (b) q is a tangent—discontinuity, and
n is any member of the cone of normals there.

Definition 8.6 The untrimmed offset C, at signed distance d from the curve
C is the locus of points corresponding to all generalized normal displacements
by distance d from each point of C.

Now Cy has the same number of loops as C, but these loops may exhibit
self-intersections or may intersect each other. Each smooth segment r(£) on
C generates a (not necessarily smooth) offset segment on C,4, given by (8.47).

22 With this convention, the area enclosed by C lies always to the left as we traverse
any of its loops in the sense of increasing parameter &.
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Furthermore, each tangent—discontinuous juncture q of consecutive smooth
segments on C induces a circular “fillet” arc of radius |d| on Cg4, centered
on g, whose angular extent is determined by the cone of normals there.

Definition 8.7 We say that q € C and p € Cq are corresponding points of a
curve and its untrimmed offset if the latter may be obtained from the former
through a generalized normal displacement by distance d. A point p € Cy that
has two (or more) distinct corresponding points q1,qs € C, with non—parallel
normals n; and no, is a self-intersection of the untrimmed offset.

8.3.5 Trimming the Untrimmed Offset

We now study in detail the problem of determining the “trimmed” offset from
the “untrimmed” offset. Consider a piecewise—smooth curve C, corresponding
to the boundary 8D of a connected domain D C R2. This curve may consist
of several loops, each parameterized so that its start and end points coincide.
The sense of parameterization is such that the normal n to C points locally
to the exterior of D. Also, to ensure one-to—one correspondence between the
points of C and its untrimmed offset, we regard tangent—discontinuities on C as
“degenerate” circular arcs of zero radius but non—zero angular extent, defined
by their normal cones (i.e., the curve parameter increases on these degenerate
arcs, but the geometrical location does not). We denote the untrimmed and
trimmed offsets at distance d from C by C; and Cg, respectively.

The untrimmed offset ry(&) is locally at distance | d| from the curve r(&)
— i.e., corresponding points of these loci satisfy | rq(§) —r(§) | = | d|. However,
the untrimmed offset does not necessarily maintain distance | d | from the given
curve in a global sense: for any given &, there may be values 7 # £ such that
|rqg(§) —r(7)| < |d|. By the true or “trimmed” offset C4, we mean the locus
of points at distance > | d| from every point of C — and ezactly distance | d |
from at least one point (on the appropriate side, indicated by the sign of d).
The true offset is actually a subset of the untrimmed offset: we may obtain Cy4
from C4 by deleting a certain (possibly null) set of continuous segments from
the latter. This process is called the trimming of the untrimmed offset.

The offset trimming problem is fundamentally global in nature: the parts
of the untrimmed offset to be “trimmed away” cannot be identified by purely
local considerations. As illustrated by Fig.8.21, complicated structures can
arise on the untrimmed offset due to interference of the offsets to “unrelated”
portions of the given curve C. This phenomenon may arise even if the entire
untrimmed offset C, is smooth (i.e., free of cusps), since it may self-intersect
in a manner that is apparent only through consideration of the entire curve.
Before describing the trimming procedure in detail, we must first quantify the
notion of “distance” between a point and a curve, and between two curves.
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Fig. 8.21. Left: structure of the interior untrimmed offset at distance |d| = 1 to the
curve y = z*. Right: untrimmed offsets at distance less than, equal to, and greater
than the smallest radius of curvature of y = 2*. As | d| further increases, the overlap
of the two “swallowtails” generates the five—point “star” configuration on the left.

Point /Curve Distance Function

The point /curve distance function “distance(p,C)” takes a point p and a curve
C as its arguments — its value is a non—negative number, that vanishes only
when p lies on C. It is defined in the most general terms (i.e., independent of
the specification of C) by the expression

distance(p,C) = min |p — q]. (8.49)
qecC
Let p = (z,y), and C be a parametric polynomial curve r(§) = (X(£),Y(£))

defined on £ € [0,1]. Then if &,...,&y are the distinct (odd-multiplicity)
roots of the polynomial

Pi) = X'z - X+ Y' () [y-Y(©)] (8.50)
on ¢ € (0,1), and we set § = 0 and {41 = 1, we have
distance(p,C) = ogl?%izl\lrﬂ lp—r(&) |- (8.51)

The real roots of (8.50) identify those points on r(£) where a line drawn from p
meets the curve orthogonally. As we traverse the curve, the value of | p—r(£) |
attains a local extremum at &1, ...,&N since

d e e i)
&P Ol = - e

The value of distance(p, C) is the smallest of these interior extremal distances
and the distances to the endpoints of r(£). We consider only odd—multiplicity
roots of (8.50) since even—multiplicity roots identify non—extremal stationary
values of | p — r(§)|. The computation of distance(p,C) is easily extended to
rational curves, and also piecewise polynomial or rational curves (in the latter
context, we must include tangent discontinuities among the values &1, ...,&n).
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Example 8.4 For the parabola r(£) = (£,£2) the polynomial (8.50) becomes
Pi(6) = -2+ (2y—1)¢ + . (8.52)
The discriminant (see §3.4) of the cubic P, (§) is
Az,y) = —1082% + 8(2y — 1)3, (8.53)

and it has either one or three distinct real roots, according to whether A < 0
or A > 0 (when A = 0, there is a multiple real root). Figure 8.22 shows the
two regions delimited by the algebraic curve®® A(z,y) = 0 — which have the
property that one or three perpendiculars may be drawn from any point p in
them to the curve r(§). When A < 0, distance(p, C) is the length of the unique
perpendicular to C from p. When A > 0, on the other hand, distance(p,C) is
the shortest of the three perpendiculars from p to C.

Fig. 8.22. Left: three distinct normals may be drawn to the parabola r(£) = (¢, £?)
from any point p above the curve A(z,y) = 0 defined by (8.53), namely, the evolute
of the parabola. Right: for any point p below this curve, there is a unique normal.

Now for a given curve C the function distance(p,C) is continuous, but not
everywhere differentiable, with respect to the location of p. A unit vector v,
defining a direction of motion for p, must be specified to express the derivative
of distance(p, C) with respect to p as

V. distance(p,C) = v - (i 8%

0
+ j =— | distance(p,C),
j ay) (p,C)
where the partial derivatives are with respect to the coordinates (x,y) of p.
Clearly, these partial derivatives must exist at the point in question in order
for V distance(p, C) to be defined. The non—differentiability of distance(p,C)
may be understood as follows. As p moves, the real roots &;,...,&y of (8.50)

23 One can easily verify that this curve is actually the evolute of the parabola.
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in expression (8.51) have, in general, an analytic dependence upon the location
of p. But the number of these roots may abruptly change at certain locations
— since real roots may “appear” as double roots that subsequently bifurcate,
or pairs of simple real roots may meet, coalesce, and “disappear” as complex
conjugates. Even for a motion of p such that (8.50) maintains a fixed number
of real roots, the “identity” of the root yielding the smallest value in (8.51)
may jump — from &; to &, say — at some locations. At such jumps, whether
due to the appearance/disappearance of real roots or otherwise, continuity of
distance(p,C) is guaranteed by the fact that |p —r(&;)| = |p — r(&)|. But
these quantities have, in general, different rates of change with respect to the
motion of p, and hence distance(p,C) is non—differentiable at such points.

Curve/Curve Distance Function

The point/curve distance function may be used to define the distance between
two curves. For given plane curves B and C, we denote this by distance(B,C).
We have defined the distance between a point p and a curve C as the smallest
distance from p to each point q € C. It may seem natural, when p is allowed
to traverse some curve B, to define the distance between the curves B and C
as the smallest value of distance(p,C) for each p € B. This amounts to taking

in min |p — 8.54
min min |p — q (8.54)

for the value of distance(B,C). According to this rule, however, the distance
between any two curves that intersect is zero — regardless of their behavior at
points other than the intersections. This is not a satisfactory characterization
of the “overall” distance between two curves. Clearly, it is preferable that the
distance be zero only for identical curves:

distance(B,C) =0 < B=C. (8.55)

One way to modify (8.54) so as to guarantee the property (8.55) is to take
the “largest of the smallest” values, rather than the “smallest of the smallest”
values, of the distance between pairs of points p and q on the two curves:

p(B,C) = max min [p —q|. (8.56)
This corresponds to the greatest value of the point/curve distance function,
distance(p, C), over all points p € B. Expression (8.56) is also troublesome as
a curve/curve distance function, however, since p(B,C) # p(C,B) in general
— i.e., the distance from B to C is not the same as that from C to B!
In addition to satisfying (8.55), the following three features are generally
required of any distance function (or metric):

e non-—negativity: distance(B,C) > 0;
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e symmetry: distance(B,C) = distance(C, B);

e satisfaction of the triangle inequality, namely:
distance(A, B) + distance(B,C) > distance(A,C).
These properties may be achieved by symmetrizing (8.56), i.e., by taking
distance(B,C) = max(p(B,C), p(C,B)). (8.57)

This is known as the Hausdorff distance between the curves B and C. It can,
in fact, be used for any two point sets — not just curves [230].

Example 8.5 Consider the problem of determining distance(Cy,Cs) for two
circles Cy, Co with centers ¢y, co and radii rq, ro. If p is a fixed point on Cy,
the closest point q to it on C5 is on the diametral line through p and co. Thus,
regardless of whether p lies inside, on, or outside of Co, we may write

distance(p,C2) = | |p —ca| — 72 | .
To maximize this over all points p € C; we assume, without loss of generality,

that ¢; = (0,0) and co = (¢,0) where £ = |ca —cy|. Writing p = r;(cos 6, sin )
and substituting into distance(p,Cs), we seek to maximize the quantity

| /72 + 02 —2r1lcosf — 7y | (8.58)

for 0 < 6 < 27. One can readily verify that extrema occur for § = 0 and ,
and the Hausdorff distance between the two circles is given by

distance(Cy,C2) = max(|€+r1 — 12|, [ — 11 +712]).

Note that for two concentric circles (¢ = 0), this reduces to distance(Cy,Cq) =
|r1 — 72|, whereas for circles of equal radius, distance(Cy,Cs) = £.

Characterization of the Trimmed Offset
Each point p of the untrimmed offset C; clearly satisfies
distance(p,C) < |d], (8.59)

since it is obtained by a displacement d from some corresponding point q € C.
The equality holds in (8.59) if and only if q is the closest point of C to p.

Definition 8.8 The “true” or trimmed offset C4 at distance d from the curve
C is the subset Cy C Cq4 of the untrimmed offset, such that the relation (8.59)
holds with equality for each point p € Cg4.
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We now show that the segments of the trimmed offset C4 are delineated by
the self-intersections of the untrimmed offset Cq. Let &1, . . ., Ex be the ordered
parameter values on a single loop of Ca corresponding to self-intersections of
the untrimmed offset (these may be either self-intersections of the loop under
consideration, or its intersections with other loops of C4). Note that the values
&1, ..., &N are interpreted as a cyclical list.

Proposition 8.1 Let Sy, be a segment of the untrimmed offset Cy delineated
by consecutive parameter values § and k1 on a single loop that correspond
to self-intersections of Cq. Then each interior point p of Sy satisfies either

distance(p,C) = |d]|, (8.60)

or
distance(p,C) < |d]. (8.61)

Segments of Cq that satisfy (8.61) must be discarded. The remaining segments,
satisfying (8.60), then constitute the trimmed offset Cq.

Proof : Let Cp denote the circle of radius | d| centered on any point p of the
untrimmed offset Cy. Then there is a point q € C such that p corresponds to
a generalized normal displacement d from that point, and q evidently lies on
the circle Cp. Since, for each p € Cq there is (at least) one corresponding point
q € C lying on Cp, the relation (8.59) is clearly satisfied. If all other points
of C lie outside — or, exceptionally, on — the circle Cp, we have equality in
(8.59) and p is then on a segment of Cq4 that should be retained. On the other
hand, if other points of C lie inside the circle Cp, the inequality in (8.59) holds
and p is then on a segment of C4 that must be discarded.

We will show that, as p traverses the untrimmed offset éd, the locations
incurring a change in status of the circle Cp, from “empty” to “occupied” by
some portion of C — or vice—versa — correspond to self-intersections of Cy.
If g€ C and p € Cy are two corresponding points, the circle C}, is tangent?*
to the curve C at q. We assume, at first, that no part of C lies inside Cp —
then, at the instant C begins to enter Cp as p traverses Cg, this circle must
become tangent to C at some point q, that is, in general, distinct from q. The
point p on C, then arises through a generalized normal displacement d from
two distinct points, q and q,, on C — i.e., we have

P=9q+dn = q,+dn, (8.62)

n and n, being, in general, distinct normals to C at q and q,. This identifies
p as a self-intersection of Cg (Definition 8.7) when the status of Cp changes
from “empty” to “occupied” as p traverses the untrimmed offset. Analogous
arguments hold when C}, is initially “occupied” and becomes “empty.” B

24 We interpret tangency in a “generalized” sense here: if q is a tangent discontinuity
on the curve C, we consider Cp to be tangent to C there if the vector p — q has
the same orientation as any member of the cone of normals at q.
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Hence, each interval £ € [&, &k+1 ] between self-intersections identifies a
segment of Cy that either belongs in its entirety to Cg, or should be rejected in
its entirety. Note that passing through a self-intersection is only a necessary
condition for a change in status regarding membership in the trimmed offset
as we traverse the untrimmed offset — not all self-intersections of the latter
signal a transition from portions that are to be kept to those that are to be
discarded, or vice-versa, as we move along Cy.

In the proof of Proposition 8.1, we mentioned that the point q. at which
the curve C begins to enter the circle C} of radius |d| centered on a point p
traversing the untrimmed offset Cq is usually distinct from q, the point that
p is obtained from by a generalized normal displacement. We now consider
what happens in the exceptional cases where C does enter C, at q.

Proposition 8.2 If, as p traces the untrimmed offset Cq, the curve C begins
to enter the circle Cp of radius | d| centered on p at the corresponding point
q, rather than at some other point q., then p is a cusp on Cq.

Proof : Recall that p is a cusp on C if it coincides with the center of curvature
for the corresponding point q on C. We argue that, when the curve C begins
to enter Cp, at the corresponding point q, the circle Cp, must be the osculating
circle or “circle of curvature” to C at q. Among all circles tangent to C at q,
only the osculating circle crosses?® the curve there: tangential circles that are
smaller or larger lie on one side of C in the vicinity of q (see §8.1.2). Hence,
Cp must coincide with the osculating circle at q when C begins to enter it at
that point, and p is then a cusp on C,;. W

In the above proof we assume that q is a smooth point on C. One can easily
verify that, if q is a tangent discontinuity on C, the offsets to the smooth
segments meeting there connect in a cuspidal manner with the ends of the
circular fillet arc associated with q if this point is “concave” viewed from the
side on which the offset is made — conversely, there is a smooth connection
if it is “convex” (see Fig.8.20). It might seem that the trimming procedure
should involve splitting the untrimmed offset Cq at its cusps, as well as its self—
intersections, since they also identify points where part of the curve C begins
to enter the circle Cp,. We can show, in fact, that this is actually unnecessary.

Corollary 8.1 No explicit consideration of the cusps on the untrimmed offset
Cq 1s required in the trimming procedure.

Proof : We argue that, if C begins to enter (', at the point q corresponding
to p as the latter traces Cy, then C must already have crossed C}, before this
occurs. For any p, the circle Cp, clearly has a two—fold intersection? with the
curve C at the corresponding point q. Now by Proposition 8.2, C, must be the
osculating circle at  when p is a cusp on Cq. The osculating circle differs from

25 Except in the case that q is a vertez (i.e., a point of extremum curvature) on C.
26 Actually, a “tangency” since Cp and C do not, in general, cross at the point q.
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all other circles tangent to C at q in that it has a three—fold intersection®” with
the curve there (see §8.1.2). Now a two—fold intersection of Cp and C can only
become a three—fold intersection if it “meets” and “coalesces” with a formerly
distinct, simple (i.e., transversal) intersection g, of Cp, and C. In other words,
if C begins to enter the circle C, at the corresponding point q, some portion
of it must previously have entered that circle elsewhere. Similar arguments
show, conversely, that if C begins to exit from Cp at q, some portion of it
must subsequently vacate that circle elsewhere. Thus, cusps of Cq cannot alter
the “empty/occupied” status of Cp, established by self-intersections alone. B

Again, the above argument applies to the case of a smooth point q € C.
It is not difficult to verify that, for a “concave” tangent—discontinuous point
q on C, the cuspidal connections of the corresponding circular fillet arc with
the offsets to the smooth segments that meet at q will always lie within a
self-intersection loop of Cy that must be discarded.

Example 8.6 A simple example may help clarify the above ideas. Consider
an offset at distance d < —% to the parabola C defined by r(¢) = (£,£2). The

untrimmed offset Cy is the locus
(2¢,-1)

ra(€) = (£,€%) + d\/ﬁ. (8.63)

Let g =r(§) and p = ry(§) be corresponding points on C and C4. We wish to
study the “occupancy status” of the circle Cp, with radius |d| and center p.
This circle has the implicit equation

lx_g_ 2d ¢ d

2

V4g2 +1 V42 + 1

in free coordinates (z,y). To identify the intersections of C with Cp, we set
(z,y) = (1,72) in the above and thus obtain, for each £, the quartic equation

2
+[y—£2+

2d
TP 2AT+ ———+E+1| =0

— (r — 2
P(r) = (r—¢) S

in 7, whose real roots describe the intersections of C, and the parabola in
terms of the parameter value on the latter.

The double root 7 = { reflects the tangency of Cp, to the parabola at q. The
other quadratic factor in P(7) has no real roots, a double root, or two distinct
real roots according to whether its discriminant A = —4 — 8d/+/4£2 + 1 is
negative, zero, or positive. Now as p traverses Cqg — i.e., as £ increases from
—00 to +00 — A first changes sign when

2T Again we make the qualification that q is a generic point, not a vertex, of C.
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E=—/d&®—1. (8.64)

Prior to reaching the value (8.64), we have A < 0, and C lies outside of Cjp.
On attaining the value (8.64), A vanishes, and C is then tangent to Cp at a
point q. = (=&, &?) other than the corresponding point q = (£, £?), inducing
a self-intersection of C4. Finally, when the value (8.64) is exceeded, we have
A >0, and P(7) has the two distinct real roots

r=—¢4 \/—1—2d/\/4§2+1,

indicating that a segment of C must lie inside Cp.

As ¢ is further increased, the intersection of Cp and C identified by the
smaller of these roots approaches the tangency point q of C, and C. These
points coalesce, causing Cp to be the circle of curvature to C at g, when

¢ = -1\ /(—2a2 -1

Fig. 8.23. The offset to a parabola C: (a) before p reaches the self-intersection,
Cp contains no part of C and p belongs to the true offset; (b) when p reaches the
self-intersection, Cp is tangent to C at some point q. other than the corresponding
point q; (¢) when p moves through the self-intersection, the tangency q. splits into
simple intersections, r and s, and p no longer belongs to the true offset, since part
of C lies in Cp; (d) when p reaches the cusp, r and q coincide, and Cp becomes the
osculating circle. Traversing the cusp does not alter the “occupancy status” of Cp.
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— thereby inducing a cusp on Cq. Note, however, that the occurrence of this
cusp does not change the “occupancy status” of Cp with respect to C.

Figure 8.23 illustrates this sequence of events, which evidently recurs in
reverse order as £ is increased through 0, on account of the symmetry of r(&).
The true offset C4 is the subset of the untrimmed offset Cy, defined by (8.63),
that corresponds to deleting the parameter interval

o[-y )

delimited by the self-intersection of Cy.

The Offset Trimming Procedure

We are now ready to describe the trimming procedure, whereby the true offset
Cq at distance d from a given curve C is culled from the untrimmed offset Cg.
We assume that C comprises one or more oriented, nested loops: the outermost
loop has an anticlockwise parameterization, and the sense of parameterization
reverses with successive nesting levels.

1. construct the untrimmed offset C; at distance d, including circular fillet
arcs to close the “gaps” incurred by tangent discontinuities of C, so as to
ensure that (fd is continuous;

2. compute all self-intersections of the untrimmed offset Cq, and split it at
these points into a collection of contiguous segments Si,...,Sy;

3. select test points py € Sk on the interior of each segment and compute
their distances from the given curve C;

4. for each segment, either distance(py,C) < |d| or distance(py,C) = |d| —
those in the former category must be discarded, while those in the latter
category are retained;

5. the retained segments, connected end-to—end, form zero or more oriented,
nested loops that constitute the trimmed offset Cy.

The given curve C and its trimmed offset Cy satisfy
distance(Cq,C) = |d|

in the sense of the curve/curve distance function defined by (8.56) and (8.57).
Furthermore, Cg4 lies (locally) to the left or right of C according to whether
d is negative or positive (note that the loops of the trimmed offset Cy inherit
the orientation convention of the original curve C). Figure 8.24 illustrates the
offset trimming procedure in the context of a piecewise—linear/circular curve.

Figure 8.25 shows a family of offsets at successive distances d to the curve
in Fig.8.24. By careful examination of Fig.8.25 one can observe the locus
of tangent discontinuities on the trimmed offsets, which exhibits a branching
behavior at certain special points. These tangent discontinuities, generated by
trimming the untrimmed offsets at self-intersections, are equidistant from (at
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Fig. 8.24. Trimming the interior offset to a piecewise—linear/circular curve. Left:
self—intersections of the untrimmed offset. Right: trimmed offset after distance tests.

least) two points of the curve C, and are thus centers of maximal disks within
the domain bounded by C. The locus of centers of maximal disks inscribed in
a planar domain is known as the medial axis of that domain [47,49,53,83].

Fig. 8.25. A family of equidistant offsets to the piecewise—linear/circular boundary
of a planar domain — the medial axis or “skeleton” of the domain is apparent upon
squinting to bring into relief the locus of tangent—discontinuities on the offset curves.

The offset trimming problem can be simplified by computing a priori the
medial axis of the domain bounded by the given curve C [86,90,232]. Instead
of constructing the entire untrimmed offset at distance d, and then trimming
it, the offsets to each segment of C can be directly trimmed against the medial
axis edges as they are constructed — this eliminates the need for subsequent
trimming operations. However, the medial axis computation is a substantial
task in its own right [47,87,124,375] and this approach is only advantageous
when many offsets to the same boundary curve C are to be computed.
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8.4 Intrinsic Geometry of Space Curves

A space curver(&) = (z(£),y(£), 2(£)) may be defined by three scalar functions
of a parameter . Henceforth r and all other vectors we encounter (tangents,
normals, etc.) are three—dimensional vectors; the preceding results are a special
instance of the discussion that follows, corresponding to the choice z(§) = 0.
Equation (8.1) carries over to the present context, assuming the space curve
is regular, but the parametric speed is now given by

a(€) = (O] = Va(&) +y2(&) + 22(9), (8.65)

and the tangent (8.3) is a three-dimensional vector.

Now for a plane curve the normal n(§) is uniquely defined, up to a sign
choice, by the fact it must lie in the plane of the curve and be perpendicular to
the tangent t(£) — equation (8.5) fixes the sign ambiguity in a specific manner.
In three dimensions, however, there is an infinity of vectors orthogonal to any
tangent t(£), and a different approach is required to characterize them. We
accomplish this by introducing two unit vectors — the principal normal p(§)
and the binormal b(§) — that are orthogonal to t(£) and to each other. These
vectors span the normal plane to the curve at each point.

8.4.1 Curvature and Torsion

The definition of p(§) and b(§) incurs the introduction of two functions, the
curvature £(€) and torsion 7(§), identifying intrinsic geometrical properties of
space curves.?® The curvature of a space curve, unlike that of a plane curve,
is by definition a non—negative quantity. Torsion is what distinguishes a true
or “twisted” space curve: the torsion of a plane curve is identically zero.

Assuming r(§) is regular, its second derivative is again given by equation
(8.4), and we introduce the curvature and the principal normal by writing the
derivative of the tangent vector as

t'(§) = o(§r(&) p(&) (8.66)

with the stipulation that x(§) > 0, i.e., p(§) is a unit vector in the direction
of t/(£) — which is necessarily orthogonal to t(¢) since this is a unit vector.
From relations (8.1), (8.4), (8.66) and the fact that the tangent and principal
normal are orthogonal, one may then deduce that x and p are given by

_ [P x " ()]
K(§) = FIGE (8.67)

and

28 The torsion is often called second curvature in early papers on the theory of space
curves, consistent with the notion that they are “doubly curved” loci (see §9.4.2).
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r'(§) xx" (&)

p(§) = (€)X /(6| x t(£) . (8.68)
We define the binormal to be the unit vector
b() = t() x p() = <) (3.69)

- r(©) xr(€)]

so that t, p, b form a right-handed orthonormal triad, the Frenet frame, at
each point of the curve. Now if (8.69) were a constant vector (i.e., b’(§) = 0),
t(£) and p(€) at each curve point would lie in a plane orthogonal to this fixed
vector, and r(¢) would necessarily be a plane curve. Therefore, to elucidate
the essential three-dimensional nature of a “twisted” space curve, we need to
study the variation of b(¢£) along the curve.

Differentiating the relation b = t x p, and noting that t’ = ok p, we have
b’ = t x p’. Now since p is a unit vector, its derivative p’ must lie in the plane
orthogonal to it, spanned by b and t. Clearly, only the component of p’ along
b contributes to b’, and hence we write

b'(§) = o(§)7(£) t(§) x b(§) = — a(§) T(§) p(€)- (8.70)

Here o(€)7(€) represents the magnitude of b’ (£). We write it in this manner to
ensure that the function 7(¢) — the torsion of r(¢) — will be independent of
the parameterization. To derive an expression for it, we write r’ x v’/ = 3k b
using (8.67) and (8.69). Differentiating this and invoking (8.70), we obtain

' xr" = - o'vrp + 0?30’k + oK) b,

and taking the dot product of this with the expression

U

v/ =o't + o*kp (8.71)

obtained from (8.4) and (8.6), we have

(I" % I‘HI) = — JGK,27',

where we make use of the fact that t, p, b are mutually orthogonal. Thus,
re—arranging the triple product and using (8.67), we deduce that

[x'(§) x x"(§)] - r"(£)
r'(§) x r"(F

The first, second, and third derivatives of r(§) must be linearly independent
(an impossibility for a plane curve) for the torsion to be non—zero. Unlike the
curvature, the torsion may assume both negative and positive values.

T(§) = (8.72)
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8.4.2 The Frenet Frame

At each point on a regular space curve with x # 0, the vectors t, p, b given by
(8.3), (8.68), (8.69) define a right-handed system of orthogonal axes, called
the Frenet frame, that offers a natural perspective on the local curve geometry
(see Fig.8.26). The mutually perpendicular planes through each curve point
orthogonal to b, t, and p are known as the osculating, normal, and rectifying
planes. These planes are evidently spanned by the vector pairs (t,p), (p,b),
and (b, t). We may elucidate their geometrical significance as follows.

X y

Fig. 8.26. The variation of the Frenet frame (t, p,b) along a circular helix.

The normal plane is the easiest to visualize. It is simply the plane through
each curve point that is orthogonal to the tangent (8.3) there — the normal
plane “cuts the curve orthogonally” at each point. Now there are infinitely
many planes that meet the curve tangentially at a given point (i.e., that have
first-order contact with the curve there) — namely, the family or “pencil” of
planes that contain the curve tangent at that point. If x ## 0, however, there
is a unique member of this family, the osculating plane, that has second—order
contact with the curve. Thus, the osculating plane at any point is the plane
that “most nearly contains the curve” in a neighborhood of that point.

Finally, the rectifying plane has a more subtle geometrical significance. The
envelope of the family of rectifying planes to a space curve — i.e., the surface
that touches each rectifying plane — is known as the rectifying developable of
that curve. The term “developable” is employed to describe a ruled surface,
regarded as a thin material sheet, that we may flatten or develop onto a plane
without “stretching” or “compressing” the material (see §8.5.6). A remarkable
property of the rectifying developable is that, upon development onto a plane,
the space curve embedded in it is transformed or “rectified” to a straight line.
Since surface development incurs no dilation/compression, and thus preserves
lengths, the arc length of any segment of the space curve is equal to that of
the corresponding line segment after flattening its rectifying developable.



8.4 Intrinsic Geometry of Space Curves 181
8.4.3 Inflections of Space Curves

At points where x = 0, a space curve exhibits second — rather than first —
order contact with its tangent line. We regard such points, where the normal
(8.68) and binormal (8.69) are evidently indeterminate,?” as the inflections of
a space curve. Now for a regular space curve, the curvature vanishes only if
(i) r” = 0, or (ii) r’ and r” are parallel. In either circumstance, p and b will
ordinarily both suffer a sudden reversal on traversing the inflection.

This may be compared with our treatment of plane curves — where the
fact that we defined k to be a signed quantity allowed the normal p to vary
continuously, even through an inflection. One may, in principle, also define a
signed curvature for space curves that yields continuous normal and binormal
vectors through the curve inflections. The approach has the disadvantage that
p, b, and k are no longer determined by strictly “local” curve attributes as
in (8.67)—(8.69). Instead, we must fix them at a specific curve point and then
keep track of how many inflections we traverse to reach any point of interest.

8.4.4 Intrinsic Equations

The arc length of a space curve is given by the integral (8.13), with the speed
(8.65) for a three-dimensional curve as integrand. In terms of the arc-length
parameterization r(s), the Frenet frame may be expressed as

Ho) = £, () = Hh. b(s) = 69 % (o).
Here the curvature is simply x(s) = |#(s)|, while the torsion 7(s) equals the
triple product of the first three arc-length derivatives divided by [¥#(s)|.
With the above definitions, the Frenet-Serret equations

dt dp db

L =P E__ﬁt—i_Tb’ 1 TP (8.73)
characterize the arc-length variation of the Frenet frame along a space curve.
The French mathematician Jean Gaston Darboux (1842-1917) observed that,
upon introducing the vector

d=kxrb+t, (8.74)
equations (8.73) can be cast in the more compact and enlightening form

dt dp db

— =dxt — =d — =dxb. .

T xt, 1o xXPp, 1 X (8.75)
The Darbouz vector (8.74) evidently lies in the rectifying plane at each point,

and we may interpret its geometrical significance as follows.

29 At an inflection, we may regard any two vectors in the normal plane that comprise
a right-handed orthonormal system with the tangent t as the Frenet frame.
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Equations (8.75) indicate that the instantaneous rate of change of each of
the vectors t, p, b is orthogonal to itself and to the vector d. This behavior
characterizes an instantaneous rotation of the Frenet frame about the axis
defined by (8.74): we may regard t, p, b as instantaneously sweeping conical
surfaces about d as a common axis. If we describe the orientation of any of
these vectors about d by an azimuthal angle ¢, the magnitude

w=|d| = VK2 + 12

of the Darboux vector corresponds to the instantaneous rotation rate, d¢/ds.
Thus w is usually called the “total curvature” of a space curve.

Of course, d varies in both magnitude and direction along a general space
curve, and that is why we emphasize that it describes the “instantaneous” rate
of rotation of the Frenet frame. Now if functions k(s) and 7(s) that specify
the arc-length variation of curvature and torsion are given, together with an
“initial” point ro and corresponding frame (tg, po,bo) at s = 0, equations
(8.73) may be integrated to yield (t,p, b) as functions of s, and a space curve
is then uniquely defined by

r(s) = rg + /Ost(u) du. (8.76)

Thus, k(s) and 7(s) are known as the intrinsic equations of a space curve.

Unfortunately, except for trivial x(s), 7(s) this integration does not yield
closed—form expressions for the curve r(s) in terms of elementary functions
(even a symbolic expression of the process, the generalization of (8.15)—(8.16)
for plane curves, is rather involved). The equations (8.73) are not independent,
since any solution (t,p,b) to them must be an orthonormal frame. Thus, one
could eliminate p and b among (8.73) to obtain a second-order (non-linear)
equation for t, whose solutions may be used directly in (8.76).

Knowing values and derivatives ko, ko, . .. and 79, 7, ... of k(s) and 7(s)
at an initial point rg from which we measure s, the curve can be expressed as
an infinite series for r(s) — rg of the form

osculating plane normal plane . rectifying plane

Fig. 8.27. Projections of the cubic r(£) = (£, €2, €*) onto its osculating, normal, and
rectifying planes at the origin — these planes coincide with the coordinate planes.
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2 .
_ko s .. fo 2, ko 3 | @3...)
<s 5 )t0+(25+63 )p0+(63 by, (8.77)

where (to, po, bo) is the Frenet frame at rg, and only cubic and lower—order
terms are shown. We observe that, at a generic point with kg # 0 and 7y # 0,
the projections of r(s) onto its osculating, normal, and rectifying planes at
ro look “locally” like a parabola, a cuspidal cubic, and an inflectional cubic,
respectively — see, for example, Fig. 8.27.

8.5 Intrinsic Geometry of Surfaces

A parametric surface representation is specified by a vector function r(u,v)
in R? of two variables or parameters. Subscripts denote partial derivatives of
this function with respect to the parameters. We confine our attention here to
regular surfaces. As an immediate generalization of the curve case, this means
that r, # 0 and r,, # 0 — i.e., a change in either parameter induces a motion
on the surface. But we also require such motions due to increments in u, v to
be linearly independent: r,, and r, should be non—parallel. Thus, the general
regularity condition is that r, x r, # 0 throughout the domain of interest.

Whereas non—regular points on curves are usually geometrical singularities
(cusps), surfaces may have points that are geometrically smooth and singular
only in the parameterization — e.g., the “poles” on a sphere described by lines
of latitude and longitude. Another fundamental difficulty with surfaces is that
there is no (global) equivalent to the “natural” or arc-length parameterization
of curves, that serves to simplify the intrinsic geometry of surfaces.

8.5.1 First Fundamental Form

Consider the displacement dr between two points r(u,v) and r(u+ du, v+ dv)
on a surface. Expanding in a bivariate Taylor series, we may write

dr = r(u+du,v+dv) — r(u,v)
r,du+r,dv + %(ruudzﬂ+2rm,dudv+rm,dv2) + . (878

To first order in du and dv, the distance ds between these points is given by
ds? = |dr|* = Edu?® + 2F dudv + Gdv?, (8.79)
where we set
E=r,-r,, F=r,-r,, G=r,1,. (8.80)

The quadratic expression (8.79) in the differentials du and dv is known as the
first fundamental form of the surface, and the functions (8.80) of (u,v) are its
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“first fundamental coefficients” (they define the metric tensor of the surface,3°
considered as a two—dimensional non—Euclidean space: see Chap. 10).

The quantities (8.80) are also employed in the computation of surface area.
An area element dA corresponding to parameter increments du and dv may
be written, by the parallelogram rule, as |r,du x r,dv|. Noting that

[ty X 1|2 = |rul?|ro]® — (ry-1,)> = EG—F? >0 (8.81)

for a regular surface, we may write the surface area A corresponding to any
parameter domain {2 as

A= // VEG—F?2 dudv.
(9]

8.5.2 Second Fundamental Form

The partial derivatives r,, and r, at each point span the surface tangent plane
at that point (if they are linearly independent). This plane is orthogonal to
the unit surface normal vector, defined by

r, X T,

n (8.82)

ey x|

Now the first fundamental form (8.79) characterizes the distance ds between
r(u,v) and r(u 4+ du,v + dv) in terms of a local approximation of the surface
by its tangent plane — i.e., only linear terms in (8.78) are retained — and
hence it conveys no information about the curvature of the surface.

To characterize the deviation of the surface from its tangent plane in the
vicinity of any point (i.e., its curvature at that point) we must examine the
quadratic terms in (8.78). Taking the dot product of (8.78) with (8.82) yields
the component d?h of dr orthogonal to the tangent plane:

2d?h = 2n-dr = Ldu? + 2 M dudv + N do?, (8.83)
where we write
L=n-r,,, M=mn-r,,, N=mn-r,. (8.84)

Note that we express the height d?h of the point r(u + du, v + dv) above the
tangent plane at r(u,v) as a second-order differential since, to first order, this
neighboring point lies in the tangent plane. The quadratic expression (8.83)
is known as the second fundamental form of the surface, the three functions
(8.84) of (u,v) being its “second fundamental coefficients.”

30 We adopt the notation E, F, G — and L, M, N in the second fundamental form
(8.83) below — employed by Gauss in his pioneering studies of surface differential
geometry, rather than the more sophisticated tensor notations of Chap. 10.
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Whereas E, F'; G can not vanish simultaneously at any point of a regular
surface, we may have L = M = N = 0 at exceptional surface points, namely,
locations where the tangent plane has (at least) second—order contact with the
surface. We confine our surface curvature analysis to the generic case, with at
least one of L, M, N non-zero, since otherwise it becomes quite cumbersome.

8.5.3 Curves Lying on a Surface

A curve lying on the surface r(u, v) may be defined by functions u(t) and v(t),
that specify the variation of the surface parameters in terms of a parameter ¢
describing position on the curve. An explicit representation of the locus as
a space curve is obtained by the composition of the surface equation with
these functions: r(t) = r(u(t),v(t)). Differentiating r(¢) by the chain rule then
gives

v =ur, +0'r, =o0t, (8.85)
where primes indicate derivatives with respect to ¢ and it is understood that
the surface partial derivatives r,, r,, have u(t), v(t) as their arguments. Here
t denotes the unit tangent vector to the curve, and from (8.80) we see that
its parametric speed o(t) = |r'(¢)| may be written as

o = VEu? + 2Fu'v' + Guv”?. (8.86)

The length of a segment ¢ € [a,b] of the curve u(t), v(t) lying on the surface
r(u,v) may be obtained by integrating (8.86) between ¢t = a and ¢t = b.

We see from (8.85) that the tangent t at any point of a curve on r(u,v)
resides within the surface tangent plane, spanned by r, and r,, at that point.
Provided they are linearly independent, we may regard r,, and r, as defining
axes and scale lengths for “local coordinates” in the tangent plane. A vector
such as (8.85), expressible in terms of the local basis (r,,r,) at each point,
is considered to lie “in the surface” at that point. We regard u’ and v’ to be
components of the vector (8.85); their ratio u’ : v" specifies a direction in the
surface there. Note that the magnitude of this vector is given by (8.86), rather
than v/u/2 + v2, since in general the local coordinates are oblique.

The coefficients (8.80) of the first fundamental form also allow us to define
the angle between two vectors (considered as curve tangents) “in” the surface.
If uy (s), v1(s) and us(t), v2(t) describe curves that intersect at a point (u., vs),
i.e., there exist values s, and t, such that ui(s.) = ua(ts) = us and vy (s4) =
va(t«) = vs, the angle o between the two curves ri(s) = r(ui(s),v1(s)) and
ro(t) = r(ua(t),v2(t)) at their intersection is given by

cosa — r] - rh _ Euub + F(ujvh + uhyvh) + Guivg

Ty |r5] VEUR 4+ 2Fuv] + Gu \/Eul} + 2Fubvly + Gul?

where primes indicate derivatives with respect to s or t, as appropriate, and
E, F, G are evaluated at (u.,vs).
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8.5.4 Normal Curvature of a Surface

We now differentiate (8.85) again using the chain rule to obtain

v = u?ryy 4+ 200y + 0%y, Uty 0, = 't +0%kp,  (8.87)

where the final expression comes from equation (8.71) with x and p being the
curvature and principal normal of the space curve r(t).

In order to determine x from equation (8.87), we take the dot product of
both expressions for r” with the surface normal n defined by (8.82). Noting
that n is orthogonal to ry, r,, and t, and using (8.84) and (8.86), this yields

Lu? + 2Mu'v' + Nv'?

fcosy = Eu? + 2Fuv' + Gv'2’

(8.88)

where v is the angle between the unit vectors p and n. Note that expression
(8.88) depends on the ratio u' : v/, though not on the individual magnitudes
of these derivatives — i.e., it is determined only by the direction of the curve
tangent t in the surface tangent plane, together with the angle .

Now the principal normal p to an arbitrary curve on the surface r(u,v)
and the surface normal n are both orthogonal to the curve tangent t at each
point, but they may have any relative orientation in the plane perpendicular
to it — i.e., for a given ratio u’ : v’, the factor cos® in (8.88) can be made to
assume any value between —1 and +1 by a suitable choice for u(t), v(t).

In order to extract from (8.88) an “intrinsic” measure of surface curvature
— one that depends only on direction in the tangent plane at each point —
we must be more restrictive about the curves on the surface that we consider.
Specifically, suppose that u(t) and v(t) define a normal section of the surface
at the point of interest, i.e., its intersection with any plane that contains the
surface normal n there. There is an infinite family or “pencil” of such planes,
each associated with a unique direction or ratio u’ : v’ of derivatives.

For a normal section, the curve principal normal p and surface normal
n are identical or opposite, and thus costy = +1. Adopting the convention
for plane curves introduced in §8.1, that « is positive when the curve normal
points away from the center of curvature, amounts to choosing cosy = —1.
Thus, the curvature of the normal section in the direction v’ : v’ is

Lu'? + 2Mu'v' 4+ No'?
K= — : (8.89)
Eu'? + 2Fuwv + Gu'?

and we call this the normal curvature of the surface for that direction.

8.5.5 Principal Curvatures and Directions

Expression (8.89) gives the normal curvature as a rational quadratic function
of the ratio v’ : v/ that describes the orientation of the section plane about the
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surface normal n at each point. We will now see that, in general, this function
exhibits unique minimum and maximum values, corresponding to orthogonal
directions on the surface. Writing (8.89) in the form

(Bu? + 2Fu/v' + Gv"?) k + (Lu* + 2Mu/v' + Nv'?) = 0,

and differentiating with respect to u’' and v’, we set dk/0u’ = 9k /Ov' = 0 to
identify extrema. This gives the homogeneous system of equations

KE + L /<;F+M] [u’} _ [0} (8.90)

kF+M kG+ N v 0

for u/ and v’. Now in order for a non—trivial solution (u’,v") # (0,0) to exist,
the matrix on the left—-hand side must be singular — i.e., ¥ must satisfy

(kE+ L)(kG+ N) — (kF 4+ M)* = 0 (8.91)

when it is an extremum. Noting that EG — F? > 0 everywhere on a regular
surface, we may write equation (8.91) for the extremum normal curvatures as

k* —2Hk + K =0,
where we introduce the quantities

LN — M?
K =

2FM — EN — GL
and H = G

EG — F? T 2(BEG-F?) (8.92)

known as the Gaussian curvature and mean curvature at each surface point. In
terms of (8.92) the minimum and maximum normal curvatures are evidently

Rmin = H — V H?2 - K and Rmax — H + \V H? —K, (893)

and these values are called the surface principal curvatures at the point under
consideration. The normal curvature k for any surface direction at that point
satisfies Kmin < K < Kmax. Conversely, the Gaussian and mean curvatures
(8.92) may be expressed in terms of the principal curvatures as

K = RKminFmax and H = %(Kmirl + Klmaux) . (894)

The Gaussian and mean curvature (and hence also the principal curvatures)
are intrinsic properties of the surface at each point — they remain unchanged
under any non-singular re-parameterization of the surface.

Having computed the principal curvatures (8.93), the directions in which
they are attained (i.e., the principal directions of the surface at each point)
can be deduced from equations (8.90) as

uiv = —(kpF+M):kpE+L =—(k,G+N):kp,F+M, (895)
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where K = Kmin OF Kmax — the equality of the above ratios follows from the
fact that both principal curvatures satisfy equation (8.91).

The principal directions on a surface are always orthogonal — by setting
w1 v] = — (KminF+M) : kminE+L and ufy : v = — (kmaxF+M) @ maxE+L
in the numerator of the expression for cos a, and using (8.92) and (8.94), one
may verify that the angle o between them satisfies cos a = 0.

Equations (8.93) indicate that Kmin = Kmax if the quantities (8.92) satisfy
K = H?. In this degenerate case the principal directions are undefined, since
the normal curvature is independent of direction — the surface looks locally
like a sphere in the neighborhood of such an umbilic point. Equations (8.90)
must be vacuous at an umbilic, i.e., they must be satisfied by any ratio v’ : v/,
indicating that the derivatives of the normal curvature with respect to v’ and
v’ vanish identically. This means that each entry of the 2 x 2 matrix in (8.90)
must be zero at an umbilic, and the normal curvature at such a point is thus

L M N

Rumbilic = — E = Ia = e .
Conversely, any point at which the first and second fundamental coefficients
are in the same proportions, £ : F': G = L : M : N, must be an umbilic with
normal curvature given by the above formulae.

Exceptionally, one of the ratios (8.95) that define the principal directions
at a point may assume the indeterminate form 0 : 0. In such cases the other
ratio, which is necessarily determinate and of the form 0 : 1 or 1 : 0 if the
point is not an umbilic, must be used to identify the principal direction —
which evidently coincides with one of the coordinate directions.

Since the principal directions are orthogonal, we can construct a locally
orthogonal parameterization (u,v) aligned with them in the neighborhood of
any non—umbilic point, such that |r,| = |r,| =1, ry -1, = 0, Ty, = O there.3!
We then have E = G =1 and F = M = 0, and expression (8.89) becomes
k = — (Lcos® a + Nsin® o) on setting u’ : v/ = cosa : sina, where « is the
angle that the direction u’ : v' makes with that of £y (say). Hence, we must
have L = — Kpin and M = — Kpax, and the dependence of k on «a at any
non—umbilic point has the form

k(@) = Kmin €082 @ + Fpax sin? . (8.96)

This relation is usually known as Fuler’s theorem.

8.5.6 Local Surface Shape

The sign of the Gaussian curvature is an indicator of the surface “shape” in the
neighborhood of each point. If K > 0, the principal curvatures (and hence the

31 This form of local parameterization is known as a system of isothermal coordinates
at the given point. It plays an important role in the theory of minimal surfaces,
i.e., surfaces of minimum area bounded by a given closed space curve [351].
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normal curvatures in all directions) have the same sign — corresponding to
a “cup” shape. If K < 0, the principal curvatures are of opposite signs, and
the normal curvature must vanish for some intermediate direction — we then
have a “saddle” shape. These cases identify elliptic and hyperbolic points on
the surface. Finally, if K = 0, at least one of the principal curvatures vanishes
— the surface has a locally “cylindrical” shape at such a parabolic point.

Planes, cylinders, and cones are examples of simple surfaces with K = 0. In
general, surfaces that exhibit this property are called developables, since — if
we imagine them to be made of thin sheets of flexible material — they can be
“developed” or “flattened” onto a plane without any stretching or compressing
of the material. A surface with H = 0 is called a minimal surface, since it can
be shown that, given a closed space curve C, the surface patch of least area
that has C' as its boundary must satisfy this condition [351].

Every developable is a ruled surface (i.e., we can consider it as being swept
out by the continuous motion of a straight line), though not all ruled surfaces
are developable.?? We observe from (8.92) that a surface is developable if its
second fundamental coefficients satisfy LN — M? = 0, where the trivial case
L = M = N = 0 yields a plane. In fact, developables are indistinguishable
from planes in terms of their “intrinsic” geometry — we may regard them as
being essentially “non—curved” surfaces (see also §10.6).

From expression (8.89), we observe that the normal curvature vanishes in
the surface directions u’ : v’ for which Lu'? +2Mu'v’ + Nv'? = 0. Since this is
a homogeneous quadratic expressions in u’ and v, it has two solution ratios
u' : v/ — not necessarily real or distinct — which identify what are called the
asymptotic directions at the given surface point. Alternately, using (8.96), we
can identify these directions by tan & = +1/Kmin/Fmax-

At an elliptic point, the asymptotic directions are complex conjugates, and
the normal curvature is of the same sign for all directions. A parabolic point
has a single (repeated) asymptotic direction — the normal curvature vanishes
in this direction but is otherwise of constant sign. Finally, the two asymptotic
directions at a hyperbolic point are real and distinct: the normal curvature
changes sign as we pass through them.

The Dupin indicatriz3® is an intuitive means of visualizing the dependence
of normal curvature on direction at a surface point. If r = 1/k is the (signed)
radius of curvature, this plot shows how \/m varies with the surface direction
a. Introducing coordinates x = /|r[cosa and y = /|r[sin in the tangent
plane, equation (8.96) at an elliptic point can be expressed as

2 2
r oL Y

|7'min | |Tmax |

32 A ruled surface is developable if and only if the surface normal (8.82) is constant
along each line or “ruling” of that surface.

33 The French engineer /mathematician Charles Dupin (1784-1873) made pioneering
contributions to differential geometry and its applications — see also §8.5.8.
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which is the equation of an ellipse, while at a hyperbolic point we obtain

2 2
x Yy _ _ 4

|rmin | |Tmax |

which defines two hyperbolae that are asymptotic — on opposite sides — to
lines along the asymptotic directions at that point (these hyperbolae indicate
the variation of \/m in the regimes where r > 0 and r < 0). Finally, for a
parabolic point with (say) £min = 0, the Dupin indicatrix becomes
y2 - |TIIl€LX|7
which represents two lines parallel to the asymptotic direction at that point.
It can be shown that, when the surface is cut by a plane parallel to the
tangent plane at some point, and slightly below or above it, the section curve
approximates a conic with the same shape (locally) as the Dupin indicatrix
(at an elliptic point, of course, the section plane should not lie on the convex
side of the surface; and at a hyperbolic point we have one hyperbola or the
other according to whether it is “above” or “below” the tangent plane).

8.5.7 Gauss Map of a Surface

Equation (8.82) defines the unit normal n at each point of a regular surface. If
we translate these vectors so that they emanate from a common origin, their
tips will lie on the surface of the unit sphere. This correspondence between the
points of a surface and points on the unit sphere, defined by the orientation
of (8.82), is called the Gauss map or “spherical image” of the surface.

The Gauss map imparts an intuitive meaning to the Gaussian curvature
of a surface. Consider an area § A about some point p of a regular surface —
the Gauss map of this area will, in general, cover some area S on the unit
sphere3* about the location of the surface normal n at p. The area §S defines
the solid angle subtended by the normals at each point within dA — it is a
measure of the (angular) “spreading out” of those normals. It can be shown
that the Gaussian curvature at p can be interpreted as the limiting ratio

. 08
K= dm, 54
when 6 A — 0 in such a manner that its boundary curve shrinks to zero length.
Thus, K measures the “rate of angular divergence” of the surface normal n
with respect to the surface area A at each point.

For a general — i.e., “doubly—curved” — surface, the Gauss map covers
an area on the unit sphere. For a developable surface, however, it degenerates
to a curve — since the normal is constant along each ruling of the surface.
Finally, for a plane, the Gauss map is a single point on the unit sphere.

34 The Gauss map is one-to—one in a neighborhood of elliptic or hyperbolic points.
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In general, the Gauss map of a surface is not one-to—one since there may
be two or more distinct surface points that have parallel normals. In fact, the
Gauss map “folds back” on itself along those loci on the unit sphere that are
the images of the parabolic lines on the surface — i.e., curves comprising only
parabolic surface points (of zero Gaussian curvature).

8.5.8 Lines of Curvature

At each point (other than the umbilics) of a smooth surface, the ratios defined
by (8.95) with Kp = Kmin and Kmax identify orthogonal directions, in which the
normal curvature of the surface attains its minimum and maximum values.
The lines of curvature of a surface are two families of curves on the surface,
each tangent to one of the principal directions at every point, that form an
“orthogonal net” covering the surface. Choosing the first of equations (8.95),
we may formulate it as the pair of first—order differential equations

du dv
i — a(kpF+ M) and T

= a(kpE+ L), (8.97)
where «(t) is an arbitrary non—vanishing function — this function determines
the parameterization of the line of curvature. To specify this function, it is
natural to consider the line of curvature parameterized in terms of arc length
s along it. Substituting du = — a(kpF + M) dt and dv = a(kp,E + L) dt in the
first fundamental form (8.79), we may obtain the parametric speed o = ds/dt
associated with the representation (8.97). Dividing both sides of equations
(8.97) by o then gives the equations

du dv

L = BF+M)  and - = B (kB + L) (8.98)

governing the arc-length parameterization of a line of curvature, where

+1

p= VE(rpF + M)? = 2F(k, F + M) (kpE + L) + G(kpE + L)

The sign ambiguity is resolved by fixing the sense in which s increases.
Now the other ratio in (8.95) could have been used to obtain the system

du dv
L = BG+N)  and = = B F 4 M), (8.99)

in lieu of equations (8.98), where § is now defined by

+1
VE(r,G + N)2 = 2F (rpG + N)(kpF + M) + G(rp F + M)?

8 =

In tracing a line of curvature, it may be necessary to switch between (8.98)
and (8.99) when both right-hand sides in one system vanish. As noted above,
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this occurs when a principal direction coincides with that of one of the surface
parameters. When making such a switch, a change of sign in the appropriate
[ expression may be necessary to ensure that the line of curvature is traced in
a consistent sense. Of course, this works only for a non—umbilic point; neither
of the systems (8.98) and (8.99) can be integrated at an umbilic.

In equations (8.98) and (8.99) it is understood that x, is consistently set
to either Kmin OT Kmax, as determined from (8.93) and (8.92) — these choices
yield lines of “minimum” and “maximum” curvature. Since the differential
equations are of first order, the determination of lines of curvature is an initial
value problem. A unique pair of lines of curvature pass orthogonally through
any specified point (other than an umbilic) — it is meaningless to speak of a
line of curvature between two generic points of a surface.

Figure 8.28 illustrates lines of curvature on a “triaxial” ellipsoid (all three
semi—axes are of unequal length) — in this case, the lines of curvature are all
closed loops. They form an orthogonal net, except at the umbilics situated on
the section containing the smallest and largest semi-axes. These curves were
first accurately drawn — in plane projection — by Gaspard Monge in his 1807
treatise Application de I’Analyse a la Géometrié. He also employed them in a
1795 architectural design for the ellipsoidal roof of a new High Court building
— the surface “patches” delineated by the lines of curvature would define the
shapes of the roof tiles, and he proposed that chandeliers be suspended from
the two umbilical points — see [367, p. 269].

Fig. 8.28. Lines of curvature on a triaxial ellipsoid, forming an orthogonal net that
divides the surface into 4-sided patches except at umbilic points (two are seen here).

The lines of curvature shown in Fig.8.28 admit an elegant geometrical
interpretation. For constants a, b, ¢ and three different instances A, p, v (such
that 0 < A < ¢ < pu < b? < v < a?) of the parameter 7 in the equation

$2 y2 22

—1=0 8.100
a2—77+b2777 2 —n ’ ( )
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we obtain three families of mutually orthogonal quadric surfaces with common
foci: ellipsoids, hyperboloids of one sheet, and hyperboloids of two sheets.
A unique member of each family passes through each point (z,y,z) and
hence the parameters (), i, ) constitute a curvilinear coordinate system in R3
known as confocal ellipsoidal coordinates. In his Développements de géométrie
of 1813 — with putative “applications to the stability of ships, excavation
and fill, fortifications, optics, etc” — Charles Dupin, a student of Monge,
demonstrated that if any three families of surfaces are mutually orthogonal,
their pairwise intersection curves must be lines of curvature on each surface.?®
Hence, the curves in Fig. 8.28 are the intersections of the ellipsoid, defined by
(8.100) with n = A, with the hyperboloids defined by (8.100) with n = u, v.

In addition to the principal directions, identifying extrema of the normal
curvature at each surface point, we also mentioned in §8.5.6 the asymptotic
directions, in which the normal curvature vanishes. The asymptotic lines of
a surface are defined, by analogy with the lines of curvature, to be those loci
having the asymptotic directions as their tangents at each point. Unlike lines
of curvature, however, real asymptotic lines exist only in regions of negative
Gaussian curvature, and they are not orthogonal in general.

8.5.9 Geodesics on a Surface

The path of least length between distinct points in the plane is a straight line.
Geodesics extend of this idea to curved surfaces — and, in general, curved
or “non-Euclidean” spaces of any dimension (see Chap.10). The geodesic
corresponding to two distinct points (ug,vo) and (u1,v1) on a surface r(u,v)
is the path on the surface that minimizes the distance

1
5 = / VEW? 4 2P0y + Go”? dt, (8.101)
0

among differentiable functions u(t), v(t) on [0, 1] with u(0) = ug, v(0) = vg
and u(1) = uy, v(1) = vy. This is a problem in the calculus of variations [45].
Using arc length s along the geodesic as parameter, the path that minimizes
(8.101) must satisfy the Euler—Lagrange equations

d?u du\? du dv dv\?

S S oru US04 opu (S0 =

a2 ' ““(ds) R P ””(ds) 0,

d2v du'\? du dv dv\?

— + IV | — 21 —— + IV | — | = .102
a2 T ““(ds) el a T mJ(ds) 0, (8.102)

where the Christoffel symbols are defined by

35 Qystems of mutually orthogonal surfaces are uncommon. In R? we can construct
a family of curves orthogonal to any given family, but two families of orthogonal
surfaces in R® do not, in general, admit a third family orthogonal to them.
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The boundary value problem for the second—order system (8.102) between two
points (ug,vg) and (u1,v1) does not necessarily have a unique solution. Also,
its solutions identify all (local) extrema of the distance between these points,
which may correspond to maxima as well as minima. To determine the true
minimum—distance path in the case of multiple solutions, one must explicitly
compute and compare the distance (8.101) for all the solutions.

Alternately, equations (8.102) may be regarded as defining an initial value
problem — we specify a start point (ug,vg) and direction (tg, 0g) satisfying

Eou? + 2Fyigvo + Govd = 1

for arc-length parameterization, where the subscripts on the first fundamental
coefficients indicate that they are evaluated at (ug,vo) — and there is then a
unique geodesic emanating from this point in the specified direction.

Of course the geodesic equations (8.102), whether regarded as specifying
an initial or a boundary value problem, rarely admit closed—form solutions. We
must usually resort to numerical integration schemes to compute geodesics,
and for this purpose it is more convenient to express (8.102) as a system of
first—order equations in the unknowns u, v, & = du/ds, v = dv/ds:

du du

dS u7 dS ( uuu + U’UUU + ’U’UU ) I’

dv do

= =g — = — (I 4% + 20% a0 + IV 0%). 1

Our discussion of geodesics thus far has been based upon purely analytical
considerations: we shall now consider geometrical characterizations of these
loci. One such characterization is based on the idea of “geodesic curvature” of
curves on a surface. The geodesics on a surface are analogs of straight lines in
the plane — we can regard them as the “straightest” curves that we can draw
on the surface. While it may be difficult to visualize the “global straightness”
of a curve on a surface, we can readily formulate local indicators of it. Namely,
at each point of the curve we may perform an orthogonal projection onto the
surface tangent plane. Then, as described in §8.1, the resulting plane curve has
(modulo sign) a well-defined curvature — we call this the geodesic curvature of
the given curve on the surface. Geodesics can then be identified as those curves
on a surface whose geodesic curvature vanishes along their entire extent. In
other words, geodesics are curves that appear “locally straight” viewed from
the perspective of the surface tangent plane at each point along them. The
following theorem gives another, closely-related, geometrical characterization:
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Theorem 8.2 The geodesics of a surface are those loci on the surface which,
regarded as space curves, have a principal normal vector p that coincides with
the surface normal vector n at each point.

In other words the rectifying plane at every point of a geodesic, considered as
an independent space curve, coincides with the surface tangent plane.

The above theorem can easily be verified by considering equation (8.87)
for the second derivative of a curve on a surface, in the case of an arc-length
parameterization. Since 0 = 1 and ¢ = 0, we have

P = 4%ry, + 2001, + 0’1y, + ir, + ir, = Kp,

where dots indicate arc—length derivatives. By considering a curve for which
p = n, and performing the following three steps: (a) take the cross product
of this equation with r,, and r,; (b) dot the resulting equations with n; and
(c) divide these equations by |r, X r|, we arrive at the geodesic differential
equations (8.102) with the Christoffel symbols as given above.

The simplest non—trivial geodesics on a curved surface are, of course, the
great circles of a sphere — i.e., its sections by those planes that pass through
its center. In fact, it follows from Theorem 8.2 that if a surface is symmetrical
about a plane, the section of the surface by that plane must be a geodesic. For
example, the “profile” sections of a surface of revolution (by planes containing
the axis of revolution) are geodesics. Note, however, that geodesics on closed
surfaces are not always closed loci — Fig. 8.29 illustrates this for a torus.

Fig. 8.29. Geodesics from a point on the “equatorial plane” of a torus. If the initial
direction is in this plane or orthogonal to it, the geodesic is a closed path (left). For
any other direction, the geodesic is a non—periodic path that “fills” a region (right).

The geodesic that passes through a given surface point (ug,vg) in a given
direction (4o, ?g), corresponding to integration of (8.103) as an initial-value
problem, is unique. However, equations (8.103) may have multiple solutions3®

if treated as a boundary value problem for the geodesic between two given

36 Some of these may correspond to mazima of the distance S, since the derivation
of (8.103) in §10.4 was based only on the condition that S be extremal.
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points (ug, vg) and (u1,v1). Examples in the case of two points on a torus are
shown in Fig.8.30. Ordinarily, the shortest of a family of multiple solution
paths is taken as “the” geodesic — but even this may be non—unique (e.g.,
the infinitude of great—circle arcs between the “poles” of a sphere).

Fig. 8.30. Multiplicity of geodesic paths between two fixed points on a torus. There
are actually infinitely-many such paths, corresponding to extrema (with respect to
small path perturbations) of the total distance (8.101) between the specified points.

A physical model may help impart a better intuitive feel for the geodesic
between specified points (for a surface of positive Gaussian curvature, at least).
Imagine piercing the surface at the two points, and passing a thread through
the holes so as to lie on the convex side. If the surface is frictionless, the thread
slips across it and assumes the minimum-length shape of the geodesic path
between those points, when pulled taut from the other side.

Although surfaces have no global “natural” parameterizations, analogous
to arc—length parameterizations of curves, geodesics can be used to define such
a parameterization locally, i.e., within the neighborhood of some chosen point
(geodesic polar coordinates) or curve (geodesic parallel coordinates).

Geodesic polar coordinates are constructed by computing geodesics that
emanate in all possible directions from a point P on the surface. The loci of
points that lie at successive equal distances d from P along these geodesics
are, for sufficiently small d, analogous to circles and they meet the geodesics
orthogonally. However, distinct geodesics from P may intersect if extended
too far, and the geodesic polar coordinates are then no longer valid.

Geodesic parallel coordinates are constructed by selecting a smooth curve
C on the surface and computing geodesics orthogonal to this curve from each
point on it. The loci of points that lie at successive equal distances d from the
starting points on C of these geodesics meet the geodesics orthogonally, and
thus form a system of “parallel” curves on the surface. Again, however, the
coordinate system thus defined is only valid near C, since distinct geodesics
orthogonal to C' may intersect when extended too far.

Familiar examples of polar and parallel geodesic coordinate systems are
the circles of latitude and longitude on a sphere, in the vicinity of its “poles”
and its “equator,” respectively. Unfortunately, for more general surfaces, one
cannot derive simple closed—form expressions for polar or parallel geodesic
coordinate systems. Further details may be found in [290] and [433].
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Algebraic Geometry

For the solution of any one of these problems of loci is nothing
more than the finding of a point for whose complete determination
one condition is wanting ... In every such case an equation can be
obtained containing two unknown quantities.

René Descartes, La Géométrie

Algebraic geometry is the study of point sets satisfying polynomial equations
in the Cartesian coordinates of two, three, or more dimensions. For example, a
plane algebraic curve is just the set of points with two—dimensional Cartesian
coordinates (x, y) on which some polynomial f vanishes: f(z,y) = 0. Similarly,
an algebraic surface is the set of three—dimensional points (z,y, z) on which
a polynomial g vanishes: g(z,y, z) = 0. These are examples of implicit curve
and surface equations. They allow us to easily test whether a point lies on the
curve or surface, but are not so convenient for generating points on it.

Whereas a plane algebraic curve is a one-dimensional locus, an algebraic
surface is two—dimensional. Both are describable by a single equation since,
in each case, the dimension of the locus is precisely one less than that of the
Cartesian space in which it resides: we say that such loci are of codimension
one. An algebraic space curve, on the other hand, is a one-dimensional locus
residing in a three—dimensional space — it is of codimension two.

Hence, to describe an algebraic space curve, two polynomial equations
g(x,y,2) = h(x,y,z) = 0 in the three Cartesian coordinates (z,y, z) must be
specified. But this simply amounts to formulating the space curve as the set of
points common to the two surfaces g(x,y,2) = 0 and h(z,y,2) =0 — i.e., as
the intersection of those surfaces. This fact incurs difficult theoretical issues,
concerning the conditions under which two algebraic surfaces will intersect in
a single “irreducible” space curve, or in a composite of such curves.

All of the (polynomial or rational) parametric curves and surfaces that are
commonly used in computer—aided design fall within the realm of algebraic
geometry, since the curve or surface parameters may always be “eliminated” to
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obtain implicit polynomial equations in the Cartesian coordinates. However,
the converse is not true: only a subset of all algebraic curves and surfaces are
parameterizable using “simple” (polynomial or rational) functions.!

The set of rational curves and surfaces is not flexible enough to encompass
all loci that are needed in applications, especially those that are derived from
rational loci through simple geometrical operations. We are thus often obliged
to consider the full family of algebraic curves and surfaces. Our intent here is
to impart a basic knowledge of their properties, the methods used to analyze
them, and the conditions under which they are rational.

Although it admits a remarkable variety of curves and surfaces, there are
loci of practical importance that lie beyond the scope of algebraic geometry
— prominent examples of such “non—algebraic” or transcendental curves are
the cycloid and the involute of a circle, discussed in §8.3 above.?

9.1 Parametric and Implicit Forms

We may regard a parametric representation of a plane curve as a description
of its point set by generating functions x(t) and y(t) — to obtain an ordered
sequence of points along the curve, we simply insert successive values of the
parameter ¢ into those functions. When an arbitrary point (zg, yo) is specified,
however, the question — “does this point lie on the curve?” — is not so easy to
address using a parametric representation; it amounts to determining whether
the equations z(t) = xg, y(t) = yo have a common root t.

An “implicit” representation f(z,y) = 0 of the curve, which amounts to a
description of its point set by means of the predicate function f(x,y), exhibits
the opposite behavior. Determining whether (¢, yo) lies on the curve amounts
to simply testing if f(xo,yo) vanishes, but generating an ordered sequence of
points along it from this representation is not a trivial matter.

In most computational contexts, parametric curve and surface forms are
more convenient than implicit forms, and ab initio design is typically based
on them. However, many “procedurally—defined” loci required in downstream
applications, that are derived according to simple geometrical prescriptions
from given (polynomial or rational) parametric curves and surfaces, belong to
the realm of non—rational algebraic curves and surfaces. Examples include:

e the offset to a given curve or surface, i.e., the locus of a point that always
maintains a fized distance from that curve or surface;

! Since polynomial parameterizations are subsumed by rational parameterizations,
we shall henceforth refer to such loci generically as rational curves and surfaces.

? Cartesian coordinates were criticized by Gilles Personne de Roberval (1602-1675),
and subsequently also by Isaac Newton, on the grounds that the cycloid admits an
elementary geometrical/kinematical description and analysis, but has no “simple”
— i.e., algebraic — equation in Cartesian coordinates [219].
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e the bisector of two given curves or surfaces, i.e., the locus of a point that
remains equidistant with respect to those curves or surfaces;

e the intersection curve of two given surfaces, i.e., the locus of a point that
lies simultaneously on both those surfaces.

As a practical necessity, such non-rational loci are usually approximated using
(piecewise) rational forms by some numerical scheme. This often incurs severe
penalties in terms of the accuracy, efficiency, memory requirements, and —
most importantly — the reliability of the software system.

9.2 Plane Algebraic Curves

A plane algebraic curve of degree n is the locus of points (z,y) that satisfy
an implicit polynomial equation of the form

n—

Z ciraly® = 0. (9.1)
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In general, all terms of total degree < n in x and y appear in this equation,
and hence there are altogether

n+2\

("27) -

coefficients c¢;;, that define such a curve. The number of degrees of freedom of

the curve is one less than this, however, since we may divide (9.1) through by
any (non—zero) coefficient without altering the locus it defines.

The simplest non-trivial algebraic curves — the conics (n = 2) — were of
course well-known to the ancient Greeks, although they treated these loci in
purely geometrical terms. The introduction of Cartesian coordinates allowed
a much richer class of higher—order algebraic curves to be studied, although

at first Descartes did not fully comprehend the role of negative values of the
coordinates. Thus, after drawing the “loop” of the cubic curve

(n+1)(n+2)

(SIS

2+ — 3zy =0 (9.2)

— known as the folium of Descartes — in the positive quadrant, he assumed
that its form in the other three quadrants would simply be mirror images of
this loop. The proper locus of the folium is shown in Fig.9.1.

Newton subsequently made the same mistake, but soon corrected himself.
Around 1670 he performed what was probably the first systematic study of
higher—order algebraic curves [466] in his paper® Enumeratio curvarum trium

3 An improved version, Enumeratio linearum tertii ordinis, identifying seventy—two
different cubic curve types, was published in 1704 as an appendix to the Opticks.
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Fig. 9.1. Left: the correct geometry of the cubic curve (9.2) known as the folium
of Descartes. Right: the erroneous four—fold symmetric form assumed by Descartes.

dimensionum (The enumeration of cubics), which attempts to determine an
exhaustive taxonomy for the real loci defined by (9.1) when n = 3. Newton’s
scheme classified the cubics into nine cases, within which he identified sixteen
“species” — these were further subdivided into “forms” and “grades” to yield
a total of fifty—eight distinct types of cubic curve!

The intrinsic shape properties of the curve (9.1) may be determined from
its implicit equation, although this is not as convenient as with the parametric
equation. At a curve point (., y.) the vector V f = (fs, f,) defines the normal
direction, and hence the equation of the tangent line is

fo(Tu, ye) (@ —24) + fy(ze,y4) (y —y) = 0. (9-3)

By methods similar to those used in §8.1.2, one may verify that the curvature
is given by the expression

B (2 + [2)3/2

evaluated at (z., y.) — with the sign convention that x > 0 when the center of
curvature lies in the direction of V f and £ < 0 otherwise. However, equations
(9.3) and (9.4) are not valid at a singular point, where f, = f, = 0.

The degree—n algebraic curve specified by (9.1) is said to be irreducible if
the bivariate polynomial f(x,y) does not factor into a product of lower—order
(non—constant) polynomials, with real or complex coefficients,* whose degrees
sum to n. For a reducible curve, such that

f(-T,y) = fl(-ray) f2($,y> fr(x?y)7 (95)

the r lower—degree algebraic curves defined by fi(z,y) =0 for k =1,...,r
are called the components of the curve f(x,y) = 0. Such a factorization® of a

(9.4)

4 For example, x> + 3> = 0 is reducible to the complex conjugate lines = +iy = 0,
x — iy = 0. It has just one real point (0,0) — the intersection of those lines.

5 Whereas univariate polynomials can always be factorized into (possibly multiple)
real or complex linear terms, the factorization (9.5) of a bivariate (or multivariate)
polynomial into several non—constant terms is an exceptional circumstance.
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reducible curve may exhibit squares, cubes, or higher powers of certain factors
— these terms identify multiple components of the curve.

We confine our attention here to irreducible curves. In most applications,
we are interested in only finite real points (x,y) of the locus defined by (9.1).
However, to develop a comprehensive theory of such curves, we must broaden
our perspective in two respects, to encompass: (i) compler points as well as
real points; and (ii) points at infinity as well as finite points. In other words,
we will need to consider the locus of the algebraic curve (9.1) over the entire
complex projective plane, rather than just the real affine plane.

We are comfortable with the idea that a degree—n univariate polynomial
f(x) with real coefficients has, in general, both real and complex conjugate
roots. Similarly, a degree—n algebraic curve f(x,y) = 0 with real coefficients
— being the zero set of a bivariate polynomial — defines both a real and a
complex locus, the latter comprising points with complex coordinates (z,y)
that occur in conjugate pairs. Whereas the real locus may be drawn in the
Cartesian plane, the complex locus is not so easy to visualize — it resides in
a four—dimensional space, since x and y each have real and imaginary parts.
Just as the univariate polynomial f(x) has exactly n real or complex roots, we
shall see that consideration of the both real and complex loci of the algebraic
curve f(z,y) = 0 leads to important simplifications.

The behavior of the algebraic curve f(z,y) = 0 at infinity is determined
by homogenizing equation (9.1): we substitute z = X/W, y = Y/W and clear
denominators by multiplying through by W™ to obtain an equation

n n—j
FW,X,Y) = W'f(X/W,Y/W) = > Y cW" 7k xIv*F =0 (9.6)
0 k=0

where each term has total degree n in the homogeneous coordinates W, X, Y
(see §7.4). Points at infinity of the curve (9.1) are then identified by triples of
the form (0, X,Y") that satisfy (9.6) for real or complex values X,Y.

9.2.1 Singular Points

In general, almost every point of the algebraic curve (9.1) is “regular” in the
sense that we can identify a unique curve tangent, and a generic line through
that point is considered to have a single intersection with the curve there.

However, irreducible curves of degree n > 3 may also have “exceptional” or
singular points, where the curve has more than one tangent, and a generic line
is regarded as intersecting the curve more than once. The singular points of
algebraic curves are not merely mathematical curiosities: the analysis of such
points allows us to address an important practical question, namely, whether
or not such curves admit rational parameterizations.

Now the existence of singular points on an algebraic curve is actually an
exceptional circumstance, requiring the satisfaction of three equations in two
variables. Consequently, an algebraic curve of the form (9.1) of degree n > 3
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with randomly-chosen coefficients c;;, has, in general, no singular points and
cannot be parameterized in terms of rational functions. On the other hand,
any rational curve that is specified by homogeneous—coordinate polynomials
W (t), X(¢), Y(t) can always be described by an implicit polynomial equation
of the form (9.1) by “elimination” of the parameter ¢ from the two equations

X(t Y (¢

X0 YD

w(t) w(t)
(see §9.2.10 below). Hence, the rational curves evidently form a proper subset
of all algebraic curves.

9.2.2 Intersections with a Straight Line

Our analysis of singular points is based on examining the intersection points
of a straight line with an algebraic curve. Suppose that (zg,y0) is a point on
the curve (9.1). We consider the parametric equations

x(t) = xo + At, y(t) = yo + pt (9.7)

of a line through that point, with orientation specified by the direction cosines
(A, ). Substituting (9.7) into the curve equation (9.1) and expanding in a
bivariate Taylor series about (z,yo) yields the univariate function

F(t) = f(zo+ M, yo + uit)
= [FON+ fOuTt + [FON +2 N+ fOp? )42 + -+ (9.8)

of ¢, where the superscripts on the partial derivatives of f(z,y) indicate that
they are evaluated at (zo,yo). Note that (9.8) is a polynomial of degree m
in t, since all the partial derivatives of f(z,y) of order > n vanish identically.
Furthermore, it has no constant term since the point (g, yo) lies on the curve
by supposition, and therefore f(x,yo) = 0. The roots of the polynomial (9.8)
identify the locations along the line (9.7) where it intersects the algebraic curve
(9.1). The Fundamental Theorem of Algebra indicates that F'(¢) has precisely
n real or complex roots (counted according to their multiplicities) and hence
we infer that a straight line intersects an irreducible degree—n algebraic curve
in n points (not necessarily all real, distinct, or affine).

9.2.3 Double Points of Algebraic Curves

Since it has no constant term, ¢ = 0 is evidently a root of the polynomial (9.8)
— corresponding to the fact that (xg,yo) lies on the curve (9.1). Ordinarily,
t = 01is a simple root of (9.8), but if the coefficient of the linear term vanishes,
it becomes a multiple root — indicating that the line (9.7) has more than one
intersection with the curve (9.1) at (xg, yo). This may occur under two distinct
circumstances:
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(a)If f;,EO), .(0) are not both zero, there is a unique line through (zg,yo) that
causes the coefficient of the linear term in (9.8) to vanish, namely, the line
whose orientation is specified by the particular ratio

A= 010

In this case (zg, yo) is a regular point of the curve, and the above direction
identifies the unique tangent to the curve there. Thus, the tangent line at
any curve point is considered to have, in general, a two—fold intersection
with the curve at that point.b

(b) If, on the other hand, f;ﬁo) = féo) = 0, the coefficient of the linear term in
(9.8) vanishes for any orientation A : p of the line through (z,yo) — i.e.,
every line through that point has (at least) a two—fold intersection with
the curve there. If the second derivatives of f are not all zero at (xg,yo)
we call it a double point of the curve. Certain lines through a double point
(z0,y0) actually have more than two intersections with the curve there —
their orientations are such as to make the coefficient of the quadratic term
in (9.8) vanish, i.e., (A, u) satisfy

FOX = 27+ 1 = 0. )

Since this is a homogeneous quadratic equation in A and pu, it possesses
two solutions for the ratio A : p. The lines that these solutions identify are
the two tangents to the curve at the double point.

A double point has one of three morphologies, according to the nature of its
two tangents: (i) a crunode, or real self-intersection, if the tangent directions
are real and distinct; (ii) a cusp if the tangent directions are coincident; and
(iii) an acnode, or isolated real point, if the tangent directions are complex
conjugates.” These types may be illustrated by the cubics

flz,y) = 2* + ka® + y* = 0. (9.10)

The origin (0, 0) is a double point, because f = f, = f, = 0 # foa, fyy there.
Equation (9.9) defining the tangents at this double point yields kA% + u? = 0,
and choosing k = —1,0,+1 gives a double point with distinct real tangents,
coincident tangents, and complex conjugate tangents, as shown in Fig.9.2.

For the case of two coincident tangents, curves of degree > 3 may exhibit
double point morphologies more involved than the cusp shown in Fig.9.2 —
we investigate some of them in §9.2.6 below (see Examples 9.2 and 9.3).

5 We assume that the point under consideration is not an inflection.

" If the coefficients of (9.1) are real, its complex locus consists of conjugate point
sets. An acnode, being a point common to conjugate portions of the curve, must
be real — though no other real curve points exist in its immediate vicinity.
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X=x%+y?=0 X +y2=0 C+x2+y?=0

Fig. 9.2. The cubics (9.10) illustrating three possible morphologies of a double point
— namely, a real self-intersection, a cusp, and an isolated real point (at the origin).

9.2.4 Higher—order Singular Points

We characterized (xo,yo) as a double point of the curve (9.1) by the property
that lines of any orientation through that point have a two—fold intersection
with the curve there — i.e., t = 0 is a double root of the polynomial (9.8) for
arbitrary (A, u). This idea may be easily extended to define triple, quadruple,
and higher—order singular points. Thus (zg, yo) is said to be a singular point
of multiplicity m (or an m—fold singular point) on the curve f(z,y) = 0 if all
partial derivatives of f of order < m — 1 vanish at (xg,yo) but at least one of
order m does not. This means that ¢ = 0 is an m—fold root of the polynomial
(9.8) for any (A, pt). The curve has m tangents (not necessarily real or distinct)
at an m—fold point (xg,yo), with orientations A : p given by the solutions of

" m 8mf(0) .

k=0

where again the partial derivatives are evaluated at (zg,yo). The expression
on the left is just the coefficient of the " term in equation (9.8).

We say that an m—fold singular point is ordinary if equation (9.11) has m
distinct (real or complex) solutions A : y, i.e., there are no multiple tangents.
An ordinary m-—fold point is considered to be the “equivalent” of %m(m -1
double points — an ordinary triple point, for example, may be considered as
arising from a coalescence of three double points (see Example 9.1). However,
a non-ordinary singular point requires a sophisticated analysis to determine
its “equivalent” number of double points — see §9.2.6 below.

9.2.5 Genus of an Algebraic Curve

There are limits on the number and nature of singular points of an irreducible
degree—n curve. For example, a conic (n = 2) cannot have any singular points:
if one existed, a line drawn through it and any other point of the curve would
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intersect the conic more than twice, which contradicts the conclusion of §9.2.2
that a straight line intersects a degree—n curve in exactly n points.

A cubic may have at most one double point — if any other singular point
existed, a line drawn through it and the double point would have more than
three intersections with the cubic. Similar arguments show that a quartic may
have one triple point or up to three double points and, in general, a degree—n
curve may have no individual singular point of multiplicity > n — 1, nor any
combination of singular points equivalent to > %(n —1)(n — 2) double points.

The difference between the maximum possible number of double points for
degree—n algebraic curves, and the actual number on a given degree—n curve,
is known as the genus of that curve. Thus, if the curve (9.1) has r (ordinary)

singular points with multiplicities m1, ..., m, its genus g is given by
T
g = %(n—l)(n—?) — Z%mk(mk—l)- (9.12)
k=1

If a singular point of multiplicity m; is not ordinary, its contribution to the

sum in (9.12) that represents the “equivalent” number of double points may

not be simply %mk(mk —1). The singularity must be resolved by the methods

described in §9.2.6 to determine the appropriate contribution to this sum. The

genus of an algebraic curve is invariant under projective transformations.
The significance of the genus is expressed in the following theorem.

Theorem 9.1 An algebraic curve is rational if and only if it is of genus 0.

In other words, if the curve (9.6) has g = 0, polynomials W (¢), X (¢), Y (t) with
ged(W(t), X(t), Y (t)) = constant exist such that F(W(t), X(¢),Y (t)) = 0 and
vice—versa. As the parameter t varies over all real values, the rational functions
x(t) = X (t)/W(t), y(t) =Y (t)/W(t) describe the real locus of the curve.

A more general theorem states that, if a birational correspondence exists
between the points of two algebraic curves (i.e., the coordinates of points on
one curve can be expressed as rational functions of the coordinates of points
on the other, and vice—versa) then those curves must be of the same genus.®
The proofs of these results are subtle and beyond our present scope: they may
be found in standard texts on algebraic curves [101,374,406,456].

Example 9.1 The quartic algebraic curve defined by
flz,y) = a* + 22%9° + y* —2® + 327 = 0 (9.13)
has a triple point at the origin, since f = f, = fy = foz = foy = fyy =0
for (z,y) = (0,0). Hence this curve must be rational, and in fact it is readily
verified that the homogeneous coordinates
W(t) = (1+t)%, X(t)=1-3t2, Y(t)=1t— 33 (9.14)

8 The converse of this statement, however, is not always true.
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Fig. 9.3. A small perturbation to the rational quartic (9.13) with a triple point at
the origin (left) causes that point to split into three distinct double points (right).

define a rational parameterization of it.? In Fig. 9.3 we illustrate the effect of
perturbing!® this curve by subtracting i from X (t) — the triple point is seen
to split into three double points.

In the genus formula (9.12), it is understood that one must account for
the contributions of both real and complex singular points — the latter occur
in conjugate pairs if the curve coefficients are real — and also singular points
at infinity. The discussion of §9.2.1 was implicitly phrased in terms of affine
singular points, which are solutions to the system of equations

f(:v,y) = f"c(xay) = fy(x,y) =0.

Here f = 0 identifies a point of the curve, and f; = f, = 0 are the conditions
for it to be singular. The generalization to the projective plane is obtained by
substituting the parametric equations

of a projective line into the homogeneous equation (9.6), and then expanding
in a trivariate Taylor series about (Wy, X0, Yy). The resulting polynomial has
a multiple root at ¢t = 0 for arbitrary ratios A : p : v if the conditions

are satisfied. These conditions amount to three equations in two unknowns,
since only the ratios W : X : Y matter. The curve equation does not appear
explicitly above, but by Euler’s theorem

WFy + XFx + YFy = nF
9 This curve is the “three-leaved rose,” with polar—coordinate equation r = cos 36.
10 Note that we perturb the parametric, rather than implicit, equation. Perturbing
the latter destroys the singularity (i.e., the curve is no longer rational), but small
perturbations of the parametric form retain the equivalent of three double points.
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for a degree—n homogeneous function, a point satisfying Fyy = Fx = Fy =0
necessarily satisfies F' = 0 also — i.e., that point must lie on the curve.

In terms of the homogeneous curve equation, the multiplicity of a singular
point is m if every partial derivative of F(W, X,Y) with respect to the three
homogeneous coordinates of order < m — 1 vanishes, but at least one of order
m does not. We have a double point, for example, when Fyy = Fx = Fy =0
but at least one of Fyww, Fwx, Fxx, Fxy, Fyy, Fyw is non—zero. The two
tangent lines at that point may be identified by equating to zero the linear
factors of the homogeneous quadratic form

FWWw2+2FWXwX+FxxX2 +2nyXY+FyyY2+2FYWyW . (915)

The factors of an analogous degree—m homogeneous expression identify the
m tangent lines at an m—fold point.

The term genus, from the field of topology, actually refers to the structure
of the complex locus of an algebraic curve. This locus may be interpreted as a
two—dimensional surface in R*. To understand this, we express the Cartesian
coordinates in terms of real and imaginary parts: t = a+i0, y = v+1id. The
curve equation is then separable into real and imaginary parts

f(z,y) = pla, B,7,6) + iq(a,B,7,6) = 0,

where p and ¢ are real polynomials in their real arguments «, 3,~,d. In the
four—dimensional space with coordinates (a, 3,7,d), points of the complex
locus are identified by the fact that these polynomials vanish simultaneously.
This locus is thus of dimension 2 — and codimension 2 — in that space; it is
a (real) surface residing in a (real) four—-dimensional space.

Surfaces that can be “elastically deformed” into each other are considered
equivalent in topology.!! We distinguish among topologically distinct types
by assigning a non—negative integer, the genus, to each surface. Surfaces of
genus 0 and 1 are equivalent to a sphere and torus, respectively. Their distinct
topology is apparent from the fact that cutting along any closed curve on the
sphere always separates it into two pieces, but the torus remains in one piece
when we cut along certain closed curves on it (alternately, every closed curve
on the sphere can be continuously shrunk to a point, but this is not true of the
torus). A surface of genus g > 1 is equivalent to a “sphere with g handles.”
The quantity (9.12), expressed in terms of the degree and number and nature
of the singular points of a curve, is exactly this topological property'? of the
surface defined in the four—dimensional space («, 3,7, d) by the two equations

p(a7ﬁa776) = q(a,ﬁ,'}ﬂé) =0.

11 More precisely, two surfaces are considered topologically equivalent if there exists
a homeomorphism (a continuous one-to—one mapping) between their points.

12 This is by no means obvious, and even in the case of non-singular curves, a formal
proof is non—trivial [275,279]. The problem is further complicated by the fact that
we need to consider the topology of a projective, rather than an affine, space.
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9.2.6 Resolution of Singularities

A linear relation between two homogeneous coordinate systems (W, X,Y) and
(W', X', Y") defines a one-to—one mapping of the projective plane. Since such
maps preserve the degree and the number and nature of singular points on an
algebraic curve, they cannot help resolve the ambiguity concerning the number
of “equivalent” double points that a non—ordinary singular point contributes
to the sum in the genus expression (9.12). To resolve a non—ordinary singular
point, we need to invoke a non-linear map of the projective plane, known as
a standard quadratic transformation (or s.q.t. for brevity).

It is convenient to consider a system of homogeneous coordinates as being
specified by three (non—collinear) points A, B, C that form the vertices of a
“reference triangle” — for example, if we take

A=(1,0,0), B=(0,1,0), C=(0,0,1),

the sides BC', C A, AB of the reference triangle correspond, respectively, to the
three projective lines W =0, X =0, Y = 0. An s.q.t. defines an (almost) one—
to—one correspondence between pairs of points with coordinates (W, X,Y") and
(W, X', Y’) in two projective planes P and P’, according to the relations

W=XxY, X=YW, Y=WX". (9.16)

The one-to—one nature of this map breaks down, however, at the vertices and
along the sides of the two reference triangles ABC and A’B’C” in the planes
P and P’. From (9.16) it can be seen that the points A, B, C in P “blow up”
into the lines B'C’, C'A’, A’B’ in P’ and, conversely, the lines AB, BC, CA
in P “collapse” into the points C’, A’, B’ in P’. In other words, vertices of
the triangle of reference are mapped into the opposite sides, and vice—versa.
It is this property that makes the map (9.16) extremely useful for analyzing
the “latent” structure of non—ordinary singular points.

Suppose F(W, X,Y) = 0 has a non—ordinary singular point that we wish
to resolve. We begin by translating and orienting the curve such that this
point is at A, and neither AB nor C'A is tangent to the curve there. We then
apply an s.q.t. of the form (9.16) to obtain the transformed curve equation,
F'(W’', X", Y’) = 0. Nominally, the degree of the transformed curve is twice
that of the original curve, although it may exhibit powers of W', X', Y/ as
factors that do not concern us and must be discarded.

Since the point A maps to the line B’C’, points of the transformed curve
F'(W’', X", Y') = 0 that lie on B’C’ — other than B’ and C" — are said to
be “in the first neighborhood” of the singular point of F(W, X,Y) = 0 at A.
In general, the s.q.t. (9.16) maps an ordinary singular point at A into several
regular points on B’C’. If the singular point is non-ordinary, however, the
transformed curve may exhibit singularities on B’C” — which are said to be
“implicit” or “infinitely near” to the non—ordinary singular point at A — and
they must also be taken into account in the genus formula (9.12).
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Singularities in the first neighborhood that are themselves non—ordinary
will require a second, third, ... s.q.t. to reduce them to ordinary singular points
— such points are considered to be “in the second, third, ... neighborhood”
of the non—ordinary singular point at A. We say that the singular point has
been resolved when we encounter a neighborhhood containing only ordinary
singular points. A fundamental theorem of algebraic geometry guarantees that
such a resolution is always possible.

Theorem 9.2 (Noether'®) The non-ordinary singular points of irreducible
plane algebraic curves can be resolved by means of a finite sequence of standard
quadratic transformations.

For a proof of this theorem see, for example, Chap. 6 of [406].

Thus, to compute the genus of an arbitrary algebraic curve, we first resolve
its non—ordinary singular points, noting the multiplicity of the singular points
found in each neighborhood of those points. Then both the “explicit” singular
points (apparent in the original curve) and “implicit” singular points (in the
successive neighborhoods of non—ordinary singularities, that become apparent
only through quadratic transformations) will contribute amounts %mk (mg—1)
— according to their multiplicities mj — to the sum in (9.12).

Example 9.2 Consider the quartic curve defined by
flz,y) = a* + y* — 2(2® +y°) + day = 0. (9.17)

The origin is evidently a double point of this curve, since f = f, = f, = 0
and fyz = fyy = — fay = — 4 there. Furthermore, the tangents at this double
point both have the direction A : p = 1 : 1, so it is non—ordinary. We now
homogenize the curve equation to obtain

FW,X,Y) = X* + Y* — 2W?3(X?4+Y?) 4+ 4W2XY =0,

and, noting that the repeated tangent to the double point located at A does
not lie along the lines AB or C A, we invoke the s.q.t. (9.16). Omitting a factor
W'2 that does not concern us, this yields the transformed curve

F/(W/,X,,Y/) _ le(X/4+Y/4) _ 2X’2Y/2(X/2+Y/2) + 4X’3Y/3 =0

of degree 6. We now inspect the line B’'C’ (i.e., W’ = 0) for any “implicit”
singular points. (W', X’ Y") = (0,1,1) is the only point of the transformed
curve on this line other than B” and C’, and since Fyy,, = F%, = Fy,, = 0 but
not all of the second derivatives vanish there, it is a double point. Expression
(9.15) then factors to give two distinct tangent lines

W —-X"+Y"' =0 and W+X' -Y' =0

13 Max Noether (1844-1921) is often regarded as the “father of algebraic geometry.”



210 9 Algebraic Geometry

y

X
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Fig. 9.4. Examples of quartic curves with non—ordinary double points — a tacnode
on the left (see Example 9.2), and a ramphoid cusp on the right (see Example 9.3).

at this double point, which is thus a node, and the resolution is complete. The
double point of (9.17) at the origin is known as a tacnode — it arises when
two distinct branches of the curve are tangent to each other (see Fig.9.4).
Since the curve (9.17) has just one “explicit” double point, and one “implicit”
double point in its first neighborhood, it is of genus 1.

Example 9.3 Consider the irreducible quartic
flz,y) = a* + 2%9* — 82y — 4ay® + 16y% = 0. (9.18)

We have f = f; = fy = 0and fze = foy = 0 # fy, at the origin, so it is again
a non—ordinary double point, with the x—axis as its repeated tangent. Before
invoking the s.q.t. (9.16), we must rotate the curve so its tangent at the double
point does not lie along the coordinate axes. The substitution W — 2 W,
X —-X+Y,Y - X —Y in the homogeneous equation

FW,X,Y) = X* + X?Y? — SWX?Y — 4WXY? + 16W?Y? = 0

accomplishes this (we will omit the resulting equation, and subsequent details,
since they are rather cumbersome). After the s.q.t., we observe a double point
in the first neighborhood at (W', X’ Y’) = (0,1,1) on the line B'C’. This
also has a repeated tangent, although we find no further singular points in
the second neighborhood. Figure9.4 shows the double point of (9.18); it is
called a ramphoid cusp. Whereas the tacnode of Example 9.2 has a node in its
first neighborhood, the ramphoid cusp has an “ordinary” cusp (of the form
shown in Fig.9.2) there. Note that, unlike an ordinary cusp, both branches of
the curve lie on the same side of the tangent at a ramphoid cusp.'

As an example of a double point with an even more intricate structure, we
mention the offset to the parabola y = kx? (see §20.7) — a degree 6 rational
curve. In addition to one affine node and six affine cusps, of which at most

4 The name is supposed to suggest the shape of a bird’s beak.
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two are real, it can be shown [190] that (W, X,Y") = (0,0,1) is a non—ordinary
double point, with double points in its first and second neighborhoods. Thus,
the curve has the ten double points required to ensure its rationality.

9.2.7 Birational Transformations

The s.q.t. (9.16) expresses one homogeneous coordinate system (W, X,Y") for
the projective plane rationally in terms of another (W', X’ Y”). Inverting the
relations (9.16) we find that, conversely, the coordinates (W', X', Y") are given
in terms of (W, X,Y) by the rational expressions!®

W =XY, X' =YW, Y =WX. (9.19)

As noted in §9.2.6, there is a one-to—one correspondence of points (W, X,Y)
and (W', X', Y") except that certain points (lines) correspond to lines (points).
The s.q.t. is an example of a birational transformation of the projective plane.

In general, the defining characteristics of birational plane transformations
are: (i) the coordinates in each system are rational functions of those in the
other; and (ii) there exists a one—to—one correspondence of points, except that
finitely many points (loci) may correspond to loci (points). The “ordinary”
projective transformations discussed in §7.4.4 are, of course, birational: their
one—to—one nature and rational invertibility are immediate consequences of
their linearity. The birationality of a non—linear transformation, on the other
hand, is a rather special property. Birational transformations of the plane are
often called Cremona transformations in honor of the Italian mathematician,
Luigi Cremona (1830-1903), who first studied them in full generality.

Example 9.4 The earliest known (non-linear) birational transformation of
the plane corresponds to inversion in a circle C. If C has radius R and center
at the origin O, any affine point P # O and its image P’ under inversion in
C lie on the same radial line through O, and their distances r and r’ from O
satisfy rr’ = R2. It is easily verified that the coordinates (z,y) and (2',%’) of
P and P’ are related by the rational expressions

. R2x . R2y 4 B R2y/ B Rzy/
xixQ_‘_yZ’ yixQ_i_yQ an 1'71./2_|_y/2’ yix/2+y/2'

(9.20)
Hence, inversion in C' is one-to—one over the affine plane minus the origin.*®
Points inside C are mapped to points outside, and vice—versa, while points on
C are invariant. One may show that, under inversion in C, lines and circles

15 Equations (9.16) give XY : YW : WX = W?2X'Y' : WX?Y' : WX'Y? If
W', X', Y’ # 0, we can cancel the common factor W' X'Y" to obtain (9.19). The
validity of (9.19) when one or two of W', X', Y’ vanish can also be easily verified.

16 One might think that the origin is mapped to the line at infinity, but introducing
homogeneous coordinates for P and P’ gives W’ : X' : V' = X?4+Y?: X : Y, and
hence (W, X,Y) = (1,0,0) does not have a valid image in the projective plane.
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passing through O have lines as their images, while lines and circles that do
not pass through O have circles as their images.

Another fundamental theorem due to Max Noether states that any plane
Cremona transformation can be interpreted as the composition of a sequence
of “simple” — i.e., rational linear and quadratic — transformations. Moreover,
any algebraic transformation (one defined by algebraic functions) of the plane
must be a Cremona transformation if it is one-to—one.

The image C’ of an algebraic curve C under any Cremona transformation
will, in general, be an algebraic curve of higher order. Although the curve and
its image have different degrees n and n’, and their geometrical loci are quite
dissimilar, the birationality of the map guarantees that C and C’ are of the
same genus (see Fig. 9.5 for an elementary example).

L N

Fig. 9.5. The images of a line L and circle C under the s.q.t. (9.16) are, respectively,
the hyperbola H and quartic @ (the coordinate axes are not images of each other).

Finally we note that, while a Cremona transformation defines a birational
correspondence between the points of any curve and its image (since the map
is birational over the entire projective plane), one may also have a birational
correspondence between two curves that does not extend to the entire plane.

9.2.8 Pliicker Relations

Our investigation of plane algebraic curves thus far has been based on their
definition by an equation F(W, X,Y) = 0 in homogeneous point coordinates.
As observed in §7.4.3, an algebraic curve can also be described by an equation
G(K,L, M) = 0 in homogeneous line coordinates. Ratios W : X : Y satisfying
the former equation identify the curve points, while ratios K : L : M satisfying
the latter equation identify its tangent lines. The degree m of the line equation,
known as the class of the curve, differs in general from the degree n of its point
equation, which we refer to as the order of the curve.

We have seen that the order of a curve equals the number of points it has
in common with an arbitrary fixed line. Similarly, the class of a curve equals
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the number of its tangents that pass through an arbitrary fixed point.'” The
dual representation of an algebraic curve may also exhibit singular lines that
are analogs of the singular points discussed above. The singularity that is dual
to a double point is a double tangent, i.e., a line that is tangent to the curve at
two points. Ordinarily, a double point has two distinct tangents and is called
a node, and a double tangent touches the curve at two distinct points and is
called a bitangent. In the case of a double point with two coincident tangents
we have a cusp — the dual to this is a line that is tangent to the curve at two
coincident points, i.e., an inflectional tangent (see Fig.9.6).

node cusp

inflectional
tangent

bitangent

Fig. 9.6. Dual forms of the point and line singularities of algebraic curves.

Just as the order (n) and class (m) of an algebraic curve may be different,
the number of nodes (0) and bitangents (7), and of cusps (k) and inflectional
tangents (¢), are also generally unequal. However, these six numbers are not
unrelated — in fact, they must satisfy the three independent constraints

m=n(n—1)—-26+3k, n=m(m—-1)—27+3¢, 3(m—n)=1—k

called the Pliicker equations,'8 so that only three of them may be freely chosen.
The first two relations are dual to each other, i.e., we obtain one from the other
by replacing n, d, k by m, 7, ¢ and vice—versa, while the third is self-dual.

17 Appropriate conventions apply here for counting both real and complex points
and lines, according to their multiplicities, over the complex projective plane.

18 The German mathematician Julius Pliicker (1801-1868) helped to unify algebraic
and projective geometry — the Pliicker relations first appeared in his System der
analytischen Geometrie (1834) and Theorie der algebraischen Kurven (1839).
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9.2.9 Bézout’s Theorem

Two circles intersect in zero, one, or two real points, but two ellipses intersect
in zero, one, two, three, or four real points. One can easily sketch examples
that illustrate these possibilities (we do not distinguish between “proper” and
“tangential” intersections). Because circles and ellipses are both second-order
algebraic curves, the former being special instances of the latter, this apparent
qualitative difference in behavior is perhaps unexpected.

Bézout’s theorem resolves such discrepancies in the intersection behavior of
algebraic curves of given degree, by considering intersections over the complex
projective plane — rather than just the real affine plane — and by assigning
an intersection multiplicity to each distinct intersection point.

Theorem 9.3 (Bézout'®) Two irreducible plane algebraic curves, of degree ny
and na, have exactly ning intersection points in the complex projective plane
if each distinct point is counted according to its intersection multiplicity.

This is basically just a generalization of the Fundamental Theorem of Algebra
(see Chap. 3) for univariate polynomials to the case of bivariate polynomials.
The theorem is vacuous, however, until we have a precise meaning for the idea
of “intersection multiplicity.” As we shall presently see, this is a much more
subtle issue than the root multiplicity of univariate polynomials.

Returning to the disparate intersection behavior of circles and ellipses, we
may recall from §7.4.2 that the “circular points at infinity” with homogeneous
coordinates (W, X,Y) = (0,1, +i) lie on all circles. Thus, any two circles may
be considered to intersect at these complex points at infinity and hence — by
Bézout’s theorem — may exhibit at most two real affine intersections.

The simplest intersection of two algebraic curves occurs when the common
point is regular on each curve, and the curves have distinct tangents there —
the intersection multiplicity is then just 1. If the point is regular on each curve,
but the curves have coincident tangents there, the intersection multiplicity is
(at least) 2. A common point that is singular on either (or both) curves has a
correspondingly higher intersection multiplicity: if the point is of multiplicity
mq and me on the two curves, the intersection multiplicity is at least mimo
— it is exactly mymeq if all my tangents of the first curve at that point are
distinct from all mo tangents of the second; otherwise it is higher.

Algebraic methods provide a rigorous means of determining intersection
multiplicities in the most general case. Suppose

F(W,X,Y)=0 and Fy(W,X,Y)=0 (9.21)

are the homogeneous equations of two curves, of degree n; and ns, and let
(W, X, Yy) for k= 1,...r be their distinct intersections with corresponding

19 tienne Bézout (1730-1783) gave one of the first (not entirely rigorous) proofs of
this theorem in 1779, but the result had been claimed in 1720 by Colin Maclaurin
(1698-1746) in Geometria organica siwe descriptio linearum curvarum universalis.
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multiplicities my. Bézout’s theorem states that mi+- - -4+m,. = ninsy. Since the
ratios Wy, : X}, : Y simultaneously satisfy equations (9.21), we may eliminate
y = Y/W between them, i.e., we may take their resultant with respect to y,
and thus obtain a univariate polynomial in z = X /W whose (real or complex)
roots identify the x—coordinates of the intersection points. This polynomial
is, in general, of degree?® nin, in z. But the intersection multiplicities of the
curves are not necessarily just the multiplicities of its roots, since there may
be intersections with equal z—coordinates but different y—coordinates.

We circumvent this problem as follows. Distinct points with coordinates
(Wa, X4, Y,) and (W, X5, Ys) define the projective line

KW + LX + MY =0, (9.22)

where K : L : M = XY, — XpY, : YW, — Y, W, : W, X, — W X, and this
line may also be represented by the parametric expressions

W(t) = (1— t)Wa+ Wy, X(t) = (1— )X +tXy, Y(t) = (1 — )Y, + tYs.

Suppose the values K, L, M are such that an intersection point of the curves
(9.21) lies on the line (9.22), i.e., the polynomials defined by

Pi(t) = Fi(W(t), X(£),Y(t)) and Py(t) = Fa(W(t), X (1), Y ()

have a common root t. A sufficient and necessary condition for this is that the
resultant of the above polynomials with respect to ¢ vanishes. This resultant
is evidently a polynomial of degree niny in K, L, M, and to ensure that it
vanishes if and only if one of the intersection points (W, X, %) lies on the
line (9.22), it must have a factorization of the form

Resultant, (Py(t), P(t)) = C [ (KWi + LXy + MY;)™ (9.23)
k=1

where C' is a non—zero constant, my > 1, and m; + -+ + m,. = ning. The
multiplicities of the linear terms in the above factorization are precisely the
intersection multiplicities mj that we seek, and the latter condition on their
sum yields Bézout’s theorem.

Example 9.5 Consider the intersection of the circle 22 + y?> —z = 0 and
the quartic (9.13) of Example 9.1. To form the polynomials P (¢) and Ps(t),
we substitute the parametric line representation W (t), X(¢), Y (¢) into the
homogeneous curve equations

(W, X,)Y) = X? +Y? - WX =0,
FB(W,X,)Y) = X* + 2X?Y?2 4+ Y* - WX? + 3WXY? = 0.

29 If one or more consecutive highest—order coefficients of this polynomial vanish,
the curves (9.21) intersect at the point at infinity on the z—axis.
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Fig. 9.7. A quartic and a circle with 4—fold and 2—fold real affine intersection points
— the remaining two intersections coincide with the two circular points at infinity.

Upon writing K = X, Y, — X3 Y, L=Y, W, =Y, W,, M =W, X, — W, X, we
then find that the resultant with respect to ¢t has the factorization

Resultant; (P (t), Po(t)) = 16 K*(K 4+ L)*(L +iM)(L —iM).

Comparing with (9.23), we identify the following distinct intersection points
of the two curves, and their respective multiplicities:

(W17X13Y1) = (17070) my = 4-3 (W33X3a}/3) = (Oa 17+1) msg = 17
(W27X2ayé) = (17170) mo = 27 (W47X45Y4) = (07 1a _1) my = 1.

Note that, in accordance with Bézout’s theorem, we have mi+ms+ms+my =
2 x 4. Thus (z,y) = (0,0) is a four—fold intersection — it is a triple point on
the quartic and a regular point on the circle, but the intersection multiplicity
exceeds 3 since the circle is tangent to one branch of the quartic at that point;
see Fig.9.7. The point (z,y) = (1,0) is a double intersection: it is regular on
both curves, but they share a common tangent there. The circular points at
infinity account for the two remaining (simple) intersections.

9.2.10 Implicitization and Parameterization

The comparative merits of parametric and implicit representations of plane
curves were discussed in §9.1. For the computation of intersections and other
applications, it is useful to have a means of transforming (if possible) between
these representations. We now turn our attention to this problem.

Implicitization of Rational Curves

As noted in the introduction to this chapter, the rational curves form a proper
subset of all algebraic curves. A rational curve specified by three homogeneous
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coordinate polynomials W (t), X (t), Y (¢) of degree n can always be alternately
described by an implicit polynomial equation f(x,y) = 0, also of degree n. To
obtain that equation, we form the polynomials

P(z,y,t) = W)z — X(t) and Q(z,y,t) = W(t)y — Y(?)

in terms of free Cartesian coordinates x, y and the curve parameter t. Now the
point (z,y) lies on the curve if and only if there exists a value of ¢ that causes
the equations P(z,y,t) = Q(x,y,t) = 0 to be satisfied simultaneously, i.e., if
and only if these polynomials have a common root ¢. A sufficient and necessary
condition for such a root to exist is that the resultant of the polynomials with
respect to t (see §3.4) should vanish. Thus, we have

f(z,y) = Resultant,(P(z,y,t), Q(z,y,t)) = 0.

The resultant may be expressed as a Sylvester determinant (see §3.4), whose
entries are the coefficients of P and @, regarded as polynomials in ¢. Since each
of these coefficients is evidently linear in = or y, expansion of the determinant
gives a polynomial expression f(z,y) that vanishes if and only if (z,y) is a
point on the curve specified parametrically by W (t), X (t), Y (¢). Therefore,
f(x,y) =0 is the desired implicit equation of that curve.

Although the Sylvester determinant is of dimension 2n x 2n with elements
linear in = and y, its special structure yields an implicit equation f(z,y) = 0 of
degree n upon expansion. A rational curve thus has the same degree whether
we specify it by parametric?! or implicit equations. The implicitization scheme
described above obviously applies also to planar curves specified by polynomial
parameterizations, which correspond to the case W (t) = 1.

There are more efficient and elegant approaches to curve implicitization
than expansion of the Sylvester determinant, that also help to reveal when the
implicit equation is of lower degree than the nominal value n, but a detailed
discussion of them would take us too far astray — the interested reader may
consult [212,400,401,403] for an authoritative treatment of these issues.

Parameterization of Rational Curves

An algebraic curve, as specified by an implicit equation f(x,y) = 0, admits a
parameterization in terms of rational functions if and only if it is genus zero.
To construct the rational parameterization in such a case, we seek a means to
uniquely associate each point of the curve with the values of a real variable ¢,
such that the point coordinates depend rationally on t.

Suppose that f(z,y) = 0 is of degree n. We introduce a one—parameter
family (or pencil) of curves g(x,y,t) = 0, of degree m in (x,y) and linear in
the family parameter ¢, constructed in such a manner that mn — 1 of the mn

21 We assume a proper parameterization, with a one—to—one correspondence between
parameter values and curve points except, possibly, at finitely many points.
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intersections with f(x,y) = 0 occur at known fixed points. Then, as t varies,
the remaining unaccounted—for intersection point traces out the curve — it
corresponds to a linear factor of (9.23) in which Wy, X, Y are degree—n
polynomials in ¢ (all other factors, corresponding to fixed intersections, have
known numerical values for Wy, Xy, Yi). The polynomials W (¢), X(t), Y (¢)
thus identified define a rational parameterization of f(x,y) = 0.

To parameterize a conic f(x,y) = 0, we first choose coordinates in which it
passes through the origin. Each member of the pencil of lines y = tx through
the origin then has one other intersection point with the conic, and solving for
its (non—zero) coordinates x and y in terms of ¢t among the equations y = tx
and f(z,y) = 0 yields a rational parameterization of the conic.

A cubic must have a double point in order to be rational. It is convenient
to adopt coordinates with the double point at the origin (which may require a
projective transformation). For our auxiliary family of curves, we may again
take the pencil of lines y = tx through the origin. Each line has a two—fold
intersection with the cubic at the origin, and the residual intersection point
traces the curve as we vary the slope t. Solving for (non—zero values) z, y in
terms of ¢ among the equations f(z,y) = 0 and y = tz for the singular cubic
(9.10), for example, we obtain the parameterization

z(t) = —k —t2,  y(t) = — kt — 3

of the curves in Fig. 9.2 (note that in the case k = +1, the “acnode” or isolated
real point at the origin corresponds to the parameter values t = =+i).

In general, any irreducible degree—n algebraic curve f(x,y) = 0 that has
a singular point of maximum multiplicity, m = n — 1, is rational — it can be
parameterized by placing the m—fold point at the origin, and introducing the
auxiliary pencil of lines y = tx. Such curves are called monoids.

A quartic must have a triple point, or three double points, to be rational.
In the former case, we place the triple point at the origin: Bézout’s theorem
then indicates that each member of the pencil of lines y = tx through the
origin has one residual intersection with the quartic, whose coordinates can
be expressed rationally in terms of ¢. The rational parameterization (9.14) of
the quartic (9.13), for example, is obtained in this manner.

If the quartic has three double points, however, we cannot use a pencil of
lines to construct the parameterization, since in this case we cannot identify a
variable line that has three fixed intersections with the quartic. We therefore
appeal to a pencil of conics drawn through the three double points and one
additional fixed point of the quartic — this leaves one degree of freedom (since
conics have five). The prescribed points account for seven of the total of eight
intersections of the quartic and the conics — the remaining intersection point
traces the quartic as we vary the pencil parameter ¢, and its coordinates can
be expressed as rational functions of that variable.

The above parameterization procedures can, in principle, be generalized
to accommodate rational curves of arbitrary degree — but they are evidently
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rather involved for higher—order curves. Further details on the parametrization
of rational curves may be found in [5-8].

Elliptic Curves

The “simplest” algebraic curves beyond rational curves are those of genus 1,
known as elliptic curves since they can be parameterized using elliptic, rather
than rational, functions. Elliptic functions?? [299] are generalizations of the
trigonometric functions: they have two linearly—independent complex periods
rather than one real period: see [136] for a comprehensive discussion. Examples
of elliptic curves are the non-singular plane cubics (see [353] for details on their
parameterization by elliptic functions), and the non-singular intersections of
quadric surfaces, i.e., quartic algebraic space curves; see §9.4. As an alternative
to elliptic functions, genus 1 curves can also be parameterized by rational
functions of a variable ¢ and the square root of a polynomial in .

9.3 Algebraic Surfaces

An algebraic surface of degree n is the locus of points with three-dimensional
Cartesian coordinates (z,y, z) that satisfy a polynomial equation of the form

n —in—i—j
9(@,y,2) = Z cijrr'y’2F =0, (9.24)
j k=0

3
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specified by

(n;3) = ln+1)n+2)(n+3)

coefficients. As in §9.2, the number of degrees of freedom is one fewer than the
number of coefficients, and the surface is considered reducible if g(x,y, z) can
be factored into lower—order components with real or complex coefficients.
The algebraic surface (9.24) has the property that it is cut by any plane in
a (possibly reducible) plane algebraic curve of degree n. A shape—preserving
transformation that maps an arbitrary section plane ax + by + cz +d = 0 into
the (x, y)-plane can be applied to equation (9.24) — the equation f(z,y) =0
of the section as a degree—n plane algebraic curve is then obtained by merely
substituting z = 0 into the transformed surface. Of course, these ideas may
be generalized to three—dimensional projective space — setting W = 0 in the
homogeneous equation G(W,X,Y,Z) = W"g(X/W,Y/W,Z/W) = 0 of the
surface, for example, defines its intersection with the plane at infinity.

22 S0 called because these functions arise in computing the cumulative arc length of
an ellipse — note, however, that the ellipse is a rational (not an elliptic) curve!
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9.3.1 Singular Points and Curves

As with algebraic curves, algebraic surfaces may have singular points. We can
identify them, and analyze their properties, by methods similar to those used
in §9.2. Consider the line z(t) = xo+ At, y(t) = yo + pt, z(t) = zp + vt passing
through a point (¢, yo, 20) of the surface (9.24), with orientation specified by
direction cosines (\, i, v). Proceeding as in §9.2, we find that the intersections
of this line with the surface (9.24) are identified by the roots of the polynomial

G(t) = glao+ M, yo + pt, z0 +vt) = [gON+ 9P+ g O]t

+ (9N + 298 M+ g5 17 + 29D + g Qv + 290N 7+ -

of degree n in t. Hence, a straight line intersects a degree—n algebraic surface
in n points (counted according to multiplicity over complex projective space).

Clearly t = 0 is a multiple root of G(t) — i.e., the point (xq, yo, 20) counts
as more than one intersection of the line with the surface — when

9PN+ 9P+ g0 = 0.

Now if gg(co), gg(,O), ggo) are not all zero, this amounts to a linear constraint on

the direction cosines, and since only their ratios A : p : v are significant, there
is a singly—infinite family of lines through (xq,yo, 20) satisfying it. These lines
are all tangent to the surface (9.24) at (zo, yo, 20): they lie in the tangent plane
at that point, defined by the equation

9t (x — xo) + g:L(/O) (y—v0) + 9V (z—2) = 0.

When gg(go) = gl(,o) = ggo) = 0, however, t = 0 is a multiple root of G(t) for
lines of any orientation (\, i, v) through (zo, yo, z0). This condition identifies
a singular point of the algebraic surface — in particular, a double point if the
second partial derivatives of g are not all zero at (o, yo, 20). Any line through
a double point has (at least) a two—fold intersection with the surface at that
point. Further, lines whose direction cosines satisfy the quadratic equation

GON 42901+ g0 + 2¢O + g0v* +2400x =0 (9.25)

have a three—fold intersection — such lines are tangent to the surface at the
double point. The singly—infinite family of lines that satisfy equation (9.25)
constitute the (quadric) tangent cone to the surface at the double point.

Singular points of higher multiplicity are defined by generalizing the above
ideas: at an m—fold point, all partial derivatives of order < m — 1 vanish, but
at least one of order m does not. The family of tangent lines to the surface at
such a point, whose direction cosines are solutions to the equation

m k

m\ (k of© m—k, k—j j
2 (k)()WA wer =0,
=0j=0

k=0 j=
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make up the m—th order tangent cone at that singular point.

Now the singularities of an algebraic surface may be isolated points, or they
may constitute a locus — i.e., a singular curve — on the surface. For example,
a locus of double points along which the quadratic form (9.25) factors into two
linear terms — i.e., the quadric tangent cone degenerates into two planes —
corresponds to a self-intersection or a cuspidal ridge of the algebraic surface,
according to whether those planes are distinct or coincident.

Whereas a plane algebraic curve of degree n may exhibit singular points
of multiplicity up to n — 1 only, certain special algebraic surfaces of degree n
may have an n—fold singular point. Such a surface is known as a cone, and its
n—fold point is called the vertex of the cone: a line passing through the vertex
must either lie entirely on the cone, or have no other intersections with it (in
order to comply with Bézout’s theorem). This agrees with our use of the term
“tangent cone” to describe the set of tangent lines to a surface at each point,
whether regular or singular (planes are the simplest type of cones).

A homogeneous degree—n equation g(z,y, z) = 0 in the affine coordinates
defines a cone with vertex at the origin, since if the point (x.,y«, z«) satisfies
this equation, each point (kz., ky., kz.) on the line joining it to the origin also
satisfies the equation. Conversely, if f(z,y) = 0 is any degree—n plane curve,
which we imagine to be situated in the plane z = 1, the cone defined by the
family of lines that pass through the origin and each point of this curve has
the homogeneous equation g(z,y,z) = 2" f(x/z,y/z) = 0.

9.3.2 Rationality of Algebraic Surfaces

An algebraic surface defined by the homogeneous equation G(W, XY, Z) =0
is rational if there exist polynomials W (u,v), X (u,v), Y (u,v), Z(u,v) in two
parameters, v and v, such that

G(W(u’ IU)’ X(u’ 7‘})’ Y(u’ U)? Z(u’ IU)) = 0 :
Clearly, the functions

 X(o)
W(u,v)’

Y (u,v)
W(u,v)’

y(u,v) = z(u,v) =

x(u,v)
then define a rational parameterization of the surface.

The formulation of sufficient—and—necessary conditions for the rationality
of algebraic surfaces is a much deeper problem than that for plane curves (see
§9.2.5). Two kinds of genus are defined for a surface, an “arithmetic” genus and
a “geometric” genus, and both must vanish for a rational surface. However,
their vanishing is only a necessary condition for the rationality of a surface.
Castelnuovo’s theorem [407] gives a sufficient—and—necessary condition, but it
requires rather sophisticated concepts that lie beyond our scope.

Nevertheless, algebraic surfaces of degree 1 (planes) and 2 — the quadrics,
encompassing the “natural” shapes: spheres and right—circular cylinders and
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cones, as well as ellipsoids, paraboloids, and hyperboloids [139] — are rational.
To parameterize a (non—singular) quadric, we choose an origin at any point
(0, Y0, 20) on it, and consider a two—parameter family of lines passing through
this point that assume all possible directions — for example, we could write

T =29+ AT, Y=y + ur, 2=20+vT (9.26)

where each set of ratios A : p : v identifies a distinct line, and 7 specifies
position on it. Setting® u = A\/v and v = p/v, for example, the coordinates
of the intersection point of the line and quadric other than (zg,yo,20) can
then be expressed by rational functions x(u,v), y(u,v), z(u,v) that comprise
a parameterization of the surface. In fact, this method applies to any monoid
(i.e., any degree—n surface with a singular point of multiplicity n — 1).

Furthermore, all cubic surfaces with singular points of multiplicity < 2 are
rational [4,407,423]. In the case of a monoidal cubic surface, we position the
double point at the origin and proceed as described above, while for the non—
singular cubic surfaces a somewhat more involved procedure is required [6].
A cubic surface with a triple point (a cubic cone) may or may not be rational.
Placing its vertex at the origin (this may require a projective transformation)
gives its homogeneous equation g(z,y, z) = 0. Dividing this by 23 and setting
x/z — x and y/z — y defines the cone “generating curve” f(z,y) =0 in the
plane z = 1; the cubic cone admits a rational parameterization if this plane
cubic is a rational curve. A remarkable property of the general cubic surface
is that it contains 27 (real or complex conjugate) straight lines [233] — their
identification can be valuable [404] in formulating a parameterization.

The study of higher—order surfaces has not been as thorough as that of the
quadrics and the cubics. One exception is the family of quartics known [260]
as Steiner surfaces,>* that exhibit three double lines meeting in a triple point.
These monoidal surfaces have attracted some attention [51,97,123,399] in
computer—aided design, since they have quadratic rational parameterizations.
In fact, the general rational quadratic triangular Bézier surface (see §13.9) is
a portion of a Steiner surface; it encompasses the quadrics and certain cubics
as special instances. Another attractive feature of the Steiner surfaces is that
their plane sections are rational curves: every plane passes through the triple
point, or has a double point where it meets the three double lines — possibly
at infinity. In some cases, the section curve degenerates from a plane quartic
to a composite of lower—order curves whose degrees sum to four.

9.4 Algebraic Space Curves

The intersection of two irreducible algebraic surfaces, of degree m and n, is
in general an algebraic space curve of degree mn. Such a curve intersects any

23 Note that this choice does not necessarily yield the “best” parameterization.
24 Named after the German mathematician Jacob Steiner (1796-1863).
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plane in mn points (not necessarily real, distinct, or affine). This observation
is an immediate consequence of Bézout’s theorem, and the fact that the plane
cuts the surfaces in curves of degree m and n — the common points of these
planar curves are evidently points where the space curve meets the plane.

Of course, if the surfaces are reducible, their intersection is a “composite”
of lower—degree space curves — corresponding to pairwise intersections of the
component surfaces — whose degrees sum to mn if counted with multiplicity
over three—dimensional complex projective space. A fundamental difficulty in
the theory of algebraic space curves is that the converse of this statement does
not hold: even if the two given surfaces are irreducible, their intersection may
nevertheless be a composite of several lower—order space curves whose degrees
sum to mn, rather than a single space curve of degree mn.

9.4.1 Composite Surface Intersections

The problem of composite intersections can be illustrated by a simple example.
The simplest non—planar algebraic curves are the cubics. Unlike plane cubics,
every space cubic is a rational curve,?® and may be regarded as a projective
image of the “canonical” cubic defined by

Wit)y=1, Xt)=t, Y@t)=t*, Z@1t) =t>. (9.27)

However, a space cubic cannot be the complete intersection of two algebraic
surfaces. If we postulate that two surfaces g(z,y,z) = 0 and h(z,y,z) =0, of
degree m and n, have a space cubic as their entire intersection, then mn = 3,
and hence (m,n) = (3,1) or (1,3) — i.e., one of the surfaces must be a plane,
and hence the intersection must be a planar curve rather than a space curve.

The simplest specification for a space cubic C is the partial intersection of
two quadric surfaces, qo(z,y,2) = q1(z,y,z) = 0, that possess a straight line
L as their “residual” intersection component. To uniquely specify the cubic as
the zero set of a system of polynomial equations, we must introduce a third
quadric g2(x,y, z) = 0 containing C but not L. Clearly, it cannot be a member
of the one—parameter linear family or pencil of quadrics

(1 - /\) qo(m,y,z) + /\ql(x’yaz) =0 (928)

defined by the given quadrics, since any two members of this family have both
C and £ (which constitute the base curve of the pencil) as their intersection.

Example 9.6 Consider the quadrics defined by the homogeneous equations
QUW, X, Y, Z)=XZ+WY =0, Q(W,X,Y,Z)=Y?-Z>4+WY =0.

Substituting into the above, we see that the rational cubic C described by

25 In general, any n—dimensional curve of degree < n is rational.
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Wty =1-t*, Xt)=t2—t, Yt)=t>, Z({t)=t (9.29)

lies on both quadrics, and is thus a component of their intersection. Clearly,
the line £ defined by Y = Z = 0 (i.e., the x—axis) is the residual component.
We now introduce a third quadric

Q:(W,X,Y,Z) = XY + WX +WZ =0, (9.30)

that is linearly independent of the other two — and is thus not a member of
the pencil they define — but also contains C. The space cubic may then be
identified with the zero—set of the system of equations

QW X.Y,Z) = QuW,X,Y,Z) = Qu(W,X,Y,Z) = 0. (9.31)

In the above example, we tacitly assumed that the third quadric does not
intersect the line £ except at common points of C and L. Otherwise, there
would be solutions to the system (9.31) that are not points of the space cubic.
This assumption is actually valid for any quadric that contains C and does not
belong to the pencil (9.28). It can be shown [423] that, if the intersection of
two quadrics comprises a cubic and a line, these loci must have two points in
common,?® and since the third quadric contains C by supposition, these two
common points of C and £ account for all intersections of that quadric with
the line £ — it cannot have other intersections, not on C, with L.

Finding sets of equations that define individual components of composite
intersections among higher—order surfaces is not so straightforward, however.
To isolate a component of the intersection of fy(z,y,z) = 0 and fi(x,y,z) =0,
for example, we might introduce a third surface f2(x,y,2z) = 0 that contains
the desired component. But it is difficult to guarantee a priori that this surface
does not intersect the residual intersection components, thereby introducing
solutions to the system of equations fo(z,y,2) = fi(z,y,2) = fa(x,y,2) =0
that are extraneous to the desired space curve. To eliminate such points, four
(or more) surface equations may be required. The question of the number of
equations that suffice to specify a component of the composite intersection of
two irreducible surfaces — and, especially, how to identify such equations —
is intrinsically quite difficult. To quote from an authoritative source [3]:

The history of this problem goes back at least to Kronecker [291],
who proved in 1882 that four equations are always enough to define a
space curve set—theoretically, and shortly after, Vahlen [453] claimed
to give an example for which three equations could not be sufficient.
This remained the generally accepted status of the problem until
1942, when Perron [356] explicitly exhibited three polynomials giving
Vahlen’s curve. Finally, Kneser [284] proved in 1960 that all irreducible
space curves can be set—theoretically defined by three equations.

26 Or, exceptionally, one common point where they meet with tangency.
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It should be noted that composite intersection curves are an exceptional
occurrence — two irreducible surfaces of degree m and n in “general position”
will intersect in a single space curve of degree mn. Nevertheless, the ability to
recognize and process composite intersections is extremely important, since in
practice surfaces are often positioned in the special relative orientations that
incur this problem. An examination of its simplest non—trivial context — the
intersections of quadrics — already suggests the rich variety of ways in which
lower—order curves may combine to form composite intersections.

In general, two quadrics intersect in a non—singular quartic curve, but the
following “degenerate” intersections may arise under special circumstances: a
singular quartic; a cubic and a line; two irreducible conics; an irreducible conic
and two lines; and four lines (Fig. 9.8). A more refined classification scheme for
the projectively distinct forms of the base curve of the quadric pencil (9.28)
differentiates between various incidence relations among the components: for
example, two conic or linear components may be distinct or coincident.

Such a classification is codified [60,423] by the Segre characteristic of the
pencil. We may write the equation of a quadric in matrix form as

fhl

QW,X,Y,Z) = [WXY 7| -0,

~ > 9
NS

3 0w
Q. 3 3

b
g
m

and if Qg and Q; are symmetric 4 X 4 matrices of the above form that define
a quadric pencil, the Segre characteristic is determined by examining the root
structure of the determinantal equation

[(1=X)Qo +AQu| =0,

and each of its minors, in the pencil parameter \. The four roots identify cones
of the pencil, and the generic case in which they are distinct corresponds to the
generic base curve, a non—singular quartic. As indicated in Table 9.1 there are,

) £

ellipse x ellipse singular quartic line? x ellipse

Fig. 9.8. Degenerate quadric intersections: two cylinders intersecting in a pair of
ellipses (left); a cylinder and a sphere intersecting in a nodal space quartic (center);
and a cylinder and a cone intersecting in an ellipse and a line counted twice (right).
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Table 9.1. Segre characteristics and base curves for quadric pencils.

characteristic base curve morphology

[1111] a non-singular quartic

[(11)11] two conics, intersecting in two distinct points
[(11)(11)] four lines, intersecting in four non—coplanar points
[(111)1] a single conic, counted twice

[211] a nodal quartic

[(21) 1] two conics, touching at one point

[2(11)] a conic and two lines, intersecting in three points
[(211)] two lines, each counted twice

[22] a cubic and a line, intersecting in two distinct points
[(22)] three lines, one counted twice

[31] a cuspidal quartic

[(31)] a conic and two lines, all intersecting in one point
[4] a cubic and a line, touching at one point

[{3}1] a conic and a line counted twice

in addition, thirteen projectively distinct degenerate forms of the base curve
(note that linear and conic intersection components may not be real or affine).
A detailed explanation may be found in [60,423] — see also [178].

9.4.2 Plane Projections of a Space Curve

A space curve of degree n defined by surfaces g(z,y,z) = 0 and h(z,y,z) =0
may be projected onto the (z,y) plane by eliminating z from these equations
— the projected curve then has the equation

f(xay) = Resu“antz(g(xay7z)vh(xay’z)) =0, (932)

which defines a planar algebraic curve, of the same degree as the space curve.
When we do not confine our attention to the (x, y) plane, this equation can also
be interpreted as defining a surface, namely, a cylinder with rulings parallel
to the z—axis that pass through each point of the space curve.

Similarly, we can project the space curve onto the (y, z) and (z, z) planes
(or, for that matter, planes of any orientation). We may regard a space curve
as being described by any two of its projections on the three coordinate planes.
This was, in fact, the perspective of the first systematic study of space curves,
the 1731 treatise Recherche sur les courbes a double courbure®” by the French
mathematician Alexis—Claude Clairaut (1713-1765).

Note, however, that the space curve is not the complete intersection of just
two of the cylindrical surfaces defined by such projections. Since each cylinder

2" Each projection has its own (planar) curvature function, hence the notion that a
three—dimensional locus has “double” curvature. Clairaut’s Recherche was written
at age 16; he was admitted to the Paris Academy of Sciences the following year.
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is of degree n, their pairwise intersections are space curves of total degree n?

— they contain other space curves, whose degrees sum to n? — n, besides the
original degree—n space curve. In order to uniquely describe the latter curve,
the equations of all three cylinders must be specified.

A plane projection of a space curve exhibits singularities corresponding to
each singular point of that space curve. In addition, the projection may incur
singular points on the plane curve corresponding to reqular points of the space
curve. For example, distinct points (x,y, z1) and (z,y, z2) of the space curve,
with 21 # 22, project to the same point of the curve (9.32) — and this point
will, in general, be a node or self-intersection of that curve. And a point where
the space curve tangent is parallel to the projection direction will typically
incur a cusp or tangent-reversal on the plane curve.?®

Thus one cannot, in general, expect an exact one—to—one correspondence
between the points of a space curve and its projection onto a plane — there
are usually finitely many points where the correspondence is many—to—one.
Exceptionally, the projection may be such that distinct continuous segments
of the space curve possess identical images on the plane curve. The former
and latter then exhibit a many—to—one correspondence at an infinite number
of points. We usually wish to avoid such “degenerate” projections.

9.4.3 Genus of an Algebraic Space Curve

Fundamentally, an irreducible algebraic space curve is a locus of points whose
Cartesian coordinates (z,y, z) satisfy two or more polynomial equations. As
remarked in §9.4.1, two equations may not suffice to isolate the desired curve,
and introducing further equations so as to specify only the desired curve, and
exclude all points extraneous to it, is not a simple matter.

For applications, parametric representations of space curves are preferable
to “implicit” ones, since they conveniently circumvent the uncertainty in the
number of equations required to uniquely specify a space curve. However,
we encounter the same problem that arose in the case of plane algebraic
curves: although we are interested in the full set of algebraic space curves —
arising, for example, as surface intersections — only a special subset of them
can be parameterized in terms of “simple” (polynomial or rational) functions.

We may associate a non—negative integer with any algebraic space curve,
the genus, and as in the planar case the curve is rational if and only if its genus
is zero. The genus of a space curve may be determined by projecting it onto a
plane, such that the points of the curve and its projection are in one-to—one
correspondence (except, possibly, at finitely many points). The genus of the
space curve is then equal to that of the plane algebraic curve, determined by
the methods of §9.2.5, obtained by such a projection.

Example 9.7 Consider the intersection of the cylinder and sphere given by

28 Consider, for example, the projection of the cubic (9.27) onto the (y, z) plane.
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g(x,y,2) = 22422 =22 =0, h(z,y,2) =22 +y>+22—4 =0. (9.33)

The space curve thus defined is an irreducible quartic, and we project it onto
the (z,y) plane to obtain

f(z,y) = Resultant,(g(x,y, 2), h(z,y,2)) = y* + 42® — 49> = 0. (9.34)
Homogenizing this equation, we write
FW,X,Y) = Y* + 4W32X? — 4W?Y? = 0,

and it is then clear that (W, X,Y) = (1,0,0) and (0,1,0) are double points,
since Fyy = Fx = Fy = 0 there. The double point at the origin is ordinary,
since it has distinct tangent lines X +Y = 0. But the double point at infinity
is not ordinary, since it has the line at infinity W = 0 as a repeated tangent.
Moving this non—ordinary double point to the origin and orienting the curve so
the tangent does not coincide with X = 0 or Y = 0, we may apply a quadratic
transformation to resolve the singularity. This reveals one (ordinary) double
point in the first neighborhood. Thus, the plane quartic (9.34) has three double
points altogether, and is of genus zero. Hence, the spatial quartic defined by
(9.33) is a rational curve: it is the “figure eight” curve seen in Fig.9.8.

A cubic space curve must be non—singular since, by postulating that it has
a double point, we arrive at the contradiction that a plane through that point
and two other curve points exhibits more than three intersection points with
the cubic. As noted in §9.4.1, the space cubics are all rational. To construct the
rational parameterization, consider the pencil of planes that have in common
a line drawn between two fixed points of the curve. Each of these planes has
just one other intersection with the cubic, and the coordinates of that point
can be expressed rationally in terms of the pencil parameter.

Similar arguments show that a quartic space curve may have at most one
double point; it is rational if the double point exists. To construct the rational
parameterization of a singular quartic, consider the pencil of planes that have
in common a line defined by the double point and any other curve point. Each
plane has just one other intersection with the quartic, and the coordinates of
that point are rational functions of the pencil parameter.

9.4.4 Singularities of Space Curves

We have investigated singular points of plane algebraic curves in §9.2.1, and
in §9.4.2 we described how to project a space curve onto a plane. However, the
projected curve may exhibit singular points that correspond to reqular points
of the space curve. Thus, in order to study the singularities of space curves,
we must employ their three-dimensional representations.

Consider a space curve S specified by the (non—composite) intersection of
irreducible surfaces, g(z,y,2) = 0 and h(z,y, z) = 0, of degree m and n. The
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degree d = mn of this curve is the number of its intersection points with an
arbitrary plane (counted with multiplicity over complex projective space).

Consider the plane P with unit normal n through a point py = (o, ¥0, 20)
of §. If e,, e, are unit vectors orthogonal to n and to each other, then

r(u,v) = po + €, u+e,v (9.35)

defines a parameterization of this plane P. It cuts the two surfaces in plane
algebraic curves of degree m and n, whose equations in the coordinates (u,v)
of P are obtained by substituting the components z(u,v), y(u,v), z(u,v) of
(9.35) into g(z,y,2) = 0 and h(z,y, z) = 0 and performing Taylor expansions:

p(uvv) :Vug(o) u + vvg(O) v

+3[Vig P u? + 2V, Vg uw + Vig0 0 + - = 0,
q(u,v) =V ,h D u + V,nO
+ 3 (V2RO u? + 29,V ww + V2RO 2] 4 - = 0,

(9.36)

where V,, V, are the dot products of e,, e, with the gradient operator V in
R? (the superscripts on the derivatives of g and h indicate evaluation at po).
Note that the plane section curves p(u,v) = 0 and ¢(u,v) = 0 are indeed of
degree m and n, since partial derivatives of g and h of order greater than m
and n, respectively, vanish identically. We also note that these equations both
lack constant terms: ¢(© = h(®) = 0, since pg lies on S by supposition, and
hence on both the surfaces g(z,y,z) = 0 and h(z,y, z) = 0.

Now common points of the curves p(u,v) =0, q(u,v) = 0 define locations
where the space curve S intersects the plane P. Moreover, the multiplicities
of such common points (see §9.2.9) of the plane section curves indicate how
many times each distinct intersection of S with P must be counted in order to
obtain the total of d = mn intersections. Clearly (u,v) = (0,0) is a common
point of p(u,v) = 0, ¢g(u,v) = 0. Suppose this point is non—singular on each
of these plane curves. If the curves have distinct tangents there, pg counts as
just one intersection of the space curve S with the plane P. However, if the
plane section curves have a common tangent at (0,0) — i.e., if the condition

pu(070) :pU(O,O) = Qu(ovo) : Qv<0’0)

is satisfied — po counts for (at least) two intersections of S with P. Using
(9.36) and the vector identity (axb)-(c xd)=(a-c)(b-d) —(a-d)(b-c),
together with the fact that e, X e, = n, this condition can be expressed as

n-(Vg® xvh®) = 0. (9.37)
Now if V¢(® and VA are non-vanishing and non-parallel, we define

Vg x VAO)

t= —
(Vg x VAO |

(9.38)
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to be the unit tangent?® to the space curve S at pg Thus, a (regular) point of
a space curve amounts to a multiple intersection with a plane when the curve
tangent t lies in that plane (i.e., is orthogonal to its normal n).

If Vg(© x VA =0, on the other hand, the condition (9.37) is satisfied
for planes of any orientation — i.e., the point pg corresponds to a multiple
intersection of the space curve with the plane for all choices of the normal n.
We then say that pg is a singular point of the space curve S. There are two
circumstances under which this may arise: (i) either Vg(®) or VA(®) is zero; or
(i) V¢(© and VA are non-zero and parallel. For case (i), po is a singular
point of the space curve because it is singular on either or both surfaces (the
components of Vg and Vh are (g5, gy, g.) and (hy, hy, h,) — recall from §9.3.1
that a singular point of a surface arises if all three partial derivatives are zero).
In case (ii), po is a regular point on both surfaces, and a singularity arises on
the space curve because the surfaces have a common tangent plane at pg.

We assumed above that (u,v) = (0,0) is a non-singular point on both the
curves (9.36). If Vg(© # 0 and VA© £ 0, we have p,(0,0) = p,(0,0) = 0
or ¢,(0,0) = ¢,(0,0) = 0 only if Vg(® or VA9, respectively, is parallel to n.
This implies that condition (9.37) is met — i.e., that pg is a regular point of
the space curve S, which has a multiple intersection with the plane P there
since its normal n is orthogonal to the curve tangent t. Thus, pg is a singular
point of the algebraic space curve defined by the intersection of two surfaces
if and only if: (a) it is singular on either (or both) of the surfaces; or (b) the
surfaces have a common tangent plane at pg. Circumstances (a) and (b) may
also arise simultaneously, and this greatly complicates determination of the
multiplicity of a singular point on a space curve. However, it is not less than
the product of the multiplicities of that point on the individual surfaces.

An r—fold point pg of a space curve of degree d has the property that any
plane through pg must be counted as having (at least) r of its d intersections
with the curve at that point. The curve tangent (9.38) is not uniquely defined
at such a point: in fact, there are r tangent directions — not necessarily real
or distinct — such that a plane whose normal is orthogonal to any of these
directions has more than r intersections with the space curve at that point.

29 Since the directions of Vg and VA(?) define the surface normals at the point
Po, the tangent of the space curve is orthogonal to both surface normals — it lies
along the intersection of the surface tangent planes at that point.
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Out of nothing I have created a strange new universe.

Jénos Bolyai (1802-1860)

I am convinced more and more that the necessary truth of our
geometry cannot be demonstrated, at least not by the human intellect
to the human understanding. Perhaps in another world, we may gain
insights into the nature of space which at present are unattainable to
us. Until then we must consider geometry as of equal rank not with
arithmetic, which is purely a priori, but with mechanics.

Karl Friedrich Gauss (1777-1855)

Computing the distance between points on a plane is a trivial matter once we
erect a Cartesian coordinate system on it — we simply use equation (7.1). Seen
from a three-dimensional vantage point, the plane may have any position or
orientation we like. If we choose to remain “in” the plane, we can regard it as
a two—dimensional space in its own right: the possibility of erecting Cartesian
coordinates upon it, and using equation (7.1) to measure distances between
its points, characterizes it as a “flat” or Fuclidean space.

Consider now a curved surface, upon which we choose two points, and we
again wish to measure the distance between them. By this we mean not the
length of the straight line “crossing through three—dimensional space” that
connects these two points, but rather the length of the (shortest) curve lying
in the surface between them. Here, again, we regard the curved surface as a
two—dimensional space in its own right, and make no reference to the three—
dimensional space in which it resides. No Cartesian coordinate system can
cover the surface, and hence no simple algebraic relation such as (7.1) suffices
for determining distances on it. Indeed, since it is a “curved” or non-FEuclidean
space, a sophisticated theory involving tensor algebra, non—linear differential
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equations, and the calculus of variations must be invoked. In this chapter we
review some basic concepts from the geometry of curved spaces, also known
as non—Euclidean or Riemannian geometry (see §8.5 for a detailed treatment
of the two—dimensional case, i.e., the intrinsic geometry of curved surfaces).

10.1 The Metric Tensor

In §7.3.2, we introduced the metric tensor as the basis for measuring angles
and distances in plane curvilinear coordinates, as defined by the two functions
(7.34) corresponding to the parameterization (7.35) of the plane. The methods
discussed in §7.3.2 carry over directly to measurement of angles and distances
on a curved surface, specified by the parametric representation

r(¢,n) = iz(C,n) + jyCn) + kz(¢,n), (10.1)

where i, j, k are unit vectors along Cartesian axes in three dimensions. Here we
regard the “surface parameters” ¢ and 7n as curvilinear coordinates spanning
the two—dimensional space defined by this surface.

The principal difference between the present context and §7.3.2 is that, in
the case of the planar or “flat” space (7.35) one may opt for either Cartesian
or curvilinear coordinates, but the “curved” space specified by (10.1) does not
admit Cartesian coordinates and thus a more—complicated machinery for angle
and distance measurements, based on the metric tensor, is mandatory. As in
§7.3.2, the metric tensor elements are defined in terms of the dot products of
the partial derivatives

rgzig—z—l—j%ﬁ-k% and rn:igj;—i-jan—kkg; (10.2)
of the surface (10.1), and the distance element ds between neighboring points
(¢,n) and (¢ +d¢,n+ dn) is again given by expression (7.38). The length of a
finite curve, defined by parametric surface—coordinate functions ¢(t),n(t) for
t € [to,t1], is determined by evaluating the integral (7.39).

We can also apply the angle-measurement procedure of §7.3.2 to curved
surfaces by determining the basis vectors (7.40) from the surface derivatives
(10.2) — which are assumed to be everywhere linearly independent. The basis
(ec,ey) at any point spans the surface tangent plane at that point, and a vector
is considered to be “in” the surface if it resides within this tangent plane.!
Before we proceed to determine angles between vectors on a curved surface,
however, it is prudent to examine some fundamental notions about how we
specify such vectors in terms of their components.

Jy

! Recall from §7.3.2 that, in curvilinear coordinates, vectors are attached to specific
points: there are no “free” vectors. We also caution against the temptation (which
is second nature in Cartesian coordinates) to consider the differences between the
coordinates of two points as components of a vector.
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10.2 Contravariant and Covariant Vectors

The Cartesian components (v, vy) of a prescribed vector v at any point of the
two-dimensional Euclidean space R? are determined by drawing perpendicular
axes OX and OY through that point as a local origin O. The component v, of
v may then be defined as the directed length obtained by either (i) drawing a
line from OY, parallel to OX, to the tip of v, or (ii) measuring along OX to
the point where a perpendicular drawn from the tip of v meets that axis. The
component v, is defined analogously. It is the orthogonality of the coordinate
axes that guarantees the equivalence of these “parallel” and “perpendicular”
projection methods for measuring vector components.

Consider now how these concepts generalize to the problem of measuring
the curvilinear—coordinate components of a vector v at a given point ({,n) of
a two—dimensional non—Fuclidean space. The basis vectors e: and e,, define
“oblique coordinates” in the tangent plane: in general, they are not orthogonal,
and hence the above prescriptions (i) and (ii) for the components of v are not
equivalent in this context (see Fig. 10.1). If v¢ and v are the components of
v obtained by parallel projection onto the basis vectors, as in prescription (i),
then by the familiar parallelogram rule for vector addition we may write

v =1 + e, (10.3)

in agreement with the usual expression for a vector in terms of a unit basis.
The scalar values v¢ and v" are called the contravariant components of v.

If, on the other hand, we follow prescription (ii) and denote by v, and v,
the lengths obtained by perpendicular projection of v onto e; and e,, these
covariant components may evidently be expressed as

v<:e<~V:vC+v"COS¢, vn:en'v:vccosqSJrv”, (10.4)

with cos ¢ = e - e,. Adding the products of the covariant components with
the basis vectors e; and e, does not, however, produce the vector v. We can

Fig. 10.1. Contravariant (left) and covariant (right) components of a vector.



234 10 Non—Euclidean Geometry

interpret v¢ and v, as the components of v in a different (non—unit) basis,?
which we write with superscripts and define by

es] 1 1 —cos¢| |e
P R R e | DR

Geometrically, e and e” are vectors of magnitude |sin ¢ |~! orthogonal to e,
and e¢, respectively. On account of the fact that

ec-et=e,; e’ =1 and ec-el=e, e =0, (10.6)

we say that the two bases e, e, and e, e are “dual” to each other. Using
(10.4) and (10.5), it is then easily verified that

v =vces + v,el. (10.7)

In the special case of orthogonal coordinates® — i.e., ¢ = 7/2 for all (¢,n) —
the distinction between contravariant and covariant components of a vector v
vanishes, as is evident from equations (10.4) and (10.5).

The use of both the contravariant and covariant representations of a vector
in curvilinear coordinates may seem, at first, rather contrived or redundant.
But it serves a very important purpose: it allows us to express the fact that
vectors are “geometrical” entities, characterized by attributes — lengths and
directions — independent of the chosen coordinates. Consider the problem of
computing the length |v| = /v -v of a vector. Depending on whether we
choose the contravariant form (10.3) or covariant form (10.7), we obtain

VT (0)% — 2ucv, cos 6
[sing] ‘

The appearance of the angle ¢ between e; and e,, in these expressions incurs
an explicit dependence of |v| on location in the chosen coordinate system.
We would like to express the length of v purely in terms of its components,
without explicit reference to its location. This can be accomplished by using
one contravariant and one covariant form in the dot product v - v. We write

\/(UC)2 + (v")2 + 2vSvM cos ¢ or (10.8)

V] = \/(Sec +vmey) - (vceS +vyen) = \fusue +vm, | (10.9)

where the final expression follows from the fact that e; - €” = e, - €> = 0 and
ec-e* =e, e’ =1, as may be verified from (10.5). From this expression we

2 We must divide the components ve and v, obtained by perpendicular projection
in Fig. 10.1 by |sin ¢ | if we wish to unitize ¢ and e”. It is simplest to omit this:
in curvilinear coordinates, the use of non—unit bases is common practice.

3 Cartesian coordinates are an obvious example, though curvilinear systems may
also be orthogonal, as in the case of polar coordinates discussed in §7.3.4. General
curved spaces, however, do not ordinarily admit orthogonal coordinate systems.
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see that, by carrying both contravariant and covariant forms, we can directly
compute the length of a vector without specifying its location.

Using relations (10.4) and (10.5), it can be seen that (10.9) is equivalent to
the earlier formulations (10.8), expressed solely in terms of the contravariant
and covariant components. We can also generalize this approach to define the
dot product of any two curvilinear—coordinate vectors, u = uCeC + u'e, and
v = e¢ -+wvye”, when one is given in contravariant and the other in covariant
form (it does not matter which is which). Thus, we write

u-v = utve + ul,,

and the angle 6 between u and v may be determined from u-v = |u||v| cos 6.

10.3 Methods of Tensor Algebra

Contravariant and covariant vectors are first-order tensors. They are defined,
in a given curvilinear coordinate system, by specifying certain scalar functions
— their “components” — of the coordinates. In a general n—dimensional space,
a first—order tensor is described by n components — one associated with each
of the coordinate directions. We may also define higher—order tensors. They
are likewise specified in terms of sets of scalar components, associated with
combinations of the coordinate directions. In n-dimensional space, a kt"—order
tensor has n* components, one for each ordered set of k coordinate directions.

A simple way to form higher—order tensors is to take the “tensor product”
of two or more vectors. Multiplying each of the n components of one vector
with each of those of another vector, for example, yields n? functions that can
be regarded as the components of a second—order tensor. Not all higher—order
tensors are of this “composite” form, however. An example is the 2nd—order
stress tensor in R?, whose components can be arranged in a matrix:

Oxx Oxy Oxz
Oye Oyy Oyz | - (10.10)
Ozx Ozy Ozz

Each component represents a force per unit area: the first subscript gives the
direction of the normal to the area, while the second indicates the direction of
the force acting on it.# Upon multiplying this tensor on the left and right by
appropriate unit vectors, one may determine the force—per—unit—area in any
direction acting on a plane of any orientation. In some problems, it is useful to
express the stress tensor in cylindrical polar coordinates (p, ¢, z) or spherical
polar coordinates (7, ¢,0). The tensor components in these systems may be
obtained through systematic transformation laws that we describe below.
Now although a definite coordinate system is needed to specify a tensor,
so as to give its component—functions concrete expression, all tensors embody

4 The diagonal and off-diagonal components are direct and shear stresses.



236 10 Non—Euclidean Geometry

certain “intrinsic” features — computable from their components — that are
the same in all coordinate systems. For first—order tensors these “invariants”
are clearly vector magnitudes and directions. For second—order tensors, such
as the stress tensor (10.10), the eigenvalues and eigenvectors are invariant.®
We now describe how the components of a tensor in one coordinate system
are obtained from those in another, in the general context of an n—dimensional
curved space. Let (¢1,...,€") and (£1,...,&™) be curvilinear coordinates for
such a space, the transformation from the latter to the former being defined

by functions
ErFEL,... Y for k=1,...,n, (10.11)

and the converse transformation by the corresponding inverse functions
e, e for k=1,...,n. (10.12)

By the chain rule, we may write the derivative operator with respect to &7 as

N,
5 - ; o (10.13)

and if we apply this to coordinate &%, we obtain the important relation

n agkagz o lle:]
;@85’“ == {Ootherwise (10.14)

concerning derivatives of the coordinate transformations (10.11) and (10.12).
Geometrically, 9¢¢/0¢7 vanishes when i # j since the coordinate ¢! remains
constant on loci along which only &7 increases — otherwise we obviously have
9E'/0¢7 = 1if i = j (87 is the Kronecker delta symbol). Equation (10.14) has
a simple interpretation: it says that the Jacobian matrices for the coordinate
functions (10.11) and (10.12) must be inverses of each other.

In expressions (10.13) and (10.14) the summation index k appears twice in
the summands, and in tensor algebra it is typically true that a repeated index
is associated with summation over that index. Thus, we shall henceforth use a
convenient shorthand,® known as the summation convention, in which we omit
summation signs and interpret repeated indices as implying a summation from
1 to m. Such indices are called “dummy” indices (as distinct from unrepeated
or “free” indices), since we can replace them by any unused index symbol
without altering the meaning of an expression.

5 The eigenvectors of the stress tensor identify the principal planes, on which the
shear stress is zero, and the eigenvalues give the corresponding principal stresses
on those planes, which represent extremal values of the direct stress.

5 This scheme was popularized by Albert Einstein (1879-1955), who made extensive
use of it in developing the general theory of relativity.
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Now suppose the coordinates (10.11) are regarded as parametric variables
that specify location on a curved “hypersurface” r(¢,. .., ¢") which resides?
in an (n+1)—dimensional Euclidean space. Then the components of the metric
tensor are given by

Jr Or
P 1 )y = [—
g”(f"“’f)_agi a£j7
for 1 < 4,57 < n, and the distance ds corresponding to coordinate increments
(dgt, ..., dém) about any point is expressed by the quadratic form

(10.15)

ds* = g;;d¢'d¢? (10.16)

(in the above, and henceforth, the summation convention is in effect). Also, if
G(€Y,...,£") denotes the determinant of the n x n array of metric elements
(10.15), the n—dimensional “volume element” of our curved space, defined by
a parallelepiped with coordinate increments dé!, ..., d¢™ for its sides, is

dV = VG det - den. (10.17)

In the familiar case n = 2 of a curved surface — with (¢1,€2) = (¢, n) say —
this reduces to the usual area—element expression dA = [r¢ x r,|d{dn.

The metric elements g;;(£,...,£") for 1 < 4,5 < n, corresponding to the
alternative coordinate system (10.12), may be defined analogously in terms of
a re-parameterization t(£1, ..., ") of the hypersurface. Distance and volume

elements in this curved space, in terms of the alternative coordinates (10.12),
are then given by expressions analogous to (10.16) and (10.17).

As local bases for vectors “in” our n—dimensional non—Euclidean space,
we use the hypersurface partial derivatives

o
o€l

e = (10.18)
for j =1,...,n, which we assume are everywhere linearly independent: these
vectors span the tangent hyperplane to r(€!,... £") at each point. We do not
bother to unitize these basis vectors. Consider now the transformation of the
contravariant vector

v = ve;, (10.19)

as specified in the coordinate system (10.11), to the system (10.12). Applying

(10.13) to T(£',...,£"), we observe that the basis (10.18) in the (¢',...,£")

coordinates is related to that &, = Or/9¢" in the (£!,...,£™) coordinates by
ok

T Ck

€; = 853

" Here r is a Euclidean vector of dimension n+ 1, and the dot products in equation
(10.15) are to be interpreted accordingly.
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for k = 1,...,n. Hence, substituting into (10.19), we see that the contravariant
components (v',...,9") in the system (£!,...,£") are given by
ock
—k _ i
VY = = 10.20
s (10.20)
for k =1,...,n. We may interpret (10.20) as the definition of a contravariant
vector v — namely, it is an infinite family of scalar n—tuples (v!,...,v™), one
associated with each curvilinear coordinate system (£, ..., £™), such that the

values or “contravariant components” in two different systems are related to
each other by the transformation law (10.20).
We can also express the vector (10.19) in covariant form as

v = v;el, (10.21)
where the dual vector basis e!, ..., e" is completely specified by the conditions
e ep =0 (10.22)

for 1 < j,k < n, which define the n—dimensional generalization of expressions
(10.6) in the case n = 2. Geometrically, e’ is a vector that is orthogonal to the
hyperplane spanned by all of the vectors ey, ..., e, except e;, and we require
that the projection of €’ onto e; be of unit length. Conditions (10.22) allow
us to interpret the contravariant and covariant components of a vector v as
its dot products with appropriate basis vectors, namely:

o =v.ef and Uy = V-eg. (10.23)
In §10.2 we saw in the two—dimensional case that, by taking one vector in
contravariant form and the other in covariant form, we could express their dot
product as an invariant, i.e., in a form independent of the chosen coordinates.
In the general n—dimensional case, we require covariant vectors to transform in
a manner, consistent with the established contravariant—vector transformation
rule (10.20), such as to retain this property. Now the length |v| of any vector
must be the same in all coordinates, and we express it in terms of contravariant
and covariant components in the systems (£!,...,£") and (£!,...,£") as

V|2 = viv; = oF5y,. (10.24)
Suppose that the covariant components obey the transformation law
@k:C,ivi, k=1,...,n.

Substituting this and expression (10.20) into (10.24), we obtain the identity

7k
Vo = == Cpvv;,

€I
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which must hold for all corresponding n—tuples, (vi,... v") and (v1,...,v,).
The sum on the left comprises only “diagonal” terms v'vq + - - - +v™v,,, while
on the right we have a double—sum over all terms viv; for 1 < g, 7 < n. Hence,
the quantity (9¢%/0¢7) O} must vanish unless i = j, in which case it must be
unity. We can now infer from (10.14) that C} = 9¢/0€¥, and the fundamental
transformation law characterizing covariant vectors may be written as

_ 3
Uk;:@igk’l]i, k=1,...,n. (1025)
The contravariant and covariant transformation laws (10.20) and (10.25)
for vectors can be readily extended to higher—order tensors. Thus, for example,
if a* and b;; are the components of contravariant and covariant second-order

tensors in the coordinates (€Y,...,€™), their components in the coordinates
(€L,...,&m) are given by
0808 oot og
Mo =2 gl d by = 2= by 10.26
gt oI a an kit &k 9E! J ( )

for 1 < k,I < n. One can also have higher—order tensors that are of “mixed”
type, with both contravariant (superscript) and covariant (subscript) indices.
For example, the mixed second-order tensor ¢'; transforms according to

5 0€Fag
& = o6 281 ©- (10.27)

Note that the order of indices is important, so we leave “blanks” among the
superscripts or subscripts of mixed tensors to indicate proper positions.

The metric defined in (10.15) is a covariant second—order tensor. In terms
of the basis vectors (10.18), it is given by g;; = €; - e; for 1 < 4,5 < n. By
analogy, we now introduce the contravariant metric tensor

g7 =e-el, 1<i,j<n

defined by dot products of the dual basis vectors. Interpreted as matrices, the
covariant and contravariant metrics are actually inverses of each other, i.e.,

99" =6, 1<ik<n. (10.28)

This can be seen as follows. Using relations (10.23) we note that any vector
v can be written as v = (v - e;) €. Thus, if we choose v = e;, we find that

e; = (ei-ej)e’ = gie,

and on taking the dot product of the left— and right-hand sides with e*, and
recalling the property (10.22) of the dual bases, we arrive at (10.28).
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The contravariant and covariant metrics can be used to “raise” and “lower”
indices — i.e., to convert covariant into contravariant components and vice—
versa. Taking the dot products of v = v; e and v = o/ e; with e’ and e;,
respectively, we find that

vt = gijvj and v; = gijvj.
This raising/lowering “index mechanics” also applies to higher—order tensors.

The vector dot product (10.24) is the simplest example of a “contracted”
tensor expression, in which all indices appear in contravariant and covariant
(i.e., upper and lower) pairs, implying summation from 1 to n. We may also
form contracted combinations of higher—order tensors, with no remaining free
indices, such as

uiaijbjkvk. and aii.

The significance of such tensor contractions, in which no free indices remain,
is that they identify invariants — quantities that have the same value in all
coordinate systems. The invariance of contracted tensor expressions follows
from the contravariant/covariant transformation rules discussed above.

10.4 The Geodesic Equations

A path between two points po = (£}, ...,&8) and p; = (£1,...,£7) in a curved
n-dimensional space may be described parametrically by n functions £¥(¢) of
a parameter ¢t € [0,1] such that £¥(0) = ¢§ and ¢¥(1) = ¢k for k =1,...,n.
We are concerned with identifying paths of least length, or geodesics, between
the given points. These are the analogs of straight lines in Euclidean space.

Denoting the derivative of £¥(t) with respect to ¢ by £¥(t), we set dé¥ =
€*dt in (10.16) and hence express the distance element as

The total distance between py and p; is then

S = /O1 \ 9i; §1&7 dt (10.29)

and we desire the path £1(t),...,£"(¢) that will minimize S. This is a standard
problem in the calculus of variations [45], involving n unknown functions of a
single independent variable. Regarding the integrand in (10.29) as a function
F(t, &, 5'1, R f'") of the path parameter ¢t and the n coordinates and their
parametric derivatives, the solutions to the Euler—Lagrange equations

OF _d oF
ogk At ek
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for k = 1,...,n identify the sets of functions £1(¢),...,£"(¢) that cause S to
be an extremum value. In the reduction of these equations, the combinations

rk — Lght <5gﬂ 4G9 _ 89”) (10.30)

ij 2 o€t o€ 8£l

for 1 <14, 4,k <n of the metric tensor derivatives occur. These quantities are
called the Christoffel symbols.® We have already encountered them (see §8.5.9)
in our discussion of curved surfaces, n = 2, and we shall encounter them again
in other contexts (see §10.5 and 10.6 below). Note that the Christoffel symbols
are symmetric with respect to the lower indices: FZ} = Fﬁ-.

Using the Christoffel symbols, the Euler-Lagrange equations become

d>e* , 4§’ dg?
I} — = k=1,... 10.31
ds? W ds ds 07 ) ) Ty (03)

s being the arc length along a geodesic. These geodesic equations comprise a
system of n coupled, non—linear, second—order ordinary differential equations.
They may be solved as a boundary value problem, as discussed above, or as
an initial-value problem in which we specify a starting point and direction for
the geodesic. In the former context, there may be more than one solution —
possibly identifying mazima, as well as minima, of the integral (10.29).

Note that, in (10.30), the rather intimidating expression involving partial
derivatives of the metric tensor (10.15) has a simpler vectorial interpretation
in terms of the parameterized “hypersurface” representation r(¢!,...,&") of
our curved space — it can be verified that

Ogj1 . Oga  0gij o*r  Or
1 - - ) = 10.32
W%+ 56~ 5¢) = seos o (10:32)
10.5 Differentiation of Tensors
The gradient V¢ of a scalar function ¢(£1,...,€") is an important example
of a covariant vector. The components of V¢ are simply
0
82’ 1=1,....n

and the fact that they obey the covariant—vector transformation law (10.25)
follows directly from the chain rule for partial derivatives. A scalar function
can be regarded as a “zeroth—order” tensor, and its gradient is a first—order
tensor. However, when we proceed to vectors or tensors of order k > 1, we
find that their “gradients” are not tensors of order k + 1.

8 Also called the “connection coefficients.” We do not call them Christoffel tensors
since, in fact, they are not tensors: they do not obey the transformation rules (we
shall see in §10.5 that derivatives of tensors are not ordinarily tensors themselves).
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Consider, for example, the differentiation of a contravariant vector v7. We
will show that the quantities

Y

;= o8 1<i,j<n
do not obey the transformation rule (10.27) that characterizes mixed second—

order tensors. Applying the derivative

0__0go_
ogt  oglog
to equation (10.20), we have
& = aia : ai_k,vj = a—éj aégk,v] + ag—i@cj-.
LT oael ot \ o agl agiags ogt agi

In the expression on the right, the second term alone is what we expect from
the transformation rule (10.27) — the presence of the “extra” first term means
that the quantities ¢/, are not the components of a tensor.

However, it is possible to append “correction terms” to ordinary derivatives
of contravariant and covariant vectors, so as to obtain a tensor result. This
process is known as covariant differentiation, and it involves the Christoffel
symbols (10.30). In the case of a contravariant vector v¥, the elements of its
covariant derivative are defined to be

k
ok = % + Ihof (10.33)
for 1 < j,k < n — they define a mixed second-order tensor. On the other
hand, the covariant derivative of a covariant vector vy has elements

Vg5 = ?97?; — F;k (3 (1034)
for 1 < j,k < n, which define a covariant second—order tensor. Expressions
(10.33) and (10.34) use the convention of denoting covariant derivatives with
respect to &7 by a subscript j after a comma (following all other superscripts
and subscripts of the given tensor).

A proof that the quantities (10.33) and (10.34) do transform properly as
second—order tensors may be found in Chap. 7 of [290]. Covariant derivatives
of higher—order tensors can also be formed: “correction” terms associated with
each superscript or subscript of the given tensor must be included to ensure
that the result transforms as a tensor — see [290] for further details.

An elementary example may help to elucidate the significance of covariant
differentiation. Suppose a constant vector v is assigned to each point of the
Euclidean plane. When we describe location by Cartesian coordinates (z,y),
derivatives of the components of v vanish, as expected for a constant vector.
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If we use curvilinear coordinates (¢, 7), however, the components of v vary
from point to point since the vector basis (e¢,e,) is varying, and hence they
have non—zero derivatives. The Christoffel symbols carry information on the
variation of (e¢,e,) enabling them, by the “correction” terms, to cancel out
this effect and ensure that the covariant derivative of v vanishes.

The process of forming covariant derivatives is sometimes called absolute
differentiation, to emphasize that it always yields a tensor result. Although
we express them using components in specific coordinate systems, tensors are
essentially independent of all coordinates: they can be completely described
by intrinsic or “geometrical” properties that are invariant under changes of
coordinates (e.g., the eigenvalues and eigenvectors of second-order tensors).

10.6 Parallel Transport of Vectors

In any Euclidean space, endowed with Cartesian coordinates, moving a vector
v from an initial point pg to a final point p; so that it remains parallel to its
initial instance is a trivial matter. One way to accomplish this is to simply
“copy” the components of v, given at pg, to the location p;. Another way
is to imagine “sliding” the vector along the straight line between pg and p1,
such that it always maintains a fixed angle with that line.

Suppose now that po and p; are points in a non—Euclidean space, and we
want to find at p; a “parallel” copy of a vector v specified at pg. As noted in
§7.3.2, the vector basis (10.18) in general curvilinear coordinates (£1,...,£m)
varies from point to point, so it is not geometrically meaningful to just “copy”
components with respect to it from one point to another. We can, however,
give a sensible generalization for the second of the above methods for parallel
transport of vectors. Namely, we replace the straight line of Euclidean space
by the geodesic path between py and p; in the curved space, and insist that
v maintains a fived angle with the geodesic as it slides along that path.’

If coordinate functions £1(s),...,£"(s) describe the geodesic between pg
and p1, parameterized by arc length s, it can be shown that parallel transport
of a vector v = (v!,...,v™) amounts to solving the initial-value problem posed
by the coupled system of linear first—order differential equations

do* Zg B

P iV g 0, k=1,...,n. (10.35)

This concept of “parallelism” of vectors in a curved space was introduced by
the Italian mathematician Tullio Levi-Civita (1873-1941).

Actually, we can drop the stipulation that £!(s),...,£"(s) be a geodesic,
and regard these functions as describing an arbitrary differentiable locus C' in
the curved space. The solution to (10.35) then defines parallel transport of v

9 Both v and the tangent to the geodesic lie in the tangent hyperplane of the curved
space at each point, and hence the angle between them is unambiguously defined.
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with respect to the curve C. Invoking this concept, we can invert our reasoning
above and define a geodesic to be any curve C' having the property that its unit
tangent vector is parallel-transported along it (note that equations (10.31) are
automatically satisfied upon substituting v* = d¢*/ds in (10.35)). A vector
that is parallel-transported with respect to a non—geodesic curve C', on the
other hand, does not exhibit a fixed angle with the tangent to that curve.

In fact, the ideas of covariant differentiation and parallel transport are
intimately related. For any path C with coordinate functions £!(s),...,£"(s)
of the arc length s, we can define the covariant derivative of a vector v* along
C by contracting the second—order tensor elements vkv ; given by (10.33) with
the tangent vector d¢? /ds to C. Identifying

d dga

ds  ds 0¢
as the derivative operator along C, this yields the right-hand side of (10.35).
Hence, a vector is parallel-transported with respect to a curve C if and only if
its covariant derivative along that curve vanishes. Conversely, we may regard
the covariant derivative of a vector along a path C' as measuring the deviation
of that vector from being parallel-transported with respect to C.

It is instructive to consider the above concepts in the context of a surface
r(u,v). The geodesics are those curves on the surface along which the curve
tangent vectors are parallel transports of each other. Consider a vector

a(s) = a“(s)ry + a’(s)ry

defined along a curve c(s) = r(u(s), v(s)) on the surface by the (contravariant)
components (a*,a”) specified as differentiable functions of arc length s. We
can identify those vector fields a(s) that correspond to the parallel transport
of an “initial” vector a(0) with respect to c(s) as follows.

Theorem 10.1 The members of a vector field a(s) are parallel transports of
each other with respect to the curve c(s) on the surface r(u,v) if and only if
da/ds is everywhere parallel to the surface normal n.

To verify Theorem 10.1 one must show that satisfaction of the condition stated
therein is equivalent to solving equations (10.35) in the case of a surface.
Now since a(s) always lies in the local surface tangent plane, and da/ds is
perpendicular to it, a parallel-transported vector satisfies |a(s)| = constant.
Adopting the perspective of the three-dimensional Euclidean space in which
the surface r(u, v) is embedded, we may regard any vector a(s) that is parallel-
transported with respect to the curve c(s) as instantaneously rotating about
a moving axis that lies in the surface tangent plane at each point of c(s).
We may elucidate this rotation as follows. Suppose a(s) and a(s + ds) are
“neighboring” instances of the parallel-transported vector. If the latter were
exactly parallel to the former, we would have k - [a(s + ds) — a(s)] = 0 for
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any vector k in the surface tangent plane at the point c(s). But a(s + ds)
is confined to the surface tangent plane at c(s + ds), which has a somewhat
different orientation than that at c(s), precluding an ezact satisfaction of this
condition for arbitrary curves on the surface. Hence, the rotation that defines
a(s+ ds) as an infinitesimal parallel transport of a(s) is such as to make the
former “as parallel as possible” to the latter while still satisfying the constraint
that these vectors must reside in their respective tangent planes. Namely, we
require that k - [a(s + ds) — a(s) ] vanishes to first order in ds for all vectors
k in the surface tangent plane at the point c(s).

From the perspective of the Euclidean space R? in which r(u,v) resides,
a vector a(s) parallel-transported along a curve c(s) on this surface remains
from point to point as parallel to itself as is compatible with the constraint of
lying at all times in the surface tangent plane. If t = ¢(s) is the curve tangent,
and n is the surface normal, then from Theorem 8.2 the vectors t, n, t x n
coincide with the Frenet frame of ¢(s) if this curve is a geodesic: in that case,
a(s) maintains a fixed orientation relative to the vectors t and t x n spanning
the tangent plane. If a(s) is parallel-transported along an arbitrary curve,
however, it exhibits a varying orientation with respect to these vectors.

Using these results, we can connect the “local” and “global” geometry of
surfaces (with non—zero Gaussian curvature) in a manner that reveals their
essential difference from two-dimensional Euclidean space. Suppose c(s) is a
closed curve of total length S, so that c(S) = ¢(0). If this curve resides in the
Euclidean plane, and a vector a is parallel-transported around it, we recover
the initial instance upon completing the traversal, i.e., a(S) = a(0). However,
if ¢(s) lies on a curved surface and we parallel-transport a around it we find
that, in general, we end up with a different vector: a(S) # a(0)! Fig. 10.2
illustrates this phenomenon in the case of a sphere.

One may verify that any two vectors a(s) and b(s) parallel-transported
along a curve c(s) on the surface r(u,v) maintain a constant (oriented) angle

Fig. 10.2. Parallel transport of a vector around a small circle on the unit sphere.
Upon returning to the start point, the vector is found to have suffered a net rotation
about the surface normal there by the holonomy angle ¢ for the small-circle path.
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relative to each other. Hence, the net change ¢ in the orientation of a vector
that is parallel-transported around a closed curve c(s) depends only on the
intrinsic geometry of the surface and the chosen path — this angle is called
the holonomy of the path c(s) on the surface r(u,v). If the closed curve c(s)
bounds a region {2 on the surface r(u,v), it can be shown that the holonomy
9 of this path can be related (modulo 27) to the surface curvature by either
an area integral or a path integral:

19:// KdA:j{ kg ds,
0 c(s)

K and dA = VEG — F? dudv being the Gaussian curvature and area element
of r(u,v), and kg the geodesic curvature (see §8.5.9) along c(s). We see that
¥ = 0 for any closed path on a developable surface (since K = 0), agreeing
with the perception (see §8.5.5) that developables are essentially “flat” spaces.
For more general surfaces, we have ¥ = 0 for any closed path along which
kg = 0. As previously noted, the vanishing of the geodesic curvature along a
path identifies it as a geodesic. Of course, we expect that ¢ = 0 for any closed
geodesic, since we have also characterized geodesics as those curves on the
surface that exhibit parallel transport of their own tangent vectors.
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The Bernstein Basis

... the Bézier methods emerge as an application of the Bernstein
polynomial approximation operator to vector—valued functions.

W. J. Gordon and R. F. Riesenfeld [216]

Suppose we are concerned with a polynomial p(t) over the interval ¢ € [0,1].
At any point of this interval, the values t and 1—t represent the distances from
the two interval end—points, t = 0 and t = 1. As in §7.2, we call t and 1—¢ the
barycentric coordinates of a point with respect to the interval ¢t € [0,1] — if
we imagine the interval to be a rigid rod, it will balance precisely about the
chosen point when we place weights proportional to 1 — ¢ and ¢ at the ends
t = 0 and ¢t = 1. The barycentric coordinates (¢,1 —t) of a point are evidently
redundant, since t + (1 —¢) = 1 for any ¢, but they provide a more symmetric
or “balanced” specification of position on the interval [0,1].

Taking the identity ¢ + (1 — ¢t) = 1 and performing a binomial expansion
of the expression on the left raised to the nt" power, we obtain

n

[t+(1—t)]" = Z(Z)(l—t)”ktk =1.

k=0

The n + 1 terms
br(t) = (Z)(l—t)"—kt’f, k=0,...,n (11.1)

appearing in the sum are linearly independent polynomials — they comprise
the Bernstein basis for polynomials of degree n on [0,1].

We may also generate the Bernstein basis by a simple recursion. Starting
with b)(t) = 1, and taking b} (f) = 0 if k < 0 or k > r, the basis of degree
r 4+ 1 is obtained from that of degree r by

b (E) = by () + (L — ) E(t) (11.2)
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1.0 .
b() b2(t)
0.5 b(t b3(t) -
A s
0.0
0.0 0.2 0.4 0.6 0.8 10

Fig. 11.1. Bernstein basis functions of degree 5 on the interval ¢ € [0, 1].

for k=0,...,r+ 1. Figure 11.1 illustrates the basis functions for n = 5. Note
that b} (¢) and b"_, (t) are mirror images of each other about ¢ = 1, i.e.,

k(L —1) = bi(t).

Although we are mainly concerned with the Bernstein basis on ¢ € [0,1]
here, it is understood that all the properties and algorithms associated with
it will generalize to an arbitrary interval ¢ € [a, b] if we systematically replace
u =t and v = 1 — t by the barycentric coordinates © = (¢t — a)/(b — a) and
v=(b—1t)/(b— a) appropriate to that interval (see §11.4 below).

11.1 Theorem of Welerstrass

Polynomials are an attractive class of functions for use in various scientific and
engineering computations. They are concisely represented by coefficients in a
suitable basis, and are amenable to efficient evaluation by simple algorithms.
The set of polynomials is closed under the arithmetic operations of addition,
subtraction, and multiplication, and under differentiation, integration, and
composition (i.e., substitution of one polynomial into another).

The approximative capabilities of polynomials are also of great practical
interest in applications. Perhaps the most fundamental result in this context
is the theorem of Weierstrass, which guarantees the existence of a polynomial
P, (t) of a certain degree n that does not deviate anywhere over a specified
domain t € [a,b] by more than a prescribed tolerance ¢, however small, from
a given function f(¢) that is merely continuous on that domain.

In 1912 the Russian mathematician S. N. Bernstein published an elegant
constructive proof [34] of this theorem, in which the polynomial basis (11.1)
was first introduced. The Bernstein polynomial approximation of degree n to
any continuous function f(t) on the interval t € [0,1] is defined by sampling
that function at the n+ 1 equidistant positions ¢, = k/n for k =0,...,n and
“blending” together the sampled values with the Bernstein basis functions:
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i =Y (%), (11.3)
k=0

where b} (t) is defined by (11.1). The approximant (11.3) to the function f(t)
can be made to satisfy any prescribed accuracy by choosing a sufficiently high
degree — i.e., for each § > 0 there exists an integer ngs such that

|P.(t)— f(t)] < 4§ forall t€[0,1] when n>ns.

Thus, we say that P, (t) converges uniformly to f(t) as n — oo.

For each n, the Bernstein polynomial P, (t) is always “at least as smooth”
as the function it approximates: if we know lower and upper bounds on the
derivatives of f(t) of each order over [0,1], the corresponding derivatives of
P, (t) also observe those bounds [113]. This implies, for example, that if f(¢)
is monotone or convex, P, (t) is correspondingly monotone or convex.

Note that, apart from f(0) and f(1), the Bernstein approximation (11.3)
does not interpolate the values f(k/n) sampled from the given function f(t).
Furthermore P, (t) #Z f(t) even when f(t) is itself a polynomial of degree < n.
However, in contrast to the monotone convergence of (11.3) to f(t) as n — oo,
the degree—n polynomial that interpolates n+ 1 equidistant values f(k/n) for
k=0,...,n can exhibit wild oscillations as n — oo (see §14.3).

The remarkable feature of the theorem of Weierstrass is that, although an
analytic function can always be expanded in an infinite Taylor series about a
point — and by truncating this series we obtain polynomial approximations
of any desired precision within its radius of convergence — this theorem does
not need to assume that f(¢) is differentiable to obtain such approximations
over any finite interval. However, the orderly convergence of P, (t) to f(t) as
n — oo comes at a rather severe price — as illustrated by the example shown
in Fig. 11.2, it typically proceeds at a very leisurely pace.

In fact, it can be shown [113] that the error | P, (¢) — f(¢) | of the Bernstein
approximation diminishes only in proportion to n~! at any point where f”(t)
is defined and non—vanishing. This may be compared with, for example, the

Fig. 11.2. The Bernstein polynomial approximants (11.3) of degree n = 10, 30, 100,
300, and 1000 to a continuous (but non-differentiable) piecewise-linear function f(t).
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n~* convergence rate of the cubic spline interpolating n+ 1 equidistant values
of a function with at least four—fold differentiability (see §14.4.6).

In his book Interpolation and Approximation [113], first published in 1963,
P. J. Davis remarked on the slow convergence rate of Bernstein approximations
to continuous functions:

“This fact seems to have precluded any numerical application of
Bernstein polynomials from having been made. Perhaps they will find
application when the properties of the approximant in the large are
of more importance than the closeness of the approximation.”

Coincidentally, the increasing industrial use of computers gave rise to just such
an application — namely, the need to provide a means of interactively defining
curves and surfaces (i.e., vector—valued functions of one or two parameters) for
design and manufacturing purposes. Although a continuous curve or surface
has an infinity of points, its computer representation must obviously rely on
just a finite set of data. The mapping from the finite set of input values to a
continuous locus is accomplished by interpreting those values as coefficients
for certain basis functions in the parametric variables.

Since the associated coefficients must serve as “shape handles” that allow
manipulation of the curve or surface geometry to satisfy desired aesthetic or
functional requirements, the choice of basis is fundamental to a viable design
scheme. On account of the properties enumerated above, the Bernstein basis
transpires to be an especially propitious choice for the computer description
of (finite portions of) polynomial curves and surfaces.

11.2 Bernstein—form Properties

The convergence behavior of Bernstein polynomial approximations stems from
certain intrinsic properties of the Bernstein basis functions, and consequent
relations between the behavior over ¢t € [0,1] of the polynomial

n

p(t) = > b () (11.4)

k=0
and its Bernstein coefficients cg, ..., c,. We now enumerate these properties.
1. unimodality: b7 (¢) has a single maximum, at t = k/n, on ¢t € [0,1].
2. non-—negativity property: b7(t) >0ont € [0,1] for k=0,...,n.

3. partition of unity property: since by (¢),...,b0(t) are just the n + 1
terms in the binomial expansion of 1 = [t + (1 —t)]", we have

> bt) = 1.
k=0

Of course, this holds for all values of ¢, not just the interval ¢t € [0,1].
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4. lower & upper bounds: from properties 2 and 3, we may infer that

i < p(t) < ma for t € [0,1].
oL, o < Pl) < mpx e for £€[0.1]
5. variation—diminishing property: the number N of real roots of p(t) on
the open interval ¢ € (0,1) is less than the number V(co,...,c,) of sign
variations in its Bernstein coefficients by an even amount:

N = V(co,...,cn) — 2K, (11.5)

K being a non—negative integer.® This is an expression of Descartes’ Law
of Signs (see Chap. 3), since the map ¢ € (0,1) — u € (0,00) defined by
t(u) = u/(1 4+ u) transforms p(t) into

qlu) = p(tu)) = (1 +u)7"2ak uf,  where aj = <Z> Ck -
k=0

The coefficients ay, . .., a, and cg, ..., c, clearly have the same signs, and
the roots of g(u) on u € (0,00) are in one-to—one correspondence with the
roots of p(t) on t € (0,1).

6. derivatives and integrals of p(¢) may be expressed as polynomials in
Bernstein form of degree n — 1 and n + 1, respectively, with coefficients

that are linear combinations of ¢y, ..., c,. The relation
d n n— n—
S W) = n e - )] (11.6)

for k =0,...,n (where we take b"7*(t) = 0 and b~ !(¢) = 0) can be easily
verified by direct differentiation. By setting n — n+ 1, and adding up and

integrating cases k+ 1,...,n 4+ 1 of the above equation, we obtain
1 n+1
n _ n+1
/ P dt = — .Z b (t) (11.7)
j=k+1

for k = 0,...,n. This relation allows us to write the derivative of (11.4) as

dp ok n—1

i Z n(crr1 —cr) b (1)

k=0

(further derivatives can be written in terms of higher—order differences of
the coefficients) and its indefinite integral as

n+1 k—1
1
t) dt = tant S ontl(e).
/p( ) constant + k§:1 o JE:OCJ p (1)

! It is understood that the roots are to be counted according to their multiplicities.
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For definite integrals, we observe that the area contained under each basis
functions b7 (t), k =0,...,n over t € [0,1] is the same,

1 1
" 1
/0 by (t) dt = i and hence /Op(t)dt: i E Ck -

11.3 The Control Polygon

A control polygon may be associated with the graph of a degree—n polynomial
p(t) expressed in Bernstein form on ¢ € [0, 1]. The ordered sequence of vertices
for this polygon are the points with coordinates (k/n,ci) for k = 0,...,n.
Figure 11.3 illustrates such control polygons, which impart some idea of the
shape of the graph of the polynomial on [0,1]. In Chap. 13 we generalize the
control polygon from scalar to vector polynomials, i.e., parametric curves.

.

Fig. 11.3. Bernstein—form polynomials on [0, 1] with control polygons. Left: a cubic
with no roots on [0, 1] because the Bernstein coefficients are all positive (the graph
of the cubic is convex since the control polygon is convex). Center: a quintic with
one root on [0, 1] indicated by the single sign change in the coefficients (the graph is
monotone since the control polygon is monotone). Right: a degree 7 polynomial —
although there are two coefficient sign changes, it has no roots: K =1 in (11.5).

11.4 Transformation of Domain

The properties of the degree—n Bernstein basis on ¢ € [0,1] described above
carry over (with appropriate modifications) to the corresponding basis

n _ \n—k 7ak
bp() = (k>(b t()b_cgn Y k—o0,...n (11.8)

defined on an arbitrary interval t € [a,b]. It is useful to have the capability of
transforming the representation of a polynomial p(¢) among bases on different
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intervals. If co, ..., ¢, are the Bernstein coefficients of p(¢) in the basis (11.8)
ont € [a,b], its coefficients ¢, . . ., &, in the analogous basis b7 (t), k = 0, ...,n
on a different interval ¢t € [@,b] may be obtained from the given coefficients
by a matrix multiplication,

&G = My, j=0,...n. (11.9)
k=0

The matrix elements Mj; can be expressed [176] as sums of products of the
basis functions (11.8), evaluated at the endpoints a, b of the new interval:

min(j,k)
Mjj, = > b l@bl), 0<jk<n. (11.10)
i=max(0,j+k—n)

The matrix defined by (11.10) has the property that its elements sum to unity
across each row. Moreover, the elements are all non-negative when [a,b] C
[a,b]. These features are the defining characteristics of stochastic matrices,
which play an important role in probability theory [198].

Two instances of the map (11.9) that are of special interest correspond to
choosing [a,b] = [0,1] and [a,b] = [0,7] or [7,1] for some value 7 € (0,1).
Since we have by, 7 (0) # 0 only when ¢ = k, and b/ (1) # 0 only when i = j,
it can be seen that the matrix elements (11.10) reduce to

bi(r) if k<j
Mje = W) RS, (11.11)
0 if k> j,
for [a,b] = [0,7], and
<
My, = On_j A (11.12)
by_j(r) if k>,
for [a,b] = [7,1]. In these cases, instead of using the matrix multiplication

(11.9), the Bernstein coefficients on the subintervals [0, 7] and [7,1] may be
obtained simultaneously from the initial coefficients on [0, 1] by means of the
de Casteljau algorithm, discussed in §11.6 below.

11.5 Degree Operations

The actual degree of a polynomial p(t) may be lower than the nominal degree
n of the Bernstein basis in which it is expressed. Conversely, any polynomial
p(t) of true degree n admits a non—trivial representation in the Bernstein basis
of degree n + r for any r > 1. The process of raising the degree of the basis in
which p(t) is specified is called degree elevation, while the process of reducing
the degree (when p(t) is of true degree < n) is called degree reduction.
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To express b} (t) in terms of the basis of degree n + r, we multiply by the
binomial expansion of [t 4 (1 —¢)]" and collect like terms, to obtain

k(1) = %Clz)(ﬂik) btT(t), k=0,..

k j
= (n + r>
J

On substituting this into (11.4) and re—arranging terms, we obtain the r—fold
“degree—elevated” representation

n—+r
p(t) = Yot
k=0

of (11.4), the degree—clevated coefficients being given by

T n
n-+r R (k ]) (]) n
= Yo LG, k=0t (11.13)

gt = i Ve
j=max(0,k—r) <n —]: T)

where we have appended a superscript n to the coefficients co, . . ., ¢, in (11.4).
For the case r = 1, we have simply

ckJrl = n—l—lck_l + <1n—|—1> ¢, k=0,....,n+1.

A degree reduction, on the other hand, is possible only if p(¢) is of true degree
< n. By expressing the power coefficients ay, ..., a, (see §12.4.6) in terms of
the Bernstein coefficients, the condition for (11.4) to be of true degree n—r can
be expressed as a, = ap—1 =+ = Gp—pt1 = 0 # an—,. The representation

n—r
Py = ST )
k=0

of degree n — r is then defined by the coefficients

n—r _ Zk:(—l)’“—j Cﬂ_iii_l)(ﬁ nok=0,...

¢ n—r o
7=0
k

11.6 de Casteljau Algorithm

The de Casteljau algorithm is a fundamental computation for polynomials in
Bernstein form on ¢t € [0, 1]. It serves a dual purpose — at a chosen point t = 7
between 0 and 1, it computes the polynomial value p(7), and it subdivides p(t)
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at that point — i.e., it determines the Bernstein coefficients that describe the
subsegments ¢t € [0,7] and ¢ € [7,1] of p(¢) individually.
The algorithm proceeds as follows. Choosing 7 € (0, 1), we set c? = ¢; for

7 =0...,n, and then compute the triangular array of values
g & & -
Aol el
c3 c2 (11.14)
Cn
defined by the iterated linear interpolations
ci = (1-1) c;f:i + 7'02_1 (11.15)
forj=r,...,nandr =1,...,n. The final entry in this array is the polynomial
value corresponding to the chosen parameter value,
p(T) = ¢ . (11.16)

The de Casteljau algorithm is an immediate consequence of the recursion
relation (11.2) defining the Bernstein basis functions. From (11.2) and (11.15)
one may easily verify by induction that the coefficients in row j of the array
(11.14) are related to the initial coefficients c? =cjfor j=0,...,n by

k=0

for j =r,...,n (bear in mind that we have b},(¢) = 0 when k < 0 or k > r).
In particular, taking j = r = n in the above equation, we find that

n
= ewbi(n),
k=0

which corroborates the result in equation (11.16) that the apex of the array
(11.14) corresponds to the value p(7).

Consider now the sequences of n + 1 values on the left and right diagonal
sides of the array (11.14), namely

|
N
3o

AS,cl, s, and c (11.18)
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Using expression (11.17), with appropriate changes of the summation index,
we can express these values for j = 0,...,n in the form

J n
¢ = Z cp bl (T) and )7 = Z kb 3(7).
— k=j

k=0

But from (11.11) and (11.12) we notice that the factors multiplying c, ..., ¢,
in these expressions are, respectively, the elements of the matrices that map
the Bernstein coefficients on [0, 1] to those on the intervals [0, 7] and [7,1].
Thus, the values (11.18) define the coefficients for the “left” and “right” sub-
segments — i.e., t € [0,7] and ¢t € [7,1] — of the polynomial p(¢) defined on
t € [0,1]. In addition to computing the value p(7) of the polynomial, we say
that the de Casteljau algorithm subdivides it at t = 7.

11.7 Arithmetic Operations

We are often concerned with performing the elementary arithmetic operations
(addition, subtraction, multiplication, and division) on polynomials specified
in Bernstein form. Suppose that f(¢) and g(¢) are polynomials of degree m and
n with Bernstein coefficients ag, ..., a,, and by, ..., b,. If m = n, the Bernstein
coefficients of the sum/difference polynomial f(t) £ g(t) are obtained by just
adding/subtracting the corresponding coefficients. If m # n, however, we first
need to degree—elevate the polynomial of lower degree, so as to express both
polynomials in the Bernstein basis of the same degree. If n < m, for example,
this gives [182] the coefficients of the sum/difference polynomial as

m—n n
min(n,k) (k—)()
3 AETIAN o g =0,...,m.  (11.19)

j (0,k—m+n) m
=max(0,k—m+n
! k

The product polynomial f(¢) g(t), of degree m + n, is specified [182] by the
Bernstein coefficients

ck:ak:i:

m n
min(m,k) ( ) <I{3 )
> NNV I) by, k=0,...,m+n.  (11.20)

m-+n
j=max(0,k—n
J ( ) ( k )

This can be verified by explicitly multiplying out, and collecting like terms in
1—t and ¢. Finally, in performing the division f(t)/g(t), we are concerned with
determining the quotient and remainder polynomials, ¢(t) and r(t), defined
by the identity

Cp =

ft) = a®)g(t) + (@),
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where deg(q) = m —n and deg(r) =n — 1 when deg(f) = m and deg(g) = n.
In this case, determining ¢(¢) and r(¢) amounts to solving a system of m + 1
linear equations in their Bernstein coefficients qg, ..., ¢m_n and rg,...,rp_1.
These equations are defined [182] for k = 0,...,m by

. m—n n
e ()
j=max(0,k—n) (m>
k
' (mn+1>(n1)
min(n—1,k) . i
> e
j=max(0,k—m+n—1) <m>
k

An accurate and efficient means of computing the binomial coefficient terms
in these operations is based [211] on decompositions into primes.

Other useful algorithms for Bernstein—form polynomials include resultants
and greatest common divisor computations, and composition of polynomials
— i.e., substituting one polynomial for the argument of another polynomial.
For details on these algorithms and their implementation, see [182,444].

br—j q;

+ i = Q.

11.8 Computing Roots on (0, 1)

Used in conjunction with the variation—diminishing property, the de Casteljau
algorithm provides an efficient and numerically—stable means of isolating and
approximating the (simple) real roots of the degree—n polynomial (11.4) on?
t € (0,1). The basic idea, suggested by J. M. Lane and R. F. Riesenfeld [296],
is to recursively subdivide ¢ € [0, 1] into contiguous subintervals characterized
by the property that the Bernstein coefficients for each exhibit either zero or
one sign variations. Then K in (11.5) must be zero and we have N =0 or 1,
respectively, for the number of real roots on these subintervals.

Once the real roots are isolated, it is preferable to invoke approximation
procedures with faster rates of convergence than further binary subdivision.
The Newton—Raphson method, for example, gives “quadratic convergence” —
the number of accurate digits in an approximate root roughly doubles with
successive iterations — if we can be sure that the starting approximation is
“sufficiently close” to the true root to guarantee convergence.

Fortunately, such a guarantee can be expressed in terms of the Bernstein
form. If the Bernstein coefficients cy, . . ., ¢, of a polynomial p(t) on t € [a,b]
exhibit only one sign change, the following conditions suffice to guarantee that

2 Roots at t = 0 or t = 1 are, of course, indicated by the vanishing of ¢y or c,.
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the Newton—Raphson iteration — see equation (12.1) below — will converge
to the unique real root on that interval from any start point within it:

V(ACO,...7ACH_1) = O7 (1121)
V(A%c,..., A%, o) = 0, (11.22)
lcol < n|Aco| and len| < nlAep—1]- (11.23)

Here Acy = cpp1 — ¢ and A?c, = Acy, — Ack—1 = Cppo — 2¢p41 — i denote
the first and second forward-differences of the coefficients, and V(- --) equals
the number of sign changes in the ordered sequence of its arguments.

Conditions (11.21) and (11.22) require the graph of p(t) over ¢ € [a,b] to
be monotone and convex (its first and second derivatives must not vanish)
while condition (11.23) guarantees that the tangent lines to p(t) at t = a and
t = b cross the t—axis within the interval [a, b]. For a proof of the sufficiency of
these conditions for convergence of Newton’s method from any starting value
to within [a,b] to the unique root in that interval, see [234, p. 79].

Note that, in the presence of a real root of multiplicity m, the Bernstein
coefficients for the subinterval containing that root will always exhibit at least
m (rather than 0 or 1) sign changes in the limit under repeated subdivision.
In principle, multiple real roots can be identified (within a given tolerance)
by simultaneously applying the de Casteljau algorithm to the Bernstein form
of p(t) and its successive derivatives p'(t), p”(t), etc.

11.9 Numerical Condition

The control polygon of a Bernstein—form polynomial p(t) on t € [0, 1] provides
useful insight concerning the behavior of the polynomial over that interval. In
particular, the shape and range of the control polygon are closely correlated
to the graph of the polynomial — especially if the degree is relatively low. By
contrast, when we represent polynomials in the familiar “power” form (3.1),
the coefficients aq, . . . , a,, offer less insight into the behavior of the polynomial
over a specified interval, and their values are more weakly correlated with the
actual range of the polynomial over that interval. It is possible, for example,
that the power coefficients may exceed the actual range of the polynomial on
[0,1] by many orders of magnitude (see §12.4.3). These observations have an
important practical consequence, which we elaborate on in the next chapter:
the Bernstein form is numerically more stable than the power form.
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Numerical Stability

The purpose of computing is insight, not numbers.
Richard W. Hamming (1962)

The purpose of computing numbers is not yet in sight.

Richard W. Hamming (1970)

12.1 License to Compute

The geometrical algorithms of computer—aided design systems usually employ
floating—point arithmetic — a finite approximation to real-number arithmetic
that sacrifices exactitude for computational efficiency and predictable memory
requirements. In general, floating—point arithmetic incurs errors whenever real
numbers must be stored in the computer memory, or arithmetic operations are
performed on numbers already in memory. These errors are typically of small
relative magnitude, but under certain circumstances they can be dramatically
magnified, yielding numerical results that are essentially meaningless.

To operate a vehicle, one must obtain a driver’s license by demonstrating
knowledge of the rules of the road and practical skill in managing the vehicle
controls in a manner that does not endanger oneself or others. On the other
hand, although scientific and engineering calculations are typically performed
in floating—point arithmetic, a medium that can often incur emotional or even
physical danger, it is a sad fact that most scientists and engineers are set loose
on computers without first having to earn a license to compute.’

Such considerations are especially acute in the context of computer—aided
design algorithms, which carry a higher premium on reliability or “robustness”
than virtually any other kind of scientific or engineering computations. The
output of a CAD system is rarely an end in itself — most often, it is routed

! Readers may wish to test themselves on the following representative problem from
the Computor’s License test: among the four floating—point arithmetic operations
+, —, X, + which is (a) the most ezpensive, and (b) the most dangerous?
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more or less directly to some manufacturing or inspection process, or to finite—
element analysis programs that require topologically valid and geometrically
accurate three—dimensional shape descriptions. Examples include: numerical—
control machining, rapid prototyping, and robot path—planning; inspection by
coordinate measuring machines; and mesh generation from solid models for
finite—element stress, heat transfer, or fluid flow analysis.

The consequences of feeding erroneous or inconsistent geometric data to
such downstream applications is in some cases merely frustrating and wasteful
of resources, and in others dangerous or disastrous. Moreover, since the volume
of data involved can often be overwhelming, imposing a manual “sanity check”
between the CAD system and the end application is neither a practical nor a
humane remedy. The onus is therefore on the developers and the implementors
of CAD system algorithms to remain vigilant of the pitfalls of floating—point
arithmetic, to seek out numerically—stable formulations, and to incorporate
internal checks on the accuracy and consistency of their calculations.

Do you ever want to kick the computer? Does it iterate endlessly on
your newest algorithm that should have converged in three iterations?
And does it finally come to a crashing halt with the insulting message
that you divided by zero? These minor trauma are, in fact, the ways the
computer manages to kick you and, unfortunately, you almost always
deserve it! For it is a sad fact that most of us can more readily compute
than think — which might have given rise to that famous definition,
“Research is when you don’t know what you are doing.”

Forman S. Acton, Numerical Methods that (Usually) Work [9]

12.2 Characterization of Errors

It is important to distinguish between two types of errors that typically arise
in geometrical computations. Many problems that concern us do not admit
a closed—form solution, expressible in finite terms. For example, the roots of
high—degree polynomials are often required in computing curve and surface
intersections. As noted in §3.3, however, only polynomials of degree < 4 allow
a “solution by radicals” for their roots. For a polynomial p(t) of degree > 4,
numerical methods, such as the Newton—Raphson iteration

p(tr)
toar = te — . k=1,2,... 12.1
+ p/(tk) ( )
must be used to approximate the roots. This yields a sequence t1, t2, . .. of root

approximations that approach the exact (simple) root 7 monotonically if the
initial “guess” tg is sufficiently close to 7. Even with a hypothetical computer
capable of exact real arithmetic, one can never obtain exact solutions by such
methods. Clearly, the iterations must be halted after a finite number of steps,
even if they are rapidly convergent. Similarly, when an analytic function is
approximated by expanding it in a Taylor series about a given point, the need
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to stop after a finite number of terms incurs a truncation error. We call such
errors, due to the absence of a closed—form solution, approximation errors —
they arise even in the hypothetical case of infinite—precision arithmetic.

On the other hand, even “simple” geometrical problems that nominally do
admit closed—form solutions cannot be solved exactly in practice, because each
arithmetic step of the solution procedure incurs a rounding or truncation error
when real numbers are approximated by fixed—size words in the computer, i.e.,
one implements the solution in floating—point arithmetic. These errors, which
we shall call arithmetic errors, are our main concern at present.

In general, combinations of approximation errors and arithmetic errors will
arise in all but the very simplest calculations dealing with free-from curves
and surfaces; it is not easy to separate or independently analyze the two. For
example, since a root 7 of the polynomial p(t) satisfies p(7) = 0, one may plan
to choose a small number e and stop (12.1) at iteration r, such that

p(t,)] < e.

But this approach is only meaningful if the arithmetic error in computing the
value of p(t,) is appreciably smaller than the chosen “tolerance” e. One might
think that, since iterative methods incur approrimation errors, with which
any arithmetic errors are inextricably mixed up, one should not worry unduly
about the latter. But this kind of sloppy thinking is a recipe for trouble.

Many iterative methods are, in principle, capable of furnishing results that
approach as close as we might practically desire to the exact solution —i.e., we
can make the approximation error very small — if we formulate them in such
a manner that the end result is not extremely sensitive to small perturbations
in the input or intermediate values (i.e., to any arithmetic errors that occur).
A problem formulation that has this property is said to be well-conditioned.
In an ill-conditioned problem formulation, on the other hand, small input or
intermediate perturbations may induce disproportionately large errors in the
output — it is then impossible to compute accurate results in floating—point
arithmetic, regardless of the iterative method employed.

It is only by detailed analysis of the influence of arithmetic errors — which
may be viewed as perturbations of the input values in a hypothetical exact
arithmetic computation — that we can quantify this notion of the condition
of a problem formulation. We shall consider specific examples in due course:
our purpose here has been merely to convince the reader that analyzing the
effects of arithmetic error is an important issue, logically quite independent
of the presence or absence of approximation errors.

12.3 Floating—point Computations
On account of its speed, convenience, and (in most cases) reasonable accuracy,

scientific and engineering calculations almost invariably rely on floating—point
arithmetic. However, the very speed of modern computers incurs greater risk
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of encountering those seemingly-rare circumstances in which floating—point
calculations yield miserable accuracy. By bringing these pitfalls to the reader’s
attention, our intent here is to to quell the usual temptation to rush to the
computer and “repeat the classical blunders of generations past” [204].

12.3.1 Floating—point Numbers
A normalized floating—point number f in base b has the form
f=mbe, (12.2)

where e, the exponent, is an integer in a prescribed range —F < e < +F and
m, the mantissa, is a (signed) fractional real number that has exactly d digits
in base b. By “normalized” we mean that the value of m satisfies

1/b < |m| < 1.

This ensures that all d digits of the mantissa convey useful information; there
are no “wasted” leading zeros. Some examples of 4-digit decimal and 12-digit
binary normalized floating—point numbers are:

0.3074 x 10> and 0.101101000101 x 27

(we express the mantissa m explicitly in base b, but the exponent is decimal).

The restriction on e means that no number of absolute value smaller than
1/bF+1 or greater than or equal to b¥ is allowed — calculations that attempt
to generate numbers outside this dynamic range will result in floating—point
“underflow” or “overflow.” Also, restricting m to just d digits implies that the
floating—point number system (12.2) is discrete rather than continuous — it
encompasses only a finite set of distinct real values. Real numbers whose true
values lie in between two consecutive floating—point numbers (which could be
either initial input data, or values generated by arithmetic operations) must
be rounded or truncated so as to have a mantissa of only d digits.?

For an arbitrary real value X within dynamic range, 1/bF! < |X| < b,
there exists an integer e and a real value y having an unrestricted number of
digits in base b, such that X = pb© and 1/b < |u| < 1. The floating—point
approximation x of the real number X is then defined to be

x = float(X) = mb®,

2 Truncation incurs systematic errors. The steady erosion of the Vancouver Stock
Exchange index to approximately half its value at inception in 1982, despite fair
performance of its component securities, offers a humorous illustration of this. The
“bear market” persisted for almost two years before being traced to minuscule
truncation errors in the program that was used to periodically update the index!
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where m is determined from p by either rounding or truncation at the d-th
digit. Hence, the value of |u — m| cannot exceed %b*d (for rounding) or b~
(for truncation), and the greatest fractional error arising in the floating—point
approximation of a (non—zero) real number X is thus

_ | float(X) — X |
7= max ————————

= kb (4D 12.

where the quantity k is defined by

b % for rounding,
1 for truncation.

The value 5 given by (12.3) is usually called the machine unit.

Even “innocuous” numbers may incur rounding errors merely on input to
the computer. Consider, for example, the representation of the fraction % in
normalized binary floating point. In the exact value

(0.110011001100110011001100....) x 273,

the bit—sequence “1100” is repeated ad infinitum in the mantissa — forcing us
to round or truncate after d places. The IEEE standard for double—precision
floating point [1], for example, employs a 53-bit binary mantissa® together
with rounding, giving a machine unit n = %2_52 ~ 10715, Thus, assigning
the decimal value 0.1 to a floating—point variable incurs an immediate relative
error of maximum magnitude n. While this may seem insignificant, there are
circumstances under which it can be greatly “magnified” (see §12.4.3).
Humans are accustomed to the decimal numbers, while computers usually
employ binary representations. Note that the choice of the parameters b and
d, consistent with a specified word—size, has important practical consequences.
Consider, for example, the case of single—precision arithmetic using a 32-bit
word, of which 24 bits are reserved for the mantissa. If a binary representation
and rounding are employed, then (12.3) with b =2, d =24, and k = % gives

n=32""~60x10"".

On the other hand, in a hexadecimal representation (b = 16), there is room
for only d = 6 mantissa digits, and if truncation is employed (k = 1) we have

n=16"5~95x10"".

The latter use of the 32—bit word, common on mainframes, yields far larger
errors in storing variables or executing arithmetic operations (see Fig. 12.1).

3 In normalized binary floating—point, the leading bit of the mantissa is known to
be 1 and hence is not stored: it is used instead to indicate the sign of the number.
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T T T T T T T T
24 binary digits + rounding 6 hexadecimal digits + truncation
A
H 1 = 2724 = 0.00000006 1 = 1675 = 0.00000096
L L L L L L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 12.1. The degree 10 polynomial p(¢) = (¢t — 0.1)(t — 0.2) - - - (¢ — 1.0) evaluated
by Horner’s method in single—precision floating point using: binary arithmetic with
rounding (on the left), and hexadecimal arithmetic with truncation (on the right).
The latter gives arithmetic errors with both a greater spread and a systematic bias.

12.3.2 Floating—point Arithmetic

Let * represent any of the four basic arithmetic operations {+, —, x, +}. Given
two floating—point numbers z and y of the form (12.2), we denote the result
of a floating—point arithmetic operation on them by float(z * y). In general,
this result differs from the ezact result = *y, since the latter typically exceeds
the constraint of d mantissa digits. However, virtually all modern computers*
have floating—point arithmetic processors designed [429] so as to ensure that
the fractional error in each individual arithmetic step is also bounded by the
machine unit:

[float(xz*y) — z*y|

|z*yl

(12.4)

where we assume that z *y # 0 (and y # 0 for the case of division). This
seems, at first sight, like a very promising result: it indicates that the relative
error incurred in each floating—point arithmetic operation is bounded by the
small quantity 7. On re-writing (12.4) in the form

(1—nzxxy < float(z*y) < (14+n)x=xy, (12.5)

4 RISC machines may have a floating—point multiply-and-add (FMA) instruction
that allows the expression (z X y) + z to be evaluated in a single cycle, with lower
error than sequential x and + operations incur. These machines may yield more
accurate results than indicated by the analysis given below, although the ability
to utilize such instructions can be algorithm— and compiler—-dependent.
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one might hope to apply bounds of the above form to each arithmetic step of
an algorithm, and hence monitor the propagation of floating—point round—off
error through any calculation of interest.

By way of example, consider evaluation of the polynomial (3.1) by Horner’s
method, which requires n multiplications and additions:

P, =txPy_ 1+ ap_p fork=1,...,n, (12.6)

where Py = a,, and the final step gives the value of the polynomial: p(t) = P,.
The additions and multiplications are performed in floating—point arithmetic,
but for simplicity we assume a,,...,aq and t are a priori allowable floating—
point values (i.e., there is no floating—point conversion error on input).

Now let e, be a bound on the absolute error in the r—th computed Horner
term, i.e., this computed value equals P. + AP, with —e, < AP, < 4e,. We

can obtain a recursion relation for the error bounds eg,eq,...,e, as follows.
The outcome of the k—th floating—point Horner step will be
[t X (Pk71+AP]€,1)(1+5) + an,k] (1+€)7 (127)

where ¢ and e are the relative errors (no greater in magnitude than 7)) arising
in the floating—point multiplication and addition that constitute step k. To
first order in small quantities, the deviation of the computed value (12.7) from
the exact one (12.6) is thus

AP, = tAPy_1 + tP,_10 + (th,1 —l—an,k)e.

Noting that the term in parentheses on the right—hand side is just the (exact)
k—th Horner sum Py, and that —ex_1 < APx_1 < 4ex—1 and —n < J,e < 41,
the bound on the absolute value of the above error in Py is

e = |t| €x—1 + (‘t| ‘Pk—ll + |Pk‘ )77. (12.8)

By running the recursion (12.8) starting with eqg = 0, it would seem that
we can determine a rigorous bound on the error e, in the value P, of p(t), as
computed by the Horner method (12.6). Such an approach, which attempts to
estimate and propagate the errors incurred in each arithmetic operation of a
calculation, is usually called forward error analysis. Despite its simplicity and
intuitive appeal, forward error analysis embodies a basic flaw that can make
it seriously underestimate the significance of arithmetic errors under certain
circumstances. To understand the nature of this flaw, we must consider more
carefully what we mean by the “error” in a computed value.

12.3.3 Dangers of Digit Cancellation

Basically, equation (12.4) says that the relative error incurred in each floating—
point operation is bounded by a very small quantity 1. However, caution must
be urged in imputing a “practical” significance to this statement, since we have
not yet given a precise meaning to the term relative error.
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Tt is implicit in equation (12.4) that the two operands x and y are numbers
that have ab initio exact floating—point representations. But this is hardly ever
true! In practice, z and y usually represent approzimations to arbitrary real
numbers X and Y. At minimum, the approximate nature of x and y arises from
the need to round X and Y on input (if  and y denote intermediate values in
some calculation, they will often incorporate significantly larger accumulated
round—off errors, compared to the exact values X and Y'). For simplicity, we
consider only the case where X and Y are input values, so that z and y suffer
only initial round—off errors characterized by

(I-nX
1-nY

In practice, of course, the error of interest incurred by the floating—point
arithmetic operation float(x * y) is not that expressed by equation (12.4), but
instead the error relative to an exact—arithmetic operation on the underlying
real numbers, X and Y, that the floating—point numbers x and y approzimate
— i.e., it is the quantity

z = float(X)

<
< y = float(Y)

(1+n)Y. (12.9)

float(x — Xx*xY
Y
| X + Y|

relative error = (12.10)

In most cases the quantity (12.10) is, in agreement with intuition, no more
than a few times 7, and the model (12.4) thus provides a fairly reliable basis
for analyzing error propagation and estimating the deviation of floating—point
calculations from exact—arithmetic results — as in the discussion of Horner’s
method. However, there are situations in which (12.10) can exceed n by many
orders of magnitude, and the model (12.4) fails dramatically in monitoring the
true discrepancy between floating—point and exact—arithmetic results. These
cases correspond to subtraction of like—signed floating—point numbers x and y
that have identical exponents and agree in many leading digits of the mantissas
(or, equivalently, the addition of such quantities of unlike sign).

In such situations, cancellation of the identical leading digits of x and y
occurs, and hence the quantity x * y actually needs no rounding for machine
representation: float(x * y) = x % y. The problem is thus not one of arithmetic
error in the subtraction, but rather a magnification of “pre—existing” errors
incurred in the floating—point conversions x = float(X) and y = float(Y"). To
illustrate this, we use (12.9) to write

zr=(1+4+6)X and y = (1+¢Y,

where § and € are random numbers with —n < §, e < +7. We further suppose
that X, Y are of like sign and agree in r > 1 of their leading binary digits.
Noting again that float(x*y) = x*y in such a case, expression (12.10) becomes

(1+6)X —(1+Y — (X V)| [6X — eY]
X — V| T X —v]

relative error =
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Now the numerator of the right-hand side attains its largest value, namely
0X — Y| = n(IX[+[Y]),

when § and € both have absolute value n but unlike signs, and if X and Y
have mantissas that agree in r leading bits, we have

(X +1Y] ~ 2]X],

and typically

|X —-Y| = 27" |X]
(although | X — Y| may actually be much smaller). Thus the magnitude of the
error, relative to exact arithmetic, is approximately

relative error ~ 2" 17, (12.11)

This error evidently becomes arbitrarily large as » — oo (note that r is the
number of identical bits in the real numbers X and Y — it is not bounded
by d, the number of mantissa bits in the floating—point number system).

We emphasize again the nature of the phenomenon that gives rise to the
error (12.11): it is not at all an “arithmetic error” but rather a magnification
of the small relative errors incurred by the conversions® x = float(X) and
y = float(Y") that arises when | X — Y| < |X]|,|Y|. A simple example serves to
illustrate this point: consider the addition of the two numbers, X = 0.275347
and Y = —0.275162, in 4-digit decimal floating—point arithmetic. In exact
arithmetic we obtain

X = +0.275347
Y = —0.275162
X +Y = +0.000185,

whereas converting first to floating—point by rounding gives = float(X) =
0.2753 and y = float(Y) = —0.2752, and hence

r = +0.2753
y = —0.2752

float(z +y) = +0.0001.

Note that no rounding was necessary in the above floating—point calculation.
However, the fractional error — relative to the exact—arithmetic result — is

0.0001 —0.000185 _
0.000185]

relative error =

But the machine unit for 4-digit decimal floating—point is just % x107¢4D =
5x 107%, and thus the above error exceeds 1 by about 3 orders of magnitude!

5 If X, Y were intermediate (rather than input) values, any accumulated error that
x, y have relative to the exact values would be subject to the same amplification.
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12.3.4 Models for Error Propagation

We may summarize the preceding discussion as follows. In the absence of digit
cancellation effects, the accumulation of arithmetic errors in the execution of
an algorithm — as compared to exact—arithmetic results — is reasonably well
described by the formula (12.5), which indicates rather small relative errors
in each step, and consequently fairly mild final errors in all but very lengthy
calculations. When cancellations occur, however, the “forward error analysis”
model based on (12.5) fails dramatically to provide a reliable indication of the
deviation from exact—arithmetic results, and cannot be easily amended to do
so. In such cases, the errors that arise are not actually arithmetic errors, but
rather magnifications of pre—existing errors in the operands.

The potential for large relative errors to arise through cancellation effects —
as expressed by the factor 2"+! in equation (12.11) — seriously complicates
the task of formulating systematic floating—point error propagation models.
The amount of error amplification in each subtraction depends on the precise
number of digits 7 that cancel in the operands. If the latter are intermediate
values in a rather lengthy calculation, » would be virtually impossible to know
other than through a tedious step—by—step examination of numerical values —
which is clearly impractical for all but the most trivial calculations.

There is a systematic (though rather subtle) approach to floating—point
error analysis that accommodates cancellation effects and avoids the tedium of
a case—by—case inspection for each set of input parameters. Developed by the
pioneering British numerical analyst James H. Wilkinson (1919-1986), this
approach is based on computing a condition number for the given problem,
coupled with a backward error analysis of it.

Instead of attempting to monitor the discrepancies between “exact” and
“computed” results in a floating—point calculation, Wilkinson’s method has a
radically different philosophy — it aims to show that the outcome of a finite—
precision calculation on given input values is identical to what is obtained in
an exact—arithmetic calculation, but with “perturbed” input values. Assessing
the accuracy of floating—point calculations is then a two-stage process:

1. compute a condition number C for the given problem, which characterizes
the sensitivity of the output values to perturbations in the input values;

2. perform a backward error analysis so as to determine the magnitude e of
the input perturbations that, in exact arithmetic, would be equivalent to
the cumulative effects of round-off error during the calculation.

The product Ce of the condition number and “effective” input perturbations
is then a measure of the floating—point error in the computed solution. These
concepts will be explained in greater detail below. Although the backward
error analysis method is quite general, it can become unwieldy in practice if
the algorithm is not relatively simple. Quite often, just being able to compute
(or estimate) the condition number gives a sufficient indication of whether or
not the results of a calculation can be regarded as trustworthy.
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An alternative approach to monitoring the propagation of rounding errors
or other uncertainties during a calculation is by the use of interval arithmetic
(see §2.4). Each variable is considered to identify a range of possible values,
between specified lower and upper limits, and each value within this range is
regarded equally likely as the value of the variable — there is no information on
the relative probabilities of values within the specified range. If the arithmetic
operations required to determine the lower and upper bounds of the resulting
intervals on the right—hand side of expressions (2.10) are to be performed in
floating point, it is possible to automatically adjust them to allow for the effect
of round-—off errors: this approach is known as “rounded” interval arithmetic.
For a more detailed treatment of this topic, see [16,226,332,333].

The interval widths need not necessarily reflect only round—off errors: they
may also reflect inherent “physical” uncertainties associated with the variables
— for example, interval arithmetic can be used to analyze the accumulation of
tolerances in a mechanical assembly whose component parts have dimensional
uncertainties due to manufacturing variations. Many familiar algorithms can
be reformulated to accept interval operands — see, for example, [227,228].
The use of interval arithmetic in the context of geometric modeling has been
discussed in [286,338,402]. It should be noted, however, that “mindless” use of
interval arithmetic can yield very pessimistic results — i.e., the interval width
grows very large, whereas the true value is, with high probability, localized in
a much narrower subset of the nominal interval.

12.4 Stability and Condition Numbers

Conceptually, we may regard a mathematical problem P as receiving certain
numerical values as its “input” and yielding other values as its “output” or
solution — we assume the output to be an analytic function of the input,
even if we cannot in general express that function in closed form. We say that
P is a stable or “well-conditioned” problem if input values that differ only
slightly always define solutions that differ only slightly. If, on the other hand,
input values that differ only slightly can incur dramatically different solutions,
we say that P is an unstable or “ill-conditioned” problem. Figure 12.2 gives a

input values solutions input values solutions

() (I

Fig. 12.2. The “distance” between solutions for two neighboring sets of input values
distinguishes a well-conditioned problem (left) from an ill-conditioned one (right).
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schematic illustration of this concept, which may be quantified by introducing
suitable metrics for the sets of input values and solutions.

The condition number C(P) of the problem P is a quantitative measure of
the sensitivity of its output to changes in its input. We are speaking here of the
intrinsic stability of the input—output relationship for the specified problem
P. We make no reference to any particular algorithm or computational scheme
whereby solutions are actually determined. The condition number C(P) is an
intrinsic property of the problem P, independent of any solution method.

The typical approach to formulating a condition number C(P) is as follows.
We imagine that the input parameters to P suffer random perturbations, of
maximum relative magnitude €, about their nominal values. Corresponding
perturbations of the output values will then be induced, and we require the
condition number to be such that the greatest of these output perturbations
is bounded by the quantity C(P)e. Thus “well-conditioned” problems have
condition numbers of order unity (i.e., the input and output perturbations are
comparable) while “ill-conditioned” problems will have very large condition
numbers. Although we have not yet discussed backward error analysis, it will
be intuitively clear that high—accuracy solutions to ill-conditioned problems
are extremely difficult to compute using floating—point arithmetic.

The study of condition numbers can be useful in identifying more—stable
problem formulations, and thereby obtaining more—accurate computed results.
We now examine in greater detail some condition number formulations for two
important problems: univariate polynomials and linear maps (i.e., matrices).
The condition numbers for polynomial values and roots used below are based
upon the formulations of Gautschi [209,210]. For linear maps, the condition
numbers are based on standard vector and matrix norms: see §12.4.4.

12.4.1 Condition of a Polynomial Value

Consider the representation
p(t) = > crdr(t) (12.12)
k=0

of a degree-n polynomial p(t) by its coefficients cg, . .., ¢, in a specified basis
do(t), ..., dn(t). Suppose we are interested in evaluating p(t), but we do not
know its coefficients cy, ..., ¢, precisely. Specifically, suppose that ¢ is in
error by dcy for each k. Then the nominal value p(t) is perturbed to

n

p(t) +op(t) = > cnon(t) + 3 dcran(t).
k=0

k=0

If the coefficient errors are assumed to be random and of a uniform relative
magnitude ¢, so that
—e < deg /e < +e (12.13)
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for kK =0,...,n the perturbation dp in p evidently lies in the range

= loerr(®)] < 0p(t) < + > |0crer(t)], (12.14)
k=0 k=0
and using (12.13) we may write
|5p(t)] < Cu(p(t) e where Co(p(t) =D [exdr(t)]. (12.15)
k=0

We call Cy(p(t)) the condition number for the value of p(t) with respect to
its coefficients in the basis ¢g(t), ..., ¢, (t). We append the subscript ¢ to this
condition number to emphasize that it depends on the choice of basis, as well
as on the polynomial p(¢) itself. Note that we make no assumption concerning
the size of the fractional coefficient error e in deducing the bound (12.15).
Thus, the perturbation in the value of p(t) satisfies this bound for finite (not
just infinitesimal) relative errors in the coefficients. We now compare condition
numbers for the value of a polynomial in different bases.

Definition 12.1 A basis ¢(t), ..., ¢, (t) for polynomials of degree n is said
to be non—negative on the interval t € [a, b] if

¢p(t) >0 forallte€[a,b] and k=0,...,n. (12.16)
Non-negative polynomial bases are of interest in the following context [181].

Theorem 12.1 Let g(t), ..., Yn(t) and ¢o(t), ..., dn(t) be two non—negative
bases for polynomials of degree n on the intervalt € [a,b], such that the former
can be expressed as a non—negative combination of the latter, i.e.,

Ui(t) = Y Mxgi(t), 5=0,...,n, (12.17)
k=0
where Mj, > 0 for 0<j,k<m. (12.18)

Then the condition number for the value of any degree—n polynomial p(t) at
any point t € [a,b] in these bases satisfies the inequality

Cs(p(t)) < Cy(p(?)). (12.19)
Proof : Let p(t) have coefficients ag, . . ., a, in the basis o (t), ..., ¥ (t):

p(t) = > a;u5(t). (12.20)
=0

On substituting (12.17) into (12.20), we see that the coefficients co, ..., ¢, of
p(t) in the basis ¢g(t), ..., ¢, (t) are given by

crp = Zaijk for k=0,...,n. (12.21)
J=0
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Since the bases (), ..., ¥n(t) and ¢o(t), ..., ¢n(t) are both non—negative on
t € [a,b], the condition numbers for the value of p(t) may be written as

n n

Cop(t)) = D lexldn(t) and  Cy(p(t)) = D lagl;(t). (12.22)

k=0 3=0
We now substitute (12.21) into Cy(p(t)) and use the triangle inequality

n

n
< ol (12.23)
k=0

k=0
for any sequence xg, ..., x, of real values, to obtain
Colp(t) = Y a; M| o) < Y| D la;Mys| | di(t).  (12.24)
k=0 | j=0 =0 | j=0

Thus, setting |a; M;x| = |aj| M, (since Mj;, > 0 for all j, k) and re-arranging
the order of summation on the right-hand side of (12.24) we have

Co(p(t)) < D lag| > Mirdr(t) = Y lajls(t) = Cylp(t)),  (12.25)
=0 k=0 §=0

where we make use of (12.17) in the second step. B

We emphasize again the general nature of the inequality (12.19) — it holds
for every polynomial p(t) and for each value ¢ € [a, b] if the non—negative bases
Po(t), ..., dn(t) and o(t),. .., ¥n(t) satisfy (12.17) and (12.18). The former
basis then offers as a systematically more stable representation for evaluating
polynomials at points ¢ € [a,b] than the latter basis.

A trivial instance in which the relation (12.19) holds with equality is if we
simply scale the basis functions, i.e., we set

Yr(t) = Megr(t) fork=0,...,n,

where N, ..., A\, are any (non—zero) constants. It is not difficult to see in this
case that Cy(p(t)) = Cy(p(?)), i.e., the condition number for the value of p(t)
is independent of the scaling of the basis functions. A non—trivial example is
a comparison of the Bernstein basis

b (t) = (Z) Q—t)" %k fork=0,...,n, (12.26)

on which the Bézier curve and surface forms are based (see Chap. 13) with the
monomial basis 1, ¢, ...,¢". Since the polynomials (12.26) are non—negative for
t € [0,1] and the monomials are the non—negative combinations
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k
th = kznjgj% bi(t) forj=0,...,n (12.27)

of them [181], the Bernstein representation
p(t) = cbi(t) (12:28)
k=0

of a polynomial is systematically more stable on the interval ¢ € [0,1] than
the “power” form (3.1). On the other hand, we note from the expression

HO g(—l)kj (Z) (f) t* forj=0,...,n (12.29)

J

for the Bernstein basis in terms of the monomial basis [181] that the former
are not non—negative combinations of the latter.

In fact, it can be shown [161] that the Bernstein basis is “optimally stable”
in the sense of Theorem 12.1 — it is impossible to construct a non—negative
basis for degree—n polynomials on ¢ € [0,1], in terms of which the Bernstein
basis can be expressed as a non—negative combination,® so that this basis will
yield systematically smaller condition numbers than the Bernstein form.

The transformation between two degree—n polynomial bases by means of a
non—negative matrix establishes a partial ordering among the set of such bases
that are non—negative over any specified interval, and the Bernstein basis is a
manimal element of this partially—ordered set. No other commonly—used basis
is known to have this property — see [161] for more complete details.

12.4.2 Condition of a Polynomial Root

We discussed above the stability of the value of a polynomial, with respect to
perturbations of its coefficients. Many problems concerning curve and surface
intersections, ray tracing of surfaces, etc., can be reduced to computing roots
of polynomials, so we are also interested in analyzing their stability. Clearly,
these problems are related, since a root is a point ¢ where the value is zero.

Suppose T is a simple real root of the polynomial p(t), i.e., p(7) = 0 # p/(7).
We are interested in characterizing the sensitivity of 7 to perturbations of the
coefficients ¢y, . .., ¢, of p(t) in the basis ¢g(t), ..., dn(t). We consider first an
infinitesimal perturbation dc, in the coefficient ¢, only, and suppose that the
root 7 is displaced to 7 + 07 when p(¢) is perturbed to p(t) + d¢,¢,-(t). Then
we must have

p(T 4+ 07) + dep (T4 07) = 0.

5 We exclude, of course, the trivial case of scalar multiples of the Bernstein basis
functions. The result can be easily generalized to an arbitrary interval t € [a,b].
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Moving the second term to the right and expanding both sides in Taylor series
gives

n (k) (5 " o) (r
S D iyt = = e, 3 2D oy, (12:30)
k=1 k=0

Note that there is no constant term on the left, since p(7) = 0, and the Taylor
series are finite because p(t) is just a polynomial.
Keeping only first—order terms in infinitesimal quantities, we find that

o7 (1)

li =
Serr0 der/cr P (7)

(12.31)

This expresses the sensitivity of 7 to a perturbation in the coefficient ¢, only.
If we now imagine every coefficient to be subject to a random (infinitesimal)
perturbation of maximum relative magnitude e,

|dci/ck] < € for k=0,...,n, (12.32)

the greatest overall root perturbation 7 will be achieved when |dci| = € |cy|
for each k, and the signs of the dci’s are such as to make their contributions
on the right—hand side of (12.31) add up in the same sense.

Thus, we deduce that the simple root 7 of p(t) will suffer a perturbation
07 satisfying the bound

67| < Cy(r)e where Cy(r) = |p’(17)| S Jexen(7)| (12.33)
k=0

when the coefficients ¢y, ..., ¢, of p(t) in the basis ¢o(t),. .., ¢, (t) are subject
to random infinitesimal errors of maximum relative magnitude e. We call the
quantity Cy(T) a root condition number for the polynomial p(t).

Note that although Cy () differs from Cy(p(7)) by only the factor 1/[p’(7)],
the interpretation of the root condition number is rather different from that for
the polynomial value. While (12.15) expresses a sharp bound on the change in
the polynomial value for arbitrary coefficient perturbations, the bound (12.33)
on the root displacement is valid only for infinitesimal perturbations: it is only
by restricting to infinitesimal perturbations that we can omit the higher—order
terms in (12.30) and thus proceed to equation (12.31) and hence (12.33).

Since the factor [p’(7)| in Cy(7) is evidently independent of the basis that
we choose for the polynomial p(t), the inequality of Theorem 12.1 with respect
to condition numbers for the polynomial value in different non—negative bases
applies equally to the root condition numbers. For example, if we are interested
in the roots of a polynomial p(t) on t € [0, 1], the Bernstein form is always a
better—conditioned representation for computing them than the power form.

The root condition number (12.33) is formally infinite if p’(7) = 0 — i.e.,
when 7 is a multiple root. This indicates that |§7| actually has a faster than
linear growth with €. In order to characterize the dependence of §7 on € in
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such instances, we return to equation (12.30) and retain only the lowest—order
non—vanishing term on the left—-hand side. We thus find, at an m—fold root 7

such that p(1) = p/(7) = --- = p(m~Y(7) = 0 # p™)(7), that
| n 1/m
67 < CP(r) /™ with CP(r) = ‘(;"W S lextr(m) | . (12.34)
P o

We may interpret C7'(7) as a condition number for the m—fold root 7 of p(t)
in the basis ¢g(t),. .., ¢, (t). Again, the above bound holds only in the limit
¢ — 0 — note that €!/™ > ¢ when e < 1.

12.4.3 Wilkinson’s Polynomial

An (in)famous polynomial, first investigated by Wilkinson [468] in 1959, offers
a vivid illustration of these ideas. In the course of testing newly—implemented
software for floating—point arithmetic (only fixed—point arithmetic processors
were available at that time), Wilkinson attempted to compute the roots of a
degree 20 polynomial. Specifically, he chose a polynomial with 20 equidistant
real roots,

p(t) = ﬁ (t—k/n), n=20, (12.35)
k=1

so as not to encounter numerical difficulties (or so he thought) on account of
closely-spaced or near-multiple roots.” Wilkinson’s approach was to multiply
out expression (12.35), so as to determine the power coefficients aq, ..., a, in
the representation (3.1), and to use this representation in evaluating p(t) and
its derivative for Newton—Raphson iterations. He discovered, in fact, that he
could find few of the roots of (12.35) to more than just a few accurate digits —
if at all — and was at first convinced that his software implementation of
floating—point arithmetic must be plagued by bugs.

It was only on verifying this was not the case that he discovered the true
source of the problem, namely, the severe ill-conditioning of the roots of p(t)
with respect to its power coefficients ay, . .., a,. He subsequently called this
“the most traumatic experience in my career as a numerical analyst” [470].

We begin to understand why the roots of p(t) are so difficult to determine
in floating—point arithmetic when we compute their condition numbers in the
power basis, as given by expression (12.33). Table 12.1 lists these condition
numbers, which are found to be greater than 10 in some instances. In other
words, a minuscule coefficient perturbation of merely 1 part in 10'3 may induce
displacements of order unity in the roots! Perturbations of this magnitude
might certainly be expected in computing the power coefficients ag, . . ., asg of
p(t) by multiplying out (12.35) in floating—point arithmetic.

" Wilkinson actually used roots at ¢t = 1,..., 20, which we scale down to the unit
interval ¢ € [0,1] here — this does not alter the problem in any substantive way.
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Table 12.1. Root condition numbers for Wilkinson’s polynomial.

root condition number condition number

in power basis in Bernstein basis
0.05 2.10 x 10! 3.41 x 10°
0.10 4.39 x 10° 1.45 x 102
0.15 3.03 x 10° 2.34 x 103
0.20 1.03 x 107 2.03 x 10*
0.25 2.06 x 108 1.11 x 10°
0.30 2.68 x 10° 4.15 x 10°
0.35 2.41 x 101° 1.12 x 10°
0.40 1.57 x 10! 2.22 x 108
0.45 7.57 x 10! 3.32 x 10°
0.50 2.78 x 102 3.80 x 10°
0.55 7.82 x 1012 3.32 x 10°
0.60 1.71 x 10%® 2.22 x 108
0.65 2.89 x 102 1.12 x 108
0.70 3.78 x 1013 4.15 x 10°
0.75 3.78 x 103 1.11 x 10°
0.80 2.83 x 102 2.03 x 10*
0.85 1.54 x 10%3 2.34 x 103
0.90 5.74 x 102 1.45 x 102
0.95 1.31 x 10*2 3.41 x 10°
1.00 1.38 x 10! 0.00 x 10°

How do such enormous root condition numbers arise? The answer lies in
that dreaded blight of all finite—precision calculations, discussed in §12.3.3 —
namely, the problem of error amplification through digit cancellation. Suppose
we try computing the value of p(t) at the point ¢ = 0.525, say, by enumerating
the values of its 21 constituent terms a;t* in the power form at that point (we
choose a point between two roots since that value at a root is, of course, zero).
The contributions of these terms, accurate to the number of digits shown, are
found to be as follows:

ap = -+0.000000023201961595
a1t = —0.000000876483482227
as t? = +0.000014513630989446
azt® = —0.000142094724489860
ast* = 40.000931740809130569
a5t = —0.004381740078100366
agt® = 4+0.015421137443693244
a7t = —0.041778345191908158
agt® = 40.088811127150105239
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agt? = —0.150051459849195639
a0t = 40.203117060946715796
app tt = —0.221153902712311843
az t'? = +0.193706822311568532
a3t = —0.135971108107894016
ajgt™ = 40.075852737479877575
a5t = —0.033154980855819210
a16t'% = 40.011101552789116296
a7t = —0.002747271750190952
a1zt = +0.000473141245866219
ag t'? = —0.000050607637503518
aso t?° = +0.000002530381875176

p(t) = 0.000000000000003899 . (12.36)

The actual value of p(t), halfway between two consecutive roots, is seen to be
just a tiny residual left over when relatively large terms of alternating sign are
summed up. In fact, this value is ~13 orders of magnitude smaller than the
largest of the individual terms a;t®. A perturbation of just a single coefficient
coefficient az, may thus be amplified as much as 103 times in the value of p(t)!
Since the roots are just the points at which the polynomial value vanishes,
they suffer commensurate errors.

This example shows that error amplification due to cancellation need not
be confined to individual arithmetic operations, as in the example of §12.3.3 —
although no two consecutive terms in (12.36) have many digits in common, the
relative accuracy of the final value is still extremely susceptible to individual
arithmetic errors or small perturbations in the coefficients ag, . .., asp.

We have observed that the Bernstein basis on ¢t € [0,1] is systematically
better—conditioned than the power basis about t = 0. Table 12.1 compares
the Bernstein—basis root condition numbers for (12.35) with the power—basis
condition numbers — we see that, for the most unstable roots, they are about 7
orders of magnitude smaller. This means that, when using the Bernstein form
(12.28), we can expect to compute the roots with about seven more digits of
accuracy than when using then power form (assuming that the coefficients of
both forms have relative errors of similar magnitudes).

This is dramatically illustrated in Table 12.2, where we show the result of
a fractional perturbation € ~ 5 x 1070 in the coefficients a9 and ci9 of the
power and Bernstein forms. The values shown are correct to the given number
of digits — they indicate the intrinsic sensitivity of the roots to perturbations
in a9 or cig, rather than the effects of arithmetic or approximation errors in
a numerical root—finding procedure. Whereas all the roots of the perturbed
Bernstein form exhibit at least 8 accurate digits, many roots of the perturbed
power form have no accurate digits at all — they become complex conjugate
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Table 12.2. Perturbed roots of Wilkinson’s polynomial.

exact perturbed root perturbed root
root (power basis)  (Bernstein basis)
0.05 0.05000000 0.0500000000
0.10 0.10000000 0.1000000000
0.15 0.15000000 0.1500000000
0.20 0.20000000 0.2000000000
0.25 0.25000000 0.2500000000
0.30 0.30000035 0.3000000000
0.35 0.34998486 0.3500000000
0.40 0.40036338 0.4000000000
0.45 0.44586251 0.4500000000
0.50 0.50476331+ 0.5000000000
0.55 0.03217504 i 0.5499999997
0.60 0.58968169+ 0.6000000010
0.65 0.08261649 i 0.6499999972
0.70 0.69961791+ 0.7000000053
0.75 0.12594150 i 0.7499999930
0.80 0.83653687+ 0.8000000063
0.85 0.14063124 i 0.8499999962
0.90 0.97512197+ 0.9000000013
0.95 0.09701652 i 0.9499999998
1.00 1.04234541 1.0000000000

pairs! This provides an excellent illustration of the fact that the formulation
of a problem can often exert a profound influence on the accuracy with which
we can hope to compute the solutions of that problem.

£ = 0.00002 e =0.002

I L I I I I L I

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 12.3. Perturbation regions for the Bernstein (dark grey) and power (light grey)
forms of a degree—6 Wilkinson polynomial with specified relative coefficient error e.
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Figure 12.3 shows the perturbation regions defined by (12.14) for the power
and Bernstein forms of a polynomial of the Wilkinson form (12.35) withn = 6
and relative coefficient perturbations e = 0.00002 and 0.002. The intervals
defined by the intersections of these regions with the t—axis bound the values
of the real roots. For the e = 0.00002 perturbation, the width of the Bernstein—
form perturbation region is narrower than the line thickness in the plot, but
the power—form perturbation region is already quite prominent. For ¢ = 0.002,
the Bernstein—form region becomes more apparent, but it is still possible to
unambiguously distinguish the six real roots. However, the power—form region
grows dramatically, and the identities of the original six roots are lost.

12.4.4 Vector and Matrix Norms

We have discussed above the stability of univariate polynomials, which may be
regarded as non-linear maps from an independent variable x to a dependent
variable, y = p(xz) — the value of the polynomial. The stability properties of
maps between several variables are also important, but since the analysis is
more difficult we confine our attention to linear multivariate maps, specified
by matrices. In order to proceed, we need to introduce some basic concepts
concerning the norms of vectors and matrices.

Let v = (vg, . ..,v,)T be a column vector® with n + 1 real elements. By a
norm of v, we mean a non-negative number that characterizes the “length”
or “magnitude” of this vector. We are familiar with the Fuclidean norm,

Ivl2 = \/vg + -+ 02, (12.37)

which may be regarded as a special case of the p—norm defined by

n l/p
Ivll, = lZIviV’] : (12.38)
=0

In the particular cases p = 1 and p = oo, we have

M =3l and vl = g [l (12.39)

The case p = oo is sometimes called the mazimum or uniform norm. For all
p, the norms defined by (12.38) satisfy the following conditions:

1. vl >0 and ||v], =0 < v =0;

2. |lavll, = |af[[v]l, for any scalar a;

3. |lv4+ull, < |vlp+ |jull, (the “triangle inequality”).

8 We use zero-indexed vectors here (likewise for matrices) since the vector elements
will often be the coefficients of a polynomial of degree n in some basis.
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The triangle inequality is a consequence of Minkowski’s inequality [31]:

n 1/p n 1/p n 1/p
Sewr| < [a| v [
i=0 i=0 i=0
(where p > 1) for sets of non—negative real numbers xg, . .., 2, and yo, - - - , Yn.
Note that ||v + u|l, = ||v||, + ||ull, if and only if the vectors u and v are
parallel, i.e., uy = avy for some scalar a and k£ =0,...,n.

Because of the simplicity of the corresponding matrix norms, we shall use
mostly the ||v||; and ||v]|, vector norms. The following bounds indicate that
the choice of p does not strongly influence the value of ||v|:

Lemma 12.1 For all vectors v, the norm ||v||, with 1 < p < oo satisfies

Ivilx
1) < Vi, < vl and vl < VI, < (e D)VP|Iv] -

These bounds may be verified by appealing to Holder’s inequality [31]:

n n 1/17 n 1/q
S e < [zxf] [zys]
=0 1=0

i=0
for non—negative real numbers x, ..., z, and yo, ..., y, where p and ¢ satisfy

1 1
- +-=1 and 1<p,g<oo.
p g
Since [|v, < [[v]l, < [[v]l; for all v.and 1 < p < oo, we may regard ||v|, as
the “smallest” of the vector norms (12.38), and ||v||; as the “largest.”

For any real (n + 1) x (n + 1) matrix M, the matrix norm subordinate to
or induced by the vector norm (12.38) is the non—negative number defined by

M|,

M|, = max : (12.40)
Poovzo vl

Informally, we may think of the matrix norm ||M]| , as the greatest factor by

which the “length” of any vector (as measured by the vector norm |[vl|,) is

increased through the action of the linear map M. From the scaling property

lav]l, = |a| ||v|l, of the vector norm, we also have the alternative definition
M, = max |[Mv].

v, =
Note that from (12.40) we may infer the inequality
(IMv], < [[M|pllv]], forall v#0. (12.41)

Furthermore, it can be shown [256] that the bound given in (12.41) is sharp,
i.e., there exists a non-zero v for which |[Mv||, = [|M||,||v]|,. The following
properties of the matrix norm (12.40) are easily verified:
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IMIl, >0 and [M], =0 <= M =0
laM]||, = |a]||M]||, for any scalar «;
A +Bll, < [[All, + (1Bl ;

[AB|, < [[Allp Bl -

= W o=

For general p, the matrix norm (12.40) can be quite difficult to compute,
or even estimate. However, the cases p = 1 and p = oo are relatively simple.
Proposition 12.1 Let Mj;, for 0 < j,k < n be the matriz elements of M.
Then the norms ||M]||, and |[M| are given by

n n
IM[l; = max Y |Mj| and [M], = Jmax. ];) |Mje|  (12.42)

0<k<n 4
Jj=0

i.e., they are the greatest of the column sums and row sums of absolute values
of the matriz elements M;y,, respectively.

Proof : First, for |[M||;, we use the triangle inequality (12.23) to note that

> My

k=0

n

Myl =

=0

n n n

<IN IMgllor] = D[ D Mkl | fowl -

7=0 k=0 k=0 | j=0

The term in parenthesis on the right is the sum of absolute values of matrix
elements across column k. Replacing this by the greatest such sum, we have

n

n n
IMV[ly < | max 7 Ml | D ol = | max S Ml | V]
j=0 k=0 Jj=0

and if column m exhibits the greatest sum of absolute values, the above will
hold with equality for the vector v given by

5 1 if k=m,
v = m =
4§ fm 0 otherwise.

Thus, we have

M n
[IM]|; = max MV = max Z|Mgk|
v#0  ||v]]1 0<ksn =

The argument for |M||_ is quite similar:
n

> Mjku

k=0

n n
max Z|M]k|\vk\ < | max Z|M]k\ max |vg].
0<j<n £ 0<j<n &~ 0<k<n

[Mv]oo = Jnax

IN
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Thus, since ||v||, = maxy, |vy|, we may write

IMv|,, < [ max §£:|A43k] 1Vl
k=0

0<j<n

and we note that if m is the row with the greatest sum of absolute values, the
above holds with equality for the vector v defined by

My /| Moi| i My, # 0,
Vi = SlgH(Mm ) = { k/| kl ! k 7&

0 if My =0,
for k =0,...,n. Hence we deduce that
M n
[Mv]|s = max MVl = max | M. a
Vi vl | ofiEnZe

From (12.42) it is clear that |[M]||; = |[M”| » for any real matrix M and, in
particular, that ||M]||; = ||[M||e when M is a symmetric matrix.

The matrix norm subordinate to the || - ||, vector norm defined by (12.37)
is somewhat more difficult to compute:

Proposition 12.2 For any real (n+1) x (n+1) matric M, let Ao, ..., A\, be
the n + 1 eigenvalues of the symmetric matric MTM, and let

Amax = max A;.
0<i<n

Then the | - ||, norm of the matriz M is given by

HMH2 =V Amax -

Proof : For any real vector v, we have vI'v = ||v||§ Thus, by the definition
of |[M]|,, we obtain

Mv||2 Mv)"M (M™M
M2 = max | vl|2 = max (Mv) Mv = max u (12.43)
v£0 ||v||3 v#£0 vliv v#£0 viv
Now let eg,...,e, be orthonormal eigenvectors for M7 M, corresponding to
its eigenvalues A, ..., A, (not necessarily all distinct), so that

M™Me; = \je; fori=0,...,n.

In this eigensystem, any non—zero vector v has a representation of the form

n
v = E cie;,
=0
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where the coefficients {c¢;} are not all zero. Since e; - e = d;, we note that

viv = Z c? and vIiMTM)v = Z AN, (12.44)

n
=0 1=0

and on substituting into (12.43) we have

2\
M2 = max Zq; = max \;.
(CoversCn)#(0,0,0) Y €3 0<i<n

[Mv||2/]|v||3 attains its maximum value when v = ey, i.e., the eigenvector
corresponding to the largest eigenvalue Ay ax. B

The eigenvalues of M”M are called the singular values of the matrix M
(they are necessarily real and non-negative), and | M|, is also known as the
spectral norm of M, since Amayx is the spectral radius of MTM [471]. If M is
a symmetric matrix, we have M7 M = M?2, and the eigenvalues \g, ..., A, of
MTM are then just the squares of the eigenvalues fig, . . . , ftr, of M. Thus, for
a symmetric matrix we may write

IMll2 = max |

12.4.5 Condition of a Linear Map

We are now ready to define the condition number of a linear map. Suppose

M is a non-singular matrix that maps x = (zg,...,Zn) toy = (Yo, -, Yn):
y = Mx. (12.45)
When the “input” vector x suffers the perturbation 0x = (dzo,...,dz,), a

corresponding perturbation dy = (dyo,...,dy,) is induced in the “output”
vector, given by

dy = Mix. (12.46)

We characterize these perturbations by scalar fractional measures of the form

0x 1)
L .1 o0
1x1l,, ¥,
Now since M is non—singular, the inverse map
x = My (12.48)

also exists. Applying the inequality (12.41) to (12.46) and (12.48), we obtain

loyll, < IMI|,llox], — and [lx[l, < [IM7Y],[lyl], -
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Combining these inequalities, we see that €, is bounded in terms of ex by
ey < Cp(M)ex, (12.49)
where the p—norm condition number C,(M) of the matrix M is defined by
(M) = M| IM,. (12.50)

The condition number C,(M) gives a sharp bound on the error amplification
in the linear map (12.45), i.e., there always exists a perturbation dx for which
(12.49) holds with equality. Note also that (12.49) does not depend upon the
assumption of infinitesimal perturbations. In terms of the amplification of
the output error ey relative to the input error ex, the two factors in (12.50)
can be interpreted as follows: ||M]||, indicates how much larger the absolute
output errors dy are than the absolute input errors dx, while || M ~!||, indicates
how much smaller the nominal output y is than the nominal input x.

The following useful properties of the condition numbers of non—singular
matrices are not difficult to verify:

1. Cp(M)>1;

2. Cy(M1) = Cy(M);

3. it M =M;M; then C,(M) < Cp,(M;)Cp(Mas);
4. C1(M) = Coo(M) if M is symmetric;
)

CQ (M) =V Arnax/>\min, where Amin and /\max

are the smallest and largest eigenvalues of M7 M.

Property 1 implies that, in the linear map (12.45), the gr